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Abstract

I started my PhD studies in fall 2014, in the LIAFA at University Paris VII,
which then became the IRIF. During these years, lordanis Kerenidis and Adi
Rosén supervised my main project, centred around the notion of multi-party
communication protocols. I also worked under the supervision of Francois
le Gall on improving the complexity of algorithms for the multiplication of
rectangular matrices. This manuscript presents the results of my research
with Tordanis Kerenidis and Adi Rosén. The results of the work on matrix
multiplication have been published in [GU18].

This thesis is concerned with the study of multi-party communication
protocols in the asynchronous message-passing peer-to-peer model. We in-
troduce two new information measures, the Public Information Complezity
(PIC) and the Multi-party Information Complexity (MIC), study their prop-
erties and how they are related to other fundamental quantities in distributed
computing such as communication complexity and randomness complexity.
We then use these two measures to study the parity function and the dis-
jointness function. A detailed description of the content of this thesis is given
at the end of the introduction.

Keywords: communication protocol, multi-party communication, peer-to-
peer model, Public Information Complexity, PIC, Multi-party Information
Complexity, MIC, communication complexity, information theory, random-
ness complexity, privacy.






Résumé

J’ai commencé mon doctorat a I’automne 2014 au LIAFA & I’Université Paris
VII, qui est ensuite devenu I'IRIF. Durant ces années, lordanis Kerenidis et
Adi Rosén ont encadré mon projet principal, ayant pour sujet la notion
de protocoles de communication peer-to-peer. J’ai également travaillé avec
Francois le Gall pour améliorer la complexité des algorithmes de multipli-
cation de matrices rectangulaires. Ce manuscrit présente le résultat de mes
recherches avec lordanis Kerenidis et Adi Rosén. Les résultats de mon travail
sur la multiplication matricielle ont été publiés dans [GU18|.

Cette these a pour sujet les protocoles de communication peer-to-peer
asynchrones. Nous introduisons deux mesures basées sur la théorie de I'information,
la Public Information Complexity (PIC) et la Multi-party Information Com-
plezity (MIC), étudions leurs propriétés et leur relation avec d’autres mesures
fondamentales en calcul distribué, telles que la communication complexity
et la randomness complexity. Nous utilisons ensuite ces deux mesures pour
étudier la fonction parité et la fonction disjointness. Une description détaillée
du contenu de cette these est donnée a la fin de I'introduction.

Mots-clefs : protocole de communication, modele peer-to-peer, Public
Information Complexity, PIC, Multi-party Information Complexity, MIC,
communication complexity, théorie de I'information, randomness complexity,
privacy.
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Introduction

Historical Background

Communication complexity, first introduced by Yao [Yao82], has become
a major topic of research in Theoretical Computer Science, both for its
own sake, and as a tool which has yielded important results (mostly lower
bounds) in various theoretical computer science fields such as circuit com-
plexity, streaming algorithms, or data structures (e.g. [KN97, MNSWO95,
GG10, SHK*10, FHW12]). Communication complexity is a measure for the
amount of communication needed in order to solve a problem whose input is
distributed among several players. Informally, it answers the question “How
many bits must the players transmit to solve a distributed problem?”. The
two-party case, where two players cooperate in order to compute a function
of their respective inputs, has been widely studied and has produced a large
number of interesting and important results, upper and lower bounds; yet
major questions in this area are still open today (e.g. the log-rank conjecture,
cf. [Lovl4)).

The multi-party case, where k£ > 3 players cooperate in order to compute
a function of their inputs, is much less understood. A number of sub-models
have been considered in the literature for the multi-party communication
setting: the number-in-hand model (NIH), where each player has a private
input, is maybe the most natural one, while in the number-on-the-forehead
model (NOF), each player i knows all inputs z;, j # ¢, i.e. the “inputs”
of all players except its own. For the communication pattern, a number of
variants exist as well. In the blackboard model, the players communicate by
broadcasting messages (or writing them on a “blackboard”). In the coordi-
nator model, there is an additional entity, the coordinator, and all players
communicate back and forth only with the coordinator. The most natural
setting is, however, the message-passing model, also known as peer-to-peer
model, where each pair of players is given a private channel to communicate
(cf. [KN97] for more details on the different variants). Most of the work
realized on multi-party communication complexity focuses on the number-

11



12 INTRODUCTION

on-the-forehead model and/or the blackboard model, to which some of the
techniques developed in the study of two-party protocols have been general-
ized. This is the case, for example, of the partition (into rectangles) bound,
and of the discrepancy method. In contrast, only few lower bound techniques
are available for the number-in-hand model, and most of the methods devel-
oped in the two-party case appear to be unsuitable, or at least unsatisfactory,
for that model.

Lower bounds obtained in the coordinator model can be transferred to
the peer-to-peer model at the cost of a log(k) factor, where k is the number
of players, since any peer-to-peer protocol can be simulated in the coordina-
tor model by having the players attach to any message the identity of the
destination of that message. The loss of this factor is unavoidable when the
communication protocols rely on a flexible communication pattern. Such
configurations arise naturally for mobile communicating devices. A practi-
cal example would be communicating cars exchanging information with the
nearby cars in order to avoid collisions. Constructions based on the pointer
Jumping problem are also likely to be harder in the coordinator model, as
solving the problem usually requires exchanging information in a specific
order determined by the inputs of the players. On the other hand, other
functions, for example the parity function, have the same communication
complexity in the peer-to-peer and in the coordinator models. Thus, it is
important to develop lower bound techniques which apply directly in the
peer-to-peer model.

A powerful tool recently introduced for the study of two-party commu-
nication protocols is the measure of Information complexity (or cost). This
measure, first defined in [BCKO93, CSWY01], extends the notion of informa-
tion theory, originally introduced by Shannon [Sha48], to interactive settings.
Information complexity is a measure of how much information, about each
other’s input, the players must learn during the course of the protocol in
order to succeed in computing the function correctly. Since the information
complexity can easily be shown to provide a lower bound on the communi-
cation complexity, this measure has proven to be a strong and useful tool
for obtaining lower bounds on the two-party communication complexity in a
sequence of papers (e.g. [BYJKS02, BBCR10, BR11, Bral2]).

An interesting property of information complexity is that it satisfies a
direct sum. The direct sum question, one of the most fundamental ques-
tions in complexity theory, asks whether solving n independent copies of the
same problem must cost (in a given measure) n times the cost of solving a
single instance. In the case of communication complexity, this question has
been studied in e.g. [FKNN95, CSWY01, Sha03, JRS03, HIMR10, BBCR10,



13

Klal0, Jail5] and in many cases it remains open whether a direct sum prop-
erty holds.

Another important question is the relation between the information com-
plexity of a function and its communication complexity. We would like to
know if it is possible to compute a function by sending a number of bits which
is not (too much) more than the information the protocol actually has to re-
veal. Put differently, is it always possible to compress the communication
cost of a protocol to its information cost? For the two-party case it is known
that perfect compression is not possible [GKR15a, GKR15b]. Still, several
interesting compression results are known. The equality between information
cost and amortized communication cost is shown in [BR11, Bral2], and other
compression techniques are given in [BBCR10, BMY15, BBK*13, Panl5]. It
remains open if one can compress interactive communication up to some
small loss (for example logarithmic in the size of the input).

Unfortunately, information complexity cannot be extended in a straight-
forward manner to the multi-party setting. The celebrated results on
information-theoretic private computation [BOGWS88, CCDS88| state that if
the number of players is at least 3, then any function can be computed by a
randomized protocol such that no information about the inputs is revealed to
the players (other than what is implied by the value of the function and their
own input). This implies that the information complexity of all functions is
too low to provide a meaningful lower bound on the communication complex-
ity in the natural multi-party peer-to-peer setting. Therefore, information
complexity and its variants have rarely been used to obtain lower bounds
on multi-party communication complexity, and only in settings which do not
allow for private protocols (and most notably not in the natural peer-to-peer
setting). One example of such work is [HRVZ15] which introduces a notion of
external information cost in the coordinator model of [DF89] to study max-
imum matching in a distributed setting. Among the interesting works on
multi-party communication which are not based on information complexity
are [CRR14, CR15] which study the influence of the topology of the net-
work and [PVZ12, WZ14] which introduce the techniques of symmetrization
and composition, further developed along with other reduction techniques in
[WZ11, WZ13]. Another example is the notion of strong fooling sets, intro-
duced in [CK16] to study deterministic communication complexity of discreet
protocols, also defined in [CK16].

In certain circumstances, we would like that the players, while being able
to compute the value of the function, retain as much privacy as possible
about their input. Informally, we would like that the players learn nothing
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about the others’ input but the value of the function. The question of when
such a protocol is possible, and how to design it, has been posed in the field
of cryptography [Yao82]. In cryptography, the notion of security is compu-
tational: we assume that the players have a limited computation power, and
we want to design a protocol which ensures that the players cannot get more
information than they should be able to. Constructions based on trapdoor
one-way functions [GMW87, CDvdG88] answer this question. A stronger
notion of security is information-theoretic security. Instead of relying on
cryptographic assumptions, we now aim for unconditionally secure proto-
cols. As discussed above, it is well known that in the multi-party (k > 3)
number-in-hand peer-to-peer setting, unlike in the two-party case, any func-
tion can be privately computed [BOGWS88, CCD88|. Private computation is
attained through the use of private randomness. The amount of randomness
needed in order to compute privately a given function has been many times
referred to as the randommness complexity of that function. The interest of
randomness complexity lies in the fact that true randomness is considered as
a costly resource, and in the fact that the randomness complexity has been
shown to be related to other complexity measures, such as the circuit size of
the function or its sensitivity. For example, it has been shown in [KOR96]
that a boolean function f has a linear size circuit if and only if f has constant
randomness complexity. A few works [BDSPV99, KM97, GRO05] prove lower
bounds on the randomness complexity of the parity function. The parity
and other modulo sum functions are, to the best of our knowledge, the only
functions for which randomness complexity lower bounds are available.
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Content of this thesis

Contributions

In this thesis, we will focus on the number-in-hand, peer-to-peer model. This
setting has been studied, in the context of communication complexity, less
than the other settings, probably due to the difficulty of tracking the dis-
tributed communication patterns that occur during a run of a protocol in
this model. It is, however, not only the most natural one, and the one that
occurs the most in real systems, but also the setting widely studied in the
distributed algorithms and distributed computation communities.

Our main goal is to introduce novel information-theoretical measures for
the study of number-in-hand, peer-to-peer multi-party protocols, coupled
with a natural model that, among other things, allows private protocols. We
attempt to fill the gap in the study of peer-to-peer communication complex-
ity, and, further, create a bridge between the research fields of communication
complexity and distributed computation.

We propose a model that, on one hand, is a very natural peer-to-peer
model, and very close to the model used in the distributed computation
community, and, at the same time, does have properties that allow one to
analyze protocols in terms of their information complexity. While at first
sight the elaboration of such a model does not seem to be a difficult task,
many fundamental and technical issues render this task non-trivial. For ex-
ample, one would like to define a notion of “transcript” that would guarantee
both a relation between the length of the transcript and the communication
complexity, and at the same time will contain all the information that the
players get and use while running the protocol. The difficulty in elaborating
such a model may be the reason for which hardly any work studied com-
munication complexity in a multi-party peer-to-peer setting. We propose
the model and prove a number of fundamental properties that allow one to
analyze protocols in that model. Our model allows for private protocols.
We also show that our model is at least sometimes stronger than the models
that have been previously used in most of the papers dealing with multi-party
communication complexity, and that if one seeks to accurately understand
the natural peer-to-peer model, suppressing polylog-factor inaccuracies, one
has to study directly the peer-to-peer model.

We first define the new measure of Public Information Complezity (PIC),
as a tool for the study of multi-party communication protocols, and of quan-
tities such as their communication complexity, or the amount of randomness
they require in the context of information-theoretic private computation. In-
tuitively, our measure captures a combination of the amount of information
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about the inputs that the players leak to other players, and the amount of
randomness that the protocol uses. By proving lower bounds on PIC for a
given multi-party function f, we are able to give lower bounds on the com-
munication complexity of f and on the amount of randomness needed to
privately compute f. The crucial point is that the public information com-
plexity of functions, in our multi-party model, is not always zero, unlike their
information complexity.

We go on to show a number of interesting properties and applications of
our new notion:

e The public information complexity is a lower bound on the communi-
cation complexity and an upper bound on the information complexity.
In fact, it can be strictly larger than the information complexity.

e The difference between the public information complexity and the in-
formation complexity provides a lower bound on the amount of random-
ness used in a protocol. We show that in the two-party setting, the use
of private coins is required in order to achieve the optimal information
cost.

e We compress communication protocols to their PIC (up to logarithmic
factors), by extending to the multi-party setting the work of Brody et
al. [BBK*13] and Pankratov [Panl5].

e We show that one can approach the central question of direct sum in
communication complexity by trying to prove a direct sum result for
PIC. Indeed, we show that a direct sum property for PIC implies a
certain direct sum property for communication complexity.

o We explicitly calculate the zero-error public information complexity of
the k-party, n-bit parity function (Par}), where a player outputs the
bit-wise parity of the inputs. We show that the PIC of this function is
n(k —1). This result is tight and it also establishes that the amount of
randomness needed for a private protocol that computes this function
is Q(n).

We then introduce an information-theoretic measure that we call Multi-
party Information Complexity (MIC). MIC is a natural extension of the two-
party information cost, and can be interpreted as summing over all players ¢
the sum of two terms: what player ¢ learns on the other players’ inputs, and
what player i leaks about its input.

e We show that MIC can be used as a lower bound on the communication
complexity.
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e We prove a direct sum property for product distributions which allows
us to obtain tight bounds on the MIC of the parity function Par}.

e We also study the disjointness function by introducing the specific mea-
sure of SMIC (Switched Multi-party Information Cost) and by following
the approach of [BEO'13]. We prove a specific direct sum property and
obtain a bound of Q(kn) on the multi-party information complexity of
the k-player n-bit disjointness function in our peer-to-peer model, which
leads to a tight bound of Q(kn) on its communication complexity for
n > ak, where « is a constant. From a quantitative point of view,
our result for the disjointness function improves by a log k factor the
lower bound that could be deduced for our model from results on the
disjointness function in the coordinator model [BEO*13].

e We further prove, by relating SMIC to PIC, that any private protocol
for the disjointness function must use at least 2(n) private coins. The
importance of this result lies in that it is the first such lower bound
that grows with the size of the input while the output remains a single
bit, by contrast to the sum function from [BDSPV99] or the bitwise
parity function that we also study in this thesis.

Organization

The thesis is organized as follows.

In Chapter 1, we introduce the notion of communication protocols and
our communication model. We review the traditional notions of communi-
cation complexity (CC) and information complexity (IC), and the relation
between them. We describe how information complexity was used in the
context of two-party communication protocols, and explain why a new ap-
proach is needed when one is interested in studying multi-party protocols.

In Chapter 2, we introduce the new notion of public information cost and
study its properties. In particular, we show that the public information cost
can be a tool for the study of communication complexity.

We then give an introduction on private computation and randomness
complexity. We show why the possibility of private computation turns the
information complexity into a meaningless quantity in the multi-party set-
ting. We explain why on the contrary the public information cost is a perti-
nent notion, and study the connection between public information cost and
randomness complexity.



18 INTRODUCTION

We present several lower bound techniques for the public information cost,
and study the public information cost of the functions And and Parity. This
allows us to compute the randomness complexity of the parity function.

Last, we give some background on the notion of direct sum, review the
problem of compressing communication protocols, and explain the links be-
tween the two. We then explain why the public information cost is related
to them.

In Chapter 3, we introduce the new notion of multi-party information
cost, show that it satisfies a direct sum property for product distributions
and that it can be used as a lower bound on the communication complexity.
We then prove a lower bound on the MIC and the CC of the parity function.

We introduce the measure of SMIC and use it to prove a bound on the
MIC and the CC of the function Disjointness. We then prove that SMIC
is also a lower bound on PIC, which leads to a bound on the randomness
complexity of the disjointness function.

The model of communication introduced in Chapter 1 and its analysis,
as well as the content of Chapter 2, come from work with Iordanis Kerenidis
and Adi Rosén and was published in [KRU16].

The content of Chapter 3 comes from work with Adi Rosén [RU17|. The
idea of using SMIC in the peer-to-peer model originates from a discussion
with Rotem Oshman.



Chapter 1

Multi-party Protocols,
Communication and
Information

1.1 General notations

We start by defining a number of notations. We denote by k£ the number of
players. We often use n to denote the size (in bits) of the input to each player.
Calligraphic letters will be used to denote sets. Upper case letters will be used
to denote random variables, and given two random variables X and Y, we will
denote by XY the joint random variable (X, Y"). Given a string (of bits) s, |s|
denotes the length of s. Using parentheses we denote an ordered set (family)
of items, e.g. (Y;). Given a family (Y;), Y_; denotes the sub-family which is
the family (Y;) without the element Y;. The letter X will usually denote the
input to the players, and we thus use the shortened notation X for (X;), i.e.
the input to all players. The letter m will be used to denote a protocol. log is
the binary logarithm. Given a function f : A — B, f®" denotes the function
(f,...,f): A" — B". Given a distribution p on a set U, u®" denotes the

distribution on the set U™ defined by p®"(uq,...,u,) = [] p(u;). Denote
i=1
by T the vector of length ¢, each entry consisting of the bit 1. Denote by

e’ o, the vector obtained from T by changing the bit 1 into the bit 0 at
indexes aq, ..., aq. To simplify notations, we sometimes omit the superscript

-----

represent the input obtained from z by replacing the i*" bit of z by b. Last,
d;; is the Kronecker delta, having value 1 if ¢ = j and value 0 otherwise.

19



20 Chapter 1. Multi-party Protocols, Communication and Information

1.2 Information theory

We give a reminder on basic information theory, as introduced by Shannon
in [Sha48]. A good reference about information theory is the classic book of
Cover and Thomas [CT06].

All the distributions considered here are defined over discrete domains.

Definition 1.2.1. The entropy of a random variable X is

H(X) = ;Pr[X = z]log <m> .

The conditional entropy H(X |Y) is defined as E[H(X | Y = y)].
Yy

Proposition 1.2.2. For any random variables X andY, H(X | Y) < H(X).

The entropy of a random variable is always non negative. It is a measure
of the information that it contains, or equivalently, its uncertainty. This is
the measure that we will use throughout all the thesis. The classic theorem
of Shannon gives an additional light on the meaning of the entropy: when
sending n independent copies of a random variable X, the limit when n goes
to infinity of the required number of bits per copy is H(X).

As the random variables we will work with are strings of bits, it is perti-
nent to see the entropy as the “number of unknown bits”.

Theorem 1.2.3 (Shannon). For any prefiz-free finite set X C {0,1}* and
any random variable X with support supp(X) C X, it holds

H(X) < E[[X]].

Definition 1.2.4. The mutual information between two random wvariables
X,Y s
I(X;Y)=H(X)-H(X|Y).

The mutual information of X and Y conditioned on Z is
I(X;Y|Z2)=H(X|Z2)—-H(X|YZ).

The mutual information measures the change in the entropy of X when
one learns the value of Y. The mutual information satisfies the following
important properties.

Proposition 1.2.5. The mutual information is non negative: for any ran-
dom variables XY ,Z,
I(X;Y | Z)>0.
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Proposition 1.2.6. The mutual information is symmetric: for any random
variables XY ,Z,
I(X;Y | 2)=1Y;X | 2).

Proposition 1.2.7. For any random variables X, Y and Z, I(X;Y | Z) =0
if and only if X and Y are independent conditioned on every possible value

of Z.

We will use extensively the following propositions, known under the name
of chain rules. It allows one to decompose the entropy of a couple of random
variables.

Proposition 1.2.8 (Chain rule for the entropy). For any random variables
A7 B7 07
H(AB|C)=H(B|C)+H(A|BC).

Proposition 1.2.9 (Chain rule for the mutual information). For any random
variables A, B, C', D,

I(AB;C | D) = I(A;C | D) + I(B;C | DA).

Proposition 1.2.10 (Generalized chain rule for the mutual information).
For any random variables Ay ... Ay, By...B,, C,

p q
I(Ar...ApiBi... By | C) = ) I(Ai; B | (A)rei( By)ociC).

i=1 j=1

Proof.

p
I(Ay... Ay Bi...B, | C) =) I(A;;By... By | (A),<iC)
=1
(by Proposition 1.2.9)

- Z Z I<A“ Bj ’ (Ar>r<i(Bs)s<jC) (1dem)

|

The data processing inequality expresses the fact that information can
only be lost when applying a function to a random variable.

Proposition 1.2.11. For any random variables X, Y, and any function f,

H(f(X)|Y) <H(X]Y).
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Proposition 1.2.12 (Data processing inequality for mutual information).
For any random variables X, Y, Z, and any function f

(X f(Y) | 2) S I(X;Y | 2).

We will occasionally make use of the two following lemmas, which allow
to add or remove a random variable from the conditioning.

Lemma 1.2.13 ([Bral2]). For any random variables A, B, C', D such that
I(B; D | AC) = 0,
I(A;B|C)>I(A;B|CD,).

Lemma 1.2.14 ([Bral2]). For any random variables A, B, C', D such that
I(B;D|C) =0,
I(A;B|C)<I(A;B|CD,).

We will also use the following technical lemma.
Lemma 1.2.15. Let A, B, C, D, ¢ = ¢(C, B) be random variables.
I(A;B|CD)=0=I(A;¢ | CD) =0.
Proof.

I(A;¢ | CD) = I(A;¢(C, B) | CD)
— E[I(A;plc, B) | C = ¢, D)
(A; B | C = ¢, D)] (by data processing inequality 1.2.12)
< I(A;B | CD).

<E|J

|

We present an unusual variant of mutual information, that we name in-
formation leak.

Definition 1.2.16. The information leak in a random variable X when a
random variable Y takes value y is

I(X:Y =y) = HOX) — HX |Y =y).

The information leak in a random variable X when a random wvariable Y
takes value y conditioned on the fact that a random variable Z has value z is

IX;)Y=y|Z=2)=HX|Z=2)-HX|Y =y,Z=2x).
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Note that unlike the mutual information I, the information leak is not a
symmetric quantity. The information leak can be used instead of the mutual
information to get more control over the structure of the variable Y. The
mutual information is actually the average information leak, as shown by the
following proposition.

Proposition 1.2.17.

EI(X;Y =y)] = I(X,Y)

Y

and
yEJi(X;Y —y|Z=2)]=1(X,Y|2).
Proof.
E[[(X;Y =y)] = E[H(X) - H(X | Y =)
—H(X)-H(X|Y)
= I(X,Y)
and

EI(X;)Y=y|Z=2)]=EHX|Z=2)-HX|Y =y,Z=2)]

Yz Y,z
—H(X|2)-H(X|YZ)
=I(X,Y | 2).

_I

~ When there is no ambiguity, we may write [(X;y) for I(X;Y = y),
I(X;y | z) for I(X;Y =y | Z = z) so as to work with lighter notations.

Proposition 1.2.18 (Chain rule for the information leak). For any random
variables A, B, C, D,

I(A;be | d) = I(A;b | d) + I(A;c| bd).
Proof.

I(A;be | d) = H(A | d) — H(A | bed)
H(A|d)— H(A|bd)+ H(A | bd) — H(A | bed)
= I(A;b | d) + I(A;c| bd).
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We will also use a convenient statistical tool called Hellinger distance.

Definition 1.2.19. Let P and Q) be two distributions over a domain 2. The
Hellinger distance between P and Q) is

WP,Q) = % S| VP@) - VA I

we

It can be checked that it satisfies the triangular inequality. When writing
a Hellinger distance, we will mostly use the following identity.

Proposition 1.2.20. Let P and Q) be two distributions over a domain §).

hP,Q) =1-Y VPwQ(w).

Hellinger distance can be related to mutual information by the following
relation.

Lemma 1.2.21 ([BYJKS02]). Let no,m be two distributions. Suppose that
Y is generated as follows: we first select S uniformly in {0,1}, and then
sample Y from ng. Then I(S,Y) > h(no,n1)?.

Another useful measure is the statistical distance.

Definition 1.2.22. Let P and Q) be two distributions over a domain 2. The
statistical distance between P and Q) is

A(P,Q) = max | P(2) - Q@) |.

Hellinger distance and statistical distance are related by the following

relation.

1
Lemma 1.2.23. Let P and Q be two distributions. h(P,Q) > —2A(P, Q).

1.3 Two-party protocols

Before introducing a framework for multi-party communication, we first start
by giving a light introduction to two-party communication protocols.

In the two-party setting, two players, Alice with input x € X and Bob
with input y € Y, wish to compute a function of their joint inputs f(z,y).
Each player is also given a private random tape, and a public random tape is
also available. In order to become able to compute the function f, the players
are allowed to exchange messages, according to a fixed protocol. This means
that the content of the messages sent by Alice is determined by functions of
her input, her private random tape and the public random tape, as well as
the messages she has received so far, and similarly for Bob.
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1.3.1 Information complexity

Information complexity measures the amount of information that must be
transmitted so that the players can compute a given function of their joint
inputs. One of its main uses is to provide a lower bound on the communica-
tion complexity of a function. In the two-party setting, this measure led to
interesting results on various functions such as AND and Disjointness.

In the two-party case, two interesting information measures coexist. Fz-
ternal information complexity (cf. [CSWYO01, BYJKS02, Bral2]) represents
how much information an external observer would get by observing the tran-
script of the protocol.

Definition 1.3.1. The external information complexity of a protocol m on
distribution v is
ext _ .
IC, (m) = I(XY;10).

Internal information complexity represents how much information the
players learn about each other’s input during the protocol.

Definition 1.3.2. The internal information complexity of a protocol ™ on
distribution v is

ICu(m) =I1(X;IT|Y)+I(Y;11| X).

The two following propositions describe the relation between internal in-
formation cost and external information cost in the two-party case.

Proposition 1.3.3 ([Bral2]). For any protocol m and any input distribution

My
IC,.() < IC™(m).

Proposition 1.3.4 ([Bral2]). For any protocol © and any input product
distribution p,
IC,.() > I1C5™(m).

1.3.2 Communication complexity

Communication complexity, introduced in [Yao79], measures how many bits
of communication are needed in order for a set of players to compute with
error € a given function of their inputs.

Definition 1.3.5. The communication complexity is defined as the worst
case, over the possible inputs and the possible randomness, of the number of
bits sent by all players during the protocol. We denote the communication
complexity of a protocol m by CC(m).
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Definition 1.3.6. The communication complexity of a function f is

CC(f) = inf  CC(m).
7 computing f

Most lower bound techniques for the communication complexity in the
two-party setting rely on the fundamental notion of combinatorial rectangle.
A communication protocol can be seen as the realization of a partition of
the player’s inputs set into rectangles. This is because every message sent
during the protocol cuts the set of inputs into two subset: the inputs com-
patible with this message, and the others. As the protocol must allow the
players to compute the function, the partition realized by the protocol is
said monochromatic. This means that the function to be computed by the
players is constant on the subsets of the partition. Bounds on the size of
monochromatic partitions thus lead to bounds on the communication com-
plexity. Various methods, such as the fooling set method, the rank method,
and the discrepancy method in the randomized case, aim at bounding the
size of possible monochromatic partitions

More interesting to us is the link between information and communica-
tion. The following proposition relates the communication complexity and
the information complexity.

Proposition 1.3.7 ([BR11]). For any protocol m and input distribution u,
CC(m) > IC,(m). Thus, for any function f, CC(f) > 1C(f).

1.4 Multi-party communication

Communication protocols are a theoretical model for distributed systems.
Such systems are ubiquitous, and communications protocols naturally arise
in the study of computer systems, networks, computer architecture, etc. A
communication model is a formal construction which represents the informal
idea of a discussion among a group of people, called the players. Several
points must be specified.

e We first need to choose how to model the players, which usually means
choosing a computation model. In most of the work realized in the
distributed computation community, the players are Turing machines.
We are usually not interested in the computation time, the focus being
on the interaction between the players.

e [t is also important to decide what resources are available to the players.
A communication model is called synchronous if the players have access
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to a common clock, otherwise it is called asynchronous. We can or not
assume the existence of a string of random bits available to the players,
as well as the existence of a private string of random bits for each player.

e We finally need to describe how the players communicate. In the black-
board model, there is a common board that all the players can see and
on which they can all write. In the peer-to-peer model, any player is
able to send messages directly to any other player, through a private
channel. In the coordinator model introduced in [DF89], a specific
player is able to send and receive messages from any player, whereas
the other players can only communicate with that player.

In a given communication model, a communication protocol is a formal
description of the behaviour of the players. Communication protocols can be
studied for diverse reasons. In the field of distributed computation, one is
interested in the case where the players wish to compute a function, the input
of which is distributed among the players. In the number-on-the-forehead
model, for every player ¢ there is a variable X; which is available to all
players but player ¢. In the number-in-hand model, every player ¢ knows the
variable X;.

We then need to define what it means for the protocol to succeed in
computing the function. We could for example require that all players are
at the end able to compute the function, or that only one designated player
has to be able to compute the value of the function. In some cases, we may
want to only consider protocols which eventually stop. We may also allow
the players to make mistakes.

1.4.1 Model of communication

We define here a natural communication model which is a slight restriction
of the general asynchronous peer-to-peer model. Its restriction is that for
a given player at a given time, the set of players from which that player
waits for a message can be determined by that player’s own local view. This
allows us to define information-theoretical tools that pertain to the tran-
scripts of the protocols, and at the same time to use these tools as lower
bounds for communication complexity. This restriction however does not
exclude the existence of private protocols, as other special cases of the gen-
eral asynchronous model do. We observe that without such a restriction the
information revealed by the execution of a protocol might be higher than
the number of bits transmitted and that, on the other hand, practically all
multi-party protocols in the literature are implicitly defined in our model.
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In the next subsection, we will compare our model to the general one and
to other restricted ones and explain the usefulness and logic of our specific
model.

We now describe formally the communication model we will work with.
It is an asynchronous multi-party number-in-hand peer-to-peer model. To
make the discussion simpler we assume a global time which is unknown to
the players.

Each player ¢ has an input X; and has access to a source of private ran-
domness R;. We will use the notation R for (R;), i.e. the private randomness
of all players. A source of public randomness RP? is also available to all players.
We will call a protocol with no private randomness a public-coins protocol,
and a protocol with no public randomness a private-coins protocol. Each
player has unbounded local computation power.

We will consider a family of k players and a family of k& functions

k
[ = (fi)iepw, with Vi € [1,k], f; : [[ & — V. Each player i is given some
=1

k
input x = (z;) € [[ A and has to compute f;(xz). Thus, &; denotes the

=1
set of possible inputs of player [, and ); denotes the set of possible outputs
of player i. We will usually denote the set of possible inputs as X. Thus
X CAX X XA

Every pair of players is connected by a bidirectional communication link
that allows them to send messages in both directions. There is no bound
on the delivery time of a message, but every message is delivered in finite
time, and the communication link maintains FIFO order in each of the two
directions. Each player has a special write-only output tape.

Given a specific time we define the view of player ¢, denoted D;, as the
input X; of that player, its private randomness R;, the public randomness RP
and the messages read so far by player i. The protocol of each player ¢ runs
in [ocal rounds. In each round, player ¢ sends messages to some subset of the
other players. The identity of these players, as well as the content of these
messages, depend on the current view of player 7. The player also decides
whether to write a (nonempty) string on its output tape. Then, the player
waits for messages from a certain subset of the other players, this subset be-
ing also determined by the current view of the player. Then the (local) round
of player i terminates. Note that the fact that the receiving of the incoming
messages comes as the last step of the local round comes only to emphasize
that the sending of the messages and the writing on the output tape are a
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function of only the messages received in previous local rounds. To make it
possible for the player to identify the arrival of the complete message that it
waits for, we require that each message sent by a player in the protocol be
self-delimiting.

Denote by D! the view of player i at the end of local round I, [ > 0, where
the beginning of the protocol is considered round 0. Formally, a protocol 7
is defined by a sequence of functions for each player i, parametrized by the
local round [, [ > 1:

° Sf’s : Dﬁ_l — 21LEN{} - defining the set of players to which player 4
sends the messages.

o mi;: DIt — {0,1}*, for all j € S"*(D!™Y), defining the content of the
messages player ¢ sends. Each such message has to be self-delimiting.

e O!: DI™* — {0,1}*, defining what the player i writes on its output
tape.

° Sf’T : DIt — 2{LkNi} - defining the set of players from which player
1 waits to receive a message.

For simplicity we also assume that a protocol must eventually stop. That
is, for all possible inputs and all possible assignments for the random sources,
there is eventually no message in transit. Note that a player may not know
locally that the protocol ended. Note also that the model does not impose
“coherence” between the players. That is, the model does not preclude the
possibility that a certain player waits indefinitely for a message that is never
sent to it. Similarly, it may happen that a player sends a message which is
never read.

A meaningful variant of this model (the return variant) consists in impos-
ing that the players should return their output, in the sense that outputting
and halting the local program are simultaneous events. In this case, in each
round every player has to decide whether he should stop and output or go
on with the communication. Formally, for every player i and every round /[,
there is a function O : DI™* — {0,1}* U L, defining whether or not the local
program of player ¢ stops and returns its output. If the value is L then no
output occurs. If the value is y € {0,1}", then the local program stops and
the player returns the value y.

We will also use at some point a special case of our model, where the
sets SP* and SV are a function of i and [ only, and not of the entire current
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view of the player. This is a natural special case for protocols which we call
oblivious protocols, where the communication pattern is fixed and is not
a function of the input or the randomness. The messages themselves remain
a function of the view of the players.

Note that all these models also allow for private protocols.

We define the transcript of the protocol of player ¢, denoted II;, as the
concatenation of the messages read by player ¢ from the links of the sets
Sil ” Sf " ..., ordered by local round number, and within each round by the
index of the player. We denote by ﬁ the concatenation of II; together
with a similar concatenation II; of the messages sent by player ¢ to the sets
SZ-I ® Sf ®... We denote by II,_,; the concatenation of the messages sent by
player ¢ to player j during the course of the protocol. The transcript of the
(whole) protocol, denoted I1, is obtained by concatenating all the II; ordered
by player index.

In Chapter 3, we will use a different representation of the transcripts of the
players, in order to stock more information. We call this representation the
channel representation. In order not to make the notations heavy, we will
denote it in the same way as the representation described in the previous
paragraph. There will be, however, no risk of confusion, as the channel
representation will not be used at the same time as the other representation.
The channel representation is defined as follows.

We first define k(k — 1) basic transcripts II7 ;, denoting the transcript of
the messages read by player i from its link from player j, and another k(k—1)
basic transcripts II7 ;, denoting the transcript of the messages sent by player
7 on its link to player 7. We then define the transcript of player 4, II;, as the
2(k —1)-tuple of the 2(k — 1) basic transcripts I} ;, II7 ;, j € [1,k] \ {i}. The
transcript of the whole protocol II is defined as the k-tuple of the k player
transcripts I1;, @ € [1,k]. We denote by II;(x,r) the transcript of player i
when protocol 7 is run on input x and on randomness (public and private
of all players) r, and similarly by ﬁ(m, r) the partial transcript of player i
composed only of the incoming messages.

Observe that while II} ; is always a prefix of II};, the definition of a pro-
tocol does not imply that they are equal. Further observe that each bit sent

in 7 appears in II at most twice.

When working with oblivious protocols, we will sometimes need to refer
to individual messages. We define a natural enumeration of the messages of
an oblivious protocol. We first define a sequence of lots of messages. In each
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lot there is at most one message of any of the k(k — 1) directional links. The
order of the messages is defined by the order of the lots, and inside each lot
the messages are ordered according to the lexicographic order of the identi-
ties of the sender and receiver of each message. The messages are assigned
to lots as follows. The messages sent at the start of the protocol form a first
lot; once these messages are delivered, new messages are sent by the players,
which form the second lot, and so on. Formally, the messages assigned to
lot s > 1 are defined inductively after lots s’ < s have been defined. To
define the messages of lot s > 1, proceed as follows for each player ¢: run the
protocol 7, and whenever player ¢ is waiting for a message, extract it from
the already defined lots (lots s’ < s), if that message is assigned to one of
them. Continue until a needed message is not available (i.e. the protocol
“gets stuck”), or after player ¢ sends a message not yet assigned to a lot
s’ < s. In the latter case, assign to lot s all the messages sent by player i in
the same local round (i.e. for any player i and local round r, all messages
sent by player i in local round r are in the same lot). This enumeration
of the messaggs respects the intuitive “temporal causality” of the protocol.
Denote by (T} );>o the family of messages sent by player i in the protocol T,
ordered according to the enumeration that we just defined. Similarly, denote

by (T<—)l>0 the famlly of messages recelved by player i. Denote by j(i,1) the

player receiving Tl For any [y, let T<l° be the random variable representing
the so- far history, i.e. all messages to and from player ¢ until the time of mes-

sage TlO In a similar way, define T<l° to be the random variable representmg
the history of the messages to and from player ¢ until the tlme of message Tlo

We also define a function '(7, 1) such that every message Tl sent by player 7 is
7

received by player j(i,[) as Tl where ! is a short cut for I'(i, 1) and j for j(i,1).

We now define what it means for a protocol to compute a family of func-
tions. We will give most of the definitions for the case where all functions f;
are the same function, that we denote by f. The definitions in the case of
family of functions are similar.

Definition 1.4.1. For e > 0, a protocol ™ e-computes a function f : X — )
if for all (xq,...,x1) € X:

1. For all possible assignments for the random sources R;, 1 < 1 < k,
and RP, every player eventually writes on its output tape a non-empty
string.

2. With probability (over all random sources) at least 1 — € the following
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event occurs: each player i writes on its output tape the value f(x), i.e.
the correct value of the function.

The allowed error €, implicit in many of the contexts, will be written ex-
plicitly as a superscript when necessary.

We also consider the notion of external computation.

Definition 1.4.2. For € > 0, a protocol m is an e-error protocol externally
computing f : X — Y if there exists a deterministic function 0 taking as
input the possible transcripts of m and satisfying

VaoeX Prld(ll(x)) = f(z)] >1—¢
where we use the channel representation for I1.

Note that a protocol may compute a function without externally comput-
ing it. This is because the function 6 in Definition 1.4.2 must take as input
only the transcript of the protocol, and none of the players’ input.

1.4.2 Information complexity

The following lemma formalizes the fact that a protocol computing a function
f must distinguish inputs having different images by f, and that this can be
seen in the distribution of the transcript of the protocol. A stronger version
can be found in [BYJKS02].

Lemma 1.4.3. Let [ be a k-party function, and let m be an e-error protocol
externally computing f. If x and y are two inputs such that f(x) # f(y),

1—-2

then h(II(x),11 >
(T(2), I(y)) = 7
Proof. By Lemma 1.2.23, we only need to show that A(TI(x),I(y)) > 1 —2e.
By definition, there exists a function # taking as input the possible transcripts
of ™ and satisfying V z € X, Pr[0(I1(z)) = f(2)] > 1 —e. Let Q' = 071(f(x)).

A(Il(z), II(y)) =| Pr[l(z) € Q] — Pr[l(y) € @[
We have Pr[Il(z) € Q] = Pr[f(Il(x) = f(z)] > 1 — € and
Pr[lI(y) € Q] = Pr(II(y) € 07" (f())]
< Pr(li(y) € 07 (f ()]
(as since f(z) # f(y), 07" (f(2)) N0~ (f(y)) = 2)

<1—"Pr[li(y) € 07 (f(y))]
<l1—(l—¢) =¢e

where we use the channel representation for I1.
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Thus

|

Last, the following lemma formalizes the fact that if a player is able to
compute a function with small error at the end of a protocol, then from the
point of view of this player the value of the function at the end of the protocol
has little entropy.

Lemma 1.4.4. Let 7 be a k-party communication protocol, let i € [1,k]

and € € [0,%]. If player i e-computes a binary function f in w, then

H(f(X) | X;R;RP1L;) < h(e), where h is the binary entropy function. The
result also holds if I1; is the channel representation.

Proof. Let 6 be the function which takes as parameter (x;,r;,r?, m;) and
returns the output of player ¢ at the end of the protocol 7, given his input
x;, his local randomness r;, the public randomness r? and the transcript ;.
Define the random variable P = 0(X;, RP, R;,1I;) and the random variable
M =1—dx),p ie. the indicator variable of the event F'(X) # P. Observe
that

Pr(M =1) = E[M]

:ZPr(X:$)Pr(M=1|X:$)

< Z Pr(X = x) x € (as player i e-computes f)

Thus we have:
H(f(X)| X;R;R’Pi;) < H(f(X) | P) (data processing inequality)
< H(M | P) (as given P there is a bijection
between f(X) and M)

< H(M)
< h(Pr(M =1)) (as M is binary)
< h(e) (as h is increasing on [0,1/2]).
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We now focus on designing an analogue to the information cost for the
multi-party setting. The notion of internal information cost for two-party
protocols (cf. [Bral2]) can be easily generalized to any number of players:

Definition 1.4.5. The internal information cost of a k-party protocol m with
respect to input distribution p is the sum of the information revealed to each
player about the inputs of the other players:

k
ICu(m) =Y I(X_;1L; | X;R;R).

i=1

The definition we give above, when restricted to two players is the same
as in [Bral2|, even though they look slightly different. This is because we
explicit the role of the randomness, which will later allow us to bound the
amount of randomness needed for private protocols in the multi-party setting.

The internal information complexity of a function f with respect to input
distribution u, as well as the internal information complezity of a function
f, can be defined for the multi-party case based on the information cost of a
protocol, just as in the 2-party case.

Definition 1.4.6. The internal information complezity of a function f, with
respect to input distribution p is the infimum of the internal information cost
over all protocols computing f on input distribution p:

IC,(f) = inf  IC.(m).

7 computing f

Definition 1.4.7. The internal information complexity of a function f is
the infimum, over all protocols m computing f, of the information cost of ™
when run on the worst input distribution for that protocol:

IC(f)= inf  sup IC,(m).

m computing f u

The information revealed to a given player by a protocol can be written
in several ways. The two following propositions illustrate why the Definition
1.4.5 of information complexity is coherent with the traditional definition of
information complexity in the two-party case.

Proposition 1.4.8. For any protocol 7, for any player i:

I(X—i; ﬁ ’ XiRiRp) = [(szin' ’ XiRiRp)'
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Proof. For any protocol 7, for any player ::

(X ﬁ | XiRiRP) = (X _; ﬁ:Hi | XiR:RP)
= I(X_ T | XiReR?) + 1(X_; T | X, R RPTL)
(using the chain rule, Proposition 1.2.9)
— [(X_i: 1L | X,R,R)
(as ﬁi can be deduced from X;R;RPIL;).

|

Proposition 1.4.9. In the return variant of our model (cf. Subsection
1.4.1), for any protocol 7 in which the sets Sf’s and Sf’r do not depend on the
private randomness of the players, for any player i:

[(X_; T | X;R?) = I(X_;; TI, | X,R:R?).
<= .
Proof. We denote II;<7 = By ... B,_;. We have:

<=
=S I(X_i By | XiR R T
J
(using the chain rule, Proposition 1.2.9).

We show that I(X_;; R; | XiRpﬁq) = 0. By Proposition 1.2.7, it is
equivalent to show that conditioned on each possible value of (X;, RP, ﬁq‘ ),
the random variables X_; and R; are independent. To do this, we fix a value
(zi,7, 7, <9) of (X;, R, ﬁq), take a value x_; of X_; such that the event
X _; = z_; is compatible with the event (X, R?, ﬁq) = (x;,7, 7<), and

prove that for any possible value r; of R;, the quantity Pr[r; | z; r qr<i x4

does not depend on z_;.
We have

Prlr; |2 r T o] = ZPr[n | T | Pr[r_y | s v T ).

g
We define the set function
. e < e
pi (@i r m e ro) = g | I (v, o, g, r—) = )

which represents the set of possible values of r;, such that inputs z;, x_;,
public randomness r and private randomness r;, r_; will lead to a transcript
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of player i beginning by ‘77 <J

Note that Pr[r_; | z; r Tr<i g ] # 0 < p(a;,r TI<i oz r_;) # 0.

Also note that r; ¢ p(xi,r,ﬁ> LT, T_i) <= Prlr; | z; r TI<i o _ir_ ] =0
and that ¥V r; € p(z;,r, T < 25, 7)

1

‘P(ﬂfz, T, %)<j> X, T—i)l '

Prlr; | z; r <d T_r_] =

We prove that the function p(z;,r, STI<d -) is constant on the set
{(a ") | Prr, | o r T <9 2l ] ;é 0}. Let r_; such that
Pr[rllxlr%ij ] # 0and (¢, 7" ,) such that Pr[r’, | z; r 7/ <7 /] # 0.
Let r; € p(x;, A I i) and ri € p(xy,, T<i 57 ). We get that

<z, r, @, rs,r,) = T <I: this comes from the fact that

—gr '
g, r Wy T T ) = < = <ﬁ> Iziyr, 2, vl ;) and from the fact

that the actions of the players are based on their current view (this claim,
whose formal proof is complicated, will be proved rigorously in Chapter 3,
cf. Lemma 3.3.2). Thus r; € p(z;,r, 7, <, 2" ;1" ;).
For the same reason, r; € p(z;,r, < I x_,ry).

We have shown that p(x;,r, ﬁq,w_i,r_,) = p(z;, 7, qr<d. ).

Let a(x;,r, T <7) be the constant value of the function |p(x;, r, T <7, -, )]

Prlr; | o r T < o] = ZPr[n |z r Ty v Prlr | aor w0 x]

> 1
B i ‘p<wza r, %)<j7 xT—i, 7171')‘

Prlr_; |z r Sor<d T

1
:Zﬁ—)m[ﬁmﬂﬁﬁm i

alz;,r, T
T
1
= T =
OK(I'Z',T, m <]>
which is independent of z_;. Thus Prlr; | z; r 7, <0 x_;] = Pr[r; | ; r 70 <9].

We have shown that the random variables X _; and R; are independent condi-
tioned on (X;, RP, I, <7, and thus I(X_;; R; | X;RP I, ;<7) = 0. By Lemma
1.2.14, this implies

I(X_; By | XiRpRiﬁ<j) > I(X_4; B | XZ-R”(ﬁZQ),

A similar reasoning, along with Lemma 1.2.13, leads to

[(X_i: By | X,RPR, T,<9) < [(X_i; B; | X,R*'T;<).
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We have:
1(X_ 00 | XiRPR) = S 1(X_is By | XiR, RV TL )

J
=S I(X i By | XoRY T )
J
— I(X_;: 1T, | X:R?)
(using the chain rule, Proposition 1.2.9).

|

As we will see in details in Subsection 2.4.3, IC is not an interesting quan-
tity in multi-party computation, as there always exists a protocol with low
information cost. For this reason, we cannot use IC to study other interesting
notions such as the communication complexity.

1.4.3 Communication complexity

Definitions of communication complexity in the multi-party case are identical
to the two-party case (cf. Subsection 1.3.2). With our usual notations, CC(r)
is equal to the maximal length of the transcript of 7w over all possible inputs,
private randomness and public randomness.

We can also consider the distributional error.

Definition 1.4.10. Given an input distribution u, a protocol is said to com-
pute a function with distributional error € if the probability over the input
and the randomness of the protocol that the protocol fails is at most €. The
distributional communication complexity D;( f) of a function f is the com-
munication complexity of the best protocol computing f with distributional
error €.

Communication complexity and distributional communication complexity
are related by the following lemma.

Lemma 1.4.11 (Yao’s minimax lemma). For any function f,
CC(f) = sup Dy (£).
n

We will also occasionally need the two following quantities.

Definition 1.4.12. The average-case communication complexity of a pro-
tocol ™ with respect to the input distribution p, denoted AvCC,(7), is the
expected number of bits that are transmitted in an execution of w for inputs
distributed according to p and uniform randomness.
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Definition 1.4.13. The e-error amortized communication complexity of a

: : ; - CC(fom)
function f is defined as AmCCu(f) = lim —~—~, where f®" denotes the

n—oo n
task of computing f with error € for each coordinate.

In many practical settings, as communication can be considered as a
costly resource, communication complexity is a natural cost measure. When
looking at a specific function, one is often interested in designing an opti-
mal protocol in terms of communication, that is to say a protocol where the
number of bits exchanged is minimal. We want to be able to compute the
communication complexity of a given function. While one can prove upper
bounds on the communication complexity of a function by exhibiting a pro-
tocol computing this function, proving lower bounds can be more challenging
and often requires the use of specific techniques.

The results from the field of communication complexity have many ap-
plications. They range from applied fields like network protocols and VLSI
chips design to theoretical results in circuit complexity. More details on the
applications of communication complexity can be found in [KN97] and the
references therein. Most of the work realized on multi-party communica-
tion complexity focuses on the number-on-the-forechead model. Some of the
techniques presented in Subsection 1.3.2, which were developed in the study
of two-party protocols, have actually been generalized to the number-on-the-
forehead model. In contrast, few lower bound techniques are available in the
number-in-hand model.

In the coordinator model, a technique called symmetrization was intro-
duced in [PVZ12], and it was shown how to use it to study functions such
as the bit-wise parity and AND functions. Reductions were also used in
(WZ11, WZ14, WZ13] to prove lower bounds on communication.

Information theory has been used to prove lower bounds on communica-
tion of the disjointness function in the broadcast model [BYJKS02, CKS03,
Gro09, BO15]. Information complexity was then used in [BEO™13] to prove
a lower bound for the disjointness function in the coordinator model. This
result was extended in [CM15] to the function Tribes.

We will see in the next two chapters that information theory can also
be used to obtain lower bounds on the communication complexity in the
peer-to-peer model.

1.4.4 Comparison with other models

We provide here a comparison between our model of communication and the
other similar models which have been used in the literature.
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The model of communication that we defined is a restriction of the gen-
eral asynchronous model in the sense that the players have in our model a
local round structure, while in the general asynchronous model the players
can react upon reception of a message, regardless of its origin. The local
round structure that we impose allows us to define measures similar to the
information complexity that we will show to have desirable properties and
to be of use. Notice that the general asynchronous model is problematic in
this respect since one bit of communication can bring up to log(k) bits of
information, as not only the content of the message but also the identity of
the sender may reveal information. Thus, in the general asynchronous model,
information is not a lower bound on communication.

The following protocol is an example of the above mentioned issue in the
general asynchronous model. Given 4 players A, B, C' and D, it allows A to
transmit its input bit x to B, in such a way that the content of the messages
transiting through every communication link is independent of x.

A: If x = 0 send 0 to C'; after receiving 0 from C, send 0 to D.

If x =1 send 0 to D; after receiving 0 from D, send 0 to C'

B: After receiving 0 from a player, send 0 back to that player.

C,D: After receiving 0 from A send 0 to B. After receiving 0 from B
send 0 to A.

One can see that B learns the value of = from the order of the messages it gets.

In our case, the sets S"° and S are determined by the current view
of the player, (II;) contains only the content of the messages, and thus the
desirable relation between the communication and the information is main-
tained. The local round structure prevents protocols from using the classic
network coding routines. On the other hand, this restriction is natural, does
not seem to be very restrictive (practically all protocols in the literature ad-
here to our model), and does not exclude the existence of private protocols,
as the private protocols described in [BOGWS88, CCD88] (and further work)
are defined in the synchronous setting, and thus can be adapted to our com-
munication model (the sets S* and S always consist of all the players and
hence are even independent of the current views).

There has been a long series of works about multi-party communication
protocols in different models, for example [CKS03, Gro09, Jay09, PVZ12,
CRR14, CR15]. Several papers consider a restricted class of protocols work-
ing in the coordinator model: an additional player with no input can com-
municate privately with each player, and the players can only communicate
with the coordinator.



40 Chapter 1. Multi-party Protocols, Communication and Information

We first note that the coordinator model does not yield exact bounds for
the multi-party communication complexity in the peer-to-peer model (neither
in our model nor in the general one). Namely, a protocol in the peer-to-
peer model can be transformed into a protocol in the coordinator model
with an O(log k) multiplicative factor in the communication complexity, by
sending any message to the coordinator with a O(log k)-bit label indicating its
destination (cf. also [PVZ12, EOPV13]). This factor is sometimes necessary,
e.g. for the g-index function, where player ¢, 0 < ¢ < k — 1, holds an
input bit x;, player k£ holds ¢ indices 0 < j, < k—1,1 < ¢ < ¢, and
player k should learn the vector (zj,,...,z;,): in the coordinator model the
communication complexity of this function is ©(min{k,qlogk}), while in
both peer-to-peer models there is a protocol for this function that sends only
(at most) min{k, 2¢} bits, where player k just queries the appropriate other
players. Another example is the permutation functional defined as follows:
Given a permutation o : [1,k] — [1, k], each player i has for input a bit b;
and 0~ !(o(i)—1) and 0~ !(o(i) +1) (i.e. each player has for input the indexes
of the players before and after itself in the permutation).! For player i the
function f; is defined as f; = b,-1(,()+1) (i.e. the value of the input bit of
the next player in the permutation o). The natural protocol is valid in our
model, and the communication complexity of this function in our model is k&
(each player sends its input bit to the right player). On the other hand, in
the coordinator model Q(klog k) bits of communication are necessary. But
this multiplicative factor between the complexities in the two models is not
always necessary: the communication complexity of the parity function is
©(k) both in the peer-to-peer models and in the coordinator model.

Moreover, when studying private protocols in the peer-to-peer model, the
coordinator model does not offer any insight. In the (asynchronous) coor-
dinator model, described in [DF89] and used for instance in [BEOT13], if
there is no privacy requirement with respect to the coordinator, it is trivial
to build a private protocol by having all the players send their input to the
coordinator, and the coordinator return the results to the players. If there
is a privacy requirement with respect to the coordinator, then if there is a
random source shared by all the players (but not the coordinator), privacy
is always possible using the protocol of [FKN94]. If no such source exists,
privacy is impossible in general. This follows from the results of Braverman
et al. [BEOT13] who showed a lower bound on the total internal informa-
tion complexity of all parties (including the coordinator) for the disjointness
function in that model. By contrast, our model allows for private protocols.

LAll additions are modulo k. This is a promise problem.
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Public Information Cost

2.1 Definition and properties

We now introduce a new information-theoretic quantity which can be used
instead of IC in the multi-party setting. It will also allow us to study the
randomness complexity of distributed problems (Section 2.4).

Definition 2.1.1. For any k-player protocol m and any input distribution u,
we define the public information cost of m:

k
PIC,(m) = Y I(X_ILR_; | X;R;R").

i=1

The difference between PIC and IC is the presence of the other parties
private coins, R_;, in the formula. If 7 is a protocol using only public ran-
domness, then for any input distribution p, PIC,(7) = IC,(7), hence the
name public information cost. The role of private coins in communication
protocols has been studied for example in [BG14, BBK™"13, Koz15].

The public information cost measures both the information about the
inputs learned by the players and the information that is hidden by the use
of private coins. It can be decomposed, using the chain rule, into two terms,
making explicit the contribution of the internal information cost and of the
private randomness of the players.

Proposition 2.1.2. For any k-player protocol m and any input distribution

Ky
k

PIC,(m) = IC,(m) + Y I(R_;; X_i| XiIL R, R).

i=1
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The meaning of the second term is the following. At the end of the
protocol, player ¢ knows its input X, its private coins R;, the public coins R
and its transcript II;. Suppose that the private randomness R_; of the other
players is now revealed to player 7. This brings to it some new information
I(R_;; X ;| Xi11; R; RP) about the inputs X _; of the other players.

We also define the public information complexity of a function.

Definition 2.1.3. For any function f and any input distribution u, we define
the quantity
PIC.(f) = inf PIC, (7).

7 computing f
Definition 2.1.4. For any f, we define the quantity

PIC(f)=  inf  sup PIC,(m).

m computing f ©

In fact, as we show below, the public information cost of a function is equal
to its internal information cost in a setting where only public randomness is
allowed.

Theorem 2.1.5. For any function f and input distribution u,

PIC,(f) = inf IC,,(7)

7 computing f, using only public coins

and

PIC(f) = inf sup I1C,(m).

7 computing f, using only public coins w

Proof. 1t suffices to show than one can turn any protocol 7 into a public-
coins protocol 7’ such that for all input distributions y, PIC,(7") = PIC, ().
Fix a protocol 7w and an input distribution p. Let R; denote the private
randomness of player i in 7, and R = (R;). Define 7, where the players act as
they do in 7, but use public randomness instead of their private randomness
whenever they need to use it. For this, split the public random tape into two
sub-tapes R = (R;), to be used instead of the private randomness of each
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player, and RP, to be used as public randomness. We have

k
PIC,(r') = > I(X_i;1I; | X;RRP)

i=1
k

= U(X_;ILR_; | XiRiRP) — I(X_i; R_; | XiR; )]
=1

(chain rule, Proposition 1.2.9)

k
i=1

Il
-

IC, (7).

The following property of the public information cost will be useful for
zero-error protocols.

Theorem 2.1.6. For any function f, for any input distribution u,

PIC,(f) = 1C(f)

where ICI*(f) = inf IC,, (7).

7 deterministic protocol computing f

Proof. Let 6 > 0. Let m be a zero-error protocol for f such that
PIC,,(m) < PIC,(f) +

private randomness.

|

By Theorem 2.1.5, one can assume that 7 has no

k
PIC,(m) = Y I(X_i:ILi | X;R")
i=1
k
i=1
k
—E Z](X_i;ﬂi | Xi, RP =)

=1

k
Letting ¢(r) = > I(X_;;1I; | X;, R? = r), it holds PIC,(7m) = E[t(r)]. Let
.:1 r

()

J
7o be a value of the public random tape such that t(ro) < PIC,(7) + 3 and
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define 7° as the protocol behaving like m on the random tape 7. Note that

7V is a deterministic zero-error protocol computing f.

k
ICu(n%) =) I(X_; 110 | X;)
=1

k
= I(X_i;T0; | X;R =)

= t(;“o)

o

< P|C,u(71') + 5

< PIC,(f) + 5.

0 being arbitrary, this concludes the proof.

We also define an external public information cost.

Definition 2.1.7. For any k-player protocol m and any input distribution u,
we define the external public information cost of 7:

k
PICS (m) = S I(X;; LR, RY).
i=1

The following theorem makes the link between public information cost
and external public information cost. Intuitively, it means that PIC at least
takes into account the information that each player leaks about his input to
someone who has access to all the messages that involve this player. It can
be seen as a multi-party equivalent of proposition 1.3.4.

Theorem 2.1.8. For any oblivious protocol w, for any input product distri-
bution u,
PIC, () > PICS(n).

Proof. Let m be an oblivious k-party communication protocol, and let i be an
input product distribution. We first assume that 7 is deterministic. We thus

k
have PICS* () = ;I(Xi; ﬁ) Note that using the chain rule (Proposition
1.2.9), we have for all i € [1, k],
—
I

> - “—
(X M) = Y I(Xs T | T + ) H(Xs T | 1)
l

—

-
= ZI(Xz';Til | Tfl)a
!
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where we used the fact that every term of the second sum is 0, as for any [,
conditioned on T<l X, is independent of the variable Tl (Proposition 1.2.7).

Starting from the definition of PIC and using the chain rule, we can de-
compose it as a sum over all messages received in the protocol:

PIC,,( ZZI X_z,Tl T<lX)

We rearrange the sum by considering the messages from the point of view
of the sender rather than the receiver. Remember that j is a short notation
for j(i,1), and I’ is a short notation for I'(i, ).

PIC,( ZZ[ (X_; 17 | T X)),

We will show that for any message Tl

—

I(X_J,Tl | T<l’ X;) > ](XZ,TZ | T°h.

As Tl is determined by X; and T<l (Tl | X; T<l) =0,
and we have I(X;; Tl | T<l) (Tl | T<l) and similarly
I(X_:; 17| T<l’ X;) = H(T'| T<l X;). Thus

-5
— —
<l

57 57
1(X T | T < I T | T X)) = H(TT | 1) < H(TT | 177 X))

)
_> !
— I(Tl T > (T} TV X;).

1777

We show that I(Tl T<l) = I(Tl T<lT<l/X ;), which implies that the last in-
equahty is true. For this, using the chaln rule we just need to show that
I(Tl T<' i | T<l) = 0. Notice that given the value of T<l Tl is deter-
mined by X and thus by the data processmg inequality (Proposmon 1.2.12)

(X5 T X | T<l) > I(Tl T<l'X | T<l) and so we just have to show that
I —
(X T X | T<l) = 0, which we now do.

/

%
Note that (77", X;) is a function of (X_Z,T<l). The data processing
mequahty 1mp11es that I(XZ,T<l/X | T<l) < I(XZ,X_ZTG | T<l) and thus
[ TR X | T < I(X3 X | T, We show that I(X;; X | T<) = 0.

4

— — —
(X X | T7) = H(X; | T7Y) = H(X; | X177
— —
= —H(X) + H(X; | T + H(X; | X)) = H(X, | X T

as X;, X_; are independent)
— —
= —I(X; T + (X T | X)
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— —

Thus we just need to prove that I(X; T~ | X_;) < I(X; T). From now
on the proof is similar to the proof that the internal IC of a protocol is lower
than its external IC (cf. [Bral2]).

—
Let us write T, = M}!... M}, and let M;"? = M} ... MP~". Using the
— —
chain rule, I(X;; T~ | X_;) < I(X;; T,7Y) if and only if

t t
D I(X; MP | X M) <Y D I(Xg MP | M),

p=1 p=1

We prove the inequality term-wise, for any p. If M? is received by player
i, as M? is a function of (X_;, M P), I(X;; MP | X ;M P) = 0 and the
inequality holds. Similarly, if M? is sent by player 4, I(X_;; M? | X; M F) =0
and applying Lemma 1.2.13, we get that

I( Xy MP | X MSP) < I(Xg; MP | MSP).

—
We have shown so far that for any message 77,

— —

-
IX_ T | T77X) 2 1 T] | 1),

J 1 7

Summing over ¢ and [, we get

k
PIC,(x) > S5 1(x, 77 | )
l

i=1

and thus

PIC,(m) = 3 I(X;; 'T) = PICZ(m).

Let us now consider the case where 7 is a randomized protocol. Denote
by «" the deterministic protocol built from 7 by fixing all the randomness
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(R, RP) of the protocol to the value 7.

and

k
PIC,(m) = Y I(X_ILR_; | X;R;R")

=1

k
=Y H(X_;| X;RiR?) — H(X_; | X;RiR"IL;R_;)

=1

k
=Y H(X_;| X;) - H(X_; | X;RiR"IL,R_;)
i=1

= i@[ﬂ( X | X)) = H(X_; | Xill;, (R_;R;R?) = )]

=

=k Z (H(X_i | Xi) = H(X—; | Xilli, (R R RP) = 1))
=1

k
Y OIX 1T | X))
Li=1

= E[PIC, ()]

I
~ =

k
ex

=1

k
<3 I(X;: R RRY)
=1

H(X;) — H(X; | ﬁR_iRiRp))

IN
—

<" ()~ B | T (rar) - )
<E i (H(XZ-) - H(X; | M, (R_iRRP) = T))]
<E|s (1<Xi;<?f>>)]

47
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7" being a deterministic protocol, we have for any r, PIC,,(7") > PICZ*(7"),
and taking the expectation over r,

PIC, () > PIC5®(n).

2.2 The two-party case

We prove that the zero-error public information cost of the two-party function
AND is log(3) ~ 1.58, while, as shown in [BGPW13], IC°(AND) ~ 1.49. This
shows that in the zero-error case, even in the two party setting IC and PIC
can be different. This implies that the protocol that achieves the optimal
information cost for AND must use private coins. We remark also that in
[BGPW13] it is shown that the external information cost of AND, that we
do not consider here, is log(3). It is not clear whether there exists a general
relation between zero-error public information cost and external information
cost.

Proposition 2.2.1. For two players, PIC°(AND) = log(3) ~ 1.58.

Proof. We first prove that there exists a protocol 7* for AND such that
sup PIC,(7*) = infsup PIC,(7), where the infimum is over all protocols 7
u s

m

computing AND. To this end we will prove that for any protocol = for AND

it holds that sup PIC,(7*) < supPIC, (), where 7* is a protocol for AND
m

that we define gelow.

Let m be a zero-error protocol for AND. By Proposition 2.1.6, we can
assume that 7 is deterministic. Suppose for example that the first player
sending a nonconstant bit is player 1. The protocol m being deterministic,
player 1 is either sending his bit x or sending 1 — x. Player 2 is then able to
compute the value of AND, and as player 1 must be able to compute AND
at the end of the protocol, the optimal protocol consists in player 2 sending
back the value of AND to player 1. We thus define the protocol 7* defined
as follows: player 1 sends its input bit x to player 2, who can now compute
AND(X,Y’) and sends to player 1 this value.

We compute the value of PIC,(7*), for p defined as follows:
X ~ Ber(a,1 —a) and Y ~ Ber(8,1 — f3).

PIC,(7*) = I(X;II"|Y) + I(Y; IT*| X)
— H(X | Y) + [al(Y:IF|X = 0) + (1 — a)I(Y;IT*| X = 1)].
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When X = 0, player 1 does not learn anything about Y, while when X =1,
player 1 learns the value of Y, as AND(X,Y) =Y. Thus

PIC,(r") = H(X | V) + (1 —a)H(Y | X = 1).

Define X', having the same probability distribution as X, and Y’, having
the same probability distribution as “Y" conditioned on X = 17, with X’ and
Y’ independent. Note that H(X' | V') = H(X') = H(X) > H(X | Y) and
that H(Y' | X' =1)=H(Y') = H(Y | X = 1). Thus, in order to maximize
PIC,(7*), we can assume that X and Y are independent. Then,

PIC,(m*) = H(X)+ (1 —a)H(Y).

1
For any «, PIC,(7%) is maximal for § = 3 and we then have
PIC,(7*) = H(X) + (1 — «). Thus we study the function
f:00,1] =R
a— —alog(a) + (a—1)log(l —a)+1 —a.
f is continuous on [0, 1] and differentiable on 0, 1[. For a €]0, 1[, we have:
1
fl(a) = —log(a) =1+ 1log(l —a)+1—1=log(——1)—1.
a
f’ is continuous and decreasing on |0, 1], and admits the unique root 3
1
3

PIC,(7*) is thus maximized for a = -, its value being f(a) = log(3).

2.3 Public information cost and communica-
tion complexity

The public information cost is a lower bound for the communication com-
plexity.

Theorem 2.3.1. For any protocol m and input distribution .,
1
CC(nm) > §P|CH<7T) — k.
Thus, for any function f,

CC(f) > SPIC(F) ~ k.
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Proof.
k
PIC,(m) = Y I(X_; R | XiRiR?) + I(X_;;T1; | X;RR?)
i=1
(using the chain rule, Proposition 1.2.9)
k

= I(X_;10; | X;RR?) (by Proposition 1.2.7)

i=1

k
= H(II; | X;RR) (since H(II; | XRR?) = 0)

i=1

k
< Z H(IT;) (by Proposition 1.2.2).
i=1

For any 7, one can encode 1I; into a variable II; such that the set of possible
values of II} is prefix-free: replace every bit b in II; by bb and add 01 at the
end. We have H(II}) = H(II;), and E[|/I}|] = 2E[|I;|]] + 2. Using Theorem
1.2.3, for each i, H(II;) is upper bounded by the expected size of II;. As the
expected size of II is equal to the sum over 7 of the expected size of II;, we
get

CClr) > || > %PICM(W) k.

This means that we are able to use the public information cost to prove
lower bounds on the communication complexity of functions in the multi-
party setting, just as one could use the information cost to prove lower bounds
on the communication complexity of functions in the two-party setting.

In the oblivious setting, we can get a better bound.

Theorem 2.3.2. In the oblivious setting, for any protocol m and input dis-
tribution u,

CC(m) > PIC, ().
Thus, for any function f,

CC(f) > PIC(f).

k

Proof. As in the proof of Theorem 2.3.1, we have PIC,(7) < >~ H(II;). The
i=1

protocol m being oblivious, for any ¢ € [1, k], H(II;) is of fixed size, and thus
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prefix-free. By Theorem 1.2.3,

PIC,() < E[II]] < CC().

2.4 Randomness complexity

2.4.1 Private computation

In certain circumstances, we would like that the players, while being able to
compute the value of the function, retain as much privacy as possible about
their input. Informally, we would like that the players learn nothing about
the others’” input, but the value of the function.

The question of when such a protocol is possible, and how to design
it, has been posed in the field of cryptography [Yao82|. In cryptography,
the notion of security is computational: we assume that the players have a
limited computation power, and we want to design a protocol which ensures
that the players cannot get more information than they should be able to.
Constructions based on trapdoor one-way functions [GMWS87, CDvdG8§|
answer this question.

Here we are interested in a different notion of security. Instead of relying
on cryptographic assumptions, we aim for unconditionally secure protocols,
i.e. information-theoretic secure. A protocol 7 is said to privately compute a
given function if at the end of the execution of the protocol, the players have
learned nothing but the value of that function. We note that the literature
devoted to private computation usually focuses on synchronous protocols,
which are a special case of oblivious protocols as defined in Subsection 1.4.1.
Moreover, most of the literature on private computation deals with zero-error
protocols. Therefore, in the rest of this section, we will restrict ourselves to
the case of oblivious zero-error protocols. The definitions for the case of
epsilon-error privacy are similar. Formally:

Definition 2.4.1. A k-player oblivious protocol m computing a family of
functions (f;) is private if for every player i € [1,k], for any pair of inputs
r = (z1,...,2x) and &’ = (x},...,2}) such that f;(x) = fi(z') and z; = 2,
for all possible private random tapes r; of player i, and all possible public
random tapes rP, it holds that for any transcript T

Prll; =T |Ri=r;; X=x2; RP=1rP]=Pr[I; =T | Ry=r;; X =2"; RP =17

where the probability is over the randomness R_;.
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It is well known that in the multi-party number-in-hand peer-to-peer
setting (for £ > 3), unlike in the two-party case, any function can be privately
computed.

Theorem 2.4.2 (BOGWS8S8, CCD88|). Any family of functions of more than
two variables can be computed by a private protocol.

We detail shortly the scheme of [BOGWS8]. Their construction can be
divided in three steps.

1. Preparing one’s own input for the computation. This is similar to
Shamir’s secret sharing scheme [Sha79]. The idea is to encode each in-
put into a polynomial, and to share values of this polynomial among the
players. The value can then be extracted by realizing an interpolation,
which a single player cannot do by himself.

2. Computing the function. The function is computed by simulating a cir-
cuit computing it. The gates of the circuit are translated to operations
on the polynomials.

3. Recovering the value of the function. For this, the players share values
in order to be able to interpolate the polynomial encoding the value of
the function.

The works presented in [BOGWS88, CCD88] actually deal with a stronger

notion of privacy, that we only define in an informal way here.

Definition 2.4.3. A protocol is said to be t-private if any set of at most t
players is not able to get more information after the protocol than they had
jointly from their inputs and from the value of the function.

Theorem 2.4.4 ([BOGWSS|,[CCD88|). Any function of n > 2 variables can
be computed by a t-private protocol if t < g

Note that privacy as we defined it earlier is equivalent to 1-privacy.

2.4.2 Randomness complexity

The private protocols presented in the previous subsection make use of the
private randomness of the players. One may wonder what amount of ran-
domness is needed in order to compute privately a given function. This leads
to the notion of randomness complexity. Several definitions have been used,
the ones we adopt here are the following.
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Definition 2.4.5. A communication protocol is said to be d-random if on
any run the total number of private coins used by the players is at most d.

Definition 2.4.6. The randomness complexity R(f) of a function f is the
minimal integer d such that there exists a d-random private protocol comput-

ing f.
We will mainly use a finer notion:

Definition 2.4.7. The randomness complexity of a protocol w on input dis-
tribution p is defined as R, (m) = H(Il | X RP).

Once the input and the public coins are fixed, the entropy of the transcript
of a protocol comes solely from the private randomness. Thus for any input
distribution p, R, (7) provides a lower bound on the entropy of the private
randomness used by the players in the protocol m. Note that by the results
presented in [KY76], this is equivalent to the average number of coin tosses
needed by the protocol.

Definition 2.4.8. The randomness complezity of a function f on input dis-
tribution 1 1s defined as

Ru(f) = min Ru(m).

T private protocol computing f
The following lemma is immediate.

Lemma 2.4.9. Let d be an integer. If there exists an input distribution p
such that R, (f) < d, then R(f) < d.

This means that in order to lower-bound the randomness complexity of
a function f, we only have to find an input distribution p such that the ran-
domness complexity of the function f on u is high.

The literature on private protocols only deals with the case of synchronous
protocols, where the players communicate according to a global round struc-
ture. At every round, each player sends a message to every other player. In
addition, each player has an output tape. In order to ensure that no player
is ever engaged in an infinite computation process, it is required that on
any input and randomness assignment, every player eventually stops sending
messages. That is, for a synchronous protocol 7 let ¢;(z,r) be the smallest
integer such that if 7 is run on (z, r) then player i does not send any message
and does not write on its output tape after round ¢;(x,r). If no such integer
exists then ¢;(x,r) = co. The requirement is that for every player 7, input z,
and randomness assignment r, t;(z,7) < c0.
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The following lemma implies that any synchronous protocol is actually
an oblivious protocol. Therefore, when working on randomness complexity,
we will usually focus on the case of oblivious protocols.

Lemma 2.4.10. Let w be a synchronous protocol. If for any i, x, and r,
ti(x,r) < oo, then there exists an integer ty such that for any i, x, and r,
ti(x,r) < ty.

Proof. Let m be a synchronous protocol. The protocol 7 is fully described
by its state graph. In this oriented graph, the vertices encode the state of
the players, i.e. the inputs of the players, the messages received in previous
rounds and the random bits read so far, and there is an edge from vertex
U to vertex V if the state of vertex V' can be reached from the state of
vertex U in one communication round. Note that in any round, each player
can only pick the messages he will send from a finite set, even though his
private random tape is infinite. This is because in any state, the number
of random bits that a given player can read is bounded (otherwise, there
would exist a random string on which the player would never stop reading).
This ensures that in the state graph of 7w, every vertex has finite degree. If
Bty | Vi, rtx,r) <ty the state graph of 7 is infinite. Then, by Konig’s
lemma (cf. [Kle02]), there must be an infinite path in the state graph of =,
which corresponds to the existence of a triple (i, z,7) such that ¢;(x,r) = occ.

|

The question of how much privacy one can retain thanks to the use of
private randomness also makes sense for two-party protocols, even though in
this case the existence of private protocols is not guaranteed. This question
is well understood in the case of bounded round protocols [BG14].

The interest of randomness complexity lies in the fact that true random-
ness is usually considered as a costly resource. Besides, randomness com-
plexity is also related to other notions in theoretical computer science. A
good example is [KOR96], where it was shown that a boolean function f has
a linear size circuit if and only if f has constant randomness complexity.

2.4.3 Private computation and information complexity

In the previous subsection we gave the historical definitions of private pro-
tocols. Here we express the notion of privacy in terms of entropy and infor-
mation.



2.4. Randomness complexity 95

Proposition 2.4.11. A protocol w is private if and only if for all input
k

distributions p, Y I(X_;11; | X;R;RP f;(X)) = 0.
i=1

Proof. By Proposition 1.2.7, Definition 2.4.1 is equivalent to the following:

Since I is non-negative, this is equivalent to

k
> X1 | XiRiRP fi(X)) = 0.

i=1

Theorem 2.4.2 and Proposition 2.4.11 lead to the following lemma.
Lemma 2.4.12. For any family of functions f = (f;)icpk) of more than two
k

variables and any input distribution p, 1C,(f) < > H(fi(X)), where X is
i=1
distributed according to L.

Proof. Let m be a k-player private protocol computing f. Fix a distribution
i on the inputs.

k
ICu(m) =) I(X_;1L; | X;R;R)

i=1

K
< ZI(X—i; ILfi(X) | XiRiRP)

< Z (X_i; fi(X) | X;RiRP) + I(X_i; 10, | X;R;RP f;(X))]
(cham rule, Proposition 1.2.9)

k
< ZI(X_Z; fi(X) | XiR;R") (Proposition 2.4.11)

< ZH(fi(X))

Thus, 1C,(f) < 1C,u(m) < 3% H(A(X)).



56 Chapter 2. Public Information Cost

This lemma shows that IC is not a pertinent notion in the multi-party
setting. In particular, it cannot be used to obtain any meaningful lower
bound on the communication complexity, since its value is always upper-
bounded by the entropy of the functions.

2.4.4 Private computation and public information cost

The public information cost, on the other hand, is not affected by the exis-
tence of private protocols. As we have seen in Section 2.1, PIC is minimized
by public-coins protocol:

Theorem (2.1.5). For any function f and input distribution pu,
PIC,(f) = inf IC, ()

7 computing f, using only public coins

and
PIC(f) = ‘ inf - sup IC,(nm).
7 computing f, using only public coins u

This means that the public information cost of private protocols may still
be high, even if they have a low information cost.

We will see now that the difference between the public information cost
of a protocol and its information cost can provide a lower bound on the
randomness complexity of a function.

Theorem 2.4.13. Let f = (f;) be a family of functions of k variables. For
any oblivious protocol ™ computing f and any input distribution p, it holds:

- PIC,(7) — |Cu(7l').

Thus running an oblivious protocol for f with information cost I, on p re-
PIC -1
quires a protocol with randomness complexity R, (m) > %

Proof. Fix a protocol m computing f and a distribution p on inputs.

R —
We first prove that V ¢, [(R_;; R; | X II;RP) = 0, which we will need
during the proof of the theorem.

I(Ri: R_i | X TLRY) = H(R, | X TLR?) — H(R; | R_;X TLR")
— H(R, | X TLR") — H(R: | XR?) +
H(R, | XR'R_;) — H(R: | R_.X TL,R?)
(as R;, R_;, R? and X are independent)
= —I(R;; ﬁ | XRF) + [(Ri;ﬁ | XRPR_;).
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Thus we just need to prove that [(R;; ﬁ | XRPR_;) < I(R;; ﬁ | XRP).
From now on the proof is similar to the proof that the internal IC of a protocol
is lower than its external IC (cf. [Bral2]).

Let us write II; = II} ... II¢ where the IT¥ represent the messages ordered
by local round of player i, and let II;* = II' ... II’"'. Using the chain rule
(Proposition 1.2.9),

t
=
I(R;; 1 | XRPR_;) = ZI(R@ I} | XRPR_IITP)
p=1

and
t

<=
1R T | XR?) = 37 (R0 | XRVIP),
p=1
We prove the inequality

t
> IR | XRPRIIY) < Y I(R; I | X RPIISP)
p=1 p=1
term-wise, for any p. If II? is received by player i, as II¥ is a function of
(X,RP,R_;, TI;P), I(R; 112 | XRPR_IIP) = 0 and the inequality holds.
Similarly, if TI? is sent by player i, I(R_; I} | X RPR;IT;?) = 0 and applying
Lemma 1.2.13, we get that I(R; 11} | XRPR_II7P) < I(R; 117 | X RPILSP).

We now go back to the main proof.

k
PIC,(m) = Y I(X_;ILR_; | X;R;R")

i=1

k
<3 I(X i TR | XiRiR?)
i=1

k k
<3 IX i T XRR?) + 3 IR X | XiRRPTT)

i=1 i=1
(using the chain rule, Proposition 1.2.9)
i <=
<IC,(m) + Z[(R,i;X,i | X;R;RP 11;) (Proposition 1.4.8)
i=1

k
g
<ICu(m) + > I(R_; XR; 10 | R?)
i=1
(using the chain rule and the fact that I is non-negative).
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This formulation is similar to Proposition 2.1.2. We could have got an
equality if we had proved a statement similar to the one of Proposition 1.4.8
at the second line, but we do not need it here.

For any i,
I(R_;: XR,'T, | R?) < I(R_s: TLX | R”) + I(R_s; R; | X TLR?) (chain rule)
< I(R_; X | B)
< I(R_;T1X | R?)
<> I(R;TIX | Rej 4 RP) (chain rule)
J#i
<D I(REIX | RY)
J#

(by Lemma 1.2.13 with I(R;; R<; 4 | XILRP) = 0).

Thus
k
PIC,(m) <ICu(m) + (k— 1) I(R;IIX | R?)
=1
k

<IC,(m) + (k= 1)I(R;IIX | R?) (chain rule)

<IC,(m)+ (k= 1)({(R; X | R?) + I(R;I1 | XR?)) (idem)
<IC,(m)+ (k= 1I(R;II | XRP)

<IC,(m)+ (k—1)H(IT | XRP?)

<1C,(m) + (= DR, ()

|

Combining Theorem 2.4.13 and Lemma 2.4.12, we can bound the ran-
domness required to run a private protocol.

Theorem 2.4.14. For any f = (f;) family of functions of k variables, for
any nput distribution pu,

k
PIC.(f) — Zl H(fi(X))
R > = .

Using Theorem 2.4.13, we can also give a lower bound on the randomness
one needs for protocols that are allowed to leak some limited amount of
information about the inputs of the players.
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The following theorem apply to general protocols, but gives a bound
slightly weaker than Theorem 2.4.13.

Theorem 2.4.15. Let f = (f;) be a family of functions of k variables. Let
m be a protocol for f. For any input distribution p, it holds:

PIC,(7) —IC,(m)

H,(Il| XRP) > ?
Thus, running a protocol for f with information cost I, requires entropy
PIC -1
H,(II | XRP) > %

Proof. Fix a protocol m computing f and a distribution x on inputs.

Define @Q; as
Qi = I(X_s; R_i | Xi RiILRP).

By Proposition 2.1.2 we have,

PIC(m) =1C(m) + ) Q.

Now,

Qi = [(X—i; R_; ‘ XiRiHiRp)
< I(X_T1; R_; | X,R;RP)
(using the chain rule, Proposition 1.2.9)
<I(X_y; R | XiRRP) + I(IL;; R_; | X;R; X_;RP) (chain rule)
< I(Il;; R_; | XR;RP)
< H(II; | XR;RP)
< H(II| XRP).

Thus,
PIC(m) <IC(m) + k- H(IT | X RP).

2.4.5 The randomness complexity of the parity func-
tion

The parity function is the canonical problem for zero-error multi-party com-
putation. The k-party parity problem with n-bit inputs Par) is defined as
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follows. Each player i receives n bits (21),ep1,, and player 1 has to output
the bitwise sum modulo 2 of the inputs:

k k k
n 1 2 n
Pary(x) = @xi,@xi,...,@xi .
=1 =1 i=1

There is a simple private protocol which computes Par) while using n
bits of private randomness: player 1 uses a private random n-bit string r
and sends to player 2 the string x; @ r; then, player 2 computes the bit-
wise parity of its input with the message and sends zo @& x1 @ r to player
3; the players continue this process until player 1 receives back the message
L@ ...0x®r. Player 1 then takes the bit-wise parity of this message with
the private string r to compute the value of the parity function. It is easy
to see that this protocol has information cost equal to n, since player 1 only
learns the value of the function and all other players learn nothing. We thus
see that information cost cannot provide here a lower bound that scales with

k.

A good part of the work realized in private multi-party computation fo-
cuses on the parity function. In [KR98], the authors studied the relation
between the number of random bits allowed and the number of rounds nec-
essary to compute the parity function. The communication complexity of
t-privately computing the parity function has been studied in [CK93]. A
series of paper tried to characterize the randomness complexity of the parity
function. In [BDSPV99], the authors proved lower bounds on the random-
ness complexity of t-private protocols for function of sensitivity n, among
which Par}. They got a tight bound in the case of total privacy, i.e. for
t = n — 2, but unfortunately, their bounds are only interesting for values of ¢
close to n. For other values of ¢, this was complemented by [KM97], but for
the sole function Par,. The work of [GRO5] provided improvements for Par;,
for values of ¢ between 2 and log(n), and is tight for constant t.

We will prove the following lower bound on the randomness complexity
of the parity function Parj in Subsection 2.5.2.

Theorem 2.4.16. There exists an input distribution p such that

k—2

R, (Pary) > ]

n.

Our result appears even more interesting when you consider the fact that
given n bits of private randomness, there exist several protocols privately
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computing Par; and having good properties. For example, it was shown in
[KOR98] that when the players have to compute n instances of Par sequen-
tially (i.e. they receive one instance, compute the parity, receive the next
instance, and so on), it is possible to design a protocol which, by using the
random bits in the computation of several instances, compute the n instances
of parity in only O(n) rounds. This is to compare to the naive ©(nk) proto-
col using one random bit per instance.

Theorem 2.4.16 shows that one cannot amortize the cost of computing
several instances of the parity function, if the cost measure is the random-
ness complexity. However, it should be noted that in the context of private
multi-party computation, amortization is sometimes possible for other cost
measures. In particular, it was shown in [FY92] that the communication
complexity of t-privately computing several instances of the parity function
can be amortized if ¢ is big enough.

2.5 Lower bounds techniques for the public
information cost

In this section, we present techniques which can be used to prove lower
bounds on the public information cost. We will focus on oblivious protocols.
Note that the private protocol we described in Subsection 2.4.5 is oblivious.

2.5.1 Linearity

There could be several meaningful ways to define the notion of linear func-
tions in the context of communication protocols. It is reasonable to conjec-
ture that for linear functions such as the parity function, the function sum
modulo d, or the function sum over a field K, linear protocols, which are
protocols in which messages are linear functions of the input, are optimal in
term of information, at least in the zero-error setting. As it is not clear how
general this conjecture should be, we will focus here on the parity function,
but the definitions and proofs in this section can be adapted to a more gen-
eral setting. We define formally the notions of linear functions and linear
protocols.

Definition 2.5.1. A function f of k variables is linear if

k

3 (s;) € {0,1}F | f(z) = @sle

i=1
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Definition 2.5.2. A k-player communication protocol 7, where the players
have inputs (z;)icp r), @5 linear if it is oblivious and if any message sent in
the protocol is a xor-combination of inputs. Equivalently, m is linear if it is
oblivious and if any message sent by player i is a zor-combination of x; and
messages previously received by player i.

It is very natural to believe that linear protocols are optimal for the parity
function. If we could prove this conjecture, we could restrict our study to
linear protocols, which by nature lead to elegant proofs. Theorem 2.5.7 can
be seen as a proof of this conjecture in the oblivious zero-error setting.

We first prove the following general lemma.

Lemma 2.5.3. Let X1,..., X} be uniformly distributed random variables in
{0,1}. Let S = {S1 = au,..., St = a4} be a set of zor-equations on (X;),

k
e. for each | € [1,t], oy € {0,1} and S; is of the form @ m.X; where
i=1
mk € {0,1}. Suppose the system S admits one solution in E = FX.

k

Then for all zor-combination random variable B = € b;X;, we have :
i=1

H(B|S) € {0,1}.

Proof. Define M = (m%);; € Mtk(Fg) the matrix of the system S, and

]

a= (o) € My1(Fq). Let B = @ b; X; be a xor-combination random vari-

able, where (b;) € My i (F2). Deﬁne M'" € Mi;1(F2) the matrix obtained
from M when adding a new line (b;);ep - Define ag € Myqq;1 the vector
obtained by adding 0 at the end of a and a; € M4, the vector obtained
by adding 1 at the end of a. Define Sy the system M'X = oy and S; the
system M'X = a;.

Each solution of the system & is either a solution of Sy or 8.

e Suppose only one of the two systems Sy and S; admits a solution. Then

H(B|S)=0.

e Suppose both of the two systems Sy and S; admit a solution. Then
the number of solutions of each one of the affine systems Sy and & is
equal to the number of solution of the linear system M’'X = 0, and
thus H(B | S) = 1.
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The following lemma illustrates the fact that we can eliminate repetitions
in linear protocols.

Lemma 2.5.4. If there exists a public-coins linear protocol ™ computing a
linear function f, there exists a public-coins linear protocol @' computing f
such that for any input distribution p, P1C,(7") < PIC,(7) and

Vi,Y § 4 T ()i T, | XiRPf(X)) = 0.

Proof. Define 7’ in the following way: the players act as in 7, but each player
i, before sending a bit B to a player j, checks that H(B | Xjf(X)HfBRp) #*
0, where Hj<B denotes the bit received by player j before B (we take as a
convention that within one round, bits are received in the order induced by
the index of the player who sends it). If it is equal to 0, then player i omits
to send the bit B. Note that the protocol being oblivious, player ¢ can check
the value of H(B | X; f(X)IIs"RP). Note also that in the case where the bit
B is omitted in 7', player j already knows the value of B, which allows the
protocol 7’ to go on simulating 7 even if some bits are omitted. The set of
messages sent in 7’ being a subset of the set of messages sent in 7, for any
input distribution y, PIC, (") < PIC, ().

Fix ¢ and j # i. Write (II)_,;)ig(:,;3 as a sequence of bits Uy (), . . ., Usy)

and II’_,; as a sequence Vi(g), ..., Vr#), in the order they are received by

player j, i.e. o and 7 are increasing functions, o([0,t]) U 7([0,¢']) = [0, +
t' + 1] and U, is received before V. if and only if (1) < 7(').
Denoting the quantity I((II}_,; )iz II,; | XaRPf) by T, we have:

l
11
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T = I(Ug(o) ce Uo-(t); ‘/-,-(0) Ce V;(t’) ‘ XZRpf(X))
= Z [(Ua(z); Vi | XiR"f(X) Uson V<T(l’))
a(D),m(l)
(generalized chain rule, Proposition 1.2.10)

= Y I(Upy; Ve | XiRF(X) Ucoyy Vrary) +

o(l)y<r(l’)
Z I(Usqy; Veay | XaRPf(X) Usoy Verary)
a()>7()

< Y (L= HVey | XiRPF(X) Usopy Varr)) +
o(l)y<r(l')

Y. (L= HUs | XiR"f(X) Usoqy Vrar))
o(l)y>r(")

< Y (A=HVipy | XiBf(X) Usry Veriy)) +
o(l)y<r(l')

Y (1= HUsq) | XiRF(X) Usoty Veot))
o(l)y>7(l")
< Y U= H Ve | KR X)) 4
o(l)y<r(l')
> (= HUsg | XeRPFEOITY)
o(l)y>r(l")
<0
where the last inequality, by construction of «’, is a consequence of Lemma
2.5.3 which ensures that for any bit B sent to player j in «’,

H(B | X;RP f(X)II57) = 1.

We are now able to bound the public information cost of linear protocols
computing the parity function Pary. We consider here the case where all
players have to compute the function.

Theorem 2.5.5. In a setting where only linear protocols are allowed,

Vee [O, % {, PIC*(Pary) > 2(k — 1).
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1
Proof. Let € € {O, 3 { Let m be a k-player linear protocol e-computing

f = Pari. By Theorem 2.1.5, we can assume that 7 uses only public coins.
Let u denote the uniform distribution on {0, 1}*. The protocol 7 being linear,
by Lemma 2.5.3,

Vie[l,k], H(f(X) | X;R"IL) € {0,1}.

If 3¢ e [Lk] | H(f(X) | X;RPII;) = 1, it is not possible for player ¢
to ouput correctly with probability more than 3 and thus the protocol 7

cannot e-compute Parg. Thus,
Vie|lLk], H(f(X) | X;RPII;) =0
and
Viell, k], (X_;f(X) ]| X;RPIL;) = 0.
We get:

k
PIC,(m) = Y I(X_s;11; | X;R)

(X 10 | XoRP) + 1(X i f(X) | Xy RPIL))

1=1
k
i=1
k
= ZI(X,Z; I, f(X) | X;RP) (chain rule, Proposition 1.2.9)
i=1
k

(X f(X) | XoR?) + I(X_5T | X;RPf(X))] (idem)

=1

k
=k 4+ ZI(X,i; II; | X;RPf(X))

i=1

=k+ Z](X—i§ (L) i | XiRP f(X))

=1

k
=k+ Z Z I(X_s; s | XaRP f(X)(IL5s)i< i) (chain rule).

i=1 j#i

By Lemma 2.5.4, we can assume that

Vi,V j#4, 1 ((s) gy o | XiRPF(X)) =0
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and thus that
Vi,V j# i, I ((Iho)icjies Hin | XiRPF(X)) = 0.

By Lemma 1.2.14, we can write

k
PIC,(m) > k+> Y I(X_1,, | X;R'f(X))

i=1 j#£i

k
>k+ ZZ](X—i§Hj—>i | XiR" (X))

=1 i
We prove that

AT CLELIT =k -2&VjeT,Y I(X_ ;T | X;RPf(X)) > 1.
i#j

For this, we show V S C [1, k],

Since all the players are able to compute f, there must have been a
message sent from a player j to a player ¢ which depends on (X;);cs. Let M
be the first such message. Then j € S, as a player from S cannot send a
message depending on (X;);es if he has only received message independent of
(X1)ies- The message M is a xor-combination of some elements (X;);es and
some elements (X);er, where 8’ C S and TNS = @. Since M depends on
(X))ies, S" # 0. Since m is the first message depending on (X;);cs, it can only
depends on X, as by assumption at the time he sends message M, player
J has only received messages independent of (X;);cs. This shows S’ = {j}.
From this we get I(X_;; M | X;f(X)RP) = H(M | X;f(X)RP)) = 1 and thus
(X T | X f (X)R?) = 1.

We conclude the proof: PIC,(7) > k + (k—2) = 2(k — 1), and we have
thus shown PIC*(Par;) > 2(k — 1).

2.5.2 Sensitivity

In this subsection, we consider the bit-wise parity function, as defined in
Subsection 2.4.5. The key concept which guides the proof is sensitivity.
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Definition 2.5.6. The sensitivity of a function f : {0,1}* — {0,1} on
mput x 1s defined as

so(f) = i, f(2) # [z ® e,

where x @ e; denotes the input obtained from x by flipping its i bit.
The average sensitivity of f is

ze{0,1}F

The sensitivity is a fundamental complexity measure of boolean functions,
and is related to many other complexity notions (see e.g. [Shi00]). The parity
function is, among all the boolean functions, the one with highest sensitivity.
Even though the sensitivity notion does not appear explicitly in the proof
of Theorem 2.5.7, the proof is based on the high sensitivity of the parity
function.

Our bound for Par}, is in fact proved for a wider class of protocols, where

k
we allow the player outputting @z to be different for each coordinate p
i=1

and to depend on the input.

Theorem 2.5.7. In the oblivious setting,
PIC) (Pary) > n(k — 1)
where s the uniform input distribution.

Proof. We use the uniform distribution g throughout the proof. Since we
are looking at zero-error protocols, the public information cost is equal to
the information cost of deterministic protocols by Theorem 2.1.6. Let m be
a deterministic protocol solving Parj. By Theorem 2.1.8,

PIC), () > PICZ(m).

Showing that PICZ*(7) > n(k — 1) will prove the theorem.
Let z = (2F) € {0,1}", where w; is the n-bit input of player i. For any
k
p, let ¢°(x) be the index of the first player able to compute € 2¥ (formally,
i=1
k

we say that a player is able to compute @ 2% at some time if the value of
i=1

k
@ =¥ is fixed given his input and his transcript until that time). For any i,
i=1
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define C;(z) = {p, ¢?(z) # i}, which represents the coordinates of his input
that player ¢ is intuitively going to leak when the players are given input z,

and let ¢;(x) = |C;(x)].

We show that V i, H(X; | H = gx ) < n—c¢ix). Assume towards a

contradiction that for some i, H(X; | TI; = 7/ (x)) > n—¢;(x). This implies

that the number of possible values for Xl- congsistent with II;, = <?Z(aﬁ) is
more than 27%®)  and thus the number of coordinates of the input of the
i-th player that are fixed by the transcript is strictly less than ¢;(x). Then
there must exists a2’ such that

o T() = F(a)

e Jp e Ci(z) such that z # ¥

Note that 7/ (') = 77 (2) implies (by considering player i as Alice, and all
other players together as Bob, and using arguments as those used for a similar
property for 2-party protocols) that %)(x) = %)(x;,x,l) As ¢P(z) # 1, this
is a contradiction, since then player ¢?(x) would output the same answer on

x and (2}, x_;), Whlle@x #al & @Pat.

JF
Thus JEN
Vie [k, HX; | I = T (2)) <n—clz)
and

Vi€ (LKL H(X; | ) < Eln - ci(2)] = n - Ele(z))

Thus s
Ve[l k], I(X;; IL) > ]E[cz(x)]

Summing over all 7, we get

PICS*(m ZIE ¢i(x)] = Z ¢i(z)]

k
and since Y ¢;(z) = n(k — 1) for any x, we get
i=1

PICS*(m) > E[n(k — 1)] = n(k — 1).

T

As PIC,(m) > PICZ*(mr), we have shown that
PIC,(m) > n(k —1).
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We can now get a bound on the communication complexity of the parity
function in the oblivious setting.

Theorem 2.5.8. In the oblivious setting,
CC(Pary) > n(k —1).

Proof. 1t results from Theorems 2.5.7 and 2.3.2.

_I

Thanks to the tools we developed in Section 2.4, we can now prove a
lower bound on the randomness complexity of the parity function.

Theorem (2.4.16). There ezists an input distribution p such that

k—2
k—1

R, (Pary) > n.
Proof. For Par), where one player outputs the parity for each coordinate,
we have for the uniform distribution > H(f;(X)) = n. Applying Theorem

(k—2)n

2.4.14 with Theorem 2.5.7, we get: R, (Par}) > )

2.6 Compression and Direct sum

2.6.1 Compression of protocols
Background on compression of protocols

The problem of compressing communication is fundamental in computer sci-
ence. In the setting of the transmission of a message, optimal compressions
(or encoding) are known thanks to the work of Shannon [Sha48], Fano [Fan61]
and Huffman [Huf06]. A random variable X can be transmitted with roughly
H(X) bits. In other words, the communication cost is equivalent to the in-
formation content of the message. This is also true in the amortized sense
when the receiver already has partial information about the message [SW73].

How well one can compress communication in the interactive setting is a
more complicated question. The question can be stated in terms of commu-
nication complexity and information complexity. Several results shed light
on the relation between communication and information in the two-party
setting. It is shown in [BBCRI10] that a protocol with communication C
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and information cost I can be simulated by a protocol with communication
@(m ), and can be further compressed to a protocol with communica-
tion O(I polylog(C')) when the input is drawn from a product distribution.
The specific case of compression under product distributions was studied in
[Kol16, Shel6], leading to a compression to O(! polylog()). A compression
to communication O(I) for bounded rounds protocols is presented in [JRS03],
later improved to I 4+ o(I) in [BR11]. Without any assumption, a very gen-
eral compression scheme to communication 2°() is known [Bral2]. The case
of public-coins protocols is studied in [BBK*13, Panl5], where is shown a
compression to communication O(/logC'). This was improved in [BMY15]
where a compression to a protocol with communication O(H™ loglogC),
where H™ is the internal entropy of the protocol (which is equal to the
information cost in the case of a public-coins protocol), is presented. A
compression procedure for the broadcast model is described in [KOS17].

On the other hand, it is known that perfect compression is not possible.
The series of articles [Bral3, GKR14, GKR15b, GKR15a] (see also [RS15])
shows, under various settings, that there exist functions for which informa-
tion and communication are fundamentally different measures.

In this section, we present a compression result with regards to the
average-case communication complexity and the public information cost for
oblivious protocols.

Relation between direct sum and compression via the public infor-
mation cost

Theorem 2.6.1. Suppose there exists an oblivious protocol w to compute a k-
variable function f over the distribution p with distributional error probability
€. Then for any o > 0 there exists a public-coin protocol p that computes
f over u with distributional error € + 0, and with average communication
complexity

AVCC,(p) = O (/{;2 - PIC, () log(CC(m)) log k2. PICM(Wzslog(CC(ﬂ'))) .

The proof of the above theorem will follow from extending the compres-
sion result presented in [BBK™13, Pan15] to the case of k > 2 players.

Theorem 2.6.2. Suppose there exists an oblivious public-coin protocol  to
compute a k-variable function f over the distribution p with distributional
error probability €. Then for any § > 0 there exists a public-coin protocol
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p that computes f over p with distributional error € + 9, and with average
communication complexity

J

Theorem 2.6.2 and Theorem 2.1.5, which makes the link between the pub-
lic information cost of general protocols and the information cost of public-
coins protocol, imply Theorem 2.6.1.

AVCCo(p) = O (k 1€, () log(CC()) log P 1Cu(m) 1og<cc<7r>>> |

In the two-party compression scheme of [BBK*13, Pan15], the two play-
ers, given their own input, try to guess the transcript 7(x1, x2) of the protocol
7. For this, player 1 picks a candidate ¢; from the set Im(7(x1,)) of possible
transcripts knowing that it has input x;, while player 2 picks a candidate t,
from the set Im( (-, 22)). The two players then communicate in order to find
the first bit on which ¢; and ¢, disagree. The general structure of protocols
ensures that the common prefix of ¢; and ¢y (until the first bit of disagree-
ment) is identical to the beginning of the correct transcript on inputs x; and
Tg, i.e. identical to m(x1,xs). Starting from this correct prefix, the players
then pick new candidates for the transcript of the protocol m(z1, z5), and so
on, until they agree on the full transcript m(x1,z5). Clever choices of the
candidates, along with an efficient technique to find the first bit which differs
between the candidates, lead to a protocol with little communication.

In extending the proof of [BBKT13, Panl5] to the multi-party case, new
difficulties occur. The players can no longer try to guess the full transcript, as
they have little information about the conversation between the other players,
but can only try to guess their partial transcript, according to their own
input. Then, in order to find the first disagreement in the global transcript,
every pair of players needs to find and communicate the place of the first
disagreement in their partial transcripts.

We use here the notation II; to denote the concatenation of the messages
read and sent by player ¢ according to its local round structure, i.e. as the
concatenation, local round of player ¢ by local round of player i, of, first,
the messages sent by player i and, then, the messages received by player .
Observe that since we consider here oblivious protocols, there is a one-to-one
correspondence between the two interpretations of the notation ﬁz

We will use a black box, call it lep box (for largest common prefix), which
can be used by two players A and B in the following way: A puts a string x
in the box, B puts a string y in the box, and the box gives them back the first
index j such that z; # y; if  # y, or tells them that x = y otherwise. The
price to pay for using this black box is logn bits of communication, where
n = max(o], [y).
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This box can be efficiently simulated if we allow error:

Lemma 2.6.3 ([FRPU94|). There is a randomized public-coins protocol such
that on input two n-bit strings x and y, it outputs the first index j such that
xj = y; with probability at least 1 —e€ if such a j exists, and otherwise outputs
that the two strings are equal, with worst case communication complexity

O(log(n/e)).

Corollary 2.6.4 ([BBK™13]). Any protocol p that uses an lcp box | times
on average can be simulated with error § by a protocol p that does not use an
lep boz, and communicates an average of O(llog(%)) extra bits.

We will use the lcp box in the proof, and use Corollary 2.6.4 to perform
the analysis at the end.

Proof of Theorem 2.6.2. For any i, define the set &; to be the set of possible
inputs of player ¢, and the set IIj;)(z;) the set of possible transcripts of the
communication between player ¢ and the coordinator, knowing that player ¢
has input z;:

H(U(l’l) = %)(Xla e 7‘)61'717 Xy, XiJrl, e ,Xk,r).
Each player i represents II(;y(z;) by a binary tree T; as follows.

1. The root is the largest common prefix (lcp) of the transcripts in Il (z;),
and the remaining nodes are defined inductively.

2. For each node T,

e the first child of 7 is the lcp of the transcripts in I1(;)(z;) beginning
with 700, i.e., 7 concatenated with the bit 0.

e the second child of 7 is the Icp of the transcripts in I (z;) begin-
ning with 7o 1.

3. The leaves are labelled by the possible transcripts of player ¢, i.e. the
elements of I (x;).

We define the weight of a leaf f with label t; to be

t)y= P THXy, o X, g, Xints ooy Xo, 1) = 4]
w( ) (Xj)j;éieri:a:i[ﬁ( ! b i g T) ]

The weight of a non-leaf node is defined by induction as the sum of the
weights of its children. By construction, the weight of the root is 1.
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We say that (ti,...,t) € Hay(zi) x ... x Ig(zk) is a coher-
ent profile if, for each round [, any message which appears in t; as
sent to player j also appears in ¢; as coming from player ¢. In fact,
(?1)(331, e TR T)y ﬁ(xl, ..., Tk, 7)) is the only coherent profile. In-
deed, take a coherent profile (¢i,...,t;). For each i, ¢; is of the form
T, 2l ety a)) where V j # i, 2% € Xj. Since whenever
a player sends a message, his choice is based only on his own input and on
the messages he has received before, it implies (by induction on the lots of

messages defined for oblivious protocols in Subsection 1.4.1) that

(t1,...,tg) = (ﬁ(xl,...,xk,r),...,ﬁ(xl,...,xk,r)).

We now define the protocol p which allows the players to collaborate and
efficiently find this coherent profile, i.e. which allows each player i to find

%?(:cl, ey TR, T).

The players proceed in stages s = 1,2.... We will have the invariant
that at the beginning of any stage s, each player ¢ has a pointer to a node
7;(s) of its transcript tree T;, such that (ri(s),...,7x(s)) is a (term-wise)

prefix of (ﬁ(xl, e T T, ﬁ(xl, ..., T, 7). At every stage s, every
player i furthermore has a candidate leaf t;(s) in the tree T; (representing a
candidate for its transcript), defined as follows: player i defines 71 = 7;(s),
and then defines inductively 77t! to be the child of 77 which has higher weight
(breaking ties arbitrarily), until it reaches a leaf: this is the candidate ¢;(s).
Observe that t;(s) is a descendent of 7;(s) in 7; and that ¢;(s) corresponds
to the transcript with highest probability conditioned on the fact that the
transcript starts by 7;(s).

At the beginning of the protocol p, each player i starts the protocol with
a pointer to the node 7;(1), which is the root of the tree 7T;. At every stage
s, the players proceed as follows:

1. Each pair of players (7, j) uses an lcp box to find the first occurrence
where the transcript between ¢ and j in t;(s) is not coherent with the
transcript between ¢ and j in ¢;(s). Let ¢;; be the index of the message
that includes this first occurrence, where the messages are numbered
according to the global order of all messages of an oblivious protocol
as defined in Subsection 1.4.1, and oo if no such occurrence was found.
Let Q; = min;{g, ;}. Observe that if for all pairs of players there is no
such occurrence (i.e., ); = oo for all i), it means that (¢1(s),...,tx(s))
is a coherent profile, and each player ¢ has found 7} (z1, ..., xg, 7).

2. Each player ¢ now broadcasts ();. Each player can now find
Q = min;{Q;}. If Q = oo, i.e. no pairwise inconsistency has been found
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between any two nodes, the protocol terminates and (¢1(s), ..., tx(s))
is found as the coherent profile.

3. Let (7,j) be the pair of players such that ) = ¢;;, and assume for
instance that the message number @) is sent by player ¢ to player j.
Player i, having the sender role, is considered “correct” because what
player ¢ sent in the protocol 7 is based on the previous rounds. Player
Jj sets its 7;(s+1): in T}, starting from ¢;(s), it goes up the tree toward
7;(s), until it reaches a node 7; which is correct (according to the result
of the lcp box). Then, it defines 7;(s 4 1) as the other child of 7;.

4. Any other player [ # i defines 7y(s + 1) = 7(s).

We now claim by induction on the stages that the invariant stated above
is preserved for all players at all times. It clearly holds at the beginning. We
claim that if it holds after stage s then it also holds after stage s + 1. For
the k — 1 players which define 7;(s + 1) = 7;(s) it clearly continues to hold.
For the single player, say player ¢, which defines a new node as 7;(s + 1) in
Step (3) we proceed as follows.

We first claim, by induction on the index of the messages in the global
order, that for all messages with index ¢ < (), where message ¢ is sent from
player j to player i, it holds that the value of message number ¢ is the same
in the coherent profile (ﬁ(ml, e TR T) ﬁ(ml, ..., Zg,7)) and in both
ti(s+1) and t;(s + 1). The basis of the induction (¢ = 0) clearly holds. The
inductive step follows from observing that message ¢ is fully determined by
the input to player j and the messages that appear before message ¢ in %}
Thus, by the induction hypothesis the value of message ¢ in ¢;(s + 1) is as
it appears in the coherent profile (ﬁ(aﬁl, e TR T ﬁ(:cl, e T, T)). It
follows from the definition of () that the value of message ¢ is the same in
ti(s+1) and t;(s + 1).

For message (), we have by similar arguments that its value according
to t;(s+ 1) is consistent with <Fi)(:z:l, ..., xp, 7). The prefix of message @) as
appears in the path from the root of T; and delimited by 7;(s+1) is consistent
with ¢;(s 4+ 1) by the choice of 7;(s 4+ 1) in Step (3).

Now, since the relative order of messages in a transcript II; and in
the global order is the same, it follows that 7;(s + 1) represents a prefix
of T (x1,. .., xp, 1), as required.

Let i denote the player who sets its 7;(s + 1) in Step (3). We show that
w(ti(s + 1)) < Jw(7i(s)). We look at the sequence (77) defined by player i
when he chose his candidate leaf ¢;(s + 1) at step s. Let 77 be the first com-
mon ancestor of ¢;(s) and 7;(s+1). By construction, 7;(s+1) is a direct child
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of 77, and t;(s) is (a descendant of) another child of 77. By the candidate
leaf’s construction process, w(r;(s + 1)) < Jw(7?) < Jw(7i(s)).

We conclude the analysis. On inputs (z1,...,xx), let (t1,...,1;) denote

the coherent profile. Each player will correct his 7; no more than log m
w\l;

times, because the weight of the node 7; halves with each correction, as
noticed before, and because the root has weight 1. Hence, the total number

k
of corrections, and thus the number of stages S, is bounded by » log )
i=1 WAL;
We now consider each ¢; as a random variable (i.e. a function of X and the
randomness of the protocol) and we take the average over inputs and shared

randomness.

k
1
E[S]<ED log o
s ) —1 1

: 1
E E { E {log ”
P L)yl Xa=a w(t;)

By definition of ¢;, conditioned on a given x and a given r, we have:

IN

1 1
1 =1 .
o8 w(tz) o8 Pr [%}(Xla"'aXi—hxi?Xi-i—la'”?XkaT) :ﬁ(‘rla'”?xkvrﬂ
(X;) 4| Xi=w;
By regrouping the (x;),.;, we can rewrite for any fixed x; and r
E 1 L
0
(x5) i Xi=2; & Pr [%)(Xl,...,Xi_l,ﬂfi,Xi+1,...,Xk,?“) = %)(xl,...,xk,r)]
(X;5)j2ilXi=w;
as
E 1 L
o
ti| X;=z;,R=r & Pr [?Z(Xl, . 7Xi—17 Xy, Xi—i—la . ,Xk, 7“) = tl]

(Xj) il Xi=z;

Thus we have
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1

E|S] < E 1
r,z[ ]_erz [t | Xi=x;,R=r Og( )Pl" [%}(le---aXi—hxi,Xi—i—la Xk, )—t]

Xj)jzil Xi=zi

Y

<IC,(m) (by Proposition 1.4.8).

We have shown that the average number of stages is bounded by IC,, (7).
At each stage, the communication consists of EE=1) calls to the lcp box on
strings of length at most O(CC(7)) (one call for each pair of players), plus

k(k — 1) messages of broadcasts of indices at Step (2), each message of size
O(log CC(m)). Hence

AVCC,.(5) = O (k2 - 1C,(x) log(CC(r))) .

Using Corollary 2.6.4 we can replace each use of the lcp box with a sim-
ulation protocol, to get the protocol p which simulates m with distributional
error € + ¢ and average communication:

J

_0 (k;2 1C, () log (CC(r) log - 'C“(”);Og(cc(”))) |

AvCC,(p) = AvCC,(p )+(9< -1C,,(7) log m)

2.6.2 The direct sum problem
Direct sums in distributed computing

The direct sum property is a fundamental question in complexity theory, and
has been studied for many computation models. A direct sum theorem af-
firms that the amount of resources needed to perform t independent tasks is
at least the sum of the resources needed to perform each of the ¢ tasks. This
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allows one to study a complicated function by decomposing it into simpler
functions.

One of the reasons making information tools powerful is that they often
satisfy a direct sum property. The two-party internal information cost was
shown to be additive in [Bral2]. In the study of the communication com-
plexity of the multi-party function Disjointness, direct sums on information-
theoretic tools proved to be useful: the conditional information cost of
[BYJKS02], the switched information cost of [BEOT13] and the partial in-
formation cost of [CM15] all satisfy a direct sum.

Direct sums for communication complexity are harder to obtain. Several
direct sums theorems are known. A direct sum for the equality function in
the simultaneous message model was presented in [CSWYO01|. In [JRS03],
a direct sum relates the bounded round randomized communication com-
plexity of a function f®" to the distributional communication complexity
of f for product distributions, result which was strengthened in [HJMR10].
The authors then showed a direct sum for one-way public-coins communi-
cation complexity in [JSR08]. In [BBCR10], the authors showed that the
dependency in n of the randomized communication complexity of f®" is at
least /n, and got a similar result for average case complexity. They also
obtained a linear dependency, i.e. a full direct sum, in the case where the
inputs are drawn from a product distribution. It is know, however, that a
strict direct sum for the randomized communication complexity cannot hold
[GKR14, GKR15b] (cf. also [RS15]). The possibility of a direct sum for
zero-error average communication when the protocol is only required to be
correct on the support of the distribution is ruled out in [KMSY16]

The direct sum question in communication complexity is also related to
other important problems in computer science. For instance, due to the link
between communication complexity and circuit complexity, it was shown that
a direct sum for the communication complexity of relations would imply the
separation of P and NC' [KRW95].

Note that information complexity has a direct sum property in the multi-
party case. For PIC, it is easy to prove the following inequality.

Theorem 2.6.5. For any k-variable functions f and g, for any distribution
i on inputs of f, for any distribution n on inputs of g, we have

PIC.,..,(f ® g) < PICS,(f) + PIC; (g).

pxn
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We use here the notation f ® g to indicate that the task of computing f
with error € and computing g with error € (by opposition to computing the
couple function (f, g) with error ¢).

A direct sum for PIC implies a direct sum for CC

Using the results from the previous subsection, we prove that under certain
conditions, a direct sum for PIC would imply a direct sum for CC.

Theorem 2.6.6. In the oblivious setting, given a k-variable function f and
a distribution p on inputs of f, if the existence of a protocol ™ computing
f® with error € > 0 implies that there exists a protocol ™ computing f with

1
error € and satisfying P1C,(7") < ;Plcuébt(ﬂ'), CC(n") < CC(m), then for any
60>0

CC2(6+5)(f) -0 (kzio—f({;) CCe(f®t) 1Og(cce(f®t)) log k2cce(f®t) 1§g(CC€(f®t))> '

Note that the result of this theorem is meaningful when t is large with
respect to k.
To prove this result, we will need the following lemma.

Lemma 2.6.7. Given an input distribution p, any k-party protocol with error

€

5 and average communication complexity C' can be turned into an oblivious

protocol with distributional error € and worst case communication complexity
Cklog(k)

P .

Proof. Let m be a protocol with error 5 and average communication com-

plexity C. We define now define a protocol 7/, which is similar to 7 with
the difference that player 1 acts as a coordinator, in addition to his original
role in 7, and that the other players can only communicate with player 1.
The protocol #’ run in rounds : in every round, player 1 sends a message
to all players indicating the beginning of the round. The players answer to
player 1 by sending a message of the form (m, ) to indicate that they want
to send a message m to player j, or send a “no” signal indicating that they
do not want to send any message. Player 1 then forwards all these messages
to their destination with the form (m,¢) where i indicates the origin of the
message. We add the constraint that in 7’ all the messages m are actually
single bits, thus forcing the players to decompose a long message into single
bit messages. Note that the original messages in 7 being self-delimiting, this
decomposition does not introduce any ambiguity from the point of view of
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the players receiving a message bit by bit. Moreover, we impose that the
2C
|
Note that 7’ is oblivious. Moreover, 7’ fails to simulate 7 only in the case
where T happens to be too small, thus interrupting the simulation of 7 before

its term. As every round in 7’ contains at least one message from 7, the prob-

C
ability that #’ fails in simulating 7 is bounded by Pr(|II(z)| > T) < T < %

protocol 7" always run a fixed number T of rounds, with 7" =

by Markov inequality. Hence, the protocol 7’ has error e.
Last, every round in protocol 7’ consists in communication
O(klog(k)), and protocol 7' thus has worst case communication

O(Tklog(k)) = O (C""l%g(k))

|

Proof of Theorem 2.6.6. Let u be a distribution on inputs of f. Consider a
protocol © computing f®' with error e. By hypothesis, there exists 7’ com-

1
puting f with error € and satisfying PIC,(7’) < ZPIC”@ (m), CC(n") < CC(m).

By Theorem 2.1.5, we can impose 7’ to use only public randomness.
Applying successively Theorem 2.6.1 and Lemma 2.6.7, we get a protocol
p with distributional error 2(e 4+ ¢) and such that

5
k2CC(m) 1og(CC(7r))> .

CClp,) = O ((eTl(Dk:SPICH(w’) log(CC (') log(k) log

1 3 ,
O (mk PIC,(7") log(CC(m)) log(k) log

k2PIC,, (") log(CCW)))

)
Thus

CClpu) = O (#kiﬂmc“@t (%) log(CC()) log (k) log - <™ lgg(CCW))

t(e+0)
k2CC() log(CC(ﬂ)))
2 .

1
=0 k3CC(m)log(CC log(k)1
(57157 CCm) low(CC(m) o) o
As this reasoning is valid for any distribution x4, Yao’s minimax lemma implies

E*CC. (%) 1og(CC.(f") log(k)

CCoer)(f) = O <t(e +6)

K*CC(f%") 10g(CCe(f®t)))
)

log

as wanted.
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Chapter 3

Multi-party Information Cost

3.1 Definition and properties

3.1.1 Notations

In this chapter, we use the channel representation defined in Subsection 1.4.1.
The set of possible transcripts for a protocol is usually denoted 7, and the
projection of this set on the i*" coordinate (i.e. the set of possible transcripts
of player 7) is usually denoted 7;. Observe that 7 C 77 X - - x Tz. By (z,7)
we denote I1;(z, ) modified such that all the messages that player i sends in
local rounds I’ > [, and all the messages that player i reads in local rounds
I' > [ are eliminated from the transcript.

3.1.2 Definition

We now define another information-theoretic measure for multi-party peer-
to-peer protocols. We note that a somewhat similar measure was proposed
in [BEOT13] for the coordinator model, but, to the best of our knowledge,
never found an application.

Definition 3.1.1. For any k-player protocol m and any input distribution p,
we define the multi-party information cost of m:

MIC,(m) = > (I(X_i:TL; | XiRi) + I(Xy 10, | X Ry))

=1

The second part of each of the k terms can be interpreted as the informa-
tion that player ¢ “leaks” to a virtual player formed by grouping all players
except 7. In the same way that PIC was taking into account the fact that

81
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private protocols need to use private randomness, we use to define MIC the
intuition that private protocols must use secret sharing primitives, which fail
when k£ — 1 players collude.

Observe that the summation of each one of the two summands alone
would not yield a measure useful for proving lower bounds on communication
complexity. The first summand would yield a measure that would never be
higher than the entropy of the computed function, due to the existence of
private protocols for all functions, as discussed in Subsection 2.4.1. For
the second summand, there are functions for which that measure would be
far too low compared to the communication complexity: e.g. the function
f = z1 (i.e. the value of the function is the input of player 1); in that case the
measure would be only 1, while it is clear that the communication complexity
of that function is Q(k).

We also define the multi-party information complexity of a function.

Definition 3.1.2. For any function f and any input distribution pu, we define
the quantity
MIC,(f) = inf MIC,, ().

7 computing f

Definition 3.1.3. For any f, we define the quantity

MIC(f) =  inf  sup MIC,(7).

m computing f u

3.1.3 Properties

The multi-party information cost can be used as a lower bound on the com-
munication complexity.

Theorem 3.1.4. For any k-player function f,
1
CC(f) > gMIC(f) — k2

Proof. Let m be any k-player communication protocol, and let u be an arbi-
trary input distribution.

MIC,(m) = > (I(X3 1L | X_iR_;) + I(X_s; 1I; | X Ry))

=1

k
<2 H(IL;) (Proposition 1.2.2).
=1
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We first encode I1;, for any 7, into a variable II} such that the set of possible
values of II} is a prefix-free set of strings. Observe that the transcript II; is
composed of a number of basic transcripts: for every j € [1, k] \ {i}, a pair of
transcripts of messages, 117 ;, II] ; containing the messages sent by player i to
player j, and the messages read by player ¢ from player j, respectively. We
convert II; into II as follows: In each one of the above 2(k — 1) components
we replace every bit b € {0,1} by b- b, and then add at the end of the
component the two bits 01. We then concatenate all components in order.
This a one-to-one encoding, and the set of possible values of 11} is a prefix-free

set of strings.
k
Defining [II;| = > |vaj|+|1_[£j| and |II| = > |II;|, we have H(II}) = H(IL;),

| #1 =1

J#
and E[|IL}|] = 2 E[|IL|] + 4(k — 1). We get
k
MIC,(m) <2 " H(IT))
=1

k
<2 R[] (by Theorem 1.2.3)
=1

k
< 22 (E[IL]] + 4(k — 1))
< 4-ZEEHH|] + 8k?
< 8. CC(m) + 8k,

where the last factor 2 is due to the fact that each message sent from player
i to player j may appear in at most 2 basic transcripts, namely II7; and
II7,. As this inequality is true for any distribution p, and for any protocol =
computing f, this concludes the proof.

|

The multi-party information cost satisfies a direct sum property for prod-
uct distributions.

Theorem 3.1.5. For any protocol w (externally) e-computing a function f",
there exists a protocol ' (externally) e-computing [ such that, for any input
product distribution p of f,

MIC,» () > n - MIC, (7).

Thus MICE( ") > n - MICE(f).
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Proof. In this proof, we make the public randomness appear explicitly in the
conditioning of the information terms. We denote in 7’ by R the public
randomness in 7', and by R} the private randomness of the players in 7'. We
define 7" on input (Y;);cpxy as follows.

The players first publicly sample a random index L uniformly in [1,n]
and define X! = Y;. The players then publicly sample X¢ for every d < L.
Each player i then samples privately, for every d > L, X¢ according to p.
The players then run 7 on input X. They output as the output of 7’ the
L™ coordinate of the output of 7. Observe that 7' has error at most ¢, and
that if the input to n’ is distributed according to u, then the input of 7 is
distributed according to . Note that there is no extra communication in 7’
compared to 7, just some (private and public) sampling. Therefore we have
[T = II, for every i € [1, k]. We further denote by RP the random bits of R
beyond those used for the sampling at the start of #’. Similarly, we denote
by R;, ¢ € [1,k], the random bits of R, beyond those used for the sampling
at the start of 7’.

1

We show that MIC,(7") = —MIC,» (7). Recall that

n

k
MIC(x') = >~ (I(Y_i; I, | ;RjR?) + (Y310} | YR, R"7)).

i=1

Note that the input X on which we run the protocol 7 follow the prod-
uct distribution p”, and the real input Y is thus indistinguishable from the
sampled inputs X ~*. For this reason, we can omit the value of L from the
mutual information terms which follow. We have, for every player 1,

H(Y_ T | RURY) = ELIXY L | XUXP RXTRY)
(making explicit the sampling from R;, R")
= E[I(X' 1 | X{X7' R XSIXSRY)]
= E[I(XL;: 1L | XiRiRP X))

1
. Z[[(Xl_~; IL; | XiRiRpr'l)]
n l 1 7

1
n

(Chain rule, Proposition 1.2.9)



3.2. The parity function 85

and

IV T, | Yo R R?) = E[I(XETL | X1 X7TR X <R
(making explicit the sampling from R’ ,,R”)
= IEIE[I(XZ.Z; I | XL, X2IR G XSIXSIRP))
= ]IE[[(X;; I | X ;R ;RPXH)

1
= — > (XL | X R R X)
n
l

1
n
(Chain rule, Proposition 1.2.9).

Summing over ¢ € [1, k] concludes the proof.

3.2 The parity function

We are able to bound the multi-party information cost of the parity function
Par; defined in Section 2.5.

Theorem 3.2.1. Let p be the uniform distribution on {0, 1}’“. For any fized
1
0. =
<

MICS, (Pary) = Q(k).
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Proof. Let m be a k-player protocol e-computing the function f = Pary.

MIC(m) =Y (I(X_i; 1L | X;Ry) + I(X3; 10 | X_iR_;))

1

7

Ed

> (X0 | X_Ro)

2

(2

N

(as H(II, | X_;R_;11;) = 0)

> ZI(XZ-; ILIL; | X_;R_;) (Chain rule, Proposition 1.2.9)

k
> ZI(Xz’; I | X_;R_;)

1=2
k
> (H(X; | X_R_;) — H(X; | X_;R_IL,))
=2
k
> (1—H(X; | X_;R_;TI})) (as v is the uniform distribution)
1=2
k
> Z(l — H(f(X) | X_;R_1L))
=2
(data processing inequality, as 3 ¢ | X; = O(f(X), X_;))
k
> ) (1—=H(f(X) [ XiRL))

= 1)(1 = HU(X) | XaRally)
(k — 1)(1 - h(e))
(

by Lemma 1.4.4, as player 1 outputs f with error ¢)

AVARLY,

where h is the binary entropy function.

|

Theorem 3.2.2. Let yi be the uniform distribution on {0,1}*. For any fived

60—1
€
72;

MICS,..(Pary) = Q(kn).
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Proof. 1t is a consequence of Theorems 3.2.1 and 3.1.5.

|

1
Theorem 3.2.3. Given any fized € € l(), 5 [, there is a constant o such that

1
forn > —k,
!
CC(Par}) = Q(kn).

Proof. Let m be a protocol e-computing Par). By Theorems 3.1.4 and 3.2.2,
there exists a constant 3 such that CC(m) > 8kn — k2. Let a constant o < /3.

1
For n > —k, we have k* < akn and we get CC(7) > (8 — a)kn = Q(kn).
a

|

3.3 The disjointness function

In all this section, we work with the return variant of our model, which has
been defined in Subsection 1.4.1.

3.3.1 The disjointness problem

In the set-disjointness problem (DISJ}), there are k players, each having
as input a subset of a base set of n elements, and the goal is to decide whether
there is an element which belongs to all these subsets. This problem has been
the subject of a large number of studies in communication complexity, and
is often seen as a test for our ability to give lower bounds in a given model
(cf. [CP10]). Its complexity in the two-party case is well understood [KS92,
Raz92, BYJKS02, Bral2, BGPW13]. In the broadcast model, a promise
version of the disjointness function was studied in [AMS96]. Afterwards, a
sequence of improved bounds were obtained in [BYJKS02, CKS03, Gro09]
through the use of information theory (cf. also [Jay09, BO17]). External
information complexity was also used in [BO15] to prove a lower bound
on the general disjointness function. In the coordinator model [BEOT13]
gave lower bounds on the disjointness problem via variants of information
complexity. The latter result was extended in [CM15] to the function Tribes.

We consider the k-party function AND,, where each player has an input
bit x;, and where the protocol has to compute the AND of all the input
bits. In this section we will prove lower bounds on the complexity of the
disjointness function DISJ}, in which every player i € [1,k] has an n-bit
string (Ilfﬁ)zq[m]], and the players have to output 1 if and only if there exists
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l
xi.

~-

a coordinate [ where all players have the bit 1. Formally, DISJ}(x) =
!
We describe the input distribution g on {0,1}* that we will work with.
It is similar to the definition of [BEOT13], with a little twist inspired by

21
[JKS03]. Our distribution is defined as follows. Draw a bit M ~ Ber(g, g),

and a uniformly random index Z € [1, k]. Assign 0 to X . If M = 0, sample
X_z uniformly in {0, 1}*71; if M = 1, assign 1¥71 to X_,. We will then
work with the product distribution p”. Our distribution is similar to the
ones of [BEOT13] in the sense that it will lead to a high information cost
for the function ANDy. However, our distribution, as the one of [CM15],
has an additional property: the AND of any input drawn from g is 0. The
distribution p" is said to be collapsing. As we will show in Subsection 3.3.4,
this will allow us to prove a direct sum in full generality and get lower bounds
for the Disjointness function without having to impose the constraint & =
Q(log(n)) (cf. the discussion on the reduction of Section 4 of [BEO*13] which
explains why they had to impose the constraint k = 2(log(n))).

Given a protocol 7, let I1;[x;, m, z] denote the distribution of II;, when the
input X is sampled as follows: X ~ pu, conditioned on the fact that X; = z;,
M =m and Z = 2.

T<s

=1

A variant of the notion of information cost for two-party protocols for the
study of the disjointness function in the coordinator model was introduced
in [BEOT13] under the name of switched information cost. We use here a
similar measure adapted to our setting and distribution, the switched multi-
party information cost (SMIC).

Definition 3.3.1. For a k-player protocol m with inputs drawn from p™.

SMIC,(m) = Y (I(Xy 1L | MZ) + I(M;11; | X;2)).

=1

Note that the notion of SMIC is only defined relatively to the distribution
1™, and we may thus omit the distribution in the notation. The presence of
the public randomness is implicit here. It can be materialized indifferently
either as part of the transcript or in the conditioning of the information-
theoretic expressions.

We first prove some technical tools in Subsection 3.3.2. In Subsection
3.3.3, we will prove a lower bound on the switched multi-party informa-
tion cost of the function AND;. While the general structure of the proof
of this lower bound is similar to the one in the coordinator model, given in
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[BEO"13],! we do have to overcome a number of difficulties, both technical
and more fundamental, that require new ideas and new proofs: The very ba-
sic rectangularity property of communication protocols is, in the multi-party
setting, very sensitive to the definition of the model and the notion of a tran-
script. Then, in Subsection 3.3.4, we will prove a direct sum theorem which
will allow us to prove a lower bound on the switched multi-party information
cost of the disjointness function DISJ;. The fact that our model does not
have a “coordinator” requires one to define a more elaborate reduction pro-
tocol compared to [BEOT13], together with a more complicated proof for the
direct-sum argument. Indeed, since we do not have a coordinator that can
sample privately “dummy inputs”, we need to use “distributed sampling”,
inspired by classic secret-sharing primitives, and prove that nevertheless a
direct-sum property holds with respect to the information. In Subsection
3.3.5, we will show that SMIC provides a lower bound on MIC. Last, in Sub-
section 3.3.6, we will see how this bound translates to the public information
cost of the function DISJ}.

3.3.2 Technical lemmas

Rectangularity The rectangularity property (or Markov property) is one
of the key properties that follow from the structure and definition of a proto-
col. For randomized protocols it was introduced in the two-party setting and
in the multi-party blackboard model in [BYJKS02], and in the coordinator
model in [BEO%13]. We prove a similar rectangularity property adapted to
the peer-to-peer model that we consider in the present paper.

To define this property, for any transcript 7 € 7;, let
Ai(T) = {(z,r) [ (2, r) =7},
and define the projection of A;(7) on coordinate i as
(7)) = {(«',r"), 3 (z,7) € A7), 2" = x; & ' =r;},
and the projection of A;(7) on the complement of coordinate i as
Ji(@) =4, r"),3 (x,r) € Li(T), 2" =x_; &' =r_;}.
Similarly, for any transcript 7 € T, let

B(r) = {(z,r) [ (z,7) = 7)},

!The lower bound in [BEO*13] would yield an Q(@ -nk) lower bound for Disjointness
in the peer-to-peer setting.
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and for any player i,
Hi(r) ={(2',r"), 3 (x,r) € B(1), 2" =a_; &' =r_;}.

We start by proving a combinatorial property of transcripts of commu-
nication protocols, which intuitively follows from the fact that each player
has access to only its own input. The proof of this property is technically
more involved compared to the analogous property in other settings, since
the structure of protocols and the manifestation of the transcripts in the
peer-to-peer setting are more flexible than in the other settings.

Lemma 3.3.2. Let m be a private-coins k-player protocol with inputs from
X=Xy XXX Vie([lk]:

o VTeT, AT)=ZL(T) x Ti(7).
e V7reT, B(r)=Zi(r) x Hi(r).

Proof. We start by proving the first claim. Since the other inclusion is im-
mediate from the definition, we only need to show that

VT eTi, Li(T) x Ji(T) € Ai(T).

To this end take an arbitrary (x;,7;) € Z;(7) and an arbitrary
(x_i,7—) € Ji(T). Since (z4,1;) € Z;(T), we have that

3(z,7) e A4i(T) |z =3 &1y =74
Similarly, since (x_;,7_;) € Ji(T),
(@) e Ai(T) |zi=2 &r_y =715
Let (z,7) be ((zi,7:), (x_s,7—;)) € T;(T) x Ji(T). We will now show that
(xz,1) € Ai(T).

Let L be the number of local rounds of player ¢ in the run of 7 on input
(x,r). We will show by induction on the index of the local round of player
i that for any ¢ < L, II{(x,r) = II5(Z,7). Observe that whether or not
a player stops and returns its output at a given round is a function of its
input, its private randomness and its transcript until that round. Therefore,
since player i stops and returns its value at local round L if the input is
(z,7), it will follow from I1¥(z, r) = 11X (2, 7) that player i stops and returns
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its output at local round L also when the input is (Z,7). We will thus get
that IT;(xz,r) = 7, and hence (x,r) € A;(7T).

The base of the induction, for [ = 0, follows since the transcript is empty.
We now prove the claim for [ + 1 < L, based on the induction hypothesis
that the claim holds for .2

The messages that player ¢ sends at local round [ 4+ 1 are a function of
x;, r; and Iz, 7). As x; = &; & 7; = r;, and using the induction hypothesis,
we get that the messages sent by player ¢ at local round [ + 1 are the same
in m;(x,r) and in 7;(Z, 7).

For the same reason we also get that the set of players from which player
i waits for a message at round [+ 1 is the same when 7 is run on input (z, )
and on input (Z,7).

We now claim that the messages read by player ¢ at round [ + 1 are the
same when 7 is run on input (z, ) and on input (Z, 7). To this end we define
an imaginary “protocol” 1) where player ¢ sends in its first local round all the
messages that it sends in 7 and the players in Q; = [1, ]\ {i} run 7.3 Player
i sends the messages on each link according to the order in 7.# The messages
that the players in (); send in each of their local rounds are a function of their
inputs, their local randomness, and the messages they read from the links
that connect to player i. Since II(Z,7) = 7 we can conclude that in ¢ (when
the input is (Z,7)) the messages sent by the players in @; (in particular, to
player i) are the same as those sent in 7 on input (Z,7).

Recall that we have proved above that when 7 is run on (z,r), the mes-
sages player ¢ sends up to round [+ 1 are consistent with 7. We therefore can
consider now a “protocol” ¢’ which is the same as 1) with the only difference
that player ¢ sends (in its first local round) only the messages of 7 it would
have sent in 7 (z, ) until (and including) round [+ 1 (and not all the message
it sends in 7). It follows that in ¢/, when run on input (z,7), the sequences
of messages sent from the players in (); to ¢ are a prefix of the sequences they
send in 1. Since r_; = = and r_; = 7, the same claim holds when ¢’ is run
on (x,r). Observe now that when 7 is run on (x,r), at the time where player
1 is waiting at local round [ + 1 for incoming messages, it has sent exactly
the messages that player ¢ sends in ).

Using the induction hypothesis IIL(z,7) = 1I4(Z, ), that z; = Z;, r; = 74
and the fact that the set of players from which player ¢ waits for a message at

2Note that IT;(x,7) by itself does not define which messages are sent/read in which
local round.

3Technically speaking, this is not a protocol according to our definition as more than
one message may be sent in a single round on a single link.

4Recall that a transcript of a player is a 2(k — 1)-tuple of transcripts, one for each of
its 2(k — 1) directed links.
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local round [ + 1 is the same for input (z,r) and (Z,7), we can conclude that
the messages that player ¢ reads while waiting for messages at local round
[+ 1 when 7 is run on (z,r) are consistent with the messages it would read
when 7 is run on (Z,7). Since player i running 7 must, by the definition of a
protocol, reach its “return” statement, it must receive messages from all the
players it is waiting for. We therefore conclude that the messages read by
player i in local round [ + 1 when 7 is run on (z,r) are the same as those it
reads when run on (Z, 7).

Together with the induction hypothesis, and the fact (proved above) that
the messages sent by player 7 at local round [+ 1 are the same when 7 is run
on in (z,7) and on (%, 7), we have that IT"™(z, r) = II™(%, 7).

We now prove the second claim. We only need to show that
V7eT, Lin) x Hi(r) C B(r),

the other inclusion being immediate from the definitions, since B(7) C A;(7).

Take an arbitrary (z;,r;) € Z;(r;) and an arbitrary (z_;,r_;) € H;(7).
Since (z_;,r—;) € Hi(7), 3 (z,7) such that n(Z,7) =71, z_; =2_; and
r;=7_. Let (z,7) = ((x;,r:), (x_s,r;)). Since B(r) C A(m;), we have
Hi(1) C Ji(7:). Thus, using the first claim,

Zi(1;) x Hi(1) CZi(1) x Ji(mi) C Ai(m),

and II;(z,r) = 7;. It remains to show that V j # i, IL;(z,7) = 7;.

Consider the two runs of protocol 7 on the input (z,7) and on the input
(,7). We have that II(Z,7) = 7, and that II;(z,r) = 7;. Since z_; = &_;
and r_; = 7_;, we have that also for all j # i II;(z,r) = II;(2,7) = 7;. It
follows that (z,r) € B(7) as needed.

|

We now prove the rectangularity property of randomized protocols in the
peer-to-peer setting.

Lemma 3.3.3. Let m be a private-coins k-player protocol with inputs from
X = Xy XXXy, Foreveryi € [1,k], there exist functions g; : X; x T; — [0, 1],
i Xy xTi = [0,1] and p_; : X_; x T — [0, 1] such that

Ve X,V T = (Tl, Ce ,Tk) < T, PI’[Hl(ﬂf) = Ti] = qi(mi,Ti)q_i(iﬂ_i,Ti),

and

VeeX Vr= (7'17 o Tk) €T, Pr[H(yc) = T] = Qi(thi)pfi(mfiaT)'
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Proof. We prove the claim for an arbitrary player ¢ € [1,k]. Define, for
rTe X, and T e T,
¢:(z,7) = Pr((z, R;) € Zi(T)),

and for z € X_; and T € Tj,
q,l(ii',?) = Pr[(:f:, R,Z) c \Z(?)]
We have, for z € X and 7 € T;,
Pr{IL(x) = 7] = Pr{(z, ) € Ai(7)
= Prl(z;, R;) € Z;(T) & (z_;, R_;) € T;(T)]
(by Lemma 3.3.2)
= Pr[(xl-, Rl) € Il(F)] X PI‘[(.’E,i, R71> € ‘71(7)]
= qi(xh?)Q—i(I—h?)'
We now prove the second claim. Define, for 2 € X_; and 7 € T,
p_i(z,7) = Pr[(z, R_;) € Hi(T)].
We have, forx € X and 7 € T,
Pr[ll(z) = 7] = Pr[(x, R) € B(7))]
= Pr[(xi, Rl) c Iz(Tz) & (.f,i, Rfl) c Hl(T))]
(by Lemma 3.3.2)
= PI‘[(SEi, Rz) € Iz(Tz)] X PI'[(QZ,i, sz) c Hz(T))]
= qi(i, Ti)p—i(x i, 7).
_I

The following lemma is an application of Lemma 3.3.3 to the specific case
of the distribution ;1 that we have defined above.

Lemma 3.3.4. Let w be a private-coins protocol. There exists a function
c¢:{0,1} x [L,k] x T — [0,1], and for every i € [1,k] there is a function ¢; :
{0,1} x [1,k] x T; — [0,1], such that¥ i € [1,k],V 2" € {0,1}, ¥V m € {0, 1},
Vze[l,k]\{i},VT=(r,...,7) €T,

Prll; =7 | X; =2/ M =m,Z = z] = ¢;(2, ;) ci(m, 2, 73)

and
Prlll=71|X;=a M =m,Z = z| = ¢;(2', 71)c(m, 2, 7).
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Proof. The term Pr[Il; = 7, | X; = 2/, M = m, Z = z] is equal to

Z (PriX =z | X; =2 ,M =m,Z = z|x
x€{0,1}*
Prii; =7 | X =2, X,=2M=m,Z =z2]).

Note that
PriX=x2|Xi=2/ M=m,Z=2]=0,,Pr[X_ ;=2 | M =m,Z = z],

since, conditioned on M = m, Z = z, X; and X_; are independent. Further
note that for x such that x; = a/,

Priil; =7 | X =2, X;=2'M =m,Z = z] = Pr[I;(z) = 7]
By Lemma 3.3.3, there exist functions ¢; and ¢q_; such that
Ve {0,1}", PrIli(z) = 7] = qi(ws, 7)q_i(w_s, 73).
Therefore we can write

Prlll; =7 | X; =2, M =m,Z = z] = Z (O 00 @i (s i) q—i(T i, Ti) X
x€{0,1}*

PriX ;=x_; | M=m,Z =z])

= qi(2',7) Z (q_i(Z, 1) x

2€{0,1}k-1
PriX ;=2 | M=m,Z =2z

= Qi(fl,Ti)Ci(W% Z;ﬂ')

where ¢;(m,z,7;) = Y. qu(T,7)Pr[X;=2|M=m,Z = z|].
2€{0,1}k-1

The proof of the second statement is similar:
the term Pr[ll =7 | X; =2, M = m, Z = z] is equal to

Z (PriX =x | X; =2 ,M =m,Z = z|x
z€{0,1}*
Prill=7|X=uz,X;,=2M=m,Z = 2z]).

Note that

PriX=x2|X,=2/ M=m,Z=2]=0,, o Pr[X_;=x_; | M =m,Z = z],
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since, conditioned on M =m, Z = z,, X; and X_; are independent. Further
note that for x such that x; = 2/,

Prilil=7|X=ux,X;,=a2"M=m,Z = z] = Pr[ll(x) = 7].
By Lemma 3.3.3, there exist functions ¢; and p_; such that
Ve {0,1}*, Pr[Il(z) = 7] = qi(ws, )p—i(x_i, 7).
Therefore we can write

Prll=7|X, =2 M =m,Z =z2] = Z (0a; Qi (@i T)P—i(@ iy T) X
z€{0,1}*
PrX ;=x; | M=m,Z =z])

=g’ ) Y (p=ild,T)x

2€{0,1}k-1
Pr[ X ;=2 | M=m,Z =2z

= q;(2',7;)e(m, 2, 7)

where ¢(m,z,7)= > p(@,7)Pr[X_ ;=2 | M=m,Z =z

2€{0,1}k-1

The Diagonal Lemma The following lemma is often called the diagonal
lemma. It was proved in [BYJKS02] for the two-party setting under the
name of Pythagorean lemma, and in [BEOT13] for the coordinator model.
We show here that is also holds in the peer-to-peer model. The proof of this
lemma does not (directly) use the properties of a protocol, and in fact follows
from Lemma 3.3.3 and Proposition 1.2.20 in the same way that its two-party
analogue follows from the analogous lemma and proposition.

Lemma 3.3.5. Let 7 be a private-coins protocol taking input in {0, 1}
Vae {01}, Vye{0,1}* Vie[l, k],

h(I1(2),T1(y))* = 5 [A(T1(@), T(Yjic-2))” + h((@(iey), Ty))?] -

N | —

Proof. In what follows we simplify notation and write ) instead of > .
T TET
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Using Proposition 1.2.20,
1 — h2(I1(z), 11 Z V/Pr[l(z) = 7] Pr[l(y) = 7]
= Z Vi@, 7i)p—i(w i, 7) @i (Yo 7)p—i (Y-, 7)

(usmg Lemma 3.3.3)

= Z V(@i )6 (i, 1)V i, T)p—i(y i, T)

S Z qi (3317 Tz) + Qz(yu Tz \/p m_“ T)p z‘(?/—i, 7_)

2

[\g|,_.

(Z Vai(wi, 7)p—i(w i, 7)qi(ws, 7)p-i(y—i, 7) +

Z\/qz Yi Ti)p—i(w i, T )qi(yi,n)p—i(y—m)>

< % (Z \/Pr[l_[(:v) = 7] Pr{Il(Yjic—ey)) = 7] +

|

The following lemma is a version of the Lemma 3.3.5 adapted to our
distribution.

Lemma 3.3.6. Let m be a private-coins protocol.
1
Vie [[17 ]{?]],V JE [[17 kﬂ \ {l}, hQ(HZ[Ov O7j]7 Hi[lv 17j]) > §h2(Hi(€i7j)7 Hl(éj))

Proof. Using Lemma 3.3.4, we write Pr[I1;[0,0,j] = 7| = ¢(0,7)c;(0,4,7)
and PT[HZ[l, 1,]] - ?] - %(17?)61(17]7?)

Using Lemma 3.3.3, we write Pr[[I;(e}.) = 7] = qi(O,?)q_i(éf_l,?) and

PUIL(E) = 7) = (L@ 7).
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Note that II;[1, 1, j] = II;(e}), and thus

%(17?) % 0= Ci(Lja?) = Q—i(é?717?)'

By Proposition 1.2.20,

1— h3(IL[0,0, 5], TL[1, 1,5]) = > v/Pr[IL[0,0, ] = 7 Pr{IL[1, 1, 5] = 7]

T

= Z \/QZ Oa? Ci(oaja?)Qi(la?)ci(lajv?)

<> Va0 7)a(L7) (Cz‘(O,ji) —g ci(l,j,?)>

< % (Z Va0, 760 7 9aLDa0.5.7) +

Z \/qz-<o,?)ci(l,j,?)%u,?>ci(1,j,?)>

(Z V@i(0,7)ci(0, 7, 7)qi(1,7)ci (0,5, 7) +

> Va0, 7)1, 5, 7)a (L), 4,7) )

Tlqi (1,7)#0

(Z V@i(0,7)ei(0,7,7)qi(1,7)ci(0,5,7) +

Z \/Qi(oﬂF)Qi(é;?1??)(11'(17?)‘]1'(5?17?))
7)q: (1,7)#0
< % (Z Va0 a7 9aLAa0.5.7) +

Z Vu(0.7) F)ai(1,7)q- (efla?)>

< - <Z\/Pr :0,0, 4] = 7] Pr[IL;[1,0, ] = 7] +

\/Pr 7| Pr{IL(eh) = ﬂ)
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1-— h2<Hz[O, O,j]aniu? 17.]]) < %(1 o h2<H1[O’ 0"]]’1_11[1’0"]]) +
1 — h*(IL(ef), I;(€})))
<1 — K2 (IL(eF,), (L))

Localization. The following lemma formalizes the fact that if changing
the input of a player changes the transcript of the protocol, then this change
necessarily appears in the partial transcript of that player. For randomized
protocols, this change is observed and quantified by the Hellinger distance
between the distributions of the transcripts.

Lemma 3.3.7. Let w be a private-coins protocol.
Vie LAV e [1LE]\{i}, h(L(e,),1L(e;)) = h(ll(e;), 11())).
Proof. Using Lemma 3.3.3, we write
Pr{IL(ef;) = 7] = :(0,7)g-i(e} ', 7)

and
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Using Proposition 1.2.20, we can write

1 — W1, Z V/PrlITi(e) = 7] Pr{IL(ek) = 7]
— Z \/ql-(o,?)qﬂ;(éj’l,?)qi(lf)qu(éfflf)
= ET: %(0,7)q:(1,7)q-i(€ 1, 7)
— Z 4:(0,7)qi(1,7)q—i(e ", 7)

7q:(0,7)#0
= Z V QZ(Ov?)Qz(la?) Z p—i(E?_IaT)
71qi(0,7)#0 T|Ti=T
= Z QZ(07?)qZ(]-a?) Z p—’i(é?_l77—)
T T|Ti =T

=> (\/qi(O, 7:)qi(1, mi)p—i(e) T)>
=3 /Pilneety) = vl Prn(e) =)

3.3.3 Switched multi-party information cost of AND;

We can now prove a lower bound on the switched multi-party information
cost of the function AND;,.

1
Proposition 3.3.8. For any € € [0, 3 [, for any protocol m externally e-

computing ANDy,
SMIC,,(m) = Q(k).

Proof. We prove below the claim for an arbitrary private-coins protocol 7.
The claim for general protocols (i.e. with public randomness) then follows
from averaging over all possible assignments of the public randomness.

11
Observe that for any ¢ € [1,k],if M = 0and Z = z # i then X; ~ Ber(§7 5)
We therefore get by Lemma 1.2.21 that Vi € [1,k],V z € [1, k] \ {i},

[(X’HHZ | M = 07Z = Z) Z h2<Hz[Oa O:Z]>Hi[17072])'
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By definition of u, we have that for any i € [1, k], that if X; = 1 and
11

—,27ézthenMwBeI“(2 2)
We get by Lemma 1.2.21: Vi € [1,k],V z € [1, k] \ {i},
I(M;TL; | X = 1,7 = z) > h*(I[1,0, 2], IL[1, 1, 2]).

Let us define SMIC;(7w) = I(X;IL; | MZ) + I(M;11; | X;Z) so that

SMIC(rr stuc

SMIC(m) = (X3 1L; | MZ) + 1(M;11; | X3Z)
(X1 | M, Z = z) + I(M;1L; | X5, Z = 2))]

E
1
ZEZ[I(XZ‘QHZ‘|M,Z:Z)+I(M;Hi|Xi,Z:z)]

1
EZPr =0|Z=2I(X;I, | M=0,Z =2) +

2
By the definition of pu, Pr[M =0 | Z = 2] = 3 for any z. Also, for any

1% 2,
PriX;=1|Z=z2]=Pt[M=0|Z=z2]Pr[X;=1|M=0,Z =z]+
PrM=1|Z=2PiX,=1|M=1,72=
T
3 2 3 3
Thus

SMIC; () z% EhQ(H 0,0, 2], TL[1, 0, 2]) + %hg(ﬂi[l,o,z],ﬂi[l,l,z])
zF#1

> 3i]{; [h(Hz[O, 0, Z]; Hi[lv 0, Z]) + h(Hi[lv 0, Z]a Hi[lv 1, Z])]Q

% h*(11;]0,0, 2], I1;[1, 1, 2]) (by triangular inequality).
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We have

SMIC (7 stuc

—3kzh2 10,0, 2], IL,[1, 1, 2])

i,z|i#£z
2 2 . .
> o Z [h2(11;[0, 0, 2], TI;[1, 1, 2]) + R2(I1,]0, 0, i), T1,[1, 1, ])]
(i}
1
> o > P (L(@ ), T(2.)) + R2(1L (7 ), 1L (7))
{i,z}
(by Lemma 3.3.6)
1
> > [p(1(E;.), 1(e.)) + B*(11(%;..), I1(;))] (by Lemma 3.3.7)
{i,z}
1 _ _ _ _
2 Tor 2 \II(E:), 1I(e:)) + h(I1(e;..), T1(e:))]”
4,2}
1
> ok Z R*(T1(e;),I1(e.)) (by triangular inequality)
1,2}
1 o
= ik > RA(T(e), (1))
1,2}
(by Lemma 3.3.5, omitting part of the right-hand term)
1 1 — 2¢)?
> Sk Z ( 5 2 (by Lemma 1.4.3)
{i2}
(k—1)(1 — 2¢)?
> %6 = Q(k).

3.3.4 Switched multi-party information cost of DISJ;

We first prove a direct-sum property which will allow us to make the link
between the functions AND; and DISJ]. We observe that while a similar
property was proved in [BEOT13] in the coordinator model, our peer-to-peer
model requires a different, somewhat more involved, construction, since, on
the one hand we do not have the coordinator, and on the other hand no player
can act as the coordinator as it would get too much information. Since the
function DISJ} is the disjunction of n ANDj functions, we will analyze the
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switched multi-party information cost of DISJ} using the input distribution
n

w.
Proposition 3.3.9. Let k > 3. For any protocol m externally e-computing
DISJE, there exists a protocol w' externally e-computing ANDy, such that

SMIC,n () > n - SMIC,, (7).

Proof. Given an arbitrary protocol m for DISJ}, we define a protocol 7’ for
ANDy, and then analyze SMIC,»(7) and SMIC, (7).

Let u € {0,1}* be the input to 7’ such that u; is given to player i. The
protocol 7’ is defined as follows.

1. The players first sample publicly an index L uniformly in [1,n], and
then sample publicly Z*, for t € [1,n] \ {L}, independently and uni-
formly in [1, k].

2. They then proceed to sample M?, for ¢t € [1,n] \ {L}, as follows. The
set of players is partitioned into two subsets, {1,2} and {3,... k}.
Player 1 samples M' ... ML~! and sends the sampled values to player
2 (player 3 samples MLF1 ... M™ see below).

3. Then player 1 samples X ... XX~ according to the distribution p, and
player 2 samples X3 ... X!, according to the distribution . Observe
that they can do this as they know M*',... M=t 7zt . ZL=1

4. Players 1 and 2 then apply the following procedure to communicate X ;
to player 7, for 5 > 2 and ¢t < [: player 1 sends a bit p§- to player 7, and
player 2 sends a bit ¢} to player j. Player j then defines X} = p! @ ¢
The bits p} and ¢} are generated in the following way.

o If Z' = j, player 1 privately samples a random bit p}, sends it to
player 2, who defines ¢} = pj. Player j thus defines X} = 0.

o If Z' # j and M' = 0, player 1 privately samples a random bit
pj, and player 2 privately samples a random bit ¢5. The bit X
defined by player j is in this case a uniform random bit.

o If Z' # j and M' = 1, player 1 privately samples a random bit pf,
sends it to player 2, who defines ¢} = p’ @ 1. Player j thus defines
Xt=1.

j

5. Player 3 samples M**! ... M" and sends the sampled values to players
4 to k. Every player i > 3 privately samples X ... X7
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6. Players 3 and 4 (or any two other players from the set {3,...,n}) then
apply the previous procedure to communicate X;f to player 7, for j < 2
and ¢t > L. We denote by p{ and by pl the bits sent by player 3 to
player 1 and to player 2, and by ¢} and by ¢} the bits sent by player 4
to player 1 and to player 2.

7. Now all the players run the protocol 7, on the input composed of (1)

the values defined above for zf, i € [1,k], t € [1,n] \ {L} , and (2)
xF =, for i € [1,k].

8. The output of the protocol 7’ is the output of the protocol 7.

First observe that if m computes DISJ; with error €, then 7’ computes
AND; with error €, and this is regardless of the values of the random bits
used in the construction of the input to 7. In other words, the distribution
of the input to 7 is collapsing on coordinate .

Now observe that if the input to protocol 7/, denote it U, is distributed
according to p (as defined above) then the definition of 7’ guarantees that
the input X to protocol 7 is distributed according to p". Using the notation
we use for p we can write that if (U, N, S) ~ u then (X, M, Z) ~ pu".

We now give an upper bound on SMIC,(7’) in terms of SMIC,. (7). To
this end we first express the transcripts of protocol ', II}, 1 < ¢ < k, in
terms of the transcripts (I1;) of the protocol 7, run in Step 7.

Let us take player 2 and express I, as a function of II,. Given the
preliminary sampling procedure, we can write Il in four parts.

1. The public randomness that comes from the definition of 7’: L, Z~F

2. e Read by player 2 (and sent by player 1), M <L,

e Read by player 2 (and sent by player 1), all the p for j > 2 and
t < L such that Mt =1or j = Z,.

e Allthe ¢}, j > 2 and ¢t < L sent by player 2.

3. Player 2 also receives pi™™ ... pt ¢t ... 5 from players 3 and 4.

4. The last part is the transcript of player 2 when running 7.

Note that thanks to the way we realize the distributed sampling procedure,
given Z~% M'<*, the p} and the ¢} from point (2) above are independent
from the Xj’“f, j > 2 and t < L (even conditioned on the transcript of the
protocol), and thus we are allowed not to make p} and the ¢! from point (2)
appear in the transcript 11 in the manipulations of SMIC,,(7") which follow.
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Similarly, as the p5™ ... pt g~ ... ¢% from point (3) above are independent

from the transcript of the protocol given XZLJrl ... X%, we can replace them
in IT, by X5~ Thus, we will write IT, as Z~EM<EXS LTI, (we do not put
the random index L here, since as the players are running the protocol 7
with input (X, M, Z) ~ u" following a product distribution, the index L is
independent from the input even conditioned on the transcript: the real input
is indistinguishable from the sampled inputs). Similarly, we can consider 11}
as Z-EM<EX7H, and for i > 3, 1T} as Z-LM>LXHI,.
We have

e

SMIC, (') =~ (I(UzT0; | NS) + I(N; 1T} | U;S))

2
=E |y (I(XEZ ' MYIX M | M'2Y) + 1M 27 MEIXC L | X(2Y) +
i=1
k
(XL 2 M X | M2 + (MY 27 M | X ZY)
=3
2
=B |3 (HX5T | X7 M) + (ML | XP'M<'2Z)) +
i=1

(I(X;; 0 | XSIM21Z) + I(MY T, | XflM>lZ))

w

Now, applying Lemma 1.2.14, we have that for any [,

since (X5 M= XZPMSLZ) =0,

I(XLET | X2 MS'2) < I(XETL | XM Z),
since I(MY X | XZIM<1Z) = 0,

I(MUTL | X2 M<'Z) < I(M5 T | XoM<L2Z),
since I(X}; M<' | X~ M=1Z) = 0,

I(XLT | XS M=2'2) < I(XETL | XS Z),
since I(M'; X1 | XS M>17) = 0,

I(MUTL | XS Z) < T(MS T | XoM>'2),
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Thus

SMIC,(7") <

IA

S|
NE

IN
SEES

.
.

I o

—

IN
SRS

IN

IN

-

s
I
—

E (I(X5IL | X7 MZ) + T(M5 1L | XoMS2Z)) +

N

(I(X5I | XM Z) + T(M5 1L | XM 7))

s
Il
w

2
[Z (I(XEIL | XM Z) + T(MY L | X, M<'Z)) +

i=1

N
Il
—

M-

Il
w

(I(X5IL | XM Z) + I(MB 1L | X.M™' 7))

$
;

(I(X3 I | MZ) + I(M;TL | X Z)) +

]~

=1

I(XLTL | XM Z) + Z I(M" 1L, | XZ-M<’Z)> -

-
.

s
Il
w

1
(X5 | XTM2Z) + Y 1(MY T | XZ-M>’Z)>
1 l=n

WE

Il
—

:

k
1
n
=1

M-

w

1
—SMIC,n ().
—SMIC, ()

|

This direct sum, coupled with the lower bound on SMIC(7’) for any pro-

tocol 7’ that

computes ANDy (Proposition 3.3.8), gives us a lower bound on

SMIC(7) for any protocol that computes the function DISJy.

1
Theorem 3.3.10. Assume k > 3. Given any fized € € {0,5[, for any

protocol w externally e-computing DISJ} it holds that

SMIC,» (1) = Q(kn).

Proof. By applying Propositions 3.3.9 and 3.3.8.



106 Chapter 3. Multi-party Information Cost

3.3.5 Multi-party information cost

We will now relate SMIC and MIC, which will allow us to obtain a bound
on the MIC of the disjointness function. We also obtain a bound on the
communication complexity of the disjointness function.

Proposition 3.3.11. For any k-player protocol m, SMIC () < MICn (7).
Proof. We first prove that

[(M:IL | X,RiZ) < I(MX_: 1L, | X,Ri2)
<I(X_p1L | XsRZ) + I(M1L | XR; Z)
(Chain rule, Proposition 1.2.9)
< I(X_;1L | XoR,Z) + I(M: R_,IL, | XR.Z)
S IHX_pIL | XoRZ) + I(M Ry | XRZ) + I(M; 1L | XRZ)
(Chain rule)
< I(X_1L | XiR,Z) + I(M;1L, | XRZ)
I(X_ 1L | XiRiZ) + H(IL | XRZ)
(X o1 | XoR.Z)
H(L | X;RZ)— H(IL; | XR;Z)
H(L | XiR;Z) — H(IL; | XR, Z) — 1(Z;11; | X Ry)
H(IL | X;RZ)— H(IL; | XRZ) —
(H(IL | XR;) — H(IL; | XR; Z))
H(IL | XiR;Z) — H(IL; | XR;)
H(L; | X;R;) — H(L; | XR;y)
I(X 10 | XiRy)

IA AN IA TN

INIAIA

We now prove that
As by definition of u, I[(X;; X_;R_; | MZ) =0, we get by Lemma 1.2.14
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and
[(Xi;TL | X_R_MZ) = H(I, | X_.R_;MZ) — H(Il, | XR_,MZ)
— H(IL, | X_;R_MZ) — H(L, | XR_,MZ) —
IMZ;1; | XR-;)
— H(IL, | X_;R_MZ) — H(L, | XR_,MZ) —
(H(IL | XR_;) — H(IL; | XR_;M Z))
=H(IL; | X;RMZ) — H(IL; | XR-)
< H(L | X_,R_;) — H(I, | XR_,)
< (X1 | XR_)
and thus
I( Xyl | MZ) < I(Xi 1L | XoR-).

Summing over i € [1, k] concludes the proof.

|

1
Theorem 3.3.12. Assuming k > 3, for any fixed € € [0, 5 [, for any protocol

7 externally e-computing DISJ}, it holds

Proof. 1t is a consequence of Theorem 3.3.10 and Proposition 3.3.11.
-

1
Theorem 3.3.13. Given any fized € € {O, 3 {, there is a constant a such

1
that for n > —k,

o

CCY(DISJ}) = Q(kn).

Proof. The case k = 3 can be reduced to the case kK = 2 for which an Q(n)
bound is already known (cf. [CP10]). Assume now that k£ > 3. Let m be
a protocol e-computing DISJ;. We first convert 7 into a protocol 7’ which
externally e-computes DISJ}, by having player 1 send his output to player
2 before halting. Since in 7 player 1 e-computes the function DISJE, 7’

externally e-computes DISJ}. Observe that CC(n') = CC(7) + 1.
By Theorems 3.1.4 and 3.3.12, there exists a constant [ such that

1

CC(n") > Bkn — k%, Let a constant o < 3. For n > —k, we have k* < akn
«

and we get CC(7") > (8 — a)kn = Q(kn), and CC(7) = Q(kn).

|

We note that this lower bound holds also for protocols where only one
player is required to output the value of the function.
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3.3.6 Back to the public information cost

We now prove that the switched multi-party information cost lower bounds
the public information cost. In this subsection we will make the randomness
appear explicitly in information terms such as SMIC. We will follow the
convention to make the public randomness appear in the conditioning.

Proposition 3.3.14. For any public-coins oblivious k-player protocol ™ where
the players have n-bit inputs X from (X, M, Z) ~ u",

PIC, (7) > %swcun(w).

The notation for the transcripts II; that we have been using for SMIC
differs from the one we have used for PIC in Chapter 2. The above proposition
deals with oblivious protocols. In the oblivious setting, the two notations are
completely equivalent in terms of information. Thus we will in this subsection
use the notation for transcript that we have defined at the beginning of this
chapter, both for PIC and for SMIC.5

We start by defining two variants of the information cost, which we will
use as intermediate quantities in the proof of Proposition 3.3.14. These
measures are defined only with respect to the input distribution p”, and
thus we do not indicate the distribution in the notation of these measures.

Definition 3.3.15.

k
ICm) = S 1(X ;T | X,RPMZ),
=1
Definition 3.3.16.
" k
IC(m) = I(X_i;1I; | X;R"Z).
=1

We now start the proof with two lemmas that relate the intermediate
measures that we just defined to the measure PIC.

Lemma 3.3.17. For any public-coins protocol m,

IC(7) < PIC, ().

5In fact, the two transcript notations would be equivalent in the definition of PIC even
if we were not restricting ourself to oblivious protocols. This is because of the presence of
X, R; in the conditioning.
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Proof. For any i € [1, k],

(X T | X;RPMZ) = H(TL, | XoRPMZ)
< (T | X;R?)
H
< H(, | x5 - HCTL | XRY)
[(X_; T | X.RP).

]

IN

Summing over ¢ € [1, k] concludes the proof.

_
Lemma 3.3.18. For any public-coins protocol m,
IC(7) < PIC,n (7).
Proof. The proof is similar to the one of Lemma 3.3.17. For any i € [1, k],
< H(II; | X;R?) (by Proposition 1.2.2)
By Proposition 1.4.8, summing over i € [1, k] concludes the proof.
_

The next two lemmas together relate SMIC to the intermediate measures
that we defined.

Lemma 3.3.19. For any public-coins protocol m,

Xk: I(M:11; | X;RPZ) < IC(x).

i=1
Proof. Let i € [1,k].
I(MIL | XsRPZ) < I(MX 10 | XyRPZ)
< I(X_p 1L | X;RPZ) + I(M;11; | XRPZ)
(using the chain rule, Proposition 1.2.9)
< I(X_y 1L | X;RPZ) + H(IL; | XR*Z)
< I(X_; 1L | X,RPZ).

Summing over i € [1, k] concludes the proof.
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The ideas behind the proof of the next lemma are similar to the ones
developed in the proof of Theorem 2.1.8. However, the distribution and the
quantities involved being different, a careful analysis is required.

Lemma 3.3.20. For any public-coins oblivious protocol ,

k
> I(X; I | RPMZ) < 1C(x).

i=1

Proof. Let i € [1,k]. Using the chain rule (Proposition 1.2.9) and splitting
the set of terms in two subsets,

— — — —
(X314 | RPMZ) =Y I(Xs T TERPMZ) + ) I(X T} | T RPMZ).
l l

We show that every term of the second sum is 0. Let us organize the messages
of TI; as a sequence of messages (B?), ordered by local round and inside each
round, letting first the messages sent by player ¢, ordered by index of the
recipient, and letting then the messages read by player ¢, ordered by index
of the sender. We show by induction that

VdI(X;X ;| MZRPBY...BY) = 0. We have I(X;; X_; | MZRP) = 0.
Suppose that for some d, I(X;; X_; | MZRPBC... BY) = 0. If the message
B! is sent by player i, then B! is a function of X;, R? and B°... B? and
thus

(XX | MZRPBY ... B™) = H(X_; | MZR'B® ... B*") —
H(X ;| MZRPB®... B"'X))
<HX_;| MZRPB°...B%) —
H(X_;| MZRPB® ... B%X;)
<I(X; X ;| MZRPB®...BY) =0

Similarly, if the message B! is received by player i, then B! is a function
of X_;, R? and B°... B% and thus

I(X:; X_; | MZRPB® ... B™Y) = H(X, | MZRPB®. .. B4y —
H(X; | MZR'B’...B"'X_))
<H(X;| MZR'B"...B%) —
H(X; | MZR'B® ... B*X_;)
<I(X; X_;| MZR'B®...B%) =0
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Thus V d, ](X,,; X ;| MZRPB® ... B%) =0, and choosing the relevant d,
[(X“X_l | T<IR7’MZ) =0. Applymg Lemma 1 2.15with A= X;, B=X_;,
C= (TZZ Rp) D= (M,Z) and ¢ = Tl = go(T<l RP. X _;) leads to

I(X; T | T<1RPMZ) = 0. We have shown that

— —
(XL | RPMZ) = S (X T | TR M Z),
l

Starting from the definition of IC and using the chain rule (Proposition
1.2.9), we can decompose it as a sum over all messages received in the pro-
tocol:

— —
=> ) I(X_;T | T7'X;RP M Z).
il
e
Note that in 7;~' we also included the messages sent by player i here, but as
e

these are a function of X;, RP and of the messages received in T~ we can
safely include them in the conditioning.

We rearrange the sum by considering the messages from the point of view
of the sender rather than the receiver.

=SS X T T X R M Z),

Our objective is now to show that for any message 7 l,

77

—> —
I(X; T | TIRPM Z) < [(X,j,Tl | TV X;RPM Z).
As Tl is determmed by X;, RP and T<l (Tl | X, T<lRpMZ) =0,
and we have I(X;; T’ | T<ZRPMZ) H(Tl | T<ZRPMZ) and similarly
7 7
[(X,],Tl | TV X;RPM Z) = (Tl | T7" X;RPM Z). Thus

— —
I(Xi T | T RPM Z) ](X_j,Tl | T<l X;RPM Z)

+

’

-~

<
)
— —
H(T} | T'RPM Z) < (Tl y T<l X;RPMZ)
)
>

— —
(T, T RPM Z) I(T Ts

17 7]

X;RPMZ)

—

— -
We show that I(Tz); TRPMZ) = I(T;TA'TS X RPM Z), which implies
that the last inequality is true. For this we just need to show that
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— < = — —
I(TH T X, | T"RPM Z) = 0. Notice that given the value of T,"RPM Z, T}

1777

is determined by X; and thus by data processing inequality 1.2.12
<_/ — — (—/ —
I(Xs TG | TERPMZ) > (T T X | T RM Z),

and so we just have to show that I(X;; TfTXj | Tf?RpMZ) = 0, which we
now do. " .

Note that (Tfl/,Xj) is a function of (X_;, T;~'). The data processing
inequality 1.2.12 implies that

b — — —
(X TP X5 | T RPM Z) < 1( X XTI | T RPM Z)
and thus
< — —
(X3 T X5 | T'RPMZ) < (X Xy | T RPM Z).

We have already shown above that V d, I(X;; X ; | MZRPB®... BY) = 0,
—
and choosing the relevant d, I(X;; X ; | T,"RPMZ) = 0. Hence we have
—

1

proved that for any message 717,
— — N o
I(Xs T | T RPMZ) < I(X 5 T | T X RPM Z),

k _
which implies that > I(X;;1I; | RPRM Z) < IC(7).
=1

)

We are now able to prove Proposition 3.3.14.

Proof of Proposition 3.3.14. Let m be an oblivious public-coins protocol e-
computing DISJ}. By Lemmas 3.3.19 and 3.3.20 we have that

SMIC,» () < IC(7) + IC(x).
Using Lemmas 3.3.18 and 3.3.17,
SMIC n(7) < 2 - PIC,n (7).
4

We can now lower bound the public information cost of the disjointness
function.

Theorem 3.3.21. Assume k > 3. In the oblivious setting,

PIC:,.(DISJ}) = Q(kn).
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Proof. Let m be an oblivious protocol e-computing DISJ}. By Theorem
2.1.5, we only have to consider public-coins protocols. Observe that, by
adding a single bit message, we can convert m into a protocol 7' ex-
ternally computing DISJ;. By Theorem 3.3.10 and Proposition 3.3.14,
it holds PIC,n(7") = Q(kn). As PIC,n(n") < PICn(m) + 1, we get that
PIC,n(m) = Q(kn).

|

We now give a lower bound of Q(n) on the randomness complexity of
the function DISJ};. The importance of this result lies in that it is the first
such lower bound that grows with the size of the input while the output
remains a single bit. Note that the theorem which follows and its proof can
be translated to the setting of epsilon-error randomness complexity, that we
did not consider here.

Theorem 3.3.22. Assume k > 3. There exists an input distribution pu such
that
R, (DISJ}) = Q(n).

Proof. Theorem 3.3.21 provides a distribution p such that
PIC,»(DISJ;) = Q(kn). Moreover, H,(DISJ}) = 0. Applying Theorem
2.4.14, we get

R, (DISJ?) >
_J

We can also get a stronger bound on the communication complexity of
the disjointness function in the oblivious setting.

Theorem 3.3.23. In the oblivious setting,
CCY(DISJ;) = Q(kn).

Proof. The case k = 3 can be reduced to the case k = 2 for which an Q(n)
bound is already known (cf. [CP10]). For k£ > 3, the result comes from the
combination of Theorems 3.3.21 and 2.3.2.
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Conclusion

In this thesis, we presented a multi-party peer-to-peer number-in-hand com-
munication model which, while being general enough to allow most protocols
considered in the literature, has good properties which allowed us to intro-
duce an information-theoretic framework for the study of multi-party com-
munication protocols. We introduced two main new information-theoretic
measures: the public information cost PIC, and the multi-party information
cost MIC, and showed that these measures have interesting properties which
make them suitable to the study of classic distributed functions such as Par-
ity and Disjointness.

One of the fundamental properties of the public information cost is its
relation to the number of random coins required in order to run private pro-
tocols. As an illustration, we obtained tight lower bounds on the number
of coins required for privacy for the n-bit parity and disjointness functions.
Another interesting result, which is the consequence of a communication
compression procedure, is that the existence of a direct sum for the public
information cost would imply a certain direct sum for communication com-
plexity.

We showed that the multi-party information cost exhibits good prop-
erties, among which a direct sum, which make it suitable to the study of
multi-party communication complexity. It allowed us to give tight commu-
nication complexity lower bounds in a fully distributed setting for the parity
and disjointness functions.

Some important questions remain open. For both the public information
cost and the multi-party information cost, it is necessary to develop more
techniques to obtain lower bounds. In particular, for the public information
cost, the existence of a direct sum result is worth investigating, not only as
it would lead to an easier way to get lower bounds, but also because of its
relation to the existence of a direct sum for communication complexity. It
would also be interesting to introduce a generalisation of the public infor-
mation cost to study the number of random coins required to run private

115
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protocols which are secure against collusions of players. Last, our framework
is not sufficient to allow for the study of fully asynchronous protocols, and
discovering novel tools for the study of fully asynchronous protocols remains
necessary.
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