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Foreword

J.R.R Tolkien wrote, in his Mythopoeia, that “He sees no stars who does not see them
first, of living silver made that sudden burst, to flame like flowers beneath the ancient
song”1. In his defense of myth-making, he formulates the argument that the attribution
of meaning is an act of creation - that “trees are not ‘trees’ until so named and seen” -
and that this capacity for creation defines the human creature. The scientific endeavour,
in this context, can be understood as a social expression of a fundamental feature of
humanity, and from this endeavour flows much understanding. This thesis, one thread
among many, focuses on the study of astronomical objects as seen by the radio waves
they emit.

What are radio waves? Electromagnetic waves were theorised by James Clerk Maxwell
(Maxwell 1864) in his great theoretical contribution to modern physics, their speed
matching the speed of light as measured by Ole Christensen Rømer and, later, James
Bradley. It was not until Heinrich Rudolf Hertz’s 1887 experiment that these waves were
measured in a laboratory, leading to the dawn of radio communications - and, later, ra-
dio astronomy. The link between radio waves and light was one of association: light is
known to behave as a wave (Young double-slit experiment), with the same propagation
speed as electromagnetic radiation. Light “proper” is also known to exist beyond the
optical regime: Herschel’s experiment shows that when diffracted through a prism, sun-
light warms even those parts of a desk which are not observed to be lit (first evidence
of infrared light). The link between optical light and unseen electromagnetic radiation
is then an easy step to make, and one confirmed through countless technological appli-
cations (e.g. optical fiber to name but one). And as soon as this link is established,
a question immediately comes to the mind of the astronomer: what does the sky, our
Universe, look like to the radio “eye”?

Radio astronomy has a short but storied history: from Karl Jansky’s serendipitous
observation of the centre of the Milky Way, which outshines our Sun in the radio regime,
in 1933, to Grote Reber’s hand-built back-yard radio antenna in 1937, which successfully
detected radio emission from the Milky Way itself2, to such monumental projects as the
Square Kilometer Array and its multiple pathfinders, it has led to countless discoveries
and the opening of a truly new window on the Universe. The work presented in this
thesis is a contribution to this discipline - the culmination of three years of study, which
is a rather short time to get a firm grasp of radio interferometry both in theory and in
practice. The need for robust, automated methods - which are improving daily, thanks

1See here for the full text: http://home.agh.edu.pl/~evermind/jrrtolkien/mythopoeia.htm.
2https://www.nrao.edu/whatisra/hist_reber.shtml
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to the tireless labour of the scientists in the field - is becoming ever stronger as the
SKA approaches, looming large on the horizon; but even today, in the precursor era of
LOFAR, MeerKAT and other pathfinders, it is keenly felt. When I started my doctorate,
the sheer scale of the task at hand felt overwhelming - to actually be able to contribute
to its resolution seemed daunting indeed!

Thankfully, as the saying goes, no society sets for itself material goals which it cannot
achieve. This thesis took place at an exciting time for radio interferometry: at the
start of my doctorate, the LOFAR international stations were - to my knowledge - only
beginning to be used, and even then, only tentatively; MeerKAT had not yet shown its
first light; the techniques used throughout my work were still being developed. At the
time of writing, great strides have been made. One of the greatest technical challenges
of LOFAR - imaging using the international stations - is starting to become reality. This
technical challenge is the key problem that this thesis set out to address. While we only
achieved partial success so far, it is a testament to the difficulty of the task that it is not
yet truly resolved.

One of the major results of this thesis is a model of a bright resolved source near
a famous extragalactic field: properly modeling this source not only allows the use of
international LOFAR stations, but also grants deeper access to the extragalactic field
itself, which is otherwise polluted by the 3C source’s sidelobes. This result was only
achieved thanks to the other major result of this thesis: the development of a theoretical
framework with which to better understand the effect of calibration errors on images
made from interferometric data, and an algorithm to strongly mitigate them.

The structure of this manuscript is as follows: we begin with an introduction to radio
interferometry, LOFAR, and the emission mechanisms which dominate for our field of
interest. These introductions are primarily intended to give a brief overview of the
technical aspects of the data reduced in this thesis. We follow with an overview of the
Measurement Equation formalism, which underpins our theoretical work. This is the
keystone of this thesis.

We then show the theoretical work that was developed as part of the research work
done during the doctorate - which was published in Astronomy & Astrophysics. Its
practical application - a quality-based weighting scheme - is used throughout our data
reduction. This data reduction is the next topic of this thesis: we contextualise the
scientific interest of the data we reduce, and explain both the methods and the results
we achieve.
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1.1 Astrophysical Interest

Radio astronomy is a young but extremely dynamic field with a large range of science
cases. From the study of the epoch of reionisation, which involves looking for polarised,
redshifted 21cm line emission to study the emergence of the first luminous sources1,
to that of variable radio sources such as pulsars and (theoretically) exoplanets, going
through the study of ultra-high-energy cosmic rays, solar science, space weather science,
the study of cosmic magnetism, and the creation of deep extragalactic surveys, radio-
astronomy opens up an extremely fertile window into our Universe.

In Fig. 1.1, for example, much structure is immediately visible: supernova remnants
in the galactic plane (the “bubbles”), gas following galactic magnetic field lines (the
filamentary structure), and emission from diffuse gas structure around the core of the
Milky Way. Other sources are also visible, however: some unresolved sources, and very

1See https://www.haystack.mit.edu/ast/science/epoch/ for more information - the ultimate goal
of this topic is to learn more about the process of structure formation in the universe: what exactly are
the evolutionary links between the very smooth matter distribution revealed by CMB studies and the
highly structured universe of galaxies and clusters thereof which we know today?

5
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6 CHAPTER 1. THESIS OVERVIEW: ASTROPHYSICS & TECHNIQUES

many AGN sources. This is one particularly striking example of what radio telescopes
allow us to see of astrophysical sources, but is only one among many.

Figure 1.1. MeerKAT image of the galactic centre, made by SARAO. This is a
low-resolution version of the true image.

The work presented here falls under the auspices of the deep extragalactic surveys
science project. The underlying scientific motivation behind this Key Science Project or
KSP is the study of, among other things, radio-active galactic nuclei, or radio AGNs. A
radio AGN is a type of radio galaxy whose emission is dominated by its nucleus. This
nucleus emission is non-thermal, and assumed to be emitted from both collimated jets
springing from the accretion of matter onto a galaxy’s supermassive black hole and from
a hot accretion disk surrounding said black hole. AGNs are then commonly split into
different types, based on spectral line behaviour (as in Seyfert 1943) or morphological
characteristics (as in Fanaroff & Riley 1974).

So-called unified AGN models, which aim to explain the underlying physical object
which is assumed to lie behind all observed examples of AGN, were developed to explain
the diversity in observed AGN types (e.g. Antonucci & Miller 1985; Tasse et al. 2008;
Netzer 2015; Morabito et al. 2017). These models would include a central engine, usually
a supermassive black hole with hot accretion (innermost accretion regions estimated to
be around 107K by Pringle & Rees 1972), emitting thermally; an optically thick disk
torus, typically of size 10 to 100pc, blocking light emitted from the central engine along
the equatorial plane, and the cavity inside which would be the region from which broad
emission lines would emit; and finally, ionisation cones in the direction of the poles,
where the emission from the central engine would collimate into large-scale jets (which
would also, at the scale of a few tens of parsecs, create the region of narrow spectral line
emission).

http://adsabs.harvard.edu/abs/1943ApJ....97...28S
http://adsabs.harvard.edu/abs/1974MNRAS.167P..31F
http://adsabs.harvard.edu/abs/1985ApJ...297..621A,2008A&A...490..893T,2015ARA&A..53..365N,2017MNRAS.469.1883M
http://adsabs.harvard.edu/abs/1985ApJ...297..621A,2008A&A...490..893T,2015ARA&A..53..365N,2017MNRAS.469.1883M
http://adsabs.harvard.edu/abs/1972A&A....21....1P
http://adsabs.harvard.edu/abs/1972A&A....21....1P
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The interaction between AGN jets and the surrounding intergalactic medium can
result in structure such as that shown in Fig. 1.2 below: the bright nucleus of a radio
galaxy in the centre of two extremely radio-bright jets, with lots of diffuse emission from
their lobes. These lobes show where the accretion-accelerated particles begin to slow
down - and therefore emit - due to contact with the intergalactic medium. Hence, their
sometimes peculiar shape: this medium can be complex and inhomogeneous (if the radio
galaxies lie in a cluster, for example) which can lead to the sort of jet structure shown
in this image.

Figure 1.2. Radio optical montage of 3C31, by Alan Bridle:
https: // www. cv. nrao. edu/ ~ abridle/ 3c31xopt. htm .

Of course, not all galaxies have active nuclei, and those which do also have other forms
of radio emission: for example, free-free radiation from the interstellar medium, ionised
by light from newborn stars, will often contribute to radio-galactic flux. Some galaxies
with active nuclei do not have strong jet emission: these are called radio-quiet AGNs.
We can thus identify two components to a radio AGN: the host galaxy and its jets.
Peak star formation is thought to have occurred around z ∼ 2, and so the study of AGN
activity around this period is of strong scientific interest. Could the jets from active
AGNs have contributed to the decline in star formation? Are there large populations of
older AGNs, and if so, how old? These are the astrophysical questions which motivate
the study of AGN sources (Best 2007; Xu et al. 2018; Ueda et al. 2018), which is the
driving scientific concern which motivates the present doctorate.

https://www.cv.nrao.edu/~abridle/3c31xopt.htm
http://adsabs.harvard.edu/abs/2007NewAR..51..168B,2018arXiv180501544X,2018ApJ...853...24U
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1.2 The Low-ν Sky: Emission Mechanisms

This section aims to bring a brief introduction to the emission mechanisms which
dominate at low frequencies, and thus determine the physics accessible to extragalactic
astronomers working in this band. Specifically, it will briefly describe free-free radiation
(which is emitted from ionised plasma outflows, and thus a tracer of various physical
objects e.g. young stellar objects - cf. Coughlan et al. (2017) and references therein -
and starburst regions - cf. Varenius et al. (2015)) and synchrotron radiation, which is
a tracer of more violent and energetic processes (and thus associated with supernova
remnants, AGN, or radio halos - cf. Cassano et al. (2010)).

Of course, each individual galaxy will have differing contributions from different mech-
anisms - in practice, when studying galactic populations, the overall flux at a given
frequency will simply be summed up for each galaxy and become one point in a Spec-
tral Energy Distribution, or SED. However, when studying individual objects, it can be
critical to understand which emission mechanism dominates at what frequencies. For
example, the radio and far-infrared spectrum for nearby M82 are shown in Fig. 1.32:
https://www.cv.nrao.edu/course/astr534/FreeFreeEmission.html.

Figure 1.3. Radio and far-infrared spectrum for galaxy M82, as estimated by the NRAO
online course (https: // www. cv. nrao. edu/ course/ astr534/ FreeFreeEmission. html ).
The flat curve corresponds to free-free emission, while synchrotron radiation (negative slope)
and thermal dust emission (postive slope) dominate at low and high frequencies respectively.

2Figure and work taken from the NRAO website. For further information, see here

https://www.cv.nrao.edu/course/astr534/FreeFreeEmission.html
https://www.cv.nrao.edu/course/astr534/FreeFreeEmission.html
https://www.cv.nrao.edu/course/astr534/FreeFreeEmission.html
https://www.cv.nrao.edu/course/astr534/FreeFreeEmission.html
https://www.cv.nrao.edu/course/astr534/FreeFreeEmission.html
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1.2.1 Synchrotron Radiation

Synchrotron radiation is the dominant mode of emission for extragalactic sources at
low wavelengths. As such, it will be covered in greater detail than the other mechanisms
above, which are important in other bands (and therefore relevant for multi-spectral
analysis) but much less relevant to LOFAR observations. This section draws heavily
from Garret Cotter’s high-energy astrophysics lectures3, as well as Alan Loh’s doctoral
thesis (Loh 2016) and the NRAO online course4.

Synchrotron radiation (or “magnetobremsstrahlung”) occurs when the trajectory of a
relativistic charged particle is guided by a magnetic field. As the German name suggests,
it is the magnetic equivalent of free-free radiation. It is the tracer of very energetic
processes, such as the interaction between AGN jets and the intergalactic medium. In
the low-energy regime, it is also known as cyclotron radiation, after the device in which
it was first measured in a laboratory.

The synchrotron power spectrum of a population of electrons with exactly the same
energy is a function of its Lorentz factor and its emission angle5 (Longair 1994). The
typical radiation spectrum for a single electron is shown in Fig. 1.4 as a function of the
critical frequency, which is itself a function of the emission angle θ, the Lorentz factor

γ and the magnetic field strength B: νc = 3/2 γ2eB
2πmec

sin(θ). e and me are the electron
charge and mass, respectively.

Of course, in reality, we know that electron populations in astrophysical sources do
not all share exactly the same energy when emitting. The effect of the electron energy
distribution must therefore be taken into account. Because the population in question
is energised through non-thermal processes, its energy distribution is not Maxwellian,
and is generally written as a power law: S(E) ∝ Eα → Sν ∝ ν−α, where α is the
object’s spectral index. Note that the index of the energy distribution (which relates
the number of electrons at a given energy) is different from the synchrotron index, with
the two related by the following equation: α = −(γ − 1)/2. The question now becomes:
what α is appropriate for what kind of object? Does every source have the same α

at all frequencies? Do all synchrotron sources have the same spectral index at a given
frequency, and if not, what does this tell us?

To answer these questions, we must recall that so far, we have assumed that every
photon emitted through synchrotron radiation reaches us. This is not necessarily the
case in practice: it is possible for a given photon to be scattered (i.e. absorbed &
re-emitted) by surrounding high-energy electrons. The likelihood of this occurring at a
given frequency is a function of the absorption cross-section, and is a complex quantity to
calculate (see Longair (1994) pp258-260). Suffice to say that at longer wavelengths (lower
frequencies) absorption is more effective, and at shorter wavelengths (higher frequencies)

3http://www-astro.physics.ox.ac.uk/~garret/teaching/
4https://www.cv.nrao.edu/course/astr534/SelfAbsorption.html
5The emission angle is the angle between the electron’s total velocity (including z-axis) and its radial

velocity.

http://www-astro.physics.ox.ac.uk/~garret/teaching/
http://theses.md.univ-paris-diderot.fr/LOH_Alan_2_va_20160930.pdf
http://theses.md.univ-paris-diderot.fr/LOH_Alan_2_va_20160930.pdf
http://adsabs.harvard.edu/abs/alan
https://www.cv.nrao.edu/course/astr534/SelfAbsorption.html
http://adsabs.harvard.edu/abs/1994hea2.book.....L
http://adsabs.harvard.edu/abs/1994hea2.book.....L
http://www-astro.physics.ox.ac.uk/~garret/teaching/
https://www.cv.nrao.edu/course/astr534/SelfAbsorption.html


https://www.cv.nrao.edu/~sransom/web/Ch5.html
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http://adsabs.harvard.edu/abs/2007A&A...471.1105T
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As we can see, this spectrum falls off sharply with decreasing frequency. As such,
while it is expected to dominate over thermal emission in the absence of synchrotron
radiation, it is synchrotron emission that is expected to dominate overall - if present - at
the low frequencies of our observations, which are done with LOFAR. Free-free emission
acts as a tracer for star formation and other ”gentler” physical processes detected at low
radio frequencies.
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1.3 LOFAR: The LOw-Frequency Array

Our observations have all been made with the LOw Frequency Array LOFAR (van
Haarlem et al. 2013). In this section, we describe its technical properties and its current
state of the art. In particular, the distinction between “Dutch” LOFAR and “interna-
tional” LOFAR - and the technical problems associated with each - will be made explicit
in this section.

LOFAR is a SKA pathfinder instrument, which means that it serves not only as a
cutting-edge instrument in its own right, but does so with the explicit aim of serving as
testing grounds for technologies & techniques which could be usefully implemented in the
SKA. It is in this context, for example, that trailblazers such as NenuFAR (Zarka et al.
2012), a low-frequency extension of LOFAR, are tested. LOFAR is an interferometric
array, with each of its elements made up of antennas combined into a phased array,
themselves forming an interferometer. It thus consists of antennas which are combined to
form stations, which are themselves distributed throughout the Netherlands and Europe.

There are two bands to LOFAR, which are known as LOFAR-HBA (High-Band An-
tennas) and LOFAR LBA (Low-Band Antennas). Figs. 1.7a and 1.8 show the layout of
the 6 innermost core stations and the French international LOFAR station, respectively.

We see the presence, in both cases, of two very different antenna types. One of
these antenna types is not a single antenna, but rather a phased array: 16 antenna
dipoles distributed in a 4 × 4 array. International LOFAR stations include 96 such tiles,
distributed in a “filled-disk” pattern, where the disk fill ratio is determined by the size
of the tile. Dutch “remote” stations have 48 such tiles spread into 2 disks (HBA INNER
and HBA OUTER), while “core” station HBA tiles are split into two 24-tile crosses.
This pattern is shown in Fig. 1.9a. The antennas from each tile are combined into a
phased array with a single “tile beam”, and all tile beams are themselves combined as a
phased array into a station beam6.

LBA antennas, use a very simple - and cost-effective - design. A typical LBA antenna
is shown in Fig. 1.10. 96 such antennas are spread in a semi-random pattern in each
LOFAR station7. In Dutch stations, 48 of these are used at all times. They are combined
as a single phased array.

LOFAR-HBA is sensitive to higher frequencies, from 120 MHz to 240 MHz8. It has a
smaller field of view than LOFAR-LBA, but a better angular resolution.

6Reference: ASTRON technical description: https://www.astron.nl/radio-observatory/

astronomers/technical-information/antennae/antennae-description
7Reference: LOFAR.org website: http://www.lofar.org/about-lofar/system/lofar-numbers/

lofar-numbers
8Reference: LOFAR.org website: http://www.lofar.org/about-lofar/system/lofar-numbers/

lofar-numbers

http://adsabs.harvard.edu/abs/2013A&A...556A...2V
http://adsabs.harvard.edu/abs/2013A&A...556A...2V
http://adsabs.harvard.edu/abs/2012sf2a.conf..687Z
http://adsabs.harvard.edu/abs/2012sf2a.conf..687Z
https://www.astron.nl/radio-observatory/astronomers/technical-information/antennae/antennae-description
https://www.astron.nl/radio-observatory/astronomers/technical-information/antennae/antennae-description
https://www.astron.nl/radio-observatory/astronomers/technical-information/antennae/antennae-description
http://www.lofar.org/about-lofar/system/lofar-numbers/lofar-numbers
http://www.lofar.org/about-lofar/system/lofar-numbers/lofar-numbers
http://www.lofar.org/about-lofar/system/lofar-numbers/lofar-numbers
http://www.lofar.org/about-lofar/system/lofar-numbers/lofar-numbers
http://www.lofar.org/about-lofar/system/lofar-numbers/lofar-numbers
http://www.lofar.org/about-lofar/system/lofar-numbers/lofar-numbers


14 CHAPTER 1. THESIS OVERVIEW: ASTROPHYSICS & TECHNIQUES

(a) LOFAR core, known as the Superterp.

(b) Distribution of the so-called LOFAR
”core” stations, which include the
Superterp.

(c) LOFAR with both ”core” and
”remote” stations.

(d) International LOFAR. Newer stations
(one in Ireland, three in Poland) are not
shown here.

Figure 1.7. Geographic location and distribution of LOFAR stations, explicitly showing what
is meant by Superterp, core, remote and international stations. All images from the official
ASTRON website: https: // www. astron. nl/ radio-observatory/ astronomers/ users/
technical-information/ lofar-array-configuration/ lofar-array-conf

Figure 1.8. Layout of FR606, the French LOFAR station at Nancay. At bottom left are the
HBA tiles, bottom right the LBA dipoles, and at the top are some of the NenuFAR tiles.

The dipole design frees observers from the need to physically point antennas at all: the
final station pointing is achieved by digitally introducing delays in the recorded phase

https://www.astron.nl/radio-observatory/astronomers/users/technical-information/lofar-array-configuration/lofar-array-conf
https://www.astron.nl/radio-observatory/astronomers/users/technical-information/lofar-array-configuration/lofar-array-conf
https://www.astron.nl/radio-observatory/astronomers/users/technical-information/lofar-array-configuration/lofar-array-conf
https://www.astron.nl/radio-observatory/astronomers/users/technical-information/lofar-array-configuration/lofar-array-conf
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(a) Layout of a single HBA tile. Source:
Sarod Yatawatta researchgate profile

(b) Picture of an HBA tile. Source:
Figure 1 of Noorishad et al. (2012)

Figure 1.9. HBA tile layout and image. Note that both cases show a 24-tile HBA array: each
core station includes two such arrays. International stations include a single larger tile array.

Figure 1.10. Picture of a single LBA antenna. Source: LOFAR technology website.

before averaging the data. In this sense, the pointing is achieved in a similar way as
individual HBA tile pointing, albeit . The LBA antennas are receptive to signals emitted
in the 30-80 MHz frequency range.

At the time of writing, use of the LBA data is still relatively new, as its calibration is
a very tricky problem. For similar reasons, international LOFAR (i.e. the full LOFAR
array) has not been used, at the time of writing, to create wide-field survey images. A
large part of the work described in this manuscript consists of reaching a point where
full use can be made of international LOFAR, in a streamlined and repeatable way.

https://www.researchgate.net/profile/Sarod_Yatawatta/publication/281316394/figure/fig1/AS:614002589720576@1523401033149/Schematic-diagram-of-a-24-tile-LOFAR-HBA-station-A-tile-is-made-of-16-dual-polarization.png
http://adsabs.harvard.edu/abs/2012A&A...545A.108N
https://i2.wp.com/lofar.ie/wp-content/uploads/2017/04/lba.png?resize=1500%2C1000
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1.4 This Thesis

The work done in this thesis can be summarised as the development of a new algorithm
for mitigating calibration artefacts in radio-interferometric images, and its application to
a peculiar famous extragalactic field. Because our data volumes put radio interferometry
in the domain of “Big Data” (there are ∼245TB of LOFAR data centred on the Extended
Groth Strip, for example), there is a very real need for fast, reliable methods with
which to improve interferometric images. This algorithm follows from an improved
understanding of the noise properties of interferometric images, and can be understood
as a way to better constrain the flux distribution in images by minimising the presence
of artefacts. This, in turn, helps self-calibration convergence by improving the image
resulting from each imaging step of the self-calibration process.

We then outline the application of this work, along with other modern tools, to the
creation of a large, deep and high-resolution image of a rich patch of sky. While this
approach is potentially extremely rewarding in terms of the science one can do with its
resulting maps, it is also uniquely complicated. There exist many LOFAR HBA (∼120-
240 MHz) sky surveys (cf. Williams et al. 2016; Shimwell et al. 2017), but they do not
yet make use of international LOFAR, and are thus limited in resolution (∼ 5′′). And
while there are surveys made at LOFAR frequencies (∼150MHz) with other instruments
(e.g. Intema et al. 2017), they do not match the resolution attainable with international
LOFAR. The aim of our image is then to show that the international LOFAR stations
can be used to create a radio image that matches HST/ACS resolution - which would
allow for significant cross-matching and source analysis, since there is HST data available
for the field being imaged, the Extended Groth Strip (EGS). This would not be a true
survey, but more of a proof of concept: the application of new tools and the development
of an appropriate strategy to image a large patch of the sky with the full LOFAR array.
This image would have better resolution than FIRST (see Helfand et al. 2015, and
references therein), which has a 4′′ resolution, relatively low sensitivity, and no short
baselines (thereby missing diffuse emission and extended structure) at ∼1.4 GHz, while
still being sensitive to diffuse emission due to the use of the LOFAR core stations.

Making this image is possible only because LOFAR observations of the Extended
Groth Strip includes an extremely bright source, 3C295, in their field of view. This
is both a blessing and a curse: unless this source is properly modeled and subtracted,
it will pollute images of the EGS. However, because it is so bright, it can serve as a
good calibrator source for the LOFAR international stations - if a good enough model
of 3C295 can be made and used to calibrate these stations, then high-resolution images
of the EGS becomes attainable. This would give access to a large population of radio
AGNs at high resolution, observed at a large range of frequencies, and many of which
lie at redshifts near the peak of star formation; this improvement of our low-frequency
understanding of these objects could, in turn, lead to an improved understanding of
these objects more generally.

To really be able to perform wide-field images using the full LOFAR array, we cannot
rely on the happy circumstances we find ourselves in for our applications project: a
much more thorough and reliable approach is necessary. The work of the LOFAR long-

http://adsabs.harvard.edu/abs/2016MNRAS.460.2385W,2017A&A...598A.104S
http://adsabs.harvard.edu/abs/2017A&A...598A..78I
http://adsabs.harvard.edu/abs/2015ApJ...801...26H
http://adsabs.harvard.edu/abs/2015ApJ...801...26H
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baseline team (e.g. Jackson et al. 2016) shows that kind of approach: in our project,
we test specific strategies and approaches which are complimentary to their work, but
cannot be applied more generally without their results.

1.4.1 Algorithmic Developments

A significant portion of the work done as part of this thesis was on investigating the
relationship between calibration gain errors and calibration artefacts in the image-plane.
What started as an attempt to properly write a weighting scheme to down-weigh poorly-
calibrated visibilities9 eventually became a formal relationship between these quantities,
showing both the behaviour of image-plane variance as a function of direction but also
of pixel covariance over the full image. This work is shown in much greater detail in
Chapter 3.

The key finding of our algorithmic work is a fundamental relationship between the co-
variance matrices of residual visibilities and the covariance of pixels in the image-plane:
the “Cov-Cov relationship” between visibility covariance and image-plane covariance.
The pixel variance and covariance in the image-plane are determined by a “noise-PSF”,
convolved with every pixel in the sky. This also means that thermal noise in interfero-
metric images is correlated between pixels, and that this correlation is given exactly by
the PSF: in the limit of an empty, non-deconvolved sky, we therefore properly model the
thermal noise properties of its interferometric images. This noise-PSF is the product of
the Fourier transforms of the calibration gain covariance matrix with each cell mapped
not from uv space to lm coordinates10 but rather between their respective covariance
spaces - from a new differential Fourier plane (henceforth “(δuδv)”-plane) to the image-
plane covariance space δlδm. This image-plane covariance space describes the variance
in each pixel and the covariance between pixels11. It describes the expected calibration
artefacts and noise level around each source, does not vary as a function of direction,
and is convolved with each source in the field to yield the final error map. Because all
unwanted (in our case, unphysical) signal can be thought of as noise, we will refer to the
pixel variance map as the “noise-map”.

Based on this theoretical finding, we develop a weighting scheme algorithm with which
to improve the noise properties of interferometric images by down-weighting either visi-
bilities with high variance in their calibration residuals, or visibilities which are strongly
correlated to others in their calibration residuals. We implement a robust version of
the first weighting scheme, which relies on an antenna-based estimate of the visibility
variance.

9i.e. to justify weighting visibilities by a function inversely proportional to the variance of the asso-
ciated residual visibilities.

10uv space is where interferometric measurement coordinates lie, and lm coordinates are the cardinal
sines on which the inverse Fourier transform of the visibilities are mapped.

11The noise-PSF also relates δw to δn, as shown in our matrix formalism, but we do not explicitly
reference this in the text for the sake of brevity, as visibility space is usually referred to as “the UV-plane”
in literature, rather than “the UVW-space”. For more information, see Chapter 3

http://adsabs.harvard.edu/abs/2016A&A...595A..86J
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1.4.2 Imaging the Full Primary Beam

In this section, we briefly describe previous observations of the Extended Groth Strip
(EGS), an extragalactic field with a rich multi-wavelength coverage described in Table
1.1. It has been long observed as part of the All-Wavelength Extended Groth Strip
International Survey collaboration (AEGIS, Davis et al. (2007)), which later became
part of the CANDELS collaboration (Grogin et al. (2011)). The field is centred at
α = 14h17m, δ = +52o30′, placing it between the tail of Ursa Major and Draco. Its size
is 0.7′ × 0.1′. It has notably been the subject of very deep Hubble Space Telescope
observations, which the international LOFAR could attempt to match.

Telescope Band Resolution Area

Chandra X-ray 0.5′′ − 6.0′′ 17′ × 120′
GALEX UV 5.5′′ 1.25o diameter
HST/ACS Optical 0.1′′ 10′ × 67′

HST/NICMOS Optical 0.35′′ 0.0128 deg2

Megacam Optical 1.0′′ 1 deg2

IRAC IR 2.0′′ 10′ × 120′
Spitzer IR 5.9′′ − 19′′ 10′ × 90′
VLA Radio 1.2′′ − 4.2′′ 30′ × 80′

Table 1.1. Table recapitulating the multi-wavelength coverage of the Extended Groth Strip,
with observations performed as part of the AEGIS (later, CANDELS) collaborations.

Our data consist of an observation centred on the EGS. The LOFAR beam (i.e. how
much of the sky LOFAR is sensitive to at a given time) is much larger than the EGS.
As such, our measured visibilities includes contributions not just of sources in the EGS,
but also from those all around it - including a very bright 3C12 source, which will be
discussed at length below. Due to technical limitations (i.e. available memory), it is
not feasible to image the full LOFAR primary beam at once at international LOFAR’s
0.1′′ resolution. As such, we begin by imaging at a lower resolution, and thus do not use
the international stations at first. This allows us to create a low-resolution model of all
the sources in the primary beam before proceeding to international station calibration,
giving us a sanity check for core and remote station gains. It also allows us to subtract
out-of-field sources when imaging the EGS at high resolution.

Initial direction-independent calibration is done using Prefactor, the same pipeline as
for the Lofar Two-metre Sky Survey, followed by direction-dependent calibration with
the killMS-DDF facet-based pipeline (LOTSS, Shimwell et al. 2017).

This work, and its results, are shown in Chapter 4. Note that the AEGIS observations
summarised in Table 1.1 do not cover the full LOFAR primary beam. The sources
observed at low resolution are therefore matched with Sloan Digital Sky Survey (SDSS,
York et al. (2000)) images. Overlays are shown to highlight the wealth of interesting
sources, and their optical counterparts, which can be picked up as a byproduct of high-
resolution maps of the radio sky. We select 12 particularly interesting sources and show

12Third Cambridge Catalogue of Radio Sources, a 1959 survey of of the Northern radio sky

http://adsabs.harvard.edu/abs/2007ApJ...660L...1D
http://adsabs.harvard.edu/abs/2011ApJS..197...35G
http://adsabs.harvard.edu/abs/2017A&A...598A.104S
http://adsabs.harvard.edu/abs/2000AJ....120.1579Y
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the results of source matching for these candidates. Overlays of the same SDSS images
with NVSS (NRAO VLA Sky Survey, Condon et al. (1998)) postage stamps are also
shown for comparison. Many of the chosen sources do not lie within the Extended
Groth Strip, and are therefore only imaged at low resolution, but high-resolution follow-
up images and observations could be made should the need arise.

1.4.3 3C295 and the Extended Groth Strip

The brightest source in the primary beam of our observation is 3C295. It is one of the
brighter sources in the Northern radio sky. It lies less than a degree away from the centre
of the Extended Groth Strip, which has two important consequences: first, that it can
potentially be used as a calibrator source for LOFAR; second, that unless well-modeled
and subtracted at the observing instrument’s maximum resolution, its sidelobes will
pollute the EGS such that very little scientifically useful information might be recovered
from a given observation. If we wish to image the EGS with international LOFAR, we
therefore cannot rely on a low-resolution model: small errors in the exact location of
3C295’s flux could corrupt most of the very long-baseline visibilities, thus making them
useless. A high-resolution model of 3C295 is necessary for us to proceed.

The first step towards acquiring a deep, high-resolution image of the Extended Groth
Strip is therefore to create a good, high-resolution model of 3C295 at LOFAR frequencies
and for long baselines. Creating this model is one of the key results of this thesis. Start-
ing from a high-resolution VLA model of 3C295, subbands selected across the LOFAR
bandwidth are self-calibrated in iteratively greater numbers until a given noise thresh-
old is reached. The flux scale is then boot-strapped based on the results of Scaife &
Heald (2012). This ensures that 3C295 will be adequately subtracted from all corrected
visibilities - including international baselines - and thus that images made using these
visibilities will not be polluted by sidelobes from 3C295. The work done towards this
goal is shown in Chapter 5.

Before launching the EGS imaging run using all calibrated datasets, we measure the
impact of direction-dependent effects on known sources in the field. Two direction-
dependent effects are expected to dominate: decorrelation and differential gains. The
first is modeled by the algorithms used in this thesis, whereas the second is a function of
the gain variability as a function of distance from the calibrator. Eight calibrator sources,
lying at various distances and directions from the calibrator source, are examined. They
are summarised in Table 5.2, which is reproduced below: note that number 6 is actually
3C295. Their distribution in the sky is shown in Fig. 1.11.

If directional gains are measured to have little or no impact, then direction-dependent
calibration of the international stations will not be required. This is the ideal scenario,
as it does not require the use of fringe fitting (Pearson & Readhead 1984). If they
are measured to have a significant impact, then direction-dependent calibration will
be required for international LOFAR. We expect the angular scale of differential gain
evolution to be of the order of a degree, and so most of the EGS should be relatively
unaffected.

http://adsabs.harvard.edu/abs/1998AJ....115.1693C
http://adsabs.harvard.edu/abs/1984ARA&A..22...97P
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In this section, we contextualise the work done as part of this PhD by discussing the
difficulties introduced by the combination of sparse uv-coverage and weak a priori con-
straints on the sky brightness distribution. The conceptual framework which we rely on
throughout this manuscript, the Radio Interferometer’s Measurement Equation, is de-
scribed in greater detail in Section 2.7. We will begin by discussing radio interferometry
itself. We will then discuss the so-called imaging problem, and end by discussing the
calibration problem. Note that both of these are artifical subsets of the general inverse
problem of radio interferometry. While in practice calibration is done before imaging, it
is conceptually helpful to begin with imaging. Until we reach our introduction to radio
interferometric calibration, we will therefore assume that calibration has been success-
fully carried out, and that we are working on the corrected visibilities, i.e. gain-corrected
visibilities.

We start by linking interferometry to more concrete concepts: specifically, we will give
a (very!) brief introduction to radio antennas and their characteristics. We will then use
this introduction to show the advantages and drawbacks of radio interferometry, along
with the concrete technical problems that the method introduces.
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2.1 A Brief Introduction to Radio Astronomy

Radio astronomy consists of observing the electromagnetic emission of astrophysical1

sources at very long wavelengths by means of radio antennas. These antennas measure
a voltage proportional to variations in the electromagnetic field in all the directions they
are sensitive to. Since astrophysical signals are weak, a good sensitivity is necessary.
Achieving good sensitivity with radio antennas means having a very large collecting
area - in this respect, they behave exactly the same way as optical telescopes. Similarly,
when well-designed, they are diffraction-limited - this means that, once again like optical
telescopes, their resolution is limited by their diameter.

However, because radio frequencies are so much lower, achieving a resolution compa-
rable to e.g. the HST requires extremely large dishes. While there exist telescopes, both
old and new, which work on this principle (from Arecibo Observatory, shown in Fig. 2.1a,
to the upcoming FAST telescope in China, shown in Fig. 2.1b), the associated techni-
cal difficulties (pointing is complex business, as are the associated optics requirements;
maintenance costs are high, etc...) have made the single-dish approach prohibitive.

(a) Arecibo telescope, in Puerto Rico.
(b) FAST telescope, in China

Figure 2.1. Examples of large single-dish radio telescopes.

One way to move past this technical limitation is to resort to interferometry: this is
the topic of this section.

2.2 Interferometry: Bypassing the Diffraction Limit

There are two quantities of interest to all astronomers: sensitivity and angular res-
olution2. An instrument’s sensitivity is a function of its collecting area3. Resolution,
for well-designed instruments4, is limited by diffraction in the absence of atmospheric
effects. This introduces specific issues in the radio domain. Radio waves have very long

1And, famously, attempting to observe “intelligent” sources (cf Enriquez et al. 2017)
2Other kinds of resolution - in time and frequency, for example - are also extremely important to

many astronomers, but are not what concern us here.
3It is also a function of technological factors, of course, but ceteris paribus, a more sensitive telescope

means a telescope with a wider collecting area
4By this, we mean that we assume that an instrument is also designed to optimise resolution.

http://adsabs.harvard.edu/abs/2017AAS...22911604E
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in the sky, one must introduce a phase delay in each antenna (or, for fundamental
interferometer elements such as the LOFAR tiles or NenuFAR, by playing with the cable
length between each dish and the correlator). This is done by three means: delay tracking
(which is exact only for the delay tracking centre6, and corresponds to playing with
the cable length between antennas in the interferometric array), antenna pointing7, and
fringe stopping8. This means that there are actually three different “field centres”, which
are usually (but not always) set to be the same: the pointing (direction of maximum
antenna sensitivity), the delay (which can be introduced in cable length) and the phase
tracking (which consists of applying a known signal to the measured signal and recording
the resulting heterodyne wave so as to keep a reasonable amount of post-correlation data
without losing information on sources outside of the phase delay centre). The position
of sources are then given in terms of the cardinal9 angle σ: this is the difference between
the position of a source and the phase centre, which is where the array is pointing. For
example, in Fig. 2.4, if we point antennas and introduce phase delays such that we are
pointing the array towards Source 2, the position of Source 1 will be σ.

2.2.3 The uv-plane

For the sake of brevity, radio astronomers tend to talk of a uv-plane rather than
uvw-space to describe visibility space. The set of uvw-values for all the baselines of
an interferometric array is known as its uv-coverage, and defines the array’s properties
entirely. For the VLA, for example, the instantaneous uv-coverage when observing the
zenith will be as shown in Fig. 2.5.

Individual antennas of an array can be pointed mechanically, and so the loss of antenna
sensitivity in the direction of interest (and therefore the loss of net interferometric array
sensitivity) can be minimised. But what happens to the array itself? It is useful here
to go back to the illustration of Fig. 2.2b. Think of each dish in the array representing
a “filled” segment of a massive but empty dish. By pointing our observation in a given
direction, this dish is transformed - the absolute positions of the “filled” segments remain
constant, and so their relative position after transformation is changed. Our “sparse
dish” goes from circular to elliptical. This is shown in Fig. 2.6.

2.2.4 The Point-Spread Function

We have seen that the purpose of an interferometric array is to overcome the diffrac-
tion limit of single-dish antennas. We have described visibilities, which are the quantities
measured by an interferometric array. What remains is to describe how these measure-
ments are related to the sky brightness distribution.

6Source: http://www.astron.nl/eris2013/Documents/2_laing_fundamentals_interferometry.

pdf, https://science.nrao.edu/science/meetings/2016/15th-synthesis-imaging-workshop/

SISS15Advanced.pdf
7This maximises antenna sensitivity in a given direction, but is not done with LOFAR
8Fringe stopping consists of down-converting the signal received by antennas by mixing with a local

oscillator. The geometric delay compensation is usually applied on this down-converted signal. Source:
http://www.gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node74.html

9So-called because, in the case where these angles are small, they correspond to positions along the
cardinal directions.

http://www.astron.nl/eris2013/Documents/2_laing_fundamentals_interferometry.pdf
http://www.astron.nl/eris2013/Documents/2_laing_fundamentals_interferometry.pdf
https://science.nrao.edu/science/meetings/2016/15th-synthesis-imaging-workshop/SISS15Advanced.pdf
https://science.nrao.edu/science/meetings/2016/15th-synthesis-imaging-workshop/SISS15Advanced.pdf
http://www.gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node74.html
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2.2.5 From Dirty to Clean: Deconvolving the PSF

Raw images made from radio interferometric data consist of the underlying flux dis-
tribution convolved to the array’s PSF. The quantity of interest to astronomers is the
underlying flux distribution. To recover that information from images, deconvolution is
needed.

In practice, performing a full deconvolution on large images (easily over 25 million
pixels in total) is not computationally viable. Scientists therefore resort to algorithms
and techniques to accelerate imaging and deconvolution. For example, the use of Direct
Fourier Transforms (DFT), which are extremely slow, is avoided when going from visi-
bility space to image space - Fast Fourier Transforms (FFTs) are preferred. Similarly,
one seeks to avoid having to perform full deconvolution on the dirty image, since many
pixels in the image do not actually contain astrophysical signal. In this chapter, we will
briefly cover the most common method of deconvolution used in radio astronomy.

We use dynamic range (DR) as a quality metric in radio images. DR is the ratio of
the flux of the brightest source in the field to the flux of the faintest source in the field
detectable above the noise. It is therefore a function of both source brightness and noise,
and so we define dynamic range as:

DR = Smax

max(Smin, σ) (2.10)

where Smax is the flux of the brightest source in the image, Smin the flux of the faintest
source detectable above the noise, and σ is the noise in the image. The higher the DR, the
deeper we image the sky, and thus the better the image. There are two big constraints
to reckon with: firstly, we do not want to deconvolve the PSF from all pixels in the
image, but only from those within which large amounts of underlying flux fall. Secondly,
if we only deconvolve some pixels rather than performing a full deconvolution, then care
must be taken not to treat artefacts in the field (which can be created from overlapping
PSF sidelobes from neighbouring sources, even with perfect calibration) as true flux.
Doing so would lead to an attempt to deconvolve a PSF from a pixel while assuming
an incorrect underlying flux value for this pixel and thus result in the introduction of
further artefacts in the image.

The dominant family of deconvolution algorithms used in radio astronomy at the
time of writing is CLEAN10 (see Högbom 1974; Pearson & Readhead 1984), which is
understood in compressed sensing theory as a matching-pursuit algorithm optimising L2
(i.e. a least-squares fit) with the addition of an L1 regularisation (i.e. the total flux in
the model is minimised). The various CLEAN algorithms seek out the brightest pixel(s)
in the image, potentially applying a mask to the image first in cases where some a priori
knowledge on flux distribution is available. It then deconvolves those pixels up to a
predefined threshold (either a fraction of the initial pixel value or some factor of the
estimated noise value). It does this some predefined number of times. Then, it collects
the aggregate model (the flux estimate for each deconvolved pixel up to this point),

10The other main family of deconvolution algorithms, Maximum Entropy Methods (MEM), are not
very widely-used at the time of writing, but remain an active area of research (cf. Chael et al. (2018)).

http://adsabs.harvard.edu/abs/1974A&AS...15..417H,1984ARA&A..22...97P
http://adsabs.harvard.edu/abs/2018ApJ...857...23C
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Because the imaging problem (i.e. the problem of deconvolution) is linear, it can
only be convex - though it is not necessarily well-conditioned. As for the calibration
problem, experience strongly indicates that it is nearly convex and ill-conditioned. For
calibration convexity, Cyril Tasse (pers. comm.) has found that the Hessian matrix
of the gain solutions is positive semidefinite, i.e. that all its eigenvalues are positive
and non-zero except for one. This behaviour likely explains why self-calibration is, in
the practical experience of radio-interferometric practicioners, neither well-conditioned
nor convex: if the problem is poorly regularised, then the same initial model may give
different end results, and to truly verify the convergence property of self-calibration
would require both a full Monte Carlo simulation and enough time to allow the very
slowly-converging procedures to finish converging. It is not a practical thing to test
rigorously.

Because the net calibration & imaging problem has so many degrees of freedom, it is
convenient to break it into two parts: calibration and imaging. By doing this, instead
of exploring a massive set of hyperparameters (e.g. relative flux distribution at a given
frequency, overall spectral index, the 8 values of a complex 2×2 matrix per antenna per
time and frequency interval, ...), a smaller subset of these hyperparameters is explored
while all else is kept constant. By ensuring that these subsets each give reasonable results
individually, it becomes possible to solve the full problem. This practice of imposing
specific priors to each subset of the problem is a form of regularisation: it can turn a
poorly-conditioned problem into a better-conditioned one, provided that the priors are
well-chosen.

In effect, this means going from exploring the sky-gains parameter space all at once
to exploring it along one “axis12” at a time. This is illustrated in Fig. 2.12.

In this context, a good deconvolution algorithm is one that is able to minimise how
much it is affected by calibration errors while maximising how much true underlying
flux it can recover into a model, while a good calibration algorithm is one that is able to
minimise how much it is affected by sky model errors while maximising how much true
underlying gain structure it can recover.

2.4 Weighting Schemes

We will finish our introduction to the inverse problem of interferometry by discussing
one method by which the conditioning of deconvolution can be improved. Consider two
extreme cases: a field containing a few point sources(Fig. 2.13a), and a field containing a
diffuse and turbulent source, with very complex flux distribution at all scales (Fig. 2.13b).
Deconvolving the PSF from the first image using CLEAN algorithms will be child’s play,
but doing the same with the second will be extremely complex. The first case is well-
conditioned, and the second to ill-conditioned.

The better the conditioning, the easier the deconvolution and the closer to the ground
truth its result. As such, when the true underlying structure of a source is poorly-known,

12which includes all the hyperparameters associated with that subset of the problem
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We close this section by noting that data flagging can be considered a form of weight-
ing scheme. This consists of assigning a null weight to those data points considered too
corrupted by various instrumental or atmospheric effects (typically, Radio Frequency In-
terference - RFI - cf. Offringa (cf. 2010) for an example) to be scientifically useful. Those
weights which are deemed too corrupted are assigned a weight of zero. This corresponds
to simply dropping those data points which would corrupt the image reconstruction by
introducing unphysically strong fringes in the image.

Flagging is also useful to remove corrected visibilities for which near-zero gains are
found: the associated corrected visibilities will consist of some number divided by a near-
zero number, for which numerical errors can introduce very large errors. “Clipping” these
visibilities after calibration helps improve the final images.

2.5 An Observer’s Perspective of Radio Interferometry

Astronomers who request observation time on interferometric arrays are generally not
experts in the theory and operation of these arrays. This is a simple consequence of
scientific division of labour. This thesis is written from the perspective of an “expert”
user: one who specialises in understanding interferometric arrays and reducing their
data, rather than their subsequent analysis. However, it can be very helpful to contex-
tualise this perspective in the experience of other scientists, which is what this section
aims to do. This is simply to highlight the conceptual structure of a radio interferometric
observation, and where the concepts outlined in this chapter fall in the overall pattern.
In other words, it is best understood as a guide to see where a given section’s topic slots
into the overall production of an image made from visibilities.

LOFAR data can be acquired through observation or via the Long-Term Archive.
The worst of this data will already be flagged. Users can thus generally proceed directly
to calibration. Because there is no guarantee of sufficient signal-to-noise in the “target
field” (the object that the astronomer is actually interested in), it is standard practice to
observe a calibrator source for 5 minutes before and after each observation. Such sources
typically need to be bright and unresolved for the interferometer being used. Because
they are bright and at phase centre for the 5-minute observation, the SNR when solving
for calibration solutions for these 5 minutes will tend to be quite good. These solutions
will then be interpolated between the 5 minutes onto the 8-hour observation. Calibration
will be described in Section 2.6.

So far, the astronomer will have worked entirely with visibilities. However, generally
speaking, the aim will be to get information on the object’s spatial brightness distribu-
tion at the observing frequency. This will require imaging : going from visibilities to the
image-plane. This can be done through a variety of tools, but will generally involve de-
convolution. All that was covered so far was imaging: specific examples of deconvolution
itself were given in Section 2.2.5.

After obtaining the initial image, it may be desirable to perform a few rounds of self-
calibration (cf. Brogan et al. 2018) on the target field. This consists of extracting a

http://adsabs.harvard.edu/abs/2010ascl.soft10017O
http://adsabs.harvard.edu/abs/2018arXiv180505266B
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model from the initial image and using it as a new calibration model, then re-imaging.
Doing this will usually dramatically improve the final image. This now requires an
understanding of interferometric calibration, which is the topic of the next chapter.
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2.6 Calibration Methods in Radio Interferometry

In this section, we will discuss the implementation of interferometric array calibration.
Our analysis is based on the RIME formalism, described in Section 2.7. One key metric
of calibration quality is the dynamic range, mentioned in Sec. 2.2.5. High dynamic
ranges mean that a high contrast has been obtained, and fainter sources can be reached.
Here, because the difference between thermal noise and artefacts becomes relevant, we
redefine dynamic range as follows

DR = Smax

max(Smin, σthermal, σartefacts) (2.11)

where Smax is the flux of the brightest source, Smin the flux of the faintest source
detectable above the noise, σthermal the thermal noise in the image, and σartefacts the
noise associated with calibration artefacts. This gives a definition for dynamic range
useful even in fields with a single source. We can thus use it as a metric for calibration
quality specifically.

The distinction between these two noise sources is crucial; one can never go ‘below
noise’ for a given observation, no matter the quality of calibration. Astronomers typically
observe for longer periods of time in order to reduce σthermal in their images, but this will
not reduce the artefacts caused by poor calibration solutions. Uncorrected Direction-
Dependent Effects13 will not go away on their own, no matter how long the integration
time. Similarly, there is a limit to how much improving calibration will improve the final
image: eventually, more data is required to drive noise down.

We can distinguish three ‘generations’ of calibration methods, of increasing complexity
(Noordam & Smirnov 2010). We will describe them in terms of the RIME, showing how
each generation increases in generality to account for more exotic effects. They are
referred to interchangeably as ‘nth-generation calibration’ or ‘nGC’ methods.

2.6.1 Generational Analysis

First-Generation: Open-Loop Calibration

First-generation calibration methods (1GC methods) consist of open-loop calibration.
This relies entirely on instrument stability, and thus imposes significant design con-
straints on radio telescopes. It consists of briefly observing an external calibrator before
and after each observation run to find calibration solutions for those calibrator observa-
tions, and then interpolate between them over the “target” observation. In RIME terms
(see Section 2.7), this consists of solving for a very basic form of Gp:

Gp = apI (2.12)

where ap is a complex constant solved for during open-loop calibration and I is the unit
matrix. By interpolating between the two calibrator observations, it is possible to have
a linear time-dependent gain estimate.

13See Section 2.10

http://adsabs.harvard.edu/abs/2010A&A...524A..61N
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While values for ap can in theory be found for both autocorrelation and both cross-
correlations (e.g. XY and YX for linear receptors), low signal-to-noise means that in
practice, a single set of values is solved for per antenna14. With these techniques, one
can achieve dynamic ranges of about 100:1 ((Noordam & Smirnov 2010)).

Second-Generation: Self-Calibration

Second-generation calibration methods (2GCmethods) are defined by self-calibration15,
commonly referred to as self-cal (Pearson & Readhead (1984)). As described in Sec-
tion 2.11.2, this method can only be deployed if the brightness matrix of the sky is the
same for all baselines16 (i.e. that we are not affected by direction-dependent effects).

The first instance of self-calibration (and adaptive optics in radio interferometry) is a
paper published in the era of 1GC by Jennison (Jennison 1958), expanding on his PhD
work, which was published in 1951). With sufficient signal-to-noise, he showed that
phase closure could be calculated and errors due to the atmosphere thus mitigated.

Self-calibration and adaptive optics are essentially the same thing: an attempt to
correct for phase errors in the signal measured by an instrument, which have been intro-
duced by the atmosphere (i.e. correct time-varying and direction-dependent processes).
This is shown in Fig. 2.15. Self-calibration and adaptive optics nevertheless meet differ-
ent constraints: most notably, because interferometric data is digital, radio astronomers
can perform their corrections after the observation.

If amplitude and phase gains can be written as antenna-dependent, then each antenna-
based error is estimated N times (once per each baseline which includes this antenna).
By estimating, and correcting for, these errors, one can use a simple source model to infer
an improved one. This is why the method is referred to as self-cal; by calibrating ‘on’
a good calibrator source (bright, compact and unresolved), one can drastically improve
one’s source model, along with one’s calibration solutions.

By extending this idea to VLBI (see e.g. (Rogers et al. 1974)), amplitude closure was
introduced to the field along with phase closure (as described in Rogers et al. 1983).
These quantities are immune to antenna-based effects.

The great advantage of radio interferometry over optics, however, is that we can iterate
over progressively improved source models. This is because we have the ability to record
phase information.

14This reduces calibration to solving only for the intensity gains: the data can then only be used for
intensity mapping (e.g. (Jennison 1957)). This practice therefore precludes polarimetry.

15On the discovery of self-calibration and its evolution in parallel to adaptive optics, see the chapter
titled ”The Almost Serendipitous Discovery of Self-Calibration” in ”(Kellerman & Sheets 1984).

16This is not to say that the brightness matrix must contain only point sources, but rather that moving
our interferometer 500m to the East should not change its measured visibilities
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2.7 The RIME Formalism

In this section, we introduce the mathematical framework which forms the basis for our
algorithmic work. While radio interferometry has historically been a complex business
(Thompson et al. 2001), modern radio interferometry is based on the Radio Interferome-
ter’s Measurement Equation, a powerful and elegant formalism which underpins modern
calibration and imaging algorithms. In this section, I will give a simplified account
of this formalism as described in Smirnov (2011a) and its companion papers (Smirnov
2011b,c,d). This will form the theoretical basis on which further sections will expand.

For a mathematically rigorous description of the RIME, the references used in this
work (particularly Smirnov (2011c) and Smirnov (2011d)) are obviously the first place
to look. We frame the RIME in the continuity of previous theoretical frameworks of
radio interferometry, while also describing it in the context of contemporary software
packages and algorithmic tools.

2.8 Setting up the RIME: a single point source

The Radio Interferometer’s Measurement Equation, or RIME, is a formalism which
allows for an elegant and efficient formulation of the physical processes which affect
signal propagation, from astrophysical effects to instrumental effects. Its fundamental
underlying hypothesis is linearity : that transformations along the signal are linear with
respect to the basis chosen to represent our signal. In other words, this means assuming
that propagation effects are separable by antenna.

Consider a single quasi-monochromatic point source in the sky. Its signal at a point
in time and space can be described by a complex 2-vector e – this assumes plane waves.
We can then represent physical processes which affect this signal’s propagation using
Jones matrices. In other words:

v = Je (2.13)

e = ⎛⎜⎝
ex
ey
ez

⎞⎟⎠ (2.14)

where v is the voltage measured by our antenna, and J the Jones matrix describing the
net propagation effects - atmospheric, astrophysical, and instrumental - which affect our
source’s signal. e is the electromagnetic wave emitted by a source. J can be written as
a series of matrix products, each individual matrix describing a physical phenomenon.
They are then called a Jones chain, and the resulting J is often called the total Jones
matrix.

For e to be a 2-vector, rather than a 3-vector, we must choose to use xyz as our
coordinates, with z the direction of propagation of our signal. Hamaker et al. (1996)
then show that the following relation holds:

2eeH = 2 [< exe⋆x > < exe⋆y >< eye⋆x > < eye⋆y >] = [
I +Q U + iV
U − iV I −Q ] =B (2.15)

http://adsabs.harvard.edu/abs/2001isra.book.....T
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where B is the coherency matrix of the source’s emission.

A visibility is the correlation of voltage from two antennas. In other words,

Vpq = 2⟨vp(v q)H⟩ (2.16)

Vpq = 2⟨J pe(J qe)H⟩ (2.17)

Vpq = 2⟨J pee
HJH

q ⟩ (2.18)

where J p corresponds to the signal propagation chain of antenna p, and J q for antenna
q. (...)H corresponds to taking the Hermitian conjugate of a matrix, and ⟨...⟩ an average
over some interval. Note that a factor of 2 has been introduced here, as a matter of
convention. This is due to the definition of the Stokes parameter in relation to our e

outer product.

We can thus write:
Vpq = J pBJH

q (2.19)

This gives us an elegant formulation of the relationship between the signal emitted by
an astrophysical source and its corresponding measured visibility. The Stokes parame-
ters18 of our source can be directly calculated from our measured visibility, provided J p

and J q are known. Of course, in practice, they are not, and must therefore be modelled.
To do this, we must expand each Jones matrix into a corresponding Jones chain.

2.9 Expanding our Jones Chain

Having written our RIME as a matrix multiplication problem, we can now begin to
differentiate between different types of Jones matrices. J p describes the aggregate effects
which occur over the course of the signal’s propagation to our antenna p. It can be split
into a Jones chain of n separate matrices, corresponding to different effects:

JH
sp =

n∏
1

JH
nsp = JH

1spJ
H
2sp...J

H
nsp (2.20)

J sp = J nsp...J 2spJ 1sp (2.21)

where s is a particular direction in the sky: these Jones matrices are therefore direction-
dependent. Going from Eq. (2.20) to Eq. (2.21) simply consists of applying the Hermitian
operator to both sides of Eq. (2.20) to recover J nsp. Since the Jones terms are applied
sequentially to the brightness matrix, starting with J 1sp, the terms to the right of our
decomposition of J sp can be said to occur ‘at the source’, i.e. before those to the left
(said to occur ‘at the antenna’).

Our aim is thus to find the Jones chain which most concisely describes the different
types of effects affecting our signal. In order of increasing complexity, there are three:
so-called geometric effects, direction-independent effects, and direction-dependent effects.

18Stokes parameters determine the polarisation of light; we will not get into more details in this
manuscript, as it is hardly relevant to the topic at hand. Suffice to say that the 2-vector formalism helps
account for the polarised nature of light.
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2.9.1 Geometric Effects: the Phase Delay Jones Matrix

The physical quantity measured by an interferometric array, the visibility, is not a
function of the absolute phase of our signal, but rather a function of the phase difference
between our measured voltages vp and v q. In other words, it is a function of the phase
difference on baseline pq, which consists of antennas p and q. The direction which
minimises this difference is called the phase centre19.

We shall use the conventional coordinate system and notations (Smirnov 2011a; Thomp-
son et al. 2001, etc). We thus have a z axis pointing towards the phase centre, and an
antenna p at coordinates up = (up, vp,wp). The phase difference between p and phase
centre (where, by definition, u = 0) for a signal arriving from direction σσσ is then, assuming
a small field of view:

kp = 2πi((upl + vpm +wp(n − 1))) (2.22)

where n = √1 − l2 −m2. Here, l,m,n are the direction cosines20 of σσσ, and u is defined
in units of wavelength21.

Having done this, we can now introduce a scalar K-Jones matrix to represent the effect
of this phase delay. Since it is scalar, it will commute with all other Jones matrices (see
Smirnov 2011a). It can be be written as:

K p = e−ikp = e−2πi(upl+vpm+wp(n−1)) (2.23)

2.9.2 The Coherency Matrix

The commutation property of K p with other Jones matrices allow us to always place
it at the rightmost end of our Jones chain. We can thus write our Jones chain as follows:

J p =GpK p (2.24)

(2.25)

Here, we have decoupled the nominal phase delay term (K p) from all ‘corrupting’
effects (Gp). We can take this one step further by defining the source coherency, Xpq,
as follows:

Xpq =K pBKH
p (2.26)

Vpq =GpXpqG
H
q (2.27)

This is useful on a conceptual level: the process of calibration is now to find a best
estimate for Gp, which contain all non-‘geometric’ physical effects on the signal’s prop-
agation from an astrophysical source to our voltage measurement.

19Bear in mind the limitations of this, described in Section 2.2.2.
20The n − 1 term in the exponential is due to the fact that, at phase centre, kp = 0 for all u and

n =
√
1 − 0 − 0 = 1.

21This means that, for a given baseline pq, u will vary as a function of frequency.

http://adsabs.harvard.edu/abs/2011A&A...527A.106S,2001isra.book.....T
http://adsabs.harvard.edu/abs/2011A&A...527A.106S,2001isra.book.....T
http://adsabs.harvard.edu/abs/2011A&A...527A.106S
http://adsabs.harvard.edu/abs/2011A&A...527A.106S


2.10. MULTIPLE POINT SOURCES 47

On a practical level, using the coherency matrix X allows us to write our RIME more
concisely, by absorbing the geometric effects into the core of our RIME. While not strictly
necessary, it can be a useful thing to do.

2.10 Multiple Point Sources

So far, B represents the signal from a single point source. However, the formalism
can be extended to multiple point sources. This is because electric fields – and therefore
radio signals – are additive, and that signal from different sources is not coherent (see
Eq. (2.5)), which means that visibilities are additive. If our sky contains s point sources,
then our RIME becomes:

Vpq = ∑
s

J spBsJ
H
sq (2.28)

We now expand our Jones chain as before. Some, but not all, elements in the chain
will only depend on the antenna. These will be the same for all sources. We can thus
write our Jones chain as:

J sp =GpE spK sp (2.29)

where Esp are direction-dependent effects, which vary for each source. Note that we
have kept the source-dependent effects (i.e. those which vary depending on the line of
sight) are to the right of our chain, and the antenna-dependent (Gp) effects to the left.
Ksp is a scalar and can thus be moved at will; it is therefore placed at the far right to
recover the coherency matrix if necessary.

Our multiple-source RIME can thus be written in the following form:

Vpq =Gp(∑
s

E spK spBsK
H
sqE

H
sq)GH

q (2.30)

This ‘onion’ form of the RIME - so-called because, like an onion, it is formed in layers
- is usually sufficient to describe signal propagation in radio-interferometric arrays. We
find the three types of Jones matrices promised earlier: the geometric effects accounted
for by K , the direction-dependent effects modeled into E , and the direction-independent
effects (antenna-based effects) modeled into G.

There are still limitations to this RIME; notably, it assumes that the sky consists
entirely of point sources (absence of diffuse emission), and that Jones matrices are time-
independent. These are of course unphysical hypotheses, though they are a very good
first approximation. We shall now address these two points.

2.11 Diffuse Emission: the Full-sky RIME

2.11.1 Deriving the Fully-Sky RIME

If we want to be able to take diffuse emission properly into account, we must go from
our set of discrete point sources Bs and integrate the underlying continuous brightness
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distribution B(σσσ) over all possible directions. This gives us the following expression:

Vpq = ∫
4π

J p(σσσ)B(σσσ)JH
q (σσσ)dΩ (2.31)

Here, effects such as our array’s beam lie in the Jones matrices. By performing the
analysis shown in Sect. 3.1 of Thompson et al. (2001), we can rewrite this expression in
terms of a sine projection of the sphere onto the (l,m) plane tangential at field centre.
The integral then becomes:

Vpq = ∫
l,m

J p(σσσ)B(σσσ)JH
q (σσσ)dldm

n
(2.32)

Having written this, and using lll as shorthand (l,m), we can once again decompose our
Jones matrix into a Jones chain containing a direction-independent term G, a direction-
dependent term E , and the phase term K . Substituting this into our integral, we get
the following expression:

Vpq =Gp(∫
lll

1

n
Ep(lll)K p(lll)BKH

q (lll)E q(lll)dldm)GH
q (2.33)

Vpq =Gp(∫
lll

1

n
Ep(lll)BE q(lll)K p(lll)KH

q (lll)dldm)GH
q (2.34)

=Gp(∫
lll

1

n
Ep(lll)BE q(lll)e−2πi(upql+vpqm+wpq(n−1))dldm)GH

q (2.35)

where

upq = up − uq vpq= vp − vq wpq = wp −wq (2.36)

This is a three-dimensional Fourier transform. It can be reduced to a two-dimensional
Fourier transform by writing the n-dependence in the exponential (and normalisation)
as a Jones matrix, thus removing the non-coplanarity terms from the explicit RIME.
We can thus define the following:

W p = 1√
n
e−2πiwp(n−1) (2.37)

Bpq = EpW pBWH
q Eh

q (2.38)

and write our RIME in its final form:

Vpq =Gp(∫
lll
Bpq(lll)e−2πi(upql+vpqm+wpq(n−1))dldm)GH

q (2.39)

Note that B was the actual sky brightness distribution as a function of direction,
but now Bpq is the sky brightness as seen by baseline pq – in the presence of direction-
dependent effects, this is not the same for all baselines.

http://adsabs.harvard.edu/abs/2001isra.book.....T
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2.11.2 Recovering the van Cittert-Zernike Theorem

Earlier calibration models and algorithms rely on the hypothesis that all baselines see
the same sky. This is the fundamental premise of self-calibration. The topic of self-cal is
covered in Section 2.6.1. This premise only holds when all Direction-Dependent Effects
(henceforth referred to as DDEs) are identical for all baselines (and therefore for all
antennas). We then effectively have E s,p = 1 for all p. This is a necessary condition for
the apparent sky Bpq to be the same for all baselines22, as it allows us to write:

Ep(lll)W p(lll) = E(lll)W (lll) (2.40)

Bpq(lll) =Bapp(lll) = E(lll)W (lll)B(lll)WH(lll)EH(lll) (2.41)

If this condition is met, we can then rewrite the full-sky RIME as:

Vpq =GpXpqG
H
q (2.42)

where Xpq = X(upq, vpq) = X(uuu). Our coherency matrix includes the beam attenuation
implicitly, as Bapp is now the coherency of the apparent sky brightness distribution.
Comparing Eqs. (2.26) and (2.39) directly shows that the coherency matrix is simply the
two-dimensional Fourier transform of Bapp(lll). We can thus call X(uuu) the sky coherency,
in keeping with our nomenclature for the RIME of a point source.

Note that deriving the van Cittert-Zernike theorem ((van Cittert 1934), covered in
(Thompson et al. 2001)) from the RIME was simply of matter of treating phase as a
Jones matrix in its own right23. A significant consequence of this is that DDEs can be
incorporated within the RIME formalism.

2.12 Time-dependent Jones matrices, Smearing, and Decor-

relation

2.12.1 Time-dependence of Jones matrices

Until this point, we have not considered any kind of sky variability in time. In effect,
Eq. (2.42) describes the snapshot taken by an interferometer for a single measurement.
Limiting ourselves to this scenario, however, strongly limits the sampling of the uv-plane
which can be performed. Indeed, interferometers generally rely on the Earth’s rotation to
rotate their baselines pq, thus increasing uv-coverage at no additional cost.This technique
is known as super-synthesis (Joardar et al. (2010)24) For Eq. (2.42) to hold throughout
an observation, we must therefore assume that Bapp remains constant in time over the
course of the observation. In effect, this means assuming that

Ep(t, lll) = Ep(lll) = E(lll) ∀(t, p) (2.43)

22The “apparent” sky is the ‘true’ sky attenuated by the “power beam”, which corresponds to our
instrument’s directional sensitivity in the traditional view.

23Noordam, J.E. 1996, AIPS++, Note 185: The Measurement Equation of a Generic Radio Telescope
24http://www.jpier.org/PIERB/pierb22/05.10032105.pdf

http://adsabs.harvard.edu/abs/1934Phy.....1..201V
http://adsabs.harvard.edu/abs/2001isra.book.....T
https://raw.githubusercontent.com/wiki/ska-sa/meqtrees/aips++_note185.pdf
http://www.jpier.org/PIERB/pierb22/05.10032105.pdf
http://www.jpier.org/PIERB/pierb22/05.10032105.pdf
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The above means that direction-dependent effects must be time-independent for Eq. (2.42)
to hold. We can thus split direction-dependent effects into two categories: trivial DDEs,
which satisfy this condition and are a simple multiplicative correction, and non-trivial
DDEs, which are not. An example of a trivial DDE is the primary gain; and example of
a non-trivial (i.e. time-variable) DDE is ionospheric turbulence.

2.12.2 Smearing and Decorrelation

Of course, our Jones matrices are not the only time-dependent element of the RIME
formalism. As mentioned above, to image with interferometric arrays, radio astronomers
rely on the Earth’s rotation to better sample uv-space. This means that uuu becomes a
time-dependent variable.

Furthermore, if we choose to define uuu in terms of wavelength, uuup becomes dependent
in frequency. Our time-independent, frequency-independent RIME thus becomes only
valid for infinitesimal increments in time and frequency.

In practice, measurements made by any interferometric array are actually averaged
over the integration time of the measurement, as well as the frequency channel size. A
better formulation is therefore to explicitly write the RIME as an integration over time
and frequency bins:

⟨Vpw⟩ = 1

∆t∆ν
∫ t1

t0
∫ ν1

ν0
Vpq(t, ν)dvdt (2.44)

= 1

∆t∆ν
∫ t1

t0
∫ ν1

ν0
J p(t, ν)BJH

q (t, ν) (2.45)

J (t, ν) describes the propagation of an electromagnetic signal through various physical
processes. This signal has a complex phase, which is variable in both time and frequency.
Since it is a rotating vector, integrating over any time or frequency band will always result
in a net loss in amplitude in the measured ⟨V⟩. This mechanism is commonly referred
to as time/bandwidth decorrelation or smearing (Smirnov 2011a).

The general effect is referred to as decorrelation25, and the specific case of decoherence
caused by the K term is referred to as smearing.

Smearing increases with baseline length (uuupq) and distance from phase centre (l,m).
The noise amplitude, however, does not decrease. This means that smearing results in
a decrease in sensitivity, which becomes significant when attempting to do wide-field,
high-resolution images (see Section 5.6).

In the context of the RIME, smearing is an element-by-element operation, i.e. different
elements do not affect each other. Treating smearing within the RIME is thus a trivial
expansion of the scalar equations.

25Decorrelation can equivalently be referred to as “decoherence”.

http://adsabs.harvard.edu/abs/2011A&A...527A.106S


2.13. NOISE 51

Assuming that ∆t and ∆ν are small enough that the amplitude of Vpq remains con-
stant over the integration band (i.e. that Vpq is well-sampled by our instrument), then
a useful first-order approximation26 is:

⟨Vpw⟩ ≃ sinc∆ΨΨΨ

2
sinc

∆ΦΦΦ

2
Vpq(tmid, νmid) (2.46)

where

tmid = (t0 + t1)/2 (2.47)

νmid = (ν0 + ν1)/2 (2.48)

∆ΨΨΨ = argVpq(t1, νmid) − argVpq(t0, νmid) (2.49)

∆ΦΦΦ = argVpq(tmid, ν1) − argVpq(tmid, ν0) (2.50)

This equation is convenient to determine the impact of decorrelation for a source at
a given distance from phase centre. Note, however, that it can only - by definition - be
valid for a single source at a time. If using a RIME such as Eq. (2.30), then it can be
calculated for each source individually.

2.13 Noise

The RIME presented thus far has been for an ideal case, free of noise in our measured
visibility. In practice, each complex visibility will be affected by uncorrelated Gaussian
noise27, which means that a RIME of the same form as Eq. (2.30) would have to be
formuled at follows:

Vpq =Gp(∑
s

E spK spBsK
H
sqE

H
sq)GH

q + σpq (2.51)

where σpq is a (2,2) matrix with real and complex parts in each component. A similar
addition can be made for any of the RIMEs presented here.

This noise sets a hard limit on the sensitivity achieved for a given observation, and
‘reaching the noise’ becomes the gold standard of calibration (Smirnov 2011b). One
must then take σpq into account properly when solving for the Jones matrices.

26see Smirnov (2011b) and companion papers.
27Detailed treatment given in (Thompson et al. 2001), section 6.2, which shows how to obtain the

ideal radiometer equation

http://adsabs.harvard.edu/abs/2011A&A...527A.107S
http://adsabs.harvard.edu/abs/2011A&A...527A.107S
http://adsabs.harvard.edu/abs/2001isra.book.....T




Chapter 3

Analysing the Variance of Gain

Solutions

1

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Building the Noise Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 The Cov-Cov Relationship in the δuδv plane . . . . . . . . . . . 56

3.2.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.3 Noise Map Simulations . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Adaptive Quality-based Weighting Schemes . . . . . . . . . . . . . . . 67

3.3.1 Optimising sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2 Minimising Calibration Artefacts . . . . . . . . . . . . . . . . . . 68

3.4 Estimating the Covariance Matrix . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Baseline-based Estimation . . . . . . . . . . . . . . . . . . . . . . 69

3.4.2 Antenna-based Estimation . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Applying the Correction to Simulated Data . . . . . . . . . . . . . . . 72

3.6 Applying the Correction to Real Data . . . . . . . . . . . . . . . . . . . 73

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Introduction

Interferometers sample Fourier modes of the sky brightness distribution corrupted by
instrumental and atmospheric effects rather than measuring the sky brightness directly.
This introduces two problems2 for astronomers to invert: calibration and imaging. Both
of these problems are ill-conditioned.

1This section is based on Bonnassieux et al. (2017), which was published as part of this PhD.
2Which are simply an artificial split of a single original problem; see Section 2.3 for more details.
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The problem of imaging consists of correcting for the incomplete uv-coverage of any
given interferometer by deconvolving the instrument’s Point-Spread Function (PSF) from
images. Its poor conditioning comes from our limited a priori knowledge of the sky
brightness distribution, combined with large gaps in our uv-coverage, which prevents us
from placing strong constraints on image deconvolution. It can be better-conditioned
in different ways, including through the use of weighting schemes (see Briggs 1995;
Yatawatta 2014, and references therein) to improve image fidelity at the start of decon-
volution. When inverting the imaging problem, we often assume that the sky is stable
within the domain (i.e. is constant in time and frequency). There are exceptions, such
as wide-band deconvolution algorithms (e.g. Rau & Cornwell 2011) that explicitly take
into account the sky’s frequency-dependence, but still assume that the sky brightness
distribution does not vary with time.

The problem of calibration is what concerns us in this section. It consists of esti-
mating and correcting for instrumental errors (which includes effects such as antenna
pointing errors, but also the phase-delays caused by ionospheric activity, troposphere,
etc). Calibration consists of solving for gain estimates, where a gain models the rela-
tionship between the electromagnetic field of an astrophysical source and the voltage
that an antenna measures for this source. Because measurements are noisy, calibration
often involves some fine-tuning of solution intervals, to ensure that the solutions are
well-constrained while the solution intervals stay as small as signal-to-noise allows. The
calibration inverse problem involves three competing statistical effects: thermal noise
in the measurements, true gain variability, and sky model incompleteness. If gain so-
lutions are sought individually for each measurement, then (unless the observed field is
exceptionally bright) calibration estimates will be dominated by thermal noise, and will
not adequately describe the actual gains. Similarly, if a single gain estimate is fitted
to too many measurements, the intrinsic gain variability will be “averaged out”; for ex-
ample, a choice of time and frequency interval that is too large will cause the solver to
estimate a constant gain while the underlying function varies quickly, thereby missing
much of the gain structure. This will introduce error which will be correlated in time
and frequency. This occurs, for example, when solving for ionospheric phase delays: in
the most extreme case, where the solution interval is significantly larger than the scale
of ionospheric fluctuations, its varying phase can average out to zero over the interval in
time and frequency. Finally, if the model being fitted is incomplete, unmodeled physical
flux will likely be absorbed unpredictably into both the gain solutions and the resid-
ual visibilities: this absorption of physical flux into gain solutions is known as source
suppression (see Grobler et al. 2014; Kazemi & Yatawatta 2013, and references therein).

In practice, it is reasonable to assume that there exist a scale at which gain variation
is acceptably low: we can then reduce the noise of our gain estimates by finding a
single gain solution for a small number of measurements, assuming that the underlying
gain variation is very small and stable over short intervals. This is generally a valid
hypothesis, but the specific value for the variation scale can be contentious. Indeed,
while the noise level can often be treated as constant throughout an observation, the
gain variability itself is generally not constant: there will be time periods where the
gains will tend to remain constant for longer, and others where variability will be very
quick. This means that, for any choice of calibration interval, some gain estimates will
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be better than others, and almost all could have been improved (at a cost to others) by
a different choice of time (and frequency) intervals.

Since we have measurements which are better-calibrated than others (in that better
estimates for their gains were obtained through chance alone), we could, in principle, take
inspiration from “lucky imaging” (an optical-domain method for making good images:
for more details, see Fried 1978, and references therein) to weigh our visibilities according
to their calibration quality. Those weights would in effect be an improvement of currently
existing methods such as clipping noisy residual visibilities: in the extreme case where all
visibilities are equally-well calibrated except a few which are extremely noisy, it should be
equivalent to clipping. Otherwise, the weights should show at least a slight improvement
over clipping.

The key finding of our algorithmic work is a fundamental relationship between the co-
variance matrices of residual visibilities and the map of the covariance in the image-plane:
the “Cov-Cov relationship” between visibility covariance to image-plane covariance. We
show that the pixel statistics in the image-plane are determined by a “noise-PSF”, con-
volved with each source in the sky (modeled or not). This noise-PSF is the product of
the Fourier transforms of the gain covariance matrix with each cell mapped not from uv

space to lm coordinates but rather between their respective covariance spaces - from a
new differential Fourier plane (henceforth “(δuδv)”-plane) to the image-plane covariance
space δlδm. This image-plane covariance space describes the variance in each pixel and
the covariance between pixels3. It describes the expected calibration artefacts and ther-
mal noise around each source, does not vary as a function of direction, and is convolved
with each source in the field to yield the final error map. Because all unwanted (in our
case, unphysical) signal can be thought of as noise, we will refer to the pixel variance
map as the “noise-map”.

The notion of a (δuδv)-plane arises organically from the framework of radio interfer-
ometry: we are associating a correlation between visibilities to coordinates in covariance
space, just as we associate the visibilities themselves to the uv-domain. The (δuδv)-plane
is the natural domain of these correlations. As previously stated, even if all sources in
the field are perfectly known and modeled, a poor choice of calibration interval can intro-
duce correlated noise in the residuals, which would then introduce larger variance near
sources in the noise-map. Conversely, if calibration is perfect, the noise-map should be
completely flat (i.e. same variance for all pixels), as there would be no noise-correlation
between pixels.

The main result of this section is a new adaptive, quality-based weighting scheme
based on this insight. Using the Cov-Cov relationship, we can create a new weighting
scheme by estimating the residual visibility covariance matrix in a given observation. By
weighting visibilities so as to change their covariance matrix, one can change the shape of
the noise-PSF and thus improve the final image: this manifests as either decreased noise
or decreased calibration artefacts. Note that this weighting is applied after calibration,

3The noise-PSF also relates δw to δn, as shown in the matrix formalism, but this is not explicitly
referenced in the text since visibility space is usually referred to as “the UV-plane” in literature, rather
than “the UVW-space”.
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but before image deconvolution: applying it will therefore not only improve the residual
noise in the image, and thus the sensitivity achievable with a given pipeline, but will also
improve deconvolution by minimising calibration artefacts in the field: it should thus
effectively remove spurious, unphysical emission from final data products. Estimating
the covariance matrix is the main difficulty of our framework: we do not know the
underlying covariance matrix, and the conditioning of our estimation thereof is limited
by the number of measurements within each solution interval. As such, we have no
guarantee that our estimate of the corrected visibility covariance matrix is accurate.
This problem can be alleviated, for example by estimating the covariance matrix for
the antenna gains themselves, and use it to build the visibility covariance matrix: this
effectively improves conditioning (cf Sec. 3.4).

The remainder of this chapter is split into four main sections. In Section 3.2, we
derive the Cov-Cov relationship. With its newfound insights, we propose quality-based
weighting schemes with which to improve radio interferometric images in Section 3.3. We
follow in Section 3.4 by showing how to estimate, from real data, the covariance matrix
from which the quality-based weights are derived. Our approach seems to give good
results. Finally, we close the chapter on a discussion of the applicability and limitations
of the quality-based weighting scheme.

3.2 Building the Noise Map

In this section, we derive our first fundamental result: the Cov-Cov relationship, Eq.
3.25, which describes how the statistics of residual visibilities (and thus the antenna
calibration solutions, henceforth “gains”) relate to the statistics of the image plane, i.e.
of images made using the associated visibilities. The dimensions of the matrices (denoted
by boldface capital letters) and vectors (denoted by boldface lowercase letters) used in
this work are given in Table 3.1, along with the scalar numbers used to denote specific
dimensions. All other variables are scalars.

3.2.1 The Cov-Cov Relationship in the δuδv plane

Let us begin by defining visibility gains. Using the Radio Interferometry Measurement
Equation formalism for a sky consisting of a single point source (Hamaker et al. (1996),
Smirnov (2011a), and companion papers), we can write the following relation between
the sky and the signal as measured by a single baseline at time t and frequency ν:

V tν
pq = ∑

d

Kd
p,tνJ

d
p,tνB

d
ν (Jd

q,tν)H (Kd
q,tν)H +N (3.1)

All the quantities above are 2 × 2 matrices. Eq. 3.1, implies a linear relationship
between the coherency matrix Bd

ν and the visibilities recorded by a given baseline (V tν
pq),

with the addition of a thermal noise matrix N , which is also of shape 2×2 and contains
different complex-valued realisations of the noise in each cell. Since electric fields are
additive, the sky coherency matrix can be described as the sum of the contributions from
individual sources in directions d in the sky. We also assume that the sky does not vary
over time, i.e. that Bd

ν is not a function of time. The Jones matrices (Jd
...,tν) contain the

antenna gain information in matrix form, while Kd
...,tν is the Fourier kernel. Let us limit
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Scalars

npix Total number of pixels in image-plane & number of cells in uv-grid
nant Total number of antennas in the array
nb Number of visibilities
b Index for a single visibility.

Equivalent to (pq, tν)
τ Equivalent to (t, ν)

Vectors

ỹ Residual image vector, size npix

ǫ Vector of ǫ, size npix

γ̃ Contains gain products, size nb. See Eq. 3.12
1 Vector containing 1 in every cell, size nb

δubb′ Vector of coordinates in differential Fourier
plane, of length 3.

ld Vector of sky coordinates, of length 3.

Matrices

V tν
pq Visibility seen by a baseline pq at time and frequency t, ν. Size 2 × 2.

Kd
p,tν Fourier kernel for direction d, antenna p and one (t, ν) pair. Size 2 × 2.

Jp,tν Jones matrix for antenna p for one (t, ν) pair.
Contains the gains information. Size 2 × 2

B Sky brightness distribution matrix, of size 2 × 2.
N Noise matrix, of size 2 × 2. Contains a single

realisation n of the thermal noise in each cell.
F Fourier transform matrix, of size npix × npix.
Sb Baseline selection matrix, which picks out 1

visibility out of the full set. Size npix × nb

Cb npix × npix convolution kernel that defines
the PSF.

F bb′ Convolution matrix mapping one δuδv to δlδm.
The set of all F bb′ determines the noise-PSF.
Size npix × npix.

Table 3.1. Table recapitulating the meaning and dimensions of vectors and matrices used in
Sec. 3.2.1. Only scalars which give matrix dimensions or indices are given here.

ourselves to the scalar case, which corresponds to assuming that emission is unpolarised.
We assume that Bd = sdI, where s is the flux of our single point source and I is the
2×2 identity matrix. We also assume that Jp,tν = gp,tνI, where gtνp is the complex-valued
gains of antenna p at time t and frequency ν. This means that we assume that the
gains are direction-independent, and so Jd

...,tν becomes J...,tν . Similarly, Kd
p,tν = kdp,tνI,
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the Fourier kernel in the direction of the source, d. N has 1 realisation of ǫ in each cell,
where:

ǫ ∼ N (0, σ) + iN (0, σ) (3.2)

where σ is the variance of the thermal noise. Let us denote each (t, ν) pair by τ ,
and ignore the sky’s frequency-dependence. The following scalar formulation is then
equivalent to Eq. 3.1:

V τ
pq = (∑

d

sdk
d
p,τk

d
q,τ) gτpgτq + ǫ (3.3)

kdp,τ = exp (2πi (up,τ ld + vp,τmd +wp,τ (np − 1))) (3.4)

Calibration is the process of finding an accurate estimate of gτp for all antennas p, at all
times t and frequencies ν. Since we are in a direction-independent regime, the quality of
our calibration then determines the statistical properties of the residual visibilities (and
the image-plane equivalent, the residual image). The residual visibilities associated with
calibration solutions are defined as our measured visibilities minus the gain-corrupted
model visibilities. ĝτp then denotes our calibration estimate for gτp . We now begin to
limit the generality of our framework by assuming that all sufficiently bright sources
have been modeled and subtracted: unmodeled flux is then negligible. We can then
write the residual visibilities as:

r̃τpq =∑
d

sd (kdp,τkdq,τ)(gτpgτq − ĝτp ĝτq ) + ǫ (3.5)

The flux values in the image-plane pixels4 are the Fourier transform of the visibility
values mapped onto each pixel. This can be written as follows:

ỹ = ⎛⎜⎝
⋮

∑pq I
r
pq,lm⋮
⎞⎟⎠ (3.6)

Irpq,lm = ∑
τ

ωpq,τ r̃
τ
pqk

lm
pq,τ (3.7)

where lm are the directional cosine positions of a given pixel, and klmpq,τ = kdp,τk
d
q,τ the

Fourier coefficient mapping a point in Fourier space to a point on the image-plane. ωpq,τ

is the weight associated to a given visibility.

Let us now write this using a matrix formalism. The contribution of a single visibility
b = (pq, τ) to the image-plane residuals can be written as:

ỹb =FH
Sbωb (κbγ̃ + ǫ) (3.8)

ỹ =∑
b

ỹb (3.9)

4As opposed to the Fourier-plane pixels, which are the elements of the grid onto which the measured
visibilities are mapped for imaging.
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where ǫ is a vector of the ǫ of Eq. 3.2 and ỹ is a vector of size npix, with

κb = ∑
d

sdκ
d
b (3.10)

κdb = kdp,τkdq,τ = klmpq,τ (3.11)

γ̃b = gτpgτq − ĝτp ĝτp (3.12)

γ̃ = ⎛⎜⎝
⋮̃
γb⋮
⎞⎟⎠ (3.13)

and wb is the scalar weight associated with each visibility. By default, wb = 1
nb
: all

visibilities then have the same weight, and ỹ then becomes the average of all ỹb. γ̃ is a
vector of all γ̃b, and thus of size nb. F is the Fourier kernel, of size npix × npix. Sb is a
matrix of size npix ×nb: its purpose is to encode the uv-coverage. Each Sb contains only
a single non-zero cell, different for different Sb. The height (number of rows) of Sb is
determined the size of the uv-grid, and its length (number of columns) by the number
of visibilities.

The order of operations is thus: each residual visibility (κbγ̃ +n) is assigned some
weight wb and its uv-coordinates are set by Sb. The inverse Fourier transform (FH) is
then applied to this grid, and so we recover its image-plane fringe. By averaging over
all fringes, we recover the dirty image.

The residual image will thus depend on three quantities: the residual gains, the flux
in the image, and the weighting scheme. Let us consider the relationship between the
statistics of residual visibilities and the variance at a given point in the corresponding
residual image.

3.2.2 Statistical Analysis

In the following analysis, we treat our gain solutions and thermal noise as random
variables in order to compute the covariance matrix of our residual image, Cov{ỹ}.
The diagonal of this matrix gives the variance for each pixel, while the wings give the
covariance between pixels. Using the property that Cov{Ax} = ACov{x}AH , we can
apply the Cov{} operator to Eq. 3.9 to write:

Cov{ỹ} =∑
bb′
F

H wbwb′κbκb′´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
def
= φbb′

SbCov{γ̃}ST
b′F (3.14)

+∑
b

w2
bσ

2
F

HSbIS
T
b F´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

def
= Cb

(3.15)

=∑
bb′

φbb′F
HSbCov{γ̃}ST

b′F +∑
b

w2
bσ

2
Cb (3.16)

So far, we have only applied definitions. The net effect of SbCov{γ̃}ST
b′ (dimensions of

npix × npix) is to encode where a given baseline samples the uv-plane, and map one cell
at matrix coordinates (b, b′) from the correlation matrix Cov{γ̃} onto the visibility grid.
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Sb is not the gridding kernel, but rather the sampling matrix, which determines where
we have measurements and where we do not. We can thus write that SbCov{γ̃}ST

b′ =[Cov{γ̃}]bb′Sb11
TST

b′ , where [Cov{γ̃}]bb′ is the value from the appropriate cell and 1 is
the vector-of-ones of appropriate length (here, nb). This allows us to write:

Cov{ỹ} =∑
bb′

φbb′[Cov{γ̃}]bb′F bb′ +∑
b

w2
bσ

2
Cb (3.17)

with F bb′ = (F b)H F b′°
def
= 1TST

b′
F

(3.18)

Here, Cb is a Toeplitz matrix, i.e. a convolution matrix, associated with baseline b.
The set of all Cb defines the convolution kernel which characterises the Point-Spread
Function (henceforth PSF) associated with a given uv-coverage, of size npix ×npix. F bb′ ,
meanwhile, is not generally Toeplitz. Its cells can be written as:

F bb′[d, d′] = e2iπ(ubld−ub′ ld′+vbmd−vb′md′+(nd−1)wb−(nd′−1)wb′) (3.19)

Let us investigate how the sky brightness distribution (i.e. d-dependence) affects the
noise-map. We can write the sum over bb′ as two sums: one over b, b′ = b and one over
b, b′ ≠ b. Thus:

Cov{ỹ} =∑
b

(φbb[Cov{γ̃}]bb +w2
bσ

2)Cb
+ ∑

b,b′≠b

φbb′[Cov{γ̃}]bb′F bb′ (3.20)

Note that the only direction-dependent terms in the above are sd and κdb , which are both
inside φbb′ (for both b = b′ and b ≠ b′). By making the approximation that the Fourier
kernels of different sources are orthogonal (i.e. that κdbκ

d′

b′ = (κdb)2δbb′)5 we can write:

φbb′ = wbwb′κbκb′ (3.21)

= wbwb′ (∑
d

sdκ
d
b)(∑

d′
sd′κ

d′

b′
) (3.22)

≈ ∑
d

wbwb′s
2
dκ

d
bκ

d
b′

(3.23)

φbb′ ≈ ∑
d

φd
bb′ (3.24)

Note that F bb = Cb, since those are the coordinates along the diagonal: for these values,
the matrix-of-ones at the centre of F bb′ becomes the identity matrix. Note also that

φd
bb = w2

bs
2
d, since κdbκ

d
b
= 1. We can then write Eq. 3.20 as:

Cov{ỹ} =∑
d

⎛⎝∑b φd
bb ([Cov{γ̃}]bb + w2

bσ
2

φbb

)Cb
+ ∑

b,b′≠b

φd
bb′[Cov{γ̃}]bb′F bb′

⎞⎠ (3.25)

where we have now limited our formalism to the case where the sky is dominated by
sufficiently-separated point-like sources.

5This hypothesis is equivalent to assuming that the sky is dominated by well-separated point sources,
where we take “well-separated” to mean that the sources are multiple PSF Full-Width Half-Maximum
apart
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This is our fundamental result: assuming unpolarised emission coming from well-
separated point sources and normally-distributed thermal noise, it gives a direct rela-
tionship between the covariance of the residual visibilities and the covariance of the
residual image-pixel values. We thus call it the Cov-Cov relationship. It describes the
statistical properties of the image-plane as the result of a convolution process changing
an average noise level at different points in the image-plane, allowing us to describe the
behaviour of variance and covariance in the image. Let us focus on the first

By applying the Diag{} operator (which returns the diagonal of an input matrix as a
vector) to both sides of Eq.3.25, we can find an expression for the variance map in the
image-plane:

Var{ỹ} =Diag{Cov{ỹ}} (3.26)

=∑
d

(∑
b

(φd
bb[Cov{γ̃}]bb +w2

bσ
2)Diag{Cb}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

+ ∑
b,b′≠b

φd
bb′[Cov{γ̃}]bb′Diag{F bb′}) (3.27)

where ld = (ld,md, (nd − 1)) (3.28)

δubb′ = (δubb′ , δvbb′ , δwbb′) (3.29)

= (ub − ub′ , vb − vb′ ,wb −wb′) (3.30)

In Eq 3.27, we have:

Diag{F bb′} [d] = e2iπld⋅δubb′ (3.31)

For b ≠ b′, the diagonals of F bb′ are the Fourier kernels mapping δuδv space to δlδm.
F bb′ can then be thought of as a Fourier transform. It is not a diagonal matrix. It
behaves as a covariance fringe, allowing us to extend standard interferometric ideas to
covariance space: each fringe can be thought of as a single “spatial filter” applied to the
pixel covariance matrix. Just as a given baseline has coordinates in uv-space, a given
correlation between baseline residual errors has coordinates in uv correlation space, which
we will henceforth refer to as δuδv-space.

This δuδv space warrants further discussion: Fig. 3.1 shows, for a given uv-track
(Fig. 3.1b), both the corresponding δuδv domain (Fig. 3.1c) and point-spread function
(Fig. 3.1a). The symmetric, negative uv-track is treated as a separate track, and thus
ignored. This means that we do not fully constrain the noise-PSF (since the covariance
matrix of the symmetric track is simply the Hermitian of the first), but we do not seek
to constrain it in this section, but rather to show that our results hold. We can see
that the δuδv-tracks are symmetrical about the origin. The δuδv space corresponding
to a given uv-track can thus be most concisely described as a “filled uv-track”, with its
boundaries defined by the ends of the uv-track. The set of F bb′ , each of which maps one
value of the covariance matrix to a fringe in the image-plane, would then characterise
a PSF equivalent for the noise distribution, which we refer to as the noise-PSF. In
our formalism, the only sources of statistical effects in the field are calibration errors
and thermal noise. The average variance in all pixels will be given by the diagonal of
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by each baseline will determine the noise-map, and the true image-plane artefacts will
then be one set of realisations of this underlying distribution.

3.3 Adaptive Quality-based Weighting Schemes

As discussed in Section 3.1, some intervals of an observation will have lower gain
variability. These will show up in the gain covariance matrix as intervals with lower
variance. Similarly, those with larger intrinsic gain variability will have greater error in
their gain estimate. By giving greater weights to the former, and lower weights to the
latter, we expect to be able to improve image reconstruction. We thus talk of adaptive
quality-based weighting, as the weights will adapt based on the calibration quality.

The pixel variance is determined by the visibility covariance matrix, as shown in Eq.
3.27. The diagonal of the visibility covariance matrix will add a flat noise to all pix-
els, while its wings will determine the calibration artefact distribution, which will be
convolved to the sky brightness distribution. We thus have two sources of variance in
the image-plane. Minimising the far-field noise (i.e. the variance far from sources) in
an image would involve down-weighting noisier calibration intervals while up-weighting
the more quiescent ones, without taking noise-correlation between visibilities into ac-
count. This is because the far-field noise will be dominated by the diagonal component
of the covariance matrix (cf. Eq. 3.27). By the same token, minimising calibration
artefacts would involve down-weighting measurements with strongly-correlated noise,
and up-weighting the less-correlated. This would not, however, minimise the diagonal
component: in fact, it will likely exaggerate its up-weighting and down-weighting. As
such, it will increase the constant level of the noise-map, but flatten the noise-PSF’s
contribution. There are thus two competing types of noise that we seek to minimise:
uncorrelated noise, which corresponds to δuδv = 0 (i.e. the diagonal components of
the gain covariance matrix), and correlated noise, which corresponds to δuδv ≠ 0 (i.e.
its wings). Minimising the first will minimise far-field noise without optimally reduc-
ing artefacts, while minimising the last will minimise noise near sources at a cost to
far-field noise. In the following sub-sections, we will discuss weighting schemes used to
accomplish this.

3.3.1 Optimising sensitivity

The Cov-Cov relationship (Eq. 3.25) tells us that, far from any sources, the variance
map (Eq. 3.27) is dominated by a constant term: the contribution from thermal noise
and the diagonal of the residual visibility covariance matrix. Maximising sensitivity far
from sources therefore implies minimising Diag{Cov{γ̃}}. This is equivalent to assigning
visibilities weights inversely proportional to their variance:

wb = 1

Var{γ̃b} (3.37)

For each baseline, those times with larger variance in the residuals will be down-
weighted, and those with smaller variance will be up-weighted; this scheme does not
require information about the underlying gains, only the error on our solutions. Since
we are treating σ2

n as a constant for all antennas and all times, those times where
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our gains estimate is closer to the true gains will be up-weighted, and those moments
where they are farther from the actual gains will be down-weighted: hence the term
“adaptive quality-based weighting”. Note that the diagonal of the weighted residuals’
covariance matrix should therefore become constant: this weighting scheme explicitly
brings the residuals closer to what is expected in the case of perfect calibration, assuming
uncorrelated noise. For the remainder of this paper, we will refer to these weights as
sensitivity-optimal weighting.

3.3.2 Minimising Calibration Artefacts

Minimising calibration artefacts - i.e. optimising the sensitivity near bright sources -
means flattening the noise-map. Since the noise-map can be understood as a noise-PSF
convolved with all the modeled sources in the sky modulating the background variance
level, it will be flattest when its peak is minimised. From the Cov-Cov relationship (Eq.
3.25), we can see that, at the peak of the noise-PSF (which would be the variance at the
pixel where l =m = 0), the Fourier kernel is unity: the variance for that pixel is thus the
sum of all the cells in the covariance matrix. By accounting for normalisation, we can
write the variance at the centre of the noise-PSF as:

V (w) = wTCov{γ̃}w
wT11Tw

(3.38)

Our optimality condition is then, after some algebra:

0 = ∂

∂w
(V ) (3.39)

↔ Cov{γ̃}w = 11Tw (wT11Tw)−1wTCov{γ̃}w (3.40)

We find that one w which satisfies the above is:

w = Cov{γ̃}−11 (3.41)

where 1 is a vector of ones. Provided that the hypotheses made so far hold6, these
weights depend only on calibration quality: badly-calibrated cells will include spurious
time-correlated signal introduced by trying to fit the noise n on visibilities. Down-
weighting these cells helps suppress artefacts in the field, at the cost of far-field sensitivity.
This weighting scheme is thus only a function of the relative quality of calibration at
different times, boosting better-calibrated visibilities and suppressing poorly-calibrated
visibilities. For the remainder of this paper, we will refer to these weights as artefact-
optimal weighting.

3.4 Estimating the Covariance Matrix

In our simulations, we have worked from a known covariance matrix and shown that
our predictions for the residual image’s behaviour hold. With real data, however, we do
not have access to this underlying covariance matrix. Since our weights are extracted
from said matrix, estimating it as accurately as possible remains a challenge: this is in
turn limited by the number of samples which can be used for each cell.

6Specifically, that the residual visibilities do not contain any true signal, i.e. that all sources have
been properly subtracted from the visibilities
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Each cell in the covariance matrix is built by averaging a number of measurements, or
samples. The more samples are available, the better our estimate becomes: once we have
more samples than degrees of freedom, we say that our estimation is well-conditioned.
Otherwise, it is poorly-conditioned. In this section, we will discuss ways in which we
can improve the conditioning of the covariance matrix estimation.

3.4.1 Baseline-based Estimation

One way to improve the conditioning of our covariance matrix estimation is to make
the same hypothesis as the calibration algorithm: we can treat the underlying gains as
constant within each calibration interval. Provided this interval is known, this allows
us to find a single estimate for each interval block of the covariance matrix, turning a
nb×nb matrix into a smaller nintervals×nintervals equivalent, where nintervals is the number
of solution intervals used for to find the gain solutions. We then improve our conditioning
by a factor of nint, which is the number of samples in a calibration interval. The estimate
Ĉov{γ̃}of the covariance matrix Cov{γ̃} is built by applying the covariance operator:

Ĉov{γ̃} def= Ĉγ̃ = 1

nint
∑

i∈nint

(γ̃i − ⟨γ̃⟩) (γ̃i − ⟨γ̃⟩)H (3.42)

where the ⟨⋯⟩ operator denotes taking the average over the full vector. If the calibration
solver’s gain estimates are unbiased (i.e. E{ĝ} = g) and the model of the sky is sufficiently
complete, this quantity should be zero. Having created Ĉγ̃ , which will be of size nb ×nb,
its cells can now be averaged over blocks of nint × nint. This allows us to estimate the
weights for each baseline and each time.

Mathematically, we retrace the steps of Section 3.2. In the absence of direction-
dependent effects, we define the residual visibilities as before, and use them to define
the normalised residual visibilities ρb:

rb =wbκbγ̃b + ǫ (3.43)

ρb = rb
kb

(3.44)

We then organise the residuals in cells:

rC =⎛⎜⎝
⋮

ρb∈C⋮
⎞⎟⎠ (3.45)

R = (⋯ rC ⋯) (3.46)

R corresponds to a matrix containing all the residual visibilities within one calibration
cell C, i.e. for b ∈ C where gC = const. It is therefore of size nintervals × nC , where nintervals

is the number of calibration intervals in the observation. Normalising the residual vis-
ibilities by kb allows us to recover the underlying covariance matrix by multiplying the
residual visibility matrix R with its Hermitian conjugate:

Ĉγ̃[b ∈ C, b′ ∈ C′] = (RHR) [C,C′] (3.47)
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Note that we have divided the noise term by the flux model κb, which can be very
small in some cells. As such, care must be taken not to cause the relative thermal noise
contribution to explode: those cells where this would occur are dominated by thermal
noise, and information on the covariance matrix cannot be recovered from them.

In this framework, we simply treat the index C as containing all the times and fre-
quencies, for individual baselines, corresponding to a single calibration interval. Ĉγ̃ is
then an estimate of the residual visibility covariance matrix.

3.4.2 Antenna-based Estimation

In the subsection above, we assumed that finding one solution per interval will give
us strong enough constraints to make the problem of estimating the covariance matrix
well-conditioned: this may not be true in all cases. Conditioning may then need to be
improved further: in this subsection, we show one way in which this can be done. There
are others, e.g. using the rank of the matrix itself to find better-conditioned estimates of
the covariance matrix at a lower resolution (i.e. a single estimate for a greater number
of cells). They will not be presented in this paper, but are a possible avenue future work
on this topic.

In estimating the covariance matrix for each baseline and each calibration cell, we are
severely limited by the small number of samples in each cell. One way to overcome this
problem is to find estimates for the variance of antenna gains, and use these to return
to the baseline variances. In this formalism, we extend C - the set of visibilities in a
calibration cell - to include all visibilities pointing at a single antenna at a given time.
Let us begin by writing an expression for the gain vector, which contains the gains for
all antennas and all calibration cells:

ĝc =⎛⎜⎝
⋮

ĝτ∈cp⋮
⎞⎟⎠ (3.48)

Ĝ = (⋯ ĝc ⋯) (3.49)

and the variance on each antenna in each calibration cell is then:

=E{ĝcĝHc } −E{ĝc}E{ĝc}H´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=gcg

H
c

(3.50)

As we can see, Eq. 3.50 is simply a vector form of Eq. 3.12. The residual gains of
Eq. 3.12 can now be understood as random samples of the covariance between the gains
for antennas p and q at a given time, assuming complete skymodel subtraction. We can
thus define the variance sample matrix as an estimate of the variance matrix :

V̂C =V̂ar{gc} (3.51)

=∑
τ∈C

(ĝτ ĝHτ − gτgHτ ) (3.52)
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We define the residual matrix as:

rτ =∑
d

sdKd,τ (ĝτ ĝHτ − gτgHτ )KH
d,τ + ǫ (3.53)

where we explicitly place ourselves in the limits of our formalism, i.e. that we do not
have direction-dependent gains. We now see that at the core of Eq. 3.53 lies V̂ĝτ

, where∑τ∈C V̂ĝτ
= V̂C . The K-matrix is defined as follows:

Kd,τ =⎛⎜⎝
kdp,τ 0

kdq,τ
0 ⋱

⎞⎟⎠ (3.54)

Since the residual matrix depends on the gains, we define the residual visibility vectors
as:

rC =⎛⎜⎝
⋮

rτ∈C⋮
⎞⎟⎠ (3.55)

R = (⋯ rc ⋯) (3.56)

rC corresponds to a matrix containing all the residual visibilities within one calibration
cell C, i.e. for τ ∈ C where gC = const. Let us define nC as the number of elements in each
calibration cell. The residual variance sample matrix can now be built by multiplying
the residual visibility matrix with its Hermitian conjugate:

⩔ =RHR (3.57)

Note that we do this because it allows us to turn a single noise realisation ǫ into a
statistical quantity σ. We can relate ⩔ to the variance of individual antenna gains:

⩔ =∑
τ∈C

⎛⎝∑d,d′ sdKd,τ (V̂C)H KH
d,τsd′Kd′,τ (V̂C)KH

d′,τ + Iσ2⎞⎠ (3.58)

To reach this point, in Eq. 3.23, we made the hypothesis that the sky brightness dis-
tribution is dominated by emission from well-separated point sources. Applying this
hypothesis again here, we can make the approximation that the cross-terms in the sum
over d, d′ average to zero: ∑d,d′≠d ≈ 0. We then have:

⩔≈∑
τ

(∑
d

s2dKd,τ (V̂C)H (V̂C)KH
d,τ + Iσ2) (3.59)

= (V̂C)2 ○
⎛⎜⎜⎜⎜⎜⎜⎝
∑
τ

∑
d

s2dkd,τk
H
d,τ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
def
= S

⎞⎟⎟⎟⎟⎟⎟⎠
+ nCIσ2 (3.60)

V̂C =
√S○−1 (⩔−nCIσ2) (3.61)

where ○ denotes the Hadamard or entrywise product and k = Diag{K}. Thus, ⩔ allows
us to estimate the variance of each antenna and for each calibration cell by using all the
visibilities pointing to that antenna within that calibration cell. With this information,
we can then rebuild the baseline-dependent matrix, having improved our sampling by a
factor of nant.
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constant covariance matrix if this matrix is zero everywhere outside of the diagonal. In
effect, the noise-map becomes flatter, but much broader.

3.6 Applying the Correction to Real Data

In this section, we show the effect of adaptive quality-based weighting on real data.
The dataset used in this section is a single sub-band from an 8-hour LOFAR observation
centred on the Extended Groth Strip (α=14:19:17.84,δ=52:49:26.49). The observation
was performed on August 28th, 2014. The subband includes 8 channels of width 24.414
kHz each, for a total bandwidth ranging from 150.2 to 150.4 MHz. The data have been
averaged in time to 1 data point per second. The data was calibrated using Wirtinger
calibration (see Tasse 2014; Smirnov & Tasse 2015, and references therein) and a sky
model consisting only of a nearby calibrator source, 3C295. A reference image (a cutout
of which is shown in Fig. 3.7a) was made by calibrating the data according to best
practice for LOFAR survey data: 1 calibration solution per 8 seconds and per 4 channels.
The residual data was then corrected by the gain solutions and imaged using Briggs
weighting (robust=0), pixel size of 1.5′′, and deconvolved using the default devoncolution
algorithm in DDFacet (Tasse et al. 2017).

The data was then time-averaged to create a new, 2.4 GB dataset with 1 data point per
8 seconds. Deliberately poor calibration was then performed on this dataset, solving for
1 calibration solution per 2 minutes (caeteris paribus). The resulting corrected residual
data was imaged using the same imaging parameters as the reference image, and a
cutout of the result is shown in Fig. 3.7b. As expected, the very long calibration
intervals introduce calibration artefacts in the image. The brightest sources are still
visible, but much of the fainter emission is buried under these artefacts. We are then in
a case where our residual visibilities are dominated by calibration error rather than sky
model incompleteness.

Weights were then calculated based on the badly-calibrated residual visibilities. Fig.
3.7c was made using the same visibilities as Fig. 3.7b and applying baseline-based,
sensitivity-optimal weight. Similarly, Fig. 3.7d used the poorly-calibrated residual visi-
bilities with the application of baseline-based, artefact-optimal weighting. These weights
are likely to be poorly-conditioned. In both cases, all other parameters were conserved.

Note that applying antenna-based sensitivity-optimal weighting to the badly-calibrated
data (shown in Fig. 3.8b) allows us to recover the reference image with only a very small
increase in rms (increased by a factor of 1.14). Further testing on complex field simula-
tions will be required to ascertain the usefulness of artefact-optimal weighting: it is likely
that it fails to correct the image fully due to the poor conditioning of the covariance
matrix used here.

The pixel histograms show us that the weights do not completely mitigate the poor cal-
ibration interval choice, but certainly give a dramatic improvement over the unweighted,
poorly-calibrated residuals. This is compatible with our statement that the weights give
similar residuals in the image with a dramatic improvement in time at some cost in

http://adsabs.harvard.edu/abs/2017arXiv171202078T
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3.7 Discussion

This chapter began by investigating the use of an algorithm inspired by “lucky imaging”
to improve images made using radio interferometric data. By investigating the statistics
of residual visibilities, we have made the following findings:

• A relationship between the statistics of residual visibilities and residual pixel values
(the “Cov-Cov relationship”).

• A description of the noise-map in the image plane as a constant variance level
modulated by a noise-PSF convolved with the sources in the field. This gives the
variance in the flux of the image as a function of distance from the sources in the
sky for a given calibration.

• An Adaptive Quality-Based weighting scheme, which reduces the noise in the image
(and the presence of calibration artefacts) by minimising either the constant noise
term or the noise-PSF.

While our results are not a panacea for poor calibration, they show that we can
not only improve images made with well-calibrated data, but also mitigate the worst
effects of poorly-calibrated visibilities in otherwise well-calibrated datasets. Provided
that the gain variability timescale is long enough at certain points of the observation,
we can effectively get images of similar quality using both the “standard” best-practice
calibration interval for LOFAR survey data (calibration solution interval of 8 seconds)
and a significantly larger solution interval of 2 minutes (frequency interval unchanged).
Of course, if no such stable interval exists, there will be no good intervals to upweigh,
and we will be left only with equally-poor data chunks. This means that, in the right
conditions, net pipeline time can be sped up by a factor of nearly three (by increasing
the size of the calibration solution intervals), at a slight cost in sensitivity. This increase
will be greater than what could be achieved with existing comparable methods such as
“clipping”. However, it does not aim to replace such methods, but rather to act as a
complement to them: clipping will be better at flagging a handful of bad visibilities,
while this weighting scheme will help push the general visibility statistics (and therefore
the image-plane statistics) towards a better distribution.

We emphasize that the adaptive quality-based weighting schemes work because the
noise-map describes the underlying noise distribution, of which calibration artefacts are
one single realisation. To fully characterise the artefacts, the correlation between differ-
ent pixels (i.e. off-diagonal elements of Cov{ỹ}) must be computed; this has not been
done in this thesis. Nevertheless, lesser constraints on the spatial distribution of arte-
facts can be found using only the diagonal elements of Cov{ỹ}. The weighting schemes
merely seek to minimise this spatial distribution as much as possible: the end result is
fewer artefacts, which can be distributed across a much larger area. This is the source
of the dramatic improvement from 3.7b to Fig. 3.7c. We have simply down-weighted
those visibilities where spurious signal was introduced by the calibration solutions, and
up-weighted those visibilities where such signal was lesser. Since this spurious signal is
the source of calibration artefacts, downweighting the associated visibilities reduces it
dramatically. The poor improvement from Fig. 3.7b to 3.7d is likely due to limits in the
conditioning of our estimation of the covariance matrix.
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The work presented here can be improved upon, notably by working on improving the
conditioning of our covariance matrix estimate: for real observations, it is impossible
to have more than one realization of each gain value for all antennas. By treating each
visibility within a calibration interval as a realization of the true distribution, we can
better estimate the covariance matrix per baseline, and thus reach a better estimate of
the variance in the image-plane. Of course, in practice, we can never access to the true,
underlying time-covariance matrix for each baseline. Significant hurdles remain:

• The impact of sky model incompleteness (since calibration requires a sky model)
is ignored in this paper; we start by assuming that we have a complete sky model.
In practice, of course, acquiring a complete sky model is often a key science goal
in and of itself. The impact of this hypothesis therefore ought to be investigated
in future work.

• The conditioning of our covariance matrix estimation remains a concern. By using
an antenna-based approach, we can improve conditioning by a factor of nant, but
this is only one approach among many. Further work is needed to investigate which
method, if any, proves optimal.

Once the conditioning issues of the artefact-optimal weights are resolved, a Briggs-type
implementation of the overall adaptive quality-based weighting scheme with a sliding
parameter could conceivably be implemented. As things stand, however, there is no
good reason to use the currently-existing artefact-optimal weighting scheme over the
well-conditioned sensitivity-optimal weighting scheme.
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4.1 Aims & Methodology

In this section, we describe the work done to make a wide-field image of the entire
LOFAR primary beam, centred on the Extended Groth Strip (EGS). A large-field, image
of this field has never yet been made at such low frequencies. Due to technical limitations,
the maximum attainable image size (in terms of number of pixels) will limit resolution to
about 5′′. As such, we do not use the international stations for this part of the project,
as their contribution would be averaged out within a single pixel. They are only used
in later parts of the project, when imaging 3C295 and calibrator sources in the field at
high resolutions. A more complete sky model can be created from this ∼ 5′′-resolution
image, and bright out-of-field sources can be subtracted from high-resolution images of
the EGS so that their sidelobe emission do not contaminate the final images. To achieve
this, we require direction-dependent calibration. Because we do not use the international
LOFAR stations at this point, we do not yet need a high-resolution model of 3C295.

We aim to achieve a sensitivity of a few hundreds of µJy using visibilities recorded
between 110 and 180 MHz. This corresponds to a sensitivity of ∼ 20 µJy at 1.4
GHz for typical synchrotron radio sources, which have spectral indices of α ∼ −0.7
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(where Sν ∝ να). Reaching this sensitivity over the full LOFAR primary beam requires
direction-dependent calibration. Our methodology is therefore to calibrate the full LO-
FAR bandwidth using the LOFAR Surveys KSP pipeline, which performs a facet-based
direction-dependent calibration. We then perform source analysis on the most inter-
esting objects in the field, using ancillary data from NVSS (NRAO VLA Sky Survey,
Condon et al. 1998), SDSS (Sloan Digital Sky Survey, York et al. 2000) and WISE
(Wright et al. 2010) surveys and cross-referenced using SIMBAD (Wenger et al. 2000).
Overlays for those sources will be shown in Section 4.4 in a “radio-source zoo” intended
to show the reader what sources a typical LOFAR extragalactic field contains.

4.2 Data Reduction

4.2.1 Data & Observation Properties

The dataset used for this PhD project is part of the LOFAR Surveys KSP, and consists
of a number of 8-hour pointings covering as much of the sky visible to LOFAR as possible.
We analyse a subset of this dataset, a single one of these pointings, an observation
performed on the 28th of August 2014 and centred on the EGS. It is an 8-hour-long
observation; there exist another four 8-hour pointings in the same direction, but these
data are not reduced in this project. We limit ourselves to analysing only the HBA
observation, meaning that we use 365 sub-bands which sample a total bandwidth of
110-182 MHz. We use all Core and Remote LOFAR stations. When imaging 3C295 and
other sources in the field with the international stations during Chapter 5 and Section 5.6,
we only use those which were online at the time (specifically the German stations 1-5
and 7, along with the Swedish and British stations).

The observation is centred on the EGS, and not on 3C295. This means that our calibra-
tor source is not at phase centre, which can potentially introduce problems. Thankfully,
new developments in imaging (Tasse et al. 2017) ensure that the direction-dependent
PSF (one of the problems introduced by an off-centre calibrator) is properly modeled
and corrected for. This means that direction-independent calibration will be exactly
correct in the direction of 3C295, and a good model of this source can be made.

The data was retrieved from the LOFAR Long-Term Archive, and is thus pre-processed
and flagged for RFI using the standard tools (NDPPP and AOFlagger; see van Diepen
& Dijkema 2018; Offringa 2010, respectively). The next step is therefore to calibrate
the data.

4.2.2 Reducing the Data

Reducing LOFAR data is a complex business for a number of reasons. When seeking
to make high-fidelity, wide-field images, the need to minimise decorrelation (cf. Sec-
tion 2.12.2) means that data can only be averaged with care. As visibilities are averaged
in time and frequency1, the relative contribution of signal picked up on longer baselines

1Provided that simple averaging is performed; the use of baseline-dependent window functions can
alleviate this effect to some extent

http://adsabs.harvard.edu/abs/1998AJ....115.1693C
http://adsabs.harvard.edu/abs/1998AJ....115.1693C
http://adsabs.harvard.edu/abs/2000AJ....120.1579Y
http://adsabs.harvard.edu/abs/2010AJ....140.1868W
http://adsabs.harvard.edu/abs/2000A&AS..143....9W
http://adsabs.harvard.edu/abs/2017arXiv171202078T
http://adsabs.harvard.edu/abs/2018ascl.soft04003V,2010ascl.soft10017O
http://adsabs.harvard.edu/abs/2018ascl.soft04003V,2010ascl.soft10017O
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from sources far from the observation centre is decreased. This translates to a blurring
of sources as distance from phase centre increases.

What’s more, Jones matrices can vary over short durations or show peculiar spec-
tral behaviour. Even if interferometric data were averaged massively using baseline-
dependent window functions, information on this underlying gain behaviour would be
lost - this means that averaging data to reduce its size (and associated reduction wall
time) is a risky proposition.

As such, we seek to reduce an eight-hour LOFAR HBA observation, averaged down to
1 measurement per second and per 24 kHz2. This corresponds to a total of 7 terabytes of
raw data: 2920 frequency measurements each second, for 28800 second, of 4 correlations,
for each baseline. The observation mode used was HBA DUAL INNER, in which all
Dutch stations operate with 24 of their 48 tiles, and these substations are then correlated
separately with the rest of the array. This was chosen because this configuration does not
negatively impact the array density of short baselines (allows for better sensitivity to,
and thus recovery of, diffuse emission), nor does it introduce the calibration difficulties
that non-uniform beams would cause.

The calibration strategy consists of a first round of direction-independent calibration
followed by direction-dependent self-calibration. In effect, we use the following RIME:

Vpq =Gp(∑
s

E spK spBsK
H
sqE

H
sq)GH

q (4.1)

which is the same as Eq. (2.30). Here, K sp = kspI. K sp therefore commutes with all
other Jones matrices, and we can write: K spK

H
sq = ks,pq To account for the faceting

explicitly, we can write:

Vpq =Gp∑
Ω

(EΩp (∑
s∈Ω

Bsks,pq)EH
Ωq)GH

q (4.2)

where Ω indices denote different facets, and s indices denote individual sources. Because
we make the approximation that the E term is constant within a facet, we directly write
EΩp rather than E sp. Each source in a given facet is assumed to have similar direction-
dependent gains, and their cumulative signal-to-noise allows for better estimations of this
direction-dependent gain than would be possible if solving for each source individually.
Thus:

Vpq =Gp∑
Ω

(∑
s∈Ω

EΩpBsks,pqE
H
Ωq)GH

q (4.3)

We begin with direction-independent calibration to find an estimate of Gp ∀p. This
first step is done because this part of the Jones chain is the same throughout the sky,
and its inverse solution can therefore be applied directly to the visibilities as follows:

Vcorr
pq = Ĝ−1p Vpq (ĜH

q )−1 (4.4)

2This is the bandwidth for each channel of our observation.
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= Ĝ−1p Gp∑
Ω

(∑
s∈Ω

EΩpBskΩ,pqE
H
sq)GH

q (ĜH

q )−1 (4.5)

In so doing, we assume that E sp = 1 ∀s, p when solving for Ĝ. In general, this is of
course invalid. For the calibrator source, however, we have E sp = 1 ∀p by construction.
Because we can choose the calibrator source, the presence of a sufficiently bright source
(in our case, an unresolved 3C295) will give extremely good estimations of G. We then

have Ĝ
−1
p Gp ∼ I, and

Vcorr
pq ∼∑

Ω

(∑
s∈Ω

EΩpBsks,pqE
H
Ωq) (4.6)

and direction-dependent calibration then consists of solving for ÊΩp = Ĝ−1p GpEΩp ∼ EΩp

for all facets – this means that, if there are errors in the direction-independent gain
solutions, they will bias all direction-dependent gain solutions.

Direction-independent calibration is done with Prefactor (van Weeren et al. 2016),
using an initial sky model generated using the VLSSr (VLA Low-frequency Sky Survey
- redux, Lane et al. 2012), WENSS (WEsterbork Northern Sky Survey Rengelink et al.
1997) and the NVSS (NRAO VLA Sky Survey, Condon et al. 1998), with 3C295 domi-
nating the model. This model also serves as the initial model for the direction-dependent
facet-based self-calibration on the corrected visibilities, performed using the killMS-DDF
pipeline (Shimwell et al. 2017). The quality-based weighting scheme discussed in Chap-
ter 3 was used to improve self-calibration convergence and the final image.

Direction-dependent calibration is required, as the field of view is large enough that
differential ionospheric errors are introduced as a function of direction: the signal from
different sources cross different sections of the ionosphere, and the actual gains for these
sources are thus different from the gains for the calibrator (see Eq. (4.6)). They must
thus be solved for individually. Assuming that the scale of ionospheric change is of the
order of a degree (which is what is observed empirically), then a facet-based approach will
give a “good enough” result for most of the field. The direction-dependent calibration
consisted of a physics-based approach, solving for XX and YY correlations along with a
rotation matrix simulating differential Faraday rotation. These gain solutions were then
smoothed in time and frequency to provide a time-independent, frequency-dependent
amplitude solution for each station. The full LOFAR bandwidth is large enough to
allow for Clock/TEC separation, which consists of explicitly modeling the two direction-
independent phenomena which dominate in the gain’s spectral structure. The clock
difference between stations3 introduces a phase error proportional to ν, while differences
in Total Electron Content (TEC) along the line of sight of different stations introduce
a phase error inversely proportional to ν. With sufficient spectral coverage, these two
effects can therefore be separated and modeled individually, thereby improving the phase
solution conditioning.

3Each station has a relatively-accurate clock associated with it, save for the Superterp stations which
all share a single clock. Like all clocks, they have finite accuracy, and desynchronisation errors thus creep
in over time.

http://adsabs.harvard.edu/abs/2016ApJS..223....2V
http://adsabs.harvard.edu/abs/2012RaSc...47.0K04L
http://adsabs.harvard.edu/abs/2012RaSc...47.0K04L
http://adsabs.harvard.edu/abs/1997A&AS..124..259R
http://adsabs.harvard.edu/abs/1997A&AS..124..259R
http://adsabs.harvard.edu/abs/1998AJ....115.1693C
http://adsabs.harvard.edu/abs/2017A&A...598A.104S


http://adsabs.harvard.edu/abs/awimager
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Direction-dependent self-calibration dramatically improves the noise level in the final
image, as shown in Fig. 4.2. Note that not only do artefacts centred on 3C295 (which
dominate the noise level in Fig. 4.2a) decrease dramatically, but many of the ”diffuse”
sources in the field also seem to disappear: this is because their associated artefacts also
decrease dramatically, and only physical emission remains.

These sources nevertheless remain in the field, as shown in Fig. 4.3. Note that the noise
level is not constant throughout the image: this is because the array is not uniformly
sensitive to the entire sky, but has a specific beam response. Correcting for this beam
response in the image-plane gives integrated flux rather than apparent flux.

4.3 Effect of Quality-based Weighting Scheme

Finally, the quality-based weighting scheme developed in Chapter 3 was applied through-
out this procedure. Noise maps made with and without the weighting scheme are shown
in Fig. 4.4. A few things are important to note in this comparison. Firstly, the weighting
schemes decrease the noise by a factor of ∼ 10: for the noise-map to be visible without
weighting schemes, the contrast of the weighted image needed to be pushed way low.
For reference, Fig. 4.4b is the same image (albeit without the facets shown explicitly)
as Fig. 4.1 - though its levels have been changed to better illustrate the effect of the
quality-based weighting scheme. This is why we can’t see much at all in that image:
it is the contrast between Fig. 4.4b and Fig. 4.4a which is relevant here. The noise
distribution is more clearly visible in that figure. Relatedly, by comparing that image
and Fig. 4.4a, we note that the unweighted image has a different noise per facet, unlike
the weighted image. This is due to the fact that a single visibility will be calibrated
better or worse depending on the signal-to-noise of individual facets, constrained by the
direction-independent calibration which uses the highest signal-to-noise available. It is
no coincidence that the facet containing 3C295 is the only one with a noise even re-
motely comparable to the weighted image’s: it is the facet with the best signal-to-noise.
This becomes significant when taking into account the fact that the last 2 hours of this
observation are much noisier than the first 6: the quality-based weights will decrease the
overall contribution of these two hours of data throughout the image, whereas not using
them will lead to different facets having stronger or lesser contributions from these noisy
visibilities - and therefore different noise levels. This is also why fringes can clearly be
seen in some facets: a single visibility (or a set of a few visibilities) are particularly badly-
calibrated, and the associated fringe dominates in the facet. Linking back to Chapter 3,
because we have a gain solution per visibility and per facet, we have one noise-PSF per
facet; this suggests that the quality-based weighting scheme could likely be extended to
a direction-dependent formalism.









https://ned.ipac.caltech.edu/
https://ned.ipac.caltech.edu/
http://simbad.u-strasbg.fr/simbad/
http://adsabs.harvard.edu/
http://adsabs.harvard.edu/
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Name RA [hms] Dec [dms] Likely Association LOFAR thumbnail

EGS-1 14:37:39.53 53:36:31.24 NVSS Radio Galaxy Fig. 4.6a
EGS-2 14:35:27.84 55:07:56.32 Radio Galaxy in Cluster Fig. 4.7a
EGS-3 14:29:34.13 54:43:46.93 Radio Galaxy in Cluster Fig. 4.8a
EGS-4 14:31:36.62 52:27:33.75 Radio galaxy, z = .292 Fig. 4.9a
EGS-5 14:29:48.89 51:10:30.52 Lobes matched individually Fig. 4.10a
EGS-6 14:26:04.09 51:29:35.07 One lobe matched individually Fig. 4.11a
EGS-7 14:17:55.58 50:08:01.75 Radio galaxy, z = .186 Fig. 4.12a
EGS-8 14:14:40.42 51:17:41.00 Radio galaxy, z unknown Fig. 4.13a
EGS-9 14:11:36.43 52:54:25.53 Galaxy cluster, z = .525 Fig. 4.14a
EGS-10 14:07:09.90 55:04:22.23 Galaxy cluster, z = .250 Fig. 4.15a
EGS-11 14:03:16.00 51:43:35.23 Lobes matched individually Fig. 4.16a
EGS-12 14:02:43.49 51:03:14.69 Radio Galaxy in Cluster Fig. 4.17a

Table 4.1. Table recapitulating the names, positions and likely associations of all 12 chosen
sources in the primary beam. These sources were primarily chosen because they had peculiar or
interesting diffuse emission. The associated LOFAR image thumbnails are also given for
reference.

For each source, we show four images: a cutout of the LOFAR image around the
source, an SDSS cutout of the same area with the LOFAR image superimposed as an
overlay, the same SDSS cutout with an NVSS image overlayed, and finally the same
SDSS image again with a WISE image overlay. The first image aims to show why
the source was selected. The second shows optical counterparts to LOFAR emission.
The third serves to check whether we pick up similar structure and emission in NVSS
images as the LOFAR wide-field image. Note that the NVSS images are at a much
lower resolution, but can be a useful way to ensure that we are not choosing artefacts or
spurious emission as sources to investigate. Finally, the WISE overlay attempts to see
whether infrared emission can be associated to these sources. Note that the sensitivity
of SDSS images are not homogeneous, as not all patches of the sky have received the
same coverage.

4.4.2 Images & Cross-matching





http://adsabs.harvard.edu/abs/2013yCat.5139....0A
http://adsabs.harvard.edu/abs/1998AJ....115.1693C
http://simbad.u-strasbg.fr/simbad/sim-id?Ident=%40499314&Name=2MASX%20J14352846%2b5507519&submit=submit
http://simbad.u-strasbg.fr/simbad/sim-id?Ident=%40499314&Name=2MASX%20J14352846%2b5507519&submit=submit
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see that the emission can be successfully matched to no less than two individual NVSS
sources. In other words, if those NVSS sources are linked to the LOFAR source - and
given their spatial distribution, they almost certainly are - then they are two components
of a single, deeper structure. The infrared image tells us very little.

Note that an optical source lies along the line linking the two diffuse poles of EGS-3:
this source is SDSS J142933.44+544335.2, the brightest galaxy in a cluster. If EGS-3
is a radio galaxy with jet emission, which it almost certainly is (the rough symmetry
of the two “cotton balls” on either side of a “rod”-like component strongly indicate
that this is a very warped jet), then its optical emission must lie somewhere within the
“rod”. That this emission would be associated with violent interactions between jet-
accelerated particles and ambiant inter-cluster and intra-cluster media seems likely: it
would explain the complex, turbulent distribution of emission and the strong “warping”
of the jet structure into the whirls and eddies seen in Fig. 4.8a. EGS-3 can therefore be
fairly unambiguously associated to a galaxy cluster.



http://adsabs.harvard.edu/abs/2010ApJ...723.1119L
http://adsabs.harvard.edu/abs/2010ApJ...723.1119L


http://adsabs.harvard.edu/abs/1997ApJ...475..479W
http://adsabs.harvard.edu/abs/1998AJ....115.1693C


http://adsabs.harvard.edu/abs/1998AJ....115.1693C


http://adsabs.harvard.edu/abs/2014ApJ...793...82V


http://adsabs.harvard.edu/abs/2011A&A...530A..60M
http://adsabs.harvard.edu/abs/2011A&A...530A..60M
http://adsabs.harvard.edu/abs/2009MNRAS.395..255M


http://adsabs.harvard.edu/abs/2011ApJ...734...68W


http://adsabs.harvard.edu/abs/2009yCat.2294....0A
http://adsabs.harvard.edu/abs/2012MNRAS.421.1569B


http://adsabs.harvard.edu/abs/1998AJ....115.1693C
http://adsabs.harvard.edu/abs/1996AJ....111.1945D
http://adsabs.harvard.edu/abs/1996AJ....111.1945D
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4.5 Discussion

The work done in this section had the primary goal of creating a decent model of the
sky seen by LOFAR’s primary beam. To do this, a wide-field, 6′′-resolution image of
the fully primary beam was made: this image makes no use of the LOFAR international
stations due to technical limitations. Using PyBDSM (Mohan & Rafferty 2015), a sky
model of the full field of view was extracted from the aforementioned image made after
a few rounds of direction-dependent self-calibration.

However, the scientific value of this image is not limited to its use in imaging the
Extended Groth Strip using international LOFAR. Much of the image will not be recre-
ated using the international stations, in part due to computational constraints (long
run time for such a large task) and in part due to technical limitations (performing
direction-dependent calibration using international LOFAR would likely require the use
of techniques such as fringe-fitting, which are as-of-yet unimplemented in the DDF-kMS
pipeline).

Further work on this image is of course both possible and highly desirable: the work
done here was artisanal, hand-picking sources and associating them individually to equiv-
alents in other bands. Modern survey work, however, requires automation. Applying
Bayesian fitting methods to find most likely counterparts to all the sources extracted
in the field could yield useful information, as we would then have access to population
statistics. However, doing this would require running yet more self-calibration to remove
remaining artefacts, whereas our primary aim is to produce a high-resolution map of the
Extended Groth Strip, which has the richest multi-frequency coverage and is therefore
the most likely to give effective matches to all the sources in the field. We therefore
do not proceed to do this work on the low-resolution, wide-field image of the Extended
Groth Strip and its neighbourhood, but are likely to return to the data to do this at a
later date.

http://adsabs.harvard.edu/abs/2015ascl.soft02007M
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5.1 Aims & Methodology

Our aim in this section is to create a high-resolution (0.1′′) model of 3C295, which did
not exist at LOFAR HBA frequencies when this project began. This means creating a
model that will allow us to find good phase-calibration solutions for LOFAR international
baselines, and thus use the international stations to create a high-resolution image of the
EGS. Because we only solve for gains in the direction of 3C295, we must then estimate
the impact of directional gain errors over the rest of the field.

One major constraint in this project is that 3C295 is fully resolved at these resolutions,
which makes deconvolution difficult. As such, we consistently use a uv-cut of 100km
throughout our imaging in this section, to limit the impact of diffuse emission (which is
very hard to deconvolve properly - poor deconvolution introduces artefacts in the restored
image) on our images. This choice of uv-cut is a compromise between removing diffuse
emission in the images and providing sufficiently good conditioning to the calibration
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inverse problem1. Provided that the phases of short-baseline gains do not evolve over
the self-calibration procedure, then the information on spatial brightness distribution
associated to these spatial fringes is not lost.

Another constraint is that the model needs to be applicable for the full LOFAR band-
width. We therefore select 6 sub-bands out of the total LOFAR HBA bandwidth, evenly
spread throughout the bandwidth as shown in Fig. 5.1. This approach allows us to ben-
efit from the improved conditioning of high-frequency data (since the diffraction limit on
angular resolution is proportional to frequency) throughout the LOFAR bandwidth. By
starting calibration with a model extracted from a VLA observation of 3C295 with a sim-
ilar angular resolution, self-calibrating over the initial 6 subbands, then self-calibrating
once with 60 subbands (centred on the initial 6) and then the full bandwidth, we expect
to achieve good signal-to-noise. Then, we bootstrap the model such that the spectral
index of its integrated flux is compatible with Scaife & Heald (2012).

The resulting model is expected to be reliable enough to calibrate our Groth Strip
data for the full LOFAR array and the entire HBA bandwidth. It would theoretically
be possible to use the direction-dependent gain solutions from Chapter 4 to improve our
images, but these are only available for core and remote stations, and not international
stations - direction-dependent effects are therefore expected to still arise in the final
images due to this. As such, we focus on direction-independent calibration from this
point on. Quantifying the impact of the resulting directional gain errors is the subject
of Section 5.6.

5.2 Data Reduction

5.2.1 Our RIME

As outlined in Section 2.7, calibration is the process of solving for Jones matrices,
which are associated to individual antennas. Here, the only source in our model (the
source that dominates, by far, over other sources in the field) is 3C295; we can thus
limit ourselves to direction-independent calibration, which is equivalent to performing
direction-dependent calibration in the direction of 3C295 only. The associated RIME
can be written as:

Vν
pq =Gν

p ( ∑
s=3C295

E ν
spK

ν
spB (K ν

sq)H (E ν
sq)H)(Gν

q)H (5.1)

=Gν
pE

ν
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ν
3C295ks,pq (E ν

3C295,qG
ν
q)H (5.2)

= J ν
3C295,pB

ν
3C295ks,pq (J ν

3C295,q)H (5.3)

where we mute the time-dependence of all terms, and explicitly model the LOFAR beam
during both calibration and imaging, so as to ensure that the true sensitivity of each
baseline to this out-of-phase-centre calibrator is taken into account appropriately.

1The more uncorrupted (i.e. flagged for RFI) visibilities are available, the better the estimation of
gain solutions - see Smirnov & Tasse (2015) for the demonstration.

http://adsabs.harvard.edu/abs/arse
http://adsabs.harvard.edu/abs/2015MNRAS.449.2668S
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calibration (after the successive self-calibration passes). Similarly, there is little apparent
change in phase structure (note that the phase wraps from −π to π). It is important
to note, however, that there is a difference in the level of the amplitude curve: in the
first pass of calibration, the average amplitude value is generally higher than in the last
pass of calibration. This is expected behaviour, as there is less diffuse emission in the
uv-cut imaging model of 3C295 than in the initial calibration model. This is equivalent
to applying a choice of weighting scheme which down-weighs diffuse emission (i.e. a form
of uniform weighting).

As for the international station gains, they are shown below for three of the seven
international stations used for our observation5, in Figs. 5.8 to 5.10. We show only one
of the four German stations. As we can see, while structure very clearly remains in
some of these amplitude curves (notable in the last two hours, e.g. Fig. 5.8b), some of
the structure disappears from these amplitude curves. It should be noted that the last
two hours of the observation are generally much noisier than the first 6; the last quarter
of these plots show this. Quality-based weighting schemes were found to compensate
for this effect quite well, and minimise the associated image deterioration6. Note that
the phase wraps extremely fast in the international station gain plots: this is because
phase is calculated relative to CS001HBA0, the first antenna in our array. Because the
international stations are much farther away from this core station than other core or
remote stations are, we expect the associated phase solutions to wrap faster.

Spectral behaviour of gain solutions

So far, we have shown the gain solutions for one subband, out of a total of 324 used
subbands. The spectral behaviour of the amplitude and phase solutions can give us
insight into whether we are absorbing true flux or calibration artefacts into our model:
if our calibration model becomes more accurate to the true underlying flux, we expect
e.g. the phase of core station calibration solutions to remain the same (as we are im-
proving high-resolution details of our model) while our international station calibration
solutions would become flatter in amplitude. Similarly, we expect to see large-scale
frequency-dependent behaviour in the phase solutions of international stations, with
smaller fluctuations around this behaviour: the effect of differential TEC, ionospheric
turbulence, etc. Indeed, while the core stations (and, to a lesser extent, the remote
stations) can be approximated as having the “same ionosphere” above them, this is not
the case for international stations: this is a major source of the difficulties in calibrating
these stations. As such, for international stations, we expect to see complex structure in
the phase gain solutions, characteristic of the differences between the local ionosphere
above the core and the international stations. For core stations, we only expect to
see structure characteristic of scintillation (regular stripes with no frequency-dependent
structure) in the phase gain solutions7.

5Namely DE602, SE607 and UK608 - these are a German, Swedish and British station respectively.
6The evidence for this is in the previous chapter, as the test data is the same as used here; nevertheless,

an extra test was carried out in the context of these calibration and imaging tests for the sake of
completeness, and found that quality-based weighting schemes resulted in better results than simply
flagging the last 2 hours.

7This approach was taken due to time constraints: verifying that our model was compatible with
the closure phases and amplitudes would have been a better test to perform, but would also likely have



























5.4. DISCUSSION 127

5.4 Discussion

The plots of pre-self-calibration gain amplitude and phases as a function of frequency
are a strong indicator that the gain structure due to unmodeled flux is dominated by
a strong, bright source (ring-like structure in e.g. Fig. 5.16). However, the remaining
presence of diffuse ring-like structure, even after the self-calibration process, for the
international station gain plots is also a strong indicator that we do not recover all of
the true sky brightness distribution in the model, as some of the flux is still clearly
absorbed into the gains. The most straightforward way to improve on this would be
to repeat the procedure while including a full low-resolution sky model: while 3C295
is by far the brightest source in the field at a recorded ∼86.9 Jy in the catalog of the
sources in our wide-field image (Table 4.1), it is far from the only contributor (the
net flux in the field, according to that same catalog, is 531.1 Jy). Since calibration
artefacts are introduced by both incomplete sky model and poor calibration inverse
problem conditioning, improving one of these two conditions would likely result in a net
improvement of the model.

Because of time/computational constraints, we used calibration solution intervals of
8 channels and 1 minute in time and frequency respectively. Given the brightness of
3C295, this was clearly not justified on the basis of signal-to-noise; it did, however,
mean that a single pass of self-calibration on one subband took 10 minutes rather than
the hour and a half with solution intervals of 4 channels and 8 seconds in time and
frequency respectively (factor of 9 improvement in time). With the advent of new tools
like cubical (Kenyon et al. 2018a,b), a much faster direction-independent implementation
of the algorithm used for killMS8 which was in development throughout my PhD, it is
likely possible to dramatically speed the calibration part of the self-calibration loop
(the imaging time constraint would dominate as more subbands are added). Because of
the use of quality-based weighting schemes, it is unlikely that a dramatic improvement
would be seen when self-calibrating over a few subbands, as the relative contribution
of poorly-calibrated visibilities would be down-weighted by the quality-based weighting
scheme: as more and more data is added, however, the relative contribution of the
artefacts introduced by the choice of calibration intervals would likely begin to overcome
the purely thermal noise in the images, which is expected to decrease as more data is
added.

All the same, this project served as a useful exercise in both developing a good working
methodology and in testing calibration strategies for international LOFAR datasets. A
lot of the work which went into this project led to dead ends, in the sense that they gave
no directly useful results - but they still proved to be an extremely helpful context in
which to understand how to improve the LOFAR pipeline. In particular, gain smoothing9

has shown promising result on LOTSS images, but was not used in this project because of
the full-Jones solutions: properly implementing this smoothing in a framework capable
of accounting for polarisation could provide the kind of regularisation that our gain

8In the context of this work, it would literally be an equivalent but faster implementation of exactly
the same algorithm.

9i.e. the application of a smoothing operation in gain phase and amplitude, justified by the fact that
they are expected to be smooth and so jagged behaviour is likely erroneous.

http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1165K,2018ascl.soft05031K
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solutions need.
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5.5 Testing Directional Gain Errors - Aims & Methodol-

ogy

Having made both a wide-field image of the EGS without international stations and
a high-resolution model of the brightest source in the LOFAR primary beam, 3C295,
in order to calibrate the international LOFAR station, we can now begin to proceed to
imaging the EGS with the international LOFAR stations. Before we do so, however,
we must quantify whether the direction-independent calibration on the international
baselines is sufficient when imaging the EGS. We expect to see some direction-dependent
effects arising in the neighbourhood of 3C295, and also expect that the SNR in the
field will be insufficient to perform direction-dependent calibration on the international
stations: are these direction-dependent effect so severe that it is not worth imaging the
EGS?

In other words, we seek to estimate whether, in practice, the EGS can, in part or in full,
be placed on the same facet as 3C295 - and with what loss in accuracy to directional gain
errors. The first direction-dependent effect we must take into account is decorrelation,
also known as smearing (see Section 2.12). This effect causes signal loss on the longest
baselines for sources far from the phase centre. To do this, we make use of the LOFAR
Long-Baseline Calibrator Survey (LBCS, Jackson et al. 2016). This is a survey of suitable
compact sources to use as calibrators for international LOFAR baselines: these sources
are expected to consist mainly of self-absorbed synchrotron radio cores. The survey’s
source selection procedure is as follows: it selects all sources identified as single sources
in WENSS (Rengelink et al. 1997). Then, based on the work of Moldón et al. (2015),
which found that the main predictors for compact structure were a high total WENSS
flux density and a flat low-frequency spectrum (in line with the expectation above), a
selection was made on the basis of spectral index and WENSS flux density for all these
sources.

# RA [hms] Dec [dms] Dist. from EGS [deg.] Dist. from 3C295 [deg.]

1 14:30:18.72 52:17:29.80 2.041 2.904
2 14:19:44.44 54:23:04.58 1.928 2.517
3 14:21:20.05 53:03:46.00 0.864 1.743
4 14:21:09.41 51:22:32.46 1.294 1.728
5 14:11:50.32 52:49:02.66 0.844 0.619
6 14:11:20.23 52:12:04.30 0.915 0.000
7 14:08:07.00 52:55:11.36 1.409 0.869
8 14:08:09.76 52:44:46.56 1.354 0.680

Table 5.2. Table giving the positions of our 8 LBCS sources and their distance from both the
centre of the EGS and 3C295.

A significant preliminary test is therefore to check that we do in fact see any of the
LBCS sources. However, this is not the end of the problem: decorrelation causes flux
from a source to be “smeared” (hence its other name) around the source. The DDFacet
suite can account for this effect by modelling the direction-dependent PSF, i.e. a PSF

http://adsabs.harvard.edu/abs/2016A&A...595A..86J
http://adsabs.harvard.edu/abs/1997A&AS..124..259R
http://adsabs.harvard.edu/abs/2015A&A...574A..73M
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as a function of direction is called directional gain errors, as it is caused by direction-
dependent effects.

Assuming that direction-dependent effects (beam, ionosphere) are relatively smooth
and dependent only on distance from 3C295, we attempt to characterise the impact
of directional gain errors and their associated image-plane DDEs on various calibrator
sources around 3C295 and the EGS.

We select 8 LBCS sources, which are all the “good” sources within 5 degrees of the
centre of the EGS. Fig. 5.20 shows the position of these calibrator sources with respect
to the EGS. If we compare Fig. 5.20 and Fig. 4.5, which are the same image at different
levels of contrast, we can immediately see that the EGS lies in two separate facets of the
direction-dependent calibration we performed without the international baselines: these
are the eastern neighours of the 3C295 facet. Neither of these EGS facets contains a
LBCS source (indeed, if they did, our work would have perhaps been easier); however,
nearby facets do contain one or multiple LBCS calibrators. If the effect of directional
gain errors for these sources is comparable to those for the EGS facets, then we can
estimate their impact on an eventual high-resolution image of the EGS.

5.6 Testing Directional Gain Errors - LBCS Sources in the

Primary Beam

The LBCS sources were chosen automatically using a routine written by Leah Mora-
bitoh and shared in a personal communication. This was done in early 2017. Only
the brightest reliable sources were kept, provided they had a good reliability factor (the
LBCS catalog includes a reliability factor for each source; we have not verified that
these reliability factors have not changed since). We thus had 8 LBCS sources around
the field, described in Table 5.2. Their position on the sky is shown in Fig. 5.20. They
will henceforth be referred to as LBCS1, LBCS2, and so on - note that LBCS6 is actually
3C295.

For each LBCS source, we create an image made using the same data and imaging
parameters as our final 3C295 self-calibration pass. This means that we simply use
our final restored image of 3C295 for LBCS6, but make a new image (with the same
parameters except the direction) for each other LBCS source. We then show overlays
of the results onto our wide-field image of the full primary beam. Note that both the
international LOFAR images (∼ .4′′ resolution) and the widefield images (∼ 20′′) are
oversampled: their pixel sizes are 0.1′′/pixel and 5′′/pixel respectively.

Because we want to show both the impact of DDEs and the positions of the sources,
we show two different overlays for each source. One starts at 5σ and the other starts at
15σ; both increase exponentially up to the maximum value in the image. The first thus
gives more information on artefact structure around the sources, while the second gives
more information on source structure itself. The σ-level cutoffs were chosen arbitrarily.
Note that the σ is calculated using random pixels in the image: it is therefore not the
“local RMS” used in e.g. PyBDSM extraction (which will be higher, as it includes
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The most encouraging result shown above, however, is for LBCS4: this source appear
to be only very slightly affected by directional gain errors. Although LBCS3 seems
affected by directional gain errors, it is not so affected that it is smeared out completely:
we can thus expect there to still be signal at that distance from the calibrator and
phase centre. Since the EGS lies between these two calibrator sources and 3C295, this is
extremely positive. Similarly, the fact that LBCS4 resolves into two separate sources (as
does LBCS1, for that matter) would indicate that even neighbouring bright sources do
resolve properly - this is not a rigorous test, but it is a fortunate serendipitous observation
to be able to make.
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We conclude this thesis manuscript with an overview of the results achieved over the
course of this doctorate and a discussion of individual items in this larger context. We
follow the structure of the manuscript. These conclusions & discussions are intended to
supplement the conclusions & discussions at the end of each chapter with a synthetic
overview of the results of this doctoral thesis.

The projects undergone as part of this doctoral degree have strong opportunities for
future work, both in terms of the algorithmic work & its application. These will be
outlined in detail in the relevant section. It is worth immediately pointing out that
only preliminary results were obtained for the application to data by the end of the
doctorate’s three-year period. These preliminary results are shown in this manuscript,
and while they are not of science-grade quality (no astrometric corrections, proper flux
bootstrapping, strategy likely needs revisiting for best results) they are nevertheless
useful markers of the wealth of information available in the EGS.
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6.1 Algorithmic Work

One of the aims of this PhD was to develop new interferometric tools & techniques
and to apply them to LOFAR data. This was arguably accomplished successfully:

• We found a relationship between the statistics of residual visibilities and residual
image-plane pixel values (the “Cov-Cov relationship”).

• From this relationship, we see that calibration artefacts are directly caused

by correlated calibration gain errors. In the absence of correlated calibration
errors, no artefacts are present.

• This allowed for a description of the noise-map in the image plane as a constant
variance level modulated by a noise-PSF convolved with the sources in the field.

• This led to the development of an adaptive, quality-based weighting scheme, which
reduces the noise in the image (and the presence of calibration artefacts) by min-
imising either the constant noise term or the noise-PSF.

• One version of this adaptive, quality-based weighting scheme was successfully ap-
plied throughout our data reduction & wide-field imaging. Other versions are
possible, but at the time of writing suffer from issues due to poor conditioning:
the development & deployment of robust versions of these will be the subject of
future work.

6.1.1 The Cov-Cov Relationship

The theoretical framework of the cov-cov relationship, which links the variance and
covariance in the visibilities to the variance and covariance between pixels in images
made with these visibilities, was shown to hold on real data by improving images made
with both direction-independent and direction-dependent calibration. This relationship
tells us that the variance in images made from interferometric data is the result of two
contributions:

Cov{ỹ} =∑
d

⎛⎝∑b φd
bb ([Cov{γ̃}]bb + w2

bσ
2

φbb

)Cb
+ ∑

b,b′≠b

φd
bb′[Cov{γ̃}]bb′F bb′

⎞⎠ (6.1)

which is a repeat of Eq. (3.25). The first term above, which corresponds to the sum
over b, can be thought of as “thermal” (i.e. uncorrelated) noise in the visibilities, giving
rise to a constant variance throughout the image. The second, which corresponds to
sky brightness distribution absorbed into the gain solutions - i.e. correlated noise in the
calibration residual visibilities - gives rise to what we call a noise-PSF: a distinctive shape
which is convolved with every source in the field (in the case where the true gains are
direction-independent), and which gives the distribution function of which calibration
artefacts are a single realisation. It corresponds to the sum over b, b′ ≠ b above - i.e.
to those cells of the visibility covariance matrix which are off-diagonal, or correlations
between residual visibilities.
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In Eq. (6.1), Cov{ỹ} is the covariance matrix of the residual image pixel values, and
Cov{γ̃} is the covariance matrix of the residual visibilities, which is of size Nb × Nb.[Cov{γ̃}]bb′ is a scalar quantity equivalent to the value of the covariance matrix at
coordinates b, b′. φd

bb′ corresponds to the product of the weighted1 visibilities, associated
to a source in direction d2, as seen by baselines b and b′. φd

bb is therefore the square of
the magnitude3 of this quantity for a single baseline and direction. σ2 is the thermal
noise in the visibilities, which is assumed to be constant for all of them. Finally, Cb
is the image-space fringe corresponding to a single baseline, while F bb′ is slightly too
complex to summarise quickly, but its diagonal maps a single visibility covariance value
to a δuδv fringe, thus determing the artefact distribution around sources in the field.

Taking the diagonal the matrices shown above gives the “var-var” relationship, which
gives the variance map of the image as a function of the variance in the visibilities.
If the visibility covariance matrix is diagonal (i.e. we have no correlated noise in the
visibilities), then the second term will be null, and the variance of each pixel in the
image-plane will be a constant value (since Diag{Cb} = I∀b). This is an extremely
strong prediction, but one that was validated through simulations: calibration artefacts
in interferometric images are due only to correlated noise in the visibilities. In the
absence of such correlated noise, there will be no calibration artefacts in an image.

Note that this relationship also confirms, among other things, that “thermal” noise
in interferometric images is actually correlated between pixels, and that this correlation
is given exactly by the PSF. This is an expected result, and can only be corrected by
fully-deconvolving the PSF from an interferometric image4. If this is done, then an
image made using visibilities containing only uncorrelated noise will itself have noise
uncorrelated between pixels, but will not otherwise.

6.1.2 Mapping the variance of images made with interferometric data

This relationship was strongly tested through simulations, verifying the noise-PSF
behaviour of calibration artefacts in Fig. 3.5, reproduced in Fig. 6.1. The visibilities for
three point sources were simulated for a single uv-track and frequency, and these were
multiplied by multiple realisations of time-correlated residual gains. By taking the DFT
of each realisation to create dirty maps of this simulated residual map, and calculating
the variance for each pixel across our realisations to find the variance map, we see that we
do in fact see a PSF-like behaviour in the noise-map, in agreement with our predictions.

1e.g. Briggs-weighted, quality-weighted, etc
2i.e. the visibility which the interferometer would recore if this was the only source in the sky.
3i.e. the product of the visibility and its own complex conjugate.
4Here, when talking about “fully deconvolving the PSF from an interferometric image”, we mean

to systematically deconvolve the PSF from each pixel in the image simultaneously. This would be an
impractically computationally expensive task, and is therefore not a realistic proposal. Regardless, the
point being made here is that the noise of images made using visibilities with purely thermal noise is
correlated between pixels - even though the noise is not correlated between visibilities.
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calibration with a strong imaging uv-cut;

• Preliminary investigation of the impact of directional gain errors from direction-
independent calibration using the model of 3C295 obtained from the step above;

• Creating a high-resolution image of the EGS after subtracting all sources from the
widefield image & the high-resolution model of 3C295.

Of these four points, only the first three were successfully carried out. We therefore
limit our discussion to the first three points, treating the last as the subject for future
work.

6.2.1 Imaging the LOFAR primary beam

We begin by creating a decent model of the sky seen by LOFAR’s primary beam.
To do this, a wide-field, 6′′-resolution image of the fully primary beam was made: this
image makes no use of the LOFAR international stations due to technical limitations
(memory use). Using PyBDSF (Mohan & Rafferty 2015), this model was extracted from
an image made after a few rounds of direction-dependent self-calibration. This direction-
dependent self-calibration was done using the killMS/DDF pipeline, which fully models
direction-dependent errors due to decorrelation: its application to data is one of the
novel contributions of this work.

This model is still in a very preliminary stage: astrometric errors have not been
corrected for, nor has integrated flux bootstrapping been performed. As such, this
image (and the model extracted from it) is not of science-grade quality. Even so, and
preliminary as it is, it is sensitive and wide-field enough to pick up a good number of
interesting diffuse sources. 12 of these were selected to form a so-called “primary beam
galactic zoo” of sources, with the aim of showing the reader the contents of a typical
LOFAR deep extragalactic field. They were then matched to NVSS, NVSS & WISE
images to find counterparts: the results are shown in Table 6.1, which is a repeat of
Table 4.1.

The true interest of modeling these sources at the wide-field resolution achieved is
that will allow us to subtract (most of) the emission associated with them when imaging
the EGS at high resolution. This, in turns, will allow us to image the EGS itself with-
out pollution from the sidelobes of nearby bright sources. Note that there is nothing
inherently special about this field compared to LOTSS fields (Shimwell et al. 2017): its
interest is in what it can allow us to achieve with the EGS.

6.2.2 Imaging the EGS with LOFAR-VLBI

Using 3C295 to self-calibrate the international stations

Over the course of this doctoral thesis, I was able to develop an extensive familiarity
with the problem of interferometry. Specifically, the work done on self-calibrating 3C295

http://adsabs.harvard.edu/abs/2015ascl.soft02007M
http://adsabs.harvard.edu/abs/2017A&A...598A.104S
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Name RA [hms] Dec [dms] Likely Association LOFAR thumbnail

EGS-1 14:37:39.53 53:36:31.24 NVSS Radio Galaxy Fig. 4.6a
EGS-2 14:35:27.84 55:07:56.32 Radio Galaxy in Cluster Fig. 4.7a
EGS-3 14:29:34.13 54:43:46.93 Radio Galaxy in Cluster Fig. 4.8a
EGS-4 14:31:36.62 52:27:33.75 Radio galaxy, z = .292 Fig. 4.9a
EGS-5 14:29:48.89 51:10:30.52 Lobes matched individually Fig. 4.10a
EGS-6 14:26:04.09 51:29:35.07 One lobe matched individually Fig. 4.11a
EGS-7 14:17:55.58 50:08:01.75 Radio galaxy, z = .186 Fig. 4.12a
EGS-8 14:14:40.42 51:17:41.00 Radio galaxy, z unknown Fig. 4.13a
EGS-9 14:11:36.43 52:54:25.53 Galaxy cluster, z = .525 Fig. 4.14a
EGS-10 14:07:09.90 55:04:22.23 Galaxy cluster, z = .250 Fig. 4.15a
EGS-11 14:03:16.00 51:43:35.23 Lobes matched individually Fig. 4.16a
EGS-12 14:02:43.49 51:03:14.69 Radio Galaxy in Cluster Fig. 4.17a

Table 6.1. Table recapitulating the names, positions and likely associations of all 12 chosen
sources in the primary beam. These sources were primarily chosen because they had peculiar or
interesting diffuse emission. The associated LOFAR image thumbnails are also given for
reference.

shows that, while we seem to converge towards the same model regardless of initial con-
ditions (2 point sources, full VLA model, 1 point source5), this apparent convergence is
very slow. As discussed in Section 2.3, the problem of imaging is convex (if not necessar-
ily well-conditioned) but the problem of calibration is not fully convex: this introduces
the possibility of a net non-convexity in the problem of interferometry. Regardless of
whether my experience was that of non-convexity or of poor conditioning leading to
impractically slow convergence time, the solution is to regularise.

One obvious avenue of inquiry likely to yield results would therefore be in the ap-
plication of amplitude & phase smoothing on our gain solutions: this corresponds to a
regularisation of the calibration inverse problem, improving its conditioning by applying
a prior which encourages smooth gain solutions. This prior is physically-motivated, in
the sense that we expect the true, underlying gain solutions to be smooth, and so jagged
structure in the gains can generally be assimilated to source flux being absorbed into
the gain solutions. The tools to perform this smoothing are already developed and being
tested on LOTTS DR2 by Cyril Tasse, Tim Shimwell, and Martin Hardcastle. They were
not applied here because we used full-Jones calibration solutions (which were found to
give better gain solutions with our available SNR early on), whereas the DR2 pipeline
solves for scalar gain solutions. Once the smoothing framework is generalised to polari-
sation, however, its application could result in dramatic improvements in international
station gain solutions.

This work is complementary to that of the LOFAR long-baseline team, and relies
heavily on their research (e.g. Jackson et al. 2016). In essence, we rely on the fact

5This initial model was tested, but not followed through to the same extent as the 2-point-source
initial model once it became clear that it was both biased away from the ground truth compared to the
other two (as we could expect), but that it seemed to converge - albeit very slowly - towards the same
ground truth as them.

http://adsabs.harvard.edu/abs/2016A&A...595A..86J
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that 3C295 is a bright, dominant source in the EGS primary beam: assuming that the
overall contribution from fainter sources in the field (which peak at ∼ 4Jy, to 3C295’s∼ 99Jy at that frequency) is negligible, then self-calibration on 3C295 ought to yield
both an improved model of that source and good gain solutions for the international
LOFAR stations. One point of originality of this work is that we consistently take into
account direction-dependent errors due to decorrelation (but not DDEs) - this has only
become possible recently, with the appropriate modeling of decorrelation both in imaging
(through the direction-dependent PSF) and calibration (by modeling the decorrelation
of model sources properly when creating model visibilities). This removes one of the
sources of bias in solving the overlal problem of interferometry, and allows calibrator
sources outside phase centre to be used reliably.

As it turns out, this was a bold assumption to make: the model resulting from our
self-calibration is still rife with calibration artefacts. Based on our understanding of the
cov-cov relationship, many of these can be understood as being due to sky brightness
being absorbed into the gain solutions: gain inspection supports this theory, showing
unexpected and correlated structure in our international station gain amplitude solu-
tions.

Other avenues remain open to go beyond this issue: using the full low-resolution
primary beam sky model from Chapter 4 could be one way to improve our images.
However, we would still find ourselves with much unmodeled emission on the baselines
including an international station. Another possible avenue of improvement would be
through the use the EHT-imager tools: these rely on fitting model data to closure
quantities (amplitude & phase), which are unaffected by antenna-based errors. This is
currently being tested by the long baseline working group.

All these avenues of research are, of course, only possible because we find ourselves in
very specific circumstances: the presence of a very bright resolved source in a famous
(and therefore relatively well-known) extragalactic field. As such, we have the freedom
to explore methods which supplement those of the LBCS team, who are more strongly
constrained in that their aim is to provide a solid, reliable catalog of sources suitable for
calibrating the international LOFAR stations. This, in turns, requires a solid, reliable
strategy, in ways that our relatively straightforward application to a single field does
not.

Quantifying the impact of international station directional gain errors

This work is strongly linked to the self-calibration on 3C295: depending on the quality
of both the model and the gain solutions attained (i.e. of how the quality of our solution
to the overall inverse problem of radio interferometry), directional gain errors will be
more or less present across the primary beam.

We choose 8 nearby sources from the LBCS, a catalogue of compact radio sources in
the Northern sky, spread around both the EGS and 3C295. These are reprinted below,
in copies of Table 5.2 and Fig. 5.20. Two direction-dependent effects are expected to
arise, one as a function of distance from phase centre (i.e. from the EGS) and the other
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as a function of distance from the direction-independent calibration source (i.e. from
3C295).

The direction-dependent effect which is function of distance from the EGS, decor-
relation, is modeled in the DDF/kMS pipeline. As such, we do not expect this effect
to dominate. The other direction-dependent effect, function of distance from 3C295,
however, is not modeled: this effect corresponds to directional gain errors. Direction-
independent calibration is only exact in the direction of the calibrator source when a
single source is present in the field of view; this is because, in reality, the astrophysical
signal from each source in the field of view reaches us through a slightly different iono-
sphere, are in areas of the antenna beam which are of varying sensitivity, etc. Some of
these models can be modeled and corrected to some degree (e.g. LOFAR beam), while
others cannot at the time of writing (ionospheric effects).

With our final model of 3C295 and gain solutions, flawed as they are, we find that there
is little direction-dependent variation in calibration artefact intensity for the various
LBCS sources in the field. This is a strong encouragement to continue the project and
move on to imaging the EGS using international LOFAR stations.

6.2.3 Future Work

As mentioned in Section 6.1.3, there is much work ahead of us with regards to the
algorithmic work developed in this doctoral thesis. Not only can the theoretical frame-
work be expanded to include more complex cases, but those results which it already
provides are limited by the conditioning of our estimation of the visibility covariance
matrix. There is therefore room for both expanding on and improving existing results.

As for the application to data, it is very encouraging to see that not only are multiple
LBCS sources resolved to show physically-sensible morphologies (FRI, FRII, headtail
radio galaxies, etc), but in some instances are even resolved to show not just one, but
multiple sources with physically-sensible morphology. Many of the LBCS candidates
appear to be double or even triple sources. This would indicate that the directional gain
errors for many of the LBCS sources are not so strong that they deteriorate the image
beyond the recovery of such morphological information; since calibration artifacts, DDEs
included, are more present near bright sources, the fact that they are not strong enough
to pollute LBCS sources is a promising indicator that even fainter sources in the EGS
have recoverable morphological information, given our data and calibration strategy.

However, we were not able to create images of this field before the end of this doctoral
degree: creating this image (and performing the associated quality-control and source
extraction) is therefore very high indeed on the priority for future work. The prelimi-
nary results shown in this manuscript are not of science-grade quality (no astrometric
corrections, proper flux bootstrapping, strategy likely needs revisiting for best results),
but they are nevertheless useful markers of the wealth of information available in the
EGS as seen with the full LOFAR array.
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Girard, J. 2012, PhD thesis, École doctorale Astronomie et Astrophysique d’̂Ile-de-
France (Meudon, Hauts-de-Seine)

Grobler, T. L., Nunhokee, C. D., Smirnov, O. M., van Zyl, A. J., & de Bruyn, A. G.
2014, MNRAS, 439, 4030

151



152 BIBLIOGRAPHY

Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35

Hamaker, J. P., Bregman, J. D., & Sault, R. J. 1996, A&AS, 117, 137

Helfand, D. J., White, R. L., & Becker, R. H. 2015, ApJ, 801, 26
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Résumé

Grâce à une analyse statistique
de l’Equation de la Mesure des
Interféromètres Radio, un schéma
de pondération adaptatif est dérivé,
basé sur la qualité de calibration
des données d’un instrument in-
terféromètrique. Ce schéma est
utilisé sur une observation d’un
champ extragalactique, l’Extended
Groth Strip, observation qui contient
une source radio-vive (3C295) dans
son champ de vue. Cette source
est résolue avec LOFAR-VLBI; un
modèle de source est créé afin de
calibrer les stations LOFAR interna-
tionales. Cela permettra d’imager le
champ à une résolution comparable
à celle du Hubble Space Telescope,
dont des données sont disponibles
pour ce champ extragalactique.

Mots Clés

Interférométrie, radio, LOFAR, algo-
rithmie, extragalactique

Abstract

By performing a statistical analysis of
the Radio Interferometer’s Measure-
ment Equation, we derive adaptive
quality-based weighting schemes.
These are deployed on an obser-
vation of the Extended Groth Strip,
which includes a bright 3C source
in the field of view. This source,
which is resolved for LOFAR-VLBI,
is modeled and used as a calibrator
source for the Extended Groth Strip.
This will allow the field to be imaged
with a resolution matching the Hub-
ble Space Telescope’s, of which data
are available for this field.
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