B. Zablotsky, L. I. Black, and M. J. Maenner, Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey, Natl Health Stat Report, vol.13, pp.1-20, 2015.

M. N. Ziats, C. Edmonson, and O. M. Rennert, The autistic brain in the context of normal neurodevelopment, Front Neuroanat, vol.9, p.115, 2015.

C. Ecker, S. Y. Bookheimer, and D. G. Murphy, Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan, Lancet Neurol, vol.14, pp.1121-1155, 2015.

J. N. Constantino and T. Charman, Diagnosis of autism spectrum disorder: reconciling the syndrome, its diverse origins, and variation in expression, Lancet Neurol, vol.15, pp.279-91, 2015.

R. E. Rosenberg, J. K. Law, and G. Yenokyan, Characteristics and concordance of autism spectrum disorders among 277 twin pairs, Arch Pediatr Adolesc Med, vol.163, pp.907-921, 2009.

W. Deng, X. Zou, and H. Deng, The relationship among genetic heritability, environmental effects, and autism spectrum disorders: 37 pairs of ascertained twin study, J Child Neurol, 2015.

T. Bourgeron, From the genetic architecture to synaptic plasticity in autism spectrum disorder, Nat Rev Neurosci, vol.16, pp.551-63, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01576592

D. A. Rossignol, S. J. Genuis, and R. E. Frye, Environmental toxicants and autism spectrum disorders: a systematic review, Transl Psychiatry, vol.11, p.360, 2014.

A. Zhubi, E. H. Cook, and A. Guidotti, Epigenetic mechanisms in autism spectrum disorder, Int Rev Neurobiol, vol.115, pp.203-247, 2014.

J. L. Rubenstein and M. M. Merzenich, Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain Behav, vol.2, pp.255-67, 2003.

Y. Ben-ari, The GABA excitatory/inhibitory developmental sequence: a personal journey, Neuroscience, vol.24, pp.187-219, 2014.

E. R. Ritvo, B. J. Freeman, and A. B. Scheibel, Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research report, Am J Psychiatry, vol.143, pp.862-868, 1986.

D. , A. E. Casali, and S. , Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition, Front Neural Circuits, vol.6, p.116, 2013.

N. L. Cerminara, E. J. Lang, and R. V. Sillitoe, Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits, Nat Rev Neurosci, vol.16, pp.79-93, 2015.

J. Voogd, What we do not know about cerebellar systems neuroscience, Front Syst Neurosci, vol.8, pp.1-10, 2014.

L. Witter, D. Zeeuw, and C. I. , Regional functionality of the cerebellum, Curr Opin Neurobiol, vol.33, pp.150-155, 2015.

A. S. Therrien and A. J. Bastian, Cerebellar damage impairs internal predictions for sensory and motor function, Curr Opin Neurobiol, vol.33, pp.127-160, 2015.

A. J. Bastian, Learning to predict the future: the cerebellum adapts feedforward movement control, Curr Opin Neurobiol, vol.16, pp.645-654, 2006.

J. Schlerf, R. B. Ivry, and J. Diedrichsen, Encoding of sensory prediction errors in the human cerebellum, J Neurosci, vol.32, pp.4913-4935, 2012.

A. C. Bostan, R. P. Dum, and P. L. Strick, Cerebellar networks with the cerebral cortex and basal ganglia, Trends Cogn Sci, vol.17, pp.241-54, 2013.

O. Baumann, R. J. Borra, and J. M. Bower, Consensus paper: the role of the cerebellum in perceptual processes, Cerebellum, vol.14, pp.197-220, 2015.

C. Rochefort, J. M. Lefort, and L. Rondi-reig, The cerebellum: a new key structure in the navigation system, Front Neural Circuits, vol.13, p.35, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542948

J. M. Lefort, C. Rochefort, and L. Rondi-reig, Cerebellar contribution to spatial navigation: new insights into potential mechanisms, Group of L.R.R. is member of Bio-Psy Labex and ENP Foundation, vol.14, pp.59-62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01542940

R. J. Murray, T. Brosch, and D. Sander, The functional profile of the human amygdala in affective processing: insights from intracranial recordings, Cortex, vol.60, pp.10-33, 2014.

J. D. Schmahmann, J. Sherman, B. Zablotsky, L. I. Black, M. J. Maenner et al., The cerebellar cognitive affective syndrome, Natl. Health Stat. Report, vol.121, issue.87, p.1, 1998.

M. J. Gandal, J. C. Edgar, R. S. Ehrlichman, M. Mehta, T. P. Roberts et al., Biol. Psychiatry, vol.68, issue.12, p.1100, 2010.

F. I. Roullet, L. Wollaston, D. Decatanzaro, and J. A. Foster, Neuroscience, vol.170, issue.2, p.514, 2010.

M. Varghese, N. Keshav, S. Jacot-descombes, T. Warda, B. Wicinski et al., Acta Neuropathol, 2017.

A. V. Kalueff, A. M. Stewart, and R. Gerlai, Trends Pharmacol. Sci, vol.35, issue.2, p.63, 2014.

F. F. Zimmermann, K. V. Gaspary, C. E. Leite, G. De-paula-cognato, C. D. Bonan et al., Neurotoxicol. Teratol, vol.52, 2015.

E. J. James, J. Gu, C. M. Ramirez-vizcarrondo, M. Hasan, T. L. Truszkowski et al., J. Neurosci, vol.35, issue.7, p.3218, 2015.

S. Kataoka, K. Takuma, Y. Hara, Y. Maeda, Y. Ago et al., Int. J. Neuropsychopharmacol, vol.16, issue.1, p.91, 2013.

R. X. Moldrich, G. Leanage, D. She, E. Dolan-evans, M. Nelson et al., Behav. Brain Res, vol.257, p.253, 2013.

T. Kawanai, Y. Ago, R. Watanabe, A. Inoue, A. Taruta et al., Neurochem. Res, vol.41, issue.10, p.2574, 2016.

C. X. Liu, X. L. Peng, C. C. Hu, C. Y. Li, Q. Li et al., Dev. Genes Evol, vol.226, issue.6, p.389, 2016.

M. Sheng and E. J. Kim, Cell Sci, vol.113, p.1851, 2000.

P. Monteiro and G. Feng, Nat. Rev. Neurosci, vol.18, issue.3, p.147, 2017.

E. Kolozsi, R. N. Mackenzie, F. I. Roullet, D. Decatanzaro, and J. A. Foster, Neuroscience, vol.163, issue.4, p.1201, 2009.

D. A. Meshalkina, M. V. Kizlyk, E. Kysil, A. D. Collier, D. J. Echevarria et al., Exp. Neurol, 2017.

S. W. Hulbert and Y. H. Jiang, Neuroscience, vol.3, issue.321, p.3, 2016.

F. Bercum, K. M. Rodgers, A. M. Benison, Z. Z. Smith, J. Taylor et al., J. Neurosci, vol.35, issue.48, p.15894, 2015.

P. Boksa, Brain Behav. Immun, vol.24, issue.6, p.881, 2010.

E. H. Ali and A. H. Elgoly, Pharmacol. Biochem. Behav, vol.111, p.102, 2013.

A. Chapman, P. E. Keane, B. S. Meldrum, J. Simiand, and J. C. Vernieres, Prog. Neurobiol, vol.19, issue.4, p.315, 1982.

A. Ornoy, Reprod. Toxicol, vol.28, issue.1, p.1, 2009.

A. L. Christianson, N. Chesler, and J. G. Kromberg, Dev. Med. Child. Neurol, vol.36, issue.4, p.361, 1994.

J. Christensen, T. K. Gronborg, M. J. Sorensen, D. Schendel, E. T. Parner et al., JAMA, vol.309, issue.16, p.1696, 2013.

T. L. Arndt, C. J. Stodgell, and P. M. Rodier, Int. J. Dev. Neurosci, vol.23, issue.2-3, p.189, 2005.

T. Chomiak, N. Turner, and B. Hu, Patholog. Res. Int, p.712758, 2013.

P. M. Rodier, J. L. Ingram, B. Tisdale, S. Nelson, and J. Romano, J. Comp. Neurol, vol.370, issue.2, p.247, 1996.

J. L. Ingram, S. M. Peckham, B. Tisdale, and P. M. Rodier, Neurotoxicol. Teratol, vol.22, issue.3, p.319, 2000.

N. Narita, M. Kato, M. Tazoe, K. Miyazaki, M. Narita et al., Pediatr. Res, vol.52, issue.4, p.576, 2002.

T. Schneider and R. Przew?ocki, Neuropsychopharmacol, vol.30, issue.1, p.80, 2005.

K. C. Kim, P. Kim, H. S. Go, C. S. Choi, S. I. Yang et al., Toxicol. Lett, vol.201, issue.2, p.137, 2011.

G. C. Wagner, K. R. Reuhl, M. Cheh, P. Mcrae, and A. K. Halladay, J. Autism Dev. Disord, vol.36, issue.6, p.779, 2006.

C. L. Yochum, P. Dowling, K. R. Reuhl, G. C. Wagner, and X. Ming, Brain Res, p.126, 1203.

S. Roux, &. Bossu, ;. Ben-ari, Y. Khalilov, I. Kahle et al., Neuroscientist, vol.58, issue.5, p.467, 2012.

Y. Li, Y. Zhou, L. Peng, and Y. Zhao, Brain Res, p.33, 1671.

D. K. Chau, A. Y. Choi, W. Yang, W. N. Leung, and C. W. Chan, Behav. Brain Res, vol.316, p.255, 2017.

K. C. Kim, P. Kim, H. S. Go, C. S. Choi, J. H. Park et al., J. Neurochem, vol.124, issue.6, p.832, 2013.

T. Rinaldi, K. Kulangara, K. Antoniello, and H. Markram, Proc. Natl. Acad. Sci. USA, vol.104, p.13501, 2007.

R. Bristot-silvestrin, V. Bambini-junior, F. Galland, D. Bobermim, L. Quincozes-santos et al., Brain Res, p.52, 1495.

F. Peralta, C. Fuentealba, J. Fiedler, and E. Aliaga, Mol. Med. Rep, vol.14, issue.3, p.2807, 2016.

D. Dufour-rainfray, P. Vourc'h, A. M. Le-guisquet, L. Garreau, D. Ternant et al., Neurosci. Lett, vol.470, issue.1, p.55, 2010.

J. Jacob, V. Ribes, S. Moore, S. C. Constable, N. Sasai et al., Dis. Model. Mech, vol.7, issue.1, p.107, 2014.

Y. Hara, K. Takuma, E. Takano, K. Katashiba, A. Taruta et al., Behav. Brain Res, vol.289, p.39, 2015.

T. Rinaldi, G. Silberberg, and H. Markram, Cereb. Cortex, vol.18, issue.4, p.763, 2008.

T. Rinaldi, C. Perrodin, and H. Markram, Front. Neural Circuits, vol.2, p.4, 2008.

L. Sui and M. Chen, Brain Res. Bull, vol.87, issue.6, p.556, 2012.

K. Markram, T. Rinaldi, D. La-mendola, C. Sandi, and H. Markram, Neuropsychopharmacology, vol.33, issue.4, p.901, 2008.

H. C. Lin, P. W. Gean, C. C. Wang, Y. H. Chan, and P. S. Chen, PLoS One, vol.8, issue.1, p.55248, 2013.

L. E. Almeida, C. D. Roby, and B. K. Krueger, Mol. Cell. Neurosci, vol.59, p.57, 2014.

N. F. Olde-loohuis, G. J. Martens, H. Van-bokhoven, B. B. Kaplan, J. R. Homberg et al., Prog. Neuropsychopharmacol. Biol. Psychiatry, vol.77, p.128, 2017.

M. G. Codagnone, M. F. Podestá, N. A. Uccelli, and A. Reinés, Dev. Neurosci, vol.37, issue.3, p.215, 2015.

A. Sabers, F. C. Bertelsen, J. Scheel-krüger, J. R. Nyengaard, and A. Møller, Neurosci. Lett, vol.580, p.12, 2014.

W. M. Snow, K. Hartle, and T. L. Ivanco, Dev. Psychobiol, vol.50, issue.7, p.633, 2008.

R. Mychasiuk, S. Richards, A. Nakahashi, B. Kolb, and R. Gibb, Dev. Neurosci, vol.34, issue.2-3, p.268, 2012.

M. E. Bringas, F. N. Carvajal-flores, T. A. López-ramírez, M. Atzori, and G. Flores, Neuroscience, p.170, 2013.

U. Mahmood, S. Ahn, E. J. Yang, M. Choi, H. Kim et al., Pharmacol. Res, 2017.

N. Sosa-díaz, M. E. Bringas, M. Atzori, G. M. Flores, H. Nikfarjam et al., Neuroscience, vol.68, issue.10, p.34, 2013.

T. M. Mowery, S. M. Wilson, P. V. Kostylev, B. Dina, J. B. Buchholz et al., Int. J. Dev. Neurosci, vol.40, issue.5, p.255, 2003.

K. C. Kim, D. K. Lee, H. S. Go, P. Kim, C. S. Choi et al., Mol. Neurobiol, vol.49, issue.1, p.512, 2014.

Y. Watanabe, T. Murakami, M. Kawashima, Y. Hasegawa-baba, S. Mizukami et al., 1309. Valproate model of autism Burnashev, vol.31, p.675, 2013.

E. Lemonnier, N. Villeneuve, S. Sonie, S. Serret, A. Rosier et al., Transl. Psychiatry, vol.7, issue.3, p.1056, 2017.

J. Kang and E. Kim, Front. Mol. Neurosci, vol.8, p.17, 2015.

J. W. Kim, H. Seung, K. C. Kim, E. L. Gonzales, H. A. Oh et al., Neuropharmacol, vol.113, p.71, 2017.

Y. Hara, Y. Ago, M. Higuchi, S. Hasebe, T. Nakazawa et al., Horm. Behav, vol.96, p.130, 2017.

T. Watanabe, M. Kuroda, H. Kuwabara, Y. Aoki, N. Iwashiro et al., Brain, p.3400, 2015.

D. Banji, O. J. Banji, S. Abbagoni, M. S. Hayath, S. Kambam et al., Brain Res, p.141, 1410.

R. Cuevas-olguin, S. Roychowdhury, A. Banerjee, F. Garcia-oscos, E. Esquivelrendon et al., J. Neurosci. Res, vol.95, issue.12, p.2456, 2017.

Y. Zhang, C. Yang, G. Yuan, Z. Wang, W. Cui et al., Neurosci. Lett, vol.35, issue.1, pp.176-81, 2014.

H. Kumar, B. M. Sharma, and B. Sharma, Neurochem. Int, vol.91, p.34, 2015.

M. M. Al-amin, M. M. Rahman, F. R. Khan, F. Zaman, and H. Mahmud-reza, Behav. Brain Res, vol.286, p.112, 2015.

T. Schneider, J. Turczak, and R. Przew?ocki, Neuropsychopharmacol, vol.31, issue.1, p.36, 2006.

H. Yamaguchi, Y. Hara, Y. Ago, E. Takano, S. Hasebe et al., Behav. Brain Res, vol.333, p.67, 2017.

D. Cheaha, S. Bumrungsri, S. Chatpun, and E. Kumarnsit, Neurosci. Res, vol.98, p.28, 2015.

T. Rinaldi, K. Kulangara, K. Antoniello, and H. Markram, Proc. Natl. Acad. Sci. USA, vol.104, p.13501, 2007.

H. G. Martin and O. Manzoni, Front. Cell. Neurosci, vol.8, p.23, 2014.

H. Markram, .. T. Rinaldi, and K. Markram, Front. Neurosci, vol.1, issue.1, p.77, 2007.

G. T. Silva, J. V. Le-bé, I. Riachi, T. Rinaldi, K. Markram et al., Front. Synaptic Neurosci, vol.1, p.1, 2009.

K. Markram and H. Markram, Front Hum. Neurosci, vol.4, p.224, 2010.

A. Dubiel and R. J. Kulesza, Neuroscience, p.349, 2015.

H. F. Wu, P. S. Chen, Y. J. Chen, C. W. Lee, I. T. Chen et al., Mol. Neurobiol, issue.7, p.5264, 2017.

L. Olexová, P. ?tefánik, L. Kr?ková, F. Bertelsen, A. Moller et al., Acta Neuropsychiatr, vol.629, issue.5, p.309, 2016.

T. Schneider, A. Roman, A. Basta-kaim, M. Kubera, B. Budziszewska et al., Psychoneuroendocrinology, issue.6, p.728, 2008.

K. C. Kim, P. Kim, H. S. Go, C. S. Choi, J. H. Park et al., J. Neurochem, vol.124, issue.6, p.832, 2013.

S. Kataoka, K. Takuma, Y. Hara, Y. Maeda, Y. Ago et al., Int. J. Neuropsychopharmacol, vol.16, issue.1, p.91, 2013.

H. Cho, C. H. Kim, E. Q. Knight, H. W. Oh, B. Park et al., Sci. Rep, vol.7, issue.1, p.13213, 2017.

Y. Hara, Y. Maeda, S. Kataoka, Y. Ago, K. Takuma et al., Pharmacol. Sci, vol.118, issue.4, p.543, 2012.

M. A. Konopko, A. L. Densmore, and B. K. Krueger, Dev. Neurosci, 2017.

R. Tyzio, R. Nardou, D. C. Ferrari, T. Tsintsadze, A. Shahrokhi et al.,

A. E. Allain, H. Le-corronc, A. Delpy, W. Cazenave, P. Meyrand et al., Maturation of the GABAergic transmission in normal and pathologic motoneurons, Neural Plast, p.905624, 2011.

A. Amato, C. N. Connolly, S. J. Moss, and T. G. Smart, Modulation of neuronal and recombinant GABA A receptors by redox reagents, J. Physiol, vol.517, pp.35-50, 1999.

L. Baroncelli, M. C. Cenni, R. Melani, G. Deidda, S. Landi et al., Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals, Neuropharmacology, vol.113, pp.167-177, 2017.

O. Baumann, R. J. Borra, J. M. Bower, K. E. Cullen, C. Habas et al., Consensus paper: the role of the cerebellum in perceptual processes, Cerebellum, vol.14, pp.197-220, 2015.

Y. Ben-ari, Excitatory actions of GABA during development: the nature of the nurture, Nat. Rev. Neurosci, vol.3, pp.728-739, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00484852

Y. Ben-ari, The GABA excitatory/inhibitory developmental sequence: a personal journey, Neuroscience, vol.279, pp.187-219, 2014.

Y. Ben-ari, NKCC1 chloride importer antagonists attenuate many neurological and psychiatric disorders, Trends Neurosci, vol.40, pp.536-554, 2017.

Y. Ben-ari, E. Cherubini, R. Corradetti, and J. L. Gaiarsa, Giant synaptic potentials in immature rat CA3 hippocampal neurones, J. Physiol, vol.416, pp.303-325, 1989.

S. G. Brickley, S. G. Cull-candy, and M. Farrant, Single-channel properties of synaptic and extrasynaptic GABA A receptors suggest differential targeting of receptor subtypes, J. Neurosci, vol.19, pp.2960-2973, 1999.

S. L. Dean and M. M. Mccarthy, Steroids, sex and the cerebellar cortex: implications for human disease, Cerebellum, vol.7, pp.38-47, 2008.

I. Dusart and F. Flamant, Profound morphological and functional changes of rodent Purkinje cells between the first and the second postnatal weeks: a metamorphosis?, Front. Neuroanat, vol.6, p.11, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01543632

J. Eilers, T. D. Plant, N. Marandi, and A. Konnerth, GABA-mediated Ca 2+ signalling in developing rat cerebellar Purkinje neurones, J. Physiol, vol.536, pp.429-437, 2001.

S. H. Fatemi, K. A. Aldinger, P. Ashwood, M. L. Bauman, C. D. Blaha et al., Consensus paper: pathological role of the cerebellum in autism, Cerebellum, vol.11, pp.777-807, 2012.

J. L. Fisher and R. L. Macdonald, Single channel properties of recombinant GABA A receptors containing ? 2 or delta subtypes expressed with ? 1 and ? 3 subtypes in mouse L929 cells, J. Physiol, vol.505, pp.283-297, 1997.

J. M. Fritschy, J. Paysan, A. Enna, and H. Mohler, Switch in the expression of rat GABA A -receptor subtypes during postnatal development: an immunohistochemical study, J. Neurosci, vol.14, pp.5302-5324, 1994.

A. S. Galanopoulou, Sexually dimorphic expression of KCC2 and GABA function, Epilepsy Res, vol.80, pp.99-113, 2008.

H. Haghir, A. A. Rezaee, H. Nomani, M. Sankian, H. Kheradmand et al., Sexual dimorphism in expression of insulin and insulin-like growth factor-I receptors in developing rat cerebellum, Cell. Mol. Neurobiol, vol.33, pp.369-377, 2013.

K. Hashimoto and M. Kano, Functional differentiation of multiple climbing fiber inputs during synapse elimination in the developing cerebellum, Neuron, vol.38, pp.785-796, 2003.

H. Hörtnagl, R. O. Tasan, A. Wieselthaler, E. Kirchmair, W. Sieghart et al., Patterns of mRNA and protein expression for 12 GABA A receptor subunits in the mouse brain, Neuroscience, vol.236, pp.345-372, 2013.

Y. Huang, J. J. Wang, Y. , and W. H. , Coupling between GABA-A receptor and chloride transporter underlies ionic plasticity in cerebellar Purkinje neurons, Cerebellum, vol.12, pp.328-330, 2013.

J. L. Ingram, S. M. Peckham, B. Tisdale, and P. M. Rodier, Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism, Neurotoxicol. Teratol, vol.22, issue.99, pp.83-88, 2000.

A. Kyrozis, O. Chudomel, S. L. Moshé, and A. S. Galanopoulou, Sexdependent maturation of GABA A receptor-mediated synaptic events in rat substantia nigra reticulata, Neurosci. Let, vol.398, pp.1-5, 2006.

D. J. Laurie, W. Wisden, and P. H. Seeburg, The distribution of thirteen GABA A receptor subunit mRNAs in the rat brain: III. Embryonic and postnatal development, J. Neurosci, vol.11, pp.4151-4172, 1992.

K. Lee, L. Goodman, C. Fourie, S. Schenk, B. Leitch et al., AMPA receptors as therapeutic targets for neurological disorders, Adv. Protein Chem. Struct. Biol, vol.103, pp.203-261, 2016.

E. Lemonnier and Y. Ben-ari, The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects, Acta Paediatr, vol.99, pp.1885-1888, 2010.

E. Lemonnier, N. Villeneuve, S. Sonie, S. Serret, A. Rosier et al., Effects of bumetanide on neurobehavioral function in children and adolescents with autism spectrum disorders, Transl. Psychiatry, vol.7, p.1124, 2017.

Y. Li, Y. Zhou, L. Peng, and Y. Zhao, Reduced protein expressions of cytomembrane GABA A R?3 at different postnatal developmental stages of rats exposed prenatally to valproic acid, Brain Res, vol.1671, pp.33-42, 2017.

A. A. Mercer, K. J. Palarz, N. Tabatadze, C. S. Woolley, and I. M. Raman, Sex differences in cerebellar synaptic transmission and sex-specific responses to autism-linked Gabrb3 mutations in mice, Elife, vol.5, p.7596, 2016.

S. Mikawa, C. Wang, F. Shu, T. Wang, A. Fukuda et al., Developmental changes in KCC1, KCC2 and NKCC1 mRNAs in the rat cerebellum, Dev. Brain Res, vol.136, pp.93-100, 2002.

F. R. Mir, H. F. Carrer, and M. J. Cambiasso, Sex differences in depolarizing actions of GABA A receptor activation in rat embryonic hypothalamic neurons, Eur. J. Neurosci, vol.45, pp.521-527, 2017.

M. Mortensen and T. G. Smart, Extrasynaptic ?? subunit GABA A receptors on rat hippocampal pyramidal neurons, J. Physiol, vol.577, pp.841-856, 2006.

S. J. Moss, T. G. Smart, N. M. Porter, N. Nayeem, J. Devine et al., Cloned GABA receptors are maintained in a stable cell line: allosteric and channel properties, Eur. J. Pharmacol, vol.189, pp.77-88, 1990.

L. S. Nadler, E. R. Guirguis, and R. E. Siegel, GABA A receptor subunit polypeptides increase in parallel but exhibit distinct distributions in the developing rat cerebellum, J. Neurobiol, vol.25, pp.1533-1544, 1994.

C. F. Newland, D. Colquhoun, and S. G. Candy, Single channels activated by high concentrations of GABA in superior cervical ganglion Frontiers in Cellular Neuroscience | www.frontiersin.org 13, vol.12, p.232, 1991.

, J. Physiol, vol.432, pp.203-233

J. L. Nuñez and M. M. Mccarthy, Evidence for an extended duration of GABA-mediated excitation in the developing male versus female hippocampus, Dev. Neurobiol, vol.67, pp.1879-1890, 2007.

S. Pangratz-fuehrer, W. Sieghart, U. Rudolph, I. Parada, and J. R. Huguenard, Early postnatal switch in GABA A receptor ?-subunits in the reticular thalamic nucleus, J. Neurophysiol, vol.115, pp.1183-1195, 2016.

J. R. Phillips, D. H. Hewedi, A. M. Eissa, and A. A. Moustafa, The cerebellum and psychiatric disorders, Front. Public Health, vol.3, p.66, 2015.

N. Rahmati, . Vinueza, M. F. Veloz, J. Xu, S. Barone et al., SLC26A11 (KBAT) in purkinje cells is critical for inhibitory transmission and contributes to locomotor coordination, vol.3, 2016.

J. V. Raimondo, B. A. Richards, and M. A. Woodin, Neuronal chloride and excitability-the big impact of small changes, Curr. Opin. Neurobiol, vol.43, pp.35-42, 2017.

C. Rivera, J. Voipio, J. A. Payne, E. Ruusuvuori, H. Lahtinen et al., The K + /Cl ? co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, Nature, vol.397, pp.251-255, 1999.

M. Robello, C. Amico, and A. Cupello, Cerebellar granule cell GABA A receptors studied at the single-channel level: modulation by protein kinase G, Biochem. Biophys. Res. Commun, vol.253, pp.768-773, 1998.

F. I. Roullet, J. K. Lai, and J. Foster, In utero exposure to valproic acid and autism-a current review of clinical and animal studies, Neurotoxicol. Teratol, vol.36, pp.47-56, 2013.

J. L. Rubenstein and M. M. Merzenich, Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain Behav, vol.2, pp.255-267, 2003.

J. D. Schmahmann and J. C. Sherman, The cerebellar cognitive affective syndrome, Brain, vol.121, pp.561-579, 1998.

E. Sigel and M. E. Steinmann, Structure, function, and modulation of GABA A receptors, J. Biol. Chem, vol.287, pp.40224-40231, 2012.

J. Skefos, C. Cummings, K. Enzer, J. Holiday, K. Weed et al., Regional alterations in purkinje cell density in patients with autism, PLoS One, vol.9, 2014.

N. Y. Song, H. B. Shi, C. Y. Li, and S. K. Yin, Interaction between taurine and GABA A /glycine receptors in neurons of the rat anteroventral cochlear nucleus, Brain Res, vol.1472, pp.1-10, 2012.

V. Stein, I. Hermans-borgmeyer, T. J. Jentsch, and C. A. Hübner, Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride, J. Comp. Neurol, vol.468, pp.57-64, 2004.

F. Succol, H. Fiumelli, F. Benfenati, L. Cancedda, and A. Barberis, Intracellular chloride concentration influences the GABA A receptor subunit composition, Nat. Commun, vol.3, p.738, 2012.

P. T. Tsai, Autism and cerebellar dysfunction: evidence from animal models, Semin. Fetal Neonatal Med, vol.21, pp.349-355, 2016.

P. T. Tsai, C. Hull, Y. Chu, E. Greene-colozzi, A. R. Sadowski et al., Autistic-like behavior and cerebellar dysfonction in Purkinje cell Tsc1 mutant mice, Nature, vol.488, pp.647-651, 2012.

K. Tsutsui, K. Ukena, H. Sakamoto, S. Okuyama, and S. Haraguchi, , 2011.

, Biosynthesis, mode of action, and functional significance of neurosteroids in the purkinje cell, Front. Endocrinol, vol.2, p.61

R. Tyzio, G. L. Holmes, Y. Ben-ari, and R. Khazipov, Timing of the developmental switch in GABA A mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings, Epilepsia, vol.48, pp.96-105, 2007.

R. Tyzio, R. Nardou, D. C. Ferrari, T. Tsintsadze, A. Shahrokhi et al., Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring, Science, vol.343, pp.675-679, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01721423

G. Uzunova, S. Pallanti, and E. Hollander, Excitatory/inhibitory imbalance in autism spectrum disorders: implications for interventions and therapeutics, World J. Biol. Psychiatry, vol.17, pp.174-186, 2016.

T. A. Verdoorn, A. Draguhn, S. Ymer, P. H. Seeburg, and B. Sakmann, Functional properties of recombinant rat GABA A receptors depend upon subunit composition, Neuron, vol.4, pp.90145-90151, 1990.

T. N. Vien, A. Modgil, A. M. Abramian, R. Jurd, J. Walker et al., Compromising the phosphodependent regulation of the GABA A R ?3 subunit reproduces the core phenotypes of autism spectrum disorders, Proc. Natl. Acad. Sci. U S A, vol.112, pp.14805-14810, 2015.

J. Waddell and M. M. Mccarthy, Sexual differentiation of the brain and ADHD: what is a sex difference in prevalence telling us?, Curr. Top. Behav. Neurosci, vol.9, pp.341-360, 2012.

M. Watanabe and A. Fukuda, Development and regulation of chloride homeostasis in the central nervous system, Front. Cell. Neurosci, vol.9, p.371, 2015.

M. Witte, T. Reinert, B. Dietz, J. Nerlich, R. Rübsamen et al., Depolarizing chloride gradient in developing cochlear nucleus neurons: underlying mechanism and implication for calcium signaling, Neuroscience, vol.261, pp.207-222, 2014.

L. Zhang, H. R. Pathak, D. A. Coulter, M. A. Freed, and N. Vardi, Shift of intracellular chloride concentration in ganglion and amacrine cells of developing mouse retina, J. Neurophysiol, vol.95, pp.2404-2416, 2005.

W. Zhang, S. Schmelzeisen, D. Parthier, S. Fring, and F. Möhrlen, Anoctamin calcium-activated chloride channels may modulate inhibitory transmission in the cerebellar cortex, PLoS One, vol.10, 2015.

S. R. Sharma, X. Gonda, and F. I. Tarazi, Autism Spectrum Disorder classification, 264 diagnosis and therapy, Pharmacol Ther, 2018.

M. Varghese, N. Keshav, S. Jacot-descombes, T. Warda, B. Wicinski et al., Autism spectrum disorder: neuropathology and animal models, Acta Neuropathol, vol.268, pp.537-566, 2017.

L. F. Koziol, D. Budding, N. Andreasen, D. 'arrigo, S. Bulgheroni et al.,

, Consensus Paper: The Cerebellum's Role in Movement and Cognition, Cerebellum, vol.271, pp.151-177, 2014.

J. Skefos, C. Cummings, K. Enzer, J. Holiday, K. Weed et al., Regional 273 alterations in purkinje cell density in patients with autism, PLoS One, vol.9, p.81255, 2014.

A. V. Shevelkin, C. Ihenatu, and M. V. Pletnikov, Pre-clinical models of 275 neurodevelopmental disorders: Focus on the cerebellum, Rev Neurosci, vol.276, pp.177-194, 2014.

P. T. Tsai, Autism and cerebellar dysfunction: Evidence from animal models

, Fetal Neonatal Med, vol.21, pp.349-355, 2016.

J. W. Jeong, V. N. Tiwari, M. E. Behen, H. T. Chugani, and D. C. Chugani, In vivo detection of 280 reduced Purkinje cell fibers with diffusion MRI tractography in children with autistic 281 spectrum disorders, Front Hum Neurosci, vol.8, p.110, 2014.

A. A. Mercer, K. J. Palarz, N. Tabatadze, C. S. Woolley, and I. M. Raman, Sex differences in 306 cerebellar synaptic transmission and sex-specific responses to autism-linked Gabrb3 307 mutations in mice, vol.5, p.7596, 2016.

A. Sagheer, T. Haida, O. Balbous, A. Francheteau, M. Matas et al.,

, Motor impairments correlate with social deficits and restricted neuronal loss in an 310 environmental model of autism, Int J Neuropsychopharmacol, 2018.

S. Haraguchi, K. Sasahara, H. Shikimi, S. Honda, N. Harada et al., Estradiol 313 promotes purkinje dendritic growth, spinogenesis, and synaptogenesis during 314 neonatal life by inducing the expression of BDNF, Cerebellum, vol.11, pp.416-417, 2012.

J. F. Hoffman, C. L. Wright, and M. M. Mccarthy, A Critical Period in Purkinje Cell 316

, Disrupted by Inflammation, 317 and Has Enduring Consequences Only for Males, J Neurosci, vol.36, issue.39, pp.10039-318, 2016.

V. T. Nguyen, S. Sonkusare, J. Stadler, X. Hu, M. Breakspear et al.,

, Cerebellar Contributions to Cognitive-Perceptual Dynamics During Natural Viewing

, Cereb Cortex, vol.27, pp.5652-5662, 2017.

C. J. Stoodley and J. D. Schmahmann, Evidence for topographic organisation in the 323 cerebellum of motor control versus cognitive and affective processing, Cortex, vol.324, pp.831-844, 2010.

M. Bauman and C. Schumann, Is "bench-to-bedside"realistic for autism? An integrative 326 neuroscience approach, Neuropsychiatry (London), vol.3, pp.159-168, 2013.

, la chance de participer a la mise en place d'un brevet portant sur un composé modulant le gradient aux ions chlorures que je nommerai composé X. Pour ce brevet nous avons testé l'effet du composé X et du bumétanide sur les comportements autistiques de trois modèle d'autisme: les souris FMR1-, OPRM1-et SHANK3-. Dans le cadre de ma thèse je vais présenter certains des résultats auxquels j'ai participé

, Les protocoles des tests réalisés ici sont similaires à ceux réalisés dans le deuxième article. Animaux: Souris ne présentant pas le récpteur au opïoides mu

, Les souris sont stabulées en groupe (2 à 5 par cage) et maintenue sous un cycle jour/nuit de 12 heures (jour à 7h00) à une température contrôlée à 21±1°C

, Souris ne présentant pas le gène Fmr1

, Les souris sont stabulées en groupe (2 à 5 par cage) et maintenues sous un cycle jour/nuit de 12 heures (jour à 7h00) à une température contrôlée à 21±1°C, La lignée des souris Fmr1 a été fournie par Rob Willemsen (Erasmus MC

, 205 et 500 mg/kg versus saline) montre un effet bénéfique dépendant de la dose, augmentant, dans le modèle Oprm1 -/-, le temps total passé en contact social, le traitement avec le composé, vol.125

, Ce traitement n'a pas d'effet significatif sur le nombre de contact de museaux (effet génotype: F 1,59 =7.8, p<0.01; effet dose: F 1,59 =5.8, p<0.001; génotype x dose: F 1,59 =5.2, p<0.05) et le nombre de contact aux pattes (effet génotype: F 1,59 =46.7, p<0.0001; effet dose: F 1,59 =13.0, p<0.05; génotype x dose: F 1,59 =9.6, p<0.01), le temps passé en contact aux pattes (effet génotype: F 1,59 =22.9, p<0.0001; effet dose: F 1,59 =6.0, p<0.05; génotype x dose: F 1,59 =5.2, p<0.05) et la durée des contacts aux pattes

, 0001) chez les animaux mutant (Figure 2). Ainsi, le traitement au bumétanide réduit efficacement les stéréotypies motrices chez les souris Oprm1

, Figure 2 : Effets du traitement avec le composé (125, 250, 500 mg/kg) ainsi que du

, Les données sont présentées comme moyenne ± sem. Différence par rapport aux contrôles salins : une étoile: p<0.05, Bumétanide (0.5 mg/kg) sur les comportements stéréotypés

, La dose intermédiaire de 250 mg/kg a été choisi pour être tester sur d'autres modèles car elle a démontré son efficacité à soulager les symptômes autistiques chez les souris Oprm1 -/-. Je vais ici présenter certains résultats obtenue chez la souris Fmr1

, Dans le test d'interaction social direct (Figure 3A), le traitement avec le composé à 250 mg/kg normalise le temps passé, en contact social direct

T. Aavani, S. A. Rana, R. Hawkes, and Q. J. Pittman, Maternal Immune Activation Produces Cerebellar Hyperplasia and Alterations in Motor and Social Behaviors in Male and Female Mice, The Cerebellum, vol.14, pp.491-505, 2015.

J. M. Allman, N. A. Tetreault, A. Y. Hakeem, K. F. Manaye, K. Semendeferi et al., The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans, Brain Struct Funct, vol.214, pp.495-517, 2010.

L. Almeida, C. D. Roby, and B. K. Krueger, Increased BDNF expression in fetal brain in the valproic acid model of autism, Mol Cell Neurosci, vol.59, pp.57-62, 2014.

F. J. Alvarez-leefmans, M. León-olea, J. Mendoza-sotelo, F. J. Alvarez, B. Antón et al., Immunolocalization of the Na(+)-K(+)-2Cl(-) cotransporter in peripheral nervous tissue of vertebrates, Neuroscience, vol.104, pp.569-582, 2001.

, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, 2013.

D. Arion and D. A. Lewis, Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia, Arch Gen Psychiatry, vol.68, pp.21-31, 2011.

H. Ó. Atladóttir, P. Thorsen, L. Østergaard, D. E. Schendel, S. Lemcke et al., Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders, J Autism Dev Disord, vol.40, pp.1423-1430, 2010.

S. Banerjee, M. Riordan, and M. Bhat, Genetic aspects of autism spectrum disorders: insights from animal models, Front Cell Neurosci, vol.8, p.58, 2014.

. Baron-cohen, The extreme male brain theory of autism, Trends Cogn Sci, vol.6, pp.248-254, 2002.

S. Baron-cohen, Mindblindness: An Essay on Autism and Theory of Mind, 1995.

A. J. Bastian, Learning to predict the future: the cerebellum adapts feedforward movement control, Curr Opin Neurobiol, vol.16, pp.645-649, 2006.

O. Baumann, R. J. Borra, J. M. Bower, K. E. Cullen, C. Habas et al., Consensus Paper: The Role of the Cerebellum in Perceptual Processes, vol.14, pp.197-220, 2015.

E. Becker and C. J. Stoodley, Autism spectrum disorder and the cerebellum, 2013.

J. Becker-j-a, D. Clesse, C. Spiegelhalter, Y. Schwab, L. Merrer et al., Autistic-like syndrome in mu opioid receptor null mice is relieved by facilitated mGluR4 activity, Neuropsychopharmacology, vol.39, pp.2049-2060, 2014.

Y. Ben-ari, Excitatory actions of gaba during development: the nature of the nurture, Nat Rev Neurosci, vol.3, pp.728-739, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00484852

Y. Ben-ari, GABA excites and sculpts immature neurons well before delivery: modulation by GABA of the development of ventricular progenitor cells, Epilepsy Curr, vol.7, pp.167-169, 2007.

S. Benner and H. Yamasue, Clinical potential of oxytocin in autism spectrum disorder, Behav Pharmacol, p.1, 2017.

A. C. Bostan, R. P. Dum, and P. L. Strick, Cerebellar networks with the cerebral cortex and basal ganglia, Trends Cogn Sci, vol.17, pp.241-254, 2013.

T. Bourgeron, From the genetic architecture to synaptic plasticity in autism spectrum disorder, Nat Publ Gr, vol.16, pp.551-563, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01576592

N. Burgess, E. A. Maguire, and J. O&apos;keefe, The human hippocampus and spatial and episodic memory, Neuron, vol.35, pp.625-641, 2002.

L. Cahill, R. Babinsky, H. J. Markowitsch, and J. L. Mcgaugh, The amygdala and emotional memory, Nature, vol.377, pp.295-296, 1995.

M. Catani, D. K. Jones, E. Daly, N. Embiricos, Q. Deeley et al., Altered cerebellar feedback projections in Asperger syndrome, Neuroimage, vol.41, pp.1184-1191, 2008.

. Cerminara, Re-defining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Neurosci, Nat Rev, vol.16, pp.79-93, 2016.

E. Cherubini, J. L. Gaiarsa, and Y. Ben-ari, GABA: an excitatory transmitter in early postnatal life, Trends Neurosci, vol.14, pp.515-519, 1991.

J. Christensen, Prenatal Valproate Exposure and Risk of Autism Spectrum Disorders, vol.309, 2013.

D. , A. E. Casali, and S. , Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition, Front Neural Circuits, vol.6, p.116, 2012.

S. De-rubeis, Synaptic, transcriptional and chromatin genes disrupted in autism, Nature, vol.515, pp.209-215, 2014.

G. Deidda, A. M. Cerri, C. Naskar, S. Bony, G. Zunino et al., Early depolarizing GABA controls critical-period plasticity in the rat visual cortex, Nat Neurosci, vol.18, pp.87-96, 2014.

E. Dicicco-bloom, C. Lord, L. Zwaigenbaum, E. Courchesne, S. R. Dager et al., The developmental neurobiology of autism spectrum disorder, J Neurosci, vol.26, pp.6897-6906, 2006.

V. Dzhala and K. Staley, Acute and chronic efficacy of Bumetanide in an in vitro model of posttraumatic epileptogenesis, CNS Neurosci Ther, vol.21, pp.173-180, 2015.

H. Eichenbaum, P. Dudchenko, E. Wood, M. Shapiro, and H. Tanila, The hippocampus, memory, and place cells: is it spatial memory or a memory space, Neuron, vol.23, pp.209-226, 1999.

S. H. Fatemi, K. A. Aldinger, P. Ashwood, M. L. Bauman4, C. D. Blaha et al., Consensus Paper: Pathological Role of the Cerebellum in Autism, vol.11, pp.777-807, 2012.

S. E. Folstein and B. Rosen-sheidley, Genetics of autism: complex aetiology for a heterogeneous disorder, Nat Rev Genet, vol.2, pp.943-955, 2001.

E. Fombonne, Epidemiological surveys of autism and other pervasive developmental disorders: an update, J Autism Dev Disord, vol.33, pp.365-382, 2003.

M. Fuccillo, Striatal Circuits as a Common Node for Autism Pathophysiology, vol.10, 2016.

B. S. Gadad, L. Hewitson, . Young-k-a, and D. C. German, Neuropathology and animal models of autism: genetic and environmental factors, Autism Res Treat, p.731935, 2013.

M. E. Hatten, J. Alder, K. Zimmerman, and N. Heintz, Genes involved in cerebellar cell specification and differentiation, Curr Opin Neurobiol, vol.7, pp.40-47, 1997.

S. A. Hewitt, J. I. Wamsteeker, E. U. Kurz, and J. S. Bains, Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis, Nat Neurosci, vol.12, pp.438-443, 2009.

Y. Huang, J. Wang, and Y. , Coupling between GABA-A receptor and chloride transporter underlies ionic plasticity in cerebellar Purkinje neurons, Cerebellum, vol.12, pp.328-330, 2013.

M. Ito, Historical review of the significance of the cerebellum and the role of purkinje cells in motor learning, Ann N Y Acad Sci, vol.978, pp.273-288, 2002.

J. Waddell and M. M. Mccarthy, Sexual Differentiation of the Brain and ADHD: What Is a Sex Difference in Prevalence Telling Us? Curr T op Beha Curr T Author Manuscr Author manuscript; available PMC, v Neurosci op Beha v Neurosci, vol.2, pp.289-320, 2012.

L. Joseph and M. M. Nuñez, Androgens predispose males to GABAA -mediated excitotoxicity in the developing hippocampus, Exp Neurol, vol.210, pp.699-708, 2008.

K. Kaila, T. J. Price, J. A. Payne, M. Puskarjov, and J. Voipio, Cation-chloride cotransporters in neuronal development, plasticity and disease, Nat Rev Neurosci, vol.15, pp.637-654, 2014.

A. E. Kalkbrenner, R. J. Schmidt, and A. C. Penlesky, Environmental chemical exposures and autism spectrum disorders: a review of the epidemiological evidence, Curr Probl Pediatr Adolesc Health Care, vol.44, pp.277-318, 2014.

R. K. Kana, J. O. Maximo, D. L. Williams, . Keller-t-a, S. E. Schipul et al., Aberrant functioning of the theory-of-mind network in children and adolescents with autism, Mol Autism, vol.6, p.59, 2015.

S. Kataoka, K. Takuma, Y. Hara, Y. Maeda, Y. Ago et al., Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid, Int J Neuropsychopharmacol, pp.1-13, 2011.

Y. S. Kim, B. L. Leventhal, Y. Koh, E. Fombonne, E. Laska et al., Prevalence of Autism Spectrum Disorders in a Total Population Sample, Am J Psychiatry, vol.168, pp.904-912, 2011.

M. A. Konopko, A. L. Densmore, and B. K. Krueger, Sexually Dimorphic Epigenetic Regulation of Brain-Derived Neurotrophic Factor in Fetal Brain in the Valproic Acid Model of Autism Spectrum Disorder, Dev Neurosci, 2017.

B. K. Lee, C. Magnusson, R. M. Gardner, Å. Blomström, C. J. Newschaffer et al., Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders, Brain Behav Immun, vol.44, pp.100-105, 2015.

J. M. Lefort, C. Rochefort, and L. Rondi-reig, Cerebellar Contribution to Spatial Navigation: New Insights into Potential Mechanisms, Cerebellum, vol.14, pp.59-62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01542940

E. Lemonnier and Y. Ben-ari, The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects, Acta Paediatr Int J Paediatr, vol.99, pp.1885-1888, 2010.

E. Lemonnier, C. Degrez, M. Phelep, R. Tyzio, F. Josse et al., A randomised controlled trial of bumetanide in the treatment of autism in children, Transl Psychiatry, vol.2, pp.202-202, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00952877

M. Leonzino, M. Busnelli, F. Antonucci, C. Verderio, M. Mazzanti et al., The Timing of the Excitatory-to, 2016.

G. Inhibitory and . Switch, Is Regulated by the Oxytocin Receptor via KCC2, CellReports, vol.15, pp.96-103

W. Mandy, R. Chilvers, U. Chowdhury, G. Salter, A. Seigal et al., Sex differences in autism spectrum disorder: Evidence from a large sample of children and adolescents, J Autism Dev Disord, vol.42, pp.1304-1313, 2012.

M. Manto and C. Habas, , 2013.

H. Markram, T. Rinaldi, and K. Markram, The intense world syndrome--an alternative hypothesis for autism, Front Neurosci, vol.1, pp.77-96, 2007.

K. Markram and H. Markram, The intense world theory -a unifying theory of the neurobiology of autism, Front Hum Neurosci, vol.4, p.224, 2010.

T. Maurin, S. Zongaro, and B. Bardoni, Fragile X Syndrome: from molecular pathology to therapy, Neurosci Biobehav Rev, vol.46, pp.242-255, 2014.

S. Mikawa, C. Wang, F. Shu, T. Wang, A. Fukuda et al., KCC1 , KCC2 and NKCC1 mRNAs in the rat cerebellum, vol.136, pp.93-100, 2002.

E. K. Miller and J. D. Cohen, An Integrative Theory of Prefrontal Cortex Function, Annu Rev Neurosci, vol.24, pp.167-202, 2001.

F. R. Mir, H. F. Carrer, and M. J. Cambiasso, Sex differences in depolarizing actions of GABA A receptor activation in rat embryonic hypothalamic neurons, Eur J Neurosci, pp.1-7, 2016.

R. X. Moldrich, G. Leanage, D. She, E. Dolan-evans, M. Nelson et al., Inhibition of histone deacetylase in utero causes sociability deficits in postnatal mice, Behav Brain Res, vol.257, pp.253-264, 2013.

B. Monti, E. Polazzi, and A. Contestabile, Biochemical , Molecular and Epigenetic Mechanisms of Valproic Acid Neuroprotection, pp.95-109, 2009.

R. J. Murray, T. Brosch, and D. Sander, The functional profile of the human amygdala in affective processing: Insights from intracranial recordings, Cortex, vol.60, pp.10-33, 2014.

K. L. Parker, N. S. Narayanan, and N. C. Andreasen, The therapeutic potential of the cerebellum in schizophrenia, Front Syst Neurosci, vol.8, pp.1-11, 2014.

J. A. Payne, C. Rivera, J. Voipio, and K. Kaila, Cation-chloride co-transporters in neuronal communication, development and trauma, Trends Neurosci, vol.26, pp.199-206, 2003.

L. P. Pellissier, J. Gandia, T. Laboute, J. A. Becker, and M. J. Le, Mu opioid receptor, social behaviour and autism spectrum disorder: reward matters, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01605908

M. Perez-pouchoulen, M. Miquel, P. Saft, B. Brug, R. Toledo et al., Prenatal exposure to sodium valproate alters androgen receptor expression in the developing cerebellum in a region and age specific manner in male and female rats, Int J Dev Neurosci, vol.53, pp.46-52, 2016.

J. R. Phillips, D. H. Hewedi, A. M. Eissa, and A. A. Moustafa, The Cerebellum and Psychiatric Disorders. Front Public Heal, vol.3, pp.1-8, 2015.

T. J. Price, F. Cervero, and Y. De-koninck, Role of Cation-Chloride-Cotransporters (CCC) in Pain and Hyperalgesia, Curr Top Med Chem, vol.5, pp.547-555, 2005.

N. Rahmati, M. Fernanda, V. Veloz, J. Xu, S. Barone et al., SLC26A11 ( KBAT ) in Purkinje Cells Is Critical for Inhibitory Transmission and Contributes to Locomotor Coordination, vol.11, pp.1-16, 2016.

S. L. Reeber, T. S. Otis, and R. Sillitoe, New roles for the cerebellum in health and disease, Front Syst Neurosci, vol.7, p.83, 2013.

J. Richetto, F. Calabrese, M. A. Riva, and U. Meyer, Prenatal immune activation induces maturation-dependent alterations in the prefrontal GABAergic transcriptome, Schizophr Bull, vol.40, pp.351-361, 2014.

R. Ritvo, B. J. Freeman, D. Ph, B. Scheibel, and R. Sullivan, the Cerebella of Four Autistic Subjects : Initial Findings of Report, pp.862-866, 1986.

. Roche, FDA grants Breakthrough Therapy Designation for Roche's balovaptan in autism spectrum disorder, 2018.

C. Rochefort, J. Lefort, and L. Rondi-reig, The cerebellum: a new key structure in the navigation system, Front Neural Circuits, vol.7, pp.1-12, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542948

T. D. Rogers, E. Mckimm, P. E. Dickson, D. Goldowitz, C. D. Blaha et al., Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research, Front Syst Neurosci, vol.7, p.15, 2013.

J. Rubenstein, Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder, Curr Opin Neurol, vol.23, pp.118-123, 2010.

J. Rubenstein and M. M. Merzenich, Model of autism : increased ratio of excitation / inhibition in key neural systems, vol.2, pp.255-267, 2003.

R. Sacco, S. Gabriele, and A. M. Persico, Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis, Psychiatry Res -Neuroimaging, vol.234, pp.239-251, 2015.

J. Schlerf, R. B. Ivry, and J. Diedrichsen, Encoding of Sensory Prediction Errors in the Human Cerebellum, J Neurosci, vol.32, pp.4913-4922, 2012.

J. D. Schmahmann, Disorders of the Cerebellum: Ataxia, Dysmetria of Thought, and the Cerebellar Cognitive Affective Syndrome, J Neuropsychiatry Clin Neurosci, vol.16, pp.367-378, 2004.

J. D. Schmahmann and J. C. Sherman, The cerebellar cognitive affective syndrome, Brain, vol.121, pp.561-579, 1998.

E. Schmidtova, S. Kelemenova, P. Celec, A. Ficek, and D. Ostatnikova, Polymorphisms in genes involved in testosterone metabolism in Slovak autistic boys, Endocrinologist, vol.20, pp.245-249, 2010.

V. Shea, Revue commentée des articles consacrés à la méthode Aba (eibi : early intensive behavioral intervention) de Lovaas, appliquée aux jeunes enfants avec autisme, Psychiatr Enfant, vol.52, p.273, 2009.

A. V. Shevelkin, C. Ihenatu, and M. V. Pletnikov, Pre-clinical models of neurodevelopmental disorders: Focus on the cerebellum, Rev Neurosci, vol.25, pp.177-194, 2014.

K. Siuda, A. A. Chrobak, A. Starowicz-filip, A. Tereszko, and D. Dudek, , 2014.

, Psychiatr Pol, vol.48, pp.289-297

J. Skefos, C. Cummings, K. Enzer, J. Holiday, K. Weed et al., Regional alterations in purkinje cell density in patients with autism, PLoS One, vol.9, p.81255, 2014.

C. J. Stoodley, D. Mello, A. M. Ellegood, J. Jakkamsetti, V. Liu et al., Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice, Nat Neurosci, vol.20, pp.1744-1751, 2017.

P. Strata, The Emotional Cerebellum. Cerebellum, 2015.

K. Supekar and V. Menon, Sex differences in structural organization of motor systems and their dissociable links with repetitive/restricted behaviors in children with autism, Mol Autism, vol.6, p.50, 2015.

Y. Takarae, N. J. Minshew, B. Luna, and J. A. Sweeney, Atypical involvement of frontostriatal systems during sensorimotor control in autism, Psychiatry Res -Neuroimaging, vol.156, pp.117-127, 2007.

X. Tang, J. Kim, L. Zhou, E. Wengert, L. Zhang et al., KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome, Proc Natl Acad Sci U S A, vol.113, p.1524013113, 2016.

A. S. Therrien and A. J. Bastian, Cerebellar damage impairs internal predictions for sensory and motor function, Curr Opin Neurobiol, vol.344, pp.1173-1178, 2015.

P. T. Tsai, C. Hull, Y. Chu, E. Greene-colozzi, A. R. Sadowski et al., Autistic-like behavior and cerebellar dysfonction in Purkinje cell Tsc1 mutant mice, vol.488, pp.647-651, 2012.

R. Tyzio, R. Cossart, I. Khalilov, M. Minlebaev, A. Hübner-c-a,-represa et al., Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery, Science, vol.314, pp.1788-1792, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00483930

R. Tyzio, R. Nardou, D. C. Ferrari, T. Tsintsadze, A. Shahrokhi et al., Oxytocinmediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring, Science, vol.343, pp.675-679, 2014.
DOI : 10.1126/science.1247190

URL : https://hal.archives-ouvertes.fr/hal-01721423

M. Varghese, N. Keshav, S. Jacot-descombes, T. Warda, B. Wicinski et al., Autism spectrum disorder: neuropathology and animal models, Acta Neuropathol, vol.134, pp.537-566, 2017.
DOI : 10.1007/s00401-017-1736-4

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5693718

J. Voogd, What we do not know about cerebellar systems neuroscience, Front Syst Neurosci, vol.8, pp.1-14, 2014.
DOI : 10.3389/fnsys.2014.00227

URL : https://www.frontiersin.org/articles/10.3389/fnsys.2014.00227/pdf

M. Watanabe and A. Fukuda, Development and regulation of chloride homeostasis in the central nervous system, Front Cell Neurosci, vol.9, p.371, 2015.

L. Wing and J. Gould, Severe impairments of social interaction and associated abnormalities in children: Epidemiology and classification, J Autism Dev Disord, vol.9, pp.11-29, 1979.

J. Yamada, A. Okabe, H. Toyoda, W. Kilb, H. J. Luhmann et al., Cl-uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1, J Physiol, vol.557, pp.829-841, 2004.

H. Yamasue, J. R. Yee, R. Hurlemann, J. K. Rilling, F. S. Chen et al., , 2012.

, Integrative Approaches Utilizing Oxytocin to Enhance Prosocial Behavior: From Animal and Human Social Behavior to Autistic Social Dysfunction, J Neurosci, vol.32, pp.14109-14117

W. Zhang, S. Schmelzeisen, D. Parthier, S. Frings, and F. Mohrlen, Anoctamin calcium-activated chloride channels may modulate inhibitory transmission in the cerebellar cortex, PLoS One, vol.10, pp.1-23, 2015.
DOI : 10.1371/journal.pone.0142160

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0142160&type=printable