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ABSTRACT 

Behavioural ecology of fishermen and odontocetes in a depredation context on the 

Patagonian toothfish longliners around Crozet and Kerguelen islands 

Many marine predator species feed on fish caught by fishers directly from the fishing gear. Known as 

depredation this interaction issue has substantial socio-economic consequences for fishermen and 

conservation implications for the wildlife. Costs for fishers include damages to the fishing gear and 

increased fishing effort to complete quotas. For marine predators, depredation increases risks of 

mortality (lethal retaliation from fishers or bycatch on the gear). Longline fisheries are the most impacted 

worldwide, primarily by odontocetes (toothed whales) depredation, urging the need for mitigation 

solutions to be developed. Most of studies assessing depredation have primarily relied on surface 

observation data, thus the way odontocetes interact with longlines underwater remains unclear. Besides, 

the way fishermen respond to depredation during fishing operations, or can influence their detectability 

to odontocetes, have been poorly investigated. This thesis therefore aimed at investigating these aspects 

through a passive acoustic monitoring, bio-logging and human ecology approaches, focusing on the 

French Patagonian toothfish (Dissostichus eleginoides) longline fisheries impacted by killer whales 

(Orcinus orca) and sperm whales (Physeter macrocephalus). Firstly, this thesis reveals that captains 

behave as optimal foragers but with different personal perception of competition and fishing fulfilment. 

Some captains would thus be more likely to stay within a patch or to haul closest longline even in 

presence of competition, suggesting these captains would show higher interaction rates. Additionally, 

the propagation of vessels’ acoustics varied depending on the type of manoeuvre (e.g. going backward 

vs. forward). The way captains use their vessels to navigate may therefore influence their detectability 

and so their depredation level. Secondly, loggers deployed on both the longlines (accelerometers) and 

odontocetes (GPS-TDR) revealed that killer whales and sperm whales are able to depredate on longlines 

while soaking on the seafloor. These observations suggest, therefore, that odontocetes can localise 

fishing activity before the hauling, which could be partially explained by specific acoustic signatures 

recorded during the setting process. Altogether, the results of the thesis suggest that depredation rates 

on demersal longlines are most likely underestimated. The thesis also brings some important insights 

for mitigation measures, suggesting that countermeasures should start from setting to hauling. 

Keywords: depredation, demersal longline, killer whale, sperm whale, bio-logging, human behavioural ecology 

passive acoustic monitoring   
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RESUME 

Ecologie comportementale des pêcheurs et odontocètes dans un contexte de déprédation 

sur les palangriers à la légine australe autour des îles Crozet et Kerguelen 

De nombreux prédateurs marins se nourrissent directement des prises des pêcheurs. Ces interactions, 

définies comme de la déprédation, engendrent des conséquences socio-économiques considérables pour 

les pêcheurs ainsi que des implications de conservation pour la faune sauvage. D’un côté, la déprédation 

endommage le matériel et augmente l’effort de pêche pour atteindre les quotas. D’un autre côté, la 

déprédation augmente le risque de mortalité des prédateurs marins (prise accidentelle ou rétorsion létale 

par les pécheurs). La pêcherie à la palangre est la plus impactée par la déprédation, principalement par 

les odontocètes, ce qui incite à trouver des solutions. La majorité des études se concentrant sur la 

déprédation s’est principalement basée sur des observations en surface, de ce fait la manière dont les 

prédateurs retirent les poissons sur les lignes reste confuse. Par ailleurs, l’impact de la déprédation sur 

le comportement des pêcheurs ainsi que les facteurs expliquant leur détectabilité n’ont reçu que peu 

d’intérêt. L’objectif de cette thèse est donc d’étudier ces problématiques par un suivi acoustique, une 

utilisation de balises et une approche en écologie comportementale humaine, en se concentrant sur la 

pêcherie palangrière française ciblant la légine australe (Dissostichus eleginoides) impactée par la 

déprédation des orques (Orcinus orca) et des cachalots (Physeter macrocephalus). Les capitaines ont 

été décrits comme recherchant leur ressource selon la théorie de « l’optimal foraging », mais avec des 

perceptions de la compétition et du succès de pêche qui divergent. Certains capitaines seraient ainsi plus 

enclins à remonter les palangres au plus proche et à rester sur une zone, même en présence de 

compétition, augmentant alors le risque d’interaction. L’acoustique des navires a révélé que certaines 

manœuvres (marche arrière par exemple) propagent différemment sous l’eau. La manière dont les 

capitaines manœuvrent leur palangrier influencerait ainsi leur détectabilité et donc leur risque 

d’interaction avec les prédateurs. D’autre part, l’utilisation de capteurs sur les palangres et les animaux 

a révélé que les orques et les cachalots sont capables de déprédater sur les palangres posées sur le fond 

marin. Ces observations laissent à penser que les odontocètes sont en mesure de localiser l’activité de 

pêche bien avant la remontée de la ligne, ce qui pourrait être expliqué par une signature acoustique 

spécifique du déploiement de la ligne. L’ensemble des résultats de cette thèse suggère que la déprédation 

sur les palangres démersales est très probablement sous-estimée. Cette thèse apporte également des 

éléments importants pour la lutte contre la déprédation, en montrant la nécessité de protéger les 

palangres dans l’intégralité du processus de pêche. 

Mots clés : déprédation, palangre démersale, orques, cachalots, bio-logging, écologie comportementale humaine, 

acoustique passive 
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1. GENERAL INTRODUCTION 

 

1.1. CONSERVATION CONFLICTS 

1.1.1. CONTEXT OF CONSERVATION CONFLICTS: THE 

ANTHROPOCENE 

Humans are exceptional ecosystem engineers. As all species, we have attempted to 

enhance our environment to survive, but we distinguished ourselves by the use of tools and 

technologies that we transmitted through culture over generations (Smith 2007, Ellis and 

Ramankutty 2008). The shift that we created with the natured occurred with the learning process 

to ignite and master fire during the Palaeolithic (Marlowe 2005, Smith 2007, Ellis and 

Ramankutty 2008, Glikson 2013). Fire allowed an increase of the hunting pressure and the first 

landscape modification through controlled burning of vegetation (Marlowe 2005, Smith 2007, 

Archibald et al. 2012, Glikson 2013). Another profound impact of humans on fauna was the 

domestication of animals. First domestication occurred with the dog between 32 000 and 15 

000 years ago (e.g. Freedman et al. 2014, Germonpré et al. 2015, 2017, Frantz et al. 2016), and 

was followed by the domestication of other animals but also plants, 12 000 - 10 000 years ago 

(Pluciennik 1996, Leach 2003, Steffen et al. 2007). These domestications led to the Neolithic 

Revolution with a settlement of the human population and the development of early agriculture. 

This transition started to shape permanently ecosystems, by clearing forest and irrigating fields, 

and might have led to the first small increases in atmospheric carbon dioxide and methane 

concentrations between 8000 and 5000 years ago (Ruddiman 2003, Steffen et al. 2007). 

Preindustrial human societies have, thus, influenced their local environment with these new 

artificial habitats, but it was with the Industrial Revolution in Europe (end 18th -beginning 19th 

centuries) that human activity started to impact heavily on ecosystems (Steffen et al. 2007, 

2011, Ellis 2011, Lewis and Maslin 2015). The industrial revolution was first and foremost an 

energy revolution and constitutes the starting point of a new drastic shift between human and 

nature. Human societies used to rely on energy captured from ongoing flows (wind, water, 

animals, plants and trees) and changed in the 1800’s to fossil fuels (coal, oil and gas), increasing 

the carbon dioxide and methane emissions. However, the transition to these high-energy fuels 
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brought new technologies improving then the mobility and revolutionizing the agriculture. 

These innovations have been constantly improving human health condition and, thus, resulting 

to an important growth of the human population, with a demographic explosion in the second 

half of the 20th century (Steffen et al. 2007, 2011, 2015). It is now considered that no ecosystem 

on Earth remains free of human influence (Vitousek et al. 1997, Ellis and Ramankutty 2008). 

Overexploitation of resources and pollution due to Human activity is now altering the 

atmosphere, the hydrosphere, the lithosphere and the biosphere (Vitousek et al. 1997, 

VöRöSmarty and Sahagian 2000, Crutzen 2002, Foley 2005, Ellis and Ramankutty 2008, 

Rockström et al. 2009, Ellis 2011). These rapid and significant shifts of the global environment 

due to human activity have led to the definition of a new geological era: the Anthropocene 

(Crutzen 2002, Steffen et al. 2007, Zalasiewicz et al. 2011, Lewis and Maslin 2015). This 

human domination over the ecosystems questions also the definition of “biomes” in ecology 

commonly considered as “natural ecosystems with humans disturbing them”, and some 

specialists suggest rather talking about “anthromes” defined as “human systems, with natural 

ecosystems embedded within them” (Ellis and Ramankutty 2008). Within this context, conflicts 

with wildlife are unavoidable. 

 

1.1.2. DEFINITION OF THE CONSERVATION CONFLICTS  

Human-wildlife conflict has been defined as an action by humans or wildlife with an 

adverse effect on the other (Conover 2002). Their causes have been attributed mostly to the loss 

and fragmentation of existing habitats and to the increase of the competition for resources 

between human and wildlife. The first conflicts occurred during the Palaeolithic while first 

hominids were both hunted and hunters (Lee-Thorp et al. 2000, Dickman and Hazzah 2016). 

Although humans are not systematically hunted anymore, attacks still occurred and can be 

considered the most direct damage for humans, even though they remain rare (Löe and Röskaft 

2004, Dickman and Hazzah 2016). With the advent of the agriculture and human settlements, 

thus depredation developed as another major human-wildlife conflict (Sillero-Zubiri and 

Laurenson 2001, Woodroffe et al. 2005, McManus et al. 2015, Dickman and Hazzah 2016). 

Depredation is the feeding behaviour adopted by wild animals upon food either produced, 

farmed or captured by humans. The loss of crops or livestock to wildlife has significant 

consequences on people’s livelihoods and agricultural security (Barua et al. 2013, Dickman and 
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Hazzah 2016). Historically, humans primarily responded to these conflict by lethal retaliation 

towards the depredating species (Treves et al. 2006). With the growth of human populations, 

their spreading around the world and the increase of their activity, impacts of lethal retaliation 

on the wildlife have become increasingly severe. These responses, paired with growing 

anthropic pressure upon ecosystems, have caused a massive loss of biodiversity, leading some 

specialists to talk about “defaunation” as an analogy of “deforestation” (Dirzo et al. 2014). We 

may be assisting the Earth’s sixth mass extinction (Chapin III et al. 2000, Barnosky et al. 2011, 

Dirzo et al. 2014). 

The mass extinction of biodiversity combined with an increase resource depletion led to 

a rise of awareness within human societies in the 70s with the club of Rome and their report 

“The Limits to Growth” (1972). Indeed, biodiversity is an essential provider of ecosystem 

goods but also services, contributing to societies’ economy (Millennium Ecosystem 

Assessment 2005). With this trigger alarm, a new field of research arose: the conservation 

biology, defined as the “application of science to conservation problems that addresses the 

biology of species, communities, and ecosystems that are perturbed, either directly or indirectly, 

by human activities or other agents” (Soulé 1985). One purpose of this new field was to address 

the issues of human-wildlife conflicts in order to mitigate the anthropic pressure upon the 

biodiversity. Thus, biologists in conservation mostly urge decision toward the preservation of 

wildlife. However, within a conflict context, these decisions might be at the expense of human 

activities and therefore tend to generate a “human-human” conflicts rather than “human-

wildlife” conflict. Two types of conflicts are then distinguished: (i) “human-wildlife conflicts 

defined as the direct damages between humans and other species) and (ii) “conservation 

conflicts” referring to “situations that occur when two or more parties with strongly held 

opinions clash over conservation objectives and when one party is perceived to assert its 

interests at the expense of another” (Woodroffe et al. 2005, White et al. 2009, Young et al. 

2010, Redpath et al. 2013, 2015).  

 

1.1.3. HOW TO SOLVE CONSERVATION CONFLICTS? 

A solved “conflict" is a situation where both parties can coexist, and within a 

conservation context it also includes a decrease of the human-wildlife impact (Treves et al. 

2006, Redpath et al. 2013, Sarrazin and Lecomte 2016). A clear identification of the actors 
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involved in a conflict along with their respective interests is therefore necessary to achieve right 

management and to tend toward a win-win situation (Treves et al. 2006, Young et al. 2010, 

Colyvan et al. 2011, Redpath et al. 2013, 2015). As such, a third party is often requested to plan 

a sustainable management of the conflict as long as they maintain transparency in their 

assumptions and inferences to be trusted by the actors involved in the conflict (Treves et al. 

2006, Redpath et al. 2013). The role of scientists is first to measure the perceptions of conflicts 

as well as the behaviours of the involved actors either humans or animals (Treves et al. 2006, 

Redpath et al. 2013, Blackwell et al. 2016). As part of this process, behavioural ecology is a 

field of importance as it allows for a better understanding of the human impacts on wildlife. 

This field of ecology aims indeed at investigating the evolutionary basis for animal behaviour 

in response to ecological pressures. When environments are shaped by human activity, this 

approach can target how human activity influences the behaviours of wild animals and the 

consequences on the adaptability and survival of the wildlife populations. Besides, a good 

understanding of animal behaviour, both in presence and absence of human activity, may help 

to develop possible trade-offs involving alternative options for the actors to be used as 

techniques avoiding lethal retaliation (Treves et al. 2006, Sarrazin and Lecomte 2016, 

Blackwell et al. 2016). The implementation of solutions must always be followed by monitoring 

to judge the effectiveness of interventions. Scientists have to evaluate whether the shared 

objectives between the wildlife conservation and human welfare have been reached (Treves et 

al. 2006).  

The steps for a good management of a conservation conflict seem in theory quite 

achievable. However, these conflicts are in practice very complex as they require balance of the 

interests between all actors and might be in some case unreachable (Treves et al. 2006, Redpath 

et al. 2013, Dickman and Hazzah 2016). In addition, the complexities of ecosystems where 

conflicts occur paired with the lack of knowledge on animals’ behaviour often result in a poor 

understanding of the conservation priority. This may be especially true for ecosystems which 

are not directly shaped by humans, such as in agriculture where land modification allows the 

control and understanding of most ecosystem parameters. This is the case for marine 

environments, a complex ecosystem hardly accessible to humans (Lewison et al. 2018). 

However, although humans cannot settle and thus shape directly the marine environments, they 

nevertheless succeeded to exploit aquatic ecosystems all over human evolution. 
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1.2. MARINE DEPREDATION 

1.2.1. CONTEXT OF MARINE DEPREDATION: FISHING ACTIVITY  

The Earth's surface is 71 % covered by water and 96.5% of this water is held within the 

oceans. Marine ecosystems are predominant on our planet and all of them have been impacted 

by anthropic activities, either indirectly through human pollution or directly through resources 

exploitation (Halpern et al. 2008). The exploitation of the oceans started as early as the 

Palaeolithic with the hunter-gatherer foraging on fish and molluscs along the coast (Erlandson 

2001, Erlandson and Moss 2001, Jackson 2001). Through human evolution and techniques 

developments, humans have then been able to go further away from the coast and to exploit 

offshore ecosystems, increasing their fishing pressure on target species and on their supporting 

ecosystems (Jackson 2001). Nowadays, all humans fisheries capture more than 90 million of 

tonnes of fish per year, including fish not targeted but kept on board (bycatch), with more than 

30% considered as overfished (FAO 2016). These estimations do not account for discards, i.e. 

fish and other marine life that are thrown overboard, estimated around 10% of the global total 

catches, which represents a hidden impact not marginal (Kelleher 2005, Zeller et al. 2018). 

However, even by assessing these discards, the total catch is still underestimated since Illegal, 

Unregulated and Unreported (IUU) fishing is not accounted. With an estimated 18% of the 

global catch in the early 21st century, IUU fishing is likely to greatly contribute to the current 

overexploitation of fish stocks (Agnew et al. 2009). Thus, through human evolution, fisheries 

have led to important depletion of species, questioning the sustainability of this activity 

(Jackson 2001, Pauly et al. 2002). However, despite the collapse of some fishing stocks during 

the last decades, most of fishing efforts have kept growing (Pauly et al. 2002, FAO 2016).  

Fisheries affect marine wildlife and ecosystems in various ways. The first direct impact 

of fishing is the reduction of the target species’ abundance, threatening the stocks with 

extinction through overexploitation (Casey 1998, Pauly et al. 2002). Removing species, or at 

least part of a population, modifies the natural balance of ecosystems through a reduction of the 

number and length of pathways within food webs (Pauly 1998, Pauly et al. 2002). Fisheries can 

generate both top-down and bottom up effects. On the one hand, top-down effects occur when 

fisheries primarily target large individuals from upper trophic levels, this reduces predatory 

pressure on prey, which therefore leads to overloaded populations in lower trophic levels of the 

ecosystem, subsequently causing deleterious effects (Jackson 2001, Daskalov 2002, Pauly et 
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al. 2002, Lynam et al. 2017). On the other hand, bottom-up effects occur when fisheries exploit 

a resource used by marine predators. The marine top predators may either change their diet and 

thus introduce a new predatory pressure on other species disrupting the ecosystem balance 

(Jackson 2001, Lynam et al. 2017), or enter in direct competition with fisheries (Trites et al. 

1997, DeMaster et al. 2001, Matthiopoulos et al. 2008). Competitive interaction between top 

marine predators and fisheries could result in a negative impact on marine predators populations 

due to marine resources depletion (Trites et al. 1997, Yodzis 2001, DeMaster et al. 2001, 

Matthiopoulos et al. 2008). However, competition also leads to operational interactions defined 

when marine predators come into physical contact with fishing gear to withdraw the catch 

(Northridge 1991, Donoghue et al. 2002, Gilman et al. 2006, Read et al. 2006, Read 2008). 

These interactions happen when there is co-occurrence of foraging activity or when marine 

predators are attracted by fishing activity. This latter behaviour has been defined as depredation, 

since the predators feed upon a resource captured by humans (Donoghue et al. 2002, Gilman et 

al. 2006, Read 2008). With the extension of fishing activity over the last decades, direct 

interactions between human fisheries and marine top predators have been increasing, raising 

new conservation conflicts (Northridge 1991, Northridge and Hofman 1999, Read et al. 2006, 

Read 2008).  

 

1.2.2. DEFINITION OF THE MARINE DEPREDATION CONFLICTS 

 Depredation on fisheries by marine predator is a type of situation where human activity 

and wildlife behaviour have both an adverse effect on the other, defining thus a “human-wildlife 

conflict” (Conover 2002). On the one hand, depredation has substantial socio-economic 

consequences for fishermen. Indeed, this behaviour by marine predators is characterised by the 

removal of the whole capture or the partial consumption of the fish, decreasing the fish 

economic value and damaging the fishing gear at the same time (Donoghue et al. 2002, Gilman 

et al. 2006, 2008, Read 2008). Additionally to these induced costs, fishermen increase their 

fishing effort to complete their quota or to avoid depredation, increasing expenses due to fuel 

consumption, extra food and crew salaries (Gilman et al. 2006, Peterson and Carothers 2013, 

Peterson et al. 2014, Tixier et al. 2015c, Werner et al. 2015). On the other hand, depredation 

for marine predators increases risks of mortality by the use of lethal retaliation by fishermen 

(Yano and Dahlheim 1995, Woodroffe et al. 2005, Treves et al. 2006, Read 2008), or by a 
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greater risk of bycatch, especially in gillnets (Northridge 1991, Gilman et al. 2006, Read et al. 

2006, Read 2008, Hamer et al. 2012, Reeves et al. 2013). For instance, it has been observed 

that at least 75% of odontocetes, 64% of mysticetes, 66% of pinnipeds, and all sirenians and 

marine mustelids species have been recorded as gillnet bycatch since the 1990’s (Reeves et al. 

2013).  

Depredation has been observed on all fisheries and by a broad range of large marine 

vertebrates (Northridge and Hofman 1999, Donoghue et al. 2002, Gilman et al. 2006, 2008, 

Read 2008, Hamer et al. 2012, Werner et al. 2015). However, most of these conflicts involved 

the longline fisheries, with a growing cases since the 1950s (Northridge and Hofman 1999, 

Donoghue et al. 2002, Gilman et al. 2006, Read 2008, Hamer et al. 2012), and have involved 

mainly odontocetes species (Northridge 1991, Northridge and Hofman 1999, Gilman et al. 

2006, Read 2008, Reeves et al. 2013, Werner et al. 2015). Indeed, at least 31 species of 

odontocetes have been reported to interact (either depredation or bycatch) with longline 

fisheries against 15 species of pinnipeds, 6 species of mysticetes, and 2 species of sirenians 

(Werner et al. 2015). Increasing longline depredation may be firstly explained by the large 

expansion of this fishing gear worldwide in the last 70 years. Indeed, longlines are more 

selective in catching targeted fish species than most of the other fishing gears and have thus 

been favoured in many fisheries (Gilman et al. 2006, Read 2008). Secondly, longline is an easy 

target for marine predators as baits and fish are freely accessible. Indeed, longlines consist of 

snoods connecting unprotected hooks at intervals along a mainline. The longline fishing process 

is composed of three steps (Figure 1-1): (i) the setting, which is the phase when hooks are baited 

and longlines are deployed at sea, and which generally lasts from less than an hour to a few 

hours; (ii) the soaking, which is the phase when fish is caught as the longline is left at sea with 

no boat activity, and which lasts from a few hours to a few days depending on fisheries; (iii) 

the hauling, which is the phase when longlines with the catch are retrieved aboard boats, and 

which, for a given longline, generally lasts longer than the setting phase. Longlines can either 

be deployed within the water column close to the surface, i.e. pelagic longlines, or on the 

seafloor, i.e. demersal longlines. Depredation has been mostly described to occurr during 

hauling of the longlines for both types (Hucke-Gaete et al. 2004, Gilman et al. 2006, Read 2008, 

Mathias et al. 2012, Rabearisoa et al. 2012, Söffker et al. 2015, Guinet et al. 2015, Passadore et 

al. 2015, Tixier et al. 2015c, Werner et al. 2015) and also during the soaking time for pelagic 

longlines (Gilman et al. 2006, Dalla Rosa and Secchi 2007, Read 2008, Forney et al. 2011, 
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Rabearisoa et al. 2012, Passadore et al. 2015, Werner et al. 2015, Thode et al. 2016). As 

longlines may increase the availability of food for top marine predators, the development of 

this fishing technique has caused substantial ecological chain reactions. For marine predators, 

foraging on fish already caught requires very low capture effort and therefore increases 

energetic intake. This may result in a positive influence on the survival and reproduction of 

individuals in some populations, even though the risk of mortality by entanglement on longlines 

remains high (Donoghue et al. 2002, Gilman et al. 2006, Read 2008, Tixier et al. 2017). As a 

result marine predators are likely to favour this behaviour over natural foraging, subsequently 

increasing the risk of a habituation to fisheries and/or a switch of their natural diet and so their 

foraging strategies, and also their natural spatial distribution (Gilman et al. 2006). In turn, these 

behavioural modifications longline depredation may threaten the prey-predatory balance 

established in the ecosystem by increasing the predatory pressure on the targeted fish, 

threatening the fish stocks of depletion. 

All these ecological impacts paired with bycatch on longlines of emblematic species 

have created a negative public perception of longline fishing and raised conservation programs 

to protect either marine predators and fish stocks (Gilman et al. 2006). As most of these actions 

are more likely to reduce fishing activity, the “human-wildlife conflicts” should be better 

considered as a “human-human conflicts” (Treves et al. 2006, Redpath et al. 2013, 2015). This 

conservation conflicts requires solution to reach a situation where marine wildlife is not threaten 

and fisheries are sustainable (Treves et al. 2006).  
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Figure 1-1 – Fishing phases of a demersal longline.  

 

 

1.2.3. HOW TO SOLVE THE MARINE DEPREDATION CONFLICTS?  

Identifying solutions to marine depredation involves developing mitigation measures 

with limited costs for all parties of the conflict. On one hand, preventing marine predators from 

interacting with fisheries would suppress/decrease the mortality risk of these animals as well as 

all the ecological consequences of depredation on the ecosystem. Besides, it would allow 

reducing the fishing effort to catch the same amount of fish, and thus decrease fishing pressure 

on the environment as well as improving fisheries sustainability. However, to find the 

appropriate mitigation is challenging since preventing marine predators from interacting with 

fishing gear should not decrease the fishing efficiency. Solutions are then mostly dependant on 

the fish targeted, the fishing gear used and the depredating species. The first step toward a 

resolution of the conflict is then a good understanding of these three components. Thus, as 

previously discussed, scientists have an important role to play as they can study interaction 

between marine predators and fisheries, by assessing behaviour of both actors, and then 

implement experimental solutions and monitor their efficiency. 



1. GENERAL INTRODUCTION 

 

23 

 

Depredation is a conflict that can theoretically be mitigated using two non-lethal 

approaches either operational or technological. Firstly, a better understanding of fishing 

practice and strategy with their causes or consequences on depredation rates may lead to 

relatively easy mitigation solution to implement with limited cost for fisheries. Indeed, through 

this operational approach scientists can make recommendation for fishermen on the use of their 

fishing gears and propose more efficient strategies to limit marine predators’ access to catch 

and bait (Gilman et al. 2006, Hamer et al. 2012, Werner et al. 2015). For instance, the hauling 

speed or the setting length or deployment depth of longlines may gain time and reduce the 

probability of interaction (Gilman et al. 2006, Tixier et al. 2010, 2015c, Werner et al. 2015). 

Another improvement of fishing strategy involves a better spatio-temporal use of the fishing 

area by targeting grounds where and when the probability of encounter with marine predators 

is the lowest (Dunn et al. 2014, Tixier et al. 2015c, Werner et al. 2015, Janc et al. 2018). This 

approach requires assessing the marine predators’ ecology to know if the predators have some 

preferential foraging areas/seasons within the fishing zone, or whether they have diel feeding 

variations or also if they might be migratory species. However, it is likely to have strong spatio-

temporal overlaps between the fishing activity and the predators’ foraging, as both wildlife and 

humans may be attracted by high fish densities grounds. Thus, changes of fishing strategies 

may sometimes decrease fishing success as well as increase cost for fisheries. For instance, 

alternative fishing practices might have a human impact when requiring fishermen to work 

either faster or longer or in worst condition. As a result, these changes in fishing strategies could 

reduce depredation levels but they rarely solve completely the conflict.  

Additional approaches are then needed, such as methods to protect the catch either by 

repelling the predators or by avoiding detection of the fishing activity or by using a physical 

protection of the gear to avoid access to the fish. These technological approaches seem in theory 

the best ways to avoid depredation. Nevertheless, it is in practice hard to implement since it 

faces a lot of constraints to meet a trade-off between being economically viable for fishermen 

and harmless for marine predators. Behavioural ecology has an important role to play as it is 

essential to know how fishing activity is detected by the predators and how the depredation 

occurs to target the most appropriate solution. For the first purpose, it is essential to assess how 

marine predators perceive their environment and localise they prey. For instance, using a 

sensory ecological approach, some studies have found that shark are sensitive to chemical, 

magnetic, electropositive rare earth metal and electrical repellents (Gilman et al. 2008). As for 



1. GENERAL INTRODUCTION 

 

24 

 

odontocetes some studies have focused on developing the use of acoustic deterrence, since they 

primarily rely on acoustic to forage. Although it seems impossible to deter cetaceans by 

acoustics, using pingers on gillnets to signal their presence to dolphins and porpoises have 

shown promising results in decreasing odontocete bycatch (Reeves et al. 2013, Maccarrone et 

al. 2014). However, for fishing gears where fish is freely accessible, the interest is not to 

increase fishing gear detection with pingers but to repel the animals with acoustic harassment 

(Arangio 2012, Tixier et al. 2015b, Werner et al. 2015). Trials of acoustic harassment have yet 

not been conclusive in the literature (Götz and Janik 2015, Tixier et al. 2015b, Werner et al. 

2015). Another approach to repeal odontocetes from the fishing gears using acoustic is to attract 

them toward a decoy producing fishing vessels playbacks (Thode et al. 2015, Wild et al. 2017). 

These playbacks require to assess the vessels acoustic signatures and determine any acoustic 

clues which may attract odontocetes (Gilman et al. 2006, Thode et al. 2007, 2015). Furthermore, 

the identification of the sounds that attract the odontocetes could also lead to improvement of 

fishing vessel to decrease their detection range (Gilman et al. 2006, Thode et al. 2007, Hamer 

et al. 2012, Werner et al. 2015). When it seems inefficient to avoid the attraction of odontocetes 

of the fishing gear, then the last option seems to be the use of physical protections. Although a 

physical protection is the most complicated method to implement, since it requires changing 

the fishing gear and so the setting system of the fishing boat, it may offer the most efficient 

solution. Thus, this approach may be considerably expensive for fisheries but the benefits 

gained from suppressing depredation may cover the costs engaged. This approach was first 

developed by Chilean fishermen to mitigate sperm whale depredation from demersal longlines, 

using a floating net sleeves sliding down to protect the fish during hauling, called the 

‘Cachalotera’ (Hucke-Gaete et al. 2004, Moreno et al. 2008, Arangio 2012). In contrast, pelagic 

longlines may be exposed to depredation during the entire fishing process, i.e. both during 

soaking and hauling, thus using a triggered device that could encapsulate the fish caught may 

avoid depredation (Hamer et al. 2012, 2015, Rabearisoa et al. 2012, Werner et al. 2015). This 

approach has nevertheless not received a lot of attention yet (Hamer et al. 2012, 2015, 

Rabearisoa et al. 2012, Werner et al. 2015). This may be partially explained by the complexity 

to test experimental devices on commercial fishing boats not adapted to scientific trials, and to 

logistical constraint to equip all fishing gear with numerous hooks deployed by commercial 

longliners. Fishing gear modification can require a period to optimise the new practice, whereas 

other fishing methods might be already optimised and useful to reduce depredation, such as the 

fishing pots. For instance in Alaska pot fisheries have been approved and seem to be effective 
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in preventing sperm whale depredation, but are more expensive to use compared to 

conventional longlines(Sullivan 2015, Peterson and Hanselman 2017). The same conclusion 

has been drawn after a preliminary trial performed as part of the ORCASAV program in 2010 

around Crozet Archipelago (captains and Guinet personal communications, and see (Bavouzet 

et al. 2011, Gasco 2013). Furthermore, with the recent expansion of longline fisheries some 

depredation cases are relatively new and still require some assessments.  

As all conservation conflict, depredation requires a good understanding of the issue and 

then a good monitoring of solutions. Although mitigation is on its way many studies are still at 

the understanding stage and scientist start to monitor solutions. The complexity of the issue 

comes from the ecological, socioeconomic and cultural dimension of the conflict. Indeed this 

interaction involves in one side one of the most important human activity (i.e. fishery); and in 

the other side some emblematic species which are still poorly known as they evolve in an 

ecosystem hardly accessible. The knowledge of these mysterious animals has yet substantially 

increased with the improvement of technologies, such as in acoustics, bio-logging, or molecular 

biology. With these progresses researcher have recently described unobserved populations or 

even new species of marine mammals (Robineau et al. 2007, Pitman et al. 2011, Morin et al. 

2016) or assessed new insights of diving behaviour by some odontocetes (Schorr et al. 2014, 

Reisinger et al. 2015). These studies revealed how much we still have to learn about marine 

mammals and especially about their underwater behaviours. As previously discussed, the 

understanding of marine mammal behaviours is crucial to assess the conservation conflicts. 

This thesis falls in this purpose to better understand interactions between marine mammals and 

longline fisheries for a better lead to mitigation solutions. 

 

1.3. CONTEXT AND PURPOSE OF THE THESIS 

1.3.1. CONTEXT OF THE THESIS: A GAP IN FINE SCALE 

UNDERSTANDING OF LONGLINES DEPREDATION 

Research effort on interaction between odontocetes and longlines has substantially 

increased over the last 15 years (Northridge and Hofman 1999, Donoghue et al. 2002, Gilman 

et al. 2006, Straley et al. 2015, Guinet et al. 2015, Thode et al. 2015, Tixier et al. 2015c, Werner 

et al. 2015, 2015). These studies have considerably improved our understanding of these 
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conflicts by identifying the species involved and estimating impacts on fisheries at the fleet 

level (e.g. Hucke-Gaete et al. 2004, Dyb 2006, Tixier et al. 2010, Rabearisoa et al. 2012, 

Peterson et al. 2014, Straley et al. 2015, Söffker et al. 2015, Passadore et al. 2015) and on 

wildlife populations, both depredating species and fish stocks (e.g. Gilman et al. 2008, Read 

2008, Forney et al. 2011, Hamer et al. 2012, Gasco et al. 2015, Guinet et al. 2015, Tixier et al. 

2017). However, most of these studies have relied on large spatio-temporal scales and have 

been limited to visual surface data, such as direct surface observations of depredating animals 

around fishing boats (especially for demersal longlines, e.g. Hucke-Gaete et al. 2004, Purves et 

al. 2004, Kock et al. 2006, Roche et al. 2007, Gasco et al. 2015, Söffker et al. 2015, Janc et al. 

2018) or through the presence of damaged fish on hauled longlines (especially for pelagic 

longlines, e.g. Dalla Rosa and Secchi 2007, Rabearisoa et al. 2012, Straley et al. 2015, 

Passadore et al. 2015). The underwater dimension of depredation has remained poorly 

investigated. First studies using alternative types of data, such as underwater videos, acoustics 

and bio-logging revealed that odontocetes may depredate baits and remove the whole fish 

(Mathias et al. 2009, Thode et al. 2014, 2015, 2016, Guinet et al. 2015). These investigations 

question the accuracies of interaction estimations, and suggest that depredation rates may be 

underestimated, which could have critical consequences on fishing management and stocks 

assessments. It is therefore essential to increase research effort on this underwater dimension, 

and to question our vision of interactions between fishermen and marine predators.  

Depredation conflicts have been mainly described as “fishery-odontocetes” interactions, 

therefore considering the fishing gear and fishermen as a unique entity. Indeed, for demersal 

longline fisheries, “interactions” have been assumed to primarily occur during hauling phases 

when animals are seen in the vicinity of fishing boats (Mathias et al. 2012, Tixier 2012, Werner 

et al. 2015). However, during soaking, the fishing gear is independent from fishermen activity 

and studies on pelagic longlines revealed that depredation could occur during this phase (Dalla 

Rosa and Secchi 2007, Forney et al. 2011, Rabearisoa et al. 2012, Passadore et al. 2015, Thode 

et al. 2016). Thus, a finer approach may be to assess “fishing gear-odontocetes” interactions 

separately from the “fishermen-odontocetes” interactions. By dissociating fishermen from their 

fishing gear, we may consider three “actors” involved in the depredation conflict (fishermen, 

fishing gears and odontocetes). This categorisation of entities adds the possibility to describe 

the relationships/interactions between them at different scales. We can therefore assess the 

“fishing gear-fishermen” interaction which relates to fishermen behaviour in regards to their 
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setting and hauling strategies. Fishing behaviours and strategies include the way fishers use the 

fishing gear (i.e. longlines’ length, the hauling speed, etc.) or the fishing vessels (i.e. 

manoeuvres, mobility) and make decisions during fishing operations to exploit the fish stock. 

Fishermen behaviours and strategies have been poorly assessed at individual scale. As an 

analogy to other predators, it is of interest to better understand fishermen foraging behaviours 

within a context of competition with odontocetes (McCay 1978, Begossi 1992, Orians et al. 

2003, Nettle et al. 2013). Individual foraging behaviours may indeed imply different risks of 

detectability by the odontocetes. This behavioural ecology approach may highlight mechanisms 

of the conflict at a “fishermen-odontocetes” dimension. Finally, we may wonder how 

odontocetes depredate on the fishing gear once the competition starts. Similarly to fishermen 

behaviour, an individual scale of marine predators behaviour would then tackled gaps in the 

knowledge of “fishing gear-odontocetes” interactions. This approach requires monitoring 

odontocetes’ behaviours underwater. This PhD aimed therefore at assessing a depredation 

conflict case from the three interactions dimensions described here before and using 

individuals’ behaviours of both fishermen and odontocetes. 

 

1.3.2. STUDY CASE  

This thesis focused on an example of the depredation conflict involving the commercial 

Patagonian toothfish (Dissostichus eleginoides) longline fisheries with killer whales and sperm 

whales in the Southern Ocean. 

The Patagonian toothfish belongs to the Nototheniidae family and the Dissostichus spp. 

genus, which includes two species that are both endemic to the southern hemisphere and 

bathypelagic. While the other species, the Antarctic toothfish, Dissostichus mawsoni, is found 

at high latitudes around Antarctica, the Patagonian toothfish is primarily found in sub-Antarctic 

waters (Collins et al. 2010). These are long-lived (>50 years) and large size (> 200 cm in length 

and > 200 kg in weight) species (Collins et al. 2010). A high-quality flesh makes the two species 

economically highly valuable (Collins et al. 2010, Grilly et al. 2015) and toothfish fisheries 

have developed as a primary economic activity of Antarctic and sub-Antarctic waters (Figure 

1-2, Croxall and Nicol 2004, Collins et al. 2010, Grilly et al. 2015). The average prices of 

imports for toothfish have recently increased by 62.24% (between 2007-2012 - Grilly et al. 

2015), with an estimated current value of 30-35 US$/kg. The Antarctic toothfish fisheries 
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started in the 2000s, and are primarily operated in areas regulated by the Commission for the 

Conservation of Antarctic Marine Living Resources (CCAMLR). The Patagonian toothfish was 

first caught as a bycatch species by the trawl fisheries operating in the Exclusive Economic 

Zones (EEZ) of Chile in the 1950s and of Kerguelen and South Georgia in the early 1980s. The 

species later became a target species between the mid-1980s and the 2000s, initially caught by 

trawl fisheries until the emergence of demersal longlining, which progressively replaced 

trawling in the 1990s (Collins et al. 2010). Patagonian toothfish fisheries now primarily operate 

in areas under CCAMLR jurisdiction, which includes international waters and EEZs around 

French, Australian, British and South African sub-Antarctic islands, as well as in non-

CCAMLR areas such as the EEZs of Argentina, Chile and the Falklands/Malvinas (Croxall and 

Nicol 2004, Collins et al. 2010, Grilly et al. 2015).  

 

Figure 1-2 - Map from the Coalition of Legal Toothfish Operators (COLTO) of the toothfish fisheries 

sites with their total allowable catches (TACs), for the season 2015-2016, set by the Commission for the 

Conservation of Antarctic Marine Living Resources (CCAMLR) or by national authorities within their 

Economic Exclusive Zone (EEZ). The red square highlights French EEZs of Crozet and Kerguelen 

islands on which this thesis focused. 
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However, in most of these fishing areas, fisheries have experienced interactions with 

killer whales and/or sperm whales since the very beginning of their commencement (Nolan et 

al. 2000, Hucke-Gaete et al. 2004, Kock et al. 2006, Yates and Brickle 2007, Collins et al. 2010, 

Tixier et al. 2010, Roch et al. 2011, Arangio 2012, Guinet et al. 2015). In some fisheries the 

probability to haul a longline in presence of sperm whales have exceeded 50%, such as in Chile 

or around the French sub-Antarctic islands (Hucke-Gaete et al. 2004, Roche et al. 2007, Tixier 

et al. 2010, Janc et al. 2018). These interaction levels led to significant decrease to fishing 

success, with killer whales being the species causing greater fish losses than sperm whales 

(Hucke-Gaete et al. 2004, Roche et al. 2007, Tixier et al. 2010, Söffker et al. 2015). Therefore, 

these interactions with killer whales and sperm whales may have serious implications for the 

economic viability of the toothfish fisheries as well as for sustainable management of fish 

stocks, raising the necessity to find mitigation solutions. 

The depredation conflict existing in the fishery operating in the French EEZs of Crozet 

and Kerguelen islands is a study case with suitable characteristics to address the aims of the 

thesis. Firstly, this fishery holds the largest Patagonian toothfish quota in the Southern Ocean 

(Guinet et al. 2015, COLTO 2016) and experiences the highest depredation levels of all other 

toothfish fisheries, with more than 30% and 9% of the total annual catch taken by killer and 

sperm whales, respectively at Crozet and Kerguelen (Roche et al. 2007, Tixier et al. 2010, 

Gasco et al. 2015, Janc et al. 2018). Secondly, this fishery is composed of 7 legal longliners 

ranging from 50 to 60 m long with crews composed of 30 fishermen and has been fully 

controlled and monitored since the early 2000s, with fishery observers monitoring 100 % of the 

fishing operations. The same fleet operates in both the Crozet and Kerguelen EEZs during a 

same fishing season, which greatly differ in catch limits (around 80% of the total annual catch 

is fished in Kerguelen) and in size (the Kerguelen fishing area is 5-7 times larger than the Crozet 

area). A fishing season runs from September to August, but the fleet is not allowed to fish in 

the Kerguelen EEZ for a 45-day period from the 1st February to mid-March to comply with 

seabird conservation measures. A season is composed of 3 to 4 trips lasting between 2.5 and 3 

months. During a trip, vessels fish continuously through a diel pattern. Longlines are set at night 

and mostly hauled during the day, since fishing regulations prohibit setting at daylight to avoid 

seabird bycatch (Weimerskirch et al. 2000). These vessels use auto-weighted longlines set 

between two anchors and linked to buoys at the surface for retrieval. The lines are composed 

of sections of 750 hooks spaced every 1.2 m (Figure 1-1). The length of these lines can vary 
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from 1 to 40 km, averaging 8 km. The hooks are automatically baited and set on the seafloor at 

depths ranging from 500 to 2500 m. Fishing in waters shallower than 500 m is prohibited to 

avoid the capture of juvenile toothfish (Collins et al. 2010, Gasco 2011). Since 2003 the two 

EEZs are also subject to a high level of surveillance by the French government, which has 

resulted in negligible levels IUU fishing, further enhancing the representativeness of the data 

collected from licensed vessels (Guinet et al. 2015). Besides, interaction levels are sensitively 

different between the two EEZs since sperm whales are present around both islands but at 

different densities (Labadie et al. 2018), whereas killer whales are almost exclusively found in 

Crozet (Tixier et al. 2010, Guinet et al. 2015). Furthermore, the Crozet Archipelago is one of 

the few locations in the Southern hemisphere where killer whales have long been studied, 

allowing a monitoring of the population before and after the fishing activity started (Guinet et 

al. 2015). This unique study case gives the opportunity to understand the impact of the fishing 

activity on an odontocete population. Indeed, in Crozet the fishery started in 1996 with a lot of 

IUU fishing vessels which negatively impacted the killer whale population (Guinet et al. 2015, 

Tixier et al. 2017).  

This example of depredation issue has been studied since 2007 by the research project 

named OrcaDepred. This project also assesses depredation by cetaceans on pelagic longline 

fishery targeting swordfish and tuna around Reunion Island and on demersal longline fishery 

fishing the blue-eye trevalla around St Paul and Amsterdam Islands. The project is led by Dr. 

Christophe Guinet (CEBC, CNRS-University of La Rochelle, France) and involved 8 partner-

institutions (CEBC-CNRS, MNHN, ENSTA Bretagne, UBO, IFREMER, UMI 2958 GT-

CNRS, AMURE, IRD UMR MARBEC) as well as one industrial provider (SATIM). 

OrcaDepred is supported by the ANR, the Fondation d’Entreprise des Mers australes, the 

Syndicat des Armements Réunionais des Palangriers Congélateurs, fishing companies, the 

Direction des Pêche Maritimes et de l’Aquaculture, Terres Australes et Antarctiques Françaises 

(TAAF : the Natural Reserve and Fishery unit). 

The objectives of OrcaDepred are to better understand the depredation behaviour and 

ecology of cetacean species involved to offer fishing companies operational and technological 

solutions to depredation. Thus, the project aims at: 
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1. Better understanding the natural feeding and interaction behaviours with the 

fishery cetaceans interacting with the lines, and in the case of pelagic longlines 

identify the cetacean species involves. 

2. Assessing the bio-economic consequences of depredation through an 

ecological economic modelling exercise for the sustainable management of 

these fisheries taking into-account depredation. 

3. Assessing the ecological consequences of fishing-depredation at the 

ecosystem level. 

4. Assessing if the levels of interaction between cetaceans and ships are related 

to fishing practice differences between captains and/or vessel characteristics, 

with a special focus on acoustic noise generated. 

5. Implementing a technological approach to remove depredation. In partnership 

with industry, new prototypes of fish protection devices on the lines and not 

harmful to cetaceans. 

The OrcaDepred project is conducted in collaboration with the Australian research 

project: “Developing global solutions to marine mammals – fisheries interactions”, conducted 

by Dr Paul Tixier and Prof. John Arnould at Deakin University (Melbourne) and Prof. Mark 

Hindell and Dr Mary-Anne Lea at Institute for Marine and Antarctic Studies (University of 

Tasmania, Hobart), and funded by the Australian Research Council grant. This project focuses 

on objectives similar to OrcaDepred’s on other Patagonian toothfish fisheries (Heard and 

McDonald Islands, southern Chile, the Falklands, South Georgia, Prince Edward and Marion 

Islands) and on the blue-eye trevalla demersal longline fishery in South East Australia.  

 

1.3.3. THESIS OBJECTIVES 

My PhD thesis contributes to the OrcaDepred project, and to the French-Australian 

collaboration on longlines’ depredation. Indeed, my thesis is set as a cotutelle between the 

University of La Rochelle (Chizé, France) and Deakin University (Melbourne, Australia). 

 My work mostly focused on the 1st and 4th purposes previously described (section 

1.3.2), using the French Patagonian toothfish fishery as a study case. More specifically, the aim 

of my thesis was to bring new insights on the interaction between odontocetes and demersal 

longlines using both human and animal behaviours at individual scales. My first objective was 
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to examine the drivers of observed variations of interaction rates between captains. This 

problematic was assessed through a human behavioural ecology approach (chapter 2) and an 

acoustic approach (chapter 3). My second objective was to assess how, when and where 

depredation occurs on demersal longlines. A passive acoustic monitoring and a biologging 

approach were suggested to bring some answers to this question (chapter 3 and chapter 4). Thus 

the thesis was organised around the three methodological approaches based upon research 

articles and technical protocol:  

- Chapter 2: The first approach aimed at better understanding the behaviour of captains 

facing the depredation and which factors drive their foraging strategies, using 

operational data collected on fishing boats and methods of behavioural ecology.  

 

- Chapter 3: This chapter focused on passive acoustic monitoring. I assessed what this 

method could bring on the understanding of depredation in the underwater dimension 

and I specifically focused on the underwater detectability of the fishermen to bring 

insights for the first problematic.  

 

- Chapter 4: I finally assessed how bio-logging technologies could bring important 

information on the interaction between longlines and odontocetes. Bio-loggers were 

deployed on odontocetes but also on the fishing gear to bring an original double 

perception of the interaction.  

Altogether, these new insights are expected to bring new perspectives for fisheries assessment 

and mitigation solutions, which are discussed in Chapter 5.  

 

Pre-existing data were really scarce at the beginning of my thesis. To fulfil my 

objectives, I aimed at: (i) deploying an acoustic array to assess acoustic tracking and record 

vessels acoustic (chapter 3); (ii) deploying loggers (accelerometers) on longlines (chapter 4); 

(iii) deploying loggers on odontocetes with on-board processing acceleration data. Conducting 

experiments at sea was thus an important part of my PhD. My contribution covers experimental 

design, planning, logistics, and at-sea realization. This will be briefly summarized below.  
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1.3.4. THESIS FIELD EFFORT 

No hydrophone and no loggers (both on longline and odontocetes) have ever been 

deployed from the French and Australian longliners to investigate depredation before my thesis. 

The first step of my PhD was therefore to choose adapted instrumentation, set the protocols and 

prepare the missions for the deployments. I did this in close collaboration with both instrument 

manufacturers and fishermen. An important point here was to ensure that scientific activities 

would minimally disturb fishing activities, in order to maintain collaboration with fishermen. 

As part of an experimental design, I have tested an acoustic tracking methods during my master 

thesis (prior to this PhD) to determine the best setting for an acoustic array (see Appendix 1). 

The setting was imparted to a French acoustic company (RTSYS) which designed the array.  

Another experimental design, assessed at the beginning of this PhD, was to test whether 

a method derived from acceleration analyses on southern elephant seals could be used on sperm 

whales (section 4.2). The results and method adapted to a sperm whale dataset was then 

transmitted to Wildlife Computer, a biologging company. The company embedded this 

algorithm on new generation of loggers to be deployed on marine predators, e.g. for odontocetes 

in our study but also new tags for fish and sharks. As for the loggers deployed on longlines, 

they have been directly developed by Dominique Filippi (Sextant Technology, New Zealand). 

In a second step, I personally conducted the sea-trials from the French fishing fleet. I have 

therefore conducted two missions of 3 months each during the fishing seasons of 2016-2017 

and 2017-2018, aboard three longliners during the first mission and two longliners during the 

second mission (see Table 1-1).  
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Table 1-1 – Summary of the field work conducted within this thesis. 

 

Mission Vessel host Duration Field work 

 

First mission 

2016-2017 

 

Mascareignes 3 

(SAPMER) 

 

53 days 

08/12/16 - 30/01/17 

 

 

 

- Acoustic array 

- Loggers on longlines 

- Biopsy sampling 

- Photo-identification 

Ile De La Reunion 

(COMATA) 

28 days 

03/02/17 - 03/03/17 

Albius 

(SAPMER) 

 

11 days 

03/03/17 - 14/03/17 

 

 

Second mission 

2017-2018 

 

Ile De La Reunion 

(COMATA) 

 

35 days 

14/12/17 - 18/01/18 

 

- Acoustic array 

- Loggers on longlines 

- Odontocete tagging 

- Protection systems 

- Biopsy sampling 

- Photo-identification 

- Fishery observer  

(1 month on MAS 3) 

Mascareignes 3 

(SAPMER) 

48 days 

18/01/18 - 07/03/18 
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Loggers on longlines have been deployed during the two missions (Table 1-1). The first 

mission allowed testing and improving the protocol and during the second mission I had more 

loggers to increase the sampling effort. This experiment works well, but with a higher number 

of loggers I experienced an increase number of losses and breaks. The loggers on odontocetes 

have been deployed only during the second mission (Table 1-1) since it took some times to 

receive the new logger generation. Tagging condition on fishing vessels has been revealed to 

be very complicated. A successful tagging requires very good condition both from the weather 

and the approach of individuals. As the shoot occurs on the deck at 5 m above the water (without 

any swell), individual should be close enough to keep enough power when the dart hit the skin 

to fix the tag. Besides, the wind should be low to avoid strong deviation of the dart trajectory 

and allow hitting perpendicularly the individual. Despite these constraints, my experience 

revealed that it is doable to equip killer whales. Although sperm whales are seen more often, 

good tagging opportunities are less common than for killer whales.  

The acoustic array was deployed during both mission (Table 1-1), but the setting evolved 

between the two missions to deal with several issues. The first mission allowed noticing that 

the acoustic array composed of 4 hydrophones connected through cables to one recorder was 

not adapted to the conditions experienced on a longliner within the southern ocean. The array 

was therefore changed during the second mission by 4 independent acoustic recorders 

(Soundtraps, Ocean Instruments, NZ). Using independent hydrophones facilitate the 

deployments. Additionally, I have set a protocol to deploy a single independent hydrophone by 

fishermen and fishery controllers on all the longliners for every trip (7 French vessels and 4 

Australian vessels). Besides, the protocol is also used on both French and Australian blue-eye 

trevalla longline fisheries to monitor interactions with killer whales. The purpose of this 

protocol is to assess vessel acoustics and allow a passive acoustic monitoring of odontocetes. 

The hydrophones stay on-board and are deployed by fishermen under the supervision of the 

fishery observers who collect the data. The protocol will improve through fishermen and 

observers feedbacks to allow a future long term acoustic monitoring of the interaction between 

longliners and odontocetes.  

In addition, I have processed photo-identification and biopsy sampling which were not 

analysed in this thesis but important for the OrcaDepred objectives. Besides, during the second 

mission I have also tested individual protection systems for hooks (Chapter 5), designed by an 

industrial provider (SATIM). The tests were not conclusive but were important to focus on 
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better countermeasures for the future. This experience has indeed allow the SATIM company 

to work on a new generation of protection system easier to implement considering all the 

constraint from the setting and hauling processes. I have finally experienced the role of fishery 

observer during a month, observation which fuel the PECHKER dataset (Martin and Pruvost 

2007) managed by the Museum d’Histoire Naturelle de Paris. This dataset was graciously 

shared by the MNHN, allowing the study on captains’ behaviour (section 2.2). Through the 

different steps of the missions’ management I have been able to interact with the different 

protagonist of the fishery: fishermen, fishing companies, fishery observers, units of the TAAF 

and MNHN allowing a better understanding of the depredation issue from the different points 

of views. 
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2. FISHERMEN BEHAVIOURAL ECOLOGY 

 

Most of previous studies have relied on large spatio-temporal scales and at the fleet scale 

to improve our understanding of these conflicts assessing the impact of depredation on fisheries 

and within fisheries how some practices, i.e. operational factors, could influence depredation 

rates. However, these studies did not really dissociate the fishing gear from the fishermen within 

fisheries, whereas fishermen (especially captains) are the decision makers playing on the 

operational factors. This chapter aims therefore at reviewing within the French Patagonian 

toothfish fisheries how an operational approach might help toward some mitigation measures. 

Additionally, the purpose of this chapter is to focus on the decision makings of captains and to 

suggest a finer scale could ensue from this operational approach through a human behavioural 

ecology. 

 

2.1. INTRODUCTION 

2.1.1. WHAT IS AN OPERATIONAL APPROACH?  

Operational factors include all variables controlled by captains, and that can therefore be 

adjusted to act on either the probability of interaction with odontocetes or the extent of 

depredated fish during interactions. Mitigating depredation through operational approaches 

involves adapting the fishing practice in a way that it reduces depredation while maintaining 

high fishing success. Developing operational mitigation strategies therefore involves 

determining the causal connections between operational factors, depredation and fishing 

success. Such research is often challenging to implement since it requires an extensive 

monitoring of the fishing practices and of the occurrence of depredation. The French Patagonian 

toothfish fishery (cf. section 1.3.3.) is subject to a long-term full monitoring of fishing 

operations, allowing such approach.  

 Aboard the French longliners, fishing operations are monitored by fishery observers 

mandated by the administration of the French Antarctic and Southern Territories (TAAF), 

tasked for scientific monitoring by the National Museum of Natural History (MNHN) (Gasco 

2011). The MNHN is the entity in charge of conducting the fish stock assessments and 
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estimating the Total Allowable Catch (TAC) used to define quotas. The data collected by 

fishery observers are stored within the so-called PECHEKER database (Martin and Pruvost 

2007), which includes data on the species targeted, the quantity of fish caught and fishing 

locations (setting depths and geographic positions, see Gasco 2011). Observers also sample fish 

length and weight for resources assessments and record all by-catch of non-target species (e.g. 

grenadiers species, antimora, or skates species), as well as interactions with protected seabirds 

and marine mammals (Gasco 2011). Thus, the PECHEKER dataset provides information on 

operational variables such as the time, location, setting depth, number of hooks, as well as 

information on the total weight of toothfish caught, the occurrence of depredation and the 

number of depredating sperm whales and killer whales for every longline set. Visual 

observation of odontocetes around the vessels during hauling defines an interaction. These 

observations enable later estimation of interaction rates at different temporal scale (daily, 

monthly, per trip, per fishing season, etc) or at different spatial scale (longlines, sectors EEZ).  

The first step of the operational approach is to assess whether some fishing practices (e.g. 

location, setting depth, length of longlines, fishing season…) may influence the probability of 

odontocetes to interact with longlines. The second step is to assess, when interaction is 

unavoidable, whether some fishing practice may reduce the impact of depredation on the fishing 

success. The catch per unit effort (CPUE, in g.hooks-1) is a relevant proxy of the fishing success. 

The fishing effort is considered as the number of hooks (H) set, and the catch is the sum of the 

biomass (M in g) of Patagonian toothfish hauled for the given number of hooks. The CPUE for 

a given unit i (longline, sector, trip, etc.) is estimated as:  

EQUATION 2-1: 𝑪𝑷𝑼𝑬 (i) = 
∑ 𝑴 (𝒊) 

∑ 𝑯(𝒊)
 

The CPUE is also used to estimate depredation rate, i.e. the loss of biomass due to odontocetes. 

The depredation rate is then assessed as the difference of CPUE on longlines hauled in absence 

of odontocete (set as the reference or the resource availability) and the CPUE on longlines 

hauled in presence of odontocetes (Gasco et al. 2015). Depredation rate can also be estimated 

by the change in proportion of by-catch species such, as grenadier species, which are not 

depredated by killer whales and sperm whales, in presence or absence of toothfish depredation 

(Gasco et al. 2015). 
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2.1.2. RECOMMENDATIONS ON FISHING PRACTICE TO MITIGATE 

DEPREDATION 

From the PECHEKER database (Martin and Pruvost 2007), probabilities of interactions 

and depredation rates for sperm whales and killer whales have been assessed in previous studies 

at different levels: longline set, fishing vessel, fishing fleet. These studies aimed at identifying 

correlations between operational variables and interaction/depredation rates (Roche et al. 2007, 

Tixier et al. 2010, Tixier 2012, Gasco et al. 2015). From results obtained at the longline level, 

advice has been given to fishermen on their fishing practice. For instance, fishermen should 

haul their longlines at a greater speed (hooks.min-1) since it reduces depredation rates by making 

the interaction with the hooks more difficult for both species but increasing hauling speed can 

also induce a greater loss of lightly hooked fish (Tixier et al. 2015c, Janc et al. 2018 see 

Appendix 4). Similarly, shorter longlines were shown to have lower depredation rate with killer 

whales as these longlines are fully hauled within shorter time frames and thus limit the time 

needed by odontocetes to detect, arrive and interact with the longline (Tixier et al. 2015c), but 

this practice become inefficient once killer whales of sperm whales have started to interact with 

a fishing vessel in a given location. Shorter soaking time was also shown to reduce opportunities 

for sperm whales to arrive to remove large amount of fish from longlines (Janc et al. 2018, see 

Appendix 4). Another factor influencing interaction and depredation rates for both species is 

the setting depth (Tixier et al. 2015c, Janc et al. 2018). However, this variable depicts the 

environment since the depth may reflect some parts of the shelves or seamounts where the 

odontocetes may forage naturally and are thus overlapping with fishing activity. As the 

contrary, deeper sets than 1000 m are beyond the foraging range of killer whales (Towers et al. 

2018). At the fleet level, seasonal trends in the probabilities of interaction with odontocetes 

around Crozet and Kerguelen have been observed for both species (Tixier et al. 2015c, 2016, 

Janc et al. 2018). For instance, fishermen were advised to fish in Crozet around November-

December where the interaction rate with Crozet killer whales are the lowest (Tixier et al. 2016). 

This might be explained by the breeding period of southern elephant seals, Mirounga leonina, 

from October to December, during which some killer whales units feed upon newly weaned 

elephant seal pups (Guinet 1992, Guinet and Bouvier 1995, Guinet et al. 2015, Tixier et al. 

2016). Fishermen were also advised to focus their effort during winter (June-August) when the 

interactions rates with sperm whales become insignificant within Kerguelen EEZ and two times 

lower than summer within the Crozet EEZ (Labadie et al. 2018, Janc et al. 2018), since 

individuals migrate to warmer waters in low latitudes for reproduction purposes (Madsen et al. 
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2002, Mellinger et al. 2004, Teloni et al. 2008). However, for fishermen, some of these 

recommendations may be challenging to implement since other parameters shape their fishing 

timing. For instance, during winter the conditions are rough in these high latitudes, making 

fishing not always possible for safety reason. Variations of odontocetes occurrence may not 

only be temporal but also spatial. However, first insights on spatial distribution of interactions 

revealed that no fishing spots used by fishermen were free of odontocete depredation (Tixier et 

al. 2010, 2016, Tixier 2012, Labadie et al. 2015, 2018). Besides, as fishermen are in competition 

with odontocetes, it is more likely that predators already forage naturally within areas with high 

toothfish densities. First spatial analyses emphasize the necessity to better understand the 

natural ecology and behaviour of these species as it may help to predict their occurrence on 

fishing areas. At a finer spatial scale, the effect of the distances travelled by vessels after hauling 

a longline on the probability to experience interaction on the longline next hauled was also 

examined to determine the efficacy of “move-on” strategies (Tixier et al. 2015c, Janc et al. 

2018). From these studies, fishermen were advised to cover at least 60 km in presence of sperm 

whale (Janc et al. 2018) and 100 km in presence of killer whales (Tixier et al. 2015c) to avoid 

new interaction with these species.  

Altogether, these results have brought useful insights on the relationship between some 

fishing practices and interaction/depredation rates of odontocetes. Identifying better fishing 

practices may work as an easy-to-implement mitigation measures. However, these 

recommendations may involve changing several fishing practices inconsistent within a fishing 

strategy. For instance, suggesting to set shorter longlines at deeper depths may be unproductive 

for fishermen as it would result in spending more time to haul the ropes between the buoys an 

the anchors than hauling the longline. Thus, further investigations should be conducted at a 

finer scale exploring optimal fishing strategies made of a combination of fishing practices.  
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2.1.3. BEHAVIOURAL ECOLOGY OF CAPTAINS 

The monitoring of an optimal combination of fishing practices requires assessing the 

strategies of the decision-makers: the captains. As the operational approach consists to assess 

whether some fishing practices may influence the probability of interaction with predators, it is 

therefore essential to assess in a first step whether captains reveal differences of interaction 

rates. Using the PECHKER dataset (Museum d’Histoire Naturelle de Paris; Martin and Pruvost 

2007), I assessed the mean daily interaction rate per trip with killer and/or sperm whales for 22 

captains whom had operated on 8 different vessels between January 2008 and July 2015 at 

Crozet and Kerguelen, represented on Figure 2-1. The daily interaction was estimated as the 

ratio of longlines hauled in presence of odontocetes and the total number of longlines hauled 

per day. I then represented the variations mean daily interaction rates per trip for each captain 

on a given vessel through boxplots (McGill et al. 1978). The boxplots depicted the median with 

the 25th and 75th percentiles (the two hinges). Also a 95% of confidence interval through was 

represented (the two whiskers) with the outlying points shown individually (McGill et al. 1978). 

Captains who performed at least one fishing season (i.e. 3 different trips) with a same vessel 

were kept for the graphic representation to allow median and percentiles estimations. Boxplots 

were assessed with the function geom_boxplot (package ggplot2) through the software R (R 

Development Core Team 2015). Firstly, this exploratory analysis showed on Figure 2-1 that in 

some cases, different captains working on the same vessel had a similar interaction rate but 

different to other vessels, e.g. between vessels 5 and 8 with sperm whales at Crozet. These 

differences of interaction rates might be related to vessels’ specificities. A hypothesis which 

will be tested in this thesis is that vessels may have different acoustic signatures and thus 

different detectability by odontocetes (see section 3.3). Secondly, I also observed on Figure 2-1 

inter-captains variability for a same vessel, e.g. between captains lighter green, darker green 

and purple for vessels 5 with sperm whales at Kerguelen. This variability suggests that captains’ 

fishing strategies may involve different interaction rates. The purpose is then to determine what 

decisions made by captains, and therefore what fishing strategies, may induce or avoid 

depredation.  
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Figure 2-1 – Boxplot of the mean daily interaction rates per trip for every captain (colour) with a given 

fishing vessels.  

 

Relationships between fishermen and their environment have mostly been assessed 

through the causalities between the operational factors and fishing success and/or depredation 

(section 2.1.2). Distinction between fisheries, fishermen and fishing gears has indeed not always 

been carried out. However, fishermen adapt the operational factors to the environmental 

conditions, such as the abundance of toothfish or the presence of odontocetes, to optimise their 

cost-benefit ratio of the fishing practices. Their purpose is thus to maximise their fishing success 

for a lowest associated costs, for instance gas consumption while navigating. The combinations 

of these practices define strategies and are more likely to vary between fishermen according to 

their perception of the environment. Thus, further investigations should focus on the decision 

makers of the fishing strategies: i.e. the captains of the French longliners. I suggested in this 

thesis to use a behavioural ecology approach to study captains’ decisions (Nettle et al. 2013) : 

i.e. the optimal foraging theory (Pyke 1984, Real and Caraco 1986, Kamil 1987, Charnov and 

Orians 2006, Nettle et al. 2013). According to the optimal foraging marginal value theorem 

(Charnov 1976) as foragers, captains’ decisions should maximise their “energetic” return. As 

the strategy of the captains is not to feed themselves but rather to fish for their company, the 

“energy” is in fact “money” in the broad sense (economical value with the fish and cost of 
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fishing operations). The captains’ decisions should then maximise the money return, which is 

perceived on the fishing boat as an optimisation of the fishing success. During the different 

stages of the fishing process, captains have choices to make: i) while prospecting for the fish 

resource (i.e. setting) and ii) when exploiting the resource once found (i.e. hauling). The aim of 

this chapter was therefore to understand captains’ decision-makings at these i) inter-patch 

(section 2.2) and ii) intra-patch (section 2.3.1) scales within a context of competition with 

odontocetes. The hypothesis is that they should optimise their prospection and maximise the 

exploitation of the resource and aim at minimising the competition. An assessment of how 

depredation impacts captains’ behaviours may enable using an optimal strategy as a mitigation 

solution. This human behavioural approach aimed to modelise captains’ decisions with 

ecological theories independently to captains’ feedbacks. In a further stage, captains can 

provide ground truth to confirm models.  
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2.2.1. ABSTRACT 

Depredation in longline fisheries by odontocete whales is a worldwide growing issue, 

having substantial socio-economic consequences for fishers as well as conservation 

implications for both fish resources and the depredating odontocete populations. An example 

of this is the demersal longline fishery operating around the Crozet Archipelago and Kerguelen 

Island, southern Indian Ocean, where killer whales (Orcinus orca) and sperm whales (Physeter 

macrocephalus) depredate hooked Patagonian toothfish (Dissostichus eleginoides). It is of great 

interest to better understand relationships of this modern fishery with its environment. Thus, we 

examined the factors influencing the decision making process of fishers facing such competition 

while operating on a patch. Using optimal foraging theory as the underlying hypothesis, we 

determined that the probability captains left an area decreases with increasing fishing success 

whereas, in presence of competition from odontocete whales, it increases. Our study provides 

strong support that fishers behave as optimal foragers in this specific fishery. Considering that 

captains are optimal foragers and thus aim at maximising the exploitation of the resources, we 

highlight possible risks for the long-term sustainability of the local ecosystems. 

Keywords: cetacean depredation, longline fishery, Patagonian toothfish, optimal foraging 

theory, fishing strategies 

 

2.2.2. INTRODUCTION 

The way humans acquire marine living resources from the environment has become, 

over the past 60 years, a major field of research (Flaaten et al. 1995, Coleman and Williams 

2002, Wezel et al. 2009). While previous efforts have largely been oriented towards improving 

technology, the processes of decision making and strategy choices have recently received 

growing attention (Hamer et al. 2012, Holt-Giménez and Altieri 2012, Straley et al. 2015, Tixier 

et al. 2015c). In commercial fisheries, the increasing difficulty in predicting the variation of a 

resource abundance and distribution, mostly due to climate change (Simpson et al. 2011, 

Pinnegar et al. 2016), paired with growing economic competition, makes optimizing strategies 

challenging for fishers. Indeed, the marine environment is unpredictable and resource 

evaluation and decision making for fishing activity appear to be difficult (Acheson 1981).  
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To increase our understanding of fish stocks and their ecosystems, as well as to improve 

fishing strategies, human ecologists have used the “optimal foraging theory” (OFT) to 

investigate the behaviour of fishers (McCay 1978, 1981, Begossi 1992, Aswani 1998). The 

OFT was derived from economic models and has been broadly implemented in studies of 

animal foraging behaviour to examine various ecological issues as adaptation, competition and 

energy flow (Pyke 1984, Real and Caraco 1986, Kamil 1987, Charnov and Orians 2006). Within 

the OFT framework, energy flow is a key component of ecological systems. Fused with natural 

selection principles, whereby feeding strategies may evolve by natural selection, foragers 

choose the behavioural option that maximizes energy intake while minimizing costs (Charnov 

1976).  

Fishers primarily rely on environmental clues, paired with their perception about stock 

availability, to decide whether to stay or leave a resource patch (Begossi 1992). Consequently, 

the OFT is useful to predict the movement and decisions of fishers, helping to understand their 

environment and, more precisely, the resource availability (Aswani 1998). Previous studies 

focusing on traditional fisheries showed that fishers harness their environment as effectively as 

possible, which results in a short-term goal of energy maximization, i.e. fishing success 

(Begossi 1992, Aswani 1998). However, this occurs with low concern of the marine 

environment’s long-term sustainability (Begossi 1992, Aswani 1998). 

Modern fishers are confronted with increasing competition and interactions with marine 

wild predators for the same resources, thus influencing fishers’ strategic choices (DeMaster et 

al. 2001, Donoghue et al. 2002, Gilman et al. 2006, Read 2008). Odontocetes depredation (i.e., 

toothed whales removing fish from fishing gear) has been described as the greatest impact on 

decisions made by fishers (Sivasubramaniam 1964, Dahlheim 1988, Peterson and Carothers 

2013). In some fisheries, fishers are forced to modify their fishing behaviour and to implement 

strategies of avoidance of odontocetes resulting in substantial losses for the fishing industry 

(Peterson and Carothers 2013, Tixier et al. 2015c, Werner et al. 2015). One example is the 

Patagonian toothfish (Dissostichus eleginoides) demersal longline fishery operating around the 

Crozet Archipelago and Kerguelen Island, southern Indian Ocean (Tixier et al. 2015c).  

Since 2003, interactions with killer whales (Orcinus orca) and sperm whales (Physeter 

macrocephalus) have been reported on > 75% of the longline sets that were hauled around 

Crozet Archipelago (Roche et al. 2007, Tixier et al. 2010, 2015c). The amount of depredated 

fishes was estimated to be 30% and 9% of the total catch of Patagonian toothfish at Crozet and 
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Kerguelen, respectively (Gasco et al. 2015). Such high level of depredation paired with the 

small size of the fishing fleet (i.e. only 7 licensed 50-metres long longliners) and the long-term 

full monitoring of the fishery have made the Crozet and Kerguelen situations a unique 

opportunity to identify solutions to mitigate interactions with odontocetes. Previous studies 

have resulted in a number of recommendations being made to the fishing industry to 

avoid/reduce depredation by cetaceans (Hamer et al. 2012, Straley et al. 2015, Tixier et al. 

2015c). For instance, one of these recommendations was to move away from patches when 

depredation occurs and to travel more than 100 km (Tixier et al. 2015c).  

However, preliminary analyses of data collected around Kerguelen and Crozet showed 

that depredation may not be the only factor driving decisions made by fishers. For instance, in 

some cases fishers may decide to stay on a patch although depredation by killer whales is 

occurring and, conversely, they may leave and travel between patches when depredation is not 

reported. These travel phases are costly for the operators because fishers do not catch fish but 

still incur costs (e.g. fuel and wages). In terms of OFT, the vessel has null energy intake (fishing 

success) but increasing energy expenditure (fuel) when traveling. At the fishers’ scale, these 

non-fishing phases are also costly since the major part of their salary is based upon the quantity 

of fish caught during a trip. Fishers have indeed a minimum fixed salary for their whole trip, 

whether they fish or travel, but if they fish more then they will earn more money. As an analogy 

with foragers, fishers have a null energy intake (no additional wages) when travelling whereas 

during fishing phase they have a positive energy intake (additional wages due to fishing 

success). We therefore hypothesised that fishers should aim to reduce the distances and the time 

spent travelling between patches to follow an optimal foraging strategy. In the present study, 

the aim was thus to identify the factors influencing the fishers’ decision making process while 

they are operating on a patch. More specifically, we examined the respective role of fishing 

success (the daily mass of toothfishes hauled) and the depredation by killer whales and sperm 

whales on the probability that fishers leave or stay on a given patch. Ultimately, the aim was to 

determine whether their decision to stay or to leave matches with the OFT predictions.  
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2.2.3. MATERIAL AND METHODS 

2.2.3.1. DATA COLLECTION AND FIELD SITES 

From January 2008 to July 2015, 22 captains operating on eight legal longliners (50 m 

long vessels) hauled 6387 longlines within the Crozet Islands Exclusive Economic Zone 

(hereinafter EEZ) and 19 480 longlines within the Kerguelen Island EEZ (Figure 2-2). Fishing 

occurs all year round, and a fishing season spans from September to August. For a given vessel, 

a fishing season is composed of three trips of 3 months each during which the fish caught are 

processed, frozen, and stored on board. 

For every longline set, fishery observers collected data for resource assessment (e.g. 

such as fish mass) and data about interactions with marine predators. Data were available 

through the PECHEKER database (Museum d’Histoire Naturelle de Paris; Martin and Pruvost 

2007). An interaction was defined as when cetaceans were observed making repeated dives 

within an approximate 500 m range from the vessel. This was further quantified using three 

classes: (i) whales absent (condition suitable for a confident observation), (ii) whales present 

and (iii) uncertain-observation (conditions unsuitable and/or no observation undertaken). Only 

9% and 13% of all longlines were assessed as uncertain-observation for killer whales and for 

sperm whales, respectively. These longlines were kept in the dataset to determine hauling 

session (see next section) and to estimate fishing success. Since we worked at a scale of several 

longlines (cf. hauling sessions) these uncertain-observation did not skew the estimation of 

interaction for our unit of analysis. In addition, when longlines were hauled in presence of 

whales, observers provided an estimation of the minimum and maximum number of individuals 

interacting with the boat.  
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Figure 2-2 - Map of Crozet and Kerguelen Islands, southern Indian Ocean, with fishing efforts, i.e. all 

longlines, positions (orange). The map was realised with the package marmap through the software R. 

 

2.2.3.2. DETERMINATION OF HAULING SESSION 

Fishers can set longlines only at night to avoid birds’ by-catch issues. Such constraint 

shapes their fishing activity as during the day, they can only haul the longlines. At nighttimes, 

captains can decide either to carry on hauling longlines or to set new ones. Using this alternation 

of fishing operations between hauling and setting, we defined a hauling session as a temporal 

succession of hauled longlines. In other word, a hauling session starts with the first hauled 

longline after a setting and it ends with the last hauled longline before setting new ones. We 

defined a longline hauling session carried out by a captain as the unit of analysis for our 

statistical models (see below). In addition, we only considered hauling sessions with at least 3 

longlines to be able to estimate mean values from the dataset, since in statistics a mean could 

not be obtained from n < 3.  
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From the fishery observer dataset, we assessed for each hauling session the daily mass 

of toothfish caught (kg.day-1) and the distance covered at the end of the hauling session (km) 

before starting setting new longlines. We also recorded whether cetaceans were present during 

the session, i.e. whether cetaceans interacted at least with one recorded longline, and the mean 

number of individuals present during the session.  

 

2.2.3.3. DEFINITION OF THE DECISION TO STAY OR LEAVE A PATCH  

Our purpose was to describe the decision of captains to leave or stay in a patch. 

Considering that resource could not be clearly spatially defined in the ocean, we determined a 

‘patch’ as defined in the optimal foraging theory (OFT). In other words, a patch is a spatial area 

where fishers are foraging, since a patch of toothfish cannot be determined. We, thus, defined 

a ‘patch’ as the localization where fishers haul longlines during a hauling session. We then 

determined whether captains “stay” or “leave” their current patch at the end of a hauling session 

before setting new lines. To do so, we applied a piecewise regression over the distribution of 

the distances after hauling sessions to identify a threshold (Toms and Lesperance 2003) defining 

whether captains leave a patch or not. The same method was applied both in Crozet and in 

Kerguelen, using the package SiZer (Sonderegger et al. 2009) through the software R (R 

Development Core Team 2015). Thus the threshold determined a variable: ‘stay’ or ‘leave’, for 

both EEZ. We named this variable ‘Leave’ and we set for this variable either 0 if a captain stays 

or 1 if a captain leaves after a hauling session.  

 

2.2.3.4. MODELLING CAPTAINS’ DECISION TO STAY: GENERALIZED LINEAR 

MIXED MODEL (GLMM) 

We aimed at assessing the relationship between the decision of captains to leave a patch, 

at the end of a hauling session, and the fishing success paired with competition encountered 

during this session. Thus, the unit of analysis of our model was a hauling session. The fishing 

success was expressed as the daily mass of toothfish caught per hauling session (kg·day-1) 

within a patch. This proxy of the fishing success was chosen as it is the metric used by captains 

to determine if they have reached the daily economic threshold (between 2 and 3 tons·day-1) 

and to assess the progress on their allocated fishing quota. The competition is a categorical 

variable, defined by the occurrence of cetaceans. Four categories were considered: presence of 



2. FISHERMEN ECOLOGY 

 

50 

 

killer whales only, presence of sperm whales only, presence of both species simultaneously, or 

absence of cetacean (set as the reference category). We also assessed the effect of the interaction 

between both predictive variables: fishing success and competition. Captains were considered 

as a random effect to investigate variations of decision between them. The variables were 

identified to translate our hypothesis to a statistical model (Johnson and Omland 2004). 

However, we could not use a simple linear model since the variable Leave follows a Bernoulli 

distribution, with a probability π to take the value 1 (leave) and the probability 1-π to take the 

value 0 (stay). As a result, we used a generalized linear mixed model: GLMM (Zuur 2009). We 

thus investigated the relationship between the probability to leave for a captain at the end of a 

hauling session (π) with the fishing success and the competition, using the link function logit, 

which is the canonical link for a Bernoulli distribution (Zuur 2009):  

EQUATION 2-2 : logit(πij)= α + aj +(β1+bj)Fishing success ij + β2Competition ij  

+ β3Fishing success ij x Competition ij +ε ij 

with πij the probability that a captain j leaves a hauling session i, α the intercept, aj the random 

intercept for captain j, β1,2,3 the coefficients of the predictive variables, bj the random effect for 

captain j on the slope of fishing success and ε ij the residual for hauling session i and captain j. 

Besides, using a top-down approach (Zuur 2009), we assessed first the most complex model, 

i.e. with the interaction between the two predictive variables and the random effect (captain j) 

set both on the intercept (α) and on the slope (β1) of the continuous variable (fishing success). 

Then, we determined whether the random effect should be applied only on the intercept (aj≠0 

and bj =0) through the Akaike Information Criterion (AIC) selection (Akaike 1974, Zuur 2009). 

Because Competition is a categorical variable, no slope could be applied, so we did not assess 

a random effect on β2 and β3. Once the random effect was determined, we removed the non-

significant variables to select the best model, through the AIC selection, in agreement with the 

top-down approach. We also compared our models to the null model (logit(πij)= α), using the 

AIC, to be able to interpret the results. The statistical model was implemented through the 

software R with the function glmer (package lme4).  

Based on the assumption that the random effect for each captain j (bj) on the slope of the 

fishing success (β1) is significant, we assessed the variability of decision for each captain to stay 

or leave a ground between both EEZs. We aimed at comparing the slopes of each captain’s 

relationship between the probability to leave an area and fishing success (β1+bj) both at Crozet 

and Kerguelen. Thus, we assessed a linear regression between these slopes at Crozet and at 
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Kerguelen. To get sufficient number of sessions for each captain on both locations, we 

considered only captains who spent more than 2 seasons both at Crozet and Kerguelen, resulting 

in 14 captains. This may enlighten some between-captain variability of decision, according to 

the fishing area (EEZ).  

In addition, we assessed a similar model using the mean number (Nb) of cetaceans 

present per longline within hauling sessions for killer whales alone, sperm whales alone, or both 

species simultaneously, instead of the categorical variable ‘Competition’:  

EQUATION 2-3 : logit(πij)= α + aj +(β1+bj)Fishing success ij + (β2+cj)Nb individuals ij  

+ (β3+dj)Fishing success ij x Nb individuals ij +ε ij 

with cj and dj the random effects for captain j on the slope of the number of individuals and on 

the slope of the interaction between the two predictive variables. All continuous variables were 

standardized. We used again a top-down approach to select the best model, using the AIC. 

 

2.2.3.5. DESCRIPTION OF A FISHING SUCCESS’ THRESHOLD FOR CAPTAINS’ 

DECISION 

Finally we monitored the distributions of the fishing success (kg·day-1) among hauling 

sessions for both cases when captains decide to “stay” and “leave” after the session. The 

purpose was to compare between the two decisions’ cases: how the number of sessions evolve 

with the increase of the daily mass of toothfish caught. We could then determine for which 

values of fishing success we have more sessions followed by the decision to stay or by the 

decision to leave. We thus fitted smoothing splines to both distributions of fishing success 

(sessions followed by a decision to stay and by the decision to leave), using the function 

smooth.spline (package stats) through the software R, with a smoothing coefficient of 0.5 to 

keep at least 50% of the variation. As a result, the intersection between both smoothed 

distributions approximates the threshold mass of toothfish caught per day at which captains 

change their decision to stay or leave. Indeed, below the threshold captains may decide to leave 

their patch. Conversely, above this threshold they may stay on the current patch. 

Besides, within the assumption that we would obtain significant interactions between 

the predictive variables: fishing success and the presence of cetaceans, either as a categorical 

variable (Competition) or as a continuous variable (Nb individuals), we could determine a 
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threshold of fishing success above which the cetaceans’ influence might become ineffective. 

To define this threshold, we resolve the equation determining a constant probability to leave 

irrespective of the competition/number of individuals: 

EQUATION 2-4 : α +β1Fishing success + β2 (Competition or Nb individuals) 

+ β3Fishing success x (Competition or Nb individuals)+ε = constant 

Since only the number of cetaceans can vary, we aimed at resolving: 

 (β2+ β3Fishing success) x (Competition or Nb individuals)= constant 

β2+ β3Fishing success = 0 

 

 

2.2.4. RESULTS 

2.2.4.1. HAULING SESSIONS 

Data used in this study included 1,241 hauling sessions within the Crozet EEZ and 4,302 

hauling sessions within the Kerguelen EEZ (Figure 2-3 and Supp. data 1). 

The competition at Crozet was considered either in presence of killer whales alone, in 

presence of sperm whales alone, or in presence of both species simultaneously (Figure 2-3 & 

Supp. data 1). At Kerguelen, we only considered sessions with sperm whales alone, since the 

number of sessions in presence of killer whales only (6) and the number of sessions in presence 

of both species simultaneously (19) were both too small to conduct statistical analyses (Figure 

2-3 & Supp. data 1).  
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Figure 2-3 - Number of sessions in both EEZs with decision to stay or leave, in absence of cetacean, or 

in presence of cetaceans (each species alone or both simultaneously). 

 

2.2.4.2. DEFINITION OF THE DECISION TO STAY OR LEAVE A PATCH  

We defined through the breaks on the piecewise regression that a captain covering less 

than 36 km in Crozet and less than 35 km in Kerguelen after a hauling session stayed on the 

same patch (Figure 2-4). According to this threshold, 737 and 3,430 hauling sessions, 

respectively at Crozet and Kerguelen, were followed by a decision to stay. Conversely, 504 and 

872 hauling sessions (respectively at Crozet and Kerguelen) were followed by a decision to 

leave (Figure 2-3 & Supp. data 1). 
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Figure 2-4 - Distributions of the distance after hauling sessions with piecewise regressions fitted to 

determine the distance threshold to consider a vessel ‘leaving’ in Crozet and Kerguelen. 

 

2.2.4.3. MODELLING CAPTAINS’ DECISION TO STAY: GENERALIZED LINEAR 

MIXED MODEL (GLMM) 

According to the AIC selection (Supp. data 2), all models explaining the probability for 

captains to leave were better than the null model. The best model for both the Crozet and 

Kerguelen EEZ excluded the interaction between the fishing success and the competition (Supp. 

data 2), but included a random effect on both the slope of the fishing success (β1+bj) and the 

intercept (α + aj): 

EQUATION 2-5: logit(πij)= α + aj +(β1+bj)Fishing success ij + β2Competition ij +ε ij  
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The probability to leave, πij, in absence of cetacean decreased significantly when fishing success 

increased both at Crozet (z= -6.49, p<0.001, Figure 2-5.a & Table 2-1) and at Kerguelen (z= -

8.00, p<0.001, Figure 2-5.b & Table 2-1). This correlation was independent from cetacean 

depredation as the interaction term was not significant (Table 2-1).  

In absence of cetaceans, high between-captains variability was detected on the 

probability to leave in response to the variation of the fishing success (Figure 2-5 & Table 2-1), 

both at Crozet (Figure 2-5.a) and Kerguelen (Figure 2-5.b.). As a result, for the 14 captains who 

spent more than 2 seasons both at Crozet and Kerguelen, we obtained a correlation of 0.74 

between the slopes (β1+bj) at Crozet and at Kerguelen, (Pearson’s test: t=3.79, p=0.003, Figure 

2-6). This indicates that captains with the greater negative slope of their probability to leave 

with a given increase of fishing success at Crozet were the same at Kerguelen (Figure 2-6).  

Nevertheless, for a given fishing success, all captains showed a higher probability to 

leave in presence of cetaceans than in absence of interaction, regardless of the species 

encountered (Figure 2-5 & Table 2-1). For a given foraging success, the probability that 

captains leave a patch in the Crozet EEZ was 1.6 times higher in presence of both cetacean 

species than in absence of cetacean (z=3.16, p=0.002, Figure 2-5.a. & Table 2-1). Similarly, 

when sperm whales were the only depredating species, the probability of captains to leave a 

patch was nearly 1.5 times higher than the probability to leave in absence of cetacean both at 

Crozet (z=2.10, p=0.04, Figure 2-5.a. & Table 2-1) and at Kerguelen (z=6.06, p<0.001, Figure 

2-5.b. & Table 2-1). At Crozet, the probability of captains to leave when killer whales were the 

only depredating species was 1.2 times higher than in absence of cetacean (Figure 2-5.a.). 

Although this difference was not significant (z=1.03, p=0.3, Table 2-1).  
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Figure 2-5 - Probabilities to leave for captains, π, in response to the variation of the standardized 

toothfish mass caught per day and the competition variable, with the variability between captains in 

orange (Table 2-1). The probability to leave in absence of cetaceans is represented in red, in the 

presence of killer whales only in light green, in the presence of sperm whales in dark green, and in the 

presence of both species simultaneously in blue. 

 

Figure 2-6 - Linear regression between the slope (β1 + bj) of the probability to leave as a function of 

the fishing success at Crozet and the one at Kerguelen for each captain j (R²=0.54). We considered only 

captains who spent more than 2 seasons both at Crozet and Kerguelen. 
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Table 2-1 - Results of the GLMMs of the probability to leave for a captain in relation to the fishing 

success and the competition, with “absence” as the baseline, and random effects were set between 

captains (intercept) and on the daily weight of toothfish caught (slope). 

 Parameter Value SE z-value p-value 

 

CROZET 

N=1241 

Random effects: 

Intercept’s variance=0.33 

Slope’s variance=0.23 

Intercept -1.26 0.24 -5.17 <0.001 

Fishing success -1.18 0.18 -6.49 <0.001 

Presence of both species 0.70 0.22 3.16 0.002 

Presence of killer whales only 0.30 0.29 1.03 0.30 

Presence of sperm whales only 0.47 0.22 2.10 0.04 

      

KERGUELEN 

N=4277 

Random effects: 

Intercept’s variance=0.36 

Slope’s variance=0.31 

Intercept -2.19 0.17 -13.24 <0.001 

Fishing success -1.20 0.15 -8.00 <0.001 

Presence of sperm whales only 

 

0.51 

 

0.08 

 

6.06 

 

<0.001 

 

 

 

According to the AIC selection, the best model explaining the probability for captains 

to leave in relation to the daily mass of toothfish caught and the mean number of cetaceans 

(regardless of the species at Crozet) included the interaction between the two predictive 

variables as well as the random effect on both the slope and the intercept (Supp. data 3): 

EQUATION 2-6 : logit(πij)= α + aj +(β1+bj)Fishing success ij + β2Nb cetaceans ij  

+ β3Fishing success ij x Nb cetaceans ij +ε ij 

For the model assessing the number of killer whales (at Crozet), the best model was the simplest 

model (i.e. no interaction and the random effect on the intercept, see Supp. data 3): 

EQUATION 2-7: logit(πij)= α + aj +β1Fishing success ij + β2Nb killer whalesij +ε ij 

Finally, the best model assessing the probability to leave with the fishing success and the 

number of sperm whales alone excluded interaction between predictive variables, and it 

included a random effect over the slope of the number of individuals at Crozet (Supp. data 3):  
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EQUATION 2-8 : logit(πij)= α + aj +β1Fishing success ij + (β2+cj)Nb sperm whalesij +ε ij 

whereas at Kerguelen the random effect was obtained over the slope of the fishing success 

(Supp. data 3): 

EQUATION 2-9 : logit(πij)= α + aj +(β1+bj)Fishing success ij + β2Nb sperm whalesij +ε ij 

The fishing success had a significant negative effect on the probability of captains to 

leave, for all the models (Table 2-2). In addition, for a given fishing success, the probability to 

leave was significantly and positively influenced by the number of cetaceans, regardless of the 

species (Figure 2-7.a. & Table 2-2). In addition, high between-captain variability in the 

probability to leave an area in response to the variation in fishing success was detected (Figure 

2-7.a. & Table 2-2). The same positive and significant relationship was obtained between the 

probability of captains to leave and the number of sperm whales alone, both at Crozet (Figure 

2-8.a. & Table 2-2) and at Kerguelen (Figure 2-8.b. & Table 2-2). At Kerguelen, high between-

captain variability (i.e. random effect) in the probability to leave was observed upon the 

response to the fishing success in presence of sperm whales (Figure 2-8.b. & Table 2-2). 

Conversely, at Crozet, the between-captain variability (i.e. random effect) in the probability to 

leave was observed on the response to the number of sperm whales (Figure 2-8.a. & Table 2-2).  

For the sessions with only killer whales, the correlation between the probability of 

captains to leave and the number of killer whales was positive but not significant (z=1.75, 

p=0.08, Figure 2-9. & Table 2-2).  

In addition, when considering any of the two cetacean species, the interaction term 

between the two explanatory variables (daily mass of toothfish caught and number of cetaceans) 

was negative and significant (z= -2.39, p=0.02, Table 2-2, Figure 2-7 b & c). The slope of the 

relationship between the daily mass of fish caught and the probability to leave decreased when 

the number of cetaceans increased (Figure 2-7.b.). This result suggests that when the fishing 

success increased in presence of a high number of cetaceans, the probability to leave decreased 

at a faster rate than when the fishing success increased with a few cetaceans interacting (Figure 

2-7.b.). Conversely, the slope of the relationship between the number of cetaceans and the 

probability to leave decreased when the daily mass of fish caught increased Figure 2-7.c.). 

Besides, this relationship changed from positive to negative for a given toothfish daily mass 

(Figure 2-7.c., see following section for the threshold determination).  
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Table 2-2 - Results of the GLMMs of the probability to leave in relation to daily weight of toothfish 

caught (fishing success) and the number of individuals for the different cetaceans’ occurrence possible 

(both species, killer whales alone and sperm whales alone), with random effects set between the captains 

and in some models on the slope (according to the model selection based upon the AIC). 

Localisation Occurrence Parameter Value SE z-value p-value 

CROZET 

Cetaceans 

N=790 

Random effects: 

Intercept’s variance=0.42 

Fishing success 

variance=0.56 

Intercept -0.64 0.20 -3.24 0.001 

Fishing success -1.21 0.25 -4.85 <0.001 

Number of cetaceans 0.21 0.09 2.27 0.02 

Interaction 

fishing success x nb 

cetaceans 

-0.25 0.11 -2.39 0.02 

      

Killer whales 

N=78 

Random effects: 

Intercept’s variance=0 

 

Intercept -1.04 0.29 -3.62 <0.001 

Fishing success -0.80 0.36 -2.21 0.03 

Number of killer whales 0.46 0.26 1.75 0.08 

      

Sperm whales 

N=457 

Random effects: 

Intercept’s variance=0.11 

Nb ind variance=0.17 

Intercept -0.77 0.16 -4.68 <0.001 

Fishing success -0.64 0.13 -4.92 <0.001 

Number of sperm whales 0.54 0.18 2.99 0.003 

       

 Sperm whales 

N=3126 

Random effects: 

Intercept’s variance=0.24 

Fishing success 

variance=0.23 

Intercept -1.78 0.14 -12.58 <0.001 

KERGUELEN Fishing success -1.07 0.14 -7.44 <0.001 

 Number of sperm whales 0.40 0.05 8.78 <0.001 
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Figure 2-7 - a) Probability to leave a ground for captains, π, at Crozet in response to the variation of 

the standardized fishing success (orange) and the standardized number of cetaceans (green). Lighter 

thin lines represent captains’ probabilities to leave on the left box. b&c) Dashed lines represent the 

interaction results (see Table 2-2), showing the probabilities to leave a ground as a function of one of 

the two standardized variable, and the color’s gradients of dashed lines from light to dark represent 

variation of the other variable from minimum value to maximum value. b) The lightest orange dashed 

lines represent the probability to leave a ground as a function of fishing success the minimum number 

of cetaceans (i.e. in absence), and the darkest orange dashed line for the maximum number of cetaceans 

(i.e. 29 individuals). c) The lightest green dashed lines represent the probability to leave a ground as a 

function of the number of cetaceans for the minimum fishing success (i.e. a null success), and the darkest 

green dashed line for the maximum fishing success (i.e. 15650 kg).   
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Figure 2-8 - Probabilities to leave a ground, π, at Crozet (a) and at Kerguelen (b) in response to the 

variation of the standardized fishing success (orange) and the standardized number of sperm whales 

(green). Lighter thin lines represent variability between captains (see Table 2-2). 

 

Figure 2-9 - Probability to leave a ground, π, at Crozet in response to the variation of the standardized 

fishing success (orange) and the standardized number of killer whales (green), (Table 2-2). The dashed 

line represents non-significant relationship (see Table 2-2). 
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2.2.4.4. DESCRIPTION OF A FISHING SUCCESS’ THRESHOLD FOR CAPTAINS’ 

DECISION  

By assessing the intersection between smoothed distributions of the fishing success, for 

both hauling sessions followed by a decision to stay and sessions followed by a decision to 

leave, we obtained a threshold of approximately 500kg.day-1 at Crozet (Figure 2-10.a) and 

2,700kg.day-1 at Kerguelen (Figure 2-10.b). These results suggest that below these mean 

thresholds, captains were more likely to leave their patch. 

  

Figure 2-10 - Distributions of the weight of toothfish caught per day for every session, both at Crozet 

(a) and Kerguelen (b), followed both by a decision to stay (light grey) and by a decision to leave (black), 

with smoothing splines (coefficient=0.5). On the top we represented the global distributions and on the 

bottom we showed a zoom of the first values, allowing us to assess the threshold of the fishing success 

determining the captains’ decision to stay or leave. 
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These values allowed for the determination of the mean fishing success regardless of 

the competition, which defined the global captains’ decision to stay or leave, either at Crozet 

or at Kerguelen. Using the significant coefficient of the interaction term between the fishing 

success and the number of cetaceans in the GLMM, we estimated the threshold of fishing 

success above which the competition did not positively influence the decision to leave anymore 

(Figure 2-7.c.). To define this threshold, we resolved the equation determining a constant 

probability to leave irrespective of the number of cetaceans: 

EQUATION 2-10:  (β2+ β3Fishing success) Nb cetaceans = constant 

β2+ β3Fishing success = 0 

 0.21-0.25xFishing success standardized=0 

 Fishing success standardized=0.84 

 Fishing success=5866 kg.day-1 

As a result, we observed that the probability to leave a patch decreased when the number of 

cetaceans increased for masses of toothfish caught per day above 5866 kg.day-1 (Figure 2-7.c).  

 

 

 

2.2.5. DISCUSSION 

2.2.5.1. ARE FISHERS OPTIMAL FORAGERS?  

Using OFT, we were able to describe the decision process of longline fishing vessel 

captains. Our results provided strong support for the assumption that captains act as optimal 

foragers during fishing operations. We highlighted that decisions made by captains to stay or 

leave a patch were primarily driven by their fishing success, which is analogous to foraging 

success in OFT, but was also influenced by cetacean depredation. 
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Influence of fishing success  

Our study showed that fishing success clearly stood as the main driver of the decision 

of captains to stay or leave a patch, both at Kerguelen and at Crozet, for any level of competition 

with cetaceans. Daily thresholds of 500 kg and 2,700 kg were suggested as driving the decision 

of captains to leave a patch at Crozet and at Kerguelen, respectively, i.e. below these masses of 

toothfish caught during a day, fishers were more likely to leave for another patch. In addition, 

in the presence of cetaceans, we showed a threshold effect of the fishing success upon the 

relationship between the number of cetaceans and the decision to stay. From our results, the 

number of cetaceans had no influence on the captain’s probability to leave a fishing area if the 

fishing success was higher than 5,866 kg of fish caught per day.  

Decision making by fishers around Crozet and Kerguelen may reflect a passive adaptive 

strategy as defined by Clark (1985), since fishers rely on the constantly updated information 

provided by the patch to decide whether to leave it or not. Such strategy has been reported to 

be also used by fishers in more traditional fisheries, resulting in an optimal use of foraging 

patches (Begossi 1992, Aswani 1998). This behaviour of optimal foraging has to be contrasted 

with a long-term sustainable strategy of the resource.  

Maximizing catch rates by staying in a locally productive fishing area may be explained 

by a combination of factors involving both the socio-economic constraints of the fishing activity 

and the difficulty to find the fish. Vessels allowed operating in the Crozet and Kerguelen EEZs 

are subject to annual quotas, which are the highest of all Patagonian toothfish fisheries of the 

Southern Ocean (e.g., 6,300 tonnes shared between the 7 licensed vessels in 2015-2016). The 

full completion of quotas during a given season ensures the economic viability of the fishing 

companies, and also demonstrates the capacity of these companies to complete their quotas, 

which is used to determine the quotas of the following season. In addition, fishery regulations, 

which are partly defined by the Commission for the Conservation of Antarctic Marine Living 

Resources (CCAMLR), restrict access to EEZs for a portion of the year and impose both fishing 

time limits (in days) to local patches within EEZs and minimum fish size policies. 

 Paired with the costs of fishing operations (fuel, gear, food, crew salaries), the 

toughness of fishing conditions and the remoteness of the fishing areas (on average vessels 

spend 3 consecutive months at sea before returning to port, with 7 days steaming each way from 

Reunion island), these socio-economic constraints lead captains to favour a short-term and local 
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catch rate maximization strategy when finding a productive fishing area meeting all regulations. 

This strategy may be further enforced by the specific difficulty to find productive fishing areas 

since Patagonian toothfish lack a gas-filled swimbladder and detection of fishable numbers can 

be difficult (Foote 1980). In addition, the quota allocation between the two localisations is 

asymmetric: 90% of the quota is set at Kerguelen and the 10% remaining is done at Crozet, and 

the Kerguelen fishing area is substantially greater than the Crozet fishing area. These features 

may explain the differences of daily mass threshold (500kg at Crozet and 2700kg at Kerguelen) 

driving the decisions made by captains. As more fishing effort is required at Kerguelen, captains 

may seek more productive areas in Kerguelen than in Crozet. Consequently, for captains, a 

given fishing success may be acceptable in Crozet but not in Kerguelen.  

 

Influence of cetacean depredation 

Although fishing success was found to be the primary driver of decisions by captains, 

the present study also showed the importance of cetacean depredation on the probability of 

fishers to stay on or to leave patches. For a given fishing success (i.e. the same mass of fish 

caught per day), captains were more likely to leave a patch when depredation occurred and 

when the number of depredating individuals increased. The number of depredating individuals 

also influenced the rate at which decisions were made: captains took the decision to leave sooner 

as the number of cetaceans increased. These results highlight the fishers’ perception of both 

sperm whales and killer whales as competitors and, similarly to the findings of Goldstone et al. 

(2005), fishers react to competition by avoidance.  

The competition effects of cetaceans underlined in our study is line with previous studies 

assessing the impact of cetacean interactions on the fishing success of fishers. In Crozet, killer 

whales and sperm whales were found to be responsible for the removal of 30% of the total catch 

of toothfish between 2003-2013, whether the two species interacted alone or simultaneously 

with vessels (Gasco et al. 2015). However, killer whales are likely to be considered by fishers 

as a more serious competitor than sperm whales, since the biomass loss when killer whales 

depredate alone has been estimated to be twice the biomass loss when sperm whales depredate 

alone (Gasco et al. 2015). In addition, our results suggested that the number of both depredating 

sperm whales and killer whales may positively influence the probability of captains to leave a 

fishing area. However, for killer whales alone, this relationship, which was based on a small 
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sample size (n = 78 fishing sessions), was only close to significance in the models. An increased 

number of depredating killer whales and sperm whales was shown to result in increased amount 

of depredated fish (Gasco, 2013) and is, therefore, likely to increase the probability of fishers 

to leave.  

 

Factors explaining between-captain variability 

Our result emphasized high between-captain variability in the probability to leave an 

area, either as a response to the fishing success or as a response to the competition with 

cetaceans. In addition, between-EEZs variability per captain of the probability to leave a ground 

as a response to the fishing success was low, which suggests that captains are consistent in their 

decision to leave a ground according to a same variation of fishing success wherever they fish. 

Together, these results underlie the importance of individual captain personalities over their 

decision to stay or leave a patch. We observed that the probabilities to leave a fishing area 

varied differently between captains according to their fishing success, suggesting differences 

either in fishing strategies or in perception about what is an acceptable level of fishing success. 

Within the context of OFT strategies, captains may play upon different technical variables, such 

as the number of hooks set, the setting depth, the soaking time, the hauling speed and so on. 

Nevertheless, differences in quotas between vessels may lead to differences in captains’ 

decision making. For instance, during the season 2014-2015, quotas varied between the seven 

fishing vessels from 100 to 140 tonnes at Crozet and from 630 to 820 tonnes at Kerguelen 

(French Antarctic and Austral Territories Prefectural Decree n° 2014-76).  

Differences in experience may also play a role in the variation of decision making 

between captains, either in response to a decrease of fishing efficiency or to the presence of 

cetaceans. We assume that more experienced captains may know how to react to both situations. 

While facing competition, some captains may indeed try to adapt their fishing techniques in 

presence of cetaceans. They can increase hauling speed or shorten longline length in order to 

limit the depredation rate both by killer whales (Tixier et al. 2015c) and by sperm whales (Janc 

et al. 2018). We may thus assume that fishers who successfully limit the competitive effect of 

cetaceans may be less sensitive to them. Conversely, less experienced captains who face 

depredation for the first time may react differently than more experienced captains.  
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Species may also be a factor determining differences of decision making between 

captains. Killer whale depredation is more obvious for fishers than sperm whale depredation, 

as killer whales leave some fish remains on longline. In addition, killer whales are usually 

observed depredating in larger groups than sperm whales, even though killer whales interact 

less with vessels than sperm whales. These differences of depredation perception by fishers 

may make killer whales more annoying to them (Gasco 2013). Furthermore, since killer whales 

cause greater fish losses than sperm whales, it could explain the null between-captains 

variability in the decisions when confronted with depredation by killer whales alone compared 

to the variability observed when confronted with sperm whale depredation alone.  

Captains may be differently sensitive to the presence of sperm whales, as we observed 

high variability of decision between captains in our models while facing sperm whales 

competition. In addition to lower losses caused by sperm whales, previous studies have shown 

that sperm whales are naturally distributed on highly productive patches (Tixier 2012, Gasco 

2013). Unlike killer whales, for which it is still not clear whether they naturally feed on 

Patagonian toothfish, the latter has been confirmed as an important prey item of sperm whales 

in the Southern Ocean (Yukhov 1982). As such, the presence of numerous sperm whales could 

sometimes be associated with rich fishing areas, which may result in a diluted impact of 

depredation in catch rates remaining high and which may, thus, influence the perception of 

fishers.  
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2.2.5.2. WHAT MAY BE THE CONSEQUENCES OF FISHERS’ OPTIMAL 

STRATEGIES ON ECOSYSTEMS?  

Consequences on local fish resources  

Considering that fishers act like optimal foragers, since they aim at maximizing their 

fishing efficiency, we may wonder if this behaviour could be a risk for the long-term 

sustainability of local ecosystems, which include both the fish resource and the depredating 

whale populations. Fishers’ choices seem to be only based upon short-term strategies, so there 

could be a risk of local depletion of Patagonian toothfish on patches. The foraging success 

clearly stands as the main driver of patch use even in the presence of cetaceans, and until 

recently the incorporation of the amount of depredated fish has remained limited in quotas 

allocation processes (Roche et al. 2007, Gasco et al. 2015). For instance, considering that 30% 

of the total catch in Crozet is lost to depredation (Gasco et al. 2015) and for a given quota of 

850 t.year-1 (e.g. season 2014-2015 within the Crozet EEZ), an additional 365 tonnes of 

Patagonian toothfish are caught but removed by cetaceans. The optimal strategies combined 

with the depredation may then become an issue to fishing stocks, within the condition that these 

amounts of depredated fish would not have been eaten in natural condition by cetaceans. We 

may indeed expect an overexploitation of the resource at the local scale due to the maximisation 

strategy of captains coupled to the loss due to depredation. 

Furthermore, depredation may create bias in the length-frequency distributions used in 

fish stock assessment procedures since Gasco (2013) revealed that killer whales and sperm 

whales tend to depredate large Patagonian toothfish. Additionally, fishers concentrate their 

effort in fish-rich areas, where depredation is more likely to occur, especially in presence of 

sperm whales (Tixier 2012, Gasco et al. 2015). The decision to leave is then less likely to 

happen in such areas, as our results suggested that for a high fishing success (~6t.day-1), fishers 

stay on a patch due to their optimal foraging strategy. Hence, a resource crunch is to be 

considered at finer scale than considering an EEZ range or even at a Small Scale Management 

Unit (1° X 0.5°), for instance at a seamount, a plateau or a slope level. 
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Consequences on local cetacean populations  

Although fishers are more likely to avoid competition with cetaceans, we observed that 

captains do not leave fishing areas if their fishing success is high, even with an increasing 

number of cetaceans. Such decision may, therefore, provide cetaceans with large amounts of 

fish to depredate and, thus, with highly energetic and easily accessible resource in abundance. 

The consequences of artificial food provisioning on the sperm whale population has not been 

yet assessed since this population has been monitored only recently (Labadie et al. 2018). 

However, artificial food provisioning from fisheries was shown to result in increased survival 

and reproduction for the depredating killer whales of the Crozet population (Tixier et al. 2015a, 

Guinet et al. 2015). 

We may also assume that the optimal foraging strategies of fishers reinforce cetaceans’ 

depredation behaviour. If we now consider cetaceans as optimal foragers and depredation 

behaviour as a cost-effective strategy, due to the low foraging effort and the high energetic 

intake from toothfish (Collins et al. 2010), it is more likely that whales favoured interactions 

with longlines instead of natural hunting. Depredation may have been learned independently by 

some killer whale matrilines and sperm whale individuals, and then socially transmitted to other 

individuals for both species by mimicry (Schakner et al. 2014). A cost-effective behaviour is 

more likely to be spread within a population of highly social cetaceans (Rendell and Whitehead 

2001), especially as apprenticeship is important for cetaceans and relies on both vertical and 

horizontal cultural transmission (Guinet 1991, Ford et al. 1998, Deecke et al. 2000, Whitehead 

et al. 2004). Thus, killer whales and sperm whales might become more and more dependent of 

the longliners’ activity. An increasing dependency of cetaceans to fisheries might become a 

concern if whales search for longliners outside the EEZs, where illegal fishing activity is still 

observed (Thierry Clot, pers. comm., from the French Antarctic and Austral Territories 

Administration) and is assumed to respond to depredation by cetaceans using lethal techniques.  
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2.2.5.3. CONCLUSION 

In agreement with human ecological studies using OFT, our study showed that optimal 

patch modelling is a useful tool to analyse fishing strategies. However, we bring here new 

evidence of the possibility to monitor modern fishing activity according to the OFT, whereas 

previous studies focused on more traditional fisheries.   
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2.3. WHAT INTEREST TO ASSESS HUMAN BEHAVIOUR? 

2.3.1. CAPTAINS BEHAVIOUR WHILE EXPLOITING A PATCH 

Using the optimal foraging theory, I observed that although captains’ decision to use a 

patch is mainly driven by the fishing success, competition with odontocetes can strongly 

influence their decision (section 2.2). However, this article only focused on captain’s 

prospection behaviour, i.e. setting decision, but it did not assess their foraging behaviour within 

a patch, i.e. the hauling decision. Thus, we may also wonder whether captains forage optimally 

within a patch. Thus, I aimed at assessing the decision to haul a longline when a choice is 

available. An optimal foraging strategy would consist in covering the shortest distance in order 

to haul the next longline among several ones set on the seafloor. The purpose was then to 

explain the hauling choice of the next longline for captains according to the optimal foraging 

theory. Similarly to our article (section 2.2), I hypothesised that the fishing success may 

influence positively the decision to haul the closest longline whereas the competition with 
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odontocetes may drive away the captains. I thus defined an optimal distance score (ODS) to 

estimate whether the captain made the most optimal choice by choosing the closest distance to 

haul the next longline (score =1) or the least optimal choice by choosing the furthest distance 

(score =0). The optimal distance score was estimated at the end of every longline hauled before 

another one (without any setting phases in between) and when at least 2 longlines remained on 

the seafloor, i.e. when a choice was available. Thus, I measured distances between the position 

of the fishing vessel at the end of the hauling and all extremities of longlines still soaking, 

considered as all the possible distances (𝑑𝑝). From these values, 𝑑𝑝, I kept the minimum and 

the maximum from which I compared to the real distance (𝑑𝑟) covered by the fishing vessel 

between the end of the hauled longline and the beginning of the next one. Thus, ODS ∈[0,1] 

and was defined as: 

EQUATION 2-11 : ODS = 
𝒎𝒂𝒙 (𝒅𝒑)−𝒅𝒓 

𝒎𝒂𝒙 (𝒅𝒑)−𝒎𝒊𝒏(𝒅𝒑)
 

 

Figure 2-11 – Histograms of the optimal distance score (Equation 2-11) for all captains both at Crozet 

and Kerguelen.  
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I assessed the influence of the fishing success and the occurrence of depredation on the 

optimal distance score. The optimal distance score ∈[0,1] since it represented the proportion 

of optimality within captains choice. I thus investigated the logistic regression between the 

proportion to make the optimal choice (π) with the fishing success and the competition (Zuur 

2009). The fishing success was expressed as the mass of toothfish caught on the hauled longline 

(kg), and the competition was set as a categorical variable with odontocetes occurrence 

(presence of species and absence of odontocetes). I also assessed the effect of the interaction 

between both predictive variables: fishing success and competition. Captains were considered 

as a random effect to investigate variations of decision between them.  

EQUATION 2-12 : logit(πij)= α + aj +(β1+bj)Fishing success ij + β2Competition ij  

+ β3Fishing success ij x Competition ij +ε ij 

with πij the proportion to make the optimal decision for a captain j at the end of the hauled 

longline i, α the intercept, aj the random intercept for captain j, β1,2,3 the coefficients of the three 

predictive variables , bj the random effect for captain j on the slope of fishing success and ε ij 

the residual for the hauled longline i and captain j. Besides, using a top-down approach (Zuur 

2009), I assessed first the most complex model, i.e. with the interaction between the two 

predictive variables and the random effect (captain j) set both on the intercept (α) and on the 

slope (β1) of the continuous variable (fishing success) through the Akaike Information Criterion 

(AIC) selection (Akaike 1974, Zuur 2009). The statistical model was implemented through the 

software R with the function glmer (package lme4).  

According to the AIC selection, only the models for the Crozet EEZ were better than 

the null model. The best model for Crozet was obtained with the competition as the only 

explanatory variables (excluding the fishing success) with a random effect of the captains on 

the intercept (α + aj): 

EQUATION 2-13 : logit(πij)= α + aj + β2Competition ij +ε ij  

Interestingly, the model selection dropped out the fishing success, thus this variable did 

not explain the hauling decision of captains. However, the proportion of optimal decision in 

absence of odontocete was significantly different from 0, i.e. the least optimal choice (πij = 0.79, 

p<0.001, Figure 2-12), with a significant variability between captains (std=0.27). The optimal 

distance score decreased in presence of odontocetes with a significant difference between the 
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optimal distance scores in absence of competition and in presence of killer whales (pkw <0.001, 

Figure 2-12) whereas the optimal distance score in presence of sperm whales alone was not 

significantly different than in absence of odontocetes (pkw =0.146, Figure 2-12). When both 

species were present, the difference with the score in absence of odontocete was close to be 

significant (pboth sp =0.07, Figure 2-12).  

  

Figure 2-12- Boxplot of the optimal distance score per odontocete occurrence between Crozet and 

Kerguelen with mean scores represented by the coloured triangles and captains’ variability by the grey 

dots. 

 

These results revealed that captains display an optimal foraging behaviour within a patch since 

they tend to choose the closest longline whatever the fishing success and the competition. 

However, the models highlight that competition generated by the occurrence of killer whales 

impacts negatively the optimality of captains’ hauling decision. This competition effect was not 

detected for sperm whales. Indeed, no competition effect was perceive in Kerguelen, where 

only sperm whales are present, as revealed by the mean value (absence in red and presence in 

dark green) on Figure 2-12 (right panel). Similarly, no significant differences between the 



2. FISHERMEN ECOLOGY 

 

74 

 

scores in absence of odontocete, in red on Figure 2-12 (left panel), and in presence of sperm 

whales alone, in dark green on Figure 2-12, was observed at Crozet. Besides the estimates 

revealed that in absence of odontocetes captains are more likely to choose the closest distances 

after 79% of the longlines hauled, in red on Figure 2-12, whereas in the presence of killer whales 

optimality decreases to 68% of the longlines, in light green on Figure 2-12. Additionally the 

inter-captains variability of optimal distance scores strengthen the hypothesis that they do not 

perceive their environment similarly and have different sensitivity to the competition (see 

captains variability in presence of killer whales on Figure 2-12) 

Altogether, these observations show that competition decreases the optimality of 

captains decision as captains are either more likely to leave a patch in the presence of cetaceans 

or more likely to choose a further longline when killer whales are present. However, I did not 

assess the costs of implementing a non-optimal strategy in response to killer whales. 

Nevertheless, as interaction with odontocete may engage captains to cover larger distances than 

they should have done (optimal distance score<1), this extra distance may be used as a proxy 

of an induced depredation cost. Thus, the extra distance (𝑑𝑒) covered was measured as the 

difference between the real distance covered to haul the next longline and the minimum distance 

with the closest longline set on the seafloor that the captains could have covered: 

EQUATION 2-14:  𝒅𝒆  =  𝒅𝒓 − 𝒎𝒊𝒏 ( 𝒅𝒑) 

I then estimated the mean (± sd) extra distance covered in presence of odontocetes at Crozet 

that I compared to the mean extra distance covered in absence of odontocete, as a reference of 

non-optimality in captains’ hauling decision due to other parameters. I obtained extra distances 

of: 8.9±13.4 km/longline in absence of cetacean, 11.1±16.8 km/longline in presence of both 

species, 11.2±15.6 km/longline in presence of sperm whales alone and 13.5±20.4 km/longline 

in presence of killer whales alone (Figure 2-13). Thus, in presence of killer whales for instance, 

when captains chose to not haul the closest longline they cover 51% more distance than in 

absence of odontocete. This increase of distance begets considerable costs such as a rise of fuel 

consumption. However, additional fuel consumption is not the only cost that may be generated 

by the decrease of the fishermen optimality, but an increase of fishing effort, either by time or 

by fishing gear deployed may result in huge expenses (Peterson et al. 2014). Thus, further 

investigations should assess more precisely some captains’ foraging strategies as a combination 

of the decision to deploy to haul and to use certain fishing practices according to their 

environment.  



2. FISHERMEN ECOLOGY 

 

75 

 

 

Figure 2-13 - Boxplot of the extra distance covered after a longline when captains do not chose the optimal 

decision (i.e. optimal distance score<1) per cetacean occurrence at Crozet, with mean values represented by 

the coloured triangles. 

 

 

2.3.2. CONCLUSION 

In summary, this chapter confirms that fishermen behave like optimal foragers as their 

decisions are driven by variation of the environmental conditions. Captains face indeed 

decision-making with different implication term. When setting longlines, captains are 

prospecting for the resource. Their decision to set longline is therefore mostly based upon a 

long term strategy to find the best resource abundance (section 2.2). Once longlines are set 

captains could not improve anymore the catchability of the resource. However, during the 

hauling captains’ decision will be important to reduce fishing costs and so captains rely mostly 

on direct environmental information, such as the presence of competitors (section 2.3.1). 

Besides, the behavioural ecology approach also revealed a large variability between captains, 

suggesting the importance of individual perception. However, further investigation should also 

assess the effect of captains’ experience. Such approach would consist to determine whether 

captains behave more similarly to a different captain with the same experience than to himself 

with a different experience. I hypothesise that captains during their first trip behave like naïve 
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foragers. Then with experience fishing strategy should become more efficient and the 

perception of competition may evolve. 

A better understanding of fishermen behaviour is thus essential toward a finer 

investigation of direct costs due to depredation. These costs could be quantifiedthrough the loss 

of optimality in captains foraging behaviour. Additionally, such an approach may also bring a 

new lead for mitigation measures by assessing the most optimal strategy in presence of 

odontocetes Our studies showed the necessity to work at individual scale to assess captains’ 

fishing strategies. Differences of personal sensitivity of the competition by captains, as revealed 

on Figure 2-5, Figure 2-7 and Figure 2-8 may explain a part of their inter-individual variation 

of interaction rates depicted on Figure 2-1. Thus, these results suggest that some captains may 

display foraging strategies which are more sensitive to interaction with odontocetes than 

strategies of other captains.  

Apart from the fishing practices, we may wonder what type of behaviours may change 

the detectability of captains. As odontocetes mostly rely on acoustic to forage, captains could 

also display different navigation behaviours. As previously hypothesised, the acoustic 

signatures may explain differences of interaction rates between vessels (Figure 2-1), therefore 

different acoustic signature through the manoeuvrability of their vessels may explain another 

part of the inter-captains variability of interaction rates. This assumption was examined using 

a passive acoustic monitoring approach and results are presented in the following Chapter 3. 
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3. PASSIVE ACOUSTIC MONITORING 

 

The previous chapter focused on the interest to study human behavioural ecology to 

better understand relationship between fishermen and the competition. This approach notably 

revealed differences of interaction rates between captains on Figure 2-1. This inter-captain 

variability was partially explained through differences of decision making and by different 

competition perception, suggesting that captains less sensitive would be less likely to leave in 

presence of odontocetes and thus would increase their interaction rates. This approach assessed 

in a way the consequence of the risk of interaction with odontocetes upon captains’ behaviour; 

however the consequence of captains’ behaviour upon the risk of interaction remains unclear. 

Using this opposite view of the issue would target how behaviour of captains may increase the 

risk of interaction, such as through an augmentation of their detectability. An assumption is that 

differences of detectability could be due to extrinsic signals, related to the vessels’ navigation 

(i.e. captains sailing behaviour) or to intrinsic signals, related to vessels’ specificities 

themselves. Intrinsic signals may then explain the inter-vessels variabilities observed on Figure 

2-1. Thus, this chapter focuses on the acoustic signals as an explanation the detectability of 

fishing activity by odontocetes, through a passive acoustic monitoring approach. In a further 

extent, this chapter also determines how passive acoustic monitoring could bring a better 

understanding on the underwater dimension of the odontocete depredation behaviour. 

 

3.1. INTRODUCTION 

3.1.1. PASSIVE ACOUSTIC MONITORING TO STUDY 

DEPREDATION 

Stimuli of any kind propagate differently underwater than in the air. Species like 

cetaceans have sensory and communication systems adapted to a fully aquatic environment 

(Watkins and Wartzok 1985, Wartzok and Ketten 1999). As beams of light are scattered and 

absorbed by water at closer range than in the air, the vision of marine mammals allows them to 

primarily distinguish their environment only at very close range (Watkins and Wartzok 1985, 

Wartzok and Ketten 1999). These predators need therefore to rely on other environmental clues 
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and other senses than vision to detect their preys. One reliable information signal underwater is 

sound. In the aquatic environment, sound travels five times faster than in the air, circa 1500 

m.s-1 instead of circa 300 m.s-1. Sound can travel from a few metres to a hundreds of kilometres 

within the oceans depending on their intensity and their frequency, while light usually does not 

propagate for more than dozens of meters. It is then not surprising that evolution has driven 

cetaceans to primarily rely on acoustic signals (Wartzok and Ketten 1999). All cetaceans 

produce communication signals. Pieces of information contained in cetacean communication 

signals are still poorly understood since a broad range of sounds could be produced across 

species, contexts, behavioural states, etc. Indeed, signals, either random or stereotyped, can vary 

from short pulses to multi-themed songs including whistles and calls (Zimmer 2011). Some of 

these sounds are produced to be heard by prey in order to scare them within a foraging purpose. 

For instance some population of killer whales and bottlenose dolphins produce feeding-specific 

calls to manipulate preys and facilitate capture (Janik 2000, Simon et al. 2006). Another 

example of feeding-specific sounds but different to calls are produced by humpback whales 

when bubble-net feeding on herring (Cerchio and Dahlheim 2001). More specific sounds 

related to feeding and at larger extent to foraging activities are the echolocation signals. 

Echolocation is the use of a signal’s echoes from an emitting animal to estimate the direction 

and the range of an object (Griffin 1958, Zimmer 2011). Echolocation signals, such as clicks, 

have first been described in bats (Griffin 1958), and in odontocetes to localise prey (Backus and 

Schevill 1966, Zimmer 2011). A click of echolocation is a broad-band sound, for instance circa 

100 Hz to 150 kHz depending on odontocetes species, and is produced during a very short 

duration (i.e. a few to some twenty milliseconds). Altogether, communication and echolocation 

signals are good acoustic clues to interpret the behaviour of individuals, leading researchers to 

increasingly use passive acoustic monitoring (PAM) as a tool to study odontocete species  

Within the context of longline depredation, PAM can be used as a reliable approach to 

assess the temporal and spatial behaviour of cetaceans around fishing gear. For instance, the 

deployment of acoustic recorders on longlines may allow a more comprehensive monitoring of 

the presence of depredating odontocetes, improving therefore accuracy in the estimation of 

interaction rates (Thode et al. 2014, 2015). PAM may also be implemented through multiple 

hydrophone deployments allowing tracking of individuals underwater (McPherson et al. 2004, 

Zimmer 2011, Mathias et al. 2013a). Odontocetes are most likely to rely on acoustic to detect 

vessels and fishing activity. Thus, another interest to use PAM within a fishing context is to 

identify the specific sounds that may attract depredating species. Although PAM offers 
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interesting insights, for the last 40 years the field of acoustic in a fishery context has mostly 

focused on deterrents and harassment devices (Shaughnessy et al. 1981, Jefferson and Curry 

1996, Tixier et al. 2015b, Wild et al. 2017). This was partly explained by unwieldy acoustic 

recorders with high power and memory consumption, allowing only short recording duration, 

until the 2000s. With recent technological developments it has become easier to deploy 

autonomous devices on longlines, which lead to an increased use of the PAM approach to study 

depredation (Thode et al. 2015). Yet, only a few studies have used this approach to observe and 

measure depredation (McPherson et al. 2004, Hernandez-Milian et al. 2008, Thode et al. 2014, 

2015). Among these studies, the Southeast Alaska Sperm Whale Avoidance Project 

(SEASWAP) has dedicated extensive efforts on PAM to investigate sperm whale depredation 

on Alaskan longline fisheries (see review Thode et al. 2015). This project used PAM through 

four distinct approaches aiming at: (i) better estimating of depredation rates by using distinctive 

echolocation sounds by sperm whales (Mathias et al. 2012, Thode et al. 2014, 2015); (ii) 

developing localisation and tracking methods of depredating whales from hydrophones arrays 

deployed on longlines’ buoy (Thode 2004, 2005, Tiemann et al. 2006, Mathias et al. 2013a, 

2013b, Thode et al. 2015); (iii) determining acoustic cues produced by fishing boats to 

determine how sperm whales detect and localise fishing activity (Thode et al. 2007, 2015); (iv) 

testing and evaluating potential countermeasures such as acoustic decoys and passive deterrents 

(O’Connell et al. 2015, Thode et al. 2015, Wild et al. 2017). SEASWAP revealed the large 

potential of PAM to understand, measure and mitigate odontocete depredation (Thode et al. 

2014, 2015) . 

Despite this research potential, PAM has never been implemented as a tool to study 

odontocete depredation on the Patagonian toothfish longline fisheries in the Southern 

hemisphere. During my PhD, I introduced PAM to the French and Australian toothfish fisheries 

with the purpose to collect long-term acoustic data from fishing vessels and longlines. 
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3.1.2. PAM WITHIN THE ORCADEPRED PROJECT 

In our depredation study case, we focused on two odontocete species: sperm whales and 

killer whales. These species both produce echolocation clicks (Norris 1968, Barrett-Lennard et 

al. 1996, Madsen et al. 2002, Au et al. 2004, Miller et al. 2004, Simon et al. 2007, Zimmer 

2011), which can be used as a reliable acoustic clue to identify foraging events. Using clues 

like ‘buzzes’ or ‘creaks’, described as an acceleration of click rates (Madsen 2004) and found 

to be associated with prey catch attempts (Miller et al. 2004, Watwood et al. 2006), we may 

detect fish removal from longlines (Thode et al. 2014, 2015). Killer whales, which have a more 

diverse acoustic repertoire than sperm whales, may also be detected by clues other than 

echolocation clicks, such as stereotyped pulsed calls and whistles, which they primarily use as 

communicative signals (Ford 1989, 1991, Thomsen et al. 2002, Riesch et al. 2006, 2012). These 

types of signals may therefore be reliable to determine socializing behaviour (Ford 1989, 1991, 

Deecke et al. 2000, Miller and Bain 2000, Filatova et al. 2013). Communication sounds have 

also been reported in sperm whales but through clicks echolocation sequences, called ‘coda’ 

(Pavan et al. 2000, Rendell and Whitehead 2003, 2004).  

Knowing these species’ acoustic repertoire we could monitor their presence and identify 

their behavioural states around hydrophones deployed on longlines. With acoustic proxies of 

foraging behaviour, such as clicks of echolocation (Thode et al. 2014, 2015), we could 

determine when depredation events start. Aside from answering at which fishing stage (i.e. 

setting, soaking or hauling) odontocetes could depredate Patagonian toothfish, PAM might also 

specify depredation rates during interactions (Thode et al. 2014). PAM may also be useful when 

depredation is not occurring yet. If the presence of odontocete can be acoustically detected 

immediately when setting the longlines, this would inform that individuals were already present 

on the fishing area. Otherwise, if predators are acoustically detected after the setting, PAM can 

assess their arrival time on longlines. Such pieces of information are crucial to highlight 

predators’ natural distribution. Altogether, we expect to bring new insights on how odontocetes 

detect the fishing activities. Indeed, we wonder how far vessels could be detected and whether 

their activities, for instance setting or hauling, influence their detectability. A more direct 

approach to assess this detectability issue is to monitor vessels’ acoustics. We suggest that 

vessels might be detected either through their own signatures, i.e. intrinsic signals, which could 

vary between fishing phases (Thode et al. 2007, 2015), or through sounds induced by captains’ 

navigation, i.e. extrinsic signals. An increase of the acoustic detection range of fishing vessels 
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should increase the risk of interactions with odontocetes. The determination of intrinsic and 

extrinsic signals is thus crucial to better understand how odontocetes detect fishing activities.  

As no acoustic deployment had previously occurred from Patagonian toothfish 

longliners, the setting of the acoustic monitoring constituted a first important work during this 

PhD, as presented hereafter. The first step before assessing the objectives to monitor 

odontocetes and vessels acoustics was to deploy hydrophones. Two different setting was used: 

a multi-hydrophones array to allow acoustic tracking and a single hydrophone to allow friendly 

deployment by fishermen and fishing controllers without scientific oversight on-board. This 

second setting has then allowed to install a long-term acoustic monitoring from the longliners. 

 

3.2. PROTOCOLS AND FIELD METHODS, TOWARD A LONG 

TERM MONITORING 

3.2.1. FIRST RECORDINGS WITH AN ACOUSTIC ARRAY 

Within the purpose to answer when and where depredation occurred, the use of PAM 

for acoustic tracking is of great value (Mathias et al. 2013a, 2013b, Thode et al. 2015). This 

approach requires deploying an acoustic array to allow measuring time difference of the sounds’ 

arrival between several hydrophones. A preliminary work was therefore conducted before this 

PhD to prepare the acoustic tracking tool, described in Appendix 1. The method and results 

from the models detailed in Appendix 1 were used to determine the best setting for an array of 

hydrophones. The acoustic array and its mooring were designed by RTSYS, a French acoustic 

company. This setting was composed of four synchronized hydrophones connected through 100 

m cables to a single recorder (model EA-SDA14) as depicted on the Figure 3-1. After a 

preliminary test within the Brest bay to train manipulating the array, I worked with RTSYS and 

the captains of the French longliners to find an alternative mooring system more adapted to the 

fishing context. The array was then deployed on longliners during a first field mission from end 

December 2016 to early March 2017. The array was attached on the downline connecting the 

buoy to the ballast of a longline as represented on the Figure 3-1. The whole system was actually 

too complex to be conveniently deployed in the Southern Ocean from a fishing vessel that also 

conducts fishing operation. The use of the 100 m-cables added logistical constraints and was 

time consuming to recover. I have then switched to a simplest model with two hydrophones 
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connected with 10 m cables. Using 2 hydrophones instead of 4 can still be useful for acoustic 

tracking, especially to localise sperm whales using the difference of arrival time between a click 

and its echo (see Appendix 1). Nevertheless, I deployed the array 4 times with 4 hydrophones 

and then 13 times with 2 hydrophones, for a total recording duration of 656 h, as revealed in 

the first part of Table 3-1.  

 

 

Figure 3-1- Scheme of the acoustic array designed by RTSYS deployed during the first mission (2016-

2017). 

 

From this first experience, we decided to change the acoustic array during a second 

mission (from end December 2017 to early March 2018). We then used 4 independent self-

contained underwater sound recorders (SoundTrap 300, Ocean Instruments, NZ). The 

inconvenience was that each recorder has its own base time. We set therefore a pinger (V9-

69kHz, VEMCO) between 2 SoundTraps to allow further time recalibration as suggested by 

Mathias et al. (2013). Each SoundTrap was permanently attached to a small rope which was 

clipped to the downline below the buoy as depicted on Figure 3-2. Hydrophones were deployed 
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similarly to the first season, i.e. they were associated in pairs at 100 m and 200 m with a space 

of 10 m between hydrophones of the same pair. However, for this new setting I paired each 

hydrophone with an 3-axis accelerometer/pressure sensor data loggers (Sextant Technology, 

New Zealand, see section 4.3) to get information of their position within the water column 

through the whole deployment. These information will be useful to perform the acoustic 

tracking since hydrophones positions are essential for the algorithm described in the Appendix1 

This new setting was simple to set and to recover as there were no electronic cables between 

sensors. As a result I deployed the array, composed of the 4 independent hydrophones, 26 times 

for a total recording duration of 882 h as shown in the Table 3-1.    

 

 

Figure 3-2 – Picture of the attachment of the SoundTrap on the downline (green rope). The SoundTrap 

is set permanently on a small rope (the blue one) to facilitate the deployment on the downline.  

  



3. PASSIVE ACOUSTIC MONITORING 

 

84 

 

Table 3-1 – Summary of the dataset acquired during this PhD from personal mission and through the 

deployments by fishermen and fishery controlers on French and Australina longliners. The Australian 

fishermen record 15 min every 30 min, so the recording durations are not equivalent to the deployments 

durations (twice higher than values in the table). 

Operator Fishery Vessels 

Number 

of trips 

covered 

Number of 

deployments 

Total 

recording 

duration 

(hours) 

Personal 

contribution 

 

French 

Mission 2016-2017 

(Mascareignes 3, Ile De 

La Réunion, Albius) 

 

1 

 

17 

 

656 

French 

Mission 2017-2018 

(Ile De La Réunion, 

Mascareignes 3) 

1 

 

26 

 

882 

 

 

Fishermen and 

fishery 

observers 

 

French Albius 2 14 652 

French Cap Horn 1 6 189 

French Cap Kersaint 1 7 246 

French Ile De La Réunion 2 18 737 

French Ile Bourbon 1 20 695 

French Mascareignes 3 1 2 72 

French Saint André 2 22 469 

Australian Antarctic Chieftain 1 15 332 

Australian Atlas Cove 1 18 405 

Australian Corinthian Bay 2 17 360 

Australian Isla Eden 2 21 390 

TOTAL 18 203 6085 
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3.2.2. LONG TERM MONITORING  

Within the purpose to assess a long term monitoring of both odontocetes and vessels 

acoustics, I set an acoustic monitoring program for the whole fleet (section 1.3). In order to be 

applied on a large scale the protocol disturbance on fishing activities must be minimal. It is 

therefore essential to have a friendly deployment and an easy monitoring. The longlines are 

therefore equipped with a single independent hydrophone (SoundTraps), the same as I have 

deployed during my second mission. A protocol, detailed in Appendix 3, was provided with the 

hydrophone to the fishery observers before the trip. Within the protocol I have then described 

how to set the mounting system as showed on Figure 3-2 and where to deploy the hydrophone 

on the longline as depicted on Figure 3-3. The single hydrophone is set at 100 m to avoid strong 

noise from sea surface. A consistency between all deployments will allow comparing acoustic 

recordings between vessels. The protocol advises deploying as often as possible the hydrophone 

with a continuous recording, without adding excessive work for both fishermen and fishery 

observer, whom also download the data from the SoundTrap on-board once recovered. During 

the deployment, information such as environmental conditions, observation of odontocetes and 

occurrence of navigation manoeuvres made by the captains are asked to be notice by fishermen 

and fishery observers within a deployment sheet, provided at the end of Appendix 3. 

 

 

Figure 3-3 - Position of the recorder during deployment, that is attached to a piece of downline under 

the buoy. 



3. PASSIVE ACOUSTIC MONITORING 

 

86 

 

A similar monitoring was also assessed around Heard and McDonald Islands (HIMI, 

53°05′ S, 73°31′ E, Australian EEZ). I have provided my protocol to Dr. Paul Tixier so he could 

translate the protocol for the Australian fishermen, as part of his depredation program. 

Conversely to the French protocol, the recordings are not continuous (15 min on every 30 min) 

to avoid filing the intern memory too fast, since data could not be downloaded on-board. 

However, PAM around HIMI would allow adding a further level of comparison, i.e. between 

the two fleets. Indeed, while the two EEZs are adjacent and both experience sperm whale 

depredation, the frequency of the latter is substantially lower in HIMI than in Kerguelen 

(Welsford and Arangio 2015, Janc et al. 2018). Thus, it might be interesting to assess whether 

some differences in acoustic between the two fleets exist and if they might explain differences 

of detectability. Additionally, my protocol is also applied on the French longline fishery 

operating around Saint Paul and Amsterdam (38° 16′ S, 77° 32′ E, Southern Ocean) and South 

East of Australia, both targeting blue eye trevalla (Hyperoglyphe Antarctica) and both impacted 

by killer whale depredation (Tixier et al. 2018). 

 Deployments by fishermen and fishery observers started in December 2017 on French 

longliners and have been covering 3060 h over 89 longlines. As for the Australian longliners, 

deployments started in August 2017 with 2974 h covered by the hydrophone (but 1487 h of 

recordings) over 71 longlines. The details of the deployments per vessel are described in Table 

3-1. The recording effort should be going as long as possible. The next step would be indeed to 

integrate the deployment sheet within the fishery observer notebook to facilitate the process 

and maintain the deployment on the long-term. At least data will be maintain until 2020, and 

the end of the ANR OrcaDepred. 

These recordings have allowed the first recordings of killer whales and sperm whales 

within the French EEZ around the longliners. At a first sight we recovered some interesting 

recordings in absence of fishing activity on the equipped longline with killer whales and sperm 

whales around as their vocalises and clicks are observable on the spectrogram in  

Figure 3-4. For instance, a group of killer whales was first visually observed interacting 

with a longline hauled nearby the one equipped and then the group was encountered again 

during the hauling of the equipped longline. Between these two hauling sessions the fishermen 

went further to haul a third longline but with no visual observation of this group. The acoustic 

recording of this period revealed then that this killer whale’s unit staid around the buoy as 

vocalisations are audible during the whole time. This simplistic example demonstrates that 



3. PASSIVE ACOUSTIC MONITORING 

 

87 

 

visual observation is not enough to assess presence/interaction of odontocetes around longlines 

in absence of the fishing vessel. It is not clear whether the group of killer whales or sperm 

whales heard on the acoustic recording were depredating. However, this presence in the vicinity 

of longlines may question estimation interaction rates, as it is computed through the visual 

observation of these species nearby the fishing vessels during hauling. Further investigation 

should focus on such cases to quantify the foraging activity of individuals around the longline 

monitored. 

Additionally, all these recordings allowed preliminary analyses on vessels’ acoustics, 

presented in this thesis in the next section 3.3. The purpose was to bring some first insights on 

possible acoustic explanation on differences of interaction rates between vessels and captains 

(Figure 2-1). These leads would then allow further investigation with more robust statistical 

analyses on possible cues. 

 

Figure 3-4 - Spectrogram of sperm whales’ clicks (broadband frequencies produced during a very short 

duration) and killer stereotyped calls (e.g. at 7 s and 9 s). The colour scale represents the square 

modulus of the acoustic pressure in units of power spectral density (in dB re 1 µPa².Hz-1). The recording 

was made during the first mission, the 27th of in February 2017 on the vessel Ile de La Réunion at Crozet.  
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3.3. A FIRST APPLICATION: FISHERY ACOUSTIC 

3.3.1. VESSELS’ ACOUSTIC SIGNATURES  

3.3.1.1. INTRODUCTION 

The main component of vessels acoustic is due to the rotation of the propeller blades 

(Ross and Kuperman 1989, Richardson 1995, Hildebrand 2009). The sound produced by the 

propeller is characterized by two components: (i) tonal sounds at specific frequencies which 

related to mechanical noise from the blade rotation, named the propeller singing; (ii) a 

broadband noise related to the cavitation as bubbles explode when propeller blades increase the 

pressure water while rotating, which can be characterized as boiling seawater (Ross and 

Kuperman 1989, Richardson 1995, Hildebrand 2009). Sounds of machineries are also part of 

vessel signature (Richardson 1995, Thode et al. 2007), for instance the hydraulic winch, used 

to haul the longline, from vessels produce a narrow-band tones (Thode et al. 2007). However, 

sounds produced on-board do not propagate well underwater and may not cover more than 1 

km as observed for the hydraulic winch tones around 200 Hz on longliners in Alaska (Thode et 

al. 2007).  

 

3.3.1.2. METHODS 

To investigate longliners acoustic signatures, I focused upon the propeller cavitation and 

singing propellers. I then compared the frequencies of these two types of noise between vessels. 

First, I assessed spectrograms over a minute. Second, I assessed the power spectrum (in dB re 

1 µPa) to highlight tonal sounds of singing propeller. The power spectrum was estimated 

through the PAM Guide tool on Matlab (Merchant et al. 2015) in order to assess the root means 

square (RMS) with their quantiles. The power spectrum statistics were run per vessels for 

batched recording files of 3 min when the distance from the hydrophone was estimated around 

1 km while hauling. I used 7 and 8 recording files of 3 min for 5 vessels and 3 recording files 

for the last vessel (because of the quality recording). 

 In this thesis I provided a preliminary and descriptive result of the analysis of vessels 

signatures. This aspect, along with the analysis of propagation ranges of the signals produced 

by vessels, will be treated in depth in the near future. In particular, the determination of 

detection ranges requires precise information on the distance between fishing vessels and the 
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hydrophones to reliably estimate transmission loss components. Data on vessels trajectories 

such as AIS would be of great interest; however such dataset was not available during this PhD. 

Indeed, AIS vessels data combined to the PECHEKER dataset for longlines (Martin and Pruvost 

2007) deployed around hydrophones would allow to increase the accuracy of the models. In 

this thesis distance between the vessel and the hydrophone was estimated from the length of the 

longlines, knowing on which buoy the hydrophones were deployed. When the vessel was 

hauling a longline equipped with a hydrophone, I could estimate the distance from the 

hydrophone using a mean speed of the vessel calculated thanks to the beginning and ending 

times of the process. I also had access to the PECHKER dataset until the end of my first on-

board mission, allowing assessing distances between longlines and hydrophones for the 

deployments made during the mission 2016-2017. 

 

3.3.1.3. PRELIMINARY INSIGHTS 

Broadband noises of the propellers cavitation of all six longliners concentrate the main 

energy from circa 100 to 2000 Hz, as observed on the spectrograms and DSP of Figure 3-5 and 

in Supp. data 4. This is consistent with the frequency range previously described for boats of 

same size (Scrimger and Heitmeyer 1991, Richardson 1995, McKenna et al. 2012). All vessels 

show from 1 to 3 distinctive ray at around 1 kHz, which stand out on the spectrograms of Figure 

3-5 and Supp. data 4. This rays reflect the signals produced by propeller singing (Richardson 

1995). However, the numbers of rays paired with their exact frequencies are specific to each 

vessel (see Figure 3-5 and Supp. data 4). For instance, spectrograms and DPS on Figure 3-5 

reveal that vessel #1 has 3 rays which could be confounded as a strong tone around 1 kHz while 

vessel # 3 shows 2 very distinct tone around 900 Hz and another one above 1 kHz, as depict on 

Figure 3-5. I thus assume that odontocetes may be able to identify vessels through their distinct 

features resulting from propeller singing. As different acoustic signatures could propagate at 

different ranges, we suggest that vessels may potentially have different detectability. Assuming 

that detectability strongly influence interaction rate, this differences of signatures between 

vessels may explain some differences of interaction rates between some of them observed on 

the Figure 2-1 such as the variation of interaction rates with sperm whales between vessels 3 

and 8 at Crozet. Indeed, sounds produced at low frequencies usually propagate further than at 

high frequencies (Fisher and Simmons 1977, Ainslie and McColm 1998). However, the 

difference of propagation range between a ray at 900 Hz and another one at 1 kHz may not be 
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high, thus only high differences of intensities would increase vessels’ detectability. It would 

then be of interest to monitor the propagation of each tonal sound to estimate whether some 

vessels might be detected significantly further than other ones. However, the noise level 

statistics made through a power spectrum varies according to the duration of the recording. To 

integrate noise level statistics over the appropriate duration, it would require knowing how the 

hearing systems of these species integrate acoustic signals. Further investigation will focus on 

this aspect. Also, it would be interesting to assess whether two sister-ships have differences of 

interaction rates with odontocetes, since these vessels have similar manufacturing 

characteristics and so should similar signature acoustic. Among the other French vessels some 

sister-ships exist, but the vessels’ identity in the Figure 2-1 are not known preventing to assess 

interaction rates between sister-ships. Besides, in this preliminary analysis, there are no sister-

ships among the 6 vessels investigated (Figure 3-5 and Supp. data 4), avoiding the possibility 

to compare acoustic signatures. However, because the singing propeller varies according to the 

condition of the propeller, for instance damage propellers may produce more tones and at higher 

intensities (Richardson 1995), it more likely that sister-ships reveal different signatures. 
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Figure 3-5 - Spectrograms (left panels) and power spectrum densities (right panels) of 2 French (vessel 

#1 and vessel #2) and 1 Australian (vessel #3) longliners (one vessel per line). The spectrograms were 

made over 1 min for vessels at 1 km for the hydrophone, with a colour scale representing the square 

modulus of the acoustic pressure in units of power spectral density (in dB re 1 µPa².Hz-1). The power 

spectrum (in dB re 1 µPa) were assessed through PAM guide with batched recording files of 3 min for 

vessels at 1 km of the hydrophone (Merchant et al. 2015). See Supplementary data for the 3 other vessels. 
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3.3.2. ACOUSTIC CUES  

3.3.2.1. INTRODUCTION 

An acoustic cue could be defined as a signal with a distinct signature associated to a 

specific navigating behaviour or fishing phase. Although the vessel acoustic signature described 

through the propeller cavitation and the propeller singing was considered as the main source of 

detectability (section 3.3.1), an acoustic cue should be an acoustic signal different from this 

signature. A cue must hold information for the listener and should be recognised through its 

frequencies components and intensities. In this thesis, a first approach of the behavioural aspect 

of the detectability of vessels by odontocetes is raised. The purpose was to assess a first 

description of potential clues over a few fishing events. I therefore examined the variations in 

the frequency intensities of the signals produced by vessels at 3 different scales: (i) depending 

on the type of operation: setting vs. hauling; (ii) depending of the state of operation: setting vs. 

post setting; (iii) depending of the manoeuvrability during an operation: forward vs. backward. 

Additionally, I aimed at determining how far the information held within a cue could reach the 

odontocetes. 

 

3.3.2.2. METHODS 

I used data from a single vessel to allow for the interpretation of sound differences while 

avoiding any skew from vessel acoustic signatures. Broadband noise levels were estimated 

through power spectral densities (PSD, in dB re 1 µPa².Hz-1). I used the Welch’s method in 

Matlab to visually compare PSD values and I conducted noise level statistics on PAM Guide 

(Merchant et al. 2015) to retrieve the noise values.  

I first compared PSD over 15 s of a vessel between a setting and a hauling, from two 

different recording files but at a similar distance (circa 1 km) from the hydrophone. I then 

compared over a single recording file, a setting and a post-setting. The PSD of the setting was 

assessed over 15 s, during which the longline is dropped in the water from the stern of the vessel 

while the latter heads forward at a high speed (between 6 to 10 knots). The PSD of the post-

setting was also assessed over 15 s, 45 s after the setting, i.e. after the last buoy has been dropped 

off. Lastly, I assessed 30 s of a hauling while the vessel was at 4 km from the hydrophone. The 

distance between the vessel and the hydrophone was estimated through the longlines positions, 
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accessible in the PECHEKER dataset. During these 30 s the vessel was moving forward and 

manoeuvred 2 times backward while hauling a same longline. I thus compared the PSD of these 

two manoeuvres estimated with PAM Guide. I used the two sound samples of the boat going 

backward batched together of a total duration of 4 s and 2 samples of the boat going forward 

before and after the two backward events, of the same duration.  

I finally aimed at assessing the differences in the propagation ranges of the signals 

produced by fishing vessels between backward and forward manoeuvres. I used the 

transmission loss (TL) over the estimated distance between the vessel and the hydrophone to 

estimate the source level (SL) from the received level (RL) on the hydrophone:  

EQUATION 3-1 : SL=RL+TL 

Transmission loss is the attenuation of sound intensity as the sound propagates underwater. I 

used a transmission loss model considering the combination between the loss due to geometrical 

spreading of the sound wave-front and the absorption loss due to propagation (Fisher and 

Simmons 1977, Ainslie and McColm 1998). A simple model for underwater geometrical 

spreading is a spherical propagation until waves reach the surface and then follows a cylindrical 

propagation as they are constraint by the limit of the water column. Thus, I considered the 

transition range from which the sound switches from spherical to cylindrical spreading as one-

half of the channel depth, H (Urick 1998). The absorption loss is sound’s frequency dependent 

(Fisher and Simmons 1977, Ainslie and McColm 1998). The total transmission loss model was 

then defined as: 

EQUATION 3-2 : TL =  20log10 (
𝑯
𝟐

) - Sclog10 (
𝑯
𝟐

) + Sclog10(𝑹) + α(f)R 

with R the range source-hydrophone, H the depth of the water column, α the absorption 

component and f the sound frequency and Sc set at 10 or 17 to test a more permissive vs a more 

rigourous attenuation model through the cylindrical spreading (Sc.log10(R)). 

The RL was measured as the root mean square (RMS) of the PSD estimated through 

PAM Guide. I finally resolved the SONAR equation to estimate for which range the TL would 

reduce the signal to be heard from the ambient noise above a certain threshold (dB): 

EQUATION 3-3: SNR= threshold  SL−TL−NL=threshold 
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with NL the ambient noise level estimated through 40 minutes from 7 different recording files 

when the vessel was between 30 and 50 km, the furthest distances obtained between the vessel 

and the hydrophone on our recordings. I then considered the ambient noise level as the 50th 

percentile of the PSD.  

As I used a frequency dependent TL model (Equation 3-2), I assessed the differences of 

propagation range for different frequencies. I first chose 250 Hz since it seems to represent the 

higher received sound levels (Supp. data 5) and since low frequencies propagate further than 

high frequencies. This frequency might thus be the component of the vessel acoustic audible 

by both species at the furthest range. Indeed, both species should be able to heard this low 

acoustic vessel frequency since killer whales can produce some pulsed calls around 100 Hz 

(Ford 1987). Similarly, sperm whales should also hear such frequency (250 Hz), as they are not 

known to produce clicks of echolocation lower than 200 Hz (Backus and Schevill 1966, Zimmer 

et al. 2005). I then assessed the propagation range at 1000 Hz, since this frequency has a high 

energy on the Welch’ PSD (Supp. data 5) and is certainly audible by both species. Finally, I 

assessed the propagation range at 2750 Hz as the vessel produce sound above 2 kHz only when 

going backward. 

 

3.3.2.3. PRELIMINARY INSIGHTS 

Interestingly, I did not observe any clear difference between PSDs during setting and 

hauling, especially for frequencies below 2 kHz (Supp. data 6). This first observation confirmed 

that vessel signatures are mostly composed by propeller sounds (cf. 3.3.1). At both setting and 

hauling, a strong tone was observed around 1 kHz (Supp. data 6), which matches with the 

singing propeller signals identified for this vessel (Vessel #1 on Figure 3-5). Additionally, it 

may not be able to distinguish the hydraulic winch’s acoustic signature since these sounds do 

not propagate further than 1 km (Thode et al. 2007). Between 2 and 10 kHz PSD values were 

slightly higher at setting than at hauling. A finer-scale investigation would be required to assess 

whether the acoustic signals produced by the vessel during setting and hauling propagate on 

different distance ranges. Also it should be confirmed whether the difference of signals between 

setting and hauling are actually due to the fishing activity, rather than a possible difference of 

condition, such as sea state (Wenz 1962, Hildebrand 2009) since both phases were recorded at 

different moment.  
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 However, when closely examining the setting phase, I noticed a slight change in the 

soundscape after the end of setting, at 38 s on the recording (Figure 3-6). I noticed indeed that 

PSD values were slightly higher at setting than at post-setting. This difference was especially 

visible for frequencies above 2 kHz until 18 kHz, i.e. the maximum frequency recordable, i.e. 

half of the sampling frequency (Supp. data 7). As a result, the increase of intensities between 2 

kHz and 18 kHz could not be due to the propeller cavitation (signature below 2 kHz, see section 

3.3.1). Also, the difference of intensities may be less likely due to a difference of distances with 

the hydrophone between the two phases. Indeed, with a maximum speed around 10 knots, the 

boat could not cover more than 230 m in 45 s. I thus assumed that this increase of sound 

intensity between 2 kHz and 18 kHz may be produced by the longline itself dropping off the 

boat and hitting the sea surface. This observation may also explain the difference of acoustic 

signals observed between the setting and the hauling previously described (Supp. data 6). 

Consequently, this acoustic difference between setting and post-setting may be an interesting 

cue for odontocetes to indicate when and where a longline has been deployed. 

 

Figure 3-6 – Spectrogram of the boat ending its setting (until 38 s) and moving forward (defined as 

‘post-setting’). The colour scale represents the square modulus of the acoustic pressure in units of power 

spectral density (in dB re 1 µPa².Hz-1). Clicks of sperm whales are also present (broadband frequencies 

produced during a very short duration). 
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When focusing on manoeuvres during hauling, I observed large differences in both 

frequencies and intensities between the sounds produced while going forward and while going 

backward (Figure 3-7 & Supp. data 5). Indeed, the backward manoeuvre produced sounds in 

broadband frequencies, with the main energy reaching until circa 6 kHz, whereas the main 

energy of the sound when going forward does not exceed 2 kHz (Figure 3-7 & Supp. data 5). 

While on the vessel I have noticed that the hull vibrates more during backward manoeuvres. 

The hull might enter in resonance creating these broadband frequencies sounds. This has been 

confirmed by a French navy expert (Legris personal communication). 

 

 

Figure 3-7- Spectrogram of the boat hauling a longline with two backward manoeuvres at 8 s and 21 s 

of the recording. The colour scale represents the square modulus of the acoustic pressure in units of 

power spectral density (in dB re 1 µPa².Hz-1). 
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I estimated the propagation range for two thresholds: 5 and 10 dB re 1 µPa².Hz-1 above 

the ambient noise level. From the results, the range of detectability of the vessel during a 

forward manoeuvre was estimated between 7 and 35 km (Table 3-2). This range is consistent 

with previous studies that did not used acoustics, suggesting that sperm whales and killer whales 

may lose track of a vessel when the latter travels over at least 30 to 40 km between two hauled 

longlines (Tixier et al. 2010, Tixier 2012, Janc et al. 2018). The backward manoeuvre was found 

to propagate on a larger distance range, with an estimated range between 30 and 270 km, at 250 

Hz (Table 3-2). While a better modelling of the transmission loss (e.g. running beam-tracing 

acoustic propagation model) paired with accurate ambient noise and whale sensitivity 

parameters would be required, this preliminary analysis suggested that the sounds produced by 

a backward manoeuvre propagate circa 4 to 8 times further than those produced by a forward 

manoeuvre during hauling (Table 3-2). These analyses also show that a predator detecting a 

vessel from 8 to 18 km could also determine whether it is manoeuvring (Table 3-2). As a result, 

in addition of being an acoustic cue of the vessel’s presence, such manoeuvre could also be a 

cue of the activity. Indeed, going backward is done sometimes when fishermen miss to catch 

the buoy or when the longline is stuck and the captain tries to orientate properly the vessels to 

avoid a break of the longline. Thus, some captains with less experience might manoeuvre more 

and be therefore more detectable by odontocetes. This hypothesis could partially explain the 

inter-captains variability of interaction rates for a same vessel, e.g. for vessel 4 at Crozet with 

killer whales (Figure 2-1). Further investigation should quantify any differences in the sound 

levels between captains to answer this hypothesis. Nevertheless, going backward seems unusual 

so other cues must be defined in order to assess any inter-captains detectability. A good 

candidate might be the approach of the longlines before hauling, which seems to vary according 

to captains sailing techniques. Indeed, while approaching longlines, fast deceleration or strong 

direction change is more likely to increase the sound production by the vessels (Trevorrow et 

al. 2008). Anyway, these preliminary results would suggest that avoiding too many 

manoeuvres, such as going backward, when it is possible should reduce the risk of vessels’ 

detectability. 
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Table 3-2 – Summary of sounds levels and propagation range estimations for the vessels acoustic while 

going forward or manoeuvring backward. 

Frequency 

(Hz) 

RL 

(dB re 1 µPa².Hz-1) 

Propagation range 

estimations (km) Forward 

Propagation range 

estimations (km) Backward 

Forward Backward [Min; Max] [Min; Max] 

250 78.2 89.6 [7 ; 35] [30 ; 270] 

1000 74.1 82.9 [5 ; 15] [10 ; 55] 

2750 60.3 75.6 [0 ; 2] [5 ; 20] 

 

 

3.4. CONCLUSION 

PAM is an interesting tool to assess the interaction between odontocetes and fishermen, 

as it allows observing what we can’t see. In this chapter, I exposed some preliminary analyses 

on how PAM may bring insights on interaction at the “fishermen-odontocetes” scale through 

the vessels acoustics for the Patagonian toothfish fishery. The results are encouraging but the 

amount of data analysed is too small to draw strong conclusion. It is therefore important to 

consider these results as interesting leads to follow for further investigations. Whereas previous 

studies have shown interesting results while focusing on vessels acoustic during hauling (Thode 

et al. 2007, 2015), here I have brought a new hypothesis that the acoustic signals during setting 

might play an important informative role for odontocetes on fishing activity detection. 

Assessing precisely how far and based on which cues predators detect the fishing activity could 

bring important leads toward appropriate countermeasures. A reduction of vessels’ detectability 

may indeed decrease the risk of interaction with these odontocetes. Additionally, using the 

longlines as support for hydrophones could also bring fine insights on the interaction at the 

“longlines-odontocetes” scale through the odontocetes acoustic monitoring (Thode et al. 2014, 

2015). This approach has been only presented through example of odontocetes acoustic 

recording as no analyses has been processed yet. However, the example shows the interest to 

assess PAM on our dataset, especially to affine the estimation of interaction rates, which is very 

likely to be underestimated, as revealed with the same method in Alaska (Thode et al. 2014).  
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The acoustic analyses have only been exploratory as the setting of the PAM on this 

fishery has constituted an important part of this thesis. The process has been laborious but 

fruitful I have collected around 1538 h of recordings with the acoustic array, which should allow 

to test and implement the tracking tools presented in the Appendix 1. Also these efforts have 

allow to set a friendly deployment process from longliners, which has already provided 4547 h 

of recording, collected by fishermen and fishery observers. Besides, the OrcaDepred funding is 

running until 2020, the deployments will pursue during this period and should considerably 

increase the dataset. Next effort should then focus on the application of an automatic detector 

(e.g. Deteclic see summary in Appendix 2) over this growing dataset to assess the presence of 

odontocetes around longlines and allow robust conclusions. With a long term monitoring a 

temporal dimension may also be add to further analyses. As for the vessel signatures, it is 

expected to cover all longliners and cover also most of the captains still in activity. Such dataset 

would allow completing the investigation upon the inter-captain variability of interaction rates, 

through the acoustic approach. 
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4. BIO-LOGGING 

 

The previous chapter used a passive acoustic approach to assess the underwater dimension 

of the depredation. Within this purpose, a preliminary analysis was conducted on the fishing 

activity detectability, and some methods were discussed to show how PAM, while assessing 

odontocetes’ acoustic, should bring in the future fine insights on the interaction at the 

“longlines-odontocetes” scale. Within the same purpose, this chapter aims at assessing when, 

where and how depredation occurs on the longline through a bio-logging approach. A first bio-

loggers analysis is described in this chapter with a double perception of the interaction at a very 

fine “longlines-odontocetes” scale, since loggers were deployed on both odontocetes and on 

fishing gears. Additionally, this chapter proposes an experimental design for new loggers which 

would bring more insights on the foraging behaviour of odontocetes, either natural or in the 

depredation context.  

 

4.1. INTRODUCTION 

A good understanding of the odontocetes’ foraging behaviours when interacting with 

longlines and when naturally foraging are needed to comprehensively assess the depredation 

conflict. Indeed, this comparison between both situations may reveal how opportunities to 

depredate modify the behaviour of odontocetes. Simultaneously, a fine-scale monitoring of 

odontocetes’ behaviour in presence of fishing activity should assess their interaction behaviours 

and may bring more insight on how they detect vessels and longlines, and more precisely how 

they remove the fish from gears. To answer questions such as when, where and how odontocetes 

remove the toothfish from the fishing gears is essential to target efficient mitigation measures. 

Investigating the fine-scale behaviour of odontocetes is challenging because of the 

inaccessibility of their environment. To overcome this issue, scientists have developed a broad-

range of bio-logging tools. While the first time depth recorder was created in the 1960s 

(Kooyman 1965), the bio-logging technology has substantially evolved and been made broadly 

available over the last 30 years (Ropert-Coudert et al. 2009, McIntyre 2014). Bio-loggers have 
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allowed a better understanding of predators’ spatial use of their environment either by following 

their horizontal displacements through ARGOS and GPS technologies or by assessing their 

vertical movements within the water column through time depth recorders (for examples see 

reviews Ropert-Coudert et al. 2009, McIntyre 2014). Then, with technological advances, 

devices have progressively decreased in size and increased in life-span and precision of the 

sensors. These improvements allow now fine assessment of marine predators foraging 

behaviours. For instance, the emergence of accelerometers, which measure orientation and 

movement dynamics of predators, have allowed measurements of fine temporal and spatial 

scale of predators’ movements (Shepard et al. 2008, Brown et al. 2013). Indeed, from fine 

movements monitoring it is possible to assess sharp acceleration and to determine feeding 

events of marine predators (Viviant et al. 2010, Gallon et al. 2013, Ydesen et al. 2014, Volpov 

et al. 2015). However, these new device loggers are also memory consuming and must be 

recovered, which is difficult for some marine predators, especially cetaceans. Indeed, the main 

studies on marine mammals have been conducted on pinnipeds (Ropert-Coudert et al. 2009, 

McIntyre 2014) since these species are partially terrestrial making the deployment and 

recovering easier than for cetaceans who are accessible only when breathing. In addition to this 

limited accessibility, the limitation in the use of loggers on exclusively aquatic species has been 

the attachment techniques (Hooker and Baird 2001, McIntyre 2014). Two techniques are 

currently used: a long-term fixation, using stainless steel barbs to penetrate the skin, preventing 

tags recovering, and short-term fixation using suction-cups and allowing tags recovering. There 

is thus a trade-off between the quantity and the quality of data attainable for cetaceans. 

However, satellite transmission of data is possible, which allviates the need to retrieve loggers. 

Although the amount of information that can be successfully transmitted is limited, previous 

implementations have included the execution of simple algorithms capable of extracting basic 

behavioural metrics such as dive duration or maximum depth. The next step in bio-logging is 

to implement within loggers some methods developed by the community in order to transmit 

summarized information from these large data-sets. A recent study assessed this new possibility 

of transmition by satellites the number of prey capture events made by southern elephant seals 

during their trip at sea from an on-board processing of accelerometry (Cox et al. 2018). This 

method is highly promising for other marine mammals’ studies, especially cetaceans, but the 

method should be tested for other species since the algorithm implemented on the tag has been 

developed for elephant seals (Vacquié-Garcia et al. 2015, Richard et al. 2016, Cox et al. 2018). 
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Although the number of bio-logging studies is constantly increasing (McIntyre 2014), 

only a few studies have used bio-loggers to study marine mammals depredation behaviour 

(Mathias et al. 2012, Straley et al. 2014, Towers et al. 2018). The limited number of logger 

deployments to study this issue is easily explained by the technical and logistical constraints 

imposed by the fishing context. Indeed, odontocetes do not necessarily approach vessels with a 

range close enough to allow tagging. Moreover, during hauling, vessels are not manoeuvrable 

to help for tagging. First biologging studies on depredation have described some sperm whales 

interaction behaviours: sperm whales following fishing boats (Straley et al. 2014) and changing 

diving behaviour with shallow dives while depredating on hauled longlines (Mathias et al. 

2012). Biologging studies are encouraging to study more species in different fisheries as they 

allow for data to be collected during interaction phases when individuals are sighted close to 

the boat (<500m, see Mathias et al. 2012) but also during potential interaction phases occurring 

when the boat is away from the fishing gear. Fine spatio-temporal scale of marine mammals 

movements still require more investigation to highlight how animals spot fishing activities and 

to improve our understanding of interaction behaviours. Another interesting use of loggers to 

investigate marine mammals’ depredation is by deploying loggers on longlines, which is much 

easier than tagging marine mammals. For instance, accelerometers deployed on pelagic 

longlines paired with video cameras have revealed that odontocete depredation may occur not 

only on the catch, but also on the baits (Thode et al. 2016). Camera deployment is more 

complicated on demersal longlines because of low light conditions. Preliminary trials have 

revealed depredation by southern elephant seals on Patagonian toothfish fishery during soaking 

time (van den Hoff et al. 2017) although the seals might have been attracted by the light 

explaining the fortunate video footages. Thus, deployment of accelerometers on demersal 

longlines should be more workable than camera, similarly to the first deployments on pelagic 

longlines in Hawaii (Thode et al. 2016).  

In this thesis I used both animal-borne behavioural data loggers and longline-attached 

data loggers to assess the interactions between the odontocetes and the fishing gear. My 

contributions are two-fold: both methodological and experimental. On the first hand, I assessed 

a method to estimate prey catch attempts by large odontocetes to be embedded within a logger 

for on-board processing (section 4.2). The method was assessed using DTAGs’ data from 

SMRU (Dr. Johnson) and was then sent to Wildlife Computers during this PhD to be 

implemented into new loggers. On an experimental point of view, I personally deployed bio-
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loggers during my second field mission, and subsequently analysed their data. In particular, I 

deployed 4 of the new loggers with my algorithm implemented by Wildlife Computers, but 

none emitted any signal. This failure is currently investigating by Wildlife Computers. I also 

deployed 4 classical ARGOS tracking loggers (SPLASH 10 and SPOT 5 from Wildlife 

Computers) on killer whales. One of the loggers remained only a few hours on the individual 

because the anchors were not pegged deep enough on the individual’s skin. Among the 3 

loggers correctly deployed, two had pressure sensors (SPLASH 10) and were analysed in this 

thesis paired with the data provided by accelerometer/pressure sensor loggers (section 4.3).  

The number of loggers deployed on odontocetes may look relatively small, when 

compared to the length of the field mission (3 months). However, the number of loggers was 

limited because of the costs of the loggers (10 available), and opportunities were quite rare (8 

deployments). Indeed, a successful deployment requires gathering good conditions both from 

the weather and the approach of individuals. As deployments are made by crossbow from the 

deck at 5 m above the water (without any swell), individuals should swim along the hull to 

enable a good shot with enough power to peg the tag in individuals’ skin. On the one hand, 

although sperm whales were seen quite often (present around 75% of my mission, both at Crozet 

and Kerguelen) they did not approach close enough. On the other hand, although killer whale 

came close enough to the boat, they were not seen very often (observed 10 days during my 

mission at Crozet). My experience confirmed the difficulty to deploy loggers from fishing 

boats, but the success on some killer whales is encouraging for further deployments. However, 

new deployments would require rethinking the material to optimise success, based upon this 

experience on such condition.  

For the accelerometer/pressure loggers attached on the swivel of a hook (see description 

on section 4.3.3 and Supp. data 8), deployments were found easy to process directly on the 

operational fishing gear. Deployment did not require any intervention of the fishermen, as the 

hooks equipped with loggers were baited as the other hooks. The recovery was also easy but 

necessitated the help of the fishermen, as they removed the loggers from the mainline while 

hauling the fish. However, the recovery was a little bit time consuming and for the sake of 

fishermen’s work it was preferable to not deploy too many loggers on the same section. The 

deployment could be constraining when the longline had to be hauled fast (for instance in 

presence of odontocetes) or within bad weather conditions, increasing then the risk to lose or to 

miss a logger and damaged it through the winch. As the deployment of these loggers did not 
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required to set experimental sections of longline, the number of deployments could be sizable. 

Thus 556 hooks were equipped over the two missions. However, although the number of 

loggers is important, it is questionable whether it is representative of the whole fishing effort 

and thus whether such effort could quantify what is happening underwater, which would be 

approached in section (section 4.3). 

 

4.2. ON-BOARD PROCESSING ACCELERATION DATA TO 

ASSESS PREY CATCH ATTEMPTS 

4.2.1. INTRODUCTION 

The purpose of this first study was to test a method to estimate prey catch attempts from 

acceleration data, similarly to the methods implemented on pinnipeds (Cox et al. 2018). I used 

data from DTAGs, combining acoustic recording with acceleration data (Johnson and Tyack 

2003). Sperm whales use echolocation to forage, and more precisely, they produce ”buzzes“, 

which have been described as click trains with high click rate, while attempting to catch a prey 

(Madsen 2004, Miller et al. 2004, Watwood et al. 2006, Fais et al. 2016). Indeed, Fais et al. 

(2016) observed through acceleration data that sharp movements occurred at the end of buzzes, 

which may revealed the prey engulfment. Thus, buzzes are good acoustic clues for prey catch 

attempts. While this previous study focused at the scale of buzzes (Fais et al. 2016), I wonder 

whether acceleration only would enable estimation of the number of prey catch attempts per 

dive. Our purpose was to assess a simple model to estimate sharp movements, which could be 

easily implemented within a tag. I then required a model with two constraints. First, acceleration 

would be processed at a dive scale and not over the whole logger dataset. Second, the method 

must be fully automatic, i.e. it must determine a threshold to estimate whether acceleration 

values define a prey catch attempts. Finally, I tested the accuracy of our method by assessing 

the correlation between our estimation of prey catch attempts from acceleration data and the 

number of buzzes, another good proxy of feeding events. 
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4.2.2. METHODS 

4.2.2.1. PREY CATCH ATTEMPTS ESTIMATIONS 

Acceleration data were provided by Dr. Mark Jonson (SMRU, St Andrews, UK) and 

were obtained from DTAGs deployed on 6 sperm whales in Mediteranean sea. The DTAG is 

an archival device that records acceleration at 25 Hz, pressure at 1 Hz and acoustic data with 

sampling-rate programmable between 2–200 kHz (Johnson and Tyack 2003). DTAGs were 

attached on sperm whale body thanks a square array of 4 suction cups and after the release of 

the tag from the whale, a VHF radio within the tag aided recovering the tag. A dive was 

considered for a depth below 50 m. For every dive, buzzes were counted thanks to acoustic 

recording by the DTAG. The acoustic recordings were process by Dr Mark Johnson and he 

directly provided us the buzzes’ timings. 

During buzzes made by sperm whales, it has been described through acceleration jerks 

that prey captures or maybe prey engulfment last around 1.5 s (Fais et al. 2016). Using a similar 

approach implemented on pinnipeds, I assessed the standard deviation of acceleration (Viviant 

et al. 2010, Gallon et al. 2013) every second within a moving window lasting twice the duration 

of the jerk event ( 3 s) described by Fais et al. (2016): 

EQUATION 4-1   𝒅(𝒕) =
𝝈[𝒂𝒙(𝒕)]+𝝈[𝒂𝒚(𝒕)]+𝝈[𝒂𝒛(𝒕)]

𝟑
  

with ax, ay and az the acceleration value (in g) along the x, y and z axes, and 𝜎[𝑎𝑖(𝑡)] the standard 

deviation of acceleration (ai) for time between t-1.5 to t+1.5 seconds (i.e. during 3 s).  
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Figure 4-1 - Distribution of d (Equation 4-1) centred on 0: dcentred(t)= d(t)-mean(d). 

 

The amplitude of the movement recorded over this 3 s is represented through d(t) 

(Equation 4-1). The purpose was then to assess how the amplitudes of movements over 3 s were 

distributed per dive (Figure 4-1). Empirically, I found that d(t) has a quasi-Gaussian distribution 

components with an over-dispersion for positive high values and no negative values. No true 

statistical distribution was sought to describe d(t), as a simple description based on empirical 

mean and standard deviation was enough to fulfil my objective.  

I interpreted that the Gaussian part of the distribution of d (Equation 4-1) represents 

values of the movements’ amplitude the most regular of a dive (i.e. values with the highest 

counts Figure 4-1). Considering sperm whales behaviour while diving, I hypothesised that these 

values of low acceleration amplitudes occurring regularly transcribe the swimming pattern. 

Conversely, the over-dispersion represents some sharp movements occurring at low frequency 

(Figure 4-1). As prey catch attempts are punctual compared to the swimming pattern and may 

be sharp movements, I hypothesised that the PCA are described through the over-dispersion of 

d (Figure 4-1).  
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Finally, within the purpose of defining the threshold above which the spurt would be 

considered as a PCA, I computed the distribution (i.e. histogram) of d at the scale of a dive, and 

centred the distribution around 0 (Figure 4-1). From the obtained distribution of d centred on 0, 

I retrieved the minimal negative value. Its absolute value (i.e. the positive mirror image) was 

finally used as the threshold (threshold= |min(d)|) to categorise the over-dispersion (Figure 4-1). 

This approach allowed an easy automatic threshold determination per dive to assess the PCA  

Once the PCAs were estimated, I monitored their occurrence at the same time as buzzes 

on sperm whales’ dive profiles. I then assessed whether both events are associated. They were 

considered as associated if the PCA occurred within 10 s before the end of the buzz and 2 s 

after the end of the buzz.  

Data were processed through the software Matlab (version R2015, The MathWorks, 

Natick, MA, USA). 

 

4.2.2.2. RELATIONSHIP BETWEEN PREY CATCH ATTEMPTS AND BUZZES 

To evaluate the relevance of our PCA detection method, we assessed the linear 

regression between the number of buzzes Bij and the number of PCA Pij for every individual i 

and dive j: 

EQUATION 4-2  Bij = α  +aj+(β+bj)Pij +ε ij   

with α and β the global intercept and slopes of the regression, aj the random effect on the 

intercept for the individual j, bj the random effect on the slope and εij the residual for a given 

dive i of the individual j. The random effect was tested first on the intercept only (bj = 0), 

meaning that the regression is the same between individuals but there might be overestimation 

or underestimation of the number of PCA due to the accelerometer. I then tested the random 

effect also on the slope (bj ≠ 0), to see if the relation between the number of buzzes and the 

number of PCA is random, and so the method could not be implemented. After checking the 

normality of residuals, I compared the linear model to the null model and assessed a step 

backward approach to determine the best model (with or whithout random effect) through the 

Akaike Information Criterion (AIC) selection (Akaike 1974, Zuur 2009). The mixed linear 

models were assessed with a Gaussian distribution, using the function lmer of the package lme4 

through the software R (R Development Core Team 2015). 
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Once a proper model is determined, the regression should allow approximation of the 

number of buzzes from the estimated PCAs. Indeed, the purpose is to implement this method 

within a tag without any acoustic data. Thus, I processed to a leave-on-out cross validation with 

the 6 individuals. I ran the model by removing one individual, such as his numbers of buzzes 

per dive were unknown. For this individual I then estimated the number of PCA using 

acceleration data only. Then, the coefficients of the model obtained with the 5 other individuals 

were used to find back the number of buzzes for the 6th individual from its number of PCA. I 

finally calculated the difference between the accurate number of buzzes of this individual and 

the number of buzzes estimated by the regression from the 5 other individuals. I repeated the 

process for each individual.  

 Finally, I assessed whether the PCA determined through the acceleration data occurred 

at the same time than the buzzes. I measure a percentage of association for both proxies 

compared to the other one. In other word I estimated the proportion of PCA produced within 

the vicinity of a buzz and conversely, the proportion of buzzes occurring near PCA. I set this 2 

s flexibility within the hypothesis that the acceleration may detect the prey engulfment after a 

catch and that sperm whale may stop buzzing instantly once the prey is caught.  

 

4.2.3. RESULTS 

4.2.3.1. PREY CATCH ATTEMPTS ESTIMATIONS 

The number of prey catch attempts was estimated for 31 dives recorded among the 6 

tags. I observed that the distribution of d, for all the dives and all individuals, followed a the 

same quasi-normal distribution with some over-dispersion (Figure 4-2). The threshold 

estimated as the absolute of the minimum dispersion value (red line Figure 4-2), allowed us to 

determined prey catch attempts over the diving profile (red points Figure 4-2). As I added 

buzzes on the diving profile (green points Figure 4-2), I observed that most of PCA and buzzes 

overlapped (Figure 4-5). I finally tested whether the observation of these overlaps between our 

estimation of PCA and the buzzes are consistent over every dive for every individual.  
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Figure 4-2 - Example of prey catch attempts estimations, in red, over a dive profile with buzzes events, 

in green (top panel). Value of d(t) over the dive, with the over-dispersed values considered as PCA in 

red (middle panel). Distribution of d, with the threshold (|min(d)|) estimation represented by the red 

line (bottom panel). 

  

 

4.2.3.2. RELATIONSHIP BETWEEN PREY CATCH ATTEMPTS AND BUZZES 

The residuals followed a normal distribution and according to the AIC selection the best 

regression was found for the linear mixed model assessing a random effect on the intercept only 

(Table 4-1). The regression between the number of buzzes and the number of PCA was 

significantly positive (p<0.001, Figure 4-3), and the intercept of the model is not significantly 

different from 0 because of the variance due to individuals (Intercept= 2.9 ± 6.2). 
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Table 4-1 – Summary of the models’ AIC.  

Model AIC degree of 

freedom 

Number of buzzesi = α  238 2 

Number of buzzesi = α+βPCAij +ε i 209 3 

Number of buzzesij = α +aj+βPCAij +ε ij  192 4 

Number of buzzesij = α +aj+(β+bj)PCAij +ε ij  196 6 

 

 

 

Figure 4-3 - Regression between the number of buzzes and the number of prey catch attempts estimated 

by our method. The mixed linear model equation (black line) was: Bij=0.46x Pij +(2.9±6.2). 

 

 



4. BIO-LOGGING 

 

111 

 

The differences of intercept between individuals suggest that the model may 

underestimate or overestimate the number of buzzes from a same estimation of PCA between 

tags. However, the relationship between the number of buzzes and the number of PCA was the 

same between individuals since adding a random effect on the slope did not improve the 

regression. As a result, I only have to take into account the intercept variance between 

individuals to correct the estimation of buzz using the number of PCA determined. I then 

estimated the number of buzzes for each individual with a regression calculated from the 5 other 

individuals (Figure 4-4).  

 

Figure 4-4 - Estimation of the number of buzzes (green) for each individual from the linear regression 

(dark line) estimated by the 5 other individuals (blue). Equation for each regression with the slope’s p-

value were noticed on each graph. The numbers of PCA of each individual not considered in the 

regression were represented in red. The estimated number of buzzes for each individual (green) should 

follow the equation y=x (grey line) for a correct estimation. 
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The application of the regression coefficients obtained with 5 individuals on the PCA 

numbers of the 6th individual approximated well the accurate number of buzzes (Figure 4-4, 

Table 4-2), except for one individual (ID 6) for which I estimated a number of buzzes twice 

higher than the accurate number of buzzes (Table 4-2). However, for the other individuals I 

underestimated or overestimated the number of buzzes by 15% of the accurate number (i.e. ~ 5 

buzzes, see Table 4-2).  

 

Table 4-2 – Sumamry of the error estimation of the buzzes numbers per dive per individuals (Figure 4-4). 

ID Mean accurate number of 

buzzes per dive 

Mean estimated 

number of buzzes 

per dive 

Mean error 

number of 

buzzes 

% of error 

1 37 35.3±6.2 -1.7±3.8 -3.7±9.5% 

2 33.8 24.1±6.2 -9.7±6.6 -26.5±12.7% 

3 19.4 22.6±6.2 3.2±2.3 17.6±13.2% 

4 17.8 20.1±6.2 2.3±3.8 14.9±22.4% 

5 25.6 22.5±6.2 -3.1±2.8 -11.7±9.8% 

6 9.3 18.2±6.2 8.9±0.9 102.8±34.5% 

 

 

I estimated per dive that 51±14 % of the PCAs were associated with a buzz, and the minimum 

percentage of association for a dive was observed at 30% for and the maximum was obtained 

at 73 % (Figure 4-5). Conversely, 61±15 % of buzzes were associated with a PCA, and the 

minimum percentage of association for a dive was observed at 36% for and the maximum was 

reached 100 % (Figure 4-5). 
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Figure 4-5 – Histograms of association (%) between buzz and PCA for the 6 individuals’ dives. 

 

4.2.4. DISCUSSION 

Our study assessed by a simple way the prey catch attempts (PCA) using only 

acceleration data. The method described and implemented on pinnipeds (Viviant et al. 2010, 

Gallon et al. 2013, Cox et al. 2018) could be also implemented on sperm whale and probably 

on other large cetaceans. Indeed I observed a good relationship between the PCA estimated by 

the acceleration data and the buzzes. The method also brought an easy threshold determination 

of the prey catch attempts on the acceleration data, allowing then a simple automation within a 

logger for on-board processing. However, I obtained more PCA than buzzes and 49% of them 

were not associated to buzzes, i.e. false positives, which may be explained by other fast body 

movements or by attempts that occur without buzzes. Indeed, sperm whales might not use 

buzzes for every feeding attempts as they may only accelerate rhythm of clicks production while 

foraging, but not fast enough to be considered as a buzz (Madsen et al. 2002). By listening to 

the acoustic data from the DTAGs it would be possible to define whether the rhythm of clicks 

accelerates without ending in a buzz to confirm our hypothesis. Thus, either this PCA method 

may be more precise than the estimation of buzzes, or a lot of false alarms are detected. 

However, not all buzzes were associated with PCA suggesting either a miss of the feeding 

attempt occurred during these buzzes or the body movement to catch the prey was not sharp 

enough to be detected through our method.  
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Further investigation should focus on other proxies to estimate prey catch attempts in 

order to assess different kind of movements realised by the odontocetes. The purpose would be 

to allow discrimination between acceleration signals which components belong to which 

movement behaviours. This may allow describing different feeding attempts as individuals hunt 

differently according to the kind of prey. Nevertheless, the implementation of this method 

seems interesting enough to assess sperm whales foraging activities as results showed that it 

would be possible to apply correction coefficients from the linear regression used to 

approximate the number of buzzes. Although the feeding attempts might be overestimated or 

false alarms could be detected, the results suggest that we may at least interpret with confidence 

variation of PCA between dives for same individuals as a variation in feeding activity. 

Additionnaly, different prey types may lead to different ratios between PCA and buzzes too. 

One limitation of this study could be the difference of diet between sperm whales equipped 

with DTAG and individuals in Crozet and Kerguelen waters. Thus, further investigations on 

other populations with closer ecology than in French sub-antarctic islands should be of great 

interest to confirm the results described in this chapter. However, within the context of our 

project on depredation, such loggers implanting this method would allow to assess differences 

of rapid body movements as a proxy of individulas’ foraging activity in presence or absence of 

fishing gear.  

The method has been implemented in new loggers by Wildlife Computers and they were 

available for the second field mission. Unfortunately, none of the 4 loggers deployed on sperm 

whales transmitted any signal, avoiding the possibility to collect any of these data. Hopefully, 

the tampering of these loggers should be corrected by Wildlife Computers and new loggers 

should be deployed in the future. Nevertheless, other more classical ARGOS tracking loggers 

have been deployed on killer whales and data have been recovered. These bio-logging data have 

then been analysed paired with the dataset obtained from loggers deployed on longlines. The 

results revealed new insights of the underwater interactions between toothed whales and fishing 

gears, as presented hereafter. 
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4.3.1. ABSTRACT 

Toothed whales (odontocetes) feeding on fish caught on hooks in longline fisheries is a 

growing issue worldwide. The substantial impacts that this behaviour, called depredation, can 

have on the fishing economy, fish stocks and odontocetes populations raise a critical need for 

mitigation solutions to be developed. However, information on when, where and how 

odontocete depredation occurs underwater is still limited, especially in demersal longline 

fisheries (fishing gear set on the seafloor). In the present study, we investigated depredation by 

killer whales (Orcinus orca) and sperm whales (Physter macrocephalus) on demersal longlines 

in the French Patagonian toothfish fishery (Southern Ocean). Using a combination of animal-

borne behavioral and longline-attached data loggers, we revealed that both species are able to 

depredate longlines on the seafloor. This study suggests, therefore, that odontocete whale-

longline interaction events at depth may be unrecorded when assessing depredation rates from 

surface observations during hauling phases only. This result has implications for the 

management of fisheries facing similar depredation issues as underestimated depredation rates 

may result in unaccounted fish mortality in fish stock assessments. Therefore, while further 
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research should be conducted to assess the extent of  deep-sea whale-longline interaction events 

during soaking, the evidence that depredation can occur at any time during the whole fishing 

process as brought by this study should be considered in future developments of mitigation 

solutions to the issue.   

Keywords: depredation, killer whales, sperm whales, demersal longlines, Patagonian toothfish, 

bio-logging 

 

4.3.2. INTRODUCTION 

The intensification of fishing activity over the last decades has been associated with an 

increase in direct interactions between fisheries and marine top predators worldwide 

(Northridge 1991; Northridge and Hofman 1999; Read et al. 2006; Read 2008). Depredation, 

which occurs when marine predators remove or damage fish from fishing gear, is a type of 

interaction often resulting in substantial impacts on fishing activity, depredating species and 

fish stocks (Donoghue et al. 2002; Gilman et al. 2006; Read 2008). Longlines are composed of 

a main line with baited hooks attached at intervals by means of branch lines called snoods. The 

main line is either deployed in the water column, i.e. pelagic longlines, or on the seafloor, i.e. 

demersal longlines. Therefore, longlining is a fishing technique that makes caught fish easily 

accessible for depredating animals. It has been reported to be the fishing technique most 

impacted by depredation, especially by toothed whales, i.e. odontocetes (Northridge and 

Hofman 1999; Donoghue et al. 2002; Gilman et al. 2006; Hamer et al. 2012). Indeed, at least 

31 species of odontocetes have been reported to interact (either through depredation or bycatch) 

with longline fisheries worldwide (Werner et al. 2015). Depredation on fisheries leads to greater 

costs for fisheries. This is due to damaged fishing gear, damaged fish losing economical value, 

and increased effort to both avoid competition and reach quota limits (Peterson and Carothers 

2013; Peterson et al. 2014; Tixier et al. 2015c; Werner et al. 2015). For odontocetes, interactions 

with longlines may increase risks of mortality, either by entanglement in fishing gear, i.e. 

bycatch (Northridge 1991; Trites et al. 1997; Read et al. 2006; Hamer et al. 2012), or by the use 

of lethal methods by illegal fisheries to eliminate competitors (Poncelet et al. 2009; Guinet et 

al. 2015). Also, depredation often involves access to new and easy-to-catch prey resource for 

predators, which may modify both the energy balance of odontocetes and the natural predator-

prey dynamics of local ecosystems (Trites et al. 1997; Northridge and Hofman 1999; Boyd 
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2002; Guénette et al. 2006; Morissette et al. 2012; Tixier et al. 2017). For fish stocks, 

depredation may result in biased assessments and over-exploitation if the amount of depredated 

fish is not precisely estimated (Roche et al. 2007; Read 2008). Together, these multiple impacts 

of depredation, may jeopardize the sustainability of local fishing activity. Currently, there is a 

critical need for mitigation solutions. However, when, where and how fish are removed from 

longlines by odontocetes remains poorly understood yet is crucial to developing effective 

countermeasures to depredation. For instance, some mitigation devices may be efficient only 

during specific fishing phases, such as hauling. This is the case of the ‘Cachalotera’, a floating 

net sleeve sliding down over individual fish caught on a hook when the longline is hauled to 

protect it from depredating whales (Hucke-Gaete et al. 2004; Moreno et al. 2008). Another 

example is the SAGO, a catching pod going down the longline to collect the fish during hauling 

(Arangio 2012). 

Depredation has been described to occur during both soaking and hauling phases for 

pelagic longlines (Dalla Rosa and Secchi 2007; Forney et al. 2011; Rabearisoa et al. 2012; 

Passadore et al. 2015; Thode et al. 2016) whereas this behavior has only been assumed to occur 

during hauling phases for demersal longlines (e.g. Mathias et al. 2012, Tixier 2012, Werner et 

al. 2015). In dermersal longline fisheries, depredation rates are assessed from visual 

observations of depredating animals in the vicinity of fishing boats, or counting the number of 

damaged fish  on hauled longlines (e.g. Hucke-Gaete et al. 2004, Purves et al. 2004, Roche et 

al. 2007, Rabearisoa et al. 2012, Straley et al. 2015, Söffker et al. 2015, Passadore et al. 2015). 

However, some studies using alternative types of data, such as underwater videos or acoustics, 

have showed that odontocetes can depredate baits and remove the whole fish from the hook 

(Mathias et al. 2009; Thode et al. 2014; Guinet et al. 2015; Thode et al. 2015; Thode et al. 

2016). Therefore, methods using indirect approaches have been implemented to assess the 

extent of depredation in demersal longline fisheries. For instance, Gasco et al. (2015) proposed 

to estimate depredation rates based on the difference in fishing efficiency in the absence and in 

the presence of odontocetes within a restricted geographical area. Such approach requires an 

accurate and reliable monitoring of the presence of depredating animals during the fishing 

operations. However, there are still large knowledge gaps on the underwater depredation 

behaviour of odontocetes. Specifically, it is not known if the odotoncetes depredate on demersal 

longlines soaking on the seafloor while the fishing vessel is potentially hundreds of kilometres 

away. Although interacting with longlines on the seafloor would require individuals to dive 
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deeper and, therefore, to expend greater energy than when depredating on longlines in the water 

column, both killer and sperm whales have diving capabilities that fully or partly encompass 

the depth range at which longlines are set on the seafloor. Indeed, killer whales have been 

recorded diving at maximum depths circa 1000 m (Reisinger et al. 2015; Towers et al. 2018) 

and sperm whales at maximum depths of circa 2000 m (Teloni et al. 2008; Fais et al. 2015; 

Guerra et al. 2017). 

In the present study, we approached this problem by using fine-scale bio-logging 

technology deployed on both depredating odontocetes (ARGOS satellite tracking tags equipped 

with depth sensors) and longline sets (accelerometers paired with depth sensors) from 

commercial demersal longline fisheries. By combining these two approaches, our primary aim 

was to investigate the occurrence of odontocetes depredation events on demersal longlines in 

the underwater dimension during both soaking and hauling phases of the fishing process. The 

initial objective was to use the two methods to study both killer whales and sperm whales. 

Unfortunately, this turns out to be impossible. In the following, we will see that accelerometers 

deployed on longlines have been useful to study sperm whales (Sec. “longline accelerometry”), 

while tags deployed on animals were useful to study killer whales only (Sec. “Odontocetes 

tracking data loggers”). 

 

4.3.3. METHODS 

4.3.3.1. RESEARCH CONTEXT  

 The study focused on a depredation conflict involving the French Patagonian toothfish 

fishery with killer whales and sperm whales. The Patagonian toothfish is a long-lived (>50 

years) and a large (> 200 cm in length and > 200 kg in weight) species (Collins et al. 2010), 

with high-quality flesh making the species economically highly valuable (Collins et al. 2010; 

Grilly et al. 2015). The French longline fishery is of particular scientific interest since it holds 

the largest Patagonian toothfish quota in the Southern Ocean (COLTO 2016) allocated between 

the subantarctic islands of the Crozet Archipelago (46°25′S, 51°59′E) and Kerguelen Islands 

(49°20′S, 70°20′E, see Figure 4-6). Additionally, this fishery also experiences the highest 

depredation levels of all toothfish fisheries, with more than 30% and 9% of the total annual 

catch taken at Crozet and Kerguelen, respectively, by killer and sperm whales (Roche et al. 
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2007; Tixier et al. 2010; Gasco et al. 2015; Janc et al. 2018). Interaction levels are 

fundamentally different between the two EEZs with sperm whales being present around both 

islands but at different densities (Labadie et al. 2018) and killer whales being almost exclusively 

found at Crozet (Tixier et al. 2010; Guinet et al. 2015).  

Fishing seasons last a year, starting in September and ending in August. A fishing season 

consists of 3 or 4 trips of approximately 3 months each. During a trip, vessels fish continuously 

through a diel pattern. Longlines are set at night and primarily hauled during the day, since 

fishing regulations prohibit setting at daylight to avoid seabird bycatch (Weimerskirch et al. 

2000). During trips, all longline positions (latitude and longitude), bathymetry at deployments 

(500 – 2000 m), and setting and hauling times are recorded. Fishing in waters shallower than 

500 m is prohibited to avoid the capture of juvenile toothfish (Collins et al. 2010; Gasco 2011). 

Vessels use auto-weighted longlines set between two anchors and linked to buoys at the surface 

for retrieval. The lines are composed of sections of 750 hooks, with 1.2 m between hooks. The 

length of the longlines varies from 1 to 40 km, with an average of approximately 8 km. For 

each longline hauled, the presence of cetaceans (killer whales and/or sperm whales) is 

monitored according three classes: (i) whales absent (condition suitable for a confident 

observation); (ii) whales present; and (iii) uncertain-observation (conditions unsuitable and/or 

no observation undertaken). Data were available through the PECHEKER database (Museum 

National d’Histoire Naturelle de Paris; Martin and Pruvost 2007). 

Data collection for this study was conducted from two commercial demersal longline 

fishing vessels during two summer trips (December - March) in 2016-2017 and in 2017-2018. 
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Figure 4-6 - Map of the study area with the locations of the fishing activity (orange dots) around Crozet 

and Kerguelen. The green rectangle indicates the seamount where the deployment of instruments on 

killer whales occurred. 

 

4.3.3.2. ODONTOCETES TRACKING DATA LOGGERS 

We deployed six ARGOS satellite tracking tags equipped with depth sensors (2 

SPLASH10-292A units and 4 SCOUT‐DSA units, Wildlife Computers, Redmond, 

Washington, USA) on 3 killer whales  and 3 sperm whales. The 6 loggers were deployed from 

the fishing boat during longline hauling operations using modified crossbow arrows (Wildlife 

Computers) and fired from a 68 kg draw weight crossbow (Barnett Rhino, Barnett Outdoors 

Inc., Tarpon Springs, Florida, USA). The devices recorded diving depths using a pressure 

sensor every 2.5 minutes, with an associated error band. Between dives, the instruments were 

set to transmit geographic positions and depth data every 2 h through the ARGOS system 

(Collecte Localisation Satellites, Toulouse, France).  

Position estimates were categorized into five estimated accuracies: (i) class with no 

estimate; (ii) class 0: ≥1 500 m; (iii) class 1: 500-1 500 m; (iv) class 2: 250-500 m; (v) class 3: 

≤250 m (Collecte Localisation Satellites, Toulouse, France). These accuracies were used to 
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determine a confidence area around the ARGOS positions. Position without uncertainty 

estimates (classes i) were removed from the dataset. ARGOS positions were processed using 

the software R (version 3.4.4, R Development Core Team). We mapped every position using a 

buffer function (create.buffer, package marmap version 1.0.2) to account for potential location 

accuracy errors. Bathymetric data were obtained from the ETOPO1 dataset (NOAA) and 

plotted using a custom R code. For a given ARGOS position and associated date/time, all 

longlines at sea and their status (soaking, hauling) were also plotted on the map. We then 

estimated the distance from the instrumented animal to the closest longline using the ARGOS 

positions and the longline coordinates.  

From there, we defined interactions between an individual and the fishing gear based on 

the geographic proximities of both entities. We used a method that defines odontocete 

interactions with fishing vessels at hauling in other studies (Roche et al. 2007; Tixier et al. 2010; 

Mathias et al. 2012). Animals were considered to be interacting with a longline if they were 

within a 1.5 km proximity, independent of the fishing activity. Thus, we determined two 

behavioral states for every individual’s ARGOS position: (i) ‘interaction’ with a longline; and 

(ii) ‘no interaction’ with any longline. Simultaneously, we monitored the individual’s depth 

profile of every ARGOS position. We also added the depths of the closest longlines to the 

diving profile when the individual was in ‘interaction’. Moreover, if the closest longline was 

being hauled, we also monitored bathymetry under the boat during the hauling. As the equipped 

individual was in interaction with the boat at this time, we considered it to be in waters with the 

same bathymetry than the fishing vessel. 

All instrument deployments followed the ethics policies of the Terres Australes et 

Antarctiques Françaises (TAAF) and were authorized by the Réserve Naturelle Nationale (RNN 

des TAAF) through approval A-2017-154. 
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4.3.3.3. LONGLINE ACCELEROMETRY 

We deployed 3-axis accelerometer/pressure sensor data loggers (Sextant Technology, 

New Zealand) on longlines to detect activity events at the hooks (fish catch and/or depredation 

events) and the depth at which they occurred during soaking and hauling. Accelerometer/depth 

data loggers were deployed singularly on snoods (i.e. short lines connecting individual hooks 

to the main longline; Supp. data 8). In the 2016/2017 field season, the data loggers were attached 

to snoods by a snap connector fixed on the mainline  (Supp. data 8) while in 2017/2018 they 

were attached with a thick rope to the swivel between the snood and the main line (Supp. data 

8), allowing the data loggers to roll around the mainline as normal snoods do. We used two 

different versions of data logger: 2016/2017 recorded acceleration at 10 Hz with a precision of 

10 bits; 2017/2018 recorded acceleration at 12.5 Hz with a precision of 12 bits. In both versions, 

the acceleration range was set at ±16 g per axis and, to conserve battery life and memory 

capacity, an acceleration threshold (2016/2017 0.03 g, 2017/2018 0.01 g) was set to start 

recording when a movement occurred on the hook. The pressure sensor recorded continuously 

at 0.2 Hz. 

Sets of accelerometers were deployed along a longline on every hook (i.e. every 1.2 m), 

or separated by 3, 5 or 10 unequipped hooks. When the equipped longline was retrieved on the 

vessel, the presence of a captured fish (and its species) on an equipped snood was recorded. For 

equipped hooks without any capture, we recorded whether the bait was still present and the 

condition of hook (undamaged, twisted or ripped off the snood).  

To assess the potential for detecting events on non-equipped snoods, the distance from 

equipped hooks to nearest capture along the longline was recorded, counting 0 when a catch 

occurred on the equipped hook. Simultaneously, we monitored the amplitude of the movement 

received on the loggers nearby. Thus, we estimated the norm of the acceleration vector: 

EQUATION 4-3 Norm= √𝒂𝒙² + 𝒂𝒚² + 𝒂𝒛²  

with ax, ay and az the 3 components of the acceleration vector. Acceleration data were extracted 

using the software Hermes DeepG (Sextant Industry, New Zeland). Accelerometer data and 

pressure profiles were processed using custom-built routines in Matlab (version R2015, The 

MathWorks, Natick, MA, USA).  
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We then examined how the acceleration norm (Equation 4-3) varied with respect to the 

distance (in number of hooks) of the closest capture. To do so, we produced boxplots depicting 

the median with the 25th and 75th percentiles (McGill et al. 1978). Also a 95% of confidence 

interval was represented (the two whiskers) with the outlying points shown individually 

(McGill et al. 1978). The dataset did not allow for linear regressions to be assessed because of 

a violation of independence when a same catch was monitored on several accelerometers 

nearby. The low number of accelerometers recording signals from a same catch did not allow 

for nested linear models to be used to correct the violation of independence. Boxplots were 

developed per season because of the difference in the sampling schedule of the loggers and their 

method of attachment to the longlines between the two field seasons  

Finally, we assessed the depth profile of each accelerometer and mean norm 

acceleration. We manually looked for any depth anomalies and assessed the distance of closest 

capture to equipped hooks.  Our aim was to determine if the acceleration/depth data could reveal 

depredation events for hooks that were hauled without fish.  

 

4.3.4. RESULTS 

4.3.4.1. ODONTOCETES TRACKING DATA LOGGERS 

Only two loggers of the six deployed transmitted correctly. The other 4 loggers failed 

to transmit, most likely because of an on-board software issue. The two operational loggers 

were deployed on two adult female killer whales in February 2018 near the seamount located 

40 km south-east from East Island, Crozet Archipelago (Figure 4-6). The two instruments 

provided 28 and 65 ARGOS locations during 3 and 7 days, respectively, before they stopped 

transmitting (i.e. fell off the animal or battery expired). Of these locations, 20 and 31, 

respectively, had an accuracy estimates and, thus, were included in further analyses.  

Out of the 20 useful locations from the first logger, 9 locations were identified as 

“interactions” with 5 different longlines. For the second logger, 14 points where identified as 

“interactions” with 11 different longlines. Among the ‘interactions’ positions of the first 

individual, 3 were recorded during the hauling of 3 different longlines and 6 were recorded as 

overlapping with 2 different longlines during soaking. For the second individual, 6 positions 
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were recorded during the hauling of 5 different longlines and 8 positions overlapped with 6 

different soaking longlines. 

 

 

Figure 4-7 - ARGOS position (left panel) of an ‘interaction during hauling’ with its associate dive profile 

(right panel).  The ARGOS position is indicated on the map by the red circle with the diameter 

representing the location estimate error buffer (cf. CLS classes). The color shade depicted the 

bathymetry. The soaking longlines are shown in black and the longline being hauled is shown in red at 

the given transmission time of the ARGOS position (left panel). The dive profile assessed the depth range 

estimated by the tag through the thickness of the drawing (right panel). On the dive profile the 

transmission time of the ARGOS position is represented by the red triangle and the bathymetry recorded 

by the boat during the hauling session is indicated by the red line, as the killer whale was interacting 

with the boat the red line represented then the bathymetry below the individual for a given time (right 

panel). 
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The dive data corresponding to the 9 ‘interaction’ positions on longlines being hauled 

indicated that killer whales started diving at the beginning of hauling activities and stopped 

diving once all hooks were landed onboard the vessel (Figure 4-7 and Supp. Data 10 to 14). 

Interestingly, during the hauling operations, the diving depths of the killer whales ranged 

throughout the entire water column (from the surface to the sea-floor). 

The dive data corresponding to the 14 “interaction” positions on soaking longlines 

indicated that the killer whales mostly performed shallow dives (<50 m). An exception to this 

behavior occurred for one “interaction” position, where a killer whale performed a dive to 502 

± 22 m only 1:30 h after the “interaction” position time (Figure 4-8). This “interaction” position 

was the last of a series of 6 consecutive positions recorded within a 4.5 h window and all 

overlapping with the same cluster of longlines soaking within a 6 km radius (Figure 4-8). The 

next position was recorded 20 h later and at 4 km from the last position of previous series. 

During this 20 h time window, the killer whale conducted 8 dives deeper than 450 m in <6 h, 

with 5 of these being consecutive dives to the same estimated depth (502 ± 22 m) within 2 h 

(Figure 4-8). These dive depths correspond to the bathymetry at the extremity of the closest 

longline (set at 515 m; Figure 4-8). All these events occurred around the soaking longlines (i.e. 

the ARGOS positions and the recorded dives within the 15 h window; Figure 4-8) while no 

vessel was in the area. Indeed, after setting the longlines, the fishing vessel left the area and 

traveled 140 km away. It then returned to haul the considered longline, 3 h after the last deep 

dive (502 ± 22 m) was recorded. In addition, no other fishing vessel was active in this sector. 
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Figure 4-8 - ARGOS positions (left panel) of an ‘interaction before hauling’ with their associate dive 

profile (right panel) within a 15 hour-window.  The ARGOS positions are indicated on the map by the 

red circles (numbered chronologically along track) with the diameter representing the location estimate 

error buffer (cf. CLS classes). The soaking longlines are indicated by the black lines on the map, and 

the closest soaking longlines to the most recent transmitted positions are in green (left panel). The dive 

profile assessed the depth range estimated by the tag through the thickness of the drawing (right panel). 

On the dive profile, the transmission times of the ARGOS positions are represented by the red triangles 

and the bathymetry of the closest longlines (at their extremities) at the time of the most recent ARGOS 

determined positions are outlined in green (right panel). 

 

We observed with the two loggers that 68% of the ARGOS positions with ‘no 

interaction’ were associated with shallow dives (< 50 m) and occurred between two positions 

with ‘interaction’. However, for one of the two instrumented individuals, 9 “no interaction” 

positions coincided with 7 relatively deep dives. The  maximum depths were between 200 and 

325 m, and 3 of these dives were performed within a 3 h period (Figure 4-9 and Supp. data 15). 

This specific event occurred on a seamount. The area is characterized by steep slopes reaching 

a plateau at depths of approximately 200-300 m, with two peaks rising to depths of up to 100 
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m. As fishermen are not allowed to set longlines on the seafloor shallower than 500 m, these 

deep dives could not be associated to longline depredation.  

 

 

Figure 4-9 - ARGOS positions (left panel) within a 3 hour-window of ‘no interaction’ with the associate 

dive profile (right panel).  The ARGOS positions are represented on the map by the red buffers with the 

diameter standing for the estimate error (cf. CLS classes) and the numbers assessed the chronology of 

the track. The longlines at sea during these 3 hours are plotted in black on the map (left panel).. The 

dive profile assessed the depth range estimated by the tag through the thickness of the drawing. On the 

dive profile the four transmission times of the ARGOS positions are represented by the red triangles 

(right panel). 
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4.3.4.2. LONGLINE ACCELEROMETRY  

Accelerometer/depth data loggers were deployed on 556 hooks across 126 sections for 115 

longline sets. Equipped hooks captured 38 fish, including 19 Patagonian toothfish. Other 

captures included grenadier (Macrourus spp.), antimora (Antimora rostrata) and skate species 

(Bathyraja spp.). The catch rate of Patagonian toothfish on the equipped hooks (3.42%) was 

similar to the catch rate of all longlines for the whole fleet for the same period (3.85%). 

However, due to device malfunctions, accelerometer data were obtained for only 13 toothfish 

captures.   

Acceleration norms recorded during the second season were higher than those recorded 

during the first season (Figure 4-10). This is likely due to modifications in the newer generation 

of accelerometers that were used on the second year of the study, and to modifications in the 

way accelerometers were attached to longlines. In the second year, a smoother attachment was 

used, allowing a complete rotation of the snood around the mainline. . However, for both field 

seasons, the accelerometer data showed the same feature: the accelerometer norm globally 

decreases when the distance of the closest capture increases (Figure 4-10). 

 

Figure 4-10 - Boxplots of the mean acceleration norm recorded during the bottom phase on 

accelerometers with the closest distance and for the two different season.  
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Over the total 126 sections of data logger deployments, we observed 3 events of 

significant depth variation during three separate longline soaking phases, one at Kerguelen in 

January 2017, one at Crozet in February 2017 and one at Crozet in February 2018 (Figure 4-11). 

These events occurred at depths of 600, 1600 and 1800 m, respectively, while the lines were 

soaking on the seafloor. The elevation events lasted 6, 9 and 52 minutes, respectively (Figure 

4-11). The first event in Kerguelen occurred 1 h before the arrival of the fishing vessel at the 

longline (Figure 4-11.A.B.). The second event happened just after fishermen stopped hauling 

the longline half way through and let it fall back to the seafloor (Figure 4-11.C.D.). The third 

event occurred 1 day after the longline was set and 3 days before the hauling (Figure 4-11.E.F.). 

During these events, longlines were elevated by 30 m, 40 m and 300 m, respectively, above the 

seafloor (Figure 4-11). Sperm whale presence was confirmed on the first event (Figure 

4-11.A.B.) by visual observations and passive acoustic recordings (obtained as part of 

concurrent studies). No such cues of sperm whale presence were detected near the set during 

the second event, though no passive acoustic monitoring occurred in the area at that time (Crozet 

2016-2017, Figure 4-11.C.D.). However, a sperm whale was found entangled and dead (Fig. 

S2) on the longline of the third event (Figure 4-11.E.F.). The logger was located 1km from the 

dead sperm whale. During the three events, all equipped hooks were hauled without caught fish 

and one of the equipped hooks was hauled in a row of ten hooks twisted or ripped off the snood.  
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Figure 4-11 - Dive profiles (A,C,E) of three accelerometers hauled without any fish and showing some 

depth anomalies, zoomed on the right column (B,D,F). Each row represent a different logger monitoring 

a precise event: the first line represents the event which occurred at Kerguelen during the first field 

season (2016-2017); the second line represents the event which occurred at Crozet the same field season 

(2016-2017); and the third line represents the event with the dead sperm whale hauled at Crozet in 

February 2018. We assessed on the depth profiles and elevation zooms the arrival time of the fishing 

boat on the longline (red line), and for the second event (D) we also monitored the time at which 

fishermen stopped the fishing activity and cut the longline (blue line) before leaving.  

 

The accelerometer of the third elevation event (i.e. with the dead sperm whale) did not 

reveal any acceleration activity while the longline was on the sea floor. This suggests that no 

fish were captured on any of the hooks located near the logger. However, the loggers monitoring 

the two other events revealed acceleration occurring before each elevation event and then 

stopped recording any activity until the hauling process began. This indicates the occurrence of 

a fish capture and then depredation. We then compared the mean acceleration norm of the 
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equipped hook during the soaking phase until these elevation events with the boxplot of mean 

acceleration norm per closest capture (Figure 4-12). These comparisons allowed for the 

distances of the activities recorded on the accelerometers to be roughly estimated before the 

elevation events occurred. We observed that the mean acceleration norm before the second 

elevation event (Crozet 1617) was higher than the lower quartile of the boxplot at a distance of 

0, i.e. fish hauled on the equipped hook (Figure 4-12). This revealed that the equipped hook, 

hauled undamaged and with no fish, probably caught a fish during the soaking and before the 

elevation event. In contrast, the the mean acceleration norm before the elevation first event 

(Kerguelen 1617) was too low to indicate a capture on the equipped hook, suggesting some 

activity further away (Figure 4-12). 

 

Figure 4-12 - The first row depicts acceleration norm over the dive of the two equipped hooks showing 

activity before the elevation event (green line). The mean acceleration norm before the elevation event 

(green line) was compared for each accelerometer with mean acceleration norm estimated with the 

distance of the closest toothfish capture. 
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4.3.5. DISCUSSION 

4.3.5.1. INSIGHTS INTO DEPREDATION BEHAVIOR DURING HAULING AND 

SOAKING PHASES OF LONGLINES 

The diving behavior of instrumented killer whales showed that individuals actively and 

repeatedly dived to depths matching those of longlines while they were being hauled onto 

vessels. Interestingly, these dives were performed as soon as hauling was initiated by fishermen, 

with the first dives being the deepest (on occasions >600 m) and matching the seafloor depth. 

Together, these findings suggest that depredating killer whales readily expend high amounts of 

energy in deep, short-spaced successive dives and that these costs are likely outweighed by the 

benefits gained from feeding on toothfish caught on hooks. These benefits may be maximized 

if individuals are the first to access the resource offered on the hooks, potentially with a choice 

of bigger fish. It may therefore be hypothesized that deep dives performed at the beginning of 

hauling is a response to both intra- and inter-specific competition. Competition is likely 

generated by a highly localized, short-term availability of easy-to-catch resource, such as 

toothfish caught on longlines. The large concentrations of both killer whales and sperm whales 

(sometimes co-occurring) around fishing vessels suggests such competition (Roche et al. 2007; 

Tixier et al. 2010). Deep diving behavior while depredating on longlines being hauled has also 

been reported for killer whales off South Georgia (Towers et al. 2018) and for sperm whales in 

Alaska (Mathias et al. 2012), suggesting competition for the hauled resource in both cases. 

In the present study, the diving/tracking data for the killer whales and the longline 

accelerometry/depth data for the sperm whales suggest that these species also interact with 

longlines during soaking. For killer whales, interactions with longline sets on the seafloor 

during soaking phases are suggested by the matched maximum dive depths and bathymetry 

when positions of individuals overlapped with those of longlines. Additionally, the repeated 

deep dives within a short duration (5 dives in 2 hours) to the same depth, strongly suggests a 

foraging activity on a highly localized resource remaining available at the same depth for 

extended periods of time, strengthening the idea that the killer whale was foraging on the 

soaking longlines. While more data are required to fully address these issues, our dataset 

demonstrates that killer whales can forage on soaking longlines and suggests that they do.  
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The unfortunate by-catch of a sperm whale entangled in a longline equipped with a 

logger confirms the species does depredate on soaking longline. The event also helps the 

interpretation of the other longline logger data. The elevation signals detected on loggers were 

identified as interaction events and confirmed by additional cues such as toothfish capture 

events on the same portion of sets, wrested and twisted hooks, and the presence of sperm whales 

in the vicinity of sets. While such cues were undetected for one of the nominally identified 

events, the depth of the event (1600 m) makes it unlikely to be the result of killer whales as 

they are not known to dive deeper than 1100 m (Reisinger et al. 2015; Towers et al. 2018). In 

contrast, sperm whales are known to be able to reach depths of 1500-2000m (Teloni et al. 2008; 

Fais et al. 2015; Guerra et al. 2017).  

In addition, the variation in depth data obtained during longline soaking suggests how 

depredation events may occur. The two elevations of longlines up to 30 and 40 m off the 

seafloor indicate a significant pull must have been exerted directly on the line, and not  on a 

hooked toothfish. Pulling on a hook or a fish may only support an elevation of 1 or 2 m, as 

observed in video data obtained by Van den Hoff et al. (2017) showing an elephant seal pulling 

a toothfish to unhook it. Furthermore, sperm whales depredating hauled lines near Alaska 

appear to bite and scrape sections of lines in order to remove fish instead of directly targeting 

hooked fish (Mathias et al. 2009; Mathias et al. 2012). In the present study, the observation of 

twisted and wrested hooks in a row, even if no fish captures were recorded in the accelerometry 

record, suggests that sperm whales rake the mainline while lifting it from the seafloor. Such a 

hypothesis may also explain why the dead sperm whale hauled on a longline with equipped 

hooks had the mainline wrapped around its jaw. It is also known from subsurface video data 

that killer whales are more likely to pull fish to remove them from lines (Guinet et al. 2015) 

such that it is unlikely this species was involved in elevation events of soaking longlines. 

 

4.3.5.2. FISHERIES MANAGEMENT AND ODONTOCETE CONSERVATION 

IMPLICATIONS 

This study has major implications for the way depredation is estimated and incorporated 

into fish stock assessment as well for the conservation of depredating odontocete populations. 

Our results demonstrate that visual observations from fishing vessels are not enough to correctly 

quantify depredation rates. Indeed, depredation rates are estimated by the difference between 



4. BIO-LOGGING 

 

134 

 

catch per unit effort on longlines in absence of cetacean and longlines in presence of cetaceans 

(e.g. Hucke-Gaete et al. 2004, Purves et al. 2004, Roche et al. 2007, Gasco et al. 2015). Within 

cases that seafloor depredation occurs on longlines hauled in the absence of cetaceans, 

depredation rates will be underestimated. This insight has significant implications for fish stock 

management, since even with the recent efforts to consider depredation in quota management 

(Roche et al. 2007; Gasco et al. 2015), our study shows that the fishing stock might be more 

impacted than previously assumed. Furthermore, to clearly estimate the impact of depredation 

on the fish stock it is essential to know whether the targeted fish belong to the natural diet of 

the depredating odontocetes.  

While Patagonian toothfish has previously been described as a natural prey of sperm 

whales (Yukhov 1982), doubts remain about killer whales naturally feeding upon this prey. In 

the present study, we observed killer whales diving to the seafloor of a seamount, where no 

longlines were set. This suggests that killer whales naturally forage in this area, though it is not 

known on what prey. Killer whales at Marion Island have been similarly observed foraging on 

the seafloor of a seamount at 800 m depth, where they were considered as preying upon squids 

or Patagonian toothfish (Reisinger et al. 2015). Thus, we also assumed that Crozet killer whales 

may naturally forage either on squids or on Patagonian toothfish. This hypothesis was already 

suggested since this population immediately learned to depredate toothfish in 1996 (Guinet et 

al. 2015). Under this assumption, depredation may therefore have a limited impact on the 

toothfish stocks but it nonetheless suggests that fishermen and odontocetes are clearly in 

competition for the same resource. 

The dead sperm whale found entangled in the gear and reported here highlights the 

potential risk of bycatch. This incident is the fifth of its kind reported at Crozet between 2007 

and 2018, which represents a bycatch rate of 0.04 % individual per longline over that period. 

Among these 5 bycatch events, three resulted in the death of a sperm whale, which represents 

2.6 % of the 114 known individuals of the Crozet population (Labadie et al. 2018). While this 

proportion is low, it still may  significantly impacts this low fecundity, long-lived marine 

mammal (Whitehead 2009). In addition, the increase of sperm whale bycatch rate in recent 

years (4 of the 5 reported events occurred in the past 3 years) raises concern about a potentially 

increased competition between the fishing activity and the local whale populations, which may 

be due to a greater dependency to depredation and/or a depletion of the toothfish stock. 

Although the easy-to-get food provided by longlines may complement an individual’s energy 
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intake and improve reproduction (Tixier et al. 2015b; Tixier et al. 2017), seafloor depredation 

may pose serious threats to odontocete populations by an increase in entanglement risk. 

Previous efforts to minimize odontocetes depredation on demersal longline fisheries 

have primarily relied on the assumption that fish were removed from hooks only during hauling 

of longlines (Gilman et al. 2006; Werner et al. 2015). However, if both killer and sperm whales 

depredate fish on the seafloor as suggested by the present study, efforts to develop new 

mitigation techniques should be re-orientated to the development of deterrence/protection 

systems of the longline/hooks throughout the whole soaking and hauling periods. Until now, 

solutions have mostly been targeted at hauling operations where it might be easier to apply 

systems to protect the caught fish, such as acoustic deterrent devices to switch on while hauling 

longline, e.g. the ‘OrcaSaver’ system (Tixier et al. 2015a), or floating net sleeves sliding down 

over individual caught fish when the longline is hauled to protect it from depredating whales, 

e.g. the ‘Cachalotera’ (Moreno et al. 2008). However, these mitigations solutions may be costly 

and difficult to implement if they require changing fishing gear, or they may be efficient only 

for a while before odontocetes understand how to bypass these devices (Tixier et al. 2015a). 

Rather, our results suggest changing the fishing system with a global protection of the targeted 

fish, such as fishing pots, may be needed. However, new fishing methods may not be as efficient 

as the conventional fishery. For instance, in Alaska pot fisheries have been approved and seem 

to be effective in preventing sperm whale depredation but they are more expensive when 

compared to conventional longlines (Sullivan 2015; Peterson and Hanselman 2017). The same 

conclusion has been drawn after a preliminary trial performed as part of the ORCASAV 

program in 2010 around Crozet Archipelago (captains communications, personal observations 

and see Bavouzet et al. 2011; Gasco 2013). 

Further investigations should examine whether the occurrence of sea-floor depredation 

is negligible compared to depredation during hauling. Such quantification would allow for the 

extent to which depredation rates are underestimated to be assessed and this information would 

help in determining whether efforts should be put to develop mitigation devices that protect the 

hooks during hauling only or during the whole fishing process to reduce the economic losses 

caused by depredation. This study provided preliminary insights to this aspect by suggesting 

that seafloor depredation might occur more sporadically for killer whales than for sperm whales. 

With three interaction events recorded for sperm whales over a low coverage of the fishing 

effort by accelerometers (~0.02% of hooks set by fishermen), we might assume that depredation 
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on longlines on the seafloor during soaking may be relatively frequent for that species. 

Increasing the bio-logging effort on individuals with longer logger deployment might bring 

more cues on the occurrence of this behaviour. Alternatively, the use of passive acoustic 

monitoring may help quantifying depredation at seafloor, since killer whales and sperm whales 

are vocal animals and use echolocation to forage (Norris 1968, Barrett-Lennard et al. 1996, 

Madsen et al. 2002, Miller et al. 2004, Watwood et al. 2006, Zimmer 2011). Thus, the clicks 

can be used as an acoustic proxy of the depredation behaviour,  which can help to assess the 

depredation rates during interactions between soaking and hauling (Thode et al. 2014). 

 

4.3.6. CONCLUSION 

Using bio-logging technology on both odontocetes and demersal longlines, this study 

brought new behavioral insights into sperm whale and killer whale depredation behavior on 

demersal longlines. Depredation was confirmed during hauling phases from the observations 

of killer whales diving behavior around the fishing gear in the water column during that phase 

as described at South Georgia (Towers et al. 2018). More importantly, although the capabilities 

of sperm whales to interact with the longline on the seafloor has been previously suggested 

(Janc et al. 2018) our results confirm that sperm whales do, and that killer whales very likely 

also, depredate on longlines while they are soaking on the seafloor. Although seafloor 

depredation still needs to be accurately quantified, we have demonstrated the occurrence of this 

behavior which has major implications both for past depredation assessment and management, 

and for future mitigation developments. 
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4.4. CONCLUSION 

Biologging techniques are useful tools to assess the depredation conflict because these 

techniques allow for a monitoring of interactions at the “longlines-odontocetes” scale, which is 

finer than the “fishery-odontocetes” scale. Deployments on longlines have brought a new lead 

for a "fishing gears behaviour” monitoring, especially while soaking. Within this thesis we 

provided evidence of seafloor depredation on soaking demersal longlines by odontocetes 

(section 4.3), but the extent to which this behaviour occurs remains unknown. Nevertheless, 

with 3 interaction events recorded for sperm whales over a low coverage of the fishing effort 

by accelerometers (~0.02% of hooks set by fishermen have been equipped), we might assume 

that depredation on longlines on the seafloor during soaking may be relatively frequent. 

Therefore, an acoustic approach would be interesting to assess interaction during soaking time 

as killer whales and sperm whales are vocal animal and used echolocation to forage (Norris 

1968, Barrett-Lennard et al. 1996, Madsen et al. 2002, Miller et al. 2004, Watwood et al. 2006, 

Zimmer 2011). Thus, the combination of hydrophones (section 3) and accelerometers (section 

2) on longline would enable to have a better covering of interaction when fishing boats are not 

around the longlines and to estimate the soaking depredation rates. 

Despite the small number of individuals equipped, the short duration of loggers 

deployed on killer whales and low data resolution, results from this study demonstrate that 

animal-borne biologging techniques are determinant in understanding the underwater 

dimension of the depredation conflict. Additional deployments of loggers with longer lifespan 

and better resolution, on both killer and sperm whales, would help further characterisation of 

the depredation behaviour of these species underwater. For instance, with a higher spatio-

temporal resolution of tracking data, we should be able to characterise the time and the distance 

at which odontocetes detect and make the decision to head towards fishing activities (Collet et 
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al. 2015). By recording tracking data over extended periods of time, bio-logging may provide 

insights on where these odontocetes naturally forage in absence of vessels. For killer whales, 

although they can be seasonally observed from the Crozet islands while foraging on penguins 

or pinnipeds (Guinet 1991, Guinet and Bouvier 1995, Tixier 2012, Guinet et al. 2015) they may 

feed on other prey items which are yet to be determined. As for sperm whales it would allow to 

confirm their fidelity to some foraging grounds as suggested from photo-identification (Labadie 

et al. 2015, 2018) and to assess whether they are preferentially distributed on spots of high 

toothfish density. As sperm whale is a migratory species, long duration tracking would help to 

identify breeding sites, which remains unknown to date. Combined to satellite tracking, depth 

recorders are essential to assess the use of the water column by these predators, either while 

depredating or while foraging naturally. Similarly to killer whales around Crozet (section 4.3), 

it would be important to describe whether sperm whales could perform depredation both near 

the surface and close to the bottom, such as observed on sperm whales depredating on halibut 

fisheries in Alaska (Mathias et al. 2012). Loggers on sperm whales could also add some 

complementary description to the sea-floor depredation and may quantify the recurrence of this 

behaviour for an equipped individual. Although we have been able to observe some natural 

diving behaviour for an equipped killer whale, the amount of data available during times when 

there was no fishing activity was not sufficient to investigate natural foraging behaviours. We 

also did not dispose of a bathymetric dataset precise enough to assess whether the whales forage 

on the seafloor. This aspect is also of great interest since dives in different layers strongly 

suggest that individuals forage on different prey types. Further investigation would also require 

deploying new generations of loggers processing on-board acceleration on both species (section 

4.2). Information on prey catch attempts is crucial to accurately determine where the 

odontocetes focus their foraging strategies and would allow comparing foraging efficiency 

between natural and depredating behaviours. Estimation of prey catch attempts would enable 

to quantify the number of fish remove at an individual scale, similarly to the use of buzzes of 

echolocation in Alaska to quantify depredation rates (Thode et al. 2014, 2015).Investigation of 

the natural foraging behaviour may also highlight how these species found their food and on 

which prey they naturally forage. In a further extent, knowing whether these predators forage 

on Patagonian toothfish naturally and how much this prey represent in their diet proportion 

would allow a quantification of the impact of depredation on fish stocks. On-board 

accelerometers could also transmit some proxies of swimming effort (Cox et al. 2018). As 

observed with southern elephant seals, such proxies could directly be correlated with body 
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condition (Richard et al. 2014, 2016). Although depredation has been described to have benefits 

on killer whales reproduction (Tixier et al. 2015a), such loggers may quantify differences of 

foraging costs at an individual scale between natural and depredation behaviours. Altogether, 

these investigations may bring then crucial information on the influence of depredation on 

odontocetes behaviours.  
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A clear identification of the actors involved in a conflict is necessary to achieve the correct 

management (Treves et al. 2006, Young et al. 2010, Colyvan et al. 2011, Redpath et al. 2013, 

2015). Within fisheries depredation conflicts, the actors are mostly described between the 

“depredating species” and the “depredated fishery”. The “fishery” gathers “fishermen” and their 

“fishing gear” as the interaction is commonly observed when fishermen recover their fishing 

gear. Although depredation is known to occur during soaking time on pelagic longlines (Dalla 

Rosa and Secchi 2007, Forney et al. 2011, Rabearisoa et al. 2012, Passadore et al. 2015, Thode 

et al. 2016), the distinction between longlines and fishermen has never been clearly expressed. 

Indeed, “interactions” for demersal longline fisheries have been assumed to primarily occur 

during hauling phases when animals are visually observed from the vessels (Mathias et al. 2012, 

Tixier 2012, Werner et al. 2015). The underwater dimension of the conflict has then never been 

clearly investigated. Thus, questions such as when, where and how odontocetes interact with 

demersal longlines remain unclear. These gaps of knowledge have raised uncertainties both on 

the estimation of depredation rates and on the way to find suitable mitigation measures.  

The purpose of this thesis was to bring new insights on the depredation conflict with a 

finer definition of the actors involved in the “fishery-odontocetes” interaction. In this thesis, the 

distinction was made for the interactions between the three actors: fishermen, fishing gears and 

odontocetes. This categorisation of entities allowed assessing individual behavioural ecology 

for both fishermen and odontocetes, which has also been sparsely explored. From this approach 

I aimed at bringing new insights on these competition/ interactions between these actors. In this 

discussion I will outline in which extent this thesis answered some of these questions using the 

study case of the Patagonian toothfish longline fishery around French Sub Antarctic islands. 

Although some gaps are filled, new ones open up. As a result this discussion ends with new 

perspectives on the depredation issue. 
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5.1. HOW TO EXPLAIN INTER-CAPTAINS VARIABILITIES OF 

INTERACTION RATES? 

Within the purpose to monitor the perceptions of conflicts as well as the behaviours of 

the involved actors (Treves et al. 2006, Redpath et al. 2013, Blackwell et al. 2016), the use of 

human behavioural ecology (Nettle et al. 2013) can bring new highlights on the relationships 

between “fishermen-odontocetes” and “fishermen-fishing gear”. This approach aims at 

assessing whether fishermen behaviours may influence the probability of interaction with 

predators based upon the optimal foraging theory (McCay 1978, Pyke 1984, Nettle et al. 2013). 

As other foragers, fishermen behaviour could be assessed through their exploration and 

exploitation of resources, or through finer scale with their navigation behaviour, i.e. the use of 

their fishing vessels, to avoid detectability. As captains are the decision-makers, variations of 

their behaviour may explain part of the between-captains observed variability in interaction 

rates with odontocetes highlighted on Figure 2-1. Firstly, I showed in Chapter 2 that although 

all captains behave like optimal foragers, they have different fulfilment of a fishing success and 

they perceive the competition differently. As such, a captain being less sensitive to depredation, 

i.e. with a lower probability to leave a patch or with a higher probability to haul the following 

closest longlines in presence of odontocetes, would consequently show higher interaction rates. 

Secondly, as I introduced in Chapter 3, captains frequently manoeuvring vessels and 

decelerating roughly may increase their acoustic detectability by odontocetes, suggesting then 

an increase of their interaction rate. A change in this behaviour, i.e. hiding the fishing activity, 

would be akin to stealth behaviour or camouflage. 

Altogether, these results suggest that the behaviour of captains is likely to be an 

important driver of their probability to interact with odontocetes. More broadly, these results 

emphasize the importance of human behavioural ecology approaches in studies addressing 

human-wildlife conflicts (Treves et al. 2006, Redpath et al. 2013, Blackwell et al. 2016). These 

new insights would be useful to further optimize fishermen behaviour to reduce depredation as 

they could be combined to other aspects of captains’ behaviour (e.g. operational variables) to 

develop effective and easy-to-implement mitigation strategies. Besides, since the optimal 

foraging theory is an ecological method derived from economy fields, I suggest using such 

human behavioural ecology approach to assess the socio-economic impacts of the conflict. 

Quantifying the economic impact of depredation on fisheries and modelling the various costs 



5. DISCUSSION 

 

142 

 

generated by this conflict would allow determining better ways to optimise fishing success 

while minimising the risk of interaction with odontocetes. Further studies on the fishing success 

optimisation should also include the level of experience of captains. As an analogy to a juvenile 

forager naïve towards its environment, we may consider that captains fishing for the first time 

have to learn how to find fish stocks and how to face depredation. However, most of captains 

when commanding during their first trip have already some experience as chief officer and have 

learned for former captains. As such, increased experience and apprenticeship with experienced 

captains is expected to result in changes in the fishing strategy to minimize depredation and 

optimise fishing success. The variables composing this improved strategy should be therefore 

identified. In addition, increased experience may also improve the captains’ manoeuvrability of 

their vessel. Differences of detectability according to different way captains use the vessel’s 

acoustics should also receive further attention to confirm such hypothesis.  

While the identification of optimal fishing strategies and stealthier navigation behaviour 

would be critical for mitigation measures to be developed, odontocetes may potentially learn to 

overcome these strategies and hence maintain a competitive pressure on captains. As such, 

systems providing captains with real-time information about the presence of odontocetes would 

allow them to adjust their fishing strategy accordingly. The example of odontocetes acoustics 

exposed in Chapter 3, revealed the interest of PAM to provide presence information around the 

buoy prior to hauling. This measures would require to implement an automatic detector (e.g. 

Deteclic, see summary in Appendix 2) with a real-time processing on hydrophones (e.g. 

PAMGUARD cf Gillespie et al. (2009), in the Soundtraps) and to transmit predators’ presence 

information around the longline via VHF, satellite or mobile phone signals (Van Parijs et al. 

2009). Another approach would consist to use a towed array from the fishing vessel to detect 

the presence of odontocete (Thode 2004, Weir and Dolman 2007, Van Parijs et al. 2009, Yack 

et al. 2013), before starting to set new longlines. Whatever the chosen technology solution, a 

real-time PAM should give captains one step ahead of their competitors. Inspired by the work 

conducted in this thesis, a fishing company has bought a towed hydrophone and will make the 

first trials during the fishing season 2018-2019.  

 

 



5. DISCUSSION 

 

143 

 

5.2. WHEN, WHERE AND HOW DO INTERACTIONS OCCUR? 

Until now, depredation on demersal longlines was assumed to only occur during the 

hauling (Hucke-Gaete et al. 2004, Gilman et al. 2006, Read 2008, Mathias et al. 2012, 

Rabearisoa et al. 2012, Söffker et al. 2015, Guinet et al. 2015, Passadore et al. 2015, Tixier et 

al. 2015c, Werner et al. 2015). Additionally, how odontocetes detect longliners and fishing 

activity has only been investigated on sperm whales in Alaska and with focus limited on 

acoustic cues produced during hauling activity (Thode et al. 2007, 2015). In Chapter 4, I showed 

that both killer whales and sperm whales depredate on longline while soaking on the seafloor. 

This brings new insights on the capacity of odontocetes to interact with longlines at depth. The 

results also suggest that sperm whales take the longline into their mouth, rake it to unhook and 

then catch toothfish as depicted in Alaska (Mathias et al. 2013). However, the ‘deep’ 

depredation behaviour occurring on hauling longlines described by Mathias et al. (2013) might 

also depict some seafloor depredation. These findings also indicate that odontocetes can localise 

fishing activity long before the hauling, and more precisely where the longlines are being 

deployed at sea. Through the preliminary acoustic analyses in Chapter 3, I observed that 

odontocetes are likely to know when a longline is being deployed, as vessels produce specific 

acoustic cues during the setting operation. Further investigation are required to accurately 

estimate the distance at which these cues propagate, and whether they propagate on a broader 

range than the cues produced during hauling. For now, I can only speculate that odontocetes 

may be able to detect the vessel within a 7-35 km range, and then through acoustic signature of 

the setting operation they may understand when a longline is deployed.  
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These results strongly suggest that mitigation devices should protect the fish caught on 

hooks not only during hauling but also during the whole soaking time. As such, a first 

experimental deployment of fish protective devices was conducted during my second field trip 

(2017-2018). The devices were designed by the industrial supplier SATIM to protect individual 

hooks from odontocetes while allowing the toothfish to enter in the tube and grab the bait 

(Figure 5-1). Forty six devices were deployed over 36 sections of longlines i.e. 1 to 2 devices 

per section of 750 hooks. The toothfish had then a choice between easy accessible free hooks 

and a protected hook harder to access, thus the likelihood of toothfish to enter in the device was 

assumed to be almost null. A second test was, therefore, conducted with a small section of 15 

hooks all equipped with this systems. However, the deployment went wrong and fishermen had 

to cut the longlines after the 10th systems dropped off the boat. Because of safety, the experiment 

was not conducted again. No catch occurred on hooks equipped with the device over 56 

deployments. Based on the capture rates obtained with the accelerometers during the same trip 

(circa 4%), one would assume that 2 toothfish should have been caught over the 56 hooks 

equipped with the device. A possible explanation of the failure of the test could be that toothfish 

do not seem to be able to swim backwards (fishery observers and personal observations from 

fish alive in tagging tank), they are less likely to enter in a tube without possible exit.  

Deployments of these devices proved to be challenging and imposed security concerns 

at sea. The main issue is that the fishing vessels are optimised for one kind of fishing practice. 

It is then not possible to modify techniques on-board. One solution could be to change the 

fishing practice and to switch to fish traps. Although this solution would solve the depredation 

issue, a preliminary trial performed as part of the ORCASAV program in 2010 revealed that 

none of the 12 fish trap models tested allowed a fishing success high enough to be economically 

sustainable (captains and Guinet personal communications, and see (Bavouzet et al. 2011, 

Gasco 2013).  
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Figure 5-1 – Pictures of the protection device deployed during my second field work. a) device close 

with its attach system; b) system open with the position of the hook baited; c) system set on the longline 

and ready to be deployed by the window from which longline is dropped off; d) system dropped off the 

window at the rear side of the longliners during the setting; d) system being hauled at the bunker. 

 

Because of these difficulties, further investigation should assess whether the impact of 

sea-floor depredation is negligible compared to the hauling depredation. Within this 

assumption, mitigation devices protecting the hooks during the hauling only such as the 

‘Cachalotera’, a floating net sleeves sliding down over individual caught fish when the longline 

is hauled to protect it from depredating whales (Hucke-Gaete et al. 2004, Moreno et al. 2008) 

or the SAGO, a catching pod going down the longline to collect the fish (Arangio 2012), could 

be enough to reduce the loss in default of deleting depredation. First insights highlighted in the 

Chapter 4 suggest that seafloor depredation might occur more sporadically for killer whales 

than sperm whales, but this needs to be accurately quantified. Results obtained from loggers on 

killer whales, on Figure 4-8, paired with the recording of this species presented on  
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Figure 3-4, suggested that they are more likely to wait for the longline being hauled to 

start depredating. For sperm whales, the three events observed on the equipped hooks seem 

noticeable compared to the deployment effort. Besides, depredation behaviour while the line 

was soaking on the seafloor was suggested in a previous study analysing the PECHKER dataset 

and described in Appendix 4 (Janc et al. 2018). In absence of sperm whales at hauling absolute 

catch per unit effort (CPUE) increases with increasing soaking time. This correlation decreased 

with an increasing number of sperm whales present during hauling. When more than 5 sperm 

whales were present, the CPUE decreased with increasing fishing time (Janc et al. 2018). This 

change in the relationship was interpreted as an indication that sperm whales may depredate 

toothfish from longline at the bottom while the line was fishing and the higher the number of 

sperm whales the greater the number of fish removed during soaking (Janc et al. 2018). The 

quantification of this depredation on the seafloor would then require deeper investigation. 

Within this purpose bio-logging on odontocetes should allow comparing number of depredation 

events between soaking time and hauling time through an individual perception. Indeed, the 

bio-loggers deployed on killer whales revealed both depredation behaviours during hauling and 

during soaking (Chapter 4), thus with an increased dataset it may be possible to compare the 

number of dives during the hauling as observed on Figure 4-7with the number foraging dives 

on soaking longlines as on Figure 4-8. Thus, increasing the bio-logging efforts on both species 

should allow assessing at an individual scale whether the impact of sea-floor depredation is 

negligible compared to the hauling depredation. Additionally, using clicks as acoustic proxies 

of depredation behaviour a PAM approach could specify depredation rates during interactions 

between soaking and hauling (Thode et al. 2014). 

Considering fishermen and the fishing gear as separate entities, I provided preliminary 

insights on fishermen detectability and longline depredation on the seafloor but I did not 

consider how odontocetes may detect the fishing gear. Although future research efforts should 

focus on vessels detectability and how to make them stealthier, further investigation should also 

assess detectability of the longlines. Knowing how odontocetes find and see the longline could 

lead to new countermeasures, such as passive acoustic deterrent to reduce depredation by 

repelling or by masking the longline. For instance, a deterrent supposed to simulate a swim 

bladder of a rockfish (Sebastes spp.), species not consumed by sperm whales in Alaska, was 

tested on longlines targeting halibut (O’Connell et al. 2015). Although the results have not been 

very conclusive yet (O’Connell et al. 2015), such approach might be replicated on Patagonian 
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toothfish fisheries. Indeed, similarly to Alaska sperm whales also avoid to depredate a species 

with a swim bladder, the grenadiers (Macrourus spp.), whereas toothfish are deprived of one. 

Additionally, other repelling aspect might be tested, such as deterrent simulating a heap of 

hooks which seems to hinder odontocetes to depredate (fishermen personal communication). 

Further investigation could assess the acoustic target strength of longline to bring important 

insights on how longline could be perceived through odontocetes’ echolocation. However, a 

good understanding of how odontocetes see through their biosonar would be essential to 

determine whether such mitigation approach is assessable. 

 

5.3. ECOLOGICAL IMPLICATIONS  

The fishermen optimal foraging behaviour paired with the seafloor depredation 

behaviour of odontocetes strongly suggest that depredation is underestimated. The amount of 

fish depredated by odontocetes is currently estimated from the difference of the catch per unit 

effort, i.e. the quantity of fish caught per hook (CPUE in g.hook-1), between longlines in absence 

of competition and longlines on presence of odontocetes within a fine spatial scale (Gasco et 

al. 2015). This method is based upon the assumption that the longlines hauled without 

odontocetes gave a baseline of the natural resource abundance. However, some depredation 

events may be not accounted for, since whales can interact with the longline soaking on the 

seafloor when the vessel is away from the gear, and therefore when no visual observation effort 

is made. Additionally, captains are more likely to keep fishing in presence of whales if the 

success is high. This type of decision may lead to large numbers of longlines hauled in presence 

of whales with high CPUEs compared to longlines without competition showing lower fishing 

success which may generate a bias in depredation estimations.  

Further assessment of depredation rates should take into consideration the consequence 

of captains’ decision to stay on a patch in presence of odontocetes. However, such consideration 

would be difficult to quantify. Conversely using a PAM, as previously described, should allow 

refining the number of depredation events during the whole fishing process (Thode et al. 2014). 

Within this purpose, the long-term acoustic monitoring set on the whole French and Australian 

fleets could provide an effective dataset. Besides, PAM will allow the estimation of odontocetes 

arrival time on longline. From the intensities of received sounds produced by odontocetes 
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compared to sound emission levels of these species, a transmission model loss should allow a 

range estimation of the source production. Additionally, displacements of predators could be 

modelled based upon their swimming speed and the hypothesis that they may head straight to 

the longline once this one is fishing, to estimate where odontocetes were prior to line setting. 

These spatial models should bring insights upon the natural distribution of predators yet poorly 

known. Although some insights on both species spatial distribution have been brought thanks 

to photo-identification (Tixier et al. 2014, Labadie et al. 2018). Additionally, a recent analysis 

underlined large spatio-temporal variations of sperm whale–vessels interaction levels with 

French and Australian commercial Patagonian toothfish on the Kerguelen Plateau, as detailed 

in Appendix 5 (Tixier et al. submitted in CCAMLR Sc). The observed spatial gradient of 

interaction rates raised the question whether this reflect a natural variation in sperm whale 

distribution through the Kerguelen Plateau or if this behaviour has been learned by ease in some 

the north and likely transmitted across individuals of populations through social pathways 

(Schakner et al. 2014). Investigation of the spatial factors influencing odontocetes’ distribution 

paired with the understanding of the social behaviour transmission are essential to better predict 

the occurrence of interactions to implement effective strategies of avoidance in the future. 

However, it is important to keep in mind that odontocetes distribution is slightly skewed by 

observation efforts made from longliners when interactions occur. It is then difficult to clearly 

determine whether the presence in this area is because of the fishing activity or because of the 

resource abundance. Therefore, causality between the fishing success and the interaction rates 

might be difficult to understand, as a good fishing success may occur where individuals 

naturally forage or could attract depredating species. Within this purpose a PAM approach, such 

as a multi-month monitoring of acoustic occurrence of cetaceans using an acoustic recording 

station could be used to assess the importance of fishing grounds for natural foraging of sperm 

whales and killer whales in absence of any fishing activity. One limitation to use a stationary 

hydrophone is to monitor one spot and to confound individuals using it. An individual 

monitoring is therefore essential to precise the habitat use at a finer scale. Bio-logging is then 

an interesting tool to follow where odontocetes focus their natural foraging effort. Thus further 

efforts should be increased to deploy loggers, and especially the model with PCA estimation 

processing on-board described in Chapter 4. Additionally, a comparison between foraging 

effort and the habitat exploration should highlight cues on the natural diet of these predators, in 

particular whether toothfish is a natural prey remained unclear. However, an increasing number 

of cues strongly suggest that both species naturally forage on Patagonian toothfish. Sperm 
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whales has been described to naturally feed on toothfish obtained from stomachs contents of 

harpooned sperm whales (Abe and Iwami 1989). As for killer whales, results from this study 

showing that individuals equipped with loggers dive to the seafloor at 300 m depth in absence 

of longlines suggest that they naturally forage on toothfish (Chapter 4). Additionally, an 

isotopic analysis has been assessed by Tixier et al. (submitted) revealing that Patagonian 

toothfish is likely a natural prey item in the diet of killer whales at Crozet. There is not so much 

doubt left about Patagonian toothfish being a natural diet of both predators. Nevertheless, the 

question is therefore to estimate the importance of the toothfish in these species’ diet to assess 

whether depredation behaviour may impact the fish stock if it added a supplementary predatory 

pressure on the toothfish population compared to their natural consumption. 

Furthermore, a finer-scale analysis using bio-loggers paired with movement data of 

vessels would allow to assess the extent at which odontocetes modify their natural behaviour in 

response to fishing operations. More specifically, it is still unknown whether depredation 

behaviour is an opportunistic behaviour, i.e. odontocetes interact with longlines when their 

distribution spatio-temporally overlaps with that of the fishing operations, or an active 

behaviour, i.e. odontocetes follow fishing vessels, or a combination of both. To highlight 

whether interactions result from opportunistic or active behaviour, a preliminary meta-analysis 

was conducted between the different Patagonian toothfish fisheries of the Southern Ocean in 

order to better understand the spatio-temporal variations of interaction rates, as described in 

Appendix 6 (Tixier et al. submitted in Scientific Report). Besides, the preference towards an 

opportunistic or an active behaviour should be driven by the most optimal depredation strategy. 

Although depredation behaviour is energetically more rewarding than a natural behaviour 

(Tixier et al. 2015a), at some points the efforts to pursue fishing vessels might be higher than 

to forage naturally. Assuming that behaviours may evolve to become more active than 

opportunistic, it would raise the question on these predators’ ecosystem health and their 

capacity to find their resource, urging the necessity of a well-managed fishery leaving sufficient 

fish resources for their natural predators. In that case the long term monitoring of demographic 

performances, in particular calving rate and early survival of killer whales, along the body 

condition monitored through drone aerial picture of both sperm whales and killer whales may 

reveal if both of these natural predators of Patagonian toothfish are under nutritional stress or 

not.  
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5.4. CONCLUSION AND PERSPECTIVES 

The behavioural ecology approaches of fishermen and odontocetes assessed in this 

thesis filled gaps in our understanding of the depredation conflicts on demersal longline 

fisheries. Results may be extrapolated beyond the study cases of Crozet and Kerguelen, and 

have implications for other Patagonian toothfish demersal longline fisheries in the Southern 

Ocean, and also for other demersal longline fisheries experiencing depredation in other parts of 

the world. For instance, the findings on the way odontocetes interact with longlines in the 

underwater dimension, with interactions occurring during both hauling and soaking phases, 

may substantially change the way depredation was previously assessed in demersal longline 

fisheries. Other findings from the novel approaches used in this thesis such as passive acoustic 

monitoring, bio-logging and human behavioural ecology brought insights on depredation with 

broad implications, for both other fisheries experiencing this conflict. Although it is impossible 

to generalise the issue across fisheries as different predators are involved within different 

environments, all conflicts have in common the human activity. I therefore strongly suggest 

considering fishermen as actors to be included in ecosystem based studies of depredation in 

addition to fish and odontocete species. These models based upon the optimal foraging 

strategies should account for impacts of depredation on fishermen through socio-economic 

costs. Further studies should also focus on the behaviour of fishermen at fine scales. For 

instance, the analysis of the behavioural factors influencing the acoustic detectability of 

captains, which was introduced here, may help to identify easy-to-implement ways to decrease 

probabilities of interaction with odontocetes. Such analyses will be finalised in a nearby future 

using data from both Australian and French Patagonian toothfish longliners. Additionally, the 

acoustic signatures of vessels will be investigated on the demersal longline fisheries targeting 

the blue-eye trevalla around St Paul and Amsterdam Islands and in Southeast Australia.  

The PAM approach developed in this thesis therefore proved to be a useful tool to 

investigate both human and odontocetes behaviour. To study odontocete behaviour, which 

understanding still needs to be improved for mitigation, conservation and general ecology 

purposes, PAM should be combined with other approaches. For example, using information on 

depredating odontocete individuals, long-term studies can help to identify the mechanisms 

leading predators to switch from natural to depredation behaviour. Although the identification 
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of these mechanisms may constitute an important step to find appropriate mitigation measures, 

as described in Appendixes 5 and 6; it could also help to predict the possibility of depredation 

to develop in other regions and/or fisheries. This might be the case of the Greenlandic halibut 

fishery where fishermen and killer whales foraging activity co-occurrence in space is growing 

with the decrease of the sea-ice range, as detailed in Appendix 7 (Lennert and Richard 2017). 

This forecasting study emphasizes the importance to share the knowledge as a better 

understanding of the conflicts’ mechanisms may also prevent depredation. Thus, collaborative 

work should increase as depicted in Appendixes 5 and 6. Within this purpose OrcaDepred also 

includes the pelagic longline fishery targeting swordfish and tuna around Reunion Island to 

broaden the expertise. 

In a further extent, this thesis revealed the importance to use a behavioural ecology 

approach for both human and wildlife to assess a conservation conflict (Treves et al. 2006, 

Redpath et al. 2013, Blackwell et al. 2016). Assessing the impact of the human impacts on 

wildlife but also the wildlife impacts of human is crucial to tend toward a win-win solution 

(Redpath et al. 2013). Indeed, conservation conflict’s solution should be a situation where both 

parties can coexist with a decrease of the human-wildlife impact (Treves et al. 2006, Redpath 

et al. 2013, Sarrazin and Lecomte 2016). Therefore, this thesis with all collaborative works of 

the OrcaDepred project aim altogether at determining and contributing to the sustainability of 

the longlines fisheries within a depredation context. The goal is to conciliate a cost-effective 

activity for fishermen with the longline, one of the most fish-selective methods available to 

date, while preserving the fish stock and allowing the odontocetes populations to be maintained 

using natural prey resources. A mitigation solution cannot come from a simple and isolated 

measure. The knowledge garnered by scientific studies is crucial to lead in the good direction 

countermeasure research, but the work must be conducted with industrial providers and in 

collaboration with fishermen, fishing companies and the policy makers. 
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Supp. data 1 - Summary of the number of sessions in both EEZs with decision to stay or leave, in absence 

of presence of cetaceans (each species only or both simultaneously). 

  

 

  Crozet  Kerguelen 

Occurrence:  Stay Leave All 

sessions 

 Stay Leave All 

sessions 

Absence of cetacean  108 41 149  1818 312 2130 

Killer whales only  77 38 115  5 1 6 

Sperm whales only  267 162 429  1586 561 2147 

Both species 

simultaneously 

 285 263 548  5 14 19 

All occurrence  737 504 1241  3430 872 4302 
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Supp. data 2 - Akaike Information Criterions of the generalized linear mixed models of the probability 

of captains to leave in relation to the fishing success and the competition for both Crozet and Kerguelen. 

Best AIC are in bold. 

 

Models Crozet Kerguelen 

 df AIC df AIC 

Null 

 

4 1532 4 3889 

Fishing success * competition 

random= Fishing success |captain 

 

11 1501 7 3823 

Fishing success * competition 

random=1|captain 

9 1510 5 3897 

 

Fishing success + competition 

random= Fishing success |captain 

8 1499 6 3822 

 

Null 

 

4 

 

1532 

 

4 

 

3889 
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Supp. data 3 - AICs of the GLMMs of the probability to leave in relation to the fishing success and the 

number of individuals for both Crozet and Kerguelen. Best AIC are in bold. 

 

 

 Crozet Kerguelen 

Models Cetaceans Killer whales  Sperm whales  Sperm whales  

 df AIC df AIC df AIC df AIC 

Fishing success * nb individuals 

random= Fishing success * nb ind |captain 

 

14 965 14 115 14 575 14 2858 

Fishing success * nb individuals 

random= Fishing success + nb ind |captain 

 

10 956 10 103 10 566 10 2852 

Daily weight of toothfish * nb individuals 

random= nb individuals |captain 

 

7 969 7 99 7 562 7 2894 

Fishing success * nb individuals 

random= Fishing success |captain 

 

7 952 7 97 7 566 7 2850 

Fishing success * nb individuals 

random=1|captain 

 

5 969 5 95 5 564 5 2891 

 

Fishing success + nb individuals 

random= Fishing success |captain 

 

6 956 - - - - 6 2849 

Fishing success + nb individuals 

random= nb individuals |captain 

 

- - - - 6 561 - - 

Fishing success + nb individuals 

random=1|captain 

 

- - 4 93 - - - - 

 

Null 

 

2 1073 2 99 2 600 2 3262 
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Supp. data 4 - Spectrograms (left panels) and power spectrum densities (right panels) of 3 Australian 

longliners (Vessel #4 to #6, one vessel per line). The spectrograms were made over 1 min for vessels at 

1 km for the hydrophone, with a colour scale representing the square modulus of the acoustic pressure 

in units of power spectral density (in dB re 1 µPa².Hz-1). The power spectrum (in dB re 1 µPa) were 

assessed through PAM guide with batched file of 3 min for vessels at 1 km of the hydrophone (Merchant 

et al. 2015). 
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Supp. data 5 - Welch’s power spectral densities of the forward, backward and ambient noise estimated 

with PAM Guide.   
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Supp. data 6 - Welch’s power spectral densities (in dB re 1 µPa².Hz-1) of a vessel while setting and 

hauling. During both phases the fishing vessel was at circa 1 km to the hydrophone.  

 

 

Supp. data 7 -Welch’s power spectral densities of the setting and the post setting estimated over 15 s 

each at 45 s from each other, i.e. the setting PSD and post setting PSD were run respectively from 10 to 

25 s and 65 to 80s over the spectrogram on Figure 3-6. 



  SUPPLEMENTARY DATA 

 

173 

 

 

Supp. data 8 - Setting of the accelerometers deployment on the longline. A) picture of the first setting 

(2016-2017). B) picture of the second setting (2017-2018). C) picture of the first setting hanged on the 

longline. D) scheme of the accelerometers attached on the longline with both settings example. 
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Supp. data 9 - Picture of an entangled dead sperm whale (by Gabriel DEVIQUE, fishery controller). 
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Supp. data 10- ARGOS position (left panel) of an ‘interaction during hauling’ with its associate 

dive profile (right panel).   

 

Supp. data 11- ARGOS position (left panel) of an ‘interaction during hauling’ with its associate 

dive profile (right panel).   
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Supp. data 12- ARGOS position (left panel) of an ‘interaction during hauling’ with its associate 

dive profile (right panel).   

 

Supp. data 13- ARGOS position (left panel) of an ‘interaction during hauling’ with its associate 

dive profile (right panel).   
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Supp. data 14- ARGOS position (left panel) of an ‘interaction during hauling’ with its associate 

dive profile (right panel).   

 

 

Supp data 15- ARGOS positions (left panel) within a 3 hour-window of ‘no interaction’ with the 

associate dive profile (right panel).   
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APPENDIX 2 – ABSTRACT DETECLIC 

 

8th DCLDE WORKSHOP 

 

DeteClic: a user-friendly and comprehensive automated click detector to 

monitor odontocetes 

 
Fabio Cassiano1, Juliette Biquet1,2, Angélique Drémeau1, Christophe Guinet2,  

Gaëtan Richard1,2, and Flore Samaran1 

 
1Laboratoire Lab-STICC (UMR 6285, ENSTA Bretagne)  
2Laboratoire UMR CEBC (Chizé)  

 

Passive acoustic monitoring is now intensively used to study cetaceans. Given the growing 

amount of collected data, it is of interest to implement automatic methods to monitor cetaceans’ 

sounds. In that aim, we developed DeteClic, a transparent a nd user-friendly odontocetes click 

detector on Matlab. This detector takes the form of an intuitive interface to analyze pulsed and 

loud acoustic signals. DeteClic can be used along the entire bioacoustics analyzing process, 

from the display of graphic representations to the click detection and their understanding. Our 

detector allows for (i) manual labeling, based on both listening and visualization, and (ii) 

automatic detection. DeteClic includes 4 different automatic click detection approaches: (i) a 

Teager-Kaiser energy operator [1], (ii) an intercorrelation computation with a given reference 

signal, (iii) a spectrogram analysis [2], and (iv) a kurtosis-based statistical detection [3]. 

Combining the results of these 4 methods enhances the automatic detection robustness. To 

assess its performances, we equipped DeteClic with an evaluation tool, relying on automatic 

comparison of manually- and automatically-detected clicks. DeteClic can therefore be used to 

compare the results of the methods (i.e. recall and precision rates [4]) depending on acoustic 

environments and recordings. In addition to the clicks detection and based on how the user 

defines a train of clicks (using criteria in time between clicks and train duration [5]), DeteClic 

enables a presence event analysis. Finally, we provide a series of outputs easily reusable for 

any further statistical or visual analysis. We first tested DeteClic on sperm whale clicks, 

recorded during longline fishing campaigns around the Kerguelen Islands (southern Indian 

Ocean). Considering clicks detected by at least three methods was the most efficient approach 

(average recall of 71±5% and precision of 54±5%). Discriminating click trains allowed for a 

greater precision in detecting echolocation events and an accurate presence event analysis.  

 
[1] S. Madhusudhana, A. Gavrilov, and C. Erbe. Automatic detection of echolocation clicks based on a Gabor 

model of their waveform. J. Acoust. Soc. Am., 137(6) :3077–3086, jun 2015.  

[2] R. P. Morrissey, J. Ward, N. DiMarzio, S. Jarvis, and D. J. Moretti. Passive acoustic detection a 

nd localization of sperm whales (Physeter macrocephalus) in the tongue of the ocean. Appl. Acoust.,  

67(11-12) :1091–1105, 2006.  

[3] C. Gervaise, A. Barazzutti, S. Busson, Y. Simard, and N. Roy. Automatic detection of bioacoustics 

impulses based on kurtosis under weak signal to noise ratio. Appl. Acoust. , 71(11) :1020–1026, 2010.  

[4] Gillespie, D., Caillat, M., Gordon, J., & White, P. (2013). Automatic detection and classification 

of odontocete whistles. The Journal of the Acoustical Society of America, 134(3), 2427-2437.  

[5] Whitehead, H., & Weilgart, L. (1990). Click rates from sperm whales. The Journal of the AcousticalSociety of 

America, 87(4), 1798-1806. 
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APPENDIX 3 – HYDROPHONE PROTOCOL 

 

DEPLOIEMENT D’UN ENREGISTREUR ACOUSTIQUE A PARTIR DES 

PALANGRIERS FRANÇAIS DANS LES ZEE DE CROZET ET KERGUELEN. 

 

Ce protocole a été réalisé par Gaëtan RICHARD, doctorant au CEBC (UMR CNRS – Université La Rochelle) et 

à l’ENSTA Bretagne (Brest) sous la direction de Dr. Christophe GUINET (CEBC, UMR CNRS – Université La 

Rochelle) et Dr. Julien BONNEL (Woods Hole Oceanographic Institution, USA) et en collaboration avec Dr. Paul 

TIXIER (Deakin University, Melbourne, Australia). 

Pourquoi récolter des données acoustiques ? 

 

Le projet ORCADEPRED mené par Dr. Christophe GUINET (CEBC, UMR CNRS – Université La Rochelle) vise 

à mieux comprendre le phénomène de déprédation réalisé par deux espèces de cétacés (les orques et les cachalots) 

sur la pêcherie à la légine dans les ZEE de Crozet et Kerguelen. Ces interactions entraînent de nombreux 

problèmes, aussi bien socio-économiques qu’écologiques. L’objectif à long terme est donc de trouver des solutions 

pour réduire voire empêcher la déprédation. 

Jusqu’à présent les études du projet ont été réalisées sur les données de pêche et les observations de surface 

réalisées par les COPECs. Ces informations ont permis d’apporter de nombreuses réponses sur la quantification 

du phénomène et du suivi des populations de cétacés. Cependant une dimension reste mal connue : le 

comportement sub-surface. Or il est difficile « d’observer » ce qu’on ne peut voir, c’est pour cela que le projet a 

mis en place une étude acoustique. Le but est donc d’équiper les palangres avec des hydrophones. 

Les orques et cachalots sont des mammifères qui produisent de nombreux sons, que ça soit pour communiquer ou 

pour chasser. En effet ces animaux évoluent dans un milieu où la lumière est rare et donc ils utilisent l’écholocation 

(principe du sonar) pour rechercher leur nourriture. En déployant des hydrophones (i.e. des microphones sous-

marins) sur les palangres, il est possible de surveiller la présence des cétacés autour des lignes même en absence 

du navire. De plus, comme indiqué précédemment, l’acoustique est très importante pour ces mammifères marins, 

c’est donc essentiellement de cette manière qu’ils repèrent les navires. Il est donc important d’enregistrer les 

palangriers pour quantifier et qualifier leur signature acoustique et d’évaluer si les différents bruits générés lors 

des opérations de pêches permettent une détection, et à quelle distance, des navires de pêche par les cétacés.  
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Description de l’enregistreur 

 

Accessoires fournies avec le Soundtrap : 

- 1 bouchon en caoutchouc 

- 1 télécommande waterproof 

- 1 cable USB pour connecter le Soundtrap 

- 1 disque dur externe LACIE 

 

Données à collecter 

Avant tout déploiement créer un dossier sur le disque dur externe dont le nom portera les informations du 

déploiement : 

 A_XXX_ZEE_CAP_NAV_AAMMJJ_PALXXX 

- A = acoustique 

- XXX = le numéro de la manip : 001, 002…020 (toujours avoir 3 chiffres) 

- ZEE = les 3 initiales de la ZEE où le déploiement a lieu 

- CAP = les 3 initiales du capitaine 

- NAV= les 3 initiales du bateau 

- AAMMJJ=année mois et jour de la mise à l’eau 

- PALXXX=numéro de la palangre sur lequel l’hydrophone est mis : PAL001, PAL045, PAL123 (toujours 

avoir 3 chiffres) 

 

Dans ce dossier vous viendrez ensuite : 

- enregistrer une impression écran des configurations (cf section configuration), et renommer 

l’image : « A_XXX_ZEE_CAP_NAV_AAMMJJ_PALXXX_config » 

- enregistrer la fiche déploiement, et renommer le doc word : 

« A_XXX_ZEE_CAP_NAV_AAMMDD_PALXXX »  

- enregistrer les données acoustiques après le déploiement. 
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Mise à l’eau  

Il est important pour nous de bien connaître la position de l’hydrophone pour ensuite connaître les distances navire-

hydrophone lors des analyses acoustiques.  

Les conditions météos et océanographiques sont aussi importantes car cela représente une part majeure du paysage 

sonore (i.e. du bruit ambiant sous-marin). Ces informations sont à compléter dans la fiche de déploiement. 

Pour la présence/absence des cétacés bien souvent vous ne les aurez pas puisque la nuit il n’y a pas d’observation 

de nuit, mais dans certains cas leur présence peut être noté, sinon indiquer ‘non obs’. 

 

Récupération 

Les mêmes informations que la mise à l’eau sont nécessaires. L’observation des cétacés est ici très importante. 

Bien remplir la fiche de déploiement. 

/!\ En cas de présence d’orque : un effort important de PHOTO-IDENTIFICATION est nécessaire. 

La photo-identification couplée aux enregistrements acoustique nous permettront d’établir sur du long terme le 

répertoire acoustique des orques de Crozet. Ne pas mettre les photos sur le disque dur destiné pour l’acoustique, 

suivre le protocole normal de photo-identification. 

 

Evènements acoustiques 

Une part importante de notre étude consiste à déterminer des signaux acoustiques susceptibles d’attirer les cétacés. 

Pour cela veuillez noter tous les évènements de manœuvre du bateau lorsque l’hydrophone est à l’eau. 

Nous considérons comme manœuvres avant tout la croche d’une bouée lors du virage d’une palangre, veuillez 

noter l’heure et minute de l’arrivée du navire sur la bouée et indiquer « Croche palXXX », cette information 

est différente du début de palangre trouvé dans le CP (=1er hameçon à bord). Aussi veuillez indiquer des 

changements de conduite du capitaine tels que des demi-tours ou encore marche arrière (=signaux acoustique 

forts). Tout bruit inhabituel entendu à bord est également un évènement important à noter, même si l'origine est 

inconnue. Veuillez noter aussi les rencontres avec d’autres espèces de cétacés que les orques et les cachalots, afin 

de récolter les sons qu’ils produisent.  

/!\ La fiche de déploiement sera plus facilement rempli par les officiers. Veuillez imprimer une version 

papier à mettre en passerelle et après chaque déploiement, lors du téléchargement de données, remplissez 

la version numérique à enregistrer dans le dossier du déploiement. 
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Configuration de l’enregistreur 

La configuration nécessite le logiciel SoundTrap Host présent sur votre disque dur fourni. 

 

Installation de SoundTrap Host sur votre PC 

Ne pas brancher le Soundtrap sur votre ordinateur. Lancer l’exécutable : « SoundTrapHostinstaller». 

Une fois installé, lancez le logiciel SoundTrap Host. 

 

Connecter le SoundTrap au PC 

Connecter le Soundtrap à l’ordinateur avec le câble USB fourni, l’appareil va alors apparaître dans la liste du 

logiciel après quelques minutes (Figure 1). Le sélectionner en cliquant dessus. 

 

 

Figure 1 : Liste des appareils 

 

Control du statut du Soundtrap 

Vous pouvez vérifier l’état de la batterie, de la mémoire ou encore de l’heure de l’appareil (synchronisé à celle de 

l’ordinateur) dans l’onglet ‘Status’ (Figure 2). Avant un déploiement faites en sorte que la mémoire soit vide et la 

batterie pleine. 
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Figure 2 : Fenêtre de contrôle pour le déploiement 

 

 

Configuration de l’enregistreur 

Sélectionner l’onglet ‘Deploy’ comme montré dans la Figure 2. Configurer l’enregistreur comme indiqué ci-

dessous: 

 

Paramètres Configuration requise Commentaires 

Recording Starts 

Cocher Manually using the IR remote 

control 

Ou Cocher ‘At time’ et indiquer l’heure de 

démarrage souhaité 

Attention ! l’heure doit être la même que 

celle du navire 

Choisissez le mode de démarrage que 

vous souhaitez, idéalement il faut que 

l’hydrophone démarre un peu avant 

son entrée dans l’eau 

Voir avec les marins pour la 

télécommande ou avec le capitaine 

pour l’heure de mise à l’eau. 

Recording Schedule 
Décocher “Periodic Recording” 

 

Permets de sélectionner un 

enregistrement cyclique ou continu. 

Audio Options   

 Preamp Gain Cocher: HIGH  

 High pass filter. Cocher: OFF  

 Sample Rate Cocher: 96 kHz  
Cette configuration permet de couvrir 

les bandes de fréquences des sons 
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émis par les orques et les cachalots. 

 Detector 

Cocher: HF Click 

Click on ‘Configure…’ 

Select: Threshold 12 dB 

Integration time: 10 000 µs 

Blanking time: 65 000 µs 

Store Snippets: leave as it is 

Détecteur automatique de clics 

d’écholocation des cétacés  

 Ancillary sensor 
Cocher: Temperature et Pressure 

Log once every: 10 s 

Si vous avez ces possibilités, sinon 

cocher ce que vous pouvez. 

 

 Une fois les paramètres réglés, cliquez sur le bouton : ‘Deploy’ et l’hydrophone est 

prêt, débranchez et mettez le bouchon prévu pour (cf encadré ci-dessous). 

 Si vous avez besoin de faire un changement ou vérifier les paramètres il vous suffit 

de reconnecter l’appareil et de recommencer. 

/!\ Ne pas oublier de faire un imprimer écran de la fenêtre de control (Fig2) et remplir la section de la fiche 

déploiement. 

 
Le SoundTrap est fourni 

avec un bouchon en 

caoutchouc qui se branche 

sur l’entrée de l’hydrophone, 

n’oubliez pas de le mettre 

afin de protéger l’appareil et 

pour plus de sureté ajouter 

une bande de scotch/duct 

tape pour bien le maintenir 

connecté !  

Vous pouvez aussi mettre de la 

graisse siliconé pour protéger les 

connectiques.  

 

  

 

Recharge de la batterie 

La batteire du Soundtrap est une batterie Lithium-ion rechargeable. La recharge s’effectue avec le cable USB soit 

sur un ordinateur soit sur une prise acceptant le port USB. Une LED bleue s’allume lorsque le Soundtrap recharge. 

Il faut environ 8h pour recharger entièrement une batterie vide, et la charge s’effectue plus rapidement lorsque le 

Soundtrap n’est pas connecté au logiciel SoundTrap Host. Lorsque la batterie est rechargée, la LED s’éteint. 

 

Déploiement et récupération de l’enregistreur sur une palangre 
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/!\ Ne pas oublier de remplir la fiche déploiement 

Système d’attache 

Pour venir fixer l’hydrophone à l’orin de la palangre il faudra au préalable préparer un système d’accroche sur le 

Soundtrap (Figure 3). Prendre un bout d’orin d’1m de long et de petit diamètre de préférence, mettre 2 

mousquetons aux extrémités enfermés dans des boucles/yeux. Venir fixer l’hydrophone au centre. Sur la Figure 3 

est proposé un système mais si vous pensez à d’autres systèmes plus fiable n’hésitez pas, les marins sont de bon 

conseils. Mais attention, bien maintenir l’hydrophone contre la corde, le plus sûr étant de venir sécuriser l’attache 

avec du duck tape/ scotch, ne pas hésiter à faire plusieurs tours pour bien consolider la fixation.  

Ce système d’attache sera permanent et viendra se fixer/retirer sur l’orin d’une palangre à 100m de profondeur 

sous la bouée (Figure 4). Le plus simple étant de préparer une section d’orin qui sera dédié à l’accroche de 

l’hydrophone et qui viendra en premier en dessous de la bouée. La plupart des navires possèdent des sections de 

200m, mais cela peut varier. Sur ce bout d’orin, préparer des yeux à 100m de profondeur et espacé d’environ 1m 

pour venir fixer l’hydrophone via les mousquetons.  

IMPORTANT: éviter toute liaison metal/metal (e.g. deux mousquetons consécutifs) qui produirait des bruits 

"clic-clic" parasites. 

 

Figure 3 : système permanent d’accroche du soundtrap 
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Figure 4 : insertion du système d’accroche dans l’orin. 

 

Récupération : rincer à l’eau douce le Soundtrap avant d’enlever le capuchon. 

 

 

 

Système d’accroche entre le bout avec 

l’hydrophone et la section d’orin 
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Démarrer et arrêter le Soundtrap 

Les palangres étant déployés de nuit, vous ne serez pas présent, donc soit vous demandez aux marins de démarrer 

l’hydrophone avec la télécommande fournie, soit vous programmez le début d’enregistrement à l’heure prévu de 

la mise à l’eau par le capitaine. 

 

Pour la télécommande, il faut : 

- Appuyer sur ‘START’ pour démarrer l’enregistrement juste avant le déploiement de 

la palangre. 

- Appuyer sur ‘STOP’ une fois l’hydrophone remonté 

- La télécommande est waterproof, mais ne supporte pas une immersion complète. 

- Une fois allumé l’hydrophone se met à clignoter lentement avec une LED verte, 

bien vérifier cela pour un démarrage manuel. 

 

Pour un démarrage programmé, voir avec le capitaine l’heure du début du filage, indiquer dans 

‘Recording starts’ la date et l’heure de démarrage souhaité. Bien vérifier la date qui ne s’actualise pas 

automatiquement. 

  

Pour arrêter l’hydrophone, utiliser la télécommande ou brancher à l’ordinateur. 

 

Où, quand, comment déployer et récupérer le Soundtrap ? 

Déployez l’hydrophone aussi souvent que possible. L’objectif étant d’avoir au moins une dizaine de 

déploiement, soit environ un déploiement par semaine. 

Déployez en particulier pendant le premier filage d’un nouveau secteur. 

Il est préférable de mettre l’hydrophone sur une palangre qui sera remontée en dernière d’une zone ou d’une session 

de virage. Il est du plus grand intérêt d’avoir l’hydrophone le plus longtemps à l’eau afin de pouvoir enregistrer 

le plus de virages possible (moment où il y a déprédation). 

Au niveau de la palangre, il est préférable de mettre l’hydrophone sous la bouée qui sera remontée en second, 

afin d’enregistrer le virage de la palangre équipée. Cependant, si la bouée avec l’hydrophone peut être quelque 

fois remontée en premier cela est aussi intéressant pour enregistrer l’approche du navire. Ainsi essayez d’avoir au 

moins 3 enregistrements avec l’hydrophone remonté avec la première bouée de la palangre équipée.  

 

 

Téléchargement des données de l’enregistreur 
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Lancer le logiciel Soundtrap Host et connecter le disque dur externe sur lequel les fichiers seront téléchargés. Par 

défaut les fichiers seront téléchargés dans un dossier créé automatiquement dans ‘Documents’ qui est nommé 

‘SoundTrap’. Changez la destination par défaut du téléchargement à partir du menu ‘Tools’ pour que le 

téléchargement se fasse directement sur le disque dur externe (ne sera à aire qu’une fois). 

Connecter le soundtrap à l’ordinateur de la même manière que lors de la programmation de l’appareil, et ouvrir 

l’onglet ‘Retrieve’ où vous verrez tous les fichiers créés lors du déploiement (Fig.5)  

Décochez ‘Decompress’ pour que le téléchargement soit plus rapide et moins lourd. Sélectionnez tous les fichiers 

en cliquant sur le premier puis dernier fichier en maintenant la touche shift enfoncée, puis cliquez sur ‘Download’. 

Une fois le téléchargement finit ouvrez le dossier avec les fichiers en cliquant sur ‘open save folder’. Le 

téléchargement a produit des fichiers ‘.sud’ qui sont des fichiers brut. Ce format de compression permet un 

stockage moins lourd et un téléchargement plus rapide. Une fois que vous avez vérifié que le téléchargement s’est 

bien effectué, videz la mémoire du Soundtrap en cliquant sur ‘Delete All’. 

Si vous souhaitez vérifier les sons enregistrés téléchargés quelques fichiers en cochant la case ‘Decompress’ vous 

pouvez lire le fichier ‘.wav’. Utiliser votre lecteur audio classique ou avec le logiciel Audacity qui vous permet de 

visualiser les formes d’ondes et spectrogrammes du fichier. 

 

NB : si vous avez assez de place sur votre ordinateur veuillez faire une copie de sauvegarde des enregistrements 

sur votre ordinateur. 

 

Figure 6 : Fenêtre de téléchargement. 
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Mise à l’eau 

Officier au filage  

Position soundtrap 

sur la palangre filée 

☐ début de la palangre filée  

☐ fin de la palangre filée  

Présence cétacé ☐ abs         ☐ orques         ☐ cachalots         ☐ les 2        ☐ non obs            

COMMENTAIRES                                        

 

Récupération 

Officier au virage  

Rang du virage lors de la 

remontée de l’hydrophone 
 

Date et heure remontée 

Soundtrap 
  

Condition océano 

Etat de la mer :                    

Taille vague :                    

Force du vent :                    

Direction du vent :                    

Météo :                    

Beaufort (0-12) :                    

Présence cétacé ☐ abs           ☐ orques         ☐ cachalots         ☐ les 2        ☐ non obs            

COMMENTAIRES                                        

 

Evènements acoustiques 

Date dd/mm/yy  

        -heure hh :mm 

(remettre la date que si 

elle change) 

Position GPS 

Evènement 

Croche Pal XXX/ Demi-tour/ marche arrière/ 

autre manœuvre/ cétacés (autre que orque et cachalots) 

Mouillage 

Numéro de la palangre  

Profondeur Enregistreur  NB : enregistrer le fichier avec le code  

A_XXX(num manip)_ZEE_CAP_NAV_AAMMJJ(déployé)_PALXXX 

Soundtrap 

____ 

Fiche de déploiement  
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APPENDIX 4 – JANC ET AL. (2018) 
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APPENDIX 5 – TIXIER ET AL. CCAMLR SC 
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APPENDIX 6 – TIXIER ET AL. SCI. REP. 
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APPENDIX 7 – LENNERT AND RICHARD (2017) 

 

  



  APPENDIX 7 

 

260 

 

 

  



  APPENDIX 7 

 

261 

 

 

  



  APPENDIX 7 

 

262 

 

 

  



  APPENDIX 7 

 

263 

 

 

  



  APPENDIX 7 

 

264 

 

 

  



  APPENDIX 7 

 

265 

 

 

  



  APPENDIX 7 

 

266 

 

 

  



  APPENDIX 7 

 

267 

 

 

  



  APPENDIX 7 

 

268 

 

 

 


	Abstract
	Résumé
	Table of contents
	Acknowledgment / Remerciements
	Foreword
	1. General Introduction
	1.1. Conservation conflicts
	1.1.1. Context of conservation conflicts: the Anthropocene
	1.1.2. Definition of the conservation conflicts
	1.1.3. How to solve conservation conflicts?

	1.2. Marine depredation
	1.2.1. Context of marine depredation: fishing activity
	1.2.2. Definition of the marine depredation conflicts
	1.2.3. How to solve the marine depredation conflicts?

	1.3. Context and purpose of the thesis
	1.3.1. Context of the thesis: a gap in fine scale understanding of longlines depredation
	1.3.2. Study case
	1.3.3. Thesis objectives
	1.3.4. Thesis Field effort


	2. Fishermen behavioural ecology
	2.1. Introduction
	2.1.1. What is an operational approach?
	2.1.2. Recommendations on fishing practice to mitigate depredation
	2.1.3. Behavioural ecology of captains

	2.2. Article: Do commercial fisheries display optimal foraging? The case of longline fishers in competition with odontocetes
	2.2.1. Abstract
	2.2.2. Introduction
	2.2.3. Material and methods
	2.2.3.1. Data collection and field sites
	2.2.3.2. Determination of hauling session
	2.2.3.3. Definition of the decision to stay or leave a patch
	2.2.3.4. Modelling captains’ decision to stay: generalized linear mixed model (GLMM)
	2.2.3.5. Description of a fishing success’ threshold for captains’ decision

	2.2.4. Results
	2.2.4.1. Hauling sessions
	2.2.4.2. Definition of the decision to stay or leave a patch
	2.2.4.3. Modelling captains’ decision to stay: generalized linear mixed model (GLMM)
	2.2.4.4. Description of a fishing success’ threshold for captains’ decision

	2.2.5. Discussion
	2.2.5.1. Are fishers optimal foragers?
	2.2.5.2. What may be the consequences of fishers’ optimal strategies on ecosystems?
	2.2.5.3. Conclusion
	2.2.5.4. Acknowledgemnts


	2.3. What interest to assess human behaviour?
	2.3.1. Captains behaviour while exploiting a patch
	2.3.2. Conclusion


	3. Passive Acoustic Monitoring
	3.1. Introduction
	3.1.1. Passive Acoustic monitoring to study depredation
	3.1.2. PAM within the Orcadepred project

	3.2. Protocols and field methods, toward a long term monitoring
	3.2.1. First recordings with an acoustic array
	3.2.2. Long term monitoring

	3.3. A first application: fishery acoustic
	3.3.1. Vessels’ acoustic signatures
	3.3.1.1. Introduction
	3.3.1.2. Methods
	3.3.1.3. Preliminary insights

	3.3.2. Acoustic cues
	3.3.2.1. Introduction
	3.3.2.2. Methods
	3.3.2.3. Preliminary insights


	3.4. Conclusion

	4. Bio-logging
	4.1. Introduction
	4.2. On-board processing acceleration data to assess prey catch attempts
	4.2.1. Introduction
	4.2.2. Methods
	4.2.2.1. Prey catch attempts estimations
	4.2.2.2. Relationship between prey catch attempts and buzzes

	4.2.3. Results
	4.2.3.1. Prey catch attempts estimations
	4.2.3.2. Relationship between prey catch attempts and buzzes

	4.2.4. Discussion

	4.3. Evidence of deep-sea interactions between toothed whales and fishing demersal longlines.
	4.3.1. Abstract
	4.3.2. Introduction
	4.3.3. Methods
	4.3.3.1. Research context
	4.3.3.2. Odontocetes tracking data loggers
	4.3.3.3. Longline accelerometry

	4.3.4. Results
	4.3.4.1. Odontocetes tracking data loggers
	4.3.4.2. Longline accelerometry

	4.3.5. Discussion
	4.3.5.1. Insights into depredation behavior during hauling and soaking phases of longlines
	4.3.5.2. Fisheries management and odontocete conservation implications

	4.3.6. Conclusion
	4.3.7. Acknowledgments

	4.4. Conclusion

	5. Discussion
	2.
	3.
	4.
	5.
	5.1. How to explain inter-captains variabilities of interaction rates?
	5.2. When, where and how do interactions occur?
	5.3. Ecological implications
	5.4. Conclusion and perspectives

	Bibliography
	Supplementary data
	List of Figures
	List of Tables
	List of Equations
	Appendix 1 – Master thesis
	Appendix 2 – Abstract Deteclic
	Appendix 3 – Hydrophone protocol
	Appendix 4 – Janc et al. (2018)
	Appendix 5 – Tixier et al. CCAMLR Sc
	Appendix 6 – Tixier et al. Sci. Rep.
	Appendix 7 – Lennert and Richard (2017)

