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Résumé

Dans cette thèse, on s'intéresse à l'étude qualitative des solutions d'équations aux dérivées partielles hamiltoniennes par le biais de la théorie des mesures invariantes. L'existence d'une telle mesure pour une EDP fournit, en effet, des informations sur sa dynamique en temps long. Nous étudierons deux situations quelque peu "extrémales". Dans une première partie, nous nous intéressons aux équations ayant une infinité de lois de conservation et dans une seconde, aux équations dont on ne connaît qu'une seule loi de conservation non triviale. Nous étudions les premières équations par le biais de l'équation de Benjamin-Ono. Il s'agit d'un modèle de description des ondes internes dans un fluide de grande profondeur. Nous nous intéressons à la dynamique de cette équation sur l'espace C ∞ (T) en lui construisant une mesure invariante sur cet espace. Par conséquent, une propriété de récurrence est établie pour les solutions (infiniment lisses) de cette équation vivant sur le support de la mesure. Nous prouvons, ensuite, des propriétés de non-dégénérescence pour cette mesure. En effet, nous montrons que, via cette mesure, une infinité de fonctionnelles indépendantes ont des distributions absolument continues par rapport à la mesure de Lebesgue sur R. Enfin, nous montrons que cette mesure est de nature au moins 2-dimensionnelle. Dans ce travail, nous avons utilisé l'approche Fluctuation-Dissipation-Limite (FDL) introduite par Kuksin et Shirikyan [START_REF] Kuksin | The Eulerian limit for 2D statistical hydrodynamics[END_REF][START_REF] Kuksin | Randomly forced CGL equation: stationary measures and the inviscid limit[END_REF][START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF]. Notons qu'une propriété de récurrence presque sûre a été établie pour les solutions de régularité Sobolev de l'équation de Benjamin-Ono, dans les travaux de Dans l'autre partie de la thèse, nous abordons l'équation de Klein-Gordon à non-linéarité cubique, c'est un exemple d'EDPs hamiltoniennes pour lesquelles il n'est connu qu'une seule loi de conservation coercive. Cette équation modélise l'évolution d'une particule massive relativiste. Ici, nous considérons les cas où l'équation est posée sur le tore tri-dimensionnel ou sur un domaine borné de R 3 à bord assez régulier. Nous lui construisons une mesure invariante concentrée sur l'espace de Sobolev H 2 , en utilisant toujours l'approche FDL. Un autre aspect de ce travail est d'étendre le cadre de cette approche au contexte des EDPs à une seule loi de conservation, en effet, dans les travaux antérieurs, l'approche FDL avait nécessité deux lois de conservation pour fonctionner. Puis nous établissons une propriété de non-dégénérescence pour la mesure construite. Par conséquent, une propriété de récurrence presque sûre, par rapport à la mesure construite, est prouvée. Notons que des travaux antérieurs dus à Burq-Tzvetkov, de Suzzoni, Bourgain-Bulut et Xu ont traité la question de mesure de Gibbs invariante pour des équations des ondes dans un contexte radial.

We study the first equations by considering the Benjamin-Ono equation. The latter is a model describing internal waves in a fluide of great depth. We are concerned with the dynamics of that equation on the space C ∞ (T) by constructing for it an invariant measure on that space. Accordingly, an almost sure (w.r.t. this measure) recurrence property is established for infinitely smooth solutions to the equation. Then, we prove qualitative properties for the constructed measure by showing that there are infinitely many independent observables whose distributions via this measure are absolutely continuous w.r.t. the Lebesgue measure on R. Moreover, we establish that the measure is of at least 2-dimensional nature. In this work, we used the Fluctuation-Dissipation-Limit (FDL) approach introduced by Kuksin and Shirikyan [START_REF] Kuksin | The Eulerian limit for 2D statistical hydrodynamics[END_REF][START_REF] Kuksin | Randomly forced CGL equation: stationary measures and the inviscid limit[END_REF][START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF]. Notice that an almost sure recurrence property for the Benjamin In the second part of the thesis, we consider the cubic Klein-Gordon equation, which is an example of Hamiltonian PDEs for which we know only one coercive conservation law. This equation models the evolution of a massive relativistic particle. Here, we consider both the case of the tridimensional periodic solutions and those defined on a bounded domain of R 3 . In both settings, we construct an invariant measure concentrated on the Sobolev space H 2 × H 1 , again with use of the FDL approach. Another aspect of this work is to extend the FDL approach to the context of PDEs having only one conservation law; indeed, in previous works, this approach required two conservation laws. Qualitative properties for the measure and almost sure (w.r.t. this measure) recurrence for H 2 -solutions are proven. Notice that previous works by Burq-Tzvetkov, de Suzzoni, Bourgain-Bulut and Xu have treated the invariant Gibbs measure problem in the radial symmetry context for waves equations. 

Introduction générale

Le but de cette thèse est de contribuer à la théorie des mesures invariantes pour des équations aux dérivées partielles hamiltoniennes. Cette théorie fournit en effet des méthodes probabilistes dans l'étude des EDPs d'évolution, ces méthodes s'étendent de l'étude des propriétés statistiques du flot à une théorie de Cauchy probabiliste sur des espaces de régularité souvent non admise pour établir une théorie déterministe.

Théorie et motivations générales 1.Systèmes dynamiques

Un système physique est souvent modélisé par la donnée d'un ensemble X et d'un (semi-)groupe Φ d'applications de X dans X; l'ensemble X contient tous les états que le système est susceptible de prendre au cours de son évolution et le groupe Φ codifie les règles de passage d'un état à un autre. L'espace X est appelé espace des états ou espace des phases et le groupe Φ est nommé flot, le système (X, Φ) est appelé système dynamique. Pour être concret, considérons un espace de Banach X et une application F : X → X, posons le problème à valeurs initiales suivant d dt x(t) = F(x(t)) t ∈ R, x(0) = x 0 ∈ X.

Il est entendu ici que x(.) doit définir une courbe dans X, x 0 est un élément quelconque de X qui représente un début imposé au système. Résoudre ce problème globalement en temps au sens de Hadamard revient à établir 1. que pour toute donnée initiale x 0 , il existe une courbe t → x(t, x 0 ) satisfaisant l'équation, cette courbe est aussi appelée trajectoire ou orbite, 2. cette courbe x(., x 0 ) est l'unique solution passant par x 0 , 3. pour tout t ∈ R, l'application x(t, .) est continue sur X.

Dans ce cas, le problème est également dit globalement bien posé au sens de Hadamard. On peut remarquer que la résolution de ce problème implique l'établissement d'un système dynamique dans lequel l'espace des états est X et le groupe est donné par les applications φ t : X → X définies par φ t x 0 = x(t, x 0 ).
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Ces applications vérifient bien la propriété de groupe suivante:

φ t • φ s x 0 = x(t, x(s, x 0 )) = x(t + s, x 0 ) = φ t+s x 0 , et on remarque que φ -t • φ t = φ t • φ -t = Id. Nous venons d'établir qu'à une équation d'évolution dont le problème à valeurs initiales (aussi dit problème de Cauchy) est bien posé sur un espace X, on peut associer un système dynamique (X, (φ t ))1 où φ s appliqué à un état (initial) x 0 renvoie la solution correspondante à l'instant s.

Très souvent, typiquement dans un contexte non-linéaire, bien qu'on puisse établir le caractère bien posé du problème de Cauchy associé à une équation, on ne sait pas pour autant donner l'expression exacte de la solution sous-jacente. On se lance alors dans une théorie dite qualitative dont l'un des buts est de fournir des descriptions du comportement asymptotique en temps de la solution. Il se trouve que le formalisme des systèmes dynamiques est bien adapté pour des questions de cet ordre.

Les principaux invariants de la dynamique

Étant donné un système dynamique (X, φ t ), supposons que les applications φ t (.) sont continues sur X (ce qui est toujours le cas pour un système traduisant une équation bien posée). Soit C(X ) l'espace des fonctions continues sur X à valeurs dans R, notons par C b (X ) le sous espace de C(X ) constitué des fonctions continues et bornées. Nous pouvons définir une dynamique sur C b (X ) en construisant l'application B t :

C b (X ) → C b (X ) par B t ( f )(x) = f (φ t x).
L'application B t est bien définie puisque φ t est continue; B t f est continue bornée dès que f l'est. Considérons maintenant l'espace P(X ) des mesures de probabilités sur X, où celui-ci est muni de sa tribu borélienne B X ; c'est un sous ensemble du dual topologique de C b (X ). Nous allons définir une dynamique duale de B t sur P(X ) et la noter B * t . Elle est donnée pour toute mesure µ dans P(X ) par

B * t µ(A) = X 1 A (φ t x)µ(dx) = µ(φ -t A) ∀A ∈ B X .
(1.1)

De même que pour B t , on voit bien que l'application B * t est compatible avec P(X ) par le fait qu'elle transforme des mesures de probabilités en mesures de probabilités. De plus la propriété de groupe du flot φ t se transfère naturellement sur B t et B * t , ce qui nous crée donc deux nouveaux systèmes dynamiques (C b (X ), B t ) et (P(X ), B * t ) décrivant l'évolution des variables macroscopiques du système, ces variables sont appelées des observables. Pour montrer la dualité annoncée entre les systèmes (C b (X ), B t ) et (P(X ), B * t ), reprenons la relation (1.1) et voyons-la dans l'esprit de dualité entre mesures de probabilités et fonctions bornées auxquelles nous aurons étendu la définition de B t :

B * t µ(A) = (1 A , B * t µ) = X B t 1 A (x)µ(dx) = (B t 1 A , µ). (1.2)
Il est clair que les égalités dans (1.2) sont valables pour toute fonction simple sur X, puis un argument d'approximation permet de passer aux fonctions continues, d'où la dualité entre B t et B * t .

Les invariants. Nous avons donc défini trois dynamiques pour décrire notre système, leurs invariants sous l'évolution du temps s'avèrent très intéressants à étudier:

1. un point x ∈ X est dit stationnaire si pour tout t ∈ R, φ t x = x;

2. une fonctionnelle f ∈ C(X ) est appelée loi de conservation si B t f = f pour tout t ∈ R;

1.1. Théorie et motivations générales 3. une mesure µ ∈ P(X ) est dite invariante si B * t µ = µ pour tout t ∈ R.

Remarquons que vu la dualité entre B t et B * t , nous pouvons envisager une correspondance entre "loi de conservation" et "mesure invariante": il s'agit là d'un principe fondateur de la théorie des mesures invariantes pour des équations aux dérivées partielles où une loi de conservation est un "symptôme" de mesure invariante. Dans la pratique, en effet, on utilise des lois de conservations pour construire des mesures invariantes. On peut aussi observer que tout point x ∈ X stationnaire sous l'action de φ t , engendre une mesure invariante; celle-ci est donnée de manière triviale par δ x , la mesure de Dirac concentrée en x.

Conséquences d'une mesure invariante sur la dynamique

Soit (X, φ t , µ) un système dynamique mesurable, c'est à dire que µ est une mesure invariante sous l'évolution de φ t ; ce qu'on note φ t * µ = µ. Dans les situations à venir, φ t définit toujours un groupe paramétré par R et φ -t = φ -1 t . Koopman [START_REF] Koopman | Hamiltonian systems and transformation in hilbert space[END_REF] observe qu'on peut associer à la dynamique (a-priori) non-linéaire microscopique décrite par φ t , une autre dynamique linéaire macroscopique. Cette dernière sera définie sur l'espace des observables L 2 (X, µ) par U t f (w) = f (φ t w) ∀w ∈ X, pour une fonction f ∈ L 2 (X, µ) donnée. En utilisant l'invariance de µ, on montre que U t est une isométrie sur L 2 (X, µ) pour tout t. D'autre part, la propriété de groupe vérifiée par φ t est directement transmise à U t . De même

U -1 t = U -t .
Sur cette dynamique macroscopique, nous avons des résultats d'une importance majeure connus sous le nom de théorèmes ergodiques. Afin de les présenter, définissons les invariants suivants:

I 1 = {h ∈ L 2 (X, µ), U t h = h ∀t}, I 2 = {A ∈ Bor(X ), φ -t A = A ∀t},
où Bor(X ) constitue la tribu borélienne sur X. On remarque que I 1 est un sous espace fermé de L 2 (X, µ) et que I 2 est une sigma-algèbre sur X. Ces deux invariants sont reliés par le fait que A ∈ I 2 si et seulement si 1 A ∈ I 1 . Définissons également les moyennes (partielles) de Birkhoff

S T f (w) = 1 T T 0 U t f (w)dt ∀T > 0.
Les théorèmes de von Neumann et de Birkhoff s'énoncent alors comme suit:

Théorème 1.1.1 (von Neumann). Pour tout f ∈ L 2 (X, µ), nous avons lim T →∞ S T f = P f dans L 2 (X, µ), où P est le projecteur orthogonal sur I 1 .

Théorème 1.1.2 (Birkhoff). Pour tout f ∈ L 1 (X, µ),

lim T →∞ S T f = E I 2 f dans L 1 (X, µ),
où E I 2 est l'espérance conditionnelle par rapport à I 2 . Cette convergence a lieu µ-presque sûrement sur X également.

En utilisant le théorème ergodique de von Neumann, on peut montrer que pour tout ensemble borélien A de X, on a

1 T T 0 µ(A ∩ φ -t A)dt → P1 A 2 L 2 (X,µ) quand T → ∞,
cela nous renseigne que le temps moyen passé dans A est proportionnel à la taille de A. Le théorème de récurrence de Poincaré, qui est antérieur aux théorèmes ergodiques présentés cidessus, peut également être retrouvé par ces derniers. On montre (voir la sous-section 4.2.2 de ce manuscrit, et aussi [START_REF] Tao | Lectures on ergodic theory[END_REF][START_REF] Coudène | Théorie ergodique et systèmes dynamiques[END_REF][START_REF] Thomann | Invariant Gibbs measures for dispersives PDEs[END_REF]) que:

µ(A) 2 ≤ lim T →∞ 1 T T 0 µ(A ∩ φ -t A)dt.

Cela conduit à

Théorème 1.1.3 (Poincaré). Soit A ∈ Bor(X ) tel que µ(A) > 0. Alors µ-presque tout x dans A revient, au cours de son évolution sous φ t , dans A en temps fini.

Ce résultat constitue une des motivations principales de la théorie des mesures invariantes pour des EDPs.

Résultats généraux sur l'existence de mesures invariantes

Il existe, au moins, deux résultats généraux permettant d'établir l'existence des mesures invariantes: le théorème de Liouville pour l'évolution d'un champ de vecteurs (fini-dimensionnel) à divergence nulle et le théorème de Bogoliubov-Krylov pour une dynamique continue en temps et vérifiant certaines propriétés de compacité.

Mesures de Liouville et de Gibbs. Considérons l'équation différentielle

ẋ = F(x), où F ∈ C 1 (R d , R d ) est de divergence nulle, i.e. ∇.F = ∑ 1≤k≤d ∂ F k ∂ x k ≡ 0.
Alors le théorème de Liouville dit que l'éventuel flot φ t de l'équation transforme les sous ensembles Lebesgue-mesurables de R d sans les comprimer ni les dilater, leurs volumes respectifs restent ainsi inchangés au cours du temps. Ce qui se traduit par l'invariance de la mesure de Lebesgue sous le flot. Pour montrer ce résultat, considérons, par argument de densité, une fonction f de classe C 1 et à support compact sur R d . Notons 

I f =
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Il ne restera plus qu'à poser g = f • φ r pour finir l'argument de réduction. Maintenant observons que

∂ t (I f )| t=0 = R d ∂ t (φ t x)| t=0 .∇ f (x)dx = - R d ∇.F(x) f (x)dx = 0.
Un exemple d'une grande importance est constitué des systèmes hamiltoniens représentés comme suit:

ṗ j = ∂ H(p, q) ∂ q j , q j = - ∂ H(p, q) ∂ p j , j = 1, ..., d.
où H : R d × R d → R est une fonction de classe C ∞ appelée le hamiltonien. Posons x = (p, q) := (p 1 , ..., p d , q 1 , ..., q d ) et F = (∂ q 1 H, ..., ∂ q d H, -∂ p 1 H, ..., -∂ p d H), alors on a ẋ = F(x).

On voit que F est de divergence nulle, par application du théorème de Schwarz. D'autre part, le hamiltonien H du système constitue une loi de conservation, en effet ∂ t H(p(t), q(t)) = ṗ.∇ p H(p, q) + q.∇ q H(p, q) = ∇ q H(p, q)∇ p H(p, q) -∇ p H(p, q)∇ q H(p, q) = 0.

De plus, on peut reprendre les mêmes arguments que dans la preuve du théorème de Liouville pour montrer que la quantité e -H(p,q) d pdq est une mesure invariante pour le système hamiltonien cidessus, dès lors que e -H est intégrable. En fait on peut prendre toute fonction "raisonnable" de H comme densité contre la mesure de Lebesgue d pdq pour construire une mesure invariante. Notant Z = R n e -H(p,q) d pdq, nous avons donc que la quantité µ(d pdq) := Z -1 e -H(p,q) d pdq est une mesure de probabilité invariante sous l'évolution du système en considération: c'est la mesure de Gibbs pour le système. 

( f , φ t * µ * ) = (φ t f , µ * ) = lim k→∞ 1 t k t k 0 (φ t f , φ s * µ)ds = lim k→∞ 1 t k t k 0 ( f , φ (s+t) * µ)ds = lim k→∞ 1 t k t k 0 ( f , φ s * µ)ds -lim k→∞ 1 t k t 0 ( f , φ s * µ)ds + lim k→∞ 1 t k t k +t t k ( f , φ s * µ)ds = A + B +C,
et nous trouvons:

A = ( f , µ * ), B = 0, C = 0.
Ce résultat trouve un cadre plus général où l'espace n'est plus supposé compact mais polonais sur lequel le flot jouit des propriétés de compacité plus légères. 

ẍ = -ω 2 0 x,
le paramètre ω 0 représente la fréquence des oscillations. L'équation peut être réécrite en un système d'ordre 1 sur R 2 de la manière suivante:

ẋ = y ẏ = -ω 2 0 x.
En dimension d > 1, on récupère un système de d oscillateurs isolés les uns des autres donné par

ẋi = y i , ẏi = -ω 2 i x i i = 1, 2, ..., d.
Ici les ω i représentent les fréquences respectives des oscillateurs. Une première remarque est qu'il s'agit d'un système hamiltonien dont le hamiltonien

H : R d × R d → R est donné par H(x, y) = 1 2 d ∑ i=1 (ω 2 i x 2 i + y 2 i ), x = (x 1 , ..., x d ), y = (y 1 , ..., y d ), puisqu'alors ẋi = ∂ H(x, y) ∂ y i , ẏi = - ∂ H(x, y) ∂ x i , i = 1, 2, ..., d.
Nous pouvons voir que, par le fait qu'il n'y a pas d'interaction, les hamiltoniens partiels

H i = 1 2 (ω 2 i x 2 i + y 2 i )
sont également conservés. Ainsi les ellipses représentant leurs lignes de niveau sont des parties de l'espace des phases qui sont invariantes sous l'action du flot. En particulier, si on combine ces ellipses suivant les d directions, on récupère des tores d-dimensionnels invariants le long du temps. Voici des mesures invariantes associées au système:

• On peut montrer que la distribution uniforme sur une ellipse d'équation

ω 2 i x 2 i + y 2 i = 1
est une mesure invariante. Pour ce faire, introduisons les coordonnées actions-angles (I i , θ i ), ce sont des coordonnées polaires qui sont plus adaptées pour décrire la dynamique, compte tenu du caractère "rotatif" de celle-ci. Ici l'action est

I i = ω 2 i x 2 i + y 2 i = 1,
et l'angle est défini par

θ i = arctan y i ω i x i .
Nous avons que θ i évolue affinement en temps, car

∂ t θ i = ∂ t y i ω i x i ω 2 i x 2 i I = ω i x i ∂ t y i -ω i y i ∂ t x i = -ω i (ω 2 i x 2 i + y 2 i ) = -ω i = constante.
Cela fait que les arcs sont, en fait, transportés, ce qui conduit à l'invariance annoncée. Maintenant si on combine ces mesures suivant les d directions, on trouve que les distributions uniformes sur chaque tore invariant constitue une mesure invariante. Nous pouvons remarquer que la dimension d'une telle mesure n'excède pas d, la moitié de la dimension de l'espace des phases. La mesure construite n'est, de ce fait, une mesure de Liouville.

• Une autre mesure que l'on peut considérer est évidemment la mesure de Gibbs fournie par l'approche de Liouville.

L'oscillateur harmonique en dimension infinie. On peut considérer un nombre infini dénombrable d'oscillateurs isolés

ṗi = q i , qi = -ω 2 i p i i ∈ Z.
Ici p i est la i-ème coordonnée de p dans une base appropriée de L 2 (T), l'espace des fonctions sur le tore dont le carré est intégrable. Prenons la première formulation de notre équation:

∂ 2 tt p = T p, où p = ∑ i∈Z p i (t)e i (x) et l'opérateur T est donné par T f = -∑ i∈Z ω 2
i f i e i de sorte que les e i soient des vecteurs propres de T associés aux valeurs propres -ω 2 i . Le cas des couples (valeur propre, vecteur propre) donnés par (-n 2 , e inx ) est remarquable et coïncide à l'opérateur laplacien, noté par ∆; nous avons alors à faire avec l'équation des ondes linéaire

∂ 2 tt u = ∆u,
dont on traitera une version non-linéaire dans cette thèse. Voici, à présent, la question que l'on peut se poser: Les deux mesures construites dans le cas de la dimension finie ont-elles des analogues infinidimensionnelles? Ou plus généralement, quelles théories infini-dimensionnelles permettent d'étendre les mesures de Liouville et de Krylov-Bogoliubov pour les EDPs?

Mesures invariantes pour les EDPs Hamiltoniennes

La théorie des mesures invariantes suscite un grand intérêt dans l'étude qualitative des EDPs Hamiltoniennes. Aux motivations générales qu'on a déjà présentées s'ajoutent d'autres qui sont propres à ces équations. Par exemple, le niveau de régularité du support de la mesure devient un paramètre hautement important dans l'étude. Il existe au moins deux approches pour construire des mesures invariantes pour des EDPs hamiltoniennes. Une première est introduite par Lebowitz, Rose et Speer dans [START_REF] Lebowitz | Statistical mechanics of the nonlinear Schrödinger equation[END_REF], développée depuis dans de divers contextes (voir par exemple [START_REF] Bourgain | Periodic nonlinear Schrödinger equation and invariant measures[END_REF][START_REF] Zhidkov | Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory[END_REF][START_REF] Burq | Remarks on the Gibbs measures for nonlinear dispersive equations[END_REF]); c'est la théorie des mesures de Gibbs ou, plus généralement, des mesures de type gaussien. On peut la voir comme une extension de la théorie fini-dimensionnelle de Liouville. Une deuxième approche a été mise en évidence par Kuksin et Shirikyan dans [START_REF] Kuksin | The Eulerian limit for 2D statistical hydrodynamics[END_REF][START_REF] Kuksin | Randomly forced CGL equation: stationary measures and the inviscid limit[END_REF]; c'est celle qu'on appellera ici approche FDL (fluctuation-dissipation-limite), en se référant à sa procédure générale. Elle peut être vue comme une extension "non-compacte" du cadre de Bogoliubov-Krylov. C'est cette approche qui est développée dans les problèmes traités dans cette thèse. Dans les sous sections suivantes, nous faisons une brève présentation de ces deux approches et donnons quelques comparaisons entre celles-ci.

L'approche générale de la théorie des mesures de Gibbs pour les EDPs

Ici nous présentons l'approche générale de la théorie des mesures de Gibbs pour des EDPs hamiltoniennes. Considérons une EDP donnée par

∂ t u + J[Pu + f (u)] = 0,
où J est un opérateur anti-adjoint, P est un opérateur auto-adjoint positif et f est la fonction qui décrit les interactions non-linéaires, on la suppose assez régulière. Nous considérons, pour simplifier, que la variable spatiale, ici, vit sur le tore de dimension d donnée. Supposons qu'il existe une fonction F telle que ∂ ūF (u) = f (u).

Dans le cas où u est une fonction réelle, ∂ ū est remplacé par ∂ u . Alors l'équation est hamiltonienne avec un hamiltonien donné par

H (u) = 1 2 ūPu + F(u) =: Q(u) + N(u).
Voici quelques exemples: 

1. J = i, P = -∆, f (x) = |x| 2 x, nous récupérons l'équation de Schrödinger cubique. 2. J = -∂ x , P = -∂ 2 x , f (x) = -x 2 , d = 1, nous avons l'équation KdV. 3. J = ∂ x , P = H∂ x , f (x) = x 2 , d = 1 : ici H est
ρ n (du n ) = ∏ |k|≤n e -1 2 (1+|k| 2 )|u k | 2 du k ,
où on reconnait une mesure gaussienne complexe de dimension 2n + 1. Ici, en fait, on a considéré une modification du ρ original, cela est dû au traitement de la fréquence zéro. Nous voyons ainsi que ρ N est induite par la variable aléatoire suivante 

X n (ω, x) = ∑ |k|≤n x k (ω) 1 + |k| 2 e k (x
∑ k∈Z a k e k (.) H s = ∑ k∈Z (1 + |k| 2 ) s |a k | 2 .
Espaces de convergence. Soit n > m > 0, alors, par l'indépendance des x k , nous avons pour tout s ∈ R que

E X n -X m 2 H s = n ∑ k=m+1 E|X k | 2 (1 + |k| 2 ) 1-s = n ∑ k=m+1 1 (1 + |k| 2 ) 1-s ,
Étant en dimension 1, ce reste converge vers 0, quand m, n → ∞, si et seulement si 2(1s) > 1, c'est à dire ssi s < 1/2. Donc la suite des variables (X n ) converge dans L 2 (Ω, H s (T)) si et seulement si s < 1/2, ici Ω est l'ensemble sur lequel les variables sont définies. Par suite, µ sera définie sur H 1-2 en tant que mesure induite par la variable aléatoire limite. Nous pouvons remarquer que si le contexte était à dimension d quelconque et que la partie quadratique Q du hamiltonien était d'ordre r donné, alors on aurait des variances partielles (1 + |k| 2 ) -r , et donc la condition de convergence serait s < rd/2, en conséquence µ serait définie sur H r-d/2-. Cette dernière propriété fait que cette théorie est particulièrement adaptée pour l'étude des EDPs à des bas niveaux de régularité. Par exemple, des théories globales de Cauchy-Hadamard probabilistes ont pu ainsi être développées dans des espaces sur-critiques où la théorie déterministe est (souvent) mal posée.

L'approche Fluctuation-Dissipation-Limite (FDL)

La théorie FDL procède par ce qu'on peut appeler des approximations "faiblement compactes" via un modèle de fluctuation/dissipation:

(EDP initiale) = α(Amortissement) + f (α)(Forçage).
Le terme d'amortissement est usuellement donné par l'application d'un opérateur négatif à l'inconnue de l'équation et le forçage est donné par un processus stochastique. La philosophie générale est de créer une situation de compacité par les effets de l'amortissement, mais également d'alimenter la solution par un forçage pour ne pas tomber dans un cas trivial. En effet dans un amortissement incontrôlé, les solutions risquent de converger vers 0 au bout du temps: une mesure stationnaire ne saurait donc être que la masse de Dirac en 0, et telle serait la mesure invariante limite aussi. On s'attend même à ce qu'un amortissement relativement intense par rapport au forçage, l'emporte sur ce dernier et qu'à la limite α → 0 + , une éventuelle mesure invariante soit concentrée en 0. De la même manière, un forçage trop important par rapport à l'amortissement chargerait la solution en énergie que l'amortissement ne parviendrait pas à maintenir, ce qui tendrait à concentrer la solution à l'infini dans la limite α → 0 + . Donc un équilibre précis est requis. Dans le cas où le terme de forçage est un bruit blanc, cet équilibre a lieu lorsque f (α) = √ α. Voici l'idée générale de la méthode: La compacité que fournit l'amortissement se traduit par un contrôle de la solution dans un espace plus régulier que l'espace initial. Notons que dans un contexte d'un espace physique borné (par exemple le cas du tore), des injections classiques peuvent, alors, assurer cette compacité. Un argument de Krylov-Bogoliubov est utilisé pour la construction d'une mesure stationnaire pour le modèle stochastique. Il faudra ensuite passer à la limite α → 0 sur la suite de mesures invariantes ainsi construites; pour y parvenir, il faudra établir des estimations uniformes en α pour cette suite. On peut déjà remarquer une première différence entre la théorie des mesures de Gibbs et la théorie FDL; tandis qu'une mesure produite par la première a son support dans un espace moins régulier (-d 2 -) que celui de la loi utilisée, celle produite par la deuxième approche est supportée dans un espace plus régulier, avec un taux de régularisation déterminé par le degré de l'amortissement.

Propriétés qualitatives. Une deuxième différence notable entre les deux théories concerne les propriétés qualitatives des mesures construites. Dans la première, on sait déjà qu'il s'agit de mesures ayant des densités par rapport à des mesures gaussiennes non dégénérées. Elles jouissent ainsi des propriétés satisfaites par ces dernières. Dans la deuxième, des propriétés de non trivialité peuvent être obtenues par construction mais cette dernière ne fournit pas automatiquement plus que cela. Néanmoins, des techniques dédiées à la question de non-dégénérescence ont été mises au point [START_REF] Kuksin | On distribution of energy and vorticity for solutions of 2d Navier-Stokes equation with small viscosity[END_REF][START_REF] Shirikyan | Local times for solutions of the complex Ginzburg-Landau equation and the inviscid limit[END_REF][START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF]. Elles fournissent une approche pour établir une continuité absolue des distributions de certaines observables et des propriétés concernant la dimension de la mesure construite. 

L'équation de Benjamin-Ono

Une des équations traitées dans ce manuscrit est l'équation de Benjamin-Ono qui s'écrit

∂ t u + H∂ 2 x u + u∂ x u = 0, (1.5) où (t, x, u(t, x)) ∈ R × T × R.
L'opérateur H qui intervient dans l'équation est la transformée de Hilbert, il peut être défini via la transformée de Fourier par le multiplicateur -isign(n), avec la convention sign(0) = 0. Cette équation a été introduite dans [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF][START_REF] Ono | Algebraic solitary waves in stratified fluids[END_REF] comme modèle de propagation d'ondes internes, de grande longueur d'onde, dans un fluide de grande profondeur. De telles ondes se forment par exemple dans les thermoclines océaniques où une transition brusque de température (additionnée à une différence de salinité) provoque une stratification du milieu (voir Figure 1.1). La couche supérieure, alors plus chaude, moins salée donc moins dense, 'flotte' sur la couche inférieure. Des phénomènes atmosphériques, toujours par gradient de température, forment également ce type de courants qui peuvent aussi être décrits par cette équation. Par ailleurs, il a été suggéré que l'équation de Benjamin-Ono soit un modèle pour la propagation d'ondes dans des tubes de flux magnétique se formant dans la photosphère du soleil [START_REF] Roberts | Solitons in solar magnetic flux tubes[END_REF]. Une version dissipative de cette équation semble décrire de telles ondes dans un contexte où une perte d'énergie (par conduction thermique et/ou par radiation) est prise en compte [START_REF] Edwin | The benjamin-ono-burgers equation: an application in solar physics[END_REF].

Pour ce qui est de sa structure mathématique, l'équation est du type hamiltonien et son hamiltonien s'écrit

H(u) = 1 2 uH∂ x u + 1 6 u 3 = 1 2 u 2 Ḣ1/2 + 1 6 u 3 ,
où Ḣ1/2 est l'espace de Sobolev homogène d'ordre 1/2. Elle est invariante par la transformation d'échelle (scaling) u λ (t, x) = λ u(λ 2 t, λ x). Ce qui conduit au fait que l'exposant critique associé est

s c = -1/2 : u λ s c = u s c .
Sa théorie de Cauchy-Hadamard a attiré l'attention de beaucoup d'auteurs, et après une succession de beaucoup de travaux, il est montré que l'équation est globalement bien posée dans les espaces de Sobolev H s pour s ≥ 0 (voir [START_REF] Molinet | Global well-posedness in L 2 for the periodic Benjamin-Ono equation[END_REF] pour le cas L 2 (T)).

Une propriété remarquable de (1.5) est d'admettre une suite infinie de lois de conservation [START_REF] Nakamura | Bäcklund transform and conservation laws of the Benjamin-Ono equation[END_REF][START_REF] Matsuno | Bilinear transformation method[END_REF]. Ces lois constituent d'intéressants outils dans l'étude qualitative de l'équation. Dans cette section, nous décrivons la méthode de dérivation de ces lois fournie par Matsuno et Nakamura.

Pour des raisons de présentation, nous considérons plutôt la version suivante de l'équation

∂ t u + H∂ 2 x u + 4u∂ x u = 0. (1.6)
Mais on remarquera que si u est solution de l'équation (1.5) alors u/4 est solution de l'équation (1.6). Ainsi, les deux versions de l'équation auront les mêmes lois de conservation à des facteurs de puissances de 4 près. Un équivalent bilinéaire de l'équation de Benjamin-Ono est d'abord écrit, et une étude de sa transformation de Bäcklund mène à la représentation de la solution sous la forme

u = - i 2 P -∂ x w + 1 -e -w ε , (1.7) 
où P -= 1 2 (1-iH) représente la projection de Fourier sur les fréquences négatives, ε est un paramètre et la fonction w(u) := w ε (u) est une densité invariante, c'est à dire la quantité w(u)(t, x)dx est indépendante de t. En dérivant par rapport à x dans la transformation (1.7), nous obtenons

ε∂ x u = -i ε 2 P -∂ 2 x w + e -w ∂ x w.
(1.8)

En combinant (1.7) et (1.8), nous arrivons à nous passer du terme e -w et obtenons la relation suivante:

∂ x w = ε ∂ x u + u∂ x w + iP -∂ 2 x w + i2∂ x wP -∂ x w .
(1.9)

Maintenant introduisant un développement formel en puissances de ε pour w(u)

w(u) = ∞ ∑ n=1 w n (u)ε n ,
nous avons que pour tout n ≥ 1, w n (u) constitue une densité invariante. Injectant ce développement dans l'équation (1.9), on génère la relation de récurrence suivante:

∂ x w n+1 = ∂ x u + u∂ x w n + i 2 P -∂ 2 x w n + i n-1 ∑ j=1 ∂ x w j P -∂ x w n-j n ≥ 1, (1.10) w 1 = u.
(1.11)

Lorsque n = 1, le quatrième terme de droite dans (1.10) est pris égal à 0. Nous pouvons remarquer que l'on peut supprimer le terme ∂ x u de la formule de récurrence (1.10) puisque u est une densité conservée. Nous obtenons les trois premières densités conservées

w 1 (u) = u, w 2 (u) = u 2 2 + iP -∂ x u, w 3 (u) = u 3 3 + i 2 (uP -∂ x u + P -u∂ x u) - 1 4 P -∂ 2 x u = u 3 3 + 1 4 uH∂ x u + 1 4 (iu∂ x u -P -∂ 2 x u).
Avec une condition périodique (ou de comportement adéquat à l'infini dans le cas où l'équation est posée sur R), on récupère, en intégrant par rapport à x, les trois premières lois de conservations suivantes:

E -1 (u) := u, E 0 (u) := 1 2 u 2 , E 1/2 (u) := 1 4 uH∂ x u + 1 3 u 3 ,
1.3. L'équation de Benjamin-Ono dont le hamiltonien de l'équation donné par E 1/2 (u). De façon générique, nous avons la forme générale des lois de conservations (mis à part E -1 ):

E n (u) = u 2 n + R n (u) n ∈ N 2 ,
(1.12) où R n (u) est d'ordre inférieur. La prochaine sous-section présente une description de la structure de R n obtenue dans [START_REF] Tzvetkov | Invariant measures and long-time behavior for the Benjamin-Ono equation[END_REF].

Structure des lois de conservation d'ordres entiers

Pour une fonction u assez régulière, posons les ensembles suivants:

P 1 = {∂ α x u, ∂ α x Hu | α ∈ N}, P 2 = {(∂ α 1 x Z 1 u)(∂ α 2 x Z 2 u) | α i ∈ N, Z i ∈ {Id, H}}.
Définissons, de façon générique, les ensembles P n n ≥ 3 contenant les fonctions de la forme

p n (u) = k ∏ i=1 Z i (p j i (u)), Z i ∈ {Id, H}, k ∑ 1 j i = n, p j i ∈ P j i , 2 ≤ k ≤ n, j i < n.
(1.13) À une fonction p n (u) de la forme (1.13), nous associons la fonction suivante:

pn (u) = k ∏ i=1 p j i (u), (1.14) 
et nous posons les quantités suivantes:

S(p(u)) = n ∑ i=1 α i , M(p(u)) = max 1≤i≤n α i .
Voici la description de [START_REF] Tzvetkov | Invariant measures and long-time behavior for the Benjamin-Ono equation[END_REF] du reste d'ordre entier:

R n (u) = ∑ p(u)∈P 3 p(u)=u∂ n-1 x u∂ n x u c n (p) p(u) + ∑ p(u)∈P j j=3,...,2n+2 S(p(u))=2n-j+2 M(p(u))≤n-1 c n (p) p(u), (1.15) 
où les c n (p) sont des constantes. Par exemple, les trois premières lois d'ordre entier sont

E 0 (u) = u 2 , E 1 (u) = (∂ x u) 2 + 3 4 u 2 H∂ x u + 1 8 u 4 , E 2 (u) = (∂ 2 x u) 2 - 5 4 (∂ x u) 2 H∂ x u + 2∂ 2 x uH∂ x u + 5 16 5u 2 (∂ x u) 2 + u 2 (H∂ x u) 2 + 2uH(∂ x u)H(u∂ x u) + 5 32 u 4 H(∂ x u) + 5 24 u 3 H(u∂ x u) + 1 48 u 6 .

Des résultats antérieurs

Dans cette section, nous présentons des résultats déjà connus concernant les problèmes étudiés dans cette thèse.

Equation de Benjamin-Ono

Notons par φ t le flot de l'équation de Benjamin-Ono sur L 2 (T). Nous présentons ici des résultats concernant son comportement en temps long sur tous les espaces du type H k-1 2 -, où k ≥ 1 est un entier. Rappelons que l'équation de Benjamin-Ono admet une suite infinie de lois de conservation portées par les espaces de Sobolev d'ordre demi entier, celles-ci ont la forme générale

E k/2 (u) = u 2 k/2 + R k/2 (u),
où R k/2 est d'ordre inférieur. Conformément à la théorie générale des mesures de Gibbs pour les EDPs, posons les quantités suivantes:

µ k/2 (du) = e -R k/2 (u) e -u 2 k/2 du.
En voici la propriété des supports respectifs des mesures que ces quantités définissent:

µ k/2 (H s (T)) = 1 ∀s < k -1 2 , µ k/2 (H k-1 2 (T)) = 0.
Théorème 1.4.1 (Deng-Tzvetkov-Visciglia, [Tzv10, TV13, TV14, TV15, Den15, DTV15]). Pour tout k ≥ 1, il existe une famille { f r,k/2 , r > 0} ⊂ ∩ 1≤q<∞ L q (dµ k/2 ) telle que pour tout r > 0, la quantité ρ r,k/2 := f r,k/2 µ k/2 définit une mesure invariante sous le flot de l'équation de Benjamin-Ono. De plus r>0 Supp(ρ r,k/2 ) = Supp(µ k/2 ).

Ici Supp(µ) représente le support de la mesure µ.

La famille ( f r,k/2 ) r>0 est une renormalisation liée à la structure de la loi E k/2 (u). En conséquence de ce résultat, nous avons, en utilisant le théorème de récurrence de Poincaré,

Théorème 1.4.2 (Deng-Tzvetkov-Visciglia). Pour tout entier naturel k ≥ 1, pour µ k/2 -presque tout w ∈ H k-1 2 -, il existe une suite t n → ∞ quand n → ∞ telle que lim n→∞ φ t n w -w k-1 2 -= 0.

Equations de Klein-Gordon/ondes

Dans cette sous partie, nous considérons l'équation suivante

∂ 2 tt u -∆u + m 2 0 u + |u| α u = 0, α > 0.
On distingue deux cas:

• Lorsque m 0 = 0 l'équation est dite des ondes.

• Lorsque m 0 = 0, elle est dite de Klein-Gordon.

C'est une équation hamiltonienne pour laquelle on ne connait qu'une seule loi de conservation coercive2 , son hamiltonien:

H(u) = 1 2 (|∂ t u| 2 + |∇u| 2 + m 2 0 |u| 2 )dx + 1 α + 2 |u| α+2 dx.
Ainsi, une éventuelle mesure de Gibbs s'écrit formellement

µ(du) = e -1 α+2 |u| α+2 dx e -1 2 (|∂ t u| 2 +|∇u| 2 +m 2 0 |u| 2 )dx du,
et se concentre sur les espaces H 1-2 . Pour α = 2, son problème de Cauchy déterministe est globalement bien posé dans les espaces de Sobolev H s (T) × H s-1 (T) pour s > 3 2 , localement bien posé pour s ≥ 1 2 (voir [START_REF] Tzvetkov | On Hamiltonian partial differential equations with random initial conditions[END_REF] pour une étude des théories déterministe et probabiliste de l'équation) et mal posé pour s < 1 2 , une adaptation peut fournir une théorie globale déterministe dans le cas du domaine borné (en Section 4.10 nous présentons brièvement le cas s = 1).

Théorème 1.4.3 (Burq-Tzvetkov, de Suzzoni, Bourgain-Bulut, [START_REF] Burq | Invariant measure for a three dimensional nonlinear wave equation[END_REF][START_REF] Burq | Random data Cauchy theory for supercritical wave equations. II. A global existence result[END_REF][START_REF] De Suzzoni | Invariant measure for the cubic wave equation on the unit ball of R 3[END_REF][START_REF] Bourgain | Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball[END_REF]). La mesure de Gibbs associée à l'équation des ondes suivante

∂ 2 tt u -∆u + |u| α u = 0, 0 < α < 4,
est invariante pour cette équation dans le cas où l'équation est considérée sur la boule unité de R 3 , dans le contexte radial.

Théorème 1.4.4 (de Suzzoni, [dS14]). Il existe une mesure invariante sur H 1/2- loc pour l'équation de Klein-Gordon sur R à non-linéarité décroissante:

∂ 2 tt u + (1 -∂ 2 x )u + χu 3 = 0, où 0 < χ(x) ≤ C( √ 1 + x 2 ) -3α , α > 1.
Théorème 1.4.5 (Xu,[START_REF] Xu | Invariant Gibbs measure for 3D NLW in infinite volume[END_REF]). Il existe une mesure de type Gibbs concentrée sur des espaces de Hölder à poids, d'exposant s < 1/2 pour l'équation des ondes

∂ 2 tt u -∆u + u 3 = 0 posée sur R 3 dans une configuration radiale.
Autres résultats. Nous pouvons remarquer que tous les résultats présentés ci-dessus concernent des solutions vérifiant une symétrie radiale. En fait sans une telle symétrie, une mesure de Gibbs devrait être définie sur les espaces H -1/2-dans lesquels la non-linéarité n'est pas, a-priori, définie. Néanmoins, Burq et Tzvetkov [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF] ont développé une théorie de Cauchy globale probabiliste sans utilisation de mesure invariante pour l'équation des ondes cubique dans un contexte non radial. Ils ont prouvé le caractère bien posé probabiliste pour beaucoup de type de randomisations, dans des espaces de Sobolev sur-critiques par rapport à l'équation. 

∂ t u + (u.∇)u + ∇p = 0, ∇.u = 0, u(t, x) ∈ R 2 .
Cette équation admet deux lois de conservation "indépendantes": l'énergie et l'enstrophie

E 0 (u) = |u| 2 dx, E 1 (u) = |rot u| 2 dx,
où rot u est le rotationnel de u, appelé vorticité dans ce contexte. Mais également pour toute fonction "raisonnable" f , on a une loi de conservation donnée par

E f (u) = f (rot u(x))dx.
Par 

i∂ t u + ∆u -λ |u| 2 u = 0.
L'équation est munie des conditions de Dirichlet sur le bord du domaine. On connaît deux lois de conservation satisfaites par cette équation: la masse et l'énergie (hamiltonien de l'équation) qui sont données par

M(u) = 1 2 |u(x)| 2 dx, E(u) = 1 2 |∇u(x)| 2 dx + λ 4 |u(x)| 4 dx.
En considérons une limite non visqueuse à partir de l'équation de Ginzburg-Landau complexe stochastique, Kuksin et Shirikyan montrent que Proof. Considérons les processus approchés

V n s (ω) = V (k+1)t/2 n (ω), où s ∈ [kt/2 n , (k + 1)t/2 n ], n ≥ 1, 0 ≤ k ≤ 2 n -1.
Les fonctions (ω, s) → V n s (ω) sont clairement mesurables par rapport à F t × B([0,t]) pour tout t. Tel est donc le cas de la fonction (ω,t) → V t (ω), en tant que limite ponctuelle de cette suite.

Le mouvement brownien, le bruit blanc

Nommé d'après le botaniste Robert Brown, au point de vue physique ce phénomène représente le mouvement erratique de particules suspendues dans l'eau et sujettes au bombardement moléculaire de celle-ci. Une étude théorique de ce phénomène a été accomplie par Albert Einstein [START_REF] Einstein | Investigations on the theory of the Brownian movement[END_REF] en 1905, établissant des caractéristiques de la structure microscopique de la matière (par exemple une formule pour le nombre d'Avogadro a été obtenue, voir aussi les travaux de Smoluchowski et de Langevin), et des justifications expérimentales ont été fournies par Jean Perrin [START_REF] Perrin | Mouvement brownien et réalité moléculaire[END_REF] 

I N (g)(t) = N-1 ∑ i=0 g(s i )(β (t i+1 ) -β (t i )), a = t 0 < ... < t N = b.
N = ∑ N-1 i=0 g(t i ) ∈ E a,b : E[I N (g)(t)] 2 = E N-1 ∑ i=0 g(t i ) 2 (t i+1 -t i ) = E t 0 |g N (s)| 2 ds.
Finalement, pour g dans E a,b , la quantité

I(g)(ω) = b a g(ω,t)dβ (ω,t)
a un sens (comme limite dans L 2 (Ω, P) d'intégrales de fonctions élémentaires). Prenons a = 0 pour simplifier les notations, nous avons les quelques propriétés suivantes:

• Le processus 

I(g)(ω,
(g + λ g )(ω,t)dβ (ω,t) = γ α g(ω,t)dβ (ω,t) + λ γ α g (ω,t)dβ (ω,t). • EI(g)(t) = 0, pour tout 0 ≤ t < b. • (Isométrie d'Ito) E[I(g)(t)] 2 = E t 0 |g(s)| 2 ds.
L'intégrale d'Ito peut être étendue aux processus g progressivement mesurables et stochastiquement intégrables, i.e. qui vérifient

P t 0 |g(ω, s)| 2 ds < ∞ pour tout t ≥ 0 = 1.
On note E l'espace vectoriel formé par ces processus. Un résultat fondamental du calcul (différentiel) stochastique est la formule dite d'Ito. Un processus stochastique de la forme

X (t) = X (0) + t 0 f (s)ds + t 0 g(s)dβ (s) est dit d'Ito si g ∈ E, et f est F t -adapté et P t 0 | f (ω, s)|ds < ∞ pour tout t ≥ 0 = 1.
Une réécriture pratique (pour la suite) d'un tel processus est la suivante:

dX = f dt + gdβ .
Le terme f est appelé "dérive" et g est le terme de diffusion aussi appelé "volatilité". Pour un tel processus, nous avons le résultat ci-dessous, connu sous le nom de lemme d'Ito (voir [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] ou [Øks03] pour une démonstration):

1.6. Du matériel stochastique Théorème 1.6.4. Soit F(x) ∈ C 2 (R). Alors F(X ) est un processus d'Ito donné par dF(X t ) = ∂ x F(X )dX + 1 2 ∂ 2 x F(X )(dX ) 2 .
avec la table d'Ito;

(dt) 2 = dt.dβ = 0, (dβ ) 2 = dt.

La formule d'Ito est l'analogue de la règle de dérivation en chaîne pour le calcul stochastique. Soit σ un nombre réel. Considérons maintenant le processus d'Ito

dX = f dt + σ dβ , Alors le lemme d'Ito donne que pour F(x) ∈ C 2 (R), F(X ) est un processus d'Ito donné par la formule F(X (t)) = F(X (0)) + t 0 f (s).∂ x F(X (s)) + σ 2 2 ∂ 2 x F(X (s)) ds + σ t 0 ∂ x F(X (s))dβ (s). (1.16) En particulier EF(X (t)) = EF(X (0)) + t 0 E f (s).∂ x F(X (s)) + σ 2 2 ∂ 2 x F(X (s)) ds.
Remarque 1.6.5. La formule d'Ito s'applique lorsque la fonction n'est que C 1 (R) et C 2 (R\N) où N contient un nombre fini de points.

Maintenant supposons que la fonction g ci-dessus est de classe C 1 (en t). Nous avons

N-1 ∑ i=0 g(s i )(β (s i+1 ) -β (s i )) = N-1 ∑ i=0 g(s i )β (s i+1 ) - N-1 ∑ i=0 g(s i+1 )β (s i+1 ) + g(s N-1 )β (s N-1 ) N-1 ∑ i=0 (g(s i+1 ) -g(s i ))β (s i+1 ) + g(s N-1 )β (s N-1 )
Après passage à la limite, nous récupérons la formule d'intégration par parties

t 0 g(s)dβ (s) = g(t)β (t) - t 0 β (s)g (s)ds.
(1.17)

Convolution stochastique, lemme d'Ito en dimension infinie

On a vu plus haut une manière de définir un mouvement brownien sur un espace de Hilbert séparable H. Une intégrale d'Ito est définie pour des processus à valeurs dans H par le même procédé qu'en dimension finie ou par une approximation par la définition fini-dimensionnelle (voir par exemple [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF]). Un processus u(ω,t) à valeurs dans H peut être représenté dans la base {e m } par

u(ω,t) = ∑ m≥0 u m (ω,t)e m ,
où les u m (t) sont des processus uni-dimensionnels. Supposons que ces processus appartiennent à E, leur intégrale d'Ito

t 0 u m (ω,t)dβ m (s)
est alors bien définie, de plus, dans le cas où

u m ∈ L 2 (Ω × [0,t]), ∀t, la propriété d'isométrie d'Ito donne que E t 0 u m (s)dβ m (s) 2 = E t 0 |u m (s)| 2 ds.
Ainsi dès que la quantité

∑ m≥0 a 2 m E t 0 |u m (s)| 2 ds
est finie, on peut définir l'intégrale d'Ito de u(t) contre dζ := ∑ a m e m dβ par approximation dans L 2 (Ω) par les sommes finies:

t 0 u(ω, s)dζ (s) = ∑ m≥0 a m t 0 u m (ω,t)dβ m (s) .
Cette intégrale vérifie les propriétés fondamentales (continuité, isométrie d'Ito, propriété de martingale...) de l'intégrale d'Ito uni-dimensionnelle, et peut être étendue aux processus stochastiquement intégrables.

Convolution stochastique. Soit B un opérateur sur H tel qu'il existe une base orthonormée {e m } de H constituée de vecteurs propres de B dont la suite de valeurs propres associés {b m } ⊂ C diverge en module vers +∞. Comme déjà vu, on peut définir un mouvement brownien à l'aide de cette base par

ζ (t, x) = ∑ m≥0 a m e m (x)β m (t),
en respectant le cadre probabiliste adéquat déjà explicité. Supposons maintenant que

V t (B) := ∑ m≥0 a 2 m |1 -e 2tb m | 2|b m | < ∞ pour tout t ≥ 0,
alors la quantité (que l'on appellera convolution stochastique)

Θ t (B) := t 0 e (t-s)B dζ (s, x) := ∑ m≥0 a m t 0 e (t-s)b m dβ m (s) e m (x) t ≥ 0
est bien définie dans H. Il n'est pas difficile de voir que Θ t (B) est un processus gaussien continu:

pour tout t ≥ 0, Θ t (B) ∼ N H (0,V t (B)).
Remarque 1.6.6. Si, pour tout m, ℜ(b m ) < 0, alors on a que la suite des |1e 2tb m |/|2b m | est bornée (uniformément en t), dans ce cas la convolution stochastique est bien définie dans H dès que ∑ m a 2 m < ∞. On définira les espaces de Sobolev abstraits associés à l'opérateur B par:

H s := H s B = u = ∑ m≥0 u m e m ∈ H; u 2 s := ∑ m |b m | s |u m | 2 < ∞ .
Alors, par l'isométrie d'Ito, on a

E Θ t (B) 2 s = ∑ m≥0 |b m | s a 2 m |1 -e 2tb m | 2|b m | . Ainsi si pour tout m ℜ(b m ) < 0, alors, presque sûrement, Θ t (B) ∈ H s dès que ∑ m≥0 |b m | s a 2 m < ∞.
Dans ce cas, en tant que variable gaussienne sur l'espace de Hilbert H s , Θ t vérifie le théorème de Fernique; c'est à dire qu'il existe une constante c s telle que

Ee c s Θ t 2 s < ∞ pour tout t ≥ 0.
Une version infini-dimensionnelle de la formule d'Ito a été développée [Par75, GK82], voir aussi [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF]. Une formule proposée dans [START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF] est particulièrement adaptée aux problèmes traités dans cette thèse, nous la présentons ci-dessous.

On appelle triplet de Gelfand tout triplet V ⊂ H ⊂ V * d'espaces de Hilbert séparables pour lesquels les injections sont continues et denses et où V * est le dual topologique de V par rapport au produit scalaire de H. Un processus d'Ito dans V * à diffusion constante est de la forme

du = f dt + ∑ m≥0 g m dβ m , (1.18) où f est F t -adapté et P t 0 f (s) 2 V * ds < ∞ pour tout t > 0 = 1, et ∑ m≥0 g m 2 V * < ∞.
Soit V ⊂ H ⊂ V * un triplet de Gelfand, soit u(t) un processus stochastique de la forme (1.18) et à valeurs dans H. Posons les hypothèses suivantes:

Hypothèses 1.6.7. 1. u(t) est un processus d'Ito dans V * , 2. ∑ m≥0 g m 2 H < ∞, 3. P t 0 u(s) 2 V ds < ∞ pour tout t > 0 = 1.

Alors nous avons

Théorème 1.6.8 (Kuksin-Shirikyan, Théorème A.7.5 et Corollaire A.7.6 dans [START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF]). Soit F ∈ C 2 (H, R) une fonctionnelle uniformément continue sur tout ensemble borné de H, et ce, en même temps que ses deux premières différentielles. Supposons, de plus, que F satisfait les conditions suivantes:

1. Il existe une fonction K : R + → R + telle que

|∇ u F(u; v)| ≤ K( u H ) u V v V * , u ∈ V , v ∈ V * . (1.19) 2. Pour toute suite {w k } ⊂ V convergente vers w ∈ V et tout v ∈ V * , on a ∇ u F(w k ; v) → ∇ u F(w; v), quand k → ∞. (1.20) 3. ∑ m≥0 E t 0 |∇ u F(u; g m )| 2 ds < ∞ pour tout t > 0. (1.21) Alors nous avons F(u(t)) = F(u(0)) + t 0 ∂ u F(u(s); f (s)) + 1 2 ∑ m≥0 ∂ 2 u F(u(s); g m , g m ) ds+ ∑ m≥0 t 0 ∂ u F(u(s), g m )dβ m (s). (1.22) En particulier, EF(u(t)) = EF(u(0)) + t 0 E ∂ u F(u(s); f (s)) + 1 2 ∑ m≥0 ∂ 2 u F(u(s); g m , g m ) ds.
Si l'on omet l'hypothèse (1.21), alors on a la formule (1.22) dans laquelle t est remplacé par le temps aléatoire t ∧ τ n où

τ n = inf{t ≥ 0, u(t) H > n}, n ∈ N, avec la convention inf / 0 = +∞.

Semi-groupes de Markov

Soit X un espace polonais, on considère une famille de mesures de probabilité (P v , v ∈ X ) sur (Ω, F ) et un processus aléatoire u(t) à valeurs dans X. On suppose que u(t) est adapté à une filtration F t sur Ω. On dit que u(t) (muni de tous ces objets) est un processus de Markov si

P v (u(0) = v) = 1, P v (u(t + s) ∈ Γ|F t ) = P u(t) (u(s) ∈ Γ). Posons P t (v, Γ) = P v (u(t) ∈ Γ).
Supposons que, pour tout Γ ∈ F , la fonction v → P v (Γ) est continue. Nous avons la relation de Chapman-Kolmogorov

P t+s (v, Γ) = X P s (z, Γ)P t (v, dz).
On définit les applications suivantes:

P t f (v) = X f (w)P t (v, dw) C b (X ) → C b (X ), P * t µ(Γ) = X µ(dw)P t (w, Γ) p(X ) → p(X ).
Ici C b (X ) désigne l'espace des fonctions continues et bornées sur X, p(X ) l'ensemble des mesures de probabilité sur X. On montre, en utilisant la relation de Chapman-Kolmogorov, qu'elles vérifient les propriétés suivantes:

• (Propriété de semi-groupe) Pour tous t, s ≥ 0, on a

P t+s = P t • P s P * t+s = P * t • P * s . • (Propriété de dualité) Pour tout t ≥ 0, f ∈ C b (X ) et µ ∈ p(X ) on a (P t f , µ) = ( f , P * t µ)
Remarque 1.6.9. Le semi-groupe P t est dit de Feller puisqu'il est continu en t et pour t fixé, l'application P t transforme C b (X ) en C b (X ).

Définition 1.6.10. Une mesure µ ∈ p(X ) est dite invariante pour u(t) si P t µ = µ pour tout t ≥ 0.

Processus de diffusion.

Nous en donnons ici une version spéciale, où le coefficient de diffusion du processus est constant. Considérons le processus suivant:

du = f (u)dt + σ dζ .
On montre que le processus u t est homogène en temps, c'est à dire que, si l'on note u s,v s+t la solution à l'instant t issue de v au moment s, alors u s,v s+t et u 0,v t ont la même loi à tout temps t pour tout s. En effet,

u s,v s+t = v + t+s s f (u s,v τ )dτ + σ (ζ s+t -ζ s ) = v + t 0 f (u s,v s+τ )dτ + σ ζt ,
où ζt := ζ s+tζ s est un autre mouvement brownien standard (par rapport à la filtration F s+t ). Ainsi, partant de v, u s,v s+t est une solution de l'équation stochastique ci-dessus quitte à changer de mouvement brownien, ce qu'on appelle une solution faible dans le contexte des équations stochastiques. L'unicité faible (i.e. de la loi) des solutions faibles dit que ces deux processus ont la même loi en tout temps. Définissons maintenant la famille de mesures de probabilité {P v , v ∈ X} par

P v (u t ∈ Γ) = P(u 0,v t ∈ Γ).
Nous posons

P t (v, Γ) = P v (u t ∈ Γ),
l'homogénéité en temps pour u t permet de montrer la relation de Chapman-Kolmogorov pour P t (v, Γ), et donc d'établir les semi-groupes de Markov. On voit encore plus aisément que les "processus déterministes", correspondants à un coefficient de diffusion σ nul, vérifient la propriété d'homogénéité en temps, et donc la propriété de Markov aussi.

1.6.5 EDPs stochastiques: Le caractère bien structuré (Well structuredness)

Considérons l'EDP stochastique suivante: 

du t = (Lu + f (u))dt + dζ , ( 1 
(a) (Existence) il existe u := u ω ∈ Λ T := C(0, T ; H) ∩ L 2 (0, T ;V ) satisfaisant la relation suivante dans V * u(t) = u 0 + t 0 (Lu s + f (u s ))ds + ζ (t) for all t ∈ [0, T ], (1.24)
On la note u(t, u 0

) := u ω (t, u 0 ). (b) (Unicité) si u 1 , u 2 ∈ Λ T sont deux solutions au sens de (1.24), alors u 1 ≡ u 2 sur [0, T ],
2. (Continuité par rapport à la donnée initiale) pour presque tout ω, on a lim u 0 →u 0 u(., u 0 ) = u(., u 0 ) dans Λ T , ici u 0 et u 0 sont des données déterministes;

3. le processus (ω,t) → u ω (t) est adapté à σ (u 0 , F t ).

Remarque 1.6.12. Le processus u t construit dans la définition 1.6.11 vérifie les propriétés suivantes:

• Pris comme processus dans H, il est progressivement mesurable par rapport à la filtration σ (u 0 , F t ); Ce, par une simple application du lemme 1.6.2.

• Il vérifie l'homogénéité en temps; Cela suit directement le caractère bien posé qu'on a défini, combiné avec la discussion sur les processus de diffusion (Section 1.6.4).

• Il vérifie la propriété de Feller. En effet par la continuité du flot par rapport à la donnée initiale, celui-ci préserve ainsi l'espace C b (H) des fonctions continues et bornées sur H.

Maintenant nous introduisons une définition très importante pour la suite.

Définition 1.6.13. On dit que l'équation (1.23) est bien structurée sur un triplet de Gelfand (V , H,V * ) si 1. elle est stochastiquement bien posée sur un espace de Hilbert H tel que H ⊂ H ;

2. ses solutions u t satisfont les hypothèses 1.6.7 sur (V , H,V * ).

Dans le cas où H = H et où le triplet (V , H,V * ) est identique à celui de la définition 1.6.11, on dira que l'équation est strictement bien structurée sur (V , H,V * ).

Par abus de langage on dira que la solution u t est bien structurée sur (V , H,V * ). Cette notion technique de "caractère bien structuré" permet de rassembler toutes les (bonnes) propriétés requises à l'application de certains résultats tels que la formule d'Ito (1.22).

Temps local associé aux processus d'Ito

Ici nous nous intéressons à la mesure de la quantité de temps qu'un processus d'Ito scalaire reste au voisinage d'un point a ∈ R ou, plus généralement, dans un ensemble borélien Γ ⊂ R. Pour un mouvement brownien par exemple, on sait que la mesure de Lebesgue (notée ) de l'ensemble E ω (a) := {t, β (ω,t) = a} est presque sûrement nulle pour tout a ∈ R. Puisqu'en utilisant le théorème de Fubini, on a

E (E ω (a)) = R Ω 1 {β (ω,t)=a} dP(ω)dt = R P(β (t) = a)dt,
il reste à se rappeler que la loi de β (t) est continue, ce qui fait, en fin de compte, que El(E ω (a)) = 0; par positivité, on arrive au résultat. Ceci montre que la définition la plus intuitive de la densité d'occupation peut être triviale. Lévy introduisit alors la définition suivante:

Λ t (a) := lim ε→0 + 1 2ε ({s ∈ [0,t];V s ∈ [a -ε, a + ε]}) dans L 2 (Ω, P),
1.6. Du matériel stochastique où V est un processus donné. Pour le mouvement brownien, cette quantité est bien définie, finie et non triviale. On va la calculer. Tout d'abord nous la reformulons en

Λ t (a) := lim ε→0 + 1 2ε t 0 1 [-ε,ε] (β (s) -a)ds.
Considérons la fonction

f ε (x) = 1 2 ε + (x-a) 2 ε si |x -a| ≤ ε |x -a| sinon.
Alors

f ε est de classe C 1 sur R et C 2 sur R\{a ± ε}, et converge ponctuellement vers la fonction x → |x -a|. Notre but est d'appliquer la formule d'Ito à f ε (β t ) et de passer à la limite ε → 0 + . Nous avons f ε (β (t)) = f ε (β (0)) + 1 ε t 0 1 [a-ε,a+ε] (β (s))ds + t 0 sgn(β (s) -a)1 {|β (s)-a|>ε} dβ (s) + 1 ε t 0 (β (s) -a)1 {|β (s)-a|≤ε} dβ (s).
Or par la propriété d'isométrie d'Ito, on a (1.25) C'est la formule de Tanaka. Cette formule, non seulement, permet de calculer le temps local brownien mais aussi suggère une généralisation de la formule d'Ito. On peut, en effet, étendre la formule d'Ito aux fonctions convexes (non nécessairement C 2 ), dans le contexte (plus général) des processus d'Ito , et ce, à l'aide du temps local du processus d'Ito en question. Le résultat suivant est une conséquence du théorème 7.1, chapitre 3 de [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF].

E 1 ε t 0 (β (s) -a)1 {|β (s)-a|≤ε} dβ (s) 2 = 1 ε 2 E t 0 (β (s)-a) 2 1 {|β (s)-a|≤ε} ds ≤ E t 0 1 {|β (s)-a|≤ε} ds,
Théorème 1.6.14. Soit un processus d'Ito donné par

dy t = f dt + ∞ ∑ m=0 g m dβ m
où {β m } est une suite de mouvements browniens réels, standards, indépendants et de filtration

F t , et f et g m sont adaptés à F t , et satisfont E t 0 | f (s)| + ∞ ∑ m=0 |g m (s)| 2 ds < ∞, ∀t > 0.
Alors il existe un champ aléatoire {Λ t (ω, x), t ≥ 0, ω ∈ Ω, x ∈ R} vérifiant les propriétés suivantes:

1. L'application (ω,t, x) → Λ t (ω, x) est mesurable, pour tout x le processus (ω,t) → Λ t (ω, x) est F t -adapté, la fonction t → Λ t (ω, x) est continue et croissante pour tout (ω, x), et pour tout t ≥ 0 et presque tout ω ∈ Ω la fonction x → Λ t (ω, x) est continue à droite; 2. Pour tout borélien Γ ⊂ R, on a presque sûrement que t 0 1 Γ (y s ) ∑ m≥0 |g m (s)| 2 ds = Γ Λ t (x)dx pour tout t ≥ 0;
(1.26)

3. Nous avons la formule du type Tanaka suivante:

2Λ t (a) = |y t -a|-|y 0 -a|- t 0 sgn(y s -a) f (s)ds-∑ m≥0 t 0 sgn(y s -a)g m (s)dβ m (s) pour p.t. ω.
(1.27)

Autres résultats

Soit X un espace polonais et µ k une suite dans p(X ) qui converge faiblement vers µ appartenant à p(X ). Nous avons le résultat ci-dessous connu sous le nom de théorème Porte-manteau:

Theorem 1.6.15. Les deux propriétés (équivalentes) suivantes ont lieu.

• Pour tout ensemble ouvert O de X on a

lim inf k→∞ µ k (O) ≥ µ(O).
• Pour tout ensemble fermé F de X on a

lim sup k→∞ µ k (F) ≤ µ(F).
On dit que qu'une famille de mesures M ⊂ p(X ) est (faiblement) relativement compacte si de toute suite µ n ⊂ M on peut extraire une sous-suite µ n k faiblement convergente. On dit que la famille M est tendue si pour tout ε > 0 il existe un ensemble compact K ε tel que

µ(K ε ) > 1 -ε, pour tout µ ∈ M.
Theorem 1.6.16 (Prokhorov). Une famille de mesures M dans p(X ) est tendue si et seulement si elle est faiblement relativement compacte.

Chapter 2

Présentation des travaux de thèse 2.1 Mesure invariante concentrée sur C ∞ (T) pour l'équation de Benjamin-Ono Cette section présente les résultats obtenus dans [START_REF] Sy | Invariant measure and long time behavior of regular solutions of the Benjamin-Ono equation[END_REF].

Le problème et le résultat principal

Dans ce problème, nous nous intéressons à la construction d'une mesure invariante concentrée sur l'espace C ∞ (T) pour l'équation de Benjamin-Ono. Rappelons que dans les espaces de Sobolev H s-(T) avec s ∈ N 2 , Deng, Tzvetkov et Visciglia ont construit des mesures invariantes de type gaussien pour l'équation. Une des obstructions qui se posent dans le présent problème est la non-existence d'une loi de conservation rendant compte de la structure de l'espace C ∞ . L'idée, ici, sera d'approcher l'espace C ∞ (T) en combinant la suite infinie de lois de conservation et l'approche FDL. Un passage clé est la preuve d'un lemme de régularisation uniforme par rapport au paramètre de viscosité. Nous nous inspirons ensuite des techniques développées par Kuksin et Shirikyan dans le contexte des équations d'Euler et de Schrödinger, afin d'établir des propriétés qualitatives pour la mesure construite ici.

Théorème 2.1.1. Il existe une mesure µ définie sur l'espace H 3 (T) satisfaisant 1. µ est invariante sous le flot de l'équation de Benjamin-Ono sur H 3 (T);

2. µ est concentrée sur l'espace C ∞ (T) : µ(C ∞ (T)) = 1;
3. Pour tout n ∈ N, il existe une loi de conservation de (1.5) dont la partie principal est u 2 n et dont la distribution via µ est absolument continue par rapport à la mesure de Lebesgue sur R; 4. Par rapport à la norme L 2 , µ décroit à l'infini au moins comme une mesure gaussienne: il existe σ > 0 tel que pour tout R > 0, µ({ u > R}) e -σ R 2 ;

5. µ est, au moins, de nature 2-dimensionnelle en ce sens que tout ensemble compact K de H 3 (T) de dimension de Hausdorff plus petite que 2 satisfait µ(K) = 0.

Le modèle stochastique

Pour l'équation de Benjamin-Ono, posons le modèle de fluctuation-dissipation suivant

∂ t u + H∂ 2 x u + u∂ x u = α∂ 2 x u + √ αη. (2.1)
Ici α ∈ (0, 1) est un paramètre de viscosité, et η est une force stochastique de type bruit blanc donnée par

η(t, x) = d dt ∑ m∈Z 0 λ m e m (x)β m (t) = d dt ζ (t),
où {λ m } est une suite de nombres réels, {e m } est une base orthonormée de L 2 (T) constituée par les fonctions propres de -∂ 2

x , {β m } est une suite de mouvements browniens réels, standards et indépendants. Ici on comprend une éventuelle solution de (2.1) comme un processus aléatoire sur un espace de probabilité (Ω, F , P), à valeurs dans un espace de Sobolev donné. On suppose que la filtration F t par rapport à la quelle ζ est défini est continue à droite et augmenté par rapport à (F , P). On note

A n = ∑ m∈Z 0 m 2n λ 2 m ,
en fait A n mesure la régularité en la variable x du bruit η. La finitude de A n est équivalente à ce que η(t, .) appartienne à l'espace de Sobolev H n (T).

Commentaire sur le scaling des fluctuations par rapport à la dissipation. Nous expliquons ici pourquoi prendre une force de taille √ α pour "contrer" un amortissement de taille α. Pour cela considérons une fonction de scaling générale f (α). Bien sûr que pour retrouver l'équation de Benjamin-Ono à la limite α → 0, il faut que sous la même limite f (α) converge vers 0. Ainsi pour simplifier on peut prendre f (α) de la forme α a (ln(α)) b où a, b ≥ 0. Maintenant appliquons la formule d'Itô à u 2 où u est une solution de

∂ t u + H∂ 2 x u + u∂ x u = α∂ 2 x u + f (α)η.
Nous trouvons après avoir pris l'espérance

E u 2 2 + 2αE t 0 u 2 1 ds = E u 0 2 + α 2a (ln(α)) 2b A 0 .
Donc si la mesure sous-jacente à cette espérance est stationnaire, on récupère

E u 2 1 = α 2a-1 (ln(α)) 2b A 0 2 .
On peut déjà observer deux scénarios à éliminer:

• Si (a < 1/2 ou (a = 1/2 et b > 0))
, alors E u 2 1 explose à la limite non visqueuse;

• Si a > 1/2, alors E u 2 1 tend vers zéro à cette limite; donc la mesure limite est trivialement la masse de Dirac en zéro; La situation restante est a = 1/2 et b = 0, ici il n'y a pas d'explosion et il n'y a pas forcément de trivialité de la mesure limite. Ce qui fait que c'est la situation à explorer.

Proposition 2.1.2. Soit s ≥ 2. Supposons que A s est fini, alors (2.1) est bien structurée sur les triplets (H s-1 , H s , H s+1 ) au sens de la définition 1.6.13. La preuve combine des méthodes standards, on la présente entièrement au chapitre 3. Nous en donnons ici une idée générale: On commence par scinder le problème en deux: un sous-problème linéaire stochastique, résolu par une convolution:

∂ t z + H∂ 2 x z = α∂ 2 x z + √ αη, z| t=0 = 0,
et un sous-problème non linéaire déterministe: on fixe une solution z du problème linéaire et on considère

∂ t v + H∂ 2 x v + (v + z)∂ x (v + z) = α∂ 2 x v, v t=0 = u| t=0 .
Un argument de point fixe combiné avec des estimées a-priori permet d'aboutir à l'existence globale. Il reste à remarquer qu'alors v + z est solution de (2.1). L'unicité et la continuité par rapport à la donnée initiale s'obtiennent par l'estimation de la différence de deux solutions: prenons u et v deux solutions de (2.1), alors w := uv satisfait l'équation

∂ t w + H∂ 2 x w + w∂ x w + ∂ x (wv) = α∂ 2 x w.
Des estimations H s , avec s ≥ 2, de la solution de cette équation sont obtenues en utilisant l'estimation de commutateur de Kato-Ponce. Il en découle les propriétés cherchées. La propriété de mesurabilité progressive s'obtient à partir de la forme de z et de v.

Configuration de Markov du problème. Pour α fixé et un temps r donné, notons la solution de (2.1) issue de w dans H 3 comme suit

φ α r w = u α (r, w).
Définissons la fonction de transition suivante

P α t (w, E) = P(φ α t w ∈ E).
Les semi-groupes de Markov associés à (2.1) s'écrivent

P α t f (w) = f (v)P α t (w, dv), C b (H 3 ) → C b (H 3 ); P α * t ν(E) = P α t (v, E)ν(dv), p(H 3 ) → p(H 3 ),

Un lemme de régularisation uniforme (LRU)

Comme nous l'avons déjà mentionné, une étape importante pour faire fonctionner notre preuve est un lemme de régularisation uniforme en α :

Lemme 2.1.3 (LRU). Supposons que la force η est de régularité C ∞ en espace. Soit u α une solution stationnaire (i.e. dont la loi ne varie pas au cours du temps) de (2.1) satisfaisant

E u α p < +∞ ∀p ≥ 2.
(2.2)

Alors E u α 2 n < +∞ ∀n ≥ 1. (2.3)
De plus, si (2.2) a lieu uniformément en α, alors (2.3) aussi.

Remarque 2.1.4. La plus grande importance du lemme se trouve dans sa dernière partie, l'uniformité par rapport au paramètre α. C'est cette uniformité qui fera que le passage à la limite α → 0 préservera les contrôles C ∞ qui auront déjà été établis pour le modèle stochastique. Nous prouvons cette uniformité en combinant un argument de récurrence et des estimées déterministes et probabilistes basées sur les lois de conservation.

Nous prouverons dans la suite que toute solution u α stationnaire de (2.1) satisfait (2.2) uniformément en α. Ce qui fait donc que toute solution stationnaire u α de (2.1) satisfait

E u α 2 n n 1 ∀n ∈ N.
En particulier, u α est de régularité C ∞ en x.

Estimations déterministes

Considérons les lois de conservation d'ordre entier de l'équation de Benjamin-Ono. D'après une description de [START_REF] Tzvetkov | Invariant measures and long-time behavior for the Benjamin-Ono equation[END_REF], elles ont la structure générale suivante:

E n (u) = u 2 n + P n (u), où P n (u) = 2n+2 ∑ j=3 P j n (u),
avec P j n qui est d'ordre 2n + 2j en terme de nombre de dérivés qui y sont contenues et d'ordre j en terme de puissance de u. Dans ce polynôme P n intervient évidemment la transformée de Hilbert H, mais étant d'ordre zéro, celui-ci n'affecte pas l'analyse qu'on va y faire. Nous avons le résultat suivant Lemme 2.1.5. Pour tout ε > 0, il existe C ε > 0 tel que pour tout u ∈ Ḣn+1

∂ u E n (u, ∂ 2 x u) ≤ -(2 -ε) u 2 n+1 +C ε u (1 + u ) b n , où b n ne dépend que de n.
La preuve de ce lemme utilise, au delà de la structure des E n , une combinaison d'inégalités d'interpolation usuelles. Elle est entièrement présentée au chapitre 3.

Estimations probabilistes et mesures stationnaires

Nous reprenons nos lois de conservation d'ordre entier. Notre but est d'achever la preuve du lemme de régularisation uniforme et d'établir l'existence de mesures stationnaires pour l'équation (2.1). Une réécriture pratique à manier pour cette équation est la suivante

du = -(H∂ 2 x u + u∂ x u -α∂ 2 x u)dt + √ αdζ .
Une application de la formule d'Ito infini-dimensionnelle (1.22) nous emmène à:

dE n (u) = ∂ u E n (u, du) + α 2 ∑ m∈Z 0 λ 2 m ∂ 2 u E(u, e m )dt.
La conservation de E n (u) permet d'écrire

∂ u E n (u, du) = α∂ u E n (u, ∂ 2 x u)dt + √ α∂ u E n (u, dζ ).
Appliquant l'estimation du Lemme 2.1.5 et des propriétés de l'intégrale stochastique, nous arrivons à des contrôles probabilistes suivants Théorème 2.1.6. Soit n ≥ 1. Il existe θ n , γ n > 0 tels que pour toute variable aléatoire u 0 indépendante de F t et satisfaisant EE n (u 0 ) < +∞, la solution u α issue de u 0 satisfait

EE n (u) + α t 0 E u 2 n+1 ds ≤ EE n (u 0 ) + αγ n t + t 0 E( u 2 n + u (1 + u ) θ n ) . (2.4)
Une utilisation de la formule d'Ito sur la loi d'ordre 0, c-à-d u 2 , et ses puissances combinée avec le lemme de Gronwall permet également de montrer les deux estimées suivantes:

E u 2 + 2α t 0 E u 2 1 ds = E u 0 2 + αA 0 t, (2.5) E u 2p ≤ e -pαt E u 0 2p + p p A p 0 ∀p ≥ 1. (2.6)
Voici l'idée de preuve du lemme de régularisation uniforme (LRU): À partir de (2.4) et (2.5), on voit qu'une solution stationnaire satisfait

E u 2 n+1 ds ≤ γ n E 1 + E( u 2 n + u (1 + u ) θ n ) ∀n ≥ 0.
Si u satisfait la condition d'intégrabilité du lemme LRU, on a en particulier que E u 2 < +∞ et l'initialisation dont requiert l'argument de récurrence est acquise, l'hérédité est traduite par l'inégalité ci-dessus. Maintenant si la condition d'intégrabilité est satisfaite uniformément en α, alors la structure de l'inégalité ci-dessus permet de conclure que telle sera le cas pour E u 2 n pour tout n. Cela finit la démonstration du lemme LRU.

Par ailleurs, en utilisant (2.6) dans un argument de troncature, avec un passage à la limite t → +∞, nous montrons que toute solution stationnaire de (2.1) satisfait la condition d'intégrabilité du lemme de régularisation uniforme.

Mesures stationnaires pour (2.1) concentrées sur C ∞ . Maintenant, nous voulons montrer que pour un s ≥ 2 fixé, pour tout α fixé, une mesure stationnaire µ α existe dans un certain H s . Puisque dans ce cas, par la discussion que nous venons de faire, nous aurons le lemme LRU qui s'applique et automatiquement ces mesures seront concentrées sur C ∞ (T) avec des estimées uniformes en α suivantes:

H s u 2 n µ α (du) n 1 (2.7) H s u 2 1 µ α (du) = A 0 2 (2.8) H s u 2p µ α (du) ≤ p p A p 0 .
(2.9)

Pour montrer l'existence de telles mesures µ α dans, par exemple, H 2 , nous employons l'argument de Bogoliubov-Krylov. Pour ce faire, reprenons l'estimée (2.4) avec n = 2 et u 0 distribué par la masse de Dirac en 0. Nous combinons cela avec (2.6) avec un nombre p convenable, nous arrivons à

1 t t 0 E u(s) 2 3 ds 1.
Notons λ α (t) la distribution à l'instant t de la solution issue de u 0 . Il s'en suit, par le théorème de Prokhorov, que la suite des mesures moyennées

λα (t) = 1 t t 0 λ α (s)ds t > 0,
est faiblement compacte dans H 2 . L'argument de Bogoliubov-Krylov dit que tout point d'accumulation de cette suite est une mesure stationnaire pour (2.1).

Passage à la limite sur la viscosité

Nous décrivons ici l'idée de preuve du théorème suivant Théorème 2.1.7. Il existe une suite (α k ) convergeant vers 0 quand k → +∞ et une mesure de probabilité µ définie sur H 3 telles que 1. µ α k converge faiblement vers µ sur H 2 ;

2. µ est invariante sous le flot de l'équation de Benjamin-Ono défini sur H 3 ;

3. µ(C ∞ (T)) = 1; 4. pour tout p ≥ 1, pour tout n ≥ 2, H 2 u 2 n µ(du) < ∞, H 2 u 2p µ(du) ≤ p p A p 0 , H 2 u 2 1 µ(du) = A 0 2 .
L'idée générale du passage à la limite non visqueuse est résumée dans le diagramme suivant:

P k * t µ k (I) (III) µ k (II) P * t µ (IV )
µ Ici (P k * t ) représente une suite en k de dynamiques duales de Markov associées à l'équation (2.1) pour une certaine suite α k . Les µ k sont des mesures invariantes correspondantes, et P * t est la dynamique des mesures associée à l'équation de Benjamin-Ono. Alors • (I) traduit l'invariance de µ k sous l'action de P k * t , cela est déjà acquis dans la section précédente;

• (II) représente la convergence faible de la suite µ k vers un éventuel point d'accumulation: cela s'obtient en utilisant les estimées (2.7) avec le théorème de Prokhorov;

• (III) traduit la convergence faible de µ k vers l'évolution de la mesure limite µ à un temps arbitraire. Nous nous élargissons sur ce point dans la suite;

• Une fois (III) établi, l'unicité de la limite faible nous emmène directement à l'invariance de µ sous la dynamique associée à l'équation de Benjamin-Ono, ce qui est traduit par (IV ).

Revenons à l'étape (III), nous pouvons observer que la double convergence qui y est contenue nous oblige à établir une convergence quelque part uniforme du modèle stochastique (2.1) vers l'équation de Benjamin-Ono (1.5). C'est le résultat établi dans lemme suivant:

Lemme 2.1.8. Pour tout T , R, r > 0, nous avons

sup w∈B R sup t∈[0,T ] E φ α t w -φ t w 2 1 { z L ∞ t H 2 x ≤ √ αr} R,T ,r √ α.
Ici B R est la boule centrée en 0 et de rayon R de H 3 , φ α t et φ t sont les flots respectifs de (2.1) et (1.5) et z est la partie stochastique de la solution de (2.1).

Ce lemme, combiné avec un contrôle probabiliste à l'infini que l'on a sur z 2 2 (par l'inégalité de Chebyshev), nous permet d'acquérir l'étape (III). Un argument du type "approximation/passage à la limite" permet de restituer les estimées (2.8), (2.7) et (2.9) pour la mesure limite µ. D'où, en particulier, le fait que µ est concentrée sur l'espace C ∞ (T). Nous donnerons tous les détails de la preuve au chapitre 3.

Propriétés qualitatives

Après avoir construit une mesure invariante concentrée sur C ∞ (T) pour l'équation de Benjamin-Ono, une question qui se pose concerne la non-trivialité de cette mesure. En fait une mesure invariante sur C ∞ pour cette équation peut bien être la masse de Dirac en 0. Ce type de mesures ne nous intéresse, évidemment, pas ici. En invoquant l'égalité suivante

E µ u 2 1 = A 0 2 ,
nous pouvons déjà conclure que µ est différente de la masse de Dirac en 0. Mais µ peut encore bien être une masse de Dirac concentrée en une solution stationnaire de (1.5). Nous montrons que cela n'est pas, non plus, le cas et qu'une infinité de lois de conservations indépendantes (au sens qu'elles sont principalement définies par des normes de Sobolev à régularités différentes) ont, via µ, des lois à densité par rapport à la mesure de Lebesgue sur R. Nous établissons également une propriété concernant la dimension de µ.

Théorème 2.1.9. Il existe une suite (F n ) de lois de conversations de (1.5) ayant la forme 

F 0 (u) = u 2 , F n (u) = u 2 n + R n (u) n ≥ 1, où R n (u
F n (u(t)) = F n (u(0)) + α t 0 A(s)ds + √ α ∑ m∈Z 0 λ m t 0 ∂ u F n (u, e m )dβ m (s), où A(s) = ∂ u F n (u, ∂ 2 x u) + 1 2 ∑ m∈Z 0 λ 2 m ∂ 2 u F n (u, e m ).
Le temps local Λ t (a, w) de F n (u) peut être donné en fonction des termes qui interviennent dans ce développement. En moyennant en ensemble par rapport à la mesure invariante µ α , nous obtenons

EΛ t (a) = -αtE[A(0)1 (a,+∞) (F n (u))].
(2.10) D'autre part, une identité bien connue des temps locaux combinée avec l'invariance de µ α nous emmène à 2

Γ EΛ t (a)da = αt ∑ m∈Z 0 λ 2 m E[1 Γ (F n (u))∂ u F n (u, e m )],
(2.11) pour tout ensemble borélien de R. Combinant (2.10) et (2.11), nous récupérons 3. Traitement du terme de gauche de (2.12). Ici, deux évènements se complètent:

E 1 Γ (F n (u)) ∑ m∈Z 0 λ 2 m ∂ u F n (u, e m ) = -2 Γ E[A(0)1 (a,+∞) (F n (u))]da. ( 2 
• Un évènement du type: u << 1 ou |∂ u E(u, .)| >> 1, cet évènement est de probabilité << 1 compte tenu du théorème d'estimation au voisinage de 0 et de l'inégalité de Chebyshev.

• L'évènement contraire où les deux quantités sont de taille intermédiaire, là on peut minorer le terme de gauche de (2.12). Combinant les deux situations, nous clôturons la preuve.

Il se trouve qu'une version multi-dimensionnelle de la relation (2.12) peut être établie en utilisant une estimation de Krylov sur les processus d'Ito [START_REF] Krylov | On estimates of the maximum of a solution of a parabolic equation and estimates of the distribution of a semimartingale[END_REF], c'est une étape considérable dans la méthode de 2.2 Mesure invariante concentrée sur H 2 ×H 1 pour l'équation de Klein-Gordon en 3D

Cette section présente les résultats obtenus dans [START_REF] Sy | Invariant measure and large time dynamics for the Klein-Gordon equation in 3D[END_REF].

Le problème et présentation du résultat principal

Nous considérons dans cette partie l'équation de Klein-Gordon . Le problème que l'on se pose ici est la construction d'une mesure invariante dans une configuration non radiale. Un problème que l'on rencontre si nous optons pour la théorie des mesures de Gibbs est que la mesure devra être définie sur H -1-2 . Le problème sera donc de donner un sens à la non-linéarité à ce niveau de singularité. Maintenant si nous décidons d'utiliser la théorie FDL, nous savons a-priori que nous serons face à une perte de contrôles dans la méthode, cela est dû au fait que nous ne disposons que d'une seule loi de conservation coercive. Par exemple, le seul contrôle que fournit l'énergie ne suffit pas pour avoir la compacité dont l'existence d'une mesure invariante requiert. D'autre part, dans la question de non-dégénérescence, nous perdons le théorème d'estimation uniforme d'une mesure invariante au voisinage de 0. Ce résultat reposait fortement sur la conservation d'une norme du type L 2 . Un aspect de notre problème concerne donc l'extension de la théorie FDL à une EDP à une seule loi de conservation. Pour cela, nous introduisons deux lois presque conservées, dans un sens que nous définirons, basées sur des modifications du hamiltonien. Ces deux lois presque conservées sont utilisées pour la construction d'une mesure invariante concentrée sur H 2 × H 1 . Par contre elles n'aident pas dans le problème de la non-dégénérescence, cette question est réglée par un argument d'approximation que l'on combine avec une estimée de Krylov. Voici le résultat principal: Théorème 2.2.1. Soit λ 0 la première valeur propre de -∆ sur K = T 3 ou D. Supposons que m 2 0 > -λ 0 , alors il existe une mesure µ définie sur H 1 × L 2 invariante pour l'équation (2.13) et vérifiant

∂ 2 tt u -∆u + m 2 0 u + u 3 = 0. ( 2 
1. µ(H 2 (K) × H 1 (K)) = 1; 2. 0 < H 1 ×L 2 y 2 H 2 ×H 1 µ(dy) < +∞; 3. Il existe σ > 0 tel que H 1 ×L 2
e σ E(y) µ(dy) < +∞, où l'énergie E(y) est donnée par

E(y) = 1 2 (|∇u| 2 + |∂ t u| 2 + m 2 0 |u| 2 ) + 1 4 u 4 .
En conséquence, µ jouit d'une propriété de décroissance à l'infini, au moins, aussi rapide qu'une gaussienne sur H 1 × L 2 ;

4. La distribution via µ du hamiltonien admet une densité par rapport à la mesure de Lebesgue définie sur R.

Remarque 2.2.2. Dans le cas du domaine borné, on a que λ 0 > 0, donc il est permis à m 2 0 de descendre dans des nombres négatifs, nous couvrons en particulier le cas de l'équation des ondes qui correspond à m 0 = 0. Dans le théorème ci-dessus, l'espace de Sobolev d'ordre m est défini par la norme donnée par

u 2 m = ∑ j≥0 (m 2 0 + λ j ) m |u j | 2 , où u = ∑ j≥0
u j e j , -∆e j = λ j e j .

Dans les sections suivantes, nous donnons l'idée générale de la preuve de ce résultat. Certaines de ses étapes étant similaires au cas discuté dans le précédent problème, nous ne les reprendrons pas entièrement bien qu'il y ait des différences d'ordre technique. Nous nous résumerons aux propriétés clé concernant les lois presque conservées que nous introduisons, et au problème de non-dégénérescence qui requiert des changements au niveau de l'argument général de l'approche des temps locaux.

Presque conservation

Avant de présenter le sens de la presque conservation utilisée ici, commençons par présenter brièvement des contextes antérieurs dans lesquels une notion de presque conservation est intervenue.

Les lois presque conservées de CKSTT.

Colliander, Keel, Staffilani, Takaoka et Tao ont construit une méthode de presque conservation (voir par exemple [CKS + 02]) permettant d'exploiter une énergie conservée par une EDP dans un espace de régularité autre que la naturelle; elle est appelée la I-method. Elle procède par une "régularisation" des hautes fréquences tout en laissant inchangées les basses; dans ce contexte, la loi est dite presque conservée si sa dérivée par rapport au temps reste petite dans un sens approprié.

Les pseudo-énergies de Oh-Tzvetkov.

Une théorie des mesures quasi-invariantes pour des EDPs hamiltoniennes a été développée par Tzvetkov [START_REF] Tzvetkov | Quasiinvariant Gaussian measures for one-dimensional Hamiltonian partial differential equations[END_REF] et Oh-Tzvetkov [START_REF] Oh | Quasi-invariant Gaussian measures for the cubic fourth order nonlinear schrödinger equation[END_REF]. Une mesure est dite quasi-invariante pour une EDP si son évolution sous le flot de l'EDP lui est absolument continue en tout temps. Dans un contexte où l'évolution est réversible, comme pour les EDPs hamiltoniennes, il y a alors équivalence entre la mesure et son évolution: elles sont mutuellement absolument continues. Dans cette théorie, des énergies "additivement" modifiées sont introduites.

La presque conservation relative.

Dans le présent travail, il y a une sorte de structure "algébrique" dans la théorie FDL à prendre en compte. Pour bien comprendre ce fait, commençons par rappeler qu'une uniformité par rapport au coefficient de viscosité est requise pour obtenir des estimées à même d'assurer le passage à la limite α → 0. Les estimées en question sont obtenues en appliquant une formule d'Ito; grosso modo, les termes qui interagissent avec l'amortissement, qui est d'ordre α, sont mis en relation avec la variation quadratique du bruit, qui est aussi d'ordre α, et d'autres termes sans interaction ni avec l'amortissement, ni avec le bruit. Dans ce "combat", il faut que tous ces derniers termes (solitaires) disparaissent sous une moyenne par rapport à une mesure invariante, il ne resterait dans ce cas que des termes d'ordre α et l'uniformité en découlerait. Ce qui fait que cette approche "marche" pour une loi de conservation c'est que celle-ci a, avec l'équation, un "rapport algébrique" privilégié qui satisfait à cette demande. Donc pour faire fonctionner cette théorie dans un contexte de presque conservation, il faut que la structure des lois presque conservées puissent satisfaire à cette suppression de termes "solitaires" dès lors qu'on est dans un régime stationnaire. En particulier, les lois presque conservées doivent être définies par rapport au schéma de fluctuation/dissipation également. Nous développons ici cette approche des lois presque conservées relatives (au schéma de fluctuation/dissipation). Donnons maintenant une définition précise d'une loi presque conservée permettant de rendre compte de l'idée qu'on s'en est faite ci-dessus. Si nous considérons une EDP de la forme 

∂ t u = f (u), ( 2 
∂ t G(u) = (∂ u G(u), f (u)).
Considérons maintenant une perturbation (linéaire) de (2.14)

∂ t u = f (u) + αLu, (2.15) 
alors le taux d'évolution de G(u) sous (2.15) est

∂ t G(u) = (∂ u G(u), f (u)) + α(∂ u G(u), Lu).
Si G était une loi de conservation de (2.14), alors ce taux serait, en particulier, d'ordre α (i.e. de la forme αh(u) où h ne dépend pas de α).

On dira qu'une fonctionnelle G est une loi presque conservée pour (2.14) relativement à (2.15) si • G n'est pas une loi de conservation pour (2.14);

• Le taux d'évolution de G sous (2.15) ∂ t G(u) est d'ordre α.

On peut remarquer qu'alors G ne peut être qu'une perturbation (par rapport à α) d'une loi de conservation; puisque, telle que définie, son taux d'évolution est nul quand α = 0. Décrivons, maintenant, le modèle stochastique associé à (2.13) :

∂ 2 tt u -∆ 0 u + u 3 = α∆ 0 ∂ t u + √ αη.
(2.16)

Ici ∆ 0 := ∆ -m 2 0 , η = d dt ζ
est une force stochastique du type bruit blanc. On peut réécrire (2.16) en un système d'ordre 1

∂ t [u, ∂ t u] = [∂ t u, ∆ 0 u -u 3 + α∆ 0 ∂ t u] + √ α[0, η].
(2.17)

Posons y = [u, ∂ t u], le hamiltonien de l'équation de Klein-Gordon (2.13) s'écrit

E(y) = 1 2 K (|∇u| 2 + |∂ t u| 2 + m 2 0 |u| 2 )dx + 1 4 K u 4 dx.
Introduisons maintenant les fonctionnelles suivantes:

G 1 (y) = E(y) + α(m 2 0 + λ 0 ) 2 K u∂ t udx + α 2 (m 2 0 + λ 0 ) 4 K |(-∆ 0 ) 1/2 u| 2 dx, G 2 (y) = E(y) - α 2 K (∆ 0 u)∂ t udx + α 2 4 K |∆ 0 u| 2 dx.
Alors si nous supprimons le bruit dans (2.16), nous établissons la presque conservation de G 1 et G 2 :

Proposition 2.2.3. Pour une force η ≡ 0, une solution de (2.16) satisfait les estimées a-priori suivantes:

G 1 (y(t)) + α t 0 L 1 (y(s))ds ≤ G 1 (y(0)), G p 1 (y(t)) ≤ e -pαt G p 1 (y(0)), G 2 (y(t)) + α t 0 L 2 (y(s))ds ≤ G 2 (y(0)) + αcG 3 1 (y(0)); où L 1 (y) = 1 2 (m 2 0 + λ 0 ) u 2 1 + 2 ∂ t u 2 1 -(m 2 0 + λ 0 ) ∂ t u 2 + (m 2 0 + λ 0 ) u 4 L 4 L 2 (y) = 1 2 1 -u 2 2 + ∂ t u 2 1 , Ici 1 -= 1 -ε avec ε > 0 arbitrairement proche de 0.
Cette proposition établit que les fonctionnelles G 1 et G 2 sont dissipées avec des taux de dissipation (modulo α) correspondant à L 1 et L 2 respectivement. Dans le cas de G 2 , le terme αG 1 (y(0)) 3 intervient comme un terme d'erreur. Mais étant d'ordre α, il ne paralysera pas notre analyse. On s'attend qu'après l'introduction de la force stochastique, il n'y aura que des termes d'ordre α qui se rajouteront dans la partie de droite. Ce qui fera alors que sous un régime stationnaire, nous obtenons uniquement des termes d'ordre α et l'uniformité cherchée.

Des résultats similaires à ceux sur l'équation de Benjamin-Ono sont obtenus:

• Le problème stochastique a un caractère bien posé global stochastique sur H 1 × L 2 , et est bien structuré sur les triplets

(H m × H m-2 , H m × H m-1 , H m × H m ) pour m = 1, 2.
• Des mesures stationnaires µ α sont construites pour le problème (2.16), des estimées uniformes en α sont obtenues.

• Après une procédure de passage à la limite α → 0 nous récupérons:

Théorème 2.2.4. Il existe un point d'accumulation µ de (µ α ) par rapport à la topologie faible de H 1 × L 2 vérifiant 1. µ est invariante sous le flot de l'équation de Klein-Gordon défini sur H 1 × L 2 ;

2.

µ(H 2 × H 1 ) = 1; 3. H 1 ×L 2 L 1 (y)µ(dy) ≤ A 0 , H 1 ×L 2 y H 2 ×H 1 µ(dy) < +∞; 4. Pour tout p ≥ 1 H 1 ×L 2 E p (y)µ(dy) ≤ 3p p A p 0 .

Propriétés de la distribution via µ du Hamiltonien

Dans cette partie nous nous intéressons aux propriétés de non-dégénérescence pour la mesure invariante µ construite sur H 2 (K) × H 1 (K) pour l'équation de Klein-Gordon (2.13). Rappelons qu'à ce niveau, on ne sait pas encore si µ n'est pas trivialement une mesure de Dirac concentrée en 0. Notre but est de prouver une propriété de continuité absolue de la distribution du hamiltonien via µ. Cette propriété exclurait les phénomènes de concentration et fournirait une bonne propriété qualitative. En adoptant la technique des temps locaux pour établir une telle propriété, la difficulté à affronter est la non conservation d'une norme de type L 2 par (2.13). Cela implique qu'un contrôle du type

µ( u ≤ δ ) δ (2.18)
n'est pas disponible, ce qui va entraîner une modification que nous décrivons ci-dessous: Comme dans le cas de l'équation de Benjamin-Ono, nous obtenons la relation "maîtresse"3 pour le hamiltonien E(y), où y est solution de l'équation stochastique, 

E 1 Γ (E(y)) ∑ m≥0 a 2 m (∂ t u, e m ) 2 = Γ E (2 ∇∂ t u(0) 2 1 + 2 ∂ t u(0) 2 -A 0 )1 (a,+∞) (E(y))
E * µ α (Γ) = E * µ α (Γ ∩ {0}) + E * µ α (Γ ∩ (0, +∞)) ≤ f (l(Γ))
où f ne dépend pas de α et est continue avec f (0) = 0. Avec le théorème Porte-manteau, nous récupérons la propriété pour µ.

2. En 0. Montrons que P(u ≡ 0) = 0. Pour cela il suffit de montrer que P(u m = 0) = 0 où u m est la projection de u sur un certain vecteur de la base (e m ). Nous le faisons en réutilisant la procédure du temps local avec l'équation (2.16) projetée sur la direction e m . Ici la minoration de la variation quadratique est directe car nous n'avons qu'un seul terme qui est positif. Nous obtenons le résultat escompté.

3. Sur (0, +∞). Par la régularité de µ, il suffira de le faire sur les intervalles [ε, +∞) où ε > 0 est arbitraire. Posons, pour R > 0, les ensembles suivants

I ε = {u ∈ H 2 , ∂ t u ≥ ε}, I ε,R = I ε ∩ { ∂ t u 1 ≤ R}, I ε,R = I ε ∩ { ∂ t u 1 > R}.
Chapter 2. Présentation des travaux de thèse Nous montrons que sur I ε,R nous avons

∑ m≥0 a 2 m (∂ t u, e m ) 2 ≥ a 2 N (ε 2 -(m 2 0 + λ N ) -1 R 2 ) =: 1 C N,R,ε , où a N = min{a m , 0 ≤ m ≤ N}, N ∈ N * . Remarquons que pour tout ε > 0 et tout R > 0, il existe N ∈ N * tel que C N,R,ε > 0. On récupère E * µ α (Γ ∩ [ε, R]) C N,R,ε l(Γ).
Il reste à remarquer, par l'inégalité de Chebyshev, que

E * µ α (Γ ∩ (R, +∞)) R -2 .
L'idée générale de la preuve est complète. Cette dernière est entièrement présentée au chapitre 4.

Chapter 3

Invariant measure and long time behavior of regular solutions of the Benjamin-Ono equation

Abstract. The Benjamin-Ono equation describes the propagation of internal waves in a stratified fluid. In the present work, we study large time dynamics of its regular solutions via some probabilistic point of view. We prove the existence of an invariant measure concentrated on C ∞ (T) and establish some qualitative properties of this measure. We then deduce a recurrence property of regular solutions and other corollaries using ergodic theorems. The approach used in this paper applies to other equations with infinitely many conservation laws, such as the KdV and cubic Schrödinger equations in 1D. It uses the fluctuation-dissipation-limit approach and relies on a uniform smoothing lemma for stationary solutions to the damped-driven Benjamin-Ono equation. 

Introduction

The problem and statement of the main result

The Benjamin-Ono (BO) equation

∂ t u + H∂ 2 x u + u∂ x u = 0 (3.1)
describes the propagation of internal waves in a stratified fluid. The operator H entering the equation is the Hilbert transform, it can be defined in Fourier setting as the multiplier by -i sgn (see Appendix). We assume that u(t, x) is a real-valued function, t ∈ R + and x belongs to the torus T = R/2πZ. In this setting, existence and uniqueness of solution hold in any Sobolev space H s for s ≥ 0 (see, e.g., [START_REF] Molinet | Global well-posedness in L 2 for the periodic Benjamin-Ono equation[END_REF][START_REF] Molinet | The Cauchy problem for the Benjamin-Ono equation in L 2 revisited[END_REF] for its global wellposedness in L 2 (T) ). In the present paper, we use only the wellposedness of the problem in Sobolev spaces H s (T) with s ≥ 2, so we refer the reader to [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF].

In L 2 := L 2 (T), the wellposedness of (3.1) generates a topological dynamical system (DS) (L 2 , φ t ), where φ t is the flow of the equation. We are concerned in the description of the long time behavior of this dynamical system. Given a Borel measure µ on L 2 , we say that µ is invariant for (L 2 , φ t ) if for any Borel set A of L 2 , we have µ(φ -1 t A) = µ(A), ∀t. When such a measure exists, the triple (L 2 , φ t , µ) is called a measurable dynamical system (MDS). If in addition µ is finite, then we have very important informations on the dynamics. Indeed the Poincaré recurrence theorem states that the dynamics is recurrent, that is, µ-almost every orbit returns in any neighborhood of its origin in finite time. The well-known Von Neumann and Birkhoff ergodic theorems also apply to give more information on the long time behavior of the system. Our aim here is to construct such a measure, that will contribute to improve the understanding of the behaviour of the solutions of (3.1).

Matsuno [START_REF] Matsuno | Bilinear transformation method[END_REF] derived (at least formally) infinitely many conservation laws for the BO equation (3.1). They have the form

E n (u) = u 2 n + R n (u), n ∈ N 2 , ( 3.2) 
where . n stands for the homogenous Sobolev norm of order n and R n is a lower order term. In [TV13, TV14, TV15, Den15, DTV15] Deng, Tzvetkov and Visciglia constructed a sequence of invariant Gaussian type measures {µ n } for (L 2 , φ t ) satisfying the following:

• µ n is concentrated on H s (T), for s < n -1 2 , ( * ) • µ n (H n-1/2 (T)) = 0. ( * * )
Formally, µ n is defined as a renormalization of

dµ n (u) = e -E n (u) du = e -R n (u) e -u 2 n du,
where E n (u) and R n (u) are the quantities given in (3.2). These authors constructed a Gaussian interpretation of the expression e -u 2 n du on the concerned spaces and proved that e -R n (u) is an integrable density. In view of these results, there is a MDS for (3.1) in any Sobolev space and then its large time dynamics is described in the mind of the theorems mentioned above. However, these results do not apply to infinitely smooth solutions, indeed by the property ( * * ) we have µ n (C ∞ (T)) = 0, for all n.

In the present work, we construct a measurable dynamical system for (3.1) on the space C ∞ (T). Naturally, the Dirac measure at 0 is not the desired measure although it is invariant under the flow of BO, but it gives only trivial information. More generally, to get substantial informations on the system we have to avoid too singular measures. Another example of such measures is the one concentrated on a stationary solution. Notice that measures µ n discussed above verify the following "consistency" property: every set of full µ n -measure is dense in Ḣ(n-1/2) -. Concerning the space C ∞ , an obstruction to the construction of an invariant Gaussian type measure is the non-existence of conservation law compatible with the regularity of that space. In particular, the approach used in the construction of the measures µ n above does not seem to apply.

Another method allowing to construct invariant measures (a priori not of Gaussian type) for PDEs was developed in [START_REF] Kuksin | The Eulerian limit for 2D statistical hydrodynamics[END_REF][START_REF] Kuksin | Randomly forced CGL equation: stationary measures and the inviscid limit[END_REF] in the context of Euler and Schrödinger equations, respectively. It is based on a fluctuation-dissipation (FD) argument and consists of adding to the equation appropriately normalized damping and stochastic terms, constructing an invariant measure for the resulting problem, and passing to the limit. But, a priori, the obstruction encountered in the Gaussian type measure approach still remains in the FD approach because the underlying regularization is of Sobolev order and not C ∞ . The idea in the present work is to exploit the regularization inherent in this approach with use of an infinite sub-sequence of the Benjamin-Ono conservation laws to reach the C ∞regularity. In order to bring out a key preliminary result, we give the following "stochastic set up": Consider the diffusion problem (also called stochastic Benjamin-Ono-Burgers (BOB) equation)

∂ t u + H∂ 2 x u + u∂ x u = α∂ 2 x u + √ αη, t > 0, x ∈ T, (3.3) 
where η is a stochastic force and α ∈ (0, 1) is a viscosity parameter. In fact the problem (3.1) is the limit as α → 0 of (3.3). A probabilistic global welposedness for (3.3) is proved in Section 3.3. Moreover, in Section 3.4, we establish the existence of stationary solutions4 for this equation. We present now the following smoothing property for stationary solutions:

Lemma 3.1.1. Suppose that the noise η is sufficiently regular in space. Let u α be a stationary solution to (3.3) such that E u α (t) p < ∞ ∀p ≥ 2.

(3.4)

Then E u α (t) 2 n < ∞ ∀n ≥ 1. (3.5)
Moreover, if (3.4) holds uniformly in α then so does (3.5).

The proof of this lemma relies on combination of deterministic and probabilistic estimation based on the conservation laws of (3.1).

We prove in Section 3.4 that any stationary solution to (3.3) satisifes (3.4) uniformly in α. Then, from (3.5) we conclude that stationary solutions to (3.3) are concentrated on C ∞ . Passing to the limit as the viscosity goes to zero, we find the main result of this paper (Theorems 3.5.3, 3.6.1, 3.6.3 and 3.6.6): Theorem 3.1.2. There is a probability measure µ invariant under the flow of the BO equation (3.1) defined on H 3 (T) and such that µ(C ∞ (T)) = 1.

Moreover, µ satisfies the following properties:

1. For any integer n, we have

0 < H 3 u 2 n µ(du) < ∞.
2. There are constants σ ,C > 0 such that for any R > 0

µ(u ∈ H 3 , u ≥ R) ≤ Ce -σ R 2 .
3. There is an infinite sequence of conservation laws of the form (3.2) whose laws under µ are absolutely continuous with respect to the Lebesgue measure on R.

4. The measure µ is of at least two-dimensional nature in the sense that any compact set of Hausdorff dimension smaller than 2 has µ-measure 0.

In fact, we expect infinite-dimensionality of the measure constructed here as in [Kuk08, KS12] concerning the 2D Euler equations. To show this property in the context of the Benjamin-Ono equation, we have to prove some algebraic independence of the gradients of the conservation laws. In the present work, we meet a technical difficulty to establish such an independence for an arbitrary number of conservation laws. We propose a proof inspired by [START_REF] Kuksin | On distribution of energy and vorticity for solutions of 2d Navier-Stokes equation with small viscosity[END_REF][START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF] which works for the (at least) 2-dimensionality. Then the infine-dimensionality of µ remains an open question.

We deduce the following result by applying the Poincaré recurrence theorem.

Corollary 3.1.3. For µ-almost all w in C ∞ (T), there is a sequence {t k } increasing to infinity such that lim k→∞ S t k w -w n = 0 f or any n ≥ 0.

Here S t denotes the flow of the Benjamin-Ono equation (3.1) on H 3 (T).

In the construction of such a measure, we used the control of Sobolev's norms provided by the infinite sequence of conservation laws. The KdV and cubic 1D NLS equations have infinitely many conservation laws whose structure is similar to (3.2) and our approach applies to these equations. Notice that an infinite sequence of invariant Gaussian type measures of increasing regularity was constructed for KdV and cubic 1D NLS in [START_REF] Zhidkov | Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory[END_REF][START_REF] Zhidkov | On an infinite sequence of invariant measures for the cubic nonlinear Schrödinger equation[END_REF], we give then a kind of extension of this work to the C ∞ (T) space. However, the Benjamin-Ono equation is more difficult than these equations because of the weakness of its dispersion compared to KdV and the presence of a derivative in its nonlinearity compared to NLS. Then, here, we confine ourself to the study of the BO equation which is less understood.

Let us briefly discuss an equation having infinitely many conservation laws but not admissible to the approach developped here. Consider the non-viscous Burgers equation

∂ t u + u∂ x u = 0. (3.6)
It is easy to check that an infinite sequence of conservation laws is given by the quantities

L p (u) = u p , p ≥ 1.
Our approach does not apply to (3.6). This is due to its lack of dispersion which breaks the control of Sobolev's norms.

Notations

Let A and B be two positive quantities, we write

A B if there is a universal constant λ ≥ 0 such that A ≤ λ B.
For a real number r, r + (resp. r -) denotes r + ε (resp. rε) where ε is a positive number close enough to 0, while r + := max(r, 0). Z 0 denotes the set of nonzero integers. Ḣ(T) = {u ∈ L 2 (T) : T u(x)dx = 0}. Ḣs (T) = {u ∈ Ḣ(T) : D s u ∈ Ḣ(T)}, D s is the sth derivative of u, where s ≥ 0. The Ḣs -norm is denoted by . s when s > 0 and the L 2 -norm is denoted by . . For a functional A(u), A (u, v)

:= ∂ u A(u, v) = ∂ A| u (v) and A (u, v) := ∂ 2 u A(u, v) = ∂ 2 A| u (v, v)
denote the first and second derivative of A w.r.t. u. The sequence {e n , n ∈ Z 0 } is defined by

e n (x) = sin(nx) √ π , for n > 0, cos(nx) √ π , for n < 0.
and forms an orthonormal basis of Ḣ(T).

(Ω, F , P) is a complete probability space and F t is a right-continuous filtration augmented w.r.t.

(F , P). Given a sequence of real numbers {λ n } and a sequence of independent real standard Brownian motions {β n (t)} adapted to F t , we set

ζ (t, x) = ∑ n∈Z 0 λ n β n (t)e n (x), (3.7) η(t, x) = d dt ζ (t, x), (3.8) 
A s = ∑ n∈Z 0 λ 2 n n 2s .
(3.9)

Deterministic estimates

Recall that E n (u) denotes the n-th conservation law of the Benjamin-Ono equation (see Section 1.3 for its description). Let us give some properties for the integer order ones:

Lemma 3.2.1. For any integer n ≥ 1, there are c - n , c + n > 0 such that for all u in H n (T)

1 2 u 2 n -c - n u 2n+2 ≤ E n (u) ≤ 2 u 2 n + c + n u 2n+2 .
(3.10) Lemma 3.2.2. For all ε > 0, there is C ε > 0 such that for all u in H n+1 (T)

E n (u, ∂ 2 x u) ≤ (-2 + ε) u 2 n+1 +C ε u (1 + u ) b n ,
where b n depends only on n.

Remark 3.2.3. Since the L 2 -norm is preserved by (3.1) we can deduce from (3.10) and the arguments of the proof of Lemma 3.2.2, by adding appropriate polynomials of u , new conservation laws E * n (u) and Ẽn (u) satisfying

0 ≤ u 2 n ≤ E * n (u), 0 ≤ u 2 n ≤ Ẽ n (u, u).
Inequalities (3.10) can be established using arguments similar to those of the proof of Lemma 3.2.2.

Proof of Lemma 3.2.2. Taking into account of the properties of the Hilbert transform such as continuity on H s and L p (s ≥ 0, p ∈]1, ∞[), we can neglect its effect for our purpose and just consider the functions

R 1 n (u) = u∂ n-1 x u∂ n x u, R 2, j n (u) = j ∏ i=1 ∂ α i x u, j = 3, ..., 2n + 2, j ∑ i=1 α i = 2n + 2 -j.
Here R 1 n (u) corresponds to the first term of (1.15) and the second term of (1.15) can be estimated considering the quantities R 2, j n (u). Set R 0 n = u 2 n .

Estimates concerning R 0 n :

∂ u R 0 n (u, ∂ 2 x u) = -2 u 2 n+1 . (3.11)
Estimates concerning R 1 n :

∂ u R 1 n (u, ∂ 2 x u) = ∂ 2 x u∂ n-1 x u∂ n x u + u∂ n+1 x u∂ n x u + u∂ n-1 x u∂ n+2 x u = ∂ 2 x u∂ n-1 x u∂ n x u -∂ x u∂ n-1 x u∂ n+1 x u = 2 ∂ 2 x u∂ n-1 x u∂ n x u + ∂ x u(∂ n x u) 2 = (1) + (2).
Let γ i , i = 1, 2, 3 be three positive numbers satisfying ∑ 3 i=1 1 γ i = 1, we apply the generalised Hölder formula with them to find

|(1)| ≤ ∂ 2 x u L γ 1 ∂ n-1 x u L γ 2 ∂ n x u L γ 3 .
By the embedding inequality .

L γ i . 1/2-1/γ i , we get |(1)| u 5/2-1/γ i u -1/2-1/γ i +n u 1/2-1/γ i +n .
Now interpolate between L 2 and H n+1 to find

|(1)| ≤ C 1 u d 1 n+1 u 3-d 1
where

d 1 = 2n + 3 2(n + 1) < 2.
On can establish the same control (with same d 1 ) for |(2)| by remarking that

|(2)| u 1 ∂ n x u 2 L 4 u 1 u 2 n+1/4 u (n+1-1)+2(n+1-n-1/4) n+1 n+1 u c . Then for suitable b 1 |∂ u R 1 n (u, ∂ 2 x u)| ≤ ε u 2 n+1 +C 1 ε u b 1 . (3.12)
Estimates concerning R 2, j n :

∂ u R 2, j n (u, ∂ 2 x u) = j ∏ i=1 ∂ α i x u j = 3, ..., 2n + 2,
where ∑ j i=1 α i = 2nj + 4 and max 1≤i≤ j α i ≤ n + 1. We follow two complementary cases:

• Case 1: max 1≤i≤ j α i ≤ n. Let (γ i ) be j real numbers such that ∑ j i=1 1 γ i = 1. Then the generalized Hölder formula combined with usual interpolation inequalities shows:

|∂ u R 2, j n (u, ∂ 2 x u)| ≤ C j ∏ i=1 u κ i ,
where

κ i = 1 2 -1 γ i + α i . Then |∂ u R 2, j n (u, ∂ 2 x u)| ≤ C j ∏ i=1 u n+1-κ i n+1 u κ i n+1 n+1 . Remark now that j ∑ i=1 κ i = j ∑ 1 1 2 - 1 γ i + α i = 2n + 3 - j 2 , then j ∑ i=1 κ i n + 1 = 2n + 3 -j 2 n + 1 < 2.
Thus for suitable b 2 ,

|∂ u R 2, j n (u, ∂ 2 x u)| ≤ ε u 2 n+1 +C 2 ε u b 2 .
• Case 2 :

α 1 = n + 1. Then ∑ j i=2 α i = n -j + 3 ≤ n.
We have then

|∂ u R 2, j n (u, ∂ 2 x u)| ≤ u n+1 j ∏ i=2 |∂ α i x u| 2 1 2 .
Take again (γ i ) such that ∑ j i=2

1 γ i = 1. Then |∂ u R 2, j n (u, ∂ 2 x u)| ≤ u n+1 j ∏ i=2 ∂ α i x u L 2γ i ≤ u n+1 j ∏ i=2 u κ i , κ i = 1 2 - 1 2γ i + α i , ≤ u n+1 j ∏ i=2 u n+1-κ i n+1 u κ i n+1 n+1 . Since ∑ j i=2 κ i = n + 2 -j 2 ≤ n + 1 2 , we have 1 n+1 ∑ j i=2 κ i < 1 and the existence of a suitable b 3 such that |∂ u R 2, j n (u, ∂ 2 x u)| ≤ ε u 2 n+1 +C 3 ε u b 3 . (3.13)
Combining (3.11), (3.12) and (3.13) with a good choice of ε, we have the claim.

IVP of the stochastic BOB equation

Consider the initial value problem concerning the stochastic BOB equation (3.3)

∂ t u + H∂ 2 x u + u∂ x u = α∂ 2 x u + √ αη t > 0, u| t=0 = u 0 .
(3.14)

Recall that, for s ≥ 0,

A s = ∑ m∈Z 0 m 2s λ 2 m ,
these quantities measure the regularity in space of the noise. Namely, A s < +∞ ⇔ η(t, .) ∈ Ḣs .

Stochastic wellposedness, well-structuredness

Proposition 3.3.1. Let s ≥ 2 be an integer. Suppose A s is finite. Then the problem (3.14) is stochastically globally wellposed in Ḣs (T) in the sense of Definition 1.6.11.

In order to prove the existence result in Proposition 3.3.1, we split the problem (3.14) as follow:

• A linear stochastic problem:

∂ t z α + H∂ 2 x z α = α∂ 2 x z α + √ αη t > 0, z α | t=0 = 0.
(3.15)

• A nonlinear deterministic problem:

∂ t v + H∂ 2 x v + (v + z α )∂ x (v + z α ) = α∂ 2 x v t > 0, v| t=0 = u 0 .
(3.16)

Here z α is a realization of a solution of (3.15).

For z α and v respective solutions of (3.15) and (3.16), it is easy to see that u = v + z α is a solution of (3.14). The linear problem (3.15) is solved by the stochastic convolution (see section 1.6.3):

z α (t) = √ α t 0 e -(t-s)(H-α)∂ 2 x dζ (s) =: √ αz(t).
(3.17)

Remark that, as defined, the function z still depends on α. But all its Sobolev norms are uniformly controlled with respect to α, this justifies that abuse of notation. If for some s ≥ 0 A s is finite, then we have for all T > 0 By the integration by parts formula (1.17), we get

z ∈ Λ T (s) := C([0, T ], Ḣs (T)) ∩ L 2 ([0, T ], Ḣs+1 ( 
z m (t) = λ m β m (t) + m 2 (isgn(m) -α)λ m t 0
e m 2 (t-s)(isgn(m)-α) β (s)sds.

Then we arrive at

sup t∈[0,T ] |z m (t)| 2 ≤ 2λ 2 m [1 + (1 -α) 2 m 4 T 2 ] sup t∈[0,T ] |β m (t)| 2 ≤ 2λ 2 m [1 + m 4 T 2 ] sup t∈[0,T ] |β m (t)| 2
After summing in m, we arrive at

sup t∈[0,T ] z(t) 2 T sup t∈[0,T ] ζ (t) 2 2 .
More generally, for any m such that A m+2 is finite, we have sup

t∈[0,T ] z(t) 2 m T sup t∈[0,T ] ζ (t) 2 m+2 , finally sup t∈[0,T ] z α (t) 2 m T α sup t∈[0,T ] ζ (t) 2 m+2 .
(3.20)

Proposition 3.3.2. Let s ≥ 2 be an integer, suppose A s < ∞. Let u 0 be a random variable in Ḣs (T) independent of F t . Then for any T > 0, for a.e ω, the nonlinear problem (3.16) associated to u 0 admits a solution in Λ T (s). Moreover the process solution is adapted to σ (u 0 , F t ).

Proposition 3.3.2 is proved combining the two paragraphs below:

A priori estimates. The following lemma is proved using the first three integer order (modified) conservation laws E * n (u) of the Remark 3.2.3, its proof is presented in the appendix. Lemma 3.3.3. For any T > 0, for almost any realization of z we have the following a priori estimates for the nonlinear problem (3.16)

sup t∈[0,T ] v(t) 2 i + α T 0 v(t) 2 i+1 dt ≤ C T , u 0 i , z L ∞ (0,T ;H i ) i = 0, 1, 2, (3.21) 
where C does not depend on α ∈ (0, 1).

Since H 2 (T) is continuously embedded in C 1 (T), we infer Corollary 3.3.4. For any T > 0. For almost any realization of z, for any initial datum u 0 ∈ H 2 , a solution v to (3.16) satisfies

sup t∈[0,T ] ∂ x v(t) L ∞ ≤ C T , u 0 2 , z L ∞ (0,T ;H 2 ) , (3.22)
where C does not depend on α ∈ (0, 1).

Lemma 3.3.5. For any T > 0, any integer s > 2, for almost any realization of z we have the higher order a priori estimates for (3.16)

sup t∈[0,T ] v(t) 2 s + α T 0 v(t) 2 s+1 dt ≤ C T , u 0 s , z L ∞ (0,T ;H s ) , (3.23) 
where C does not depend on α ∈ (0, 1).

Before giving the proof of the estimate (3.23), let us prove the following commutator estimate:

Lemma 3.3.6. Let s ≥ 3 be an integer and v be in H s+1 . We have

[∂ s x , v]∂ x v v 2 v s , (3.24) where [∂ s x , v]∂ x v = ∂ s x (v∂ x v) -v∂ s x (∂ x v). Proof. By the Leibniz rule we have [∂ s x , v]∂ x v = s ∑ k=1 s k ∂ k x v∂ s+1-k x v.
We separate the above sum in three general terms:

1. We have k ∈ {1, s} if and only if the general term is ∂ x v∂ s x v. By using the embedding H 1 ⊂ L ∞ , we have the inequality

∂ x v∂ s x v ≤ v 2 v s .
2. We have k ∈ {2, s-1} if and only if the general term is ∂ 2 x v∂ s-1 x v. We have (always by

H 1 ⊂ L ∞ ) ∂ 2 x v∂ s-1 x v ≤ v 2 v s .
3. Only when s ≥ 5 we have a last situation which is 3 ≤ k ≤ s -2, we have then 3 ≤ s + 1k ≤ s -2 as well. We estimate the corresponding general term as follows

∂ k x v∂ s+1-k x ≤ v k+1 v s+1-k v s-k-1 s-2 2 v k-1 s-2 s v k-1 s-2 2 v s-k-1 s-2 s = v 2 v s .
We complete the proof after taking a weighted sum of these terms.

Proof of the estimate (3.23). We recall the non-linear equation satisfied by v:

∂ t v + H∂ 2 x v -α∂ 2 x v = -v∂ x v -∂ x (vz α ) - 1 2 ∂ x z 2 α .
Then for an integer s > 2, we have

(∂ s x v, ∂ s x ∂ t v) + α(∂ s+1 x v, ∂ s+1 x v) = -(∂ s x v, ∂ s x (v∂ x v)) -(∂ s x v, ∂ s+1 x (vz α )) =+(∂ s+1 x v,∂ s x (vz α )) + 1 2 (∂ s+1 x v, ∂ s x z 2 α ). Therefore 1 2 ∂ t v 2 s + α v 2 s+1 = (1) + (2) + (3).
Using the commutator estimate (3.24) and the algebra structure of H s (T), we have

|(1)| = |(∂ s x v, ∂ s x (v∂ x v) -v∂ s x ∂ x v) + (∂ s x v, v∂ s x ∂ x v)| = |(∂ s x v, [∂ s x , v]∂ x v) - 1 2 (∂ x v, |∂ s x v| 2 )| v 2 s v 2 .
By Cauchy-Schwarz and the algebra structure of H s , we have

|(2)| + |(3)| ≤ α 2 v 2 s+1 +C 1 v 2 s z 2 s +C 2 α z 4 s ,
where C 1 and C 2 depend only on s. It remains to combine the Gronwall lemma with (3.21) to get the claim.

Local and global existence for the nonlinear problem (3.16). Let s ≥ 2. For a positive T the space Λ T (s) is endowed with the norm defined by

u Λ T (s) = sup t∈[0,T ] e -t T u(t) 2 s + α t 0 u(r) 2 s+1 dr 1 2 . (3.25)
Let R > 0, denote by B R the ball in H s of center 0 and radius R.

Remark 3.3.7. The factor e -t T in (3.25) is introduced just for convenience in the computations. The norm defined in (3.25) is actually equivalent to the one without that factor. Proposition 3.3.8. Let s ≥ 2, α ∈ (0, 1). For all R > 0, there is T R > 0 such that for any u 0 in B R/2 , the nonlinear problem (3.16) has a unique solution in Λ T R (s).

Remark 3.3.9. We combine the local existence of Proposition 3.3.8, Lemma 3.3.3, estimate (3.23) to get the global existence for (3.16).

Proof of Proposition 3.3.8. Let us look for a fixed point of the following map

Fv = e -t(H-α)∂ x 2 u 0 - t 0 e -(t-s)(H-α)∂ x 2 (z α + v)∂ x (z α + v)ds.
We proceed as follow:

•

Step 1: We prove that for any R > 0, there is T > 0 such that the ball B T ,s of Λ T (s) centered at 0 and of radius R satisfies

F(B T ,s ) ⊂ B T ,s if u 0 s ≤ R/2. - 1 2 d dt Fv 2 s = -(∂ t D s Fv, D s F(v)) = -((H -α)D s+1 F(v), D s+1 F(v)) + 1 2 (D s (z α + v) 2 , D s+1 F(v)) ≥ α F(v) 2 s+1 - 1 2 z α + v 2 s F(v) s+1 ≥ α F(v) 2 s+1 - α 2 F(v) 2 s+1 - C α ( z α 4 s + v 4 s ).
Then there is an universal constant c > 0 such that

d dt F(v) 2 s + α F(v) 2 s+1 ≤ c α e 2t T (R 4 + z α 4 Λ T (s) ).
Thus, after integration with respect to t, we find

F(v) 2 s + α t 0 F(v) 2 s+1 ds ≤ u 0 2 s + cT α e t T (R 4 + z α 4 Λ T (s) ).
Multiplying the last relation by e -t T , it remains to choose T so small so that we obtain the claimed result.

• Step 2: We now prove that F is a contraction on the ball constructed above. We have

∂ t Fv = -{(v + z α )∂ x (v + z α ) + (H -α)∂ x 2 Fv},
then for v 1 and v 2 in Λ T (s), we have

- 1 2 d dt Fv 1 -Fv 2 2 s = -(∂ t D s (Fv 1 -Fv 2 ), D s (Fv 1 -Fv 2 )) = (D s (F z (v 1 ) -F z (v 2 )), D s+1 (Fv 1 -Fv 2 )) + α Fv 1 -Fv 2 2 s+1 ,
where

F z (v) = 1 2 (z α + v) 2 .
We show easily that

D s (F z (v 1 ) -F z (v 2 )) 2 ≤ C(s) v 1 -v 2 2 s ( v 1 + v 2 2 s + z α 2 s ),
this allows to get that 1 2

d dt Fv 1 -Fv 2 2 s + α 2 Fv 1 -Fv 2 2 s+1 ≤ C(s) α v 1 -v 2 2 s ( v 1 + v 2 2 s + z α 2 s ) ≤ e t T C(s)(4R 2 + z 2 Λ T (s) ) α v 1 -v 2 2 Λ T (s) .
After integration in t, we find

Fv 1 -Fv 2 2 s + α t 0 Fv 1 -Fv 2 2 s+1 ds ≤ Te t T C(s)(4R 2 + z α 2 Λ T (s) ) α v 1 -v 2 2 Λ T (s) .
We multiply this inequality by e -t T , the T found in the first step can be decreased if necessary to give a contraction. We conclude by using the fixed point theorem.

Remark 3.3.10. By definition, v is σ (u 0 , F t )adapted. Then the process u = v + z α is continuous and σ (u 0 , F t )-adapted. Thanks to Lemma 1.6.2, the process u is progressively measurable with respect to that filtration.

End of the proof of wellposedness of (3.3).

End of the proof of Proposition 3.3.1. Let u 1 and u 2 be two solutions of (3.3) starting respectively at u 1,0 and u 2,0 , set w = u 1u 2 , then the problem solved by w is

∂ t w + (H -α)∂ 2 x w + w∂ x w + ∂ x (wu 2 ) = 0, w| t=0 = u 1,0 -u 2,0 =: w 0 .
Using the arguments of the proof of (3.23), we show

sup t∈[0,T ] w(t) 2 s + α T 0 w(r) 2 s+1 dr ≤ C(α, T , ∂ x w L ∞ (0,T ;L ∞ ) , u 2 L ∞ (0,T ;H s ) ) w 0 2 s .
Whence follow the uniqueness and the continuity w.r.t. initial data. This completes the proof.

The stochastic wellposedness that we finish to establish combined with the estimates (3.21) and (3.23) implies the following: Proposition 3.3.11. Let j ≥ 2. Suppose A j finite. Then the equation (3.3) is well-structured on the Gelfand triple (H j-1 , H j , H j+1 ) in sense of Definition 1.6.13.

Probabilistic estimates and Proof of Lemma 3.1.1

Exponential control of the L 2 -nom. Proposition 3.3.12. Let p ≥ 1. Then the functional E p 0 (u) = u 2p satisfies the conditions of Theorem 1.6.8 on the Gelfand triple (H -1 , L 2 , H 1 ).

Proof. Thanks to the polynomial nature of E p 0 (u) on L 2 , the uniform continuity on bounded sets and the conditions (1.19) and (1.20) follow easily. We confine ourself to the proof of (1.21). The argument we use, for this end, is the following: As we have already shown, the solution of (3.3) can be represented as a sum of a "linear part" and a "nonlinear one." Now we will show that the nonlinear part can be controlled by the initial datum and an "exponential of the averaged linear part". On the other hand, we show that the linear part is exponentially controlled, then we get the needed control on the initial solution u. Control of the nonlinear part v. In this part we prove that for all r, ε > 0 and p ≥ 1

v(r) 2p ≤ e f (r,ε,p) e 2ε p r r 0 ∂ x z α 2 L ∞ ds u 0 2 + r 0 z α 4 1 ds p , (3.26)
where f (r, ε, p) = p 4 2r + r 2 ε . Indeed, multiplying the equation (3.16) by v and integrating in x, one obtains 1 2

d dt v 2 + α v 2 1 = -(v, ∂ x (vz α )) -(v, z α ∂ x z α ) = 1 2 [(v, v∂ x z α ) + (v, ∂ x z 2 α )] ≤ 1 2 [ v vz α + v z α 2 1 ] ≤ r 8ε v 2 + ε r v 2 ∂ x z α 2 L ∞ + 1 4 v 2 + 1 4 z α 4 
1 .

Then we use the Gronwall lemma, choose t = r and take the resulting inequality to the power p to arrive at the claim. Exponential control of the linear part. Now, the linear part of the solution satisfies the following estimate: Ee

ε t t 0 z α 2 2 ds ≤ 3, (3.27)
where ε > 0 is small enough. Indeed, by applying the Ito formula to z 2p 2 for p ≥ 1 we have

E z α 2p 2 ≤ A p 1 p p κ p (3.28)
(that we can do by an approximation argument, the details will be given in the context of the Klein-Gordon equation, see the proof of Proposition 4.5.1). Integrating in t, we find

E 1 t t 0 z α 2p 2 ds ≤ A p 1 p p κ p .
Thanks to Jensen's inequality, we infer

E 1 t t 0 z α 2 2 ds p ≤ A p 1 p p κ p .
Now, let 0 < ε ≤ κ/(2A 1 e), the we have

E ε t t 0 z α 2 2 ds p p! ≤ p p 2 p e p p! .
We recall that for any integer p > 0, we have that p! ≥ p e p , then we arrive at the claimed result.

Control of the quadratic variation of E p 0 (u). We have that

∑ m≥0 a 2 m E t 0 |∂ u (E p 0 )(u, e m )| 2 ds p ∑ m∈Z 0 a 2 m E t 0 u 4(p-1) |(u, e m )| 2 ds p E t 0 u 4p-2 ds p E t 0 ( v 4p-2 + z α 4p-2 )ds.
Set q = 4p -2, one sees, with the use of the estimate (3.28) (or just by invoking the Fernique theorem), that

E t 0 z q 2 ds < ∞ f or any t ≥ 0.
Now we use the estimate (3.26), then, for any ε > 0,

E t 0 v s q ds ≤ t 0 e f (s,ε,q) E e εq s s 0 ∂ x z α 2 L ∞ dr u 0 2 + s 0 z α 4 L1 dr q ds.
Then for any δ > 0, we use the Young inequality to find

E t 0 u s q ds t 0 e f (s,ε,q) E       e q(1+δ )ε δ s s 0 ∂ x z α 2 L ∞ dr + u 0 2 + s 0 z α 4 1 dr q(1+δ ) R q,δ (s)       ds.
One uses the estimate (3.28) to bound ER q,δ (s) by C p,δ (1 + s p(1+δ ) ). On the other hand, for any δ > 0 we choose ε > 0 small enough so that one can use the estimate (3.27) and the embedding

H 2 ⊂ L ∞ to get the bound Ee 2p(1+δ )ε δ s s 0 ∂ x z α 2 L ∞ dr ≤ 3.
Then we get

E t 0 v s 2p ds t 0 e f (s,ε,p) (1 + s)ds < ∞ f or all t ≥ 0.
The proof is finished.

Proposition 3.3.13. Let u be the solution of (3.14).

1. Suppose that EE 0 (u 0 ) < ∞, then

EE 0 (u) + 2α t 0 E u(s) 2 1 ds = EE 0 (u 0 ) + αA 0 t. (3.29) 2. Let p > 1. Suppose that EE p 0 (u 0 ) < ∞, then EE p 0 (u) ≤ e -pαt EE p 0 (u 0 ) + p p A p 0 .
(3.30)

Proof. The identity (3.29) is easily proven applying the Ito formula to the conservation law E 0 (u).

Let us prove (3.30) : For p > 1, we apply the Ito formula to E p 0 (u) to find

dE p 0 (u) = pE p-1 0 (u)dE 0 (u) + α p(p -1) 2 E p-2 0 (u) ∑ m∈Z 0 λ 2 m |E 0 (u, e m )| 2 dt.
Taking the expectation, we get

EE p 0 (u) + E t 0 f α (u(s))ds = EE p 0 (u 0 ),
where

f α (u) = 2pαE p-1 0 (u) u 2 1 -α pE p-1 0 (u)A 0 - α p(p -1) 2 E p-2 0 (u) ∑ m∈Z 0 λ 2 m |E 0 (u, e m )| 2 .
Let us set

Q = pE p-1 0 (u)A 0 + p(p -1) 2 E p-2 0 (u) ∑ m∈Z 0 λ 2 m |E 0 (u, e m )| 2 .
Remarking that

∑ m∈Z 0 λ 2 m |E 0 (u, e m )| 2 ≤ 2A 0 E 0 (u),
we get, with the use of the Young inequality, the following inequality

Q ≤ εE p 0 (u) + p 2p ε p-1 A p 0 .
On the other hand

pαE p-1 0 (u) u 2 1 ≥ pαE p 0 (u). Choosing ε = p, we see that E f α (u) ≥ pαEE p 0 (u) -p p+1 A p 0 α.
Then

EE p 0 (u) + pα t 0 EE p 0 (u(s))ds ≤ EE p 0 (u 0 ) + p p+1 A p 0 αt.
Gronwall's lemma gives the claimed result.

Control of higher order Sobolev norms. The polynomial nature of the Benjamin-Ono conservation laws E j allows to establish the following result:

Proposition 3.3.14. Let j ≥ 1, then the functional E j satisfies the conditions (1.19) and (1.20) of Theorem 1.6.8 on the triple (H j-1 , H j , H j+1 ).

In view of this result the "stopping time" version of the Ito formula (1.22) applies to the functionals E j .

Theorem 3.3.15. Let j ≥ 1 be an integer. Suppose A j is finite. There are θ j > 0, γ j > 0 such that for any solution u of (3.14) in H 2 issued from u 0 ∈ H 2 which satisfies EE j (u 0 ) < ∞, we have

EE j (u) + α t 0 E u 2 j+1 ds ≤ EE j (u 0 ) + αA j t + c j t 0 E u 2 j ds + γ j t 0 E u (1 + u ) θ j ds , (3.31)
where c j depends only on j.

Proof. The fact that E j (u) is preserved by the BO equation translates into

∂ u E j (u, -H∂ 2 x u -u∂ x u) = 0. Setting the Markov time τ n = inf{t ≥ 0, u(t) j > n} and applying the Ito formula (1.22), we get

E j (u(t ∧ τ n )) = E j (u 0 ) + α t∧τ n 0 ∂ u E j (u, ∂ 2 x u) + 1 2 ∑ m∈Z 0 λ 2 m ∂ 2 u E j (u, e m ) ds + ∑ m∈Z 0 λ m t∧τ n 0 ∂ u E j (u, e m )dβ m (s).
Then by the Doob optional stopping Theorem 1.6.1, we have

EE j (u(t ∧ τ n )) = EE j (u 0 ) + αE t∧τ n 0 ∂ u E j (u, ∂ 2 x u) + 1 2 ∑ m∈Z 0 λ 2 m ∂ 2 u E j (u, e m ) ds.
Using the monotone convergence theorem, we arrive at

EE j (u(t)) = EE j (u 0 ) + αE t 0 ∂ u E j (u, ∂ 2 x u) + 1 2 ∑ m∈Z 0 λ 2 m ∂ 2 u E j (u, e m ) ds.
By Lemma 3.2.2, we have

∂ u E j (u, ∂ 2 x u) ≤ -u 2 j+1 + P j ( u ), (3.32) 
P j is the polynomial of Lemma 3.2.2. Following the arguments of the proof of Lemma 3.2.2, we establish that

|∂ 2 u E j (u, e m )| ≤ c j m 2 j ( u 2 j + Q j ( u )), (3.33) 
where Q j (r) = q j r(1 + r) k j , q j and k j depend only on j. Then take the expectation and combine (3.32) with (3.33) to get the claim.

Proof of Lemma 3.1.1. Now we are able to give the proof of Lemma 3.1.1.

Proof of Lemma 3.1.1. Let u be a stationary solution to (3.3) which satisfies the integrability assumption (3.4), suppose that A j is finite for any j. Recall the estimate

EE j (u) ≤ E u 2 j + c + n E u 2 j+2 . (3.34)
Then using the integrability assumption (3.4), we see that EE j (u) is finite as soon as E u 2 j < ∞. Remark that, by the stationarity of u, the estimates (3.31) become (under assumption that EE j (u) is finite)

E u 2 j+1 ≤ A j 1 + c j E u 2 j + γ j E u (1 + u ) θ j (3.35)
since the distribution do not depend on t. We are going to argue by induction. Remark that the needed induction property is given by the combination of (3.35) and (3.34) because they give at the same time the finiteness of EE j (u) and the control of E u 2 j+1 as soon as E u 2 j is finite. Moreover if (3.4) holds uniformly in α then so does E u 2 j+1 once the control on E u 2 j is uniform in α. It remains to prove the initial step, namely E u 2 1 is finite and does not depend on α. But using again the integrability assumption at the order p = 2, the stationarity of u combined with the estimate (3.29) gives

E u 2 1 = A 0 2 .
That completes the proof.

Stationary measures for the viscous problem

Consider the stochastic BOB problem (3.3) posed on Ḣ2 (T). By the estimates (3.29), (3.30) and Theorem 3.3.15, we have

EE 0 (u) + 2α t 0 E u 2 1 ds = EE 0 (u 0 ) + αA 0 t, EE p 0 (u) ≤ e -pαt EE p 0 (u 0 ) +C p A p 0 , EE 1 (u) + α t 0 E u 2 2 ds ≤ EE 1 (u 0 ) + α A 1 t + c 1 t 0 E u 2 1 ds + t 0 EW 1 ( u )ds , EE 2 (u) + α t 0 E u 2 3 ds ≤ EE 2 (u 0 ) + α A 2 t + c 2 t 0 E u 2 2 ds + t 0 EW 2 ( u )ds ,
where that W 1 and W 2 are the polynomials entering the estimate (3.31), their expectation is controlled using the second estimate. Now suppose u 0 = 0 almost surely, then by an induction argument, we get

EE 2 (u) + α t 0 E u 2 3 ds ≤ αCt,
where C is universal. Now in view of Remark 3.2.3, we can suppose E n (u) ≥ 0 (indeed, adding c u 6 to E 2 (u) we find a similar estimate). Then

1 t t 0 E u 2 3 ds ≤ C, (3.36) 
where C is, in particular, independent of t. Denote by λ α (t) the law of the solution u(t) to (3.3) starting at 0, and consider the time average

λα (t) = 1 t t 0 λ α (s)ds.
Using the estimate (3.36), we show

H 2 u 2 3 λα (t)(du) ≤ C. (3.37)
Then by the Chebyshev inequality we have

λα (t)({ u 3 > R}) ≤ C R 2 f or any R > 0.
Thus the compactness of the embedding H 3 (T) ⊂ H 2 (T) combined with the Prokhorov theorem implies that the family {λ α (t), t > 0} is compact with respect to the weak topology of H 2 . Then for any α we denote by µ α an accumulation point at infinity of the above family. The classical Bogoliubov-Krylov argument implies that µ α is a stationary measure for (3.3). Passing to the limit t → ∞ in (3.37) (using an approximation argument), we see that µ α (H 3 ) = 1 for any α. We summarize these results in the following statement:

Proposition 3.4.1. For any α ∈ (0, 1), the stochastic BOB equation (3.3) posed in H 2 (T) has a stationary measure µ α concentrated on H 3 (T). 

R > 0, consider a C ∞ -function χ R satisfying χ R (u) = 1, if u 2 ≤ R, 0, if u 2 > R + 1.
Let p ≥ 1, we have

H 2 E p 0 (u)χ R (u)µ α (du) = H 2 E{E p 0 (u(t, v))χ R (u(t, v))}µ α (dv), (3.41) 
where u(., v) is the solution of (3.3) starting at v. We pass to the limit t → ∞ in the right hand side of (3.41) using (3.30) (u is in the ball of size R) and the stationarity of µ α , we find

H 2 E p 0 (u)χ R (u)µ α (du) ≤ p p A p 0 .
Now Fatou's Lemma allows to conclude.

Corollary 3.4.3. Let α ∈ (0, 1). Suppose A n < ∞ for any n. Then any stationary measure µ α for the stochastic BOB problem (3.3) posed in Ḣ2 (T) is concentrated on C ∞ (T).

Proof. Let n > 2. Combining the estimate (3.40) and the Chebyshev inequality we find

µ α ({u ∈ H 2 : u n ≥ R}) ≤ D n R 2 .
Set B n (0, R) the ball in H n of center 0 and radius R, we have

H 2 1 B n (0,R) (u)µ α (du) = µ α (B n (0, R)) ≥ 1 - D n R 2 .
Passing to the limit on R (with the use of the Lebesgue convergence theorem), we get

µ α (H n (T)) = 1. Thus 1 = µ α (∩ n>2 H n (T)) = µ α (C ∞ (T)).

Invariant measure for the BO equation

In this section, S t : H 3 (T) → H 3 (T), t ≥ 0, denotes the flow of the Benjamin-Ono equation (3.1).

The map S t,α : H 3 → H 3 denotes the one of the stochastic Benjamin-Ono-Burgers equation (3.3). We denote by φ t , φ * t , φ t,α , φ * t,α the associated Markov semi-groups, respectively. We suppose in what follows that A n < ∞ for any n > 0.

3.5.1 Some convergence results of stochastic BOB to BO Lemma 3.5.1. For any T > 0. For any w ∈ H 3 (T), we have, P-almost surely, sup t∈[0,T ] S t,α w -S t w 2 → 0 as α → 0.

Proof. We write

S t,α w -S t w 2 = v + z α -S t w 2 ≤ v -S t w 2 + z α 2 , where z α (t) = √ α t 0 e -(t-s)(H-α)∂ 2 x dζ (s) = √ αz(t)
and v is the solution of

∂ t v + H∂ 2 x v + (v + z α )∂ x (v + z α ) = α∂ 2 x v (3.42) v t=0 = w.
(3.43)

We have by the estimate (3.20

) that sup t∈[0,T ] z α 2 = √ α sup t∈[0,T ] z 2 ,
where the quantity sup t∈[0,T ] z 2 does not depend on α. Set h = v -S t w, we have sup

t∈[0,T ] S t,α w -S t w 2 ≤ sup t∈[0,T ] h 2 + √ α sup t∈[0,T ] z 2 .
We claim that sup t∈[0,T ] h 2 = O( √ α). Indeed using the estimate (3.23) and the H 3 -conservation law, we show that

h 3 2 ≤ c h h 2 3 ≤ C(T , w L ∞ (0,T ;H 3 ) , z H 3 ) h .
Taking the difference between (3.42) and the BO equation (3.1), we see that h satisfies

∂ t h + H∂ 2 x h + h∂ x h = -∂ x (hS t w) -∂ x (vz α ) -z α ∂ x z α .
We multiply the above equation by h and we integrate on T to get

∂ t h 2 = 1 2 (h 2 , ∂ x S t w) -(h, ∂ x (vz α )) - 1 2 (h, ∂ x z 2 α ).
By the Cauchy-Schwarz inequality and the algebra structure of H 1 we find

∂ t h 2 ≤ 1 2 h 2 ∂ x S t w L ∞ + 1 2 h 2 +C v 2 1 z α 2 1 + 1 4 h 2 + 1 4 z α 4 1 ≤ 1 2 h 2 ( ∂ x S t w L ∞ + 3 2 ) +Cα sup t∈[0,T ] v 2 1 sup t∈[0,T ] z 2 1 + α 2 4 sup t∈[0,T ] z 4 1
Using the H 2 -conservation law, we control S t w L ∞ (0,T ;H 3/2+ ) (which does not depend on α) and v L ∞ (0,T ;H 1 ) (see the estimate (3.21)). It remains to apply the Gronwall lemma to get the claim.

Lemma 3.5.2. For all T , R, r > 0, we have

sup w∈B(0,R) sup t∈[0,T ] E S t,α w -S t w 2 1 { z L ∞ (0,T ;H 2 ) ≤r} = O R,r,T ( √ α).
Here B(0, R) is the ball in H 3 (T) of center 0 and radius R.

Proof.

E S t,α w -S t w 2 1 { z L ∞ (0,T ;H 2 ) ≤r} = Ω S t,α w -S t w 2 1 { z L ∞ (0,T ;H 2 ) ≤r} (ω)dP(ω) ≤ Ω [ h 2 + r √ α]1 { z L ∞ (0,T ;H 2 ) ≤r} (ω)dP(ω),
where h = v-S t w as before. The arguments of the proof of Lemma 3.5.1 allow to see that sup t∈[0,T ] h 2 ≤ C R,r,T √ α. This gives the claimed result.

An accumulation point for the viscous stationary measures

In what follows we denote by M(H 3 ) the space of probability measures on H 3 .

Theorem 3.5.3. For any sequence (α k ) k∈N ⊂ (0, 1) converging to 0 as k → ∞, there is a subsequence α r(k) and µ ∈ M(H 3 ) such that:

• lim k→∞ µ α r(k) = µ in the weak topology of H 3 ,
• µ is invariant under the flow of the Benjamin-Ono equation in H 3 (T),

• µ is concentrated on C ∞ (T),

• µ satisfies

H 3 (T) u 2 1 µ(du) = A 0 2 , ( 3.44) 
H 3 (T)

u 2p µ(du) ≤ p p A p 0 for any 1 ≤ p < ∞, (3.45) 
H 3 (T) u 2 n µ(du) < ∞ for n ≥ 2. (3.46)
Proof. The proof consists in the following four steps:

1. Existence of an accumulation point µ. The estimate (3.40) with n = 4 implies the tighness of the sequence of measures (µ α ) in H 3 (T) and, by the Prokhorov theorem, the existence of the claimed accumulation point µ on H 3 (T).

2. Invariance of µ under the Benjamin-Ono flow. Denote by (µ α k ) k∈N a subsequence of (µ α ) converging to µ (with lim k→∞ α k = 0), to simplify the notations we write µ k instead. The corresponding flow and Markov semi-group will be denoted S t,k and φ t,k .

The following diagram represents the idea of proof of the invariance of µ:

φ * t,k µ k (I) (III) µ k (II) φ * t µ (IV ) µ
The equality (I) is the invariance of µ k by φ t,k , (II) is proved above. Then (IV ) is proved once (III) is checked. Let f be a real bounded Lipshitz function on H 2 (T). Without loss of generality assume that f is bounded by 1. Then

(φ * k,t µ k , f ) -(φ * t µ, f ) = (µ k , φ t,k f ) -(µ, φ t f ) = (µ k , φ t,k f -φ t f ) A -(µ -µ k , φ t f ) B .
The term B converges to 0 as k → ∞ by the weak convergence of (µ k ) to µ. And for any R > 0

|A| ≤ H 3 E| f (S t,k w) -f (S t w)|µ k (dw) = B(0,R) E| f (S t,k w) -f (S t w)|µ k (dw) A 1 + H 3 \B(0,R) E| f (S t,k w) -f (S t w)|µ k (dw) A 2 .
Recalling that f is bounded by 1, we get by the Chebyshev inequality

A 2 ≤ 2µ k (H 3 \B(0, R)) ≤ C R 2 , (3.47)
where C is finite and does not depend on k (estimate (3.40)). Denote by L ∞ t H 2 x the space L ∞ (0, T ; H 2 ). Let r > 0, we have

A 1 = B(0,R) E | f (S t,k w) -f (S t w)|1 { z L ∞ t H 2 x ≤r} µ k (dw) A 1,1 + B(0,R) E | f (S t,k w) -f (S t w)|1 { z L ∞ t H 2 x >r} µ k (dw) A 1,2 .
As before, since f is bounded by 1, we use (3.19) and Chebyshev's inequality to get

A 1,2 ≤ C T r 2 .
On the other hand f being Lipschitz on H 2 , we have

A 1,1 ≤ C f B(0,R) E S t,k w -S t w 2 1 { z L ∞ t H 2 x ≤r} µ k (dw) ≤ C f sup w∈B(0,R) E S t,k w -S t w 2 1 { z L ∞ t H 2 x ≤r} ,
where C f is the Lipschitz constant of f . According to Lemma 3.5.2, we find

A 1,1 ≤ C f ,R,r,T √ α k .
Finally, we arrive at

|A| ≤ C f ,R,r,T √ α k + Const(T ) 1 r 2 + 1 R 2 ,
where Const does not depend on k. We get the desired result after passing to the limits in this order

k → ∞, R, r → ∞.
3. The estimates for the measure µ. Denote by χ R a bump function on the ball B(0, R) of H 3 (T), by (3.38) we have

H 3 χ R (v) v 2 1 µ k (dv) ≤ A 0 2 .
Passing to the limit k → ∞ we find

H 3 χ R (v) v 2 1 µ(dv) ≤ A 0 2 .
Then Fatou's lemma gives

E u 2 1 = H 3 v 2 1 µ(dv) ≤ A 0 2 . (3.48)
We proceed similarly to show (3.45) and (3.46). Now we write

A 0 2 = B(0,R) v 2 1 µ k (dv) + H 3 \B(0,R) v 2 1 µ k (dv).
We use the Cauchy-Schwarz and Chebyshev inequalities to show that

H 3 \B(0,R) u 2 1 µ k (du) = H 3 u 2 1 1 u 3 >R (u)µ k (du) ≤ H 3 u 4 1 µ k (du) 1 2 (µ k ( u 3 > R)) 1 2 ≤ E[ u 2 3 ]E[ u 4 1 ] R .
We can control E[ u 4 1 ] and E[ u 2 3 ] uniformly in k combining interpolation inequalities and the estimates (3.45) and (3.46). Then there is a constant C > 0 independent of k such that

A 0 2 - C R ≤ H 3 χ R (v) v 2 1 µ k (dv).
We find (3.44) after passing to the limits in the order

k → ∞, R → ∞,
and combining this with (3.48).

4.

The measure µ is concentrated on C ∞ (T). This immediately follows from the estimates (3.46) with use of the arguments of the proof of Corollary 3.4.3.

3.6 Qualitative properties of the measure 3.6.1 Absolute continuity of some observables w.r.t. to the Lebesgue measure

The following result is inspired by [START_REF] Shirikyan | Local times for solutions of the complex Ginzburg-Landau equation and the inviscid limit[END_REF][START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF] where the local time concept is used to deduce nondegeneracy properties of measures constructed for the nonlinear Schrödinger and Euler equations.

Theorem 3.6.1. Suppose that λ m = 0 for all m. Then for any integer n ≥ 1, there are constants b n and c n such that the distribution of the observable Ẽn (u) := E n (u) + c n u 2 (1 + u 2 ) b n under µ has a density w.r.t. the Lebesgue measure on R.

For the proof of Theorem 3.6.2 below, we refer the reader to [START_REF] Shirikyan | Local times for solutions of the complex Ginzburg-Landau equation and the inviscid limit[END_REF] and the proof of Theorem 5.2.12 of [START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF] where the authors prove similar results in the case of the nonlinear Schrödinger and Euler equations respectively. Theorem 3.6.2. The measure µ constructed in Theorem 3.5.3 satisfies the following non-degeneracy properties:

1. Let λ m = 0 for at least two indices. Then µ has no atom at zero and

µ({u ∈ C ∞ : u ≤ δ }) ≤ C A 0 γ -1 δ for all δ > 0, (3.49) 
where γ = inf{A 0λ 2 m , m ∈ Z} and C is an universal constant.

2. Let λ m = 0 for all indices. Then there is an increasing continuous function h(r) vanishing at r = 0 such that

µ({u ∈ C ∞ (T) : u ∈ Γ}) ≤ h( (Γ)) (3.50)
for any Borel set Γ ⊂ R, where stands for the Lebesgue measure on R.

Proof of Theorem 3.6.1. We prove the claim for the stationary measures in the case α > 0, with uniform bounds in α. Then we can pass to the limit α → 0 to obtain the desired result using the Portmanteau theorem. First we apply Itô formula to Ẽn (u):

Ẽn (u(t)) = Ẽn (u(0)) + α t 0 A(s)ds + √ α ∑ m∈Z 0 λ m t 0 Ẽ n (u, e m )dβ m (s), where A(s) = ∂ u Ẽn (u, ∂ 2 x u) + 1 2 ∑ m∈Z 0 λ 2 m ∂ 2 u Ẽn (u, e m ).
Denote by Λ t (a, ω) its local time which reads (see the identity (A.45

) of [KS12]) Λ t (a, ω) = ( Ẽn (u(t)) -a) + -( Ẽn (u(0)) -a) + -α t 0 A(s)1 (a,+∞) ( Ẽn (u))ds - √ α ∑ m∈Z 0 λ m t 0 1 (a,+∞) ( Ẽn (u)) Ẽ n (u, e m )dβ m (s).
Using the stationarity of u, we infer that

EΛ t (a) = -αtE[A(0)1 (a,+∞) ( Ẽn (u))].
(3.51) Now using the (local time) identity A.44 of [START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF] with the function 1 Γ , we get

2 Γ Λ t (a)da = α ∑ m∈Z 0 λ 2 m t 0 1 Γ ( Ẽn (u)) Ẽ n (u, e m ) 2 ds.
The stationarity of u gives again 2

Γ EΛ t (a)da = αt ∑ m∈Z 0 λ 2 m E[1 Γ ( Ẽn (u)) Ẽ n (u, e m ) 2 ]. (3.52) 
Comparing (3.51) and (3.52), we find

∑ m∈Z 0 λ 2 m E[1 Γ ( Ẽn (u)) Ẽ n (u, e m ) 2 ] ≤ 2λ (Γ)E|A(0)| ≤ C (Γ). (3.53)
Recall now the form of Ẽn (u) :

Ẽn (u) = u 2 n + R n (u) + P n ( u 2 ), where P n (r) = c n r(1 + r) b n . Then Ẽ n (u, v) = 2(D n u, D n v) + R n (u, v) + 2(u, v)P n ( u 2 ).
Recalling Remark 3.2.3, we have

Ẽ n (u, u) ≥ u 2 n . (3.54)
Now we define the operator H n so that

Ẽ n (u, v) = (H n u, v).
Therefore

(H n u, u) = ∑ m∈Z 0 u m (H n u, e m ) = ∑ |m|≤N u m (H n u, e m ) + ∑ |m|>N u m (H n u, e m ) ≤ u λ N ∑ |m|≤N λ 2 m (H n u, e m ) 2 1 2 + H n u ∑ |m|>N u 2 m 1 2 ≤ u 1 λ N ∑ m∈Z 0 λ 2 m Ẽ n (u, e m ) 2 1 2 + H n u u 1 N ,
where λ N = min{λ m , |m| ≤ N} > 0 for any N > 0. We take into account (3.54) and consider u belonging to

K ε = v : v ≥ ε, H n v ≤ 1 ε .
We get

∑ m∈Z 0 λ 2 m Ẽ n (u, e m ) 2 ≥ λ 2 N ε - 1 Nε 2 .
The integer N can be chosen to depend on ε so that we have

α(ε) := λ 2 N ε - 1 Nε 2 > 0.
Then, by (3.53)

µ({u : Ẽn (u) ∈ Γ} ∩ K ε ) ≤ C α(ε) (Γ).
Consider now the complementary set

K c ε = u : u < ε or H n u > 1 ε Since E H n u ≤ const.
Using the Chebyshev inequality, we find

µ α u : H n u > 1 ε ≤ const ε.
By Theorem 3.6.2, we have that µ α ({u : u < ε}) ≤ Cε.

Finally we write

µ α ({u : Ẽn (u) ∈ Γ}) ≤ µ({u : Ẽn (u) ∈ Γ} ∩ K ε ) + µ(K c ε ) ≤ C 1 α(ε) (Γ) +C 2 ε.
This, combined with the Portmanteau theorem, proves the absolute continuity of Ẽn (u) under µ w.r.t. the Lebesgue measure on R.

About the dimension of the measure µ

This subsection is inspired by [START_REF] Kuksin | On distribution of energy and vorticity for solutions of 2d Navier-Stokes equation with small viscosity[END_REF][START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF] where it was proved that the invariant measures constructed for the Euler equation are not concentrated on a countable union of finite-dimensional compact sets. The proof relies on a Krylov estimate (see section A.9 of [START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF]) for Itô processes. Roughly speaking, this estimate provides an inequality of the type (3.53) for multi-dimensional processes. Namely, for a d-dimensional stationary Itô process

y t = y 0 + t 0 x s ds + ∞ ∑ j=1 t 0 θ j (s)dβ j (s),
set the non-negative d × d-matrix σ with entries

σ m,n = ∞ ∑ j=1 θ m j θ n j ,
where θ i j is the i-th component of the d-vector θ j . Let f : R d → R be a bounded measurable function. Then the Krylov estimate is the following:

E 1 0 f (y t )(det σ t ) 1/d dt ≤ C d | f | d E 1 0 |x t |dt, (3.55) 
where |.| d stands for the L d -norm and C d is a constant that only depends on d.

In our context the independence needed to make the Krylov estimate successful leads to solving nonlinear differential equations with order increasing with the size of the underlying vector (process). This is due to the structure of the BO conservation laws and represents a technical difficulty as discussed in the introduction, while in the Euler case the components of this vector can be chosen to satisfy this independence. We bypass the equation mentionned above in the 2D case by splitting suitably the phase space.

Theorem 3.6.3. The measure µ is of at least two dimensional nature in the sense that any compact set of Hausdorff dimension smaller than 2 has µ-measure 0.

Before proving Theorem 3.6.3, we describe the general framework. We use the following splitting of H 2 (T):

H 2 (T) = O ∪ O c ,
where

O := u : u 2 H∂ 2 x u = 0 . (3.56)
Consider the functionals on Ḣ1 (T) defined by

F j (u) = 1 j + 1 u j+1 , j = 1, 2.
Remark that F 1 is preserved by BO. Now for u a solution of (3.1), we have that

∂ t F 2 (u) = 0 on O.
Therefore the vector F(u) = (F 1 (u), F 2 (u)) is constant on O for any solution u of the BO equation.

On the other hand, consider the following BO conservation laws

E 0 (u) = u 2 E 1/2 (u) = uH∂ x u + 1 3 u 3 .
Set the following preserved vector

E(u) = (E 0 (u), E 1/2 (u)) .
E(u) is in particular constant on O c for the solutions of (3.1).

Let µ 1 and µ 2 be two measures. We write µ 1 µ 2 if there is a continuous increasing function f vanishing at 0 such that µ 1 (.) ≤ f (µ 2 (.)).

This implies the absolute continuity of µ 1 w.r.t. µ 2 . For ν a probability measure on H 2 , we define

ν O (.) = ν(. ∩ O), ν O c (.) = ν(. ∩ O c ),
where O is the set described before.

Proposition 3.6.4. Suppose λ m = 0 for all m ∈ Z 0 , then

1. F * µ O α 2 , 2. E * µ O c α 2 ,
where F = (F 1 , F 2 ) and E = (E 0 , E 1/2 ).

The functions describing the absolute continuity do not depend on α and 2 is the Lebesgue measure on R 2 .

Proof of Theorem 3.6.3. Let W be an open set of H 2 . Clearly

W = (W ∩ O) ∪ (W \O).
By Proposition 3.6.4, we have

µ α (W ) ≤ f ( 2 (F(W ∩ O))) + g( 2 (E(W \O))),
where f and g are the functions decribing the absolute continuity established in Proposition 3.6.4.

Using the Portmanteau theorem, we get

µ(W ) ≤ f ( 2 (F(W ∩ O))) + g( 2 (E(W \O))), (3.57) 
and by the regularity of µ and 2 the estimate (3.57) holds for any bounded Borelian set W . When W is a compact set of Hausdorff dimension H (W ) < 2. It is clear that E and F are Lipschitz on any compact set. Since the Lipschitz maps do not increase the Hausdorff dimension, we have the right hand side of (3.57) equal to zero, then so is the left hand one.

Proof of Proposition 3.6.4. The proof consists of two steps:

1. Absolute continuity uniformly in α of µ on the set O : The first and second derivative of the functionals F j (u) are

F j (u, v) = u j v, F j (u, v) = j u j-1 v 2 .
Then applying the Itô formula to F j , we find

F j (u) = F j (u(0)) + t 0 A j (s)ds + √ α ∑ m∈Z 0 λ m t 0 (u j , e m )dβ m (s), j = 1, 2.
where

A j = -(u j , H∂ 2 x u -α∂ 2 x u) + j α 2 ∑ m∈Z 0 λ 2 m (u j-1 , e 2 m ).
On the set O, we have (u j , H∂ 2 x u) = 0 j = 1, 2. Then recalling estimate on E u 2 2 (Theorem 3.5.3), we get

E|A j | ≤ αConst, (3.58) 
where Const does not depend on α. We consider the 2 × 2-matrix σ (u), u ∈ O with entries

σ k,l (u) = ∑ m∈Z 0 λ 2 m (u k , e m )(u l , e m ), k, l = 1, 2.
It is clear that σ is non-negative. It follows from the Krylov estimate (3.55) with the use of the function 1 Γ , Γ being a Borel set of R 2 ,

E (det(σ (u))) 1/2 1 Γ (F) ≤ C 2 (Γ), (3.59) 
2 is the Lebesgue measure on R 2 and C does not depend on α. Now define the map

D : Ḣ1 (T) -→ R + u -→ det(σ (u)) .
We remark that D is continuous as composition of continuous maps. We have the following Lemma 3.6.5. Suppose λ m = 0 for all m ∈ Z 0 , then

D(u) = 0 ⇒ u ≡ 0.
Proof. Suppose there is a nonzero vector

γ = (γ 1 , γ 2 ) ∈ R 2 such that γσ (u)γ T = 0, then ∑ m∈Z 0 λ 2 m 2 ∑ j=1 γ j (u j , e m ) 2 = 0.
Since λ m = 0 for all m = 0, we infer that 2 ∑ j=1 γ j u j ≡ Const, which is possible only if u ≡ 0, taking into account that u = 0. Now define the set

J ε = u 2 1 ≥ ε, u 2 2 ≤ 1 ε ⊂ H 2 (T). J ε ∩ O is a compact in H 1 (T) not containing zero, then by continuity of D, D(J ε ∩ O) is a compact set in R + not containing 0. Then there is c ε > 0 such that D(u) ≥ c ε for all u ∈ J ε ∩ O.
Using the same splitting argument as in the proof of Theorem 3.6.1, we arrive at the claimed result.

2. Absolute continuity uniformly in α of µ on the set O c : We follow the construction above to set a 2 × 2-matrix M with entries

M k,l (u) = ∑ m∈Z 0 λ 2 m B k (u)B l (u), k, l = 1, 2,
where

B 1 = E 0 (u, e m ) and B 2 = E 1/2 (u, e m ).
It follows from the Krylov estimate (3.55) that

E (det(M(u))) 1/2 1 Γ (E) ≤ C 2 (Γ),
where C does not depend on α thanks to the preservation of E 0 and E 1/2 by the BO flow. Now det M(u) = 0 only if there is a nonzero vector (γ 1 , γ 2 ) ∈ R 2 such that

γ 1 u + γ 2 (2H∂ x u + u 2 ) ≡ Const.
Remark that if γ 2 = 0 we have that u ≡ 0 since u = 0, therefore u ∈ O. Now we suppose that γ 2 = 0, we derive w.r.t. x to find γ 1 ∂ x u + γ 2 (2H∂ 2 x u + 2u∂ x u) ≡ 0. Therefore, multiplying by u p for p > 0 and integrating in x, we find u p H∂ 2

x u = 0, and in particular u belongs to the set O. Then on O c det(M(u)) = 0. We can follow the same splitting argument with the use of the splitting set J ε defined in the first part to get the result.

3.7. Appendix

A Gaussian decay property for the measure µ

Here we establish a large deviation bound for the measure µ.

Theorem 3.6.6. The measure µ constructed in Theorem 3.5.3 satisfies

Ee σ u 2 < ∞, (3.60) 
where σ = (aeA 0 ) -1 for arbitrary a > 1. In particular, for any r > 0

µ({u ∈ C ∞ : u > r}) ≤ Ce -σ r 2 ,
where the constant C does not depend on r.

Proof. Recall the estimate (3.45):

E u 2p ≤ p p A p 0 , then E( √ σ u ) 2p ≤ σ p p p A p 0 =
p p a p e p . Now, with use of the Stirling formula, we have

E( √ σ u ) 2p p! ≤ p p p!a p e p ∼ p→∞ 1 a p √ 2π p .
Since a > 1, we have that the serie ∑ p≥1

E( √ σ u ) 2p p!
is convergent, and we are led to (3.60). The other claim is obtained combining (3.60) with the Chebyshev inequality.

Remark 3.6.7. We obtain in a same way the result of Theorem 3.6.6 for the viscous measures uniformly in α.

Appendix

Proof of Lemma 3.3.3

Remark first that for a solution v of the nonlinear equation (3.16), we have

∂ t E n (v) = E n (v, ∂ t v) = αE n (v, ∂ 2 x v) - √ αE n (v, ∂ x (vz)) -α 1 2 E n (v, ∂ x (z 2 )), n = 0, 1, 2. (3.61)
The E n are the first three conservation laws of the BO equation.

The case n = 0 : E 0 (v, w) = 2 vw. Applying (3.61), we get

∂ t E 0 (v) + 2α v 2 1 = 2 √ α(v, ∂ x (vz)) + α(v, ∂ x z 2 ) = √ α(v 2 , ∂ x z) + α(v, ∂ x z 2 ) ≤ √ α z 3+ 2 v 2 + cα v z 2 1 ≤ √ α z 3+ 2 v 2 + cα(1 + v 2 ) z 2 1 .
Remark that z(.) 3+ 2 is bounded unifomly in α for almost all realizations and in t (on [0, T ]) by continuity, then with the use of the Gronwall inequality we get

sup t∈[0,T ] v(t) 2 + 2α T 0 v(t) 2 1 dt ≤ C(T , ω, v 0 ). (3.62)
The case n = 1 : Recall that

E 1 (u) = (∂ x u) 2 + 3 4 u 2 H∂ x u + 1 8 u 4 . Then E 1 (v, w) = -2(∂ 2 x v, w) + 3 2 (vH∂ x v, w) + 3 4 (v 2 , H∂ x w) + 1 2 (v 3 , w) R 1 (v,w)
.

It is already shown that (see the more general estimates (3.13) and (3.12))

|R 1 (v, ∂ 2 x v)| ≤ ε v 2 2 +C ε v c . Then αE 1 (v, ∂ 2 x v) ≤ -(2 -ε)α v 2 2 +C ε α v c . Taking into account some properties of H, it suffices to treat (vH∂ x v, w) + (v 3 , w) instead of R 1 (v, w) for our purpose. Now √ α|(∂ 2 x v, ∂ x (vz))| ≤ C √ α v 2 v 1 z 1 ≤ εα v 2 2 +C ε v 2 1 z 2 1 ≤ εα v 2 2 +C T ,ε,ω v 2 1 , √ α|(vH∂ x v, ∂ x (vz))| = √ α|(∂ x (vH∂ x v), vz)| ≤ C √ α v 1 v 2 v z 1+ 2 ≤ εα v 2 2 +Cε v 2 1 v 2 z 2 1+ 2 ≤ εα v 2 2 +C T ,ε,ω v 2 1 , √ α|(v 3 , ∂ x (vz))| ≤ C √ α v 3 L 6 v 1 z 1 ≤ C √ α v 3 1/3 v 1 z 1 ≤ C √ α v 2 v 2 1 z 1 ≤ √ αC T ,ω v 2 1 .
To summarise, we have

√ αE 1 (v, ∂ x (vz)) ≤ ε v 2 2 +C T ,ε,ω v 2 1 .
To estimate the last term, we compute

α|(∂ 2 x v, ∂ x z 2 )| ≤ Cα v 2 z 2 1 ≤ εα v 2 2 + αC ε z 4 1 , α|(vH∂ x v, ∂ x z 2 )| ≤ Cα v 2 v 1 z 2 1/4 ≤ εα v 2 2 + αC T ,ε,ω v 2 1 , α|(v 3 , ∂ x z 2 )| ≤ Cα v 2 v 1 z 2 1 ≤ εα v 2 1 + αC T ,ε,ω .
To conclude, we can choose ε so that

E 1 (v) + α t 0 v(r) 2 2 dr ≤ E 1 (v 0 ) +C 1 T ,ω t 0 v(r) 2 1 dr +C 2 T ,ω t.
Recalling the inequality (3.10) and (3.62) we have

v 2 1 + 2α t 0 v(r) 2 2 dr ≤ E 1 (v 0 ) +C 0 T ,ω +C 1 T ,ω t 0 v(r) 2 1 dr +C 2 T ,ω t.

Appendix

With use the Gronwall lemma, we arrive at

sup t∈[0,T ] v(t) 2 1 + 2α T 0 v(t) 2 2 dt ≤ C T ,ω ( v 0 1 ).
The case n = 2 : Recall that

E 2 (u) = (∂ 2 x u) 2 - 5 4 (∂ x u) 2 H∂ x u + 2∂ 2 x uH∂ x u + 5 16 5u 2 (∂ x u) 2 + u 2 (H∂ x u) 2 + 2uH(∂ x u)H(u∂ x u) + 5 32 u 4 H(∂ x u) + 5 24 u 3 H(u∂ x u) + 1 48 u 6 .
The form of E 2 (v) combined with some properties of H allows us to reduce to the treatment of the quantity below

R 2 (v) = v 2 2 + (∂ x v) 3 + (∂ 2 x v, H∂ x v) + (v 2 , (∂ x v) 2 ) + (v 4 , H∂ x v) + v 6 . Then R 2 (v, w) = 2(∂ 2 x v, ∂ 2 x w) + 3((∂ x v) 2 , ∂ x w) + 2(∂ 2 x v, H∂ x w) + 2(vw, (∂ x v) 2 ) + 2(v 2 ∂ x v, ∂ x w) + 4(v 3 H∂ x v, w) + (v 4 , H∂ x w) + 6(v 5 , w) = 2(∂ 2 x v, ∂ 2 x w) + R 3 (v, w).
It is already shown in the proof Lemma 3.2.2 (see estimates (3.13) and (3.12)) that

|R 3 (v, ∂ 2 x v)| ≤ ε v 2 3 +C ε v c , for some constants c, C ε > 0. Now we have 2α(∂ 2 x v, ∂ 2 x (∂ 2 x v)) = -2α v 2 3 .
Then

αE 2 (v, ∂ 2 x v) ≤ -(2 -ε)α v 2 3 + αC ε v c . Now √ α|(∂ 2 x v, ∂ 2 x (∂ x (vz)))| ≤ C √ α v 3 v 2 z 2 ≤ εα v 2 3 +C T ,ε,ω v 2 2 , √ α|((∂ x v) 2 , ∂ 2 x (vz))| ≤ C T ,ω √ α v 2 5/4 v 2 ≤ C T ,ω √ α v 1/4 v 2 2 ≤ C T ,ω √ α v 2 2 , √ α|(∂ 2 x (vz), H∂ 2 x v)| ≤ √ αC v 2 2 z 2 ≤ √ αC T ,ω v 2 2 , √ α|(v(∂ x v) 2 , ∂ x (vz))| ≤ C √ α v z 1+ 2 v 2 2 ≤ C T ,ω √ α v 2 2 , √ α|(v 2 ∂ x v, ∂ 2 x (vz))| ≤ √ αC v 3 1 v 2 z 2 ≤ C T ,ω √ α v 2 2 , √ α|(v 3 H∂ x v, ∂ x (vz))| ≤ C √ α v 3 1 v 2 z 1+

The periodic Hilbert transform

We present in this section a definition of the Hilbert transform in the periodic setting and establish some of its elementary properties. Recall that the sequence defined by

e n (x) = sin(nx) √ π if n < 0, cos(nx) √ π if n > 0,
forms a Hilbertian basis of Ḣ(T), let us denote this basis by B. We define the Hilbert transform on B by He n (x) = sgn(n)e -n (x),

where

sgn(p) =    1 if p > 0, 0 if p = 0, -1 if p < 0.
We first remark that H defines an isometry on Ḣ.

Proposition 3.7.1. Let f , g ∈ Ḣ(T), then

H 2 f = -f (3.63) T H f = 0 (3.64) (g, H f ) = -(Hg, f ) (3.65) H f 0 (p) = -i sgn(p) f0 (p), (3.66) 
where ĥ0 denotes the complex Fourier coefficient of a function h. We define it below.

Define now the Fourier coefficients associated to a function f in Ḣ:

f1 (n) = 1 √ π T cos(nx) f (x)dx f2 (n) = 1 √ π T sin(nx) f (x)dx.
The function f is represented in B as follow

f (x) = ∑ n>0 ( f1 (n)e n (x) -f2 (n)e -n (x)). (3.67)
Hence the Hilbert transform of f can be expressed as

H f (x) = ∑ n>0 ( f1 (n)e -n (x) + f2 (n)e n (x)).
(3.68)

The complex Fourier coefficient is defined by

f0 (p) = 1 √ 2π T e -ipx f (x)dx. (3.69)
The relation between the three Fourier coefficients of f is 

f0 (p) = f1 (p) -i sgn(p) f2 (p) √ 2 . ( 3 
H 2 f (x) = -∑ n>0 ( f1 (n)e n (x) -f2 (n)e -n (x)) = -f (x).
and (3.63) is showed. From (3.68), we infer that

H f 1 (p) = -f2 (p), H f 2 (p) = f1 (p).
Thus using the relation (3.70), we write

H f 0 (p) = -f2 (p) -i sgn(p) f1 (p) √ 2 = -i sgn(p)( f1 (p) -i sgn(p) f2 (p)) √ 2 = -i sgn(p) f0 (p),
and we arrived at (3.66).

To prove (3.65), we compute

(g, H f ) = ∑ n>0 f1 (n) T g(x)e -n (x)dx + ∑ n>0 f2 (n) T g(x)e n (x)dx = -∑ n>0 f1 (n) ĝ2 (n) + ∑ n>0 ĝ1 (n) f2 (n) = -∑ n>0 ĝ2 (n) T f (x)e n (x)dx -∑ n>0 ĝ1 (n) T f (x)e -n (x)dx = - T f (x) ∑ n>0 ( ĝ1 (n)e -n (x) + ĝ2 (n)e n (x))
= -(Hg, f ).

Introduction

The Klein-Gordon (KG) equation

∂ 2 tt u -∆u + m 2 0 u + u 3 = 0, (t, x) ∈ R + × K, (4.1) 
is a model of evolution of a relativistic massive particle. Here u is a real-valued function, m 2 0 ∈ R is the square of the mass of the particle and K ⊂ R 3 is the physical space. The KG equation is a Hamiltonian PDE, with the Hamiltonian

E(u, ∂ t u) = 1 2 |∂ t u| 2 + |∇u| 2 + m 2 0 |u| 2 dx + 1 4 u 4 dx. (4.
2)

The natural phase space is then the Sobolev product space

H 1 (K) × L 2 (K) containing the vectors y = [u, ∂ t u].
Our purpose is to construct an invariant measure and to study some of its qualitative properties. The motivations of such a problem are discussed below as well as the difficulties of the question in the context of (4.1). Moreover, a panorama of applications coming from general ergodic theorems is presented in Section 4.2. Here, we consider both the periodic and the bounded domain setting. Both on T 3 or on a domain D (with boundary conditions u| ∂ K = 0), we denote by (λ j , e j ) j∈N the couples (eigenvalue, eigenfunction) of the Laplacian operator -∆. Remark that λ 0 = 0 only when the problem is posed on a torus and that, in both cases, (λ j ) j is a sequence of non-negative real numbers increasing to infinity like j 2 3 (Weyl asymptotics). We define the Sobolev space of order m ∈ R by

H m = u = ∞ ∑ j=0 u j e j : u 2 m := ∞ ∑ j=0 (m 2 0 + λ j ) m u 2 j < ∞ ,
where m 2 0 > -λ 0 . The space H 0 is also denoted by L 2 , and . 0 by . . The inner product on H m corresponding to the norm . m is denoted by (, ) m and (, ) 0 is simply written (, ). We have the following embedding inequality:

u 2 m ≥ (m 2 0 + λ 0 ) (m-s) u 2 s f or any m ≥ s in R. (4.3) 
The product Sobolev space H m × H n is denoted by H m,n and endowed with the norm defined, for any vector

[u, v] ∈ H m,n , by [u, v] 2 m,n := u 2 m + v 2 n ,
and the corresponding inner product is denoted by

([u 1 , v 1 ], [u 2 , v 2 ]) m,n := (u 1 , u 2 ) m + (v 1 , v 2 ) n .
Set ∆ 0 := ∆m 2 0 , then the equation and its Hamiltonian are rewritten as

∂ 2 tt u -∆ 0 u + u 3 = 0, E(u, ∂ t u) = 1 2 [u, ∂ t u] 2 1,0 + 1 4 u 4 .
Notice that

u m = (-∆ 0 ) m/2 u , (u, v) m = ((-∆ 0 ) m/2 u, (-∆ 0 ) m/2 v).

Invariant measures for PDEs: Motivations and approaches

Solving the Cauchy problem for a PDE is equivalent to specifying a phase space E and a (semi-) group of continuous maps φ t : E → E which governs the evolution in time of the phase-vectors. The couple (E, φ t ) defines a dynamical system. One of the important questions in qualitative theory of PDEs is to describe the long time behavior of φ t . A Borel measure µ on E is called invariant for φ t if for any Borel set Γ ⊂ E, for any t, we have

φ t * µ(Γ) := µ(φ -1 t (Γ)) = µ(Γ).
Existence of such a measure allows to draw some conclusions on long time properties for the system (E, φ t ) (see e.g. Birkhoff, Poincaré and von Neumann theorems in Section 4.2). The concept of invariant measure plays also an important role in probabilistic global wellposedness5 for PDEs by providing a way to control globally the induced flow.

There are, at least, two approaches to construct invariant measures; for finite-dimensional equations representing the evolution of a divergence free vector-field, the so-called Liouville theorem states that the Lebesgue measure defined on the associated phase space is preserved along the time. This result covers indeed the finite-dimensional Hamiltonian flows and their theory of Gibbs measures. The question of infinite-dimensional Gibbs measures (for Hamiltonian PDEs) is not directly implied by this general theorem, but is studied in many works with its help. The other result is given by the Krylov-Bogoliubov theorem for dynamical systems under some compactness assumptions. A method has been developed with use of this argument to approach more general PDEs. Let us briefly present the general philosophy of two approaches of the PDEs invariant measures problem and compare them on some of their characteristic points.

Gibbs measures theory for PDE. For a PDE having a "nicely structured" conservation law E(u), we can expect that, under proper definition, the expression "e -E(u) du" could be an invariant measure. An approach consists in projecting the PDE on finite dimensional subspaces of increasing dimension. Then a sequence of ordinary differential equations are considered and the idea is to use the Liouville theorem. We get, then, a sequence (w.r.t. the dimension) of invariant measures (having a density w.r.t. Gaussian measures). An accumulation point is the measure we look for.

FDL measures theory. The Fluctuation-Dissipation-Limit approach consists in approximating the Hamiltonian dynamics by some kind of "compact" ones. The Krylov-Bogoliubov theorem provides then a sequence of invariant measures whose accumulation point could be invariant for the limiting equation. Namely, a damping term (given by a negative operator) and a stochastic forcing are added to the equation. The former should give the compactness in question while the latter is intended to maintain the evolution that the damping tends to attenuate: "PDE = αDamping + s(α)(Forcing)".

The function s will be chosen so that there will be a balance between the contributions of the added two terms and to ensure then the tightness of the sequence of constructed invariant measures in order to get the existence of the desired measure. Here again, a leading role is played by conservation laws.

Gibbs measures vs FDL measures. The first remarkable difference between the two approaches is that Gibbs measures reduce the regularity of the underlying conservation law, that is, their supports are less regular than the conservation law used in the construction (with reduction of 1/2+), this fact imposes systematically a threshold of regularity to the support. Whereas the FDL measures increase (by 1, if damped by ∆) the initial regularity; the construction does not impose directly a threshold on the "living space" of these measures. This makes the Gibbs measures particularly adapted to approach some spaces of low regularity and to give a probabilistic alternative to the Cauchy theory for PDEs. However, FDL measures can approach some high regularity spaces, seemingly inaccessible by the formers, to establish long time behavior properties of PDEs (see [START_REF] Sy | Invariant measure and large time dynamics for the Klein-Gordon equation in 3D[END_REF]). The intermediate situation is common to both. The second fact is that Gibbs measures enjoy many good properties being of Gaussian type, while in the case of FDL measures no qualitative property is directly deduced. However, some stochastic methods are developed in [START_REF] Kuksin | On distribution of energy and vorticity for solutions of 2d Navier-Stokes equation with small viscosity[END_REF][START_REF] Shirikyan | Local times for solutions of the complex Ginzburg-Landau equation and the inviscid limit[END_REF][START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF] to investigate non-degeneracy properties.

For Klein-Gordon related equations, Gibbs measures are constructed both in finite or in infinite volumes, see for instance [START_REF] Burq | Invariant measure for a three dimensional nonlinear wave equation[END_REF][START_REF] Bourgain | Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball[END_REF][START_REF] De Suzzoni | Invariant measure for the Klein-Gordon equation in a non periodic setting[END_REF][START_REF] Xu | Invariant Gibbs measure for 3D NLW in infinite volume[END_REF]. These measures concern radial solutions (in the 3D case) and are then concentrated on H 1/2-,-1/2-. The question of non radial Gibbs type measure for the three-dimensional Klein-Gordon equation encounters an obstruction. Indeed, such a measure has to be defined on H -1/2-,-3/2-where the nonlinearity would become problematic. In contrast with the loss of regularity inherent to the Gibbs measure approach, the FDL method proceeds by regularization. In that approach, the nonlinearity is still tractable even in a non radial context. However, as we will see it later on, the uniqueness of a coercive conservation law gives rise to some difficulties in the method.

Statement of the main result and comments

To present the main result of the paper, recall that λ 0 denotes the first eigenvalue of -∆ in both settings considered in this work. Theorem 4.1.1. Let m 2 0 > -λ 0 , then, in both settings, there is an invariant measure µ for (4.1) defined on H 1,0 and satisfying:

• µ(H 2,1 ) = 1; • 0 < H 1,0 y 2 2,1 µ(dy) < ∞;
• there is σ > 0 such that

H 1,0
e σ E(y) µ(dy) < ∞, consequently µ enjoys a Gaussian control property w.r.t. the norm H 1,0 ;

• the distribution under µ of the Hamiltonian E(y) has a density w.r.t. the Lebesgue measure on R.

Remark 4.1.2. In fact we have a family of invariant measures for (4.1) on H 2,1 , one can see that after parametrising the diffusion constants associated to the approximation problem (4.4). Here φ t denotes the flow of (4.1) on H 2,1 .

Let us make some comments on the results. First, remark that by Sobolev embedding, the solutions concerned by our results are, in particular, continuous in the x variable. Second, in the case where the equation is posed on a bounded domain, λ 0 is positive; then the massless case, i.e. the wave equation, is covered by our result. Moreover, m 0 is also allowed to be an imaginary number, in that situation (4.1) is associated to a particle with imaginary mass. Such hypothetical particles, named tachyons, are used in some areas of theorical physics.

To obtain these results, an additional difficulty compared to the earlier works is the fact that we know only one coercive conservation law for KG (in the case of the torus we have also the momentum which is not coercive), that implies a "lack of estimates". Notice also that the FDL approach was developped for Hamiltonian PDEs having at least two "good" conservation laws [START_REF] Kuksin | The Eulerian limit for 2D statistical hydrodynamics[END_REF][START_REF] Kuksin | Randomly forced CGL equation: stationary measures and the inviscid limit[END_REF][START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF][START_REF] Sy | Invariant measure and large time dynamics for the Klein-Gordon equation in 3D[END_REF]. The present paper is also intended to extend this approach to Hamiltonian PDEs having one conservation law. In order to confront the "lack of conservation" present in our context, we introduce what we call almost conservation laws associated to (4.1). These quantities play essentially the same role in the construction of an invariant measure as the two conservation laws, however, they cannot be used in studying its qualitative properties. That problem is solved by an approximation argument combined with the approach of [START_REF] Shirikyan | Local times for solutions of the complex Ginzburg-Landau equation and the inviscid limit[END_REF][START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF]. Notice that the concept of "almost conservation laws" is the main ingredient in the so-called I-method technique, overcoming the lack of conservation in the study of wellposedness and asymptotic behavior of dispersive PDEs (see e.g. [CKS + 02, Tao06]). However, while in the I-method theory the modification consists in damping the high frequencies, in our situation we opt for an additive regular perturbation which accommodates better with our damping scheme. In Section 4.3 we define precisely our understanding of that concept, then we introduce two of such quantities and derive their respective dissipation rates whose statistical control along the time and the viscosity parameter takes the central place in our analysis. Notice also that an argument of modification of energy was developed in [START_REF] Tzvetkov | Quasiinvariant Gaussian measures for one-dimensional Hamiltonian partial differential equations[END_REF][START_REF] Oh | Quasi-invariant Gaussian measures for the cubic fourth order nonlinear schrödinger equation[END_REF] in the context of quasi-invariant measures theory for Hamiltonian PDEs. We now describe the Fluctuation/Dissipation scheme that we apply to the Klein-Gordon equation in our work. Consider the stochastic PDE

∂ 2 tt u -∆ 0 u + u 3 = α∆ 0 ∂ t u + √ αη, (4.4) 
where

η(t, x) = d dt ζ (t, x) = d dt ∞ ∑ m=0
a m e m (x)β m (t).

Here β m are independent standard Brownian motions and a = (a m ) is a sequence of real numbers.

For n ≥ 0, define the number

A n = ∞ ∑ m=0 a 2 m λ n m .
The 

Ergodic theorems and some consequences

In this section we discuss some details about the PDE's motivations of invariant measures theory via some general results from ergodic theory. We can also see the introduction of [START_REF] Thomann | Invariant Gibbs measures for dispersives PDEs[END_REF].

Ergodic theorems

Consider the measurable dynamical system (X, φ t , µ) constructed from an evolution equation, here the probability measure µ is invariant under the flow φ t . In the case of a reversible dynamics (e.g. Hamiltonian equations), the transformations (φ t ) t∈R form a group and φ -1 t = φ -t , we adopt this hypothesis in the present section altough all the results we are discussing here can be adapted to the semi-group case by classical ways. In [START_REF] Koopman | Hamiltonian systems and transformation in hilbert space[END_REF], Koopman observes that the (a priori) nonlinear transformations (φ t ) induce linear ones on the space L 2 (X, µ). These induced transformations U t are defined for any function f : L 2 (X, µ) → R by

U t f (w) = f (φ t w) ∀w ∈ X.
The linearity and group property of (U t ) are clear, and for any t ∈ R, U t defines an isometry on L 2 (X, µ). In fact

U t f 2 L 2 = X |U t f (w)| 2 µ(dw) = X | f (φ t w)| 2 µ(dw).
A standard approximation (by simple functions) argument combined with the invariance of µ establishes the desired property. We also remark that U -1 t = U -t . A message contained in Koopman's observation is that, provided that an invariant measure is given, the "nonlinear description" of the evolution of the states can be replaced by a "linear description" on the observables. We then pass from a nonlinear "microscopic" study to a linear "macroscopic" one. In the latter setting, general theorems such as Von Neumann and Birkhoff ergodic theorems, can be used to obtain some statistical properties of the dynamics. Let us present a version of these theorems (for their proofs and more results concerning them see [START_REF] Krengel | Ergodic theorems[END_REF][START_REF] Coudène | Théorie ergodique et systèmes dynamiques[END_REF]). Let T > 0, set the Birkhoff average

S T f (w) = 1 T T 0 U t f (w)dt,
and the following invariants of the evolution

I 1 = {h ∈ L 2 (X, µ) : U t h = h, ∀t}, I 2 = {A ∈ Bor(X ) : φ -1 t A = A, ∀t},
where Bor(X ) is the Borel σ -algebra of X. I 1 and I 2 are related by the fact that

A ∈ I 2 ⇔ 1 A ∈ I 1 .
Theorem 4.2.1 (Von Neumann). For all f ∈ L 2 (X, µ), we have, as T → ∞,

S T f → P I 1 f in L 2 (X, µ),
where P I 1 denotes the orthogonal projection onto I 1 .

Theorem 4.2.2 (Birkhoff). For all f ∈ L 1 (X, µ), we have as T → ∞

S T f → E I 1 f in L 1 (X, µ),
where E I 2 denotes the conditional expectation w.r.t. I 2 . This convergence holds also µ-almost surely on X.

Consequences

This subsection is an "adaptation" to continuous dynamical systems of the idea contained in [START_REF] Coudène | Théorie ergodique et systèmes dynamiques[END_REF] (Chapter 1, Exercise 9), one can also see the proof given in [START_REF] Tao | Lectures on ergodic theory[END_REF] and the discussion of [START_REF] Thomann | Invariant Gibbs measures for dispersives PDEs[END_REF].

Let A and B be two Borel sets in X, 1 A and 1 B are the indicator functions of A and B respectively, we denote the orthogonal projection onto I 1 just by P. We have Proposition 4.2.3.

1 t t 0 µ(A ∩ φ -1 s B)ds → P1 A , P1 B as t → ∞. (4.5)
In particular,

1 t t 0 µ(A ∩ φ -1 s A)ds → P1 A 2 L 2 as t → ∞, (4.6) 
and

µ(A) 2 ≤ lim t→∞ 1 t t 0 µ(A ∩ φ -1 s A)ds ≤ P1 A L 2 (X ) µ(A). (4.7) 
Proof. We prove (4.6) by taking B = A in (4.5). Now (4.7) is derived from (4.6) as follow

µ(A) = E µ 1 A = E µ E I 1 (1 A ) = E µ (P1 A ) = P1 A L 1 ≤ P1 A L 2 .
On the other hand, we use the property P * P = P 2 = P and the Cauchy-Schwarz inequality to find

P1 A 2 L 2 ≤ P1 A L 2 (X ) µ(A).
It remains to prove (4.5). To this end, we use the von Neumann ergodic theorem, which establishes convergence in the L 2 -norm. It follows that we also have weak convergence, and therefore, as t → ∞,,

1 A , 1 t t 0 1 B (φ s )ds → 1 A , P1 B = P1 A , P1 B , but 1 A , 1 t t 0 1 B (φ s )ds = 1 t t 0 1 A , 1 B (φ s ) ds = 1 t t 0 1 A , 1 φ -1 s (B) ds. Now it is clear that 1 A , 1 φ -1 s (B) = µ(A ∩ φ -1 s B). That finishes the proof.
We have the quantitative version of the Poincaré recurrence theorem Proposition 4.2.4 (Poincaré recurrence theorem).

lim t→+∞ µ(A ∩ φ -1 t A) ≥ µ(A) 2 . ( 4 

.8)

Accordingly, if µ(A) > 0, then A ∩ φ t k A is non empty for a sequence (t k ) converging to infinity with k.

Proof. For t > 1, we write

1 t 2 t 2 0 µ(A ∩ φ -1 s A)ds ≤ 1 t 2 t 0 µ(A ∩ φ -1 s A)ds + 1 t 2 t 2 t sup s≥t µ(A ∩ φ -1 s A)ds ≤ 1 t + t -1 t sup s≥t µ(A ∩ φ -1 s A).
Passing to the limit t → ∞ and using the left-hand inequality in (4.7), we obtain (4.8).

Almost conservation laws for KG

In the context of the FDL approach, there is some kind of "algebraic structure" that a functional in hand has to respect to be fruitful in the construction of an invariant measure. Indeed, one needs uniform in α controls in the passage to the limit from the stochastic model towards the Hamiltonian PDE. In the estimation procedure, terms interacting with the damping (of order α) are added with terms interacting with the forcing (of order α after taking the quadratic variation) and "order 1" terms. To get the needed uniformity, the order 1 terms must vanish under expectation w.r.t. an invariant measure. In the case of a conservation law, this requirement is satisfied because of the special "algebraic relations" that the latter shares with the equation. We call almost conservation law any (non preserved) functional that satisfies this requirement. Such a functional must depend on the damping model. Now we state a precise definition of our understanding of almost conservation law: Consider a PDE

∂ t u = f (u), (4.9) 
and a functional V (u), then, formally, we have for any solution u that

∂ t V (u) = (∇ u V (u), f (u)).
We call the quantity (∇ u V (u), f (u)) by the evolution rate of V under the equation (4.9). It is clear that this term is zero iff V is a conservation law for this equation. Now consider a linear perturbation of (4.9)

∂ t u = f (u) + αLu, (4.10) 
then ∂ t V (u) = (∇ u V (u), f (u)) + α(∇ u V (u), Lu).
In the case where V is a conservation law for the equation, then ∂ t V (u) is of "order" α, i.e. ∂ t V (u) is of the form αh(u) where h does not depend on α.

A functional V is called almost conservation law for (4.9) relatively to (4.10) if

• V is not a conservation law,

• for a solution u to (4.10), ∂ t V remains of order α.

Remark 4.3.1. The evolution rate ∂ t V for an almost conservation law V must vanish when α = 0, therefore V has to be a perturbation of a conservation law.

In the present work, the damping scheme for (4.1) we consider is

∂ 2 tt u -∆ 0 u + u 3 = α∆ 0 ∂ t u, α ∈ (0, 1). ( 4 

.11)

Let us introduce the following quantities:

G 1 (y) = E(y) + α(m 2 0 + λ 0 ) 2 u∂ t u + α 2 (m 2 0 + λ 0 ) 4 u 2 1 , G 2 (y) = E(y) - α 2 ∂ t u∆ 0 u + α 2 4 u 2 2 .
With the use of (4.3) (for m = 1, s = 0) and y is the vector [u, ∂ t u]. We remark that

G 1 (y) ≥ E(y) - α 2 (m 2 0 + λ 0 ) 2 4 u 2 - 1 4 ∂ t u 2 + α 2 (m 2 0 + λ 0 ) 4 u 2 1 ≥ E(y) - 1 4 ∂ t u 2 ≥ 1 4 E(y), (4.12 
)

G 2 (y) ≥ E(y) - α 2 4 ∆ 0 u 2 - 1 4 ∂ t u 2 + α 2 4 u 2 2 = E(y) - 1 4 ∂ t u 2 ≥ 1 4 E(y). (4.13)
Hence, in particular, the positivity of G 1 and G 2 .

We have that the functionals G 1 and G 2 are almost conservation laws for (4.1) relatively to our dissipation scheme. The following controls (obtained in Proposition 4.4.1) express this fact:

G 1 (y t ) + α t 0 L 1 (y s )ds ≤ G 1 (y 0 ), (4.14) G 2 (y t ) + α t 0 L 2 (y s )ds ≤ G 2 (y 0 ) + αC t 0 u 6 L 6 ds, (4.15) 
where C is a constant independent of α, and we set

L 1 (y) = 1 2 (m 2 0 + λ 0 ) u 2 1 + 2 ∂ t u 2 1 -(m 2 0 + λ 0 ) ∂ t u 2 + (m 2 0 + λ 0 ) u 4 L 4 , L 2 (y) = 1 2 1 -u 2 2 + ∂ t u 2 1 ,
and 1 -= 1ε, with ε > 0 arbitrarily close to 0. We give some useful estimates:

Proposition 4.3.2. For all [u, v] ∈ H 1,1 , we have G 1 (u, v) ≤ 2 + m 2 0 + λ 0 2κ 2 L 1 (u, v), (4.16 
)

G 2 (u, v) ≤ 5E(u, v) + L 2 (u, v) 4 , (4.17) 
where κ = min(m 2 0 + λ 0 , 1). The proof of the above proposition is straightforward. Denoting by γ 0 the positive number 2κ 2 /(2 + m 2 0 + λ 0 ), we infer from (4.14) and (4.16) that, for any solution y t ∈ H 1,0 to (4.11), we have G 1 (y t ) ≤ e -γ 0 αt G 1 (y 0 ).

Taking this inequality to the power p > 0, we get G p 1 (y t ) ≤ e -pγ 0 αt G p 1 (y 0 ). Combining this with the embedding H 1 ⊂ L 6 , we obtain 

G 2 (y t ) + α t 0 L 2 (y s )ds G 2 (y 0 ) + αG 1 (y 0 ) 3 . Proposition 4.3.3. We have the inequalities L 1 (u, v) ≥ κ 2 [u, v] 2 1,1 + u 4 L 4 , (4.18) L 2 (u, v) ≥ δ 2 [u, v] 2 2,1 f or any δ < 1. ( 4 
(m 2 0 + λ 0 ) m-s 2 v 2 s ≥ 1 2 v 2 m . ( 4 

.20)

Proof. Using (4.3), we have

v 2 m = 1 2 v 2 m + 1 2 v 2 m ≥ 1 2 v 2 m + (m 2 0 + λ 0 ) m-s 2 v 2 s .
That finishes the proof.

A-priori estimates for the nonlinear equation (4.21). 

= [v 0 , ∂ t v 0 ] with G 1 (q 0 ) < ∞ and G 2 (q 0 ) < ∞, we have G 1 (q t ) + α t 0 L 1 (q s )ds ≤ e γ 1 t 0 R( f )ds G 1 (q 0 ) + γ 1 t 0 f 4 L 6 ds , (4.23) G 2 (q t ) + α t 0 L 2 (q s )ds ≤ e t 0 R( f )ds G 2 (q 0 ) + 1 4 t 0 (2 f 4 L 6 + αC v + f 6 L 6 )ds , (4.24) 
where R andG 1 (q) as E(q) + I α (q). Since E(q) is preserved by KG, we have

( f ) = 2(24( f L ∞ + f 2 L ∞ ) + f 2 L 6 ) and C is universal. Proof. Rewrite (4.21) into ∂ 2 tt v -∆ 0 v + v 3 = α∆ 0 ∂ t v -3v 2 f -3v f 2 -f 3 ,
∂ t E(q) = -(∂ t v, 3v 2 f + 3v f 2 + f 3 ) + α(∂ t v, ∆ 0 ∂ t v) = -3( f ∂ t v, v f + v 2 ) -(∂ t v, f 3 ) -α ∂ t v 2 1 ≤ 3( f L ∞ + f 2 L ∞ ) ∂ t v ( v + v 2 L 4 ) + ∂ t v f 3 L 6 -α ∂ t v 2 1 ≤ 3( f L ∞ + f 2 L ∞ ) 1 2 ∂ t v 2 + 2 v 2 + 2 v 4 L 4 + 1 2 ∂ t v 2 f 2 L 6 + 1 2 f 4 L 6 -α ∂ t v 2 1 ≤ (24( f L ∞ + f 2 L ∞ ) + f 2 L 6 )E(q) + 1 2 f 4 L 6 -α ∂ t v 2 1 . Now ∂ t I α (q) = α(m 2 0 + λ 0 ) 2 (∂ t v, ∂ t v) + α 2 (m 2 0 + λ 0 ) 4 ∂ t v 2 1 + α(m 2 0 + λ 0 ) 2 (v, ∆ 0 v -(v + f ) 3 + α∆ 0 ∂ t v)) = α(m 2 0 + λ 0 ) 2 ∂ t v 2 + α 2 (m 2 0 + λ 0 ) 4 ∂ t v 2 1 - α(m 2 0 + λ 0 ) 2 ( v 2 1 + v 4 L 4 ) - α 2 (m 2 0 + λ 0 ) 4 ∂ t v 2 1 + α(m 2 0 + λ 0 ) 2 (v f , 3v 2 + 3v f + f 2 ) A . Let us notice that A ≤ α(m 2 0 + λ 0 ) 2 (24( f L ∞ + f 2 L ∞ ) + f 2 L 6 )E(q) + 1 2 f 4 L 6 .
Finally, we obtain

∂ t G 1 (q) = ∂ t E(q) + ∂ t I α (q) ≤ -αL 1 (q) + 1 + α m 2 0 + λ 0 2 (24 f L ∞ + f 2 L 6 )G 1 (q) + f 4 L 6 .
Applying Gronwall lemma we obtain (4.23).

To prove (4.24), let us compute

∂ t G 2 (v) = (∂ t v, α∆ 0 ∂ t v -(3v 2 f + 3v f 2 + f 3 )) - α 2 (∆ 0 v, ∆ 0 v -(v + f ) 3 )) + α 2 ∂ t v 2 1 + α 2 4 ∂ t u 2 2 - α 2 (∆ 0 u, α∆ 0 ∂ t u) =0 = (∂ t v, -(3v 2 f + 3v f 2 + f 3 ) - α 2 (∆ 0 v, ∆ 0 v -(v + f ) 3 ) - α 2 ∂ t v 2 1 = I + II + III.
By the first part of the proof, we have

I ≤ (24( f L ∞ + f 2 L ∞ ) + f 2 L 6 )E(q) + 1 2 f 4 L 6 ,
combining that with (4.17), we get

I ≤ 2(24( f L ∞ + f 2 L ∞ ) + f 2 L 6 )G 2 (q) + 1 2 f 4 L 6 =: R( f )G 2 (q) + + 1 2 f 4 L 6
Now for any ε > 0, we have

II ≤ - α 2 v 2 2 + α 2 v 2 v + f 3 L 6 ≤ - α 2 v 2 2 + α ε 2 v 2 2 + α 8ε v + f 6 L 6 .
Combining all this we obtain, for any ε > 0,

∂ t G 2 (q t ) + α 2 ∂ t v 2 1 + (1 -ε) v 2 2 ≤ G 2 (q t )R( f ) + α 8ε v + f 6 L 6 + 1 2 f 4 L 6 ,
it remains to apply Gronwall lemma to arrive at the claim.

The following result will be used in the proof of Proposition 4.7.2.

Proposition 4.4.2. For any T > 0, any ε > 0, we have the a-priori estimate

E(q T ) + α T 0 ∂ t v 2 1 ds ≤ e (9T +ε)t ε + ε T T 0 f 2 L ∞ ds E(q 0 ) + 1 2 T 0 f 6 L 6 + T ε f 4 L 4 ds . (4.25)
Proof. We have that

∂ t E(q) = -(∂ t v, 3v 2 f + 3v f 2 + f 3 ) + α(∂ t v, ∆ 0 ∂ t v) = -3( f ∂ t v, v f + v 2 ) -(∂ t v, f 3 ) -α ∂ t v 2 1 .
Then

∂ t E(q t ) + α ∂ t v 2 1 ≤ 3 2 ( ε T f ∂ t v 2 + T ε v f + v 2 2 ) + 1 2 ∂ t v 2 + 1 2 f 6 L 6 . Notice that T ε v f + v 2 2 ) ≤ 2T ε ( v f 2 + v 4 L 4 ) ≤ T ε (3 v 4 L 4 + f 4 L 4 ).
And then

∂ t E(q t ) + α ∂ t v 2 1 ≤ 3ε T f 2 L ∞ E(q) + 6T ε E(q) + E(q) + 1 2 f 6 L 6 + T 2ε f 4 L 4 .
One can change ε into 2ε/3 and use the Gronwall inequality to find, for all t ≥ 0,

E(q t ) + α t 0 ∂ t v 2 1 ds ≤ e (9T +ε)t ε + ε T t 0 f 2 L ∞ ds E(q 0 ) + 1 2 t 0 f 6 L 6 + T ε f 4 L 4 ds .
Then take t = T to get the result. where κ = min(1, m 2 0 + λ 0 ).

Proof.

Step 1: The finite-dimensional approximating equation and estimation of the moments. Let P N be the projection on the finite-dimensional space E N := span{e 0 , ..., e N }.

Set z N = P N z, A N = P N A, ζ N = P N ζ , ∆ N = P N ∆ and A m,N = ∑ N j=0 (m 2 0 + λ j ) m a 2 j . Then we have ∂ t [z N , ∂ t z N ] = A N [z N , ∂ t z N ] + √ α∂ t ζ N .
It is a matter of direct verification that the norm f (z

N , ∂ t z N ) := [z N , ∂ t z N ] 2 2 
,1 is still preserved by the approximating equation in which we take α = 0. The fonction f belongs to C 2 (E N × E N , R), then we can apply the finite-dimensional Itô formula:

d f (z N , ∂ t z N ) = α A 1,N 2 -[z N , ∂ t z N ] 2 2,2 dt + √ α N ∑ m=0 a m ((-∆ N 0 ) 1/2 ∂ t z N , (-∆ N 0 ) 1/2 e m )dβ m . Now let p > 1, we have that f p still belongs to C 2 (E N × E N , R), the Itô formula gives that d f p (z N , ∂ t z N ) = p f p-1 d f + α p(p -1) 2 N ∑ j=0 a 2 m f p-2 ((-∆ N 0 ) 1/2 ∂ t z N , (-∆ N 0 ) 1/2 e m ) 2 dt =: (1) + (2) (1) = α p [z N , ∂ t z N ] 2(p-1) 2,1 A 1,N 2 -[z N , ∂ t z N ] 2 2,2 dt + θ (t),
where θ (t) is the stochastic integrand and verifies E t 0 θ (s) = 0. We see that

(1) ≤ α p [z N , ∂ t z N ] 2(p-1) 2,1 A 1,N 2 -α pκ [z N , ∂ t z N ] 2p 2,1 + θ (t).
On the other hand,

(

) ≤ α p(p -1) 2 [z N , ∂ t z N ] 2(p-1) 2,1 A 1,N . 2 
Then, with use of the Young inequality,

d f p (z N , ∂ t z N ) -θ (t) ≤ -α pκ [z N , ∂ t z N ] 2p 2,1 dt + α p 2 2 [z N , ∂ t z N ] 2(p-1) 2,1 A 1,N dt ≤ -α pκ [z N , ∂ t z N ] 2p 2,1 dt + α pκ 2 [z N , ∂ t z N ] 2p 2,1 dt + αA p 1 p p+1 2κ p-1 dt.
After integrating in t, taking the expectation, and using the Gronwall lemma, we get

E [z N , ∂ t z N ] 2p 2,1 ≤ A p 1 p p κ p .
Step 2: Passage to the limit N → ∞. Using Fatou's lemma, we get the estimations for [z, We recall that for any integer p > 0, we have that p! ≥ p e p , then we arrive at the claimed result.

∂ t z] E [z, ∂ t z] 2p 2,1 ≤ A p 1 p p κ p . ( 4 
Remark 4.5.2. One could use directly the infinite-dimensional Itô formula, the requirements of the latter are satisfied using the Fernique theorem.

Global dynamics of the damped-perturbed KG and well structuredness

In what follow we use the following notations:

y t = [u, ∂ t u], g = [∂ t u, ∆ 0 u -u 3 + α∆ 0 ∂ t u] =: [g 1 , g 2 ], ζ (t) = ∞ ∑ m=0 a m êm β m (t), êm = [0, e m ].
In the rest of the paper we suppose that the quantities A i = ∑ ∞ j=0 a 2 m (m 2 0 + λ m ) i are finite for i = 0, 1.

Proposition 4.6.1. Let m ∈ {1, 2}. The equation (4.4) is well structured on (H m,m-2 , H m,m-1 , H m,m ) in the sense of Definition 1.6.13.

Proof. First, we prove the stochastic global wellposedness on H 1,0 in the following steps:

Step 1: Splitting the problem. In order to solve the initial value problem of the equation (4.4), we split the latter into the following two equations:

∂ 2 tt z α -∆ 0 z α = α∆ 0 ∂ t z α + √ αη, (4.31) ∂ 2 tt v -∆ 0 v + (v + z α ) 3 = α∆ 0 ∂ t v. (4.32) Under the initial conditions [z α , ∂ t z α ]| t=0 = [0, 0], [v, ∂ t v]| t=0 = [u, ∂ t u]| t=0
, we have that u = v + z α solves (4.4)6 . Therefore it suffices to solve each of these two equations.

Step 2: The linear stochastic problem. The linear equation (4.31), supplemented by the initial data z

α | t=0 = ∂ t z α | t=0 = 0, is solved by the following stochastic convolution [z α , ∂ t z α ](t) = √ α t 0 S(t -s)d ζ (s).
The solution [z α , ∂ t z α ] is almost surely in Z ∞ 1 when A 0 is finite (see Subsection 1.6.3 for properties of the stochastic convolution).

Step 3 : The nonlinear deterministic problem. The initial value problem of the nonlinear equation (4.32) is solved by a deterministic way. Suppose A 0 finite. Fix ω for which z α ∈ Z ∞ 1 , we can then take f = z α in (4.21) and the problem is solved in view of Proposition 4.4.3.

Step 4 : Progressive measurability and continuity. By the definition of z α and v, we have that the solution u = v + z α is σ (u 0 , ∂ t u 0 , F t )-adapted and u is continuous in time (with values in H 1 ). Then using the lemma 1.6.2 we get the progressive measurability for u. The continuity (w.r.t. initial data) property follows that established for the "nonlinear solution" v, since the "linear solution" z does not depend on the initial data. Now, we prove that the solution y t satisfies the assumptions 1.6.7 on the Gelfand triples (H m,m-2 , H m,m-1 , H m,m ) for m = 1, 2 :

1. y t is a Itô process in H m,m-2 since the process g(y

) := [∂ t u, ∆ 0 u -u 3 + α∆ 0 ∂ t u] is F t -adapted,
and we infer from Proposition 4.4.1 the following

P t 0 g(y s ) 2 H m,m-2 ds < ∞ f or all t ≥ 0 = 1.
2. The quantities A 0 , A 1 are finite by assumption;

3. Again, we use the estimates of Proposition 4.4.1 to see that

P t 0 y s 2 H m,m ds < ∞ f or all t ≥ 0 = 1.
The proof is complete.

In view of the wellposedness established above, we are able to define the flow map of (4.4) φ α r w = y α (r, w), the transition function P α t (w, E) = P(φ α t w ∈ E), and the Markov semigroups, with use of the Feller property induced by the continuity of the flow,

P α t f (w) = f (v)P α t (w, dv), C b (H 1,0 ) → C b (H 1,0 ); P α * t ν(E) = P α t (v, E)ν(dv), p(H 1,0 ) → p(H 1,0 ),
where p(H) is the set of probability measures on H. The functions P α t and P α * t verify the duality relation (P α t f , ν) = ( f , P α * t v).

Stationary measures for the damped-perturbed KG

We suppose that A 0 is finite and recall the notation γ 0 = 2κ 2 2+m 2 0 +λ 0 . Theorem 4.7.1. For any α ∈ (0, 1), the problem (4.4) admits an invariant measure µ α defined concentrated on H 2,1 . The invariant measures µ α of (4.4) satisfy the following properties 1. For any α ∈ (0, 1) ). Then we have to show that these functionals satisfy the conditions of Theorem 1.6.8. Thanks to their polynomial structure on the concerned spaces, one shows, without difficulty, the uniform continuity (on bounded sets) condition and conditions (1.19) and (1.20).

H 1,0 L 1 (y)µ α (dy) = A 0 2 . ( 4 
Here, we wish to apply the Itô formula with a deterministic time, then we have to verify the condition (1.21).

Proposition 4.7.2. Suppose that EE ι (y 0 ) < ∞ with ι > 1. Then the quantities G 1 (y t ) and G 2 (y t ) satisfy the condition (1.21).

Proof. We have for

i = 1, 2, ∑ m≥0 a 2 m E t 0 |∇ y G i (y; êm )| 2 ds ∑ m≥0 a 2 m E t 0 |(∂ t u + α 2 (-∆ 0 ) i-1 u; e m )| 2 ds ∑ m≥0 a 2 m E t 0 |(∂ t v + α 2 (-∆ 0 ) i-1 v; e m )| 2 + (∂ t z + α 2 (-∆ 0 ) i-1 z; e m )| 2 ds A 0 ,A 1 E t 0 E(q s )ds + E t 0 ( [z, ∂ t z] 2 i-1,0 )ds.
One see, with use of estimates (4.30), that

E t 0 ( [z, ∂ t z] 2 i-1,0 )ds < ∞ f or any t ≥ 0.
Now we use estimate (4.25), that, for any ε > 0,

E t 0 E(q s )ds ≤ t 0 e 9s 2 +εs ε E e ε s s 0 f 2 L ∞ dr E(q 0 ) + 1 2 s 0 f 6 L 6 + T ε f 4 L 4 dr ds.
By the Young inequality, we have for any ε > 0,

E t 0 E(q s )ds t 0 e 9s 2 +εs ε E      e 1 + ε (1 + -1)s s 0 f 2 L ∞ dr + G 1 (q 0 ) + 1 2 s 0 f 6 L 6 + T ε f 4 L 4 dr 1 + R(s)      ds.
One uses the estimate (4.30) and the Jensen inequality to bound ER(s) by in C(1 + s 1 + ). And, for small enough ε > 0 (here ε depends indeed on the infinitesimal parameter enterring the definition of 1 + ), the estimate (4.29) and the embedding H 2 ⊂ L ∞ allow to get the bound (1 + s 1 + )ds < ∞ f or all t ≥ 0.

The proof is finished.

Taking the inequality (4.25) to the power p > 1 and repeating the above argument, we show that G p 1 satisfies (1.21) as soon as EE p + (y 0 ) is finite. Proposition 4.7.3. Let α ∈ (0, 1). Suppose EG p 1 (y 0 ) < +∞ for any p > 1. Then the solution y t of (4.4) starting at y 0 satisfies the following We have, with the use of the inequalities (4.16), (4.12) and the inequality 2p 2 -2p ≤ 2p 2p/2 for p ≥ 0, f α (t) ≥ p α 2 G p-1 1 (y) (2L 1 (y) -A 0 ) -2p(p -1)αA 0 G p-1 1 (y) ≥ pαG p-1 1 (y)L 1 (y) -2α p 2 A 0 G p-1 1 (y) ≥ αγ 0 pG p 1 (y) -2α p 2 A 0 G p-1 1 (y) where c i , i = 1, 2, 3 are universal positive constants.

≥
We remark in (4.38) we need to control E u 6 L 6 . But one can see that this control holds true if one combines the embedding H 1 ⊂ L 6 and the estimate (4.37).

Proof. Set J α (y) = -α 2 ∂ t u∆ 0 u + α 2 4 u 2 2 so that G 2 = E + J α . In order to apply the Itô formula used in the previous estimations, let us compute ∇ y G 2 (y, dy) = ∇ y E + ∇ u J α (y, g 1 ) + ∇ v J α (y, g 2 ) + Θ 2 =: ∇ y E + I + II + Θ 2 , where Θ 2 (t) = √ α ∑ m≥0 a m (∂ t u -α 2 ∆ 0 u, e m )dβ m (t).

We see without any difficulty that ∇ y E(y, g) = -α ∂ t u 2 1 .

On the other hand, we have

I = α 2 ∂ t u 2 1 + α 2 4 ∂ t u 2 2 . II = - α 2 (∆ 0 u, ∆ 0 u -u 3 + α∆ 0 ∂ t u) = - α 2 u 2 2 + α 2 (∆u, u 3 ) - α 2 4 ∂ t u 2 2 ≤ - α 2 (1 -ε) u 2 2 + α 8ε u 6 L 6 - α 2 4 ∂ t u 2 2 .
Summarizing all this, we have

∇ y G 2 (y, dy) ≤ - α 2 ( ∂ t u 2 1 + (1 -ε) u 2 2 ) + α 8ε u 6 L 6 + Θ 2 ,
where Θ 2 satisfies E t 0 Θ 2 (s) = 0 for any t > 0. Now ∇ 2 y G 2 (y, êm ) = 1, then for any ε ∈ (0, 1), we have Let us fix α. Now, we are going to establish (uniform) tighness of the sequence { λT , T > 0}. Let R > 0 and B R be the ball of H 2,1 of center 0 and radius R, B R is compact in H 1,0 and, thanks to (4.40), Chebychev inequality implies

λT (B R ) ≥ 1 - C R 2 ,
where C is independent of T . Then { λT , T } is tight on H 1,0 . By Prokhorov theorem, there is an accumulation point on H 1,0 , then the Bogoliubov-Krylov argument establishes that the latter is invariant for (4.1). We denote this stationary measure by µ α . G p 1 (y)χ R ( y 1,0 )µ α (dy) ≤ 3p p A p 0 , it remains to apply the Fatou lemma to finish. Now the control on the H 2,1norm implies µ α (H 2,1 ) = 1.

Invariant measure for KG and estimates

Theorem 4.8.1. There is an accumulation point µ of {µ α } as α → 0, in the weak topology of H 1,0 , satisfying the following properties:

1. µ is invariant under the flow of the KG equation (4.1) defined on H 1,0 ;

2. µ(H 2,1 ) = 1; (4.43)

3.

H 1,0 y 2 H 2,1 µ(dy) < +∞; In what follows B R denotes the ball in H 2,1 centred at zero and of radius R, unless otherwise specified. φ α t and φ t denote respectively the flows of (4.4) and (4.1) on H 1,0 . The Markov semigroups associated to (4.1) are denoted by P t and P * t . For w ∈ H 1,0 , v(t, w) and u(t, w) are the corresponding solutions to the nonlinear equation (4.32) and the KG equation Proof. Consider the following equations

∂ 2 tt v -∆ 0 v + v 3 = α∆ 0 ∂ t v -3v 2 z α -3vz 2 α -z 3 α , ∂ 2 tt u -∆ 0 u + u 3 = 0.
Taking the difference between the above two equations, we get

∂ 2 tt f -∆ 0 f + f 3 = α∆ 0 ∂ t v + 3u 2 v -3v 2 u -3v 2 z α -3vz 2 α -z 3 α = α∆ 0 ∂ t v -3uv f -3v 2 z α -3vz 2 α -z 3 α .
Let t ∈ [0, T ] and w ∈ B R . Thanks to the preservation of E by the solution of (4.1) and the results of Proposition 4.4.1, we get

∂ t E( f , ∂ t f ) = -3( f ∂ t f , uv) + α(∂ t f , ∆ 0 ∂ t v) -(∂ t f , 3v 2 z α + 3vz 2 α + z 3 α ) ∂ t f f L 4 uv L 4 + α ∂ t f 1 ∂ t v 1 + ∂ t f O R,r ( √ α) ( ∂ t f 2 + f 2 L 4 )[ u L 4 v 2 + 1] + O R,r (α) E( f , ∂ t f )[ u 2 L 4 + v 2 2 + 1] + O R,r ( 
α) T ,R,r (1 + L 2 (q)) E( f , ∂ t f ) + α. Now Proposition 4.4.1 ensures the boundedness of t 0 L 2 (q)ds where q = [v, ∂ t v]. We apply Gronwall lemma to get the claimed result.

Since for a.a. ω z α converges to 0 as α → 0, we have 1. Estimates for the inviscid limit. Let χ R be a bump function on [0, R] for R > 0. By (4.33), we have

H 1,0
L 1 (y)χ R ( y 1,0 )µ k (dy) ≤ A 0 2 .

We pass to the limits k → ∞, R → ∞ (in this order, with the use of Fatou's lemma in the second limit), we get 

H 1,0 L 1 (y)µ(dy) ≤ A 0 2 . ( 4 
The point (I) is just the invariance of µ k under φ k t . The point (II) is in weak sense. The point (IV ) follows immedialety (III). Let us, then, prove (III). Let f be a bounded Lipshitz function on H 1,0 , suppose, without loss of generality, that f is bounded by 1 and denote by C f its Lipschitz constant. We have (P k * t µ k , f ) -(P * t µ, f ) = (µ k , P k t f ) -(µ, P t f ) = (µ k , P k t f -P t f ) -(µµ k , P t f ) = A + B.

By weak convergence of µ k towards µ as k → ∞, we have that B → 0 as k → ∞. Now since the measures µ k and µ are concentrated on H 2,1 , we can restrict the integrals on this space.

|A| ≤ B R E| f (φ k t w) -f (φ t w)|µ k (dw) + H 2,1 \B R E| f (φ k t w) -f (φ t w)|µ k (dw) = I 1 + I 2 .
Recalling that f is bounded by 1, we use Chebyshev inequality to find

I 2 ≤ C R 2 . Now I 1 = B R E | f (φ k t w) -f (φ t w)|1 { z α L ∞ t H 2 ≤r √ α} µ k (dw) + B R E | f (φ k t w) -f (φ t w)|1 { z α L ∞ t H 2 >r √ α} µ k (dw) = I 1 1 + I 2 1 .
By Chebyshev inequality we get

I 2 1 ≤ C r 2 .
Recall that f is Lipschitz, then using Corollary 4.8.3 we find

I 1 1 ≤ C f sup w∈B R E φ k t w -φ t w 1 { z α L ∞ t H 2 ≤r √ α k } ≤ C f ,R,r √ α k .
Now take in the good order the limits k → ∞, r, R → ∞ to finish the argument.

The proof is complete.

Qualitative properties for the distribution of the Hamiltonian

The proof of Theorem 4.9.1 below is inspired by the method developped in [Kuk08, Shi11, KS12], however the general argument is modified because of the lack of conservation laws present in our situation. In the case of the Schrödinger and Euler equations [START_REF] Shirikyan | Local times for solutions of the complex Ginzburg-Landau equation and the inviscid limit[END_REF][START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF], the combination of two conservation laws allowed to control the measure uniformly arround zero, such a control was a useful step in the proof of some absolute continuity properties whose strategy relies in part on a spliting argument. Here, without such uniform control around zero, we show that the final conclusion is still true by using furthermore an approximation argument.

Theorem 4.9.1. Suppose a m = 0 for any m ≥ 0, then the distribution of the Hamiltonian E(y) under µ has a density w.r.t. the Lebesgue measure on R.

Before proving the above result let us prove some balance type relations. For a continuous function h : R → R, set H(x) = x 0 h(r)dr. Proposition 4.9.2. Let α ∈ (0, 1) and µ α the invariant measure constructed for the problem (4.4). Let h ∈ C ∞ 0 (R), we have

E µ α H(E)(A 0 -∂ t u 2 1 ) + 1 2 E µ α h(E) ∑ m a 2 m (∂ t u, e m ) 2 = 0,
where E µ denotes integral with respect to µ and E is the Hamiltonian of the Klein-Gordon equation (4.1).

Proof. Consider the second order linear ODE -Φ λ + λ Φ λ = h λ ∈ (0, 1), (4.48) with initial data Φ(0) = Φ (0) = 0. Then it is a matter of direct verification that its solution is

Φ λ (x) = 1 2 √ λ
x 0 e -(x-y) √ λe (x-y) √ λ h(y)dy.

The good behaviour of Φ λ (x) at x → ∞ allows to apply the Itô formula (Theorem 1.6.8) to Φ λ • E(y): Taking the expectation with respect to µ α and using the stationarity of the latter, we are led to It remains to apply again the Lebesgue dominated convergence theorem in (4.49) to arrive at the claim.

E µ α Φ λ (E(s)) A 0 -∂ t u 2 1 + 1 2 E µ α Φ λ (E(s)) ∑
By a standard approximation argument one can pass from C ∞ 0 -functions to indicators on intervals functions, then using the monoton class theorem we arrive at: Corollary 4.9.3. For any Borel set Γ ⊂ R, we have Remark that, since λ N → ∞, for any ε > 0, any R > 0, we can choose N so that C N,R,ε be positive. Then combining (4.50) and (4.51), we find

E µ α 1 Γ (E) ∑
µ α (E -1 (Γ) ∩ I ε,R ) C N,R,ε l(Γ),
on the other hand, we have by Chebyshev inequality

µ α (E -1 (Γ) ∩ (I ε \I ε,R )) R -2 ,
then, for any ε > 0, we have, with use of (4.50),

P(E(y) ∈ Γ ∩ [ε, ∞)) R -2 +C N,R,ε l(Γ), ∀R > 0.

Now we prove that P(u ≡ 0) = 0. It suffices to show that for some m, for any α > 0, P(u m = 0) = 0, where u m is the projection of u on the direction e m . So consider the projected equation: g m = [∂ t u m , (∆ 0 uu 3 + α∆ 0 ∂ t u, e m )], ζm (t) = a m β m (t).

An estimate of the form (4.50) can be derived in a same manner, we use it in the mind of the above procedure. It is clear that the quadratic variation of u m is bounded from below, it remains to control the drift term. Namely, it suffices to have that E( [u, ∂ t u] 2 2,1 + (u 3 , e m )) < ∞ for all α > 0 to finish the proof, but this is ensured by (4.34) and (4.35). The proof is finished. Remark 4.9.4. One could derive an inequality of type (4.50) by using the local time approach. We, first, apply the Itô formula to E(y): E(y(t)) = E(y(0)) + α where C is a universal constant. We recognize the needed inequality.

Proposition 4.9.5. Let a > 1, set σ = γ 0 (2aeA 0 ) -1 , then

E µ e σ E(y) = H 1,0
e σ E(y) µ(dy) < +∞. Proposition 4.10.1. For any y 0 in H 1,0 (D), there is a unique y := [y 1 , y 2 ] belonging to ∩ T >0 X T satisfying:

∂ t y = Ay -[0, y 3 1 ], (4.55) 
where Ay = [y 2 , ∆ 0 y 1 ] and y| t=0 = y 0 .

Sketch of the proof. The proof of the existence relies on the fixed point argument combined with the preservation of the energy

E(y) = 1 2 y 2 1,0 + 1 4 y 4 1 .
We give it later. Now let us give the argument of the uniqueness, let x and y be two global in time solutions of (4.55), set w = xy. Then ∂ t w = Aw -[0, w 3 1 -3x 1 y 2 1 + 3x 2 1 y 1 ].

We multiply this equation by ∂ t w and integrate over D to find

∂ t E(w) ≤ C 1 ∂ t w 2 ( x 1 3 L 6 + y 1 3 L 6 ) ≤ C 2 E(w)( x 1 3 L 6 + y 1 3 L 6 ).
Then for any ε > 0 and t ∈ [0, T ]

∂ t E(w(t)) ≤ C 3 ε E(w) sup t∈[0,T ] ( x 1 6 L 6 + y 1 6 L 6 ) + ε
Using the fact that H 1 ⊂ L 6 and the Gronwall inequality, we see that for any T > 0 and the case w 0 = 0, we have sup t∈[0,T ] E(w) ε 2 f or all ε > 0 which finishes the proof of the uniqueness.

In order to prove the existence part, for a given y 0 ∈ H 1,0 set the map φ t y = e tA y 0 -t 0 e -(t-s)A [0, y 3 1 ]ds.

  Deng, Tzvetkov et Visciglia [TV13, TV14, TV15, Den15, DTV15].

  -Ono equation was established on Sobolev spaces by Deng, Tzvetkov and Visciglia [TV13, TV14, TV15, Den15, DTV15].

  Théorie et motivations générales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Systèmes dynamiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Les principaux invariants de la dynamique . . . . . . . . . . . . . . . . . . . 1.1.3 Conséquences d'une mesure invariante sur la dynamique . . . . . . . . . . . 1.1.4 Résultats généraux sur l'existence de mesures invariantes . . . . . . . . . . . 1.1.5 Un exemple élémentaire: l'oscillateur harmonique . . . . . . . . . . . . . . 1.2 Mesures invariantes pour les EDPs Hamiltoniennes . . . . . . . . . . . . . . . . . . 1.2.1 L'approche générale de la théorie des mesures de Gibbs pour les EDPs . . . 1.2.2 L'approche Fluctuation-Dissipation-Limite (FDL) . . . . . . . . . . . . . . 1.3 L'équation de Benjamin-Ono . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Structure des lois de conservation d'ordres entiers . . . . . . . . . . . . . . . 1.4 Des résultats antérieurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 Equation de Benjamin-Ono . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2 Equations de Klein-Gordon/ondes . . . . . . . . . . . . . . . . . . . . . . . 1.4.3 Approche FDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Notations générales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Du matériel stochastique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.1 Le mouvement brownien, le bruit blanc . . . . . . . . . . . . . . . . . . . . 1.6.2 L'intégrale et le lemme d'Ito en dimension 1 . . . . . . . . . . . . . . . . . 1.6.3 Convolution stochastique, lemme d'Ito en dimension infinie . . . . . . . . . 1.6.4 Semi-groupes de Markov . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.5 EDPs stochastiques: Le caractère bien structuré (Well structuredness) . . . . 1.6.6 Temps local associé aux processus d'Ito . . . . . . . . . . . . . . . . . . . . 1.6.7 Autres résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Présentation des travaux de thèse 2.1 Mesure invariante concentrée sur C ∞ (T) pour l'équation de Benjamin-Ono . . . . . Chapter 1

  que ∂ t I f ≡ 0, c'est à dire que (∂ t I f )| t=r = 0 pour tout r ≥ 0. En fait il suffit de montrer que (∂ t I f )| t=0 = 0, en effet d dt f (φ t+r x) | t=0 = [(∇ f )(φ t+r x).∂ t φ t+r (x)] | t=0 = (∇ f )(φ r x).(∂ t φ t x)| t=r = d dt f (φ t x) | t=r .
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 11 Figure 1.1: Image du satellite ERS-1 montrant des ondes internes se propageant dans le détroit de Gibraltar. Ces ondes sont provoquées par la différence de salinité et de température entre la mer Méditerranée et l'océan Atlantique. Copyright ESA.

  mais d'après le théorème de convergence dominée, ce dernier terme converge vers 0 quand ε → 0 + . En réutilisant le même théorème de convergence dominée, on récupère que lim -ε,a+ε] (β (s))ds = 2Λ t (a) = |β (t)-a|-|β (0)-a|-t 0 sgn(β (s)-a)dβ s dans L 2 (Ω, P).

  .12) Cette relation nous dit clairement ce qu'il faut faire pour finir la preuve. On voit, en effet, que le terme de droite est majorée par 2E|A(0)|l(Γ), où l est la mesure de Lebesgue sur R. Le facteur E|A(0)| est contrôlé par les estimées disponibles pour µ α . D'autre part, si nous arrivons à minorer convenablement le terme ∑ λ 2 m ∂ u F n (u, e m ), le terme de gauche donnerait F n * µ(Γ), et nous arriverions à l'absolue continuité énoncée.
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Proposition 4 .

 4 5.1. Let 0 < ε ≤ κ/(2A 1 e), we have Ee

4.7. 2

 2 Step 2: Stationary measures and their estimations Existence of a stationary measure on H 1,0 for any fixed α. Let δ 0 be the Dirac measure on H 1,0 concentrated at 0. We define the time-averaged measures

  (4.1). Set f = vu, then f | t=0 = 0. We have Lemma 4.8.2. Let T , R and r be positive numbers, we havesup t∈[0,T ] sup w∈B R E E( f , ∂ t f )1 { z α L ∞ t H 2 ≤ √ αr} = O T ,R,r (α).

Corollary 4 .

 4 8.3. For any T , R, r > 0 and almost all ω ∈ Ω,sup t∈[0,T ] sup w∈B R E φ α t wφ t w 2 H 1,0 1 { z α L ∞ t H 2 ≤ √ αr} = O T ,R,r (α).Proof of Theorem 4.8.1. The family {µ α } is tight on H 1,0 w.r.t. α by (4.35), then passing to a subsequence, we have a limiting measure µ. In what follow the subscript k is related to α k , the kth term of the above subsequence.

Φ 0 ΦΦ

 0 λ (E(u)) = Φ λ (E(u 0 )) + t λ (E(u)) (∇ y E, g) λ (E(u))(∇ y E, e m )dβ m (s), where g = [g 1 , g 2 ] = [∂ t u, ∆ 0 uu 3 + α∆ 0 ∂ t u].

  Then we see, using the equation (4.48) and the Lebesgue dominated convergence theorem, that, as λ → 0,Φ λ (x) → -x 0 h(y)dy = -H(x), Φ λ (x) → -h(x).

m≥ a 2 N∂

 2 t u, e m ) 2 ≤ Cl(Γ) (4.50)Proof of Theorem 4.9.1. Thanks to the Portmanteau theorem the proof is restricted to the invariant measures µ α associated to the stochastic problem as long as the resulting estimates are uniform in α. It then consists of the following two steps: Absolute continuity on the interval ]0, +∞[. By the regularity property, it suffices to consider the intervals [ε, +∞[, where ε > 0 is arbitrarily small. Let's define the setsI ε = {[u, ∂ t u] ∈ H 2,1 , ∂ t u ∈ [ε, +∞[}. (∂ t u, e m ) 2 ≥ ∑ m≤N a 2 m (∂ t u, e m ) 2 u, e m ) 2 -∑ m>N (∂ t u, e m ) 2 t u 2 -(m 2 0 + λ N ) -1 ∂ t u 2 1 ,where a N := min{a m , 0 ≤ m ≤ N}. Consider the setI ε,R = { ∂ t u ≥ ε, ∂ t u 1 ≤ R} ⊂ I ε .We have onI ε,R ∑ m≥0 a 2 m (∂ t u, e m ) 2 ≥ a 2 N (ε 2 -(m 2 0 + λ N ) -1 R 2 ) := 1 C N,R,ε . (4.51)

  y m (t) = y m (0) + t 0 g m (s)ds + ζm (t),wherey m = [u m , ∂ t u m ],

  u, e m )dβ m (s).Using the stationarity of y, the local time Λ t (a, ω) of E(y) satisfiesEΛ t (a) = -αtE A 0 2 -∂ t u(0) 2 1 1 (a,+∞) (E(y)) . (4.52)Now let Γ be a Borel set of R, the local time identity (1.26) evaluated to the process E(y) at the function1 Γ yields Γ Λ t (a)da = α ∑ E(y))(∂ t u, e m ) 2 ds.Again, the stationarity of u impliesΓ EΛ t (a)da = αt ∑ m≥0 a 2 m E[1 Γ (E(y))(∂ t u, e m ) 2 ]. (4.53)Combining (4.52) and (4.53), we getE 1 Γ (E(y)) ∑ m≥0 a 2 m (∂ t u, e m ) 2 = Γ E 2 ∂ t u(0) 2 1 -A 0 1 (a,+∞) (E(y)) da,then, with use of (4.33), we findE 1 Γ (E(y)) ∑ m≥0 a 2 m (∂ t u, e m ) 2 ≤ Cl(Γ),

  Consequently, for any R > 0 we haveP(E(y) ≥ R) e -σ R .

4. 10

 10 Global existence and uniqueness for the cubic KG equation inH 1,0 (D)Set the space X := X T = C([0, T ]; H 1,0 (D)) endowed with the norm . X = sup t∈[0,T ] . 1,0 .

  la transformée de Hilbert. Ce cas correspond à l'équation de Benjamin-Ono, qui est une des équations traitées dans ce manuscrit.Il se trouve que ρ(du) peut être interprété comme une mesure gaussienne définie sur des espaces de Hilbert appropriés. C'est alors que le terme e -N(u) sera traité comme une densité par rapport à ρ. Le reste de l'argument consistera à prouver qu'il s'agit d'une densité intégrable et que la mesure µ résultante est invariante. L'intégrabilité peut être directe, par exemple dans le contexte des nonlinéarités défocalisantes comme l'équation de Schrödinger présentée ci-dessus; mais elle peut être très problématique dans certains cas focalisants. La question d'invariance est traitée par approximation fini-dimensionnelle du problème.

	Nous avons vu que dans le cas de la dimension finie, les équations hamiltoniennes admettent des
	mesures invariantes données par

µ(dx) = Z -1 e -H (x) l(dx),

(1.4) où l(dx) représente la mesure de Lebesgue. L'objectif, ici, est d'établir un résultat similaire en dimension infinie. Un premier problème conceptuel est qu'il n'y a pas d'équivalent infini-dimensionnel à la mesure de Lebesgue. Donc il faudra déjà trouver un cadre dans lequel l'expression (1.4) trouve un sens en dimension infinie. Une approche consiste à réécrire la quantité (1.4) comme suit µ(du) = e -N(u) ρ(du), où nous omettons Z pour le moment, et nous notons ρ(du) = e -Q(u) du. Pour décrire les espaces sur lesquels µ est défini, considérons le cas concret de l'équation de Schrödinger cubique défocalisante posée sur le cercle T. La densité renfermant la partie non linéaire est déjà bornée par 1 pour peu que cette non-linéarité ait un sens. La mesure gaussienne ρ peut être vue comme une renormalisation de la limite quand n → ∞ de

  Si C dépend de certains paramètres, nous listerons ces derniers à l'indice à la place de C. La notation x + (resp. x -) désignera x + ε (resp. xε) où ε > 0 est arbitrairement proche de 0. Pour un espace topologique X, on note par B(X ) sa tribu borélienne. La mesure de Lebesgue sur R n sera notée l n , avec l 1 =: l. On notera par ℜ et ℑ les parties réelle et imaginaire respectives d'un nombre complexe. Z 0 désigne l'ensemble des entiers non nuls.Processus aléatoire. Une famille {V t ,t ≥ 0} de variables aléatoires est appelée processus aléatoire, ce processus est dit adapté à la filtration {F t } si pour tout t, V t est mesurable par rapport à la tribu F t . Il est dit continue si pour tout ω ∈ Ω la fonction t → V t (ω) est continue. Temps de Markov. Une variable aléatoire τ : Ω → R + ∪ {∞} est dite temps de Markov ou temps d'arrêt par rapport à F t si pour tout t ≥ 0 {τ ≤ t} ∈ F t .

		1.5. Notations générales
	1.5 Notations générales	
	Des notations plus particulières seront définies dans les parties où elles interviennent. Voici quelques
	notations générales:	
	H s (A) désigne l'espace de Sobolev d'ordre s défini une partie A de l'espace euclidien R d qui peut
	représenter un tore ou un domaine borné. Sa norme sera notée . s , le cas où s = 0 on notera . . Martingale. Un processus M t est dite martingale par rapport à la filtration F t si
	Dans le cas du tore on considère des fonctions de moyenne nulle et sur le domaine, on impose une
	condition de Dirichlet sur le bord. • M t est adapté à F t ;	
	Si E est un espace fonctionnel, Ė sera le sous-espace de E contenant les fonctions de moyenne nulle. Pour un espace de Banach X,on désignera par X * son dual topologique. • E|M t | < ∞, pour tout t;
	Pour deux quantités A et B satisfaisant • E(M t |F s ) = M s pour tout t ≥ s.	A ≤ CB,
	nous noterons parfois Voici un résultat très utile dans la suite, pour la preuve on peut voir [KS91], chapitre 1, section C.
	A B ou A C B. Théorème 1.6.1 (Théorème d'arrêt optionnel de Doob). Soit M t une F t -martingale continue et τ ≤ σ
	deux F t -temps de Markov presque sûrement finis, alors
	EM τ = EM σ = EM 0 .
	Mesurabilité progressive. On dira que le processus V t (ω) est progressivement mesurable par rap-
	port à F t si l'application (ω,t) → V t (ω) est mesurable par rapport à F t × B([0,t]). On a le résultat
	suivant (voir aussi [KS91])	
	Lemme 1.6.2. Tout processus V t (ω) continu et adapté à une filtration F t est progressivement mesurable 1.6 Du matériel stochastique par rapport à celle-ci.
	Dans ce qui suit (Ω, F , P) est un espace de probabilité complet, on note par E l'espérance math-
	ématique associée à P, (F t ) t≥0 est une filtration (i.e. suite de tribu sur Ω qui est croissante par
	inclusion) dans laquelle toute tribu F t est complétée par rapport (F , P) (i.e. contient tout ensemble
	A ∈ F tel que P(A) = 0), on suppose aussi que la filtration est continue à droite, i.e. pour tout t
	F t = ∩ ε>0 F t+ε . Soit (X, B(X )) un espace polonais (i.e. espace métrique complet séparable) muni
	de sa tribu borélienne.	
	Variable aléatoire. Une application V : Ω → X mesurable par rapport aux tribus sous-jacentes est
	appelée variable aléatoire.	
	Espérance conditionnelle. A toute variable aléatoire scalaire V vérifiant E(|V |) < ∞, on peut as-
	socier une projection sur une tribu G ⊂ F . Cette projection, appelée espérance conditionnelle par
	rapport à G et notée E(V |G ), elle est définie (de manière unique, à l'aide du théorème bien connu de
	Radon-Nikodym) par:	
	Théorème 1.4.7 (Kuksin-Shirikyan, [KS04, Shi11]). Pour λ > 0, d ≤ 4, il existe une mesure µ, concentrée sur H 2 (D) invariante pour l'équation de Schrödinger, pour laquelle un flot est construit 1. E(V |G ) est une variable aléatoire scalaire mesurable par rapport à G ;
	en même temps. 2. pour tout G ∈ G , on a	
	La distribution via µ des fonctionnelles M(u) et E(u) admettent des densités par rapport à la mesure G de Lebesgue sur R. V dP =

G E(V |G ).

  La preuve de ce résultat utilise la méthode du temps local introduite initialement par Shirikyan dans[START_REF] Shirikyan | Local times for solutions of the complex Ginzburg-Landau equation and the inviscid limit[END_REF] dans le contexte de l'équation de Schrödinger, et développée dans[START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF] par Kuksin et Shirikyan dans le contexte de l'équation d'Euler, il y était question d'établir une propriété de continuité absolue des distributions de l'énergie et de la masse associées à ces équations. Notons aussi que Kuksin a développé une méthode similaire dans[START_REF] Kuksin | On distribution of energy and vorticity for solutions of 2d Navier-Stokes equation with small viscosity[END_REF] dans le contexte de l'équation d'Euler, cette méthode, elle, utilise une estimée de Krylov sur les processus d'Ito. Nous l'utiliserons plus tard pour établir un résultat sur la dimension de µ. Dans notre preuve nous utilisons un argument d'estimation uniforme de u 2 * µ au voisinage zéro. C'est un outil très important qui permet de pallier le défaut de positivité stricte en zéro que rencontrent les fonctionnelles F n . Le résultat ci-dessous est prouvé dans le contexte des équations d'Euler et de Schrödinger pour une mesure invariante µ concentrée sur H 2 : Théorème 2.1.10 (Kuksin-Shirikyan, [Kuk08, Shi11, KS12]). La mesure µ n'a pas d'atome en zéro et pour tout δ > 0, on a µ({u ∈ L 2 : u ≤ δ }) (λ n ) δ . Temps local et mise en relation. En appliquant la formule d'Ito à la loi F n (u) où u est solution de (2.1), nous trouvons

	Nous vérifions que ce résultat est aussi satisfait par la mesure invariante que nous avons construite
	ici pour l'équation de Benjamin-Ono.
	Décrivons les grandes étapes de la preuve de notre résultat:

) est d'ordre inférieur, telle que pour tout n la mesure F n * µ est absolument continue par rapport à la mesure de Lebesgue définie sur R.

1. Réduction au problème stochastique. Le théorème Porte-manteau combiné avec la régularité des mesures considérées ici, nous permet de nous restreindre aux mesures stationnaires µ α du problème stochastique.

2.

  .13) Cette équation décrit l'évolution d'une particule relativiste de masse m 0 . Lorsque m 0 = 0, nous récupérons l'équation des ondes. Ici u(t, x) est une fonction réelle, la variable spatiale x est tridimensionnelle. Nous considérons deux situations en même temps; le cas d'une variété compacte sans bord que nous traiterons par le biais du tore tri-dimensionnel T 3 , et le cas d'un domaine borné D ⊂ R 3 à bord suffisamment régulier. Dans l'introduction générale nous avons cité des résultats concernant des mesures invariantes pour cette équation. Rappelons qu'en dimension 3, dans la configuration radiale, des mesures invariantes ont été construites sur la boule unité [BT07, dS11, BB14] et sur l'espace tout entier[START_REF] Xu | Invariant Gibbs measure for 3D NLW in infinite volume[END_REF]. Ce sont des mesures de Gibbs, leurs supports sont de régularité H

	1-
	2

  .14) et qu'on considère une fonctionnelle G(u), alors le taux d'évolution de G(u) où u est solution à (2.14) est formellement donné par

  da, (2.19) où Γ est un ensemble borélien arbitraire de R. Par les contrôles que l'on dispose sur µ, nous majorons la partie de droite de (2.19) par Cl(Γ), où C est une constante positive indépendante de α, et l est la mesure de Lebesgue sur R. En absence de (2.18), la procédure habituelle de minoration du terme de gauche de (2.19) n'est plus envisageable. Nous procédons alors comme suit: 1. Scission du problème. Remarquons tout d'abord que E(y) ≥ 0. Donc nous sommes restreints

à l'intervalle [0, +∞); il suffit alors d'avoir l'absolue continuité sur (0, +∞) (avec des estimées uniformes en α) et d'avoir en même temps la non existence d'atome en 0. Dans ce cas on récupèrerait que

  Theorem 3.4.2. Let α ∈ (0, 1). Suppose that A n is finite for any n. Then any stationary measure µ α of the problem (3.3) posed in Ḣ2 (T) satisfies Proof. It suffices to prove (3.39) since, then the estimate (3.40) follows from Lemma 3.1.1. We combine (3.29) and the stationarity of u to get (3.38). Let us prove (3.39).

	H 2 (T)	u 2 1 µ α (du) =	A 0 2	,	(3.38)
	H 2 (T)	u 2p µ α (du) ≤ p p A p 0 for any 1 ≤ p < ∞,	(3.39)
	H 2 (T)	u 2 n µ α (du) ≤ D n for any n ≥ 2,	(3.40)
	where, for any n, D n does not depend on (t, α).			
	For this end, let				

  .70) 3.7. Appendix Proof of Proposition 3.7.1. (3.64) follows immediately from (3.68). Now from (3.67) and (3.68), we can easily deduce that

  The Poincaré recurrence theorem (see Section 4.2) implies Corollary 4.1.3. For µ-almost any y = [u, v] in H 2,1 , there is a sequence t k going to infinity as k → ∞ such that lim k→∞ φ t k y -y 2,1 = 0.

  vector y t = [u, ∂ t u] is a random variable on a complete probability space (Ω, F , P) with range in Sobolev spaces. We assume that the filtration F t associated to ζ t is right continuous and augmented w.r.t. (F , P). For given positive quantities A, B satisfying A ≤ c 1 B, we write A B or A c 1 B. The vectors in H m × H n =: H m,n are denoted with the symbol[, ] while the symbol (, ) represents the inner product in L 2 .

  .19) Proof. The bound (4.19) is straightforward and (4.18) is obained with use of the lemma 4.3.4 below where we take m = 1, s = 0.

	Lemma 4.3.4. For w ∈ H m with m ∈ R, we have for any s ≤ m
	v 2 m -

  Proposition 4.4.1. Set γ 1 = 1 + α For any solution q t = [v t , ∂ t v t ] to (4.21) starting at q 0

	m 2 0 +λ 0 2 .

  .30) 4.6. Global dynamics of the damped-perturbed KG and well structurednessStep 3: Exponential control. Integrating in t, we find

	E	1 t	0	t	[z, ∂ t z] 2p 2,1 ds ≤	A p 1 p p κ p .
	Thanks to Jensen's inequality, we infer						
	E	1 t	0	t		[z, ∂ t z] 2 2,1 ds	p	≤	A p 1 p p κ p .
	Now, let 0 < ε ≤ κ/(2A 1 e), then we have			
	E	ε t	t 0 [z, ∂ t z] 2 2,1 ds p!	p	≤	p p 2 p e p p!	.

  We would like to apply Itô's formula (1.22) to the functionals G 1 w.r.t. the triple (H 1,-1 , H 1,0 , H 1,1 ) and G 2 w.r.t. (H 2,0 , H 2,1 , H 2,2

							.33)
	2. For any p ≥ 1, we have					
	H 1,0	G p 1 (y)µ α (dy) ≤	2pA 0 γ 0	p	.	(4.34)
	3. There is C independent of α such that				
	H 1,0	y 2 H 2,1 µ α (dy) ≤ C.			(4.35)
	4.7.1 Step 1: Statistical controls					

  EG 1 (y t ) + α EL 1 (y s )ds = EG 1 (y 0 ) + Proof. For a functional F(y), we denote by ∇ u F and ∇ v F the derivatives w.r.t. the first and the second variable respectively. Let us compute∇ y G 1 (y, g) = ∇ u G 1 (y, g 1 ) + ∇ v G 1 (y, g 2 ) = ∇ u E(y, g 1 ) + ∇ v E(y, g 2 ) + I + II = -α ∂ t u 2 1 + I + II, + λ 0 ) u 2 1 + 2 ∂ t u 2 1 -(m 2 0 + λ 0 ) ∂ t u 2 + (m 2 0 + λ 0 ) u 4 L 4 ) = -αL 1 (y). (y, êm ) = ∇ 2 u G 1 (y, 0) + ∇ 2 v G 1 (y, e m )= (e m , e m ) = 1. Then, by Itô formula (see[START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF], Theorem A.7.5 and Corollary A.7.6), we havedG 1 (y t ) = -αL 1 (y)dt + α 2 A 0 dt + Θ 1 (t), ∇ y G 1 (y, êm )dβ m (t) =Remark that, by an Itô integral property, E t 0 Θ 1 (s) = 0, then we arrive at (4.36). Now, let p > 1, we have, by Itô formula,

	whence it follows that						
					EG p 1 (y t ) +	0	t	E f α (s)ds ≤ EG p 1 (y 0 ),
	where						
	f α (t) = p	α 2	G p-1 1 (2L 1 (y) -A 0 ) -	α p(p -1) 2	G p-2 1 (y) ∑ m≥0	a 2 m (∂ t u, e m ) 2 .
							0	t	α 2	A 0 t,	(4.36)
		EG p 1 (y t ) ≤ e -αγ 0 p 2 t EG p 1 (y 0 ) + 2	2pA 0 γ 0	p	.	(4.37)
	I =	α 2		∂ t u 2 ,		
	II =	α 2	(u, g 2 ) +	α 2 4	∂ t u 2 1 = -	α 2	( u 2 1 + u 4 L 4 ),
	thus						
	∇ y G 1 (y, g) = -0 On the other hand α 2 ((m 2						
	∇ 2 y G 1 where Θ 1 (t) = ∞ ∑ m=0	a m ∞ ∑ m=0	a m (∂ t u +	α 2	u, e m )dβ m (t).
	dG p 1 (y) = pG p-1 1 dG 1 (y) +	α p(p -1) 2 1 (y)(∇ α p(p -1) ∑ m≥0 a 2 m G p-2 2 m≥0 ∑ a 2 m G p-2 1 (y)(∂ t u, e m ) 2 dt.

y G 1 (y, e m )) 2 dt = pG p-1

1 dG 1 (y) +

  Thus we get (4.37) after applying the Gronwall lemma. Proposition 4.7.4. Let α ∈ (0, 1). Suppose EG 1 + 2 (y 0 ) < +∞. Then the solution y t of (4.4) starting at y 0 satisfies the following EG 2 (y t ) + α EL 2 (y s )ds ≤ EG 2 (y 0 ) + c 1 α t + EG 2 (y t ) ≤ e -c 2 t EG 2 (y 0 ) + c 3 , (4.39)

	αγ 0 p 2	G p 1 (y) -α	2 p p p+1 0 γ p-1	A p 0 .
	Finally						
	EG p 1 (y t ) +	αγ 0 p 2	0	t	EG p 1 (y s )ds ≤ EG p 1 (y 0 ) + α	2 p p p+1 0 γ p-1	A p 0 t.
		0	t					0	t	E u 6 L 6 ds ,	(4.38)

  Then we use(4.37) and Gronwall lemma to conclude.From the estimate (4.38), we infer, for y 0 = 0 a.e, that

	EG 2 (y t ) +	α 2	0	t	E( ∂ t u 2 1 + (1 -ε) u 2 2 )ds ≤ EG 2 (y 0 )
							+	α 8ε	0	t	E u 6 L 6 ds +
					1 t	0	t	E y s	2 H 2,1 ds ≤ C,	(4.40)

α 2 A 0 t,

that is (4.38). To prove (4.39), we remark that

L 2 G 2 -E.

Injecting that into (4.38), we find

EG 2 (y) + c 2 α t 0 EG 2 (y s )ds ≤ EG 2 (y 0 ) + α t 0 E(E(u) + u 6 L 6 )ds.

where C is independent of t.

  4.8. Invariant measure for KG and estimatesUniform (in α) estimates for the measures µ α . Now we prove the estimates (4.33), (4.34),(4.35). Let R be a positive number. Consider a C ∞ -function χ R on R defined by χ R (x) = 1, if x ≤ R, 0, if x ≥ R + 1.Let us prove (4.34), the proof of (4.35) is similar and (4.33) follows the finiteness of EG 1 (y) and (4.36). For any p ≥ 1, we have Passing to the limit t → ∞ in (4.42) with use of (4.37), we arrive at

	H 1,0	G p 1 (y)χ R ( y 1,0 )µ α (dy) =	H 1,0	E[G p 1 (y(t, v))χ R ( y(t, v) 1,0 )]µ α (dv).	(4.42)
		H 1,0			

  .47) A similar procedure applied to (4.35) and (4.34) gives (4.44) and (4.45). And (4.44) implies (4.43).2. Inviscid limit and its invariance under KG. The following diagram is the general scheme of the proof.

	P k * t µ k	(I)	µ k
	(III)	(II)
	t µ P *	(IV )	

  4.10. Global existence and uniqueness for the cubic KG equation in H 1,0 (D) Proof. From (4.45), we write is convergent and we get (4.54). Now, we use the Chebyshev inequality to derive the other claim.

		E µ	E p p!	≤ 2	(2pA 0 ) p γ p 0 p!	,
	then, with use of the Stirling formula, we get			
	E µ	(σ E) p p!	≤	2p p a p e p p!	∼ p→∞	√ 2 a p √ pπ	.
	Since a > 1, the serie of general term E µ		(σ E) p p!	

Dans la suite nous allègerons la notation du sytème en (X, φ t ).

Précisons que dans le cas du tore ou de l'espace euclidien, une seconde loi de conservation (non coercive) est donnée par le moment.

Kuksin [Kuk08]. Une telle version est établie pour un vecteur préservé le long du temps par l'équation de Benjamin-Ono (1.5). Ce vecteur peut être construit en lui affectant des composantes constituées de lois de conservations de (1.5). Mais comme nous pourrons le voir au chapitre 3, la principal difficulté sera de minorer encore une fois la variation quadratique du vecteur en question, cette minoration correspond à une indépendance que doivent satisfaire les composantes du vecteur. Cette indépendance renvoie à une équation différentielle d'ordre croissant avec la dimension du vecteur. Nous avons pu traiter le cas d'un vecteur de dimension 2, en utilisant un argument de scission convenable de l'espace des phases. Nous parvenons ainsi à établir que la mesure µ est au moins 2-dimensionnelle. Nous renvoyons au chapitre 3 pour une présentation complète des arguments de la preuve.

En fait, dans le cas de l'équation de Klein-Gordon nous dérivons une relation analogue en procédant par une estimation du typeKrylov. 

Solutions to (3.3) whose laws are invariant along the time.

v ≤ √ αC T ,ω v 2 2 , √ α|(v 4 , H∂ 2 x (vz))| ≤ √ αC v 5 1 z 1 ≤ √ αC T ,ω , √ α|(v 5 , ∂ x (vz))| ≤ C √ α v 5 1 v z 1+ 2 ≤ √ αC T ,ω .The estimates concerning the term ∂ x z 2 are easier because they do not contain v. Finally, using the same argument as before (in the case of E 1 (v)), we arrive at the claimed result.

Let us mention the paper by Burq and Tzvetkov[START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF] introducing new approach to study probabilistic wellposedness which does not use an invariance property.

Notice that this kind of decompositon appears in litterature of stochastic PDEs (see e.g.[START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF]) and of dispersive PDEs (see e.g.[START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF] for the context of cubic wave equation).
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Global wellposedness for the damped KG

In this section we consider the following equation 

A-priori analysis

Choice of the spaces. Let us, first, consider the damped linear equation

Both on the periodic or the bounded domain setting, the non-damped equation (α = 0) preserves the following quantities:

Now, let us introduce the following "perturbed" versions:

By a standard procedure, we see that a solution [v, ∂ t v] of the damped linear equation (4.22) satisfies the following dissipation estimates:

Then we use the inequality (4.20) to infer the following controls:

In view of these estimates, the natural spaces for studying wellposedness of (4.4) are

endowed with the norm defined by

4.4.2 Existence and uniqueness for the nonlinear equation (4.21)

We denote by S(t) the semi-group generated by A thanks to the Hille-Yosida theorem.

Proposition 4.4.3. For any q 0 = [v 0 , ∂ t v 0 ] ∈ H 1,0 , for any T > 0, there is a unique q(t, q 0 ) ∈ Z T 1 satisfying (4.21) with the the condition q(0, q 0 ) = q 0 . Moreover, the map q 0 → q(., q 0 ) is continuous with respect to the underlying norms.

Proof. For a given q 0 ∈ H 1,0 , for T > 0, we set the map ψ : Z T 1 → Z T 1 :

Let R > 0, consider the ball B R in Z T 1 centred at 0 and of radius R, we show by standard arguments the following estimates:

, where τ T ,R decreases to 0 with T . Thus for arbitrary R, the time T = T (R) can be choosen so that ψ be a contraction as map from B R to B R , we have then a local in time existence that we can globalize by iteration using the estimate (4.23).

For given two solutions v 1 , v 2 to (4.21), set w = v 1v 2 . Then w satisfies the equation

it is not difficult to derive the following

In fact (4.28) establishes, at the same time, the continuity (in space) for the solution.

The stochastic linear KG equation, exponential control

In this section, we present a treatment of the following equation:

with null initial condition, supplemented with the Dirichlet condition in the case where the equation is considered on a bounded domain. Then the solution is given by the following stochastic convolution (see Section 1.6.3 for a definition and some properties):

In view of the discussion in Section 1.6.3, [z, ∂ t z] belongs to H 1,0 (resp. H 2,1 ) if A 0 (resp. A 1 ) is finite. In what follows we suppose that A 1 is finite. An exponential control for [z, ∂ t z] is given for any t by the Fernique theorem, here we prove an exponential control on the time-averaged norm. Such a control will be used to prove Proposition 4.7.2.

It is not difficult to see that φ t y X y 0 1,0 + T y 3 X ; φ t yφ t x X T yx X sup t∈[0,T ] ( x 1y 1 6 1 + x 1 6 1 + y 1 6 1 ).

Then for any R > 0, there is T R > 0 such that φ t is a contraction on an appropriately chosen ball of X T R . An iteration argument and the conservation of the energy finish the proof.