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RÉSUMÉ

Le siècle dernier a été le siècle de la révolution technologique, et les combustibles fossiles
ont alimentés cette révolution technologique. Les défis auxquels notre société est confrontée,
que ce soit le changement climatique, la situation énergétique mondiale ou l’épuisement des
réserves de combustibles fossiles, sont les défis les plus graves que l’homme n’ait jamais ren-
contrés. L’énergie renouvelable est considérée comme la clé des problématiques énergétiques
de notre société et de nombreuses technologies innovantes se font concurrence pour alimenter
la prochaine révolution énergétique. Les sources d’énergies renouvelables telles que l’énergie
solaire, l’énergie éolienne, la biomasse, l’énergie hydroélectrique, l’énergie géothermique, etc,
bien que prometteuses, en raison du coût économique élevé et de la disponibilité limitée des
gisements, doivent encore prouver leur pertinence à grande échelle. Presque tous sont saison-
niers, et sont donc des sources d’énergie discontinues et non uniformes. Elles ont également
une limitation en termes de choix des sites de production et, en général, nécessitent de grandes
étendues de terre pour les implanter, ce qui conduit à une faible densité de puissance par unité
de surface. Néanmoins, les énergies éolienne et solaire ont beaucoup attiré l’attention au cours
des dernières décennies. Cependant, pour que le monde passe complètement des énergies fos-
siles et nucléaires à l’énergie éolienne et solaire, il est nécessaire de développer de nouveaux
types de systèmes capables de générer de l’énergie à moindre coût et avec moins de contraintes
d’implantation.

Dans cette quête de sources d’énergies pérennes, notre société se tourne vers la communauté
scientifique pour trouver des solutions innovantes et cette thèse en est une étape. Les systèmes
d’énergie éolienne à haute altitude (HAWE), plus communément appelés systèmes éoliens
aéroportés (AWES) sont considérés comme l’une des solutions aux besoins énergétiques des
générations futures. L’énergie éolienne aéroportée (AWE) est un concept innovant visant à
utiliser l’énergie du vent à haute altitude, car ces systèmes sont plus faciles à installer sur terre
et en mer. De plus, le vent à haute altitude est plus fort et plus stable. Enfin, les systèmes
AWE proposés nécessitent moins de matériaux de structure et devraient donc être beaucoup
moins chers que toute autre source d’énergie disponible. L’énergie du vent à haute altitude est
donc une perspective prometteuse dans cette quête pour trouver une solution à nos problèmes
énergétiques.

Dans ce travail, la faisabilité des systèmes d’énergie éolienne aéroportés basés sur l’effet
Magnus est explorée. Le travail présente un bref historique des systèmes d’énergie éolienne
aéroportés et des concepts de base nécessaires pour développer une compréhension de la tech-
nologie AWE. Il examine en détail les systèmes aéroportés basés sur l’effet Magnus et donne
une perspective historique sur les machines basées sur cet effet. Il examine en détail les
propriétés aérodynamiques de l’effet Magnus et présente un modèle aérodynamique pour ces
systèmes, la modélisation étant un aspect important de toute technologie. Ce travail présente
un modèle détaillé des systèmes AWE basés sur l’effet Magnus ainsi que les algorithmes de con-
trôle nécessaires au fonctionnement de tels systèmes. Les courbes de puissance sont des outils
couramment utilisés pour analyser les systèmes d’énergie éolienne. Ce travail présente une
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approche pour la conception de courbes de puissance pour les systèmes AWE afin d’analyser
les capacités de production d’énergie des éoliennes aéroportées.



ABSTRACT

Last century has been the century of the technology revolution. Fossil fuels have fueled this
technology revolution. The challenges faced by our society, be it the climate change or the
world energy situation or the depletion of fossil fuel reserves, are the most grievous challenges
faced by any generation. Renewable energy is believed to be the key to energy problems of our
society. There are many innovative technologies competing against each other to fuel the next
energy revolution. Renewables sources of energies such as solar, wind, biomass, hydropower,
geothermal etc. Though promising but due to the high economic cost and limited availability
of the sites, they are yet to prove their mass scale applicability. Almost all of them are seasonal,
hence, are discontinuous and non-uniform sources of energy. They also have a limitation in
terms of choice of plant sites, and generally, require large tracts of land for plants which lead
to low power density per unit area. Nonetheless, Wind and Solar energy have attracted a lot
of attention in the last few decades. However, for the world to fully shift from fossil fuels and
nuclear energy to wind and solar power, it is necessary to develop new kind of systems which
can generate continuous power at a lower cost with fewer site selection constraints.

In the quest to find the perennial clean source of energy our society is looking towards
the scientific community for innovative solutions. This thesis is one such step towards finding
innovative solutions to our energy problems. High altitude wind energy systems (HAWE) or
more commonly known as Airborne wind energy systems (AWES) are believed to be one of
the solution to the energy needs of the future generations. Airborne wind energy (AWE) is
an innovative concept aiming at utilizing the energy of the high altitude wind currents, as
they are easier to install both on shore and off-shore, and also the high altitude wind currents
are more uniform across the globe. Also, the proposed AWE systems require less structural
material. Thus, they are expected to be much cheaper than any other available energy source.

In this work, the feasibility of Magnus-based airborne wind energy systems is explored.
The work presents in detail a brief history of Airborne wind energy systems and the basic
concepts needed to develop an understanding about the AWE technology. It discusses in
detail Magnus-based airborne systems and gives a historical perspective on the Magnus-effect
based machines. In this work the aerodynamical properties of the Magnus effect including the
aerodynamic model for such systems is discussed in detail. Since modeling is an important
aspect of any technology, this work presents a detailed model of the Magnus-based AWE
systems along with the control algorithms required for the operation of such systems. A
common tool used to analyze wind-based energy systems is power curves. This work presents
an approach to design power curves for AWE systems in order to analyze the power producing
capabilities of Airborne wind energy systems.
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Chapter 1

Introduction

1.1 Motivation

Energy is the engine of society. About 1.9 million years ago prehistoric man learned to control
the fire. Fire fueled the human evolution and cultural growth. It was the first energy source
controlled by us. Thus, can be regarded as the first engine driving the story of our evolution.

Today and since the last century, fossil fuels have been the engine of our evolution. How-
ever, this engine is running out of fuel. With the depletion of fossil fuel reserves and the threat
of global warming, there is a push to find clean sources of energy. This search for the next
ubiquitous energy source that would fuel the next epoch of human evolution has become the
goal of our society. In this endeavor, there are two promising technologies nuclear energy and
renewable energy. However, due to the high-risk factor and limited applicability of nuclear
energy, today the world is looking with a promising eye towards the renewable sources of
energy.

Of all the renewable sources of energy, solar and wind have emerged as the most promising
alternative. To facilitate the development of clean sources of energy and thwart the threat
of climate change, in the recent past there have been many agreements signed both on the
international and national level. In particular:

• United Nations Framework Convention on Climate Change: UNFCCC is an
international treaty on climate change signed on 9 May 1992 in Rio de Janeiro [1]. The
main objective of the treaty is to stabilize the greenhouse gases in the atmosphere. And
as a part of the action plan, a direct emphasis was given to the development of clean
sources of energy.

• Koyoto Protocol: As an extension of the UNFCCC, Kyoto protocol was adopted
on 11 December 1997 in Kyoto, Japan [2]. The protocol aimed at working on the
common goal of fighting climate change. And as an implementing measure, it further
boosted the research on renewable sources of energy. The first commitment period was
from 2008-2012. The second commitment period started from 2012 by the signing of
Doha agreement in 2012 negotiations on which culminated in the signing of the Paris
agreement.

• Paris Agreement: Signed on 12 December 2015 with 195 signatories and with 180
countries party to it [3]. The agreement aims at the long-term goal of keeping the global
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increase in temperature below 2 degrees. Under this agreement, each country is required
to determine and design an action plan to mitigate the effects of global warming.

• Other Accords and agreements: In addition to these, there have been several other
accords signed on the international level. Of which some noteworthy accords are Bali
Action Plan (2007) [4], the Copenhagen Accord (2009) [5], the Cancún agreements (2010)
[6], and the Durban Platform for Enhanced Action (2012) [7].

One of the salient features of all the environmental agreements and accords is the commit-
ment towards the development and commercial deployment of clean sources of energy. Thanks
to these international accords there is a constant push towards financing clean energy research
and projects both on the international and national level. In Europe, some of the main fund-
ing schemes are part of the European Union’s (EU) action plan to reduce the greenhouse gas
emission. Some noteworthy funding schemes in Europe are:

• Horizon 2020

• NER 300

• ETS Innovation Fund

• InnovFIn

• European Fund for Strategic Investments (EFSI), etc.

In this context, there has been rapid growth in the renewable energy infrastructure and
technologies. Despite this as of 2017 [8], renewable energy contribution to global energy
consumption was 19.3%. A major part of which is contributed by hydroelectric power. And
of 19.3% only 2.2% accounts for electricity consumption coming from emerging renewables
which includes solar, geothermal, wind, biomass, and other clean energy sources. According
to International energy agency’s (IEA) energy status report 2017 [9], renewables contributed
total 25% to global electricity generation with the rest coming from fossil fuels and nuclear
energy. Of this 25%, Hydro-power was the largest contributor with a share of 65% of overall
renewable output. Of all the emerging renewables, wind energy is regarded as one of the most
promising sources of clean energy. As of 2017, the total installed capacity of wind power was
around 539 GW [8], with record growth in Europe and India, and 5.6% estimated contribution
to the world power production in the year 2017.

Wind energy with its huge untapped potential, and still a small market size, backed by a
favourable political environment; a global effort is being made to improve the wind turbines
in order to increase their market penetration. This calls for an increase in the power capacity
of the wind turbines. However, the conventional wind turbines pose a structural and design
limitation. Furthermore, globally, wind flow is not uniform at lower altitudes and varies
seasonally, which limits the number of potential sites across the globe. Thus, to overcome
these major limitations, the research community is looking at other innovative ways to harness
the wind energy. One such promising concept is High altitude wind energy systems (HAWE).
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1.2 Background

High altitude wind energy systems or more commonly known as Airborne Wind Energy (AWE)
targets to harvest the winds at an altitude range of 200 m - 10000 m. Airborne Wind Energy
systems aim at overcoming the main limitations of conventional wind turbines, namely:

• Limited swept area and size,

• Intermittent availability of wind flow,

• Limitation of number of potential sites,

• Regulatory and implementation constraints.

Airborne Wind Energy by using wind currents flowing at higher altitudes (as they are more
uniform and constant) can lead to more stable power production all around the year at lower
cost and can be more easily installed theoretically almost anywhere. In addition to this,
the innovative design proposes a higher swept area with lesser structural material, and thus,
greater energy production at a lower cost.

A typical AWE system consists of an airborne platform flying at high altitude and using
wind currents to drive the on-board turbine or ground-based turbine by means of tether
connected to the platform. The concept was first proposed by Miles Loyd in 1980 [10]. In
his work, he analyzed the dynamics of such a system and also the maximum yield of such
systems. But with the advent of other novel technologies in renewable energy, the idea of
AWE systems was forgotten. The concept once again attracted the interest of researchers
in mid-nineties. Currently, there are many research groups and companies developing their
prototype around the world, and working on different aspects of AWE technology. Projects on
AWE systems have also attracted a steady source of funding from various government bodies
as well as private sector. According to [11], there were 20 patents on AWE systems till 2003
which rose to 172 by 2013, and thus, indicating the interest and advancement in research on
AWE.

In the last 10 years, many issues regarding the AWE systems have been solved. At present,
the research community is focused on achieving a fully automated 24x7 operational system.
The main focus of the research is on the design and control of AWE systems. Simultane-
ously, other aspects of AWE systems are also being researched upon such as aerodynamics of
airborne platform, landing & take-off strategy, economic viability, structural design of AWE
components, optimization of power, use of other innovative designs, etc.

This thesis work is our effort to supplement and contribute to the on-going research on
the development of Airborne wind energy systems (AWES), particularly, the systems based
on the innovative design concept of Magnus effect.
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1.3 Context of the Thesis Work

The thesis work has been carried out at GIPSA-lab, Grenoble, France, from 16th November
2015 to 15th November 2018. The research work was accomplished under the supervision
of Dr. Ahmad Hably, associate professor at Grenoble-INP, and co-supervision of Jonathan
Dumon, CNRS engineer. The research work was financed by Grenoble-INP.

The thesis work has been part of the EOFLY, a multi-disciplinary research group of GIPSA-
lab, with former Ph.D. students:

1. Rogelio Lozano, Grenoble-INP, Ph.D. on the design, control, and validation of AWE
systems. Currently founder of the start-up "Bladetips Energy", working on an innovative
off-shore rotary AWE system.

2. Mariam Ahmed, Grenoble-INP, Ph.D. on grid connection of AWE systems, in collabo-
ration with G2Elab.

Gipsa-lab is a research unit of CNRS, Grenoble-INP (Grenoble Institute of Technology),
and University Grenoble-Alpes, and is in agreement with INRIA. It is headed by Jerome Mars.
As of 2018, the lab consists of 350 people, which includes about 150 doctoral students. The lab
conducts multi-disciplinary research on complex signals and systems. It is recognized inter-
nationally for its research contributions on Automatic Control, Signal and Images processing,
Speech and Cognition. The research unit of the lab is responsible for both developing and
undertaking projects in the fields of energy, environment, communication, intelligent systems,
robotics, life sciences, and language engineering. Gipsa-lab maintains an active link with the
companies and also engages in the incubation activities for burgeoning technology start-ups.
Bladetips energy, Ebike labs, Drone interactive, Amiral technologies, etc. are few spin-offs
from the lab. Apart from this, the researchers at Gipsa-lab also engage in teaching activities
and are associated with various universities across Europe.

The lab consists of 12 research teams grouped under three departments, namely:

• Automatic control,

• Images-signal,

• Speech-cognition.

The thesis research work was part of the SYSCO team (SYStèmes non-linéaires et COm-
plexit) under the department of automatic control. The team is headed by Gildas Besançon
and Mirko Fiacchini. The main research interest of the team lies in the field of control of
nonlinear and complex systems, from both theoretical and application points of view.

The experiments involved in this thesis work were performed at the in-house wind tunnel
at Gipsa-lab. All the prototypes were fabricated at Gipsa-lab using the in-house 3-D printers
available at Gipsa-lab.
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1.4 Background of Thesis Work

Previously, there have been two doctoral studies conducted on AWE systems at Gipsa-lab
under the joint supervision of Dr. Ahmad Hably and other researchers from Gipsa-lab.

In April 2014, Rogelio Lozano Jr. defended his doctoral research work on the flight dynam-
ics of a kite-based AWE system under the supervision of Dr. Mazen Alamir and co-supervision
of Dr. Ahmad Hably. He contributed towards the development of the in-house wind tunnel at
the Gipsa-lab and tested several prototypes of kite-based AWE systems. His work culminated
into a start-up Bladetips energy.

In February 2014, Mariam Ahmad defended her doctoral research work on the grid con-
nection of AWE systems under the supervision of Dr. Seddik Bacha and co-supervision of Dr.
Ahmad Hably. The work was conducted in collaboration with the G2E-lab and aimed at the
grid integration for AWE systems.

1.5 Aims and Scope of Thesis Work

Taking the previous work done on AWE systems forward. A study of the AWE systems using
the innovative concept of Magnus effect was envisaged by Dr. Ahmad Hably with Jonathan
Dumon as co-supervisor. The main objectives of the thesis work were:

• Study and validation of the aerodynamic model of the Magnus Effect.

• Development of a 3-D Mathematical model for Magnus-based AWE systems.

• Design of guidance control for Magnus-based AWE systems.

• Study of operational strategies for maximum power production by an AWE system.

• Development of the power curves for AWE systems.

1.6 Thesis Overview

This thesis manuscript is structured into six chapters. The second chapter, ’State of the art’,
introduces the concept of Airborne wind energy systems. It presents in detail the historical
perspective of AWE. It further discusses the advancement in AWE and presents the different
types of AWE systems. A short overview of different research teams and start-ups working
on AWE systems around the world is also presented. The chapter then discusses the basic
concepts of AWE systems with an emphasis on ground-based AWE systems. It presents the
classical mathematical models used in literature to model various AWE components such as
the tether, airborne platform and ground station. The chapter also states the basic functional
phases and power generation by AWE systems. Moreover, the chapter also presents some
major challenges faced by AWE technology.
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The third chapter,’Magnus-based AWE systems’, introduces the innovative concept of the
Magnus effect. It discusses in detail the aerodynamic model of the Magnus effect. It presents
some of the past application of the Magnus effect. It then discusses the two-step approach
adopted to validate the aerodynamic model of Magnus effect and presents our results on it.

The fourth chapter,’Modelling of Magnus-based systems’, discusses in detail the mathe-
matical model of Magnus-based AWE systems. It describes the modelling approach adopted
from flight dynamics and gives detailed expressesions for all the forces and moments acting
on such type of systems and their effects. It then presents the control & guidance algorithm
adopted in this work to perform crosswind maneuvers and discusses the simulation results
obtained.

The fifth chapter,’Analysis of Power Curves for AWE Systems’, presents a theoretical ap-
proach to develop power curves for AWE systems. It presents some operational strategies
required for the maximization of the power generation. Furthermore, it presents an optimiza-
tion technique to optimize the variables for maximum power generation. It also discusses
two ground station configurations which are considered for developing the power curves for
a MW and KW sized Magnus-based airborne wind energy system. The chapter also draws
some comparisons with the conventional wind turbine in order to highlight the advantages of
AWES over conventional wind turbines.

The thesis ends with some conclusions and perspectives presented in sixth chapter,’General
Conclusions’.



Chapter 2

State of the Art

Contents
2.1 Airborne Wind Energy (AWE) . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Historical Perspective of Airborne Wind Energy . . . . . . . . . . . . . . 7
2.1.2 Classification of Airborne Wind Energy (AWE) Systems . . . . . . . . . 9

2.2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Configuration of AWE Systems . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Power Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 AWE Operational Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Airborne Wind Energy (AWE)

Since the dawn of civilization, the human mind has always been captivated by the idea of
flight. At the beginning of 20th century, the Wright brother’s first flight was the declaration of
the beginning of space age, where sky was no more a limit. With the advances in technology,
the gap between imagination and reality has shrunk. Thus, fueling the human will to find
more formidable and innovative solutions to our existing problems. Airborne wind energy
(AWE), or High altitude wind energy (HAWE), is one such human endeavor to subjugate the
power of high altitude winds. The concept consists of an airborne platform attached to the
ground by a tether and depending on the type of system the generator can be located on the
ground or on-board.

2.1.1 Historical Perspective of Airborne Wind Energy

Since antiquity, kite flying has been a hobby in several cultures and they are believed to
be invented in China around 5th century BC. For several thousand years, they were the
only known man-made airborne object. Over the centuries, kites have been used in many
applications such as measuring distance, pulling loads, weather forecasting etc. The famous
experiment by Benjamin Franklin in 1752 [12], used kites to understand lighting and electricity.
In 1826, the English inventor and a pioneer in kite traction, George Pocock, invented a carriage
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named Charvolant driven by kite as shown in figure 2.1. His work on the lifting capabilities
and traction power of kites published in 1827 is considered one of the first major scientific
attempts to harness the kite power [13]. The second half of the 19th century saw major
advances in the airborne platforms such as zeppelins, hot air balloons, etc. However, with the
invention of airplanes, the interest in airborne platforms such as kites, balloons, zeppelin, etc.
diminished.

The second half of the 20th century saw the re-emergence of research on airborne platforms
and their usage. In 1976, Peter Payne and Charles McCutchen, patented their invention of

Figure 2.1: Charvolant - Kite Buggy by George Pecock [13].

‘self-erecting windmill’ [14]. In 1979, an Australian engineer, Bryant Roberts, conducted first
experiments to harness high altitude wind energy [15]. In 1980, Miles L. Loyd published a
paper [10] on the concept of using kites or an Unmanned Aerial Vehicles (UAV) to produce
electricity by using the forces developed in the kite tether to drive a generator located on the
ground. This work by Lyod is regarded by AWE researchers as the beginning of research on
Airborne Wind Energy. In his work, he defined the maximum theoretical power that can be
extracted from such systems by following crosswind trajectory (explained in detail in section
2.2.2) which is now considered as a benchmark in AWE community.

However, for the following two decades there was very little research done to explore the
applicability of the concept. In late 1990’s with a global push towards the green energy, the
concept once again attracted the attention of research community. In 1997, the Dutch as-
tronaut and TU Delft professor, Wubbo Ockels, proposed the concept of ‘Laddermill’ [16],
as shown in figure 2.2, a multi-kite system driving a generator located on ground through
a tether. In the following decade, a number of innovative startups and research teams were
established across Europe and USA to explore the commercial usefulness of the concept. In
2001, the German startup Skysails started working on the commercial kite systems to provide
cheap energy to cargo ships. In 2006, Makani power, a startup founded by Corwin Hardham,



2.1. Airborne Wind Energy (AWE) 9

Figure 2.2: Laddermill Concept by Webb Ockels [16].

started exploring the concept using UAV as an airborne platform [17]. Simultaneously, other
companies such as WindLift in US [18], NTS in Germany [19], Kitegen in Italy [20], Twingtec
in Switzerland [21], and other research teams around the world, started working on the con-
cept. To organize the efforts on airborne wind energy, the first conference on the concept of
AWE was held in California in 2005. In 2008, with the combined efforts of a startup Joby
energy and researchers across the globe, a society on High altitude wind energy known as Air-
borne Wind Energy Consortium (AWESCO) was officially established in 2009 [22]. Its first
official conference was held at Stanford University, USA, in 2010. The latest conference being
organized at University of Freiburg, Germany in October 2017. Currently, there are many
startups and research teams all around the world working on the subject, as shown in figure
2.3, with companies such as X Development LLC. (formerly Google-X) [17], Ampyx power
[23], Enerkite [24], Omnidea Lda.[25], etc. experimenting with their operational prototypes
ranging from few kWs to 600 kW. AWE has also attracted the attention of many leading
energy companies such as E.On, Engie, GE, etc. Several AWE projects are part of EU’s eigth
framework programme, commonly referred to as H2020 initiative, under which many projects
related to research, technological development, and innovation are being funded [26], such as
Ampyx Power,and 14 doctoral thesis under the AWESCO initiaitve, etc.

2.1.2 Classification of Airborne Wind Energy (AWE) Systems

With growing interest in the AWE, a number of innovative concepts are being proposed and
are developed to generate electricity in the most optimal way. Classically, AWE systems
are classified based on the location of turbine .i.e. into two main categories: Ground-based
systems and On-board power generation systems. In this work, a new basis of classification is
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Figure 2.3: Distribution of Airborne Wind Energy Community around the World [27].

introduced .i.e. based on the type of airborne platform. Thus, in this work AWE systems are
classified into three categories, namely:

1. Ground-based AWE systems,

2. On-board power generation systems,

3. Type of Airborne platform.

In ground-based systems, electricity is produced by the turbine located on the ground.
They use the traction force developed in the tether attached to the airborne platform to drive
the generator located on ground as shown in figure 2.4.

On the other hand in on-board power generation systems, the electricity is produced by
the turbine mounted on the airborne platform as shown in figure 2.5. The power is then
transferred through conducting cables inside the tether to a ground station.

Another way of classifying the AWE systems is on the basis of choice of airborne platform.
Historically, the AWE design concepts have focused on the application of soft wings as an
airborne platform [28],[20],[24],[19],[29]. With the advancement in technology and growing
interest in the field, many innovative designs applying different airborne strategies are being
developed such as usage of Unmanned aerial vehicle’s (UAV) by [23],[21],[17], Magnus-effect
based aerostats by [25],[30], lighter than air aerostat by [31], multiple wing systems as used
by [32], etc.
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Figure 2.4: TwingTec Prototype [21].

2.1.2.1 Ground-based AWE Systems

The ground-based AWE systems generate electricity by driving the turbine located at the
ground. They utilize the tether traction to drive the electric generator. Thus, tether traction
plays a vital role in such systems which in turn is related to the lift generating capability of
the airborne platform.

In all such systems, electricity generation is characterized by two operation cycles, namely,
generation phase and retraction phase. In the generation phase, the airborne platform follows
a predefined trajectory in the sky. Thus, gaining altitude and unwinding the tether from the
drum located on the ground. On the other hand, the retraction phase comprises of rewinding
of the tether on to the drum, which leads to consumption of a portion of the electricity
produced. As the power produced is related to the lift generated by the airborne platform,
the choice of airborne platform and the trajectory followed are key elements in the design of
such platforms.

In order to maximize the traction force developed in the tether cable, the two most common
adopted trajectories are circular orbits and eight-figure loop. As the airborne platform moves
on the predefined path, it encounters strong relative winds which generate high lift which in
turn produces high traction force in the tether. Hence, the choice of the airborne platform
and the trajectory is an area of constant innovation.
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2.1.2.2 On-board Power Generation

In the on-board generation, the turbine is mounted on the airborne platform. As it moves in
the air, it uses the power of high altitude winds to drive the turbine. Such systems usually
make use of the lighter than air airborne platforms and are usually heavier in comparison to
the ground-based generation systems. They also experience higher drag forces. One particular
advantage of such systems over the ground-based generation is that they can take off and land
using classical methods such as vertical take-off and landing (VTOL), planar vertical take-
off and landing (PVTOL), etc. Also, as the turbines are mounted directly on the airborne
platfrom, the on-board systems can harness the power of relative winds better than their
counterparts. They also require a tether capable to transmit high current and voltage to the
ground station which leads to a tether of larger diameter. Thus, increasing the tether drag.
Makani Power is testing its 600 KW prototype on-board generation system as shown in figure
2.6 [17].

Figure 2.5: Altaeros Prototype [31].

2.1.2.3 Classification based on the type of Airborne Platform

Apart from the location of the turbine, the other possible way to classify the AWE systems
is based on the choice of airborne platform. The choice of an airborne platform determines
the lift force generated which in turn determines the traction force developed in the rope,
especially in the case of ground-based systems. Hence, over the past decade, a variety of
concepts using different types of airborne platforms have been proposed. They can be divided
broadly into four main categories:

1. Kite based airborne platform,
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Figure 2.6: Makani 600 KW prototype [17].

2. Unmanned Aerial Vehicles (UAV),

3. Lighter than air systems,

4. Other Innovative concepts.

1. Kite based airborne platform:

Kite-based airborne platforms are used in ground-based generation. They can further
be divided into Soft kites and Rigid kites. Figure 2.7 (from the survey presented in [33])
presents the various kite designs being used by the AWE research teams and startups.

• Soft Kite:

Soft kites make use of the leading edge inflatable kite. First proposed by Wubbo
Ockels in the year 1997 [16], they are one of the most widely researched design
concept with the teams from TU Delft, University of Freiburg leading research in
development of such systems.
Soft kites are lighter in mass. They have good lift over drag ratio (CL

CD
), which mea-

sures the lifting capability of any airborne surface. Thus, making them a suitable
choice for ground-based AWE systems. They consist of a multi-line tether with a
control unit located at the bridle point. The control is performed by changing the
direction of leading edge of the kite. This is done by changing the angle between
the two tether lines attached to the two extremes of the kite. Reference [34], gives
a detailed control oriented input model for soft kites. They are usually made to
perform an eight-figure orbit in crosswind to generate maximum lift and traction
force in the tether. Wubbo Ockel’s Laddermilll uses multiple kites as an airborne
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Figure 2.7: Kite Types from the survey presented in [33].

platform to maximize the energy produced [16]. However, one of the most challeng-
ing and practical problems is making sure the multi-line tether does not entangle.
Though their lighter mass and simple configuration make them advantageous from
the commercial point of view as the cost of maintenance and replacement are much
smaller in comparison to other such platforms. However, this also makes them less
durable and more susceptible to wear and tear. Also, the design constraints limit
their size and scalability to large systems as beyond a certain aspect ratio mass
increases cubically with respect to the wingspan.

Figure 2.8: 3.5 MW Skysail Wind Farm Concept [28].
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Figure 2.9: 55 KW Skysail Demonstrator [28].

Skysails is currently the market leader in developing automated towing technol-
ogy using soft kites [28]. They have been selling and developing soft kite-based
products for marine application. SkySails Power, a subsidiary of SkySails, is devel-
oping AWE systems. They have a functional 55 KW AWE soft kite-based power
system as shown in figure 2.9. They are currently developing a 1 MW prototype.
The company aims to scale-up the technology to 3.5 MW AWE based wind farm
as shown in figure 2.8.

Kite Power is the research group of TU Delft on AWES headed by Dr. Roland
Schmehl [29]. In 2012, they developed a 20 KW demonstrator using soft kites of up
to 50 m

2 surface area as shown in figure 2.10. Its commercial spin-off Kitepower
B.V is developing a 100 kW prototype with an aim to commercialize the system by
the end of 2018 [35].
University of Freiburg with its Highwind and Awesco Project, is one of the lead-
ing research groups in the development of AWE systems under the leadership of
Dr. Moritz Diehl [36]. They are currently researching on the aeroelastic behaviour
of soft kites as a part of AWECO doctoral research group.

KiteGen is an Italian startup founded in 2007 [20]. In 2006, the team built their
first 5 kW prototype. They are currently developing a 3 MW prototype in ’stem
configuration’, where the airborne platform is pulled by tether through pulleys.

• Rigid Kite:

Rigid kite systems utilises a semi-rigid wing and work similarly like the soft kites
using multi-line tether to control it. One of the advantage of such systems over the
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Figure 2.10: 20 KW Kitepower demonstrator [29].

soft kite is their better aerodynamic performance. Being made of rigid structure
they are more durable and are more resistant to wear and tear. Also, they are
expected to perform better in crosswind maneuver as they can withstand higher
forces. However, the cost of replacement and maintenance are higher as compared
to the soft kite.

Enerkite is one of the leading startups working on the rigid kites [24]. Founded
in 2010, they demonstrated their 30 kW prototype EK30 mounted on a mobile
platform at Berlin in 2013 as shown in figure 2.11. They are currently developing
a 100 kW prototype with an aim to launch it by 2019 [37].

Figure 2.11: Enerkite 30 KW demonstrator [24].
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Figure 2.12: Different UAV based AWE systems (figure borrowed from [33]).

2. Unmanned Aerial Vehicles (UAV):

The use of UAV or a glider as an airborne platform was first imagined by Miles Lyod in
his paper in 1980, [10]. In UAV based AWE systems, a UAV is connected by a tether to
the ground station. They are used as an airborne platform for both ground-based, and
on-board generation, [23], [17]. In the latter type of systems, a turbine is mounted on
the wings or on the fuselage of the UAV. The advantage of good aerodynamic perfor-
mance (.i.e. high lift-to-drag ratio CL

CD
as detailed in section 2.2.2) and the availability of

classical flight controls to control the trajectory makes UAV based systems a promising
concept.

Figure 2.13: (Google-X) Makani Power 600 KW M600 Prototype[17].
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Figure 2.14: (Google-X) Makani Power 600 KW M600 Prototype[17].

Makani Power founded in 2006 and acquired by X Development LLC. (formerly
Google-X) in 2013, has been working on UAV based on-board power generation AWE
system [17]. They developed a 10 kW prototype in 2010 and latest being a large-scale
600 KW M600 prototype released in 2016. M600 as shown in figure 2.13 and 2.14, has
a wingspan of 26 m and consists of 8 rotors each driving a magnetic on-board generator
while performing a circular trajectory in crosswind. It consists of a 500 m long tether
and in take-off phase consumes a part of electricity to climb to the defined altitude.
Makani is aiming to develop a 1 MW prototype by 2020.

Ampyx Power is a Dutch startup founded in 2008 [23]. They have developed func-
tioning prototypes of UAV based ground generation systems performing eight-figure
crosswind maneuvres as shown in figure 2.15. They are currently developing a 2 MW
AP3 prototype with an autonomous landing and take-off capability from a rotating plat-
form. They aim to develop off-shore UAV based wind farms and are in an agreement
with E.On to test their planned AP3 and AP4 prototypes on E.ON testing sites.

3. Lighter than air:

There are several concepts using lighter than air airborne platform for both type of
systems, on-board and ground-based generation. Lighter than air airborne platform
consists of an inflatable aerostat filled with a lighter than air gas like Helium. Such sys-
tems due to their simple robust design have an advantage in terms of scalability. Also,
they can take-off and land even when there is no wind.

Altaeros Energies is a US-based startup working on this concept by using balloon
with a turbine mounted inside it [31]. The Altaeros design does not involve a crosswind
motion and is a static system harnessing the high altitude wind power. Figure 2.16
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Figure 2.15: Ampyx AP2 Prototype [23].

shows their ballon Torus with a turbine rotor mounted inside it.

Figure 2.16: Altaeros Prototype [31].

Omnidea Lda. founded in 2007, is a Portuguese company working on the ground-based
generation system using lighter than air Magnus cylinders as an airborne platform [25].
The lift generated by the Magnus effect is used to make the cyinder perform a Yo-Yo
cycle. The traction power developed in the tether is used to drive the ground-based gen-
erator. Figure 2.17 shows Omnidea’s 16 m long Magnus-based prototype. The Magnus-
based AWE systems are discussed in detail in Chapter 3 and 4.
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Figure 2.17: Omnidea Prototype [25].

4. Other Innovative concepts

Apart from the usage of conventional flying surfaces, there are many startups work-
ing on the different innovative concepts to achieve high lift. Bladetips energy is using
fixed wing in rotary configuration as an airborne platform [38]. Dual Drone concept
proposed by Antonello Cherubini uses two UAVs to maximize the lift [32]. Wind Fisher
is working on the concept of using Magnus-based AWE systems for maritime applica-
tions [39]. There are several other innovative design concepts and applications which
are currently being researched upon.

2.2 Basic Concepts

In general, irrespective of the type, each airborne wind energy system is governed by similar set
of principles. In this section, some basic concepts of AWE technology are discussed, knowledge
of which is necessary to understand the AWE technology. They can be broadly characterised
as:

1. Configuration of AWE systems,

2. Power Generation,

3. AWE Operational Cycles.
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2.2.1 Configuration of AWE Systems

Each type of AWE system consists of three main components, namely:

• Airborne platform,

• Tether or cable,

• Ground station.

There are various methodologies used in literature for the analysis and design of each of these
components. To develop a better understanding of the basic concepts of AWE technology
some general approaches and basic models most commonly used in literature are discussed in
this section.

• Airborne Platform: Irrespective of the choice of the airborne platform used kite or
UAV or lighter than air or any other innovative design. The modeling of the airborne
platform of AWE system is performed by using the classical flight dynamics approach.
M. Lyod presented a basic modeling approach in [10]. In [40], a simple model for the
Laddermill AWE concept is presented. Reference [41] and [42], gives a detailed 6-DOF
model adapted from the flight dynamics for modeling AWE kite systems. Reference
[43],[44], present a 3-DOF model based on the spherical coordinate system for kite planes
adapted from soft inflatable kites. Reference [45],[46], discusses the system model for a
UAV based AWE systems derived from the lagrangian approach and [47] presents the
6 DOF model for UAV based systems derived from the first principles of flight dynam-
ics. Reference [34],[48], [49], discusses a 3-DOF control-oriented modelling approach. In
[50],[51],[52], modelling approach for Magnus-based AWE systems is discussed. All the
approaches describe the system by using the Newtonian approach and considering two
frames of reference, namely, an inertial frame fixed at the ground with respect to which
the position of the airborne platform is described, and a body frame centered at the
Cg of the airborne platform. In case of multi-line kite systems, when a control pod is
used at the briddle-point [41], another intermediate frame centered at the bridle point
is used to describe the movement of the briddle point, and in some cases attitude of
the platform is then expressed with respect to this intermediate frame centered at the
briddle point.

A common approach used to describe the motion of the kite or UAVs for designing
the guidance laws or for optimization of the trajectory is by using spherical coordinate
systems. Where in this work, the elevation angle is denoted by ✓T , and the azimuth
angle is denoted by �T . These two angles are then used to describe the orientation of
tether with respect to the ground as given by the equations below and shown in figure
2.18. Many control strategies are proposed in the literature based on this model such as
[34] as used in this thesis work.
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Figure 2.18: Kite based AWE System.
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Where, ~x represents the position vector of the Cg, rt is the tether length, m is the mass
of the airborne platform. ~Fxb and ~Fyb presents the forces in the body frame centered at
the Cg of the airborne platfrom. A detailed model can be found in [34],[48],[53],[54].

• Tether: In the ground-based systems, a tether is used to control the kite as well as
to drive the generator. In on-board systems besides from control, the tether is used to
transmit the electricity generated by the on-board generator. Thus, depending on the
type of the system, the specifications of the tether vary. In general, the tether should
be made of a material which can not only bear high loads but also is lighter in weight.
Tether cables made of composite materials are generally used in the AWE prototypes.
Tether dynamics play an important role in determining the efficiency of AWE system.
To minimize the effects due to the drag, inertia and elastic properties of the tether, its
diameter must be as small as possible.

In case of kite based AWE systems, there is also some debate about the optimal number
of tethers that should be used for control purposes [56]. As less number of tether affects
the controllability of the kite system whereas using more than one tether increases the
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Figure 2.19: Straight line rope model taken from [55].

Figure 2.20: Multi-mass rope model taken from [55].

tether drag. Thus, decreasing the overall efficiency of the system. There are several
models proposed in the literature for modelling the tether dynamics [57], [42],[58],[59].
Reference [55], presents two approaches to model the effects of tether for a Magnus-
based system. The lumped mass model, as presented in figure 2.19, considers tether
as a simple spring-damper system. In the multi-link model, the tether is modeled as
a series of spring-damper point mass system, taking into account the sagging effect of
the tether as shown in figure 2.20. A detailed analysis of the elastic properties of the
tether is presented in [44]. In [59], a study of the effect of tether length on the flight
is presented. The work also discusses the tether design methodology. Other similar
modeling approaches are discussed in [42],[60].
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• Ground Station: At ground station the tether is reeled-in and reeled-out. In case of
ground-based systems, the ground station consists of a winch-generator system. Winch
uses the traction force of the tether to drive the generator. In on-board systems, the
winch is only used to pull down the airborne platform. Figure 2.22 presents the driveline
components of a ground station. The choice of the ground station components depends
on the specification of the AWE system and the maximum power generated. In [61], a
design strategy for the ground station components for a 20 KW maximum power kite
is discussed. Reference [55], discusses a simple winch dynamics model considering a
lumped mass tether model. In [50], a simple approach for modelling the winch dynamics
is presented as shown in figure 2.21 and given by equation 2.5.

Figure 2.21: Winch model taken from [55].

~̇lr = ~vr (2.4)

~̇vr = rw~̇!w =
rw

Jw
(rw ~Fr,w � ~Tg) (2.5)

Where, lr is the unwound tether length, Jz is the moment of inertia of the winch, vr
is the winding or unwinding speed of the tether, Fr,w is the traction force sum of the
tether elastic and damping forces (Fc and Fk), and Tg is the generator torque. There
are several types of generators available in the market which can be used for the energy
conversion. The choice of type of ground station has a big effect on the Levelized Cost
of Energy (LCOE). Reference [62], discusses the effect of different energy conversion
methods on the overall efficiency of the AWE system. In [63], the efficiency of two types
of permanent magnetic generators for a small scale AWE system is discussed. Reference
[64], compares the various driveline solutions for conventional wind turbines and based
on the works of [65], [66], presents two ground station layout for kite based AWE systems.
For each layout, LCOE is computed and respective power curves are presented.

2.2.2 Power Generation

The key idea behind the power generation is as the airborne platform moves around in the
air, the electro-mechanical systems convert the high altitude wind speed into electricity. As
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Figure 2.22: Ground station driveline taken from [61].

in the conventional wind turbines, the power produced depends on the relative wind speed
experienced by the airborne platform, which in turn leads to higher lift and drag forces. Thus,
in the case of ground-based systems, it leads to the production of higher traction force. In
literature, power produced by the AWE systems is given by:

P = Frva (2.6)

Where, va is the apparent wind velocity faced by the airborne platform, and Fr is the total
traction force developed in the tether. Fr directly depends on the aerodynamical forces Fa

developed in the airborne platform.

Fa =
q
F 2
L
+ F 2

D
(2.7)
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2
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2
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2
⇢Sva

2
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Where, FL and FD represent the lift and drag force, CL and CD are the aerodynamic coefficient
of lift and drag respectively, and S is the surface area. In [10], Lyod calculated the approximate
theoretical power produced by such systems by:

P = (
4

27
)⇢S(vw)

3
CL(

CL

CD

)2 (2.10)

Where, vw is the wind speed experienced by the airborne platform and ⇢ is the air density.
The equation 2.10 is derived by assuming for the maximum power generation the apparent
wind velocity va must be maximized. It is further detailed in [10] and explained in chapter
5. As observed from the above equation the power produced is a function of surface area,
relative wind velocity va, and aerodynamic coefficients ( (CL)3

(CD)2 ). Thus, higher they are higher
is the power produced. These parameters can be maximized by:

• Crosswind Motion,

• Lift-to-drag ratio,
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• Surface area.

Crosswind Motion: One way to maximize the power is to maximize the wind experienced by
the airborne platform. Doubling the average wind speed results in an eightfold increase in the
energy output of the AWE system and trippling the wind speed leads to 27 times increase in
the power. Crosswind motion maximizes the experienced average wind speed, thus, leading to
higher power production. Basically, in crosswind motion, the airborne platform flies transverse
to the direction of the apparent wind .i.e. having a component of wind perpendicular to the
line of travel. As the lift force is a square function of the apparent wind, this results in higher
lift which leads to higher power generation. This is primarily because in crosswind flight the
airborne platform traverses a higher volume of the wind field, also known as swept area. In
other words, it harvests wind energy from an area exceeding its own size. This ability of AWE
systems gives it an edge over the conventional wind turbines where the swept area is limited
by the fixed size of the blades. The two main trajectories to achieve crosswind motion is
eight-figure loops and circular orbit both of which are explained in detail in chapter 4.

Lift-to-drag ratio: Another way to increase the power produced is by increasing the CL

and decreasing the CD. As doubling the lifting capabilities leads to a direct increase in the
power generated as expressed by the expression ( (CL)3

(CD)2 ). However, higher lift force also leads
to higher drag force. This is partly because higher volume of wind fluid is disrupted which
results in higher frictional forces, thus, higher drag. The ratio of CL

CD
called as Lift-to-drag

ratio presents the effectiveness of any surface in a fluid medium (which in case of AWE systems
is the atmosphere) and is used to quantify the performance of any lifting surface in a fluid
medium. As power produced is proportional to the square of CL

CD
, the lift-to-drag ratio serves

as a critical indicator in choosing the airborne platform such as soft kite, hard-wing, UAV,
Magnus cylinder, etc. The choice of airborne platform with high CL

CD
directly affects the power

generation capability of the system. The power production and performance of AWE system
are discussed in detail in chapter 5.

Surface Area: The other way of achieving higher power is simply by increasing the size
of the AWE system. Thus, scalability also plays an important role in the choice of airborne
platform.

2.2.3 AWE Operational Cycles

Generally, the operation of ground-based AWE system is characterized by two operating phases
as shown in figure 2.23. The power is generated in the power generation phase, also called the
production phase, where the airborne platform gains altitude while performing the crosswind
motion or following any other specified trajectory. This phase is characterized by the reeling
out of the tether from the drum.

When the airborne platform attains the maximum altitude, it is required to be pulled back.
This marks the beginning of the recovery phase when the drum motors pull back the airborne
platform .i.e. the reeling-in of the tether. In this case, the drum consumes a part of the energy



2.2. Basic Concepts 27
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Figure 2.23: Operating cycles of AWE.

produced during the production phase. Hence, one complete cycle of operation comprises of
power production and consumption phase. The net power produced in one complete cycle is
then the sum of the power produced and power consumed as shown in figure 2.24.

Several strategies have been proposed in the literature to minimize the power consumption
during the recovery phase. The basic principle behind all such strategies is to deliberately
decrease the lift produced by the airborne platform before starting the reeling in of the tether.
Thus, decreasing the resistive forces and the energy consumed during the recovery phase.
One way of achieving this objective is by deploying the lift-reducing control surfaces such as
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Figure 2.24: Power cycle for AWE system.
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spoilers in case of UAV base AWE systems. Another way is by carrying out certain maneuvres
which leads to a fall in lift such as by increasing angle of attack greater than the stall angle
as in the case of soft kites.

2.3 Challenges

There are several major challenges in front AWE community before a full-scale AWE wind
farm can be established. Various research teams and startups around the world are working
to solve them.

1. Landing and Take-off strategy:
Although several approaches have been proposed in the literature for the landing and
take-off of AWE systems but still it is an open topic of research in AWE community.
Reference [67] presents an analysis of four take-off approaches. Reference [68], presents
a landing and take-off strategy for Multi-drone systems. Ampyx power is working on the
landing and take-off approach from a rotating platform as discussed in [69]. Reference
[70], presents in detail rotation start approach. In [20], an approach using artificial
air blowers is proposed. The approach aims to create artificial wind during the take-
off. Reference [71], presents a take-off approach using an aerostat. TU Delft team has
patented an upside-down launching strategy in 2014 described in detail in [72]. Makani
Power [17] uses the on-board turbine propellers as a motor for take-off and landing with
power being supplied from the ground-based system for this phase transition. A similar
approach is discussed in [73].

However, still there is no coherent strategy for the autonomous landing and take-off for
AWE systems. Also, there are several open questions regarding the landing and take-off
strategy which needs to be addressed such as landing and take off in situations when
there is no wind or excess wind, bad weather, etc.

2. Autonomous Operation:
Despite the presence of many working prototypes, a 24x7 autonomous operation of an
AWE system has not yet been attempted. The longest flight test is done by Makani
which was for 3 days. Also, the performance and autonomous operation strategy for an
AWE system in scenarios such as low wind or an excess wind, or bad weather conditions
like rain, storm etc. are yet to be explored. In all such cases, the AWE system must be
capable of autonomously landing and taking-off by itself.

3. Autonomous Control of Trajectory:
In literature there are plenty of control strategies available to achieve an optimized
crosswind trajectory but due to the lack of flight test data and the limited number of
functional prototypes many such control strategies are yet to be verified. Hence, there
is no consensus on the best control practice needed for autonomous operation.
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4. Tether Dynamics:
Tether drag is a big contributing factor to the efficiency of the AWE system. However,
there is limited research done in this regard and there is even lesser experimental data
available on the contribution of tether drag to the overall AWE system. In addition,
most of the flight test done by the companies usually do not consider the effects of
tether dynamics. To achieve an efficient AWE system, tether dynamics would play a key
role. Thus, its contribution to the performance of the AWE system must be thoroughly
studied.

5. Life Cycle Predictions:
As currently, the focus of AWE research teams and startups is to achieve a fully au-
tomated flight, for now there is very less information available on the life cycle of the
various components involved in the AWE systems such as the tether, airborne platform
etc. which will be a key factor in determining the LCOE of the AWE systems.

6. Ground station specification:
Although there are several off-the-shelf generators available in the market, but as there
is a lack of data available about the performance of AWE systems there is still no co-
herence on the specifications of the ground station. Also, there are several strategies
being proposed in the AWE community regarding the driveline and winch-generator de-
sign such as usage of a gearbox, hydraulic transmission, storage device, use of multiple
electric motor/ generator, etc. which are needed to be verified.

7. Policy Regulations:
As the AWE system is a novel technology and requires an airborne platform to fly at high
altitudes, there are several restrictions imposed on the usage of airspace which impedes
the flight testing of the prototype. Also, for the development of AWE based wind farms,
new policies need to be made which eases the usage of airspace as well as the ground site.

8. Economic Indicators:
AWE systems face a direct comparison with conventional wind turbines. There are
several economic indicators which evaluate the performance of wind turbines like LCOE,
capacity factor, power coefficient, etc. As for now, there are very less studies undertaken
on the economic feasibility of the AWE system. Also, in the research community there
is still a debate whether the classical performance indicators developed for conventional
wind turbines can be applied to AWE systems or not.

The main objectives of the thesis work are:

• Study and validation of the aerodynamic model of the Magnus Effect.

• Development of a 3-D Mathematical model for Magnus-based AWE system.

• Design of guidance control for Magnus-based AWE system.



30 Chapter 2. State of the Art

• Study of operating strategies for maximum power production of AWE system.

• Development of the power curves for Magnus-based AWE systems.

By achieving the above mentioned objectives, this thesis work aims to address the chal-
lenges and issues related to:

• Modelling and design of AWE systems,

• Autonomous operation of AWE systems,

• Ground station layout and configurations,

• Economic capability of AWE systems.



Chapter 3

Magnus-Based AWE Systems
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3.1 Introduction

As discussed in chapter 2, a ground-based AWE system consists of a wing or a kite (flexible or
rigid) attached to one or more cables connected to the electric generator on the ground. This
type of system allows for the aerial part to be light and the use of conductive cable is avoided.
A Magnus effect-based system as studied by Omnidea Lda. [25] consists of a lighter than air
airborne platform. The operating principle of the platform is based on the traction force of a
rotating cylindrical balloon employing both aerostatic as well as aerodynamic lift mechanism.
The feasibility of concept has been studied in reference [51],[74],[75], etc. The authors of [50]
have optimized control variables for a Magnus effect-based AWE system following optimal
vertical trajectories. In [52], a strategy is proposed to control the power produced by the
system by changing the tether length and the cycle period.

In order to develop a realistic simulation model and evaluate the performance of Magnus-
based AWE system, it is necessary to have a very good understanding of the aerodynamic
properties of Magnus effect, particularly the coefficient of lift and drag. However, as to be
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discussed in detail in this chapter, very less research data is available in this regard. In
this chapter, a detailed analysis of the aerodynamic properties is presented. To establish a
good aerodynamic model for Magnus effect, a two-step approach comprising of the analysis
of historical experimental data and an estimation strategy is presented. The results obtained
from this two-step approach (which includes in-depth analysis of the past research on various
Magnus based systems, including applications in naval engineering, aeronautics, renewable
energy etc.) are our contribution to the research on Magnus effect. And to the best of our
knowledge, this is the first comprehensive study undertaken with a focus on Magnus based
AWE system. Thus, the results obtained about the aerodynamic properties of Magnus-based
AWE systems are first of its kind in the literature on Magnus-based AWE systems.

In this chapter, a detailed description of the Magnus effect and its application is presented
in section 3.2. In section 3.3, the aerodynamic properties of the Magnus cylinder are discussed.
Section 3.4 presents the comparison of historical experimental data with an aerodynamic
polynomial model for Magnus cylinders and an estimation strategy adopted to estimate and
better understand the aerodynamic coefficients of a Magnus cylinder. Section 3.5 presents the
experimental setup at GIPSA-lab as well as discusses the results obtained by the estimation
approach. The chapter concludes with a conclusion presented in section 3.6.

3.2 Magnus Effect

Historically, the phenomenon of Magnus effect was first mentioned by Issac Newton in 1671
in his letter Oldenburg, where he explained the spinning motion of the tennis ball [76]. Sub-
sequently, in the 19th century it was well known that the projectile motion of a bullet or a
gun shell is described by a parabola and air resistance has a considerable effect on the path.
In 1805, Benjamin Robins described the whirling motion and deflection of a bullet in the air
in his paper [77], what can now be called as ’Robins effect’, [78]. However, the phenomenon

Figure 3.1: Gustave Magnus’s experimental setup [79],[80].

was first defined by German scientist Gustav Magnus in 1852 [79], hence, the name Magnus
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effect. In his experiments he noticed a lateral force arising due to the spin of the cylinder. He
explained that the spin of the cylinder causes an unequal distribution of pressure around the
top and bottom surface of the cylinder which results in a lift force similar to the one produced
by airfoils when exposed to wind flow. This lift force is sometimes called as the Magnus force.
Figure 3.1 presents his experimental setup.

Figure 3.2: Magnus Effect.

The interest in the Magnus effect renewed in the last century particularly due to its ad-
vantage over classical lifting devices such as airfoils. Figure 3.3 presents the comparison of the
maximum lift coefficient produced by different surfaces. As it can be observed from the figure
3.3 Magnus effect-based devices can achieve a very high coefficient of lift. This inspired many
researchers, inventors, and engineers to explore its potential and to create systems tapping
wind energy to steer ships, drive wind turbines, and develop high lifting devices for aero-
nautical applications. In 1877, Lord John Rayleigh in his work tried to explain the curved
motion of a ball using Magnus effect [82]. Lafay in 1912 conducted experiments on the rotating
cylinders at Ecole Polytechnique and successfully demonstrated the high lift force generated
by it as compared to that by the airfoils of same projected area. Similar research works by
Hermann Fottinger [83], and Prof. Gumbel [84], in 1918 and 1919 on rotating cylinders led to
the development of propellers using rotating cylinders.

One of the most prominent research exploring the potential of the Magnus effect was done
by Anton Flettner in the 1920s. Flettner attempted to use the Magnus effect to propel ships.
He developed a propulsion system based on cylindrical rotors, now known as Flettner Rotor.
Under his leadership, a ship named Buckau (renamed Baden-Baden shown in figure 3.4),
using two large cylindrical rotors of about 15 meters height and 3 meters in diameter, was
constructed in 1924, which in 1926 made a voyage to New York harbor via South America.
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Figure 3.3: Maximum coefficient of Lift (CL) for different lift generating devices [81].

Figure 3.4: MS Buckau (Baden-Baden) [85]. Figure 3.5: Barbara Ship [86].

During world war II, he headed Flettner Flugzeubau GmbH, which developed helicopters
and aircrafts using Magnus effect, as shown in figure 3.6 and 3.7. In the late 20th century
with the renewed interest in the potential of Magnus effect, an attempt was made again to
use it for naval propulsion. In 1980, Jacque-Yves Cousteau proposed Turbosail [87], a naval
propulsion system inspired by Magnus effect with design similar to that of the ship Buckau. He
commissioned a test vehicle Alcyone, shown in figure 3.8, using Turbosail propulsion system.
E-ship 1, as shown in figure 3.9, is another vessel using the Magnus effect to propel the ship.
It consists of four large Flettner rotors of about 27 meters height and 4 meters in diameter.
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Figure 3.6: Flettner Rotor Aircraft [86]. Figure 3.7: Flettner Fl 282 Kolibri [86].

The rotors via a mechanical linkage convert the wind energy and use it to propel the ship. It
is operated by Enercon since 2010 as a cargo vessel for transporting wind turbine components.

Figure 3.8: Alcyone vessel [88].

Norsepower Ltd. is a Finnish clean technology company established in 2012 and funded
under the EU’s H2020 framework. They are pioneer in providing Magnus effect based rotor
solution for ship porpulsion [89]. Their rotor based propulsion system claims to be easy to
use, low maintenance and promises to provide an average of 6% to 20% fuel savings in ship
propulsion. Their installed rotor based systems on a Viking crusie ferry claims to provide an
annual LNG fuel reduction by 300 tonnes. A Ro-Ro vessel Estraden is also using their rotor
propulsion system with two 18 meter tall Magnus rotors leading to verifible fuel savings by
5% and 460 kW average power boost. Recently in 2018, they have installed two 30 m long
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Magnus cylinder on Maserk tanker as shown in figure 3.10, which are expected to reduce 7-
10% of average fuel consumption. In 2012, Jost Seifert presented a paper describing in detail

Figure 3.9: E-Ship 1 operated by Enercon [90].

Figure 3.10: Maserk tanker with installed rotor propulsion system by Norsepower [89].

some Magnus effect-based technologies which had been researched upon in the last century
including wind turbines, aircraft, etc., [80]. He also suggested that there is a lack of research
on how to the design and model lifting devices using the Magnus effect.

In 2014, Sedaghat presented a novel concept of Magnus effect-based wind turbines [91].
He proposed a horizontal axis wind turbine consisting of Magnus cylinders as turbine blades,
as shown in figure 3.11. The work concluded that the Magnus wind turbines have a merit over
conventional wind turbines but for small-scale applications. However, for a large-scale wind
turbine, a thorough experimental study of the aerodynamic properties of the Magnus effect is
needed. In [92], a Magnus based MAV is studied.
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Figure 3.11: Conceptual Wind Turbine, [91].

Figure 3.12: Prototype of Magnus based MAV as proposed by Badalamenti, [92].

3.3 Aerodynamic Characteristics of Magnus Effect

In order to establish a control oriented mathematical model for Magnus-based AWE systems
and to approximate the power generated by them. It is imperative to study the aerodynamic
characteristics of Magnus effect to determine the coefficient of lift, CL, and drag, CD. These
dimensionless variables determine the lift and drag force generated by the Magnus cylinder
which in turn determines the traction force available to drive the on-ground generator, as
explained in later sections. This requires the study of flow past rotating cylinders in high
Reynolds number regime. Similar to the airfoils, the lift and drag force acting on the Magnus
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cylinder are expressed as:

FL =
1

2
⇢Scylv

2
aCL, FD =

1

2
⇢Scylv

2
aCD (3.1)

Where, va is the relative airflow impinging on the Magnus cylinder, ⇢ is the air density, and
Scyl is the projected surface area of the Magnus cylinder in the direction of the apparent wind
velocity. CL and CD represent the coefficient of lift and drag respectively.

Apart from this, a torque (Tmotor) is required to turn the Magnus rotor and it can be
estimated by:

Tmotor =
1

2
⇢Scylr

2
cyl

v
2
aCm (3.2)

Where, rcyl is the radius of the Magnus cylinder, !cyl is cylinder’s angular spin velocity, and
Cm is the aerodynamic torque coefficient of the rotor that depends mainly on spin ratio X and
Reynolds number (explained below), geometry of the cylinder and, roughness of its surface.
Generally, its value is determined by the wind tunnel testing or CFD analysis. It is further
detailed in chapter 5 and section 5.2.3.3.

In particular, for Magnus effect, the aerodynamic coefficients, CL, CD, and Cm, depend
on two dimensionless quantities namely, the Spin ratio (X) and Reynolds number (Re).

Spin ratio: Contrary to the airfoils, where CL and CD are primarily the functions of its
angle of attack and shape, in case of Magnus effect these coefficients primarily depend on the
dimensionless quantity, spin ratio X. The spin ratio X is defined as:

X =
!cylrcyl

va
(3.3)

Where, rcyl is the radius of the Magnus cylinder. This gives Magnus-based AWE systems an
advantage over other systems such as airfoils. The geometrical symmetry of the cylinder and
independence from the angle of attack makes them insensitive to the apparent wind direction
and, thus, more robust to the wind gusts. For Magnus-based AWE systems, the spin ratio is
expected to be between [0, 8].

Reynolds Number: Another parameter that influences the CL and CD coefficients is the
dimensionless quantity Reynolds number (Re), which is the ratio of inertial forces to viscous
forces within a fluid. It is used to quantify the flow characteristics in fluid mechanics. A
low Reynolds number indicates that the fluid flow is laminar or streamline, whereas a high
Reynolds number is indicative of turbulent flow. The critical Reynolds number is used to
predict the transition from streamline to turbulent flow. The knowledge of the fluid char-
acteristics, particularly, when the flow transitions from laminar to turbulent flow, plays an
important role in engineering design. For instance, the design charactestics of an airfoil, such
as length, width, etc., are choosen based on the knowledge of its critical Reynolds number. It
is also used in scaling full-scale models to test models, or vice-versa, for different objects. It
is expressed as:

Re =
⇢uL

µ
(3.4)
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Where, u is the fluid velocity, µ is the dynamic viscosity of the fluid, ⇢ is the density of the
fluid, and L is the characteristic length of the object. The operating Reynolds number for
Magnus-based AWE systems is expected to lie in high Reynolds number regime between the
range of 5⇥ 105 to 107.

3.3.1 Aerodynamic Coefficients of Magnus Cylinder

There is a rich literature available on flow past rotating cylinders in low Reynolds number
regime .i.e. Re < 1000 (in contrast to high Reynolds number), which provide an important
insight about the flow characteristics past a rotating cylinder. However, these studies have
been particularly focused on the application of rotating cylinders for the control of boundary
layer. Some important studies for low Reynolds number regime from 5 to 200 are presented in
papers [93], [94],[95], which discusses in detail the properties of the flow past rotating cylinder.
The results presented by Ingham and Tang for Reynolds number 5 to 20, and spin ratio, 0
to 0.5 provide an important insight about the flow lines and fluid interaction with rotating
surfaces [96].

As the Reynolds number rises the flow complexity increases which makes the experimental
determination and validation of the aerodynamic coefficients very difficult. For moderate
Reynolds number 1000  Re  10000 there are some significant studies available in the
literature. In Badr et al. [97], an experimental and numerical analysis for 103  Re  104 is
presented. Other similar studies such as [98], [99] and [100] present their results for moderate
Reynolds number range. However, there is a lack of published data dealing with rotating
cylinders in high Reynolds number regime. Primarily, because of the lack of interest of fluid
dynamicists, and secondly, due to the turbulent nature of the flow which makes the problem
more complex. For such type of flows, it is observed that the critical Reynolds number occurs
around Re = 3⇥ 105, [101].

In 1925, L. Prandtl conducted an early experimental study of flow past a rotating cylinder
[102]. Prandtl performed experiments for low rotational speeds and due to flow separation
in downstream, he concluded from his experiments that the maximum lift from a spinning
cylinder cannot exceed 4⇡. In 1991, Tokumaru and Dimotakis contradicted the Prandtl’s
conclusion, [103]. In their study for Reynolds number, Re = 3.8⇥103, and spin ratio, X = 10,
they demonstrated that the lift forces higher than 4⇡ can be achieved. Other similar studies
have also validated Tokumaru and Dimotakis’s findings.

In [104], it is concluded that the mean lift occurs around Re = 2.8 to 3.5 ⇥ 105, and the
phenomenon of Drag crisis, where drag coefficient (CD) drops rapidly, comes into play in this
Reynolds number range. And around Re = 3.8⇥ 105 due to the increase in the shear stresses
due to turbulence the drag coefficient increases again.

In [105], Karbelas published his results on flow past spinning cylinder for high Reynolds
number Re = 1.4⇥105 and spin ratio, 0 to 2. In [101], he investigated the flow for Re = 5⇥105,
106, 5⇥106, and for spin ratio, X = 0 to 8. He concluded that the lift coefficient, CL, increases
linearly with respect to the spin ratio while the coefficient of drag, CD, increases linearly from
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Figure 3.13: Lift, Drag and Moment Coefficient, CL, CD and Cm for Re = 5 ⇥ 105 (dash line),
Re = 106 (solid line) and Re = 5⇥ 106, ↵ is the spin ratio [101].

X = 0 to 4, after which it reaches a plateau, and then decreases around X = 7.5. Figure 3.13
presents his results.

In [51], Luka Perkovic et al. presented the results of CFD analysis of a Magnus-based AWE
systems for Re = 106, 5 ⇥ 106, 107, and spin ratio, X = 0 to 7. They considered a cylinder
of radius 3 m and 30 m in length. Figure 3.14 presents their results for different reynolds
number. In [106], [107] an analysis of the aerodynamics of Flettner rotor for high Reynolds
number is presented. Elliott G. Ried in 1924 conducted a study of the Magnus effect for
NACA, erstwhile NASA [108]. To our knowledge, this is one of the first experimental studies
on the Magnus rotor. Ried observed the appearance of the hysteresis loop for smaller spin
ratio and obtained lift coefficient CL = 9.5.

In 1979, L. Bergeson and Greenwald founded the company Wind Ship exploring the wind
propulsion for ships [81]. In 1985, Wind Ship published their report on the usage of Magnus
based rotor for ships, which was an extension of their work on wind propulsion done in 1974
[109]. Wind Ship tested a 27.432 m

2 Magnus rotor at the sea. The report discusses the
ship’s performance, mathematical, economic and aeroelastic models. Figure 3.3 presents their
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Figure 3.14: Lift, Drag and Moment Coefficent, CL, CD and Cm, [51].

results about the lifting capabilities (CL) of Magnus cylinder in comparison to that of other
such devices. In 2010, C. Badalamenti for his doctoral thesis conducted experiments on the
feasibility of Magnus-based micro air vehicles (MAV) as shown in figure 3.12, [110], [92]. He
considered a cylinder of 0.15 m in length to explore the lifting capabilities of the rotating
cylinder. He conducted wind tunnel tests for Reynolds number, 1.6 ⇥ 104  Re  9.5 ⇥ 104,
and for spin ratio, X  4. His test results were in line with the previously available data and
concluded the effectiveness of the Magnus rotors in aeronautics.

In 1986, a California based Borg-Luther Group conducted a literature review for US Navy
applications, [111]. Their report presented the known experimental data for Magnus effect
devices from 1850 to 1985. The first volume presented a detailed analysis of the experimental
data on coefficient of lift, drag and moment, CL,CD, and Cm, for different spin ratios. It
can be considered as a handbook for Magnus cylinders. Table 3.1 presents the list of data
considered in the Borg-Luther report. Figure 3.16 and 3.15 present one of the CL and CD

curves from Borg-Luther report.
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Figure 3.15: CD curves preseneted in Borg-Luther report [111].

Figure 3.16: CL curves preseneted in Borg-Luther report [111].
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Curve Sheet Investigator Ref. Aspect de

d⇤ Reynolds Remark
No. No. Ratio Number

A 1,2 ideal fluid,
CL = 2⇡v/V

1 - 1 inviscid theory

B 1,2 50%A, CL =
2⇡v/V

1 - 1 referernce curve

C 1,2 25%A, CL =
2⇡v/V

- 1 - 1 referernce curve

D 1 Thom 26 12.5,26 3 5.3� 8.8X103 approaches curve
B

E 2,3 Windship 16 6.2 1.58 4.5X105 full size curve B

F 2,3 Reid 31 13.3 None 3.3� 11.6X104 CL equiv. to
short cylinder
with plates

G 2,3 Gottengen 32 4.7 1.7 5.2X104 Flettner sails

H 2,3 Gottengen 32 4.7 None 5.2X104 Flettner sails w/o
plates

I 2,3 Borg appendix B 4.0 2 11.15X104 tested in fresh
water

J 1 Thom 26 5.7 None 3� 9X104 rough surface
(sanded)

K 1 Thom 26 5.7 None 3� 9X104 smooth surface

L 1,3 Swanson 24 1 None 3.5X104 � 3X105

M 1 Swanson 24 2 None 5X105 continous end
sections

Table 3.1: List of Past researches considered in Borg-Luther report [111]. Here de
d⇤ refers to the ratio

of the diameter of Thom disc to the Magnus cylinder, and sheet no. refers to the curves presented on
pages of the report.

Thom Discs: The lift coefficient of the Magnus cylinder can be increased further by
adding Thom discs to the cylinder [112]. In 1934, Alexander Thom published his works on
the effects of discs on rotating cylinders. Through his experiments, he concluded that by the
addition of discs along the length of the cylinder leads to the production of very high lift
coefficient, CL. In his experiments, he achieved CL as high as 18. His work was based on
the Prandtl’s theory of circulation [102], which postulated that the eddies produced on the
underside of rotating cylinder should be carried downstream for a general circulation through
the flow field. But due to the presence of annular space around the cylinder, the eddies
produced on the underside of the cylinder cannot be extracted as shown in figure 3.17a.

Thom came up with the idea that if the flow region on the underside could be minimized it
would lead to an automatic reduction in drag and increase in lift. He found that the addition of
discs along the cylinder leads to a very low enclosed region on the underside of the cylinder as
shown in figure 3.17b. Hence, leading to a very high lift. His work led to numerous application
of discs on rotating cylinders. The disc added to rotating cylinders are now called as ’Thom
Discs’. Carrying forward his work, Betz presented his results on the rotating cylinders with
Thom discs [113].

Thus, by the addition of Thom discs, a Magnus-based AWE system will be able to fly
at much slower speeds as well as be less sensitive to the drag. Therefore, allowing the AWE
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system to produce power even at lower wind speeds. However, the practical feasibility of this
idea is needed to be validated experimentally.

(a) (b)

Figure 3.17: Flow past cylinder without Thom disc (a) and with Thom disc (b).

3.4 Aerodynamic Model

In [50], Milutinovic proposed an aerodynamic model for Magnus cylinders:

CD = �0.0211X3 + 0.1873X2 + 0.1183X + 0.5 (3.5)
CL = 0.0126X4 � 0.2004X3 + 0.7482X2 + 1.3447X (3.6)

His aerodynamic model was in turn based on the work of Dr. T K Sengupta, published in
Frank M. White book [114]. However, to the best of our knowledge, the proposed model is just
an assumption. Hence, to study the Magnus-based AWE systems and to evaluate their power
production capabilities, it is necessary to know the aerodynamic model for Magnus cylinder.
As discussed in section 3.3, the study of the behaviour of cylinder in high Reynolds regime
is a challenging problem. And as the extensive wind tunnel testing or CFD analysis of the
aerodynamic properties of Magnus cylinder is not the focus of this work. Hence, to establish
a good appoximation of the aerodynamic model, a two-step approach is adopted in this thesis
work.

The chief aims of this two-step approach are:

• To establish a general trend for CL and CD for Magnus cylinder by comparing the most
prominent experimental results.

• To establish a minimum and maximum possible value for CL and CD for a particular
spin ratio.

• To analyze if the polynomial model proposed by Milutinovic in [50] fits the general trend
or not? If yes, then can it be assumed as a good approximation for the aerodynamic
behavior of Magnus cylinder.
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• To check if the proposed polynomial model is in line with the results obtained from the
experiments conducted at GIPSA-lab.

• To propose an improved aerodynamic model, if necessary.

In the first step, Comparision of Experimental Aerodynamic Data, presented in
detail in section 3.4.1, to establish a general trend for CL and CD, an analysis of the experi-
mental data of some selected research papers on rotating cylinders in high Reynolds number
regime is done. They are then compared with the polynomial aerodynamic model proposed
by Milutinovic in [50].

In the second step, Estimation of Aerodynamic Coefficients, presented in detail in
section 3.4.2, an estimation strategy based on Kalman filter is adapted to estimate the CL

and CD trends from the data obtained from the experiments conducted with a small-scale
Magnus cylinder. The experiments were conducted using an in-house wind tunnel built at
GIPSA-Lab. The estimation results are then compared with the aerodynamic model pro-
posed by Milutinovic in [50], to evaluate the validity of the proposed aerodynamic model and
understand the aerodynamic behavior of the Magnus cylinder. Section 4.5, discusses in detail
the experimental setup and results obtained.

It is necessary to note that the results obtained and discussed in section 3.5 are helpful
in establishing a range of possible values for CL and CD for each spin ratio. They also help
in establishing a general trend for CL and CD which is then used for simulation of Magnus-
based AWE system. However, to develop an accurate understanding of the power production
capabilities of Magnus-based AWE system, the aerodynamic model must be validated by
extensive experimentation with full-scale prototypes.

3.4.1 Comparision of Experimental Aerodynamic Data

Reference Re AR Data Type Comments
[113] 5.2⇥ 104 4.7 Experimental Without Thom disc
[111] 1.115⇥ 105 4 Experimental Without Thom disc
[109] 4.5⇥ 105 • Experimental With Thom discs
[108] 5⇥ 104 13.3 Experimental Without Thom discs
[50] 3.8⇥ 104 - Identified. From [115]
[92] 9.5⇥ 104 5.1 Experimental With endplates

Table 3.2: Different references used in the study of CL and CD. Aspect ratio (AR) and Reynolds
number (Re) are given.

Table 3.2, presents a list of aerodynamic data considered for the first step. The data chosen
is experimental data for a range of high Reynolds number. Also, as explained previously in
section 3.3, the performance of CL and CD can be significantly improved by incorporating
Thom discs and end plates into the cylinder design. Thus, to demonstrate what could be
the maximum potential of Magnus cylinder, the experimental data for Magnus cylinder with
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Thom discs and end-plates is also considered. However, the Magnus-based AWE prototype
considered in this thesis does not include Thom discs or endplates. Figures 3.18 and 3.19,
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Figure 3.18: The lift coefficient CL as a function of X. Data is taken from Milutinovic ([50]), Reid
([108]), Borg-luther ([111]), Bergeson ([109]), Betz ([113]), Badalamenti ([92]) for different Reynolds
number as detailed in table 3.2.

and table 3.2, presents a selection of aerodynamic data of CL and CD for high Re number
range. The data is considered from the following studies, [50], [108], [111], [109], [113], [92].
The general trend for CL can be assumed to be increasing linearly with spin ratio until the
maximum value is reached. Depending upon the aspect ratio of the cylinder, and the presence
of Thom discs or not, CL,max can be between 8 to 13.

Unlike the CL curves, CD curves are more scattered which can be attributed to a higher
sensitivity to parameters like the presence of Thom discs and aspect ratio. Also, as it is
known that the addition of Thom discs significantly affects CL and CD. This is the reason it
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can be seen why CD is much higher for the cylinders with Thom discs or end plates. Surface
roughness is another factor which directly influences the CD of the Magnus cylinder. However,
very little information is available about this. Hence, it is assumed that the surface roughness
has no or almost negligible impact in these experiments.
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Figure 3.19: The drag coefficient CD as a function of X. Data is taken from Milutinovic ([50]), Reid
([108]), Borg-luther ([111]), Bergeson ([109]), Betz ([113]), Badalamenti ([92]) for different Reynolds
number as detailed in table 3.2.

Based on this analysis, it can be concluded that the polynomial aerodynamic model pre-
sented by equations 3.6 is somewhat in line with the other presented experimental data. Hence,
the behavior presented by the CL polynomial curve can be assumed to somewhat represent
that of the real cylinder. However, the CD polynomial curve does not exactly follow the in-
creasing trend but due to lack of reliable data, the curve can be assumed to be an optimistic
approximation of the real behavior. Thereupon, the polynomial model can be considered as a
model representing CL and CD values for the considered Re number range. Nevertheless, this
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aerodynamic model needs to be improved further in the future.

3.4.2 Estimation of Aerodynamic Coefficients using EKF

The second step of the approach as mentioned in section 3.3 adopts an estimation strat-
egy to identify the aerodynamic coefficients, CL, and CD, from the data obtained from the
experiments conducted at the in-house experimental setup built at Gipsa-Lab.

The approach is based on a filtering strategy for a kite based AWE systems. It was first
proposed in [116] which in turn is based on an Extended Kalman Filter (EKF) presented in
[117]. As a major difference from the works presented in literature, this approach utilizes
the perfect measurement strategy described in [118] for the enforcement of an orthogonality
constraint between the lift force and the apparent wind vectors. By jointly estimating the
wind conditions at the flight level, and the aerodynamic forces of lift and drag, it is then
able to compute variables such as the equivalent aerodynamic efficiency of the system, as
demonstrated in both simulation and field experiments with a small-scale prototype.

One advantage of this method is that the identification of the aerodynamic model can be
done in flight with the same set of sensors already used to monitor and control the system.
Thus, eliminating the need for other high-end wind and force measuring devices. Besides
this, an approach based on the EKF also allows for real-time estimation of the aerodynamic
properties of the system using off-the-shelf embedded hardware and paves the way for the
utilization of more sophisticated control mechanisms which rely on these data. Thus, a discrete
time EKF is proposed and implemented. The EKF is used to estimate the various forces acting
on the system as well as other important variables. The forces are presented in detail in chapter
4 and section 4.2.3.

Hence, the state vector x of the EKF is given by:

x = [rT , ṙT , r̈T ,vT

w,F
T

L, FD, Fr]
T , (3.7)

Where, r represents the position, ṙ is the velocity of the ABM, and r̈ is the acceleration of
the equivalent point-mass model of the ABM. The EKF structure also includes the nominal
wind vw, the lift force FL, the equivalent drag force FD and the traction force Fr developed
in the tether. The evolution of these states in time is carried out by a simplified dynamical
model presented in [119], and are described in discrete time by the following set of difference
equations:

rk+1 = rk + ṙkTs

ṙk+1 = ṙk + r̈kTs

r̈k+1 = (1/meq)(FLk + FDk + Fgk
+ Fbuk + Frk)

Vwk+1 = Vwk

FLk+1 = FLk

FDk+1 = FDk

Frk+1 = Frk

(3.8)
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Where, Fg is the weight of the equivalent point-mass structure including the Magnus
cylinder and the frame on which it is mounted, and Ts is the sampling period. The observation
vector of EKF is given by:

y = [rT , ṙT , vw, ✓T , Fr, �]
T , (3.9)

Where, ✓T is the elevation angle of the tether. The observation variable �, represents the inner
product between the lift vector and the apparent wind va, i.e. � = FT

L
va, and is included

in the filtering to enforce the orthogonality constraint between these two vectors according
to the perfect measurement technique. The inclusion of such a constraint in the form of a
measurement is a novel practice in AWE, being first reported in [116].

Regarding the other observed variables, it is assumed that measurements of both the
position and velocity vectors of the ABM, r and ṙ respectively, are available. Moreover, the
magnitude of the tether traction Fr, as well as the nominal wind speed vw and direction ✓T

are assumed to be measurable quantities. This choice of observations takes into account the
characteristics of a small-scale prototype built at Gipsa-lab, as discussed in detail in section
3.5.

All derivatives required for propagating the state and the covariance matrices in the EKF
algorithm are numerically computed using forward finite difference method. Therefore, ana-
lytic expressions for the jacobians of the dynamic equations and of the observation functions
are not necessary.

3.5 Gipsa-lab Experimental Setup

A small-scale experimental setup previously built at GIPSA-Lab was used to validate the pro-
posed estimation approach. The set up has been used in the previous works [120],[121],[122],[123].
This setup consists of a custom wind tunnel, a Magnus cylinder, and a ground station equipped
with instruments for the measurement of different flight parameters.

3.5.1 Wind tunnel

The wind tunnel was built to conduct indoor experiments irrespective of the weather condi-
tions. It consists of nine 800 W brushless motors evenly distributed over a 1.2 m2 surface,
and capable of generating an air flow up to 9 m/s. The airspeed was sensed by a hot wire
anemometer at a rate of 1 Hz through a serial interface, and the controllers are deployed on
top of the xPC real-time toolbox for Matlab.

3.5.2 Ground station

The ground station consists of a Maxon 2260L DC 100W dynamo-motor system driven by
an ADS 50/10 4 quadrants amplifier manufactured by the same company. The length and
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Figure 3.20: The Matlab/Simulink real-time setup used in the experiments.

elevation of the tether are measured by two incremental encoders mounted on the ground
station. Tether tension is acquired using a rotative torque sensor, and the PCI DAS1200 DAC
module is employed to communicate and send control references to the actuation drivers.

3.5.3 Magnus cylinder

A light weight Magnus cylinder built with carbon rods, polystyrene, and transparent plastic
paper was used as ABM in the experiments. Figure 3.22 shows the Magnus cylinder prototype
used to conduct the experiments. A mini DC motor is used to spin the cylinder. It can be seen
in figure 3.22. Table 3.3 presents the specification of the custom hardware used for measuring
and controlling the angular speed of the cylinder.

3.5.4 Results

A series of experiments were performed in the wind tunnel using the small Magnus cylinder
prototype. In these experiments, the Magnus cylinder was exposed to varying wind conditions
as shown in figure 3.24. The ABM was made to follow a predefined trajectory with a reel-in
and reel-out phases. Figure 3.23 shows the trajectory followed by the ABM. The angular
velocity, !cyl, of the ABM was made to vary continuously. During each cycle several variables
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DC#MOTOR#(100W)#
Current#control#with#
Maxon#driver##

Torque#sensor#
Kistler#4502a#
0,5Nm#range#

Drum#
Radius=0,05m#

Incremental#coder:#
2000pts/rev#

Figure 3.21: The Ground station to which the Magnus cylinder was tethered.

Flight'angle'sensor'
Incremental'800pts/
rev'

Pulley'system'

Figure 3.22: The Magnus cylinder used as ABM in the wind tunnel experiments.

were recorded including the tether length rt, elvation angle of the tether ✓T , and the traction
force Fr. The data collected from these experiments were used in the EKF to estimate the
lift, FL, and, FD, drag forces acting on the ABM. Using equation 3.9 at each time instant
the observation vector was computed for a time window of 100 seconds which was then fed
into the EKF estimator to estimate the forces and compute the aerodynamic coefficients by
using equation 4.1. Figure 3.24, presents the airspeed profile recorded over the course of
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Table 3.3: Parameters of the Experiments

Symbol Description Value

MMag Magnus cylinder’s
mass

0.11 Kg

MI Tether’s linear
mass

0 Kg/m (ne-
glected)

rcyl Magnus cylinder’s
radius

0.047 m

lcyl Magnus cylinder’s
length

0.45 m

MIM Rotor’s mass 0.0481 Kg
⇢ Air density 1.225 Kg/m3

Re Reynolds Number 1.5
vw Average Wind

Speed
7 m/s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
rx [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r
z

[m
]

Figure 3.23: Flight trajectory of the small-scale Magnus cylinder on the vertical plane

the experiments, as measured at 1 hz by the hot wire anemometer mounted inside the wind
tunnel. Figure 3.24 also shows the wind speed estimate as obtained from the filter. It can be
observed that the estimated wind speed almost perfectly follows the recorded signal by the
hot wire anemometer. However, due to the estimator’s dynamics, the estimated wind speed
has a non-negligible dynamics in comparison to the recorded data.

The EKF estimator also estimates the spin ratio of the Magnus cylinder from equation
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Figure 3.24: Wind speed measurement from the wind tunnel and estimates obtained from the filter.

3.3. Figures 3.26 and 3.27 present the evolution of the estimated coefficient of lift, CL, and
drag, CD, for several pumping cycles. It can be observed from these curves that CL and CD

assume values coherent to other results presented in the section 3.3, and in figures 3.18 and
3.19. As the ABM undergoes reel-in and reel-out phases, thus, for each phase, the spin-ratio
varies as well, which in turn changes the CL and CD. This variation of CL and CD can be
clearly observed in the figure 3.26 and 3.27. Thus, validating the estimator.
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Figure 3.25: Estimated spin ratio of the Magnus cylinder
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Figure 3.26: Estimated lift coefficient of the system

The second set of tests were conducted to identify specifically the aerodynamic character-
istics of the Magnus cylinder. In these experiments, the angular velocity !cyl was continuously
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Figure 3.27: Estimated drag coefficient of the system

varied from 150 rad/s to 225 rad/s while the mean wind speed produced by the wind tunnel
was varied from 4.5 m/s to 7 m/s resulting in the spin ratio between 1 and 2.5.

To ensure that the dry friction force �s in the pulley system always act in the same direction
for all the data sets, the tether length was made to increase slowly during these experiments.
In a series of experiments previously conducted at the Gipsa-lab and presented in detail in
[123] the dry friction was found to be approximately �s = 0.4 N. In order to mitigate the
influence of this effect and finally remove it from the tether traction measurements, the tether
traction measurements were subjected to dry friction compensation. Thus, resulting in

F
0
rk

= Frk + �s (3.10)

Where, F0
rk

corresponds to the tether traction after the dry friction compensation which
was then fed into the EKF.

Figure 3.28 presents the three sets of the aerodynamic coefficients CL and CD. The first
set of data corresponds to the the pumping cycle experiments illustrated in figure 3.23. The
second set of coefficients corresponds to the identification experiments using the EKF estimator
mentioned above in this section. And the third set represents the polynomial aerodynamic
model presented in [50] and discussed in section 3.4. And is given by the following equations:

CL = 0.0126X4 � 0.2004X3 + 0.7482X2 + 1.3447X

CD = �0.0211X3 + 0.1873X2 + 0.1183X + 0.5
(3.11)

They are compared for the same range of spin ratios. It can be observed from the figure 3.28
that except for an offset of 0.4, the CL values estimated during the identification experiments
follow the same trend as predicted by the polynomial model for the considered range of the
spin ratio.

However, in the case of CD, it can be observed that the CD estimated by EKF shows a
different behavior. For spin ratios up to 1.5, the estimated CD somewhat follows the poly-
nomial model. But for spin ratios larger than 1.5 it does not follow the polynomial model
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and can be observed to increase with the increase in spin ratio. Thus, suggesting that the
cause leading to increase in CD depends on the spin ratio. This deviation can also depend on
the effect of tether drag, frame (on which the cylinder is mounted), and spinning mechanism.
As the sideslip, � increases alongwith the tether length, the drag due to the tether and the
structure also increases, leading to a change in CD for higher spin ratios. But this is just a
supposition and this must be confirmed by more experimental studies. Also, the polynomial

CL Polynomial Model
CD Polynomial Model
CL Pumping Cycle
CD Pumping Cycle
CL Identification
CD Identification
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Figure 3.28: Comparison of the lift and equivalent drag coefficients estimated during the pumping
cycles and identification experiments for vw = 7m/s and Re = [12.5] with the values predicted by the
polynomial model proposed in [50].

aerodynamic model presented by equation 3.11, assumes a theoretically endless cylinder with
a single tether attached to its center of gravity. Thus, it neglects the effect of the spinning
mechanism and edge effects which come into effect due to the finite length of the cylinder, and
which may have a considerable effect on the overall CD. These results indicate that in order
to properly account for the influence of these effects on the overall drag of the system another
model must be considered which takes into account all these effects.

Regarding the CL and CD values estimated during the pumping cycle experiments shown
in figure 3.23, it can be observed that they present a slightly different behavior. These dis-
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crepancies can be attributed to the dry friction present in the system but not accounted for.
In the production phase when the tether is being reeled out and the spin ratio is kept at
around X = 1.5, the dry friction leads to an underestimation of CL and CD since it causes a
decrease in the value of measured tether traction as it can be understood by equation 3.10.
On the other hand, during the retraction phase when the tether is being reeled-in, and the
spin ratio oscillates around X = 1.1, the dry friction is responsible for causing an increase
in the tether traction as measured by the sensor. Hence, leading to an overestimation of the
aerodynamic coefficients. This can be clearly observed in figure 3.28. Moreover, the fact that
the overestimation for low spin ratios is less than the underestimation for high spin ratios
suggests that dry friction in the system depends on the traction force itself.

3.6 Conclusion

The two-step approach presented in this chapter has provided an important insight into the
behavior of the aerodynamic coefficients of Magnus cylinder. In the first step, an overview of
the experiments conducted in the past provides an interesting insight into the capabilities of
the Magnus effect. The experimental results provide a reference point for this study and give
credence to the polynomial aerodynamic considered in this study.

The second step of the approach presents an estimating method. The estimated CL and
CD further widen the understanding of the aerodynamic behavior of Magnus cylinders. The
findings support the initial understanding of the aerodynamic properties. Based upon these
results it can be stated that an improved aerodynamic model is needed, especially for the drag
coefficient for an accurate analysis of Magnus effect-based AWE systems.
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4.1 Introduction

Modeling and simulation serves an important step in the analysis of any technical system.
Mathmatical models are widely used to describe and analyze the behavior of any system
before conducting experiments. As the airborne wind energy prototypes involve the study of
many multi-disciplinary subjects and their on-field testing involve high costs, development of
high fidelity mathematical models becomes an important aspect in the study of such systems.
In addition, to develop higher level control algorithms and estimate the power production
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capabilites of AWE systems, mathematical analysis is a necessary step in the research on
AWE systems.

This chapter discusses in detail the modeling of a Magnus-based AWE system. To the best
of our knowledge, there are few articles or thesis work in the literature presenting a detailed
model of Magnus-based AWE systems. Hence, this chapter is one of the first in literature. It
is our contribution to the ongoing research on Magnus-based AWE system.

In this chapter, section 4.2 discusses in detail the Magnus-based AWE prototype considered
in this thesis work. It also discusses a 3-D six degree of freedom model for the Magnus-based
AWE system. In addition, this model is used to implement feedback controllers that aim to
obtain figure-eight and circular crosswind flying paths such as the one proposed by [34]. This
result (to the best of our knowledge) is the first contribution in the scientific literature on
the control of Magnus effect-based AWE system in crosswind trajectories. In section 4.3, the
mathematical model presented in the section 4.2 is further extended to include the torques
acting on the Magnus cylinder. It discusses in detail the different types of torques that come
into being and presents a modeling approach. In section 4.4, a guidance and control strategy
is presented along with a guidance algorithm to perform eight figure and circular orbits in the
sky. Section 4.5 discusses the simulation parameters and results of 3-D dynamic simulation
for an MW-sized Magnus-based AWE system. The obtained results are finally compared with
that of the simplified model under the static assumption. The chapter ends with section 4.6
presenting some conclusions, and discussing some inferences and perspectives.

4.2 System Model

There are several approaches in the literature which are used to model the airborne platform
as discussed in chapter 2 section 2.2.1. Spherical coordinate system is a common approach
used to describe the position and motion of the kite or UAVs as presented in in chapter 2
section 2.2.1. However, in order to analyze the attitude and model the different forces and
moments, it is necessary to use two different frame of references as discussed in the subsequent
sections.

In this section, two different modeling approaches are presented. The 2-D model is used to
analyze the Magnus-based AWE system to understand the general behavior of such systems
and is used to evaluate the general performance of such systems. The 3-D model presents
a detailed analysis of the system forces and moments which are necessary to develop high
fidelity simulations for Magnus-based AWE systems.

4.2.1 2-D Mathematical Model

The current literature on ABM chiefly, discusses 2-D model [50], [52], to describe the ABM
dynamics. Figure 2.18 shows the prototype design under consideration for the development
of the 2-D and 3-D model of the Magnus-based AWE system. The 2-D model presented here
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is adapted from [52]. The dynamics of Magnus cylinder is described by using two frame of
references, namely the inertial frame, (xi, yi, zi) centered at the ground station O and the body
frame, (xb, yb, zb), centered at the Cg of the Magnus cylinder, detailed in section 4.2.2. In the
2D model presented in this section the dynamics of the Magnus cylinder is restricited to the
vertical plane and the rudder dynamics is not considered. Figure 4.1 presents different forces
acting on the Magnus cylinder. The aerodynamic lift, FL, and drag force, FD, are produced

P

T

FL
B

FD

Fa

Fr

Fτ

rcyl
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Figure 4.1: Forces acting on the Magnus Cylinder.

by the magnus effect and are given by:

FL =
1

2
⇢Scylv

2
aCL, FD =

1

2
⇢Scylv

2
aCD (4.1)

Where, ⇢ is the air density, Scyl is the Magnus cylinder’s projected surface area, va is the
norm of the apparent wind velocity vector (equation 4.10), CL and CD are the respective
coefficients of lift and drag as discussed in chapter 3 section 3.4. The resultant aerodynamic
force, Fa, leads to the tether force, Fr, produced in the tether which in turn is used to drive
the generator.The system dynamics can be modeled as :

✓̈T =
1

rt

h
�2✓̇T ṙt +

FT

M

i
(4.2)
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MMag +MIM

h
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i
(4.3)

Ṫ = �T
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uT � T

⌘
(4.4)
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Where, rt is the tether length, ✓T is the elevation, MMag is the mass of the Magnus cylinder,
MIM = I

R
2
d

(where I is the moment of inertia of the rotor and Rd the radius of the drum),
and T is the tether traction. Equation 4.4 models the dynamics of the actuators used in the
experimental setup to control the tether force. Where, uT is the control input and �T is the
frequency representing its dynamic response. In figure 4.1, P represents the weight of the
Magnus cylinder, and B is the buoyant force produced by lighter than air gas filled inside the
Magnus cylinder. FR and FT represents the radial and tangential component of the resultant
force acting on the Magnus cylinder.

FR = FL sin(✓T � ↵w) + FD cos(✓T � ↵w)� P sin ✓T +B sin(✓T ) (4.5)
FT = FL cos(✓T � ↵w)� FD sin(✓T � ↵w)� P cos ✓T +B cos(✓T ) (4.6)

Where, ↵w is the wind velocity angle defined in equation (4.10).

The mass of the Magnus cylinder is sum of the mass of cylinder, mass of the structure on
which it is mounted, tether and the mass of the gas filled inside it.

MMag = M + Vo⇢gas +Mtether (4.7)

with M being the combined mass of the cylinder and the structure, Mtether is the mass of the
tether, Vo is the volume of the Magnus cylinder and ⇢gas is the density of lighter than air gas.
Using Archmiedes’s principle the buoyant force can be calculated as:

B = ⇢Vog (4.8)

The norm of the apparent wind velocity vector va and the angle of this vector with respect to
the ground ↵w is given by:

↵w = arctan
vh

vv
(4.9)

va =
p
(vh)2 + (vv)2 (4.10)

Where, vv, represents the vertical velocity, and vh represents the horizontal relative velocity.
Both of which depend on the motion of the Magnus cylinder. And they can be calculated as:

vh = vw + r✓̇T sin ✓T � ṙ cos ✓T (4.11)
vv = �(r✓̇T cos ✓T + ṙ sin ✓T ) (4.12)

Where, vw is the wind velocity with respect to the ground acting in the xi direction.

As discussed in section 3.3 for Magnus effect the aerodynamic lift, CL, and drag coefficient,
CD, are functions of the spin ratio X given by:

X =
!cylrcyl

va
(4.13)

with !cyl reprsenting Magnus cylinder’s angular spin velocity and rcyl its radius.
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4.2.2 3-D Model of Magnus-based AWE system

To undertake a detailed analysis and simulate the Magnus-based AWE system, and evaluate
the power produced by such systems, it is necessary to have a 3-D model which can be used
to analyze all the forces and moments acting on such system. Several approaches derived
from flight dynamics have been used to describe the dynamics of AWE systems, particularly
kite and UAV based AWE systems. Each using different sets of reference frames to describe
the position and dynamics of the airborne platform. One approach as stated in [48] uses a
different set of frames of references to describe the dynamics of kite-based AWE system. It
uses an earth centered earth fixed (ECEF) frame to describe the wind direction, and a second
NED (North-east-down) frame to describe the location of the Cg of the airborne platform
w.r.t which its dynamics is described.

In another approach, described in [58], the attitude of the kite and its position are de-
coupled by developing separate equations of motion for the bridle point and kite. It uses an
inertial frame fixed at the ground station, a second frame fixed at the bridle point, and a third
body-fixed frame is used to describe the attitude of the kite with respect to bridle point.

Several other similar models using spherical coordinate system and simple equations can
be found in [124],[34],[10]. Such approaches are highly useful in describing the dynamics of
the kite as the kite systems are a non-rigid structure consisting of a complex bridle system,
often with multiple lines used to steer the system.

Figure 4.2 presents an illustration of the Mangus based AWE prototype considered in
this thesis work. In this formulation, a Magnus cylinder (ABM) mounted on a rigid frame
is considered. The frame is connected to the ground-based generator through a single tether
and the force developed in the tether is used to drive the winch located at origin O.

The position of the ABM is described with respect to an inertial frame, represented by
unit vectors (~xi, ~yi, ~zi) fixed at the ground station. Wind ~vw is described in the inertial frame.
The attitude of the ABM is described with respect to body frame represented by unit vectors
(~xb, ~yb, ~zb), centered at the center of gravity Cg of the ABM, which is assumed to coincide with
the geometrical center of the Magnus cylinder. The tether orientation ✓T and �T is described
with respect to the inertial frame. The cylinder is free to rotate around its own axis aligned
with yb, actuated by an electric motor with a control law controlling the speed of rotation of
the cylinder !cyl. In figure 4.2, point O represents the location of the ground station at which
the inertial frame is centered and the point A represents the bridle point where the tether
is attached to the rigid structure on which the Magnus cylinder is mounted, shifted from Cg

along zb axis.

Using the sign conventions from flight dynamics, the body frame is assumed to be in the
North-east-down direction (NED), and the attitude of ABM is described using Euler angles,  ,
✓, and � defined with intrinsic ZYX convention as explained in section 4.2.2.1. The dynamics
of the bridle point with respect to an inertial frame is neglected. Also, the tether elasticity,
inertia, and drag are not considered in this formulation. In particular, as the drag coefficient,
CD, of the Magnus cylinder is several times higher than the CD of the rigid and soft kites, it
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Figure 4.2: Magnus-based AWE systems.

is expected that the impact of tether drag on the whole performance of the system could be
smaller than other pumping AWES. Nonetheless, the aerodynamic drag of the tether is known
to have a considerable effect on the overall performance and hence, this assumption has to be
evaluated fir Magnus-based AWE systems.

4.2.2.1 Rotation matrices

The transformation of the inertial frame into the body frame is carried out by using the
standard ZYX transformation, Rb which consists of a rotation around ~zi by  , followed by
a second rotation around ~y1 by ✓, and finally by � around ~x2. In addition to this, another
matrice Lflip is used to flip the coordinate system to align it with the NED frame.

~⇥ =  ~zi + ✓~y1 + �~x2 (4.14)

Rb =

2

4
c✓c c✓s �s✓

s�s✓c � c�s s�s✓s + c�c s�c✓

c�s✓c + s�s c�s✓s � s� s c�c✓

3

5 (4.15)

Where, "s" and "c" denote sine and cosine functions.

Lflip =

2

4
1 0 0
0 �1 0
0 0 �1

3

5 (4.16)
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Hence,
R

i

b
= RbLflip (4.17)

Therefore, any set of inertial frame unit vectors (~xi, ~yi, ~zi) can be converted into body frame
unit vectors (~xb, ~yb, ~zb) by: 2

4
~xb

~yb

~zb

3

5 = R
i

b

2

4
~xi

~yi

~zi

3

5 (4.18)

As presented in the section 4.4.2, the guidance law for the ABM uses spherical coordinate
system which uses a different set of rotational matrices to transform the inertial frame into
spherical coordinate system. Thus, any vector in inertial frame can be transformed into
spherical coordinate system by using transformational matrice R

i
s which is given by:

R
i

s =

2

4
� cos(�T ) sin(✓T ) �sin(�T ) � cos(�T ) cos(✓T )
� sin(�T ) sin(✓T ) cos(�T ) � sin(�T ) cos(✓T )

cos(✓T ) 0 � sin(✓T )

3

5 (4.19)

Where, �T and ✓T are the azimuthal and elevation angles of the tether and (~er,~e✓,~e�) are the
unit vectors representing the spherical coordinate system as shown in figure 4.2. Therefore,
any set of inertial frame unit vectors (~xi, ~yi, ~zi) can be converted into spherical frame unit
vectors (~ert ,~e�T ,~e✓T ) by: 2

4
~er
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5 (4.20)

As explained in global control strategy, section 4.4.1, the body frame zb axis is self-aligned
with the tether. The remaining degree of freedom which can be controlled by a rudder is the
last rotation around zb axis, and in a stabalized situation it is aligned with the tether. Thus,
to use this variable instead of ZYX a ZYZ transformation can be used. R

i

bZY Z
, presents the

rotaion matrice to perform ZYZ transformation and it is described as:

R
i

bZY Z
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4.2.3 Equation of Motion

Assuming the Magnus cylinder as a rigid one, the position of the Cg of the cylinder in inertial
frame can be presented by a position vector, ~ri as:

~ri = x~xi + y~yi + z~zi (4.22)

Where, ~xi, ~yi, and ~zi are unit vectors of their respective axis in the inertial frame. Hence, the
position vector, ~rb, of the ABM in body frame is given by:

~rb = R
i

b
~ri (4.23)
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The translational velocity of the Cg is given by:

~̇ri = ~vi (4.24)

Applying the axis transformation, the body frame velocity of the ABM is expressed by:

~vb = R
i

b
~vi (4.25)

Hence, equation of translation of Cg of the Magnus cylinder w.r.t the inertial frame is given
by:

~̇ri = (Ri

b
)�1

~vb (4.26)

The attitude of the ABM is described using euler angles  , ✓, and � defined with intrinsic ZYX
convention with ⇥ defining a non-orthogonal vector of euler angles. As in flight dynamics, the
angular rates are measured about their respective axis of rotation, i.e. ~zi, ~y1, and ~x2. Where,
~y1 is obtained after the first rotation around ~zi, and ~x2 is obtained after second rotation around
~y1 axis. Therefore,

~̇⇥ =  ̇~zi + ✓̇~y1 + �̇~x2 (4.27)

Where, ~̇⇥, euler angle rate vector. Expressing ~x2, ~zi and ~y1 with respect to body frame unit
vectors ~xb, ~zb, and ~yb : 2
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Where,

Wi =

2

4
1 0 � sin ✓
0 cos� sin� cos ✓
0 � sin� cos� cos ✓

3

5 (4.29)

and p, q,and r represent the respective angular rates in body frame. As a result, the equation
for rate of change of angular position is:

~̇⇥i = W
�1
i
!̃b (4.30)

with,

!̃b =

2

4
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q

r

3

5 (4.31)

For the simplicity purposes, it is assumed that the center of pressure of the airborne platform
including the Magnus cylinder and the rigid frame coincides with the center of gravity of the
platform.

Applying Newton’s second law of motion to the ABM and using Coriolis theorem, the
equation of rate of change of translational velocity in body frame is given by:

~̇vb =
1

m
(~Fb � !̃~vb) (4.32)
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Where,

!̃ =
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3

5 (4.33)

and ~Fb is the total body force acting on the ABM expressed in body frame, and is the sum of
all the forces acting on the Magnus cylinder. Thus, Fb is expressed as:

~Fb = ~FL + ~FD + ~Fdy + ~Wb + ~Fbu + ~Fr (4.34)

Where, ~FL and ~FD present the lift and drag force respectively. They are expressed in (xb, zb)
plane. ~Fdy is the drag force acting on the ABM in yb direction.

To develop a model independent of the control surfaces, the forces acting due to the rudder
is not considered in this section. Rudder forces are discussed in detail and incorporated into
the model in section 4.3.1 with the new Fb given by equation 4.74.

The aerodynamic forces, ~FL, ~FD, and ~Fdy are expressed as:

~FL =
1

2
⇢Scyl(~vaxz)

2
CL~eFl (4.35)

~FD =
1

2
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2
CD~eFd (4.36)

~Fdy =
1

2
⇢Scyl(~vay)

2
Cdy~yb (4.37)

Where, Scyl is the projected surface area of the Magnus cylinder, CL is the coefficient of lift,
CD is the coefficient of drag, and Cdy is the drag coefficient of the ABM along ~yb axis. ~eFL ,
~eFD and ~yb are unit vectors in the direction of lift, drag and yb axis. ~eFl and ~eFd are defined
as:

~eFd =

2

4
1
0
1

3

5 .
~va

|(~va)|
(4.38)

~eFl = ~yb ⇥ ~eFd (4.39)

Where, "." is an element-wise product operator, and "⇥" represents the vector cross product.
The apparent wind velocity ~va, as shown in figure 4.3, is decomposed into two components,
~vay acting in the ~yb direction and the other ~vaxz acting in the (xb, zb) plane, and they are
expressed in the body frame as:

~va = ~vwb � ~vb (4.40)

~vaxz = ~va.

2

4
1
0
1

3

5 = vaxz~eFd (4.41)

~vay = ~va.

2

4
0
1
0

3

5 = vay~yb (4.42)
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Figure 4.3: Apparent Wind velocity in different phases

Where, "." is an element-wise product operator, and ~vb is the translational velocity of the
ABM expressed in body frame. ~vwb is the wind velocity also expressed in body frame as:

~vwb = ~vwR
i

b
(4.43)

~Wb and ~Fbu represent the weight and buoyancy forces acting on the ABM in the opposite
direction. Since, the weight of the ABM and the buoyancy force are acting in the zi direction,
rotational matrices are used to express them in the body frame. They are expressed as:

~gb = R
i

b

2

4
0
0
�g

3

5 (4.44)

~Wb = m~gb (4.45)
~Fbu = �⇢r2

cyl
⇡lcyl~gb (4.46)

Where, g is the gravitational constant, and m is the total mass of the ABM .i.e. the sum
of the mass of the structure, mstruct, and the mass of the Magnus rotor filled with a gas of
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density ⇢gaz:
m = mstruct + ⇢gazr

2
cyl
⇡lcyl (4.47)

All the forces illustrated in figure 4.4 are expressed in the body frame. ~Fr is the tether force
applied at the ground station and is evaluated from the dynamic model of the winch:

Jz

Rd

r̈t = Rd
~Fr + Tc (4.48)

Where, Jz is the moment of inertia of the winch, Rd is its radius and Tc is the torque produced
by the electric actuator. The length of the tether is given by rt =

p
(xi2 + yi

2 + zi
2) and Fr

represents the norm of the tether force applied on the ABM:

~Fr =
Jz

R2
d

r̈t �
Tc

Rd

(4.49)

As ~Fr is evaluated at the ground station in the tether direction. It is expressed in body frame
as:

~Fr = FrR
i

b

~ri

k~rik
(4.50)

Finally, the winch torque Tc is controlled by the reference variable uT which acts through a
current loop modeled by a first order dynamic system:

Ṫc = �T (uT � Tc) (4.51)

where, �T is homogeneous to a frequency representing its dynamic response.

Figure 4.4: The forces acting on the Magnus cylinder.
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4.3 Moments acting on Magnus-based AWE System

In order, to precisely analyze the attitude and the stability of the ABM, a thorough analysis
of the rotational motion of the ABM is necessary, which calls for the analysis of the moments
that come into being. In literature, there is very little data available on the body moments and
their effect on the rotational stability of the Magnus cylinder. There are even lesser papers
and books analyzing the effects of torque on rotating Magnus cylinder. However, there is an
extensive literature available on airfoils describing the different moments in detail. Hence,
simplified moment expressions, based on aircraft flight dynamics, are developed to fit the
design of Magnus cylinder. The sign conventions used here are that of the flight dynamics.

Assuming the prototype as a rigid structure, the rate of change of angular position in body
frame is given by:

⇥̇ = W
�1
i
!̃ (4.52)

with,

!̃ =

2

4
p

q

r

3

5 (4.53)

and,

Wi =

2

4
1 0 � sin ✓
0 cos� sin� cos ✓
0 � sin� cos� cos ✓

3

5 (4.54)

Where, p, q, r represent the angular rates about their respective axis in the body frame, and
Wi is the result of the transformation of the local axis of rotation (.i.e. p about y1 and r about
zi axis) into body frame.

Applying Newton’s second law to the rotational motion of the ABM, the equation of rate
of change of angular velocity obtained is:

!̇ = I
�1(Mb � !̃I!) (4.55)

Where, I represents the moment of inertial matrice and Mb is the sum of all the moments
acting on the ABM expressed in the body frame.

The moment of inertia is evaluated around the principal axis. For simplicity sake, the
contribution of the rigid structure to the Magnus rotor inertia is neglected.

I =

2

4
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

3

5 (4.56)

Also, due to the symmetrical design of the Magnus cylinder the product moment of inertia
.i.e. Ixy, Ixz, Iyx, Iyz, Izx, and Izy, all are assumed to be zero. Hence, the inertial matrice I

is expressed as :

I =

2

4
Ixx 0 0
0 Iyy 0
0 0 Izz

3

5 (4.57)
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The body moments Mb acting on the ABM can be broadly attributed to three effects :

• Aerodynamic Moments: They arise due to the interaction between the various aero-
dynamic forces which come into play due to the geometrical asymmetry of the Magnus
prototype as well as due to the action of the control surfaces such as rudder, ailerons
etc.

• Gyroscopic Torque: As the Magnus-based AWE comprises of a rotating cylinder,
the well documented gyroscopic effect comes into being whenever the ABM undergoes
precession about zb or xb axis.

• Reactive Torque: The reactive torque is produced by the tether force generated in the
tether due to an offset between the Cg and the bridle point. This torque is responsible
for aligning the ABM with the tether.

Hence,

Mb =

2

4
lb

mb

nb

3

5 = Maero +Mgyro +Mreac (4.58)

Where, lb represents the total moments acting about xb axis commonly referred as Rolling
moment, mb represents the total moments acting about yb axis commonly referred as Pitch
moment, and nb represents the total moments acting about zb axis commonly referred as Yaw
moment.

Figure 4.5: Various moments acting on the Magnus-based AWE system.
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4.3.1 Aerodynamic Moments

Aerodynamic moments are the torques that come into being due to the differences in lift and
drag forces produced by the different sections of any airborne system. These differences stem
from various parameters such as changes in angular rates (p, q, r), action of control surfaces
(such as rudder, ailerons, elevator etc.) or changes in side-slip (�) or angle of attack (↵), etc.
In flight dynamics, the coefficient of roll, pitch, and yaw, .i.e. Cl, Cm, and Cn are used to
account for all the moments arising from these effects and they are usually expressed as:

Cl = Cl0 + Cl↵↵+ Cl�� + Clhh+ ClV V + Clpp+ Clqq + Clrr (4.59)
Cm = Cm0 + Cm↵↵+ Cm�� + Cmhh+ CmV V + Cmpp+ Cmqq + Cmrr (4.60)
Cn = Cn0 + Cn↵↵+ Cn�� + Cnhh+ CnV V + Cnpp+ Cnqq + Cnrr (4.61)

These moment coefficients takes into account all the factors contributing to moments about
their respective axis .i.e. xb, yb, and zb. Each coefficient .i.e. Cl, Cm, and Cn is a linear
combination of all the contributing factors. For example, Cn� represents the yaw moment
coming into being due to the presence of sideslip � (using flight dynamics sign conventions
and notations). The estimation of these aerodynamic moment coefficients (such as Cn� , Clq ,
Cmr , etc. presented in equations 4.61) is usually done by wind tunnel testing or CFD analysis.
As this is beyond the scope of this work, the above mentioned formalism is not used in this
work. Instead, moment expressions respective to each effect is determined seperately. Thus,
to develop a good simulation model of the ABM simplified expression for some of the expected
dominant effects are developed and presented in the subsequent sections.

The aerodynamic moments as experienced by the ABM is a combination of yaw, pitch and
roll moments. The main contributors of aerodynamic moments which are expected to have a
considerable effect on the ABM and which are considered in this study are:

• Rudder Dynamics : Resulting in a combination of roll, pitch and yaw, (l��n ,m��n
, n��n),

from the deflection of rudder and its geometry.

• Aerodynamic Moments due to yaw rate : Resulting in a combination of roll, (lpr),
and yaw moment, (nr), from the changes in yaw rate.

Thus, the total aerodynamic moments can be expressed as:

Maero =

2

4
laero

maero

naero

3

5 =

2

4
l��n

m��n

n��n

3

5+

2

4
lpr

0
nr

3

5 (4.62)

Where, laero represents the total aerodynamic roll moment acting about the xb axis, maero

represents the total aerodynamic pitch moment acting about the yb axis, and naero represents
the total aerodynamic yaw moment acting about the zb axis.
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4.3.1.1 Rudder Dynamics

To provide directional stability and controlability a rudder is added in the negative ~xb direction
to the prototype as shown in figure 4.2, an addition to the design presented in [119]. Due to
the rudder action and asymmetry of the point of action of different forces w.r.t to the Cg, the
aerodynamic moments due to rudder action as experienced by the ABM is a combination of
yaw, pitch and roll moments. In this case, a NACA 0012 series symmetric airfoil is considered
for the design of the rudder. The coefficient of lift CLrud and drag CDrud for rudder is taken
from the experimental data presented by Sandia national laboriteries [125]. Figures 4.6 and
4.7 present the CLrud and CDrud data for the rudder extrapolated for �180 to 180 degrees.

Sandia presents the experimental data for both increasing and decreasing angle of attack
varying from �24 to 32 degrees for a wind turbine inorder to validate the symmetric nature
of the airfoil and its respective aerodynamic coefficients. The study then presents the experi-
mental data for CL and CD for increasing angle of attack from 0 to 180 degrees for different
types of airfoils and for different Reynolds number ranging from 104 to 107. The operating
Reynolds number range of ABM is expected to be around 106 and as validated in the Sandia
study symmetric behavior is observed for the negative angle of attack. Figures 4.6 and 4.7
presents this data extrapolated for negative angle of attack ranging from �180 to 180 degrees.
For the negative angle of attack, it is observed that the CLrud becomes negative and is maxi-
mum for about ±15 degrees. The drag coefficient CDrud is maximum at around ±90 degrees
as at such a high angle of attack airfoil behaves like a flat plate.
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Figure 4.6: The lift coefficient CLrud as a function of angle of attack
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Figure 4.7: The lift coefficient CDrud as a function of angle of attack.

~Fdy represents the drag force, also known as side force, acting on the ABM in yb direc-
tion due to the Magnus effect. Rudder contributes an additional side force which can be
approximated by:

~FLrud =
1

2
⇢Srud(~vaxyrud)

2
CLrud~eF lrud

(4.63)

Similarly, the drag force due to rudder is given by:

~FDrud =
1

2
⇢Srud(~vaxyrud)

2
CDrud~eFdrud

(4.64)

Where, CLrud and CDrud represent the coefficient of lift and drag for the rudder, ~eF lrud
and

~eFdrud
represent unit vectors in ~FLrud and ~FDrud direction respectively and are defined as:

~eFdrud
=

~vaxyrud

||(~vaxyrud)||
(4.65)

~eF lrud
= ~zb ⇥ ~eFdrud

(4.66)

Where, "." is an element-wise product operator, and "⇥" represents the vector cross product.

~vaxyrud is the apparent wind velocity experienced by the rudder in xb-yb plane, consisting
of velocity components, varx and vary in xb and yb directions respectively and is defined as:

~vaxyrud =

2

4
varx

vary

0

3

5 =

2

4
1
1
0

3

5 .~va +

2

4
0
rd1

0

3

5 (4.67)
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Where, rd1 is the tangential velocity component arising due to the yaw rate r around zb axis.
And d1 is the distance of the rudder from the center of gravity. This distance must be chosen
such that the rudder lies ahead of the wake region of the Magnus cylinder. In this case, as the
study of the aerodynamic properties of the Magnus cylinder is beyond the scope of this work,
it is assumed that

d1 > arcyl (4.68)

Where, a is a constant whose value must be chosen such that it puts the rudder outside the
wake region of the cylinder. In simulations, the value of (a) is set to as 1.5. However, this is
just an assumption and for practical design this assumption must be validated by experimental
aerodynamic data.

Here it is important to note that the apparent wind is limited to (xb, zb) plane for rudder
because the aim is to take into account only the pure roll, pitch and yaw moment arising due
to rudder dynamics. However, in reality due to the presense of the component of va in the
direction of zb .i.e. (varz), it would result in ~FLrud and ~FDrud having components in all three
directions .i.e. (~xb, ~yb, ~zb). The zb component of ~FLrud and ~FDrud .i.e. ~FLrudZ and ~FDrudZ

would result in a combination of roll and pitch moment and it can be considered seperately
as Fdy is considered for the airborne platform in equation 4.37. However, the effects of these
moments arising due to (varz) is for now neglected in this formulation and only the effect
of the side force generated by the rudder action is considered in this model. Also, the yaw
moment due to the side force (.i.e. ~FLrud) produced by the rudder is much higher than other
the roll and pitch moments resulting due to (varz). Nonetheless, by considering:

~vaxyrud = ~va, (4.69)

~eFdrud
=

~va

||(~va)||
(4.70)

these effects can be taken into account by directly using the expressions for aerodynamic
moments mentioned in subsequent sections. However, in this fomulation ~vaxyrud , and ~eFdrud

are expressed by equation 4.67 and 4.65.

In this design, rudder is considered as a vertical tail plane, therefore, the combined deflec-
tion of the rudder and the presence of sideslip leads to an effective angle of attack, ↵rud, given
by:

�rud = arctan(
vary

varx
) (4.71)

↵rud = �rud � �n (4.72)

Where, ↵rud is considered to be positive when the wind flow is coming from the right side of
the ~xb direction and negative if the incoming wind is from the left side of the ~xb. �n represents
the rudder deflection. It is considered to be positive when the rudder is deflected to left
resulting in a positive side force, and is considered negative when the rudder is deflected to
right. Therefore, a positive side-slip produces a negative side force ~FLrud .i.e. in �~yb direction
where as a negative side-slip leads to a positive ~FLrud . And ~FLrud is zero when there is no
sideslip, no yaw rate (r) and there is no rudder deflection i.e. the apparent wind velocity



74 Chapter 4. Modelling of Magnus-Based AWE Systems

~vaxyrud is perfectly aligned with xb and �n = 0. Hence, the total force due to rudder can be
expressed as:

~Frud = ~FLrud +
~FDrud (4.73)

Thus, the total body force, Fb, acting on the ABM is:
~Fb = ~FL + ~FD + ~Fdy + ~Wb + ~Fbu + ~Fr + ~Frud (4.74)

Aerodynamic moments due to rudder: As shown in the figure 4.5 the aerodynamic center
of the rudder is located at a distance ~dr from the Cg of the ABM expressed as:

~dr =

2

4
d1

0
zac

3

5 (4.75)

Where, d1 is the distance of aerodynamic center of the rudder from Cg in �xb direction and zac

is its distance in �zb direction. Due to the presence of effective angle of attack (↵rud) and the
location of the aerodynamic center of the rudder, the rudder action results in a combination
of roll, pitch and yaw moments expressed as:

2

4
l��n

m��n

n��n

3

5 = ~dr ⇥ ~Frud (4.76)

Figure 4.8 shows the resulting yaw moment due to the combined effect of the side-slip and
rudder deflection.

Apparent Wind
     vaxyrud

Figure 4.8: Yaw moment due to rudder

4.3.1.2 Aerodynamic Moments due to yaw rate

Another significant contributor to the aerodynamic moment is the moment produced due to
the angular rates. When there is a rudder deflection or sideslip the ABM rotates around zb
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axis with a yaw rate r either in clockwise direction .i.e. when r < 0 or in anti-clockwise
direction .i.e. when r > 0.

Supposing the ABM moves in the clockwise direction, then the right side of the Magnus
cylinder rotates against the flow field leading to an increase in the apparent wind velocity.
Similarly, the left side moves along the flow field leading to a decrease in the apparent wind
velocity. This results in the production of greater lift and drag forces from the right side of
the Magnus cylinder in comparison to that of the left side of the cylinder. Hence, resulting
in both yaw and roll moment. This effect in flight dynamics is called as Weathercock effect.
When the ABM moves in anti-clockwise direction the effect is reversed. Thus, the left side of
the Magnus cylinder experiences greater lift and drag force as compared to the left side.

Assuming that the Magnus cylinder is made up of two different cylinders of equal length,
lcyl

2 , seperated at the Cg of the larger cyinder, and assuming the Magnus cylinder rotates in
clockwise direction. The relative wind velocity experienced by each cylinder at any time at
their respective Cg will be:

~Vrelright
= ~va.

2

4
1
0
1

3

5+

2

64
r
lcyl

4
0
0

3

75 (4.77)

~Vrelleft
= ~va.

2

4
1
0
1

3

5�

2

64
r
lcyl

4
0
0

3

75 (4.78)

Where, ”.” is the element wise operator. Note, here r
lcyl

4 represents the tangential velocity of
the Cg of each cylinder while undergoing a rotation about zb axis at an angular rate r.

Assuming the center of pressure for each cylinder coincides with the geometric center of
each cylinder and as each cylinder experiences different relative wind, the lift and drag for each
part of the cylinder acting on the Cg of each cylinder will be different and can be expressed
as:

~FLleft =
1

2
⇢(

Scyl

2
)(~Vrelleft

)2CLlt~eLl (4.79)

~FLright =
1

2
⇢(

Scyl

2
)(~Vrelright

)2CLrg~eLr (4.80)

~FDleft =
1

2
⇢(

Scyl

2
)(~Vrelleft

)2CDlt~eDl (4.81)

~FDright =
1

2
⇢(

Scyl

2
)(~Vrelright

)2CDrg~eDr (4.82)

Where, ~eLr , ~eLl , ~eDland ~eDr are unit vectors representing the direction of lift and drag for
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each part of the cylinder, and are defined as:

~eDl =
~Vrelleft

|(|~Vrelleft
)||

(4.83)

~eLl = ~yb ⇥ ~eDl (4.84)

~eDr =
~Vrelright

||(~Vrelright
)||

(4.85)

~eLr = ~yb ⇥ ~eDr (4.86)

Where, "." is an element-wise product operator, and "⇥" represents the vector cross product.
CLlt , CLrg , CDlt , and CDrg are the coefficient of lift & drag for each cylinder for their respective
spin ratio .i.e. Xlt and Xrg, calculated as:

Xlt =
!cylrcyl

Vrelleft

(4.87)

Xrg =
!cylrcyl

Vrelright

(4.88)

Thus, the resultant aerodynamic force acting on each part of the cylinder can be given as:

~Faleft =
q

(~FLleft)2 + (~FDleft)2 (4.89)

~Faright =
q

(~FLright)2 + (~FDright)2 (4.90)

Hence, the roll and yaw arising due to the difference between the lift & drag produced by each
cylinder can be expressed as:

2

4
~lpr

0
~nr

3

5 =

2

64
0
lcyl

4
0

3

75⇥ ~Faleft +

2

64
0

�lcyl

4
0

3

75⇥ ~Faright (4.91)

In a similar way, when the ABM undergoes a rolling movement, it will result in yaw and roll
moments around their respective axis. However, this effect is neglected in this thesis work,
and can be included in a similar way in the future analyses.

Also, as the Magnus cylinder is independent of the angle of attack and for now, the use of
a horizontal stabilizer is not considered in this prototype. It is assumed that the longitudinal
stability is provided only by the reactive torque produced by the tether, explained in section
4.3.3.

4.3.2 Gyroscopic couple

Gyroscopic effects come into being when a rotating body undergoes precession about another
axis. As the Magnus cylinder is spinning about yb axis, torque due to gyroscopic effects come
into being whenever the ABM undergoes a rolling moment or a yaw moment .i.e. rotation
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about xb or zb axis. In other words, a torque is produced around xb axis whenever there is a
precession about zb axis or vice-versa. The gyroscopic couple can be expressed as:

⌧gyrox = Iyy!cylr (4.92)
⌧gyroz = Iyy!cylp (4.93)

Where, !cyl is the angular spin velocity of the Magnus cylinder about yb axis, r is the angular
rate about zb axis, commonly referred to as yaw rate, p is the angular rate about xb axis,
commonly known as roll rate, and Iyy is the principal moment of inertia about yb axis. As
the Magnus cylinder is free to rotate about the yb axis no gyroscopic couple comes into being
about the yb axis.

⌧gyroy = 0 (4.94)

Hence, the total gyroscopic torque can be expressed as:

Mgyro =

2

4
⌧gyrox

⌧gyroy

⌧gyroz

3

5 (4.95)

4.3.3 Reactive Torque

A reactive torque acts on the ABM due to the forces generated in the tether. The briddle
point is considered to be at a distance of ~Rbridle from the Cg as shown in figure 4.5. The force
components in the three directions produces a couple around Cg about xb and yb axis and is
given by:

~Rbridle =

2

4
0
0

zbrid

3

5 (4.96)

Where, downward zb is considered as positive. Therefore, the reactive torque, Mreac can be
calculated as:

Mreac = ~Rbridle ⇥ ~Fr (4.97)

This reactive torque is responsible for aligning the ABM with the tether as at equilibrium
it compensates all the other forces and moments acting about Cg. This results in natural
self-alignment of the 3 points O, A and Cg, and ~zb with the tether.

4.4 Control Strategy

4.4.1 Global Control Scheme

The guidance strategy is adopted from that proposed in [34] and is discussed in section 4.4.2.
To maximize the power production, the spin ratio Xmax is used for the Magnus rotor and the
ABM is made to follow an eight figured trajectory by controlling of a specific angle �, also
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known as heading angle in flight dynamics. Physically, � represents the angle between the
velocity vector of the ABM, given by equation 4.26 in the inertial frame, and the local north
defined on the horizon. In this case, the local north is equivalent to the xb direction obtained
by ZYZ transformation of the inertial frame (xi, yi, zi) as mentioned in section 4.2.2.1. In
the spherical coordinate system, it corresponds to the angle expressing the rotation around
the tether length rt and can be directly obtained by transformation R

i
s presented in section

4.2.2.1. If � = 0 it means that the ABM moves towards the zenith, and if � = ⇡/2 it means
that the ABM follows the local east and moves parallel to the ground. If � = ⇡ it means that
the ABM moves towards the ground. The � can be controlled by a rudder or any other device
that can produce torque around zb. In the case of the usage of rudder as a control surface the
apparent wind should be non-zero in xb direction.

The reactive torque acting on the ABM is responsible for aligning the ABM and tether.
It is assumed here that the self-alignment of the ABM is done smoothly and significantly
faster than other considered system dynamics in order to neglect it. It is also assumed that
an appropriate actuator, like a suitably sized rudder, is used to steer the ABM to the desired
heading �ref .

In simulations subsequently presented in section 4.5, ~zb is forced in the direction of the
origin, due to the self-alignment of the body axis zb with the tether, and � follows the reference
�ref through a first-order dynamic system:

�̇ = ��(�ref � �) (4.98)

Where, �� is homogeneous to a frequency representing its dynamic response. The reference
�ref is computed by the guidance law and depends on the trajectory being followed by the
ABM. It is defined in detail in section 4.4.2.

Finally, a control loop on the spin of the cylinder is assumed to be set properly and is
modeled by a first order dynamic system:

!̇cyl = �!cyl(!cylref
� !cyl) (4.99)

Where, �!cyl is homogeneous to a frequency representing its dynamic response. !cyl represents
the spin of the cylinder and !cylref

represents the reference spin of the cylinder.

In addition to this, a PID controller K1 is used to control the reference position by con-
trolling the tether length through the torque of the winch actuator. This outer control loop
has a faster response time in order to compensate for the variations in other forces acting on
the ABM. Figure 4.9 represents the control strategy adopted for controlling the tether length.
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Figure 4.9: An overview of the control strategy. The Magnus rotor moves from minimum radial
position rmin to a maximum radial position rmax.

4.4.2 Guidance strategy

4.4.2.1 Eight-Figure Trajectory Guidance Law:

The guidance strategy to make a figure eight loop as proposed in [34] is adopted to make the
ABM follow a crosswind maneuver. The strategy is defined in the spherical coordinate system
and utilizes the orientation of the tether with respect to the inertial frame to define a guidance
algorithm. However, the effects of tether drag and curvature were not taken into account in
this strategy.

In the spherical coordinate system, the position of any point is defined by the radial
distance l, and two angles namely, azimuth angle � and polar angle ✓. Thus, the position of
any point X is given by (l,�, ✓). In this formulation for the ease of notation for the design
purposes, the position of the Cg of the ABM is defined by the tether length rt, azimuthal
angle is represented by �T , and elevation angle by ✓T which is equivalent to (90 � ✓) .i.e.
complement of the polar angle. Thus, the position of the Cg of ABM is given by (rt,�T , ✓T )
as shown in figure 4.10.

To make the eight-figured loop, two reference points denoted by P� = (✓T�,�T�) and
P+ = (✓T+,�T+) are defined on the spherical horizon as shown in figure 4.10 with the origin
representing the location of the ground station of the AWE system. Figure 4.10 shows the
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horizon in terms of the orientation of the tether angles .i.e. elevation angle ✓T representing
the vertical axis, and azimuthal angle �T representing the horizontal axis of plane B.

The reference angles are set according as:

✓T+ = ✓T� = ✓T ref (4.100)

�T+ = ��T� = �T ref (4.101)

At each time instant, one of the two reference points is set as an active target PA, according
to a switching strategy:

8
<

:

If �T (t) < �T� then PA = P+

If �T (t) > �T+ then PA = P�
else PA(t) = PA(t� 1)

(4.102)

�ref is computed on the basis of the measured values of ✓T and �T by:
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Figure 4.10: Figure eight guidance law.

�ref = � arctan

✓
(✓T ref � ✓T ) sin(�T )

�TA � �T

◆
(4.103)

Thus, the target point is switched whenever the measured value of �T is outside the interval
[�T�,�T+].
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Finally, in order to get the eight-figured trajectories of same width for different tether
lengths, so that the power produced during the production phase is stable, �T ref is set as a
function of tether length rt:

�T ref =
K�T

rt
(4.104)

Where, K�T is a proportional gain on the azimuth angle reference. If it is necessary to fly at
the same altitude, the same approach can also be done for ✓T ref .

4.4.2.2 Circular Trajectory Guidance Law:

Circular orbits is another way to make a crosswind maneuver in the air. The proposed guidance
strategy utilizes the spherical coordinate system and the orientation of the tether.

To make a circular orbit a reference center of the circle is defined on the horizon about
which the ABM is made to follow a circular orbit. Figure 4.11 presents a circular orbit with
its center defined by an elevation angle ✓o and azimuthal angle �o. Any arbitrary point on
the circle is defined by the elevation angle ✓T and the azimuth angle �T .

Figure 4.11: Circular orbit guidance law.

Assuming that at the initial time � = 0 .i.e. the ABM is headed towards the zenith. In
order to follow a circular orbit of a defined radius, the velocity of the ABM should always be
tangent to the circle. The heading angle � as defined earlier in section 4.4.1 represents the
angle between the local north and velocity. Thus, to make the circular orbit �ref should be:
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�ref = ⇡ � arctan

✓
✓T � ✓o

�T � �o

◆
(4.105)

It is important to note that for simulations a four quadrant tan function needs to be used
to model the reference �. Also, the proposed law continuously updates the �ref , a counter
needs to be used when the ABM completes the first circle. Lastly, required protections need
to be added in the code for cases when �T � �o = 0. Also, this control law does not consider
the distance between the ABM and the center, and an extra term has to be included in the
future work in order to control the radius of the circle.

4.5 Simulation Results

In section 4.5.1, a simplified model (of the system presented in section 4.2) under the static
assumption is first presented. The control strategy presented in section 4.4 is used to set
some of the parameters of the simulation which are discussed in section 4.5.2. Then the
section 4.5.3 presents the results of the 3-D dynamic simulation for an hypothetical MW-sized
Magnus effect-based AWE system. The results obtained are finally compared with that of the
simplified model under static assumption as discussed in section 4.5.1.

4.5.1 Performance under Static Assumption

The motion of the Magnus cylinder is characterized into two phases, namely, production and
recovery phase. A particular cycle consists of both the phases and is defined by the time
period t1 for the production phase, and t2 for the recovery phase. The time period of each
phase is calculated from the radial position of the ABM which varies between maximum rmax

and minimum rmin. The reel-in ˙rrec and reel-out ˙rprod speed describes the unwinding and
winding speed of the tether at the winch. By neglecting the transitional phase between the
production and the recovery phase, the time period of each phase can be calculated by:

t1 =

����
rmax � rmin

˙rprod

���� =
�r

˙rprod
(4.106)

t2 =

����
rmax � rmin

˙rrec

���� =
�r

˙rrec
(4.107)

In the frame of equilibrium motion theory, the power that can be generated with a tethered
airfoil in crosswind conditions was defined by Lyod in [10] and refined by Argatov in [126] to
take into consideration the losses due to elevation angle ✓T :

Pprod =
1

2
⇢
4

27
Scyl(vw cos(✓T ))

3
CL

✓
CL

CD

◆2

(4.108)

One way to maximize this power is to maximize the ratio CL

⇣
CL
CD

⌘2
. In addition, one has

to set the unwinding speed of tether during the production phase ṙprod = vw/3. For the



4.5. Simulation Results 83

considered magnus model, the maximum value of CL

⇣
CL
CD

⌘2
is found to be for spin ratio

X = 3.6 and is equal to 69.44. The power consumed can be calculated as the product of the
winding speed of the tether ṙrec and the resulting drag force of the magnus rotor:

Prec =
1

2
⇢Scyl(vw cos(✓T ) + ṙrec)

2
CDrecṙrec (4.109)

Where, CDrec is the drag coefficient during the recovery phase. In order to get a minimal power
consumption during this phase, one has to set CL equivalent to 0 and CD to its minimal value
CDrec. To achieve this, during the recovery phase the spin of the cylinder !cyl is set to 0
so that CL = 0. For simulation purposes the transition phase between the production and
recovery phase is neglected. Thus, the power produced during a full production cycle by the
Magnus-based AWE system can be computed by:

Pcycle =
Pprodṙrec � Precṙprod

ṙrec + ṙprod
(4.110)

Note that there is a trade-off with ṙrec because its augmentation not only increases the contri-
bution of the production phase Pprod to the full production cycle, but also increases the power
consumption Prec.

The power generated by the winch during the production phase is given by :

Pg = ˙rprod
Tc

Rd

(4.111)

Where, ˙rprod is the unwinding of the tether, Tc is the winch torque, and Rd is the winch
radius. Chapter 5 discusses in detail the static model and presents an optimization approach
to obtain the optimal ṙrec and ṙprod for different wind speed so that the power produced during
one complete cycle Pcycle is maximum.

4.5.2 Simulation Parameters

The control strategy presented in section 4.4 is applied on a 500 m
2 Magnus effect-based AWE

system. Table 4.1 presents the specification of this system. Dynamics of winch current loop
�T given by equation 4.51 in section 4.2.3 has been neglected in these results as it is much
faster than all the other dynamics considered in the simulation. On the other hand, the winch
torque Tc is set to its maximum value Tcmax in order to evaluate its impact on the control
strategy. Secondly, to smoothen the peaks of tension in the tether and yaw movements, a
second order filter is applied on the reference tether length rtref and reference heading angle
�ref . Thirdly, it is important to note that as Fr is transmitted through the tether, thus, it is
always negative and set between �1 and 0 to simulate this physical constraint. Finally, the
respective gains of the PID controller K1 are empirically set at Kp = 5 ⇥ 107 N, Ki = 0.02
N/s, Kd = 0.2 Ns.
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Variable Value
Environment Parameters
Air density [kg/m3] ⇢ 1.225
Gravitational constant [m/s

2] g 9.81
Wind-speed, along ~xi [m/s] vw 10
ABM Specifications
Span of cylinder [m] lcyl 40
Radius of cylinder [m] rcyl 6.25
Aspect ratio AR 3.2
Mass of airborne module [kg] mstruct 6347
ABM lateral drag coefficient Cdy 1.05

Maximum CL

⇣
CL
CD

⌘2
for X = 3.6 max(CL

⇣
CL
CD

⌘2
) 69.44

Reynolds number for V = 10m/s Re 8.01⇥106

Winch Specifications
Radius of winch’s drum [m] Rd 2
Maximum winch actuator torque [Nm] Tcmax 4⇥ 106

Dynamic of winch current loop [Hz] �T 1000
Reel-out speed [m/s] ṙprod 3.3
Reel-in speed [m/s] ṙrec 13.2
Control Cycle Specifications
Minimum radial position [m] rmin 150
Maximum radial position [m] rmax 300
Dynamic of speed of rotation loop [Hz] �!cyl 1.43
Dynamic of yaw loop [Hz] �� 1
Spin ratio for production phase Xmax 3.6
Spin ratio for recovery phase Xmin 0.05
Reference for elevation angle [rad] ✓T ref 0.436
Coefficient for azimuth angle ref. [rad.m] k�T 13.09

Table 4.1: Simulation parameters for a 500 m
2 Magnus-based AWE system.

4.5.3 Simulation Results

The simulation results for 3 consecutive full cycles for eight-figure trajectory are presented
in figure 4.12 and 4.14. It shows the 3-D trajectory of the ABM both in (xi � zi) plane
and (yi � zi) plane. As it can be seen that the trajectory is stable and all the 3 cycles
are overlapping perfectly. In the xi � zi plane, it can be seen that the control of figure-eight
trajectory is working perfectly with the elevation angle fixed at reference ✓T ref . In the recovery
phase, the trajectory starts to go up because the cylinder takes time to go from Xmax to Xmin.
When the spin ratio becomes equal to Xmin the ABM starts to go down. In (yi � zi) plane,
it can be observed that the width of the figure-eight trajectory is constant. Thus, keeping
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Figure 4.12: Trajectories of the Magnus rotor in (xi � zi) and (yi � zi) planes for 3 cycles.

the swept area constant for the whole production phase. Figure 4.15 presents a comparision
between the swept area of the Magnus based AWE of surface area 500m2 with a conventional
wind turbine of 1.5 MW.
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Figure 4.13: Reference and state variable for tether length (rt, rtref ), tether tension Fr proportional
to winch torque Tc, angular speed of the Magnus rotor (!cyl,!cylref ) , and yaw angle (�, �ref ), as
function of time for the 3 cycles.
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Figure 4.13 presents the main variables of the system. It can be seen that the tether length
rt overlaps perfectly with its reference due to the controller K1 despite the saturation of the
winch actuator. This saturation can be seen in the tether tension curve at the beginning of
each production phase. From the evolution of speed of rotation curve it can be inferred that
the system can follow the variations in the apparent wind speed by modifying its angular spin
!cyl in order to keep the spin ratio X = Xmax. Finally, the evolution of heading angle variables
gives an insight into the control performance required to perform figure-eight trajectories with
Magnus-based AWE system.
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Figure 4.14: Eight figure corsswind trajectory of ABM in (xi � zi) plane.

Figure 4.16 shows the evolution of output power Pg given by equation 4.111. It can be
seen in the figure that the minimum value of the power Pg is -1.9 MW and the maximum is
3.9 MW. Therefore, the mean power for the full cycle comes out to be 1.47 MW. However,
to obtain the net power, the power consumed by the embedded motor to spin the Magnus
cylinder has to be subtracted, discussed further in chapter 5. But it is not considered in this
study.
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Figure 4.15: Swept area comparision of Magnus-based AWE and conventional wind turbine in (yi�zi)
plane.
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Figure 4.16: The output power simulated Pg during production and recovery phases for the 3 cycles
with a comparison with the simplified model under the static assumption. The mean output power is
1469 kW for dynamic simulation and 1674 kW for the simplified model.
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The figure 4.16 also presents the power output of the simplified model under static as-
sumption as presented in section 4.5.1. It can be seen that the static power output is close
to the mean output power Pg for the dynamically simulated system. The total mean power
for the simplified model comes out to be Pcycle = 1.67 MW, which is only 14% more than
the mean power output of the simulated system. Therefore, it can be inferred that for a
Magnus-based AWE system with the specifications defined in table 4.1, in order to produce
1.5 MW nominal power at wind speed 10m/s, the required generator must be able to produce
minimum 4⇥ 106 Nm torque and have 6.6 rad/s of rotation speed. This leads to a generator
with a capacity of 26.6 MW which would be very bulky as well as costly and, thus, elevating
the cost of production.

Therefore, to prevent an escalation in the cost a trade-off has to be found to use a generator
of reasonable capacity. This can be achieved by using novel power transmission techniques
such as a two stage gearbox, generator linked to a motor or a hydraulic stage conversion
discussed in detail in chapter 5. In case of a gearbox, the capacity of the required generator
comes out to be 3.9 MW. As the gearbox can be used to increase the drum speed during the
recovery phase as there is no need for high torque in this phase. Thus, the two extreme values
are not required at the same time. Thus, decreasing the required capacity of the generator.

Finally, the maximum torque can be also limited to a much smaller value. However, in
this case, a degradation of tether length control law will occur.

4.6 Conclusion

In this chapter, a 3-D model of Magnus effect-based AWE systems are discussed in detail
taking into account both the translational and rotational dynamics of the system.
A bang-bang control strategy is discussed and simulation results for a 500 m

2 Magnus-based
AWE system are presented. It is assumed that the heading angle of the system is controllable
and it has been shown that the Magnus effect-based AWE systems can perform crosswind
figure-eight maneuver. The results of the static model have been found to be satisfactory and
give results close to the performance of the 3-D dynamic simulation. This modeling approach
can be adopted for any on-ground production AWE system.
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5.1 Introduction

Power curves serve as a tool to analyze the economic feasibility of any type of wind turbine. In
literature, there are many studies discussing the power curves of conventional wind turbines.
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Over the years, the power curves have been validated and improved by incorporating the on-
field data from the installed wind turbines. To evaluate the economic viability of airborne
wind energy systems, and to draw valid comparisons with the conventional turbines, there is a
need to develop accurate power curves for AWE systems, [127]. Currently, there are very few
working prototypes of AWE systems and none of them is a fully functioning commercial unit.
Thus, the power curves for AWE systems are still an open topic of discussion in the research
community. In [128], a study is presented discussing the family of power curves for different
altitudes derived from the fast model presented in [10]. The study also compares the power
curves with the dynamic simulations of Enerkite AWE prototype EK30 and it concludes that
the significant confidence can be placed on the approach presented in the work for estimating
the power curves for AWE systems. In [129], a simplified model is analyzed to estimate the
maximum feasible drag power for an on-board production system. In [130], an optimal control
problem is discussed which is then used to obtain power curves for a rotary kite AWE system.
In [122], a strategy to control the power production of a Magnus-based AWE system (by
changing aerodynamic coefficients of the system) is proposed.

In the previous chapter 4, a 6-DOF mathematical model for the Magnus based AWE system
is presented and validated by simulation (controlling the system in crosswind trajectories). A
static model of the full cycle is presented and compared to the dynamic simulation. In this
chapter, based on a static model proposed and validated in chapter 4, a structural analysis
of ground station structure (including electrical and hydraulic solutions), and a generic static
model of on-ground AWES is proposed, which can be applied to other kind of AWES such as
kites, UAV’s etc. A high-level algorithm is developed to maximize the net output power of the
system, taking into consideration the necessary operational limitations of various sub-systems
such as winch actuators, maximum permissble tether traction etc. This fast model is then
used to calculate power curves for a generic AWE system (such as kite, UAV, Magnus etc.) as
a function of different design parameters. As this thesis work is specifically based on Magnus-
based on-ground AWE systems, numerical application for these type of systems is done to
draw comparisons with conventional horizontal axis wind turbines. The 4 & 5-phase power
curves calculated in this chapter give a valuable insight into the potential of AWE systems
and expose some advantages over conventional wind turbines.

The chapter is organized as follows. Section 5.2 focuses on the modeling of the different
parts of the system. In section 5.3, two type of ground station layout utilising gearbox and
hydrulic stage are discussed. In section 5.4, control and optimization technique for the max-
imization of the output power is presented. A numerical application follows in section 5.5.
The chapter ends with some conclusions in section 5.6.
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5.2 Modelling of Power Curves

5.2.1 Model of Wind Profile

In this chapter, the wind profile power law is considered to describe the evolution of horizontal
mean wind speed with altitude. This theoretical model is discussed in detail in literature [131]
and provides a good approximation of the wind speed for altitudes between 100 to 2000 m.
According to this model, the wind speed vw at any altitude z can be given by:

vw(z) = vw(z0)(
z

z0
)↵ (5.1)

Where, z0 represents the operating altitude, vw(z0) is the known wind speed at altitude z0,
and ↵ is an empirically derived coefficient that characterizes the surface. It depends on the
stability of the atmosphere and is generally assumed to be equal to 0.143. To take into account
the constant variation of the wind speed and to calculate the annual mean wind speed at a
particular site, the well know Weibull distribution is used. The distribution basically tells at
a particular site how often the wind blows and how strong it is. Thus, it is a good way to
describe the wind speed variations and it is given by:

f(vw) =
k

a

✓
vw

A

◆
k�1

e
�
�

vw
A

�k
(5.2)

Where, f(vw) is a probability to have vw wind speed over the year, A is the Weibull scale
parameter expressed in m/s and is proportional to mean wind speed, and k is the Weibull form
parameter describing the shape of the Weibull distribution with its value between 1 and 3.
Smaller values of k show very variable winds while larger values show constant winds. Finally,
vw is the wind speed series whose probability distribution is calculated. Figure 5.1 shows an
example of weibull distribution calculated for a series of wind speed measurements carried out
over an year.

5.2.2 Model of a Horizontal Axis Wind Turbine (HAWT)

For conventional wind turbines, the power produced depends on the kinetic energy of the air
and the power coefficient, Cp, of the turbine which is smaller than its theoretical Betz limit
16
27 :

PHAWT =
1

2
⇢CpAsweptv

3
w (5.3)

Where, Aswept is the total surface swept by the blades. Power produced, PHAWT , is generally
divided into four phases characterized by the design constraints of the system. The first
phase is from zero wind speed to cut-in wind speed vci, where a conventional turbine does not
produce any energy. The second phase is from vci to the nominal wind speed vnom, where the
maximum wind power extraction occurs by maximizing Cp coefficient. The third phase is from
vnom to the cut-off wind speed vco, and during this phase power is curtailed to nominal power
Pnom by reducing Cp coefficient. Finally, for any wind speed beyond vco, the wind turbine is
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Figure 5.1: Weibull Distribution.

switched-off to avoid its mechanical and electrical degradation. Therefore, the power curves
of a HAWT can be produced by the following set of equations:

PHAWT =

8
>>>>><

>>>>>:

1
2⇢CpmaxAsweptv

3
w if vci < vw  vnom

Pnom if vnom < vw < vco

0 if vw � vco or vw  vci

(5.4)

Figure 5.2 presents a classical power curve for a particular HAWT. As observed the from
figure 5.2, the power curve consists of three phases, denoted as phase I, II, and III, each
describing the operational constraints of HAWT as presented by equation 5.4.

5.2.3 Static Model of Ground-based AWE System

As stated in previous chapters, the operational cycle for any on-ground AWE system is divided
into two phases, namely, the production phase and the recovery phase. In chapter 4, a static
model is presented with section 4.5.1 presenting the simulated power produced. As stated in
chapter 3, a part of the power produced during the production phase is consumed during the
recovery phase. In order to minimize the energy consumption during this phase, the traction
force has to be minimized.

As explained before in chapter 3, the aerodynamic lift and drag forces acting on any
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Figure 5.2: Power curve of a conventional wind turbine.

classical airborne platform can be expressed as:

L =
1

2
⇢Sv

2
aCL, D =

1

2
⇢Sv

2
aCDeq (5.5)

Where, CDeq is the equivalent aerodynamic drag coefficient of the tether and any other struc-
tural components of the airborne platform. Note that CDeq has to be expressed as a function
of tether length to include any increment or decrement in the tether drag due to the winding
or unwinding of the tether from the winch.

As discussed in the chapter 4, two frames of references are used to describe the motion of
the Magnus based AWE system, inertial frame, (xi, yi, zi), and body frame (xb, yb, zb). It is
assumed that the wind speed, vw, as witnessed by the cylinder is in ~xi direction. Thus, the
component of the wind speed, vt, in the direction parallel to the tether is given by:

vt = vw cos(✓T ) cos(�T ) (5.6)

Where, ✓T and �T represents the elevation and the azimuthal angle of the tether with respect to
the inertial frame. Figure 5.3 presents a 3D model of a Magnus-based AWE system described
using two frames of references. The tether length rt is calculated as:

rt =
p

x2 + y2 + z2 (5.7)

Where, (x, y, z) are the coordinates of Cg of the airborne platform in the inertial frame. In
the static analysis presented in chapter 4, assuming straight taut tether, the traction force
Fr developed in the tether is directly proportional to the resultant aerodynamic force acting
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5.2.3.3 Magnus Motor consumption

As mentioned in chapter 3, section 3.3, in case of Magnus-based AWE systems a part of the
power produced is also used to turn the Magnus rotor and it can be written as:

Protor = Tmotor!cyl (5.14)

Where, Tmotor is the on-board motor torque. To calculate the maximum theoretical power
produced, the power consumed by the Magnus rotor is considered to be zero. However, it can
be estimated as

Tmotor =
1

2
⇡r

2
cyl

lcylv
2
aCm (5.15)

Where, rcyl is the radius of the Magnus cylinder, Cm is the torque coefficient of the rotor, lcyl
is the length of the Magnus cylinder. As the rotational speed of the Magnus cylinder depends
on the non-dimensional quantity, spin ratio, X, expressed as:

X =
!cylrcyl

va
(5.16)

Thus, from equation 5.16 !cyl can be expressed as:

!cyl =
Xva

rcyl
(5.17)

Hence, the power consumed by the motor can be approximated as:

Pmotor = Tmotor!cyl =
1

2
Xrcyllcylv

3
aCMz (5.18)

5.2.3.4 Full Production Cycle

A given power cycle is thus defined by one complete production and recovery phase as shown in
figure 5.4. The transitional phase between the production and the recovery phase is neglected
in this formulation. The time for each phase can then be expressed as:

t1 =

����
rmax � rmin

˙rprod

���� =
�r

˙rprod
(5.19)

t2 =

����
rmax � rmin

˙rrec

���� =
�r

˙rrec
(5.20)

Where, t1 and t2 represent the duration of the production and recovery phase respectively.
rmax and rmin represent the minimum and maximum tether length reached in the a particular
operating cycle, �r represents the absolute tether length for that particular phase. Note, here
it is assumed that for a particular cycle during both the production as well as the recovery
phase, the intial position is same. In other words, during the recovery phase the airborne
platform is brought back to the same initial position .i.e. the position before the start of the
production phase. Thus, the total time, t taken for one complete production cycle is:

t = t1 + t2 (5.21)
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The high level algorithm presented in figure (5.7) summarizes the optimization of all the
considered variables.

5.4.1 No saturation on actuators: Optimization of reel-in and reel-out
speeds

To maximize the net power production during one complete cycle, ṙprod and ṙrec have to be
optimized simultaneously. In the considered optimization procedure, Pcycle is derived with
respect to each ṙrec and ṙprod while considering the other variables as constant.

@Pcycle

@ṙrec
= f(vw, ṙrec, ṙprod,M) (5.33)

While considering ṙprod, vw and the vector of parameters M as constant. Vector M is given
by:

M = [CL, CDeq, CDrec,�T , ✓T , ⌘p, ⌘r, ⌘s, ⌘g, ⇢, S] (5.34)

Similarly,
@Pcycle

@ṙprod
= f(vw, ṙrec, ṙprod,M) (5.35)

While considering this time that ṙrec as constant. The first order partial derivative results in
a polynomial function, and solving the system of equation the optimal values of ṙrec and ṙprod

can be obtained as:
⇢

ṙrecopt = fs(vw, ṙprod,M)
ṙprodopt = gs(vw, ṙrec,M)

(5.36)

5.4.2 Optimization of reel-in speed when reel-out speed is set

As presented before, the power produced by an AWE system in production phase is given by:

Pprod = Frṙprod (5.37)

Due to design and structural constraints, there exists an upper limit for traction force Fr

denoted by Fmax. This limit can be attributed to tether, winch and/or kite structural limi-
tations. When this limit is reached during the production phase, and if cos(✓T ) cos(�T ) and
CL(

CL
CDeq

)2 are set at their maximum value, then ṙprod has to be set such that Fr = Fmax. In
this case, the optimal value of ṙprod can be calculated using equation (5.10) as:

ṙprodf = vt �
s

Fmax

1
2⇢SCL(

CL
CDeq

)2
(5.38)

Where, ṙprodf is the value of ṙprod which maintains Fr = Fmax. In the case if ṙprod reaches
ṙprodmax then it has to be saturated while maintaining Fr equal to Fmax. This can be done by

reducing other parameters such as cos(✓T ) cos(�T ) or CL

⇣
CL

CDeq

⌘2
. Thus, in order to maximize
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Kite parameters Variable Value
Span [m] L 90
Radius [m] R 9
Magnus Surface [m2] S 1620

Maximum CL

⇣
CL

CDeq

⌘2
for X = 3.6 CL

⇣
CL

CDeq

⌘2
69.44

Minimum drag coefficient CDrec 0.5
Minimum elevation angle [deg] ✓T 25
Cut-in wind speed [m/s] Vci 3
Cut-out wind speed [m/s] Vco 22.5
Maximal traction force [kN] Fmax 2405
Maximal strength [N/m2] � 1485
Working altitude [m] z 160
Aspect ratio AR 5
Reynolds number for Va = 10m/s Re 10.9e6

Case 1: Ground station with 2 electrical actuators
Electric generator nominal power [MW] Pprodmax 10
Nominal Power for grid connection [MW] Pgrid 5.91
Electric motor nominal power [MW] Precmax 5.56
Yield of generator ⌘p 0.92
Yield of motor ⌘r 0.88
Yield of storage device ⌘s 1
Yield of grid connection ⌘g 0.98
Maximal reel-in speed [m/s] ṙrecmax 14.7
Maximal reel-out speed [m/s] ṙprodmax 4.16

Case 2 : Ground station with hydraulic stage
Electric generator nominal power [MW] Pgrid 10.9
Hydraulic motor/pump nom. power [MW] Pmax 40
Yield of motor/Pump for production ⌘p 0.92
Yield of motor/Pump for recovery ⌘r 0.88
Yield of storage device ⌘s 1
Yield of grid connection ⌘g 0.98
Maximal reel-in and reel-out speed [m/s] ṙmax 16.65

Table 5.2: Parameters of the 90m span MGAWES.

Prec increases as with an increase in the wind speed the drag also increases. Thus, more and
more power is required to recover the airborne platform. This leads to a reduction in the net
power output Pcycle as represented by dotted line in figures 5.8 and 5.9. Finally, solid lines in
phase IV shows the use of elevation angle ✓T to maintain output power at its maximum by
achieving the maximum permissible effective wind vt.

In table 5.2, case 2 presents the case when there are no set limitations on the winch
actuators. The parameters are chosen to illustrate hydraulic configuration and in this case
both the phases use the same actuator. So, the winch actuator has to at least produce the high
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force Fmax and high speed ˙rrecmax in the same time. This extends the phase III to maximum
cut-out value vco. The maximum output power is then produced at this maximum wind speed,
and has to be used to size the grid connection Pgrid. Note that the same power curve can be
produced with a single 40MW electric motor/generator coupled with a single gearbox.

Using these theoretical power curves and wind distribution described in section 5.5.1.2, the
theoretically expected energy produced during one year can be computed for HAWT V150 as
well as for the same 90m span Magnus effect kite with different ground-station configurations.

Just for the sake of comparison, from figure 5.8 it can be noted that a generator and
a motor that saturates at the same wind speed as HAWT (i.e. Pprodmax = 6.7MW and
Precmax = 4MW ) will lead to a similar power curve and similar annual production. This
configuration is considered as case 0.

Table 5.3 summarizes the different systems considered and associated size of actuators. It
also gives the corresponding theoretical annual production and capacity factor, computed by
dividing annual production by 8760Pgrid.

System PGrid Generator Motor Annual prod. Capacity
[MW] [MW] [MW] [GWh/year] factor

Vestas V150 4.2 4.2 - 18.2 0.49
AWES Case 0 4.2 6.7 4 18.2 0.49
AWES Case 1 5.9 10 5.56 21.9 0.42
AWES Case 2 10.9 40 - 24.8 0.26

Table 5.3: Considered actuators configurations and corresponding theoretical annual production and
capacity factor

5.5.2 KW-size System

As similar comparision is made for a KW-sized Magnus-based airborne wind energy systems
with a HAWT of same size.

5.5.2.1 HAWT Parameters

In this section, a 12 kW pitch controlled horizontal axis wind turbine is considered, with the
parameters detailed in table 5.4.

5.5.2.2 Wind Parameters

The evolution of wind with altitude as presented by equation (5.1) is used. Parameters used
are ↵ = 0.143 and z0 = 10 m, which is tower height of the considered HAWT. Similar to
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Kite parameters Variable Value
Span [m] L 6
Radius [m] R 0.5
Magnus Surface [m2] S 6

Maximum CL

⇣
CL

CDeq

⌘2
for X = 3.6 CL

⇣
CL

CDeq

⌘2
69.44

Minimum drag coefficient CDrec 0.5
Minimum elevation angle [deg] ✓T 25
Cut-in wind speed [m/s] Vci 2
Cut-out wind speed [m/s] Vco 24
Maximal traction force [kN] Fmax 3.96
Maximal strength [N/m2] � 660
Working altitude [m] z 10-100
Aspect ratio AR 6
Reynolds number for Va = 10m/s Re 6.61e5

Case 1 : Ground station with 1 electrical actuators
Nominal Power for grid connection [kW] Pgrid 12
Electric motor/generator nom. power [kW] Pmax 43.9
Yield of motor/generator for production ⌘p 0.92
Yield of motor/generator for recovery ⌘r 0.88
Yield of storage device ⌘s 1
Yield of grid connection ⌘g 0.98
Maximal reel-in and reel-out speed [m/s] ṙmax 11.1

Case 2 : Ground station with hydraulic stage
Electric generator nominal power [kW] Pgrid 12
Hydraulic motor/pump nominal power [kW] Pmax 43.9
Yield of motor/Pump for production ⌘p 0.92
Yield of motor/Pump for recovery ⌘r 0.88
Yield of storage device ⌘s 1
Yield of grid connection ⌘g 0.98
Maximal reel-in and reel-out speed [m/s] ṙmax 11.1

Table 5.5: Parameters of the 6m span MGAWES.

output power, followed by the next phase using the elevation angle. One can note that phase
II is greatly shortened, thereby lengthening phase III by starting it at a lower wind speed.
This results in an MGAWES design for low wind speed sites by using the lower maximum
strength parameter �.

Moreover, during phases II and III, energy is harvested at an altitude of 100 m instead of
10 m. Also, the wind model shifts the wind by about 2 m/s, thus, shifting the power curve to
the left, as depicted by the solid line in figure 5.10. Table 5.6 summarizes theoretical annual
production and capacity factor, computed by dividing annual production by 8760Pgrid for the
considered kW-sized HAWT and MGAWES.
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Figure 5.11: High-level control variables for 6m span MGAWES. Top: reel-out speed during pro-
duction phase (black) and reel-in speed during the recovery phase (red) in function of wind speed.
Down: Traction force during production (black) and recovery (red) phases. The dotted line represents
variables when the kite stays at altitude 10m and control of elevation angle is not used

system. The power curves with its saturation’s can be used to design a system as a function
of its size and the wind distribution at the considered site.

AWE systems need fewer materials than an equivalent HAWT because there is no need of
a tower and associated concrete foundation, but in some considered configurations, the ground
station needs an electrical generator 3 to 4 times the nominal power of the system. The use
of hydraulic stage seems to be a good alternative to this costly electric actuator over-sizing
problem. But it has to be studied in detail in terms of yield and controllability. The five
phases are shown in figure 5.10 illustrate the flexibility of on-ground AWES due to the higher
number of control variables in comparison to the conventional wind turbines. This gives AWE
systems the capacity to operate on a wide range of wind speed, and thus, can be designed for
low wind speed operation as well.

Unlike the conventional wind turbines for AWES one can easily dissociate the maximum
stress forces that the system can withstand and the maximum electric power of the generator.
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For instance, the kite can be designed for low traction force, which will reduce its cost, and
reduce the width of phase II. Then phase III can be extended by oversizing the actuators. This
will also define the nominal output power which the system must respect for the remaining
zone of the power curve, in order to produce the flat zone. In another scenario, one can design
very short phase II and III, leading to lower cost, and wide phase IV and a flat zone in phase
V. This leads to a production that will be more stable and easier to forecast by grid operators.

Moreover, theoretically, the power produced can be coupled with a high-level energy control
algorithm (like the one presented in [123]) to make energy produced controllable by grid
operators, from 0 to the maximum possible value at the current wind speed almost in real
time.

Finally, numerical results on Magnus-based AWE system has to be seen in relation to that
of other such systems. As some parameters used are theoretical and not verified experimentally
in the same conditions. Also, the energy consumed by the motor as detailed in chapter 3 that
is required to rotate the Magnus cylinder during the production phase can affect the global
performance which for the sake of simplicity is not considered here. It is important to note
that the approach presented can be used to obtain the same kind of results for any other
on-ground AWES as the only change will be in the parameters CL

⇣
CL

CDeq

⌘2
, CDrec and in

some cases the static model of the recovery phase.

Also, the high-level algorithm presented can also be applied to any other On-ground AWE
system resulting in power curves with the same 5 phases depicting the same behavior as
presented by power curves calculated in this work.

5.6 Conclusion

In this chapter, the proposed static model represents a simple tool that can be used to predict
the performance of the on-ground AWES in relation to the main design parameters. The
proposed algorithm gives a strategy to maximize the energy produced by this kind of system
for different configurations of actuator saturation under the static assumption. By coupling
the static model with the high-level algorithm, a way to calculate power curves is presented.
This approach is used to study the effects of design parameters on performances and can
be used directly to control a system in real-time. The resulting power curves consist of 5
different phases where each phase corresponds to different control variables and illustrates the
high flexibility of the on-ground airborne wind energy system. By adjusting different relative
values of mechanical or electrical design parameters, one can easily adjust the 5 different modes
in order to design the power curve for a specific zone with better-adapted shape. In particular,
the beginning of phase III is directly linked to the maximum traction force developed in the
kite and the tether. The end of this phase is defined by the saturation of the winch’s power
generator. The strategy presented can be used to evaluate other types of AWE systems and
draw some valid comparisons with conventional wind turbines.



Chapter 6

General Conclusions

6.1 Conclusions

Airborne Wind Energy is undergoing a rapid phase of development with more and more
research groups taking up the challenges and proposing solutions to them. In this thesis work
the main challenges that have been addressed are:

• Modelling and design of AWE systems,

• Autonomous operation of AWE systems,

• Ground station layout and configurations,

• Economic capability of AWE systems.

The main contributions of this work are:

1. Study and validation of the aerodynamic model of the Magnus Effect: In
chapter 3, a two-step approach has been discussed with the aim of understanding the
aerodynamic behavior of the Magnus effect and proposing a good aerodynamic model.

The approach has reconfirmed the high lifting potential of the Magnus effect. In the first
step of the approach, the historical analysis of the experimental results on the Magnus
effect presented some interesting insight into the lifting and drag capabilities of Magnus
cylinder.

The second step, the EKF approach established the experimental results from the in-
house experiments conducted at Gipsa-lab are in line with the previous results and
further validates the theoretical model proposed in the literature.

The analysis also indicates an improved aerodynamic model for the Magnus effect is
required in order to capture the phenomenon all the subtitles of the Magnus effect,
particularly for the drag of the system.

2. Development of a 3-D Mathematical model for Magnus-based AWE system:
In chapter 4, a 3-D modeling approach has been discussed. The 3-D model derived
from the first principles of flight dynamics takes into account all the forces and moments
acting on the Magnus-based AWE systems. The proposed model is based on the widely
accepted approach in the aeronautics community. The proposed model incorporates
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all the resulting effects which could be explored further in detail and coupled with the
experimental data will provide an in-depth analysis of the dynamics of Magnus-based
airborne wind energy systems. Hence, it can be considered as the base model for all the
further future analysis.

3. Design of guidance control for Magnus-based AWE system: Chapter 4 also
presents results obtained from the dynamic simulation of a Magnus-based AWE system.
The guidance algorithm adopted in this work, and the obtained simulation results prove
that a Magnus-based AWE system can successfully follow crosswind maneuvers provided
that all the required control surfaces are suitably designed and incorporated in the
prototype of MGAWES. Also, the proposed control strategy utilizing the tether length
and spin ratio of the system has proved to meet all the objectives.

4. Study of operational strategies for maximum power production by an AWE
system: In chapter 5, the power generation capabilities of AWE systems with an em-
phasis on Magnus-based AWE system is presented. The analysis based on the static
model and the proposed expressions for mean power for one complete cycle presents a
very useful approach towards the power generation analysis of such systems.

An optimization approach is presented to obtain the maximum mean power from one
complete cycle of operation. The optimization strategy provides important insights into
the optimal reel-in and reel-out speed of the tether from the winch and the actuator
limitations that would be needed to be addressed in order to have an optimal power
generation.

Based on this optimization approach, a higher level algorithm is also presented which
takes into account the different saturations arising from the structural and functional
limitations of AWE energy. Thus, the numerical results obtained for a targeted AWE
system, provide some interesting insights into the power generation capabilities of the
AWE system.

Also, based on these results, two set of configurations for a ground station have been
discussed including a hydraulic stage in order to have a cost-effective AWE system.

5. Development of the power curves for Magnus-based AWE systems: The chap-
ter 5 also proposes power curves for AWE system with a special focus on Magnus-based
AWE systems. Following power curves of conventional wind turbines, power curves with
4 and 5 phases are proposed. The analytical approach utilizing the optimization of
reel-in and reel- out speeds as well as different ground station configurations, provides a
tool to evaluate the performance of AWE systems in general. Also, the proposed power
curves enable a valid comparison between the conventional wind turbines. This marks
a step towards the economic analysis of the AWE systems.

6.2 Perspectives

There are many issues which must be addressed before a fully automated 24x7 operational
flight for AWE systems can be achieved. This thesis work tried to tackle some of the challenges
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with a focus on Magnus-based AWE systems. But still, a lot needs to be done, in particular
for Magnus-based wind energy systems. Directly, as a result of this thesis work some problems
that must be addressed in future research work are:

1. Aerodynamic model for Magnus effect: Further analysis of Magnus effect should
be undertaken, especially extensive wind tunnel testing or CFD analysis, to develop an
accurate aerodynamic model for Magnus effect.

2. Analysis of Moments acting on Magnus cylinder: A thorough analysis of the
aerodynamic moments affecting the Magnus cylinder must be undertaken supplemented
with the wind tunnel testing. In order to establish the occurrence and effect of some of
the well known aerodynamic phenomenon which affects the classical airfoils such as the
weathercock effect, etc. Also, the phenomenon of drag crisis particular to the Magnus
effect and its effect on the aerodynamic moments must be explored in the future analysis.
In addition, from the experiments, the value of various moments acting on the Magnus
cylinder must be determined in order to decide whether they can be neglected or not.

3. Decision on control surfaces for Magnus-based AWE systems: In this work
the use of horizontal tailplane (HTP) for the prototype has been disregarded. The self-
stabilization characteristic and tether traction are assumed as the controlling input. In
the future work, the use of HTP must be fully explored.

4. Ground station layout: A ground station using a hydraulic stage has been proposed
in this work. In the future work, the capabilities and the controllability of the hydraulic
stage must be studied in detail to establish the expected advantages of this stage.

5. Power curves for Magnus-based AWE system: A 5 stage power has been proposed
based on the static model. In order to improve the power curve and to have a better
estimate of the mean power generated. The model must be refined taking into account
other contributions to the proposed power expression such as the effect of centrifugal
forces, efficiency of the drivetrain and other devices used in the ground station.

6. Landing and Take-off strategy: The landing and take-off strategy is an open quesiton
in the AWE research community. The landing & take-off strategy for Magnus-based
AWE systems needs to be devised. Also, its effect on the performance must be studied
in detail for evaluating the power generation capabilites of Magnus-based AWE systems.

7. Other design aspects: Several design aspects from the engineering point of view must
be investigated for the future development of the Magnus-based AWE systems. These
include: the onboard energy supply aspect, structural design, tether bridle design, safety
aspects and system redundancy. As these aspects will have considerable effect on the
system complexity, hence, the cost. Therefore, they must be studied in detail.

8. Test flights: To better evaluate the behavior of the Magnus-based AWE systems ex-
tensive testing with full-size to mid-size prototypes must be done in order to refine the
model, support further analysis and collect more data on the working of Magnus-based
AWE systems.
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The author of this thesis believes that the EOFLY research group at Gipsa-lab is fully
capable and motivated to tackle these issues in detail in future. It is author’s belief the future
Ph.D. students as well as the post-doctoral students along with the researchers at Gipsa-lab
would contribute immensely to the development of Airborne Wind Energy Systems.
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Appendix A

• LCOE: The levelized cost of energy (LCOE) is a measure of a power source which
allows to compare different methods of electricity generation on a consistent basis. It is
an economic assessment of the average total cost to build and operate a power-generating
asset over its lifetime divided by the total energy output of the asset over that lifetime.
The LCOE can also be regarded as the average minimum price at which electricity must
be sold in order to break-even over the lifetime of the project (definition from wikipedia).

• Capacity Factor: The net capacity factor is the unitless ratio of an actual electrical
energy output over a given period of time to the maximum possible electrical energy
output over that period.[1] The capacity factor is defined for any electricity producing
installation, such as a fuel consuming power plant or one using renewable energy, such
as wind or the sun. The average capacity factor can also be defined for any class of
such installations, and can be used to compare different types of electricity production
(definition from wikipedia).
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