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Abstract
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Doctor of Philosophy

Categorical Structural Optimization: Methods and Applications

by Huanhuan GAO

The thesis concentrates on a methodological research on categorical structural op-
timization by means of manifold learning. The main difficulty of handling the cat-
egorical optimization problems lies in the description of the categorical variables:
they are presented in a category and do not have any orders. Thus the treatment of
the design space is a key issue. In this thesis, the non-ordinal categorical variables
are treated as multi-dimensional discrete variables, thus the dimensionality of cor-
responding design space becomes high. In order to reduce the dimensionality, the
manifold learning techniques are introduced to find the intrinsic dimensionality and
map the original design space to a reduced-order space.
The mechanisms of both linear and non-linear manifold learning techniques are
firstly studied. Then numerical examples are tested to compare the performance of
manifold learning techniques mentioned above. It is found that the PCA and MDS
can only deal with linear or globally approximately linear cases. Isomap preserves
the geodesic distances for non-linear manifold however, its time consuming is the
most. LLE preserves the neighbour weights and can yield good results in a short
time. KPCA works like a non-linear classifier and we proves why it cannot preserve
distances or angles in some cases.
Based on the reduced-order representation obtained by Isomap, the graph-based
evolutionary crossover and mutation operators are proposed to deal with categori-
cal structural optimization problems, including the design of dome, six-story rigid
frame and dame-like structures. The results show that the proposed graph-based
evolutionary approach constructed on the reduced-order space performs more ef-
ficiently than traditional methods including simplex approach or evolutionary ap-
proach without reduced-order space.
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In chapter 5, the LLE is applied to reduce the data dimensionality and a poly-
nomial interpolation helps to construct the responding surface from lower dimen-
sional representation to original data. Then the continuous search method of moving
asymptotes is executed and yields a competitively good but inadmissible solution
within only a few of iteration numbers. Then in the second stage, a discrete search
strategy is proposed to find out better solutions based on a neighbour search. The
ten-bar truss and dome structural design problems are tested to show the validity of
the method. In the end, this method is compared to the Simulated Annealing algo-
rithm and Covariance Matrix Adaptation Evolutionary Strategy, showing its better
optimization efficiency.
In chapter 6, in order to deal with the case in which the categorical design instances
are distributed on several manifolds, we propose a k-manifolds learning method
based on the Weighted Principal Component Analysis. And the obtained manifolds
are integrated in the lower dimensional design space. Then the method introduced
in chapter 4 is applied to solve the ten-bar truss, the dome and the dame-like struc-
tural design problems.

Keywords: Categorical Optimization, Structural Optimization, Manifold Learn-
ing, Dimensionality Reduction, K-manifolds Learning, Evolutionary Methods, Ker-
nel Function, Polynomial Fitting, Truss Structure, Weighted Principal Component
Analysis
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Chapter 1

Thesis overview

In this chapter, an overview of the thesis is presented. In the first section, the objec-
tives of the research are pointed out. Then we elaborate the general methodology
of proposed optimization methods. In the last section, we give the outlines of the
whole thesis.

1.1 Research objectives

The research objectives of the thesis are to improve the structural performances by
using categorical optimization methods. More detailed objectives are listed as fol-
lows:

• to study the working mechanism of manifold learning methods and to com-
pare their performance with numerical tests.

• to refine the nature of design variables of categorical optimization and to state
the categorical structural optimization problems.

• to develop a discrete graph-based evolutionary approach and a continuous-
discrete two stage strategy to deal with the structural optimization problems.

• to investigate how optimization algorithm parameters affect the optimization
results and optimization efficiency.

• to compare the performance of the proposed methods with that of current ma-
ture optimization methods.

• to develop k-manifolds learning method to handle complex situations of the
design space.

• to apply the proposed categorical optimization methods to truss structures
composed with beams or bars.

1.2 Methodology

All the simulation processes in the thesis are carried out by using the finite ele-
ment analysis packages of matlab software, including mass calculation, compliance
evaluation and local linear buckling analysis. At first, the dimensionality of design
space is reduced by certain manifold learning methods, then different methods are
developed based on the reduced-order representations, including the graph-based
evolutionary operators, the continuous-discrete two stage approach. In chapter 6,
the design space of the optimization problems are firstly divided into several mani-
folds, and then dimensionality reduction is applied to each manifold. The proposed
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optimization methods are tested on practical numerical structure design problems,
showing their validity and optimization efficiency.

1.3 Thesis outline

In chapter 1, the thesis overview is given. The main goals of the research include
the investigation of manifold learning methods, the statement of categorical opti-
mization problems, the development and application of optimization methods and
the evaluation of the proposed optimization methods. In the methodology part, the
dimensionality of the design space is reduced by manifold learning methods, in-
cluding the k-manifolds learning method. Then the discrete evolutionary approach
and the two-stage search approach based on the reduced order representations are
applied to structure design problems. The three principal parts, including manifold
learning, simulation and optimization, are carried out with matlab packages. In the
outline part, the general introduction of the whole thesis is presented.
In chapter 2, the research backgrounds and references are listed. Since the research
content of the thesis is a combination of structural optimization and categorical op-
timization, both of them are detailed introduced, with different kinds of design cri-
teria and optimization classification. In the second section, the related concepts of
machine learning, together with their corresponding working mechanisms, are ex-
plained based on previous scientific works. Among all the machine learning meth-
ods, manifold learning are specially emphasized since it plays a key role in our
methodology. The typical manifold learners, including both linear and non-linear
ones, are elaborated with the aide of corresponding publications. The final section
discusses the optimization methods which consist of metaheuristics and gradient-
based methods, together with comments on their performance.
Chapter 3 mainly introduces the mechanisms of several manifold learning tech-
niques, including principal component analysis (PCA), multi-dimensional scaling
(MDS), Isomap, locally linear embedding (LLE) and kernel principal component
analysis (KPCA). Then three testing examples are used to compare the manifold
learning results. Besides, the learning efficiency is also discussed. As a focusing
point, KPCA is specially discussed on its failure to length and angle preservation.
Chapter 4 presents a discrete evolutionary graph-based approach to handle categor-
ical optimization problems. This approach deals with multi-objective optimization
with a single manifold design space. The higher dimensional design space is firstly
mapped to lower dimensional pace by applying the non-linear leaner Isomap, then
the design instances are connected using k-means or r-means. The evolutionary op-
timization operators including crossover and mutation are developed based on the
lower dimensional connecting graph. Finally, the algorithm is tested by numerical
examples including the dome and dam structure and six-story rigid frame structure.
The optimization results and efficiency are compared with a continuous method and
simplex approach, showing the advantages of the proposed algorithm.
In chapter 5, a two-stage search approach is proposed to handle single-objective
optimization problems with a single manifold design space. In the first stage, the
original design space is mapped to a lower dimensional space by LLE, then we con-
struct the analytical mapping from lower dimensional space to original one. Thus
the design problem is transformed to a lower order one. We make the discrete prob-
lem continuous and utilize the gradient-based method to execute a rough search. In
the second stage, a neighbour search based on the connecting graph is developed
and applied to numerical examples. The proposed approach is also compared with
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metaheuristics. In order to improve the optimization efficiency, a gradient-based fast
neighbour search is proposed for the second search stage.
Chapter 6 proposes a k-manifolds learning methods aiming at finding multiple man-
ifolds in the observation space and its application to single-objective categorical
structural optimization problems. Before dimensionality reduction, each design in-
stance is attached with a weight which donates the contribution in the process of
PCA. By optimizing the weights, the k-manifolds are separated automatically. Then
the lower dimensional representations of k-manifolds are organized and merged in
the same space. The categorical structural optimization is executed based on the
lower dimensional space of k-manifolds. Numerical examples are also tested in or-
der to show the validity of the methods.
Chapter 7 presents the conclusions and perspectives of the whole thesis. The con-
clusions include the evaluations of different kinds of manifold learning methods, the
effectiveness and optimization efficiency of three categorical optimization methods:
the discrete evolutionary approach, the two-stage search methods and k-manifolds
learning based approach. The further development and perspectives of the pro-
posed methods are also given in this chapter.
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Chapter 2

Research background

2.1 Categorical structural optimization

As a powerful design and selection tool, optimization is widely used or embed-
ded in both research subjects and engineering design applications due to its strong
mathematical background, flexible interfaces, various forms and design automation
property, for example, the identification and characterization problems (also named
the inverse problems) (Mosselman, Polman, and Dijkema, 1996), machine learning
subjects (Tenenbaum, De Silva, and Langford, 2000), route planning (Fu, Ding, and
Zhou, 2012), structural optimization (Cheng and Guo, 1997; Bendsøe, 1989) et al.
Among all the applications of optimization techniques, structural optimization is "a
discipline dealing with optimal design of load-carrying mechanical structures" (by
Krister Svanberg). The general framework of structural optimization includes an op-
timizer part and a simulation part (or response estimation). The role of the optimizer
is to update the designs iteration by iteration according to performance of the struc-
ture. In gradient-based optimizer, the sensitivities of all the criteria with respect to
each design variables are requested to renew the designs. While in population-based
evolutionary optimizers, the sensitivities are not necessary, and the population is up-
dated in successive generations.
The main task of the simulation (Fig. 2.1) part is to calculate the responses of the
structure, including weight (mass) or volume (Kaufmann, Zenkert, and Wennhage,
2010), structural compliance (or strain energy) (Sigmund, 2001), maximum stress
(Duysinx and Bendsøe, 1998), natural vibration frequency (Kaveh and Zolghadr,
2011), dynamic responses (Biegler, 1984), local or global buckling (Lund, 2009) et
al. The loads which are applied to the structure contain static loads (Sigmund, 2001),
acceleration loads (including gravity) (Xie and Steven, 1997), time-variant dynamic
incentives (Branke et al., 2000), thermal loads (Li et al., 1999), electromagnetic loads
(Chun et al., 1997) et al.
From the formal point of view, optimization may be classified by different kinds of

features. According the number of objectives, we can divide optimization problems
into single objective optimization (Liang et al., 2014) and multi-objective optimiza-
tion (Deb et al., 2002). Furthermore, considering the number of design constraints,
we can classify optimization into constrained problems (Powell, 1978) and uncon-
strained problems (Dennis Jr and Schnabel, 1996). One can also classify optimiza-
tion types by methods used, for example, the gradient-based optimization (Snyman,
2005), the evolutionary optimization (Davis, 1991), memetic optimization (Moscato,
1989) et al.
The so-called categorical optimization is labelled from the optimization classifica-
tion based on the nature of design variables. In the principal level, we can divide
optimization problems (Fig. 2.2) into continuous optimization, non-continuous op-
timization and mixed-variable optimization. Among them, continuous optimization
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FIGURE 2.1: The loads and responses of simulation

FIGURE 2.2: Classifications of optimization by the nature of design
variables

denotes the optimization problems in which the design variables are all continuous
(Pan et al., 2010; Zhao et al., 2011). While non-continuous optimization includes
discrete optimization, categorical optimization. The discrete optimization (Deo and
Kowalik, 1983; Rajeev and Krishnamoorthy, 1992) indicates that the design variables
are all discrete (or integer), which means the corresponding design space collapses
into a set of discrete points. We need to note that, in discrete optimization, the design
variable can only take scalar values, despite of that it may be handled with binary
strings or other means. Different from the discrete one, categorical optimization
(Coelho et al., 2015; Sloane and Morgan, 1996) can be defined as the optimization
where design variables (we say categorical variables) can take the values of a finite
set of instances, which were regarded as non-numerical ones in the beginning. While
in our work, we represent those instances with vectorial data, which can clearly re-
veal the nature of categorical variables: they are multi-dimensional discrete vari-
ables. And this point will be elaborated in more detail.

From the viewpoint of problem types, structural optimization can be subdivided
into topology (Sigmund, 2001), shape (Rozvany, Zhou, and Birker, 1992), size (La-
porta and Brussard, 1991), material selection (Stegmann and Lund, 2005), cross-
section selection et al (Fig. 2.3). Among these categories, the topology optimiza-
tion (Fig. 2.3(a)) deals with the layout design of materials or parts under given set
of loads and boundary conditions, for example the topology optimization of con-
tinuum structure (Duysinx and Bendsøe, 1998) and the truss topology optimization
(Rozvany, 1996). The former is usually treated with continuous variables, mean-
while the latter is always handled in a discrete manner. The shape optimization
(Fig. 2.3(b)) optimizes the boundary of a part, for example the radius of structural
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(a) Topology optimization (b) Shape optimization

(c) Size optimization (d) Material selection

FIGURE 2.3

holes (Lee and Kim, 2010a). The widely used shape optimization techniques include
geometrical parameter control (Hilbert et al., 2006), Isogeometry (Wall, Frenzel, and
Cyron, 2008), level-set functions (Allaire, Jouve, and Toader, 2002), control points
(Nemec, Zingg, and Pulliam, 2004) et al. Size optimization (Fig. 2.3(c)) (Kaveh and
Talatahari, 2009) focuses on the geometrical parameters of a structural feature, for ex-
ample the length of a bar, the thickness of a shell. The material selection (Fig. 2.3(d))
aims at finding the best material combinations for different parts of the structure
(Zhou, Yin, and Hu, 2009; Ashby, 2000). To handle the material selection problems,
both continuous methods and discrete methods can be applied.
The categorical structural optimization is the combination of categorical optimiza-

tion and structural optimization, for instance, the selection of a material within a fi-
nite the set (steel, aluminium, titanium, composites) or the selection of cross-section
types among the catalog (square, I-shaped, round,...). The key issue with this kind
of problems is how to represent the design variables (Coelho et al., 2015; Filomeno
Coelho, 2014).In previous work, different coding schemes including binary, real and
simplex, are proposed successively. Binary coding (Goldberg, 2006) can only rep-
resent non-continuous values with 0/1 strings which may lead to the problems of
expression accuracy, excess non-sense strings et al. Real coding utilizes the real val-
ues to stand for representation and optimization, thus the genotype and phenotype
are united into one (Herrera, Lozano, and Verdegay, 1998; Eshelman and Schaffer,
1993). But when dealing the categorical variables, both binary coding and real cod-
ing will casually assign unfounded distances (or called relative positions) to cat-
egorical data. To overcome the distance expression difficulty, the simplex coding
(Filomeno Coelho, 2014; Herrera et al., 2014) is proposed and applied in categori-
cal optimization. Instead of using binary strings or real numbers, simplex coding
exploits vectorial coordinates of points in the design space, in which different cat-
egorical design candidates are assigned as the same. The other optimization meth-
ods which are tailored for categorical optimization include the mesh adaptive direct
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search (Abramson et al., 2009), ant colony (Liao et al., 2014), mixed variable program-
ming (Kokkolaras, Audet, and Dennis, 2001) and global descent approach (Lindroth
and Patriksson, 2011).

2.2 Machine learning and manifold learning

The objective of manifold learning (Lunga et al., 2014; Tenenbaum, 1998) is to find
the potential lower dimensional topological space embedded in the higher dimen-
sional space. The original higher dimensional space is named observation space
while the lower dimensional space is called feature space. Manifold learning is
a kind of unsupervised machine learning method. The various machine learning
theories and methods can be generally divided into three learning method groups:
distinction construction and classification, conditional probability construction and
probability density function construction through regenerative models.
The distinction construction and classification methods include clustering analysis,
pattern recognition, artificial neural networks, support vector machines, manifold
learning, Bayesian classifier and decision tree.
Among those learning methods, clustering analysis (Hartigan, 1975; Jain and Dubes,
1988; Hartigan and Wong, 1979) groups a certain number of sample points in differ-
ent clusters based on the distance definition (for example the Euclidean distance) or
on the similarity according to data features, and it has been applied in economics,
computer science and web techniques.Pattern recognition (Nasrabadi, 2007; Anzai,
2012) concentrates on finding of data regularities and patterns, and assigns differ-
ent labels to input values according to the learning results. Inspired by the bio-
logical neural networks, artificial neural networks (Schalkoff, 1997; Yegnanarayana,
2009) exploit the multi-layer neuron which work as simple linear or non-linear clas-
sifiers to distinguish different kinds of categories through a big amount of learning
examples. The artificial neural networks also have a wide application in artificial
intelligence, vehicle control, face identification, signal classification. They are also
referred as a king of deep learning. Support vector machines (Suykens and Van-
dewalle, 1999; Furey et al., 2000) are a kind of supervised learning methods which
can analyse the training data and build up learning models for classification and
regression analysis. Manifold learning (Lunga et al., 2014; Tenenbaum, 1998) aims
to find the lower dimensional representation of higher dimensional data with no
(or less) information loss. It is also regarded as a kind of dimensionality reduction
technique. It is used in image management, structural optimization. We will give a
detailed introduction to manifold learning later in chapter 2. The Bayesian classifiers
(Wang et al., 2007; Domingos and Pazzani, 1997) are sets of probabilistic classifiers
taking advantages of the Bayes’ theorem by assuming that the features are strongly
independent (naive Bayes). Bayesian classifiers have achieve a great success in text
check, speech recognition and human-level concept learning (Lake, Salakhutdinov,
and Tenenbaum, 2015). The decision tree (Quinlan, 1986; Quinlan, 1987) applied the
tree model with decisions and their possible consequences in order to make deci-
sions. It is simple and well interpreted, but it may also bring inaccuracy in result
outputs , thus cause wrong decisions.
The second group of machine learning methods: conditional probability construc-
tion, mainly contain the Gaussian process regression, linear discriminant analysis,
nearest neighbor methods, radial basis function kernels (Chang et al., 2010; Vert,
Tsuda, and Schölkopf, 2004). In Gaussian process regression, the lazy learning and
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the kernel function are used to predict the value of given training data, providing
both of the value estimation and the uncertainty information. The Gaussian process
learning can be a helpful tool to predict and build up the surrogate model of a func-
tion, for example the kriging model. Linear discriminant analysis (Mika et al., 1999;
Altman, Marco, and Varetto, 1994; Prince and Elder, 2007) applies a linear combina-
tion of features to classify or separate different kinds of events, and it is commonly
used in pattern recognition, statistics and machine learning. The nearest neighbor
methods (Shakhnarovich, Darrell, and Indyk, 2006; Devroye and Wagner, 1982) can
be regarded as a kind of lazy learning. In the nearest neighbor methods, the investi-
gated function is approximated locally, then the object is classified only by a majority
vote of its neighbors. Due to its simplicity, the nearest neighbor methods are widely
used in classification and regression fields. The radial basis function kernels (Chang
et al., 2010; Vert, Tsuda, and Schölkopf, 2004) are also named Gaussian RBF. They are
popular in all the kernel-related learning methods, for example the support vector
machine and the kernel principal component analysis. And in chapter 2, we give an
exhaustive elaboration of the radial basis function.
The third learning algorithm group is the probability density function construction
through regenerative models. They can be divided to expectation-maximization al-
gorithm, probability models and generative topographic mapping. Among them,
the expectation-maximization algorithm (Zhang, Brady, and Smith, 2001; Moon,
1996; Fessler and Hero, 1994) deals with the statistical models which are dependent
on unobserved latent variables. The method can find the maximum likelihood esti-
mates of the parameters in an iterative manner. The probability models (Barlow and
Proschan, 1975; Ross, 2014) can build the relationship between several independent
random variables by using the graph theory. The graphs used in probability models
include the Bayesian networks and the Markov networks. This method is usually
used in Bayesian learning and machine learning. The generative topographic map-
ping (Bishop, Svensén, and Williams, 1998) projects a low dimensional data to a high
dimensional space by a smooth function considering noise, then the expectation-
maximization algorithm is used to learn the parameters of the low dimensional dis-
tribution and the noise. The advantage of this method is that the shrinking neigh-
bourhoods or decreasing step lengths are not necessary for algorithm convergence.
There are two kinds of linear manifold learning methods which are named Princi-
pal Component Analysis (PCA) (Jolliffe, 1986; Wold, Esbensen, and Geladi, 1987)
and Multi-Dimensional Scaling (MDS) (Martin and Eroglu, 1993; Kandogan, 2001),
respectively. PCA investigates the covariance matrix of the observed data and de-
composes it through eigenvalue decomposition. Consequently, PCA reorganizes the
projection system by minimizing the variance, thus it can preserve the most of the
information. MDS acts on the inter-distances between data points. It focuses on
the preservation of Euclidean distances. Normally, the results obtained by PCA and
MDS are the same, but PCA provides an explicit expression which can map new ex-
tra points while MDS cannot handle that. The main disadvantage of PCA and MDS
is that they are not able to handle non-linear data, for example the "Swiss Roll" man-
ifold (Tenenbaum, De Silva, and Langford, 2000).
The well-known non-linear manifold learning methods include Locally linear Em-
bedding (LLE), Isomap and Kernel Principal Component Analysis (KPCA). LLE
(Roweis and Saul, 2000; De Ridder et al., 2003; Donoho and Grimes, 2003) consists
of three steps: Firstly, LLE builds the neighbourhood for each sample point by using
either k-neighbour means or r-radius means; Secondly, LLE constructs the weights
of all neighbours by minimizing the construction error. One of the advantages is that
the weight optimization problem is convex and thus local minima can be avoided.
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FIGURE 2.4: Methods of Metaheuristics and corresponding publica-
tion years

Isomap (Tenenbaum, De Silva, and Langford, 2000; Balasubramanian and Schwartz,
2002) can be regarded as a non-linear version of MDS. What is different between
MDS and Isomap is that Isomap applies the geodesic distances instead of Euclidean
distances. In Isomap, the geodesic distance is calculated by the Dijkstra algorithm
(Dijkstra, 1959), then the distances are preserved in the lower dimensional design
space. The dimensionality reduction effects of Isomap actually heavily depends on
the construction of the neighbourhood connecting graph. If the graph cannot re-
flect the true manifold in the higher dimensional space, the Isomap will fail. Also,
Isomap has the same disadvantages as MDS, namely Isomap cannot deal with new
data points and needs the target dimension number is given in advance. KPCA
(Schölkopf, Smola, and Müller, 1998; Cao et al., 2003) firstly maps the original data
to much higher dimensional space by using the kernel functions, for example the
linear kernel function, the polynomial kernel function and the Gaussian radial ba-
sis function. Then PCA is utilized to reduce the dimensionality. This is the classi-
cal idea of Support Vector Machines (Cortes and Vapnik, 1995; Vapnik, 2013). The
dimensionality reduction effects of KPCA mainly depend on the choice of kernel
functions and the parameters of the kernel functions. Those non-linear manifold
learning techniques have already been used in identification problems (Meng et al.,
2015), structural optimization (Raghavan et al., 2013), visualization problems (Pat-
wari, Hero III, and Pacholski, 2005; Wang et al., 2008) and networks (Patwari and
Hero, 2004).

2.3 Optimization methods

2.3.1 Metaheuristics

The metaheuristics denote a process of generating and selecting good solutions within
a limited acceptable time cost. Normally the global optima cannot be guaranteed or
proved by metaheuristics. Despite of the cons, metaheuristics still have received
more and more attentions and are applied to handle numerous engineering and re-
search optimization problems.
The popular representative methods of metaheuristics (Fig. 2.4) include ant colony
optimization (ACO), genetic algorithms (GA), evolution strategy (ES), evolution-
ary programming (EP), simulated annealing (SA) and particle swarm optimization
(PSO).
The ant colonies optimization (Dorigo and Birattari, 2011; Dorigo, Maniezzo, and
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Colorni, 1996) was firstly used to find the optimal path based on the food-seeking
behaviours of ants. Then it is extended and diversified to solve many kinds of opti-
mization problems. It is a kind of simulated evolutionary algorithm. Nowadays, the
ant colonies optimization is usually used in route planning, scheduling, resource al-
location problems et al. The genetic algorithms (Davis, 1991; Anderson-Cook, 2005)
are a kind of nature-inspired method to deal with optimization problems. They sim-
ulate the evolution of biological populations and apply the "survival of the fittest"
idea. The main operators of genetic algorithms consists of initialization, crossover,
mutation and selection. Due to the flexibility of coding schemes, operator extensibil-
ity and interface versatility, genetic algorithms have achieved much success both in
theoretical and engineering applications (Goldberg and Holland, 1988; Srinivas and
Deb, 1994). In evolution strategy (Janis, 1976), the design evolution is inspired only
by mutation and selection in one generation. The evolution continues until the ter-
mination conditions are satisfied. In order to generate new populations, the normal
distribution is used to generate new random individuals. The mutation strength is
controlled by self-adaptation schemes. If the individual step size is determined by
covariance matrix, the corresponding algorithm is named covariance matrix adap-
tation evolution strategy (CMA-ES) (Hansen, Müller, and Koumoutsakos, 2003; Ros
and Hansen, 2008). evolutionary programming (Back, 1996) has many similarities
with genetic programming. In EP, the new variation is only driven by mutation op-
erators which act on the population, then the survivor selection is applied to main-
tain good individuals for next generation. The applications of EP include artificial
intelligence (Fogel, Owens, and Walsh, 1966; Fogel, 1999), machine learning, struc-
tural optimization. The simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983)
is a probabilistic optimization method for finding the global optimum of the objec-
tive over a large search space within a fixed time cost by simulating the process of
metal annealing. The whole simulation process is controlled by the annealing tem-
perature, which determines by how much probability the new design is accepted or
rejected. By accepting and rejecting operation, the design has a certain possibility
to walk out of the current local optima and find the global one. The particle swarm
optimization (Kennedy, 2011; Poli, Kennedy, and Blackwell, 2007) is also a famous
population based optimization method. The method regards every individual as a
micro particle without any volume and mass, and every particle moves in the de-
sign domain with a certain speed according to the flying experiences of its own and
its neighbours. All the particles are supposed to concentrate on better solutions. In
further development, the inertia weights are introduced to control the exploitation
and exploration properties. When orthogonal learning (Zhan et al., 2011; Ho et al.,
2008) is introduced into PSO, the global convergence, convergence accuracy and ro-
bustness have been significantly improved.
Other metaheuristics optimization methods include artificial immune systems (AIS)
(Aickelin, Dasgupta, and Gu, 2014), cultural algorithms (CA) (Reynolds, 1994), co-
evolutionary algorithms (CEA) (Michalewicz and Nazhiyath, 1995), differential evo-
lution (DE) (Storn and Price, 1997), genetic programming (GP) (Koza, 1992), greedy
adaptive search procedures (GASP) (Feo and Resende, 1995).

2.3.2 Gradient-based methods

Different from metaheuristics, the gradient-based methods also represent a large
group of iterative design updating methods taking the advantage of gradients (also
called sensitivities) of the objective function and constraint functions with respect
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to design variables. For multiple variable optimization problems, the first order
sensitivities can be organized in the form of Jacobian vector, and the second order
sensitivities are written in the form of Hessian matrix.
The basic gradient-based methods include the steepest descent (SD), conjugate gra-
dient (CG), Newton’s method (NM), as shown in Fig. 2.5. The steepest descent
(Goldstein, 1965; Yamada, 2001) is a classical first-order optimization method. It uti-
lizes the reverse direction of the gradients as the searching direction, and finally one
can expect that the searching process converges in a local solution. The advantages
of steepest descent is that it is simple, but it suffers from the so called "sawtooth
phenomenon" which leads to a slow convergence. Furthermore, the steepest de-
scent method does not consider design constraints, so modifications are necessary,
for example the penalty function methods (Kort and Bertsekas, 1972). The conjugate
gradient (Powell, 1977) is also method to solve unconstrained optimization prob-
lems. By applying the conjugate property of the adjacent searching directions in
the optimization loops, the conjugate gradient introduces a modification of current
searching direction, making it faster than the steepest descent in the beginning, but
this modification may also be not conducive to the convergence speed due to error
accumulation in final several iteration. The Newton’s method (Wedderburn, 1974;
Loke and Barker, 1996) (also named Newton-Raphson method) uses both of the first-
order and second-order gradients (Hessian matrix) to construct a second-order ap-
proximation of the objective function. Many analytical tests have proved that in the
case where the Newton’s method is applicable, it is faster than the steepest descent.
However, one of the difficulties for Newton’s method is that the Hessian matrix is
usually hard to obtain. And an fatal condition required is that the Hessian matrix
must be positive definite. In order to solve this problem, a series of quasi Newton’s
methods (Shanno, 1970) are proposed and developed, including the DFP algorithm
(Broyden, 1970) and BFGS algorithm (Zhu et al., 1997). The idea of both algorithms
is to approximate the Hessian matrix in order to complete optimization search under
the quasi Newton’s conditions.
The practical gradient-based optimization methods (Fig. 2.5) used for engineering
problems include the method of feasible directions (MFD), sequential linear pro-
gramming (SLP), sequential quadratic programming (SQP), generalized reduced
gradient (GRG), method of moving asymptotes (MMA) et al. The method of fea-
sible directions (Zoutendijk, 1960; Chen and Kostreva, 1999) can be regarded as an
extension of unconstrained gradient descent. It starts at the initial design point,
and applies the 1-D line search along the descent direction. The key step is the
choice of search directions and searching step lengths. The method of feasible di-
rections can solve the optimization problems with inequality constraints at a fast
speed, however, it can not deal with the optimization problems with equality con-
straints. Sequential linear programming (Marcotte and Dussault, 1989; Etman et
al., 1996) is proposed to handle non-linear optimization problems by using first-
order approximation. This method solves a sequence of first-order approximations
of the original problem, which provides a high optimization efficiency. At last, the
trust regions techniques are introduced to guarantee converged optimization pro-
cess. Similar as the sequential linear programming, the sequential quadratic pro-
gramming (Nocedal and Wright, 2006; Boggs and Tolle, 1995) solves a sequence of
sub-problems which are approximated by quadratic models with linear constraints.
If the optimization problem is unconstrained, the sequential quadratic programming
degenerates to Newton’s method; If only equality constraints exist, this method
evolves to Newton’s method with Karush–Kuhn–Tucker conditions of the optimiza-
tion problem. The generalized reduced gradient (Lasdon et al., 1978) is the general
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FIGURE 2.5: Gradient-based methods and the publication years

form of the reduced gradient method (Wolfe, 1962; Minyi and Jiye, 1979) to solve
optimization problems together with non-linear objective function and non-linear
constraints. In this method, the inequality constraints are firstly transformed into
equality constraints by introducing a positive slack variable. Then the all the design
variables are divided into independent and dependent variables according to the all
the equality constraints, consequently the dependent variables are represented by
the independent ones. After that, the size of the gradient information is reduced.
Then the Newton’s method is applied to solve the non-linear equation sets and ob-
tain a proper searching step length until the algorithm is converged. The method of
moving asymptotes (Svanberg, 1993; Svanberg, 1987) uses the asymptotes iteration
by iteration to control the constructed convex sub-problems being solved, which can
help improve the convergence speed and optimization stability. The further devel-
opments include the generalized method of moving asymptotes (Zhang et al., 1996)
and the globally convergent method of moving asymptotes (Zillober, 1993).
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Chapter 3

Manifold learning techniques

In this chapter, we give an introduction of several popular manifold learning algo-
rithms. The role of manifold learning is crucial because all the proposed optimiza-
tion methods are developed based on the manifold learning techniques. All the
manifold learning methods assume that the data points are randomly sampled from
an m-dimensional manifold which exists potentially in an M-dimensional space
(m<M). The task of manifold learning is to find the new representations (coordi-
nates) of those sample points in the lower m-dimensional space, according to their
coordinates in the higher M-dimensional space. Conventionally, the original higher
dimensional space is called observation space, while the new lower dimensional
space is named feature space.
The manifold learning algorithms are mainly categorized into two kinds: the linear
and non-linear ones. There have already been theories and applications which con-
centrate on the linear manifold learning, for example, a linear manifold indicates a
1-D line, 2-D plane, or a hyperplane in the higher dimensional observation space.
Although in some cases, the potential manifold is assumed to be linear, it is gen-
erally non-linear in most practical cases. Another fact is that since the data points
are obtained by measurements or observations, it is unavoidable to introduce the
observation error, or we say noise, which will undermine the original linearity of
the data. Consequently the linear manifold is always used as a realistic assump-
tion rather than an ideal tool. Even though, we cannot ignore the successful theory
developments and numerous practical applications of linear manifold learning tech-
niques because firstly non-linear manifold can always be regarded as locally linear
and secondly, linear manifold learning techniques usually have high efficiency in
dealing with non-linear data, especially for big data and large dimensionality num-
bers.
The non-linear manifold learning takes more complex manifolds in consideration,
for example, manifolds with bending, warping or twisting. The famous examples for
scientific research purposes are the "Swiss Roll" and the "S-Curve", as shown in Fig.
3.4. Undoubtedly, non-linear manifolds are closer to the real data status of the world.
The task of non-linear manifold learning is to recover the lower dimensional coordi-
nates with provided higher dimensional representations of the non-linear data.
The well-known linear manifold learning algorithms include Principal Component

Analysis (PCA) and Multidimensional Scaling (MDS) illustrated in section 3.1 and
3.2. Three typical non-linear manifold learning techniques are also introduced in this
chapter, including Isomap (section 3.3), Locally Linear Embedding (LLE) (section
3.4) and Kernel Principal Component Analysis (KPCA) (section 3.5), respectively. In
section 3.6, we give testing examples of the proposed manifold learning techniques.
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FIGURE 3.1: Examples of non-linear manifolds

3.1 Principal component analysis

We firstly define the data X = [x1, x2, · · · , xn] is a M× n matrix. M is the number
of dimensions, while n is the number of data points. Dimensionality reduction is to
find a lower m-d representation of the n data points.
Suppose the initial data X is centered in the beginning, then the covariance matrix
can be defined as:

C =
1
n

XXT. (3.1)

The eigenvalue decomposition yields:

C = ΦΛΦT, (3.2)

where Λ denotes the eigenvalues and Φ is the metric of corresponding eigenvectors,
and ΦTΦ = I. Note that after a descending ordering

Λ = diag(λ1, λ2, · · · , λM),
λ1 ≥ λ2 ≥ · · · ≥ λM.

(3.3)

We choose the first m eigenvectors and form the projection matrix Φm = [φ1, φ2, · · · , φm].
Finally, we obtain the representation in m dimensional space:

yi = ΦT
mxi, i = 1, 2, · · · , n. (3.4)

With Eq. 3.4, we can project new points to the lower dimensional space.
After dimensionality reduction, the data information preservation ratio of the lower
dimensional representation can be measured by:

κ =

m

∑
i=1

λi

M

∑
i=1

λi

. (3.5)

κ = 1 means no information loss during the mapping process and the m is the num-
ber of intrinsic dimensionality.
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3.2 Multidimensional scaling

Multidimensional scaling is also a linear manifold learning algorithm. Different
from PCA, MDS focuses on the distance preservation. Given the distance matrix:

D(X)
n×n, D(X)(i, j) = ||(xi, xj)||2,

i, j = 1, 2, · · · , n,
(3.6)

where || · ||2 is the 2-norm of a vector, MDS is developed to find the new coordinates
Y in lower dimensional space:

Ym×n = [y1, y2, · · · , yn],
yi = (1bi, 2bi, · · · , mbi)T, i = 1, 2, · · · , n,

n

∑
i=1

lbi = 0, l = 1, 2, · · · , m.
(3.7)

In order to handle centred data, the transformation matrix P is defined as:

P = I− 1
n

eeT, eT = (1, 1, 1, · · · , 1)1×n, (3.8)

yielding the Gram matrix G:

G = −1
2

P(D(X))2PT (3.9)

Because G is symmetric and positive definite, we carry out the eigenvalue decom-
position and get:

G = ΦΛΦT, (3.10)

where

Λ = diag(λ1, λ2, · · · , λM),
λ1 ≥ λ2 ≥ · · · ≥ λM

(3.11)

and Φ is the matrix whose columns contain eigenvectors of G and λi corresponds to
the i-th largest eigenvalue.
We choose the m largest eigenvalues and define:

Λ
1
2
m = [diag(

√
λ1,

√
λ2, · · · ,

√
λm)] (3.12)

Finally we obtain the reduced-order coordinate matrix Y:

Y = [y1, y2, · · · , yn] = Λ
1
2
mΦT

m. (3.13)

where Φm is composed by the eigenvectors corresponding to the m largest eigenval-
ues.
Different with PCA, MDS cannot add new points after the the process is completed.
Another difference is that MDS needs the target dimensionality number given in
advance, while PCA can decide the target dimensionality number after eigenvalue
decomposition.
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3.3 Isomap

As a non-linear manifold learning method, Isomap can be regarded as a variant
of MDS. The difference between MDS and Isomap is that MDS uses the Euclidean
distances while Isomap utilizes the geodesic distances. Geodesic is the line along
which the acceleration vector equals zeros on the manifold. In Isomap, the geodesic
distance is approximated by the shortest path based on graph algorithm.
Fig. 3.2(a) shows the illustration of a geodesic from point xa to xb. In order to cal-
culate the geodesic distance, we first define the nearest neighbour points for all the
points by the ε-mean or the K-mean algorithm(Tenenbaum, De Silva, and Langford,
2000). Then, for every pair of neighbour points, their geodesic distance is approx-
imated by the Euclidean distance; for other nonadjacent points, their geodesic dis-
tance is approximated by summing up the distances along the shortest path obtained
by Dijkstra algorithm (Dijkstra, 1959) in the graph (Fig. 3.2(b)).
After obtaining the distance matrix, the MDS algorithm is run and yields the new
representation in the reduced-order space.

3.4 Locally linear embedding

The thought of Locally Linear Embedding (LLE) is that a manifold in a small local
neighbourhood can be regarded as a linear one. Thus, a point can be represented by
the linear combination of the coordinates of its neighbour points. The combination
coefficients are actually the description of the local environment of the point. And
this description, namely the coefficients, are preserved in the new reduced-order
space.
The first step of LLE is to identify K neighbours per data point with the ε-mean or
the K-mean. The reconstruction errors are calculated by the cost function:

E1(W) = ∑
i

|xi −∑
i

Wijxj|2. (3.14)

In Eq. (3.14), the combination weights Wij indicate the coefficients of the j-th point
for the reconstruction of the i-th point. If xj is not the neighbor of xi, then Wij = 0.
We also add the constraint ∑j Wij = 1. By solving the problem, one can finally get
the optimal weights.
In the lower dimensional space, LLE reconstructs the neighbourhoods for all the
sample points. During the reconstruction, the weights are preserved. To find the
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lower dimensional representation, the following cost function is minimized:

E1(Y) = ∑
i

|yi −∑
i

Wijyj|2. (3.15)

The minimization problem is a quadratic expression of yi, which can be transformed
to an eigenvalue problem. We assume

T = (I−W)T(I−W), (3.16)

where I is an identity matrix. Then the minimization problem can be written as

E2(Y) = ∑
ij

Tij(yi · yj). (3.17)

We apply the following conditions:

∑
i

yi = 0,

1
n ∑

i

yi(yi)T = 1,
(3.18)

and finally we solve the eigenvalue problem

TY = λY. (3.19)

We choose the m eigenvectors which correspond to the m largest eigenvalues as the
new coordinates in the lower-dimensional space.

3.5 Kernel principal component analysis

Compared with PCA, Kernel principal component analysis (KPCA) introduces a
non-linear kernel function Ψ which maps the sample points to a higher dimensional
space in order to handle non-linear data. Another key innovation is that KPCA ap-
plies a hypothesis: Any vector (even though a basis vector), can be represented by
the linear combinations of all the samples in the space.
For a centred sample data X = [x1, x2, · · · , xn], the kernel function Ψ is applied to
project the sample data to a higher dimensional space in which the data can be lin-
early separated. We assume the dimensions of Ψ(X) is H, then PCA is executed.
Thus we have

Ψ(X)Ψ(X)Tφi = λiφi (3.20)

where φi, i = 1, 2, · · · , M are the eigenvectors, and λi are the corresponding eigen-
values.
As mentioned above, the eigenvector φi is expressed by the linear representations of
sample data Ψ(X), as follows:

φi =
n

∑
j=1

αjΨ(xj) = Ψ(X)α. (3.21)

Substitute Eq. (3.21) to Eq. (3.20), we obtain

Ψ(X)Ψ(X)TΨ(X)α = λiΨ(X)α. (3.22)
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we left-multiply both ends of Eq. (3.22) by Ψ(X)T and get

Ψ(X)TΨ(X)Ψ(X)TΨ(X)α = λiΨ(X)TΨ(X)α. (3.23)

In the next step, we construct Υ = Ψ(X)TΨ(X). Υ is assembled by the following form

Υ =

 · · · · · · · · ·
· · · ζ(xi, xj) · · ·
· · · · · · · · ·


n×n

. (3.24)

ζ(xi, xj) is a kernel function. There are several popular kernel functions to choose,
such as:
1) Linear kernel function:

ζ(xi, xj) = xi · xj; (3.25)

2) Polynomial kernel function:

ζ(xi, xj) = (xi · xj + 1)p; (3.26)

3) Gaussian radial basis function:

ζ(xi, xj) = exp(−||x
i − xj||
σ2

); (3.27)

4) Sigmoid function:
ζ(xi, xj) = tanh(xi · xj + θ); (3.28)

Consequently, Eq. (3.23) can be written as

Υ 2α = λiΥα. (3.29)

yielding
Υα = λiα. (3.30)

After solving this eigenvalue problem, we can easily select only several largest eigen-
values and their corresponding eigenvectors.
As any new data point xnew can be mapped to Ψ(xnew) in the higher dimensional
space, its new coordinates ynew after dimensionality reduction can be expressed as

ynew = φT
i Ψ(xnew)

= (
n

∑
j=1

αjΨ(xj))TΨ(xnew)

= (Ψ(X)α)TΨ(xnew)

= αTΨ(X)TΨ(xnew)

= [α1, α2, · · · , αn][ζ(x1, xnew), ζ(x2, xnew), · · · , ζ(xn, xnew)]T.

(3.31)

3.6 Testing examples

In this section, three examples including multiple cross-sections, the Swiss Roll and
the S-Curve, are carried out with different manifold learning techniques proposed in
previous sections of this chapter. We also discuss how the number of sample points
will influence the learning results and the time costs with respect to the tested man-
ifold learning algorithms.
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FIGURE 3.3: The three types of cross-sections

3.6.1 Multiple cross-section example

Here we propose to investigate the design instances of three kinds of cross-sections:
the I-shape, the hollow square shape and the hollow circle shape as illustrated in
Fig. 3.3. The geometrical parameters of all the shapes are listed as in Tab. 3.1,
respectively. Due to the various of geometrical parameters, there are 99 cross-section
instances: the I-shape numbered from 1 to 48, the hollow square numbered from 49
to 84 and the hollow circle numbered from 85 to 99.

TABLE 3.1: The available values of geometrical parameters

Parameter Available values(m)

H1 (0.05, 0.06, · · · , 0.1)

L1 (0.04, 0.05, · · · , 0.09)

t1 (0.05)

L2 (0.04, 0.045, · · · , 0.08)

t2 (0.004, 0.005, · · · , 0.007)

r3 (0.04, 0.045, · · · , 0.06)

t3 (0.005, 0.006, 0.007)
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FIGURE 3.4: Cross-section instances

We take into consideration the physical properties including cross-section area,
area moment of inertia along y-axis and area moment of inertia along z-axis (x-axis
is recognized as the normal direction of the area). We display all the 99 bars in the
3-D physical space, as shown in Fig. 3.4, in which the round markers denote the
instances of I-shape cross-sections, the square markers indicate the hollow square
cross-sections and the triangle markers are the hollow circle cross-sections.
The investigated manifold learning methods include PCA, MDS, Isomap, LLE and

KPCA. For both Isomap and LLE, we apply the k-means to determine the neighbour
points, and the numbers of neighbour points are set as 7 and 10 respectively to illus-
trate how the choice will affect the learning results. Also, for KPCA, we apply two
kinds of kernel functions: the Gaussian radial basis function (σ = 1) and polynomial
kernel function (p = 2).
In Fig. 3.5(a-h), we display the learning results by PCA, MDS, Isomap, LLE and
KPCA, respectively. While the original 99 design instances distributes in an approx-
imate 2-D "Butterfly Wings" form, the Isomap and LLE, even the linear learning
methods PCA and MDS can present a successful dimensionality reduction results.
We can also find that for different learning parameters, the learning results obtained
by Isomap and LLE show a small difference, but the main shape and the relative po-
sitions of the sample data are preserved. Unlike other manifold learning methods,
KPCA with Gaussian radial basis function and polynomial function fail to preserve
the general shape and the relative positions of the sample data of the 2-D space. The
reason of this failure lies in the fact that although mapping non-linear data from ini-
tial space to higher dimensional space by using non-linear kernel functions makes
data more easily divided with linear boundaries, the structure of samples’ distribu-
tion may have been undermined. In the following sections, we will explain why
KCPA with Gaussian RBF or polynomial functions may fail in data pattern preser-
vation.

3.6.2 Swiss Roll example

The Swiss Roll example is a 2-D non-linear manifold embedded in 3-D space. As
displayed in Fig. 3.6, 2000 sample points are gathered on the manifold to execute the
dimensionality reduction. The investigated manifold learning methods including
PCA, MDS, Isomap (7 and 10 neighbours), LLE (7 and 10 neighbours) and KPCA
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(b) MDS
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(c) Isomap (Nnei = 7)

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.6

−0.4

−0.2

0

0.2

0.4

1
2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31
32

33

34

35

36

37
38

39

40

41

42

43
44

45

46

47

48

4950
51

52

53 54
55

56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75

76

77
78

79
80

81

82
83

8485

86

87

88

89

90

91

92

93

94

95

96

97

98

99

y
1

y 2

(d) Isomap (Nnei = 10)
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(e) LLE (Nnei = 7)
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(f) LLE (Nnei = 10)
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FIGURE 3.5: The learning results obtained by different methods and
parameters (Cross-sections)
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FIGURE 3.6: Sample points of the Swiss Roll

(Gaussian RBF and Polynomial kernel functions) are tested. As shown in Fig. 3.7, it
is certain that the linear manifold learning methods: PCA and MDS can only adjust
the projection directions thus the 2-D curled manifold cannot be unfolded in the
reduced order space. Isomap with 7 or 10 neighbours points can generally unfold the
the Swiss roll manifold. While LLE shows different results: The 10-neighbour group
performs better in data pattern preservation, although the 7-neighbour group can
also distinguish the two ends of the manifold; both groups bring a distortion of the
regular plane manifold. When the number of neighbours increases, the distortion
situation can be improved. KPCA performs as predicted: the Gaussian RBF (σ = 1)
and Polynomial function (p = 2) cannot preserve the data configuration. And the
reason will be illustrated in following section.

3.6.3 S-Curve example

We use the S-Curve example to test how the number of sample point influences the
manifold learning results. As shown in Fig. 3.8, the S-Curve manifold is a curled
plane embedded in 3-D space. We gather 1000, 2000, 3000 and 4000 sample points
respectively to illustrate the effect. Fig. 3.9, 3.10, 3.11 and 3.12 show the manifold
learning results of different methods with different numbers of samples points. The
conclusion can be drawn that even 1000 sample points can support the manifold
learning process being executed, but the success of unfolding the curled manifold
relies on the mechanism of certain manifold learning methods. PCA and MDS still
cannot unfold the manifold correctly, and their performance shows an honest fact
that PCA and MDS can only deal with the cases that the potential manifold does not
overlap along the projection direction (potentially) provided by PCA or MDS (Fig.
3.9-3.12(a,b)). The Isomap with 7 or 10 neighbours (Fig. 3.9-3.12(c,d)) can always
obtain reasonable and successful results and behaves the best despite of different
numbers of data points. LLE (Fig. 3.9-3.12(e,f))can also unfold the 2-D manifold in
spite of that the corresponding results show some extent of distortion, and also the
increasing of neighbour numbers can help ease the distortion. KPCA with Gaussian
RBF (σ = 1) and Polynomial kernel functions (p = 2) still do not maintain the pat-
tern of data points and present an incomplete unfolding of the 2-D manifold despite
of the increasing number of sample points (Fig. 3.9-3.12(g,h)).
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FIGURE 3.8: Sample points of the S-Curve

3.6.4 Time cost comparison

We also compare the efficiency of different manifold learning methods. We did a
survey of time cost of different manifold learning methods with different numbers
of sample points, namely 1000, 2000, 3000 and 4000. The tested example is also the
S-Curve.
As listed in Tab. 3.2, we can find that as the numbers of sample points grow, the cor-
responding time consuming also rises for all methods. For the two linear learners,
PCA costs less time than MDS although their learning results are totally the same.
LLE performs efficiently compared to other non-linear learning methods, and the
increase of neighbour numbers only brings a bit more time. Isomap is the most time
consuming learning method, and its time cost is two orders of magnitude larger than
that of LLE. Although KPCA seems to be faster than Isomap, it costs more time than
LLE.
The advice for choosing manifold learning methods can be this: for linear cases,
PCA is better than MDS considering the time cost; for non-linear cases, one can try
LLE first, if LLE with large neighbour numbers show much distortion, then Isomap
is the last choice to handle the manifold learning tasks.

TABLE 3.2: The corresponding learning time cost needed (Unit: s)

1000
points

2000
points

3000
points

4000
points

PCA 7.5× 10−4 8.5× 10−4 9.2× 10−4 9.4× 10−4

MDS 5.2× 10−1 2.40× 100 6.26× 100 1.30× 101

Isomap (Nnei = 7) 2.18× 101 1.12× 102 3.14× 102 6.82× 102

Isomap (Nnei = 10) 2.17× 101 1.15× 102 3.09× 102 6.99× 102
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LLE (Nnei = 7) 1.3× 10−1 4.1× 10−1 7.4× 10−1 1.38× 100

LLE (Nnei = 10) 1.5× 10−1 4.2× 10−1 8.1× 10−1 1.39× 100

KPCA (Gaussian RBF) 1.37× 100 6.85× 100 1.58× 101 3.20× 101

KPCA (Polynomials) 4.1× 10−1 2.61× 100 7.58× 100 1.88× 101

3.6.5 Discussion on KPCA

When Gaussian RBF (σ = 1) or polynomial (p = 2) is applied, the curled manifold
hidden in higher dimensional space cannot be unfolded without much distortion.
Now we would explain the reason.
We use Polynomial kernel function as an example. The Polynomial kernel function
is written as:

ζ(xi, xj) = (xi · xj + 1)p; (3.32)

Then we withdraw the basic mode of the polynomials from Eq. 3.32 as

ζ(xi, xj) = (xi · xj)p; (3.33)

we can find Eq. 3.32 is just a linear combination of Eq. 3.33 with all-orders items not
exceeding p.
We assume the dimensionality of the original observation space is 2, so we can write

xi = [xi1 xi2]T;
xj = [xj1 xj2]T;

(3.34)

As we have defined that
ζ(xi, xj) = Ψ(xi)TΨ(xj), (3.35)

According to Eq. 3.33 and 3.35, we obtain

Ψ(xi) = Ψ([xi1 xi2]T)

= [
√

C0
p(x

i1)p
√

C1
p(x

i1)p-1xi2
√

C2
p(x

i1)p-2(xi2)2 · · ·
√

Cp
p(x

i2)p]T
(3.36)

where Ct
p is the combinatorial number, and we have 0 ≤ t ≤ p.

As the dimension of Ψ(xi) is p+1, this means we have mapped the original 2-D point
xi into a (p+1)-D space. Normally if the original dimension of sample points xi is M,
after the mapping of Ψ, the dimension of Ψ(xi) will be Cp

M+p-1.
We would like to list the expanding results of the cases with p=1,2,3. When M equals
2 and p=1,

Ψ(xi) = [xi1 xi2]T. (3.37)

When M equals 2 and p=2,

Ψ(xi) = [(xi1)2
√

2xi1xi2 (xi2)2]T. (3.38)
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FIGURE 3.9: The learning results obtained by different methods and
parameters (S-Curve) with 1000 sample points
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FIGURE 3.10: The learning results obtained by different methods and
parameters (S-Curve) with 2000 sample points
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FIGURE 3.11: The learning results obtained by different methods and
parameters (S-Curve) with 3000 sample points
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FIGURE 3.12: The learning results obtained by different methods and
parameters (S-Curve) with 4000 sample points
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When M equals 2 and p=3,

Ψ(xi) = [(xi1)3
√

3(xi1)2xi2
√

3xi1(xi2)2 (xi2)3]T. (3.39)

We can see that if p=1, KPCA degenerates to be PCA; while if p ≥ 2, KPCA becomes
non-linear.
Next we will discuss KPCA with those non-linear mappings from the respects of
data distance, angle changes.

Data distance

The distances between sample points are critically important in many manifold learn-
ing methods, for example MDS and Isomap. Even in LLE, distances between sample
points are used to determine the local neighbourhood, helping construct the local
weights.
We first take the case of p=2 and M=2as an example. We assume there are two sam-
ple points x1 and x2, and they can be expressed as

x1 = [x11 x12]T;
x2 = [x21 x22]T.

(3.40)

We define the vector L0 as

L0 = x2 − x1

= [x21 − x11 x22 − x12]T.
(3.41)

As already written in Eq. 3.38, we can also define the vector L1 as

L1 = Ψ(x2)−Ψ(x1)

= [(x21)2 − (x11)2 (x22)2 − (x12)2
√

2(x21x22 − x11x12)]T.
(3.42)

In order to handle the inner product, we reformulate L0 in 3-D space

L0 = [x21 − x11 x22 − x12 0]T. (3.43)

If the distance between the two sample points x1 and x2 can be preserved after map-
ping, namely ||L0|| = ||L1||, then the following equation must hold

∆2 = (L1 + L0) · (L1 − L0) = 0. (3.44)

where ∆2 indicates discriminant when the investigated polynomial order is 2.
Substitute Eq. 3.42 and 3.43 into Eq. 3.44, we finally obtain

∆2 = ∆2
1 + ∆2

2 (3.45)

in which

∆2
1 = (x21 − x11)2((x21 + x11)2 − 1) + (x22 − x12)2((x22 + x12)2 − 1),

∆2
2 = 2(x21x22 − x11x12)2.

(3.46)

If ∆2 equals 0, it means the distance between the two chosen points remains un-
changed, which means the distance between data points can be preserved during
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FIGURE 3.13: The values of z versus x21 and x11 or x22 and x12

the mapping; if ∆2 is positive, the length of L1 is larger than that of L0, which indi-
cates the point-wise distance is lengthened; if ∆2 is negative, it indicates the distance
between the two points becomes shorter, it means the mapping actually shortens the
original distance.
We can also find if z = (x21 + x11)2 − 1 > 0 and z = (x22 + x12)2 − 1 > 0, ∆2

1 will then
be positive, consequently ∆2 will be also positive. The same result occurs to Here we
plot z in the domain of [-1 1], as shown in Fig. 3.13. In Eq. 3.46, ∆2

1 is named the
sign-uncertain item because ∆2

1 is possible to be positive, 0 or negative; while ∆2
2 is a

sign-certain item because it always remains non-negative.
When p comes to 3, we can also write

∆3 = ∆3
1 + ∆2,

∆3
1 = (x21 − x11)2(((x21)2 + (x11)2 + x21x11)2 − 1)
+ (x22 − x12)2(((x22)2 + (x12)2 + x22x12)2 − 1),

∆3
2 = 3((x21)2x22 − (x11)2x12)2 + 3((x22)2x21 − (x12)2x11)2.

(3.47)

We can also find that ∆3
2 is always non-negative, but ∆3

1 still has the uncertainty on it
sign. The values of z are displayed in the Fig. 3.14. We give a generally form of the
discriminant ∆p with polynomial order p and original data dimension M=2 on how
the polynomial kernel function affects the data distances:

∆p = ∆p
1 + ∆p

2,

∆p
1 =

2

∑
i=1

(x2i − x1i)2((
(x2i)p − (x1i)p

x2i − x1i
)2 − 1),

∆p
2 =

p-1

∑
j=1

Cj
p((x

21)j(x22)p-j − (x11)j(x12)p-j).

(3.48)

We can see that the sigh of the discriminant is not only a function of the polynomial
order p, it is also heavily dependent on the coordinates of the two points. Only when
p=1, the relation ∆1 = 0 always holds despite of point coordinates. For the case p>1,
the positions of two points play a key role to determine the sign of ∆p

When we apply polynomial kernel functions with multiple orders, for example all-
order items lower than or equal to p, then the overall discriminant becomes a linear
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FIGURE 3.14: The values of z versus x21 and x11 or x22 and x12

combination of the component discriminants with every order. And the combina-
tion coefficients remain the same as those of the polynomial coefficients.
If we consider the function ∆p as a field function of order number p, then the overall
discriminant will be the superposition of overall field functions ∆p.
It is important to not that a p order polynomial can only maps the original data into
a limited dimensional space. The Gaussian RBF can map the data into an infinite
dimensional space because the Gaussian RBF is able to be expended into the form of
polynomials with infinite items. And the parameter of Gaussian RBF σ control the
coefficients of different polynomial items: when σ is large, the coefficients of high-
dimensional polynomials will attenuate quickly, as a result, the high-dimensional
polynomial items become secondary or negligible; when σ is a small number, the
high-dimensional polynomial items seem to be considerable.

Angle change

Angle preservation is also an important issue in manifold learning field since sev-
eral manifold learning techniques are developed based on angle preservation from
higher dimensional space to lower dimensional space. Here we will demonstrate
how the angle changes during the lower-to higher dimensional space mapping. Sup-
pose the original dimension number is 2 and three data points are given as following:

x1 = [x11 x12]T;
x2 = [x21 x22]T.
x3 = [x31 x32]T.

(3.49)

We define two vectors:

L12
0 = x2 − x1 = [x21 − x11 x22 − x12]T,

L13
0 = x3 − x1 = [x31 − x11 x32 − x12]T

(3.50)
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Then the angle θ0 between L12
0 and L13

0 satisfies:

cos(θ0) =
L12

0 · L13
0

||L12
0 ||||L13

0 ||

=
(x21 − x11)(x31 − x11) + (x22 − x12)(x32 − x12)√

(x21 − x11)2 + (x22 − x12)2
√
(x31 − x11)2 + (x32 − x12)2

(3.51)

We take p = 2 polynomial function as an example, then it is easily obtained

L12
1 = Ψ(x2)−Ψ(x1)

= [(x21)2 − (x11)2 (x22)2 − (x12)2
√

2(x21x22 − x11x12)]T;
L13

1 = Ψ(x3)−Ψ(x1)

= [(x31)2 − (x11)2 (x32)2 − (x12)2
√

2(x31x32 − x11x12)]T;

(3.52)

So we can write the new angle θ1 between L12
1 and L13

1 satisfies:

cos(θ1) =
L12

1 · L13
1

||L12
1 ||||L13

1 ||

=
((x21)2 − (x11)2)((x31)2 − (x11)2) + ((x22)2 − (x12)2)((x32)2 − (x12)2)+√

((x21)2 − (x11)2)2 + ((x22)2 − (x12)2)2 + (
√

2(x21x22 − x11x12))2×

(
√

2(x21x22 − x11x12))(
√

2(x31x32 − x11x12))√
((x31)2 − (x11)2)2 + ((x32)2 − (x12)2)2 + (

√
2(x31x32 − x11x12))2

(3.53)

From Eq. 3.51 and 3.53, we can find that the angle cannot be preserved during the
mapping in most cases except for several special coincidences. One of the reason is
that the angle θ1 depends heavily on the coordinates of sample points.
In order reveal how the angle changes, we introduce an extra conditions to simplify
the expression of the two angles. The introduced condition is: the point x1 locates at
the origin, namely x11 = 0 and x12 = 0. Then Eq. 3.51 and 3.53 can be simplified as
following

cos(θ0) =
x21x31 + x22x32√

(x21)2 + (x22)2
√
(x31)2 + (x32)2

,

cos(θ1) =
(x21x31 + x22x32)2

((x21)2 + (x22)2)((x31)2 + (x32)2)
.

(3.54)

Thus we yield
cos(θ1) = (cos(θ0))

2. (3.55)

Fig.3.15 shows the relationship between θ0 and θ1. In this figure, we can find that
when θ0 is close to 0 and 0.5π, θ1 is approximately the same as θ0. When 0 ≤ θ0 ≤
0.5π, there is some differences between θ0 and θ1. When 0.5π ≤ θ0 ≤ π, the ob-
tuse angle θ0 has been transformed to an acute angle θ1. Obviously, this is a folding
operation instead of an unfolding operation and it is harmful to unfold a potential
manifold. So we can say the angle in the original space cannot be preserved in the
higher dimensional space unless the original angle is 0 or 0.5π.
Note that when the point x1 is not the origin, Eq. 3.55 does not hold as a result. Thus

even when θ0 equals 0 (which indicates the three points are all along one line in the
2-D space), the corresponding θ1 will be probably non-zero. It means that a 2-D line
in the 2-D space will be mapped to a curve in the 3-D space: an linear object now
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becomes non-linear. In other words, the intrinsic dimensionality of the manifold in-
creases after the mapping.

Conclusions on KPCA

As we have obtained, if the polynomial order p=1, then KPCA degenerates to PCA,
the point distances, point angles and linear manifold can be thus preserved. When
the polynomial order p>1, the preservation of the point distances and angles is lost.
The lower dimensional, linear, unfolded, uncurled manifold will become a higher
dimensional, non-linear, folded, curled manifold. This can be the explanation of
why KPCA using Gaussian RBF or Polynomials as the kernel function is probably
fail to reduce the dimensionality.
But it is not suitable to draw the conclusion that KPCA is not able to handle the
dimensionality reduction problem, because KPCA is a systematic manifold learn-
ing method which contains various kinds of kernel function. There are already
some researches which have proved that MDS, Isomap and LLE are also KPCA with
unique kernel functions, and sometimes they work rather well for non-linear mani-
fold learning problems. The existence of new kernel functions which allows KPCA
succeeding in non-linear manifold learning remains to be a question, and is worthy
for researchers to explore.
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Chapter 4

Categorical optimization: a discrete
evolutionary approach

4.1 Background

In structural optimization problems, including size, shape, topology optimization
(Kaveh and Talatahari, 2009; Sokolowski and Zolesio, 1992; Bendsøe and Kikuchi,
1988; Bendsoe and Sigmund, 2013) or material selection problems (Ashby and John-
son, 2013; Gao and Zhang, 2011), the design variables can be generally classified
into two main groups: continuous and non-continuous ones. The former can take
any value within a real interval [xmin, xmax], and can be tackled with gradient-based
algorithms provided that all functions are continuous and differentiable.
A further classification of non-continuous variables is advocated in two main types:
discrete (including the integer) and categorical ones (Coelho et al., 2015; Sloane and
Morgan, 1996; Lee and Kim, 2010b; McCane and Albert, 2008) which take non-
numerical values. If the categorical variables cannot be ordered, they are named
nominal variables, for instance, the choice of a material or the selection of a beam
cross-section type (square, I-shaped, round,...) within a catalog.
The representation of such variables is a central issue (Coelho et al., 2015; Filomeno
Coelho, 2014). To address this matter, several coding schemes have been proposed
in the literature, including binary, real and simplex. Binary coding represents the
values of non-continuous variables as strings of 0/1 digits (Goldberg, 2006). Real
coding applies the "one gene, one variable" principle and represents the values of
variables through real numbers (Herrera, Lozano, and Verdegay, 1998). Simplex
coding is an alternative to binary or real coding. First applied in pattern classifica-
tion (Fu, Yan, and Huang, 2008), simplex has been developed to encode unordered
values of categorical variables (Filomeno Coelho, 2014; Herrera et al., 2014; Coelho
et al., 2015; Filomeno Coelho, 2012). Instead of using binary strings or real numbers,
simplex exploits the coordinate vectors of points to represent the categorical design
candidates in search space, in which the Euclidean distances between each pair of
points are kept the same. There are also several optimization methods which are
tailored to deal with categorical variables, including the mesh adaptive direct search
(Abramson et al., 2009), ant colony (Liao et al., 2014), mixed variable programming
(Kokkolaras, Audet, and Dennis, 2001) and global descent approach (Lindroth and
Patriksson, 2011).
However, when the coding methods introduced are applied to non-ordinal categori-
cal variables, some delicate issues arise. The first problem is that the binary and real
encoding techniques are not unique, which will affect both the optimization pro-
cess and results. Another concern is the loss of physical meaning. Simplex coding
can avoid the issue of non-uniqueness, however, its representation dimensionality
is high when the design possibilities are large.



38 Chapter 4. Categorical optimization: a discrete evolutionary approach

In this chapter, we propose a three-step approach to handle the categorical opti-
mization problem. First, we use sets of multi-dimensional attributes to represent
categorical variables. Then, since these attributes may be correlated with each other
or even mutually dependent, it is necessary to eliminate the possible redundant di-
mensionality. So we introduce an intrinsic dimensionality estimation criterion and
manifold learning technique to represent the high-dimensional data in terms of a
low-dimensional graph. Finally, we propose custom-built evolutionary operators
acting on the graph obtained in the previous step to execute the optimization pro-
cess.
The two well-known manifold learning techniques are the Principal Component
Analysis (PCA) (Jolliffe, 2002) and Multi-Dimensional Scaling (MDS) (Martin and
Eroglu, 1993). PCA takes advantage of eigenvalue analysis to discover a lower
dimensional representation which preserves the maximum variance information.
MDS concentrates on preserving the Euclidean distances during the mapping from
higher dimensional space to lower dimensional space. These are two equivalent
methods, and work well in linear cases, but may give unsatisfactory results when
handling non-linear data. Isomap (Tenenbaum, De Silva, and Langford, 2000) re-
places the Euclidean distance by the geodesic distance and then runs the classical
MDS to find the centralized lower dimensional representation, enabling to deal with
the nonlinear case. These manifold learning methods have been already applied in
mechanics (Meng et al., 2016), including identification (Meng et al., 2015) and struc-
tural optimization (Raghavan et al., 2013).
Based on the reduced-order representation obtained by Isomap, the evolutionary
operators, including crossover and mutation operators, are developed in the present
work by using the shortest paths and nearest neighbours, respectively. Then, these
operators are applied to genetic algorithms to execute the optimization tasks.
We set up the chapter as follows. In section 4.2 we explain the multi-dimensional
discrete representation for the categorical variables. In section 4.3, we illustrate how
Isomap works to reduce the dimensionality and introduce the intrinsic dimension-
ality estimation criterion. In section 4.4, the graph-based evolutionary operators,
including crossover and mutation, are developed. In section 4.5, the proposed ap-
proach is tested with three examples. Finally, in section 4.6, the conclusions and
prospects are made.

4.2 Representation of categorical variables

A categorical variable can take values within a set of predefined non-numerical in-
stances. In statistics, categorical variables are usually applied to mark different in-
dividuals with a list of categories, while in computer science or mathematics, they
correspond to enumerations. In general, the possible values for categorical variables
are referred as instances or levels (Banker and Morey, 1986) in optimization research
field. In the present study, we focus on non-ordinal categorical variables (Fig. 4.1).
In an engineering application, we propose to consider the instances of categorical
variables as discrete points in the multi-dimensional space of physical features. For
example, colors can be treated as RGB triples, the materials can be represented as
lists of constitutive properties, etc.
Consider a categorical variable which is represented by vector x and takes several
possible instances xj, j = 1, 2, · · · , n. An instance can be represented by a set of at-
tributes:

xj = (1aj, 2aj, · · · , Maj)T (4.1)
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TABLE 4.1: A catalog of bars’ physical features

Label 1a: Area (m2) 2a: Young’s modulus (Pa) 3a: Density (kg/m3)

x1 1a1=7.28e-4 2a1=2.07e11 3a1=7830

x2 1a2=8.00e-4 2a2=1.64e11 3a2=8270

x3 1a3=8.66e-4 2a3=2.20e11 3a3=7930

x4 1a4=8.66e-4 2a4=1.85e11 3a4=8440

x5 1a5=9.00e-4 2a5=1.78e11 3a5=8890

x6 1a6=9.39e-4 2a6=2.07e11 3a6=7830

x7 1a7=1.00e-3 2a7=1.64e11 3a7=8270

x8 1a8=1.28e-3 2a8=2.07e11 3a8=7830

x9 1a9=1.32e-3 2a9=1.85e11 3a9=8440

where kaj stands for the k-th attribute of the j-th instance, and M indicates the dimen-
sionality of categorical variable x. Noting that the attributes can be also regarded as
the coordinates of an instance, we can represent all the instances by a set of discrete
points in RM.
Consider a truss structure consisting of bars. Every bar can be represented by three
physical properties: cross-section area, Young’s modulus and density. Tab. 4.1 gives
9 possible instances for a bar, and a graphical interpretation of the 9 instances is
given in Fig. 4.2. We will use this example in the following section to illustrate the
dimensionality reduction.

4.3 Redundant dimensionality reduction

In general application, the dimensionality of attributes may be high, which causes
low optimization efficiency. We find that sometimes these attributes are correlated
with each other, or mutually dependent. For example, for a linear elastic material
problem, the Young’s modulus E, the Poisson’s ratio ν and the shear modulus G are
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FIGURE 4.2: Instance representation in 3D space

(a) I-shape section (b) 3D design space (c) Impractical
case

FIGURE 4.3: Illustration of 3-parameter continuous design space

all necessary attributes, but in fact only two of them are independent, and the third
one can be derived through the equation G = E/(1+ 2ν). As a result, some of the at-
tributes may be redundant and need to be eliminated, but the difficulty arises when
the correlations or dependencies are implicit, or are hidden in the data, making the
optimization problem difficult to simplify by the designers.
Another consideration is that the admissible configurations represented by discrete
points in the high-dimensional design space may follow some patterns that may
be characterized by an even lower number of variables. For example, we consider
an I-shape beam cross-section parameterized by three variables: t1, t2 and L (Fig.
4.3(a)). Continuous space corresponds to a cuboid in R3 (Fig. 4.3(b)) allowing for
any combination of the three variables. In continuous formulation, without addi-
tional constraints, the extreme design (t1max, t2min, Lmin) is admissible resulting in an
impractical configuration (Fig. 4.3(c)) with an unreasonable ratio of t1 and t2. On
another hand, in practical cases, manufacturers provide a catalog of cross-section
shapes to choose from. For instance, this catalog may allow only for a discrete sub-
set of shapes which may be parameterized by a single homothetic transformation
depending on only one latent (hidden) parameter (Fig. 4.4(a) and (b)). It means the
intrinsic dimensionality of the catalog is one and it may be represented by a 1-D line
pattern in 3-D space Fig. 4.4(b).
In the present work, we introduce tools for automatic discovery of such underlying
patterns and for elimination the redundant dimensionality.
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FIGURE 4.4: Illustration of using one parameter to describe a series
of cross-sections

FIGURE 4.5: The flowchart of dimensionality reduction

4.3.1 Dimensionality reduction

The dimensionality reduction can be represented as a mapping from a higher di-
mensional to a lower dimensional space:

RM ⇒ Rm, m ≤ M (4.2)

In this work, since the multi-dimensional discrete representation of categorical vari-
ables may be nonlinear, we choose Isomap technique (Tenenbaum, De Silva, and
Langford, 2000) which introduces geodesic distance measures to classical MDS to
reduce the redundant dimensionality. Fig. 4.5 shows the whole process of dimen-
sionality reduction, and each step in the flowchart will be detailed in the further
subsections.

4.3.2 Multi-dimensional scaling

The MDS algorithm (Martin and Eroglu, 1993) gives the reduced-order representa-
tion in following steps. Given the distance matrix:

D(X)
n×n, D(X)(i, j) = ||(xi, xj)||2,

i, j = 1, 2, · · · , n,
(4.3)
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where || · ||2 is the 2-norm of a vector. We aim at finding the new coordinates of X in
lower dimensional space:

Ym×n = [y1, y2, · · · , yn],
yi = (1bi, 2bi, · · · , mbi)T, i = 1, 2, · · · , n,

n

∑
i=1

lbi = 0, l = 1, 2, · · · , m.
(4.4)

In Eq. (4.4), a centering operation is carried on.
In order to operate on centred data, we define the transformation matrix P:

P = I− 1
n

eeT, eT = (1, 1, 1, · · · , 1)1×n, (4.5)

then we obtain the Gram matrix G:

G = −1
2

P(D(X))2PT (4.6)

Because G is symmetric and positive definite, the eigenvalue decomposition yields:

G = ΦΛΦT, (4.7)

where

Λ = diag(λ1, λ2, · · · , λM),
λ1 ≥ λ2 ≥ · · · ≥ λM

(4.8)

and Φ is the matrix whose columns contain eigenvectors of G and λi corresponds to
the i-th largest eigenvalue.
We select the m largest eigenvalues and define:

Λ
1
2 = [diag(

√
λ1,

√
λ2, · · · ,

√
λm), 0m×(M−m)] (4.9)

Finally we obtain the reduced-order coordinate matrix Y:

Y = [y1, y2, · · · , yn] = Λ
1
2 ΦT. (4.10)

4.3.3 Isomap

Isomap (Tenenbaum, De Silva, and Langford, 2000) is built on the classical MDS
framework but the main difference between Isomap and MDS is that Isomap re-
places Euclidean distance by geodesic distance providing the ability to learn non-
linear data.
The fundamental hypothesis is that the data is sampled from a low dimensional
manifold embedded in a high dimensional space. The geodesic distance is the short-
est distance from point A to point B along the manifold (Fig. 4.6(a)). The Isomap
approximates the geodesic distance in two steps.
In the first step, Isomap defines the nearest neighbour points for all the sample points
by the ε-mean or the K-mean algorithm(Tenenbaum, De Silva, and Langford, 2000).
Then, for every pair of neighbour points, their geodesic distance is approximated by
the Euclidean distance; for other points, their geodesic distance is approximated by
summing up the distances along the shortest path obtained by Dijkstra algorithm
(Dijkstra, 1959) in the graph (Fig. 4.6(b)).
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FIGURE 4.6: Illustration of the geodesic distance

FIGURE 4.7: An example of dimensionality reduction of Fig. 4.2 using
Isomap

In the second step, the MDS is executed with the geodesic distance matrix to obtain
the reduced-order representation. Fig. 4.7 shows that Isomap reduces the dimen-
sionality of the design space shown in Fig. 4.2 from a dimension of 3 to 2. However,
Isomap requires an estimation of the target dimensionality m.

4.3.4 Intrinsic dimensionality estimation

The intrinsic dimensionality of the data in RM is the lowest value of m allowing to
represent data in a vector space of dimension m without (or with controlled) infor-
mation loss. In this subsection, the criterion used to detect the intrinsic dimensional-
ity is brought forward. As our goal is to preserve the geodesic distances, we propose
to evaluate the correlation of the distance matrix by:

C(m) =
Cov(DvX, Dvm

Y )√
Cov(DvX, DvX)Cov(Dvm

Y , Dvm
Y )

(4.11)

where DvX is a vector extracted from the initial geodesic distance matrix, and Dvm
Y

indicates the vector converted from the distance matrix in dimension m after the
mapping. Cov(u, w) is the correlation coefficient of the two vectors u and w.
Then, a positive threshold ε within the range [0,1] is set to demarcate the residual
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FIGURE 4.8: The graph-based crossover operator

variance. Finally, the intrinsic dimensionality is the smallest m such that:

ε(m) =
|C(m)− C(M)|

C(M)
≤ ε. (4.12)

After the construction of reduced-order discrete design space, the evolutionary al-
gorithms can be applied.

4.4 Graph-based crossover and mutation operators

In this work, evolutionary algorithms (Coello, Van Veldhuizen, and Lamont, 2002)
are implemented in the reduced-order space with crossover and mutation operators
specifically designed for producing only admissible designs.

4.4.1 Graph-based crossover operator

We construct a custom-built crossover operator (Herrera, Lozano, and Verdegay,
1998) in the discrete design space operating on the graph. The steps of crossover
are shown in Fig. 4.8.
Firstly, we select two parents ya and yb. A linear extension through ya and yb on the
graph is carried out

yie1 = −0.5(yb − ya) + ya

yie2 = 1.5(yb − ya) + ya
(4.13)

Generally, the two extended endpoints yie1 and yie2 are not admissible, so we replace
them by their nearest points ye1 and ye2.
Next we build the shortest path (Dijkstra, 1959) from ye1 to ye2 passing through ya

and yb, forming the crossover path P . Finally, the offspring is randomly selected
along P .
This procedure guarantees producing admissible offsprings in the discrete design

space.
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4.4.2 Graph-based mutation operator

The mutation operator is intended to keep population diversity and helps protecting
the optimization process from local solutions. This graph-based mutation operator
consists of three main steps, including the neighbour layer recognition, mutation
probability distribution and roulette wheel selection.
The neighbour layer recognition works as follows: given a mutation point y0, we
can classify all the other points as different layers of neighbours with respect to y0.
As shown in Fig. 4.9, for any point yt different from y0, we can obtain the shortest
path from y0 to yt by Dijkstra algorithm. After that, the number of points lt along the
shortest path (y0 excluded) is counted and lt gives the corresponding layer number;
then yt is defined as the lt-th layer of neighbourhood point of y0. Noting that yt is
arbitrarily chosen, we can perform this step for all the points (y0 excluded) in the
graph because we consider all those points as mutation candidates. Finally the layer
numbers of all the points are calculated.
In the mutation probability distribution step, we calculate the mutation possibility

for all neighbours in the graph. Firstly we suppose the point yt belongs to the lt-th
layer of neighbour points of y0, then we give yt an exponential mutation probability
weight, as shown in Fig 4.9:

W(yt) = αlt ,α ∈ (0, 1] (4.14)

α is called the probability attenuation factor for different layers of neighbours. If
α equals 1, it means every point in the graph shares the same mutation probability
weight; if α is smaller than 1, it means the mutation probability weight is attenuated
layer by layer by the percentage of α. It also provides us the flexibility to control the
global distribution of mutation probability weights: if α is closer to 1, the operator
tends to take a global mutation; while if α is closer to 0, a local mutation is more
likely to happen. After we obtain all the mutation probability weights, we can assign
the mutation probability to each point in the same layer by:

Prob(yt) =
W(yt)

∑n
i=1 W(yi)

, yi 6= y0. (4.15)

In the third step, we use a standard roulette rule (Houck, Joines, and Kay, 1995) to
select the mutation result.
This graph-based operator ensures admissible mutation results. Thus the rounding-
off process in the real mutation for the discrete design space can be avoided.
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4.5 Numerical tests

In this section, three numerical tests of various complexity are carried out. The first
two concern optimization of a dome structure with a single categorical variable and
with seven categorical variables; the third one is an optimal design of a six-story
rigid frame structure with eight categorical variables.

4.5.1 The dome structure optimization with single categorical variable

In order to show how the discrete manifold-learning approach works, we consider a
dome (Fig. 4.10) design problem (Csébfalvi, 2013). The structure consists of 120 bars,
and is under vertical and gravity loads, with its base constrained to the ground. To
obtain a better performance, we need to choose the cross-section types for all the
bars, aiming at minimizing both the mass and the maximal ratio of axial loads and
local critical buckling loads for each bar. Note, that the local buckling results only
from compression load, so the critical buckling loads are treated as negative here.
We assign all the 120 bars with the same cross-section chosen among 54 availabilities
listed in Appendix A. Since we need to calculate the mass and the lateral buckling
loads along local y and z directions, the cross-section areas, the area moments of
inertia about local y and z-axis are the necessary attributes. The material properties
are: Young’s modulus E = 2.1e11Pa, Poisson’s ratio ν = 0.3 and the density ρ =
7850kg/m3. The size of the initial population is 12. The crossover probability is 0.9,
and the mutation probability is 0.03. The optimization problem is stated as follows:

min.: (mass(x), max(
f1

fcr1y
,

f1

fcr1z
,

f2

fcr2y
, · · · ,

f120

fcr120z
));

s. t.: Ku = P;
x ∈ {x1, x2, · · · , x54};
xj

i = (Aj
i, Iy

j
i, Iz

j
i)

T, j = 1, 2, · · · , 54.

(4.16)

The ε used to detect the intrinsic dimension is set as 0.01. In this problem, the intrin-
sic dimension obtained equals 2, as listed in Tab. 4.2. Fig. 4.11(a) gives the design
space with 54 admissible instances, while Fig. 4.11(b) shows the 54 instances in the
embedded 2D space. When the Pareto front obtained remains unchanged in the next
2 generations, the searching process are regarded as converged. The maximum gen-
eration number is set as 50. In this test, the algorithm stops at generation 6 because
the solutions in generation 5 and 6 are the same as those of generation 4. Fig. 4.12(a-
d) shows the Pareto set designs in the design space, while the performance of the
Pareto solutions is displayed in Fig. 4.13.

TABLE 4.2: Correlation coefficients and ε versus dimension m

m 1 2 3

C(m) 0.95030 0.96653 0.96737

ε(m) 0.0176 0.00087
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FIGURE 4.11: The mapping from 3D design space to 2D reduced-
order space

4.5.2 The dome structure optimization with seven categorical variables

We consider the same dome structure with all the bars divided into seven groups,
as shown in Fig. 4.14. Each group of bars shares one categorical variable, indicat-
ing that their cross-sections are the same. The materials for each bar, the loads and
boundary conditions remain the same as in the first example. The size of the initial
population is 200, and the number of generation is limited to 40. The optimization
problem is stated as:
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(a) Generation 1 (b) Generation 2

(c) Generation 3 (d) Generation 4

FIGURE 4.12: The design updating of Pareto sets in reduced-order
space
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(a) Generation 1 (b) Generation 2

(c) Generation 3 (d) Generation 4

FIGURE 4.13: The improving performance of Pareto sets in objective
space
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FIGURE 4.14: 7 groups of bars: each group shares the same cross-
section

min.: (mass(x1, x2, · · · , x7), max(
f1

fcr1y
,

f1

fcr1z
,

f2

fcr2y
, · · · ,

f120

fcr120z
));

s. t.: Ku = P;
xi ∈ {x1

i , x2
i , · · · , x54

i }, i = 1, 2, · · · , 7;

xj
i = (Aj

i, Iy
j
i, Iz

j
i)

T, j = 1, 2, · · · , 54.

(4.17)

Fig. 4.15 shows the evolutionary optimization history of the populations, together
with the Pareto set obtained in generation 40. To make a comparison, we use the se-
quential quadratic programming (SQP) method to solve the problem considering all
the variables as continuous. We use the weighted sum of the two objectives, and then
we find a solution in the continuous design domain which dominates all the other
solutions displayed in Fig 4.16. Apparently, this solution is an inadmissible one. We
round it off to the nearest admissible design in the design space (Fig. 4.17), then
we evaluate the rounded-off design. Fig. 4.16 shows the continuous approach pro-
vides a single solution which is not admissible regarding the discrete design space.
Rounding-up this solution to the closest feasible design still yields a single solution
emphasizing on structural buckling performance, which is slightly dominated by
one of the designs obtained by the proposed approach. We also illustrate their dif-
ferences in the design space, as shown in Fig. 4.17.
Remark that in this test, the total mass is exclusively related to the cross-section ar-
eas, while the buckling safety factors only rely on the area moments of inertia about
y and z directions. That means if we consider the design space as continuous, we can
minimize both objectives at the same time without any compromise. That’s why in
this test we can obtain one single "perfect" solution which dominates all the others.
But when we take a finite set of cross-section areas and the area moments of inertia
into account, there may be no "perfect" solution anymore, and what we can get is a
set of best compromise designs represented on the Pareto front.

4.5.3 Dam structure design

In this example. the dam structure is composed by three groups of bars, and different
group of bars are divided by different colours, as shown in Fig. 4.18. The dame
base is fixed on the ground and the nodes of the structure on the right are suffering
four external forces 10000N pointing to the left. The available cross-sections are also
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FIGURE 4.15: The evolutionary design history in objective space and
the final Pareto set

FIGURE 4.16: The result comparison between the discrete manifold-
learning approach and the rounded-off solution

FIGURE 4.17: Designs comparison in design space: the better de-
sign (var1-7(G)) by the discrete manifold-learning approach and the
rounded-off process from SQP solution (var1-7(SQP)) to nearest ad-

missible instances
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FIGURE 4.18: The dame-like structure

2000 3000 4000 5000 6000 7000 8000 9000 10000
−12

−10

−8

−6

−4

−2

0
x 10

5

Mass (kg)

F
m

ax
/F

cr

 

 
Generation 1
Generation 10
Generation 20
Generation 30
Generation 40
Pareto set

FIGURE 4.19: The evolutionary design history in objective space and
the final Pareto set

shown in previous example. The material properties for all the bars are: Young’s
modulus E = 2.1e11Pa and the density ρ = 7850kg/m3. The optimization statement
is written as follows:

min.: (mass(x1, x2, x3), max( fcr1y − f1, fcr1z − f1, fcr2y − f2, · · · , fcr35z − f35));
s. t.: Ku = P;

xi ∈ {x1
i , x2

i , · · · , x54
i }, i = 1, 2, 3;

xj
i = (Aj

i, Iy
j
i, Iz

j
i)

T, j = 1, 2, · · · , 54.

(4.18)

We display the evolutionary design history of the generations 1, 10, 20, 30 and 40
as in Fig. 4.19, together with the final Pareto set. In 4.19, we can find that the final
Pareto set mainly distribute in four clusters, and each cluster of Pareto points have
similar performance on the buckling, while their masses have significant differences.
It reminds us that we can choose the Pareto points which have the minimum mass
as our designs since they are more competitive than the other Pareto points.
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4.5.4 Six-story rigid frame structure design

The goal of the fourth example is to compare the discrete manifold-learning ap-
proach with the simplex (Filomeno Coelho, 2014). This example (Coelho et al., 2015)
is a typical beam section-type selection problem. The rigid frame structure consists
of a total of 63 beams which are divided into eight groups (Fig. 4.20). Each group of
beams shares the same cross-section chosen from 54 cross-section instances. All the
cross-section types are listed in Appendix B, together with their physical attributes:
areas, area moments of inertia about y-axis, area moments of inertia about z-axis and
torsion moments of inertia about x-axis. We set the intrinsic dimension detection pa-
rameter ε as 0.01, and the intrinsic dimension m=3 (Tab. 4.3). The reduced-order
representation of the 54 instances in 3D space is shown in Fig. 4.21. Different beams
are manufactured with the same material as in the first example. The lengths of hor-
izontal beams are 7.315m, while the vertical beams are 3.658m long.
The rigid frame structure is subject to three kinds of loads: 1) The gravity load on
the floor (19.16kPa); 2) The dead load of the beams; 3) The lateral load caused by the
wind (110kN).
The structural analysis of the rigid frame structure is performed employing a finite
element program (Ferreira, 2008). The goal is to minimize both the mass and the
compliance of the frame. We state the optimization problem as:

min.: (m(x1, x2, · · · , x8), Se = 0.5uTKu);
s. t.: Ku = F;

xi ∈ {x1
i , x2

i , · · · , x54
i }, i = 1, 2, · · · , 8;

xj
i = (Aj

i, Iyj
i, Izj

i, Jxj
i)

T, j = 1, 2, · · · , 54.

(4.19)

We set the population size as 100, and the number of generation is limited to 40.
Fig. 4.22 shows the evolutionary design history of different generations. We also
compare the Pareto set solutions with the results obtained by rounding off contin-
uous solutions to nearest admissible solutions in design space (Fig. 4.23). Those
solutions (+ symbols) clearly produce heavier weight and are outperformed by the
categorical ones (square symbols).

TABLE 4.3: Correlation coefficients and ε versus dimension m

m 1 2 3 4

C(m) 0.7950 0.8355 0.8873 0.8944

ε(m) 0.1028 0.0608 0.0073

Here we compare the proposed approach with simplex by testing the design
problem of the six-story rigid frame structure. Due to the stochastic nature of both
approaches, to avoid the effect of randomness, the optimization is run indepen-
dently for 20 times with the number of generations limited to 60 and the population
size of 100. All the optimization parameters are given as in the previous test.
We gather the Pareto fronts in generation 10, 20, 30, 40, 50 and 60 obtained by sim-
plex and the proposed approach in the 20 runs and plot them together in Fig. 4.24(a-
f). We can find that both of the Pareto sets obtained by the two approaches have
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FIGURE 4.20: The 6-storey rigid frame structure

FIGURE 4.21: Design instances represented in reduced-order 3D
space
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FIGURE 4.22: The evolution of designs in objective space and the final
Pareto set

FIGURE 4.23: The result comparison between the discrete manifold-
learning approach and the continuous solutions rounded off to the

nearest admissible ones
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experienced a clustering process to the ideal Pareto fronts, illustrating the conver-
gence ability of the two approaches. In order to compare their performance, we fit
them with six order polynomials, respectively, because six order polynomials suits
the Pareto sets well and bring less fitting errors. We display the corresponding fit-
ting curves and the standard deviations of the fitting errors of each selected gener-
ation for the two approaches in Fig. 4.25. The six figures show that in most cases,
the proposed discrete manifold learning approach can obtain better Pareto sets than
simplex. From generation 10 to 60, the difference of the two fitting curves mainly oc-
curs in the medium-mass and heavy-mass segments, namely from 5300kg to 8600kg;
while the light-mass segment (below 5300kg) shows no apparent differences.
In order to make a meticulous comparison, the standard deviations of the fitting er-
rors of each generation are displayed in Fig. 4.26. Fig. 4.26 shows that: 1) From
generation 10 to 30, the standard deviations of the fitting errors obtained by the two
approaches are normally in the light-mass segment (below 5300kg), but keep low
and steady in the medium-mass and heavy-mass segments (above 5300kg). After
generation 40, the standard deviations of fitting errors in all segments are steady,
which indicates the Pareto sets of 20 different runs remain stable to some extent.
2) As the generation number increases, the standard deviations of the fitting er-
rors become smaller, namely decreasing from 22000J to 12000J (simplex) and 11000J
(DML), which shows the Pareto sets are becoming more and more gathered and con-
verged.
3) In generation 10, both of the two approaches have much similar standard devi-
ations of fitting errors, In generation 20, simplex has better performance, but from
generation 30 to 60, the proposed discrete manifold learning approach always yield
smaller standard deviations of fitting errors, showing that the proposed approach
still have advantages in optimization convergence.

4.6 Conclusions and prospects

The proposed approach allows for discovering implicit relationships between de-
sign variables. The dimensionality of a problem may be reduced by manifold learn-
ing techniques such as Isomap. The manifold learning approach yielded significant
improvements when using a multi-dimensional catalog because it discovered the
underlying 2D (3D in the third example) structure of the data also allowing for bet-
ter comprehension of the design space, and ultimately permitting a faster discovery
of Pareto set. In this work, we have proposed custom-built genetic operators includ-
ing crossover and mutation. The obtained multi-objective algorithm allows for the
treatment of categorical problems restraining by construction the optimal Pareto sets
to admissible design points only.
Further work will consist in comparing our approach with a continuous, penalized
formulation of categorical problems.
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FIGURE 4.24: The Pareto sets of selected generations obtained by the
discrete manifold learning approach (DML) and simplex (S) of 20 dif-

ferent runs
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FIGURE 4.25: The fitting curve together with fitting error estimation
of the Pareto sets obtained by both approaches
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FIGURE 4.26: The comparison of standard deviations estimation of
the fitting errors
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Chapter 5

Categorical optimization: a
two-stage search strategy

5.1 Background

In various optimization problems, design variables are generally classified as contin-
uous, discrete (including integer) and categorical ones (Coelho et al., 2015). Among
them, the categorical variable shows its particularity for it takes concrete instances
within a category instead of real numbers. As a typical industrial example, a beam
cross-section can only be taken from a finite set of fixed cross-sections. Those cross-
sections differ both in shapes and sizes, thus it is tough to describe them by using a
single parameter.
Classical methods (Herrera, Lozano, and Verdegay, 1998; Goldberg, 2006) to handle
optimization problems with categorical variables commonly ignore the particular-
ity: By encoding categorical variables with arbitrary real numbers or binary strings,
the optimization is launched by evolutionary optimizers, for example the genetic al-
gorithms. Those methods carry the advantages of possibly finding the global optima
and no sensitivities needed, but different encodings may affect the optimization re-
sults.
Other works are proposed to treat categorical variables in a more specific manner.
For example, when dealing with unordered categorical variables, simplex coding
is applied to represent them, and this coding suits for evolutionary methods well
(Coelho et al., 2015; Filomeno Coelho, 2014). In this coding, the distances between
any two design instances are kept equal, thus forming a regular simplex in the space,
whose dimensionality is always one less than the number of the instances, so if the
number of instances is large, the dimensionality of the related space is also high. In
previous chapters, we advocate using multi-dimensional discrete vectors to stand
for categorical variables along with a specially tailored evolutionary optimizer.
In this chapter, benefiting from the multi-dimensional representation, the manifold
learning technique is used to find the lower-dimensional manifold embedded in the
original design space. Then based on the reduced-order representation, we approx-
imate the manifold with a polynomial interpolation equations by using the Least
Squares method. We optimize the constrained problem in the reduced-order space
by gradient-based methods, for example the Method of Moving Asymptotes. In the
last stage, we apply a discrete local search.
The main two linear manifold learning techniques are the Principal Component
Analysis (PCA) (Jolliffe, 2002) and Multi-Dimensional Scaling (MDS) (Martin and
Eroglu, 1993), respectively. By using the eigenvalue decomposition, PCA tries to
preserve the most covariance information in the reduced order space, while MDS fo-
cuses on the preservation of Euclidean distances between samples points. But they
do not have the ability to map a non-linear manifold to a reduced-order space, for
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example the "Swiss Roll" manifold (Tenenbaum, De Silva, and Langford, 2000). The
typical non-linear manifold learning techniques are Isomap (Tenenbaum, De Silva,
and Langford, 2000; Balasubramanian and Schwartz, 2002), Locally linear Embed-
ding (LLE) (Roweis and Saul, 2000; De Ridder et al., 2003) and Kernel Principal
Component Analysis (KPCA)(Schölkopf, Smola, and Müller, 1998; Cao et al., 2003).
LLE is developed to preserve the weights of local neighbours in a lower-dimensional
space. One of the advantages is that the optimization problem to obtain the weights
inside the algorithm is convex and the local minima can be avoided. The Isomap is a
variant of MDS. The difference is that Isomap uses geodesic distances calculated by
the Dijkstra algorithm (Dijkstra, 1959) instead of Euclidean distances used in MDS,
so finally the geodesic distances can be preserved at the largest proportion. KPCA
firstly maps data from a lower to higher dimensional space with a kernel function
which makes the non-linear data become linear (Schölkopf, Smola, and Müller, 1998;
Cao et al., 2003), then the Support Vector Machine (SVM) (Cortes and Vapnik, 1995;
Vapnik, 2013) is applied to obtain the final solution. KPCA can be also regarded as
a variant of PCA. Those linear and non-linear manifold learning techniques have
already been used in identification problems (Meng et al., 2015), structural opti-
mization (Raghavan et al., 2013) and visualization (Patwari, Hero III, and Pacholski,
2005).
We carry out the contents of this chapter as follows. In section 5.2, we state the cat-
egorical problem. In section 5.3, the continuous searching approach is illustrated.
In section 5.4, the local neighbour search is introduced. The section 5.5, we execute
numerical tests and make comparisons.

5.2 Categorical optimization statement

The values which a categorical variable can take are called instances, or levels (Banker
and Morey, 1986). The instances are described by multi-dimensional discrete vec-
tors, which can be represented as points in the multi-dimensional space. For the
sake of generality, we present the constrained problem with e categorical variables:

min.: J(x1, x2, · · · , xe);
s. t.: g(x1, x2, · · · , xe) ≤ 0;

xi ∈ Xi = {x1
i , x2

i , · · · , xn
i }, i = 1, 2, · · · , e;

xj
i = (1aj

i, 2aj
i, · · · , Maj

i)
T, j = 1, 2, · · · , n.

(5.1)

In Eq. (5.1), J is the objective function, and g stands for the constraint functions. xi

denotes the i-th categorical variable, and it can take n instances as its value. xj
i is the

j-th instance of the i-th variable, and it is represented by a M-dimensional vector. laj
i

is the l-th attribute for the j-th instance of variable i.

5.3 Continuous search stage

In this section, the manifold learning techniques, including PCA, MDS, Isomap, LLE
and KPCA, are applied to reduce the dimensionality of original design space, and
the lower-dimensional representation is obtained. Then the mapping relationship
from the lower-dimensional representation to original representation is constructed.
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Then the construction errors are estimated and compared. Finally the Method of
Moving Asymptotes (MMA) (Svanberg, 1995) used in the chapter is briefly intro-
duced.

5.3.1 Dimensionality reduction

As we have defined the design space for an any categorical variable x as:

X : [x1, x2, · · · , xn],
xj = (1aj, 2aj, · · · , Maj)T, j = 1, 2, · · · , n.

(5.2)

where X is a M×n matrix and xj is the j-th instance. The dimensionality reduction
can be illustrated as:

X⇒ Y : [y1, y2, · · · , yn],
yj = (1bj, 2bj, · · · , mbj)T, j = 1, 2, · · · , n.

(5.3)

The corresponding operation to each instance is:

xj ⇒ yj (5.4)

namely

(1aj, 2aj, · · · , Maj)T ⇒ (1bj, 2bj, · · · , mbj)T,
M > m, j = 1, 2, · · · , n.

(5.5)

The popular manifold learning techniques include PCA, MDS, Isomap, LLE and
KPCA et. al. In this chapter, those manifold learning techniques mentioned above
are applied and compared.
We need to note that, if the orders of magnitude along every dimension of the data
are different, a normalization for each dimension is suggested before carrying out
the dimensionality reduction. During the normalization, the data is normalized
within the range between 0 and 1. While in the evaluation process, the normalized
data will be remapped to the original data according to the lower and upper bounds.

5.3.2 The polynomial fitting and the fitting error estimation

In this section, we introduce a polynomial fitting to approximate the discrete mani-
fold in the higher-dimensional space in a continuous manner:

(xj*)T = pT(yj) ·D, j = 1, 2, · · · , n. (5.6)

where xj* denotes the approximation of the instance xj, while pT(yj) is the polynomial
expression and D is the coefficient matrix for every item of the polynomial.
For example, if the polynomial order is 2, M equals 3 and m equals 2, then pT(yj) can
be written as:

pT(yj) = (1, 1bj, 2bj, (1bj)2, (2bj)2, 1bj · 2bj) (5.7)
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and the corresponding coefficient matrix D is expressed as:

D =



d1,1 d1,2 d1,3

d2,1 d2,2 d2,3

...
...

...

d10,1 d6,2 d6,3


. (5.8)

When the polynomial order is 3, the dimensionality M and m remain the same, then
pT(yj) can be written as:

pT(yj) = (1, 1bj, 2bj, (1bj)2, (2bj)2, 1bj · 2bj, (1bj)3, (2bj)3, (1bj)2 · 2bj, 1bj · (2bj)2) (5.9)

and D is expressed as:

D =



d1,1 d1,2 d1,3

d2,1 d2,2 d2,3

...
...

...

d10,1 d10,2 d10,3


. (5.10)

In order to obtain matrix D, we firstly define the fitting difference for instance j:

Ej =‖ (pT(yj) ·D)T − xj ‖2 (5.11)

where ‖ · ‖2 indicates the 2 norm of a vector.
Then we minimize the overall approximation errors:

min.: E(D) =
n

∑
j=1

E2
j . (5.12)

By minimizing the criterion above, we can obtain the coefficient matrix D.
After we get the D, we can calculate the mean errors for all the instances:

Emean =
1
n

E(D). (5.13)

And the maximum fitting error for all instances can be written as:

Emax = max(E2
j , j = 1, 2, · · · , n). (5.14)

Both of the mean fitting error and the maximum fitting error are considered when
we apply different manifold learning dimensionality reduction techniques into our
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FIGURE 5.1: The three types of cross-sections

case.

5.3.3 A practical fitting example and comparison

Here we introduce the design instance catalog of all the bar cross-sections. In our
case, we have three types of cross-sections: the I-shape, the hollow square shape and
the hollow circle shape, as illustrated in Fig. 5.1. The geometrical parameters of all
the shapes are listed in Tab. 5.1, respectively. Due to the varying geometrical param-
eters, there are totally 36 instances for the I-shape cross-section, 36 instances for the
hollow square cross-section and 15 instances for the hollow circle cross-section.

TABLE 5.1: The available values of geometrical parameters

Parameter Available values(m)

H1 (0.05, 0.06, · · · , 0.1)

L1 (0.04, 0.05, · · · , 0.09)

t1 (0.005)

L2 (0.04, 0.045, · · · , 0.08)

t2 (0.004, 0.005, · · · , 0.007)

r3 (0.04, 0.045, · · · , 0.06)

t3 (0.005, 0.006, 0.007)
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FIGURE 5.2: The physical properties of 87 cross-sections
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The investigated physical properties are cross-section areas, area moments of in-
ertia along y-axis and area moments of inertia along z-axis (x-axis is recognized as
the normal direction of the area). We plot all 87 cross-sections in a 3-d space, as
shown in Fig. 5.2, then we normalize them in Fig. 5.3.
We utilize PCA, MDS, Isomap, LLE and KPCA to reduce the dimensionality of the

normalized design space from 3 to 2, respectively. Then we compare their fitting er-
rors after applying the 2nd order polynomial interpolation. As the input parameters
of Isomap contain the number of predefined neighbours, and they may influence the
performance, so in this comparison, we set the number of neighbours to 6, 10 and 15,
respectively. For LLE, the number of neighbours is set to 10. For KPCA, the kernel is
chosen as the Gaussian Racial Based Function (GRBF). The reduced-order represen-
tations with different manifold learning techniques are illustrated in Fig. 5.4(a-g).
Based on the 2D representation, the polynomial expressions are applied to yield the
new 3D representations. The comparison between the original and the new 3D rep-
resentations are illustrated in Fig. 5.6. We also investigate the fitting errors for each
instance by different manifold learning method, and display them in Fig. 5.5. Note
that the lines in all the figures indicate their average error level.
The mean fitting errors and the maximum fitting errors of each method are shown

in Fig. 5.7 and Fig. 5.8, respectively. The two figures shows that by using LLE, both
of the two fitting errors are the smallest. So in the numerical test parts, LLE is chosen
and applied to reduce the dimensionality.
According to the error comparison, we can draw the conclusion that, when we ap-
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FIGURE 5.4: The reduced-order 2D design space obtained by different
manifold learning methods
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FIGURE 5.5: The comparison between the original and new 3D repre-
sentation with different manifold learning methods



5.3. Continuous search stage 69

0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

0.03

Instance number

N
o

r
m

a
li
z
e
d

 D
is

ta
n

c
e
 E

r
r
o

r
s

(a) PCA

0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

0.03

Instance number

N
o

r
m

a
li
z
e
d

 D
is

ta
n

c
e
 E

r
r
o

r
s

(b) MDS

0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

0.03

Instance number

N
o

r
m

a
li
z
e
d

 D
is

ta
n

c
e
 E

r
r
o

r
s

(c) Isomap 6

0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

0.03

Instance number

N
o

r
m

a
li
z
e
d

 D
is

ta
n

c
e
 E

r
r
o

r
s

(d) Isomap 10

0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

0.03

Instance number

N
o

r
m

a
li
z
e
d

 D
is

ta
n

c
e
 E

r
r
o

r
s

(e) Isomap 15

0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

0.03

Instance number

N
o

r
m

a
li
z
e
d

 D
is

ta
n

c
e
 E

r
r
o

r
s

(f) LLE

0 20 40 60 80
0

0.05

0.1

0.15

Instance number

N
o

r
m

a
li
z
e
d

 D
is

ta
n

c
e
 E

r
r
o

r
s

(g) KPCA

FIGURE 5.6: The fitting errors for all the instances obtained by differ-
ent manifold learning methods
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FIGURE 5.8: The maximum errors of different manifold learning
methods

ply the 2nd order polynomials, both of the mean errors and the maximum errors
brought by LLE are the smallest, and Isomap is the second best dimensionality re-
duction choice. PCA and MDS are acting the same. While KPCA brings the largest
mean error and maximum error for KPCA does not preserve the relative locations
of instances. As a result, we choose LLE as our default dimensionality reduction
method in the numerical test section.

5.3.4 The continuous search on the manifold

After we map the manifold from the lower dimensional space Rm to the higher di-
mensional space RM with polynomial fitting, any point in Rm (even if this point does
not belong to the given instances) will correspond to a specific point in RM. As a
consequence, the continuous Rm will shape a continuous manifold in RM. It is ob-
vious that the instances in RM will locate on the continuous manifold above. When
we carry out an optimization search in the continuous space Rm, there will also be a
corresponding search path on the manifold in RM. We write the relationship of the
two search paths as:

Pm ⇐⇒PM (5.15)

where Pm is the optimization path in Rm, PM denotes the optimization path on the
manifold in RM.
After the explicit relationship between the two kinds of design space has been built
up, we carry out a gradient-based search on the manifold by using MMA. Compared
with directly using MMA in the higher dimensional design space, the dimensional-
ity reduction can help improve the optimization efficiency by reducing the size of
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the search space.
We need to note that the iterative designs during the optimization process with
MMA are inadmissible because we change the discrete nature of categorical opti-
mization problem to a continuous one. But MMA always makes objective descend-
ing with designs on the continuous manifold. And due to effort of gradient infor-
mation, the optimizer will find the minima with high efficiency.

5.4 Neighbour search stage

In the previous section, we have introduced that by making the design manifold con-
tinuous, the gradient-based MMA is executed to find the continuous solution. But
this continuous solution is generally inadmissible since the available designs are dis-
crete in nature, thus a rounding-off procedure is necessary to bring the inadmissible
design to a admissible design, which will be elaborated in this section. We also in-
troduce the second stage of search: the sequential neighbour search. The neighbour
search procedure contains two steps: the first step is to round off the inadmissible
design obtained by continuous search to an admissible design; the second step is to
traverse the neighbour designs one-by-one based on the yielded admissible design.

5.4.1 Rounding-off criteria

In this chapter, we utilize the distance minimum criteria in the normalized design
space to choose the nearest available design. The rounding-off performs as follows:
it calculates the distance between the inadmissible design and each available in-
stance, and selects the nearest one as the rounded-off design. This rounding-off
criteria holds the advantage of being simple and low cost of calculation, however,
the rounded-off admissible design may become infeasible taking into consideration
the constraint functions. Another way to execute the rounding-of process is to take
advantage of gradient information. Firstly, the gradients of the constrains are de-
duced. Then the distances between the inadmissible design with nearby available
designs are calculated. Those distances are attached with weights determined by the
the gradients of constraints. If the the gradients of constraints show that the nearby
design is likely to violate the constraints, then the corresponding distance will be at-
tached with a larger weight so that it becomes further from the inadmissible design.
If the gradients of constraints indicate the nearby design is probably feasible, then
the corresponding distance will be attached with a smaller weight, resulting in a
closer neighbour distance and more chance to be chosen as the rounding-off design.

5.4.2 Neighbour search

The necessity of the neighbour search lies in the two facts: the first one is that the pre-
vious continuous search usually yields inadmissible designs; the second one is that
any rounding-off process can change the performance of current design. It leads to
the risk that a feasible continuous design may become infeasible, or a good continu-
ous design may become bad.
In order to solve this problem, we propose the sequential neighbour search. Firstly,
we use one single categorical variable as an example. As illustrated in Fig. 5.9, the
steps of neighbour search can be listed as follows:
1) Assign neighbours to each design (instance). There are two means to determine
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neighbours for a given design xj: R-means and k-means. The R-mean is that any de-
sign whose distance with respect to xj is smaller than a predefined distance threshold
R is regarded as the neighbours of xj, while in k-means, the k nearest adjacent de-
signs of xj are regarded as its neighbours. In our work, xj is also defined as its own
neighbour. Furthermore, if xk is the neighbour of xj, then xj is also forced to be the
neighbour of xk. This measure is to preserve the symmetry of the adjacent relation-
ship matrix. Note that this rule probably results in the inequality of neighbours
numbers for different designs. Finally a bi-connecting map can be constructed.
Here if xi and xj are neighbours, we record this relationship as:

xi ∈ Nei(xj),
xj ∈ Nei(xi).

(5.16)

It is certain that
xi ∈ Nei(xj)⇐⇒ xj ∈ Nei(xi). (5.17)

2) Evaluate neighbours of current design and select the best one as the design of next
iteration. Fig. 5.9(a) shows the contour of 2-D convex objective function with the
connecting map of all the instances. There are also two constraints g1 and g2 which
limit that only several instances are feasible. We start the neighbour search from the
current design, and we continue until all the neighbours are evaluated. We select
the feasible neighbour with the smallest objective value as the candidate design of
next iteration. If all the neighbours are infeasible, we use the weighted coefficient
method to penalize the objective function with constraint functions, as shown in the
following equation

J∗ = J + k1 ·max(g1, 0) + k2 ·max(g2, 0) + · · ·+ kt ·max(gt, 0) (5.18)

where the coefficient ki is a large positive number. Its value relies on the relative
magnitude of the constraint and objective functions, we say that ki must be large
enough that it can apparently penalize the objective when gi > 0. t is the number of
constraints.
Then we operate the same steps in the following iterations (Fig. 5.9(b)).
3) The iteration is stopped when no feasible better design can be found, as shown in
Fig. 5.9(c).
As a categorical optimization problem may involve multiple design variables, the
previous neighbour search algorithm needs to be extended. Here we assume that
there are e categorical variables, and we give the definition of r-order neighbour of a
design in iteration c: cX = (cx1, cx2, · · · , cxe):
Definition 1: For a current design cX with e categorical variables, if r variables among
those e variables are mutated to their neighbours, respectively, cX =⇒ wX, we call wX
is the r-order neighbour of design cX, and we record it as:

wX ∈ Neir(cX) (5.19)

The standard steps to find all the neighbours of cX are:
1) List all the combinations of choosing r variables among e variables. There should
be Cr

e combinations. Each combination refers to a group of neighbour designs.
2) For each group, evaluate all the neighbours.
3) Select the best neighbour design as the starting design of next iteration.



5.4. Neighbour search stage 73

(a) 1st iteration

(b) 2nd iteration

(c) 3rd iteration

FIGURE 5.9: Neighbour search for a single variable with two at-
tributes
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4) Recycle the loop 1), 2) and 3) until no better design can be found.
Definition 2: for a design cX, if all its r-order neighbours perform not better than cX,
then cX is the r-order local solution of the optimization problem.
In our neighbour search process with multiple design variables, the final solution
can be proved to be a r-order local solution because we traverse all the r-order neigh-
bours.

5.5 Numerical tests

In this section, two numerical examples, including the ten-bar truss and the 120-bar
dome structure optimization problem, are experimented. The second example is
also used to discuss the influence of optimization parameters and the performance
of the proposed strategy as compared to other discrete algorithms.

5.5.1 The ten-bar structure optimization problem

As shown in Fig. 5.10, the 2D cantilever structure contains ten bars which are di-
vided into four groups: the horizontal group, the vertical group, the sub-diagonal
group and the principal diagonal group. The bars in the same group share the same
cross-section. The left end of the structure is fixed to rigid wall while the lower
right end bears a downward 10000N force. The material properties for all the bars
are: Young’s modulus E = 2.1e11Pa and the density ρ = 7850kg/m3. The available
cross-section types are shown in Fig. 5.2. We aim to minimize the overall strain
energy under external force P , while the mass of the whole structure should not ex-
ceed 400kg and no local buckling would happen. Note that critical forces for linear
buckling can be expressed as follows:

f cr
y = −

π2EIy

L2 , f cr
z = −π2EIz

L2 . (5.20)

As the critical buckling loads are always compression forces, we mark them with
negative signs.
The optimization problem is formulated as:

min.: Se(x1, x2, x3, x4) = 0.5uTKu;
s. t.: mass− 400 ≤ 0;

Ku = P;
max(Fcr

y − F) ≤ 0, Fcr
y = ( f cr1

y , f cr2
y , · · · , f cr87

y );

max(Fcr
z − F) ≤ 0, Fcr

z = ( f cr1
z , f cr2

z , · · · , f cr87
z );

xi ∈ {x1
i , x2

i , · · · , x87
i }, i = 1, 2, 3, 4;

xj
i = (Aj

i, Iy
j
i, Iz

j
i)

T, j = 1, 2, · · · , 87.

(5.21)

where F denotes the row vector composed by the inner forces of all the bars.
The initial choice for the four groups of bars is the number 15 cross-section. The
number of neighbours and the neighbour order are set as 5 and 2, respectively. Fig.
5.11(a-c) shows the design histories of the objective, of the mass constraint and of
the two buckling constraints. In Fig. 5.11(a-c), the design histories with solid circle
markers denote the continuous search process, while the following design histories
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FIGURE 5.10: The ten-bar structure

with hollow circle markers mean the neighbour search process. The final objective
value is 17.0417J, with the mass constraint and buckling constraints are all satisfied
but inactive, indicating that the final solution is a 2-order local solution located in-
side the feasible region. We can find that during the shifting from gradient-based
MMA to the discrete neighbour search process, the rounding-off step causes an ap-
parent rise of the objective and a sudden drop of the mass constraint. That can be
regarded as the result of rounding-off to admissible designs.
The final design is (36 36 36 36), while their evolution design histories are displayed
in the reduced-order 2D space Fig. 5.12(a-d) and their corresponding original 3D
space Fig. 5.13(a-d), respectively. Similar to the history figures of the response func-
tions, the optimization paths with solid circle markers indicate the continuous search
stage, while the optimization paths with hollow circle markers denote the neighbour
search process. It can be seen that the search paths in the 2D design space actually
correspond to a search trajectory on the manifold in the original 3D design space.
It proves the success of the dimensionality reduction strategy of the design space in
handling categorical optimization problem, with the application of gradient-based
MMA.

Then we restart the optimization with a different initial design (14 14 14 14). The
design histories of the objective, the mass constraint and the buckling constraints
are displayed in Fig. 5.14(a-c), respectively. We could find that finally all the design
constraints are satisfied. Among them, the mass constraint is nearly active. The final
design is (78 46 48 77) with the strain energy value 14.2483J which is smaller than
that in the previous test. The corresponding optimization paths for all the variables
in 2D space and 3D space are shown in Fig. 5.15(a-d) and Fig. 5.16(a-d), respectively.
This test also proves that even for the simple ten-bar structure design problem, at
least two 2-order local solutions exist.

In the third test, we give a random initial design (12 13 50 53). After the contin-
uous search and neighbour search processes, the final solution is (36 70 48 78), and
the final objective value is 16.3481J. All the constraints are satisfied while the mass
constraint is roughly active, as the same as in the previous test. We also show the
design paths in the two kinds of design space as in Fig. 5.18(a-d) and Fig. 5.19(a-d).
In this test, we obtain the third 2-order local solutions, indicating that the categorical
optimization problems brings extra complexity compared with other kinds of opti-
mization problems, even when the objective is convex and the active constraint is
linear.
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FIGURE 5.12: The evolution history of four variables in 2D space
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FIGURE 5.13: The evolution history of four variables in the original
3D space



5.5. Numerical tests 79

0 5 10 15
14

16

18

20

22

24

26

28

30

Iteration

S
tr

a
in

 e
n

e
rg

y

MS

MMA

(a) The Objective

0 5 10 15
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

Iteration

M
a
s
s
 c

o
n

s
tr

a
in

t

MS

MMA

(b) The mass constraint

0 5 10 15
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5
x 10

4

Iteration

B
u

c
k
li
n

g
 c

o
n

s
tr

a
in

ts

B
y
−MS

B
z
−MS

B
y
−MMA

B
z
−MMA

(c) The two buckling constraints

FIGURE 5.14: The design history of the objective and constaints



80 Chapter 5. Categorical optimization: a two-stage search strategy

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71
72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

y
1

y
2

(a) 1st variable

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71
72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

y
1

y
2

(b) 2nd variable

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71
72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

y
1

y
2

(c) 3rd variable

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71
72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

y
1

y
2

(d) 4th variable

FIGURE 5.15: The evolution history of four variables in 2D space
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FIGURE 5.16: The evolution history of four variables in the original
3D space
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FIGURE 5.17: The ten-bar truss design: the design history of the ob-
jective and constraints
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FIGURE 5.18: The ten-bar truss design: the evolution history of four
variables in 2D space
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FIGURE 5.19: The ten-bar truss design: the evolution history of four
variables in the original 3D space

5.5.2 The dome structure design problem

In the second test, we optimize a dome structure (Fig. 5.20) which consists of 120
bars and is under vertical loads. The base of the dome is fixed on the ground. The
bars are divided into seven groups, and each group is described with one categorical
variable. The material remains the same as in the first example. The objective is to
minimize the strain energy, while the mass constraint and the buckling constraints
are obeyed. The available bar cross-sections are as the same as those in the previous
test. The optimization problem is stated as:

min.: Se(x1, x2, · · · , x7) = 0.5uTKu;
s. t.: mass− 6000 ≤ 0;

Ku = P;
max(Fcr

y − F) ≤ 0, Fcr
y = ( f cr1

y , f cr2
y , · · · , f cr120

y );

max(Fcr
z − F) ≤ 0, Fcr

z = ( f cr1
z , f cr2

z , · · · , f cr120
z );

xi ∈ {x1
i , x2

i , · · · , x87
i }, i = 1, 2, · · · , 7;

xj
i = (Aj

i, Iy
j
i, Iz

j
i)

T, j = 1, 2, · · · , 87.

(5.22)

For the optimization, the neighbour number and the search order number are set to
be 5 and 2, respectively. The initial design is (13 13 13 13 13 13 13). The final objective
value is 2.9934J, as shown in Fig. 5.21(a), while both of the mass constraint and the
buckling constraints are satisfied. Among them, the mass constraint is active in the
final design, as shown in Fig. 5.21(b,c). The final design is (58 86 55 53 37 77 59), and
the optimization paths in two kinds of design space are illustrated in Fig. 5.22 and
Fig. 5.23, respectively.
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FIGURE 5.20: The dome structure

In this test, we can also find even though the mass constraint and the buckling con-
straints are all satisfied, only the mass constraint is active.

5.5.3 Effects of neighbour search parameters

In order to discuss how the discrete search parameters, namely the numbers of
neighbours Nnei and the number of simultaneously changing variables k (namely
the search order), influence the optimization results, a series of tests are executed
with different combinations of the two search parameters. We set the number of
neighbours as 4, 5, 6 and 7 respectively, and the values of search orders are 1, 2,
3, 4 and 5. Tab. 5.2 shows the final objective values obtained by different combi-
nations of search parameters. It can be found that the increasing values of search
orders can help decrease the objective values at the beginning, generally from 1 to 3,
but when we continue increasing the value of search order, the final solutions goes
worse. Furthermore, the increasing values of search orders will result in a significant
rise of function evaluations, as shown in Tab. 5.3. If we fix the value of search orders
and vary the number of search neighbours, we can also find a similar phenomenon,
namely aiming at obtaining better optimization solutions, the increasing of neigh-
bour number may work at the beginning (from 4 to 5), but fails when it keep rising
(from 5 to 7). It is also obvious that the increasing number of search neighbours also
cause a significant rising the evaluation numbers, as listed in Tab. 5.3. The corre-
sponding final feasible solutions obtained by each combination are shown in Tab.
5.4.
It can be seen that the blindly increase of either the mutated variable number or the
search neighbour number, will lead to some kinds of uncertainties in the optimiza-
tion results: It may go in vain aiming at obtaining better designs even if paying for
the price of large time cost for the function evaluations. The reasons of this phe-
nomenon lie in the mechanism of mutation search and the optimization problem
itself. As the final design of each combination must be a k-order local solution, we
can draw the conclusion that the optimization problem contains multiple k-order
local solutions. And this is the first reason why increasing the number of mutated
variables or search neighbours may obtain worse result. The second reason is that
compared with the optimization path formed by smaller numbers of mutated vari-
ables or search neighbours, the optimization path with larger numbers of mutated
variables or search neighbours will change to a different one, leading to a totally
different k-order local solution which may perform worse. From another side, by
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FIGURE 5.21: The dome structure design: the design history of the
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FIGURE 5.22: The dome structure design: the evolution history of
four variables in 2D space
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FIGURE 5.23: The dome structure design: the evolution history of
four variables in the original 3D space
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using small numbers of the mutated variable or the search neighbours and carrying
on several optimization with different initial designs, may be a good strategy to deal
with the problem.

TABLE 5.2: The influence of search parameters

Nnei = 4 Nnei = 5 Nnei = 6 Nnei = 7

k = 1 3.0330 3.0291 3.0574 3.0574

k = 2 2.9954 2.9873 2.9874 2.9897

k = 3 2.9860 2.9879 2.9856 2.9863

k = 4 2.9995 2.9883 2.9869 2.9859

k = 5 2.9976 2.9871 2.9892 2.9860

TABLE 5.3: The corresponding numbers of function evaluations

Nnei = 4 Nnei = 5 Nnei = 6 Nnei = 7

k = 1 56 72 66 138

k = 2 1318 2652 2737 3182

k = 3 11900 9143 35219 34613

k = 4 14608 60730 195467 432655

k = 5 46527 190634 652063 1390035

TABLE 5.4: Final feasible designs

Nnei = 4 Nnei = 5 Nnei = 6 Nnei = 7

k = 1
(58,81,79,19,

1,79,52)

(58,81,55,19,

45,60,52)

(58,81,55,19,

49,79,52)

(58,81,55,19,

49,79,52)

k = 2
(58,86,76,53,

37,77,74)

(65,87,58,53,

37,75,74)

(33,87,58,14,

37,80,52)

(58,87,51,14,

37,75,59)
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k = 3
(69,87,58,53,

37,60,52)

(31,84,58,19,

37,80,59)

(51,84,48,15,

37,82,59)

(58,84,51,11,

37,82,59)

k = 4
(8,81,58,53,

1,78,74)

(58,87,58,19,

37,82,76)

(51,87,32,19,

37,75,74)

(1,87,69,46,

37,82,52)

k = 5
(69,81,58,53,

37,78,74)

(58,87,48,19,

37,82,76)

(48,84,48,53,

37,75,59)

(65,87,73,14,

37,80,74)

5.5.4 Comparison of results

To compare the proposed method with other methods, we also carry out the evo-
lution strategy with covariance matrix adaptation (CMA-ES) and the simulated an-
nealing (SA) with the 120-bar dome structure example. The geometrical parameters
of the dome structure, the materials and the load conditions remain the same. We
also set the same initial design. Note that both of the two comparison algorithm are
based on the random search.
We choose the result group with k=2 as our experimental set. The corresponding
numbers of function evaluations are 1318, 2652, 2737 and 3148, respectively. So
when applying CMA-ES and SA in solving the dome structure design problem, we
also limit the upper bounds of the function evaluation numbers as 1318, 2652, 2737
and 3148. Each set will run 5 times in order to yield the mean values.
The optimization results including the final objective, the constraint functions and
the final designs obtained by CMA-ES with different function evaluation numbers
are listed in Tab. 5.5, 5.6, 5.7 and 5.8, and those optimization results yielded with SA
are illustrated in Tab. 5.9, 5.10, 5.11 and 5.12. We can see that all the final designs are
feasible, but CME-ES cannot meet the bounds of the constraints. The SA algorithm
takes a discrete random search, so it seems to perform better than CMA-ES to deal
with this kind of problems.
We take the average values of objective functions obtained by the two methods, and
compare them with the proposed MMA-MS method, as shown in Tab. 5.13. We can
see that with the same number of function evaluations, SA is better than CMA-ES,
but the two-stage MMA-MS performs the best. The reason is that MMA-MS applies
the continuous approximate search on the reduced order manifold at first, resulting
in a big decrease of the objective value, then it utilizes a fine local search to find a
local solution based on the good solution obtained with continuous search. While
CMA-ES performs the worst because it does not reduce the design space size, and
its final continuous brings large error when it is rounded-off to admissible solutions.
SA can make a discrete search, so it always produces admissible solutions, but in the
final stage, it cannot converge to those better local solutions due to its evolutionary
working mechanism with a limited number of function calls.

TABLE 5.5: Optimization results by CMA-ES (1318 evaluations)

Se(J) MC(kg) BCY(N) BCZ(N) Final design
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1st 6.6989 -1853.1 -1542.8 -1542.8 (37,37,37,67,37,37,37)

2nd 5.7570 -45.8 -1542.8 -1542.8 (37,37,37,87,37,87,37)

3rd 5.7240 -45.8 -2325.0 -2325.0 (84,37,37,37,87,87,37)

4th 6.5901 -856.0 -1542.8 -1542.8 (37,37,87,37,87,37,37)

5th 4.7264 -365.1 -2324.6 -2324.6 (12,87,37,37,87,84,37)

TABLE 5.6: Optimization results by CMA-ES (2652 evaluations)

Se(J) MC(kg) BCY(N) BCZ(N) Final design

1st 5.7219 -798.0 -1542.8 -1542.8 (37,37,37,37,6,37,87)

2nd 5.3553 -903.3 -1542.4 -1542.4 (37,36,37,37,87,87,37)

3rd 4.4868 -352.0 -2325.5 -2325.5 (87,23,56,37,37,87,37)

4th 5.0231 -519.2 -1542.5 -1542.5 (37,87,37,37,87,87,37)

5th 6.0247 -754.3 -2352.2 -2352.2 (87,37,87,37,37,37,37)

TABLE 5.7: Optimization results by CMA-ES (2737 evaluations)

Se(J) MC(kg) BCY(N) BCZ(N) Final design

1st 5.7674 -1063.7 -2324.8 -2324.8 (87,37,37,37,37,87,37)

2nd 5.7478 -966.0 -1542.8 -1542.8 (37,37,37,37,37,37,87)

3rd 5.3031 -1231.6 -2324.6 -2324.6 (87,87,37,37,37,37,37)

4th 5.8087 -675.6 -1542.8 -1542.8 (37,37,37,83,37,87,37)

5th 4.4720 -521.9 -1542.5 -1542.5 (37,87,37,37,41,37,84)

TABLE 5.8: Optimization results by CMA-ES (3182 evaluations)
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Se(J) MC(kg) BCY(N) BCZ(N) Final design

1st 4.7445 -331.0 -2352.3 -2352.3 (86,87,87,37,37,37,37)

2nd 4.7318 -425.7 -2324.6 -2324.6 (17,87,37,37,87,81,37)

3rd 4.8546 -269.3 -1542.5 -1542.5 (37,87,77,68,41,37,37)

4th 4.9804 -1530.8 -1542.4 -1542.4 (37,55,37,37,37,37,71)

5th 5.3499 -186.7 -1542.5 -1542.5 (37,87,37,63,87,37,37)

TABLE 5.9: Optimization results by SA (1318 evaluations)

Se(J) MC(kg) BCY(N) BCZ(N) Final design

1st 3.6430 -176.9 -43834 -165.1 (17,56,68,6,59,16,23)

2nd 3.3475 -3.4 -4679.6 -4679.6 (75,78,74,21,54,36,40)

3rd 3.8807 -812.0 -19841 -1645.3 (12,36,68,5,42,29,19)

4th 3.2532 -58.7 -7180.0 -7180.0 (73,78,47,73,49,17,74)

5th 3.6693 -50.2 -11549 -11549 (80,11,63,27,38,44,48)

TABLE 5.10: Optimization results by SA (2652 evaluations)

Se(J) MC(kg) BCY(N) BCZ(N) Final design

1st 3.6134 -372.2 -15433 -6042.3 (17,30,52,22,21,16,35)

2nd 3.4196 -37.0 -11877 -8173.6 (52,18,28,16,25,59,56)

3rd 3.1676 -100.3 -5473 -5473.5 (25,67,64,42,37,70,56)

4th 3.1872 -64.3 -4111 -4111.2 (73,81,17,39,61,62,79)

5th 3.1996 -20.5 -9501 -9501.2 (61,64,47,47,27,66,52)
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TABLE 5.11: Optimization results by SA (2737 evaluations)

Se(J) MC(kg) BCY(N) BCZ(N) Final design

1st 3.1252 -24.4 -6470.4 -6470.4 (52,64,52,45,38,84,34)

2nd 3.0967 -10.7 -11137 -10205 (76,67,65,25,4,75,36)

3rd 3.9301 -46.9 -4211.9 -4211.9 (31,63,70,76,79,76,41)

4th 3.3107 -89.9 -16981 -16981 (69,36,33,61,38,26,77)

5th 3.6331 -37.2 -16153 -13782 (28,12,57,65,76,74,36)

TABLE 5.12: Optimization results by SA (3182 evaluations)

Se(J) MC(kg) BCY(N) BCZ(N) Final design

1st 3.2023 -36.8 -18475 -13616 (59,64,35,19,61,56,24)

2nd 3.3779 -6.3 -11137 -11137 (76,29,79,50,27,52,69)

3rd 3.6396 -8.3 -42121 -8431.8 (33,36,24,24,80,27,17)

4th 3.3301 -5.1 -9580.7 -9580.7 (23,36,25,73,21,29,56)

5th 3.4755 -64.6 -7200.3 -7200.3 (47,81,65,53,85,24,44)

TABLE 5.13: Objective comparison obtained by three methods

1318
runs

2652
runs

2737
runs

3182
runs

CMA-ES 5.8993 5.3224 5.4198 4.9322

SA 3.5588 3.3175 3.4192 3.4052

MMA-MS 2.99542 2.9874 2.98744 2.9897
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5.6 A fast neighbour search algorithm

The neighbour search algorithm elaborated in section 5.4 can find a r-order local so-
lution, but for large numbers of neighbours and neighbour search order, the number
of simulations will be massive, resulting in excessive time cost. In this section, we
propose a modified fast neighbour search algorithm based on the gradient informa-
tion which can reduce the number of simulations significantly and bring appreciable
time-saving benefits.
We have already defined the penalized objective as follows

J∗ = J + k1 ·max(g1, 0) + k2 ·max(g2, 0) + · · ·+ kt ·max(gt, 0) (5.23)

The coefficient ki should be a positive number, and ki must be large enough so that
it can apparently make a difference when gi > 0.
We remark

gc
i = max(gi, 0), j = 1, 2, · · · , t. (5.24)

Then Eq. 5.23 can be written as

J∗ = J +
t

∑
i=1

ki · gc
i (5.25)

Next we will derive the gradients of the modified objective J∗. For a current design
x0 = (x0

1, x0
2, · · · , x0

e), we record the j-th design variable x0
j with M attributes as:

x0
j = (1a0

j ,
2a0

j , · · · , Ma0
j )

T (5.26)

suppose the design space is continuous, then the gradient of the original objective
function J can be expressed as

∂J
∂x0

j

= (
∂J

∂(1a0
j )

,
∂J

∂(2a0
j )

, · · · ,
∂J

∂(Ma0
j )
)T. (5.27)

The gradient of the i-th constraint function gi can be written as

∂gi

∂x0
j

= (
∂gi

∂(1a0
j )

,
∂gi

∂(2a0
j )

, · · · ,
∂gi

∂(Ma0
j )
)T. (5.28)

Noting that constraint function gi has singularity when it equals 0. In this case, we
define its corresponding derivatives are 0 to fulfil the sensitivity calculation.
The gradient of the modified constraint function gc

i can be written as

∂gi
c

∂x0
j

=


∂gi
∂x0

j

gc
i

gi
, gi 6= 0,

(10, 20, · · · , M0)T, gi = 0.

(5.29)

Finally, combining Eq. 5.27 and Eq. 5.29, the gradient of the penalized objective
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function J∗ can be written as

∂J∗

∂x0
j

=
∂J
∂x0

j

+
t

∑
i=1

ki ·
∂gc

i

∂x0
j

. (5.30)

Suppose the instance xt
j is a neighbour of xj

0, namely

xt
j ∈ Nei(x0

j ), (5.31)

ans we make the assumption that xt
j is close enough to x0

j so that the direction of
gradient ∂J∗

∂x0
j

remains unchanged in the small local continuous design region, thus

we define

∆xj = xt
j − x0

j ,

s(xt
j , x0

j ) = (∆xj)
T · ∂J∗

∂x0
j

.
(5.32)

Based on the previous assumptions, we can summarize that, if s(xt
j , x0

j ) is negative,
it means that changing x0

j to xt
j will make the modified objective J∗ descending; if

s(xt
j , x0

j ) is positive, the change from x0
j to xt

j will result in the increase of J∗; if s(xt
j , x0

j )
equals 0, it indicates that replacing x0

j by xt
j will not affect the value of J∗. We need to

mention that, since x0
j is also regarded as its own neighbour, in this case, s(xt

j , x0
j ) will

always equal 0.
Based on the value of s(xt

j , x0
j ), the neighbours of x0

j are divided into two sets. We
define the effective set of neighbours N1

j for x0
j :

N1
j = {xt

j |xt
j ∈ Nei(x0

j ), s(xt
j , x0

j ) ≤ 0}, j = 1, 2, · · · , e. (5.33)

And the ineffective set is defined as:

N2
j = {xt

j |xt
j ∈ Nei(x0

j ), s(xt
j , x0

j ) > 0}, j = 1, 2, · · · , e. (5.34)

We need to note that, the effective set N1
j is never empty since it always contains the

element x0
j .

The fast neighbour search algorithm takes the procedures of the neighbour search il-
lustrated in Section 5.4.1. The difference between them lies in that the fast neighbour
search algorithm only evaluates the neighbours which belong to the effective sets,
and those which belong to ineffective sets are abandoned. Consequently, the size of
neighbour combinations for multiple variables will be significantly reduced, result-
ing in a large time saving, and the new designs can always insure the decreasing of
the modified objective J∗.
We utilize the dome structure design problem in Section 5.5.2 as a testing example.
The load case optimization parameters, including the number of neighbours and the
searching orders, are as the same as those in Section 5.5.2. In the initialization, all the
bars are set to the cross-section with number 13. The design histories of the objec-
tive, the mass constraint and two buckling constraints are displayed in Fig. 5.24(a-c),
respectively. We can find that the fast neighbour search algorithm is able to find a
admissible and feasible solution within a few iterations, showing its optimization
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FIGURE 5.24: The design history of the objective and constraints

efficiency. The corresponding design paths for seven variables both in the reduced
order space and original design space are illustrated in Fig. 5.25(a-g) and Fig. 5.26(a-
g), proving that the fast neighbour search is a valid method.

In order to analyse the search efficiency of the fast neighbour search, we compare
it with the previous neighbour search approach, by changing the number of neigh-
bours Nnei and the neighbour search orders k. Firstly, the number of neighbours is
set as 5, and the neighbour search orders vary from 1 to 5. The optimization objec-
tives obtained by the original neighbour search (NS) and the fast neighbour search
(FNS) are shown in Tab. 5.14, and the numbers of needed simulation are listed in
Tab. 5.15. We can find that the objective values obtained by FNS are just slightly
larger than those obtained by NS, but the evaluation numbers with FNS are much
less than those of NS, indicating FNS has a much higher optimization efficiency and
is especially suitable for optimization problems with large scale of variables.
We also fix the number of search orders and change Nnei from 4 to 7. The final ob-
jective values and evaluation numbers are shown in Tab. 5.16 and 5.17, respectively.
We can also draw the conclusion that FNS brings considerable reduction in time cost
with just a slight increase of objective values.

TABLE 5.14: Optimization objectives by neighbour search (NS) and
the fast neighbour search (FNS)
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k 1 2 3 4 5

NS 3.0291 2.9873 2.9879 2.9883 2.9871

FNS 3.0027 3.0035 3.0035 3.0027 3.0093

TABLE 5.15: Evaluation numbers with neighbour search (NS) and the
fast neighbour search (FNS)

k 1 2 3 4 5

NS 72 2652 9143 60730 190634

FNS 21 136 480 960 2394

TABLE 5.16: Optimization objectives by neighbour search (NS) and
the fast neighbour search (FNS)

Nnei 4 5 6 7

NS 2.9954 2.9873 2.9874 2.9897

FNS 3.0106 3.0035 3.0027 3.0047

TABLE 5.17: Evaluation numbers with neighbour search (NS) and the
fast neighbour search (FNS)

Nnei 4 5 6 7

NS 1318 2652 2737 3182

FNS 94 136 274 432

5.7 Conclusions and prospects

In this chapter, we propose a two-stage search strategy to handle categorical opti-
mization problems: the continuous stage using MMA and the discrete stage using
neighbour search, and the proposed strategy is applied in the ten-bar structure de-
sign problem and the dome structure optimization problem. We also test how the
neighbour search parameters influence the optimization results. At last, we compare
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(e) 5th variable
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FIGURE 5.25: The evolution history of four variables in 2D space
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FIGURE 5.26: The evolution history of four variables in the original
3D space
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the proposed strategy with existing mature algorithms, including CMA-ES and SA.
We can draw the conclusions that:
1) The two-stage search strategy is valid to obtain a k-order local solution.
2) The dimensionality reduction can help reduce the size of design space for the con-
tinuous search stage, thus leading to high optimization efficiency.
3) The number of search neighbours and search orders can affect the the optimiza-
tion result in a similar manner: in the beginning, their increase can help obtain better
solutions, but blindly increasing them cannot yield better results continuously.
4) The comparison between the two-stage optimization strategy, CMA-ES and SA
shows the proposed MMA-MS has the highest optimization efficiency due to the
continuous approximate search.
5) The fast neighbour search algorithm can significantly reduce the required evalu-
ation numbers at a small cost of solution performance. So when the optimization
problem scale is large, the fast neighbour search algorithm is suggested.
Further development of this proposed strategy will include introducing the k-manifolds
learning algorithms to distinguish the design manifold piece by piece in the original
design space.
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Chapter 6

Categorical optimization: a
k-manifolds learning approach

6.1 Background

In order to deal with categorical optimization problems, the discrete methods (Her-
rera, Lozano, and Verdegay, 1998; Goldberg, 2006) are widely used by encoding cate-
gorical variables with real numbers or binary strings. In previous chapters, we have
already introduced two methods: the graph-based approach and the continuous-
discrete two-stage search strategy. In this chapter, we will deal with a more complex
situations in which the discrete design points (design space) are located on different
manifolds and cannot be classified with one manifold learner. Moreover, the infor-
mation on that which points belong to a given manifold is unknown. This is the
main challenge we are facing.
Although both linear and non-linear manifold learning has achieved considerable
progress, the research on multiple manifolds (k-manifolds) learning is still under
exploration (Gong, Zhao, and Medioni, 2012). The multiple manifolds indicate that
in the observation space, there is no single, global and integral manifold but are
several local, separated or interacting manifolds. Despite of less research concern
compared to manifold learning, there are also several helpful k-manifolds learning
methods. For example the robust multiple manifolds structure learning (RMMSL)
scheme (Gong, Zhao, and Medioni, 2012), hierarchical manifolds learning frame-
work (Wang, Tiňo, and Fardal, 2008), Spectral Clustering (Wang et al., 2011) and
joint-manifold method (Lee, Elgammal, and Torki, 2016). Those research works have
stated the k-manifolds learning problems clearly, but none of them gives a general
means to deal with all the k-manifolds learning problems.
As a linear manifold learning tool, principal component analysis (PCA) has won a
large deal of attentions and developments. For example the Kernel PCA (Schölkopf,
Smola, and Müller, 1998; Cao et al., 2003). The weighted principal component analy-
sis (WPCA) (Cochran and Horne, 1977; Fan, Liu, and Xu, 2011) is also the variant of
PCA. WPCA introduces weights to scale any a sample, dimension or element, thus
influencing the final learning results. There are many publications on research and
applications of WPCA, for example reconstruction of reflectance spectra (Agahian,
Amirshahi, and Amirshahi, 2008), vendor selection (Petroni and Braglia, 2000), im-
age processing (Cheng et al., 2011), fault detection and classification (Yue and To-
moyasu, 2004) et al. But few has applied WPCA in k-manifolds learning fields.
In this section, we propose to use WPCA to explore multiple manifolds by regarding
the weights as the design variables. In section 6.2, we will explain the mechanism
of k-manifolds learning. In section 6.3, three numerical tests are given. Section 6.4
presents the sectional conclusions and prospects.



102 Chapter 6. Categorical optimization: a k-manifolds learning approach

6.2 K-manifolds learning

In this section, a new k-manifolds learning method based on weighted principal
component analysis (WPCA) is proposed.

6.2.1 Weighted principal component analysis

Suppose the data is defined as X = [x1, x2, · · · , xn] (M × n). M is the number of
dimensions, and n indicates the number of samples. In the weighted PCA, each
sample xj is attached with a weight wj which controls the its contribution to the PCA
process.
We write the weighted mean of the data as:

µ =
1

n

∑
j=1

wj

n

∑
j=1

wjxj. (6.1)

Then each point can be centralized by subtracting the weighted mean. Note that the
data after centralization can be still labelled as X for the reason of consistency.
The covariance of the weighted data can be written as:

C =
1

n

∑
j=1

wj

XWXT, (6.2)

where W = diag(wj).
By eigenvalue decomposition, we obtain:

C = ΦΛΦT, (6.3)

where Λ denotes the eigenvalues and Φ is the metric of corresponding eigenvectors,
and ΦTΦ = I. Note that after a descending ordering

Λ = diag(λ1, λ2, · · · , λM),
λ1 ≥ λ2 ≥ · · · ≥ λM.

(6.4)

Note that all the eigenvectors are also sorted with the same order in Eq. (6.4).
We choose the first m eigenvectors and form the projection matrix Φm = [φ1, φ2, · · · , φm].
Finally, we obtain the reduced order representation by

yj = wjΦT
mxj, j = 1, 2, · · · , n. (6.5)

With Eq. 3.4, we can project new points to the lower dimensional space.
Note that if the weight wj equals to 1, it means the the corresponding data point xj

completely participates in the centralisation process and covariance matrix assem-
bling processes. If wj equals to 0, it indicates wj neither affects the centralization nor
plays a role in the covariance matrix. When 0 < wj < 1, it shows the point wj takes
an incomplete participation in the whole process.
The function of sample point weights help us with the idea that, if we set differ-
ent 0/1 values to the data point weights, we will easily control which points are
allowed to participate in PCA and which points cannot. Based on this idea, we de-
velop an automatic way to determine the weights by using optimization means, in



6.2. K-manifolds learning 103

order to distinguish different lower-dimensional manifolds in the higher-order ex-
trinsic space.
We need to point out that, the proposed method can only be applied to the situa-
tions where the number of manifolds and the intrinsic dimensions of manifolds are
already known or predefined in advance.

6.2.2 Optimization criteria

We suppose the number of manifolds s and the intrinsic dimensions of manifolds
m are given. The manifolds are labelled as Z1, Z2, · · · , Zs, respectively. wj

k is the
weight associated with data point xj and manifold Zk. The physical meaning of wj

k

can be explained as the possibility by which the point xj belongs to manifold Zk. We
assembly all the weights together into weight matrix W:

W =



w1
1 w2

1 · · · wn
1

w1
2 w2

2 · · · wn
2

· · · · · · · · · · · ·

w1
s w2

s · · · wn
s


s×n

. (6.6)

The row of matrix W indicates the degree of the data belong to a certain manifold,
and the column of matrix W means the effort of a certain data point makes. As
a result, we need to find a suitable criteria to evaluate how those weights behave,
namely to find the optimization objective.
We choose an arbitrary row of matrix W and mark it as w = [w1

k w2
k · · · wn

k].
Then WPCA is applied and yields the lower dimensional representation Yk = (y1

k, y2
k, · · · , yn

k)
corresponding to the k-th row of W.
Then we use the polynomial interpolation to rebuild higher dimensional data points
X. In order to distinguish the original data points and the reconstructed data points,
we mark the constructed points with the star symbol. So we can write

(xj*
k)

T = pT(yj
k) ·D, j = 1, 2, · · · , n. (6.7)

pT(yj) is the polynomial expression and D is the coefficient matrix containing all the
items of the polynomials.
For example, if the polynomial order is 2, M equals 3 and m equals 2, then pT(yj

k)
can be written as:

pT(yj
k) = (1, 1bj, 2bj, (1bj)2, (2bj)2, 1bj · 2bj). (6.8)

In order to obtain matrix D, we firstly define the fitting difference corresponding to
instance j and manifold k:

Ej
k =‖ (pT(yj

k) ·D)T − xj ‖2 (6.9)

where ‖ · ‖2 indicates the 2 norm of a vector.
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The overall fitting error for all data points and all manifolds is written as:

min.: E(W) =
s

∑
k=1

n

∑
j=1

(Ej
k)

2. (6.10)

6.2.3 Optimization problem statement

Here we can write the discrete from of the k-manifold learning optimization prob-
lem:

min.: E(W)

s. t.:
s

∑
k=1

wj
k = 1, j = 1, 2, · · · , n;

wj
k ∈ {0, 1}, j = 1, 2, · · · , n; k = 1, 2, · · · , s.

(6.11)

The optimization statement in Eq. (6.11) involves large numbers of equality con-
straints. For example, when the genetic algorithm is used, the crossover and mu-
tation operators will probably generate new populations which violate the equality
constraints.
In order to solve this problem, we propose to use a different set of variables θ instead
of w.
Here we write:

wj
1 = cos2(θ j

1)cos2(θ j
2) · · · cos2(θ j

s-1);

wj
2 = cos2(θ j

1)cos2(θ j
2) · · · sin2(θ j

s-1);

wj
3 = cos2(θ j

1)cos2(θ j
2) · · · sin2(θ j

s-2);
· · ·
wj

s-1 = cos2(θ j
1)sin2(θ j

2);

wj
s = sin2(θ j

1).

θ j
k ∈ {0, 0.5π}, j = 1, 2, · · · , n; k = 1, 2, · · · , s.

(6.12)

When the original variables w have been replaced by variables θ, the n equality con-
straints shown in Eq. (6.11) are naturally satisfied. Then the optimization problem
can be expressed as:

min.: E(W(θ j
k))

s. t.: θ j
k ∈ {0, 0.5π}, j = 1, 2, · · · , n; k = 1, 2, · · · , s.

(6.13)

Then the discrete optimization methods can be used to handle the problem (6.13).
We need to point out that continuous topology optimization methods can also be
used to deal with the problem since we can make the design domain continuous as
follows:

min.: E(W(θ j
k))

s. t.: 0 ≤ θ j
k ≤ 0.5π, j = 1, 2, · · · , n; k = 1, 2, · · · , s.

(6.14)

When continuous topology optimization methods are applied, the penalization on
the design variables are necessary for this penalization can push the design variables
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FIGURE 6.1: The three types of cross-sections

converge to 0 or 0.5π with the decreasing of the objective function.

6.2.4 Optimization algorithm for k-manifold learning

In our case, genetic algorithms are chosen to minimize the total fitting error by find-
ing suitable combination of the weights w, or we say θ. In view of the particularity
of the problem, some modifications to the genetic algorithms are necessary.
During the population initialization process, if we take random initialization in θ
space, it is not hard to derive that the generating probability of wj

s will be 0.5 (j =
1, 2, · · · , n), and the other possibilities will share the other 0.5 possibility. This is
caused by the introducing of θ variables, the sine and the cosine formulas. It can
eliminate the equality constraints, meanwhile, it also has the drawback. The prac-
tical way to avoid that drawback is that, we execute the population initialization
process in the w space, which can guarantee that the possibility of that any a point
belongs to a given manifold is 1

s . After the initialization in the w space, the popula-
tions are transformed into θ space for the following evaluation procedure.
In the crossover process, all θ variables attached to the same data point will be re-
garded as a solid group and cannot be split separately. Then the crossover operators
only act on different groups of θ variables. This modification is designed to protect
the ascription stability of any a data point. That means only the meaningful gene
fragments are taken part in the crossover, instead of each gene unit.
The same measure is also taken to the mutation process. During the mutation, a
gene fragment related to one data point will be entirely mutated to another possibil-
ity, rather than just make mutation gene by gene independently.

6.2.5 A numerical test

In our case, we have three types of cross-sections: the I-shape, the hollow square
shape and the hollow rectangle shape, as illustrated in Fig. 6.1. The geometrical
parameters of all the cross-sections are listed as in Tab. 6.1, respectively. Due to
the varying of geometrical parameters, there are totally 40 instances for the I-shape
cross-section, 49 instances for the hollow square cross-section and 16 instances for
the hollow rectangle cross-section.

TABLE 6.1: The available values of geometrical parameters

Parameter Available values(m)
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H1 (0.05, 0.06, · · · , 0.09)

L1 (0.04, 0.05, · · · , 0.11)

t1 (0.007)

L2 (0.06, 0.065, · · · , 0.09)

t2 (0.004, 0.001, · · · , 0.01)

H3 (0.065, 0.075, · · · , 0.095)

L3 (0.065, 0.075, · · · , 0.095)

t3 (0.008)
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FIGURE 6.2: The physical properties of 105 cross-sections
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The investigated physical properties include cross-section areas, area moments
of inertia along y-axis and area moments of inertia along z-axis (x-axis is recognized
as the normal direction of the area). We plot all 105 cross-section in a 3-d physical
space, as shown in Fig. 6.2, then we normalize them in Fig. 6.3.
In the optimization, the population is 800, and the generation number is set as 100.

The probabilities for crossover and mutation are 0.9 and 0.05, respectively. We set
the manifold number as 3, and all the intrinsic dimensions of the manifolds are 2.
Fig. 6.4 lists the decreasing history of the total fitting errors in 100 generations. And
Fig. 6.5 shows the reduced order representation of 3 manifolds, respectively. We
can find that although there are three data points which enter a wrong manifolds,
showing that the optimization algorithm cannot find the global minima, the fitting
errors are already small enough to execute further structural optimization. We also
integrate the three 2-D manifolds into one figure, as shown in Fig. 6.6, through only
translation and rotation operations. We need to note that after any translation or
rotation operations, the coefficient matrix D needs to be uprated, but the total fitting
errors will not change.
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FIGURE 6.6: The integrated reduced representations of three mani-
folds

6.3 Numerical tests

Based on the re-organized and integrated lower dimensional graph, we utilize the
two-stage search approach proposed in previous chapter to handle the optimization.
We need to note that the junction area between two manifolds is discontinuous, thus
an interpolation in the discontinuous area is always needed.

6.3.1 The 10-bar structure

As shown in Fig. 6.7, the ten-bar cantilever structure is as the same as that in pre-
vious chapter. The left end of the structure are fixed to rigid while the lower right
end bears a downward 20000N force. The available cross-section types are shown in
Fig. 6.2. We want to minimize the global strain energy with the functioning of the
external load, while the mass of the whole structure should be lower than 700kg and
linear buckling is not allowed. Here we write the expressions of critical forces for
linear buckling:

f cr
y = −

π2EIy

L2 , f cr
z = −π2EIz

L2 . (6.15)

We mark the critical buckling loads with negative signs for they can only happen
under compression loads.
The optimization problem is formulated as:

min.: Se(x1, x2, x3, x4) = 0.5uTKu;
s. t.: mass− 700 ≤ 0;

Ku = P;
max(Fcr

y − F) ≤ 0, Fcr
y = ( f cr1

y , f cr2
y , · · · , f cr10

y );

max(Fcr
z − F) ≤ 0, Fcr

z = ( f cr1
z , f cr2

z , · · · , f cr10
z );

xi ∈ {x1
i , x2

i , · · · , x105
i }, i = 1, 2, 3, 4;

xj
i = (Aj

i, Iy
j
i, Iz

j
i)

T, j = 1, 2, · · · , 105.

(6.16)

where F denotes the row vector composed by the inner forces of all the bars.
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FIGURE 6.7: The ten-bar structure

The initial choice for the four groups of bars are the bars with cross-section num-
ber 30, 36, 50 and 89. The neighbour number and the mutating variable number
are set as 5 and 2, respectively. Fig. 6.8(a-c) show the design histories of the objec-
tive, the mass constraint and the two buckling constraints. In Fig. 6.8(a-c), the de-
sign histories with solid circle markers denote the continuous search process, while
the following design histories with hollow circle markers mean the mutation search
process. The final objective value is 8.6243J, with the mass constraint and buckling
constraints all satisfied.
The evolution histories of designs are displayed in the reduced-order 2D space Fig.
6.9(a-d) and their corresponding original 3D space Fig. 6.10(a-d), respectively. Sim-
ilar to the history figures of the response functions, optimization paths with solid
circle markers indicate the continuous search stage, while the optimization paths
with hollow circle markers denote the mutation search process. We can see that the
k-manifolds learning method leads to the success of the ten bar structural optimiza-
tion example.

6.3.2 The dam structure

The Fig. 6.11 shows a dam structure which contains three groups of bars, and dif-
ferent group of bars are separated by different colors. The base of the dam structure
is fixed on the ground while the right end of the structure are carrying four exter-
nal forces 10000N, with force directions to the left. The material properties for all
the bars are: Young’s modulus E = 2.1e11Pa and the density ρ = 7850kg/m3. The
candidate cross-sections are also shown in Fig. 6.2. The optimization statement is
written as follows:

min.: Se(x1, x2, x3) = 0.5uTKu;
s. t.: mass− 3000 ≤ 0;

Ku = P;
max(Fcr

y − F) ≤ 0, Fcr
y = ( f cr1

y , f cr2
y , · · · , f cr105

y );

max(Fcr
z − F) ≤ 0, Fcr

z = ( f cr1
z , f cr2

z , · · · , f cr35
z );

xi ∈ {x1
i , x2

i , · · · , x35
i }, i = 1, 2, 3;

xj
i = (Aj

i, Iy
j
i, Iz

j
i)

T, j = 1, 2, · · · , 105.

(6.17)

The initial choice for the three groups of bars are cross-sections with number 36,
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FIGURE 6.8: The design history of the objective and constraints
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FIGURE 6.9: The evolution history of four variables in 2D space
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FIGURE 6.10: The evolution history of four variables in the original
3D space

45 and 57. The neighbour number and the mutating variable number are set the
same as previous test. Fig. 6.12(a-c) gives the optimization histories of the strain
energy, the mass constraint and the two buckling constraints. The final objective
value is 18.9408J, at the same time, the mass constraint and buckling constraints are
all satisfied but only the mass constraint is active. Fig. 6.12(a-c), the design histories
with solid circle markers denote the continuous search process, while the following
design histories with hollow circle markers mean the mutation search process.
The evolution histories of designs are displayed in the reduced-order 2D space Fig.
6.13(a-d) and their corresponding original 3D space Fig. 6.14(a-d), respectively. It is
also easy to obtain that the proposed k-manifolds learning method is valid for the
given dame-like structural optimization problem.

6.3.3 The dome structure design

In the third test, the dome structure (Fig. 6.15) is the same as the example in section
5.5.2. The materials for each bar also remain the same as in the mentioned examples.
The only difference with the example in section 5.5.2 is that the dome structure is
carrying the vertical loads of 18kN, 9kN and 4.5kN. The objective and constraints
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FIGURE 6.11: The dam structure
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FIGURE 6.12: The design history of the objective and constraints
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FIGURE 6.15: The dome structure

are also the same, shown as follows:

min.: Se(x1, x2, · · · , x7) = 0.5uTKu;
s. t.: mass− 10000 ≤ 0;

Ku = P;
max(Fcr

y − F) ≤ 0, Fcr
y = ( f cr1

y , f cr2
y , · · · , f cr120

y );

max(Fcr
z − F) ≤ 0, Fcr

z = ( f cr1
z , f cr2

z , · · · , f cr120
z );

xi ∈ {x1
i , x2

i , · · · , x105
i }, i = 1, 2, · · · , 7;

xj
i = (Aj

i, Iy
j
i, Iz

j
i)

T, j = 1, 2, · · · , 105.

(6.18)

For the optimization, the mutation neighbour number and the mutated variable
number are set to be 5 and 2, respectively. The initial design is (45 45 45 45 45 45
45). The final objective value is 65.5528J, as shown in Fig. 6.16(a). Both of the mass
constraint and the buckling constraints are satisfied. The optimization paths in two
kinds of design space are illustrated in Fig. 6.17 and Fig. 6.18, respectively. The
results proves that the method is successful for this kind of problem.

6.4 Conclusions and prospects

In this section, we have proposed a k-manifolds learning method based on the weighted
principal component analysis (WPCA), aiming at a deep simplification of the design
space. Thus, it is used in the categorical structural optimization problems including
the ten-bar truss design, the dame-like frame design and the dome structure design.
All the three examples show that the method is valid to handle this kind of prob-
lems.
The proposed k-manifolds learning method also has several drawbacks, for exam-
ple, it can only deal with linear or approximately linear manifolds; meanwhile, the
number of potential manifolds and their intrinsic dimensions must be known; Also,
the applied genetic algorithm cannot find the global solution when classifying dif-
ferent data points into different manifolds.
Further development may include a real non-linear weighted k-manifolds learn-
ing methods, which may based on the typical non-linear classifiers, for instance the
Isomap, LLE or KPCA.
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FIGURE 6.16: The design history of the objective and constraints
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FIGURE 6.17: The evolution history of 7 variables in 2D space
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Chapter 7

Conclusions, perspectives

7.1 Conclusions

In chapter 3, different manifold learning methods are discussed and compared in
our work, the conclusions on manifold learning methods are drawn:
1) PCA and MDS can only deal with linear problems and some slightly non-linear
problems. PCA and MDS will fail when dealing with strongly non-linear problems.
For the efficiency, PCA performs faster than MDS.
2) As non-linear learner, Isomap and LLE can handle both linear and non-linear
problems with proper learning parameters, for example the number of neighbours.
Compared with LLE, Isomap can obtain the lower order mapping with less distor-
tion, as we have illustrated in chapter 3, but the time cost of Isomap is normally two
orders of magnitude higher than that of LLE. Consequently, for large scale manifold
learning problems, for instance the problems with big sample numbers or high di-
mensions, LLE is suggested in priority.
3) Compared with other methods, KPCA is the most flexible one due to the margin
of kernel functions. As a result, the learning results of KPCA also heavily depend
on the choice of kernel functions. The second influencing factor is the parameters
of corresponding kernel functions. We have also explained why KPCA cannot pre-
serve point distances and angles with polynomial kernel functions (p>1).
In chapter 4, the proposed discrete evolutionary approach applies Isomap to reduce
the dimensionality of the categorical design variables and form a lower dimensional
graph based on which a discrete evolutionary algorithm is developed, including
the crossover and mutation operators. This algorithm can help handle the multi-
objective optimization problems and obtain the optimal Pareto sets with only ad-
missible designs. Due to the application limitations of Isomap, this method can just
deal with the case with one manifold.
In chapter 5, the two-stage search strategy includes the continuous stage using MMA
and the discrete stage using neighbour search, and is applied into structural opti-
mization problems. We can get the conclusions that:
1) Among those dimensionality reduction techniques, LLE has the least polynomial
fitting errors for our case, compared with other manifold learning methods.
2) The two-stage search strategy has the highest optimization efficiency due to the
continuous approximate search and the exquisite local mutation search, compared
with other algorithms such as CMA-ES and SA.
3) The fast neighbour search algorithm can obtain comparable solutions with a sig-
nificant reduction of function calls. It is suggested to handle large scale optimization
problems.
In chapter 6, a k-manifolds learning method based on the weighted principal com-
ponent analysis is proposed. Then the separated manifolds are classified taking ad-
vantages of the k-manifolds learning method. After the construction of the lower
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order design space by polynomial fitting, the optimization method introduced in
Chapter 5 is applied to structural optimization problems. The final optimization
results demonstrate that the k-manifolds learning method is valid to deal with the
design space of fragmented manifolds.

7.2 Perspectives

Further development of the research will include the exploration of non-linear k-
manifolds learning methods to deal with the case in which the several non-linear
manifolds are separated from each other. Another prospect is to discuss how to treat
the optimization situations where the several manifolds have different intrinsic di-
mensionality. They will remain to be attractive research topics in the further work.
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Questions frequently asked

• What’s the role of manifold learning to the whole work?

The manifold learning plays an indispensable role during the development of meth-
ods for categorical optimization. The manifold learning reduces the dimensionality
of categorical variables and maps the higher dimensional design space to a lower
dimensional one. Based on the reduced order design space, the proposed optimiza-
tion methods, including the discrete evolutionary approach (chapter 4) and the two-
stage search approach (chapter 5), are developed. Even in chapter 6, the general
optimization process is also as the same as that in chapter 4 and 5, despite that the
k-manifolds learning methods takes the place of manifold learning.

• What’s the effect of manifold learning?

We define the categorical variable as a kind of discrete multi-dimensional variable,
but the different dimensions may be correlated with each other. In other words, the
dimensions of categorical variables may be not independent.
The manifold learning can help reduce the dimensionality of categorical variables,
leading to two advantages: firstly, the size of the problem is reduced, leading to
lower computation cost and less computer storage in further handling of the prob-
lem, for example the sensitivity analysis; secondly, manifold learning reflects the real
shape of the design space which helps designers to obtain a better understanding of
the nature of the problem. The disadvantage includes that in some cases, manifold
learning may result in a non-linearity of the design functions even if they are linear
in the higher dimensional space.

• How do you choose the optimization methods among the three proposed
approaches?

The three proposed search methods deal with different types of categorical opti-
mization problems. For a multi-objective optimization problem with a single man-
ifold design space, the discrete evolutionary approach is suggested. For a single-
objective optimization problem with single manifold design space, the two-stage
search method is the first choice. To handle single-objective optimization problems
with several hidden manifolds, the k-manifolds learning based approach can be
used. Noting that the number of constraint functions does not affect the choice of
proposed methods, since all the methods can be applied with constrained or uncon-
strained optimization problems.

• In chapter 3, why do you discuss distance and angle preservation with KPCA?

Manifold learning maps the higher dimensional data to a lower dimensional space.
However, the criteria to score different manifold learning methods as "good" or "bad"
remains an open issue and has no thoroughly answers currently. Among all criteria,
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the preservation of distance and angle is an important aspect. For example in the
work (Gu et al., 2014), the researchers propose to use the distance and angle preser-
vation as the general criteria to score and judge different manifold learning methods
and can yield better learning results with all kinds of manifolds. This is the reason
why we discuss distance and angle preservation with PCA in chapter 3.

• Why do you use the total fitting error as the criteria to optimize and separate
the different manifolds in higher dimensional space?

The total fitting error is a measurement of the distance error between the current
manifolds and real instance points. A smaller fitting error value indicates that the
design manifolds are closer to the data points generally, which help improve the
search accuracy in the continuous search stage. There are also other criteria to use
in this steps. For example, one can utilize the distribution variance of the points
corresponding to different manifolds as the judging criteria, but the approach may
be affected by the non-linearity of the manifolds and has some limitations in real
applications.

• In section 4.5.1, you have 54 possible instances, but size of pop = 12, nb gen
= 4, so you need 48 evaluations to optimize while an enumeration would
require only 54 evaluations?

Section 4.5.1 is a testing example to illustrate how the proposed approach works
during the optimization process. In our point of view, enumeration is suitable for
small-size problems, but may be invalid for large-scale ones. As categorical opti-
mization problems are combination problems in nature, the designers are always
desiring a more efficient way to handle this kind of problem instead of enumeration.
Although the example in section 4.5.1 shows that the proposed approach performs
with no big difference compared with enumeration, the following large-scale prob-
lems can prove the advantages of the proposed approach.
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Attribute catalog of bars

TABLE 1: The attribute catalog of bar cross-sections for test 1 and test
2 in chapter 4

Section label Area (m2) Iy (m4) Iz (m4)

Section 1 2.827e-003 6.362e-007 6.362e-007

Section 2 3.421e-003 9.314e-007 9.314e-007

Section 3 4.072e-003 1.319e-006 1.319e-006

Section 4 4.778e-003 1.817e-006 1.817e-006

Section 5 5.542e-003 2.444e-006 2.444e-006

Section 6 6.362e-003 3.221e-006 3.221e-006

Section 7 7.238e-003 4.169e-006 4.169e-006

Section 8 8.171e-003 5.313e-006 5.313e-006

Section 9 9.161e-003 6.678e-006 6.678e-006

Section 10 3.600e-003 1.080e-006 1.080e-006

Section 11 4.356e-003 1.581e-006 1.581e-006

Section 12 5.184e-003 2.239e-006 2.239e-006

Section 13 6.084e-003 3.085e-006 3.085e-006

Section 14 7.056e-003 4.149e-006 4.149e-006

Section 15 8.100e-003 5.467e-006 5.467e-006

Section 16 9.216e-003 7.078e-006 7.078e-006

Section 17 3.125e-003 1.365e-006 1.365e-006
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Section 18 5.000e-003 2.116e-006 2.116e-006

Section 19 3.750e-003 2.248e-006 2.248e-006

Section 20 6.250e-003 3.613e-006 3.613e-006

Section 21 4.375e-003 3.448e-006 3.448e-006

Section 22 7.500e-003 5.697e-006 5.697e-006

Section 23 5.000e-003 5.015e-006 5.015e-006

Section 24 8.750e-003 8.464e-006 8.464e-006

Section 25 3.456e-003 1.318e-006 1.318e-006

Section 26 6.283e-003 2.042e-006 2.042e-006

Section 27 4.084e-003 2.170e-006 2.170e-006

Section 28 7.540e-003 3.487e-006 3.487e-006

Section 29 4.712e-003 3.328e-006 3.328e-006

Section 30 8.796e-003 5.498e-006 5.498e-006

Section 31 5.175e-003 2.426e-006 2.053e-006

Section 32 5.589e-003 3.056e-006 2.217e-006

Section 33 6.003e-003 3.786e-006 2.382e-006

Section 34 6.417e-003 4.625e-006 2.546e-006

Section 35 6.300e-003 2.953e-006 3.704e-006

Section 36 6.804e-003 3.720e-006 4.001e-006

Section 37 7.308e-003 4.610e-006 4.297e-006

Section 38 7.812e-003 5.630e-006 4.593e-006

Section 39 2.500e-003 1.986e-006 8.870e-007

Section 40 4.375e-003 2.572e-006 1.790e-006

Section 41 2.812e-003 4.053e-006 8.911e-007

Section 42 5.000e-003 5.729e-006 1.823e-006
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Section 43 3.125e-003 2.604e-006 2.091e-006

Section 44 5.625e-003 3.418e-006 4.199e-006

Section 45 3.438e-003 5.257e-006 2.096e-006

Section 46 6.250e-003 7.552e-006 4.232e-006

Section 47 4.400e-003 2.512e-006 2.512e-006

Section 48 5.000e-003 2.604e-006 2.604e-006

Section 49 4.900e-003 3.874e-006 2.906e-006

Section 50 5.625e-003 4.077e-006 3.027e-006

Section 51 4.900e-003 2.906e-006 3.874e-006

Section 52 5.625e-003 3.027e-006 4.077e-006

Section 53 5.400e-003 4.461e-006 4.461e-006

Section 54 6.250e-003 4.720e-006 4.720e-006
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Attribute catalog of beams

TABLE 1: The attribute catalog of beam cross-sections for test 3 in
chapter 4

Section label Area (m2) Iy (m4) Iz (m4) Jx (m4)

Section 1 2.124e-003 3.589e-007 3.589e-007 7.178e-007

Section 2 2.463e-003 4.827e-007 4.827e-007 9.655e-007

Section 3 2.827e-003 6.362e-007 6.362e-007 1.272e-006

Section 4 3.217e-003 8.235e-007 8.235e-007 1.647e-006

Section 5 3.632e-003 1.050e-006 1.050e-006 2.099e-006

Section 6 4.072e-003 1.319e-006 1.319e-006 2.638e-006

Section 7 1.936e-003 3.123e-007 3.123e-007 5.279e-007

Section 8 2.116e-003 3.731e-007 3.731e-007 6.306e-007

Section 9 2.304e-003 4.424e-007 4.424e-007 7.476e-007

Section 10 2.500e-003 5.208e-007 5.208e-007 8.802e-007

Section 11 2.704e-003 6.093e-007 6.093e-007 1.030e-006

Section 12 2.916e-003 7.086e-007 7.086e-007 1.198e-006

Section 13 3.136e-003 8.195e-007 8.195e-007 1.385e-006

Section 14 2.000e-003 5.592e-007 5.592e-007 1.250e-006

Section 15 2.700e-003 7.383e-007 7.383e-007 1.367e-006

Section 16 2.200e-003 7.250e-007 7.250e-007 1.664e-006

Section 17 3.000e-003 9.667e-007 9.667e-007 1.875e-006
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Section 18 2.400e-003 9.208e-007 9.208e-007 2.160e-006

Section 19 3.300e-003 1.238e-006 1.238e-006 2.496e-006

Section 20 2.600e-003 1.149e-006 1.149e-006 2.746e-006

Section 21 3.600e-003 1.557e-006 1.557e-006 3.240e-006

Section 22 2.199e-003 3.436e-007 3.436e-007 6.872e-007

Section 23 3.063e-003 4.260e-007 4.260e-007 8.519e-007

Section 24 3.770e-003 4.712e-007 4.712e-007 9.425e-007

Section 25 2.513e-003 5.105e-007 5.105e-007 1.021e-006

Section 26 3.534e-003 6.461e-007 6.461e-007 1.292e-006

Section 27 4.398e-003 7.285e-007 7.285e-007 1.457e-006

Section 28 2.827e-003 7.245e-007 7.245e-007 1.449e-006

Section 29 4.006e-003 9.325e-007 9.325e-007 1.865e-006

Section 30 5.027e-003 1.068e-006 1.068e-006 2.136e-006

Section 31 1.750e-003 3.646e-007 1.786e-007 4.058e-007

Section 32 1.925e-003 4.853e-007 1.965e-007 4.752e-007

Section 33 2.100e-003 6.300e-007 2.144e-007 5.454e-007

Section 34 2.275e-003 8.010e-007 2.322e-007 6.160e-007

Section 35 2.250e-003 4.688e-007 3.797e-007 7.047e-007

Section 36 2.475e-003 6.239e-007 4.177e-007 8.417e-007

Section 37 2.700e-003 8.100e-007 4.556e-007 9.841e-007

Section 38 2.925e-003 1.030e-006 4.936e-007 1.130e-006

Section 39 1.950e-003 8.212e-007 3.209e-007 1.463e-007

Section 40 2.400e-003 8.800e-007 4.300e-007 3.200e-007

Section 41 2.100e-003 1.243e-006 3.238e-007 1.575e-007

Section 42 2.600e-003 1.362e-006 4.367e-007 3.467e-007
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Section 43 2.250e-003 9.787e-007 5.484e-007 1.687e-007

Section 44 2.800e-003 1.053e-006 7.333e-007 3.733e-007

Section 45 2.400e-003 1.475e-006 5.512e-007 1.800e-007

Section 46 3.000e-003 1.625e-006 7.400e-007 4.000e-007

Section 47 2.064e-003 7.989e-007 5.723e-007 9.285e-007

Section 48 2.400e-003 8.550e-007 6.050e-007 9.302e-007

Section 49 2.304e-003 1.218e-006 6.618e-007 1.214e-006

Section 50 2.700e-003 1.323e-006 7.025e-007 1.235e-006

Section 51 2.304e-003 9.400e-007 9.400e-007 1.327e-006

Section 52 2.700e-003 1.012e-006 1.012e-006 1.367e-006

Section 53 2.544e-003 1.423e-006 1.081e-006 1.755e-006

Section 54 3.000e-003 1.555e-006 1.170e-006 1.838e-006
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