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UNIVERSITÉ PARIS SUD

LPTMS – Laboratoire de Physique Théorique et Modèles Statistiques

Abstract

The study of the interplay between localization and interactions in disordered quan-

tum systems led to the discovery of the interesting physics of many-body localization

(MBL). This remarkable phenomenon provides a generic mechanism for the breaking

of ergodicity in quantum isolated systems, and has stimulated several questions such

as the possibility of a finite-temperature fluid-insulator transition. At the same time,

the domain of ultracold interacting atoms is a rapidly growing field in the physics of

disordered quantum systems.

In this Thesis, we study many-body localization in the context of two-dimensional disor-

dered ultracold bosons. After reviewing some importance concepts, we present a study of

the phase diagram of a two-dimensional weakly interacting Bose gas in a random poten-

tial at finite temperatures. The system undergoes two finite-temperature transitions: the

MBL transition from normal fluid to insulator and the Berezinskii-Kosterlitz-Thouless

transition from algebraic superfluid to normal fluid. At T = 0, we show the existence of

a tricritical point where the three phases coexist. We also discuss the influence of the

truncation of the energy distribution function at the trap barrier, a generic phenomenon

for ultracold atoms. The truncation limits the growth of the localization length with

energy and, in contrast to the thermodynamic limit, the insulator phase is present at

any temperature. Finally, we conclude by discussing the stability of the insulating phase

with respect to highly energetic particles in systems defined on a continuum.
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Introduction

Disorder is ubiquitous in Nature. Its presence is often unavoidable in a wide variety of

physical systems and, as a consequence, it plays a crucial role in our understanding of

the laws of physics. In condensed matter systems especially, disorder is responsible for a

rich phenomenology that has far-reaching consequences on the transport properties of a

material. Sixty years ago, P. W. Anderson showed that randomness has powerful effects

on isolated quantum systems [1]. Transport may be absent, as wavefunctions show an

exponential decay in real space such that particle diffusion is suppressed. The eigenstates

are said to be “localized” in real space, an effect that is particularly dramatic in low

dimensionality. A new wave of interest to this problem was inspired by the observation of

Anderson localization (AL) in dilute quasi-one-dimensional clouds of cold bosonic atoms

with a negligible interaction [2, 3]. Moreover, the implications of localization physics

are extremely profound, because they question our understanding of the processes that

govern the equilibration and thermalization of isolated quantum many-body systems. It

was indeed realized quite recently that the localization idea is much more general than

originally thought.

The Anderson problem is essentially a single-particle problem, as no interactions are

considered. A subtle question is whether the localization picture survives in the presence

of interactions. The system may potentially delocalize as a result of interaction-induced

transitions to some of the exponentially many configurations of the many-body states.

This called for tremendous theoretical efforts [4, 5], which resulted in the discovery

of the physics of many-body localization (MBL) [6, 7]. The first systematic studies

employed a self-consistent perturbative method, computing the decay of a single particle

into many-body excitations. These seminal works showed that localization can survive

in the presence of weak interactions. Ref. [6] concluded that an interacting system

that is localized at a low temperature may experience delocalization when raising the

temperature, due to growing phase space available for interaction-induced processes.

Soon after, numerical evidence provided support to the perturbative analysis on the

existence of the MBL phase [8], and the field experienced a significant growth ever

1



Introduction 2

since [9, 10]. MBL has been found for one-dimensional (1D) lattice fermions [11] and

its existence was rigorously proven in a class of disordered spin chains [12]. Many

of the properties of many-body eigenstates in these systems have been explored that

differentiate them from conventional quantum thermodynamics. In the latter, the usual

paradigm had been that interacting quantum system eventually reach some kind of

thermal equilibrium. A system prepared in a (non-equilibrium) state that evolves in time

under unitary dynamics will be described, after a certain time, by a few thermodynamic

quantities related to macroscopic conserved density. Quantum correlations will entangle

local degrees of freedom across the whole system, effectively losing memory of the initial

state. This interpretation nicely agrees with our experience that macroscopic systems

behave classically, although they are governed by the laws of quantum mechanics. MBL

systems break this scenario, owing to the suppression of transport on large scales, which

allows to retain some memory of the initial state of the system. The system fails to

equilibrate under its own dynamics and persists in a perpetually out-of-equilibrium

state. This makes MBL relevant also for technological applications, such as the storage

of quantum information [13].

Within years of extraordinary activity after the seminal works, general arguments went

beyond the perturbative scheme, sometimes challenging the early results [14, 15]. It was

soon realized that, like in the non-interacting problem, the physics of MBL is strongly

dependent on the dimensionality d of the system.

Two dimensions are especially challenging in this respect. Already in the Anderson

problem, d = 2 is a marginal case but, strikingly enough, localization extends over the

whole spectrum of eigenstates at any nonzero disorder [16]. In the interacting case,

the very existence of MBL in d = 2 is still debated [15]. The numerical efforts are

constrained by the growing size of the Hilbert space, and the mathematical arguments

demonstrating the existence of MBL in 1D fail in the two-dimensional case. In this

respect, it is important to look for experimental verification that may shine light on

such open questions. It is in this context that the physics of ultracold atomic gases

becomes extremely relevant. Indeed, the first experimental observations of ergodicity

breaking due to MBL have been reported for one-dimensional fermionic ultracold atoms

in a quasi-periodic potential [11]. These studies are able to explore the behavior of the

system at long timescales and high energy density, contrary to previous ones that studied

the non-interacting case or the case of interactions at low energy [2, 3, 17–19]. The

first observation of MBL in 2D has been documented recently, where two-dimensional

interacting bosons in a disordered optical lattice were considered [20].

This Thesis focuses on many-body localization of disordered two-dimensional interacting

bosons in the continuum. Properties of phase transitions and the kind of ordering that
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arises in low-temperature-enabled phases of matter are strongly dependent on the dimen-

sionality, and the case of a 2D Bose fluid is particularly fascinating. In an infinite uni-

form system at finite temperature T , thermal fluctuations destroy the zero-temperature

ordered state associated to Bose-Einstein condensation, but superfluidity is not sup-

pressed. This striking phenomenon is explained in the Berezinskii-Kosterlitz-Thouless

(BKT) theory in terms of topological ordering [21–24]. We discuss the many-body

localization-delocalization transition at finite temperature and the influence of disorder

on the BKT transition, in order to construct the phase diagram of two-dimensional in-

teracting Bose atoms in a disordered potential. We consider the experimentally relevant

case of a truncated energy distribution function and the thermodynamic limit. The sta-

bility of the MBL phase is also discussed with respect to the possibility of delocalization

mediated by highly energetic particles.

Thesis structure

The Thesis is structured as follows. In Chapter 1 we review the arguments that lead to

the presence of localization in both non-interacting and interacting cases. Chapter 2 is

devoted to the physics of ultracold atoms, where we give a brief overview of the field with

focus on disordered systems and the BKT theory. We present our results in Chapter 3,

where we discuss the phase diagram of disordered two-dimensional interacting bosons in

terms of temperature and disorder strength. In Chapter 4 we give supporting arguments

for the stability of the MBL phase in continuum systems. We make concluding remarks

in Chapter 5.

Chapters 3 and 4 are based on the following publications:

1. G. Bertoli, V.P. Michal, B.L. Altshuler and G.V. Shlyapnikov, Finite-Temperature

Disordered Bosons in Two Dimensions, Phys. Rev. Lett 121, 030403 (2018).

2. G. Bertoli, B.L. Altshuler and G.V. Shlyapnikov, Many-body localization in the

continuum: the case of two-dimensional bosons, in preparation.





Chapter 1

Localization: from single-particle

to many-body physics

1.1 Anderson Localization

1.1.1 Introduction

The theory of propagating Bloch states in clean crystals is one of the most fundamental

tools in solid-state and many-body physics [25]. An essential requirement is the peri-

odicity of the environment (e.g., an underlying lattice), allowing for propagation in the

conduction band. When such a crystalline order is broken by randomness in a non-

interacting system, quantum backscattering of single-particle eigenstates can eventually

localize particles in a finite region of space, leading to the absence of diffusion. This is

the essence of Anderson localization [1].

P. W. Anderson published his seminal paper motivated by a series of experiments per-

formed at the Bell Labs in G. Feher’s group [26, 27]. It was observed there that the

relaxation times of electron spins in phosphorous-doped Si semiconductors was anoma-

lously large. The theoretical framework at the time was based on band theory, Bloch

states and Drude’s theory of conductivity, predicting thus a diffusive motion of electrons

coherently diffracting on the ions. In this semiclassical picture, the resistance emerged

as a result of electron scattering on impurities. It followed that the conductivity was

proportional to the mean free path. Electrons were considered to be moving in a metal as

quantum random walkers, losing memory of their precedent motion after each collision.

Consequently, a larger number of impurities implied a reduced mean free path and a

larger resistivity. Anderson’s analysis suggested that, beyond a critical disorder strength

5



Chapter 1. Localization: from single-particle to many-body physics 6

such that the mean free path becomes smaller than the Fermi wavelength, the diffusive

motion of electrons stops completely. Wavepackets are then trapped by the valleys of

the disordered potential, thereby becoming localized. This reflects in a complete absence

of dc transport, strikingly evident in lower dimensions, in which even an infinitesimally

small disorder strength is able to localized all single-particle states (see also § 1.1.4 be-

low). For a fixed disorder value smaller than the critical disorder, localized and extended

states cannot coexist at the same energy1. It follows that the spectrum will form bands,

and we define a single-particle mobility edge as the energy that separates such bands.

As one varies the Fermi energy at zero temperature, a change in the behavior between

a metal (extended states) and an insulator (localized states) takes place. This picture is

strikingly different from the one of conventional band theory, as the Anderson insulator

is not related to the filling of the bands but to the presence of inhomogeneities in the

disorder that eventually traps the electrons.

The “minimal model” used by Anderson to explain Feher’s experiments neglected inter-

actions and introduced only the essential elements. The resulting random tight-binding

Hamiltonian of non-interacting particles reads [1]:

HAnd =
∑
i

Eic
†
ici +

∑
ij

Vijc
†
icj + h.c., (1.1)

where ci is the annihilation operator for an electron on site i, the kinetic (hopping)

terms Vij are short-ranged, and the Ei are independent, identically distributed (iid)

random variables, conventionally chosen from a box distribution of width W s.t. Ei ∈
[−W/2,W/2]. We can restrict ourselves to nearest-neighbor hopping Vij = Vi,i+1 = V .

Let us analyze the limiting cases first. In the disorder-free case (W = 0), the Hamiltonian

is translationally invariant and the solutions of the Schrödinger equation are plane waves:

ψ(k) =
1√
V
eik·ri ; Ek = −2V

d∑
i

cos ki, (1.2)

where V is the system volume and we are summing over the components of the mo-

mentum k in Ek. In the thermodynamic limit, it may be shown that the motion of the

electrons is ballistic, as it is typical in momentum-conserving translationally invariant

systems. This is because plane waves are propagating ballistically in all directions, so

even an initially localized wavepacket, being a superpositions of plane waves, will spread

ballistically. In the thermodynamic limit, eigenfunctions are not normalizable and ener-

gies form a continuous spectrum. Indeed, the local density of states ρ(k,E), which will

1To see this intuitively, consider the case of a delocalized state at some energy. Any state with the
same energy which might be localized will become a virtual bound state, spending a long time close to
the valley of the random potential but still behaving as a Bloch wave at infinity.



Chapter 1. Localization: from single-particle to many-body physics 7

be more carefully defined later, is continuous in this limit. In other words, at each site

there exists a true continuum of states at any allowed energy E ∈ [−2V, 2V ]. Spectral

properties are of great importance in the context of localization, and will be discussed

in detail in the next sections.

The opposite (zero hopping) limit is trivial, in that the Hamiltonian is diagonal and all

eigenstates |i〉 ≡ c†i |0〉 are localized on the lattice sites i. The spectrum is in this case dis-

crete (point spectrum), because the density of states is trivial also in the thermodynamic

limit:

ρ(k,E) = δ(E − Ek). (1.3)

It is not clear a priori what should happen away from the two limiting cases, where

there is a competition between hopping (diffusion) and disorder (localization). At weak

disorder, one expects the semiclassical analysis to be still valid: ballistic transport in

the clean case becomes diffusive when adding impurities. The mean-square displacement

〈r(t)2〉 after some time t reads:

〈r(t)2〉 ∼ Dt ; t� τ. (1.4)

We have introduced here the diffusion coefficient D ∼ l2/τ in terms of the typical

collision time τ and the mean free path l. One may find the scattering rate by adding

a disorder U in a perturbative way to the Bloch states. In doing this, we exploit the

continuity of the spectrum to apply the Fermi Golden Rule for the decay rate Γk:

1

τ
= Γk ≡ π

∑
k′

| 〈k|U |k′〉 |2δ(Ek − Ek′). (1.5)

Within this framework, the resulting diffusion coefficient is inversely proportional to the

disorder U , but never zero. Anderson’s notable insight showed that D actually vanishes

for a critical disorder Wc, signaling a breakdown of the Fermi Golden Rule.

This situation can be intuitively understood as follows. Starting from the basis of

localized eigenstates, with hopping as the perturbative term, the typical nearest-neighbor

difference Ei − Ei+1, entering the denominator in the perturbative expansion, is of the

order ∼ W � V . Therefore, nearby sites do not mix due to the hopping term and

localization is stable. This is better understood if we restrict ourselves to the two-

dimensional space spanned by |i〉 and |i+ 1〉, resulting in the Hamiltonian

H2 =

(
Ei V

V Ei+1

)
. (1.6)
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The eigenvalues are

ε± =
E+

2
± 1

2

√
(∆E)2 + 4V 2, (1.7)

with E+ = Ei+Ei+1, ∆E = Ei−Ei+1. The difference in eigenvalues is thus
√

(∆E)2 + 4V 2.

It follows that for ∆E � V , eigenfunctions are going to be only weakly perturbed,

so that states remain localized. This is valid until the term inside the square root

∆E
√

1 + (4V/∆E)2 is close to unity. Note that in the opposite limit a useful descrip-

tion is obtained by locally changing the basis to a “shared” basis

(|i〉 , |i+ 1〉)→ 1√
2

(|i〉+ |i+ 1〉 , |i〉 − |i+ 1〉) , (1.8)

in which it is clear that the probability of finding a particle is shared between sites hav-

ing “shared” energies ε±. In this case, states are said to be hybridized by the hopping.

For strong disorder, the probability to find levels that are close in energy and at the

same time spatially nearby, is thus very small. Nevertheless, one might be worried that

at some higher order n of perturbation theory, randomness will cause the denominator

of an electron n sites apart, Ei−Ei+n, to be almost zero even for strong disorder. Such

almost degenerate states have large tunneling and could affect the on-site wavevectors,

effectively delocalizing them. Anderson’s work ensured that a careful resummation of

diagrams in all orders of perturbation theory renormalizes the Ei’s, lessening the impact

of the divergences and ensuring that localization is stable.

The important point, emphasized as well by Anderson himself in his 1977 Nobel lecture,

is that “the behavior of perturbation theory is absolutely different in the two cases”. This

is best explained in the formulation of the localization problem in terms of the resolvent

operator. We will explore this framework in the following section, where we will also

show how Anderson handled the question of the resonances affecting the convergence of

the perturbative series. This will also serve as a starting point in our discussion of the

interacting problem.

1.1.2 Perturbation theory in AL

In this section, we will elaborate a perturbative treatment of the Anderson problem in

terms of the resolvent operator, introducing as well some of the notations that we will

use throughout this Chapter.

For a given Hamiltonian H the resolvent operator is defined as:

G(E) :=
1

E −H
. (1.9)
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In terms of the eigenfunctions ψα and eigenenergies Eα of H, it can be expressed as the

Green function in the spatial representation:

G(r, r′, E + iη) =
∑
α

ψα(r)
1

E + iη − Eα
ψ∗α(r′), (1.10)

where we added a small imaginary part η to the energy E. To simplify the notations,

we will sometimes drop this imaginary part in the arguments of the functions.

Let us start our discussion from the delocalized side. The eigenfunctions and energies

are given by Eq. (1.2), and we write H = H0 + U , with H0 the kinetic term and U the

disorder potential. The corresponding resolvent operator for a free particle reads:

G0(E) =
1

E + iη −H0
. (1.11)

We define now the density of states:

ν(E) ≡
∑
n

δ(E − En) (1.12)

and the density of states per unit volume ρE = ν(E)/V. For convenience, we also define

the local density of states:

ρE(r) ≡
∑
n

|ψn(r)|2δ(E − En) (1.13)

and the non-local density of states:

ρE(r, r′) ≡
∑
n

ψ∗n(r)ψn(r′)δ(E − En). (1.14)

Setting η → 0 we have2:

ρE(r) = − 1

π
ImG(r, r, E). (1.15)

Introducing the Green function in the momentum representation

Gkk′(E) = G(k, k′, E) = 〈k′|G(E) |k〉 , (1.16)

in the plane-wave basis that diagonalizes H0 we have:

G0(k,E) =
1

E + iη − Ek
. (1.17)

2This relation, as well as Eq. (1.23), follow from the Sokhotski–Plemelj theorem [28, 29].



Chapter 1. Localization: from single-particle to many-body physics 10

We can express the Schrödinger equation in terms of the resolvent operators G and G0

in the following way:

G = G0 +G0UG, (1.18)

It is clear that this is actually an infinite sum

G = G0 +G0UG0 +G0UG0UG0 + . . . , (1.19)

and we rearrange this perturbative expansion in a convenient way by introducing the

self-energy Σk(E), defined implicitly from the Green function in the momentum repre-

sentation:

Gkk =
1

E + iη − Ek − Σk(E)
. (1.20)

The self-energy can thus be written as an infinite series:

Σk(E) =
∑
n

∑
k1,...,kn 6=n

Ukk1Uk1k2 . . . Uknk
(E + iη − Ek1) . . . (E + iη − Ekn)

, (1.21)

where the first few (non-zero) terms are:

Σk(E) =
∑
k′ 6=k

U2
kk′

E + iη − E′k
+

∑
k′′,k′ 6=k

Ukk′′Uk′′k′Uk′k
(E + iη − E′k)(E + iη − E′′k )

+ . . . (1.22)

From Eq. (1.20) we see that the self-energy shifts the positions of the poles of Gkk. We

may express the decay rate in term of the self energy as:

Γk = −ImΣk(E). (1.23)

We exploit now the fact that the Ek’s represent a continuum, so that the poles of

G merge with each other and form a branch cut in the thermodynamic limit3. The

functions ρE(r) and Γk are therefore continuous in this case. From Eq. (1.5) it follows

that an eigenstate with wavevector k and energy E has an average finite lifetime, given

by τ , whenever the self energy Σk(E) has a finite imaginary part after sending η to zero

(that is, approaching the real axis). The reason is that in this case the width of the local

density of states (also referred to as “spectral function”) is given by Γk itself:

ρk(E) =
1

π

Γk
(E − Ek − ReΣk)2 + Γ2

k

. (1.24)

The resulting states are thus continuous in energy at every site. Their weight is in-

finitesimal in the thermodynamic limit, and as seen in our introductory discussion, they

3See section § 1.1.3.1 for more details.



Chapter 1. Localization: from single-particle to many-body physics 11

spread over the whole system: they are extended.

Now let us look at the case where the perturbative term is the hopping V , in the so-

called “locator” expansion. We start from a basis labeled by the eigenstates |j〉 of the

diagonal term, which includes now the disorder. In the very same manner as before, we

can define the resolvent G with a different notation emphasizing the change of basis:

Gjl(E) = 〈j| 1

E + iη −H
|l〉 . (1.25)

Now the expansion reads:

G = G0 +G0V G0 +G0V G0V G0 + . . . , (1.26)

from which we can define the self-energy analogously to Eq. (1.20):

Gjl(E) =
1

E + iη − El − Σj(E)
. (1.27)

The first terms in the series for the self energy read:

Σj(E) =
∑
j′ 6=j

V 2
jj′

E + iη − Ej′
+
∑

j′′,j′ 6=j

Vjj′′Vj′′j′Vj′j
(E + iη − Ej′)(E + iη − Ej′′)

+ . . . (1.28)

As before, we study the quantity of interest Im(Σj(E)), related to the decay rate of an

excitation. Intuitively, it is already clear that no branch cut will develop this time in

the thermodynamic limit: the density of states ρE and the imaginary part of the self-

energy are singular, and the spectrum is bounded and point-like. These two functions

are however two random quantities, and the correct way of looking at them is through

a statistical analysis. It might be tempting now to average over disorder realizations.

This would give a finite value of 〈Γ(E)〉 in both cases, because the structure of the

probability distribution would be lost in the averaging procedure. The poles would

indeed, after the average, distribute themselves continuously even in the localized case,

seemingly signaling a decay of the excitations. One needs therefore to look at the whole

probability distribution P of ImΣj(E + iη) in the thermodynamic limit, setting η → 0.

From our previous discussion it is clear that one defines the decay rate as:

Γα(E) = − lim
η→0

ImΣα(E + iη), (1.29)

where we changed notation to the index α indicating an eigenstate. When this is a

continuous and smooth function of energy in the thermodynamic limit for (almost) every

disorder realization, its distribution is regular and is given by a narrow Gaussian. When
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Figure 1.1: Schematic representation of the arguments given in the text. In (a), we
show the energy dependence of the decay rate. The solid line represents the localized
case, and the dashed line the delocalized case. In (b), we show the probability distri-
bution corresponding to the decay rate at a given energy for each case. Figure taken

from [30].

it has singularities, this means that the function ImΣα(E + iη) is a sum of Lorentzians

of width η (becoming δ-peaks when η → 0), centered at the random energies. Fixing

the energy E, in the limit η → 0 one gets that ImΣα(E + iη) = 0 with probability

one, because the value of E will fall outside the peaks. The event of hitting one of the

peaks, which would give Γ = ∞, happens with zero probability. The correct way of

looking at this situation is to admit a finite small width η, take first the thermodynamic

limit, and only after that set η → 0. Now ImΣα(E + iη) will have a finite width, so

that ImΣα(E + iη) ∼ η with a very high probability, and only if E is within one of the

Lorentzians the value of Γ will be of order ∼ V 2/η. However, this situation occurs only

with probability ∼ η/W , so that in the limit η → 0 the distribution is singular and

peaked in zero. This situation is schematically represented in Fig. 1.1. Localization is

therefore encoded in the following statement:

lim
η→0

lim
V→∞

Prob [ImΣk(E + iη) > 0] = 0. (1.30)

For any finite positive value of this limit(s), there will be a finite decay rate. Let us

stress again, for completeness, that the order of the limits cannot be changed. This is

because the spectrum is always discrete in finite-size systems.

What remains now to be understood is when the condition (1.30) is satisfied. Anderson

noted that it is sufficient that the infinite series defining the self-energy converges, for

Eq. (1.30) to hold in any order of perturbation theory (with probability one). Let us

look therefore at the lowest order in the locator expansion (1.28), given by:

Σ
(1)
j (E) =

∑
j′ 6=j

V 2
jj′

E + iη − Ej′
(1.31)
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We have:

ImΣ
(1)
j (E + iη) = −η

∑
k 6=j

|Vkj |2

(E − Ek) + η2
. (1.32)

The distribution of this random variable is heavy-tailed for a finite η, but it goes to zero

when η → 0. From Eq. (1.28) it is easy to see that this should happen at all orders

of perturbation theory. An order-by-order analysis thus cannot capture the case where

Eq. (1.30) is not satisfied, and it would always predict localization at any finite order.

However, one might be worried that the whole perturbative series diverges, such that

finite-order truncations are irrelevant. A careful analysis must be performed that takes

care of such issues.

In order to look at this problem more concretely, let us look at the self energy written

in the following way:

Σj(E + iη) =
∑

loops of length l
starting and
ending in j

Vj,il

l∏
m=1

VimVim+1

E + iη − Eim
(1.33)

One sees that divergent terms will appear due to repetitions within the loops. That is,

pairs could be found such that∣∣∣∣ Vjk
(E + iη − Ej)

Vkj
(E + iη − Ek)

∣∣∣∣ > 1. (1.34)

These terms could become arbitrarily big in principle because the perturbative expan-

sion contains all diagrams, including those passing from k, j multiple times (see Fig. 1.2).

3

4

0

1

2

Figure 1.2: A pictorial representation of a path in the perturbative expansion of the
self-energy that may give rise to arbitrary big contributions. In this case, the repeated
hopping is between sites 3 and 4, so that the corresponding term in Eq. (1.34) will be

large. More repetitions are in principle possible as well.
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Does this mean that localization is, eventually, unstable? One way to tackle this problem

is to see that one can formally resum the diagrams in question and produce a “renormal-

ized” summation where only self-avoiding loops are considered. This is done as follows.

Let us rewrite the expression for the resolvent as:

Gjj =
1

E + iη − Ej
+

1

(E + iη − Ej)2

∑
k,l 6=j

VjkGklVlj , (1.35)

where:

Gkl =
δk,l

E + iη − Ej
+
∑
n

∑
m1,...,mn

Vkm1 . . . Vmnl
(E + iη − Ek)(E + iη − Em1) . . . (E + iη − El)

.

(1.36)

This is a path connecting k and l. The crucial step is now to write the terms of this

sum in such a way that, once we choose a path k → l without repetitions, we resum all

the loops pertaining to index repetitions at each stage of the path. For definiteness, let

us look at the first stage of our path, namely k, and the next stage of the path chosen

without repetitions. Before leaving k, we allow any possible loop to be present, so that

each term in the sum can in principle come back to k many times. However, each of

this terms will eventually leave k so that the last part can always be factored out. We

can therefore write:

Gkl =
1

E + iη − Ek − Σk

∑
k′ 6=k

Vkk′G
(6=k)
k′l . (1.37)

The superscript in the resolvents in the sum means that now the paths are restricted to

those not including k. It is easy to see that one may repeat this argument in the next

order, which gives:

G
( 6=k)
k′l =

1

E + iη − Ek′ − Σ
(6=k)
k

∑
k′′ 6=k′

Vk′k′′G
(6=k,k′)
k′′l , (1.38)

where now the loops in the self-energy are avoiding k as well. In this way, one is able

to resum at each step self-consistently the contributions of the loops, so that eventually

also the self-energy corrections can be written in terms of a resummation of self-avoiding

loops.

Let us analyze the meaning of self-consistency in this case. If η is large enough, the above

procedure can surely be put into place. It is quite remarkable that our expansion for Σ

is still convergent in the limit η → 0 for a finite range of parameters of the Hamiltonian.

Indeed, such convergence implies that each of the self-energy corrections converges.

This is exactly the self-consistence of the assumption: by assuming that resonances do
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not grow and multiply in space at some distance, we see that the series involving the

corrections converge in the limit η → 0. Once this is done, one checks whether the full

series for Σ converges, and by that checks the validity of the assumption self-consistently.

The physical picture is thus quite remarkable: while resonances do indeed happen in

the localized phase, they are not able to spread all around the system. Instead, they are

restricted by the disorder in a finite region of space, where hybridization between local

degrees of freedom can take place. In the thermodynamic limit such regions are well far

apart so that no large-scale hybridization is possible. Wavefunctions are thus localized

around a center r0, and fall off exponentially over a distance ζ, called the localization

length:

|ψ(r)|2 ∼ N e
−|r−r0|

ζ . (1.39)

The opposite case is when hybridization processes happen at any order over any dis-

tance. That is, terms like Eq. (1.34) may happen involving arbitrarily long sequences.

Wavefunctions of such states are called extended, because the hopping keeps mixing

degrees of freedom at any distance.

We initially set up the perturbative arguments in both the localized and delocalized side,

to emphasize the different behavior of perturbation theory. Let us stress however that

approaching the Anderson transition from the delocalized side is quite complicated. The

transition (and the vanishing of the diffusion coefficient) appears as the invalidation of

the Fermi Golden Rule, because the local DoS becomes pure point. This result is also

obtained with a sort of self-consistent treatment, which is however accurate only for

small disorder [31]. We chose therefore to show only the locator expansion approach

to the transition, doing perturbation theory in the hopping. This has the advantage

of being better controlled, as we have seen in the previous paragraph. Remarkably in

fact, while in general quite complicated, the self-consistent equations resulting from this

expansion have an exact solution in at least one case, namely on the Bethe lattice (see

§ 1.1.5). Also, a more efficient way to look at the many-body problem is to start from

the basis of localized states, as we will illustrate in § 1.3.

1.1.3 Phenomenology of AL

Let us now discuss some properties of the localized phase. They all follow from our

previous discussion.
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1.1.3.1 Spectral properties

We emphasized before the importance of the spectral properties. Without diving into a

detailed discussion, we discuss here the important traits of the dichotomy of continuous

vs. point spectrum, which allowed us to distinguish between localized and delocalized

phases.

The eigenvalues of H comprise the point spectrum, being the set of energies such that

H |ψ〉 = E |ψ〉 for some |ψ〉 in the Hilbert space H of the system. In the thermodynamic

limit, one may call the rest of the spectrum the continuous spectrum. This corresponds

in general to a decomposition of the density of states:

ρ = ρp + ρc, (1.40)

such that the Hilbert space is also decomposed into Hp generated by the eigenvectors

of H and its complement Hc, in such a way that they are orthogonal to each other, i.e.

H = Hc ⊕Hp.
The important statement is that spectral localization is directly connected to the absence

of transport in the dynamical characterization of the Anderson transition. Mathemati-

cally, it has been proven in the RAGE theorem that states in Hp correspond to localized

states, whereas those in Hc correspond to conducting states [32].

With respect to our discussion of the resolvent operator, we note that in the thermody-

namic limit V → ∞ and in the presence of both the point and continuous spectrum one

may write:

Gjj(E) =

∫
dω

1

E − ω
ρc(j, ω) +

∑
k

1

E − Ek
| 〈k| |j〉 |2. (1.41)

By adding a small imaginary part η to the energy, we can write:

Gjj(E − iη)−Gjj(E + iη) =

∫
dω

1

E − ω
ρc(j, ω − iη)−

∫
dω

1

E − ω
ρc(j, ω + iη)

+
∑
k

2iη

(E − Ek)2 + η2
| 〈k| |j〉 |2. (1.42)

Let us look at the sum first. For energies E = Ek, it is of order 1/η and thus large,

whereas it is small (order η) otherwise. However, we noted before that E = Ek happens

with zero probability4, so the contribution is ∼ η. To calculate the other term, we

perform a contour integral over a rectangle of width η around the whole spectrum, to

find: ∫
1

E − ω
(ρc(j, ω + iη) + ρc(j, ω − iη)), (1.43)

4Formally, this is because the set of eigenvalues is countable.
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where we neglected contributions of order η. This means that we get

ρc(j, E) =
1

2iπ
lim
η→0

(Gjj(E − iη)−Gjj(E + iη)), (1.44)

from which our previous statement follows: a continuous spectrum implies a branch cut

in the resolvent. At the same time, it is clear now that in the absence of a continuous

spectrum one has:

lim
η→0

ImGjj(E + iη) = 0 (1.45)

with probability 1.

1.1.3.2 Absence of dc transport

The above arguments are intrinsically related to transport just by considering the sur-

vival probability amplitude of a degree of freedom that at time t = 0 is in the lattice

site j. This is given by:

A(t) =
i

2π

∫
dEe−itEGjj(E), (1.46)

which is just the Fourier transform of the resolvent5. Clearly, form our previous dis-

cussion, the return probability is exponentially damped when G develops a branch cut,

while it stays finite for all t otherwise. This is the way in which Anderson originally

characterized the localization-delocalization transition, as a dynamical phase transition

where no transport occurs on the localized side. Indeed, one can use Einstein’s relation

to relate the diffusion constant to the dc conductivity:

σ ∼ e2ρ(EF )D, (1.47)

so that when D = 0 transport stops completely (e is the electron charge).

1.1.3.3 Spectral statistics

Another property that can be used to distinguish between localized and delocalized

phases is the kind of level statistics that each phase shows. Since eigenvalues are expo-

nentially weakly correlated in the localized phase, one expects Poissonian statistics and

no level repulsion. This is possible, as energies close to each other are far away in space.

On the other hand, in the delocalized side the statistics is of the Wigner-Dyson type

5To link with the previous paragraph, take the integral on the upper complex plane giving finite
positive imaginary part to E → E + iη.
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and one has level repulsion. To see how this comes about, it is useful to go back to our

toy Hamiltonian H2:

H2 =

(
Ei V

V Ei+1

)
(1.48)

with eigenvalues

ε± =
E+

2
± 1

2

√
(∆E)2 + 4V 2. (1.49)

Looking now at the limit of large hopping, in the “shared” basis that was previously

introduced, we note that the difference in eigenvalues is:

ε+ − ε− ≥ 2V. (1.50)

Hence, the two eigenvalues repel each other in this basis. Just by scaling up this simple

argument one sees that extended states, spanning large regions that can potentially in-

fluence each other, create level repulsion.

This suggests a connection with the field of random matrix theory (RMT). Indeed, RMT

is concerned with the study of properties of matrices whose entries are chosen randomly

from some probability distribution, and it has now applications in a wide spectrum of

disciplines. This versatility is mostly due to the universal character of RMT, which gives

universal results independently of the specific probability distribution. Within the con-

text of Anderson localization, it is clear that we may interpret the Anderson Hamiltonian

as a random matrix, the symmetry properties of the latter related to the symmetries of

the physical system (time-reversal invariance, spin-independent hopping and so on). Of

special interest in this case are the matrices belonging to the Gaussian Wigner ensem-

bles, where entries are independent identically distributed Gaussian random variables.

More precisely, in the Gaussian orthogonal ensemble (GOE) of real symmetricN × N
matrices it is possible to obtain the joint probability distribution of eigenvalues. The

eigenvalues are strongly correlated random variables, and in the thermodynamic limit it

is possible to write the density of states for the GOE as the Wigner semicircle law:

ρN→∞(E) =
1√
2N

√
1− E2

2N
. (1.51)

Most importantly, rotational invariance in the GOE ensures that eigenfunctions are

delocalized: they are uniformly distributed on the (N − 1)-dimensional sphere, with

coordinates of order 1/
√
N (up to logarithmic corrections). Level repulsion is taken into

account in the strong correlations between the eigenvalues.

In the specific case of the Anderson model with nearest-neighbour interaction, matrices

of the representative ensemble are not GOE (that would be the case of a fully-connected
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model) but have independent non-identically distributed random entries in the form

of Schrödinger operators. There exists a conjecture for this kind of matrices, which

associates the regime of strong disorder with Poisson statistics, and weak disorder with

Wigner statistics.

The behavior of the local eigenvalue statistics has been used therefore as a tool for

constructing the phase diagram. In Ref. [8] it has been suggested that the ratio:

r =
min(δα, δα+1)

max(δα, δα+1)
(1.52)

can characterize the correlations between adjacent gaps, where δα = Eα+1 − Eα. The

average value over disorder realizations, 〈r〉, has well-defined limits for the GOE and

Poissonian cases: 〈rGOE〉 = 0.53 and 〈rP 〉 = 0.39. This kind of diagnostics has been

used as well in spin models in the context of the MBL transition [8].

1.1.4 Scaling theory and dimensionality

Anderson was able to show that the localization transition is dependent on the dimen-

sionality d. In lower dimensions, he argued, localization effects should be stronger, to

the point that in d = 1 all single-particle states should be localized for arbitrarily small

disorder W [1]. This remarkable statement was later proven rigorously in Ref. [33].

Higher dimensions however turned out to be more difficult to solve. Scaling argument

during the same time had proven to be successful in the description of continuous phase

transitions in statistical physics, so that naturally this idea was translated in the context

of AL. Nevertheless, major differences occurred between the two cases. First, the AL

transition has no immediately recognizable order parameter, contrary to other quantum

phase transitions. This problem was solved by noting that there exists a length scale

playing the role of a characteristic length, namely the localization length ζ. Coming

from the insulating side, the localization length indeed diverges at the transition with a

critical exponent ν:

ζ ∼ (W −Wc)
−ν , (1.53)

indicating thus the possibility of the formulation of some kind of scaling argument.

The first idea in this sense is due to Thouless [34, 35]. It relies on a simple conceptual

framework that we briefly illustrate. Imagine to build a block of size (2L)d out of

blocks of size Ld. A reasonable assumption is that the eigenstates of the big block

will be dependent on the eigenstates of the smaller blocks, the former being a linear

combination of these small blocks. Whether the states will be strongly mixed depends

on the ratio between the energy denominator δW and the overlap integral ∆E. The

overlap integral can be estimated as the variation in energy corresponding to a change
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in the boundary condition. A more direct interpretation has to consider it a sort of

effective “hopping matrix element”, coupling one block to the next one. Calling τ(L)

the time taken fo reach the end of one block, we get ∆E ∼ τ−1. For a block of large

enough size L� l, with l the mean free path, the motion is diffusive and one has:

∆E ∼ τ(L)−1 ∼ D/L2. (1.54)

The energy scale ∆E is the so-called Thouless energy. This needs to be compared to

the energy denominator δW , which can be estimated to be the mean spacing between

energy levels in a block ∼ (νLd)−1, where ν is the density of states. For large (small)

∆E � (�) δW , one expects extended (localized) states. More importantly, this allows

us to write the theory in terms of a single dimensionless parameter, the dimensionless

conductance:

g(L) ≡ G(L)
e2

~
∼ ∆E

δW (L)
. (1.55)

Here G is the conductance, that Thouless argued to be related linearly to the ratio

∆E/δW . The dimensionless conductance g(L) is the only parameter in the scaling

theory of localization. To see this, the next step involves the realization [16] that the

logarithmic derivative of g(L) is a function of only g itself, so that:

∂ ln g

∂ lnL
= β(g), (1.56)

with the only assumption that L � l. Let us look now at the behavior of β(g). For

large conductance, one expects delocalization, and the mean free path is large compared

to the characteristic wavelength (Fermi wavelength for fermions). In this case, following

Drude theory and Eq. (1.47), one has g = σLd−2, so that:

β(g) = d− 2 g →∞. (1.57)

On the other hand, on the localized side the only relevant states for hopping should

have energies very close to each other. But localized states are very far away in space,

so that the conductance is exponentially small on the typical scale of the localization

length ζ � L, i.e. g ∼ exp(−L/ζ). This gives:

β(g) = ln g g → 0. (1.58)

We can now interpolate the function β(g), assuming no change in behavior (monotonic-

ity). The results are shown in Fig. 1.3. It is clear that for d < 2, β(g) < 0 and the

conductance decreases with L for any initial g, so that only localization is possible. For
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Figure 1.3: The behavior of the scaling function β for dimensions d = 1, 2, 3. For
d < 2, the scaling function is always negative, from which it follows that no phase
transition is present and all states are localized. In d = 3, there exists a critical gc for

which the function changes sign. This point is associated with the mobility edge.

d > 2, there is a critical gc for which β(g) = 0, signaling that the conductance is constant

with respect to system size. This is the point of critical disorder, and it is an unstable

fixed point in the flow: any initial g < gc will flow to a localized phase, whereas any

g > gc will flow to a metallic phase. In this sense, one may identify this critical point

with the single-particle mobility edge, because the initial conductance depends on the

value of the characteristic energy (Fermi energy for fermions). Dimension d = 2 is the

marginal dimension, and one needs to compute perturbative corrections (following from

weak localization theory) to check the behavior of β(g). Such corrections modify the

β-function as follows:

β(g) ≈ d− 2− 1

kg
, (1.59)

so that β(g) is always negative6. This means that in two dimensions as well, all states are

localized at large enough length scales for arbitrarily small disorder. One may estimate

the localization length by integrating the perturbative corrections in Eq. (1.59) between

l and L, to get [35]:

ζ2D(k) = l exp
(π

2
kl
)
. (1.60)

In general, the scaling theory represents a great achievement in the theory of localization.

The whole picture was put on a more solid footing when it was given a field-theory de-

scription using the non-linear σ-model [36]. Without going into details, we only mention

6This is not the case when including spin-orbit coupling. In general, the results given in this section
are correct for systems with time-reversal symmetry and spin-independent hopping.
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here that important results have been achieved on the nature of the Anderson transition,

such as the multifractal character of the states at the critical disorder [37–40].

1.1.5 The Bethe lattice solution

We mentioned before that the self-consistency equations for the self energy allow for an

analytical solution on the Bethe lattice [41]. Far from being exhaustive, we mention now

the importance of this result in connection to the many-body problem.

The Bethe lattice is an infinite graph with no loops. Each node in the graph is connected

to Z other nodes. In this sense, the Bethe lattice is the infinite limit of a Cayley tree

where each parent node has K = Z − 1 children. Because of its property of having no

loops, the calculations for the self-energy are greatly simplified, effectively stopping the

perturbative expansion at second-order, so that one is able to solve the self-consistency

equations exactly. Neglecting the contributions of the real part of the self-energy, the

criterion for delocalization can then be expressed as:

2eV K

W
ln

(
W

2V

)
< 1, (1.61)

which is also the upper limit that Anderson found in his original work with a very

different method [1].

The number of sites at a given distance from the origin in the Bethe lattice grows

exponentially, so that the Bethe lattice is understood as the infinite-dimensional limit,

showing critical behavior that matches mean field results. What most interests us,

however, is the relation of the result on the Bethe lattice to the many-body problem.

As we will see in § 1.3.1, the many-body localization problem can be thought of as

localization in the Fock space. In this rather illustrative view, the role of lattice sites

of the Anderson model is played by the many-body states, and hopping is mirrored

by the interaction. Localization amounts to the fact that many-body states are weak

deformations of the non-interacting eigenstates, if the interaction (hopping) is small

enough. The case of N � 1 interacting particles can be therefore reinterpreted as the

problem of Anderson localization on a very high dimensional lattice, and this is where

the connection to the Bethe lattice becomes relevant.

In Ref. [5] this very idea of translating the many-body problem in the language of

single-particle Anderson localization in a high dimensional space was applied to the

electron-electron lifetime in a quantum dot. The authors proposed an approximate

equivalence between the Hamiltonian of a metallic grain of interacting electrons with

large conductance and the Hamiltonian of non-interacting particles on a Cayley-tree lat-

tice with on-site disorder. Building on the exact results we presented above for the Bethe
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lattice, the authors concluded that the localization transition in the non-interacting case

corresponds to localization in the Fock space of many-body eigenstates, meaning that

one-particle excitations below a certain energy are very similar to exact many-body

eigenstates. Larger energies correspond to the delocalized side of the transition, and

one-particle excitations there are seen as linear combinations of a large number of many-

body eigenstates. This program was eventually extended to an infinite system, and it is

at the origin of the physics of many-body localization.
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1.2 Thermalization

“Thermodynamics is a funny subject. The first time you go through it, you don’t under-

stand it at all. The second time you go through it, you think you understand it, except

for one or two points. The third time you go through it, you know you don’t understand

it, but by that time you are so used to the subject, it doesn’t bother you anymore...”

– Arnold Sommerfeld

Before tackling the many-body localization problem, let us first introduce some concepts

that will allow us to better formulate the question. A very subtle problem in statistical

mechanics is the way in which a system reaches thermal equilibrium. The standard

textbook example is a bunch of particles in a box, in a given initial state that is clearly

out of equilibrium (say, all particles in the right half of the box). After some time, the gas

will have moved all over the box: we say that the system reaches thermal equilibrium, or

equivalently that it thermalizes. In general, a classical isolated many-body system with

internally interacting degrees of freedom starting from some generic, out-of-equilibrium,

initial conditions, will tend towards a state that maximizes its entropy. This equilibrium

state can be described by a few parameters related to the conservation laws: conserved

densities and their Lagrange multipliers, such as temperature, chemical potential, etc.

The derivation of these and other equilibrium results relies on Boltzmann’s ergodic

hypothesis, a cornerstone of classical statistical mechanics [42]. It asserts that in a

system with many degrees of freedom, a trajectory in phase space will explore the space

evenly. The system will spend an equal amount of time in regions of phase space of

equal measure, implying that, for an observable O, the ensemble average is equivalent to

the infinite-time average. An equivalent statement is that an ergodic system will access

all of its microstates with equal probability in the long-time limit.

In a quantum mechanical system, however, the linearity and the noncommutativity of

the theory makes the generalization of concepts such as ergodicity and thermalizaton

more problematic.

Take for instance a quantum many-body system, described by its Hamiltonian Ĥ. Let

us consider an isolated system and denote its initial non-equilibrium state by |ψ(0)〉. We

can expand such state in the basis of many-body eigenstates {|α〉}:

|ψ(0)〉 =
∑
α

cα |α〉 . (1.62)
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Time-evolving the state amounts to a phase factor that depends on the energy Eα:

|ψ(t)〉 =
∑
α

cαe
−iEαt |α〉 . (1.63)

We see from the above equation that the probability |cα|2 of the system to be in a given

many-body eigenstate is independent of time. It is thus fixed by the initial state, which

contrasts with classical systems that, as previously stated, explore different states in re-

gions of phase space during their time evolution. This would mean that any information

regarding the initial state of the system is preserved under the time evolution. This ap-

pears to contradict not only our intuition, but also experiments showing that quantum

systems can indeed reach thermal equilibrium, seemingly losing any information about

the initial conditions [43].

What does it mean, then, for a quantum system to thermalize and, therefore, to be

ergodic? An intuitive picture is that thermalization happens when, under unitary time-

evolution, the system reaches a state that can be described in terms of a few parameters

related to globally conserved quantities in the long-time limit. This picture directly

mirrors the classical case in spirit, and we call such state a thermal (Gibbs) state.

Formally, given an isolated quantum system with hamiltonian H in the initial (pure)

state |ψ〉, we can decompose the system into an arbitrary but sufficiently small7 sub-

system A and its complement B. The reduced density matrix of the A subsystem is

thus:

ρA(t) = TrB(|ψ(t)〉 〈ψ(t)|). (1.64)

A system is said to thermalize if, in the limit t→∞, ρA tends to the equilibrium (Gibbs)

reduced density matrix:

lim
t→∞

ρA(t) = ρth
A (T ) =

TrB(e−H/kBT )

Z
. (1.65)

The effective temperature T is determined by the energy of the state |ψ〉: 〈ψ|H |ψ〉 =

Tr(Hρth
A (T )). Z is the partition function, and we are assuming without loss of generality

that there are no other conserved quantities except energy. The infinite time limit should

be taken together with the thermodynamic limit, to exclude any recurrence phenomenon.

In practice, we mean that a given subsystem thermalizes if the full system is able to

act as a reservoir. Information encoded in the initial state is effectively transferred to

non-local correlations after time-evolution.

How does this happen? The explanation of the microscopic mechanism of thermalization

in isolated quantum systems relies on a powerful assumption regarding the structure

7The condition of smallness is just to ensure that the complement B is big enough to serve as thermal
bath.
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of individual eigenstates - the Eigenstate Thermalization Hypothesis (ETH) [44, 45].

The statement of the ETH is as follows. Given an Hamiltonian Ĥ that thermalizes in

the sense of Eq. (1.65), individual eigenstates |α〉 can locally reproduce the canonical

ensemble, i.e. the expectation values of any observable Ô are thermal, equal to the ones

obtained from the canonical ensemble.

Denoting the expectation value of an observable associated with an operator Ô as Oαα =

〈α| Ô |α〉, the ETH Ansatz describing how the system approaches a thermal state is given

by:

Oαβ = O(E)δαβ + e−S(E)/2f(E,ω)Rαβ. (1.66)

The first term is just the diagonal part, with O(E) being a smooth function of energy.

The other term refers to the off-diagonal elements. The quantity Rαβ is a random

number with zero mean and unit variance, S(E) is the (thermodynamic) entropy and

f(E,ω) is a smooth function of energy. The arguments are E = (Eα + Eβ)/2, and

ω = Eα − Eβ. The function f is what determines the relaxation of the observable, and

it depends on the physical system and the observable itself. Through a probabilistic

calculation [45], it is possible to show that the Ansatz (1.66) is sufficient to ensure the

relaxation of local observables to the canonical average and to control their fluctuations

in the long-time limit.

It follows that individual many-body eigenstates have thermal observables in the ETH

picture. This Ansatz has been shown in many low-dimensional models and numerical

simulations, and all thermalizing systems studied so far obey ETH. Whether ETH is

a necessary condition for thermalization is an open question that is subject of intense

study [43].

The ETH also provides information about the structure of quantum entanglement in

ergodic eigenstates. Partitioning the systems into subsystems A and B as before, we

may write the entanglement entropy of A in state α as the Von Neumann entropy of ρA:

Sαent = −TrA(ρA(α) ln ρA(α)), (1.67)

with ρA(α) given by (1.64) with the obvious change of notation. The ETH implies,

through relation (1.65), that the entanglement entropy is equal to the thermodynamic

entropy:

S(E)
ETH
= Sαent. (1.68)

Since S(E) is an extensive quantity, it scales as the volume of the region A, and we say

that in ETH-obeying systems the entanglement obeys a “volume law”. This reflects the

conclusion that ergodic eigenstates are highly entangled.
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1.3 From AL to MBL

We have seen that, in thermalizing quantum systems, the ETH ansatz provides an un-

derstanding of the thermalization process on a rather solid foundation. In these systems,

degrees of freedom can exchange energy and information in a very efficient manner, so

that evidently they must be conducting. It is therefore natural to search for ergodic-

ity breaking in systems which are insulating. One such system, as we have extensively

seen before, is the Anderson insulator. However, the Anderson insulator is practically

a single-particle problem. There are no interactions, so the resulting phase can’t be

thought of as a true phase of matter outside this limit. A major challenge has been

to identify what the role of interactions is in such systems, which has been addressed

by many authors during the years. In the presence of phonons, inelastic processes give

a finite conductivity at any finite temperature via variable-range-hopping [46]. This is

simply because there always exists a phonon with frequency equal to the energy mis-

match between two localized states, which are therefore resonant. Without phonons,

localization has been studied in the context of zero-dimensional systems with a finite

large number of electrons. We have seen this at the end of § 1.1.5, where the concept of

localization in the many-body Fock space has been introduced [5]. The generalization to

an infinite system came years later in the seminal work of Basko, Aleiner and Altshuler

[6].

In Ref. [6], Anderson’s model was extended to a many-body framework of interacting

fermions in a random potential:

HBAA = HAnd +
1

2
Mγδ
αβc
†
αc
†
βcγcδ. (1.69)

The greek-letter indices stand for single-particle states (eigenstates of HAnd). The in-

teraction is assumed to be weak and short-range:

V (r− r′) =
λ

ν
δ(r− r′), (1.70)

where λ � 1 is the dimensionless coupling constant and ν is the density of states.

Hamiltonian (1.69) can be written as a random XXZ spin chain, via a Jordan-Wigner

transformation:

HXXZ =

N∑
i

σxi σ
x
i+1 + σyi σ

y
i+1 + Jzσ

z
i σ

z
i+1 + hiσ

z
i , (1.71)

where hi ∈ [−W/2,W/2]. This model has been extensively studied numerically [47–49].
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We will concentrate however on Hamiltonian (1.69). Following Ref. [6], we start from

Anderson’s approach to localization given in § 1.1, while introducing the possibility

of scattering. Needless to say, we start from the situation where all single-particle

eigenstates are localized, so that without many-body effect there would be no transport.

The reasoning closely follows the Anderson argument and it should be generalized for

the many-body problem. The quantity of interest here is the inelastic quasiparticle

relaxation rate Γα(E, t), given by the imaginary part of the single-particle self-energy:

Γα(E, t) = −ImΣR
α (E, t). (1.72)

More precisely, ΣR
α (E) is the Wigner transform of the retarded self energy:

ΣR
α (E, t) =

∫
dτeiEtΣR

α (t− τ

2
, t+

τ

2
), (1.73)

obtained through the retarded one-body Green function

GRα (t1, t2,ρ) = −Θ(t1 − t2)〈〈
{
cα(t1,ρ), c†α(t2,ρ)

}
〉〉. (1.74)

Here 〈〈. . .〉〉 stands for quantum average, which must be taken over an arbitrary density

matrix to be determined from the solution of the quantum Boltzmann equation in the

Keldysh formalism. No averaging over disorder is performed. We have coarse-grained

the space into “localization cells” of size ζd, and call ρ the coordinate of such “site” 8.

The matrix element of interaction is assumed to be nonzero if the following conditions

are met:

|Eα − Eδ|, |Eβ − Eγ | . δζ |Eα − Eγ |, |Eβ − Eδ| . δζ (1.75)

|rµ − rν | . ζ ∀ µ, ν ∈ {α, β, γ, δ}, (1.76)

where we introduced the main energy scale of the problem:

δζ =
1

νζd
. (1.77)

This quantity represents the average energy level spacing between states within the

localization cell. The energy dependence of the localization length is here neglected. If

the above conditions are met, one may approximate the matrix element of interaction

as

|Mγδ
αβ| ∼ λδζ . (1.78)

Writing the matrix element in such a way allows one to consider only states with energies

8We have omitted this argument in equations (1.72) – (1.73) for brevity. In general, we will leave
out some of the coordinates when not relevant for the discussion, assuming them to be the same in both
sides of the equations unless otherwise specified.



Chapter 1. Localization: from single-particle to many-body physics 29

close to each other, that may strongly hybridize when increasing λ. At the same time,

larger energy differences may safely be neglected as the corresponding states are likely

less hybridized.

In a completely analogous manner to the single-particle case, we now write the criterion

for localization in the many-body problem as

lim
η→0

lim
V→∞

Prob [ImΣα(E + iη) > 0] = 0. (1.79)

The small imaginary part may be interpreted physically as an infinitesimally weak cou-

pling to an external bath. Due to its construction analog to the single-particle case, one

must perform the stability analysis as it was done in § 1.1.2 in order to find Γα and

study its statistics9. The approach used is the imaginary self-consistent Born approx-

imation (ImSCBA), where a subset of diagrams of the perturbative expansion of the

(many-body) self-energy is resummed to give a self-consistent equation. In particular,

for fermions we have [6]:

Γα(E) = η+π
∑
β,γ,δ

|Mγδ
αβ|

2

∫
dE′Aβ(E′)Aγ(E′+ω)Aδ(E−ω)(Nβ(1−Nγ)(1−Nδ)+(1−Nβ)NγNδ).

(1.80)

The Nα’s are the (fermion) occupation numbers of the single-particle states, and

Aα(E) =
1

π

Γα(E)

(E − Eα)2 + Γα(E)2
(1.81)

is the many-body spectral function. The two above equations ignore the real part of the

self-energy, and we replace the square of the sum of the quantum mechanical probability

amplitude with the sum of the squares, neglecting the interference terms. These only

affect the most probable value of the distribution of the decay rate, not the tail, and can

thus be neglected.

The quantity Γ represents the transition rate between two states in Fock space. The self-

energy diagrams generated by the ImSCBA maximize the phase space available for the

transition. Indeed, they represent processes that maximize the number of quasiparticles

produced in the final state at every order in the coupling. In turn, the self-consistency

ensures that each of these processes is taken into account. The connection with the

Anderson problem is that they correspond to self-avoiding paths on a lattice whose sites

are the Slater determinants of the Fock space.

9As for AL, this is done for a given disorder realization, meaning no average over disorder is performed.
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1.3.1 Localization in Fock space

To see this in more detail, we may go back to the discussion in § 1.1.5. Following

Ref. [30], let us give an intuitive picture of the inelastic processes, which is basically a

generalization of the arguments in [5].

One may consider a decay of a particle excitation into three single-particle excitations

(a hole and two other particles for fermions) as the coupling of a one-body excitation

to a three-body excitation via the matrix element |Mγδ
αβ|. Repeating this process will

give five-body excitations, seven-body excitations and so on. Whether the initial one-

body state will decay, it depends on whether the coupling is strong enough so that

each iteration of the interaction matrix element amounts to a perturbative correction

(getting thus weaker with each iteration). In this view, a state that does not decay into

many-body states is localized in Fock space. On the other hand, if the contribution at

each iteration is strong, the initial one-body state will be “lost”, decaying irreversibly

into the many-body states and becoming delocalized in the Fock space. Note how this

picture relates to our previous discussion of thermalization. Calling E the energy of a

many-body eigenstate Ψ, we write the quasiparticle spectral function in the form:

Aα(E) =
∑
k

| 〈Ψk| c†α |Ψi〉 |2δ(E − Ei − Ek). (1.82)

This notation shows that we may interpret Aα as an indicator of how much a single-

particle excitation on top of a given eigenstate is spread over the rest of the many-body

eigenstates in the system. Expanding

Aα(E) =
∑

λ2nA(2n+1)
α (E), (1.83)

we note that each term in the expansion is a collection of δ-peaks, becoming more dense

as n is increased. For a small coupling λ, however, the contributions of many-body

states involving a lot of particles will decrease with growing n. This reminds of the

argument for the continuity of the density of states in the AL problem. So, effectively,

the many-body problem is translated to a single-particle language with the following

identifications:

• V → λδζ ; the hopping is identified with the typical matrix element;

• W → |Eα+Eβ−Eγ−Eδ| ∼ δζ ; the disorder width is the typical energy mismatch

of the transition, associated to the level spacing;

• 2K → T/δζ ; the coordination number K in Eq. (1.61) is the number of three-

body excitations that couple to the one-body state, with energy mismatch within
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δζ . The temperature T corresponds to the typical energy range over which the

relevant single-particle excitations are distributed10, so that T/δζ � 1 is obtained

by counting the number of states within a localization cell available for the collision.

Performing the necessary transformation in Eq. (1.61), one gets an equation for the

critical temperature of the metal-insulator transition:

2eV K

W
ln

(
W

2V

)
→ λT

δζ
ln

(
1

λ

)
∼ C, (1.84)

where C is a model-dependent constant of order unity. The stability and consistency

of this analogy is justified through the ImSCBA, which is able to capture the behavior

of both metallic and insulating phase. A detailed discussion is presented in references

[6, 30].

1.3.2 Properties of MBL

Let us now review some of the most important properties of the many-body localized

phase.

Many properties of the Anderson insulator translate directly to the many-body case. It

is clear, for example, that no dc transport will occur in the MBL phase. The correlations

of the local density operator on the many-body eigenstates will indeed decay exponen-

tially, as in the single-particle case. Absence of level repulsion will also be present, as

localization in Fock space implies that neighboring states in energy will be very far apart

in Fock space, corroborating the same kind of argument as given in § 1.1.3.3.

In relation to our discussion of quantum thermalization, a remarkable property of MBL

systems is that the ETH is not valid. Intuitively, we can picture this by noting that

in the Fock space analogy, MBL eigenstates are locally distinguishable. The expecta-

tion values of local observables are indeed very different for states that are neighbors in

energy, so that they can be easily differentiated. This implies as well that expectation

values are not thermal in the sense of equation (1.65), breaking thus the ETH. The

distinction ETH/MBL has therefore been used in numerical simulations to distinguish

between phases [50], the phase boundary given by the violation of ETH for individual

eigenstates obtained through exact diagonalization techniques (we will discuss this ap-

proach in more depth at the end of § 1.3.3.2).

10This means that |Eµ| < T ; µ ∈ {β, γ, δ}, see Eq. (32) in Ref. [6].
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Another useful measure of the MBL phase is the entanglement. Because MBL eigen-

states may be seen as weak deformations of the non-interacting states, it follows that

excited eigenstates will have low entanglement. This is usually referred to as area-law:

the entanglement entropy of a subregion will be proportional to the area within the

boundary, and not to the volume [51, 52]. In contrast, thermal states have volume-law

scaling of the entanglement entropy, just because the local value of an observable must

coincide with the thermodynamic value for such states. Since the thermodynamic en-

tropy is extensive, it follows that any thermal subregion will scale extensively as well,

as seen in § 1.2.

What is perhaps most interesting, however, is the way in which entanglement grows over

time. Indeed, so far most of the properties of the MBL phase we listed are shared by

Anderson-localized systems. A useful distinction is represented by the growth of entan-

glement. Starting with a product state, in thermalizing systems entanglement spreads

ballistically, whereas in AL systems there is obviously no growth at long timescales, due

to the lack of interactions. In MBL systems, in contrast, entanglement may grow in

time. The range of interactions decays exponentially, meaning that, after some time t,

initially unentangled regions at some distance r that scales logarithmically with t will

become entangled. Hence in MBL systems there is a logarithmic growth of entangle-

ment, which has been extensively shown numerically, and permits us to distinguish it

from the non-interacting case [53–55].

It should be remarked that the growth of the entanglement is perfectly compatible with

the absence of transport. Indeed, the interactions are not able to reinstate diffusion, but

they nevertheless are capable of propagating quantum correlations by inducing dephas-

ing between eigenstates involved in the decomposition of the initial product state.

1.3.2.1 Local integrals of motion

A very convenient way of formulating the problem of MBL, especially in the formulation

in terms of spin variables as in Hamiltonian (1.71), is through the analogy with trans-

lationally invariant integrable models, both non-interacting and Yang-Baxter integrable

[56]. As well as localized systems, such models fail to thermalize, due to the existence of

an infinite number of conserved quantities that constrain the dynamics, thus preventing

them to reach a thermal state11. It is natural therefore to look for a similar structure

in MBL systems.

Let us take a spin system such as the one define in Eq. (1.71). Assuming that the system

is fully in the MBL phase, meaning that all eigenstates are localized, it is possible to

11We refer here to thermalization in the sense of Eq. (1.65). Integrable systems may nevertheless be
described in similar terms by what is known as the generalized Gibbs ensemble (GGE).
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define an extensive set of Pauli operators that all commute with each other and with

the Hamiltonian. Such operators, usually denoted with τ zi , are known in the literature

as l-bits (local bits), as opposed to the physical (p-bits) operators σαi denoting spins [9].

The two are related to each other by a quasi-local unitary transformation U such that

τ zi = U †σzi U in the following way (we consider the case d = 1, for definiteness):

τ zi = Aσzi +
∑
n

V
(n)
i Q

(n)
i (1.85)

where A is a finite overlap of τ with σ, and the Q
(n)
i are products of operators lying within

n lattice sites from the site i. Since U is quasi-local, it means that the coefficients V (n)

are exponentially small with increasing n, i.e. V (n) ∼ e−n/ζ , making thus the operator τ zi

itself local. The important fact is that the operators τ zi form a complete set of quasi-local

integrals of motion (LIOMs) [51, 57, 58], each operator being an “emergent” spin-like

degree of freedom that is conserved12 because [H, τ zi ] = 0.

Generalizing this argument to a generic MBL Hamiltonian, we may write:

HLIOM =
∑
α

hαIα +
∑
αβ

h|αβIαIβ +
∑
αβγ

h|αβγIαIβIγ + . . . (1.86)

where the Iα’s are, in this notation, the l-bits or LIOMs, a set of mutually commuting

and functionally independent operators. It is clear that also the coefficients hα decay

exponentially with the distance from the localization center of the Iα’s.

Working in this framework is a productive choice because many properties of the MBL

phase may be easily explained by the use of l-bits. For instance, it is clear that there is no

dissipation because no “spin-flip” is present in the representation (1.86) of Hamiltonian

(1.71). In general, most of the properties of the MBL phase may be understood in terms

of the set of LIOMs. A detailed discussion can be found in Ref. [59].

Let us close this subsection with a few remarks. Since the unitary transformation U is

not unique, many proposals have been made on the way of constructing LIOMs. There

exists a mathematical proof of their existence in d = 1 [12], but the search for the “best”

possible (in the sense of the “most diagonal”) l-bits is non-trivial and remains an open

question. Also, a major difference between MBL and integrable (Yang-Baxter) systems

resides in the structure of the respective Hamiltonians and their stability to perturba-

tions. While integrability relies on rather fine-tuned models, which are not really robust

to small modifications of the Hamiltonian parameters, the MBL phase may exist for a

generic interacting Hamiltonian in a wide region in the space of the parameters. This is

easy to understand as one might find another deformed set of LIOMs for the perturbed

12One may define such operators in the thermal phase as well, however they would be of little interest
for they would be non-local.
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MBL system. This stability of the MBL phase with respect to weak perturbation is some-

times interpreted as an analog of the KAM theorem for classically integrable systems,

which states that perturbations that weakly break integrability transform periodic orbits

into quasi-periodic ones. However, such a statement is at present more a conceptual way

of understanding the phenomenology, rather than a mathematical correspondence.

1.3.3 Effects of rare regions

In the perturbative framework that we illustrated in § 1.3 for the MBL transition, we

made several assumptions involving the type of relevant structures (diagrams) that were

contributing to the problem, effectively disregarding a number of processes in our rea-

soning. Justifications of such approximations are extensively treated in Ref. [6], and we

will not go into their details here. Nevertheless, recently a number of works have been

produced that challenge the robustness of the MBL phase with respect to the inclusion

of so-called “rare regions” that are not captured by the perturbative arguments and the

approximations. The aim of this section is to try to give an overview of the state-of-

the-art on such issues, which are far from being settled in the community. In particular,

this will allow us to introduce some of the questions that will be raised in Chapter 4 on

the stability of many-body localization in continuum systems.

1.3.3.1 Avalanche scenario

Let us begin with what has come to be known as the “avalanche” scenario [15]. In

this picture, MBL is unstable in two and higher dimensions due to finite regions of

weak disorder naturally occurring in a random insulating system. Loosely speaking, one

may view such mechanism as follows. Locally the rare region (called “ergodic bubble”)

looks thermal, so that nearby localized degrees of freedom will feel a small “bath” and

thermalize. By doing so, they effectively become part of the bubble, which in turn

is increasingly more efficient in thermalizing the immediate surroundings. Hence, an

avalanche is formed, which eventually thermalizes the whole system.

To be concrete, let us consider a spin system and include a single localized spin (l-bit)

into the thermal bubble. The ETH is valid within the bubble, which is characterized

by an appropriate local spectral function ρ(ω) and level spacing δb. The coupling from

the bubble to the insulator decays exponentially with the distance. One looks therefore

at the closest l-bit, which will hybridize with the bubble if one has a non-zero Fermi
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Golden Rule decay rate ∼M2/δb, where M is the typical value of the matrix element.

Assuming that this is the case, the l-bit is effectively part of the bubble, and we may

assume the ETH to be valid for the matrix elements (see Eq. (1.66)). Since by including

the l-bit we effectively doubled the size of the Hilbert space, the level spacing decreases

by approximately δb → δb/2. The spectral function ρ(ω) gets also modified, in principle,

but it has been argued [15] that one may effectively consider it to be stable, and that no

big changes take place in its structure. Hence, one iterates the argument until the bubble

reaches a size equal to R, with a level spacing δbe
−AdRd (Ad ∼ O(1) is a geometrical

factor). The matrix element falls off exponentially as e−R/ζ . Hence, the condition for

hybridization becomes proportional to (neglecting other dependencies)

M2

δb
∼ e−AdRd−R/ζ . (1.87)

Simply by looking at the exponents, it means that in d > 1 any thermal inclusion will

grow indefinitely and destabilize MBL, as well as in d = 1 with interactions decaying

slower than exponentially.

The avalanche mechanism heavily relies on a number of assumptions, of which we high-

light some of the most important: i) the avalanche continues if and only if the Fermi

Golden Rule rate is non-zero; ii) the spectral function in the bubble does not change

with the inclusion of a l-bit; and iii) the bubble can be described by random matrix

theory, even after the inclusion of l-bits. Thus, one might think of a number of possi-

bilities where the avalanche scenario could fail. Perhaps the most relevant one is the

random matrix assumption: within this picture, the internal structure of the inclusion

is ignored, even before it gets into contact with the l-bits. This means that correla-

tions in the Hamiltonian, specified by ∼ N random numbers, are neglected if one has

to model the matrix elements as ∼ 2N uncorrelated random numbers. The spectral

properties might be very different, and even in the case where initially the RMT as-

sumption holds, the inclusion of l-bits may invalid this assumption. Recent work [60],

while supporting the avalanche scenario for small system sizes, seems to suggest that

indeed the spectral function is greatly affected by the inclusion of a large number of

l-bits. Furthermore, one might be worried that non-trivial higher-order correlations in

the bath may break the Fermi Golden Rule even in the presence of a “stable” spectral

function, blocking thus the avalanche. On the other hand, numerical evidence in favor of

the avalanche scenario has been given in the context of characterizing the transition [61].
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1.3.3.2 Many-body mobility edges

While we have been concerned in the previous paragraph with rare regions due to the

quenched randomness, another possible mechanism is that fluctuations in the energy

density may provide a source of instability.

The question hinges on the existence of a many-body mobility edge. The main difference

from the single-particle mobility edge (see section § 1.1.4) is that in the many-body case

the edge energy is extensive. It is clear from our previous discussion that the perturbative

arguments in Ref. [6] predict the existence of such energy: the insulator-fluid transition

between localized and extended states is indeed tuned by temperature (equivalently, by

energy density), as given in equation (1.84). Such many-body mobility edge, however,

is in direct contrast with the LIOM scenario because of the presence of thermal states

in the middle of the spectrum, which clearly do not obey conservation laws. Systems

where the full spectrum is localized are often referred to as “full MBL”. The presence of

many-body mobility edges has been questioned, notably in Ref. [14], where it has been

argued that the finite-temperature transition is the result of the perturbative approxi-

mation, and full MBL is the only possibility. We will briefly review the arguments given

in Ref. [14], and then consider potential loopholes.

Assuming the existence of the many-body mobility edge, we start from a state where

the energy density is such that the system is localized. Consider now a dynamic13

fluctuation in energy density that locally brings the state across the mobility edge. Be-

cause the (many-body) state is localized, this “hot” fluctuation must be accompanied

by a correlated “cold” transient. The argument considers a locally-thermal region (also

dubbed “bubble”, albeit not exactly the same object as in the avalanche scenario) that

is large enough so that the ETH is valid, and argues that this state is mobile because

it has a resonant coupling with another bubble that is larger and colder. The latter in

turn may resonate with a translate of the initial bubble, effectively providing mobility

through repeated expansions-contractions. This breaks the perturbative locator expan-

sion at high orders, because eigenstates contain a percolating subnetwork of resonances.

In turn, this destroys localization. It follows that the only possible diagram for MBL is

the one given in the second diagram in Figure 1.4 (a sort of “all or nothing” picture)

and that no many-body mobility edges exist. The numerous numerical indications of

their existence, present in the literature [62–67], should be ascribed to the impossibility

13Static fluctuations cannot bring the state on the other side of the mobility edge. For a given
eigenstate, the expectation value of the energy density is either above or below the mobility edge in any
region.
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Figure 1.4: Schematic possible phase diagram of MBL systems, in (a) with a many-
body mobility edge and in (b) without a many-body mobility edge. In (a), a finite-
temperature (energy-density) transition is allowed at a fixed disorder strength. The
dashed line marks the onset of the region in which all states are localized. In (b), the
“all or nothing” picture predicts a sharp crossover (dashed line) instead of a phase

transition at finite temperature.

of creating a large enough bubble in small systems, and in general the phase transition

is replaced by a sharp crossover. In other words, in the bubble scenario, conduction

at some temperature implies conduction at any temperature. For continuum systems,

this implies that transport always happens at any T > 0, because ergodic states will be

present at a high enough energy and there is no finite bandwidth in the continuum.

The instability of the bubble itself is not a striking claim: we already noted that some

kind of resonance must appear in the formation of any dynamic fluctuation, and most

likely (at least some of) the eigenstates responsible for such resonance are below the mo-

bility edge. Is this enough to provide delocalization to the whole system? By itself, the

percolation of resonances may not be sufficient. While it certainly implies a breakdown

of perturbation theory, it may be that effects that are not captured by the resonant sub-

network picture are effectively stabilizing localization. This is the case for example in

non-interacting models with binary disorder on a lattice [68]. There, self-energy correc-

tions detune resonances of an initially resonant subnetwork, such that naively counting

the resonances formally breaks the locator expansion but eigenstates are nevertheless

localized. A similar occurrence might be missed in the proposed bubble picture, for

example a mechanism by which bubbles are destroyed before they could spread [69].

Additionally, a potential pitfall rests on yet another subtle issue. While eigenstates may

obey the ETH, this does not mean that the dynamics is delocalized. This point was

emphasized in Ref. [70], and it directly challenges the often employed diagnostic of the

dichotomy ETH vs. MBL.

As we explained in § 1.2, a useful sign of the presence of localization is the failure of

the ETH. However, one should be careful in using the implication sign in both ways.
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From Eq. (1.79), we see that the property of being localized is a dynamical feature of

a thermodynamically large system. This means that the thermodynamic limit L → ∞
should be taken before the long-time limit t → ∞. In contrast, the ETH follows from

Eq. (1.65) and it is a statement about the eigenstates, which are defined in the t→∞
limit of a small system followed by the thermodynamic limit. Essentially, these two

limits do not commute. This calls into question many results that indicate the eigen-

state transition as the MBL (dynamical) transition (see also the related discussion in

the review [49]). In the phenomenology of non-commuting limits, l-bits are replaced by

approximately conserved l*-bits that may satisfy the ETH but have MBL properties in a

dynamical sense. In this picture, the bubble argument, that heavily relies on associating

ETH to thermal behavior, is naturally discarded. However, it should be noted that the

discussion in terms of l*-bits proposed in Ref. [70] considers only the full MBL phase,

i.e. many-body mobility edges are not discussed.

Another potential loophole is the seemingly tautological fashion in which the argument

is posed: assuming the existence of mobile objects, delocalization is claimed. This as-

sumption, in principle, contrasts a central feature of a localized system, i.e., that it is a

thermal insulator. Let us note also that the notion of emergent l-bits has been extended

to systems beyond the full MBL regime in a number of works [71]. A set of localized

eigenstates not spanning the full Hilbert space may still provide an extensive number

of emergent l-bits under certain conditions. In this way, one may reconcile the l-bit

scenario with the presence of the many-body mobility edge without having to resort to

an “all or nothing” picture.

In conclusion, the question of characterizing the impact of rare regions is still very

much open. However, whether the phase transition is smeared in a sharp crossover

or not, an important point needs to be remarked. The timescales that are associated

with the appearances of rare events of big enough size are exponentially large. For any

experimentally relevant setting, systems in the localized regime will behave as MBL at

all accessible timescales. The arguments raised about the absence of many-body mobility

edges present thus a fundamental issue related to the falsifiability of the proposals. This

is a central question in any physical theory, which may be solved only by looking at the

critical behavior where rare regions are expected to be relevant (see also below).

This is directly related to the range of applicability of our theory presented in Chap-

ter 3, where we consider MBL in two dimensions in the presence of a truncated energy

distribution, and to the arguments of Chapter 4 on the stability of the MBL phase.
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Localized inclusions in the thermal phase

We only looked at the case of rare thermal inclusions within the localized phase. The

other instance of localized inclusions within the thermal phase has also been extensively

studied (see, for example, [72] for a review), and the ultimate fate of these regions is to

thermalize. Indeed, the thermal surrounding effectively acts as a “bath” inducing ther-

malization. However, the importance of determining the extent to which the dynamics is

affected by rare localized regions in the thermal phase is still a very important question

when looking at the transition itself, which is still poorly understood. Indeed, criticality

may be viewed as a highly inhomogeneous state with competing thermal and localized

regions at all scales. It follows that modeling an inclusion (both thermal and/or local-

ized) and iterating the arguments as one coarse grains may be a good way of looking

at the transition. This is the conceptual way in which strong-disorder renormalization

group approaches to the transition are usually set up [73, 74]. It also needs to be em-

phasized that the avalanche picture has recently been proposed as a valid candidate to

look at criticality [61], and that the theory is supported by high precision numerics [75].

1.3.4 Non-ergodic extended phase

Let us close this section with a discussion on the nature of the eigenstates. Another

debated issue in the community is whether another phase intervenes in the delocalized

side of the phase diagram. There exist signatures of a stable delocalized non-ergodic

phase, sometimes called a “bad metal”, that is located between the localized and the

(ergodic) delocalized region in a finite area of the phase diagram. This picture is better

cast in the analogy between MBL and the Anderson problem on a highly connected

lattice. Indeed, an instructive example of such a region is the critical state of the

Anderson transition. As we briefly pointed out in section § 1.1.5, at criticality in the

AL problem the states are multifractal, meaning that their non-ergodic qualities are

explained in terms of a set of exponents, while in fact they spread over the whole system.

In random graph geometries, several works supported the existence of a non-ergodic

bad metal [5, 76, 77]. Later large-scale numerical simulations pointed to the opposite

conclusion, ascribing the lack of ergodicity to unusually strong finite-size effects [78].

The connection to the many-body problem of a locally tree-like Fock space is not immune

by additionally problematic issues, such as the logarithmic growth of the connectivity

with the Hilbert space size [79]. A certain degree of confusion is also due to the lack

of a clear-cut definition of “non-ergodic” [80], related to the quantum thermalization

problem discussed in § 1.2.
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A detailed discussion of this non-ergodic extended phase would stray us from the topics

of this Thesis, and we shall not attempt it here. Instead, in the next Chapter we will look

at the world of cold atomic systems, which are the best candidates for the experimental

observation of many-body localization physics.



Chapter 2

Disordered ultracold atoms

2.1 Introduction

Every landmark discovery and breakthrough in physics is usually a confluence of parallel

developments in experimental activity and theoretical ideas. Falsifiability and coher-

ence of theoretical hypothesis must be confronted with solid experimental observations,

in order to progress in our understanding of the laws of Nature. In this respect, the

last decades have witnessed a particularly fruitful collaboration of theory and experi-

ment in the physics of ultracold atoms. Within this field, experiments may be designed

that model theoretically interesting questions, while at the same time theoretical efforts

have been made to explain experimentally relevant situations. In a nutshell, any ad-

vance in theory or in experiment is followed by impacts on the other side, and vice-versa.

In this Chapter, we will explore some of the advances in this exciting field, with focus

on disordered quantum gases and their relation to the theory of many-body localization.

In § 2.2, we included a pedestrian introduction to physics of the Berezinskii-Kosterlitz-

Thouless (BKT) transition, which is relevant for our discussion of the phase diagram

of two-dimensional disordered bosons given in Chapter 3. We will highlight some the-

oretical aspects and, somewhat subjectively, we will also briefly review some of the

most recent achievements in the experimental community, which include the observa-

tion of the BKT transition [81], Anderson localization [2, 3], and many-body localization

[11, 20, 82, 83] in ultracold atom experiments. At no rate we mean for our discussion

to be comprehensive and exhaustive, due to the immense amount of works available in

this field, and we point out related monographs and reviews [84–86].

41
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2.1.1 Reaching the ultracold limit

In terms of length and energy scales, we speak of an ultracold quantum gas when the

thermal de Broglie wavelength λT = h/
√

2πmT is larger than the typical radius of in-

teraction between atoms. Generally speaking, one considers the case of a dilute gas

where also the atomic separation greatly exceeds the typical interaction radius. To

achieve such low temperatures, initial experimental techniques were based on laser cool-

ing [87–89], exploiting atom-light interaction to effectively decrease the total momentum

of the gas. Sophisticated cooling techniques were accompanied by proposals to avoid

diffusion and escape of atoms from the experiment [90], which resulted notably in the

realization of so-called magneto-optical and optical traps [90–92]. Further decrease in

temperature was achieved with the advent of evaporative cooling [93]. The key point of

this technique is to eliminate atoms with high energy by letting them escape from the

trap. Atom-atom interaction then re-thermalizes the gas to a lower average energy and

temperature. In this way, temperatures down to nanoKelvins may be achieved at the

price of losing atoms during evaporation. However, the timescales are such that it is

possible to reach the regime of quantum degeneracy, where the interparticle separation

is smaller than the thermal wavelength, before a consistent number of atoms escapes.

These astonishing achievements allowed one to experimentally realize the long-standing

prediction of Bose-Einstein condensation (BEC) [94, 95]. Soon after, with the advent of

sympathetic cooling, quantum degeneracy was reached as well in a fermionic gas [96].

These experimental breakthroughs were direct consequences of the joint work with the-

ory. Indeed, true experiments in ultracold settings may be described by exact Hamiltoni-

ans, unlike in traditional condensed matter physics where one has to resort to toy-models.

In addition, such Hamiltonians are usually tractable due to the the dilute character of

the gases, which allows one in most cases to neglect interactions of more than two parti-

cles1, resulting in the following Hamiltonian for a single-component gas (which naturally

generalizes to many components):

Ĥ =

∫
d2r

(
Ψ̂†(r)

(
− ~2

2m
∇2 + U(r)

)
Ψ̂(r) +

∫
d2r′Ψ̂†(r)Ψ̂†(r′)Vint(r

′ − r)Ψ̂(r′)Ψ̂(r)

)
,

(2.1)

where Ψ̂(r) and m are the field operator and mass of the atoms. The first term indicates

the motion of a single particle in an external potential U(r), whereas the second term

is the (two-body) interaction mediated by the interaction potential Vint(r
′ − r). It is

1We do not consider here the interesting physics of three-body and four-body (Efimov) states, which
represents a fascinating field on its own. Also, we consider weak interaction and do not discuss the
physics of strongly correlated systems.
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customary to model the interaction potential with a contact interaction, Vint(r
′ − r) =

gδ(r′ − r). The sign and strength of the interaction g may be controlled by the use of a

Feshbach resonance. For Fermi systems, this led to the realization of the crossover from

the regime of weak coupling Bardeen-Cooper-Schrieffer (BCS) pairing to BEC of dimers

(weakly bound molecules) [97].

A major advantage of ultracold gases is their potential as quantum simulators of many-

body lattice Hamiltonians of condensed-matter systems [98]. An interference pattern of

pairs of counter-propagating lasers may be built in dissipationless systems resulting in

the so-called optical lattice [99]. Matter-light interaction creates a periodic potential,

and by tuning the lasers one is able to create a variety of possible setups. This allowed the

study of quantum phase transitions, notably the Mott-insulator to superfluid transition

[100] governed by the Bose-Hubbard model, a discrete version of Hamiltonian (2.1) [101].

2.1.2 A playground for disordered interacting systems

In condensed matter systems, effects of disorder are particularly difficult to understand

experimentally because the amount and nature of impurities is not controllable, making

it extremely hard to isolate the contribution of disorder. For a long time, disordered

systems where considered just as “dirty regular ones”, and it was only after the theory

of Anderson localization that they began to be treated “in a fundamentally different

way”2. As we have seen, it indeed suffices a small amount of disorder to produce a huge

impact on the properties of a physical system, especially in mesoscopic physics [31] and

low dimensions.

In 2008, two groundbreaking experiments [2, 3] demonstrated that ultracold atoms may

be employed in the investigation of disordered systems with unprecedented degree of con-

trol. One experiment [2] concerned an interacting BEC created in a trap that is suddenly

switched off and lets the condensate expand in a one-dimensional disordered wave-guide.

After the expansion, the density is reduced so that the gas is effectively non-interacting,

and the effect of disorder reveals itself in the localization of the matter-wave, signaled by

a static exponentially localized density distribution. The other experiment was carried

out in a one-dimensional quasiperiodic potential with incommensurate lattice, realizing

thus the Aubry-André model [102], and it reported the observation of exponential lo-

calization of the wavefunctions [3]. Soon after, it was realized that interactions may

2“Most of the recent progress in the fundamental physics of amorphous materials involves this same
kind of step, which implies that a random system is to be treated not as just a dirty regular one, but in
a fundamentally different way.” – P.W. Anderson, Nobel lecture (1977).
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Figure 2.1: Experimental observation of Anderson localization in a one-dimensional
BEC, from Ref. [2]. In (a), the condensate is trapped and confined in a 1D optical
waveguide with a weak superimposed disordered optical potential. In (b), the trap is
switched off and the condensate first expands and then localizes. This is observed by

direct imaging of the fluorescence of the atoms.

be introduced in such experimental settings, yielding a novel playground for the explo-

ration of many-body interacting disordered systems, and the first measurements were

also performed on the low-energy states of disordered interacting atoms [17, 18].

2.1.3 Two dimensions and long-range order

Usually, phase transitions in three spatial dimensions are characterized by the emergence

of true long-range order below a critical temperature Tc. This order is explained in terms

of a uniform order parameter. Familiar examples are the magnetization of a ferromag-

net or the macroscopic wavefunction ψ in a Bose-Einstein condensate. In such cases,

long-range order comes together with spontaneous symmetry breaking of a continuous

symmetry of the Hamiltonian. For a condensate, this is the phase of ψ. The presence of

long-range order is strongly dependent on the dimensionality of the system. Indeed, true

long-range order is absent in dimensions d ≤ 2 at any non-zero temperature. Formally,

this notion is encoded in the Bogoliubov k−2 theorem [103–105]. The symmetry of the

Hamiltonian cannot be broken in these cases, because of long-wavelength fluctuations

(phonons in the case of a BEC), and true long-range order is never achieved. In the next

section we will see that this does not exclude the possibility of having phase transitions

in 2D, and that a transition is possible without the emergence of true long-range order.

This is the case of the Berezinskii-Kosterlitz-Thouless (BKT) transition [21–24].
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2.2 The Berezinskii-Kosterlitz-Thouless transition

2.2.1 Introduction

In general, at T = 0 a 2D weakly interacting Bose gas is condensed, and may thus be

described by the macroscopic wavefunction:

ψ =
√
neiθ, (2.2)

with small density and phase fluctuations. The picture changes when the temperature

is switched on, so that power-law correlations emerge and they persist up to a critical

temperature at which they disappear abruptly, signaling a phase transition. To bet-

ter understand this interesting physics, we will first perform Bogoliubov analysis near

T = 0, then look at the transition by highlighting the mechanism of BKT theory. We

will discuss the transition in the “flavor” of Bose fluids (see e.g. Refs. [106, 107], from

which we adapt the following arguments).

2.2.2 Bogoliubov method

The Hamiltonian of the system is given by Eq. (2.1), which we rewrite as:

H =
~2

2m

∫
(∇ψ∗(r)) (∇ψ(r)) d2r +

g

2

∫
(ψ∗(r))2 (ψ(r))2 d2r. (2.3)

Using Eq. (2.3) we derive the Gross-Pitaevskii equation:(
− ~2

2m
∇2 + g|ψ|2

)
ψ = i~

∂ψ

∂t
. (2.4)

In the density-phase representation of the wavefunction, assuming small density fluctu-

ations δn, we get:

H =
~2

2m
n

∫ (
(∇θ(r))2 + (∇δn(r))2 + 2n2g(δn(r))2

)
d2r, (2.5)

where we wrote:

n(r, t) = n(1 + 2δn(r)) ; (δn(r)� 1). (2.6)

The phase and density fluctuations allow for an expansion in Fourier series:

δn(r, t) =
∑
k

dk(t)eik·r ; θ(r, t) =
∑
k

ck(t)eik·r. (2.7)
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We consider a finite system and take the thermodynamic limit at the end, so that

n = N/L2 and the momenta k are discrete. Conservation of the norm (and particle

number) implies
∫
δn(r)d2r = 0. The condition of both phase and phase fluctuations

being real gives c∗k = c−k, d
∗
k = d−k.

The time-dependent Gross-Pitaevskii equation gives two equations for the time evolu-

tion. Up to linear terms in δn they read:

∂θ

∂t
=

~
2m
∇2δn− 2

ng

~
δn− ng

~
(2.8)

∂δn

∂t
=− ~

2m
∇2θ. (2.9)

In terms of the Fourier coefficients ck, dk these equations can be written as:

∂ ck
∂t

=−
(

~
2m

k2 + 2
ng

~

)
dk (2.10)

∂ dk
∂t

=
~

2m
k2ck. (2.11)

The above equations are valid for k 6= 0. For k = 0 one has
∂ ck=0

∂t
= −ng

~
. Eliminating

dk we get:
∂2 ck
∂t2

+ ω2
kck = 0, (2.12)

with ωk given by the famous Bogoliubov spectrum frequencies:

ωk =

√
~2k2

2m

(
k2

2m
+

2ng

~2

)
. (2.13)

This spectrum permits a separation of the excitation modes into phonon- and particle-

like ones. For small wavevectors k �
√
mng/~2 one has a phonon branch:

ωk = ck, (2.14)

where c =
√
ng/m is the sound velocity. In the opposite limit, k �

√
mng/~2, we have

a shifted free-particle spectrum:

ωk =
~2k2

2m
+ ng. (2.15)

The separation between the two regimes occurs at k of the order of 1/ξ, with ξ the

healing length given by

ξ =
~

√
mng

, (2.16)

which may be thought of as the length scale corresponding to the interaction energy ng.

From the Landau criterion, we expect thus a transition to a superfluid state at the
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critical speed vc = c. A slow impurity is not able to excite the fluid, which then moves

without friction3. Let us consider a mode k and look at density and phase fluctuations.

From equations (2.10)–(2.11), we get:

〈dk〉
〈ck〉

=
k√

k2 + 4mgn/~2
. (2.17)

In the phonon branch this ratio is small, which signals that modes are essentially gov-

erned by phase fluctuations. Hence, at large distance scales (larger than the healing

length) and low energies, the fluid behavior will be dominated by the variation in the

phase. The wavefunction in this limit may be written as ψ(r) =
√
nse

iθ(r), neglecting

thus density fluctuations. The effective Hamiltonian (from Eq. (2.5)) then reads:

H ≈ ~2

2m
ns

∫
(∇θ(r))2d2r, (2.18)

where we replaced n with the superfluid density ns. This is justified as we effectively

introduced a cutoff at the healing length (or, more precisely, at k = ξ−1).

2.2.3 Decay of correlations

Hamiltonian (2.18) is therefore useful if one has to study the large-distance behavior of

the (equal-time) one-body correlation function:

g1(r) = 〈ψ(r)ψ(0)〉 = ns〈exp(iθ(r)− θ(0))〉. (2.19)

Writing

θ(r)− θ(0) =
∑
k

Re(ck)(cos(k · r)− 1)− Im(ck) sin(k · r) (2.20)

and using the identity

〈exp(iz)〉 = exp

(
−1

2
〈z2〉

)
, (2.21)

we get:

g1(r) = ns exp

−1

2

〈(∑
k

Re(ck)(cos(k · r)− 1)− Im(ck) sin(k · r)

)2〉 . (2.22)

3A complete description of a superfluid should take into consideration the metastability of the super-
fluid flow [108] as well, because the Landau criterion by itself is not sufficient to imply superfluidity. We
will now assume superfluidity without explicitly checking this requirement, which may be done as well
by inspecting the effective low-energy Hamiltonian (2.18).



Chapter 2. Disordered ultracold atoms 48

From the classical equipartition theorem one has for the phonon modes:

〈|ck|2〉 =
Tm

nsL2~2k2
; 〈|Re(ck)|2〉 = 〈|Im(ck)|2〉 =

π

nsλ2
TL

2k2
(2.23)

with the de Broglie wavelength λT = h/
√

2πmT .

Following from the reality of the phase θ and the statistical independence of Re(ck) and

Im(ck), implying 〈Re(ck)Im(ck)〉 = 0, we get:

g1(r) = ns exp

(
− 1

2πnsλ2
T

∫
1− cos(k · r)

k2
d2k

)
, (2.24)

where we changed the sum into an integral as
∑

k → L2/(2π)2
∫
d2k. Using the identity

∇2

∫
1− cos(k · r)

k2
d2k = (2π)2δ(r), (2.25)

and putting a cutoff at k = ξ−1, we arrive at:∫
1− cos(k · r)

k2
d2k = (2π) ln

r

ξ
. (2.26)

This yields:

g1(r) = ns

(
ξ

r

)1/nsλ2T
; r � ξ (2.27)

In the low temperature limit, one may have λT . ξ, and the upper limit needs to be

adjusted accordingly. The implications of this result with respect to the physics of the

problem are extremely profound. While indeed we have seen that we have a superfluid

state, we also notice that in 2D slow fluctuations of the phase destroy the long-range

order and therefore no true BEC is possible. Indeed, the function g1(r) vanishes at

r → ∞, albeit really slowly with a power-law. Such algebraic decay is consistent with

the Bogoliubov k−2 theorem, but the system may nevertheless exhibit some kind of

ordering. The typical length at which the function g1(r) decreases substantially sets a

scale for the phase coherence:

lθ = ξensλ
2
T � ξ. (2.28)

The system may thus be divided into areas of linear size R such that ξ � R � lθ.

Within each area, one has an actual condensate. However, the respective phases are

uncorrelated. The resulting order is therefore called a “quasi-long-range order”, and the

phase is named a phase-fluctuating condensate, or quasi-condensate [109, 110].
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r

g1(r)

ξ lθ

Figure 2.2: A schematic representation of the function g1(r), showing the “quasi-
long-range” order with a very slow decay. The scale lθ for phase coherence is also

indicated.

2.2.4 Vortices and the BKT transition

We will now turn to the microscopic physics of the problem, which in this specific

case entails the treatment of another source of phase fluctuations besides phonons: the

vortices. As it turns out, the transition from the low-temperature algebraic superfluid

to the normal state is due to vortex pairs, or rather to their binding-unbinding.

Vortices may be defined as zeroes of the superfluid density around which the phase

presents a winding of 2π. We say that the vortex has charge Q = ±1 (the minus sign

corresponds to an antivortex). Variations of integer multiples of 2π are also possible,

but multiple-charged vortices are unstable [111]. A pictorial description [107] is given

in Fig. 2.3. We have drawn the lines corresponding to zeroes of the functions Re(ψ(r))

and Im(ψ(r)), subdiving thus the plane into areas where each function is positive or

negative. We may combine the two to see that the value of the phase in each area is in

a different quadrant on the unit circle, allowing one to look at the phase winding. One

sees that the intersection points, where Re(ψ(r)) = Im(ψ(r)) = 0, correspond to vortices

of charge Q = ±1 depending on the direction of rotation. Let us stress that this is a

topological charge, and that spontaneous generation of a single vortex of charge Q 6= 0

is forbidden in the bulk but is possible near the boundary, where the wavefunction is

zero. Only pairs may be created in the bulk.

Let us consider a single vortex centered at the origin. The circulation of the velocity field

is quantized in units of angular momentum, and the velocity varies as ~/mr. The density

is zero at the origin and takes its asymptotic value on a length scale given by the healing

length ξ, which is consistent with the assumption of suppressed density fluctuations at

r � ξ. We calculate therefore the kinetic energy of the vortex as:

Ek =
1

2
m

∫
n(r)v2(r)d2r ≈ π~

2n

m
ln(L/ξ). (2.29)
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Im ψ = 0

Re ψ = 0

Re ψ = 0

(f)

(d)
(c)

(e)

(b)(a)

Figure 2.3: Pictorial representation of vortices. The thick lines represent those points
where the real part of the wavefunction is equal to zero. The dashed line gives the zeroes
of the imaginary part. This effectively divides the figure into six areas from (a) to (f).
Areas (a), (c) and (e), on the left of the dashed line, have Im ψ < 0, and areas (b), (d)
and (f) have Im ψ > 0. In areas (c) and (d), we have Re ψ > 0, and in (a), (b), (e) and
(f), we have Re ψ < 0. For each area, we show schematically in which quadrant of the
unit circle the phase is, according to the sign of the two functions Im ψ and Re ψ. The
intersection points, true zeroes of the wavefunction, represent the vortices (highlighted
in gray). The topological charge is given in the sense of circulation of the phase (+1 in

one case and −1 in the other one), which we draw with an arrow.

In the thermodynamic limit L→∞, this energy diverges logarithmically, and dominates

the contribution of the interaction energy Ei ≈ π~2n/2m. At T 6= 0, we substitute

n→ ns.

As previously stated, spontaneous generation of vortices is possible near the boundary,

and they may in principle move towards the bulk of the sample. The Boltzmann weight

associated with a given state and position is

p ∼ e−Ek/T =

(
ξ

L

)nsλ2T /2
, (2.30)

where we substitute Ek from equation (2.29). For finite L and large enough exponent

(low temperature), this probability is much smaller than unity. As the vortex core area

is approximatively ∼ ξ2, we estimate that within a disk of radius R there are ∼ R2/ξ2

possible positions for a single vortex. If we consider the probability P that a single
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vortex appears independently of its position, we get:

P =
R2

ξ2
p ≈

(
ξ

R

)nsλ2T /2−2

. (2.31)

The sign of the exponent depends on the value of the phase space density nsλ
2
T . For a

positive exponent, P → 0 as R → ∞ in the thermodynamic limit, i.e. the probability

of having a single isolated vortex is vanishingly small. On the other hand, a negative

exponent gives a divergence in the thermodynamic limit, pointing out that the gas will

likely exhibit a great number of isolated vortices. The change in the behavior of the

exponent is obtained for:

nsλ
2
T = 4 → ns =

2mT

π~2
. (2.32)

As soon as nsλ
2
T < 4, the appearance of isolated vortices facilitates the appearance of

others, producing thus an avalanche effect that sends the superfluid density ns abruptly

to zero. It is indeed easy to see that, if a single vortex created at one boundary of a

sample has a large probability of reaching the other end of the sample and vanish, it will

effectively change the total phase winding number in its path. Such situation, repeated

for a large number of vortices, would destroy the permanent (metastable) current of the

superfluid, so that ns = 0 in this case.

Repeating all the above arguments for a vortex-antivortex pair gives strikingly different

conclusions. The kinetic energy as computed in (2.29) is not divergent, since the veloc-

ity field goes as r−2 in this case, while the number of possible positions for the vortex

creation is approximatively the same up to a prefactor. The analog of the quantity P

is thus always large. This means that vortex-antivortex pairs have a high probability of

existing in the sample at any T 6= 0. Also, note that the creation of a vortex-antivortex

pair does not cause any change in the winding number, and it is thus consistent with a

superfluid metastable current. This leads to the following physical interpretation.

At very low temperatures nsλ
2
T � 4, one has a superfluid and only vortex-antivortex

pairs are present. Raising T increases both the density of the pairs and the size of each

pair through thermal fluctuations. This will favor the overlap between pairs, effectively

weakening the bond between vortex and antivortex within each pair. As we approach

the transition temperature TBKT from below, the size of each pair grows until it diverges

at the critical point. One has thus a proliferation of free vortices and no superfluidity.



Chapter 2. Disordered ultracold atoms 52

2.2.5 Topological nature of the BKT transition

A few remarks are at order. While in our simple derivation we have only showed that

superfluidity exists for nsλ
2
T > 4, this result happens to identify the critical point exactly.

A similar conclusion may be obtained by calculating the free energy F = E − TS of a

single vortex, given by:

F =
T

2

(
nsλ

2
T − 4

)
ln
R

ξ
. (2.33)

We used equation (2.29) for the energy and S = lnR2/ξ2 from our discussion on the

possible positions of the vortex core. Clearly, there is a sign change at nsλ
2
T = 4, with

the same physical interpretation.

Besides the arguments given above, a full thermodynamic treatment and characterization

of the transition involves the description of velocity fields, mass-current densities in the

(super)fluid and the related correlation functions. This allows one to extract the normal

and superfluid densities. A renormalization group analysis shows that the superfluid

density undergoes a jump at the critical point, so that we have ns = 4/λ2
T right below

the transition, and ns = 0 on the other side. Equation (2.32) is known as the Nelson-

Kosterlitz relation, often named a “universal ” result because it does not involve the

coupling strength g [112]. However, this equation only relates the superfluid density to

the transition temperature TBKT . It is not possible to obtain the value of TBKT in terms

of the system parameters from this equation. This was done by means of a combination

of analytics and Monte Carlo method for weak interactions [113], yielding:

ns(TBKT ) =
mTBKT

2π~2
ln

~2C

mg
; C = 380± 3. (2.34)

We finally emphasize the topological nature of this transition. The integral over a closed

contour C of the velocity field is given by:∮
C

v(r) · dr =
~
m

∮
C
∇θ(r) · dr =

2π~
m

j j ∈ Z. (2.35)

Clearly, this quantity is quantized and topologically protected: it may change its value by

an integer only if we deform the contour C and pass through a zero of the wavefunction,

as seen above. Continuous deformations of the wavefunction conserve the topological

charge, so that a field without vortices cannot be continuously deformed in a field with

vortices.

When vortices are bound into neutral pairs, integrating over a large enough contour C
gives zero total charge. Hence, the resulting state may be continuously deformed to

a zero-temperature true condensate wavefunction. Phonons only contribute to smooth

local variations. While they destroy the true long-range order, they do not affect the
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topological properties, and we speak of topological order. This is the kind of ordering

that is associated with the algebraic superfluid. By the same argument, integrating over

the same contour when vortices are isolated, one has a non-zero result for the topological

charge. The topological order is destroyed and the superfluid properties are lost because

there is no continuous deformation of the system to the true BEC state at T = 0.
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2.3 Disordered Bose fluids

The problem of the influence of disorder on Bose fluids has attracted a lot of attention

during the years [114, 115]. The main areas of research have been: (i) characterization

of a zero-temperature quantum phase transition between a superfluid and an insulating

glassy phase [116–120]; (ii) properties in the vicinity of the critical temperature Tc for a

fixed disorder or density [121]; and (iii) microscopic physics in the region of large density

n, where disorder is weaker than the interparticle interaction ng, at low temperatures

T � Tc [122–125]. We will be concerned with the first and last cases, as they will be

directly relevant in the following Chapters.

At zero temperature, a quantum phase transition is expected from a superfluid to an

insulating state with increasing disorder. The resulting state consists of a quantum in-

sulating phase of interacting bosons having finite compressibility, named a Bose glass.

Weak attractive interaction is expected to favor localization through contraction of the

gas, but as in trapped BECs it may induce an instability [84]. Repulsive interaction, on

the other hand, works against localization by populating states over the ground state.

This competition between repulsive interactions and localization has been greatly stud-

ied in the context of the superfluid-insulator transition. The first theoretical results were

obtained in one dimension, with renormalization group techniques, which established the

existence of the insulator [119]. They suggested the existence of two distinct localized

phases as a function of the (repulsive) interaction strength. The critical exponents were

derived later also in higher dimensions [117].

The quantum phase transition also got a quantitative description starting from the

deeply localized phase, where tunneling between fragments accounts for progressive es-

tablishment of coherence and superfluid current. Furthermore, an analysis in terms of

the Bogoliubov quasiparticles in one dimensional BECs shows that, surprisingly, quasi-

particles on top of the ground state also are localized (albeit with different properties)

[126–128]. This means that localization can survive in the presence of (mean-field) in-

teractions.

The reduction of superfluidity due to disorder deeply in the superfluid phase was stud-

ied microscopically in a pioneering work, by means of the Bogoliubov transformation

[122, 123]. Related corrections in a regime of large density reduce the superfluid fraction

and lower the critical temperature. In the next Chapter, we employ some of these results

to study the superfluid-normal-fluid transition at finite temperatures, bearing in mind

that the approach fails at strong disorder and needs to be corrected. Recently, other

proposals showed that the disorder might actually favor superfluidity, but only when
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it is extremely weak and correlated at large distances [129]. More precisely, this result

is obtained within the local density approximation (LDA), where disorder varies only

slightly on the scale of the microscopic parameters of the gas, such as the healing length

or the de Broglie wavelength.

Only recently there have been efforts to quantify the finite-temperature behavior and

the influence of disorder on the BKT transition. In Ref. [130], a quantum Monte Carlo

method studied the properties of the transition when a speckle disorder was added. Re-

markably, it was found that the one-body correlation still shows an algebraic decay with

an exponent of 1/4, as it is for the clean case, indicating thus that the transitions are in

the same universality class. The transition line was found to differ quite strongly from

the prediction of the LDA and classical percolation theory. When looking at transport

properties, no evidence of many-body localization was found, only a thermally activated

behavior and hints towards the existence of a Bose-bad-metal phase intervening before

the T = 0 Bose glass.

A careful consideration must be made when talking about Bose glass physics. Being

defined at T = 0, the Bose glass and the superfluid-insulator transition are ground

state properties. On the other hand, many-body localization is intrinsically related

to highly excited states, so that the associated physics involves different parts of the

spectrum in the two cases. Therefore, while these two phenomena need not to be con-

comitant a priori, a natural question is whether the Bose glass ground state at T = 0

entails an MBL insulator at low temperatures. In Ref. [131], this issue was studied in

one dimension, where it was found that the zero-temperature Bose glass is connected

smoothly to a MBL phase at finite T for weak interactions. The strongly interacting case

was studied in Ref. [132] through the correspondence between 1D weakly-interacting

fermions and strongly-interacting bosons. It was shown that both the weak-disorder

and strong-disorder Bose glasses are connected to an MBL phase. In both works, the

critical temperature was found as a function of the disorder strength and interaction for

the many-body localization-delocalization transition, presenting thus evidence for the

existence of many-body mobility edges.
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2.4 Experimental activity

Breaking of ergodicity and the BKT transition have both been reported experimentally

in the context of ultracold atomic systems. The BKT transition was observed in a

two-dimensional gas of ultracold bosons more than ten years ago [81], and experimental

activity has been flourishing ever since. Only recently, there have been observations of

the BKT transition in a disordered potential, which show that a microscopically corre-

lated disorder always reduces the coherence of the superfluid [133]. We will concentrate

however on the experimental observation of MBL in what follows.

The observation of MBL is particularly challenging because one aims to identify a tran-

sition that occurs at high energies, away from the ground state. The usual protocol is

thus the preparation of a highly out-of-equilibrium initial state that is later time-evolved

and probed. As MBL systems do not thermalize, it will evolve into a non-equilibrium

steady state that has non-thermal expectation values. The observation of such non-

ergodic evolution is often used as a way to diagnose the localized phase. It is indeed

harder to show that a system thermalizes, because one should show that all observables

relax to their thermal average, while it suffices a single non-thermalizing observable to

demonstrate localization.

The first experiments on MBL were carried out with one-dimensional fermions in a quasi-

periodic potential [11]. The system was prepared in a density-wave state with particles

occupying even sites. After time evolution, the remnant of this non-equilibrium state

is measured through the imbalance I, defined as I = 〈(Ne − No)/(Ne + No)〉 with Ne

(No) the number of particles in the even (odd) sites. At low disorder (in this case given

by the detuning of the quasiperiodic potential), the imbalance rapidly relaxes to zero.

For stronger disorder, the system fails to relax to the vanishing state and saturates to a

non-equilibrium state.

Further experimental activity involved two-dimensional interacting bosons in an optical

lattice with a two-dimensional disorder pattern superimposed [20]. The initial state was

given by a density domain wall with all atoms confined to the left of the sample. After

time evolution, for strong enough disorder most of the atoms remain confined in the left

region, the feature measured quantitatively through the imbalance I = (NL−NR)/(NR+

NR), defined in this case in terms of particle numbers on the left (NL) and on the right

(NR) of the domain wall. This is shown in Figure 2.4. The time scale of the experiment

is such that one is able to probe the system after more than 200 collisional times, which

should be enough to ensure thermalization. Remarkably, this does not happen for strong

enough disorder, and one finds an insulating phase when the parameters of the system
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Figure 2.4: Experimental observation of many-body localization in two dimensions,
from Ref. [20]. The schematics of the experiment are given in (A). A 2D disorder
potential, controlled by a digital mirror device (DMD), is imaged onto a single atomic
plane in an optical lattice. Raw images of the time evolution of the initial density
domain wall without disorder are given in (B). The left column shows single images, the
right column shows an average over 50 disorder realizations. Already after 93 collisional
times τ , the sharp density wall is completely smeared out. The strong-disorder case is

shown in (C). Traces of the initial state are clearly recovered even after t = 249τ .

such as chemical potential, disorder strength and interaction energy are within the same

order of magnitude.

The importance of the experimental findings coming from the cold atom community

should not be underestimated in the context of MBL. The regime that one is able to

probe with experiment is indeed very difficult to treat theoretically, both with numerics

and analytical methods.

While we highlighted two experiments that, in our opinion, are representatives of the

state-of-the-art of the observation of MBL system, we include other experimental obser-

vations of MBL in the References [82, 83, 134–143]. Of particular interest are the works

that probe MBL in the presence of a quantum bath [83, 137]. A very recent experiment

seems to point out that MBL is much more stable to the inclusion of small thermal

baths than originally thought [137]. By preparing a two-component Bose fluid in a two-

dimensional optical lattice and making the system such that the disorder only affects

one of the components, the size of the clean thermal “bath” is highly controllable. MBL

is remarkably stable to the addition of small baths, and is lost only when the thermal

component is large. Further experiments in this setting may engineer low-disorder areas

in order to test the predictions of the avalanche scenario, which seems questionable after

these findings.
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As the last remark, we emphasize that although ultracold atoms have been the primary

source of the observations, experimental activity on MBL has been performed also in

other fields; important contributions have been given by ultracold ions [139], and sig-

natures of MBL have been reported in transport experiments with indium dioxide films

[140], superconducting circuits [141, 142] and nuclear magnetic resonance [143].



Chapter 3

Finite-Temperature Disordered

Bosons in Two Dimensions

3.1 Introduction

In this Chapter, we present our results on the study of weakly interacting disordered

bosons in two dimensions at finite-temperature. As we have seen in the previous Chap-

ters, while a number of studies [120, 130] was devoted to evaluating the critical disorder

strength either for the many-body localization-delocalization transition (MBLDT) at

zero temperature or for the BKT transition, the full finite temperature phase diagram

of such a system has never been fully explored. It is done in this Chapter, and the

results are published in Ref. [144].

3.1.1 Length and energy scales of the problem

In terms of field operators Ψ̂(r), the Hamiltonian of 2D disordered bosons (weakly

interacting via a contact potential) reads:

Ĥ =

∫
d2r

(
−Ψ̂†(r)

~2

2m
∇2Ψ̂(r) + gΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

+Ψ̂†(r)U(r)Ψ̂(r)
)
. (3.1)

The first term is the kinetic energy of particles (m is the particle mass), and the second

term (denoted below as Hint) describes a contact interaction between them, charac-

terized by the coupling constant g > 0. The third term represents the effect of the

random potential U(r). We assume that U(r) is a Gaussian short-range potential with

59
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zero mean, correlation length σ, and amplitude U0 such that U0 � ~2/mσ2. We have

therefore:

〈U(r)〉 = 0 ; 〈U(r)U(r′)〉 = U2
0σ

2δ(r− r′). (3.2)

Let us now consider a weakly bound state with localization length ζ in a short-range

Gaussian random potential U(r), with correlation length σ and amplitude U0 as specified

above. Under the condition ζ � σ, the kinetic energy is given by:

K ' ~2

2mζ2
. (3.3)

The potential energy contribution is computed as follows. The contribution of a well in

2D is ∼ −U0σ
2/ζ2. We have to multiply this contribution by ζ/σ, which is the square

root of the number of wells on the length scale ζ.

We now minimize the total energy

E =
~2

2mζ2
− U0σ

ζ
(3.4)

with respect to ζ:
∂E

∂ζ
= − ~2

mζ3
+ U0

σ

ζ2
= 0 (3.5)

and obtain a characteristic length ζ∗ ∼ ~2/mU0σ. This gives a characteristic energy

ε∗ ∼ mU2
0σ

2/~2 � U0. It is convenient to define the characteristic energy ε∗ and length

ζ∗ as:

ε∗ =
mU2

0σ
2

π~2
; ζ∗ =

√
2e2

π

~2

mU0σ
. (3.6)

Then, the single-particle localization length in two dimensions at energies ε > ε∗ can be

written in the form [35]:

ζ(ε) =
ζ∗
e

√
ε

ε∗
exp

ε

ε∗
(3.7)

so that ζ(ε∗) = ζ∗. Recently, such dependence was observed, in particular, in atomic

kicked rotor experiments [145].

In the absence of disorder the density of states (DoS) for 2D bosons in the continuum

is energy independent, ρ0 = m/2π~2. The random potential creates negative energy

states, which form the so-called Lifshitz tails: the DoS decays exponentially as the

absolute value of the energy increases [146, 147]. For positive energies ε� ε∗ and even

for |ε| . ε∗, the effect of the disorder is limited and ρ(ε) ' ρ0 is a good approximation.

For energies ε < −|ε∗|, the value of the density of states is exponentially small, and we

simply omit such states in what follows. The resulting form of the density of states is

given in Fig. 3.1a.
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In two dimensions all single-particle states are localized, as explained in § 1.1.4. From

Eq. (3.7), we see that the localization length ζ increases exponentially with the particle

energy for ε > ε∗. At energies |ε| . ε∗ one can neglect the energy dependence of ζ and

approximate the localization length as ζ(ε) ≈ ζ∗, as it is shown in Fig. 3.1b.

-|ε*|
ε

ρ0

ρ(ε)

(a) Density of states.

-|ε*| |ε*|
ε

ζ*

ζ (ε)

(b) Localization length.

Figure 3.1: The density of states (A) and localization length (B) versus energy in the
presence of a short-range disorder potential. The red line in (A) shows our approxi-
mation used for the density of states. In (B) the energy dependence is neglected for

−ε∗ < ε < ε∗ and ζ∗ is set zero for ε < −ε∗.

We consider the weakly interacting regime, where the degeneracy temperature Td =

2π~2n/m greatly exceeds the mean interaction energy per particle ng, with n being the

mean density. Thus, there is a small parameter

ng

Td
=

mg

2π~2
� 1. (3.8)

We also assume that the disorder is weak, so that

ε∗ � Td. (3.9)
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3.2 Many-Body Localization-Delocalization criterion

In order to estimate the critical disorder for the MBLDT at a given g, we employ the

method developed in Refs. [6, 131], taking into account the energy dependence of the

localization length. Namely, we consider a particular one-particle localized state |α〉
and evaluate the probability Pα that there exist three other states |β〉, |α′〉, |β′〉 such

that the two-particle states |α, β〉 and |α′, β′〉 are almost at resonance. This means that

the matrix element of the interaction Mα′β′

αβ ≡ 〈α′, β′|Hint |α, β〉 exceeds the energy

mismatch ∆α′β′

αβ = |εα+εβ−εα′−εβ′ |, where εα, εβ, εα′ , εβ′ are one-particle energies. The

MBLDT occurs when Pα becomes close to unity, meaning that resonant states provide

a channel for transport. We can thus write for the probability:

Pα ∼
∑
α′ββ′

′ 〈α′, β′|Hint|α, β〉
∆α′β′

αβ

∼ C, (3.10)

where C is a model-dependent coefficient of order unity. The prime in the sum signifies

that we sum over the states on the length scale of ζ(εα) ≡ ζα.

The probability of a process is given by the difference between direct and inverse pro-

cesses. In the same way as in Eq. (1.80), we do not consider interference terms and

replace the difference of square roots with the square root of the difference. The matrix

element is then given by:

〈α′, β′|Hint|α, β〉 ≡Mα′β′

αβ = Uα
′β′

αβ Nα′β′

αβ , (3.11)

where

Nα′β′

αβ =
√
|Nβ(1 +Nα′)(1 +Nβ′)−Nα′Nβ′(1 +Nβ)|, (3.12)

Uα
′β′

αβ = g

∫
ψα(r)ψα′(r)ψβ(r)ψβ′(r)d2r. (3.13)

The ψα(r) are the one-body wavefunctions of the localized states and the bar above

(3.12) means average value. While the true form of the wavefunction is given in Eq.

(1.39), we can make the following approximation:

ψα(r) =

ζ−1
α |r− rα| < ζα/2,

0 otherwise.
(3.14)

The matrix elements of the interaction are small unless the energies εα, εβ, εα′ , εβ′ are

almost equal pairwise, e.g. εα ≈ εα′ and εβ ≈ εβ′ . In the next Chapter, we will relax

this approximation and see that this does not affect the main conclusions. We therefore
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get: ∫
ψα(r)ψα′(r)ψβ(r)ψβ′(r)d2r ∼ 1

max(ζ2
α, ζ

2
β)

⇒ Uα
′β′

αβ ≈ g

max(ζ2
α, ζ

2
β)
. (3.15)

We also rewrite Eq. (3.12) as:

Nα′β′

αβ =
√
|Nβ(1 +Nα′ +Nβ′)−Nα′Nβ′ |, (3.16)

where Nβ, Nβ′ , Nα′ are the occupation numbers of the single-particle states. Note that

there should be a factor
√
Nα multiplying Eq. (3.12). This is chosen to be equal to

unity, as we are considering a particular single-particle localized state |α〉, for which we

can set, without loss of generality, Nα = 1. An equivalent line of reasoning, as explained

in Ref. [148], is that Nα will eventually drop from the expression for the probability

of hybridization of a given state of the Nα manifold. This is because the probability

related to the matrix element Mα′β′

αβ is itself proportional to Nα, and this probability

determines the time derivative of Nα.

For εα ≈ εα′ and εβ ≈ εβ′ , Eq. (3.16) reduces to:

Nα′β′

αβ ≈ Nβ, (3.17)

where we assumed the average occupation number Nβ to be large. As it turns out, this

approximation is also valid for small Nβ. Its validity and derivation are explored in

Chapter 4.

The energy mismatch is approximated as:

∆α′β′

αβ = |εα + εβ − εα′ − εβ′ | ≈ δα + δβ ≈ max(δα, δβ), (3.18)

where δα = (ρ(εα)ζ2
α)−1 is the typical level spacing at energy εα on a length scale ζα.

Now the criterion for the MBLDT, Eq. (3.10), reads:

∑
β

′ gcNβ

max(ζ2
α, ζ

2
β)max(δα, δβ)

=
∑
β

′ gcNβ min(ζ2
αρ(εα), ζ2

βρ(εβ))

max(ζ2
α, ζ

2
β)

=
∑
β<α

′ gcNβζ
2
βρ(εβ)

ζ2
α

+
∑
β>α

′ gcNβζ
2
αρ(εα)

ζ2
β

∼ C. (3.19)

Moving to the continuum, we change the sum into an integral taking into account that

we are summing over the states within the length scale of the localization length:

∑
β

′
→
∫
dε

δε
=

∫
dερ(ε)ζ2

ε . (3.20)
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Omitting Lifshitz tails we replace the summation over β in Eq. (3.19) by the integration

over εβ with the lower limit −ε∗. Taking into account that the DoS is energy independent

and equal to ρ0 we transform equation (3.19) to:

g(εα)ρ2
0

(
1

ζ2(εα)

∫ εα

−|ε∗|
dεN εζ

4(ε) + ζ2(εα)

∫ ∞
εα

dεN ε

)
= C. (3.21)

In Eq. (3.21), C is a model-dependent coefficient of order unity. However, varying C

does not affect the main conclusions of this work, and below we use C = 1. The analysis

for different values of the coefficient C is explored in Appendix A.1 and Appendix A.3.

The coupling strength g following by Eq. (3.21) depends on εα. The latter should be

chosen such that it minimizes g(εα), and the critical coupling is gc = min{g(εα)}. The

idea behind this condition is that one looks for the minimum requirement for the onset

of delocalization. In other words, if the l.h.s. of Eq. (3.21) is larger than unity even

for infinitesimally small g(εα), delocalization will inevitably take place. If, on the other

hand, there exists a minimum value of g(εα) above which the l.h.s. of Eq. (3.21) is

larger than unity, this will correspond to the critical coupling gc = min{g(εα)} marking

the onset of delocalization.

The average occupation numbers N ε depend on the chemical potential µ. Hence, Eq.

(3.21) should be complemented with the number equation, which relates µ and the

density n: ∫ ∞
−|ε∗|

ρ0N εdε = n. (3.22)

Note that the temperature T enters the picture via the average occupation numbers N ε.

In this sense, gc = min{g(εα)} as written above stands for the critical coupling at a fixed

temperature T and disorder strength ε∗.
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3.3 Temperature dependence of the MBLDT

In order to calculate the critical coupling gc and its temperature dependence, one needs

therefore to evaluate the occupation numbers of single-particle states. Following Ref.

[148], we write an expression for the energy corresponding to the configuration {Nα} of

the occupation numbers as:

E({Nα}) =
∑
α

(εαNα + gNα(Nα − 1)/2ζ2
α). (3.23)

The grand canonical partition function becomes:

Z =
∏
α

Zα where Zα =

∞∑
n=0

exp(−((εα − µ)n+ gn(n− 1)/2ζ2
α)/T ). (3.24)

For a large average occupation number Nα � 1, fluctuations are small. One linearizes

the exponent around Nα and the partition function reads:

Zα ≈
1

1− exp(−(εα − µ+ gNα/ζ2
α)/T )

. (3.25)

Dropping the index α, we have the following expression for the average occupation

numbers of single-particle states on the insulator side:

N ε = T
∂ lnZ

∂µ
≈
[
exp

(
ε− µ+N εg/ζ

2(ε)

T

)
− 1

]−1

. (3.26)

For N ε � 1 we expand the exponent in Eq. (3.26) and obtain:

N ε =
ζ2(ε)

2g

(
µ− ε+

√
(µ− ε)2 +

4Tg

ζ2(ε)

)
. (3.27)

To improve readability in what follows, we show only the main results needed for the

discussion of the phase diagram. Calculation details are given in Appendix A.1 and

Appendix A.2.

At zero temperature, Eq. (3.27) gives

N ε =
ζ2(ε)(µ− ε)

g
θ(µ− ε), (3.28)

where θ(µ− ε) is the Heaviside theta function. Combining equations (3.28), (3.22), and

(3.21) we find that gc is minimized at εα = 1.93ε∗. The resulting critical disorder as a

function of g is

εMBL
∗ (0) = 0.54ng, (3.29)
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with the corresponding chemical potential µ = 1.21ng. The result of Eq. (3.29) is

consistent with those obtained from the analysis of tunneling between bosonic lakes

[120].

Corrections to the zero temperature result (3.29) are small as long as T � ε∗. For

calculating these corrections one integrates over ε in Eqs. (3.21) and (3.22). The details

of the calculations are given in Appendix A.1. This gives the following critical disorder:

εMBL
∗ (T ) = εMBL

∗ (0)

[
1 + 0.66

T

Td
ln

(
0.09

Td
εMBL
∗ (0)

)]
. (3.30)

Exponential increase of the localization length with the particle energy supports de-

localization. In the thermodynamic limit, as discussed in Ref. [149], this leads to

the disappearance of the insulating phase at temperatures T > ε∗/2, as shown in Ap-

pendix A.3. In the next Chapter, we will discuss this conclusion in depth with respect

to the stability of the MBL phase. However, for realistic systems of cold bosonic atoms

the energy distribution is truncated at sufficiently large energy. Indeed, as discussed in

Chapter 2, in the process of evaporative cooling, atoms with energies above the trap

barrier immediately leave the trap, and the distribution function N ε is effectively trun-

cated at a finite energy barrier εb. Typical values of this energy for evaporative cooling

to temperatures T & ng are equal to ηT , where η ranges from 5 to 8 (see, e.g. [93, 150]).

For cooling to temperatures T . ng the value of the energy barrier can be written as

εb = ng + ηT [151]. Below we use η = 5 and, in order to match the zero temperature

result, we truncate N ε at εb = 1.21ng + ηT . Increasing η up to 8 has little effect on the

MBLDT transition line εMBL
∗ (T ).

The truncation of the energy distribution practically does not influence the results at

T � ε∗ and thus equation (3.30) remains valid. However, at higher temperatures the

truncation strongly limits the growth of the localization length, and the critical coupling

gc remains finite even for T > ε∗/2, i.e. the insulator phase survives. In this case the

expression for the critical disorder, valid for T � εb, is:

εMBL
∗ (T ) =

2εb

ln
(
4π3Tdeεb/T /ng

)
− ln ln

(
4π3Tdeεb/T /ng

) . (3.31)

Equations (3.30)-(3.31) are in good agreement with the numerical solution of Eqs. (3.21)-

(3.22). The comparison of this analytical expression with exact numerics is given in

Figures 3.2a and 3.2b, where we used εb = 1.21ng + 5T . In Fig. 3.3a and 3.3b we show

the same quantities as in Figures 3.2a and 3.2b, but for the truncation of the energy

distribution function at εb = 1.21ng + 8T . As one sees, the increase of β from 5 to 8

does not significantly change the MBLDT transition line.
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Figure 3.2: Comparison of numerical results with those from analytical expressions
for εb = 1.21ng+5T . The dots are the results of numerically solving Eq. (3.21), and the
solid curve is given by Eq. (A.16) in (a) and by Eq. (3.31) in (b). We used Td/ε∗ = 20

in (a) and Td/ng = 11 in (b).
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Figure 3.3: The same as in Figure 3.2, but for the truncation of the energy distribution
function at εb = 1.21ng + 8T .

3.3.1 Discussion

Actually, the distribution function N ε does not abruptly go to zero at ε = εb. It under-

goes a smooth, although quite sharp, decrease to zero near εb [93, 150]. The disorder

potential introduces an additional smoothness of N ε. However, for a weak disorder,

the disorder-induced increase of the energy interval near εb, in which the distribution

function goes to zero, is significantly smaller than U2
0 /εb, and is only a fraction of ε∗ for

realistic parameters of the system. One then checks that this does not change the result

of equations (3.30)-(3.31) by more than a few percent.

In the recent paper [152] it was claimed that many-body localization is prevented in con-

tinuum systems. The conclusion was based on the exchange of energy between highly

energetic particles and states with typical energies. Without entering the discussion

of collisional integrals, we simply note that the truncation of the distribution function
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(which should clearly emerge after several collision times [150]) means that such high-

energy particles are not there to induce delocalization. One might worry about non-

equilibrium effects involving “hot” particles, known to take place during evaporative

cooling. However, such effects can be important only in the initial stages of the evapo-

rative cooling process. After several tens of collisional times, the distribution function

acquires a well truncated form (just because hot particles fly away). This statement is

confirmed by the analysis in the review article [150], where a clear truncated form of the

distribution function is shown to emerge after 64 collisional times. The issue of highly

energetic particles is one of the main focuses of the next Chapter.
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3.4 Influence of the disorder on the BKT transition

We now start our discussion of the BKT transition between the normal fluid and su-

perfluid phases with the high temperature regime, T � ng. In the superfluid phase we

assume that density fluctuations are small and the Bogoliubov approach remains valid

in the presence of disorder. Following Refs. [122, 123] we consider a weak disorder,

ε∗ � ng, and rely on the Hamiltonian H = H0 +
∫
U(r)δn(r)d2r, where H0 is the stan-

dard Bogoliubov Hamiltonian in the density-phase representation, while the second term

describes the interaction of the density fluctuations δn(r) with disorder. Diagonalizing

H0 and using the known relation for the density fluctuations we have:

H =
∑
k

~ωkb†kbk +
∑
k

nUk(bk + b†−k)
√
Ek/~ωk. (3.32)

Here n is the mean density, bk and ~ωk =
√
E2
k + 2ngEk are the operators and energies

of Bogoliubov excitations with momentum k, Ek = ~2k2/2m is the free particle kinetic

energy, and Uk is the Fourier transform of the disorder potential U(r). For the normal

density we then have [123]:

nf =
1

2
n

∫ 〈U∗kUk〉
(ng + Ek/2)2

d2k

(2π)2
−
∫
Ek

∂Nk

∂~ωk
d2k

(2π)2
, (3.33)

where we put the normalization volume equal to unity. The result of the integration

in the first term of Eq. (3.33) depends on the correlation function of the disorder. For

〈U(r)U(r′)〉 = U0δ((r − r′)/σ) we have 〈U∗kUk〉 = U2
0σ

2 and at temperatures T � ng

equation (3.33) yields:

nf =
ε∗
2g

+
mT

2π~2
ln

T

ng
; T � ng. (3.34)

The Bogoliubov approach works well in the superfluid phase, but it does not allow one to

determine the exact value of the BKT transition temperature TBKT . At this temperature

the superfluid density ns undergoes a jump, and just below TBKT the superfluid density

satisfies the Nelson-Kosterlitz relation [112]:

ns(TBKT ) =
2m

π~2
TBKT . (3.35)

In the context of BKT theory, only one question is actually relevant with respect to the

Nelson-Kosterlitz relation: whether it is thermodynamically favorable to have at least

one free vortex. As we noted in Chapter 2, an intuitive way to understand this is to

look at the free energy. The answer depends on the sign of the free energy of a vortex,

and the Nelson-Kosterlitz relation is a sufficient and necessary condition for the change
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of sign. For a finite superfluid density ns, the free energy contains two competing terms.

Hence, the question is really of how to calculate the superfluid density ns next to the

BKT transition point. For ε∗ � ng, the superfluid density ns next to the BKT transition

point is sufficiently large. It is therefore possible to complement the Nelson-Kosterlitz

relation with the expression for ns from the Bogoliubov theory. From equations (3.34)

and (3.35) we obtain a relation for the critical disorder of the BKT transition:

εBKT∗ (T ) = 2ng

[
1− T

Td
ln

(
e4 T

ng

)]
. (3.36)

In the absence of disorder, the most precise value of TBKT was obtained in Ref. [113]

by Monte Carlo simulations:

TMC
BKT = Td/ ln(ξTd/ng) with ξ ' 380/2π ' 60. (3.37)

In the limit ε∗ → 0, Eq. (3.36) gives:

TBKT ' Td/(ln(e4Td/ng) +O(ln lnTd/ng)). (3.38)

Therefore, TBKT with ns following from the Bogoliubov approach is close to the exact

value of Ref. [113], with about 10%-15% of accuracy. This justifies the validity of the

employed method for ε∗ � ng.

In the presence of disorder, the numerical result of Ref. [130] uses a different correlation

function. Taking this into account, it is possible to compare it with the results from Eqs.

(3.33) and (3.35), which use a Gaussian disorder correlation function (see Appendix A.5

for details). This leads to critical values of the disorder versus (TBKT − T ) that, for

low disorder, agree within 20% with Monte Carlo calculations of Ref. [130] once the

zero-disorder value is adjusted. It is worth mentioning that the zero-disorder result of

the calculation [130] is taken to be equal to TBKT of Ref. [113]. However, the critical

line of Ref. [130] approaches TBKT like εBKT∗ /ng ∼ (1 − T/TBKT )2. This means that

corrections for a very weak disorder behave like the square root of the (inverse) mean

free path instead of linearly.

The employed Bogoliubov approach has to be corrected when ng is approaching ε∗.

In this case the first term of Eqs. (3.33) and (3.34) should be complemented by the

contribution of higher order diagrams. This can be done by keeping nonlinear (in bk)

interactions between atoms and random fields in the Hamiltonian (3.32), as it was done
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in the three-dimensional case in Ref. [153]. Instead of equation (3.36) we then have:

εBKT∗
2ng

=

[
1− T

Td
ln

(
e4 T

ng

)]
f

(
εBKT∗
2ng

)
, (3.39)

where the function f(x) is of order unity.
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3.5 Phase diagram

We proceed now to the construction of the phase diagram of 2D weakly interacting

bosons in a static random potential. The diagram is displayed in Fig. 3.4 in terms

of T and ε∗, where the energy scale ε∗ characterizes the disorder strength. There are

two temperature dependent critical values of disorder: εBKT∗ (T ) and εMBL
∗ (T ), i.e. two

separatrices in Fig. 1. The first one separates the normal fluid from the superfluid

phase and it shows the suppression of superfluidity by the disorder. Since superfluidity

disappears at T > TBKT even without disorder, we have εBKT∗ (T ≥ TBKT ) = 0. For

sufficiently strong disorder, ε∗ > εBKT∗ (0), the superfluid regime is absent even at T = 0.

The second separatrix is the MBLDT curve. The region ε∗ > εMBL
∗ (T ) corresponds

to the insulator (glass) phase, which undergoes a transition to the normal fluid as the

disorder is reduced to below εMBL
∗ (T ).

Insulator

Normal Fluid

ϵ*
MBL /ng

ϵ*
BKT /ng

Superfluid

0.0 0.5 1.0 1.5 2.0 2.5
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ng
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Figure 3.4: Phase diagram for 2D weakly interacting disordered bosons in terms
of the dimensionless disorder strength ε∗/ng and temperature T/ng for Td/ng = 11,
with C = 1 and f(0.54) = 0.27. The MBLDT border between the insulator and
normal fluid follows almost a horizontal line ε∗/ng ' 0.54 until the disorder approaches
ε∗/ng = 2T/ng. The curve of the MBLDT is obtained with the distribution function
truncated at εb = 1.21ng + 5T . The solid part of the normal fluid-superfluid curve is
the result of equation (3.36), and the dashed part is the expectation of how it continues

at T . ng, until it reaches the tricritical point at T = 0 (red point).

The important property of 2D weakly interacting disordered bosons is the instability of

the normal fluid at T = 0 with respect to a transition either to the superfluid or to the

insulator regime (see below). Accordingly, one has

εMBL
∗ (0) = εBKT∗ (0). (3.40)
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This means that the point T = 0, ε∗ = εMBL
∗ (0) is a tricritical point, where the three

phases coexist. This issue will be justified in the next subsection. However, we should

admit that, close to the tricritical point, equations (3.29) and (3.39) can give only esti-

mates rather than exact values of the critical disorder strengths εMBL
∗ and εBKT∗ (because

of not exactly known values of the constant C and function f). In particular, in Fig.

3.4 we took C = 1 and put f = 0.27 for ε∗ = 0.54ng. Nonetheless, we argue that the

identity (3.40) holds irrespective of the precision of our approximations and below we

present the proof of this identity [154].

3.5.1 Tricritcal point at T = 0

This subsection is dedicated to ruling out a direct transition from the insulator to su-

perfluid phase at finite temperatures. This transition would mean that one has a phase

diagram either like Fig. 3.5a or Fig. 3.5b.

ε∗

T

SF

NF

INS

(a)

ε∗

T

SF

NF

INS

(b)

Figure 3.5: Possible shapes of the phase diagrams at low temperatures. The blue
curve represents εMBL

∗ (T ), and the black curve shows εBKT∗ (T ). The dashed red line
gives the zero-temperature value of the superfluid-insulator transition. Both subfigures

(a) and (b) are ruled out by the arguments given in the text.

Figure 3.5a is ruled out as follows. At the critical zero-temperature disorder and arbi-

trarily small finite temperatures, the system is unstable with respect to delocalization.

This conclusion is supported by the quantitative analysis given in the text, where cor-

rections to the zero-temperature value εMBL
∗ (0) were found to be positive. The physical

picture is that although excitations in the insulator at T = 0 are always localized, their

localization length at the critical disorder strength can be arbitrarily large. Therefore, at

any fixed disorder ε∗ exceeding the critical strength the elementary excitations undergo

many-body delocalization with increasing temperature. The critical temperature tends

to zero as the localization length diverges, i.e. at arbitrarily low finite temperatures

there will be a range of disorder strengths corresponding to a normal fluid.
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Figure 3.5b is ruled out by the following arguments. The zero-temperature insulator

can be viewed as a composition of superfluid lakes with uncorrelated phases, which

are separated from each other by a certain distance. Tunnelling of particles between

the lakes increases with decreasing the disorder strength, and at a critical disorder it

establishes the phase coherence between the lakes, so that the whole system becomes

superfluid. Consider a single lake at the critical disorder strength at T = 0 and slightly

increase the temperature. Then a certain fraction of particles in the lake will become

non-superfluid. Assuming slowly varying density fluctuations in the lake, such that the

Bogoliubov theory works, the non-superfluid fraction n′/n within the lake turns out to

be
n′

n
= 3ζ(3)

T 3

Tdn2g2
, (3.41)

where ζ(3) is the Riemann zeta-function, g is the coupling strength of the interparticle

interaction, n is the density, and Td the degeneracy temperature. A decrease of the

superfluid density ns (which is equivalent to decreasing the coupling strength g) reduces

the probability of tunnelling between neighbouring lakes, which behaves as (see e.g.,

[120])

t ∼ exp

(
−
√
εMBL
∗ (0)/ng

)
, (3.42)

and the latter is unable to establish phase coherence between the lakes. Hence, neither

Fig. 3.5a nor Fig. 3.5b are possible.
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Figure 3.6: Possible phase diagram with normal fluid realized at T = 0. The blue
curve represents εMBL

∗ (T ) and the black curve shows εBKT∗ (T ). This possibility is ruled
out in the text.

At the same time, εMBL
∗ (0) can not exceed εBKT∗ (0) as depicted in Fig. 3.6. Indeed,

this would mean that the normal fluid is realized at T = 0 in a certain range of ε∗,

i.e. elementary excitations are extended. However, as follows from the theory of weak

localization (see, e.g. [35] and Chapter 1), in 2D this is impossible for a non-superfluid

state. At T = 0 the normal fluid is unstable with respect to the transition either to an

insulator or to a superfluid, depending on the disorder. It should be noted that in the

literature, some authors have claimed the existence of a normal fluid (often called “weak

insulator”) at zero temperature for intermediate disorder [155, 156]. In order to come to

this conclusion, Ref. [155] assumes the existence of delocalized high-energy states in 2D
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for non-interacting particles. This appears to contradict the well-known result that all

single-particle states are localized in 2D. We thus arrive at the phase diagram of Fig. 3.4

with εMBL
∗ (0) = εBKT∗ (0), which should be valid as long as there exist only three phases:

insulator, normal fluid, and superfluid. At low temperatures all phase transitions occur

at the coupling strength ng ∼ ε∗.

One may think of a possible alternative to the phase diagram of Fig. 3.4. A phase with

non-ergodic but extended eigenstates (non-ergodic phase, as presented in § 1.3.4; see

[76] for discussion of such states) can take place in the vicinity of the tricritical point.

Detailed discussion of such a possibility goes beyond the scope of the present Thesis.

3.5.2 Experimental outlook

It is worth noting that in the recent experiment on disordered 2D lattice bosons [20],

it was observed that the MBLDT happens when the interaction energy and the charac-

teristic disorder are of the same order of magnitude. This feature is clearly recovered in

our continuum model.

It would thus be interesting to confront the theoretical arguments presented above for

the continuum system with an experimental test. Presently, no such experiment has

been performed. However, we note that the MBLDT can be measured for typical values

of disorder, temperature, and density of 2D trapped bosonic atoms. The most promising

is the situation where all single-particle states are localized. For example, at densities

n ' 107 cm−2 of 7Li atoms the degeneracy temperature is Td ' 50 nK. For the amplitude

of the disorder potential, U0 = 35 nK, and correlation length σ ' 1.4µm, we have

ζ∗ ≈ 3µm and ε∗ ≈ 11.5 nK. Considering temperatures T ∼ 10 nK, for barrier energies

εb ≈ 44 nK, the localization length at maximum particle energies can be estimated as

∼ 100µm. The size of the system can be significantly larger, so that all single-particle

states are really localized. The MBLDT can be identified by opening the trap. If most of

the sample is in the insulator phase, then only a small fraction of particles will escape and

the size of the remaining cloud will increase by an amount of the order of the localization

length. On the contrary, if most of the sample is in the fluid phase, switching off the

trap will lead to the expansion of the major part of the cloud. The MBLDT can be

also identified in situ by measuring the dynamical structure factor with the use of the

Bragg spectroscopy, the method employed to distinguish between the superfluid and

Mott insulator phases of lattice atomic systems (see, e.g. [157, 158]).

To complete the experimental validation of our phase diagram, one should also measure

the critical disorder εBKT∗ . In the absence of disorder, the BKT transition has been
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measured in a number of experiments with ultracold atomic gases: see for example [81],

[159], and [160]. In the first two experiments, the trapping potential was modelled by a

harmonic confinement. In [160], an optical dipole trap was used.

While it is true that in some cases the harmonic geometry can lead to BEC and conse-

quently destroy the BKT transition, it deserves to be mentioned that the critical phase

space density for the BKT transition is finite, whereas it is infinite for the ideal gas

condensation. Keeping the interaction constant and increasing the phase-space density

would thus give a BKT-driven transition (see, for example, [106] for detailed arguments

in both harmonic and uniform potentials). In Ref. [161], the authors studied the critical

point in a harmonically trapped 2D Bose gas with tunable interaction. Their results

confirm that 2D BEC of an ideal gas can be seen as the non-interacting limit of the

BKT transition. They conclude their work by noting how the study of coherence in

a uniform (box) potential would allow to ”reveal an interaction-strength-independent

algebraic decay of the first-order correlation function, corresponding to a universal jump

in the superfluid density”.

The uniform ”box potential” was experimentally realized in 3D in Ref. [162]. It was later

achieved in two dimensions (see for example [163] and [164]). In the recent publication

[165], the authors were able to create uniform 2D Bose gases with tunable interaction

strength. Moreover, a proposal for an experiment measuring the (dynamical) BKT tran-

sition in such a box potential was made in [166].

In the presence of disorder, coherence properties near the BKT superfluid transition

[133, 167] and the resistance for a strongly interacting gas [168] have been studied ex-

perimentally. Therefore, an experimental validation of the results of this Thesis is a

priori possible, in both harmonically trapped and uniform (box) confining potentials.



Chapter 4

Stability of many-body

localization in continuum systems

4.1 Introduction

In this Chapter, we study the stability of many-body localization in continuum systems

with respect to delocalization mediated by highly energetic particles. This is motivated

by the growing number of studies debating the existence of the many-body mobility edge

[14, 152].

In continuum systems, there is no bound on the bandwidth as in lattice systems. The

seminal work on the problem of MBL in continuum systems demonstrated that interact-

ing particles can undergo many-body localization-delocalization transition (MBLDT),

i.e. the transition from insulator to fluid state, and used an energy-independent single-

particle localization length [6, 7]. This condition was relaxed in a number of subse-

quent works, which took into account the growth of the localization length with energy

[131, 132, 144, 148, 149, 152]. The question is whether the growth of the localization

length eventually destabilizes the MBL phase, or whether the contribution of highly

energetic states is hindered by the decrease in the thermal distribution function. In

the previous Chapter, it was shown that two-dimensional (2D) disordered bosons may

display a finite-temperature insulator when taking into account a truncation of the en-

ergy distribution function at high energies, a generic phenomenon in cold atom systems

[93, 150]. The truncation ensures the survival of the insulating phase, because the

energy ε of the localized single-particle state is unable to grow unbounded. In the ther-

modynamic limit, however, the exponential increase of the localization length leads to

the disappearance of the insulating phase above a critical temperature Tc. A similar

conclusion was obtained also in Ref. [149] through another approach. A diametrically
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opposite situation for the thermodynamic limit is found in the work of Ref. [152], where

many-body localization is claimed to be unstable in any continuum system, irrespective

of dimensionality, with the notable exception of one-dimensional Gaussian (white noise)

disorder [131].

In this Chapter, we discuss the stability of many-body localization in continuum sys-

tems of dimension d = 2. The two-dimensional case shows a stronger (exponential)

growth of the localization length with energy compared with one dimension. The nature

of quantum statistics is not crucial for this problem, and for convenience we consider

the very same model of disordered bosons as in Chapter 3. First, we review the argu-

ments of this Chapter and Refs. [149, 152], in which different criteria characterizing the

many-body localization-delocalization transition (MBLDT) in continuum systems are

employed. Then, building and improving on the results of Chapter 3, we rule out the

arguments of [152] on the absence of MBL in continuum systems of ultracold particles.



Chapter 4. Stability of many-body localization in continuum systems 79

4.2 The criterion for the localization-delocalization tran-

sition

In general, the stability of the MBL phase is controlled by a parameter accounting for

the increasing phase space available for the transition when raising the temperature T .

The key point, as developed in Ref. [6], is to compare the matrix element of interaction

to the accessible level spacing. When this ratio exceeds a model-dependent value of

order unity, delocalization takes place.

The parameter controlling many-body delocalization was derived in Chapter 3 on the

basis of methods developed in Refs. [6, 131]. It is given by the probability Pα that for a

given one-particle localized state |α〉 there exist three other states |α′〉 , |β〉 , |β′〉 for which

the matrix element of interaction exceeds the energy mismatch ∆α′β′

αβ = |εα+εβ−εα′−εβ′ |.
For a generic short-range interaction Hint, one gets the probability Pα given by Eq.

(3.10). For convenience, we also write this formula in the present Chapter.

Pα =
∑
α′ββ′

′ 〈α′, β′|Hint|α, β〉
∆α′β′

αβ

∼ C, (4.1)

where C is a parameter of order unity.

In Chapter 3, the localized phase is protected by the high-energy truncation of the

energy distribution function. In the thermodynamic limit, where the energy grows un-

bounded, delocalization takes place above a critical temperature Tc that is interaction-

independent, i.e. the insulating phase disappears even without interaction between par-

ticles. This conclusion, which apparently contradicts the commonly accepted Anderson

localization of all single-particle eigenstates in 2D, was made and interpreted in Ref.

[149]. The interpretation is based on the exponential increase of the localization length

with energy. In order to estimate the “conductivity” one has to integrate the Bose dis-

tribution function multiplied by exp(−L/ζ(ε)), where L is the linear dimension of the

system. Evaluating the integral by using the saddle point approximation, one obtains

a power-like rather than exponential decrease of the “conductivity” with increasing L.

The absence of the exponential decrease can be interpreted as a disappearance of the

insulating phase [149]. The peculiarity of this rather academic problem follows from

the fact that single-particle energies, which dominate the energy integral, increase log-

arithmically with L and thus become infinite in the thermodynamic limit. For realistic

systems, the exponential growth of the localization length is limited by e.g. a finite size

of the system or, as in Chapter 3, by a truncation in the energy distribution function,
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and the 2D localization is restored.

As noted, in Ref. [149] the author obtained the same result of an interaction-independent

critical temperature, albeit with a different method. Namely, the MBLDT criterion in

Ref. [149] contained the occupation number of the initial single-particle state, which

was pointed out also in Ref. [152]. The parameter η controlling the perturbative series

was therefore related to the total number of possible initial states, not only to the final

states, reading:

η ∼ mg

~2
(nζ2(ε))3(P (ε)(1− P (ε)))2, (4.2)

where P (ε) is the probability of occupation of a single-particle state, g is the coupling

constant for the short-range repulsive interaction, n is the number density of particles

with mass m, and ζ(ε) is the localization length. At large energies, η diverges at tem-

peratures larger than a critical temperature determined by Eq. (4.2).

The presence of the initial state single-particle occupation number in the MBLDT cri-

terion was deemed unjustified in Chapter 3 and in Ref. [152]. The authors of [152]

concluded that MBL is unstable in continuum systems at any non-zero temperature,

after rephrasing the MBLDT criterion as an energy exchange between “hot” and “cold”

particles, i.e. particles with high and low energy, with intermediate energies playing no

role.

The initial single-particle occupation number Nα does not enter the criterion for the

MBLDT, as it is clear from Eq. (4.1). Nevertheless, it was found that there exists,

for a fixed interaction, a range of temperatures T < ε∗/2 where under an increase in

energy the competition between the exponentials from the localization length (3.7) and

the distribution function f(ε) = (e(ε−µ)/T )−1)−1 is “won” by the latter. An assumption

in Chapter 3 is that the corresponding initial and final single-particle states are nearest

neighbors in energy space, i.e. εα ≈ εα′ and εβ ≈ εβ′ . The energies εα and εβ may differ

at will. Below, we relax this approximation in the criterion of delocalization, equation

(4.1). Before describing our results, let us briefly summarize the MBLDT criterion of

Ref. [152]. The key point of Ref. [152] is that one should think of the whole system

as containing two subsystems: “hot” and “cold” particles. Initially the cold particles

act as a bath for the hot ones, creating delocalized excitations in the hot system, which

in turn act as a bath for the cold system. This extends many-body delocalization over

the whole spectrum, including intermediate states. From equations (1) and (9) of Ref.

[152], we can write the delocalization parameter ηhc, which plays the role of C in our

equation (3.10), as:

ηhc =
VhcNeff

∆h
. (4.3)
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Here Vhc is the matrix element coupling two hot states with two cold states, Neff is the

characteristic number of pairs in the cold system with which a hot particle can hybridize,

and ∆h is just the level spacing of the hot particles. Note that the structure of Eq. (4.3)

is similar to Eq. (4.1), but only involves coupling between hot and cold particles. The

authors argue in favour of an effective T -dependent single-particle mobility edge such

that states above such energy are always delocalized. This provides transport at any

finite temperature, and no insulator is found other than the zero-temperature Bose glass.
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4.3 The MBDLT criterion revisited: the case

of two-dimensional bosons

Let us now address the question of the stability of the finite-temperature insulator in

the context of the model introduced in Chapter 3. At this stage, we do not include

a truncation in the energy distribution function. The Hamiltonian of the system is

therefore the same as in equation (3.1):

Ĥ = Ĥ0 + Ĥint, (4.4)

where

Ĥ0 =

∫
d2r

(
−Ψ̂†(r)

~2

2m
∇2Ψ̂(r) + Ψ̂†(r)U(r)Ψ̂(r)

)
, (4.5)

Ĥint = g

∫
d2r Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r). (4.6)

In general, we consider the same energy and length scales as in § 3.1.1, so that we work

in the weakly interacting regime, where:

ng

Td
=

mg

2π~2
� 1. (4.7)

We also assume a weak white-noise Gaussian disorder:

ε∗ � Td. (4.8)

We first make a rough estimate of what should happen when a hot localized particle

with energy ε and localization length ζ(ε) is present in the system, and it interacts with

a cold cloud. Using an estimate similar to Eq. (4.3), we see that the matrix element

Vhc in this case is proportional to ∼ g/ζ2(ε). The level spacing is just ∆h ∼ 1/ρ0ζ
2(ε).

For particles of the cloud which have energies approaching ε, the effective number of

channels is Neff ∼ nζ2(ε) exp(−ε/T ). Putting this altogether we obtain:

ηhc ∼
n2gζ2

∗
e2Td

ε

ε∗
exp

[
−ε
(

1

T
− 2

ε∗

)]
. (4.9)

At temperatures T < ε∗/2 one may have ηhc . 1, which means that there is an insulating

phase at T < ε∗/2 in the thermodynamic limit, in agreement with Chapter 3. However,

the finite-temperature insulator might be merely a consequence of our approximations.

Indeed, in Ref. [152] the question is addressed by inserting the effective mobility edge,
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which provides the system with an effective conduction band populated by many delo-

calized excitations.

We now go back to the MBLDT criterion as given by Eq. (3.10). One writes:

Pα =
∑
α′ββ′

′ 〈α′, β′|Hint|α, β〉
∆α′β′

αβ

=
∑
α′ββ′

′U
α′β′

αβ Nα′β′

αβ

∆α′β′

αβ

∼ C, (4.10)

where:

Nα′β′

αβ =
√
|Nβ(1 +Nα′)(1 +Nβ′)−Nα′Nβ′(1 +Nβ)| (4.11)

Uα
′β′

αβ = g

∫
ψα(r)ψα′(r)ψβ(r)ψβ′(r)d2r (4.12)

∆α′β′

αβ = |εα + εβ − εα′ − εβ′ |. (4.13)

The prime in the summation means that we are summing over a length scale of the

localization length (the lowest one among the four states). The factor Nα′β′

αβ accounts

for the number of possible (direct and inverse) processes α, β ↔ α′, β′ involving a given

state α, and Nα′ , Nβ, Nβ′ are the occupation numbers (not the averages, and the average

is only taken for the square root expression in Eq. (4.11)). Following Ref. [6], we replace

the difference of square roots with the square root of the difference. The ψα(r) are the

one-body wavefunctions of the localized states, and we take the same approximation as

in Eq. (3.14):

ψα(r) =

ζ−1
α |r− rα| < ζα/2.

0 otherwise.
(4.14)

One thus gets:

Uα
′β′

αβ ≈ g
min(ζ2

α, ζ
2
α′ , ζ

2
β, ζ

2
β′)

ζαζα′ζβζβ′
(4.15)

We have neglected here the algebraic falloff of the matrix element with energy difference

[169]. Unlike in equation (3.15), we do not approximate this quantity at this moment.

Let us now look at equation (4.11). The quantities Nα′ , Nβ, Nβ′ are actually integers

representing the occupation of the state in Fock space. If the corresponding average

values Nα′ , Nβ, Nβ′ are large, then fluctuations are small and we may substitute the

average values of the occupation numbers in the r.h.s. of Eq. (4.11). Assuming that

energies ε are almost equal to each other pairwise, i.e. εα ≈ εα′ and εβ ≈ εβ′ , one then

recovers the expression Nα′β′

αβ ≈ Nβ as in Chapter 3. Going beyond this approximation

involves the calculation for each distinct case when some of the average occupation
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numbers are small. Detailed calculations are given in Appendix A.4, and lead to the

following criterion for the MBLDT:

g(εα)

 ∑
β,α′,β′>α

Nα′β′

αβ

∆α′β′

αβ

ζα
ζα′ζβζβ′

+
∑

α′<α,β,β′

Nα′β′

αβ

∆α′β′

αβ

ζα′

ζαζβζβ′

+
∑

β<α,α′,β′

Nα′β′

αβ

∆α′β′

αβ

ζβ
ζα′ζαζβ′

+
∑

β′<α,α′,β

Nα′β′

αβ

∆α′β′

αβ

ζβ′

ζα′ζβζα

 = C. (4.16)

The full expression in the continuum is rather cumbersome, and it is written in Ap-

pendix A.4. In a random system, the energies can never be matched exactly, so the

expression for the energy mismatch is never equal to zero. Therefore, ∆α′β′

αβ has a min-

imum value, which is given approximately by the single-particle level spacing of the

particle with the highest energy among εα′ , εβ, εβ′ . Solving Eq. (4.16) to find the crit-

ical disorder εMBL
∗ (T ), we use Eq. (4.13) with a lower bound ∆α′β′

αβ min on the energy

mismatch to account for the absence of a perfect match between energies. It is given by

∆α′β′

αβ min = min{δα′ , δβ, δβ′}, (4.17)

Note that, in Chapter 3, we have put εα ≈ εα′ and εβ ≈ εβ′ , and the approximation

∆α′β′

αβ ≈ max(δα, δβ) was always used. Including the possibility of a smaller denominator

can favour delocalization. In this respect, from Eq. (4.3) we see that only the level

spacing of the hot cloud, which is significantly smaller than the one of the cold cloud, is

present in the denominator of the delocalization criterion for the hot-cold mixture.

Below we solve Eq. (4.16) numerically in order to check whether an MBL phase exists in

the low-temperature limit. As Nα′β′

αβ depends on the chemical potential , we complete Eq.

(4.16) by establishing a relation between µ, n, and T from the normalization condition

n =

∫ ∞
−ε∗

ρ0N εdε. (4.18)
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4.4 Results on the stability of the MBL phase

Below, we set the value of the constant C = 1. At T = 0, we find a critical disorder:

ε∗(0) = 0.86ng. (4.19)

The corresponding chemical potential is µ = 1.6ng. This result is in good agreement with

the one from Chapter 3, as well as with the microscopic analysis of tunneling between

bosonic lakes [120]. The critical disorder is higher than the one in Chapter 3. This

is expected, as we include smaller level spacing than before and more highly energetic

processes.

At temperatures T � ε2∗/Td, the corrections to the zero temperature result are negligible.

For temperatures ε2∗/Td � T � ε∗, in the thermodynamic limit the average occupation

number N ε is large when ε < µ. This is because the chemical potential decreases

with increasing T , and becomes negative when T is a fraction of ε∗. The same kind of

arguments remain valid when considering a truncation. One integrates Eq. (4.16) with

Eq. (4.18) using average occupation numbers given by (see also Ref. [148], Appendix A.1

and Appendix A.4):

N̄ε =


ζ2(ε)

2g

(
µ− ε+

√
(ε− µ)2 + 4Tg

ζ2(ε)

)
; ε < µ

e−(ε−µ)/T ; µ < ε.

(4.20)

Note that at this stage we do not consider a truncation in the energy distribution.

Fig. 4.1 shows the results obtained. Remarkably, the physical picture resulting from

Chapter 3 survives the addition of a number of processes that were not taken into ac-

count there. For very low temperatures T � ε∗/2, the insulator is stable and the critical

coupling is only slightly reduced by an increase in temperature. Most importantly, de-

localization is driven in this regime by the low-energy states, as we see from Fig. 4.2,

where we plot the value of εα as a function of T . Indeed, we may identify the value of

εα as the energy of the typical states that cause delocalization through the interaction.

Finding a low value of εα for low temperatures implies that the resonant subnetwork in

Fock space typically involves states at low energies.

Only when T ≈ 0.47ε∗, hot particles are more likely to drive the process. Then, de-

localization takes place as a result of hybridization of high-energy particles, decaying

into three-body excitations. This is compatible with the picture of a hot-cold mixture

proposed in Ref. [152] and was already noted in Chapter 3 when looking at the behavior

of εα in the thermodynamic limit (see also Appendix A.3).
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Figure 4.1: The critical coupling ngc/ε∗ as a function of temperature T/ε∗ obtained
by numerically solving equations (4.16) and (4.18), without a truncation in the energy
distribution function. The blue dots represent the values of T for which we solved
the equations. The critical coupling tends to zero at T ≈ ε∗/2. The dashed red line
indicates T = ε∗/2. Each of the dots is obtained with a numerical uncertainty of not

more than 5%.
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Figure 4.2: The value of the energy εα/ε∗ plotted versus the temperature T/ε∗, in a
semi-logarithmic plot. The numerical solutions, given by the blue points, are linearly
interpolated. The dashed red line is T = ε∗/2. Between T ≈ 0.42ε∗ and T ≈ 0.47ε∗,

the value of εα jumps to high energies.
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Let us remark that in Eq. (4.16) we take into account all processes that are resonant

irrespective of their energies. The only assumption is that two highly energetic states

may be taken as energy neighbors when they interact with two cold states, which is

consistent with the analysis in the hot-cold mixture. Nevertheless, the obtained results

show that localization is present in the low-temperature regime. This is in direct con-

trast with the proposal of considering the two hot and cold subsystems as two separated

entities that act as a bath for one another. However, it may well be that this is the

situation when T → ε∗/2 and beyond.

To complete our analysis, we introduce a truncation in the energy distribution function.

We match the zero-temperature result by setting the energy barrier at εb = 1.6ng+ 5T .

The result is in good agreement with the one in Chapter 3, as shown in Fig. 4.3. Even

though it is slightly reduced with respect to the phase diagram presented in Fig. 3.4,

the insulating phase survives at all temperatures.

0.0 0.5 1.0 1.5 2.0 2.5
T/ng

0.5

1

2

5

ϵ*/ng

Figure 4.3: The MBLDT in the presence of a truncated energy distribution. The
energy barrier is at εb = 1.6ng + 5T . We used Td/ng = 10.

It is actually not surprising that the behavior of the system is almost the same, even

after relaxing some of the approximations made in Chapter 3. As we already remarked,

very hot particles are not present and cannot drive delocalization.

In conclusion, we see that in our model the MBL phase is stable with respect to the

presence of processes involving highly energetic particles. It should be noted that we

did not consider other complex phenomena such as spectral diffusion [170]. However,

within the context of white-noise disorder and the model examined, we have provided
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further arguments for the stability of the MBL phase in the continuum, strengthening

thus the conclusions made in Chapter 3.



Chapter 5

Concluding remarks

In this Thesis we have studied the physics of two-dimensional interacting bosons in a

disordered potential. We have constructed the phase diagram in terms of temperature

and disorder strength. Three phases exist: insulator, normal fluid and superfluid. At

T = 0, one has a tricritical point where the phases coexist. In order to find the phase

boundary between fluid and insulator, we have analyzed the many-body localization-

delocalization transition at finite temperatures. In the presence of a truncated energy

distribution function, the insulating phase exists at all temperatures, and the critical

disorder increases with temperature. Without the truncation, the insulator disappears

at temperatures T > ε∗/2. We have also looked at the transition between superfluid

and normal fluid, employing the Bogoliubov transformation for weak disorder. The

superfluid critical temperature is reduced with increasing disorder.

In the vicinity of T = 0, our approach is not quantitatively exact. However, we have

ruled out other possibilities for the phase diagram presented in Figure 3.4 with physical

arguments, concluding that the only possibility is the presence of a tricritical point at

T = 0.

We have also checked that our result for the finite-temperature transition between insu-

lator and fluid is correct when one takes into account the processes mediated by highly

energetic particles. In this respect, we provided arguments against a series of recent

works claiming that MBL is not possible in continuum systems [14, 152]. Our results

point in the direction of the existence of a finite-temperature transition, i.e. a many-body

mobility edge.

Throughout this Thesis, we only looked at the case of a weak Gaussian white-noise

disorder. A different disorder correlation function can in principle change the shape

of the phase diagram, because a finite disorder correlation length implies a stronger
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growth of the localization length with energy. However, this should not change the

important result that, in the presence of a truncated distribution function, the insulator

phase is present at any temperature. In this respect, our result is not dependent on the

microscopic details of the disorder.

As noted in Chapter 3, we expect that experimental validation of our results is possible,

and look forward to the related activity. The key point is the presence/absence of a finite-

temperature insulator-fluid transition, which would show that a finite-temperature MBL

phase is smoothly connected to a Bose glass at T = 0.

A natural question is the extension of the above results to a fermionic system. While one

expects that the general shape of the diagram should not change, a detailed calculation

is needed in order to check this intuition. During the course of the PhD, we obtained

preliminary results that seem to point in this direction. However, they are not discussed

in the present Thesis.



Appendix

We report here many of the calculations that lead to the results given in the text. This

editorial choice to improve readability of the foregoing Chapters should not, however,

diminish the importance of the contents of this Appendix. Indeed, here is where we “get

our hands dirty” so that the other Chapters may be read, hopefully, with clarity.

A.1 Temperature dependence of the MBLDT

At zero temperature on the insulator side the average occupation number is given by

N ε =
ζ2(ε) (µ− ε)

g
Θ(µ− ε), (A.1)

where Θ is the theta-function. Then Eq. (3.22) becomes:

n =

∫ ε∗

−ε∗
ρ0
ζ2
∗ (µ− ε)

g
dε+

∫ µ

ε∗

ρ0
ζ2(ε) (µ− ε)

g
dε, (A.2)

and it yields

ng

ε∗
= f(µ) ≡ exp (2µ/ε∗)

4π3
(µ/ε∗ − 1) +

e2

4π3
(7µ/ε∗ + 1). (A.3)

At the same time, Eq. (3.21) gives:

gρ2
0

1

ζ2(εα)

(∫ ε∗

−|ε∗|

ζ2
∗ (µ− ε)

g
ζ4
∗dε+

∫ εα

ε∗

ζ2(ε) (µ− ε)
g

ζ4(ε)dε

)
+

gρ2
0ζ

2(εα)

∫ µ

εα

ζ2(ε) (µ− ε)
g

dε = C, (A.4)
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Figure A.1: The dependence of the critical coupling ng on εα at zero temperature for
C = 1. The minimum is at εα = 1.93ε∗.

where C is a coefficient of order 1. The resulting relation between µ and εα is:

F (εα, µ) ≡ e4

π6

(
ζ(εα)4

ζ4
∗

(
εα
ε∗

(
1

3
− 7ε∗

18εα
+

7ε2∗
36ε2α

+
ε3∗

54ε3α
− ε4∗

324ε4α

)
+

µ

ε∗

(
−1

3
+

ε∗
6εα

+
ε2∗

36ε2α
− ε3∗

216ε3α

))
+
ζ(εα)2ζ(µ)2

4 ζ4
∗

(
1− ε∗

µ

)
+

ζ2
∗

ζ(εα)2

(
409µ

216ε∗
+

31

324

))
= C.

(A.5)

We found numerically from equations (A.3) and (A.5), with C = 1, that the coupling

strength is minimal for εα0 = 1.93ε∗. It is equal to ngc0 = 1.84ε∗, and the related

chemical potential is µ0 = 2.23ε∗. This is seen from the obtained dependence of ngc0 on

εα (Fig. A.1).

It is instructive to look what happens for different values of the constant C in equation

(A.5). Figure A.2 shows the zero-temperature critical coupling ngc0 obtained for values

of C between 0.3 and 3. We see that changing the value of C does not significantly affect

the main conclusions given in the text.
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Figure A.2: The critical coupling ngc0/ε∗ as a function of the constant C.
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At temperatures T � ε2∗/Td, the corrections to the zero temperature result are negligible.

For temperatures ε2∗/Td � T � ε∗, using equations (3.26) and (3.27) we have the

following relations for the occupation numbers:

N ε =



ζ2(ε) (µ− ε)
g

+
T

µ− ε
; −ε∗ < ε < µ− δ

ζ2(µ)

2g

(
µ− ε+

√
(ε− µ)2 + 4Tg/ζ2(µ)

)
; µ− δ < ε < µ+ δ

(e(ε−µ)/T − 1)−1, µ+ δ < ε

(A.6)

where δ is a small quantity such that
√
Tg/ζ2(µ)� δ � T .

Eq. (3.22) gives
ngc
ε∗

= f(µ) +
T

Td

ngc0
ε∗

ln

(
(µ0 + ε∗)ζ

2(µ0)

gc0

)
. (A.7)

As the correction to the chemical potential should be small, we can expand f(µ) near

µ0 and obtain:

ngc
ε∗

= f(µ0) +
(µ− µ0)

ε∗
f ′µ(µ0) +

T

Td

ngc0
ε∗

ln

(
(µ0 + ε∗)ζ

2(µ0)

gc0

)
. (A.8)

Similarly, in the MBLDT criterion at finite temperatures we expand the function F (εα, µ)

near µ0 and εα0, which gives:

F (εα0, µ0) +
(µ− µ0)

ε∗
F ′µ(εα0, µ0) +

(εα − εα0)

ε∗
F ′εα(εα0, µ0) +

T

Td

ngc0
ε∗

G(εα0, µ0, gc0) = C

(A.9)

with

G(εα0, µ0, gc0) ≡ e2

π3

(
ζ(α0)2

ζ2
∗

(
ε2∗

16ε2α0

(
1− 4εα0

ε∗
− 4

µ0

ε∗

)
+ ln

(
(µ0 − εα0) ζ2(µ0)

gc0

))

+
ζ(µ0)4

ζ(εα0)2ζ2
∗

(
Ei

(
4− 4

µ0

ε∗

)
− Ei

(
4
εα0

ε∗
− 4

µ0

ε∗

))
+

ζ2
∗

ζ(εα0)2

(
3

16
+
µ0

4ε∗
+ ln

(
µ+ ε∗
µ− ε∗

)))
,

(A.10)

where Ei(x) is the exponential integral function. We have inserted the zero-temperature

values of µ0 and gc0 in the temperature correction, as these corrections are of order

T/Td. By construction we have F ′εα(εα0, µ0) = 0 and F (εα0, µ0) = C. This results in an

expression for µ− µ0 which we substitute into Eq. (A.8). We then obtain:

ngc
ε∗

=
ngc0
ε∗

(
1− T

Td

(
f ′µ(µ0)

F ′µ(εα0, µ0)
G(εα0, µ0, gc0)− ln

(
(µ0 + ε∗)ζ

2(µ0)

gc0

))
. (A.11)
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Figure A.3: The temperature dependence of the value of εα that minimizes gc at
C = 1. We used here Td/ε∗ = 50.

By setting C = 1 and inserting the corresponding values of ngc0, µ0, εα0 in the tem-

perature corrections, we obtain Eq. (3.30). The numerically obtained temperature

dependence of εα that minimizes gc is given in Fig. A.3 for C = 1, and one sees that

the optimal εα is very close to εα0. For different values of C the numerical coefficients

in Eq. (3.30) vary only slightly, as we show in Appendix A.3.
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A.2 MBLDT for the truncated distribution function

In the main text we argued that in realistic systems the distribution function Nε is

truncated at an energy εb. We take εb = 1.21ng + ηT , where η ranges from 5 to 8. This

means that the MBLDT criterion (3.21) reads

C = gρ2
0

(
1

ζ2(εα)

∫ εα

−ε∗
N εζ

4(ε)dε+ ζ2(εα)

∫ εb

εα

N ε

)
. (A.12)

At T � ε∗, the truncation practically does not influence the results. However, at higher

temperatures the influence is crucial. Considering T > ε∗/2 and setting εα → εb, with

µ+ δ < ε∗, one gets

C = gρ2
0

1

ζ2(εb)

(∫ µ+δ

−ε∗

ζ2
∗

2g

(
µ− ε+

√
(µ− ε)2 + 4Tg/ζ2

∗

)
ζ4
∗dε

+

∫ ε∗

µ+δ

1

e(ε−µ)/T − 1
ζ4
∗dε+

∫ εb

ε∗

1

e(ε−µ)/T − 1
ζ4(ε)dε

)
. (A.13)

The last integral dominates and gives

C = π−3ng

ε∗

εb
ε∗

T

Td

1

4T/ε∗ − 1
exp

{
εb

(
2

ε∗
− 1

T

)
+
µ

T

}
. (A.14)

From the number equation (3.22) one has:

µ ' π3/2

√
2e2

ng −

(
1− π3/2

√
2e2

)
ε∗. (A.15)

For the critical coupling Eq. (A.14) then yields:

ngc ' C
√

2e2

π3
T W

(√
π9

2e2

ε2∗
T 2

Td
εb

(
4T

ε∗
− 1

)
e
εb

(
1
T
− 2
ε∗

))
, (A.16)

where W (x) is the (main branch) Lambert W -function defined from x = W (xex). For

T > ε∗/2, the argument of W (x) is small. We then use the approximation W (x) ≈ x

for small x. This gives:

ngc ' C π3ε∗
Td
εb

(
4− ε∗

T

)
e
εb

(
1
T
− 2
ε∗

)
. (A.17)

The term (4− ε∗/T ) takes values ranging from 2 to 4 as T is increased above ε∗/2. We

take (4− ε∗/T ) ≈ 2 for simplicity, which yields:

εMBL
∗ =

2εb

W

(
4π3

Tde
εb/T

ng

) . (A.18)
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The argument of W (x) is now large and we can use W (x) ≈ (lnx − ln lnx) for large x

to get Eq. (16) of the main text, using C = 1.
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A.3 MBLDT in the thermodynamic limit

In this Appendix we show the calculations leading to the conclusion that in the ther-

modynamic limit the insulator phase disappears at temperatures T > ε∗/2. The critical

coupling tends to zero when T → ε∗/2 from below. We may assume that the chemical

potential decreases below ε∗, so that µ → −|ε∗| when gc → 0, and we expect εα to

increase. The number equation (3.22) of the main text gives

n =ρ0

∫ µ+δ

−ε∗

ζ2
∗

2g

(
µ− ε+

√
(µ− ε)2 +

4Tg

ζ2
∗

)
dε

+ ρ0

∫ ∞
µ+δ

1

e(ε−µ)/T − 1
dε,

so that the chemical potential is

µ ' −ε∗ +

√
2ngπ3ε∗
e2

. (A.19)

Equation (3.21) takes the form:

gρ2
0

(
1

ζ2(εα)

∫ ε∗

−ε∗
N εζ

4
∗dε+

1

ζ2(εα)

∫ εα

ε∗

ζ4(ε)

e(ε−µ)/T − 1
dε

+ζ2(εα)

∫ ∞
εα

1

e(ε−µ)/T − 1
dε

)
≈ C.

As εα is large we neglect the first integral, and calculating the other integrals we keep

only the highest power in εα. This gives

1

π3

ng

Td

εα
ε∗

T

(4T − ε∗)
exp

(
εα

(
2

ε∗
− 1

T

)
+
µ

T

)
+ (A.20)

1

π3

ng

Td

εα
ε2∗

exp

(
2εα
ε∗

)
T ln

(
1

1− e−(εα−µ)/T

)
≈ C,

and for large εα the logarithmic term becomes e−(εα−µ)/T . The coupling strength g is

minimized at εα = Tε∗/(ε∗ − 2T ).

Using µ ' −|ε∗| leads to the equation:

ngc ' 4(πe)3Td
ε∗

(ε∗
2
− T

)
; T → ε∗

2
. (A.21)

The results of exact numerics for gc(T ) and µ(T ) are shown in Figure A.4 for C = 0.3,

C = 1 and C = 3. The zero-temperature values are: ngc0 = 1.26ε∗, µ0 = 1.97ε∗ for

C = 0.3; ngc0 = 1.84ε∗, µ0 = 2.23ε∗ for C = 1; ngc0 = 2.64ε∗, µ0 = 2.45ε∗ for C = 3.
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We can see that the values of both gc(T ) and µ(T ) are almost constant until we get to

the vicinity of T = ε∗/2. Here they both sharply drop with a finite but large derivative,

as shown in the insets. This happens irrespective of the value of C. In the small

intermediate region of T , where the analytic approach is not possible, we numerically

solved equations (3.22) and (3.21) of the main text, with the occupation numbers given

by equation (A.6).
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Figure A.4: The critical coupling ngc0 in (a) and chemical potential µ in (b) versus
temperature for C = 0.3 (red), C = 1 (blue) and C = 3 (black). In both insets we see
that the derivative is always finite and becomes very large when we approach T = ε∗/2.
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A.4 Average of small occupation numbers

We need to calculate the average value of the square root

Nα′β′

αβ =
√
|Nβ(1 +Nα′)(1 +Nβ′)−Nα′Nβ′(1 +Nβ)|. (A.22)

When the average occupation numbers are large, we substitute them directly into equa-

tion (A.22) because fluctuations are small. We get:

Nα′β′

αβ =
√
|Nβ(1 +Nα′)(1 +Nβ′)−Nα′Nβ′(1 +Nβ)|

=
√
|NβNα′ +NβNβ′ +Nβ −Nα′Nβ′ | ; Nβ, Nβ′ , Nα′ � 1,

(A.23)

where the average occupation number is given by Eq, (4.20). Similarly, we keep the

largest terms when one of the average occupation numbers is small:

Nα′β′

αβ =
√
Nα′Nβ′ ; Nβ′ , Nα′ � 1;Nβ � 1 (A.24)

Nα′β′

αβ =
√
Nα′Nβ ; Nβ, Nα′ � 1;Nβ′ � 1 (A.25)

Nα′β′

αβ =
√
NβNβ′ ; Nβ′ , Nβ � 1;Nα′ � 1. (A.26)

When two of the average occupation numbers are small, we omit the interparticle in-

teraction for these states and calculate the probability of having j particles in the state

with energy ε as:

pj = (1− e−(ε−µ)/T )e−(ε−µ)j/T . (A.27)

Let us look first at the case where Nα′ � 1 and Nβ′ , Nβ � 1. We then have:

Nα′β′

αβ =
∞∑

Nβ=0

∞∑
Nβ′=0

pNβpNβ′

√
|Nα′(Nβ −Nβ′)|. (A.28)

The main contribution comes from the terms with

Nβ = 1, Nβ′ = 0 ; Nβ = 0, Nβ′ = 1. (A.29)

Taking into account that e−(εβ(β′)−µ)/T � 1, this yields:

Nα′β′

αβ =

√
Nα′(1− e−(εβ−µ)/T )e−(εβ−µ)/T (1− e−(εβ′−µ)/T )

+

√
Nα′(1− e−(εβ′−µ)/T )e−(εβ′−µ)/T (1− e−(εβ−µ)/T )

≈
√
Nα′(Nβ +Nβ′), (A.30)
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where Nβ′ = e−(εβ′−µ)/T and Nβ = e−(εβ−µ)/T . For small average occupation numbers

Nβ and Nβ′ , the states β and β′ have large energies. We take now the approximation

εβ ≈ εβ′ to find

Nα′β′

αβ ≈ 2Nβ

√
Nα′ ; Nα′ � 1;Nβ′ , Nβ � 1. (A.31)

Similar calculations give:

Nα′β′

αβ ≈ 2Nα′

√
2Nβ ; Nβ � 1;Nα′ , Nβ′ � 1 (A.32)

Nα′β′

αβ ≈ 2Nβ

√
Nβ′ ; Nβ′ � 1;NβNα′ � 1. (A.33)

When all three of the average occupation numbers are small, using the same method we

have:

Nα′β′

αβ = Nβ. (A.34)

The value of εα must be chosen in such a way that off-resonant processes are avoided.

As in Eq. (A.31), we set the two highest energy equal to each other (when the average

occupation numbers are small) in order to account for the fall-off of the matrix element

when one of the energies becomes very high. Using equations (4.12)-(4.13), this gives

the following MBLDT criterion in the thermodynamic limit:
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g

∫ µ

εα

dεα′

∫ µ

εα

dεβ′

∫ µ

εα

dεβρ
3
0

√
|Nβ(1 +Nα′)(1 +Nβ′)−Nα′Nβ′(1 +Nβ)|

∆α′β′

αβ

ζαζβζα′ζβ′+

g

∫ εα

−ε∗
dεα′

∫ µ

εα′

dεβ′

∫ µ

εα′

dεβρ
3
0

√
|Nβ(1 +Nα′)(1 +Nβ′)−Nα′Nβ′(1 +Nβ)|

∆α′β′

αβ

ζβζ
3
α′ζβ′

ζα
+

g

∫ εα

−ε∗
dεβ

∫ µ

εβ

dεβ′

∫ µ

εβ

dεα′ρ
3
0

√
|Nβ(1 +Nα′)(1 +Nβ′)−Nα′Nβ′(1 +Nβ)|

∆α′β′

αβ

ζ3
βζα′ζβ′

ζα
+

g

∫ εα

−ε∗
dεβ′

∫ µ

εβ′

dεβ

∫ µ

εβ′

dεα′ρ
3
0

√
|Nβ(1 +Nα′)(1 +Nβ′)−Nα′Nβ′(1 +Nβ)|

∆α′β′

αβ

ζβζα′ζ
3
β′

ζα
+

g

∫ ∞
µ

dεβ

∫ µ

εα

dεα′ρ
2
0

2Nβ

√
Nα′

∆α′β′

αβ

ζαζα′ + g

∫ ∞
µ

dεβ

∫ µ

εα

dεβ′ρ
2
0

2Nβ

√
Nβ′

∆α′β′

αβ

ζαζβ′+

g

∫ µ

εα′

dεβ

∫ µ

−ε∗
dεα′ρ

2
0

√
Nα′Nβ

∆α′β′

αβ

ζβζ
3
α′

ζ2
α

+ g

∫ εα

−ε∗
dεα′

∫ ∞
µ

dεβρ
2
0

2Nβ

√
Nα′

∆α′β′

αβ

ζβζ
3
α′

ζ2
α

+

g

∫ µ

−ε∗
dεβ

∫ µ

εβ

dεα′ρ
2
0

√
Nα′Nβ

∆α′β′

αβ

ζ3
βζα′

ζ2
α

+ g

∫ µ

−ε∗
dεβ

∫ µ

εβ

dεβ′ρ
2
0

√
Nβ′Nβ

∆α′β′

αβ

ζ3
βζβ

ζ2
α

+

g

∫ µ

−ε∗
dεβ′

∫ µ

εβ′

dεβρ
2
0

√
Nβ′Nβ

∆α′β′

αβ

ζ3
β′ζβ

ζ2
α

+ g

∫ εα

−ε∗
dεβ′

∫ ∞
µ

dεβρ
2
0

2Nβ

√
Nβ′

∆α′β′

αβ

ζ3
β′ζβ

ζ2
α

+

3gρ0

∫ ∞
εα

dεβ
Nβ

∆α′β′

αβ

+ gρ0

∫ εα

µ
dεβ

Nβ

∆α′β′

αβ

ζ2
β

ζ2
α

= C.

We have taken the average occupation number to be large at energies smaller than the

chemical potential, and checked that this is a good approximation.
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A.5 Fourier transform and correlator

We show in this Appendix how to take into account a different disorder correlation

function. The two-dimensional Fourier transform in polar coordinates r = (r, θ) and

k = (k, φ) reads:

F (k) =

∫ ∞
0

∫ π

−π
f(r, θ)e−irk cos(φ−θ)rdrdθ. (A.35)

Let now f(r, θ) be U(r), and f(r′, θ′) be U(r′). Then

F (k)F (k′) =

∫ ∞
0

∫ π

−π

∫ ∞
0

∫ π

−π
U(r)U(r′)e−irk cos(φ−θ)+ir′k′ cos(φ′−θ′)rdrdθr′dr′dθ′.

(A.36)

Taking the disorder average one gets:

〈F (k)F (k′)〉 =

∫ ∞
0

∫ π

−π

∫ ∞
0

∫ π

−π
〈U(r)U(r′)〉e−irk cos(φ−θ)+ir′k′ cos(φ′−θ′)rdrdθr′dr′dθ′.

(A.37)

Let us consider 〈U(r)U(r′)〉 = g(r − r′), so that it is a function of the difference r − r′

only. Then one has:

〈F (k)F (k′)〉 =

∫ ∞
0

∫ π

−π

(∫ ∞
0

∫ π

−π
g(r− r′)e−irk cos(φ−θ)rdrdθ

)
e−ir

′k′ cos(φ′−θ′)r′dr′dθ′.

(A.38)

Call the expression within parenthesis G(k, r′). If g(r− r′) = δ(r− r′), as in the case of

white noise, one has G(k, r′) = e−ik·r
′
. This gives:

〈F (k)F (k′)〉δ =

∫ ∞
0

∫ π

−π
e−ik·r

′
e−irk cos(φ−θ)rdrdθe−ir

′k′ cos(φ′−θ′)r′dr′dθ′. (A.39)

This is just the Fourier transform of the exponential function in coordinates (r′, θ′),

which is:

〈F (k)F (k′)〉δ = (2π)2δ(k′ − k). (A.40)

In general, the expression for 〈F (k)F (k′)〉 is just the Fourier transform of G(k, r′) as a

function of r′. Also, since G(k, r′) is the Fourier transform of g(r− r′), one may use the

shift property of the Fourier transform in terms of the exponential function. One finds

the Fourier transform of g(r) (call it g̃(k)) and then multiplies it by the exponential

e−ik·r
′

to find G(k, r′). In the simple case of g(r− r′) = δ(r− r′), we have g̃(k) = 1.

For an exponential function g(r−r′) = e−
|r−r′|2

σ2 , we have g̃(k) = πe−k
2σ2/4 andG(k, r′) =

πe−k
2σ2/4e−ik·r

′
. This gives:

〈F (k)F (k′)〉exp = πe−k
2σ2/4δ(k′ − k). (A.41)
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From the above identity, one easily calculates the difference between the results of Chap-

ter 3 and Ref. [130].





Résumé en français

Au cours des soixante dernières années, la physique quantique à N- corps a été princi-

palement concentrée sur la classification des phases quantiques à température zéro et

sur la description de leurs excitations à basse énergie. Cette tentative remarquablement

réussie a permis d’expliquer des phénomènes quantiques macroscopiques fascinants, tels

que la supraconductivité et les effets Hall quantiques, et de prévoir théoriquement les

isolants topologiques.

Les progrès récents dans la réalisation de systèmes synthétiques à N-corps isolés de

l’environnement ont poussé la communauté scientifique à commencer à regarder au-delà

des comportements proche de l’équilibre. Dans un setup expérimental ordinaire avec

des atomes ultra-froids, on peut préparer un état initial simple et le laisser évoluer avec

l’évolution temporelle unitaire générée par l’Hamiltonien à N-corps dans des conditions

bien contrôlées. Telles expériences offrent également de nouveaux moyens de sonder

l’état du système, avec des détails sans précédent. Ces développements naturellement

soulèvent une question: la classification de la matière quantique, peut-elle être étendue

pour décrire les états qui émergent au cours de la dynamique quantique?

La pensée conventionnelle avait longtemps été que les systèmes quantiques génériques

approchent finalement un état d’équilibre thermique. Dans ce processus, les corrélations

quantiques codées dans l’état initial sont mélangées, vu que les degrés de liberté lo-

caux deviennent de plus en plus intriqués dans le système. Les seules structures qui

subsistent sont les fluctuations des densités conservées, dont les modes de relaxation

lents sont décrits par l’hydrodynamique classique. Cette image explique pourquoi la

dynamique des systèmes macroscopiques semble normalement classique, même s’ils sont

fondamentalement gouvernés par la mécanique quantique.
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La nouveauté des dernières années, cependant, est que le destin classique d’un système

isolé à N-corps n’est pas inévitable. Il existe au moins une classe de système qui ne

parvient pas à thermaliser, et qui peut conserver des corrélations quantiques récupérables

sur des durées arbitrairement longues à travers le phénomène de la localisation à N-corps

(MBL, de l’anglais many-body localization), qu’on trouve dans les systèmes aléatoires

interagissants.

En fait, le désordre est omniprésent dans la Nature. Sa présence est souvent inévitable

dans une grande variété de systèmes physiques et, en conséquence, il joue un rôle crucial

dans notre compréhension des lois de la physique. Dans les systèmes de matière con-

densée en particulier, le désordre est responsable d’une riche phénoménologie qui a des

nombreaux conséquences sur les propriétés de transport d’un matériel. Il y a soixante

ans, P. W. Anderson a montré que le désordre avait des forts effets sur les systèmes quan-

tiques isolés [1]. Le transport peut être absent, parce-que les fonctions d’onde montrent

une décroissance exponentielle dans l’espace réel, telle que la diffusion des particules

est supprimée. On dit que les états propres sont ”localisés” dans l’espace réel, un ef-

fet particulièrement dramatique dans une basse dimensionnalité. Une nouvelle vague

d’intérêt pour ce problème a été inspirée par l’observation de la localisation d’Anderson

(AL) dans des gaz d’atomes dilués quasi-unidimensionnels de bosons froids avec une

interaction négligeable [2, 3]. Les implications de la physique de la localisation sont

extrêmement profondes, parce-que elles remettent en question notre compréhension des

processus qui gouverne l’équilibrage et la thermalisation des systèmes quantiques isolés

à N-corps. On s’est en effet rendu compte tout récemment que l’idée de localisation

était beaucoup plus générale que ce que l’on pensait à l’origine.

Le problème d’Anderson est essentiellement un problème concernant une seule partic-

ule, aucune interaction n’étant prise en compte. Une question subtile est de savoir

si la localisation survit en présence d’interactions. Le système peut potentiellement

se délocaliser à la suite de transitions induites par une interaction vers unes des nom-

breuses configurations des états à N-corps. Cela nécessitait d’énormes efforts théoriques,

qui achevèrent à la découverte de la physique de la localisation de N-corps (MBL). Les

premières études systématiques ont utilisé une méthode de perturbation, calculant la

désintégration d’une seule particule en excitations à N-corps. Ces travaux séminaux

ont montré que la localisation peut survivre en présence d’interactions faibles. Réf. [6]
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a conclu qu’un système en interaction localisé à basse température pouvait subir une

délocalisation lors de l’augmentation de la température, en raison de la croissance de

l’espace de phase disponible pour les processus induits par interaction.

Après quelques années, des travaux numériques ont soutenu l’analyse perturbative sur

l’existence de la phase MBL, et le domaine a connu une croissance significative. La

MBL a été trouvée pour des fermions de réseau unidimensionnels (1D) et son existence

a été rigoureusement prouvée dans une classe de châınes de spin désordonnées. En

raison de la suppression du transport à grande échelle, les systèmes MBL rompent le

scénario habituel de la thermalisation quantique et sont capables de conserver une cer-

taine mémoire de l’état initial. Le système ne parvient pas à s’équilibrer selon sa propre

dynamique et persiste dans un état perpétuellement hors d’équilibre. Cela rend MBL

également utile pour les applications technologiques, telles que le stockage d’informations

quantiques.

Au cours des années d’extraordinaire activité après les travaux fondateurs, des arguments

généraux au-delà du résultat perturbatif ont été proposés, remettant parfois en cause

les premiers résultats. On s’est vite rendu compte que, comme dans le problème non

interactif, la physique de MBL dépend fortement de la dimensionnalité d du système.

Deux dimensions sont particulièrement intéressantes dans ce respect. Déjà dans le

problème d’Anderson, d = 2 est un cas marginal, mais, ce qui est étonnant, la lo-

calisation s’étend à tout le spectre des états propres aussi pour une potentiel aléatoire

infiniment faible [16]. Dans le cas avec interactions, l’existence même de MBL dans d = 2

fait toujours l’objet de débats [15]. Les efforts numériques sont limités par la taille crois-

sante de l’espace d’Hilbert, et les arguments mathématiques démontrant l’existence de

MBL dans 1D ne sont pas applicables dans le cas à deux dimensions. à cet égard, il est

important de rechercher une vérification expérimentale susceptible de clarifier ces ques-

tions ouvertes. C’est dans ce contexte que la physique des gaz atomiques ultra-froids

devient extrêmement pertinente. En fait, les premières observations expérimentales de

brisure d’ergodicité dues à la MBL ont été documentées avec des atomes fermioniques

ultra-froids dans un potentiel unidimensionnel quasi-périodique [11]. Ces études sont

capables d’explorer le comportement du système à des échelles de temps longues et à

une densité énergétique élevée, contrairement aux précédentes qui étudiaient le cas de
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non-interaction ou le cas d’interactions à faible énergie. La première observation de

MBL en 2D a été documentée récemment, où des bosons bidimensionnels en interaction

dans un réseau optique désordonné avaient étaient considérés [20].

Dans cette thèse, j’étudie la localisation à N-corps dans le contexte de bosons désordonnés

à deux dimensions dans le continuum. Les propriétés des transitions de phase, et le

type d’ordre qui survient dans les phases de la matière émergeant à basse température

dépendent fortement de la dimensionnalité, et le cas d’un fluide Bose 2D est partic-

ulièrement fascinant. Dans un système infini uniforme à température finie T , les fluctu-

ations thermiques détruisent l’état ordonné à température zéro associé à la condensation

de Bose-Einstein, mais la superfluidité n’est pas supprimée. Ce phénomène remarquable

est expliqué dans la théorie de Berezinskii-Kosterlitz-Thouless (BKT) en termes d’ordre

topologique [21–24]. Je discute donc de la transition localisation-délocalisation à N-

corps à température finie et de l’influence du désordre sur la transition BKT, afin de

construire le diagramme de phase d’atomes de Bose en interaction dans un potentiel

désordonné à deux dimensions. J’examine ensuite l’influence de la troncature de la

distribution d’énergie due au piégeage, un phénomène générique dans le cadre du re-

froidissement d’atomes ultra-froids. Finalement, je conclus en discutant la stabilité de

la phase isolante dans des systèmes définis sur un continuum.

Figure A.5 montre le diagramme de phase obtenu. Trois phases existent: isolant, fluide

normal et superfluide. À T = 0, on trouve un point tricritique où les phases coexis-

tent. Afin de trouver la transition de phase entre un fluide et un isolant, j’analyse la

transition localisation-délocalisation à N-corps à des températures finies. En présence

d’une fonction de distribution d’énergie tronquée, la phase isolante existe à toutes les

températures et le désordre critique augmente avec la température. Sans la troncature,

l’isolant disparâıt aux températures au delà d’un désordre critique. J’ai également ex-

aminé la transition entre le superfluide et le fluide normal, en utilisant la transformation

de Bogoliubov pour un désordre faible. La température critique superfluide est réduite à

mesure que le désordre augmente. Proche de T = 0, l’approche utilisée n’est pas exacte

quantitativement. Pourtant, j’ai exclu d’autres possibilités pour le diagramme de phase

avec des arguments physiques, en concluant que la seule possibilité est la présence d’un

point tricritique à T = 0. Tous ces résultats sont présentés dans le Chapitre 3.
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Figure A.5: Diagramme de phase de bosons bidimensionnels désordonnés à interaction
faible en termes de force du désordre ε∗/ng et de température T/ng. Se référer au texte

pour les détails.

J’ai également vérifié que le résultat pour la transition à température finie entre isolant

et fluide est correct lorsque l’on prend en compte les processus médiés par des partic-

ules hautement énergétiques. À cet égard, j’ai fourni des arguments contre une série

d’articles récents qui affirment que MBL n’est pas possible dans les systèmes définis sur

un continuum [14, 152]. Cette étude est réalisée dans le Chapitre 4.

Les résultats de cette Thèse vont dans le sens de l’existence d’une transition à température

finie. Une validation expérimentale des résultats devrait être possible, comme je remar-

que dans le Chapitre 3. Les résultats de Chapitres 3 et 4 ont été publiés dans les suivantes

publications:

1. G. Bertoli, V.P. Michal, B.L. Altshuler and G.V. Shlyapnikov, Finite-Temperature

Disordered Bosons in Two Dimensions, Phys. Rev. Lett 121, 030403 (2018).

2. G. Bertoli, B.L. Altshuler and G.V. Shlyapnikov, Many-body localization in the

continuum: two-dimensional bosons, in preparation.
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[130] G. Carleo, G. Boéris, M. Holzmann, and L. Sanchez-Palencia, “Universal super-

fluid transition and transport properties of two-dimensional dirty bosons,” Phys.

Rev. Lett., vol. 111, p. 050406, Aug 2013.

[131] I. Aleiner, B. Altshuler, and G. Shlyapnikov, “A finite-temperature phase transi-

tion for disordered weakly interacting bosons in one dimension,” Nature Physics,

vol. 6, no. 11, p. 900, 2010.

[132] V. P. Michal, I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, “Finite-

temperature fluid–insulator transition of strongly interacting 1d disordered

bosons,” Proceedings of the National Academy of Sciences, vol. 113, no. 31,

pp. E4455–E4459, 2016.

[133] B. Allard, T. Plisson, M. Holzmann, G. Salomon, A. Aspect, P. Bouyer, and

T. Bourdel, “Effect of disorder close to the superfluid transition in a two-

dimensional bose gas,” Physical Review A, vol. 85, no. 3, p. 033602, 2012.



Bibliography 123
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Titre : Localisation à N-corps de bosons désordonnés à deux dimensions

Mots clés : Localisation à N-corps, Atomes froids, Systèmes quantiques désordonnés

Résumé : Au sein de physique des systèmes quan-
tiques désordonnés, le domaine des atomes ultra-
froids est en pleine croissance. En l?occurrence,
l’étude de la relation entre la localisation et les inter-
actions a permis de découvrir la richesse de la phy-
sique de la localisation à N-corps. Ce phénomène re-
marquable fournit un mécanisme pour la brisure de
l’ergodicité dans les systèmes quantiques isolés et
désordonnés. Plusieurs questions ont été évoquées
après cette découverte, comme la possibilité d’une
transition fluide-isolant à température finie.
Dans cette thèse, j’étudie la localisation à N-corps
dans le contexte de bosons désordonnés à deux di-

mensions. Dans la première partie, je présente l’étude
d’un gaz interactif de Bose bidimensionnel dans un
potentiel aléatoire à température finie. Le système
présente deux transitions à température finie: la tran-
sition de localisation à N-corps entre fluide et iso-
lant, et la transition de Berezinskii-Kosterlitz-Thouless
entre superfluide algébrique et fluide. J’examine en-
suite l’influence de la troncature de la distribution
d’énergie dû au piégeage, un phénomène générique
dans le cadre du refroidissement d’atomes ultra-
froids. Finalement, je conclus en discutant la stabilité
de la phase isolante dans des systèmes définis sur un
continuum.

Title : Many-body localization of two-dimensional disordered bosons

Keywords : Many-body localization, Ultracold atoms, Disordered quantum systems

Abstract : The study of the interplay between loca-
lization and interactions in disordered quantum sys-
tems led to the discovery of the interesting physics of
many-body localization (MBL). This remarkable phe-
nomenon provides a generic mechanism for the brea-
king of ergodicity in quantum isolated systems, and
has stimulated several questions such as the possi-
bility of a finite-temperature fluid-insulator transition.
At the same time, the domain of ultracold interacting
atoms is a rapidly growing field in the physics of disor-
dered quantum systems.
In this Thesis, we study many-body localization in
the context of two-dimensional disordered ultracold
bosons. After reviewing some importance concepts,
we present a study of the phase diagram of a two-
dimensional weakly interacting Bose gas in a ran-

dom potential at finite temperatures. The system un-
dergoes two finite-temperature transitions: the MBL
transition from normal fluid to insulator and the
Berezinskii-Kosterlitz-Thouless transition from alge-
braic superfluid to normal fluid. At T = 0, we show the
existence of a tricritical point where the three phases
coexist. We also discuss the influence of the trunca-
tion of the energy distribution function at the trap bar-
rier, a generic phenomenon for ultracold atoms. The
truncation limits the growth of the localization length
with energy and, in contrast to the thermodynamic li-
mit, the insulator phase is present at any temperature.
Finally, we conclude by discussing the stability of the
insulating phase with respect to highly energetic par-
ticles in systems defined on a continuum.
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