

Caractérisation thermodynamique des binaires esters méthyliques / n-alcanes représentatifs des mélanges biodiesel / gazole

Lakhdar Sahraoui

► To cite this version:

Lakhdar Sahraoui. Caractérisation thermodynamique des binaires esters méthyliques / n-alcanes représentatifs des mélanges biodiesel / gazole. Thermique [physics.class-ph]. Université de Lyon; École Militaire Polytechnique (Alger), 2018. Français. NNT : 2018LYSE1215 . tel-02111114

HAL Id: tel-02111114 https://theses.hal.science/tel-02111114

Submitted on 25 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ecole Militaire Polytechnique Chahid Abderrahmane Taleb

N°d'ordre

NNT : xxx

THESE DE DOCTORAT EN COTUTELLE

Opérée au sein de

L'Université Claude Bernard Lyon 1 Et de L'Ecole Militaire Polytechnique-Chahid Abderrahmane Taleb

Ecole Doctorale N° ED 206

Spécialité de doctorat : CHIMIE

Soutenue publiquement le 30/10/2018, par :

Lakhdar SAHRAOUI

Caractérisation thermodynamique des binaires esters méthyliques/n-alcanes représentatifs des mélanges biodiesel/gazole

Devant le jury composé de :

Abdellah DAHMANI, Professeur/ USTHB –Bab Ezouar (Alger) Latifa NEGADI, Professeure/ Université Abou Bakr Belkaid (Tlemcen) Jacques JOSE, Professeur/UCB-Lyon1 Hamama HAKEM, Professeure/ USTHB –Bab Ezouar (Alger) Djalal TRACHE, Maitre de conférences A/ EMP, Bordj El bahri (Alger)

Ilham MOKBEL, Maitre de conférences, Université de Lyon Kamel KHIMECHE, Professeur/EMP, Bordj El Bahri (Alger) Rapporteur Rapporteur Examinateur Examinateur Examinateur

Directrice de thèse Directeur de thèse

REMERCIEMENTS

Ce travail est le fruit d'une collaboration entre le Laboratoire des Matériaux Energétiques de l'Ecole Militaire Polytechnique de Bordj-El-Bahri (EMP) et le Laboratoire des Multimatériaux et Interfaces- UMR 5615 de l'Université Claude Bernard Lyon1.

J'exprime ma profonde reconnaissance à mes directeurs de thèse, Monsieur Kamel KHIMECHE, Professeur à l'EMP et Chef d'UER des Procédés Energétiques et Madame Ilham MOKBEL, Maitre de conférences HDR à l'Université de Lyon. Je les remercie pour leur rigueur scientifique, leurs critiques constructives, leur confiance et leur aimable soutien. Ils m'ont laissé une liberté dans l'organisation de ce travail, tout en veillant à maintenir le cap et sans qu'ils s'en désintéressent un seul instant. Je ne saurai les remercier assez pour avoir su trouver le temps nécessaire pour compléter ma formation scientifique et pour tout ce qu'ils m'ont permis d'apprendre.

Je remercie tout particulièrement le Professeur émérite Jacques Jose pour sa disponibilité et les précieux conseils qu'il m'a prodigués durant mes séjours scientifiques au Laboratoire. Je le remercie infiniment d'avoir accepté d'examiner ce travail.

Je tiens également à remercier l'ensemble des membres du jury pour avoir accepté d'évaluer mon travail, en particulier les rapporteurs Monsieur Abdellah DAHMANI, Professeur à l'Université des Sciences et de la Technologie Haouari Boumediene (USTHB) et Madame Latifa NEGADI, Professeure à l'Université de Abou Bakr Belkaid à Tlemcen.

Je souhaite également que Madame Hamama HAKEM, Professeur à l'USTHB et Monsieur Djalal TRACHE, Maitre de Conférences à l'EMP, trouvent ici l'expression de toute ma reconnaissance pour avoir accepté d'examiner ce travail.

Ma reconnaissance sincère va également à Monsieur Mokhtar BENZIANE pour ses précieux conseils et pour le soutien qu'il m'a apporté pour me lancer dans cette thèse.

Je tiens à exprimer toute ma reconnaissance à Messieurs Abderrahmane MEZROUA, Abderrazak MOULOUD, Samir BELKHIRI, Fouad BEN ALIOUCHE et Karim KHIARI pour leur soutien et leurs qualités humaines.

Je remercie tout particulièrement Cécile Lindemann et Dr. Fatiha DERGAL pour leur aide dans la partie expérimentale de mes travaux lors de mes séjours à Lyon1.

Enfin je remercie chaleureusement toute ma famille, mes parents, mon épouse et mes frères et sœur, pour m'avoir soutenu au cours de ces années, et pour m'avoir poussé à me dépasser dès le début.

TABLE DES MATIERES

T/	ABL	E DES MATIERES	6
Li	ste d	es figures	8
Li	ste d	es tableaux	12
IN	ITRO	DDUCTION GENERALE	16
1	LES	S ENERGIES RENOUVELABLES – CAS DE L'ALGERIE	21
	1.1	Les principaux enjeux énergétiques	21
		1.1.1 Une demande énergétique mondiale en augmentation	21
		1.1.2 Les réserves énergétiques fossiles et leur impact sur le climat suite à leur utilisation	22
	1.2	Carburants alternatifs ou biocarburants	23
		1.2.1 Biocarburants de première génération	24
		1.2.2 Biocarburants de deuxième génération	32
	1.3	Les ressources énergétiques en Algérie	38
		1.3.1 La biomasse en Algérie	40
	1.4	Conclusion et contexte	42
2	EΤ	UDE EXPERIMENTALE DES EQUILIBRES LIQUIDE-VAPEUR	44
	2.1	Introduction	44
	2.2	Description de l'appareil statique	44
	2.3	Description du système de dégazage	46
	2.4	Etalonnage des capteurs de pression	47
	2.5	Les incertitudes de mesure	47
	2.6	Etude des corps purs	48
		2.6.1 Mesure des pressions de vapeurs des corps purs et comparaison avec la littérature	48
	2.7	Enthalpie de vaporisation des corps purs	56
		2.7.1 Détermination de l'enthalpie de vaporisation à Tm (Température expérimentale moyenne)	56
		2.7.2 Détermination de l'enthalpie de vaporisation à $T = 298,15$ K et comparaison avec la littérature	57
		2.7.3 Consistance des résultats expérimentaux	59
	2.8	Etude des équilibres liquide-vapeur des mélanges esters méthyliques/alcanes	60

2.8.1 Vérification de la composition du mélange	60
2.8.2 Equilibres liquide-vapeur des systèmes binaires	62
2.8.3 Diagrammes d'équilibre isotherme	65
2.8.4 Les Enthalpies libres d'excès, G^E	69
2.9 Conclusion	70
3 MODELISATION DES RESULTATS EXPERIMENTAUX	
3.1 Introduction	
3.2 Critères d'équilibres entre phases fugacité et coefficient d'activité	
3.3 Représentation des équilibres liquide-vapeur par les modèles de coefficients d'activités	74
3.3.1 Le modèle de WILSON	
3.3.2 Le modèle NRTL	
3.3.3 Le modèle UNIQUAC	
3.4 Choix du modèle pour corréler les équilibres liquide-vapeur	
3.5 Résultats de la modélisation	79
3.6 Conclusion	83
4. Propriétés volumétriques des mélanges ester méthylique/n-alcane	85
4.1. Introduction	85
4.2. Technique expérimentale	85
4.3. Résultats expérimentaux	87
4.4. Prédiction du volume molaire d'excès par le modèle (PFP)	89
4.5. Conclusion	
ANNEXE 1: Etalonnage du capteur de pression MKS. Pressions de vapeur des n-alcanes	97
ANNEXE 2 : Pressions de vapeur des esters méthyliques	99
ANNEXE 3: Pressions de vapeur des binaires esters méthyliques(1) + n-alcanes(2) : ajustement par l'équation d'Antoine.	103
ANNEXE 4: Données nécessaires au calcul des équilibres liquide-vapeur des binaires ester méthylique (1)-n-alcane(2)	106
ANNEXE 5: Données expérimentales et calculées des équilibres liquide-vapeur des binaires Ester méthylique(1) -n-alcane(2)	108
ANNEXE 6 : Equilibres liquide-vapeur des binaires Ester méthylique (1)-n-alcane (2) : Paramètres de l'équation de Redlich-Kister.	135
ANNEXE7: Energie libre molaire d'excès des binaires ester méthylique (1)-n-alcane(2)	139
ANNEXE 8 : Masse volumique des binaires Ester méthylique (1)-n-alcane(2)	142
ANNEXE 9 : Volume molaire d'excès des binaires ester méthylique (1) -n-alcane(2)	144
REFERENCES BIBLINGRAPHIOLIES	149

Liste des figures

Figure 1.1 : Consommation mondiale d'énergie primaire par type d'énergie (Mtep)21
Figure 1.2 : Cycle de vie d'un produit [7]
Figure 1.3 : Biocarburants de première génération – filière classique [9]
Figure 1.4: Les trois réactions successives de la transestérification
Figure 1.5: Les étapes d'obtention du biodiesel à partir d'oléagineux [11]26
Figure 1.6:Schéma de principe d'un procédé en continu (Procédé Esterfip 1993 – Licence IFP).
Figure 1.7 : Huile végétale utilisée dans la production de biodiesel
Figure 1.8 : Schéma de la filière bioéthanol
Figure 1.9 : Production mondiale de bioéthanol en 2006
Figure 1.10 : Constitution de la biomasse
Figure 1.11 : Structure constitutive de la cellulose
Figure 1.12 : Exemples d'oses
Figure 1.13: Exemples de 3 monolignols
Figure 1.14 : Conversion thermochimique de la biomasse
Figure 1.15 : Etapes de la gazéification
Figure 1.16 : composition de la biomasse lignocellulosique
Figure 1.17: Procédé d'hydrolyse enzymatique
Figure 1.18 : Evolution de la demande et de l'offre pour le diesel en Algérie
Figure 1.19 : Miscanthus
Figure 1.20 : Jatropha curcas, un carburant d'avenir pour le Sud
Figure 2.1: Appareil statique « basse pression » pour mesure de la pression de vapeur 45
Figure 2.2: Système de dégazage46
Figure 2.3: Pression de vapeur du dodécane
Figure 2.4: Pression de vapeur du tétradécane
Figure 2.5: Déviation relative des pressions de vapeur expérimentales de l'hexanoate de
méthyle
Figure 2.6 : Déviation relative des pressions de vapeur expérimentales de l'octanoate de
méthyle]
Figure 2.7: Déviation relative des pressions de vapeur expérimentales du décanoate de
méthyle53

Figure 2.8 : Déviation relative des pressions de vapeur expérimentales de dodécanoate de
méthyle54
Figure 2.9: Déviation relative des pressions de vapeur expérimentales de tetradécanoate de
méthyle55
Figure 2.10 : Déviation relative des pressions de vapeur expérimentales de hexadécanoate de
méthyle]
Figure 2.11: Cycle thermodynamique pour le calcul des enthalpies de vaporisation
Figure 2.12 : Variation de l'enthalpie de vaporisation en fonction du nombre de carbone 60
Figure 2.13 : Droite d'étalonnage du l'hexanoate de méthyle, x_1 , avec le n-dodécane, x_2 62
Figure 2.14 : Exemple de chromatogramme obtenu pour l'analyse du dodécanoate et
tétradécanoate de méthyle
Figure 2.15: Pressions expérimentales et calculées du système binaire hexanoate de
$m\acute{e}thyle(1) + n-dodecane(2)$
Figure 2.16 : Pressions expérimentales et calculées de système binaire octanoate de
$m\acute{e}thyle(1) + n-dodecane(2)$
Figure 2.17: Pressions expérimentales et calculées de système binaire décanoate de
$m\acute{e}thyle(1) + n-dodecane(2)$
Figure 2.18 : Pressions expérimentales et calculées de système binaire dodécanoate de
$m\acute{e}thyle(1) + n-dodecane(2)$
Figure 2.19: Pressions expérimentales et calculées de système binaire tetradécanoate de
$m\acute{e}thyle(1) + n-dodecane(2)$
Figure 2.20 : Pressions expérimentales et calculées de système binaire hexadécanoate de
$m\acute{e}thyle(1) + n-dodecane(2)$
Figure 2.21: Pressions expérimentales et calculées de système binaire dodecanoate de
$m\acute{e}thyle(1) + n$ -tetradécane (2)
Figure 2.22: Pressions expérimentales et calculées de système binaire tetradécanoate de
$m\acute{e}thyle(1) + n$ -tetradécane (2)
Figure 2.23: Pressions expérimentales et calculées de système binaire hexadécanoate de
$m\acute{e}thyle(1) + n$ -tetradécane (2)
Figure 2.24: Energie molaire d'excès de Gibbs G^E en fonction de la composition x_1 du
système octanoate de méthyle(1) + n-dodecane (2)
Figure 2.25: Energie molaire d'excès de Gibbs G^E en fonction de la composition x_1 du
système hexadecanoate méthyle (1) + n-dodecane (2)69
Figure 2.26: Energie molaire d'excès de Gibbs G^E en fonction de la composition x_I du
système <i>hexadécanoate de méthyle (1) + n-tetradécane (2)</i> 69

Figure 3.1 : Modélisation des isothermes du système : Dodécanoate de méthyle (1) + n-
dodécane (2)
Figure 3.2 : Modélisation des isothermes du système : tetradécanoate de méthyle(1)+n-
dodécane (2)
Figure 3.3: Modélisation des isothermes du système : hexadécanoate de méthyle(1)+n-
dodécane (2)
Figure 3.4: Modélisation des isothermes du système : Dodécanoate de méthyle (1)+n-
tetradécane (2)
Figure 3.5: Modélisation des isothermes du système: tetradécanoate de méthyle (1) + n-
tetradécane (2)
Figure 3.6: Modélisation des isothermes du système: hexadécanoate de méthyle (1)+n-
tetradécane (2)
Figure 4.1 : Principe de fonctionnement du densimètre à tube vibrant
Figure 4.2 : Volume molaire d'excès du mélange dodécanoate de méthyle (1)+n-
<i>dodécane(2)</i>
Figure 4.3 : Volume molaire d'excès du mélange dodécanoate de méthyle (1) + n-
tetradécane(2)
Figure 4.4 : Volume molaire d'excès du mélange tetradécanoate de méthyle (1) + n-
<i>dodécane(2)</i>
Figure 4.5: Volume molaire d'excès du mélange tetradécanoate de méthyle (1) + n-
tetradécane(2)
Figure 4.6: Volume molaire d'excès du mélange dodécanoate de méthyle (1) + n-
<i>dodécane(2)</i> à 293.15 K ; —, expérimentale ; •, PFP
Figure 4.7: Volume molaire d'excès du mélange dodécanoate de méthyle (1) + n-
<i>tetradécane(2)</i> à 293.15 K ; —, expérimentale ; ◆, PFP
Figure 4.8 : Volume molaire d'excès du mélange tetradécanoate de méthyle (1) + n-
<i>dodécane(2)</i> à 293.15 K ; —, expérimentale ; •, PFP
Figure 4.9: Volume molaire d'excès du mélange tetradécanoate de méthyle (1) + n-
tetradécane(2) à 293.15 K ; —, expérimentale ; •, PFP
Figure A7. 1 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x_I du
système : <i>hexanoate de méthyle(1) + n-dodécane</i> . 139
Figure A7. 2 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x_I du
système : <i>octanoate de méthyle(1) + n-dodécane (2)</i> 139
Figure A7. 3 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x_I du
système : décanoate de méthyle(1) + n-dodécane (2)140

Figure A7. 4 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x	1 du
système : dodécanoate de méthyle (1) + n-tétradécane (2)	140
Figure A7. 5 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x	du
système tétradécanoate de méthyle (1) + n-tétradécane (2)	141
Figure A7. 6 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x	1 du
système hexadécanote de méthyle (1) + n-tétradécane (2)	141

Liste des tableaux

Tableau 1.1 : Caractéristiques physicochimiques de quelques huiles végétales
Tableau1.2 : Composition (% masse) en EMHV de quelques huiles végétales [12]
Tableau1.3 : Propriétés physico-chimiques de différents biodiesels en fonction de l'huile
utilisée pour la synthèse [14]
Tableau1.4 : Comparaison des propriétés de l'éthanol et de l'essence
Tableau 1.5 : Les pays producteurs de gaz naturel [20]
Tableau 2.1: Caractéristiques des composés étudiés
Tableau 2.2 : Pressions de vapeur expérimentales du n-dodécane et du n-tétradécane
Tableau 2.3: Paramètres de l'équation d'Antoine et écarts types pour le n-dodécane et le n-
tétradécane
Tableau 2.4 : Paramètres de l'équation d'Antoine et leur écart type 51
Tableau 2.5: Paramètres de lissage par l'équation de Clapeyron et enthalpie de vaporisation
des corps purs
Tableau 2.6: Les groupes rencontrés dans les esters étudiés
Tableau 2.7 : Estimation de <i>CPl</i> (298.15 K) pour les six esters méthyliques.58
Tableau 2.8 : Enthalpie de vaporisation (en $kJ. mol^{-1}$) calculée à la température moyenne et à
298,15 K. Comparaison avec les données de la littérature
Tableau 2.9: Rapports des compositions hexanoate de méthyle/dodécane et rapports des
surfaces de pics correspondants
Tableau 2.10 : Coordonnées du point azéotropique du système Dodécanoate de méthyle (1) +
<i>n</i> - <i>Tetradécane</i> (2) ^{<i>a</i>}
Tableau 3.1 : Paramètres d'interaction du modèle NRTL des mélanges binaires EMAG +
Alcane
Tableau 3.2 : Paramètres d'interaction du modèle UNIQUAC des mélanges binaires EMAG +
Alcane
Tableau 4.1 : Paramètres des corps purs utilisés dans la théorie de Flory à T = 293.15 K 91
Tableau 4.2 : Volumes molaires d'excès expérimentaux et prédits par la théorie PFP à
x1=0.5, les paramètres d'interaction $\chi 12$ les trois contributions calculés et l'écart (δ) à
293.15 K
Tableau A1. 1: Comparaison entre les pressions de vapeur expérimentales du n-décane et
celles de Viton [27], MKS à 110°C 97

Tableau A1. 2 : Comparaison entre les pressions de vapeur expérimentales du n-décane et
celles de Viton [27], MKS à 200°C
Tableau A2. 1 : Pressions de vapeur expérimentales et écart du lissage du l'hexanoate de
méthyle. 99
Tableau A2. 2 : Pressions de vapeur expérimentales et écart du lissage du l'octanoate de
méthyle
Tableau A2. 3 : Pressions de vapeur expérimentales et écart du lissage du décanoate de
méthyle
Tableau A2. 4 : Pressions de vapeur expérimentales et écart du lissage du dodécanoate de
méthyle
Tableau A2. 5 : Pressions de vapeur expérimentales et écart du lissage du tétradécanoate de
méthyle
Tableau A2. 6 : Pressions de vapeur expérimentales et écart du lissage du hexadécanote de
méthyle
$\textbf{TableauA3. 1}: \text{Paramètres A, B, C de l'équation d'Antoine avec écarts-type (\sigma) et l'écart}$
moyen de lissage (d) 103
TableauA3. 2 : Paramètres A, B, C de l'équation d'Antoine avec écarts-type (σ) et l'écart
moyen de lissage
TableauA3. 3 : Paramètres A, B, C de l'équation d'Antoine avec écarts-type (σ) et l'écart
moyen de lissage
Tableau A4. 1: Paramètres critiques des constituants étudiés
Tableau A4. 2 : Volumes molaires et coefficients de viriel pour le système : $EMAG(l) + n$ -
<i>dodécane (2).</i>
Tableau A4. 3: Volumes molaires et coefficients de viriel pour le système : <i>EMAG (1)</i> + n -
<i>tétradécane (2).</i>
Tableau A5. 1 : Données expérimentales et calculées d'équilibre liquide-vapeur pour le
système : hexanoate de méthyle (1) + n-dodécane (2)108
Tableau A5. 2 : Données expérimentales et calculées d'équilibre liquide-vapeur pour le
système : octanoate de méthyle (1) + n-dodécane (2)
Tableau A5. 3 : Données expérimentales et calculées d'équilibre liquide-vapeur pour le
système : décanoate de méthyle (1) + n-dodécane (2)113
Tableau A5. 4 : Données expérimentales et calculées d'équilibre liquide-vapeur pour le
système : <i>dodécanoate de méthyle (1) + n-dodécane (2)</i> 116
Tableau A5. 5 : Données expérimentales et calculées d'équilibre liquide-vapeur pour le
système : <i>tétradécanoate de méthyle (1) + n-dodécane (2)</i> 119

Tableau A5. 6 : Données expérimentales et calculées d'équilibre liquide-vapeur pour le
système : <i>hexadécanote de méthyle (1) + n-dodécane (2)</i> 122
Tableau A5. 7 : Données expérimentales et calculées d'équilibre liquide-vapeur pour le
système : dodécanoate de méthyle (1) + n-Tétradécane (2)
Tableau A5. 8 : Données expérimentales et calculées d'équilibre liquide-vapeur pour le
système : <i>tétradécanoate de méthyle (1) + n-Tétradécane (2)</i>
Tableau A5. 9 : Données expérimentales et calculées d'équilibre liquide-vapeur pour le
système : <i>hexadécanote de méthyle (1) + n-Tétradécane (2)</i>
Tableau A6. 1 : Coefficients Gj du polynôme de Redlich – Kister et écarts-type (σ) pour les
systèmes EMAG (1) + n-dodécane (2) 135
Tableau A6. 2 : Coefficients Gj du polynôme de Redlich – Kister et écarts-type (σ) pour les
systèmes EMAG (1) + n-dodécane (2) (suite)
Tableau A6. 3 : Coefficients Gj du polynôme de Redlich – Kister et écarts-type (σ) pour les
systèmes EMAG (1) + n-tétradécane (2)137
Tableau A8. 1 : densité du mélange dodécanoate de méthyle (1) + n-dodécane (2) en fonction
de la composition et la température. 142

Tableau A8. 2 : densité du mélange dodécanoate de méthyle (1) + n-tétradécane (2) enfonction de la composition et la température.142

Tableau A8. 3 : densité du mélange tétradécanoate de méthyle (1) + n-dodécane (2) en fonction de la composition et la température.
Tableau A8. 4 : densité du mélange tétradécanoate de méthyle (1) + n-tétradécane (2) en fonction de la composition et la température.
Tableau A9. 1 : Volume molaire d'excès du mélange dodécanoate de méthyle (1) + n-dodécane(2) en fonction de la variation de la composition et la température.

Tableau A9. 7 : Coefficients de l'équation Redlich-Kister	du mélange tétradécanoate de
méthyle (1) + n-dodécane (2) à différentes températures	
Tableau A9. 8 : Coefficients de l'équation Redlich-Kister	du mélange tétradécanoate de
méthyle (1) + n-tétradécane (2) à différentes températures	

INTRODUCTION GENERALE

L'énergie est devenue un facteur crucial pour l'humanité car elle permet la croissance économique et le maintien ou l'amélioration du niveau de vie. Avec l'avènement de la révolution industrielle et les progrès technologique, la demande d'énergie dans le monde a augmenté de façon exponentielle. Les perspectives énergétiques mondiales pour les prochaines décennies indiquent une hausse continue de la demande, soutenue par la croissance économique, la démographie et la poursuite de l'urbanisation notamment dans les pays en voie de développement. Elles révèlent que plus du trois quart de la demande sera couverte par les énergies fossiles, même si leur part décline.

Selon l'OPEP, la demande globale en l'énergie primaire devrait augmenter au rythme moyen de 1,2% par an. Le gaz naturel verra une croissance moyenne plus forte de 1,8% par an. De son côté l'Agence internationale de l'énergie (AIE), estime que le monde aura besoin de 50% d'énergie de plus en 2030.

La demande d'énergie croit à l'échelle mondiale, et en conséquence, les émissions de gaz à effet de serre (GES) et de polluants (CO, CO₂, NOx, suies, HC...) générées par le recours aux hydrocarbures fossile augmentent parallèlement. Ainsi, le changement climatique qui en résulte pose des défis croissants à l'utilisation de cette forme d'énergie. Aujourd'hui, bien que les risques géopolitiques et environnementaux liés à la dépendance du pétrole soient évidents, le remplacement des carburants fossiles ne sera pas facile. L'incorporation progressive des biocarburants dans les fluides d'origine pétrolière a déjà généré une des polémiques les plus intenses de la société moderne (utilisation de terres susceptibles de satisfaire des besoins alimentaires, déforestation croissante d'espaces jusqu'à présent préservés...).

À l'échelle mondiale, la sensibilisation aux questions énergétiques et aux problèmes environnementaux associés à l'utilisation des combustibles fossiles ont incité les chercheurs à étudier la possibilité d'utiliser d'autres sources d'énergie que le pétrole et de ses dérivés. En principe, l'utilisation d'un carburant alternatif permettra la prolongation des réserves pétrolières d'une part, et la préservation de l'environnement d'autre part.

Suite à la Conférence de Paris des Nations Unies sur les changements climatiques (COP21, Paris, France) en décembre 2015, l'Algérie, qui avait co-présidé le processus de la négociation internationale ayant conduit à l'adoption de cet Accord historique, était parmi les "premiers pays à le signer lors de la cérémonie de signature de haut niveau", tenue à New York le 22 avril 2016.

L'Algérie est reconnue au niveau international comme l'un des pays les plus vulnérables aux effets du changement climatique. D'après le quotidien « l'Expression » (http://www.lexpressiondz.com) du Samedi 22 Octobre 2016, les pouvoirs politiques du pays assurent que l'Algérie "poursuivra son engagement à l'effort global de réduction des gaz à effet de serre (GES) par une politique ambitieuse de transition énergétique axée sur le développement des énergies propres" même si le pays reste l'un des moins pollueurs du monde. L'Algérie dispose en effet d'un potentiel énorme en sources d'énergies renouvelables. Elle prévoit, d'ici 2030, une réduction inconditionnelle des rejets nationaux de GES de 7%, et même de 22% dans le cas où l'Algérie bénéficierait d'un accompagnement technologique et financier adéquat.

Issus d'une matière première renouvelable (biomasse) qui constitue un « puits » de CO₂ par photosynthèse, le développement des biocarburants peut contribuer à la lutte contre les émissions des gaz à effet de serre. En effet cette énergie renouvelable, à la différence des énergies fossiles (pétrole, charbon, etc.), utilise pour sa croissance et ses besoins énergétiques le dioxyde de carbone présent dans l'atmosphère. Cependant, d'un point de vue technologique, une question se pose en ce qui concerne l'impact des biocarburants sur la performance des moteurs et le mode de distribution-stockage. D'un point de vue sociétal, les biocarburants de première génération (principalement l'éthanol fabriqué à partir de maïs ou de canne à sucre, et le biodiesel fabriqué à partir d'huile végétale) ont provoqué une grande controverse résultant de la forte hausse des prix alimentaires au début de 2011 contribuant à la famine et à l'instabilité politique de pays en voie de développement. De plus, des préoccupations environnementales, telles que la destruction grave des ressources vitales du sol, la déforestation et l'utilisation d'une grande partie des terres arables disponibles, sont apparues.

Dans ces conditions, les biocarburants ne pourront constituer un complément sérieux à la fourniture d'énergie qu'à la condition de diversifier les sources d'approvisionnement en matières premières d'origine végétale non alimentaires.

Face à ces problématiques, des chercheurs pensent que les biocarburants de deuxième génération, synthétisés à partir de déchets végétaux ou à partir de cultures spécialement destinées à cet effet sur des terrains non propices à la production alimentaire, offrent un grand espoir à court terme. Dans un avenir un peu plus éloigné les microalgues sont apparues comme la troisième génération de matières premières pour les biocarburants. Les microalgues sont des microorganismes photosynthétiques qui convertissent la lumière du soleil, l'eau et le CO₂ en biomasse algale. Elles ont le potentiel de produire un rendement en huile qui est jusqu'à 25 fois plus élevé que le rendement du palmier à huile et 250 fois celui du soja. Cela est dû au fait que les microalgues peuvent être cultivées en ferme ou en bioréacteur.

Grace à ses caractéristiques très proches de celles du diesel fossile et à la large gamme de matières premières disponibles pour sa production, le biodiesel a une énorme potentialité pour faire partie d'un mélange énergétique. Le biodiesel, appelé aussi Ester Méthylique d'Huiles Végétale (EMHV), est constitué d'esters monoalkyliques d'acides gras à longue chaîne dérivés d'huiles végétales ou de graisses animales. Ce carburant présente de nombreux avantages face au gazole pétrolier classique. Il est biodégradable, il possède un indice de cétane plus élevé ainsi qu'une meilleure efficacité de combustion. L'un des plus importants aspects porte sur ses émissions de gaz à effet de serre et autres polluants. En effet, sa combustion produit moins de soufre et moins de composés aromatiques, moins de monoxyde de carbone et d'hydrocarbures non brulés. Par contre les rejets en NOx sont généralement plus élevés.

En raison de sa parfaite miscibilité dans le gazole, le biodiesel peut être mélangé avec ce dernier dans des proportions variables. La nomenclature utilisée indique son pourcentage en volume dans le mélange (**B5, B10, B30** et **B50....**). **B100** représente le biodiesel pur.

Les propriétés thermodynamique (pression de vapeur, densité, équilibres entre phases, chaleur de combustion ...) des biodiésels et de leur mélange avec le gazole sont très rares dans la littérature. La connaissance de ces propriétés est importante dans les phases de design des étapes de séparation, stockage, transport et utilisation dans les moteurs.

Etant donné l'importance croissante du biodiesel et des mélanges diesel/biodiesel, il était justifié d'étudier les propriétés thermodynamiques de ces carburants. Par suite de leur extrême complexité, ces derniers ont été représentés par des composés modèles. L'objectif de cette thèse est donc de contribuer à la mise en place d'une base de données thermophysiques de constituants entrant dans la composition des biodiésels et du gazole et de leur mélange dans une large gamme de température.

Ce manuscrit est divisé en quatre chapitres. Le premier chapitre décrit en premier lieu, les principaux enjeux énergétiques tels que les enjeux économiques et les enjeux environnementaux, puis les perspectives des biocarburants (bioéthanol et biodiesel) comme source alternative et leurs principales filières. En fin de chapitre l'accent est mis sur les biodiesels constitués d'esters méthyliques d'acides gras (EMAG).

Le deuxième chapitre, aborde l'étude expérimentale des équilibres liquide-vapeur de six EMAG et de leur mélange binaire avec deux représentants du gazole (n-dodécane et n-tétradécane). Nous avons commencé cette étude par la détermination et la comparaison avec la littérature des pressions de vapeurs et des enthalpies de vaporisation des corps purs, ensuite nous présentons les isothermes d'équilibre liquide-vapeur ainsi que les enthalpies molaires d'excès G^E de neuf systèmes binaires.

Le troisième chapitre est dédié à la modélisation thermodynamique des isothermes liquide-vapeur des mélanges binaires étudiés. Les données expérimentales des équilibres liquide-vapeur des différents systèmes obtenues ont été corrélées en utilisant deux modèles de coefficients d'activité (NRTL et UNIQUAC).

Le quatrième chapitre concerne l'étude de la masse volumique en fonction de la composition et de la température des quatre systèmes binaires suivant :

- dodécanoate de méthyle (1) + dodécane (2)
- tetradécanoate de méthyle (1) + dodécane (2)
- dodécanoate de méthyle (1) + tetradécane (2)
- tetradécanoate de méthyle (1) + tetradécane (2)

Les volumes molaires d'excès qui s'en déduisent ont été ensuite corrélés par l'équation de Redlich-Kister. puis exploités par le modèle théorique de Prigogine-Flory-Patterson (PFP).

Le mémoire se termine par une conclusion générale.

CHAPITRE 1

ETUDE BIBLIOGRAPHYQUE SUR LES ENERGIES RENOUVLABLES

1 LES ENERGIES RENOUVELABLES – CAS DE L'ALGERIE

1.1 Les principaux enjeux énergétiques

1.1.1 Une demande énergétique mondiale en augmentation

D'après l'estimation de BP Statistical Review of World energy, juin 2011, la demande énergétique mondiale ne cesse de croitre. Elle est passée de 5000 Mtep (million de tonne d'équivalent pétrole) en 1970 à 12000 Mtep en 2010. Si cette tendance se maintient, la demande énergétique mondiale risque de doubler en 2050 en comparaison de 2010 [1, 2].

Source : BP Statistical Review of World Energy, juin 2011'

Figure 1.1 : Consommation mondiale d'énergie primaire par type d'énergie (Mtep)

Comme le montre la **Figure 1.1**, le pétrole est la première source d'énergie et satisfait 33% des besoins mondiaux, vient ensuite le charbon (27%) puis le gaz (21%). Les énergies renouvelables assurent 13% de la demande dont 10% pour l'hydraulique. Finalement le nucléaire ne couvre que 6% de la demande d'énergie primaire (énergie sans transformation).

Grâce à sa croissance économique lors des 30 dernières années, la Chine est devenue en 2010 le plus gros consommateur mondial d'énergie (20%) devant les États-Unis (19 %). Ils représentent à eux deux plus de 40% des émissions mondiales en dioxyde de carbone [3, 4]. Selon l'AIE (Agence internationale de l'énergie), sa consommation énergétique en 2035 pourrait même dépasser celle des Etats Unis de près de 70% [1, 5]. Il est donc important de disposer de réserves énergétiques fossiles conséquentes pour les décennies à venir ou à défaut de trouver des ressources énergétiques alternatives.

1.1.2 Les réserves énergétiques fossiles et leur impact sur le climat suite à leur utilisation

Les réserves énergétiques sont difficiles à évaluer pour deux raisons majeures: les facteurs politico-stratégiques qui empêchent les Etats de les dévoiler, leur évolution suite aux progrès techniques d'exploitation des gisements.

Selon l'AIE (World Energy Outlook 2003), la durée de vie des réserves ne serait plus que d'environ 30 ans pour le pétrole et 40 ans pour le gaz. L'épuisement des réserves ultimes se produirait au cours du prochain siècle. Il est donc impératif de trouver d'autres énergies alternatives d'autant plus que les énergies fossiles contribuent dans une large mesure au réchauffement climatique et à son dérèglement. En effet l'utilisation de ces combustibles engendre le rejet de gaz à effet de serre dans l'atmosphère dont le CO_2 . À l'horizon 2030, le transport et la production d'électricité seront les principaux émetteurs de CO_2 dans le monde. La part du transport devrait augmenter de 25% en 2030 et celle de la production d'électricité de 46% [5].

Les travaux du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat (GIEC) prévoient un réchauffement pouvant atteindre 6°C en moyenne à la surface du globe à l'horizon 2100 si le développement de nos activités industrielles est maintenu. L'impact de cette élévation de la température du globe augmenterait la fréquence et la puissance des phénomènes météorologiques extrêmes tels que les tempêtes tropicales, cyclones, sécheresse ...extinction de plusieurs espèces animales et végétales, élévation du niveau des océans, exode de nombreuses populations.

Devant cette catastrophe environnementale qui se profile, la communauté internationale, par l'intermédiaire de la Conférence Internationale du Climat (COP21 à Paris en 2015), a fixé un accord qui impose aux Etats signataires (195 pays signataires de cette Convention) une transition vers une économie et une politique mondiale écoresponsable afin de limiter la hausse des températures moyennes à 2°C. Cet accord prendra effet à partir de 2020.

L'enjeu climatique requiert donc de moins recourir aux énergies fossiles afin de réduire les émissions de CO₂. Cette réduction passe par plusieurs actions [6]:

- ✓ maîtrise de la demande d'énergie,
- ✓ amélioration du rendement énergétique durant la production et la conversion des énergies fossiles,
- ✓ captage et stockage géologique du CO₂ d'origine anthropique,

- remplacement progressif des énergies fossiles par des énergies contenant moins ou pas de carbone
- ✓ recours aux énergies renouvelables (géothermie, énergie éolienne, énergie solaire),
- ✓ utilisation des biocarburants.

Pour chacune de ces solutions, l'analyse du cycle de vie (**Figure 1.2**) doit être étudiée afin d'évaluer les impacts potentiels sur l'environnement d'un produit ou d'un service sur l'ensemble de son cycle de vie, de l'extraction des matières premières à l'élimination des déchets pour éviter les transferts de pollution d'une phase à l'autre, [7].

Figure 1.2: Cycle de vie d'un produit [7].

Parmi les solutions citées précédemment, nous avons choisi de nous focaliser sur la contribution de l'utilisation des biocarburants à la réduction du réchauffement climatique.

1.2 Carburants alternatifs ou biocarburants

Les biocarburants encore appelés «carburants verts » sont des carburants issus de matériaux organiques renouvelables et non fossiles. Leur production peut se faire à partir d'huile, d'alcool obtenu par fermentation alcoolique de sucres ou d'amidon hydrolysé, de carburants gazeux (dihydrogène ou méthane) obtenus à partir de la biomasse végétale ou animale ou de charbon de bois. L'essentiel des biocarburants actuellement produits provient de cultures d'oléagineux ou de composés glucidiques et sont connus sous l'appellation « agrocarburants ».

On distingue les biocarburants de première et de seconde génération. Cette appellation est utilisée pour différencier les carburants issus d'une agriculture concurrente à l'agriculture à finalité alimentaire, des carburants issus de source lignocellulosique (bois, feuilles, paille, etc.) [8]. Aux ressources précédemment évoquées il faut ajouter la biomasse algale (micro et macroalgues), encore au stade de la recherche, qui constituerait une voie très prometteuse de biocarburants dits de troisième génération. Le potentiel succès de cette filière repose sur la diversité des ressources algales existantes, le fait qu'elle s'affranchisse d'une emprise sur les sols cultivables, et qu'elle conduise potentiellement à des rendements importants en ressources convertissables.

Dans l'étude bibliographique qui suit nous développerons essentiellement la partie biocarburants substituts du diésel, les autres types de biocarburants seront évoqués plus brièvement.

1.2.1 Biocarburants de première génération

La première génération de biocarburants s'appuie sur deux filières issues de l'agriculture: une filière utilisant des oléagineux (le colza et de plus en plus l'huile de palme) et une autre utilisant les alcools en provenance des ressources glucidiques (betterave et canne à sucre principalement), (**Figure 1.3**) [9].

Figure 1.3: Biocarburants de première génération – filière classique [9].

Les biocarburants obtenus par le traitement des oléagineux sont des substituts du gazole tandis que ceux provenant des ressources glucidiques constituent une alternative à l'essence.

1.2.1.1 Biocarburants issus de ressources oléagineuses

A l'origine le moteur diesel a été conçu pour fonctionner avec de l'huile d'arachide. Cependant les huiles végétales non transformées n'ont pas les caractéristiques physicochimiques et thermophysiques adaptées aux moteurs diesels modernes. En effet prenons le cas de l'huile de colza, sa viscosité est dix fois supérieure à celle du gazole; de plus sa pression de vapeur est bien plus faible, **Tableau 1.1** [10].

	Densité (20°C)	Viscosité à 20°C (cSt)	Point de fusion (°C)	Point de trouble (°C)	Point éclair (°C)
Arachide	0,914	85	0/-3	9	258
Colza	0,916	77	0/-2	-11	320
Coprah	0,915	30-37	23/26	20-28	
Coton	0,921	73	2/-2	-1	243
Olive	0,914	80-95	0/-3		
Palme	0,915	95-106	23/50	31	280
Purghère	0,920	55			260
Soja	0,920	58-63	-20/-23	-4	330
Tournesol	0,925	55-61	-16/-18	-5	316

Tableau 1.1 : Caractéristiques physicochimiques de quelques huiles végétales

Il en résulte un « mauvais » fonctionnement des injecteurs qui produisent un spray constitué de particules de taille trop importante et ayant une pénétration trop faible dans la chambre de combustion. Cela engendre des dépôts charbonneux dans le cylindre et des encrassements importants des injecteurs par suite d'une combustion incomplète.

Plusieurs voies ont été explorées afin de remédier à la forte viscosité et faible volatilité des huiles :

- ✓ Préchauffage du carburant
- ✓ Dilution dans un diésel conventionnel
- ✓ Préparation de microémulsion par mélange d'une huile végétale, d'un ester et d'un dispersant (co-solvant) ou d'une huile végétale, d'un alcool et d'un surfactant, le tout avec ou sans gazole.

Utilisées indépendamment ou combinées, ces différentes méthodes n'ont pas abouti.

Les huiles végétales doivent donc être « transformées » chimiquement afin de les rendre moins visqueuses et plus volatiles.

1.2.1.2 Transestérification des huiles végétales

Les huiles végétales sont des triglycérides (trois fonctions ester). La méthode la plus courante de transformation chimique de ces triglycérides est la transéstérification. Cette opération, encore appelée alcoolyse consiste à obtenir trois esters méthyliques ou éthyliques d'huile végétale (respectivement EMHV et EEHV) et du glycérol par l'action d'un alcool à courte chaine tel que le méthanol ou l'éthanol, **Figure 1.4** :

Figure 1.4: Les trois réactions successives de la transestérification.

La transéstérification se fait en réalité en trois étapes. Les fonctions ester primaire sont transestérifiées en premier (1^{ère} et 2^{ème} étape), la fonction ester secondaire est transformée en dernier. Les trois réactions sont chimiquement équilibrées. Plusieurs types de catalyseurs peuvent être utilisés (acide, basique, enzymatique), en catalyse homogène ou hétérogène. La **Figure 1.5** résume les différentes étapes du procédé d'obtention du biodiesel [11]. L'origine de l'huile utilisée influence grandement les caractéristiques du biodiesel produit et détermine en partie son prix. De même sa teneur en acide gras libre (caractérisé par l'indice d'acidité) est un paramètre important qui influence la synthèse avec une nécessité d'un prétraitement d'autant plus poussé que l'indice d'acidité est élevé.

Figure 1.5: Les étapes d'obtention du biodiesel à partir d'oléagineux [11].

La production industrielle du biodiesel est actuellement bien maitrisée. Les procédés fonctionnant en continu permettent des capacités de production considérables (au moins 100 ktonne/an) et ont tendance à supplanter les procédés discontinus. Le procédé développé par l'IFPEN et commercialisé par Axens, **Figure 1.6** donne le schéma de principe. Il s'agit d'un procédé de catalyse homogène basique, le catalyseur (soude ou méthylate de sodium) est ajouté aux réactifs (huile+méthanol). La réaction a lieu généralement dans deux réacteurs placés en série de même capacité.

Figure 1.6:Schéma de principe d'un procédé en continu (Procédé Esterfip 1993 – Licence IFP).

Le temps de séjour est ajusté de manière à optimiser le taux de conversion. Le lavage à l'eau élimine les traces de catalyseur, de glycérine et de méthanol n'ayant pas réagi. La glycérine est récupérée par distillation après une purification supplémentaire, elle peut être utilisée dans de nombreuses applications chimiques (fabrication du polyuréthane, de peinture glycérophtalique, synthons pour synthèse d'éther, acétals, carbonates...). Après lavage, l'ester est séché sous pression réduite.

Selon l'origine de l'huile végétale la composition des EMHV (esters méthyliques d'huile végétale) est variable comme indiqué dans le **Tableau1.2**.

		palmiste	coprah	arachide afrique	arachide amérique du sud	tournesol standard	tournesol oléique	colza érucique	colza PRIMOR	soja	palme
C6:0	caproique	<0,8	<1								
C8:0	caprylique	2-5	6-10								
C10:0	caprique	3-5	5-10								
C12:0	laurique	44-51	29-54								<0,2
C14:0	myristique	15-17	15-23							<0,2	1-2
C15:0											
C16:0	palmitique	7-10	6-11	8-13	10-13	5-7	3	3-4	4,5	8-13	43-46
C16:1	palmitoléique	<0,1	<2	<0,3	<0,1	<0,4		-	0,6	<0,2	<0,3
C17:0			-	<0,1	<0,1	<0,1		-			-
C18:0	stéarique	2-3	1-4	3-4	1-4	4-6	5	1-2	1,5	2-5	4-6
C18:1	oléique	12-18	4-11	48-66	35-41	15-25	83	9-16	60,5	17-26	37-41
C18:2	linoléique	1-4	1-2	14-28	35-41	62-70	9	11-16	21,5	50-62	9-12
C18:3	linolénique	<0,7	<0,1	<0,3	<0,3	<0,2	traces	7-12	10,3	4-10	<0,4
C20:0	arachidonique	<0,3	<0,2	1-2	1-2	<1		-		<1,2	<0,4
C20:1	éicosénoïque ou gadoléique	<0,5	<0,2	1-2	1-2	<0,5		7-13	0,9	<0,4	
C22:0	béhénique			3-5	3-5	<1		41-52		<0,5	
C22:1	érucique										
C24:0				1-2	1-2						
indice de saponification						188-194		182-193		189-195	190-209

Tableau1.2 : Composition (% masse) en EMHV de quelques huiles végétales [12].

La chaîne aliphatique de l'acide gras correspondant à l'ester comporte un nombre d'atomes de carbone compris entre six et vingt-quatre avec parfois une insaturation de type cis en position 6, 9, 12 ou 15 (le carbone carboxylique étant noté 1). Cette insaturation est source d'instabilité au stockage de longue durée. En effet elle conduit à une lente oxydation qui génère des acides et des dépôts corrosifs pouvant endommager les pompes d'alimentation et le circuit d'injection des moteurs diesel. Elle peut être retardée par l'ajout d'antioxydant (tert-butylhydroquinone, amines stériquement encombrées...).

L'indice de cétane moyen des différents EMHV est très voisin de celui du diesel du pétrole. Rappelons que l'indice de cétane est un nombre adimensionnel caractérisant l'aptitude du carburant à s'enflammer rapidement à sa température d'auto inflammation. Pour avoir une « bonne » combustion dans le moteur diesel, il faut un indice élevé. Cet indice varie cependant fortement selon la nature de l'acide gras, par exemple le palmitate et le stéarate de méthyle ont un indice de cétane particulièrement élevé, respectivement 85.9 et 101, alors que le linoléate de méthyle a un indice très bas (27.2) [13].

Les caractéristiques physicochimiques des différents biodiesels sont bien adaptées à une utilisation moteur, en particulier leur viscosité. Elle est environ dix fois plus faible que celle des huiles non modifiées et leur volatilité est bien plus grande (intervalle de distillation compris entre 320°C et 350°C, voisin des fractions lourdes du gazole), **Tableau1.3** [14].

Huile	v (cSt)	ρ (kg.m ³)	Is	Ii	Ia	Ic	PC ($MJ.kg^{-1}$)
Végétale							
Soja	4.08	0.885	201	138.7	0.15	52	40
Colza	4.3-5.83	0.88-0.888	-	-	0.25-0.45	49-50	45
Tournesol	4.9	0.88	200	142.7	0.24	49	45.3
Palme	4.42	0.86-0.9	207	60.07	0.08	62	34
Arachide	4.42	0.883	200	67.45	-	54	40.1
Maïs	3.39	0.88-0.89	202	120.3	-	58-59	45
Camelina	6.12-7	0.882-0.888	-	152-157	0.08-0.52	-	-
Canola	3.53	0.88-0.9	182	103.8	-	56	45
Coton	4.07	0.875	204	104.7	0.16	54	45
Pépin de courge	4.41	0.884	202	115	0.48	-	38
Jatropha	4.78	0.864	202	108.4	0.496	61-63	40-42
Karanj	4.8	0.883	-	-	0.62	60-61	42

Tableau1.3 : Propriétés physico-chimiques de différents biodiesels en fonction de l'huile utilisée pour la synthèse [14].

v: viscosité cinématique à 40°C, ρ : masse volumique, Is : indice de saponification, Ii : indice d'iode, Ia : indice d'acide, Ic : indice de cétane, PC : pouvoir calorifique.

En revanche le pouvoir calorifique, PC, des biodiesels est inférieur de 10 à 15% à celui du gazole. En conséquence, pour la même distance parcourue la consommation en EMHV est supérieure à celle du gazole.

En dehors des caractéristiques que nous venons d'évoquer, l'utilisation moteur des biodiesels présente les avantages supplémentaires suivants :

- Teneur en soufre et en polyaromatiques quasiment nulle (0.001% massique pour le soufre),
- Diminution considérable des émissions de suie,
- Bilan CO₂ nul puisque les biodiesels émettent la même quantité de CO₂ que les plantes ont fixé pour leur croissance,
- Bon pouvoir lubrifiant, ce qui augmente la durée de vie des moteurs.

Dans la pratique le biodiesel est généralement mélangé à des teneurs de 5 à 10% au gazole d'origine fossile sans nécessité de modifier les réglages du moteur. Un mélange à 7% est distribué en France alors que l'Allemagne et l'Autriche ont choisi de distribuer du biodiesel pur utilisable uniquement aux véhicules ayant un moteur adapté. Pour ce type de carburant, la norme européenne EN 14214 fixe à 96.5% molaire la teneur minimale en esters et à 12% celle du linoléate de méthyle. Cette teneur correspond à celle du EMHV issu du colza érucique dont l'huile est impropre à la consommation humaine. L'acide érucique ou acide 13-dococénoïque est un acide gras monoinsaturé. Cette insaturation est comme nous

l'avons indiqué, source d'instabilité ce qui justifie l'existence de la norme EN 14214 et la détermination de l'indice d'iode et du test de stabilité à l'oxydation.

En Europe la culture du colza est majoritaire devant celle du soja et du tournesol alors qu'aux USA et en Amérique du sud, c'est plutôt le soja qui est majoritaire. En Indonésie, Malaisie et Thailande, c'est l'huile de palme qui est très majoritaire.

Pour tous ces pays en 2010, la part de l'utilisation d'huile végétale en tant que biodiesel représentait 10% au niveau mondial, avec de fortes disparités selon la nation. D'ici 2020 elle passera à 20%, **Figure 1.7**.

Figure 1.7 : Huile végétale utilisée dans la production de biodiesel (*Source : perspectives agricoles de l'OCDE et de FAO 2011-2020*)

1.2.1.3 Biocarburants issus de ressources glucidiques

La famille des glucides comporte les glucides « simples » ou oses tels que le glucose, saccharose, fructose présents dans la betterave, canne à sucre, fruits...et les glucides « complexes » assemblages de plusieurs glucides que l'on trouve dans les matières amylacées (maïs, blé, pomme de terre...). L'amidon tiré des composés amylacés est tout d'abord hydrolysé en sucres par l'action d'enzymes (amylase et amyloglucosidases).

Les sucres ainsi obtenus et ceux provenant directement des plantes sucrières produisent de l'éthanol par fermentation, **Figure1.8**.

Figure1.8 : Schéma de la filière bioéthanol (*Source : ANFA, Service de l'automobile et de la mobilité. La filière bioéthanol, Édition 2009*).

La distillation du jus de fermentation donne de l'éthanol à 95% environ (composition azéotropique éthanol/eau). Son utilisation en tant que carburant nécessite une élimination plus importante de l'eau. La méthode la plus utilisée est la pervaporation.

La production mondiale en bioéthanol était de 37 Mtep (million tonne équivalent pétrole) en 2006. Les principaux producteurs sont le Brésil et les USA, **Figure 1.9**. L'essentiel de la production (80%) est utilisé comme carburant, le reste approvisionne les secteurs alimentaire, chimique, pharmaceutique.

Figure 1.9 : Production mondiale de bioéthanol en 2006. (*Source : ANFA, La filière bioéthanol, Édition 2009*).

Le **Tableau 1.4** permet de comparer les caractéristiques de l'éthanol à celle de l'essence. On peut noter un très bon indice d'octane autorisant de meilleurs rendements de combustion et un apport H/C plus important conduisant à une émission de CO_2 moindre. Par contre le pouvoir calorifique est plus faible, ce qui entraîne une consommation plus importante pour un même niveau de puissance.

	Éthanol	Essence (standard)
Formule chimique	C ₂ H ₅ OH	C7H16
Rapport H/C	3	2,29
Masse molaire (g/mol)	46,07	102,5
Densité (kg/m³)	794	735-760
Chaleur latente de vaporisation (kJ/kg)	854	289
Distillation (°C)	78,4	30-190
PCI (pouvoir calorifique inférieur) massique (kJ/kg)	26805	42690
PCI volumique (kJ/L)	21285	32020
Rapport stœchiométrique	8,95	14,4
RON (indice d'octane recherché)	111	95
MON (indice d'octane moteur)	92	85

Tableau 1.4 : Comparaison des propriétés de l'éthanol et de l'essence(Source : ANFA, La filière bioéthanol, Édition 2009)

L'éthanol peut être utilisé pur ou mélangé à l'essence. Son utilisation à l'état pur nécessite une motorisation adaptée (il y a cependant des problèmes de démarrage à froid des véhicules). Cette utilisation a lieu dans les pays chauds à forte capacité de production (Brésil principalement). En Europe l'éthanol est mélangé à l'essence entre 5 et 10%, selon le pays.

Ce mélange est cependant sensible à la présence d'eau pouvant entraîner une démixtion. En France et en Espagne, l'éthanol est principalement transformé en éther éthyl-tertiobutyle, ETBE, par réaction avec l'isobutène issu du raffinage de pétrole. L'ETBE présente sur l'éthanol l'avantage d'avoir des propriétés énergétiques plus proches de l'essence et d'être insensible à l'eau, supprimant ainsi les risques de démixtion. L'ETBE est incorporé à 15% dans l'essence.

1.2.2 Biocarburants de deuxième génération

Les biocarburants de deuxième génération sont obtenus à partir de la biomasse lignocellulosique constituée de résidus agricoles et forestiers (bois, paille, fourrage...), de cultures dédiées à croissance rapide ou des sous-produits de transformation.

1.2.2.1 La biomasse lignocellulosique

La matière lignocellulosique constitue les parois des cellules végétales. Elle est constituée principalement de polysaccharides de composition massique variable selon l'espèce végétale :

- Cellulose 40-60%,
- Hémicellulose 10-30%,
- Lignine 20-25%

La cellulose est le constituant du squelette de la paroi cellulaire. L'hémicellulose assure la cohésion de la structure végétale et la lignine rigidifie l'ensemble, **Figure 1.10**.

Figure 1.10 : Constitution de la biomasse (*Source : CEA-IRAMIS, Une nouvelle stratégie pour récupérer des composés aromatiques à partir de déchets de bois, 2015*).

La cellulose est un polysaccharide très abondant, majoritairement issue du bois, dont la production annuelle s'élève à 50 milliards de tonnes [15]. Elle est principalement utilisée comme matière première dans la fabrication du papier. C'est un polymère linéaire constitué par la répétition du motif cellobiose constitué de 2 groupements anhydroglucopyranose, **Figure 1.11**. La présence de groupement OH permet l'établissement de liaisons Hydrogène inter-chaîne ce qui crée une structure fibreuse.

Figure 1.11 : Structure constitutive de la cellulose [16].

La structure de l'hémicellulose est plus complexe. Elle est constituée de différents monosaccharides (pentoses et hexoses) dont quelques exemples sont donnés ci-dessous, **Figure 1.12**:

Figure 1.12 : Exemples d'oses

La lignine a une constitution chimique totalement différente. C'est un polymère amorphe résultant de l'assemblage de motifs phénoliques, principalement des trois monolignols représentés **Figure 1.13**.

Figure 1.13: Exemples de 3 monolignols.

En plus d'assurer la rigidité de l'édifice lignocellulosique, la lignine a un rôle protecteur de la plante vis-à-vis des attaques biologiques.

On voit ainsi que la matière lignocellulosique a une constitution complexe et une grande stabilité chimique qu'il sera difficile de « dépolymériser ».

1.2.2.2 Transformation de la biomasse lignocellulosique en carburant

Cette transformation peut se faire selon 2 voies : la voie biochimique et la filière thermochimique. Ces voies font l'objet d'un grand nombre de projets de recherche et développement. A ce jour différends pilotes de démonstration existent pour ces deux filières mais l'application industrielle à grande échelle n'a pas encore débuté par suite des difficultés techniques et du coût de production élevé.

✓ Production de biocarburant par la filière thermochimique

Selon le but recherché, la conversion thermochimique de la biomasse peut se faire selon trois méthodes (Figure 1.14) : combustion, gazéification, pyrolyse.

Figure 1.14 : Conversion thermochimique de la biomasse [17].

La gazéification est la voie qui favorise la production de matières volatiles (hydrocarbures gazeux et liquides). Elle se fait en réalité en deux étapes : la pyrolyse suivie de la gazéification (**Figure 1.15**). La pyrolyse est réalisée après séchage de la matière première et se fait à température modérée (500 à 600°C). La gazéification proprement dite a lieu vers 900-1000°C et nécessite l'ajout d'un oxydant : air, oxygène, vapeur d'eau. Elle transforme les produits de pyrolyse en gaz de synthèse (mélange CO/H₂).

Ce gaz de synthèse ou syngaz est ensuite soumis à la synthèse Fischer-Tropsch et fourni un carburant liquide synthétique de type diesel majoritairement constitué d'alcanes linéaires dont la chaîne peut aller jusqu'à 100 atomes de carbone voire plus :

$$(2n+1)H_2 + n CO \rightarrow C_n H_{2n+2} + n H_2O$$

La technologie d'obtention de biocarburant par la filière thermochimique n'est pas encore mature. Les verrous à lever sont l'amélioration de la qualité du gaz de synthèse car le procédé Fischer-Tropsch nécessite un gaz à faible teneur en goudrons (environ 0.1 mg/Nm³) et parallèlement l'amélioration du catalyseur pour augmenter sa durée de vie.

✓ Production de biocarburant par la filière biochimique

La conversion biochimique consiste à hydrolyser les polysaccharides constituant la biomasse lignocellulosique puis à mettre en fermentation les sucres qui en résultent.

Dans la matière lignocellulosique, uniquement la cellulose et l'hémicellulose sont des polysaccharides, sources potentielles de sucres fermentescibles en alcools. De par sa constitution, la lignine ne peut pas générer des sucres, **Figure 1.16**.

Figure 1.16 : composition de la biomasse lignocellulosique [19].

Il existe deux techniques d'hydrolyse : acide et enzymatique. Toutes les deux nécessitent un prétraitement de la matière première permettant son « nettoyage » et ayant un effet destructeur de sa structure, favorisant l'hydrolyse :
✓ Prétraitement de la biomasse :

- Le prétraitement à l'eau chaude sous pression (200 à 230°C) durant une heure a l'avantage de ne pas générer d'inhibiteur de fermentation.
- Le prétraitement avec l'acide sulfurique ou chlorhydrique dilué (0.5 à 3% massique par rapport à la matière sèche) est efficace pour son rôle destructeur de l'édifice lignocellulosique mais génère des inhibiteurs d'enzymes. Malgré tout, les rendements pour l'hydrolyse enzymatique peuvent atteindre 90%.

✓ Hydrolyse acide:

Elle est réalisée en deux étapes en utilisant de l'acide sulfurique dilué (H_2SO_4 1%) :

- La première étape se fait à température modérée. Elle optimise le rendement pour l'hémicellulose, constituée de sucres en C5 et C6, facilement hydrolysable.
- La deuxième étape conduite à température plus élevée transforme la cellulose en hexoses.

Après neutralisation, les sucres obtenus sont mis en fermentation. Dans les deux cas, la lignine est un sous-produit dont le seul mode de valorisation actuel (peu rentable) est son utilisation en tant que combustible.

✓ Hydrolyse enzymatique:

C'est une option particulièrement attrayante de génération des sucres à partir de la biomasse lignocellulosique. Cette voie fait l'objet depuis une quinzaine d'années d'intenses travaux de recherche et développement.

La **Figure 1.17**, donne un exemple de procédé type d'hydrolyse enzymatique. Le prétraitement à la vapeur d'eau sous pression ou à l'acide dégrade la matière et hydrolyse l'hémicellulose en sucres C5 et C6. L'hydrolyse enzymatique a lieu dans une deuxième étape et dégrade la cellulose en hexoses. Comme dans les cas de l'hydrolyse, la lignine est un sous-produit difficile à valoriser autrement que par combustion.

Figure 1.17: Procédé d'hydrolyse enzymatique[19].

1.3 Les ressources énergétiques en Algérie

L'Algérie produit environ 80 milliards de mètres cubes de gaz par an et se place ainsi au dixième rang mondial des pays producteurs, **Tableau 1.5**.

Rang	Pays Producteurs	Montant Gaz Naturel (milliards m ³)
1	Etats-Unis	611.0
2	Russie	588.9
3	Canada	159.8
4	Iran	138.5
5	Qatar	116.7
6	Norvège	106.4
7	Chine	96.8
8	Arabie Saoudite	83.9
9	Indonésie	82.0
10	Algérie	80.4
11	Pays-Bas	70.5
12	Malaisie	66.5
13	Egypte	61.3
14	Ouzbékistan	59.1
15	Royaume-Uni	57.1

 Tableau 1.5 : Les pays producteurs de gaz naturel [20]

L'Algérie exporte son gaz vers les pays européens en particulier vers l'Espagne et l'Italie grâce au gazoduc Transmed. Le gaz algérien représente 9% des approvisionnements de l'Union européenne, derrière la Russie (24%) et la Norvège (19%). Au total les hydrocarbures, pétrole et gaz, constituent 98% des exportations algériennes, 40 à 45% du Produit Intérieur Brut et plus des deux tiers de ses recettes budgétaires.

Mais l'Algérie est aussi un pays consommateur d'hydrocarbures. Selon le «Statistical Review of World Energy» publié par le groupe britannique British Petroleum, elle se classe à la troisième place des pays consommateurs de pétrole en Afrique (après l'Egypte et l'Afrique du Sud). En effet, pour répondre aux besoins croissants de sa population, l'Algérie utilise environ 40% de sa production énergétique (pétrole et gaz) pour la production d'électricité et pour les transports routiers. Et d'après Mr *Kamel Ait Cherif* (16 juil. 2017), expert en économie d'énergie, cette demande nationale d'énergie est en progression due à la croissance démographique ainsi qu'à l'élévation du niveau de vie de la population, **Figure 1.18** [21].

On remarque que la demande en diesel progresse alors que l'offre en carburant stagne depuis 2014.

En Algérie, c'est le secteur des transports qui représente l'une des premières sources de pollution, il est responsable d'un quart des émissions de gaz à effet (14 millions de tonnes équivalent CO₂, soit un taux de 46% des émissions de gaz à effet de serre [22].

Devant ce constat, l'Algérie est aujourd'hui contrainte de diversifier ses ressources énergétiques et de développer les énergies renouvelables [23], d'autant plus qu'elle dispose

d'un potentiel considérable d'énergies renouvelables : le solaire avec une durée d'ensoleillement entre 2700 et 3600 h/an, l'éolien avec une vitesse moyenne du vent comprise entre 6 à 11 m/s et la biomasse/déchets agricoles [24].

Parmi ces différentes énergies, les biocarburants de deuxième génération produits à partir de cellulose et de déchets seraient judicieux à développer puisqu'ils répondent à la demande du secteur du transport, secteur le plus polluant en Algérie.

1.3.1 La biomasse en Algérie

Il n'existe que très peu de données concernant la disponibilité de la biomasse en Algérie. Dans un premier temps, un inventaire de la biomasse disponible en Algérie doit être établi avant la mise en place d'un plan de développement et de valorisation énergétique.

Il est évident qu'il faudra plutôt utiliser les déchets agricoles (exemple rebus de dattes, pailles, tiges, feuilles...), les déchets de l'industrie agroalimentaire...c'est-à-dire utiliser des ressources en biomasse n'occupant pas les terres destinées à des cultures alimentaires et ne demandant pas une quantité importante d'eau.

Ces dernières années, les pays africains se sont particulièrement intéressés à des plantes à croissance rapide ne rentrant pas en compétition avec les cultures alimentaires. On peut citer le miscanthus (ou herbe à éléphant), le jatropha curcas ou le pistacia lentiscus.

Le miscanthus, **Figure 1.19**, est une plante qui peut atteindre 4 mètres de hauteur. Elle provient d'Asie mais pousse bien en Europe du sud et Afrique australe. Elle résiste très bien aux maladies mais ne supporte pas le froid, une température de -10 degrés Celsius pouvant lui être fatale. Par an, il est possible de produire entre 12 et 25 tonnes de matière sèche par hectare.

Figure 1.19 : Miscanthus (Source: Great Lakes Bioenergy Research Center, Wisconsin, USA)

Ces dernières années, une autre plante appelée Jatropha Curcas (**Figure 1.20**) intéresse particulièrement les pays africains. Elle pousse dans des terres semi-arides impropres à l'agriculture. L'arbuste sert de clôture pour les animaux dans les villages d'Afrique de l'Ouest. Ses fruits toxiques pour les animaux et pour l'homme sont couramment utilisés dans la médecine traditionnelle et servent également à fabriquer du savon. Dans les années 2010, on s'est aperçu que ses graines, très riches en huile, étaient faciles à transformer en carburant.

Le Jatropha Curcas ou pourghère existe dans différents pays africains dont l'Algérie. Les médias algériens citent une entreprise locale nommée « Algérie Biocarburant » qui serait productrice de biodiesel à base d'huile de Jatropha Curcas mais aucune information sérieuse sur cette entreprise n'a été trouvée. C'est une plante qui résiste à la sécheresse mais malheureusement elle a une faible productivité.

Figure 1.20 : Jatropha curcas, un carburant d'avenir pour le Sud.[25].

Un autre arbuste est commun en Algérie. Il s'agit du pistachier lentisque (Pistacia lentiscus), différend de l'arbre à pistache comestible. Cet arbuste est répandu dans les pays au climat méditerranéen, il pourrait être utilisé comme source de matière ligno-cellulosique.

Ainsi nous voyons que l'Algérie a la possibilité de développer la production de biocarburants selon les deux filières dites de 1^{ère} et 2^{ème} génération:

 A partir de ressources oléagineuses n'entrant pas en compétition avec les besoins alimentaires telles que les déchets agro-alimentaires (huiles alimentaires usagées, huile de friture, graisse animale, huile de poisson usagée...). De même la culture du Jatropha Curcas qui se « contente » de terres relativement arides peu favorables à une exploitation agricole classique, serait une voie à développer.

L'intérêt de l'obtention du biodiesel selon la filière de première génération est que la technologie est actuellement bien établie et parfaitement maitrisée permettant ainsi une application « immédiate ».

A partir de ressources lignocellulosique déjà existantes (déchets agricoles, taillis...) ou pouvant être développées (culture du miscanthus, du pistachier lentisque....). Cependant la technologie de préparation des biodiésels de deuxième génération n'est pas encore totalement mature, des progrès doivent encore être faits pour une application industrielle à grande échelle. En effet cette technique peine à dépasser le stade expérimental par suite de problèmes récurrents : technologie difficile à maitriser, coût de production élevé...

Compte tenu de l'ensoleillement du pays, la culture de microalgues dédiées aux applications biodiesel (i.e. chlorella vulgaris qui produit des triglycérides avec chaine aliphatique en C18) pourrait être favorablement envisagée dans un avenir plus lointain.

1.4 Conclusion et contexte

L'étude précédente montre clairement la nécessité pour l'Algérie de développer le plus rapidement possible la production de biocarburants afin :

- De participer, comme toutes les nations « responsables » à la lutte contre le réchauffement climatique.
- De satisfaire la demande nationale croissante en carburant sans augmenter l'empreinte carbone.

Ce sont les biocarburants de première génération qui doivent être ciblés à très court terme puisque leur technologie de production est parfaitement maitrisée, en privilégiant ceux issus de ressources oléagineuses de « récupération » ou n'entrant pas en compétition avec les besoins alimentaires (par exemple développement de la culture du Jatropha Curcas sur des terres mal adaptées aux cultures vivrières)

Les biocarburants ainsi obtenus devant être utilisés de préférence en mélange avec le diesel conventionnel, disposer de données thermodynamiques caractérisant ces mélanges est une nécessité.

Compte tenu de l'extrême complexité des biodiesels de synthèse et du gazole, il est impératif de simplifier l'étude en représentant le biodiesel par différents méthyl esters à longue chaine et le gazole par des n-paraffines en C12 ou C14. C'est pour cette raison que la thèse est axée sur l'étude thermodynamique des mélanges binaires (méthyl-ester d'acides gras + n-paraffines). Les paramètres d'interaction binaire qui peuvent s'en déduire permettent ensuite de prévoir les propriétés des multi constituants correspondants.

CHAPITRE 2

ETUDE EXPERIMENTALE DES EQUILIBBRES LIQUIDE-VAPEUR DES MELANGES ESTER METHYLIQUE D'ACIDES GRAS-ALCANE

2 ETUDE EXPERIMENTALE DES EQUILIBRES LIQUIDE-VAPEUR

2.1 Introduction

Les données expérimentales d'équilibres liquide-vapeur des corps purs ou des mélanges dans le domaine des basses pressions (entre 1 Pa et 1 kPa) sont souvent entachées d'erreurs ou non disponibles dans la littérature, or des données précises sont nécessaires pour mettre au point un modèle thermodynamique fiable permettant la conception et/ou l'optimisation d'un procédé industriel.

Grâce à l'appareil statique disponible au laboratoire (UMR 5615) [26] et aux différents processus utilisés pour la détermination des équilibres de phases, l'acquisition de données fiables a été obtenue pour huit corps purs et neuf mélanges binaires.

Dans ce chapitre, nous décrirons l'appareil statique utilisé au cours de ce travail, les procédures de dégazage et de détermination des pressions de vapeur des corps purs et des mélanges, l'ajustement des données expérimentales par l'équation d'Antoine et pour les binaires, l'ajustement par l'équation de Redlich-Kister en utilisant la méthode de Barker. La comparaison des mesures expérimentales avec celles de la littérature sera également effectuée.

2.2 Description de l'appareil statique

Parmi les méthodes développées pour l'étude des équilibres liquide-vapeur des corps purs ou des mélanges, la méthode statique permet une détermination rapide et précise de la pression (P), la température (T) et la composition de la phase liquide (x).

L'appareil statique que nous avons utilisé est représenté dans la **Figure 2.1**. Il est équipé de deux capteurs de pression différentiels : un capteur type MKS (modèle 616 A.) très sensible et un capteur de pression Rosemount (Modèle 1151 DPE 22S2, USA) utilisé uniquement lors de mesures de pression supérieure à 1300 Pa. Le capteur MKS est relié à la cellule d'équilibre qui contient l'échantillon. Cette dernière est équipée d'un système d'agitation à déplacement alternatif vertical par entrainement magnétique qui assure une bonne homogénéité du liquide.

L'appareil possède plusieurs vannes haut-vide qui permettent selon leur ouverture/fermeture de purger la vapeur après mesure ou d'envoyer la vapeur vers le capteur de mesure. Pour terminer, l'appareil possède un système de pompage comportant une pompe primaire à palettes couplée en série avec une pompe à diffusion, qui assure un vide résiduel dans l'appareil de l'ordre de 10⁻⁴ Pa. Deux pièges à azote liquide empêchent la remontée d'huile provenant de la pompe vers les canalisations et le capteur MKS. L'ensemble des

canalisations, des vannes et le capteur de pression MKS sont placés dans une boite thermorégulée (g) dont la température (généralement comprise entre 100 et 200°C) est supérieure d'au moins de 20°C à celle de la cellule de mesure afin d'éviter tout risque de condensation des vapeurs.

Figure 2.1: Appareil statique « basse pression » pour mesure de la pression de vapeur (a): cellule de mesure ; (b) : vanne ; (c) : flexible ; (d) : Capteur de pression Rosemount ; (e): Piège à azote liquide ; (f) : pompes pour vide poussé ; (g) : enceinte thermorégulée ; M : capteur de pression différentielle (MKS) avec P1, chambre de mesure et P2, chambre de référence.

Le principe de la mesure de pression de vapeur consiste à envoyer la vapeur de l'échantillon contenu dans la cellule vers le côté mesure du capteur (P1) sachant que le côté référence (P2) est maintenu sous vide grâce au système de pompage.

Lorsque les pressions mesurées dépassent 1,3 kPa, de l'air est introduit du côté référence du capteur MKS. Le capteur de pression Rosemount est alors utilisé pour une mesure précise de la pression de l'air introduit. Ainsi la gamme de pression mesurable peut atteindre 200 kPa.

Cependant avant toute mesure d'équilibre liquide vapeur, il est impératif de dégazer l'échantillon à étudier : corps pur ou mélange. Dans ce but un système de dégazage a été utilisé.

2.3 Description du système de dégazage

Pour mesurer de faibles pressions de vapeur, il est nécessaire de procéder au dégazage de l'échantillon c'est-à-dire à l'évacuation de l'air et éventuellement des impuretés volatiles dissouts dans le liquide. Un dispositif de dégazage couplé à la cellule d'équilibre liquide-vapeur a été utilisé (**Figure 2.2**).

Figure 2.2: Système de dégazage : A : ampoule de préparation de mélange ; B : Réfrigérant alimenté en eau glacée ; C : ampoule de dégazage ; D : soudure verre-métal chauffée ; E : cellule de mesure ; F: agitateur magnétique ; G : bain thermostaté ; V1 et V3:Vannes ; V2 : électrovanne.

Le corps pur ou le mélange est introduit dans l'ampoule de préparation (A). Dans le cas du mélange, ce dernier est préparé par pesée. L'ensemble de l'appareil, système de dégazage compris, est ensuite soumis à un pompage pendant toute la nuit.

Le liquide est ensuite transféré dans l'ampoule de dégazage en ouvrant la vanne V1 et fermant V3. Le dégazage consiste à porter le liquide à ébullition sous un vide primaire avec reflux total grâce à l'ouverture temporisée de l'électrovanne V2 qui permet l'évacuation intermittente de l'air issu du dégazage. Le réfrigérant (B) minimise la perte de produit et l'évolution de la composition du mélange.

Une fois le dégazage terminé, l'ouverture de la vanne V3 permet l'introduction de l'échantillon de liquide dégazé dans la cellule d'équilibre liquide-vapeur.

La parfaite maitrise du dégazage est primordiale pour l'obtention de mesures fiables.

2.4 Etalonnage des capteurs de pression

Le *n*-décane a été sélectionné pour vérifier l'étalonnage du capteur de pression MKS qui a préalablement subi un étalonnage absolu en utilisant un manomètre en U. Le choix de cet alcane est justifié par sa pureté, sa volatilité qui correspond au domaine de mesure de l'appareil statique et par l'existence des données de comparaison disponibles dans la littérature.

Comme la réponse du capteur de pression MKS dépend de la température, le n-décane a été étudié à deux températures du capteur : 110°C et 200°C. Les données obtenues par Viton [27], ont été utilisées comme valeurs de référence, **Tableaux A1. 1-A1. 2** (Annexe 1). Aux incertitudes près, nos valeurs expérimentales sont en bon accord avec celles de Viton.

Le capteur Rosemount a été étalonné au moyen d'un capteur MKS absolu, lui-même étalonné par le constructeur. L'étalonnage a été contrôlé en mesurant la pression de vapeur de l'eau pure. Les résultats sont en très bon accord avec des précédentes mesures réalisées au laboratoire [26].

2.5 Les incertitudes de mesure

Selon le domaine de pression, l'incertitude composée élargie Uc des mesures (avec un facteur d'élargissement k = 2 pour un intervalle de confiance de 0.95) est estimée à :

- Uc (P/Pa) = (0,1 Pa + 0,03 * P) pour des pressions P mesurées $\leq 6\ 600\ Pa$
- Uc(P/Pa) = (0,01 * P) pour des pressions P dont l'intervalle de mesure est compris entre 600 < P/Pa < 1300
- Uc(P/Pa) = (0,003 * P) pour des pressions $P \ge 1300$ Pa
- Pour l'intervalle de température compris entre 253,15 et 463,15, l'incertitude absolue est de $u(T) = \pm 0,02$ K.

La température est mesurée à l'aide d'un thermocouple cuivre-constantan. Ce dernier a été étalonné en utilisant un thermomètre à résistance de platine (préalablement étalonné par NBS) et connecté à un pont de Mueller type G2 de précision $10^{-4}\Omega$. Les températures sont reliées à l'échelle internationale de température ITS 90.

2.6 Etude des corps purs

Nous avons choisi d'étudier deux alcanes, le n-dodécane et le n-tétradécane, et une série homologue constituée de six esters allant de l'hexanoate de méthyle à l'hexadécanote de méthyle. Les deux hydrocarbures sont représentatifs du gazole. Les esters sélectionnés sont des constituants des biodiésels. Ces derniers sont principalement constitués d'esters méthyliques saturés, plus stables que les esters méthyliques insaturés qui s'oxydent plus facilement.

La pureté des produits, leur provenance et le numéro de CAS sont reportés dans le **Tableau 2.1**.

Nom	CAS Nº	Source	Pureté fournisseur (en fraction massique)	Pureté GC
hexanoate de méthyle	106-70-7	Sigma Aldrich	0.99	0.998
octanoate de méthyle	111-11-5	Sigma Aldrich	0.99	0.997
décanoate de méthyle	110-42-9	Sigma Aldrich	0.99	0.998
dodécanoate de méthyle	111-82-0	Sigma Aldrich	\geq 0.98	0.995
tétradécanoate de méthyle	124-10-7	Sigma Aldrich	\geq 0.98	0.995
hexadécanoate de méthyle	112-39-0	Sigma Aldrich	≥ 0.98	0.995
n-Dodécane	112-40-3	Sigma Aldrich	0.99	0.999
n-Tétradécane	629-59-4	Sigma Aldrich	0.99	0.999

 Tableau 2.1: Caractéristiques des composés étudiés.

2.6.1 Mesure des pressions de vapeurs des corps purs et comparaison avec la littérature

Les pressions de vapeur expérimentales ont été déterminées en utilisant l'appareil statique décrit précédemment et après dégazage de la solution.

Les données ont ensuite été ajustées par la méthode des moindres carrés itérative à l'aide de l'équation d'Antoine, **l'équation 2.1** :

$$\log_{10} P/Pa = A - \frac{B}{C + T/K}$$
(2.1)

L'écart moyen de lissage obtenu est défini par l'équation 2.2.

$$\left|\frac{\Delta P}{P}\right|_{moy} = \frac{100}{n} \sum_{n=1}^{n} \left|\frac{P_{exp} - P_{cal}}{P_{exp}}\right|$$
(2.2)

P_{exp} : Pression expérimentale, P_{cal}: Pression calculée, n : nombre de points expérimentaux.

2.6.1.1 Etude des alcanes

Le n-dodécane a été étudié entre -10°C et 180°C et le n-tétradécane a été étudié entre 80°C et 180°C, **Tableau 2.2**.

Tableau 2.2: Pressions de vapeur expérimentales du n-dodécane et du n-tétradécane

T/K	P _{exp} /Pa	T/K	P _{exp} /Pa
n-do	odécane	n-tétra	décane
262.87	0.63	351.75	124
272.92	1.9	361.80	232
282.87	4.86	361.89	232
292.97	11.8	371.91	422
303.04	27.2	381.93	717
313.01	58.3	382.07	716
322.97	118	391.95	1186
333.04	227	392.00	1186
343.06	417	402.74	1947
343.06	415	412.69	3029
353.07	730	422.55	4545
362.55	1211	432.39	6661
372.49	1995	442.49	9461
382.58	3133	452.49	13460
392.7	4812		
402.69	7167		
402.69	7169		
412.71	10457		
412.71	10457		
422.61	14864		

T/K	P _{exp} /Pa	T/K	P _{exp} /Pa
n-dod	lécane	n-tétrac	lécane
432.58	20777		
432.58	20782		
442.45	28435		
452.42	38205		

Tableau 2.3 (suite): Pressions de vapeur expérimentales du n-dodécane et du n-tétradécane

Les paramètres de lissage par l'équation d'Antoine, leur écart type ainsi que l'écart moyen de lissage sont donnés ci-dessous dans le **Tableau 2.4**.

Composé	T/K	Α (σ _A)	Β (σ _B)	С (ос)	écart de lissage %
n-dodécane	262.87 à 452.42	7.508 (0.04)	1959 (22)	209.4 (1.5)	1.18
n-tétradécane	351.75 à 452.49	7,089 (0.06)	1791 (35)	172,9 (2.8)	0.4

Tableau 2.4: Paramètres de l'équation d'Antoine et écarts types pour le n-dodécane et le n-tétradécane.

La comparaison de nos valeurs avec les données trouvées dans la littérature **Figure 2.3**, montre que nos données de pression de vapeur pour le dodécane sont en très bon accord avec les différents auteurs dans l'intervalle compris entre 293.15 K et 453.15.

Figure 2.3: Pression de vapeur du dodécane. Comparaison entre données expérimentales et bibliographiques : ♦, nos valeurs expérimentales ; ○, Viton et al [27]; □, A. Dejoz et al.[28]; ▲, D. Morgan et al. [29]; +, M. Casserino et al. [30]; ■, J.R. Keistler et M.VanWinkle [31].

De même pour le n-tétradécane, nos mesures sont en très bon accord avec celles de la bibliographie où différentes techniques de mesure ont été utilisées: méthode de saturation, directe, DSC.... L'écart moyen relatif est inférieur à 3 %.

Figure 2.4: Pression de vapeur du tétradécane. Comparaison entre données expérimentales et bibliographiques :◆, nos valeurs expérimentales ; ◊, I. Mokbel et al. [32]; ●,D. L. Morgan et R. Kobayashi[29]; ▲,N. Allemand et al. [33] ; ×, M. Casserino et al.[30].

2.6.1.2 Etude des esters méthyliques

Les pressions de vapeur expérimentales des esters méthyliques ont été reportées dans les **Tableau A2. 1-A2.6 (Annexe 2)**, seuls les paramètres de lissage de l'équation d'Antoine sont donnés dans le **Tableau 2.5**.

Tableau 2.5: Paramètres de l	'équation d'Antoine d	et leur écart type
------------------------------	-----------------------	--------------------

Composé	T/K	Α (σ _A)	Β (σ _B)	C (σ _C)
Hexanoate de méthyle	262.64 à 422.29	7.132 (0.049)	1518 (25)	206.2 (2.13)
Octanoate de méthyle	282.64 à 432.68	7.420 (0.069)	1816 (38)	207.3 (2.94)
Décanoate de méthyle	292.87 to 432.65	7.805 (0.091)	2138 (52)	207.9 (3.46)
Dodécanoate de méthyle	322.68 à 442.5	8.082 (0.094)	2451(59)	211.7 (3.77)
Tétradécanoate de méthyle	332.15 to 453.15	8.807 (0.528)	3068 (324)	233.0 (22.69)
Hexadécanote de méthyle	372.35 to 452.65	11.718 (0.597)	5774 (589)	356.6 (25.2)

Résultats obtenus avec l'hexanoate de méthyle

Dans la **Figure 2.5**, nous avons comparé les pressions de vapeur expérimentales à celles de la littérature. Nos valeurs sont en bon accord avec les données de Rose et Acciarri [34] et Rose et Supina [35] dans toute la plage de température (318 à 378 K), l'écart relatif maximum est inférieur à 3%. Sauf pour deux points à 303 K et 312 K, où les écarts sont respectivement de 25% et 11%, nos données sont également en concordance avec les mesures de Verevkin et N. Emel'yanenko [36], Althouse et Triebold [37] et Nevin et al [38] : l'écart relatif moyen est de 4%, avec Van Genderen et al. [39] et Bonhorst et al. [40], l'écart relatif moyen est de 6%.

Figure 2.5: Pression de vapeur de l'hexanoate de méthyle. Comparaison entre données expérimentales et bibliographiques: \blacktriangle , nos valeurs expérimentales; \triangle , Rose and Acciarri; [34] \blacklozenge , Rose and Supina; [35] ×, Verevkin and Emel'yanenko ; [36] \diamondsuit , Althouse and Triebold; [37] \bullet , Nevin et al ; [38] \blacksquare , van Genderen et al.; [39] \circ , Bonhorst et al.[40].

Résultats obtenus avec l'octanoate de méthyle

Dans la **Figure 2.6**, nous avons présenté l'écart relatif entre nos pressions de vapeur expérimentales et celles de la littérature. Il ne dépasse pas 5% avec les différents auteurs [34], [35], [39], [41]. Quelques points d'Althouse et Triebold [37], Nevin et al [38] et Bonhorst [40], déterminés entre 320 et 350 K, montrent un écart supérieur à 5%, jusqu'à 25%.

Figure 2.6: Pression de vapeur de l'octanoate de méthyle. Comparaison entre données expérimentales et bibliographiques: \blacktriangle , nos valeurs expérimentales; Δ , Rose and Acciarri;[34] \blacklozenge , Rose and Supina;[35] \Diamond , Althouse and Triebold; [37] \bullet , Nevin et al; [38] \blacksquare , van Genderen et al; [39] \circ , Bonhorst et al. [40] \Box , Scott et al;[41].

Résultats obtenus avec le décanoate de méthyle

A l'exception de quelques points d'Althouse et Triebold [37], Nevin et al [38] et Bonhorst [40], déterminés entre 320 et 350 K où l'écart atteint 12% **Figure 2.7**, nos pressions de vapeur sont en bon accord avec les données publiées, [34], [35], [39], [41], la déviation relative moyenne est inférieure à 4%.

Figure 2.7: Pression de vapeur du décanoate de méthyle. Comparaison entre données expérimentales et bibliographiques: ▲, nos valeurs expérimentales; ◆, Rose and Supina;[35] ◊,Althouse and Triebold; [37] •, Nevin et al; [38] ■, van Genderen et al; [39] ○, Bonhorst et al. [40] ; □, Scott et al;[41].

Résultats obtenus avec le dodécanoate de méthyle

Le dodécanoate de méthyle a été étudié entre 50°C et 170°C les pressions de vapeur correspondantes sont comprises entre 7 Pa et 6000 Pa environ. La comparaison de ces mesures avec la littérature est indiquée sur la **Figure 2.8**.

Les pressions de vapeur expérimentales du dodécanoate de méthyle sont en bon accord avec la plupart des auteurs [35], [39-43], les écarts sont inférieurs à 6%, sauf à 336 K où un écart relatif de 10% est observé avec Scott et al [41].

Figure 2.8: Pression de vapeur du dodécanoate de méthyle. Comparaison entre données expérimentales et bibliographiques: \blacktriangle , nos valeurs expérimentales; \blacklozenge , Rose and Supina;[35] \Diamond , Althouse and Triebold; [37] \bullet , Nevin et al; [38] \blacksquare , van Genderen et al; [39] \circ , Bonhorst et al. [40]; \Box , Scott et al; [41] Δ , Bureau et al ; [42] *, D. Chirico and Frenkel; [43].

Résultats obtenus avec le tétradécanoate de méthyle

Un écart relatif entre 2 à 7% est observé pour le tétradécanoate de méthyle lors de la comparaison avec les données des différents auteurs [35], [37-41, 43] sauf à 435 K pour Althouse et Triebold [37], Nevin et al [38] et Bonhorst et al [40] (11% d'écart) et à 452 K (écart relatif : 15%). Cependant, entre 387 et 445 K, nos valeurs s'écartent de celles de Norris et al, [44] ,l'écart relatif est compris entre 8 et 14%, **Figure 2.9**.

Figure 2.9: Pression de vapeur du tétradécanoate de méthyle. Comparaison entre données expérimentales et bibliographiques: \blacktriangle , nos valeurs expérimentales; \blacklozenge , Rose and Supina;[35] \Diamond , Althouse and Triebold; [37] \bullet , Nevin et al; [38] \blacksquare , van Genderen et al; [39] \circ , Bonhorst et al. [40] ; \Box , Scott et al;[41] Δ , D. Chirico and Frenkel; [43] +, Norris et al.[44].

Résultats obtenus avec l'hexadécanoate de méthyle

Dans la **Figure 2.10** ont été reportés les écarts entre nos pressions de vapeur et les différents auteurs de la littérature. A l'exception pour Scott et al [41], entre 378 et 402 K, Hou et al. [45] entre 408 et 451 K et, Krop et al. [46] à 447 K, où l'écart s'étend entre 16 et 30%, nos valeurs de pression de vapeur de l'hexadécanoate de méthyle sont en bon accord avec Althouse et Triebold [37], Nevin et al. [38] à 421 K, Bonhorst et al. [40], Scott et al. [41], Chirico et Frenkel [43] à 423 K, Norris et al.[44] et Duan et al. [47].

Figure 2.10: Pression de vapeur de l'hexadécanoate de méthyle. Comparaison entre données expérimentales et bibliographiques : \blacktriangle , nos valeurs expérimentales; \Diamond , Althouse and Triebold; [37] •, Nevin et al; [38] \circ , Bonhorst et al.[40]; \Box , Scott et al; [41] *, D. Chirico and Frenkel; [43] +, Norris et al.; [44] ×, Hou et al .; [45] \blacksquare , Krop et al.; [46] \triangle , Duan et al.[47].

2.7 Enthalpie de vaporisation des corps purs

2.7.1 Détermination de l'enthalpie de vaporisation à Tm (Température expérimentale moyenne)

La relation de Clausius Clapeyron relie la pression de vapeur associée à un changement d'état à la température et à la variation d'enthalpie de ce changement d'état (ΔH_{vap} ou ΔH_{sub}).

L'enthalpie de vaporisation ou de sublimation molaire ou massique est la quantité de chaleur nécessaire à l'unité de quantité de matière d'un corps pur pour qu'il passe de l'état liquide ou solide à l'état vapeur, cette transformation ayant lieu à pression constante.

Les pressions de vapeur expérimentales des corps purs ont été ajustées par la relation de Clausius Clapeyron :

$$\ln P(Pa) = A - \frac{B}{T(K)}$$
(2.3)
$$B = \frac{\Delta H_{sub/vap}}{R}$$
(2.4)

Le paramètre de lissage B et les enthalpies de vaporisation à T_m (température expérimentale moyenne) déduites de l'équation de Clapeyron des six corps purs (esters méthyliques) sont indiquées dans le **Tableau 2.6**.

Tableau 2.6: Paramètres de lissage par l'équation de Clapeyron et enthalpie de vaporisation des corps
purs à Tm.

Composé	В	$\Delta_{vap}H_m$ (J.mol ⁻¹)
Hexanoate de méthyle	5552	46159
Octanoate de méthyle	6404	53240
Décanoate de méthyle	7434	61805
Dodécanoate de méthyle	8081	67185
Tétradécanoate de méthyle	8719	72487
Hexadécanoate de méthyle	9172	76257

2.7.2 Détermination de l'enthalpie de vaporisation à T = 298,15 K et comparaison avec la littérature

Nos résultats expérimentaux nous permettent d'accéder à l'enthalpie de vaporisation $\Delta_{xap}H(T_m)$ à une température moyenne des mesures (T_m) . Or dans la littérature cette enthalpie est souvent disponible à 298,15 K. Il est donc nécessaire d'ajuster l'enthalpie de vaporisation dérivée de nos mesures de pression à la température de 298,15 K afin de pouvoir la comparer avec la bibliographie. Dans ce but nous avons utilisé le cycle thermodynamique présenté dans la **Figure 2.11** : l'enthalpie est en effet une fonction d'état extensive qui dépend de la température.

Grâce à l'équation de Kirschoff (équation 2.5) et en supposant que la capacité calorifique relative à chaque phase est constante dans le domaine de température exploré (équation 2.6) on peut calculer Δ_{vap} H(298,15)

$$\Delta_{vap} H_m(298.15) = \Delta_{vap} H_m(T_m) + \int_{298.15}^{T_m} (C_{Pl} - C_{Pg}) dT$$
(2.5)
$$\Delta_{vap} H_m(298.15) = \Delta_{vap} H_m(T_m) + (C_{Pl} - C_{Pg}) [T_m - 298.15]$$
(2.6)

Alors que les capacités calorifiques des liquides C_{Pl} et des solides C_{Ps} sont souvent disponibles dans la littérature à 298,15 K, il n'en est pas de même pour la capacité calorifique de la phase gazeuse de ces composés. Il est donc nécessaire de l'estimer :

Figure 2.11: Cycle thermodynamique pour le calcul des enthalpies de vaporisation à 298,15 K

Chapitre 2 : Etude expérimentale des équilibres liquide-vapeur des mélanges esters/n-alcanes

Pour estimer $\Delta_l^g C_{p,m}$ nous avons utilisé l'équation développée par Chickos et Cree [48] (équation 2.8)

$$(C_{Pl} - C_{Pg})[T_m - 298.15] = [10.25 + 0.26C_{pl}(298.15)](T_m - 298.15)$$
(2.8)

La détermination de C_{pl} est obtenue par une méthode de contribution de groupes. Les esters étudiés possèdent des carbones primaires sp3, C^I sp3, des carbones secondaires sp3, C^{II} sp3, et une fonction ester **Tableau 2.7**.

Nom	C ^I sp3	C ^{II} sp3	Fonction ester
Hexanoate de méthyle	2	4	1
Octanoate de méthyle	2	6	1
Décanoate de méthyle	2	8	1
Dodécanoate de méthyle	2	10	1
Tétradécanoate de méthyle	2	12	1
hexadécanoate de méthyle	2	14	1

Tableau 2.7: Les groupes rencontrés dans les esters étudiés

Nous donnons dans le **Tableau 2.8**, les C_{Pl} à 298,15K de chaque corps pur, les valeurs des paramètres de contribution de chaque groupe sont données dans l'article de Chickos et al [48].

Tableau 2.8: Estimation de C_{Pl} (298.15 K) pour les six esters méthyliques.

Composé	Formule	<i>C_{Pl}</i> (298.15 K) / J.mol ⁻¹ .K ⁻¹
Hexanoate de méthyle	CH ₃ (CH ₂) ₄ COOCH ₃	$C_{Pl} = 2*34.9 + 4*31.9 + 63.2 = 260.6$
Octanoate de méthyle	CH ₃ (CH ₂) ₆ COOCH ₃	$C_{Pl} = 2*34.9 + 6*31.9 + 63.2 = 324.4$
Décanoate de méthyle	CH ₃ (CH ₂) ₈ COOCH ₃	$C_{Pl} = 2*34.9 + 8*31.9 + 63.2 = 388.2$
Dodécanoate de méthyle	CH ₃ (CH ₂) ₁₀ COOCH ₃	$C_{Pl} = 2*34.9 + 10*31.9 + 63.2 = 452$
Tétradécanoate de méthyle	CH ₃ (CH ₂) ₁₂ COOCH ₃	$C_{Pl} = 2*34.9 + 12*31.9 + 63.2 = 515.8$
Hexadécanoate de méthyle	CH ₃ (CH ₂) ₁₄ COOCH ₃	$C_{Pl} = 2*34.9 + 14*31.9 + 63.2 = 579.6$

L'enthalpie de vaporisation expérimentale de six corps purs étudiés ainsi que celles données par la littérature sont reportées dans le **Tableau 2.9**.

Tableau	2.9:	9 : Enthalpie de vaporisation (en <i>kJ. mol⁻¹</i>) cal	culée à la température moyenne et à 298,15
K. Comp	arais	ison avec les données de la littérature.	

Composé		$\Delta_{vap}H_m$	$\Delta_{vap}H_m$	Δ _{vap} H (298.15) ^{lit} /kJ.mol ⁻¹	
intervalle de température	I _m /K	(T _m)/kJ.mol ⁻¹	(298.15) ^{cal} /kJ.mol ⁻¹		
Hexanoate de méthyle De 262.64 à 422.29 K	372.47	46.15	51.98 (±0.37)	51.80 ± 0.1^{a} 48.7 ± 0.3^{b} 48.6^{c} 48.4 ± 0.2^{d}	
Octanoatate de méthyle De 282.64 à 433.15 K	359.9	53.24	59.10 (±0.35)	57.9° 56.87 ± 0.14 ^f	
Décanoate de méthyle De 292.87 à 432.65 K	362.76	61.80	69.01 (±0.19)	$\frac{66.8 \pm 0.6^{a}}{66.1 \pm 0.2^{f}}$ $\frac{66.86 \pm 0.04^{g}}{66.86 \pm 0.04^{g}}$	
Dodécanoate de méthyle De 322.68 à 442.5 K	382.6	67.20	78.00 (±0.31)	$\frac{76.59 \pm 0.41^{\rm f}}{75.6^{\rm h}}$	
Tétradécanoate de méthyle De 362.45 à 452.52 K	407.48	72.50	88.31 (±0.32)	$ 85.7^{h} 85.94 \pm 0.76^{f} 86.23 \pm 0.96^{b} $	
Hexadécanote de méthyle De 372.35 à 452.65 K	412.5	76.25	94.70 (±0.39)	93.17^{i} 96.42 ± 0.05 ^g 95.6 ^h	

^a[49]; ^b[50]; ^c[51]; ^d[36]; ^e[52]; ^f[39]; ^g[46]; ^h[53]; ⁱ[54].

Nos résultats sont dans l'ensemble très proches de ceux obtenus expérimentalement.

2.7.3 Consistance des résultats expérimentaux

La corrélation des enthalpies de vaporisation avec le nombre d'atomes de carbone dans la série d'homologues est un test important pour vérifier la cohérence des résultats expérimentaux. Dans la **Figure 2.12**, nous avons présenté la variation de l'enthalpie de vaporisation $\Delta_{vap}H_m(298.15)$ en fonction du nombre d'atomes de carbone des esters étudiés. L'équation linaire obtenue $\Delta_{vap}H(n_c)(298.15) = 4.43n_c + 20$ (avec R² =0.996) montre la cohérence de nos mesures.

Figure 2.12 : Variation de l'enthalpie de vaporisation en fonction du nombre d'atomes de carbone

2.8 Etude des équilibres liquide-vapeur des mélanges esters méthyliques/alcanes

Les mélanges ont été préparés par pesée à l'aide d'une balance analytique de type (Sartorius, CP224S) avec une précision de $\pm 10^{-4}$ g. La conversion en quantité molaire est basée sur la table de masse atomique relative de 2006 publiée par M.E. Wieser [55].

Le même appareil statique décrit précédemment a été utilisé pour l'étude des mélanges. Comme déjà signalé, le mélange à l'instar des corps purs est dégazé en utilisant le système de dégazage de la **Figure 2.2**.

2.8.1 Vérification de la composition du mélange

Après les mesures de pression de vapeur, les mélanges sont analysés par chromatographie en phase gazeuse (GC-FID) afin de vérifier la composition réelle de l'échantillon qui pourrait évoluer lors du dégazage.

Les conditions chromatographiques sont les suivantes :

- colonne capillaire de type HP-5 (L : 30 m ; D.I. : 0,325 mm ; épaisseur du film : 0.25 μm).
- Température de l'injecteur : 300 °C, en mode split : débit de split : 44 mL/min
- Température du détecteur : 320 °C
- Programmation du four

- Température initiale : 50 °C
- Rampe de température : 20 °C/min
- Température finale : 180 °C
- Gaz vecteur : hydrogène, débit : 4.4 mL/min
- Volume injecté = $1 \mu L$

Une série de sept solutions étalons est préparée en utilisant l'éthanol comme solvant. Les concentrations en ester et alcanes sont comprises entre 0,1 % et 0.9%. Pour chaque composition, trois analyses sont réalisées afin de s'assurer de la reproductibilité de la réponse du GC. Les coefficients de variation sont faibles, inférieurs à 0.05%, (**Tableau 2.10.** donné à titre d'exemple).

 Tableau
 2.10: Rapports des compositions hexanoate de méthyle/dodécane et rapports des surfaces des pics correspondants.

	solutions						
	S1	S2	S3	S4	S 5	S6	S7
X hexanoate de méthyle	0,1401	0,2588	0,3839	0,5002	0,6215	0,7413	0,8604
X dodécane	0,8599	0,7412	0,6161	0,4998	0,3785	0,2587	0,1396
$X_{hexanoate de méthyle}/X_{dodécane}$	0,163	0,349	0,623	1,001	1,642	2,865	6,163
Aire _{hexanoate} de mérhyle	288,2	454,7	826,3	1058,6	1284,4	2479,6	2201
Aire _{dodécane}	3750,9	2737,6	2821,8	2245	1677,3	1842,8	762
Aire _{hexanoate de méthyle} /Aire _{dodécane}	0,077	0,166	0,293	0,472	0,766	1,346	2,888
Aire _{hexanoate} de méthyle	288,6	462,8	815,8	1078,9	1311,8	2444,9	2214,3
Aire _{dodécane}	3757,9	2785,5	2785,7	2290,3	1712,4	1816,5	766,6
Aire _{hexanoate de méthyle} /Aire _{dodécane}	0,077	0,166	0,293	0,471	0,766	1,346	2,888
A _{hexanoate} de méthyle	291,7	454,7	832,6	1068,2	1259,3	2397	2217,8
A _{dodécane}	3796,3	2739,1	2843,6	2267,1	1645,6	1781,8	767,9
A _{hexanoate de méthyle} /A _{dodécane}	0,077	0,166	0,293	0,471	0,765	1,345	2,888
moyenne	0,077	0,166	0,293	0,471	0,766	1,346	2,888
CV (%)	0,03	0,04	0,01	0,05	0,05	0,03	0,01

La droite d'étalonnage correspondante est parfaitement linéaire, Figure 2.13.

Figure 2.13 : Droite d'étalonnage du mélange hexanoate de méthyle(1)+ n-dodécane(2).

Un exemple de chromatogramme pour le dodécanoate et le tétradécanoate de méthyle est représenté dans la **Figure 2.14**.

Figure 2.14 : Exemples de chromatogrammes obtenus pour l'analyse du dodécanoate et du tétradécanoate de méthyle.

2.8.2 Equilibres liquide-vapeur des systèmes binaires

Les pressions de vapeur des mélanges ont été ajustées par l'équation d'Antoine. Les valeurs des paramètres A, B et C sont reportées dans les **TableauA3. 1-A3.2** (Annexe 3).

La méthode statique est une technique dite incomplète car les grandeurs déterminées sont la température, la pression et la composition de la phase liquide. La composition de la phase vapeur peut aisément être déterminée pour les mélanges binaires en utilisant la méthode itérative de Barker (1953) [56], dont nous rappelons les relations de base.

Pour un mélange donné, l'égalité des fugacités de chacun de ses composants dans la phase vapeur f_i^v et dans la phase liquide f_i^l est la condition d'équilibre thermodynamique :

Chapitre 2 : Etude expérimentale des équilibres liquide-vapeur des mélanges esters/n-alcanes

$$f_i^{\nu} = f_i^{\nu} \tag{2.9}$$

Ce qui se traduit par la relation :

$$y_i \phi_i P = x_i \gamma_i f_i^o exp \left[\int_{P_i}^{P} \frac{V_i}{RT} dP \right]$$
(2.10)

Avec:

P: pression totale d'équilibre

 P_i : pression de vapeur du constituant i pur.

 y_i : fraction molaire du constituant i dans la phase vapeur

 ϕ_i : coefficient de fugacité de la phase vapeur pour le constituant i

 x_i : fraction molaire du constituant i dans la phase liquide

 γ_i : coefficient d'activité du constituant i dans la phase liquide

 f_i^o : fugacité du composé i pur sous sa tension de vapeur Pi

 V_i : volume molaire du constituant i à l'état liquide

Le terme exponentiel est la correction de Poynting.

La pression totale d'un système binaire est donnée, à la température de l'isotherme considérée, par :

$$\boldsymbol{P} = \boldsymbol{\gamma}_1 \boldsymbol{x}_1 \boldsymbol{p}_1 + \boldsymbol{\gamma}_2 \boldsymbol{x}_2 \boldsymbol{p}_2. \tag{2.11}$$

avec : p_i : "pression de vapeur " corrigée du constituant i

$$p_1 = P_1 exp\left[\frac{(V_1^L - B_{11})(P - P_1) - P\delta_{12}y_2^2}{RT}\right]$$
(2.12)

$$p_{2} = P_{2} exp\left[\frac{(V_{2}^{L} - B_{22})(P - P_{2}) - P\delta_{12}y_{1}^{2}}{RT}\right]$$
(2.13)

Avec:
$$\delta_{12} = 2B_{12} - B_{11} - B_{22}$$
 (2.14)

Où:

 B_{ii} : second coefficient du viriel du constituant i.

 B_{12} : coefficient du viriel croisé

Nous avons choisi de représenter l'enthalpie libre d'excès molaire G^E par un polynôme de Redlich-Kister:

$$G^{E} = x_{1} x_{2} \sum_{j=1}^{m} RT G_{j} (x_{1} - x_{2})^{j-1}$$
(2.15)

Avec

$$G^E = x_1 \overline{G_1^E} + x_2 \overline{G_2^E}$$
(2.16)

Chapitre 2 : Etude expérimentale des équilibres liquide-vapeur des mélanges esters/n-alcanes

$$\overline{G_{\iota}^{E}} = RT ln \gamma_{i} = \frac{\delta[(n_{1}+n_{2})]G^{E}}{\delta n_{i}}$$
(2.17)

La dérivation indiquée ci-dessus conduit aux expressions :

$$ln\gamma_1 = x_2^2 \sum_{j=1}^m \{G_i(x_1 - x_2)^{j-2} [(2j-1)x_1 - x_2]\}$$
(2.18)

$$ln\gamma_2 = x_1^2 \sum_{j=1}^m \{G_i(x_1 - x_2)^{j-2} [x_1 - (2j-1)x_2]\}$$
(2.19)

Les coefficients d'activité yi satisfont à l'équation de Gibbs-Duhem (écrite de façon isotherme et en négligeant le volume d'excès) :

$$x_1 dln\gamma_1 + x_2 dln\gamma_2 = 0 (T, P = \text{constantes})$$
(2.20)

A partir des résultats expérimentaux (x, P), les valeurs optimales des coefficients G_i pour chaque isotherme sont déterminées par moindres carrés en minimisant la quantité :

$$\sum_{i=1}^{n} \left| \frac{P_{exp} - P_{cal}}{P_{exp}} \right|^2 \tag{2.21}$$

Il en résulte les valeurs optimales des coefficients d'activité au moyen des relations (3.18) et (3.19). A chaque itération, la fraction molaire dans la phase gazeuse de chaque constituant *y* i est calculée par **l'équation 2.22** après avoir négligé le terme exponentiel qui correspond à la correction de Poynting combinée aux coefficients du Viriel prenant en compte la non idéalité de la phase vapeur. En effet ce terme est négligeable lorsque les pressions sont faibles, inférieures à 2 bars.

$$\boldsymbol{y}_i = \frac{\boldsymbol{x}_i \boldsymbol{\gamma}_i}{\boldsymbol{P}} \boldsymbol{P}_i \tag{2.22}$$

L'exploitation par la méthode de Barker des résultats expérimentaux nécessite les volumes molaires *Vi* et les coefficients de Viriel *Bij*. Les premiers ont été calculés en utilisant la méthode de Rackett. Les coefficients de Viriel ont été estimés par la corrélation de Pitzer [57].

Les paramètres critiques (température critique Tc, pression critique Pc, Zc et ω_c) [58, 59], nécessaires pour le calcul des volumes molaires et des coefficients de Viriel, sont regroupées dans les **Tableau A4. 1-A4.3** (Annexe 4).

Les x_1 , y_1 , *Pcal*, $\delta P/P\%$, coefficients d'activités γ_1 et γ_2 et l'énergie molaire d'excès de Gibbs G^E pour chaque binaire déterminés par la méthode de Barker sont reportés dans les **Tableau A5. 1-A5.2** en Annexe 5. Pour tous les systèmes étudiés, un polynôme de Redlich–Kister avec quatre paramètres s'est révélé satisfaisant, **Tableau A6. 1-A6.3**, (Annexe 6).

2.8.3 Diagrammes d'équilibre isotherme

A partir des données obtenues par la méthode de Barker, nous avons tracé les isothermes (courbes de rosée et courbes de bulle) de chacun des mélanges binaires à des « températures rondes », **Figure 2.15-2.23**.

Figure 2.15: Pressions expérimentales et calculées du système binaire *hexanoate de méthyle(1)* + *n*dodécane (2) à différentes températures: Δ , 353.15 K; \blacklozenge , 373.15 K; \blacklozenge , 393.15 K; \Diamond ,403.15K; \blacktriangle , 413.15 K; \blacksquare , 423,15 K; —, calculées par la méthode de Barker.

Figure 2.16 : Pressions expérimentales et calculées de système binaire *octanoate de méthyle(1)* + *ndodécane (2)* à différentes températures: a) Δ , 353.15 K; \blacklozenge , 373.15 K; \blacklozenge , 393.15 K; b) \blacktriangle , 413.15 K; \blacksquare , 433,15 K; —, calculées par la méthode de Barker.

Figure 2.18: Pressions expérimentales et calculées de système binaire *dodécanoate de méthyle(1) + n-dodécane (2)* à différentes températures: \bullet , 373.15 K; \bullet , 393.15 K; \blacktriangle , 413.15 K; \blacksquare , 433,15 K; -, calculées par la méthode de Barker.

Figure 2.19: Pressions expérimentales et calculées de système binaire *tétradécanoate de méthyle(1)* + *n*-*dodécane (2)* à différentes températures: \blacklozenge , 373.15 K; \blacklozenge , 393.15 K; \blacktriangle , 413.15 K; \blacksquare , 433,15 K; -, calculées par la méthode de Barker.

Figure 2.20: Pressions expérimentales et calculées de système binaire *hexadécanoate de méthyle(1)* + *n-dodécane (2)* à différentes températures: \blacklozenge , 373.15 K; \blacklozenge , 393.15 K; \blacktriangle , 413.15 K; \blacksquare , 433,15 K; -, calculées par la méthode de Barker.

Figure 2.21: Pressions expérimentales et calculées de système binaire *dodécanoate de méthyle(l)* + *ntétradécane (2)* à différentes températures : a) Δ , 353.15 K ; \blacklozenge , 373.15 K ; b) \blacklozenge , 393.15 K ; \blacktriangle , 413.15 K ; \blacksquare , 433.15 K ; -, calculé par la méthode de Barker.

Figure 2.22: Pressions expérimentales et calculées de système binaire *tetradécanoate de méthyle(1)* + *n-tétradécane (2)* à différentes températures : a) Δ , 353.15 K ; \blacklozenge , 373.15 K ; b) \bullet , 393.15 K ; \blacktriangle , 413.15 K ; \blacksquare , 433.15 K ; \diamondsuit , 453.15 K ; -, calculé par la méthode de Barker.

Seul le système *dodécanoate de méthyle (1)* + n-tétradécane (2) présente un azéotrope positif à toutes les températures pour des fractions molaires en ester inférieures à 0.1, Figure 2.21.

Les coordonnées azéotropiques à chaque température ont été déterminées par approximations successives jusqu'à obtention des égalités de xi et yi (en utilisant l'équation de Redlich-Kister). La composition et la pression de vapeur de l'azéotrope à différentes températures sont indiquées dans le **Tableau 2.11**.

Les incertitudes indiquées au bas du **Tableau 2.11** tiennent compte de l'incertitude expérimentale et de l'écart de l'ajustement des paramètres de Redlich-Kister.

Tableau 2.11: Coordonnées du point azéotropique du système *Dodécanoate de méthyle* (1) + n-*Tetradécane* $(2)^a$

T/K	x_{I}	P/Pa
353,15	0,08757	138
363,15	0,07335	255
373,15	0,07065	453
383,15	0,06292	768
393,15	0,06297	1265
403,15	0,06383	2014
413,15	0,06813	3119
423,15	0,07855	4622
433,15	0,07945	6929

 $^{a}u(x) = \pm 0.005, u(P) = \pm 10 Pa.$

2.8.4 Les Enthalpies libres d'excès, G^E

Les **Tableau A5. 1-A5.2** en Annexe 5, montrent que les systèmes étudiés aux différentes températures ont une énergie libre d'excès positive dans tout l'intervalle de concentration. Trois exemples de GE pour les systèmes *octanoate de méthyle(1) + n-dodécane (2), hexadécanoate méthyle (1) + n-dodécane (2)* et *hexadécanote de méthyle (1) + n-tétradécane (2)* sont donnés à titre d'exemple aux **Figure 2.24-2.26**, le tracé des autres courbes est reporté en Annexe 7 (**Figure A7. 1-A7.6**). Globalement les G^E sont relativement faibles, inférieures à 450 J.mol⁻¹ et diminuent quand la température augmente suite à l'influence croissante de l'effet entropique.

hexadécanote de méthyle (1) + *n-tétradécane (2)* calculée en utilisant la méthode de Barker à différentes températures : Δ , 353.15 K ; •, 373.15 K ; •, 393.15 K ; •, 413.15 K ; •, 433.15 K ; •, 453.15 K

2.9 Conclusion

Après une vérification approfondie de l'étalonnage de l'appareil statique par le décane et le dodécane, l'étude des corps purs, alcanes et esters méthyliques, a montré que les pressions de vapeur obtenues sont en très bon accord avec la littérature.

L'enthalpie de vaporisation déduite de nos mesures a également été comparée avec les données expérimentales. L'écart est faible, il est compris entre 0 et 2 kJ mol⁻¹.

En ce qui concerne les mélanges binaires étudiés, les pressions de vapeur obtenues sont originales car aucune comparaison avec la littérature n'a pu être effectuée. L'utilisation de la méthode de Barker couplée à l'équation de Redlich-Kister, nous a permis de calculer la composition de la phase vapeur ainsi que les coefficients d'activité et les enthalpies libres d'excès pour chacune des températures explorée. Les coefficients d'activité varient entre 1 et 1.5 ce qui indique que les solutions sont très proches de l'idéalité. Le coefficient γ_2 à la fraction molaire en ester x1 = 1 représente le coefficient d'activité de l'alcane à dilution infinie (de même pour γ_1 à x1 = 0 qui représente le coefficient d'activité de l'ester à dilution infinie).

CHAPITRE 3

MODELISATION DES RESULTATS EXPERIMENTAUX

3 MODELISATION DES RESULTATS EXPERIMENTAUX

3.1 Introduction

La thermodynamique est au cœur des processus de transformation de la matière et des échanges thermiques dans l'industrie des procédés. En effet elle permet de quantifier toute variation de l'état de la matière et par conséquent de concevoir un procédé, de le dimensionner et de l'optimiser.

Les équilibres liquide-vapeur sont très courants en Génie des Procédés. On les retrouve notamment dans les procédés incluant des opérations :

- de condensation (échange de chaleur, pompe à chaleur...),
- d'ébullition (échange de chaleur, réfrigération...),
- de détente de gaz (turbines...),
- de distillation (séparation de constituants...),
- d'absorption (lavage de gaz, purification...),

- ...

Lors de la simulation d'un procédé, par exemple une distillation ou une extraction, la description des équilibres de phases par des modèles thermodynamiques est essentielle.

Ces modèles existent dans des logiciels commerciaux, les plus connus sont ceux vendus par Aspen et Prosim. Etablis sur des bases théoriques qui s'appuient sur le concept des interactions moléculaires, ils permettent de modéliser les espèces chimiques présentes dans les différentes phases en équilibre. Leur utilisation nécessite des données expérimentales et la connaissance précise du diagramme de phases. Les grandeurs expérimentales les plus importantes sont la pression (P) et la température (T) auxquelles s'ajoute la composition molaire de chacune des phases en équilibre.

Ces données ont été déterminées expérimentalement dans la première partie de ce travail.

L'objectif de ce chapitre est de rappeler dans un premier temps le lien entre les différentes grandeurs thermodynamiques et les principaux modèles utilisés pour le calcul des équilibres de phases, en particulier l'équilibre liquide-vapeur. Dans un deuxième temps, nous utiliserons des modèles disponibles dans ProSim pour ajuster les données expérimentales et vérifier la cohérence de nos données.
3.2 Critères d'équilibres entre phases fugacité et coefficient d'activité

Dans le cadre de cette thèse, nous avons utilisé les modèles à enthalpie libre d'excès, G^{E} . Ils permettent de relier la variation du potentiel chimique, μ , avec les grandeurs accessibles et mesurables dans un procédé : la température, la pression et la composition. La résolution mathématique de l'équilibre de phases passe par l'utilisation de nouvelles grandeurs : l'activité ou la fugacité [60].

L'enthalpie libre molaire partielle encore appelée « potentiel chimique μ_i » régit les échanges entre phases à T et P constants :

$$\boldsymbol{\mu}_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{T,P,n_{j}} \tag{3.1}$$

G: enthalpie libre du système. n_i : nombre de moles du constituant i

A l'équilibre, le potentiel chimique de chaque constituant *i* dans chaque phase $\alpha_i, \beta_i \dots$ est identique :

$$\boldsymbol{\mu}_i^{\alpha} = \boldsymbol{\mu}_i^{\beta} = \cdots \tag{3.2}$$

Le potentiel chimique étant une grandeur relativement abstraite, il est habituel de définir la fugacité f_i par la relation :

$$RT \, dlnf_i = d\mu_i \tag{3.3}$$

Par intégration on en déduit les variations du potentiel chimique par rapport à l'état standard (corps à l'état pur au comportement de gaz parfait à une pression de 1 bar) :

$$\mu_i = \mu_i^0 + RT ln \frac{f_i}{f_i^0} \tag{3.4}$$

L'égalité des potentiels chimiques à l'équilibre entraine donc l'égalité des fugacités :

$$f_i^{\alpha} = f_i^{\beta} = \cdots \tag{3.5}$$

Cette relation est le point de départ de tous les calculs d'équilibres de phases.

L'activité « a_i » d'un constituant i dans un mélange est définie par la relation :

$$a_i = \frac{f_i}{f_i^*} \tag{3.6}$$

 f_i^* étant la fugacité de i dans l'état de référence (constituant à l'état pur aux mêmes conditions de T et P du mélange et dans le même état physique).

Dans le cas d'une solution idéale l'activité est égale à la fraction molaire :

$$a_i^{ideal} = x_i \tag{3.7}$$

En présence d'interactions moléculaires, on corrige l'équation précédente avec un facteur que l'on nomme coefficient d'activité γ_i :

$$\boldsymbol{a}_i = \boldsymbol{\gamma}_i \boldsymbol{x}_i \tag{3.8}$$

Différents modèles moléculaires ont été établis afin de corréler les coefficients d'activité aux concentrations. Grace à des hypothèses sur les écarts à l'idéalité (influence du volume des molécules, interactions moléculaires...) ces modèles permettent le calcul de l'enthalpie libre d'excès, G^E , des mélanges.

Les coefficients d'activité se déduisent ensuite de l'enthalpie libre d'excès par la relation :

$$RTln\gamma_i = \left(\frac{\partial G^E}{\partial n_i}\right)_{P,T,n_j}$$
(3.9)

Ainsi, toute la difficulté consiste à calculer l'enthalpie libre d'excès G^E ou le coefficient d'activité γ_i afin de prendre en compte la non-idéalité d'une solution.

Dans ce but, différents modèles ont été développés. Ils sont appelés « modèles de coefficient d'activité» ou « modèles de G^E ». Il se divise en deux catégories: les modèles prédictifs (UNIFAC, Flory-Huggins, modèles COSMO... qui utilisent les méthodes de contribution de groupe) et les modèles semi-prédictifs qui nécessitent des paramètres ajustables (Van Laar, Wilson, NRTL, UNIQUAC...).

3.3 Représentation des équilibres liquide-vapeur par les modèles de coefficients d'activités

Les modèles de coefficients d'activité se sont révélés efficaces pour la corrélation et la prédiction des déviations par rapport à l'idéalité de la phase liquide et sont intensivement utilisés dans l'industrie chimique. Trois d'entre eux seront détaillés : le modèle de Wilson proposé en 1964, le modèle NRTL et le modèle UNIQUAC qui sont des modèles semi-prédictifs.

3.3.1 Le modèle de WILSON

Le modèle semi-théorique de Wilson [61] fondé simultanément sur le concept de composition locale et sur la théorie de Flory [62], s'applique correctement aux mélanges s'écartant beaucoup de l'idéalité. Selon ce concept, après mélange, chaque molécule s'entoure d'un certain nombre d'autres molécules sous l'effet des forces intermoléculaires si bien que la composition locale n'est pas nécessairement identique à la composition globale.

La théorie de Flory et Huggins [63, 64] prend en compte les écarts à l'idéalité résultant d'un mélange de composés de nature chimique semblable mais n'ayant pas le même volume molaire.

En admettant que la théorie de Flory reste valable en présence d'interactions moléculaires, Wilson a établi un modèle qui n'exige que deux paramètres ajustables par système binaire. L'enthalpie libre d'excès molaire est donnée par :

$$G^{E} = -RT \sum_{i=1}^{n} x_{i} ln(\sum_{j=1}^{n} A_{i,j} x_{j})$$
(3.10)
$$Avec \quad A_{i,j} = \frac{v_{j}}{v_{i}} exp\left(-\frac{\lambda_{i,j} - \lambda_{i,i}}{RT}\right)$$

$$A_{i,j} = \lambda_{i,j} - \lambda_{i,i}$$

$$et \quad A_{i,i} = 1 \qquad \forall i$$

 $\lambda_{i,j} - \lambda_{i,i}$ est un terme d'énergie déterminé empiriquement, et en première approximation, indépendant de la température.

L'expression du coefficient d'activité qui se déduit de G^E est donnée par:

$$ln\gamma_{i} = 1 - ln\left(\sum_{j=1}^{n} A_{i,j} x_{j}\right) - \sum_{k=1}^{n} \frac{x_{k} A_{k,i}}{\sum_{j=1}^{n} x_{j} A_{k,j}}$$
(3.11)

Le paramètre $A_{i, j}$ est déterminé par ajustement des données expérimentales (ce paramètre doit être toujours positif). Le modèle de Wilson permet généralement de bonnes corrélations pour des systèmes polaires ou non polaires. Il a été utilisé dans un très grand nombre de cas avec succès, en particulier dans le domaine des équilibres liquide-vapeur.

3.3.2 Le modèle NRTL

Le modèle NRTL (Non-Random Two-Liquid) proposé par Prausnitz et Renon en 1968 [65] est un modèle d'énergie de Gibbs d'excès qui repose sur deux concepts importants : le concept de composition locale, introduit par Wilson en 1964, et le concept de dispersion non aléatoire.

Ce concept stipule qu'une molécule i est entourée de molécules de même nature i mais également de nature différente j. L'organisation de ces molécules n'est pas forcement identique : des molécules polaires auraient tendance à se regrouper et à exclure des molécules apolaires. Ainsi, une composition locale sera définie en notant $x_{i, j}$ où j est le centre d'attraction. De plus, les molécules interagissent. On définit par $\varepsilon_{i,j}$ l'énergie d'interaction entre les molécules i et j ($\varepsilon_{i,j} = \varepsilon_{j,i}$).

Dans le cas du modèle NRTL, un nouveau paramètre apparaît pour prendre en compte la répartition non aléatoire des molécules : le paramètre α_{ij} .

En négligeant le terme entropique lié au volume des molécules et le volume d'excès, on déduit l'expression suivante de l'enthalpie libre d'excès :

$$\boldsymbol{G}^{\boldsymbol{E}} = \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} \frac{x_{j} exp\left(-\alpha_{j,i} \frac{C_{j,i}}{RT}\right)}{\sum_{k=1}^{n} x_{k} exp\left(-\alpha_{k,i} \frac{C_{k,i}}{RT}\right)} \boldsymbol{G}_{j,i}$$
(3.12)

Le coefficient d'activité s'exprime par :

$$ln\gamma_i = \frac{\sum_{j=1}^n \tau_{ji}G_{ji}x_j}{\sum_{k=1}^n G_{ki}x_k} + \sum_{j=1}^n \frac{x_jG_{ij}}{\sum_{k=1}^n G_{kj}x_k} \left(\tau_{ij} - \frac{\sum_{k=1}^n x_k\tau_{kj}G_{kj}}{\sum_{k=1}^n G_{kj}x_k}\right)$$
(3.13)

Avec

$$G_{ij} = exp(-\alpha_{ij}\tau_{ij})$$
, $G_{ii} = G_{jj} = 1$, $\alpha_{ii} = \alpha_{jj} = 0$

$$\tau_{ij} = \frac{g_{ij} - g_{jj}}{RT}, \ \tau_{ii} = \tau_{jj}, = 0$$

L'équation NRTL contient pour chaque système binaire, trois paramètres ajustables sur les données expérimentales, G_{12} , G_{21} et α_{12} . L'effet de la température sur ces paramètres est pris en compte selon les relations linéaires :

$$g_{ij} - g_{jj} = C_{ij}^0 + C_{ij}^T (T - 273.15)$$
$$\alpha_{ij} = \alpha_{ij}^0 + \alpha_{ij}^T (T - 273.15)$$

Dans ces conditions chaque binaire est caractérisé par six coefficients d'interaction binaire : C_{ij}^0 , C_{ji}^0 , C_{ij}^T , C_{ji}^T , $\alpha_{ij}^0 et \alpha_{ij}^T$.

3.3.3 Le modèle UNIQUAC

Le modèle UNIQUAC (Universal Quasi Chemicals) (Abrams and Prausnitz, 1975 ; Maurer and Prausnitz, 1978), est également fondé sur le concept de composition locale, comme les deux modèles précédents. Cependant dans le cas présent, les effets énergétiques liés aux interactions moléculaires sont pris en compte au niveau de la « surface externe q_i » des molécules i.

Pour évaluer les effets entropiques, on considère que la molécule *i* a un volume r_i . Les fractions surfaciques θ_i et volumiques ϕ_i sont respectivement calculées par les relations :

$$\boldsymbol{\theta}_{i} = \frac{x_{i}q_{i}}{\sum_{j=1}^{n} x_{j}q_{j}} \tag{3.14}$$

$$\mathbf{\Phi}_i = \frac{x_i r_i}{\sum_{j=1}^n x_j r_j} \tag{3.15}$$

Pour calculer θ_i et ϕ_i il est donc nécessaire de connaitre les paramètres de surfaces q_i et de volume r_i des différentes molécules *i*. Ces paramètres structuraux peuvent être obtenus à partir des données cristallographiques ou, d'une manière plus générale, ils peuvent être estimés par la méthode de contribution de groupes développée par BONDI [66].

La non-idéalité est considérée comme résultant d'un terme « entropique » dû au volume différent des molécules concernées (contribution dite « combinatoire ») et d'un terme énergétique dû aux interactions moléculaires (contribution dite « résiduelle »). Les coefficients d'activité sont ainsi calculés par les relations :

$$Ln\gamma_{i} = ln\gamma_{i}^{C} + ln\gamma_{i}^{R}$$
(3.16)
$$ln\gamma_{i} = \left(ln\frac{\Phi_{i}}{x_{i}} + \frac{z}{2}q_{i}ln\frac{\theta_{i}}{\Phi_{i}} + l_{i} - \frac{\Phi_{i}}{x_{i}}\sum_{j=1}^{n}x_{j}l_{j} \right) +$$
$$\left(q_{i}' - q_{i}'ln(\sum_{j=1}^{n}\theta_{j}\tau_{ji}) - q_{i}'\sum_{j=1}^{n}\frac{\theta_{j}'\tau_{ij}}{\sum_{k}^{n}\theta_{k}'\tau_{kj}} \right)$$
(3.17)
Avec $l_{i} = \frac{z}{2}(r_{i} - q_{i}) - (r_{i} - 1)$

z, appelé nombre de coordination, représente le nombre de molécules entourant la molécule *i*. *z* est généralement fixé à 10. ϕ_i est la fraction volumique du composé *i*.

Le modèle UNIQUAC permet la prédiction des propriétés d'équilibre de phases de systèmes complexes, pouvant contenir des composés polaires et non polaires, y compris des solutions partiellement miscibles, ce qui est en fait une méthode efficace de modélisation.

Comparé au modèle NRTL, le modèle UNIQUAC nécessite l'ajustement de deux paramètres (τ_{ij}, τ_{ji}) au lieu de trois.

L'effet de la température est pris en compte au niveau des paramètres d'interaction

$$\boldsymbol{\tau}_{i,j} = \exp - \left(\frac{u_{i,j} - u_{j,j}}{RT}\right)$$

$$\boldsymbol{u}_{i,j} - \boldsymbol{u}_{j,j} = \boldsymbol{A}_{ij}^{0} + T\boldsymbol{A}_{ij}^{T}$$
(3.18)

Dans le cas présent quatre paramètres par binaire sont à ajuster : A_{ij}^0 , A_{ji}^0 , A_{ij}^T et A_{ji}^T

3.4 Choix du modèle pour corréler les équilibres liquide-vapeur

Parmi les trois modèles brièvement exposés, nous avons retenu les modèles NRTL et UNIQUAC. Le modèle NRTL, comportant un plus grand nombre de paramètres ajustables (trois ou six paramètres par binaire si on tient compte de l'effet de la température) permet en principe une meilleure représentation des écarts à l'idéalité que le modèle UNIQUAC (deux paramètres ajustables par binaire, quatre paramètres si on tient compte de l'effet de la température).

L'inconvénient du modèle NRTL est justement son nombre de paramètres important. Leur détermination sur un nombre de données trop faible risque de conduire à des paramètres corrélés les uns aux autres. Afin de limiter ce risque, les paramètres α_{ij}^0 et α_{ij}^T ont été fixés respectivement aux valeurs 0.20 et 0. Dans ces conditions le modèle NRTL, tout comme le modèle UNIQUAC, nécessite l'ajustement de quatre paramètres « seulement » par binaire.

Les calculs ont été effectués par le logiciel commercial de Simulis thermodynamics développé par ProSim SA avec son complément MS-Excel. La fonction objective, OF, utilisé la différence entre les pressions de vapeurs expérimentales et calculées est définie comme suit :

$$OF = \sum_{1}^{n} \left| \frac{P^{cal} - P^{exp}}{P^{exp}} \right|$$
(3.21)

3.5 Résultats de la modélisation

La comparaison entre les pressions expérimentales et celles obtenues par les modèles NRTL, UNIQUAC est illustrée graphiquement dans les **Figures 3.1 à 3.6** données à titre d'exemple. Les deux modèles représentent de façon satisfaisante nos mesures expérimentales. Les courbes de bulle et de rosée restituées ou prédites sont très proches pour les deux modèles

Figure 3.1 : Modélisation des isothermes du système : *dodécanoate de méthyle (1) + n-dodécane (2)* ; par le modèle : - - -, NRTL ;, UNIQUAC ; points expérimentaux : (a) \blacklozenge , 353.15 K ; \blacklozenge , 373.15 K ; (b) \blacktriangle , 393.15 K ; \blacksquare , 413.15 K ; ×, 433.15 K.

Figure 3.2 : Modélisation des isothermes du système : *tétradécanoate de méthyle(1)+n-dodécane (2)* ; par le modèle – – –, NRTL ; …… , UNIQUAC ; points expérimentaux : (a) \blacklozenge , 353.15 K ; \bullet , 373.15 K ; (b) \blacktriangle , 393.15 K ; \bullet , 413.15 K ; ×, 433.15 K.

Figure 3.4: Modélisation des isothermes du système : *dodécanoate de méthyle (1)+n-tétradécane (2)* ; par le modèle – – –, NRTL ; …… , UNIQUAC ; points expérimentaux : (a) \blacklozenge , 353.15 K ; \blacklozenge , 373.15 K ; (b) \blacktriangle , 393.15 K ; \blacksquare , 413.15 K ; ×, 433.15 K.

Figure 3.5: Modélisation des isothermes du système: tétradécanoate de méthyle (1) + n-tétradécane (2) ;par le modèle – – –, NRTL ; …… , UNIQUAC ; points expérimentaux : (a) \blacklozenge , 353.15 K ; \blacklozenge , 373.15 K ; (b) \blacktriangle , 393.15 K ; \blacklozenge , 413.15 K ; ×, 433.15 K ; \diamondsuit , 453.15 K.

Figure 3.6: Modélisation des isothermes du système: *hexadécanote de méthyle (1)+n-tétradécane (2)* ; par le modèle– - –, NRTL ;, UNIQUAC ;points expérimentaux : (a) \blacklozenge , 353.15 K ; \blacklozenge , 373.15 K ; (b) \blacktriangle , 393.15 K ; \blacklozenge , 413.15 K ; ×, 433.15 K ; \diamondsuit , 453.15 K.

La Figure 3.4 montre que le comportement azéotropique du système *dodécanoate de méthyle/ n-tétradécane* est correctement reproduit avec les deux modèles utilisés.

Dans les **Tableau 3.1-3.2** sont regroupés les coefficients d'interaction binaires $(C_{ij}^0, C_{ji}^0, C_{ij}^0, et C_{ji}^T)$ pour le modèle NRTL et $(A_{ij}^0, A_{ji}^0, A_{ij}^T et A_{ji}^T)$ pour le modèle UNIQUAC ainsi que l'écart relatif moyen entre les pressions de vapeur expérimentales et calculées.

Comme déjà observé à travers les diagrammes de phases des différents systèmes binaires, l'écart relatif moyen $\frac{\delta P}{P}$ (%) pour tout le domaine de température étudié est inférieur à 2% à l'exception du système *hexadécanoate de méthyle (1) + tétradécane (2)* où l'écart est de 2.6%. D'autre part le modèle UNIQUAC indique un écart de 6% entre les pressions expérimentales et calculées pour le système *dodécanoate de méthyle (1) + tétradécane (2)*.

Composé i-j	$\mathcal{C}_{i,j}^{(0)}$	$\mathcal{C}_{j,i}^{(0)}$	$lpha_{j,i}^{(0)}$	$\mathcal{C}_{i,j}^{(T)}$	$\mathcal{C}_{j,i}^{(T)}$	$lpha_{j,i}^{(T)}$	$\frac{\delta P}{P}(\%)$
		Dodécano	oate de méthy	vle (1) + n-do	décane (2)		
1-2	-24,5	449,2	0,2	-3,9949	4,099	0	1.21
		Tétradécar	ioate de méth	nyle (1) + n-de	odécane (2)		
1-2	147,5	-153,0	0,2	-9,1502	15,105	0	1.79
Hexadécanoate de méthyle (1) + n-dodécane (2)							
1-2	63,5	20,1	0,2	-6,3619	9,206	0	1.96
		Dodécanoa	ite de méthyl	e (1) + n-tétra	adécane (2)		
1-2	36,0	451,7	0,2	-7,6515	11,672	0	0.99
Tétradécanoate de méthyle (1) + n-tétradécane (2)							
1-2	-213,0	154,6	0,2	9,8115	-5,689	0	1.47
	Hexadécanoate de méthyle (1) + n-tétradécane (2)						
1-2	-192,3	262,5	0,2	-3,4715	6,460	0	2.62

Tableau 3.1 : Paramètres d'interaction du modèle NRTL des mélanges binaires EMAG + Alcane

 $\frac{\delta P}{P}(\%) = 100(Pexp - Pcal)/Pcal$

Composé i-j	$A_{i,j}^{(0)}$	$A_{j,i}^{(0)}$	$A_{i,j}^{(T)}$	$A_{i,j}^{(T)}$	$\frac{\delta P}{P}(\%)$		
Dodécanoate de méthyle (1) + n-dodécane (2)							
1-2	7,3	96,5	-0,4666	0,3778	1.17		
	Tétradécanoate de méthyle (1) + n-dodécane (2)						
1-2	19	93,9	-0,7132	0,6807	1.09		
Hexadécanoate de méthyle (1) + n-dodécane (2)							
1-2	0,7	67,8	-0,5505	0,5615	1.76		
	Dodéca	noate de méthyl	e (1) + n-tétradée	cane (2)			
1-2	35,8	112,6	-1,0030	1,1060	6.42		
Tétradécanoate de méthyle (1) + n-tétradécane (2)							
1-2	-40	18,3	1,1083	-0,7755	1.33		
	Hexadécanoate de méthyle(1) + n-tétradécane (2)						
1-2	-39,8	8,2	-0,3717	0,6016	2.61		

Tableau 3.2: Paramètres d'interaction du modèle UNIQUAC des mélanges binaires EMAG + Alcane

 $\frac{\delta P}{P}$ (%) = 100(Pexp - Pcal)/Pcal

3.6 Conclusion

La modélisation thermodynamique des équilibres liquide-vapeur des binaires EMAG/n-alcane a été réalisée au moyen de deux modèles à coefficients d'activité pour représenter les écarts à l'idéalité de la phase liquide : les modèles NRTL et UNIQUAC.

Ces deux modèles représentent très correctement nos résultats expérimentaux, les pressions de vapeur restituées par les modèles étant dans la grande majorité des cas très proches des valeurs expérimentales. Notre préférence va cependant vers le modèle UNIQUAC qui permet une bonne représentation des données avec un nombre de paramètres plus faible.

CHAPITRE 4

ETUDE DES PROPRIETES VOLUMETRIQUES DES MELANGES ESTERS METHYLIQUES/ALCANES

4. Propriétés volumétriques des mélanges ester méthylique/n-alcane

4.1. Introduction

La connaissance des propriétés volumétriques des mélanges est très importante dans de nombreuses applications du génie chimique, tout particulièrement dans le domaine pétrolier (conception d'équipements, dimensionnement, étude de transfert de masse, de transfert de chaleur, écoulement des fluides, etc.). Dans le cas des mélanges gazeux ces données sont essentielles pour l'établissement d'un modèle thermodynamique représentant les propriétés de ces systèmes. Pour des mélanges liquides ces propriétés peuvent être utilisées pour mieux comprendre les interactions intermoléculaires à l'origine des écarts à l'idéalité [67].

Dans le domaine des moteurs thermiques, la masse volumique du carburant est l'un des paramètres clés qui influence directement la performance des moteurs. De nombreux paramètres importants, tels que l'indice de cétane et la quantité de chaleur dégagée dans la chambre de combustion dépendent de la masse volumique du carburant. Connaître cette donnée permet un dosage précis de la quantité injectée et l'optimisation du rendement du moteur [67], [68].

Dans cette partie de thèse, nous avons mesuré la masse volumique en fonction de la composition et de la température des quatre mélanges suivant :

- dodécanoate de méthyle (1) + dodécane (2)
- tetradécanoate de méthyle (1) + dodécane (2)
- dodécanoate de méthyle (1) + tetradécane (2)
- tetradécanoate de méthyle (1) + tetradécane (2)

Les volumes molaires d'excès ont été ensuite calculés et corrélés avec l'équation de Redlich-Kister. Les résultats expérimentaux ont été aussi utilisés pour tester l'applicabilité de la théorie Prigogine-Flory-Patterson (PFP).

4.2. Technique expérimentale

La masse volumique des corps purs et des mélanges a été mesurée avec un densitomètre à tube vibrant de marque Anton Paar DMA 4500 M. L'appareil est principalement constitué par un tube en « U » en acier inoxydable fixé à une extrémité et placé dans une enceinte à double paroi dans laquelle circule de l'eau maintenue à température constante (**Figure 4.1**). Le tube est soumis à une excitation électromagnétique, sa période de vibration dépend de sa masse donc de la masse volumique du fluide introduit. L'étude mécanique du système [69] montre que la masse volumique du fluide (gazeux ou liquide) est reliée à la période de vibration du tube par la relation simple :

$$\rho = A\tau^2 - B$$

Les paramètres A et B dépendent de la température et de la pression du fluide. Cette dernière est constante car les déterminations sont effectuées à pression ambiante

Figure 4.1 : Principe de fonctionnement du densimètre à tube vibrant.

Le densitomètre est étalonné chaque jour avec de l'air sec et de l'eau bi-distillée à la température de l'expérience .On obtient un système de deux équations à deux inconnues qui permettent le calcul des deux paramètres.

L'incertitude sur la mesure de la masse volumique est de 5.10⁻⁵ kg.m⁻³.

La mesure de la température est faite au moyen de deux sondes en platine Pt 100 (une immergée dans le thermostat, l'autre dans l'enceinte à double paroi) garantissant une incertitude sur la température de +/-0.05°C.

✓ Détection d'erreurs

L'une des principales sources d'erreurs lors de mesures effectuées avec les densimètres à tube vibrant est la formation de bulles de gaz pouvant apparaitre lors du remplissage du tube vibrant ou se former pendant la mesure. Ce problème a été pris en compte par la société Anton Paar, qui a créé une nouvelle fonction : l'instrument détecte automatiquement la présence des bulles de gaz dans la cellule de mesure grâce à une analyse avancée de son profil d'oscillation et émet un message d'avertissement.

Préparation des échantillons

Les mélanges étudiés ont été préparés par pesée en utilisant une balance analytique (Sartorius, ED224S) avec une précision de $\pm 10^{-4}$ g. La conversion en quantités molaires est basée sur le tableau de masse atomique relative de 2006 publié par Wieser [70].

4.3. Résultats expérimentaux

Les mesures de la masse volumique des mélanges binaires ont été réalisées à la pression atmosphérique et dans la gamme de température comprise entre 293.15 et 353.15 K. Les données expérimentales relatives aux corps purs et aux mélanges en fonction de la température et de la composition, sont indiquées dans les **Tableau A8. 1 - A8.4** (annexe 8).

Les volumes molaires d'excès pour les systèmes étudiés ont été calculés à partir des données des masses volumiques des mélanges et des corps purs en utilisant **l'équation 4.1** :

$$V_m^E = \sum_{i=0}^n x_i M_i (\rho^{-1} - \rho_i^{-1})$$
(4.1)

Où x_i est la fraction molaire du constituant *i* pur ; M_i représente la masse molaire du constituant _i ; ρ_i et ρ sont respectivement la masse volumique du constituant *i* pur et *celle* du mélange.

Les volumes molaires d'excès ont été ensuite corrélés par l'équation de Redlich-Kister suivantes :

$$V_m^E = x_1(1-x_1)\sum_{i=0}^{i=n} A_i (2x_1-1)^i$$
(4.2)

Les paramètres A_i ont été obtenus en utilisant la méthode de moindre carré et sont donnés dans les **Tableau A9. 5-A9.8** (annexe 9), avec les écarts types déterminés à partir de **l'équation 4.3**.

$$\sigma = \left[\sum \{ V_{(\text{expt})}^{E} - V_{(cal)}^{E} \}^{2} / (N - n) \right]^{1/2}$$
(4.3)

Où N est le nombre de points expérimentaux et n est le nombre de coefficients utilisés dans l'équation de Redlich-Kister. En utilisant des Polynômes de Redlich-Kister à 4 paramètres, on obtient des écarts types d'ajustement très faibles.

L'analyse des résultats des **Tableaux A9.1-A9.4** et des **Figures 4.2-4.5**, montre que les volumes molaire d'excès des quatre systèmes étudiés sont positif dans toute la gamme de température et de composition, les courbes représentatives ont une forme parabolique presque symétrique par rapport à la fraction molaire 0,5.

Les valeurs positives des volumes d'excès s'expliquent par la rupture, lors du mélange, des interactions intermoléculaires des composés purs, principalement celles des esters qui sont des composés moyennement polaires donc partiellement auto associés. Ainsi pour les quatre systèmes binaires A-B étudiés, les interactions A-A et B-B sont supérieures aux interactions mixtes A-B.

Les volumes d'excès des deux systèmes *ester* (1) + n-tetradécane(2) sont supérieurs à ceux des systèmes *ester* (1) + n-dodécane(2). Ce comportement résulte probablement d'une organisation croissante de la paraffine à l'état pur en fonction de la longueur de chaine qui entraine une augmentation des interactions dipôle instantané- dipôle induit (forces de dispersion).

Pour les quatre systèmes étudiés la température n'a qu'une très faible influence sur les volumes d'excès si bien qu'on ne peut pas en déduire un comportement général.

4.4. Prédiction du volume molaire d'excès par le modèle (PFP)

Les grandeurs thermodynamiques d'excès telles que l'enthalpie ou le volume molaire d'excès ont été largement utilisées pour mettre au point et vérifier les théories des solutions.

Le modèle théorique de Prigogine-Flory-Patterson (PFP) [71-74] permet d'analyser les propriétés thermodynamiques d'excès pour différents types de mélanges incluant les composés polaires [75].

Selon la théorie PFP, le calcul du volume d'excès inclut trois contributions :

- Une contribution due aux interactions moléculaires qui est proportionnelle à un paramètre empirique χ12, ajustable sur les valeurs expérimentales du volume molaire d'excès [76] que nous notons : «V^E_{Inter}». Le facteur χ12 est le paramètre de Flory [72] qui est en relation avec la variation d'énergie résultant de la mise en contact des molécules de nature différente.
- Une contribution dite de volume libre (notée $V_{free vol}^E$) : qui provient de la variation du volume libre des molécules en fonction de la température, en raison de la différence entre les coefficients de dilatation thermique des constituants purs. Le volume libre représente le volume disponible du centre de masse d'une molécule pour se déplacer dans le système en supposant que les autres molécules sont immobiles.
- Une contribution dite de pression (notée $V_{P^*}^E$) dépendante des différences entre les pressions internes et entre les volumes réduits des constituants purs des mélanges.

Cette théorie permet l'estimation quantitative de ces trois contributions au volume molaire d'excès.

Le volume molaire d'excès d'un mélange binaire liquide s'écrit comme suit :

$$V_{m}^{E} = V_{Inter}^{E} + V_{free \ vol}^{E} + V_{P^{*}}^{E}$$

$$\frac{V_{m}^{E}}{x_{1}V_{1}^{*} + x_{2}V_{2}^{*}} = \frac{\left(\tilde{V}^{1/3} - 1\right)\tilde{V}^{2/3}\psi_{1}\theta_{2}(\chi_{12}/P_{1}^{*})}{\left((4/3)\tilde{V}^{-1/3} - 1\right)} - \frac{\left(\tilde{V}_{1}^{-}\tilde{V}_{2}\right)^{2}\left((14/9)\tilde{V}^{-1/3} - 1\right)\psi_{1}\psi_{2}}{\left((4/3)\tilde{V}^{-1/3} - 1\right)\tilde{V}_{1}} + \frac{\left(\tilde{V}_{1}^{-}\tilde{V}_{2}\right)\left(P_{1}^{*} - P_{2}^{*}\right)\psi_{1}\psi_{2}}{P_{2}^{*}\psi_{1} + P_{1}^{*}\psi_{2}}$$

$$(4.4)$$

 \tilde{V} le volume réduit de la solution, donnée par :

$$\tilde{V} = \psi_1 \tilde{V}_1 + \psi_2 \tilde{V}_2 \tag{4.6}$$

 Ψ Représente la fraction d'énergie de contact moléculaire :

$$\Psi_1 = 1 - \Psi_2 = \frac{\phi_1 P_1^*}{(P_1^* \phi_1 - P_2^* \phi_2)} \tag{4.7}$$

 ϕ Représente la fraction volumique, définie par :

$$\phi_1 = 1 - \phi_2 = \frac{x_1 V_1^*}{(x_1 V_1^* - x_2 V_2^*)} \tag{4.8}$$

La fraction de surface moléculaire θ_2 du composé 2 est donnée par :

$$\theta_2 = \frac{\phi_2}{(\phi_1(\frac{S_1}{S_2}) + \phi_2)} \tag{4.9}$$

Le rapport S1 /S2 est donné par la relation [76]:

$$\frac{S_1}{S_2} = \left(\frac{V_1^*}{V_2^*}\right)^{1/3} \tag{4.10}$$

Le coefficient de dilatation thermique α_i est utilisé pour calculer le volume réduit des deux constituants par l'équation 4.11:

$$\widetilde{V}_i = \frac{(1+\alpha_i(\frac{4}{3})T)}{(1+\alpha_i T)}$$
(4.11)

Avec
$$\alpha = \left(\frac{1}{V}\right) \left(\frac{\partial V}{\partial T}\right)_p$$
 (4.12)

Le coefficient de dilatation thermique peut-être exprimé en fonction de la masse volumique par l'équation 4.13:

$$\alpha = -\left(\frac{1}{\rho}\right)\left(\frac{\partial\rho}{\partial T}\right)_p \tag{4.13}$$

Le volume caractéristique est donné par :

$$V_i^* = \frac{V_i^0}{\widetilde{V}_i} \tag{4.14}$$

 V_i^0 est le volume molaire :

$$V_i^0 = \frac{M_i}{\rho_i} \tag{4.15}$$

Mi, pi sont respectivement la masse moléculaire et la masse volumique du composé i.

La pression caractéristique est donné par :

$$P_i^* = T \, V_i^{0\,2} \alpha_i / \kappa_{Ti} \tag{4.16}$$

 κ_{Ti} Représente le coefficient de compressibilité isotherme.

✓ Résultats de prédiction

Dans les **Tableau 4.1** et **4.2** sont rassemblés respectivement les paramètres des corps purs utilisés dans le modèle théorique PFP et le volume molaire d'excès calculé par ce dernier.

Les valeurs du coefficient d'expansion thermique α des corps purs ont été calculées à partir des données de la masse volumiques par **l'équation 4.13** et celles de la compressibilité isotherme κ_{Ti} ont été obtenues à partir de la littérature.

Ces résultats, illustrés par les **Figure 4.6-4.9**, montrent que le modèle PFP qui ne comporte qu'un seul paramètre ajustable (χ_{12}), représentent bien nos résultats expérimentaux avec un écart (δ) très faible entre V_m^E (Exp.) et V_m^E (PFP).

Dans le **Tableau 4.2**, nous observons que les valeurs de χ_{12} sont positives et qu'elles augmentent avec l'augmentation de nombre de carbone du n-alcane. En effet une surface de contact plus grande de l'alcane favorise les variations d'énergie suite au mélange des deux composés.

Composé	$V^0/cm^3 mol^{-1}$	$10^{6} \alpha / K^{-1}$	$10^{12} \kappa_T / cm^3 J^1$	$V^*/cm^3 mol^{-1}$	$P*/J cm^{-3}$
Dodécanoate de méthyle	247,889	667.32	755 ^a	211,384	294.62
Tetradécanoate de méthyle	279,963	624.00	762 ^b	240,004	286.00
n-dodécane	227,950	716.01	955°	191,863	315.24
n-tetradécane	259,598	673.00	880 ^c	221,125	310.47
^a [77], ^b [78], ^c [79], ^d [80]					

Tableau 4.1 : Paramètres des corps purs utilisés dans la théorie de Flory à T = 293.15 K.

Tableau 4.2: Volumes molaires d'excès expérimentaux et prédits par la théorie PFP à $x_1=0.5$, les paramètres d'interaction χ_{12} les trois contributions calculés et l'écart (δ) à 293.15 K.

		Contri	butions cal	culées	$V_m^E(\mathbf{x}_1)$	=0.5)	δ
Systèmes					cm ³	mol ⁻¹	cm ³ mol ⁻¹
	X ₁₂	V_{inter}	$V^{E}_{free vol}$	$V^{E}_{P^{*}}$	Exp	PFP	
Dodécanoate de méthyle (1) +	7.7156	0.32094	0.00834	-0.07871	0.23786	0.23389	0.004
n-dodécane(2)							
Dodécanoate de méthyle (1) +	13.2934	0,34706	0,00014	-0,01007	0,34231	0,33685	0,005
n-tetradécane(2)		,	,	,	,	,	,
Tetradécanoate de méthyle (1)	9.0196	0.34497	0.03782	-0.08208	0.23416	0.22507	0.009
+ n-dodécane(2)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,0 ,	0,00702	0,00200	0,20 .10	0,22007	0,000
Tetradécanoate de méthyle (1)	10 4542	0 35310	0.01100	-0.03800	0 30810	0 30400	0.004
+n-tetradécane(2)	10.1342	0,55510	0,01100	0,00000	0,00010	0,00100	0,004

Les **figures 4.6** à **4.9** montrent que les contributions de volume libre et de pression interne n'ont qu'une contribution mineure au volume molaire d'excès, probablement parce que la géométrie moléculaire (taille et forme) des deux constituants des mélanges sont relativement proches. Ainsi l'essentiel du volume d'excès résulte de la différence des interactions moléculaires avant et après mélange. En effet à l'état pur les molécules d'ester sont en interaction par suite de leur légère polarité « permanente » et celles du n-alcane le sont par polarité instantanée/polarité induite qui sont deux mécanisme d'interaction notablement différents.

4.5. Conclusion

Au cours de la présente étude nous avons déterminé la masse volumique de quatre mélanges binaires (dodécanoate de méthyle (1) + dodécane (2) ou tetradécane (2) et tetradécanoate de méthyle (1) + dodécane (2) ou tetradécane (2)) en fonction de la composition pour 8 températures comprises entre 10°C et 80°C. Les déterminations expérimentales ont été réalisées par la méthode densimétrique en utilisant un densimètre Anton Paar DMA 4500 M comportant une option spécifique permettant de détecter la présence de bulles de gaz dans le tube vibrant, source d'instabilité des mesures. L'appareil a été étalonné sur l'air et l'eau bi-distillée avant chaque série de mesure.

Les quatre systèmes binaires ont des volumes molaires d'excès positifs dont les représentations, en fonction de la composition, sont symétriques par rapport à la fraction molaire 0.5. Ces valeurs positives résultent de la diminution, lors du mélange, des associations moléculaires présentes dans les corps purs (interactions dipolaires dans le cas des esters et forces de dispersion dans le cas des n-alcanes). On observe que les volumes d'excès des systèmes comportant le n-tétradécane sont supérieurs à ceux dont le 2° constituant est le n-dodécane et que la température a une faible influence sur leur valeur. L'ajustement des volumes d'excès expérimentaux par des polynôme type Redlich-Kister à 4 paramètres conduit à des écarts types de lissage de faible valeur.

Les données expérimentales ont été exploitées selon la théorie de Prigogine-Flory-Patterson (PFP) : ce modèle, qui ne comporte qu'un seul paramètre ajustable (soit $\chi 12$, paramètre de Flory), représente bien nos résultats expérimentaux avec des écarts d'ajustement très voisins de ceux obtenus au moyen des polynômes de Redlich-Kister à 4 paramètres. L'exploitation théorique selon le modèle PFP montre de plus que les contributions aux volumes d'excès du volume libre et de la pression interne sont négligeables, l'essentiel de la grandeur d'excès résultant des variations des énergies d'interaction moléculaire suite au mélange des deux corps purs.

CONCLUSION GENERALE

Etant donné l'importance croissante du biodiesel et des mélanges *diesel/biodiesel*, il était justifié d'étudier les propriétés thermodynamiques de ces carburants. L'objectif de cette thèse était de contribuer à mettre en place une base de données thermophysique de constituants du biodiesel et de leur mélange avec le *n-dodécane* ou le *n-tétradécane* représentant le gazole.

Le premier volet de la thèse a été consacré à l'étude expérimentale et à la modélisation thermodynamique des équilibres liquide-vapeur des mélanges binaires constitués par des esters méthyliques d'acides gras (*EMAG*) et des alcanes.

Le deuxième volet du travail a été dédié à la détermination expérimentale des volumes d'excès en utilisant la densimétrie électronique et à la corrélation des propriétés volumétriques des systèmes déjà cités.

Nous avons commencé le premier volet de cette thèse par l'étude des corps purs, alcanes et esters méthyliques. La comparaison de nos résultats avec celles de la littérature ont montré que les pressions de vapeur obtenues sont en très bon accord avec la littérature.

L'enthalpie de vaporisation déduite de nos mesures a également été comparée avec les données expérimentales. L'écart est faible, il est compris entre 0 et 2 kJ mol⁻¹.

En ce qui concerne les neuf mélanges binaires *EMAG (1) /n-alcane (2)* étudiés, les pressions de vapeur obtenues sont originales car aucune comparaison avec la littérature n'a pu être effectuée. L'utilisation de la méthode de Barker couplée à l'équation de Redlich-Kister, nous a permis de calculer la composition de la phase vapeur ainsi que les coefficients d'activité et les enthalpies libres d'excès pour chacune des températures explorée. Les valeurs des coefficients d'activité varient entre 1 et 1.5 ce qui indique que les solutions sont très proches de l'idéalité.

Parmi les neuf systèmes binaires étudiés en équilibre liquide-vapeur, uniquement le système *dodécanoate de méthyle (1)* + *n*-tétradécane (2) présente un azéotrope positif à toutes les températures pour des fractions molaires en ester inférieures à 0.1.

Les coordonnées azéotropiques à chaque température ont été déterminées par approximations successives jusqu'à obtention de l'égalité de la composition des phases vapeur et liquide en équilibre.

L'enthalpie libre d'excès G^E des différents binaires est positive dans tout l'intervalle de composition et de température. Globalement les G^E sont relativement faibles, inférieurs à 450 *J.mol⁻¹* et diminuent avec la température suite à l'influence croissante de l'effet entropique.

Les résultats expérimentaux des l'équilibres liquide-vapeur des systèmes étudiés ont été corrélés par les modèles NRTL et UNIQUAC du logiciel « Prosim Plus ». La comparaison entre les pressions expérimentales et celles obtenues par les modèles NRTL et UNIQUAC a montré que les deux modèles représentent de façon satisfaisante nos mesures expérimentales. L'écart relatif moyen $\frac{\delta P}{P}$ (%) pour tout le domaine de température étudié est inférieur à 2% à l'exception du système *hexadécanoate de méthyle (1) + tétradécane (2)* où l'écart est de 2.6%.

L'étude expérimentale des propriétés volumétriques des mélanges ester méthylique/nalcane nous a permis d'évaluer le comportement de la masse volumique et du volume d'excès de ces mélanges en fonction de la température et de la composition.

La modélisation du volume molaire d'excès par le théorie de Prigogine-Flory-Patterson (PFP), a montré :

- que nos résultats expérimentaux sont en accord avec le modèle, l'écart entre les volumes molaire d'excès expérimentaux et ceux restitués par le modèle étant de l'ordre de 0.5%,
- que les variations des énergies d'interactions suite au mélange ont un effet prépondérant sur les volumes d'excès devant celles du volume libre et de pression interne.

Ce travail d'actualité, présente un intérêt pratique car il permet de pallier au manque de données thermophysiques des EMAG et de leur mélange avec des n-alcanes, et a également un intérêt fondamental pour la modélisation des données expérimentales au moyen de différents modèles thermodynamiques.

Une partie de ces travaux de recherche a fait l'objet de deux publications dans des journaux de spécialité de classe A et de deux communications.

ANNEXES

ANNEXE 1: Etalonnage du capteur de pression MKS. Pressions de vapeur des n-alcanes

Paramètres d'étalonnage du capteur MKS :

- Enceinte thermo régulée à 110°C : P/mmHg = 0,89275 * Signal _{MKS}
- 2) Enceinte thermo régulée à 200 °C :

0 < P < 300 Pa ou 0 < P < 2 mmHg:

 $P/mmHg = 0.90027 * Signal_{MKS} + 0.000085 * (Signal_{MKS})^{2}$

P > 300 ou P > 2 mmHg: P/mmHg = 0,92463 * Signal _{MKS}

Tableaux A1. 1: Comparaison entre les pressions de vapeur expérimentales du n-décane et celles de Viton [27], MKS à 110°C

t°C	log P	P _{Viton} mmHg	P _{Viton} Pa	Signal MKS	Pexp/mmHg	Pexp/Pa	$\Delta P/Pexp(\%)$	
	Boite + liaison à 110°C							
0.10	-0.7048	0.197	26.3	0.215	0.192	25.6	-2.82	
0.11	-0.7044	0.198	26.3	0.215	0.192	25.6	-2.91	
10.11	-0.3490	0.448	59.7	0.498	0.445	59.3	-0.71	
10.13	-0.3483	0.448	59.8	0.497	0.444	59.1	-1.07	
20.10	-0.0227	0.949	126.5	1.065	0.951	126.7	0.19	
30.08	0.2778	1.896	252.7	2.131	1.903	253.6	0.35	
30.08	0.2778	1.896	252.7	2.133	1.904	253.8	0.44	
40.02	0.5548	3.587	478.2	4.062	3.626	483.3	1.07	
40.02	0.5548	3.587	478.2	4.057	3.622	482.8	0.96	
49.95	0.8115	6.479	864	7.366	6.576	877	1.47	
49.98	0.8123	6.491	865	7.376	6.585	878	1.43	
55.91	0.9570	9.057	1207	10.332	9.224	1230	1.81	

Annexes

Tableau A1. 1: Comparaison	entre les pressions	de vapeur	expérimentales	du n-décane et	t celles de
Viton [27], MKS à 200°C					

t°C	log P	Pviton mmHg	Pviton/Pa (cal)	signal MKS	Pexp (mmHg)	Pexp/Pa	$\Delta P/Pexp(\%)$	
	Boite + liaison à 200°C							
0.21	-0.701	0.199	26.6	0.222	0.1999	26.6	0.31	
0.17	-0.702	0.199	26.5	0.230	0.2071	27.6	4.10	
10.10	-0.349	0.447	59.6	0.501	0.4511	60.1	0.80	
10.13	-0.348	0.448	59.8	0.496	0.4461	59.5	-0.52	
20.11	-0.023	0.949	126.5	1.058	0.9526	127.0	0.34	
20.12	-0.022	0.950	126.7	1.058	0.9526	127.0	0.25	
30.15	0.280	1.905	253.9	2.098	1.8895	251.9	-0.82	
30.15	0.280	1.904	253.8	2.098	1.8895	251.9	-0.78	
30.16	0.280	1.906	254.1	2.098	1.8895	251.9	-0.87	
40.14	0.558	3.613	481.7	3.987	3.686	491.4	1.98	
40.15	0.558	3.616	482.0	3.987	3.686	491.4	1.91	
40.16	0.559	3.618	482.3	3.987	3.686	491.4	1.85	
50.11	0.816	6.540	872	7.180	6.639	885	1.48	
50.10	0.815	6.536	871	7.180	6.639	885	1.55	
55.12	0.938	8.672	1,156	9.505	8.789	1172	1.33	
55.14	0.939	8.681	1,157	9.513	8.796	1173	1.31	
55.13	0.938	8.677	1,157	9.513	8.796	1173	1.35	

ANNEXE 2 : Pressions de vapeur des esters méthyliques

T/K	Pexp./Pa	100*δP/P
262.64	32.0	2.0
272.74	75.1	-0.5
282.84	164.0	-1.9
292.87	337.4	-1.7
307.63	885	-0.2
307.90	895	-0.7
317.65	1605	1
332.72	3529	1
347.57	7131	2
362.19	13058	0.5
377.31	23112	-0.1
392.48	38939	-0.5
407.40	62308	-0.5
422.29	96031	-0.3
	$\left \frac{\Delta P}{P}\right $ (%)	0.9

Tableau A2. 1 : Pressions de vapeur expérimentales et écarts de lissage de l'hexanoate de méthyle.

Tableau A2. 2 : Pressions de vapeur expérimentales et écarts de lissage de l'octanoate de méthyle.

T/K	Pexp./Pa	100*δP/P
282.64	15.0	2.2
292.80	34.5	-0.8
302.87	75.1	-1.4
312.89	154.2	-0.9
323.02	302.0	-0.4
333.08	554	-1
343.23	986	-0.6
353.34	1668	-1.1
362.45	2714	2.9
372.52	4279	2.1

T/K	Pexp./Pa	100*δP/P
382.72	6575	1.2
392.83	9826	0.6
402.83	14272	-0.1
412.89	20335	-0.6
422.74	28288	-0.9
432.68	38823	-1
	$\left \frac{\Delta P}{P}\right $ (%)	1.1

Tableau A2. 3 : Pressions de vapeur expérimentales et écarts de lissage du décanoate de méthyle.

T/K	Pexp./Pa	100*δP/P
292.87	3.49	1.46
302.97	8.40	-2.57
313.01	20.2	1.3
323.04	43.3	0.1
333.13	89.1	0.5
343.30	168.2	-3.3
352.40	312.2	2.5
362.72	555	0.6
372.54	934	-0.3
382.62	1562	0.2
392.75	2525	0.3
402.71	3920	-0.1
412.79	6013	0.4
422.71	8887	0.1
432.65	12797	-0.7
	$\left \frac{\Delta P}{P}\right $ (%)	0.9

T/K	Pexp./Pa	100*δP/P
322.68	6.72	0.62
332.79	14.7	-1.9
342.08	30.3	2.0
353.19	63.6	-0.6
362.53	116.6	0.1
372.57	212.7	-0.3
382.62	377.5	0.3
392.73	642	-0.2
402.73	1059	-0.1
412.79	1700	-0.1
422.61	2652	0.6
432.58	4020	0.3
442.50	5924	-0.5
	$\left \frac{\Delta P}{P}\right $ (%)	0.6

Tableau A2. 4 : Pressions de vapeur expérimentales et écarts de lissage du dodécanoate de méthyle.

Tableau A2. 5 : Pressions de vapeur expérimentales et écarts de lissage du tétradécanoate de méthyle.

T/K	Pexp./Pa	100*δP/P
332.40	2.76	1.70
342.28	5.88	-0.95
342.28	5.98	0.65
352.35	12.5	-0.7
352.35	12.5	-0.7
362.59	25.4	-1.2
372.73	50.1	-0.2
382.82	94.1	0.1
392.86	166.3	-2.0
392.87	168.2	-0.8
402.76	301.7	2.5
412.80	514	3

422.64	831	2
432.57	1311	-0.2
432.57	1306	-0.6
432.58	1309	-0.3
442.36	2056	0.3
442.37	2053	0.1
442.38	2051	-0.05
452.24	3123	-0.7
452.25	3127	-0.6
452.26	3132	-0.5
	$\left \frac{\Delta P}{P}\right $ (%)	0.9

Tableau A2. 6 : Pressions de vapeur expérimentales et écarts de lissage de l'hexadécanoate de méthyle.

T/K	Pexp./Pa	100*δP/P
372.35	15.0	-0.1
382.55	28.3	-0.2
392.48	51.5	0.2
402.41	90.9	-0.1
412.54	161.3	1.3
422.44	268.7	-0.1
432.68	447.7	-1.1
442.67	731	-1
452.65	1197	1
	$\left \frac{\Delta P}{P}\right $ (%)	0.6

_

<u>ANNEXE 3</u>: Pressions de vapeur des binaires esters méthyliques(1) + n-alcanes(2) : ajustement par l'équation d'Antoine.

TableauA3. 1 : Paramètres A, B,	C de l'équation d'Antoine ave	ec écarts-type (σ) et écarts moyens de
lissage (d).		

x_1	A	σ_A	В	σ_B	С	σ_{c}	d
		hexan	oate de méthyle	e (1) +n-dod	écane (2)		
0.0000	7.50802	0.04	1959.63	22.2	209.4541	1.53	1.19
0.1185	7.30607	0.088	1931.48	60.5	238.2495	5.35	0.58
0.2503	6.78968	0.051	1543.92	30.9	209.0708	2.99	0.42
0.3644	6.97271	0.024	1605.29	14.7	215.9243	1.42	0.24
0.4735	6.84663	0.146	1500.25	87.4	207.5514	8.59	1.07
0.613	6.87127	0.064	1454.7	37.8	201.1051	3.76	0.60
0.7352	7.29273	0.039	1695	27.2	225.0269	2.76	0.12
0.8557	6.98222	0.076	1459.7	44.8	200.7639	4.48	0.74
1.0000	7.09784	0.031	1500.41	16.4	204.687	1.41	0.71
		octano	oate de méthyle	(1) +n-dod	écane (2)		
0.0000	7.50802	0.04	1959.63	22.2	209.4541	1.53	1.19
0.1361	7.20662	0.043	1779.2	25.6	201.4169	2.1	0.35
0.2562	7.31149	0.019	1835.72	11.8	208.391	0.97	0.19
0.3738	7.2371	0.056	1758.43	33.2	201.477	2.76	0.48
0.4953	7.15248	0.072	1710.9	42.5	199.3078	3.6	0.54
0.6152	7.16122	0.029	1700.71	17	198.4338	1.45	0.28
0.7385	7.37466	0.052	1832	31.9	210.8097	2.65	0.37
0.8564	7.4134	0.026	1846.83	15.8	212.5975	1.3	0.22
1.0000	7.40484	0.058	1808.14	32.8	206.6885	2.51	0.98
		décano	oate de méthyle	e (1) +n-dod	écane (2)		
0.0000	7.50802	0.04	1959.63	22.2	209.4541	1.53	1.19
0.1443	7.59855	0.055	2039.91	34.2	217.4782	2.59	0.47
0.2705	7.36313	0.059	1886.61	35.5	203.5473	2.78	0.51
0.3868	7.19007	0.108	1793.09	62.8	196.0223	5.02	0.92
0.5066	7.64011	0.067	2078.08	42	217.9744	3.13	0.53
0.6257	7.38723	0.034	1915.63	20.4	203.0987	1.57	0.28
0.7363	7.4901	0.047	1990.74	28.5	208.0661	2.15	0.40
0.862	7.48912	0.037	1994.59	22.2	205.6981	1.65	0.30
1.0000	7.93581	0.11	2236.45	73.7	216.199	5.49	0.38

<i>x</i> ₁	A	σ_A	В	σ_B	С	σ	d
		dodécano	ate de méthyl	e (1) + n-do	odécane (2)		
0.0000	7.50802	0.04	1959.63	22.2	209.4541	1.53	1.19
0.1514	7.18497	0.032	1796.28	18.9	197.2904	1.52	0.33
0.2636	7.36197	0.037	1925.12	22.6	207.2899	1.73	0.10
0.3910	7.29357	0.048	1911.68	30.1	205.4403	2.41	0.27
0.5069	7.30749	0.043	1940.95	27	206.54	2.01	0.21
0.6309	7.48786	0.077	2098.77	49.6	218.0621	3.77	0.36
0.7418	7.66903	0.132	2259.01	92.9	228.2771	6.14	0.29
0.8570	8.41048	0.141	2824.11	110.1	263.3077	6.79	0.18
1.0000	8.22602	0.074	2551.6	46.8	218.7037	3	0.39
		tétradécan	oate de méthy	vle (1) + n-d	lodécane (2)		
0.0000	7.50802	0.04	1959.63	22.2	209.4541	1.53	1.19
0.1515	7.07965	0.113	1737.21	70.9	192.1128	6.38	0.47
0.2622	7.06571	0.196	1762.7	124.3	194.8054	11.08	0.63
0.3922	6.94168	0.123	1720.28	77.2	190.4154	6.96	0.50
0.5137	7.14209	0.066	1892.77	43.4	204.8994	3.73	0.26
0.6328	7.02975	0.167	1873.51	108.4	202.4003	9.33	0.60
0.7796	7.4251	0.723	2273.3	520.7	236.6174	41.01	1.88
0.8541	8.02185	0.19	2743.83	147.1	264.6107	10.34	0.42
1.0000	7.83041	0.446	2419.95	363.3	193.8131	18.79	0.45
		hexadécan	oate de méthy	vle (1) + n-d	odécane (2)		
0.0000	7.50802	0.04	1959.63	22.2	209.4541	1.53	1.19
0.1538	7.10615	0.075	1753.23	48.5	193.0561	4.48	0.23
0.2647	7.34364	0.047	1960.46	32.5	212.8112	2.85	0.13
0.3825	7.37237	0.086	2031.24	60.2	219.5326	5.19	0.15
0.5171	6.66454	0.148	1611.89	93.1	180.5177	9.05	0.39
0.6425	7.21125	0.067	2065.63	47.9	222.0563	4.12	0.13
0.7556	6.86255	0.093	1901.21	63.1	205.7415	5.63	0.20
0.8538	7.69844	0.129	2637.65	102.5	263.3195	7.7	0.18
1.0000	11.7176	0.597	5774.12	589.4	356.6368	25.16	0.61

TableauA3. 2 : Paramètres A, B, C de l'équation d'Antoine avec écarts-type (σ) et écarts moyens de lissage.

x_1	A	σ_A	В	σ_B	С	σ	d
		dodécano	ate de méthyle	(1) + n-tétra	adécane (2)		
0.0000	7.08854	0.059	1791.21	34.5	172.9293	2.81	0.40
0.1331	7.65919	0.161	2124.45	100.7	197.6409	7.35	0.69
0.2567	7.40958	0.054	1997.36	32.9	189.9602	2.52	0.23
0.3888	7.09724	0.069	1818.08	43.9	175.4020	3.84	0.22
0.5172	7.61150	0.170	2143.43	106.7	199.8543	7.77	0.58
0.6987	7.01495	0.104	1813.97	60.3	174.5260	4.81	0.45
0.8519	7.44750	0.158	2067.98	96.8	190.4023	7.12	0.68
1.0000	8.22602	0.074	2551.60	49.6	218.7037	3.00	0.39
		tétradécan	oate de méthyl	e (1) + n-tét	radécane (2)		
0.0000	7.08854	0.059	1791.21	34.5	172.9293	2.81	0.40
0.1260	7.52702	0.071	2068.52	45.2	192.6786	3.42	0.53
0.2520	7.59402	0.065	2133.67	41.6	196.9376	3.10	0.41
0.3834	7.50662	0.076	2103.90	48.5	194.4585	3.63	0.44
0.5099	7.77405	0.140	2302.92	92.7	207.7012	6.61	0.87
0.6834	7.92955	0.141	2458.10	96.9	216.7512	6.70	0.91
0.8615	7.84221	0.087	2424.67	58.9	208.4552	4.06	0.41
1.0000	9.22828	0.130	3354.69	95.6	247.9655	5.16	0.88
		hexadécan	oate de méthyl	e (1) + n-tét	radécane (2)		
0.0000	7.08854	0.059	1791.21	34.5	172.9293	2.81	0.40
0.1374	7.49367	0.096	2051.34	60.5	191.4310	4.60	0.61
0.2630	7.54882	0.101	2128.55	65.2	197.4730	4.87	0.55
0.4045	7.50083	0.072	2137.24	46.7	198.1419	3.49	0.41
0.5283	7.86009	0.114	2444.17	79.2	221.4939	5.57	0.64
0.7023	8.59670	0.117	3063.01	91.2	260.0102	5.75	0.43
0.8526	9.84507	0.204	4186.04	183.5	317.9430	9.79	0.49
1.0000	11.74962	0.136	5806.45	127.1	358.0426	5.10	0.49

 $\textbf{TableauA3.3}: Paramètres A, B, C \text{ de l'équation d'Antoine avec écarts-type } (\sigma) \text{ et écarts moyens de lissage}.$

<u>ANNEXE 4</u>: Données nécessaires au calcul des équilibres liquide-vapeur des binaires ester méthylique (1)-n-alcane(2)

	$T_{c}(K)$	P _c (bar)	Zc	ω
n-dodécane	658.2	18.239	0.24028	0.573
n-tétradécane	693	14.4	0.23953	0.581
hexanoate de méthyle	601.95	28.57	0.25002	0.466
octanoate de méthyle	640	23.2	0.244	0.576
décanoate de méthyle	671.15	17.52	0.24	0.669
dodécanoate de méthyle	712.15	16.7	0.23046	0.6849
tétradécanoate de méthyle	718.1	15.5	0.20722	0.9498
hexadécanoate de méthyle	754.95	13.13	0.21571	0.853

Tableau A4. 1: Paramètres critiques des constituants étudiés [58, 59].

Tableau A4. 2: Volumes molaires V (cm³ mol⁻¹) et coefficients de viriel B (cm³ mol⁻¹) du système : *EMAG* (1) + n-dodécane (2).

	Dodéca	ne de mo	éthyle	Tétradécane de méthyle		Hexadécanoate de méthyle			dodé	dodécane	
<u>T/K</u>	V	<u>B11</u>	<u>B12</u>	V	<u>B11</u>	<u>B12</u>	V	<u>B11</u>	<u>B12</u>	V	<u>B22</u>
353.15	244.44	-13483	-9866	218.14	-19291	-11856	286.46	-28132	-13556	229.50	-7384
363.15	246.82	-11949	-8826	220.38	-16949	-10553	289.11	-24524	-12051	232.00	-6662
373.15	249.28	-10678	-7956	222.70	-15020	-9466	291.83	-21576	-10798	234.60	-6051
383.15	251.81	-9613	-7219	225.10	-13414	-8549	294.62	-19142	-9744	237.29	-5528
393.15	254.43	-8711	-6589	227.57	-12062	-7769	297.50	-17113	-8849	240.08	-5076
403.15	257.13	-7941	-6045	230.12	-10915	-7097	300.46	-15404	-8080	242.98	-4683
413.15	259.93	-7276	-5571	232.76	-9932	-6515	303.52	-13952	-7415	246.00	-4337
423.15	262.83	-6698	-5155	235.50	-9082	-6006	306.67	-12708	-6835	249.15	-4031
433.15	265.83	-6191	-4787	238.33	-8341	-5558	309.93	-11633	-6325	252.44	-3758
443.15	268.94	-5744	-4460	241.27	-7692	-5160	313.29	-10697	-5872	255.88	-3513

Annexes

	Dodéca	noate de	méthyle	Tétradéo	canoate de	e méthyle	Hexadécanote de méthyle			n-tétra	n-tétradécane	
<u>T/K</u>	V	<u>B11</u>	<u>B12</u>	<u> </u>	<u>B11</u>	<u>B12</u>	<u> </u>	<u>B11</u>	<u>B12</u>	<u> </u>	<u>B22</u>	
353.15	244.44	-13483	-12699	218.14	-19291	-15272	286.46	-28132	-17746	298.81	-12156	
363.15	246.82	-11949	-11309	220.38	-16949	-13532	289.11	-24524	-15718	301.79	-10870	
373.15	249.28	-10678	-10151	222.70	-15020	-12089	291.83	-21576	-14039	304.86	-9795	
383.15	251.81	-9613	-9176	225.10	-13414	-10878	294.62	-19142	-12635	308.03	-8886	
393.15	254.43	-8711	-8347	227.57	-12062	-9852	297.50	-17113	-11448	311.31	-8110	
403.15	257.13	-7941	-7635	230.12	-10915	-8975	300.46	-15404	-10435	314.70	-7441	
413.15	259.93	-7276	-7019	232.76	-9932	-8217	303.52	-13952	-9562	318.22	-6859	
423.15	262.83	-6698	-6480	235.50	-9082	-7558	306.67	-12708	-8804	321.87	-6349	
433.15	265.83	-6191	-6006	238.33	-8341	-6980	309.93	-11633	-8141	325.66	-5898	
443.15	268.94	-5744	-5585	241.27	-7692	-6469	313.29	-10697	-7555	329.61	-5497	
453.15	272.18	-5346	-5210	244.33	-7117	-6015	402.39	-10042	-7035	333.72	-5138	

Tableau A4. 3: Volumes molaires V (cm³ mol⁻¹) et coefficients de viriel B (cm³ mol⁻¹) du système : *EMAG* (1) + n-tétradécane (2).

<u>ANNEXE 5</u>: Données expérimentales et calculées des équilibres liquide-vapeur des binaires Ester méthylique(1) -n-alcane(2)

Tableau A5. 1 : Données expérimentales et calculées de l'équilibre liquide-vapeur du système : *hexanoate de méthyle (1)* + *n*-dodécane (2).

x_1	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ_1	γ2	G ^E /J.mol ⁻¹		
			Т=353.15 К					
0.0000	0.0000	729	0.0	1.538	1.000	0.0		
0.1185	0.7191	2299	0.0	1.556	1.001	156.5		
0.2503	0.8495	3741	0.0	1.415	1.024	306.9		
0.3644	0.8949	4709	-0.6	1.295	1.065	393.7		
0.4735	0.9228	5678	1.3	1.214	1.115	438.2		
0.6130	0.9490	6598	-1.2	1.148	1.192	448.1		
0.8557	0.9790	8299	1.0	1.043	1.616	308.3		
1.0000	1.0000	9023	0.0	1.000	3.008	0.0		
			Т=363.15 К					
0.0000	0.0000	1227	0.0	1.585	1.000	0.0		
0.1185	0.6902	3518	0.0	1.521	1.004	159.4		
0.2503	0.8310	5645	0.3	1.383	1.026	302.8		
0.3644	0.8826	7084	-0.7	1.277	1.063	386.0		
0.4735	0.9138	8502	0.8	1.201	1.111	429.1		
0.6130	0.9423	9934	-0.4	1.131	1.194	434.5		
0.8557	0.9768	12312	0.2	1.032	1.577	279.3		
1.0000	1.0000	13609	0.0	1.000	2.481	0.0		
			T=373.15					
0.0000	0.0000	1997	0.0	1.605	1.000	0.0		
0.1185	0.6615	5252	-0.1	1.488	1.005	160.0		
0.2503	0.8119	8295	0.4	1.355	1.027	297.3		
0.3644	0.8696	10384	-0.7	1.260	1.061	376.8		
0.4735	0.9042	12402	0.4	1.188	1.106	418.1		
0.6130	0.9355	14561	0.1	1.117	1.191	420.3		
0.8557	0.9747	17881	-0.3	1.024	1.538	256.6		
1.0000	1.0000	19971	0.0	1.000	2.157	0.0		
Annexes								
-----------------	------------	----------	--------------------------	------------	-------	-------------------------------------	--	--
x_{I}	<i>Y</i> 1	Pexp./Pa	<i>δP/P(%)</i>	γ_1	γ2	G ^E /J.mol ⁻¹		
			T=383.15					
0.000	0.000	3152	0.0	1.599	1.000	0.0		
0.119	0.633	7661	-0.1	1.456	1.006	158.5		
0.250	0.792	11901	0.5	1.328	1.027	290.1		
0.364	0.856	14868	-0.6	1.242	1.058	366.0		
0.474	0.894	17664	0.1	1.175	1.101	405.2		
0.613	0.929	20831	0.4	1.106	1.184	405.2		
0.856	0.973	25466	-0.5	1.020	1.499	239.9		
1.000	1.000	28589	0.0	1.000	1.966	0.0		
<i>T=393.15</i>								
0.000	0.000	4840	0.0	1.618	1.000	0.0		
0.119	0.606	10943	-0.1	1.471	1.006	166.9		
0.250	0.775	16706	0.4	1.338	1.028	305.4		
0.364	0.843	20839	-0.4	1.248	1.060	385.0		
0.474	0.885	24622	-0.1	1.181	1.103	426.3		
0.613	0.923	29153	0.5	1.111	1.187	427.4		
0.856	0.970	35620	-0.5	1.022	1.517	256.6		
1.000	1.000	40018	0.0	1.000	2.043	0.0		
			<i>T</i> = <i>403.15</i>					
0.0000	0.0000	7245	0.0	1.520	1.000	0.0		
0.1185	0.5772	15333	-0.1	1.397	1.005	148.8		
0.2503	0.7525	22990	0.2	1.282	1.025	270.9		
0.3644	0.8265	28643	-0.2	1.206	1.053	339.4		
0.4735	0.8728	33653	-0.3	1.149	1.091	373.6		
0.6130	0.9151	39990	0.5	1.092	1.159	372.6		
0.8557	0.9683	48994	-0.5	1.019	1.422	224.2		
1.0000	1.0000	54885	0.0	1.000	1.849	0.0		
			<i>T=413.15</i>					
0.000	0.000	10598	0.0	1.454	1.000	0.0		
0.119	0.550	21104	0.0	1.368	1.004	140.4		
0.250	0.732	31068	0.0	1.261	1.023	258.0		

x_1	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ_1	γ_2	G ^E /J.mol ⁻¹
0.364	0.811	38673	0.2	1.187	1.051	322.6
0.474	0.862	45175	-0.4	1.136	1.085	353.8
0.613	0.909	53861	0.4	1.089	1.141	353.8
0.856	0.966	66355	-0.3	1.022	1.383	223.7
1.000	1.000	73888	0.0	1.000	1.885	0.0
			<i>T</i> =423.15			
0.0000	0.0000	15179	0.0	1.376	1.000	0.0
0.1185	0.5235	28574	0.1	1.340	1.003	130.0
0.2503	0.7118	41291	-0.2	1.241	1.021	243.6
0.3644	0.7948	51364	0.5	1.168	1.048	304.2
0.4735	0.8498	59652	-0.5	1.123	1.078	332.2
0.6130	0.9023	71337	0.2	1.087	1.121	334.3
0.8557	0.9643	88581	-0.1	1.026	1.345	228.3
1.0000	1.0000	97792	0.0	1.000	1.979	0.0

Tableau A5. 2: Données expérimentales et calculées de l'équilibre liquide-vapeur du système : octanoate de méthyle (1) + n-dodécane (2).

x_{I}	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ_1	γ2	G ^E /J.mol ¹
			Т=353.15 К			
0.0000	0.0000	729	0.0	1.992	1.000	0.0
0.1361	0.3734	1022	0.2	1.677	1.014	241.7
0.2562	0.5157	1178	-0.4	1.426	1.055	383.5
0.3738	0.6090	1303	0.2	1.269	1.112	457.1
0.4953	0.6932	1419	0.6	1.182	1.174	480.5
0.6152	0.7705	1507	-0.4	1.135	1.235	466.6
0.7385	0.8399	1585	-1.1	1.091	1.343	416.0
0.8564	0.8970	1685	1.4	1.041	1.630	307.8
1.0000	1.0000	1670	0.0	1.000	2.998	0.0
			Т=363.15 К			
0.0000	0.0000	1227	0.0	2.039	1.000	0.0
0.1361	0.3580	1683	0.2	1.625	1.017	242.6
0.2562	0.5009	1925	-0.5	1.389	1.056	376.4

Annexes								
x_1	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ_1	γ ₂	G ^E /J.mol ⁻¹		
0.3738	0.5990	2134	0.4	1.252	1.107	445.7		
0.4953	0.6858	2310	0.4	1.170	1.165	468.1		
0.6152	0.7630	2454	-0.2	1.120	1.231	451.7		
0.7385	0.8333	2566	-1.1	1.075	1.344	394.2		
0.8564	0.8955	2723	1.3	1.031	1.590	281.0		
1.0000	1.0000	2725	0.0	1.000	2.504	0.0		
Т=373.15 К								
0.0000	0.0000	1997	0.0	2.028	1.000	0.0		
0.1361	0.3436	2684	0.2	1.574	1.018	238.9		
0.2562	0.4876	3047	-0.6	1.357	1.055	365.5		
0.3738	0.5896	3383	0.5	1.234	1.101	431.2		
0.4953	0.6784	3641	0.2	1.158	1.156	452.3		
0.6152	0.7559	3867	-0.1	1.105	1.225	433.5		
0.7385	0.8278	4030	-1.1	1.061	1.338	370.7		
0.8564	0.8946	4269	1.2	1.023	1.545	255.2		
1.0000	1.0000	4306	0.0	1.000	2.148	0.0		
			Т=383.15 К					
0.0000	0.0000	3152	0.0	1.967	1.000	0.0		
0.1361	0.3300	4152	0.2	1.525	1.018	230.8		
0.2562	0.4757	4686	-0.7	1.328	1.052	351.2		
0.3738	0.5807	5206	0.7	1.217	1.094	413.9		
0.4953	0.6711	5572	0.0	1.144	1.148	433.4		
0.6152	0.7494	5917	0.0	1.092	1.217	412.3		
0.7385	0.8233	6152	-1.0	1.049	1.325	345.8		
0.8564	0.8942	6508	1.1	1.017	1.496	230.5		
1.0000	1.0000	6611	0.0	1.000	1.888	0.0		
			Т=393.15 К					
0.0000	0.0000	4840	0.0	1.869	1.000	0.0		
0.1361	0.3174	6252	0.2	1.478	1.016	218.8		
0.2562	0.4651	7020	-0.7	1.303	1.047	333.8		
0.3738	0.5721	7801	0.9	1.201	1.087	394.1		
0.8564 1.0000 0.0000 0.1361 0.2562 0.3738	0.8942 1.0000 0.0000 0.3174 0.4651 0.5721	6508 6611 4840 6252 7020 7801	1.1 0.0 <i>T=393.15 K</i> 0.0 0.2 -0.7 0.9	1.017 1.000 1.869 1.478 1.303 1.201	1.496 1.888 1.000 1.016 1.047 1.087	230.5 0.0 0.0 218.8 333.8 394.1		

Annexes						
x_1	<i>y</i> 1	Pexp./Pa	δP/P(%)	γ_1	γ_2	G ^E /J.mol ⁻¹
0.4953	0.6638	8303	-0.2	1.130	1.139	412.0
0.6152	0.7433	8816	0.1	1.078	1.207	388.5
0.7385	0.8197	9154	-0.9	1.038	1.307	319.7
0.8564	0.8943	9673	1.0	1.012	1.446	207.0
1.0000	1.0000	9886	0.0	1.000	1.696	0.0
			T=403.15 K			
0.0000	0.0000	7245	0.0	1.744	1.000	0.0
0.1361	0.3056	9185	0.3	1.433	1.014	203.3
0.2562	0.4555	10269	-0.8	1.281	1.041	313.6
0.3738	0.5640	11407	1.0	1.185	1.079	372.2
0.4953	0.6566	12077	-0.3	1.115	1.130	388.3
0.6152	0.7376	12820	0.1	1.066	1.196	362.4
0.7385	0.8170	13308	-0.8	1.030	1.286	292.7
0.8564	0.8949	14049	0.9	1.009	1.395	184.7
1.0000	1.0000	14434	0.0	1.000	1.554	0.0
			T=413.15 K			
0.0000	0.0000	10598	0.0	1.604	1.000	0.0
0.1361	0.2946	13192	0.3	1.391	1.010	184.6
0.2562	0.4469	14697	-0.9	1.261	1.035	291.1
0.3738	0.5562	16312	1.1	1.169	1.071	348.5
0.4953	0.6493	17182	-0.4	1.101	1.122	362.5
0.6152	0.7322	18235	0.1	1.054	1.184	334.3
0.7385	0.8149	18939	-0.7	1.023	1.261	264.8
0.8564	0.8957	19977	0.8	1.006	1.344	163.4
1.0000	1.0000	20620	0.0	1.000	1.448	0.0
			T=423.15 K			
0.0000	0.0000	15179	0.0	1.459	1.000	0.0
0.1361	0.2842	18561	0.3	1.351	1.006	163.0
0.2562	0.4391	20619	-0.9	1.244	1.027	266.5
0.3738	0.5486	22857	1.2	1.154	1.063	323.2
0.4953	0.6421	23956	-0.5	1.086	1.114	335.1

x_1	<i>Y</i> 1	Pexp./Pa	<i>δP/P(%)</i>	γ_1	γ_2	G ^E /J.mol ⁻¹
0.6152	0.7272	25417	0.1	1.042	1.172	304.5
0.7385	0.8134	26429	-0.6	1.017	1.234	236.3
0.8564	0.8967	27860	0.7	1.005	1.293	143.3
1.0000	1.0000	28875	0.0	1.000	1.369	0.0
			Т=433.15 К			
0.0000	0.0000	21321	0.0	1.314	1.000	0.0
0.1361	0.2746	25626	0.3	1.314	1.002	139.1
0.2562	0.4320	28399	-0.9	1.229	1.019	240.1
0.3738	0.5413	31436	1.3	1.140	1.055	296.6
0.4953	0.6350	32789	-0.6	1.072	1.106	306.1
0.6152	0.7224	34778	0.1	1.032	1.159	273.1
0.7385	0.8125	36226	-0.5	1.012	1.206	207.3
0.8564	0.8979	38166	0.6	1.004	1.244	124.2
1.0000	1.0000	39697	0.0	1.000	1.313	0.0

Tableau A5. 3 : Données expérimentales et calculées de l'équilibre liquide-vapeur du système : décanoate de méthyle (1) + n-dodécane (2).

x_{I}	<i>y</i> 1	Pexp./Pa	<i>δP/P(%)</i>	γ_1	γ2	G ^E /J.mol-1
			Т=353.15 К			
0.0000	0.0000	729	0.0	2.809	1.000	0.0
0.1406	0.0991	735	1.7	1.599	1.038	287.4
0.2599	0.1554	683	-1.9	1.307	1.089	390.1
0.3816	0.2198	659	0.2	1.189	1.138	428.5
0.4998	0.2923	618	0.9	1.125	1.189	426.5
0.6224	0.3782	557	-0.8	1.071	1.267	387.0
0.7377	0.4785	506	0.2	1.029	1.378	309.4
0.8603	0.6405	429	0.0	1.004	1.516	181.8
1.0000	1.0000	318	0.0	1.000	1.561	0.0
			Т=363.15 К			
0.0000	0.0000	1227	0.0	2.522	1.000	0.0
0.1406	0.1012	1228	1.3	1.544	1.033	268.6
0.2599	0.1620	1151	-1.6	1.290	1.079	369.0
0.3816	0.2297	1112	0.4	1.180	1.124	408.9

Annexes								
x_1	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ_1	γ2	G ^E /J.mol-1		
0.4998	0.3045	1041	0.6	1.117	1.173	408.7		
0.6224	0.3929	947	-0.6	1.065	1.248	370.7		
0.7377	0.4959	863	0.2	1.026	1.350	295.3		
0.8603	0.6590	739	0.0	1.004	1.472	172.4		
1.0000	1.0000	564	0.0	1.000	1.503	0.0		
<i>Т=373.15 К</i>								
0.0000	0.0000	1997	0.0	2.274	1.000	0.0		
0.1406	0.1028	1987	1.0	1.489	1.029	248.5		
0.2599	0.1680	1874	-1.3	1.270	1.069	345.3		
0.3816	0.2392	1810	0.5	1.169	1.111	386.1		
0.4998	0.3162	1697	0.3	1.108	1.158	387.3		
0.6224	0.4067	1556	-0.4	1.057	1.230	350.5		
0.7377	0.5122	1422	0.2	1.021	1.324	276.9		
0.8603	0.6768	1228	0.0	1.002	1.426	159.1		
1.0000	1.0000	964	0.0	1.000	1.424	0.0		
			Т=383.15 К					
0.0000	0.0000	3152	0.0	2.064	1.000	0.0		
0.1406	0.1041	3121	0.8	1.434	1.025	227.5		
0.2599	0.1735	2958	-1.0	1.248	1.059	319.4		
0.3816	0.2481	2855	0.4	1.157	1.097	360.2		
0.4998	0.3273	2685	0.2	1.098	1.144	362.6		
0.6224	0.4195	2477	-0.3	1.049	1.213	326.5		
0.7377	0.5272	2271	0.1	1.015	1.299	254.3		
0.8603	0.6938	1977	0.0	1.000	1.378	141.6		
1.0000	1.0000	1594	0.0	1.000	1.328	0.0		
			T=393.15 K					
0.0000	0.0000	4840	0.0	1.889	1.000	0.0		
0.1406	0.1049	4774	0.6	1.379	1.021	205.9		
0.2599	0.1783	4540	-0.9	1.224	1.051	291.6		
0.3816	0.2566	4376	0.3	1.144	1.085	331.7		
0.4998	0.3379	4134	0.3	1.087	1.129	334.8		

Annexes										
x_1	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ_1	γ2	G ^E /J.mol-1				
0.6224	0.4315	3830	-0.3	1.039	1.197	299.1				
0.7377	0.5411	3523	0.1	1.008	1.275	227.5				
0.8603	0.7098	3090	0.0	0.996	1.330	119.8				
1.0000	1.0000	2557	0.0	1.000	1.219	0.0				
	<i>Т=403.15 К</i>									
0.0000	0.0000	7245	0.0	1.744	1.000	0.0				
0.1406	0.1054	7126	0.6	1.324	1.018	184.1				
0.2599	0.1826	6789	-0.7	1.199	1.043	262.2				
0.3816	0.2646	6532	0.1	1.130	1.072	300.7				
0.4998	0.3480	6210	0.4	1.076	1.115	304.3				
0.6224	0.4426	5770	-0.3	1.028	1.181	268.7				
0.7377	0.5536	5326	0.1	0.999	1.254	197.0				
0.8603	0.7249	4703	0.0	0.992	1.283	93.9				
1.0000	1.0000	3989	0.0	1.000	1.101	0.0				
<i>Т=413.15 К</i>										
0.0000	0.0000	10598	0.0	1.627	1.000	0.0				
0.1406	0.1056	10401	0.6	1.271	1.016	162.2				
0.2599	0.1864	9919	-0.6	1.172	1.036	231.3				
0.3816	0.2722	9522	-0.2	1.115	1.061	267.4				
0.4998	0.3578	9118	0.6	1.064	1.101	271.5				
0.6224	0.4529	8488	-0.3	1.017	1.167	235.6				
0.7377	0.5649	7863	0.0	0.989	1.235	163.1				
0.8603	0.7390	6987	0.0	0.987	1.238	63.9				
1.0000	1.0000	6069	0.0	1.000	0.980	0.0				
			<i>Т=423.15 К</i>							
0.0000	0.0000	15179	0.0	1.533	1.000	0.0				
0.1406	0.1054	14872	0.6	1.218	1.014	140.6				
0.2599	0.1895	14184	-0.5	1.144	1.030	199.1				
0.3816	0.2795	13582	-0.4	1.100	1.049	232.2				
0.4998	0.3672	13112	0.8	1.053	1.087	236.6				
0.6224	0.4625	12216	-0.3	1.005	1.154	200.4				

x_{I}	<i>y</i> ₁	Pexp./Pa	<i>δP/P(%)</i>	γ_1	γ_2	G ^E /J.mol-1
0.7377	0.5750	11358	-0.1	0.978	1.219	126.0
0.8603	0.7520	10150	0.1	0.981	1.194	30.1
1.0000	1.0000	9022	0.0	1.000	0.860	0.0
			<i>Т=433.15 К</i>			
0.0000	0.0000	21321	0.0	1.459	1.000	0.0
0.1406	0.1050	20865	0.6	1.167	1.013	119.3
0.2599	0.1922	19888	-0.4	1.115	1.024	165.8
0.3816	0.2865	18989	-0.7	1.085	1.038	195.0
0.4998	0.3765	18496	1.1	1.042	1.073	200.0
0.6224	0.4714	17233	-0.4	0.993	1.141	163.4
0.7377	0.5839	16083	-0.1	0.967	1.205	86.4
0.8603	0.7640	14448	0.1	0.975	1.153	-7.3
1.0000	1.0000	13128	0.0	1.000	0.746	0.0

Tableau A5. 4 : Données expérimentales et calculées de l'équilibre liquide-vapeur du système :dodécanoate de méthyle (1) + n-dodécane (2).

x_1	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ_1	γ2	G ^E /J.mole ⁻¹
			T = 353.15 K			
0.0000	0.0000	729	0.0	3.144	1.000	0.0
0.1514	0.0211	679	1.8	1.440	1.055	294.7
0.2636	0.0331	611	-0.4	1.194	1.105	352.8
0.3910	0.0531	526	-1.3	1.122	1.137	361.6
0.5069	0.0791	455.7	0.7	1.095	1.160	349.7
0.6309	0.1163	372.7	0.8	1.058	1.215	315.4
0.7418	0.1657	292.5	-0.9	1.023	1.309	253.2
0.8570	0.2719	203.8	0.3	1.001	1.422	151.0
1.0000	1.0000	64.4	0.0	1.000	1.379	0.0
			T = 363.15 K			
0.0000	0.0000	1227	0.0	2.951	1.000	0.0
0.1514	0.0234	1141	1.8	1.417	1.051	287.7
0.2636	0.0370	1026	-0.5	1.185	1.099	345.3

x_1	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ1	γ_2	G ^E /J.mole ⁻¹			
0.3910	0.0592	887	-1.2	1.114	1.131	353.7			
0.5069	0.0878	771	0.8	1.086	1.155	340.4			
0.6309	0.1290	631	0.6	1.051	1.207	304.3			
0.7418	0.1840	496.9	-0.8	1.019	1.292	241.8			
0.8570	0.3004	348.4	0.2	1.000	1.388	142.1			
1.0000	1.0000	121.7	0.0	1.000	1.329	0.0			
T = 373.15 K									
0.0000	0.0000	1997	0.0	2.746	1.000	0.0			
0.1514	0.0258	1852	1.7	1.395	1.047	278.5			
0.2636	0.0412	1667	-0.4	1.178	1.092	336.2			
0.3910	0.0658	1445	-1.2	1.108	1.124	345.4			
0.5069	0.0971	1261	0.8	1.079	1.148	331.7			
0.6309	0.1424	1033	0.5	1.046	1.198	294.7			
0.7418	0.2030	818	-0.7	1.017	1.276	232.6			
0.8570	0.3288	578	0.2	1.000	1.360	135.6			
1.0000	1.0000	221.2	0.0	1.000	1.298	0.0			
			T = 383.15 K						
0.0000	0.0000	3152	0.0	2.534	1.000	0.0			
0.1514	0.0283	2913	1.5	1.374	1.043	267.0			
0.2636	0.0458	2627	-0.4	1.174	1.085	325.4			
0.3910	0.0729	2281	-1.2	1.104	1.116	336.3			
0.5069	0.1070	1998	0.8	1.074	1.141	323.2			
0.6309	0.1564	1642	0.4	1.042	1.189	286.3			
0.7418	0.2227	1306	-0.6	1.015	1.259	225.3			
0.8570	0.3569	934	0.2	1.000	1.335	131.5			
1.0000	1.0000	387.5	0.0	1.000	1.284	0.0			
			T = 393.15 K						
0.0000	0.0000	4840	0.0	2.323	1.000	0.0			
0.1514	0.0309	4452	1.3	1.352	1.038	253.2			
0.2636	0.0506	4026	-0.2	1.170	1.076	312.6			
0.3910	0.0805	3502	-1.1	1.101	1.107	326.4			

y_1	Pexp./Pa	δP/P(%)	γ_1	γ2	G ^E /J.mole ⁻¹
0.1175	3079	0.8	1.071	1.133	314.6
0.1712	2538	0.3	1.040	1.178	278.8
0.2431	2031	-0.6	1.015	1.243	219.8
0.3844	1471	0.2	1.001	1.313	129.4
1.0000	657	0.0	1.000	1.284	0.0
		T = 403.15 K			
0.0000	7245	0.0	2.116	1.000	0.0
0.0336	6630	1.0	1.331	1.033	237.1
0.0558	6016	-0.1	1.168	1.067	297.9
0.0885	5242	-1.1	1.100	1.098	315.2
0.1285	4624	0.8	1.069	1.124	305.7
0.1868	3827	0.3	1.039	1.167	271.8
0.2642	3081	-0.5	1.016	1.226	215.7
0.4115	2265	0.2	1.002	1.294	129.4
1.0000	1080	0.0	1.000	1.298	0.0
		T = 413.15 K			
0.0000	10598	0.0	1.917	1.000	0.0
0.0364	9644	0.7	1.309	1.027	218.6
0.0614	8783	0.1	1.166	1.058	281.1
0.0971	7664	-1.0	1.099	1.088	302.7
0.1402	6784	0.7	1.067	1.114	296.1
0.2030	5640	0.3	1.039	1.154	265.1
0.2860	4570	-0.4	1.018	1.208	212.9
0.4379	3412	0.2	1.004	1.276	131.4
1.0000	1728	0.0	1.000	1.325	0.0
		T = 423.15 K			
0.0000	15179	0.0	1.728	1.000	0.0
0.0392	13728	0.4	1.287	1.022	197.9
0.0672	12554	0.3	1.164	1.048	262.1
0.1061	10968	-1.0	1.099	1.077	288.5
0.1525	9740	0.6	1.067	1.103	285.5
	y1 0.1175 0.1712 0.2431 0.3844 1.0000 0.0336 0.0558 0.0885 0.1285 0.1868 0.2642 0.4115 1.0000 0.0000 0.0364 0.001 0.0000 0.0364 0.00140 0.0000 0.0364 0.00140 0.0000 0.0364 0.00140 0.0000 0.0364 0.00140 0.0000 0.0364 0.0014 0.00230 0.2860 0.4379 1.0000 0.0000 0.0001 0.0002 0.000392 0.0672 0.1061 0.1525	y1 Pexp./Pa 0.1175 3079 0.1712 2538 0.2431 2031 0.3844 1471 1.0000 657 0.0000 7245 0.0336 6630 0.0558 6016 0.0885 5242 0.1285 4624 0.1868 3827 0.2642 3081 0.4115 2265 1.0000 10598 0.0364 9644 0.0614 8783 0.0971 7664 0.1402 6784 0.2030 5640 0.2860 4570 0.4379 3412 1.0000 1728 0.0000 15179 0.0392 13728 0.0672 12554 0.1061 10968 0.1525 9740	y₁ Pexp./Pa δP/P(%) 0.1175 3079 0.8 0.1712 2538 0.3 0.2431 2031 -0.6 0.3844 1471 0.2 1.0000 657 0.0 0.0386 6630 1.0 0.0336 6630 1.0 0.0558 6016 -0.1 0.1285 4624 0.8 0.1868 3827 0.3 0.2642 3081 -0.5 0.4115 2265 0.2 1.0000 10598 0.0 0.364 9644 0.7 0.0614 8783 0.1 0.0971 7664 -1.0 0.1402 6784 0.7 0.2030 5640 0.3 0.2860 4570 -0.4 0.4379 3412 0.2 1.0000 15179 0.0 0.3392 13728 0.4 0.0672 12554	y1 Pexp./Pa δP/P(%) γ1 0.1175 3079 0.8 1.071 0.1712 2538 0.3 1.040 0.2431 2031 -0.6 1.015 0.3844 1471 0.2 1.001 1.0000 657 0.0 1.000 1.0000 657 0.0 2.116 0.0336 6630 1.0 1.331 0.0558 6016 -0.1 1.168 0.0885 5242 -1.1 1.100 0.1285 4624 0.8 1.069 0.1868 3827 0.3 1.039 0.2642 3081 -0.5 1.016 0.4115 2265 0.2 1.002 1.0000 1080 0.0 1.997 0.0364 9644 0.7 1.309 0.0614 8783 0.1 1.166 0.0971 7664 -1.0 1.099 0.1402 6784 0.7	y₁ Pexp.Pa δP/P(%) γ₁ γ₂ 0.1175 3079 0.8 1.071 1.133 0.1712 2538 0.3 1.040 1.178 0.2431 2031 -0.6 1.015 1.243 0.3844 1471 0.2 1.001 1.313 1.0000 657 0.0 1.000 1.284 T=403.15 K T 0.0000 1.245 0.0 2.116 1.000 0.0336 6630 1.0 1.331 1.033 0.0558 6016 -0.1 1.168 1.067 0.0885 5242 -1.1 1.100 1.098 1.124 0.1868 3827 0.3 1.039 1.167 0.2642 3081 -0.5 1.016 1.226 0.4115 2265 0.2 1.000 1.298 T=413.15 K 0.00 1.291 1.000 0.0364 0.091 10598 0.0 1.917 1.000

x_{I}	<i>Y</i> 1	Pexp./Pa	<i>δP/P(%)</i>	γ_1	γ_2	G ^E /J.mole ⁻¹		
0.6309	0.2201	8138	0.2	1.041	1.140	258.4		
0.7418	0.3085	6639	-0.4	1.021	1.189	211.3		
0.8570	0.4638	5040	0.1	1.007	1.259	135.3		
1.0000	1.0000	2694	0.0	1.000	1.366	0.0		
T = 433.15 K								
0.0000	0.0000	21321	0.0	1.550	1.000	0.0		
0.1514	0.0421	19159	0.1	1.265	1.015	174.9		
0.2636	0.0734	17598	0.5	1.162	1.038	240.9		
0.3910	0.1156	15393	-1.0	1.099	1.066	272.6		
0.5069	0.1653	13711	0.5	1.066	1.092	273.6		
0.6309	0.2379	11518	0.2	1.043	1.125	251.4		
0.7418	0.3317	9460	-0.4	1.025	1.168	210.5		
0.8570	0.4891	7309	0.1	1.010	1.243	141.2		
1.0000	1.0000	4104	0.0	1.000	1.420	0.0		

Tableau A5. 5 : Données expérimentales et calculées de l'équilibre liquide-vapeur du système : tétradécanoate de méthyle (1) + n-dodécane (2).

x_l	Y 1	Pexp./Pa	<i>δP/P(%)</i>	γ_1	γ ₂	$G^{E}/J.mol^{1}$
			T = 353.15			
0.0000	0.0000	729	0.0	3.161	1.000	0.0
0.1520	0.0040	661	0.7	1.387	1.057	284.2
0.2620	0.0070	597	-0.3	1.152	1.107	328.7
0.3920	0.0110	507	-0.4	1.087	1.136	324.5
0.5140	0.0170	420.1	0.6	1.062	1.159	301.5
0.6330	0.0260	331.4	-0.2	1.029	1.210	259.1
0.8540	0.0730	153	0.0	0.990	1.336	99.7
1.0000	1.0000	13.1	0.0	1.000	1.095	0.0
			<i>T</i> = <i>363.15</i>			
0.0000	0.0000	1227	0.0	3.094	1.000	0.0
0.1515	0.0051	1114	0.7	1.366	1.057	283.9
0.2622	0.0080	1003	-0.5	1.140	1.105	325.7
0.3922	0.0133	855	-0.2	1.078	1.133	318.5

Annexes										
x_1	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ_1	γ2	G ^E /J.mol ⁻¹				
0.5137	0.0207	706	0.4	1.054	1.155	292.9				
0.6328	0.0311	559	-0.2	1.021	1.206	247.7				
0.8541	0.0883	256.5	0.0	0.987	1.309	86.0				
1.0000	1.0000	26.8	0.0	1.000	1.026	0.0				
	T = 373.15									
0.0000	0.0000	1997	0.0	2.954	1.000	0.0				
0.1515	0.0060	1809	0.7	1.348	1.054	279.4				
0.2622	0.0096	1627	-0.5	1.132	1.101	320.3				
0.3922	0.0159	1390	0.0	1.073	1.128	312.6				
0.5137	0.0248	1146	0.2	1.048	1.150	286.1				
0.6328	0.0371	910	-0.1	1.017	1.199	239.4				
0.8541	0.1056	418.2	0.0	0.986	1.288	77.6				
1.0000	1.0000	52.4	0.0	1.000	0.993	0.0				
T = 383.15										
0.0000	0.0000	3152	0.0	2.763	1.000	0.0				
0.1515	0.0070	2847	0.7	1.331	1.051	271.2				
0.2622	0.0114	2556	-0.6	1.130	1.094	312.7				
0.3922	0.0189	2189	0.1	1.070	1.121	306.6				
0.5137	0.0293	1804	0.1	1.045	1.144	280.5				
0.6328	0.0438	1437	-0.1	1.014	1.192	233.6				
0.8541	0.1242	664	0.0	0.986	1.270	73.8				
1.0000	1.0000	97.7	0.0	1.000	0.985	0.0				
			<i>T</i> = <i>393.15</i>							
0.0000	0.0000	4840	0.0	2.542	1.000	0.0				
0.1515	0.0082	4351	0.6	1.316	1.046	259.5				
0.2622	0.0134	3902	-0.6	1.130	1.086	302.9				
0.3922	0.0223	3347	0.2	1.071	1.113	300.2				
0.5137	0.0343	2763	0.0	1.044	1.137	275.8				
0.6328	0.0513	2206	0.0	1.014	1.183	229.9				
0.8541	0.1441	1030	0.0	0.988	1.256	74.0				
1.0000	1.0000	175.3	0.0	1.000	0.998	0.0				

Annexes						
x_{I}	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ_1	γ2	G ^E /J.mol ⁻¹
			<i>T</i> = 403.15			
0.0000	0.0000	7245	0.0	2.308	1.000	0.0
0.1515	0.0095	6477	0.5	1.301	1.040	244.6
0.2622	0.0157	5803	-0.5	1.133	1.076	291.0
0.3922	0.0260	4985	0.2	1.073	1.104	293.4
0.5137	0.0399	4123	0.0	1.044	1.129	271.8
0.6328	0.0596	3299	0.0	1.015	1.173	227.9
0.8541	0.1649	1561	0.0	0.990	1.244	77.8
1.0000	1.0000	303.4	0.0	1.000	1.029	0.0
			<i>T</i> = <i>413.15</i>			
0.0000	0.0000	10598	0.0	2.071	1.000	0.0
0.1515	0.0108	9414	0.4	1.287	1.033	226.7
0.2622	0.0183	8429	-0.4	1.138	1.066	277.1
0.3922	0.0302	7247	0.2	1.076	1.094	285.9
0.5137	0.0460	6013	-0.1	1.045	1.121	268.2
0.6328	0.0686	4819	0.0	1.017	1.162	227.2
0.8541	0.1867	2319	0.0	0.993	1.234	84.7
1.0000	1.0000	508	0.0	1.000	1.077	0.0
			<i>T</i> = <i>423.15</i>			
0.0000	0.0000	15179	0.0	1.843	1.000	0.0
0.1515	0.0123	13387	0.3	1.274	1.026	206.1
0.2622	0.0212	11980	-0.3	1.144	1.054	261.2
0.3922	0.0348	10306	0.2	1.081	1.083	277.7
0.5137	0.0527	8585	-0.1	1.048	1.111	264.7
0.6328	0.0785	6890	0.0	1.021	1.151	227.5
0.8541	0.2092	3380	0.0	0.997	1.224	94.4
1.0000	1.0000	826	0.0	1.000	1.140	0.0
			<i>T</i> = <i>433.15</i>			
0.0000	0.0000	21321	0.0	1.629	1.000	0.0
0.1515	0.0139	18659	0.1	1.260	1.019	183.0
0.2622	0.0243	16693	-0.2	1.152	1.042	243.5

x_{I}	y 1	Pexp./Pa	<i>δP/P(%)</i>	γ_1	γ_2	G ^E /J.mol ⁻¹	
0.3922	0.0399	14365	0.1	1.087	1.072	268.8	
0.5137	0.0599	12020	0.0	1.051	1.102	261.2	
0.6328	0.0893	9659	0.0	1.026	1.138	228.7	
0.8541	0.2324	4839	0.0	1.001	1.216	106.6	
1.0000	1.0000	1305	0.0	1.000	1.219	0.0	
T = 443.15							
0.0000	0.0000	29416	0.0	1.432	1.000	0.0	
0.1515	0.0156	25535	0.0	1.247	1.011	157.6	
0.2622	0.0279	22841	0.0	1.160	1.030	224.0	
0.3922	0.0454	19658	0.0	1.093	1.060	258.9	
0.5137	0.0678	16530	0.0	1.055	1.092	257.5	
0.6328	0.1009	13297	0.0	1.031	1.125	230.5	
0.8541	0.2561	6815	0.0	1.006	1.209	121.1	
1.0000	1.0000	2012	0.0	1.000	1.314	0.0	

Tableau A5. 6 : Données expérimentales et calculées de l'équilibre liquide-vapeur du système :hexadécanoate de méthyle (1) + n-dodécane (2).

x_1	Y 1	Pexp./Pa	δP/P(%)	γ2	γ ₂	$G^{E}/J.mol^{1}$
			T = 373.15 K			
0.0000	0.0000	1997	0.0	2.347	1.000	0.0
0.1538	0.0018	1772	0.5	1.312	1.042	237.9
0.2647	0.0030	1590	-0.4	1.121	1.085	279.0
0.3825	0.0046	1382	0.1	1.054	1.116	271.9
0.5171	0.0076	1105	0.1	1.028	1.138	237.9
0.6425	0.0123	836	-0.1	1.014	1.161	192.2
0.7556	0.0203	592	0.0	1.003	1.191	138.3
0.8538	0.0368	366	0.0	0.998	1.212	82.0
1.0000	1.0000	15.8	0.0	1.000	1.153	0.0
			T = 383.15 K			
0.0000	0.0000	3152	0.0	2.157	1.000	0.0
0.1538	0.0021	2792	0.7	1.288	1.037	222.9
0.2647	0.0035	2486	-0.5	1.117	1.076	264.1

x_{I}	<i>y</i> 1	Pexp./Pa	δP/P(%)	γ ₂	γ_2	G ^E /J.mol ⁻¹		
0.3825	0.0055	2154	-0.3	1.053	1.105	259.9		
0.5171	0.0091	1742	0.8	1.026	1.128	228.4		
0.6425	0.0146	1305	-0.7	1.011	1.153	183.4		
0.7556	0.0241	931	0.3	1.000	1.180	129.8		
0.8538	0.0438	573	-0.1	0.997	1.195	75.0		
1.0000	1.0000	29.4	0.0	1.000	1.123	0.0		
$T = 393.15 \ K$								
0.0000	0.0000	4840	0.0	1.990	1.000	0.0		
0.1538	0.0025	4273	0.9	1.267	1.033	207.9		
0.2647	0.0042	3784	-0.6	1.114	1.067	249.4		
0.3825	0.0067	3272	-0.4	1.054	1.095	248.5		
0.5171	0.0109	2665	1.2	1.026	1.119	220.3		
0.6425	0.0174	1983	-1.1	1.010	1.144	177.0		
0.7556	0.0287	1425	0.6	1.000	1.170	124.6		
0.8538	0.0521	876	-0.1	0.997	1.182	71.3		
1.0000	1.0000	53.5	0.0	1.000	1.109	0.0		
			T = 403.15 K					
0.0000	0.0000	7245	0.0	1.840	1.000	0.0		
0.1538	0.0029	6369	0.9	1.247	1.028	192.8		
0.2647	0.0050	5620	-0.6	1.112	1.059	234.9		
0.3825	0.0080	4852	-0.5	1.055	1.085	237.5		
0.5171	0.0131	3967	1.4	1.027	1.109	213.2		
0.6425	0.0209	2943	-1.3	1.010	1.135	172.5		
0.7556	0.0342	2126	0.7	1.000	1.160	122.0		
0.8538	0.0619	1310	-0.2	0.997	1.172	70.3		
1.0000	1.0000	94.9	0.0	1.000	1.109	0.0		
			T = 413.15 K					
0.0000	0.0000	10598	0.0	1.707	1.000	0.0		
0.1538	0.0035	9268	0.7	1.228	1.024	177.5		
0.2647	0.0060	8163	-0.6	1.111	1.051	220.3		
0.3825	0.0096	7040	-0.4	1.057	1.075	226.8		

Annexes						
x_{I}	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ ₂	γ2	G ^E /J.mol ⁻¹
0.5171	0.0157	5760	1.4	1.028	1.099	206.9
0.6425	0.0250	4275	-1.4	1.011	1.125	169.4
0.7556	0.0408	3100	0.8	1.001	1.151	121.4
0.8538	0.0733	1921	-0.2	0.998	1.164	71.5
1.0000	1.0000	164.5	0.0	1.000	1.120	0.0
			T = 423.15 K			
0.0000	0.0000	15179	0.0	1.587	1.000	0.0
0.1538	0.0041	13196	0.6	1.211	1.020	162.0
0.2647	0.0072	11615	-0.5	1.109	1.043	205.6
0.3825	0.0116	10011	-0.3	1.059	1.066	215.9
0.5171	0.0188	8177	1.3	1.030	1.090	200.6
0.6425	0.0299	6085	-1.4	1.013	1.115	167.0
0.7556	0.0488	4426	0.8	1.003	1.141	122.2
0.8538	0.0866	2765	-0.2	1.000	1.158	74.3
1.0000	1.0000	279	0.0	1.000	1.139	0.0
			T = 433.15 K			
0.0000	0.0000	21321	0.0	1.478	1.000	0.0
0.1538	0.0049	18416	0.3	1.194	1.016	146.1
0.2647	0.0087	16216	-0.4	1.108	1.036	190.3
0.3825	0.0139	13974	-0.1	1.061	1.057	204.5
0.5171	0.0226	11371	1.0	1.033	1.080	194.0
0.6425	0.0359	8503	-1.3	1.016	1.105	164.7
0.7556	0.0582	6196	0.8	1.006	1.130	123.8
0.8538	0.1020	3913	-0.2	1.001	1.152	78.3
1.0000	1.0000	463.6	0.0	1.000	1.163	0.0
			T = 443.15 K			
0.0000	0.0000	29416	0.0	1.379	1.000	0.0
0.1538	0.0057	25233	0.0	1.177	1.012	129.7
0.2647	0.0104	22250	-0.3	1.105	1.029	174.1
0.3825	0.0167	19174	0.1	1.062	1.048	191.9
0.5171	0.0271	15518	0.7	1.035	1.071	186.3

x_{I}	<i>Y</i> 1	Pexp./Pa	<i>δP/P(%)</i>	γ2	γ_2	G ^E /J.mol ⁻¹
0.6425	0.0430	11680	-1.1	1.019	1.094	161.7
0.7556	0.0693	8521	0.7	1.009	1.119	125.3
0.8538	0.1199	5448	-0.2	1.003	1.145	82.6
1.0000	1.0000	756	0.0	1.000	1.190	0.0

Tableau A5. 7: Données expérimentales et calculées de l'équilibre liquide-vapeur du système :dodécanoate de méthyle (1) + n-Tétradécane (2).

x_{I}	<i>y</i> 1	P _{exp} ./Pa	<i>δP/P(%)</i>	γ1	γ2	G ^E /J.mol ⁻¹		
			T=353.15					
0.0000	0.0000	135.5	0.0	3.352	1.000	0.0		
0.1331	0.1133	137.6	-0.1	1.822	1.040	334.4		
0.2567	0.1680	134.7	0.1	1.368	1.112	468.3		
0.3888	0.2281	128.5	0.1	1.169	1.197	500.6		
0.5172	0.2991	119.5	-0.1	1.075	1.282	461.7		
0.6987	0.4405	103.0	0.1	1.009	1.412	322.4		
0.8519	0.6486	84.1	0.0	0.994	1.473	154.2		
1.0000	1.0000	64.4	0.0	1.000	1.318	0.0		
T=363.15								
0.0000	0.0000	251.7	0.0	2.918	1.000	0.0		
0.1331	0.1105	250.2	-1.4	1.730	1.034	308.3		
0.2567	0.1711	251.2	1.6	1.353	1.096	438.9		
0.3888	0.2363	234.9	-0.3	1.176	1.170	479.3		
0.5172	0.3098	219.6	-0.3	1.083	1.251	451.3		
0.6987	0.4501	191.6	0.2	1.012	1.388	322.9		
0.8519	0.6545	157.5	-0.1	0.995	1.462	156.3		
1.0000	1.0000	121.7	0.0	1.000	1.313	0.0		
			T=373.15					
0.0000	0.0000	446.9	0.0	2.940	1.000	0.0		
0.1331	0.1083	448.8	-0.4	1.655	1.037	305.1		
0.2567	0.1699	439.1	0.3	1.310	1.095	423.2		
0.3888	0.2409	416.8	0.2	1.165	1.156	458.7		
0.5172	0.3197	387.4	-0.3	1.085	1.225	435.7		

x_{I}	<i>Y</i> 1	P _{exp} ./Pa	δP/P(%)	γ1	γ ₂	G ^E /J.mol ¹
0.6987	0.4598	340.6	0.1	1.012	1.365	316.3
0.8519	0.6612	282.7	0.0	0.992	1.449	149.4
1.0000	1.0000	221.2	0.0	1.000	1.236	0.0
			T=383.15			
0.0000	0.0000	762	0.0	2.536	1.000	0.0
0.1331	0.1097	756	-1.1	1.622	1.029	285.0
0.2567	0.1750	751	1.0	1.307	1.083	407.4
0.3888	0.2458	710	0.2	1.155	1.147	445.7
0.5172	0.3259	659	-0.6	1.077	1.215	421.3
0.6987	0.4756	581	0.3	1.018	1.325	308.6
0.8519	0.6759	488	-0.1	1.000	1.403	158.8
1.0000	1.0000	388	0.0	1.000	1.363	0.0
			T=393.15			
0.0000	0.0000	1254	0.0	2.528	1.000	0.0
0.1331	0.1088	1257	-0.1	1.562	1.031	280.9
0.2567	0.1747	1222	-0.1	1.265	1.083	391.2
0.3888	0.2497	1168	0.4	1.136	1.139	421.4
0.5172	0.3349	1084	-0.3	1.071	1.195	397.0
0.6987	0.4883	957	0.1	1.016	1.295	291.7
0.8519	0.6872	813	0.0	0.999	1.371	148.5
1.0000	1.0000	657	0.0	1.000	1.304	0.0
			<i>T</i> =403.15			
0.0000	0.0000	1998	0.0	2.396	1.000	0.0
0.1331	0.1103	1995	-0.4	1.533	1.029	274.7
0.2567	0.1767	1959	0.4	1.240	1.082	380.9
0.3888	0.2518	1858	0.0	1.111	1.138	402.5
0.5172	0.3405	1731	-0.2	1.055	1.187	370.5
0.6987	0.5050	1525	0.1	1.018	1.254	270.2
0.8519	0.7036	1313	0.0	1.003	1.317	146.2
1.0000	1.0000	1080	0.0	1.000	1.363	0.0

Annexes	Annexes									
x_1	<i>y</i> 1	P _{exp} ./Pa	<i>δP/P(%)</i>	γ1	γ2	G ^E /J.mol ⁻¹				
			T=413.15							
0.0000	0.0000	3090	0.0	2.384	1.000	0.0				
0.1331	0.1109	3105	0.0	1.493	1.031	273.4				
0.2567	0.1769	3028	0.1	1.202	1.084	368.7				
0.3888	0.2536	2869	-0.3	1.083	1.138	377.1				
0.5172	0.3469	2689	0.2	1.039	1.176	337.3				
0.6987	0.5201	2358	-0.1	1.015	1.218	241.0				
0.8519	0.7189	2058	0.0	1.004	1.267	132.3				
1.0000	1.0000	1728	0.0	1.000	1.334	0.0				
<i>T</i> =423.15										
0.0000	0.0000	4652	0.0	2.401	1.000	0.0				
0.1331	0.1118	4710	0.4	1.456	1.033	274.2				
0.2567	0.1766	4563	-0.1	1.163	1.088	357.1				
0.3888	0.2547	4315	-0.6	1.052	1.139	349.4				
0.5172	0.3526	4072	0.7	1.021	1.167	299.2				
0.6987	0.5349	3550	-0.3	1.010	1.184	204.6				
0.8519	0.7347	3143	0.1	1.004	1.212	112.1				
1.0000	1.0000	2694	0.0	1.000	1.280	0.0				
			T=433.15							
0.0000	0.0000	6836	0.0	2.385	1.000	0.0				
0.1331	0.1137	6951	0.6	1.432	1.033	274.9				
0.2567	0.1786	6716	-0.4	1.138	1.090	350.5				
0.3888	0.2572	6389	-0.4	1.030	1.141	331.2				
0.5172	0.3572	6007	0.5	1.002	1.165	270.0				
0.6987	0.5456	5256	-0.3	1.001	1.166	168.9				
0.8519	0.7488	4685	0.1	1.001	1.165	85.7				
1.0000	1.0000	4104	0.0	1.000	1.190	0.0				

Tableau A5. 8: Données expérimentales et calculées de l'équilibre liquide-vapeur du système :tétradécanoate de méthyle (1) + n-Tétradécane (2).

<i>x</i> ₁	<i>Y</i> 1	P _{exp} ./Pa	δP/P(%)	γ_1	γ ₂	G ^E /J.mol ⁻¹				
			T = 353.15 K							
0.0000	0.0000	135.4	0.0	0.844	1.000	0.0				
0.1260	0.0182	116.4	-1.3	1.279	0.979	35.6				
0.2520	0.0427	103.4	0.1	1.312	0.976	148.2				
0.3834	0.0670	92.4	1.3	1.196	1.020	238.1				
0.5099	0.0951	78.4	-1.2	1.111	1.082	271.1				
0.6834	0.1652	59.0	0.4	1.067	1.145	256.6				
0.8615	0.3243	36.4	-0.1	1.030	1.314	186.5				
1.0000	1.0000	13.3	0.0	1.000	2.151	0.0				
$T = 363.15 \ K$										
0.0000	0.0000	251.7	.00	0.791	1.000	0.0				
0.1260	0.0195	216.0	-1.02	1.263	0.976	24.0				
0.2520	0.0462	191.8	25	1.311	0.971	139.4				
0.3834	0.0725	171.9	1.60	1.198	1.014	234.4				
0.5099	0.1032	145.6	-1.32	1.116	1.072	272.3				
0.6834	0.1799	109.9	.45	1.077	1.127	267.9				
0.8615	0.3423	69.7	08	1.036	1.316	207.0				
1.0000	1.0000	26.7	.00	1.000	2.364	0.0				
			T = 373.15 K							
0.0000	0.0000	447.2	0.0	0.772	1.000	0.0				
0.1260	0.0210	384.0	0.2	1.255	0.975	19.7				
0.252	0.0499	341.5	-0.2	1.309	0.969	137.5				
0.3834	0.0784	306.6	0.2	1.198	1.011	235.4				
0.5099	0.1120	259.8	-0.1	1.119	1.067	276.3				
0.6834	0.1952	196.8	0.0	1.085	1.115	279.1				
0.8615	0.3614	127.8	0.0	1.040	1.320	223.9				
1.0000	1.0000	51.6	0.0	1.000	2.520	0.0				
			T = 383.15 K							
0.0000	0.0000	763	.00	0.779	1.000	0.0				
0.1260	0.0228	658	85	1.254	0.975	21.5				

Annexes								
x_{I}	<i>y</i> 1	P _{exp} -/Pa	δP/P(%)	γ_1	γ2	G ^E /J.mol ⁻¹		
0.2520	0.0539	585	31	1.304	0.970	140.9		
0.3834	0.0847	526	1.54	1.195	1.011	239.8		
0.5099	0.1213	447.0	-1.26	1.121	1.064	282.1		
0.6834	0.2110	340.1	.43	1.089	1.108	289.4		
0.8615	0.3815	225.6	08	1.042	1.324	237.0		
1.0000	1.0000	95.9	.00	1.000	2.615	0.0		
			T = 393.15 K					
0.0000	0.0000	1255	0.0	0.806	1.000	0.0		
0.1260	0.0249	1088	0.2	1.257	0.977	28.4		
0.2520	0.0582	970	-0.2	1.297	0.974	148.6		
0.3834	0.0914	873	0.2	1.191	1.014	246.6		
0.5099	0.1313	744	-0.1	1.121	1.063	288.8		
0.6834	0.2272	569	0.0	1.092	1.104	298.4		
0.8615	0.4025	384.7	0.0	1.043	1.326	246.3		
1.0000	1.0000	172.3	0.0	1.000	2.649	0.0		
			T = 403.15 K					
0	0.0000	1998	.00	0.851	1.000	0.0		
0.1260	0.0273	1744	45	1.264	0.980	39.4		
0.2520	0.0627	1558	40	1.287	0.979	159.6		
0.3834	0.0985	1403	1.26	1.185	1.018	254.8		
0.5099	0.1418	1201	98	1.120	1.065	295.6		
0.6834	0.2438	924	.34	1.092	1.104	305.3		
0.8615	0.4245	636	06	1.042	1.327	251.5		
1.0000	1.0000	300.3	.00	1.000	2.624	0.0		
			$T = 413.15 \ K$					
0.0000	0.0000	3086	0.0	0.914	1.000	0.0		
0.1260	0.0300	2717	0.2	1.272	0.984	53.9		
0.2520	0.0675	2434	-0.3	1.275	0.986	172.9		
0.3834	0.1060	2193	0.2	1.177	1.024	263.7		
0.5099	0.1529	1887	-0.1	1.116	1.067	301.8		
0.6834	0.2608	1460	0.0	1.089	1.105	309.6		

x_{I}	<i>y</i> 1	P _{exp} ./Pa	δP/P(%)	γ_1	γ2	$G^{E}/J.mol^{-1}$				
0.8615	0.4472	1020	0.0	1.041	1.326	252.4				
1.0000	1.0000	509	0.0	1.000	2.545	0.0				
			T = 423.15 K							
0.0000	0.0000	4642	.00	0.993	1.000	0.0				
0.1260	0.0330	4127	.06	1.280	0.988	71.1				
0.2520	0.0724	3706	52	1.261	0.993	187.9				
0.3834	0.1138	3340	.85	1.167	1.030	272.5				
0.5099	0.1645	2890	58	1.111	1.070	306.7				
0.6834	0.2780	2250	.18	1.085	1.108	310.8				
0.8615	0.4707	1596	04	1.038	1.322	248.6				
1	1.0000	839	.00	1.000	2.419	0.0				
$T = 433.15 \ K$										
0.0000	0.0000	6812	0.0	1.088	1.000	0.0				
0.1260	0.0362	6120	0.2	1.288	0.992	90.5				
0.2520	0.0774	5511	-0.3	1.245	1.002	203.7				
0.3834	0.1218	4966	0.2	1.155	1.038	280.6				
0.5099	0.1765	4325	-0.1	1.105	1.074	309.6				
0.6834	0.2953	3388	0.0	1.079	1.113	308.2				
0.8615	0.4949	2435	0.0	1.034	1.314	239.9				
1.0000	1.0000	1350	0.0	1.000	2.255	0.0				
			T = 443.15 K							
0.0000	0.0000	9776	.00	1.201	1.000	0.0				
0.1260	0.0396	8881	.58	1.295	0.997	111.6				
0.2520	0.0826	8019	63	1.226	1.011	219.9				
0.3834	0.1302	7225	.37	1.141	1.045	287.3				
0.5099	0.1889	6335	11	1.096	1.079	310.0				
0.6834	0.3127	4997	.00	1.070	1.118	301.3				
0.8615	0.5196	3634	.00	1.029	1.302	225.7				
1.0000	1.0000	2123	.00	1.000	2.062	0.0				

Annexes						
x_{l}	y 1	P _{exp} ./Pa	δP/P(%)	γ_1	γ2	G ^E /J.mol ⁻¹
			T = 453.15 K			
0.0000	0.0000	13746	0.0	1.332	1.000	0.0
0.1260	0.0433	12633	0.1	1.300	1.003	134.0
0.2520	0.0878	11439	-0.2	1.205	1.021	235.8
0.3834	0.1387	10304	0.2	1.126	1.053	292.2
0.5099	0.2016	9100	-0.1	1.086	1.084	307.5
0.6834	0.3299	7226	0.0	1.060	1.124	289.5
0.8615	0.5448	5312	0.0	1.023	1.286	205.7
1.0000	1.0000	3270	0.0	1.000	1.848	0.0

Tableau A5. 9 : Données expérimentales et calculées de l'équilibre liquide-vapeur du système :hexadécanoate de méthyle (1) + n-Tétradécane (2).

x_{I}	<i>y</i> 1	Pexp./Pa	<i>δP/P(%)</i>	γ ₂	γ2	G ^E /J.mol ¹
			T = 353.15 K			
0.0000	0.0000	135.4	0.0	0.940	1.000	0.0
0.1374	0.0068	115.1	-0.2	1.364	0.981	75.4
0.2630	0.0144	100.6	0.2	1.322	0.991	196.7
0.4045	0.0221	87.4	-0.2	1.152	1.063	274.9
0.5283	0.0308	75.5	0.1	1.056	1.145	272.7
0.7023	0.0576	51.6	0.0	1.018	1.208	201.6
0.8526	0.1272	28.2	0.0	1.012	1.235	121.6
1.0000	1.0000	4.2	0.0	1.000	1.527	0.0
			T = 363.15 K			
0.0000	0.0000	251.7	0.0	0.883	1.000	0.0
0.1374	0.0069	213.6	-0.2	1.302	0.979	55.3
0.2630	0.0149	185.9	0.1	1.278	0.987	166.0
0.4045	0.0233	161.6	0.2	1.129	1.051	238.1
0.5283	0.0330	137.5	-0.2	1.046	1.123	236.1
0.7023	0.0629	93.4	0.1	1.017	1.168	174.7
0.8526	0.1389	51.1	0.0	1.013	1.188	109.8
1.0000	1.0000	8.2	0.0	1.000	1.492	0.0

Annexes	Annexes										
x_1	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ_2	γ2	G ^E /J.mol ⁻¹					
			T = 373.15 K								
0.0000	0.0000	447.2	0.0	0.870	1.000	0.0					
0.1374	0.0072	379.9	-0.2	1.264	0.980	46.1					
0.2630	0.0157	329.8	-0.1	1.246	0.987	148.6					
0.4045	0.0249	286.6	0.5	1.113	1.045	215.4					
0.5283	0.0358	241.2	-0.4	1.040	1.108	213.3					
0.7023	0.0690	163.5	0.1	1.016	1.143	158.5					
0.8526	0.1514	90	0.0	1.013	1.160	102.7					
1.0000	1.0000	15.8	0.0	1.000	1.463	0.0					
	$T = 383.15 \ K$										
0.0000	0.0000	763	0.0	0.890	1.000	0.0					
0.1374	0.0077	651	-0.1	1.243	0.982	46.3					
0.2630	0.0168	564	-0.3	1.223	0.989	142.8					
0.4045	0.0271	489.6	0.7	1.103	1.042	204.8					
0.5283	0.0393	409.1	-0.5	1.037	1.099	202.5					
0.7023	0.0759	277.6	0.2	1.017	1.129	151.8					
0.8526	0.1648	154.2	0.0	1.013	1.148	99.9					
1.0000	1.0000	29.4	0.0	1.000	1.438	0.0					
			T = 393.15 K								
0.0000	0.0000	1254.9	0.0	0.939	1.000	0.0					
0.1374	0.0085	1075.8	0.0	1.236	0.986	54.6					
0.2630	0.0182	931.2	-0.4	1.208	0.994	147.0					
0.4045	0.0297	808.8	0.8	1.097	1.043	204.8					
0.5283	0.0435	672.5	-0.6	1.037	1.095	202.2					
0.7023	0.0837	458.4	0.2	1.017	1.125	153.5					
0.8526	0.1791	258	0.0	1.012	1.148	100.9					
1.0000	1.0000	53.5	0.0	1.000	1.418	0.0					
			T = 403.15 K								
0.0000	0.0000	1997.5	0.0	1.015	1.000	0.0					
0.1374	0.0095	1724.5	0.2	1.239	0.990	69.8					
0.2630	0.0200	1492.1	-0.6	1.198	1.000	159.8					

Annexes									
x_1	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ2	γ2	G ^E /J.mol ⁻¹			
0.4045	0.0329	1295.9	0.8	1.095	1.047	213.9			
0.5283	0.0484	1074.8	-0.6	1.040	1.094	211.1			
0.7023	0.0924	737.8	0.2	1.018	1.128	162.4			
0.8526	0.1942	421.6	0.0	1.012	1.159	105.3			
1.0000	1.0000	94.9	0.0	1.000	1.403	0.0			
$T = 413.15 \ K$									
0.0000	0.0000	3086.3	0.0	1.116	1.000	0.0			
0.1374	0.0107	2686.7	0.4	1.251	0.995	90.9			
0.2630	0.0222	2324.9	-0.7	1.192	1.008	179.8			
0.4045	0.0367	2019.3	0.9	1.096	1.052	230.7			
0.5283	0.0542	1673.7	-0.5	1.044	1.096	227.8			
0.7023	0.1021	1159.5	0.2	1.020	1.136	177.8			
0.8526	0.2103	674.5	0.0	1.010	1.177	112.7			
1.0000	1.0000	164.4	0.0	1.000	1.390	0.0			
			T = 423.15 K						
0.0000	0.0000	4641.8	0.0	1.245	1.000	0.0			
0.1374	0.0122	4078.5	0.7	1.269	1.001	117.0			
0.2630	0.0248	3531.2	-0.9	1.190	1.018	205.9			
0.4045	0.0412	3067.3	0.8	1.099	1.059	254.0			
0.5283	0.0610	2545	-0.4	1.051	1.101	251.1			
0.7023	0.1130	1782.5	0.1	1.022	1.149	198.6			
0.8526	0.2274	1057.7	0.0	1.009	1.203	122.7			
1.0000	1.0000	278.9	0.0	1.000	1.381	0.0			
			T = 433.15 K						
0.0000	0.0000	6812.2	0.0	1.401	1.000	0.0			
0.1374	0.0140	6045.9	0.9	1.292	1.007	146.9			
0.2630	0.0278	5239.4	-1.0	1.190	1.028	236.7			
0.4045	0.0464	4551.6	0.8	1.105	1.066	282.5			
0.5283	0.0689	3785.7	-0.3	1.059	1.106	279.9			
0.7023	0.1251	2684.7	0.1	1.024	1.166	224.2			
0.8526	0.2455	1627.5	0.0	1.008	1.234	135.0			

Annexes						
x_{l}	<i>Y</i> 1	Pexp./Pa	δP/P(%)	γ ₂	γ2	$G^{E}/J.mol^{-1}$
1.0000	1.0000	463.5	0.0	1.000	1.374	0.0
			T = 443.15 K			
0.0000	0.0000	9776.4	0.0	1.586	1.000	0.0
0.1374	0.0161	8769.2	1.2	1.317	1.013	179.9
0.2630	0.0314	7608.9	-1.1	1.192	1.038	271.1
0.4045	0.0526	6610.9	0.7	1.112	1.074	315.0
0.5283	0.0781	5518.1	-0.2	1.067	1.113	313.0
0.7023	0.1385	3967.3	0.0	1.026	1.185	253.5
0.8526	0.2647	2460.5	0.0	1.006	1.270	149.2
1.0000	1.0000	755.7	0.0	1.000	1.369	0.0
			T = 453.15 K			
0.0000	0.0000	13746	0.0	1.799	1.000	0.0
0.1374	0.0187	12467	1.4	1.345	1.019	214.8
0.2630	0.0355	10833.6	-1.2	1.195	1.049	307.9
0.4045	0.0597	9414.3	0.5	1.120	1.082	350.2
0.5283	0.0886	7893.9	-0.1	1.077	1.120	349.3
0.7023	0.1535	5759.4	-0.1	1.029	1.206	285.9
0.8526	0.2851	3658.5	0.0	1.005	1.310	164.9
1.0000	1.0000	1209.8	0.0	1.000	1.366	0.0

<u>ANNEXE 6</u> : Equilibres liquide-vapeur des binaires Ester méthylique (1)-n-alcane (2) : Paramètres de l'équation de Redlich-Kister.

Tableau A6. 1: Coefficients Gj du polynôme de Redlich – Kister et écarts-type (σ) des systèmes *EMAG (1)* + *n*-dodécane (2)

G_{I}	σ	G_2	σ	G_3	σ	G_4	σ
	Не	exanoate de mo	éthyle (1) ·	+ n-dodécane ((2)		
0.60475	0.02	0.12320	0.04	0.16094	0.08	0.21234	0.16
0.57541	0.01	0.10753	0.02	0.10919	0.05	0.11639	0.09
0.54532	0.01	0.09379	0.02	0.07561	0.04	0.05389	0.08
0.51436	0.01	0.08198	0.02	0.05841	0.04	0.02148	0.08
0.52757	0.01	0.08717	0.02	0.07008	0.04	0.02936	0.07
0.45029	0.01	0.06398	0.02	0.06645	0.03	0.03410	0.07
0.41591	0.01	0.05717	0.01	0.08808	0.03	0.07282	0.06
0.38121	0.01	0.05199	0.02	0.11977	0.03	0.12981	0.07
	00	ctanoate de mé	éthyle (1) -	+ n-dodécane ((2)		
0.65470	0.02	0.00639	0.06	0.23880	0.09	0.19812	0.21
0.62014	0.02	0.00090	0.05	0.19490	0.09	0.10180	0.20
0.58305	0.02	-0.00615	0.05	0.15258	0.09	0.03492	0.20
0.54414	0.02	-0.01451	0.05	0.11185	0.09	-0.00605	0.20
0.50398	0.02	-0.02402	0.06	0.07274	0.09	-0.02444	0.20
0.46306	0.02	-0.03451	0.06	0.03528	0.10	-0.02331	0.21
0.42176	0.02	-0.04586	0.06	-0.00049	0.10	-0.00552	0.21
0.38042	0.02	-0.05796	0.06	-0.03450	0.10	0.02640	0.22
0.33933	0.02	-0.07068	0.07	-0.06667	0.11	0.07008	0.23
	Dé	canoate de mé	éthyle (1) -	+ n-dodécane ((2)		
0.58095	0.03	-0.11028	0.08	0.15831	0.13	-0.18339	0.29
0.54144	0.02	-0.09868	0.06	0.12469	0.11	-0.16006	0.23
0.49933	0.02	-0.08926	0.05	0.08818	0.09	-0.14478	0.19
0.45522	0.02	-0.08187	0.05	0.04898	0.07	-0.13874	0.16
0.40966	0.01	-0.07616	0.04	0.00727	0.06	-0.14300	0.14
0.36314	0.01	-0.07160	0.04	-0.03680	0.06	-0.15848	0.12
0.31612	0.01	-0.06753	0.04	-0.08292	0.06	-0.18583	0.13
0.26898	0.01	-0.06328	0.05	-0.13070	0.07	-0.22545	0.16
0.22207	0.02	-0.05811	0.06	-0.17958	0.10	-0.27744	0.20
	 G₁ 0.60475 0.57541 0.54532 0.51436 0.52757 0.45029 0.41591 0.38121 0.65470 0.62014 0.58305 0.54414 0.50398 0.46306 0.42176 0.38042 0.38042 0.38042 0.38042 0.38042 0.3933 0.58095 0.54144 0.49933 0.45522 0.40966 0.36314 0.31612 0.26898 0.22207 	G₁ σ 0.60475 0.02 0.57541 0.01 0.54532 0.01 0.51436 0.01 0.51436 0.01 0.52757 0.01 0.45029 0.01 0.41591 0.01 0.38121 0.01 0.65470 0.02 0.65305 0.02 0.58305 0.02 0.54414 0.02 0.50398 0.02 0.46306 0.02 0.46306 0.02 0.38042 0.02 0.38042 0.02 0.38042 0.02 0.38042 0.02 0.49933 0.02 0.49933 0.02 0.49933 0.02 0.49933 0.02 0.40966 0.01 0.36314 0.01 0.36314 0.01 0.26898 0.01 0.22207 0.02	G₁ σ G₂ 0.60475 0.02 0.12320 0.57541 0.01 0.10753 0.54532 0.01 0.09379 0.51436 0.01 0.08198 0.52757 0.01 0.08717 0.45029 0.01 0.06398 0.41591 0.01 0.05717 0.38121 0.01 0.05119 0.62014 0.02 0.00639 0.62014 0.02 0.00639 0.58305 0.02 -0.01451 0.50398 0.02 -0.02402 0.46306 0.02 -0.03451 0.53933 0.02 -0.02402 0.46306 0.02 -0.03451 0.46306 0.02 -0.03451 0.46306 0.02 -0.03451 0.46306 0.02 -0.03451 0.46306 0.02 -0.04586 0.38042 0.02 -0.04586 0.54144 0.02 -0.08187 0.45522 <	G1σG2σ0.604750.020.123200.040.575410.010.107530.020.545320.010.093790.020.514360.010.081980.020.527570.010.087170.020.450290.010.063980.020.415910.010.051970.010.381210.010.051990.020.654700.020.006390.050.583050.020.006390.050.583050.02-0.006150.050.544140.02-0.014510.050.533930.02-0.034510.060.463060.02-0.045860.060.380420.02-0.070680.060.580950.03-0.110280.080.580950.03-0.110280.050.455220.02-0.081870.050.455220.02-0.081870.050.45930.02-0.071600.440.363140.01-0.071600.440.363140.01-0.063280.050.268980.01-0.063280.050.222070.02-0.058110.06	GrσG2σG3HEXHORE DE DEVENTE OF COLSPANE0.604750.020.123200.040.160940.575410.010.093790.020.075610.514360.010.081980.020.07080.527570.010.087170.020.066450.450290.010.057170.010.088080.381210.010.051990.020.119770.654700.020.006390.060.238800.654700.020.006390.050.194900.583050.02-0.06150.050.194900.583050.02-0.014510.050.118510.541410.02-0.024020.060.072740.433040.02-0.024020.060.035280.421760.02-0.034510.06-0.034500.339330.02-0.057960.06-0.034500.380420.02-0.07680.07-0.066670.580950.03-0.110280.080.158310.541440.02-0.089260.050.088180.541440.02-0.089260.050.088180.541440.02-0.089260.050.088180.541440.02-0.089260.050.088180.541440.02-0.089260.050.088180.455220.02-0.081870.040.007270.363140.01-0.076160.040.03680<	G₁σG₂σG₃φ0.604750.020.123200.040.160940.080.575410.010.093790.020.075610.040.545320.010.081980.020.058410.040.514360.010.081980.020.070840.040.527570.010.063980.020.066450.030.450290.010.057170.010.088080.020.451910.010.051990.020.119770.010.654700.020.006390.060.1238800.090.620140.020.006150.150.111850.090.533050.02-0.014510.050.111850.090.541400.02-0.014510.050.111850.090.533050.02-0.034510.060.072740.090.430600.02-0.045860.06-0.004900.100.430420.02-0.057960.060.035280.100.39330.02-0.081860.060.124690.110.541440.02-0.088680.060.124690.110.409530.02-0.081870.050.088180.070.541440.02-0.081870.050.048980.070.409660.01-0.071600.040.007270.060.409660.01-0.071600.040.007270.060.363140.01	G₁ σ G₂ σ G₃ σ G₄ 0.60475 0.02 0.12320 0.04 0.16094 0.08 0.21234 0.57541 0.01 0.10753 0.02 0.07561 0.04 0.05389 0.51436 0.01 0.09379 0.02 0.07561 0.04 0.02148 0.52757 0.01 0.08717 0.02 0.06645 0.03 0.03410 0.45029 0.01 0.05717 0.01 0.08808 0.03 0.07282 0.38121 0.01 0.05717 0.01 0.08808 0.03 0.12981 0.45029 0.01 0.05199 0.02 0.11977 0.03 0.12981 0.41591 0.01 0.05199 0.02 0.11977 0.03 0.12981 0.45414 0.02 0.00639 0.66 0.19490 0.09 0.03492 0.54145 0.02 -0.04615 0.05 0.1185 0.09 -0.02444 0.46306

T/K	G ₁	σ	G ₂	σ	G_3	σ	G_4	σ			
		Doc	lécanoate de n	néthyle (1)	+ n-dodécane	(2)					
353.15	0.47793	0.03	-0.10991	0.04	0.25537	0.07	-0.30235	0.15			
363.15	0.45261	0.02	-0.11677	0.04	0.23053	0.07	-0.28232	0.15			
373.15	0.42931	0.02	-0.11798	0.04	0.20609	0.07	-0.25661	0.14			
383.15	0.40745	0.02	-0.11429	0.03	0.18246	0.06	-0.22571	0.14			
393.15	0.38653	0.02	-0.10632	0.03	0.16002	0.06	-0.18999	0.12			
403.15	0.36612	0.02	-0.09461	0.03	0.13915	0.05	-0.14966	0.11			
413.15	0.34587	0.02	-0.07963	0.03	0.12025	0.05	-0.10487	0.10			
423.15	0.32544	0.01	-0.06183	0.02	0.10372	0.05	-0.05566	0.09			
433.15	0.30450	0.01	-0.04165	0.02	0.08999	0.04	-0.00203	0.09			
Tétradécanoate de méthyle (1) + n-dodécane (2)											
353.15	0.41529	0.01	-0.16253	0.02	0.20531	0.04	-0.36772	0.10			
363.15	0.39291	0.01	-0.17260	0.02	0.18468	0.04	-0.37917	0.09			
373.15	0.37374	0.01	-0.17451	0.02	0.16403	0.04	-0.37081	0.09			
383.15	0.35700	0.01	-0.16975	0.01	0.14358	0.04	-0.34612	0.08			
393.15	0.34209	0.01	-0.15952	0.01	0.12350	0.04	-0.30801	0.08			
403.15	0.32853	0.01	-0.14482	0.01	0.10398	0.03	-0.25885	0.07			
413.15	0.31594	0.01	-0.12646	0.01	0.08516	0.03	-0.20065	0.06			
423.15	0.30403	0.01	-0.10513	0.01	0.06722	0.02	-0.13507	0.04			
433.15	0.29254	0.00	-0.08139	0.00	0.05033	0.01	-0.06357	0.02			
443.15	0.28129	0.00	-0.05573	0.00	0.03465	0.00	0.01260	0.00			
		Hexa	décanoate de	méthyle (1	l) + n-dodécan	e (2)					
373.15	0.31345	0.01	-0.19289	0.01	0.18444	0.02	-0.16226	0.03			
383.15	0.29307	0.01	-0.17943	0.02	0.14920	0.03	-0.14720	0.07			
393.15	0.27530	0.02	-0.16253	0.03	0.12049	0.05	-0.12963	0.10			
403.15	0.25956	0.02	-0.14327	0.03	0.09728	0.06	-0.10984	0.12			
413.15	0.24525	0.02	-0.12251	0.03	0.07868	0.06	-0.08819	0.12			
423.15	0.23173	0.02	-0.10093	0.03	0.06393	0.05	-0.06507	0.11			
433.15	0.21834	0.02	-0.07913	0.02	0.05237	0.05	-0.04086	0.10			
443.15	0.20438	0.01	-0.05763	0.02	0.04342	0.04	-0.01595	0.08			

Tableau A6. 2 : Coefficients Gj du polynôme de Redlich – Kister et écarts-type (σ) des systèmes *EMAG (1)* + *n*-dodécane (2) (suite)

 $\begin{array}{l} \mbox{Tableau A6. 3: Coefficients Gj du polynôme de Redlich - Kister et écarts-type (\sigma) des systèmes \\ \mbox{EMAG (1) + n-tétradécane (2)} \end{array} \end{array}$

T/K	G_1	σ	G_2	σ	G_3	σ	G_4	σ
		Dod	écanoate de r	néthyle (1)) + n-tétradéca	nne (2)		
353.15	0.64045	0.00	-0.31601	0.01	0.10229	0.016	-0.15078	0.04
363.15	0.60717	0.00	-0.25166	0.01	0.06434	0.016	-0.14788	0.04
373.15	0.56947	0.01	-0.20887	0.02	0.07565	0.040	-0.22438	0.08
383.15	0.53680	0.02	-0.21010	0.07	0.08314	0.116	-0.10049	0.24
393.15	0.49289	0.01	-0.19295	0.02	0.10339	0.037	-0.13811	0.08
403.15	0.44985	0.01	-0.21423	0.03	0.14187	0.047	-0.06771	0.10
413.15	0.40101	0.01	-0.23193	0.02	0.17743	0.027	-0.05821	0.06
423.15	0.34922	0.02	-0.25912	0.05	0.21210	0.087	-0.05530	0.18
433.15	0.31019	0.02	-0.29573	0.05	0.21134	0.080	-0.05183	0.17
		Tétra	décanoate de	méthyle (1) + n-tétradé	cane (2)		
353.15	0.37137	0.03	0.07085	0.05	-0.08871	0.08	0.44632	0.19
363.15	0.36218	0.03	0.09673	0.05	-0.06543	0.09	0.50042	0.21
373.15	0.35727	0.03	0.11241	0.05	-0.04091	0.09	0.52889	0.21
383.15	0.35504	0.03	0.11959	0.05	-0.01612	0.09	0.53602	0.20
393.15	0.35415	0.02	0.11961	0.05	0.00808	0.08	0.52524	0.18
403.15	0.35353	0.02	0.11353	0.04	0.03094	0.07	0.49927	0.16
413.15	0.35230	0.02	0.10217	0.03	0.05178	0.06	0.46021	0.14
423.15	0.34973	0.01	0.08613	0.03	0.06995	0.05	0.40972	0.11
433.15	0.34521	0.01	0.06587	0.03	0.08479	0.04	0.34902	0.10
443.15	0.33828	0.01	0.04169	0.03	0.09565	0.05	0.27904	0.10
453.15	0.32854	0.01	0.01381	0.03	0.10180	0.05	0.20042	0.12
		Hexa	décanoate de	méthyle (1) + n-tétradéo	cane (2)		
353.15	0.37899	0.00	-0.10086	0.01	-0.19844	0.01	0.34349	0.03
363.15	0.31939	0.00	-0.08955	0.01	-0.18164	0.01	0.35183	0.03
373.15	0.28092	0.01	-0.08124	0.01	-0.16054	0.02	0.34099	0.05
383.15	0.25973	0.01	-0.07509	0.02	-0.13608	0.03	0.31482	0.07
393.15	0.25257	0.01	-0.07041	0.02	-0.10907	0.04	0.27646	0.08
403.15	0.25670	0.01	-0.06660	0.02	-0.08018	0.04	0.22846	0.09
413.15	0.26979	0.02	-0.06312	0.02	-0.04996	0.05	0.17289	0.10
423.15	0.28981	0.02	-0.05948	0.03	-0.01891	0.05	0.11148	0.11

Annexes

T/K	G_1	σ	G_2	σ	G_{3}	σ	G_4	σ
433.15	0.31494	0.02	-0.05519	0.03	0.01256	0.06	0.04563	0.12
443.15	0.34359	0.02	-0.04979	0.03	0.04408	0.07	-0.02348	0.14
453.15	0.37425	0.02	-0.04278	0.037	0.07535	0.07	-0.09492	0.16

ANNEXE7: Energie libre molaire d'excès des binaires ester méthylique (1)-n-alcane(2)

Figure A7. 2 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x_1 du système : *octanoate de méthyle(1)* + *n*-dodécane (2) calculée en utilisant la méthode de Barker à différentes températures: *, 353.15 K ; \diamond , 363.15 K ; \diamond , 373.15 K; \circ , 383.15 K ; \bullet , 393.15 K ; Δ , 403.15 K ; \blacktriangle , 413.15 K; \Box , 423.15 K ; \blacksquare , 433.15 K.

Figure A7. 3 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x_1 du système : *décanoate de méthyle(1)* + *n*-*dodécane (2)* calculée en utilisant la méthode de Barker à différentes températures: *, 353.15 K ; \diamond , 363.15 K ; \diamond , 373.15 K; \circ , 383.15 K ; \bullet , 393.15 K ; Δ , 403.15 K ; \blacktriangle , 413.15 K; \Box , 423.15 K ; \blacksquare , 433.15 K.

Figure A7. 4 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x_1 du système : dodécanoate de méthyle (1) + n-tétradécane (2) calculée en utilisant la méthode de Barker à différentes températures : Δ , 353.15 K ; \blacklozenge , 373.15 K ; b) \blacklozenge , 393.15 K ; \blacklozenge , 413.15 K ; \blacksquare , 433.15 K .

Figure A7. 5 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x_1 du système *tétradécanoate de méthyle (1)* + *n-tétradécane (2)* calculée en utilisant la méthode de Barker à différentes températures : Δ , 353.15 K ; \blacklozenge , 373.15 K ; \blacklozenge , 393.15 K ; \blacktriangle , 413.15 K ; \blacksquare , 433.15 K ; \diamondsuit , 453.15 K.

Figure A7. 6 : Energie molaire d'excès de Gibbs G^E en fonction de la composition x_1 du système *hexadécanoate de méthyle (1)* + *n-tétradécane (2)* calculée en utilisant la méthode de Barker à différentes températures : Δ , 353.15 K ; \blacklozenge , 373.15 K ; \blacklozenge , 393.15 K ; \blacktriangle , 413.15 K ; \blacksquare , 433.15 K ; \diamondsuit , 453.15 K

ANNEXE 8 : Masse volumique des binaires Ester méthylique (1)-n-alcane(2)

Tableau A8. 1: masse volumique du mélange dodécanoate de méthyle (1) + n-dodécane (2) enfonction de la composition et de la température.

$ ho/g.cm^3$									
T/K	283.16	293.14	303.14	313.14	323.14	333.14	343.14	353.14	
x1									
0.0000	0.75610	0.74999	0.74462	0.73986	0.73558	0.73173	0.72824	0.72506	
0.1032	0.76866	0.76248	0.75706	0.75225	0.74795	0.74408	0.74058	0.73740	
0.2014	0.78044	0.77418	0.76871	0.76387	0.75955	0.75566	0.75215	0.74899	
0.3010	0.79222	0.78592	0.78041	0.77554	0.77119	0.76729	0.76377	0.76059	
0.4019	0.80405	0.79769	0.79214	0.78724	0.78287	0.77895	0.77543	0.77226	
0.4991	0.81533	0.80892	0.80333	0.79839	0.79400	0.79008	0.78655	0.78339	
0.6002	0.82690	0.82044	0.81481	0.80985	0.80544	0.80151	0.79799	0.79483	
0.6990	0.83809	0.83158	0.82591	0.82092	0.81650	0.81256	0.80904	0.80590	
0.7982	0.84919	0.84263	0.83693	0.83192	0.82748	0.82353	0.82002	0.81688	
0.8988	0.86030	0.85369	0.84795	0.84292	0.83848	0.83453	0.83102	0.82790	
1.0000	0.87131	0.86466	0.85889	0.85384	0.84938	0.84544	0.84193	0.83884	

Tableau A8. 2 : masse volumique du mélange dodécanoate de méthyle (1) + n-tétradécane (2) en fonction de la composition et de la température.

$ ho/g. cm^3$								
T/K	283.16	293.14	303.14	313.14	323.14	333.14	343.14	353.14
x1								
0.0000	0.77014	0.76422	0.75908	0.75457	0.75060	0.74708	0.74395	0.74116
0.1007	0.77943	0.77344	0.76824	0.76368	0.75966	0.75609	0.75292	0.75009
0.1998	0.78887	0.78280	0.77753	0.77292	0.76885	0.76524	0.76202	0.75916
0.2995	0.79852	0.79238	0.78705	0.78239	0.77827	0.77461	0.77135	0.76845
0.4003	0.80846	0.80225	0.79685	0.79214	0.78796	0.78426	0.78096	0.77803
0.4996	0.81843	0.81215	0.80669	0.80191	0.79769	0.79394	0.79061	0.78765
0.5985	0.82855	0.82220	0.81668	0.81185	0.80757	0.80379	0.80042	0.79743
0.7001	0.83911	0.83269	0.82710	0.82222	0.81790	0.81407	0.81066	0.80764
0.7996	0.84964	0.84314	0.83749	0.83255	0.82819	0.82432	0.82088	0.81783
0.9059	0.86104	0.85446	0.84874	0.84374	0.83933	0.83542	0.83195	0.82887
1.0000	0.87131	0.86466	0.85889	0.85384	0.84938	0.84544	0.84193	0.83884

142

	$\rho/g.cm^3$									
T/K	293.14	303.14	313.14	323.14	333.14	343.14	353.14			
x1										
0.0000	0.74999	0.74462	0.73986	0.73558	0.73173	0.72824	0.72506			
0.1007	0.76407	0.75869	0.75394	0.74969	0.74587	0.74243	0.73932			
0.1992	0.77729	0.77192	0.76716	0.76293	0.75914	0.75574	0.75269			
0.3004	0.79034	0.78497	0.78022	0.77601	0.77226	0.76890	0.76590			
0.4000	0.80269	0.79730	0.79256	0.78837	0.78465	0.78134	0.77839			
0.5051	0.81522	0.80983	0.80510	0.80094	0.79725	0.79398	0.79109			
0.5761	0.82342	0.81803	0.81331	0.80916	0.80550	0.80226	0.79941			
0.7016	0.83746	0.83206	0.82735	0.82322	0.81960	0.81641	0.81363			
0.7989	0.84794	0.84253	0.83782	0.83371	0.83012	0.82698	0.82425			
0.8969	0.85818	0.85277	0.84807	0.84398	0.84042	0.83732	0.83464			
1.0000	0.86864	0.86321	0.85852	0.85446	0.85093	0.84787	0.84524			

Tableau A8. 3 : masse volumique du mélange tétradécanoate de méthyle (1) + n-dodécane (2) en fonction de la composition et de la température.

Tableau A8. 4 : masse volumique du mélange tétradécanoate de méthyle (1) + n-tétradécane (2) en fonction de la composition et de la température.

$\rho/g. cm^3$									
T/K	293.14	303.14	313.14	323.14	333.14	343.14	353.14		
x1									
0.0000	0.76422	0.75908	0.75457	0.75060	0.74708	0.74395	0.74116		
0.1011	0.77508	0.76993	0.76541	0.76142	0.75789	0.75476	0.75198		
0.2000	0.78566	0.78048	0.77594	0.77194	0.76840	0.76527	0.76250		
0.3008	0.79640	0.79118	0.78661	0.78260	0.77906	0.77594	0.77318		
0.4007	0.80696	0.80171	0.79712	0.79310	0.78956	0.78643	0.78369		
0.4879	0.81611	0.81083	0.80622	0.80218	0.79864	0.79553	0.79280		
0.5994	0.82769	0.82239	0.81776	0.81372	0.81018	0.80707	0.80436		
0.6986	0.83791	0.83258	0.82794	0.82389	0.82035	0.81725	0.81456		
0.7989	0.84816	0.84280	0.83814	0.83408	0.83055	0.82746	0.82479		
0.8980	0.85823	0.85285	0.84818	0.84412	0.84059	0.83751	0.83486		
1.0000	0.86862	0.86320	0.85851	0.85445	0.85092	0.84786	0.84523		

<u>ANNEXE 9</u> : Volume molaire d'excès des binaires ester méthylique (1) –n-alcane(2)

Tableau A9. 1 : Volume molaire d'excès du mélange dodécanoate de méthyle (1) + n-dodécane(2) en
fonction de la composition et de la température.

				$V^{E}/cm^{3}.mol^{-1}$				
T/K	283.16	293.14	303.14	313.14	323.14	333.14	343.14	353.14
x1								
0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.1032	0.08829	0.09110	0.09236	0.09720	0.09631	0.09834	0.09952	0.10107
0.2014	0.15841	0.16833	0.17200	0.17647	0.17548	0.18014	0.18302	0.18008
0.3010	0.21172	0.21691	0.21996	0.22411	0.22619	0.23051	0.23524	0.24083
0.4019	0.23522	0.24158	0.24410	0.24805	0.25028	0.25755	0.26124	0.26610
0.4991	0.23250	0.23786	0.24047	0.24775	0.25057	0.25496	0.26097	0.26525
0.6002	0.21790	0.22204	0.22465	0.22923	0.23270	0.23747	0.23987	0.24709
0.6990	0.18189	0.18539	0.18847	0.19379	0.19526	0.20071	0.20287	0.20703
0.7982	0.13126	0.13436	0.13522	0.13850	0.14121	0.14757	0.14670	0.15424
0.8988	0.06865	0.07147	0.07321	0.07472	0.07295	0.07745	0.07686	0.08197
1.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Tableau A9. 2 : Volume molaire d'excès du mélar	ge dodécanoate de méthyle (1) + n-tétradécane(2)
en fonction de la composition et de la température.	

$V^{E}/cm^{3}.mol^{-1}$									
T/K	283.16	293.14	303.14	313.14	323.14	333.14	343.14	353.14	
x1									
0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
0.1007	0.16007	0.16222	0.16397	0.16500	0.16755	0.17228	0.17478	0.17976	
0.1998	0.24094	0.24752	0.25351	0.25490	0.25934	0.26467	0.27255	0.27847	
0.2995	0.30308	0.31012	0.31638	0.31757	0.32334	0.33221	0.34152	0.35145	
0.4003	0.33299	0.33959	0.34855	0.34891	0.35866	0.36714	0.37735	0.38740	
0.4996	0.33638	0.34231	0.35049	0.35624	0.36322	0.37441	0.38205	0.39209	
0.5985	0.30731	0.31203	0.31896	0.32318	0.33339	0.34041	0.34843	0.35819	
0.7001	0.25789	0.26034	0.26815	0.27008	0.27637	0.28498	0.29276	0.30176	
0.7996	0.18621	0.18934	0.19494	0.19765	0.20012	0.20712	0.21149	0.21972	
0.9059	0.10024	0.10211	0.10683	0.10882	0.10928	0.11358	0.11359	0.12023	
1.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
$V^{E}/cm^{3}.mot^{-1}$									
-------------------------	---------	---------	---------	---------	---------	---------	---------	--	--
T/K	293.15	303.15	313.15	323.15	333.15	343.15	353.145		
x1									
0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		
0.1007	0.08435	0.08283	0.07960	0.07520	0.07425	0.07072	0.06485		
0.1992	0.14606	0.13773	0.13815	0.13298	0.13146	0.12785	0.11943		
0.3004	0.19397	0.18255	0.18109	0.17586	0.17130	0.16836	0.16147		
0.4000	0.22274	0.21517	0.21242	0.20756	0.20345	0.19811	0.19278		
0.5051	0.24216	0.23275	0.22934	0.22244	0.21969	0.21626	0.21046		
0.5761	0.24283	0.23247	0.22780	0.22301	0.21818	0.21517	0.20927		
0.7016	0.21205	0.20356	0.19947	0.19797	0.19391	0.19282	0.18708		
0.7989	0.16665	0.16074	0.15993	0.15977	0.15679	0.15355	0.14936		
0.8969	0.09766	0.09136	0.09076	0.09205	0.09023	0.08822	0.08565		
1.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		

Tableau A9. 3: Volume molaire d'excès du mélange tétradécanoate de méthyle (1) + n-dodécane(2) en fonction de la composition et de la température.

Tableau A9. 4 : Volume molaire d'excès du mélange tétradécanoate de méthyle (1) + n-tétradécane(2) en fonction de la composition et de la température.

$V^{E}/cm^{3}.mot^{1}$									
T/K	293.16	303.14	313.14	323.14	333.14	343.14	353.14		
xl									
0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		
0.1011	0.13703	0.13028	0.12680	0.12986	0.13225	0.13391	0.13516		
0.2000	0.22453	0.21807	0.21480	0.21762	0.22249	0.22590	0.22844		
0.3008	0.27714	0.27422	0.27455	0.27722	0.28122	0.28304	0.28714		
0.4007	0.30528	0.30275	0.30347	0.30617	0.30949	0.31690	0.31924		
0.4879	0.30805	0.30727	0.30933	0.31606	0.31900	0.32147	0.32505		
0.5994	0.29633	0.29197	0.29410	0.29749	0.30012	0.30536	0.30830		
0.6986	0.26346	0.26018	0.26000	0.26406	0.26666	0.27117	0.27305		
0.7989	0.21143	0.20930	0.21030	0.21522	0.21466	0.21871	0.21984		
0.8980	0.13333	0.12926	0.12824	0.13075	0.13047	0.13412	0.13457		
1.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		

T/K	A0	A1	A2	A3	A4	$\sigma (V^E)$
283.1	5 0.94711	0.19309	-0.14948	-0.12462	0.05084	0.002
293.1	5 0.96757	0.21987	-0.11962	-0.14810	0.05090	0.002
303.1	5 0.97858	0.22546	-0.10901	-0.15051	0.04906	0.002
313.15	5 1.00325	0.09066	-0.15064	0.26395	0.11429	0.005
323.1	5 1.01595	0.08421	-0.17480	0.26473	0.09835	0.005
333.1	5 1.03388	0.20974	-0.09952	-0.12771	0.04593	0.002
343.1	5 1.05192	0.22606	-0.12481	-0.12835	0.04072	0.002
353.1	5 1.07369	0.21565	-0.12913	-0.17711	0.05959	0.002

Tableau A9. 5 : Coefficients de l'équation Redlich-Kister du mélange dodécanoate de méthyle (1) + n-dodécane (2) à différentes températures.

Tableau A9. 6 : Coefficients de l'équation Redlich-Kister du mélange dodécanoate de méthyle (1) + n-tétradécane (2) à différentes températures.

T/K	A0	A1	A2	A3	A4	$\sigma\left(V^{E}\right)$
283.16	1.33239	0.18339	0.00108	0.34561	0.21978	0.004
293.14	1.35589	0.20196	0.00735	0.34095	0.22115	0.004
303.14	1.38829	0.19791	0.00642	0.33121	0.21915	0.004
313.14	1.40080	0.18795	0.00375	0.33304	0.22209	0.004
323.14	1.43683	0.19162	-0.02147	0.34177	0.20849	0.004
333.14	1.47409	0.19182	-0.00941	0.33896	0.21575	0.004
343.14	1.51216	0.20615	-0.01575	0.34420	0.20368	0.004
353.14	1.55235	0.20344	0.00564	0.33536	0.21661	0.004

T/K	A0	A1	A2	A3	A4	$\sigma\left(V^{E}\right)$
293.15	0.96946	-0.18410	-0.06091	0.22787	0.17809	0.002
303.15	0.92991	-0.18794	-0.07329	0.23979	0.17674	0.001
313.15	0.91605	-0.17977	-0.06422	0.22759	0.17675	0.002
323.15	0.89482	-0.20073	-0.05307	0.21177	0.17957	0.002
333.15	0.87779	-0.19801	-0.05244	0.21538	0.18246	0.002
343.15	0.86448	-0.20689	-0.06676	0.21601	0.17173	0.002
353.145	0.84133	-0.21841	-0.09994	0.20349	0.15635	0.002

Tableau A9. 7 : Coefficients de l'équation Redlich-Kister du mélange tétradécanoate de méthyle (1) + n-dodécane (2) à différentes températures

Tableau A9. 8 : Coefficients de l'équation Redlich-Kister du mélange tétradécanoate de méthyle (1) + n-tétradécane (2) à différentes températures

T/K	A0	A1	A2	A3	A4	$\sigma\left(V^{E}\right)$
293.16	1.24411	-0.00954	0.18845	0.22413	0.29838	0.004
303.14	1.23248	0.11442	0.17281	-0.17035	0.24260	0.001
313.14	1.24004	0.11170	0.13611	-0.20095	0.22275	0.001
323.14	1.25707	0.09907	0.14259	-0.18149	0.24328	0.002
333.14	1.26986	0.10905	0.14794	-0.15672	0.23522	0.001
343.14	1.28819	0.10763	0.15556	-0.17397	0.24612	0.001
353.14	1.30100	0.11555	0.15438	-0.17529	0.24071	0.001

REFERENCES BIBLIOGRAPHIQUES

REFERENCES BIBLIOGRAPHIQUES

- 1. IEA, W., p. 593; IEA, World Energy Outlook, 2006, 2007, OECD/IEA.
- 2. Shahid, E.M. and Y. Jamal, *Production of biodiesel: a technical review*. Renewable and Sustainable Energy Reviews, 2011. **15**(9): p. 4732-4745.
- 3. Statistics, I., *CO2 emissions from fuel combustion-highlights*. IEA, Paris <u>http://www</u>. iea. org/co2highlights/co2highlights. pdf. Cited July, 2011.
- 4. Percebois, J. and C. Mandil. *Rapport énergies 2050.* in *Le nucléaire un an après Fukushima.* 2012. EDP Sciences.
- Atabani, A.E., et al., A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and sustainable energy reviews, 2012. 16(4): p. 2070-2093.
- 6. <u>http://www.ifpenergiesnouvelles.fr/Espace-Decouverte/Les-grands-debats/Comment-lutter-contre-le-changement-climatique/Reduire-les-emissions-de-CO2.</u>
- 7. Debusschere, V., et al., *Enseignement en Eco-Conception: une expérience à l'ENS de Cachan.* J3eA, 2010. **9**: p. 0017.
- 8. BERNA, H., *Transestérification des huiles végétales par l'éthanol en conditions douces par catalyses hétérogènes acide et basique*, 2009, thèse doctorat.
- 9. Ballerini, D., *Le plein de biocarburants?: Enjeux et réalités*2007: Editions Ophrys.
- 10. Vaitilingom, G., Huiles vegetales-biocombustible diesel: influence de la nature des huiles et en particulier de leur composition en acides gras sur la qualite carburant, 1992, Orléans.
- 11. Hladik, J., et al., Les énergies renouvelables aujourd'hui et demain2011: Ellipses.
- 12. Karleskind, A. and M. des Corps Gras, Paris: Tec. & Doc, 1992, Lavoisier.
- 13. Van Gerpen, J. and G. Knothe, *Basics of the transesterification reaction*. The biodiesel handbook, 2005: p. 26-41.
- 14. Leung, D.Y., X. Wu, and M. Leung, *A review on biodiesel production using catalyzed transesterification*. Applied energy, 2010. **87**(4): p. 1083-1095.
- 15. Stevanovic, T. and D. Perrin, *Chimie du bois. Presses polytechniques et universitaire romandes*, 2009, ISBN 978-2-88074-799-2.
- 16. El Hage, R., *Prétraitement du miscanthus x giganteus: vers une valorisation optimale de la biomasse lignocellulosique*, 2010, Nancy 1.
- 17. Bassil, G., *Gazéification de la biomasse: élimination des goudrons par lavage, étude expérimentale et modélisation*, 2012, Lyon 1.
- Dufour, A., et al., Synthesis gas production by biomass pyrolysis: effect of reactor temperature on product distribution. international journal of hydrogen energy, 2009. 34(4): p. 1726-1734.
- 19. Wertz, J.L., *La lignine*. Rapport de synthèse, Document ValBiom-Gembloux AgroBio Tech (Novembre 2010), 2010.
- 20. Dudley, B., *BP statistical review of world energy*. BP, London, 2011: p. 45.
- 21. Hamad, B., *Transestérification des huiles végétales par l'éthanol en conditions douces par catalyses hétérogènes acide et basique*, 2009, Université Claude Bernard-Lyon I.
- 22. <u>http://www.aprue.org.dz/coop-trx-real-alg.html</u>.
- 23. https://lenergeek.com/2016/12/21/lalgerie-veut-lancer-un-megaprojet-solaire-de-4000-mw/.
- 24. GAGNER, U.P.À., Énergies renouvelables enMéditerranée.
- 25. Domergue, M. and R. Pirot, *Rapport de synthèse bibliographique# Jatropha curcas# L.* 2008.
- 26. Mokbel, Rapport de Thèse "Mesure des pressions de vapeur entre 10-3 et 1400 mmHg par la méthode statique. Amélioration d'un appareil de mesure existant. Etude de composés purs et de deux systèmes binaires" Université Claude Bernard Lyon1, 30/09/1993.

- 27. Viton, C., et al., Vapor pressure of normal alkanes from decane to eicosane at temperatures from 244 K to 469 K and pressures from 0.4 Pa to 164 kPa. Int. Electron. J. Phys.-Chem. Data, 1996. 2: p. 215-224.
- 28. Dejoz, A., et al., Isobaric vapor- liquid equilibria for binary systems composed of octane, decane, and dodecane at 20 kPa. Journal of Chemical & Engineering Data, 1996. **41**(1): p. 93-96.
- 29. Morgan, D.L. and R. Kobayashi, *Direct vapor pressure measurements of ten n-alkanes m the 10-C28 range*. Fluid Phase Equilibria, 1994. **97**: p. 211-242.
- Casserino, M., D. Blevins, and R. Sanders, *An improved method for measuring vapor pressure by DSC with automated pressure control.* Thermochimica acta, 1996. 284(1): p. 145-152.
- Keistler, J.R. and M.V. Winkle, Vapor-Liquid Equilibria at Subatmospheric Pressures-System Dodecane Hexadecene. Industrial & Engineering Chemistry, 1952. 44(3): p. 622-624.
- 32. Mokbel, I., et al., *Vapor–liquid equilibria of two binary mixtures: benzene+n-tetradecane and benzene+ squalane*. Fluid phase equilibria, 1998. **149**(1): p. 287-308.
- 33. Allemand, N., J. Jose, and C. Michou-Saucet, *Realisation d'un ensemble destine a la mesure de faibles pressions de vapeur (Domaine: 3–1000 Pa)*. Thermochimica acta, 1986. **98**: p. 237-253.
- Rose, A., et al., Automatic Computation of Antoine Equation 31 Constants—Caproic and Caprylic Acids and Methyl Esters. Industrial & Engineering Chemistry, 1957. 49(1): p. 104-109.
- 35. Rose, A. and W.R. Supina, *Vapor Pressure and Vapor-Liquid Equilibrium Data for Methyl Esters of the Common Saturated Normal Fatty Acids*. Journal of Chemical and Engineering Data, 1961. 6(2): p. 173-179.
- Verevkin, S.P. and V.N. Emel'yanenko, *Transpiration method: Vapor pressures and enthalpies of vaporization of some low-boiling esters*. Fluid Phase Equilibria, 2008. 266(1): p. 64-75.
- 37. Althouse, P.M. and H.O. Triebold, *Physical constants of methyl esters of commonly occurring fatty acids vapor pressure*. Industrial & Engineering Chemistry Analytical Edition, 1944. **16**(10): p. 605-606.
- Nevin, C., P. Althouse, and H. Triebold, *Surface tension determinations of some saturated fat acid methyl esters*. Journal of the American Oil Chemists' Society, 1951. 28(8): p. 325-327.
- 39. van Genderen, A.C., et al., *Liquid–vapour equilibria of the methyl esters of alkanoic acids: vapour pressures as a function of temperature and standard thermodynamic function changes.* Fluid Phase Equilibria, 2002. **202**(1): p. 109-120.
- 40. Bonhorst, C.W., P.M. Althouse, and H.O. Triebold, *Esters of naturally occurring fatty* acids-physical properties of methyl, propyl, and isopropyl esters of C6 to C18 saturated fatty acids. Industrial & Engineering Chemistry, 1948. **40**(12): p. 2379-2384.
- 41. Scott, T.A., D. Macmillan, and E.H. Melvin, *Vapor pressures and distillation of methyl esters of some fatty acids*. Industrial & Engineering Chemistry, 1952. **44**(1): p. 172-175.
- 42. Bureau, N., et al., *Vapour pressure measurements and prediction for heavy esters*. The Journal of Chemical Thermodynamics, 2001. **33**(11): p. 1485-1498.
- 43. Haynes, W.M., CRC handbook of chemistry and physics2014: CRC press.
- 44. Norris, F.A. and D.E. Terry, *Precise laboratory fractional distillation of fatty acid esters*. Oil & Soap, 1945. **22**(2): p. 41-46.
- 45. Hou, J., et al., *Isobaric vapor–liquid equilibrium of the mixture of methyl palmitate and methyl stearate at 0.1 kPa, 1 kPa, 5 kPa, and 10 kPa.* Journal of Chemical & Engineering Data, 2012. **57**(10): p. 2632-2639.

- 46. Krop, H.B., et al., *Determination of environmentally relevant physical-chemical properties of some fatty acid esters.* Journal of the American Oil Chemists' Society, 1997. **74**(3): p. 309-315.
- 47. Duan, Y., et al., *Measurements and Correlations of Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate.* Journal of Chemical & Engineering Data, 2016. **61**(2): p. 766-771.
- 48. Chickos, J.S. and W.E. Acree Jr, *Enthalpies of vaporization of organic and organometallic compounds*, 1880–2002. Journal of Physical and Chemical Reference Data, 2003. **32**(2): p. 519-878.
- 49. Månsson, M., et al., *Enthalpies of vaporization of some 1-substituted n-alkanes*. The Journal of Chemical Thermodynamics, 1977. **9**(1): p. 91-97.
- 50. Fuchs, R. and L.A. Peacock, *Heats of vaporization of esters by the gas chromatography–calorimetry method.* Canadian Journal of Chemistry, 1980. **58**(24): p. 2796-2799.
- 51. Stephenson, R. and S. Malanowski, *Handbook of the Thermodynamics of Organic Compounds*, 1987. ISBN. **978**(94): p. 010.
- 52. Hopfe, D., *Thermophysical data of pure substances*. Data Compilation of FIZ CHEMIE, Germany, 1990. **1**.
- 53. Chickos, J.S., H. Zhao, and G. Nichols, *The vaporization enthalpies and vapor pressures of fatty acid methyl esters C 18, C 21 to C 23, and C 25 to C 29 by correlation–gas chromatography.* Thermochimica acta, 2004. **424**(1): p. 111-121.
- 54. Chickos, J.S., S. Hosseini, and D.G. Hesse, *Determination of vaporization enthalpies* of simple organic molecules by correlations of changes in gas chromatographic net retention times. Thermochimica acta, 1995. **249**: p. 41-62.
- 55. Wieser, M.E., *Atomic weights of the elements 2005 (IUPAC Technical Report).* Pure and Applied Chemistry, 2006. **78**(11): p. 2051-2066.
- 56. Barker, J., *Determination of activity coefficients from total pressure measurements*. Australian Journal of Chemistry, 1953. **6**(3): p. 207-210.
- 57. Pitzer, K.S. and R. Curl Jr, *The volumetric and thermodynamic properties of fluids. III. Empirical equation for the second virial coefficient1.* Journal of the American Chemical Society, 1957. **79**(10): p. 2369-2370.
- 58. Díaz, O.C., et al., *Equation of state modeling for the vapor pressure of biodiesel fuels*. Fluid Phase Equilibria, 2015. **389**: p. 55-63.
- 59. Shimoyama, Y., et al., *Measurement and correlation of vapor-liquid equilibria for methanol+ methyl laurate and methanol+ methyl myristate systems near critical temperature of methanol.* Fluid Phase Equilibria, 2007. **257**(2): p. 217-222.
- 60. BOUZINA, Z., Equilibres entre Phases de Solutions Aqueuses de Polyamines, Solvants Potentiels pour le Captage du CO2 Mesure et modélisation, 2016, 09/01/2016.
- 61. Wilson, G.M., *Vapor-liquid equilibrium*. XI. A new expression for the excess free energy of mixing. Journal of the American Chemical Society, 1964. **86**(2): p. 127-130.
- 62. Flory, P.J., *Thermodynamics of high polymer solutions*. The Journal of chemical physics, 1942. **10**(1): p. 51-61.
- 63. Huggins, M.L., *Solutions of long chain compounds*. The Journal of chemical physics, 1941. **9**(5): p. 440-440.
- 64. Huggins, M.L., *Thermodynamic Properties of Solutions of Long-chain Compounds*. Annals of the New York Academy of Sciences, 1942. **43**(1): p. 1-32.
- 65. Renon, H. and J.M. Prausnitz, *Local compositions in thermodynamic excess functions for liquid mixtures*. AIChE journal, 1968. **14**(1): p. 135-144.
- Bondi, A., van der Waals volumes and radii. The Journal of physical chemistry, 1964.
 68(3): p. 441-451.

- 67. Ramírez-Verduzco, L.F., J.E. Rodríguez-Rodríguez, and A. del Rayo Jaramillo-Jacob, *Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition.* Fuel, 2012. **91**(1): p. 102-111.
- 68. Lapuerta, M., J. Rodríguez-Fernández, and O. Armas, *Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed biodiesel cetane index.* Chemistry and physics of lipids, 2010. **163**(7): p. 720-727.
- 69. Kratky, O., H. Leopold, and H. Stabinger, *Dichtemessungen an Flüssigkeiten und Gasen auf 10– 6 g/cm 3 bei 0.6 cm 3 Präparatvolumen.* Z. angew. Phys, 1969. **27**: p. 273-277.
- 70. Wieser, M., *Atomic weights of the elements 2005 (IUPAC Technical Report)*. Pure and Applied Chemistry, 2006. **78**(11): p. 2051-2066.
- 71. Prigogine, I., *Molecular theory of solutions*. 1957.
- 72. Flory, P.d., *Statistical thermodynamics of liquid mixtures*. Journal of the American Chemical Society, 1965. **87**(9): p. 1833-1838.
- 73. Patterson, D., *Free volume and polymer solubility. A qualitative view.* Macromolecules, 1969. **2**(6): p. 672-677.
- 74. Patterson, D. and G. Delmas, *Corresponding states theories and liquid models*. Discussions of the Faraday Society, 1970. **49**: p. 98-105.
- 75. Viola, D.H.L. and A.Z. Francesconi, *Application of the Prigogine–Flory–Patterson model to excess molar enthalpy of binary liquid mixtures of 1-nonanol or 1-decanol with acetonitrile at atmospheric pressure and 298.15, 303.15 and 308.15 K. Journal of Molecular Liquids., 2014(190): p. 196-199.*
- 76. M.Rani, et al., *Excess molar enthalpies of binary mixtures of formamide with butanol at 298.15 K: Application of Prigogine–Flory–Patterson theory and Treszczanowicz– Benson association model.* Journal of Industrial and Engineering Chemistry., 2013(19): p. 1715-1721.
- 77. Habrioux, M., D. Nasri, and J.L. Daridon, *Measurement of speed of sound, density compressibility and viscosity in liquid methyl laurate and ethyl laurate up to 200 MPa by using acoustic wave sensors.* The Journal of Chemical Thermodynamics, 2018. **120**: p. 1-12.
- 78. Ndiaye, E.H.I., et al., *Speed of sound, density, and derivative properties of ethyl myristate, methyl myristate, and methyl palmitate under high pressure.* Journal of Chemical & Engineering Data, 2013. **58**(5): p. 1371-1377.
- 79. Pardo, J.M., et al., *Thermophysical properties of the binary mixtures diethyl carbonate+(n-dodecane or n-tetradecane) at several temperatures*. Journal of Chemical & Engineering Data, 2001. **46**(2): p. 212-216.
- 80. Pena, M.D. and G. Tardajos, *Isothermal compressibilities of n-alkanes and benzene*. The Journal of Chemical Thermodynamics, 1978. **10**(1): p. 19-24.

Caractérisation thermodynamique des binaires esters méthyliques/nalcanes représentatifs des mélanges biodiesel/gazole

Résumé

Les données expérimentales relatives aux propriétés thermodynamiques des mélanges entrant dans la composition des nouvelles générations de carburants (mélanges biodiésel/gazole) sont rares ou entachées d'erreurs.

L'objectif de cette thèse est de contribuer à l'alimentation des bases de données thermophysiques de corps purs et de mélanges entrant dans la composition des carburants formés de biodiesel/diesel. Les études ont été réalisées dans une large gamme de pression et de température (1 Pa à 200 kPa, 263.15K à 453.15K).

Grâce à l'appareil statique disponible au laboratoire (UMR 5615) et aux différentes méthodologies mises au point pour la détermination des équilibres de phase, l'acquisition de données fiables a été obtenue pour 8 corps purs représentatifs du biodiésel ou du gazole et de leur mélange binaire. Les valeurs relatives aux pressions de vapeur des corps purs sont en bon accord avec la littérature dans le domaine des pressions moyennes. En revanche pour les faibles pressions de vapeur (inférieures à 1 kPa) et pour les mélanges binaires étudiés, les pressions de vapeur obtenues sont originales.

Les deux modèles thermodynamiques NRTL et UNIQUAC ont restitué les résultats expérimentaux de façon satisfaisante.

L'étude des propriétés volumétriques par la mesure de la masse volumique, nous a permis d'interpréter les différentes interactions qui peuvent exister dans un mélange binaire constitué d'un ester et d'un alcane. Le modèle théorique de Prigogine-Flory-Patterson montre que les effets de volume libre et de pression interne sont négligeables, l'essentiel du volume molaire d'excès est dû aux variations des énergies d'interaction résultant du mélange.

Mots clés : Diesel, biodiesel, Esters méthyliques d'acides gras, équilibres liquide-vapeur, volume d'excès, modélisation thermodynamique

Thermodynamic characterization of methyl ester / n-alkane binaries representative of biodiesel / diesel mixtures

Abstract

Experimental data of thermodynamic properties of mixtures used in the composition of new fuel generations are very rare in the literature. The aim of this thesis is to contribute to setting up a thermophysical database of constituents used in the composition of biodiesel / diesel mixtures over a wide range of pressure and temperature (1 Pa to 200 kPa).

Thanks to the static apparatus available in the laboratory (UMR 5615-Lyon1) and to the various methodologies developed to determine phase equilibrium, the acquisition of reliable data has been obtained for 8 pure substances and their binary mixtures.

The vapor pressures of the pure compounds are in good agreement with the literature data in the range above 1 kPa whereas no data has been found to compare with experimental values of the pure compounds or mixtures below 1 kPa.

A good correlation of the experimental results was obtained using two thermodynamic models, NRTL and UNIQUAC.

The study of the volumetric properties obtained by densimetry, led us to interpret the different interactions that could exist in a binary mixture consisting of ester and alkane and to estimate quantitatively the different contributions to the excess molar volume.

Key words: Diesel, biodiesel, methyl esters of fatty acids, liquid-vapor equilibrium, excess molar volume, thermodynamic modeling.