
HAL Id: tel-02111017
https://theses.hal.science/tel-02111017

Submitted on 25 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A monitoring and threat detection system using stream
processing as a virtual function for Big Data

Martin Esteban Andreoni Lopez

To cite this version:
Martin Esteban Andreoni Lopez. A monitoring and threat detection system using stream processing as
a virtual function for Big Data. Cryptography and Security [cs.CR]. Sorbonne Université; Universidade
federal do Rio de Janeiro, 2018. English. �NNT : 2018SORUS035�. �tel-02111017�

https://theses.hal.science/tel-02111017
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

LA SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique de Paris

Présentée par

Martin Esteban ANDREONI LOPEZ

Pour obtenir le grade de

DOCTEUR de la SORBONNE UNIVERSITE

Sujet de la thèse :

Un Système de Surveillance et Détection de
Menaces utilisant le Traitement de flux comme
une fonction virtuelle pour le Big Data

soutenue le 06 Juin 2018

devant le jury composé de :

M. Mauro FONSECA Rapporteur Universidade Tecnológica Federal do Paraná

M. Khaldoun AL AGHA Rapporteur Université Paris-Sud

Mme. Thi-Mai-Trang NGUYEN Examinateur Sorbonne Université

M. Lúıs COSTA Examinateur Universidade Federal do Rio de Janeiro

M. Daniel BATISTA Examinateur Universidade de São Paulo

M. Otto DUARTE Directeur de thèse Universidade Federal do Rio de Janeiro

M. Guy PUJOLLE Directeur de thèse Sorbonne Université

A MONITORING AND THREAT DETECTION SYSTEM USING STREAM

PROCESSING AS A VIRTUAL FUNCTION FOR BIG DATA

Martin Esteban Andreoni Lopez

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Elétrica,

COPPE, da Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários

à obtenção do t́ıtulo de Doutor em Engenharia

Elétrica.

Orientadores: Otto Carlos Muniz Bandeira

Duarte

Guy Pujolle

Rio de Janeiro

Junho de 2018

A MONITORING AND THREAT DETECTION SYSTEM USING STREAM

PROCESSING AS A VIRTUAL FUNCTION FOR BIG DATA

Martin Esteban Andreoni Lopez

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Examinada por:

Prof. Otto Carlos Muniz Bandeira Duarte, Dr.Ing.

Prof. Guy Pujolle, Dr.

Prof. Khaldoun AL AGHA, Dr.

Prof. Thi-Mai-Trang NGUYEN, Dr.

Prof. Mauro Sergio Pereira Fonseca, D.Sc.

Prof. Daniel Macêdo Batista, Dr.

Prof. Lúıs Henrique Maciel Kosmalski Costa, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JUNHO DE 2018

Andreoni Lopez, Martin Esteban

A Monitoring and Threat Detection System Using

Stream Processing as a Virtual Function for Big

Data/Martin Esteban Andreoni Lopez. – Rio de Janeiro:

UFRJ/COPPE, 2018.

XII, 111 p.: il.; 29, 7cm.

Orientadores: Otto Carlos Muniz Bandeira Duarte

Guy Pujolle

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2018.

Bibliography: p. 99 – 111.

1. Threat Detection. 2. Network Function

Virtualization. 3. Stream Processing. I. Duarte, Otto

Carlos Muniz Bandeira et al. II. Universidade Federal do

Rio de Janeiro, COPPE, Programa de Engenharia Elétrica.

III. T́ıtulo.

iii

Acknowledgments

I thank Mama, Papa, Dani, Mora and Ana who have always been by my side, for

all their love and understanding. In particular, I thank my parents for the support

they give me at all times and for always motivating me to move on.

I thank my friends, in particular Lyno Ferraz, Diogo Menezes, Govinda Mohini,

Igor Sanz for their friendship. Thanks also to all the friends I made in the Grupo

de Teleinformática e Automação (GTA), since they have always contributed

positively to the conclusion of this work. A special mention of thanks to Antonio

Gonzalez Pastana Lobato for the help and discussions and in obtaining results of

this doctorate.

Thanks also to all the teachers who participated to obtain this degree. In

particular, I thank my adviser, Professor Otto Carlos Duarte, for all the advice,

dedication and especially patience during the orientation. Also, an special mention

to Professor Guy Pujolle, for the discussion and contribution to this work and to

personal life. I would also like to thank Professors Lúıs Henrique Maciel Kosmalski

Costa, Miguel Elias Mitre Campista, Aloysio de Castro Pinto Pedroza e Pedro

Braconnot Velloso, for making our GTA/UFRJ laboratory a pleasant working

environment. Also a big thank to professors, staff and students from Laboratoire

d’Informatique de Paris (LIP6) for the time we spent together and for their help.

I thank to Professors Thi-Mai-Trang Nguyen, Daniel Macêdo Batista, Mauro

Pereira Fonseca, and Khaldoun Al Agha for their participation in the examining

jury.

I thank all people who directly or indirectly collaborate with this stage of my life.

Finally, I thank CAPES, CNPq, FAPERJ and FAPESP (2015/24514-9,

2015/24485-9, and 2014/50937-1) for the funding of this work.

v

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

A MONITORING AND THREAT DETECTION SYSTEM USING STREAM

PROCESSING AS A VIRTUAL FUNCTION FOR BIG DATA

Martin Esteban Andreoni Lopez

June/2018

Advisors: Otto Carlos Muniz Bandeira Duarte

Guy Pujolle

Department: Electrical Engineering

The late detection of security threats causes a significant increase in the risk of

irreparable damages, disabling any defense attempt. As a consequence, fast

real-time threat detection is mandatory for security administration. In addition,

Network Function Virtualization (NFV) provides new opportunities for efficient

and low-cost security solutions. We propose a fast and efficient threat detection

system based on stream processing and machine learning algorithms. The main

contributions of this work are i) a novel monitoring threat detection system based

on streaming processing; ii) two datasets, first a dataset of synthetic security data

containing both legitimate and malicious traffic, and the second, a week of real

traffic of a telecommunications operator in Rio de Janeiro, Brazil; iii) a data

pre-processing algorithm, a normalizing algorithm and an algorithm for fast

feature selection based on the correlation between variables; iv) a virtualized

network function in an Open source Platform for providing a real-time threat

detection service; v) near-optimal placement of sensors through a proposed

heuristic for strategically positioning sensors in the network infrastructure, with a

minimum number of sensors; and finally vi) a greedy algorithm that allocates on

demand a sequence of virtual network functions.

vi

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

Martin Esteban Andreoni Lopez

Junho/2018

Orientadores: Otto Carlos Muniz Bandeira Duarte

Guy Pujolle

Programa: Engenharia Elétrica

A detecção tardia de ameaças de segurança causa um significante aumento no risco

de danos irreparáveis, impossibilitando qualquer tentativa de defesa. Como

consequência, a detecção rápida de ameaças em tempo real é essencial para a

administração de segurança. Além disso, uma função virtual de rede Network

Function Virtualization (NFV) oferece novas oportunidades para soluções de

segurança eficientes e de baixo custo. Propomos um sistema de detecção de

ameaças rápido e eficiente, baseado em algoritmos de processamento de fluxo e de

aprendizado de máquina. As principais contribuições deste trabalho são: i) um

novo sistema de monitoramento e detecção de ameaças baseado no processamento

de fluxo; ii) dois conjuntos de dados, primeiro um conjunto de dados sintético de

segurança contendo tráfego suspeito e malicioso, e o segundo, uma semana de

tráfego real de um operador de telecomunicações no Rio de Janeiro, Brasil; iii) um

algoritmo de pré-processamento de dados composto por um algoritmo de

normalização e um algoritmo para seleção rápida de caracteŕısticas com base na

correlação entre variáveis; iv) uma função de rede virtualizada em uma plataforma

de código aberto para fornecer um serviço de detecção de ameaças em tempo real;

v) colocação quase perfeita de sensores através de uma heuŕıstica proposta para

posicionamento estratégico de sensores na infraestrutura de rede, com um número

mı́nimo de sensores; e finalmente vi) um algoritmo guloso que aloca sob demanda

uma sequência de funções de rede virtual.

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Objectives . 5

1.2 Text Organization . 9

2 Conclusion 10

2.1 Future Work . 12

3 Related Work 13

3.1 Stream Processing Platforms Comparison 13

3.2 Real-Time Threat Detection . 14

3.3 Virtual Network Function . 16

3.4 Service Chaining . 17

4 Threat Detection using Stream Processing 18

4.1 Methods of Data Processing . 18

4.2 The Stream Processing . 20

4.3 Stream Processing Platforms . 22

4.3.1 Apache Storm . 23

4.3.2 Apache Flink . 26

4.3.3 Apache Spark Streaming . 28

4.4 Performance Evaluation of the Platforms 31

4.4.1 Experiments Results . 32

4.5 The CATRACA Tool . 35

4.5.1 CATRACA Architecture . 36

5 Dataset and Feature Selection 40

5.1 Security Dataset Creation . 40

5.2 Feature Selection and Dimensionality Reduction 52

viii

5.2.1 Feature Selection . 57

5.2.2 Correlation Based Feature Selection 58

5.2.3 Case of Use: Traffic Classification 60

5.2.4 Classification Results . 62

5.2.5 Preprocessing Stream Data 70

6 The Virtual Network Function 79

6.1 The Network Function Virtualization 79

6.1.1 The Open source Platform for Network Function Virtualiza-

tion (OPNFV) . 81

6.1.2 Threat-Detection Prototype Performance Evaluation 82

6.2 Modeling and Optimization Strategy for VNF Sensor Location 85

6.2.1 Optimal VNF Sensor Placement 87

6.3 The Virtual Network Function Chaining Problem 88

6.3.1 The Proposed VNF Chaining Scheme 89

6.4 The Evaluation of the Proposal . 91

7 Conclusion 96

7.1 Future Work . 98

Bibliography 99

ix

List of Figures

1.1 Example of virtual network functions 4

4.1 The three-layered lambda architecture. 20

4.2 stream processing architecture. 21

4.3 Storm architecture. 24

4.4 Example of Storm topologies. 24

4.5 At-least-once delivery semantic used in Apache Storm. 25

4.6 Architecture of Flink system. 26

4.7 Checkpoint recovery used in Flink. 27

4.8 Micro-batch processing used in Spark streaming 28

4.9 Cluster architecture of Spark stream system. 29

4.10 Throughput comparison of the three processed platforms for Security

Dataset. 33

4.11 Throughput comparison of the three processed platforms for Twitter

Dataset. 33

4.12 Storm and Flink behavior during a node failure. 34

4.13 Spark stream behavior during a node failure and message losses com-

parison. 34

4.14 Diagram flow of stream processing analysis. 36

4.15 CATRACA Architecture. 36

4.16 Dashboard panel view of CATRACA. 39

5.1 Correlation matrix of the 24 features available in the dataset. 42

5.2 Classes distribution in the dataset. 44

5.3 Typical topology of broadband access network. 45

5.4 DSLAM Topology . 46

5.5 NetOp dataset processing steps. 47

5.6 Number of Alerts and Normal flows. 48

5.7 Dataset NetOp Port Distribution. 48

5.8 Flow Distribution Protocols . 49

5.9 Packets per Flow . 50

x

5.10 Flow Size NetOp 2017 . 50

5.11 Sub-Flows Size NetOp 2017 . 51

5.12 Header Size NetOp 2017 . 51

5.13 Distribution of the main types of alerts in the analyzed traffic. 51

5.14 The “curse of dimensionality” problem. 53

5.15 Eigenvalue for each of the 24 flow features. 55

5.16 Example of non-linear class separation with PCA. 56

5.17 Strategies for separating non-linear data distribution classes 56

5.18 Feature Selection Methods. 57

5.19 Information Gain Comparison. 63

5.20 Accuracy comparison of features Selection methods. 64

5.21 Sensitivity Comparison. 64

5.22 Performance of features selection algorithms. 65

5.23 Performance of features selection in NSL-KDD dataset. 69

5.24 Metrics comparison for NSL-KDD Dataset. 69

5.25 Classification and Training Time in NSL-KDD Dataset. 69

5.26 Features Represented in Histograms. 74

5.27 Representation of the Shapiro-Wilk. 75

5.28 Evaluation of group features with different machine learning algorithms. 77

5.29 Flow diagram used for proposal evaluation 77

5.30 Concept Drift detection . 78

6.1 ETSI NFV MANO framework. 80

6.2 OPNFV architecture. 81

6.3 CATRACA configuration. 83

6.4 VNF throughput. 83

6.5 Virtual Machine migration. 84

6.6 RNP topology. 87

6.7 Proposal Heuristic evaluation. 88

6.8 Example of Network Function forwarding graph. 89

6.9 Probability density function of the number of VNFs in a request. . . 92

6.10 Probability density function of the volume of resources used by each

VNF. 92

6.11 Number of accepted requests for each proposed heuristics. 94

6.12 Simulation results. 94

xi

List of Tables

4.1 Feature comparison summary between batch processing and flow pro-

cessing. 20

4.2 Overview of the comparison between Stream Processing Systems. . . 32

4.3 Confusion Matrix and Evaluation Metrics of Decision Tree for

GTA/UFRJ Dataset. 38

4.4 Confusion Matrix and Evaluation Metrics of Decision Tree for NetOp

Dataset. 38

5.1 The 24 features obtained for each flow from TCP/IP headers. 43

5.2 Features Selection Comparison for the three Feature Selection Methods. 65

5.3 Hypothesis comparison for a normal distribution approach. In

Shapiro-Wilk test p-value is 0.24 > 0.05, and W is closer to one,

W=0.93, confirming that values follows a normal distribution. 75

5.4 Features Groups . 76

xii

Chapter 1

Introduction

In order to maintain the stability, reliability, and security of computer networks, it

is fundamental to monitor the traffic to understand the type, volume, and intrinsic

features of each flow that compose the whole traffic. Therefore, efficient network

monitoring allows the administrator to achieve a better understanding of the

network [1]. Network monitoring may vary from a simple long-term collection of

link utilization statistics, to a complex upper-layer protocol traffic analysis to

achieve network intrusion detection, network performance tuning, and protocol

debugging. Current network monitoring tools, such as Tcpdump 1, wireshark,

NetFlow, Bro [2], are inadequate for current speed and management needs of large

network domains. In addition, many of these current tools generate a massive

collection of files that needs post-processing by another kind of tools.

In network monitoring data arrives in the form of streams from different sources.

Monitoring data arise from several heterogeneous distributed sources, such as

network packets or multiple kinds of logging systems [3]. These stream

applications are characterized by an unbounded sequence of events, or tuples, that

arrive continuously [4]. One of the main problems of this type of applications is

the big amount of data generated. Even moderate speed networks generate huge

amounts of data. For example, monitoring a single gigabit Ethernet link running

at 50% utilization generates a terabyte of data in a couple of hours. The advent of

the Internet of things (IoT) increases the need of real-time monitoring. The

estimate number of sensors networked by 2025 is around 80 billion [5].

This scenario displays a high monitoring and protection complexity, with several

challenges in security and data privacy. The billions of devices generate a big

amount of data streams, which needs to be managed, processed, transferred, and

stored in a secure real-time way. Besides, the big data characteristics of velocity,

volume, and variety increase the number of vulnerabilities.

1Tcpdump packet analyzer www.tcpdump.org

1

Consequently, detection time is essential to maintain security in communication

systems [6]. If detection takes too long, irreparable damages will occur. Denial of

Service (DoS) [7] attacks, for example, need to be mitigated as fast as possible in

order to maintain a proper Quality of Service (QoS). The effective threat detection

demands monitoring, processing, and management of data, in order to extract

useful information from network traffic [1]. Current security systems, such as

Security Information and Event Management (SIEM), designed to gather data and

analyze it in a single point, are not effective, since 85% of network intrusions are

detected weeks after they had happened [5]. Moreover, data leaking detection time

is 206 days. Therefore, the long threat detection time makes unfeasible any kind of

defense.

The impact of Distributed Denial of Service (DDoS) attacks is increasing, reaching

attack rates of the order of 1 Tb/s [8]. The popularization of the attacks is so

popular that it is possible to buy an hour of a DDoS attack for $10 per hour on

the deep web [9]. The attacks were no longer merely motivated by economic ends

and became politically motivated [8]. Currently attacks aim to manipulate election

results, such as the suspicion of Russian manipulation over the United States

elections in 2016 [10].

One way to attain data processing optimization is to employ machine learning

methods. These methods are well suited for big data, since with more samples to

train, methods tend to have higher effectiveness [11]. However, with big data

machine learning methods tend to perform high latency due to computation

consumption. This high latency is a drawback for machine learning methods that

must analyze data as fast as possible in order to have fast responses. Features

Selection is one way to resolve this problem, reducing the number of features to

smaller subset of the original. The main method to analyze big data in a distribute

fashion is the MapReduce [12] technique with Hadoop [13] open-source

implementation. Nevertheless, the platforms based on this technique are

inappropriate to process real-time streaming applications. Applications processed

by Hadoop correspond to queries or transactions performed in a static database

without real-time requirements, data elements are synchronized to obtain an exact

answer. Real-time monitoring applications require distributed stream processing

that substantially differs from current conventional applications processed by

distributed platforms. Network Monitoring normally requires to analysis multiple

external stream sources, generating alerts in abnormal condition. The real-time

feature is intrinsic to stream processing applications and a big number of alerts is

normally expected. The stream data are unbounded and arrive asynchronously.

Besides, the stream analysis requires historical data rather rather than just the

latest arrived data. In cases of high incoming rates is common to filter the most

2

important data discarding others and, therefore, approximate solutions are

required, such as sampling methods. Hence, to meet these applications

requirements, distributed processing models have been proposed and received

attention from researchers.

Real time analytic are essential for Future Internet and Smart Cities [14, 15].

Moreover, real-time stream processing enable the immediate analysis of different

kinds of data and, consequently, they empower threat detection. Real-time

distributed stream processing models can benefit traffic monitoring applications for

cyber security threats detection [16]. Sensor monitoring in the Internet of Things

(IoT), network traffic analysis, cloud management [17], smart grids [18] and

security threats detection are applications that generate large amount of data to

be processed in real time. In these critical application data need to be processed in

real time in order to detect security threats.

To meet these needs, Distributed Stream Processing Systems (DSPS) have been

proposed to perform distributed processing with minimal latency. Besides,

open-source general-purpose stream processing platforms are now available,

meeting the need of processing data continuously. These open-source platforms are

able to define custom stream processing applications for specific cases. These

general-purpose platforms offer an Application Programming Interface (API), fault

tolerance, and scalability for stream processing.

Current enterprise networks rely on middleboxes. Middleboxes are intermediary

devices that aims to improve network performance. Example of network

middleboxes are firewalls that establishes a barrier for network attacks;

load-balancers which improve performance distributing workload over network

nodes; or proxies that reduce bandwidth consume [19]. Middleboxes are usually

dedicated hardware nodes, which perform a specific network function. Hence,

middlebox platforms come with high Capital Expenditures (CAPEX) and

Operational Expenditures (OPEX) [20]. In this way, the Network Function

Virtualization (NFV) comes to leverage standard virtualization technology into the

network core, and to consolidate network equipment into commodity server

hardware [21]. In NFV, the network functions are deployed into virtualized

environment and, thus, called Virtual Network Functions (VNF).

We aim to use NFV technology and its cluster infrastructure to combine

virtualization, cloud computing and distributed stream processing to monitor

network traffic. The objective is to provide an accurate, scalable, and real-time

threat detection facility capable to attend usage peeks. The traffic monitoring and

threat detection as a virtualized network function presents two main advantages:

capacity self-adaptation to different traffic network load and high localization

flexibility to place or move network sensors reducing latency.

3

Figure 1.1: Example of virtual network functions. Two separated plans of virtual
network functions decoupled from the underlying physical substrate.

When considering the deployment of middleboxes as Virtual Network Functions, a

key challenge is the Service Function Chaining (SFC) [22]. The SFC problem

stands for the requirement of traffic to pass through multiple middleboxes for

packet processing in a previously defined order. It becomes harder when

considering the NFV environment, because allocating virtual network function

over the physical nodes have to consider the packet-processing chaining order

among all VNFs in the traffic path, as shown in Figure 1.1. Therefore, two main

constraints for VNF chaining are to reduce the delay introduced by placing the

VNFs on the network topology, and to allocate VNFs on physical nodes that can

provide enough resources to run the hosted functions.

Chaining virtual network functions is essentially an optimization problem that

recalls the facility location problem [22]. Previous works propose linear

programming models to search for a solution for VNF chaining, considering

resource allocation and the routing between virtual instances [22–24]. Other works

propose to outsource network functions to the cloud [19, 25], but do not specify an

algorithm for placing VNFs on the network. Moreover, there are also works that

place specific-purpose VNFs on the network, such as traffic sensors or network

controllers [26, 27]. Our proposal uses a greedy algorithm to place general-purpose

VNFs over a network topology and compares different heuristics. Our scheme

estimates the resources at each physical node on the network and, then, places the

VNFs according to the available resources of the physical nodes and the requested

resources for the VNF.

4

1.1 Objectives

The goal of this manuscript is to present the research work and the obtained

results achieved so far. The main idea is to show the state of art and the developed

research work. The research topics assessed are Stream Processing, Real-Time

Threat Detection System, Dataset and Future Selection, Virtual Network Function,

and Virtual Network Function Chaining. We briefly describe research topics.

Stream Processing

We analyze and compare two native distributed real time native stream processing

systems, the Apache Storm [28] and the Apache Flink [29], and one micro-batch

system, the Apache Spark Streaming [30]. The architecture of each analyzed

system is discussed in depth and a conceptual comparison is presented showing the

differences between these open-source platforms. Furthermore, we evaluate the

data processing performance and the behavior of systems when a worker node fails.

Real-Time Threat Detection System

We propose and implement an accurate real-time threat detection system, the

CATRACA2 tool [31]. The integrated system allows big data analysis in a stream

processing manner. The proposed system uses machine learning for both attack

classification and threat detection. Moreover, the system has a friendly graphical

interface that provides a real-time visualization of the parameters and the attacks

that occur in the network.

DataSet and Future Selection

We created two datasets, first a synthetic security dataset to perform traffic

classification, second real traffic from a network operator in Rio de Janeiro, Brazil.

Furthermore, we present a fast and unsupervised pre-processing algorithm for

traffic classification. Our algorithm performs feature reduction in an unsupervised

way, without the knowledge of the classes, and normalize stream data. In addition,

the algorithm selects the best features to classify normal traffic from Denial of

Service and Probe threats. We compare our algorithm with conventional features

selection methods such as ReliefF [32], Sequential Feature Selection (SFS) and

Principal Component Analysis (PCA) [33], and we show a better fulfillment in

accuracy as well as in performance.

Virtual Network Function

We evaluate our threat detection tool as a Virtual Network Function (VNF).

Consequently, we propose a virtualized network function in the Open Source

Platform for Network Functions Virtualization (OPNFV) that provides an

accurate real-time threat detection service. For the best of our knowledge, this is

the first threat detection function using stream processing implemented in the

2documentation available at http://catraca.gta.ufrj.br/

5

http://catraca.gta.ufrj.br/

OPNFV platform. The provided service is able to scale the number of processing

cores by adding virtual machines to the processing cluster that executes the

detection in a parallel-distributed way, processing up to 15 Million samples per

minute. Besides, the Network Virtualization Platform enables the easy deployment

of traffic capture sensor elements that can be placed and moved to several points

in the network, offering customization and adaptability to network monitoring.

The results show the potential for scalability, as we increase the number of

processing cores in the distributed cluster. Another important feature of our

proposal is the migration of processing machines. The experiments show that our

system can migrate the processing elements without stopping the threat detection.

The live migration enables the organization of the physical machines in processing

cluster, which results in several advantages, such as shutting down machines for

maintenance or for reduction of energy consumption or allocating resources in a

smart way to attend the demand.

Virtual Network Function Chaining

We propose a scheme for placing and chaining Virtual Network Functions over a

network topology according to four different heuristics. The first heuristic places

the VNF nodes into physical nodes that introduce the minimum delay between the

traffic source and destination. The second heuristic searches for the best placement

of VNF nodes considering the nodes that have the biggest amount of available

resources and, thus, places the VNF over the node most available. This approach

increases the number of accepted requests of VNFs in a network. The third

heuristic places the VNF nodes according to the betweenness-centrality of the

topology nodes. In the betweenness-centrality approach, the requests are primarily

responded by allocating the most central nodes on the topology, which reduces the

introduced delay. However, as the resources of the most central nodes are used, the

following requests are allocated into peripheral network nodes, introducing a

greater delay on the VNF chaining. The fourth heuristic weights the available

resources and the introduced delay for each physical node. This approach allocates

the VNFs on the nodes that present the greatest probability of supplying enough

resources and the lower delay. We deploy a greedy algorithm for all three

approaches and we simulate the allocation of VNFs over a real network topology.

We have published as first author

• GTA-17-27 Andreoni Lopez, M., Sanz, I. J., Mattos, D. M. F., Duarte, O. C.

M. B., Pujolle, G. - “CATRACA: uma Ferramenta para Classificação e

Análise Tráfego Escalável Baseada em Processamento por Fluxo”, in XVII

Simpósio Brasileiro de Segurança da Informação e de Sistemas

Computacionais - SBSeg’2017 -Best Tool Award - Braśılia, DF, Brazil,

November 2017.

6

http://www.gta.ufrj.br/ftp/gta/TechReports/ASM17.pdf

• GTA-17-21 Andreoni Lopez, M., Silva Souza, R., Alvarenga, I. D., Rebello,

G. A. F., Sanz, I. J., Lobato, A. P., Mattos, D. M. F., Duarte, O. C. M. B.

and Pujolle, Guy - “Collecting and Characterizing a Real Broadband Access

Network Traffic Dataset”, in 1st Cyber Security in Networking Conference

(CSNet’17) - Best Paper Award - Rio de Janeiro, Brazil, October 2017.

http://www.gta.ufrj.br/ftp/gta/TechReports/ASAR17.pdf

• GTA-17-06 Andreoni Lopez, M., Silva, R. S., Alvarenga, I. D., Mattos, D. M.

F., Duarte, O. C. M. B. - “Coleta e Caracterização de um Conjunto de

Dados de Tráfego Real de Redes de Acesso em Banda Larga”, in XXII

Workshop de Gerência e Operação de Redes e Serviços (WGRS’2017) -

SBRC’2017, Belém- Pará, PA, Brazil, May 2017.

http://www.gta.ufrj.br/ftp/gta/TechReports/ASA17.pdf

• GTA-17-04 Andreoni Lopez, M., Lobato, A. G. P., Mattos, D. M. F.,

Alvarenga, I. D., Duarte, O. C. M. B., Pujolle, G. - “Um Algoritmo Não

Supervisionado e Rápido para Seleção de Caracteŕısticas em Classificação de

Tráfego”, in XXXV Simpósio Brasileiro de Redes de Computadores e

Sistemas Distribúıdos - SBRC’2017, Belém- Pará, PA, Brazil, May 2017.

http://www.gta.ufrj.br/ftp/gta/TechReports/ALM17.pdf

• GTA-16-34 Andreoni Lopez, M., Lobato, A. G. P., Duarte, O. C. M. B., and

Pujolle, G. - “Design and Performance Evaluation of a Virtualized Network

Function for Real-Time Threat Detection using Stream Processing”, Fourth

Conference On Mobile And Secure Services (MobiSecServ), Miami, MI, USA,

February 2018.

http://www.gta.ufrj.br/ftp/gta/TechReports/ALDP16.pdf

• GTA-16-31 Andreoni Lopez, M., Mattos, D. M. F., and Duarte, O. C. M. B.

- “Evaluating Allocation Heuristics for an Efficient Virtual Network Function

Chaining”, in 7th International Conference Network of the Future IEEE -

NoF’2016, Búzios-RJ, Brazil, November 2016.

http://www.gta.ufrj.br/ftp/gta/TechReports/AMD16b.pdf

• GTA-16-24 Andreoni Lopez, M., Lobato, A. G. P., and Duarte, O. C. M. B. -

“A Performance Comparison of Open-Source Stream Processing Platforms”,

in IEEE Global Communications Conference - GLOBECOM’2016,

Washington, DC USA, December 2016.

http://www.gta.ufrj.br/ftp/gta/TechReports/ALD16b.pdf

7

http://www.gta.ufrj.br/ftp/gta/TechReports/ASM17.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/ASAR17.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/ASA17.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/ALM17.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/ALDP16.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/AMD16b.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/ALD16b.pdf

• GTA-16-11 Andreoni Lopez, M., Lobato, A. G. P., and Duarte, O. C. M. B. -

“Monitoramento de Tráfego e Detecção de Ameaças por Sistemas

Distribúıdos de Processamento de Fluxos: uma Análise de Desempenho”, in

XXI Workshop de Gerência e Operação de Redes e Serviços (WGRS 2016) -

SBRC’2016, Salvador-Bahia, BA, Brazil, May 2016.

http://www.gta.ufrj.br/ftp/gta/TechReports/ALD16b.pdf

• GTA-16-05 Andreoni Lopez, M., Mattos, D. M. F., and Duarte, O. C. M. B.

- “An elastic intrusion detection system for software networks”, in Annals of

Telecommunications, Springer, ISSN 0003-4347, DOI

10.1007/s12243-016-0506-y, 2016.

http://www.gta.ufrj.br/ftp/gta/TechReports/AMD16.pdf

We also have published as co-author

• GTA-18-08 Sanz, I. J., Andreoni Lopez, M., Rebello, G. A. F. and Duarte,

O. C. M. B.- “Um Sistema de Detecção de Ameaças Distribúıdos de Rede

baseado em Aprendizagem por Grafo”, in XXXVI Simpósio Brasileiro de

Redes de Computadores e Sistemas Distribúıdos - SBRC’2018. Campos de

Jordão, SP, Brazil, May 2018

• GTA-18-02 Lobato, A. G. P., Andreoni Lopez, M., Sanz, I. J., Cardenas, A.

A., Duarte, O. C. M. B. and Pujolle, Guy- “An Adaptive Real-Time

Architecture for Zero-Day Threat Detection”, to be published in IEEE

International Conference on Communications - ICC 2018, May 2018.

http://www.gta.ufrj.br/ftp/gta/TechReports/LASC18.pdf

• GTA-17-22 Sanz, I. J., Andreoni Lopez, M., Mattos, D. M. F., and Duarte,

O. C. M. B. - “A Cooperation-Aware Virtual Network Function for Proactive

Detection of Distributed Port Scanning”, in 1st Cyber Security in

Networking Conference (CSNet’17), Rio de Janeiro, Brazil, October 2017.

http://www.gta.ufrj.br/ftp/gta/TechReports/SAMD17.pdf

• GTA-17-16 Lobato, A. P., Andreoni Lopez, M. E., Rebello, G. A. F., and

Duarte, O. C. M. B. - “Um Sistema Adaptativo de Detecção e Reação a

Ameaças”, to be published in Anais do XVII Simpósio Brasileiro em

Segurança da Informação e de Sistemas Computacionais - SBSeg’17, Brasilia,

DF, Brazil, November 2017.

http://www.gta.ufrj.br/ftp/gta/TechReports/LLD17.pdf

• GTA-17-15 Sanz, I. J., Alvarenga, I. D., Andreoni Lopez, M. E., Mauricio, L.

A. F., Mattos, D. M. F., Rubistein, M. G. and Duarte, O. C. M. B. - “Uma

8

http://www.gta.ufrj.br/ftp/gta/TechReports/ALD16b.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/ AMD16.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LASC18.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/SAMD17.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LLD17.pdf

Avaliação de Desempenho de Segurança Definida por Software através de

Cadeias de Funções de Rede”, to be published in Anais do XVII Simpósio

Brasileiro em Segurança da Informação e de Sistemas Computacionais -

SBSeg’17, Brasilia, DF, Brazil, November 2017.

http://www.gta.ufrj.br/ftp/gta/TechReports/SAA17.pdf

• GTA-16-08 Lobato, A. G. P., Andreoni Lopez, M. and Duarte, O. C. M. B. -

“An Accurate Threat Detection System through Real-Time Stream

Processing”, Technical Report, Electrical Engineering Program,

COPPE/UFRJ, April 2016.

http://www.gta.ufrj.br/ftp/gta/TechReports/LAD16.pdf

• GTA-16-10 Lobato, A. G. P., Andreoni Lopez, M. and Duarte, O. C. M. B. -

“Um Sistema Acurado de Detecção de Ameaças em Tempo Real por

Processamento de Fluxos”, in XXXIV Simpósio Brasileiro de Redes de

Computadores e Sistemas Distribúıdos - SBRC’2016, Salvador- Bahia, BA,

Brazil, May 2016.

http://www.gta.ufrj.br/ftp/gta/TechReports/LAD16b.pdf

1.2 Text Organization

The rest of the paper is organized in six chapters. Chapter 3 discuss related work.

Then, we introduce the concept of Stream processing, we compare stream

processing platforms in Chapter 4 and we present the CATRACA tool for network

monitoring and real-time threat detection system. In Chapter 5, we introduce the

security dataset and the network operator dataset, we also discuss the feature

selection methods proposing a new future selection algorithm. In addition, we

propose an algorithm for stream data normalization. Chapter 6 presents the

Virtual Network Function for threat classification and an algorithm for VNF

chaining. Finally, Chapter 7 concludes the work and discuss the future work.

9

http://www.gta.ufrj.br/ftp/gta/TechReports/SAA17.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LAD16.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LAD16b.pdf

Chapter 2

Conclusion

This work proposed a fast and efficient network monitoring and threat detection

system. We used a combination of machine learning and stream processing for real

time threat detection. A new generation of tool is needed in order to real-time

monitor and secure computer network. We described and compared the

three-major open source distributed stream processing systems: Apache Storm,

Apache Flink, and Apache Spark Streaming. We performed throughput analysis,

allocating more processing cores to achieve higher processing rates, Apache Storm

was able to process up to 15 Million samples per minute. Also, we performed fault

tolerance test to compare these three most popular open-source Distribute Stream

Processors (DSP). In this case, we show that Spark streaming, using micro-batch

processing model, can recover the failure without losing any messages. Spark

Streaming stores the full processing state of the micro-batches and distributes the

interrupted processing homogeneously among other worker nodes.

In order to increase the analysis speed and improve the efficiency of big data

analysis, it is mandatory to implement pre-processing methods. This work

presented and compared different methods for dimensionality reduction and

Feature selection. Furthermore, we proposed a new fast-unsupervised algorithm for

pre-process stream data. The algorithm includes feature selection and data

normalization. Our feature selection algorithm calculates the correlation of the

features in a network traffic data and selects the best features in an unsupervised

way. We selected the features with the higher absolute correlation in comparison

with the others. This procedure tends to gather the features with most of the

information of the dataset in a new set of features. The reduced new set of features

is used, thus, to train the machine learning methods that classify and characterize

the network traffic. Our algorithm was up to 10 times faster than literature

algorithms for feature selection. We evaluated the feature selection algorithm in

two different datasets achieving good performance. Moreover, our pre-processing

algorithm is able to detect concept-drift in streaming data. We showed that our

10

normalizer adapts the data to a normal distribution reducing the error of machine

learning classifiers. To evaluate the proposed algorithms, we implement eight

machine learning algorithms, decision tree, neural networks, k-nearest neighbors,

support vector machine with linear and RBF kernel, Gaussian Naive Bayes and

Stochastic Gradient Descendent. We evaluated their performance under six

metrics, accuracy, precision, sensitivity, F-1 score, classification and training time.

We created two datasets publicly available. First a synthetic security dataset

obtaining real network traffic along with network threats composed of 24 features.

The dataset contains more than 16 different types of attacks, as well as normal

network traffic. The second dataset is composed by more than ten days of real

traffic from a real telecommunication operator network (NetOp) located in the city

of Rio de Janeiro, Brazil. The dataset represents the use of the fixed-line access

service of 373 home users. The analysis of the data allows identifying that the

main services accessed are those of DNS and web services. We use this information

to create more than 5 TB of data combined in 45 flows features.

Network Function Virtualization (NFV) is a promising technique that enables to

decouple the network function from its physical realization by virtualizing the

network equipment. Thus, network functions are deployed within virtual

environment and, thus, called Virtual Network Functions (VNF). Therefore, we

deploy our threat detection system as a virtualized network function. The threat

detection function is implemented in the Open-source Platform for Network

Function Virtualization (OPNFV) and shows high performance and live migration

features. The results shown that the implemented function prototype presents a

high throughput and a low latency.

Combining stream processing, machine learning and feature selection we created

the CATRACA tool. The proposed tool is executed in an OPNFV environment

allowing the system to perform migration as closets as possible to the source

attack. Moreover, the tool combines batch and stream processing in a big data

architecture that allows to performs threat analysis on incoming traffic in real time

on a historical database. Our tool displays the knowledge extracted from the

enriched data through a graphical user interface for visualizing different analyzes

and the geographical location of the source and destination of the threats in real

time. CATRACA code is publicly available.

Finally, we proposed a method for the strategic location of traffic capture sensors.

For this, a mathematical modeling was developed, obtaining a heuristic that takes

into account the minimum number of sensors reached the maximum coverage of

the network. The evaluation of the heuristic was analyzed in two different real

topologies. The results show that with a high network coverage the proposed

system has a great gain in relation to random choice. In addition, we model and

11

discuss the VNF sensor placement as an NP -hard problem. Our heuristic reduces

the number of sensor and maximizes the network coverage.

We propose a VNF chaining scheme, in which a greedy algorithm places the VNFs

on the network according to four different criteria. Our simulation and results

show that using a heuristic for placing VNFs on nodes with the biggest amount of

available resources increases the acceptation rate of VNF requests. Our simulation

and results show that using a heuristic for placing VNFs on nodes with the biggest

amount of available resources increases the acceptation rate of VNF requests by

53%. Moreover, we also show that using a heuristic for introducing minimum delay

on the path, we are able to reduce the average packet-processing delay by 52%.

2.1 Future Work

New methods of anomaly detection and traffic classification need to be

experimented in CATRACA to avoid the use of the batch layer. Algorithms such

as deep learning or Hoeffding Trees should be implemented in the tool. Due to the

distributed nature of our monitoring and threat detection tool, we need to

implement an algorithm for event correlation. A future work foresees to detect

intrusion symptoms by collecting diverse information at several architectural

levels, from raw packet until system logs, using distributed security probes, as well

as performing complex event analysis based on a complex event processin

12

Chapter 3

Related Work

This chapter discusses the state of art and presents the related work of the topics

addressed in this work. We divide this chapter in four main topics. Section 3.1

describes the related work concerning Stream Processing Platforms. Section 3.2

addresses Real-time threat detection. Virtual Network Functions are presented in

Section 3.3 and service chaining is introduced in Section 3.4.

3.1 Stream Processing Platforms Comparison

Distributed real-time stream processing systems is a recent topic that is gaining a

lot of attention from researchers. Hence, performance evaluations and comparisons

between stream processing systems are fairly unexplored in the scientific literature.

Hesse and Lorenz compare the Apache Storm, Flink, Spark Streaming, and Samza

platforms [34]. The comparison is restricted to description of the architecture and

its main elements. Gradvohl et. al analyze and compare Millwheel, S4, Spark

Streaming, and Storm systems, focusing on the fault tolerance aspect in processing

systems [35]. Actually, these two above cited paper are restricted to conceptual

discussions without experimental performance evaluation. Landset et. al perform

a summary of the tools used for process big data [36], which shows the architecture

of the stream processing systems. However, the major focus is in batch processing

tools, which use the techniques of MapReduce. Roberto Colucci et. al show the

practical feasibility and good performance of distributed stream processing systems

for monitoring Signaling System number 7 (SS7) in a Global System for Mobile

communications (GSM) machine-to-machine (M2M) application [37]. They

analyze and compare the performance of two stream processing systems: Storm

and Quasit, a prototype of University of Bologna. The main result is to prove

Storm practicability to process in real time a large amount of data from a mobile

application.

Nabi et. al compare Apache Storm with IBM InfoSphere Streams platform in an

13

e-mail message processing application [38]. The results show a better performance

of InfoSphere compared to Apache Storm in relation to throughput and CPU

utilization. However, InfoSphere is an IBM proprietary system and the source code

is unavailable. Lu et. al propose a benchmark [39] creating a first step in the

experimental comparison of stream processing platforms. They measure the

latency and throughput of Apache Spark and Apache Storm. The paper does not

provide results in relation to Apache Flink and the behavior of the systems under

failure.

Dayarathna e Suzumura [40] compare the throughput, CPU and memory

consumption, and network usage for the stream processing systems S, S4, and the

Event Stream Processor Esper. These systems differ in their architecture. The S

system follows the manager/workers model, S4 has a decentralized symmetric

actor model, and finally Esper is software running on the top of Stream Processor.

Although the analysis using benchmarks is interesting, almost all evaluated

systems are already discontinued or not currently have significant popularity.

Unlike the most of above-mentioned papers, we focus on open-source stream

processing systems that are current available such as Apache Storm, Flink, and

Spark Streaming [41, 42]. We aim at describing the architectural differences of

these systems and providing experimental performance results focusing on the

throughput and parallelism in a threat detection application on a dataset created

by the authors.

3.2 Real-Time Threat Detection

Some proposals use Apache Storm stream processing tool to perform real-time

anomaly detection. Du et al. use the Flume and Storm tool for traffic monitoring

to detect anomalies. The proposal is to make the detection through the k-NN

algorithm [43]. The article presents some performance results, but it lacks

evaluation of the accuracy of detection and the tool only receive data from a

centralized node, ignoring data from distributed sources. The work of Zhao et al.

uses the Kafka and Storm, as well as the previous work, for the detection of

network anomalies [44], characterizing flows in the NetFlow format. He et al.

propose a combination of the distributed processing platforms Hadoop and Storm,

in real time, for the detection of anomalies. In this proposal, a variant of the k-NN

algorithm is used as the anomaly detection algorithm [45]. The results show a

good performance in real time, however without using any process of reaction and

prevention of the threats. Mylavarapu et al. propose to use Storm as a stream

processing platform for intrusion detection [46].

Dos Santos et al. uses a combination of Snort IDS and OpenFlow to create

14

Of-IDPS. Snort IDS is used as a detection tool, while OpenFlow actions perform

the mitigation or prevention of detected attacks [47]. An evolution of of-IDPS was

proposed to develop an Autonomous Computation (AC) system to automatically

create security rules in Software Defined Network (SDN) switches [6]. Rules are

created applying a machine learning algorithm to Snort IDS alerts and OpenFlow

logs. The machine learning method used in this work is the FP-Growth to find

frequent item sets, also called association rules. Schuartz et al. propose a

distributed system for threat detection in Big Data traffic [48]. Apache Storm and

Weka machine learning tool are used to analyze KDD-99 dataset. The system is

based in lambda big data architecture that combines batch and stream processing.

Stream processing platforms have been used for security initiatives. Apache

Metron1 is a security analysis framework based on big data processing. Metron

architecture consists of acquisition, consumption, distributed processing,

enrichment, storage and visualization of the data layers. The key idea of this

framework is to allow the correlation of security events from different sources. To

this end, the framework employs distributed data sources such as sensors in the

network, action logs of active network security elements and telemetry sources.

The framework also relies on a historical foundation of network threats from Cisco.

Apache Spot2 is a project similar to Apache Metron still in incubation. Apache

Spot uses telemetry and machine learning techniques for packet analysis to detect

threats. The creators say that the big difference with Apache Metron is the ability

to use common open data models for networking. Stream4Flow3 uses Apache

Spark with the ElasticStack stack for network monitoring. The prototype serves as

a visualization of network parameters. Stream4Flow [49], however, has no

intelligence to perform anomaly detection. Hogzilla4 is an intrusion detection

system (IDS) with support for Snort, SFlows, GrayLog, Apache Spark, HBase and

libnDPI, which provides network anomaly detection. Hogzilla also allows to realize

the visualization of the traffic of the network.

The proposed CATRACA tool, like Metron, aims to monitor large volumes of data

using flow processing. The CATRACA tool is implemented as a virtualized

network function (VNF) in the Open Platform for Network Function Virtualization

(OPNFV) environment. CATRACA focuses on real-time packet capture, feature

selection and machine learning. CATRACA can be combined with a mechanism of

action for immediate blocking of malicious flows. Thus, the CATRACA tool acts

as a virtualized network intrusion detection and prevention function that reports

flow summaries and can be linked to other network virtualized functions [50] as

1http://metron.apache.org/ accessed April 2018
2http://spot.incubator.apache.org, accessed April 2018
3https://github.com/CSIRT-MU/Stream4Flow, accessed April 2018
4http://ids-hogzilla.org/ accessed April 2018

15

defined in the network function chain patterns (Service Function Chaining - SFC)

and network service headers (Network Service Header - NSH).

3.3 Virtual Network Function

Machine learning is used for attack detection in virtualized environments [51, 52].

Azmandian et al. present an application based on machine learning to

automatically detect malicious attacks on typical server workloads running on

virtual machines. The key idea is to obtain the feature selection by Sequential

Floating Forward Selection (SFFS) algorithm, also known as Floating Forward

Search, and, then, classify the attacks with the K-Nearest Neighbor (KNN) and

the Local Outlier Factor (LOF) machine learning algorithms. The system runs in

one physical machine under VirtualBox environment. Li et al. present

cloudmon [52], a Network Intrusion Detection System Virtual Appliance

(NIDS-VA), or virtualized NIDS. Cloudmon enables dynamic resource provisioning

and live placement for NIDS-VAs in Infrastructure as a Service (IaaS) cloud

environments. The work uses Snort IDS and Xen hypervisor for virtual machine

deployment. Moreover, Cloudmon uses fuzzy model and global resource scheduling

to avoid idle resources in a cloud environment. The proposal employs the

conventional Snort IDS, based on signature method, to detect misuse and focuses

on the resource allocation. BroFlow covers the detection and mitigation of Denial

of Service (DoS) attacks. Sensors run in virtual machine under Xen hypervisor,

and, thus, include a mechanism for optimal sensor distribution in the network [16].

An attack mitigation solution, based on Software Defined Networking,

complements the proposal, focusing on DoS attacks detection based on an anomaly

algorithm implemented in the Bro IDS.

CATRACA is proposed as a virtualized network function on Open Source

Platform for Network Function Virtualization (OPNFV) that provides a threat

detection facility. The function employs open source tools to detect threats in real

time using flow processing and machine learning techniques.

The problem of specific sensor placement is studied by Chen et al.. The authors

propose a technique based on Genetic Algorithms (GA) [53] for sensor placement.

The proposed algorithm has as heuristic the minimization in the sensor number

and the maximization of the detection rate. Bouet et al. also use GA as

optimization technique for the deployment of Deep Packet Inspection (DPI) virtual

sensors [54]. Bouet proposal minimize the sensor number and the load analyzed by

each sensor, however, this proposal based on GA requires high processing time to

obtain the results without warranting the solution convergence [55]. We model and

propose an heuristic for optimization in VNF sensor placement, reducing the

16

number of sensor and maximizing the network coverage [56, 57].

3.4 Service Chaining

Virtual Network Function chaining is currently a trend topic in research. Several

researches deal with the optimization problem to place a set of VNFs [22–24].

Addis et al. propose a mixed integer linear programming formulation to solve the

VNF placement optimization from the Internet Service Providers (ISPs) point of

view [23]. In a similar way, Bari et. al use a Integer Linear Programming in order

to optimize the cost of deploying a new VNF, the energy cost for running a VNF,

and the cost of forwarding traffic to and from a VNF [22]. A Pareto optimization

is used for placing chained VNFs in an operator’s network with multiple sites,

based on requirements of the tenants and of the operator [24].

Other works propose the optimization placement of specific VNF [16, 27, 58]. A

virtual Deep Packet Inspection (vDPI) placement is proposed by Bouet et. al. to

minimize the cost that the operator faces [58]. In a previous work [16], we

proposed the placement of an Intrusion Detection and Prevention System (IDPS)

by a heuristic that maximize the traffic passing thought each node. In another

previous work [27], we proposed a heuristic to optimize the placement of

distributed network controllers in a Software Defined Network environment.

Nevertheless, none of these works considers the trade-off of the costumers’ requests

and infrastructure provider availability.

Estimating resource usage for optimizing allocation has been proposed in many

other contexts. Sandpiper [59] is a resource management tool for datacenters. It

focuses on managing the allocation of virtual machines over a physical

infrastructure. Other proposal that estimates the resource usage for allocating

virtual machines in a datacenter is Voltaic [60]. Voltaic is a management system

focused on cloud computing which aims to ensure compliance with service level

agreements (SLAs) and optimize the use of computing resources.

In Section 6.3, we propose four heuristics in order to minimize the delay between

source and destination nodes for the best costumer Quality of Experience (QoE).

Another heuristic is proposed to minimize the resource usage on the network nodes

to increase Infrastructure Provider (IP) benefits. Finally, a heuristic for using the

most central nodes first to improve costumer QoE and IP benefit. We compare the

four proposed heuristics with a greedy algorithm and we tested over a real Service

Provider topology [61].

17

Chapter 4

Threat Detection using Stream

Processing

In this chapter, we present a threat detection prototype using stream processing.

First, we present the main data processing techniques. Then, we introduce the

stream processing paradigm. Next, we describe and compare the main

Open-Source stream processing platforms in order to select the most suitable for

our Network Analytics tool. Finally, we present the CATRACA tool, a network

monitoring and threat detection tool using stream processing and machine learning

techniques.

4.1 Methods of Data Processing

Stream processing makes it possible to extract values on moving, as batch

processing does for static data. The purpose of stream processing is to enable

real-time, or near-real-time, decision making by providing the ability to inspect,

correlate, and analyze stream data as data flows through the processing system.

Examples of scenarios that require stream processing are: traffic monitoring

applications for computer network security; social networking applications such as

Twitter or Facebook; financial analysis applications that monitor stock data flows

reported on stock exchanges; detection of credit card fraud; inventory control;

military applications that monitor sensor readings used by soldiers, such as blood

pressure, heart rate, and position; manufacturing processes; energy management;

among others. Many scenarios require processing capabilities of millions or

hundreds of millions of events per second, making traditional system such as Data

Base Management System (DBMS) inappropriate to analyze stream data [62].

Data Base Management Systems store and index data records before making them

available to the query activity, which makes them unsuitable for real-time

18

applications or responses in the sub-second order [63]. Static databases were not

designed for fast and continuous data loading. Therefore, they do not directly

support the continuous processing that is typical of data stream applications.

Also, traditional databases assume that the process is strictly stationary, differing

from almost all real-world applications, in which the output could gradually

change over time. Security Threats in TCP/IP networks are a typical example of

moving data, in which the output changes over time.

Data processing is divided in three main processing approaches: batch,

micro-batch, and stream. The analysis of large sets of static data, which are

collected over previous periods, is done with batch processing. A famous technique

that use batch processing is the MapReduce [12], with the popular open-source

implementation Hadoop [13]. In this scheme, data is collected, stored in files, and,

then, processed, ignoring the timely nature of the data production. However, this

technique presents large latency, with responses greater than 30 seconds, while

several applications require real-time processing, with responses in microsecond

order [64]. Despite, this technique can perform near real-time processing by doing

micro-batch processing. Micro-batch treats the stream as a sequence of smaller

data blocks. For minor intervals, the input is grouped into data blocks and

delivered to the batch system to be processed. On the other hand, the third

approach, stream processing, analyzes massive sequences of unlimited data that

are continuously generated [65].

Stream Processing differ from the conventional batch model in: i) the data

elements in the stream arrive online; ii) the system has no control over the order in

which the data elements arrive to be processed; iii) stream data are potentially

unlimited in size; iv) once an element of a data stream has been processed, it is

discarded or archived and cannot be retrieved easily, unless it is explicitly stored in

memory, which is usually small relative to the size of the data streams. Further,

latency of stream processing is better than micro-batch, since messages are

processed immediately after arrival. Stream processing performs better for real

time; however, fault tolerance is costlier, considering that it must be performed for

each processed message.

Table 4.1 summarizes the main differences between static batch processing and

moving data stream processing.

Both these paradigms, batch and stream processing, are combined in the lambda

architecture to analyze big data in a real-time manner [66]. Lambda architecture

uses a stream fast path for timely approximate results, and a batch offline path for

late accurate results. In the lambda architecture, stream data can be used to

update batch processing parameters of an off-line training for a real-time threat

detection. The lambda architecture combines traditional batch processing over a

19

Table 4.1: Feature comparison summary between batch processing and flow pro-
cessing.

Batch Stream
Num. times it can process data Multiple times once
Processing Time Unlimited Restricted
Memory usage Unlimited Restricted
Result type Accurate Approximate

Processing topology
Centralization. /

Distrib.
Distributed

Fault Tolerance High Moderate

historical database with real-time stream processing analysis.

Figure 4.1: The three-layered lambda architecture, which combines stream with
batch processing: stream processing, batch processing, and service layers.

As shown in Figure 4.1, the lambda architecture has three layers: the stream

processing layer, the batch-processing layer, and the service layer. The stream

processing layer deals with the incoming data in real-time. The batch-processing

layer analyzes a huge amount of stored data in a distributed way through

techniques such as map-reduce. Finally, the service layer combines the obtained

information of the two previous layers to provide an output composed by analytic

data to the user. Therefore, the lambda architecture goal is to analyze, accurately

and in real-time, stream data, even with an ever-changing incoming rate to obtain

results in real-time based on historical data.

4.2 The Stream Processing

The data flow processing is modeled through a Directed Acyclic Graph (DAG).

The graph is composed by source data node which continuously emit samples, and

interconnected processing nodes. A data stream ψ is an unbounded set of data, ψ

= {Dt|t > 0} where a point Dt is a set of attributes with a time stamp. Formally,

20

one data point is Dt = (V, τt), where V is a n-tuple, in which each value

corresponds to an attribute, and τt is the time stamp for the t-th sample. Sources

nodes emit tuples or messages that are received by Processing Elements (PE).

Each PE receives data on its input queues, performs computation using local state

and, finally, produces an output to its output queue. Figure 4.2 shows the

conceptual stream processing system architecture.

Figure 4.2: stream processing architecture. Processors Elements (PE) intercon-
nected creating a directed acyclic graph. The data stream is received by the PE
sources, they are immediately processed by workers and finally are aggregated at
output.

A number of requirements must be met on distributed stream processing

platforms, Stonebraker et al. highlight the most important [4]. The ability to

process data online without the need to store it for operations is critical to

maintaining low latency, since storage operations such as writing and reading on

disk add unacceptable processing delays. In addition, ideally the processing system

be active, depending only in own policies to operate on the data without relying

on external instructions. Due to the large volume, data must be partitioned to

treat them in parallel. High availability and fault recovery are also critical in flow

processing systems. In low latency applications, recovery must be fast and efficient,

providing processing guarantees. Thus, stream processing platforms must provide

resiliency mechanisms against imperfections or failures, such as delays, data loss or

out-of-order samples, which are common in distributed stream processing in

computational clusters. Besides, processing systems must have a highly optimized

execution mechanism to provide real-time response for applications with high data

rates. Therefore, the ability to process millions of messages per second with low

latency, within microseconds, is essential. To achieve this performance, platforms

must minimize the communication overhead between distributed processes.

Active backup, passive backup, and upstream backup algorithms are used by

Distributed Stream Processors (DSP) to provide data processing guarantees upon

21

failures. Furthermore, platforms must store data efficiently, access and modify

status information, and combine them with data streams in real time. This

combination allows the adjustment and verification of algorithms for better

performance.

4.3 Stream Processing Platforms

Stream processing platforms have been researched since the 90s, presenting an

evolution in three generations. First-generation platforms were based on database

systems that evaluate rules expressed as condition-action pairs when new events

arrive. These systems were limited in functionality and also were not designed for

large volumes of stream data. Examples of this generation systems include

Starburst [67], Postgres [68] and NiagaraCQ [69]. The company Apama1, founded

in 1999, was the first real-time, event-driven analysis application company focused

on Business. The technology provided by the Apama platform allowed to monitor

events, analyze them and perform actions in milliseconds.

Second-generation systems focus on extending the Structured Query Language

(SQL) to process stream data by exploring the similarities between a stream and

an online query. In May 2003, at Stanford University, the STanford stREam datA

Manager (STREAM) [70] project was created. The STREAM project is considered

to be one of the first general-purpose Data Stream Management Systems (DSMS).

The STREAM project prompted the foundation in 2003 of Coral82. In 2007,

Coral8 launched a commercial platform, based on Microsoft technologies, capable

of processing and analyzing thousands of SQL requests per second. The

Aurora [62] project was launched in 2002 in a collaboration with Brandeis

University, Brown University and MIT. The main drawback of Aurora is that the

project was designed as a single, centralized flow processing mechanism. A new

distributed version was released in 2003, called Aurora*. One last version was

officially released under the name Borealis [63], with some other improvements,

such as fault tolerance. The Medusa [71] project used the Borealis distribution to

create a federated flow processing system. Borealis and Medusa became obsolete in

2008. The Aurora/Borealis projects boosted in 2003 the founding of the company

StreamBase System3, which commercially launched the StreamBase platform for

Complex Event Processing (CEP) for decision-making purposes. The University of

1The first real-time event analysis company, Apama Stream Analyt-
ics, was sold in 2005 to Progress Software Coorporation for $ 25 million.
https://www.softwareag.com/corporate/products/apama webmethods/analytics/default.html
Accessed April 2018.

2Sold to Aleri in 2009.
3Sold to TIBCO Software in 2013.

22

Berkeley, in 2003, creates a language for continuously executing SQL queries based

on the Postgres database system called TelegraphCQ [72]. Based on the

TelegraphCQ, the Truviso4 was created in 2009, and in 2012 Truviso was acquired

by Cisco. In 2006, Cornell University created Cayuga [73], a state-of-the-art

publish/subscribe system, which developed a simple query language to perform

processing over data that scales both with arrival rate of events as well as number

of queries. Cayuga was replaced by Cougar5 and is still an active search.

Third-generation systems have emerged to address the need for Internet companies

to process large volumes of data produced at high speed. The main focus of this

generation is the scalable distributed processing of data in computational clusters.

Google revolutionizes distributed processing by proposing the MapReduce [12]

programming model for scalable parallel processing of large volumes of data in

clusters. The key idea to spread-process-combine is used to scalably perform

different tasks in parallel on commodity servers in a cluster. The Hadoop [13]

platform is the Open Source implementation of MapReduce to perform analytics

on big data. However, due to the high latency that MapReduce produces, some

projects have been proposed to perform real-time data stream analysis. The Spark

project replaces Hadoop’s MapReduce to perform memory operations that Hadoop

performs on data retrieved from the disk. The open source platforms Storm and

Flink are proposed for stream processing. The Spark platform proposes an

extension for stream processing in micro-batches, the Spark streaming. Next,

Apache Storm, Apache Flink and Apache Spark streaming are described as

third-generation open source scalable platforms.

4.3.1 Apache Storm

Apache Storm6 [28] is a real-time stream processor, written in Java and Clojure.

Stream data abstraction is called tuples, composed by the data and an identifier.

In Storm, applications consist of topologies forming a directed acyclic graph

composed of inputs nodes, called Spouts, and processing nodes, called Bolts, and

edges represent data stream. Spouts are responsible for abstracting incoming data

into tuples that flow through the graph. Each Bolt execute a user-defined function

considered as atomic. A topology works as a data graph in which nodes process

the data as the data stream advance in the graph. A topology is analog to a

MapReduce Job in Hadoop. Both Bolts and Spouts are parallelizable and can be

4Truviso Analytic http://jtonedm.com/2009/03/03/first-look-truviso/ Accessed April 2018
5Cougar processing http://www.cs.cornell.edu/database/cougar/ Accessed April 2018
6Nathan Marz, PhD from Stanford University, working on BackType, develops Storm in 2011,

a framework for distributed stream processing, to handle in real time the large number of messages
(tweets) received by Twitter company. The BackType company is acquired by Twitter and Storm
becomes open source, migrating to the Apache Foundation in 2013.

23

defined with a degree of parallelism that indicates the number of competing tasks

present on each node. An example of a topology with two Spouts and three Bolts

is shown in Figure 4.4. The grouping type used defines the link between two nodes

in the processing graph. The grouping type allow the designer to set how the data

should flow in topology.

Storm has eight data grouping types that represent how data is sent to the next

graph-processing node, and their parallel instances, which perform the same

processing logic. The main grouping types are: shuffle, field, and all grouping. In

shuffle grouping, the stream is randomly sent across the Bolt instances. In field

grouping, each Bolt instance is responsible for all samples with the same key

specified in the tuple. Thus, a Bolt will be responsible for all samples of a certain

type and be able to concentrate the information regarding such group. Finally, in

all grouping, samples are sent to all parallel instances.

Figure 4.3: Storm architecture. Nimbus receives topologies and communicates to
Supervisors that coordinate process in workers. All the coordination between Nim-
bus and Supervisors is made by Zookeeper who store the cluster state.

Figure 4.4: Storm topology with element processors Spouts and Bolts. Spouts are
inputs nodes while Bolts are nodes that produce a processing in the tuples.

Figure 4.3 shows the coordination processes in a Storm cluster. The manager

node, Nimbus, receives a user-defined topology. In addition, Nimbus coordinates

each process considering the topology specification, i.e., coordinates Spouts and

Bolts instantiation and their parallel instances. The Zookeeper is responsible for

managing the worker nodes and for storing state of all elements of the system. At

each worker node, a supervisor monitors the performers, which are processes

responsible for performing one or more tasks. Supervisors report the status and

24

availability of the executors through a periodic heartbeat mechanism, allowing

Nimbus to identify system failures. Executors failures are handled by the

supervisors themselves, who restart the corresponding processes on the worker

node. A supervisor failure is handled by the Nimbus, which can relocate all tasks

from the failing supervisor to another worker node. If Nimbus fails, the system is

still capable of running all outstanding topologies, but the user is not able to

submit new topologies. After recovery, the Nimbus and the supervisors can resume

the last state stored in the Zookeeper.

Figure 4.5: At-least-once delivery semantic used in Apache Storm. Every time a
tuple is emitted by a spout, a record is saved in the acknowledge bolt. After the
tuple leaves the topology, the ack bolt acknowledge all operators.

Apache Storm uses storage and acknowledgment (ACK) mechanisms to ensure

tuples are processed even after a failure. For this, all tuples are identified by the

spouts and their identifiers are sent to a special Bolt, which stores the state of each

tuple. An example of topology with Acker Bolt is shown in Figure 4.5. For each

processed tuple, a Bolt should send a positive acknowledgment (ACK) to the

Acker Bolt. If all the tuples receive an ACK for each Bolt, the acknowledgment

Bolt ignores the IDs and informs the Spout that the processing has been

successful. Otherwise, the acknowledgment Bolt asks the Spout to resubmit all

tuples and the system goes back to the point of failure. Non-receipt of an ACK is

recognized by the expiration of a timer timeout defined in the acknowledgment

Bolt. This ensures message delivery semantics “at least once”, where each tuple is

processed one or more times in the case of reprocessing. It is still possible to

disable Acker Bolt for applications that do not require processing guarantees.

25

4.3.2 Apache Flink

The Apache Flink7 [74] is a hybrid processing platform that supports stream and

batch processing. The core of Flink is stream processing, making batch processing

a special case. The analytical tasks of Flink are abstracted in Directed Acyclic

Graphs (GAD) formed by four components: sources; operators; exit taps; and

records that run through the graph. The abstraction of the topology is performed

through programming in Java or Scala. As in Storm, the task division is based on

a master-worker model. Figure 4.6 shows the Apache Flink architecture. The

Flink master node is called the job manager and interacts with client applications

with responsibilities similar to the Storm master node (Nimbus). The job manager

receives client applications, organizes the tasks and sends them to the workers

nodes, which are called task manager. In addition, the work manager maintains

the status of all executions and each worker. The states of workers are informed

through a periodic heartbeat signal mechanism. The task manager has a function

similar to the worker node in the Storm. Task managers perform tasks assigned by

the job manager and exchange information with other task managers when needed.

Each task manager provides slots of processing to the computational cluster, which

are used to execute tasks in parallel.

Figure 4.6: Architecture of Flink system. The Job manager receives jobs from
clients, divides the jobs into tasks, and sends the tasks to the workers. Workers
communicate statistics and results.

The abstraction of the data stream in Flink is called DataStream and is defined as

a sequence of partially ordered records. Partly because there is no guarantee of

order if an operator element receives more than one data stream as input.

DataStreams are similar to Storm tuples and receive stream data from external

sources, such as message queues, sockets, and so on. DataStream programming

supports several native functions for operating data streams, such as map, filtering,

reduction, join, which are applied incrementally to each entry, generating a new

7Flink was born in 2010 from a European research project called “Stratosphere: Information
Management in the Cloud” developed in collaboration with the Technical University of Berlin,
Humboldt-Universität zu Berlin and Hasso-Plattner-Institut Potsdam. In 2014, Stratosphere re-
names the project to Flink and opens its code at the Apache Foundation.

26

DataStream. Each of these operations can be parallelized by configuring a

parallelism parameter. Thus, parallel instances of the operations are assigned to

the available processing slots of the task managers to simultaneously handle

DataStream partitions. This method allows distributed execution of operations on

data stream.

Figure 4.7 shows the checkpoint recovery method used by Apache Flink. Flink has

a reliable delivery semantics of exactly-once messages. This semantics is based on

the fault tolerance scheme with checkpoints, or checkpoints barriers, so that the

system can return on failure. Barriers work as control registers and are regularly

injected into the data stream by the source elements to flow through the graph

along with the sample records. When a barrier passes through an operator

element, it performs a snapshot of the state of the system. The snapshot consists

of storing the state of the operator, for example the contents of a sliding window

or a custom structure of data, and its position in the data stream. After an

alignment phase between operators to make sure the barrier has crossed all the

operators that handle that stream, operators write the snapshot in a durable file

system, such as HDFS. In case of software, node or network failure, Flink

interrupts the DataStream. The system immediately reset the operators and

restarts from the last successful snapshot capture. As in Storm, Flink fault

tolerance is guaranteed based on the premise that the system is preceded by a

persistent forwarding message system, such as Apache Kafka. In the special case of

batch processing, there is no fault tolerance scheme, and if a fault occurs, the

entire operation must be restarted from scratch.

Figure 4.7: Barriers are injected in source elements and flow through the graph
together with the samples, flow downstream and trigger state snapshots when they
pass through operators. When an operator receives a barrier from every incoming
stream, it checkpoints its state to durable storage.

27

4.3.3 Apache Spark Streaming

Spark is a project initiated by UC Berkeley and is a platform for distributed data

processing, written in Java and Scala. Spark has different libraries running on the

top of the Spark Engine, including Spark Streaming [30] for stream processing.

Apache Spark is a parallel engine, which executes the MapReduce technique.

Apache Spark is optimized to execute MapReduce jobs into the main memory,

improving performance while compared with Hadoop [30].

The stream abstraction is called Discrete Stream (D-Stream) defined as a set of

short, stateless, deterministic tasks. In Spark, stream computation is treated as a

series of deterministic batch computations on minor intervals. Similar to

MapReduce, a job in Spark is defined as a parallel computation that consists of

multiple tasks, and a task is a unit of work that is sent to the Task Manager. As

Figure 4.8 shows, when a stream enters Spark, it divides data into micro-batches,

which are the input data of the Distributed Resilient Dataset (RDD), the main

class in Spark Engine, stored in memory. A DStream is a potentially infinite

sequence of Resilient Distributed Dataset (RDD). Then the Spark Engine executes

by generating jobs to process the micro-batches. RDD are the basic elements in

the Spark Engine and are partitioned across all the nodes in the cluster. RDD are

by definition immutable, when an operation, called transformation, such as map(),

join(), filter() is applied it creates a new RDD. When a transformation is applied

to the RDD, Spark does not execute it immediately, instead it creates a lineage

that keeps track of what all transformations has to be applied on that RDD,

including from where it has to read the data. All transformation are computed

when an action such as save()/display() is called in the driver program. Linage

allows Spark to recover the last operation performed in case of failure.

Figure 4.8: Micro-batch processing used in Spark stream. The input streams are
received by receptors and it transforms in micro-batch that are executed in a tradi-
tional Map-Reduce Spark Engine.

Figure 4.9 shows the layout of a Spark cluster. Applications or jobs within the

Spark run as independent processes in the cluster which is coordinated by the

master or Driver Program, responsible for scheduling tasks and creating the Spark

28

Figure 4.9: Cluster architecture of Spark stream system. Composed by a driver
program, cluster manager and worker nodes that execute the task.

Context. The Spark Context connects to various types of cluster managers, such

as the Spark StandAlone, Mesos or Hadoop YARN (Yet Another Resource

Negotiator). These cluster managers are responsible for resource allocation

between applications. Once connected, Spark executes task within the task

managers, which perform processing and data storage, equivalent to Storm workers,

and results are then communicated to the Spark Context. The mechanism

described in Storm, in which each worker process runs within a topology, can be

applied to Spark, where applications or jobs are equivalent to topologies. A

disadvantage of this concept in Spark is the messages exchange between different

programs, which is only done indirectly such as writing data to a file, worsen the

latency that could be around seconds in applications of several operations.

Because Spark operates on data stored in volatile memory, there is a need to

provide fault tolerance for data while it is being processed, not just after saving to

disk as done on Hadoop. Spark has “exactly-once” message delivery semantics.

The idea is to process a task on several distinct working nodes and, in the event of

a failure, the processing of the micro-batch can be redistributed and recalculated.

The state of the RDDs is periodically replicated to other working nodes. Tasks are

then discretized into smaller tasks performed on any node, without affecting

execution. Thus, failing tasks can be thrown in parallel, evenly distributing the

task, without affecting performance. This procedure is called parallel recovery.

The semantics of “exactly-once” reduce the overhead compared to upstream

backup, where all tuples must be positively recognized, as in the Storm. However,

micro-batch processing has disadvantages. The configuration and distribution of

each micro-batch may take longer than the arrival rate of the native stream.

Consequently, micro-batches are stored in a processing queue affecting latency.

29

Fault Tolerance Schemes on Distributed Processing Platforms

A robust fault tolerance scheme is essential for distributed processing platforms

running on cluster, which are sensitive to node failures in network and software. It

should be noted that a datacenter has a structure in computational clusters, in

which nodes are low-cost commercial off-the-shelf (COTS) servers. In batch

processing systems, latency is acceptable and as a result, the system does not need

to recover quickly from a failure. However, in real-time systems since the data is

not stored, failures can mean data loss. Therefore, fast and efficient recovery is

important to avoid loss of information [75].

The most common form of failure recovery is storage and forwarding, also known

as upstream backup. Considering a processing topology, the algorithm uses the

parent nodes to act as backups, storing and temporarily preserving the tuples in

their output queues until their downstream neighbors process them and send

positive acknowledgment (ACK). Every tuple must be individually positively

recognized with an ACK. If any of these downstream neighbors fails, an ACK will

not be sent, and by timer overflow, the parent node reproduces the tuples on

another node. Another form of positive recognition is by group tuples. Simply

identify a missing tuple that the entire group of tuples is reproduced.

A disadvantage of this approach is the long recovery time since the system must

wait until the protected node takes over. To address this problem, in [65] the

parallel recovery algorithm is proposed. In this algorithm, the system periodically

checks the states replicating asynchronously to other nodes. When a node fails,

the system detects the missing partitions and launches tasks to retrieve them from

the last checkpoint. Many tasks can be launched at the same time to calculate

different partitions on different nodes. Thus, parallel recovery is faster than the

upstream backup.

Another solution is proposed in [29] based on the Asynchronous Barrier Snapshot

(ABS) algorithm. The main idea is to mark the overall state of a distributed

system. In ABS algorithm, a snapshot is the overall state of the rendering

distributed system represented as a graph. A snapshot capture all the information

necessary to restart the calculation of that particular execution state. A barrier

separates the record set in two sides. From one side, records that accompanies the

current snapshot, and from the other side the records that are inserted into the

next snapshot. Barriers do not interrupt data flow. Several different snapshot

barriers may be in the stream at the same time, which means that multiple

snapshots may occur simultaneously. When a source receives a barrier, the source

takes a snapshot from its current state and then transmits the barrier to all

outputs. When a non-source task receives a barrier from one of its inputs, it blocks

30

that input until it receives a barrier of all inputs. When the barriers were received

from all entries, the task takes a snapshot from its current state and transmits the

barrier to its outputs. The task then unlocks its input channels to continue its

computation. Thus, disaster recovery reverts all states of the operator to their

states taken from the last successful snapshot and restarts the inbound streams

from the last barrier for which there is a snapshot.

The delivery assurance semantics that a system offers to process a sample can be

divided into three types: “Exactly once”, “at least once”, and “at most once”. The

simplest semantics is “at most once”, also known as “may be once” where there is

no error recovery, that is, the samples are processed or lost. When a failure occurs,

data can be routed to another processing element without losing information. The

“at most once” semantic should be use in applications where the occasional loss of

a message does not leave a system in an inconsistent state. In the semantics

“exactly once” positive recognitions are individual by tuple. Also, in the “exactly

once”, the system guarantees that a source that crashes will eventually restart.

The system must keeps track of calls on sinks that have crashed, and allows them

to be later adopted by a new sink. In the semantics “at least once”, also known as

“once or more”, the error correction is done together for a group of samples, so if

an error occurs with any of the samples, the entire group is reprocessed and

therefore it is possible that some samples are processed one more time. In “at least

once” semantic, the source continues to send tuples to the sink until it gets an

acknowledgement. If one or more acknowledgements are lost, the server may

execute the call multiple times. The semantics “at least once” is less costly than

“exactly once”, which requires individual confirmation for each processed tuple.

Table 4.2 presents a summary of features underlined in the comparison of the

stream processing systems. The programming model can be classified as

compositional and declarative. The compositional approach provides basic building

blocks, such as Spouts and Bolts on Storm and must be connected together in

order to create a topology. On the other hand, operators in the declarative model

are defined as higher-order functions, that allow writing functional code with

abstract types and the system will automatically create the topology.

4.4 Performance Evaluation of the Platforms

This section evaluates the processing rate and behavior during the node failure of

the three flow processing platforms presented: Apache Storm version 0.9.4, Apache

Flink version 0.10.2 and Apache Spark stream version 1.6.1, with microbatch size

set to 0.5 seconds. The evaluated application is a threat detection system with a

neural network classifier programmed in Java. The experiments were performed in

31

Table 4.2: Overview of the comparison between Stream Processing Systems.

Storm Flink
Spark
stream

Stream
Abstraction

Tuple DataStream DStream

Build
Language

Java/Closure Java/Scala Java/Scala

Messages
Semantic

At least once Exactly one Exactly one

Failure-Tolerance
Mechanism

Upstream
Backup

Check-point
Parallel
Recovery

API Compositional Declarative Declarative
Failures
Subsystem

Nimbus,
Zookeeper

No No

an environment with eight virtual machines running on a server with the Intel

Xeon processor E5-2650 at 2.00 GHz and 64 GB of RAM. The experiment

topology configuration is a master and seven working nodes for the three systems

evaluated. The results are presented with a confidence interval of 95%.

Apache Kafka in version 0.8.2.1, which operates as a publish/subscribe service, was

used to enter data at high rates in flow processing systems. In Kafka, the samples,

or events, are called messages, name used from now on. Kafka abstracts the flow of

messages into threads that act as buffers or queues, adjusting different rates of

production and consumption. Therefore, producers record the data in topics and

consumers read the data from those topics. The dataset used is a security dataset

created by the authors [76], which was replicated to obtain enough data to

evaluate the maximum processing the system can operate on.

4.4.1 Experiments Results

The first experiment evaluates the performance of platforms in terms of

processing [77]. The full contain of the dataset is injected into the system and then

it is replicated as many times as necessary to create a large volume of data. The

experiment calculates the rate of consumption and processing of each platform.

Also, the parallelism parameter was varied, which represents the total number of

cores available for the cluster to process samples in parallel. Figure 4.10 shows the

results of the experiment. Apache Storm has the highest throughput. For a single

core, unparalleled, Storm already shows better performance with a flow rate of at

least 50% higher when compared to Flink and Spark streaming. Flink has a linear

growth, but with values always inferior to those of Apache Storm. The processing

rate of Apache Spark streaming, when compared to Storm and Flink, is much

32

1 2 3 4 5 6 7 8
Parallelism

0

0.5

1

1.5

2

P
ro

c
e
s
s
e
d
 M

e
s
s
a
g
e
s

p
e
r

M
in

u
te

×107

Flink

Storm

Spark Streaming

Figure 4.10: Throughput results of the platforms in terms of number of messages
processed per minute as function of the task parallelism for Security Dataset.

lower and this is due to the use of microbatch. Each microbatch is pooled prior to

processing, generating a delay in processing by samples. Apache Storm behavior is

linear up to four-core parallelism. Then, the processing rate grows until the

parallelism of six, in which the system saturates. This behavior was also observed

in Apache Spark streaming with the same parallelism of six cores.

1 2 3 4 5 6 7 8

Parallelism

0

5

10

15

P
ro

c
e
s
s
e
d
 M

e
s
s
a
g
e
s

p
e
r

M
in

u
te

×106

Flink
Spark Streaming

Storm

Figure 4.11: Throughput results of the platforms in terms of number of messages
processed per minute as function of the task parallelism. Evaluation of the word-
count performance in Twitter Dataset.

All three platforms offer the word-count application as examples of tutorials, so we

show this result for an unbiased comparison that is not affected by code

implementation on each platform. This experiment counts the number of times

each word appears in a text, using a dataset containing more than 5,000,000

tweets [78]. Figure 4.11 shows the performance of the three systems in the

wordcount program. This experiment shows a similar result to that shown

previously. However, in this case Spark streaming outperform Apache Flink.

The second experiment shows the system behavior when a node fails. Messages are

sent at a constant rate to analyze the system behavior during the crash. The node

33

0 100 200 300
0

1

2

3

4

5

6
x 10

4

Seconds

M
e

s
s
a

g
e

s
/s

e
c

Constant
Rate

Process
Redistribution

Messages
Recovery

Node
 Failure

(a) Storm behavior under node failure.

0 100 200 300
0

0.5

1

1.5

2

2.5

3
x 10

5

Seconds

M
e

s
s
a

g
e

s
/s

e
c

Messages
Recovery

Constant
RateNode

Failure

Process
Redistribution

(b) Flink behavior under node failure.

Figure 4.12: Storm and Flink behavior during a node failure. A failure is produced
at 50 seconds. a) Storm and b) Flink system behavior after detecting the failure
and consisting of process redistribution and message recovery procedures.

0 100 200 300
1000

2000

3000

M
e

n
s
s
a

g
e

s
/s

e
c

Seconds
0 100 200 300

0

5000

10000
T

im
e
 B

e
tw

e
e
n
 M

e
s
s
a
g
e
s
*1

0
0

Node
 Failure

Constant
Rate

(a) Spark behavior under node failure.

Storm Flink Spark
0

5

10

15

20

25

30

M
e

s
s
a

g
e

s
 L

o
s
s
e

s
 (

%
)

0%

12,8%

22,2%

Spark
Streaming

Flink

Storm

(b) Messages losses during node failure

Figure 4.13: Spark stream behavior during a node failure and message losses com-
parison. a) The Spark system behavior under failure, indicating that it keeps stable
and does not lose messages. b) Percentage of message losses.

failure is simulated by turning off a virtual machine. Figures 4.12, 4.13 show the

behavior of the three systems before and after a worker node failure at 50 seconds.

Apache Storm takes some time in the redistribution processes after the fault was

detected. This time is due to communication with the Zookeeper. Zookeeper has

an overview of the cluster and reports the state for Nimbus in Storm, which

reallocates the processes on other nodes. Soon after this redistribution, the system

retrieves Kafka messages at approximately 75 seconds. Although the system can

quickly recover from node failure, during the process there is a significant message

loss. A similar behavior is observed in Apache Flink. After detecting the failure at

approximately 50 seconds, the system redistributes the processes for active nodes.

Flink does this process internally without the help of any subsystem, unlike

Apache Storm that uses Zookeeper.

Figure 4.12b shows that time period in which Flink redistributes processes is much

34

greater than the time spent in Apache Storm. However, message recovery is also

higher, losing some messages during the process redistribution. Figure 4.13a shows

Spark streaming behavior during a failure. When a failure occurs at approximately

50 seconds, the system behavior is basically the same as before. This is due to the

use of tasks with micro-batch that are quickly distributed without affecting

performance. Spark stream shows no message loss during fail. Thus, despite the

low performance of Spark stream, it could be a good choice in applications where

resilience and processing all messages are necessary.

Figure 4.13b shows the comparison of lost messages between Storm, Flink and

Spark. The result shows that Spark had no loss during the fault. The measure

shows the percentage of lost messages by systems, calculated by the difference of

messages sent by Apache Kafka and messages analyzed by the systems. Thus,

Apache Flink has a smaller loss of messages during a fault with about a 12.8%

compared to 22.2% in Storm. We obtain the result with 95% confidence interval.

We can conclude that if we want to prioritize throughput, Apache Storm is the

best choice. On the other hand, if fault tolerance and “exactly once” message

processing is required, Apache Spark must be employed.

4.5 The CATRACA Tool

CATRACA tool uses Network Function Virtualization (NFV) technology and its

infrastructure to combine virtualization, cloud computing, and distributed stream

processing to monitor network traffic and detect threats. The goal is to provide an

accurate, scalable and real-time threat detection tool capable of meeting peaks of

use, providing a high Quality of Service. Traffic monitoring and threat detection as

a virtualized network function have two main advantages: the ability to self-adapt

to different traffic volumes and the flexibility of installation and migration of

sensors in the network to reduce the latency in monitoring [16]. Thus, the tool

analyzes large volumes of data, the Machine Learning techniques classify the traffic

into normal or threat, and, finally, the knowledge extracted from the flows is

presented in a user interface. 8

The prototype is divided in three main modules to perform real-time threat

detection. The Capture Module, the Stream Processing Module and the Alarms

Module compose our system to ensure security in several network components.

Thus, several probes distributed in different network locations compose the

Capture Module and, then, the data are grouped to be processed in a centralized

point.

8The tool, as well as its documentation and complementary information can be accessed at
http://gta.ufrj.br/catraca

35

Figure 4.14: Diagram flow of stream processing analysis. Analyzing process com-
posed by three modules. The packets enter to the capture module, where the features
are extracted, then the features are processing in the Stream module and finally and
alerts are send to the alert module.

4.5.1 CATRACA Architecture

The CATRACA architecture is composed of three layers: Visualization Layer,

Processing Layer and Capture Layer, as shown in Figure 4.15.

Figure 4.15: The layered architecture of the CATRACA tool: the capture layer, the
processing layer, and the visualization layer.

The first layer, the capture layer, is responsible for capturing the packets. The

packets are captured, through traffic mirroring, by the libpcap library. A python

application based on flowtbag abstracts the packets into flows. A flow is defined as

a sequence of packets with the same quintuple source IP, destination IP, source

port, destination port, and protocol, during a time window. In all, 46 flow features

are extracted and published in a producer/consumer service of Apache Kafka.

This service operates as a low latency queue and data flow manipulation system,

36

where queue features are consumed by the processing layer.

The processing layer is instantiated in a dedicated cloud for classification and it

core is the Apache Spark. The Spark framework has been chosen among the

different flow-processing platforms because it presents the best fault tolerance

performance [41], making CATRACA more robust in case of failure. Spark is

implemented in a cluster following the master/slave model, where slaves have the

capacity to expand and reduce resources, making the system scalable. Once the

flow arrives in the processing layer, the feature selection algorithm [76] selects the

most important characteristics for threat classification. In the processing step, the

processed metadata is enriched through different information such as the

geographical location of the analyzed IPs. Finally, the flows are classified as

malicious or benign through machine learning (ML) algorithms based on decision

trees.

Finally, the visualization layer is implemented using the Elastic Stack. The elastic

stack allows custom event viewing in real time. Thus, the output of the processing

layer is sent to the elasticsearch which provides a fast search and store service.

Elasticsearch communicates through queries with the user interface that runs in

the Kibana environment in which represents the results to be viewed by the user.

The proposed Traffic Classification

The classification begins with the pre-processing in selection of the most important

characteristics of the flows [76]. The tool can then operate in either real time or

offline mode. The offline traffic classification consists of processing of the

mini-batches Spark platform. In this mode, large volume datasets are loaded in a

distributed file system, such as the Hadoop Distributed File System (HDFS). The

data set is separated into a set of training and a test set at a ratio of 70 % to

training and 30 % to the test. Thus, Spark performs processing by the technique

map-reduce. A machine learning algorithm is trained to obtain the classification

model.

The decision tree classification algorithm is implemented in the tool, due to its

training speed allied to its high accuracy and precision [79]. The decision tree is a

greedy algorithm that performs a recursive binary partitioning of the resource

space. Each sheet is chosen by selecting the best separation from a set of possible

divisions, to maximize the gain of information in a tree node. The division into

each node of the tree is chosen from the argmaxdGI(CD, d), where GI(CD, d) is

the information gain when a division d is applied to a set of CD data. The gain of

information GI of the tool CATRACA is the impurity of Gini,
∑C

i=1 fi(1− fi),

which indicates how separated the classes are, where fi is the frequency of class i

in a node and C is the number of classes. Once it is obtained, the template is

37

stored in the file system and loaded into be used in real-time traffic classification

mode online. Thus, it is also possible to validate the model with the 30% training

set obtained earlier.

The Table 4.3 shows the confusion matrix of the security dataset evaluation [79].

The confusion matrix clearly specifies the rate of false positives and other metrics

of each class in the test data set. The rows represent the elements that actually

belong to the real class and the columns the elements that were classified as

belonging to the class. Therefore, the prominent diagonal elements of this array

represent the number of elements that are correctly sorted. In addition, Table 4.3

shows metrics complementary to the confusion matrix. By observing the values of

Accuracy and Precision it is possible to see the good performance of the decision

tree algorithm in off-line classification. The table verified that the algorithm

presented a high accuracy in almost all classes, with a low false positive rate.

Another way to see the false positive rate is to observe the values that are outside

the main diagonal.

Table 4.3: Confusion Matrix and Evaluation Metrics of Decision Tree for
GTA/UFRJ Dataset.

Normal DoS PortScan Precision Overall Accuracy
Normal 29126 1 0 99.97%

95.99%
DoS 60 5845 0 98.94%

PortScan 8 1782 9434 84.05%
Recall 99.76% 76.62% 100%

Table 4.4: Confusion Matrix and Evaluation Metrics of Decision Tree for NetOp
Dataset.

Normal Threat Precision Overall Accuracy
Normal 3713600 30140 99.19%

98.74%Threat 22350 416100 94.90%
Recall 99.40% 93.24%

After obtaining the classification model from the historical base, one can evaluate

the accuracy of the tool with data arriving in real time. The operation of the

CATRACA tool in real time uses the stream module of the Spark platform. Thus,

abstracted packets in streams, captured on different virtual machines in the cloud,

are processed as they reach the Spark platform. When a stream arrives at the

detection tool, it is summarized in characteristics using the selection

algorithm [76], in order to reduce processing time. Thus, the vector of selected

characteristics is evaluated in the model obtained in the off-line processing. After

extracting the analytical data from the flows, the results are stored in a database

for further analysis. The stored data has the information collected during the

38

detection of threats and can be reprocessed offline to calculate the parameters to

be used in the real-time model. To make the system more accurate, there is a

feedback, since the calculated offline parameters with historical data set the

processing model for real-time threat detection.

Real-Time Visualization of Enriched Data

The visualization of the enriched data occurs through a simple and friendly web

interface to allow the user to monitor the different parameters of the network in

real time. The open source viewer Kibana, a component of the Elastic stack, was

used for the development of the web interface, as it allows the visualization of the

data in a simple and fast way allied to the performance of processing of queries

with large volumes of data with low latency.

Figure 4.16: Dashboard panel view of CATRACA.

Figure 4.16 shows some of the different scenarios that can be viewed in the control

panel, such as the most accessed destination/source ports, the most commonly

used destination IP addresses, the average size of the flows in the round-trip

directions, the number of analyzed flows, among others. It is worth emphasizing

the visualization of the attacks in progress through a map that portrays the origin,

the destination and the number of occurrences. This is possible due to the

enrichment of the data through the correlation with geolocation metadata in the

processing module. Thus, both data and threats are viewed in real time. In

addition, all data is stored in time stamp, allowing the processing of the data

through time series.

39

Chapter 5

Dataset and Feature Selection

This chapter presents and analyzes two datasets. First a security dataset that we

have created in the laboratory GTA/UFRJ. Second more than ten days, in two

different periods of real traffic for a network operator in Rio de Janeiro, Brazil.

Then, we introduce the concepts of Feature Selection and Dimensionality

Reduction, and, finally, we propose a new algorithm for feature selection.

5.1 Security Dataset Creation

In order to evaluate the defense mechanisms against network attacks, the first

challenge is to obtain a suitable dataset for the evaluations. The availability of

datasets in the literature is limited as there is concern about privacy and the fear

of leakage of sensitive information contained in packet payload [80]. One of the

main datasets available is the DARPA [81], consisting of raw TCP/IP traffic and

UNIX operating system data of a simulated network obtained over seven weeks of

collection totaling 9.87 GB of data. Because DARPA 98 consists of raw files, it is

necessary to extract the features of these files to use them in machine learning

algorithms. A greater amount of background traffic and different types of attacks

were added to build the DARPA 99. The first two weeks were attack free, so it is

suitable for training anomaly detection algorithms. In the next five weeks several

simulated attacks were used against the base. New attacks were introduced in

DARPA 99 [82], mainly attacks on different operating systems like SunOS, Solaris,

Linux, and Windows NT.

Most research uses a mixture of the two datasets referring to the DARPA dataset.

The KDD99 dataset, in turn, was created from the files of the DARPA 98 set for

an intrusion detection competition in the year 1999 [83] and consists of samples

defined by 41 features and an output class. The dataset is composed of two weeks

of attacks. The classes are divided into five categories that contain 24 types of

training attacks and 14 types of attacks in the training set, totaling 38 attacks.

40

The training set consists of 494,021 flows and the test set 311,029 flows. Classes

include Denial of Service (DoS), Probe, Root2Local (R2L), User2Root (U2R), and

Normal Traffic. One of the problems of KDD99 is imbalance. Approximately 80%

of the samples are considered attacks, which differs widely from reality. The

dataset contains few types of U2R and R2L attacks and many of these attacks are

duplicates. By duplicating samples, classifiers become biased to denial of service

(DoS) attacks and to normal traffic, which are the most abundant in KDD99.

The NSL-KDD is a modification of the original KDD-99 set and has the same 41

features and the same five categories as the KDD 99. The improvements of the

NSL-KDD over KDD 99 are the elimination of redundant and duplicate samples to

avoid a biased classification and overfitting, and a better cross-class balancing to

avoid random selection. Despite the reduction in size, the NSL-KDD maintains the

proportions between classes as in KDD 99, with 125,973 training samples and

22,544 test samples. However, DARPA, KDD, as well as NLS-KDD are criticized

because their traffics are synthetic and therefore do not faithfully represent real

computer network scenarios [84]. These datasets contain redundant data, which

affect the performance of classification algorithms. Another important critic is

datasets outdated, since they have been simulated for over 15 years [85] and many

applications, as well as attacks, have since appeared.

Since the creation of KDD99, other datasets have been published and made

available introducing advantages and disadvantages. In this way, there is no

dataset that suits all cases and the choice of which one to use depends on the

scenario and the application. Some examples of dataset often found in the

literature are a simulation traffic of a real scenario, the UNB ISCX IDS

2012 [86] dataset, a simulated botnet traffic from CTU-13 [87] dataset, traffic of

a real DDoS attack in CAIDA DDoS1 dataset, real traffic of a backbone between

US and Japan in MAWI [88], real honeypots traffic in Kyoto [89], and current

traffic from LBNL2 edge routers.

A contribution of this work is the creation of two dataset with synthetic and real

network traffic to evaluate network security tools. Firstly, we elaborate a dataset

through the packet capture in computers from our lab, GTA at Federal University

of Rio de Janeiro. Then we analyze real network traffic captured for more than ten

days of a real network operator in Rio de Janeiro, Brazil.

1The Cooperative Analysis for Internet Data Analysis, http://www.caida.org accessed April
2018

2Lawrence Berkeley National Laboratory - LBNL/ICSI Enterprise Tracing Project,
http://www.icir.org/enterprise-tracing/download.html accessed April 2018

41

GTA/UFRJ dataset

The traffic contains both normal traffic and real network threats. After the packets

are capture, data is gathered from packet header and grouped in a time window,

generating flow data. We define a flow as a sequence of packets from the same IP

source to the same IP destination.

Each flow has 24 features, generated by TCP/IP header data such as TCP, UDP

and ICMP packet rate, number of source and destination ports, number of each

TCP flag, among others. Table 5.1 shows the full list of features. The analysis of

packet header information detects two threat classes: Denial of Service (DoS)

attacks and Probe. Therefore, we elaborate the dataset with several attacks from

both these classes. Altogether, the dataset contains seven types of DoS and nine

types of Probe. The DoS attacks are ICMP flood, land, nestea, smurf, SYN flood,

teardrop, and UDP flood. The different types of probe in the dataset are TCP SYN

scan, TCP connect scan, SCTP INIT scan, Null scan, FIN scan, Xmas scan, TCP

ACK scan, TCP Window scan, and TCP Maimon scan. We perform the threats

using tools from the Kali Linux distribution, which aims to test computer system

security. These attacks were labeled in the dataset by origin and destination IP

filters, separating the traffic belonging the attack machines from the rest.

Features
5 10 15 20

F
e

a
tu

re
s

5

10

15

20

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.1: Correlation matrix of the 24 features available in the dataset. The
dark red points indicate the maximum correlation and the blue points indicate the
minimal correlation.

In Figure 5.1, we plot the correlation between the 24 features in our created

dataset. This matrix calculates the Pearson correlation, also known as Pearson

product-moment correlation coefficient (PPMCC). Pearson correlation is a

measure of the linear dependence between two variables X and Y. Values in

PPMCC vary from +1 to -1, where one is total positive linear correlation, zero is

42

Table 5.1: The 24 features obtained for each flow from TCP/IP headers.

Number Abbreviation Feature
1 qtd pkt tcp Amount of TCP Packets
2 qtd src port Amount of Source Ports
3 qtd dst port Amount of Destination Ports
4 qtd fin flag Amount of FIN Flags
5 qtd syn flag Amount of SYN Flags
6 qtd psh flag Amount of PSH Flags
7 qtd ack flag Amount of ACK Flags
8 qtd urg flag Amount of URG Flags
9 qtd pkt udp Amount of UDP Packets
10 qtd pkt icmp Amount of ICMP Packets
11 qtd pkt ip Amount of IP Packets
12 qtd tos Amount of IP Service Type
13 ttl m Average TTL
14 header len m Average Header Size
15 packet len m Average Packet Size
16 qtd do not frag Amount of “Do Not Frag” Flags
17 qtd more frag Amount of “More Frag” Flags
18 fragment offset m Average Fragment Offset
19 qtd rst flag Amount of RST Flags
20 qtd ece flag Amount of ECE Flags
21 qtd cwr flag Amount of CWR Flags
22 offset m Average Offset
23 qtd t icmp Amount of ICMP Types
24 qtd cdg icmp Amount of ICMP Codes

no linear correlation. In the figure, total correlation is represented by the dark red

color and the no linear correlation is represented by dark blue color. Features 21

and 22 indicate the “Amount of ECE Flags” and the “Amount of CWR Flags,”

respectively. The Explicit Congestion Notification (ECN) Echo (ECE) and the

Congestion Window Reduced (CWR) flags are used to warn senders of congestion

in the network thereby avoiding packet drops and retransmissions. In the

correlation matrix, these two features are represented in a dark blue color,

indicating the lowest possible correlation. In the case of our dataset, these two

variables are empty. This is due to the fact that we create our dataset in a simple

network that is free of congestion. On the other hand, features 23, “Amount of

ICMP Types” and 24 “Amount of ICMP Codes”, are represented with a dark red.

This mean, that the two features are highly correlated, as a consequence, only one

feature is sufficient to describe the data. In the case of this dataset, the ICMP

type always coincides with the ICMP codes.

Altogether, around 95 GB of packet capture data were collected, resulting in

43

214,200 flows composing normal and malicious traffic3. To evaluate the machine

learning algorithms, we perform holdout validation. In Holdout validation, the

data is split into two different datasets labeled as a training and a testing dataset.

Holdout validation is the simplest method and show good performance [90]. This

method results in statistics that are determined with new data, not analyzed in

the training phase, as usually employed in scientific works of the area. For the

anomaly detection, the training is performed with 70% of legitimate flow data to

determine normal behavior. The other 30% are used to determine false-positive

rate and the attack data are used to calculate the attack-detection rate. Figure 5.2

show the relation of classes used in the dataset. The Normal class is around 70%

of the dataset with 106955 samples. The Denial of Service (DoS) class is 10% of

the total dataset with 16741 samples, and, finally, Probe class represents almost

the 20% of the dataset with 30491 samples.

Normal Denial of Service Probe
0

20

40

60

80

100

C
la

s
s
 R

e
p
re

s
e
n
ta

ti
o
n
 [
%

]

106955

16741

30491

Figure 5.2: Classes Distribution in the Dataset. The main class is the Normal with
almost 70% of the dataset, DoS is around 10% and Probe correspond to 20% of the
Dataset.

Network Operator Dataset

We collected real and anonymized data from a major telecommunications

operator4. The dataset is created by capturing 9 TB of access data of 373

residential broadband users in the city of Rio de Janeiro, Brazil. Capture is

performed from 16th of February until 3rd of March of 2017. The dataset contains

legitimate traffic, attacks and other security threats. An Intrusion Detection

System (IDS) inspects the traffic and then summarizes a set of flow features

associated with either an IDS alert or a legitimate traffic class.

3Data can be consulted through email contact with authors.
4Anonymized data can be consulted through email contact with authors.

44

Figure 5.3: Typical topology of broadband access network. The connection between
the Home Gateway and the Internet is authenticated and registered by the Radius
server. The traffic is encapsulated in Point-to-Point Protocol over Ethernet (PPPoE)
sessions between the user’s home and the Broadband Remote Access Server (BRAS).
Traffic inspection and collection occurs after BRAS.

Figure 5.3 shows a typical access topology for the broadband service composed of a

Customer Premises Equipment (CPE) connected to a Digital Subscriber Line

Asymmetric Multiplexer (DSLAM), a transport network, such as Multiprotocol

Label Switching (MPLS) network, and a section aggregator Broadband Remote

Access Server (BRAS) that authenticates the session of the users through a

RADIUS server, also responsible for auditing the network usage. Thus, in an

access network for fixed broadband users, the inspection is performed only after

the aggregation of the traffic, since there are no nodes that allow the inspection of

the data in the users’ premises or in the perimeter closest to the users.

The analyzed traffic is composed of the aggregated traffic coming from the high

capillarity, last mile, of different users with a wide variety of service profiles

accessed by each user and generating a large data volume.

The analyzed dataset was created from the capture of raw packets containing real

Internet Protocol (IP) traffic information of the residential users. Traffic was

collected and recorded uninterruptedly for one week in through the tcpdump5

software. The processes of collecting and writing file were packet unfiltered,

therefore, all packets on the network were raw and recorded directly in the dataset.

The physical collection structure has been configured by mirroring the aggregate

traffic of one DSLAM to another port of the transport network metro Ethernet

switch. The mirroring of the DSLAM port on the switch allows all traffic

originated or destined to the DSLAM to be cloned to a computer running an

Ubuntu Linux operating system.

To ensure high-speed storage and to allow easy data transport, the dataset was

written to an external hard drive with a USB 3.0 interface. Figure 5.4 shows the

5Available at http://www.tcpdump.org.

45

basic topology and the assembled structure for data collection. It is worth to

mention that analyzing all traffic from operator is out of scope, thus data

consumption samples satisfy the needs for the proposed characterization.

Figure 5.4: Topology of the data collection structure of the main DSLAM port with
373 broadband clients.

The data capture procedure ensures no loss in port mirroring at 1 Gb/s. Thus,

100% of the traffic generated by the 373 customers was collected and recorded in

the dataset, totaling 5 TB of information. Although the average available speed at

each port of the DSLAM is approximately 12 Mb/s, generating a hypothetical

aggregate traffic of more than 4 Gb/s, it was verified that during the entire

capture process, aggregate real traffic did not exceed 800 Mb/s. Aggregate traffic

is composed by round-trip, uplink and downlink traffic. It is worth noting that all

the captured traffic comes from fixed broadband sessions.

The Data Analysis

The analysis of captured data from the telecommunications operator’s network was

divided into three stages. The first stage handles the raw data capture files

through a network intrusion detection system (IDS) and then generates a summary

of the data in the form of flows. We use the flow definition based on RFC 7011 [91].

A flow is defined as the set of packets collect during a window time in a monitoring

point sharing common features. These features include information of the packets

header and statistics employed in the packet, We abstract the flow in 43 features.

The first stage is shown in Figure 5.5. Data analysis was based on the features

extraction of flows represented by the captured packets, as well as the verification

of possible alerts through an IDS. Since the packets comes from residential clients

with Asymmetric Digital Subscriber Line (ADSL) access, the captured traffic is

encapsulated in Point-to-Point Protocol over Ethernet (PPPoE) sessions which

46

make the analysis of packets harder for some IDS that do not perform the

inspection of this type of protocol, such as Snort [92]. Therefore, to perform traffic

classification on different types of alerts, the Suricata IDS6, Version 3.2, was used

with its most recent signature database.

The classification between normal traffic and alert was performed based on

Suricata signatures since there was no previous knowledge about threat

information. Because the data is real and hence untagged, it is impossible to

ensure that all flows are legitimate or, even after IDS classification, that all alert

flows are indeed malicious.

Parallel to packets classification by the IDS, the captured packets were

decapsulated from the PPPoE session using the tool stripe7 and were summarized

in flows through the flowtbag8 tool. In addition, a Python application was

developed to process the output of the Suricata IDS, and the summarized flow

features in order to correlate which flow was reported as an alert by the IDS.

Thus, it was possible to obtain a flow dataset with the respective class labels. As

we remove source and destination IP addresses features from the dataset to ensure

the data anonymization, the dataset presents 43 features of each flow plus the class

to which each flow belongs. The output class, feature 44, is given by the type of

alert generated by the IDS or 0 in the case of a normal flow.

Figure 5.5: NetOp dataset processing steps. Packets are first anonymizated, then
PPPoE encapsulation is removed. An Intrusion Detection System (IDS) is used to
classify alerts, in parallel, packets are abstracted in 43 flow features. Finally, an
application is used to match traffic flows with IDS alerts, generating a flow with 44
features corresponding to 1 if alert and 0 to normal traffic.

Figure 5.6 shows the number of threats and normal flow in each day of the dataset

in 2017. We can see that almost all days contains around 30% of alerts. Only day

17/2 contains less number of alerts. The maximum alerts number was during the

Saturday 25/2 with 1.8 Million alerts.

Figure 5.7 shows the source and destination ports of the flows. The figure focuses

on the 1024 first ports (from 0 to 1023), as they are the operating-system restricted

ports. Usually, these ports are used by daemons that execute services with system

6Available at https://suricata-ids.org.
7Available at https://github.com/theclam/stripe.
8Available at https://github.com/DanielArndt/flowtbag.

47

1
6
/2

1
7
/2

1
8
/2

1
9
/2

2
0
/2

2
1
/2

2
4
/2

2
5
/2

2
6
/2

2
7
/2

2
8
/2

0
1
/3

0
2
/3

0
3
/3

0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

F
lo

w
s

10
6

Normal Traffic

Alerts

Figure 5.6: Number of Alerts and Normal Traffic flows in Network Operator dataset.

(a) Source Ports Distribution. (b) Destination Ports Distribution.

Figure 5.7: Ports used in flows. Comparison of the use of the lowest 1024 ports
(restricted ports) in the evaluated flows. Because they are home users, the largest
number of flows originating from these ports are flows that generate alerts.

administrator privileges. Our flow definition assumes that the source port initiates

the TCP connection. Because the dataset portrays home users, it is expected that

most connections will be destined to restricted and dynamics ports. Thus, it is

remarked that the number of alerts coming from connections that the destination

port is in the range of restricted ports is relatively low to the total number of

connections on these ports, Figure 5.7b. When considering the flows, in which the

source port is in the range of restricted ports, almost all flows are labeled as alert

by the IDS, shown in Figure 5.7a. Another important fact is that most of the

analyzed flows reflect the use of the DNS service (UDP 53) and HTTPS and HTTP

services (TCP 443 and 80). The prevalence of HTTPS services over HTTP reflects

the shift that major Internet content providers, such as Google and Facebook, have

done to use encrypted service by default to ensure users’ privacy and security.

The relation between the most accessed services and flow duration is shown in

Figures 5.8a and 5.8b. The duration of analyzed flows is mostly less than 40 ms,

characterizing the use of DNS, HTTP and HTTPS services. Regarding the

protocols used, the prevalence of UDP flows is evident and refers to DNS queries.

48

It is worth mentioning that the number of alerts generated by UDP flows is more

than 10 times greater than the number of alerts generated by TCP flows. Another

important point is that the number of flows that generate alerts is approximately

26% of total flows.

0 20 40 60 80

Flow Duration (ms)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 (

C
D

F
)

Alerts

Normal

 Traffic

(a) Flow Duration in NetOp 2017.

TCP UDP
0

0.5

1

1.5

2

2.5

N
u

m
b

e
r

o
f

F
lo

w
s

10
7

Alerts

Normal

Traffic

(b) Transport Protocols Used in NetOp 2017.

Figure 5.8: Cumulative Probability Density Function (CDF) for the distribution of
the duration of flows in milliseconds and number of flows per transport protocols.
A) The flows that generate alerts are shorter in duration than the average flow.
B) The legitimate flows with UDP are numerous due to DNS (port 53 UDP). The
number of alerts in UDP is more than 10 times greater than in TCP flows.

Figure 5.9 shows the characterization of the number of packets per flow in uplink

and bytes per packet in downlink direction. In uplink direction, Figure 5.9a, 80%

of alerts starts with 20 packets or less while normal traffic starts with almost 80

packets. This behavior is typical from probe or scans attacks that send small

amount of packet to discover target vulnerabilities. In Figure 5.9b alerts and

normal traffic show a similar pattern of 11% of flows, however, alerts use more

than 100 Bytes in more than 30% of flows.

Considering the amount of data transferred in each flow, Figure 5.10 compares the

round-trip flows in relation to volume in bytes. The disparity of the traffic volume

in both directions of the communication is evident. While in one way 95% of

traffic has a maximum volume of 100 B, in the other way, the same traffic share

presents up more than 500 B. This result demonstrates that the residential

broadband user profile is a content consumer. Another interesting point is that the

flows that generate alerts have a similar traffic volume profile in both directions.

Asymmetric traffic is more typical of the legitimate users.

Figure 5.11 shows the behavior of the sub-flows generated in each connection. A

sub-flow is considered a flow in one direction. Both Figures 5.11a,5.11b, sub-flows

size in uplink and downlink, shows a very similar behavior. More than 20% of

Normal traffic flows, reach 900 B, but this value is reached in almost 60% of the

flows. Values of sub-flows are almost ten times bigger than values represented in

49

0 20 40 60 80 100

Packets Number

0

0.2

0.4

0.6

0.8

1
C

u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 (

C
D

F
)

Normal Traffic

Alerts

(a) Flows in the Uplink Direction

0 50 100 150 200

Bytes per Flow

0

0.1

0.2

0.3

0.4

0.5

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 (

C
D

F
)

Alerts

Normal Traffic

(b) Flows in the Downlink Direction.

Figure 5.9: Cumulative Probability Density (CDF) function for the distribution
of the number of packets per flow. Flows that generate alerts tend to have fewer
packets.

0 20 40 60 80 100

Flow Size (Byte)

0

0.05

0.1

0.15

0.2

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 (

C
D

F
)

Alerts

Normal Traffic

(a) Flows in the Uplink Direction

0 200 400 600 800 1000

Flow Size (Byte)

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 (

C
D

F
)

Normal Traffic

Alerts

(b) Flows in the Downlink Direction.

Figure 5.10: Cumulative Probability Density (CDF) function for volume distribution
in bytes by flow. Flows that generated alerts tend to have smaller volumes in
transferred bytes.

Figures 5.10 where Bytes flows size are shown. This is because the flows are

mostly of short duration, evidenced in Figure 5.8a, and thus do not generate

sub-flows. Data analysis showed that the flows do not pass to the idle state.

Another important feature is the total amount of data in the packet headers.

Figure 5.12 shows that in both flows directions, alert and total traffic have the

same behavior. In particular, there is symmetry in the round-trip traffic in terms

of the volume of data in the headers. It highlights that malicious traffic do not rely

on the usage of header options. Also, in both senses, uplink and downlink show a

similar behavior. Until 90 Bytes per header alerts and normal traffic are similar,

however, with 900 Bytes are represented by almost 30% of normal traffic and close

to 60% of alerts flows.

At the end of the knowledge extraction phase, the profile of the alerts generated by

50

0 200 400 600 800 1000

SubFlows Size (Bytes)

0

0.2

0.4

0.6
C

u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 (

C
D

F
)

Normal Traffic

Alerts

(a) Sub-Flows in the Uplink Direction.

0 200 400 600 800 1000

SubFlows Size (Bytes)

0

0.2

0.4

0.6

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 (

C
D

F
)

Alerts

Normal Traffic

(b) Sub-Flows in the Downlink Direction.

Figure 5.11: Cumulative Probability Density (CDF) function for volume distribution
in bytes by sub-flow in each flow. Flows that generate alerts tend to have smaller
volumes in bytes that are transferred in sub-flows

0 200 400 600 800 1000

Total bytes used in headers (Bytes)

0

0.2

0.4

0.6

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 (

C
D

F
)

Alerts

Normal Traffic

(a) Flows in the Uplink Direction.

0 200 400 600 800 1000

Total bytes used in headers (Bytes)

0

0.2

0.4

0.6

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 (

C
D

F
)

Normal Traffic

Alerts

(b) Flows in the Downlink Direction.

Figure 5.12: Cumulative Probability Density Function (CDF) for volume distribu-
tion in bytes of the data trafficked in headers. The behavior of traffic that generates
alerts is very similar to total traffic.

TROJAN DROP HTTP DNS CURRENT TOR SCAN WS TELNET CINS EXPLOIT POLICY RPC CNC CHAT SQL MALWARE TFTP IMAP
0

1

2

3

4

5
x 10

4

A
m

o
u
n
t
o
f

F
lo

w
s

Figure 5.13: Distribution of the main types of alerts in the analyzed traffic.

IDS were analyzed. Figure 5.13 shows which are the main classes of alerts

triggered by the IDS. Alerts for attacks against HTTP are the most frequent. This

class of alerts includes SQL injection attacks through HTTP calls and XSS attacks

(cross-site scripting). Home users can execute these attacks, as they use the

parameters of HTTP calls to insert some malicious code into the servers and,

51

therefore, are not filtered by access rules. Other important alerts are port

scanning, vulnerability scanning, and execution of malicious applications (trojan

and malware). The scans are generally intended to identify open ports and

vulnerabilities in user premises such as the home gateway. Alerts for trojan and

malware identify activities typical of known malicious applications that aim to

create and exploit vulnerabilities in the devices of the home users. The other alerts

refer to mechanisms of information theft and to Byzantine-attack signatures on

common protocols, such as IMAP and Telnet9.

5.2 Feature Selection and Dimensionality

Reduction

An information can be represented or classified by its features or attributes. The

number of features or attributes used to represent information varies greatly. A

relevant problem is that increasing the number of attributes does not always

improve the accuracy of the information classification. This problem is known as

the “curse of dimensionality” [93] which states that there are an optimal number

of features that can be selected in relation to the size of the sample to maximize

the performance of the classifier.

Figure 5.14a shows that when dimensionality increases, the performance of the

classifier increases until the optimal number of features is reached. From this

optimal value, the performance falls. Therefore, from the optimal value of feature

number, increasing dimensionality without increasing the number of training

samples results in a decrease in classifier performance. Figure 5.14b shows the

performance degradation of the algorithms. The increase in dimensionality is

directly proportional to the complexity of the model, obtaining an error rate in the

low training. However, these models present the overfitting problem during the

training step, in which the data perform poorly in the test step. Figure 5.14c

shows that the number of dots increases exponentially with increasing

dimensionality. In spaces with many dimensions, the points become sparse and not

very similar, with points very distant from each other and approximately

equidistant, which leads to a classifier prone to errors. In addition, other problems

arise when using a high number of dimensions with machine learning algorithms.

Some traditional distance metrics, such as Euclidean distance, are no longer

meaningful in high dimensions, requiring the use of other types of metrics, such as

the cosine distance, which have a higher computational cost.

Therefore, it is common to reduce the number of features or dimensionality prior

9Mainly used for remote configuration of network equipment.

52

to the application of a machine learning algorithm.

(a) Performance of the classifier with increasing
dimensionality.

(b) Overfitting effect on training data, which re-
duces test performance.

(c) Exponential growth of the number of points
with an increase in dimensionality.

Figure 5.14: The “curse of dimensionality” problem. This problem asserts that there
are an optimum number of features that can be selected in relation to the size of
the sample to maximize the performance of the classifier.

Feature selection or dimensionality reduction techniques are used to further the

learning performance. Feature selection maintains the most relevant features of the

original dataset, creating an smaller subset of the features. On the other hand, the

dimensionality reduction takes advantage of the redundancy of the input data,

calculating a smaller set of new dimensions or synthetic features. The new

synthetic features are a linear or non-linear combination of the input features. The

main idea of the methods is to remove all redundant information, keeping only the

necessary information, which is sufficient to represent the original information.

The purpose of both feature selection and dimensionality reduction is to produce a

minimum set of features so that the new subset maintains the most similar

performance of the generating set. Therefore, feature selection and dimensionality

reduction improve classification performance by providing faster and therefore

economically viable classifiers. The feature selection has an additional property,

because it allows a better understanding of the process that generates the data. In

the dimensionality reduction the selected features are synthetic and composed of a

combination of the original features, which makes it difficult to understand the

53

process.

The dimensionality reduction can also be seen as the process of deriving a set of

degrees of freedom, which are used to reproduce most of the variability of a

dataset [94]. Ideally, the reduced representation must have a dimensionality that

corresponds to the intrinsic dimensionality of the data. The intrinsic

dimensionality of the data is the minimum number of dimensions required to meet

the observed properties of the data. Generally, in dimensionality reduction a new

feature space is created through some kind of transformation of the original feature

space.

Thus, in the reduction of dimensionality, given the random variable of

n-dimensions x = (x1, x2, . . . , xn), it is possible to find a lower dimensional

representation of it, s = s1, s2, . . . , sk) with k ≤ n. Many algorithms with

different approaches have been developed to reduce dimensionality that can be

classified into two groups: linear and non-linear. The linear reduction of

dimensionality is a linear projection, in which n-dimensional data are reduced in

k-dimensional data using k linear combinations of n variables. Two important

examples of linear dimension reduction algorithms are Principal Component

Analysis (PCA) and Independent Component Analysis (ICA).

The objective of the PCA is to find an orthogonal linear transformation that

maximizes the feature variance. The first PCA base vector, called the main

direction, describes better the variability of the data. The second vector is the

second-best description and must be orthogonal to the first and so on in order of

importance. On the other hand, the goal of ICA is to find a linear transformation

in which the base vectors are statistically independent and not Gaussian, that is,

the mutual information between two variables of the new vector space is equal to

zero. In signal processing, ICA is used to separate two mixed signals. A common

example is the cocktail party [95], in which the objective is to listen one-person

speech in a noisy room. Unlike PCA, the base vectors in ICA are neither

orthogonal nor ranked in order, all vectors are equally important. PCA is normally

used when we want to find a reduced representation of the data. On the other

hand, the ICA is normally used to obtain features extraction, identifying and

selecting the features that best suit the application.

Figure 5.15 shows the eigenvalues associated to the synthetic dataset

(GTA/UFRJ). The first fourth components calculated by the PCA linear

transformation represent 80% of the total variance. Therefore, these fourth

components are selected and the others, that represents less than 20% of the total

data variance, are discarded, improving the processing time, which is critical in

real-time applications.

In cases where high-dimensional data have a non-linear nature, linear algorithms

54

Component
2 4 6 8 10 12 14 16 18 20 22 24

E
ig

e
n

v
a

lu
e

0

0.064

0.128

0.192

0.256

0.32

C
o

m
p

u
te

d
 V

a
ri
a

n
c
e

 (
%

)

50

60

70

80

90

100

~90% of Data Variance

~80%
of Data
Variance

Figure 5.15: Eigenvalue for each of the 24 flow features in GTA/UFRJ dataset. The
eigenvalue associated to each of the transformed features is proportional to the data
variance. 80% and 90% of the total data variance is represented between the fourth
and the sixth highest principal components.

do not perform well. This means that the relationship between classes is not

described in a linear subspace, as shown in Figure 5.16a. For these cases, it is

possible to use the PCA technique with kernels functions. A Kernel function

transforms the input vectors of the original space into a larger dimensional space,

in which the problem becomes linearly separable [33].

Figure 5.16 shows a comparison of linear and non-linear reduction methods. The

original dataset, shown in Figure 5.16a, is a case of two concentric circles, each

circle is a class. The goal is to reduce a 2-dimensions (R2) space into a 1-dimension

space (R1). After applying a linear reduction, Figure 5.16b, the Principal

Components cannot achieve a subspace where the classes are linearly separated

into space (R1). This is because the two concentric circles are two separable

nonlinear classes. After applying a non-linear method, such as a Gaussian Kernel

PCA, shown in Figure 5.16c, the method gets a subspace where the classes have

separated properly.

There are two approaches to class separation in data that cannot be separated

linearly, as shown in Figure 5.16a. The first mapping the data into a larger space,

in which the classes can be separated linearly by straight lines as shown in

Figure 5.17b. The example of Figure 5.17 is a binary example, in the plane of R1

there is no linear hyperplane that is able to separate the two classes.

If the problem is taken to a plane with a higher dimensionality, R1 → R
2, it is

possible to find a hyperplane, dash line in Figure 5.17b that separates classes. The

dataset can be mapped into a space of a larger dimension, R1 → R
2, and thereby

enable a linear hyperplane to separate classes, as shown in Figure 5.17b.

This hyperplane, when brought down to a smaller dimension, corresponds to a

55

(a) Original dataset with
two features.

(b) Linear Principal
Component Analysis

(c) Kernel Principal
Component Analysis

Figure 5.16: Example of non-linear class separation. a) two classes in a concentric
circle manifold; b) The linear PCA is not able to separate properly the two classes;
c) A better result is achieved when used the Kernel PCA.

(a) Example of binary
classes.

(b) Mapping to a larger
dimension.

(c) Two classes separated by
a nonlinear figure.

Figure 5.17: Strategies for separating non-linear data distribution classes: a) original
dataset of two classes with non-linear distribution; b) data mapping with increase
of size that allows the separation with linear algorithms, such as PCA; c) use of
nonlinear hyperplane, as in the PCA nonlinear kernel algorithm.

nonlinear figure as shown in Figure 5.17c R
2 → R

1. However, when mapping to

larger dimensions, the “curse of dimensionality” explained above is incurred, which

generates a high computational cost. To solve this problem the “kernel trick” is

applied. A kernel function is a similarity function that corresponds to the dot

product in an expanded vector space. The idea is to find a nonlinear function in

which dimension mapping is not necessary and computation is independent of the

number of features. The idea is to find a nonlinear function in which dimension

mapping is unnecessary and computation is independent of the number of features.

If there exists a nonlinear transformation Φ(x) from the original D-dimensional

feature space to an M-dimensional feature space, where M ≫ D. Then each data

point xi is projected to a point Φ(xi). If the K() matrix containing the scalar

products among all pairs of data points is now calculated as

K(xi, xj) = Φ(xi)
TΦ(xj).Then each data point xi is projected to a point Φ(xi).

The most commonly used kernels are the polynomial, Gaussian and tangent

nucleus (hyperbolic tangent). If a used kernel is linear, we can see the standard

56

PCA as a case of the Kernel PCA.

5.2.1 Feature Selection

The feature selection produces a subset of the original features, which are the best

representatives of the data. As opposed to dimensionality reduction there is no

loss of meaning. Feature selection techniques can be divided into three types of

algorithms [96]: wrappers, filter and embedded.

(a) Wrappers Methods.

(b) Filter Methods. (c) Embedded Methods.

Figure 5.18: Feature Selection Methods. a) Wrappers methods use a classifier to
evaluate the subset of features. b) Filter methods use heuristics to evaluate a feature
or a subset. c) The embedded methods use a specific classification algorithm to make
the selection naturally.

The wrappers algorithms, as shown in Figure 5.18a, use machine learning

techniques such as Support Vector Machine (SVM), decision tree, among others, to

measure the quality of features subsets without incorporating knowledge about the

specific structure of the classification function. Thus, the method will evaluate

subsets based on the accuracy of the classifier. The evaluation is repeated for each

subset until it finds a set that performs well. In high dimensional dataset this

search is a NP-hard problem. Wrappers methods tend to be more accurate than

the filter methods, at a higher computational cost [97]. One popular Wrapper

algorithm is the Sequential Forward Selection (SFS). Starting with an empty set S

and the full set of all features X, the SFS algorithm makes a bottom-up search

and gradually add features selected by an evaluation function to S, that minimizes

the mean square error (MSE). At each iteration, the feature to be included in S is

selected among the remaining available features of X. One problem of this method

is that SFS is prone to select redundant features. Once a feature is selected, it

cannot be chosen at a later stage.

Embedded methods are a sub-class of wrappers methods. In this case, the subset

of features is obtained as well as the model where they were selected. Embedded

57

methods perform the feature selection process during the learning phase of a

classifier. These methods select features based on criteria generated during the

learning process of a specific classifier. In contrast to wrappers methods, embedded

methods do not separate learning from feature selection. As in wrappers methods,

embedded methods use the accuracy of a classifier to evaluate the relevance of the

feature. However, embedded methods need to modify the classification algorithm

in the learning process. The SVM-RFE feature selection method was proposed in

the elimination of recursive features in the selection of genes for cancer

classification [98]. The algorithm selects the features according to a classification

problem based on the training of a linear vector support machine (SVM). The

features with the lowest ranking are removed according to a w criterion,

sequentially backward. The criterion w is the value of the hyperplane decision in

the SVM.

To reduce the high computational cost of evaluating the various subsets of

classifier-based features, the filter methods were implemented. Filter methods are

called open-loop methods because they have no interaction with the classifier.

Instead of classifiers the method uses heuristics to evaluate the relevance of the

feature in the dataset [99]. As its name implies, the feature that does not exceed

the heuristic criterion is filtered. Gaining information, distance, consistency and

similarity between features as well as statistical measures are some of the most

used heuristics in filter evaluation. Since the selection process is done in a step

prior to classification, only after the best features are found, classification

algorithms can use them. While this method is fast to select features, having no

interaction with the classifier subset of feature may imply lower accuracy. One of

the most popular filter methods is Relief, in which the feature score is calculated

as the difference between the distance of the closest sample from the same class

and the closest sample of the different class. The main disadvantage of this

method is that data classes must be labeled in advance. Relief is limited to

problems with only two classes, but ReliefF [32] is an enhancement to the Relief

method that handles multiple classes using the nearest k-neighbors technique.

ReliefF is a supervised method in which classes labeling must be known prior to

application of the method. In applications such as network monitoring and threat

detection, network flows reach unclassified classifiers. Therefore, unsupervised

algorithms must be applied.

5.2.2 Correlation Based Feature Selection

We present the Correlation Based Feature Selection, a simple unsupervised filter

method for feature selection. Our algorithm is inspired in the Correlation Features

58

Selection (CFS) [100]. Hall uses the idea of punctuating the variables through the

correlation between the variables and the output class. The CFS algorithm

calculates the correlation between the variable and the class to get the importance

of each feature. Thus, the CFS is dependent on output class information a priori,

so it is a supervised algorithm. The information dependence on the output class is

a limitation in applicability, such as the classification of network traffic, since there

is no a priori knowledge between the network traffic flow and the corresponding

class.

Our algorithm is based in the correlation between features. The Pearson

correlation of two variables is a measure of their linear dependence. Pearson

coefficient value is between −1 ≤ ρ ≤ 1, where 1 means that the two variables are

directly correlated, linear relationship, and −1 in the case of inverse linear

relationship, also called anticorrelation.

The Pearson Coefficient ρ, can be calculated in terms of mean µ and standard

deviation σ,

ρ(A,B) =
1

N − 1

N
∑

i=1

(

Ai − µA

σA

)(

Bi − µB

σB

)

, (5.1)

or in terms the of covariance

ρ(A,B) =
cov(A,B)

σAσB
, (5.2)

then we calculate the weight vector,

wi =
σ2

∑j=N

j=0 |Aij|
. (5.3)

Firstly, we need to obtain the correlation matrix, calculated with Equation 5.2,

line 1 algorithm 1. The correlation matrix is the pairwise covariance calculations

between all pairs of features. Then, using the Equation 5.3 we can establish a

weight w that is a measure of the importance of the feature. In order to calculate

w, we sum the absolute values of the correlation features, lines 5-6 algorithm 1.

This sum in absolute value is due to the fact that the Pearson coefficient, ρ, may

assume negative values. Then we calculate the variance V̂ of each feature that

privilege the feature that has greater variance and lower covariance, line 8

algorithm 1. The idea is to establish which feature represent the most information,

giving the correlation between two features. Furthermore, the weight values give

us an indication of the amount of information the feature has independently of the

others. The weight w has values between 0 ≤ N , where N is the number of

features, and 0 means that a feature is totally independent of the other. The

59

higher the w value is, the higher is the correlation with other features, thus the

lesser is the aggregated information by this feature.

Algorithm 1: Correlation Based Feature Selection

Input : X: Matrix of Features
Output: r: Vector of Ranked Features, w: Vector of weights

1 A = Corr(X) /* Correlation Matrix */

2 for 0 ≤ i < len (A) do
3 Wi = 0
4 for 0 ≤ j < len (Ai) do
5 ki = abs(Aij) /* Absolute Values */

6 auxi+ = ki /* Sample Addition */

7 end

8 wi = V̂ (Ai)/auxi /* Calculate Weights */

9 end
10 r = sort(w, reverse = True)

5.2.3 Case of Use: Traffic Classification

In order to evaluate the proposed algorithm, we perform traffic classification to

detect threats. We chose this application, because it is very time sensitive and our

algorithm can significantly reduce the processing time, enabling prompt defense

mechanisms. We implemented traffic classification using machine learning

algorithms on our synthetic dataset GTA/UFRJ. Threat detection system must

allow real-time detection and the elimination of intervention from security experts

to classify threats and configure the system. Human intervention is a major source

of errors and an important factor that slows down threat detection. Then

automatic threat classification is fundamental for network security.

Decision Tree (DT) with C4.5 algorithm, Artificial Neural Networks (ANN), and

Support Vector Machine (SVM), are the classification algorithms implemented to

evaluate the algorithm. We selected these algorithms because they are among the

most used for network security [101]. In all methods, we used holdout validation,

splitting dataset in 70% for training set and test with the remaining 30%. During

the training phase, we perform tenfold cross validation to avoid overfitting. In

cross validation, parts of the dataset are divided and not used in model parameters

estimation. They are further used to check whether the model is general enough to

adapt to new data, avoiding overfitting to training data.

In decision tree, leaves represent the final class and branches represent conditions

based on the value of one of the input features. During the training part, the C4.5

algorithm determines a tree-like classification structure. The real-time

60

implementation of the decision tree consists in if-then-else rules that generate the

tree-like structure previously calculated. The results are presented in the

Section 5.2.4, along with the ones from the other algorithms.

The Artificial Neural Networks (ANN) are based on the human brain, in which

each neuron performs a small part of the processing, transferring the result to the

next neuron. In artificial neural networks, the output represents a degree of

membership for each class, and the highest degree is selected. The weight vectors

Θ are calculated during the training. These vectors determine the weight of each

neuron connection. In the training, there are input and output sample spaces and

the errors, caused by each parameter. Errors are minimized through the

back-propagation algorithm.

In order to determine to which class a sample belongs each neural network layer

computes the following equations:

z(i+1) = Θ(i)a(i) (5.4) a(i+1) = g(z(i+1)) (5.5) g(z) =
1

1 + e−z
(5.6)

where a(i) is the vector that determines the output of layer i, Θ(i) is the weight

vector that leads layer i to layer i+ 1, and a(i+1) is the output of layer i+ 1. The

function g(z) is the Sigmoid function that plays an important role in the

classification. For high values of z, g(z) returns one and for low values g(z) returns

zero. Therefore, the output layer gives the degree of membership of each class,

between zero and one, classifying the sample as the highest one.

The Support Vector Machine (SVM) is a binary classifier, based on the

concept of a decision plane that defines the decision thresholds. SVM algorithm

classifies through the construction of a hyper-plane in a multidimensional space

that split different classes. An iterative algorithm minimizes an error function,

finding the best hyper-plane separation. A kernel function defines this hyper-plane.

This way, SVM finds the hyper-plane of maximum margin, that is, the hyper-plane

with the biggest distance possible to both classes.

The real-time detection is performed by the classification to each one of the

classes: normal and non-normal; DoS and non-DoS; and probe and non-probe.

Once SVM calculates the output, the chosen class is the one with the highest

score. The classifier score of a sample x is the distance from x to the decision

boundaries, that goes from −∞ to +∞. The classifier score is given by:

f(x) =
n
∑

j=1

αjyjG(xj, x) + b, (5.7)

where (α1, . . . , αn.b) are the estimated parameters of SVM, and G(xj, x) is the

used kernel. In this work, the kernel is linear, that is, G(xj, x) = x
′

jx, which

61

presents a good performance with the minimum quantity of input parameters.

5.2.4 Classification Results

We compare our feature selection algorithm with the methods presented in

Section 5.2. We try a lineal Principal Component Analysis (PCA), The ReliefF

algorithm, the Sequential Forward Selection (SFS), and the Support Vector

Machine Recursive Feature Elimination (SVM-RFE). For all methods, we analyze

their version with four and six features. In order to make a fair comparison, we

tested all the algorithms with the classification methods presented before. We use

a decision tree with the CART algorithm with minimum 4096 leaves, a binary

support vector machine (SVM) with linear kernel, and finally a neural network

with one hidden layer with 10 neurons. Figure 5.19 presents information gain (IG)

sum of the selected feature for each evaluated algorithm. Information gain

measures the amount of information, in bits, that a feature possesses in relation to

the class prediction, if the only information available is the presence of the given

feature and the corresponding class distribution. Thus, it is computed as the

difference of target class entropy and the conditional entropy of target class given

the feature value as known. When employing six features, the results show that

our algorithm has information retention capability between SFS and ReliefF, and

greater than SVM-RFE. The information retention capability of PCA, is greater

than feature selection methods, as each feature is a linear combination of the

original features and is computed to retain most of dataset variance.

Figure 5.20 shows the performance accuracy of the three classifiers algorithms

Decision Tree, Neural Network and Support Vector Machine (SVM). In the first

group, the decision tree best results is shown by our proposal with six features in

97.4%. The following result is PCA with four and six features in 96% and 97.2%.

The Sequential Forward Selection (SFS) presents the same result with four and six

features with 95.5%. The ReliefF algorithm has the same results in both four and

six features is 91.2%. Finally, the lowest result is show by SVM-RFE algorithm

with four and six features.

The second classifier, the neural network, the best result is shown by the PCA

with six features in 97.6% of accuracy, however the PCA with four features present

a very low performance with 85.5%. ReliefF presents the same results for both

features in 90.2%. Our proposal shows a result with 83.9% and 85.0% for four and

six features. On the other hand, the SFS presents the worst results of all

classifiers, 78.4% with four features and 79.2% with six features. One impressive

result is the SVM-RFE, with four features presents a very low result of 73.6% that

is one of the worst for all classifiers, however, with six features present almost the

62

same best second result with 90.1%.

In the Support Vector Machine (SVM) classifier, the PCA presents a similar

behavior compared with the neural networks. For six features presents the highest

accuracy of all classifiers with 98.3%, but just 87.8% for four features. ReliefF

again presents the same result for both cases in 91.4%. Our proposal has 84% for

four features and 85% for six features. SFS present the same result for both

features in 79.5%. The lowest accuracy of this classifier is the SVM-RFE with

73.6% for both cases.

The Sensitivity metric shows the rate of correctly classified samples. It is a good a

metric to evaluate the success of a classifier, when using a dataset in which a class

has much more samples than others. In our problem, we use sensitivity as metric

to evaluate our detection success. For this, we consider the detection problem as a

binary classification, i.e., we consider two classes: a normal and an abnormal

traffic. In this way, the Denial of Service (DoS) and Scan threat classes were joined

into a common attack class. Similar to Accuracy representation in Figure 5.20,

Figure 5.21 represents the sensitivity of the classifiers applying the different

methods of feature selection. In the first group, the classification with Decision

Three, PCA shows the best sensitivity with 99% of correct classification, our

algorithm achieves a performance with almost 95% of sensitivity, with four and six

features. Neural Networks, represented in the second group, has the best sensitivity

with PCA using six features with 97.7%, then our results show a good performance

with both four and six features in 89%. In this group the worst sensitivity of all

0

1

2

3

4

5

6

7

Feature Reduction Method

In
fo

rm
a
ti
o
n
 G

a
in

 S
u
m

Proposal 4

Proposal 6

PCA 4

PCA 6

SVM−RFE 6

SVM−RFE 4

SFS 6
SFS 4

ReliefF 6

ReliefF 4

Figure 5.19: Information gain sum for feature selection algorithms. The selected
features by our algorithm keeps an information retention capability between SFS
and ReliefF.

63

Decision Tree Neural Network Support Vector Machine

A
c
c
u

ra
c
y
 [

%
]

0

20

40

60

80

100

Proposal 4
Proposal 6

ReliefF 6 SFS 4
SFS 6

85.8

SVM-RFE 6

SVM-RFE 4

92.6

97.4 97.296.0

91.2
95.5

91.2
95.5

80.2
83.9 85.0 85.5

PCA 4

PCA 6

97.6

ReliefF 4

90.2 90.2

78.4 79.2

73.6

90.1

84.0
87.8

85.0

98.3

91.4 91.4

79.5 79.5

73.6 73.6

Figure 5.20: Accuracy comparison of features selection methods. Our Proposal,
Linear PCA, ReliefF, SFS and SVM-RFE compared in decision tree, SVM, and
neural network algorithms.

Decision Tree Neural Network Support Vector Machine

S
e

n
s
it
iv

it
y
 [

%
]

0

20

40

60

80

100
SVM-RFE 6

89.0 89.0

83.5

PCA 6

87.7 87.7

ReliefF 6
ReliefF 4

69.3

77.4

89.0
86.5

89.089.0

97.897.9
PCA 4

89.0

77.577.577.5 77.5

SFS 6SFS 4

Proposal 6

Proposal 4

69.3

95.8 94.6
99.399.9

89.0 89.0

96.3 96.3

78.3

87.6

SVM-RFE 4

76.5

Figure 5.21: Sensitivity of detection in decision tree, SVM, and neural network
algorithms for feature selection methods.

classifiers is reached by the SVM-RFE with four and six features in 69.3%. Finally,

the last group shows the Sensitivity for Support Vector Machine (SVM) classifier.

Again, showing a similar behavior as the previous group PCA with six features

shows the best sensitivity with 97.8%. Then, the second-best result is reached by

our algorithm, as well as with ReliefF, with 89% of sensitivity with both features.

It is worthy to note that our algorithm presents a stable behavior in Accuracy as

well as in Sensitivity. We highlight that our algorithm performs nearly equal to

PCA. PCA creates artificial features that are a composition of all real features,

while our algorithm just selects some features from the complete set of features. In

this way, our algorithm was the best feature-selection method that was evaluated,

and it also introduce less computing overload when compared with PCA.

Finally in Table 5.2 we present the features selected by each method of features

selection. We exclude the PCA because its output are new synthetic features. All

methods show six features according with its importance. It is possible to see none

of the methods selects the same features. Nevertheless, ReliefF and SFS selects as

64

Table 5.2: Features Selection Comparison for the three Feature Selection Methods.

Proposal ReliefF SFS SVM-REF
Number
of Feature

12,15,19,
13,10,7

2,11,9,
19,22,3

15,11,8,
5,20,21

14,12,13,
24,23,22

Name
of Features

qtd tos,
packet len m,
qtd rst flag,
ttl m,
qtd pkt icmp,
qtd ack flag

qtd src port,
qtd pkt ip,
qtd pkt udp,
qtd rst flag
offset m,
qtd dst port

packet len m,
qtd pkt ip,
qtd urg flags,
qtd syn flag,
qtd ece flag,
qtd cwr flag

header len m
qtd tos
ttl m
qtd cdg icmp
qtd t icmp
offset m

Pro
po

sa
l*1

00
0

PC
A*1

00
0

R
el
ie
f

SFS

SVM
-R

FE
0

0.2

0.4

0.6

0.8

1

A
b

s
o

lu
te

 P
ro

c
e

s
s
in

g
 T

im
e

Figure 5.22: Performance of features selection algorithms according to processing
time. The proposal and the PCA show the best processing time.

the second-best feature number 11, “qtd pkt ip”. One surprised result from the

SFS is the election of the features 20 and 21, “qtd ece flag and qtd cwr flag”. In

the correlation matrix of our dataset presented in Section 5.1, we discussed in that

these two features do not add any information because they are empty variables.

We realized that one of the main features is number 15 “pkt len m”. In this

dataset, the average packet length is fundamental to classify attacks. One possible

reason is than during the creation of the dataset the Denial of Services (DoS) and

Probe attacks were performed for an automated tool. Mainly this automated tool

produces attacks without altering the length of the packet.

In Figure 5.22 we show a comparison in processing time of all implemented

algorithms for feature selection. All measures are in absolute value. Our proposal

and PCA are multiplied by 1000 in order to display the values. We consider

absolute value as the relation between the worst processed time and the processing

time of each algorithm. The value of 1 represent the worst result, achieved by SFS

show the worst performance. The SFS algorithm performs multiple iteration in

65

order to minimize the mean square error (MSE). Consequently, all these iterations

increase the processing time. Our proposal shows the best processing time

together with PCA, because both implementations perform a matrix

multiplication, and matrix multiplication is a simple computation function. The

measurements are performed in Intel Xeon processors with clock frequency of 2.6

GHz and 256 GB of RAM.

The next experiment is to evaluate our proposal in different dataset. We use the

NSL-KDD dataset. The NSL-KDD is composed of 42 features with four classes,

DoS, Probe, U2R, R2L. To evaluate this dataset, we have increase the number of

classifiers. Besides SVM, Neural Network and Decision Tree, we add K-Nearest

Neighbors, Random Forest, Support Vector Machine (SVM) with Radial Basis

Function (RBF) kernel, Gaussian Naive Bayes, and Stochastic Gradient

Descendant. Adding these algorithms, we cover the full range of the most

important algorithms for supervisioned machine learning.

The Random Forests (RF) algorithm is a way to avoid class overfitting from a

simple decision tree. Random Forest constructs several decision trees that are

trained in different parts of the same dataset. This process decreases variance of

classification and improves the performance regarding the classification of a single

tree. The prediction of the class in the RF classifier consists of applying the

sample as input to all the trees, obtaining the classification of each one of them

and using a voting system to decide the resulting class. The construction of each

tree must obey the following rules: for each node d, select k features of total m

features, such that k ≪ m. To calculate the best binary division of the k features

for the node d, using an objective function; repeat the previous steps until each

tree reaches l number of nodes or until its maximum extension.

Bayesian algorithm (Naive Bayes - NB) starts from the strong premise of

independence between the features to simplify the prediction of the classification.

This mean that each feature does not influence the value of the others features.

From this premise, the method calculates the textit a priori probabilities of each

characteristic, or a set of them, for a given class. In the input of a new sample, the

algorithm calculates for each characteristic what is the probability of belonging to

one of the classes. The output of all probabilities of each feature will result in a

posterior probability of this sampling belonging to each of the classes. The

algorithm then returns the classification that contains the highest estimated

probability. According to the Bayes’ theorem, we have that the probability

posteriori is given by

P (C|X) =
P (X|C) ∗ P (C)

P (X)
=

∏m

i=1 p(xi|C) ∗ P (C)
P (X)

, (5.8)

66

where X is the unknown sample and C is the class to be parsed. Therefore, the

posteriori probability is given by the product of the conditional probability of X in

C with the a priori probability of the C class in the sampling, divided by a

constant term of standardization of the attributes P (X) for each sample. The

objective is to maximize the numerator to find the class that best fits the set of

features of the unknown sample. The NB algorithm can be implemented in several

ways. For a set of continuous feature values, it is assumed that the features follow

the normal distribution and therefore the Gaussian Naive Bayes(GNB) is used.

In this case, the individual probability of each feature, considering v the value of

the feature x of the input sample, is given by

P (x = v|C) = 1
√

2πσ2
C

e

(v − µC)
2

2µ2
C , (5.9)

where µC is the mean and σ2
C is the variance of the values of x with respect to

class C. Other approaches include Multinomial Naive Bayes (MNB), used for

discrete data, and Bernoulli Naive Bayes (BNB), in the case of binary variables.

The k-Nearest Neightbors - (k-NN) algorithm is a non-parametric classifier.

k-NN assumes no simple probability distributions on the data, and is easy to

implement. The class definition of an unknown sample is based on the k-neighbors

classes closest to the sample. The value k is a positive integer and usually small. If

k = 1, then the sample class is assigned to the class of its nearest neighbor. If

k > 1, the sample class is obtained by starting a resultant function, such as a

simple voting or weighted voting, of the k-neighbors classes. The neighborhood

definition is based on a measure of similarity between samples in the feature space.

Euclidean distance is commonly used in the threat detection literature, however,

other distances have good results and the best choice for similarity measure will

depend on the type of dataset used [102]. The Euclidean distance of two samples p

and q in the space of n features is given by

d(p,q) =

√

√

√

√

n
∑

i

(pi − qi)2. (5.10)

Although simple, the k-NN algorithm has a high computational complexity, since

for each new sample it is necessary to calculate its distance with all other samples.

Therefore, the k-NN algorithm is not suitable for large datasets.

In Stochastic Gradient Descent (SGD) algorithm a gradient is approximated

by a single sample. In a binary classification problem it is possible to use the

67

Sigmoid Function, expressed by

hθ(x) =
1

1 + e−θ⊺x
, (5.11)

to perform logistic regression. In the Sigmoid function, low product values of the

parameters θ⊺ times the sample feature vector x return zero, whereas high values

return one. When a new sample x(i) arrives, the SGD evaluates the Sigmoid

function and returns one for hθ(x(i)) greater than 0.5 and zero otherwise. This

decision presents an associated cost, based on the real class of the sample y(i). The

cost function is defined in Equation 5.12. This function is convex and the goal of

SGD algorithm is to find its minimum, expressed by

J(i)(θ) = y(i)log(hθ(x(i))) + (1− y(i))log(1− hθ(x(i))). (5.12)

On each new sample, the algorithm takes a step toward the cost function minimum

based on the gradient of the cost function.

Validation in NSL-KDD dataset

In this experiment we vary the number of feature selected to evaluate the impact

in the accuracy. We analyze the performance with no feature selection (No FS),

and then we reduce features from 10% to 90%. All the experiments were

performed using a K-fold validation. The K-fold cross-validation performs K

training iterations in the fractions of the data and, at each iteration, in the K − 1

fractions of the remaining data, performs the test in a mutually exclusive way. We

use K = 10 that is the amount commonly used. Figure 5.23 shows the effect of

feature selection. No Feature Selection performs good for almost all algorithms,

however reducing the number of features in 10% improve accuracy in all

algorithms but in Random Forest. In contrast, a bigger reduction of feature

deteriorates the accuracy of the classifiers.

We also measure others metrics such as Precision, Sensitivity, F1 - Score, training

and classification time. We compare the effect of 10% reduction in all these

metrics. Figure 5.24 shows accuracy, precision, sensitivity and F1 - score for

dataset with no feature selection, Figure 5.24a, and with 10% of reduction,

Figure 5.24b. For KNN, SVM with Radial Basis Function (RBF) kernel, and

Gaussian Naive Bayes metrics remain the same. For the Neural Network MLP and

for SVM with linear kernel an improvement between 2-3% in all metrics is reached

with a 10% of features reduction. Random Forest present the worst performance

when features are reduced, all metrics worsen their values between 8-9%.

Stochastic Gradient Descendant (SGD) also suffer a small reduction of 1% in their

68

KN
N

N
eu

ra
l N

et
. M

LP

R
an

d.
 F

or
es

t

SVM
-R

BF

SVM
-L

in
ea

r

G
N
 B

ay
es

Sto
ch

as
tic

 G
D

Tre
e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u
ra

c
y

No FS

50% Reduction

10% Reduction
20% Reduction

40% Reduction

30% Reduction

70% Reduction

80% Reduction

90% Reduction

Figure 5.23: Evaluation of Feature Selection varying the selected features in NSL-
KDD dataset.

metrics. Decision tree are the most beneficed improving between 3-4% their

metrics.

KN
N

N
eu

ra
l N

et
. M

LP

R
an

d.
 F

or
es

t

SVM
-R

BF

SVM
-L

in
ea

r

G
N
 B

ay
es

Sto
ch

as
tic

 G
D

Tre
e

0

0.2

0.4

0.6

0.8

1

Precision
Accuracy

F1-score
Sensitivity

(a) Metrics with no Feature Selection

KN
N

N
eu

ra
l N

et
. M

LP

R
an

d.
 F

or
es

t

SVM
-R

BF

SVM
-L

in
ea

r

G
N
 B

ay
es

Sto
ch

as
tic

 G
D

Tre
e

0

0.2

0.4

0.6

0.8

1
Accuracy
Precision Sensitivity

F1-score

(b) Metrics with 10% of Reduction.

Figure 5.24: Accuracy, precision, sensitivity and F1-Score for NSL-KDD. a) Metrics
with no future selection. b) Metrics reducing only 10% of the initial features.

0.63
 1.89

 22.99

0.07

 0.77

0.02

890.36

79.75

654.03

54.86

 0.11
0.04

 1.05

0.004

 2.09

0.004

KN
N

N
eu

ra
l N

et
. M

LP

R
an

d.
 F

or
es

t

SVM
-R

BF

SVM
-L

in
ea

r

G
N
 B

ay
es

Sto
ch

as
tic

 G
D

Tre
e

100

105

T
im

e
 (

s
)

Training Time

Classification Time

(a) Times with no Feature Selection

5.032.88

 20.92

0.08
 0.79

0.02

785.08

66.29

349.05

 32.88

 0.10
0.03

 0.68

0.003

 1.50

0.003

KN
N

N
eu

ra
l N

et
. M

LP

R
an

d.
 F

or
es

t

SVM
-R

BF

SVM
-L

in
ea

r

G
N
 B

ay
es

Sto
ch

as
tic

 G
D

Tre
e

100

105

T
im

e
 (

s
)

Training Time

Classification Time

(b) Times with 10% of Reduction.

Figure 5.25: Classification and training NSL-KDD. a) Times with no future selec-
tion. b) Times reducing only 10% of the initial features.

Figure 5.25 analyze training and classification time for all classifiers. Figure 5.25a

69

shows training and classification time with no features selection, while

Figure 5.25b shows results with 10% of features reduced. KNN algorithm

augmented considerably its training time, passing from 0.63 seconds to 5.03

seconds, while classification time also suffer an increase passing from 1.89 to 2.88

seconds. Neural Network reduced training time in 9% from 22.99 to 20.92 seconds,

classification time got 0.01 seconds of increase. Random Forest was increased in

0.02 seconds in training time and classification time remain the same, these values

are negligible because of the error of the cross validation. SVM-RBF and SVM

with linear kernel are the most beneficed from features reduction. SVM-RBF

reduces 11% the training time while 16% the classification time. SVM-Linear

reduces 46% classification time from 654 seconds to 349 seconds and 40% training

time from 54.86 to 32.88 seconds. Feature reduction in Gaussian Naive Bayes,

Stochastic Gradient Descendant and Decision Tree impact strongly in training

time with a reduction of approximately 30%, while classification time was reduced

one-time unit in three algorithms.

5.2.5 Preprocessing Stream Data

Data preprocessing is the most time-consuming task in machine learning [103]. As

we explained in Section 5.2, feature selection is mandatory for machine learning.

However, all Feature Selection algorithms assume that data arrive pre-processed.

Normalization, also known as feature scaling, is an important method for proper

use of classification algorithms. If the features in the dataset has different scales, it

impacts on the performance of the classification algorithm. Ensuring normalized

feature values, normally between {−1, 1}; implicitly weights all features equally in

their representation. In classifier algorithms that calculate distance between two

points, a weighted feature effect is appreciated. If one of the feature has a bigger

range of values, the distance calculation will be highly influenced by this feature.

Therefore, the range of all features should be normalized so that each feature

contributes approximately proportionately to the final distance.

In addition, many pre-processing algorithms consider that data is statically

available before the beginning of the learning process [104]. However, in real-world

application, data is not presented before learning process. As a consequence, it is

necessary to use online pre-processing methods.

Current state of art has proposal several algorithms in online feature selection.

Perkins and Theiler Grafting algorithm based on a stage wise gradient descent

approach. Gradient Feature Testing (grafting) [105] treats feature selection as an

integral part of learning a predictor. The objective function is a binomial negative

log-likelihood loss. Grafting operates in an incremental iterative fashion, gradually

70

building up a feature set while training a predictor model using gradient descent.

In each iteration, a fast gradient-based heuristic is used to identify a feature that is

most likely to improve the existing model. While Grafting algorithm is able to

handle streaming features, it needs to select in advance the value of a regularization

parameter lambda to determine which feature is most likely to be selected for the

model at each iteration. Choosing a suitable regularization parameter inevitably

requires information about the global feature set. Therefore, Grafting is ineffective

in dealing with streaming features with an unknown feature size.

The Alpha-investing method [106] considers that new features arrive in a stream

manner generated sequentially for a predictive model. The main advantage of

Alpha-investing is the possibility to handle candidate feature sets of unknown or

even infinite sizes. Every time a feature arrives, alpha-investing use a linear

regression to dynamically reduce the threshold of error to be included in the

model. As a drawback, alpha-investing only consider the addition of new features

without evaluating the redundancy after the feature is added.

Wu et al. presented the Online Streaming Feature Selection (OSFS) algorithm and

its faster version, the Fast-OSFS algorithm to avoid the redundancy of added

features [107]. The OSFS algorithm uses a Markov blanket of a feature to

determine the relevance of the feature in relation with their neighbors. The

Markov blanket for a node A in a Bayesian network is the set of nodes A composed

of A’s parents, its children, and its children’s other parents. In a Markov random

field, the Markov blanket of a node is its set of neighboring nodes. A Markov

blanket may also be denoted by MB(A). However, facing the scalability and

online processing challenges in big data analytics, the computational cost inherent

in those three algorithms may still be prohibitive when the dimensionality is

extremely high in the scale of millions or more.

Smart Preprocessing for Streaming Data (SPSD) is an approach that use min-max

normalization of numerical features [108]. The authors use two metrics to avoid

unnecessary renormalization, SPSD only renormalizes when change amount exceed

some threshold value of the metrics. Data streaming is grouped in equal size chunk

where all operations are produced. The first data chunk is used to take the

references min-max values and to send the normalized data for model training.

The metric 1 represents the amount of sample falling outside the min-max

reference values, the metric 2 is the relation between new samples values in each

dimension and the referenced min-max value for that dimension.

Incremental Discretization Algorithm (IDA) uses a quantile approach to discretize

data streaming [109]. The algorithm discretizes data stream in m equal frequency

bins. A sliding window version of the algorithm is proposed to follow the evolution

of the data stream. To follow the distribution drift, the algorithm maintains the

71

data into bins with fixed quantiles of the distribution, rather than fixed absolute

values.

We propose an unsupervised preprocessing method. Our method include

normalization, and feature selection all together. The proposal is parametric-less.

Our algorithm follows an active approach for concept drift detection. The active

approach monitors the concept, the label, to determine when a drift occur before

take any action. Passive approach, in contrast, updates the model every time new

data arrives wasting more resources. We adapted the Feature Selection algorithm

presented in Section 5.2.2 to calculate correlation between features in a sliding

window. Also, a normalization algorithm is proposed to handle stream data.

Normalization Process

In our normalization algorithm 2, a histogram of a feature fi is represented as a

vector b1, b2, . . . , bn, such that bk represents the number of samples that falls within

the bin. For each feature of the dataset, we create an histogram. The main idea

behind the algorithm is to approximate the histograms to a normal distribution as

shown in Figure 5.26.

In practice, it is not possible to know in advance the min and max for an

attribute. As a consequence, we use a sliding window approach, where the dataset

X are the s last seen samples. For every sliding window we obtain the min and

max values of each feature. Then, data values are grouped in a set b of intervals

called bins. The idea is to divide the feature fi in a histogram composed by bins

b1, b2, . . . , bm, where m =
√
n+ 1, being n the number of features, as shown in

line 3 in algorithm 2.

A bin in the histogram represents a range of values, and the height of the bar

represents the frequency of values in that bin. Each bin is consist of thresholds k,

for example the feature fi is grouped in b1 = [mini, k1), b2 = [k1, k2), . . . ,

bm = [km − 1,maxi]. The step between threshold k is called pivot and it is

determined as (maxi −mini)/m, as it is show in algorithm 3. However, if the

min,max values of the previous sliding window are smaller/bigger than min,max

of the current window, that is, mini−1 < mini or maxi−1 > maxi, new bins are

created until the new values of min/max are reached. With the creation of new

bins, the proposal is able to detect changes in the concept drift but it cannot

follow the change in the distribution.

The frequency of each bin is obtained by comparing the sample xi against the

thresholds k of the bins, line 4 algorithm 4. If the value of the sample xi is

in-between the thresholds of the binj, then the frequency fqj of the binj is

increased by one. Moreover, we calculate the relative frequency of each bin as the

relation between the bin frequency and the total number of samples, frj = fqj/N .

72

Algorithm 2: Stream Normalization Algorithm

Input : X: Sliding window of Features, w: Window Number
Output: H: Normalized Features, fr: relative frequency

1 if w == 1 then

2 for feature f in X do
3 bn=

√
n+ 1;/* n: number of features */

4 H=CreateHistogram(X,bn);

5 end
6 else if w > 1 then
7 for sample s in f do
8 [H, fr]=UpdateHistogram(X,b);
9 end

Algorithm 3: CreateHistogram() Function

Input : X: Sliding window of Features, bn: number of bins
Output: H: Histogram

1 [max,min]=CalculateMaxMin;
2 k=(max−min)/(bn); /* k: threshold */

3 for bin b in bn do
4 b=[mini, k);
5 k+=min;

6 end

Algorithm 4: UpdateHistogram() Function

Input : X: Sliding window of Features, bn: number of bins
Output: H: Histogram, fr: relavtive frequency

1 for sample s in X do
2 for b in bin do
3 if s in b then
4 b+ = 1;/* getting frequency */

5 else if then
6 add bin to b until s in b

7 end
8 fr=Calculate using Equation 5.13;
9 H=map fr to NormalDistribution;

10 end

Finally, the relative frequency values fr are mapped into a normal distribution by:

Z > P

(

x =
m
∑

0

frj

)

. (5.13)

with Equation 5.13 is it possible to see that all values are now mapped into a

normal probability distribution with µ = 0 and σ = 1, line 8 in algorithm 4. As a

73

consequence, all samples are normalized between −1 ≤ xi ≤ 1.

Figure 5.26: Representation of the feature divided in histogram. Each feature is di-
vided in bins that represent the relative frequency of the samples comprised between
the thresholds k. The second step of the algorithm approximate the histogram to a
normal distribution.

If we consider the process that generate the stream is non-stationary it implies a

possible concept drift. Haim and Tov affirm that histogram must be dynamics

when dealing with streaming data [110]. That means that intervals do not have

fixed value and the bins adapts to concept drift. However, if the bins remain static

it reflects the evolution of the change during time [109]. In our application, feature

normalization for network monitoring, we follow the former approach. Maintaining

fixed intervals allow us to see how a feature evolutes over time. In addition, as our

histogram algorithm creates new bins when a value does not enter in any of the

current intervals, it gives us the possibility to detect outliers. If a bin contains a

value of 1 for several periods of time, we consider an outlier. In streaming data,

maintain all the samples xi is computationally inefficient and in case of unlimited

data it will never fit in the memory. Our algorithm efficiently keeps only the

frequency of each bins making.

Shapiro–Wilk test was used to verify that our proposal follows a normal

distribution after normalization. Table 5.3 show Shapiro-Wilk test, we considered

α-level = 5%. We evaluate the hypothesis that our proposal normalization method

follows a normal distribution. When check the results the proposal method has a

p-value of 0.24 > 0.05, and W is closer to one, W=0.93, then we assume that

samples are not significantly different than a normal population. In the case of

Smart Preprocessing for Streaming Data (SPSD),Max-Min normalization, p-value

is smaller than the α-level, and W indicates that it is far from 1. As a

consequence, we refuse the hypothesis assuming than sample data are significantly

different than a normal population. Figure 5.27 shows a graphical interpretation of

the Shapiro–Wilk test, it represent a sample after being normalized. We can see

that our proposal follows the normal distribution, the blue points follow the dash

74

line, while the max-min approach follows a right skewed distribution.

Table 5.3: Hypothesis comparison for a normal distribution approach. In Shapiro-
Wilk test p-value is 0.24 > 0.05, and W is closer to one, W=0.93, confirming that
values follows a normal distribution.

Shapiro-Wilk
Mean W Mean p

proposal 0.93 0.24
max-min 0.65 9.28e-07

Data

0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty

0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99

Data

0 0.5 1

P
ro

b
a

b
ili

ty

0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99

Proposal

Max-Min

Figure 5.27: Representation of the Shapiro-Wilk comparing the proposed normal-
ization algorithm with a max-min stream normalization.

The most complex function in the normalization process is to update the bins. If

the reference values max,min of the windows changed, the bins update functions

takes O(n) time. The creation of the histogram is only done in the first window

and takes constant time. The histogram update uses a binary search to fill the bin

value O(log n) times.

Many open-source software exist to abstract packets into flow features such as

tcptrace 10, flowtbag 11, Traffic Identification Engine (TIE) 12, flowcalc 13, Audit

Record Generation and Utilization System (ARGUS) 14, among others. We choose

flowtbag because it abstracts more packets features than others. Flowtbag get 40

features: (5) flow tuple information (IP/Ports/protocol), (4) packets/byte in

forward/backward direction, (8) packets statistics forward/backward direction, (8)

time between packets forward/backward direction, (4) flow time statistics, (4)

10Tcptrace http://www.tcptrace.org
11flowtbag: https://github.com/DanielArndt/flowtbag
12Traffic Identification Engine http://tie.comics.unina.it/doku.php
13flowcalc http://mutrics.iitis.pl/flowcalc
14ARGUS http://www.qosient.com/argus/

75

subflow packets/bytes forward/backward direction, (4) TCP flags, (2) Bytes used

in headers, (1) type of service.

We group features into eight groups. Flow tuple information is removed because

our algorithm works with numerical features. Table 5.4 describes the groups. We

established the window size in 1000 samples. Figure 5.28 show accuracy for each

seven algorithms for classification. In Decision Tree all groups show a similar

behavior and have a very high accuracy rate. In Gaussian Naive Bayes and in

SVM with linear kernel, group 3 Time Between Packets and Group 5 SubFlow

information, represent the lowest accuracy. However, for the rest of the groups,

also reach very high accuracy. In K-Nearest Neighbors shows a special case,

besides group 2, which is the highest accuracy, all the other groups show a

different behavior. In Neural Networks Groups 2 and 3, Packet Statistics and Time

between Packets, are the highest accuracy the rest of the groups maintain in 50%.

Random Forest show a similar behavior than Decision Tree with high accuracy in

all their groups, nevertheless, the group 5 SubFlow information is the lowest.

Stochastic Descendant Gradient show the highest accuracy in group 2,6 and 7. We

conclude that group 2, Packet Statistics, is the most influent in the accuracy

calculation for all the classifiers.

Table 5.4: Features Groups

Group Description Number of Features
G1 Packet Volume 4
G2 Packet Statistics 8
G3 Time Between Packets 8
G4 Flow Time Statistics 9
G5 SubFlow Information 4
G6 TCP Flags 4
G7 Bytes in headers + ToS 3

To evaluate our model under concept-drift, we use the flow diagram of the

Figure 5.29. We force traditional learning methods to become adaptive learners in

order to detect the concept drift. Adaptive learners can dynamically adapt to new

training data when learned concept is contradict. Once a concept drift is detected,

a new model is created.

We validate the proposal with the Network operator dataset (NetOp). The dataset

is labeled in threats and normal traffic, a binary classification problem. We divide

the dataset in training set and test set, in a relation of 70% for training and 30%

for test. We consider the training set as static, in which T consecutive sample

windows have been presented for training. We have used the Synthetic Minority

class Oversampling TEchnique (SMOTE) [111] approach to oversampling the

minority class, only in the training set, initial window. When a number of samples

76

Tre
e

G
N
 B

ay
es

KN
N

R
. N

eu
ra

l M
LP

R
an

d.
 F

or
es

t

Sto
ch

as
tic

 G
D

SVM
-L

in
ea

r
0

0,2

0,4

0,6

0,8

1
A

c
c
u
ra

c
y

G3G2

G1

G5
G4 G6

G7

Figure 5.28: Evaluation of group features with different machine learning algorithms.

in a class is predominant in the dataset is called class imbalance. Class imbalance

is typical in our application when attacks are rare events in relation to normal

traffic. The test set is streaming data arriving with the same frequency. Data is

grouped in a sliding window of N samples.

Figure 5.29: Flow diagram used for proposal evaluation

Figure 5.30 show the accuracy when we analyze one day from NetOp dataset, day

25, which was the day that presents the bigger number of threats. In this

experiment, we want to see the impact of the concept-drift in the final accuracy.

We train different statics algorithm with 30% of the dataset. We use as window

size 1000 samples. The decision tree has the worst accuracy when compared with

77

WindowNumber

20 40 60 80 100

A
c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1

SGD

SVM (linear kernel)

Gaussian Naive Bayes

Concept

Drift

Decision

Tree

SVM (RBF kernel)

Concept

Drift

Figure 5.30: Concept Drift detection. Evaluation of pre-processing methods for
concept drift detection. Our proposal was able to detect early concept drift in SGD,
Decision Tree and in SVM with linear kernel. Gaussian Naive Bayes shows a very
high performance with no concept-drift.

other algorithms. Decision tree shows a low accuracy in the first windows. This

behavior means that the model created in during the training step does not fully

represent the model of the entire dataset. Stochastic Gradient Descendant show a

similar behavior of decision tree having a concept drift in the second window. The

SVM with linear presents a concept drift in the seventh window. SVM-RBF shows

a lower accuracy during all experiment but a concept drift at the last window.

Finally, due to the implementation of the Gaussian Naive Bayes it follows the same

probability distribution as our normalization method, as consequence does not

present any concept drift.

This chapter present two security datasets. The first dataset was created at

laboratory GTA/UFRJ and presents three classes, DoS, Probe and Normal,

composed by 25 features. The second dataset was more than ten days of real

traffic for a network operator in Brazil. NetOp dataset is divided in two classes,

normal traffic and alerts and it is composed of 45 features. Also, we present an

unsupervised pre-processing algorithm. The evaluation of the algorithms shows a

good behavior in batch mode and in stream mode, being able to reach a good

performance in batch mode and capable of detecting concept drift in stream mode.

78

Chapter 6

The Virtual Network Function

This chapter introduces the concept of Network Function Virtualization and the

Open Network Function Virtualization Platform (OPNFV). We present our

proposed threat detection system as a Virtual Network running on OPNFV that

will provide flexibility, agility, and cost reduction to monitor network traffic.

Moreover, we propose a heuristic for virtual sensor placement. Finally, we propose

a greedy based algorithm for service chaining.

6.1 The Network Function Virtualization

Network Function Virtualization (NFV) technology intends to offer software

virtualized network services using costumer on the shelf (COTS) hardware in order

to lower Operating Expenditures (OPEX) and Capital Expenditures (CAPEX)

costs, and greatly reducing the time to the market (TTM) of innovations [112].

The key idea is to offer communication, processing, and storing services for big

data [113]. Thus, Virtual Network Functions (VNF) are implemented in software

running on different physical servers, usually on a cluster environment. Therefore,

network services such as firewall and threat detection can be executed as a set of

VNF allowing a bigger flexibility, scalability, and easier deployment when

compared to traditional services. The main goal of the NFV technology is to

optimize network services. This concept is complemented with the idea of Software

Defined Networking (SDN) that provides a greater programmability for network

management due to its global network view in the network controller. Specially,

SDN acts in the control and in the implementation of packet forwarding and

processing, while NFV acts in the provision of network services, such as firewall,

Intrusion Detection System (IDS), Network Address Translation (NAT), or even

higher layer services, such as Web servers, email servers, among others.

Instead of using expensive proprietary network equipment, a strong tendency is

rising to provide services with open-source trusted platforms that integrate the

79

processing, storing, and communication of data. This means that the main concept

of NFV is to decouple the Network Functions (NFs) from the physical

infrastructure on which they run [114]. Trying to accelerate the implantation of

Virtualized Network Functions, the Linux Foundation develops a collaborative

project called Open source Platform for Network Functions Virtualization

(OPNFV)1. The main idea behind OPNFV is to use open-source software to

provide a platform compatible with the European Telecommunications Standards

Institute (ETSI) standards.

Figure 6.1: ETSI NFV MANO framework, composed by three main components,
Network Management System, NFV Architectural Layers, and NFV Management
and Orchestration.

Figure 6.1 presents the MANO framework. According with the ETSI definition the

MANO framework [115] consist of three functional blocks: The Virtualized

Infrastructure manager (VIM), which is responsible for manage and control the

physical and virtual infrastructure in a single domain. One NFV architecture

could contain more than one VIM specialized to manage one or more certain type

of NFVI resource such as compute, store, among others. Second is the Virtual

Network Function Manager (VNFM), that is responsible for the management of

the life cycle of one or more VNFs. Finally, the Network Function Virtualized

Orchestration (NFVO) combines one or more functions to create the end-to-end

service. The NFVO could be divided into resource orchestration and service

orchestration. Resource orchestration ensure there are adequate compute, storage,

and network resources available to provide a network service. This orchestrator

1The Open source Platform for Network Functions Virtualization https://www.opnfv.org/

80

can work with the VIM or directly with the NFVI, and it has the ability to

coordinate, authorize, release, and engage NFVI resources independently of any

specific VIM. It also provides governance of VNF instances sharing resources of the

NFVI. On the other hand, the Service Orchestration is responsible for the creation

of end-to-end services composed by different VNFs, also known as service chaining,

and to manage the network topology for the different instances. Furthermore, the

MANO contains data repositories that keep different type of information. The first

is the Network Service (NS) catalog, which contains templates for services in terms

of VNFs can be deployed and implemented, as well as their connectivity in the

virtual links. This catalog can contain additional information such as NFV

instances lifetime. Another catalog is the NFVI resources, that contains the

information about available/allocated resources in the NFVI.

6.1.1 The Open source Platform for Network Function

Virtualization (OPNFV)

Figure 6.2: The OPNFV architecture: Network Virtual Function Infrastructure
(NFVI), Virtual Network Functions (VNFs), and Management and Orchestration.
The deployment and management of the OPNFV environments is coordinated by
Fuel.

Figure 6.2 shows the architecture of the Open source Platform for Network

Function Virtualization (OPNFV). As it can be seen, OPNFV implement only the

NFV Architectural Layer component from the ETSI NFV MANO framework. Fuel

81

deploys and manages the OPNFV environment. Three main modules compose this

environment, the Network Function Virtual Infrastructure (NFVI), the Virtual

Network Functions (VNFs) and the Management and Orchestration (MANO).

MANO provides the functionality required for the provisioning of VNFs, and

related operations such as the configuration of VNFs and the infrastructure on

which these functions run.

When the ETSI MANO concept is mapping into the OPNFV platform, the NFVI

contains the compute, storage and network module. The compute module

administrates the virtual machines through the KVM hypervisor. The Storage

module uses the Ceph tool that is a distributed object store and file system. The

network module uses the Software Defined Networking (SDN) paradigm through

the OpenDayLight controller that manages the Open vSwitches virtual switches.

Network services are deployed in middleboxes or network appliances called

virtualized network functions (VNF). VNFs consist of one or more virtual machines

that run specific network functions such as firewall, IDS, NAT, among others. The

Virtual Network Functions (VNFs) can be combined together, chaining in deliver

full-scale networking communication services [116]. We implemented our proposed

Threat Detection System as a virtual network function (VNF). Finally, the

Management and Orchestration layer provides the logic and functionality required

for the provision of resources, configuring the VNFs and the infrastructure.

6.1.2 Threat-Detection Prototype Performance Evaluation

CATRACA [31] configuration is shown in Figure 6.3 as a virtual network function.

To evaluate the performance of the prototype, we analyze latency requirements

and speedup factor for real-time stream processing. We perform the experiments

in the OPNFV Brahmaputra 3.0 environment and we use a module developed by

the Sahara project to provide an Apache Spark cluster. Our OPNFV environment

is composed by 96 GB of RAM, 700 TB of storage and 128 cores of Intel Xeon

processors with clock frequency of 2.6 GHz. We calculate all the results with 95%

of confidence interval.

CATRACA first uses a machine learning model trained offline. A decision tree

algorithm is trained offline from dataset within a combination of normal traffic and

threats stored in a historical database. We distribute sensors machine to capture

traffic over the network. Sensor machine are simple devices that mirror captured

traffic to the spark cloud, specially to Kafka. Kafka abstracts message stream into

topics that act as buffers or queues, adjusting different production to consumption

rates. To avoid latency overhead, sensor machine must be as much simple as

possible. Finally, the offline model is loaded in the spark cloud, and the master

82

Figure 6.3: Messages processed per second (left axis) and speedup factor (right axis)
in function of the task parallelism for the Apache Spark Streaming Engine.

VM will apply the model to classify network traffic in real time.

1 5 10 15 20 25
0

2

4

6
x 10

6

P
ro

c
e

s
s
e

d
 M

e
s
s
a

g
e

s
 p

e
r

S
e

c
o

n
d

0

1

2

3

4

5

Parallelism

S
p

e
e

d
u

p
 F

a
c
to

r

Figure 6.4: Messages processed per second (left axis) and speedup factor (right axis)
in function of the task parallelism for the Apache Spark Streaming Engine.

The first experiment measures the performance of CATRACA in terms of

processing throughput and latency. The dataset is fully injected into the system

and also replicated as many times as necessary to obtain a huge amount of data to

submit into our system. The experiment calculates the consumption of messages

by our stream processing engine and its processing rate. We also vary the

parallelism parameter, which represents the total number of cores available for the

cluster to process samples in parallel. Each slave VM is configured with only one

core, and we create as many Virtual Machines as possible. Figure 6.4 shows the

results of the experiment. The left y axis shows the system throughput given by

the number of messages processed per second, and the right y axis indicates the

speedup factor. The speedup factor is calculated as follow: Slatency =
La1
La2

; Where

La1 is the latency of the system when parallelism is equal to one, and La2 is the

83

latency of the system with the variation of the parallelism parameter. In other

words, it represents the decrease factor in latency or the speed up factor.

The proposed Virtual Network Function is able to improve the processing capacity

up to twenty cores in parallel. The system shows an improvement for latency as

well as for throughput. Considering throughput, the system is able to handle more

than five million of messages per second. Moreover, the speed factor reaches

around 4.65 for a parallelism of twenty cores. This value indicates that the system

can parallelize and improve the speed of almost five times with twenty virtual

machines running one core each.

The second experiment aims to show the operation efficiency of the implemented

function under live migration. The live migration offers a great flexibility for the

user and it is possible thanks to the virtualization, achieved through the OPNFV

platform. In our proposed threat-detection virtualized network function, live

migration provides several advantages. A security advantage is the possibility to

place and rearrange dynamically sensor machines to better protect the network

and reduce the threat detection time. We can place a sensor machines where

ingress more attack traffic or near a sensitive server to be protected. A general

advantage concerning the processing cluster is the ability to migrate machines,

allowing a smart distribution among the physical servers and enabling the

optimization of the number of running servers, avoiding the waste of resources.

0 20 40 60 80 100
0

50

100

150

200

250

Seconds

P
a

c
k
e

ts
/s

e
c

Migration Downtime

Network Traffic on
Physical Machine 1

Network
Traffic on
 Physical
Machine 2

Figure 6.5: A Virtual Machine migration from the Physical Machine 1 to Physi-
cal Machine 2. The constant flow rate applied to the virtual machine at Physical
Machine 1, after 60 seconds approximately of migration, goes to Physical Machine
2.

Figure 6.5 shows the behavior of a network flow under live migration. In this

experiment we send a constant-rate flow of 200 packets per second from one virtual

machine to another. Both virtual machines are hosted in the same physical

machine. Then, approximately at 60 seconds, the migration process is started, in

84

order to migrate the virtual machine that receive the flow to another physical

server. The Figure 6.5 show the low migration downtime, making the flow

unaffected under the migration. therefore, the migration feature allows our threat

detection application to set monitoring sensors as close to the client as possible,

avoiding latency problems.

6.2 Modeling and Optimization Strategy for

VNF Sensor Location

Our system has the capability to distribute sensors along the whole network.

Nevertheless, because of cost or performance reasons, we can establish a reduced

number of sensors instead of placing sensors in every switch. Hence, then sensor

placement results into an optimization problem. This section models formally the

problem of the sensor network placement. A heuristic is proposed to minimize the

sensors number and maximize the network coverage reached for each sensor. We

assume that each node owns enough processing power to analyze all incoming

network traffic, as it is for example, in a datacenter.

Let G be a finite connected graph G = (V ;E), where V is the non-empty set of all

available nodes in the network and E is the set of non-directed edges of G. Let

v ∈ V be a vertex, and s ∈ S ⊆ V , where S is the subset of nodes which are

implemented as a threat detection sensor. We use xv as the variable that

determines if vertex v holds a sensor s

xv =

{

1, if v ∈ S

0, otherwise
(6.1)

Each vertex sends a traffic unit to each other vertices. Therefore, the total amount

of traffic T in the network equals T = |V |(|V |−1)
2

. The traffic from the source i to

destination j uses a single path, and we represent whether vertex v is in the path

of i, j traffic by tvij = 1, otherwise tvij = 0. Thus, the total amount of traffic passing

through vertex v is tv =
∑

i 6=j t
v
ij. We also define an auxiliary variable yi,j to

determine whether there is a sensor in the path from the source i to destination j.

The variable yi,j is given by

yi,j =

{

1, ∃ v ∈ V | xv ∧ tvi,j
0, otherwise

(6.2)

Thus, the total amount of traffic analyzed by the sensors is

Tx =
∑

i 6=j∈V

yij, (6.3)

85

The objective function F (x) represents the global cost to minimize composed by

two objective functions: the number of sensors in the network and the total

network traffic coverage that is analyzed by all sensors. Then, we want to

minimize the global cost

minF (x) = Fsensor(x)− Ftraf (x), (6.4)

where Fsensor(x) is the relation between the sensor nodes and the total of vertices

in the network, expressed by

Fsensor(x) =
1

|V |
∑

v∈V

xv, (6.5)

and Ftraf (x) is the traffic percentage in relation to the total amount of network

traffic that each sensor node analyzes, given by

Ftraf (x) =
Tx
T

=
1

T

∑

i 6=j∈V

yij (6.6)

such that 0 ≤ Fsensor(x) ≤ 1 e 0 < Ftraf (x) ≤ 1. Besides,
∑

v∈V x
v ≤ |V |, and

xv ∈ [0, 1]. This problem can be reduced to a Set Covering Problem (SCP), a

nondeterministic polynomial time NP-hard problem. To solve this problem, we use

a greedy algorithm, which sorts the vertex list according to tv, the amount of

traffic that pass through the vertices. Thus, the algorithm chooses first central

nodes that concentrate the largest amount of the traffic. We use as metric the

amount of traffic H(x) = Tx/T covered by the current sensors. Hence, after the

selection of a sensor node, it is verified if the solution H(x) reaches a target

amount of traffic and stops. Otherwise, the algorithm selects another node. The

process is repeated until the sensor set covers the target amount of traffic, or when

it is not possible to add more sensors. Greedy algorithms make locally optimal

choices that eventually reaches a global optimal. Nevertheless, the computational

cost execution is low comparing with other solutions.

We also used the Simulated Annealing (SA) optimization method, which

guarantees convergence to a global minimal in an undetermined time. Every

iteration selects a number of sensors and their positions at random and generate a

new candidate solution that could be accepted in case it has a lower objective

function F (x) than the previous iteration. If the solution is worse than the

previous one, SA accepts the new solutions by a decreasing probability according

to iteration. Thus, the solution may be accepted even if the objective function is

higher to the previous one. This behavior is necessary to avoid the solution

convergence to a local minimal. The perturbation used to select the number of

86

sensors and the positions follow a Cauchy distribution. Hence, we use the greed to

obtain the fastest result and the Simulated Annealing to evaluate how far from the

minimal the result is.

6.2.1 Optimal VNF Sensor Placement

To evaluate the proposed heuristic we use a real topology from topology zoo 2. The

analyzed topology is the Brazilian Internet backbone network, Rede Nacional de

Ensino e Pesquisa (RNP), that has 31 vertex with 34 edges distributed

geographically in the Brazilian states. The real topology can be seen in Figure 6.6.

Figure 6.6: The Brazilian Rede Nacional de Ensino e Pesquisa (RNP) real topology,
with 31 vertex and 34 edges.

We have evaluated our metric with two meta-heuristic solutions, greedy and

simulated annealing, and with a random choice. In addition, it is implemented the

choice by the betweenness centrality. Betweenness centrality is shown in

Equation 6.7, where σij is the total number of shortest paths from node i to node j

and σij(v) is the number of those paths that pass through v. The betweenness

centrality expresses the influence that a specific node could have on other nodes in

the network [117]. The betweenness centrality consider all the nodes and paths in

the network, while our proposal is relative to each node.

g(v) =
∑

i 6=v 6=j

σij(v)

σij
(6.7)

Figure 6.7a shows in percentage the covered traffic in relation with the number of

VNF sensors used. The system determines the best position that each node should

be located warranting the maximal network coverage. With low network coverage

2www.topology-zoo.org

87

the behavior of all approaches are similar. The random choice shows the worst

behavior followed by the simulated annealing. Then, the simulated annealing

improved it results over the random choice. The betweenness and the greedy

proposal present an exact result until approximately 80%. Figure 6.7b shows in

higher detail the results. The random choice is still being the worst approach

followed by the betweenness. Both approaches with our heuristic show the best

efficiency for high values of network coverage, minimizing the number of sensors

nodes used. The simulated annealing presents better behavior despite of its high

computational cost. With 95% of network coverage the random solution use 15

nodes and the greedy and simulated annealing reduce it by two times using 7

nodes. Moreover, with 99%, the simulated annealing improves the result by more

than two times when compared with the random choice, placing 11 nodes instead

of 21 nodes required by the random choice.

0 20 40 60 80 100
0

5

10

15

20

25

30

Network Coverage (%)

N
u
m

b
e
r

o
f
N

o
d
e
s

Betweenness

Greedy

Simulated
Annealing

Random

(a) Heuristic evaluation in a topology of
31 nodes.

80 85 90 95 100
0

5

10

15

20

25

30

Network Coverage (%)

N
u
m

b
e
r

o
f
N

o
d
e
s

Simulated
Annealing

Betweenness

Greedy

Random

(b) Network coverage vs. Number of sensors in a
zoomed region.

Figure 6.7: Efficiency results of different placement methods in function of the
number of sensor nodes required to cover all network traffic.

6.3 The Virtual Network Function Chaining

Problem

Service chaining simply consists of a set of network services interconnected

through the network infrastructure to support an application requested for the

costumer. Traditionally, Service Function Chaining (SFC) were built in the early

years of high-performance computing being rigid and static installed at fixed

locations in the core or at the edge of the carrier network [118]. The SFC is

enhanced with the advent of NFV that enables operators to configure network

services dynamically in software without having to make changes to the network at

88

the hardware level. Therefore, virtualized NFs (VNFs) can be placed when and

where needed. This implies an optimization problem that uses VNFs or services as

a graph to address the requirement for a better utilization of resources, for latency

decreases and for network optimization [23]. Typically, network flows go through

several network functions as shown in Figure 6.8. When a NF or a set of NFs are

specified the flows traverse these NFs in a specific order so that the required

functions are applied to the flows. Usually, the NFs demand certain dependency

among them that should be chaining to the traffic in a network in a specific order.

Depending on the way each network function is set in the chain, it impacts in

network traffic, application performance, and latency.

Figure 6.8: Example of Network Function forwarding graph. Three Virtualized
Network Functions (VNF) are chained from the source to the destination to establish
a service. The virtual network functions are executed over the physical network
infrastructure.

The VNF chaining problem consists, thus, of two sub-problems. The first

sub-problem is the placement problem, in which the VNF instances are allocated

onto physical nodes. This problem consists into finding a physical node that has

enough resources to host the VNF, serving it with the requested resources. The

second sub-problem consists into a routing challenge, because mapping a set of

VNFs over a physical topology should consider the iteration among all VNFs. The

routing problem should ensure that the traffic between VNFs would always suffer a

limited delay, and the network path presents enough bandwidth. If any of these

constraints are not satisfied by the chaining scheme, the VNF request may not be

accepted. Therefore, deciding for accepting VNF requests is also part of the VNF

chaining problem.

6.3.1 The Proposed VNF Chaining Scheme

Our proposal considers a scenario in which the requests for a new Virtual Network

Function arrive to a network manager, who has to allocate them into the available

nodes. We consider as a request a sorted list of VNFs that describes the order in

89

which traffic has to be processed. Therefore, the allocation of the request on the

network has to consider the order of the VNFs as well as the source and the

destination of the traffic handled by the set of VNFs in the request. We also

consider that, when allocating a VNF over a physical node, the physical node has

to provide enough resources to answer the needs of all hosted VNFs. Our proposed

scheme is composed of two main phases. The first phase is to estimate the

resources available on the physical nodes and the resources requested by the VNFs.

The second phase is to run a greedy algorithm that takes as input the VNF

requests as they arrive, and then it places each VNF on a physical node that have

enough resources. Our greedy algorithm considers four different heuristics to place

the VNFs on the network.

Estimating the available resources on physical and virtual nodes is challenging

because there are three main resources which should be considered: CPU, memory,

and network. In order to summarize all resources into one single variable, we

consider the Volume metric introduced by Wood et al. [59]. We consider that the

volume of a physical server is 1, and the volume of each VNF is given by

V olumeV NF =
1

1− cpu
∗ 1

1−mem
∗ 1

1− net
, (6.8)

where cpu stands for the normalized CPU usage of the VNF, mem for memory,

and net for network. Thus, for each VNF the volume metric is the ratio of the

resources on physical node that the VNF is requesting. The VNF volume ranges

from 0 to 1, where 1 means that a VNF is requesting an entirely available physical

node to be installed.

Following, on the second phase, we run a greedy algorithm that allocates a VNF

request as it arrives. Our algorithm adopts one of the four heuristics:

• minimum latency, in which the algorithm chooses the node that

introduces a minimum delay to the path, in comparison to the previous

selected nodes to host the other VNFs, or the source of the traffic;

• maximum usage of resources, in which the algorithm chooses the node

that has the biggest amount of available resources to host a VNF, without

considering the routing constrains between the already placed VNFs;

• most central nodes, in which the algorithm chooses to place the VNF into

the most central node, i.e. the node that presents the greatest

betweenness-centrality value, and has enough resources to host the VNF;

• weighted latency and resource, in which the probability of choosing each

a node for hosting a VNF is weighted based on the latency that it introduces

90

to the path and the available resources that it has. The weight of the node i

is given by

wi =

(

1− lati

maxj∈N (latj)

)

×
(

reci

maxj∈N (recj)

)

,

where lati stand for the latency introduced by node i, reci is the available

resources in node i, and N is the set of all nodes in the network. The greedy

algorithm searches for hosting VNFs on the nodes that have the biggest wi

value first.

Our proposal works as follows. First, the network manager receives a sorted list

with the requested VNFs, the source and the destination of the traffic, and the

requested resources of each VNF. Then, our algorithm selects the first VNF on the

request and search for a node in which the requested resources meet the available

resources on the physical node. To verify if the physical node has enough

resources, the algorithm compares the VNF volume with the available volume of

the physical node. If the available volume is greater than the requested, the VNF

is installed on this candidate physical node. Otherwise, the algorithm selects the

next physical node till finding an available node. If there is no available physical

node that meets the requested VNF volume, the VNF request is entirely rejected

and no VNF is allocated. After mapping all VNFs over the physical nodes, the

VNFs are installed and the volume of each physical node that receives a VNF is

decremented by the volume of the VNF that it hosts. It is worth noting that a

VNF request should be entirely accepted or rejected. If the algorithm realizes that

there is not enough resource in any node in the network to complete the VNF

request allocation, the request is completely rejected and no node is allocated on

the network. We adopt the all or nothing approach, because a partially allocated

VNF request does not implement all packet-processing functions that it supposed

to deploy, thus it is not a feasible solution.

6.4 The Evaluation of the Proposal

We evaluate the proposed greedy algorithm through simulation. We implemented

a simulator3, written in Python language, in which the VNF requests arrive at

each simulation step. At a simulation step, the proposed scheme evaluates the

used resources of each physical node on the network topology and generates the

available volume metric for each physical node. Then, our scheme gets the next

3available at https://github.com/tinchoa/VNFsimulator

91

https://github.com/tinchoa/VNFsimulator

0 2 4 6 8
0

0.1

0.2

0.3

0.4

Number of VNFs

P
D

F

Figure 6.9: Probability density function of the number of VNFs in a request. The
modeled number of VNFs in each request follows a normal distribution, with mean
equals to 4, and standard deviation equals to 1 (µ = 4 and σ = 1).

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Resources Volume per VNF

P
D

F

Figure 6.10: Probability density function of the volume of resources used by each
VNF. The modeled resource consumption of each VNF follows a lognormal distri-
bution, with mean equals to 3, and standard deviation equals to 1.17 (µ = 3 and
σ = 1.17). The lognormal distribution is truncated at 100, which represents the
maximum volume usage (volume = 1).

request and allocates the VNFs on the network according to one of the proposed

heuristics.

We establish the proposal evaluation in two steps. The first step is to simulate the

costumer Virtual Network Functions (VNFs) requests. The requests are generated

based on a normal distribution with µ = 4 and σ = 1, as it is shown in Figure 6.9.

In this way, the customer requests are generated randomly associating different

number of VNF for each request. We model the number of VNFs in each request

92

based on the studies realized by Sekar et al. [20]. We consider that a Virtual

Machine (VM) deploys each VNF. Then, we simulate the resource consumption of

each VNF. We model the resource consumption based in a lognormal distribution,

with µ = 3 and σ = 1.17, as it is shown in Figure 6.10. The resource consumption

of each VNF is modeled as a truncated lognormal distribution because it should

reflect the behavior of the middleboxes, in which it usually uses a small amount of

resources. The distribution is truncated at 100, because it is the maximum volume

that a VNF can assume (volumeV NF = 1). As result, we obtain the costumer VNF

request with different resource volume and a selected order of chaining. We

highlight that the resources of the all VNFs over a single physical host is never

higher than 100%. An example of a VNF costumer request is

[V NF1 = 15%, V NF2 = 26%, V NF3 = 45%]; src, dst, where the number of VNF

are randomly chosen, and the src and dst are the source and destination of each

chaining request. The source and the destination are uniformly chosen on the

network topology. Our model does not consider that VNFs quit the network after

being allocated.

The second step of the proposal evaluation asserts the optimization heuristics. Our

experiments evaluate the placement heuristics against the RNP (Rede Nacional de

Pesquisa) topology. Using a greedy algorithm, we place the VNF in different nodes

and we evaluate the amount of VNF requested for each heuristic. We consider only

the propagation delay between the nodes to estimate the latency between the

nodes. The propagation delay is estimated according to the distance between

nodes. We consider the propagation speed of 2× 108 m/s, which is commonly used

in other works [119]. The distance between each node is calculated based on the

geographic location of each node.

The results in Figure 6.11 show that the maximum resource allocation heuristic is

the one that accepts more requests around 53% more request than the

betweenness-centrality heuristic. The betweenness-centrality heuristic is the

simplest to calculate, as it only depends on the topology characteristics.

Nevertheless, it is the one that rejects the greatest number of requests. In

addition, the latency heuristic presents a better performance when compared with

the betweenness-centrality, however, this heuristic shows the worst complexity

when executed. It is worth noting that, although the maximum resource allocation

heuristic optimizes the acceptation rate of VNFs on the network, it does not

consider the routing constraints between VNFs. In this way, it increases the delay

introduced by the deployment of network functions as VNFs because the packets

may pass through distant nodes in order to follow the entire packet-processing

path.

We also compare the dispersion of the latency distribution of the allocated VNFs

93

Betweeness Latency Weighted Resources
0

20

40

60

80

A
c
c
e

p
te

d
 R

e
q

u
e

s
ts

Figure 6.11: Number of accepted requests for each proposed heuristics. The max-
imum resource allocation heuristic is the one that accepts more requests. The
betweenness-centrality heuristic is the simplest to calculate, as it only depends on
the topology characteristics, but it is the one that rejects the greatest number of
requests.

0

50

100

150

Btwn Lat Wgtd Resc

L
a
te

n
c
y

(a) Dispersion of the latency distribution into
the allocated VNFs.

Btwn Lat Wgtd Resc
0

0.5

1

1.5

2

2.5

3

Id
le

 R
e
s
o
u
rc

e
s

(b) Dispersion of the remaining idle resource
distribution after allocating all VNFs.

Figure 6.12: Btw stands for the betweeness-centrality; Lat, for latency; Wgtd, for
weighted latency and resource; Resc, for maximum resource. a) The minimum la-
tency heuristics introduces the lower average delay on the packet-processing path.
The maximum resource usage heuristic is the one that presents the greatest disper-
sion into the latency distribution thanks of ignoring the latency concerns when plac-
ing the VNFs. b) The Maximum Resource heuristic presents the most distributed
remaining resources.

for each heuristic. As shown in Figure 6.12a, the minimum latency heuristics

introduces the lowest average delay on the packet-processing path. The maximum

resource usage heuristic is the one that presents the greatest dispersion into the

latency distribution thanks of ignoring the latency concerns when placing the

VNFs. This result shows that the Latency heuristic reduces 52% the average delay

when compared with the betweeness-centrality heuristic. Moreover, the latency

94

heuristic also achieves the greatest number of accepted VNF requests, which have

the minimum latency, even when compared with maximum resource allocation

that achieves to allocate more requests than all others. Figure 6.12a also reveals

that the latency is limited in all heuristics and, even in the highest delay scenario,

it is still limited to 150 ms. Figure 6.12b shows the remaining resources after all

VNF allocation. Although the maximum resource heuristic instantiates more

VNFs, it presents the biggest amount of idle resources. Nevertheless, it is also the

most distributed idle resource pattern, which implies a load distribution between

all physical nodes.

Comparing Figures 6.11 and 6.12a, we emphasize that the greater dispersion of the

latency achieved by the maximum resource allocation heuristic is a reflect of the

greater number of accepted requests, when compared with the minimum latency

heuristic. It is worth noting that all heuristics are compliant with the resource

constraints. Therefore, choosing among the four heuristics, when designing a NFV

environment, should consider the goals of the network manager. In case of the

main goal is to maximize the number of accepted VNFs, the results show that we

should select the maximum resource allocation heuristic, in order to presents good

results of latency between nodes. Nevertheless, if the main goal is to achieve the

maximum performance of VNFs, the minimum latency heuristics is best choice.

Intermediary solutions are the weighted latency and resource solution, which keep

the bounded latency, and it increases up to 22% the acceptance rate when

compared to the Latency heuristic.

In this chapter we analyze our Virtual Network Function performance. First we

describe the Network Function Virtualization and the Open Network Function

Virtualization Platform (OPNFV) and the benefits it brings to CATRACA. Then

we propose a heuristic for virtual sensor placement maximizing the traffic analyzed

with the minimum number of sensors in the network. Finally, we propose a greedy

based algorithm for service chaining. We evaluated four heuristics. Our simulation

and results show that using a heuristic for placing VNFs on nodes with the biggest

amount of available resources increases the acceptation rate of VNF requests by

53%T

95

Chapter 7

Conclusion

This work proposed a fast and efficient network monitoring and threat detection

system. We used a combination of machine learning and stream processing for real

time threat detection. A new generation of tool is needed in order to real-time

monitor and secure computer network. We described and compared the

three-major open source distributed stream processing systems: Apache Storm,

Apache Flink, and Apache Spark Streaming. We performed throughput analysis,

allocating more processing cores to achieve higher processing rates, Apache Storm

was able to process up to 15 Million samples per minute. Also, we performed fault

tolerance test to compare these three most popular open-source Distribute Stream

Processors (DSP). In this case, we showed that Spark streaming, using

micro-batch processing model, can recover the failure without losing any messages.

Spark Streaming stores the full processing state of the micro-batches and

distributes the interrupted processing homogeneously among other worker nodes.

In order to increase the analysis speed and improve the efficiency of big data

analysis, it is mandatory to implement pre-processing methods. This work

presented and compared different methods for dimensionality reduction and

Feature selection. Furthermore, we proposed a new fast-unsupervised algorithm for

pre-process stream data. The algorithm includes feature selection and data

normalization. Our feature selection algorithm calculates the correlation of the

features in a network traffic data and selects the best features in an unsupervised

way. We selected the features with the higher absolute correlation in comparison

with the others methods. This procedure tends to gather the features with most of

the information of the dataset in a new set of reduced features. The reduced new

set of features is used, thus, to train the machine learning methods that classify

and characterize the network traffic. Our algorithm was up to 10 times faster than

literature algorithms for feature selection. We evaluated the feature selection

algorithm in two different datasets achieving good performance. Moreover, our

pre-processing algorithm is able to detect concept-drift in stream data. We showed

96

that our normalizer adapts the data to a normal distribution reducing the error of

machine learning classifiers. To evaluate the proposed algorithms, we implement

eight machine learning algorithms, decision tree, neural networks, k-nearest

neighbors, support vector machine with linear and Radial Basis Function (RBF)

kernel, Gaussian Naive Bayes and Stochastic Gradient Descendant. We evaluated

machine learning algorithm performance under six metrics, accuracy, precision,

sensitivity, F-1 score, classification and training time.

We created two datasets publicly available. First a synthetic security dataset

obtaining real network traffic along with network threats composed of 24 features.

The GTA/UFRJ dataset contains more than 16 different types of attacks, as well

as normal network traffic. The second dataset, NetOp, is composed by more than

ten days of real traffic from a real telecommunication operator network located in

the city of Rio de Janeiro, Brazil. The dataset represents the use of the fixed-line

access service of 373 home users. The analysis of the data allows identifying that

the main services accessed are those of DNS and web services. We use this

information to create more than 5 TB of data combined in 45 flows features. Each

flow is classified as normal traffic or alert from a previous Intrusion Detection

System.

Network Function Virtualization (NFV) is a promising technique that enables to

decouple the network function from its physical realization by virtualizing the

network equipment. Thus, network functions are deployed within virtual

environment and, thus, called Virtual Network Functions (VNF). Therefore, we

deploy our threat detection system as a virtualized network function. The threat

detection function is implemented in the Open-source Platform for Network

Function Virtualization (OPNFV) and shows high high throughput and a low

latency and live migration features.

Combining stream processing, machine learning and feature selection we created

the CATRACA tool. The proposed tool is executed in an OPNFV environment

allowing the system to perform migration as closets as possible to the source

attack. Moreover, the tool combines batch and stream processing in a big data

architecture that allows to performs threat analysis on incoming traffic in real time

on a historical database. Our tool displays the knowledge extracted from the

enriched data through a graphical user interface for visualizing different analyzes

and the geographical location of the source and destination of the threats in real

time. CATRACA code is publicly available.

Finally, we proposed a method for the strategic location of traffic capture sensors.

For this, a mathematical modeling was developed, obtaining a heuristic that

considers the minimum number of sensors reached the maximum coverage of the

network. The evaluation of the heuristic was analyzed in two different real

97

topologies. The results show that with a high network coverage the proposed

system has a great gain in relation to random choice. In addition, we modeled and

discussed the VNF sensor placement as an NP -hard problem. Our heuristic

reduces the number of sensor and maximizes the network coverage.

We proposed a VNF chaining scheme, in which a greedy algorithm places the VNFs

on the network according to four different criteria. Our simulation and results

showed that using a heuristic for placing VNFs on nodes with the biggest amount

of available resources increases the acceptation rate of VNF requests by 53%.

Moreover, we also showed that using a heuristic for introducing minimum delay on

the path, we are able to reduce the average packet-processing delay by 52%.

7.1 Future Work

New methods of anomaly detection and traffic classification need to be

experimented in CATRACA to avoid the use of the batch layer. Algorithms such

as deep learning or Hoeffding Trees should be implemented in the tool. Due to the

distributed nature of our monitoring and threat detection tool, we need to

implement an algorithm for event correlation. A future work foresees to detect

intrusion symptoms by collecting diverse information at several architectural

levels, from raw packet until system logs, using distributed security probes, as well

as performing complex event analysis based on a complex event processing engine

98

Bibliography

[1] HU, P., LI, H., FU, H., et al. “Dynamic defense strategy against advanced

persistent threat with insiders”. In: 2015 IEEE Conference on Computer

Communications (INFOCOM), pp. 747–755. IEEE, 4 2015. ISBN:

978-1-4799-8381-0. doi: 10.1109/INFOCOM.2015.7218444.

[2] PAXSON, V. “Bro: a system for detecting network intruders in real-time”,

Computer Networks, v. 31, n. 23-24, pp. 2435–2463, 12 1999. ISSN:

13891286. doi: 10.1016/S1389-1286(99)00112-7.

[3] BAR, A., FINAMORE, A., CASAS, P., et al. “Large-scale network traffic

monitoring with DBStream, a system for rolling big data analysis”. In:

2014 IEEE International Conference on Big Data (Big Data), pp.

165–170. IEEE, 10 2014. ISBN: 978-1-4799-5666-1. doi:

10.1109/BigData.2014.7004227.

[4] STONEBRAKER, M., ÇETINTEMEL, U., ZDONIK, S. “The 8 requirements

of real-time stream processing”, ACM SIGMOD Record, v. 34, n. 4,

pp. 42–47, 12 2005. ISSN: 01635808. doi: 10.1145/1107499.1107504.

[5] CLAY, P. “A modern threat response framework”, Network Security, v. 2015,

n. 4, pp. 5–10, 2015.

[6] DOS SANTOS, L. A. F., CAMPIOLO, R., MONTEVERDE, W. A., et al.

“Abordagem autonômica para mitigar ciberataques em LANs”,

Simpósio Brasileiro de Redes de Computadores e Sistemas Distribúıdos -

SBRC 2016, 2016.

[7] NASSERALA, A., MORAES, I. M. “Analyzing the producer-consumer

collusion attack in Content-Centric Networks”. In: 2016 13th IEEE

Annual Consumer Communications & Networking Conference (CCNC),

pp. 849–852. IEEE, 2016.

[8] CHANDRASEKAR, K., CLEARY, G., COX, O., et al. “Internet Security

Threat Report-Symantec Corporation,V22”. Accessed April 2018, 2017.

99

Available in: <https://www.symantec.com/content/dam/symantec/

docs/reports/istr-22-2017-en.pdf>.

[9] ARMOR. “The Black Market Report 2018-03”. Accessed April 2018, 2018.

Available in: <https://www.armor.com/app/uploads/2018/03/

2018-Q1-Reports-BlackMarket-DIGITAL.pdf>.

[10] ICA, I. C. A. Assessing Russian Activities and Intentions in Recent US

Elections 2017-01D. Technical report, Office of the director of national

Intelligence, 2017. Available in:

<https://www.dni.gov/files/documents/ICA_2017_01.pdf>.

[11] MAYHEW, M., ATIGHETCHI, M., ADLER, A., et al. “Use of machine

learning in big data analytics for insider threat detection”. In: IEEE

Military Communications Conference, MILCOM, pp. 915–922, 10 2015.

[12] JIANG, W., RAVI, V. T., AGRAWAL, G. “A Map-Reduce system with an

alternate API for multi-core environments”. In: Proceedings of the 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, pp. 84–93. IEEE Computer Society, 2010.

[13] KALA KARUN, A., CHITHARANJAN, K. “A review on Hadoop—HDFS

infrastructure extensions”. In: IEEE Conference on Information &

Communication Technologies (ICT), pp. 132–137. IEEE, 2013.

[14] BATISTA, D. M., GOLDMAN, A., HIRATA, R., et al. “InterSCity:

Addressing Future Internet research challenges for Smart Cities”. In:

2016 7th International Conference on the Network of the Future (NOF),

pp. 1–6. IEEE, 11 2016. ISBN: 978-1-5090-4671-3. doi:

10.1109/NOF.2016.7810114.

[15] CRUZ, P., COUTO, R. S., COSTA, L. H. M. “An algorithm for sink

positioning in bus-assisted smart city sensing”, Future Generation

Computer Systems, 10 2017. ISSN: 0167739X. doi:

10.1016/j.future.2017.09.018.

[16] ANDREONI LOPEZ, M., FERRAZANI MATTOS, D., DUARTE, O. C.

M. B. “An elastic intrusion detection system for software networks”,

Annales des Telecommunications/Annals of Telecommunications, v. 71,

n. 11-12, pp. 595–605, 12 2016. ISSN: 0003-4347. doi:

10.1007/s12243-016-0506-y.

100

https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.armor.com/app/uploads/2018/03/2018-Q1-Reports-BlackMarket-DIGITAL.pdf
https://www.armor.com/app/uploads/2018/03/2018-Q1-Reports-BlackMarket-DIGITAL.pdf
https://www.dni.gov/files/documents/ICA_2017_01.pdf

[17] DAB, B., FAJJARI, I., AITSAADI, N., et al. “VNR-GA: Elastic virtual

network reconfiguration algorithm based on Genetic metaheuristic”. In:

IEEE GLOBECOM, pp. 2300–2306, 12 2013.

[18] GUIMARÃES, P. H. V., MURILLO P., A. F., ANDREONI LOPEZ, M. E., et

al. “Comunicação em Redes Elétricas Inteligentes: eficiência,

confiabilidade, segurança e escalabilidade”. In: SBRC 2013 -

Minicursos, pp. 101–164, 5 2013.

[19] SHERRY, J., HASAN, S., SCOTT, C., et al. “Making Middleboxes Someone

else’s Problem: Network Processing As a Cloud Service”, SIGCOMM

Comput. Commun. Rev., v. 42, n. 4, pp. 13–24, 8 2012. ISSN: 0146-4833.

[20] SEKAR, V., EGI, N., RATNASAMY, S., et al. “Design and Implementation

of a Consolidated Middlebox Architecture”. In: 9th Symposium on

Networked Systems Design and Implementation (NSDI), pp. 323–336,

San Jose, CA, 2012. USENIX. ISBN: 978-931971-92-8.

[21] JEON, H., LEE, B. “Network service chaining challenges for VNF

outsourcing in network function virtualization”. In: International

Conference on Information and Communication Technology Convergence

(ICTC), pp. 819–821, 10 2015.

[22] BARI, M. F., CHOWDHURY, S. R., AHMED, R., et al. “On orchestrating

virtual network functions”. In: 11th International Conference on

Network and Service Management (CNSM), pp. 50–56, 11 2015.

[23] ADDIS, B., BELABED, D., BOUET, M., et al. “Virtual network functions

placement and routing optimization”. In: IEEE 4th International

Conference on Cloud Networking (CloudNet), pp. 171–177, 10 2015.

[24] MEHRAGHDAM, S., KELLER, M., KARL, H. “Specifying and Placing

Chains of Virtual Network Functions”. In: IEEE 3rd International

Conference on Cloud Networking (CloudNet), pp. 7–13, 10 2014.

[25] LAUFER, R., GALLO, M., PERINO, D., et al. “CliMB: Enabling Network

Function Composition with Click Middleboxes”. In: Proceedings of the

2016 Workshop on Hot Topics in Middleboxes and Network Function

Virtualization, HotMIddlebox ’16, pp. 50–55, New York, NY, USA,

2016. ACM. ISBN: 978-1-4503-4424-1.

[26] ANDREONI LOPEZ, M., DUARTE, O. C. M. B. “Providing elasticity to

intrusion detection systems in virtualized Software Defined Networks”.

101

In: 2015 IEEE International Conference on Communications (ICC), v.

2015-Septe, pp. 7120–7125, London, United Kingdom, 6 2015. IEEE.

ISBN: 978-1-4673-6432-4. doi: 10.1109/ICC.2015.7249462.

[27] MATTOS, D. M. F., DUARTE, O. C. M. B., PUJOLLE, G. “A Resilient

Distributed Controller for Software Defined Networking”. In: IEEE ICC

2016 - Next Generation Networking and Internet Symposium (ICC’16 -

NGN), Kuala Lumpur, Malaysia, 5 2016.

[28] TOSHNIWAL, A., TANEJA, S., SHUKLA, A., et al. “Storm@Twitter”. In:

ACM SIGMOD International Conference on Management of Data, pp.

147–156. ACM, 2014.

[29] CARBONE, P., FÓRA, G., EWEN, S., et al. “Lightweight Asynchronous

Snapshots for Distributed Dataflows”, Computing Research Repository

(CoRR), v. abs/1506.0, 2015.

[30] FRANKLIN, M. “The Berkeley Data Analytics Stack: Present and future”.

In: IEEE International Conference on Big Data, pp. 2–3. IEEE, 2013.

[31] ANDREONI LOPEZ, M., SANZ, I. J., FERRAZANI MATTOS, D. M., et al.

“CATRACA: uma Ferramenta para Classificação e Análise Tráfego

Escalável Baseada em Processamento por Fluxo”. In: Salão de

Ferramentas do XVII Simpósio Brasileiro de Segurança da Informação e

de Sistemas Computacionais - SBSeg’2017, pp. 788–795, 2017.

[32] ROBNIK-ŠIKONJA, M., KONONENKO, I. “Theoretical and Empirical

Analysis of ReliefF and RReliefF”, Machine Learning, v. 53, n. 1/2,

pp. 23–69, 2003. ISSN: 08856125. doi: 10.1023/A:1025667309714.

[33] SCHÖLKOPF, B., SMOLA, A. J., MÜLLER, K.-R. “Kernel principal

component analysis”. In: Advances in kernel methods, pp. 327–352. MIT

Press, 1999.

[34] HESSE, G., LORENZ, M. “Conceptual Survey on Data Stream Processing

Systems”. In: IEEE 21st International Conference on Parallel and

Distributed Systems, pp. 797–802, 2015.

[35] GRADVOHL, A. L. S., SENGER, H., ARANTES, L., et al. “Comparing

distributed online stream processing systems considering fault tolerance

issues”, Journal of Emerging Technologies in Web Intelligence, v. 6, n. 2,

pp. 174–179, 2014.

102

[36] LANDSET, S., KHOSHGOFTAAR, T. M., RICHTER, A. N., et al. “A

survey of open source tools for machine learning with big data in the

Hadoop ecosystem”, Journal of Big Data, v. 2, n. 1, pp. 1–36, 2015.

[37] COLUCCIO, R., GHIDINI, G., REALE, A., et al. “Online stream processing

of machine-to-machine communications traffic: A platform comparison”.

In: IEEE Symposium on Computers and Communication (ISCC), pp.

1–7, 6 2014. doi: 10.1109/ISCC.2014.6912528.

[38] NABI, Z., BOUILLET, E., BAINBRIDGE, A., et al. “Of Streams and

Storms”, IBM White Paper, 2014.

[39] LU, R., WU, G., XIE, B., et al. “Stream Bench: Towards Benchmarking

Modern Distributed Stream Computing Frameworks”. In: IEEE/ACM

7th International Conference on Utility and Cloud Computing, pp.

69–78, 2014.

[40] DAYARATHNA, M., SUZUMURA, T. “A performance analysis of System S,

S4, and Esper via two level benchmarking”. In: Quantitative Evaluation

of Systems, Springer, pp. 225–240, 2013.

[41] ANDREONI LOPEZ, M., LOBATO, A. G. P., DUARTE, O. C. M. B. “A

Performance Comparison of Open-Source Stream Processing Platforms”.

In: IEEE GLOBECOM, pp. 1–6, Washington, USA, 12 2016. IEEE.

ISBN: 9781509013289. doi: 10.1109/GLOCOM.2016.7841533.

[42] ANDREONI LOPEZ, M., LOBATO, A. G. P., DUARTE, O. C. M. B.

“Monitoramento de Tráfego e Detecção de Ameaças por Sistemas

Distribúıdos de Processamento de Fluxos: uma Análise de

Desempenho”, XXI Workshop de Gerência e Operação de Redes e

Serviços (WGRS) do SBRC’2016, pp. 103–116, 2016.

[43] DU, Y., LIU, J., LIU, F., et al. “A real-time anomalies detection system

based on streaming technology”. In: Sixth International Conference on

Intelligent Human-Machine Systems and Cybernetics (IHMSC), v. 2, pp.

275–279. IEEE, 2014.

[44] ZHAO, S., CHANDRASHEKAR, M., LEE, Y., et al. “Real-time network

anomaly detection system using machine learning”. In: 11th

International Conference on the Design of Reliable Communication

Networks (DRCN), pp. 267–270. IEEE, 2015.

103

[45] HE, G., TAN, C., YU, D., et al. “A real-time network traffic anomaly

detection system based on storm”. In: Proceedings - 2015 7th

International Conference on Intelligent Human-Machine Systems and

Cybernetics, IHMSC 2015, v. 1, pp. 153–156, 2015. ISBN:

9781479986460. doi: 10.1109/IHMSC.2015.152.

[46] MYLAVARAPU, G., THOMAS, J., TK, A. K. “Real-Time Hybrid Intrusion

Detection System Using Apache Storm”. In: 17th International

Conference on High Performance Computing and Communications, pp.

1436–1441. IEEE, 8 2015. ISBN: 978-1-4799-8937-9. doi:

10.1109/HPCC-CSS-ICESS.2015.241.

[47] SANTOS, L. A. F., CAMPIOLO, R., BATISTA, D. M. “Uma Arquitetura

Autonômica para Detecçao e Reação a Ameaças de Segurança em Redes

de Computadores”. In: III WoSiDA’14, pp. 1–4, 2014.

[48] SCHUARTZ, F. C., MUNARETTO, A., FONSECA, M. “Sistema Distribúıdo

para Detecção de Ameaças em Tempo Real Utilizando Big Data”. In:

XXXV Simpósio Brasileiro de Telecomunicações e Processamento de

Sinais (SBrT), 2017.

[49] JIRSIK, T., CERMAK, M., TOVARNAK, D., et al. “Toward Stream-Based

IP Flow Analysis”, IEEE Communications Magazine, v. 55, n. 7,

pp. 70–76, 2017. ISSN: 0163-6804. doi: 10.1109/MCOM.2017.1600972.

[50] SANZ, I. J., ALVARENGA, I. D., ANDREONI LOPEZ, M., et al. “Uma

Avaliação de Desempenho de Segurança Definida por Software através

de Cadeias de Funções de Rede”. In: XVII Simpósio Brasileiro em

Segurança da Informação e de Sistemas Computacionais - SBSeg 2017,

2017.

[51] AZMANDIAN, F., KAELI, D. R., DY, J. G., et al. “Securing virtual

execution environments through machine learning-based intrusion

detection”. In: 25th International Workshop on Machine Learning for

Signal Processing (MLSP), pp. 1–6, 2015.

[52] LI, B., LI, J., LIU, L. “CloudMon: a resource-efficient IaaS cloud monitoring

system based on networked intrusion detection system virtual

appliances”, Concurrency and Computation: Practice and Experience,

v. 27, n. 8, pp. 1861–1885, 2015.

[53] CHEN, H., CLARK, J. A., TAPIADOR, J. E., et al. “A multi-objective

optimisation approach to IDS sensor placement”. In: Computational

104

Intelligence in Security for Information Systems, Springer, pp. 101–108,

2009.

[54] BOUET, M., LEGUAY, J., CONAN, V. “Cost-based placement of virtualized

Deep Packet Inspection functions in SDN”. In: IEEE Military

Communications Conference, MILCOM, pp. 992–997. IEEE, 2013.

[55] FERRAZ, L. H. G., MATTOS, D. M. F., DUARTE, O. C. M. B. “A

two-phase multipathing scheme based on genetic algorithm for data

center networking”. In: IEEE GLOBECOM 2014, pp. 2270–2275, 12

2014.

[56] ANDREONI LOPEZ, M., MATTOS, D. M. F., FERRAZ, L. H. G., et al.

“Localização Eficiente de Sensores Colaborativos para Detecção e

Prevenção de Intrusão em Ambientes Virtualizados”. In: XX Workshop

de Gerência e Operação de Redes e Serviços (WGRS 2015) do

SBRC’2015, 2015.

[57] ANDREONI LOPEZ, M., PASTANA LOBATO, A. G., DUARTE, O. C.

M. B., et al. Design and Performance Evaluation of a Virtualized

Network Function for Real-Time Threat Detection using Stream

Processing. Technical Report GTA-16-34, Grupo de Teleinformática e

Automação (GTA), Universidade Federal do Rio de Janeiro (UFRJ),

2016.

[58] BOUET, M., LEGUAY, J., COMBE, T., et al. “Cost-based placement of

vDPI functions in NFV infrastructures”, International Journal of

Network Management, v. 25, n. 6, pp. 490–506, 2015.

[59] WOOD, T., SHENOY, P., VENKATARAMANI, A., et al. “Sandpiper:

Black-box and gray-box resource management for virtual machines”,

Computer Networks, v. 53, n. 17, pp. 2923–2938, 2009. ISSN: 1389-1286.

[60] CARVALHO, H. E. T., DUARTE, O. C. M. B. “VOLTAIC: volume

optimization layer to assign cloud resources”. In: Proceedings of the 3rd

International Conference on Information and Communication Systems,

ICICS’12, pp. 3:1–3:7, 2012. ISBN: 978-1-4503-1327-8.

[61] ANDREONI LOPEZ, M., MATTOS, D. M. F. D., DUARTE, O. C. M. B.

“Evaluating Allocation Heuristics for an Efficient Virtual Network

Function Chaining”. In: 7th International Conference Network of the

Future (NoF’16). IEEE, 2017. ISBN: 9781509046713. doi:

10.1109/NOF.2016.7810141.

105

[62] CARNEY, D., ÇETINTEMEL, U., CHERNIACK, M., et al. “Monitoring

Streams: A New Class of Data Management Applications”. In: 28th

International Conference on Very Large Data Bases, pp. 215–226, 2002.

[63] ABADI, D. J., AHMAD, Y., BALAZINSKA, M., et al. “The Design of the

Borealis Stream Processing Engine.” Cidr, pp. 277–289, 2005. doi:

10.1.1.118.7039.

[64] RYCHLY, M., KODA, P., SMRZ, P. “Scheduling Decisions in Stream

Processing on Heterogeneous Clusters”. In: Eighth International

Conference on Complex, Intelligent and Software Intensive Systems

(CISIS), pp. 614–619, 7 2014.

[65] ZAHARIA, M., DAS, T., LI, H., et al. “Discretized streams: Fault-tolerant

streaming computation at scale”. In: XXIV ACM Symposium on

Operating Systems Principles, pp. 423–438. ACM, 2013.

[66] MARZ, N., WARREN, J. Big Data: Principles and Best Practices of Scalable

Realtime Data Systems. 1st ed. Greenwich, CT, USA, Manning

Publications Co., 2013.

[67] WIDOM, J. “The Starburst rule system: Language design, implementation,

and applications”, IEEE Data Engineering Bulletin, 1992.

[68] STONEBRAKER, M., KEMNITZ, G. “The POSTGRES next generation

database management system”, Communications of the ACM, v. 34,

n. 10, pp. 78–92, 1991.

[69] CHEN, J., DEWITT, D. J., TIAN, F., et al. “NiagaraCQ: A scalable

continuous query system for internet databases”. In: ACM SIGMOD

Record, v. 29, pp. 379–390. ACM, 2000.

[70] ARASU, A., BABCOCK, B., BABU, S., et al. STREAM: The Stanford Data

Stream Management System. Technical Report 2004-20, Stanford

InfoLab, 2004.

[71] BALAZINSKA, M., BALAKRISHNAN, H., STONEBRAKER, M. “Load

management and high availability in the Medusa distributed stream

processing system”. In: Proceedings of the 2004 ACM SIGMOD

international conference on Management of data - SIGMOD ’04, p. 929,

New York, New York, USA, 2004. ACM Press. ISBN: 1581138598. doi:

10.1145/1007568.1007701.

106

[72] CHANDRASEKARAN, S., COOPER, O., DESHPANDE, A., et al.

“TelegraphCQ: continuous dataflow processing”. In: Proceedings of the

2003 ACM SIGMOD international conference on Management of data,

p. 668. ACM, 2003.

[73] DEMERS, A. J., GEHRKE, J., PANDA, B., et al. “Cayuga: A General

Purpose Event Monitoring System.” In: Proceedings of the Conference

on Innovative Data Systems Research, v. 7, pp. 412–422, 2007.

[74] CARBONE, P., EWEN, S., HARIDI, S., et al. “Apache Flink: Unified

Stream and Batch Processing in a Single Engine”, Data Engineering, pp.

28–38, 2015.

[75] KAMBURUGAMUVE, S., FOX, G., LEAKE, D., et al. “Survey of

distributed stream processing for large stream sources”. 2013.

[76] ANDREONI LOPEZ, M., LOBATO, A. G. P., MATTOS, D. M. F., et al.

“Um Algoritmo Não Supervisionado e Rápido para Seleção de

Caracteŕısticas em Classificação de Tráfego”. In: XXXV SBRC’2017,

Belém- Pará, PA,, 2017.

[77] ANDREONI LOPEZ, M., LOBATO, A. G. P., DUARTE, O. C. M. B., et al.

“An evaluation of a virtual network function for real-time threat

detection using stream processing”. In: IEEE Fourth International

Conference on Mobile and Secure Services (MobiSecServ), pp. 1–5, 2018.

doi: 10.1109/MOBISECSERV.2018.8311440.

[78] CHENG, Z., CAVERLEE, J., LEE, K. “You Are Where You Tweet: A

Content-based Approach to Geo-locating Twitter Users”. In:

Proceedings of the 19th ACM International Conference on Information

and Knowledge Management, CIKM ’10, pp. 759–768. ACM, 2010.

ISBN: 978-1-4503-0099-5.

[79] LOBATO, A. G. P., ANDREONI LOPEZ, M., DUARTE, O. C. M. B. “Um

Sistema Acurado de Detecção de Ameaças em Tempo Real por

Processamento de Fluxos”. In: SBRC’2016, pp. 572–585, Salvador,

Bahia, 2016.

[80] HEIDEMANN, J., PAPDOPOULOS, C. “Uses and challenges for network

datasets”. In: Conference For Homeland Security, 2009. CATCH’09.

Cybersecurity Applications & Technology, pp. 73–82. IEEE, 2009.

107

[81] LIPPMANN, R. P., FRIED, D. J., GRAF, I., et al. “Evaluating intrusion

detection systems: The 1998 DARPA off-line intrusion detection

evaluation”. In: Proceedings of DARPA Information Survivability

Conference and Exposition. DISCEX’00., v. 2, pp. 12–26. IEEE, 2000.

[82] HAINES, J. W., LIPPMANN, R. P., FRIED, D. J., et al. 1999 DARPA

intrusion detection evaluation: Design and procedures. Technical report,

Massachusetts Inst Of Tech Lexington Lincoln Lab, 2001.

[83] LEE, W., STOLFO, S. J., MOK, K. W. “Mining in a data-flow environment:

Experience in network intrusion detection”. In: Proceedings of the fifth

ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 114–124. ACM, 1999.

[84] TAVALLAEE, M., BAGHERI, E., LU, W., et al. “A detailed analysis of the

KDD CUP 99 data set”. In: Proceedings of the Second IEEE Symposium

on Computational Intelligence for Security and Defence Applications.

IEEE, 2009.

[85] SOMMER, R., PAXSON, V. “Outside the closed world: On using machine

learning for network intrusion detection”. In: IEEE Symposium on

Security and Privacy (SP), pp. 305–316. IEEE, 2010.

[86] SHIRAVI, A., SHIRAVI, H., TAVALLAEE, M., et al. “Toward developing a

systematic approach to generate benchmark datasets for intrusion

detection”, Computers and Security, v. 31, n. 3, pp. 357–374, 2012.

ISSN: 0167-4048.

[87] GARCIA, S., GRILL, M., STIBOREK, J., et al. “An empirical comparison of

botnet detection methods”, Computers & Security, v. 45, pp. 100–123,

2014.

[88] FONTUGNE, R., BORGNAT, P., ABRY, P., et al. “{MAWILab}:
Combining Diverse Anomaly Detectors for Automated Anomaly

Labeling and Performance Benchmarking”. In: ACM CoNEXT ’10,

Philadelphia, PA, 2010.

[89] JUNGSUK, S., TAKAKURA, H., OKABE, Y. Description of Kyoto

university benchmark data. Technical Report 01, Academic Center for

Computing and Media Studies (ACCMS), Kyoto University, 2006.

[90] TANTITHAMTHAVORN, C., MCINTOSH, S., HASSAN, A. E., et al. “An

Empirical Comparison of Model Validation Techniques for Defect

108

Prediction Models”, IEEE Transactions on Software Engineering, v. 43,

n. 1, pp. 1–18, 1 2017. ISSN: 0098-5589. doi: 10.1109/TSE.2016.2584050.

[91] B. CLAISE, E., B. TRAMMELL, E., AITKEN, P. “Specification of the IP

Flow Information Export (IPFIX) Protocol for the Exchange of Flow

Information”. RFC 7011 (Informational), 2013.

[92] ROESCH, M. “Snort-Lightweight Intrusion Detection for Networks”. In:

Proceedings of the 13th USENIX conference on System administration,

pp. 229–238. USENIX Association, 1999.

[93] ZHAI, Y., ONG, Y.-S., TSANG, I. W. “The Emerging Big Dimensionality”,

Comp. Intell. Mag., v. 9, n. 3, pp. 14–26, 2014. ISSN: 1556-603X. doi:

10.1109/MCI.2014.2326099.

[94] VAN DER MAATEN, L., POSTMA, E., DEN HERIK, J. “Dimensionality

reduction: a comparative”, Journal of Machine Learning Research,

v. 10, pp. 66–71, 2009.

[95] AINHOREN, Y., ENGELBERG, S., FRIEDMAN, S. “The cocktail party

problem”, IEEE Instrumentation and Measurement Magazine, 2008.

ISSN: 10946969. doi: 10.1109/MIM.2008.4534378.

[96] MLADENIĆ, D. “Feature Selection for Dimensionality Reduction”. In:

Saunders, C., Grobelnik, M., Gunn, S., et al. (Eds.), Subspace, Latent

Structure and Feature Selection (SLSFS): Statistical and Optimization

Perspectives Workshop., Springer Berlin Heidelberg, pp. 84–102, Bohinj,

Slovenia, 2006. ISBN: 978-3-540-34138-3. doi: 10.1007/11752790-5.

[97] ANG, J. C., MIRZAL, A., HARON, H., et al. “Supervised, Unsupervised, and

Semi-Supervised Feature Selection: A Review on Gene Selection”,

IEEE/ACM Transactions on Computational Biology and Bioinformatics,

v. 13, n. 5, pp. 971–989, 9 2016. ISSN: 1545-5963. doi:

10.1109/TCBB.2015.2478454.

[98] GUYON, I., WESTON, J., BARNHILL, S., et al. “Gene selection for cancer

classification using support vector machines”, Machine learning, v. 46, n.

1-3, pp. 389–422, 2002.

[99] CHANDRASHEKAR, G., SAHIN, F. “A survey on feature selection

methods”, Computers & Electrical Engineering, v. 40, n. 1, pp. 16–28,

2014. ISSN: 0045-7906. doi:

http://dx.doi.org/10.1016/j.compeleceng.2013.11.024.

109

[100] HALL, M. A. Correlation-based Feature Selection for Machine Learning.

Tese de Doutorado, The University of Waikato, 1999.

[101] BUCZAK, A., GUVEN, E. “A Survey of Data Mining and Machine

Learning Methods for Cyber Security Intrusion Detection”, IEEE

Communications Surveys Tutorials, , n. 99, pp. 1–26, 2015.

[102] PRASATH, V. B. S., ALFEILAT, H. A. A., LASASSMEH, O., et al.

“Distance and Similarity Measures Effect on the Performance of

K-Nearest Neighbor Classifier - A Review”, CoRR, v. abs/1708.0, 2017.

[103] GARCÍA, S., LUENGO, J., HERRERA, F. “Tutorial on practical tips of the

most influential data preprocessing algorithms in data mining”,

Knowledge-Based Systems, v. 98, pp. 1–29, 4 2016. ISSN: 09507051. doi:

10.1016/j.knosys.2015.12.006.

[104] RAMÍREZ-GALLEGO, S., KRAWCZYK, B., GARCÍA, S., et al. “A survey

on data preprocessing for data stream mining: Current status and future

directions”, Neurocomputing, 2017. ISSN: 18728286. doi:

10.1016/j.neucom.2017.01.078.

[105] PERKINS, S., THEILER, J. “Online feature selection using grafting”. In:

Proceedings of the 20th International Conference on Machine Learning

(ICML-03), pp. 592–599, 2003.

[106] ZHOU, J., FOSTER, D. P., STINE, R. A., et al. “Streamwise feature

selection”, Journal of Machine Learning Research, v. 7, n. Sep,

pp. 1861–1885, 2006.

[107] WU, X., YU, K., DING, W., et al. “Online feature selection with streaming

features”, IEEE transactions on pattern analysis and machine

intelligence, v. 35, n. 5, pp. 1178–1192, 2013.

[108] HU, H., KANTARDZIC, M. “Smart preprocessing improves data stream

mining”. In: 49th Hawaii International Conference on System Sciences

(HICSS), pp. 1749–1757. IEEE, 2016.

[109] WEBB, G. I. “Contrary to popular belief incremental discretization can be

sound, computationally efficient and extremely useful for streaming

data”. In: IEEE International Conference on Data Mining (ICDM), pp.

1031–1036. IEEE, 2014.

110

[110] BEN-HAIM, Y., TOM-TOV, E. “A streaming parallel decision tree

algorithm”, Journal of Machine Learning Research, v. 11, n. Feb,

pp. 849–872, 2010.

[111] CHAWLA, N. V., BOWYER, K. W., HALL, L. O., et al. “SMOTE:

synthetic minority over-sampling technique”, Journal of artificial

intelligence research, v. 16, pp. 321–357, 2002.

[112] YANG, W., FUNG, C. “A survey on security in network functions

virtualization”. In: IEEE NetSoft Conference and Workshops, pp. 15–19.

IEEE, 2016.

[113] MIJUMBI, R., SERRAT, J., GORRICHO, J.-L., et al. “Network Function

Virtualization: State-of-the-Art and Research Challenges”, IEEE

Communications Surveys & Tutorials, v. 18, n. 1, pp. 236–262, 2015.

[114] MIJUMBI, R., SERRAT, J., GORRICHO, J.-L., et al. “Management and

orchestration challenges in network functions virtualization”, IEEE

Communications Magazine, v. 54, n. 1, pp. 98–105, 1 2016. ISSN:

0163-6804. doi: 10.1109/MCOM.2016.7378433.

[115] ETSI GS NFV-MAN. Network Functions Virtualisation (NFV);

Management and Orchestration. Technical Report 001, European

Telecommunications Standards Institute (ETSI), 12 2014.

[116] BARI, M. F., CHOWDHURY, S. R., AHMED, R., et al. “Orchestrating

Virtualized Network Functions”, Transactions on Network and Service

Management, v. PP, n. 99, 5 2016.

[117] MEDEIROS, D. S. V., CAMPISTA, M. E., MITTON, N., et al. “Weighted

Betweenness for Multipath Networks”. In: Global Information

Infrastructure and Networking Symposium (GIIS), 2016.

[118] QUINN, P., NADEAU, T. Problem Statement for Service Function

Chaining. Technical Report RFC 7498, Active Internet-Draft, TETF

Secretariat, 2015.

[119] COUTO, D. R. S., SECCI, S., CAMPISTA, M. E. M., et al. “Reliability and

Survivability Analysis of Data Center Network Topologies”, Journal of

Network and Systems Management, v. 24, n. 2, pp. 346–392, 2016.

111

