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A B S T R AC T

According to the standard cosmological model, the Universe originated by
the Big Bang singularity and then has undergone an expansion, which is accel-
erated at present. In the current scenario (Planck Collaboration et al., 2016a),
the Universe has a flat geometry, it is composed of 69% of dark energy and 31%
of matter; 5% of the matter component is baryonic and the rest is dark matter,
which does not interact electromagnetically. Within this so-called concordance

model structure formation takes place from the gravitational collapse of small
perturbations in a quasi-homogeneus Universe, dominated by Cold Dark Mat-
ter (Peebles, 1993). These primordial fluctuations are believed to have arisen
in an early inflationary era, and then have collapsed by self-gravity against the
expansion pressure.

In this framework, the collapse proceeds from smaller to larger scales, in a
bottom up sequence, giving rise to a hierarchical clustering of cosmic structures
(Press and Schechter, 1974; Gott and Rees, 1975; White and Rees, 1978). In
this context, galaxy clusters are important tools for understanding the forma-
tion and evolution of cosmic structures, being the largest and the last structures
to form, through accretion and mergers of smaller structures. They typically
contain hundreds to thousands galaxies in a region of virial radius ∼ 1Mpc

but these constitute only the ∼ 5% of their total composition. The ∼ 10% con-
sists of an intracluster gas at hot temperature (T ∼ 108 K) and with low density
(ngas ∼ 10−3cm−3); the remaining ∼ 85% is dark matter (Peebles, 1993, and
references therein).

Measurements of the number counts of galaxy clusters as a function of redshift
can provide powerful constraints on cosmological parameters (Allen, Evrard,
and Mantz, 2011; Kravtsov and Borgani, 2012; Weinberg et al., 2013). In fact,
the cluster mass function (number of clusters of a given mass per unit comoving
volume, at a given redshift) gives a direct measurement of the density pertur-
bation amplitude at the present epoch, σ8, while its evolution with redshift is a
function of the matter density of the Universe, Ωm. The steps needed to measure
the cluster mass function are: 1) detect clusters through large surveys and mea-
sure their redshift, 2) determine the surveyed volume and the survey selection
function, 3) estimate the cluster masses through scaling relations with the survey
observables, 4) count clusters as a function of mass and redshift, and 5) take into
account statistic and systematic errors.

Surveys based on the Sunyaev-Zeldovich (SZ) effect (Sunyaev and Zeldovich,
1970; Birkinshaw, 1999; Carlstrom, Holder, and Reese, 2002), have revolution-
ized this field providing large mass-selected samples of clusters suitable for this
cosmological analysis. In fact, since the integrated SZ flux is independent of dis-
tance, it does not suffer from cosmological dimming and it is also proportional
to the cluster mass. The Planck satellite, launched on 2009 May 14, provided for
the first time the possibility of detecting galaxy clusters through the SZ effect in
a full sky survey. So far, it has provided a large sample of 1653 clusters detected
via the SZ effect in the redshift range [0.01, 0.97], and in the estimated mass
range [0.79, 16.12]× 1014M⊙, 439 of which have a high detection significance
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(signal-to-noise larger than 4.5) and are used to constrain cosmological parame-
ters from the cluster number counts (Planck Collaboration et al., 2014a, 2016b).

However, since the SZ effect does not provide redshift, dedicated follow-up
programs are required to make the resulting catalogs scientifically useful. The
Planck collaboration has undertaken a large follow-up effort to confirm cluster
candidates and measure their redshifts. The first optical follow-up was based
on observations with the Russian-Turkish 1.5 m telescope (Planck Collaboration
et al., 2015c) and provided spectroscopic redshifts of 65 Planck clusters. The
second optical follow-up, based on observations with telescopes at the Canary
Islands Observatories, yielded 53 cluster spectroscopic redshifts (Planck Collab-
oration et al., 2016c). Recently, Barrena et al. (2018) and Streblyanska et al.
(2018) reported on new optical follow-up observations of Planck cluster candi-
dates at the Roque de los Muchachos Observatory. They confirm 53 and 37 clus-
ters, respectively, by analysing the optical richness, the 2D galaxy distribution,
and the velocity dispersions of clusters. The Planck collaboration has also car-
ried out X-ray validation programs with XMM-Newton (Planck Collaboration
et al., 2011a, 2012, 2013), where redshifts for 51 clusters were obtained from
X-ray spectral fitting.

The first part of this thesis is dedicated to our own spectroscopic follow-up
of 20 Planck cluster candidates with the Gemini and Keck telescopes (P.I. J.G.
Bartlett and F.A. Harrison, respectively), for which we measured redshifts and
velocity dispersions from member galaxies. Cluster members for spectroscopic
follow-up were selected from our own Palomar, Gemini and Keck optical and (in
some cases) infrared imaging, and SDSS (Sloan Digital Sky Survey; York et al.,
2000) public imaging. Seven cluster redshifts were measured spectroscopically
for the first time with this observing campaign, including one of the most distant
Planck clusters confirmed to date, at z = 0.782± 0.010, PSZ2 G085.95+25.23.
For all these clusters we measured velocity dispersions.

This work is published in Amodeo et al. (2018), enclosed in Appendix B, and
our catalogs were made public.

The second goal of this program was to have a sample of clusters covering
a wide range of mass in order to obtain a statistical calibration of the Planck

SZ mass estimator, which has become a hot topic since the Planck analysis
uncovered a tension between the cosmological parameters determined from
anisotropies in the cosmic microwave background (CMB) and those derived
from cluster abundance measurements. To reconcile the Planck cluster con-
straints with those of the primary CMB requires a “mass bias” parameter of
(1− b) = 0.58± 0.04, where (1− b) is the ratio between the mass determined
by Planck and true cluster mass. This tension could indicate the need for new
physics, such as non-minimal neutrino mass, or an important revision of the clus-
ter mass scale. In fact, the estimate of cluster masses (step 3 above) is a crucial
step that inevitably limits the precision of cluster cosmology because the clus-
ter mass is not a directly observable quantity (Allen, Evrard, and Mantz, 2011).
Mass can be estimated through several independent methods based on different
physical properties that are each affected by their own set of specific system-
atic effects. Methods are based on the analysis of the thermal emission of the
intracluster medium (ICM), observed either through the SZ effect or in the X-

iv



rays, the dynamics of member galaxies, and gravitational lensing. Comparison
of mass estimates using different techniques is a critical check on the reliability
of each method under different conditions, and also a test of the cosmological
scenario.

I have studied the scaling relation between the cluster velocity dispersion, cal-
culated using redshifts from our optical spectroscopy, and the Planck SZ mass
proxy, based on ICM properties, of a subsample of 17 clusters from our follow-
up program. I have analyzed possible sources of systematics in the mass calibra-
tion, accounting for: i) effects due to finite aperture of the telescope, ii) Edding-
ton bias, iii) correlated scatter between velocity dispersion and the Planck mass
proxy, and iv) the ratio between the velocity dispersion of DM particles and that
of galaxies in simulations, known as “velocity bias", bv, which quantifies how
well the galaxy velocity dispersion traces the dark matter velocity dispersion.

Interestingly, the result for the mass bias parameter depends on the cube of
the value of the galaxy velocity bias, which value is still under debate among dif-
ferent simulations. Therefore, the unknown velocity bias, of the member galaxy
population, is the largest source of uncertainty in our result on the mass bias. Us-
ing a velocity bias of bv = 1.08 from Munari et al. (2013), I obtain a mass bias
of 0.64± 0.11 (i.e., I estimate that Planck masses are about 36% lower than the
true masses), with an uncertainty of 17% with 17 clusters only, and it is within
1σ of the value needed to reconcile the Planck cluster counts with the primary
CMB.
Turning my analysis around, I obtain observational constraints on the velocity
bias by combining mass estimates from weak lensing measurements with veloc-
ity dispersion measurements. Assuming a prior on the mass bias from combined
Planck and weak lensing observations from Penna-Lima et al. (2017), I derive
bv & 0.9 at 3σ, excluding models that predict a negative velocity bias (e.g.,
Caldwell et al., 2016).

This analysis is published in Amodeo et al. (2017), enclosed in Appendix B.

The uncertainty of 17% on the mass bias is promising given the small sample,
and shows that this technique is competitive with other methods, like gravita-
tional lensing. Currently, the mass calibration is dominated by systematics that
are of the order of 10%, but forthcoming cosmological surveys require an ac-
curacy of few %, to be achieved with: 1) a larger sample of clusters especially
extended to low masses (< 5× 1014M⊙), where still few objects have been de-
tected, and 2) at higher redshift, to probe a possible evolution with time of the
mass–observable scaling relation.

The Euclid mission will revolutionize this field of research with the discovery
of thousands of clusters and proto-clusters at z > 1.2 and M > 1014M⊙ (Lau-
reijs et al., 2011; Ascaso et al., 2017), which permit to double the figure of merit
for cosmological constraints (Sartoris et al., 2016).

Charactherizing galaxies and their stellar populations will be important to
drive Euclid and other future surveys towards the search of this class of objects
based on photometric redshifts. To obtain reliable photometric redshifts, it is
important to know the observed spectral energy distributions/colors of galaxies
at the redshift of interest.
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In fact, selecting clusters based on galaxies of same color is one of the most
promising method for optical and infrared surveys. Algorithms based on galaxy
colors search for overdensities of galaxies of given colors. For example, at z < 1,
they search for overdensities of red early type galaxies in the color-magnitude di-
agram, based on the observational evidence that large populations of this kind of
objects can be found in the inner regions of galaxy clusters (Gladders and Yee,
2000; Thanjavur, Willis, and Crampton, 2009; Rykoff et al., 2014; Licitra et al.,
2016b,a).

The second part of this thesis is devoted to the study of stellar populations in
clusters and proto-clusters at high redshift, from the CARLA (Clusters Around
Radio-Loud AGN) survey, with the goal to better characterize their galaxy colors
and optimize their search with with future surveys, such as the Euclid space
mission surveys.

The CARLA survey targets powerful radio-loud AGNs since they are known
to reside in dense environments (Wylezalek et al., 2013). It consists in a 400 hr
Warm Spitzer program which has originally observed 420 radio-loud AGNs in
the interval 1.3 < z < 3.2, in two bands of the Infrared Array Camera (IRAC),
3.6µm and 4.5µm. We identified galaxy cluster candidates as overdensities of
galaxies with color ([3.6] - [4.5])AB > - 0.1 (Wylezalek et al., 2013). The
CARLA twenty densest cluster candidates, which span the redshift range 1.4
< z < 2.8, have been observed with HST/WFC3 G141 slitless grism spectroscopy
and F140W imaging (Noirot et al., 2016, 2018). Sixteen targets were confirmed
according to the Eisenhardt et al. (2008) criteria to define a spectroscopically con-
firmed galaxy cluster. We also classified them according to the density of galaxy
members with respect to the field. Eight of the sixteen confirmed candidates
were also observed in the i-band with the auxiliary-port camera (ACAM; Benn,
Dee, and Agócs, 2008) on the 4.2m William Herschel Telescope (WHT) in La
Palma and the Gemini Multi-Object Spectrograph South instrument (GMOS-S;
Hook et al., 2004) on Gemini-South in Chile (Cooke et al., 2015, 2016).

In this PhD thesis, I analyze the sixteen confirmed cluster candidates to char-
acterize their galaxy population. I optimize a joint photometric analysis of
Spitzer, HST, and ground-based optical images, taking advantage of the infor-
mation given by the high-resolution (0.06 arcsec pix−1) F140W HST images,
and use positions and surface brightness profiles of sources measured on F140W
HST images as priors to derive PSF-matched fluxes in all the other bands. I de-
rive photometry using the T-PHOT software (Merlin et al., 2015, 2016). This
method allows to de-blend cluster members from fore- or background sources in
the optical and Spitzer images and obtain robust photometric results.
I discuss the cluster galaxy color-magnitude diagram and the existence of a red
sequence, and the color-color diagrams to separate the passive and star-forming
galaxies.

For the first time, this analysis has been performed on an homogeneous sta-
tistical sample of spectroscopically confirmed clusters at high redshift, ideal to
investigate galaxy evolution in dense environments.

This work will be published in two papers in preparation, one of which I am
the lead author (S. Amodeo et al., and S. Mei, S. Amodeo et al.).
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This PhD thesis was performed within two collaborations. In the text and in
the abstract, I use the pronoun “we" when referring to the effort of the entire
collaboration, and the pronoun “I" when I describe my specific contribution. I
use past verbs to indicate what was done before the thesis, and present verbs for
what was done during the thesis.

vii



R É S U M É

Selon le modèle cosmologique standard, l’Univers est né de la singularité du
Big Bang et puis il a subi une expansion, qui s’accélère actuellement. Dans le
scénario actuel (Planck Collaboration et al., 2016a), l’Univers a une géométrie
plate, il est composé de 69% d’énergie sombre et 31% de la matière; 5% de
la matière est baryonique et le reste est de la matière noire qui n’interagit pas
électromagnétiquement. Dans le cadre de ce modèle, dit de concordance, la
formation des structures se produit à partir de l’effondrement gravitationnel de
petites perturbations dans un Univers quasi-homogène, dominé par de la matière
noire froide. On pense que ces fluctuations primordiales se sont produites au
début de l’ère inflationniste, puis se sont effondrées par gravité contre la pres-
sion d’expansion. Dans ce cadre, l’effondrement passe d’une échelle plus petite
à une échelle plus grande, dans un contexte dit bottom up, donnant lieu à un
regroupement hiérarchique de structures cosmiques (Press and Schechter, 1974;
Gott and Rees, 1975; White and Rees, 1978).

Dans ce contexte, les amas de galaxies sont des outils importants pour com-
prendre la formation et l’évolution des structures cosmiques, étant les plus
grandes et les dernières structures à se former, par accrétion et fusion de struc-
tures plus petites. Ils contiennent typiquement des centaines à des milliers de
galaxies dans une région de rayon viriel ∼ 1 Mpc, mais ceux-ci ne constituent
que le ∼ 5% de leur composition total. Le ∼ 10% est constitué d’un gaz intra-
amas à température chaude (T ∼ 108K) et à faible densité (ngas ∼ 10−3cm−3);
le ∼ 85% restant est de la matière noire (Peebles, 1993, et les références qu’il
contient).

Les mesures du nombre d’amas de galaxies en fonction du décalage vers le
rouge (“redshift") peuvent fournir de puissantes contraintes sur les paramètres
cosmologiques (Allen, Evrard, and Mantz, 2011; Kravtsov and Borgani, 2012;
Weinberg et al., 2013). En fait, la fonction de masse des amas (nombre d’amas
avec une masse donnée par unité de volume comobile, à un redshift donné)
donne une mesure directe de l’amplitude de la perturbation de densité à l’époque
actuelle, σ8, alors que son évolution avec le redshift est une fonction de la densité
de matière de l’Univers, Ωm. Les étapes nécessaires pour mesurer la fonction
de masse des amas sont les suivantes: 1) détecter les amas au moyen de grandes
enquêtes et mesurer leur redshift, 2) déterminer le volume de l’enquête et la
fonction de sélection de l’enquête, 3) estimer les masses des amas au moyen de
relations d’échelle avec les variables observables de l’enquête, 4) compter les
amas en fonction de la masse et du redshift, et 5) tenir compte des erreurs statis-
tiques et systématiques.

Les études basées sur l’effet Sunyaev-Zeldovich (SZ) (Sunyaev and Zeldovich,
1970; Birkinshaw, 1999; Carlstrom, Holder, and Reese, 2002), ont révolutionné
ce domaine en fournissant de grands échantillons d’amas sélectionnés par leur
masse, appropriés pour cette analyse cosmologique. En effet, le flux SZ intégré
étant indépendant de la distance, il ne souffre pas de gradation cosmologique et
il est également proportionnel à la masse de l’amas. Le satellite Planck lancé
le 14 mai 2009, a fourni pour la première fois la possibilité de détecter des

viii



amas de galaxies grâce à l’effet SZ dans une étude complète du ciel. Jusqu’à
présent, il a fourni un large échantillon de 1653 clusters détectés par l’effet
SZ dans l’interval de redshift [0.01, 0.97] et dans l’interval de masse estimée
[0.79, 16.12]× 1014M⊙, dont 439 ont une signification de détection élevée (rap-
port signal/bruit supérieur à 4.5) et sont utilisés pour contraindre les paramètres
cosmologiques à partir du nombre d’amas (Planck Collaboration et al., 2014a,
2016b).

Cependant, comme l’effet SZ ne fournit pas de redshift, des programmes de
suivi dédiés sont nécessaires pour rendre les catalogues résultants scientifique-
ment utiles. La collaboration Planck a entrepris un vaste effort de suivi pour
confirmer les amas candidats et mesurer leurs redshifts. Le premier suivi op-
tique était basé sur des observations avec le télescope russo-turcissique de 1,5 m
(Planck Collaboration et al., 2015c) et a fourni les redshift de 65 amas Planck

. Le deuxième suivi optique, basé sur des observations avec des télescopes aux
observatoires des îles Canaries, a donné 53 redshifts spectroscopiques (Planck
Collaboration et al., 2016c). Récemment, Barrena et al. (2018) et Streblyanska
et al. (2018) ont publié de nouvelles observations optiques de suivi des amas can-
didats à l’Observatoire Roque de los Muchachos. Ils confirment 53 et 37 amas,
respectivement, en analysant la richesse optique, la distribution des galaxies 2D
et la distribution des vitesses.

La collaboration de Planck a également réalisé des programmes de validation
dans les rayons X avec XMM-Newton (Planck Collaboration et al., 2011a, 2012,
2013), où les redshifts de 51 amas ont été obtenus à partir des spectres en rayons
X.

La première partie de cette thèse est consacrée à notre propre suivi spectro-
scopique de 20 candidats Planck à l’aide des télescopes Gemini et Keck (P.I.
J.G. Bartlett et F.A. Harrison, respectivement), pour lesquels nous avons mesuré
les redhifts et les dispersions de vitesse des galaxies membres. Les membres
des amas pour le suivi spectroscopique ont été choisis parmi notre propre im-
agerie optique et (dans certains cas) infrarouge avec Palomar, Gemini et Keck
, et l’imagerie publique de SDSS (Sloan Digital Sky Survey; York et al., 2000).
Sept redshifts d’amas ont été mesurés par la spectroscopie pour la première fois
avec cette campagne d’observation, y compris l’une des amas Planck les plus
lointains confirmée à ce jour, à z = 0.782± 0.010, PSZ2 G085.95+25.23. Pour
tous ces amas, nous avons mesuré les dispersions de vitesse.

Ce travail est publié dans l’article Amodeo et al. (2018), en annexe B, et nos
catalogues ont été rendus publics.

Le deuxième objectif de ce programme était d’avoir un échantillon d’ amas
couvrant un large interval de masse afin d’obtenir un étalonnage statistique de
l’estimateur de masse Planck SZ, qui est devenu un sujet d’actualité depuis
que l’analyse Planck a mis en évidence une tension entre les paramètres
cosmologiques déterminés à partir des anisotropies dans le fond diffus cos-
mologique (CMB) et ceux dérivés des mesures de l’abondance des amas. Pour
réconcilier les contraintes des amas Planck avec celles du CMB primaire, il faut
un paramètre de “biais de masse" de (1 − b) = 0, 58 ± 0, 04, où (1 − b) est
le rapport entre la masse déterminée par Planck et la masse réelle de l’amas.
Cette tension pourrait indiquer la nécessité d’une nouvelle physique, comme
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une masse non minimal des neutrinos, ou une révision importante de l’échelle
de masse des amas. En fait, l’estimation des masses d’amas (étape 3 ci-dessus)
est une étape cruciale qui limite inévitablement la précision de la cosmologie
des amas parce que la masse des amas n’est pas une quantité directement ob-
servable (Allen, Evrard, and Mantz, 2011). La masse peut être estimée à l’aide
de plusieurs méthodes indépendantes basées sur propriétés physiques différentes
qui sont chacune affectées par leur propre ensemble d’effets systématiques spé-
cifiques. Les méthodes sont basées sur l’analyse de l’émission thermique du
milieu intra-amas (ICM), observée soit à travers l’effet SZ ou dans les rayons
X, la dynamique des galaxies membres et l’effect de lentille gravitationnelle. La
comparaison d’estimations de masse à l’aide de différentes techniques est une
vérification critique de la fiabilité de chaque méthode dans des conditions dif-
férentes, ainsi qu’un test du scénario cosmologique.

J’ai étudié la relation d’échelle entre la dispersion de la vitesse des amas, cal-
culée en utilisant les redshifts de notre spectroscopie optique, et la mesure de
masse Planck SZ, basé sur les propriétés de l’ICM, d’un sous-échantillon de 17
amas de notre programme de suivi. J’ai analysé les sources possibles de systéma-
tique dans l’étalonnage de masse, en tenant compte de: i) effets dus à l’ouverture
finie du télescope, ii) biais d’Eddington, iii) dispersion corrélée entre la disper-
sion de la vitesse et la mesure de masse Planck et iv) rapport entre la dispersion
de la vitesse des particules de matière noure et celle des galaxies dans les simu-
lations, connu sous le nom de “biais de vitesse", bv, qui quantifie à quel point
la dispersion de la vitesse de la galaxie retrace la dispersion de la vitesse de la
matière noire.

Il est intéressant de noter que le résultat du paramètre du biais de masse dépend
du cube de la valeur du biais de vitesse de la galaxie, valeur qui fait encore
l’objet d’un débat entre les différentes simulations. Par conséquent, le biais de
vitesse inconnu, de la population de la galaxie membre, est la plus grande source
d’incertitude dans notre résultat sur le biais de masse. En utilisant un biais de
vitesse de bv = 1.08 de Munari et al. (2013), j’obtiens un biais de masse de
0.64± 0.11 (c.-à-d., j’estime que les masses Planck sont environ 36% inférieures
aux masses vraies), avec une incertitude de 17% avec 17 clusters seulement, et il
est à moins de 1σ de la valeur nécessaire pour réconcilier les comptes des amas
Planck avec le CMB primaire.
En tournant mon analyse, j’obtiens des contraintes d’observation sur le biais de
vitesse en combinant des estimations de masse à partir de mesures de lentilles
faibles “weak lensing" avec des mesures de dispersion de la vitesse. En sup-
posant un valeur du biais de masse obtenu à partir d’observations combinées de
Planck et de weak lensing par Penna-Lima et al. (2017), je dérive bv & 0.9 à 3σ,
à l’exclusion des modèles qui prédisent un biais de vitesse négatif (par exemple,
Caldwell et al., 2016).

Cette analyse est publiée dans l’article Amodeo et al. (2017), en annexe B.

L’incertitude de 17% sur le biais de masse est prometteuse compte tenu du
petit échantillon, et montre que cette technique est compétitive avec d’autres
méthodes, comme la lentille gravitationnelle. Actuellement, l’étalonnage de
masse est dominé par des systématiques de l’ordre de 10%, mais les prochaines
études cosmologiques exigent une précision de quelques %, à réaliser avec : 1)
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un plus grand échantillon d’amas particulièrement étendu aux faibles masses
(< 5× 1014M⊙), où encore peu d’objets ont été détectés, et 2) un redshift plus
élevé, pour sonder une évolution possible avec le temps de la relation d’échelle
masse-observable.

Un progrès fondamental dans ce domaine sera d’avoir un échantillon statis-
tique des amas les plus massifs (traçant les halos les plus massifs de matière
noire) à haut redshift. La mission Euclid va révolutionner ce domaine de
recherche avec la découverte de milliers de amas et de proto-amas à z > 1.2

et M > 1014M⊙ (Laureijs et al., 2011; Ascaso et al., 2016), ce qui permet de
doubler le facteur de mérite pour les contraintes cosmologiques (Sartoris et al.,
2016).

La caractérisation des galaxies et de leurs populations stellaires sera impor-
tante pour conduire Euclid et d’autres études futures vers la recherche de cette
classe d’objets basée sur les décalages photométriques. Pour obtenir des dé-
calages photométriques fiables, il est important de connaître les distributions
d’énergie spectrale observées et les couleurs des galaxies au redshift d’intérêt.

En fait, la sélection d’amas de galaxies de même couleur est l’une des méth-
odes les plus prometteuses pour les relevés optiques et infrarouges. Les algo-
rithmes basés sur les couleurs des galaxies recherchent les surdensités des galax-
ies de couleurs données. Par exemple, à z < 1, ils recherchent les surdensités
des galaxies rouges de type précoce (early-type) dans le diagramme couleur-
magnitude, basé sur la preuve d’observation que de grandes populations de ce
type d’objets peuvent être trouvées dans les régions internes des amas de galax-
ies (Gladders and Yee, 2000; Thanjavur, Willis, and Crampton, 2009; Rykoff
et al., 2014; Licitra et al., 2016b,a).

La deuxième partie de cette thèse est consacrée à l’étude des populations stel-
laires en amas et proto-amas à haut redshift, à partir de l’étude CARLA (Clus-
ters Around Radio-Loud AGN), dans le but de mieux caractériser les couleurs
de leurs galaxies et d’optimiser leur recherche avec Euclid.

L’étude CARLA cible les noyaux actifs radio-bruyants (“Radio-Loud AGN")

puisqu’ils sont connus pour résider dans des environnements denses (Wylezalek
et al., 2013). Il s’agit d’un programme de 400 heures de Spitzer qui a initiale-
ment observé 420 AGNs radio-bruyants dans l’intervalle 1.3 < z < 3.2, dans
deux bandes de la caméra infrarouge (IRAC), 3.6µm et 4.5µm. Nous avons
identifié les amas candidats comme étant des surdensités de galaxies de couleur
([3.6] -[4.5])AB > 0.1 (Wylezalek et al., 2013). Les vingt amas candidats les plus
denses de CARLA, qui couvrent l’interval de redshift 1.4 < z < 2.8, ont été ob-
servés avec la spectroscopie HST/WFC3 G141 et l’imagerie F140W (Noirot et
al., 2016, 2018). Seize amas ont été confirmées selon les critères de Eisenhardt
et al. (2008) pour définir un amas de galaxies confirmé par spectroscopie. Nous
les avons également classés en fonction de la densité des galaxies membres par
rapport au champ. Huit des seize candidats confirmés ont également été ob-
servés dans la bande i avec la caméra à port auxiliaire (ACAM; Benn, Dee, and
Agócs, 2008) sur le télescope William Herschel (WHT) de 4,2 m à La Palma et
l’instrument Gemini Multi-Object Spectrograph South (GMOS-S; Hook et al.,
2004) sur Gemini-South au Chili (Cooke et al., 2015, 2016).
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Dans cette thèse de doctorat, j’analyse les seize amas candidats confirmés pour
caractériser leur population de galaxies. J’optimise une analyse photométrique
conjointe des images Spitzer, HST et des images optiques au sol, en tirant parti
de l’information fournie par les images HST F140W à haute résolution (0,06
arcsec pix−1), et j’utilise les positions et les profils de brillance de surface des
sources mesurées sur les images HST F140W pour dériver les flux (appariés aux
PSFs) dans toutes les autres bandes. Je dérive la photométrie à l’aide du logi-
ciel T-PHOT (Merlin et al., 2015, 2016). Cette méthode permet de dé-mélanger
les membres des amas de sources avant ou arrière dans les images optiques et
Spitzer et d’obtenir des résultats photométriques robustes.
Je discute les diagrammes couleur-magnitude des galaxies d’amas et l’existence
d’une séquence rouge, et les diagrammes couleur-couleur pour séparer les galax-
ies passives et les galaxies formant des étoiles.

Pour la première fois, cette analyse a été effectuée sur un échantillon statis-
tique homogène d’amas confirmés par la spectroscopie, à haut redshift, idéal
pour étudier l’évolution des galaxies dans des environnements denses.

Ce travail sera publié dans deux articles en préparation, (S. Amodeo et al. et
S. Mei, S. Amodeo et al.).

Cette thèse de doctorat a été réalisée dans le cadre de deux collaborations.
Dans le texte et dans le résumé, j’utiliserai le pronom “nous" pour faire référence
á l’effort de toute la collaboration, et le pronom “je" lorsque je décris ma contri-
bution spécifique. J’utilise des verbes passés pour indiquer ce qui a été fait avant
la thèse, et des verbes présents pour ce qui a été fait pendant la thèse.
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1
T H E ΛC D M C O S M O L O G I C A L M O D E L

In this chapter, I present an overview of the cosmological background that
is at the basis of the topics covered in this thesis. If not directly stated with a
reference, the content of the following chapter is based on Peebles (1993), Coles
and Lucchin (2002), and Borgani (2008).

1.1 B A S I C P R I N C I P L E S

The standard cosmological model is based on the Cosmological Principle,
which states that the Universe is homogeneous and isotropic on large scales. This
means that physical properties are on average the same in different regions and
the same laws of physics hold through the Universe.

The presence of cosmic structures on a variety of scales (stars, galaxy, galaxy
groups and clusters) seems an obvious observational evidence against the Cos-

mological Principle, but there are in fact several independent observational tests
that support it, when accounting for sufficiently large scales, of the order of hun-
dreds of Mpc. The most often cited proof is the Cosmic Microwave Background
(hereafter CMB), that has been found to be isotropic to one part in 1 0 5 , while
homogeneity is inferred from isotropy if we exclude to occupy a privileged posi-
tion in the Universe (Copernican Principle).

Gravity is the dominant force on large scales. The theory of gravity at the basis
of modern cosmology is the Einstein’s General Theory of Relativity, according
to which the geometry of the space-time is determined by its content (in terms
of energy distribution). The Einstein field equations set the relationship between
the metric of the space-time, g i j , and the matter-energy content of the Universe
described by the relativistic energy-momentum tensor T i j (i , j = 0 , 1 , 2 , 3

with 0 indicating the time coordinate and 1 , 2 , 3 indicating the space coordi-
nates):

R i j −
1

2
g i j R =

8πG

c 4
T i j , (1)

where R i j is the Ricci tensor and R is the Ricci scalar. The quantity 8πG/c 4

(G is Newton’s gravitational constant, and c is the speed of light) ensures that
the Poisson’s equation:

∇ 2φ = 4πGρ , (2)

where φ is the gravitational potential, holds in the limit of Newtonian gravity. In
order to obtain static solutions, Einstein later added the Cosmological Constant

term Λ :

R i j −
1

2
g i j R − ΛE g i j =

8πG

c 4
T i j . (3)

In this context, the most general space-time metric describing a Universe in
which the Cosmological Principle applies, is the Friedmann-Robertson-Walker

metric (hereafter FRW):

d s 2 = c 2 d t 2 − a 2 ( t )

[

d r 2

1 − k r 2
+ r 2 dΩ 2

]

, (4)

1



where d s is the infinitesimal interval between two events in the space-time, d t

is the time interval between two events, d r and dΩ are the spatial radial and
angular interval, respectively, adopting spherical polar coordinates. The parame-
ter k is the curvature parameter, which is a constant and can assume the values
k = − 1 , 0 , 1 for an open, flat or closed Universe, respectively. The time-
dependent factor a ( t ) is the expansion parameter or the cosmic scale factor;
it multiplies the spatial component of the metric, giving the expansion factor of
the Universe.
A more practical quantity, related to the expansion of the Universe, is the redshift

of a source:

z ≡
λ0 − λe

λe
, (5)

where λ0 is the wavelength of the source radiation observed at the present time,
t0, and λe is the wavelength of the radiation emitted by the source at the time te.
The scale factor and the redshift measured for a source at time t are related by:

1+ z(t) =
a(t0)

a(t)
, (6)

where a(t0) ≡ 1, and z(t0) = 0.
Hubble (1929) provided the first observational evidence that the Universe is

expanding, measuring a linear relation between the distance r and the redshift of
galaxies, known as the Hubble’s law:

z =
H

c
r. (7)

The Hubble parameter, defined as H(t) ≡ ȧ(t)/a(t), measures the rate of ex-
pansion, and at the present time is parametrized as H0 = 100hkms−1Mpc−1.

For a perfect fluid with pressure p and energy density ρc2 , the energy-
momentum tensor is

Tij = −pgij + (p+ ρc2)UiUj, (8)

where Ui is the fluid four-velocity. In the case of a Universe described by the
Friedmann-Robertson-Walker metric, the Einstein equations for a perfect fluid
have two important solutions, called the Friedmann equations, for the time evo-
lution of the scale factor, a(t):

ä = −
4

3
πG

(

ρ+
3p

c2

)

a (9)

for the time-time component, and

ȧ2 + kc2 =
8

3
πGρa2 (10)

for the space-space components. Solutions for the space-time components lead
to obvious identities. Considering an adiabatic expansion of the Universe:

d(ρc2a3) = −pda3, (11)

the eq. 10 can be recovered from the eq. 9.
To determine the evolution of the scale factor, a(t), the equation of state must

be specified:

p(ρ) = wρc2, (12)
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where w is the equation of state parameter and depends on the Universe com-
ponents. The matter contribution is w = 0, while the radiation component con-
tributes to pressure with w = 1/3.

Since the matter and radiation pressure and density are not negative, eq. 9 im-
plies that in a Universe where matter and radiation are the dominant components,
the acceleration of the scale factor is negative (i.e. the Universe expansion de-
celerates). When adding the cosmological constant, a static Universe is possible.
For:

ΛE =
4πGρ

c2
, (13)

the Universe is static (it does not decelerate or accelerate).
Our present cosmological model, instead of the cosmological constant ΛE,

introduces another physical component, the dark energy, modelled as a fluid with
a negative pressure (w < 0). The original Einstein model with a cosmological
constant corresponds to the specific case in which w = −1.

The time evolution of density is then:

ρw(z) = ρ0w(1+ z)3(1+w). (14)

From eq. 10, it is useful to define the critical density as:

ρc(t) ≡
3H2(t)

8πG
, (15)

so that for ρ = ρc, k = 0 and the universe will be flat. Universes with ρ > ρc
will be closed and universes with ρ < ρc will be open. The ratio between the
density of a component w at a certain time and the critical density at the same
time is called density parameter and can be written as:

Ωw(t) ≡
ρw(t)

ρc(t)
, Ωtot =

∑
w

Ωw, (16)

where Ωtot is the total density of the Universe.
After these considerations, it is possible to rewrite eq. 9 for the matter (m),

radiation (r) and cosmological constant (Λ) components as:

H2(z) = H2
0[(1−Ω0,tot)(1+ z)2+Ω0,m(1+ z)3+Ω0,r(1+ z)4+Ω0,Λ].

(17)

It is useful to define E(z) as the quantity relating the Hubble parameter, H(z), to
its current value, H0:

E(z) ≡
H(z)

H0
. (18)

1.2 F O R M AT I O N A N D E VO L U T I O N O F C O S M I C S T RU C T U R E S

In this section, I briefly summarize the theory of cosmic structure formation
through the process of gravitational instability of small initial density perturba-
tions.
In the standard model of the Hot Big Bang, the primordial Universe was very
dense and hot, made of a fully ionized plasma of photons and matter. Thom-
son scattering of photons by free electrons was the main interaction mechanism
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between radiation and matter, making the Universe completely opaque. The dif-
ferent evolution of components as a function of time implies that in the very first
phases of the Universe, its density was dominated by the radiation density. Then,
as the Universe expanded, the matter density dominated, and finally the dark en-
ergy density, which is the dominant component today.
While expanding, the average Universe temperature cooled down (T ∝ 1/a(t)).
When the temperature reached T ∼ 3000K and ions and electrons combined to
form neutral atoms (recombination epoch), the photons decoupled from the elec-
trons, and the Universe became transparent. This time marks the farthest photons
that we can receive, defining the so-called last scattering surface. These photons
are observed as a Cosmic Microwave Background radiation (CMB, Penzias and
Wilson, 1965) with a black body distribution at a radiation temperature of T ∼ 2.7

K (Mather et al., 1994). The CMB shows temperature fluctuations of the order
of δTr

Tr
∼ 10−5 that correspond to matter density perturbations, δTm

Tm
∝ δTr

Tr
, with

ρm(t) ∝ T3
m, since photons and matter just decoupled.

1.2.1 The linear evolution of density perturbations

The evolution of small perturbations in a uniform and static Universe was
modelled by Jeans (1902). In the linear regime, it is possible to apply his theory
to an expanding Universe. Let us consider an initial density perturbation field
characterized by its density contrast :

δ(~x) ≡
ρ(~x) − ρb

ρb
, (19)

where ρ(~x) is the matter density field at the position ~x and ρb is the mean matter
density of the background Universe.
The characteristic length scale for the self-gravity of the gas is the Jeans length,
λJ, defined as

λJ =

√

15kBT

4πGµρgas
, (20)

with kB the Boltzmann constant, T the gas temperature, µ the mean molecu-
lar weight and ρgas the gas mass density. For perturbations on scales smaller
than λJ, the velocity dispersion of the gas particles is large enough that their
self-gravity can not hold them, and the fluid fluctuations are then dissipated by
this process called “free-streaming”. On the other hand, perturbations on scales
larger than λJ will grow with time and can finally collapse.

In the following, I will restrict to the interesting case for structure formation.
I will consider a Universe dominated by a pressureless and self-gravitating fluid,
as the dark matter component, where the scale of the density fluctuations is larger
than the Jeans length.

On large enough scales, the Newtonian treatment can be applied and the evo-
lution of density perturbations is regulated by the continuity, the Euler and the
Poisson equations:

∂δ

∂t
+ ~∇· [(1+ δ)~u] = 0 , (21)

∂~u

∂t
+ 2H(t)~u+ (~u· ~∇)~u = −

~∇φ

a2
, (22)

∇2φ = 4πGρba
2δ , (23)
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where the spatial derivatives are with respect to the comoving coordinate ~x, such
that ~r = a(t)~x is the proper coordinate, ~v = ~̇r = ȧ~x+ ~u is the total velocity of
a fluid element (with ȧ~x and ~u = a(t)~̇x giving the Hubble flow and the peculiar
velocity, respectively), φ(~x) is the gravitational potential.

In the case of small density fluctuations, all the non linear terms in the fields
δ and ~u can be neglected and the above equations can be written as

∂2δ

∂t2
+ 2H(t)

∂δ

∂t
= 4πGρbδ , (24)

having as a solution:

δ(~x, t) = δ+(~x, ti)D+(t) + δ−(~x, ti)D−(t) , (25)

where D+(t) and D−(t) are the growing and the decaying factors of δ(~x, t), re-
spectively, and δ+(~x, ti) and δ−(~x, ti) the corresponding spatial distributions of
the primordial density field. The density growing factor depends on the underly-
ing cosmology. For example, in a flat matter-dominated Einstein-de-Sitter Uni-
verse (Ωm = 1,ΩΛ = 0), H(t) = 2/(3t), so that D+(t) = (t/ti)

2/3 ∝ a(t)

and D−(t) = (t/ti)
−1. Therefore, cosmic expansion with time scale texp ∝

(Gρb)
−1/2 and gravitational instability with time scale tdyn ∝ (Gρ)−1/2 pro-

ceed at the same rate, being ρ ≃ ρb for small perturbations. On the contrary, for
cosmological models with Ωm < 1, such as a flat one with Ωm = 0.3, there
is an epoch, when the cosmological constant begins to be significant, at which
the expansion time scale turns out to be shorter than in the Einstein-de-Sitter
case. After that epoch, cosmic expansion proceeds faster than the gravitational
collapse, causing a freezing of the perturbation growth. Therefore, any observa-
tional evidence of the degree of evolution of density perturbations is a sensitive
probe of cosmological parameters. Clusters of galaxies provide such a probe,
since the evolution of their number density is directly related to the growth rate
of perturbations.

In the context of the linear Jeans theory it is possible to obtain a lower limit
to the mass of perturbations that grow and evolve in cosmic structures instead of
being dissipated, called Jeans mass MJ, according to the assumed model for the
dark matter component.

Historically, two alternative models have been proposed: the Cold Dark Mat-

ter (CDM) model, according to which dark matter is composed of massive, non-
baryonic, collisionless sub-relativistic particles and the Hot Dark Matter (HDM)
model, for which dark matter is constituted by non-baryonic, collisionless, rela-
tivistic massless or with very small mass particles. The threshold value of MJ

depends on the velocity of the dark matter particles, so it will be greater in the
HDM model than in the CDM one. In particular, inside the particle horizon
and at the equivalence redshift zeq (when ρm = ρr and the perturbations start
growing):

MJ,HDM(zeq) ≈ 1012 − 1015M⊙ , (26)

MJ,CDM(zeq) ≈ 105 − 106M⊙ . (27)

Therefore, according to the HDM model the first structures to form should be the
most massive ones, such as galaxy clusters, while the smaller structures should
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form by fragmentation of the first ones in a top-down scenario. The CDM model
predicts instead that the first structures to form are low-mass objects, such as
globular clusters, which subsequently aggregate to form larger structures in the
so-called hierarchical or bottom-up scenario. A comparison between the forma-
tion age of galaxies and galaxy groups or clusters provide a support for the CDM
scenario and a confutation for the HDM (Seigar, 2015). For example, the Milky
Way appears older than the Local Group and its formation redshift zf is much
higher (zf > 4) than the one predicted by HDM models (zf . 1).

The CDM model is also validated by observations and is at the basis of the
current standard cosmological model. In particular, this means that galaxy clus-
ters are the latest structures that form in the Universe, their number decreases
with increasing redshift and strongly depends on the cosmological model.

1.2.2 The power spectrum of density perturbations

A convenient representation for δ(~x) is given by its Fourier transform

δ̂(~k) ≡ (2π)−3/2

∫
d~x δ(~x) ei

~k·~x. (28)

In addition, we can define the two-point correlation function of δ(~x) as

ξ(r) ≡ 〈δ( ~x1)δ( ~x2)〉, (29)

which depends only on the distance between the considered points, r = | ~x1− ~x2|,
and describes whether the density field is more (ξ > 0) or less (ξ < 0) correlated
than a random distribution. It can be demonstrated that the Fourier transform of
ξ(r) corresponds to the power spectrum of the density fluctuations:

P(k) ≡ 〈|δ̂(~k)|2〉 =
1

2π

∫
dr r2 ξ(r)

sin(kr)

kr
, (30)

which, assuming isotropy, depends only on the modulus of the wave-vector ~k.
This quantity provides a full statistical description of an isotropic Gaussian field.
Inflationary models predict a nearly Gaussian density perturbation field charac-
terized by a scale-invariant spectrum P(k) = Akn, where A is the normalization
and n ≃ 1 is the spectral index.
To analyze the collapse of primordial fluctuations on scales R ∝ (M/ρb)

1/3,
forming objects of mass M, it is useful to define a window function WR(r)

which filters out the modes on smaller scales. The corresponding density field is:

δR(~x) = δM(~x) =

∫
δ(~y)WR(|~x− ~y|)d~y , (31)

and the variance of the perturbation field at the scale R is given by

σ2
R = σ2

M = 〈δ2R〉 =
1

2π2

∫
dk k2 P(k) Ŵ2

R(k) , (32)

where ŴR(k) is the Fourier transform of the window function. The shape of
the power spectrum is uniquely determined by the parameters Ωm, Ωb and H0,
whereas the normalization has to be inferred from observations of the cosmic
large scale structure or of CMB anisotropies. A common way to parametrize
this normalization is through the quantity σ8, which is the variance estimated
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within a comoving sphere of radius R = 8h−1Mpc. This choice has been made
after Davis and Peebles (1983) found that at this radius the variance of the galaxy
counts is close to unity. The number density of galaxy clusters at a given epoch
is very sensitive to the value of σ8, providing a direct constraint on the normal-
ization of the power spectrum.

1.2.3 The spherical top-hat collapse

When fluctuations reach amplitudes of the order of unity, the Jeans theory
is no longer valid. The structures observed at present have overdensities with
δ >> 1; for example, a cluster of galaxies corresponds to δ & 100. In this
case, non-linear models or numerical simulations are required to describe the
evolution of density perturbations.
The only case in which the non-linear evolution can be analytically calculated
is that of a spherically symmetric collapse (see Gunn and Gott, 1972). Even
though this is a very simplified model, it is useful to characterize the formation
and evolution of virialized dark matter halos.
In this model, the perturbation is considered as an overdense sphere with initial
amplitude δi in an expanding background Universe. The perturbation can be
treated as a separate universe in which the FRW metric is valid, with null velocity
at its boundaries. In an Einstein-de-Sitter background Universe (Ωm = 1), the
evolution of a density perturbation can be written as:

δ = δ+(ti)

(

t

ti

)2/3

+ δ−(ti)

(

t

ti

)−1

. (33)

Thus, after a short period of time the growing mode will dominate over the
decaying mode. At the initial time ti, the condition of null velocity at the bound-
ary of the spherical region requires δ+(ti) = 3

5δi, and the perturbation density
parameter is then: Ωp(ti) = Ω(ti)(1+ δi). The condition for which the pertur-
bation can collapse and form a structure is Ωp(ti) > 1. Under this condition, the
perturbation will reach a maximum expansion at the time tm, called turn-around

point, after which it will detach from the expansion of the background and will
collapse under the dominant gravitational force until it reaches an equilibrium
state at the time tvir, when the virial condition between the kinetic K and the
potential U energy is satisfied: U = −2K. The formed structure will be called
“virialized”. At the turn around, the perturbation (a sphere of mass M and radius
Rm) has a totally potential energy:

Em = U = −
3

5

GM2

Rm
. (34)

At the virialization, recalling the condition Evir = K+U = −K, results:

Evir =
U

2
= −

1

2

(

3

5

GM2

Rvir

)

, (35)

where Rvir is the radius of the virialized structure. Assuming energy conserva-
tion during the evolution into this equilibrium state gives Rm = 2Rvir and the
non-linear overdensity at tvir turns out to be ∆vir ≃ 178. On the contrary, the
linear theory predicts:

δ+(tvir) =

(

tvir

tm

)2/3

δ+(tm) ≃ 1.69 . (36)
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Figure 1 – Evolution of an over-dense region in a spherical top-hat model. Adapted from
Padmanabhan (1993).

This value gives the overdensity threshold that a perturbation in the initial density
field must exceed to evolve and collapse into a virialized structure. A scheme of
the evolution of an over-dense region in a spherical top-hat model, adapted from
Padmanabhan (1993), is shown on Fig.1.

The above considerations are valid for an Einstein-de-Sitter cosmology but
they can be extended to any other cosmological model. For Ωm < 1 the expan-
sion rate of the Universe is larger than for Ωm = 1; this cause a faster decreasing
of the background density from tm to tvir and, as a consequence, a larger value
of the overdensity at virialization.
Despite the approximations made, this model provides a value for the overden-
sity which is consistent with that found by N-body simulations of dark matter
halos.

A halo at redshift z is characterized by a virial radius rvir, defined as the radius
of a sphere within which the mean density is ∆vir times the critical density of
the Universe at that redshift ρcr(z), a virial mass

Mvir =
4

3
π∆virρcr(z)r

3
vir , (37)

and a circular velocity

Vc =

(

GMvir

rvir

)1/2

. (38)

In this thesis I will use the overdensity threshold ∆ = 200, which is commonly
considered as typical for a dark matter halo which has reached the virial equilib-
rium. Corresponding values for mass and radius are M200, and R200. I will also
use ∆ = 500, M500, R500, which are commonly used in X-rays and SZ surveys.

This definition has the advantage of being independent of cosmology. On the
contrary, the virial overdensity ∆vir is a function of the matter density and thus
depends on cosmology.

Numerical N-body simulations of structure formation in a CDM Universe pre-
dict that the density profiles of dark matter halos on all mass scales can be de-
scribed by a universal profile, the so-called Navarro-Frenk-White profile (here-
after NFW; Navarro, Frenk, and White, 1997):

ρ(r) =
ρs

(r/rs)(1+ r/rs)2
, (39)

where the only two parameters are the scale radius rs, and the scale density ρs.

8



A common parametrization of the NFW profile uses the total mass enclosed
within a certain radius R∆ (chosen to describe the halo on the scale of interest),
and the concentration parameter c∆ ≡ R∆/rs:

M∆ = 4πρsr
3
s

(

ln(1+ c∆) −
c∆

1+ c∆

)

. (40)

1.2.4 The halo mass function

A powerful tool to follow the evolution of dark matter halos and determine
the history which gave origin to the structures we observe today is the halo mass
function (hereafter HMF).
The HMF is the number density of collapsed objects at redshift z, with mass
between M and M+ dM in a given comoving volume:

dn(M,z)

d ln M
=

ρm

M

∣

∣

∣

∣

d ln σM

d ln M

∣

∣

∣

∣

f(σM, z) , (41)

where f(σM, z) is a model-dependent function of the filtered power spectrum (eq.
(32)), which needs to be calibrated using numerical simulations (see e. g. Murray,
Power, and Robotham, 2013, for a comparison of different HMFs available in
literature).
Press and Schechter (1974) performed the first analytical attempt to derive the
HMF, based on the spherical top-hat collapse model combined with the growth
function for the linear perturbation theory. The main idea of this formalism is
that any collapsed object with mass > M at redshift z arises from regions where
δM > δc, being δM the linearly extrapolated density field, filtered on a mass
scale M, and δc the critical overdensity for collapse. According to the spherical
collapse model, δc ≃ 1.69, independently of redshift, for an Einstein-de-Sitter
cosmology. The function f(σM, z) gives the probability of a given point to be
within a region satisfying the above condition and can be written as

f(σM, z) =

√

2

π

δc

σM(z)
exp

[

−
δ2c

2σ2
M(z)

]

, (42)

which only depends on the ratio ν ≡ δc(z)/σM(z), called peak height.
Even if this derivation is rigorous only for spherical collapse, eq. (41) already
demonstrates that the mass function of galaxy clusters is a powerful probe of
cosmological models. Cosmological parameters enter in eq. (41) through the
mass variance σM which depends on the power spectrum and on the density
parameters. In the limit of massive objects, the HMF is dominated by the expo-
nential tail. This implies that it becomes exponentially sensitive to the choice of
the cosmological parameters and therefore a reliable determination of the mass
function of very massive clusters is important to put constraints on cosmological
parameters.

1.3 T H E C O N C O R DA N C E M O D E L

A cosmological model is defined by a set of parameters specifying the geom-
etry of the Universe, the mean density of its components, its evolution with time
and the initial density perturbation spectrum. The current established cosmo-
logical model is the so-called “Lambda Cold Dark Matter ”(hereafter ΛCDM)
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model, according to which the Universe is flat, the total energy density is domi-
nated by the cosmological constant component Λ (w = −1) and the remaining
fraction is mainly cold dark matter, while the standard baryonic matter is only a
few percent.

This model is supported by many observations which allow a precise estimate
of the cosmological parameters. The most recent mission devoted to this purpose
is the ESA Planck mission. Planck Collaboration et al. (2016a) released the last
cosmological parameter results, based on observations of temperature and polar-
ization anisotropies of the CMB, which reflect the density perturbation power
spectrum at the time of recombination. I list in Table 1 the values of the cos-
mological parameters that are of interest for this thesis, derived from the CMB
power spectrum, in combination with Planck lensing data.

Parameter 68% limits Definition

H0 67.8± 0.9 current expansion rate in km s−1Mpc−1

Ωm 0.308± 0.012 total matter density divided by the critical density today today

ΩΛ 0.692± 0.012 dark energy density divided by the critical density today

n 0.968± 0.006 scalar spectrum power-law index

σ8 0.8149± 0.0093 rms matter fluctuations today in linear theory

Table 1 – Cosmological parameters for the ΛCDM model derived by Planck Collabora-
tion et al. (2016a).
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2
G A L A X Y C L U S T E R S

Galaxy clusters are the largest gravitationally bound structures in the present
Universe. They form from the highest density peaks of the dark matter primor-
dial perturbation field (see Chapter 1), which collapse over a region of few Mpc.
Dark matter is ∼85% of their total mass composition and constitutes a deep po-
tential well where intergalactic baryons fall being heated by adiabatic compres-
sion and shocks until they reach the virial equilibrium with the underlying dark
matter potential at a temperature of the order of 107K. At this temperature, this
so-called intra-cluster medium (hereafter, ICM) is fully ionised and emits in the
X-ray band via thermal bremsstrahlung. It constitutes the ∼10% of the cluster
total mass, while galaxies are ∼5% (e.g. Mulchaey, Dressler, and Oemler, 2004,
and references therein). The cluster total mass is typically larger than 1014M⊙

(Evrard et al., 2008a).
Thanks to their multicomponent nature, clusters can be detected and stud-

ied through a variety of observables across the electromagnetic spectrum (e.g.,
Sarazin, 1988).

In this chapter, I describe how clusters are observed at different wavelengths,
and how their mass can be estimated using different, independent techniques.

2.1 O B S E RVA B L E P RO P E RT I E S

2.1.1 Optical and near-infrared bands

2.1.1.1 Detection

Clusters of galaxies were identified for the first time in the 1930’s in the opti-
cal band and they important role in the comprehension of the Universe was soon
clear as they provided the first observational evidence of the existence of dark
matter: measuring the velocity dispersion of the galaxies within the Coma clus-
ter, Zwicky (1937) concluded that this velocity dispersion could not be explained
by the visible mass only.

The first extensive catalog was provided by Abell (1958), who observed 2712
objects with the Palomar Observatory Sky Survey (Minkowski and Abell, 1963)
in the Northern hemisphere. Clusters were identified as large overdensities in the
projected galaxy distribution, and were selected by their “richness”, i.e. the num-
ber of galaxies within the detection aperture. The adopted criteria concerned:

— a minimum number of 50 galaxies in the magnitude range [m3,m3 + 2],
where m3 is the magnitude of the third brightest galaxy;

— a minimum circle of radius 1.7/z arcmin within which the galaxies could
be grouped;

— a fixed redshift range 0.02 < z < 0.20, in order to obtain a statistically
complete sample.

Finally, the selected sample consisted of 1682 clusters, expanded by Abell, Cor-
win, and Olowin (1989) with objects in the Southern hemisphere. This catalog
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Figure 4 – Filter responses for the SDSS camera set u,g,r,i,z. Credit: www.sdss.org.

Galaxy colors are particularly needed to identify distant clusters. At z &

0.2, the number of field galaxies dominates over galaxy overdensities associated
with clusters, and the two populations are difficult to distinguish looking only
at the two-dimensional galaxy distribution, especially if using a single filter in
the optical band. An efficient detection method is to observe galaxy colors, and
use filters in the near-infrared band (hereafter near-IR), which collect the light
of evolved stars (Stanford et al., 1997). In fact, galaxies in the cluster cores are
found to be significantly redder than field galaxies at similar redshift, and lie on
the red sequence, up to al least z ∼ 1.4 (Mei et al., 2009; Brodwin et al., 2013).

To trace the old stellar populations in a wide interval of redshifts, observations
with multiple filters are needed. The Sloan Digital Sky Survey (SDSS; York et
al., 2000) has provided the largest catalog of sources obtained from a five-band
photometry (see Fig. 4), which is currently the best resource of cluster candidates
in the optical and near-infrared band.

Rykoff et al. (2014) have built a cluster detection algorithm based on the ex-
istence of the red sequence, named “redMaPPer ”, and applying it to SDSS
data, they have provided a catalog of ∼25000 clusters over the redshift range
[0.08,0.55].

Licitra et al. (2016b,a) introduced a new cluster detection algorithm based on
the red-sequence technique, named “RedGOLD”(Red-sequence Galaxy Over-
density cLuster Detector), optimized to detect massive galaxy clusters (M200 >

1014M⊙), and to produce optical cluster catalogs with high completeness and
purity out to z ∼ 1. They applied this algorithm to the Canada-France-Hawaii
Telescope Legacy Survey (CFHT-LS; Gwyn, 2012) Wide 1 field, detecting 652
clusters up to z = 1.1, and to the Next Generation Virgo Cluster Survey (NGVS;
Ferrarese et al., 2012), detecting 279 on the ∼20 deg2 of the NGVS covered by
5 bands, and 1704 clusters on the entire NGVS without the r-band coverage, at
0.1 < z < 1.1.

The galaxy selection used for our spectroscopic observations, described in
Chapter 4, is based on the approach implemented in RedGOLD, adapted for our
available bandpasses. In brief, it consists in:

— using rest-frame colors (U - B) and (B - V) to select ETGs on the red
sequence and exclude star-forming galaxies;

— using the empirical red-sequence model from Mei et al. (2009) (rest-frame
zero point, slope, and scatter);
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— selecting only ETGs with a NFW (Navarro, Frenk, and White, 1997) radial
density profile;

— centering the cluster detection on the ETG with the highest number of red
companions, weighted on luminosity.

Once a cluster is identified as an overdensity of galaxies, spectroscopic follow-up
observations measuring the redshift, z, and the radial velocities, vr, of galaxies
allow to confirm their membership (against projection effects) and measure the
cluster’s mass.

For a relaxed cluster, the distribution of the radial velocities of member galax-
ies in the velocity space is expected to be Gaussian, and galaxies with velocities
well outside (generally > 3σ) the Gaussian best fit, 〈vr〉, are considered outliers
(Yahil and Vidal, 1977).

Once the cluster membership is defined, the fit of the velocity distribution
function:

f(vr) = v0e
−

(vr−〈vr〉)
2

2σ2
1D , (43)

to the velocities of the cluster galaxies gives the line-of-sight (one-dimensional)
velocity dispersion of the cluster, σ1D.

Actually, not all clusters are dynamically relaxed. Many of them show strong
asymmetries and clumpiness in their velocity distribution (e.g., Geller and Beers,
1982; Dressler and Shectman, 1988; Mohr et al., 1995), that reflect the merging
processes in which they are involved.

The accuracy in the velocity dispersion measurement depends on the method
used to eliminate non-member galaxies, and on the number of the confirmed
galaxies with measured velocities (Girardi et al., 1993).

This issue is examined in more detail in Chapter 4, which is focused on the
confirmation of a sample of galaxy clusters from optical spectroscopic observa-
tions, and on the measurement of their galaxy velocity dispersions.

2.1.1.2 Mass proxy

Historically, the velocity distribution of the cluster member galaxies has pro-
vided the first method to estimate cluster masses. This method is based on
the assumptions that the cluster is spherical, isolated and at the virial equilib-
rium (see e.g. Binney and Tremaine, 2008): 2K+U = 0. The kinetic energy
can be approximated as K ≃ 3/2Mσ2

v , where σv is the velocity dispersion
along the line of sight; the gravitational potential energy can be approximated
as U ≃ GM2/Rvir, where Rvir is the radius at which the cluster reaches the
virial equilibrium:

Rvir ≡
GM

3σ2
. (44)

In simulations, it is calculated from the position of the cluster members:

Rvir = N2





∑
i>j

r−1
ij





−1

, (45)

where N is the total number of galaxies and rij is the projected separation be-
tween the i-th and the j-th galaxies.
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The cluster mass can be then recovered from the virial theorem as:

M ≃
3σ2

vRvir

G
. (46)

Zwicky (1937) applied this method to the Coma cluster. He measured a value
of σ ≈ 1000 km/s which is typical for cluster velocity dispersions. Zwicky
concluded that the luminous matter accounted for only a small fraction of the
total mass inferred from the virial theorem. This was the first observational
evidence of the existence of dark matter.

However, the virial theorem only provides an approximation of the exact clus-
ter mass because clusters might have not necessarily reached complete virial
equilibrium. In order to measure the true mass, one should have detailed in-
formation on the spatial distribution of the galaxy velocities. The best of such
measurements are currently available for a few of the distant clusters which are
interesting for cosmology, from the CLASH-VLT program (Rosati et al., 2014),
a spectroscopic follow-up with the Very Large Telescope of 13 massive clusters
(0.187 < z < 0.570) in the CLASH sample (Cluster Lensing And Supernova
survey with Hubble, Postman et al., 2012), with ∼500 spectroscopic confirmed
members per cluster, out to ∼2 Rvir

1.
The alternative to detailed observations is to use numerical simulations to cal-

ibrate the relation between velocity dispersion and mass.
Evrard et al. (2008a) analyzed a set of N-body (dark matter, DM) simulations

with different cosmologies, physics, and resolutions and found that the velocity
dispersion of DM particles within the virial radius can be expressed as a tight
function of the halo virial mass, regardless of the simulation details, with only
4% scatter at fixed mass:

σDM(M,z) = σDM,15

[

h(z)M200

1015M⊙

]α

, (47)

where σDM,15 = 1082.9± 4.0 km s−1 is the normalization, the mass M200 is
given in units of 1015h−1M⊙, and α = 0.3361 ± 0.0026 is the logarithmic
slope

Munari et al. (2013) analyzed the velocity dispersion-mass relation in both N-
body and hydrodynamical simulations, using DM particles, subhaloes and galax-
ies as different tracers of the cluster velocity dispersion. They confirmed the
trend σDM ∝ M1/3 for DM particles, while they found slightly steeper relations
(α > 1/3) and larger values of the normalization for subhaloes and galaxies,
which depend on the halo mass, redshift and physics implemented in the simula-
tion.

Quantifying the differences between the dynamical properties of DM particles
and galaxies in simulations is still an open issue, but is crucial to accurately de-
termine cluster masses form velocity dispersions. This is known as the “velocity

bias" problem, where the velocity bias is defined as the ratio between the galaxy
and the DM velocity dispersions.

This is one of the key arguments of this thesis and will be discussed in depth
in Chapter 5.

Sifón et al. (2016) reported a ∼30% of systematic uncertainties in the dynam-
ical masses of a large sample of 44 clusters with an average of 55 spectroscopic
members per cluster, and estimated an additional ∼15% uncertainty due to the
velocity bias.

1. Results for five clusters are currently released.
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Figure 5 – Left: X-ray image of Abell 2029 observed with Chandra; figure from NASA.
Right: optical image of the same cluster from the Palomar Observatory Digi-
tized Sky Survey (from the webpage chandra.harvard.edu).

2.1.2 X-ray band

2.1.2.1 Detection

The largest cluster catalog after the Abel catalog was obtained from the X-ray
ROSAT All-Sky survey (RASS, Truemper, 1993) in the 1990s.

In the X-ray band, clusters appear as a well-defined, extended emission of the
intracluster gas, with typical luminosities of 1043 − 1046erg s−1. The X-ray
emission is mainly due to thermal bremsstrahlung from the hot and fully ionised
ICM, at a temperature T ∼ 107 − 108K and a density n ∼ 10−1 − 10−4 cm−3

(see e.g. Sarazin, 1988, for a review).
The first X-ray observations of clusters were made in the 1970s with the Uhuru

satellite (Giacconi et al., 1972) and then with the Einstein satellite (Gioia et al.,
1990), showing that that the ICM is filled by hot gas emitting in the X-rays
mainly via thermal bremsstrahlung, with a total luminosity that is proportional
to the square of the gas density. Since then, many X-ray surveys have efficiently
selected clusters which clearly stand out against less dense background, mini-
mizing the projection effects (Rosati, Borgani, and Norman, 2002).

For the first time, the RASS has covered large areas of the sky and provided
hundreds of cluster candidates up to a maximum redshift of z ∼ 0.5, with a
few objects beyond (e.g. Bright Cluster Sample / BCS in Ebeling et al., 1998,
the Northern ROSAT All-Sky Survey / NORAS in Böhringer et al., 2000, the
ROSAT-ESO flux limited X-ray / REFLEX 1 in Böhringer et al., 2001, the Mas-
sive Cluster Survey / MACS in Ebeling, Edge, and Henry, 2001, the North Eclip-
tic Pole / NEP survey in Henry et al., 2001, the Highest X-ray flux Galaxy Cluster
Sample / HIFLUGCS in Reiprich and Böhringer, 2002). The current generation
of X-ray satellites, Chandra and XMM-Newton with improved angular resolu-
tion and sensitivity, has allowed deeper studies of the cluster emission to trace
their mass distribution.

A comparison between an optical and an X-ray observation of the same clus-
ter is shown in Fig. 5, for Abell 2029. The optical image shows the galactic
component of the cluster while the X-ray image reveals the presence of hot gas.
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Both optical galaxy and X-ray surveys provide flux-limited cluster samples,
depending on the sensitivity of the telescope.

An additional detection limit for distant sources is the strong decline of the
surface brightness (SB, flux per unit solid angle) with redshift, (1+ z)−4, due to
the expansion of the Universe. X-ray surveys are affected by this limit, known as

“cosmological dimming”, and currently provide sample of clusters up to z ∼ 1.4

(e.g. Stanford et al., 2006).

2.1.2.2 Mass proxy

The mass of galaxy clusters can be estimated from the X-ray observations of
the ICM under the assumption that the gas is in hydrostatic equilibrium with the
underlying gravitational potential φ:

∇Pgas = −ρgas∇φ , (48)

where Pgas and ρgas are the gas pressure and the gas density, respectively. This
assumption is justified by the fact that the time ts needed for a sound wave in
the ICM to cross the cluster diameter D:

ts = 6.6× 108
(

T

108K

)−1/2(
D

1Mpc

)

yr , (49)

is shorter than the cluster age tage ∼ H−1
0 ∼ 13.6Gyr . Assuming also that the

ICM has a spherically-symmetric distribution, we can rewrite eq. (48) as :

1

ρgas

dPgas

dr
= −

dφ

dr
= −

GMtot(< r)

r2
, (50)

where r is the distance from the cluster centre and Mtot(< r) is the total (gas +
stars + dark matter) cluster mass within r. This is known as the “hydrostatic equi-
librium equation”. To solve it, the equation of state of an ideal gas is generally
assumed for the gas pressure:

Pgas(r) =
ρgas(r)kTgas(r)

µmp
, (51)

where µ is the mean molecular weight of the gas (µ ≃ 0.6 for a solar composi-
tion) and mp = 1.66× 10−24g is the proton mass. We can then solve eq. (50)
for the total mass:

Mtot(< r) = −
kTgas(r)r

µmpG

(

d lnngas

d ln r
+

d ln Tgas

d ln r

)

, (52)

where ngas = ρgas/µmp is the sum of the electron and the proton densities.
Ideally, one should have enough data (photon count statistics) to measure both

the density and temperature radial profiles, ngas(r) and Tgas, in order to di-
rectly solve eq. 52 for Mtot(< r) (see e.g. the review by Ettori et al., 2013).

In practice, it is not always possible to derive temperature profiles, since they
require a large number of X-ray photons to be divided into multiple energy bins
(to get the spectrum in every radial bin).

In this case, one needs scaling laws to relate the X-ray observables, luminosity
and temperature, with mass, based on the self-similar model proposed by Kaiser
(1986): assuming that gravity, which does not have a preferred scale, is the only
force that determines the thermodynamical properties of the ICM, then clusters
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of different sizes are scaled version of each other. If M is the mass enclosed
within the radius R at a given overdensity ∆, we can obtain a mass-radius relation
(M − R): M ∝ ρc,z∆R3. The critical density of the Universe evolves with
redshift as ρc,z = ρc,0E

2(z), thus the cluster radius scales as

R ∝ M1/3E−2/3(z) . (53)

The virial temperature of the diffuse gas into the potential well of the dark mat-
ter is Tvir ∼ GMµmp/kRvir ∼ 108K where M is the total mass, µ is the mean
molecular weight, k is the Boltzmann constant and Rvir is the virial radius. As-
suming that the cluster is an isothermal sphere at the hydrostatic equilibrium the
virial temperature is given by: kT ∝ M/R ∝ M2/3E2/3(z). Then, mass and
temperature (M− T ) are related by

M ∝ T3/2E−1(z) . (54)

From the relations (53) and (54) it is possible to derive the relation between
temperature and luminosity (L − T ) emitted by the ICM through thermal
bremsstrahlung emission: LX ∝ ρ2gasΛV , where ρgas is the average gas
density, Λ is the cooling function that in the bremsstrahlung regime is propor-
tional to T1/2. Assuming also that, for a bolometric emission, the gas den-
sity traces the dark matter density (ρgas ∝ ρDM ∝ ρc,z), we can rewrite
LX ∝ ρ0E

2(z)T1/2M ∝ E2(z)T1/2T3/2E−1(z) and the resulting relation is

LX ∝ T2E(z) . (55)

By combining the M− T relation with the L− T relation we obtain the M− L

relation that links the mass to the X-ray luminosity:

M ∝ L
3/4
X E−7/4(z) . (56)

This scaling relations must be calibrated with numerical simulations (e.g. Bor-
gani et al., 2004) or high-quality observations (e.g. Reiprich and Böhringer,
2002; Arnaud, Pointecouteau, and Pratt, 2005).

Besides the observational limits, it is important to note that the assumption of
hydrostatic equilibrium is not always accurate since clusters might be dynami-
cally young systems and may undergo mergers through which they accrete gas.
Moreover, mergers cause the presence of bulk motions in the ICM which in-
troduce a non-thermal pressure component. This causes an underestimate of the
cluster total mass of the 10-25%, which is larger in the cluster outskirts where the
ICM is less relaxed, as emerged from some numerical works that have applied
the X-ray approach to mock observations (e.g. Nagai, Vikhlinin, and Kravtsov,
2007; Piffaretti and Valdarnini, 2008; Meneghetti et al., 2010). Other effects,
such as instrument calibration or temperature inhomogeneities in the gas (Rasia
et al., 2006, 2014) can additionally bias hydrostatic mass measurements. Simu-
lations and comparison of different X-ray analyses indicate that X-ray estimates
underestimate the mass of a factor in the range 0 - 40%, with a baseline value of
20% (Mazzotta et al., 2004; Nagai, Vikhlinin, and Kravtsov, 2007; Piffaretti and
Valdarnini, 2008; Lau, Kravtsov, and Nagai, 2009; Kay et al., 2012; Rasia et al.,
2012; Rozo et al., 2014a,b,c).
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Figure 6 – Spectrum of the Cosmic Microwave Background, undistorted (dashed line)
and distorted (solid line) by the Sunyaev-Zeldovich effect. Credit: Carlstrom,
Holder, and Reese (2002).

2.1.3 The Sunyaev-Zeldovich effect

2.1.3.1 Detection

After the ROSAT survey, the latest all-sky cluster survey has been the Planck

Sunyaev-Zeldovich cluster survey (Planck Collaboration et al., 2014b, 2015b).
Hot gas in clusters can also be observed through the so-called Sunyaev-

Zeldovich effect (hereafter SZ; Sunyaev and Zeldovich, 1970, 1972). The high-
energy electrons in the ICM interact with the low-energy CMB photons via In-
verse Compton scattering. This interaction produces an increase of the energy of
the CMB photons of a factor ≈ kBTe/mec

2, where Te and me are the electron
temperature and mass, respectively, causing a distortion of the blackbody spec-
trum of the CMB. In particular, this appears as a decrease in the CMB intensity
at the frequencies . 218GHz and an increase at higher frequencies. This effect
is illustrated in Fig. 6 for a fictional cluster with a mass 1000 times larger than
the typical cluster mass, with the aim to show the small distortion.

The amplitude of this effect can be parametrised by the Compton parameter

y(DA):

y(DA) ≡
σT

mec2

∫
Pe(~r)dl , (57)

where DA is the angular distance from the cluster centre, σT is the Thomson
cross-section, Pe ≡ ne(~r)kBTe(~r) is the pressure of the electrons of the ICM at
the volume element of coordinate~r and l is the line of sight.

The total SZ signal (integrated over the whole cluster) is proportional to the
integrated Compton parameter YSZ, so that

YSZD
2
A =

σT

mec2

∫
PedV . (58)
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This measurement has the big advantage of being independent of distance,
unlike the optical and the X-ray surface brightness.

Therefore, in principle, a dedicated SZ cluster survey would identify clusters
efficiently out to arbitrarily high redshifts. In practice, SZ surveys are limited by
the instrument sensitivity and beam (Carlstrom, Holder, and Reese, 2002).

Surveys dedicated to such observations are providing very large samples of
high redshift clusters, like the South Pole Telescope (SPT; Carlstrom et al., 2011),
the Atacama Cosmology Telescope (ACT; Marriage et al., 2011) and the Planck

satellite (Planck Collaboration et al., 2015a).
The Planck satellite, launched on 2009 May 14, has produced two catalogs

of SZ sources with two all-sky cluster surveys, observing in six bands covering
the frequency range [100-857 GHz], and with respective beam widths in the
range [9.659-4.216 arcmin] (Planck Collaboration et al., 2014b, 2015b): the
PSZ1 based on 15.5 months of data which has selected 1227 cluster candidates,
and the PSZ2 which has selected 1653 cluster candidates from the full mission
dataset of 29 months.

Three algorithms have been used to detect clusters, using the generalized NFW
(Navarro, Frenk, and White, 1997) profile of Arnaud et al. (2010) as baseline
pressure profile model (the so-called “universal pressure profile") . Two algo-
rithms are based on the “Matched Multi-filter" technique, (MMF1, Herranz et
al., 2002, and MMF3, Melin, Bartlett, and Delabrouille, 2006a), while the third
algorithm is based on Bayesian inference (Carvalho et al., 2012, PwS for Pow-
ellSnakes,). For each detection, the algorithms derive a probability distribution
in the flux-size (Y500 − θ500) plane, where the SZ flux inside a sphere of radius
R500, (Y500, and the angular size θ500 are found to be highly degenerate (Planck
Collaboration et al., 2014b).

The detections of these three methods, having a signal-to-noise ratio S/N > 4.5,
have been combined to obtain the final catalog. Of the 1653 PSZ2 candidates,
1203 have been confirmed by ancillary data and 1094 have redshift estimates, in
the range 0 < z < 1, with a mean redshift of z ∼ 0.25.

2.1.3.2 Mass proxy

Observations of the SZ effect give another probe of the cluster mass.
Since the gas pressure Pe is related to the depth of the gravitational potential,

the product YSZD2
A is a probe of the cluster mass:

YSZD
2
A ∝ Te

∫
nedV = MgasTe = fgasMtotTe , (59)

where fgas is the gas fraction.

Recalling the T −M relation: Te ∝ M
2/3
totE

2/3(z), we can obtain the follow-
ing scaling relations:

YSZD
2
A ∝ fgasT

5/2
e E−1(z) , (60)

YSZD
2
A ∝ fgasM

5/3
totE

2/3(z) . (61)

In order to use the integrated Compton parameter to measure the cluster mass
with Planck one needs to break the size-flux degeneracy by assuming a prior on
the cluster size e.g., to the X-ray size.
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Planck Collaboration et al. (2014a, 2016b) used a subsample of 71 Planck clus-
ters detected at S/N > 7, from the XMM-Newton validation programme (Planck
Collaboration et al., 2011a, 2012, 2013), to derive the scaling relation between
the X-ray analogue of the SZ signal introduced by Kravtsov, Vikhlinin, and Na-
gai (2006), YX (defined as the product of the gas mass within R500, Mg,500, and
the spectroscopic temperature measured in the [0.15-0.75] R500 aperture, TX),
and the mass determined by assuming hydrostatic equilibrium of the ICM, MYX

500.
The SZ Y500 is then measured within the radius corresponding to MYX

500, and the
scaling relations between the SZ observables, Y500 and θ500, and the cluster mass
and redshift are finally derived:

E−β(z)

[

D2
A(z)Y500

10−4Mpc2

]

= Y∗

[

h

0.7

]−2+α [

(1− b)M500

6× 1014M⊙

]α

, (62)

and

θ500 = θ∗

[

h

0.7

]−2/3 [ (1− b)M500

3× 1014M⊙

]1/3

E−2/3(z)

[

DA(z)

500 Mpc

]−1

, (63)

where θ∗ = 6.997arcmin, log Y∗ = −0.19 ± 0.02, α = 1.79 ± 0.08, β =

0.66± 0.50, DA(z) is the angular diameter distance, and E(z) ≡ H(z)/H0. The
intrinsic scatter of eq. 62, assumed to be log-normal and constant with mass and
redshift, is σlnY = 0.173± 0.023.

The “mass bias" parameter, (1− b), accounts for the difference between the
X-ray determined masses, MYX

500, and true cluster halo mass, M500, like the depar-
ture from hydrostatic equilibrium, absolute instrument calibration, temperature
inhomogeneities, residual selection bias, etc.:

MYX
500 = (1− b)M500 , (64)

This mass bias can be quantified by comparing the observed relation with pre-
dictions from numerical simulations (Planck Collaboration et al., 2014a) or in-
corporating new mass estimates from different observables (e.g. from lensing,
Planck Collaboration et al., 2016b), but it turns out to be the largest source of
uncertainty in the SZ analysis, with differences of up to 30% among the different
estimates, in the range 1− b = [0.7, 1.0] (Planck Collaboration et al., 2016b).

The cosmological implications of this calibration are discussed in Chapter 3.
Constraining the value of the mass bias parameter is one of the main goal

of this thesis. I present the state of the art of the contributions on this subject,
including my own results, in Chapter 5.

Assuming a baseline value of 1− b = 0.8, constant with mass and redshift,
the confirmed clusters in the PSZ2 catalog have mass estimated in the range
0.79 < MPl

500/10
14M⊙ < 16.12, with the mean mass over the whole redshift

range being MPl
500 = 4.82× 1014M⊙ (Planck Collaboration et al., 2015b). Fig.

7 shows the PSZ2 mass distribution as a function of redshift, compared to other
SZ cluster surveys. Planck detects the rarest clusters in the high (M-z) region,
while SPT and ACT detect lower mass clusters at higher redshift (up to z ∼ 1.5).

2.1.4 Gravitational lensing

Zwicky (1937) suggested that galaxy clusters behave as lenses of background
galaxies.
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mass estimates depended on the orientation of the lens with respect to the line of
sight, since clusters have a triaxial shape. An over-estimation of the 3D mass was
obtained if the major axis points toward the observer, while an under-estimation
was obtained for clusters oriented perpendicularly to the line of sight. They also
found that important mass under-estimations might be due to the presence of
substructures which dilute the tangential shear signal.

Using dark matter cosmological simulations, Becker and Kravtsov (2011) fit-
ted the cluster shear profiles with NFW models and concluded that weak-lensing
masses were generally biased towards lower values by a factor depending on
the outer radius of the fit. They found a bias of ∼10% for masses estimated at
R500, for clusters at z = 0.25, 0.5. This bias was mostly due to the fact that the
NFW model was a poor description of the actual shear profile of the clusters,
while the scatter in the mass measurements was due to the halo triaxiality and,
with a minor contribution, to correlated large-scale structures. For ground-based
observations, the scatter was dominated by the shape noise due to the intrinsic
ellipticity of the background galaxies used to measure the shear. They estimated
that a large number of background galaxies could reduce the scatter. For exam-
ple, for clusters at z = 0.25, the total scatter on M500 decreased from ∼37% for
10 galaxies/arcmin2 to ∼25% for galaxies/arcmin2, and the bias decreased by
∼5%.

Rasia et al. (2012) confirmed these results using mock observations. They
found a scatter in mass of the order of ∼10-25%, with lower values for clus-
ters with a regular morphology, and a bias 610% within R500 caused, this time,
by the presence of substructures and by the triaxiality of the systems. They
estimated weak-lensing masses ∼30% larger at R500 than X-ray masses also ob-
tained from mock observations.

In summary, numerical simulations showed that weak lensing derived masses
are biased towards lower values by a factor of ∼5-10%, with a scatter of ∼10-
25% per cent (Meneghetti et al., 2010; Becker and Kravtsov, 2011; Rasia et al.,
2012).

2.1.5 CMB halo lensing

Lensing of the CMB anisotropies by galaxy clusters was discussed for the
first time by Zaldarriaga and Seljak (1999). This effect was a new opportunity to
measure cluster masses at all redshifts Lewis and Challinor (2006), still not yet
fully developed today.

With simulations of Planck observations, Melin and Bartlett (2015), analyzed
the distortions of the CMB anisotropies caused by the gravitational potential of
a front cluster. After removing the distortion due to the thermal SZ signal, they
constructed a map of the cluster gravitational potential by applying a quadratic
estimator on the background CMB temperature map. Then, they used a matched
filter to extract the lens mass, assuming an NFW profile. They showed that this
method could provide cluster masses even in low S/N conditions. Simulating 62
observations of A2163, one of the most massive clusters known, with X-ray mass
MX

500 = 1.9× 1015M⊙, at z = 0.203, they found Mlens
500 /M

X
500 = 1.01± 0.13,

which corresponded to an unbiased recovery of the sample mass scale with 13%
of uncertainties. Then they simulated 62 clusters from a mock subsample of
the Planck Early SZ sample with good X-ray observations (ESZ-XMM), with
masses in the range [2× 1014 − 2× 1015M⊙], finding Mlens

500 /M
X
500 = 0.99±
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0.28. The larger uncertainty in this case was due to the larger range of masses
used.

Even if this method is new and its systematics are not yet fully analyzed, it is
very promising in probing the cluster masse up to higher redshifts with respect to
shear measurements, since it uses the CMB as a source plane, instead of galaxies.

2.2 C O M PA R I S O N O F M A S S P ROX I E S

As seen in the previous section, cluster masses can be estimated through sev-
eral, independent techniques which are based on different physical properties
and require different assumptions.

In Table 2, I summarize the observables related to mass in different wave-
lengths, and the uncertainties in their use as proxies of the cluster mass.

Band Mass proxy Scatter Systematics Reference

Optical, NIR richness 40% Rozo+10

optical luminosity 40% Mantz+10, Vikhlinin+09

velocity dispersion 10-15% 30% White+10, Sifon+16

WL shear 10-25 % 5-10% Meneghetti+10, Becker & Kravtsov 2011, Rasia+12

X-rays gas mass <10% 25-30% Allen+11

gas temperature <15% Arnaud+07, Vikhlinin+09a, Mantz+10a

X-ray luminosity <10% Mantz+10a

SZ integrated Compton parameter 20-30% up to 30% Hallman+07, Shaw+08, Planck+14a, Planck+16a

Table 2 – Summary of the mass proxies used at different wavelengths.

From the comparison between the results obtained with different methods one
can verify the reliability of each method under different conditions and under-
stand the systematics.

So far, the systematics on the weak lensing mass estimates are found to be
smaller with respect to the other methods (5-10%), and they are used as the
reference for the total mass in cosmological surveys.
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3
C L U S T E R S I N C O S M O L O G I C A L S U RV E Y S

As seen Chapter 1, galaxy clusters trace the high density tail of the primor-
dial perturbation field of the dark matter, and they are, for this reason, powerful
cosmological probes.

The study of galaxy clusters offer several approaches to constrain cosmologi-
cal parameters:

– the cluster counts as a function of mass and redshift are related to the
present amplitude of density fluctuations, σ8, and its redshift evolution is
related to the linear growth of linear density perturbations, thus provid-
ing constraints on the matter density parameter, Ωm, and the dark energy
equation of state parameter, w (Allen, Evrard, and Mantz, 2011; Vikhlinin
et al., 2009);

– assuming that the baryon fraction in clusters (fgas = Ωb/Ωm) reflects
the baryon content of the Universe, it can be used to constrain the mat-
ter density parameter Ωm, if the baryon density parameter Ωb is known
from independent estimates, like Primordial Nucleosynthesis calculations
(Steigman, 2006) or analysis of the CMB power spectrum (Hinshaw et al.,
2013);

– the observed relation between the mass and the dark matter concentration
in galaxy clusters constrains Ωm and σ8. For example, in models with
lower values of Ωm and σ8, clusters assemble later, so less concentrated
halos are expected at a given mass (Dolag et al., 2004; Neto et al., 2007;
Macciò, Dutton, and van den Bosch, 2008).

In this chapter, I focus on the “cluster counts" method, which is the most used
in cluster cosmological surveys.

3.1 C O S M O L O G Y F RO M C L U S T E R C O U N T S

From the theoretical perspective, the cluster number density, or abundance,
is a function of halo mass and redshift. Observationally, we can measure the
dependence on redshift of the observables that trace the mass function.

For a given cluster sample we can measure the number of clusters, dN, within
a given solid angle, dΩ, and redshift interval [z, z+ dz], that fall into the range
[X, X+dX] of the observable X (e.g. Carlstrom, Holder, and Reese, 2002; Voit,
2005, and references therein). We can relate the observed distribution of clus-
ters as a function of redshift, dN/dz, to their theoretical expectation, with the
following likelihood:

dN

dz
=

∫
dΩ

∫
dM F(X|z,M, θfwhm, σ2

N)
dN

dzdMdΩ
, (65)

where:
· Ω is the solid angle of the sky covered by the survey,
· the mass M is derived from a scaling relation with the survey observable
X,

· F(X|z,M, θfwhm, σ2
N) is the selection function, which characterizes the

population of clusters detected among the targets present in the survey

27



area. It is defined as the joint distribution of the cluster observables (X),
given the intrinsic cluster properties (M,z), the survey conditions (e.g. the
FWHM of an assumed Gaussian beam, θfwhm, and the map noise variance,
σ2

N), and on the algorithm used to find clusters. It incorporates the intrinsic
and the observational scatter in the mass-observable relation.

· dN/(dzdMdΩ) is the theoretical mass function obtained with numerical
simulations. Currently, the standard reference is Tinker et al. (2008), used
also in Planck Collaboration et al. (2014a, 2016b). This is based on the
Press-Schechter formalism introduced in Section 1.2.4, which is indeed a
good description of the observed halo abundances. Combining eq. 41 and
42, we have a useful formula that reveals the dependence on the cosmolog-
ical parameters:

dn(M,z)

d lnM
=

√

2

π

ρm

M

∣

∣

∣

∣

d ln σM

d ln M

∣

∣

∣

∣

δc

σM(z)
exp

[

−
δ2c

2σ2
M(z)

]

. (66)

Cosmology enters this expression through the mass function and the volume
element, dΩ.

The matter density parameter, Ωm, enters through ρm. The amplitude of the
matter power spectrum, σ8, enters through σ(M).

Massive objects are less likely, since the halo mass function decreases expo-
nentially at high masses. On the other hand, this also implies that the halo mass
function becomes exponentially sensitive to the choice of the cosmological pa-
rameters, and therefore, a reliable determination of the mass function of very
massive clusters is important to constrain cosmological parameters.

Carlstrom, Holder, and Reese (2002) reviewed the first cosmological studies
from the cluster counts. More recently, Mantz et al. (2015) used weak lensing
mass measurements of clusters in the RASS catalog, from the Weighing the Gi-
ants project (WtG von der Linden et al., 2014b), and showed that clusters provide
tight constraints on Ωm and σ8, which are approximately orthogonal to CMB
anisotropy constraints from WMAP and Planck (see Fig.9a).

Moreover, both the geometry of the Universe (ρm, dΩ) and growth of struc-
ture (the power spectrum) are affected by a change in the dark energy equation
of state parameter w. In fact, clusters provide some of the tightest constraints on
dark energy in the w−Ωm plane, and the combination with other probes, like
the CMB anisotropies, the type Ia supernova distances (SNIa), and the baryonic
acoustic oscillation (BAO), leads to very tight constraints on w at the few percent
level (Mantz et al., 2015), as shown in Fig. 9b.

It is clear that a full knowledge of the mass-observable relation M(X, z) and its
scatter, as a function of redshift, is crucial to reliably constrain the cosmological
parameters.

At present, the cluster mass scale is the largest source of uncertainty in in-
terpretation of the cluster counts. This thesis contributes to this effort with the
study of the scaling relation between the cluster velocity dispersion and mass,
compared to other mass proxies. This study is presented in Chapter 5, with the
main result showed in Figure 23, and it has been published in Amodeo et al.
(2017).

3.2 T H E P L A N C K T E N S I O N

The Planck survey, introduced in Section 2.1.3, has produced a cosmological

sample of clusters with signal-to-noise ratio S/N > 6 used to constrain cosmo-
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the cluster observable-mass relation is not well calibrated), or ii) the standard
ΛCDM model must be extend with, e.g., non-minimal neutrino masses or non-
zero curvature, in order to describe the evolution of the density perturbations
from recombination until today.

The first part of this PhD thesis is dedicated to understand this tension, by
obtaining an independent statistical calibration of the Planck SZ mass estimator,
from the velocity dispersion of cluster member galaxies, and giving constraints
on the mass bias (see Chapter 5).

3.3 C L U S T E R C O U N T S W I T H F U T U R E S U RV E Y S

Many ongoing and forthcoming surveys are or will be used for cluster cosmol-
ogy, including (in alphabetic order): CCAT (Cerro Chajnantor Atacama Tele-
scope; Woody et al., 2012), DES (Dark Energy Survey; DES Collaboration et
al., 2017), eBOSS (Extended Baryon Oscillation Spectroscopic Survey; Zhao
et al., 2016), eROSITA (extended ROentgen Survey with an Imaging Telescope
Array; Merloni et al., 2012), Euclid (Laureijs et al., 2011), KiDS (Kilo-Degree
Survey; de Jong et al., 2013), LSST (Large Synoptic Survey Telescope; LSST
Science Collaboration et al., 2009), Pan-STARRS (Panoramic Survey Telescope
and Rapid Response System; Chambers et al., 2016), Planck-SZ (Planck Col-
laboration et al., 2014a, 2016b), SPT-SZ (South Pole Telescope; de Haan et al.,
2016).

While SZ surveys, and in particular Planck, have provided the largest samples
of cluster catalogs for cosmological studies so far, large optical and near-infrared
surveys in the near future will be able to detect a high number of well character-
ized clusters, such as Euclid (up to z ∼ 2), and LSST (up to z ∼ 1.5).

Ascaso et al. (2017) consistently compared the selection functions of differ-
ent next-generation surveys, in terms of the limiting cluster mass threshold as a
function of redshift, as shown in Fig. 11. They used an empirical detection of
clusters and groups in cosmological simulations. Assuming completeness and
purity rates of the cluster selection >80%, they predicted that the limiting clus-
ter mass for Euclid would be < 2× 1014M⊙ up to z ∼ 1.5, and 6 1014M⊙ up
to z ∼ 1, in the “pessimistic" scenario in which the Euclid photometry would be
only complemented by the five-band optical photometry from DES. With the ad-
ditional six-band photometry from LSST (“optimistic" scenario), the predicted
limiting mass would be shifted by ∼10% towards lower values. For LSST, the
predicted limiting mass would be 8 − 9× 1013M⊙ up to z ∼ 0.7. The other
optical/near-IR survey analyzed, J-PAS (Benitez et al., 2014), would reach ∼1.5
lower masses at z < 0.7 thanks to its very accurate photometric redshifts ob-
tained with 54 narrow bands. It is interesting to note that comparable values
could be obtained only up to z ∼ 0.2 with the e-Rosita X-ray survey (Merloni
et al., 2012). For the SZ surveys SPTpol (Carlstrom et al., 2011) and ACTpol
(Marriage et al., 2011) the limiting mass would be 4× 1014M⊙ (7× 1014M⊙)
at z = 2, decreasing to ×1014M⊙ (4× 1014M⊙) at z = 1.5 (Weinberg et al.,
2013).

This means that optical and near-infrared surveys will be of fundamental im-
portance to detect low mass galaxy clusters at low to medium redshift.

I focus here on the Euclid mission and the developments that are being planned
to use clusters as cosmological probes, since I joined the Euclid consortium in
the Science Working Group “Cluster of Galaxies".
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3.3.1 Euclid forecasts

Euclid is a European Space Agency (ESA) mission, aimed at studying the
evolution of the cosmic web up to z ∼ 2 (i.e. over the past 10 billion years), in
order to understand the nature of dark energy and dark matter (Laureijs et al.,
2011). It is optimized to exploit two primary cosmological probes:

1. weak gravitational lensing, through imaging on sub-arcsec scales for the
galaxy shape measurements, and photometry at visible and infrared wave-
lengths to measure the photometric redshifts of each lensed galaxy out to
z ∼ 2;

2. galaxy clustering, through accurate near-infrared spectroscopy to measure
redshifts of galaxies out to z ∼ 0.7, to better than 0.1%.

Planned for launching in the year 2022, Euclid will orbit around the 2nd La-
grange Point of the Sun-Earth System. In six years, it will complete one wide
survey and one deep survey.

The Euclid Wide Survey will observe 15000 deg2 of the extragalactic sky (not
contaminated by the light from our Galaxy). The visual instrument (VIS) will
produce imaging photometry in one broad visible band (550-900 nm), with a
pixel size of 0.1 arcsec, allowing to measure the shape of 30 galaxies per arcmin2

down to a limiting AB magnitude of 24.5. The near-infrared instrument (NISP)
will be equipped to perform photometry in three bands in the range 920-2000
nm, with a pixel size of 0.3 arcsec, allowing to observe galaxies down to an AB
magnitude of 24, and measure their redshift (in combination to auxiliary ground-
based data) with a precision of σz(1+ z) < 0.05.

The Euclid Deep Survey will observe 40 deg2 in at least two deep fields, reach-
ing two magnitudes deeper than the wide survey. It will use the NISP instrument
to perform slitless spectroscopy (one blue grism covering 920-1250 nm + three
red grisms covering 1250-1850 nm with different orientations) with a spectral
resolution of λ/δλ ∼ 380 for a 0.5 arcsec source, and measure galaxy redshifts
with an accuracy of σz(1+ z) < 0.001. 1

In addition to the primary science, the Euclid surveys will provide data for
complementary cosmological probes, including galaxy cluster counts.

Sartoris et al. (2016) provided forecasts on the constraints that can be obtained
with Euclid cluster counts. Based on an analytical estimate of the cluster selec-
tion function in the photometric Euclid survey, they predicted that ∼ 2 × 106

clusters will be detected 2 at 3σ with a minimum mass of M200 ∼ 8× 1013M⊙

almost constant with redshift up to z = 2, and about one-fifth of them will be at
z > 1.

These results globally agree with the empirical selection function found by
Ascaso et al. (2017) for the Euclid-Optimistic case (red-dotted line in Fig. 11),
which instead steepens at z > 1.

Following a Fisher matrix formalism, Sartoris et al. (2016) derived constraints
on σ8, Ωm, dark energy equation of state, primordial non-Gaussianity, modi-
fied gravity, and neutrino masses. They applied the analysis to number counts
(NC) and progressively added information of the matter power spectrum (PS),
assumed to have a perfect knowledge of the observable-mass scaling relation

1. These numbers refer to the “mission characteristics" published on https://www.

euclid-ec.org, last updated the 27th Dec, 2017.
2. The number of galaxies within R500 is required to be at least three times the rms of the field

counts within the same radius.
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4
C A L I B R AT I N G T H E G A L A X Y C L U S T E R M A S S S C A L E
W I T H V E L O C I T Y D I S P E R S I O N S I : S A M P L E
D E S C R I P T I O N

In this chapter, I describe the observation campaigns from which we have
selected the sample used to study the cluster mass scale.

I present the spectroscopic follow-up of 20 Planck cluster candidates with the
Gemini and Keck telescopes (P.I.s: J.G. Bartlett and F.A. Harrison, respectively),
from which we have derived the cluster redshifts and velocity dispersions. Seven
cluster redshifts are measured for the first time, including one of the most distant
Planck cluster confirmed to date, at z = 0.782± 0.010. The results of this study
are published in Amodeo et al. (2017, 2018), enclosed to this thesis in Appendix
B. In addition, catalogs of the spectroscopic redshifts of member galaxies of each
confirmed cluster are published as online tables.

4.1 S A M P L E D E S C R I P T I O N

The goal of our Gemini program was to obtain a statistical calibration of
the Planck SZ mass estimator. For this purpose, we mostly chose clusters that
were detected with a Planck SZ S/N of about 4.5 σ or larger, distributed in the
northern and southern hemispheres, spanning a wide range in Planck SZ masses,
2× 1014M⊙ < MPl

500 < 1015M⊙, in the redshift range 0.16 < z < 0.44.
Our sample was built from optical imaging observations with the Gemini,

Keck, and Palomar (also infrared imaging) telescopes, used to select cluster
members for spectroscopic follow-up with Gemini and Keck. The details of
each observing run (pre-imaging and optical spectroscopy) are listed in Table 3.

Table 3 – Observation details.

Run Semester PI Tel./Inst. Program ID Ncl

1 2010B Lawrence Palomar/LFC,WIRC 11

2 2011A Lawrence Palomar/LFC 25

3 2011B Lawrence Palomar/LFC 15

2 2011A Bartlett Gemini-N/GMOS GN-2011A-Q-119 11

3 2011B Bartlett Gemini-N/GMOS GN-2011B-Q-41 11

4 2012B Lawrence Palomar/LFC 9

5 2012A Bartlett Gemini-S/GMOS GS-2012A-Q-77 9

6 2013B Harrison Keck/LRIS UT 2013 October 4-5 1
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Figure 15 – Transmission curves for the Gemini GMOS-N (left) and GMOS-S (right)

cameras. Credit: http://www.gemini.edu.

signal-to-noise ratio (S/N) just below the Planck catalog selection threshold and
(2) PLCK G147.32-16.59 is in the Planck cluster mask.

In Figure 16, I compare our sample to the full PSZ2 catalog. These histograms
show that our selection has an average redshift larger than the PSZ2 catalog, and
a mass range covering most of the mass range of the PSZ2 catalog. In fact,
our sample has an average redshift of z = 0.37 and an average mass of M =

6.2× 1014M⊙, compared to the average PSZ2 redshift and mass of z = 0.25

and 4.8×1014M⊙, respectively. The larger average redshift was chosen to cover
most of the cluster members within ∼ R200 in the field of view of the Gemini
and Keck telescopes.

The Northern sample was selected in the area covered by the SDSS, and we
used the SDSS public releases and our GMOS-N pre-imaging in the r-band
(150 s) to detect red galaxy over-densities around the Planck detection center.
When unknown, we estimated the approximate cluster redshift using its red se-
quence to calculate the appropriate exposure times for the spectroscopic follow-
up. For PSZ2 G139.62+24.18, PSZ2 G157.43+30.34 and PLCK G183.33-36.69,
we used imaging obtained with the Palomar telescope. For the Southern sample,
we obtained GMOS-S pre-imaging in the g and i-bands (200 s and 90 s integra-
tions, respectively).

Our GMOS spectroscopic observations were reduced by our collaborator
Adam Stanford using the IRAF Gemini GMOS package and standard tech-
niques. After co-adding the reduced exposures, one-dimensional spectra were
extracted in each slitlet and were initially inspected visually to identify optical
features such as the 4000 Å break, G-band, Ca H+K absorption lines, and, rarely,
[O II]λ3727 emission. More precise galaxy redshifts were determined by run-
ning the IRAF task xcsao. In Figure 17, I show two Gemini/GMOS spectra
of galaxies in the cluster PSZ2 G250.04+24.14. Table 4 lists spectroscopically
confirmed clusters.

4.1.2 Keck Observations

We obtained spectroscopy of PSZ2 G085.95+25.23 on the nights of UT 2013
October 4-5 using the dual-beam Low Resolution Imaging Spectrometer (LRIS;
Oke et al., 1995) on the Keck I telescope atop Mauna Kea. These slitmask
observations were obtained with the 400 ℓ mm−1 grism on the blue arm of
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Figure 16 – Histograms of the redshifts (left) and the masses (right) of our spectroscopic
sample compared to the full PSZ2 catalog. These histograms are normalized
to the total number of objects in each sample. We have selected cluster
candidates with redshift z > 0.2 (with average redshift larger than the PSZ2
catalog), and larger average mass than the PSZ2 catalog, with cluster masses
in the range 2.3× 1014M⊙ < MPl

500 < 9.4× 1014M⊙. The cluster mass
shown here is the Planck mass proxy (Planck Collaboration et al., 2015b).

LRIS (λblaze = 3400 Å), the 400 ℓ mm−1 grating on the red arm of LRIS
(λblaze = 8500 Å), and the 5600 Å dichroic was used to split the light. We
obtained three 1200 s integrations on the first night through variable cloud cover,
and two 1200 s integrations on the second night in photometric conditions. After
some experimentation, we based our analysis on the single best exposure from
the first night combined with the two exposures from the second night. The
data were processed by our collaborator Daniel Stern using standard techniques
within IRAF, and flux calibrated using standard stars from Massey and Gron-
wall (1990) observed on the second night. In Figure 18, I show two Keck/LRIS
spectra of galaxies in the cluster PSZ2 G085.95+25.23.
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Table 4 – Spectroscopically confirmed cluster sample. Clusters are named after their
PSZ2 ID, when available. When it is not available, we use the prefix ‘PLCK’
followed by a notation in Galactic coordinates similar to that used in the PSZ2
paper. Right ascension and declination indicate the optical cluster centre. Fil-
ter names used for imaging, spectroscopic observing times and the number
of masks are also stated. The last column lists the observing run(s) for each
target, including pre-imaging.

Name R.A. Decl. Filter texp Nmask Run

(deg) (deg) (s)

PSZ2 G033.83-46.57 326.3015 -18.7159 g,i 1800 2 GS-2012A-Q-77

PSZ2 G053.44-36.25 323.8006 -1.0493 r 1800 1 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G056.93-55.08 340.8359 -9.5890 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G081.00-50.93 347.9013 3.6439 r 1800 1 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G083.29-31.03 337.1406 20.6211 r 1800 1 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G085.95+25.33 277.6164 56.8823 – 3600 2 Keck Telescope

PSZ2 G108.71-47.75 3.0715 14.0191 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G139.62+24.18 a 95.4529 74.7014 r 900 2 GN-2011A-Q-119,GN-2011B-Q-41

PLCK G147.32-16.59 b 44.1101 40.2853 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G157.43+30.34 a 117.2243 59.6974 r 3600 2 GN-2011A-Q-119,GN-2011B-Q-41

PLCK G183.33-36.69 a 57.2461 4.5872 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G186.99+38.65 132.5314 36.0717 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G216.62+47.00 147.4658 17.1196 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G235.56+23.29 134.0251 -7.7207 g,i 900 2 GS-2012A-Q-77

PSZ2 G250.04+24.14 143.0626 -17.6481 g,i 1800 2 GS-2012A-Q-77

PSZ2 G251.13-78.15 24.0779 -34.0014 g,i 900 2 GS-2012A-Q-77

PSZ2 G272.85+48.79 173.2938 -9.4812 g,i 900 2 GS-2012A-Q-77

PSZ2 G329.48-22.67 278.2527 -65.5555 g,i 900 2 GS-2012A-Q-77

PSZ2 G348.43-25.50 291.2293 -49.4483 g,i 900 2 GS-2012A-Q-77

PSZ2 G352.05-24.01 290.2320 -45.8430 g,i 1200 2 GS-2012A-Q-77

that biweight and gapper estimates are perfectly consistent, with the absolute dif-
ference between the velocity dispersions calculated from the two methods being
on average of (0.04± 0.14) sigma, and never higher then 0.5 sigma. Since the
line-of-sight cluster velocity dispersion can be highly anisotropic, small galaxy
samples lead to large systematic uncertainties, with estimated uncertainties of
.10% (White, Cohn, and Smit, 2010) for samples with more than ∼ 10-15 galax-
ies like ours.

I retain as possible cluster members the galaxies within 3σ of the average
cluster velocity/redshift. Standard deviations are in the range 0.001-0.008 in
redshift, for the clusters that we confirm, apart PLCK G147.32-16.59 that shows
evidence for an undergoing merger event (see discussion below). In Fig. 19 and
20, I present the redshift distributions of the cluster member galaxies (left), the
optical image of the cluster with the selected members (middle), and the SZ maps
in units of S/N (right), for the Northern and the Southern samples, respectively.
I also present Gaussian fits to the redshift distributions in the left-hand panels.

In the middle panels of Fig. 19 and 20 I show the optical pre-imaging, within
the Gemini field of view of 5.5× 5.5 arcmin2, indicating spectroscopically con-
firmed members by green circles.
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For PSZ2 G056.93-55.08, we visually observed three spatially separated
galaxy groups, but all at the same redshift and within one virial radius. We
derived the virial radius R200 = (2.00± 0.05) Mpc from the SZ mass estimate
of MPl

500 = (9.4± 0.5)× 1014M⊙
1. At the cluster redshift, z = 0.443, 2 Mpc

correspond to 5.7 arcmin in a Planck cosmological model (Planck Collaboration
et al., 2016a). We could not obtain a separate mass estimate for each group be-
cause the Planck beam includes all the three groups and we did not have enough
spectroscopic members of each group for deriving the group mass from velocity
dispersions. Therefore, in this analysis, I consider the three groups as being part
of a single cluster detection.

For all targets but PSZ2 G352.05-24.01, the red circled area is centered on the
optical center of the cluster and has a 1 arcmin radius. The optical center was
obtained as the brightest cluster member in the densest cluster region, following
a modified version of the centering algorithm from Licitra et al. (2016b). For
PSZ2 G352.05-24.01, we used the coordinates of the X-ray center, marked with
a red cross.

In the right-hand panels, I show the SZ maps with the same area enclosed
by the black circles and centered on the optical position. The SZ maps have an
angular resolution of 5 arcmin and are given in units of S/N. All the detections
lie above S/N = 4.5, except for PLCK G183.33-36.69 with S/N = 2.

1. See Chapter 5 for details of the conversion from MPl
500 to MPl

200.
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Figure continued
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Figure continued
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Figure 19 – Redshift histograms (left), optical images (middle) and SZ maps in signal-
to-noise units (right) of clusters in the Northern sample. The red curve in
the histograms is a Gaussian fit with mean (µ) and standard deviation (σ)
indicated in the legends, calculated for the redshift distribution using the bi-
weight method. We also indicate the number of members in each cluster and
the size of the redshift bins. The red (black) circles in the images encloses a
circle of radius 1 arcmin around the optical (SZ) center of the clusters, while
the confirmed member galaxies are shown by green squares.
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Figure continued
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Figure 20 – Redshift histograms, optical images and SZ maps of clusters in the Southern
sample. Symbols are the same as for Figure 19. For PSZ2 G352.05-24.01,
we know only the coordinates of the X-ray center, marked with a red cross.
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Figure 21 – Redshift histogram, IRAC image and SZ map of PSZ2 G085.95+25.23 ob-
served at the Keck telescope. Symbols are the same as for Figure 19.
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Table 5 – Results of the spectroscopical analysis. Columns from left to right list the cluster ID, our measured spectroscopic redshift, the new spectroscopic redshift estimates, redshift
estimates obtained including the available redshifts in the SDSS DR14, the total number of galaxies with measured redshifts in the cluster field, the number of confirmed
member galaxies, and our measured velocity dispersions using the biweight and the gapper methods (Beers, Flynn, and Gebhardt, 1990). The next three columns give,
respectively, the signal-to-noise ratio, the number of detection methods and the Planck mass proxy, as reported in the PSZ2 catalog (we calculated these numbers for the two
objects not listed in the PSZ2 catalog). The last three columns list, respectively, the Kolmogorov-Smirnov (K-S) and the Shapiro-Wilk (S-W) statistics for the probability
that the redshift distributions are Gaussian, and the K-S test for a uniform distribution.

Name zspec New zspec zspec+DR14 Ntot Nconf
gal σBI σBI+DR14 σG S/N Det. Meth. MPl

500 K-S gaussian prob. S-W gaussian prob. K-S uniform prob.

(km s−1) (km s−1) (km s−1) (1014M⊙)

PSZ2 G033.83-46.57 0.439± 0.001 + 10 8 985+451
−277 1051+309

−214 4.6 2 5.4+0.7
−0.8 0.96 0.71 0.50

PSZ2 G053.44-36.25 0.331± 0.001 + 0.3295± 0.0003 21 20 1011+242
−131 1215+167

−100 1025+224
−117 8.9 3 7.5+0.5

−0.6 0.99 0.80 0.07

PSZ2 G056.93-55.08 0.443± 0.001 0.4430± 0.0001 49 46 1356+192
−127 1331+194

−128 1345+170
−113 11.5 3 9.4± 0.5 0.76 0.12 0.01

PSZ2 G081.00-50.93 0.303± 0.001 + 0.3051± 0.0001 15 15 1292+360
−185 1552+175

−154 1300+326
−140 9.2 3 6.7± 0.5 0.97 0.96 0.14

PSZ2 G083.29-31.03 0.412± 0.002 0.4123± 0.0001 21 20 1434+574
−320 1153+111

−94 1591+376
−262 9.1 3 7.8+0.5

−0.6 0.83 0.90 0.004

PSZ2 G085.95+25.23 0.782± 0.003 + 16 14 1049+210
−180 1041+195

−119 5.0 2 5.2+0.6
−0.7 0.91 0.05 0.06

PSZ2 G108.71-47.75 0.389± 0.001 0.3897± 0.0002 11 8 900+458
−190 861+327

−216 900+460
−183 4.3 1 5.1+0.7

−0.8 0.99 0.87 0.65

PSZ2 G139.62+24.18 0.268± 0.001 20 20 1120+366
−238 1127+305

−171 9.6 3 7.3± 0.5 0.51 0.25 0.20

PLCK G147.32-16.59 0.640± 0.009 10 10 – – 5.9 1 8.1+0.8
−0.9 0.91 0.91 0.86

PSZ2 G157.43+30.34 0.402± 0.001 + 28 28 1244+192
−109 1242+195

−103 8.8 2 8.2± 0.6 0.99 0.73 0.23

PLCK G183.33-36.69 0.163± 0.001 11 11 897+437
−275 979+263

−187 2.1 1 2.3+0.7
−0.9 0.59 0.05 0.04

PSZ2 G186.99+38.65 0.377± 0.001 0.3774± 0.0003 41 41 1506+164
−120 1426+133

−87 1462+165
−102 7.1 3 6.6+0.6

−0.7 0.83 0.32 0.40

PSZ2 G216.62+47.00 0.385± 0.001 0.3864± 0.0003 37 37 1546+174
−132 1779+207

−153 1524+178
−110 9.7 3 8.4+0.5

−0.6 0.97 0.45 0.86

PSZ2 G235.56+23.29 0.375± 0.002 27 23 1644+285
−192 1636+294

−141 4.9 3 5.7+0.7
−0.8 0.95 0.16 0.13

PSZ2 G250.04+24.14 0.411± 0.001 29 29 1065+447
−285 1466+380

−241 6.2 3 6.2± 0.6 0.94 0.97 0.10

PSZ2 G251.13-78.15 0.306± 0.001 + 17 17 801+852
−493 1188+205

−155 4.8 1 4.1± 0.6 0.56 0.19 0.26

PSZ2 G272.85+48.79 0.420± 0.002 10 9 1462+389
−216 1498+345

−175 4.8 2 5.3+0.7
−0.8 0.98 0.61 0.62

PSZ2 G329.48-22.67 0.249± 0.001 + 19 16 835+179
−119 746+152

−64 6.0 3 5.0+0.7
−0.8 0.99 0.90 0.46

PSZ2 G348.43-25.50 0.265± 0.001 21 20 1065+411
−198 1160+277

−167 7.1 3 6.0± 0.6 0.85 0.18 0.02

PSZ2 G352.05-24.01a 0.786± 0.026 23 10 – – 4.1 1 6.2+0.9
−1.0 0.35 0.02 0.03

0.304± 0.022 23 13 – – 0.99 0.94 0.98

a Two structures observed, not confirmed as clusters (see text and Figure 20).
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Our collaborator Jean-Baptiste Melin recalculated masses and S/N from a
re-extraction of the SZ signal using the Matched Multi-Filter MMF3 (Melin,
Bartlett, and Delabrouille, 2006b; Planck Collaboration et al., 2011b, 2014b,
2015b), descibed in Section 2.1.3, fixing the position to the optical position and
varying the filter size. They are reported in Table 5. In particular, the quoted S/N

is the maximum across the various filter sizes at the optical position. The masses
are obtained from the re-extracted SZ signal following the method described in
Sec. 7.2.2 of Planck Collaboration et al., 2014b.

In Table 5, I also show the number of detection methods from Planck Collab-
oration et al. (2015b), described in Section 2.1.3. The Planck selection function
is very reliable (> 90%) for detections obtained with S/N > 4.5 by at least
one detection method. For objects detected with all three detection methods, the
probability of being a cluster is > 98% with S/N > 4.5 (Planck Collaboration et
al., 2015b). In order to confirm each target as galaxy cluster, I combine this infor-
mation with the probability that the galaxy redshift distribution is Gaussian, the
characteristic distribution of a virialized cluster, from the Kolmogorov-Smirnov
(K-S, e.g. Fasano and Franceschini, 1987) and the Shapiro-Wilk (S-W, Shapiro
and Wilk, 1965) statistics, as well as the probability of a uniform distribution
from a K-S test. The results of these tests are shown in the last three columns of
Table 5.

Eleven of our cluster candidates have > 98% probability of being a galaxy
cluster, since they were detected with three detection methods and have S/N >

4.5. For these targets, the probabilities that the redshift distributions are Gaussian
are almost always > 80% and the probabilities to be uniform always < 50%

and mostly < 10%. Only one object, PSZ2 G139.62+24.18 at z=0.268, has a
S/N = 9.5, which corresponds to a Planck reliability of being a cluster of ∼
100%, but a K-S (S-W) probability of having a Gaussian redshift distribution of
∼ 50% (∼ 20%), and the probability of having a uniform redshift distribution of
∼ 20%. It shows a very luminous BCG at the center, and has 20 spectroscopically
confirmed galaxies at the same redshift. All these elements seem to indicate that
this is a galaxy cluster, and it was also confirmed as a cluster in the PSZ2 catalog.
All the other ten targets are mostly likely galaxy clusters, and I assume that they
are. Of those, I confirm three clusters that were not originally confirmed in the
PSZ2.

The other cluster candidates that were detected with at least one detection
method and S/N > 4.5 have a > 90% probability of being galaxy clusters.
For these candidates, I confirm a cluster when the probability that their redshift
distribution is a Gaussian is > 95% (∼ 2σ). On the other hand, I do not confirm
a cluster when the probability of a uniform distribution is > 50%. In fact, since
the Planck detection and the galaxy redshift distribution are two independent
events, I can multiply the Planck probability of not being a cluster (∼ 10%)
by the probability of having a uniform distribution of galaxy redshifts. If this
last is < 50%, the total probability that the candidate is not a cluster is < 5%.
Among these last targets, three have a probability that their redshift distribution
is Gaussian is > 95% (∼ 2σ), and I consider them as confirmed clusters. All
three are new confirmation with respect to PSZ2.

Three of the targets that were only detected by one method, though, and one
candidate detected with two methods show less definitive results. I discuss these
last cluster candidates in more detail below.
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PLCK G147.32-16.59 was detected by one method with a high S/N (S/N ∼

6), and its redshift distribution has a probability of ∼ 90% of being Gaussian;
however, it also has a ∼ 10% probability of not being a cluster. With only 10
confirmed members, its confirmation is not very reliable, but it is more proba-
ble that it is a cluster or a group of galaxies than a uniform redshift distribution,
and I consider it a confirmed cluster. XMM-Newton observations (Planck Col-
laboration et al., 2013) reveal two substructures in the X-ray surface brightness,
indicating that it is undergoing a merger event (see also van Weeren et al., 2014;
Mroczkowski et al., 2015). Because of the undergoing merger, I exclude this
cluster from the analysis of the velocity dispersion–mass relation in Chapter 5.

PLCK G183.33-36.69 was detected by one method with a S/N ∼ 2 (Planck

reliability of < 70%), its redshift distribution has a K-S (S-W) probability of
∼ 60% (∼ 5%) to be Gaussian, and a ∼ 1% total probability of not being a cluster.
However, the two bright central galaxies in the Gemini image are clearly visible,
and the cluster center is close to the border of the Gemini field. It seems that this
cluster was not enough well centered in the Gemini imaging and spectroscopy
to obtain a significant sample to confirm it, even if it has a larger probability to
be a cluster or group of galaxies instead of an uniform galaxy distribution. The
SZ flux gives a mass of MPl

500 = 2.3+0.7
−0.9 × 1014M⊙, and its galaxy velocity

dispersion is σ200 = 842+297
−451 km s−1. I consider it as a confirmed cluster, and

warn the reader about the larger uncertainty (with respect to most of the remain-
ing sample) in the velocity dispersion measurement and its redshift distribution
skewness, which both might indicate an unrelaxed dynamical state. I keep this
cluster in my sample for the mass scale study because, due to the large uncer-
tainty on the velocity dispersion measurement, it does not significantly weight
on my final results.

PSZ2 G251.13-78.15 was detected by one method with a S/N ∼ 4.8 (Planck

reliability of ∼ 90%), its redshift distribution has a K-S and a S-W probability of
∼ 60% and ∼ 20%, respectively, to be Gaussian, and a ∼ 3% probability of not
being a cluster. I consider it as a confirmed cluster, and again notice the larger
uncertainty in its confirmation, mass and velocity dispersion estimates. This is a
newly spectroscopically confirmed cluster.

PSZ2 G272.85+48.79 was detected by two methods with a S/N ∼ 5 (Planck

reliability of ∼ 92%). From the combined Planck and K-S Gaussian probabilities,
it has a 90% probability of being a cluster. On the other hand, from the combined
Planck and K-S uniform probabilities, it has a 5% of probability of not being
a cluster. According to my criteria this is at the limit of being confirmed as a
cluster of galaxies. However, I assume it is confirmed, also considering that it is
more massive than 1014M⊙ (e.g. Evrard et al., 2008b).

For PSZ2 G352.05-24.01, the redshift obtained from the X-ray analysis is
z = 0.79 (Planck Collaboration et al., 2013), but I observe galaxies in a wider
redshift range. In fact, I can distinguish two structures at z ∼ 0.8 and z ∼ 0.3,
shown in blue and green, respectively, in Figure 20. Both redshift distributions
have a standard deviation of ∼ 0.08, much wider of what expected for a cluster of
galaxies. This target is not a cluster of galaxies, and I exclud it from the analysis
of the velocity dispersion–mass relation in Chapter 5.

PSZ2 G085.95+25.23, confirmed at z = 0.782± 0.010, is one of the highest
redshift confirmed Planck clusters.

Newly confirmed clusters are labeled with the sign "+" in Table 5.
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I provide the cluster catalogs as electronic documents in Amodeo et al. (2018),
including the following parameters for each cluster galaxy:

1. the galaxy identification number ID

2. the J2000 right ascension R.A., in hours

3. the J2000 declination decl., in deg

4. the measured spectroscopic redshift SPECZ

5. the error in spectroscopic redshift eSPECZ

An example is shown in Table 6 for PSZ2G053.44-36.25.

Table 6 – Catalog of galaxies detected for cluster PSZ2G053.44-36.25. The full spectro-
scopic catalog is available in the online version of Amodeo et al. (2018).

ID R.A. decl. SPECZ eSPECZ

1 21.58816 −1.08456 0.330601 0.0002

2 21.58506 −1.06186 0.332352 0.0001

3 21.58748 −1.05329 0.336274 0.0001

4 21.58530 −1.08879 0.330425 0.0003

5 21.58638 −1.05156 0.336117 0.0003

6 21.58564 −1.06893 0.325783 0.0002

7 21.58671 −1.05585 0.335890 0.0001

8 21.58600 −1.06488 0.330109 0.0002

9 21.58632 −1.02193 0.334395 0.0003

10 21.58714 −1.04561 0.327720 0.0002

11 21.58603 −1.02659 0.334505 0.0002

12 21.58648 −1.05931 0.323872 0.0002

13 21.58509 −1.07221 0.331592 0.0002

14 21.58678 −1.07722 0.332152 0.0003

15 21.58659 −1.03027 0.325034 0.0003

16 21.58745 −1.03873 0.333472 0.0001

17 21.58458 −1.04332 0.330652 0.0002

18 21.58804 −1.03449 0.389051 0.0006

19 21.58677 −1.02851 0.342437 0.0004

20 21.58674 −1.04831 0.327634 0.0002

4.2.1 Discussion

In the context of the optical identification of Planck cluster candidates, our
sample, although small, is chosen to have a wide range of mass with the aim of
obtaining a statistical calibration of the Planck SZ mass estimator. In this section,
I compare it with previous Planck cluster redshift measurements.

Eight of our targets are in the SDSS and DR8 redMaPPer cluster catalogs
(Wen, Han, and Liu, 2012; Rykoff et al., 2014). Five of them (PSZ2G108.71-
47.75, PSZ2 G186.99+38.65, PSZ2 G216.62+47.00, PSZ2 G056.93-55.08, and
PSZ2 G083.29-31.03) have previous redshift spectroscopic measurements in
agreement with our values.

The Planck collaboration has undertaken two important optical follow-up
programs to confirm Planck cluster candidates and to measure their redshifts.
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The first was based on observations with the Russian-Turkish 1.5 m telescope
(Planck Collaboration et al., 2015c) and provided spectroscopic redshifts of 65
Planck clusters. It included our targets PSZ2 G139.62+24.18, for which they got
a spectroscopic redshift of 0.268 consistent with our measurement, and PSZ2
G157.43+30.34, for which they got a photometric redshift of 0.45, while we mea-
sure z = 0.402± 0.006., where the error is the standard deviation of the redshift
distribution of member galaxies. The second program, based on observations
with telescopes at the Canary Islands Observatories, gave 53 spectroscopic red-
shift determinations (Planck Collaboration et al., 2016c). It included again our
target PSZ2 G139.62+24.18, for which they measured z = 0.266 from 22 spec-
troscopic confirmed members, consistent with our value of z = 0.268± 0.005

obtained with from 20 galaxies. Recently, Barrena et al. (2018) and Streblyan-
ska et al. (2018) reported on new optical follow-up observations of Planck cluster
candidates at the Roque de los Muchachos Observatory. They confirmed 53 and
37 clusters, respectively, by analysing the optical richness, the 2D galaxy distri-
bution, and the velocity dispersions of clusters.

In the frame of the optical identification of Planck cluster candidates, I em-
phasise that this sample, although small, is chosen to have a wide range of mass
with the aim to obtain a statistical calibration of the Planck SZ mass estimator.

Aside from the optical follow-up programs, the Planck collaboration has also
carried out X-ray validation programs with XMM-Newton (Planck Collabora-
tion et al., 2011a, 2012, 2013), where redshifts zFe have been obtained from
X-ray spectral fitting. Targets PSZ2 G250.04+24.14 and PSZ2 G272.85+48.79
were analyzed in Planck Collaboration et al. (2011a), PSZ2 G235.56+23.29 in
Planck Collaboration et al. (2012), PSZ2 G348.43-25.50 and PLCK G147.32-
16.59 in Planck Collaboration et al. (2013), finding consistent redshifts with our
values. Planck Collaboration et al. (2013) also included the X-ray analysis of
PSZ2 G329.48-22.67. They observed a double projected system at redshifts 0.24
and 0.46. In our GMOS analysis, we measure z = 0.249± 0.003 observing 16
spectroscopic members, with no detections at higher redshift. Finally, Planck
Collaboration et al. (2013) quoted a redshift zFe = 0.77 for PSZ2 G352.05-
24.01. The authors gave zFe = 0.12, 0.40 as other possible solutions of the
spectral fitting, but these were excluded from the comparison between the X-ray
and SZ properties of the source (YX/Y500). We observe at the same coordinates
two groups of galaxies: 13 at z = 0.786± 0.081 and 10 at z ∼ 0.304± 0.080.
Thus, we can not confirm the redshift measurement for this cluster.

In conclusion, six of our clusters have spectroscopic redshifts from previous
optical studies, seven more have redshift measurements from X-ray spectral fit-
ting. For the remaining seven clusters, spectroscopic redshift are published in
Amodeo et al. (2018) for the first time.

I use the Planck clusters confirmed with our GMOS spectroscopy for my
cluster mass calibration discussed in Chapter 5 and published in Amodeo et al.
(2017).

Since I obtained the confirmation of the z=0.78 cluster with Keck spectroscopy
after the analysis with the GMOS data was completed and published, I will not
use it for the mass calibration analysis in order to be consistent with the published
results. I have verified, though, that including this cluster does not change the
interpretation of my main results.
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5
C A L I B R AT I N G T H E G A L A X Y C L U S T E R M A S S S C A L E
W I T H V E L O C I T Y D I S P E R S I O N S I I : R E S U LT S

In this Chapter, I present my calibration of the Planck cluster mass scale us-
ing dynamical mass measurements based on velocity dispersions of the sample
introduced in Chapter 4.

The results of this Chapter are published in Amodeo et al. (2017), enclosed to
this thesis in Appendix B.

5.1 T H E P L A N C K M A S S P ROX Y

The Planck SZ mass proxy, used in the last two Planck cluster catalog papers
(Planck Collaboration et al., 2014b, 2015b), is based on a combination of Planck

data and an X-ray scaling relation established with XMM-Newton, as discussed
in Section 2.1.3.2.

With respect to the PSZ2, our collaborator J.B. Melin has derived new cluster
mass estimates, taking into account the cluster centers from our optical follow-
up. For each cluster, we measure the SZ flux, Y500, inside a sphere of radius
R500 using the Multifrequency Matched Filter (MMF3, Melin, Bartlett, and De-
labrouille, 2006c). The filter combines the six highest frequency bands (100-
857 GHz) weighted to optimally extract a signal with the known SZ spectral
shape and with an assumed spatial profile. For the latter, we adopt the so-called
universal pressure profile from Arnaud et al. (2010). We center the filter on the
optical position and vary its angular extent θ500 over the range [0.9 - 35] arcmin
to map out the signal-to-noise surface over the flux-size (Y500 − θ500) plane.
In the Planck data there is a degeneracy between the measured flux and cluster
size defined by this procedure, which we break using an X-ray determined scal-
ing relation as a prior constraint (i.e., an independent Y − θ relation obtained
from the combination of Eq. 62 and 63. The intersection of this prior with the
Planck degeneracy contours yields a tighter constraint on the flux Y500, which
we then convert to halo mass, MPl

500, using Eq. 62. It is important to note that the
mass proxy is therefore calibrated on the XMM-Newton scaling relation. These
masses are reported in Table 7.

To compare our mass measurements to other independent estimates, I rescale
the Planck masses to MPl

200 using the mass-concentration relation of Dutton
and Macciò (2014). This relation is derived from N-body simulations of re-
laxed dark matter halos in a Planck cosmology, as adopted here. It is in good
agreement with the recently proposed universal model of Diemer and Kravtsov
(2015a), which includes both relaxed and unrelaxed halos, for the mass and red-
shift range of interest. I assume a Navarro-Frenk-White (NFW, Navarro, Frenk,
and White, 1997) density profile, and I choose an input value for the concentra-
tion c200 = 5, which is consistent with the model of Dutton and Macciò (2014)
for a 1015h−1M⊙ cluster in the redshift range 0 < z < 0.5. I then convert to
MPl

200 :

MPl
200 = MPl

500

f(c200)

f(c500)
, (68)
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where f(c∆) = log(1 + c∆) −
c∆

1+c∆
indicates a general density contrast. I

calculate c500 from

MPl
500 = 4πρsr

3
sf(c500), (69)

where c500 is the only unknown quantity, because the scale density parameter,
ρs, is fixed by the NFW profile,

ρs = ρc,z
200

3

c3200
ln(1+ c200) −

c200

1+c200

, (70)

and the scale radius is

rs =
R500

c500
, (71)

with

R500 =

[

MPl
500

3

4π

1

500 ρc,z

]1/3

. (72)

I solve Eq. (69) for c500 using the ZBRENT.PRO routine in IDL and obtain a
first estimate of MPl

200 from Eq. (68). I then use the mass-concentration relation
in Eq. (8) of Dutton and Macciò (2014) to get a new value for c200. I iterate this
algorithm until reaching 5% accuracy on MPl

200 (i.e., the difference between the
mass estimated at the iteration i and the mass estimated at the iteration i-1 is less
than 0.05). I find smaller concentrations than the starting value of 5, with a mean
c200 = 4.2. I have verified that the algorithm converges to the same values of
MPl

200 when changing the initial input value of c200.
I implement this procedure in a Monte Carlo simulation with 1000 inputs for

each cluster, sampling the Planck mass, MPl
500 , according to a normal distribu-

tion with a standard deviation taken as the geometric mean of the uncertainties
listed in Table 7. Similarly, I consider a log-normal distribution for c200 with a
mean given by Eq. (8) in Dutton and Macciò (2014) and standard deviation equal
to the intrinsic scatter of 0.11 dex in the mass–concentration relation. This yields
a log-normal distribution of calculated MPl

200 values from Eq. (68), whose mean
and standard deviation are also listed in Table 7.

5.1.1 The σ-M scaling relation – A cluster model

The GMOS spectrographs provide imaging and spectroscopy over a 5.5x5.5
arcmin2 field of view, allowing measurements for only the central part of clus-
ters. The radial coverage provided for each cluster at a given redshift, calculated
for the Planck 2015 cosmology, is quoted in Table 7 as Rmax, in units of R200,
along with R200. We typically sample out to about half R200, with Rmax rang-
ing over [0.35− 0.58]R200. However, I need to estimate the velocity dispersion
within R200 to compare to the σ–M relation from simulations (see next section).
Sifón et al. (2016) determined the radial profile of the velocity dispersion using
mock observations of subhalos in the Multidark simulation (Prada et al., 2012),
as described in Section 3.2 of their paper. I interpolate the correction factors
presented in their Table 3 to our values of Rmax/R200 to translate our velocity dis-
persion measurements obtained with the biweight method, σBI(< Rmax), to R200.
The velocity dispersions thusly estimated, σ200, are listed in Table 7, where the
uncertainties account for our measurement errors and the scatter in the velocity
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Table 7 – Columns from left to right list the cluster ID, our measured average redshift,
the number of confirmed member galaxies, the maximum radius probed by
GMOS, Rmax, R200, our measured velocity dispersion, σBI(< Rmax), the ve-
locity dispersion estimated within R200, σ200, the reference PSZ2 MPl

500 and
the MPl

200 derived in this work based on SZ.

Name z Ngal Rmax R200 σBI(< Rmax) σ200 MPl
200 MPl

500

(R200) (Mpc) (km s−1) (km s−1) (1014M⊙) (1014M⊙)

PSZ2 G033.83-46.57 0.439 10 0.58 1.66± 0.08 985+451
−277 953+454

−282 7.8± 1.1 5.4+0.7
−0.8

PSZ2 G053.44-36.25 0.331 20 0.42 1.93± 0.06 1011+242
−131 956+260

−161 10.9± 1.0 7.5+0.5
−0.6

PSZ2 G056.93-55.08 0.443 46 0.49 2.00± 0.05 1356+192
−127 1290+218

−164 13.8± 1.1 9.4± 0.5

PSZ2 G081.00-50.93 0.303 15 0.41 1.88± 0.06 1292+360
−185 1220+381

−223 9.8± 0.9 6.7± 0.5

PSZ2 G083.29-31.03 0.412 20 0.49 1.89± 0.06 1434+574
−320 1365+584

−338 11.3± 1.0 7.8+0.5
−0.6

PSZ2 G108.71-47.75 0.390 10 0.55 1.65± 0.08 900+458
−190 865+461

−198 7.3± 1.1 5.1+0.7
−0.8

PSZ2 G139.62+24.18 0.268 20 0.36 1.96± 0.06 1120+366
−238 1052+390

−273 10.6± 0.9 7.3± 0.5

PSZ2 G157.43+30.34 0.402 28 0.47 1.94± 0.05 1244+192
−109 1182+216

−148 12.1± 1.0 8.2± 0.6

CL G183.33-36.69 0.163 11 0.35 1.38± 0.17 897+437
−275 842+451

−297 3.3± 1.2 2.3+0.7
−0.9

PSZ2 G186.99+38.65 0.377 41 0.49 1.81± 0.06 1506+164
−120 1432+200

−166 9.5± 1.0 6.6+0.6
−0.7

PSZ2 G216.62+47.00 0.385 37 0.45 1.97± 0.05 1546+174
−132 1466+218

−186 12.3± 1.0 8.4+0.5
−0.6

PSZ2 G235.56+23.29 0.374 23 0.51 1.73± 0.08 1644+285
−192 1568+308

−224 8.2± 1.2 5.7+0.7
−0.8

PSZ2 G250.04+24.14 0.411 29 0.53 1.75± 0.07 1065+447
−285 1020+452

−293 8.9± 1.0 6.2± 0.6

PSZ2 G251.13-78.15 0.304 9 0.48 1.59± 0.08 801+852
−493 762+854

−497 5.9± 0.9 4.1± 0.6

PSZ2 G272.85+48.79 0.420 10 0.57 1.65± 0.08 1462+389
−216 1411+397

−231 7.6± 1.1 5.3+0.7
−0.8

PSZ2 G329.48-22.67 0.249 11 0.38 1.73± 0.07 835+179
−119 786+200

−149 7.2± 0.9 5.0+0.5
−0.6

PSZ2 G348.43-25.50 0.265 20 0.37 1.84± 0.06 1065+411
−198 1003+427

−230 8.7± 0.9 6.0± 0.6

dispersion profile found by Sifón et al. (2016). The mean corrections are of or-
der 5%, while the uncertainty increases up to 32%. Figure 23 plots the velocity
dispersions within R200 versus MPl

200 .
My goal is to find the Planck cluster mass scale using velocity dispersion as an

independent mass proxy calibrated on numerical simulations. I define the mass
bias factor, (1− b), in terms of the ratio between the Planck-determined mass,
MPl

200, and true cluster mass, M200 (Planck Collaboration et al., 2015b; von der
Linden et al., 2014a; Hoekstra et al., 2015b). I assume that it is a constant and
independent of over-density, choosing to work at M200:

MPl
200 = (1− b)M200 . (73)

While the mass bias may depend on mass and other cluster properties, my small
sample only permits to constrain a characteristic value averaged over the sample.

To construct an estimator for the mass bias, I adopt a multivariate log-normal
model for the cluster observables σBI and MPl

200 at fixed true mass, M200, fol-
lowing White, Cohn, and Smit (2010) and Stanek et al. (2010) (see also, Allen,
Evrard, and Mantz, 2011; Rozo et al., 2014b; Evrard et al., 2014). It is then
convenient to work with the logarithm of these quantities: sv = ln(σBI/km s−1),
sPl = ln(E(z)MPl

200/10
15M⊙) and µ = ln(E(z)M200/10

15M⊙), where I in-
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corporate self-similar evolution with redshift, E(z), with the masses. Power-law
scaling relations give the observable mean values at true mass as:

¯sPl ≡ 〈sPl|µ〉 = ln(1− b) + µ, (74)

s̄v ≡ 〈sv|µ〉 = av +αvµ, (75)

where the averages are taken over both intrinsic cluster properties and measure-
ment errors. The first relation is simply the definition of the mass bias, Eq. (73),
and in practice I take αv = 1/3, its self-similar value, in the second relation.

Each observable is also associated to a log-normal dispersion about its mean
that includes both intrinsic and measurement scatter:

Σ2
lnσBI

= σ̃2
lnσBI

+ σ2
lnσBI

, (76)

Σ2
lnMPl

200
= σ̃2

lnMPl
200

+ σ2
lnMPl

200
, (77)

where the first terms are the intrinsic log-normal scatter and the second ones are
the measurement error. Although measurement error is Gaussian in the observed
quantity, rather than log-normal, I treat its fractional value as a log-normal disper-
sion; this is an approximation good to first order in the fractional measurement
error. The second terms in the above expressions will therefore be understood as
fractional measurement errors. The intrinsic dispersions may be correlated with
correlation coefficient r̃ = 〈(sv − s̄v)(sPl − ¯sPl)〉/(σ̃lnσBI σ̃lnMPl

200
).

It is then possible to show that the predicted scaling between velocity disper-
sion and Planck mass is:

〈sv|sPl〉 = av +αv

[

sPl − ln(1− b) −βΣ2
lnMPl

200
+ rβα−1

v ΣlnσBIΣlnMPl
200

]

,

(78)

where β is the slope of the mass function on cluster scales, β ≈ 3. The sec-
ond to last term is the Eddington bias, proportional to the full dispersion, intrin-
sic and measurement, in the sample selection observable, sPl. In the last term,
r = r̃(σ̃lnσBI/ΣlnσBI)(σ̃lnMPl

200
/ΣlnMPl

200
), i.e., the intrinsic correlation coeffi-

cient diluted by the measurement errors. The last term is therefore equivalent to
r̃βα−1

v σ̃lnσBI σ̃lnMPl
200

. This is the prediction for my measured scaling relation.
A comparison to my fit identifies:

lnA = av −αv

[

ln(1− b) +βΣ2
lnMPl

200
− r̃βα−1

v σ̃lnσBI σ̃lnMPl
200

]

, (79)

which leads to my estimator:

(1− b) =

(

Ag

A

)3

fEBfcorr , (80)

with

fEB = e
−βΣ2

lnMPl
200 , (81)

fcorr = e
3r̃βσ̃lnσBI

σ̃
lnMPl

200 , (82)

after setting αv = 1/3. As expected, the Eddington bias correction increases
true cluster mass at given MPl

200, increasing the mass bias, b (decreasing 1 −

b). A positive correlation between velocity dispersion and Planck mass has the
opposite effect.

58



5.1.2 The mass bias and the velocity bias

Complete virialization predicts a power-law relation between velocity dis-
persion, σ200, and mass, M200. Following the approach used in simulations,
I work with the logarithm of these quantities, sv = ln(σ200/km s−1), µ =

ln(E(z)M200/10
15M⊙), where h(z) ≡ H(z)/(100 km s−1 Mpc−1) = hE(z)

is the dimensionless Hubble parameter at redshift z, and we consider the log-
linear relation

〈sv|µ〉 = ad +αdµ . (83)

The so-called self-similar slope expected from purely gravitational effects is
αd = 1/3. The angle brackets indicate that this is the mean value of sv given µ.
From a suite of simulations, Evrard et al. (2008a) determined a precise relation
between the dark matter velocity dispersion and halo mass consistent with this
expectation. They found a normalization ad = ln (1082.9± 4.0) + αd lnh; in
the following, I will also refer to Ad ≡ ead . This result is insensitive to cosmol-
ogy and to non-radiative baryonic effects, and the relation is very tight with only
4% scatter at fixed mass.

Galaxies, however, may have a different velocity dispersion than their dark
matter host because they inhabit special locations within the cluster, e.g., subha-
los. This leads to the concept of velocity bias, in which the scaling of galaxy
velocity dispersion with host halo mass will in general be fit by a relation of the
form of Eq. (83), but with different parameters, Ag ≡ eag and αg. Simulations
typically found the exponent αg to be consistent with the self-similar value of
1/3, so I quantify any velocity bias in terms of the normalization, Ag. I do so by
introducing the velocity bias parameter, bv ≡ Ag/Ad.
Different simulation-based or empirical analyses found discordant behaviour for
the velocity bias, leaving even the sense of the effect (i.e., bv > 1 or bv < 1) in
debate.
Using hydrodynamical simulations with star formation, gas cooling and heating
by supernova explosions and AGN feedback, Munari et al. (2013) found that
subhalos and galaxies had a slightly higher velocity dispersion than the dark
matter, i.e., a positive velocity bias with bv > 1, as shown in the top panel of
Fig. 22, where the right quadrant refers to structures of the typical masses of
galaxy clusters. For galaxies in their AGN-feedback model, for example, they
found Ãg = 1177 km s−1, corresponding to bv = 1.08.
From combined N-body and hydrodynamical simulations, Wu et al. (2013)
found that velocity bias depended on the tracer population, as shown in the bot-
tom left panel of Fig. 22. In particular, subhalos in pure N-body simulations
tended to have large positive bias compared to galaxies identified in the hydrody-
namical simulations, perhaps because over-merging in the former case removes
slower, low mass dark matter halos from the tracer population. Consistent with
this picture where smaller objects are more efficiently destroyed, all tracers in
their simulations showed increasingly positive velocity bias with decreasing sub-
halo mass or galaxy luminosity, independent of redshift. The brightest cluster
galaxies tended to underestimate, and faint galaxies slightly overestimate, the
dark matter halo velocity dispersion, with the velocity bias ranging from ∼0.9
for the five brightest cluster galaxies to an asymptotic value of bv = 1.07 when
including the 100 brightest galaxies. For samples of more than ∼ 50 galaxies,
their result converged to the value of Munari et al. (2013) (bv = 1.08). The 10-
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20 brightest galaxies, similar to our observational sample, represented a nearly
unbiased measurement of the halo velocity dispersion, i.e., bv = 1.

On the other hand, Guo et al. (2015) observed the opposite trend with luminos-
ity when measuring the velocity bias of galaxies in the Sloan Digital Sky Survey
(SDSS) Data Release 7, as shown in the bottom right panel of Fig. 22. They
found bv ≃ 1.1 for the brightest galaxies, falling to 0.85 for faint galaxies. It
is worth noting that this analysis was based on modeling of the projected and
redshift-space two-point correlation functions, and it is probably not very sensi-
tive to velocity bias in the most massive halos, such as we have in the Planck

sample. Farahi et al. (2016) used the velocity bias from the bright subsample of
Guo et al. (2015) (bv = 1.05± 0.08) to estimate the mass of redMaPPer clusters
with stacked galaxy velocity dispersions. Their derived mass scale was consis-
tent with estimates based on weak lensing observations reported by Simet et al.
(2016). The Guo et al. (2015) observational result was also consistent with the
value bv = 1.08 from the N-body hydrodynamical simulations of Munari et al.
(2013).

In an another study, Caldwell et al. (2016) found a negative velocity bias, bv =

0.896, for galaxies in their simulations when they adjusted feedback efficiencies
to reproduce the present-day stellar mass function and the hot gas fraction of
clusters and groups.

These different studies do not yet present a clear picture of the magnitude
of cluster member velocity bias, and this quantity remains the primary factor
limiting interpretation of dynamical cluster mass measurements at present. We
use the Munari et al. value of the velocity bias, bv = 1.08, as our baseline in the
following. The uncertainty on Munari et al.’s velocity bias is ∼ 0.6%.

My model of constant mass bias, (1−b), predicts a log-linear scaling relation
of the form Eq. (83) between the observed velocity dispersion and the Planck

mass proxy. I therefore construct an estimator for (1− b) by fitting for the nor-
malization, a, and exponent, α, of this relation to the data in Fig. 23. I perform
the fit using the MPFIT routine in IDL (Williams, Bureau, and Cappellari, 2010;
Markwardt, 2009) and taking into account only the uncertainties in the velocity
dispersion (i.e., at fixed Planck SZ mass 1). Since our sample is selected on SZ
signal, there is no Malmquist bias correction to the relation fitted in this way.

For a robust estimation of the best-fit parameters, I perform 1000 bootstrap re-
samplings of the pairs (MPl

200, σ200), re-computing the best-fit parameters each
time. This yields A ≡ ea = (1172± 93) km s−1 and a slope α = 0.28± 0.20

(at 68.3% confidence). The slope is consistent with the self-similar expectation
of α = 1/3, although with large uncertainty. I henceforth set α = 1/3 and
refit to find A = (1158± 61) km s−1. The dispersion of the velocity measure-
ments about the best-fit line (i.e., at given MPl

200) is 〈δ2lnσ〉
1/2 = 0.189± 0.009.

The best fit together with the data is plotted in Fig. 23. A model with a zero
slope is excluded at ∼ 2σ confidence, using the χ2 difference (the χ2 for the
best-fit model is 12.2, the χ2 for the zero-slope model is 14.3). I also perform
the fit using only clusters with greater than 20 member galaxies. Once again
fixing α = 1/3, I find A = (1156± 58) km s−1 in this case, consistent with the
previous value.

1. Taking into account errors on both velocity and mass measurements, as is often done, does
not noticeably change the result; this however is not strictly what should be done as we are fitting
for σ200 given MPl

200.
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Figure 23 – Relation between the Planck SZ mass proxy and velocity dispersion for our
sample of 17 galaxy clusters observed with Gemini (diamonds). The ve-
locity dispersions and the Planck masses have been converted to σ200 and
MPl

200, respectively, with corresponding uncertainties, following the proce-
dure described in the text. The solid red line shows the best fit to the func-
tional form of Eq. (83) in log-space, where the slope is set to 1/3, with the
dashed lines delineating the dispersion of the data about the best-fit line.

proxy. With my value for the normalization from the fit to the data and the value
for dark matter from Evrard et al. (2008a), I have numerically,

(1− b) = (0.55± 0.09)b3
v fEBfcorr . (85)

In the next two subsections, I propose fEB = 0.93± 0.01 and fcorr ≈ 1.01 as
reference values. My final value for the mass bias also depends on the cube
of the velocity bias. Adopting as baseline value bv = 1.08 from Munari et al.
(2013), I have

(1− b) = (0.64± 0.11)

(

fcorr

1.01

)

. (86)

The quoted uncertainty accounts for measurement error, uncertainty on the
Eddington bias correction and uncertainty on the velocity bias given by the dif-
ferent simulators; it is dominated by the measurement error. It is more difficult
to assign an uncertainty to the correction for correlated scatter, as this depends
on the details of cluster physics. I argue below that feedback makes this a minor
correction, as reflected in my fiducial value of fcorr = 1.01. In any case, these
uncertainties are dwarfed by the difference between the two possible values for
the velocity bias, which severely hampers the interpretation of my results.
A summary of best-fit parameters is presented in Table 8 for several velocity
dispersion–mass relations. Where the slope is set to 1/3, I quote my estimates
of the Planck mass bias for the velocity bias derived by Munari et al. (2013),
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bv = 1.08. I distinguish results obtained for the full sample from results ob-
tained for the subsample of clusters with at least 20 member galaxies.

Table 8 – Best-fit values and vertical scatter (i.e., at given mass) of the velocity
dispersion–mass relation, σ = A[E(z)M/1015M⊙]B, together with mass
bias estimates. Results are given for our velocity dispersion estimates, σBI(<

Rmax), and for the derived velocity dispersions within R200, σ200. We distin-
guish the case where all clusters in the sample are included in the fit from the
case where only those with at least 20 member galaxies are considered.

Relation A B scatter (1− b)/b3
v fEBfcorr (1− b)Munari

a

(km s−1) 〈δ2lnσ〉
1/2

All clusters

σBI(< Rmax) −MPl
200 1239± 99 0.29± 0.21 0.189± 0.018 – –

σBI(< Rmax) −MPl
200 1226± 68 1/3 0.182± 0.012 0.47± 0.08 0.55± 0.09

σ200 −MPl
200 1172± 93 0.28± 0.20 0.198± 0.018 – –

σ200 −MPl
200 1158± 61 1/3 0.189± 0.009 0.55± 0.09 0.64± 0.11

Only clusters with Ngal > 20

σBI(< Rmax) −MPl
200 1250± 71 1/3 0.168± 0.014 0.44± 0.08 0.51± 0.09

σ200 −MPl
200 1156± 58 1/3 0.136± 0.012 0.56± 0.08 0.66± 0.09

a The values of the mass bias quoted in the last column are obtained using the
velocity bias, bv , derived by Munari et al., 2013, following the notation of
Eq. (86), where the Eddington bias correction is also included.

5.1.3 Eddington Bias

The Eddington bias correction:

fEB = e
−βΣ2

lnMPl
200 , (87)

depends on the local slope of the mass function on cluster scales, β ≈ 3, and the
total dispersion, ΣlnMPl

200
, of the Planck mass proxy at fixed true mass. This

is because I assume that my sample is a random draw from the parent sam-
ple selected on MPl

200. As described in Sec. 5.1, the mass proxy is calculated
as an intersection of Planck SZ measurements and the X-ray based scaling re-
lation in Planck Collaboration et al. (2014a). I characterize the measurement
uncertainty on MPl

200 by averaging the calculated uncertainty over my cluster
sample: σlnMPl

200
= 0.13± 0.02. To estimate the intrinsic scatter, I convert the

0.17 ± 0.02 dispersion of the Y −M5/3 relation (Planck Collaboration et al.,
2014a) to σ̃lnMPl

200
= (3/5)(0.17± 0.02) = 0.10± 0.01. Combining the two, I

obtain a total scatter of:

ΣlnMPl
200

= 0.16± 0.02 . (88)
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This is an approximate estimate. In particular, my estimate for the intrinsic scat-
ter in the Planck mass may be optimistic. I show below the effect of considering
a larger correction. Setting β = 3, I calculate an Eddington bias correction of:

ln fEB = −0.08(1± 0.19), (89)

or a reference value of fEB = 0.93(1± 0.01) = 0.93± 0.01.

5.1.4 Correlated Scatter

The second correction to my mass bias estimator arises from correlated scatter
between velocity dispersion and the Planck mass proxy. It is given by:

fcorr = e
3r̃βσ̃lnσBI

σ̃
lnMPl

200 , (90)

because only the intrinsic scatter is correlated. Stanek et al. (2010) examined
the covariance between different cluster observables using the Millennium Gas
Simulations (Hartley et al., 2008). They found significant intrinsic correlation
between velocity dispersion and SZ signal, r̃ = 0.54, in the simulation with only
gravitational heating. In the simulation additionally including cooling and pre-
heating, however, the correlation dropped to r̃ = 0.079. This would seem to
make sense as we might expect non-gravitational physics, such as feedback and
cooling, to decouple the SZ signal, which measures the total thermal energy of
the gas, from the collisionless component.

While the scatter of the dark matter velocity dispersion is only 4%, Munari et
al. (2013) found a scatter in the range 0.1− 0.15 for their subhalos and galaxies,
not too different from the scatter of 0.19 found by Caldwell et al. (2016). Fixing
β = 3 and taking r̃ = 0.08, σ̃lnσBI = 0.15 and σ̃lnMPl

200
= (3/5)0.17 = 0.10 as

reference values, I have:

ln fcorr = 0.010

(

r̃

0.08

)(

σ̃lnσBI

0.15

)(

σ̃lnMPl
200

0.10

)

, (91)

or a reference value of fcorr = 1.01. I consider this reference value reasonable
since simulations require strong feedback to reproduce observed cluster proper-
ties (e.g., Caldwell et al., 2016). I emphasize, though, that important modeling
uncertainty remains.

5.2 D I S C U S S I O N

The possible tension between cluster and primary CMB cosmology has moti-
vated a number of recent studies of the cluster mass bias in both X-ray and SZ
catalogues (e.g., Sifón et al., 2013, 2016; Ruel et al., 2014; Bocquet et al., 2015;
Battaglia et al., 2015; Simet et al., 2015; Smith et al., 2016). For a like-to-like
comparison, I focus here on determinations for the Planck clusters.

Rines et al. (2016) compared SZ and dynamical mass estimates of 123 clus-
ters from the Planck SZ catalog in the redshift range 0.05 < z < 0.3. They used
optical spectroscopy from the Hectospec Cluster Survey (Rines et al., 2013) and
the Cluster Infall Regions in SDSS project (Rines and Diaferio, 2006), observ-
ing a velocity dispersion–SZ mass relation in good agreement with the virial
scaling relation of dark matter particles. They found neither significant bias of
the SZ masses compared to the dynamical masses, nor evidence of large galaxy
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velocity bias. They concluded that the mass calibration of Planck clusters cannot
solve the CMB–SZ tension and another explanation, such as massive neutrinos,
is required.

von der Linden et al. (2014b) examined 22 clusters from the Weighing the
Giants (WtG) project that were also used in the Planck cluster count cosmology
analysis. Applying a weak lensing analysis, they derived considerably larger
masses than Planck, measuring an average mass ratio of 〈MPlanck/MWtG〉 =

0.688± 0.072 with decreasing values for larger Planck masses. They claimed
a mass-dependent calibration problem, possibly due to the fact that the X-ray
hydrostatic measurements used to calibrate the Planck cluster masses rely on
a temperature-dependent calibration. A similar result was obtained by Hoek-
stra et al. (2015a) based on a weak lensing analysis of 50 clusters from the
Canadian Cluster Comparison Project (CCCP). For the clusters detected by
Planck, they found a bias of 0.76± 0.05(stat) ± 0.06(syst), with the uncertainty
in the determination of photometric redshifts being the largest source of system-
atic error. Planck Collaboration et al. (2016b) used these latter two measure-
ments as priors in their analysis of the SZ cluster counts. They also employed
a novel technique based on CMB lensing (Melin and Bartlett, 2015) to find
1/(1− b) = 0.99± 0.19 when averaged over the full cluster cosmology sam-
ple of more than 400 clusters. As pointed out by Battaglia et al. (2015), these
constraints should be corrected for Eddington bias 2.

Smith et al. (2016) used three sets of independent mass measurements to study
the departures from hydrostatic equilibrium in the Local Cluster Substructure
Survey (LoCuSS) sample of 50 clusters at 0.15 < z < 0.3. The mass mea-
surements comprised weak-lensing masses (Okabe and Smith, 2016; Ziparo et
al., 2015), direct measurements of hydrostatic masses using X-ray observations
(Martino et al., 2014), and estimated hydrostatic masses from Planck Collabora-
tion et al. (2015b). They found agreement between the X-ray-based and Planck-
based tests of hydrostatic equilibrium, with an X-ray bias of 0.95± 0.05 and an
SZ bias of 0.95± 0.04.

Finally, Penna-Lima et al. (2017) used lensing mass measurements from the
Cluster Lensing And Supernova (CLASH, Postman et al., 2012) survey with
Hubble to find a Planck mass bias of (1 − b) = 0.73 ± 0.10. Employing a
Bayesian analysis of CLASH and Planck SZ measurements, they modelled the
CLASH selection function and astrophysical effects, such as scatter in lensing
and SZ masses and their potential correlated scatter, as well as possible bias in
the lensing measurements. Their quoted uncertainty accounted for these effects
by marginalizing over the associated nuisance parameters.

Comparing to the values above, my results is ∼ 30% lower (at ∼ 2.5σ) than
both the Smith et al. (2016) lensing determination and the Rines et al. (2016)
determination, also based on velocity dispersions, both of which favor little or no
mass bias. However, my result agree within 1σ with the results from WtG (von
der Linden et al., 2014b), the CCCP (Hoekstra et al., 2015a) and the CLASH
(Postman et al., 2012) analysis by Penna-Lima et al. (2017).

My value of (1− b) = (0.58± 0.097)(fcorr/1.01), obtained with 50% larger
intrinsic scatter on Planck masses (see Sect. 5.1.3), would still agree within 2σ
with the results from weak lensing cited above. In both cases, my estimate of the

2. There is some confusion in the nature of these corrections. Battaglia et al. (2015) propose a
correction for WtG and CCCP that is more akin to a Malmquist bias, i.e., due to selection effects
arising from the fact that some clusters in the WtG and CCCP samples do not have Planck mass
proxy measurements.
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mass bias is within 1σ of the value (1− b) = (0.58± 0.04) needed to reconcile
the cluster counts with the primary CMB.

5.2.1 Estimating the velocity bias bv using a prior on the mass bias

Given the large differences in the velocity bias as predicted by simulations, it
is worth turning the vice – the strong dependence of our mass calibration on ve-
locity bias – into a virtue: relying on accurate mass estimates provided by weak
lensing analyses, I derive a constraint on bv from our measured velocity disper-
sions. I adopt the Planck mass calibration obtained by Penna-Lima et al. (2017),
based on lensing mass measurements from CLASH: (1−b) = 0.73± 0.10. This
is a reasonable prior, since the Penna-Lima et al. (2017) sample is characteristic
in mass (and I also assume in mass bias) of Planck detected clusters. Using this
as a prior on the mass bias in Eq. (85), with my reference value for the Eddington
bias given in Section 5.1.3, I then deduce the constraint:

bv = 1.12± 0.07

(

1.01

fcorr

)1/3

. (92)

This positive velocity bias agrees with the value from the Munari et al. (2013)
simulations and the Guo et al. (2015) result for samples more luminous than
Mr = 20.5 (L⋆). It is reasonably consistent (within 2σ) with the results of
Wu et al. (2013) that predict nearly unbiased velocities for the brightest 10-30
galaxies, appropriate for our sample. This result is discrepant, at 3σ, with the
negative velocity bias bv . 0.9, as for example found by Caldwell et al., 2016
simulations.

5.3 C O N C L U S I O N S

I have examined the Planck cluster mass bias using a sample of 17 Planck

clusters for which we measured velocity dispersions with GMOS at the Gemini
observatory. The unknown velocity bias, bv, of the member galaxy population is
the largest source of uncertainty in our final result: (1− b) = (0.51± 0.09)b3

v .
Using a baseline value for bv from Munari et al. (2013), I find (1−b) = (0.64±

0.11), consistent within just over 1σ with WtG, CCCP and CLASH, and within
1σ of the value (1− b) = (0.58± 0.04) needed to reconcile the Planck cluster
counts with the primary CMB.

I conclude that the velocity bias is the primary factor limiting interpretation of
dynamical cluster mass measurements at this time. It is essential to eliminate this
modeling uncertainty if velocity dispersion is to be a robust mass determination
method.

Turning the analysis around, observational constraints on the velocity bias can
be obtained by combining accurate mass estimates from weak lensing measure-
ments with velocity dispersion measurements. Assuming a prior on the mass
bias from Penna-Lima et al. (2017), I derive bv = 1.12± 0.07, consistent with
the value from Munari et al. (2013) (bv = 1.08) and with results from Wu et al.
(2013) and Guo et al. (2015), but discrepant at 3σ with negative velocity bias
bv . 0.9, as for example found by Caldwell et al., 2016.

Apart from modeling uncertainty on the velocity bias, I have achieved a pre-
cision of 17% on the mass bias measurement with 17 clusters. Assuming that
the simulations will eventually settle on a value for the velocity bias, this mo-
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tivates continued effort to increase our sample size to produce a 10% or better
determination, comparable to recent weak lensing measurements.

Forthcoming cosmological surveys will require an accuracy of few % for
which a sample of clusters spanning a large redshift range is needed to probe
a possible evolution with time of the mass-observable relation. In particular, as
discussed in Chapter 3, including a sample of clusters at z>1.2 will allow to
double the figure of merit for cosmological constraints (Sartoris et al., 2016).

The second part of this thesis is dedicated to the study of stellar populations of
galaxies in clusters at 1.4<z<2.8 from the CARLA (Clusters Around Radio-Loud
AGN), with the aim to optimize their search with future surveys, like Euclid.
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ical follow-up of the CARLA 20 densest fields, sixteen CARLA clusters have
been confirmed spectroscopically by Noirot et al. (2016, 2018) in the redshift in-
terval 1.37<z<2.8, thus doubling the number of confirmed clusters in this range
(see Fig. 24, which shows the known clusters and proto-clusters in 2016, before
the CARLA confirmations) and, most importantly, giving an homogeneously se-
lected sample more suited to derive information on cluster evolution.

In the following sections, I present the CARLA survey and my photometric
analysis aimed at studying the galaxy populations of the CARLA clusters.

All magnitudes are given in the AB photometric system (Oke and Gunn,
1983).

6.1 T H E S A M P L E

The sample analyzed in this thesis consists of sixteen fields around radio-loud
active galactic nuclei (hereafter, RLAGN) observed with the Spitzer Infrared
Array Camera (IRAC Fazio et al., 2004) at 3.6µm and 4.5µm. The full CARLA-
Spitzer program is presented in Wylezalek et al. (2013), including the description
of the infrared observations and data reduction. Briefly, CARLA was a 400
hr Warm Spitzer program which aimed at identifying massive galaxies at high
redshift. It has targeted 420 RLAGN, uniformly selected in radio luminosity
over the redshift range 1.3 < z < 3.2, and equally representative of unobscured
radio-loud quasars (RLQs or type-1) and obscured high-redshift radio galaxies
(HzRGs or type-2), with 209 and 211 elements respectively, according to the
classification of the standard AGN unification model (Urry and Padovani, 1995).

This survey has allowed, for the first time, a systematic study of the environ-
ments of a large sample of powerful RLAGN (Galametz et al., 2012; Wyleza-
lek et al., 2013), and of the luminosity function of candidate cluster galaxies
(Wylezalek et al., 2014).

Galaxy cluster candidates were identified as IRAC color-selected galaxy over-
densities in the fields of the targeted RLAGN. Following Papovich (2008) and
Sorba and Sawicki (2010), Wylezalek et al. (2013) applied the color cut ([3.6]
- [4.5])AB > - 0.1 mag to select galaxies at z>1.3. This criterion is based on
the fact that the spectral energy distributions (SEDs) of galaxies, regardless their
evolutionary phase, have a prominent bump at 1.6µm, due to a minimum in the
opacity of the H-ion which is present in the atmospheres of cool stars (John,
1988). As the rest-frame 1.6µm bump changes wavelength with redshift and
passes through two adjacent bands, the color between those bands changes from
blue to red. At z ∼ 1.3, the bump is shifted to ∼ 3.7µm and enters the range
between the 3.6 and 4.5 µm IRAC bands, as illustrated in Fig. 25. Therefore,
selecting colors ([3.6] - [4.5])AB > - 0.1 mag allows to efficiently select galaxies
at z > 1.3. The contamination from foreground sources, which may include
strongly star-forming galaxies at 0.2 < z < 0.5 and powerful AGN at all red-
shifts, is estimated around 20% (e.g. Muzzin et al., 2013, from the comparison
to spectroscopic redshifts).

In order to select over-dense environments, the densities of the CARLA fields
were compared to the blank field surface density of sources in the Spitzer

UKIDSS Ultra Deep Survey (SpUDS, P.I. J. Dunlop, Rieke et al., 2004), se-
lected with the same IRAC-color cut, in a 1 arcmin radius aperture centered on
the RLAGN, which corresponds to ∼500 kpc at 1 < z < 3 (see Fig. 26). The
46% of the CARLA fields which showed at least a 2σ overdensity were identi-
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selected sixteen targets as confirmed candidates, adopting the Eisenhardt et al.
(2008) criteria to define a spectroscopically confirmed galaxy cluster, i.e., hav-
ing at least five spectroscopically confirmed galaxies within a projected physical
distance of 2 Mpc and within ±2000 (1+ < zspec >) km s−1. In addition, they
also discovered and confirmed seven serendipitous structures at 0.87<z<2.12 not
associated with the targeted RLAGNs. Following Mei et al. (2015), they as-
signed to each cluster candidate a probability to be a cluster (i.e. a virialized
region) rather than a filament of the cosmic web, based on the comparison be-
tween the density of the spectroscopically confirmed members in the CARLA
fields and predictions for cluster, sheet and filament overdensities from numeri-
cal simulations from Cautun et al. (2014) (see Appendix B in Noirot et al., 2018).
They classified three confirmed CARLA structures (J1017+6116, J1753+6310,
and J2039-2514) as highly probable confirmed clusters (HPC), and the remain-
ing 13 as probable confirmed clusters (PC). As discussed in Noirot et al. (2018),
this additional classification confirms that our confirmed cluster candidate sam-
ple is robust and does not suffer from strong contamination from groups, sheets
and filaments.

In this thesis, I concentrate on the sixteen confirmed clusters, listed in Table
9 with their classification. In Fig. 27 I present the F140W images of the sixteen
RLAGN fields, showing the spatial distribution of the confirmed members. The
red stars indicate the RLAGN, and the green circles indicate confirmed member
galaxies.

Eight of the sixteen confirmed candidates were also observed in the i-band
with the auxiliary-port camera (ACAM) on the 4.2m William Herschel Telescope
(WHT) in La Palma and the Gemini Multi-Object Spectrograph South instrument
(GMOS-S Hook et al., 2004) on Gemini-South in Chile. These observations
were part of a large survey which targeted 37 of the densest CARLA fields in
the i-band, with the aim of tracing the early formation history of massive cluster
galaxies (Cooke et al., 2015).

6.2 O B S E RVAT I O N S

I present in Table 10 a summary of the characteristics of the Spitzer, HST, and
ground-based observations which I discuss in the following subsections.

6.2.1 Spitzer/IRAC Imaging

The CARLA-Spitzer program (Galametz et al., 2012; Wylezalek et al., 2013,
2014) targeted 420 RLAGNs, with an equal fraction of high-redshift galaxies
(HzRGs) and radio-loud quasars (RLQs), in the IRAC channels 1 and 2 (3.6
and 4.5 µm bands, respectively), with rest-frame radio luminosities L500MHz >

1027.5WHz−1, and spanning a redshift range 1.3 < z < 3.2. The observations
were obtained during a 400 hr Warm Spitzer program, for areas of 5.2 ×5.2
arcmin2 with an original resolution of 1.22 arcsec pix−1.

RLAGNs at 1.3 < z < 2 were observed during the Spitzer Cycle 7 for total
exposure times of 800 s in the 3.4µm channel and 2000 s in the 4.5µm channel,
while sources at higher redshift (z > 2) were observed during the Spitzer Cycle
8 for total exposure times of 1000 s in the 3.4 µ channel and 2100 s in the
4.5 µ channel. These exposure times were chosen to have similar depths in both
channels. Comparing the CARLA galaxy number counts to number counts from
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Table 9 – CARLA sample of spectroscopically confirmed structures (adapted from
Noirot et al., 2018). Columns from left to right list: the J2000 right as-
cension and declination, in degrees, of the RLAGN; the median redshift of
structures members; the number of confirmed structures members, detected in
our HST/F140W imaging; the confirmed structure classification (HPC: highly
probable confirmed cluster, PC: probable confirmed cluster, CGC: confirmed
galaxy concentration); the redshift, number of galaxies, and classification of
serendipitously discovered structures in some of our targets’ fields. Note that
one of the serendipitous discoveries is associated to an unconfirmed CARLA
structure and is not displayed in this table.

Name RARLAGN DecRLAGN z̃cl Confirmed members Class. Ser. overden.

(deg) (deg)

CARLA J0116-2052 19.21423 -20.86858 1.430 12 PC

CARLA J0800+4029 120.06714 40.49877 1.986 10 PC

CARLA J0958-2904 149.52016 -29.06885 1.396 8 PC

CARLA J1017+6116 154.35778 61.27424 2.801 7 HPC 1.234(5)CGC

CARLA J1018+0530 154.61609 5.50834 1.953 8 PC

CARLA J1052+0806 163.13254 8.10260 1.648 6 PC

CARLA J1103+3449 165.85947 34.82977 1.443 8 PC

CARLA J1129+0951 172.30880 9.86639 1.531 12 PC

CARLA J1131-2705 172.76566 -27.08814 1.445 9 PC

CARLA J1300+4009 195.13874 40.15214 1.676 8 PC

CARLA J1358+5752 209.57334 57.86789 1.373 14 PC

CARLA J1510+5958 227.52465 59.98143 1.719 6 PC 0.875(6)PC

0.976(7)CGC

CARLA J1753+6310 268.39736 63.18044 1.581 5 HPC 2.117(6)PC

CARLA J2039-2514 309.85203 -25.34187 2.000 9 HPC

CARLA J2227-2705 336.93027 -27.08379 1.686 7 PC 1.357(10)PC

1.478(6)PC

CARLA J2355-0002 358.89833 -0.04631 1.489 12 PC
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Table 10 – Summary of the characteristics of the observations obtained for the CARLA
survey, used in this PhD thesis.

Instrument Filter Area λcentral Bandwidth Angular resolution Depth

(arcmin2) (µm) (µm) (arcsec pix−1) (magAB)

HST/WFC3 F140W 2× 2.3 1.40 0.40 0.06 26.6 (5σ)

Spitzer/IRAC [3.6] 5.2× 5.2 3.550 0.750 0.61 22.6 (95% compl.)

Spitzer/IRAC [4.5] 5.2× 5.2 4.493 1.015 0.61 22.9 (95% compl.)

WHT/ACAM SlnI π× 8.32/4 0.7565 0.2111 0.25 25.0a (5σ)

Gemini/GMOS-S i 5.5× 5.5 0.780 0.144 0.146 24.9a (5σ)

Depths for the HST, Spitzer, and ground i-band observations are derived by Noirot et al. (2016),
Wylezalek et al. (2013), and Cooke et al. (2015), respectively.

a Average values. The 5σ depths for each ground-based observed field are listed in Table 11.

SpUDS, the survey reached a 95% completeness at 22.6 and 22.9 mag for the
3.4µm and 4.5µm observations, respectively. The images were reduced using
the MOPEX package (Makovoz and Khan, 2005) and resampled to a pixel scale
of 0.61 arcsec. Full details of the program and data reduction are presented in
Wylezalek et al. (2013, 2014).

6.2.2 HST WFC3 Imaging and Spectroscopy

The twenty richest CARLA fields are 5.8σ-9.0σ denser than the mean SpUDS
density, and their RLAGN redshift is 1.4 < z < 2.8. Interestingly, ten fields
out of twenty are associated with HzRGs and the other ten are associated with
RLQs, meaning that there is no dependence of the galaxy density on the AGN
type (Wylezalek et al., 2013, 2014).

Imaging and spectroscopy of these twenty fields were observed with
HST/WFC3 between October 2014 and April 2016 (Program ID: 13740; P.I.
D. Stern). The program consisted of 40 HST orbits, with two visit with dif-
ferent orientation per field to mitigate contamination from overlapping spec-
tra. Each visit consisted in 500 s of WFC3/F140W direct imaging and 2000 s
of slitless spectroscopy with the WFC3/G141 grism. The WFC3 camera has
a field of view of 2×2.3 arcmin2, and combining the two exposures we re-
sampled the final image to a pixel scale of 0.06 arcsec pix−1 using the aXe

software (v2.2.4, Kümmel et al., 2009). The WFC3 G141 grism covers the
wavelength interval 1.08 - 1.70 µm with a throughput > 10% at low spectral
resolution, R ≡ λ/∆λ = 130. This wavelength range enabled to identify
strong spectroscopic features at the redshifts of the cluster candidates: Hα at
0.65 < z < 1.59, [OIII] at 1.16 < z < 2.40, Hβ at 1.22 < z < 2.50, and
[OII] at 1.90 < z < 3.56. The observation strategy allowed to spectroscopically
confirm star-forming galaxies with strong, narrow emission lines, but did not
allow to confirm any possible population of passive galaxies, for which deeper
spectroscopy is required (Noirot et al., 2018). Noirot et al. (2016, 2018) present
the details of the HST program and the results of the spectroscopic analysis.
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6.2.3 Ground Based Optical Imaging

Cooke et al. (2015) obtained optical i-band imaging for eight of the sixteen
confirmed CARLA cluster candidates with the auxiliary-port camera (ACAM)
on the 4.2m William Herschel Telescope (WHT) in La Palma and the Gemini
Multi-Object Spectrograph South instrument (GMOS-S; Hook et al. 2004) on
Gemini-South in Chile, as summarized in Table 11.

The field of view of ACAM is circular, with a diameter of 8.3 arcmin and pixel
scale 0.25 arcsec pix−1, while GMOS-S covers an area of 5.5×5.5 arcmin2 with
a pixel scale of 0.146 arcsec pix−1. Exposure times were adapted to take into
account seeing variations, in order to obtain a consistent depth across all fields,
and are also listed in Table 11 (see also Table 1 in Cooke et al., 2015) .

The i-band images were reduced using the THELI software (Erben et al., 2005;
Schirmer, 2013), as described in Cooke et al. (2015). The zero-points were cal-
culated comparing the fluxes of unsaturated stars to the fluxes of SDSS stars or
standard stars, for targets in the northern or in the southern hemisphere, respec-
tively. The median 5σ depth is of 25.0 mag for the WHT images, and of 24.9
mag for the Gemini images, calculated by measuring the flux in 100000 random
apertures of 2.5 arcsec diameter.

Table 11 – Subsample of ground-based optical observations.

Name z Inst. optical band Exp.time (s) 5σ depth (mag) Seeing (arcsec)

CARLA J0800+4029 1.986 ACAM i 6600 25.16 0.93

CARLA J1018+0530 1.953 ACAM i 7200 25.19 0.81

CARLA J1052+0806 1.648 GMOS-S i 2645 25.04 0.66

CARLA J1103+3449 1.443 ACAM i 7800 24.76 1.12

CARLA J1129+0951 1.531 GMOS-S i 2645 24.78 0.44

CARLA J1358+5752 1.373 ACAM i 8400 24.95 0.89

CARLA J1753+6310 1.581 ACAM i 6000 25.08 0.74

CARLA J2355-0002 1.487 ACAM i 6000 24.99 0.81

6.3 P H OT O M E T R I C A N A LY S I S

In order to characterize the stellar populations of the clusters confirmed in the
CARLA survey, I perform a photometric analysis of the observations summa-
rized in Table 10. In this section, I describe the procedure to get my reference
photometry (6.3.1), and I present the tests I have made to validate this photome-
try (6.4.1). In Appendix A, I give a brief description of the softwares that I have
used in my analysis.
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6.3.1 Source extraction and photometry

In this Section, I describe my analysis of the CARLA observations, focusing
on the steps to get my reference photometry with the T-PHOT program (Merlin
et al., 2015, 2016). This program has been successfully tested on large datasets,
on a broad range of wavelengths, from UV to sub-mm, and is currently used
for the photometry of big surveys like CANDELS, Frontier Fields, and AEGIS.
Compared to similar codes like TFIT (Laidler et al., 2007) and CONVPHOT (De
Santis et al., 2007), T-PHOT has proven to be more robust and large computa-
tional time saving (Merlin et al., 2015).

T-PHOT is designed to perform precision photometry of a low resolution im-
age using the information given by a higher resolution image of the same field
(see Section A.4). In this case, I can take advantage of the information given
by the high-resolution (0.06 arcsec pix−1) images obtained with HST, and use
positions and surface brightness profiles of sources measured on HST/F140W
images as priors to derive the fluxes in all the bands analysed here: F140W
(HST), 3.6µm and 4.5µm (Spitzer), i (ground-based telescopes), accounting for
the different point spread functions (PSFs). This method allows to de-blend clus-
ter members from fore- or background sources even in the low-resolution optical
and Spitzer images and obtain robust photometric results. I proceed with the
following main steps:

Step 1: From the F140W/HST image, I extract a catalogue of sources and
a segmentation map using the SExtractor program (Bertin and Arnouts, 1996,
see the description in Appendix A). I adopt the same configuration of parame-
ters used for the catalogs released by the Cosmic Assembly Near-IR Deep Ex-
tragalactic Legacy Survey (CANDELS, Grogin et al., 2011; Koekemoer et al.,
2011), and published by Galametz et al. (2013) and Guo et al. (2013). I use
two detection modes, the cold and the hot modes, optimized to detect bright and
faint objects, respectively, and then combined to get the final catalog following
the implementation described in (Barden et al., 2012): a first catalog is build
including all the cold sources; then, for every source detected in the hot mode, if
its central position lies inside the Kron ellipse of any cold source, it is discarded,
otherwise it is included in the final catalog. I give in Table 12 the key SExtractor
parameters used in my source detection.

Step 2: I register the “low-resolution" images (3.6µm, 4.5µm, i, hereafter
called with the generic name LRI, on the HST frame, using the Swarp package
(Bertin et al., 2002, see Section A.2), so that they have the same orientation
and pixel scale as the F140W images, with pixel boundaries consistently over-
lapping. After many tests to check the consistency of photometry of the image
before and after resampling, presented in Section A.2.1, I adopt the AIT (Aitoff)
projection type, which is an equal-area projection (it conserves relative areas),
and the NEAREST resampling method, which performs a “nearest-neighbour"
interpolation. With this choice, the differences in magnitudes before and after
resampling are on average of 0.02 mag, and < 0.05 mag in the entire magnitude
range, for all bands.

Step 3: I estimate the PSFs of each imaging observation, using the PSFex
software (Bertin, 2011), and checking that the shape of each PSF is consistent
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Table 12 – SExtractor parameters.

SExtractor Cold Mode Hot Mode

DETECT_MINAREA 5.0 10.0

DETECT_THRESH 0.75 0.7

ANALYSIS_THRESH 5.0 0.8

FILTER_NAME tophat_9.0_9x9.conv gauss_4.0_7x7.conv

DEBLEND_NTHRESH 16 64

DEBLEND_MINCONT 0.0001 0.001

BACK_SIZE 256 128

BACK_FILTERSIZE 9 5

BACKPHOTO_THICK 100 48

with the shape and the FWHM of unsaturated stars (see Section A.3). Then,
I obtain a convolution kernel, K, matching the PSFs of the LRI and the F140W
images so that: PSFLRI = K ⊛ PSFF140W , where ⊛ is the symbol for convolution.
Finally, I resample the kernel to the F140W pixel scale (0.06 arcsec pix−1).

Step 4: To get the final photometry, I use the standard pipeline implemented
in T-PHOT (Merlin et al., 2015, 2016) and described in Section A.4, which con-
sists in two runs. In the first run, the program creates stamps of sources using the
catalog and the segmentation map from the high-resolution F140W/HST image.
Then, it convolves each high-resolution stamp with the convolution kernel K to
obtain models of the sources at the LRI resolution. Then, the fitting stage solves
a linear system to match each template flux with the measured one. I use the
cells-on-object fitting method. This method orders objects by decreasing flux,
building a cell around each source including all its potential contaminants, solv-
ing the linear system in that cell and assigning to the source the obtained flux. In
the last stage, the program obtains a local convolution kernel, that is used in a
second run of the convolution and fitting stages, to obtain more astrometrically
precise results. I give in Table 13 the key parameters used in T-PHOT.

From this procedure, I obtain PSF-matched catalogs of sources with photome-
try in the bands: HST-F140W (J-H boundary, with peak at 1.4µm), Spitzer-IRAC
3.6µm and 4.5µm, and, when available, i. Using the HST selection I measure
fainter magnitudes, down to 25.2 mag at 3.6µm, and 26.7 mag in the i-band, at
5σ.

6.3.2 Estimate of uncertainties

T-PHOT provides estimates of the statistical uncertainty on photometry,
σTPHOT, as the square root of the diagonal element of the covariance matrix
constructed during the fitting stage for each source. The covariance matrix is
built from the scientific and the weight maps of the images, which include the
error due the background, the dark current, the gain, and the read-out noise. As
a consistency check, I also run 1000 Monte Carlo realizations of background ar-
eas (not overlapping to selected sources) with apertures in the range of the sizes
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Table 13 – T-PHOT parameters.

Pipeline 1st pass priors, convolve, fit, diags, dance

2nd pass convolve, fit, diags, archive

Priors stage usereal true

usemodels false

useunresolved false

Convolution stage FFTconv true

Fitting stage fitting coo

cellmask true

maskfloor 1e-9

fitbackground false

threshold 0.0

linsyssolver lu

clip true

of our sources, centered in random positions. The standard deviation of their
magnitude distribution is given by the background noise, the dark current, the
gain, and the read-out noise. This test confirms that the errors estimated with the
Monte Carlo are consistent with those estimated by T-PHOT.

To get the total error budget, I add in quadrature the shot noise, σshot, of the
source and the error on the zero-point, σZP:

σtot =

√

σ2
TPHOT + σ2

shot + σ2
ZP . (93)

I calculate the flux uncertainties due to the shot noise of the source as the
square root of the number of electrons received by each source in the area used
for the photometry. I use as uncertainty on the zero-point 0.02 mag for the
HST/WFC3 F140W images 1, and 0.05 mag for the Spitzer/IRAC1 images 2. For
the ground-based observations, I use uncertainties on the zero-points of 0.022
mag for GMOS-S (obtained by comparing the fluxes of unsaturated stars to the
fluxes of standard stars), and 0.05 mag for ACAM (Chris Benn, private commu-
nication).

In addition, T-PHOT assigns a flag to each source indicating possible causes
of systematic uncertainties, such as a saturated or negative flux of the prior, a
blended prior, or a source at the border of the image. I report the flag values in
my final catalog.

Since we base our detections on the F140W images, we exclude from the
following analysis the sources with photometric error in the F140W band larger
than the maximum error at the F140W 5σ depth 26.6 mag, as illustrated in Fig.

1. http://www.stsci.edu/hst/wfc3/phot_zp_lbn
2. http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/

iracinstrumenthandbook/
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normalization constant. An exponential profile, with n = 1, reproduces the ob-
served light profiles of the stellar disks of spiral galaxies (Freeman, 1970), while
a “de Vaucouleurs” profile with n = 4 reproduces the observed light profiles of
elliptical galaxies (de Vaucouleurs, 1948).

For this thesis purposes, I only use to the magnitudes obtained with GALAPA-
GOS, the GALFIT magnitudes, as alternative estimates to test my photometric
results.

On the other hand, the best fit parameters of the Sérsic model give information
on the morphology of the sources, which will be presented in a forthcoming work
(S. Mei, S. Amodeo and the CARLA collaboration, in preparation).

6.4.1 Photometry validation

In this Section, I compare the results obtained with my reference photometry
based on T-PHOT to results obtained with different approaches (see Appendix A
for a description of the methods):

· AUTO: magnitudes obtained from flexible elliptical apertures around the
detected objects, as described in Kron (1980) and implemented in SExtrac-
tor (Bertin and Arnouts, 1996);

· GALFIT: magnitudes obtained from the fit of the surface brightness pro-
file of the detected objects to a Sérsic profile, as implemented in GALA-
PAGOS (Barden et al., 2012);

· for the i-band photometry I also use APER estimates, following the ap-
proach of Cooke et al. (2015): these are magnitudes obtained from fixed
circular apertures around the detected objects, with aperture size of 2.5 arc-
sec diameter, choosen to be ∼ 2.5× the seeing and a compromise between
including as much flux as possible, and avoiding blending. Fluxes within
the aperture are then corrected to total fluxes using correction factors mea-
sured from the growth curves of unsaturated stars, which are typically 1.15
for ACAM images and 1.04 for GMOS-S images.

In Figures 29, 30, 31, 32, I present the median difference between couples
of magnitude estimates, in intervals of 0.5 mag (results are the same if using
mean differences instead of the median). For example, the top panel of Fig. 29
shows the median difference between F140W AUTO and TPHOT for TPHOT
magnitudes in the ranges [20, 20.5], [20.5, 21], ..., [26.5, 27].

For the F140W photometry, the AUTO estimates are systematically fainter
than T-PHOT, up to 0.5 mag for the faintest objects, while there are smaller differ-
ences between T-PHOT and GALFIT estimates, (<0.3 at all magnitudes), which
is encouraging considering that they are independent methods. We observe com-
parable differences between AUTO and T-PHOT for the IRAC photometry, but
this time with a slight dependence on magnitude, with AUTO giving increasingly
brighter magnitudes for decreasing T-PHOT magnitudes.

In the i-band, there is a difference of about 0.5 mag between the T-PHOT
and SExtractor estimates (AUTO, APER). For the clusters who show the largest
differences between the SExtractor and TPHOT magnitudes (J0800+4029,
J1018+0530, J1129+0951, J1358+5752), I also show the comparison with GAL-
FIT (Fig. 32). We observe that for magnitudes brighter than ∼24, TPHOT and
GALFIT are consistent (within 0.4 mag), while TPHOT is less consistent with
SExtractor (AUTO, APER). A random check on the GALFIT fitting model and
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residuals reveals that this method performs poorly at fainter magnitudes (i > 24
mag).

It is important to note that T-PHOT and GALFIT give PSF-matched photome-
tries, unlike AUTO and APER. The correction factors computed from the stars’
growth curves and applied to the aperture magnitudes (APER) only approxi-
mately account for PSF effects.

The differences among different methods are not new from the literature. The
AUTO magnitude by SExtractor has found to be an imperfect estimator, as
pointed out by Mei et al. (2009). For example, Blakeslee et al. (2006) found an
offset of 0.2 mag between AUTO and GALFIT magnitudes in the HST/F775W
band, in the range 20.5<F775W<23.5 mag. Giavalisco et al. (2004) also found
a similar offset between AUTO magnitudes in the HST/F606W band and the
magnitudes of simulated galaxies convolved with the PSF.

Overall, our comparison shows a ∼0.4 mag systematic uncertainty on our pho-
tometry due to the use of different methods. We assume that T-PHOT photome-
try is the most robust given that it is based on high-resolution priors, and prevent
blending of nearby sources which can instead contaminate simple aperture flux
measurements (see also the conclusions in the analysis by Merlin et al., 2016).
This is especially important for IRAC images with large PSFs.
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7
S T E L L A R P O P U L AT I O N S O F H I G H - Z C L U S T E R S F RO M
T H E C A R L A S U RV E Y

In this chapter, I present the results of my photometric analysis on the CARLA
clusters.

At the redshifts of our CARLA targets, the i-band approximately corresponds
to the U-band rest-frame, the HST/F140W to the V-band rest-frame and the
Spitzer/IRAC [3.6] to the J-band rest-frame.

Williams et al. (2009) investigated the stellar populations of 30108 galaxies
in the range of photometric redshifts 0 < zphot < 2.5, derived from multi-band
photometry from the UKIDSS Ultra-Deep Survey in the near-IR (Lawrence et
al., 2007), the Subaru-XMM Deep Survey in the optical (Sekiguchi and SXDS
Team, 2004) and the Spitzer Wide-Area Infrared Extragalactic Survey in the mid-
IR (Lonsdale et al., 2003). They observed that galaxies up to z=2 occupied two
distinct regions in the rest-frame (U-V) versus (V-J) (hereafter UVJ) color space:
one population lied on a diagonal from blue to red (V-J), clearly following the
Bruzual and Charlot (2003) evolutionary tracks of star-forming stellar popula-
tions, and above was the other population on a localized clump, red in (U-V) and
blue in (V-J), consistent with the Bruzual and Charlot (2003) passive stellar pop-
ulation models, and also overlying the “old passively-evolving galaxies" which
were spectroscopically confirmed at 0.8 < z < 1 from Yamada et al. (2005) with
little or no detected line emission. This bimodality was additionally supported
by the distribution of the specific star formation rates.

The work by Williams et al. (2009), relying on a large statistics, confirmed
the interpretation previously suggested by Labbé et al. (2005) and Wuyts et
al. (2007), that quiescent and star-forming galaxies are well separated in a rest-
frame UVJ plane, at least up to z=2.

Basically, using two colors allows to break the degeneracy between galaxies
which have red (U-V) color from their evolved stellar populations, and starburst
which appear red because of dust obscuration. In fact, dust-free quiescent galax-
ies have bluer (V-J) color and occupy a distinct region of the UVJ plane.

In our sample, we can separate passive from star-forming galaxies only in
the case of the CARLA targets that have been observed in the i-band. At the
redshifts of our CARLA targets, the (i-F140W) colors corresponds to the (U-V)
rest-frame color and allow us to separate passive from dusty galaxies which are
both red in the (F140W-[3.6]) color (which corresponds to the (V-J) rest-frame
color).

For the CARLA fields without i-band data I present the color-magnitude dia-
grams (F140W-[3.6]) versus [3.6] in Fig. 33. CARLA candidates (red squares)
are selected with a Spitzer/IRAC color cut ([3.6] - [4.5]) > - 0.1. Candidates con-
firmed spectroscopically by Noirot et al. (2018) are shown as black diamonds.
The data are compared to stellar population models with a formation redshift
in the range 3 < zf < 7, adapted from Mei et al. (2009, see below). Since
for these targets we do not have V-band rest-frame observations, these diagrams
show both the red-passive and the red-dusty star-forming galaxies on the same
red sequence and we cannot separate them.
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For the CARLA fields with three bands available, I build instead color-color
diagrams i-F140W versus F140W-[3.6], to separate passive from dusty star-
forming galaxies.

I adopt the empirical separation between quiescent (passive) and star-forming
galaxies from Williams et al. (2009), which in the redshift range of our interest,
1 < z < 2, consists in the following diagonal cut in the rest-frame bandpasses:

(U− V) > 0.88× (V − J) + 0.49 , (95)

and in additional horizontal and vertical cuts to exclude unobscured and dusty
star-forming galaxies, respectively, from the quiescent galaxies, which are the
same at all redshifts:

(U− V) > 1.3 , (V − J) < 1.6 . (96)

I present our color-color diagrams in the top panels of figures 34-37, ordered
by increasing redshift. The boundaries separating passive from star-forming pop-
ulations have been converted into our observed colors by S. Mei, following the
approach described in Appendix B of Mei et al. (2009), adapted for our bands. In
brief, we use Bruzual and Charlot (2003) stellar population models with galaxy
formation redshifts averaged between 3 and 7, and metallicities equal to 40%
solar, solar and 2.5 times solar, letting them passively evolve until the redshifts
of our clusters.

In summary, following Williams et al. (2009), the passive members are located
in the upper left reddish quadrant of figures 34-37, the star-forming members are
located below the horizontal line, whereas the dusty star-forming galaxies lie on
the right of the vertical boundary.

The middle and bottom panels of Fig. 34-37 show the color-magnitude dia-
grams (i-F140W) versus F140W, and (F140W-[3.6]) versus [3.6], respectively,
for the clusters that I have analyzed so far. We compare our observations with
the color-magnitude relation observed in Mei et al. (2009) for confirmed X-ray
and infrared detected clusters at redshift z ∼ 1. This relation was derived using
HST/ACS filters that correspond to rest-frame (U - B) and MB in the observed
range 0.8 < z < 1.3. For our comparison, this relation has been passively evolved
at the redshifts of our clusters, and converted to our bandpasses by S. Mei, using
Bruzual and Charlot (2003) stellar population models with galaxy formation red-
shifts between three and seven, and metallicities equal to 40% solar, solar, and
2.5 times solar. The converted relation is indicated in the plots by the black solid
line, while the dashed lines show the 3σ dispersion around the mean evolved
passively to the redshift of our clusters, plus the observational photometric er-
rors (added in quadrature).

Noirot et al. (2016) already analyzed the stellar populations of CARLA
J0800+4029, based on the SExtractor MAG_AUTO photometry, obtaining the
color-color and color-magnitude diagrams shown in Fig. 38. From a one-to-
one comparison between my PSF-matched and Noirot’s SExtractor photometry,
I find differences of 0.1-0.3 mag on the (i-F140W) color, up to F140W<25 mag,
and a difference of 0.5 mag in the range 25<F140W<26.6, which is expected
due to the different methodologies adopted (see discussion in Section 6.4.1). In-
terestingly, we both find that this cluster at z=2 does not host passive candidates
consistent with a cluster red sequence, and we observe the same behaviour for
the other cluster at z∼2, CARLA J1018+0530. Noirot et al. (2016) also com-
pared the data to the predictions at z=2 of an exponentially decaying model of
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star formation (orange area in the bottom panel of Fig. 38), finding that most of
the confirmed members did not seem to agree with this model either. A possible
interpretation is that this galaxy population has undergone multiple episodes of
star formation, consistently with the analysis of Cooke et al. (2015), who showed
that the star-formation histories of CARLA cluster galaxies are best described by
multiple bursts of star formation over a timescale of few Gyr.

The comparison of our data with the predictions from models of exponentially
decaying stellar populations is an important step to complete the interpretation
of our results, that we plan to address in the future.

On the other hand, for CARLA clusters at z<2 that I have analyzed so far,
the majority of the passive galaxies identified following Williams et al. (2009)
follow the red sequence obtained with a passive evolution, although with a larger
scatter than calculated at z ∼ 1.

For example, for CARLA J1753+6310 at z=1.576, we observe a well defined
red-sequence of passive galaxies. This structure was already studied by Cooke
et al. (2016) and recognized as a mature cluster at high-redshift. Using the same
Spitzer/3.6µm and i-band/ACAM images as this work, and a J-band image ob-
tained with the long-slit intermediate resolution infrared spectrograph (LIRIS) at
WHT, they found that a remarkably high fraction (80%) of galaxies with broad-
band colors indicative of a passive population lied on the red sequence. They also
showed that half of the cluster galaxies in the core were quiescent, as compared
to only 16% of field galaxies of similar mass and redshift from the UKIDSS Ul-
tra Deep Survey (UDS; Hartley et al., 2013). This picture is also consistent with
the small number of spectroscopically confirmed star-forming members (only 5)
compared to the other CARLA structures at similar redshift, indicating that this
is likely an evolved cluster mostly composed of passive members.

In the future, we will estimate the contamination from field galaxies from
CANDELS observations in order to reliably obtain the fraction of passive galax-
ies in each cluster.
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7.1 O N G O I N G A N A LY S I S

I am currently completing the color-color diagram analysis for all clusters with
i-band observations and I am measuring the fraction of quiescent galaxies as a
function redshift.

The first basic point is to assess the level of contamination of our cluster se-
lected galaxies from foreground and background field galaxies. The HST/WFC3
grism spectroscopic campaign allowed to confirm only star-forming galaxies
with strong emission lines, while a more extensive multi-slit ground-based spec-
troscopy and deep multi-band observations would be needed to obtain more
spectroscopic redshifts, and robust photometric redshifts for all galaxies. The
spectroscopic measurements by Noirot et al. (2018) assigned galaxy member-
ship based on redshift determination from emission lines and could also identify
line-emitter outliers. This analysis allows to remove part of the interlopers but
we do not have spectroscopic redshifts for all the detected sources.

Following Cooke et al. (2015), I am currently statistically estimating the level
of contamination by interlopers using cuts in the color-magnitude diagrams.

With our available photometry on F140W (HST), 3.6µm (Spitzer-IRAC), and
i-band from ground telescopes, I can identify foreground bright interlopers at
lower redshifts, by performing the same photometric analysis on field galaxies of
known photometric redshift. For this purpose, I am using the 3D-HST/GOODS-
South field (Skelton et al., 2014; Giavalisco et al., 2004), for which the same
bands are available, and perform a photometric analysis with the same procedure
used for the CARLA fields. For these sources, photometric redshifts have been
released in the CANDELS multi-wavelenght catalog by Guo et al. (2013). In
addition, I will be able to statistically subtract the number of field contaminants
and obtain the fraction of passive galaxies in each cluster and study its evolution
as a function of redshift. I am currently validating my preliminary results.

In conclusion, this work will open an important view on the cluster galaxy
population at high redshift, and will be particularly useful in preparation of large
optical and near-infrared surveys which, in the near future, will be able to detect
a high number of clusters, such as Euclid (up to z∼2), and LSST (up to z∼1.5).
A well characterized galaxy population will help planning the detection of clus-
ters at high redshift and building robust samples, which are of great interest for
cosmology.

I submitted a draft of a refereed paper that present my results presented in
Chapter 6 and 7 to the CARLA collaboration, and I plan to submit it in the Fall
2018.
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8
C O M P L E M E N TA RY W O R K S

In parallel with the main research goals of my thesis, I have obtained other
scientific results in the context of a collaboration with researches from the Uni-
versity of Bologna, Italy, where I got my Master’s degree. I focused on the re-
lation between the cluster mass and the dark matter concentration as a powerful
cosmological probe, and published my results in Amodeo et al. (2016).

As discussed in Chapter 2, the emission of the hot gas in the X-ray band is
an important source of information to investigate the global properties of galaxy
clusters from the observational point of view. Thanks to the high sensitivity and
angular resolution of the last generation of X-ray satellites, such as Chandra and
XMM-Newton X-ray cluster studies have been performed with unprecedented
accuracy in recent years.

On the theoretical side, numerical N-body simulations predict that dark mat-
ter halos have a universal density profile (Navarro, Frenk, and White, 1997)
characterized by two parameters: the scale radius Rs, and the concentration
c200 = R200/Rs. In a Universe where structures form hierarchically (low-mass
objects form earlier than high-mass ones) and collapsed objects retain informa-
tion on the background density at the time of their formation (the background
average matter density was higher in the past), concentration and mass must be
related so that systems with higher masses are less concentrated and, at a given
mass, lower concentrations are expected at higher redshifts.

Numerical simulations by e.g. Duffy et al. (2008), Bhattacharya et al. (2013),
De Boni et al. (2013), Dutton and Macciò (2014) indicate that concentration and
mass are indeed anti-correlated for all the mass ranges and redshifts investigated,
with a mass dependence that is slightly reduced at z > 0. Observations of galaxy
clusters at low redshift (z < 0.7) confirm the expected anti-correlation even if
they generally find a steeper slope and a higher normalization compared to the
theoretical relation (e.g. Buote et al., 2007; Schmidt and Allen, 2007; Ettori et
al., 2010; Merten et al., 2015). Whether this discrepancy is due to observational
selection biases or to the lack of some fundamental physics in numerical models
is still an open question. Both simulations (e.g. De Boni et al., 2013) and ob-
servations (Ettori et al., 2010) agree on the influence of the dynamical state of
a cluster on its concentration: more relaxed systems are more concentrated, at a
fixed mass.

On the other hand, Prada et al. (2012) predict that at z>1 the c−M relation
has a plateau and an upturn, at masses M200 > 1014M⊙, typical of galaxy
clusters.

The aim of the study presented in Amodeo et al. (2016) is to investigate the
relation between concentration and mass for X-ray galaxy clusters at high red-
shift, where there are still no observational constraints on this issue, and probe a
possible evolution with redshift.

We select a sample of 47 clusters observed in the X-rays with Chandra at
0.4<z<1.2, from archival exposures of targets with no major mergers and with
sufficient X-ray signal to allow us to recover the hydrostatic mass properly. Us-
ing X-ray morphological estimators, about 1/3 of the sample is not completely
relaxed and that this fraction rises to 0.5 in the objects at z > 0.8. As conse-
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quence of this selection, our sample is not statistically complete and includes
targets that were selected differently for their original observations. However,
we verify that (i:) the sample presents a gas mass - temperature relation that be-
haves very similarly to the relation estimated locally, and (ii:) since the selected
objects are very luminous in the X-ray band, the selection applied is, in practice,
on the total mass and properly represents the very massive high end of the cluster
halo function, in particular at high redshift.

I have performed spatial and spectral analyses of the ICM to extract the ra-
dial profiles of the gas temperature and density. Assuming that the distribution
of the X-ray emitting gas is spherically symmetric and in the hydrostatic equilib-
rium with the underlying gravitational potential, I have combined the deprojected
gas density and spectral temperature profiles through the hydrostatic equilibrium
equation to recover the total mass distribution consistent with a NFW profile, fol-
lowing the method described in Ettori et al. (2010).

Here is a summary of our main results:
— we consider the largest sample investigated so far at z > 0.4 and we provide

the first constraint on the c-M relation at z > 0.7 from X-ray data only.
— we estimate a total mass M200 in the range (1st and 3rd quartile) 8.1−

18.6× 1014M⊙ and a concentration c200 between 2.7 and 5. The distri-
bution of concentrations is well approximated by a log-normal function in
all the mass and redshift ranges investigated.

— our hydrostatic mass estimates are in very good agreement with the re-
sult from weak-lensing analysis available in literature. In particular, the
c–M relation calculated for the clusters shared with the CLASH sample
(Umetsu et al., 2016) is fully consistent within the errors. In the redshift
range 0.8 < z < 1.5, constraints on the c−M relation were also derived
in Sereno and Covone (2013) for a heterogeneous sample of 31 massive
galaxy clusters with weak- and strong-lensing signals, obtaining similar
results.

— our data confirm the expected trend of lower concentrations for higher
mass systems and, at a fixed mass range, lower concentrations for higher
redshift systems, as shown in Fig. 39. The fit to the linear function
log c200 = A+B× logM200/(10

14M⊙) +C× log(1+ z)±σlogc200
)

gives a normalisation A = 1.15 ± 0.29; a slope B = −0.50 ± 0.20,

which is slightly steeper than the value predicted by numerical simulations
(B ∼ −0.1); a redshift evolution C = 0.12± 0.61, which is consistent with
zero; and an intrinsic scatter on the concentration σlogc200

= 0.06± 0.04.
— the predictions from numerical simulations of the estimates of the normali-

sation A and slope B are in a reasonable agreement with our observational
constraints at z > 0.4, once the correlation between them is fully consid-
ered. Values from Dutton and Macciò (2014) are consistent at the 1σ level.
Larger deviations, but still close to the ∼ 2σ level of confidence, are asso-
ciated with the predictions from Diemer and Kravtsov (2015b) and Prada
et al. (2012), where the latter is more in tension with our measurements. It
is worth noticing, however, that we are characterising the high-mass end
of the distribution of galaxy clusters even at z ∼ 1, which is a regime that
is hardly accessible to the present numerical simulations.

This work has been expanded in Ghirardini et al. (2017) with an analysis of the
pressure and entropy profiles of the same sample of clusters, an it has contributed
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Figure 39 – Concentration-mass relation obtained from the X-ray analysis of 47 Chan-

dra clusters in Amodeo et al. (2016), divided into 7 mass bins. For each
bin, error-weighted means for concentration and mass are calculated (black
diamonds) and the error bars represent the errors on the weighted means.
Colored lines are predictions based on different numerical simulations cal-
culated for z = 0.4 (dotted lines) and z = 1.2 (dashed lines), which are the
lowest and highest redshifts in the observed sample.

to test an alternative cosmological probe, the halo sparsity, in Corasaniti et al.
(2017).

In Ghirardini et al. (2017), we present the entropy and pressure profiles of
these clusters. Compared to the self-similar behaviour predicted from gravita-
tional structure formation (Voit, 2005), we find that these profiles deviate from
the baseline prediction as function of redshift, in particular at z > 0.75, where, in
the central regions, we observe higher values of the entropy (by a factor of ∼ 2.2)
and systematically lower estimates (by a factor of ∼ 2.5) of the pressure with
respect to the outskirts. Such behaviour is consistent with a scenario in which
galaxy clusters are the last gravitationally bound structures to form, and mostly
unrelaxed objects are expected at z ∼ 1 from ongoing merging processes.

In Corasaniti et al. (2017), we use the hydrostatic masses derived for this sam-
ple of clusters at 0.4 < z < 1.2, combined with a lower redshift sample of 57
clusters (0.05 < z < 0.3) from Ettori et al. (2010, 2018), to test the cosmologi-
cal utility of the dark matter halo “sparsity". This quantity, defined as the ratio
of two halo masses at two different overdensities, does not require any explicit
assumption about the form of the halo density profile, and therefore, it is useful
to characterise the mass profiles of halos even when their density profile deviates
from a NFW.

From this first analysis we find large uncertainties, of 20% level, on the cluster
sparsity, which allow to get weak constraints on Ωm and σ8. Assuming the
mass function from Despali et al. (2016), we find Ωm = 0.42± 0.17, and σ8 =
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0.80±0.31, which are compatible with those inferred from Planck Collaboration
et al. (2016a) within 1σ.

Future cluster surveys will provide larger datasets and opportunities for pre-
cise measurements of the sparsity. From a Fisher matrix analysis, we forecast
find that a sample of ∼ 300 clusters with mass estimate errors at ∼ 1% level can
improve the Planck constraints on Ωm and σ8 of a factor of ∼ 2.

This three papers are enclosed in Appendix B.
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9
S U M M A RY & O U T L O O K

This PhD thesis is dedicated to the study of galaxy clusters in order to improve
the use of cluster counts in cosmology.

For this purpose, two main topics have been addressed: (i) the calibration of
the scaling relation between cluster observables, specifically the velocity disper-
sion and mass, (ii) the study of the galaxy populations in clusters at high redshift
(1.4 < z < 2.8).

In this final chapter, I summarize the content and the main results of this thesis,
and I discuss future perspectives.

The first part of this thesis aims to understand the systematics in different
proxies of the cluster mass to help improving its calibration for cosmology.

I analyze the case of a sample of Planck-detected clusters, which is interesting
for two main reasons: (i) the Planck mission has provided the largest sample of
galaxy cluster candidates to date, detected via the SZ effect, which can be used
to constrain cosmological parameters from the cluster number counts (Planck
Collaboration et al., 2014a, 2016b) once the cluster candidates are confirmed;
(ii) results from Planck have uncovered a remarkable discrepancy between the
cosmological parameters determined from the cosmic microwave background
and those derived from cluster counts. This has questioned either the reliability
of the Planck mass estimator, and called for an accurate estimate of the cluster
mass bias ((1− b) = MPlanck/Mtrue), or, in the absence of a large mass bias,
called for a modification of the standard ΛCDM cosmological model. A mass
bias of (1 − b) = 0.58 ± 0.04 is required to bring the cluster counts and the
cosmic microwave background into full agreement.

With our Planck spectroscopic follow-up, I confirm a sub-sample of the
Planck-detected clusters by measuring redshifts and velocity dispersions of clus-
ter member galaxies (Chapter 4), and I use our velocity dispersions to calibrate
the Planck mass (Chapter 5).

In particular, I confirm 19 clusters with the Gemini and Keck telescopes, in-
cluding seven new confirmations, among which one of the most distant Planck

cluster confirmed to date, PSZ2 G085.95+25.23 at z = 0.782± 0.010.
For a subsample of clusters confirmed with Gemini 1, I study the scaling re-

lation between the cluster velocity dispersion and the Planck SZ mass proxy,
which are two independent probes of the cluster mass (the former is based on the
dynamics of the member galaxies, while the latter is based on the properties of
the intracluster medium), in order to estimate the mass bias.

Among the possible sources of systematics analyzed (the telescope finite aper-
ture, the Eddington bias, the correlated scatter between the velocity dispersion
and the Planck mass proxy, and the velocity bias, i.e. the ratio between the
galaxy and the dark matter velocity dispersion), I identify the velocity bias of the

1. Since we obtained the confirmation of the z = 0.78 cluster with Keck spectroscopy after the
analysis with the Gemini data was completed and published, I have not considered this cluster for
the scaling relation analysis discussed in this thesis, in order to be consistent with the published
results. I have verified, though, that including this cluster does not change the interpretation of our
main results, as it lies on the same relation found for the Gemini-confirmed clusters.
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member galaxy population, bv, as the one having the largest impact, since the
mass bias depends on the cube of the velocity bias: (1− b) = (0.51± 0.09)b3

v .
A precise measurement of bv is therefore essential to calibrate the mass, while a
full comprehension of this bias has not been reached yet (Sec. 5.1.2).

Using the positive velocity bias obtained from the simulations of Munari et al.
(2013), bv = 1.08, I find a mass bias of (1− b) = (0.64± 0.11), which means
that Planck masses are about 36% lower than the dynamical masses. This result
is within 1σ of the value (1−b) = (0.58± 0.04) needed to reconcile the Planck

cluster counts with the primary CMB, indicating that the mass calibration can
solve the tension.

Comparing to other works, my result is ∼30% lower (at ∼ 2.5σ) than the lens-
ing determination by Smith et al. (2016) and the Rines et al. (2016) determina-
tion, also based on velocity dispersions, both of which favor little or no mass
bias. However, my result agrees within 1σ with the results from the lensing anal-
ysis with WtG (von der Linden et al., 2014b), CCCP (Hoekstra et al., 2015a) and
CLASH (Penna-Lima et al., 2017).

Focusing on the velocity bias problem, I obtain observational constraints on
the velocity bias by combining our velocity dispersion measurements with mass
estimates from weak lensing from Penna-Lima et al. (2017), which give a prior
on the cluster mass bias. I derive bv & 0.9 at 3σ, consistent with Munari et al.
(2013), but discrepant with models that predict a negative velocity bias, as for
example found by Caldwell et al. (2016).

In conclusion, the uncertainty on the velocity bias has to be precisely estimated
in order to reliably determine cluster masses through velocity dispersions. Apart
from this, I have achieved a precision of ∼17% on the mass bias measurement
with 17 clusters only (covering a large Planck mass range, 2.3× 1014M⊙ <

MPl
500 < 9.4 × 1014M⊙ ), which is promising given the small sample. For

comparison, Sifón et al. (2016) obtain a ∼12% precision on the mass bias from
44 clusters observed with ACT.

This motivates continued effort to improve the dynamical mass estimates as
proxies of the cluster mass complementary to e.g. lensing estimates.

The second part of this PhD thesis is devoted to the study of the cluster galaxy
population at the highest redshifts that will be accessible by future surveys, i.e.
z > 1.3, to help planning their detection and building statistical samples of
galaxy clusters at these redshifts, which will significantly improve the constraints
on the cosmological parameters derived from cluster count measurements.

I analyze sixteen spectroscopically confirmed clusters from the Cluster
Around Radio-Loud AGN (CARLA) survey at 1.4 < z < 2.8, which are an
homogeneous statistical sample of spectroscopically confirmed clusters at high
redshift, ideal to investigate galaxy evolution in dense environments. Most of the
thesis work has been devoted to optimize a joint photometric analysis of Spitzer,
HST, and ground-based i-band images, based on the T-PHOT software (Merlin
et al., 2015, 2016), which allows to take advantage of the information given by
our high-resolution (0.06 arcsec pix−1) F140W HST images, and use positions
and surface brightness profiles of sources measured on this band as priors to
derive PSF-matched fluxes in the bands with a lower resolution (Chapter 6.)

My preliminary results on the color-color and color-magnitude diagrams in-
dicate that clusters at z < 2 have a red sequence of passive galaxies already in
place, while clusters at z ∼ 2 do not (Chapter 7). However, a complete view of
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our sample and other works (Strazzullo et al., 2013; Cooke et al., 2015; Wang et
al., 2016; Noirot et al., 2016, 2018) also reveal that clusters with similar galaxy
overdensities as the targets I already analyzed do show a red sequence at z ∼ 2.
This means that the cluster population at z ∼ 2 includes both clusters that present
a red sequence and clusters that do not.

The study of clusters and proto-clusters at z > 1.5 is a relatively young, but
rapidly growing, field of research. In the last few years, the search of these ob-
jects has been conducted through a variety of techniques. Most of the cluster
candidates at z > 1.5 have been identified as overdensities of passive galaxies,
galaxies red in the Spitzer/IRAC colors, bright in the far-infrared, or as line-
emitter overdensities (e.g., Castellano et al., 2007; Kurk et al., 2009; Papovich et
al., 2010; Tanaka, Finoguenov, and Ueda, 2010; Stanford et al., 2012; Zeimann
et al., 2012; Muzzin et al., 2013; Newman et al., 2014; Mei et al., 2015), some-
times coinciding with an extended X-ray emission (e.g., Andreon et al., 2009;
Gobat et al., 2011; Santos et al., 2011).

Our CARLA sample is unique because of the large number of targets selected
homogeneously, spectroscopically confirmed and statistically classified as highly
probable and probable clusters (Noirot et al., 2018).

The picture that can be drawn so far is somewhat variegated and confirms the
variety of galaxies hosted by our CARLA sample. In fact, also in other works
some clusters show evidence, already at z ∼ 2, of a collapsed halo of the size
of a mature cluster, and host an high concentration of quiescent galaxies, with a
well-defined red sequence, in the core (Papovich et al., 2010; Gobat et al., 2011;
Stanford et al., 2012; Andreon et al., 2014; Newman et al., 2014).

Mei et al. (2015) confirmed one proto-cluster at z = 1.84 and one galaxy
group at z = 1.9, both populated by star-forming early-type galaxies which have
not formed a red-sequence yet.

Other studies find large fractions (∼50%) of star-forming galaxies in high-z
clusters, indicating that most of the quenching of star formation observed at
lower redshift had not yet occurred (Tran et al., 2010; Fassbender et al., 2011;
Hayashi et al., 2011; Tadaki et al., 2012; Zeimann et al., 2012; Brodwin et al.,
2013; Gobat et al., 2013; Strazzullo et al., 2013; Clements et al., 2014; Webb
et al., 2015; Valentino et al., 2015).

Some studies find an enhanced specific star formation in cluster galaxies with
respect to field galaxies, suggesting a reversal of the star formation-density re-
lation (Elbaz et al., 2007; Tran et al., 2010; Brodwin et al., 2013; Santos et al.,
2015). For our CARLA sample, Noirot et al. (2018) find the contrary: our line-
emitters show lower SFR when compared to star formation rates obtained in the
same mass range from the CANDELS survey (Whitaker et al., 2014). At these
redshifts, it has also been observed a higher number of star-forming members in
the cluster cores with respect to the outer regions (Brodwin et al., 2013; Noirot
et al., 2018).

Wang et al. (2016) discovered a very peculiar cluster at z = 2.5 detected in the
X-rays, with a large number of member galaxies (17), confirmed from CO and
Hα emission lines from multiple spectroscopic observations (IRAM-NOEMA,
VLT/KMOS, JVLA). The core of this structure (central 80 kpc) is dominated
by star-forming galaxies and has a high star formation rate of ∼ 3400M⊙yr

−1,
with a depletion time of 200 Myr, suggests that this structure is in the transition
phase between proto-cluster and mature cluster.
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My photometric analysis of the CARLA clusters, which reveals so far mixed
galaxy populations in clusters at high redshift, is still in progress and I plan to
include it in the final version of the thesis. In conclusion, this work will open an
important view on the cluster galaxy population at high redshift, since it is based
on a homogeneously selected sample of clusters, and will be particularly useful
in preparation of forthcoming cosmological survey based on optical and near-IR
observations.

In particular, the ESA mission Euclid is planned for launching in 2022, and
will operate for six years, completing one wide survey and one deep survey.

Euclid will discover thousands of clusters and proto-clusters at high redshift
(Laureijs et al., 2011; Sartoris et al., 2016; Ascaso et al., 2017) and is expected
to provide tight cosmological constraints from cluster counts.

Sartoris et al. (2016) provided forecasts on such constraints. Based on an
analytical estimate of the cluster selection function in the photometric Euclid

survey, they predicted that ∼ 2× 106 clusters will be detected at 3σ with a min-
imum mass of M200 ∼ 8× 1013M⊙, almost constant with redshift up to z = 2,
and about one-fifth of them will be at z >1. Thanks to the broad redshift range
covered, the cosmological constraints with cluster number counts will be heav-
ily improved, with a figure of merit of a factor of two larger than an equivalent
survey limited to z 6 1.2.

In this context, the analysis of the CARLA clusters using optical, near-IR
and mid-IR data will contribute to characterize the stellar populations of high-
redshift clusters and understand what future optical and near-IR surveys, such as
Euclid , will observe.

Tight constraints on the cosmological parameters from cluster counts can only
be obtained with a perfect knowledge of the observable-mass scaling relation.
For this reason, the goal of Euclid will be to have an accuracy of 1% on the cluster
mass, obtained from weak-lensing estimates. In this context, my analysis of the
velocity dispersion - mass relation of Planck clusters is useful to understand the
systematics that affect the dynamical and the SZ mass estimates and improve
their use as proxies of the cluster mass complementary to lensing estimates.

The future of this research field, in terms of cluster cosmological surveys, can
be summarized by Fig. 11, from the work of Ascaso et al. (2017), which con-
tains a consistent comparison of the selection functions of next-generation sur-
veys, assuming completeness and purity rates of the cluster selection >80%. Of
course surveys at different wavelengths will map different populations of clus-
ters, and a synergy among them is required to have a complete picture of the
cluster population. At z < 0.7, among the optical and near-IR surveys, the best
performance in terms of the limiting cluster mass threshold, will be reached by
J-PAS (5× 1013M⊙), thanks to its very accurate photometric redshifts obtained
with 54 narrow bands, while LSST will reach ∼1.5 higher masses. It is interest-
ing to note that comparable depths can be obtained only up to z ∼ 0.2 with the
e-Rosita X-ray survey. Euclid will reach 6 1014M⊙ up to z ∼ 1 in the “pes-
simistic" case in which the Euclid photometry would be only complemented by
the five-band optical photometry from DES, it will reach ∼10% lower values in
the “optimistic" case in which it will be complemented by six additional bands
from LSST. At z > 1.3, Euclid will be more competitive with respect to the other
surveys, together with the SZ survey SPTpol. The SZ and X-ray surveys will
have the advantage of building mass-selected samples of clusters, based on the
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properties of the intra-cluster gas. While the X-ray selection function of e-Rosita
steeply increases with redshift, the limiting mass of the SZ surveys SPTpol and
ACTpol is almost flat/slightly decreases with redshift, and these surveys will be
able to build lower mass samples of clusters at the highest redshifts. In partic-
ular, they will reach a limiting mass of 4× 1014M⊙ (SPTpol), 7× 1014M⊙

(ACTpol) at z = 2 decreasing to ×1014M⊙ (SPTpol), 4× 1014M⊙ (ACTpol)
at z = 1.5.

For the near future, I plan to expand my expertise in cluster surveys in order
to strengthen my understanding of cluster physics.

I will join the group of N. Battaglia at the Cornell University, who have strong
expertise in SZ surveys. I will be highly involved in the preparation of new
submillimeter/millimeter instruments, such as CCAT-prime and the Simons Ob-
servatory.

In particular, I will use observations from the current SZ ACTpol surveys
which have detected clusters at lower mass than Planck (M500 < 1014M⊙), up
to z ∼1.4 (see Fig. 7), to build an interesting sample to constrain the scatter and
redshift evolution of the cluster mass-observable scaling relation.

In addition, I will analyze the kinetic SZ effect on clusters observed with ACT
with high signal-to-noise measurements, which are very promising to probe the
total pressure support in combination with the analysis of thermal SZ effect, test
the validity of the hydrostatic equilibrium approximation, and infer properties of
the feedback processes in clusters.

107





A
B R I E F D E S C R I P T I O N O F T H E U S E D S O F T WA R E

In this Appendix, I give a brief description of the softwares that I have used in
my photometric analysis of the CARLA clusters.

A.1 S E X T R AC T O R

SExtractor (Source-Extractor) is a free software implemented by Bertin and
Arnouts (1996) that builds a catalog of sources from an astronomical image,
optimized for large scale galaxy-survey data. It handles images with variable
noise by using the weight maps computed in the image reduction process, which
describe the noise intensity at each pixel.

The program starts by constructing a background map to be subtracted to the
image. It divides the image in a grid and estimates the local background in each
mesh of the grid. The local background histogram is clipped iteratively until
convergence at ±3σ around its median; if σ changes less than 20% during this
process, the field is considered not crowded and the mean of the clipped his-
togram is taken as a value for the background; otherwise the considered value is
the mode defined as: 2.5 × (median) - 1.5 × (mean). In order to suppress possi-
ble overestimations of the background due to bright stars, a median filter can be
applied to the grid. The resulting background map is a bicubic-spline interpola-
tion between the meshes of the grid. For this step, one has to choose the the mesh
size (BACK_SIZE), considering that if it is too small, the background estimation
is affected by the presence of objects and random noise, and part of the flux of the
most extended objects can be absorbed in the background map, while if the mesh
size is too large, it cannot reproduce the small scale variations of the background.
Another parameter is the size of the median filter (BACK_FILTERSIZE), and the
thickness of the background local annulus (BACKPHOTO_THICK).

The following step is the detection of sources, as part of a process called “seg-
mentation", which consists in separating objects from the background. First, a
detection is identified as a group of connected pixels that exceed some threshold
above the background. In particular, there are three requirements for a candidate
objects:

· all the pixels must be above the value of DETECT_THRESH (expressed
in terms of σ above the local background)

· all these pixels must be adjacent to each other (they must have either cor-
ners or sides in common).

· there are more than the minimum number of pixels specified in DE-
TECT_MINAREA.

In addition, the parameter ANALYSIS_THRESH defines the threshold value to
compute the FWHM of the sources and the star/galaxy separation.

In order to help detecting faint, extended sources, the program can apply a fil-
ter that smooths the image (FILTER_NAME), which must be chosen according
to the FWHM of the seeing and the detection threshold.

Once sources have are selected from thresholding criteria, the “deblending"
process establishes whether a group of adjacent pixels is a single object or not.
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The program performs a multi-thresholding on a number of levels defined by
the parameter DEBLEND_NTHRESH between the primary extraction threshold
and the maximum count in the object. At each level, it separates the pixels above
the threshold from the pixels below it, designing a branch of a tree. Each branch
is then considered as a separate component if i): the integrated pixel intensity of
the branch is larger than a certain fraction of the total intensity of the composite
object, defined by the parameter DEBLEND_MINCONT, and ii): condition (i)

is verified for at least one more branch at the same level.
After deblending the objects, the source selection is completed and SExtractor

can perform astrometry, photometry and compute some geometric parameters.
For each detected source, we are interested in:

· the coordinate of the barycenter in the world coordinates system (AL-
PHA_J2000, DELTA_J2000)

· the minimum and maximum x and y-coordinates among the detected pix-
els (XMIN, YMIN, XMAX, YMAX)

· the value of the background at centroid position (BACKGROUND)
· the isophotal flux, derived from the counts above the threshold minus the

background (FLUX_ISO)
· the Kron radius, which is the typical size of the flexible aperture, computed

as the first moment of the intensity profiles I(R) and defined as:

RKron =

∑
R I(R)∑
I(R)

. (97)

Even though I use another method to get my final photometry, I am interested in
the photometry performed by SExtractor for comparison purposes (see Section
6.4.1). In particular, I will refer to the automatic aperture photometry, obtained
from flexible elliptical apertures (the kron radius) around the detected objects
(MAG_AUTO), and to the photometry from circular apertures specified by the
user (MAG_APER).

A.2 S WA R P

SWarp is a program by Bertin et al. (2002) that resamples astronomical im-
ages to a common frame, and to a specified pixel scale, applying a geometrical
transformation using any arbitrary astrometric projection defined in the WCS
standard (it can also combine images but I do not use this feature in my analy-
sis).

The program is based on an “inverse mapping" technique, where the output
frame is scanned pixel-per-pixel and line-by-line. The center of each output
pixel is associated to a position in the input frame (inverse projection), where the
image is interpolated.

There are several options for the projection. The traditional gnomonic projec-
tion, where great circles are displayed as straight lines, is the tangential projec-
tion (TAN). For large sky surveys, equal-area projections (that conserve relative
areas) are preferred because they conserve the surface-brightness and allow sum-
ming pixel values to measure fluxes. I use the zenithal equal-area (ZEA), and
the Aitoff (AIT), which is a pseudo-cylindrical projection.

The resampling involves interpolation between pixels. In detail, at each posi-
tion x, the interpolated value is the the dot-product between a local kernel, k(x),
and the values of the neighbouring pixels, f. The kernel is derived locally from
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an interpolation function that can be chosen among several options. I test the
following interpolation functions:

· NEAREST: a square box response function, with width 1 pixel (the so-
called “nearest-neighbour" interpolation). It produces a kernel over a sin-
gle input pixel;

· LANCZOS3: a response function of the form: sinc(πx)sinc(π x), with
(−3 < x 6 3). It produces a kernel over 6× 6 pixels;

· LANCZOS4: a response function of the form: sinc(πx)sinc(π x), with
(−4 < x 6 4). It produces a kernel over 8× 8 pixels.

In theory, the larger the kernel, the better is the resampling. However, in prac-
tice, large kernels can create artifacts around image discontinuities. The choice
should be the best compromise.

A.2.1 Image resampling

Step 2 of my photometric analysis (Section 6.3.1) requires that the low-
resolution image is registered on the same astrometry and the same pixel scale
of the high-resolution image used to select sources. In order to make this op-
eration, which consists in registering the images in the Spitzer and the i bands
on the HST/F140W-image frames, I use the program Swarp (Bertin et al., 2002).
As described in Section A.2, several astrometric projections and interpolation
functions are possible.

In order to make the best choice for my photometry, I consider a random
CARLA field, and calculate the magnitudes (MAG_AUTO by SExtractor) of
sources selected in the same way on the original and the resampled image, for
different choices of projections and interpolation functions.

To begin with, I check the effect of the resampling process on the HST im-
ages, by simply applying a projection, without changing the pixel scale. The
smallest differences in magnitudes result from an equal-area projection (AIT),
and a Lancozos3/Nearest interpolation function (see Table 14).

The same test, on the Spitzer images gives slightly smaller difference when
using the NEAREST interpolation function, which I finally adopt (see Table 15).

To conclude, I present in Table 16 the magnitude differences obtained when
resampling the Spitzer images to the HST pixel scale, with an AIT projection
and a NEAREST interpolation.

Table 14 – Median and mean differences between magnitudes obtained from a random
original HST image and magnitudes of sources selected in the same way from
the resampled image, for different choices of projections and interpolation
functions.

magAB < 26 magAB < 25 magAB < 24.5

Projection Interp. Median (Mean) diff. Median (Mean) diff. Median (Mean) diff.

NEAREST AIT 0.0057± 0.1058 (0.0138± 0.4523) −0.0001± 0.0842 (0.010± 0.409) −0.0005± 0.0777 (0.0097± 0.3975)

NEAREST ZEA 0.0056± 0.1059 (0.0126± 0.4641) −0.0001± 0.084 (0.0096± 0.419) −0.0003± 0.0777 (0.0089± 0.4077)

LANCZOS3 AIT 0.0024± 0.0937 (−0.005± 0.3895) 0.0004± 0.0762 (−0.003± 0.359) 0.0002± 0.0716 (−0.003± 0.352)

LANCZOS4 AIT 0.0011± 0.0942 (−0.006± 0.407) 0.0009± 0.0787 (−0.007± 0.374) 0.0009± 0.0737 (−0.007± 0.366)
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Table 15 – Median and mean differences between magnitudes obtained from a random
original Spitzer/IRAC image and magnitudes of sources selected in the same
way from the resampled image, at the original IRAC pixel scale, for different
choices of projections and interpolation functions.

magAB < 23 magAB < 22 magAB < 21

Projection Interp. Median (Mean) diff. Median (Mean) diff. Median (Mean) diff.

NEAREST AIT −0.0011± 0.2459 (−0.066± 0.586) −0.0151± 0.2319 (−0.099± 0.576) −0.021± 0.229 (−0.118± 0.587)

LACZOS3 AIT −0.0443± 0.2404 (−0.0812± 0.5705) −0.0593± 0.2321 (−0.1118± 0.5471) −0.0639± 0.2248 (−0.1313± 0.5635)

LANCZOS4 AIT −0.0290± 0.2424 (−0.0589± 0.5989) −0.0474± 0.2262 (−0.1058± 0.5855) −0.0561± 0.2336 (−0.1372± 0.6116)

Table 16 – Median and mean differences between magnitudes obtained from a random
original Spitzer/IRAC image and magnitudes of sources selected in the same
way from the resampled image, at the HST pixel scale, for the AIT projection
and the NEAREST interpolation function.

magAB < 23 magAB < 22 magAB < 21

Projection Interp. Median (Mean) diff. Median (Mean) diff. Median (Mean) diff.

NEAREST AIT 0.0126± 0.0882 (−0.00047± 0.2308) 0.0129± 0.0790 (−3.0518e− 05± 0.2344) 0.0187± 0.0524 (0.0123± 0.2024)

LANCZOS3 AIT 0.0092± 0.1005 (−0.0142± 0.3233) 0.0096± 0.0809 (−0.0225± 0.3291) 0.0165± 0.0520 (−0.0147± 0.3517)

A.3 P S F E X

PSFEx (PSF Extractor) is a program by Bertin (2011) that extracts models of
the Point Spread Functions (PSFs) from astronomical images processed by SEx-
tractor. PSFEx pre-selects detections which are likely to be point sources (stars),
finding the position of the stellar locus in a magnitude vs half-light-radius dia-
gram (Kaiser, Squires, and Broadhurst, 1995), based on source characteristics
such as half-light radius and ellipticity, while rejecting saturated objects. The
selected sources are those whose shape does not depend on the flux and, among
the image profiles of all real sources, those with the smallest FWHM. This selec-
tion is iterated several times to minimize contamination of the sample by image
artifacts, multiple stars and compact galaxies.

In Fig. 40, I present the radial profiles of the PSFs I obtain for my F140W,
3.6µm, 4.5µm images (for the space images I derive one PSF per band from the
best image providing unsaturated stars and I use it for all the images in same
band), one example of a PSF obtained for ACAM and one for GMOS-S images
(for the ground images I derive one PSF for each observed field). The FWHM
of the PSFs, in pixel units, is the last number on the bottom right of each figure.

A.4 T- P H OT

T-PHOT is a program designed by Merlin et al. (2015, 2016) to perform pre-
cision photometry of a low resolution image (LRI) using the spatial and mor-
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phological information given by a higher resolution image (HRI) of the same
field. More specifically, with true high-resolution priors (from HST/F140W in
my case), T-PHOT uses:

· a detection, high-resolution image (HRI);
· a catalog of the sources in the HRI, obtained with SExtractor, includ-

ing: (ID, X, Y, XMIN, YMIN, XMAX, YMAX, BACKGROUND,
FLUX_ISO);

· a segmentation map of the HRI;
· a convolution kernel K, matching the PSFs of the HRI and the LRI so that

PSF(LRI) = K ⊛ PSF(HRI) (⊛ is the symbol for convolution), and having
the HRI pixel scale.

The T-PHOT analysis consists in different steps:

Step 1: Priors.
It creates stamps of the sources using the coordinates and the boundaries indi-
cated in the input catalog and the segmentation map.

Step 2: Convolve.
It convolves each high-resolution stamp with the kernel K to obtain models of
the sources at the LRI resolution, normalized to the total flux. The convolution
is performed in Fourier space, using fast FFTW3 libraries.

Step 3: Fit.
It performs the fitting procedure, solving a linear system and obtaining the mul-
tiplicative factors to match each template flux with the measured one. The linear
system is defined as:

∑
m,n

I(m,n) =
∑
m,n

N∑
i

FiPi(m,n) , (98)

where m and n are the pixel indexes, I contains the pixel values of the fluxes
in the LRI, Pi is the normalized flux of the template for the ith objects in the
LRI, and Fi is the multiplicative scaling factor for each object, i.e., the flux of
each object in the LRI. The best fit of the fluxes is derived by minimizing the
following χ2 statistic:

δχ2

δFi
= 0 , χ2 =

[∑
m,n I(m,n) −M(m,n)

σ(m,n)

]2

, (99)

where

M(m,n) =
∑
i

FiPi(m,n) , (100)

and σ is the value of the rms map at the (m,n) pixel position.
In order to refine the procedure, a threshold can be imposed so that only pixels

with a flux higher than this level will be used in the fit.
I use the cells-on-object fitting method, which is computationally time-saving

and is sufficiently accurate for images where the blending of sources is not dra-
matic. This method first orders objects by decreasing flux; it builds a cell around
each source of the dimensions of the object template, and then it enlarges the
cell to include all the overlapping objects which are appended to the cell list.
The linear system is solved in that cell for the central object and the obtained
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flux is assigned to the source. Then, the central object is subtracted from the
image and the fit is performed on the rest of the cell (to avoid that bright objects
contaminate the fit of fainter sources).

Step 4: Diags.
The program selects the best fits and produces the final output catalogs with
fluxes and errors. Statistical errors are calculated as the square root of the di-
agonal element of the covariance matrix constructed during the fitting stage for
each source. In particular, the covariance matrix is build from the scientific and
the weight maps of the images, which in our case include the error due the back-
ground, the dark current, the gain, and the read-out noise. In addition, T-PHOT
assigns a flag to each source indicating possible causes of systematic uncertain-
ties, as follows:

· +1: the prior has saturated or negative flux;
· +2: the prior is blended (from the segmentation map);
· +4: the source is at the border of the image.

Step 5: Dance.
The program obtains local convolution kernels for the second pass, in order to
obtain more astrometrically precise results. In details:

· the LRI is divided into cells of a given size; in each cell, the LRI is cross-
correlated with the model image and a linear shift is computed;

· for the regions where the previous registration process gives large shifts,
above a given threshold parameter, interpolated shifts are computed;

· the computed shifts are used to create a new set of kernels by linearly
interpolating their positions.

Step 6: Archive.
At the end of the second pass, the program archives all results in a subdirectory.
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B
P U B L I S H E D PA P E R S

In this Appendix, I enclose my publications.

The first part of my PhD thesis, discussed in Chapters 4 and 5, is published in
two articles, of which I am the leading author:

1. Amodeo, S., Mei, S., Stanford, S. A., Bartlett, J. G., Melin, J. B., Lawrence,
C. R., Chary, R. R., Shim, H., Marleau, F. R., Stern, D. (2017), “Calibrating

the Planck Cluster Mass Scale with Cluster Velocity Dispersions", ApJ, 844,
101

2. Amodeo, S., Mei, S., Stanford, S. A., Lawrence, C. R., Bartlett, J. G.,
Stern, D., Chary, R. R., Shim, H., Marleau, F. R., Melin, J. B., Rodríguez-
Gonzálvez, C. (2018), “Spectroscopic confirmation and velocity dispersions

for twenty Planck galaxy clusters at 0.16 < z < 0.78", ApJ, 853, 36

My complementry work, described in Chapter 8, is published in the following
three articles - in one I am the leading author:

3. Amodeo, S., Ettori, S., Capasso, R., Sereno, M. (2016), “The relation be-

tween mass and concentration in X-ray galaxy clusters at high redshift",
A&A, 590, A126

4. Ghirardini, V., Ettori, S., Amodeo, S., Capasso, R., Sereno, M. (2017), “On

the evolution of the entropy and pressure profiles in X-ray luminous galaxy

clusters at z > 0.4", A&A, 604, A100

5. Corasaniti, P. S., Ettori, S., Rasera, Y., Sereno, M., Amodeo, S., Breton, M.-
A., Ghirardini, V., Eckert, D. (2017), “Probing cosmology with dark matter

halo sparsity using X-ray cluster mass measurements”, ApJ, 862, 40

My results on the analysis of the CARLA cluster galaxy population are
planned to be published in other two papers in preparation. I will be the first
author of the paper describing the photometric catalog, the analysis of the galaxy
stellar populations using their colors, and the evolution of the passive galaxy
fraction. I will be the second author of a paper on the morphology and structural
properties of the galaxies hosted by the confirmed CARLA clusters.
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Abstract

We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a
subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from
spectra that were obtained at the Gemini observatory with the GMOS multi-object spectrograph. We correct our
estimates for effects due to finite aperture, Eddington bias, and correlated scatter between velocity dispersion and the
Planck mass proxy. The result for the mass bias parameter, b1 -( ), depends on the value of the galaxy velocity bias,

bv, adopted from simulations: b b1 0.51 0.09 v
3- = ( ) ( ) . Using a velocity bias of b 1.08v = from Munari et al.,

we obtain b1 0.64 0.11- = ( ) , i.e., an error of 17% on the mass bias measurement with 17 clusters. This mass
bias value is consistent with most previous weak-lensing determinations. It lies within 1s of the value that is needed
to reconcile the Planck cluster counts with the Planck primary cosmic microwave background constraints. We
emphasize that uncertainty in the velocity bias severely hampers the precision of the measurements of the mass bias
using velocity dispersions. On the other hand, when we fix the Planck mass bias using the constraints from Penna–
Lima et al., based on weak-lensing measurements, we obtain a positive velocity bias of b 0.9v  at 3s.
Key words: cosmic background radiation – cosmology: observations – galaxies: clusters: general – galaxies:
distances and redshifts

1. Introduction

Galaxy clusters are fundamental tools for tracing the
evolution of cosmic structures and constraining cosmological
parameters. Their number density at a given epoch is strongly
dependent on the amplitude of density fluctuations, 8s (the
standard deviation within a comoving sphere of radius
8 h−1Mpc), and the matter density of the Universe, mW (see,
e.g., the review by Allen et al. 2011). The mass of galaxy
clusters is a key quantity in their use as cosmological probes.
Unfortunately, mass is not directly observable, but it can be
estimated through several independent methods based on
different physical properties that are each affected by their
own set of specific systematic effects. Methods are based on the
analysis of the thermal emission of the intracluster medium
(ICM), observed either in the X-rays or through the Sunyaev–
Zeldovich (SZ) effect (Sunyaev & Zeldovich 1970), the
dynamics of member galaxies, and gravitational lensing.
Comparison of mass estimates using different techniques is a
critical check on the reliability of each method under different
conditions, and also a test of the cosmological scenario.

The SZ effect originates from the transfer of energy from the
heated electrons in the ICM to the photons of the cosmic
microwave background (CMB) via inverse Compton scattering
(see the review by Carlstrom et al. 2002). This scattering
generates a distortion of the blackbody spectrum of the CMB,
which appears as a decrease in intensity at frequencies below

218 GHz and as an increase in intensity at higher frequencies.
The amplitude of this effect is quantified by the Compton
parameter integrated along the line of sight, y T ne eµ , where Te
and ne are the electron temperature and density, respectively; or
equivalently, is quantified by its solid-angle integral,

Y y dò= W. Unlike optical or X-ray emission, the surface
brightness of the SZ effect (relative to the mean CMB
brightness) is independent of distance. Dedicated SZ cluster
surveys can therefore efficiently find clusters out to high
redshifts. Moreover, since the SZ signal is proportional to the
thermal energy of the ICM, it can be used to estimate total
cluster mass, and numerical simulations (e.g., Kravtsov et al.
2006) show that the integrated Compton signal, Y, tightly
correlates with the mass.
Recent millimeter-wave surveys are providing large samples

of SZ-detected clusters and applying them in cosmological
analysis: the South Pole Telescope (SPT; Bleem et al. 2015; de
Haan et al. 2016), the Atacama Cosmology Telescope (ACT;
Marriage et al. 2011; Hasselfield et al. 2013), and the Planck
satellite (Planck Collaboration et al. 2015). Planck produced
two all-sky SZ cluster catalogs, the PSZ1 with 1227 detections
based on 15.5 months of data, and the PSZ2 with 1653
detections from the full mission data set of 29 months (Planck
Collaboration et al. 2014b, 2016b). Using subsamples of
confirmed clusters at higher detection significance, Planck
constrained cosmological parameters from the cluster counts
(Planck Collaboration et al. 2014a, 2016a), noting tension with
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the values of 8s and mW favored by the primary CMB
anisotropies.

The largest source of uncertainty in cosmological inference from
the cluster counts is the SZ-signal-halo mass relation. Higher
angular resolution SZ observations show that the Planck

determination of the SZ signal is robust (Rodriguez-Gonzalvez
et al. 2017; Sayers et al. 2016). Planck calibrates the relation with
mass proxies from XMM-Newton X-ray observations (Arnaud
et al. 2010); the proxies are in turn calibrated, assuming the
hydrostatic equilibrium of the ICM (see the Appendix of Planck
Collaboration et al. 2014a). This assumption, however, neglects
possible contributions from bulk motions and non-thermal sources
to the pressure support of the ICM. Analyses of mock data from
simulations indicate that these can cause a 10%–25% underestimate
of cluster total mass (e.g., Nagai et al. 2007; Piffaretti & Valdarnini
2008; Meneghetti et al. 2010). Other effects, such as instrument
calibration or temperature inhomogeneities in the gas (Rasia et al.
2006, 2014), can additionally bias hydrostatic mass measurements.
It is common to lump all possible astrophysical and observational
biases into the mass bias parameter, b1 -( ), defined in Section 3.
Simulations and comparison of different X-ray analyses indicate
the range, b=0%–40%, with a baseline value of 20% (Mazzotta
et al. 2004; Nagai et al. 2007; Piffaretti & Valdarnini 2008;
Lau et al. 2009; Kay et al. 2012; Rasia et al. 2012; Rozo et al.
2014a, 2014b, 2014c). To reconcile the Planck cluster
constraints with those of the primary CMB, a mass bias of

b1 0.58 0.04- = ( ) is required (Planck Collaboration et al.
2016a). The comparison of Planck and CARMA-8 measurements
by Rodriguez-Gonzalvez et al. (2017) shows that this tension is not
due to any bias in the Planck flux measurements. Moreover, a
recent analysis of the local X-ray cluster temperature function finds
that the same mass bias value is needed to reconcile the X-ray
cluster abundance with the CMB cosmology (Ilic et al. 2015).

Weak gravitational lensing (WL) provides an alternate
method of measuring cluster mass (e.g., Hoekstra & Jain
2008). The bending of light by the cluster gravitational field
distorts the images of background galaxies, elongating them
tangentially around the cluster. Statistical analysis of such
distortions gives a direct estimate of the density profile of the
cluster and its total mass. Gravitational lensing is particularly
efficient in estimating cluster mass because it is sensitive to the
total mass, independently of cluster composition or dynamical
state. However, since WL measures the projected mass, cluster
triaxiality and the presence of substructures along the line of
sight introduce significant noise; nevertheless, the noise can be
reduced by stacking the WL signal from a large number of
clusters to yield an unbiased estimate of the sample mass
(Sheldon et al. 2004; Johnston et al. 2007; Corless &
King 2009; Meneghetti et al. 2010; Becker & Kravtsov 2011).

Several recent WL calibrations of the Planck cluster scale have
found results in the range of b0 30< < %, at the 10% precision
level (von der Linden et al. 2014; Hoekstra et al. 2015; Simet et al.
2017a; Smith et al. 2016). Melin & Bartlett (2015) propose a new
technique to measure cluster masses through lensing of CMB
temperature anisotropies. First detections of this effect have been
reported by Planck Collaboration et al. (2016b), Baxter et al.
(2015) for SPT, and Madhavacheril et al. (2015) for ACT, which
holds great promise for the future. Battaglia et al. (2016) have
pointed out the potential impact of the Eddington bias—the steep
mass function scattering the meaning is: the scatter is larger for
low-mass objects more low-mass than high-mass objects into an
SZ-signal bin—on these mass calibrations. Using a complete

Bayesian analysis to account for this and other effects, Penna-Lima
et al. (2016) obtained a value of b 25~ %, which is consistent
with previous measurements. This illustrates the importance of the
cluster mass measurements and the need for independent
determinations, as well as the need for increasing precision.
An additional, widely used method to constrain cluster mass

takes the velocity dispersion of member galaxies as a measure of
the gravitational potential of the dark-matter halo, which is
assumed to be in virial equilibrium. The scaling relation between
velocity dispersion and mass has been well established by
cosmological N-body and hydrodynamical simulations (e.g.,
Evrard et al. 2008; Munari et al. 2013), which confirm the trend
of M1 3s µ expected from the virial relation for a broad range
of masses, redshift, and cosmological models. Cluster member
galaxies may not, however, share the same velocity dispersion as
the bulk of the dark matter, as they are hosted by subhalos whose
dynamical states may differ. This introduces the concept of the
velocity bias (e.g., Carlberg 1994; Colín et al. 2000) that mass
estimates must be able to account for. Recently, Sifón et al
(2016) presented dynamical mass estimates based on galaxy
velocity dispersions for a sample of 44 clusters observed with
ACT. Their sample spans a redshift range of  z0.24 1.06< < ,
with an average of 55 spectroscopic members per cluster.
Comparing dynamical and SZ mass estimates, they find a mass
bias of b1 1.10 0.13- = ( ) (i.e., b 10= - %).
In the present work, we study the relation between velocity

dispersion and the SZ Planck mass for a sample of 17 Planck
clusters observed at the Gemini Observatory to estimate the mass
bias parameter. All but one cluster are in the PSZ2. In Section 2 we
describe the observations and the sample, and then present our
results in Section 3. We discuss the resulting mass bias
measurement and compare our results to previous measurements
in Section 4; we also turn the analysis around to constrain the
velocity bias by adopting a constraint on the mass bias from WL
observations. Section 5 concludes. Throughout, we adopt the
Planck base ΛCDM model (Planck Collaboration et al. 2016b): a
flat universe with 0.307mW = and H0=67.74 km s−1Mpc−1

(h H 1000º ( km s−1Mpc−1). Mass measurements are quoted at
a radius of RΔ, within which the cluster density is Δ times the
critical density of the universe at the cluster’s redshift, where

200, 500D = { }. All quoted uncertainties are at a 68.3% (1σ)

confidence level, unless otherwise stated.

2. The Data Set

2.1. Gemini/GMOS Spectroscopy

The goal of our program was to obtain an independent statistical
calibration of the Planck SZ mass estimator. We chose Planck SZ-
selected clusters that were detected with a signal-to-noise of 4.5σ
or larger, distributed in the north and in the south, with a broad
range in mass. We obtained pre-imaging and optical spectroscopy
with GMOS-N and GMOS-S at the Gemini-North and Gemini-
South Telescopes (Programs GN-2011A-Q-119, GN-2011B-Q-41,
and GS-2012A-Q-77; P.I. J.G. Bartlett), respectively, of 19 galaxy
clusters, spanning a range of 2×1014M☉M500,SZ10

15M☉

in Planck SZ masses (a more detailed discussion of these
observations will follow in a companion paper). We were able to
obtain velocity dispersion measurements for 17 clusters, which
constitute our sample in this paper. All but one (PLCK G183.33-
36.69) are in the PSZ2 catalog.
The northern sample was selected in the SDSS (Sloan Digital

Sky Survey (SDSS); York et al. 2000) area. We used the SDSS

2
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public releases and GMOS-N pre-imaging in the r-band for
150s to detect red galaxy overdensities at the Planck detection,
and, when unknown, estimate the approximate redshift using
their red sequence. For PSZ2 G139.62+24.18 and PSZ2
G157.43+30.34, we used imaging obtained with the Palomar
telescope (PI: C. Lawrence). For the Southern sample, we
obtained GMOS-S imaging in the g- and i-bands for 200s and
90s, respectively. Red galaxy overdensities and cluster
members were selected by their colors using Bruzual &
Charlot (2003) stellar population models and Mei et al. (2009)
empirical red sequence measurements. In Table 1, we list our
sample properties and the spectroscopy observing times.

The GMOS spectra were reduced using the tasks in the IRAF
Gemini GMOS package and standard longslit techniques. After
co-adding the reduced exposures, one-dimensional spectra for
the objects in each slitlet were extracted and inspected visually
to identify optical features such as the 4000Åbreak, G-band,
Ca H+K absorption lines, and, rarely, [O II]λ3727. More
precise redshifts were determined by running the IRAF xcsao
task on these spectra. We calculate the cluster velocity
dispersions using the ROSTAT software (Beers et al. 1990)
with both the Gaussian and biweight methods, which are
appropriate for our clusters where there are typically 10–20
confirmed members. We retain cluster members galaxies within
3σ of the average cluster redshift. From the original sample of
19 clusters, we have excluded 2, which have complex non-
Gaussian velocity distribution profiles. In a companion paper
(S. Amodeo et al. 2017, in preparation), we show the velocity
histograms of all observed clusters and publish catalogs of
spectroscopic redshift measurements.

An important assumption that we make for this analysis is
that our cluster sample is a representative, random subsample
of the Planck SZ-selected catalog. In this case there are no
corrections for selection effects, such as Malmquist bias,
because we determine the mean scaling for the velocity
dispersion given the SZ mass proxy.

2.2. Planck Mass Proxy

The Planck SZ mass proxy is based on a combination of

Planck data and an X-ray scaling relation established with

XMM-Newton. It has been used in the last two Planck cluster

catalog papers (Planck Collaboration et al. 2014b, 2016b). Here

we give a brief summary and refer the reader to section 7.2.2 of

Planck Collaboration et al. (2014b) for more details.
With respect to the PSZ2, in this paper we derive new cluster

mass estimates, taking into account the cluster centers from our

Gemini/Palomar optical follow-up. For each cluster, we

measure the SZ flux, Y500, inside a sphere of radius of R500

using the Multifrequency Matched Filter (MMF3, Melin et al.

2006). The filter combines the six highest frequency bands

(100–857 GHz) weighted to optimally extract a signal with the

known SZ spectral shape and with an assumed spatial profile.

For the latter, we adopt the so-called universal pressure profile

from Arnaud et al. (2010). We center the filter on the optical

position and vary its angular extent, 500q , over the range of

[0.9–35] arcmin to map out the signal-to-noise surface over the

flux-size (Y500 500q– ) plane. In the Planck data there is a

degeneracy between the measured flux and cluster size defined

by this procedure, which we break using an X-ray determined

scaling relation as a prior constraint (i.e., an independent Y q-
relation obtained from the combination of Equations (7) and (9)

of Planck Collaboration et al. 2014a). The intersection of the

former with that of the Planck degeneracy contours yields a

tighter constraint on the flux Y500, which we then convert to

halo mass, M500
Pl , using Equation (7) of Planck Collaboration

et al. (2014a). It is important to note that the mass proxy is

therefore calibrated on the XMM-Newton scaling relation.

These masses are reported in Table 2. In order to compare our

mass measurements to those of the other independent estimates,

we rescale the Planck masses to M200
Pl using the mass–

concentration relation of Dutton & Macciò (2014). The

Table 1

The Cluster Sample Used in This Paper

Name R.A. Decl. Im. Filter texp Nmask
Run

(deg) (deg) (s)

PSZ2 G033.83–46.57 326.3015 −18.7159 g, i 1800 2 GS-2012A-Q-77

PSZ2 G053.44–36.25 323.8006 −1.0493 r 1800 1 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G056.93–55.08 340.8359 −9.5890 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G081.00–50.93 347.9013 3.6439 r 1800 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G083.29–31.03 337.1406 20.6211 r 1800 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G108.71–47.75 3.0715 14.0191 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G139.62+24.18 95.4529 74.7014 r 900 2 GN-2011A-Q-119,GN-2011B-Q-41

g, i, r, J, K Palomar Hale Telescope

PSZ2 G157.43+30.34 117.2243 59.6974 r 3600 2 GN-2011A-Q-119,GN-2011B-Q-41

g, i, r, J, K Palomar Hale Telescope

PLCK G183.33–36.69 57.2461 4.5872 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

g, J, K Palomar Hale Telescope

PSZ2 G186.99+38.65 132.5314 36.0717 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G216.62+47.00 147.4658 17.1196 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G235.56+23.29 134.0251 −7.7207 g, i 900 2 GS-2012A-Q-77

PSZ2 G250.04+24.14 143.0626 −17.6481 g, i 1800 GS-2012A-Q-77

PSZ2 G251.13–78.15 24.0779 −34.0014 g, i 900 2 GS-2012A-Q-77

PSZ2 G272.85+48.79 173.2938 −9.4812 g, i 900 2 GS-2012A-Q-77

PSZ2 G329.48–22.67 278.2527 −65.5555 g, i 900 2 GS-2012A-Q-77

PSZ2 G348.43–25.50 291.2293 −49.4483 g, i 900 2 GS-2012A-Q-77

Note. We list the PSZ2 cluster ID, when available. When it is not available, we use the prefix “PLCK” followed by a notation in galactic coordinates similar to that

used in the PSZ2 paper.
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rescaling procedure is described in Appendix A and the
resulting values of M200

Pl are listed in Table 2.

2.3. Correcting Velocity Dispersions for GMOS Finite
Aperture

The GMOS spectrographs provide imaging and spectrosc-
opy over a 5.5×5.5 arcmin2 field of view, allowing
measurements for only the central part of clusters. The radial
coverage provided for each cluster at a given redshift,
calculated for the Planck 2015 cosmology, is quoted in Table 2
as Rmax in units of R200, along with R200. We typically sample
out to about half R200, with Rmax ranging over R0.35 0.58 200[ – ] .
However, we need to estimate the velocity dispersion within

R200, R200 200s sº <( ) to compare to the σ–M relation from the
simulations (see the next section). Sifón et al. (2016) determine
the radial profile of the velocity dispersion using mock
observations of subhalos in the Multidark simulation (Prada
et al. 2012), as described in Section 3.2 of their paper. We
interpolate the correction factors presented in their Table 3 to
our values of R Rmax 200 to translate our velocity dispersion
measurements, R1D maxs <( ), to 200s . Thus, the estimated
velocity dispersions are listed in Table 2, where the
uncertainties account for our measurement errors and the
scatter in the velocity dispersion profile found by Sifón et al.
(2016). The mean corrections are of the order of 5%, while the
uncertainty increases up to 32%. Figure 1 plots the velocity

dispersions 200s versus M200
Pl .

Table 2

Redshifts, Velocity Dispersions, and SZ Masses

Name z Ngal Rmax R200 R1D maxs <( ) 200s M200
Pl M500

Pl

(R200) (Mpc) (km s−1) (km s−1) ( M1014 ) ( M1014 )

PSZ2 G033.83–46.57 0.439 10 0.58 1.66±0.08 985 277
451

-
+ 953 282

454
-
+ 7.8±1.1 5.4 0.8

0.7
-
+

PSZ2 G053.44–36.25 0.331 20 0.42 1.93±0.06 1011 131
242

-
+ 956 161

260
-
+ 10.9±1.0 7.5 0.6

0.5
-
+

PSZ2 G056.93–55.08 0.443 46 0.49 2.00±0.05 1356 127
192

-
+ 1290 164

218
-
+ 13.8±1.1 9.4±0.5

PSZ2 G081.00–50.93 0.303 15 0.41 1.88±0.06 1292 185
360

-
+ 1220 223

381
-
+ 9.8±0.9 6.7±0.5

PSZ2 G083.29–31.03 0.412 20 0.49 1.89±0.06 1434 320
574

-
+ 1365 338

584
-
+ 11.3±1.0 7.8 0.6

0.5
-
+

PSZ2 G108.71–47.75 0.390 10 0.55 1.65±0.08 900 190
458

-
+ 865 198

461
-
+ 7.3±1.1 5.1 0.8

0.7
-
+

PSZ2 G139.62+24.18 0.268 20 0.36 1.96±0.06 1120 238
366

-
+ 1052 273

390
-
+ 10.6±0.9 7.3±0.5

PSZ2 G157.43+30.34 0.402 28 0.47 1.94±0.05 1244 109
192

-
+ 1182 148

216
-
+ 12.1±1.0 8.2±0.6

CL G183.33–36.69 0.163 11 0.35 1.38±0.17 897 275
437

-
+ 842 297

451
-
+ 3.3±1.2 2.3 0.9

0.7
-
+

PSZ2 G186.99+38.65 0.377 41 0.49 1.81±0.06 1506 120
164

-
+ 1432 166

200
-
+ 9.5±1.0 6.6 0.7

0.6
-
+

PSZ2 G216.62+47.00 0.385 37 0.45 1.97±0.05 1546 132
174

-
+ 1466 186

218
-
+ 12.3±1.0 8.4 0.6

0.5
-
+

PSZ2 G235.56+23.29 0.374 23 0.51 1.73±0.08 1644 192
285

-
+ 1568 224

308
-
+ 8.2±1.2 5.7 0.8

0.7
-
+

PSZ2 G250.04+24.14 0.411 29 0.53 1.75±0.07 1065 285
447

-
+ 1020 293

452
-
+ 8.9±1.0 6.2±0.6

PSZ2 G251.13–78.15 0.304 9 0.48 1.59±0.08 801 493
852

-
+ 762 497

854
-
+ 5.9±0.9 4.1±0.6

PSZ2 G272.85+48.79 0.420 10 0.57 1.65±0.08 1462 216
389

-
+ 1411 231

397
-
+ 7.6±1.1 5.3 0.8

0.7
-
+

PSZ2 G329.48–22.67 0.249 11 0.38 1.73±0.07 835 119
179

-
+ 786 149

200
-
+ 7.2±0.9 5.0 0.6

0.5
-
+

PSZ2 G348.43–25.50 0.265 20 0.37 1.84±0.06 1065 198
411

-
+ 1003 230

427
-
+ 8.7±0.9 6.0±0.6

Note. From left to right the columns list the Cluster ID, our measured average redshift, the number of confirmed member galaxies, the maximum radius probed by

GMOS, R ,max R200, our measured velocity dispersion, Rmaxs <( ), the velocity dispersion estimated within R200, 200s , the reference PSZ2 M500
Pl , and the M200

Pl derived in

this work based on SZ.

Table 3

Best-fit Values and Vertical Scatter (i.e., at Given Mass) of the Velocity Dispersion–Mass Relation, A E z M M10 B15s = [ ( ) ] , Together with Mass Bias Estimates

Relation A B Scatter b b f f1 v
3

EB corr-( ) b1 Munari-( )
a

(km s−1)
ln
2 1 2dá ñs

All clusters

R M1D max 200
Pls <( )– 1239±99 0.29±0.21 0.189±0.018 L L

R M1D max 200
Pls <( )– 1226±68 1/3 0.182±0.012 0.47±0.08 0.55±0.09

M200 200
Pls – 1172±93 0.28±0.20 0.198±0.018 L L

M200 200
Pls – 1158±61 1/3 0.189±0.009 0.55±0.09 0.64±0.11

Only clusters with N 20gal 

R M1D max 200
Pls <( )– 1250±71 1/3 0.168±0.014 0.44±0.08 0.51±0.09

M200 200
Pls – 1156±58 1/3 0.136±0.012 0.56±0.08 0.66±0.09

Notes.Results are given for our velocity dispersion estimates, R1D maxs <( ), and for the derived velocity dispersions within R200, 200s . We distinguish the case where

all clusters in the sample are included in the fit from the case where only those with at least 20 member galaxies are considered.
a
The values of the mass bias quoted in the last column are obtained using the velocity bias, bv, derived by Munari et al. (2013), following the notation of Equation (5),

where the Eddington bias correction is also included.
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3. Analysis: The Mass Bias

3.1. The Mass Bias and the Velocity Bias

Our goal is to find the Planck cluster mass scale using
velocity dispersion as an independent mass proxy calibrated on
numerical simulations. We define the mass bias factor, b1 -( ),
in terms of the ratio between the Planck-determined mass,
M200

Pl , and true cluster mass, M200 (von der Linden et al. 2014;
Hoekstra et al. 2015; Planck Collaboration et al. 2016b). We
assume that mass bias factor is a constant and independent of
overdensity. In fact, while the mass bias may depend on the
mass and other cluster properties, our small sample only
permits us to constrain a characteristic value averaged over the
sample. For M200, the mass bias is defined as

M b M1 . 1200
Pl

200= -( ) ( )

Complete virialization predicts a power-law relation between
velocity dispersion, 200s , and mass, M200. Following the
approach used in the simulations, we work with the logarithm
of these quantities, sv=ln(σ200/km s−1), μ=ln(E(z)M200/
1015Me), where h z H z 100º( ) ( ) ( km s−1 hE zMpc 1 =- ) ( )

is the dimensionless Hubble parameter at redshift z, and we
consider the log-linear relation of

s a . 2v d dm a má ñ = +∣ ( )

The so-called self-similar slope that is expected from purely

gravitational effects is 1 3da = . The angle brackets indicate that

this is the mean value of sv, given μ. From a suite of simulations,

Evrard et al. (2008) determined a precise relation between the

dark-matter velocity dispersion and the halo mass that was

consistent with this expectation. They find a normalization of

a hln 1082.9 4.0 ln ;d da=  +( ) in the following, we will also

refer to A ead
dº . The result is insensitive to cosmology and to

nonradiative baryonic effects, and the relation is very tight, with

only 4% scatter at fixed mass.
Galaxies, however, may have a different velocity dispersion

than their dark-matter hosts because they inhabit special locations

within the cluster, e.g., subhalos. This leads to the concept of
velocity bias, in which the scaling of galaxy velocity dispersion
with host halo mass will, in general, be fit by a relation of the form
of Equation (2), but with different parameters, A eag

gº and ga .
Simulations typically find the exponent ga to be consistent with
the self-similar value of 1/3, so we can quantify any velocity bias
in terms of the normalization, Ag. We do so by introducing the
velocity bias parameter of b A Av g dº .
Different simulation-based or empirical analyses find

discordant behavior for the velocity bias, leaving the sense of
the effect (i.e., b 1v > or b 1v < ) up for debate.
Using hydrodynamical simulations with star formation, gas

cooling and heating by supernova explosions, and AGN
feedback, Munari et al. (2013) found that subhalos and
galaxies have a slightly higher velocity dispersion than that
of the dark matter, i.e., a positive velocity bias with b 1v > . For
galaxies in their AGN-feedback model, for example, they find
A 1177g =˜ , corresponding to b 1.08v = .
From combined N-body and hydrodynamical simulations, Wu

et al. (2013) found that velocity bias depends on the tracer
population, in particular, that subhalos in pure N-body simulations
tend to have large positive bias compared to galaxies identified in
the hydrodynamical simulations, perhaps because over-merging
in the former case removes slower, low-mass dark-matter halos
from the tracer population. Consistent with this notion where
smaller objects are more efficiently destroyed, all tracers in their
simulations show increasingly positive velocity bias with
decreasing subhalo mass or galaxy luminosity, independent of
redshift. The brightest cluster galaxies tend to underestimate the
dark-matter halo velocity dispersion, while faint galaxies slightly
overestimate the dark-matter halo velocity dispersion, with the
velocity bias ranging from ∼0.9 for the five brightest cluster
galaxies to an asymptotic value of b 1.07v = when including the
100 brightest galaxies (see Figure 1 in their paper). For samples of
more than ∼50 galaxies, their result converges to the value of
Munari et al. (2013; b 1.08v = ). The 10–20 brightest galaxies,
similar to our observational sample, represent a nearly unbiased
measurement of the halo velocity dispersion, i.e., b 1v = .
On the other hand, Guo et al. (2015) observe the opposite

trend with luminosity when measuring the velocity bias of
galaxies in the SDSS Data Release 7 (see their Figure 9). They
find b 1.1v  for the brightest galaxies, falling to 0.85 for faint
galaxies. It is worth noting that this analysis is based on
modeling of the projected and redshift-space two-point
correlation functions, and it is probably not very sensitive to
velocity bias in the most massive halos, such as those in the
Planck sample. Farahi et al. (2016) use the velocity bias from
the bright subsample of Guo et al. (2015) (b 1.05 0.08v =  )

to estimate the mass of redMaPPer clusters with stacked galaxy
velocity dispersions. Their derived mass scale is consistent with
the estimates based on weak-lensing observations reported by
Simet et al. (2017b). The Guo et al. (2015) observational result
is also consistent with the value b 1.08v = from the N-body
hydrodynamical simulations of Munari et al. (2013). In an
another study, Caldwell et al. (2016) find a negative velocity
bias, b 0.896v = , for galaxies in their simulations when they
adjust feedback efficiencies to reproduce the present-day stellar
mass function and the hot-gas fraction of clusters and groups.
These different studies do not yet present a clear picture of

the magnitude of cluster member velocity bias, and this
quantity remains the primary factor limiting interpretation of
dynamical cluster mass measurements at present. We use the

Figure 1. Relation between the Planck SZ mass proxy and velocity dispersion
for our sample of 17 galaxy clusters observed with Gemini (diamonds). The
velocity dispersions and the Planck masses have been converted to 200s and

M200
Pl , respectively, with corresponding uncertainties following the procedure

described in the text. The solid red line shows the best fit to the functional form
of Equation (2) in log-space, where the slope is set to 1/3, with the dashed lines
delineating the dispersion of the data about the best-fit line.
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Munari et al. value of the velocity bias, b 1.08v = , as our
baseline in the following. The uncertainty on Munari et al.’s
velocity bias is 0.6%~ .

3.2. Measurement of the Mass Bias

As detailed in Appendix B, our model of constant mass bias,
b1 -( ), predicts a log-linear scaling relation of the form of

Equation (2) between the observed velocity dispersion and the
Planckmass proxy. We therefore construct an estimator for

b1 -( ) by fitting for the normalization, a, and exponent, α, of
this relation to the data in Figure 1. We perform the fit using the
MPFIT routine in IDL (Markwardt 2009; Williams et al. 2010)
and taking into account only the uncertainties in the velocity
dispersion (i.e., at fixed Planck SZ mass12).

For a robust estimation of the best-fit parameters, we perform
1000 bootstrap resamplings of the pairs (M ,200

Pl
200s ), re-

computing the best-fit parameters each time. This yields
A e 1172 93aº = ( ), and a slope of 0.28 0.20a =  (at
68.3% confidence). The slope is consistent with the self-similar
expectation of 1 3a = , although with large uncertainty. We
henceforth set 1 3a = and refit to find A 1158 61= ( ). The
dispersion of the velocity measurements about the best-fit line
(i.e., at given M200

Pl ) is 0.189 0.009ln
2 1 2dá ñ = s . The best fit

together with the data is plotted in Figure 1. A model with a
zero slope is excluded at 2s~ confidence, using the 2c
difference (the 2c for the best-fit model is 12.2, the 2c for the
zero-slope model is 14.3). We also performed the fit using only
clusters with more than 20 member galaxies. Once again fixing

1 3a = , we find that A 1156 58= ( ), in this case,
consistent with the previous value.

Our estimator for the mass bias then follows from the
formalism of Appendix B (Equation (23)),

b
A

A
f f

A

A
b f f1 , 3

g d
3

EB corr

3

v
3

EB corr- = = ⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠
( ) ( )

where fEB (Equation (24)) is the Eddington bias correction and

fcorr (Equation (25)) is a correction for correlated scatter

between velocity dispersion and the Planck mass proxy. With

our value for the normalization fit to the data and the value for

dark matter from Evrard et al. (2008), we have numerically,

b b f f1 0.55 0.09 . 4v
3

EB corr- = ( ) ( ) ( )

In the next two subsections, we propose f 0.93 0.01EB =  and

f 1.01corr » as reference values. Our final value for the mass bias

also depends on the cube of the velocity bias. Adopting our

baseline of b 1.08v = from Munari et al. (2013), we have

b
f

1 0.64 0.11
1.01

. 5corr- = 
⎛

⎝
⎜

⎞

⎠
⎟( ) ( ) ( )

The quoted uncertainty accounts for measurement error,
uncertainty on the Eddington bias correction, and uncertainty
on the velocity bias given by Munari et al. (2013); it is
dominated by the measurement error. The uncertainty on
Munari et al.ʼs velocity bias ( 0.6%~ ) is a negligible
contribution to our total error budget. It is more difficult to
assign an uncertainty to the correction for correlated scatter, as
this depends on the details of cluster physics; we argue below

that feedback makes this a minor correction, as reflected in our
fiducial value of f 1.01corr = .
A summary of best-fit parameters for several velocity

dispersion–mass relations is provided in Table 3. Where the
slope is set to 1/3, we quote our estimates of the Planck mass
bias for the velocity bias derived by Munari et al. (2013),
b 1.08v = . We distinguish results for the full sample from
results for the subsample of clusters with at least 20 member
galaxies.
Our value of b1 0.64 0.11- = ( ) lies within 1s of the

value b1 0.58 0.04- = ( ) needed to reconcile the cluster
counts with the primary CMB constraints.

3.3. Eddington Bias

In this section, we detail our Eddington bias correction. The
Eddington bias correction (Equation (24)),

f e , 6EB
sPl
2

= b- S ( )

depends on the local slope of the mass function on cluster

scales, 3b » , and the total dispersion, sPlS , of the Planck mass

proxy at a fixed true mass. This is because we assume that our

sample is a random draw from the parent sample selected on

M200
Pl . As described in Section 2.2, the mass proxy is calculated

as an intersection of Planck SZ measurements and the X-ray

based scaling relation in Planck Collaboration et al. (2014a).

We characterize the measurement uncertainty on M200
Pl by

averaging the calculated uncertainty over our cluster sample,

0.13 0.02sPls =  . To estimate the intrinsic scatter, we convert

the 0.17±0.02 dispersion of the Y M5 3- relation (Planck

Collaboration et al. 2014a) to 3 5sPls =˜ ( )(0.17±0.02)=
0.10±0.01. Combining the two, we arrive at a total scatter of

0.16 0.02. 7sPlS =  ( )

Setting 3b = , we calculate an Eddington bias correction of

fln 0.08 1 0.19 , 8EB = - ( ) ( )

or a reference value of f 0.93 1 0.01 0.93 0.01EB =  = ( ) .
Our estimate for the intrinsic scatter in the Planck

mass from Planck Collaboration et al. (2014a) may be
optimistic. If we allow a value 50% larger, we get a correction
of f 0.84 0.027EB =  . The resulting mass bias would
be b f1 0.58 0.097 1.01corr- = ( ) ( )( ).

3.4. Correlated Scatter

The second correction to our mass bias estimator arises from
correlated scatter between velocity dispersion and the Planck
mass proxy. It is given by (Equation (25)),

f e , 9r
corr

3 s sv Pl= bs s ( )˜ ˜ ˜

because only the intrinsic scatter is correlated. Stanek et al.

(2010) examined the covariance between different cluster

observables using the Millennium Gas Simulations (Hartley

et al. 2008). They found significant intrinsic correlation

between velocity dispersion and SZ signal, r 0.54=˜ , in the

simulation with only gravitational heating. In the simulation

that additionally included cooling and pre-heating, however,

the correlation dropped to r 0.079=˜ . This would seem to make

sense, as we might expect nongravitational physics, such as

feedback and cooling, to decouple the SZ signal, which

12
Taking into account errors on both velocity and mass measurements does

not noticeably change the result.
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measures the total thermal energy of the gas from the

collisionless component.
While the scatter of the dark-matter velocity dispersion is

only 4%, Munari et al. (2013) find a scatter in the range
0.1–0.15 for their subhalos and galaxies. Fixing 3b = and
taking r 0.08=˜ , 0.15svs =˜ , and 3 5 0.17 0.10sPls = =˜ ( ) as
reference values, we have

f
r

ln 0.010
0.08 0.15 0.10

, 10
s s

corr
v Pl
s s

= ⎜ ⎟⎜ ⎟⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
˜ ˜ ˜

( )

or a reference value of f 1.01corr = .

4. Discussion

We have estimated the Planck cluster mass bias parameter
by measuring the velocity dispersion of 17 SZ-selected clusters
observed with Gemini. It is corrected for both Eddington bias
and possible correlated scatter between velocity dispersion and
the SZ mass proxy. These corrections are based on a
multivariate log-normal model for the cluster observables that
is detailed in Appendix B. We do not correct individual cluster
masses for Eddington bias (e.g., Sifón et al. 2016), but rather
apply a global correction to the mean scaling relation between
velocity dispersion and Planck mass proxy.

Our primary objective in calibrating the mass bias of Planck
clusters is to inform the cosmological interpretation of the
Planck cluster counts. Planck Collaboration et al. (2014a) and
Planck Collaboration et al. (2016a) found tension between the
observed cluster counts and the counts predicted by the base
ΛCDM model fit to the primary CMB anisotropies, with the
counts preferring lower values of the power spectrum normal-
ization, 8s . The importance of the tension, however, depends on
the normalization of the SZ signal–mass scaling relation. The
Planck team uses a relation calibrated on XMM-Newton
observations of clusters (see the Appendix of Planck
Collaboration et al. 2014a), and proposed that the mass bias
parameter, b, accounts for possible systematic offsets in this
calibration due to astrophysics and (X-ray) instrument calibra-
tion. No offset corresponds to b=0, while the value needed to
reconcile the observed cluster counts with the base ΛCDM
model is b1 0.58 0.04- = ( ) (Planck Collaboration et al.
2016a).

The possible tension between clusters and primary CMB has
motivated a number of recent studies of the cluster mass bias in
both X-ray and SZ catalogs (e.g., Sifón et al. 2013, 2016; Ruel
et al. 2014; Battaglia et al. 2016; Bocquet et al. 2015; Simet
et al. 2017a; Smith et al. 2016). For a like-to-like comparison,
we focus here on determinations for the Planck clusters.

Rines et al. (2016) compare SZ and dynamical mass
estimates of 123 clusters from the Planck SZ catalog in the
redshift range of z0.05 0.3< < . They use optical spectrosc-
opy from the Hectospec Cluster Survey (Rines et al. 2013) and
the Cluster Infall Regions in the SDSS project (Rines &
Diaferio 2006), observing a velocity dispersion–SZ mass
relation that is in good agreement with the virial scaling
relation of dark-matter particles. They find neither significant
bias of the SZ masses compared to the dynamical masses nor
any evidence of large galaxy velocity bias. They conclude that
the mass calibration of Planck clusters cannot solve the CMB–
SZ tension and another explanation, such as massive neutrinos,
is required.

von der Linden et al. (2014) examine 22 clusters from the
Weighing the Giants (WtG) project that are also used in the

Planck cluster count cosmology analysis. Applying a

weak-lensing analysis, they derive considerably larger

masses than Planck, measuring an average mass ratio of

M M 0.688 0.072Planck WtGá ñ =  with decreasing values for

larger Planck masses. They claim a mass-dependent calibration

problem, possibly due to the fact that the X-ray hydrostatic

measurements used to calibrate the Planck cluster masses rely

on a temperature-dependent calibration. A similar result is

obtained by Hoekstra et al. (2015) based on a weak-lensing

analysis of 50 clusters from the Canadian Cluster Comparison

Project (CCCP). For the clusters detected by Planck, they find a

bias of 0.76 0.05 stat 0.06 syst ( ) ( ), with the uncertainty in

the determination of photometric redshifts being the largest

source of systematic error. Planck Collaboration et al. (2016a)

used these latter two measurements as priors in their analysis of

the SZ cluster counts. They also employed a novel technique

based on CMB lensing (Melin & Bartlett 2015) to find

b1 1 0.99 0.19- = ( ) when averaged over the full cluster

cosmology sample of more than 400 clusters. As later pointed

out by Battaglia et al. (2016), these constraints should be

corrected for Eddington bias.13

Smith et al. (2016) use three sets of independent mass

measurements to study the departures from hydrostatic

equilibrium in the Local Cluster Substructure Survey (LoCuSS)

sample of 50 clusters at z0.15 0.3< < . The mass measure-

ments comprise weak-lensing masses (Ziparo et al. 2016;

Okabe & Smith 2016), direct measurements of hydrostatic

masses using X-ray observations (Martino et al. 2014), and

estimated hydrostatic masses from Planck Collaboration et al.

(2016b). They found agreement between the X-ray-based and

Planck-based tests of hydrostatic equilibrium, with an X-ray

bias of 0.95±0.05 and an SZ bias of 0.95±0.04.
Finally, Penna-Lima et al. (2016) used lensing mass

measurements from the Cluster Lensing And Supernova

(CLASH, Postman et al. 2012) survey with Hubble to find a

Planck mass bias of b1 0.73 0.10- = ( ) . Employing a

Bayesian analysis, they modeled the CLASH selection function

and astrophysical effects, such as scatter in lensing and SZ

masses and their potential correlated scatter, as well as possible

bias in the lensing measurements. Their quoted uncertainty

accounts for these effects by marginalizing over the associated

nuisance parameters. They also provide a summary of

recent mass calibration measurements, including the Eddington

bias correction proposed by Battaglia et al. (2016) for the WtG

and CCCP determinations. Sereno et al. (2017) found a

result similar to Penna–Lima for the Planck mass bias,

b1 0.76 0.08- = ( ) , using weak-lensing masses from

the Canada–France–Hawaii Telescope Lensing Survey

(CFHTLenS; Heymans et al. 2012) and the Red Cluster

Sequence Lensing Survey (RCSLenS; Hildebrandt et al. 2016).
Comparing to the values above, our result is 30%~ lower (at

2.5s~ ) than both the Smith et al. (2016) lensing determination

and the Rines et al. (2016) determination, also based on

velocity dispersions; both determinations favor little or no mass

bias. However, we agree within 1σ with the results from WtG

(von der Linden et al. 2014), the CCCP (Hoekstra et al. 2015),

13
There is some confusion in the nature of these corrections. Battaglia et al.

(2016) propose a correction for WtG and CCCP that is really more akin to a
Malmquist bias, i.e., due to selection effects arising from the fact that some
clusters in the WtG and CCCP samples do not have Planck mass proxy
measurements.
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and the CLASH (Postman et al. 2012) analysis by Penna-Lima
et al. (2016).

If we use our value of b f1 0.58 0.097 1.01corr- = ( ) ( )( ),
obtained with 50% larger intrinsic scatter on Planck masses (see
Section 3.3), it would still agree within 2σ with the results from
weak lensing cited above. In both cases, our value of the mass
bias is within 1σ of the value b1 0.58 0.04- = ( ) ( ) needed
to reconcile the cluster counts with the primary CMB.

4.1. Estimating the Velocity Bias bv Using a Prior on the
Mass Bias

Given the large differences in the velocity bias as predicted
by simulations, it is worth turning the vice—the strong
dependence of our mass calibration on velocity bias—into a
virtue. Relying on accurate mass estimates provided by weak-
lensing analyses, we derive a constraint on bv from our
measured velocity dispersions. We adopt the Planck mass
calibration obtained by Penna-Lima et al. (2016), based on the
lensing mass measurements from the Cluster Lensing And
Supernova survey with Hubble (CLASH). Using a Bayesian
analysis of CLASH mass measurements and Planck SZ
measurements, they marginalize over nuisance parameters
describing the cluster scaling relations and the sample selection
function to obtain b1 0.73 0.10- = ( ) . This is a reasonable
prior, since the Penna-Lima et al. (2016) sample is character-
istic in mass (and we also assume in mass bias) of Planck-
detected clusters. Using this as a prior on the mass bias in
Equation (4), with our reference value for the Eddington bias
given in Section 3.3, we then deduce the constraint to be

b
f

1.12 0.07
1.01

. 11v

corr

1 3

= 
⎛

⎝
⎜

⎞

⎠
⎟ ( )

This positive velocity bias agrees with the value from the

Munari et al. (2013) simulations and the Guo et al. (2015)

result for samples more luminous than M 20.5r = (L). It is

reasonably consistent (within 2s) with the results of Wu et al.

(2013) that predict nearly unbiased velocities for the brightest

10–30 galaxies that are appropriate for our sample. Our result is

discrepant, at 3σ, with a negative velocity bias of bv  0.9, as

found, for example, by the Caldwell et al. (2016) simulations.

5. Conclusions

We have examined the Planck cluster mass bias using a
sample of 17 Planck clusters for which we measured velocity
dispersions with GMOS at the Gemini observatory. The
unknown velocity bias, bv, of the member galaxy population,
is the largest source of uncertainty in our final result,

b b1 0.51 0.09 v
3- = ( ) ( ) . Using our baseline value for bv

from Munari et al. (2013), we find b1 0.64 0.11- = ( ) ( ),
consistent within just over 1σ with WtG, CCCP, and CLASH,
and within 1σ of the value b1 0.58 0.04- = ( ) ( ) needed to
reconcile the Planck cluster counts with the primary CMB.

We conclude that velocity bias is the primary factor limiting
interpretation of dynamical cluster mass measurements at this
time. It is essential to eliminate this modeling uncertainty if
velocity dispersion is to be a robust mass determination
method.

Turning the analysis around, observational constraints on the
velocity bias can be obtained by combining accurate mass
estimates from weak-lensing measurements with velocity

dispersion measurements. Assuming a prior on the mass bias
from Penna-Lima et al. (2016), we derive b 1.12 0.07v =  ,
consistent with our baseline value from Munari et al. (2013;
b 1.08v = ) and with results from Wu et al. (2013) and Guo
et al. (2015), but discrepant at 3 ,s with a negative velocity bias
of b 0.9v  , as found by Caldwell et al. (2016).
Apart from modeling uncertainty on the velocity bias, we

have achieved a precision of 17% on the mass bias
measurement with 17 clusters. Assuming that the simulations
will eventually settle on a value for the velocity bias, this
motivates continued effort to increase our sample size to
produce a 10% or better determination, comparable to recent
weak-lensing measurements.
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Appendix A
Conversion from M500

Pl to M200

Pl

To compare our mass measurements to other independent

estimates, we rescale the Planck masses to M200
Pl using the

mass–concentration relation of Dutton & Macciò (2014). This
relation is derived from N-body simulations of relaxed dark-
matter halos in a Planck cosmology, as adopted here. It is in
good agreement with the recently proposed universal model of
Diemer & Kravtsov (2015), which includes both relaxed and
unrelaxed halos, for the mass and redshift range of interest.
We assume a Navarro–Frenk–White (NFW, Navarro et al.

1997) density profile, and we choose an input value for the
concentration c 5200 = , which is consistent with the model of
Dutton & Macciò (2014) for a h M1015 1-

 cluster in the

redshift range of z0 0.5< < . We then convert M500
Pl to

M M
f c

f c
, 12200

Pl
500
Pl 200

500

=
( )

( )
( )
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where f c clog 1
c

c1
= + -D D +

D

D
( ) ( ) indicates a general den-

sity contrast. We calculate c500 from

M r f c4 , 13s s500
Pl 3

500pr= ( ) ( )

where c500 is the only unknown quantity, because the scale

density parameter, sr , is fixed by the NFW profile,

c

c

200

3 ln 1
, 14s c z c

c

,
200
3

200
1

200

200

r r=
+ -

+
( )

( )

and the scale radius is

r
R

c
, 15s

500

500

= ( )

with

R M
3

4

1

500
. 16

c z

500 500
Pl

,

1 3

p r
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )

We solve Equation (13) for c500 using the ZBRENT.PRO
routine in IDL and obtain a first estimate of M200

Pl from
Equation (12). We then use the mass–concentration relation in
Equation (8) of Dutton & Macciò (2014) to get a new value for
c200. We iterate this algorithm until we reach 5% accuracy on
M200

Pl (i.e., the difference between the mass estimated at the
iteration i and the mass estimated at the iteration i-1 is less than
0.05). We find smaller concentrations than the starting value of
5, with a mean c 4.2200 = . We have verified that the algorithm

converges to the same values of M200
Pl when changing the initial

input value of c200.
We implemented this procedure in a Monte Carlo simulation

with 1000 inputs for each cluster, sampling the Planck mass,
M500

Pl , according to a normal distribution with a standard
deviation taken as the geometric mean of the uncertainties
listed in Table 2. Similarly, we consider a log-normal
distribution for c200 with a mean given by Equation (8) in
Dutton & Macciò (2014) and standard deviation equal to the
intrinsic scatter of 0.11 dex in the mass–concentration relation.
This yields a log-normal distribution of calculated M200

Pl values
from Equation (12), whose mean and standard deviation are
also listed in Table 2.

Appendix B
Cluster Model

To construct an estimator for the mass bias, we adopt a
multivariate log-normal model for the cluster observables 1Ds and

M200
Pl at fixed true mass, M200, following White et al. (2010) and

Stanek et al. (2010; see also, Allen et al. 2011; Evrard et al. 2014;
Rozo et al. 2014b). It is then convenient to work with the
logarithm of these quantities: s ln km sv 1D

1s= -( ), sPl =
E z M Mln 10200

Pl 15
( ( ) ), and E z M Mln 10200

15m = ( ( ) ), where
we incorporate self-similar evolution with redshift, E(z), with the
masses. Power-law scaling relations give the observable mean
values at true mass as,

s s bln 1 , 17Pl Pl m mº á ñ = - +¯ ∣ ( ) ( )

and

s s a , 18v v v vm a mº á ñ = +¯ ∣ ( )

where the averages are taken over both intrinsic cluster

properties and measurement errors. The first relation is simply

our definition of the mass bias, Equation (1), and in practice we

take 1 3va = , its self-similar value, in the second relation.
Each observable is also associated with a log-normal

dispersion about its mean that includes both intrinsic and
measurement scatter,

, 19s s s
2 2 2
v v v
s sS = +˜ ( )

and

, 20s s s
2 2 2
Pl Pl Pl
s sS = +˜ ( )

where the first terms are the intrinsic log-normal scatter and the

second ones are the measurement error. Although measurement

error is Gaussian in the observed quantity rather than in the log-
normal, we treat its fractional value as a log-normal dispersion;

this is an approximation that is good to first order in the

fractional measurement error. The second terms in the above

expressions will therefore be understood as fractional measure-

ment errors. The intrinsic dispersions may be correlated with the

correlation coefficient r s s s s s sv v Pl Pl v Pl
s s= á - - ñ˜ ( ¯ )( ¯ ) ( ˜ ˜ ).

It is then possible to show that the predicted scaling between
velocity dispersion and Planck mass is

s s a s b

r

ln 1

, 21

s

s s

v Pl v v Pl
2

v
1

Pl

v Pl

a b

ba

á ñ = + - - - S

+ S S-

∣ [ ( )

] ( )

where β is the slope of the mass function on cluster scales,

3b » . The second to last term is the Eddington bias,

proportional to the full dispersion, intrinsic, and measurement,

in the sample selection observable, sPl. In the last term,

r r s s s sv v Pl Pl
s s= S S˜( ˜ )( ˜ ), the intrinsic correlation coefficient is

diluted by the measurement errors. The last term is therefore

equivalent to r s sv
1

v Pl
ba s s-˜ ˜ ˜ .

This is the prediction for our measured scaling relation.
Comparison to our fit identifies

A a b rln ln 1 , 22s s sv v
2

v
1

Pl v Pl
a b ba s s= - - + S - -[ ( ) ˜ ˜ ˜ ] ( )

which leads to our estimator

b
A

A
f f1 , 23

g
3

EB corr- =
⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

with

f e , 24EB
sPl
2

= b- S ( )

and

f e , 25r
corr

3 s sv Pl= bs s ( )˜ ˜ ˜

after setting 1 3va = . As expected, the Eddington bias

correction increases true cluster mass at given M200
Pl , increasing

the mass bias, b (decreasing b1 - ). A positive correlation

between velocity dispersion and Planck mass has the opposite

effect.
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Abstract

We present Gemini and Keck spectroscopic redshifts and velocity dispersions for 20 clusters detected via the
Sunyaev–Zel’dovich (SZ) effect by the Planck space mission, with estimated masses in the range

M M M2.3 10 9.4 1014
500
Pl 14´ < < ´ . Cluster members were selected for spectroscopic follow-up with

Palomar, Gemini, and Keck optical and (in some cases) infrared imaging. Seven cluster redshifts were measured
for the first time with this observing campaign, including one of the most distant Planck clusters confirmed to date,
at z 0.782 0.010= , PSZ2 G085.95+25.23. The spectroscopic redshift catalogs of members of each confirmed
cluster are included as online tables. We show the galaxy redshift distributions and measure the cluster velocity
dispersions. The cluster velocity dispersions obtained in this paper were used in a companion paper to measure the
Planck mass bias and to constrain the cluster velocity bias.

Key words: cosmology: observations – galaxies: clusters: general – galaxies: distances and redshifts

Supporting material: machine-readable table

1. Introduction

Massive galaxy clusters are sensitive cosmological probes

(e.g., Allen et al. 2011), yet these are rare objects best found in

all-sky surveys covering large volumes. The ROSAT All-Sky

Survey (RASS; Truemper 1993) dates back to the early 1990s

and has served the community as a workhorse since, providing

hundreds of cluster candidates. A subsequent important step

has been taken by the Planck satellite, launched on 2009 May

14. Planck detects clusters based on the Sunyaev–Zel’dovich

(SZ) effect (Sunyaev & Zeldovich 1970; Birkinshaw 1999;

Carlstrom et al. 2002), i.e., the distortion of the energy

spectrum of cosmic microwave background (CMB) photons

passing through the cluster due to inverse Compton scattering

with hot electrons. Being independent of distance, the SZ

signal does not suffer from cosmological dimming and it is

proportional to the cluster mass. Benefiting from this, Planck

extends the (X-ray) RASS catalog to higher redshift and

contains a large fraction of massive objects of the type most

prized for cosmological studies.
Planck has produced two all-sky cluster surveys through the

SZ effect (Planck Collaboration et al. 2014, 2016a): the PSZ1

with 1227 candidates based on 15.5 months of data, and the

PSZ2 with 1653 candidates from the full mission data set of

29 months. Of the PSZ2 candidates, 1203 have been confirmed

by ancillary data and 1094 have redshift estimates, in the range

z0 1< < , with a mean redshift of z 0.25~ . The mean mass

of the confirmed clusters over the whole redshift range is

M M4.82 10500
Pl 14= ´ (see the definition of M500

Pl below).
The Planck collaboration has undertaken a large follow-up

effort to confirm cluster candidates and measure their redshifts.
The first optical follow-up was based on observations with the
Russian–Turkish 1.5 m telescope (Planck Collaboration et al.
2015) and provided spectroscopic redshifts of 65 Planck

clusters. The second optical follow-up, based on observations
with telescopes at the Canary Islands Observatories, yielded 53
cluster spectroscopic redshifts (Planck Collaboration et al.
2016b). The Planck collaboration has also carried out X-ray
validation programs with XMM-Newton (Planck Collaboration
et al. 2011b, 2012, 2013), where redshifts for 51 clusters were
obtained from X-ray spectral fitting.
Our follow-up program presented in this paper includes the

spectroscopic follow-up of 20 Planck cluster candidates with
the Gemini and Keck telescopes (P.I.’s: J.G. Bartlett and F.A.
Harrison, respectively). The goals of our programs were: (1) to
confirm Planck SZ detections as clusters and measure their
redshifts; (2) to estimate their masses using cluster galaxy
velocity dispersions; and (3) to measure the Planck mass and
velocity bias. We use Sloan Digital Sky Survey (SDSS; York
et al. 2000), and Palomar and Gemini imaging to select the
cluster galaxies to target with spectroscopy.
In this paper, we describe our observations and publish the

optical spectroscopy of cluster members, from which we derive
the cluster redshifts and velocity dispersions. In a companion
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paper (Amodeo et al. 2017), we use these observations to
estimate the clusters’ dynamical masses and calibrate the all-
important relation between the SZ Compton parameter, Y,
and mass.

The paper is organized as follows. In Section 2, we present
our sample of Planck—selected clusters and describe the
observing programs carried out at the Palomar, Gemini, and
Keck telescopes. A table describing all the targets observed
with the Palomar telescope is given in Appendix A. In
Section 3, we describe the spectroscopic redshift and galaxy
velocity dispersion measurements. For clusters with a spectro-
scopic follow-up, we include figures of redshift histograms,
optical images and SZ maps in Appendix B. Catalogs of cluster
member galaxies with spectroscopic measurements are
included as online tables. We illustrate the parameters
published in the catalogs in Section 4 and give an example in
Appendix C. In Section 5, we discuss our results in the context
of optical identifications of Planck clusters.

Throughout this paper, masses are quoted at a radius RD,
within which the cluster density is Δ times the critical density of
the universe at the cluster’s redshift, where 200, 500D = { }.
We refer to the 200D = radius as the “virial radius”, R200. Mass
and radius are directly connected via M H R G2z

2 3º DD D ( ),
where Hz is the Hubble constant at the cluster’s redshift.

2. Data and Observations

In this section, we describe our spectroscopic observations
with the Gemini and Keck telescopes, and the Palomar
telescope imaging that was used to select cluster members.
The details of each observing run (pre-imaging and optical
spectroscopy) are listed in Table 1.

Since it is well-known that early-type galaxies (ETGs) in
clusters define a tight red sequence up to redshift z 1.5~ (Mei
et al. 2009), and can be easily identified with respect to field
background galaxies, we selected cluster members to follow-up
with spectroscopy from optical and infrared imaging using a
red sequence search method (Gladders & Yee 2000; Licitra
et al. 2016a, 2016b). For most clusters, we used g¢ and i¢ filters
for imaging, since the ETG g i-( ) color is monotonic over the
redshift range in which most Planck clusters are detected,
z 1< . We also observed the r¢ band, when possible within our

exposure time constraints, to obtain better photometric red-
shifts. For the candidates that appeared to be at z 0.6> from
their WISE imaging in the mid-infrared (see the WISE analysis
in Planck Collaboration et al. 2016a), we obtained near-infrared
observations in the J and K bandpasses. For some of our
targets, we could not obtain images at two different
wavelengths and used SDSS photometry when available.
Cluster members were selected as red sequence galaxies by

their colors, using Bruzual & Charlot (2003) stellar population
models and Mei et al. (2009) empirical red sequence
measurements, following the cluster member selection techni-
que described in Licitra et al. (2016a, 2016b), adapted for the
bandpasses available for these observations.

2.1. Gemini Observations

The Gemini imaging and spectroscopic follow-up was
performed with GMOS-N and GMOS-S at the Gemini-North
and Gemini-South Telescopes, respectively, in the programs
GN-2011A-Q-119, GN-2011B-Q-41, and GS-2012A-Q-77 (P.
I. J.G. Bartlett). This sample consists of 19 Planck-detected
galaxy clusters, 17 of which are part of the Planck PSZ2
catalog (Planck Collaboration et al. 2016a), and one is
published in the XMM-Newton validation follow-up of Planck
cluster candidates (Planck Collaboration et al. 2013). Two
clusters are not part of the already published Planck papers: (1)
PLCK G183.33-36.69 has a detection signal-to-noise ratio
(S/N) just below the Planck catalog selection threshold and (2)
PLCK G147.32-16.59 is in the Planck cluster mask.
The goal of our Gemini program was to obtain a statistical

calibration of the Planck SZ mass estimator. For this purpose,
we mostly chose clusters that were detected with a Planck SZ
S/N of about 4.5σ or larger, distributed in the northern and
southern Hemispheres, spanning a wide range in Planck SZ
masses, M M M2 10 1014

500
Pl 15´ ☉ ☉, in the redshift range

z0.16 0.44< < . In Figure 1, we compare our sample to the
full PSZ2 catalog. These histograms show that our selection
has an average redshift larger than the PSZ2 catalog, and a
mass range covering most of the mass range of the PSZ2
catalog. In fact, our sample has an average redshift of
z=0.37 and an average mass of M M6.2 1014= ´ ☉,
compared to the average PSZ2 redshift and mass of
z=0.25 and M4.8 1014´ ☉, respectively. The larger average
redshift was chosen to cover most of the cluster members
within ∼R200 in the field of view of the Gemini and Keck
telescopes.
The northern sample was selected in the area covered by the

SDSS, and we used the SDSS public releases and our GMOS-
N pre-imaging in the r-band (150 s) to detect red galaxy over-
densities around the Planck detection center. When unknown,
we estimated the approximate cluster redshift using its red
sequence to calculate the appropriate exposure times for the
spectroscopic follow-up. For PSZ2 G139.62+24.18, PSZ2
G157.43+30.34, and PLCK G183.33-36.69, we used imaging
obtained with the Palomar telescope. For the southern sample,
we obtained GMOS-S pre-imaging in the g and i bands (200 s
and 90 s integrations, respectively).
Our GMOS spectroscopic observations were reduced using

the IRAF Gemini GMOS package and standard techniques.
After coadding the reduced exposures, we extracted one-
dimensional spectra for the objects in each slitlet and initially

Table 1

Observation Details

Run Semester PI Tel./Inst. Program ID Ncl

1 2010B Lawrence Palomar/

LFC,WIRC

11

2 2011A Lawrence Palomar/LFC 25

3 2011B Lawrence Palomar/LFC 15

2 2011A Bartlett Gemini-

N/GMOS

GN-2011A-

Q-119

11

3 2011B Bartlett Gemini-

N/GMOS

GN-2011B-

Q-41

11

4 2012B Lawrence Palomar/LFC 9

5 2012A Bartlett Gemini-

S/GMOS

GS-2012A-

Q-77

9

6 2013B Harrison Keck/LRIS UT 2013

Oct 4–5

1

2
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inspected them visually to identify optical features such as the
4000Åbreak, G-band, Ca H+K absorption lines, and, rarely,
[O II] λ3727 emission. We determined more precise galaxy
redshifts by running the IRAF task xcsao. In Figure 2, we show
two Gemini/GMOS spectra of galaxies in the cluster PSZ2
G250.04+24.14.

The clusters that we followed-up with the Gemini telescopes
are listed in Table 2 (see also Table 1 from Amodeo
et al. 2017). The mass calibration derived from the velocity
dispersions of the clusters in this sample is discussed in
Amodeo et al. (2017), in which we measured the Planck mass
bias and constrained the cluster velocity bias.

2.2. Keck Observations

We obtained spectroscopy of PSZ2 G085.95+25.23 on the
nights of UT 2013 October 4–5 using the dual-beam Low
Resolution Imaging Spectrometer (LRIS; Oke et al. 1995) on
the Keck I telescope atop Maunakea. These slitmask observa-
tions were obtained with the 400 ℓmm−1 grism on the blue arm
of LRIS ( 3400blazel = Å), the 400 ℓmm−1 grating on the red

arm of LRIS ( 8500blazel = Å), and the 5600Å dichroic was
used to split the light. We obtained three 1200s integrations on

the first night through variable cloud cover, and two 1200s
integrations on the second night in photometric conditions.
After some experimentation, we base our analysis on the single
best exposure from the first night combined with the two
exposures from the second night. The data were processed
using standard techniques within IRAF, and flux calibrated
using standard stars from Massey & Gronwall (1990) observed
on the second night.
In Figure 3, we show two Keck/LRIS spectra of galaxies in

the cluster PSZ2G085.95+25.23.

2.3. Palomar Optical and Infrared Imaging

The Palomar optical and infrared imaging, used to select
cluster members, was obtained with a dedicated Planck follow-
up program (PI: C. Lawrence) that included several runs. Our
Palomar sample is presented in the Appendix A, in Table 4.
For the Palomar/WIRC data reduction, we pre-processed the

images using a dedicated IRAF package noao.imred.

ccdred. Master dark frames of different exposure times were
constructed for each night of observation, and these were
subtracted from science images of the corresponding exposure
time. Dark-subtracted individual science images were then
divided by the master flat image in the same filter. We tested
two ways of constructing the master flat image: first, by
combining dome flats after the dark correction (master
domeflat) and, second, by median combining all science
images (master skyflat). Since there was little difference
between the two master flat images, we chose to use the
master domeflat in the flat correction. Sky subtraction, bad
pixel and cosmic-ray masking, image aligning and combining
were done using the IRAF package xdimsum.13 Bad pixel
masks were created from the master skyflat image by
identifying bad, hot, or warm pixels significantly ( 20s> )

lower or higher than the average background. After calculating
the shifting of the images that were to be sky subtracted, we
performed the sky subtraction correcting for bad pixels and
cosmic rays. The six adjacent images were used to calculate the
sky. Once the mosaic image was created, we created an object
mask from the mosaic image, and repeated the sky subtraction

Figure 1. Histograms of the redshifts (left) and the masses (right) of our spectroscopic sample compared to the full PSZ2 catalog. These histograms are normalized to
the total number of objects in each sample. We have selected cluster candidates with redshift z 0.2> (with average redshift larger than the PSZ2 catalog), and larger

average mass than the PSZ2 catalog, with cluster masses in the range M M M2.3 10 9.4 1014
500
Pl 14´ < < ´ . The cluster mass shown here is the Planck mass proxy

(Planck Collaboration et al. 2016a).

Figure 2. Spectra obtained with Gemini/GMOS for two galaxies in the cluster
PSZ2 G250.04+24.14 (z=0.411). The vertical dotted lines represent Ca H
+K, D4000, and the G band, respectively.

13
Experimental Deep Infrared Mosaicing Software.

3
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and combining process to obtain the final mosaic image as well

as the exposure time map. Astrometric calibration was done

using the 2MASS point source catalog as a reference through

the IRAF package ccmap.
The optical Palomar/LFC data reduction comprised basic

pre-processing (i.e., bias, dark, flat, cross-talk, and overscan/
trim correction), satellite trail removal, bad pixel and cosmic-

ray correction, and aligning and coadding individual images to

produce the final mosaic images. Since the LFC data were

stored in a multi-extension fits (MEF) format, we mostly used

the IRAF package mscred (Valdes et al. 1995) as well as

ccdred for the analysis. The initial bad pixel masks were

generated from the ratio between two flat-field images with

different exposure times. After the bias, dark, flat, cross-talk,

and overscan correction using ccdproc, satellite trails in each

image were identified using the IRAF task satzap and

corrected. In addition, initial bad pixels and cosmic rays were

identified using average sigma clipping. The updated bad pixel

masks were converted to weight images used later in the

coadding step.
Fringe correction was necessary for images taken with the

i¢-band filter. The fringe effect is less noticeable in images with

short exposure times ( 300< s), but the interference pattern

significantly affects the background for longer exposures. For

fringe correction, we first made an object mask and the

resulting sky map for each image using the IRAF nproto.

objmasks. Then the output sky maps were combined using

mscred.sflatcombine to produce the response sky image,

from which the median-filtered response was subtracted to

derive the fringe pattern. Using the fringe pattern as the input in

mscred.rmfringe, the fringes in i¢-band images were

successfully divided out. After these corrections, astrometric

calibration was done with ccmap using the USNO-B1.0

catalog as a reference. Then the images for each target were

registered and mosaicked using the Terapix/Swarp software.

The images were background subtracted, resampled, and

combined to produce weighted means of the individual images

Table 2

Spectroscopically Confirmed Cluster Sample

Name R.A. Decl. Filter texp Nmask
Run

(degree) (degree) (s)

PSZ2 G033.83-46.57 326.3015 −18.7159 g,i 1800 2 GS-2012A-Q-77

PSZ2 G053.44-36.25 323.8006 −1.0493 r 1800 1 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G056.93-55.08 340.8359 −9.5890 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G081.00-50.93 347.9013 3.6439 r 1800 1 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G083.29-31.03 337.1406 20.6211 r 1800 1 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G085.95+25.33 277.6164 56.8823 L 3600 2 Keck Telescope

PSZ2 G108.71-47.75 3.0715 14.0191 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G139.62+24.18a 95.4529 74.7014 r 900 2 GN-2011A-Q-119,GN-2011B-Q-41

PLCK G147.32-16.59b 44.1101 40.2853 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G157.43+30.34a 117.2243 59.6974 r 3600 2 GN-2011A-Q-119,GN-2011B-Q-41

PLCK G183.33-36.69a 57.2461 4.5872 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G186.99+38.65 132.5314 36.0717 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G216.62+47.00 147.4658 17.1196 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

PSZ2 G235.56+23.29 134.0251 −7.7207 g,i 900 2 GS-2012A-Q-77

PSZ2 G250.04+24.14 143.0626 −17.6481 g,i 1800 2 GS-2012A-Q-77

PSZ2 G251.13-78.15 24.0779 −34.0014 g,i 900 2 GS-2012A-Q-77

PSZ2 G272.85+48.79 173.2938 −9.4812 g,i 900 2 GS-2012A-Q-77

PSZ2 G329.48-22.67 278.2527 −65.5555 g,i 900 2 GS-2012A-Q-77

PSZ2 G348.43-25.50 291.2293 −49.4483 g,i 900 2 GS-2012A-Q-77

PSZ2 G352.05-24.01 290.2320 −45.8430 g,i 1200 2 GS-2012A-Q-77

Notes. Clusters are named after their PSZ2 ID, when available. When it is not available, we use the prefix “PLCK” followed by a notation in galactic coordinates

similar to that used in the PSZ2 paper. R.A. and decl. indicate the optical cluster center. Filter names used for imaging, spectroscopic observing times and the number

of masks are also stated. The last column lists the observing run(s) for each target, including pre-imaging.
a
Also observed at Palomar, see Table 4.

b
Target PLCK G147.32-16.59 is confirmed in the XMM-Newton cluster validation (Planck Collaboration et al. 2013), but it is not included in the two Planck catalogs

of SZ sources released so far.

Figure 3. Spectra obtained with Keck/LRIS for two galaxies in the cluster
PSZ2G085.95+25.23 (z=0.782). The vertical dotted lines represent Ca H
+K and D4000, respectively.
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Table 3

Results of the Spectroscopical Analysis

Name zspec New zspec zspec DR14+ Ntot
Ngal

conf BIs BI DR14s + Gs S/N Det. Meth. M500
Pl

K-S gaussian prob. S-W gaussian prob. K-S uniform prob.
(km s−1) (km s−1) (km s−1)

M1014( )

PSZ2 G033.83-46.57 0.439±0.001 + 10 8 985 277
451

-
+ 1051 214

309
-
+ 4.6 2 5.4 0.8

0.7
-
+ 0.96 0.71 0.50

PSZ2 G053.44-36.25 0.331±0.001 + 0.3295±0.0003 21 20 1011 131
242

-
+ 1215 100

167
-
+ 1025 117

224
-
+ 8.9 3 7.5 0.6

0.5
-
+ 0.99 0.80 0.07

PSZ2 G056.93-55.08 0.443±0.001 0.4430±0.0001 49 46 1356 127
192

-
+ 1331 128

194
-
+ 1345 113

170
-
+ 11.5 3 9.4±0.5 0.76 0.12 0.01

PSZ2 G081.00-50.93 0.303±0.001 + 0.4430±0.0001 15 15 1292 185
360

-
+ 1552 154

175
-
+ 1300 140

326
-
+ 9.2 3 6.7±0.5 0.97 0.96 0.14

PSZ2 G083.29-31.03 0.412±0.002 0.3051±0.0001 21 20 1434 320
574

-
+ 1153 94

111
-
+ 1591 262

376
-
+ 9.1 3 7.8 0.6

0.5
-
+ 0.83 0.90 0.004

PSZ2 G085.95+25.23 0.782±0.003 + 16 14 1049 180
210

-
+ 1041 119

195
-
+ 5.0 2 5.2 0.7

0.6
-
+ 0.91 0.05 0.06

PSZ2 G108.71-47.75 0.389±0.001 0.3897±0.0002 11 8 900 190
458

-
+ 861 216

327
-
+ 900 183

460
-
+ 4.3 1 5.1 0.8

0.7
-
+ 0.99 0.87 0.65

PSZ2 G139.62+24.18 0.268±0.001 20 20 1120 238
366

-
+ 1127 171

305
-
+ 9.6 3 7.3±0.5 0.51 0.25 0.20

PLCK G147.32-16.59 0.640±0.009 10 10 – – 5.9 1 8.1 0.9
0.8

-
+ 0.91 0.91 0.86

PSZ2 G157.43+30.34 0.402±0.001 + 28 28 1244 109
192

-
+ 1242 103

195
-
+ 8.8 2 8.2±0.6 0.99 0.73 0.23

PLCK G183.33-36.69 0.163±0.001 11 11 897 275
437

-
+ 979 187

263
-
+ 2.1 1 2.3 0.9

0.7
-
+ 0.59 0.05 0.04

PSZ2 G186.99+38.65 0.377±0.001 0.3774±0.0003 41 41 1506 120
164

-
+ 1426 87

133
-
+ 1462 102

165
-
+ 7.1 3 6.6 0.7

0.6
-
+ 0.83 0.32 0.40

PSZ2 G216.62+47.00 0.385±0.001 0.3864±0.0003 37 37 1546 132
174

-
+ 1779 153

207
-
+ 1524 110

178
-
+ 9.7 3 8.4 0.6

0.5
-
+ 0.97 0.45 0.86

PSZ2 G235.56+23.29 0.375±0.002 27 23 1644 192
285

-
+ 1636 141

294
-
+ 4.9 3 5.7 0.8

0.7
-
+ 0.95 0.16 0.13

PSZ2 G250.04+24.14 0.411±0.001 29 29 1065 285
447

-
+ 1466 241

380
-
+ 6.2 3 6.2±0.6 0.94 0.97 0.10

PSZ2 G251.13-78.15 0.306±0.001 + 17 17 801 493
852

-
+ 1188 155

205
-
+ 4.8 1 4.1±0.6 0.56 0.19 0.26

PSZ2 G272.85+48.79 0.420±0.002 10 9 1462 216
389

-
+ 1498 175

345
-
+ 4.8 2 5.3 0.8

0.7
-
+ 0.98 0.61 0.62

PSZ2 G329.48-22.67 0.249±0.001 + 19 16 835 119
179

-
+ 746 64

152
-
+ 6.0 3 5.0 0.8

0.7
-
+ 0.99 0.90 0.46

PSZ2 G348.43-25.50 0.265±0.001 21 20 1065 198
411

-
+ 1160 167

277
-
+ 7.1 3 6.0±0.6 0.85 0.18 0.02

PSZ2 G352.05-24.01a 0.786±0.026 23 10 — — 4.1 1 6.2 1.0
0.9

-
+ 0.35 0.02 0.03

0.304±0.022 23 13 — — 0.99 0.94 0.98

Note. From left to right the columns list: measured spectroscopic redshift, the new spectroscopic redshift estimates, redshift estimates obtained including the available redshifts in the SDSS DR14, the total number of

galaxies with measured redshifts in the cluster field, the number of confirmed member galaxies, and our measured velocity dispersions using the Biweight and the Gapper methods (Beers et al. 1990). The next three

columns give, respectively, the signal-to-noise ratio, the number of detection methods and the Planck mass proxy, as reported in the PSZ2 catalog (we calculated these numbers for the two objects not listed in the PSZ2

catalog). The last three columns list, respectively, the Kolmogorov–Smirnov (K–S) and the Shapiro–Wilk (S–W) statistics for the probability that the redshift distributions are Gaussian, and the K–S test for a uniform

distribution.
a
Two structures observed, not confirmed as clusters (see the text and Figure 5).
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for flux conservation. The weight images previously created
from the final bad pixel masks were used.

Many of our Palomar nights were not photometric, and we
could not obtain accurate photometric redshifts with only a few
bandpasses. However, we could use SDSS and our Palomar
images to select cluster member candidates for our Gemini
spectroscopic observations.

3. Cluster Confirmation and Spectroscopic Redshift
Measurements

We calculated the cluster redshifts and velocity dispersions
using the ROSTAT software (Beers et al. 1990) with the
biweight method (see Table 3). This is appropriate to our
clusters where there are typically 20 confirmed members. We
also report the dispersion Gs determined from the gapper
estimator (as implemented in ROSTAT), which is to be
preferred for clusters with fewer than 10–15 members (see
Girardi et al. 1993, 2005). We find that biweight and gapper
estimates are perfectly consistent, with the absolute difference
between the velocity dispersions calculated from the two
methods being on average of (0.04± 0.14)σ, and never higher
then 0.5σ. Since the line-of-sight cluster velocity dispersion can
be highly anisotropic, small galaxy samples lead to large
systematic uncertainties, with estimated uncertainties of 10%
(White et al. 2010) for samples with more than ∼10–15
galaxies like ours.

We retain as possible cluster members the galaxies within 3σ
of the average cluster velocity/redshift. Standard deviations are
in the range 0.001–0.008 in redshift, for the clusters that we
confirm, apart PLCK G147.32-16.59 that shows evidence for
an undergoing merger event (see the discussion below).
Figures 4 and 5 show the redshift distributions of the cluster
member galaxies (left), the optical image of the cluster with the
selected members (middle), and the SZ maps in units of S/N
(right), for the northern and the southern samples, respectively.
We also present Gaussian fits to the redshift distributions in the
left-hand panels.

The middle panels of Figures 4 and 5 show the optical pre-
imaging, within the Gemini field of view of 5.5 5.5 arcmin2´ .
Spectroscopically confirmed members are indicated by green
circles.

For PSZ2 G056.93-55.08, we visually observe three spatially
separated galaxy groups, but all at the same redshift and within
one virial radius. We derived the virial radius R 2.00200 = (

0.05) Mpc from the SZ mass estimate of M 9.4 0.5500
Pl = ´( )

M1014 .14 At the cluster redshift, z=0.443, 2 Mpc correspond
to 5.7 arcmin in a Planck cosmological model (Planck
Collaboration et al. 2016c). We cannot obtain a separate mass
estimate for each group because the Planck beam includes all
the three groups and we do not have enough spectroscopic
members of each group for deriving the group mass from
velocity dispersions. Therefore, we consider the three groups as
being part of a single cluster detection.

For all targets but PSZ2 G352.05-24.01, the red circled area
is centered on the optical center of the cluster and has a
1 arcmin radius. The optical center was obtained as the
brightest cluster member in the densest cluster region,
following a modified version of the centering algorithm from

Licitra et al. (2016b). For PSZ2 G352.05-24.01, we used the
coordinates of the X-ray center, marked with a red cross.
In the right-hand panels, we show the SZ maps with the

same area enclosed by the black circles and centered on the
optical position. The SZ maps have an angular resolution of
5 arcmin and are given in units of S/N. All the detections lie
above S N 4.5= , except for PLCK G183.33-36.69
with S N 2= .
Masses and S/N were recalculated from a re-extraction of

the SZ signal using the Matched Multi-Filter MMF3(Melin
et al. 2006; Planck Collaboration et al. 2011a, 2014, 2016a),
fixing the position to the optical position and varying the filter
size. They are reported in Table 3. The quoted S/N is the
maximum across the various filter sizes at the optical position.
The masses are obtained from the re-extracted SZ signal
following the method described in Section 7.2.2 of Planck
Collaboration et al. (2014).
In Table 3, we also show the number of detection methods

from Planck Collaboration et al. (2016a). The Planck selection
function is very reliable ( 90%> ) for detections obtained with
S N 4.5> by at least one detection method. For objects
detected with all three detection methods, the probability of
being a cluster is 98%> with S N 4.5> (Planck Collaboration
et al. 2016a). In order to confirm each target as galaxy cluster,
we combine this information with the probability that the
galaxy redshift distribution is Gaussian, the characteristic
distribution of a virialized cluster, from the Kolmogorov–
Smirnov (K–S, e.g., Fasano & Franceschini 1987) and the
Shapiro–Wilk (S–W, Shapiro & Wilk 1965) statistics, as well
as the probability of a uniform distribution from a K–S test.
The results of these tests are shown in the last three columns of
Table 3.
Eleven of our cluster candidates have a 98%> probability of

being a galaxy cluster, since they were detected with three
detection methods and have S N 4.5> . For these targets, the
probabilities that the redshift distributions are Gaussian are
almost always 80%> and the probabilities to be uniform
always 50%< and mostly 10%< . Only one object, PSZ2
G139.62+24.18 at z=0.268, has an S N 9.5= , which
corresponds to a Planck reliability of being a cluster of
100%~ , but a K–S (S–W) probability of having a Gaussian

redshift distribution of 50%~ ( 20%~ ), and the probability of
having a uniform redshift distribution of 20%~ . It shows a very
luminous BCG at the center, and has 20 spectroscopically
confirmed galaxies at the same redshift. All of these elements
lead us to believe that this is a galaxy cluster, and it was also
confirmed as a cluster in the PSZ2 catalog. All the other 10
targets are most likely galaxy clusters, and we assume that they
are. Of those, we confirm three clusters that were not originally
confirmed in the PSZ2.
The other cluster candidates that were detected with at least

one detection method and S N 4.5> have a 90%> probability
of being galaxy clusters. For these candidates, we assume that
we confirm a cluster when the probability that their redshift
distribution is Gaussian is 95%> ( 2s~ ). On the other hand, we
do not confirm a cluster when the probability of a uniform
distribution is 50%> . In fact, since the Planck detection and the
galaxy redshift distribution are two independent events, we can
multiply the Planck probability of not being a cluster ( 10%~ )

by the probability of having a uniform distribution of galaxy
redshifts. If this last is 50%< , the total probability that the
candidate is not a cluster is 5%< . Among these last targets,

14
See Appendix A in Amodeo et al. (2017) for the conversion from M500

Pl

to M200
Pl .
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three have a probability that their redshift distribution is

Gaussian of 95%> ( 2s~ ), and we consider them as confirmed

clusters. All three are new confirmations with respect to PSZ2.
Three of the targets that were only detected by one method,

though, and one candidate detected with two methods show

less definitive results. We discuss these last cluster candidates

in more detail below.
PLCK G147.32-16.59 was detected by one method with a

high S/N (S N 6~ ), and its redshift distribution has a

probability of 90%~ of being Gaussian; however, it also has an

10%~ probability of not being a cluster. With only 10

confirmed members, its confirmation is not very reliable, but it

is more probable that it is a cluster or a group of galaxies than a

uniform redshift distribution, and we consider it a confirmed

cluster. XMM-Newton observations (Planck Collaboration et al.

2013) reveal two substructures in the X-ray surface brightness,

indicating that it is undergoing a merger event (see also van

Weeren et al. 2014; Mroczkowski et al. 2015). Because of the

undergoing merger, we have excluded this cluster from the

analysis of the velocity dispersion–mass relation in Amodeo

et al. (2017).
PLCK G183.33-36.69 was detected by one method with

an S N 2~ (Planck reliability of 70%< ), its redshift

distribution has a K–S (S–W ) probability of 60%~ ( 5%~ )

to be Gaussian, and a 1%~ total probability of not being a

cluster. However, we can clearly see the two bright central

galaxies in the Gemini image, and the cluster center is close

to the border of the Gemini field. It seems to us that this

cluster was not well centered enough in the Gemini imaging

and spectroscopy to obtain a significant sample to confirm it,

even if it has a larger probability to be a cluster or group of

galaxies instead of a uniform galaxy distribution. The SZ

flux gives a mass of M M2.3 10500
Pl

0.9
0.7 14= ´-
+ , and its galaxy

velocity dispersion is 842200 451
297s = -
+ kms 1- . We consider it

to be a confirmed cluster, and warn the reader about the

larger uncertainty (with respect to most of the remaining

sample) in the velocity dispersion measurement and its

redshift distribution skewness, which both might indicate an

unrelaxed dynamical state. We kept this cluster in our sample

in Amodeo et al. (2017) because, due to the large uncertainty

on the velocity dispersion measurement, it does not

significantly weight on our final results.
PSZ2 G251.13-78.15 was detected by one method with a

S N 4.8~ (Planck reliability of 90%~ ), its redshift distribu-

tion has a K–S and an S–W probability of 60%~ and 20%~ ,

respectively, to be Gaussian, and an 3%~ probability of not

being a cluster. We consider it as a confirmed cluster, and again

notice the larger uncertainty in its confirmation, mass, and

velocity dispersion estimates. This is a newly spectroscopically

confirmed cluster.
PSZ2 G272.85+48.79 was detected by two methods with an

S N 5~ (Planck reliability of 92%~ ). From the combined

Planck and K–S Gaussian probabilities, it has a 90%
probability of being a cluster. On the other hand, from the

combined Planck and K–S uniform probabilities, it has a 5%
probability of not being a cluster. According to our criteria, this

is at the limit of being confirmed as a cluster of galaxies.

However, we assume it is confirmed, also considering that it is

more massive than M1014 (e.g., Evrard et al. 2008).

For PSZ2 G352.05-24.01, the redshift obtained from the X-ray
analysis is z=0.79 (Planck Collaboration et al. 2013), but we
observe galaxies in a wider redshift range. In fact, we can
distinguish two structures at z 0.8~ and z 0.3~ , shown in blue
and green, respectively, in Figure 5. Both redshift distributions
have a standard deviation of ∼0.08, much wider of what is
expected for a cluster of galaxies. This target is not a cluster of
galaxies, and we have excluded it from the analysis of the velocity
dispersion–mass relation in Amodeo et al. (2017).
PSZ2 G085.95+25.23, confirmed at z 0.782 0.010= , is

one of the highest redshift confirmed Planck clusters.
Newly confirmed clusters are labeled with the sign “+” in

Table 3.

4. Spectroscopic Redshift Catalogs

We provide the cluster catalogs as electronic documents,
including the following parameters for each cluster galaxy.

1. The galaxy identification number ID.
2. The J2000 right ascension, R.A., in hours.
3. The J2000 declination, decl., in degree.
4. The measured spectroscopic redshift SPECZ.
5. The error in spectroscopic redshift eSPECZ.

An example is shown in Table 5 for PSZ2 G053.44-36.25.

5. Discussion

In the context of the optical identification of Planck cluster
candidates, our sample, though small, is chosen to have a wide
range of mass with the aim of obtaining a statistical calibration
of the Planck SZ mass estimator. In this section, we compare it
with previous Planck cluster redshift measurements.
Eight of our targets are in the SDSS DR8 redMaPPer cluster

catalogs (Wen et al. 2012; Rykoff et al. 2014). Five of them
(PSZ2 G108.71-47.75, PSZ2 G186.99+38.65, PSZ2 G216.62
+47.00, PSZ2 G056.93-55.08, and PSZ2 G083.29-31.03) have
previous spectroscopic redshift measurements in agreement
with our values.
Measurements of galaxy redshifts are available in the SDSS

DR14 in seven of our fields. A search within two virial radii from
the center of each of our clusters finds spectroscopic catalogs for
galaxies in the following clusters (Ngal, DR14): PSZ2 G053.44-
36.25 (15), PSZ2 G056.93-55.08 (3), PSZ2 G081.00-50.93 (8),
PSZ2 G083.29-31.03 (32), PSZ2 G108.71-47.75 (3), PSZ2
G186.99+38.65 (24), PSZ2 G216.62+47.00 (19). We included
these redshifts and we recalculated the cluster redshifts and
velocity dispersions with the same procedure (see Table 3). The
redshift estimates do not change, while the uncertainties are
smaller. Velocity dispersions are on average within (0.28± 0.17)σ
the values obtained with our measurements only, and never above
0.5σ. For the other targets, there are not public spectroscopic
redshifts for single galaxies to our knowledge.
The Planck collaboration has undertaken two important

optical follow-up programs to confirm Planck cluster candi-
dates and to measure their redshifts. The first is based on
observations with the Russian–Turkish 1.5 m telescope (Planck
Collaboration et al. 2015) and provides spectroscopic redshifts
for 65 Planck clusters. It includes our targets PSZ2 G139.62
+24.18, for which they obtain a spectroscopic redshift of 0.268
consistent with our measurement, and PSZ2 G157.43+30.34,
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for which they find a photometric redshift of 0.45. Vorobyev
et al. (2016) report on additional spectroscopic observations of
the latter cluster from the 2.2 m Calar Alto Observatory
telescope, obtaining z=0.403 with an error of 1%, consistent
with our value of z 0.402 0.006= .

The second program, based on observations with telescopes
at the Canary Islands Observatories (Gran Telescopio Canarias,
Isaac Newton Telescope, William Herschel Telescope, Tele-
scopio Nazionale Galileo, Nordic Optical Telescope, IAC80
telescope), provided 53 cluster spectroscopic redshifts, and is
published in Planck Collaboration et al. (2016b). Again it
includes our target PSZ2 G139.62+24.18, for which they
measure z=0.266 from 22 spectroscopically confirmed
members, consistent with our value of z 0.268 0.005=
obtained from 20 galaxies.

The Planck collaboration has also carried out X-ray
validation programs with XMM-Newton (Planck Collaboration
et al. 2011b, 2012, 2013), where redshifts zFe have been
obtained from X-ray spectral fitting of the iron emission line.
Targets PSZ2 G250.04+24.14 and PSZ2 G272.85+48.79 are
analyzed in Planck Collaboration et al. (2011b), PSZ2 G235.56
+23.29 in Planck Collaboration et al. (2012), and PSZ2
G348.43-25.50 and PLCK G147.32-16.59 in Planck Colla-
boration et al. (2013). In all cases, XMM-Newton finds redshifts
consistent with our values. Planck Collaboration et al. (2013)
also includes the X-ray analysis of PSZ2 G329.48-22.67. They
observe a double projected system at redshifts 0.24 and 0.46. In
our GMOS analysis, we measure z 0.249 0.003= based on
16 spectroscopic members, with no detections at higher
redshift.

Finally, Planck Collaboration et al. (2013) quote a redshift
z 0.77Fe = for PSZ2 G352.05-24.01. The authors give
z 0.12, 0.40Fe = as other possible solutions to the spectral
fitting, but these are excluded from the comparison between the
X-ray and SZ properties of the source (Y YX 500). We observe a
sparse galaxy distribution, with two (small) peaks with more
than five galaxies, one with six galaxies at z 0.798 0.021=
and the other with 11 at z 0.334 0.025= . However, these
large dispersions (∼3500 km s−1 at z=0.798 and
∼5600 km s−1 at z=0.334) do not confirm clusters of
galaxies, and we do not consider this target as a confirmed
cluster.

In conclusion, six of our clusters have spectroscopic redshifts
from previous optical studies, seven have redshift measurements
from X-ray spectral fitting. Their velocity dispersions are
published in this paper for the first time. For the remaining
seven clusters, spectroscopic redshifts and velocity dispersions
are published in this paper for the first time.

6. Conclusions

This article presents spectroscopic redshifts and velocity
dispersions for 20 Planck SZ clusters. We spectroscopically
confirm 19 clusters with Gemini-North and Gemini-South/
GMOS, 6 of which were spectroscopically confirmed in this
paper for the first time. We also confirm and measure the
redshift and velocity dispersion of the Planck cluster PSZ2
G085.95+25.23 with Keck/LRIS spectroscopy, measuring a
mean redshift of z 0.782 0.010= , one of the Planck’s
highest redshift confirmed clusters. Eighteen of our clusters are

included in the last released Planck SZ source catalog, PSZ2

(Planck Collaboration et al. 2016a).
We provide online catalogs for each cluster spectroscopic

member redshift (an example is shown in Table 5).
In a companion paper (Amodeo et al. 2017), we use the

cluster galaxy velocity dispersions to measure the Planck mass

bias, and to constrain the cluster velocity bias.
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Appendix A
Planck Clusters Observed with the Palomar Telescope

In Table 4, we present the sample of clusters observed at the

Palomar telescope, and discussed in Section 2.3.
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Table 4

Planck Clusters Observed with the Palomar Telescope

Name R.A. Decl. Filter Instrument Run

(degree) (degree)

PSZ2 G019.12+31.23 249.1420 3.1528 g′, i′ LFC 2011A

PLCK G024.20+58.78 225.5920 18.6586 g′, i′ LFC 2011A

PLCK G030.89+42.25 243.3310 16.4481 g′, i′, r′ LFC 2011A

PSZ2 G066.41+27.03 269.2120 40.1156 g′, i′, r′ LFC 2011A

PLCK G071.59-63.16 351.9458 −8.9647 i′ LFC 2012B

PSZ2 G074.08-54.68 347.0917 −1.9106 i′ LFC 2012B

PSZ2 G078.67+20.06 282.9920 49.0257 g′, i′ LFC 2011A

PSZ2 G082.31-67.00 357.9500 −8.9647 i′ LFC 2012B

PSZ2 G086.93+53.18 228.4790 52.7775 g′, i′ LFC 2011A

PLCK G087.67+23.00 282.3250 57.8956 g′, i′ LFC 2011A

PSZ2 G091.83+26.11 277.8080 62.2317 i′, r′ LFC 2011A

PSZ2 G094.56+51.03 227.0960 57.8706 g′, i′, r′ LFC 2011A

PLCK G096.88+24.22 284.0750 66.3819 g′, i′ LFC 2011A

PSZ2 G107.83-45.45 1.8753 16.1423 g′, r′, J, K LFC, WIRC 2010B

PSZ1 G108.52+32.30 256.9920 76.4697 g′, r′, i′ LFC 2011A

PLCK G109.35+64.36 202.3080 51.7589 g′, i′ LFC 2011A

PLCK G113.07-74.37 10.1610 −11.7062 r′, J, K LFC, WIRC 2010B

PLCK G113.66+70.59 197.2970 46.2171 g′, i′ LFC 2011A

PLCK G114.92-20.06 2.6792 42.1783 i′ LFC 2012B

PLCK G116.80-25.18 5.8708 37.3600 i′ LFC 2012B

PLCK G117.14-26.47 6.4417 36.1117 i′ LFC 2012B

PSZ1 G121.09+57.02 194.8400 60.0897 g′, i′, r′ LFC 2011A

PSZ1 G129.07-24.12 20.0000 38.4531 g′, i′ LFC 2011B

PSZ2 G134.26-44.28 21.3542 17.8808 g′, i′ LFC 2011B

PSZ2 G138.11+42.06 157.0542 70.6081 g′, i′, r′, J, K LFC, WIRC 2010B, 2011A, 2011B

PSZ2 G139.62+24.18 95.4912 74.7042 g′, i′, r′, J, K LFC, WIRC 2010B, 2011A

PLCK G142.35+17.59 78.8752 69.7009 g′, J LFC, WIRC 2010B, 2011A

PLCK G147.32-16.59a 44.1000 40.2911 g′, i′, r′ LFC 2011B

PSZ2 G157.43+30.34 117.2208 59.6944 g′, i′, r′, J, K LFC, WIRC 2010B, 2011A, 2011B

PLCK G159.41-62.64 28.7625 −4.3600 g′ LFC 2011B

PSZ2 G171.98-40.66 48.2307 8.3805 g′, r′, K LFC, WIRC 2010B

PSZ2 G172.93+21.34 106.8920 44.3050 r′ LFC 2011A

PLCK G183.33-36.69 57.2936 4.5974 g′, J, K LFC, WIRC 2010B

PSZ2 G183.30+34.98 127.4042 38.4325 g′, i′ LFC 2011B

PLCK G184.34+29.07 120.3380 36.4269 g′, i′ LFC 2011A

PSZ2 G193.31-46.13 53.9592 −6.9853 g′, r′, J, K LFC, WIRC 2010B

PSZ2 G193.63+54.85 152.5750 32.8472 i′ LFC 2011B

PSZ2 G194.68-49.76 51.3625 −9.6181 i′ LFC 2012B

PSZ2 G196.65-45.51 55.7583 −8.7039 i′ LFC 2012B

PLCK G196.72+23.27 118.2330 24.2689 g′, i′ LFC 2011A

PLCK G198.13-24.68 74.3315 0.9310 r′, J, K LFC, WIRC 2010B

PSZ2 G198.90+18.16 113.4333 20.3083 g′, i′ LFC 2011B

PLCK G201.89+32.14 128.5292 22.7656 g′, i′ LFC 2011B

PSZ1 G203.88+62.50 161.7580 27.9606 i′ LFC 2011A

PSZ2 G204.24+14.51 112.1375 14.1283 g′, i′ LFC 2012B

PSZ2 G205.90+73.76 174.5833 27.9186 g′, i′ LFC 2011B

PLCK G211.37+49.36 148.5583 21.2128 g′, i′ LFC 2011B

PSZ2 G212.44+63.19 163.2292 24.2128 g′, i′ LFC 2011B

PLCK G214.57+36.96 137.1950 14.7084 r′ LFC 2011A

PLCK G219.13+52.94 153.8580 17.8178 g′, i′, r′, J, K LFC, WIRC 2010B, 2011A

PSZ1 G223.80+58.50 160.3292 17.5111 g′, i′ LFC 2011B

PLCK G247.33+63.53 170.8870 10.6117 g′, i′ LFC 2011A

PSZ1 G263.75+53.85 170.9875 −2.2161 g′, i′ LFC 2011B

Note. Clusters are named after their PSZ2 or PSZ1 ID, when available. When it is not available, we use the prefix “PLCK” followed by a notation in galactic

coordinates similar to that used in the PSZ2 paper.
a
Target PLCK G147.32-16.59 is confirmed in the XMM-Newton cluster validation (Planck Collaboration et al. 2013), but it is not included in the two Planck catalogs

of SZ sources released so far.
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Appendix B
Redshift Histograms, Optical Images, and SZ Maps

We present redshift histograms, optical images, and SZ maps

of clusters observed at Gemini-N (Figure 4), Gemini-S (Figure 5),

and Keck (Figure 6).

Figure 4. Redshift histograms (left), optical images (middle), and SZ maps in signal-to-noise units (right) of clusters in the northern sample. The red curve in the
histograms is a Gaussian fit with mean (μ) and standard deviation (σ) indicated in the legends, calculated for the redshift distribution using the biweight method. We
also indicate the number of members in each cluster and the size of the redshift bins. The red (black) circles in the images enclose a circle of radius 1 arcmin around the
optical (SZ) center of the clusters, while the confirmed member galaxies are shown by green squares.
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Figure 4. (Continued.)

11

The Astrophysical Journal, 853:36 (15pp), 2018 January 20 Amodeo et al.



Figure 4. (Continued.)
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Figure 5. Redshift histograms, optical images, and SZ maps of clusters in the southern sample. Symbols are the same as those in Figure 4. For PSZ2 G352.05-24.01,
we know only the coordinates of the X-ray center, marked with a red cross.
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Figure 5. (Continued.)
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Appendix C
Spectroscopic Redshift Catalogs

In the online version of the journal, we provide catalogs of

galaxies detected for our spectroscopic sample of 20 clusters, in

machine-readable form. We show an example in Table 5 for

PSZ2 G053.44-36.25.

ORCID iDs

Simona Mei https://orcid.org/0000-0002-2849-559X

Daniel Stern https://orcid.org/0000-0003-2686-9241
Ranga-Ram Chary https://orcid.org/0000-0001-7583-0621

References

Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARA&A, 49, 409
Amodeo, S., Mei, S., Stanford, S. A., et al. 2017, ApJ, 844, 101
Beers, T. C., Flynn, K., & Gebhardt, K. 1990, AJ, 100, 32
Birkinshaw, M. 1999, PhR, 310, 97
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Carlstrom, J. E., Holder, G. P., & Reese, E. D. 2002, ARA&A, 40, 643
Evrard, A. E., Bialek, J., Busha, M., et al. 2008, ApJ, 672, 122
Fasano, G., & Franceschini, A. 1987, MNRAS, 225, 155
Girardi, M., Biviano, A., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1993,

ApJ, 404, 38
Girardi, M., Demarco, R., Rosati, P., & Borgani, S. 2005, A&A, 442, 29
Gladders, M. D., & Yee, H. K. C. 2000, AJ, 120, 2148
Licitra, R., Mei, S., Raichoor, A., et al. 2016a, ApJ, 829, 44
Licitra, R., Mei, S., Raichoor, A., Erben, T., & Hildebrandt, H. 2016b,

MNRAS, 455, 3020
Massey, P., & Gronwall, C. 1990, ApJ, 358, 344
Mei, S., Holden, B. P., Blakeslee, J. P., et al. 2009, ApJ, 690, 42
Melin, J.-B., Bartlett, J. G., & Delabrouille, J. 2006, A&A, 459, 341
Mroczkowski, T., Kovács, A., Bulbul, E., et al. 2015, ApJL, 808, L6
Oke, J. B., Cohen, J. G., Carr, M., et al. 1995, PASP, 107, 375
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011a, A&A, 536, A8
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013, A&A, 550, A130
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, A29
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2015, A&A, 582, A29
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016a, A&A, 594, A27
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016b, A&A, 586, A139
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016c, A&A, 594, A13
Planck Collaboration, Aghanim, N., Arnaud, M., et al. 2011b, A&A, 536, A9
Planck Collaboration, Aghanim, N., Arnaud, M., et al. 2012, A&A, 543, A102
Rykoff, E. S., Rozo, E., Busha, M. T., et al. 2014, ApJ, 785, 104
Shapiro, S. S., & Wilk, M. B. 1965, Biometrika, 52, 591
Sunyaev, R. A., & Zeldovich, Y. B. 1970, Ap&SS, 7, 3
Truemper, J. 1993, Sci, 260, 1769
Valdes, F. G., Campusano, L. E., Velasquez, J. D., & Stetson, P. B. 1995,

PASP, 107, 1119
van Weeren, R. J., Intema, H. T., Lal, D. V., et al. 2014, ApJL, 781, L32
Vorobyev, V. S., Burenin, R. A., Bikmaev, I. F., et al. 2016, AstL, 42, 63
Wen, Z. L., Han, J. L., & Liu, F. S. 2012, ApJS, 199, 34
White, M., Cohn, J. D., & Smit, R. 2010, MNRAS, 408, 1818
York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579

Figure 6. Redshift histogram, IRAC image, and SZ map of PSZ2 G085.95+25.23 observed at the Keck telescope. Symbols are the same as those in Figure 4.

Table 5

The Catalog of Galaxies Detected for Cluster PSZ2 G053.44-36.25

ID R.A. Decl. SPECZ eSPECZ

(hr) (degree)

1 21.58816 −1.08456 0.3306 0.0002

2 21.58506 −1.06186 0.3324 0.0001

3 21.58748 −1.05329 0.3363 0.0001

4 21.58530 −1.08879 0.3304 0.0003

5 21.58638 −1.05156 0.3361 0.0003

6 21.58564 −1.06893 0.3258 0.0002

7 21.58671 −1.05585 0.3359 0.0001

8 21.58600 −1.06488 0.3301 0.0002

9 21.58632 −1.02193 0.3344 0.0003

10 21.58714 −1.04561 0.3277 0.0002

11 21.58603 −1.02659 0.3345 0.0002

12 21.58648 −1.05931 0.3239 0.0002

13 21.58509 −1.07221 0.3316 0.0002

14 21.58678 −1.07722 0.3322 0.0003

15 21.58659 −1.03027 0.3250 0.0003

16 21.58745 −1.03873 0.3335 0.0001

17 21.58458 −1.04332 0.3307 0.0002

18 21.58804 −1.03449 0.3891 0.0006

19 21.58677 −1.02851 0.3424 0.0004

20 21.58674 −1.04831 0.3276 0.0002

Note. The full spectroscopic catalogs for all 20 clusters are available in the

online version of the journal.

(This table is available in its entirety in machine-readable form.)
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ABSTRACT

Context. Galaxy clusters are the most recent, gravitationally bound products of the hierarchical mass accretion over cosmological
scales. How the mass is concentrated is predicted to correlate with the total mass in the halo of the cluster, wherein systems at higher
mass are less concentrated at given redshift and, for any given mass, systems with lower concentration are found at higher redshifts.
Aims. Through a spatial and spectral X-ray analysis, we reconstruct the total mass profile of 47 galaxy clusters observed with Chandra
in the redshift range 0.4 < z < 1.2, which we selected to exclude major mergers, to investigate the relation between the mass and dark
matter concentration and the evolution of this relation with redshift. This sample is the largest investigated so far at z > 0.4, and is
well suited to providing the first constraint on the concentration–mass relation at z > 0.7 from X-ray analysis.
Methods. Under the assumption that the distribution of the X-ray emitting gas is spherically symmetric and in the hydrostatic equi-
librium with the underlined gravitational potential, we combine the deprojected gas density and spectral temperature profiles through
the hydrostatic equilibrium equation to recover the parameters that describe a Navarro-Frenk-White total mass distribution. The com-
parison with results from weak-lensing analysis reveals a very good agreement both for masses and concentrations. The uncertainties
are however too large to make any robust conclusion about the hydrostatic bias of these systems.
Results. The distribution of concentrations is well approximated by a log-normal function in all the mass and redshift ranges investi-
gated. The relation is well described by the form c ∝ MB(1+ z)C with B = −0.50± 0.20, C = 0.12± 0.61 (at 68.3% confidence). This
relation is slightly steeper than that predicted by numerical simulations (B ∼ −0.1) and does not show any evident redshift evolution.
We obtain the first constraints on the properties of the concentration–mass relation at z > 0.7 from X-ray data, showing a reasonable
good agreement with recent numerical predictions.

Key words. galaxies: clusters: general – intergalactic medium – X-rays: galaxies – cosmology: observations – dark matter

1. Introduction

Within the standard cosmological model, structure formation
takes place from the gravitational collapse of small perturbations
in a quasi-homogeneus Universe dominated by cold dark matter
(CDM). The collapse proceeds from smaller to larger scales giv-
ing rise to a hierarchical clustering of cosmic structures. In this
framework, galaxy clusters, as they are the largest nearly viri-
alised collapsed objects in the observable Universe, are also the
last to form. Therefore, they are fundamental tools for under-
standing the formation and evolution of cosmic structures.

Numerical N-body simulations predict that dark matter ha-
los have a universal density profile characterised by two param-
eters: the scale radius rs, defined as the radius at which the log-
arithmic density slope is −2, and the concentration c, defined
as the ratio between R200

1 and rs (Navarro et al. 1997, hereafter
NFW). Because of the hierarchical nature of structure formation
(low-mass objects form earlier than high-mass objects) and the

⋆ Present address: GEPI, Paris Observatory, 77 Av. Denfert-
Rochereau, 75014 Paris, France.
1 R200 is the radius within which the cluster density is 200 times the
critical density of the Universe at the cluster’s redshift.

fact that collapsed objects retain information on the background
density at the time of their formation (the background average
matter density was higher in the past), concentration and mass
are related so that systems with higher masses are less concen-
trated and, at a given mass, lower concentrations are expected at
higher redshifts (e.g. Muñoz-Cuartas et al. 2011). Moreover, the
properties of the background Universe depend on the set of cos-
mological parameters adopted. Models with lower matter den-
sity and lower normalisation of the linear power spectrum re-
sult in a later assembly redshift, so less concentrated halos are
expected at a given mass. Therefore, the c(M, z) relation con-
tains a wealth of cosmological information. Several works have
been performed to characterise this relation, both numerically
and observationally, but there are tensions between them. Nu-
merical simulations by Dolag et al. (2004), Duffy et al. (2008),
Bhattacharya et al. (2013), De Boni et al. (2013), Ludlow et al.
(2014), and Dutton & Macciò (2014) indicate that concentra-
tion and mass are anti-correlated for all the mass ranges and
redshifts investigated with a mass dependence that is slightly
reduced at larger redshift. Observations of galaxy clusters at
low redshift confirm the expected anti-correlation between c
and M, but they generally find a steeper slope and a higher

Article published by EDP Sciences A126, page 1 of 16
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normalisation compared to the theoretical relation (Buote et al.
2007; Schmidt & Allen 2007; Ettori et al. 2010; Merten et al.
2015). Whether this discrepancy is due to observational selec-
tion biases (e.g. Meneghetti et al. 2014; Sereno et al. 2015) or
to the lack of some fundamental physics in numerical models
is still an open question. Both simulations (e.g. De Boni et al.
2013) and observations (Ettori et al. 2010) agree about the in-
fluence of the dynamical state of a cluster on its concentra-
tion; that is, more relaxed systems are more concentrated at
a fixed mass. A different trend emerges from simulations by
Prada et al. (2012) and Klypin et al. (2014). They predict that
at high redshifts the c(M) relation has a plateau and an upturn
at the typical masses of galaxy clusters. However, as shown in
Ludlow et al. (2012; see also Correa et al. 2015), the plateau and
the upturn disappear when the relaxed halos are the only ones
considered. Properties of observed mass-concentration relations
are strongly sample dependent (Sereno et al. 2015). The pre-
dicted slope in signal-selected samples can be much steeper than
that of the underlying population characterising dark matter-
only clusters. Over-concentrated clusters can be preferentially
included and this effect is more prominent at the low-mass end.
Sereno et al. (2015) found this trend both in the X-ray selected
samples Cluster Lensing And Supernova survey with Hubble
(CLASH; Postman et al. 2012) and Local Cluster Substructure
Survey (LOCUSS; Okabe et al. 2010) and in the lensing selected
sample Sloan Giant Arcs Survey (SGAS; Hennawi et al. 2008).
Statistical and selection biases in observed relations are then
to be carefully considered when compared with predictions of
the ΛCDM model (Meneghetti et al. 2014). Among the meth-
ods used to characterise the c(M) relation, X-ray observations
are found to be rather successful since galaxy clusters have a
well-resolved, extended emission with a total luminosity that is
proportional to the square of the gas density.

In this work, we perform spatial and spectral analysis for a
sample of 47 galaxy clusters observed with Chandra in the red-
shift range 0.4 < z < 1.2, which we selected to exclude major
mergers with the aim to (1) reconstruct their total mass profile
by assuming a spherical symmetry for the intracluster medium
(ICM) distribution and hydrostatic equilibrium between the ICM
and the gravitational potential of each cluster; and (2) investigate
the relation between their mass and concentration and its evolu-
tion with redshift. We consider the largest sample investigated so
far at z > 0.4 with the additional purpose of probing the c(M) re-
lation at z > 0.7 for the first time using X-ray data.

The paper is organised as follows: in Sect. 2, we present
the sample of Chandra observations selected for the analysis;
in Sects. 3 and 4, we describe the data analysis and the method
used to reconstruct the clusters mass profiles, respectively; in
Sect. 5, we investigate our c(M, z) relation and its redshift evo-
lution. We discuss the properties of the sample and its represen-
tativeness in Sect. 6 and we draw our conclusions in Sect. 7. We
assume a flat ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7,
H0 = 70 km s−1 Mpc−1 and h(z) =

√

Ωm(1 + z)3 + ΩΛ. All
quoted errors are 68.3% (1σ) confidence level, unless otherwise
stated.

2. The dataset

We retrieved all observations of galaxy clusters with redshift
z ≥ 0.4 available at 2 March 2014 from the Chandra public
archive. We excluded those galaxy clusters with exposure time
shorter than 20 ks in order to have sufficient X-ray count statis-
tics, in particular, for spectral analysis. We also excluded galaxy

clusters that to a visual inspection showed evidence of dynamic
activity (e.g. presence of major substructures). This restriction
minimises the systematic scatter in the mass estimate, since the
higher the degree of regular morphology in the X-ray image,
the more the cluster is expected to be dynamical relaxed and
the more robust is the assumption of the hydrostatic equilibrium
of the ICM in the cluster potential well (e.g. Rasia et al. 2006;
Poole et al. 2006; Mahdavi et al. 2013; Nelson et al. 2014). An-
other selection criterion is related to the choice of adopting
a NFW as functional form of the cluster gravitational profile,
which has two free parameters (scale radius rs and concentra-
tion c). Considering that our procedure to reconstruct the mass
profile requires independent spectral measurements of the gas
temperatures (see Sect. 4), we need a number of independent
radial bins that is larger than the number of mass modelling pa-
rameters (=2). Therefore, we used only the targets for which we
could measure the temperature in at least three independent bins.
The final sample is then composed of 47 galaxy clusters span-
ning a redshift range 0.4 < z < 1.2, as listed in Table 1.

The acquired data are reduced using the CIAO 4.7
software (Chandra Interactive Analysis of Observations,
Fruscione et al. 2006) and the calibration database CALDB 4.6.5
(December 2014 release2). This procedure includes a filter for
the good time intervals associated with each observation and a
correction for the charge transfer inefficiency. It removes pho-
tons detected in bad CCD columns and pixels, it computes cali-
brated photon energies by applying ACIS gain maps and it cor-
rects for their time dependence. Moreover, it examines the back-
ground light curves during each observation to detect and re-
move flaring episodes. We identify bright point sources using
the wavdetect alogorithm by Vikhlinin et al. (1998), check the
results by visual inspection, mask all the detected point sources
and exclude them from the following analysis.

3. Spatial and spectral analysis

Obtaining good brightness and temperature profiles is crucial
for the quality of the mass estimates. This strongly depends on
the quantity and quality of data obtained for each observation,
namely the number of counts measured for the observed target
and the fraction of counts on the background.

We extract surface brightness radial profiles from the images
in the [0.7−2] keV band by constructing a set of circular an-
nuli around the X-ray emission peak, each one containing at
least 100 net source counts. The background counts are esti-
mated from local regions of the same exposure that are free from
source emissions (on the same chip as the source region or on an-
other chip of the same type used in the observation). Following
this criterion, we manually select from two to four background
regions for each cluster. The surface brightness profile is then
extracted over an area where the signal-to-noise ratio is always
larger than 2, up to the radius R

spat
out . In Table 1, we quote the

number of counts measured for each target in the [0.7−2] keV
band, the number of radial bins obtained to sample the surface
brightness profile, and R

spat
out .

For the spectral analysis, we use the CIAO specextract
tool to extract the source and background spectra and to con-
struct the redistribution matrix files (RMF) and the ancillary
response files (ARF) for each annulus. The RMF associates
the appropriate photon energy with each instrument channel,
while the ARF includes information on the effective area, the

2 http://cxc.harvard.edu/caldb/
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Table 1. Sample of the galaxy clusters analysed in this work.

Cluster z Detector Exposure [ks] RA [J2000] Dec [J2000] tot cts R
spat
out [kpc] nbinS b R

spec
out [kpc] nbinT

MACS J0159.8-0849 0.405 ACIS-I 29.1 01 59 49.50 −08 49 59.3 20 250 1130 56 786 13
MACS J2228.5+2037 0.412 ACIS-I 16.5 22 28 32.41 +20 37 30.5 9234 1511 27 680 5

MS1621.5+2640 0.426 ACIS-I 27.5 16 23 35.40 +26 34 11.2 9277 1109 20 856 5
MACS J1206.2-0848 0.440 ACIS-I 21.1 12 06 12.38 −08 48 07.4 10 559 1131 29 516 5
MACS J2243.3-0935 0.447 ACIS-I 18.5 22 43 21.57 −09 35 42.4 9432 1305 31 537 5
MACS J0329.7-0211 0.450 ACIS-I 28.4 03 29 41.40 −02 11 44.4 12 870 950 34 660 8

RXJ 1347.5-1145 0.451 ACIS-I 29.2 13 47 30.87 −11 45 09.9 29 013 1266 66 829 10
V1701+6414 0.453 ACIS-I 31.1 17 01 23.41 +64 14 11.5 9841 892 15 633 6

MACS J1621.6+3810 0.465 ACIS-I 29.9 16 21 24.69 +38 10 08.6 11 048 794 22 471 6
CL0522-3624 0.472 ACIS-I 26.4 05 22 15.29 −36 25 02.7 6871 587 16 440 3

MACS J1311.0-0310 0.494 ACIS-I 44.5 13 11 01.87 −03 10 39.8 11 297 634 25 381 6
MACS J2214.9-1400 0.503 ACIS-I 15.4 22 14 57.48 −14 00 09.6 7837 1318 19 872 5
MACS J0911.2+1746 0.505 ACIS-I 23.0 09 11 10.61 +17 46 30.9 4220 1283 16 904 8
MACS J0257.1-2326 0.505 ACIS-I 17.0 02 57 09.13 −23 26 04.3 3832 1389 17 478 8

V1525+0958 0.516 ACIS-I 28.2 15 24 40.04 +09 57 48.9 3613 575 8 435 4
MS0015.9+1609 0.541 ACIS-I 31.0 00 18 33.36 +16 26 12.6 9652 1375 41 913 9
CL0848.6+4453 0.543 ACIS-I 125.2 08 48 47.73 +44 56 13.9 13 613 300 5 282 3

MACS J1423.8+2404 0.543 ACIS-S 105.4 14 23 47.90 +24 04 42.2 35 182 899 33 603 10
MACS J1149.5+2223 0.544 ACIS-I 51.4 11 49 35.52 +22 23 52.7 23 253 1470 26 875 8
MACS J0717.5+3745 0.546 ACIS-I 74.6 07 17 31.22 +37 45 22.6 34 326 1389 62 1090 21

CL1117+1744 0.548 ACIS-I 37.5 11 17 29.89 +17 44 52.1 7098 520 8 500 3
MS0451.6-0305 0.550 ACIS-S 37.0 04 54 11.04 −03 00 57.8 18 100 955 33 486 6
MS2053.7-0449 0.583 ACIS-I 35.0 20 56 21.12 −04 37 48.4 5428 463 11 293 3

MACS J2129.4-0741 0.589 ACIS-I 18.0 21 29 25.64 −07 41 32.0 6226 1055 13 611 5
MACS J0647.7+7014 0.591 ACIS-I 17.9 06 47 49.95 +70 14 56.2 5362 1028 20 274 4

CL1120+4318 0.600 ACIS-I 18.6 11 20 07.23 +43 18 03.6 3452 722 13 599 4
CLJ0542.8-4100 0.640 ACIS-I 49.9 05 42 49.63 −40 59 56.3 5026 744 12 771 4

LCDCS954 0.670 ACIS-S 26.9 14 20 29.25 −11 34 19.4 1005 586 8 384 3
MACS J0744.9+3927 0.698 ACIS-I 48.7 07 44 52.82 +39 27 26.1 9257 1106 23 508 5

V1221+4918 0.700 ACIS-I 74.3 12 21 25.71 +49 18 30.4 2411 592 14 595 5
SPT-CL0001-5748 0.700 ACIS-I 29.4 00 00 59.91 −57 48 34.7 7544 525 14 244 3
RCS2327.4-0204 0.704 ACIS-I 73.4 23 27 27.68 −02 04 38.5 13 778 944 28 705 8

SPT-CLJ2043-5035 0.720 ACIS-I 76.6 20 43 17.48 −50 35 32.0 5006 594 11 380 3
ClJ1113.1-2615 0.730 ACIS-I 92.5 11 13 05.42 −26 15 39.2 660 330 10 288 3

CLJ2302.8+0844 0.734 ACIS-I 100.6 23 02 48.05 +08 43 49.3 3649 627 10 350 3
SPT-CL2337-5942 0.775 ACIS-I 19.7 23 37 24.65 −59 42 22.7 2013 557 10 254 3

RCS2318+0034 0.780 ACIS-I 112.5 23 18 30.88 +00 34 01.6 22 445 446 13 380 4
MS1137.5+6625 0.782 ACIS-I 101.3 11 40 22.53 +66 08 14.3 3454 440 14 402 7
RXJ 1350.0+6007 0.810 ACIS-I 55.2 13 50 48.18 +60 07 13.4 4564 698 8 450 3
RXJ 1716.9+6708 0.813 ACIS-I 50.7 17 16 48.94 +67 08 25.2 1180 418 9 481 3
EMSS1054.5-0321 0.831 ACIS-S 63.5 10 57 00.07 −03 37 33.1 3872 566 11 574 5
CLJ1226.9+3332 0.888 ACIS-I 29.9 12 26 58.07 +33 32 46.0 3450 779 15 277 4

XMMUJ1230+1339 0.975 ACIS-S 38.4 12 30 17.06 +13 39 08.5 6538 344 9 287 4
J1415.1+3612 1.030 ACIS-S 97.5 14 15 11.01 +36 12 04.1 8727 419 20 260 4

SPT-CL0547-5345 1.067 ACIS-I 28.0 05 46 37.25 −53 45 30.6 3492 657 8 597 3
SPT-CLJ2106-5844 1.132 ACIS-I 47.1 21 06 03.38 −58 44 29.6 7552 680 11 432 3

RDCS1252-2927 1.235 ACIS-I 148.7 12 52 54.58 −29 27 16.9 13 103 378 7 286 3

Notes. Columns from left to right list the target name, adopted redshift, detector used in the observation, net exposure time (in kilo-seconds) after
all cleaning processes, position of the adopted X-ray centre in equatorial J2000 coordinates, and number of counts measured for each target in
the [0.7−2] keV band, up to the radial limit R

spat
out . The last four columns list the upper limit of the radial range investigated in the spatial analysis

(Rspat
out ) and in the spectral analysis (Rspec

out ) with the number of bins with which we can sample the surface brightness and temperature profiles (the
temperature bins are obtained by integrating the spectra between 0.6 and 7 keV).

efficiency of the instrument in revealing photons, and any ad-
ditional energy-dependent efficiencies. The background spec-
tra are extracted from the same background regions used for
the spatial analysis. The source spectra are extracted from at
least three concentric annuli centred on the X-ray surface bright-
ness centroid up to the radius R

spec
out where the signal-to-noise is

larger than 0.3 in the [0.6−7] keV band. Each spectrum con-
tains at least 500 net source counts in the [0.6−7] keV band. For
five objects (CL0848.6+4453, LCDCS954, CLJ1113.1-2615,
CLJ2302.8+0844, and RDCS1252-2927), we consider a mini-
mum of 200 net counts to resolve the temperature profile in three
independent radial bins. In Table 1, we also report the radial limit
probed in the spectral analysis (Rspec

out ) and the number of bins
with which we can sample the temperature profiles by integrat-
ing the spectra between 0.6 and 7 keV.

For each annulus, the spectrum is analysed with the X-ray
spectral fitting software XSPEC (Arnaud 1996). We adopt a col-
lisionally ionised diffuse gas emission model (apec) multiplied
by an absorption component (tbabs). In this model, we fix the
redshift to the value obtained from the optical spectroscopy and
the absorbing equivalent hydrogen column density NH to the
value of the Galactic absorption inferred from radio HI maps
in Dickey & Lockman (1990). Then, the free parameters in the
spectral fitting model are the emission-weighted temperature,
metallicity, and normalisation of the thermal spectrum. The fit is
performed in the energy range [0.6−7] keV applying Cash statis-
tics (Cash 1979) as implemented in XSPEC. Cash statistics is a
maximum-likelihood estimator based on the Poisson distribution
of the detected source plus background counts and is preferable
for low signal-to-noise spectra (e.g. Nousek & Shue 1989).
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The gas density profile is then obtained through the geomet-
rical deprojection (e.g. Fabian et al. 1981; Ettori et al. 2002) of
both the surface brightness profile S b and the normalisation K of
the thermal model fitted in the spectral analysis.

4. The hydrostatic mass profile

The total mass of X-ray luminous galaxy clusters can be esti-
mated from the observed gas density ngas and temperature Tgas
profiles. The Euler equation for a spherically symmetric dis-
tribution of gas with pressure Pgas and density ρgas, in hydro-
static equilibrium with the underlying gravitational potential φ,
requires (Binney & Tremaine 1987)

1
ρgas

dPgas

dr
= −

dφ
dr
= −

GMtot(<r)
r2

, (1)

which is better known as the hydrostatic equilibrium equation
(HEE). Solving Eq. (1) for the total mass Mtot and considering
the perfect gas law, Pgas = ρgas kTgas/(µmp) = ngas kTgas, we can
obtain the total mass of the clusters as a function of our observ-
ables, gas density and temperature profiles (see e.g. Ettori et al.
2013, for a recent review),

Mtot(<r) = −
kTgas(r)r

µmpG

(

dln ngas

dln r
+

dln Tgas

dln r

)

· (2)

Here, G is the gravitational constant, k is the Boltzmann’s con-
stant, mp is the proton mass, µ = 0.6 is the mean molecular
weight of the gas, and ngas = ρgas/µmp is the sum of the elec-
tron and ion densities.

We consider a galaxy cluster to be a spherical region with
a radius R∆, where ∆ is the mean over-density with respect to
the critical density of the Universe at the redshift of the clus-
ter. We define all the quantities describing the mass profile of
the cluster in relation to the over-density ∆ = 200. We define
the masses with respect to the critical density of the Universe.
Diemer & Kravtsov (2015) pointed out that the time evolution
of the concentration with the peak height ν exhibits the smallest
deviations from universality if this definition is adopted.

As described in Ettori et al. (2013), Eq. (2) can be solved at
least with two different approaches, adopting either a backwards
method or a forwards method.

The backwards method follows the approach described in
Ettori et al. (2010). Briefly, it consists in adopting a functional
form to describe the total mass profile, while there is no
parametrisation of the gas temperature and density profiles. We
adopt the NFW profile, so that

Mtot(<r) = 4πr3
sρs f (x),

ρs = ρc,z

200
3

c3

ln(1 + c) − c/(1 + c)
,

f (x) = ln(1 + x) −
x

1 + x
, (3)

where x = r/rs. This model is a function of two parameters:
the scale radius rs and concentration c, which are related by the
relation R200 = c200 × rs. The best-fit parameters are searched
over a grid of values in the (rs, c) plane and they are constrained
by minimising the following χ2 statistics:

χ2
T =

∑

i

(Tdata,i − Tmodel,i)2

ǫ2T,i

, (4)

where the sum is performed over the annuli of the spectral analy-
sis; Tdata are the temperature measurements obtained in the spec-
tral analysis; Tmodel are the values obtained by projecting the es-
timates of Tgas (recovered from the inversion of the HEE Eq. (2)
for a given gas density and total mass profiles) over the annuli
used in the spectral analysis, according to Mazzotta et al. (2004);
and ǫT is the error on the spectral measurements. The search for
the minimum in the χ2

T
distribution proceeds, first, in identify-

ing a minimum over a grid of 50 × 50 points in which the range
of the two free parameters (50 kpc < rs < max(Rspat

out , R
spec
out );

0.2 < c < 20) is divided regularly. Then, we obtain the refined
best-fit values for the (rs, c) parameters, looking for a minimum
over a 100 × 100 grid in a 5σ range around the first identified
minimum. Considering the strong correlation present between
the free parameters and to fully represent their probability distri-
bution, we estimate and quote the probability weighted means of
the concentration c200 and of the mass M200 in Table 2. The mass
is obtained as 200 ρc,z 4/3πR3

200, where R200 = rs×c200 and prop-
agates the joint probability distribution evaluated for the grid of
values of the (rs, c) parameters. In Table 2, we quote the best-fit
results for c200 and M200 derived from the backwards method.

In the forwards method some parametric functions are used
to model the three-dimensional gas density and temperature ra-
dial profiles. This is similar to what is described in, for example
Vikhlinin et al. (2006), where the adopted functional forms are
projected along the line of sight to fit the observed projected
quantities. In the present analysis, we model the deprojected
three-dimensional profiles directly. The gas density distribution
is parametrised by a double β-model,

ngas(r) =
n0

[1 + (r/r0)2]1.5α
+

n1

[1 + (r/r1)2]1.5β
(5)

where n0, n1, r0, r1, α, β are the free parameters of the model. The
three-dimensional temperature profile is modelled as

T (r) = T0
a + (r/rin)b

[1 + (r/rin)b][1 + (r/rout)2]d
, (6)

where T0, rin, rout, a, b, d are the free parameters of the model.
These profiles, with their best-fit values and intervals, are then
used to recover the mass profile through Eq. (2).

The two methods show a good agreement between the two
estimates of the mass contained within the outermost radius mea-
sured in the spectral analysis, as shown in Fig. 1. In fact, the ratio
between the two mass estimates has a median (1st, 3rd quartile)
value of 0.92 (0.75, 1.11). The distributions of the relative er-
rors are also very similar with a median value of 22% for the
forwards method and 16% for the backwards method. For the
following analysis, we have choosen to follow the backwards
method since it requires only two parameters and provides more
reliable estimates of the uncertainties (see e.g. Mantz & Allen
2011).

Eleven clusters in our sample are among the targets of the
CLASH programme (Postman et al. 2012). The CLASH was a
Hubble Multi-Cycle Treasury programme with the main sci-
ence goal to obtain well-constrained, gravitational-lensing mass
profiles for a sample of 25 massive galaxy clusters in the red-
shift range 0.2−0.9. Twenty of these clusters were selected to
have relatively round X-ray isophotes centred on a prominent
brightest central galaxy. The remaining five were chosen for
their capability of providing extraordinary signal for gravita-
tional lensing. Donahue et al. (2014) derive the mass profiles
of the CLASH clusters from X-ray observations (either Chan-
dra or XMM-Newton) to compare them with lensing results. We

A126, page 4 of 16



S. Amodeo et al.: Concentration-mass relation in X-ray galaxy clusters at high redshift

Table 2. Results of the mass reconstruction.

name z kT [keV] Mgas,500[1014 M⊙] c200 M200[1014 M⊙] χ2/d.o.f. (P)

MACS J0159.8-0849 0.405 9.2 ± 0.6 1.29 ± 0.07 4.3 ± 0.8 17.8 ± 5.4 1.42 (0.84)
MACS J2228.5+2037 0.412 9.4 ± 0.7 1.57 ± 0.12 2.7 ± 1.1 15.6 ± 5.1 0.09 (0.04)

MS1621.5+2640 0.426 6.7 ± 0.6 0.95 ± 0.06 2.4 ± 0.9 13.0 ± 4.1 0.82 (0.52)
MACS J1206.2-0848 0.440 12.5 ± 1.0 2.25 ± 0.10 2.5 ± 0.5 38.1 ± 10.3 1.62 (0.82)
MACS J2243.3-0935 0.447 8.4 ± 0.6 1.73 ± 0.11 2.7 ± 1.2 14.5 ± 4.4 1.29 (0.73)
MACS J0329.7-0211 0.450 7.7 ± 0.6 1.00 ± 0.06 3.5 ± 0.7 15.9 ± 5.6 0.62 (0.29)

RXJ 1347.5-1145 0.451 15.1 ± 0.8 2.43 ± 0.11 4.5 ± 0.6 40.1 ± 11.2 0.73 (0.33)
V1701+6414 0.453 6.3 ± 0.7 0.78 ± 0.07 2.2 ± 1.0 7.8 ± 3.4 0.86 (0.52)

MACS J1621.6+3810 0.465 9.1 ± 1.0 0.81 ± 0.05 3.4 ± 1.0 21.7 ± 10.9 0.62 (0.35)
CL0522-3624 0.472 4.2 ± 1.2 0.23 ± 0.03 6.3 ± 4.9 6.1 ± 4.6 0.02 (0.11)

MACS J1311.0-0310 0.494 5.7 ± 0.4 0.77 ± 0.03 2.6 ± 0.8 18.6 ± 7.8 0.52 (0.28)
MACS J2214.9-1400 0.503 11.9 ± 1.6 1.41 ± 0.13 4.4 ± 2.9 17.9 ± 9.0 0.59 (0.38)
MACS J0911.2+1746 0.505 7.9 ± 1.0 1.12 ± 0.74 2.5 ± 1.0 15.5 ± 5.1 1.16 (0.68)
MACS J0257.1-2326 0.505 8.6 ± 0.9 1.31 ± 0.13 3.9 ± 2.3 17.3 ± 8.7 0.63 (0.29)

V1525+0958 0.516 4.7 ± 0.7 0.52 ± 0.03 2.5 ± 1.3 11.1 ± 5.5 1.05 (0.65)
MS0015.9+1609 0.541 9.9 ± 0.8 1.78 ± 0.12 2.3 ± 0.6 19.9 ± 5.1 0.92 (0.51)
CL0848.6+4453 0.543 4.9 ± 0.8 0.16 ± 0.01 5.2 ± 4.3 9.4 ± 8.6 0.11 (0.26)

MACS J1423.8+2404 0.543 7.5 ± 0.3 0.70 ± 0.03 6.2 ± 0.4 7.8 ± 0.8 1.44 (0.83)
MACS J1149.5+2223 0.544 10.8 ± 0.7 1.73 ± 0.10 3.3 ± 2.0 13.3 ± 4.5 0.85 (0.47)
MACS J0717.5+3745 0.546 7.9 ± 0.5 2.52 ± 0.12 3.6 ± 0.9 21.7 ± 4.0 1.52 (0.93)

CL1117+1744 0.548 2.5 ± 1.2 0.19 ± 0.02 4.8 ± 4.5 2.2 ± 1.6 0.45 (0.50)
MS0451.6-0305 0.550 11.2 ± 0.7 1.78 ± 0.06 3.2 ± 1.4 28.5 ± 11.3 1.30 (0.73)
MS2053.7-0449 0.583 5.6 ± 1.6 0.36 ± 0.03 4.3 ± 3.7 8.1 ± 6.0 0.40 (0.47)

MACS J2129.4-0741 0.589 11.6 ± 2.1 1.23 ± 0.08 6.5 ± 4.4 16.0 ± 9.6 0.91 (0.57)
MACS J0647.7+7014 0.591 13.2 ± 2.5 1.74 ± 0.12 3.7 ± 2.4 25.6 ± 15.2 0.62 (0.46)

CL1120+4318 0.600 4.9 ± 1.4 0.65 ± 0.09 4.7 ± 4.0 7.0 ± 4.2 1.03 (0.65)
CLJ0542.8-4100 0.640 6.0 ± 0.8 0.43 ± 0.03 7.0 ± 5.2 6.5 ± 3.6 1.13 (0.68)

LCDCS954 0.670 3.9 ± 0.8 0.17 ± 0.02 4.8 ± 4.5 2.2 ± 1.7 1.75 (0.81)
MACS J0744.9+3927 0.698 9.0 ± 0.7 1.05 ± 0.07 6.2 ± 2.8 9.7 ± 4.9 1.08 (0.65)

V1221+4918 0.700 6.3 ± 0.8 0.40 ± 0.03 6.1 ± 4.8 6.6 ± 4.3 1.46 (0.78)
SPT-CL0001-5748 0.700 6.5 ± 1.0 0.52 ± 0.03 5.1 ± 3.3 13.3 ± 11.4 0.25 (0.38)
RCS2327.4-0204 0.704 9.8 ± 0.5 1.66 ± 0.07 2.2 ± 0.4 31.3 ± 7.7 0.72 (0.37)

SPT-CLJ2043-5035 0.720 6.5 ± 1.1 0.98 ± 0.06 2.6 ± 1.3 15.1 ± 8.1 0.18 (0.33)
ClJ1113.1-2615 0.730 3.9 ± 0.7 0.17 ± 0.02 6.0 ± 4.4 8.1 ± 6.8 0.68 (0.59)

CLJ2302.8+0844 0.734 11.4 ± 2.9 0.38 ± 0.04 3.2 ± 2.9 7.9 ± 5.0 3.29 (0.93)
SPT-CL2337-5942 0.775 9.3 ± 1.7 1.14 ± 0.06 4.8 ± 3.8 21.2 ± 14.1 0.05 (0.18)

RCS2318+0034 0.780 10.4 ± 2.2 0.80 ± 0.03 4.8 ± 3.7 22.9 ± 17.3 0.27 (0.24)
MS1137.5+6625 0.782 5.2 ± 0.4 0.48 ± 0.03 3.6 ± 1.9 15.2 ± 8.8 2.07 (0.93)
RXJ 1350.0+6007 0.810 4.0 ± 0.6 0.22 ± 0.03 5.0 ± 4.5 2.8 ± 1.5 0.02 (0.12)
RXJ 1716.9+6708 0.813 4.7 ± 0.8 0.28 ± 0.02 6.6 ± 5.3 6.5 ± 4.9 1.75 (0.81)
EMSS1054.5-0321 0.831 11.1 ± 1.2 1.15 ± 0.03 3.8 ± 3.2 16.3 ± 8.8 0.71 (0.45)
CLJ1226.9+3332 0.888 14.3 ± 2.4 1.66 ± 0.10 4.2 ± 2.9 33.7 ± 21.2 0.11 (0.11)

XMMUJ1230+1339 0.975 4.3 ± 1.1 0.37 ± 0.03 4.2 ± 3.7 8.7 ± 7.1 0.35 (0.30)
J1415.1+3612 1.030 6.2 ± 0.7 0.34 ± 0.02 3.3 ± 2.5 10.0 ± 6.9 0.71 (0.51)

SPT-CL0547-5345 1.067 6.9 ± 1.8 0.58 ± 0.07 6.0 ± 4.7 11.9 ± 8.8 0.20 (0.34)
SPT-CLJ2106-5844 1.132 8.9 ± 1.2 1.23 ± 0.06 4.9 ± 4.5 9.0 ± 5.4 1.57 (0.79)

RDCS1252-2927 1.235 3.7 ± 1.0 0.22 ± 0.03 4.6 ± 3.9 5.6 ± 4.5 0.25 (0.38)

Notes. Columns from left to right list the target name, adopted redshift, mean spectral gas temperature, gas mass within R500, probability weighted
mean of the mass concentration and of the mass within ∆ = 200 obtained as described in Sect. 4 and χ2 divided by the degrees of freedom (i.e. the
number of temperature bins listed in the last column of Table 1 minus two), and the corresponding probability that a random variable from a χ2

distribution with a given degrees of freedom is less or equal to the observed χ2 value.

compare the masses at the radius R500 listed in their Table 4 for
the Chandra data with the masses derived from our backwards
analysis, calculated at the same physical radius. Donahue et al.
(2014) invoke the HEE as we do, but they reconstruct the
mass profiles in a different way. They use the Joint Analysis of
Clusters Observations fitting tool (JACO; Mahdavi et al. 2007),
which employs parametric models for both dark matter and gas

density profiles (a NFW model and a combination of β-models,
respectively, in this case) under the assumption of a spherically-
symmetric ICM in hydrostatic equilibrium with the dark matter
potential to reconstruct the projected spectra in each annular bin
that are then jointly fitted to the observed events to constrain
the model parameters. We find an encouraging agreement be-
tween the two outcomes. The median (1st, 3rd quartile) of the
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Fig. 1. Top: comparison between mass estimates obtained following the
forwards method (Mfor) and backwards method (Mback) for the 47 clus-
ters of our sample. The lower panel shows the Mfor/Mback ratio of in-
dividual clusters against Mback. The dashed line shows the one-to-one
relation. The comparison is made at the outermost radius measured in
the spectral analysis for each cluster. Middle: distribution of the mass
ratios. Bottom: distribution of the relative errors.

Mback/MCLASH distribution for the 11 shared clusters is 1.09
(0.86, 1.44). The distributions of the relative errors provided by
the two analyses are also comparable with a median value of
21% for our backwards method and 26% for the method em-
ployed by Donahue et al. (2014).

4.1. Comments on the best-fit parameters

The radial extension probed with our X-ray measurements span
a typical range 35 kpc <∼ Rspat <∼ 700 kpc and 65 kpc <∼ Rspec <∼
480 kpc for the spatial and spectral analyses, respectively. We
use the results on the c − M relation estimated at R200 to enable
a direct comparison with the predictions from simulations. We
compare our estimates of R200 with the upper limit of the radial
range investigated in the spatial and spectral analyses for each
cluster to check the significance of our estimates. The results are

shown in Fig. 2, where we also show the distributions of each of
the ratios investigated.

As usual in the X-ray analysis, the estimate of R200 exceeds
the radial extension of the spatial and spectral analyses in almost
all cases. For the R

spat
out /R200 ratio, we measure a median value

(1st, 3rd quartiles) of 0.49 (0.30, 0.59) and a median relative dis-
persion of 21%, while we obtain 0.29 (0.20, 0.40) and a median
relative dispersion of 20% for the R

spec
out /R200 ratio.

This means that we are not able to sample our objects di-
rectly up to R200 in both the surface brightness and temperature
profiles, as expected given that both the observational strategy
and background characterisation were not optimised to this pur-
pose (see e.g. Ettori & Molendi 2011).

However, R200 is treated as a quantity derived from the best-
fit parameters of our procedure for the assumed mass model
(R200 = rs × c200) and does not imply a direct extrapolation of
the mass profile to recover it.

More interesting is to consider the goodness of the fitting
procedure. As we quote in the last column of Table 2, the
NFW model provides a reasonable description of the cluster
gravitational potential for all our clusters. The probability that
a random variable from a χ2 distribution with a given degree of
freedom is less or equal to the observed χ2 value is 50% (median
of the observed distribution)3. We have only one object with a
very low probability (<5%; MACS J2228.5+2037) that suggests
an over-estimate of the error bars, and no object with a prob-
ability larger than 95%. Nonetheless, deviations are expected
in a sample of about 50 clusters and this object has also been
considered in the following analysis.

4.2. Comparison with lensing estimates

A useful test for the reliability of our hydrostatic mass esti-
mates is the comparison with results from lensing. The LC2-
single catalogue is a collection of 506 galaxy clusters from
the literature with mass measurements based on weak lensing
(Sereno 2015). Cluster masses in LC2-single are uniformed to
our reference cosmology. By cross-matching with the LC2 cat-
alogue4 we find that 32 out of 47 clusters of our sample have
weak-lensing reconstructed mass.

To assess the agreement between the two measurements, we
adopt two methods. First, we consider the (natural) logarithm of
the mass ratios (Rozo et al. 2014; Sereno & Ettori 2015a). We
consider the backwards method masses. This estimator is not
affected by the exchange of numerator and denominator. Since
quoted errors in compiled catalogs may account for different
sources of statistical and systematic uncertainties and published
uncertainties are unable to account for the actual variance seen in
sample pairs, we conservatively perform an unweighted analysis.

The agreement between mass estimates is good; see Fig. 3.
For the masses at R200, we measure a ratio ln(MX/Mlens) = 0.16±
0.65, where the first estimate is the median and the second is the
dispersion of the distribution of mass ratios. Mass differences
are inflated when computed at R200 owing to the different vol-
umes. We then also consider the masses enclosed within a fixed
physical radius, 1 Mpc. We find ln(MX/Mlens) = 0.01 ± 0.45.

Seven clusters of our sample are also covered with
ground weak-lensing studies by the CLASH programme.
Umetsu et al. (2016) perform a joint shear-and-magnification,

3 A reduced χ2 of 1 would have an associated probability of 68.3% for
a degree-of-freedom of 1 and of 51.9% for d.o.f. = 100.
4 We use the LC2-single_v2.0.dat version publicly available at
http://pico.bo.astro.it/~sereno/CoMaLit/LC2/
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Fig. 2. Top: for each cluster in the final sample, we show: the ratio between the upper limit of the radial range investigated in the spatial analysis
and our estimate of R200 (blue circles); the ratio between the maximum radial extension of the spectral analysis and R200 (red diamonds). Bottom:
distributions of the radial ratios.

Fig. 3. Comparison on the mass estimates within 1 Mpc (left) and R200 (right) for the objects in common between our sample of X-ray measure-
ments and those available in the lensing LC2-single catalogue.

weak-lensing analysis with additional strong lensing constraints
of a subsample of 16 X-ray regular and 4 high-magnification
galaxy clusters in the redshift range 0.19 <∼ z <∼ 0.69. For
these clusters, we find ln(MX/Mlens) = 0.12 ± 0.58 at R200 and
ln(MX/Mlens) = −0.32 ± 0.74 within 1 Mpc, which is consistent
with the full lensing sample.

Concentrations are consistent as well; see Fig. 4. For the
seven CLASH clusters, we find ln(c200,X/c200,lens) = 0.19± 0.53.

As a second method, we estimate the mass bias by regress-
ing the hydrostatic against the lensing masses. We follow the
approach detailed in Sereno & Ettori (2015a,b), which accounts
for heteroscedastic errors, time dependence, and intrinsic scatter
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Fig. 4. Comparison between our constraints from X-ray data and CLASH lensing estimates for the 7 objects in common on the mass concentrations
(left) and c − M distribution (right).

in both the independent and response variable. This accounts for
both Mlens and MX being scattered proxy of the true mass. We fit
the data with the model MX,200 = α + β Mlens,200 + γ log(1 + z).
First, we assume that the mass ratio MX,200/Mlens,200 is con-
stant at given redshift (β = 1) and we find α = 0.08 ± 0.15.
This bias is consistent with what found with the mass-ratio ap-
proach described before. The value γ is consistent with zero,
γ = −0.15 ± 0.75, i.e. we cannot detect any redshift dependence
in the bias. For the scatters, we find σlog(Mlens,200) = 0.11 ± 0.07
and σlog(MX,200) = 0.04 ± 0.04. Then, we check the above as-
sumption by letting the slope free. We find α = 0.40 ± 0.28,
β = 0.74 ± 0.20, γ = −0.32 ± 0.73, σlog(Mlens,200) = 0.08 ± 0.07,
and σlog(MX,200) = 0.07 ± 0.05. The slope β is fully consistent
with one and the other parameters are in full agreement with the
determination assuming β = 1.

We conclude that the X-ray masses are in very good
agreement with the lensing masses, MX,200/Mlens,200 ∼ 1. Uncer-
tainties are too large to make statements about deviations from
equilibrium or non-thermal contributions that can bias the results
towards low X-ray masses (Sereno & Ettori 2015a).

5. The concentration-mass relation

We present our results on the c200 −M200 relation. We stress that
our sample, because of the adopted selection criteria (discussed
in Sect. 2), is not statistically complete, but represents well the
high-mass end of the cluster population even at high redshift (see
also discussion in Sect. 6.1).

The concentration-mass relation for the 47 clusters of our
sample is shown in Fig. 5. The large error bars are due to the
uncertainties in determining the observable surface brightness
and spectrum of each cluster, which are consistently propagated
up to the concentration and mass derivation.

The right panel of Fig. 5 is obtained by dividing the sam-
ple into seven mass bins and estimating, for each bin, the error-
weighted mean of the values of the concentration and error on
the mean. This operation is made to enhance the observed sig-
nal, giving more weight to more precise measurements and to
find the mean properties of the sample.

Overall, our data confirm the expected trend of lower con-
centrations corresponding to higher masses. We investigate the
distribution of the concentrations for clusters in two mass ranges
below and above the median value of M200 = 1.3 × 1015 M⊙,
respectively. The overall distribution is well approximated by a

log-normal function with a mean value 〈log c200〉 and a scatter σ,

P(log c200) =
1

σ
√

2π
exp















−
1
2

(

log c200 − 〈log c200〉
σ

)2












· (7)

We obtain a mean value for the total concentration distribution
of 〈log c200〉 = 0.60 and a scatter of σ(log c200) = 0.15. By
considering the two mass ranges, we find a mean of 〈log c200〉 =
0.66 (0.54) and a scatter of 0.14 (0.12) for the low- (high-) mass
case. The central peak is shifted towards the low concentrations
in the high-mass case, as expected, while we have a slightly
larger scatter in the low-mass case. We also investigate the dis-
tribution of the concentrations in two redshift ranges, consid-
ering the median redshift of the sample, z = 0.6 as threshold.
We find a mean of 〈log c200〉 = 0.55 (0.66) and a scatter of
σ(log c200) = 0.14 (0.13) for the low (high) redshift case, con-
sistent with the above estimates.

In Fig. 5, we also compare our data with three recent re-
sults from numerical simulations: Diemer & Kravtsov (2015,
hereafter DK15), Dutton & Macciò (2014, hereafter DM14),
Prada et al. (2012, hereafter P12). The range of the predicted re-
sults is delimited by a dotted line, corresponding to the lowest
redshift in the sample (z = 0.4), and a dashed line, corresponding
to the highest redshift in the sample (z = 1.2). The comparison
with these theoretical works is carried out using the public code
Colossus provided by DK155. It is a versatile code that imple-
ments a collection of models for the c − M relation, including
those of interest here, allowing the choice of a set of cosmolog-
ical parameters and the conversion among different mass defini-
tions. It turns out to be very useful for our purpose to homogenise
the results presented in the original papers to our cosmological
model of reference and to masses defined at ∆ = 200 with re-
spect to the critical density of the Universe, as in our analysis.

However, it must be noted that we investigate a mass
range that might exceed those probed by numerical simulations
slightly, in particular, at z ∼ 1. In fact, there are no numerical
predictions for the behaviour of the c − M relation for masses
larger than 1015 M⊙ in the range of redshifts considered in our
work. We proceed using the numerical predictions as extrapo-
lated from the available datasets6 to compare with our results.

5 www.benediktdiemer.com/code
6 In the case of the adopted code Colossus, see the descrip-
tion of the models implemented at bdiemer.bitbucket.org/halo_
concentration.html
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Fig. 5. Left: concentration–mass relation obtained for the final cluster sample in the case ∆ = 200 (black diamonds). The cluster total masses are
obtained following the backwards method described in Ettori et al. (2002). A NFW profile is adopted to describe the gravitational potential. We
overplot the c200 −M200 relations predicted by P12 (yellow lines), DM14 (blue lines), and DK15 (red lines). They are calculated for z = 0.4 (dotted
lines) and z = 1.2 (dashed lines), which are the lowest and highest redshifts in the sample. Right: the same as the left panel, but here the sample
is divided into 7 mass bins. For each bin, error-weighted means for concentration and mass are calculated (black diamonds) and the error bars
represent the errors on the weighted means.

In order to quantify the deviations from numerical predic-
tions, we use the following χ2 estimator:

χ2 =
∑

i

(log cobs,i(M, z) − log csim,i(M, z))2

ǫ2log cobs,i
+ σ2

log csim

, (8)

where the sum is carried out over the 47 clusters of our sam-
ple; cobs and ǫcobs are the estimates of concentrations and cor-
responding errors, respectively, listed in Table 2 (we omit the
label “200” to simplify the notation); csim are the values derived
from the models for fixed mass and redshift; and σlog csim is the
intrinsic scatter on the simulated concentrations, assumed to be
equal to 0.11 (e.g. DM14). We obtain a χ2 of 272.4, 26.3, and
69.4 when the models by P12, DM14, and DK15, respectively,
are considered. A random variable from the χ2 distribution in
Eq. (8) with 47 degrees of freedom has a probability of 100, 0.6,
and 98 per cent to be lower than the measured values, respec-
tively, indicating a tension with the P12 and DK15 models in the
mass (1014−4 × 1015 M⊙) and redshift (0.4−1.2) ranges investi-
gated in the present analysis.

It is clear from the right panel of Fig. 5 that our results
show the lowest concentrations for the highest masses and are
not compatible with an upturn at high masses. This is in-
deed expected for a sample of relaxed clusters only (see e.g.
Ludlow et al. 2012; Correa et al. 2015). The models considered
here characterise different halo samples: P12 and DK15 include
all the halos, regardless their degree of virialisation, whereas
DM14 exclude the unrelaxed halos. Even though the selection
is different, we consider objects that show no major mergers and
are closer to the selection for relaxed halos applied in numerical
simulations. Moreover, the concentrations calculated in P12 are
derived from the circular ratio Vmax/V200, rather than from a di-
rect fit to the mass profile and the halos are binned according to
their maximum circular velocity, rather than in mass. As pointed
out in Meneghetti & Rasia (2013), such methodological differ-
ences lead to large discrepancies both in the amplitude and in
the shape of the c−M relation, especially on the scales of galaxy
clusters, making the comparison with the predictions in P12 not
straightforward.

5.1. Evolution with redshift

With the aim of investigating the dependence of the cluster
concentrations on mass and redshift, we consider the three-
parameter functional form, c = c0MB(1 + z)C , and we linearly
fit our data to the logarithmic form of this function,

log c200 = A + B log
(

M200

1014 M⊙

)

+C log(1 + z) ± σlog c200 . (9)

We use the Bayesian linear regression method implemented in
the R package LIRA by Sereno (2016). We assume a uniform
prior for the intercept A and a Student’s t-prior for both the mass
slope B and the slope of the time evolution C. For the intrinsic
scatter, we assume that 1/σ2

log c200
follows a gamma distribution.

We obtain the following best-fit parameters: A = 1.15 ± 0.29
and B = −0.50 ± 0.20, C = 0.12 ± 0.61 and an intrinsic scatter
σlog c200 = 0.06 ± 0.04. This value is lower than the estimates
presented in Sect. 5 since here we are correcting for the intrinsic
scatter in the hydrostatic masses. The additional correction for
this intrinsic scatter of the mass distribution steepens the relation.
On the other hand, by taking the covariance between mass and
concentration into account, we find a flatter relation, as already
pointed out from previous work (e.g. Sereno & Covone 2013).

These values are fully consistent, within the estimated er-
rors, with the IDL routine MLINMIX_ERR by Kelly (2007), which
also employs a Bayesian method and with the MPFIT routine in
IDL (Williams et al. 2010; Markwardt 2009) that looks for the
minimum of the χ2 distribution by taking the errors on both the
variables into account. We quote the best-fit values in Table 3.
The probability distributions of the best-fit values obtained with
LIRA are shown Fig. 6, while the two-dimensional 1-(2-)σ con-
fidence regions are shown in Fig. 7.

We measure a normalisation A ≈ 1 and a mass slope B ≈
−0.5 that is lower than the value predicted by numerical sim-
ulations (−0.1). By fixing the parameter B to −0.1, we find
A = 0.61 ± 0.12, C = 0.38 ± 0.64, and σlog c200 = 0.10 ± 0.02.

With the Bayesian methods we measure a typical error that
is larger by a factor of 2 in normalisation and by a factor of
2.5 in the mass slope with respect to the corresponding values
obtained through the covariance matrix of the MPFIT method.
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Fig. 6. Probability distributions of the best-fit parameters of the c − M − z relation Eq. (9) obtained with LIRA, where the covariance between
mass and concentration is taken into account.

Table 3. Best-fit values of the c − M − z relation.

Method A B C σlog10 c200 σlog10 M200/1014

LIRA 1.15 ± 0.29 −0.50 ± 0.20 0.12 ± 0.61 0.06 ± 0.04 ...
LIRA (covxy) 1.23 ± 0.55 −0.54 ± 0.41 −0.08 ± 0.69 0.07 ± 0.04 0.12 ± 0.07
LIRA (C = 0) 1.19 ± 0.24 −0.51 ± 0.20 0 0.06 ± 0.04 ...

LIRA (B = −0.1) 0.61 ± 0.12 −0.10 0.38 ± 0.64 0.10 ± 0.02 ...
MLINMIX_ERR 1.07 ± 0.37 −0.42 ± 0.21 −0.02 ± 0.97 0.09 ± 0.03 ...

MPFIT 1.34 ± 0.15 −0.53 ± 0.07 −0.57 ± 0.65 ... ...

Notes. Best-fit parameters refer to Eq. (9) and are obtained using two Bayesian multiple linear regression methods, LIRA and MLINMIX_ERR and
the linear least-squares fitting MPFITFUN. All the methods account for heteroscedastic errors in both the independent and dependent variables.

All the methods estimate large errors in the redshift dependence
and the best-fit values of the redshift slope are consistent with
zero (at 1σ level).

The concentration-redshift relation is shown in Fig. 8 for
clusters in two mass ranges, considering the median mass
1.33 × 1015 M⊙ as threshold. The sample is divided into three
redshift bins for each mass range, which are chosen to have
approximately an equal number of clusters in each bin as fol-
lows: [0.426−0.583], [0.600−0.734], [0.810−1.235] for the low-
mass case, and [0.412−0.494], [0.503−0.591], [0.700−0.888]
for the high-mass case. We calculate the error-weighted means
of the concentrations and errors on the means for each bin,
obtaining 5.06 ± 0.31, 5.18 ± 1.36, 4.39 ± 1.52 for the low-mass
case, 3.16 ± 0.27, 2.90 ± 0.42, 2.41 ± 0.37 for the high-mass
case. At a fixed mass range, the concentration slightly decreases
with redshift, as expected by the fact that the concentration of
the cluster is determined by the density of the Universe at the
assembly redshift.

Finally, we test the c–M relation in the high redshift regime
against the different theoretical models. We use models by P12,
DM14, and DK15 to obtain predictions of the measurements of
the normalisation and slope of the c − M relation at the median
redshift of our sample in the mass range (1014−4 × 1015 M⊙)

investigated in the present analysis (we consider 50 log-mass
constant points for the fit). As we show in Fig. 9, the predic-
tions from numerical simulations agree well with our constraints,
where values from DM14 model are consistent at 1σ level and
with larger deviations (but still close to the ∼2σ confidence
level) associated with the P12 and DK15 expectations.

In particular, once we consider only the 18 clusters of our
sample with z ≥ 0.7 and we re-calculate the χ2 estimator in
Eq. (8), we obtain 62.3, 6.1, and 17.7 when the models by P12,
DM14, and DK15, respectively, are considered. This means that
a random variable from the χ2 distribution with 18 degrees of
freedom has a probability of 99.9, 0.4, and 52.5 per cent to be
lower than the measured values, respectively, indicating that only
the P12 model deviates more significantly from our estimates in
the (0.7−1.2) redshift range.

6. Sample properties

As discussed in Sect. 2 and 3, a cluster at z > 0.4, and with
exposures available in the Chandra archive, is included in our
sample if 1) it is observed with sufficient X-ray count statistics
to obtain a temperature profile with at least three radial bins;
and 2) to a visual inspection of the X-ray maps, it appears to
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Fig. 7. Probability distributions of the best-fit parameters of the c−M−z
relation Eq. (9) obtained with LIRA, where the covariance between
mass and concentration is taken into account. The thick (thin) lines in-
clude the 1-(2-)σ confidence region in two dimensions, here defined
as the region within which the value of the probability is larger than
exp[−2.3/2] (exp[−6.17/2]) of the maximum.

Fig. 8. Concentration-redshift relation calculated in two mass ranges:
M ≤ 1.33 × 1015 M⊙ (black) and M < 1.33 × 1015 M⊙ (red). For each
mass range, the points are the error-weighted means of the concentra-
tions and the error bars are the errors on the means for three redshift
bins. The sample is approximately evenly divided in each bin and we
show the median redshift for simplicity.

have a regular morphology, so that we can consider it to be
close to the hydrostatic equilibrium. Thus, we exclude the ob-
jects with a strongly elongated shape or those containing major
substructures. Although we do not use any quantitative criterion
for this selection, we provide a morphological analysis to present
the statistical properties of the sample and to enable comparison
with other X-ray samples. We analyse the morphology of each
cluster according to the following two indicators: first, the X-
ray brightness concentration parameter, cSB, defined as the ra-
tio between the surface brightness, Sb, within a circular aperture
of radius 100 kpc and the surface brightness enclosed within a
circular aperture of 500 kpc,

cSB =
Sb(r < 100 kpc)
Sb(r < 500 kpc)

· (10)
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Fig. 9. Probability distributions of the A and B parameters of the c − M
relation Eq. (9) calculated with LIRA, for the full sample (top) and
for the subsample of clusters at z ≥ 0.7 (bottom). The relations are
normalised at the median redshift of the sample considered (0.59 and
0.80, respectively). The confidence regions are defined as in Fig. 7.
The coloured symbols show the estimates of the parameters from sim-
ulations by P12, DM14, and DK15 evaluated at the quoted redshift.
The green contour shows the constraints from Sereno & Covone (2013)
at 1σ.

and, second, the centroid shift, w, calculated as the standard de-
viation of the projected separation between the X-ray peak and
centroids estimated within circular apertures of increasing radius
from 25 kpc to Rap = 500 kpc, with steps of 5%,

w =















1
N − 1

∑

i

(∆i − 〈∆〉)2















1/2
1

Rap
, (11)

where ∆i is the distance between the X-ray peak and centroid of
the ith aperture.

Figure 10 shows that the X-ray concentration is anti-
correlated with the centroid shift, qualitatively following the
relation found by Cassano et al. (2010). According to their re-
sults, clusters with cSB > 0.2 and w < 0.012 are classified
as “relaxed” (upper left quadrant in Fig. 10), while those with
cSB < 0.2 and w > 0.012, about 1/3 in our sample, are classified
as “disturbed” (lower right quadrant). The relative composition
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Fig. 10. Relation between the X-ray brightness concentration and cen-
troid shift. Dashed lines trace the thresholds indicated by Cassano et al.
(2010) to define relaxed and disturbed clusters (see text). Different sym-
bols and colours are used for clusters in different redshift intervals.

of relaxed/disturbed clusters changes with the redshift, as 50%
of the clusters observed at z > 0.8 are disturbed.

We characterise the general physical proprieties of the sam-
ple by investigating the relation between the mass and tempera-
ture of the gas. We consider the error-weighted mean of the tem-
peratures measured in the spectral analysis at radii above 70 kpc.
The gas mass is calculated by integrating the gas density pro-
file over a spherical volume of radius R500 evaluated from the
mass profile that we constrain as discussed in Sect. 4. We fit the
relation

log
(

h(z)Mgas,500

M⊙

)

= log N + τ log
(

T

5 keV

)

, (12)

using the Bayesian regression code LIRA of Sereno (2016). We
obtain log N = 13.70±0.04 and τ = 1.98±0.18 with an intrinsic
scatter σint = 0.134 ± 0.023. Figure 11 shows the Mgas,500 −
T relation for the clusters in the sample together with the best-
fitting relation, compared to the relation found by Arnaud et al.
(2007) for a sample ten morphologically relaxed nearby clusters
observed with XMM-Newton in the temperature range 2–9 keV.
We find that the two relations are in agreement within the scatter,
that in our sample is a factor ∼4 higher than that measured for the
sample of relaxed local systems in Arnaud et al. (2007). Once we
consider only the most “relaxed” systems, that is those identified
in the upper left quadrant of Fig. 10, the agreement does not
improve. This suggests that more relevant selection biases affect
any comparison between our sample and that in Arnaud et al.
(2007).

We also compare the same relation with the gas mass es-
timated within a radius R2500 to the results obtained for the
CLASH sample (Postman et al. 2012; Donahue et al. 2014). As
shown in Fig. 11, our best-fit relation agrees well with the re-
lation derived for the CLASH clusters with a remarkable agree-
ment on the intrinsic scatter (σint = 0.113±0.008 for our sample,
0.093 ± 0.002 for CLASH).

Overall, we conclude that our sample, spanning a wide range
both in redshift (0.41−1.24) and in the dynamical properties as
inferred from proxies based on the X-ray morphology, is cer-
tainly less homogeneous than the samples of local massive ob-
jects. Our sample, however, compares in its physical properties
to, for example the CLASH systems, which were only selected

Fig. 11. Top panel: relation between the gas mass within R500 and tem-
perature. The black and purple curves show the best-fit relation and its
intrinsic scatter obtained for our full and relaxed sample, respectively.
The cyan curves represent the relation of Arnaud et al. (2007). Bottom
panel: relation between the gas mass within R2500 and temperature. The
black curves show the best-fit relation and its intrinsic scatter. The cyan
curves represent the relation obtained for the CLASH sample. Coloured
symbols as in Fig. 10.

to be X-ray morphologically not disturbed and massive (i.e. very
X-ray luminous) at intermediate to high redshifts similar to the
manner in which we select our targets.

6.1. On the completeness of the sample

Some completeness properties of the selected objects can be
studied through the analysis of the mass distribution of the clus-
ters in the sample (see Appendix A in Sereno & Ettori 2015b).
In so far as the mass distribution is well approximated by a reg-
ular and peaked distribution, the completeness of the observed
sample can be usually approximated as a complementary error
function

χ(µ) ≃
1
2

erfc















µχ − µ√
2σχ















, (13)

where µ is logarithm of the mass. At first order, µχ and σχ can
be approximated by the mean and standard deviation of the ob-
served mass distribution.

We perform the analysis of the completeness together with
the c − M relation, as LIRA fits the scaling parameters and
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estimates are in very good agreement with the result from weak-
lensing analysis available in literature. In particular, the c−M re-
lation calculated for the clusters shared with the CLASH sample
is fully consistent within the errors.

We estimate a total mass M200 in the range (1st and 3rd quar-
tile) 8.1−18.6 × 1014 M⊙ and a concentration c200 between 2.7
and 5. The distribution of concentrations is well approximated
by a log-normal function in all the mass and redshift ranges
investigated.

Our data confirm the expected trend of lower concentra-
tions for higher mass systems and, at a fixed mass range, lower
concentrations for higher redshift systems. The fit to the lin-
ear function log c200 = A + B × log M200/(1014M⊙) + C ×
log(1 + z) ± σlog c200 ) gives a normalisation A = 1.15 ± 0.29; a
slope B = −0.50 ± 0.20, which is slightly steeper than the value
predicted by numerical simulations (B ∼ −0.1); a redshift evo-
lution C = 0.12 ± 0.61, which is consistent with zero; and an
intrinsic scatter on the concentration σlog c200 = 0.06 ± 0.04.

The predictions from numerical simulations of the estimates
of the normalisation A and slope B are in a reasonable agreement
with our observational constraints at z > 0.4, once the correla-
tion between them is fully considered (see Fig. 9). Values from
Dutton & Macciò (2014) are consistent at the 1σ level. Larger
deviations, but still close to the ∼2σ level of confidence, are as-
sociated with the predictions from Diemer & Kravtsov (2015)
and Prada et al. (2012), where the latter is more in tension with
our measurements.

In the redshift range 0.8 < z < 1.5, constraints on the
c − M relation were also derived in Sereno & Covone (2013)
for a heterogeneous sample of 31 massive galaxy clusters with
weak- and strong-lensing signals, obtaining similar results to
those discussed here with a slope that is slightly steeper than
the theoretical expectation.

With this analysis, which represents one of the most precise
determinations of the hydrostatic mass concentrations in high-z
galaxy clusters, we characterise the high-mass end of the distri-
bution of galaxy clusters even at z ∼ 1, which is a regime that is
hardly accessible to the present numerical simulations.

A homogeneous sample, and dedicated X-ray follow-up,
would improve any statistical evidence presented in our study.
In particular, an extension of this analysis to lower redshifts,
still using Chandra data consistently, and a careful identification
of a subsample of the most relaxed systems would constrain, at
higher confidence, any evolution in the concentration-mass rela-
tion for clusters of galaxies, also as function of their dynamical
state.
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Appendix A: The observed radial profiles of gas

density and temperature

We present here the deprojected density and spectral temperature
profiles of all of the clusters analysed in this work, as described
in Sect. 3.

Fig. A.1. Deprojected electron density (left) and spectral temperature (right) profiles for clusters in the redshift range 0.405−0.472.

Fig. A.2. Same as in Fig. A.1 for clusters in the redshift range 0.494−0.546.

Fig. A.3. Same as in Fig. A.1 for clusters in the redshift range 0.548−0.7.
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Fig. A.4. Same as in Fig. A.1 for clusters in the redshift range 0.7−0.813.

Fig. A.5. Same as in Fig. A.1 for clusters in the redshift range 0.831−1.235.
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ABSTRACT

Context. Galaxy clusters are the most recent products of hierarchical accretion over cosmological scales. The gas accreted from the
cosmic field is thermalized inside the cluster halo. Gas entropy and pressure are expected to have a self-similar behaviour with their
radial distribution following a power law and a generalized Navarro-Frenk-White profile, respectively. This has also been shown in
many different hydrodynamical simulations.
Aims. We derive the spatially resolved thermodynamical properties of 47 X-ray galaxy clusters observed with Chandra in the redshift
range 0.4 < z < 1.2, which is one of the largest samples investigated so far with X-ray spectroscopy and masses reconstructed via the
hydrostatic equilibrium equation, with particular care taken to reconstruct the gas entropy and pressure radial profiles.
We search for deviation from the self-similar behaviour and look for possible evolution with redshift.
Methods. Under the assumption of a spherically symmetric distribution of the intracluster plasma, we combine the deprojected gas
density and deprojected spectral temperature profiles via the hydrostatic equilibrium equation to constrain the concentration and scale
radius, which are the parameters that describe a Navarro-Frenk-White profile for each of the clusters in our sample. The temperature
profile, which combined with the observed gas density profile reproduces the best-fit mass model, is then used to reconstruct the
profiles of entropy and pressure. These profiles cover a median radial interval of [0.04 R500–0.76 R500]. After interpolating on the
same radial grid and partially extrapolating up to R500, these profiles are then stacked in three independent redshift bins to increase
the precision of the analysis. The gas mass fraction is then used to improve the self-similar behaviour of the profiles by reducing the
scatter among the profiles by a factor 3.
Results. The entropy and pressure profiles lie very close to the baseline prediction from gravitational structure formation. We show
that these profiles deviate from the baseline prediction as function of redshift, in particular at z > 0.75, where, in the central regions,
we observe higher values of the entropy (by a factor of ∼2.2) and systematically lower estimates (by a factor of ∼2.5) of the pressure.
The effective polytropic index, which retains information about the thermal distribution of the gas, shows a slight linear positive
evolution with the redshift and concentration of the dark matter distribution. A prevalence of non-cool core, disturbed systems, as we
observe at higher redshifts, can explain such behaviours.

Key words. galaxies: clusters: intracluster medium – galaxies: clusters: general – X-rays: galaxies: clusters – intergalactic medium

1. Introduction

Cosmic structures evolve hierarchically from primordial density
fluctuations, growing to form larger and larger systems under the
action of gravity. Clusters of galaxies are the biggest virialized
structures in the Universe and aggregate as bound objects at a rel-
atively late time (z < 3). The cosmic baryons fall into the gravi-
tational potential of the cold dark matter (CDM) halo and under
the action of the collapse and subsequent shocks, adiabatic com-
pression, and turbulence heat up to the virial temperature of few
keV and form a fully ionized X-ray emitting intracluster medium
(ICM; Tozzi & Norman 2001; Voit et al. 2005; Zhuravleva et al.
2014).

Modelling the ICM emission by thermal brehmsstrahlung al-
lows observations in the X-ray band to provide a direct probe of
the gas (electron) density, ne, and gas temperature, T . Assuming

the perfect gas law and a monoatomic gas, the pressure is recov-
ered as P = T ne and the specific entropy as K = T/n

2/3
e .

Entropy is a fundamental quantity to track the thermal his-
tory of a cluster, since it always rises when heat is produced
(see Voit et al. 2005). In the presence of non-radiative processes
only, low-entropy gas would sink to the centre of the cluster
while high-entropy gas would expand, producing the typical
self-similar radial distribution that follows a power law with a
characteristic slope of 1.1 (e.g. Tozzi & Norman 2001). Devia-
tions from this predicted behaviour have been observed in the
central region of clusters (see Ponman et al. 1999). Simulations
show that non-gravitational cooling and heating processes, such
as radiative cooling and subsequent AGN and supernovae feed-
back, break self-similarity in the inner region of galaxy clusters
(e.g. Voit et al. 2005; McCarthy et al. 2017). To justify the ob-
served deviations from self-similarity, Tozzi & Norman (2001)
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Fig. 1. Redshift (left) and total mass (right) distribution of the clusters in our sample.

propose a model in which an entropy floor is present before the
gas is accreted by the dark matter halo.

Some dedicated papers have studied the evolution of the en-
tropy profiles with redshift only in the last few years. McDonald
et al. (2013), McDonald et al. (2014), and more recently Bar-
talucci et al. (2017) have concluded that both cool core clus-
ters (CC) and non-cool core clusters (NCC) in samples selected
through their Sunyaev-Zeldovich (Sunyaev & Zeldovich 1980,
hereafter SZ) signal have similar entropy profiles with no rele-
vant changes with the cosmic time.

On the other hand, pressure is the quantity the least af-
fected by the dynamical history and non-gravitational physics
(Arnaud et al. 2010). Using the model introduced by Nagai et al.
(2007), Arnaud et al. (2010) show that pressure has a very regu-
lar radial profile with only small deviations about the mean (less
than 30 per cent outside the core regions). This is confirmed by
recent observations of SZ-selected clusters (e.g. McDonald et al.
2014; Bartalucci et al. 2017) showing no significant deviation
from the “universal profile” within R500 up to redshift z = 0.6.

In this work, we use the analysis of the mass distribution of
47 galaxy clusters in the redshift range 0.405–1.235 presented
in Amodeo et al. (2016) to study the radial shape of pressure
and entropy at different redshifts, looking for deviations from
the self-similar behaviour and for evolution with cosmic time.

In the present study, we assume a flat ΛCDM cosmology
with matter density parameter ΩM = 0.3 and an Hubble constant
of H0 = 70 km s−1 Mpc−1.

Therefore the critical density of the Universe is written as

ρc ≡
3H2(z)

8πG
=

3H2
0

8πG
E2(z) ≈ 136

M⊙

kpc3
E2(z) (1)

where E(z) ≡ H(z)/H0 =
[

ΩM(1 + z)3 + ΩΛ
]1/2.

In our study, we also consider a rescaling dependent on the
mass of the halo. To apply this, we measure the quantities of in-
terest over the regions of the cluster defined by an overdensity ∆,
which is defined as a region for which the mean mass density is
∆ times the critical density of the Universe.

In the following analysis, we choose ∆ = 500, considering
that our profiles have a radial extent of the same order of magni-
tude as R500 (see Fig. C.3). By definition, M500 is then equal to
4/3π 500ρc R3

500.
All the quoted statistical uncertainties are at 1σ level of

confidence.
All the fitting processes are, unless otherwise stated, exe-

cuted using the IDL routine MPFIT (Markwardt 2009), which
performs a Levenberg-Marquardt least-squares fit weighting
with both the errors on x- and y-axes.

The paper is organized as follows: in Sect. 2 we present the
sample, in Sect. 3 we present the method we apply to reconstruct
the entropy and pressure profiles. The data analysis is detailed in
Sect. 4 with an exhaustive discussion of our results presented in
Sect. 5. We draw our conclusions in Sect. 6.

2. Sample properties

The sample selection and X-ray analysis is thoroughly explained
in Amodeo et al. (2016). In this work, however, we recall some
of the most important properties. Because they are massive ob-
jects, the relatively long Chandra exposure time (texp > 20 ks)
considered for each cluster permits us to extract at least three
independent spectra over the cluster’s emission; this allows us
to carry out a complete X-ray analysis as is usually performed
for low redshift clusters. (see Amodeo et al. 2016, for details on
the sample selection and X-ray analysis). We point out that clus-
ters that are undergoing a major merger are excluded from the
analysis since they would strongly break the hydrostatic equi-
librium assumption, which is essential in recovering the mass
profile. A completeness analysis of the sample has been made
(see Amodeo et al. 2016): the selection criteria have effectively
chosen the very massive high end of the cluster halo function in
the investigated redshift range.

In Fig. 1, we show the redshift and mass distributions of the
objects in our sample, with nine systems at z > 0.8 and eight
with an estimated M500 larger than 2 × 1015 M⊙. We use the
centroid shift w and the concentration cSB (both resulting from
the analysis made in Amodeo et al. 2016) to distinguish clusters
with a cool core and clusters without it. We follow the results
of Cassano et al. (2010), choosing clusters with w < 0.012 and
cSB > 0.2 to be the classical relaxed CC. These objects are lo-
cated in the upper-left quadrant of Fig. 2. The main goal of this
paper is to study the evolution of entropy and pressure with cos-
mic time, therefore the sample is divided into redshift bins. Nev-
ertheless a parallel analysis of the cluster sample has been made,
in which clusters are divided in CC and NCC based on their mor-
phological properties, using the criteria found by Cassano et al.
(2010) mentioned above.

In our sample, the gas density profiles, obtained from the
geometrical deprojection of the observed surface brightness pro-
files, cover the median radial range of [0.04 R500–0.76 R500] with
a mean relative error of 21%. In Fig. C.3, we show the observed
distribution of the minimum and maximum radius in the gas den-
sity profiles. We point out that half of the clusters have a radial
coverage that extends above 0.77 R500.

A100, page 2 of 14



V. Ghirardini et al.: Entropy and pressure profiles in X-ray galaxy clusters at z > 0.4

Fig. 2. Morphological parameters distribution in the plane of w vs. con-
centration cSB.

3. Method to reconstruct K (r) and P(r)

Amodeo et al. (2016) presented the method applied to constrain
the mass distribution of the galaxy clusters in our sample under
the assumption that a spherically symmetric ICM is in hydro-
static equilibrium with the underlying dark matter potential. The
backward method adopted (see Ettori et al. 2013) allows us to
constrain the parameters of a mass model, i.e. the concentration
and scale radius for a NFW model (Navarro et al. 1997), using
both the gas density profile, obtained from the geometrical de-
projection of the X-ray surface brightness profile, and the spa-
tially resolved spectroscopic measurements of the gas tempera-
ture. As a by-product of the best-fit mass model, we obtain the
3D temperature profile associated with the gas density measured
in each radial bin. In other words, we obtain an estimate of the
ICM temperature in each volume’s shell where a gas density is
measured from the geometrical deprojection of the X-ray surface
brightness profile, in such a way that the best-fit mass model is
reproduced by inserting the temperature and density profiles into
the hydrostatic equilibrium equation (Binney & Tremaine 1987).
From the combination of these profiles, thermodynamical prop-
erties such as pressure and entropy are recovered.

Following Voit (2005), temperature, pressure, and entropy
associated with this halo’s overdensity are, respectively,

kBT500 = 10.3 keV
(

M500

1.43 × 1015M⊙

)
2
3

E(z)2/3 (2)

P500 = 1.65 × 10−3 keV cm−3
(

M500

3 × 1014 M⊙

)2/3

E(z)8/3 (3)

K500 = 103.4 keV cm2
(

M500

1014 M⊙

)2/3

E(z)−2/3 f
−2/3
b (4)

K(R)/K500 = 1.42
(

R

R500

)1.1

, (5)

where Eq. (5) is the Voit et al. (2005) prediction for which the
radial dependence of K is rescaled from ∆ = 200 to 500 with
the ratio R500

R200
= 0.66, as predicted from a NFW mass model with

c200 = 4, which is typical for massive systems.
The importance of using a proper rescaling, which includes

the gas mass fraction to reach self-similarity in the entropy pro-
files, is pointed out in the work of Pratt et al. (2010). The gas
fraction, fgas(<r) = Mgas(<r)/Mtot(<r), is here defined as the
ratio between the gas mass obtained from the integration of
the gas density over the cluster’s volume and hydrostatic mass
and is thus reconstructed directly from our data. We show the

Fig. 3. Gas fraction profile for all our clusters. The black
dashed line represents the universal baryon fraction from Planck
(Planck Collaboration XIII 2016).

radial profiles of the gas fraction in Fig. 3. Throughout this pa-
per we consider the universal baryon fraction to be fb = 0.15
(Planck Collaboration XIII 2016). In Table A.1 we list additional
information that is not presented in Amodeo et al. (2016), such
as references on the redshifts and gas mass fraction at R500.

4. Data analysis

We combine the profiles because of the poor statistics of each
profile. In order to have at least one point in each radial bin, cho-
sen logarithmically with total number of bins equal to 301, over
the range [0.015 R500,R500], we first extrapolated the data us-
ing the best-fit power law plus a constant for the entropy profile
and the functional form introduced by Nagai et al. (2007) for the
pressure profile,

P(x)
P500

=
P0

(c500x)γ[1 + (c500x)α]
β−γ
α

, (6)

where x = R/R500 and γ, α, and β are the central slope, inter-
mediate slope, and outer slope, respectively, defined by a scale
parameter rs = R500/c500 (R ≪ rs, R ∼ rs and R ≫ rs, respec-
tively). All the parameters of this function are left free except
for the outer slope β and the inner slope γ, which is fixed to the
“universal” values (5.49 and 0.308; Arnaud et al. 2010).

We calculated the value of the thermodynamical quantities in
the extrapolated radial points with the functional forms indicated
above. The error associated with the thermodynamic quantities
in the extrapolated radial points is the sum in quadrature of the
propagated best-fitting parameters and the median uncertainty
estimated in the last five radial bins of the raw profiles.

Furthermore, to investigate the average behaviour of these
profiles as function of redshift, we divided the dataset into three
redshift bins chosen to have approximatively the same number
of clusters so that the resulting profiles have an approximatively
constant signal-to-noise ratio: 15 with z ∈ [0.4, 0.52]; 20 with
z ∈ [0.52, 0.77]; and 12 with z > 0.77. In each redshift bin,
the profiles are stacked in logarithmic space using the inverse of
the 1σ error as weights, meaning that at each radial point the
weighted mean is :

〈x〉 =
Σwixi

Σwi

with wi = σ
−2
i ,

1 The number of bins equal to 30 is chosen to guarantee a proper radial
coverage.
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Fig. 4. Complete sample of our data is plotted and colour coded with
respect to redshift. We can see the effect of rescaling from top to bottom,
from largely scattered data to coherent data. No error bars are drawn for
sake of clarity.

where x is the logarithm of the considered thermodynamic quan-
tities (pressure or entropy).

This “stacking” procedure ensures a higher statistical signifi-
cance of the measured “mean” quantities, which propagates into
a lower uncertainties in constraining the best-fit parameters of
the functional forms adopted.

4.1. Fitting procedure for the entropy profile

In Fig. C.5, we show the reconstructed entropy profiles, rescaled
as described below using K500, of the 47 clusters in our sam-
ple prior to the application of the extrapolation and stacking
procedure.

The radial behaviour of the entropy distribution is commonly
described with a power law plus a constant term accounting for
the combined action of cooling and heating feedbacks, which
affect the central regions (see Cavagnolo et al. 2009),

K = K0 + K100

(

R

100 kpc

)α

· (7)

This functional form has an underlaying physical sense when
we rescale with 100 kpc, since typically deviations from non-
radiative simulations are seen below this radius, where cool core
clusters and non-cool core clusters actually differ. The parameter
K0 is the central entropy, which has been used in several works
(i.e. Cavagnolo et al. 2009; Voit et al. 2005; McDonald et al.
2013) to discriminate between relaxed CC clusters, with K0 ∼
30 keV cm2, and disturbed NCC, with K0 > 70 keV cm2.

We also consider a functional form where the scaling is car-
ried out with respect to 0.15 R500 to take into account the di-
mension of the core in systems at different mass and redshift as
follows:

K

K500
= K′0 + K′0.15

(

R

0.15 R500

)α′

· (8)

As shown in Pratt et al. (2010), we expect the scatter among en-
tropy profiles of the clusters to be suppressed even more when
the renormalization includes both the global and radial depen-
dence on the gas mass fraction,

E(z)2/3 K

K500

(

fgas

fb

)2/3

= K′′0 + K′′0.15

(

R

0.15 R500

)α′′

· (9)

In Fig. 4 we show how our refinement in the rescaling procedure
of the entropy profiles from “no rescaling” at all to the inclusion
of the dependence upon the gas fraction (see Eq. (9)), reduces
the scatter among the profiles, improving the agreement with the
self-similar prediction (Voit et al. 2005).

4.2. No rescaling

In the first panel of Fig. 4 we plot all the entropy profiles without
applying any rescaling, i.e. the actual physical size in kpc versus
entropy in keV cm2. We name these profiles “raw data”, because
the physical values are reported without any rescaling. We can
deduce that our clusters have very different thermodynamic his-
tories and in fact at each radial point the profiles spans more than
one order of magnitude, which excludes self-similarity.

We fit all the entropy profiles via Eq. (7) to look at the oc-
cupation of the parameter space in our sample. For each cluster
we obtain a value for each one of the parameters K0, K100, and
α and we plot all those values in Fig. C.1. We fitted each one
of the three histograms with a lognormal distribution. We ded-
icated special attention to the parameter K0, since the work of
Cavagnolo et al. (2009) showed that central entropy may have a
bimodal distribution. We obtained ∼10 clusters with K0 = 0 and
∼3 with α = 0.

In the central regions of galaxy clusters, no significant
emission from gas at very low temperature is observed (e.g.
Peterson & Fabian 2006), limiting the central value of the gas
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Fig. 5. Stacked entropy profiles and fits in the 3 redshift bins. The
shaded areas represents the errors on the fit. The colours of the points
are representative of the redshift bin considered. The black line repre-
sents the non-radiative prediction (Voit et al. 2005).

entropy to be positive (K0 > 0). For this reason these points are
excluded from Fig. C.1.

The parameter K0 (top panel) does not have a clear bi-
modal distribution. The data exhibit a peak between 150 and
200 keV cm2 and a significative tail for low values of K0. The
best fit obtained with two lognormal distributions shows one
peak at 130 keV cm2 and one at 5 keV cm2, with χ2

red = 1.83,
while the unimodal fits yield a peak at 100 keV cm2 with
χ2

red = 2.03. We used the Bayesian information criterion (BIC;
Schwarz 1978) to distinguish if there are statistical differences
between the two fitted models: a ∆BIC between 2 and 6 indi-
cates positive evidence against the model with higher BIC, while
at values greater than 6 the evidence is strong. We obtained
∆BIC = 0.02 and therefore we cannot discriminate between a
unimodal and bimodal distribution. Even though the best-fit cen-
ters are close to the values found by Cavagnolo et al. (2009).

The distribution of the parameter K100 (middle panel of
Fig. C.1) is well fitted by a lognormal distribution with median
value corresponding to 104 ± 170

64
2 keV cm2 and χ2

red = 0.17.
The distribution of this parameter is smooth without any signi-
ficative tail; this indicates that fitting considering 100 kpc as the
typical core dimension generates a well-defined distribution for
K100 resembling a lognormal distribution.

The distribution of the power law index α (bottom panel of
Fig. C.1) is, as K100, well fitted by a lognormal distribution with
median value 1.40 ± 0.67

0.45
2 and χ2

red = 1.1. The visible peak has a
higher value than the non-radiative prediction (Voit et al. 2005),
but nevertheless it is compatible within 1σ.

4.3. Rescaling using K500

The profile of a thermodynamical quantity, including entropy,
should have a unique shape for galaxy clusters, after adequate
rescaling (Voit 2005). Non-radiative simulations (see Voit et al.
2005) have shown that we should rescale with quantities defined
with respect to the critical density in order to achieve this. As
it is stated above, we use an overdensity of 500 and rescale the
entropy profile using K500, which is defined in Eq. (4). We can
observe the effect of the scaling in the third panel of Fig. 4. The
profiles we get are less scattered than the raw data, even though
the dispersion about the mean is still quite high, about one or-
der of magnitude. Nevertheless we observe that above 0.15 R500

2 This error represents the region that encompasses 68% of the data
points from the best fit.

Fig. 6. Fits in different redshift bins showing the errors on the fits using
the shaded area. The blue profile (z > 0.77) is compatible with the low
redshift profiles for intermediate radii (R > 0.07 R500) while at low radii
there is a difference, where the high redshift entropy profile has a flat
profile. The black line represents the non-radiative prediction (Voit et al.
2005).

most of the clusters have a self-similar behaviour. This is because
non-gravitational processes are less relevant in the outskirts of
galaxy clusters (Voit 2005).

As described in Sect. 4, we radially stack the data and we
fit using Eq. (8). We show the regrouped data and the fitting re-
sults with their errors bars in Fig. 5 and in top part of Table 1.
As we can observe from the ratio between the data and the pre-
dicted profile (bottom panel of Fig. 5), self-similarity is present
below 0.6 R500 for the two low redshift bins while it is reached
only between 0.15 R500 and 0.6 R500 at high redshift (z > 0.77).
Moreover the high redshift stacked profile is slightly flatter than
the others with a slope of 1.0 ± 0.1 and with its best fit requiring
a constant term different from 0 to reproduce the data.

In the top part of Table 1 we show the best fit dividing the
sample in CC and NCC. These parameters refers to Fig. B.1. As
we can see both from the best fit and the plot, CC clusters are
compatible with non-radiative prediction (Voit et al. 2005) with
both slope and normalization. On the other hand, the NCC subset
of clusters have a rather flat entropy profile.

4.4. Rescaling using the gas fraction

The entropy distribution depends on baryon fraction with a mass
(or equivalently, temperature) dependence. Consequently en-
tropy has both a radial and global dependence on the gas fraction
(Pratt et al. 2010). When corrected by this effect, data become
compatible with the non-radiative prediction (Voit et al. 2005)
and the dispersion drops dramatically (last panel of Fig. 4).

A practical way to quantify the deviation from the self-
similar prediction is shown in Fig. 7, where we show the be-
haviour of the dimensionless entropy profiles at some specific
radii (0.15 R500, R2500, and R1000)2, by interpolating the surround-
ing data points, with respect to the mass. When the mass de-
creases the deviation from the self-similar prediction increases.
By modelling this dependance with a simple power law, we ob-
tain a slope value which becomes smaller (in modulus) at larger
radii. In particular, we point out that at the highest radius con-
sidered (R1000), the profile is compatible with a constant, even
though the influence of just 2 or 3 points makes the best-fit slope
slightly negative.

2 Radii as big as R500 are extrapolated and would not yield robust re-
sults and are therefore not shown.
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Fig. 7. Dimensionless entropy K/K500 as a function of mass M500 at different radii. Here the radii of 0.15 R500, R2500, and R1000 are used. The black
dashed curve is the expectation from the self-similar model, and the magenta line is the best fit using a power law with index α on all the data
points. Red, green, and blue points indicate data points from z ∈ [0.4−0.52], z ∈ [0.52−0.77], and z > 0.77 respectively.

We renormalized the entropy profiles multiplying them by
gas fraction profiles (K → K × (E(z) fgas(R)/ fb)2/3). The re-
sulting profiles are visible in the last panel of Fig. 4. The self-
similarity of the entropy profile is now finally clear in our dataset
of clusters at different redshift. At 0.15 R500, for instance, the
scatter is reduced by a factor ∼3 when the rescaling by the gas
fraction is applied.

We then stack our profiles and we show the resulting en-
tropy radial distribution in Fig. 6. We notice that the stacked pro-
files are compatible with the non-radiative prediction (Voit et al.
2005) in the radial range [0.05 R500–0.7 R500], with the two low
redshift stacked profile pushing this compatibility down to the
lower limit of our analysis. Moreover at large radii, R > 0.7 R500,
all the stacked profiles are slightly below the prediction.

We fit the stacked entropy profiles with a power law plus a
constant and we show the results in Fig. 6 and in the bottom part
of Table 1. The goodness of the fit has improved with respect to
the rescaling without gas fraction and the parameters we get are
closer to the non-radiative prediction.

The slope values we obtain are slightly larger than 1.1,
indicating profiles that are steeper than the simulated pro-
file, which agrees with several recent works (Voit et al. 2005;
McDonald et al. 2013; Morandi & Ettori 2007; Cavagnolo et al.
2009). The situation is different in the case of z > 0.77, where the
value of the central entropy is significantly different from zero.
This indicates a high average central entropy for clusters at high
redshifts.

In the bottom part of Table 1 we show the best fit dividing
the sample into CC and NCC. This parameters refers to Fig. B.2,
which is the plot analogous to Fig. 6. Similar to what happens to
the split in redshift, the entropy profile of CC gets steeper than
the prediction. The NCC are still flatter than the prediction and
need a central entropy that is different from zero to fit the data.

5. Discussion

In the recent past, the dichotomy between cool core clusters,
with a steep density profile and a drop of the temperature in the
center, and non-cool core clusters, with a rather flat density pro-
file and a flat temperature profile in the center, has been studied
in numerous works. The particular shape of the density profile
reflects in the behaviour of the entropy profile, where CC have a

Table 1. Best-fitting values and relative errors of the parameters of the
models on entropy rescaled by K500 (Top) (Eq. (8)) and on entropy
rescaled by both K500 and gas fraction (Bottom) (Eq. (9)).

Subset K
′

0.15 α′ K
′

0 χ2
red

z ∈ [0.4, 0.52] 0.188 ± 0.003 1.04 ± 0.01 – 2.34
z ∈ [0.52, 0.77] 0.189 ± 0.002 1.04 ± 0.01 – 2.0

z > 0.77 0.16 ± 0.02 1.0 ± 0.1 0.04 ± 0.01 0.14
CC 0.192 ± 0.003 1.12 ± 0.02 – 0.54

NCC 0.217 ± 0.003 0.77 ± 0.01 – 1.86

Subset K
′′

0.15 α′′ K
′′

0 χ2
red

z ∈ [0.4, 0.52] 0.171 ± 0.002 1.13 ± 0.01 – 1.26
z ∈ [0.52, 0.77] 0.179 ± 0.002 1.13 ± 0.01 – 3.68

z > 0.77 0.15 ± 0.01 1.16 ± 0.08 0.022 ± 0.005 0.18
CC 0.173 ± 0.002 1.18 ± 0.01 – 0.46

NCC 0.184 ± 0.005 0.97 ± 0.03 0.006 ± 0.003 1.54

Notes. In the bin z > 0.77, we have a value for the central entropy
that indicates the presence of many more NCC systems at high redshift.
The exponent α and the term K100 are compatible with the prediction of
Voit et al. (2005). We also see that the goodness of the fit improves a lot
when we correct by the gas fraction.

low entropy floor in the center while NCC have a higher entropy
floor (see Figs. B.1 and B.2).

5.1. Self-similarity

Non-radiative simulations predict that the thermodynamic prop-
erties of clusters of galaxies should be self-similar once rescaled
to specific physical quantities. In the previous section we have
shown that by using a proper rescaling we reach self-similarity
(see Fig. 4). Self-similarity is observed for all the redshift ranges.
However, only a proper rescaling using the gas fraction makes
the agreement with the prediction (Voit et al. 2005) within 20%
above 0.05 R500. This is shown in the bottom panel of Figs. 5 and
6, where the ratios between data rescaled as indicated in Eqs. (8)
and (9), respectively, and the non-radiative prediction (Voit et al.
2005) is shown. We observe that rescaling by the gas fraction is
only needed in the high redshift bin to recover the self similar
behaviour that is reached between 0.05 and 0.7 R500 within 20%
from the theoretical value.
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The deviations present in the inner part of the profiles may be
interpreted as some form of residual energy (Morandi & Ettori
2007), which may be due to some non-gravitational physics
processes.

Even though the agreement with simulations is remarkable,
we get slightly steeper entropy profiles, i.e. 1.13 ± 0.01 for the
low redshift bins, while we get a flatter profile in the high red-
shift bin, with a power law index that is compatible with the
prediction, 1.16 ± 0.08, but with a non-zero central entropy.

The agreement with the results of Cavagnolo et al. (2009) is
excellent in all three redshift bins since we find all slopes be-
tween 1.1 and 1.2. For the high redshift bins adding a constant to
reproduce the inner part of the profile is required to make our re-
sults on the slope compatible with both non-radiative predictions
(Voit et al. 2005) and observations (Cavagnolo et al. 2009). Oth-
erwise a simple power law would yield a flat profile with slope
0.90 ± 0.03.

The excess with respect to the Voit et al. (2005) self-similar
prediction is present at low radii where most of our data are
above the prediction. This extra entropy is more pronounced in
low mass systems, as shown in Fig. 7 and consistent with the
results obtained by Pratt et al. (2010).

5.2. Angular resolution effect

In a thermalized system, low entropy gas sinks in the center
while high entropy gas floats out in the outskirts, producing an
entropy profile that increases monotonously with the radius. The
net effect is that the larger the central bin considered for the anal-
ysis, the higher the measured value of the entropy. In the top
panel of Fig. 8, we plot the value of K0 for each cluster versus
the radius of the innermost data point and measure an evident
positive correlation (Pearson’s rank correlation of 0.76, corre-
sponding to a significance of 8.6 × 10−8 of its deviation from
zero that is associated with the case with no correlation). This
correlation becomes even more significative if we consider the
same points rescaled by the properties of the halos. This is shown
in the bottom panel of Fig. 8, where we measure a very signifi-
cant Pearson’s rank correlation of 0.83. A similar result is shown
by Panagoulia et al. (2014): the smaller the innermost radial bin,
the smaller the central entropy we measure.

However, as we show in Fig. 8, the correlation between the
rescaled central entropy and the innermost radial bin shows a
slope value of 1.78 ± 0.04, which is about 8σ away from the
expected value, and therefore does not reproduce the predicted
radial dependence from Voit et al. (2005; see Eq. (5)), suggesting
that the flattening has a different origin form the lack of spatial
resolution.

5.3. Sample completeness

In Amodeo et al. (2016), an extended study on the completeness
of the sample analysed here is performed. In their Fig. 13, the
completeness functions are compared to the distribution of the
objects in the M200 − z plane, showing that the applied selec-
tion criteria effectively selected the very massive high end of the
cluster halo function in the investigated redshift range.

The observed trend to detect lower masses at higher redshifts
is intrinsic to the halo mass function predicted for the hierarchi-
cal structure formation in the CDM dominated Universe.

Therefore, we conclude that, within the limits of our sample
selection and statistics, the observed redshift and mass depen-
dences are a reasonable representation of the behaviour of the

Fig. 8. Top: central entropy vs. the innermost data point. A clear postiive
correlation is measured. Bottom: central entropy versus innermost data
point rescaled, an even tighter correlation is present.

X-ray luminous cluster population in the high mass end between
z = 0.4 and z = 1.2.

5.4. Bimodality

Cavagnolo et al. (2009) have shown that the distribution of the
values of the cluster central entropy reflects the dichotomy be-
tween CC and NCC clusters, finding two distinct populations
peaking at 15 keV cm2 and 150 keV cm2. This bimodality
has not been confirmed in later work (e.g. Santos et al. 2010;
Pratt et al. 2010).

In Sect. 3.2 we have shown that using the BIC there are no
statistical differences between a unimodal and bimodal distri-
bution. We consider whether this lack of statistical evidence is
because of the poor statistics of the cluster sample. We build a
bootstrap analysis of our distribution by selecting 10 000 sam-
ples of our objects (also allowing for repetitions). This approach
permits us to determine whether a random sample extracted from
our data show an evident bimodal distribution. The results of this
analysis are shown in Fig. C.4. We observe a median value of
2.0+3.2
−5.6 and conclude that the distribution of this BIC is com-

patible with no differences between a unimodal and bimodal
distribution.

In Fig. C.2 the effect of redshift on the distribution of the cen-
tral entropy is shown. As the number of clusters in each redshift
bin is too small, we are not able to accurately prove any redshift
evolution of the central entropy, however we have indications
that an evolution may be present.

At high redshift we have an important peak at entropy higher
than 100 keV cm2, which represents the NCC systems, and only
one cluster with central entropy lower than 10 keV cm2.
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We observe that from high redshift to low redshift the peak
at high entropy becomes less prominent and a larger fraction of
clusters get a smaller value of the central entropy, so that in the
lower redshift bins the majority of our clusters have a central
entropy below 100 keV cm2.

Nevertheless there is an indication of evolution from many
NCC systems at high redshift towards mostly relaxed CC clus-
ters at low redshift. Owing to the poor statistics of the sample we
are not able to prove this scenario using statistical tests.

5.5. Evolution with redshift

We observe, within the central region, an evolution with redshift
of the entropy (r < 0.1 R500). It suggests that the entropy profiles
are flatter at high redshifts in massive objects, or, alternatively,
there is a non-zero central entropy at high redshift. This resem-
bles an evolution in the entropy profiles. However, as we show
in Fig. C.2, the fraction of NCC clusters is much higher at high
redshifts than at low redshifts. This would imply that at z > 0.77
the clusters in our dataset are not able to develop a cool core
similar to clusters at low redshift, meaning that cool cores are
less common in the past, flattening the entropy profiles and cre-
ating a non-zero value for the central entropy. Several studies
(e.g. Vikhlinin et al. 2007; Santos et al. 2008, 2010; McDonald
2011) that have investigated the evolution of the cool coreness of
clusters, support this scenario, in particular on the lower relative
abundance of the strongest CC at high redshift. In other works
(e.g. McDonald et al. 2013, 2017), the cuspiness of the gas den-
sity is shown to decrease with increasing redshift, as a conse-
quence of a non-evolving core that is embedded in an ambient
ICM, which evolves self-similarly.

If we define the CC clusters as those with central entropy
that is lower than 100 keV cm2 then from Fig. C.2 we derive
that in the low redshift bins 67% of clusters are CC, which is a
percentage that reduces to 50% and 40% in the intermediate and
high redshift bins, respectively.

This result slightly deviates, but not in a significant way,
from what has been presented in previous studies (e.g. Vikhlinin
et al. 2007; McDonald et al. 2013). For example, McDonald
et al. (2013; see their Fig. 12) obtain that CCs represent 40%
(10−40%) of the cluster population at low (high) redshift. Their
sample is SZ selected and is, therefore, less biased towards
CC clusters with respect to an X-ray selected sample.

This result is consistent with the hierarchical scenario of the
growth of structure, given that at high redshift (z ∼ 1) clusters
are in the middle of their formation history and cool cores could
have easily been destroyed by one of the many merger events,
or not even built, if they did not have enough time to relax in
the center. Moreover, it is remarkable that even in our sample,
which is selected in order to have specific X-ray properties and
thus prone to include X-ray bright centrally peaked cool core
objects, we observe a relatively larger fraction of NCC at higher
redshift.

5.6. Pressure

For the same dataset, we study the behaviour of the electronic
pressure profile P(r) = ne(r) T (r).

A generalized NFW profile, as introduced by Nagai et al.
(2007) (see Eq. (6)), has been widely used to study the
radial rescaled pressure profile. The best-fitting parameters
[P0, c500, γ, α, β] = [8.403, 1.177, 0.3081, 1.0510, 5.49] obtained

Fig. 9. Top: pressure profiles for all our clusters rescaled using an over-
density of 500, colour coded with respect to the redshift bin to which
each curve belongs, compared with the best-fit results in Arnaud et al.
(2010; black solid line). Bottom: stacked pressure profiles (in logarith-
mic space) compared with the best fit of Arnaud et al. (2010); the panel
at the bottom shows the ratio with respect to the “universal” pressure
profile.

from Arnaud et al. (2010) represent the so-called “universal
pressure profile” for galaxy clusters.

Pressure is the quantity less affected by the thermal history of
the cluster (Arnaud et al. 2010). Indeed McDonald et al. (2014)
found no significant evolution of the pressure profile in the anal-
ysis of SPT SZ-selected clusters, just a mild flattening of the pro-
file below 0.1 R500. Battaglia et al. (2012), however, suggested
from the analysis of cosmological hydrodynamical simulations
that a significant evolution of the pressure profile should occur
beyond z = 0.7, and only outside R500, as consequence of the
increasing non-thermal support towards the outskirts of galaxy
clusters.

In the functional form shown in Eq. (6), we fix the pa-
rameters β and γ to the fiducial value found in the work of
Arnaud et al. (2010). These parameters are degenerate and there-
fore fixing at least one of the slopes is advised for tighter param-
eter distributions and a better comparison (Arnaud et al. 2010).

The pressure profiles are plotted in the top panel of Fig. 9,
together with the curve of the universal profile, in order to make
a comparison. All the profiles show a very similar shape, sur-
rounding the “universal” one from both sides with an apparent
discrepancy only in the normalization of the profiles. At each
radius the scatter is of about one order of magnitude.

We applied the same procedure described in Sect. 4 and
used in the analysis of the entropy profiles. We interpolated over
the same radial grid, extrapolated up to R500 using the best-fit
model, and stacked these pressure profiles. We obtained that the
stacked curves in the two low redshift bins are compatible with
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Table 2. Best-fitting values, and relative errors for the pressure profiles modelled with the generalized NFW in Eq. (6).

Subset P0 c500 γ α β χ2
red

z ∈ [0.4, 0.52] 9.1 ± 0.3 1.08 ± 0.08 0.308 0.87 ± 0.04 5.49 2.1
z ∈ [0.52, 0.77] 9.2 ± 0.2 1.48 ± 0.05 0.308 1.11 ± 0.04 5.49 4.6

z > 0.77 3.6 ± 0.2 1.5 ± 0.1 0.308 1.59 ± 0.14 5.49 0.8
CC 11.3 ± 0.3 1.30 ± 0.07 0.308 0.92 ± 0.03 5.49 2.1

NCC 5.46 ± 0.14 1.57 ± 0.05 0.308 1.43 ± 0.06 5.49 1.9

Universal 8.403 1.177 0.308 1.0510 5.49 –

Notes. The parameters β and γ are frozen to their “universal” values to break some degeneracy and facilitate the comparison between the results.
The first column indicates the subset of our sample chosen to fit the data. We observe that the results on c500 and α of NCC subsample and the
result of high redshift subset are compatible within 1σ. The goodness of the fit is indicated in the last column on the right. In general the value of
the parameters are very close to the “universal” results of Arnaud et al. (2010), considering that they are highly degenerate. We point out that the
parameter P0 for the high redshift bin is significantly smaller than its value for the other bins and the “universal” value.

Fig. 10. Left: polytropic index for the objects in our sample vs. concentration: γ increases with larger values of cNFW. Black points are the observed
data points; the green and blue lines are the results of Komatsu & Seljak (2001) and Ascasibar et al. (2006), respectively; the red line with pink
shaded area is the best fit using classical least squares minimization with 1σ confidence region; and the magenta line with lily shaded area is the
best fit using an MCMC algorithm. Right: polytropic index for all clusters as a function of redshift. The data are better fitted by a linear relation: the
effective polytropic index grows with redshift. Black points indicate the observed data points and the red line with pink shaded area indicates the
best fit with 1σ dispersion using MCMC algorithm. The empty circles indicate the value of adiabatic index using the mean result for the clusters
in each bin; the empty squares indicate the polytropic index of the stacked profiles in each redshift bin; the brown dashed line and dash-dotted
magenta line indicate the best linear fit on the “mean” and “stacked” adiabatic index. The parameters describing these lines are listed in Table 3.

the “universal” pressure profile at radii below 0.1 R500, while
above this value the data points are slightly below. Nevertheless
the best fit on these stacked data points include the Arnaud et al.
(2010) result at all radii within the error bars.

On the other hand, we observe a distinctive flattening be-
low 0.1 R500 for the high redshift scaled profile for the inner
part of these profiles with values that are about 30% of the “uni-
versal” pressure profile. Above this radius the data points are
very close to the other redshift bins, meaning slightly below the
Arnaud et al. (2010) result.

Pressure is indeed a thermodynamic property that is hardly
affected by the thermodynamic history of clusters. The observed
flattening at high redshift at low radii is also observed in the
work of McDonald et al. (2014) and can be easily explained by
the minimal presence of CC clusters at high redshift.

In Table 2 we show the best fit of Eq. (6), where we have
kept β and γ fixed to the “universal” pressure profile best fit.
We obtain a very good fit in all the three redshift bins; only the
normalization of this functional in the high redshift bin shows
a distinct discrepancy with the results of Arnaud et al. (2010),
greater than 5σ. In fact the bottom panel of Fig. 9 shows that
the low redshift bins points are almost on top of the “univer-
sal” profile, while the high redshift points are compatible only
above 0.1 R500 and below this threshold the discrepancy grows

to be factor 3 at 0.01 R500. For completeness in the same table
we show the fitting performed for the subsets of CC and NCC,
referring to the data in Fig. B.3. We observe that NCC clusters
best-fit results resembles the high-z subsample, while CC clus-
ters resemble low-z objects.

5.7. Polytropic index

The polytropic index γ, equal to the ratio of specific heats CP/CV

for an ideal gas, is a common proxy when evaluating the physical
state and thermal distribution of the gas. It is defined as

Pe = const. · nγe , (10)

with values of γ expected to be in the range [1.1, 1.2]
(Komatsu & Seljak 2001; Ascasibar et al. 2006; Shi 2016), i.e.
between 1, the value describing an isothermal gas, and 5:3, the
value of an isoentropic gas, when the gas is well mixed and the
gas entropy per atom is constant.

Studying the evolution of the polytropic index with redshift
and its relation with the concentration c of the dark matter dis-
tribution can provide a more consistent picture of the processes
that regulate the hierarchical structure formation. A correlation
between γ and c is expected if the radial structure of the ICM and
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Table 3. Value of the polytropic index, dependence on concentration,
and evolution with redshift.

Polytropic index γ
Subset Mean Stacked

z ∈ [0.4, 0.52] 0.935 ± 0.008 0.942 ± 0.008
z ∈ [0.52, 0.77] 0.996 ± 0.009 0.906 ± 0.006

z > 0.77 1.076 ± 0.031 1.041 ± 0.018

γ = m · cNFW + q
Method m q

Chi-squared 0.0004 ± 0.0057 0.98 ± 0.03
MCMC 0.031 ± 0.020 0.98 ± 0.09

Ascasibar+06 0.005 ± 0.002 1.145 ± 0.007
Komatsu+01 0.01 1.085

γ = m · z + q
Method m q

Chi-squared 0.05 ± 0.05 0.94 ± 0.03
MCMC 0.24 ± 0.22 0.97 ± 0.14
Mean 0.29 ± 0.05 0.80 ± 0.030

Stacked 0.11 ± 0.03 0.86 ± 0.02

Notes. Top: values and errors on the polytropic index for the three red-
shift bins considering the mean and stacked values. We observe evo-
lution with a significance greater than 2σ. Middle: fit of left panel of
Fig. 10 using different methods and compared with previous theoretical
work. Bottom: fit of right panel of Fig. 10 using different methods.

the host halo depend on the halo mass. Komatsu & Seljak (2001)
require a linear relation between concentration and polytropic in-
dex by assuming in this theoretical work that the gas traces the
dark matter distribution outside the core. Ascasibar et al. (2006)
have shown that c and γ conspire to produce the observed scaling
relations, matching the self-similar slope at many overdensities.

We estimate an effective polytropic index γ by fitting the
pressure with a power law as a function of the gas density. As
a first step, γ is calculated for each single cluster. Then, we eval-
uate the weighted mean in each bin. We also calculate γ for the
stacked profiles.

We look for correlations between the polytropic index and
dark matter concentration as recovered from the best fit with
a NFW model in Amodeo et al. (2016). Ascasibar et al. (2006)
and Komatsu & Seljak (2001) have shown that between con-
centration and polytropic index there is a linear relation with
slope of 0.005 and 0.01, respectively. Using the Markov chain
Monte Carlo (MCMC) code emcee (Foreman-Mackey et al.
2013), we obtain a slope that is much stepper than the theoretical
predictions, although with a relative uncertainty of about 70%
(see best-fit values in Table 3), which makes it compatible with
previous results (Komatsu & Seljak 2001; Ascasibar et al. 2006)
within 1σ, and even compatible with 0 at 2σ. Moreover, the in-
tercept we get is much smaller than what has been previously
calculated.

In the right panel of Fig. 10, we show the polytropic index as
a function of redshift. We measure a positive evolution with red-
shift, with larger values of γ (by more than 2σ) at higher redshift
(see Table 3).

6. Conclusions

From the sample described in Amodeo et al. (2016), which con-
tains one of the largest collections of clusters at z > 0.8 that are
homogeneously analysed in their X-ray spectral properties, we

have extracted the entropy and pressure profiles of 47 clusters
observed with Chandra in a redshift range from 0.4 to 1.24.

We observe higher values of the gas entropy in the central
region at higher redshift, which cannot be explained as an effect
owing to spatial resolution. A plausible explanation of this result
is the fact that at high redshift we observe a lack of cool core
clusters with respect to the low redshift sample.

Moreover at intermediate radii, between 0.1 R500 and
0.7 R500, the self-similarity is recovered when we use entropy
dependence on both the redshift and gas fraction and the scatter
between the profiles is reduced by a factor ∼3. The best fit of the
stacked profiles is very similar to the Voit et al. (2005) prediction
from non-radiative simulations. We also show that the pressure
profiles flatten at high redshift at radii below 0.1 R500 with lower
values by about 50% than those observed at z <∼ 0.5.

Overall, these results agrees with a scenario in which galaxy
clusters are the last gravitationally bound structures to form ac-
cording to the hierarchical evolution. They start forming at z ≈ 3,
and at z ∼ 1−1.5 they are still in the middle of their formation.
At this epoch, cool cores could either be destroyed by merger
events or have not formed yet, thereby reducing their relative
number at earlier epoch. Moreover, the merging processes ongo-
ing at high redshift would imply that objects at z ∼ 1 are mostly
unrelaxed, with a flatter entropy profile, which produces a clear
excess in the inner parts and a deficit in the outskirts. As we show
in Figs. 5 and 6, high redshift clusters indeed have a rather flat
stacked entropy profile, supporting the evidence that the float-
ing and sinking of the gas entropy has not been completed yet.
The thermodynamical disturbed condition of the high redshift
systems is further supported by the observed flattening of ther-
mal pressure in the inner part of the stacked pressure profile (see
Fig. 9).

Moreover, we measure a slightly significant evolution of the
effective polytropic index of the ICM, we measure it by es-
timating d log Pe/d log ne, using the dark matter concentration
and redshift with an 87% significance (1.5σ) for concentration
and 73% (1.1σ) for redshift, indicating that the gas possesses a
slightly larger polytropic index in systems that have a more con-
centrated mass distribution at higher redshift. This result sup-
ports the observational evidence that at high redshift we recover
more isentropic (i.e. more flat) entropy profiles.
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Appendix A: Additional information

Table A.1. Addition to Table 2 in Amodeo et al. (2016): information on
the sizes and gas content of these clusters.

Object z R500 fgas,500 Reference for redshift
− − [kpc] [fraction] −

MACS0159.8-084 0.405 1379 ± 111 0.11 ± 0.02 Kotov & Vikhlinin (2006)
MACSJ2228.5+20 0.412 1418 ± 156 0.13 ± 0.03 Böhringer et al. (2000)
MS1621.5+2640 0.426 1298 ± 127 0.1 ± 0.02 Stocke et al. (1991)
MACSJ1206.2-08 0.44 1874 ± 128 0.08 ± 0.01 Borgani et al. (2001)
MACS-J2243.3-0 0.447 1335 ± 137 0.16 ± 0.03 Coble et al. (2007)
MACS0329.7-021 0.45 1264 ± 113 0.12 ± 0.04 Allen et al. (2004)
RXJ1347.5-1145 0.451 1756 ± 134 0.1 ± 0.02 Schindler et al. (1995)

V1701+6414 0.453 707 ± 48 0.26 ± 0.04 Wang & Walker (2014)
MACS1621.6+381 0.465 1349 ± 242 0.09 ± 0.04 Edge et al. (2003)

CL0522-3624 0.472 754 ± 271 0.11 ± 0.11 Mullis et al. (2003)
MACS1311.0-031 0.494 1420 ± 241 0.06 ± 0.02 Allen et al. (2004)
MACS-J2214.9-1 0.503 1275 ± 253 0.14 ± 0.06 Bonamente et al. (2006)

MACS911.2+1746 0.505 1338 ± 140 0.1 ± 0.07 Ebeling et al. (2007)
MACSJ0257.1-23 0.505 1293 ± 260 0.12 ± 0.05 Ebeling et al. (2007)

V1525+0958 0.516 1259 ± 191 0.05 ± 0.01 Mullis et al. (2003)
MS0015.9+1609 0.541 1381 ± 128 0.13 ± 0.02 Stocke et al. (1991)
CL0848.6+4453 0.543 701 ± 394 0.13 ± 0.2 Takey et al. (2011)

MACS1423.8+240 0.543 1041 ± 16 0.13 ± 0.01 Ebeling et al. (2007)
MACSJ1149.5+22 0.544 1187 ± 141 0.19 ± 0.04 Ebeling et al. (2007)

MACSJ0717.5+3745 0.546 1409 ± 59 0.17 ± 0.02 Ebeling et al. (2007)
CL1117+1744 0.548 568 ± 106 0.2 ± 0.09 Wen et al. (2009)

MS0451.6-0305 0.55 1699 ± 229 0.07 ± 0.03 Gioia & Luppino (1994)
MS2053.7-0449 0.583 1239 ± 367 0.04 ± 0.02 Stocke et al. (1991)

MACS-J2129.4-0 0.589 1155 ± 228 0.15 ± 0.07 Ebeling et al. (2007)
MACS-J0647.7+7 0.591 1762 ± 333 0.06 ± 0.02 Ebeling et al. (2007)

CL1120+4318 0.6 894 ± 208 0.16 ± 0.08 Romer et al. (2000)
CLJ0542.8-4100 0.64 801 ± 68 0.13 ± 0.03 De Propris et al. (2007)

LCDCS954 0.67 567 ± 98 0.16 ± 0.07 Gonzalez et al. (2001)
MACS0744.9+392 0.698 994 ± 93 0.17 ± 0.04 Ebeling et al. (2007)
SPT-CL0001-5748 0.7 902 ± 261 0.12 ± 0.08 Vikhlinin et al. (1998)

V1221+4918 0.7 738 ± 127 0.15 ± 0.07 Mantz et al. (2014)
RCS2327.4-0204 0.704 1547 ± 112 0.08 ± 0.01 Gralla et al. (2011)

SPT-CLJ2043-5035 0.72 1348 ± 255 0.07 ± 0.02 Song et al. (2012)
ClJ1113.1-2615 0.73 747 ± 178 0.06 ± 0.04 Perlman et al. (2002)

CLJ2302.8+0844 0.734 1042 ± 207 0.06 ± 0.02 Perlman et al. (2002)
SPT-CL2337-5942 0.775 1590 ± 414 0.04 ± 0.02 Vanderlinde et al. (2010)

RCS2318+0034 0.78 1681 ± 484 0.02 ± 0.01 Hicks et al. (2008)
MS1137.5+6625 0.782 994 ± 203 0.06 ± 0.03 Gioia & Luppino (1994)
RXJ1350.0+6007 0.81 577 ± 71 0.17 ± 0.05 Holden et al. (2002)
RXJ1716.9+6708 0.813 646 ± 89 0.15 ± 0.05 Henry et al. (1997)

EMSS1054.5-0321 0.831 1308 ± 227 0.06 ± 0.02 Gioia et al. (2004)
CLJ1226.9+3332 0.888 1752 ± 409 0.04 ± 0.02 Ebeling et al. (2001)

XMMUJ1230+1339 0.975 792 ± 309 0.08 ± 0.07 Fassbender et al. (2011)
J1415.1+3612 1.03 772 ± 259 0.08 ± 0.05 Ellis & Jones (2004)

SPT-CL0547-5345 1.067 779 ± 188 0.14 ± 0.08 High et al. (2010)
SPT-CLJ2106-584 1.132 963 ± 254 0.13 ± 0.06 Foley et al. (2011)

RDCS1252-29 1.235 533 ± 124 0.13 ± 0.08 Rosati et al. (2004)

Appendix B: CC versus NCC

Fig. B.1. Staked entropy profiles for the subsets of CC and NCC based
on Cassano et al. (2010) criteria. We observe that CC profile is almost
on top of the Voit et al. (2005) prediction.

Fig. B.2. Stacked entropy profiles corrected using the gas fraction for
the subsets of CC and NCC. The CC entropy profile still lies very close
to the prediction, while the NCC profile has gotten closer but still flatter
than the prediction.

Fig. B.3. Pressure profiles for the subsets of CC and NCC. These pro-
files are very similar to those in Fig. 9, however the NCC profiles within
0.1 R500 are about a factor of 2 higher than the high redshift one.
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Appendix C: Plots

Fig. C.1. Top: distribution of the parameter K0. The red line represents
the kernel density plot with a smoothing width of 0.1. The black and
blue line represens the best fit obtained using one and two lognormal
distributions, respectively. The shaded grey and blue regions enclose
the 68.3 % probability region around the best fit due to parameter uncer-
tainties. Middle and bottom: distribution of the parameters K100 and α,
respectively. The blue line with shaded area represents the best fit with
a single lognormal distribution and the 1σ probability regions around
it. The median value of the fit is shown directly on the graph.

Fig. C.2. Evolution of the central entropy distribution with redshift. We
can clearly see an evolution with evidence of bimodality at high red-
shift. The red lines represents the kernel density estimation of the distri-
butions. The clusters that are best fitted by K0 = 0 are added as if they
have the value of 1 kev cm2.
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Fig. C.3. Distribution of the rescaled innermost (top) and outermost
(bottom) radial spatial bin colour coded with redshift.

Fig. C.4. Distribution of the bootstraps results. The black solid line rep-
resents the position of the median, while the dashed lines represent the
region comprehending 68% of the distribution. The 1σ region is com-
patible with ∆BIC = 0.

Fig. C.5. Rescaled entropy profiles of clusters in three redshift bins.
Each colour represents data from a single cluster.
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Abstract

We present a new cosmological probe for galaxy clusters, the halo sparsity. This characterizes halos in terms of the
ratio of halo masses measured at two different radii and carries cosmological information encoded in the halo mass
profile. Building on the work of Balmes et al., we test the properties of the sparsity using halo catalogs from a
numerical N-body simulation of (2.6 Gpc h−1)3 volume with 40963 particles. We show that at a given redshift the
average sparsity can be predicted from prior knowledge of the halo mass function. This provides a quantitative
framework to infer cosmological parameter constraints using measurements of the sparsity of galaxy clusters.
We show this point by performing a likelihood analysis of synthetic data sets with no systematics, from which we
recover the input fiducial cosmology. We also perform a preliminary analysis of potential systematic errors and
provide an estimate of the impact of baryonic effects on sparsity measurements. We evaluate the sparsity for a
sample of 104 clusters with hydrostatic masses from X-ray observations and derive constraints on the
cosmic matter density Ωm and the normalization amplitude of density fluctuations at the 8 Mpc h−1 scale, σ8.
Assuming no systematics, we find Ωm=0.42±0.17 and σ8=0.80±0.31 at 1σ, corresponding to
S 0.48 0.11m8 8sº W =  . Future cluster surveys may provide opportunities for precise measurements of the
sparsity. A sample of a few hundred clusters with mass estimate errors at the few percent level can provide
competitive cosmological parameter constraints complementary to those inferred from other cosmic probes.

Key words: cosmological parameters – cosmology: theory – methods: numerical – X-rays: galaxies: clusters

1. Introduction

In the standard bottom-up scenario of cosmic structure
formation, initially small dark matter (DM) density fluctuations
grow under gravitational instability to eventually form at later
times virialized stable objects, the halos. It is inside these
gravitationally bounded clumps of DM that baryonic gas falls
in to form the visible structures we observe in the universe.
Today, the most massive halos host large clusters of galaxies
resulting from the hierarchical merging process of lower-mass
halos formed at earlier times. Since their assembly depends on
the matter content of the universe, the state of cosmic
expansion, and the initial distribution of matter density
fluctuations, there is a consensus that observations of galaxy
clusters can provide a wealth of cosmological information (see,
e.g., Allen et al. 2011; Kravtsov & Borgani 2012, for a review
of galaxy cluster cosmology).

Galaxy clusters can be observed through a variety of probes,
such as the detection of the X-ray emission of the intracluster
gas (e.g., Vikhlinin et al. 2005; Ebeling et al. 2010; Piffaretti
et al. 2011; Pierre et al. 2016), the Sunyaev–Zel’dovich effect
in the microwave (e.g., Staniszewski et al. 2009; Menanteau
et al. 2013; Reichardt et al. 2013; Planck Collaboration et al.
2016b), the distribution of the member galaxies in the optical
and IR bands (Koester et al. 2007; Rykoff et al. 2014), and the
distortion of the background galaxies induced by the halo
gravitational potential (e.g., Umetsu et al. 2011; Hoekstra et al.
2012; Postman et al. 2012).

Due to the highly nonlinear nature of the gravitational
collapse driving the formation of DM halos, theoretical model

predictions, which are necessary to interpret the data and infer
cosmological parameter constraints, have been mainly obtained
through cosmological simulations. A remarkable result of these
studies is the fact that DM halos exhibit a universal density
profile well approximated by the Navarro–Frenk–White
formula (Navarro et al. 1997). This entirely characterizes the
halo profile in terms of the halo mass M and the concentration
parameter c. Numerical simulations have shown that the
concentration encodes cosmological information. In particular,
it has been found that the median concentration of an ensemble
of halos is a power-law function of the halo mass with the
overall amplitude of the relation varying with redshift and
cosmology (see, e.g., Bullock et al. 2001; Zhao et al. 2003;
Dolag et al. 2004; Zhao et al. 2009; Giocoli et al. 2012). This
has suggested that estimates of the concentration and halo mass
from a sample of galaxy clusters can provide constraints on
cosmological models (see, e.g., Ettori et al. 2010, for a
cosmological data analysis using cluster concentration–mass
measurements).
However, several factors can limit the use of the cluster

concentration as cosmological proxy. On the one hand,
astrophysical effects may alter the original c–M relation and
introduce a systematic bias into the cosmological analysis (see,
e.g., Duffy et al. 2010; Mead et al. 2010; King & Mead 2011).
On the other hand, theoretical model predictions, despite recent
progress (see, e.g., Correa et al. 2015; Diemer & Kravtsov
2015; Klypin et al. 2016; Ludlow et al. 2016; Renneby et al.
2017), have yet to converge into a single model capable of
reproducing the ensemble of numerical results currently
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available for different cosmological scenarios (Meneghetti &
Rasia 2013).

Another limiting factor may result from the large intrinsic
dispersion of the halo concentration. N-body simulation studies
have found a significant scatter of the concentration at fixed
halo mass (Bullock et al. 2001; Wechsler et al. 2002). For
example, Maccio et al. (2007) have found 0.25clns » , while
Bhattacharya et al. (2013) quote a scatter 0.33clns » . A similar
result has been found in Diemer & Kravtsov (2015), which
quotes 0.37clns » , while a smaller value was only found for a
sample of relaxed halos. Accounting for such a large intrinsic
dispersion may strongly relax cosmological parameter con-
straints from measurements of the concentration–mass relation.

A further point of concern is the case of very massive
clusters. These are often easier to detect because they are
very luminous and rich. Nonetheless, because of their recent
formation, they are also more likely to be perturbed by the
presence of other structures that are still in the process of
merging with the main DM halo. In such a case, the
halo density profile may deviate from the NFW formula,
and the concentration parameter no longer encodes informa-
tion of the halo mass distribution and its cosmological
dependence.

Finally, the measurement of the mass–concentration relation
is strongly affected by selection effects as shown by Sereno
et al. (2015).

In Balmes et al. (2014), two of the authors have introduced
the concept of halo sparsity, a directly measurable proxy of the
DM halo mass profile that overcomes most of the limitations
described above. In this work, we present a detailed study of
the validity of the halo sparsity as a new cosmological probe.
As a proof-of-concept application, we specifically focus on
sparsity measurements based on hydrostatic mass estimates
from X-ray cluster observations. We show that the redshift
evolution of the average halo sparsity carries cosmological
information that can be retrieved from prior knowledge of the
halo mass function. To this purpose we perform a likelihood
analysis over a set of ideal sparsity data with no systematic
errors from which we recover the input fiducial cosmology. We
discuss various sources of systematic uncertainty. Using results
from state-of-the-art simulations of galaxy clusters, we show
that mass bias effects due to baryonic feedback processes alter
the sparsity of massive systems at the few percent level. When
analyzing cluster sparsity, this source of systematic error is
therefore subdominant with respect to that affecting mass
estimates from currently available cluster data sets. As a first
cosmological application, we perform a cosmological para-
meter inference analysis of sparsity measurements based on
hydrostatic mass estimates of a sample of X-ray clusters from
XMM and Chandra observations.

The article is organized as follows. In Section 2, we review
the basic properties of the halo sparsity and test its validity as
a cosmological proxy. In Section 3, we discuss several
sources of systematic errors that can affect the sparsity data
analysis. In Section 4, we present the cosmological parameter
constraints inferred from sparsity measurements of a sample
of X-ray clusters. In Section 5, we perform a cosmological
parameter forecast for sparsity data expected from future
X-ray cluster surveys. Finally, in Section 6 we present our
conclusions.

2. DM Halo Sparsity

2.1. Definition and Properties

The sparsity of a halo is defined as the ratio of the halo mass
enclosing two different overdensities Δ1 and Δ2 (Balmes et al.
2014):
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2

ºD D
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where Δ1<Δ2 and MΔ is the mass enclosed in a sphere of
radius rΔ containing an overdensity Δ with respect to the
critical density ρc or the mean background density ρm. In the
following we will consider ρc; however, as shown in Balmes
et al. (2014), the general properties of the sparsity are
independent of such a choice. Notice that from Equation (1)
we can also interpret the sparsity of a halo as a measure
of the mass excess between r

1D and r
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It is easy to show that there is a one-to-one correspondence
between the halo sparsity and the concentration parameter
(assuming that the halo follows the NFW profile). For instance,
to conform with the standard definition of concentration, let us
set Δ1=200 and let Δ2be equal to Δ; then, using the NFW
formula, we can write the sparsity as
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where x r r200=D D and c r rs200 200= , with rs the scale radius
of the NFW profile. For a given set of values of the
concentration c and overdensity Δ, the above equation can
be solved numerically to obtain xΔ and thus the corresponding
value of sΔ. However, notice that in defining the sparsity as in
Equation (1) no explicit assumption has been made concerning
the form of the halo density profile. Balmes et al. (2014) have
shown that this is sufficient to characterize the mass profiles of
halos even when their density profile deviates from NFW.
A key feature of the halo sparsity is the fact that its ensemble

average value at a given redshift is nearly independent of the
halo mass M

1D (even if some of the halos in the ensemble have
profiles that deviate from NFW) but depends on the underlying
cosmological model with a scatter that is much smaller than
that of the halo concentration. Because of this, it can provide a
robust cosmological proxy, without requiring any modeling of
the halo density profile.
Another important characteristic of the halo sparsity is that

its independence on M
1D implies that the ensemble average

value can be predicted from prior knowledge of the halo mass
function at two different mass overdensities. In fact, let us
consider the equality
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where dn dM
1D and dn dM

2D are the mass functions at Δ1 and
Δ2, respectively. We can rearrange the above relation and
integrate over the halo ensemble mass range to derive the
relation between the average inverse halo masses at two
different overdensities. Since the sparsity is independent of
the halo mass, it can be taken out of the integration on the
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right-hand side such that
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This equation can be solved numerically for s ,1 2
á ñD D given prior

knowledge of dn dM
1D and dn dM

2D , respectively. As shown
in Balmes et al. (2014), this reproduces with great accuracy the
mean sparsity inferred from N-body halo catalogs. Indeed, this
is a direct advantage over predicting the median concentration,
since the cosmological and redshift dependences of the mass
function are easier to model than the concentration, as they
involve a reduced set of assumptions. Moreover, since the
sparsity is a mass ratio, it is reasonable to expect that it will be
less affected by a constant systematic bias that may affect
cluster mass measurements. Also, notice that selection effects
can be included in Equation (4) by convolving the integrands
with the appropriate selection function. We will discuss both
these points in detail in Section 3.

A last remark concerns the choice of Δ1 and Δ2 provided
thatΔ1<Δ2. As noticed in Balmes et al. (2014), the larger the
difference, the greater the amplitude of the cosmological signal.
However, the values of Δ1 and Δ2 cannot be chosen to be
arbitrarily different since the properties of the sparsity
discussed above remain valid only in a limited interval that
can be determined by physical considerations. A lower bound
on Δ1 can be inferred by the fact that for very small
overdensities the identification of a halo as an individual
object can be ambiguous, thus suggesting Δ1100. On
the other hand, the range of values for Δ2 can be deduced by
the fact that at very large overdensities baryonic processes may
alter the DM distribution within the inner core of halos. These
are largely subdominant if one conservatively assumes Δ2 in
the range Δ1<Δ22000. Within this interval of values one
can set Δ1 and Δ2 depending on the availability of optimal
mass measurements.

2.2. N-body Simulation Sparsity Tests

In Balmes et al. (2014) the properties of the halo sparsity
have been tested using halo catalogs from the Dark Energy
Universe Simulations7 (DEUS) with masses defined with
respect to the background density covering the mass
range M h M10 1012

200 m
1 15< <-
[ ] .

Here we perform an analysis using halos identified with the
Spherical Overdensity (SOD) halo detection algorithm (Lacey
& Cole 1994) in one of the simulations of the RayGalGroup-
Sims suite (M.-A. Breton et al. 2018, in preparation) with
masses defined with respect to the critical density. Since we are
interested in the application to X-ray clusters, we specifically
focus on masses at overdensity Δ1=500c and Δ2=1000c,
from which we derive estimates of the halo sparsity s500,1000.
For completeness, we also consider halo masses measured at
Δ1=200c and show that the properties of the halo sparsity
also hold for s200,500 and s200,1000.

The cosmological model of the RayGalGroupSims simulation
considered here is a flat ΛCDM with parameters set consistently
with WMAP 7 yr data analysis (Komatsu et al. 2011):

Ωm=0.2573, Ωb=0.04356, h=0.72, ns=0.963, and
σ8=0.801. The simulation consists of a (2.625 Gpc h 1- )

3

volume with 40963 particles corresponding to particle mass
resolution m 1.88 10p

10= · M h 1-
 .

Halos are first detected using the SOD algorithm with
overdensity set to Δ=200c and centered on the location of
maximum density. For each halo we computed SOD masses at
Δ=200c, 500c, and 1000c and estimated the corresponding
halo sparsities. In order to avoid mass resolution effects, we
have taken a conservative mass cut and considered only halos
with more than 104 particles.
In Figure 1 we plot the average halo sparsity s M500,1000 ln c500

á ñD
in mass bins of size Mln 0.3c500D = (containing more than
20 halos) as a function of M500c at z=0, 0.5, 1.0, 1.5, and 2.0,
while in the inset plot we show the associated variance. As we
can see, s M500,1000 ln c500

á ñD remains constant to very good
approximation across the full mass and redshift range. As far
as the scatter is concerned, we find the standard deviation to
be at the 20% level, consistent with the findings of Balmes
et al. (2014).
Let us now test the validity of Equation (4) in predicting the

redshift evolution of the ensemble average sparsity. In Figure 2,
the black circles are the average sparsity values obtained from
the RayGalGroupSims halo catalogs at z=0, 0.5, 0.66, 1.0,
1.14, 1.5, and 2.0. These have been computed for each halo
catalog by averaging the sparsity of halos with M500c
1013Me h−1. The magenta squares are the average sparsity
values at the redshifts of the halo catalogs obtained by solving
Equation (4), where we have assumed the Sheth–Tormen (ST)

formula (Sheth & Tormen 1999) with coefficients best-fitting
the numerical halo mass functions at Δ1=500c and Δ2=
1000c (see the Appendix for a detailed description of the mass
function calibration). As we can see in Figure 2, the predictions
from Equation (4) overlap with the average sparsity values
directly estimated from the halos in the simulation catalogs
with relative differences at the <0.1% level.8

Figure 1. Average halo sparsity as a function of M500c from SOD halo catalogs
at z=0 (black filled squares), z=0.5 (blue filled triangles), 1.0 (red open
squares), 1.5 (cyan filled circles), and 2.0 (magenta crosses) in mass bins of size

Mln 0.3c500D = . The inset plot shows the variance of the halo sparsity in the
same mass bins as a function of M500c for the different redshifts.

7 http://www.deus-consortium.org/deus-data/

8 In solving Equation (4) we have set M 2 10c1000
min 13= · Me h

−1 consistently
with the mass limit of our halo catalogs, while the upper limit of the integration
interval can be set to an arbitrarily large number. Nevertheless, as the average
sparsity remains approximately constant with mass, we have verified that the
solution of Equation (4) is largely independent of the specific choice of M c1000

min .
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In order to interpolate predictions of the sparsity at redshifts
other than those tested by the simulation snapshots, we have
performed a quadratic fit of the ST best-fit coefficients as a
function of x zlog c10 virº D D( ( )) for Δc=500 and 1000; see
Equations (16)–(17) in the Appendix. As suggested by Despali
et al. (2016), parameterizing the ST coefficients in terms of x
aims to capture the redshift and cosmology dependence of the
mass function, though from the work of Courtin et al. (2011) it
is clear that this may not be sufficient to model dependencies
beyond the ΛCDM scenario. Hereafter, we will refer to the ST
formula with coefficients given by Equations (16) and (17) as
the ST-RayGal mass function; the corresponding average
sparsity prediction from Equation (4) is shown in Figure 2 as a
black dotted line. We find differences with respect to the
N-body measurements to be at the subpercent level.

In Figure 2 we also plot the average sparsity prediction from
Equation (4) obtained by assuming the mass function from
Tinker et al. (2008) and Despali et al. (2016). In the former case
we can see systematic deviations up to the ∼10% level with
respect to the N-body estimates that decrease from low to high
redshifts. In the latter case differences are within the 1% level
in the range 0.5<z<1.5, while they increase up to the ∼10%
level at lower and higher redshifts. Such discrepancies are due
to differences in the parameterizations of the halo mass
function, which have been calibrated to halo catalogs from
simulations of different cosmological models, volumes, and
mass resolutions.

Compared to the simulations used in Tinker et al. (2008) and
Despali et al. (2016), the RayGalGroupSims simulation covers
a larger volume with greater mass resolution. This provides a
better calibration of the ST formulae. As can be seen in
Figure 14 in the Appendix, we find logarithmic differences well
within the 5% level. On the other hand, it is worth remarking
that we have tested the validity of the ST-RayGal mass function
to a set of cosmological simulations with parameters that are

not too different from those of the ΛCDM best-fit model to the
WMAP 7 yr data (see discussion at the end of the Appendix).
Consequently, we are not guaranteed that the ST-RayGal
parameterization can fully capture the cosmological parameter
dependence of the halo mass function and hence that of the
halo sparsity for parameter values that are far from the
concordance ΛCDM model. Such uncertainty can indeed
introduce systematic errors in the sparsity analysis, a point
that we will discuss in detail in Section 3. Here, we are not in a
position to solve this issue in a conclusive manner. Hence, we
simply opt to quote the results obtained assuming the ST-
RayGal parameterization and that from Despali et al. (2016).
We will refer to the latter case as ST-Despali.
The properties of the halo sparsity summarized by the trends

shown in Figures 1 and 2 also hold for other sparsity
definitions. This can be seen in Figure 3, where we plot
s200,500á ñ and s200,1000á ñ as a function of M200c and redshift,
respectively. These plots suggest that sparsity estimations from
mass measurements at Δ=200c, such as those provided by
gravitational lensing observations that probe clusters at larger
radii than X-ray measurements, can also provide a viable proxy
of the mass distribution in clusters.

2.3. Cosmological Parameter Dependence

The dependence of the halo sparsity on the underlying
cosmological model has been studied in Balmes et al. (2014)
using N-body halo catalogs from DEUS project simulations
(Alimi et al. 2010; Rasera et al. 2010; Courtin et al. 2011).
Balmes et al. (2014) have shown that the average value of the
sparsity at a given redshift correlates with the linear growth
factor of the underlying cosmological model. This can be
qualitatively understood in terms of the relation between the
growth of structures and the mass assembly of halos. In
particular, at any given time, models that form structures earlier
will assemble on average more halo mass at large overdensities
(inner radii) than those that form structures at later times, thus
resulting in smaller values of the average sparsity. In terms of
the cosmological model parameters, this implies, for instance,
that the larger the cosmic matter density Ωm or the amplitude of
the fluctuations on the 8 Mpc h−1 scale σ8, the smaller the
average sparsity value.
Here, we do not intend to repeat the analysis of Balmes et al.

(2014); instead, we use Equation (4) to evaluate the relative
change of the average sparsity with respect to a fiducial
cosmological model for a positive variation of the cosmological
parameters.
We assume as fiducial cosmology a flat ΛCDM model with

parameters set to the best-fit values from the Planck
cosmological data analysis of cosmic microwave background
(CMB) anisotropy spectra (TT, TE, EE+lowP; Planck
Collaboration et al. 2016a): Ωm=0.3156, Ωb h

2=0.02225,
h=0.6727, σ8=0.831, ns=0.9645.
We compute s500,1000á ñ from Equation (4) assuming the ST-

RayGal and ST-Despali mass functions, respectively.9

In Figure 4 we plot s s500,1000 500,1000 fidDá ñ á ñ as a function of
redshift in the case of the ST-RayGal mass function (top panel)

Figure 2. Average sparsity as a function of redshift for halos with M500c>
1013 Me h

−1. The black circles correspond to the average sparsity measured
from the halo catalogs at the redshift snapshots of the RayGalGroupSims run.
The magenta squares correspond to the average sparsity prediction obtained by
solving Equation (4) assuming an ST mass function with coefficients best-
fitting the halo mass function of the RayGalGroupSims halo catalogs at M500c

and M1000c. The black dotted line corresponds to the prediction from
Equation (4) using the ST-RayGal mass function, while the blue short-dashed
line and the red long-dashed line correspond to the predictions obtained
by assuming the mass function from Tinker et al. (2008) and Despali et al.
(2016), respectively. The inset plot shows the variance of the halo sparsity from
the SOD halo catalogs with M500c1013 Me h−1 at the different redshift
snapshots.

9 In computing the mass function, we evaluate the linear matter power
spectrum of the underlying cosmological model using the approximated
formulae from Eisenstein & Hu (1999). We have verified that using power
spectra from numerical solutions of linear perturbation equations, such as those
given by the CAMB code (Lewis et al. 2000), leads to subpercent difference in
the predicted value of the average sparsity.
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and ST-Despali mass function (bottom panel). Independently
of the adopted mass function parameterization, we can see that
the variation of the average sparsity is negative for a positive
variation of the cosmological parameters, except Ωb h

2. This is
essentially because increasing the value of σ8, Ωm, ns, and h
causes structures to form at earlier times and consequently
assemble more halo mass at larger overdensities, which results
in smaller values of the average sparsity. This is not the case for
positive variations of Ωb h

2. In fact, as we have assumed a flat
geometry, increasing the value of Ωb h

2 corresponds to
decreasing the value of Ωm at constant h. In such a case,
structures form later than in models with smaller values of
Ωb h

2, and halos assemble on average less mass at larger
overdensities, thus leading to larger values of the average
sparsity.

The trends shown in Figure 4 provide an estimate of the
sensitivity of the average sparsity to the different cosmological
parameters. In the ST-RayGal case we can see that a change in
the value of σ8 produces the largest variation of the average
sparsity in the redshift range z0 1< . At higher redshifts a
change in the value of ns causes the largest variation, while Ωm,
h, and Ωb h

2 have smaller effects. A similar trend occurs in the
ST-Despali case, though with different amplitudes for the
different parameters. Overall, we can see that measurements
of the average sparsity are most sensitive to S m8 8s= W ;

consequently, we can expect constraints on Ωm and σ8 to be
degenerate along curves of constant S8 values.
It is worth noticing that the variations of the average sparsity

predicted by the ST-Despali mass function are slightly larger in
amplitude than those from the ST-RayGal. This suggests that
cosmological constraints inferred by a sparsity analysis based
on the ST-Despali mass function will provide systematically
tighter bounds than those inferred assuming the ST-RayGal
parameterization. As already mentioned at the end of
Section 2.2, the uncertainties in the modeling of the halo mass
function may induce a systematic error in the cosmological
analysis of sparsity measurements. We will discuss this in
detail in Section 3.

2.4. Synthetic Data Analysis

We now check the validity of the average sparsity as
cosmological proxy. To this purpose we generate a set of
synthetic average sparsity data and perform a cosmological
parameter likelihood analysis to test whether we retrieve the
input parameter values of the fiducial cosmology. As proof of
concept, here we limit ourselves to ideal sparsity measurements
and neglect any source of systematic uncertainty. Our goal
is to show that the sparsity provides a viable cosmological
observable.

Figure 3. Top panels: average halo sparsity s200,500á ñ (left panel) and s200,1000á ñ as a function of M200c at z=0, 0.5, 1, 1.5, and 2.0 (legend as in Figure 1) in mass bins
of size Mln 0.3c200D = . The inset plot shows the variance of the halo sparsity in the same mass bins as a function of M200c for the different redshifts. Bottom panels:
average halo sparsity s200,500á ñ (left panel) and s200,1000á ñ as a function of redshift for halos (legend as in Figure 2) with M500c>10

13 Me h−1 consistently with the
mass cut adopted for the s500,1000 case. The inset plot shows the variance of the halo sparsity at the different redshift snapshots.
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We assume as a fiducial model a flat ΛCDM scenario with
parameters set to the Planck best-fit values quoted in
Section 2.3. We generate a sample of N=15 independent
sparsity measurements in redshift bins of size Δz=0.1 over
the range z0 1.5  by solving Equation (4) for a given mass
function. We consider two separate configurations, one
consisting of sparsity measurements with 1% statistical errors
and another with 20% errors. This allows us to test whether
degrading the statistical uncertainties has an impact in
retrieving the fiducial model. We focus the parameter inference
on σ8 and Ωm, while assuming hard priors on the remaining
cosmological parameters. We realize two independent analyses
for the ST-RayGal and the ST-Despali mass functions.

We perform a Markov chain Monte Carlo sampling of the
likelihood function and evaluate the χ

2:
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where s i500,1000á ñ is the ith data point in the synthetic catalog at

redshift zi, s500,1000sá ñ is the associated error, and s500,1000
thá ñ is the

theoretical model prediction given by Equation (4) assuming

the same mass function parameterization used to generate
the data.
The results are summarized in Figure 5, where we plot the

1σ and 2σ credibility contours in the plane Ωm–σ8, which have
been inferred assuming the ST-RayGal and ST-Despali mass
functions, respectively. In both cases we find the best-fit model
parameters to recover the Planck fiducial parameters at the
subpercent level, independently of the assumed uncertainties
on the synthetic data set. On the other hand, we can see that the
parameter constraints become much weaker in the case with
20% statistical errors. As expected from the analysis presented
in Section 2.3, the analysis of the synthetic data performed
using the ST-Despali mass function provides systematically
tighter bounds on Ωm–σ8 than the ST-RayGal case.
Overall, this suggests that the average sparsity can be used as

a cosmic probe. We will discuss extensively in the next section
the extent to which systematic errors can contaminate sparsity
analyses.

3. Systematic Errors

In this section we present a preliminary evaluation of
systematic errors potentially affecting cluster sparsity analyses.

3.1. Mass Function Parameterization

In Section 2.2 we have seen that key to predicting the halo
sparsity is the correct modeling of the halo mass function. In
particular, we have shown that Equation (4) recovers the
average sparsity of the numerical halo catalogs from the
RayGalGroupSims simulation provided that the parameteriza-
tion of the halo mass function for M500c and M1000c also
reproduces the numerical halo abundances.
In order to assess the impact of the modeling of the mass

function on the cosmological parameter inference from sparsity
measurements, we extend the synthetic data analysis presented
in Section 2.4. In particular, using the synthetic data set
generated by solving Equation (4) with the ST-RayGal mass
function, we perform a likelihood analysis assuming the ST-
Despali mass function.

Figure 4. Relative variation of the average halo sparsity as a function of
redshift for a 5% variation of the cosmological parameters around the fiducial
Planck values. The various lines represent variations with respect to σ8 (black
solid line), ns (blue short-dashed line), Ωm (magenta dotted line), h (red dot-
dashed line), Ωb h

2
(cyan long-dashed line), and m8s W (black dotted line). In

the top panel we plot the relative variation of the average sparsity obtained
assuming the ST-RayGal mass function in Equation (4), while that assuming
the ST-Despali mass function is shown in the bottom panel.

Figure 5. 1σ and 2σ credibility contours in the Ωm–σ8 plane obtained in the case
of the ST-RayGal mass function (black thick lines) and the ST-Despali mass
function (red thin lines). The solid lines correspond to constraints inferred
assuming 1% average sparsity errors, while the dashed contours correspond to
the case with 20% errors. The black circled plus sign indicates the fiducial model
parameters, while the black and red cross markers indicate the best-fit values.
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In Figure 6 we plot the 1σ and 2σ credibility contours in the
Ωm–σ8 plane assuming 1% and 20% statistical errors on the
synthetic sparsity data, respectively. For comparison we also
plot the contours shown in Figure 5 obtained by assuming the
ST-RaGal mass function. We can clearly see that assuming the
ST-Despali mass function when the synthetic data have been
generated with the ST-RayGal mass function results in a
systematic offset of the best-fit parameters. This bias is well
above the statistical errors for sparsity measurements with 1%
statistical uncertainties. We can also notice that the contours
differ according to the assumed mass function. This is not
surprising given the fact that the mass function parameteriza-
tions have been calibrated to simulations of different volume
and mass resolution and encode differently the dependence on
the cosmological parameters.

As already mentioned, the RayGalGroupSims simulation
with a (2.625 Gpc h 1- )

3 volume and a mass resolution of
m 1.88 10p

10= · M h 1-
 provides a better sampling of the high

mass-end of the halo mass function than the simulation
ensemble used for the calibration of the ST-Despali mass
function. As an example, the largest volume simulation from
the SBARBINE suite presented in Despali et al. (2016) consists
of a (2 Gpc h 1- )

3 box with mass resolution m 6.35p = ·

1011 M h 1-
 . This impacts the accuracy of the mass function

calibration, a point that can also be inferred by comparing the
amplitude of the logarithmic differences of the calibrated
formulae to the numerical estimations. As shown in Figure 14,
the ST-RayGal parameterization reproduces the RayGalGroup-
Sims mass function well within 5% across the entire mass
range probed by the simulation and in the redshift interval

z0 2  . In contrast, the ST-Despali parameterization shows
differences with respect to the N-body results that at the
high mass-end exceed the 5% level in the same redshift interval
(see, e.g., Figure 11 in Despali et al. 2016). Conversely, the
SBARBINE suite includes simulation runs with cosmological
parameter values sufficiently far from the concordance ΛCDM

model to better probe the cosmological dependence of the mass
function on Ωm and σ8 than the ST-RayGal case. Therefore,
this suggests that a simulation suite consisting of runs with
volume and mass resolution similar to those of the RayGal-
GroupSims simulation for very different cosmological para-
meter values should provide a mass function parameterization
sufficiently accurate to guarantee unbiased sparsity analyses in
the case of sparsity data with errors at the ∼1% statistical level.

3.2. Hydrostatic Mass Estimates

Numerical simulation studies (see, e.g., Nagai et al. 2007;
Meneghetti et al. 2010; Rasia et al. 2012; Velliscig et al. 2014;
Biffi et al. 2016), as well as the analyses of observed cluster
samples (Sereno & Ettori 2015), have shown that X-ray cluster
masses obtained by solving the hydrostatic equilibrium (HE)

equation are systematically underestimated compared to the
true mass of the clusters.
The halo sparsity is unaltered by a constant systematic mass

bias, since it is a mass ratio. In contrast, a radial-dependent shift
affecting HE masses can alter the sparsity10 and introduce a
systematic error in the cosmological parameter inference. In
addition to a bias effect, HE masses suffer from an intrinsic
scatter of the order of 10%–20% (Rasia et al. 2012; Sereno &
Ettori 2015). However, most of the sources of scatter act
similarly over different radial ranges, so that this would induce
negligible effects on sparsity.
The overall amplitude of the radial-dependent mass bias has

been estimated in several numerical simulation studies. Never-
theless, the results differ as a consequence of the different
numerical schemes used in the realization of the simulations, as
well as the modeling and the implementation of the astrophysical
processes that shape the properties of the gas in clusters. As an
example, Rasia et al. (2012) have realized zoom simulations of
20 clusters at z=0.2 with M 4 10c200

14> · M h 1-
 and found a

33% median mass bias at r500c and 27.5% at r1000c (see Table 2
in Rasia et al. 2012). These induce a relative shift with respect to
the true average sparsity of ∼8%. A smaller amplitude of the
mass bias has been found by Nagai et al. (2007); nevertheless,
both these studies have neglected the impact of active galactic
nuclei (AGNs) on the halo mass.
The OverWhelmingly Large Simulations project (Schaye

et al. 2010) has performed a comprehensive study of the impact
of baryonic feedback processes such as star formation, metal-
line cooling, stellar winds, supernovae, and AGNs on the
properties of galaxy clusters. Quite remarkably, these simula-
tions reproduce the optical and X-ray observed features of
groups and clusters of galaxies (McCarthy et al. 2010; Le Brun
et al. 2014). The effects induced on the halo mass have been
studied in detail in Velliscig et al. (2014). In this study, the
authors have evaluated the median fractional mass bias yD at
z=0 for Δ=200c, 500c, and c2500 as a function of the halo
DM mass. Their results have shown that baryonic effects can
alter the total halo mass at the ∼15%–20% level for halos with
M 10c200

13~ Me h−1 down to a few percent for the most

Figure 6. 1σ and 2σ credibility contours in the Ωm–σ8 plane from the
likelihood analysis of average sparsity data with 1% (solid lines) and 20%
(dashed lines) statistical errors generated by solving Equation (4) with the ST-
RayGal mass function. The black lines correspond to the constraints shown in
Figure 5 inferred assuming the ST-RayGal mass function. The constraints
obtained assuming the ST-Despali mass function are shown as red lines. The
black circle indicates the fiducial model parameters, while the plus signs
indicate the best-fit parameter values for the different parameterizations.

10 Let M t
D be the true halo mass and Me

D be the estimated one at overdensityΔ.
We define the fraction mass bias as y M M Me t tº -D D D D( ) . Then, the relative
variation of the halo sparsity compared to its true value is given by
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from which it is evident that if the mass bias is independent of the cluster
radius, y y

1 2
=D D and s 0,1 2D =D D .
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massive systems with M 10c200
15~ Me h−1. We use their

results for the feedback model AGN 8.0 (see Figure 2 in
Velliscig et al. 2014) reproducing the observed X-ray profile of
clusters (Le Brun et al. 2014). In Figure 7 we plot the
percentage variation of the median halo sparsity for s200,500
(bottom panel), s200,2500 (middle panel), and s500,2500 (top
panel) as given by Equation (6). We can see that at large radii
the effect of baryonic feedback causes the sparsity to be
underestimated by s s 4%200,500 200,500 Dá ñ á ñ . For inner radii
the effect is larger, but limited to 15% for s200,2500 and 10%
for s500,2500. In any case, we notice that for massive systems
with M 10c200

14 Me h
−1 the level of bias on the sparsity is

below ∼5%.
The study presented in Velliscig et al. (2014) has focused on

how baryonic processes alter halo masses. On the other hand,
in our analysis we are particularly interested in the effects on
the HE estimated masses. This has been recently investigated
by Biffi et al. (2016), who have performed zoom simulations of
29 clusters at z=0 with masses M 10c200

14 Me h−1. These
simulations account for metallicity-dependent radiative cool-
ing, time-dependent UV background, star formation, metal
enrichment, stellar winds, and AGN feedback. The authors
have estimated the fractional median hydrostatic mass bias for
cool-core (CC), non-CC, regular, and disturbed systems for
overdensity thresholds Δ=200c, 500c, and c2500 (see Table
1 in Biffi et al. 2016). Using these results, we linearly
extrapolate the hydrostatic mass bias at Δ=1000c and
compute the fraction bias on the sparsity s500,1000, which we
report in Table 1 for different cluster categories. We can see
that the hydrostatic mass bias induces a shift on the true cluster
sparsity of 0.1%–0.3% (non-CC and regular) and 2%–4% (CC
and disturbed), which is largely in agreement with the estimates
we have obtained using the results from Velliscig et al. (2014).

Further numerical analyses are nonetheless necessary since
no study has so far investigated in detail how the hydrostatic
mass bias evolves with time and therefore how the bias on the
sparsity evolves with redshift. Velliscig et al. (2014) have
shown that the baryonic effects that alter M200c at z=0 tend to
be smaller (by ∼5%) at z=1. If such a trend holds for larger
overdensity thresholds, that would imply that the bias on the
halo sparsity is a decreasing function of redshift.

Overall, all these elements confirm the strength of the cluster
sparsity against possible mass bias systematics. The advantage
is twofold. In fact, being a mass ratio, any systematic error
affecting cluster mass estimates is suppressed. Moreover, one
can focus on the sparsity at overdensity thresholds corresp-
onding to external regions of the cluster mass profile where
baryonic effects are subdominant. It is also worth noticing that
though hydrostatic masses depend on the choice of a fiducial
cosmology through the angular diameter distance, the sparsity,
being a mass ratio, is independent of such an assumption.

3.3. Selection Effects

A final remark concerns selection effects. In principle, we do
not expect a significant contribution since we have seen that
average sparsity as predicted by Equation (4) is largely
independent of the lower limit of integration. To have a
quantitative estimate of potential systematics induced by the
shape of the selection function, we multiply the integrands on
both sides of Equation (4) by a selection function of the form

f M
M M1

2
1 erf

ln ln

2
, 7

f

min

s
= +
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D

D D
⎡

⎣
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⎛

⎝
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⎞

⎠
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⎦
⎥
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where σf modulates the shape of the selection function.
In Figure 8 we plot the relative difference of the redshift

evolution of the average sparsity with respect to the case
f M 1=D( ) for the fiducial Planck cosmology and for different
values of σf=0.01, 0.4, 0.7, and 1.5. We can see that the
differences are at the subpercent level.

Figure 7. Percentage variation of the median halo sparsity s200,500 (bottom
panel), s200,2500 (middle panel), and s500,2500 (top panel) due to the radial mass
bias induced by baryonic feedback processes as in the AGN 8.0 model
investigated in Velliscig et al. (2014).

Table 1

Relative Variation of the Sparsity s500,1000 due to Hydrostatic Mass Bias for
CC, NCC, Regular, and Disturbed Clusters Simulated in Biffi et al. (2016)

Cluster State r500,1000 (%)

CC −3.7

NCC 0.1

Regular 0.3

Disturbed −2.0

Figure 8. Relative difference of the average sparsity with respect to the case
with no selection function for the Planck fiducial cosmology and different
values of the selection function parameter σf=0.01, 0.4, 0.7, and 1.5. The
inset plot shows the form of the selection function for the different values of σf.
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4. Sparsity of X-Ray Clusters and Cosmological Parameter
Constraints

We estimate the halo sparsity of a set of X-ray galaxy
clusters with hydrostatic mass measurements. The data set
consists of a low-redshift sample of 57 clusters (0.05<z<
0.3) from Ettori et al. (2010, 2017), S. Ettori et al. (2017, in
preparation), and V. Ghirardini et al. (2017, in preparation) and
a high-redshift sample of 47 clusters (0.4<z<1.2) presented
in Amodeo et al. (2016). DM masses M500c and M1000c have
been estimated by solving the HE equation (see, e.g., Sarazin
1986; Ettori 2013). We compute the sparsity of each cluster in
the catalogs, s M Mc c500,1000 500 1000=ˆ , and estimate the uncer-
tainty by propagating the mass measurement errors. These are
shown in Figure 9.

For simplicity we have neglected mass correlation effects:
these may be present as a result of the mass measurement
methodology that assumes a functional form of the DM halo
profile.11 Systematics affecting the HE mass estimate can be
more important. In the case of the high-redshift sample,
Amodeo et al. (2016) have tested the consistency of the HE
masses for a subset of 32 clusters for which gravitational
lensing measurements were available in the literature
(LC2-single catalog from Sereno 2015). They have found
a good agreement within the large statistical uncertainties with
M Mln 0.16 0.65HE lens = ( ) . For the low-redshift sample

there is no available comparison; however, we noticed that the
data set from Ettori et al. (2010) consists of massive clusters for
which mass measurement errors are larger than the expected
bias from baryonic feedback discussed in Section 3.2. In the
case of the very low redshift sample by Ettori et al. (2017),

S. Ettori et al. (2017, in preparation), and V. Ghirardini et al.
(2017, in preparation), HE mass uncertainties are at the few
percent level, and we cannot a priori exclude that some of the
sparsity measurements are affected by radial mass bias. After
all, we can see in Figure 9 that the sparsity of four of the
clusters in the very low redshift sample significantly deviates
from the values of the other objects in the data set. We have
found that removing these objects from the data analysis leaves
the cosmological results unaltered. As seen in Section 2.3, this
is a direct consequence of the fact that the cosmological signal
is largest at z 0.5~ . Nevertheless, to test the stability of the
cosmological analysis against possible contamination from HE
mass bias, we perform an additional analysis assuming a
systematic redshift-dependent shift of the measured cluster
sparsity. More specifically, we assume a 5% shift of the cluster
sparsity at z=0 linearly reducing to 2% at z=1. This is an
extremely conservative bias model, especially if compared to
the level of bias discussed in Section 3.2. In fact, it implies that
the HE mass determination of each cluster systematically
underestimates M500c by 28% and M1000c by 35% at z=0, and
by 23% and 30%, respectively, at z=1 (consistently with the
5% reduction found for M200c estimates in Velliscig
et al. 2014).
Since we compare individual cluster sparsity estimates to the

predictions of the ensemble average sparsity, we account for
the intrinsic dispersion of the halo sparsity discussed in
Section 2.2 by adding in quadrature a conservative and
absolute 0.2 intrinsic scatter (consistent with N-body simulation
results shown in the inset plot of Figure 2) to the statistical
error.
We perform a Markov chain Monte Carlo data analysis to

derive constraints on the ΛCDM model parameters, , ,m 8sW(
h n h, ,s b

2W ). To reduce the effect of parameter degeneracies, we
assume a set of Gaussian priors on n 0.963, 009s ~ ( )

consistently with Planck results (Planck Collaboration et al.
2016a), h 0.688, 0.033~ ( ) from Efstathiou (2014), and
h 0.022, 0.002b
2 W ~ ( ) consistent with big bang nucleosynth-

esis bounds (Cyburt et al. 2016). We assume flat priors for
0.05, 0.95m W ~ ( ) and 0.2, 1.88 s ~ ( ). In order to evaluate

the impact of the prior on h, we have also performed a likelihood
analysis of the full cluster sample assuming a Gaussian HST

prior h 0.732, 0.024~ ( ) from Riess et al. (2016).
We evaluate the following χ

2:

s s z
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where s i500,1000ˆ is the sparsity of the ith cluster in the catalog,

s zi500,1000
thá ñ( ) is the theoretical model prediction given by

Equation (4) assuming a given mass function model, σint=0.2
is the intrinsic scatter of the halo sparsity12 (conservatively set
to a value consistent with the N-body results), and s

i
500,1000
s is the

error on the cluster sparsity measurement.
We use the Metropolis–Hastings algorithm to generate 15

independent random chains of 2×105 samples and evaluate
the rejection rate every 100 steps and adjust the width of the
parameters dynamically. We check the convergence of the
chains using the Gelman–Rubin test (Gelman & Rubin 1992).

Figure 9. Sparsity of X-ray clusters. The low-redshift sample consists of
clusters with mass measurements from Ettori et al. (2017), S. Ettori et al. (2017,
in preparation), and V. Ghirardini et al. (2017, in preparation), also shown in
the inset plot (black open circles), and Ettori et al. (2010) (blue open circles).
The high-redshift sample consists of clusters with mass estimates from
Amodeo et al. (2016; red filled triangles). The black solid line and the black
dotted line correspond to the best-fit ΛCDM models inferred assuming the ST-
RayGal and ST-Despali mass functions, respectively. We may notice four
clusters at z 0.1< whose sparsity significantly departs from the best fit. We
have checked that excluding these outliers from the analysis does not alter the
result of the cosmological parameter inference.

11 Given that the sparsity is a mass ratio, a positive correlation r between the
estimates of M500c and M1000c would imply that we are overestimating the
sparsity errors by a factor of r1 1~ -( ). For instance, if r 0.5~ , as is
reasonable to expect, this would correspond to a 30% overestimation and thus
result in more conservative constraints on the cosmological parameters.

12 In principle, one can attempt to infer the intrinsic scatter from the data
regression with the other cosmological parameters.
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The results of the likelihood data analysis assuming the
ST-RayGal mass function are summarized in Figure 10, where
we plot the marginalized 1σ and 2σ credibility contours in
the Ωm–σ8 plane for the different cases. For comparison we also
plot the marginalized credibility contours from the Planck
cosmological data analysis (Planck Collaboration et al. 2016a)
and the weak gravitational lensing from KIDS-450 (Hildebrandt
et al. 2017). We can see that the constraints on Ωm and σ8 are
rather weak. Given the large uncertainties of the sparsity sample
at z 0.4 , this is not surprising since the variation of the
sparsity with respect to 8s is the largest at z 0.4~ , while that
with respect to Ωm remains quite flat for z 0.5 (see top
panel in Figure 4). The best-fit model corresponds to Ωm;0.4
and σ8;0.6. We plot the associated average sparsity as a
function of redshift as a black solid line in Figure 9. Notice the
strong degeneracy between Ωm and σ8. As discussed in
Section 2.3, this is expected given the sensitivity of the halo
sparsity to S m8 8sº W , for which we find S 0.40 0.118 = 
at 1σ.

As we can see in Figure 10, the credibility contours do not
significantly differ from those inferred under the HST prior.
This is also consistent with the analysis presented in
Section 2.3, which indicates that the halo sparsity is less
sensitive to h than σ8, Ωm, and ns. Indeed, changing the priors
on ns can have a more significant impact on the inferred
constraints. However, ns is tightly constrained by the Planck
data, while there are larger uncertainties on the value of h,
which is why we have tested the sensitivity of the constraints to
the h prior.

In Figure 10 we also plot the credibility contours inferred
using the low-z sample (z 0.4 ) only. These do not differ from
those obtained using the full sample, which is not surprising
given the larger uncertainties of the high-z sample. Overall, the
inferred credibility contours overlap with those inferred from
Planck within 1σ, as well as those from the KIDS-450 data set.

In Figure 11 we plot the constraints in the Ωm–σ8 plane
inferred assuming the ST-Despali mass function. Differently
from the ST-RayGal case, we find bounded contours at 1σ,
though still spread over a larger portion of the parameter
space. The one-dimensional marginalized constraints are

Ωm=0.42±0.17 and σ8=0.80±0.31 at 1σ, with the
best-fit values being Ωm=0.36 and σ8=0.74. We plot the
associated average sparsity as a function of redshift as a black
dotted line in Figure 9. From the analysis of the Monte Carlo
chains we obtain S8=0.48±11 at 1σ, which is consistent
with the constraints found using the ST-RayGal mass function.
As we can see in Figure 11, the contours are statistically
consistent with those inferred from the ST-RayGal analysis,
though deviations are noticeable in the tail of the distribution
for low values of Ωm and large values of σ8. This is not
unexpected since in this range of the parameter space the mass
function calibration may deviate from that of the vanilla
ΛCDM model of the RayGalGroupSims simulation. The
bounds are compatible with the Planck results and consistent
with those from the KIDS-450 analysis.13

We have limited the analysis including the systematic HE
mass bias model discussed at the beginning of this section to
the case of the ST-Despali mass function. The results of the
likelihood data analysis give S 0.51 0.118 =  , which is
consistent with the results obtained assuming no systematic
bias model.

5. X-Ray Cluster Sparsity Forecasts

Future observational programs will provide increasingly
large samples of clusters. Surveys such as eROSITA (Merloni
et al. 2012) are expected to detect several hundred thousands of
clusters across a large redshift range. Cosmological parameter
constraints will be inferred from accurate measurements of
cluster number counts and spatial clustering (see, e.g., Pillepich
et al. 2012).
Sparsity measurements capable of providing constraints that

are competitive with respect to those inferred from other
cosmological probes strongly depend on the availability of
accurate mass estimations. In the case of large data sets, such as

Figure 10. Marginalized 1σ and 2σ contours in the Ωm–σ8 plane assuming the
ST-RayGal mass function using the full X-ray cluster data set (black solid
lines), the low-z redshift sample only (blue dotted lines), and the case of the
HST prior on h (blue dashed lines). For comparison we also plot the contours
from the Planck cosmological data analysis (Planck Collaboration et al. 2016a)
and KIDS-450 (Hildebrandt et al. 2017).

Figure 11. Marginalized 1σ and 2σ contours in the Ωm–σ8 plane as in
Figure 10. Here, the blue dashed lines are the contours inferred assuming the
ST-Despali mass function.

13 Several large-scale structure data analyses have constrained combinations of
Ωm and σ8. As an example, SZ cluster abundance data from the South Pole
Telescope (SPT) survey give σ8(Ωm/0.27)

0.3=0.797±0.031 (de Haan et al.
2016). The analysis of the cluster sparsity presented here gives consistent
bounds, σ8(Ωm/0.27)

0.3=0.87±0.26. Similarly, measurements of the galaxy
clustering from the Dark Energy Survey (DES) constrain σ8(Ωm/0.3)

0.16=
0.74±0.12 (Kwan et al. 2017), and we find again a result consistent within
1σ, σ8(Ωm/0.3)

0.16=0.83±0.29.
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those from eROSITA, cluster masses will be measured through
the use of observationally calibrated scaling relations (see, e.g.,
Maughan et al. 2012; Ettori 2013, 2015). More precise
estimates, for instance, using HE masses, require observations
that are able to resolve the cluster mass profile. However, these
may be available only for smaller cluster samples through
follow-up observations.

Here we perform a Fisher matrix forecast of the cosmolo-
gical parameter errors from sparsity measurements to determine
the type of galaxy cluster observations needed to derive
competitive constraints with respect to those that can be
obtained with other standard probes such as the CMB.

To this purpose we evaluate the Fisher matrix:

F
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where h n, , , ,m s b8q s= W Wm ( ) are the cosmological para-

meters, qmˆ is the fiducial parameter value, and zis is the
statistical error on the mean sparsity. We compute the partial
derivatives in Equation (9) using a five-point stencil approx-
imation. We model the error on the average sparsity as
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where s zi500,1000
fidá ñ( ) is the fiducial sparsity value, eM is the

fraction error on mass measurements, and N zi( ) is the number
of clusters at redshift zi, given by

N z A z f
dN

dzdA
z , 11i isurveyº D( ) ( ) ( )

where Asurvey is the survey area, Δz is the size of the redshift
bins, f is the fraction of clusters with mass measurement error
eM, and dN dzdA z( )( )/ is the cluster number count distribution.
Again, for simplicity we neglect correlations in the estimation
of the masses M500c and M1000c. Notice that, as in the case of
the synthetic likelihood test presented in Section 4, we do not
add in quadrature the intrinsic scatter of the halo sparsity to the
statistical error as in the data analysis described in Section 4.
This is because, in the spirit of the Fisher matrix calculation, we
compare predictions of the ensemble average sparsity not to the
sparsity of an individual cluster at a given redshift, but rather
to the estimated average sparsity from an ensemble of N zi( )

clusters.
We assume a Planck fiducial ΛCDM cosmology and

consider a full-sky survey with cluster number count distribu-
tion consistent with an eROSITA-like survey. This is expected
to detect ∼105 clusters with mass 1013 h−1Me. To this
purpose we estimate the cluster number counts as a function of
redshift for our fiducial cosmology by integrating the ST-
RayGal mass function with M500c and imposing a flux cut
F 4.3 10X,cut

14= ´ - erg s−1 cm−2, where we have used the
luminosity–mass relation from Mantz et al. (2010) with no
intrinsic scatter. The predicted number count distribution is
shown in Figure 12. We may notice that this is consistent with
the redshift distribution estimated by Pillepich et al. (2012; see
their Figure 3 for the photon count rate threshold corresponding
to M 5 10c500

cut 13 ´ h−1Me), with a total count of ∼3×104

clusters. For simplicity, here we only consider redshift bins of
size Δz=0.1 in the redshift range 0z1.4.

We limit our analysis to two different observational
scenarios: small-sample, high-precision sparsity measurements
with mass errors of eM=0.01 for ∼300 clusters ( f=0.01)
and eM=0.05 for ∼3000 clusters ( f=0.10), and large-
sample, low-precision sparsity measurements with mass errors
of eM=0.1 for ∼6000 clusters ( f=0.2) and eM=0.2 for all
clusters ( f= 1). The latter scenario considers the possibility of
measuring masses over a large sample of clusters through well-
calibrated scaling relations whose validity should be limited to
the ∼10%–30% level.
We combine the Fisher matrix from Equation (9) to the

Planck–Fisher matrix, which has been computed using the code
CosmoFish (Raveri et al. 2016a, 2016b).
The results are summarized in Tables 2 and 3. In all cases we

can see that including the information from the halo sparsity
improves the CMB constraints from Planck. Indeed, the level
of improvement depends on the observational configuration
considered. Quite remarkably, we find that a 1% mass error
estimation for a sample of ∼300 clusters has the greatest
impact in reducing the Planck errors on several parameters. For
instance, we find an improvement of a factor of ∼2.3 on the
estimation of

8
ss in the ST-RayGal case, while assuming the

ST-Despali mass function we find an improvement of a factor

Figure 12. Expected redshift distribution of clusters of an eROSITA-like survey
with X-ray flux cut F 4.3 10X,cut

14= ´ - erg s−1 cm−2 for our fiducial
cosmological model.

Table 2

Marginalized Errors on Cosmological Parameters from the Fisher Matrix
Analysis of Small-sample, High-precision Sparsity Measurements in

Combination with Planck Constraints

Planck

Only

s z500,1000+á ñ( )

(eM=0.01, f=0.01)

s z500,1000+á ñ( )

(eM=0.05, f=0.1)

msW 0.01082 0.01022/0.00571 0.01035/0.00684

8ss 0.01396 0.00597/0.00780 0.00720/0.00926

nss 0.00428 0.00414/0.00300 0.00418/0.00328

σh 0.00763 0.00723/0.00411 0.00732/0.00490

bsW 0.00095 0.00090/0.00053 0.00091/0.00062

Note. The numbers quoted on the left (right) correspond to the Fisher forecast
based on the ST-RayGal (ST-Despali) mass function.
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of ∼1.9 on
m
sW and ∼1.8 on

8
ss . Even for the realistic scenario

with 20% mass errors, we find up to ∼30% improvement of the
Planck constraints. Again, assuming the ST-Despali mass
function systematically predicts smaller parameter errors than
those obtained with the ST-RayGal mass function.

Compared to other cosmic probes, such as the combination
of CMB constraints with those from cluster number counts and
angular clustering studied in Pillepich et al. (2012), we find that
the sparsity can provide cosmological parameter constraints of
the same order (see, e.g., Table B2 in Pillepich et al. 2012).

6. Conclusions

In this work we have presented a first cosmological analysis
of the DM halo sparsity. This characterizes halos in terms of
the ratio of halo masses at two different overdensities and
carries cosmological information encoded in the mass profile of
halos that can be retrieved from mass measurements of galaxy
clusters.

Building on the work of Balmes et al. (2014), we have tested
the sparsity properties using halo catalogs from a large-volume,
high-resolution N-body simulation. In particular, we have
shown that the average sparsity of an ensemble of halos can be
accurately predicted from prior knowledge of the halo mass
function. To this purpose we have introduced the ST-RayGal
parameterization, which reproduces to great accuracy the
numerical halo mass function for halo massesM200c,M500c, and
M1000c and allows us to recover the measured average sparsity
values at different redshift snapshots to the subpercent level.

We have tested the accuracy of the theoretical predictions
assuming other mass function parameterizations proposed in
the literature. Depending on the mass function model, we found
deviations with respect to the average sparsity from the N-body
halo catalogs up to the 10% level.

The possibility of predicting the average sparsity for a given
set of cosmological parameters enables us to perform a
cosmological model parameter inference using cluster sparsity
measurements. To test this, we have generated a synthetic set of
data and performed a likelihood analysis, from which we have
retrieved the input fiducial cosmology.

Systematic errors affecting halo sparsity data analyses may
arise primarily from uncertainties in the theoretical modeling of
the halo mass function and the radial-dependent cluster mass
bias from baryonic feedback processes. Here we have
performed an analysis of these systematics. Quite importantly,
using results from state-of-art numerical simulations, we show
that for massive systems baryonic effects alter the halo sparsity
at the few percent level. This is subdominant compared to the
uncertainties from mass estimation errors of currently available

cluster data sets. We find that cluster selection effects have a
negligible impact on sparsity, which is an obvious advantage
compared to other cluster cosmological proxies, such as the
number counts or the spatial clustering.
We have estimated the sparsity of a sample of X-ray clusters

with hydrostatic mass measurements and performed a Markov
chain Monte Carlo likelihood data analysis to infer constraints
Ωm and σ8. We find weak marginalized bounds on Ωm and σ8.
Assuming the mass function from Despali et al. (2016) gives
the strongest bound, in particular, we find Ωm=0.42±0.17
and σ8=0.80±0.31 at 1σ, corresponding to S 0.488 = 
0.11. In all cases the inferred constraints are compatible with
those inferred from the Planck cosmological data analysis
within 1σ. We find these results to be stable against a
conservative systematic bias model accounting for baryonic
effects on cluster mass estimates.
Future cluster surveys can provide larger sparsity data sets.

Using a Fisher matrix approach, we have investigated their
complementarity with respect to CMB observations from
Planck. In particular, we have performed a parameter error
forecast for different observational scenarios and found that
sparsity measurements from a small cluster sample of ∼300
clusters with mass uncertainties of 1% can improve Planck
constraints on Ωm and σ8 by approximately a factor of 2.
However, this requires a control of systematic errors due to
hydrostatic mass bias.
Cluster mass measurements from SZ and lensing observa-

tions may also provide viable data sets to estimate the halo
sparsity, and we leave such studies to future works.
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Appendix
Halo Mass Function Parameterization

We use the numerical mass functions estimated from the
RayGalGroupSims simulation SOD halo catalogs with mass
M200c, M500c, and M1000c, to calibrate at each redshift snapshot
the coefficients of the ST mass function formula (Sheth &
Tormen 1999):
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where ρm is the present mean matter density, cd is the linearly
extrapolated spherical collapse threshold, which we compute
using the formula from Kitayama & Suto (1996), and
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Table 3

As in Table 2, but for Large-sample, Low-precision Sparsity Measurements

Planck

Only

s z500,1000+á ñ( )

(eM=0.10, f=0.2)

s z500,1000+á ñ( )

(eM=0.20, f = 1)

msW 0.01082 0.01044/0.00751 0.01041/0.00731

8ss 0.01396 0.00850/0.01010 0.00805/0.00984

nss 0.00428 0.00420/0.00345 0.00419/0.00340

σh 0.00763 0.00738/0.00536 0.00736/0.00522

bsW 0.00095 0.00092/0.00068 0.00092/0.00066
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is the variance of the linear density field smoothed on a spherical
volume of radius R enclosing the mass M R4 3 m

3pr= , with
P k z,( ) being the linear matter power spectrum at redshift z and

W k R M
kR

kR kR kR
3

sin cos . 14
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We determine the best-fit ST coefficients using a Levenberg–
Marquardt minimization scheme. These are quoted in Table 4
for halo masses M200c, M500c, and M1000c. We find the best-fit
functions to have logarithmic deviations with respect to the
numerical estimates to better than 5%.
In order to extrapolate the mass functions at any given

redshift, we follow the approach of Despali et al. (2016) and

Table 4

Best-fit Coefficients of the ST Mass Function for Halos with Masses M200c, M500c, and M1000c

z A200c a200c p200c A500c a500c p500c A1000c a1000c p1000c

0.00 0.35884 1.2300 −0.79142 0.28401 1.4568 −0.67260 0.20596 1.7978 −0.72148

0.50 0.42038 0.9752 −0.54330 0.28378 1.1859 −0.58425 0.21628 1.4134 −0.53098

0.66 0.35697 1.0039 −0.74000 0.27724 1.1347 −0.56833 0.21555 1.3339 −0.47343

1.00 0.27751 0.9944 −0.93238 0.25082 1.0470 −0.61536 0.19365 1.2537 −0.51639

1.14 0.29991 0.9505 −0.83109 0.24834 1.0429 −0.58941 0.19134 1.2156 −0.48951

1.50 0.22855 0.9457 −0.97637 0.22936 1.0014 −0.58554 0.18885 1.1400 −0.39898

2.00 0.15502 0.9375 −1.13120 0.23210 0.9459 −0.46949 0.18072 1.0830 −0.34148

Figure 13. Comparison of the ST best-fit parameters’ dependence on x zlog c10 vir= D D( ( )) and the best-fit quadratic functions for A cD (top left panel), a cD (top right
panel), and p

cD (bottom panel) for Δc=200, 500, and 1000, respectively.

13

The Astrophysical Journal, 862:40 (16pp), 2018 July 20 Corasaniti et al.



Figure 14. Halo mass function from the RayGalGroupSims simulation for SOD halos with mass M200c (top left panel), M500c (top right panel), and M1000c (bottom
panel) at z=0, 0.5, 1, 1.5, and 2 (top to bottom). The solid lines are the ST-RayGal mass functions with coefficients given by Equations (15), (16), and (17). The
logarithmic residual is shown in the bottom panel: as we can see, deviations are within the 5% level across the entire mass range.

Figure 15. SOD halo mass functions from ΛCDM-W5 (black squares) and ΛCDM-W1 (red triangles) with mass M500c (left panel) and M1000c (right panel),
respectively, against the ST-RayGal predictions.

14

The Astrophysical Journal, 862:40 (16pp), 2018 July 20 Corasaniti et al.



parameterize the redshift dependence of the ST coefficients in
terms of the variable x zlog10 vir= D D( ( )), where Δvir(z) is the
virial overdensity as given by the formula derived in Bryan &
Norman (1998). We find that the redshift variation of the best-
fit ST coefficients can be described to very good approximation
by a quadratic fit as a function of x given by

15

A x x x

a x x x

p x x x

10.2185312 4.78051093 0.1206716

4.07275047 0.49618532 0.96372361

23.48761585 10.5651697 1.752599071

c

c

c

200
2

200
2

200
2

= - + -
= - +
= - + -

⎧

⎨
⎪

⎩
⎪

( )

( )

( )

( )

16

A x x x

a x x x

p x x x

2.08511667 2.71726345 0.59113241

1.0788725 3.25302957 0.32810261

1.04288295 1.76269479 0.06162189

c

c

c

500
2

500
2

500
2

= - + -
= - + -
= - +

⎧

⎨
⎪

⎩
⎪

( )

( )

( )

( )

and

17

A x x x

a x x x

p x x x

1.65696205 3.07836133 1.20944538

1.18612053 4.91186256 1.98337952

1.33135179 3.7042898 1.67853762

,

c

c

c

1000
2

1000
2

1000
2

= - + -
= - + -
= - +

⎧

⎨
⎪

⎩
⎪

( )

( )

( )

( )

which we plot in Figure 13 against the best-fit values quoted in
Table 4.

In Figure 14 we plot the ST mass functions for M200c, M500c,
and M1000c with coefficients given by Equations (15)–(17)
against the N-body mass function estimates, which we have
referred to as the ST-RayGal mass functions. As we can see,
logarithmic deviations with respect to the numerical results are
still within the 5% level.

We find that the ST-RayGal mass function formulae can also
reproduce the SOD mass functions for M500c and M1000c from
N-body simulations with different cosmological parameter
values. In particular, we have used halo catalogs at z=0 from
simulations of 162 h−1 Mpc box length and 5123 particles of
two flat ΛCDM models: ΛCDM-W1 with Ωm=0.29,
σ8=0.90, Ωb=0.047, and n 0.990s = , and ΛCDM-W5 with
Ωm=0.26, σ8=0.79, Ωb=0.044, and ns=0.963. As
shown in Figure 15, the logarithmic differences between the
ST-RayGal mass function and the numerical estimates from the
ΛCDM-W5 and ΛCDM-W1 catalogs are within the 5% level.
Using the same halo catalogs, we estimate the average sparsity
at z=0. In the case of the ΛCDM-W5 simulation we find
s 1.41500,1000á ñ = , while in the ΛCDM-W1 case we find
s 1.36500,1000á ñ = . These values are consistent to within a few
percent with the average sparsity prediction inferred by solving
Equation (4) with the ST-RayGal mass functions. In particular,
we obtain s 1.43500,1000

thá ñ = for the ΛCDM-W5 model and
s 1.39500,1000
thá ñ = for the ΛCDM-W1 cosmology.
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