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Chapter 1

Introduction

Natural disasters have always been and probably always will be a problem for humans and

their settlements. With global warming seemingly increasing the frequency and strength of the

climate related disasters, and more and more people being settled in urban centers, the ability

to model and predict damage is more important than ever.

The aim of this thesis has been to model and analyze a broad range of disaster types and the

kind of impact that they have. By modeling damage indices for disaster types as different as

hurricanes and volcanic eruptions, the thesis helps with understanding both similarities and

differences between how disasters work and what impact they have on societies experiencing

them. The thesis comprises four different chapters in addition to this introduction, where all

of them include modeling of one or more types of natural disasters and their impact on real

world metrics such as local budgets, birth rates and economic growth.

Chapter 2 is titled “Natural Disaster Damage Indices Based on Remotely Sensed Data: An

Application to Indonesia”. The objective was to construct damage indices through remotely

sensed and freely available data. In short, the methodology exploits that one can use nightlight

data as a proxy for economic activity. Then the nightlights data is matched with remote sensing

data typically used for natural hazard modeling. The next step is to construct damage indices

at the district level for Indonesia, for different disaster events such as floods, earthquakes, vol-

canic eruptions and the 2004 Christmas Tsunami. Ex ante, prior to the incidence of a disaster,
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district level damage indices could be used to determine the size of the annual fiscal transfers

from the central government to the subnational governments. Ex post, or after the incidence of

a natural disaster, damage indices are useful for quickly assessing and estimating the damages

caused and are especially useful for both central and local governments, emergency services,

and aid workers so that they can respond efficiently and deploy resources where they are most

needed. The chapter is published as a World Bank Policy Research Paper under Skoufias et al.

(2017a).

Chapter 3 utilizes the indices from Chapter 2 to showcase a potential area of use for them. The

title is “The Reallocation of District-Level Spending and Natural Disasters: Evidence from

Indonesia” and the main focus is on Indonesian district-level budgets. The aim was to use the

modeled intensity from Chapter 2 to a real world scenario that could affect policy makers. By

using the natural disaster damage indices constructed from the physical events and the expo-

sure to them, this chapter utilizes local level economic data from Indonesia to analyze whether

districts redistribute their expenditures following natural disasters such as floods, earthquakes,

volcanic eruptions and the 2004 tsunami. There is evidence that some disaster types cause

districts to move costs away from more general line items to areas such as health and infras-

tructure, which are likely to experience added pressure due to disasters. Furthermore, volcanic

eruptions and the tsunami led to less investment into more durable assets both for the year of

the disaster and the following year. This chapter is also forthcoming as a World Bank Policy

Research Paper under Skoufias et al. (2017b).

The fourth chapter, titled “Urban Global Impact of Earthquakes from 2004 through 2013”,

is a short chapter focusing on earthquake damage and economic growth. This chapter is an

expansion of the index used in the previous two chapters, where we use global data instead of

focusing on a single country and serves as a good example of how modern data can be used

to model global impacts. Using a comprehensive remotely sensed dataset of contour maps

of global earthquakes from 2004 through 2013 and utilizing global nightlights as an economic

proxy we model economic impact in the year of the quakes and the year after. More specifically,
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a combination of the contour maps, global housing data and local seismic codes is used to con-

struct vulnerability curves for more than 150 countries. Overall, it is shown that earthquakes

negatively impact local urban light emissions by 0.7 percent.

Chapter 5 is named “A Whirlwind Romance: The Effect of Hurricanes on Fertility in Early

20th Century Jamaica” and deviates from the prior chapters in that it is a historical chapter

that looks at birth rates in the early 1900s. The goal was to use the complete and long-term

birth database for Jamaica and match this with hurricane data to check fertility rates. We in-

vestigate the impact of hurricanes in the Caribbean on fertility rates in Jamaica for the period

1901 to 1929. More specifically, we create a hurricane destruction index derived from a wind

speed model that we combine with data on more than 1 million births across different parishes

in Jamaica. Analyzing the birth rate following damaging hurricanes, we find that there is a

strong and significant negative effect of hurricane destruction on the number of births. Overall,

we find that hurricanes resulted in 10,201 fewer births, or roughly 1 percent of the total. We

further show that damaging hurricanes reduce births for up to, and including, 17 months after

the event but find no evidence of a temporal displacement of births. In addition, we find no

support for the Trivers-Willard hypothesis that one sex becomes more prevalent than another.

However, there is evidence that the fall in births is due predominantly to single mothers having

fewer children relative to married couples.

iv



Contents

Acknowledgements i

1 Introduction ii

2 Damage Indices 1

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Natural Disasters in Indonesia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Floods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Earthquakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.3 Volcanic activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.4 2004 Christmas Tsunami . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Nightlight Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Flood Damage Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Construction of Index and Results . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Earthquake Damage Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Construction of Damage Index and Results . . . . . . . . . . . . . . . . . 26

2.6 Volcano Damage Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Volcano Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.2 Construction of Damage Index and Results . . . . . . . . . . . . . . . . . 36

2.7 Tsunami Damage Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.1 Construction of Damage Index and Results . . . . . . . . . . . . . . . . . 42

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Disaster Redistribution 48

v



vi CONTENTS

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Natural Disaster Damage Indices . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 District Expenditure Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Impact of Natural Disasters on District Spending . . . . . . . . . . . . . . . . . 56

3.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Creating Panel Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Urban Global Impact of Earthquakes from 2004 through 2013 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Nightlight Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Earthquake Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Seismic Codes and Building Practices Data . . . . . . . . . . . . . . . . . 79

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Constructing Damage Index . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2 Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Hurricanes and Fertility 92

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Data and Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Geographical Unit of Analysis . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 Population and Births Data . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.3 Hurricane Destruction Index . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.4 Weather Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.5 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Empirical strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 Hypothesis 1: Temporal fertility displacement . . . . . . . . . . . . . . . 112

5.4.2 Hypothesis 2: Permanent Fertility Effects . . . . . . . . . . . . . . . . . . 113

5.4.3 Hypothesis 3: Sex-ratio Analysis . . . . . . . . . . . . . . . . . . . . . . 115

5.4.4 Hypothesis 4: Marital status and fertility . . . . . . . . . . . . . . . . . . 118

5.4.5 Overall fertility effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A 122

A.1 Nominal Expenditure Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Regression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B 125

Bibliography 137

vii



viii



List of Tables

2.1 Most Active Volcanoes 2004-2015 . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Basins with Most and Least Flood Events . . . . . . . . . . . . . . . . . . . . . 18

2.3 Descriptives of Weights and Intensity for Modeled Flood Events . . . . . . . . . 19

2.4 DFO Floods Compared with GeoSFM Results . . . . . . . . . . . . . . . . . . . 22

2.5 Aggregated Flood Intensity Data by Province . . . . . . . . . . . . . . . . . . . 23

2.6 10 Most Impacted Districts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Times a Lit Nightlight Cell is Damaged by Earthquake by Province . . . . . . . 29

2.8 Descriptives of Weights and Intensity for Building Quality 4 . . . . . . . . . . . 30

2.9 Aggregated Earthquake Damage Data by Province . . . . . . . . . . . . . . . . 32

2.10 10 Most Impacted Districts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 Nightlight Cells by Year and Volcano . . . . . . . . . . . . . . . . . . . . . . . . 38

2.12 Affected Nightlight Cells by Province and Year . . . . . . . . . . . . . . . . . . . 38

2.13 Top 10 Districts with Most Affected Nightlight Cells . . . . . . . . . . . . . . . 39

2.14 Descriptives of Weights and Intensity . . . . . . . . . . . . . . . . . . . . . . . . 39

2.15 10 Most Impacted Provinces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.16 Aggregated Volcano Intensity Data by Province and Year . . . . . . . . . . . . . 41

2.17 10 Most Impacted Districts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.18 Descriptives of Weights by Year . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.19 Aggregated Tsunami Damage by District and Province . . . . . . . . . . . . . . 45

2.20 Disasters and the Data Sources and Softwares used . . . . . . . . . . . . . . . . 47

3.1 Descriptives Damage Indices - 2005 - 2012 . . . . . . . . . . . . . . . . . . . . . 53

3.2 Descriptives of ratios of Expenditure data by Economic Sectors and Categories . 54

ix



3.3 Comparison of Data depending on Balanced vs Unbalanced . . . . . . . . . . . . 58

3.4 Damage Indice Descriptives when Unbalanced 2 years . . . . . . . . . . . . . . . 59

3.5 Regression results for Unbalanced 2 year Sector Data with lags . . . . . . . . . . 64

3.6 Percentage change of Total Budget by Key Sectors . . . . . . . . . . . . . . . . 65

3.7 Regression results for Unbalanced 2 year Category Data . . . . . . . . . . . . . . 70

3.8 Percentage change of Total Budget by Category . . . . . . . . . . . . . . . . . . 71

4.1 Descriptives of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Regression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Robustness Check - Nightlight Level Below 55 . . . . . . . . . . . . . . . . . . . 90

5.1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Base case regressions (Births 9 months after hurricane) . . . . . . . . . . . . . . 109

5.3 Birth Impact of Hurricane (Number of Births 9 months after a hurricane) . . . . 110

5.4 Birth Impact of Hurricanes for Months 7 through 18 . . . . . . . . . . . . . . . . 113

5.5 Hurricane effects for 3, 5 and 10 year rolling aggregate births . . . . . . . . . . . 115

5.6 Boys v Girls - Months 7 through 18 . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 Single Mother v Married Couple - Months 7 through 18 . . . . . . . . . . . . . . 119

5.8 Summary of Birth Impacts for Jamaica Across All Storms . . . . . . . . . . . . 120

A1 Descriptives of Expenditure data by Economic Sectors . . . . . . . . . . . . . . 122

A2 Descriptives of Expenditure data by Economic Categories . . . . . . . . . . . . . 122

A3 Regression results for Unbalanced 2 year Sector Data . . . . . . . . . . . . . . . 123

A4 Regression results for Unbalanced 2 year Sector Data with lags . . . . . . . . . . 124

B1 Selected birth data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B2 Birth Impact of Hurricanes by Month . . . . . . . . . . . . . . . . . . . . . . . . 126

B3 Long Term Birth Impact of Hurricanes . . . . . . . . . . . . . . . . . . . . . . . 127

B4 Boys - Birth Impact of Hurricane by Month . . . . . . . . . . . . . . . . . . . . 128

B5 Girls - Birth Impact of Hurricane by Month . . . . . . . . . . . . . . . . . . . . 129

B6 Mother only - Birth Impact of Hurricane by Month . . . . . . . . . . . . . . . . 130

B7 Married Couple - Birth Impact of Hurricane by Month . . . . . . . . . . . . . . 131

x



List of Figures

2.1 DFO Large Scale Floods in Indonesia 2001-2016 . . . . . . . . . . . . . . . . . . 6

2.2 Earthquakes in Indonesia 2004-2014 . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Destruction in Banda Aceh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Cells with Registered Nightlights in 2012 . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Basins by Province . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 10 Most Flooded Modeled Basins versus DFO Floods . . . . . . . . . . . . . . . 17

2.7 Overview of Methodology used to Construct Flood Index . . . . . . . . . . . . . 20

2.8 ShakeMap Instrumental Intensity Scale Legend . . . . . . . . . . . . . . . . . . 26

2.9 Vulnerability Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 Overview of Methodology used to Construct Earthquake Index . . . . . . . . . . 31

2.11 Merapi Ash-Cloud 4 November 2010 at 05.33UTC (7h post-eruption) . . . . . . 37

2.12 Overview of Methodology used to Construct Volcano Index . . . . . . . . . . . . 40

2.13 Inundation Map of 2004 Tsunami . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.14 Aceh Nightlights and Tsunami Affected Nightlights . . . . . . . . . . . . . . . . 44

2.15 Overview of Methodology used to Construct Tsunami Index . . . . . . . . . . . 45

4.1 Combined Index across the Globe . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Urban Areas of the World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Vulnerability Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Vulnerability Curves for Affected Countries . . . . . . . . . . . . . . . . . . . . . 87

5.1 Change in the Destruction Index Coefficient with Changing Vhalf assuming a

Vthresh of 92.6km/h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xi



5.2 Change in the Destruction Index Coefficient with Changing Vhalf assuming a

Vthresh of 185.2km/h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B1 IBTracks All Storms Caribbean Basin 1901-1929 . . . . . . . . . . . . . . . . . . 132

B2 Births and Storms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B3 Population densities 1901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B4 Population densities 1929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B5 Density of Storms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B6 Change in the Destruction Index Coefficient with Changing Vthresh with Vhalf of

203.7km/h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xii



Chapter 2

Natural Disaster Damage Indices

Based on Remotely Sensed Data: An

Application to Indonesia

Abstract

Combining nightlight data as a proxy for economic activity with remote sensing data typically

used for natural hazard modeling, this chapter constructs novel damage indices at the district

level for Indonesia, for different disaster events such as floods, earthquakes, volcanic eruptions

and the 2004 Christmas Tsunami. Ex ante, prior to the incidence of a disaster, district-

level damage indices could be used to determine the size of the annual fiscal transfers from

the central government to the subnational governments. Ex post, or after the incidence of a

natural disaster, damage indices are useful for quickly assessing and estimating the damages

caused and are especially useful for central and local governments, emergency services, and aid

workers so that they can respond efficiently and deploy resources where they are most needed.

1



2 Chapter 2. Damage Indices

2.1 Introduction

Quickly assessing and estimating the damage caused after the incidence of a natural disaster is

important for both central and local governments, emergency services and aid workers, so that

they can respond efficiently and deploy resources where they are most needed. Recently, re-

mote sensing technologies have been used to analyze the impact of disasters, such as hurricanes

(Myint et al., 2008; Klemas, 2009), floods (Haq et al., 2012; Wu et al., 2012, 2014; Chung et al.,

2015), landslides (Nichol et al., 2006), earthquakes (Fu et al., 2005; Yamazaki & Matsuoka,

2007), wildfires (Holden et al., 2005; Roy et al., 2006), volcanoes (Carn et al., 2009; Ferguson

et al., 2010) and tsunamis (Römer et al., 2012). These remote sensing techniques are useful

for providing quick damage estimates shortly after the disasters giving emergency services a

chance to respond quickly and local governments an overview of estimated costs and necessary

repairs.

In addition to their usefulness in the aftermath of a disaster, estimates of the potential damage

associated with a natural disaster are also useful for policy making prior to the realization of

the natural hazard event. In many cases the incidence of a natural hazard event can turn into

a natural disaster simply because of inadequate preparation ex-ante. Indonesia, for example, is

highly exposed to natural disasters by being situated in one of the worlds most active disaster

hot spots, where several types of disasters such as earthquakes, tsunamis, volcanic eruptions,

floods, landslides, droughts and forest fires frequently occur. The average annual cost of natural

disasters, over the last 10 years, is estimated at 0.3 percent of Indonesian GDP, although the

economic impact of such disasters is generally much higher at local or subnational levels (The

Global Facility for Disaster Reduction and Recovery, 2011). The high frequency of disasters

experienced has important impacts on expenditures by local governments that could be antic-

ipated, at least in part, through upward adjustments in the annual fiscal transfers from the

central government to the subnational governments.1 Such ex-ante adjustments in the level of

fiscal transfers would be more useful if they could be based on estimates of the potential dam-

1For example, Indonesia experienced 4,000 disasters between 2001 and 2007 alone, including floods (37%),
droughts (24%), landslides (11%) and windstorms (9%) (The Global Facility for Disaster Reduction and Re-
covery, 2011).



2.1. Introduction 3

ages associated with the incidence of a natural disaster as opposed to estimates of the intensity

of the potential natural hazard that might occur. However, although in recent years there has

been much progress towards the modeling of the main natural hazards, there continues to be

a scarcity of estimates of the damages associated with the incidence of these disasters. The

value of damage caused by a natural disaster is typically a complicated function of the size of

population living in that area, the level and type of economic activity carried out, the value of

the physical infrastructure in place, and the resilience of infrastructure and people’s livelihoods

to the natural hazards.

This chapter fills some of the gaps in the literature by using different remote sensing sources and

data on the physical characteristics of the events to construct four damage indices for natural

disasters in Indonesia. The indices cover floods, earthquakes, volcanic eruptions and a tsunami,

and are all weighted by local economic activity in an area, and then aggregated up to a district

level.2 All data used in the construction of the indices are free and publicly available, making

the methods used a potentially very useful alternative for both central and local governments

to quickly get a rough estimate of the damages caused by a disaster (either ex-ante or ex-post).3

Importantly, all of the indices constructed take into account local exposure. Given limited

access to highly disaggregated local economic activity data, nightlight intensity derived from

satellite imagery has proved to be a good proxy; see, for instance, Henderson et al. (2012),

Hodler & Raschky (2014) and Michalopoulos & Papaioannou (2014). By utilizing the grid cells

of approximately 1 square kilometer we can break down areas in cities and districts into where

they are busiest, and thus take into account not only the local physical characteristics of a

natural disaster but also the local economic activity exposed to it.

The chapter is structured as follows. Section 2.2 of the chapter discusses in more detail the

incidence and types of natural disasters. Section 2.3 discusses the nightlights data. Sections 2.4-

2A tropical cyclone index was also constructed, but no hurricanes had strong enough winds to cause any
damage on land.

3In a separate paper, Skoufias et al. (2017b), we correlate the damage indices of these disasters at the district
level with the ex-post allocation of district expenditures in different sectors and by economic classification.
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2.7 discuss in detail the construction of the four damage indices, while section 2.8 concludes.
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2.2 Natural Disasters in Indonesia

Natural disasters are prevalent events across most parts of Indonesia. According to the Indone-

sian National Disaster Management Authority (BNPB) there were more than 19,000 natural

disasters in the period 2001 - 2015 (National Disaster Management Agency, BNPB, 2016), mak-

ing Indonesia a useful country for any natural disaster analysis. The most frequent disasters are

floods and landslides (52 percent), strong winds (21 percent) and fires (15 percent), while the

most damaging ones are earthquakes, tsunamis and volcanic eruptions, which all cause major

damage to buildings and infrastructure in addition to the human casualties. The deadliest year

according to the BNPB data was 2004, where there were more than 167,000 deaths due to

natural disasters and 166,671 of them stemming from the tsunami in December 2004.

2.2.1 Floods

The tropical climate of Indonesia often leads to annual floods. The BNPB data registered

more than 10,000 incidents of floods or landslides leading to more than 3,500 fatalities from

2001 through 2015. During the period from 1985 to 2016, The Darthmouth Flood Observatory

(DFO) registered 3,808 floods of magnitude 4 or more and 1,175 floods of magnitude 6 and

up.4 Of these floods, there were 126 large scale floods with a centroid within Indonesia in the

period from 2001 to 2016 as can be seen in Figure 2.1. Of the 34 provinces, 27 experienced

having a centroid of a large scale flood event during these years.5

2.2.2 Earthquakes

Due to Indonesia’s location inside the Pacific Ring of Fire, one of the most seismically active

areas in the world, it is often struck by earthquakes. BNPB counted almost 400 earthquakes

from 2001 to 2015, with the largest number of casualties coming from the tsunami created by

4Magnitude is defined as: M = log(D · S · AA), where D is the duration of the flood; S is the severity on
a scale consisting of 1 (large event), 1.5 (very large event) and 2 (extreme event); and AA is the size of the
affected area. Flood events registered by DFO have mainly been derived from news and governmental sources.

5The provinces where no large scale centroid was present were Bangka Belitung, Riau Islands, Kalimantan
Barat, Yogyakarta, Sulawesi Barat, Kalimantan Utara and Maluku. Note that some of these, like Kalimantan
Utara, Kalimantan Barat, Sulawesi Barat and Yogakarta, did most likely experience large scale flood during
these years, but that the centroid was in another province. The remaining three provinces consist mainly of
smaller islands, so the flooded area will most likely not constitute a large scale flood event.



6 Chapter 2. Damage Indices

Figure 2.1: DFO Large Scale Floods in Indonesia 2001-2016

Source: G.R.Brakenridge (2016)

a 9.0 earthquake located off the coast of Aceh, otherwise known as the earthquake that caused

the 2004 tsunami. Apart from that, there were more than 8,000 registered fatalities due to

earthquakes over the same period. Overall, this makes earthquakes the deadliest of the natural

disasters that strike Indonesia.

Figure 2.2 shows how common earthquakes are in Indonesia by displaying contour maps6 of

all earthquakes of magnitude 5.0 and above that struck Indonesia from 2004 through 2014. In

total, the United States Geological Survey (USGS) registered 261 earthquakes.7

6These maps are also known as ShakeMaps, which are produced by USGS.
7There are 1,002 earthquakes registered by USGS that were of magnitude 5.0 or more that had a point with

a PGA of at least 0.05 within Indonesia. Many of these points create little to no damage. The 261 earthquakes
mentioned above are quakes that are mostly contained within Indonesia.
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Figure 2.2: Earthquakes in Indonesia 2004-2014

Source: USGS

2.2.3 Volcanic activity

Indonesia has the highest number of active volcanoes in the world, numbering almost 150. Of

these, many have had eruptions in both more historical times and after the year 2000. The

most famous eruption is probably the explosion of Krakatau in August 1883, when two-thirds

of the Krakatau Island erupted and disappeared, killing more than 35,000 people and causing a

global mini ice age and weather disruptions for years. BNPB have registered 92 eruptions over

our 15-year time period and more than 60 major volcanoes that have had eruptions since 1900.

The most recent one is the 2010 Mount Merapi eruption that killed 324 people and dislocated

more than 320,000.

In addition to the BNPB data, during the years 2004 through 2015 the Darwin Volcanic Ash

Advisory Centre (DVAAC) had 587 days where they issued a red warning, implying an ongoing
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or imminent volcanic eruption. The most active volcanoes - measured by number of days

with red warnings - are shown in Table 2.1, with the top 5 volcanoes constituting almost 75

percent of the red warnings. These are also volcanoes that have been in the media, with Merapi

already mentioned and Sinabung, which had several eruptions in 2010, 2013 and 2014. These

two volcanoes are located close to densely populated areas, with Sinabung located in North

Sumatra and Merapi in central Java.

Table 2.1: Most Active Volcanoes 2004-2015

Volcano Number of Days with Red Warning

Sinabung 224
Merapi 92
Manam 74
Egon 36
Soputan 31

2.2.4 2004 Christmas Tsunami

The Christmas Tsunami in 2004 is the worst singular natural disaster during the modeling pe-

riod, and one of the worst natural disasters in world history. As seen in the photo in Figure 2.3

the destruction was absolute in parts of Indonesia. The total death toll across Indonesia and 13

other countries was more than 230,000 people and there were many more missing. In addition,

the World Bank (2005) estimated a total economic impact of 4.5 billion US dollars. The official

BNPB data for Indonesia estimates 166,671 deaths due to the tsunami.

The cause of the tsunami was an earthquake of magnitude 9.0 150 miles south-south east of

Banda Aceh on the morning of 26 December. This quake created a tsunami with waves more

than 20 meters high at the highest. Due to the fault line of the earthquake being in a north-

south direction, the greatest strength of the tsunami was in an east-west direction (Athukorala

& Resosudarmo, 2005). This led to the largest damages being in the northern part of Sumatra,

in the province of Aceh, where entire villages were wiped out as seen in the photo of Banda

Aceh (Figure 2.3).



Figure 2.3: Destruction in Banda Aceh

Source: The Atlantic (2014)

9
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2.3 Nightlight Data

Natural disasters are inherent local phenomena in that they either affect only parts of areas

and/or affect parts within areas differently. It is thus important to take the local popula-

tion/asset exposure into account when constructing more aggregate proxies. Arguably one

would like to have measures of exposure as spatially disaggregated as possible. For a country

like Indonesia, data are usually sparse and at a very aggregated spatial level.

An alternative approach is thus to use nightlights as a proxy for local economic activity. As

a matter of fact, nightlights have found widespread use where no other measures are avail-

able; see, for instance, Henderson et al. (2012), Hodler & Raschky (2014) and Michalopoulos

& Papaioannou (2014). In Henderson et al. (2012), Indonesia is used as an example of using

nightlights to capture an economic downturn following the Asian financial crisis in the late

1990s. Their results show that swings in GDP change can generally be captured. Nevertheless

one has to account for factors such as cultural differences in light usage, latitude and gas flares.

In our case this is unlikely to affect our results since we use nightlights to capture exposure

within a country rather than across countries.

The nightlight imagery we employ is provided by the Defense Meteorological Satellite Program

(DMSP) satellites. In terms of coverage each DMSP satellite has a 101 minute near-polar orbit

at an altitude of about 800km above the surface of the earth, providing global coverage twice

per day, at the same local time each day, with a spatial resolution of about 1km near the equa-

tor. The resulting images provide the percentage of nightlight occurrences for each pixel per

year normalized across satellites to a scale ranging from 0 (no light) to 63 (maximum light).

Yearly values were then constructed as simple averages across daily values of grids, and are

available from 1992.8 We use the stable, cloud-free series; see Elvidge et al. (1997).

8For the years where satellites were replaced, DMSP provides an average from both the new and old satellite.
In this chapter we use the imagery from the most recent satellite but as part of our sensitivity analysis we also
re-estimated our results using an average of the two satellites and the older satellite only. The results of these
latter two options were almost quantitatively and qualitatively identical.
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The data revealed 414,644 cells which had a nightlight value greater than 0 in them at least once

during the period 2001-2013. Figure 2.4 - containing all cells with nightlights in 2012 - shows

that the large cities and densely populated areas on Java, Sunda Islands, coastal Kalimantan

and Sumatra are fully covered in lights. Inner parts of Kalimantan and most parts of New

Guinea are more sparsely lit.

Figure 2.4: Cells with Registered Nightlights in 2012
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2.4 Flood Damage Index

The modeling of floods can be done by remote sensing (Brakenridge & Anderson, 2006; Wu

et al., 2012; Haq et al., 2012) or through a combination of weather data and GIS systems as for

example in Knebl et al. (2005); Asante et al. (2007); Dessu et al. (2016). We utilize the latter,

as remote sensing is useful for assessing whether an area is flooded or not, but it is weaker

on modeling the intensity of the flood. Moreover, cloud cover generally limits the accurate

detection of floods from remote sensing sources.

To model floods we have decided to use the Geospatial Stream Flow Model (GeoSFM) which

is a software that is “designed to use remotely sensed meteorological data in data sparse parts

of the world”(Artan et al., 2008). GeoSFM was developed by USGS and USAID and is a

hydrological modeling tool used to model stream flows across large areas, in particular areas

where highly localized data are lacking. It has been used in regions such as the Great Horn of

Africa (Asante et al., 2007; Mati et al., 2008; Dessu et al., 2016) and Nepal (Shrestha et al.,

2011), with Dessu et al. (2016) finding that the model captures 76% of the monthly average

variability, making it useful for flood simulation.

The inputs needed to model stream flow for basins are soil- and terrain-based - such as digital

elevations models (DEM) and land cover and soil data - and weather-based, such as precipita-

tion and potential evapotranspiration (PET) data. The HYDRO1K data set from USGS, which

is a DEM made for hydrological modeling based on the USGS’ 30 arc-second DEM of the world,

is used as elevation input. The land cover data are the Global Land Cover Characterization

(GLCC) data set also from USGS, while the soil data are from the FAO Digital Soil Map of

the World.

The daily precipitation data are from the 3-hourly data set from the Tropical Rainfall Mea-

surement Mission Project (TRMM) and the PET data are 6-hourly data from the Global Data

Assimilation System (GDAS), both data sets are aggregated up to daily data. The PET data

are available from February 2001 and onwards, while the precipitation data are available for
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the period 1998-2014. Given that we only have nightlight data through 2013, we will focus on

floods for the period 2001-2014.

GeoSFM uses the inputs to construct basins based on the terrain and then uses a linear soil

moisture accounting routine to model surface runoff and soil moisture based on precipitation

and PET. It is worth noting that although a more complex and better non-linear routine is

also supported, it does not work well for our more generalized macro-modeling with fairly low

resolution data. Finally, GeoSFM models the stream flow for each basin for each day of our

time period.

Note that GeoSFM does not model coastal floods, nor does it model flash floods in areas where

there are no rivers or streams of a certain length. Figure 2.5 shows that there are parts of

Indonesia and even one province - Riau Islands - which have no basins. Another weakness

is that it does not take into consideration the specific terrain within each basin. Floods are

generally very localized events and the low resolution of our data makes it impossible to model

the intensity of the stream flow within a basin and also causes some river outlets to be slightly

inland instead of running all the way to the ocean.
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Figure 2.5: Basins by Province

2.4.1 Construction of Index and Results

The first part of constructing the index involves defining when a flood event is happening. In

Wu et al. (2012) they propose four runoff based methods to define a flood threshold, and in

addition Wu et al. (2014) propose a slightly modified flood threshold definition with a point

being flooded when:

R > P95 + σ and Q > 10m3/s (2.1)

where R is the routed runoff in millimeters, P95 is the 95th percentile value and σ is the stan-

dard deviation of the routed runoff. Q is the discharge in cubic meters.

We found that with the GeoSFM modeled data, runoff was not a good proxy for flooding, due

to it only capturing a limited number of floods. Discharge, Q, was a better proxy, leading to a

new - but very similar - equation:

Q > P95 + σ and Q > 10m3/s (2.2)



2.4. Flood Damage Index 15

By manually checking against the DFO floods, we find that our data do hit several of the large

scale events in Figure 2.1.

Damage Index

Due to floods being very localized, the modeling of damage is difficult, and no standard exists in

the literature. Penning-Rowsell et al. (2005) base destruction on value of housing stock and the

Standards of Protection and then uses an estimate of number of properties affected by different

return period floods. Scawthorn et al. (2006) use a combination of building stock and velocity

of the stream flow, whereas Kreibich et al. (2009) look at different parameters such as velocity,

depth, energy head, stream flow and intensity. They find velocity to be a poor parameter for

assessing damage, while water depth and energy head show the best results. Stream flow and

intensity are also weak as parameters. Finally, Merz et al. (2010) assess different damage influ-

encing parameters and point to the fact that most “damage influencing factors are neglected in

damage modeling, since they are very heterogeneous in space and time, difficult to predict, and

there is limited information on their (quantitative) effects”. Overall, there is limited support

in the literature for a strong correlation between these parameters and damages on anything

but a very localized scale.

As for assessing the damage itself, Merz et al. (2010) discuss damage functions and the two

main approaches, which involve one empirical approach where damage data are collected after

the flood and one synthetic approach where they construct potential what if-scenarios. Once

again the assessments rest on very localized data, which we do not have for Indonesia. Overall,

it means that we cannot expect anything more than rough estimates. A common denominator

for the papers mentioned above is that there is some measurement of intensity. Given that

stream flow is an intensity proxy, we have used that to construct a simple measurement for

intensity. The equation is:

Ib,t ≡

 0, if Flood = 0

Qb,t−Q̄b

σb
, otherwise

(2.3)
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where Ib,t is the intensity of the flood in basin b at date t, Qb,t is the stream flow in the same

basin at the same time and Q̄b and σb are mean and standard deviation of stream flow in b. The

intensity is set to zero if the flood threshold - 95th percentile plus 1 standard deviation above

the average - has not been exceeded. By normalizing, we obtain a measure that is comparable

across all regions and that is independent of the absolute river flows. The assumption is that

people living close to rivers will be prepared for variations in water levels, and that people

living close to rivers with highly variable stream flows are more prepared for these events than

people living close to more stable rivers.

To aggregate the flood impact each basin is weighted based on the nightlights in it. The weights

per basin, b, in province p, Wb,p,t−1, are defined as:

Wb,p,t−1 ≡
∑I

i Lb,i,t−1∑J
j Lp,j,t−1

, b = 1, . . . , B, p = 1, . . . , P (2.4)

where
∑I

i Lb,i,t−1 is the sum of lights, i, in basin b one year, t − 1, before the flood year and∑J
j Lp,j,t−1 is the same at a province or district level.

Finally, the weights from (2.4) are multiplied with the intensity from (2.3) to get the overall

flood impact, FI b,p,t in basin b on the province p at time t:

FI b,p,t ≡ Wb,p,t−1 · Ib,t, b = 1, . . . , B p = 1, . . . , P (2.5)

One thing to note here is that for basins that span several provinces or districts, we have assumed

the same intensity, but the weight is based on nightlights within each individual province.

Results

The stream flow was simulated for 5,082 consecutive days, from 1 February 2001 to 31 Decem-

ber 2014.9 Table 2.2 shows that the top 10 basins with most flood days had close to 200 days of

flooding over the 14-year period. As expected, these basins do overlap with some of the busiest

9For Bali we did it for 5,080 days due to problems with 30 and 31 December 2014.
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flood areas according to the DFO, as shown in Figure 2.6. The lower part of Table 2.2 reveals

that the driest basin had a mere 12 days of flooding. All 33 provinces with a basin had days

that went above our flood threshold set in Equation (2.2).

All months in our model have flood events, but there are big differences. The range goes

from 527 events every March and down to 154 events every August, with the traditional rainy

season (November-March) producing the highest number of flood events, whereas the dry season

months (June-October) are the driest. Aggregating the numbers for the rainy season, there are

2,215 events every year across the basins, while there are only 995 events every year during the

dry season.

Figure 2.6: 10 Most Flooded Modeled Basins versus DFO Floods

Total number of basins that are partly or fully inside Indonesia is 495, and these basins have

a total of 55,605 flood events or slightly more than 112 per basin. In other words, the average

basin has been flooded for a total of 8 days a year over the 14-year period in question. This

is not entirely unexpected given the climate in Indonesia and the way our threshold is made.

Also, if we compare with the DFO data where they have 3,808 floods of magnitude 4 or higher
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Table 2.2: Basins with Most and Least Flood Events

Basin Number Affected Provinces Number of flood
events

2 Bangka-Belitung 192
705 Sumatera Selatan 190
133 Aceh 189
632 Jambi, Sumatera Barat 189
282 Sumatera Utara 187
872 Jawa Barat 186
868 Jawa Barat, Banten 183
916 Jawa Tengah, Jawa Timur 183
558 Sulawesi Barat, Sulawesi Selatan 180
709 Papua 177

256 Kalimantan Barat, Kalimantan Tengah 12
444 Riau 17
197 Sulawesi Tengah 21
316 Kalimantan Barat 24
314 Kalimantan Barat 27

through their period from 1985-2016, which converts to almost 123 fairly large scale flood events

per year, our model provides a reasonable proxy for events.

Even though the results seem logical on a per basin basis, the time steps in the model are 1

day at a time, which is too slow for the unfolding of a flood event, implying that downstream

basins that would normally fill up very quickly will now only be filled up the day after, and

then the next basin will be filled two days later and so forth. This means that the amount of

days with floods are inflated. We believe that this does not affect our results much, though,

as the number of events per province will not affect the end results, since we weigh by affected

nightlight and not by number of days of floods.

Despite the numerous floods in Indonesia, they generally do not affect a large percentage of the

population, as per Table 2.3. The mean of nightlights when excluding areas with 0 nightlight

is 3.39 percent. If we assume that 3.39 percent of the approximately 250 million people of

Indonesia are affected, the floods would impact 8.5 million people.
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Table 2.3: Descriptives of Weights and Intensity for Modeled Flood Events

Statistic N Mean St. Dev. Min Max

Weights 45,005 0.034 0.060 0.00003 0.557
Intensity 45,005 4.516 2.608 0.989 50.944
Damage Index 45,005 0.155 0.351 0.0001 12.780

Excluding zero damage observations

Comparison of Model versus DFO Floods

The DFO flood database is mostly based on news sources, providing an overview of the big

floods in Indonesia. To check the database against the GeoSFM model, the focus will be on the

largest events of magnitude 6 and above. Given how the DFO data do not give any intensity

estimates and focus primarily on displacement numbers and area, while our model is driven by

intensity the comparison will only focus on whether GeoSFM results do overlap in time and/or

province with the centroid of the DFO floods.

Table 2.4 shows the DFO data on the left side, first column being the start month of the flood,

followed by duration, magnitude, the province where the centroid of the flood is, dead and

displaced. The right side shows the modeling results where the focus is on duration. The first

column under model results shows the number of days for the centroid province, then overall

number of days with floods anywhere in Indonesia during the period, then looking at the same

island - using that as a proxy for neighboring regions - where one examines total days the island

provinces were flooded during the flood and finally how many of the days of the flood duration

that a province on the same island was flooded.

Generally, the model performs well, in particular on Sumatra and Kalimantan (Borneo), with

the example where the 2008 flood was captured for all 25 days in the centroid province. Overall,

it shows at least one flooded basin on Kalimantan and Sumatra for 85% of the days the major

floods happened. The results are somewhat worse on Java, where only 37% of the days have

a flood. A primary reason for this might be that Java is very narrow and hence the streams

are short and might not be captured in our model. Java also has larger percentage of land not

covered by a basin, ref Figure 2.5, also due to its narrowness which makes the low resolution
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landcover data underestimate the size of the basins.

Aggregated numbers

Finally, to aggregate up to a district or province level, we have used a simple method for the

total damage experienced per year:

PDp,y =
T∑
t

B∑
b

FI b,p,t, p = 1, . . . , P, y = 2001, . . . , 2014 (2.6)

where p is the province or district, sum of t is all the days in year y, sum of b are all the basins

in the province or district and FI b,p,t is the flood impact from Equation 2.5 for province or

district p. Normally one might use an average flood impact across the year, but by doing this,

we capture repeated flood events and areas that experience generally high flooding.

As this concludes the construction of our index, a summary of the process and data used is

shown in Figure 2.7.

Figure 2.7: Overview of Methodology used to Construct Flood Index

Using the above method, Table 2.5 provides the aggregated data for all provinces across all

years. The impact is fairly even for the most impacted ones, with the impact numbers for
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the top 10 ranging from 44 to 55. Furthermore, Sumatera Selatan, Lampung and Yogyakarta

make up 8 of the top 10 impacted provinces. The overall picture fits with the DFO floods

in Figure 2.1, with the populous provinces in Java, Sumatra and Sulawesi being impacted,

whereas the smaller island provinces and parts of Kalimantan are not affected much. For some

of the island provinces the numbers are probably underestimated, no basins will have been

constructed and modeled there due to the many small islands.

Finally, Table 2.6 shows the most impacted districts over the years 2001 through 2014. The

impact is much larger than for the provinces as one would expect due to the more localized

data and impact. The districts are also more geographically spread out than the provinces.
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Table 2.6: 10 Most Impacted Districts

District Province Year Flood Impact
Seruyan Kalimantan Tengah 2010 175.080
Aceh Tengah Aceh 2010 165.381
Bener Meriah Aceh 2010 139.742
Pasaman Sumatera Barat 2010 125.854
Sarolangun Jambi 2010 118.244
Lubuk Linggau Sumatera Selatan 2003 114.790
Keerom Papua 2009 114.289
Tana Toraja Sulawesi Selatan 2013 106.886
Klaten Jawa Tengah 2002 106.488
Sukoharjo Jawa Tengah 2002 106.488

24
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2.5 Earthquake Damage Index

The measurement of earthquake detection and intensity has improved with remote sensing

techniques. There are different methods to assess intensity and damage, ranging from satellite

images (Dell’Acqua & Gamba, 2012; Tralli et al., 2005; Gillespie et al., 2007) to contour maps

generated by seismological ground stations (De Groeve et al., 2008; GeoHazards International

and United Nations Centre for Regional Development, 2001; Federal Emergency Management

Agency, 2006).

This chapter uses the latter method, by utilizing ShakeMaps from USGS, which are auto-

matically generated maps providing several key parameters following an earthquake, such as

peak ground acceleration (PGA), peak ground velocity (PGV) and modified Mercalli intensity

(MMI). More specifically, the ShakeMaps use data from seismic stations that is interpolated

using an algorithm which is similar to kriging. To model the intensity in a given coordinate,

the model also takes into account ground conditions and the depth of earthquake. Wald et al.

(2005) point to the magnitude and epicenter location - which are parameters common for the

entire earthquake - that have historically been used to determine how severe earthquakes were,

but that the damage pattern is not just dependent on those two parameters, but also on other,

more localized parameters that the ShakeMaps use to generate intensity measures.

This is exemplified by several earthquakes such as magnitude 6.7 and 6.9 earthquakes in Califor-

nia in 1994 and 1989, respectively, where some areas further away from the epicenters got more

damaged than closer areas. The reason why the more localized ShakeMaps with their ground

shaking parameters are a better gauge than magnitude and epicenter distance is explained on

page 13 of Wald et al. (2005) which states that: “..., although an earthquake has one magnitude

and one epicenter, it produces a range of ground shaking levels at sites throughout the region

depending on distance from the earthquake, the rock and soil conditions at sites, and variations

in the propagation of seismic waves from the earthquake due to complexities in the structure of

the Earth’s crust.” The ShakeMaps are interpolated grids with point coordinates spaced approx-

imately 1.5 kilometers apart (0.0167 degrees). Figure 2.2 shows contoured maps of these points.
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The PGA is a measure of the maximum horizontal ground acceleration as a percentage of

gravity, PGV is the maximum horizontal ground speed in centimeters per second and MMI is

the perceived intensity of the earthquake, a subjective measure. Figure 2.8 - which is originally

found in Wald et al. (1999) - explains the relationship between the different parameters and

the potential damage from different values. The assumption is that damage starts at an MMI

level of V and a PGA of 3.9 percent of g. These levels are found for California in Wald et al.

(1999), but the relationship has been found for other areas in the US in Atkinson & Kaka

(2006) and Atkinson & Kaka (2007) and for places such as Costa Rica (Linkimer, 2007) and

Japan, Southern Europe and Western US (Murphy & O’Brien, 1977). It should be noted that

the numerical relationship differs from region to region. There are no known papers estimating

these values specifically for Indonesia.

Figure 2.8: ShakeMap Instrumental Intensity Scale Legend

Source: Wald et al. (1999)

The different measures are largely interchangeable, and in GeoHazards International and United

Nations Centre for Regional Development (2001) report, they use PGA to measure damage,

pointing to the fact that PGA, unlike MMI is an objective measure, implying that MMI is not

easy to obtain reliably across the globe. Also, for large scale modeling, where it is unfeasible for

one to model local conditions precisely, PGA serves as a good proxy for intensity of earthquakes.

2.5.1 Construction of Damage Index and Results

Damage Index

To construct the damage index, two types of data will be used; the intensity data - expressed

as PGA - and building inventory data, to assess what damage one could expect for different
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intensities.

To take into account the building types in Indonesia, we use information from the USGS

building inventory for earthquake assessment, which provides estimates of the proportions of

building types observed by country; see Jaiswal & Wald (2008). The data provide the share of

99 different building types within a country separately for urban and rural areas. For Indonesia

the building type information was compiled from a World Housing Encyclopedia survey, while

the split between urban and rural is from the urban extent map of Center for International

Earth Science Information Network - CIESIN - Columbia University et al. (2011). Without any

other information available, we use this as an indication of the distribution of building types in

Indonesia, but, necessarily, assume that the distribution is homogenous within urban and rural

areas.

Fragility curves by building type are derived from the curves constructed by Global Earthquake

Safety Initiative project; see GeoHazards International and United Nations Centre for Regional

Development (2001). More specifically, buildings are first divided into 9 different types.10 Each

building type itself is then rated according to the quality of the design, the quality of con-

struction, and the quality of materials. Total quality is measured on a scale of zero to seven,

depending on the total accumulated points from all three categories. According to the type of

building and the total points acquired through the quality classification, each building is then

assigned one of nine vulnerability curves which provides estimates of the percentage of building

damage for a set of 28 peak ground acceleration intervals.

In order to use these vulnerability curves for Indonesia we first allocated each of the 99 building

types given in the USGS building inventory to one of the 9 more aggregate categories of the

GESI building classification. However, to assign a building type its quality-specific vulnera-

bility curve we would further need to determine its quality in terms of design, construction,

10Wood, steel, reinforced concrete, reinforced concrete or steel with unreinforced masonry infill walls, rein-
forced masonry, unreinforced masonry, adobe and adobe brick, stone rubble, and lightweight shack or lightweight
traditional.
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and materials, an aspect for which we unfortunately have no further information. We instead

assume that building quality is homogenous across building type in Indonesia and experiment

with seven different sets of vulnerability curves, each set under a different quality ratings sce-

narios (ranging from 0 to 7).

Figure 2.9 depicts the building share weighted vulnerability curves of Indonesia for urban and

rural areas.

Figure 2.9: Vulnerability Curves
Rural Urban

To model estimated damage due to a particular earthquake event the data from the ShakeMaps

and GESI are used. Then, one identifies the value of peak ground acceleration that each

nightlight cell in Indonesia experiences by matching each earthquake point with its nearest

nightlight cell. If the cell is further away than 1.5 kilometers or if it experiences shaking (PGA)

of less than 0.05 the value is set to 0. In order to derive a cell i specific earthquake damage

index, ED , the following equation is applied:

ED i,q,p,t = Wi,p,t−1 · DRi,p,k,t,pgak,q , p = 1, . . . , P, k = U,R, q = 0, . . . , 7 (2.7)

where DR is the damage ratio according to the peak ground acceleration, pga, and the urban

(U) or rural (R) qualification, k, of cell i, defined for a set of 8 different building quality q
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categories. t is the year of the event and p is the province or district.11 The weight Wi,p,t−1 is

similar to before, being defined as:

Wi,p,t−1 ≡
Li,p,t−1∑J
j Lj,p,t−1

, i = 1, . . . , I, p = 1, . . . , P (2.8)

which translates to the weight of the light from nightlight cell i in year t − 1 over the total

amount of nightlight cell light,
∑J

j Lp,j,t−1, in province p in year t− 1.

Results

With the above method, we find that 27 of the 34 provinces were damaged by earthquakes at

some point in time.12 Table 2.7 shows that the big islands Java and Sumatra have the most

affected nightlight cells, given how densely populated they are and how much seismic activity

is experienced there this is expected.

Table 2.7: Times a Lit Nightlight Cell is Damaged by Earthquake by Province

Province Times Nightlight Cell Damaged Percentage of Total

Aceh 1,170 22.28
Sumatera Utara 722 13.75
Sumatera Barat 511 9.73
Sulawesi Tengah 354 6.74
Jawa Barat 353 6.72
Sumatera Selatan 283 5.39
Jawa Tengah 259 4.93
Jawa Timur 242 4.61
Bengkulu 165 3.14

Finally, there were 5,251 cases where the instance hit a nightlight cell that was lit. Table 2.8

shows that the individual nightlight cell weights are small, as expected, but the impact of

having buildings of quality 4 is that within a cell that is hit, on average a bit more than 6

percent of the buildings are destroyed.13

11In our case the value of p in DR is irrelevant as all provinces have the same fragility curves. However, if
one looks at different countries or have local data, it would affect the results

12The seven not affected were Bangka Belitung, Kalimantan Barat, Kalimantan Selatan, Kalimantan Tengah,
Kalimantan Timur, Kalimantan Utara and Kepualauan Riau.

13We did the same for buildings of quality 0 (the best) and 7 (the worst), something which led to maximum
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Table 2.8: Descriptives of Weights and Intensity for Building Quality 4

Statistic N Mean St. Dev. Min Max

Weights 5,251 0.226 0.407 0.009 9.328
Damage 5,251 0.062 0.043 0.046 0.547
Intensity 5,251 0.016 0.035 0.0004 0.859

Weights and Intensity multiplied by 1,000 and excluding
weights of zero

Aggregated data

When aggregating, a similar method as in section 2.4 is used, but now the aggregation is done

directly by nightlight cells instead of by basin. The equation is:

EDp,q,y =
I∑
i

T∑
t

ED i,q,p,t, p = 1, . . . , P, q = 0, . . . , 7 y = 2004, . . . , 2014 (2.9)

where sum of t is the sum of all days in the year y, i is all nightlight cells in the province or

district p and ED is the damage from equation 2.7.

Figure 2.10 gives an overview of the full process used to construct our index.

Table 2.9 provides the full overview of damage by province, showing the large differences be-

tween the provinces and how they vary from year to year, as one can expect with highly

randomized events such as earthquakes. Using Yogyakarta - which was only impacted by

earthquakes in 2006 - as an example, there was a loss of 0.4 percent of the total building mass,

causing damages estimated to be approximately 3.1 billion US dollars in addition to more than

5,000 deaths and tens of thousands of injured and displaced people. Apart from that, provinces

on Sumatra make up 6 of the top 10 most damaging years. Even though Indonesia is often

hit by severe earthquakes, even in the worst of years they only destroy about 1 percent of the

buildings in a province. That being said, 1 percent of total building mass and infrastructure

damage values of 33% for the best buildings and 84% for the worst versus 55% for our base case, showing how
the overall damage is highly dependent on building quality information.
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Figure 2.10: Overview of Methodology used to Construct Earthquake Index

being damaged does constitute a significant portion of local budgets. As another example, the

September 2009 earthquake in West Sumatra inflicted damages for an estimated 2.3 billion US

dollars, with repair costs and losses of 64 million US dollars on government buildings (Raschky,

2013).

The numbers per district are shown in Table 2.10, and they suffer much more damage than the

provinces, with the most impacted district losing 5 percent of building mass.
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Table 2.10: 10 Most Impacted Districts

District Province Year Intensity
Alor Nusa Tenggara Timur 2014 53.184
Waropen Papua 2010 45.070
Mukomuko Bengkulu 2007 44.215
Aceh Tengah Aceh 2013 41.736
Nabire Papua 2004 39.864
Bener Meriah Aceh 2013 37.750
Sangihe Talaud Sulawesi Utara 2009 32.947
Lembata Nusa Tenggara Timur 2012 31.692
Halmahera Selatan Maluku Utara 2013 31.511
Aceh Barat Aceh 2012 22.141
Note: Multiplied by 1,000
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2.6 Volcano Damage Index

A volcanic eruption consists of ash clouds, pyroclastic flows and lava flows, the latter two which

are very difficult to model without extensive local data. Unfortunately, there is little to no aca-

demic research that has looked into large scale volcanic modeling for all aspects of eruptions.

For modeling ash clouds, Joyce et al. (2009) points to remote sensing through satellite images

that detect SO2 emissions as a potential method.

To construct a damage index for eruptions, we use a two-fold process. First, volcanic ash

advisory data are used from Volcanic Ash Advisory Centers (VAAC) to detect eruptions; second,

satellite images containing sulphur dioxide data from the OMI/AURA satellite are used to

model the intensity of the eruptions. The OMI/AURA images have been utilized by Carn et al.

(2009) and Ferguson et al. (2010) to model eruption intensity.

2.6.1 Volcano Modeling

There are at least two types of software that are used to model eruptions. Voris (Felpeto

et al., 2007), which models ash clouds, lava flows and energy cones, and HYSPLIT from Air

Resources Laboratory, which models air pollution dispersion. Voris relies on highly localized

data due to the lava flow and energy cone modeling, which one will not have in most cases

and that does not fit well for large scale modeling across time and space. HYSPLIT does have

batch inputs, but still requires several inputs per eruption, some which are not easily obtainable.

The third solution, which is related to the ash clouds mentioned by Joyce et al. (2009), is based

off ash advisory data to determine whether an eruption happened and OMI/AURA satellite

data to determine the scale of the eruption. This will not help with modeling lava flows and

energy cones, but due to the very localized nature of the flows, there are no good sources or

methods to model it for several eruptions from different volcanoes, leaving the ash clouds as a

good proxy for all damages.
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Ash advisory data

Ash advisories from the Darwin VAAC (DVAAC), which are ash cloud warnings for airplanes,

are used to determine whether an eruption is happening. The warnings show relevant data such

as volcano name, position, summit height, height of clouds and a color code that reflects the

condition of the air/volcano. There are 4 different codes ranking from the normal state, green,

to imminent danger of or ongoing volcanic eruption, red. Over the period from 2004 until 2015,

the DVAAC issued 12,962 warnings and of these more than 90 percent were either of code red

or orange. Data on advisories from code orange or below were not used, due to eruptions of

this scale not being large enough to be properly captured by the SO2-data. By limiting the

data to code red events, there are 1,785 events spread across 587 dates.14

OMI/AURA Satellite images

To measure the intensity of an eruption, data from the Sulphur Dioxide images of the OMI/Aura

project (Krotkov & Li, 2006) are used. These consist of satellite images from October 2004

and onwards. The data have been used to model ash cloud intensity and movement in several

articles such as Carn et al. (2009) and Ferguson et al. (2010).

The satellite images have a spatial resolution of 13 · 24km and are taken from 80km above

ground. The spectral imaging shows the SO2 vertical column density in Dobson Units and

there are 14 or 15 orbits per day, where one orbit covers an area approximately 2,600km wide.

A dobson unit is a measure of density, and at sea level the typical concentration in clean air is

less than 0.2DU. The images contain 4 values for column density based on the center of mass

altitude (CMA), which is a measure of the altitude one assumes the center of the distribution

is at. There are 4 different estimates for the vertical column density, ranging from 0.9km above

ground to 18km above ground.

For volcanic activities one normally uses a CMA of either 8km or 18km (OMI team, 2012),

where the former is a middle tropospheric column (TRM) and is for use in medium eruptions,

14There were 571 different dates, but some of these dates issued red warnings to 2 or more volcanoes.
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while the latter is an upper tropospheric and stratospheric column (STL) and is for explosive

eruptions. Despite this difference, the data are interchangeable in the sense that one can inter-

polate from one CMA to the others.

OMI is more sensitive above clouds, which both measures mentioned will normally be. The

standard deviation for both measures is as low as 0.1DU over Indonesia. The data for both

STL and TRM are very similar and this chapter uses the STL-data as that are most useful for

the biggest events.

2.6.2 Construction of Damage Index and Results

Damage Index

When constructing a damage index based on SO2 values from ash clouds, one has to set thresh-

olds for distance from the event and from the centroid of the nightlight cell and also a lower

sulphur dioxide-value. There are no papers or literature that have estimated any parameter

values and there are no usable local data, so the thresholds have been set somewhat arbitrarily.

First off, one wants to set a distance threshold estimating how far away the eruption could cause

damage. Note that one wants ground results and not for the aviation industry, since planes

can be affected very far away as evidenced by the total stand still of planes across Europe

during the 2010 Eyjafjallajökull eruption. We decided to set a very relaxed condition with any

point closer than 10 degrees of latitude and longitude included. Figure 2.11 portrays the plume

approximately 7 hours after one of the biggest Merapi eruptions on 4 November 2010, where

the plume moved relatively slowly and after 1000km it dissipated at the lower altitudes, which

shows that our 10 degree threshold works well.

Secondly, to match the nightlight data with the OMI/Aura data, a maximum distance between

a nightlight point and the nearest SO2 point is set at 50km. The SO2 points are fairly scattered

due to cloud covers, hence to get a more consistent grid of nightlight and SO2 values we have

chosen a distance that is approximately two times the longest side of an OMI cell.
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Finally, a minimum SO2 value in Dobson Units is chosen. According to the Belgian Institute

for Space Aeronomy, a typical normal level in air is 0.1DU and a strong eruption is above 10,

which is the threshold value chosen.

Once the thresholds have been set, the same nightlight weighting method as for our other

indices is applied and then the weights are multiplied with the SO2 value to get an intensity

value. The equation is:

V Di,t ≡

 0, if V SO2t < 10

Wi,p,t−1 · VSO2 t, otherwise
(2.10)

where i is the nightlight cell on date t, and Wi,p,t−1 is the previously used weight where i is the

nightlight cell, t− 1 is the nightlight strength from the prior year and it is divided by the sum

of total nightlights in the province or district. Finally, VSO2 t is the SO2 value on date t.

Figure 2.11: Merapi Ash-Cloud 4 November 2010 at 05.33UTC (7h post-eruption)
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Results

Applying our constraints, the 587 dates with a red warning have been reduced to 16 days. Of

these, 7 are from the 2010 eruption on Merapi, the biggest event during the time period.

Table 2.11 provides the affected nightlight cells by year and volcano and the results are closely

correlated with the events of the period. The main one is the Merapi eruption in 2010, Soputan

with volcanic explosivity index events of level 2 and 3 in 2004, 2005, 2007 and 2008 (Global

Volcanism Program, 2013) and Sinabung with several eruptions in 2014, which all fit the model

well.

Table 2.11: Nightlight Cells by Year and Volcano

Volcano 2004 2005 2007 2008 2010 2014 Total
Kelut 2,311 2,311
Manam 62 62
Merapi 129,352 129,352
Sangeang Api 1,156 1,156
Sinabung 3,566 3,566
Soputan 6,164 586 4,672 3,704 15,126
Total 6,164 648 4,672 3,704 129,352 7,033 151,573

Table 2.12: Affected Nightlight Cells by Province and Year

Province 2004 2005 2007 2008 2010 2014 Total
Aceh 2,078 2,078
Banten 940 940
Jawa Barat 52,034 52,034
Jawa Tengah 71,356 71,356
Jawa Timur 2,320 2,311 4,631
Nusa Tenggara Timur 1,156 1,156
Papua 62 62
Sulawesi Utara 6,164 586 4,672 3,704 15,126
Sumatera Utara 1,488 1,488
Yogyakarta 2,702 2,702
Total 6,164 648 4,672 3,704 129,352 7,033 151,573

Table 2.12 refer to province impacts, and the eruptions affected numerous provinces on Java

and Sumatra, with Jawa Barat and Jawa Tengah being the most affected with more than

120,000 cells with an SO2-value above 10 at some point. This is further underlined by nine of

the ten most affected districts in Table 2.13 being in these two provinces, which are linked to
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the Merapi eruption in 2010. Apart from that, Sulawesi Utara were affected all the years from

2004 through 2008 by the eruptions on Soputan.

Table 2.13: Top 10 Districts with Most Affected Nightlight Cells

District Province Affected Cells
Cilacap Jawa Tengah 16,114
Sukabumi Jawa Barat 10,724
Kebumen Jawa Tengah 10,080
Ciamis Jawa Barat 9,612
Banyumas Jawa Tengah 9,384
Cianjur Jawa Barat 8,260
Brebes Jawa Tengah 6,112
Minahasa Selatan Sulawesi Utara 5,960
Garut Jawa Barat 5,622
Bandung Jawa Barat 5,342

The final table in this section, Table 2.14, provide descriptives of the SO2 variable and the

nightlight weights, as well as the product of the two. Overall, the mean SO2 value during these

events is almost 20, with a max close to 60, which is 600 times the normal level of 0.1DU SO2.

Table 2.14: Descriptives of Weights and Intensity

Statistic N Mean St. Dev. Min Max

Weights 114,587 0.046 0.084 0.007 2.354
SO2 level 114,587 19.748 10.556 10.083 57.231
Intensity 114,587 0.855 1.707 0.075 42.857

Weights and Intensity multiplied by 1,000 and excluding
weights of zero

Aggregated data

To aggregate the data, the same method as before is applied, with:

V Dp,y =
T∑
t

I∑
i

VDp,i,t, p = 1, . . . , P, y = 2004, . . . , 2014 (2.11)

where all days t of a year and all nightlight cells i in province or district p are aggregated.
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Figure 2.12 shows the steps in the construction of the index.

Figure 2.12: Overview of Methodology used to Construct Volcano Index

The province overview, shown in Table 2.16, is caused by the Merapi eruption, with 3 of the

top 4 being due to that eruption. Jawa Tengah and Yogyakarta are the two most affected

provinces, given their immediate proximity to Merapi. One thing to note is that Jawa Timur,

which is east of Merapi, was hardly affected at all.

For districts, the Merapi results are even more pronounced, with all districts in the top 10

being from the 2010 eruption. All the Jawa Tengah districts are west of the volcano. It is

somewhat surprising to find that some of the districts in the immediate vicinity of Merapi are

not on the list, but this can be due to the timing and quality of the satellite images. Given the

time interval between images, the SO2 clouds could have traveled past the closest districts by

the time an image was taken. Regardless, the results are uniform in that all affected districts

are neighbors. Overall, the model seems to give a fair picture of when and where the eruptions

were at their most intense, although the ground level intensity can be hard to specify.



Table 2.15: 10 Most Impacted Provinces

Province Year Intensity
Jawa Tengah 2010 34.641
Yogyakarta 2010 18.607
Sulawesi Utara 2004 16.224
Jawa Barat 2010 10.271
Sulawesi Utara 2007 6.387
Sulawesi Utara 2008 4.861
Nusa Tenggara Timur 2014 2.356
Aceh 2014 2.134
Sulawesi Utara 2005 0.684
Jawa Timur 2010 0.660
Note: Multiplied by 1,000

Table 2.16: Aggregated Volcano Intensity Data by Province and Year

Province 2004 2005 2007 2008 2010 2014
Aceh 2.134
Banten 0.163
Jawa Barat 10.271
Jawa Tengah 34.641
Jawa Timur 0.660 0.432
Nusa Tenggara Timur 2.356
Papua 0.061
Sulawesi Utara 16.224 0.684 6.387 4.861
Sumatera Utara 0.487
Yogyakarta 18.607
Results found by using equation 2.11

Table 2.17: 10 Most Impacted Districts

District Province Year Intensity
Purwokerto Jawa Tengah 2010 184.673
Banyumas Jawa Tengah 2010 168.916
Cilacap Jawa Tengah 2010 149.878
Kebumen Jawa Tengah 2010 141.635
Banjarnegara Jawa Tengah 2010 106.472
Purbalingga Jawa Tengah 2010 98.697
Purworejo Jawa Tengah 2010 92.593
Kulon Progo Yogyakarta 2010 72.177
Wonosobo Jawa Tengah 2010 69.568
Banjar Jawa Barat 2010 60.208
Note: Multiplied by 1,000
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2.7 Tsunami Damage Index

The final disaster damage index constructed is for the 2004 Christmas tsunami. There is little

local district level damage data available, so it was decided to use the methodology from Heger

(2016), whereby inundation maps are used to construct a district level damage index assuming

a uniform damage across all flooded areas.

2.7.1 Construction of Damage Index and Results

Damage Index

Despite all the media coverage and attention the 2004 tsunami had, there is not much detailed

spatial information readily available for research. Heger (2016) has done some research on the

causal effects of the tsunami in his PhD thesis, and we will follow his method closely to model

flood impact.

To construct an inundation map of the affected areas, a map based on MODIS satellite pictures

from Anderson et al. (2004) is used. The map itself is fairly low resolution, but it provides a

good overview of the inundated areas. In terms of the intensity of the flood, there are no ex-

isting data on that, but a uniform flood intensity across all flooded areas is assumed, just as in

Heger (2016). The resulting map is shown in Figure 2.13, which shows that a large proportion

of the Aceh coastline was struck by the tsunami.

To make this map, the inundation map from DFO was used as a base. Spatial algorithms were

then applied to detect the difference in color between inundated and non-inundated areas. This

process started with overlaying the base map on a regular shapefile of Indonesia, then detecting

the specific color of inundated areas, before constructing a new shapefile where all inundated

areas (areas with the same color) have value 1 and all other areas have value 0.



2.7. Tsunami Damage Index 43

Figure 2.13: Inundation Map of 2004 Tsunami

Results

Figure 2.14 shows the inundated area nightlight cells, combined with the nightlight cells in all

of Aceh. The tsunami did not strike the most densely populated areas, 460 nightlight cells were

hit, out of a total of 13,456 cells in all of Aceh. Given that the tsunami happened 26 December

2004, it is more appropriate to link the incident with the 2004 nighlights, instead of 2003, as is

done for the other disaster types. Using the 2004 numbers, there were 364 lit inundated cells

out of 7,607 total lit cells in Aceh. Interestingly, in 2005, the year after the disaster, there is a

strong decline, with 306 and 6,352 lit cells for the inundated areas and Aceh, respectively. The

average light intensity has gone down, from 7.39 per cell to 6.33 in the inundated areas and

from 6.37 to 5.18 in the province as a whole.

Finally, Table 2.18 shows the weights which are - again - defined as nightlight in the cell

over total nightlight in the province. Although the numbers look very small, by multiplying

the means by number of cells, one gets approximately 5.5 percent. Knowing that the census

numbers for Aceh in 2000 gave a population of just under 4 million and in 2010 of just under

4.5 million and if one multiplies the population numbers with the affected cells number of 5.5

percent of the total, one gets 221,894 and 249,631, respectively. Given the official numbers of

166,671 dead due to the tsunami, an assumption of total destruction in all inundated areas
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Figure 2.14: Aceh Nightlights and Tsunami Affected Nightlights

seem a bit high, given that 166,671 of 230,000 is 72.47 percent. A damage of 75 percent in the

inundated cells is chosen, giving a final damage index formula:

TD i = Wi,p,t−1 ·D, i = 1, . . . , I (2.12)

where TD i is the province weighted damage from nightlight cell i, Wi,p,t−1 is the same weight

as for earthquakes15 and D is the flat damage number of 0.75.

Table 2.18: Descriptives of Weights by Year

All Cells Only Lit Cells

Year Cells Meana (st.deva) Total Cells Meana (st.deva)

2003 460 0.0965 (0.1356) 295 0.1505 (0.1433)
2004 460 0.1206 (0.1369) 364 0.1524 (0.1373)
2005 460 0.1281 (0.1656) 306 0.1925 (0.1698)
a. Multiplied by 1000

15The only affected province is Aceh
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Aggregated data

Aggregating the data is done using the same method as in all previous sections, where the

nightlight cell impacts across the province or district is summed up:

TDp =
I∑
i

TDp,i (2.13)

where all nightlight cells i in province or district p are aggregated.

The process used to construct the tsunami index is very similar to the other indices as outlined

in Figure 2.15.

Figure 2.15: Overview of Methodology used to Construct Tsunami Index

Since the tsunami only affected one province, it is easy to see the total damage done by it on

Aceh. With our assumptions, the tsunami destroyed about 4 percent of the buildings in Aceh.

This is clearer once broken down into district level damage. There were 6 districts affected by

the tsunami, with Aceh Jaya, Banda Aceh and Pidie all experiencing damage of more than 20

percent. The other 3 affected districts - Aceh Barat, Aceh Besar and Bireuen - experienced

damage between 5 and 10 percent due to the tsunami.

Table 2.19: Aggregated Tsunami Damage by District and Province

District Province Intensity
Aceh Barat Aceh 0.071
Aceh Besar Aceh 0.078
Aceh Jaya Aceh 0.221
Banda Aceh Aceh 0.229
Bireuen Aceh 0.055
Pidie Aceh 0.210

Aggregated Aceh 0.042
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2.8 Conclusion

With the continuous increase in remote sourcing data, it has gotten much easier and cheaper

to monitor and assess the damages from natural disasters. Joyce et al. (2009) and Gillespie

et al. (2007) have done an extensive review of how satellite images can be used to map natural

disasters, while this chapter has contributed with providing new techniques that utilize other

remote sourced data such as ShakeMaps and ash advisory data.

Throughout, techniques based on freely available data have been used to construct damage

indices for different disaster types. Generally the indices can be used in any area of the world,

and if calibrated with local data, they could provide an excellent tool for local governments or

stakeholders in early disaster assessments.

The indices can be used to get quick damage estimates and inform where to provide relief, as

well as in research such as what the authors have done in Skoufias et al. (2017b), where the

indices are used to analyze district budget redistributions following natural disasters.

The main caveat is the indices have not been validated against local level damage data. If one

had access to high resolution monetary or intensity data, the estimates would be much more

precise.

Table 2.20 gives an overview of the different data sources and software used. All disasters

have used the DMSP global nightlights data to weight the indices based on economic activity.

Recently, the VIIRS nightlight data provide an alternative for assessing economic activity or

events, as showcased for GDP in China (Li et al., 2013; Shi et al., 2014) and Africa (Chen &

Nordhaus, 2015) and for storms and floods in the US (Cao et al., 2013; Sun et al., 2015). If one

is interested in events after 2012, the VIIRS data provide higher spatial resolution and track

changes by month instead of yearly.

Alternatives do exist for choice of software if one wants everything to be open source and free.
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Instead of ArcGIS, packages such as QGIS and RGDAL for R are potential alternatives. R and

Python are used more and more for spatial data and can often provide the necessary tools to

do the modeling. Instead of statistical software such as Matlab and Stata, R and Python once

more provide excellent alternatives.

Table 2.20: Disasters and the Data Sources and Softwares used

Disaster Type Data Sources Software Used

Flood

Hydro1K
GLCC
FAO Digital Soil Map
TRMM
GDAS

GeoSFM (ArcView 3.3)
Python
Stata
ArcGIS

Earthquake

USGS ShakeMaps
USGS Building Inventory
World Housing Encyclopedia
Urban Extent Map (CIESIN)
GESI

Python
Stata
ArcGIS

Volcanic Eruption
Ash Advisory Data
OMI/AURA Satellite Images

Python
Matlab
Stata
ArcGIS

Tsunami DFO Inundation Map
Python
ArcGIS
Stata



Chapter 3

The Reallocation of District-Level

Spending and Natural Disasters:

Evidence from Indonesia

Abstract

District-level government spending data from Indonesia and natural disaster damage indices

are combined together to analyze the extent to which districts are forced to reallocate their

expenditures across categories after the incidence of floods, earthquakes, and volcanic eruptions.

The results reveal that district government spending is quite sensitive to the incidence of natural

disasters at the local level. In the case of floods, districts reallocate spending away from the

category of general administration to sectors such as health and infrastructure. Moreover,

volcanic eruptions seem to lead to less investment in durable assets both in the year of the

disaster as well as in the following year. Overall, these results highlight the potentially useful

role of a national disaster risk financing insurance program towards maintaining a relatively

stable level of district-level spending in different sectors.

48
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3.1 Introduction

During the period 2003 through 2013 natural disasters have been estimated to have caused

damages of up to USD 1.5 trillion (Food And Agriculture Organization of the United Nations,

2015), arguably leading to stagnating GDP growth and funding issues for impacted countries.

These disasters affect public finances through losses in revenues from lower tax income from

less production output and increased spending for aid and rebuilding (Hofman et al., 2006). In

Indonesia, specifically, it was estimated that the annual impact of natural disasters is around

0.3 percent of GDP, potentially rising to up to 3 percent (The Global Facility for Disaster Re-

duction and Recovery, 2011). There are a number of studies that have examined how natural

disasters have impacted the fiscal sector of affected countries. For a large set of countries and

different natural disaster events grouped together, Lis & Nickel (2010), for example, estimate

that the negative budgetary impact of extreme weather events can be up to 1.1 per cent of GDP.

Melecky & Raddatz (2014) analysis shows that government expenditure increases, whereas rev-

enue does not respond to climate shocks. Looking at tropical storms in the Caribbean, Ouattara

& Strobl (2013) demonstrate that hurricane strikes cause an increase in government spending

and short term deficit financing. Lastly, Noy & Nualsri (2011) also note that the fiscal impact

of natural disasters depends on the country-specific macroeconomic dynamics occurring in the

aftermath of natural disaster shocks.

The funding of these financial shortfalls could be done through both ex-ante strategies, such

as insurance as well as ex-post financing, for example through loans. However, for developing

countries, it can often be difficult to get access to external loans through private markets, leav-

ing only insurance, external aid, tax increases or internal redistribution of finances as potential

sources of funding (Bevan et al., 2016; Mahul & Ghesquiere, 2010). With insurance still un-

common in most developing countries1, foreign aid usually available only after large disasters,

and tax increases politically unpalatable, redistribution of spending across different budget cat-

egories is perhaps the only remaining or default alternative for post-disaster financing for many

1Rauch & Neuthor (2013), for example, claim that for the years 1980-2012, low income countries constituted
10 percent of disaster losses, but only 1 percent of the insured losses.
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governments.

Budget reallocation as a response to post-disaster financing has received only scarce attention

in the literature. For example, papers such as Bevan et al. (2016) focus on the redistribution at

a sovereign level, and only as a theoretical exercise. In this chapter we will use detailed budget

expenditure data for Indonesian districts for the period 2005 through 2012, and combine these

with spatially disaggregated damage indices for floods, earthquakes, volcanic eruptions and the

2004 tsunami to construct a unique spatial panel data set. This will allow us to obtain a first

empirical estimate of how local governments change their spending following natural disasters.

The district level budget data contains revenues and expenditures provided every year to the

Regional Financial Information (SIKD) and is broken down across 12 different economic sectors

such as health, education, agriculture and infrastructure. In addition to the sectoral breakdown,

local government spending is also classified into four categories; namely, capital expenditure,

goods and services, personnel and other, providing an alternative for analyzing any changes

among these categories.

The natural disaster damage indices are constructed by modeling the local strength of each

disaster using its physical characteristics and taking account of local exposure to these as-

pects using nightlight intensity derived from satellite imagery, following Skoufias et al. (2017a).

The disasters examined are floods, earthquakes, volcanic eruptions and the 2004 tsunami, all

of which are modeled using different remote sensing data that are aggregated up to district level.

The remainder of this chapter consists of four parts. First, there is a brief section on the

construction of the damage indices. Then a part presenting the budget data, followed by the

main part with the methodology and results, before finishing with a conclusion.
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3.2 Natural Disaster Damage Indices

The methodology and data sources used to make damage indices for natural disasters is ex-

tensively covered in Skoufias et al. (2017a), which is equivalent to Chapter 2 in this thesis.

Generally, the paper uses remote sensing data for the different disaster types - floods, earth-

quakes, volcanic eruptions and the 2004 tsunami - that is combined with nightlight data - used

as a proxy for economic activity - to construct an index that estimates the impact on districts

and provinces.

More specifically, the nightlight data used provides a normalized annual light value ranging

from 0 (no light) to 63 (maximum light) and is from the Defense Meteorological Satellite Pro-

gram (DMSP) satellites. Using this data as a proxy for economic activity - when no other data

exists - has been employed in papers such as Henderson et al. (2012), Hodler & Raschky (2014)

and Michalopoulos & Papaioannou (2014). In our case, the nightlight data has been employed

as a weight for the economic impact of disasters.

Floods are modeled through a combination of remote sensing images and GIS-modeling using

the Geospatial Stream Flow Model (GeoSFM). The remote sensing inputs comprise weather

data, such as rain and temperature, as well as soil and terrain data. These sources are then

used by GeoSFM to model basins across Indonesia and the stream flow in each of these. The

final steps consist of setting a threshold for when a stream flow is strong enough to flood the

basin and then weight this with the nightlight data and aggregate up to a district level.

The earthquake index is constructed from computer generated contour maps by the US Geo-

logical Survey (USGS) of earthquake intensity data, commonly used as potential damage proxy

(De Groeve et al., 2008; GeoHazards International and United Nations Centre for Regional De-

velopment, 2001; Federal Emergency Management Agency, 2006). Utilizing the contour maps

as a base for damage infliction, we combine them with the nightlight and building type data

from the USGS building inventory for earthquake assessment to create fragility curves by build-

ing type; see Jaiswal & Wald (2008) and GeoHazards International and United Nations Centre
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for Regional Development (2001). Finally, the data is aggregated up to a district level set.

To model volcanic eruption intensity, we utilized a two-fold process. First, volcanic ash advisory

data from Volcanic Ash Advisory Centers (VAAC) is used to detect eruptions. The advisories

are produced for the airline industry to warn airplanes about impending or ongoing eruptions

through color coded messages. We use only the highest warning level of ongoing eruption as

a threshold of when to include an eruption in the data set or not. Second, images containing

sulphur dioxide data from the OMI/AURA satellite are used to model the intensity of the

eruptions. These images provide SO2 density data and have been utilized by Carn et al. (2009)

and Ferguson et al. (2010) to model eruption intensity before. The data is then combined with

the nightlight data and aggregated up to district level.

Finally, the 2004 Christmas tsunami has been modeled following a method where Heger (2016)

uses inundation maps to construct a district level damage index assuming a uniform damage

across all flooded areas. To construct an inundation map of the affected areas, a map based

on MODIS satellite pictures from Anderson et al. (2004) is used with spatial algorithms to

detect the difference in color between inundated and non-inundated areas. Once the map is

constructed, it is weighted and aggregated just like the other indices.

As for the indices themselves, the actual coefficients for floods and volcanic eruptions are simple

intensity measures that do not convey anything on their own apart from an intensity weighted

by nightlights. For earthquakes and the tsunami, the numbers show the overall damage to

buildings in the district.

Table 3.1 shows the descriptives of the damage indices, with floods striking districts 2,417 times

over the 8 year time period, meaning that approximately 300 districts are affected by floods

annually. The earthquakes struck 435 times, while the volcanic eruptions and the tsunami

affected a limited number of districts, due to the limited number of big events. The strongest

earthquake damage almost 5 percent of the buildings in a district, while the district that was
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worst hit by the tsunami experienced damage to 23 percent of the building mass.

Table 3.1: Descriptives Damage Indices - 2005 - 2012

Disaster N Mean SD Min Max
Flood 2417 27.94 22.25 0.01 175.08
Earthquake 435 2.54 4.94 0.01 45.07
Volcanic Eruption 61 32.25 42.58 0.03 184.67
Tsunami 6 0.14 0.08 0.06 0.23

Note: Earthquake mean, SD, min and max multi-
plied by 1,000

3.3 District Expenditure Data

The financial data used is the District budget data for the years from 2001 to 2012 (Fiscal Year

of January-December every year). It was derived from the Regional Financial Information

System (Sistem Informasi Keuangan Daerah, SIKD) of the Ministry of Finance. The district

expenditures are available for 12 different sectors/functions (such as agriculture, health, edu-

cation, etc.) and for four economic classifications (personnel, goods and services, capital, and

other).

The 12 sectors are presented in the top panel of Table 3.2, where nominal numbers are converted

into yearly ratios, which eliminate inflationary issues as well as spending differences due to

district size and wealth.2 The three largest sectors are General Administration (GA), Education

and Infrastructure. Most of the sectors have between 4,000 and 4,500 observations, but public

law and order, housing and - in particular - religious affairs have much fewer observations,

implying that the overall ratios might be skewed a bit by districts that report these sectors

compared to districts that do not. However, on average the under-reported sectors constitute

less than 5 percent of the total expenditures, making their overall impact small. The reason

for the fewer observations3 and the lack of completeness are unknown, but we will be treating

2Nominal data is shown in appendix A.1
3Religious affairs are only reported for Aceh, implying that it is a province specific category
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missing data as missing and make ratios based on a total of reported sectors.

Table 3.2: Descriptives of ratios of Expenditure data by Economic Sectors and Categories

Sector N Mean St. Dev. Min Max

General Administration 4,505 0.333 0.146 0.013 1.000
Public Law and Order 3,201 0.010 0.008 0.000 0.213
Economy 4,422 0.024 0.017 0.000 0.210
Environment 4,119 0.017 0.021 0.000 0.341
Housing and Public Facilities 3,401 0.023 0.041 0.000 0.345
Health 4,433 0.086 0.033 0.000 0.444
Tourism and Culture 3,997 0.006 0.012 0.000 0.372
Religious Affairs 717 0.006 0.008 0.0001 0.112
Education 4,440 0.328 0.125 0.000 1.000
Social Protection 3,972 0.009 0.008 0.000 0.127
Infrastructure 4,432 0.151 0.082 0.000 0.602
Agriculture 4,422 0.042 0.023 0.000 0.353

Category N Mean St. Dev. Min Max

Capital Expenditures 4,770 0.236 0.112 0.000 0.976
Goods and Services 4,775 0.190 0.060 0.000 0.578
Other expenditures 4,747 0.085 0.058 0.000 1.000
Personnel Expenditures 4,790 0.493 0.138 0.000 1.000

The economic classifications ratios are in the bottom panel of Table 3.2.4 The four categories

are split partly by durability and partly by other criteria. Capital Expenditure is defined as

expenditures on assets with durability of more than 12 months, whereas Goods and Services

are on assets with a durability of less than 12 months. The former typically comprises purchase

of land, buildings and large equipment, while the latter includes items such as work clothes,

small repairs, stationaries and short term rental. Personnel Expenditures is mainly salaries to

public servants, but also includes some other costs related to employees such as accident/death

expenditures and expenditures related to tax income. Finally, the Other Expenditures include

financial costs such as interests and subsidies as well as unforeseen costs related to for example

natural disasters.

Table 3.2 shows that Personnel Expenditures are the highest cost classification, with 49.3

percent of the costs being allocated to personnel. Overall the reporting seems to be more

4Nominal data is shown in Appendix A.1
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consistent for the four classifications since the number of observations is very similar for all

four areas. That being said, some of the districts report that 100 percent of their costs for a

year have been allocated to cover other or personnel, which seems unlikely.
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3.4 Impact of Natural Disasters on District Spending

Despite the potentially large impact natural disasters can have on local finances, the literature

analyzing the economic effects is practically non-existent. Our analysis will provide a simple

framework that can be used for any natural disaster type and any type of local financial data.

For Indonesia, the local level that will be analyzed are districts. A caveat with that level, is

that the number of districts has increased during the period due to administrative splitting.

Out of 511 districts 167 of them have been part of a split, implying that the budget numbers

would change sometime during our period. Any split districts will have to be disregarded as

the nominal and relative size of the expenditures will change following a split.

Furthermore, not all of the 344 non-split districts have been affected by a disaster. The mod-

eled damage indices have registered that 304 of the 344 districts have experienced at least one

natural disaster large enough to be included.5

Finally, there are 488 districts that have reported at least one sector or classification for at least

one year. Of these 488 there are 299 districts that are non-split and have experienced a natural

disaster.

3.4.1 Methodology

Given that the data is structured as spatiotemporal panel data it lends itself to a fixed-effect

regression methodology with the expenditure ratios as the dependent variable and the damage

indices as independent variables. That being said, the different ratios are necessarily related.

We have therefore chosen to use the method for seemingly unrelated regression (SUR) as ex-

plained in Blackwell III et al. (2005).

Their methodology is based upon Baltagi (2001), Judge et al. (1988) and Wooldridge (2002).

5397 of the 511 total districts have been impacted by a natural disaster.
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In short, they use a system of SUR with error components. It is assumed that all coefficients

of constant terms are the same across the system and that all independent variables are quan-

titative and require restriction across the panels in their equations, while fixed-effect dummies

vary by panel.

In our case this translates into a set of equations. The basis is:

Bj,i,t = βj0 + βj1 · PDi,t + βj2 · EDi,t + βj3 · V Di,t + βj4 · TDj,t, j = 1, . . . , J

+
K∑
k=1

(
βj,4+k · PDi,t−k + βj,5+k · EDi,t−k + βj,6+k · V Di,t−k

)
+ αj,i + µt + λj,i,t + εj,i,t

(3.1)

where the left hand side is defined as the ratio:

Bj,i,t ≡
Cj,i,t∑J
k=1 Ck,i,t

, j = 1, . . . , J (3.2)

where j are different economic sectors or classifications, i is the district, t is the year and C is

the expenditure. On the right hand side of Equation 3.1 we find the different damage indices

by year and district. These are identical across the different economic sectors. Finally, there

is a fixed effect term, αj,i, a yearly dummy term µt, a time trend term per district term λj,i,t

and an error term, εj,i,t. Note that the above model has included a lag operator, i.e. allowed

for disasters the prior years.6 The model can be used both with and without the lag terms.

3.4.2 Creating Panel Data

Equation 3.1 yields the best results if the input data is balanced. However, there are several

years and sectors missing for many of the districts in our data set. Table 3.3 shows how the

number of districts change with how strict a criteria one sets for the data. Balanced means

that a district has reported the specific sector for all years, whereas unbalanced means all ob-

servations regardless of how many years a district has reported. More precisely, unbalanced 1yr

6Due to the limited time period, we only lagged for one period. Hence why the tsunami index is not included
in the lag operator



58 Chapter 3. Disaster Redistribution

and 2yr means that a district has not reported for 1 or 2 years in a sector.

Comparing the results with the optimal case of all 299 districts having reported for all 8 years,

we see that the number of districts reporting data for a sector across all years is very low. There

is actually no district that has reported for all sectors in all years. Allowing for the expenditure

data to be unbalanced adds many more districts. However, leaving the sectors fully unbal-

anced, i.e. a district would be included even if a sector is only reported once, would potentially

skew the data. By including districts that did not report a sector expenditure one or two of

the years, we increase the number of observations and avoid the districts that rarely report a

sector. The assumption is that districts that regularly file their expenditures are more likely to

report correct numbers. The difference between allowing 1 and 2 years of missing reporting is

fairly significant, most likely due to some years generally having fewer reports. For example,

the years 2007 and 2011 had less than 200 districts reporting across all sectors7, reasons for

which are unknown.

Table 3.3: Comparison of Data depending on Balanced vs Unbalanced
Balanced Unbalanced Unbalanced 1yr Unbalanced 2yr

Sector Mean Total Mean Total Mean Total Mean Total

Agriculture 90 720 228 1,827 168 1,343 205 1,643
Economy 92 736 230 1,838 170 1,359 207 1,653
Education 92 736 230 1,841 171 1,366 207 1,654
Environment 71 568 212 1,694 129 1,030 171 1,366
General Administration 107 856 234 1,873 176 1,409 213 1,703
Health 92 736 230 1,840 171 1,366 207 1,654
Housing and Public Facilities 10 80 105 841 38 304 71 568
Infrastructure 91 728 230 1,836 168 1,344 206 1,650
Social Protection 53 424 203 1,622 119 949 158 1,267
Tourism and Culture 59 472 190 1,518 115 920 157 1,256
Public Law and Ordera 231 1,386 123 738
Total 6,056 18,116 11,390 15,152

Given how the expenditure data is distributed, the unbalanced panel that allows for 2 missing

years of reporting is the best compromise between a balanced panel and retaining enough ob-

servations across the sectors. To make sure that this does not affect our damage indices too

much, we have shown how the disaster descriptives change in Table 3.4.

7General Administration had 202 reports in 2011
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Compared with the full set of disasters shown in Table 3.1, the mean and standard deviation

for floods and earthquakes fall. The main reason for the earthquake coefficients to move down

is that some big earthquakes hit districts that has later been split. One of the more active

earthquake areas is the province of Aceh, which has experienced many district splits. This is

also why the number of tsunami districts is just 1 or 2 instead of the 6, which is all affected

districts. Volcanic eruptions see a slight increase in mean, whereas the standard deviations are

close to what they are for the full sample.

Some sectors with fewer observations, such as Public Law and Order, Housing and Social Pro-

tection deviate more from the norm than the more robust sectors with more observations.

However, importantly, most sectors stay within a fairly tight band both for mean and standard

deviation, implying that the sectors experience similar disaster impact. Overall, we believe

the number of observations for floods and earthquakes is high enough to provide fairly robust

results, and even volcanic eruptions can be useful as a guidance. The tsunami index however

is suffering from having only one or two districts in our sample.

Table 3.4: Damage Indice Descriptives when Unbalanced 2 years
Flood Earthquakea Volcanic Eruption Tsunami

Sector Obs Mean SD Obs Mean SD Obs Mean SD Obs Mean SD

General Administration 1,691 25.86 22.01 222 1.66 3.34 44 34.87 42.58 1 0.23
Agriculture 1,631 25.99 22.12 220 1.81 3.54 43 35.13 43.05 2 0.15 0.11
Public Law and Order 738 27.41 22.80 81 2.12 3.59 33 40.10 46.52
Economy 1,641 26.01 22.09 220 1.81 3.54 44 34.87 42.58 2 0.15 0.11
Environment 1,360 25.74 21.34 183 1.87 3.63 41 36.51 43.56 2 0.15 0.11
Housing and Public Facilities 568 26.54 20.97 66 2.04 4.10 16 35.07 42.57 1 0.23
Health 1,642 26.03 22.09 220 1.81 3.54 44 34.87 42.58 2 0.15 0.11
Tourism and Culture 1,244 26.59 22.49 176 1.87 3.55 39 34.08 43.78 2 0.15 0.11
Education 1,642 26.03 22.09 220 1.81 3.54 44 34.87 42.58 2 0.15 0.11
Social Protection 1,255 25.15 21.66 172 2.01 3.81 30 28.72 38.29 2 0.15 0.11
Infrastructure 1,638 26.01 22.10 219 1.80 3.55 44 34.87 42.58 2 0.15 0.11

Category Obs Mean SD Obs Mean SD Obs Mean SD Obs Mean SD

Capital Expenditures 1,740 27.28 21.89 207 2.15 3.73 47 33.41 41.67 2 0.15 0.11
Goods and Services 1,739 27.27 21.90 207 2.14 3.74 47 33.41 41.67 2 0.15 0.11
Other Expenditures 1,733 27.24 21.85 210 2.16 3.71 47 33.41 41.67 2 0.15 0.11
Personnel Expenditures 1,752 27.22 21.87 210 2.11 3.72 47 33.41 41.67 2 0.15 0.11

a Mean and standard deviation numbers multiplied by 1,000

For the economic categories, the overall data looks better, as seen in the lower panel of Table 3.4.
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The flood and earthquake districts are well covered, and for volcanic eruptions it is the same

districts that have reported for all categories. Finally, the tsunami data is covered through two

districts. Overall, the data is more complete than for sectors.

3.4.3 Results

Having decided on the methodology and datasets we ran the regressions based on Equation 3.1,

both with and without lags. There were two different sets of regressions, one with the 12 sectors

as dependent variables and another one with the four categories being the dependent variables.

In both cases, the damage indices were independent variables. In addition we controlled for the

fixed effects, potential time trends and potential regional time trends. The datasets used were

the panels missing no more than 2 years of reporting.8

Note that lags have not been included for the tsunami data. The reason for this being that

the tsunami data is already lagged. The tsunami happened on 26 December 2004, hence a lot

of the expenses incurred and any shifts in spending are likely to not be realized until the fiscal

year of 2005. As mentioned in the report by The Global Facility for Disaster Reduction and

Recovery (2011) the budget allocation for 2005 had already been approved, so major changes

were needed during the mid-year budget revision of 2005. Furthermore, the earthquake data

does not start until 2005, so to be able to control for all disasters at the same time, the starting

year is 2005. As for the other lags, they are added to check whether any spending patterns or

redistribution of expenses occur the year after the disaster has struck.

To better understand the results and the timing, it is worth noting how disasters are financed

in Indonesia. In short, from the report by The Global Facility for Disaster Reduction and

Recovery (2011), Law 24/2007 provides the framework for how disasters are handled and the

responsibilities of central and local governments. In general, minor disasters are handled by

local governments through their budgets, whereas any disaster deemed a national disaster or

a disaster of national importance will be financed by the central government. The disaster

8We also ran the regressions based on balanced data and 1 year of reporting missing. Overall the results
were quite similar, but for some of the lesser reported sectors they differed more.
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funding is split into three phases: the response phase immediately after the disaster, then the

recovery phase typically being the period three to six months post-disaster and finally the

recovery phase. The central government assists all three phases when a disaster is deemed a

national disaster or when the costs go higher than what the local governments can afford. It

is noted that what constitutes a national disaster and not is not clearly defined. For example

the Merapi eruption in 2010 was not declared a national disaster, but the central government

did support local governments in both response and recovery phases.

Sector Results

The first sector results are presented in the left panel of Table 3.5, which shows the coefficients

for the sector regressions.9 Each column presents the coefficient for each disaster by sector.

Since SUR has been used, the table shows the result for one regression, i.e. all coefficients are

part of the same regression.

For floods, several of the districts have changed their sector expenditures. The four large sec-

tors - Education, GA, Health and Infrastructure - all have changes that are significant, with

GA and Infrastructure being so at a 1 percent level, while Health and Education are significant

at 5 and 10 percent levels, respectively. Also Agriculture shows a 1 percent significance, while

Economy, Public Law and Order and Tourism and Culture also show significance. Overall, we

find that the key variables show a strong significance.

There is a strong negative effect on GA and Education, whereas Health and Infrastructure

expenditure goes up. For a disaster type such as flooding it makes sense that health and in-

frastructure spending goes up since there will be an increased need for medical attention and

roads and other infrastructure might be swept away.

Regarding the other sectors, Agriculture is highly significant and spending goes up, potentially

due to fields and other arable land being washed away or flooded. Agriculture is a sector that

9Only main sectors are shown. For full results, see Appendix A.2
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is often close to water sources and hence might be more prone to be hit by floods. The rather

general sector of Economy also experiences a statistically significant increase in spending, a

pattern it shares with Tourism and Culture. It has to be mentioned that these are rather small

sectors with Tourism and Culture constituting 0.6 percent of the total budget on average.

In terms of what this translates into, the left panel of Table 3.6 shows percentage point changes

for the four largest sectors for the different disaster types given a mean and max disaster.

GA would decrease almost 1 percentage point from 33.3 to 32.4. Assuming a mean budget of

441,703RP million10 that translates into 4,036 RP million (300,000USD) less being spent on

GA. For Education the decrease is 0.7 percentage points from 32.8 percent to 32.1 percent.

Health goes up 0.3 percentage points to just about 9 percent and Infrastructure goes up 0.9

percentage point to 16 percent a change of almost 6.5 percent. Overall, we do find significant

shifts in the districts spending patterns once a flood hits. Given that floods are usually rela-

tively small in scale, it is plausible that they have an immediate effect on the local districts’

budgets since they are expected to be able to cover these minor events on their own.

If the worst flood hits the mean district, GA will constitute 5.7 percent less of the total, and

Education 4.4 percent less. Health and Infrastructure will see an increase of 2.2 percent and

5.8 percent respectively. Any 5 percent shift in the mean budget equals 22,000 RP million

(USD1,650,000), showing that the shifts here are very large. Only the four key sectors make

up a larger share of the budget than 5 percent.

Continuing with the earthquake results in the next column in Table 3.5, there is no significance

apart from for Tourism and Culture and Public Law and Order, which are significant at a 10

and 5 percent level, respectively. The reason for the lack of significance might be down to

earthquakes being more likely to be declared national disasters and/or recovery costs exceeding

what local governments are capable of covering, one might expect to find a limited effect during

the year of the disaster.

10As found in the nominal tables in Appendix A.1
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For volcanic eruptions, the results show the same strong negative effect as floods for GA and

positive effect for Health. At the same time it shows a strongly significant and decreased

spending for Infrastructure and increased spending for Education. The latter two are some-

what counterintuitive, but one could expect limited damage on infrastructure due to volcanic

eruptions, given that many of the districts are not in the immediate proximity of the volcano

and that the SO2-proxy will not capture lava and pyroclastic flows that are more likely to cause

damage on infrastructure. The increase in Education is harder to explain, but it could be due

to the somewhat limited amount of observations for the volcanic events. Another reason can

be that response and recovery financing after the (by far) biggest event - the Merapi Eruption

in 2010 - came from the Central Government, meaning that any effect on local spending might

be skewed or incorrect.

The key sectors’ change for volcanic eruptions show that a mean eruption would lead to Ed-

ucation spending taking up 1.9 percent more of the total, GA 0.4 less, Health 0.5 more and

Infrastructure 1.2 less. The worst eruption would lead to increases of 10.7 and 2.8 percent

for Education and Health and decreases of 2.5 and 7 percent for GA and Infrastructure. This

seems to be too high, and these changes could be due to some other transfers to the districts.

The fourth column shows the tsunami results. Agriculture and Economy expenditure are

strongly negative. In addition, Education spending is strongly significant and positive. Finally

there is a decrease in GA, which is 10 percent significant. The changes translate into a 10.1

increase in Education spending and a 7.4 percent decrease in GA. However, these results might

not be very robust, given the very limited number of districts in our dataset and the fact that

funding for response, recovery and reconstruction came from a plethora of sources including

international donors and governments as well as the Indonesian Government.

Continuing with columns 5 through 9 in Table 3.5 - the same model with the addition of

variables lagged a year - the same pattern shows itself across the sectors for flood. With the

addition of the lags, the significance decreases for some of the sectors. For instance, the Health
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sectors shows no effect the year after a flood has hit. However, there is still a decrease in GA

and Education. Agriculture still experiences an increase in spending the year after, while In-

frastructure is not significant. Potential reasons for the other shifts can be that Health spending

consists of an increase in short term spending, while the medium term health effects after a

flood are not as pronounced. The same can be said for infrastructure, i.e., washed out roads

and railroads are fixed as soon as possible and hence the sector is not as affected the next year.

It should be noted that there is an overall effect on the budget the year after, though, although

it is less than for the year the disaster strikes. For agriculture it might be harder to fully assess

the damage and some of the repair costs will come in the form of help the year after. Any

shortcomings seem to be taken from General Administration and Education. The changes for

Law and Order are hard to explain, but that sector is very small in general.

The final four columns of Table 3.6 show the percentage changes for the four key sectors with

the lagged variables. GA and Education decreases by 1.1 and 0.9 percent, while Health and

Infrastructure increases by 0.4 and 1 percent. These changes are in line with the results without

the lags, potentially showing that the effects of floods can affect next year’s budget as well. For

the year after the disaster, GA and Education still show significant decreases, with spending

0.9 and 1.2 percent lower. The total effect on GA and Education on the budget for the year

after the disaster is negative 1.9 and 2 percent. If one assumes that the max flood strikes a

district, the changes are in excess of minus 5 percent for GA and Education and plus 5 percent

for Infrastructure. Overall, there is some evidence that districts tend to redistribute costs not

just for the year of the disaster, but also for the year after.

For earthquakes, most of the sectors are significant the year after the disaster. As mentioned,

earthquakes are more likely to be declared national disasters and/or recovery costs exceed-

ing what local governments are capable of covering, which might limit the local costs during

the year of the disaster, while one might see a stronger effect the year after, once the true

reconstruction phase starts. For the year after the disaster, Education is strongly negatively

affected. In terms of Health and GA there is a strong positive effect, and Health is 1 percent
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significant. For two sectors that one might expect a large change in, Infrastructure is just 10

percent significant and Housing not significant at all. It is not clear why this would be the case,

but potentially it is easier to get central government funding for infrastructure and housing

reconstruction. One sees a strong significant increase in most other sectors, with Agriculture,

Economy, Environment, Public Law and Order, Social Protection and Tourism all being pos-

itive and significant the year after. A potential reason for this can be transfer from Central

Governments somehow being included in the local budgets.

In terms of actual change, the year after the earthquake one would see a decrease of 1 percent-

age points for Education and a 1.3 percentage point increase in GA, whereas the other sectors

will see minor changes. However, assuming that the worst earthquake struck a district, the

changes would be negative 18 percent for Education and positive 22.8 percent for GA. As for

the floods, earthquakes show some evidence of redistribution happening in the year after the

disasters.

The volcanic eruptions’ coefficients are very similar as the model with no lags, with GA, Ed-

ucation, Health, Infrastructure and Environment being significant in the disaster year. For

the year after the disaster, GA, Education and Environment stay significant, while Economy

and Public Law and Order become significant. The largest effect is seen on Education, which

changes 2.2 percent with the disaster year and 1.7 percent the year after, for a total effect of

3.9 percent. At the same time, GA decreases 1.2 percent in total.

Finally, there are no lag variables for the tsunami, as the original coefficients have already been

lagged one year. However, the regular variables are included in the SUR with the other indices

and their lagged variables. The results stay the same as for the model with no lags both in

terms of significance and the coefficient sizes, with just minor changes.

Overall, our models seems to have performed well with fairly consistent results across both

models. Generally speaking, these types of disasters do seem to lead to a reallocation of
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resources, both for budgets in the disaster year as well as for the budget the year after a

disaster.

Category Results

Table 3.7 shows the results for the four economic categories, with columns 2-5 presenting the

results for the model without lag. Floods cause a 1 percent significant decrease in spending on

Goods and Services, which is partly offset by a 10 percent significant gain in Other Expendi-

tures. This seems plausible, Other Expenditures have been known to be used to fund natural

disaster repairs and short term goods and services consists of many small and flexible line items

where purchase can be postponed or canceled.

The percentage changes to the expenditures are shown in Table 3.8, with four panels where

the top one shows the changes for a mean disaster and the bottom one shows for a maximum

damage disaster. Furthermore, each panel is split into two with the model without lag being

on the left side and the model with lag is on the right side. The changes are relatively speaking

fairly small compared to what was found for the sectors. Goods and Services is down 0.9 per-

cent, while Other Expenditures increase by 0.3 percent for a mean disaster. With the strongest

possible flood, Goods see a decrease of 5.7 percent, while Other increases by 2.1 percent. This

might be due to each of the categories including a wide variety of costs from different sectors,

leading to a smoothing effect. Potentially it can also be that the more balanced number of

observations lead to better estimates and that changes overall are less pronounced than what

it could seem like for the sectors.

Earthquakes see no immediate expenditure effects across the categories, similar to the sectors.

Volcanic eruptions experience strongly significant changes in Capital and Personnel Expendi-

tures, with the former being negative and the latter being positive. The same coefficient change

holds for the tsunami. The reason for this might be that investment into durable long term

items is not a priority shortly after big disasters as the eruptions and tsunami were. Another

possibility is that repairs and investment for the larger items are being covered by the central
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government or other sources when the disasters are big and that the districts prefer to change

costs to personnel that can be of immediate assistance. For Volcanic Eruptions the changes

after a mean disaster is positive 2.7 percent into Personnel and negative 2.2 for Capital, while

the tsunami saw a close to 12 percent increase for Personnel and a similar decrease for Capital.

The results for the lagged model are very similar for the disaster year, as seen in Table 3.7. The

main difference is for the earthquake coefficients, that see 5 percent and 1 percent significance

for Capital and Personnel expenses for the year following the disaster. The capital being posi-

tive and the personnel change being negative. This can possibly be due to the recovery phase

having started and the local districts taking on more of the disaster costs, with preference being

given to the repairs of long term assets over hiring people. However, for volcanic eruptions the

picture is the opposite, with Capital being negatively affected and Personnel being positive.

This can - as mentioned earlier - be due to our SO2 model not being a good proxy for damage

to durable assets.

The changes for the different disaster types are summarized in the rightmost columns of Ta-

ble 3.8, with the main difference compared to the lag free budgets are that earthquakes now

cause a 0.8 percent increase to Capital costs in the year after the disaster combined with a 1.1

percent decrease in Personnel Expenditures. Furthermore, Volcanic Eruptions lead to a total

decrease of 4.3 percent to Capital Expenditures across the disaster year and the lag year, while

at the same time Personnel increases by 4 percent. However, for the year after the disaster, the

coefficients are only 10 percent significant.

The overall results for the four categories show - like the sector results - that some redistribution

seem to occur in the districts following disasters. The level of change depends on the strength

of the disaster, but there might be an issue arising from some disasters being large enough to

cause the central government or other sources to come in and provide funding.
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3.5 Conclusion

Using damage indices from Skoufias et al. (2017a) for floods, earthquakes, volcanic eruptions

and the 2004 tsunami, this paper combines these indices with district-level expenditure data

to investigate how districts might redistribute their spending depending on the type of disaster

that strikes. The analysis yields evidence that redistribution is taking place across economic

sectors and by category, irrespective of the disaster type, with the direction and the size of

the redistribution differing with the type and strength of disaster. For example, floods show

a strong decrease in spending on General Administration both in the year of the disaster as

well as in the spending of the following year. At the same time, there is a sizeable increase in

spending on infrastructure and health for the same period.

These results demonstrate how remotely sensed and freely available data can be used to analyze

local economic data. Unless one has access to more complete data and local level damage data

that allow better calibration of the damage indices, the methodology presented here can be

used to get an overview of damages shortly after the incidence of an actual disaster. Moreover,

with data available on the budget of last year, one can quickly assess which budget categories

at the district-level might need extra funding. Overall this is an area that has received little

attention in literature, and future research can shed more light on how local level authorities

deal with disasters by comparing the results of this study in Indonesia with other emerging

countries or middle income countries.



Chapter 4

Urban Global Impact of Earthquakes

from 2004 through 2013

Abstract

Using a comprehensive remotely sensed dataset of contour maps of global earthquakes from

2004 through 2013 and utilizing global nightlights as an economic proxy. The damage caused

by the earthquakes is modeled through a combination of the contour maps, global housing data

and local seismic codes to construct vulnerability curves for more than 150 countries. Overall,

it is shown that earthquakes negatively impact local urban light emissions by 0.7 percent.

Keywords: Earthquakes, Remote Sensing
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4.1 Introduction

Earthquakes are some of the most devastating natural disasters there are, both in terms of

economic damages and human casualties. In the last decade alone, there have been two events

causing more than 200,000 casualties, the 2004 Christmas earthquake and ensuing tsunami

and the Haiti earthquake in 2010. These shocks caused losses of 90%-120% of nominal GDP

(Daniell et al., 2011). With losses of such magnitude, it is important to not only know the ex

post damages, but also to identify risk zones where ex ante policies can mitigate some of the

risks. Typical exposed areas are densely populated urban areas that are also economic hubs.

In this chapter, we use highly localized remotely sensed data to develop a method that can

globally assess impact of earthquakes at areas of 1 square kilometer.

With improvements in remotely sensed data - from satellite images, radars and base stations

monitoring weather and earth movement - it has become easier to model and estimate impact

of natural disasters both at a local and global level. Substantial research has been done using

remotely sensed data on disasters such as hurricanes (Myint et al., 2008; Klemas, 2009), floods

(Haq et al., 2012; Wu et al., 2012, 2014; Chung et al., 2015), landslides (Nichol et al., 2006),

earthquakes (Fu et al., 2005; Yamazaki & Matsuoka, 2007), wildfires (Holden et al., 2005; Roy

et al., 2006), volcanoes (Carn et al., 2009; Ferguson et al., 2010) and tsunamis (Römer et al.,

2012). There are some papers exploring global effects of earthquakes Cha (1998) and Jaiswal

& Wald (2008, 2011, 2013), but most articles focus either on country level GDP changes (Chen

et al., 1997; Dunbar et al., 2003) or singular events (Selcuk & Yeldan, 2001; Cavallo et al.,

2010; Parker et al., 2012; Potter et al., 2015). This chapter aims to contribute to the literature

by using highly localized economic data combined with country level vulnerability curves to

estimate the global losses due to earthquakes. To do so, we utilize remotely sensed and freely

available nightlights data as an economic proxy and earthquake contour maps for intensity

measurement to construct a global damage index.

To account for local economic activity, and due to limited access to highly disaggregated local

economic data across the globe, nightlight intensity derived from satellite imagery has proved
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to be a good economic proxy; see, for instance, Henderson et al. (2012), Hodler & Raschky

(2014) and Michalopoulos & Papaioannou (2014). Another advantage of this method is that

any inflationary or purchasing parity issues will not affect the estimates. The data consists of

grid cells of approximately 1 square kilometer, showing the level of light emitted from each, and

hence is a useful measure of activity and how high the level is locally following an earthquake.

In this chapter, only urban nightlight cells have been used, as rural nightlight cells are more

likely to capture non-human factors such as forest fires, volcanoes and gas flares. To distin-

guish rural from urban nightlight cells, we have utilized the urban extents map from Center

for International Earth Science Information Network - CIESIN - Columbia University et al.

(2011). The focus is put on urban areas, as these normally experience higher economic losses

and because a larger share of the global population now live in cities than in rural areas.1

Recently, Blum & Krause (2016) has argued that due to the nightlight levels being saturated,

i.e. cells with the highest level cannot continue growth, the nightlights do not capture economic

activity in urban areas as well as they should. A problem which is particularly prevalent in de-

veloped countries and might explain why there is stronger correlation between nightlight levels

and growth in developing than in developed countries (Nordhaus & Chen, 2015; Pinkovskiy &

Sala-i Martin, 2016). To check if this has affected our results, we have performed robustness

checks with a subsample containing non-saturated nightlights.

The measurement of earthquake detection and intensity has improved with remote sensing

techniques. There are different methods to assess intensity and damage, ranging from satellite

images (Dell’Acqua & Gamba, 2012; Tralli et al., 2005; Gillespie et al., 2007) to contour maps

generated by seismological ground stations (De Groeve et al., 2008; GeoHazards International

and United Nations Centre for Regional Development, 2001; Federal Emergency Management

Agency, 2006). In this chapter, the earthquake damage index is constructed from computer

generated contour maps from the US Geological Survey (USGS) of earthquake intensity data,

commonly used as a potential damage proxy (De Groeve et al., 2008; GeoHazards International

1The World Bank has estimated that 54% of the global population lived in urban areas in 2016
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and United Nations Centre for Regional Development, 2001; Federal Emergency Management

Agency, 2006). Utilizing the contour maps as a base for the damage inflicted, we combine them

with the nightlight and building type data from the USGS building inventory for earthquake

assessment to create fragility curves by building type; see Jaiswal & Wald (2008) and GeoHaz-

ards International and United Nations Centre for Regional Development (2001). These curves

are then used as damage proxies on the individual cells.

Another factor impacting the likelihood of changes in nightlights is the quality of local build-

ings. To control for this, we assign a building quality by country using a combined index from

Daniell et al. (2014), which combines a country’s seismic code and local conditions such as

corruption and education level to model the local building quality.

Our main hypothesis, based on the damage earthquakes cause to local infrastructure, is that

one would expect to observe a decrease in nightlights for the year of the disaster. Even though

many countries provide excellent disaster relief and recovery and some areas see better than

expected growth in the long term, we believe that in the short to medium time span a shock

such as an earthquake leads to a drop in output.

The remainder of the chapter is structured as follows. Section 2 describes the data, section 3

presents our methodology and explains how the damage index is constructed and outlines our

regression model. Section 4 presents the results and section 5 concludes.

4.2 Data

4.2.1 Nightlight Data

Earthquakes are an inherently local phenomenon in that they either only affect parts of areas

and/or affect parts within areas differently. It is thus important to take the local popula-

tion/asset exposure into account when constructing more aggregate proxies. As a matter of

fact, arguably one would like to have measures of exposure as spatially disaggregated as pos-
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sible. When looking at global data, there are several issues with local economic data. Firstly,

many countries provide little to no local level information. Secondly, comparing data across

countries is difficult due to differences in methods, currencies and reporting standards.

An alternative approach is to use nightlights as a proxy for local economic activity. Nightlights

have found widespread use where no other measures are available; see, for instance, Henderson

et al. (2012), Hodler & Raschky (2014) and Michalopoulos & Papaioannou (2014). For example,

Henderson et al. (2012) study Indonesia by using nightlights to capture an economic downturn

following the Asian financial crisis in the late 1990s. Their results show that swings in GDP

change can generally be captured. Nevertheless, if possible, one has to account for factors such

as cultural differences in light usage, latitude and gas flares. The latter is unlikely to be an

issue, as most flares are off the coast or away from urban areas. Fortunately, most earthquakes,

and also most of the human population, are at latitudes that are captured well by the satellites.

As for the cultural differences, i.e. some countries have people who use more light at night than

other countries regardless of similar GDP levels, by using fixed effects regressions, any such

individual differences will be controlled for.

The nightlight imagery we employ is provided by the Defense Meteorological Satellite Program

(DMSP) satellites. In terms of coverage, each DMSP satellite has a 101 minute near-polar

orbit at an altitude of about 800km above the surface of the earth, providing global coverage

twice per day, at the same local time each day, with a spatial resolution of about 1km near

the equator. The resulting images provide the percentage of nightlight occurrences for each

pixel per year normalized across satellites to a scale ranging from 0 (no light) to 63 (maximum

light). Yearly values were then constructed as simple averages across daily values of grids, and

are available from 1992.2 We use the stable, cloud-free series; see Elvidge et al. (1997).

The dataset used in this chapter includes the years 2004 through 2013 and it only includes

2For the years when satellites were replaced with the average from both the new and old satellite. In this
chapter we use the imagery from the most recent satellite but as part of our sensitivity analysis we also re-
estimated our results using an average of the two satellites and the older satellite only. The results of these
latter two options were almost quantitatively and qualitatively identical.
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nightlight cells that are classified as urban. The rural cells are excluded because they are more

likely to capture non-human activity such as forest fires. They are also more likely to capture

activity that is not easily linked to general economic activity such as the above-mentioned gas

flares. The top two rows of Table 4.1 show the descriptives for the cells affected by earthquake.

Our full dataset consists of more than 60 million nightlight cell observations, and of these there

are 72,883 that have been hit by earthquakes during our period. The mean value of 30.47 is

close to the halfway point between min and max nightlight of 0 and 63. In the second row we

remove cells with zero nightlight at the time of the earthquake, but that does not materially

change our descriptives.

4.2.2 Earthquake Data

To model damage and measure earthquakes, we utilize ShakeMaps from USGS, which are au-

tomatically generated maps providing several key parameters following an earthquake, such as

peak ground acceleration (PGA), peak ground velocity (PGV) and modified Mercalli intensity

(MMI). More specifically, the ShakeMaps use data from seismic stations that is interpolated

using an algorithm which is similar to kriging.3 To model the intensity at a given coordinate,

the model also takes into account ground conditions and the depth of the earthquake. Wald

et al. (2005) point to the damage pattern not only being dependent upon magnitude and epi-

center location, which have historically been used and that are common parameters for the

entire earthquake, but also on other, more localized parameters that the ShakeMaps use to

generate intensity measures.

This is exemplified by several earthquakes such as magnitude 6.7 and 6.9 earthquakes in Cali-

fornia in 1994 and 1989, respectively, where some areas further away from the epicenters were

more damaged than closer areas. The reason why the more localized ShakeMaps with their

ground shaking parameters are a better gauge than magnitude and epicenter distance is ex-

plained on page 13 of Wald et al. (2005) which states that: ”..., although an earthquake has one

3Worden & Wald (2016) compares the algorithm used to kriging with a trend without going into further
details
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magnitude and one epicenter, it produces a range of ground shaking levels at sites throughout

the region depending on distance from the earthquake, the rock and soil conditions at sites, and

variations in the propagation of seismic waves from the earthquake due to complexities in the

structure of the Earth’s crust.” The ShakeMaps are interpolated grids with point coordinates

spaced approximately 1.5 kilometers apart (0.0167 degrees).

The PGA is a measure of the maximum horizontal ground acceleration as a percentage of grav-

ity, PGV is the maximum horizontal ground speed in centimeters per second and MMI is the

perceived intensity of the earthquake, a subjective measure. Figure 2.8 once more explains the

relationship between the different parameters and the potential damage from different values.

The assumption is that damage starts at an MMI level of V and a PGA of 3.9 percent of g.

These levels are found for California in Wald et al. (1999), but the relationship has been found

for other areas in the US in Atkinson & Kaka (2006) and Atkinson & Kaka (2007) and for places

such as Costa Rica (Linkimer, 2007) and Japan, Southern Europe and Western US (Murphy

& O’Brien, 1977). It should be noted that the numerical relationship differs from region to

region. The optimal scenario would be to have damage data for all countries and regions, but

lacking that, we will use building quality data to control for damages depending on the region.

The different measures are largely interchangeable, and in GeoHazards International and United

Nations Centre for Regional Development (2001) report, they use PGA to measure damage,

pointing to the fact that PGA, unlike MMI is an objective measure, implying that MMI is not

easy to obtain reliably across the globe. Also, for large scale modeling, where it is unfeasible

that one will be able to model local conditions precisely, PGA serves as a good proxy for the

intensity of the earthquakes.

4.2.3 Seismic Codes and Building Practices Data

The overall damages are not only linked to the intensity of the earthquakes, but also to the

quality of buildings through construction methods, local seismic codes and societal conditions
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such as corruption which affects the quality of the buildings (Ambraseys & Bilham, 2011; Bil-

ham, 2013). Daniell et al. (2014) constructed a world-wide seismic code index and a building

practice and socioeconomic factor index.

The latter index consists of a weighting of different government and socioeconomic factors,

such as corruptions perception index, education level, rule of law, corruption control, regula-

tory quality and government efficiency. These indicators are then weighted and normalized to

a scale between 0 and 100. Corruption has been shown to impact earthquake losses negatively

(Ambraseys & Bilham, 2011; Bilham, 2013) and by including Transparency International’s cor-

ruption perception index and the World Bank Governance Indicators for related governance

issues such as rule of law, government efficiency, control of corruption and regulatory quality,

the adverse effects of corruption is accounted for. The education level is used as a proxy for

how well people understand building methods and the overall knowledge about construction.

Overall, the indicators are included to check how well or poorly a country implements policies

that reduce earthquake risk.

The seismic code index is focused on building design, materials and type of buildings as well

as more exogenous factors such as if it is near a fault line and the type of soil. The main

component in the index is the structural design method, based on the basic design principles as

denoted by the building code in the country. The value of this code was subjectively based on

how stringent the code was, based on the sources available, primarily the World List initiative

by IAEE and the Practice of Earthquake Hazard Assessment (M. McGuire et al., 1993). Other

factors included in the index take into consideration the age and type of building stock. These

factors are based on a multitude of sources ranging from national censuses to UN and NGO

data. The reason why the composition matters is due to residential houses not being subject

to seismic codes, and the age is included to establish how many buildings were built under

different seismic codes. Finally, a wide variety of seismic actions are included and weighted.

The factors include type of soil, proximity to fault line, interaction between soil and founda-

tion and other indicators related to how the buildings are designed to cope with the effect of
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earthquakes. This index is also weighted and normalized to a scale between 0 and 100.

In addition to the prior indices, Daniell et al. (2014) combine the two indices to get a combined

building index for the countries. The construction of the index is made by multiplying the

relative weight of the seismic code and building practice indices to obtain an overall value that

accounts for both the theoretical building quality as well as practical measures of how well it

is implemented. The correlation between the seismic code and the combined index is over 90%

and it is almost 75% correlated with the building practice.

In this chapter, the focus will be on the combined code index, due to it being the best proxy

for actual quality in the countries, as well as it being closely correlated to the other indices.

The second panel of Table 4.1 shows the descriptives of the different indices, with the combined

mean being much lower than the other two due to the way it is constructed.

Figure 4.1: Combined Index across the Globe
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4.3 Methodology

4.3.1 Constructing Damage Index

To construct the damage index, two types of data will be used; the intensity data, expressed

as PGA, and building inventory data, to assess what damage one could expect for different

intensities. More specifically, when modeling earthquake damages, there will be primary dam-

ages due to the shaking and secondary damages such as fires and landslides due to the damage

caused by the shaking. Bird & Bommer (2004) showed that 88% of the damage was caused by

the shaking. With such a high number, and the difficulty of modeling the secondary impact,

we will only focus on the intensity. Assimaki et al. (2005) and Wald et al. (2005) point to

local factors such as soil and slopes also being important determinants for damage. These are

already controlled for in the ShakeMaps and no further assessment will be taken. The next

step in damage modeling is to match the intensity with the building stock or exposed economic

assets. Yong et al. (2001) and Jaiswal & Wald (2008) use damage factors, which are defined

as loss over replacement value, to assess damage. The loss is derived based on building types

and inventory. The factor is then extrapolated to create a vulnerability curve. In this chapter

we will use a similar methodology where we construct vulnerability curves from damage ratio

based on building stock.

Given that the intensity data was extensively covered in the previous section, we will start with

the building type data here. To account for the building types we use information from the

USGS building inventory for earthquake assessment, which provides estimates of the fractions

of building types observed by country; see Jaiswal & Wald (2008). The data provides the

share of 99 different building types within a country, separated for urban and rural areas. The

building type information was compiled from a World Housing Encyclopedia survey, while the

split between urban and rural is from the urban extent map of Center for International Earth

Science Information Network - CIESIN - Columbia University et al. (2011). Without any other

information available, we use this as an indication of the distribution of building types, but,

necessarily, assume that the distribution is homogenous within urban and rural areas.
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The urban map from Center for International Earth Science Information Network - CIESIN

- Columbia University et al. (2011) is shown in Figure 4.2. The map itself was constructed

through a process outlined in Balk et al. (2006). In short, the underlying map is the gridded

population population of the world, which is based on non-spatial population estimates4 and

spatially explicit administrative boundary data. The urban map uses the underlying data and

adds collected population estimates, point location and the approximate footprint for urban

centers. An urban center is a place with more than 1,000 inhabitants. The population esti-

mates are published city inhabitant numbers, which is then matched with the urban footprint.

To determine the urban area, the authors used the same nightlight data as we have utilized

in this chapter. For areas which this was not possible, other sources were used to find the extent.

A potential problem with the urban map is that it is based on nightlights data from 1995,

as this year’s nightlight data has been cleaned for oil and gas flares and any non-human light

source. Over the period from 1995 to 2016, the share of the world’s population living in urban

areas has gone from 45% to 54% according to World Bank data. This is an issue that is difficult

to correct for, as the growth differs from country to country and even within countries one does

not have uniform growth across cities. For example, Detroit had 1 million inhabitants in the

1990 census and only 700,000 in the 2010 one. During the same period, Houston went from

1.6 million people to 2 million people and the whole of United States’ population changed from

249 million to 309 million, with the urban share changing from 75% to 80%. Due to these

asymmetric changes and the lack of more recent data, we have decided to not try to control for

it, and use the urban map as our base.

Following the building type distribution and urban split, vulnerability curves by country are

derived from curves constructed by Global Earthquake Safety Initiative (GESI) project; see

GeoHazards International and United Nations Centre for Regional Development (2001). More

specifically, GESI divide buildings into 9 different types5, with each building then rated accord-

4Population counts by administrative area names
5Wood, steel, reinforced concrete, reinforced concrete or steel with unreinforced masonry infill walls, rein-
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Figure 4.2: Urban Areas of the World

ing to the quality of the design, the quality of construction, and the quality of materials. Total

quality is measured on a scale of zero to seven, depending on the total accumulated points from

all three categories. According to the type of building and the total points acquired through

the quality classification, each building is then assigned one of eight vulnerability curves which

provides estimates of the percentage of building damage for a set of 28 peak ground acceleration

intervals.

In order to use these vulnerability curves, we first allocated each of the 99 building types given

in the USGS building inventory to one of the 9 aggregate categories of the GESI building clas-

sification. However, in order to assign a building type its quality specific vulnerability curve

we need to determine its quality in terms of design, construction, and materials, an aspect for

which we have no further information. We instead assume that building quality is homogenous

across building types and experiment with seven different sets of vulnerability curves, each set

under a different quality ratings scenarios (ranging from 0 to 7).

Figure 4.3 depict the building share weighted vulnerability curves of urban areas for Afghanistan

and USA. Due to the difference in building quality and materials used, one can see how it takes

an earthquake with PGA in excess of 1.3 before damage levels reach 100% in the US, and only

for the worst quality assumption of 7, whereas in Afghanistan a PGA over 1 destroys everything

forced masonry, unreinforced masonry, adobe and adobe brick, stone rubble, and lightweight shack or lightweight
traditional.



4.3. Methodology 85

across all building quality assumptions.

Figure 4.3: Vulnerability Curves
Afghanistan USA

To model estimated damage due to a particular earthquake event the data from the ShakeMaps

is matched with the vulnerability curves derived from GESI. To do this, one connects each

ShakeMap earthquake point with its nearest nightlight. If the cell is further away than 1.5

kilometers or if it experiences shaking (PGA) of less than 0.05 the value is set to 0. The

earthquake damage index for cell i in country j at time t assuming building quality q, EDi ,j ,q,t ,

is defined as:

ED i,j,q,t ≡ DRi,j,k,t,pgak,q i = 1, . . . , I, j = 1, . . . , J, q = 0, . . . , 7 (4.1)

where DR is the damage ratio according to the peak ground acceleration, pga, and the urban-

rural qualification6, k, of cell i, defined for a set of 8 different building quality q categories.

The second last panel of Table 4.1 depict the descriptives assuming building quality 0, 4 and 7.

All qualities have cells that have been hit by earthquakes strong enough to damage 100 percent

of the buildings in it. Based on the building quality assumptions, we find that the mean damage

in a cell differs from 4 percent in the best category, quality of 0, to 12 percent mean damage

in the worst category, quality 7. The fairly significant difference in mean (and also standard

6In our case, the cell is always classified as urban
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deviation) implies that the regression analysis done on the data will need to include robustness

checks to exclude any issues related to our quality assumptions.

Finally, to account for building quality differences between countries, each country is assigned

a quality based on their combined index rating. The allocation is done through constructing

8 clusters, due to there being 8 qualities, based on the combined index value of the full night-

lights sample of more than 60 million cells. The clustering method is k-means, leading to each

nightlight cell belonging to the cluster with the nearest mean.

Figure 4.4 depicts the fragility curves assigned to countries that have been hit by earthquakes

based on the clustering method. Furthermore, the left side graph shows the assignment for

clustered countries based solely on the seismic code index, whereas the right side graph is the

clustering based on the combined index. Interestingly, some countries that have a strong seis-

mic code, perform worse due to societal factors, namely Chile and Italy, while New Zealand is

strengthened due to their low level of corruption and strong rule of law.

The last panel in Table 4.1 shows the impact on the data caused by the combined index

clustering. The mean quality assumed is 2, which is plausible given that many of the lit urban

areas of the world are in wealthy countries. In our dataset, USA has the highest number of

urban nightlight cells. The classification also leads to the overall damage being between quality

level 0 and 4, at 6% on average across our 72,883 affected cells.

4.3.2 Regression Model

To check for a relationship between nightlight levels and the strength of earthquakes we use a

fixed effect model, correcting for time and spatial effects, given by:

Li,t = β0 + β1ED i,j,q,t + β2ED i,j,q,t−1 + λt + θi + ei,t, i = 1, . . . , I (4.2)

where Li,t is the light level in cell i at year t and ED i,j,q,t represents the vulnerability curve value
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Figure 4.4: Vulnerability Curves for Affected Countries
Seismic Code Clustering Combined Clustering

Table 4.1: Descriptives of Data

Statistic N Mean St. Dev. Min Max

Nightlights 72,883 30.47 20.26 0.00 63.00
Nightlights - Positive Values Only 71,253 31.17 19.95 3.00 63.00

Building Practices 72,883 77.03 17.01 23.90 97.40
Seismic Code 72,883 89.61 9.52 7.00 98.10
Building and Seismic Code Combined 72,883 70.15 19.31 1.90 87.90

Vulnerability Curve Quality 0 72,883 0.04 0.05 0.01 1.00
Vulnerability Curve Quality 4 72,883 0.08 0.09 0.03 1.00
Vulnerability Curve Quality 7 72,883 0.12 0.12 0.04 1.00

Clustered Quality 72,883 2.00 1.84 0 7
Damage from Earthquakes 72,883 0.06 0.07 0.02 1.00

assuming quality q in the same cell and at the same time. To allow for lags, β2 is the coefficient

for the damage from year t − 1, which is the vulnerability curve value from the year prior to

year t. β0 is the intercept, λi is a matrix of year dummies and θi are the cell fixed effects and ei,t

is the error term. To correct for potential heteroskedasticity we use Driscoll-Kraay covariances

from Driscoll & Kraay (1998).
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4.4 Results & Discussion

Employing our model on the data for different building qualities yields the results seen in Ta-

ble 4.2. The table shows the results when assuming all buildings, globally, are of quality 0,

4 and 7 with and without lags in the upper panel, revealing that nightlight cells that have

been struck by earthquakes have a statistically significant lower value than cells that have not

been affected. The overall impact depends - as expected - on the building quality assumption.

Regressions (4)-(6) show the results with lag, and there is no evidence suggesting that the

nightlight values are further affected the year after an earthquake hits.

The lower panel with regressions (7)-(12) shows the regression results with and without lag

depending on how building qualities are assigned. The first assignment method is clustering

in (7) and (10). Regressions (8) and (11) are the results when building quality is based on 8

ranges equally split across the full range of the index from 0 to 100, while regressions (9) and

(12) are based on a rank from highest to lowest split across the 8 qualities. The results stay

significant and negative across all regressions.

In terms of the overall effect, if one assumes that a mean nightlight cell containing is hit (value

of 30.47 from Table 4.1) by a mean earthquake based on the clustering that damages 6 percent

of the buildings, the light emission drops by 0.22 to 30.25, this is about 0.7% of the total light

emitted. Assuming all buildings are quality 0, meaning that countries globally were of the

best standard, yields the same result of 0.7%.7 If one instead assumes that all buildings are

of quality 7, which is the worst case, the nightlight levels drop by 1.2%. To illustrate with an

example how quality improvements would lessen the impact, one can use a city such as Jakarta,

with an approximate GDP of USD145 billion, if hit by a mean earthquake, the damages would

be approximately USD600 million less if the buildings were 0 instead of 7.8 Furthermore, if

Jakarta was hit by an earthquake 2 standard deviations higher than the mean, roughly 23%

would be damaged and the GDP would decrease by 2.8% or USD4.1 billion

7The difference is less that a tenth of a percent. This is due to a majority of the earthquakes affecting high
quality countries

8Jakarta is currently quality 5
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Table 4.2: Regression Results
Without Lag With Lag

Qualities

Variable Quality 0 Quality 4 Quality 7 Quality 0 Quality 4 Quality 7
(1) (2) (3) (4) (5) (6)

Vuln Curve -5.53∗∗∗ -3.76∗∗∗ -2.93∗∗∗ -4.59∗∗ -3.26∗∗∗ -2.59∗∗∗

(1.63) (0.95) (0.71) (1.50) (0.84) (0.63)

1 year lag 0.94 -0.11 -0.20
(1.89) (1.10) (0.81)

Observations 60,730,730 60,730,730 60,730,730 54,657,657 54,657,657 54,657,657

Quality Split

Variable Clustering Range Rank Clustering Range Rank
(7) (8) (9) (10) (11) (12)

Vuln Curve -3.72∗∗ -3.79∗∗∗ -3.32∗∗ -3.00∗∗ -3.07∗∗ -2.60∗∗

(1.16) (1.12) (1.14) (1.06) (1.00) (1.09)

1 year lag 1.11 1.02 1.22
(1.39) (1.82) (1.32)

Observations 60,730,730 60,730,730 60,730,730 54,657,657 54,657,657 54,657,657
Notes: ∗∗∗Significant at the 1 percent level.

∗∗Significant at the 5 percent level.

Recently, in academic discussions (Blum & Krause, 2016) it has been noted that the nightlight

distribution is skewed towards the top end, questioning how accurately the nightlight cells cap-

ture very large and densely populated areas. This can potentially lead to an underestimation

of the difference between urban and rural areas as well as between cities themselves. Fur-

thermore, the problem is more pronounced in developed than in developing countries, due to

nightlights being more saturated there. Literature has shown that nightlights are more strongly

correlated with economic activity in developing than developed countries (Nordhaus & Chen,

2015; Pinkovskiy & Sala-i Martin, 2016). A simple way to check if this might have affected our

results have been to exclude any cells with a max intensity higher than 55. As seen from the

regressions in Table 4.3, this does not seem to affect our results much. There are only minor

changes to our coefficients and no change in significance.
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Overall, there is strong evidence in support of earthquakes leading to lower light levels. For a

city such as Tokyo, with a GDP of more than USD1.5 trillion, a decrease of 0.7% would lead

to a drop of USD10.5 billion, or if hit by an earthquake two standard deviations stronger than

the mean, leading to a drop in GDP of USD42 billion.

Table 4.3: Robustness Check - Nightlight Level Below 55
Without Lag With Lag

Qualities

Variable Quality 0 Quality 4 Quality 7 Quality 0 Quality 4 Quality 7
(1) (2) (3) (4) (5) (6)

Vuln Curve -4.99∗∗∗ -3.53∗∗∗ -2.73∗∗∗ -4.19∗∗ -3.12∗∗∗ -2.44∗∗∗

(1.48) (0.84) (0.61) (1.53) (0.85) (0.62)

1 year lag 0.98 0.03 -0.11
(1.61) (0.95) (0.71)

Observations 47,339,790 47,339,790 47,339,790 42,605,811 42,605,811 42,605,811

Quality Split

Variable Clustering Range Rank Clustering Range Rank
(7) (8) (9) (10) (11) (12)

Vuln Curve -3.25∗∗ -3.35∗∗∗ -2.84∗∗ -2.61∗∗ -2.71∗∗ -2.17
(1.04) (0.98) (1.07) (1.05) (0.98) (1.09)

1 year lag 1.08 1.02 1.24
(1.29) (1.28) (1.23)

Observations 47,339,790 47,339,790 47,339,790 42,605,811 42,605,811 42,605,811
Notes: ∗∗∗Significant at the 1 percent level.

∗∗Significant at the 5 percent level.

4.5 Conclusion

Using a comprehensive dataset of earthquakes and nightlights for the period 2004 through 2013,

this chapter has shown that earthquakes lower nightlight emissions by 0.7 percent, implying
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the significant impact earthquakes can have on local economies. Our hypothesis of a negative

impact on nightlights from earthquakes is well supported also when accounting for a potential

top ended distribution.

Further expansions of this chapter can take on different focus points. One way of improving

the global measurements is through an expansion of the time period looked at, with a focus

only on major earthquakes. Another avenue of exploration is to validate the damage estimates

through locally obtained damage data. Instead of focusing on global impacts, one can study

local effects in countries or at a parish/state-level. It would be easier to obtain local damage

and building quality data if the study area is narrowed to specific countries.



Chapter 5

A Whirlwind Romance: The Effect of

Hurricanes on Fertility in Early 20th

Century Jamaica

Abstract

In this chapter we investigate the impact of hurricanes in the Caribbean on fertility rates in

Jamaica for the period 1901 to 1929. More specifically, we create a hurricane destruction index

derived from a wind speed model that we combine with data on more than 1 million births

across different parishes in Jamaica. Analyzing the birth rate following damaging hurricanes,

we find that there is a strong and significant negative effect of hurricane destruction on the

number of births. Overall, we find that hurricanes resulted in 10,201 fewer births, or roughly

1 percent of the total. We further show that damaging hurricanes reduce births for up to, and

including, 17 months after the event but find no evidence of a temporal displacement of births.

In addition, we find no support for the Trivers-Willard hypothesis that one sex becomes more

prevalent than another. However, there is evidence that the fall in births is due predominantly

to single mothers having fewer children relative to married couples.

Keywords: Birth-rate, sex-ratio, Jamaica, Hurricanes
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5.1 Introduction

Reproductive health and fertility decisions following natural disasters are widely believed to

affect both short and long-term population growth and family size. However, the nature of the

relationship between births and disasters is not yet fully understood. In an extensive review of

the reproductive health literature Zotti et al. (2012) show that the effect of natural disasters

on birth outcomes has not been consistently demonstrated while the economics literature has

tended to focus on estimating the number of dead and wounded and quantifying the economic

damages (see for example, Kahn (2005); Noy (2009); Strobl (2012)).

Studies that examine the indirect effect of disasters on the birth rates are limited and those

that have been published tend to provide mixed results. For example, using only simple expo-

sure incidence for the case of hurricanes Cohan & Cole (2002) find an increase in births after

hurricane Hugo, while Hamilton et al. (2009) discover a decrease in births after hurricane Kat-

rina. Pörtner (2008) also shows a negative effect on births for a long term study of Guatamala.

More recently, Grabich et al. (2015) find no significant effects following hurricanes Charley and

Ivan in Florida in 2004. Importantly, however, is that one of the difficulties with capturing

outcome measures at the aggregate level is exposure misclassification and the proper control of

confounders (Grabich et al., 2015).1

The purpose of this chapter is to examine the impact of hurricane strikes on birth outcomes us-

ing historical data for the turn of the 20th century. More specifically, we consider the impact of

hurricanes on births on the Caribbean island of Jamaica between 1901 and 1929. Crucially, for

our analysis, and in contrast to studies of more recent hurricanes, during this period hurricanes

would strike with little or no warning. Our empirical strategy is first, to construct a measure

1Other shocks such as terrorist attacks (Rodgers et al., 2005) and blackouts (Udry, 1970; Burlando, 2014)
have been shown to increase births while for earthquakes, Lin (2010) find a decrease in fertility, whereas Tan
et al. (2009) find an insignificant decrease in births but a significant increase in birth defects. Other studies in
the epidemiology literature look at the health outcomes of pregnant women (Harville et al. (2010) and Xu Xiong
et al. (2010)). Finally, Caruso (2017) examines the intergenerational transmission of exposure in childhood to
natural disasters in Latin America in the last 100 years. His main finding is that young children and children in
utero experience worse long-term education and employment outcomes with the future fertility of an individual
only negatively affected by a disaster in the case of a flood.
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of exposure to hurricanes in Jamaica using a wind field model (Boose et al. (2004)) which we

combine with a comprehensive database of parish-level births and population. In addition, we

control for other weather variables at the time of the hurricane and the time of birth. Second,

we estimate the short and long term fertility effects of hurricane exposure at the local parish

level over a 28 year period using parish fixed effects regressions.

The contribution of this chapter is to use our wind field model and births data to test four

related hypotheses. These are: (1) do hurricanes cause a temporal displacement of births such

that conception is brought forward or delayed to avoid a predicted hurricane of hurricane sea-

son; (2) is there a permanent reduction in births as a result of a hurricane (as a result of

reconstruction efforts, lack of basic goods and sometimes death); (3) does hurricane exposure

alter the gender bias of new births to the extent that more girls are born following a hurricane

(a test of the Trivers-Willard hypothesis); (4) is the impact of hurricanes on the short and long

term fertility rates influenced by the marital status of mothers.

We now discuss these hypotheses in more detail. Temporal displacement (hypothesis 1) occurs

when people who would have had a child at a given time bring forward or delay the date of

conception due to an upcoming hurricane or hurricane season. Such a conception decision will

not have a long term fertility effect since there will still be the same number of children born.

If a temporal displacement effect exists then one would expect to see a positive birth rate effect

in the months before and after a hurricane. However, the existing literature has suggested that

the fertility effect of hurricanes can be positive or negative. Cohan & Cole (2002) looked at

county level data for South Carolina after hurricane Hugo hit in 1990 and found a significant

increase in births (and marriages and divorces as part of a study on life transitions) in the

affected counties in the year following a hurricane. Hamilton et al. (2009) found a 19 percent

decrease in births following hurricane Katrina although they were unable to take into account

migration into or out of the affected areas in Louisiana, Alabama and Mississippi. In a more

recent paper using a difference-in-differences approach Grabich et al. (2015) finds no significant

impact on births in Florida following hurricanes Charley and Ivan in 2004 and argue that pre-
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vious significant findings may be due to biases inherent in county-level regressions.

Other studies that find a positive increase in births include Nobles et al. (2015) who find a

strong positive link between mortality and fertility after the 2004 Indian Ocean tsunami and

for earthquakes by Finlay (2009). Pörtner (2008) also uses hurricane and household data from

Guatemala over the period 1880 to 1997 to assess how hurricane risk affects the fertility and

education of households and distinguishes between households that own and do not own land

and finds that fertility increases with hurricane risk for landowners, but decreases for house-

holds that do not own land.

A different approach is taken by Evans et al. (2010) who investigate the effect of hurricane

advisory announcements on fertility. They define the shock not as the hurricane striking, but

as the warning of a storm or hurricane approaching, that may or may not eventually strike at a

level that is higher or lower than the warning level given in the initial advisories. Using county

level data on hurricane advisories and births for the period 1995 to 2001 they show that fertility

decreases monotonically from positive to negative as the severity of the warning increases, with

the largest negative effect for hurricane warnings. Of relevance for our study, they only find

limited evidence for either a temporal displacement effect or a permanent reduction in births

following a hurricane.

Hypothesis 2 asks whether disasters lead to a permanent fertility effect, i.e., a shock causes a

long-term change in the total number of children born. For example, in the previous literature

Lindstrom & Berhanu (1999) present strong evidence that shocks like war and famine have a

negative long term fertility effect, while Rodgers et al. (2005) and Pörtner (2008) find positive

effects. In the latter case the authors did not look specifically at events, but rather sought

to discover where there is a ‘harvesting effect’ of natural disasters whereby people in storm

hit areas have more children as insurance against future storms. Finally, Agadjanian & Prata

(2002) observe negative short-term effects, which change to a positive effect in the longer term

although their results vary depending on exposure to war, with more heavily affected areas
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having a greater negative effect.

Our third testable hypothesis relates to the impact of natural disasters on the male-to-female

(M/F) sex ratio. Known as the Trivers-Willard hypothesis the argument is that the M/F

birth ratio falls (there are more female births) when mothers are stressed or have fewer re-

sources available. Several papers have found evidence in favor of the this hypothesis. For

example, Catalano (2005) shows that the sex ratio fell during periods of high unemployment

in California. The same result was found for natural disasters such as floods (Lyster, 1974)

and earthquakes (Fukuda et al., 1998; D’Alfonso et al., 2012). Other shocks such as the 9/11

attacks (Bruckner et al., 2010) and generally stressful situations such as the troubled years

in Northern Ireland, the Rodney King Riot, the Breivik terrorist attack and the Sandy Hook

shooting (Grech, 2015) exhibit the same effect. An additional factor shown to influence the sex

ratio is rainfall. In this regard, Grech & Scherb (2015) found that the M/F birth ratio following

hurricane Katrina increased for states with excessive amounts of rainfall. At the same time,

being exposed to hurricane Katrina alone did not affect one gender more than the other. An

increased sex ratio following rainfall is also found by Lyster & Bishop (1965). Finally, it has

been shown that fertility rates are sensitive to economic circumstances with unemployment

rates and difficult economic conditions associated with lower fertility rates (Kelly and Cutright

1984 and Rindfuss et al. 1988).

Finally, hypothesis 4 is derived from the small number of studies that have proposed that the

marital status of women affects post-disaster fertility. For example, Hamilton et al. (2009)

finds a decrease in unmarried women giving birth relative to married women following hurri-

cane Katrina. Also following hurricane Katrina, Zahran et al. (2011) finds that single mothers

have poorer mental health than others and do not deal as well with life events as mothers

with partners. Although it does not say anything specific about birth rates, it may imply that

following a hurricane, single women are less likely to have children, in particular single women

that already have one or more children.
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For each of our four testable hypotheses early 20th century Jamaica arguably presents an ideal

period in which to study effects of hurricanes on fertility. Jamaica is located in the Atlantic

hurricane belt and experiences on average 10 tropical storms in each hurricane season which

usually lasts from June until November. According to the National Library of Jamaica (2016)

there were 16 hurricanes (7 of them considered major hurricanes) that struck Jamaica between

1901 and 1929 with estimated deaths of at least 250 people and many more being left homeless.

For our period, the total number of births was around 1 million. Of the 16 hurricanes that

damaged Jamaica, each affected on average 10 out of the 14 parishes. To replace those killed

by hurricanes the total number of births would only have to increase by 0.025 percent. It is

questionable if the death rate following the Jamaican hurricanes was high enough to cause a

change in birth rates. However, if hurricanes have a longer term impact on reproductive health

or fertility decisions then the actual change in the population either up or down may be sub-

stantially larger and one could potentially get similar effects to those found by Nobles et al.

(2015).

Our period of study is convenient for two reasons. First, the damaging hurricanes that Jamaica

experienced during this time are well distributed over time, with the two very strong hurricanes

being fairly isolated, four similarly damaging ones being close together and finally a decade at

the end of the period of almost no strong hurricanes.2 Second, due to limited warning systems

at the time there was effectively no anticipation prior to a hurricane strike, meaning that the

impact would not have been affected by people evacuating an area or preparing more than they

would normally during hurricane season. For example, the first hurricane report radioed from

a ship in the Atlantic basin did not occur until 1909 (Landsea et al., 2008).

To illustrate the type of damage that hurricanes caused during this period we briefly describe

the impact of the November 1912 and August 1916 hurricanes. The Jamaica weather re-

2The main hurricanes during our period occurred on August 11th 1903 (65 deaths reported), June 13th 1904,
November 10-18th 1912 (100 deaths reported), August 12-13th 1915 (11 deaths reported), September 24-25th
1915 (some loss of life due to flooding), August 15th-16th 1916 (17 deaths reported), September 23rd 1917
(57 deaths reported). See http://www.nlj.gov.jm/history-notes/HistoryofHurricanesandFloodsinJamaica.pdf
for details.
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port(number 411 pages 1-3) describes a cyclone with heavy rains that struck the north-eastern

part of the island (St. Thomas, Portland, St. Andrew, and St. Mary) on the 10th, 11th and

12th and a second cyclone in the south-west of Kingston. By the 18th both cyclones produced

a hurricane that struck Montego Bay and Kempshot in St. James. A total of 100 people died

and severe damaged was caused by a tidal wave in Savanna-la-Mar. The 1916 hurricane in

contrast struck the South coast which killed 17 and destroyed the entire banana crop all over

the island.

To summarize our results, we demonstrate that hurricane strikes during the early 20th century

in Jamaica resulted in an estimated 10,201 births not taking place, which is equivalent to ap-

proximately 1% ot total births. Although we present no evidence that hurricanes affected the

sex ratio, we did find that marital status matters such that a significant percentage of the non-

births were a result of single mothers not having a child in the 18 months after the hurricane

events. Likewise, although there is no evidence that conception decisions were brought forward

to avoid a hurricane season, the decision to conceive was delayed by up to 9 months such that

birth rates only returned to normal rates 18 months after a hurricane.

The remainder of the chapter is organised as follows. Section 2 describes the data and provides

some summary statistics. Section 3 describes our empirical strategy and Section 4 presents the

results from tests of our four main hypotheses. Section 5 concludes.

5.2 Data and Summary Statistics

5.2.1 Geographical Unit of Analysis

Jamaica consists of 14 parishes (administrative divisions). For our analysis we treat Kingston

and Saint Andrew as one parish, since the Kingston parish is relatively small in terms of area

and the city itself extends into Saint Andrew. Hence, the regression analysis is based on 13

parishes. Jamaica’s 10,991 km2 is broken down into 13 geographical units which range in size
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from 478 km2 (Saint Andrew plus Kingston) to 1,213 km2 (Saint Ann).

5.2.2 Population and Births Data

It became compulsory to register births in Jamaica on the 1st April 1878 following the im-

plementation of Law 19 in 1877, ’A Law for the Registration of Births and Deaths in Ja-

maica’, which was replaced by in March 1881 by Law 13 ’the Registration (Births and Deaths)

Act’ (Registration Act, 1881). The 1881 law states that: ’. . . every child born alive after the

coming into operation of this Act, it shall be the duty of the father and mother of the child,

. . . , to give to the Registrar, within forty-two days next after such birth, information of the

particulars required to be registered concerning such birth, . . . ’. In other words, from March

1881 onwards it became compulsory to register births within 42 days.

The Registration Act (1881) also states that “. . . , the word ‘father’ means a person who is

married to the mother of the child at the time of conception or at any time thereafter and prior

to the childs birth.” Other paragraphs specify that a father can be registered if both the mother

and the father acknowledge the paternity or in other circumstances such as the supposed father

not denying paternity following a notice from the mother or a supreme court ruling. The as-

sumption is that both parents are present during birth and contribute to the initial upbringing

of the newborn when both register and that they, in most cases, had a stronger relationship

post-conception than when only the mother is registered.

The complete birth records have been digitized and compiled in Civil Registration (1880) and

provides us with a complete record of births in Jamaica in the early 20th century.3 For the

years 1901 through 1929, the records consist of approximately 1 million births. Each individual

entry consists of a name (when known), birth date, parish of birth, gender, father’s name (when

known) and mother’s name (when known).

To construct population level data we use the Blue Books of Statistics for Jamaica for the pe-

3The birth data covers the period for 1881-1929, but due to the availability of data for our weather variables
we need to restrict our analysis to 1901 onwards.
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riod 1891 through 1931 (Colonial Office, 1891-1931).4 These provide census data for the years

1891, 1911, 1921 and 1931. At irregular intervals birth and death data is provided alongside

limited migration data. By combining our birth data with official birth and death data we are

able to calculate the net increase or decrease in the population for each year. In addition, we

use information from Eisner (1974) and Graham (2013), which focus on Jamaican migration

to Cuba for the years 1912 through 1940, to get a sense of the extent of the migration from

Jamaica. Eisner (1974) points to Jamaican migration data being “worthless” throughout this

period, with migration numbers being consistently understated and not even registered for some

years. We have therefore opted to use Cuban migrant numbers to get a rough estimate of when

the flows were large and when they were smaller, given that the Cuban numbers are considered

to be more complete and that Cuba was the main destination for Jamaican migrants during

this period.

Hence, the largest outflows from Jamaica occurred in the years leading up to the sugar crash in

1920, with very limited migration thereafter. When combined with a lower death rate the result

was a significant increase in Jamaica’s population during the 1920s. In our analysis we assume

that any migration is relative to parish population levels and for the period 1911 to 1921 we

use Cuban migration data as a proxy for overall migration flows, so that approximately 1/3

of the migration is assumed to happen for the years 1911-1915 and the remaining 2/3 for the

years 1916-1920.5 Once we corrected for net migration, we linearly extrapolated the data from

one year to the next to obtain a time series of monthly population estimates. More precisely,

we use the birth and population data to calculate the log birth rate, where the birth rate in

parish i for month m, bi,m, is given by:

bi,m ≡ Bi,m

popi,m
(5.1)

4The most recent census prior to the beginning of our sample period was 1891.
5During the years 1914-1918 World War I was ongoing. According to an article in Jamaica Gleaner (Retrieved

at http://old.jamaica-gleaner.com/pages/history/story0014.html) there were 10,000 men serving the British
Empire during that period and it is unclear how these are accounted for in the migration numbers. Regardless,
given that net outflow during the decade was more than 90,000, the accounting of the army men would not
significantly shift the numbers.
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where Bi,m is the total number of births in parish i in month m and popi,m is the total female

population for the same month and parish.6

5.2.3 Hurricane Destruction Index

Following the work by Landsea et al. (2004) who re-analyze the Atlantic basin hurricane tracks,

we are able to model local winds and construct a hurricane destruction index. The index is the

same as that used in Emanuel (2011) and assumes a fraction of property is lost or damaged

when wind speeds surpass a threshold in a cubic manner.7 Formally our destruction index is

given by:

f =
v3
n

1 + v3
n

(5.2)

where f is the fraction of property lost or damaged and vn is:

vn ≡ max[V − Vthresh, 0]

Vhalf − Vthresh

where V is the wind speed, Vthresh is the wind speed at and below which no damage occurs

(set at 92.6km/h) and Vhalf is the wind speed at which half the property is destroyed (set at

203.7km/h).

By generating a destruction index in this way we are able to model the level of local exposure

and to extend the work of Cohan & Cole (2002), Hamilton et al. (2009) and Grabich et al.

(2015) who only use a simple exposure versus no exposure approach. This also differs from

Evans et al. (2010), who use different categories of hurricane advisories to look at how many

days of each warning or watch there had been 9 months prior to a birth. We believe that by

modeling the wind speeds and creating a proxy for the kinetic energy of the hurricane, we are

able to better capture the exposure level experienced by the population. Further justification

for our approach comes from Strobl (2012) who finds that landfall dummies are not a good

6Our approach differs from Evans et al. (2010) and Burlando (2014) who use the log of births. Due to the
length of the period and the significant population changes we believe that the change in the birth rate provides
a better overall picture. In our sensitivity analysis we also estimate our results using the log of births. The
results are qualitatively and quantitatively similar.

7Damages are related to wind speed in a cubic manner due to nature of energy dissipation of the hurricane.
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proxy for estimating the negative growth impact of a hurricane at the local level. Likewise,

wind damage shows a high power-law dependence on wind speed as shown in Pielke (2007) and

Nordhaus (2010), implying that the experienced wind speed is a strong predictor of hurricane

damage and exposure. Intuitively, using a dummy variable for the exposure that a parish ex-

periences when it could be only minor damage and would be treated the same way as a parish

that experiences severe damages is likely to lead to misclassification of exposure levels.

The wind speed data we use follows Strobl (2012), which in turn is based on a wind field model

developed by Boose et al. (2004). The base equation stems from Holland (1980) and is given

by:

V = GF

[
Vm − S(1 − sin(T ))

Vh
2

][(
Rm

R

)B
exp

(
1 −

[
Rm

R

]B)] 1
2

(5.3)

where V is the wind speed at point P , Vm is the maximum sustained wind velocity anywhere

in the hurricane, T is the clockwise angle between the forward path of the hurricane and a

radial line from the hurricane center to the point of interest (the centroid of a Parish), P ,

Vh is the forward velocity of the hurricane, Rm is the radial distance from the center of the

hurricane to point P , and G is the gust wind factor (water = 1.2, land = 1.5). Finally, F is

a scaling parameter for surface friction (water = 1.0, land = 0.8), S is the asymmetry due to

the forward motion of the hurricane (1.0) and B is the shape of the wind profile curve (1.2).

These parameter values have been verified in Boose et al. (2001) and Boose et al. (2004).

The source for the localized wind speeds is the HURDAT database that provides the strength

and tracks every 6 hours of all hurricanes that affected Jamaica during the period we have our

birth data. Not all of these hurricanes had wind speeds that surpass our threshold, but it does

provide an indication of the frequency with which hurricanes happen in the basin, the route

that they tend to take and how many make landfall.8

8Despite the data being the most complete database available and having been extensively re-analyzed for
the periods 1851-1910 (Landsea et al., 2004), 1911-1920 (Landsea et al., 2008) and 1921-1930 (Landsea et al.,
2012) there are still a small number of concerns regarding the completeness and accuracy of the data. There
may be under-reporting of the number of hurricanes, inaccurate tracks and under-analyzed intensity. The
errors in position is due to the limited ship sightings and it has been shown by Holland (1981) that even
with numerous ships and buoys in the water, estimation errors of the centers of tropical cyclones are common,
meaning that hurricanes passing over open sea are likely to contain some track error. The ones making landfall
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5.2.4 Weather Data

In addition to the destruction index we also control for other climatic variables. Although wind

speed is highly correlated with rainfall during a hurricane event our additional controls capture

rainfall and the average temperature for each month. The rainfall data per month is measured

in millimetres. The rainfall and temperature data are from the Climatic Research Unit (CRU)

TS4.00 gridded time series data. We measure rainfall and temperature in the month of the

hurricane and the month of the birth.

We define our rainfall and temperature variables in terms of anomalies as follows:

climate =


ct−c
σc
, if ct − c > σc

0, otherwise

where ct is the rainfall or temperature in month t, c is the mean of rain or temperature, σc is

the standard deviation and the value is zero if ct − c is smaller or equal to σc.

5.2.5 Summary statistics

Throughout our time period, the number of births in Jamaica was fairly stable at approximately

35,000 per year, while the female population grew by about 25 percent from 1901 to 1929. Even

though the annual numbers are fairly consistent, there is a large element of seasonality in the

births data. In terms of the birth rate, it remained between 7.63 to 8.50 percent during the

first two decades, while the 1920s saw it drop below 7 percent for the first time through a com-

bination of fewer births and a larger population (driven by lower outward migration numbers).

Eisner (1974) points to a fall in infant mortality and fewer legitimate children being born as

are more accurate, and these observations were made all across the Caribbean. For the intensity errors, the
problem stems from instruments not being properly calibrated to deal with hurricane strength winds, and hence
underestimating the intensity of the hurricanes. Overall, the goal of Landsea et al. in their series of papers
was to correct the tracks and errors, although they admit that despite the reanalysis efforts there may be
further changes if new information is discovered or if revised physical understanding is made available. While
any revisions may impact the results of our analysis, as any new and updated track or intensity information
will affect the modelled wind speed and hence the destruction index, we expect these changes to be minimal.
Figure B1 shows all hurricanes in the Caribbean basin for the years 1901-1929.
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other reasons for the trends in birth rates.9

The result of reduced migration flows and lower mortality rates was significant population

growth in Jamaica. Despite these changes in population, the M/F ratio remained relatively

stable at 102.3, which is slightly lower than the expected ratio found by James (1987), which

was in the range 104-107. However, in the same article, he points to race being a factor in the

sex ratio with some black populations having a slightly lower M/F ratio. Reassuringly, Visaria

(1967), using a database for Jamaica for the period 1878 to 1950, finds the sex ratio to be

identical to ours at 102.3.

In Table 5.1 we present summary statistics at the parish level including a summary of our de-

struction index. The top panel of Table 5.1 shows that there were on average more males than

females in each parish and that there were more births to single mothers than to two parents

(as recorded on the birth certificate). The second panel of Table 5.1 provides the summary

statistics for the destruction index and modelled wind speeds (only values above our threshold

of 92.6km/h are included). For the hurricanes included in our sample, the average hurricane

destroyed 40 percent of the parish level property, while the most damaging hurricane to hit a

parish destroyed 95 percent of the property. This demonstrates both the destructive power of

a hurricane and the heterogeneity across space and time. It is worth noting that during the

period 1901-1929 16 hurricanes had wind speeds over our 92.6km/h threshold, with 6 of these

destroying more than 50 percent of the property in a given parish. At the same time, 6 of

the hurricanes caused less than 10 percent damage. From the hurricane data we know that 4

hurricanes barely breached the threshold and caused less than 1 percent damage.

The bottom panel of Table 5.1 summarises our additional weather variables. As one would

expect for a country in a temperate zone the temperature data is very stable with a difference

of just 8 degrees between the maximum and minimum temperatures within a given month.

For our rainfall variable, as expected, the standard deviation is considerably higher and the

9In Table B1 of Appendix B we present the summary statistics for the birth and population data at the
national level. Figure B2 in Appendix B plots the birth data and also includes a plot of our destruction index
for each year of our sample which we discuss later.
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Table 5.1: Summary Statistics

N Mean SD Median Minimum Maximum
Birth and Population Statistics
Monthly Parish Level Births 4,524 221.45 85.57 220 49 557
Monthly Parish Level Births - Girls 4,524 109.44 43.18 107 25 299
Monthly Parish Level Births - Boys 4,524 111.94 43.91 111 19 301
Monthly Parish Level Births - Single Mother 4,524 134.61 51.85 128 30 387
Monthly Parish Level Births - Parents 4,524 86.84 40.82 85 7 295
Parish Level Female Population 4,524 30,946 10,632 31,695 15,238 59,489
Parish Level Male Population 4,524 34,474 12,798 34,827 17,736 75,808
Annualized Parish Level Births per Female (%) 4,524 7.78 1.54 7.70 2.76 14.06

Destruction and Wind Statistics
Destruction Index (Over threshold only) 166 0.40 0.38 0.26 0.00 0.95
Modeled Wind Speed (Over threshold only) 166 202.59 96.11 170.59 92.69 383.92
Destruction Index (All Months) 4,524 0.015 0.10 0 0 0.95
Modeled Wind Speed (All Months) 4,524 7.43 42.28 0 0 383.92

Climate Statistics
Rain (mm) 4,524 187.79 201.51 121.4 6 2,499.7
Temperature (C) 4,524 24.48 1.49 24.5 20.2 28.3

difference between maximum and minimum is almost 250cm of rain over the course of a month.

All parishes experienced population growth over this period, with Kingston and the surround-

ing areas being the most populous areas and the north-west being the least populous. No

significant internal migration trends were found. Unfortunately, our census and migration data

is not at frequent enough intervals for us to analyze internal migration patterns properly.10

Finally, we consider the full distribution of the 166 instances when a hurricane caused parish

level damage, as a result of the 16 damaging hurricanes. We find that hurricanes are skewed

towards the higher and lower destruction levels. From an analytical perspective it is useful to

have hurricanes across the full destruction spectrum so that we are able to capture the birth

effect at different exposure levels. The temporal distribution also helps, where some of the

most devastating hurricanes are fairly isolated events whereas the last decade only had one

hurricane in 1924 that caused significant destruction. This limits a confounding effect where

birth decisions are affected by hurricanes that hit one after another in quick succession.11

10Figures B3 and B4 of Appendix B present the distribution of the population across Jamaica at the start
and the end of our sample. In more recent studies, using a survey method, Smith & McCarty (1996) find that
hurricane Andrew, which struck Florida 24 August 1992, caused significant migration effects both temporary
and permanent. Likewise, Logan et al. (2016) find that population growth in high risk zones can be hampered
for as long as 3 years following a hurricane with people either moving away and then not returning.

11Figure B5 of Appendix B shows the density distribution in graphical form
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5.3 Empirical strategy

In the previous literature attempts to estimate the impact of a shock on fertility has tended to

use dummies or a difference-in-difference approach to assess whether a population is exposed

to a disaster or not (Cohan & Cole, 2002; Hamilton et al., 2009; Grabich et al., 2015). In this

chapter, we take into account the extent of exposure by using our destruction index as a proxy

for the damage experienced by the population of a parish. The empirical approach is partially

based on the fixed effects model employed by Evans et al. (2010), where, instead of using ex

ante hurricane forecasts, we use our own destruction index as the key independent variable.

Hence, our empirical specification is given by:

ln bi,t = β0 + β1Xi,t−j + β2raini,t + β3temperaturei,t

+ β4raini,t−j + β5temperaturei,t−j + β6monthsi + β7time+ θi + ei,t (5.4)

where ln bi,t is the log birth rate in parish i at time t, raini,t and raini,t−j captures rainfall during

month t and t− j, while temperaturei,t and temperaturei,t−j are the same for temperature, β0

is the intercept, monthsi are dummy variables for months, time is a time trend following Evans

et al. (2010)12, θi are the parish fixed effects and ei,t is the error term. The variable Xi,t−j is

the destruction index value, f , in the month of the hurricane, which happened j months prior

to month t. To correct for potential heteroskedasticity we use Huber-White covariances from

White (1980).

Given the nature of Jamaica’s climate, with stable and high temperatures and very limited cases

of drought we decided not to use controls for low temperatures or relatively small amounts of

rain. The weather variables are included for the hurricane month, t− j, to control for any rain

or temperature effects that might be correlated with the hurricane. In principle our destruc-

tion index should also capture the damage due to rainfall during the hurricane. However, we

include monthly rainfall as an additional control. Given how hurricanes are “fuelled” by water

temperature one might also expect higher temperature months to have some correlation with

12Using parish specific time trends make little difference for coefficients and significance.
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the strength of the hurricanes.13 We thus also include rain and temperature controls for the

month of birth to control for any impact of extreme weather on birth outcomes. For example,

Wang et al. (2013) show that heat waves can lead to an increase in pre-term births. In ad-

dition, Lam & Miron (1996), find that summer temperature extremes tend to reduce conception.

Regarding our time variable t, we set it to be the month of birth where the hurricane happened

j months previously. This is in line with the methodology used in Evans et al. (2010), Pörtner

(2008) and Ball (2015) where they look at births j months after the shock (9 months in the

latter two cases). One caveat with this approach is that the possibility of pre-term and still

births can affect birth rates in earlier months. For example, Xiong et al. (2008) shows that

exposure to hurricane Katrina led to an increase in pre-term births, implying that a hurricane

can lead to an increase in the birth rate before 9 months have passed. Torche (2011) also find a

decrease in gestational age following the 2005 Tarapaca earthquake in Chile. Similarly, Zahran

et al. (2014) find that hurricanes Katrina and Rita led to an increase in foetal mortality which

would not show up as an increase in births before 9 months. Given that our data set only has

the number of live births by month we are unable to say anything specific about the effects on

pre-term births and still births. We therefore chose to link each hurricane with the birth data

j months later, i.e. a hurricane making landfall in January will be linked with the birth rates

j months later (October if j is 9).

5.4 Results

In Table 5.2 we present the results for our different econometric specifications. The common

factor in each specification is that the assumed threshold for our destruction index is 92.6km/h

and that half the property value is destroyed when the wind speed reaches 203.7km/h. In all

specifications we use monthly dummies and a time trend. The 13 parishes of Jamaica are our

cross-sectional unit and the time interval is monthly. A panel unit root test on the log birth

13Hsiang (2010) points to sea surface temperatures being correlated with cyclone activity in the Atlantic.
Similarly, Anttila-Hughes & Hsiang (2013) use rainfall and temperature controls to avoid any confounding
weather behavior that might be correlated with typhoon incidence.
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rate confirms that the panels are stationary.14

Column (1) shows the results for the basic specification that does not include any weather

variables. We find that the strength of the hurricane negatively impacts birth rates at the 1

percent significance level. In Column (2) we introduce weather controls into our log of birth

rate regression. In columns (3)-(5) we present the results for alternative measures of births.

The temperature and rainfall variables in the month of birth are insignificant for all regressions.

For the weather variables in the month of the hurricane, we find that rainfall remains insignif-

icant but that temperature is now significant at the 1 percent level. Given how a hurricane

gains energy from hot water and hot air, a higher than normal temperature combined with

a hurricane, is likely to generate a very strong hurricane. If we only look at the hurricanes

that happen in months that were unusually warm, there is a correlation of 0.814 between the

destruction index value and the temperature variable.15 In addition to the correlation with

the destruction index, the results showing that heat causes fewer births is consistent with the

findings of Barreca et al. (2015), where they find that heat waves cause a decline in the birth

rate 9 months later. From Column (2) we can see that the inclusion of weather variables leads

to a small reduction in the magnitude of our destruction index although the significance level is

unchanged. In Columns (3)-(5) we perform a series of robustness checks with three alternative

dependent variables. For example, Evans et al. (2010) and Pörtner (2008) used the log of births

as their dependent variable. All specifications show the same negative effect and are significant

at the 1 percent level.

To help interpret the demographic significance of our coefficients Table 5.3 shows the impact

in terms of the number of births. It depicts two cases, one where we assume that the average

hurricane hits, implying property values were reduced by 40 percent and a second case where

we assume the maximum recorded hurricane for the period where 95 percent of the property

value is destroyed. Each of these cases is broken down into parish and national level impacts,

where the latter case assumes that the hurricane hits all 13 parishes with the same intensity.

14We used a Levin-Lin-Chu test from Levin et al. (2002) to test stationarity
15There are 22 instances where the temperature were more than 1 standard deviation higher than monthly

mean and a hurricane struck
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Table 5.2: Base case regressions (Births 9 months after hurricane)

Specification Base Case Base Case + Climate Variables

Dependent Variable Log of Birth Rate Log of Birth Rate Birth Ratea Births Log of Births

(1) (2) (3) (4) (5)

Destruction Index −0.059∗∗ −0.053∗∗ −0.386∗∗ −14.535∗∗ −0.053∗∗

(0.012) (0.009) (0.061) (2.913) (0.009)

Rainfall −0.000 −0.005 −0.316 −0.001
(0.001) (0.008) (0.266) (0.001)

Temperature −0.033 −0.000 −1.287 −0.005
(0.004) (0.025) (0.970) (0.004)

Rainfall during Storm −0.007 −0.005 −0.521 −0.002
(0.002) (0.014) (0.567) (0.002)

Temperature during Storm −0.015∗∗ −0.104∗∗ −3.742∗∗ −0.013∗∗

(0.004) (0.023) (1.136) (0.004)

Monthly and time trends Yes Yes Yes Yes Yes
Climate Variables No Yes Yes Yes Yes

Observations 4,524 4,407 4,407 4,407 4,407
R2 0.350 0.364 0.000 0.278 0.291
Adjusted R2 0.348 0.362 0.000 0.276 0.289

Notes: ∗∗Significant at the 1 percent level.
∗Significant at the 5 percent level.
a. Coefficients and standard errors for birth rate multiplied by 1,000

Furthermore, we assume that the parish being hit has the mean population and that the de-

pendent variable has the mean value.16

Overall, our results are fairly robust to our choice of dependent variable although using the

log variables appears to result in a smaller reduction in the birth rate. When looking at the

percentage change, an average hurricane leads to 2 percent less births 9 months later while a

maximum strength hurricane leads to almost 5 percent fewer births.

As a further robustness check we re-estimate our results assuming different Vhalf -values (ranging

from 130 to 370km/h compared to our assumed value of 203.7km/h) for two different threshold

values is given by Vthresh at 92.6km/h and 185.2km/h, respectively.17 The results are presented

in Figures 5.1 and 5.2. The black lines show the coefficient values, and the blue lines are the

16A sensitivity check using median values resulted in only minor differences in our coefficients of interest.
17Emanuel (2011) uses a Vthresh of 92.6km/h, and two Vhalf values of 203.7km/h and 277.8km/h. We test

for a full range of Vhalf and one Vthresh in accordance with the original paper as well as one close to the lower
Vhalf
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Table 5.3: Birth Impact of Hurricane (Number of Births 9 months after a hurricane)

Specification Base Case Base Case + Climate Variables

Dependent Variable Log of Birth Rate Log of Birth Rate Birth Ratea Births Log of Births

(1) (2) (3) (4) (5)

Assuming Storm at mean level destruction of 40 percent

Parish Level Impact −5.1 −4.6 −5.3 −5.8 −4.3

National Level Impact −65.8 −59.2 −68.7 −75.0 −55.8

Percent change in Births −2.31 −2.08 −2.36 −2.60 −2.08

Assuming Storm at max level destruction of 95 percent

Parish Level Impact −11.9 −10.7 −12.7 −13.8 −10.1

National Level Impact −155.1 −139.7 −164.5 −179.5 −131.6

Percent change in Births −5.45 −4.91 −5.66 −6.24 −4.91

95 percent confidence intervals. The red lines are the R-squared values and lie within a narrow

range of 0.2 percent of each other showing that the explanatory power of the model is not

dependent upon the choice of Vthresh and Vhalf . The coefficient values have a local maxima at

approximately 200km/h which is reassuringly close to the Vhalf value of 203.7km/h that we use

in our base specification and helps to justify our parameter choice in our main results table.18.

The results from Figures 5.1 and 5.2 imply that the results are robust to our parameter choices

of the damage function. In the subsequent analysis we only present those results using a Vhalf

of 203.7km/h and a Vthresh of 92.6km/h. In all cases we include weather controls and monthly

trends as well as an overall time trend.

18As a final robustness check we examine the effect on the coefficient when we change values of Vthresh holding
Vhalf held at 203.7km/h. The coefficient value tends towards zero as the threshold values increase. Increasing
the threshold by which hurricanes can cause damage to property reduces the coefficient on births as expected
as, by construction, we are reducing the number of hurricanes that may impact on fertility. The fact that it
goes towards zero suggests the existence of attenuation bias as a result of measurement error. The results are
shown in Figure B6 of Appendix B



Figure 5.1: Change in the Destruction Index Coefficient with Changing Vhalf assuming a Vthresh

of 92.6km/h
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Figure 5.2: Change in the Destruction Index Coefficient with Changing Vhalf assuming a Vthresh

of 185.2km/h
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5.4.1 Hypothesis 1: Temporal fertility displacement

To investigate whether the conception decision is postponed or brought forward as a result

of an upcoming hurricane or hurricane season we examine the impact of the hurricane for

each month before and up to 18 months after a hurricane hits. In our case, the absence of

an early warning system and the relatively infrequent nature of hurricanes in Jamaica means

that bringing conception forward to avoid a hurricane is unlikely although we test for it anyway.

Table 5.4 presents our results and shows that there is a strongly significant and negative effect

for all the months from month 9 through to month 17. In other words, our results suggest

that it takes around 9 months after the hurricane for people to have sufficiently dealt with

the aftermath of the hurricane to continue to have children at a rate that is not significantly

different from pre-hurricane levels. We find no significant effect for births 7 and 8 months after

the hurricane suggesting that there is no displacement in favour of earlier conception to avoid

a hurricane or a hurricane season or an increase in pre-terms births. Our results show that the

largest decreases in birth rates occur 11, 12 and 15 months after the hurricane suggesting that

there are significantly fewer conceptions in the first six months following a hurricane with no

effect found after eighteen months.

For the overall effect of a hurricane on total births and by month (using the same assumptions

that we use for Table 5.3) we find that an average hurricane causes a decrease in births of

3.12 percent for the months 9 through 17. For a maximum strength hurricane, the decrease

is 7.29 percent. Comparing this with the official death toll of approximately 250 following the

hurricanes that occurred during the period 1901-1929 (National Library of Jamaica, 2016), we

find that an average strength hurricane that affects all 13 parishes impacts 3 times as many lives

through children not being born. Assuming an average strength hurricane and aggregating over

all the 166 instances when a parish was damaged, our results estimate that hurricanes caused

10,201 fewer births to happen that would have happened otherwise. Finally, perhaps not

surprisingly, we find no indication of a temporal displacement effect that would have shown up

as an increase in births typically in the months 11-15 after a hurricane for delayed conception
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and 7-8 months if conception is brought forward.19

Table 5.4: Birth Impact of Hurricanes for Months 7 through 18

7 months 8 months 9 months 10 months 11 months 12 months

Destruction Index −0.031 −0.028 −0.053∗∗ −0.052∗∗ −0.113∗∗ −0.101∗∗

(0.014) (0.019) (0.009) (0.011) (0.010) (0.018)

Monthly and time trends Yes Yes Yes Yes Yes Yes
Climate Variables Yes Yes Yes Yes Yes Yes

Observations 4,433 4,420 4,407 4,394 4,381 4,368
R2 0.360 0.361 0.364 0.367 0.370 0.368
Adjusted R2 0.357 0.359 0.362 0.364 0.368 0.365

13 months 14 months 15 months 16 months 17 months 18 months

Destruction Index −0.081∗∗ −0.096∗∗ −0.119∗∗ −0.060∗∗ −0.045∗ −0.012
(0.014) (0.018) (0.015) (0.016) (0.015) (0.013)

Monthly and time trends Yes Yes Yes Yes Yes Yes
Climate Variables Yes Yes Yes Yes Yes Yes

Observations 4,355 4,342 4,329 4,316 4,303 4,290
R2 0.365 0.363 0.363 0.362 0.364 0.365
Adjusted R2 0.363 0.361 0.361 0.359 0.362 0.362

Notes: ∗∗Significant at the 1 percent level.
∗Significant at the 5 percent level.

5.4.2 Hypothesis 2: Permanent Fertility Effects

In the previous section we find no evidence of a temporal displacement effect that would have

shown up as an increase in births in the 18 months after the event. Our findings of a fall in

births in the months following a hurricane suggests that there may be a permanent decrease in

births. To investigate whether hurricanes have a permanent fertility effect such that the shock

causes a change in the total number of children born we follow Evans et al. (2010) and estimate

the following:

19The results are presented in Table B2 of Appendix B
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lnBi,t = β0 + β1Xi,t + β2raini,t + β3temperaturei,t

+ β4monthst + β5time+ θi + ei,t (5.5)

where lnBi,t is the log of total births in parish i over t previous years, raini,t is the level of

rainfall for the hurricane month that happened t years ago, temperaturei,t is the same for

temperature, monthst are dummy variables for months, β0 is the intercept, time is a time

trend, θi are the parish spatial and time fixed effects and ei,t is the error term. The variable

Xi,t is the destruction index value, f , in the month of the hurricane, which happened t years ago.

Table 5.5 presents the results for specifications using 3, 5 and 10 year periods. Once again, we

find a negative and significant effect of hurricanes on births for each of the three periods with

the size of the coefficient falling as the period lengthens. Our results are in line with Evans et al.

(2010) who finds that hurricane warnings have a negative permanent effect. One explanation

for the absence of a ‘harvesting effect’ for Jamaica is that number of deaths is fairly limited,

implying that the need to have additional children as an insurance against hurricanes is less

than in other places where they may experience higher mortality rates due to hurricanes. In

addition, given how regularly hurricanes strike and the fact that they impact the majority of

the parishes, it may be that people have already accounted for the need to have more children,

meaning that the aftermath of hurricanes results only in a fall in the overall number of births.

Using the same assumptions as before, the long term fertility effects of a hurricane shows that

there may be a more prolonged effect than we found previously. At a parish level, there are 90

fewer births after 3 years assuming a hurricane of average strength, whereas 17 months after the

hurricane there was a ‘loss’ of 61 births. This negative trend continues for up to 5 years, where

another 32 births did not happen, bringing the total to 122. After 10 years we see a recovery

in birth rates that brings us back to 3 year levels with 94 fewer births. Our results suggest

that in the very long term, there may be a small up-tick in the birth rate to compensate, but

it is still not sufficient to offset the total effect of the hurricane. From the percentages, we find
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Table 5.5: Hurricane effects for 3, 5 and 10 year rolling aggregate births

3 years 5 years 10 years

(1) (2) (3)

Destruction Index −0.030∗∗ −0.025∗∗ −0.010∗∗

(0.004) (0.003) (0.002)

Monthly and time trends Yes Yes Yes
Climate Variables Yes Yes Yes

Observations 4,056 3,744 2,964
R2 0.045 0.026 0.018
Adjusted R2 0.045 0.026 0.018

Notes: ∗∗Significant at the 1 percent level.
∗Significant at the 5 percent level.

that an average strength hurricane caused a decline in births of 1.18 percent after 3 years, but

only 0.40 percent after 10 years. Finally, we show that a maximum strength hurricane striking

the entire island even 10 years later, there are almost 3,000 fewer children born, meaning that

there are 0.95 percent fewer births over a 10 year period.20

5.4.3 Hypothesis 3: Sex-ratio Analysis

To test the Trivers-Willard hypothesis that proposes that the M/F birth ratio falls when moth-

ers are stressed or have less resources available we split our sample into the number of boys and

girls born by month following a hurricane. Table 5.6 presents the results. We find significance

for the months 9 through 17 for both genders (with the exception of month 16 for boys). All

months are negative and the negative impact appears to be slightly higher for girls than boys,

with the exception of months 12 and 14.

To test for the equality of coefficients across the gender regressions we use the Paternoster et al.

(1998) method. Looking at the Z-values in the 4th row of Table 5.6, we find that no months

have a statistically significant difference between the two genders’ destruction index coefficients.

Overall, we find clear evidence that hurricanes had no effect on the sex ratio in Jamaica during

20Table B3 of Appendix B presents the long term fertility effects of a hurricane under the same assumptions
as Table 3.
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this period, a result similar to Grech & Scherb (2015).21

To calculate the total number of boys and girls lost for each month for our examples of an

average and maximum strength hurricane we have only include significant months, meaning

that we exclude month 16 for boys. The impact analysis shows that overall, girls are more

affected than boys, with a total decline in births of 3.27 percent versus 2.83 percent for boys.

However, as noted above, no single month had a significant gender difference.22

21As a sensitivity check we ran the same regressions with the sex ratio as the dependent variable. The results
were similar in terms of significance although there were some minor changes in the coefficients. Results are
available from the authors upon request.

22Tables B4 and B5 of Appendix B present the results.



Table 5.6: Boys v Girls - Months 7 through 18

7m, Boys 7m, Girls 8m, Boys 8m, Girls 9m, Boys 9m, Girls

Destruction Index −0.041 −0.020 −0.038 −0.017 −0.039∗ −0.069∗∗

(0.023) (0.013) (0.027) (0.020) (0.016) (0.014)

Monthly and time trends Yes Yes Yes Yes Yes Yes
Climate Variables Yes Yes Yes Yes Yes Yes

Sign. Difference (Z-value) -0.819 -0.644 1.377

Observations 4,433 4,433 4,420 4,420 4,407 4,407
R2 0.319 0.297 0.320 0.299 0.321 0.302
Adjusted R2 0.317 0.295 0.318 0.297 0.319 0.300

10m, Boys 10m, Girls 11m, Boys 11m, Girls 12m, Boys 12m, Girls

Destruction Index −0.046∗ −0.055∗ −0.108∗∗ −0.117∗∗ −0.115∗∗ −0.089∗∗

(0.017) (0.019) (0.008) (0.017) (0.019) (0.024)

Monthly and time trends Yes Yes Yes Yes Yes Yes
Climate Variables Yes Yes Yes Yes Yes Yes

Sign. Difference (Z-value) 0.363 0.49 -0.883

Observations 4,394 4,394 4,381 4,381 4,368 4,368
R2 0.323 0.304 0.327 0.307 0.326 0.304
Adjusted R2 0.321 0.302 0.325 0.305 0.323 0.302

13m, Boys 13m, Girls 14m, Boys 14m, Girls 15m, Boys 15m, Girls

Destruction Index −0.080∗∗ −0.083∗∗ −0.103∗∗ −0.089∗∗ −0.117∗∗ −0.122∗∗

(0.016) (0.020) (0.018) (0.021) (0.018) (0.015)

Monthly and time trends Yes Yes Yes Yes Yes Yes
Climate Variables Yes Yes Yes Yes Yes Yes

Sign. Difference (Z-value) 0.122 -0.499 0.21

Observations 4,355 4,355 4,342 4,342 4,329 4,329
R2 0.322 0.302 0.322 0.300 0.321 0.300
Adjusted R2 0.320 0.300 0.320 0.298 0.319 0.298

16m, Boys 16m, Girls 17m, Boys 17m, Girls 18m, Boys 18m, Girls

Destruction Index −0.035 −0.085∗∗ −0.046∗ −0.047∗ −0.012 −0.007
(0.029) (0.011) (0.020) (0.020) (0.015) (0.015)

Monthly and time trends Yes Yes Yes Yes Yes Yes
Climate Variables Yes Yes Yes Yes Yes Yes

Sign. Difference (Z-value) 1.615 0.041 -0.21

Observations 4,316 4,316 4,303 4,303 4,290 4,290
R2 0.319 0.300 0.322 0.301 0.322 0.302
Adjusted R2 0.317 0.298 0.320 0.299 0.320 0.300

Notes: ∗∗Significant at the 1 percent level.
∗Significant at the 5 percent level.
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5.4.4 Hypothesis 4: Marital status and fertility

To analyze whether marital status has an impact on fertility, we split our data into those births

where both names are present on a birth certificate and those that include only the mother’s

name.23 Table 5.7 shows the effect on births for the months 7 though 18. Compared to our

sex-ratio analysis there are greater differences in both the magnitude and significance between

the two groups. The coefficients for births to married couples are only negative and significant

for the months 11, 12, 14 and 15, and in only one month is the coefficient higher than that

recorded when only the mother’s name is on the birth certificate.

The impact on actual births for the significant months show that an average strength hurricane

leads to a reduction in births by 3.5 percent where only the mothers name is registered compared

to a decrease of only 1.48 percent for married couples. For a maximum strength hurricane

we find 8.15 percent and 3.44 percent fewer births for single mothers and married couples

respectively. It should be noted that in our data set births where only the mother registers

outnumber births with both parents registered with birth numbers of 135 and 81, respectively.

In relative terms, it implies that 62.5 percent of children born in Jamaica only had the mothers

name on the birth certificate but the decline in births to single mothers constitutes 79.6 percent

of the total decline in birth rates.24

Once again we employ the test from Paternoster et al. (1998), and this time there are months

when the coefficients significantly differ. Months 10 and 14 are significantly different at the 1

percent level and month 13 is fractionally outside the 5 percent significance level.25 Looking at

months 10, 13 and 14 only, there are 202 fewer births nationwide during an average strength

hurricane versus 20 that are born to a married couple.26

Our results point to the fact that temporal displacement of the birth decision due to hurricanes

23In a small number of cases the birth certificates only the name of the father registered. These were dropped
from the analysis

24The results are shown in Tables B6 and B7 of Appendix B
25Once again we ran the regressions with a ratio of children where only the mother registered over children

where both parents registered and the results still remained the same, with significance in the same months.
26Using only the decrease in the significant month 14 and also using months 10 and 13 gives a total decrease

of 38.2 births to two parents.



Table 5.7: Single Mother v Married Couple - Months 7 through 18

7m, Single 7m, Parents 8m, Single 8m, Parents 9m, Single 9m, Parents

Destruction Index −0.026 −0.021 −0.048 0.008 −0.057∗∗ −0.040
(0.016) (0.022) (0.023) (0.023) (0.014) (0.024)

Monthly and time trends Yes Yes Yes Yes Yes Yes
Climate Variables Yes Yes Yes Yes Yes Yes

Sign. Difference (Z-value) -0.174 -1.726 -0.602

Observations 4,433 4,433 4,420 4,420 4,407 4,407
R2 0.247 0.465 0.248 0.466 0.250 0.469
Adjusted R2 0.245 0.462 0.246 0.463 0.249 0.465

10m, Single 10m, Parents 11m, Single 11m, Parents 12m, Single 12m, Parents

Destruction Index −0.076∗∗ −0.002 −0.122∗∗ −0.093∗∗ −0.116∗∗ −0.075∗∗

(0.010) (0.020) (0.016) (0.022) (0.021) (0.020)

Monthly and time trends Yes Yes Yes Yes Yes Yes
Climate Variables Yes Yes Yes Yes Yes Yes

Sign. Difference (Z-value) -3.297∗∗ -1.097 -1.413

Observations 4,394 4,394 4,381 4,381 4,368 4,368
R2 0.252 0.471 0.255 0.473 0.254 0.472
Adjusted R2 0.251 0.467 0.254 0.470 0.252 0.468

13m, Single 13m, Parents 14m, Single 14m, Parents 15m, Single 15m, Parents

Destruction Index −0.105∗∗ −0.042 −0.117∗∗ −0.048∗ −0.109∗∗ −0.125∗∗

(0.014) (0.029) (0.022) (0.020) (0.013) (0.027)

Monthly and time trends Yes Yes Yes Yes Yes Yes
Climate Variables Yes Yes Yes Yes Yes Yes

Sign. Difference (Z-value) -1.953 -2.369∗∗ 0.529

Observations 4,355 4,355 4,342 4,342 4,329 4,329
R2 0.253 0.471 0.252 0.470 0.251 0.470
Adjusted R2 0.251 0.468 0.250 0.466 0.249 0.467

16m, Single 16m, Parents 17m, Single 17m, Parents 18m, Single 18m, Parents

Destruction Index −0.068∗∗ −0.028 −0.039∗ −0.054 −0.011 0.005
(0.020) (0.025) (0.017) (0.026) (0.019) (0.021)

Monthly and time trends Yes Yes Yes Yes Yes Yes
Climate Variables Yes Yes Yes Yes Yes Yes

Sign. Difference (Z-value) -1.24 0.46 -0.593

Observations 4,316 4,316 4,303 4,303 4,290 4,290
R2 0.251 0.469 0.254 0.469 0.252 0.470
Adjusted R2 0.249 0.465 0.252 0.466 0.251 0.466

Notes: ∗∗Significant at the 1 percent level.
∗Significant at the 5 percent level.
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is less likely for married couples than for single mothers, potentially as a result of married cou-

ples being better equipped to deal with shocks such as hurricanes. This may be due to having

more resources (in monetary terms) or by having a broader support network.

5.4.5 Overall fertility effects

Finally, in Table 5.8 we summarize our findings of the sub-sections of Section 4. Once again we

estimate the number of births that did not happen as a result of an average strength hurricane

and a maximum strength hurricane in Jamaica. This is done by aggregating the impact on

births from the 166 instances when a hurricane caused parish level damage. Our results show

that births fell by 10,201 or that there were 1 percent fewer births than would otherwise have

been born over the period of our study. Comparing the decrease in births with the number

killed as a result of hurricanes which is estimated to be around 250, we show that hurricanes

have a much larger effect on population numbers through fertility choices and reproductive

health than through mortality.

One striking result from Table 5.8 is that single mothers had 1.15 percent fewer children versus

0.46 percent fewer children for married couples. Given that children where both parents regis-

ter are more likely to be from a wealthier family and where the father is more involved in the

pregnancy and birth of the child, it shows how family planning is less affected by major events

when the family has more resources and both parents are involved.

Table 5.8: Summary of Birth Impacts for Jamaica Across All Storms

National Level All Storms Effect Births Percentage Decline

Mean Max

Base Case -799 -1,867 -10,201 1,001,850 -1.02

Boys -365 -853 -4,666 506,432 -0.92

Girls -412 -963 -5,263 495,107 -1.06

Single Mothers -549 -1,280 -7,013 608,967 -1.15

Married couples -140 -328 -1,794 392,883 -0.46
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5.5 Conclusions

In this chapter we have investigated the impact of hurricanes on birth rates in early 20th century

Jamaica. Overall, we found strong evidence that hurricanes had a significant impact on the

number of births. Using our destruction index we show that the level of exposure to hurricane

damage has a negative effect on births and that the magnitude of the effect differs with the

level of damage. Our results also demonstrate the importance of accurately capturing exposure

at the local level which we do using a wind field model.

In line with Evans et al. (2010) we find no evidence for temporal displacement of births. How-

ever, there is a strong negative effect both in the medium and long term, which is more in

line with the findings of Lindstrom & Berhanu (1999). Our results show no support for the

Trivers-Willard hypothesis and that, at least for this period in Jamaica, hurricanes have no

effect on the sex ratio.

However, we do discover a significant difference between birth rates for those births where both

the mother and father were registered compared to those births when only the mother’s name

was recorded on the birth certificate. This is a similar finding to that found by Hamilton et al.

(2009) in a modern US context.

Having found such strong effects in a historical context, future research could be done with more

modern data to see whether more advanced warning systems and preparations for hurricanes

have alleviated the significantly negative effect of hurricanes on birth rates in the Caribbean.

However, as Hamilton et al. (2009) show for Katrina, there are still events that can have a

profound effect on fertility.



Appendix A

A.1 Nominal Expenditure Data

Table A1: Descriptives of Expenditure data by Economic Sectors

Statistic N Mean St. Dev. Max

General Administration 4,762 151,816 144,886 3,584,915
Public Law and Order 3,458 5,286 5,656 107,046
Economy 4,679 11,088 12,844 221,310
Environment 4,376 9,821 27,006 898,914
Housing and Public Facilities 3,658 8,618 19,250 286,751
Health 4,690 44,489 50,860 1,777,818
Tourism and Culture 4,254 2,976 6,118 204,020
Religious Affairs 717 1,660 3,684 50,718
Education 4,697 167,218 170,056 3,298,403
Social Protection 4,229 4,195 5,697 127,606
Infrastructure 4,689 76,533 99,461 3,145,709
Agriculture 4,679 19,469 22,635 1,061,025
Total 5,305 441,703 447,503 13,328,544

In RP million

Table A2: Descriptives of Expenditure data by Economic Categories

Statistic N Mean St. Dev. Max

Capital Expenditures 4,770 124,863 127,322 1,817,070
Goods and Services 4,775 97,234 83,776 1,210,640
Other expenditures 4,747 46,846 53,648 731,533
Personnel Expenditures 4,790 262,931 216,098 1,908,810
Total 5,305 479,115 423,606 4,942,255

In RP million
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A.2 Regression Results

Table A3: Regression results for Unbalanced 2 year Sector Data
Sector Flooda Earthquake Volcanic Eruptionsa Tsunami

Agriculture 0.094∗∗∗ 0.092 -0.038 -0.285∗∗∗

(0.033) (0.170) (0.047) (0.051)

Economy 0.069∗∗ -0.120 -0.023 -0.094∗∗∗

(0.029) (0.153) (0.056) (0.031)

Education -0.253∗ 0.514 0.581∗∗∗ 0.726∗∗∗

(0.136) (1.423) (0.178) (0.280)

Environment -0.027 -0.401 -0.026 -0.015
(0.024) (0.339) (0.021) (0.062)

General Administration -0.327∗∗∗ 1.624 -0.134∗∗ -0.529∗

(0.117) (1.418) (0.064) (0.290)

Health 0.124∗∗ 0.208 0.151∗∗∗ -0.045
(0.060) (0.221) (0.033) (0.074)

Housing and Public Facilities -0.096 -0.036 -0.072 0.007
(0.068) (0.216) (0.162) (0.028)

Infrastructure 0.331∗∗∗ -0.033 -0.380∗∗ -0.119
(0.093) (0.869) (0.179) (0.154)

Public Law and Order -0.028∗ -0.238∗∗ 0.006
(0.015) (0.119) (0.026)

Social Protection 0.034 0.010 0.014 -0.003
(0.021) (0.119) (0.048) (0.044)

Tourism and Culture 0.073∗∗ -0.287∗ -0.003 0.009
(0.035) (0.151) (0.045) (0.026)

Observations 15,152 15,152 15,152 15,152
Notes: ∗∗∗Significant at the 1 percent level.

∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
a Coefficients and standard errors multiplied by 1,000.



Table A4: Regression results for Unbalanced 2 year Sector Data with lags
Sector Flooda Earthquake Volcanic Eruptionsa Tsunami

Agriculture 0.108∗∗∗ 0.083 -0.049 -0.173∗∗∗

(0.030) (0.193) (0.041) (0.027)

Economy 0.070∗∗∗ -0.132 -0.038 -0.073∗∗∗

(0.027) (0.127) (0.043) (0.026)

Education -0.307∗∗ 0.154 0.671∗∗∗ 0.607∗

(0.131) (1.543) (0.156) (0.312)

Environment -0.028 -0.377 -0.037∗ 0.004
(0.026) (0.329) (0.019) (0.060)

General Administration -0.381∗∗∗ 2.400∗ -0.186∗∗ -0.555∗∗

(0.105) (1.411) (0.090) (0.273)

Health 0.127∗∗ 0.245 0.144∗∗∗ -0.025
(0.059) (0.220) (0.027) (0.076)

Housing and Public Facilities -0.086 -0.109 -0.070 0.019
(0.069) (0.195) (0.172) (0.049)

Infrastructure 0.374∗∗∗ 0.010 -0.404∗∗ -0.037
(0.095) (0.911) (0.162) (0.157)

Public Law and Order -0.023 0.003 -0.001
(0.018) (0.128) (0.021)

Social Protection 0.032 0.011 0.008 0.009
(0.019) (0.091) (0.045) (0.039)

Tourism and Culture 0.073∗∗ -0.341∗∗∗ -0.009 0.028
(0.034) (0.124) (0.043) (0.025)

Agriculture Lag 0.104∗∗∗ 0.546∗∗ -0.032
(0.038) (0.254) (0.036)

Economy Lag 0.045∗ 0.617∗∗∗ -0.091∗

(0.027) (0.170) (0.051)

Education Lag -0.426∗∗ -4.006∗∗ 0.529∗∗∗

(0.206) (1.832) (0.196)

Environment Lag 0.017 0.721∗∗∗ -0.072∗∗

(0.028) (0.259) (0.030)

General Administration Lag -0.316∗∗ 5.058∗∗ -0.180∗

(0.154) (2.003) (0.100)

Health Lag 0.048 0.473∗∗∗ -0.030
(0.042) (0.198) (0.034)

Housing and Public Facilities Lag 0.063 -0.268 0.009
(0.161) (0.374) (0.203)

Infrastructure Lag 0.270 1.810∗ -0.141
(0.171) (0.998) (0.175)

Public Law and Order Lag 0.048∗∗ 0.237∗∗ -0.038∗

(0.020) (0.119) (0.023)

Social Protection Lag 0.014 0.384∗∗∗ -0.024
(0.020) (0.137) (0.045)

Tourism and Culture Lag 0.028 0.516∗∗∗ -0.030
(0.036) (0.121) (0.045)

Observations 15,152 15,152 15,152 15,152
Notes: ∗∗∗Significant at the 1 percent level.

∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
a Coefficients and standard errors multiplied by 1,000.
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Appendix B

Table B1: Selected birth data

Year Births Mean Females Mean Males Birth Rate (%) Boys Girls
1901 30,570 386,045 353,239 7.92 15,529 15,029
1905 34,892 410,532 376,175 8.50 17,582 17,302
1910 34,937 434,063 397,768 8.05 17,655 17,270
1915 34,279 449,524 404,808 7.63 17,243 17,027
1920 36,449 446,843 390,268 8.16 18,624 17,812
1925 33,614 489,959 432,112 6.86 16,822 16,768
1929 35,762 535,040 477,193 6.68 17,990 17,761
Total 1,001,850 448,172 402,311 7.78 506,432 495,107
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Table B2: Birth Impact of Hurricanes by Month

Mean Hurricane Maximum hurricane

Parish National Percentage Parish National Percentage

9 Months 4.6 59.2 -2.08 10.7 139.7 -4.91

10 Months 4.5 58.1 -2.04 10.6 137.2 -4.82

11 Months 9.6 124.8 -4.38 22.3 289.7 -10.18

12 Months 8.6 111.8 -3.93 20 260.4 -9.15

13 Months 6.9 90 -3.16 16.2 210.8 -7.41

14 Months 8.2 106.4 -3.74 19.1 248 -8.72

15 Months 10.1 131.2 -4.61 23.4 304.2 -10.69

16 Months 5.2 67 -2.35 12.1 157.7 -5.54

17 Months 3.9 50.4 -1.77 9.2 119.1 -4.18

Total 61.4 798.8 -3.12 143.6 1866.6 -7.29
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Table B3: Long Term Birth Impact of Hurricanes

3 years 5 years 10 years

(1) (2) (3)

Parish level

Mean -90.0 -122.3 -94.0

Max -213.7 -290.9 -224.4

National level

Mean -1,170 -1,590 -1,222

Max -2,778 -3,781 -2,918

Percentage

Mean -1.18 -0.99 -0.40

Max -2.81 -2.35 -0.95
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Table B4: Boys - Birth Impact of Hurricane by Month

Mean Hurricane Maximum Hurricane

Parish National Percentage Parish National Percentage

9 Months -1.7 -22.1 -1.54 -4 -52.3 -3.64

10 Months -2.0 -26.0 -1.81 -4.7 -61.4 -4.28

11 Months -4.6 -60.3 -4.19 -10.8 -140.1 -9.75

12 Months -4.9 -64.1 -4.46 -11.4 -148.7 -10.35

13 Months -3.5 -44.9 -3.12 -8.1 -105.1 -7.32

14 Months -4.4 -57.0 -3.97 -10.2 -132.7 -9.24

15 Months -5.0 -65.2 -4.54 -11.6 -151.1 -10.52

16 Months

17 Months -2.0 -26.0 -1.81 -4.7 -61.4 -4.28

Total -28.1 -365.4 -2.83 -65.6 -852.8 -6.6
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Table B5: Girls - Birth Impact of Hurricane by Month

Mean Hurricane Maximum Hurricane

Parish National Percentage Parish National Percentage

9 Months -2.9 -37.8 -2.7 -6.8 -88.7 -6.34

10 Months -2.3 -30.2 -2.16 -5.5 -71.2 -5.09

11 Months -4.9 -63.5 -4.54 -11.3 -147.1 -10.52

12 Months -3.7 -48.5 -3.47 -8.7 -113.4 -8.11

13 Months -3.5 -45.3 -3.24 -8.2 -106.1 -7.58

14 Months -3.7 -48.5 -3.47 -8.7 -113.4 -8.11

15 Months -5.1 -66.1 -4.73 -11.8 -153.1 -10.94

16 Months -3.6 -46.4 -3.32 -8.3 -108.5 -7.76

17 Months -2.0 -25.8 -1.85 -4.7 -61.1 -4.37

Total -31.7 -412.2 -3.27 -74.0 -962.6 -7.65
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Table B6: Mother only - Birth Impact of Hurricane by Month

Mean Hurricane Max Storm

Parish National Percentage Parish National Percentage

9 Months -3.0 -39.0 -2.24 -7.1 -92.0 -5.27

10 Months -4.0 -51.8 -2.97 -9.3 -121.5 -6.97

11 Months -6.3 -82.4 -4.73 -14.7 -190.9 -10.94

12 Months -6.0 -78.5 -4.5 -14.0 -182.0 -10.43

13 Months -5.5 -71.2 -4.08 -12.7 -165.6 -9.49

14 Months -6.1 -79.1 -4.54 -14.1 -183.5 -10.52

15 Months -5.7 -73.8 -4.23 -13.2 -171.6 -9.84

16 Months -3.6 -46.4 -2.66 -8.4 -109.1 -6.26

17 Months -2.1 -26.8 -1.54 -4.9 -63.5 -3.64

Total -42.2 -549.2 -3.50 -98.4 -1279.8 -8.15
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Table B7: Married Couple - Birth Impact of Hurricane by Month

Mean Storm Max Storm

Parish National Percentage Parish National Percentage

9 Months

10 Months

11 Months -2.9 -38.3 -3.62 -6.9 -89.4 -8.46

12 Months -2.4 -31 -2.93 -5.6 -72.7 -6.88

13 Months

14 Months -1.5 -20 -1.89 -3.6 -47.2 -4.46

15 Months -3.9 -51.2 -4.84 -9.1 -118.4 -11.20

16 Months

17 Months

Total -10.8 -140.5 -1.48 -25.2 -327.8 -3.44
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Figure B1: IBTracks All Storms Caribbean Basin 1901-1929
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Figure B2: Births and Storms
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Figure B3: Population densities 1901
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Figure B4: Population densities 1929
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Figure B5: Density of Storms
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Figure B6: Change in the Destruction Index Coefficient with Changing Vthresh with Vhalf of

203.7km/h
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