
HAL Id: tel-02110990
https://theses.hal.science/tel-02110990

Submitted on 25 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Méthode de conception de systèmes temps réels
embarqués multi-coeurs en milieu automobile

Enagnon Cédric Klikpo

To cite this version:
Enagnon Cédric Klikpo. Méthode de conception de systèmes temps réels embarqués multi-coeurs en
milieu automobile. Embedded Systems. Sorbonne Université, 2018. English. �NNT : 2018SORUS033�.
�tel-02110990�

https://theses.hal.science/tel-02110990
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE l’UNIVERSITÉ
SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique
(Paris)

Présentée par

Enagnon Cédric KLIKPO

Pour obtenir le grade de
DOCTEUR de SORBONNE UNIVERSITÉ

Sujet de la thèse :

Méthode de conception de systèmes temps réels
embarqués multi-cœurs en milieu automobile

soutenue le 13 mars 2018

devant le jury composé de :

Mme. Alix Munier-Kordon Directeur de thèse
Mme. Claire Pagetti Rapporteur
Mme. Maryline Chetto Rapporteur
Mme. Béatrice Bérard Examinateur
M. Jean-François Nezan Examinateur
M. Laurent Pautet Examinateur
M. Pascal Richard Examinateur
M. Witold Klaudel Examinateur

Remerciements

Je remercie Alix Munier-Kordon pour m’avoir fait confiance et pour son encadrement
durant ces trois années de thèse. J’ai appris la bonne méthodologie de recherche avec
rigueur scientifique et approche formelle. J’ai également grandement apprécié ses qualités
humaines.

J’exprime ma profonde gratitude à Maryline Chetto et Claire Pagetti pour avoir accepté
de rapporter cette thèse. Merci également aux membres du jury pour l’intérêt qu’ils ont
manifesté pour mes travaux de recherche.

Je remercie Witold Klaudel, chef de projet à l’IRT SystemX, pour m’avoir accueilli dans
son équipe et me donnée l’opportunité de réaliser cette thèse. Merci à tous mes collèges de
l’IRT SystemX pour les moments partagés ensemble. Plus spécialement, je remercie mon
référent Aymen Boudguiga pour tous ces conseils, son soutien moral et son dévouement
aux relectures. Mon anglais ne sera plus jamais le même grâce à toi.

Merci également à mes collègues du LIP6 : Éric Lao, Olivier Tsiakaka, Youen Lesparre
et Jad Khatib. Vous avez élargi mes horizons scientifiques et culturels.

Enfin, je pense très fort à mes parents et à mes frères et sœurs. Les encouragements et
le soutien dont ils ont fait preuve ont énormément contribué à l’accomplissement de mon
travail.

Ce travail a été effectué dans le cadre des recherches menées au sein de l’IRT Sys-
temX, Paris-Saclay, France, et a ainsi bénéficié d’une aide de l’Etat au titre du programme
d’Investissements d’Avenir.

i

Résumé — La complexité croissante des applications embarquées dans les voitures
modernes augmente le besoin de puissance de calcul. Pour répondre à ce besoin, le standard
automobile AUTOSAR introduit l’utilisation de plates-formes multi-cœurs. Cependant,
l’utilisation du multi-cœur pour des applications temps-réel critique automobile soulève
plusieurs problématiques. Notamment, il faut respecter la spécification fonctionnelle et
garantir de manière déterministe les échanges de données entre cœurs. Dans cette thèse,
nous considérons des systèmes multi-périodiques spécifiés et validés fonctionnellement avec
des modèles Matlab/Simulink. Ainsi, nous avons développé un framework pour déployer
des applications Matlab/Simulink sur AUTOSAR multi-cœur afin de garantir le détermin-
isme fonctionnel et temporel tout en exploitant au mieux le parallélisme.

Notre contribution a porté sur trois axes.

Premièrement nous avons identifié les mécanismes d’échanges de données imposés dans
le modèle fonctionnel Matlab/Simulink. Nous avons montré que ces mécanismes pouvaient
s’exprimer en utilisant le formalisme des Synchronous Dataflow Graph (SDFG). Ce modèle
est un excellent outil d’analyse pour exploiter le parallélisme car il est très populaire dans
la littérature et largement étudié pour le déploiement d’applications flow de données sur
plateforme multi/many-cœur.

Par la suite, nous avons développé des méthodes pour réaliser le flux de données ex-
primés par le SDFG dans un ordonnancement temps-réel préemptif. Ces méthodes utilisent
des résultats théoriques sur les SDFGs pour garantir les contraintes de précédence de
manière déterministe sans utiliser des mécanismes de synchronisation bloquants. De cette
sorte, nous garantissons à la fois le déterminisme fonctionnel et temporel des applications.

Finalement, nous caractérisons l’impact des contraintes de flux de données sur
l’ordonnancement des tâches. Nous proposons une technique de partitionnement qui min-
imise cet impact. Nous montrons alors que cette technique favorise la construction d’un
partitionnement et d’un ordonnancement lorsqu’elle est utilisée pour initialiser des algo-
rithmes de recherche et d’optimisation heuristiques.

Mots clés : AUTOSAR, Matlab/Simulink, SDFG, flux de données, multi-cœur,
ordonnancement temps-réel.

Abstract — The increasing complexity of embedded applications in modern cars has
increased the need of computing power. To meet this need, the European automotive
standard AUTOSAR has introduced the use of multi-core platforms. However, multi-
core platform for critical automotive applications raises several issues. In particular, it is
necessary to respect the functional specification and to guarantee deterministically the data
exchanges between cores. In this thesis, we consider multi-periodic systems specified and
validated with Matlab/Simulink. So, we developed a framework to deploy Matlab/Simulink
applications on AUTOSAR multi-core. This framework guarantees the functional and
temporal determinism and exploits the parallelism.

Our contribution is threefold.

First, we identify the communication mechanisms in Matlab/Simulink. Then, we prove
that the dataflow in a multi-periodic Matlab/Simulink system is modeled by a SDFG.
The SDFG formalism is an excellent analysis tool to exploit the parallelism. In fact, it
is very popular in the literature and it is widely studied for the deployment of dataflow
applications on multi/many-core.

Then, we develop methods to realize the dataflow expressed by the SDFG in a preemp-
tive real-time scheduling. These methods use theoretical results on SDFGs to guarantee
deterministic precedence constraints without using blocking synchronization mechanisms.
As such, both the functional and temporal determinism are guaranteed.

Finally, we characterize the impact of dataflow requirements on tasks. We propose a
partitioning technique that minimizes this impact. We show that this technique promotes
the construction of a partitioning and a feasible scheduling when it is used to initiate
multi-objective research and optimization algorithms.

Keywords: AUTOSAR, Matlab/Simulink, SDFG, dataflow, multi-core, real-time
scheduling.

Contents

Table of Acronyms xv

1 Introduction 1

2 Background 5

2.1 Introduction . 6

2.2 Real-time systems . 6

2.3 Real-time scheduling . 9

2.4 AUTOSAR standard . 13

2.5 Configuration of AUTOSAR applications 17

2.6 Multi-core Electronic Control Unit . 20

2.7 Conclusion . 23

3 Motivations and related works 25

3.1 Introduction . 26

3.2 Problem statement and approach . 26

3.3 Related work . 29

3.4 Synchronous Dataflow Graphs . 33

3.5 Conclusion . 39

4 Modeling multi-periodic Simulink systems by SDFG 41

4.1 Introduction . 42

4.2 Related work . 42

4.3 Matlab/Simulink functional specification 44

4.4 Modeling dataflow in Simulink by SDFG 51

4.5 Static properties . 60

vii

viii Contents

4.6 SDFG modeling of a Fuel Cell Control System 62

4.7 Conclusion . 66

5 Dependencies and preemptive scheduling on single-core 67

5.1 Introduction . 68

5.2 Related works . 69

5.3 Valid scheduling of dependent real-time tasks 70

5.4 Construction of a valid preemptive scheduling 72

5.5 Dependant task sets generation . 77

5.6 Experiments . 80

5.7 Conclusion . 83

6 Characterization of dataflow in partitioned multi-core 85

6.1 Introduction . 86

6.2 Related works . 87

6.3 Method to guarantee deterministic dataflow 89

6.4 ILP formulation for parameters adjustment in single-core 92

6.5 ILP formulation for parameters adjustment in multi-core and mapping . . 95

6.6 Initial mapping optimized for dataflow requirements 97

6.7 Heuristic mapping with precedence constraints 98

6.8 Experiments and performance measurements 99

6.9 Conclusion . 104

7 Design framework from Simulink to AUTOSAR 107

7.1 Introduction . 108

7.2 Framework description . 108

7.3 Exchange format and tool suite . 110

7.4 Illustration on the Fuel Cell Control System 110

7.5 Discussion and Conclusion . 112

Contents ix

8 Conclusion 113

Publications 115

Bibliography 126

List of Figures

1.1 Illustration of the approach of this thesis 3

2.1 Example of real-time task parameters. 8

2.2 Sequence of activations of a periodic task 8

2.3 Example of a static preemptive execution of periodic real-time tasks on
single-core. 10

2.4 AUTOSAR layered software architecture. 13

2.5 Example of an AUTOSAR application software. 15

2.6 Illustration of the internal behavior of a SWC. 15

2.7 AUTOSAR Methodology. 18

2.8 State machine of a basic task. 19

2.9 Configuration of an AUTOSAR application. 20

2.10 Multi-core architecture. 21

2.11 Architecture of the AURIX TriCore TC29x micro-controller. 22

3.1 V-cycle for the design of applications. 27

3.2 Example of SDFG with two tasks τ1 and τ2 connected by the buffer a = (τ1, τ2). 34

3.3 Example of alive and deadlocked graphs. 35

3.4 Example of precedence constraints between tasks τ1 and τ2 connected by the
buffer a = (τ1, τ2) of Figure 3.2. 36

3.5 Examples of scheduling of the SDFG of Figure 3.2. 38

4.1 Simulink model of a conditional Multiply-add operation. 45

4.2 A graphical representation of a blocks with internal state variables. 46

4.3 Example of Simulink block diagram with annotated sample times. 47

4.4 Example of single-tasking simulation. 49

4.5 Example of multitasking simulation. 49

xi

xii List of Figures

4.6 Principle of data transfer in direct communication. 52

4.7 Direct communication model from 30ms periodic SDFG task τC to 50ms
periodic SDFG task τD. 53

4.8 SDFG model of direct communication from 30ms periodic SDFG task τC to
50ms periodic SDFG task τD. 54

4.9 Principle of data transfer in delayed communication. 54

4.10 Delayed communication model from 80ms periodic SDFG task τA to 40ms
periodic SDFG task τB. 55

4.11 SDFG model of delayed communication from 80ms periodic SDFG task τA
to 40ms periodic SDFG task τB. 56

4.12 Principle of data transfer in hybrid communication. 56

4.13 Hybrid communication model from 40ms periodic SDFG task τB to 30ms
periodic SDFG task τC . 57

4.14 SDFG model of hybrid communication from 40ms periodic SDFG task τB
to 30ms periodic SDFG task τC . 58

4.15 Structure of the SDFG of the Matlab/Simulink system of Figure 4.3. . . . 59

4.16 SDFG of the system of Figure 4.1 according to Definition 4.6. 60

4.17 Operating principle of a fuel cell. 63

4.18 Fuel Cell Control System block diagram in Simulink. 64

4.19 Physical system of the FCCS. 65

4.20 SDFG model of Fuel Cell Control System. 65

5.1 Example of preemptive executions inclusion in graph scheduling. 71

5.2 Example of dependent tasks with constrained execution intervals. 74

5.3 Valid periodic scheduling of the SDFG of Figure 5.2. 76

5.4 Scheduling test for random graphs composed of 100 tasks. 81

5.5 Evaluation of the scheduling method compared to the optimal algorithm [46]
for acyclic dependent tasks on single-core. 81

5.6 Example of not scheduled graph . 82

5.7 Computing time analyses . 83

List of Figures xiii

6.1 Example of system with cyclic dependency. 90

6.2 Scheduling of the system of Figure 6.1 on two cores. 90

6.3 Scheduling of the system of Figure 6.1 on single-core using priority ordering 91

6.4 Scheduling of the system of Figure 6.1 on single-core using the cycle breaking
technique. 92

6.5 Scheduling performance . 102

6.6 Runtime analyses. 103

6.7 Computing time of each initial partial mapping 103

6.8 Percentage of tasks in each initial partial mapping 104

6.9 Computing time to find the optimal solution of the ILP. 105

7.1 Proposed design framework. 109

7.2 Acceptance ratio. 112

Table of Acronyms

AAA Algorithm-Architecture Adequation

ACS Airbag Control System

ADL Architecture Description Language

API Application Programming Interface

AUTOSAR AUTomotive Open System ARchitecture

ASAP As Soon As Possible

BSW Basic Software

CAN Controller Area Network

CPU Central Processing Unit

CS Client-Server

CSDFG Cyclo-Static Dataflow Graph

CSV Comma-Separated Values

DAC Digital to Analog Converter

DAG Directed Acyclic Graph

DBP Dynamic Buffering Protocol

DM Deadline Monotonic

DMA Direct Memory Access

DP Dynamic Priority

DPN Dataflow Process Network

EA Exclusive areas

ECU Electronic Control Unit

EDF Earliest Deadline First

ELA Electronique et Logiciel pour l’Automobile

EP Expiry Point

E/E Electric/Electronic

xv

xvi Table of Acronyms

FCCS Fuel Cell Control System

FIFO First-In-First-Out

FJP Fixed Job Priority

FTP Fixed Task Priority

HIL Hardware-In-the-Loop

HSDFG Homogeneous Synchronous Dataflow

IB Internal Behavior

ILP Integer Linear Program

IOC Inter-OS-Applications Communication

IRV Inter-Runnables Variables

I/O Input/Output

LCM Least Common Multiple

LIN Local Interconnect Network

LLF Least Laxity First

LP Linear Program

LTTA Loosely Time Triggered Architectures

MASE MAtlab SDFG Extraction

MBD Model-Based Design

MDG Marked Direct Graph

MOO Multi-Objective Optimization

MPPA Massively Parallel Processor Array

NoC Network on Chip

OEM Original Equipment Manufacturers

OPA Optimal Priority Assignment

OS Operating System

QoS Quality of Service

RAM Random-Access Memory

Table of Acronyms xvii

RM Rate Monotonic

RTA Response Time Analysis

RTB Rate Transition Block

RTE Runtime Environment

RTOS Real-Time Operating System

SBD Synchronous Block Diagrams

SDFG Synchronous Dataflow Graph

SPB System Peripheral Bus

SPM Scratchpad memory

SR Sender-Receiver

SWC Software Component

TTA Time Triggered Architectures

VFB Virtual Functional Bus

WCET Worst Case Execution Time

WCRT Worst Case Response Time

XML eXtensible Markup Language

XSD XML Schema Definition

Chapter 1

Introduction

Context

Innovations in modern cars are mainly focused on embedded electrical and electronic sys-
tems. However, the automotive industry is experiencing a rapid technological progress due
to the evolution of environmental constraints dictated by Euro standards [39] (to reduce
the emission of CO2) and the continuous addition of new services (e.g. connected and au-
tonomous cars). These advances led to increasing complexity of software and processing
demands. However, as the computing requirement increases, conventional approaches (i.e.
increase the number of calculator and/or clocks speed) become ineffective for weight, energy
consumption and costs. Instead, an alternate promising approach to increase the compu-
tational power is the use of multi-core platforms. Car manufacturers are now considering
this approach to meet the need of performance in automotive.

Reflecting this trend, the AUTomotive Open System ARchitecture (AUTOSAR) [32]
has promoted the use of multi-core platforms by introducing the deployment of multi-
core applications. AUTOSAR is a standard that defines the design and development
of automotive softwares. However, the use of multi-core for automotive systems raises
several issues. In fact, an automotive application is composed of several functions that
exchange data. Each application is characterized by a criticality level, where missing the
data exchanges and the timing in a highly critical application can be catastrophic.

In the industry, these applications are generally designed and functionally validated
with synchronous models such as Matlab/Simulink [21]. These models are further con-
strained with timing and safety aspects, and implemented on AUTOSAR. However, Mat-
lab/Simulink enforces a sequential execution paradigm along with a parametrized dataflow.
Deploying a Matlab/Simulink model on multi-core therefore requires an accurate tracking
of the data exchanges in order to implement the validated behavior. For complex systems,
transforming such models on multi-core AUTOSAR can be laborious and difficult to prove.
As a result, advanced techniques are needed to effectively manage the transformation from
Matlab/Simulink to AUTOSAR multi-core. This transformation must guarantee both the
functional and temporal determinism of the application, while exploiting parallelism.

1

2 Introduction

Contributions

The main objective of this thesis is to develop a proven methodology to implement de-
terministic data exchanges on AUTOSAR multi-core. For this purpose, we consider a
Model-Based Design (MBD) approach, where the functional dataflow is specified by Mat-
lab/Simulink. One can argue that the strict implementation of the specification of Mat-
lab/Simulink over-constrains the system. However, it establishes an automatic framework
to help designers during the synthesis of complex critical systems. As such, we are inter-
ested in characterizing the functional dataflow and define synthesis methods. The latter
must guarantee both the functional and temporal determinism of applications, while mak-
ing the best use of parallelism.

The first contribution of this thesis is to prove that the dataflow in a multi-periodic
Matlab/Simulink system can be modeled by a Synchronous Dataflow Graph (SDFG). This
formal equivalence between Matlab/Simulink systems and SDFG creates new perspectives
for the development of real-time systems (e.g. AUTOSAR) on multi/many-core. In fact,
SDFG is an excellent analysis tool to exploit the parallelism. It is especially popular
in the literature and it is widely studied for the deployment of dataflow applications on
multi/many-core [52, 96, 89]. Furthermore, the SDFG model provides a formal character-
ization of data dependencies. As such, the dataflow can be effectively considered during
the configuration of AUTOSAR multi-core. Then, we rely on the compositionality offers
by AUTOSAR to focus only on the interactions between Runnables, where the Runnable
is the atomic part of an AUTOSAR application.

The second contribution is to exploit the analytical properties of SDFG to build a fast
and efficient method to guarantee the functional dataflow in a real-time scheduling without
blocking mechanisms. This way, the functional and the temporal determinism are both
guaranteed.

The third contribution characterizes the dataflow requirements and measures their im-
pact in partitioned multi-core. Then, we provide a method to perform a mapping that
minimizes these impacts. This method is applied to build an initial mapping optimized for
dataflow requirements. This initial mapping promotes the construction of a partitioning
and a feasible scheduling when it is used to initiate multi-objective research and optimiza-
tion algorithms. As such, it reduces the number of design iterations and shortens design
time.

Figure 1.1 illustrates our approach. In fact, we first identify the dataflow imposed
by Matlab/Simulink on the application. Then, we extract and model this dataflow by
a Synchronous Dataflow Graph (SDFG). Finally, we use the analytical properties of the
SDFG formalism to develop tools for partitioning and scheduling for AUTOSAR multi-
core.

Introduction 3

SDFG

Figure 1.1: Illustration of the approach of this thesis

Work environment

Thesis is carried out at the Technological Research Institute (IRT) SystemX in cooperation
with the Laboratoire Informatique de Paris 6 (LIP6). The IRT SystemX brings together
industrial and academic partners around the topics of digital engineering of future systems
in automotive, railroad and avionics. It is organized in several projects in various fields.
The work of this thesis is carried out within the project “Electronique et Logiciel pour
l’Automobile (ELA)”. The purpose of this project is to provide operational solutions to new
technological and economic challenges in automotive. The ELA project is itself composed
of several tasks dealing with different aspects of its objective. My thesis is part of the
“multi-core” task. This task aims at developing proven methodology and tools to assist
the development of predictable implementations on AUTOSAR multi-core. The “multi-
core” task is performed in partnership with UMPC, the Original Equipment Manufacturers
(OEM) PSA and Renault, Tier-1 suppliers Valeo and Continental, and Sherpa Engineering.

Thesis outline

Below is summarized the organization and the content of the chapters of this thesis.

Chapter 2 gives the notations and concepts essential for this work. Namely, Chapter 2
presents real-time scheduling theories relevant for this thesis. It also presents the architec-
ture and the methodology to design and configure AUTOSAR applications. In addition,
it describes the micro-controller AURIX TriCore TC29x, which is our targeted multi-core
architecture.

4 Introduction

Chapter 3 details the industrial challenge addressed by this thesis. It also describes our
approach and provides a global state of the art that puts into perspective our approach
over existing work.

Chapter 4 proves that the dataflow in a multi-periodic Matlab/Simulink specification
is modeled by a SDFG. The method to model this dataflow is provided and design rules
are defined so that a Matlab/Simulink specification is fully modeled by a SDFG. Finally,
the translation from Matlab/Simulink to SDFG is illustrated on a use case of a Fuel Cell
Control System.

Chapter 5 exploits the analytical properties of the SDFG to establish a technique for
temporal isolation between tasks. This technique allows to implement deterministic data
dependencies without synchronization mechanisms. A Linear Program (LP) is formulated
to construct this temporal isolation and a scheduling algorithm that uses the latter to
realize deterministic dataflow in single-core is proposed. Additionally, a method to generate
random dependent tasks set modeled by the SDFG of Chapter 4 is proposed. These tasks
sets generation is used in experiments to evaluate the performances of the approach.

Chapter 6 builds a global method to guarantee deterministic dataflow in partitioned
multi-core. This method combines the temporal isolation with the technique of Forget et
al. [46] to provide a fast and accurate characterization of dataflow requirements in parti-
tioned multi-core. An Integer Linear Program (ILP) is formulated to realize a deterministic
dataflow with minimal impact on real-time attributes. This ILP is extended to perform
a mapping that also minimizes the impact of dataflow requirements. Then, a method
to build an initial mapping optimized for dataflow requirements is defined. This initial
mapping eases the search of a mapping that takes precedence constraints into account.

Chapter 7 summarizes our approach in a design framework to assist the configuration
of AUTOSAR multi-core. This framework uses SDFG to bridge the gap between Mat-
lab/Simulink and AUTOSAR. Furthermore, several tools and an exchange format are
provided to automate the framework. This automate framework is applied on the use case
of the Fuel Cell Control System.

Chapter 8 concludes the thesis and discuss prospects for future work.

Chapter 2

Background

Contents
2.1 Introduction . 6
2.2 Real-time systems . 6

2.2.1 Definitions . 6
2.2.2 Real-time task model . 7

2.3 Real-time scheduling . 9
2.3.1 Definitions . 9
2.3.2 Feasibility, schedulability and optimality 10
2.3.3 Response time analysis . 11
2.3.4 Multi-core scheduling . 12

2.4 AUTOSAR standard . 13
2.4.1 Software architecture . 13
2.4.2 Application concepts . 14
2.4.3 AUTOSAR Methodology . 17

2.5 Configuration of AUTOSAR applications 17
2.5.1 OS and task execution . 17
2.5.2 OS-Application and configuration . 19

2.6 Multi-core Electronic Control Unit 20
2.6.1 Definitions . 21
2.6.2 AURIX TriCore TC29x micro-controller 22

2.7 Conclusion . 23

5

6 Chapter 2. Background

2.1 Introduction

Electrical and electronic systems in modern cars operate on vehicle functions (e.g. engine
control), or on occupants security (air bag system) or amenities (e.g. air conditioning).
They are implemented as real-time embedded applications running on one or several on-
board computer system called Electronic Control Unit (ECU). This chapter introduces the
background necessary to understand the analysis and the implementation of a real-time
systems on AUTOSAR multi-core ECU.

In Section 2.2, we present fundamental properties of real-time systems. Then, in Sec-
tion 2.3, we detail the scheduling real-time systems on both single-core and multi-core.
Section 2.4 presents the software architecture of AUTOSAR standard and the principles
of interactions between Runnables. Section 2.5 describes the configuration of AUTOSAR
applications and defines the real-time task model of AUTOSAR. Finally, Section 2.6
charachterizes the multi-core ECU architecture considered in our work and Section 2.7
concludes the chapter.

2.2 Real-time systems

In this section, we give basic definitions and we detail the concepts essential for the study
of real-time systems.

First, in Subsection 2.2.1 we give a general definition of real-time systems. Then, in
Subsection 2.2.2, we describe and characterize periodic real-time task model.

2.2.1 Definitions

A real-time system is a computer system that reacts in a timely manner to events from its
environment. As such, a real-time system can be defined as follows [106].

Definition 2.1 (Real-time system)
A real-time system is a system whose correctness depends not only on the value of the
computation but also on the time at which the latter is produced.

From Definition 2.1, real-time computing is different from fast computing because a real-
time system aims to meet the timing of all computations in all possible circumstances [105].
As such, each real-time computation must complete within a proper time called the dead-
line. Consequences associated to missing deadlines define the criticaly level of real-time
systems as follows.

Hard real-time systems have strict timing constraints for which all deadlines must be

2.2. Real-time systems 7

met. This type of real-time systems is in general associated with critical applica-
tions for which missing a deadline can be catastrophic. An example is an Airbag
Control System (ACS) in the automotive. In fact, ACS monitors various sensors
(e.g. accelerometers, impact sensors, seat occupancy sensors, etc.) in order to detect
collisions. When a collision occurs the system triggers a gas inflator/deflator in a
timely manner to protect the lives of passengers. For the ACS, it is obvious that
a late detection of a collision or a late triggering of the gas inflator/deflator can be
catastrophic and cost human lives.

Firm real-time systems admit deadlines miss. Late results do not cause damages but are
useless. Guaranteeing deadlines for this type of real-time systems is associated to
ensuring a certain Quality of Service (QoS). Examples of firm real-time systems can
be found in networked and multimedia systems. In fact, a late packet or video frame
is in general useless and does not damage the system. However, it decreases the
quality of the transmission/reception.

Soft real-time systems also admit deadlines miss. Late results are useful and do not
induce damages. However, they lead to performance degradations. This type of
real-time systems is in general related to human-machine interactions, where display
information remain relevant to the user despite a display delay.

2.2.2 Real-time task model

Let T = {τ1, τ2, . . . , τn} be a real-time system that consists in a set of n real-time tasks
τi,i=1...n. Each task τi ∈ T defines a set of instructions and is executed until completion by
the processor. Let τi[ni] be the nith execution or job of τi, with ni ∈ N\{0}. The real-time
task τi can be characterized by the following parameters:

• computation time Ci: the Worst Case Execution Time (WCET) of τi;

• A release time or activation time ri[ni]: the time at which job τi[ni] becomes
active or ready to execute;

• A starting date si[ni]: the time at which job τi[ni] starts its execution;

• An absolute deadline di[ni]: the maximum time before which job τi[ni] must com-
plete;

• A relative deadline Di: a constant value that defines the difference between the
absolute deadline and the release time of every job, i.e. di[ni] = ri[ni] +Di, ∀ni ≥ 1;

• A finishing time fi[ni]: the time at which job τi[ni] completes its execution;

• A job response time Ri[ni]: Ri[ni] = fi[ni]− ri[ni], ∀ni ≥ 1;

• A task worst case response time Ri: the maximum response time of all jobs.
Ri = max

ni≥1
(Ri[ni]) = max

ni≥1
(fi[ni]− ri[ni]);

8 Chapter 2. Background

• A minimum inter-arrival time or period Ti: the minimum time or the time interval
between two activations, i.e. Ti = min

ni≥1
(ri[ni + 1]− ri[ni]);

• A slack time Xi: the maximum time the task can be delayed from its activation to
complete within its deadline. Xi = Di − Ci;

• A criticality: which defines the severity of missing deadlines of jobs. It is related to
the criticality of the system and therefore is either hard, firm or soft.

Figure 2.1: Example of real-time task parameters.

Figure 2.1 illustrates some of the real-time parameters defined above. Up arrows denote
release times and down arrows denote absolute deadlines.

Several activation policies exist for real-time tasks. In the rest of this work we consider
hard periodic real-time tasks. A periodic task is activated at a constant time interval equal
to its period. The release time of the first job of a periodic task is called offset and is
noted Oi = ri[1]. As such, each periodic task τi ∈ T is completely characterized by the
tuple (Ti, Ci, Oi, Di). The release time and the absolute deadline of any nith job of τi is
ri[ni] = Oi + (ni − 1) · Ti and di[ni] = ri[ni] + Di, respectively. The timing constraints
expressed by the relative deadline of τi is said to be implicit when Di = Ti, constrained
when Di < Ti and arbitrary when Di > Ti.

Furthermore, a real-time task is said to be a concrete task if its offset is explicitly
specified as a real-time constraint. Otherwise, the task is said to be an offset-free task [51].

Figure 2.2: Sequence of activations of a periodic task

Figure 2.2 illustrates the periodic release of a periodic real-time task. We can notice
that the executions are not necessary periodic. In fact, the execution of a job can be
delayed at the time of its activation by other tasks (c.f . Section 2.3).

Let T = {τ1, τ2, . . . , τn} be a set of n periodic real-time tasks. T is said to be a
synchronous tasks set if all tasks have the same offset. Otherwise, T is an asynchronous
tasks set. Furthermore, the hyperperiod of T is defined as the Least Common Multiple

2.3. Real-time scheduling 9

(LCM) of all periods. The processor utilization of T is U =
n∑
i=1
Ui, where Ui = Ci

Ti
is the

utilization of task τi.

Other constraints that can be expressed on real-time tasks are dependency constraints.
These constraints express the need to execute tasks or jobs in a certain order. In particular,
it is the case when tasks communicate with each other and data exchanges require that
producer tasks are executed before consume tasks. At job level, these constraints are
referred to as precedence constraints. Moreover, tasks that are related by dependency
constraints are defined as dependent tasks and tasks without dependency constraints are
defined as independent tasks.

2.3 Real-time scheduling

In this section, we recall several concepts about real-time scheduling of independent tasks.
These concepts are used later in this document to study the mapping and scheduling of
dependent periodic real-time tasks.

First, Subsections 2.3.1, 2.3.2 and 2.3.3 give general definitions and concepts on real-
time scheduling. Then, Subsection 2.3.4 presents approaches for multi-core scheduling.

2.3.1 Definitions

The scheduling of a set of n real-time tasks T = {τ1, τ2, . . . , τn} on single-core consists in
deciding the task that is executed by the core at each instant, so that timing constraints
are met. To achieve this, the following scheduling strategies can be used:

• Non-preemptive scheduling: once a task starts, it is executed until completion on the
core. That is, tasks cannot be preempted and scheduling decisions are taken only at
tasks termination or when a new task becomes active while the core is idle.

• Preemptive scheduling: the running task can be interrupted or preempted at any
time, so that the core can run another task. As a result, scheduling decisions are
made each time a new task becomes active or current job completes.

In preemptive scheduling, a priority level πi is assigned to each task τi ∈ T , so that
the active task with the highest priority is always executed. We distinguish between the
following types of algorithms for priority assignment.

• Fixed Task Priority (FTP): each task is assigned a fixed priority that is inherited by
its jobs. A scheduling algorithm with FTP is also called static. Examples of static
scheduling algorithms are Rate Monotonic (RM) [76], Deadline Monotonic (DM) [75]
and the Optimal Priority Assignment (OPA) [5].

10 Chapter 2. Background

• Fixed Job Priority (FJP): the priority of each job depends on the state of the system
and is assigned at activation of jobs. FJP is also called task level dynamic scheduling
because jobs of the same task may have different priorities. However, the priority of
a single job is fixed and cannot vary over time. Earliest Deadline First (EDF) [76]
is an example of FJP.

• Dynamic Priority (DP): each job is assigned a priority that is not fixed and can vary
over time. Hence, DP is also called job level dynamic scheduling algorithm. Least
Laxity First (LLF) [107] is an example of DP.

Let us consider two real-time tasks τa(Ta = 3, Ca = 1, Oa = 0, Da = 3) and τb(Tb =
5, Cb = 2, Ob = 0, Db = 5). Figure 2.3 illustrates a static preemptive scheduling of τa and
τb for a priority assignment such as τa has a higher priority than τb. Thus, τa is executed
by the processor at each release. τb is executed by the processor only when τa is not active.
If τb is release while τa is active or released, the execution of τb is delayed until τa ends
(time 6 to 7). Likewise, if τa becomes active while τb is executing, τb is preempted (time
12) and is resumed after τa ends (time 13).

Figure 2.3: Example of a static preemptive execution of periodic real-time tasks on single-
core.

2.3.2 Feasibility, schedulability and optimality

Definition 2.2 (Feasibility)
The scheduling of a set of real-time tasks T = {τ1, τ2, . . . , τn} is said to be feasible for a
given scheduling algorithm if every job of every task τi ∈ T finishes before its deadline.
Formally this is expressed as:

Ri ≤ Di, ∀ τi ∈ T (2.1)

Definition 2.3 (Schedulability)
A set of real-time tasks T = {τ1, τ2, . . . , τn} is said to be schedulable if there exists at least
one algorithm that produces a feasible scheduling.

The optimality of a scheduling algorithm is given by Definition 2.4.

2.3. Real-time scheduling 11

Definition 2.4 (Optimality)
A scheduling algorithm is said to be optimal if it always finds a feasible scheduling when
one exists.

In practice, the optimality of a scheduling algorithm is defined according to its schedul-
ing class and the studied task model. For example, in static preemptive scheduling, RM
is optimized for synchronous periodic tasks with implicit deadlines [76], DM is optimized
for synchronous periodic tasks with constrained deadlines [75] and OPA is optimized for
asynchronous periodic tasks with constrained deadlines [5]. EDF and LLF are optimal for
constrained-deadline tasks in FJP and DP, respectively.

The feasibility is verified by performing a schedulability test that is based on a scheduling
condition.

• Sufficient condition: the scheduling is feasible when the condition is verified. How-
ever, if the condition is not verified, it does not guarantee that the scheduling is not
feasible.

• Necessary condition: the scheduling is not feasible when the condition is not verified.
However, if the condition is verified, it does not guarantee that the scheduling is
feasible.

• Necessary and sufficient condition: the scheduling is feasible when the condition is
verified. Conversely, the scheduling is not feasible when the condition is not verified.

2.3.3 Response time analysis

The Response Time Analysis (RTA) is a method that produces a necessary and sufficient
schedulability test. It is mainly used to check the feasibility of static preemptive scheduling.
RTA consists in computing the Worst Case Response Time (WCRT) Ri of each task τi
and verifying Equation (2.1). More formally, let Ii be the maximum time accumulated by
delays and preemptions of highest priority tasks on one execution of τi. Ri is expressed as
follows:

Ri = Ci + Ii, ∀ τi ∈ T (2.2)

Joseph et Pandya [62] showed that a task suffers the most of interference when it is
release at the same time as highest priority tasks. This instant is called the critical instant.
Liu and Layland [76] showed that the critical instant is obtained at the first activation in a
synchronous tasks sets. Then, they demonstrated that if a task meets its first deadline, it
will meet all the subsequents. In that case, the RTA is reduced to the critical instant. This
method can also be applied to asynchronous tasks sets if tasks share a critical instants [5].

12 Chapter 2. Background

For sets whose tasks do not share a critical instant, Audsley [5] introduced a feasibility
interval that is based on one hyperperiod. He demonstrated that if a task meets its
deadlines during this interval, it will meet all the subsequents ones. As such, the RTA
requires the computation of the response time of every job during the feasibility interval.
However, this hyperperiod analysis is not in polynomial time in general [5].

2.3.4 Multi-core scheduling

Multi-core scheduling considers a set of n real-time tasks T = {τ1, τ2, . . . , τn} and a set of
q cores. The multi-core scheduling consists in assigning tasks to cores and execute them
in order to guarantee the timing constraints. To achieve this, two scheduling decisions are
required: the mapping of tasks to cores and the scheduling of tasks. Mapping consists in
assigning each task to a core. The scheduling decides the task that is executed by each
core. Accordingly, we distinguish between the following multi-core scheduling approaches.

• Global scheduling: tasks are assigned to core at runtime with respect to a defined
algorithm. Moreover, executions of a given task can migrate between cores.

• Partitioned scheduling: each task is allocated off-line to one core and migrations are
not allowed. Furthermore, a single core algorithm is used to schedule each core.

• Semi-partitioned scheduling: the allocation mixes between the first two approaches.
Some tasks are allowed to migrate while some are not.

In the rest of this work, we consider partitioned scheduling. This scheduling approach
has the advantage of dividing multi-core scheduling into several single-core scheduling. As
such, the existing results for the latter can be applied. However, the partitioning of tasks
to cores is equivalent to a Bin-Packing problem, which is NP-hard [30].

Dhall and Liu [36] introduced the use of bin-packing approach to study the partitioned
scheduling of real-time systems. For this purpose, they proposed the mapping and schedul-
ing algorithms RM-NF (Rate Monotonic Next-Fit) and RM-FF (Rate Monotonic First-Fit)
for independent periodic tasks with implicit deadlines. These algorithms use bin-packing
Next-Fit and First-Fit heuristics to partition tasks, respectively. One can refer to Coffman
et al. [30] for details on bin-packing heuristics. Oh and Son [84] used the same princi-
ple and proposed the algorithm RM-BF (Rate Monotonic Best-Fit). The latter uses the
bin-packing Best-Fit heuristic to partition tasks. These works [36, 30, 84] lay the founda-
tions of bin-packing approach to the partitioning of real-time systems. Since then, several
techniques have emerged. One can see for example [34, 101] for a survey.

2.4. AUTOSAR standard 13

2.4 AUTOSAR standard

The AUTomotive Open System ARchitecture (AUTOSAR) [32] is an international consor-
tium formed in 2003 between OEM and Tier 1 suppliers. This partnership aims at providing
a solution to meet the challenges imposed by the increasing complexity of embedded auto-
motive applications. As such, it defines the AUTOSAR standard, which stands today as
the one common industrial standard for the design and development of safety-critical and
hard real-time automotive applications. This section describes the general principles and
the methodology for designing AUTOSAR applications.

Subsection 2.4.1 gives a brief overview of the software architecture of AUTOSAR. Sub-
section 2.4.2 details the structure of AUTOSAR applications and characterizes the interac-
tions between elements of the applications. Then, Subsection 2.4.3 outlines the AUTOSAR
methodology to design hard real-time systems in automotive.

2.4.1 Software architecture

AUTOSAR software architecture is based on a modular description divided in several
layers. In fact, each element in the AUTOSAR architecture is associated with interfaces
through which it interacts with others elements of the same and/or different layers. At
the highest abstraction level, this architecture is composed of three layers as illustrated in
Figure 2.4.

Figure 2.4: AUTOSAR layered software architecture.

The Application Layer contains the application codes. The latter are composed of
sets of interconnected components called Software Component (SWC). Each SWC

14 Chapter 2. Background

encapsulates the implementation of an application functionality, with an abstraction
level that is independent of the platform. Examples of SWC from ACS are the
subsystem that detect collisions (noted Collision SWC) and the one that triggers the
gas Inflator (noted Inflator SWC).

The Basic Software (BSW) is a layer that is strongly connected to the platform.
In fact, this layer is responsible of providing infrastructural functionalities to the
application layer. As such, the BSW is composed of a Real-Time Operating System
(RTOS) and a collection of software modules providing access to communication
resources, memory, Input/Output (I/O), etc.

The Runtime Environment (RTE) is the central layer of AUTOSAR architecture.
This layer is in charge of providing capabilities that enable communications to occur
between SWCs, as well as acting as the means by which SWCs access to the BSW.

2.4.2 Application concepts

In AUTOSAR, an application is modeled as a set of interconnected SWCs. Each SWC is a
reuse piece of functionality or a large block (i.e. an entire application), which is independent
of the hardware and available technologies.

Ports and interfaces

Each SWC has well-defined ports through which it interacts with other components. A
port specifies one communication interface of a given component. This interface defines
the services and/or data that are required and/or provided on the port. For example,
the Collision SWC may have one or several ports to interact with the Inflator SWC. The
interfaces of these ports will contain the necessary data for the Inflator SWC to command
the gas inflation.

Several interfaces can be defined in AUTOSAR, each of which corresponds to a com-
munication mode. The most common are the following.

• Client-Server (CS) communication: it involves at least one client that requires a
service and one server that provides this service. CS is a two-way communication
because the client sends the request to the server, which sends back the response. This
communication is synchronous if the client waits for the response, and asynchronous
otherwise.

• Sender-Receiver (SR) communication: it consists in a transmission and reception of
data elements. These latter are sent by one component and received by one or more
components. SR communication is asynchronous in the sense that the sender is not
blocked and neither expects nor gets a response from receivers.

2.4. AUTOSAR standard 15

Figure 2.5 illustrates an AUTOSAR application consisting in three SWCs. SWC 1 uses
one port for CS communications with both SWC 2 and SWC 3. It also uses two separate
ports for SR communications with SWC 2 and SWC 3, respectively.

Figure 2.5: Example of an AUTOSAR application software.

The concept of “Runnable”

The Runnable entity is the atomic part of SWCs. It represents a sequence of instructions
that describes all or part of the application behavior. That is, a SWC may consist of one
or several Runnables. An example of Runnable entity in the Collision SWC is the function
that computes the deceleration of the vehicle.

The set of Runnables that composes an atomic SWC is defined as its Internal Be-
havior (IB). As such, Runnables of the same IB interact through typed shared variables
implemented using either Exclusive areas (EA) or Inter-Runnables Variables (IRV). The
EA is a section of code in which Runnables cannot access concurrently. The IRV is a SR
like buffer, which is reserved to Runnables of the same IB. Moreover, Runnables of differ-
ent IB interact through the ports of their SWC. Figure 2.6 illustrates an internal behavior
of a SWC composed of three Runnables.

Figure 2.6: Illustration of the internal behavior of a SWC.

On the execution platform, Runnables are executed independently of each other. In
fact, a Runnable is started by events from the RTE. Nonetheless, it can also suspend its

16 Chapter 2. Background

execution in order to wait for several RTE events. Accordingly, AUTOSAR defines two
categories of Runnables:

• Category 1: this category of Runnables does not have wait points. Namely, they do
not wait for RTE events. So, they are always completed in a finite time.

• Category 2: this category of Runnables has at least one waiting point.

The main advantage of Runnables of Category 1 is that their WCET can be determined
accurately because they do not depend on waiting points (which may rely on unpredictable
events). However, Runnables of Category 2 require advanced statistical analysis to deter-
mine bounds on their WCET [113]. In this thesis, we consider only Runnables of Category 1
as they allow temporal predictability.

Communications

Communications between Runnables (via port or IRV) are performed via shared buffers.
The latter are handled by the RTE, which defines two communication modes.

• Implicit mode: the Runnable uses private local buffers to access the data. In fact,
before the Runnable starts, the RTE automatically reads and copies the data from
shared to local buffers. Conversely, after the Runnable has terminated, the RTE
automatically writes the (different) data from local to shared buffers. Access to these
local buffers from the application are performed using implicit RTE APIs. Implicit
accesses are always non-blocking.

• Explicit mode: the Runnable accesses directly to shared variables by means of explicit
RTE APIs. While explicit sends are always non-blocking, explicit receives can be
either blocking or non-blocking. When it is blocking, the Runnable is blocked in a
waiting point until the reception of the data.

Implicit read has the advantage of maintaining the same versions of data during the
execution of the Runnable. Modifications of shared buffers during this execution do not
affect local buffers. In implicit write, intermediate results are keep local and only the last
values are updated in the shared buffers of others Runnables. As such, the implicit mode
ensures the data coherency of the application. However, it increases the memory by using
local buffers. This it is not the case for the explicit mode. However, the latter does not
ensure the data coherency, which must be managed by the designer.

2.5. Configuration of AUTOSAR applications 17

2.4.3 AUTOSAR Methodology

The AUTOSAR methodology defines the steps for deploying AUTOSAR softwares on a
given hardware architecture. These steps are illustrated in Figure 2.7 and are described as
follows.

Step 1: Description of application softwares as a composition of interconnected
SWCs. The interactions between these SWCs are managed by a Virtual Func-
tional Bus (VFB). The latter is a virtual bus to allow communications between
SWCs regardless of their ECUs.

Step 2: Distribution of the application softwares on the hardware architecture:
this step consists in mapping the SWCs on available ECUs. The mapping is
constrained by the hardware architecture that expresses system constraints (e.g.
network capabilities) and ECU constraints (e.g. number of processing core).

Step 3: Configuration of ECU: for each ECU this step implies the configuration of the
RTOS (e.g. tasks, scheduling) and the BSW.

2.5 Configuration of AUTOSAR applications

In this section, we study the configuration of an AUTOSAR application. This study is
important to understand how an AUTOSAR application runs on an ECU and to define
the appropriate real-time task model.

Subsection 2.5.1 defines the task model and the execution mechanisms. Then, Subsec-
tion 2.5.2 outlines the configuration steps of an AUTOSAR application.

2.5.1 OS and task execution

Executions of Runnables are performed in the context of hard real-time tasks. The lat-
ter are provided by the AUTOSAR RTOS, which defines a partitioned static priority
scheduling policy. Moreover, the RTOS provides a concurrent and asynchronous execution
paradigm together with a scheduler that organizes the executions sequences.

Task framework

AUTOSAR defines two types of real-time tasks:

18 Chapter 2. Background

Figure 2.7: AUTOSAR Methodology.

• Basic task: once a basic task has begun executing in the processor, it can exit the
latter only at the end of its execution or when it is preempted by higher-priority
tasks. As such, a basic task contains only Runnables of Category 1.

• Extended task: beside the specification of a basic task, an extended task can invoke
wait for events statement. As such, it can exit the processor to enter a waiting state.
Its execution resumes in the processor only when the required events have occurred.
Extended tasks can contain both categories of Runnables.

In the rest of this thesis we consider only basic tasks. The reason of this choice is
that basic tasks allow deterministic temporal behavior. This is an important feature when
modeling hard real-time systems.

Figure 2.8 shows the state machine of basic tasks. Each basic task that is not activated
or released by the RTOS is in the suspended state. Once it is activated, the basic task
enters the ready state and remains in this state until it is executed by the processor. As
soon as it execution starts, the task enters the running state. It remains in this state until
it is completed or preempted and returns to the suspended or the ready state, respectively.

2.5. Configuration of AUTOSAR applications 19

Figure 2.8: State machine of a basic task.

The state machine in Figure 2.8 describes the real-time task model in Section 2.2. In
fact, the transition from the suspended state to the ready state corresponds to the activa-
tion of one job. The transition from the ready (resp. suspended) state to the suspended
(resp. ready) state corresponds to the starting (resp. preemption) of a job. Finally, the
transition from the ready state to the suspended state is the termination of a job. Con-
sequently, we use the real-time task specification of Section 2.2 to study AUTOSAR basic
tasks. The periodic task model is obtained by using periodic activations.

Furthermore, each basic task can be configured either as preemptive or non-preemptive.
The AUTOSAR RTOS allows the coexistence of both preemptive and non-preemptive
tasks. However, we consider only preemptive tasks with a static preemptive scheduling.
That is, priorities are assigned to basic tasks so that the higher-priority task is always
executed.

2.5.2 OS-Application and configuration

Configuring an AUTOSAR application to run on a platform amount to configuring the
objects of the RTOS which specify the execution (tasks, alarms, schedule tables, counters,
etc.). These objects are in general grouped into a collection that forms a cohesive functional
unit called OS-Application. The RTOS objects that belong to the same OS-Application
have access to each other. The right access to objects from other OS-Applications is
granted during configuration and is managed by the Operating System (OS). For example,
communication between SWCs of different OS-Applications are managed by Inter-OS-
Applications Communication (IOC). The latter is a sender-receiver like communication
managed by the OS. Indeed, communications between SWCs of different OS-Applications
are managed by the RTE using IOCs.

Accordingly, the configuration of an AUTOSAR application on multi-core consists in
the following steps (illustrated in Figure 2.9).

20 Chapter 2. Background

1. Definition of OS-Applications: several OS-Applications can be defined for the same
platform. In particular, at least one OS-Application must be defined per core. Then,
the RTOS is responsible for scheduling the available processing resources between
OS-Applications that share the same core.

2. Mapping of SWCs to OS-Applications: each SWC is statically mapped to one OS-
Application.

3. Mapping of Runnables to tasks: several Runnables can execute in the context of
one OS task. However, Runnables of the same IB must be mapped to the same
OS-Application. The mapping of Runnables to tasks is performed statically during
configuration.

4. Scheduling configuration: this step consists in configuring tasks offset and deadline,
preemptive or non-preemptive behavior, priorities, tasks activation, events, alarms,
and schedule tables, etc. Then, tasks are scheduled using the corresponding schedul-
ing policy.

OS-App 1

OS-App 2

Figure 2.9: Configuration of an AUTOSAR application.

The application configuration is afterward coupled with that of BSW. The whole is
compiled for a specific ECU.

2.6 Multi-core Electronic Control Unit

An ECU is an on-board computer system that controls electrical/electronic equipment such
as sensors, actuators, displays and speakers. This section describes the architecture of the

2.6. Multi-core Electronic Control Unit 21

multi-core ECU considered in our work.

Subsection 2.6.1 gives general reminder on multi-core microprocessors. Subsection 2.6.2
details the architecture of the micro-controller AURIX TriCore TC29x, which is the multi-
core platform uses in ELA project.

2.6.1 Definitions

An ECU is built from a microprocessor, which is composed of one or multiple cores. The
simplest multi-core microprocessor architecture is illustrated in Figure 2.10. This archi-
tecture is composed of several CPU cores, a memory hierarchy (i.e. RAM, Flash) and
peripherals that are all connected by an on-chip bus. The cores execute the instructions of
the program. Each core may have a cache memory or a Scratchpad memory (SPM). The
cache memory refers to a small and fast local memory that buffers access to a larger but
slower and higher latency memory. The SPM refers to a special high-speed memory circuit
used to hold small items of data for rapid access. Peripherals are used to interact with the
environment. Examples of peripherals are Digital to Analog Converter (DAC), Controller
Area Network (CAN) and Ethernet.

Figure 2.10: Multi-core architecture.

The basic idea behind multi-core architectures is the integration of several independent
processing units on a single chip. As such, we can distinguish between the following
architectures.

• Homogeneous multi-core: it consists of the replicas of the same basic core. That
is, all cores in the architecture have the same instruction sets and the same data
structures.

• Heterogeneous multi-core: it consists of using different types of basic cores. Con-
sequently, cores in this architecture may have different instruction sets and different
data structures.

22 Chapter 2. Background

Furthermore, a Massively Parallel Processor Array (MPPA) is a many-core architecture
that consists in several computing clusters that communicate through a Network on Chip
(NoC). These clusters have the same architecture as in Figure 2.10. Cores have access to
local memories of their clusters via the on-ship bus. They access to the memory of other
clusters and to peripherals via the NoC. Example of MPPAs are Intel SCC [98], Kalray
MPPA-256 [37] and Tilera TilePro64 [10].

2.6.2 AURIX TriCore TC29x micro-controller

The target platform of this work is the micro-controller AURIX TriCore TC29x from
Infineon [1]. The architecture of this micro-controller is presented in Figure 2.11. It consists
of three cores, each with a dedicated local cache memory and a SPM for both data and
instructions separately. The local SPM is accessible by others cores in a non-uniform way.
That is, access to local memories are faster than access to others memories. Furthermore,
Core 0 is designed for high efficiency, but has a smaller local memory compared to others.
Core 1 and Core 2 are identical, but are designed for high performance. The three cores
have the same instructions sets and the same data structures. The AURIX TriCore TC29x
architecture also contains a shared RAM, a flash memory and several peripherals that are
connected via two independent on-chip buses. Namely, the crossbar connects each core
to high bandwidth modules (i.e. cores, RAM, Flash, DMA), and the System Peripheral
Bus (SPB) connects high bandwidth modules to peripherals. A transparent bridge is used
for transfers from the SPB to the Crossbar and vice versa.

Figure 2.11: Architecture of the AURIX TriCore TC29x micro-controller.

The AURIX TC29x is chosen as reference hardware in the ELA project for the following
reasons:

(i) It provides a highly predictable architecture with duplicated memories and crossbars

2.7. Conclusion 23

to avoid resource conflicts. These are key features for the design of safety-critical
applications on multi-core platforms [112].

(ii) It is a well known industrial multi-core platform that is used in many automotive
application fields [1].

(iii) They are several software development suite for the implementation of multi-core
AUTOSAR applications on AURIX TC29x. An example is the Microsar package [81].

In this thesis, we adopt the architecture of the AURIX TC29x as basis of our investi-
gations. Accordingly, we derive the following assumptions:

1. Hardware predictability can be ensured and resource conflicts can be avoided.

2. The multi-core architecture is homogeneous.

3. Cores use shared memories.

Our hardware assumptions outline an homogeneous shared memory architecture. How-
ever, our work does not use strong hypotheses on the memory architecture. As such, it
can also be applied to MPPA.

2.7 Conclusion

In this chapter, we provided the background to the analysis of real-time implementation
of AUTOSAR application on multi-core. In fact, we presented and specified the general
principles on the mapping and scheduling real-time systems on partitioned multi-core.
Then, we detailed the architecture of AUTOSAR, we presented the principles of interac-
tions between Runnables and we showed how to apply the real-time theory to AUTOSAR
applications. We also characterized the multi-core architecture considered in our work.

In the next chapter, we detail our problematic and we describe our approach. Then,
we provide relevant related work.

Chapter 3

Motivations and related works

Contents
3.1 Introduction . 26
3.2 Problem statement and approach 26

3.2.1 Industrial challenge . 26
3.2.2 Approach and achievements . 28

3.3 Related work . 29
3.3.1 Synchronous programming models 29
3.3.2 Architecture Description Languages 31
3.3.3 Frameworks for multi-core . 32
3.3.4 Multi-core analysis with Synchronous Dataflow Graphs 33

3.4 Synchronous Dataflow Graphs . 33
3.4.1 Basic definitions and notations . 33
3.4.2 Liveliness . 34
3.4.3 Precedence constraints . 36
3.4.4 Scheduling of Synchronous Dataflow Graphs 37

3.5 Conclusion . 39

25

26 Chapter 3. Motivations and related works

3.1 Introduction

In the automotive industry,Model-Based Design (MBD) is a widely used approach to design
embedded applications. This approach consists in designing and specifying applications
with high level models like Matlab/Simulink. Then, the applications are implemented
on AUTOSAR. However, with the increasing complexity of applications and the adop-
tion of multi-core, elaborated methods are needed to overcome the paradigm gap between
Matlab/Simulink and AUTOSAR. This is required to efficiently manage the transforma-
tion so that the AUTOSAR multi-core configuration preserves the functional semantics of
Matlab/Simulink, while exploiting the parallelism.

In this chapter, we describe our approach to enable implementations that preserve
the semantics of data flow on multi-core. This approach is based on the formalism of
SDFG [73]. The latter allows us to implicitly exploit parallelism. Furthermore, we present
and position our approach compared to related work.

The rest of this chapter is organized as follows. Section 3.2 states the industrial chal-
lenge addressed by this work and describes our approach. Section 3.3 presents related work
on semantics-preserving approaches, multi-core frameworks and SDFG. Section 3.4 recalls
the analytical properties of SDFG used in the thesis. Finally, Section 3.5 concludes the
chapter.

3.2 Problem statement and approach

This section provides a brief state of art on the designing process of automotive embedded
applications and characterizes the industrial challenge addressed in this thesis. From this,
we present our approach to enable a semantics-preserving implementation of the dataflow
using the formalism of SDFG. We justify the interest of using SDFG and present our
contributions to set a design framework from multi-periodic Matlab/Simulink systems to
AUTOSAR multi-core.

3.2.1 Industrial challenge

In the automotive industry, embedded applications are designed using MBD. That is,
the functional specification is designed and validated with a Matlab/Simulink [21] model.
Thereafter, the latter is transformed into an AUTOSAR software architecture and im-
plemented following the AUTOSAR methodology. Although MBD provides an efficient
common framework throughout the design process, moving from the functional specifica-
tion of Matlab/Simulink to the AUTOSAR configuration is not straightforward. In fact,
as illustrated by the V-cycle in Figure 3.1, the deployment of the functional specification
on the AUTOSAR platform involves teams from different entities. In fact, the functional
specification in Matlab/Simulink is made by domain experts from Original Equipment

3.2. Problem statement and approach 27

Manufacturers (OEM), while the AUTOSAR implementation is performed by software
experts from Tier 1 suppliers.

RTE

OS

SWC1 SWC2

BSW

SWC1 SWC2

SWC1

SWC2

System and functional view
Domaine perspective

functional architecture

AUTOSAR perspective
functional architecture

Software architecture

Configuration and
implementation

ECU Application developpement

MIL
Tests and validation

MIL

HIL

O
E
M

T
IE
R
S

 Implicit specifications
Runnables order, triggering,
application constraints, ...

Figure 3.1: V-cycle for the design of applications.

At OEM side, two perspectives of the functional model can be distinguished:

• Domain perspective: it is a Matlab/Simulink model designed by control engineers
for functional concerns. The domain perspective is the highest level of representation
because it specifies the application with control-command semantics. The functional
semantics of this perspective is validated by simulation.

• AUTOSAR perspective: it is a Matlab/Simulink model designed by software engi-
neers according to the domain perspective. In fact, the AUTOSAR perspective is a
Matlab/Simulink model structured as an AUTOSAR application software (i.e. set of
interconnected SWCs). This perspective is validated by simulation with respect to
the domain perspective.

At the Tier 1 supplier’s, the AUTOSAR software is extracted from the AUTOSAR
perspective to perform the AUTOSAR configuration. The result is tested and validated
by several Hardware-In-the-Loop (HIL) simulations.

To overcome the paradigm gap between Matlab/Simulink and AUTOSAR configura-
tion, OEM and Tiers 1 suppliers exchange information on the operation of the system.
These exchanges are in several formats (e.g. functional model, textual specifications, busi-
ness requirements) to guide the Tier 1 supplier towards a valid implementation. However,
the process is error-prone and involves teams from different entities. As such, correction
of errors are very costly. Furthermore, Matlab/Simulink enforces a certain sequential exe-
cution order of applications. In mono-core, this execution order is the specification of the

28 Chapter 3. Motivations and related works

AUTOSAR configuration. In multi-core, this sequential execution order is not efficient to
exploit the parallelism. That is, an accurate characterization of interactions in the Mat-
lab/Simulink functional model is required to ensure the correctness of the implementation
and exploit the parallelism of multi-core ECUs.

With the criticality level and the increasing complexity of embedded applications in au-
tomotive, the transformation from Matlab/Simulink to AUTOSAR multi-core has become
a challenging issue. Advanced techniques are needed to effectively manage this trans-
formation to preserve the functional semantics and exploit the parallelism in multi-core
ECUs.

3.2.2 Approach and achievements

This thesis studies the semantic-preserving implementation of the dataflow from the func-
tional model in Matlab/Simulink to the AUTOSAR configuration. For this purpose, we
base our investigations on the AUTOSAR perspective of the Matlab/Simulink specifica-
tion. We assume that this specification is correct by construction and is already formally
proven. Hence, we consider a formal approach to construct the AUTOSAR configuration
to preserve the functional semantics of the dataflow and exploit the parallelism on a given
multi-core ECU.

We assume that each Matlab/Simulink model is validated by a simulation, which en-
forces the data exchanges in the application. As such, these data exchanges must be
implemented deterministically on the ECU to guarantee the validated functionality. On
the one hand, Matlab/Simulink allows to generate the semantic-preserving embedded code
of Runnables automatically. However, it is the responsibility of the AUTOSAR configura-
tion to implement the correct data exchanges between Runnables. On the other hand, the
AUTOSAR configuration must account for real-time constraints as well as non-functional
requirements such as performances (e.g. total execution time) and multi/many-core con-
straints (e.g. parallelism, mapping).

To get an implementation that complies with the aforementioned requirements, we in-
troduce the use of an abstract representation of the functional dataflow. The interest of
this abstraction is to get a formal and accurate tracking of the simulated data exchanges.
This allows the extraction of the analytic properties of the functional dataflow to perform
the AUTOSAR configuration. We rely on the compositionality offers by AUTOSAR to
focus on the interactions between Runnables. Then, we use SDFG [73] as abstract repre-
sentation. We choose SDFG because of its solid mathematical background and its existing
analysis tools for multi/many-core. Moreover, SDFG is an excellent analysis tool to ex-
ploit parallelism because it is very popular in the literature and it is largely studied for the
deployment of dataflow applications on multi/many-core platform [73].

Our work links between the functional specification of multi-periodic Matlab/Simulink
systems and AUTOSAR configuration by extracting the functional dataflow with SDFG.
To this end, we perform an in-depth study of the modeling and simulation environment of

3.3. Related work 29

Matlab/Simulink in Chapter 4. From this study, we define a set of rules to statically specify
the functional behavior of the system. In particular, we rely on the compositionality of
AUTOSAR to focus on the interactions between Runnables. We consider that the behavior
of each Runnable can be generated as a sequential code in a semantics-preserving way. As
such, the functional behavior of the application is determined by the dataflow between
Runnables. We proposed a technique to model these interactions by a SDFG. The latter
characterizes the precedence constraints such as expressed by Matlab/Simulink.

Furthermore, in Chapter 5 and 6 we exploit the analytical properties of SDFGs to ex-
press a real-time task scheduling technique that guarantees the functional dataflow without
blocking synchronization mechanisms. As such, both functional and temporal determinism
are guaranteed. We characterize the impact of the dataflow requirements on the schedul-
ing and we propose a partitioning technique that minimizes these impacts. We show that
this initialization technique promotes the construction of a feasible scheduling. Hence, we
propose an integrated framework to use both the SDFG specification and the initializa-
tion technique in a semantic-preserving implementation that exploit the parallelism. This
framework assists the designer to shorten design time and reduce the number of design
iterations.

3.3 Related work

This section presents the related work to our approach and positions our contributions.
More precisely, we present related work on synchronous programming models and archi-
tecture description languages to lay the basis of deterministic and semantics-preserving
methods. Then, we present related work on design framework for multi-core to explore
parallelism and facilitate the design process. Finally, we introduce works on multi-core
analysis using SDFG.

3.3.1 Synchronous programming models

In Model-Based Design, synchronous programming models are widely used to design and
specify safety-critical systems [12]. Example of synchronous programming models are syn-
chronous languages such as Esterel [15], Lustre [25] and Signal [13], and design envi-
ronments like Matlab/Simulink. In the synchrony hypothesis of synchronous programming
models, time is a sequence of discrete instants so that computations complete instanta-
neously at each instant. That is, there is no computation between two consecutive time
instants. The synchrony hypothesis simplifies the specification and verification of systems
by replacing the real time by a logical time. As such, synchronous programming mod-
els express deterministically the exact functional behavior. However, to benefit from this
specification, the implementation of synchronous models must preserve the synchronous
semantics.

30 Chapter 3. Motivations and related works

The synchronous languages Esterel [15], Lustre [25] and Signal [13] have addressed
the semantic-preserving implementation of synchronous models. In fact, they provide
formal approaches to compile a synchronous program to a single sequential code realizing
the functional semantics [11]. However, fully sequential codes are not efficient neither for
multi-rate systems nor in multi-core platforms [26, 85]. Thus, several works studied the
semantics-preserving multi-task implementation of synchronous programs [47].

Among the existing works, Aubry et al. [3] translated a Signal [13] program into a
graph, where nodes represent basic computations and edges are data dependencies between
nodes. Each edge is characterized by a clock indicating when the data is present. Thus,
according to a partition given by designers, they partition the initial graph into a set of
subgraphs. This graph transformation mainly consists in characterizing the communication
needs between partitions and verifying that no circuit is created. The subgraphs are
thereafter translated into sequential codes. Girault and Nicollin [48], and Girault et al. [49]
automatically distributed a Lustre [25] program into several tasks. They used a clock
partition provided by the designer to automatically generate the task associated to the
computations driven by each clock.

To ensure that the distributed code has the semantics of the centralized program,
authors in [3] and [48, 49] have used blocking communication mechanisms to synchronize
tasks. However, scheduling policies with blocking mechanisms are not sustainable. In
fact, a system can become unschedulable online (when execution in less than the WCET),
while it has been proved offline to be schedulable [53]. Thus, Sofronis et al. [102] and
Caspi et al. [26] studied multi-task implementation of synchronous programs on single-core
and proposed a lock-free inter-task buffering protocol called Dynamic Buffering Protocol
(DBP). Zeng and Di Natale [117] extended the protocol to multi-core.

Works of Aubry et al. [3], Girault and Nicollin [48], Girault et al. [49], Sofronis et
al. [102] and Caspi et al. [26] laid foundations for semantics-preserving multi-task and
distributed implementation of synchronous programs. However, they do not address nei-
ther the real-time scheduling nor the mapping, which are out of their scope. That is, the
SynDEx [72] environment provides both a language and a framework to help designers
in optimizing the implementation of real-time applications on multiprocessor. SynDEx
implements the Algorithm-Architecture Adequation (AAA) methodology, where applica-
tions are modeled by Directed Acyclic Graph (DAG) called software graphs and hardwares
are modeled by undirected graphs called hardware graphs. These graphs exhibit both the
potential parallelism of the application algorithm and the available parallelism in the plat-
form. Then, the implementation is formalized as a graph transformations to distribute and
schedule the application on the platform. Several heuristics are proposed to explore solu-
tions that optimize the response time and resources allocation, while satisfying real-time
constraints [103, 54].

Matlab/Simulink models can be translated into synchronous programs [24, 13, 15], so
that above mentioned works can apply. However, neither synchronous languages [15, 25,
13] nor SynDEx [72] allow to exploit the compositionality offers by AUTOSAR, to focus
on the interactions between Runnables and exploit their parallelism. In our work, we

3.3. Related work 31

assume that tasks code can be generated in a semantic-preserving way. As such, we focus
only on the semantic-preserving implementation of the interactions between tasks. In this
sense, our approach is more akin to works on Architecture Description Language (ADL).

3.3.2 Architecture Description Languages

An Architecture Description Language (ADL) provides a higher abstraction layer than
above-mentioned synchronous languages. In fact, an ADL focuses on interactions between
high-level components like tasks, instead of all basic computations.

The multi-periodic synchronous dataflow language Prelude [44], is an ADL to design
and assemble interacting locally mono-periodic synchronous systems into a globally multi-
periodic synchronous system. The Prelude program is thereafter transformed into a set
of dependent tasks related by precedence constraints expressed at job level [45]. On single-
core, Prelude compiler implements deterministic communications between tasks without
synchronization mechanisms. This is done by ensuring that consumer jobs always starts
after producer jobs and that the producers has a higher priority than consumers [46]. On
multi-core, Prelude uses explicit synchronization mechanisms, but prevents scheduling
anomaly issues by forcing the execution of tasks to take the WCET [85].

Giotto [58] provides a logical abstract programming framework for the implementa-
tion of embedded control systems. In Giotto, a control application consists of periodic
tasks that communicate through ports. Each task has a logical start time and a logical end
time corresponding to the start time and the end time of its execution period, respectively.
Giotto logical abstraction does not specify when, where, and how the actual computa-
tion is performed on the platform. However, the time when the input (resp. output) ports
are updated is determined and is equal to the logical start (resp. end) time. By making
communications independent of the actual execution start time and end time, Giotto
enables a functionality determinism of the implementation.

The Oasis [27, 77, 78] environment provides a framework for implementing multi-task
safety-critical real-time systems. In Oasis, an application is a set of parallel communicating
tasks called agents. Each agent is an execution entity composed of a sequential number of
processing operations. Each processing operation is associated with an execution interval
defining its earliest start time and its latest end time. Then, an Oasis task is modeled by
an execution graph called state-transition diagram, where each node expresses a temporal
constraint (e.g. start date, deadline) and each edge is a basic processing operation between
two nodes. The temporal dates associated to nodes define the synchronization points
of agents. In fact, agents communicate through non-blocking mechanisms implemented
either as temporal variables or messages. A temporal variable is a shared memory where
modifications are made visible only at synchronization points, while messages has explicit
definition of visibility dates. Hence, by combining temporal constraints on executions and
communications, Oasis ensures a temporal and behavioral determinism of the real-time
implementation.

32 Chapter 3. Motivations and related works

Our work is similar to Prelude, Giotto and Oasis as we rely on the compositionality
offers by AUTOSAR to focus on the interactions between Runnables. We consider that
the behavior of each Runnable can be generated as a sequential code using a semantics-
preserving approach. Therefore, the behavior of the application is determined by the
interactions (i.e. data exchanges) between Runnables in the functional specification.

However, our approach differs from the latter because we study the deterministic
semantic-preserving implementation of the dataflow by modeling the functional dataflow
with SDFG. We rely on the solid mathematical background on SDFG to study the mapping
and scheduling of control applications designed and validated with Matlab/Simulink.

3.3.3 Frameworks for multi-core

The adoption of multi-core architectures and the growing complexity of embedded features
have encouraged the development of several integrated design frameworks. Among others,
the Amalthea project [2] provides an open source development platform for automotive
multi-core systems. The Amalthea methodology [115] covers several design steps such as
Electric/Electronic (E/E) architecture modeling, functional modeling, software modeling
(i.e. intermediate abstraction), mapping and scheduling. Each step is implemented by
a custom or an existing tool. For example, the functional model can be provided by
Matlab/Simulink. The proposed framework enables interoperability between the steps by
providing converters and tools for exchanges between steps [115]. In addition, the design
flow of Amalthea can be tailored so that some steps can be ignored at the convenience
of the user. For example, the functional modeling step can be ignored in Amalthea
methodology.

The parMerasa project [88] investigated the parallelization and timing-predictable
executions of hard real-time applications on multi-core. First, they split the application
code into a set of activities to expose the maximum degree of parallelism [61]. Then, they
agglomerate parallel activities to reduce the granularity of the parallelism to a reasonable
level. This agglomeration is formulated as an optimization problem to reduce the makespan
(total execution of the program), while reducing the costs of blocking synchronization and
communications.

Our approach is different from those mentioned above as we target the semantic-
preserving implementation of Matlab/Simulink specifications. In this purpose, we devel-
oped a SDFG model that simplifies the specification of the functional dataflow. This model
provides a high level abstraction with strong mathematical background for the analysis of
the semantics-preserving implementation of the dataflow on multi/many-core.

3.4. Synchronous Dataflow Graphs 33

3.3.4 Multi-core analysis with Synchronous Dataflow Graphs

The mapping and scheduling on multi/many-core using SDFG [73] have been studied for
decades. Works of Marchetti and Munier [79] demonstrate a sufficient condition on the
existence of a scheduling for a SDFG. Munier [83] proposed a method to construct a
scheduling that gives the maximum throughput. Marchetti and Munier [80] studied the
periodic scheduling of SDFGs. These works provide the major mathematical properties on
SDFG, which are the basis of the work of this thesis.

Several authors have used SDFG to study the mapping, the routing and the execution
problem of applications on parallel and distributed architectures [52, 96, 89]. The Ac-
cessCore toolchain is a recent example of a compiler that transforms programs written in
ΣC [4] into SDFG. ΣC is an enriched form of C programming language with some commu-
nication mechanisms to facilitate the programming of massively parallel applications. The
SDFG obtained from ΣC is thereafter used to perform mapping and scheduling analysis
in order to run the application on Kalray MPPA-256 [37]. However, they do not address
hard real-time aspects.

For streaming applications, Bamakhrama and Stefanov [7, 8] introduced the hard real-
time scheduling of applications modeled by Cyclo-Static Dataflow Graph (CSDFG) [17].
The CSDFG is an extension of SDFG where tasks can have multiple computation phase.
However, they considered that the real-time attributes of tasks (periods and deadlines) are
not expressed as input constraints. Thus, they compute these attributes to guarantee the
maximum throughput [7] and to minimize the latency [8] of the application.

The work of this thesis target control applications, which often contain cyclic depen-
dencies representing feed-back loops. Consequently, our SDFG model also contain cycles.
Furthermore, the real-time attributes of tasks are driven by the dynamic of the physical
system. As a result, the real-time attributes are input constraints that we guarantee during
our mapping and scheduling analysis.

3.4 Synchronous Dataflow Graphs

In this section, we review some basic definitions on the SDFG formalism and we detail the
analytical properties used in the thesis.

3.4.1 Basic definitions and notations

The Synchronous Dataflow Graph (SDFG) formalism was introduced by Lee and Messer-
schmitt [73] to model communications between tasks in dataflow applications. A SDFG is
a directed graph G = (T ,A,M) characterized as follows:

34 Chapter 3. Motivations and related works

• T : is a set of nodes, where each node models a SDFG task τi ∈ T .

• A: is a set of edges, where each edge a = (τi, τj) ∈ A models a First-In-First-Out
(FIFO) buffer between two SDFG tasks τi and τj.

• M: is a set of initial markings M = {M0(a) | a ∈ A}, where M0(a) is a non-
negative number that represents the initial amount of tokens in the buffer a. A token
denotes a data send/received via the buffer.

• ina: is the production rate that denotes the amount of tokens produced in
a = (τi, τj) ∈ A at each activation of τi.

• outa: is the consumption rate that denotes the amount of tokens consumed in
a = (τi, τj) ∈ A at each activation of τj.

• gcda: is the greatest common divisor of ina and outa for every buffer a ∈ A.

Note that the concept of SDFG tasks is not restricted to real-time tasks or periodic
tasks. It also includes non real-time tasks and non periodic tasks. As a result, tasks
parameters such as release times and periods are not equivalent for SDFG tasks and real-
time tasks.

The SDFG formalism provides a static description of the dataflow of applications by
enforcing that all executions of each task have the same behavior. As such, the amount of
tokens produced (resp. consumed) in the buffer at each execution is fixed. Consequently,
the dataflow is completely predictable.

Figure 3.2 illustrates a SDFG buffer a = (τ1, τ2) between two tasks τ1 and τ2. There is
an initial amount of M0(a) = 5 tokens. Each execution of τ1 produces ina = 3 more tokens
in the buffer. Each execution of τ2 consumes outa = 5 tokens from the buffer.

Figure 3.2: Example of SDFG with two tasks τ1 and τ2 connected by the buffer a = (τ1, τ2).

3.4.2 Liveliness

The execution of a SDFG task τi depends on the presence or the absence of tokens in
buffers. In fact, the amount of token in a buffer is always non-negative and the consumer
task can execute only if there are enough tokens in the buffer. As consequence, each task
can execute only when there are enough tokens in all it input buffers. In the example of
Figure 3.2, task τ1 has no input buffer and can run infinitely. However, τ2 can run only
when there are enough tokens in a = (τ1, τ2).

3.4. Synchronous Dataflow Graphs 35

(a) Example of alive graph.

4

34

3

3

0

(b) Example of deadlock graph.

Figure 3.3: Example of alive and deadlocked graphs.

The liveliness is an important property that indicates whether all tasks of a SDFG can
be executed infinitely often during the dataflow execution. A graph is said to be alive if
all its tasks can be executed as many times as required. Otherwise, the graph is said to be
deadlocked.

Figure 3.3(a) illustrates an example of an alive SDFG. In fact, as there are 6 initial
tokens in buffer a1, τ3 executes once. This execution consumes 4 tokens from a1 and
produces 4 tokens in a2. τ3 cannot execute again because there are only 2 remaining tokens
in a1, which is not sufficient for its execution. However, τ4 can execute once because there
are now 4 tokens in a2. This execution consumes 3 tokens from a2 and produces 3 tokens
in a1. τ4 cannot execute again because there is only 1 remaining token in a2. However,
τ3 can execute once because there are now 5 tokens in a1. We can repeat this reasoning
indefinitely to check that there are always enough tokens so that τ3 or τ4 can executes.

The example of Figure 3.3(b) illustrates a deadlocked SDFG. In fact, τ4 executes once
because there are 3 initial tokens in a2. This execution consumes 3 tokens from a2 and
produces 3 tokens in a1. There are now 3 tokens is a1 and no remaining token in a2. As
such, neither τ4 nor τ3 can execute because there are not enough tokens in a1 and a2,
respectively.

Checking the liveliness of a SDFG is a difficult problem widely studied in the dataflow
community [74]. In this work, we consider the sufficient condition of liveliness demonstrated
by Marchetti and Munier-Kordon [79]. This condition is expressed by Theorem 3.1. The
normalized SDFG in this theorem is a SDFG where the production and consumption rates
corresponding to a given task are identical. This is because rates are associated to buffers
and not tasks.

Theorem 3.1 (Sufficient condition of liveliness)
Let G = (T ,A,M) be a normalized SDFG. G is alive if for every cycle µ in G the initial
marking satisfies Equation (3.1).∑

a∈µ
M0(a) >

∑
a∈µ

(outa − gcda) (3.1)

The SDFGs in Figure 3.3 are normalized. Thus, we can verify that the SDFG in
Figure 3.3(a) satisfies the condition of Equation 3.1. Indeed, ∑a∈µM0(a) = M0(a1) +
M0(a2) = 6 and ∑a∈µ(outa − gcda) = (4− 1) + (3− 1) = 5.

36 Chapter 3. Motivations and related works

3.4.3 Precedence constraints

Precedence constraints define the relationships between executions of a producer task and
those of a consumer task through a SDFG buffer.

Definition 3.1 (Precedence constraints)
A buffer a = (τi, τj) with an initial marking M0(a) models a precedence constraint from the
nith job of τi to the njth job of τj if:

(1) τj[nj] is the first execution of τj that requires a token produced by τi[ni] and

(2) τj[nj] can only be executed immediately after τi[ni].

We denote by τi[ni] → τj[nj] the precedence constraint from τi[ni] to τj[nj] and by
τi → τj the set of precedence constraints between τi and τj.

Figure 3.4 illustrates the execution model of the SDFG of Figure 3.2. The number 5 (in
blue) circled represents the initial amount of tokens. Top numbers indicate the cumulative
amount of tokens in the buffer after each execution of τ1. For example, the first execution
τ1[1] produces 3 tokens in the buffer, which are added to the initial 5 to give the top number
8. Down numbers indicate the cumulative amount of tokens needed before each execution
of τ2. For example, the first execution τ2[1] requires 5 tokens in the buffer. The second
execution τ2[2] requires 5 more tokens, which is accumulated to the previous to give the
down number 10. Arrows indicate precedence constraints between executions of τ1 and τ2.
For example, arrow 1 indicates the precedence constraint τ1[2]→ τ2[2]. In fact, after τ1[1]
there are only 8 accumulated tokens in the buffer. This is not sufficient for the execution
of τ2[2]. However, after τ1[2] there are 11 accumulated tokens in the buffer. τ2[2] can then
execute for the first time only after τ1[2].

Figure 3.4: Example of precedence constraints between tasks τ1 and τ2 connected by the
buffer a = (τ1, τ2) of Figure 3.2.

The principle of precedence constraints is a key feature of SDFG. This principle is
used throughout this thesis. Theorem 3.2 reminds the necessary and sufficient condition
on the existence of precedence constraints between executions of two tasks. Theorem 3.2
was demonstrated by Marchetti and Munier-Kordon [80].

Theorem 3.2
A buffer SDFG a = (τi, τj) models a precedence constraint between the nith execution of τi

3.4. Synchronous Dataflow Graphs 37

and the njth execution of τj if and only if:

ina > M0(a) + ina · ni − outa · nj ≥ max(ina − outa, 0) (3.2)

The condition of Equation (3.2) can be verified on the precedence constraint τ1[2] →
τ2[2] (arrow 1) in Figure 3.4. This is done by replacing ina = 3, outa = 5, M0(a) = 5,
ni = 2 and nj = 2. So, we get 3 > 5 + 3 ∗ 2− 5 ∗ 2 ≥ max(3− 5, 0), which is equivalent to
3 > 1 ≥ 0.

3.4.4 Scheduling of Synchronous Dataflow Graphs

In general, the scheduling of a SDFG is based on the starting date of tasks. However, we
based our analysis rather on the release date because we target a preemptive scheduling.

Definition 3.2 (Scheduling of SDFG)
Scheduling a SDFG G = (T ,A,M) consists of fixing the release time of each job according
to a given strategy. More formally, it consists in setting the release time rGi [ni] of any nith
execution of every task τi ∈ T .

Definition 3.3 (Periodic scheduling of SDFG)
A periodic scheduling of a SDFG G = (T ,A,M) is a scheduling that defines a period T Gi
and a first execution staring date rGi [1] for each task τi ∈ T . As such, the release time of
τi[ni] in the periodic scheduling is rGi [ni] = rGi [1] + (ni − 1) · T Gi .

In the scheduling theory of SDFG, the execution time of a given task is the same for
all its executions. However in our context, a preemptive execution of a given task τi is
performed in a time interval, which is not the same for all its executions (i.e. different
preemption scenarios per execution). So, we apply the scheduling theory of SDFG in our
context by replacing the execution time of each task τi by an execution interval DGi greater
than the maximum time intervals of the executions of τi. We define the scheduling of
SDFG for our context in Definition 3.4

Definition 3.4 (Scheduling of SDFG for preemptive tasks)
Scheduling a SDFG G = (T ,A,M) for preemptive tasks consists in setting the execution
interval for each task and fixing the release times of each job according to a given strategy.

From Definition 3.4, the execution interval DGi of each task τi is not a constant in our
context. It is rather decided by the scheduling algorithm of the graph.

Let us assume arbitrary execution intervals for the tasks in Figure 3.2. Figure 3.5(a)
illustrates a scheduling that uses precedence constraints to set the release times of tasks.
Indeed, this scheduling sets the release times so that tasks are executed As Soon As Possible
(ASAP). Namely, as soon as there are enough tokens in the buffer a = (τ1, τ2). As such,

38 Chapter 3. Motivations and related works

the scheduling executes τ1 continuously. τ2 is executed only after the end of the execution
time of the job of τ1 with a precedence constraint. For example, τ2[3] is scheduled after
τ1[4] finishes because of the precedence constraint τ1[4]→ τ2[3]. Figure 3.5(b) illustrates a
periodic scheduling of the same graph. This scheduling uses the same initial release time
for τ1 and τ2, but enforces different scheduling periods.

(a) ASAP scheduling. (b) Periodic scheduling.

Figure 3.5: Examples of scheduling of the SDFG of Figure 3.2.

Definition 3.5 (Validity of the scheduling of SDFG)
A scheduling of a SDFG G = (T ,A,M) is said to be valid if the release times satisfy the
precedence constraints.

The validity condition of the scheduling of a SDFG is characterized by Theorem 3.3.

Theorem 3.3
Let us consider a SDFG G = (T ,A,M) such as each job of τi ∈ T completes within the
interval defined by its execution interval DGi . The scheduling of G is valid if for every buffer
a = (τi, τj) ∈ A and every precedence constraint τi[ni]→ τj[nj]:

rGj [nj] ≥ rGi [ni] +DGi (3.3)

Proof. If rGj [nj] < rGi [ni] +DGi then τj[nj] can start executing before τi[ni] completes. This
does not guarantee the precedence constraint τi[ni]→ τj[nj] because τj[nj] must start only
after τi[ni] finishes. Otherwise, there are not enough tokens in the buffer for τj[nj]. As
consequence, rGj [nj] must be greater or equal to rGi [ni] +DGi .

The ASAP scheduling of Figure 3.5(a) is valid because each job of τ2 starts only after
the execution interval of the job of τ1 with a precedence constraint. However, the periodic
scheduling of Figure 3.5(b) is not valid because τ2[3] starts executing before the end of
the execution interval of τ1[4]. Therefore, the precedence constraint τ1[4] → τ2[3] is not
guaranteed.

Next theorem, proved by Marchetti and Munier-Kordon [80], expresses the validity
condition of periodic scheduling of SDFG.

Theorem 3.4
Let us consider the SDFG G = (T ,A,M). A periodic scheduling of G, which enforces a
scheduling period T Gi for every task τi ∈ T , is valid if a rational K = TG

i

ina
= TG

j

outa
exists for

3.5. Conclusion 39

every buffer a ∈ A, so that Equation (3.4) is verified.

rGj [1]− rGi [1] ≥ DGi +K · (outa −M0(a)− gcda) (3.4)

The validity condition of the scheduling of SDFG ensures the precedence constraints of
the graph. It guarantees that consumptions are always made before productions. In fact,
Theorem 3.3 and Theorem 3.4 enforce executions of consumers to start only after the end
of executions of producers. This allows a predictive implementation of dataflow because
each execution of a consumer has the guarantee of the presence of its input data.

3.5 Conclusion

The deterministic implementation of Matlab/Simulink models on AUTOSAR multi-core is
an emerging issue in the automotive industry. In this chapter, we formulate the problem of
semantic-preserving implementation of the dataflow in a multi-periodic Matlab/Simulink
model on AUTOSAR multi-core. We relied on the compositionality offers by AUTOSAR
to focus on the interactions between Runnables. We use SDFG [73] as abstract repre-
sentation of the functional dataflow. Compared to related work, we provide a framework
for semantics-preserving implementation of the dataflow in hard real-time system using a
formalism adapted for multi-core.

In next chapter, we study the method to extract the functional dataflow in a multi-
periodic Matlab/Simulink system by SDFG.

Chapter 4

Modeling multi-periodic Simulink
systems by SDFG

Contents
4.1 Introduction . 42
4.2 Related work . 42
4.3 Matlab/Simulink functional specification 44

4.3.1 Synchronous block diagrams . 44
4.3.2 Simulation: ordered time-based block evaluation 46
4.3.3 The AUTOSAR perspective . 51

4.4 Modeling dataflow in Simulink by SDFG 51
4.4.1 Modeling direct communication . 52
4.4.2 Modeling delayed communication . 54
4.4.3 Modeling hybrid communication . 56
4.4.4 Translation process . 58

4.5 Static properties . 60
4.6 SDFG modeling of a Fuel Cell Control System 62

4.6.1 Description of a Fuel Cell Control System 63
4.6.2 SDFG modeling of the Fuel Cell Control System 64

4.7 Conclusion . 66

41

42 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

4.1 Introduction

In the industry, Matlab/Simulink [21] is a specification and simulation tool widely used
to design control systems. The functional semantics of a Matlab/Simulink system is val-
idated by a simulation, which imposes a certain dataflow. So, the implementation of
a Matlab/Simulink system on a multi-core real-time platform must guarantee this func-
tional dataflow. In particular, the data exchanges between applications running on different
cores must conform to the synchronous model of Matlab/Simulink, even if cores are not
synchronized. As such, an accurate tracking of the data exchanges is required. In addi-
tion, the transformation must account for real-time and non-functional constraints such as
performance, multi/many-core constraints (e.g. parallelism and resources), reliability, etc.

In this chapter, we demonstrate that the dataflow in a multi-periodic Matlab/Simulink
system can be formally modeled by a SDFG. We assume that the semantics of the sys-
tem is correct and has been formally proven. Hence, we describe statically and accu-
rately the functional dataflow by exploiting the periods and the data exchanges in the
Matlab/Simulink simulation. Our transformation from Matlab/Simulink to SDFG uses
mathematical equations in O(1). It does not need complex algorithmic and the resulting
graph is equivalent in size to the Matlab/Simulink block diagram.

The rest of this chapter is organized as follows. Section 4.2 presents related work con-
cerning synchronous multi-periodic models for multi-core, the modeling of multi-periodic
systems and AUTOSAR multi-core applications. In Section 4.3, we first describe the archi-
tecture of Matlab/Simulink systems. Then, we perform an in-depth study of the simulation
by exploring several configuration parameters and we characterize the main communication
mechanisms. Section 4.4 is devoted to the modeling of multi-periodic Matlab/Simulink sys-
tems by SDFGs. Several static properties of the resulting SDFG are given in Section 4.5.
Finally, Section 4.6 illustrates the transformation on an industrial use case of a Fuel Cell
Control System. Section 4.7 concludes the chapter.

4.2 Related work

The Matlab/Simulink design environment belongs to synchronous programming mod-
els [12] with synchronous languages such as ESTEREL[15], LUSTRE [25] and SIGNAL [13].
Approaches of semantics preserving implementation of such models on both multi-core and
distributed architectures have been discussed in Section 3.3. Thus, Caspi et al. [24] ap-
plied these approaches to the semantics-preserving implementation of synchronous models
on Time Triggered Architectures (TTA) [70]. The latter are distributed architectures built
upon a synchronous bus with a global clock. Tripakis et al. [108] have also proposed such
technique in the less constrained Loosely Time Triggered Architectures (LTTA) [14]. LTTA
is characterized by a communication mechanism where no global clock synchronization is
required. Despite that TTA and LTTA are promising approaches, they do not address
specifically multi-periodic systems and can lead to implementations that are not optimized

4.2. Related work 43

with respect to the multi-periodicity.

More recently, Forget et al. [45] have proposed an approach based on the multi-periodic
synchronous dataflow language Prelude [85]. The latter allows to express finely multi-
periodic aspects. Their work is interesting because it handles the process from Pre-
lude specification to multi/many-core implementation [86]. However, the methodology
of Pagetti et al. [86] does not formally specify the equivalence between communication
mechanisms in Matlab/Simulink and those in Prelude.

Our approach allows to formalize a number of communication mechanisms with SDFG.
The latter is used as a semantics-preserving abstraction that keeps the specificities of the
system, while providing analysis tools for multi-periodic systems on multi-core. As such,
it provides a formal method to move towards the aforementioned strategies for preserving-
semantics implementation on multi/many-core.

Several studies have also investigated the implementation Matlab/Simulink systems on
AUTOSAR multi-core. So, Zeng and Di Natale [117] suggested a number of implementa-
tion strategies for certain communication mechanisms of Matlab/Simulink in AUTOSAR
multi-core. Their study demonstrates that it is possible to implement Matlab/Simulink
mechanisms on AUTOSAR multi-core. However, they do not take into consideration com-
munications modeling. The latter allows to perform high level analysis with respect to
mapping, allocation, resources utilization and memory overhead. Having a high level model
with strong mathematical background and software analysis tools such as SDFG provides
additional optimization capabilities, which would not be possible if we were limited to the
transcription of communication mechanisms.

Höttger et al. [60] proposed an abstract description of AUTOSAR systems. This ab-
straction considers only the communication links between the elements of the system.
Then, they applied parallelization approaches for multi-core partitioning. However, their
abstraction is somewhat far from the original specification of the system because it does
not consider how communications are made. In addition, they do not rely on synchronous
specification such as Matlab/Simulink. Our description is more interesting as it is closer to
the initial specification and it provides a refinement of communication models. The latter
is used to have better multi-core analysis methods.

Concerning the formalism, Richard et al. [94] have developed the principle of generalized
dependencies to describe synchronous multi-periodic systems. Their equations are similar
to those of SDFG. However, they have not established the formal equivalence between
their model and SDFG. Moreover, their formalism fails to model all the communication
mechanisms that we consider in Matlab/Simulink.

Tripakis et al. [108] made the link between synchronous model andMarked Direct Graph
(MDG) [31]. MDG is a special case of SDFG also known as Homogeneous Synchronous
Dataflow (HSDFG) [73]. A HSDFG is a SDFG with all production and consumption rates
are equal to 1. Despite SDFG is known to be convertible into MDG for multi-periodic
systems, Marchetti and Munier [80] have shown that this conversion is not in polynomial

44 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

size and suffers from performance issues. Thereby, MDG is not efficient to model large
multi-periodic applications.

Guesmi and Hasnaoui [56] succeeded in linking Matlab/Simulink and SDFG. However,
their link concerns only the structure and there is no detailed study of the synchronous
semantics. Their abstraction does not account for the real communication mechanisms
imposed by the functional semantics of Matlab/Simulink.

Authors in [28, 20, 40] have proposed translation strategies from Matlab/Simulink to
SDFG by taking communications into account. Chessa [28] implemented a translation
of single rate Matlab/Simulink models to HSDFGs. Authors in [20] and [40] proposed
translation of multi-periodic Matlab/Simulink systems to SDFG. However, those works
used only harmonic periods. Our translation consider multi-periodic systems with both
harmonic and non-harmonic periods.

4.3 Matlab/Simulink functional specification

The Matlab/Simulink design environment is a graphical modeling editor, simulator and
code generator. It is used to design, simulate, implement and test a variety of time-
varying systems, including communications, controls, signal processing, video processing,
and image processing. Matlab/Simulink has the ability to model multi-domain systems.
As such, it enables the co-simulation of both functional and physical models to validate
the behavior of the system. In this section, we consider the functional specification of
multi-periodic systems in Matlab/Simulink.

In Subsection 4.3.1, we describe Matlab/Simulink synchronous block diagrams and
we detail its temporal aspects. In Subsection 4.3.2, we perform an in-depth study of
Matlab/Simulink simulation. This study comprises the definition of several simulation
parameters, the description of simulation processes and steps, and the characterization of
the main communication mechanisms.

4.3.1 Synchronous block diagrams

A Matlab/Simulink system is described by hierarchical Synchronous Block Diagrams
(SBD). The latter is composed of a set of communicating functional blocks connected
by signals. Each block has dedicated input and output ports through which it communi-
cates with others. A block in this SBD is either a basic block from Matlab/Simulink library
(e.g. add, a filter, unit delay, s-function) or a grouping of several blocks into a subsystem
block. The internal structure of a subsystem block is also described as a SBD. In fact, sub-
systems provide a graphical and hierarchical organization for the system. Two categories
of subsystems exist: virtual and atomic. Virtual subsystems are ignored (i.e. flattened)
by Matlab/Simulink during simulation, whereas atomic subsystems are evaluated in block

4.3. Matlab/Simulink functional specification 45

(i.e. as a single unit).

Figure 4.1 illustrates a Matlab/Simulink model of a conditional Multiply-add operation.
This model has three input ports (In1, In2 and In3) and one output port (Out). The top
hierarchy SBD is composed of an atomic subsystem (Multiply-add), a virtual subsystem
(If-else) and an unit delay (Delay). The latter connects the output of the Multiply-add
block with one input of the If-else block. The Multiply-add block realizes an uncondi-
tional multiply-by-4-and-add operation. Its internal structure is described under another
hierarchy of SBD. This hierarchy is composed of two input ports (a and b), one output
port (c), a 4-gain multiplier (Gain) and an add block (Add). The internal structure of
the If-else block is also described under another hierarchy of SBD. The latter is composed
of three input ports (u, x1 and x2), an If-condition block, two If-action blocks (If-action1
and If-action2) and a merge block (Merge). The If-condition block activates If-action1 or
If-action2 depending on whether the input port u is greater than 0, respectively. Each If-
action block transfers its input to the output and the merging of the two forms the output
of the subsystem.

Figure 4.1: Simulink model of a conditional Multiply-add operation.

Matlab/Simulink defines a time-based SBD. In fact, signals are quantities that change
over time and are defined for all points in time. The output values of some blocks are
functions of previous values of temporal variables called states. Computing the outputs of
these blocks therefore requires saving the states at each time. For example, the Delay block
in Figure 4.1 has an internal state variable that captures the value of its input signal at a
given point in time for computing its output signal at the next point in time. Figure 4.2
illustrates a graphic model of blocks with state variables, where x represents the set of
state variables of the block.

Each block in the SBD describes a set of equations called block methods. These equa-
tions define the relationships between the input signals, the output signals and the state
variables of the block. So, the execution of a block (in simulation) consists of evaluating
its block methods and updating the values of its output signals and its state variables,
respectively. For the example of Figure 4.1, the subsystem Multiply-add is characterized

46 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

Figure 4.2: A graphical representation of a blocks with internal state variables.

only by an output equation or output method c = 4b + a. This subsystem does not have
state variables. Hence, its output signal c depends directly on its inputs signals a and b.
In the same example, the Delay block is characterized by a state variable xDelay = Input

and an output method Output = xDelay. Note that the output method is always evaluated
before the state variable is updated. As a result, the output signal of the Delay block
depends only on its state variable xDelay, which is the previous value of its input signal.

In Matlab/Simulink, the relationship between input and output ports defines two types
of functional blocks:

• Direct feedthrough blocks: direct feedthrough defines a block that has one or more
output ports that depend directly on one or more input ports. Furthermore, inde-
pendently of the internal structure, an atomic subsystem is direct feedthrough. In
Figure 4.1, all blocks except the unit Delay are direct feedthrough.

• Non-direct feedthrough blocks: non-direct feedthrough defines a block whose output
ports depend only on the state variables. In Figure 4.1, the Delay block is an example
of a non-direct feedthrough block.

The distinction between direct feedthrough and non-direct feedthrough blocks is a key
characteristic of the simulation of Matlab/Simulink.

4.3.2 Simulation: ordered time-based block evaluation

The simulation of a Matlab/Simulink block diagram consists in propagating signals over
time. This is achieved by computing the output ports of all blocks in time. Thus, the
result of the simulation is obtained by stepping the time at a rate defined by a step size.
Namely, the logical time advances in simulation by adding one time step to the current
time. Among the existing stepping techniques in Matlab/Simulink (e.g. variable steps and
fixed step), the discrete fixed-step is the one used to design the functional specification of
embedded applications. This stepping technique computes the time of the next step by
adding a fixed step size to the current time.

At some point in the simulation, a block is executed and the new values of its out-
put signals are propagated only when certain execution conditions are satisfied. If these
conditions are not met, the block is not executed and its output signals hold their values.
Matlab/Simulink defines three types of execution conditions and block:

4.3. Matlab/Simulink functional specification 47

• Unconditional blocks or subsystems: the block is assigned a sampling time that in-
dicates when it is executed during the simulation. This sample time can be periodic
(given by the designer) or continuous. Periodic blocks are executed during the sim-
ulation only at time steps that are multiple of their periods. Continuous blocks use
Ordinary Differential Equations to determine dynamically their execution time dur-
ing the simulation [21]. The Multiply-add subsystem in Figure 4.1 is an example of
unconditionally executed blocks.

• Conditional subsystems: the subsystem is executed only when an external control sig-
nal enables or triggers its execution. Examples of conditional subsystems are Enabled
subsystems (execute at a time step if the control signal is positive), Triggered subsys-
tems (execute each time a trigger event occurs), Function-call Subsystems (execute
each time a function-call event occurs).

• Logically-executed subsystems: the subsystem is executed one or more times at the
current time step when it is enabled by a signal from a control block. A control block
implements control logic such as if-action blocks.

In the rest of this study, we consider only discrete blocks. In fact, continuous blocks
are mainly used to model physical environments, while embedded applications are modeled
by discrete blocks. In particular, this is the case for Matlab/Simulink applications in
AUTOSAR perspective [6]. In addition, we use the periodic assumption to characterize
the simulation because its execution scenarios cover those of conditionally and logically
executed subsystems.

Figure 4.3 shows a conceptual block diagram representing a Matlab/Simulink system
containing four periodic blocks A, B, C and D, which have the sample times 80ms, 40ms,
30ms, and 50ms, respectively.

Figure 4.3: Example of Simulink block diagram with annotated sample times.

Before the simulation starts, the simulation engine determines the order in which to
execute blocks at each time step. This block execution ordering is called the sorted or-
der. The sorted order of unconditional blocks and subsystems is constructed by combining
two rules: the first applies to direct feedthrough blocks and the second applies to non-
direct feedthrough blocks. In fact, on the one hand, outputs of any direct feedthrough
block depend directly on its input ports. Hence, any direct feedthrough block must be
executed after the blocks driving its input ports. Otherwise, its outputs can not be cal-
culated and its output signals cannot be propagated. As a result, the simulation of direct

48 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

feedthrough blocks is performed in the topological order. On the other hand, outputs
of any non-direct feedthrough block do not depend directly on its input ports. As such,
non-direct feedthrough blocks can be executed in any order as long as each precedes the
direct feedthrough blocks that it drives. Then, the sorted order of conditional and logically-
executed blocks and subsystems is derived from the sorted order of the unconditional blocks
or subsystems that drive their execution conditions. Finally, at each time step, the simula-
tion engine scans the sorted order and executes (in order) blocks that verify their execution
conditions.

For cyclic dependencies, Matlab/Simulink requires at least one non-direct feedthrough
block in any topological dependency cycle. In fact, non-direct feedthrough blocks break
direct dependency cycles because they act as delay blocks (in terms of data transfer).

In Figure 4.3, let us assume that blocks A, C and D are direct feedthrough and block B
is non-direct feedthrough. The relative order of blocks A, C and D follows their topological
dependency. Since B is a non-direct feedthrough and its outputs do not depend directly
on the current value of A (i.e. B has a delay semantics), B must be executed before A.
The corresponding sorted order for this system is B → C → D → A.

The execution of a block at each time step is divided into two ordered stages. The
first stage is to evaluate the output methods and the second stage is to evaluate the state
methods. Then, the dataflow semantics of the simulation is dictated by the order in
which these stages are evaluated relatively to others. In fact, the simulation engine uses
the concept of simulation group to define blocks sets that are executed together through
each stage. Namely, output methods of blocks in the same group are evaluated together,
followed by the evaluation of their state methods. Simulation groups are transparent for
designers. However, Matlab/Simulink environment provides two simulation modes (single-
tasking and multitasking) that define implicitly how groups are formed. As a result, the
interpretation and the functional specification of a given SBD depend of simulation modes.

The single-tasking mode defines only one simulation group. That is, all blocks are
processed together through each stage of the simulation. More precisely, at each time step,
the output methods of all blocks that verify the execution conditions are first evaluated
in the sorted order. Then, their state variables are updated in the same way. Figure 4.4
illustrates a single-tasking simulation of the system of Figure 4.3. In this illustration, at
time step 0ms the output methods of all blocks are first computed together (B → C →
D → A) followed by the computation and the updating of their state variables in the same
order. The same goes to simulation time step 30ms except that only block C is to be
executed, and so on.

In the simulation, we define as direct communication the data exchange mechanism
where a block can always use the data produced at the same time step by the block
driving its input. For example, direct data exchange is illustrated in Figure 4.4 by block C
which consumes at time step 0s the data produced at the same time step by block B. This
is because the output of C depends directly on its input port which is fed by the output
of block B and the latter is updated before the former.

4.3. Matlab/Simulink functional specification 49

Figure 4.4: Example of single-tasking simulation.

As well, we define as delayed communication the data exchange mechanism where a
block does not use the latest data produced by the block driving its input at each time step.
For example, a delayed data exchange is illustrated in Figure 4.4 by block B which does
not consume at time step 0.0s the data produced at the same time step (i.e. the latest) by
block A. This is because the output of B depends only on its state variable, which is in an
initial state. Furthermore, the communication from block B to block C in the simulation of
Figure 4.4 illustrates a special case of delayed communication. In fact, the latter is between
blocks at different periods. In that case, the updating of the input port (and thus the state
variable) with the latest value of the output of block A is controlled by a Rate Transition
Block (RTB). The latter delays this updating by one cycle of the producer block A. So,
at steps 0s and 0.08s the inputs and the state variable of block B (gray background) are
not updated with the latest output of block A. As such, the output of block B at time
step 0.04s is computed with the same initial value (of the state variable) as at time step
0s. Then, its state variable is updated with the value of the output of block C (which was
computed at time step 0s). This value is used to compute the output of block B at time
step 0.08s.

Note that the illustration of Figure 4.4 is conceptual and actually the single-tasking
mode of Matlab/Simulink allows harmonic periods only.

In the multitasking mode, blocks at the same sample time are associated to one sim-
ulation group. That is, at each time step each group is executed as in single-tasking.
However, it is the simulation group with the highest rate that is executed first, followed
by the group with the next highest rate, and so on. Figure 4.5 illustrates the multitasking
simulation of the system of Figure 4.3. We distinguish four groups, which are from highest
to lowest rates: {C} → {B} → {D} → {A}. In the conceptual multitasking simulation in
Figure 4.5 we can notice that at each time step, the simulation stages of each group are
processed separately from others.

Figure 4.5: Example of multitasking simulation.

Besides direct and delayed communication mechanisms we define the hybrid commu-

50 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

nication mechanism in multitasking mode. This mechanism combines both direct and
delayed communications. The hybrid communication mechanism is specific for data ex-
changes between blocks belonging to different groups. In fact, the hybrid communication
is used when the data transfer is from a slow block to a fast block, but delayed communi-
cation is not required or not possible. In such configuration, when blocks are evaluated at
the same time step the delayed mechanism is used. This is because the slow block driving
the input is executed after the fast one. However, when the blocks are not evaluated at
the same time step the direct mechanism is used because the fast block takes the latest
output produced by the slow one.

The data transfer from block B to block C in Figure 4.5 is an example of hybrid
communication. Block C is faster than block B. When blocks B and C are fired at the
same time step 0ms, C is executed before B and the communication is delayed. At time
step 0.06s the execution of block C uses direct communication because it takes the output
of the previous execution of block B (at time step 0.05s).

Communication mechanisms between blocks at different rates are always ensured by a
RTB (both in single-tasking and in multitasking). The latter are special blocks for which
the input methods and the output methods can be evaluated at different rates to realize
the aforementioned communication mechanisms [99]. The choice of the RTB for com-
munication between blocks of different periods can be done manually by the designer or
automatically by Matlab/Simulink. In the latter case, the configuration parameter “Au-
tomatically handle rate transition for data transfer” must be checked. Then, the designer
can ask Matlab/Simulink to use deterministic RTB either always, whenever possible or
never. The term deterministic is used in Matlab/Simulink to refer to configurations where
the tool can generate codes realizing the data exchanges deterministically.

There exists five main types of RTB [99, 21]:

• ZOH: the Zero-Order-Hold is a deterministic RTB that implements direct communi-
cations from fast to slow blocks at harmonic periods.

• 1/Z: the 1/Z is a deterministic RTB that implements delayed communications from
slow to fast block at harmonic periods.

• Buf: this RTB block implements direct communications from fast to slow blocks at
arbitrary periods.

• Db-buf: this RTB implements hybrid communications from slow to fast block at
arbitrary periods.

• NoOp: this RTB implements direct communications from fast to slow blocks at
arbitrary periods.

We can notice that the communication mechanism between pair of producer/consumer
blocks in a discrete Matlab/Simulink model can be specified statically without simulating.

4.4. Modeling dataflow in Simulink by SDFG 51

In fact, the dataflow can be extracted for the Matlab/Simulink model by relying on sim-
ulation parameters (e.g. simulation mode, RTB), blocks types (virtual, feedthrough) and
sample times.

4.3.3 The AUTOSAR perspective

The AUTOSAR perspective is a Matlab/Simulink blocks diagram organized as an
AUTOSAR application software. That is, the layers are composed of sets of SWCs that
interact through well defined ports. The specification of SWCs and Runnables in such
models are defined by the designers. However, the design suite Embedded Coder provides
the following rules to let engineers map Matlab/Simulink models to AUTOSAR component
descriptions [6]:

• SWCs are designed as virtual subsystems

• Runnables are designed as function-call subsystems with periodic function calls

The AUTOSAR perspective allows to generate semantics-preserving embedded code
for Runnables automatically. However, the implementation of data exchanges and the
communication mechanisms between Runnables is left at the charge of the AUTOSAR
configuration.

4.4 Modeling dataflow in Simulink by SDFG

In this section, we investigate the modeling of the dataflow in a discrete multi-periodic
Matlab/Simulink system by a SDFG.

Let us assume that each periodic block i in Matlab/Simulink is modeled by a SDFG
task τi. The latter is characterized by a period Ti which corresponds to the sample time of
block i. According to the simulation of i, the logical start date (or time step) of the nith
execution of τi is (ni−1) ·Ti. For each producer/consumer pair (τi, τj), we denote by gcdi,j
the greatest common divisor of Ti and Tj.

In Subsections 4.4.1, 4.4.2 and 4.4.3, we model direct, delayed and hybrid communica-
tion mechanisms between pair of producer/consumer (τi, τj) by a SDFG buffer a = (τi, τj),
respectively. We also prove the characteristics of these buffers using the periods of blocks.
Subsection 4.4.4 provides the process to model a multi-periodic Matlab/Simulink system
by a SDFG.

52 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

4.4.1 Modeling direct communication

In direct communication, producers are always executed before consumers. The transfer
of data is therefore performed with the producer execution that starts at the same time or
just before the execution of the consumer.

Figure 4.6 illustrates the data dependency model of direct communication between
executions of a producer τi and a consumer τj. Arrow 1 indicates a data dependency
between τi[ni − 1] and τj[nj − 1], where producer and consumer start at the same date.
Arrows 2 and 3 exhibit data dependencies between τi[ni] and τj[nj] and between τi[ni + 2]
and τj[nj + 1], respectively. For these dependencies the transferred data are the latest
produced by the execution of τi.

Figure 4.6: Principle of data transfer in direct communication.

The data dependency constraints imposed by direct communication mechanisms depend
on the logical start and end dates of executions. These constraints are characterized by
Definition 4.1.

Definition 4.1
Let us consider the nith execution of a producer τi and the njth execution of a consumer
τj. A data dependency exists between τi[ni] and τj[nj] for direct communication iff:

Condition 1: τj[nj] starts at the same date or after the start date of τi[ni];

Condition 2: τj[nj − 1] starts strictly before the start date of τi[ni];

Condition 3: τj[nj] starts strictly before the start date of τi[ni + 1].

In Figure 4.7, we use SDFG tasks τC and τD to illustrate the data dependencies of direct
communication from block C to D (Figure 4.3). All data dependencies in this illustration
verify the conditions of Definition 4.1. In particular, the dependency τC [1] to τD[1] verifies
that executions start at the same date. Constraint τC [4] to τD[3] verifies that τD[3] starts
after τC [4] but before τC [5] (conditions 1 and 3) and τD[2] starts before τC [4] (condition 2).

We deduce the following lemma from Definition 4.1.

Lemma 4.1
Let (τi, τj) be a producer/consumer pair with respective periods Ti and Tj. A data depen-
dency constraint exists between the nith execution of τi and the njth execution of τj for

4.4. Modeling dataflow in Simulink by SDFG 53

Figure 4.7: Direct communication model from 30ms periodic SDFG task τC to 50ms peri-
odic SDFG task τD.

direct communication iff:

Ti > (Tj − gcdi,j) + ni · Ti − nj · Tj ≥ max(Ti − Tj, 0) (4.1)

Proof. The conditions of Definition 4.1 can be expressed as follows:

1. Condition 1 is equivalent to:
(ni − 1) · Ti ≤ (nj − 1) · Tj ⇐⇒ ni · Ti − nj · Tj ≤ Ti − Tj

2. Condition 2 is equivalent to:
(ni − 1) · Ti > (nj − 2) · Tj ⇐⇒ ni · Ti − nj · Tj > Ti − 2 · Tj

3. Condition 3 is equivalent to:
ni · Ti > (nj − 1) · Tj ⇐⇒ ni · Ti − nj · Tj > −Tj

Adding Tj to the combination of the three equations yields to:

Ti ≥ Tj + ni · Ti − nj · Tj > max(Ti − Tj, 0) (4.2)

gcdi,j divides the terms of Equation (4.2). Hence, gcdi,j can be subtracted to the middle
term of Equation (4.2) so that we obtain Equation (4.1).

We express the SDFG model of direct communication mechanisms in Theorem 4.1.

Theorem 4.1
Direct communication between a producer/consumer pair (τi, τj) is modeled by a buffer
a = (τi, τj), where production and consumption rates are ina = Ti and outa = Tj, respec-
tively. The initial marking is M0(a) = Tj − gcda.

Proof. The equivalence between data dependency constraints of direct communication in
Equation (4.1) and precedence constraints of SDFG in Equation (3.2) proves the theorem.

Data exchanges from τC to τD use direct communication. According to Theorem 4.1, it
is modeled by the SDFG buffer of Figure 4.8. In that case ina = TC = 30, outa = TD = 50,
gcda = 10 and M0(a) = 50− 10 = 40.

54 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

Figure 4.8: SDFG model of direct communication from 30ms periodic SDFG task τC to
50ms periodic SDFG task τD.

4.4.2 Modeling delayed communication

In delayed communication, the consumer is always executed before the producer at each
time step in simulation. In addition, the data transfer is delayed by one period of the
producer and it occurs only after the start date of the next execution of the latter. As
such, the data dependency constraints imposed by the delayed communication depend on
the logical start dates of executions. These constraints are illustrated in Figure 4.9 and
are characterized by Definition 4.2.

Figure 4.9: Principle of data transfer in delayed communication.

Definition 4.2
Let us consider the nith execution of a producer τi and the njth execution of a consumer
τj. A data dependency exists between τi[ni] and τj[nj] for delayed communication iff:

Condition 4: τj[nj] starts at the same date or after the start date of τi[ni + 1];

Condition 5: τj[nj − 1] starts strictly before the start date of τi[ni + 1];

Condition 6: τj[nj] starts strictly before the start date of τi[ni + 2].

In Figure 4.10, we use SDFG tasks τA and τB to illustrate the data dependencies of
delayed communication from block A to B (Figure 4.3). All the dependencies in this illus-
tration verify the conditions of Definition 4.2. For example, let us consider the dependence
τA[1] to τB[3]. τB[3] starts concurrently with the end of the cycle of τA[1] at 80ms, but
before the end of the cycle of τA[2] at 160ms; conditions 4 and 6 are checked. τB[2] starts
at 40ms. That is, it starts before the end of the cycle of τA[1]; Condition 5 is checked. In
delayed communication, although τB[2] starts after τA[1] there is no dependence from τA[1]
to τB[2] because τB[2] starts before the end of the cycle of τA[1].

We deduce the following lemma from Definition 4.2.

Lemma 4.2
Let (τi, τj) be a producer/consumer pair with respective periods Ti and Tj. A data depen-

4.4. Modeling dataflow in Simulink by SDFG 55

Figure 4.10: Delayed communication model from 80ms periodic SDFG task τA to 40ms
periodic SDFG task τB.

dency constraint exists between the nith execution of τi and the njth execution of τj for
delayed communication iff:

Ti > Ti + Tj − gcdi,j + ni · Ti − nj · Tj ≥ max(Ti − Tj, 0) (4.3)

Proof. The conditions of Definition 4.2 can be expressed as follows:

1. Condition 4 is equivalent to:
ni · Ti ≤ (nj − 1) · Tj ⇐⇒ ni · Ti − nj · Tj ≤ −Tj

2. Condition 5 is equivalent to:
ni · Ti > (nj − 2) · Tj ⇐⇒ ni · Ti − nj · Tj > −2 · Tj

3. Condition 6 is equivalent to:
(ni + 1) · Ti > (nj − 1) · Tj ⇐⇒ ni · Ti − nj · Tj > −Ti − Tj

Adding Ti + Tj to the combination of the three equations yields to:

Ti ≥ Ti + Tj + ni · Ti − nj · Tj > max(Ti − Tj, 0) (4.4)

gcdi,j divides the terms of Equation (4.4). Then, Equation (4.3) is derived by subtracting
gcdi,j to the middle term of Equation (4.4).

We express the SDFG model of delayed communication in Theorem 4.2.

Theorem 4.2
Delayed communication between a producer/consumer pair (τi, τj) is modeled by a buffer
a = (τi, τj), where production and consumption rates are ina = Ti and outa = Tj, respec-
tively. The initial marking is M0(a) = Ti + Tj − gcda.

Proof. The equivalence between data dependency constraints of delayed communication in
Equation (4.3) and precedence constraints of SDFG in Equation (3.2) proves the theorem.

Data exchanges from τA to τB use direct communication. According to Theorem 4.2, it
is modeled by the SDFG buffer of Figure 4.11. In that case ina = TA = 80, outa = TB = 40,
gcda = 40 and M0(a) = 80 + 40− 40 = 80.

56 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

Figure 4.11: SDFG model of delayed communication from 80ms periodic SDFG task τA to
40ms periodic SDFG task τB.

4.4.3 Modeling hybrid communication

Hybrid communication is related to the mechanism where the consumer is executed before
the producer at a given time step. In addition, the data transfer is not delayed by one period
of the producer but can occur directly at the end of the execution of the latter. As such,
the data used in this mechanism are those produced by the execution of the producer that
starts strictly before the execution of the consumer. However, there is no data transfer
when the executions of producer and consumer have the same start date because the
latter is executed before the former. The data dependency constraints imposed by hybrid
communication are illustrated in Figure 4.12 and are characterized by Definition 4.3.

Figure 4.12: Principle of data transfer in hybrid communication.

Definition 4.3
Let us consider the nith execution of a producer τi and the njth execution of a consumer
τj. A data dependency exists between τi[ni] and τj[nj] for hybrid communication iff:

Condition 7: τj[nj] starts strictly after the start date of τi[ni];

Condition 8: τj[nj − 1] starts before or at the same start date as τi[ni];

Condition 9: τj[nj] starts before or at the same start date as τi[ni + 1].

In Figure 4.13, we use SDFG tasks τB and τC to illustrate the data dependencies of
hybrid communication from block B to C (Figure 4.3). All the dependencies in this illus-
tration verify the conditions of Definition 4.3. That is, the executions of τB starts strictly
before those of τC . For example, the dependency τB[1] to τC [2] verifies that τC [2] starts
strictly after τB[1] and before τB[2] (conditions 7 and 9). And τC [2] starts concurrently
with τB[1] (condition 8).

Lemma 4.3
Let (τi, τj) be a producer/consumer pair with respective periods Ti and Tj. A data depen-
dency constraint exists between the nith execution of τi and the njth execution of τj for

4.4. Modeling dataflow in Simulink by SDFG 57

Figure 4.13: Hybrid communication model from 40ms periodic SDFG task τB to 30ms
periodic SDFG task τC .

hybrid communication iff:

Ti > Tj + ni · Ti − nj · Tj ≥ max(Ti − Tj, 0) (4.5)

Proof. The conditions of Definition 4.3 can be expressed as follows:

1. Condition 7 is equivalent to:
(ni − 1) · Ti < (nj − 1) · Tj ⇐⇒ ni · Ti − nj · Tj < Ti − Tj

2. Condition 8 is equivalent to:
(ni − 1) · Ti ≥ (nj − 2) · Tj ⇐⇒ ni · Ti − nj · Tj ≥ Ti − 2 · Tj

3. Condition 9 is equivalent to:
ni · Ti ≥ (nj − 1) · Tj ⇐⇒ ni · Ti − nj · Tj ≥ −Tj

We get the required Equation (4.5) by adding Tj to the combination of the aforementioned
three equations.

The SDFG model of hybrid communication is given by Theorem 4.3.

Theorem 4.3
Hybrid communication between a producer/consumer pair (τi, τj) is modeled by a buffer
a = (τi, τj), where production and consumption rates are ina = Ti and outa = Tj, respec-
tively. The initial marking is M0(a) = Tj.

Proof. The equivalence between data dependency constraints of hybrid communication in
Equation (4.5) and precedence constraints of SDFG in Equation (3.2) proves the theorem.

Data exchanges from τB to τC use hybrid communication. According to Theorem 4.3, it
is modeled by the SDFG buffer of Figure 4.14. In that case ina = TB = 40, outa = TC = 30
and M0(a) = 30.

58 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

Figure 4.14: SDFG model of hybrid communication from 40ms periodic SDFG task τB to
30ms periodic SDFG task τC .

4.4.4 Translation process

The SDFG formalism requires atomicity properties and a static behavior for SDFG
tasks [73]. As such, all Matlab/Simulink blocks that verify these conditions can be modeled
by SDFG tasks. This requires the definition of both the principle of atomicity and static
behavior for SDFG tasks that model Matlab/Simulink blocks.

Definition 4.4 (Atomicity)
An atomic SDFG task is a Matlab/Simulink basic block or an upper level atomic subsystem.

In Definition 4.4, an upper level atomic subsystem is an atomic subsystem that is not
included in the hierarchy of another atomic subsystem. The assumption of considering only
upper level atomic subsystems is justified by the fact that atomic subsystems are usually
generated as embedded functions. As such, the upper level atomic subsystem is the main
function that call the subroutines in its internal structure.

Definition 4.5 (Static behavior)
A static SDFG task is a Matlab/Simulink basic block or atomic subsystem that has a
uniform sequence of execution during simulation.

In Definition 4.4, a uniform sequence of execution means that the block is executed
at fixed time intervals during simulation. In Matlab/Simulink, this can be achieved by
unconditional blocks or subsystems with periodic sample times, triggered subsystems with
periodic triggers and function-call subsystems with periodic function calls.

We use Definition 4.6 to construct the structure of the SDFG of a Matlab/Simulink
multi-periodic system.

Definition 4.6 (Construction of the structure)
Given a Matlab/Simulink block diagram, all basic blocks or upper level atomic subsystems
with periodic executions are modeled by SDFG tasks, except for data transfer blocks that
are modeled by SDFG buffers.

Definition 4.6 is derived from Definitions 4.4 and 4.5. However, we choose not to model
data transfer bocks such as unit delay blocks and RTB. In fact, these blocks only perform
data transfers using appropriate mechanisms. For this reason, we chose to model their be-
haviors by SDFG buffers. Definition 4.6 provides the structure of the SDFG of the system.
Then, the characteristics of the SDFG buffers are provided by Theorems 4.1, 4.2 and 4.3.

4.4. Modeling dataflow in Simulink by SDFG 59

We assume that all blocks in the Matlab/Simulink system of Figure 4.3 are either
basic blocks or upper level atomic subsystems. By applying Definition 4.6 and Theo-
rems 4.1, 4.2 and 4.3 we get the SDFG model of Figure 4.15.

Figure 4.15: Structure of the SDFG of the Matlab/Simulink system of Figure 4.3.

We also apply Definition 4.6 to the system of Figure 4.1. We model the upper level
atomic subsystem Multiply-add by a SDFG task. We go into the internal structure of the
If-else virtual subsystem since it does not verify the atomicity property. In this internal
structure, only the If-condition block is modeled by a SDFG task. The two If-action
blocks and the Merge block cannot be modeled by SDFG tasks. This is because they are
logically-executed (i.e. the static behavior is not verified). However, we cannot go into
their internal structures (they are atomic blocks). Consequently, these blocks and their
internal hierarchies cannot be modeled by SDFG tasks.

We derive Property 4.1 from Definition 4.6 to characterize Matlab/Simulink block di-
agrams for which all blocks are modeled by SDFG tasks.

Property 4.1
A Matlab/Simulink block diagram for which all blocks are modeled by SDFG tasks has all
its upper level atomic subsystems and blocks that have periodic executions.

Property 4.1 is not verified by the system of Figure 4.1. In fact, the If-action blocks are
upper level atomic blocks that do not have periodic executions. However, the model can
be modified in order to verify the property. This is done by simply configuring the If-else
block as an atomic subsystem. In doing so, the latter becomes an unconditional atomic
subsystem at the same sample rate as the If-condition block in its internal structure.
Consequently, both the Multiply-add and the If-else block are now modeled by SDFG
tasks. The communication from the If-else to the Multiply-add is modeled by a SDFG
buffer with direct communication. The communication from the Multiply-add to the If-else
block through the unit Delay is modeled by a SDFG buffer with delayed communication.
Communication with the system environment is not modeled. Then, we get the SDFG of
Figure 4.16 by assuming that these blocks have the same sample time at 10ms. τMA and
τIF are the SDFG tasks associated to subsystems Multiply-add and If-else, respectively.

60 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

Figure 4.16: SDFG of the system of Figure 4.1 according to Definition 4.6.

4.5 Static properties

In the SDFG of Theorems 4.1, 4.2 and 4.3 tokens are not directly associated to data. They
rather represent the time periods at which data are produced and consumed. In fact, for
every buffer a = (τi, τj) ∈ A, the production rate ina = Ti and the consumption rate outa =
Tj define the intervals of production and consumption of data according to the periods of
tasks, respectively. In this section, we show that the SDFG allows to identify statically and
precisely the correct semantics of the data involved in the communication between pair
of producer/consumer in the Matlab/Simulink simulation. This result provides efficient
analysis and implementation strategies for Matlab/Simulink systems.

A data dependency constraint indicates that the execution of the consumer reads the
data produced by the execution of the producer associated to that constraint. When an
execution of a producer is not associated with any dependency constraint, the result of
that execution is not used in communication. Likewise, when an execution of a consumer
is not associated with any dependency constraint, that execution requires the same data
as the previous one. Consequently, there is no need for communication.

For every producer/consumer pair (τi, τj) let us denote by k = Tj

Ti
= outa

ina
the periods

factor. Actually, we can notice that when the producer is faster than the consumer, data
produced by some executions of the producer are not related to any data dependency
constraints. However, all executions of the consumer are concerned. Theorem 4.4 provides
the data dependency conditions for k > 1.

Theorem 4.4
Let us consider a buffer a = (τi, τj). Let S(a) be a set of pairs of executions
(ni, nj) ∈ N\{0} × N\{0} such that there exists a data precedence constraint from τi[ni]
to τj[nj]. If ina < outa then S(a) = {(f(nj), nj), nj ∈ N\{0}}, where:

f : N\{0} → N\{0}
x 7→ f(x) = douta·x−M0(a)

ina
e (4.6)

Proof. If ina < outa then max(ina − outa, 0) = 0. Equation (3.2) is equiva-
lent to ina + outa · nj −M0(a) > ina · ni ≥ outa · nj −M0(a). This equation divided
by ina becomes 1 + outa·nj−M0(a)

ina
> ni ≥ outa·nj−M0(a)

ina
. Since ni ∈ N \ {0}, we get

ni = f(nj) = douta·nj−M0(a)
ina

e.

4.5. Static properties 61

In the example of Figure 4.8, ina = 30, outa = 50, M0(a) = 40 and k = 50
30 > 1.

Thus, all executions of τD are involved in the communication but not all of τC . When
applying Theorem 4.4 to the first four executions of τD we get the pairs of executions
(1, 1), (2, 2), (4, 3) and (6, 4). These latter correspond to the dependency constraints illus-
trated in Figure 4.7.

Reciprocally, when τi is slower or equal to τj (k ≤ 1), some executions of the consumer
are not related to data dependency constraints, whereas all executions of the producer are
concerned. Theorem 4.5 provides the data dependency conditions for k ≤ 1.

Theorem 4.5
Let us consider a buffer a = (τi, τj). Let S(a) be a set of pairs of executions
(ni, nj) ∈ N\{0} × N\{0} such that there exists a data precedence constraint from τi[ni]
to τj[nj]. If ina ≥ outa then S(a) = {(ni, f(ni)), ni ∈ N\{0}}, where:

f : N\{0} → N\{0}
x 7→ f(x) = bM0(a)+ina·(x−1)

outa
c+ 1 (4.7)

Proof. If ina ≥ outa then max(ina − outa, 0) = ina − outa. Equation (3.2) is equivalent to
ina −M0(a)− ina · ni > −outa · nj ≥ ina − outa −M0(a)− ina · ni. This equation divided
by −outa becomes M0(a)+ina·(ni−1)

outa
< nj ≤ M0(a)+ina·(ni−1)

outa
+ 1. Assuming that nj ∈ N\{0},

nj = f(ni) = bM0(a)+ina·(ni−1)
outa

c+ 1.

In the example of Figure 4.11 ina = 80, outa = 40, M0(a) = 80 and k = 40
80 <

1. All executions of τA are involved in the communication but not all of τB. When
applying Theorem 4.5 to the first three executions of τA, we get the pairs of executions
(1, 3), (2, 5), (3, 7). These latter correspond to the dependency constraints illustrated in
Figure 4.10.

When M0(a) = Tj − gcda (i.e. direct communication), Equations (4.6) and (4.7) ex-
press the generalized precedence constraints of Richard et al. [94]. That is, our approach
extends their work and represents the system in a generic fashion. Namely, we allow model-
ing several multi-periodic communication mechanisms. In addition, Theorems 4.4 and 4.5
determine locally the relationships between pair of producer/consumer. They allow to
isolate communications precisely without simulating the graph. This provides a better ab-
stract understanding of communications compared to Matlab/Simulink. Furthermore, the
SDFG expresses the data exchanges that must be implemented to preserve the functional
semantics enforced by Matlab/Simulink.

Let us take each buffer a = (τi, τj) separately. Let Ni,j = lcm(ina, outa) be the least
common multiple of ina and outa. In a multi-periodic system, the data dependency con-
straints between pair of producer/consumer τi and τj is repetitive on Ni,j. The number of
executions of τi (resp. τj) on Ni,j is equal to Ni,j

ina
(resp. Ni,j

outa
). Theorem 4.6 indicates the

number of read and write operations involved in communications during the interval Ni,j.

62 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

Theorem 4.6
Let a = (τi, τj) be a buffer modeling a communication from τi to τj. The number of read
and write operations involved in the communication during the interval Ni,j is equal to
2× Ni,j

max(ina,outa) .

Proof. When ina < outa, Theorem 4.4 states that there are exactly Ni,j

outa
read operations as-

sociated to the same number of write operations during the interval Ni,j (i.e. all consumer
executions are involved in communication). Reciprocally when ina ≥ outa, Theorem 4.5
states that there are exactly Ni,j

ina
write operations associated to the same number of read

operations during the interval Ni,j (i.e. all producer instances are involved in communica-
tion). The combination of the two cases proves the theorem.

Theorem 4.6 provides better data stream characterization for the buffers of the SDFG.
This result can be used by approaches where applications are modeled by Dataflow Pro-
cess Network (DPN). In fact, communications are represented by weighted arcs in DPN
formalism. The weights characterize the data streams and are used to study the mapping
and routing of applications on many-core platforms [104].

Based on the characteristics highlighted by Theorem 4.6, communications analysis and
implementation policies can be optimized by extracting only those necessary for the oper-
ation of the system. As a comparison, if we consider all communications between a pair
of producer/consumer τi and τj during each interval Ni,j, we will perform Ni,j

ina
+ Ni,j

outa
oper-

ations. However, only 2× Ni,j

max(ina,outa) are necessary to operate the system. Implementing
only the read and write operations that are necessary for the respect of the functional
semantics of Matlab/Simulink can reduce the possible impact of unnecessary data trans-
mission, especially on shared memory or NoC.

In Figure 4.14, τB and τC have different periods and τB is slower that τC . Buffer
a = (τB, τC) is characterized by a production rate ina = 40, a consumption rate outa =
30 and NB,C = lcm(40, 30) = 120. There are exactly 120

40 = 3 executions of τB and
120
30 = 4 executions of τC during the interval NB,C . If we consider that each execution
of τB performs a write operation and each execution of τC performs a read operation, 7
read/write operations will happen in total. However, with Theorem 9.3 we know that only
2 × 120

max(40,30) = 6 read/write operations are necessary to operate the system. That is, τC
should not perform one read operation, otherwise that read could affect the semantics.

4.6 SDFG modeling of a Fuel Cell Control System

In this section, we present a case study of a Fuel Cell Control System (FCCS) that we model
by SDFG. This case study is a multi-periodic Matlab/Simulink system at AUTOSAR
perspective. It is designed according to Property 4.1 and the simulation is configured as
discrete fixed-step in single-tasking mode.

4.6. SDFG modeling of a Fuel Cell Control System 63

First, Subsection 4.6.1 describes the fuel cell system and presents the main blocks of
the FCCS. Then, in Subsection 4.6.2, we perform the translation of FCCS to SDFG by
applying Definition 4.6 and Theorems 4.1, 4.2 and 4.3.

4.6.1 Description of a Fuel Cell Control System

A fuel cell is a system used to power the motor in certain range of electric cars. It is a
device that directly transforms the chemical energy of a fuel into electrical one by electro-
chemical reactions. The simplest fuel cell system allows to provide water and electricity
from hydrogen and oxygen.

A cell is composed of an anode charged with hydrogen and a cathode charged with
oxygen arising from the air. The anode and the cathode are separated by an electrolyte
which prevents the passage of electrons. The oxidation reaction of hydrogen and the air
reduction reaction create an electrons flow from the anode to the cathode through an ex-
ternal circuit. This flow produces the electrical energy that powers the engine. Figure 4.17
illustrates the operating principle of a hydrogen-air fuel cell.

Figure 4.17: Operating principle of a fuel cell.

The Fuel Cell Control System (FCCS) is the management system of a fuel cell device
composed of a large number of cells connected in series and parallel. Series connections
allow to obtain a required tension and parallel connections allows to obtain a necessary
power. Each cell works as long as it is supplied with a reagent at a certain temperature.
The FCCS of our case study (Figure 4.18) is a control and command system designed in
Matlab/Simulink to meet these requirements.

The FCCS in Figure 4.18 is decomposed into seven periodic blocks that control the
physical system of the fuel cell in Figure 4.19. The block Air commands an air compressor
and an air valve to regulate the flow rate and the air pressure in cells. The block H2
regulates the flow rate and the pressure of the hydrogen circuit. This is achieved by

64 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

Figure 4.18: Fuel Cell Control System block diagram in Simulink.

controlling a H2 recirculation pump and a H2 valve allowing the oxygen to exit the tank.
The block Cooling System (CS) is responsible of the nominal operating temperature of
cells. For this purpose, CS controls a fan, a cooling pump and valve that allow the
coolant to flow. The block PM is a power module management block. It computes the
flow commands of H2 and Air circuits according to the operating modes of the vehicle
(start, stop, and running) and the required levels of voltage and power. Blocks Cell Status
Monitoring (CSM) and Pre-System Supervisor (PSS) supervise the status of cells in order
to ensure a nominal voltage and detect failures. The System Supervisor (SS) coordinates
the entire system according to the state of the vehicle (start, speed, acceleration) and
feedback from other blocks. SS in turn gives feedback on the dashboard.

Blocks CSM, PSS and CS operate at a lower period 100ms compared to the period 10ms
of other blocks. This difference is justified by the fact that temperature variates slowly
compared to pressure and flow rate. However, despite the electrical dynamic (voltages) of
cells is very fast, 100ms is sufficient for supervision.

4.6.2 SDFG modeling of the Fuel Cell Control System

We apply the methodology of transforming a Matlab/Simulink complete system to a SDFG
on the industrial use case FCCS. The top level hierarchy of the FCCS is composed of seven
blocks (Figure 4.18). We apply Definition 4.6 and we associate a SDFG task to each block
of Figure 4.18. As such, we create one SDFG buffer for each pair of producer/consumer
blocks. We compute the production rate, the consumption rate and the initial marking
of buffers by applying Theorems 4.1 and 4.2. We use one SDFG buffer to model signals
and data transfer blocks between each pair of producer/consumer blocks. This is because
we are only interested in the communication mechanisms. Therefore, the actual number
of signals and data transfer blocks are irrelevant as long as they imply the same commu-
nication mechanism. As such, each arrow in Figure 4.18 represents the set of signals and
data transfer blocks that imply the same communication mechanism between each pair
of producer/consumer bocks. Arrows that represent delayed communications are labeled

4.6. SDFG modeling of a Fuel Cell Control System 65

Figure 4.19: Physical system of the FCCS.

with Z−1. Others arrows represent direct communications.

To illustrate the computation of production/consumption rates, let us consider the ar-
row from block SS at period 10ms to PSS at period 100ms. The communication mechanism
of this arrow is delayed and we associate the buffer a = (SS, PSS). According to Theo-
rem 4.2 the production rate is ina = 10, the consumption rate is outa = 100, gcda = 10
and the initial marking is M0 = 100 + 10− 10 = 100. The resulting SDFG in Figure 4.20
is equivalent in size to the initial SBD in Figure 4.18.

Figure 4.20: SDFG model of Fuel Cell Control System.

Notice that data streams in the multi-periodic part of Figure 4.20 (i.e. SS, PSS, CSM
and CS) can be significantly reduced. In fact, buffers that connect SS to one of PSS, CSM
and CS involves two different production and consumption rates. For each of these buffers,
let us denote by nrw and nrw_op the total number of read and write operations, and the

66 Chapter 4. Modeling multi-periodic Simulink systems by SDFG

number of read and write operations necessary to operate the system, respectively. During
one interval Ni,j = 100, we have nrw = 100

10 + 100
100 = 11 and nrw_op = 2 × 100

max(100,10) = 2.
Thereby, for each of the aforementioned buffers the data streams is reduced by 82%. This
information can be later used to analyze buffers sizing and bus utilization reduction.

The first consequence of having modeled FCCS by SDFG is that we have a static and
well-defined characterization of communications among blocks. This enables to transform
the Matlab/Simulink descriptions into SDFG formalism, which is very common to optimize
the execution and implementation on multi/many-core architectures. The SDFG model is
an entry point to the existing studies and tools [89, 96] that use SDFG to provide solutions
for mapping, routing and the analysis of certain execution parameters on multi/many-core.

4.7 Conclusion

In this chapter, we performed an in-depth study of Matlab/Simulink functional speci-
fication. We also proved that the dataflow between a pair of periodic blocks in Mat-
lab/Simulink is modeled by a SDFG buffer. Then, we showed that an entire multi-periodic
Matlab/Simulink system can be modeled by a SDFG following a certain design rules.

The proposed SDFG characterizes the communications finely by using closed mathe-
matical formulas. The advantages of this SDFG compared to other approaches are its com-
plete, concise and precise formalism. That is, it catches exactly the functional synchronous
semantics of systems, while having a size equivalent to the number of communication pairs.
The representation is not on the hyper-period and all dependency constraints are expressed
by mathematical formulas that do not use algorithmic processing and are scalable.

The approach developed in this chapter allows to have an automatic transformation
from multi-periodic Matlab/Simulink towards the SDFG formalism, with a fine and com-
plete description of communications. This transformation is not expensive from an algo-
rithmic perspective, but establishes a complete chain that makes the link between designers
of Matlab/Simulink applications and specific SDFG analysis tools. This is very interesting
because on the one hand Matlab/Simulink is widely used in industry. On the other hand,
SDFG is a well known formalism in academia [89, 96]. This chapter provides an original
framework to bridge works of several communities, i.e. SDFG and real-time communities.

The results of this chapter is the first step toward the implementation. In next chapter,
we use the analytical properties of SDFG to construct an AUTOSAR compliant preemptive
scheduling that implements the functional dataflow.

Chapter 5

Dependencies and preemptive
scheduling on single-core

Contents
5.1 Introduction . 68
5.2 Related works . 69
5.3 Valid scheduling of dependent real-time tasks 70
5.4 Construction of a valid preemptive scheduling 72

5.4.1 Variables and constraints of the LP 72
5.4.2 Objective function for execution intervals 73
5.4.3 Algorithm to construct a valid preemptive scheduling 76

5.5 Dependant task sets generation . 77
5.5.1 Tasks sets generation . 77
5.5.2 Dependency model generation . 78
5.5.3 Offsets generation . 79

5.6 Experiments . 80
5.6.1 Comparison of heuristics . 80
5.6.2 Evaluation of the method . 81
5.6.3 Timing analyses . 82

5.7 Conclusion . 83

67

68 Chapter 5. Dependencies and preemptive scheduling on single-core

5.1 Introduction

In this chapter, we introduce a static preemptive scheduling method on single-core. This
scheduling method enables a deterministic implementation of the dataflow enforced by
Matlab/Simulink. As such, we can get an AUTOSAR implementation that complies with
the functional specification validated in simulation.

We assume that the Matlab/Simulink application verifies Property 4.1 and is fully
modeled by the SDFG of Chapter 4. For simplicity, we also assume that the nodes of this
SDFG are implemented as real-time tasks and are scheduled by the RTOS with a static
preemptive policy. Then, we exploit the scheduling of the SDFG to establish a temporal
isolation that realizes the dataflow of Matlab/Simulink. In fact, the temporal isolation
sets execution intervals to tasks so that consumer jobs execute only after the completion of
its producer jobs. This ensures that the preemptive executions of tasks can use the same
input data as enforced by the functional specification.

For this study, we consider both periodic concrete and offset-free tasks [51] with con-
strained deadlines. We formulate a Linear Program (LP) and propose several heuristics
to find the graph scheduling that establishes the temporal isolation. We use the latter to
adjust or set tasks offset and deadline in order to transform the dependent tasks set into
an independent one. Hence, we easily get rid of the dependency constraints and we use
existing static preemptive scheduling algorithms of independent tasks.

The temporal isolation technique sets a global implementation flow from the functional
specification of Matlab/Simulink to the real-time implementation analysis on AUTOSAR.
Furthermore, it allows to schedule dependent tasks without requiring synchronization
mechanisms, making the dataflow implementation completely characterized. The proposed
temporal isolation heuristics find a scheduling solution in 76 percent of cases. As such,
our method provides a fast technique to deal with dependencies in large multi-periodic
systems.

This chapter also introduces a method to generate random dependent real-time tasks
set modeled by the SDFG of Chapter 4. This method has three main objectives. The first
is to generate alive SDFG. The second is to generate tasks parameters so that tasks sets
are not trivially infeasible due to dataflow constraints. The third is to provide dependent
real-time tasks sets that can be used for experiential assessments.

The rest of this chapter is organized as follows. Section 5.2 presents related works on
the static preemptive scheduling of both independent and dependent real-time tasks, and
the scheduling of SDFG. Section 5.3 characterizes both the valid preemptive scheduling
that enables a deterministic dataflow implementation and the SDFG scheduling that sets
the temporal isolation. Then, in Section 5.4, we formulate a linear program to build the
temporal isolation. We also detail the algorithm to build a valid preemptive scheduling on
single-core. Section 5.5 presents the method of generating random dependent tasks sets,
which are used in the experiments of Section 5.6. Finally, Section 5.7 concludes the chapter
and gives some perspectives on the temporal isolation technique.

5.2. Related works 69

5.2 Related works

We are interested in the static preemptive scheduling on single-core that ensures a deter-
ministic implementation of dataflow. That is, we handle both preemptive scheduling and
data dependencies.

In the context of static preemptive scheduling on single-core, RM [76], DM [75] and
OPA [5] are optimal for synchronous implicit-deadline, synchronous constrained-deadline
and asynchronous constrained-deadline tasks, respectively. For offset-free tasks [51],
Goossens and Devillers [50] showed the non-optimality of the aforementioned policies.
Then, Goossens [51] and Mathieu et al. [55] proposed several near-optimal approaches
based on OPA to schedule offset-free tasks. Although these policies use static preemptive
scheduling, they do not address the deterministic dataflow implementation. In this chap-
ter, we propose an approach that transforms dependent tasks into independent ones, so
that those policies can be used.

Forget et al. [46] addressed the deterministic dataflow implementation by proposing
an adaptation of DM and OPA to schedule dependent synchronous and asynchronous
periodic tasks, respectively. They modeled the system by tasks graph and they proposed
a scheduling approach based on the precedences encoding of Chetto et al. [29]. The latter
consists in adjusting task parameters and priorities to realize dependencies on single-core.
Their approach produces the optimal scheduling algorithm on single-core. However, for
multi-periodic and cyclic dependencies it requires the unfolding of the graph, which is not
in polynomial size and suffers from performance issues [80].

Compared to existing works on real-time scheduling of dependent tasks, our approach
relies instead on the SDFG model of the dataflow. We use the SDFG scheduling to propose
several heuristics that transform the dependent tasks into independent ones without un-
folding the graph. This allows to handle efficiently multi-periodic and cyclic dependencies
in huge systems. In addition, automotive embedded softwares often contain cyclic depen-
dencies, which represent feed-back loops in control applications. The periods of tasks in
such applications are driven by the dynamic of the physical system, and are not neces-
sary identical nor harmonics. With the increasing complexity of automotive embedded
features, such applications become more common and there is a big interest in addressing
their scheduling efficiently.

Bamakhrama and Stefanov [7, 8] scheduled a CSDFG [17] as an asynchronous set of
periodic real-time tasks. However, their work considers only acyclic CSDFG and their
scheduling is not constrained by real-time attributes. Our approach considers both cyclic
and acyclic SDFGs. In addition, we use the real-time attributes of tasks as constraints that
we guarantee in our scheduling. For this purpose, we exploit the mathematical properties
of the SDFG [79, 83, 80] to construct a graph scheduling that guarantees precedence
constraints and real-time constraints. Then, we use this graph scheduling to transform
the dependent real-time tasks set with strict timing constraints into an independent set.
We schedule the independent tasks using the existing scheduling algorithms for real-time

70 Chapter 5. Dependencies and preemptive scheduling on single-core

tasks.

Authors in [57, 114, 71] investigated the refinement of execution intervals for the
scheduling of SDFG. Given a priority ordering, Hausmans et al. [57] and Wilmanns et
al. [114] compute execution interval bounds that take into account interferences from
higher-priority tasks. Then, they analyze the impact of processor sharing on the scheduling
of the graph. Kurtin et al. [71] refined the execution interval estimation by an iterative pro-
cess that converges to a minimum offset and a maximum finish time for each task. Those
approaches are different from ours as they evaluate the execution intervals of tasks on the
preemptive single-core to produce a graph scheduling that takes it into account. In our
approach, we use heuristics that rely on the real-time timing constraints of tasks to build
a graph scheduling. The latter imposes the execution intervals that tasks scheduling must
conform to. As such, we establish a fast technique to deal with dependency constraints in
preemptive scheduling.

Furthermore, at our knowledge, this is the first time SDFG is used to construct a
temporal isolation that constraints the real-time execution.

5.3 Valid scheduling of dependent real-time tasks

Let T = {τ1, τ2, . . . , τn} be a set of n dependent periodic real-time tasks modeled by the
SDFG G = (T ,A,M). In this section, we define and characterize the preemptive schedul-
ing of dependent real-time tasks set T that allows a deterministic semantics-preserving
dataflow implementation.

Definition 5.1 (Valid preemptive scheduling)
Let T = {τ1, τ2, . . . , τn} be a set of n dependent periodic real-time tasks modeled by the
SDFG G = (T ,A,M). A valid preemptive scheduling of T guarantees both the real-time
constraints of tasks and the dataflow constraints of G.

From Definition 5.1, a valid preemptive scheduling of T can be characterized by a
valid scheduling of G (c.f . Definition 3.5) that verifies the real-time constraints of tasks.
Theorem 5.1 expresses the scheduling of G that verifies the real-time constraints of tasks.

Theorem 5.1 (SDFG scheduling with real-time constraints)
Let us consider a set of dependent periodic real-time tasks T = {τ1, τ2, . . . , τn}, where each
task τi ∈ T is characterized by the real-time attributes Oi, Ci, Ti and Di. T is modeled by
the SDFG G = (T ,A,M). A scheduling of G guarantees the real-time constraints if it is
a periodic scheduling that defines a period T Gi and a first execution staring date rGi [1] for
each task τi ∈ T such as:

(1) T Gi = Ti

(2) Equation 5.1 is verified:

5.3. Valid scheduling of dependent real-time tasks 71

rGi [1] ≥ Oi (5.1a)

rGi [1] +DGi ≤ Oi +Di (5.1b)

Proof. Let us assume that the execution interval for the first job of τi in the scheduling
of the SDFG verifies the real-time constraints. That is, this execution interval is between
Oi and Oi + Di. This is expressed formally by rGi [1] < ri[1] and rGi [1] + DGi ≤ ri[1] + Di,
with ri[1] = Oi. If the scheduling of the SDFG verifies the real-time constraints, the
execution interval of the nith job of τi also verifies the real-time constraints. Therefore,
we get rGi [ni] ≥ ri[ni] and rGi [ni] + DGi ≤ ri[ni] + Di[ni], where ri[ni] = Oi + (ni − 1) · Ti.
However, as DGi is a constant, the graph scheduling is periodic with the period T Gi = Ti for
each task τi ∈ T . This proves the theorem.

The SDFG in Figure 5.1(a) models the dependencies between the periodic real-time
tasks τE(OE = 0, CE = 1, DE = 3, TE = 3) and τF (OF = 1, CF = 2, DF = 5, TF = 5).
Figure 5.1(b) illustrates both a valid periodic scheduling of the SDFG of Figure 5.1(a) and
the static preemptive scheduling of τE and τF on single-core. This valid periodic scheduling
assigns the initial starting dates rGE[1] = 0 and rGF [1] = 1, and the execution intervals
DGE = 1 and DGF = 3 to τI and τF , respectively. As such, the precedence constraints and
the real-time constraints are verified in the scheduling of the SDFG.

(a) Example of two dependent real-time tasks
modeled by a SDFG graph.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Execution interval

(b) Illustration of preemptive executions and execution inter-
vals.

Figure 5.1: Example of preemptive executions inclusion in graph scheduling.

Note that in Figure 5.1(b), the initial release times and the execution intervals in the
scheduling of the SDFG are different from the offsets and the deadlines of tasks. It was
required to ensure the validity condition of the scheduling of the SDFG (c.f . Theorem 3.3).

72 Chapter 5. Dependencies and preemptive scheduling on single-core

As such, it is possible to construct a valid periodic scheduling of T by adjusting the real-
time attributes of tasks according to a valid scheduling of G that verifies the real-time
constraints. Thus, we deduce the following corollary from Theorem 5.1.

Corollary 5.1.1
Let T = {τ1, τ2, . . . , τn} be a set of n dependent periodic real-time tasks modeled by the
SDFG G = (T ,A,M). A valid preemptive scheduling of T can be obtained by modifying
the offsets and deadlines of the real-time tasks according to a valid periodic scheduling of
G that verifies the real-time constraints.

5.4 Construction of a valid preemptive scheduling

In this section, we use Corollary 5.1.1 to construct a valid preemptive scheduling of
a set of dependent periodic real-time tasks T = {τ1, τ2, . . . , τn} modeled by the SDFG
G = (T ,A,M). To this end, we formulate a Linear Program to build a valid periodic
scheduling of G. We use this graph scheduling to adjust the offset and deadline of tasks,
so that we transform the dependent tasks into independent ones. Hence, any feasible
preemptive scheduling of the latter produces a valid preemptive scheduling of the former.

In Subsection 5.4.1, we describe the variables and constraints of the LP. In Subsec-
tion 5.4.2, we propose several heuristics as objective functions for the LP. These heuristics
aim are used to find a periodic scheduling of the SDFG that guarantees the existence of
a feasible preemptive scheduling of the independent tasks set. Finally, in Subsection 5.4.3
we define the algorithm to construct a valid preemptive scheduling on single-core.

5.4.1 Variables and constraints of the LP

Let us consider the SDFG G = (T ,A,M) that models the dependent tasks set
T = {τ1, τ2, . . . , τn}. Finding a valid periodic scheduling of G consists in setting the first
execution starting date rGi [1], the deadline or execution interval DGi , and the period Ti of
every task. It follows that the variables of the LP are rGi [1] and DGi for every SDFG task
τi ∈ T . To ease the readability, in the sequel we refer to rGi [1] by rGi .

For concrete task, the constraints on the first execution starting dates and the execution
intervals are expressed by Equation 5.1. In fact, Equation 5.1 exploits the offsets of concrete
tasks to guarantee the real-time constraints.

For an offset-free task, the offset is not a constraint. Thus, it is only required that the
first execution starting date rGi is greater than zero. A such, the constraints on the first
execution starting dates and the execution intervals are expressed by Equation 5.2 in the
case of offset-free tasks.

5.4. Construction of a valid preemptive scheduling 73

rGi ≥ 0 (5.2a)

Ci ≤ DGi ≤ Di (5.2b)

Moreover, for both concrete and offset-free tasks, the execution interval of a task τi ∈ T
cannot be less than the worst case execution time Ci. This constraint is expressed by
Equation (5.3).

DGi ≥ Ci (5.3)

In both concrete and offset-free tasks, the constraint of Equation (5.4) expresses the
validity condition. In fact, since we are concerned with valid periodic graph scheduling, the
condition of Equation (3.4) in Theorem 3.4 must be verified. However, from Theorem 5.1
the period of each task τi ∈ T in the graph scheduling is Ti. Also, from the SDFG model
defined in Chapter 4, the production and consumption rates of each buffer a = (τi, τj) ∈ A
are ina = Ti and outA = Tj, respectively. Equation (5.4) is obtained by replacing K =
Ti

ina
= Tj

outA
= 1 in Equation (3.4).

rGj − rGi ≥ DGi + outa −M0(a)− gcda (5.4)

5.4.2 Objective function for execution intervals

Our goal is to find execution intervals that result in a preemptive execution of tasks within
the graph scheduling. The easiest way to achieve this is by assigning the maximum allowed
execution interval Di to each SDFG task τi. However, the dependency constraints do not
always allow to assign the maximum allowed execution intervals to tasks.

In fact, let us consider the dependent periodic offset-free tasks τG(TG = 3, CG = 1, DG =
2), τH(TH = 2, CH = 0.5, DH = 2) and τI(TI = 5, CI = 1, DI = 5) modeled by the
SDFG of Figure 5.2. We extract for instance the dependency constraints τG[1] → τH [1],
τH [1] → τI [1] and τI [1] → τG[3]. We assign the initial execution starting dates rGG = 0
and rGH = 2. With respect to the precedence constraints, we also assign the maximum
allowed execution intervals DGG = DG = 2 and DGH = DH = 2 to τG and τH , respectively.
From dependency τH [1]→ τI [1], we can assign the minimum initial execution starting date
rGI = 4 to τI . However, DGI = DI = 5 cannot be used otherwise rGI +DGI = 9 � rGG+2·TG = 6
and the validity condition of τI [1] → τG[3] will not be respected. Consequently, at least
one execution interval cannot be set to the maximum.

Nonetheless, tasks do not strictly require their maximum execution intervals. In fact,
in a preemptive scheduling tasks with high priorities suffer less from preemption than low
priority ones. Thus, highest priority tasks generally need less execution interval than lowest
priority ones. In the example of Figure 5.2, assuming τI is given the highest priority, its

74 Chapter 5. Dependencies and preemptive scheduling on single-core

Figure 5.2: Example of dependent tasks with constrained execution intervals.

worst case response time is RI = CI = 1. Then, the execution interval of τI can be set to
DGI = 1. Combined with previous defined values, the precedence constraint τI [1] → τG[3]
is now respected. As consequence, our goal is to assign the maximum possible execution
interval to each task.

Classic approach

The assignment of the maximum possible execution intervals can be achieved by minimizing
the difference between the maximum allowed execution interval Di and the assigned one
DGi for every task τi. In classical approach, this is expressed by minimizing the weighted
maximum of the differences, where the weight denotes the importance of minimizing the
difference for a given task. More formally, let ρi be the weight of task τi. The objective
function is formulated as follows:

min
(

max
T

(
ρi · (Di −DGi

))
(5.5)

However, this approach does not provide a precise minimization of the difference on
each task.

Gradient approach

Let f(DG1 , DG2 , . . . , DGn) be a function such as its partial derivative with respect to DGi is
∂f

∂DG
i

= ρi · (Di −DGi). Here, ∂f

∂DG
i

measures the weighted (ρi) gradient (i.e. the difference)
between the maximum allowed execution interval Di and the assigned one DGi for tasks τi.
The gradient of f is formally expressed by Equation (5.6).

−→
∇f

∣∣∣∣∣∣∣∣∣∣∣

ρ1 · (D1 −DG1)
ρ2 · (D2 −DG2)
...
ρn · (Dn −DGn)

(5.6)

5.4. Construction of a valid preemptive scheduling 75

The total differential df = ∑ ∂f

∂DG
i

measures the combined gradient of the execution
interval on all tasks. Note that the more the execution interval DGi is closer to the deadline
Di, the smaller is ∂f

∂DG
i

and the smaller is df . Consequently, we use df as the cost function
of the linear program and our objective is to minimize it. The objective function of the
gradient approach is expressed by Equation (6.10). This function combines the differences
on all tasks so that to have a more effective minimization on each.

min(
∑
T
ρi · (Di −DGi)) (5.7)

In the objective function of Equation (6.10), the weight ρi of a task τi ∈ T defines the
importance of minimizing its gradient. If ρi has the highest value, the gradient of τi is
minimized first. The gradient of the task with the next highest weight is minimized next,
and so on. In the previous example, the weight of τI must be smaller than those of τG
and τH . As such, the linear program assigns the maximal execution intervals DGG = 3 and
DGH = 2 to τG and τH , respectively. Then, the remaining execution interval DGI = 1 is
assigned to τI .

We propose several heuristics method to assign weights to tasks.

• The heuristic of Equation (5.8) minimizes gradients fairly. That is, it does not give
any importance to the minimization of a gradient compared to others.

ρi = 1, ∀ τi ∈ T (5.8)

• The heuristic of Equation (5.9) assumes that the importance of gradients varies
with deadlines. In fact, let us consider tasks τG(TG = 3, CG = 1, DG = 2),
τH(TH = 2, CH = 0.5, DH = 2) and τI(TI = 5, CI = 1, DI = 5) of Figure 5.2. A
gradient of 1 for each task entails the execution intervals DGG = 1, DGH = 1 and
DGI = 4. Hence, the same value of gradient produces tight execution intervals for
tasks with small deadlines. Consequently, tasks with small deadlines must be given
small gradients because the less is the deadline, the more meaningful is the gradient.

ρi = 1
Di
∀ τi ∈ T (5.9)

• The heuristic of Equation (5.10) uses the same principle as above, except that the
reasoning is made on the slack time rather than on the deadline.

ρi = 1
Di−Ci

∀ τi ∈ T (5.10)

76 Chapter 5. Dependencies and preemptive scheduling on single-core

5.4.3 Algorithm to construct a valid preemptive scheduling

The valid periodic scheduling of the SDFG from the LP defines initial starting dates and
execution intervals that guarantee the validity condition of Theorem 3.3. By adjusting the
real-time parameters (offsets and deadlines) of the real-time tasks according to the latter,
we transform the initial dependent tasks set into an independent one. Hence, we construct
a valid preemptive scheduling of the dependent tasks set by finding a feasible preemptive
scheduling of the independent set. This entails finding a priority assignment that produces
a feasible preemptive scheduling.

Figure 5.3 illustrates a valid periodic scheduling of the SDFG of Figure 5.1(a). This
graph scheduling assigns the initial starting dates rGG = 0, rGH = 2 and rGI = 2.5, and
the execution intervals DGG = 2, DGH = 0.5 and DGI = 2.5 to τG, τH and τI , respectively.
Accordingly, τG can only be assigned the highest priority in a static preemptive scheduling
on single-core. This is because any preemption will overflow its execution outside its
assigned execution interval. Then, we verify that the priority ordering πH > πG > πI
schedules tasks within the execution intervals defined by the graph scheduling. We use
this technique to construct a valid preemptive scheduling for a set of dependent periodic
real-time tasks modeled by a SDFG on single-core.

Figure 5.3: Valid periodic scheduling of the SDFG of Figure 5.2.

Let us denote by o∗i and d∗i the adjusted offset and deadline of the real-time task τi.
Then, we have o∗i = rGi and d∗i = DGi .

At this step, any priority assignment that produces a feasible scheduling of the resulting
independent tasks set can be used. In this work, we chose the OPA [5] policy because it
is the optimal static preemptive scheduling algorithm for independent asynchronous tasks
on single-core.

Algorithm 1 describes the method to construct a valid preemptive scheduling of
a dependent periodic real-time tasks set T = {τ1, τ2, . . . , τn} modeled by a SDFG
G = (T ,A,M) on single-core. The originality of this algorithm is in the function
find_periodic_schedule(). In fact, it is this function that constructs the valid periodic
scheduling of the SDFG by solving the LP with the heuristics presented above. Accord-
ingly, the dependent tasks set is transformed into an independent one. Then, OPA is used
to find a feasible priority assignment for the static preemptive scheduling on single-core.

5.5. Dependant task sets generation 77

Algorithm 1 Construction of valid preemptive scheduling of dependent periodic tasks set
T = {τ1, τ2, . . . , τn} modeled by a SDFG G = (T ,A,M).
1: scheduled← false
2: SG = find_periodic_schedule(G)
3: if SG then
4: for τi ∈ T do
5: o∗i ← rGi
6: d∗i ← DGi
7: end for
8: priorities = OPA(T)
9: if |priorities| = n then
10: for τi ∈ T do
11: πi ← priorities(τi)
12: end for
13: scheduled← true
14: end if
15: end if
16: if scheduled = false then No valid preemptive schedule found
17: end if

5.5 Dependant task sets generation

In this section, we address the generation of random dependent tasks sets of cardinality
n. We developed this generation method in order to evaluate the construction of a valid
preemptive scheduling on a wide range of dependent tasks sets. The random tasks sets
are created so that their dependency model follows the dataflow model of Chapter 4. Our
generation method follows three steps so that the generate tasks sets are not trivially
infeasible.

In Subsection 5.5.1, we explain the method to generate random real-time tasks sets.
In Subsection 5.5.2, we describe the generation of a dependency model using a random
generated SDFG. Then, in Subsection 5.5.3 we generate the offsets so that the tasks set is
not trivially infeasible.

5.5.1 Tasks sets generation

The first step in the generation of the dependent real-time tasks set consists in defining
the period, the WCET and the deadline of tasks.

78 Chapter 5. Dependencies and preemptive scheduling on single-core

Periods

We choose the periods of tasks randomly within a sample that is composed of commonly
used period values in real applications. The goal of this generation method is to generate
tasks with representative periods while limiting the size of the hyperperiod. This is because
the hyperperiod defines the interval of the feasibility analysis in OPA [5]. However, the
time complexity of the latter increases exponentially with the hyperperiod [5]. In this
thesis, we use a sample composed of periods 10ms, 20ms, 30ms, 50ms and 100ms.

Utilization and WCET

We adopt the utilization based technique of Bini and Buttazo [18] to set the WCET of
tasks. First, we choose the total utilization U randomly between 0.6 and 1. Then, we
distribute U uniformly over tasks using the UUniFast method [18]. The WCET of each
task is afterward derived from its utilization and its period.

Deadlines

Throughout this thesis, we consider only implicit tasks for which deadlines are equal to
periods. We believe that the experimental results can be extended to constrained tasks.

5.5.2 Dependency model generation

The second step of our method is the generation of the dependency model. It consists in
defining a SDFG such as:

• each node is associated to a real-time task generated in Subsection 5.5.1, and

• SDFG tasks and buffers parameters comply with the dependency model of Chapter 4.

To achieve this, we generate a random SDFG composed of n nodes using the SDFG
generation tool Turbine [19]. Turbine generates connected SDFG and allows to specify
several settings such as tasks degree (i.e. number of buffers incident to tasks). However,
the SDFG tasks and buffers parameters generated by Turbine do not comply with the
dependency model defined in Chapter 4. We adjust these parameters as follows.

SDFG tasks parameters

First, we assign the generated real-time attributes to the generated SDFG tasks. Then, fol-
lowing the dependency model defined in Chapter 4, we set the production and consumption
rates equal to periods.

5.5. Dependant task sets generation 79

Buffers parameters

Each buffer of the graph is randomly assigned an initial marking that characterizes one
communication mechanism between direct, delayed and hybrid. However, to avoid deadlock
graphs, which are trivially infeasible, we break each strict cyclic dependency by inserting
at least one buffer with delayed or hybrid communication.

In fact, let us consider a cycle µ in the SDFG. Let us assume that every buffer a ∈ µ
uses the direct communication. From Theorem 4.1, we get∑a∈µM0(a) = ∑

a∈µ outa−gcda,
which does not verify the sufficient condition of liveliness (Theorem 3.1). Hence, we cannot
decide on the liveliness of the SDFG.

Now, let us assume that one buffer a0 ∈ µ uses the delayed communication.
From Theorem 4.1 and Theorem 4.2, we get ∑a∈µM0(a) =

(∑
a∈µ\a0(outa − gcda)

)
+

(outa0 + ina0 − gcda0). That is, the sufficient condition of liveliness in Theorem 3.1 is
verified. As consequence, the SDFG is alive. The same reasoning is used for hybrid com-
munication.

We invoke Turbine after assigning the parameters of all tasks and buffers to check
and ensure that the generated SDFG is deadlock free.

5.5.3 Offsets generation

The third and last step of our method is the generation of offsets of tasks, so that the tasks
set is not trivially infeasible. This is because the offsets of dependent concrete tasks cannot
be totally random. In fact, let τi and τj be two dependent tasks related by the precedence
constraint τi[ni]→ τj[nj]. This precedence requires to execute τj[nj] after τi[ni] completes.
However, this is possible only if the execution of τj[nj] (after that of τi[ni]) can complete
before its absolute deadline. More formally, a precedence constraint τi[ni] → τj[nj] is
possible only if Equation 5.11 is verified. Otherwise, τj[nj] cannot execute after τi[ni] and
before its absolute deadline rj[nj] +Dj. Lemma 5.1 gives the condition to select the offsets
of two dependent tasks.

ri[ni] + Ci ≤ rj[nj] +Dj − Cj (5.11)

Lemma 5.1
Let a = (τi, τj) be a buffer that models the precedence constraints between two concrete
tasks τi(Ti, Ci, Oi, Di) and τj(Tj, Cj, Oj, Dj). M0(a) is the initial marking of a. The prece-
dence constraints enforced by the buffer a = (τi, τj) are possible only if Oi and Oj verify
Equation (5.12).

Oi ≤ Oj + Ti − Tj − Ci − Cj +Dj +M0(a) + min(0, Tj − Ti) (5.12)

Proof. From Equation 5.11, any precedence constraint τi[ni] → τj[nj] enforced by the

80 Chapter 5. Dependencies and preemptive scheduling on single-core

buffer a = (τi, τj) is possible only if ri[ni] + Ci ≤ rj[nj] + Dj − Cj. This is equivalent to
Oi+(ni−1)·Ti+Ci ≤ Oj+(nj−1)·Tj+Dj−Cj. Then, we getOi ≤ Oj+Ti−Tj−Ci−Cj+Dj+
(−ni ·Ti+nj ·Tj). However, from Equation (3.2) −ni ·Ti+nj ·Tj ≤M0(a)+min(0, Tj−Ti).
This proves the lemma.

According to Lemma 5.1, we generate random offsets between 0 and tasks period so
that Equation (5.12) is verified for all their predecessors (i.e. tasks that produce their
data).

5.6 Experiments

In this section, we use dependent tasks sets generated randomly to evaluate our approach
of constructing a valid preemptive scheduling on single-core.

In Subsection 5.6.1, we compare heuristics to see the one that gives the best results
depending on system utilization and cardinality. In Subsection 5.6.2, we evaluate our
method compared to the optimal algorithm [46] for concrete tasks and acyclic graphs.
Finally, in Subsection 5.6.3, we study some timing aspects.

5.6.1 Comparison of heuristics

In the following analyses, we define the objective functions of Equation (5.13) and Equa-
tion (5.14). These functions are obtained from the classical approach by replacing the
weight ρi by 1 and 1

Di−Ci
in Equation (5.5), respectively. These objective functions serve

to demonstrate the interest of the gradient approach.

min(max(Di −DGi)) (5.13)

min(1
Di − Ci

·max(Di −DGi)) (5.14)

In the experiments of Figure 5.4, we vary the total utilization from 0.65 to 0.95 (ab-
scissa). We generate for each utilization a set of 10 graphs. Each graph is composed of 100
tasks with a degree from 1 to 10. Then, we apply Algorithm 1 on graphs and we represent
the average percentage of tasks that are scheduled by each objective function.

We can observe in Figure 5.4 that independently of utilizations, the objective functions
based on the gradient approach produce better scheduling results than the ones based on
the classical approach. Moreover, heuristic ρi = 1

Di−Ci
produces the best results.

In order to analyze the influence of the number of tasks, we repeat the same experiments,
but with decreasing number of tasks. We obtained similar results to those of Figure 5.4.

5.6. Experiments 81

Figure 5.4: Scheduling test for random graphs composed of 100 tasks.

Throughout these experiments, the average percentage of tasks that are scheduled by
Algorithm 1 varies from 50 to 70 percent. We observe a slight drop when utilization
increases. Nevertheless, the number of tasks shows no real impact on the performance of
heuristics with regards to scheduling.

5.6.2 Evaluation of the method

In Figure 5.4, the average percentage of scheduled tasks is less that 70 percent. However,
we do not know if the generated graphs have feasible scheduling. To evaluate our temporal
isolation technique, we repeat the experiments using acyclic graphs modeling concrete
dependent tasks. The latter are fully scheduled by the optimal algorithm of Forget et
al. [46]. The scheduling results are shown in Figure 5.5.

Figure 5.5: Evaluation of the scheduling method compared to the optimal algorithm [46]
for acyclic dependent tasks on single-core.

Compared to the optimal algorithm [46], heuristic ρi = 1
Di−Ci

that produces the best
results, schedules an average of 76.8 percent of tasks with a standard deviation of 2.24.
Tasks that are not scheduled come both from the structure of graphs and the heuristic.

82 Chapter 5. Dependencies and preemptive scheduling on single-core

In fact, let us consider the system of Figure 5.6. It is composed of four dependent tasks
τH , τI , τJ and τK having the same offset and the same period 10ms. We assume that
CH = 1, CI = 2, CJ = 1 and CK = 2. Since DI − CI = 8 < DH − CH = 9 (resp.
DK − CK = 8 < DJ − CJ = 9), τI and τK are given their maximum execution interval 8,
while τH and τJ are given their minimum execution interval 1. That is, none of the latter
allows preemptions. So, they are infeasible because they have the same offset. However,
adding 1 unit to the execution interval of τH or τJ allows preemption and the system
becomes feasible.

To address such a case, the temporal isolation need further refinement. The latter
consists in an iterative scheduling analysis to determine tasks that requires more execution
interval. This refinement is similar to those of [57, 114, 71], which are not in polynomial
size. Our approach rather provides a fast technique to deal with dependencies in multi-
periodic systems. As such, it provides a fast and good estimate of the impact of dataflow
constraints on real-time scheduling. These are interesting features that we use later to
address multi-core mapping efficiently.

Figure 5.6: Example of not scheduled graph

5.6.3 Timing analyses

The complexity of Algorithm 1 (in terms of computing) is driven by OPA, which is expo-
nential in function of the number of tasks. In fact, Algorithm 1 can be divided in two main
parts. The first is related to the function find_periodic_schedule(). This function
constructs the valid periodic scheduling of the SDFG and transforms the dependent tasks
set into an independent set. The second concerns OPA(), which finds the priority assign-
ment to schedule the independent tasks. In the experiments of Figure 5.7, we measure the
computing time of each part on random graphs with increasing tasks number.

The results confirm that OPA is time consuming compared to the construction of a
valid periodic scheduling of the SDFG. The algorithmic added to transform the dependent
tasks into independent ones is therefore less penalizing than a conventional preemptive
scheduling of independent real-time tasks.

5.7. Conclusion 83

Figure 5.7: Computing time analyses

5.7 Conclusion

In this chapter, we proposed a temporal isolation technique to enable a deterministic imple-
mentation of the dataflow without blocking synchronization mechanisms. This technique
uses the graph scheduling to adjust real-time tasks offset and deadline. As such, the de-
pendent real-time tasks set is transformed into an independent one. Then, we exploit the
existing policies for independent tasks to schedule the latter on single-core.

Furthermore, the temporal isolation technique enables to treat fairly large applications
in a reasonable time. It provides a fast technique to deal with dependencies in large multi-
periodic systems, along with a good estimate of the impact of dataflow requirements on
real-time scheduling. However, the overall process is still limited in terms of computation
by the real-time scheduling analysis, which is a classic real-time issue.

This chapter establishes an implementation flow starting from the functional specifica-
tion of Matlab/Simulink to the scheduling analysis on AUTOSAR. In the next chapter,
we exploit the temporal isolation technique to build a method to guarantee the dataflow
in multi-core scheduling.

Chapter 6

Characterization of dataflow in
partitioned multi-core

Contents
6.1 Introduction . 86
6.2 Related works . 87
6.3 Method to guarantee deterministic dataflow 89

6.3.1 Techniques to ensure precedence constraints 89
6.3.2 Cycle breaking technique . 91

6.4 ILP formulation for parameters adjustment in single-core 92
6.4.1 Variables of the ILP . 92
6.4.2 Constraints of the ILP . 93
6.4.3 Objective function of the ILP . 95

6.5 ILP formulation for parameters adjustment in multi-core and
mapping . 95

6.5.1 Variables and tuning parameter of the ILP 95
6.5.2 Constraints of the ILP . 96

6.6 Initial mapping optimized for dataflow requirements 97
6.7 Heuristic mapping with precedence constraints 98

6.7.1 Fast parameters adjustment . 98
6.7.2 Heuristic mapping algorithm . 99

6.8 Experiments and performance measurements 99
6.8.1 Dependent tasks sets generation in multi-core 101
6.8.2 Scheduling performance and runtime 101

6.9 Conclusion . 104

85

86 Chapter 6. Characterization of dataflow in partitioned multi-core

6.1 Introduction

The mapping and scheduling of dependent periodic tasks on multi-core is NP-complete [97].
Therefore, heuristic algorithms are used to reduce the problem complexity [22, 116, 41, 111,
43, 42]. One important aspect when mapping and scheduling dependent tasks in multi-
core is to guarantee of the dataflow. This aspect has been addressed in the literature using
several approaches. Authors in [41, 111, 82, 95, 87] reduced the complexity by considering
only mapping without precedence constraints between cores. In [22, 116, 43, 42, 100, 93, 23,
91, 92, 90], the authors considered precedence constraints between cores. So, they perform
iterative and costly scheduling analysis after each mapping decision to verify and ensure
the dataflow. To avoid this iterative and costly analysis, authors in [95, 111, 110] separated
the mapping from the dataflow requirement. They verify and ensure the latter once for
a given mapping. However, experiments of Wang et al. [110] showed that a mapping can
be rejected because of strict precedence constraints between cores. Furthermore, with the
increasing complexity of automotive embedded features, configurations with multi-core
dataflow requirements become more common. Hence, there is a big interest in addressing
multi-core dataflow in the mapping of large industrial applications efficiently.

In this chapter, we consider the mapping and scheduling of multi-periodic systems on a
fixed number of identical cores. We assume that applications are modeled according to the
SDFG specification of Chapter 4 and each node can be implemented as a real-time task.
Then, we target a partitioned static scheduling on AUTOSAR multi-core. We address the
mapping and scheduling problem from a dataflow perspective and we provide a fast and
accurate characterization of dataflow requirements. To do this, we realize the deterministic
dataflow by combining the temporal isolation technique of Chapter 5 with the technique
of Forget et al. [46]. In fact, the temporal isolation can be used for both single-core and
multi-core because it is independent of the mapping of tasks. However, when the tasks
are on the same core, the precedence constraints can be realized more accurately using
the technique of Forget et al. [46]. The latter technique is optimal to realize dataflow
on single-core by means of a priority ordering. For this reason, we use the technique of
Forget et al. [46] to realize the dataflow when priority ordering is possible. Nonetheless, the
technique of Forget et al. [46] requires a non polynomial graph unfolding [80] to manage
cyclic dependencies on single-core. We rather introduce a cycle breaking technique that
uses temporal isolation to manage these cyclic dependencies efficiently.

In addition, we propose an ILP formulation to adjust the offset and deadline of tasks to
realize the dataflow. We extend the ILP to perform a mapping that minimizes the impact
of dataflow requirements on task parameters. The latter builds an initial partial mapping
optimized for dataflow requirements on the entire application. This initial mapping is
intended to initialize heuristic mapping approaches and to ease the search of a mapping
that takes precedence constraints into account. Then, we define a mapping algorithm
that takes dataflow requirements into account during the mapping process. The latter is
introduced to analyze the impact of the initialization optimized for dataflow requirements
on the overall mapping and scheduling process.

6.2. Related works 87

Furthermore, we define a fast and accurate characterization of dataflow requirements
in multi-periodic systems on partitioned multi-core. We show that the initial mapping
optimized for dataflow requirements improves the scheduling performances by an average
of 11.92 percent more tasks, while it reduces the computation time of the mapping and
scheduling process. As such, this chapter sets a global implementation flow from Mat-
lab/Simulink to the real-time implementation analysis on AUTOSAR multi-core.

The rest of this chapter is organized as follows. Section 6.2 presents some related
works on the mapping and scheduling on multi-core and many-core. In Section 6.3, we
detail our method to guarantee the dataflow and the cycle breaking technique. In Sec-
tion 6.4, we formulate the ILP to perform tasks parameters adjustment in single-core. In
Section 6.5, we extend this ILP to multi-core so that it also performs a mapping optimized
for dataflow requirements. Then, in Section 6.6, we detail the method to build an initial
mapping optimized for dataflow requirements. In Section 6.7, we implement a bin packing
worst-fit decreasing algorithm that considers dataflow requirements during its mapping and
scheduling process. In Section 6.8, we evaluate the performance of the approach on random
dependent tasks sets. Finally, conclusions and future works are given in Section 6.9.

6.2 Related works

The problem of mapping and scheduling real-time applications on multi-core and many-
core has been intensively studied in literature. Shin and Peng [100] proposed a branch
and bound technique to partition dependent tasks to minimize response times. Ramam-
ritham [93] developed several heuristics for mapping dependent periodic tasks to minimize
communication costs. Panić et al. [87] used bin packing with a worst-fit decreasing heuris-
tic to map dependent and independent tasks with the objective of load balancing. Carle et
al. [23] and Puffitsch et al. [91] studied the mapping and scheduling of dependent real-time
tasks to many and multi-core. They exploited low-level hardware details to provide map-
ping and scheduling heuristics that allow an efficient use of communication resources [23]
and avoid contention [91]. Those approaches differ from ours as we do not consider the
costs of communications between cores. We rather focus on constructing a mapping that
guarantees a deterministic dataflow and minimizes the impact of the latter in multi-periodic
systems. However, our formulation can be used in conjunction with those works to take
these impacts into account during their mapping processes.

Puffitsch et al. [92] and Perret et al. [90] studied constraint programming for the map-
ping and scheduling of dependent tasks on many and multi-core. They also considered
communication scheduling and data mapping. Their approach is fundamentally different
from ours because they considered non-preemptive tasks. They used the graph unfolding
technique to ensure the precedence constraints and the schedulability of the system. In
our work, we consider preemptive scheduling and we use linear expressions to model prece-
dence constraints. As such, we do not use the graph unfolding to construct a mapping that
minimizes the impact of dataflow requirements.

88 Chapter 6. Characterization of dataflow in partitioned multi-core

Hladik et al. [59] proposed a constraint programming formulation with a separate map-
ping and scheduling. Their algorithm proves the nonexistence of a solution when it cannot
find one. They did not consider dependent tasks and they exploited the relative simplicity
of the scheduling in that case along with filtering algorithms to speedup the search. In
this chapter, we mainly focus on dependent tasks and the deterministic implementation of
dataflow. This work proposes an initial mapping to ease the search of a mapping with a
feasible scheduling that guarantees a deterministic dataflow.

Buttazzo et al. [22] and Wu et al. [116] proposed a method to guarantee deterministic
dataflow that is similar to ours. They considered dynamic priority scheduling and adapted
the offsets and deadlines assignment of Chetto et al. [29] to ensure precedence constraints.
Then, they proposed several bin packing best-fit heuristic algorithms that use critical
paths to perform the mapping. The critical path is the dependency path with the most
computation time. Their work is different from ours because they build a feasible mapping
that minimizes the number of cores. This work builds an initial mapping optimized for
dataflow requirements on a fixed number of cores, to ease the search of a feasible mapping.
Nevertheless, we extend their heuristic algorithm to multi-periodic systems to define a
mapping algorithm that takes dataflow requirements into account during the mapping
process

Monot et al. [82] studied the mapping of AUTOSAR applications on multi-core. They
get rid of multi-core dataflow requirements by assuming no dependency between tasks on
different cores. In fact, they clustered all dependent tasks to obtain a set of independent
clustered tasks. Then, these latter are mapped to cores. However, with the increasing
complexity of automotive applications, this assumption cannot always be taken. Recently,
Wang et al. [110] proposed a refined task parameters adjustment to increase the schedu-
lability of a given mapping. Their experiments showed that a mapping can be rejected
because of strict precedence constraints between cores. Consequently, the impact of prece-
dence constraints between cores must be taking into account during mapping.

Other works have proposed several ILP formulations for mapping. Tuncali et al. [109]
proposed an optimal formulation for non-preemptive single-rate systems. They have also
implemented several heuristics to improve the efficiency of their approach. The work of
Saidi et al. [95] is based on AUTOSAR and it considers the minimization of inter-core
communications. Becker et al. [9] proposed another formulation to avoid memory access
contention. However, they do not address the dataflow.

Several authors proposed meta-heuristics approaches to find good mapping solutions.
Faragardi et al. [41] used evolutionary algorithms. Wang et al. [111] proposed a Tabou
search technique. Feljan et al. [43], and Feljan and Carlson [42] considered random and
heuristics local searches to find a mapping. However, each of these meta-heuristics requires
an initialization that can be provided by our approach.

To the best of our knowledge, this is the first time dataflow requirements on multi-
periodic systems in partitioned multi-core are formally characterized and used to initialize
mapping algorithms.

6.3. Method to guarantee deterministic dataflow 89

6.3 Method to guarantee deterministic dataflow

In this section, we assume that the mapping is known and we describe the principle of our
method to guarantee a deterministic dataflow.

First, Subsection 6.3.1 details the techniques to ensure precedence constraints in par-
titioned static scheduling. Then, in Subsection 6.3.2, we introduce the cycle breaking
technique to manage cyclic dependencies efficiently.

6.3.1 Techniques to ensure precedence constraints

In partitioned multi-core, precedence constraints are expressed either between tasks on
the same core or between tasks on different cores. The temporal isolation technique of
Chapter 5 can be used to realize the dataflow in both case. This is because the temporal
isolation adjusts the offset and deadline of tasks, so that productions always happen before
consumptions and there is no overlap between production and consumption jobs. More
formally, let o∗i and d∗i be the adjusted offset and deadline of a task τi. In temporal
isolation o∗i and d∗i verify Equation (6.1). In fact, Equation (6.1a) is simply the definition
of a precedence constraint, where τj[nj] cannot start its execution before the end of the
execution interval allocated to τi[ni]. In Equation (6.1b), execution intervals are allocated
in regard to the real-time attributes of tasks. That is, the execution interval allocated to
any task τi cannot exceed the initial interval Di minus the difference o∗i −Oi.

o∗j [nj] ≥ o∗i [ni] + d∗i , ∀ τi[ni]→ τj[nj] (6.1a)

d∗i ≤ Di − (o∗i −Oi), ∀ τi (6.1b)

To illustrate the temporal isolation technique, let us consider the system modeled by the
SDFG of Figure 6.1. This system is composed of three tasks τN(ON = 1, CN = 5, DN =
10, TN = 10), τO(OO = 0, CO = 3, DO = 10, TO = 10) and τP (OP = 9, CP = 2, DP =
10, TP = 10). The SDFG exhibits a cyclic dependency characterized by the precedence
constraints τN [n] → τO[n] → τP [n] → τN [n + 1]. We assume that τN and τO are on the
same core (i.e. core 0) and τP is on another one (i.e. core 1). We use the temporal isolation
to ensure the dependencies between τO and τP , and between τP and τN . We guarantee
that executions of τO and τP do not overlap by adjusting the relative deadline of τO to
d∗O = 8, and the offset and relative deadline of τP to o∗P = 9 and d∗P = 2, respectively.
Then, precedence constraints τP [n]→ τN [n+ 1] are guaranteed with the same parameters.
Figure 6.2 illustrates the corresponding execution intervals.

When the communicating tasks are on the same core and in addition producer jobs
and consumer jobs overlap, the precedence constraints are realized accurately using the

90 Chapter 6. Characterization of dataflow in partitioned multi-core

Figure 6.1: Example of system with cyclic dependency.

technique of Forget et al. [46]. The latter is the optimal technique in that case. It consists
in adjusting tasks offsets so that consumer jobs cannot start before producer ones. The
relative deadlines are also adjusted accordingly. Then, the dataflow is ensured by using a
higher priority for the producer task. As such, producer jobs are always executed before
consumer jobs. In the technique of Forget et al. [46] the adjusted offset and relative deadline
verify Equation (6.2). In fact, Equation (6.2a) simply defines that τj[nj] cannot start its
execution before τi[ni]. In Equation (6.2b), the relative deadline is adjusted according to
the offset. That is, the relative deadline of any task τi is equal to the relative deadline Di

minus the difference o∗i −Oi.

o∗j [nj] ≥ o∗i [ni], ∀ τi[ni]→ τj[nj] (6.2a)

d∗i = Di − (o∗i −Oi), ∀ τi (6.2b)

In the example of Figure 6.1, we illustrate the technique of Forget et al. [46] on the
precedence constraints τN [n]→ τO[n] on core 0. We first prevent τO from starting before τN
by adjusting its offset to o∗O = max(o∗N , o∗O) = 1 and its deadline to d∗O = 10− (0− 1) = 9.
Then, we assign a higher priority to τN with respect to τO. The corresponding real-time
scheduling is illustrated on Figure 6.2. In this scheduling, we can observe that τO is always
executed before τN , so that precedence constraints τN [n]→ τO[n] are ensured on core 0.

Figure 6.2: Scheduling of the system of Figure 6.1 on two cores.

In summary, we use the priority ordering of the technique of Forget et al. [46] to realize
the deterministic dataflow when tasks are on the same core and addition producer jobs and

6.3. Method to guarantee deterministic dataflow 91

consumer jobs overlap. Otherwise, we use the temporal isolation of Chapter 5 to realize
the deterministic dataflow.

6.3.2 Cycle breaking technique

The scheduling of Figure 6.2 succeeds in managing the cyclic dependency because of tem-
poral isolation. When a cyclically dependent tasks set is on the same core, the priority
ordering of the technique of Forget et al. [46] requires a graph unfolding to choose the
execution order. This latter mainly consists in choosing the task that is executed first
and whose priority is the highest. Then, the order of the remaining tasks follows the
dependency order.

In the example of Figure 6.1, let us consider the real-time attributes τN(ON = 0, CN =
5, DN = 10, TN = 10), τO(OO = 0, CO = 3, DO = 10, TO = 10) and τP (OP = 9, CP =
2, DP = 10, TP = 10). We assume that the tasks are mapped to the same core. Following
Equation (6.2), the precedence constraints do not require parameters adjustment. Then,
we can verify that the cyclic dependency is managed with the technique of Forget et al. [46]
only when τP is given the highest priority, followed by τN and τO. That is, only the priority
ordering πN < πO < πP produces a feasible scheduling with a deterministic dataflow. This
scheduling and the dataflow is illustrated in Figure 6.3.

Figure 6.3: Scheduling of the system of Figure 6.1 on single-core using priority ordering

For a large system, with several cyclic dependencies, the graph unfolding is not in
polynomial size and suffers from performance issues [80]. Instead, we provide an efficient
way to manage cyclic dependencies by introducing a cycle breaking technique. The latter
consists in setting a temporal isolation for at least one dependency in any cycle. As such,
the precedence constraints induced by that dependency is guaranteed de-facto. Others
precedence constraints of the cycle are guaranteed by the technique of Forget et al. [46]
with a priority order starting from the consumer task of the temporal isolated dependency.

Figure 6.4 illustrates the cycle breaking technique on the scheduling of the system of
Figure 6.1. In that scheduling, we set a temporal isolation for the dependency τO → τP by
adjusting o∗P = 10 and d∗P = 9. Precedence constraints τN [n]→ τO[n] and τP [n]→ τN [n+1]
are ensured by the technique of Forget et al. [46] using the priority ordering πN < πO < πP .
This configuration produces the single-core static preemptive scheduling of Figure 6.4,
where all precedence constraints are verified.

92 Chapter 6. Characterization of dataflow in partitioned multi-core

Figure 6.4: Scheduling of the system of Figure 6.1 on single-core using the cycle breaking
technique.

The cycle breaking technique provides a fast approach to manage cyclic dependencies
in multi-periodic systems. We introduce this technique to build an integrated method to
adjust tasks parameters and to enable a deterministic dataflow in partitioned multi-core.

6.4 ILP formulation for parameters adjustment in
single-core

In this section, we formulate an ILP to adjust the parameters of tasks to enable a determin-
istic dataflow on single-core. This ILP does not explicitly consider the real-time scheduling
of tasks. It rather minimizes the impact of precedence constraints on tasks parameters.
As such, it reduces the impact of dataflow requirements.

First, Subsection 6.4.1 defines the set of variables of the ILP. Then, in Subsection 6.4.2,
we describe and characterize the constraints used in the formulation. Finally, in Subsec-
tion 6.4.3 we propose an objective function to minimize the impact of dataflow require-
ments.

6.4.1 Variables of the ILP

Let us consider a set of n dependent tasks T = {τ1, τ2, . . . , τn} modeled by the SDFG
G = (T ,A,M).

We define the following set of variables for each task τi ∈ T .

• o∗i and d∗i : are positive variables that characterize the adjusted offset and deadline,
respectively.

• γi: is a variable associated to each task τi. We define this set of variables γi,i=1...n to
detect cycles in G.

We also define the following set of variables for every buffer a = (τi, τj) ∈ A.

6.4. ILP formulation for parameters adjustment in single-core 93

• βij: is a binary variable that indicates whether the dependency is realized using
temporal isolation or not. Formally, this is expressed as:

βij =
{

1, if temporal isolation
0, otherwise (6.3)

• d∗ij: is a positive variable that corresponds to the value of the execution interval of
the producer task. This variable is defined only for linearizion purposes.

6.4.2 Constraints of the ILP

We divide the constraints of the ILP into the following categories.

Real-time constraints

Each task τi ∈ T is characterized by both an offset Oi and a relative deadline Di. The
real-time constraints on the adjusted offset o∗i and the adjusted relative deadline d∗i of
concrete tasks and offset-free tasks are the same as in Equation (5.1) and Equation (5.2),
respectively.

Cycle breaking constraints

The cycle breaking technique requires that a temporal isolation is set for at least one buffer
of every cyclic dependency. Let us denote by µ a cycle in the SDFG. The cycle breaking
technique is formally expressed as follows:∑

a=(τi,τj)∈µ
βij ≥ 1, ∀µ (6.4)

Equation (6.4) is implemented in the ILP by the constraint of Equation (6.5), where
m = |A| denotes the number of buffers in G = (T ,A,M).

γj − γi ≥
1
m
− βij, ∀a = (τi, τj) ∈ A (6.5)

In fact, let us consider Theorem 6.1, which provides the necessary and sufficient condi-
tion on the existence of the set of variables γi,i=1...n. Theorem 6.1 was proved in [33] (c.f.
Theorem 24.9).

Theorem 6.1 (Existence of γi,i=1...n)
Let G = (T ,A) be a directed graph with n nodes and m edges. Each node τi is associated
with a variable γi and each edge a = (τi, τj) is associated with a value Bij. Let us consider

94 Chapter 6. Characterization of dataflow in partitioned multi-core

the system of difference constraints expressed by Equation (6.6). There exists a solution
for this system if and only if for every cycle µ in G, ∑a=(τi,τj)∈µBij ≤ 0.

γj − γi ≥ Bij, ∀a = (τi, τj) ∈ A (6.6)

Equation (6.5) is obtained by replacing Bij by 1
m
−βij in Equation (6.6). In fact, accord-

ing to Theorem 6.1 any feasible solution of the ILP verifies that ∑a=(τi,τj)∈µ(1
m
− βij) ≤ 0

for all cycle µ in G. This equation is equivalent to ∑a=(τi,τj)∈µ βij ≥
∑
a=(τi,τj)∈µ

1
m
, which

is also equivalent to Equation (6.4) because 0 < ∑
a=(τi,τj)∈µ

1
m
≤ 1 and βij are binary vari-

ables.

Precedence constraints

Our method to guarantee the deterministic dataflow uses both temporal isolation technique
of Chapter 5 and the scheduling technique of Forget et al. [46]. In single core, the temporal
isolation realizes precedence constraints only to break cyclic dependency. The technique
of Forget et al. [46] realizes the precedence constraints in all other cases.

From Chapter 5, we derive that precedence constraints enforced by a buffer a = (τi, τj)
is realized by temporal isolation if Equation (6.7) is verified. In fact, this equation is
obtained from Equation (5.4) by using variables o∗i , d∗i and d∗ij as defined for this ILP. As
a result, Equation (6.7) expresses precedence constraints in such a way that consumer jobs
can start only after the end of the execution interval of producer jobs they depend on.

o∗j − o∗i ≥ d∗ij + outa −M0(a)− gcda (6.7)

The technique of Forget et al. [46] requires two steps to realize precedence constraints.
The first step adjusts tasks parameters to prevent consumer jobs from starting before
producer jobs. The second step assigns highest priorities to producer tasks. In this ILP, we
consider only the parameters adjustment because it characterizes the impact of precedence
constraints. Then, we achieve this by removing d∗ij from Equation (6.7). In fact, when
d∗ij = 0, Equation (6.7) expresses a constraint such as consumer jobs cannot start before
producer jobs, which is the required behavior for the technique of Forget et al. [46].

Accordingly, we use Equation (6.7) to characterize precedence constraints for both
temporal isolation [68] and the technique of Forget et al. [46]. We differentiate between
the two cases by using the expression of d∗ij in Equation (6.8). That is, when temporal
isolation is required (i.e. βij = 1), we get d∗ij = d∗i . Otherwise, βij = 0 in Forget et al. [46]
case, and we get d∗ij = 0.

d∗ij = βij · d∗i (6.8)

This expression of d∗ij consists in the product of the continue variable d∗i and the binary
variable βij. It can be linearized using the constraints of Equation (6.9). In fact, when

6.5. ILP formulation for parameters adjustment in multi-core and mapping95

βij = 1, Equation (6.9) enforces that d∗ij = d∗i . When βij = 0, it enforces that d∗ij = 0,
which is exactly the specification of d∗ij.

d∗ij ≥ d∗i + (βij − 1) ·Di (6.9a)

βij ·Di ≥ d∗ij (6.9b)

d∗i ≥ d∗ij (6.9c)

6.4.3 Objective function of the ILP

Parameters adjustment mainly consists in reducing tasks offsets and relative deadlines to
guarantee the dataflow. However, shortening deadlines can adversely impact the schedula-
bility [16]. For that reason, the goal of this ILP is to perform parameters adjustment that
minimizes this impact.

To achieve this goal, we use the objective function of Equation (6.10), which was pro-
posed in Subsection 5.4.2. This objective function aims at assigning the maximum deadlines
to tasks by minimizing the difference between the initial and the adjusted deadlines. The
minimization grants a preference to tasks with small slack time (i.e. Di−Ci). That is, the
difference is minimized first for the task with the smallest slack time. Then, it is minimized
for the next task with the next smallest slack time, and so on.

min
(∑

T

1
Di − Ci

(Di −D∗i)
)

(6.10)

6.5 ILP formulation for parameters adjustment in
multi-core and mapping

In this section, we extend the ILP of Section 6.4 to adjust parameters in multi-core and
to perform a mapping that minimizes the impact of dataflow requirements. As such, the
objective function is the same as in previous formulation.

First, Subsection 6.5.1 defines the set of variables and tuning parameter of the ILP.
Then, in Subsection 6.5.2, we describe and characterize the constraints used in the formu-
lation.

6.5.1 Variables and tuning parameter of the ILP

We consider the mapping of a set of n dependent tasks T = {τ1, τ2, . . . , τn} on q < n iden-
tical cores. The dependencies between tasks are modeled by the SDFG G = (T ,A,M).

96 Chapter 6. Characterization of dataflow in partitioned multi-core

In addition to the variables defined in Subsection 6.4.1, we define the following set of
variables for each task τ. ∈ T

• xik: are q binary variables that fix the mapping of task τi to core k. Formally, this is
expressed as:

xik =
{

1, if τi is mapped to core k
0, otherwise (6.11)

Likewise, in addition to the variables defined in Subsection 6.4.1, we define the following
set of variables for each buffer a = (τi, τj) ∈ A.

• αij: is a positive variable that determines if two communicating tasks are mapped to
the same core. Formally, this is expressed as:

αij =
{

1, if same core
0, otherwise (6.12)

Furthermore, we define Umax ≤ 1 as a tunable constant of the ILP. This constant
indicates the maximum utilization per core.

6.5.2 Constraints of the ILP

In this formulation, we define the following constraints in addition to the ones defined in
Subsection 6.4.2.

Utilization constraint

Each core has a limited utilization defined by Umax. This constraint is expressed as follows.
n∑
i=1

Ui · xik ≤ Umax (6.13)

Mapping constraints

Each task τi ∈ T must be mapped to exactly one core. Equation (6.14) expresses this
constraint.

q−1∑
k=0

xik = 1, ∀τi ∈ T (6.14)

6.6. Initial mapping optimized for dataflow requirements 97

Colocation constraints

For every buffer a = (τi, τj) ∈ A, variable αij indicates if the communicating tasks are
mapped to the same core. In Equation (6.15), we use the binary variables xik and xjk to
derive αij.

xik − xjk + 1 ≥ αij ≥ xik + xjk − 1, ∀a = (τi, τj) ∈ A,∀k < q (6.15)

In fact, when τi and τj are mapped to the same core k, xik = xjk = 1 and we get
αij = 1. On the contrary, when they are mapped to different cores, the case xik = 0 and
xjk = 1 appears. The latter leads to the constraint αij ≤ 0. However, αij is a positive
variable, which implies that αij = 0. Moreover, for all other cases such as xik = xjk = 0,
we get the constraints 1 ≥ αij ≥ −1. These constraints are trivial and do not influence
the value of αij. Then, from Equation (6.15), αij can be declared as a real variable.

Furthermore, temporal isolation is required to realize precedence constraints between
cores. This is enforced by Equation (6.16). In fact, this equation enforces βij = 1 (i.e.
temporal isolation) when αij = 0 (i.e. tasks are on different cores). However, when αij = 1,
Equation (6.16) does not enforce the value of βij. In that case, the value of βij is either
enforced by the cycle breaking constraints or managed by the objective function.

βij ≥ 1− αij, ∀a ∈ A (6.16)

6.6 Initial mapping optimized for dataflow require-
ments

In this section, we propose a method to construct an initial feasible or partial mapping
optimized for dataflow requirements. The partial mapping is composed of a subset of tasks
that are mapped and scheduled. The initial mapping is intended to initialize mapping
algorithms, to ease the search of a mapping that takes precedence constraints into account.

Our method builds a mapping optimized for dataflow requirements by using the ILP
of Section 6.5. Since this ILP minimizes the impact of precedence constraints on tasks,
we obtain a mapping optimized for dataflow requirements on the entire application. How-
ever, as this mapping does not consider the real-time scheduling of tasks, it can lead to a
scheduling that is not feasible. As such, we verify the scheduling on each core using the
algorithm of Forget et al. [46]. Then, we derive the initial mapping from the mapping of
tasks that are scheduled.

Let us consider the static preemptive scheduling of a set of n dependent periodic tasks
T = {τ1, τ2, . . . , τn} on partitioned multi-core with q identical cores (q < n). Dependencies
between tasks are modeled by the SDFG G = (T ,A,M). Let us denote by T k the set
of tasks allocated to core k. Algorithm 2 describes the method to construct the initial

98 Chapter 6. Characterization of dataflow in partitioned multi-core

mapping optimized for dataflow requirements.

Algorithm 2 Algorithm to construct an initial mapping.
1: function mapping_initialization(G)
2: {T k, k = 1, . . . , q} = Ilp_Mapping(G)
3: for k = 1, . . . , q do
4: Schedule(T k)
5: for all τi ∈ T k do
6: if τi is not scheduled then
7: T k ← T k \ {τi}
8: end if
9: end for
10: end for
11: return {T k, k = 1, . . . , q}
12: end function

The originality of Algorithm 2 is the function Ilp_Mapping(), which computes a
mapping optimized for dataflow requirements using the ILP of Section 6.5. Function
Schedule() computes the scheduling on each core using the algorithm of Forget et al. [46].
This algorithm assigns priorities from lowest to highest. It ensures that producer tasks are
given highest priorities than consumer tasks. The initial mapping is derived from the
mapping of tasks that have a feasible priority.

6.7 Heuristic mapping with precedence constraints

In this section, we specify a mapping algorithm that takes dataflow requirements into
account during the mapping and scheduling process. This algorithm will serve to analyze
the impact of the initial mapping optimized for dataflow requirements.

First, in Subsection 6.7.1 we define a variant of the ILP of Section 6.5 to perform a
fast parameters adjustment for a given mapping. Then, in Subsection 6.7.2 we present a
bin packing algorithm with worst-fit decreasing heuristic that takes dataflow requirements
into account during the search.

6.7.1 Fast parameters adjustment

To ensure dataflow requirements for a given mapping, we define a variant of the ILP
of Section 6.5. This variant removes the following variables and constraints from the
formulation of Section 6.5:

• binary variables xik and αij which are not needed when the mapping is known,

• mapping and colocation constraints which do no apply to fixed mapping.

6.8. Experiments and performance measurements 99

Accordingly, only real-time constraints, cycle breaking constraints and precedence con-
straints are used. The objective function remains the same, so that adjusted parameters
minimize the impact of dataflow requirements.

This variant is interesting as it provides a fast and efficient approach to set temporal
isolation and parameters adjustment for the algorithm of Forget et al. [46]. As such,
it guarantees the dataflow during the evaluation of the scheduling after each mapping
decision.

6.7.2 Heuristic mapping algorithm

The mapping algorithm that we suggest is based on bin packing worst-fit decreasing heuris-
tic. It extends the algorithm of Buttazzo et al. [22] to multi-periodic systems. The algo-
rithm proceeds by selecting tasks in decreasing order of utilization. Then, at each step
of the search, it assigns the unmapped task with the highest utilization to one core using
worst-fit heuristic. However, a task is assigned to a core only if the scheduling of this core
is still feasible after the task is added. When the current task cannot be assigned to any
core, the algorithm moves to the next task with the next highest utilization. This process
is repeated until all tasks are mapped or no task can be mapped.

The specificity of this mapping approach, compared to standard bin packing worst-fit
decreasing, is the use of the ILP variant. In fact, the latter is invoked at each mapping
decision so that the real-time parameters are adjusted before checking the scheduling. As
such, the impact of dataflow requirements is taken into account throughout the mapping
process. In addition, we ensure that the mapping of the current task does not affect the
scheduling of tasks that have already been mapped to other cores. This is done by enforcing
temporal isolation for all dependencies between tasks that are mapped and tasks that are
not. Hence, if the current task is mapped, it does not affect temporal isolation with tasks
on other cores. Consequently, their scheduling is not affected.

Let T ′ be the set of tasks that are not mapped. Algorithm 3 gives the pseudo code
of the mapping method. Function Sorted_by_Decreasing_utilization() returns
the set of tasks ordered by decreasing utilizations. Function Ilp_Adjustment() uses
the ILP variant to build parameters adjustment for both techniques [68, 46]. Then, the
function Schedule() tests the scheduling on a given core using the algorithm of Forget et
al. [46]. The latter returns true only if the mapping is feasible. Otherwise, it returns false.

6.8 Experiments and performance measurements

In this section, we evaluate the initial mapping on random dependent tasks sets.

First, in Subsection 6.8.1 we explain the generation of random dependent tasks sets
for multi-core. Then, in Subsection 6.8.2 we evaluate the scheduling and the runtime

100 Chapter 6. Characterization of dataflow in partitioned multi-core

Algorithm 3 Heuristic mapping algorithm
1: function Heuristic_wf_mapping(G)
2: {T k, k = 0 . . . q − 1} ← Initial_mapping(T)
3: T ′ ← Sorted_by_Decreasing_utilization(T)
4: unscheduled← φ . Unscheduled tasks

5: for τi ∈ T ′ \ unscheduled do
6: k ← least occupied core
7: repeat
8: Tk ← Tk ∪ {τi}
9: T ← Ilp_Adjustment(T)
10: feasible← Schedule(Tk)
11: if feasible then
12: T ′ ← T ′ \ {τi}
13: else
14: Tk ← Tk \ {τi}
15: k ← next least occupied core
16: end if
17: until feasible = true or no core remains
18: if no core remains then
19: unscheduled← unscheduled ∪ {τi}
20: end if
21: end for

22: end function

6.8. Experiments and performance measurements 101

performance of the initial mapping optimized for dataflow requirements.

6.8.1 Dependent tasks sets generation in multi-core

In the experiments of this section, we use the method of Section 5.5 to generate dependent
tasks. However, we change the approach for generating the utilization of tasks. This change
consists in choosing the total processor utilization U randomly between 1 and the number
of cores. Then, we distribute the latter uniformly over tasks using the RandFixedSum
function of Emberson et al. [38].

We do not use UUniFast method [18] in multi-core because when the total utilization
is greater than 1, UUniFast generates task utilizations greater than 1. These tasks are
indeed not schedulable. Davis and Burns [35] developed and extension of UUniFast called
UUnifast-Discard. The latter consists in using UUniFast and discarding task sets that
contain tasks with utilizations greater than 1. However, this algorithm is inefficient when
the value of U approaches n

2 [38]. Though this is not our case, we rather use RandFixed-
Sum [38]. The latter is an efficient method to distribute the processor utilization uniformly
over tasks in multi-core.

6.8.2 Scheduling performance and runtime

For the following analysis, we introduce an initial mapping optimized for load balancing.
The latter is obtained using the same approach as in Section 6.6. That is, we replace
the ILP by a standard bin packing worst-fit decreasing algorithm that builds an initial
load balanced mapping. We suggest this initial mapping optimized for load balancing in
order to illustrate the interest of the initial mapping optimized for dataflow requirements.
This choice is justified by the fact that most mapping algorithms consider load balancing
with several mapping concerns such as jitter minimization [111], inter-core communication
minimization [41, 111, 43, 42] and parallelization [87]) in their mapping and scheduling
process. Then, in each experiment, we run Algorithm 3 both without initialization (labeled
“H”), with the initialization optimized for load balancing (labeled “lb-H”) and with the
initialization optimized for dataflow requirements (labeled “df-H’’).

In the experiments in Figure 6.5 we consider a mapping and scheduling on q = 4 cores.
We vary the system utilization from 1.5 to 3.5 in abscissa and we generate a set of 5 graphs
for each utilization. Each graph is composed of 50 tasks with a degree from 1 to 3. We
limit the maximum utilization per core to Umax = 1. Figure 6.5 represents the average
percentage of tasks that are scheduled for each initialization.

We observe in Figure 6.5 that initialization with the mapping optimized for dataflow re-
quirements produces better scheduling results. Algorithm 3 without initialization schedules
on average 75.2 of tasks. With the initialization optimized for dataflow requirements (resp.
for load balancing) the average increases to 87.12 percent (resp. 76.1 percent) of tasks.

102 Chapter 6. Characterization of dataflow in partitioned multi-core

Figure 6.5: Scheduling performance

That is, the initialization optimized for dataflow requirements increases the scheduling of
Algorithm 3 by an average of 11.92 percent more tasks, while the initialization optimized
for load balancing increases it only by an average of 0.9 percent more tasks. This result
confirms the impact of dataflow requirements on the feasibility of mapping. It also shows
the interest of taking dataflow requirements into account during the mapping of depen-
dent tasks. Furthermore, it motivates the need for a good initial mapping optimized for
dataflow requirements.

Figure 6.6 uses the same experiments as before, except that we measure the computation
times of the whole mapping process (i.e. initialization + Algorithm 3). Then, we observe
that initializing Algorithm 3 with the mapping optimized for dataflow requirements does
not increase the overall computing time. On the contrary, the latter is reduced. This result
may seem surprising because the initialization optimized for load balancing requires less
computing time than the one optimized for dataflow requirements (Figure 6.7). However,
the latter produces a partial mapping with an average of 57.44 percent of tasks, while
the former contains only 34.64 percent of tasks (Figure 6.8). As such, the computing
time of Algorithm 3 is mostly reduced with the initial mapping optimized for dataflow
requirements. This is because the latter maps more tasks and faster than the required
incremental scheduling analysis [5], which is in exponential time.

However, the runtime reduction is possible only if the resolution of the ILP is faster
than the incremental scheduling analysis. In experiments of Figure 6.9, we study the time
needed to get the optimal solution of the ILP. We find that this time increases with both
the number of tasks and the number of cores. Nonetheless, the magnitudes are not uniform
but depend on the structure of graphs (Figure 6.9(a)).

The experiments in Figure 6.9(b) show that the density of graphs (i.e. the connectivity
of tasks) influences greatly on the complexity of finding the optimal solution of the ILP.
In fact, in Figure 6.9(b) we set the number of tasks to 100 and the number of cores to 4.
We vary the maximum degree of tasks from 2 to 6 in abscissa and we generate a set of
5 graphs for each. We represent the average time needed to find the optimal solution in
ordinate. The results show that the complexity of finding the optimal solution increases
exponentially with the density of graphs.

6.8. Experiments and performance measurements 103

Figure 6.6: Runtime analyses.

Figure 6.7: Computing time of each initial partial mapping

The size of our ILP is polynomial. In fact, Equations (6.3) and (6.11) define m and
n · q binary variables, respectively. Since m = O(n2), the number of binary variables is in
O(n2). In addition, Equations (6.13), (6.14), (6.15) and (6.16) define q, n, q × n2 and n2

constraints on the binary variables. That is, the number of constraints on binary variables
is in O(q × n2). As such, the size of the ILP is O(n2). The exponential time resolution

104 Chapter 6. Characterization of dataflow in partitioned multi-core

Figure 6.8: Percentage of tasks in each initial partial mapping

observed when the density increases in Figure 6.9 is due to the combinatorial explosion
of the number of possible states for the values of the variables. In fact, when the density
increases, a single mapping decision affects all the adjacent buffers.

6.9 Conclusion

In this chapter, we considered the mapping and scheduling problem of multi-periodic sys-
tems on a fixed number of identical cores. We addressed this problem from a dataflow
perspective to propose a fast and accurate characterization of dataflow requirements in
partitioned multi-core. To do this, we introduced a method that guarantees a determin-
istic dataflow by combining the temporal isolation technique developed in Chapter 5 with
the technique of Forget et al. [46]. The latter provides the optimal technique to realize
deterministic dataflow on single-core using priority ordering. Then, we introduced a cycle
breaking technique to manage cyclic dependencies in multi-periodic systems efficiently. As
such, we built an integrated method to adjust tasks parameters and enable a deterministic
dataflow in partitioned multi-core.

Furthermore, we formulated an ILP that adjusts the parameters of tasks to implement
deterministic dataflow while minimizing the impact of the latter. We also extended this
ILP to perform a mapping optimized for dataflow requirements. This ILP builds an initial
partial or feasible mapping optimized for dataflow requirements. The latter initializes
mapping algorithms and ease the search of a mapping that takes precedence constraints
into account.

This chapter demonstrates the interest of taking dataflow requirements into account
during the mapping and scheduling. The proposed approach constructs an initial mapping
optimized for dataflow requirements, which increases the scheduling performances and can
reduce the computation time of the mapping and scheduling process.

6.9. Conclusion 105

(a) Effect of the number of tasks and cores.

(b) Effect of the density of graphs.

Figure 6.9: Computing time to find the optimal solution of the ILP.

This work allows the establishment of an implementation flow from Matlab/Simulink
to the mapping and the scheduling analysis on partitioned AUTOSAR. An interesting

106 Chapter 6. Characterization of dataflow in partitioned multi-core

perspective consists in combining the initial mapping with other mapping algorithms in
order to build a complete implementation flow. The latter will consider both dataflow
guaranteeing and optimization concerns such as jitter [111] and inter-core communication
minimization [41, 111, 43, 42], and parallelization [87]. In next chapter we use this result
to provide a design framework from Matlab/Simulink to AUTOSAR multi-core.

Chapter 7

Design framework from Simulink to
AUTOSAR

Contents
7.1 Introduction . 108
7.2 Framework description . 108
7.3 Exchange format and tool suite . 110
7.4 Illustration on the Fuel Cell Control System 110
7.5 Discussion and Conclusion . 112

107

108 Chapter 7. Design framework from Simulink to AUTOSAR

7.1 Introduction

This chapter uses the contributions of previous chapters to bridge the gap between Mat-
lab/Simulink and the configuration of AUTOSAR multi-core. We achieve this by defining
a design framework that provides a formal link from Matlab/Simulink to AUTOSAR. As
such, our contributions are downstream of Matlab/Simulink, but upstream of the map-
ping and scheduling on AUTOSAR multi-core. In fact, we extract the dataflow in the
Matlab/Simulink specification by a SDFG using the method of Chapter 4. Then, we char-
acterize the dataflow requirements to implement deterministic dataflow on AUTOSAR
multi-core using the methods of Chapters 5 and 6. However, we leave the configuration
step to the designer so that it can choose the configuration techniques best suited to its
system. This is because the configuration of a given application in the industry is subjected
to subjective preferences. Nonetheless, we assist this configuration by providing an initial
mapping optimized for dataflow requirements. The latter is an excellent entry point for
the configuration because it improves the scheduling performances, while it can reduce the
computing time of the configuration process. Furthermore, we specify an XML Schema
Definition and several tools to automate the design framework. We apply this framework
on the use case FCCS.

The rest of this chapter is organized as follows. Section 7.2 describes our framework
using the results of previous chapters. In Section 7.3, we describe an exchange format
and the tools implemented to automate the configuration process. Then, in Section 7.4,
we illustrate the design framework on a fine grain model of the FCCS. Discussion and
conclusions are given in Section 7.5.

7.2 Framework description

Our framework is composed of several steps as illustrated in Figure 7.1.

The first step consists in designing and validating the functional specification in Mat-
lab/Simulink. The latter must verify the rules defined in Section 4.4 to allow the formal
characterization of dataflow requirements. Namely, every Runnable must be modeled by
a SDFG task and communications between each pair of Runnables must be characterized
by an initial marking. Once these rules are verified, the next step extracts the SDFG
of the validated Matlab/Simulink specification. This SDFG specifies the dataflow that
must be implemented. As such, it provides the formal link between Matlab/Simulink and
AUTOSAR.

The characterization of the dataflow requirements provided by Section 6.3 expresses
the constraints on the AUTOSAR configuration to ensure a deterministic dataflow on
partitioned multi-core. However, industrial applications are also constrained by real-time
specifications and several requirements such as jitter [111], response time [100] and inter-
core communication [41, 111, 43, 42] minimization, data mapping [110] and parallelism [87].

7.2. Framework description 109

Functional
specification
(Simulink)

Design
rules ?

Dataflow extract

Mapping optimized for
dataflow requirements

Multi-objective
configuration
refinement

Can
dataflow be
satified ?

Yes

No

No, feedback to Simulink

Dataflow requirements

Initial mapping

Yes, extract the
configuration

Tasks Mapping

Offsets and Deadlines

Priorities

•
•
•

WCET, number of
cores

Figure 7.1: Proposed design framework.

To meet all these requirements, the AUTOSAR configuration actually relies on a Multi-
Objective Optimization (MOO) problem. The latter uses more than one criteria to be
optimized simultaneously. However, the difficulty in a MOO problem is the presence of
conflicting objectives. For example, the minimization of inter-core communications may
cause overloading of cores and increase response times. For such nontrivial MOO problem,
no single solution exists that simultaneously optimizes each objective. In fact, there exists
a (possibly infinite) number of Pareto optimal solutions. A solution is Pareto optimal if
none of the objectives can be improved in value without degrading some of the others. As
such, all Pareto optimal solutions are considered equally good.

In the industry, the “best” configuration for an application is subjected to subjective
preferences. For this reason, we leave the configuration step to the designer to choose the

110 Chapter 7. Design framework from Simulink to AUTOSAR

appropriate configuration techniques. However, we define a step to assist this configuration
on AUTOSAR multi-core. This assistance is to perform an initial mapping optimized for
dataflow requirements using the extracted SDFG, the WCET of Runnables and the number
of cores. This initial mapping optimized for dataflow requirements assists the configuration
because it improves the scheduling performances, while it can reduce the computing time
of the process. As such, it is an excellent entry point for the configuration to reduce the
number of design iterations and shortens the design time.

After the configuration step, if some dataflow requirements cannot be met, the informa-
tion is feedback to adapt the Matlab/Simulink specification. Otherwise, the configuration
(i.e. the tasks mapping, the adjusted offset and deadline of tasks, and the priorities of
tasks) is extracted.

7.3 Exchange format and tool suite

We specify an XML Schema Definition (XSD) to facilitate the exchanges between the steps
of the framework. In fact, this XSD defines the elements and the structures to describe the
SDFG (i.e. SDFG tasks, buffers, initial markings), the hardware constraints (i.e. number
of cores, maximum utilization) and the WCET of Runnables. Then, we develop the MAtlab
SDFG Extraction (MASE) tool in outsourcing by Sherpa Engineering. MASE is a Matlab
script that checks the design rules on a Matlab/Simulink specification and automatically
extracts the SDFG. It provides this SDFG in the XML format specified by the XSD.
Moreover, MASE includes additional information on SDFG tasks (e.g. Runnables names,
SWCs) and SDFG Buffers (e.g. data types). These information are required by downstream
tools, for example to constraint the mapping of Runnables of the same SWCs to the same
core.

Furthermore, we develop a python script to retrieve this XML file and perform the
mapping optimized for dataflow requirements. The rest of the tools developed in the
thesis are python scripts to facilitate interoperability. To date, the output format of the
configuration is a CSV file describing the mapping, the offsets, the deadlines and the
priorities in the initial mapping.

The tools mentioned above will be available on the website of the ELA project1.

7.4 Illustration on the Fuel Cell Control System

We illustrate our framework on a fine grain Matlab/Simulink specification of the FCCS.
The latter verifies the rules defined in Section 4.4. This specification is composed of
24 Runnables at 10ms and 9 Runnables at 100ms, for a total of 33 Runnables spread

1http://www.irt-systemx.fr/project/ela

http://www.irt-systemx.fr/project/ela

7.4. Illustration on the Fuel Cell Control System 111

over 12 SWCs. We extract the SDFG G = (T ,A,M) of this specification using MASE,
where Runnables are modeled by SDFG tasks. We assume that each Runnable can be
implemented by an offset-free task. However, we do not have the real estimation of the
WCET. As such, we generate randomWCET using RandFixedSum [38]. Then, we consider
the architecture of the micro-controller TC29x [1] presented in Section 2.6, with q = 3
cores.

For the mapping, we ensure that Runnables of the same SWC are mapped to the same
core (as required by AUTOSAR) by associating the binary variables xik (c.f . Equation 6.11)
to SWCs (i.e. i = 1 . . . 12 and j = 0 . . . 2). In fact, these variables fix the mapping of
Runnables to cores. As a result, Runnables of the same SWC are characterized by the
same mapping variables xik, so that they are mapped to the same core. Then, we perform
the mapping optimized for dataflow requirements using the ILP of Section 6.5.

For the configuration, we just target a feasible mapping. That is, we use the mapping
optimized for dataflow requirements directly. We check the feasibility using the method
of Section 6.3, where priority ordering realizes dependency only when temporal isolation
is not used. Then, if the mapping is feasible, we extract the configuration. Otherwise, we
identify the dataflow requirements associated to tasks that are not scheduled.

In the following experiments, we vary the utilization U of the FCCS from 2 to 2.5
in abscissa. We generate a set of 10 random Runnables parameters for each utilization.
We implement a load balancing with 5 percent margin by constraining core utilization
to Umax = U

3 · 1.05. In Figure 7.2, we show the percentage of feasible mapping obtained
using different real-time scenarios for each system utilization (labeled “Iter− 1”). We call
this percentage the acceptance ratio. Moreover, to illustrate feedback to the functional
specification when the configuration is not feasible, we soften the dataflow requirements
associated to tasks that are not scheduled. This softening consists in enforcing the commu-
nications from theses tasks to use the delayed mechanism. Then, we repeat the mapping
and the scheduling analysis once. The acceptance ratio after that iteration is also shown
in Figure 7.2 (labeled “Iter − 2”).

We observe in Figure 7.2 that softening dataflow requirements improves the accep-
tance ratio for the FCCS. Despite the fact that this approach is naive, it illustrates that
dataflow requirements can be used to adapt the functional specification and to enhance
the implementation.

For experiments that produce feasible scheduling, one step remains before the imple-
mentation on the ECU. This step consists in the implementation of the communications
between tasks. In fact, our work characterizes the dataflow and guarantee the determinis-
tic implementation using scheduling approach. However, the AUTOSAR RTOS does not
directly provide features for the data exchanges mechanisms. That is, it remains to adapt
the communication in AUTOSAR to implement the mechanisms of Matlab/Simulink.

112 Chapter 7. Design framework from Simulink to AUTOSAR

Figure 7.2: Acceptance ratio.

7.5 Discussion and Conclusion

This chapter established a design framework to bridge the gap between Matlab/Simulink
and the implementation on AUTOSAR. That, is it provides a formal link between Mat-
lab/Simulink and the implementation analysis on AUTOSAR multi-core. In fact, the
dataflow of Matlab/Simulink is extracted and modeled by a SDFG using the method de-
veloped in Chapter 4. Then, the method proposed in Chapter 6 characterizes the dataflow
requirements to implement deterministic dataflow on AUTOSAR multi-core. However,
since in the industry the configuration of an application is subjected to subjective pref-
erence, we leave the configuration to the designer to choose the appropriate techniques.
Nonetheless, we assist this configuration by providing an initial mapping optimized for
dataflow requirements. The latter is an excellent entry point for the configuration to reduce
the number of design iterations and shortens the design time. If some dataflow require-
ments cannot be met by the configuration, the information on the dataflow requirements
that are not verified are feedback to the Matlab/Simulink specification.

Furthermore, we specified a XSD and several tools to automate the design framework.
To this end, we assume that Runnables are implemented as real-time tasks. However, this
is not a limitation because this hypothesis is used only to study the mapping and the
deterministic dataflow guarantee in partitioned multi-core. As such, Runnables to tasks
mapping can be performed later during the configuration [64, 16].

Chapter 8

Conclusion

Summary

This thesis studied the deterministic implementation of data exchanges in AUTOSAR
multi-core. We considered a MBD approach, where the dataflow is specified by Mat-
lab/Simulink. So, we relied on the compositionality offers by AUTOSAR to focus only on
the interactions between Runnables. Then, we targeted the implementation which guaran-
tees the functional and temporal determinism of data exchanges between Runnables, while
making the best use of parallelism.

Our work proves that the dataflow in a multi-periodic Matlab/Simulink system is mod-
eled by a SDFG. We characterized this SDFG and we provided the method to model
the dataflow in a Matlab/Simulink specification by a SDFG. This SDFG is not on the
hyperperiod and all dependency constraints are expressed by closed mathematical formu-
las. As such, the translation of the Matlab/Simulink specification to SDFG is scalable.
Moreover, the formal equivalence proven between Matlab/Simulink and SDFG opens new
perspectives for the development of real-time systems on multi/many-core. This is because
the formalism of SDFG is very popular in the literature and it is widely studied for the
deployment of dataflow applications on multi/many-core.

We exploited the theory of SDFG to build a real-time scheduling technique that guar-
antees the implementation of the functional dataflow without blocking mechanisms. This
technique uses the scheduling of the SDFG to transform the dependent tasks into inde-
pendent ones by adjusting their real-time attributes. The proposed temporal isolation is
performed using a LP. As such, it provides a fast technique to deal with dependencies in
multi-periodic systems.

Furthermore, we combined the technique of temporal isolation with the technique of
Forget et al. [46] to build a global method that guarantees deterministic dataflow in par-
titioned multi-core. In fact, the technique of Forget et al. [46] is optimal to realize deter-
ministic dataflow on single-core. As a result, the combination of both technique provides
a fast and accurate characterization of dataflow requirements in partitioned multi-core.
Moreover, we provided a method to build an initial mapping optimized for dataflow re-
quirements. The experiments prove that this initial mapping increases the scheduling
performances and can reduce the computation time of the mapping and scheduling pro-
cess.

113

114 Conclusion

Finally, we proposed a design framework which uses SDFG to bridge the gap between
Matlab/Simulink and the configuration of AUTOSAR multi-core. This configuration is
constrained by the dataflow requirements characterized using our method to guarantee
deterministic dataflow. Then, the mapping optimized for dataflow requirements is pro-
vided to initialize multi-objective optimization methods to promote the construction of a
partitioning and a feasible scheduling. We claim that this reduces the number of design
iterations and shortens the design time.

Perspectives

Below are discussed prospects for future work in the continuity of this thesis.

Combination of communication mechanisms

The Direct, Delayed and Hybrid mechanisms are the basic communication mechanisms
in Matlab/Simulink. In fact, it is possible to combine these basis mechanism to create
new ones. The resulting mechanisms of some combinations are obvious. For example, the
combination of two delay blocks leads to a mechanism where the data transfer is delayed by
two periods of the producer. However, for other combinations, the resulting mechanisms
are not so obvious and may even depend on the order of the combination. An example
is the combination of delay and hybrid mechanisms. Future work could investigate the
combination of communication mechanisms in Matlab/Simulink. Then, provide the SDFG
model of the latter.

Implementation strategies

Our characterization of dataflow requirements defines the conditions to for the deterministic
implementation of data exchanges between Runnables. However, the implementation must
ensure that only the proper data are consumed. As such, following our work, the choice
of the suitable communication modes and tasks configuration in AUTOSAR should be
considered.

Communication costs

In multi/many-core systems, communications between cores are actually costly. In fact,
because of the bus and/or the NoC sharing, inter-core communications take longer. As
a result, the dataflow requirements associated with inter-core communications have an
even greater impact on tasks. This aspect should be taken into account effectively for the
characterization of dataflow requirements and in the initial mapping.

Publications

International conference with reading committee

• Enagnon Cedric Klikpo and Alix Munier-Kordon. “Characterization of dataflow
requirements in partitioned multi-core.” In: Submitted ()

• Enagnon Cedric Klikpo, Jad Khatib, and Alix Munier-Kordon. “Modeling multi-
periodic simulink systems by synchronous dataflow graphs.” In: Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), 2016 IEEE. IEEE. 2016,
pp. 1–10

• Enagnon Cédric Klikpo and Alix Munier-Kordon. “Preemptive scheduling of depen-
dent periodic tasks modeled by synchronous dataflow graphs.” In: Proceedings of
the 24th International Conference on Real-Time Networks and Systems. ACM. 2016,
pp. 77–86

• Jad Khatib et al. “Computing latency of a real-time system modeled by Synchronous
Dataflow Graph.” In: Proceedings of the 24th International Conference on Real-Time
Networks and Systems. ACM. 2016, pp. 87–96

National Workshop

• Enagnon Cedric Klikpo, Jad Khatib, and Alix Munier-Kordon. “Modélisation SDF
des communications Simulink.” In: École d’été Temps Réel (ETR’2015) (20015)

• Enagnon Cedric Klikpo et al. “Modélisation des communications d’un système temps-
réel par un SDFG.” in: École d’été Temps Réel (ETR’2015) (20015)

115

Bibliography

[1] Infineon Technologies AG. Highly integrated and performance optimized 32-bit mi-
crocontrollers for automotive and industrial applications. url: http : / / www .
infineon.com/ (cit. on pp. 22, 23, 111).

[2] AMALTHEA project homepage. url: http://amalthea-project.org/ (cit. on
p. 32).

[3] Pascal Aubry, Paul Le Guernic, and Sylvain Machard. “Synchronous distribution
of Signal programs.” In: System Sciences, 1996., Proceedings of the Twenty-Ninth
Hawaii International Conference on, vol. 1. IEEE. 1996, pp. 656–665 (cit. on p. 30).

[4] Pascal Aubry et al. “Extended Cyclostatic Dataflow Program Compilation and Ex-
ecution for an Integrated Manycore Processor.” In: Proceedings of the International
Conference on Computational Science. 2013 (cit. on p. 33).

[5] Neil C Audsley. Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times. Citeseer, 1991 (cit. on pp. 9, 11, 12, 69, 76, 78, 102).

[6] AUTOSAR Support in MATLAB and Simulink - Automotive Industry Standards
- MATLAB & Simulink. url: https : / / fr . mathworks . com / solutions /
automotive/standards/autosar.html (cit. on pp. 47, 51).

[7] Mohamed Bamakhrama and Todor Stefanov. “Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications.” In: Proceedings of the ninth
ACM international conference on Embedded software. ACM. 2011, pp. 195–204 (cit.
on pp. 33, 69).

[8] Mohamed A Bamakhrama and Todor Stefanov. “Managing latency in embedded
streaming applications under hard-real-time scheduling.” In: Proceedings of the
eighth IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis. ACM. 2012, pp. 83–92 (cit. on pp. 33, 69).

[9] Matthias Becker et al. “Contention-free execution of automotive applications on a
clustered many-core platform.” In: 28th Euromicro Conference on Real-Time Sys-
tems (ECRTS). IEEE. 2016, pp. 14–24 (cit. on p. 88).

[10] Shane Bell et al. “Tile64-processor: A 64-core soc with mesh interconnect.” In: Solid-
State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE
International. IEEE. 2008, pp. 88–598 (cit. on p. 22).

[11] A. Benveniste et al. “The synchronous languages 12 years later.” In: Proceedings of
the IEEE 91.1 (2003-01) (cit. on p. 30).

[12] Albert Benveniste and Gérard Berry. “The Synchronous Approach to Reactive and
Real-time Systems.” In: Readings in Hardware/Software Co-design. Ed. by Giovanni
De Micheli, Rolf Ernst, and Wayne Wolf. Norwell, MA, USA: Kluwer Academic
Publishers, 2002, pp. 147–159 (cit. on pp. 29, 42).

117

http://www.infineon.com/
http://www.infineon.com/
http://amalthea-project.org/
https://fr.mathworks.com/solutions/automotive/standards/autosar.html
https://fr.mathworks.com/solutions/automotive/standards/autosar.html

118 Bibliography

[13] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. “Synchronous Pro-
gramming with Events and Relations: The SIGNAL Language and Its Semantics.”
In: Sci. Comput. Program. 16.2 (Sept. 1991) (cit. on pp. 29, 30, 42).

[14] Albert Benveniste et al. “A protocol for loosely time-triggered architectures.” In:
Embedded Software. Springer. 2002, pp. 252–265 (cit. on p. 42).

[15] Gérard Berry and Georges Gonthier. “The ESTEREL Synchronous Programming
Language: Design, Semantics, Implementation.” In: Sci. Comput. Program. 19.2
(Nov. 1992) (cit. on pp. 29, 30, 42).

[16] Antoine Bertout, Julien Forget, and Richard Olejnik. “Minimizing a real-time task
set through Task Clustering.” In: Proceedings of the 22nd International Conference
on Real-Time Networks and Systems. ACM. 2014, p. 23 (cit. on pp. 95, 112).

[17] Greet Bilsen et al. “Cycle-static dataflow.” In: IEEE Transactions on signal pro-
cessing 44.2 (1996), pp. 397–408 (cit. on pp. 33, 69).

[18] Enrico Bini and Giorgio C Buttazzo. “Biasing effects in schedulability measures.” In:
Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Conference
on. IEEE. 2004, pp. 196–203 (cit. on pp. 78, 101).

[19] Bruno Bodin et al. “Fast and efficient dataflow graph generation.” In: Proceedings of
the 17th International Workshop on Software and Compilers for Embedded Systems.
ACM. 2014, pp. 40–49 (cit. on p. 78).

[20] Pontus Boström and Jonatan Wiik. “Contract-based verification of discrete-
time multi-rate Simulink models.” In: Software & Systems Modeling 15.4 (2016),
pp. 1141–1161 (cit. on p. 44).

[21] Michael W. Browne et al. “Simulink user’s guide.” In: Sage Focus Editions 154
(1993) (cit. on pp. 1, 26, 42, 47, 50).

[22] Giorgio Buttazzo, Enrico Bini, and Yifan Wu. “Partitioning real-time applications
over multicore reservations.” In: Transactions on Industrial Informatics 7.2 (2011),
pp. 302–315 (cit. on pp. 86, 88, 99).

[23] Thomas Carle et al. “Static mapping of real-time applications onto massively par-
allel processor arrays.” In: 14th International Conference on Application of Concur-
rency to System Design (ACSD). IEEE. 2014, pp. 112–121 (cit. on pp. 86, 87).

[24] Paul Caspi et al. “From Simulink to SCADE/Lustre to TTA: a layered approach
for distributed embedded applications.” In: ACM Sigplan Notices. Vol. 38. 7. ACM.
2003 (cit. on pp. 30, 42).

[25] Paul Caspi et al. “LUSTRE: a declarative language for real-time programming.”
In: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. ACM, 1987 (cit. on pp. 29, 30, 42).

[26] Paul Caspi et al. “Semantics-preserving multitask implementation of synchronous
programs.” In: ACM Transactions on Embedded Computing Systems (TECS) 7.2
(2008), p. 15 (cit. on p. 30).

Bibliography 119

[27] Damien Chabrol et al. “Deterministic Distributed Safety-Critical Real-Time Sys-
tems within the Oasis Approach.” In: IASTED PDCS. 2005, pp. 260–268 (cit. on
p. 31).

[28] Dominik Chessa. “Conception and Implementation of Parallelism Analyses in
MATLAB/SIMULINK Models for programming Embedded Multicore-Systems.” In:
Bachelorarbeit, Technische Universität München (2011) (cit. on p. 44).

[29] Houssine Chetto, Maryline Silly, and T Bouchentouf. “Dynamic scheduling of
real-time tasks under precedence constraints.” In: Real-Time Systems 2.3 (1990),
pp. 181–194 (cit. on pp. 69, 88).

[30] Edward G Coffman Jr, Michael R Garey, and David S Johnson. “Approximation
algorithms for bin packing: A survey.” In: Approximation algorithms for NP-hard
problems. PWS Publishing Co. 1996, pp. 46–93 (cit. on p. 12).

[31] Frederic Commoner et al. “Marked directed graphs.” In: Journal of Computer and
System Sciences 5.5 (1971), pp. 511–523 (cit. on p. 43).

[32] AUTOSAR Consortium et al. “AUTOSAR Release 4.0.” In: Specification of multi-
core OS architecture v1 (2009) (cit. on pp. 1, 13).

[33] Thomas H.. Cormen et al. Introduction to algorithms. Vol. 6. MIT press Cambridge,
2001 (cit. on p. 93).

[34] Robert I Davis and Alan Burns. “A survey of hard real-time scheduling for mul-
tiprocessor systems.” In: Computing surveys (CSUR) 43.4 (2011), p. 35 (cit. on
p. 12).

[35] Robert I Davis and Alan Burns. “Priority assignment for global fixed priority pre-
emptive scheduling in multiprocessor real-time systems.” In: 2009 30th IEEE Real-
Time Systems Symposium (RTSS). IEEE. 2009, pp. 398–409 (cit. on p. 101).

[36] Sudarshan K Dhall and Chung Laung Liu. “On a real-time scheduling problem.” In:
Operations research 26.1 (1978), pp. 127–140 (cit. on p. 12).

[37] Benoît Dupont de Dinechin et al. “A distributed run-time environment for the
kalray mppa R©-256 integrated manycore processor.” In: Procedia Computer Science
18 (2013) (cit. on pp. 22, 33).

[38] Paul Emberson, Roger Stafford, and Robert I Davis. “Techniques for the synthesis of
multiprocessor task sets.” In: Proceedings 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS 2010).
2010, pp. 6–11 (cit. on pp. 101, 111).

[39] EU CO2 standards for passenger cars and light-commercial vehicles | International
Council on Clean Transportation. url: http://www.theicct.org/publications/
eu-co2-standards-passenger-cars-and-light-commercial-vehicles (visited
on 11/06/2017) (cit. on p. 1).

[40] Maher Fakih and Sebastian Warsitz. “Automatic SDF-based Code Generation
from Simulink Models for Embedded Software Development.” In: arXiv preprint
arXiv:1701.04217 (2017) (cit. on p. 44).

http://www.theicct.org/publications/eu-co2-standards-passenger-cars-and-light-commercial-vehicles
http://www.theicct.org/publications/eu-co2-standards-passenger-cars-and-light-commercial-vehicles

120 Bibliography

[41] Hamid Reza Faragardi et al. “An efficient scheduling of AUTOSAR runnables to
minimize communication cost in multi-core systems.” In: 7th International Sympo-
sium on Telecommunications (IST). IEEE. 2014, pp. 41–48 (cit. on pp. 86, 88, 101,
106, 108).

[42] Juraj Feljan and Jan Carlson. “Task allocation optimization for multicore embedded
systems.” In: 40th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA). IEEE. 2014, pp. 237–244 (cit. on pp. 86, 88, 101, 106, 108).

[43] Juraj Feljan, Jan Carlson, and Tiberiu Seceleanu. “Towards a model-based approach
for allocating tasks to multicore processors.” In: 38th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA). IEEE. 2012, pp. 117–124
(cit. on pp. 86, 88, 101, 106, 108).

[44] Julien Forget et al. “A multi-periodic synchronous data-flow language.” In: High
Assurance Systems Engineering Symposium, 2008. HASE 2008. 11th IEEE. IEEE.
2008, pp. 251–260 (cit. on p. 31).

[45] Julien Forget et al. “Dynamic priority scheduling of periodic tasks with extended
precedences.” In: 16th IEEE Conference on Emerging Technologies & Factory Au-
tomation, 2011. IEEE. 2011 (cit. on pp. 31, 43).

[46] Julien Forget et al. “Scheduling dependent periodic tasks without synchronization
mechanisms.” In: 2010 16th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium. IEEE. 2010, pp. 301–310 (cit. on pp. 4, 31, 69, 80, 81, 86, 90,
91, 94, 97–99, 104, 113).

[47] Alain Girault. “A survey of automatic distribution method for synchronous pro-
grams.” In: International workshop on synchronous languages, applications and pro-
grams, SLAP. Vol. 5. 2005 (cit. on p. 30).

[48] Alain Girault and Xavier Nicollin. “Clock-driven automatic distribution of Lustre
programs.” In: Embedded Software. Springer. 2003, pp. 206–222 (cit. on p. 30).

[49] Alain Girault, Xavier Nicollin, and Marc Pouzet. “Automatic rate desynchronization
of embedded reactive programs.” In: ACM Transactions on Embedded Computing
Systems (TECS) 5.3 (2006), pp. 687–717 (cit. on p. 30).

[50] J. Goossens and R. Devillers. “The Non-Optimality of the Monotonic Priority As-
signments for Hard Real-Time Offset Free Systems.” In: Real-Time Systems 13.2
(1997), pp. 107–126 (cit. on p. 69).

[51] Joël Goossens. “Scheduling of Offset Free Systems.” In: Real-Time Systems 24.2
(2003), pp. 239–258 (cit. on pp. 8, 68, 69).

[52] Michael I Gordon et al. “A stream compiler for communication-exposed architec-
tures.” In: ACM SIGPLAN Notices. Vol. 37. 10. ACM. 2002 (cit. on pp. 2, 33).

[53] Ronald L. Graham. “Bounds on multiprocessing timing anomalies.” In: SIAM jour-
nal on Applied Mathematics 17.2 (1969), pp. 416–429 (cit. on p. 30).

Bibliography 121

[54] Thierry Grandpierre and Yves Sorel. “From algorithm and architecture specifica-
tions to automatic generation of distributed real-time executives: a seamless flow of
graphs transformations.” In: Proceedings of the First ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, 2003. MEMOCODE’03.
IEEE. 2003, pp. 123–132 (cit. on p. 30).

[55] Mathieu Grenier, Joël Goossens, and Nicolas Navet. “Near-optimal fixed priority
preemptive scheduling of offset free systems.” In: 14th International Conference on
Real-Time and Networks Systems (RTNS’06). 2006, pp. 35–42 (cit. on p. 69).

[56] Kaouther Guesmi and Salem Hasnaoui. “Translating of MATLAB/SIMULINLK
model to synchronous dataflow graph for parallelism analysis and programming em-
bedded multicore systems.” In: 9th International Design & Test Symposium, 2014.
IEEE. 2014, pp. 156–161 (cit. on p. 44).

[57] Joost PHM Hausmans et al. “Dataflow analysis for multiprocessor systems with
non-starvation-free schedulers.” In: Proceedings of the 16th International Workshop
on Software and Compilers for Embedded Systems. ACM. 2013, pp. 13–22 (cit. on
pp. 70, 82).

[58] Thomas Henzinger, Benjamin Horowitz, and Christoph Kirsch. “Giotto: A time-
triggered language for embedded programming.” In: Embedded software. Springer.
2001, pp. 166–184 (cit. on p. 31).

[59] Pierre-Emmanuel Hladik et al. “Solving a real-time allocation problem with con-
straint programming.” In: Journal of Systems and Software 81.1 (2008), pp. 132–149
(cit. on p. 88).

[60] Robert Höttger, Lukas Krawczyk, and Burkhard Igel. “Model-Based Automotive
Partitioning and Mapping for Embedded Multicore Systems.” In: ICPDSSE 2015:
International Conference on Parallel, Distributed Systems and Software Engineer-
ing, Istanbul, Turkey, (Jan 26-27, 2015) 1.1 (2014), p. 957 (cit. on p. 43).

[61] Ralf Jahr, Mike Gerdes, and Theo Ungerer. “On Efficient and Effective Model-based
Parallelization of Hard Real-Time Applications.” In: MBEES. 2013, pp. 50–59 (cit.
on p. 32).

[62] Mathai Joseph and Paritosh Pandya. “Finding response times in a real-time system.”
In: The Computer Journal 29.5 (1986), pp. 390–395 (cit. on p. 11).

[63] Jad Khatib et al. “Computing latency of a real-time system modeled by Synchronous
Dataflow Graph.” In: Proceedings of the 24th International Conference on Real-Time
Networks and Systems. ACM. 2016, pp. 87–96 (cit. on p. 115).

[64] Fouad Khenfri, Khaled Chaaban, and Maryline Chetto. “A novel heuristic algo-
rithm for mapping AUTOSAR runnables to tasks.” In: Pervasive and Embedded
Computing and Communication Systems (PECCS), 2015 International Conference
on. IEEE. 2015, pp. 1–8 (cit. on p. 112).

122 Bibliography

[65] Enagnon Cedric Klikpo, Jad Khatib, and Alix Munier-Kordon. “Modeling multi-
periodic simulink systems by synchronous dataflow graphs.” In: Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), 2016 IEEE. IEEE. 2016,
pp. 1–10 (cit. on p. 115).

[66] Enagnon Cedric Klikpo, Jad Khatib, and Alix Munier-Kordon. “Modélisation SDF
des communications Simulink.” In: École d’été Temps Réel (ETR’2015) (20015) (cit.
on p. 115).

[67] Enagnon Cedric Klikpo and Alix Munier-Kordon. “Characterization of dataflow
requirements in partitioned multi-core.” In: Submitted () (cit. on p. 115).

[68] Enagnon Cédric Klikpo and Alix Munier-Kordon. “Preemptive scheduling of de-
pendent periodic tasks modeled by synchronous dataflow graphs.” In: Proceedings
of the 24th International Conference on Real-Time Networks and Systems. ACM.
2016, pp. 77–86 (cit. on pp. 94, 99, 115).

[69] Enagnon Cedric Klikpo et al. “Modélisation des communications d’un système
temps-réel par un SDFG.” In: École d’été Temps Réel (ETR’2015) (20015) (cit.
on p. 115).

[70] Hermann Kopetz and Günther Bauer. “The time-triggered architecture.” In: Pro-
ceedings of the IEEE 91.1 (2003) (cit. on p. 42).

[71] Philip S Kurtin, Joost PHM Hausmans, and Marco JG Bekooij. “Combining off-
sets with precedence constraints to improve temporal analysis of cyclic real-time
streaming applications.” In: 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE. 2016, pp. 1–12 (cit. on pp. 70, 82).

[72] Christophe Lavarenne et al. “The SynDEx software environment for real-time dis-
tributed systems design and implementation.” In: European Control Conference.
Vol. 2. 1991, pp. 1684–1689 (cit. on p. 30).

[73] E.A. Lee and D.G. Messerschmitt. “Synchronous data flow.” In: Proceedings of the
IEEE 75.9 (1987-09) (cit. on pp. 26, 28, 33, 39, 43, 58).

[74] Youen Lesparre. “Evaluation de l’affectation des tâches sur une architecture à mé-
moire distribuée pour des modèles flot de données.” PhD thesis. Paris, UPMC, 2017
(cit. on p. 35).

[75] Joseph Y-T Leung and Jennifer Whitehead. “On the complexity of fixed-priority
scheduling of periodic, real-time tasks.” In: Performance evaluation 2.4 (1982),
pp. 237–250 (cit. on pp. 9, 11, 69).

[76] Chung Laung Liu and James W Layland. “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment.” In: Journal of the ACM (JACM) 20.1 (1973),
pp. 46–61 (cit. on pp. 9–11, 69).

[77] Stéphane Louise et al. “OASIS project: deterministic real-time for safety critical em-
bedded systems.” In: Proceedings of the 10th workshop on ACM SIGOPS European
workshop. ACM. 2002, pp. 223–226 (cit. on p. 31).

Bibliography 123

[78] Stephane Louise et al. “The oasis kernel: A framework for high dependability real-
time systems.” In: High-Assurance Systems Engineering (HASE), 2011 IEEE 13th
International Symposium on. IEEE. 2011, pp. 95–103 (cit. on p. 31).

[79] Olivier Marchetti and Alix Munier-Kordon. “A sufficient condition for the liveness of
weighted event graphs.” In: European Journal of Operational Research 197.2 (2009),
pp. 532–540 (cit. on pp. 33, 35, 69).

[80] Olivier Marchetti and Alix Munier-Kordon. “Cyclic Scheduling for the Synthesis
of Embedded Systems.” In: Introduction to scheduling (2009), pp. 135–164 (cit. on
pp. 33, 36, 38, 43, 69, 86, 91).

[81] MICROSAR - AUTOSAR Basic Software. url: https : / / vector . com / vi _
microsar_en.html (cit. on p. 23).

[82] Aurélien Monot et al. “Multicore scheduling in automotive ECUs.” In: Embedded
Real Time Software and Systems-ERTSS 2010. 2010 (cit. on pp. 86, 88).

[83] A. Munier-Kordon. Régime asymptotique optimal d’un graphe d’évènement tem-
porisé généralisé: application à un problème d’assemblage. Vol. 25. 5. RAIRO-
Automatique Productique Informatique Industrielle, 1993 (cit. on pp. 33, 69).

[84] Yingfeng Oh and Sang H Son. “Tight performance bounds of heuristics for a real-
time scheduling problem.” In: Submitted for Publication (1993) (cit. on p. 12).

[85] Claire Pagetti et al. “Multi-task implementation of multi-periodic synchronous pro-
grams.” In: Discrete Event Dynamic Systems 21.3 (2011), pp. 307–338 (cit. on pp. 30,
31, 43).

[86] Claire Pagetti et al. “The ROSACE case study: From simulink specification to
multi/many-core execution.” In: 2014 24th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS). IEEE. 2014, pp. 309–318 (cit. on p. 43).

[87] Miloš Panić et al. “Runpar: An allocation algorithm for automotive applications ex-
ploiting runnable parallelism in multicores.” In: Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis. ACM. 2014,
p. 29 (cit. on pp. 86, 87, 101, 106, 108).

[88] parMERASA | Multi-Core Execution of Parallelised Hard Real-Time Applications
Supporting Analysability. url: https://www.parmerasa.eu/ (cit. on p. 32).

[89] Maxime Pelcat et al. “An open framework for rapid prototyping of signal processing
applications.” In: EURASIP journal on embedded systems 2009 (2009) (cit. on pp. 2,
33, 66).

[90] Quentin Perret et al. “Mapping hard real-time applications on many-core proces-
sors.” In: Proceedings of the 24th International Conference on Real-Time Networks
and Systems. ACM. 2016, pp. 235–244 (cit. on pp. 86, 87).

[91] Wolfgang Puffitsch, Eric Noulard, and Claire Pagetti. “Mapping a multi-rate syn-
chronous language to a many-core processor.” In: 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE. 2013, pp. 293–302 (cit. on
pp. 86, 87).

https://vector.com/vi_microsar_en.html
https://vector.com/vi_microsar_en.html
https://www.parmerasa.eu/

124 Bibliography

[92] Wolfgang Puffitsch, Eric Noulard, and Claire Pagetti. “Off-line mapping of multi-
rate dependent task sets to many-core platforms.” In: Real-Time Systems 51.5
(2015), pp. 526–565 (cit. on pp. 86, 87).

[93] Krithi Ramamritham. “Allocation and scheduling of precedence-related periodic
tasks.” In: IEEE Transactions on Parallel and Distributed Systems 6.4 (1995),
pp. 412–420 (cit. on pp. 86, 87).

[94] Pascal Richard, Francis Cottet, and Michaël Richard. “On-line scheduling of real-
time distributed computers with complex communication constraints.” In: Proceed-
ings. Seventh IEEE International Conference on Engineering of Complex Computer
Systems, 2001. IEEE. 2001, pp. 26–34 (cit. on pp. 43, 61).

[95] Salah Eddine Saidi et al. “An ILP approach for mapping autosar runnables on
multi-core architectures.” In: Proceedings of the Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools. ACM. 2015, p. 6 (cit. on pp. 86, 88).

[96] Stuijk Sander, Geilen Marc, and Basten Twan. “SDFˆ 3: SDF For Free.” In: vol. 0.
Los Alamitos, CA, USA: IEEE Computer Society, 2006 (cit. on pp. 2, 33, 66).

[97] Vivek Sarkar. Partitioning and scheduling parallel programs for execution on mul-
tiprocessors. Tech. rep. Stanford Univ., CA (USA), 1987 (cit. on p. 86).

[98] SCC External Architecture Specification (EAS). Many-core Applications Research
Community. url: https://communities.intel.com/docs/DOC- 5044 (cit. on
p. 22).

[99] Sebastien Dupertuis. Rate Transition Block (RTB). July 2014. url: http://www.
idsc.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-
n-control/idsc-dam/Lectures/Embedded-Control-Systems/RTB.pdf (cit. on
p. 50).

[100] Kang G Shin and Dar-Tzen Peng. Static Allocation of Periodic Tasks with Prece-
dence Constraints in Distributed Real-time Systems. International Computer Science
Institute, 1988 (cit. on pp. 86, 87, 108).

[101] Amit Kumar Singh et al. “Mapping on multi/many-core systems: survey of cur-
rent and emerging trends.” In: Proceedings of the 50th Annual Design Automation
Conference. ACM. 2013, p. 1 (cit. on p. 12).

[102] Christos Sofronis, Stavros Tripakis, and Paul Caspi. “A memory-optimal buffering
protocol for preservation of synchronous semantics under preemptive scheduling.”
In: Proceedings of the 6th ACM & IEEE International conference on Embedded
software. ACM. 2006, pp. 21–33 (cit. on p. 30).

[103] Yves Sorel. “Massively parallel computing systems with real time constraints: the"
Algorithm Architecture Adequation" methodology.” In: Proceedings of the First
International Conference on Massively Parallel Computing Systems, 1994. IEEE.
1994, pp. 44–53 (cit. on p. 30).

[104] Oana Stan et al. “A GRASP metaheuristic for the robust mapping and routing
of dataflow process networks on manycore architectures.” In: 4OR (2015) (cit. on
p. 62).

https://communities.intel.com/docs/DOC-5044
http://www.idsc.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Embedded-Control-Systems/RTB.pdf
http://www.idsc.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Embedded-Control-Systems/RTB.pdf
http://www.idsc.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Embedded-Control-Systems/RTB.pdf

Bibliography 125

[105] John A. Stankovic. “Misconceptions about real-time computing: A serious problem
for next-generation systems.” In: Computer 21.10 (1988), pp. 10–19 (cit. on p. 6).

[106] John A Stankovic and Krithi Ramamritham. Hard real-time systems. [sn], 1988 (cit.
on p. 6).

[107] Project MAC (Massachusetts Institute of Technology). Engineering Robotics Group
and ML Dertouzos. Control robotics: The procedural control of physical processes.
1973 (cit. on p. 10).

[108] Stavros Tripakis et al. “Implementing synchronous models on loosely time triggered
architectures.” In: IEEE Transactions on Computers 57.10 (2008) (cit. on pp. 42,
43).

[109] Cumhur Erkan Tuncali, Georgios Fainekos, and Yann-Hang Lee. “Automatic par-
allelization of Simulink models for multi-core architectures.” In: 12th International
Conferen on Embedded Software and Systems (ICESS). IEEE. 2015, pp. 964–971
(cit. on p. 88).

[110] Wenhao Wang, Fabrice Camut, and Benoît Miramond. “Generation of schedule
tables on multi-core systems for AUTOSAR applications.” In: Design and Architec-
tures for Signal and Image Processing (DASIP), 2016 Conference on. IEEE. 2016,
pp. 191–198 (cit. on pp. 86, 88, 108).

[111] Wenhao Wang et al. “Optimizing Application Distribution on Multi-Core Systems
within AUTOSAR.” In: 8th European Congress on Embedded Real Time Software
and Systems (ERTS). 2016 (cit. on pp. 86, 88, 101, 106, 108).

[112] Reinhard Wilhelm and Jan Reineke. “Embedded systems: Many cores—Many prob-
lems.” In: Industrial Embedded Systems (SIES), 2012 7th IEEE International Sym-
posium on. IEEE. 2012, pp. 176–180 (cit. on p. 23).

[113] Reinhard Wilhelm et al. “The worst-case execution-time problem—overview of
methods and survey of tools.” In: ACM Transactions on Embedded Computing Sys-
tems (TECS) 7.3 (2008), p. 36 (cit. on p. 16).

[114] Philip S Wilmanns et al. “Buffer sizing to reduce interference and increase through-
put of real-time stream processing applications.” In: 2015 IEEE 18th International
Symposium on Real-Time Distributed Computing. IEEE. 2015, pp. 9–18 (cit. on
pp. 70, 82).

[115] Carsten Wolff et al. “AMALTHEA—Tailoring tools to projects in automotive soft-
ware development.” In: Intelligent Data Acquisition and Advanced Computing Sys-
tems: Technology and Applications (IDAACS), 2015 IEEE 8th International Con-
ference on. Vol. 2. IEEE. 2015, pp. 515–520 (cit. on p. 32).

[116] Yifan Wu, Zhigang Gao, and Guojun Dai. “Deadline and activation time assignment
for partitioned real-time application on multiprocessor reservations.” In: Journal of
Systems Architecture 60.3 (2014), pp. 247–257 (cit. on pp. 86, 88).

126 Bibliography

[117] Haibo Zeng and M. Di Natale. “Mechanisms for guaranteeing data consistency and
flow preservation in AUTOSAR software on multi-core platforms.” In: 2011 6th
IEEE International Symposium on Industrial Embedded Systems (SIES). 2011-06,
pp. 140–149 (cit. on pp. 30, 43).

