
HAL Id: tel-02117727
https://theses.hal.science/tel-02117727

Submitted on 2 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New integrated architectures of sensors interfaces in SOI
technology for very high temperature applications

Emna Chabchoub

To cite this version:
Emna Chabchoub. New integrated architectures of sensors interfaces in SOI technology for very
high temperature applications. Micro and nanotechnologies/Microelectronics. Université Montpellier;
École nationale d’ingénieurs de Sfax (Tunisie), 2018. English. �NNT : 2018MONTS056�. �tel-02117727�

https://theses.hal.science/tel-02117727
https://hal.archives-ouvertes.fr


 

 

 
THÈSE POUR OBTENIR LE GRADE DE DOCTEUR  

DE L’UNIVERSITÉ DE MONTPELLIER 
 

En Systèmes Automatiques et Microélectroniques 

École doctorale Information, Structures, Systèmes 

Unité de recherché Laboratoire d’Informatique, de Robotique et de Microélectronique 
 

En partenariat international avec l’Université de Sfax, Tunisie 
 

 

Présentée par Emna CHABCHOUB 
Le 5 Novembre 2018 

 

Sous la direction de Pascal NOUET 
et Mohamed MASMOUDI  

 

                                                           Devant le jury composé de 
 

Hélène TAP, Professeure, TOULOUSE INP-ENSEEIHT  

Kamel BESBES, Professeur, Université de Monastir  

Pascal NOUET, Professeur, Université de Montpellier 

Mohamed MASMOUDI, Professeur, ENI de Sfax 

Mounir SAMET, Professeur, Université de Sfax  

Franck BADETS, Ingénieur-Chercheur, CEA-LETI  

Frédérick MAILLY, Maître de Conférences, Université de Montpellier  

 

    Rapporteur  

Rapporteur  

Co-directeur  

Co-directeur 

Examinateur  

Examinateur   

Examinateur  

 
 

 

 

NOUVELLES ARCHITECTURES INTEGREES D'INTERFACES CAPTEURS EN 
TECHNOLOGIE SOI, POUR APPLICATIONS TRES HAUTES TEMPERATURES 

 
 



 
 

 

 

 

 

To my parents for believing in me and encouraging me continually … 

To my father Hamadi for making me full of ambition and hope… 

To my mother Ahlem for her endless emotional support and for making me the person who I 
am… 

 

To my brothers Wissem and Walid for their affection and their presence… 

 

To my parents and brother in laws for being always surrounding me… 

 

To my Dear Achraf for being always there for me, for being patient with me, for believing in 
me and for pushing me always up… 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

Acknowledgements 
 

First and foremost, I would like to thank my thesis directors Mr Pascal Nouet and Mr 

Mohamed Masmoudi and my supervisors Franck Badets and Fréderick Mailly. I wish to express my 

gratitude for the quality of their advices. Their perception, their criticism, their thoroughness and their 

rigor have marked me and have allowed me to develop many skills and to keep me always motivated 

to the research.  

 

I also want to thank the members of the jury for their interest in my work: Hélène Tap and 

Kamel Besbes for reviewing the manuscript and for the time they spent on reading the thesis, Mounir 

Samet, Pascal Nouet, Mohamed Masmoudi, Franck Badets and Frederick Mailly for contributing to the 

discussion and evaluation of this work. 

 

I would like to thank Mr François Ayel and the team of CEA test support for their technical 

assistance with the tests and the prototype characterisations. 

 

I cannot conclude without expressing my thanks to my colleagues in the LGECA laboratory for 

their help and friendship and to the staff of the CEA. Thanks to Stéphanie Robinet, for her kind 

welcoming me in the laboratory and for all her support.  

 

I cannot finish without expressing my gratitude to Professor Mohamed Elleuch from ‘Faculty 

of Arts and Human Sciences of Sfax, Tunisia’ for the language verification. 

 

The experience was very rich. 

 

 



 
 

Abstract  

This thesis is related to the field of harsh environment sensor interfaces, particularly high 
temperature environment. In this research, an integrated sensor interface for resistive sensors and 
which is able to operate over a wide operation temperature range is developed.  

The main challenges of high temperature sensor interfaces are the exponential increase in the 
leakage current, and the decrease of both the threshold voltage and carrier mobility which degrade the 
performances of CMOS circuits over temperature variation. 

The proposed sensor interface is a fully differential time-domain architecture. This offers the 
advantage of better thermal stability compared to analog based architectures. This is because time 
domain signals have higher thermal stability than analog signals. The sensor interface converts the 
differential sensor output voltage into a phase shift difference by means of a pair of Injection Locked 
Oscillators (ILOs). The so-obtained phase shift is digitized using a counter as a Time to Digital 
Converter. This approach has the advantage of circumventing the need of thermally stable time and 
voltage references. Indeed, the sensor interface is designed in a way that makes its digital output 
depend only on the ratio of the circuit parameters, leading thus to a high robustness against 
temperature variation. 

The sensor interface has been fabricated using a 0.18µm Partially-Depleted Silicon on Insulator 
technology (PD-SOI) from XFAB which has been chosen for its robustness against temperature 
variations. The fabricated sensor interface achieves a low temperature dependence. Measurements 
show that a thermal variation of 178ppm/°C over ±60mV input full scale and a thermal variation of 
65ppm/°C over ±40mV input full scale is obtained over a wide operation temperature range extended 
from -20°C to 220°C.  

 

Key words— high temperature, injection locked oscillator, partially depleted silicon on 
insulator, differential, phase shifter, time domain  

 

 

 

 

 

 

 

 



Résumé étendu en Français 

Dans le cadre de cette thèse, une interface de capteur haute température est développée 
et fabriquée en technologie silicium-sur-isolant (SOI) pour interfacer des capteurs résistifs 
fonctionnant à très haute température (allant jusqu’à 250°C). L’interface de capteur est située 
au plus proche du capteur.  Par conséquent, elle doit être capable de fonctionner dans un tel 
environnement sévère sans dégradation de ses performances.   

L’interface de capteur est développée pour une application de mesure du courant qui 
circule à l'intérieur des circuits de pilotage de puissance (« power drivers ») contrôlant les 
moteurs électriques. Elle convertit la tension de sortie du capteur de courant en une valeur 
numérique. Le cahier des charges exige un gain de 31LSB/mV sur une pleine échelle d’entrée 
de 66mV et une résolution de 11 bits. 

L’étude de l’état d’art des interfaces de capteurs hautes températures résume les défis à 
relever pour que le circuit développé soit le plus stable thermiquement. Ces défis sont 
principalement les effets de la variation de la température sur les paramètres des technologies 
de fabrication  des circuits intégrés. Ces effets sont essentiellement la décroissance de la 
mobilité des charges µ, la décroissance de la tension seuil Vth du transistor et l’augmentation 
exponentielle des courants de fuite ILeak en fonction  de la température. Signalons que ce 
dernier effet (l’augmentation exponentielle de ILeak) détériore évidement les performances du 
circuit et peut conduite à sa destruction par latch-up.  

Le choix d’une technologie plus robuste aux variations de la température que les 
technologies conventionnelles CMOS BULK est donc le majeur défi à relever. L’étude de 
l’état d’art a montré que la technologie SOI est plus adaptée aux environnements hautes 
températures. Ceci notamment grâce à ses moindres courants de fuite. En effet, grâce à la 
couche d’isolation dans les transistors en technologie SOI et étant donné que la profondeur 
des zones de diffusion drain-source est réduite, la surface des zones de jonction est fortement 
réduite. Cela conduit à une réduction des courants de fuite par rapport aux technologies 
conventionnelles. En outre, ces courants de fuite ont une plus faible sensibilité à la 
température. La tension de seuil Vth des transistors en technologie SOI est plus faible et plus 
stable thermiquement  ce qui permet d’avoir des circuits plus rapides et offre la possibilité de 
baisser la tension d’alimentation sans aucune crainte d’augmentation des courants de fuite. 

Ensuite, différentes techniques de conception sont utilisées pour mieux durcir les 
circuits contre les variations de la température. Ces techniques peuvent être divisées en quatre 
catégories:   

- La première technique s’agit de durcir chaque bloc de l’interface de capteur 
séparément. Les exemples qui peut être cités sont la polarisation des transistors dans leurs 
zone ZTC (« Zero temperature coefficient ») et la technique de conception digitalement 



assistée. Cette première technique conduit à des circuits avec un niveau de complexité élevée, 
une grande consommation et une faible fiabilité particulièrement aux hautes températures. 

- La deuxième technique réside dans l’utilisation des architectures différentielles. Elle 
revient à utiliser, en parallèle avec la chaine de mesure principale, une chaine secondaire. 
Cette dernière est liée à une mesurande fixe et donc ne dépend que de la température de 
fonctionnement. L’utilisation de la même topologie pour la chaine principale et la chaine 
secondaire permet d’avoir la même dépendance thermique. Ainsi, la sortie différentielle du 
circuit, qui correspond aux rapports ou à la différence des sorties des deux chaines, sera 
insensible aux variations de la température. 

- La troisième technique est l’utilisation des architectures bouclées. L’exemple le plus 
répandu est l’architecture delta-sigma (qui est utilisée surtout dans les convertisseurs 
analogiques numériques). La boucle assure la stabilité des performances du circuit. Toutefois, 
cette technique est  limitée par la variation thermique de la fréquence d’échantillonnage et des 
composants mis à l’extérieur de la boucle et par les courants des fuites des « switches » qui 
peuvent devenir rédhibitoires aux hautes températures. 

-La quatrième technique s’agit d’utiliser des architectures dans le domaine temporel. 
Son principe est de faire tout le conditionnement du signal dans le domaine temporel. 
Précisément, la sortie du capteur est convertie en un signal dans le domaine temporel : un 
signal modulé en fréquence, un signal modulé en largeur d’impulsion (Pulse Width 
Modulated signal: PWM) ou un signal modulé en position d’impulsion (Pulse Position 
Modulated signal PPM). Ce signal est ensuite numérisé grâce  un convertisseur temporel-
numérique. 

Les signaux dans le domaine temporel, que l’on peut considérer comme des signaux 
numériques, sont plus stables en température que les signaux analogiques. Par conséquent, 
l’utilisation des interfaces de capteurs dans le domaine temporel aboutit à des circuits avec 
une faible dérive thermique par rapport aux interfaces de capteurs classiques qui ont une 
nature plutôt analogique.   

Notamment, la technique de modulation de largeur d’impulsion (PWM) présente de 
meilleures performances que les autres techniques dans le domaine temporel. En effet, elle 
offre l’avantage d’un codage quasi-numérique de l'information. Par conséquent, les signaux 
PWM sont moins sensibles à la température et au bruit que les signaux modulés en fréquence, 
ce qui permet de maintenir l'intégrité du signal pendant sa transmission. 

Afin de tirer profit de ces avantages, on propose une nouvelle technique PWM qui est 
au cœur de l’interface de capteur haute température. Cette technique est à base des oscillateurs 
verrouillés par injection utilisés comme déphaseurs.   

Les oscillateurs verrouillés par injection sont des oscillateurs particuliers qui ont une 
entrée de synchronisation. Ils sont caractérisés par une plage de synchronisation et une 
fréquence d’oscillation libre f0. Lorsque la fréquence d’entrée de synchronisation (i.e., 



fréquence de synchronisation flock) est dans la plage de synchronisation, les oscillateurs 
verrouillés par injection oscillent à flock ; tandis qu’hors de la plage de synchronisation, ils 
oscillent à leur fréquence libre f0.  La théorie Huntoon and Weiss  montre que dans la plage de 
synchronisation, le déphasage de la sortie de l’oscillateur verrouillé par injection par rapport 
au signal de synchronisation ΦILO est fonction de la différence entre les deux fréquences flock 
et f0.   

Le principe de la nouvelle technique PWM repose sur cette propriété des ILOs. En 
effet, le déphasage généré ΦILO représente la largeur d'impulsion du signal PWM. Il est 
fonction de la différence entre deux fréquences dont l'une est fonction de la tension de sortie 
du capteur.  

Précisément, la tension de sortie de l’interface de capteur est d’abord utilisée pour 
modifier la fréquence d’oscillation libre f0 de l’oscillateur verrouillé par injection tandis que la 
fréquence de synchronisation est fixée à une valeur dans la plage de synchronisation. Ainsi, le 
déphasage de l’oscillateur verrouillé par injection ΦILO est  fonction de f0 uniquement et donc 
fonction de la tension de sortie du capteur. Ce déphasage correspond à la largeur d’impulsion 
d’un signal PWM qui oscille à flock.  

Pour plus de robustesse, une architecture différentielle est adoptée. Grâce à une paire 
d’oscillateurs verrouillés par injection, la sortie différentielle du capteur commande 
simultanément  les fréquences d’oscillation libre  des deux oscillateurs. Cela fait varier leurs 
déphasages symétriquement en fonction de la tension de sortie différentielle du capteur. Cette 
dernière est ainsi convertie en une différence de déphasage qui représente la largeur 
d’impulsion du signal PWM. L’architecture différentielle  permet de s’affranchir de la 
dépendance thermique des fréquences d’oscillations. 

Des oscillateurs verrouillés par injection à relaxation (RILOs) sont choisies pour leur 
meilleure linéarité comparé aux oscillateurs harmoniques,  et ceci afin que l’interface de 
capteur ait une grande plage de linéarité.    

Vu que les oscillateurs verrouillés par injection à relaxation ont une entrée en courant, 
il est nécessaire de convertir la tension de sortie différentielle du capteur en une paire de 
courant afin de pouvoir contrôler les fréquences d’oscillation libre des deux oscillateurs. Un 
amplificateur à transconductance est donc utilisé pour réaliser cette conversion tension-
courant. Vu que cet amplificateur est le premier block de l’interface de capteur, il est 
impératif que celui-ci ait une bonne linéarité: un amplificateur à transconductance dégénéré 
avec rétroaction a été sélectionné.    

Le signal PWM obtenue est ensuite est converti en un signal digital en utilisant un 
convertisseur temporel-digital ; un compteur qui mesure la largeur d’impulsion du signal 
PWM. Le signal digital ainsi obtenu est fonction du signal de sortie du capteur. 

L’horloge de compteur est générée à partir du signal de synchronisation par un 
multiplieur de fréquence: précisément une boucle à verrouillage de phase (PLL: Phase Locked 



Loop). Ce choix a été fait  afin de s’affranchir de la sensibilité thermique de la fréquence de 
synchronisation flock et de la fréquence de comptage fcounter. Néanmoins, un oscillateur de 
référence intermédiaire est utilisé pour réduire le facteur de multiplication de la PLL. Cette 
dernière génère l’horloge du compteur à partir de l’oscillateur de référence,  et le signal de 
synchronisation  est généré à partir de l’oscillateur de référence par un diviseur de fréquence 
purement digital.    

Le développement théorique de l’interface de capteur montre que sa sortie digitale est 
fonction de la différence de déphasage des deux oscillateurs verrouillés par injection et du 
rapport entre les fréquences du compteur et de synchronisation fcounter et flock respectivement. 
D’une part, vu que le signal de synchronisation et l’horloge du compteur sont générés à partir 
du même oscillateur de référence et étant donné que la PLL et le diviseur de fréquence sont 
stables thermiquement, les fréquences flock et fcounter ont la même variation thermique. D’autre 
part, puisque les deux oscillateurs verrouillés par injection ont la même topologie, leurs 
déphasages ont la même dépendance thermique, ainsi leur différence de déphasage n’est pas 
influencée par la variation de la température. Par conséquent, cette architecture aboutit à une 
bonne stabilité thermique. 

L’architecture de l’interface de capteur a été ensuite validée en utilisant un modèle 
comportemental développé en verilog AMS. Ce modèle a été aussi utilisé pour valider le 
choix des valeurs des paramètres de l’interface de capteur pour répondre au cahier des 
charges.  

L’implémentation de l’interface de capteur a été réalisée en considérant 
l’environnement de fonctionnement hautes températures en utilisant la technologie silicium-
sur-isolant partiellement-déplété (PD-SOI) 0,18µm de XFab. Un soin particulier est porté au 
choix de topologie de de l’oscillateur de référence parce elle conditionne la pleine échelle de 
l’interface de capteur. En effet, sa stabilité thermique affecte celle de la fréquence de 
synchronisation qui doit être toujours égale à la  fréquence d’oscillation libre des deux 
oscillateurs verrouillés par injection à tension de sortie de capteur nulle  quel que soit la 
température. Cette dernière affirmation est une condition nécessaire pour aboutir à la pleine 
échelle maximale de la largeur d’impulsion du signal PWM (i.e, Tlock/2). 

Deux astuces de conception sont adoptées pour limiter ax maximum les effets de la 
variation de la température sur l’interface de capteur. Finalement, on obtient une sortie 
numérique de l’interface de capteur qui ne dépend que de la variation des rapports des 
différents paramètres du circuit ayant la même nature ou ayant la même variation thermique. 
Ainsi, une faible dépendance à la température doit être obtenue. 

Cette faible dépendance thermique a été validée par simulation qui montre que, sur 
une plage de température étendue de -40°C à 250°C,  la variation thermique de la sortie 
numérique de l’interface de capteur est inférieur à 34ppm/°C. En outre, les résultats de la 
simulation montrent que l’interface capteur satisfait le cahier des charges : un gain égal à 
30LSB/mV et une résolution de 11 bits sont obtenus. Par ailleurs, une bonne linéarité est 



obtenue par simulation ; un INL (Integral non-linearity) inférieur à ±2% de la pleine échelle 
de sortie, et ceci grâce à l’utilisation des oscillateurs verrouillés par injection à relaxation.  

Un prototype de l’interface de capteur  a été fabriqué en technologie PD-SOI 0,18µm 
comme preuve de concept. L’interface de capteur occupe une surface totale de 1860,1µm par 
1885,9µm et une surface effective 0.21mm2. Le prototype est mis dans un package céramique 
DIL 40. 

Le prototype de l’interface de capteur est caractérisé en utilisant un environnement de 
test Labview pour une acquisition de donnés automatique. Le signal de sortie du capteur est 
généré avec des convertisseurs analogique-numérique. Un conditionneur thermique, 
Thermostream ATS, est utilisé afin de tester le prototype sur une plage de température 
étendue de -20°C to 220°C.  

La caractérisation statique du prototype montre que le circuit a un gain égal à 
30LSB/mV et une résolution de 11 bits sur toute la plage de température. En outre, cette 
caractérisation montre que l’interface de capteur est capable d’interfacer des capteurs avec 
une pleine échelle de ±60mV. Il consomme au maximum 1,53mW, mesurée à 220°C. 

L’interface de capteur fabriquée présente un offset d’entrée maximal égal à -220µV  et 
un offset de sortie maximal égal à 22LSB. L’offset de sortie est dû essentiellement à l’offset 
de l’amplificateur de transconductance et qui est la conséquence du mismatch entre les deux 
miroirs de courant qui génèrent les courants de polarisation de l’amplificateur. 
L’augmentation des dimensions des transistors de ces miroirs de courant a été considéré 
efficace pour diminuer l’offset de l’amplificateur à transconductance et ainsi l’offset de 
l’interface de capteur. 

L’INL mesurée est plus importante que celle simulée. La valeur maximale de l’INL, 
égale à ±6% de la pleine échelle de sortie, est obtenue aux extrémités de la pleine échelle. 
L’étude de la non-linéarité a montré que les oscillateurs verrouillés par injection ont la plus 
grande contribution. Ainsi, l’utilisation des oscillateurs verrouillés par injection à relaxation 
avec une topologie dont la plage de linéarité est encore plus étendue peut résoudre ce 
problème. Toutefois, d’autres solutions sont envisageables sans changer la  topologie de 
l’oscillateur telle que la réduction de la pleine échelle ou/et la réduction du gain de l’interface 
de capteur. 

Les mesures de l’interface de capteur sur une plage de température étendue montrent 
que le circuit a une faible dépendance à la température. Toutefois, la variation thermique de 
l’interface de capteur est supérieure à celle obtenue en simulation.  La valeur maximale de la 
variation thermique est égale à 178ppm/°C et elle est obtenue à l’extrémité de la pleine 
échelle de l’interface de capteur.  Grâce aux simulations Monte Carlo, il a été montré que cela 
est dû aux effets des variations du processus de fabrication et aux mismatches qui sont plus 
prononcés aux extrémités de la pleine échelle d’entrée. En réduisant la pleine échelle d’entrée 
à ±40mV, une très faible dépendance thermique est obtenue: la variation thermique de 
l’interface de capteur fabriqué est toujours inférieur à 65ppm/°C. Cela est, selon notre 



connaissance, est la plus faible variation thermique obtenue pour des interfaces de capteurs à 
11 bits de résolution 

L’étude dynamique du prototype montre que l’interface de capteur a une bande 
passante autour de 14kHz sur toute la page de température,  qui est une bande passante 
suffisante pour des applications de mesure de courant. Le comportement dynamique de 
l’interface de capteur est dû à celui des oscillateurs verrouillés par injection puisque les autres 
blocks présentent des bandes passantes très élevées. Le comportement dynamique des 
oscillateurs verrouillés par injection est défini par leur temps d’acquisition qui est défini 
comme le temps nécessaire pour que l’oscillateur acquise le bon déphasage correspondant à 
son entrée.  

La comparaison de l’interface de capteur proposée dans ce travail par rapport aux 
travaux répertoriés dans la littérature montre que  des meilleures performances sont obtenues 
particulièrement en terme de stabilité thermique.   

 

Mots clés— haute température, oscillateurs verrouillés par injection, domaine 
temporel, déphasage, architecture différentielle, silicium-sur-isolant partiellement 
déplété, signal modulé en largeur d’impulsion.       
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General introduction  

Today, there is a high demand for sensor nodes operating in severe temperature 
environments. Application fields are in automotive, aeronautic and petroleum. High 
temperatures require sensing systems (sensor + sensor interface) that are able to work over a 
wide temperature range, typically from -40°C up to 250°C.  

In most applications, sensor interface must be located close to the sensor for “noise 
considerations”. This offers the advantages of high signal to noise ratios which preserve the 
integrity of the signal delivered by the transducer (i.e., preserve the information given by the 
sensor) and of better system reliability.  

Sensor interface electronics is then exposed to the same temperature constraints as the 
sensor. Cooling techniques may be used but these techniques are no longer adapted because 
they are bulky. Besides, cooling techniques require long wires and this degrades the signal 
integrity and reduces the system reliability. 

Typical sensor interfaces, consisting of an amplifier stage and an Analog to Digital 
Converter (ADC), are limited by the high thermal sensitivity of its constitutive blocks. In fact, 
typical sensor interfaces are highly analog circuits. These latter are known for their high 
sensitivity to temperature variations due to the effect of temperature on MOS transistors. 
These effects are mainly an exponential increase of leakage currents, a reduction of threshold 
voltages and a decrease of carrier mobility. 

The objective of this research work is to design a new architecture of sensor interface 
for resistive sensors suitable to work over a wide temperature range from -40°C up to 250°C.  
Silicon-on-insulator (SOI) technology has been chosen for its high robustness against 
temperature variations compared to bulk technology. More precisely, a Partially Depleted 
Silicon-On-Insulator (PD-SOI) technology, which operates over a wide temperature range, is 
chosen. 

A Time-Domain differential sensor interface has been proposed, designed and 
fabricated. Time domain architecture leads to a quasi-digital sensor interface circuits that are 
less sensitive to temperature variations compared to analog based sensor interfaces. Indeed, 
digital signals have higher noise margins which make them more robust against temperature 
variations. 

The sensor interface is based on a Voltage to Pulse-Width-Modulated signal (PWM) 
conversion using Injection Locked Oscillators (ILOs). The sensor interface is designed in 
such a way that makes its output depend only on the ratio of electrical parameters rather than 
their absolute values. Thus, the sensor interface is expected to achieve very low temperature 
dependence. The thesis is composed of four chapters and it is organized as follows. 

Chapter 1 presents the design challenges of high temperature sensor interfaces. On the 
one hand, effects of temperature variation on CMOS technology, that limit performances of 
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CMOS integrated circuits in high temperature environment, are presented. A comparison 
between performances of SOI and bulk technologies over a wide temperature range is 
performed; it highlights major benefits of SOI technology in such a harsh environment. On 
the other hand, a review of existing high temperature sensor interfaces is performed. Existing 
design techniques used to mitigate temperature effects are listed and main limitations are 
highlighted. 

Chapter 2 describes the proposed high temperature sensor interface which is based on 
ILOs. Background theory of ILOs is firstly introduced; Huntoon and Weiss theory is 
particularly presented. From this theory, main properties of ILOs are highlighted to illustrate 
their potentiality for the realization of high temperature sensor interfaces. Principle of a new 
high temperature sensor interface is then presented. A theoretical development is conducted to 
demonstrate thermal stability of the proposed architecture.  

Chapter 3 details the context, the specifications and the implementation of the 
proposed sensor interface. The choice of the ILO is first justified. A Relaxation-ILO (RILO) 
has been chosen based on a theoretical analysis. A behavioural model has been built to 
validate circuit parameters satisfying system specifications. Implementation of the RILO-
based sensor interface in a 180nm Partially-Depleted SOI (PD-SOI) technology is then 
presented. Physical implementation of each constitutive block and design constraints are 
detailed. Further high temperature design considerations are discussed in order to ensure 
thermal stability of the RILO-based sensor interface. Simulation results over a large 
temperature range are finally presented to demonstrate a low temperature dependence and a 
centred design with respect to specifications. 

Chapter 4 is dedicated to the experimental characterisation of the fabricated sensor 
interface. A proof-of-concept has been fabricated in a 180nm PD-SOI technology with 1.8 V 
power supply voltage. Static and dynamic characterisations of the fabricated sensor interface 
have been performed over a wide temperature range extending from -20°C to 220°C. The 
silicon prototype allowed proving the expected low temperature dependence. 

 Finally, the conclusion sums up the presented work; it summarizes the major 
performances of the developed sensor interface. Suggestions for possible future prospects and 
areas of improvement of the sensor interface are also proposed. 
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Introduction 

 The need for high temperature sensor interfaces for some applications with important 
potential for market and technological development has been clearly identified. The most 
well-known applications with added industrial value, where high temperature sensing systems 
are required, are automobile, oil and gas exploration and aeronautic applications. Engine 
industry is also interested in high temperature electronics for performance monitoring 
purpose.  

In automotive applications, sensor nodes are used to collect information used to 
minimize fuel consumption as well as the emission of the exhaust. 

In modern aircrafts, electrical actioners are used as alternatives to hydraulic actioners 
in order to lighten the aircraft weight and to reduce maintenance cost. In such applications, 
electrical and electronic circuits have to operate close to the engine. This offers the advantage 
of reducing the wiring complexity but it imposes stronger constraints on the electronics (i.e., a 
high temperature environment).  

The purpose of sensing systems in oil and gas applications is to control the drilling 
process by delivering relevant information on the drilling environment. Moreover, they serve 
for geologic sites to investigate the presence of oil or gas by mounting them deeply in the 
wells.  

The common barrier to these applications is the high temperature operation conditions 
which are summarized in table1.  

Table 1. Operation temperature range of high temperature applications (Verbeck, Zimmermann, and Fiedler 1996). 

Application Operation temperature range(°C) 

Automotive application Compartment -40 ; 85 

-40 ; 165 

-40 ; 250 

Engine 

Brakes 

Aeronautic Aircraft Surface -40 ; 80 

-40 ; 185 

-40 ; 320 

Engine Intake 

Jet Engine 

Satellites  

Space exploration 

-150 ; 200 

-150 ; 450 

Oil Exploration 

Geothermal exploration  

-40 ; 175 

-40 ; 320 

 

High temperature applications require high precision sensing systems. Each sensing 
system is composed of a transducer (sensor) that converts the physical parameter 
(temperature, pressure, electromagnetic field) into an electrical quantity (voltage, current, 
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electrical charges, resistance or capacitance variations) and a conditioner circuit (or readout 
circuit), also called sensor interface which converts the electrical quantity into a more 
exploitable information generally a digital information.  

For the sake of signal integrity, the sensor interface has to be put as close as possible 
to the sensor. This necessitates reducing the sensor interface volume and thus, a greater 
integration of electronic functions is needed. Moreover, this leads to reduce wiring 
complexity, which improves the sensing system reliability and performances (Neudeck, 
Okojie, and Chen 2002) . However, this is challenging for circuits because they have to 
operate under a wide temperature range extended from -40°C to 250°C and even higher. 
Nowadays, there is not many commercial integrated circuits designed to operate in such 
temperature conditions and conventional CMOS technologies break down at such high 
temperatures.  

Usually, these sensor interfaces are cooled passively or actively in order to be able to 
perform correctly. Cooling systems add more complexity to the sensing system because they 
use additional long wirings and connectors which results in elevated failure risk especially 
when exposed to temperature cycling (Kirschman 1999). Besides, there is a high concern 
regarding the reliability of cooling systems beyond 150°C. Furthermore, cooling systems are 
bulky and consume a lot of power (Neudeck, Okojie, and Chen 2002). That is why, even for 
applications whose operating temperature does not exceed 150°C; cooling systems are no 
longer used. Then, sensor interface electronics must be able to sustain these harsh conditions; 
they must be able to operate correctly over a large temperature range without any degradation 
of their performances and without breaking-down at extreme temperature.  

Most of the integrated circuits (IC) are designed and fabricated using Complementary 
Metal-Oxide-Semiconductor (CMOS) technologies mostly because they enable the 
integration of analog and digital blocks on the same chip and because of their reduced 
fabrication cost. However, CMOS technologies suffer from various limitations when they 
operate in wide temperature range because of their sensitivity to temperature variations. 
Therefore, performances of electronic circuits fabricated using CMOS technologies are 
subject to major thermal variations.  

Moreover, exponential increase in leakage currents with temperature causes 
malfunction of CMOS circuits at high temperatures. Indeed, leakage currents of CMOS 
technologies are important because of the small bandgap barrier of silicon. Therefore, wide 
bandgap technologies, such as SiC or GaN, have been recently considered in very high 
temperature applications; i.e., above 300°C (Neudeck, Okojie, and Chen 2002). These wide 
bandgap promising technologies are able to extend the operation temperature until 600°C.  

Table 2 lists fabrication technologies according to their maximum operating 
temperature.  
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Table 2. Maximum operation temperature of fabrication technologies (Werner and Fahrner 2001). 

Technology Maximum operating temperature (°C) 

CMOS Bulk 150 

SOI 300 

Wide Bandgap 3C-SiC 600 

6H-SiC 700 

4H-SiC 750 

GaN >700 

Diamond 1100 

 

Back to CMOS technology, proper design techniques must be adopted to mitigate the 
effect of temperature on IC parameters. The most pronounced effects causing the failure of 
CMOS high temperature electronics are the reduction of the carrier mobility, the degradation 
of the threshold voltage and the exponential rise of leakage currents (F.Patrick McCluskey 
1996) (Majerus, Merrill, and Garverick 2013a). These effects are more pronounced in bulk 
CMOS technology than in Silicon-on-insulator (SOI). Indeed, the buried insulator layer in the 
SOI structure reduces the junction leakage current drastically which extends the operation 
range until 300°C (Pathrose et al. 2012). 

1.1. Challenges for high and wide temperature range sensor 
interfaces 

The semiconductor material is sensitive to temperature changes that affect several 
parameters of the circuits and increase the possibility of its failure especially when exposed to 
temperature cycling. 

1.1.1. Carrier mobility 

When a voltage is applied to the gate of the transistor, a channel is created between the 
drain and the source. If a voltage is applied between the source (S) and the drain (D), the 
carriers are subjected to an electrostatic force F expressed in the following equation: 

𝐹 = 𝑞 𝐸     (1.1) 

where q is the carrier charge, E is the electrical field applied across the semiconductor created 
by the VDS voltage. Then, the electrons move in the opposite direction of the electric field, 
while the holes will move in the same direction of the electric field. A current flowing 
between the drain and the source is hence created. 

The carrier mobility depends on its average velocity (v) during a certain amount of 
time called τC which is the average time between the scattering events (Simon M.Sze 2016) . 
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The average velocity is governed by the electrical field and the carrier mass m (law of 
momentum conservation): 

𝑞𝐸τେ = 𝑚𝑣     (1.2) 

where m is the mass of the carrier,  

The ratio between the average velocity and the electrical field defines the carrier 
mobility. It represents the relation between drift velocity of carriers and the vertical electrical 
field E: 

µ =
𝑞τେ

𝑚
     (1.3) 

The temperature dependence of the mobility is defined by two scattering mechanisms: 
lattice scattering and impurity scattering. Lattice scattering is the carrier scattering by lattice 
vibrations. The probability of a carrier to be scattered by lattice vibration increases with 
temperature because this latter (i.e., lattice vibration) increases with temperature as well. This 
phenomenon (Lattice scattering) causes decrease of the mobility. Impurity scattering is the 
carrier scattering by impurity atoms which depends on the carrier velocity. The carrier 
velocity increases with temperature; leading to the increase in the mobility from the impurity 
scattering. However, the overall effect of the two scattering mechanisms makes the mobility 
decrease when temperature increases as expressed by the following equation (F.Patrick 
McCluskey 1996): 

µ(𝑇) = µ଴(
𝑇଴

𝑇
)ଵ.ହ     (1.4) 

where µ0 is the carrier mobility at the reference temperature T0. Figure 1.1 shows the electron 
and hole mobility of silicon semiconductor and for doping level equal to 1016cm-1 (Simon 
M.Sze 2016) .  

 
Figure 1. 1 : Variation of carrier mobility with temperature (Simon M.Sze 2016). 
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1.1.2. Threshold voltage 

Threshold voltage is one of the most important factors resulting in the transistor 
temperature behaviour.  The threshold voltage of MOSFET is given by (Simon M.Sze 2016): 

𝑉௧௛ = 𝑉ி஻ + 2∅ி + 𝛾 ඥ2∅ி     (1.5) 

where γ is the body effect parameter  given by equation (1.6), ΦF is the fermi potential given 
by equation (1.7) and VFB is the flat band voltage given by equation (1.8). 

𝛾 = 𝐶௢௫ඥ2𝑞𝜀ௌ௜𝑁஺      (1.6) 

where εsi is the relative permittivity of the silicon.  

∅ி =
𝑘𝑇

𝑞
ln ൬

𝑁஺

𝑛௜
൰     (1.7) 

𝑉ி஻ = ∅௚௦ − ൬
𝑄௦௦

𝐶௢௫
൰     (1.8) 

where Cox is the oxide capacitance, Qss is the surface charge density, ∅௚௦ is the gate-substrate 

contact potential which is expressed as follows:  

∅௚௦ = −
𝑘𝑇

𝑞
ln ൬

𝑁஺𝑁ீ

𝑛௜  
ଶ

൰ (𝑁𝑀𝑂𝑆)     (1.9) 

∅௚௦ = −
𝑘𝑇

𝑞
ln ൬

𝑁ீ

𝑁஺
൰   (𝑃𝑀𝑂𝑆)     (1.10) 

where NA and NG are the substrate and gate doping concentrations, ni is the intrinsic carrier 
concentration given by: 

𝑛௜ =  ඥ𝑁𝑐 𝑁𝑣 exp ቆ
− 𝐸𝑔

2𝑘𝑇
ቇ      (1.11) 

where NC is the effective density of states for electrons in the conduction band, NV is the 
effective density of states for holes in the valence band, Eg is the energy bandgap of the 
semiconductor, T is the temperature in Kelvin, and k is the Boltzmann constant (8.62×10-5 
eV/K). 

The temperature dependence of the threshold voltage is thus given by (Filanovsky and 
Allam 2001) : 

𝑑𝑉௧௛

𝑑𝑇
=

𝑑𝑉ி஻

𝑑𝑇
+ 2

𝑑∅ி

𝑑𝑇
+

𝛾

ඥ2∅ி     

𝑑∅ி

𝑑𝑇
      (1.12) 

where 
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𝑑𝑉ி஻

𝑑𝑇
=

𝑑∅௚௦

𝑑𝑇
=

1

𝑇
 ൬∅௚௦ +

𝐸௚

𝑞
+

3𝐾𝑇

𝑞
൰  (𝑁𝑀𝑂𝑆)     (1.13) 

𝑑𝑉ி஻

𝑑𝑇
=

𝑑∅௚௦

𝑑𝑇
=

∅௚௦

𝑇
    (𝑃𝑀𝑂𝑆)      (1.14)   

𝑑∅ி

𝑑𝑇
=

1

𝑇
 ൬∅ி −

𝐸௚

𝑞
−

3𝐾𝑇

𝑞
൰     (1.15) 

Consequently, the temperature dependence of the threshold voltage Vth depends on that 
of ∅ி and ∅௚௦ resulting in a negative temperature coefficient; where the value of the 

temperature coefficient of Vth depends on the technology parameters. Besides, it has been 
proved that the threshold voltage of NMOS and PMOS go almost to the half when 
temperature goes from 25°C to 250°C for standard CMOS process (F.Patrick McCluskey 
1996) . 

1.1.3. Leakage currents 

Leakage currents are composed of the subthreshold channel current, the junction 
leakage current, the gate leakage current and the channel punch through current. Leakage 
currents depend on the threshold voltage, the doping profile, the junction depth and the 
thickness of the oxide layer (K.Roy, Mahmoodi-Meimand, and Mukhopadhyay 2003). From 
the mentioned leakage currents, the subthreshold leakage current and the junction leakage 
current have the highest contribution to the overall leakage currents. In fact, the gate leakage 
current has very minor temperature dependence and the channel punch through current is very 
small compared to other leakage currents and it can be unconsidered. 

 When the gate-to-source voltage is below the subthreshold voltage, the transistor is in 
the off-state. However, an undesirable current flows between the drain and the source; this 
current represents the subthreshold leakage current. 

The temperature dependence of the subthreshold leakage current Isub arises from the 
temperature dependence of both the threshold voltage and the carrier mobility; Isub rises 
exponentially with temperature.  

At higher temperatures, the threshold voltage decreases sharply which has the effect of 
substantially increasing the leakage current. 

At zero Vgs ; Isub is represented by the Shockley diode model (E.S.Oxner 1988) :   

𝐼௦௨௕ = 𝐼଴𝑒𝑥𝑝 (
𝑉ௗ௦

𝑘𝑇/𝑞
− 1)     (1.16) 

where Vds is the source to drain voltage, k is the Boltzmann constant and I0 is the reverse 
saturation current which is also responsible for the exponential temperature dependence of 
Isub. 
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𝐼଴ = 𝐴𝑇𝑒𝑥𝑝(−
1,12

2𝑘𝑇/𝑞
)      (1.17) 

where A is a constant.  

Junction leakage current is caused by the reverse biased diodes (Jong, Meijer, and 
Roermund 1998) . In conventional CMOS technologies (bulk CMOS) reverse biased diodes 
exist between the source and the bulk and between the drain and the bulk. These diodes are 
not supposed to pass any current and they are used as an isolation to have only one main 
current flowing between the drain and the source. However, a leakage current from these 
diodes occurs. It represents the junction leakage current and it is one of the major limitations 
to the high temperature operation of transistors and CMOS circuits.  

Junction leakage current has two components; the generation current and the diffusion 
current, which are responsible for the increase in the junction leakage current with 
temperature. The generation current is due to the generation of electron-hole pairs in the 
depletion region which pass through the junction with the help of the electrical field. The 
generation current is proportional to the intrinsic concentration and it usually dominates on 
the diffusion current until a temperature up to 100-150°C. Diffusion current is created by 
diffusion of thermally generated minor carriers. This phenomenon is proportional to the 
square of the intrinsic carrier concentration. This diffusion current dominates on the 
generation current at higher temperature (i.e., for temperature below 100°C-150°C). 

 The simplified expression of the total junction leakage current including the 
generation and the diffusion components is expressed as follows: (Simon M.Sze 2016) . 

𝐼௃ି௅(𝑇) = 𝐼ௗ௜௙௙௨௦௜௢௡(𝑇) + 𝐼௚௘௡௘௥௔௧௜௢௡(𝑇) =  
𝑞 𝐴

𝜏
ඨ൬

𝐷௣

𝜏
൰  𝑛௜

ଶ(𝑇)  + 𝑞𝐴
𝑤

2𝜏
𝑉஺ 𝑛௜ (𝑇)      (1.18) 

where, A is the area of the p-n junction, VA is the voltage applied to the reverse biased diode, 
ND is the n-type doping level, w is the width of the junction depletion region under voltage VA, 
Dp is the minority carrier diffusion constant, and  τ is the effective minority carrier lifetime. T 
is the temperature. ni is the intrinsic carrier concentration given by: 

𝑛௜ =  ඥ𝑁𝑐 𝑁𝑣 exp (
− 𝐸𝑔

2𝑘𝑇
)     (1.19) 

 Equation (1.19) shows that the intrinsic carrier concentration is increasing with 
temperature. Therefore, according to equation (1.18), the junction leakage current increases 
with temperature. Figure 1.2 is an illustration of the temperature dependence of the junction 
leakage current.  
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Figure 1.2: Temperature dependence of the junction leakage current (Verbeck, Zimmermann, and Fiedler 1996). 

The increase in the leakage current with  temperature has many drawbacks on CMOS 
integrated circuits; self-heating, the apparition of latch up phenomenon, modification of the 
operation points of analog circuits, charge losses at dynamic nodes, reduction of the output 
resistance of high impedance nodes and a more significant mismatching between devices 
(Yucai Wang 2015). Therefore, leakage current is considered as the main limitation to the 
circuit operation at high temperature. 

1.1.4. Bulk versus Silicon on Insulator for CMOS technologies 

Silicon-On-Insulator (SOI) technologies have been first proposed to minimize 
radiation and latch-up susceptibilities of integrated circuits. It has been first used for military 
and space applications (VANDANA.B and M.SIVA KUMAR 2013).  

Transistors in SOI technology contain an isolation layer under the active area. Two 
types of SOI technology exist according to the thickness of the active layer; Fully Depleted 
SOI (FD-SOI) for thin active layer and Partially Depleted SOI (PD-SOI) for thick active 
layer. The isolation layer ensures isolation between the substrate and the active area. In the 
FD-SOI the active area is fully depleted and it forms the drain source channel, while in PD-
SOI, the active area is depleted only until a certain depth and the rest remains neutral. Figure 
1.3 shows the structure of bulk, PD-SOI and FD-SOI transistors. 

 
Figure 1.3: Structure of Bulk transistor, PD-SOI transistor and FD-SOI transistor (Olejarz et al. 2012) . 

Over the last decade, interest in SOI technologies has increased due to their attractive 
advantages and their improved life time in harsh environments compared to classical bulk 
CMOS technologies (Udrea et al. 2012). Despite the additional cost of the substrate, SOI 
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technologies have been adopted to implement circuits for high-speed applications, low power 
applications as well as for several niche applications. 

In high temperature applications, the circuit has to work over a wide temperature range 
going from -40°C to 250°C. Conventional bulk CMOS technologies are in fact unsuitable 
because of their leakage currents that increase exponentially with temperature and quickly 
become very important. SOI technologies, with lower leakage currents, can extend the 
temperature range of operation and the life-time of integrated circuits working under high 
temperature conditions. 

In addition to the reduced leakage current, SOI technologies offer many other 
advantages that are presented hereafter. 

1.1.4.1. Leakage currents  

In SOI transistors, the depth of the drain and source diffusions is limited by the 
thickness of the thin silicon layer and thus, the junction area is strongly reduced (Shin et al. 
1998). This leads to a reduction of the leakage current associated with the drain and source 
junction capacitances. 

Moreover, in SOI transistor, the diffusion component of the overall junction leakage 
current is supressed. Only the contribution of the generation current remains. Then, the 
junction leakage current is a function of the intrinsic carrier concentration over the entire 
operation temperature range contrary to the junction leakage current in bulk transistors as 
illustrated in figure 1.4.  

Consequently, the leakage current in SOI is smaller and it has smaller temperature 
dependence than that of bulk MOSFET, which makes them more suitable for high 
temperature applications. 

 
Figure 1. 4: Temperature dependence of leakage current: Bulk vs SOI (Arbess 2012) . 
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It is worth saying that, in SOI MOSFETS, the temperature dependence of the leakage 
current is also affected by the silicon film thickness. Thicker is the silicon film, higher is the 
temperature dependence of the leakage current and the thermal behaviour of SOI gets closer 
to that of bulk MOSFETS (Rudenko et al. 1999). 

1.1.4.2. Integration density 

In SOI MOSFETS, the isolation of the PMOS and the NMOS structures is smaller. In 
fact, the isolation layer in SOI technology ensures the complete isolation of the transistors 
instead of the isolation by junction as in bulk CMOS technology (Pavageau 2005). This leads 
to a decrease of about 30% in the silicon area occupied by a transistor compared to CMOS 
bulk technologies (Martineau 2008) (VANDANA.B and M.SIVA KUMAR 2013).  

1.1.4.3. Mobility 

According to equations (1.2) and (1.3), carrier mobility is inversely proportional to the 
vertical electrical field (Pavageau 2005) (Tsividis and McAndrew 2010)  (Sturm, Tokunaga, 
and Colinge 1988). Higher is this electrical field, closer are the carrier to the gate, the more is 
the number of collision and hence lower is their average speed. It has been demonstrated in 
(Sturm, Tokunaga, and Colinge 1988) and (Yoshimi et al. 1988) that the vertical electric field 
is weaker for SOI transistors than for Bulk transistors.  Therefore, SOI transistors have higher 
carrier mobility.  

1.1.4.4. Threshold voltage 

The thermal variation of the threshold voltage depends on the thermal variation of the 
depletion region depth (D.Flandre 1995). 

  In SOI transistors, the depletion region depth remains almost constant over the 
operation temperature range (Goel and Tan 2006). Therefore, the threshold voltage of SOI is 
less sensitive to temperature. This low sensitivity is more apparent in fully depleted SOI since 
the body film remains fully depleted compared to the partially depleted SOI.  

However, above a critical temperature, evaluated around 250°C, the threshold voltage 
acquires the same thermal dependence as that of CMOS bulk technologies. In fact, when 
temperature reaches this critical value, intrinsic carrier concentration increases and the 
depletion region depth decreases. The variation of the threshold voltage as a function of the 
temperature in bulk and SOI transistors is presented in figure 1.5, where the thin film SOI 
transistor (i.e., FD SOI) is considered.   

The figure shows that SOI transistors have a lower threshold voltage than bulk 
transistors whatever temperature is. This allows faster circuits and enables the use of low 
power supply voltage without any increase in the leakage current.  
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Figure 1. 5: Variation of the threshold voltage with temperature: Bulk vs SOI (Arbess 2012) . 

1.1.4.5. Junction capacitance 

Junction capacitances are the drain/bulk and the source/bulk capacitances, which also 
represent the transistor parasitic capacitances. In bulk technology, higher junction 
capacitances are due to the high doping level while, for SOI transistors, the junction 
capacitances are defined by the thickness of the isolation box. Besides, since the isolation 
layer in SOI has a lower permittivity than silicon; SOI transistors have smaller parasitic 
capacitances; they are 4 to 7 times smaller in SOI than in bulk (Marshall Andrew and 
Natarajan Sreedhar 2012). This offers the advantage of a reduced dynamic consumption for 
SOI transistors, (Le Coz 2012), as illustrated in figure 1.6.  

 
Figure 1. 6: Dynamic power reduction in SOI transistors (Martineau 2008). 

 What is more, the reduced junction capacitance leads to a lower propagation delay in 
SOI circuits (A.K.Goel 2006). Figure 1.7 shows the variation of the propagation delay with 
temperature of bulk and SOI transistors.  
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Figure 1. 7: Variation of the propagation delay with temperature: Bulk Vs SOI (Goel and Tan 2006). 

The thermal variation of the propagation delay is caused by the increase in the junction 
capacitance due to the decrease of the depletion region depth with temperature. However, in 
SOI transistors, the depletion region depth has a very small temperature dependence 
compared to bulk transistors. Consequently, the thermal variation of propagation delay in SOI 
is lower than in bulk (A.K.Goel 2006). 

1.1.4.6. Drain current and ZTC point 

The temperature dependence of the drain current is affected by that of the threshold 
voltage and by that of the mobility.  

𝐼ௗ௦ =
1

2
µ𝐶௢௫

𝑊

𝐿
(𝑉௚௦  − 𝑉௧௛)ଶ      (1.20) 

At low gate bias, in the weak inversion region, the temperature dependence of the 
drain current is dominated by the temperature dependence of the threshold voltage (A.K.Goel 
2006). Therefore, the drain current increases with temperature.   

At high gate bias, in the high inversion region, the temperature dependence of the 
drain current is dominated by the temperature dependence of the mobility (A.K.Goel 2006). 
Then, the reduction of the mobility causes the reduction of the drain current with temperature.  

Consequently, the drain current has positive temperature dependence at low gate bias 
while it has negative temperature dependence at high gate bias. These two effects cancel each 
other at a certain gate bias voltage Vgs where the drain current has the minimum temperature 
dependence. This point is called Zero Temperature Coefficient (ZTC) and exists in both linear 
and saturation regions as the figure 1.8 outlines. 
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Figure 1. 8: ZTC illustration in FD-SOI (Goel and Tan 2006) .  

SOI technology has the advantage of exhibiting ZTC point over a wider temperature 
range than bulk technology. ZTC point in SOI exists over a temperature range extended until 
300°C while this point is identifiable only up to 200°C in bulk CMOS technologies 
(Eggermont et al. 1996). This is because, in bulk transistors, the leakage current at high 
temperature becomes comparable to the drain current at the ZTC point which leads to a big 
drift in the drain current. In SOI transistors, the reduced leakage current explains the reason 
behind the identification of the ZTC point until 300°C. 

1.1.4.7. Output impedance 

 The output impedance, referred as rds, is the inverse of output conductance which is 
the derivate of the drain current with respect to the Vds voltage.  

𝑟ௗ௦ =
1

𝑔ௗ௦
=

1

𝜕𝐼ௗ௦/𝜕𝑉ௗ௦
     (1.21) 

The output conductance gds of bulk transistors has two components. The first 
component is related to the drain channel current component (channel component) which 
decreases with temperature because of the reduction of the drain current. The second 
component, the junction component, is related to the drain junction component (i.e., the 
leakage current) which increases with temperature.  

In bulk transistors, the second component dominates the first component at higher 
temperature (around 150°C) because, above this temperature, the leakage current becomes 
very important (D.Flandre 1995). Therefore, for temperature lower than 150°C, the gds of bulk 
transistors decreases with temperature, while it increases with temperature above 150°C 
(Figure 1.9). 
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In SOI transistors, the output conductance is dominated by the channel component. 
This is because the junction component is drastically reduced due to reduced leakage current 
in SOI technology. Therefore, the temperature dependence of the gds of SOI transistors 
depends only on the drain current, hence, gds of SOI transistors is always a decreasing 
function of the temperature (Figure 1.9). 

 
Figure 1. 9: Output conductance as a function of the temperature: Bulk vs SOI (Flandre 1995) . 

The output impedance rds is inversely proportional to the output conductance gds, and it 
is always preferred for the output impedance to be as high as possible. Consequently, 
according to figure 1.9, the output impedance of SOI transistors is greater than that of bulk 
transistors for temperatures above 150 °C. This represents one of the advantages of SOI 
transistors at high temperature.   

1.1.4.8. The gm over Id ratio for analog circuits 

The gm over Id is the preferred figure of merit to evaluate performances of analog 
circuits. In strong inversion, it is expressed as: 
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Hence, the temperature dependence of this ratio is due to that of the threshold voltage. 
Then the gm /Id ratio decreases as temperature increases.  

As explained in section 1.1.4.4, Vth of SOI transistors has smaller sensitivity to 
temperature variation than Vth of bulk transistors. Therefore, gm over Id figure of merit has 
lower temperature dependence in SOI devices compared to bulk devices. 
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1.1.4.9. Ion over Ioff ratio for digital circuits 

Digital circuits are also affected by temperature variation. To evaluate the performance 
of digital circuits the Ion over Ioff ratio is used as a figure of merit. Higher is this ratio; better 
are the performances of the digital circuit. 

Figure 1.10 represents the drain current as a function of the gate voltage for different 
temperatures; a PMOS transistor is considered (i.e., for negative gate voltage the device is in 
the ON state and for a positive gate voltage the device is in the OFF state) (Arbess 2012)  
(Rudenko et al. 1999). 

 
Figure 1. 10: Drain current as a function of Vgs of SOI and Bulk transistors  (Arbess 2012) . 

The figure shows that the OFF current of SOI transistor (IOFF_SOI) is lower than that of 
the bulk transistor (for temperature higher than 25°C) and it has a lower thermal variation. In 
fact, the OFF current is related to the leakage current at off state of the logic gates. Knowing 
that SOI has less leakage current and that this latter has reduced temperature dependence; a 
higher and more thermally stable Ion/Ioff ratio is observed for SOI MOSFETS. This 
characteristic offers the advantage of a reduced current consumption at off state for SOI 
circuits compared to bulk circuits. 

1.1.4.10. Short channel effects 

The short channel effects (SCE) are due to the loss of the electrostatic control of the 
gate; the depletion charge in the conduction channel (i.e., the space charge region in the 
conduction channel) is no longer fully controlled by the gate. This phenomenon appears when 
the channel length is shortened to the same order as the source and drain layer width. It affects 
the performances and the reliability of the transistors.  
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Short channel effects cause the lowering of the potential barrier; this effect makes the 
carriers able to travel between drain and source when Vgs=0 (carriers should not travel 
between drain and sources when Vgs=0). 

Under normal conditions, when Vgs is no longer zero, the barrier is reduced by the gate 
effect in order to enable the carriers to flow between the drain and the source. Only Vgs has 
this effect on the potential barrier. In fact, for a long transistor, the space charge of drain/bulk 
and source/bulk junctions are extended mainly in the substrate (because it has a low doping 
level) and the depletion charge in the conduction channel (i.e., the space charge region in the 
conduction channel) is controlled only by the gate. 

By reducing the transistor length, space charge of drain/bulk and source/bulk junctions 
(drain and source depletion regions) get closer. This leads to the apparition of charges sharing 
regions (Figure 1.11). Then, the depletion charge in the conduction channel becomes mostly 
controlled by the junctions and not only by the gate (i.e., the lowering of the gate control on 
the channel.). This leads to the lowering of the potential barrier (Daniel Chanemougame 
2005).  

 
Figure 1. 11: Short channel effect phenomenon (Aime 2007). 

Besides, in short transistors, when the drain voltage Vd increases, the drain depletion 
region becomes larger and it causes an additional lowering of the potential barrier. This 
phenomenon is called Drain-Induced Barrier Lowering (DIBL).  

Short channel effects cause the decrease of the threshold voltage Vth which increases 
drastically the transistor leakage current and limits the performances of the transistor at high 
temperature. In fact, this phenomenon makes the threshold voltage depend on the transistor 
length in both linear and saturated regimes. Hence, any change in the channel length makes 
the threshold voltage vary as well as the transistor performances. Therefore, SCE deteriorate 
the circuit efficiency and they are responsible for the Ioff current increase in short channel 
transistors. 

In SOI MOSFETS, the effect of the drain and source depletion regions and the effect 
of the drain voltage on the barrier lowering in short transistors are reduced compared to bulk 
(Pavageau 2005). In fact, SOI technology does not favour the electrostatic coupling between 
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the drain and the source; the depletion charge in the conduction channel (i.e., the space charge 
region in the conduction channel) is well controlled by the gate. Hence, short channel effects 
are reduced (Arbess 2012).  This ensures better control on Vth and then better control on the 
leakage current, which favours the electronic high temperature operation. 

1.1.4.11. Latch-up 

Latch-up is extremely dangerous for integrated circuits as it creates a low impedance 
path between the power supply and the ground that can lead to the destruction of CMOS 
integrated circuits. The latch-up phenomenon appears due to the existence of NPN and PNP 
parasitic transistors in bulk technologies, which activates a parasitic thyristor formed by these 
bipolar transistors. The presence of substrate/well is at the origin of these parasitic bipolar 
transistors by providing the low-doped base of both bipolar transistors while emitters are 
implemented by N+ and P+ source diffusions. Efficient design rules for latch-up immunity 
exist but they lead to large surface overheads to isolate both P and N well and/or substrate in 
order to suppress the collector-base junctions.   

In SOI technologies, there is a complete isolation between N and P transistors and thus 
there is neither parasitic bipolar transistors, nor thyristor structures (VANDANA.B and 
M.SIVA KUMAR 2013b). Figure 1.12 illustrates the latch-up phenomenon in bulk versus the 
nonexistence of this phenomenon in SOI. 

 
Figure 1. 12: Latch-up in bulk vs no latch-up in SOI (KASHISH GROVER 2016). 

1.1.4.12. Self-heating in FD-SOI 

Self-heating appears because the thermal conductivity of the isolation layer is smaller 
than that of silicon, making difficult the heat evacuation inside a SOI device. This 
phenomenon is more pronounced in FD-SOI due to the thinner silicon layer. 

Figure 1.13 reports Ids(Vds) characteristic with and without self-heating. It shows that 
self-heating affects the slope of the curve; it leads to a negative slope compared to the case 
where there is no self-heating. This is due to drain current and mobility reduction due to 
intensive internal heating. This effect is more pronounced at high gate voltage and thinner 
silicon film.  
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Figure 1. 13: Self-heating effect is FD-SOI (EB without self-heating and NEB with self-heating) (Goel and Tan 2006). 

1.1.4.13. Kink effect in PD-SOI 

The silicon film in PD-SOI is partially depleted leaving a neutral zone inside the 
silicon film. Inside this neutral zone, impact by ionization effect occurs. To explain this 
phenomenon, we take for example a NMOS transistor (Figure 1.14).  Negative carriers are 
flowing in the channel from source to drain. Hence positive carriers (holes) will move to 
source as well as to the body. In bulk, these holes are evacuated and they will be recombined 
inside the substrate. However in SOI and due to the isolation layer, they are accumulated 
inside the non-depleted zone. Therefore, Body voltage Vb increases which lowers the 
threshold voltage, this phenomenon is called floating body or kink effect. More holes are 
accumulated with the increase in the drain current, and Vb continues to increase. When the 
body to source diode becomes on, accumulation stops and the holes are evacuated in the 
source. Figure 1.14 illustrates this phenomenon.  

 
Figure 1. 14: Impact by ionization effect in PD-SOI (Martineau 2008) . 
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The increase in the body voltage leads to high current and higher conductance and this 
is expressed by a kink in the transistor characteristic Ids(Vds) as shown in figure 1.15. Kink 
effect can be avoided by limiting the Vds voltage.  

 
Figure 1. 15: Kink effect in PD-SOI (Martineau 2008) . 

1.1.4.14. Reliability 

The increase in the complexity level of integrated circuits makes the reliability 
requirements of devices and systems at severe conditions very challenging. Specific attention 
has to be paid not only to thermally activated degradation mechanisms, but also to the 
metallization, bonding, die attach and packaging. 

Several physical phenomena are involved in the circuit reliability. These physical 
phenomena are affected by temperature, thus, affecting the life-time of circuits working at 
high temperature conditions (Arbess 2012) . 

1.1.4.14.1. Electro-migration 

Electro-migration is caused by the gradual movement of ions in a conductor. This 
leads to the transport of material due to the momentum transfer between the diffusion metal 
atoms and the conducting electrons. In an integrated circuit, the momentum transfer between 
electrons and metal creates a hole in the conductor that is why this phenomenon is also called 
dish effect. Electro-migration is dangerous for integrated circuits and it is more dangerous at 
high temperature since the electron concentration is higher. Connections fabricated using 
aluminium are more resistant to electro-migration than their copper counterparts.  

A common technique to address electro-migration uses conductors with large sections 
since the mean time to failure (MTF) is proportional to the connector section as shown in the 
so-called Black Equation (Chain et al. 1997): 
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where j is the current density, A is the section of the conductor and Ea is the activation energy. 

Electro-migration is a major challenge in high temperature circuits. Yet, in recent high 
temperature technologies, founders have hardened metallization by adding tungsten because 
this latter is known for its high reliability with respect to electro-migration.  

1.1.4.14.2. Reliability of the gate oxide 

The gate oxide is subject to an electrical stress during the operation of the transistor. 
The time to breakdown tBD of gate oxide (i.e., the time for the oxide to breakdown in the 
presence of a constant gate voltage) decreases with the decrease of the thickness of gate 
oxide.  

The increase in temperature reduces tBD and makes gate oxide more susceptible to 
break down. Figure 1.16 shows the variation of tBD with temperature for different thicknesses 
of gate oxide (Kaczer et al. 2000). It shows that it is advantageous to choose technologies 
with thick gate oxide if the circuit is exposed to high temperature.  

 
Figure 1. 16: Temperature effect on tBD for different oxide thickness  (Kaczer et al. 2000). 

1.1.4.14.3. Contact metal barrier 

High temperature degrades metallic contacts, thus inducing metallic ion atoms to 
diffuse in the silicon substrate. Chemical techniques are used to prevent the apparition of this 
phenomenon. 

1.1.4.15. SOI technology process maturity 

Nowadays, SOI process is sufficiently mature to ensure good performances with high 
yields. Among available SOI technologies from different foundries, one may note: 

 ATMEL, which developed a 0.18µm SOI technology called SMARTIS able to work 
until 200°C, 

 XFab, which proposes a SOI technology that contains high voltage options which 
enlargers the panel of high temperature applications, 
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 Honeywell, the high temperature world leader, who developed a technology called 
HTMOS tested and guaranteed until 250°C but it is able to work at 300°C. Reliability 
has been proven up to 5 years at 225°C. 

 ST microelectronics, which proposes the leading-edge 28nm FD-SOI technology. This 
technology is guaranteed until 125°C with a very high reliability. 

Other SOI foundries exist but, to our knowledge, the previously listed are 
representative of existing SOI technologies. Some academic initiative could be also listed 
such as Fraunhofer institute (IMS) that developed a high temperature SOI technology 
guaranteed until 250°C. This technology uses Tungsten connections for high immunity to 
electro-migration; hence longer life-time can be ensured.  

1.1.4.16. Conclusion: SOI vs Bulk 

SOI technology includes an isolation layer that reduces the PN junction areas. 
Therefore, the junction leakage current of a SOI MOS transistor is decreased by a factor of 3 
or 4 compared to its bulk counterpart. Threshold voltage is 2 or 3 times smaller and the output 
trans-conductance is improved at high temperature. This enables the design of sensing 
systems able to work over a wider temperature range with a lower thermal drift. These are in 
summary the reasons why we choose to work with a SOI technology.  

1.2. Design techniques for high temperature sensor interfaces  

A typical sensor interface is composed of a low-noise amplifier (LNA), a low-pass 
filter and an Analog to Digital Converter (ADC). The amplifier is required to meet the ADC 
input dynamic range requirements and to have more accurate voltage measurements since low 
voltages are highly affected by noise and external perturbations. The filter, also called anti-
aliasing filter, is used to ensure Shannon condition; i.e., to cut frequencies higher than the 
sampling frequency and to avoid folding of high-frequency noise. Then, the filter output is 
digitized by means of an ADC in order to get a digital output for easier interfacing with the 
digital world. 

Technology developments are conducted for the purpose of obtaining smaller chip 
area, higher circuit speed and lower power consumption. Downscaling the device dimensions 
fulfils these objectives with a continuous reduction of transistor lengths that imposes a 
reduction of the supply voltage. However, downscaling has some negative effects; it leads to a 
reduction of threshold voltages, which increases the leakage current, limiting the 
performances of integrated circuits at high temperature (Lewyn et al. 2009). Besides, it affects 
immunity to noise and degrades SNR. For conventional sensor interfaces, downscaling can 
reduce performances because it limits the input dynamic range and the ADC resolution and 
most important for us, it limits the operation temperature range.  

Indeed, conventional sensor interfaces are highly analog circuits. Then, operating 
points of their constitutive blocks are subject to major variations with temperature (due to 
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thermal variation of transistor parameters). This leads to drastic degradation of circuit 
performances.  

Although SOI transistors parameters have less thermal variation making them more 
adapted to harsh conditions, special design techniques should be also adopted in order to 
mitigate the effects of temperature variation. Various techniques have been reported in the 
literature. They are reported next in four main sections: separate block hardening, closed loop 
architecture, differential topology and time domain architecture. 

1.2.1. Separate block Hardening   

Separate block hardening consists in the hardening of each block of the circuit 
separately against temperature variations. Some basic principles are reported below. 

 1.2.1.1. Zero Temperature Coefficient point 

Zero Temperature Coefficient (ZTC) point corresponds to a bias gate voltage where 
the drain current and/or the transistor trans-conductance have the lowest temperature 
variation. This point exists in both linear and saturated regions for the drain current while it 
exists only in the saturation region for the trans-conductance. This technique ensures constant 
current and/ or trans-conductance which leads to stable performances over temperature (Jiang, 
Shu, and Chang 2017) . 

  The main limitation of this technique is that once biased at the ZTC point, 
performances are still affected by the increase in junction leakage currents with temperature. 
Besides, taking into account process variations, any drift of the gate bias will make the 
transistor shift from the ZTC point. 

1.2.1.2. Leakage current matching technique 

Since leakage current is the most important limitation to high temperature operation, 
some hardening techniques are based on leakage current minimization and are called “leakage 
current matching”. They are based on the fact that a transistor has two reversely biased 
diodes; the first one between drain and bulk and the second one between source and bulk. 
These diodes are the major contributors to the leakage current. 

The technique consists in adding a dummy PMOS in series with the NMOS and a 
dummy NMOS in series with the PMOS so that their leakage currents would cancel each 
other (the leakage current of the PN junction of the PMOS drain and the leakage current of the 
NP junction of the NMOS source have opposite current flow direction).  An illustration of this 
technique is presented in figure 1.17 where the reverse biased diodes and the leakage current 
flow directions are presented. 
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Figure 1. 17: Leakage current matching technique (Shoucair 1986) . 

However, this technique has a practical limitation. In fact, the PMOS and the NMOS 
must have exactly the same leakage current and the same sensitivity of this leakage current to 
temperature, a condition difficult to guarantee. Then, this technique remains conceptual and 
difficult to implement. However, it can be used as an optimization method rather than a high 
temperature hardening technique (Shoucair 1986).  

1.2.1.3. Constant gm bias circuit 

The use of constant gm bias technique is very common in high temperature circuits to 
mitigate the effect of the mobility reduction due to temperature increase. This technique is 
well suited when a circuit requires a thermally stable trans-conductance gm. This is 
particularly true in amplifiers because gm affects stability, gain and bandwidth (Yucai Wang 
and Chodavarapu 2015a). A schematic of constant gm bias circuit is represented in figure 1.18. 
The temperature dependence of the resulted trans-conductance is limited to the temperature 
dependence of the bias resistance as expressed in equation (1.24). Therefore, a thermally 
stable bias resistance is required to ensure the trans-conductance thermal stability. 
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In some technologies, resistances with low temperature coefficients are not available. 
When available, the resistance Rb can be designed using two resistances with opposite 
temperature coefficients. 
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Figure 1. 18: Constant bias gm circuit (Yucai Wang 2015) (Majerus, Merrill, and Garverick 2013).  

1.2.1.4. Reverse Body Biasing (RBB) 

Reverse Body Biasing is used for PD-SOI MOSFETS to make the depletion region 
depth always constant with temperature (Ba and Kim 2017). Since the depletion region depth 
influences temperature dependence of both threshold voltage and leakage current, thermal 
stability is improved by RBB and thus, this enlarges the maximum operation temperature of 
PD-SOI MOSFETS (Alexander Schmidt, Kappert, and Kokozinski 2013). Figure 1.19 shows 
the observed reduction of off-sate currents when using RBB in analog switches. 

 
Figure 1. 19: OFF_state leakage current reduction using RBB in an analog switch (VBN and VBP are respectively the reverse 

bias voltage of the NMOS and PMOS transistors) (A. Schmidt, Kappert, and Kokozinski 2013).      

However, RBB is possible only in some technologies. Besides, it is difficult to control 
independently the body bias of a circuit with many transistors; it requires more silicon area, 
additional biasing voltages and monitoring circuits. This leads to complex systems and 
performance is limited by the accuracy of the reverse biasing voltages.  

1.2.1.5. Adaptive biasing 

If the temperature behaviour of a parameter is known, it can be compensated using a 
voltage or current bias having the opposite temperature behaviour (Chen et al. 2017). This 
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technique is commonly used bandgap voltage references (BGVR) where a proportional to 
absolute temperature (PTAT) voltage is used in order to compensate the 
complementary to absolute temperature (CTAT) behaviour of the base emitter voltage of a 
bipolar transistor. Then, these two voltages are added to provide thermally stable voltage 
reference.  

This technique is limited by the non-linearity of the parameter to be compensated. For 
example, the base emitter voltage has harsh non-linearity over a wide temperature range. 
Thus, it is required for the PTAT voltage to have the same harsh non-linearity; which is very 
difficult to guarantee. That is why most BGVRs have a curvature shape as a function of 
temperature.   

1.2.1.6. Digitally assisted design  

In order to address power challenges and thermal performances, digitally assisted 
analog circuits are a promising trend to meet today high temperature requirements. It gets 
benefit from the fast advance in digital circuits. Some digital blocks are used to improve 
thermal stability of analog circuits over temperature. They monitor analog performances of 
elementary stages of the circuit and they adjust their parameters (resistance, capacitance, bias 
current, bias voltage) according to the operation temperature.  

Since analog parameters are controlled by a digital input word, a Digital to Analog 
Converter (DAC) is required. For example, in bandgap voltage references (He, Zhao, and 
Cheng 2014), a digital calibration is used to compensate the non-linear CTAT thermal 
variation of the base-emitter voltage by means of a trimmable resistance (Luong et al. 2014). 
Digitally Assisted Design (DAD) is also used to design oscillators having low temperature 
drift (Tran et al. 2017), (Roy et al. 2016).  

Figure 1.20 shows an example of a relaxation oscillator with a digital calibration. The 
digital feedback controls the loop delay to compensate the thermal drift of the oscillation 
frequency; the delay tuning blocks is consisted of different delays lines that are controlled by 
feedback bits. A pulse is generated, using a reference voltage (Vref2) and a replica comparator 
(COMP2), which is used as a reference in the calibration process. 
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Figure 1. 20: An example of a relaxation oscillator designed using digitally assisted design technique (J. Wang et al. 2015). 

The digital control signal required to compensate the thermal drift of analog 
parameters depends on the operation temperature. Then, the full range of operating 
temperature should be divided into a maximum number of temperature sub-ranges. Higher is 
the number of the sub-ranges, higher is the precision and better is the overall thermal stability 
of the circuit. This is very challenging because this technique requires accurate temperature 
measurement in order to detect different temperature sub-ranges. Besides, this technique is 
limited by the accuracy of the different temperature sub-ranges threshold. Moreover, the 
thermal stability of the overall circuit is limited by the resolution and the temperature 
sensitivity of the ADC. 

1.2.1.7. Limitations of the separate block hardening design technique   

Separate block hardening design technique may be a good choice for medium 
operation temperature range but not the best choice for high temperatures above 150°C 
because of the leakage currents which are difficult to supress even with leakage matching 
techniques. Besides, it leads to very complex circuits, and this affects their reliability and may 
reduce their life-time. Moreover, the so-obtained temperature hardened circuits will exhibit 
larger power consumption and large silicon area. 

1.2.2. Differential architecture 

Differential topology is used in order to compensate the effect of temperature on the 
sensing channel by means of a reference channel.  

The main channel is connected to the sensor and it delivers an output OutSensor that is 
function of the measured physical parameter. The reference channel is commonly connected 
to a reference sensor that is affected by temperature in the same manner but not by the 
physical quantity to be measured. Hence, its output OutRef does not depend on the measured 
parameter. The output of the sensor interface is then defined by a differential measure 
between both outputs (i.e., the ratio or the difference between OutRef and OutSensor). Using the 
same topology for sensing and reference channels, the same temperature dependence is 
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obtained and thermal sensitivity of the sensing channel may be compensated. Hence, the 
output of the differential architecture achieves a low thermal sensitivity (Y. Wang and 
Chodavarapu 2014) (Geeter, Nys, and Bardyn 1997) (Bianchi, Karam, and Courtois 1999).  

An example of differential sensor interface is presented in figure 1.21. The sensing 
channel generates a frequency fmeas proportional to the parameter to be measured. This 
frequency is mixed with another frequency fref generated from the reference sensor. The 
output of the overall sensor interface is then the difference between the two frequencies (i.e., 
fmeas -fref). 

 
Figure 1. 21: Differential sensor readout circuit (Taghvaei et al. 2010) . 

Performances of differential topologies are limited by process variability that affects 
the matching between both reference and sensing channels; temperature dependence of the 
sensing channel may then be different from that of the reference channel. Hence, the thermal 
stability of the differential output is degraded (George et al. 2016). To address this limitation, 
calibration is thus required.Yet, calibration over a wide range of temperature leads to 
expensive test time, especially for large volume production (K.Bowman, 2015). Sometimes, 
researchers prefer to implement calibration circuits inside the chip. However, this technique 
has also some limitations related to extra circuitry to perform the in situ calibration, which is 
complex and may lead to an increase in the overall chip area and power consumption 
(B.Wang 1998). 

1.2.3. Closed loop architecture 

Closed loop architecture has been widely used in the design of high performance 
modulators and Analog to Digital Converters (ADC). The most famous example of closed 

loop architecture is the - architecture which has the advantage of good noise immunity due 
to its high signal to noise ratio (SNR).  

Closed loop architectures have been also used in high temperature circuits (Liu 2006). 
The loop ensures constant operating points of the different constitutive blocks over a large 
temperature range. So-obtained systems then exhibits a low temperature sensitivity and 
overall performances are not affected by temperature variations (Davis and Finvers 2003) 
even if elementary blocks have not been optimized for a wide temperature range. Hardening 
the global measurement chain using a closed-loop is a good alternative to hardening 
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individual blocks as it reduces the complexity of the circuit, which in turns ameliorates 
reliability and thermal stability. Besides, it leads to reduced power consumption and area. An 
example of closed loop architecture is presented in figure 1.22, a first order modulator used 
for sensing systems. 

 

Figure 1. 22: Schematic of the sensor architecture based on the Active Bridge cell placed into a 1st order ∆ modulator 
(Hacine et al. 2011). 

The efficiency of a closed loop architecture over a large temperature range is limited 
by the thermal drift of the reference sampling frequency and  the outside loop components 
(Demeus, Viviani, and Flandre 1998). On the one hand, it is a challenge to ensure the stability 
of the sampling frequency over a wide temperature range (Kularatna 2008). On the other 
hand, the thermal drift of the outside loop components are not compensated by the loop. As an 
example, switches are highly affected by the increase in temperature and they may be 
responsible for thermal drift of overall circuit performances (e.g., signal to noise ratio, SNR). 
Indeed, when temperature increases, leakage current increases exponentially; this leads to a 
thermally activated loss of charges inside the switches that lowers their efficiency. To address 
this issue designers tend to increase the sampling frequency (Demeus, Viviani, and Flandre 
1998). Moreover, switches are affected by technology downscaling; the leakage current then 
increases, which lowers the SNR of closed loop architectures (Alvarado, Bistué, and Adín 
2011). 

1.2.4. Time Domain Architecture 

Time domain architecture is a new trend that addresses limitations of the previously 
mentioned techniques. The information delivered by the sensor is encoded in the time 
domain; i.e., a frequency, a Pulse Width Modulated (PWM) signal, a Pulse Position 
Modulated (PPM) signal, a delay or a phase shift. Signal conditioning is firstly performed in 
the time domain and a Time to Digital Converter (TDC) is then used to obtain a digital output 
word representing the sensor measure. This approach leads to quasi-digital-like sensor 
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interfaces. The use of quasi-digital signals is very promising because of the simplicity of their 
interface circuits. They offer the advantage of direct transmission without degradation of 
signal integrity and they can be easily converted into digital signals using simple counters. 

Moreover, digital signals are less sensitive to temperature variations compared to 
analog ones because of their higher noise margin that ensures a reduced sensibility to noise 
and other interfering signals. Time domain architectures, which have a digital nature, benefit 
from this advantage, and consequently, this may lead to low temperature dependence of 
integrated sensing systems.  

In addition to that, time domain architectures take advantage of technology 
downscaling. Thanks to a simplified analog front-end and thanks to the quasi-digital 
approach, architecture is easily portable to lower technology nodes. Therefore, lower supply 
voltage can be used without SNR degradation. It is worth saying that portability may be 
impossible for conventional sensor interface architectures because they have an intensive 
analog nature. In fact, the reduction of power supply voltage lowers the threshold voltage, 
which in turn causes an increase in the leakage current especially at high temperatures. Hence, 
since analog parts are very sensitive to leakage currents compared to digital circuits, their 
performances are highly affected by temperature variations and this may lead to their 
dysfunction at extreme temperature conditions. Consequently, time domain architecture is 
more convenient for modern technology nodes especially when high temperature applications 
are targeted.  

Furthermore, using time domain architecture, reduced power consumption and reduced 
silicon area are achieved. In addition to that, the accuracy and the reliability are improved. 

Practically, analog to time domain conversion is performed by means of two basic 
techniques. The first technique, voltage to frequency conversion, converts the analog 
information into a frequency using a Voltage Controlled Oscillator (VCO). The second 
technique covers both pulse width modulation (PWM) and pulse position modulation (PPM). 
As PPM is not often used in the literature, this technique is not presented below. 

1.2.4.1. Voltage to frequency conversion  

Voltage to frequency conversion is performed using a voltage controlled oscillator; 
typically a ring oscillator (Valero et al. 2011) (Fick et al. 2014). The analog input controls the 
delay of inverters constituting the ring oscillator and they define the oscillation frequency. 
Figure 1.23 shows a starved ring oscillator used in wireless transmission. The inverter delay is 
fixed by its bias current. This latter is the drain current of a transistor whose gate to source 
voltage is controlled by the sensor output voltage.  
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Figure 1. 23: Ring oscillator based VCO (Nebhen et al. 2012). 

The inverter bias current is linear as a function of the sensor output voltage only over a 
reduced range. Hence, the oscillation frequency has a reduced linearity range with respect to 
the sensor output voltage. Besides, when temperature increases, the mobility degradation and 
the exponential increase in leakage current, cause a thermal drift of the inverters bias current. 
This affects temperature stability of the oscillation frequency.  Consequently, the voltage to 
frequency conversion design technique is limited by the non-linearity of oscillation frequency 
and by the thermal drift of its internal components. 

Recently, a solution that improves linearity of VCOs has been proposed by J.Nebhen, 
but the obtained non-linearity is still high at about 2% (Nebhen, Meillere, and Masmoudi 
2017). Moreover, thermal sensitivity of the VCO frequency is higher than 100ppm/°C, this 
makes the overall frequency variation of the VCO based sensor interface too high for 
operation under very wide temperature range. 

1.2.4.2. Pulse Width Modulation technique (PWM) 

Pulse width modulation is a technique used to encode the sensor information into a 
square-wave signal whose duty cycle depends on the sensor output voltage (De Smedt, 
Gielen, and Dehaene 2012a) (Georg Glaser 2017). PWM technique has the advantage of 
delivering time-domain information with good accuracy only with only few components. 

An obvious advantage compared to voltage to frequency conversion is the quasi-
digital encoding of the information. Hence, PWM signals are less sensitive to noise than 
frequency modulated signals. This offers the advantage of maintaining the signal integrity 
during transmission (Fei Hu and Qi Hao 2016) (Patrick Powers 2012).  

 In the conventional implementation, the sensor output voltage is integrated. Then, it is 
compared to a reference voltage. Every time the integrated sensor output voltage reaches the 
reference voltage, the state of the PWM signal changes. The duty cycle of the so-obtained 
PWM signal is then a function of the sensor measure. Figure 1.24 shows the principle of the 
PWM technique. 
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Figure 1. 24: Pulse Width Modulation technique (PWM). 

Thermal stability of a PWM signal is limited by the temperature dependence of the 
reference voltage and the sampling frequency. Moreover, threshold voltage variations of the 
comparator and comparator’s delay variations with temperature both degrade efficiency. The 
comparator’s parameters are also very sensitive to ageing and process variations (Kokolanski 
et al. 2013).  

PWM provides a linear relationship between sensor output voltage and duty cycle of 
the output signal, but only over a limited range of input voltage; e.g., due to  the non-linearity 
of the ramp slope over the temperature range. Consequently, sensor interfaces using PWM 
technique are not adapted for sensors with large dynamic range in terms of output voltage. 
Higher signal distortion can be also obtained by heavy fluctuations in the power supply 
voltage. 

A new PWM technique, proposed by V.De Smedt in (Smedt, Gielen, and Dehaene 
2013), is based on a ratio-metric measure that is frequency independent. A differential sensor 
drives two delay stages; hence the sensor value is converted into a PWM signal whose duty 
cycle is the ratio of two delay measurements. The measured thermal drift of the sensor 
interface circuit is 79ppm/°C.  

In (Gläser et al. 2017), G.Glaser proposed a PWM based sensor interface that 
amplifies the sensor output voltage by means of an analog amplifier before converting it in a 
PWM signal. Then, an elegant switching scheme is used to realize different measurements 
such as offset and temperature of the die. However, thermal drift of both gain and offset of the 
amplifier limits performances. Besides, performances of the switching scheme can be 
degraded by the increase in leakage currents with temperature. Two calibration points are 
used to compensate temperature drift and a ±43ppm/°C thermal drift is obtained. 

1.3. Conclusion 

A major interest in sensing systems, particularly in sensor interfaces, used for high 
temperature applications has been observed.  

Conventional sensor interface architectures are not adapted for this harsh environment; 
their performances are degraded because of thermal variation of CMOS technology 
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parameters, and this limits their operation under this harsh condition. Main challenge of high 
temperature operation is the exponential increase in leakage currents, which deteriorates 
circuit functioning and might leads to its total destruction by inducing Latch up.  

State of the art has shown that SOI CMOS technology has lower leakage currents than 
bulk CMOS technology due to the isolation layer below the active area. SOI transistors 
parameters are improved compared to bulk transistors and they beneficiate from a less 
temperature dependence of their parameters. Hence, SOI appears more adapted for high 
temperature applications up to 300°C. Moreover, the design of high temperature sensor 
interfaces must take into account changes in transistor parameters with temperature. High 
temperature design techniques reported in state of the art are then the use of separate block 
hardening techniques, differential topology, closed loop architecture and time domain 
architecture.  

Time domain architecture achieves lowest temperature sensitivity because time 
domain signals have a low temperature dependence compared to analog signals due to 
their high noise margin. Besides, they are not affected by technology down scaling; this 
makes possible the use of low supply voltage and hence reduces the power consumption. 
Time domain architecture uses either a VCO to convert the sensor measure into a frequency 
or a PWM technique to convert the sensor measure into a PWM signal. This latter has 
advantages compared to VCO leading to larger dynamic range and to a better signal 
integrity for transmission. However, conventional PWM technique suffers from limitations. 
It is highly affected by thermal variations of both reference voltage and sampling 
frequency. Besides, it is limited by the high sensitivity of the comparator to process 
variability and ageing. 

In order to get benefit of the advantages of PWM based techniques and to remedy its 
limitations, a novel PWM technique should be adopted. We are proposing another technique 
of PWM by means of phase shifters based on Injection Locked Oscillators (ILOs). The 
generated phase shift represents the pulse width of the PWM signal and it is a function of the 
difference between two frequencies where one of them is a function of the sensor output 
voltage. Using this novel PWM technique, no thermal stable frequency is required any more, 
which should lead to simpler and hence smaller circuits. The obtained phase shift depends on 
the relative accuracy of the phase shifter circuit parameters. Therefore, low temperature 
sensitivity can be achieved. Moreover, good immunity to noise and process variations can 
be obtained. 
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In this chapter, a novel differential sensor interface architecture for resistive sensors, 
which is able to operate over a wide temperature range, is presented. This interface is based 
on voltage to pulse width modulation (PWM) signal conversion using injection locked 
oscillators (ILOs) as phase shifters.  

The principle of the sensor interface is studied regardless of the topology of the ILOs. 
It is first established that such architecture depends on the ratio of device parameters rather 
than their absolute values. Finally, the resolution and the limitation of the proposed interface 
architecture are discussed. 

2.1. Injection Locked Oscillators 

2.1.1. Overview of Injection Locked Oscillators 

An oscillator is an autonomous circuit that generates a periodic output signal. Injection 
Locked Oscillator (ILO) is a particular kind of oscillator with an external input signal as 
presented in figure 2.1. This external signal, called a locking signal, is periodic and it runs at a 
locking frequency flock.  

 

Figure 2.1: Illustration of Injection Locked Oscillators 
(𝒇𝟎 is the free running oscillation frequency and ∆F is the locking range). 

In the absence of this locking signal, the ILO runs at its free running oscillation 
frequency 𝑓଴ which is defined by its topology and its components. When the locking signal is 
applied to the ILO and if its frequency is not too far from the free running frequency, the ILO 
tracks the locking signal and hence it oscillates at flock. This phenomenon is called injection 
locking and it appears only if flock is in a frequency range, called locking range, close to the 
free running frequency of the oscillator. Outside this range, the ILO runs at its free running 
oscillation frequency as presented in figure 2.2. The locking range is a function of the ILO 
topology and the locking signal strength. 
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Figure 2.2: Characteristic function of Injection Locked Oscillators (fILO is the ILO oscillation frequency). 

2.1.2. Properties of Injection Locked Oscillators (Huntoon & Weiss theory) 

Injection locking is common to any kind of oscillators: mechanical, electrical and even 
biological. It was firstly discovered by Huygens (1629-1695) who observed that two clocks 
not beating at the same frequency end by being synchronized (i.e., locked) when they are 
coupled (Franck Badets 2000). Models of electrical Injection Locked Oscillators have been 
introduced by Alder in 1946 (Adler 1946). Later in 1947, Huntoon and Weiss studied 
theoretically the behaviour of Injection Locked Oscillators (Huntoon and Weiss 1947).  

According to the theory, an ILO is considered as a black box in order to generalize this 
theory to ILOs with different topologies. The locking signal is connected in series with the 
ILO load Z (Figure 2.3).   

 

Figure 2.3: Injection Locked Oscillators representation (Franck Badets 2000). 

This study is performed considering a sinusoidal locking signal and it is based on two 
main assumptions: 
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 Injection locking phenomenon appears in oscillators whose free running oscillation 
frequency is a continuous function of the load Z. 

 The locking input signal Vlock can be modelled by a small variation in the load 
impedance (referred as “dz”, as presented in figure 2.4) if the locking frequency is 
close to the free running frequency (i.e., flock is in the locking range). 

 

Figure 2.4: Representation of Injection Locked Oscillators at locking (Franck Badets 2000). 

2.1.2.1 Phase shift of Injection Locked Oscillators  

The locking signal Vlock generates a small variation “dz” of the load. Consequently, the 
frequency and the amplitude of the oscillator output are susceptible to be changed. The 
dependence of the oscillator output frequency and amplitude on the load impedance variation 
“dz” is specified using a set of compliance coefficients: the amplitude compliance coefficient 
𝐸஺ and the frequency compliance coefficient 𝐸ி. 

𝐸஺ =
డ஺

ௗ௭
= |𝐸஺|𝑒௝ఈ  (2.1) 

𝐸ி =
డ௙

ௗ௭
= |𝐸ி|𝑒௝ఉ    (2.2) 

The locking signal is written as follows: 

𝑉௟௢௖௞ = |𝑉௟௢௖௞|𝑒௝ଶగ௙೗೚೎ೖ    (2.3) 

Once locked, the ILO output signal is written as follows: 

𝑂ூ௅ை = |𝑂ூ௅ை|𝑒௝ଶగ௙೗೚೎ೖାః಺ಽೀ    (2.4) 

where ∅ூ௅ை is the phase shift of the ILO output with respect to the locking signal. 

According to Huntoon and Weiss theory, this phase shift is governed by the 
compliance coefficients:  

1

2𝜋

𝜕𝛷ூ௅ை

𝜕𝑡
= (𝑓௟௢௖௞ − 𝑓଴) −

|𝐸ி||𝑉௟௢௖௞|

|𝐼଴|
cos(𝛷ூ௅ை + 𝛽)    (2.5) 

where I0 is the current flowing in the oscillator load in the absence of locking signal and f0 is 
the free running oscillation frequency of the ILO. 
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Once locked,  
డః಺ಽೀ

డ௧
 is equal to zero. Then, equation (2.5) becomes: 

(𝑓௟௢௖௞ − 𝑓଴) =
|𝐸ி||𝑉௟௢௖௞|

|𝐼଴|
cos(𝛷ூ௅ை + 𝛽)  (2.6)  

where 

|𝐸ி||𝑉௟௢௖௞|

|𝐼଴|
=

 ∆𝐹

2
  (2.7) 

∆F is the ILO locking range defined as the range of the locking frequency satisfying 
the injection locking conditions.  Consequently, (2.6) becomes (2.8). 

cos(𝛷ூ௅ை + 𝛽) =  
2(𝑓௟௢௖௞ − 𝑓଴)

∆𝐹
  (2.8) 

Therefore, the ILO phase shift with respect to the locking signal is given by: 

𝛷ூ௅ை = 𝑎𝑟𝑐𝑜𝑠 ቆ
2(𝑓௟௢௖௞ − 𝑓଴)

∆𝐹
 ቇ (2.9) 

Equation (2.9) shows an important property of Injection Locked Oscillators: the phase 
shift is a function of the difference between the locking signal frequency and the free running 
frequency (Figure 2.5). 

 

Figure 2.5: Phase shift of harmonic Injection Locked Oscillators. 

2.1.2.2. Phase noise of Injection Locked Oscillators  

ILOs have another interesting property that concerns the phase noise. Once locked, the 
ILO phase noise is the result of two main contributions: the oscillator’s intrinsic phase noise 
and the phase noise of the locking signal.  

The phase of a non-locked ILO can be expressed as follows: 
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𝛷ூ௅ை(𝑡) = 2𝜋𝑓଴𝑡 + 𝛷௕଴(𝑡)     (2.10) 

where 𝛷௕଴(𝑡) is the oscillator phase noise  due to all its noisy elements. 

The phase of the locking signal is expressed as follows:  

𝛷௟௢௖௞(𝑡) = 2𝜋𝑓௟௢௖௞𝑡 +  𝛷௕ௌ(𝑡)       (2.11) 

where 𝛷௕ௌ(𝑡)  is the phase noise of the locking signal. 

Once locked, the output phase shift of the ILO is expressed as follows:   

𝛷ூ௅ை(𝑡) = 2𝜋𝑓௟௢௖௞𝑡 +  𝛷ఌ(𝑡) −  𝛷଴     (2.12)  

where  𝛷ఌ(𝑡) is the phase noise of the locked ILO. It includes the phase noise effect of the 
locking signal  𝛷௕ௌ(𝑡) and the internal phase noise of the oscillator 𝛷௕଴(𝑡). 𝛷଴ is a constant. 

According to (Franck Badets 2000), the ILO phase noise is governed by the following 
equation: 

    
ௗఃഄ

ௗ௧
− ቂ2𝜋

|ாಷ||௏೗೚೎ೖ|

|ூబ|
sin(𝛷ூ௅ை + 𝛽)ቃ 𝛷ఌ =

ௗః್బ

ௗ௧
− ቂ2𝜋

|ாಷ||௏೗೚೎ೖ|

|ூబ|
sin(𝛷ூ௅ை + 𝛽)ቃ  𝛷௕௦    (2.13)    

Consequently, in the frequency domain, the ILO phase noise ∅ఌ contains the 
contribution of 𝛷௕௦ and 𝛷௕଴ as follows: 

𝛷ఌ(𝑝) =
𝑝

𝑝 + 𝑤௡
𝛷௕଴(𝑝) +

𝑤௡

𝑝 + 𝑤௡
𝛷௕௦(𝑝)       (2.14) 

𝑓௡ (𝑓௡ = 𝑤௡ /2𝜋) is the noise bandwidth and it is expressed as:  

𝑓௡ = −
|𝐸ி||𝑉௟௢௖௞|

|𝐼଴|
sin(𝛷ூ௅ை + 𝛽) = −

 ∆𝐹

2
sin(𝛷ூ௅ை + 𝛽)       (2.15) 

Therefore, in the ILO noise bandwidth, a locked ILO copies the phase noise of the 
locking signal while its internal phase noise is rejected (as shown in figure 2.6). This 
behaviour is similar to the behaviour of a first order PLL. Outside the noise bandwidth, the 
phase noise of the ILO is due to the internal components of the oscillator and the phase noise 
of the locking signal is rejected.  

This means that in the ILO’s noise bandwidth, the ILO’s phase shift with respect to the 
locking signal is not affected by the noise of the internal oscillator. Moreover, this phase shift 
is insensitive to the phase noise induced by the locking signal because the ILO has the 
property of tracking this noise (Badets 2000, Finateu et al. 2005).  
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Figure 2.6: Bode diagram of the ILO phase noise over the locking signal phase noise. 

2.2. High temperature PWM based sensor interface architecture 
using Injection Locked Oscillators 

The sensor interface is designed for sensors delivering an output voltage; the most 
well-known example of this kind of sensors is resistive sensors. Using ILOs as phase shifters, 
the sensor output voltage is converted into a pulse width modulated signal (PWM) which is 
easily converted into a digital output. 

2.2.1. Sensor interface principle based on voltage to PWM conversion 

The phase shift of ILOs is a function of the difference between the locking frequency 
flock and the free running oscillation frequency f0. Hence, ILOs can be used as phase shifters 
by controlling either flock or f0. 

Sensor interface can take benefit of this property.  Firstly, the sensor output voltage is 
used to modify the free running oscillation frequency of the ILO f0. The locking frequency 
flock is kept at a constant value in the ILO locking range. Then, a phase shift ΦILO, which is a 
function only of f0, is obtained thanks to the property of ILOs. Hence, the sensor output 
voltage is converted into a phase shift ΦLO (i.e., the phase shift of the ILO output with respect 
to the locking signal).  

The delay tpw between the locking signal Vlock and the ILO output OILO is then a 
function of the sensor voltage and it is linked to the phase shift of the ILO by: 

𝑡௣௪ =
𝛷ூ௅ை 

2𝜋
𝑇௟௢௖௞      (2.16) 

This delay represents the pulse width of a Pulse Width Modulated (PWM) signal 
running at flock (Figure 2.7). The represented PWM signal can be obtained, for example, by 
connecting the ILO output OILO and the locking signal Vlock to a XOR logic gate enabled only 
when Vlock is at high logic level.   
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Figure 2.7: Representation of the output PWM signal. 

According to the value of the sensor output voltage VS, the ILO phase shift ΦILO varies 
between zero and π; thus the pulse width of the so-obtained PWM signal varies between zero 
and the half period of the ILO output (i.e., Tlock/2 because fILO=flock). Consequently, using 
ILOs, the sensor value is encoded into a PWM signal. 

This PWM signal is then converted into a multi-bit digital output using a Time-to-
Digital Converter (TDC). For this purpose, a high frequency counter is used as the simplest 
way of characterizing a PWM signal with high speed and high resolution (G.W.Roberts et al. 
2010) (V.Sharma et al. 2016). The counter measures the pulse width tpw and encodes it into a 
digital word N given by: 

𝑁 =
𝑡௣௪

𝑇௖௢௨௡௧௘௥
      (2.17) 

where Tcounter is the period of the counter clock (fcounter =1/Tcounter; fcounter is the counter clock 
frequency). Based on equation (2.16), the digital output can be also expressed as: 

𝑁 =
𝛷ூ௅ை 

2𝜋

𝑓௖௢௨௡௧௘௥

𝑓௟௢௖௞ 
     (2.18) 

The counter clock is generated from the locking signal generator (presented under the 
name of Reference oscillator) by means of a frequency multiplier which can be implemented 
with a Phase Locked Loop (PLL) for example. This offers the advantage of a thermally stable 
ratio fcounter /flock because the PLL is a closed loop circuit and it achieves a multiplication factor 
independent of temperature. Figure 2.8 is a possible implementation of a PWM based sensor 
interface using ILO. For a better robustness, a differential architecture will be presented in the 
next section. 
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Figure 2.8: Schematic diagram illustrating the principle of the PWM based sensor interface using ILOs. 

2.2.2. Architecture of the high temperature sensor interface 

To improve the sensor interface performances, a differential PWM based architecture 
is proposed for conditioning resistive sensors with differential output voltage (for example 
resistive transducers embedded in a Wheatstone bridge). This differential architecture offers 
the advantage of rejecting the effects of process variations, temperature variations and 
common-mode noise.  

The sensor interface converts the sensor differential output voltage into a PWM signal 
using a pair of ILOs. The differential sensor output voltage VS is converted into a phase shift 
difference which represents the pulse width of the so-obtained PWM signal and which is then 
converted into a digital output using a counter. Figure 2.9 presents the architecture of the so-
obtained sensor interface.  

 

Figure 2.9: Architecture of the high temperature sensor interface.  
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The sensor output voltage VS controls simultaneously the phase shifts of both ILO1 
and ILO2 by controlling their free running oscillation frequencies f01 and f02 (they are 
respectively the free running oscillation frequencies of ILO1 and ILO2).  

When the sensor output voltage VS is zero, f01 and f02 are equal; hence both ILOs have 
the same phase shift with respect to the locking signal. Then, the variation of the sensor 
output voltage VS makes the ILO free running oscillation frequencies f01 and f02 vary 
symmetrically with VS. Consequently, the phase shifts of ILO1 ΦILO1 and the phase shift of 
ILO2 ΦILO2 vary symmetrically with respect to their initial values at zero VS. The obtained 
difference between ΦILO1 and ΦILO2, ∆Φout, is a function of the differential output voltage of 
the sensor, VS, and defines the output of the sensor interface circuit. 

The sensor interface is designed so that, at zero VS, the initial phase shift of both ILOs 
would be equal to π/2 with respect to the locking signal. Consequently, each ILO output will 
have a full scale of ±π/2. Hence, the full scale of the difference (ΦILO1 - ΦILO2) is ±π 
(equivalent to ±Tlock/2) which represents the output full scale of the sensor interface. 

Considering the difference between phase shifts of both ILOs, a PWM signal is 
obtained whose pulse width is defined by ∆Φout (∆Φout =|ΦILO2- ΦILO1|) as follows: 

𝑡௣௪ =
∆𝛷𝑜𝑢𝑡 

2𝜋𝑓௟௢௖௞
      (2.19) 

Then, the obtained pulse width of the PWM signal is encoded into digital information 
using a high frequency counter that works as follows: on rising edge of either OILO1 or OILO2, 
depending on which signal is in phase advance (OILO1 for positive VS and OILO2 for negative 
VS), the counter starts counting and it is incremented at each rising edge of the counter clock. 
Counting stops at the rising edge of the other OILO and the value stored in the counter is then 
proportional to tpw which is in turn proportional to the sensor output voltage VS. After each 
cycle, the counter output is stored in a register and then, counter is reset till the next enable 
signal (i.e., the next rising edge of either OILO1 or OILO2). The TDC resolution is defined by the 
counter clock frequency; higher is this frequency, higher is the resolution. This is obvious 
from the expression of the digital output of the sensor interface: 

𝑁 =
𝑡௣௪

𝑇௖௢௨௡௧௘௥
=

𝑇௟௢௖௞

𝑇௖௢௨௡௧௘௥
 
∆𝛷௢௨௧

2𝜋
 =

𝑓௖௢௨௡௧௘௥

𝑓௟௢௖௞

|𝛷ூ௅ைଶ − 𝛷ூ௅ைଵ|

2𝜋
      (2.20)    

In the proposed architecture of the sensor interface, counter clock and locking signal 
are both generated from the same reference oscillator OscRef. The counter clock frequency is 
generated using a PLL as a frequency multiplier, while the locking signal is obtained by 
means of a frequency divider. This choice is made in order to reduce the multiplication factor 
of the PLL for the sake of its bandwidth. In fact, it is highly desirable to increase the PLL 
bandwidth in order to cancel out the phase noise of the voltage-controlled oscillator in the 
largest possible bandwidth.  

Figure 2.10 depicts the timing diagram of the sensor interface. Only the case of 
positive sensor output voltage is presented. When VS increases, f01 increases, while f02 
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decreases. Since the ILO phase shift is inversely proportional to the ILO free running 
oscillation frequency (Equation (2.9)), ΦILO1 decreases and ΦILO2 increases for a positive VS. 
For negative VS, the opposite happens. Therefore, an additional bit is added to the TDC output 
to determinate the sign of VS by detecting which ILO is in phase advance with respect to the 
other one.  

 

Figure 2.10: Timing diagram of the sensor interface architecture. 

2.2.3. Thermal stability 

Since digital signals are highly immune to temperature variations, the proposed time 
domain architecture is expected to exhibit a low temperature dependence.  

Regardless of the topology of oscillators, the sensor interface output is a function of 
the ratio of its parameters rather than their absolute values. That is why, the architecture of the 
sensor interface is supposed to be thermally stable.  

As expressed in equation (2.21), the digital output, and thus its thermal stability, 
depends on the ratio of two frequencies (fcounter/flock) and on the difference of two phase shifts 
(ΦILO2-ΦILO1).  

2.2.3.1. Thermal stability of the ratio fcounter /flock 

The counter frequency and the locking signal are both generated from the same 
reference oscillator. Then, the thermal stability of the ratio (fcounter/flock) depends on the 
thermal stability of the frequency division and the frequency multiplication factors, D and M 
respectively. The frequency divider, used to generate the locking signal, is a digital circuit. 
Hence, it is thermally stable. The multiplicative PLL is a closed loop circuit. Then, it achieves 
the same multiplication factor over the temperature range. Therefore, the ratio (fcounter/flock) is 
temperature independent. 
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2.2.3.2. Thermal stability of ∆Φout 

The output phase shift ∆Φout is defined as the difference between the phase shifts of 
two ILOs. Since both ILOs have the same topology; they present the same thermal 
dependence and hence, their phase shifts ΦILO2 and ΦILO1 have the same thermal drift. 
Therefore, thanks to the differential architecture, the difference of phase shifts (∆Φout = ΦILO2 

- ΦILO1) is not affected by temperature variations. 

2.2.3.3. Effect of process variations on thermal stability  

The differential architecture offers a good immunity against process variations. Both 
oscillators will have the same sensitivity to temperature over process variations. Hence, the 
phase shifts of the two ILOs, ΦILO1 and ΦILO2, are expected to have similar temperature 
dependence whatever are the process parameters. Therefore, the sensor interface output which 
is defined as the difference between the ILOs phase shifts (ΦILO2 - ΦILO1) has a good thermal 
stability regardless of the process parameters. Of course, mismatches between both ILOs may 
induce some mismatches in thermal dependence.   

As a conclusion of previous subsections 2.2.3.1, 2.2.3.2 and 2.2.3.3, the presented 
sensor interface architecture achieves a low sensitivity to temperature variations over a wide 
temperature range. 

2.2.4. Resolution of the sensor interface 

Resolution of the sensor interface is defined by the ratio of two parameters: the full 
scale of the output time delay tpw (equivalent to the output phase shift ∆Φout) and the 
minimum detectable delay.  

The full scale of the delay tpw is the maximum pulse width of the obtained PWM 
signal. It is equal to the half period of the ILO output (or of the locking signal because 
TILO=Tlock): 

𝑡௣௪ಷೄ
=

𝑇௟௢௖௞

2
=

1

2 𝑓௟௢௖௞
     (2.21) 

The minimum detectable time delay is the smallest pulse width value that the counter 
is able to measure. It corresponds to the counting period Tcounter. 

Then, the resolution of the sensor interface is defined by the ratio of the counter 
frequency and the locking frequency as expressed in (2.22): 

2ோ௘௦௢௟௨௧௜௢௡ =
𝑡௣௪ಷೄ

𝑇௖௢௨௡௧௘௥
=

1

2

𝑓௖௢௨௡௧௘௥

𝑓௟௢௖௞
     (2.22) 

where Resolution is considered as an equivalent number of bits.  

Due to the use of a common reference oscillator, both frequencies of the above 
equation can be expressed as: 
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𝑓௟௢௖௞ =
𝑓ோ௘௙

𝐷
     (2.23) 

𝑓௖௢௨௡௧௘௥ = 𝑀 𝑓ோ௘௙      (2.24) 

where D is the frequency division factor, M is the PLL multiplication factor and fRef is the 
reference oscillator frequency. Therefore, it can be written:  

2ோ௘௦௢௟௨௧௜௢௡ =
1

2
. 𝑀. 𝐷     (2.25) 

Finally, as expressed in equation (2.25), the resolution of the sensor interface is 
defined by the PLL multiplication factor M and the frequency division factor D.  

2.2.5. Limitation of the proposed sensor interface architecture 

The presented architecture is adapted to any type of ILOs (i.e., harmonic and non-
harmonic). However, its overall linearity is limited by the non-linearity of the ILOs. 

In fact, based on the Huntoon and Weiss study on the phase shift of harmonic ILOs, 
the ILO phase shift follows an arcos function of (flock-f0). Hence, the linear range of the ILO 
phase shift is limited to a phase shift range of π/2 (Figure 2.5) (i.e., the linear range is limited 
to very small differences between the locking frequency flock and the ILO free running 
frequency f0). This limited linear behaviour of the ILO decreases the linear range of the PWM 
sensor interface based on harmonic ILOs to the half of the full scale. 

2.3. Conclusion 

The proposed sensor interface is based on a time-domain and fully differential 
architecture. It converts the sensor output voltage into a digital output and takes benefit of the 
properties of Injection Locked Oscillators when used as phase shifters. The presented 
architecture is generic and it could be adapted to any type of ILOs.  

Time domain architecture leads to a quasi-digital circuit. This ensures better 
immunity to noise. In addition, differential architecture makes the sensor interface depend on 
ratios of the circuit parameters instead of their absolute values: low dependence to 
temperature is then expected.  

However, the overall linearity of the sensor interface is limited by the non-linearity of 
the ILO. The linearity range of this PWM sensor interface based on harmonic ILOs is limited 
to the half of the output full scale because of the limited linear range of harmonic ILOs. 
Therefore, an ILO with an extended linear range is required to improve the linear 
behaviour of the sensor interface.  
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This chapter describes the process of designing the high temperature sensor interface 
presented in chapter 2; its specifications and its implementation using Relaxation Injection 
Locked Oscillators (RILO) that has been chosen because of their extended linearity range 
compared to harmonic ILOs. 

Section 3.1 introduces the applicative context of the sensor interface. Section 3.2 
justifies the choice of a RILO and presents its topology. The architecture of the RILO based 
sensor interface is presented in section 3.3. A behavioural model of the sensor interface has 
been developed in order to validate the architecture and the parameters values of its 
constitutive blocks. Section 3.4 details the implementation of the constitutive blocks 
considering the high temperature environment. Finally, simulation results over a wide 
temperature range are reported in section 3.5; they show that the sensor interface has an 
excellent thermal stability. 

3.1. Context of the sensor interface circuit and specifications 

The application of the sensing system consists in measuring the current for the control 
and monitoring of electrical engines. Precisely, the sensing system is used to measure the 
current that flows inside the power drivers controlling electrical engines.   

The current sensor is based on Giant Magneto Resistances (GMR). It works as 
follows: the current induces a magnetic field and the GMR value changes as a function of this 
magnetic field (Ouyang et al. 2012) (Figure 3.1). A GMR current sensor from NVE (Figure 
3.1), “component of the shelf”, was chosen because it has a large temperature range. This 
sensor is connected as a Wheatstone bridge and delivers a differential voltage as a function of 
the measured current.  

 

GMR current sensor (Ouyang et al. 2012)         GMR sensor from NVE (“NVE AA and AB-Series Analog Sensors” n.d.) 
Figure 3. 1: Illustration of current measurement using GMR based current sensor. 

The measured current is converted into a magnetic field according to the following 
equation: 

𝐵 =
µ଴𝐼௠௘௔௦௨௥௘ௗ

2𝜋𝑟
      (3.1) 

where µ0 is the magnetic permeability constant, equal to 4π10-7 T.m/A, and r is the distance 
between the sensor and the electrical wire. 
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Since the current sensor has a 4.2mV/Oe typical sensitivity with a 1.2V excitation 
voltage, knowing that in an environment having a relative permeability of 1, B(T)=10-4H(Oe), 
the sensor output voltage is related to the magnetic field by the following equation:  

𝑉ௌ(𝑉) = 42 𝐵     (3.2)  

Consequently, replacing equation (3.1) into (3.2), the sensor output voltage VS can be 
written as a function of the measured current as follows: 

𝑉ௌ (𝑚𝑉) = 8.4 
𝐼௠௘௔௦ 

𝑟 (𝑖𝑛 𝑚𝑚)
      (3.3) 

Taking r = 1.4 mm, equation (3.3) is written as: 

𝑉ௌ (𝑚𝑉) = 6 𝐼௠௘௔௦       (3.4)  

Taking into account a full scale of current of ±11A, the sensor output voltage has 
±66 mV full scale.  The minimum detectable current must be in the order of 5 mA, this means 
that the current must be measured with 11 bits of resolution (11A/211=5.37mA) plus one bit of 
sign. This also means that the so-obtained ADC needs a gain of 31 LSB/mV (211/66). 

The sensing system will be used to measure the current flowing inside the power 
drivers of industrial engines. Hence, the overall sensing system is exposed to high 
temperatures (the operation temperature may exceed 200°C). This harsh operation 
environment must be taken into account in the design of the sensor interface.  

3.2. Architecture of the Injection Locked Oscillator  

3.2.1. Harmonic versus non- harmonic Injection Locked Oscillators  

Considering any kind of electrical ILO, the phase shift of the ILO output with respect 
to the locking signal is a function of the difference between the free running oscillation 
frequency f0 and the locking frequency flock. Harmonic ILOs (HILOs) suffer from reduced 
linear range. In fact, as expressed in previous chapter (Equation (2.9)), the phase shift of 
HILOs is an arcos function of (flock - f0) and therefore the linear range of HILOs is limited 
(i.e., the linear behaviour is limited to a phase shift range of π/2). Therefore, phase shifters 
and hence sensor interfaces based on HILOs exhibit a limited linear range. 

That is why, to achieve a good linear behaviour, relaxation ILOs (i.e., non-harmonic 
ILOs) seem to be good candidates because they rely on the charge and discharge of capacitors 
with a constant current. Their behaviour is then linear by nature. 

Moreover, the use of relaxation ILOs (RILOs) offers additional advantages. They have 
higher locking range than harmonic ILOs because relaxation oscillators have low quality 
factor compared to harmonic oscillators (Razavi 2004)  (Zhou and Yuan 2015). This leads to 
higher resolution bandwidths where the ILO rejects the noise of its components. Besides, 
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RILOs offer easier integration for low oscillation frequencies making them more adapted for 
low bandwidth applications, which is our case.  

Motivated by these advantages, it has been decided to use RILOs in the sensor 
interface presented in chapter 2. 

3.2.2. Architecture of Relaxation Injection Locked Oscillator 

3.2.2.1. Topology of the Relaxation Injection Locked Oscillator 

3.2.2.1.1. Relaxation free running oscillator 

The free running oscillator is the relaxation oscillator presented in figure 3.2 (F. 
Badets et al. 2004). It is based on the alternate charges of two capacitors C1 and C2 with the 
same current; when one capacitor is charged, the other capacitor is grounded. The voltage 
across the charged capacitor is compared with a reference voltage (here the switching voltage 
of an inverter). The time duration required to reach this reference, which depends on the 
capacitor value and the charge current, defines the oscillation period. 

 

Figure 3.2: Schematic of relaxation free running oscillator. 

In order to explain the operation principle of the free running oscillator, the output of 
the oscillator OILO is assumed equal to zero at initial state. Therefore, the output of the flip flop 
DFF is at high logic level. Hence, M1 is on while M0 is off. The voltage UC2 across C2 
capacitor is grounded while the capacitor C1 is charged by the bias current I0. The voltage 
across C1 increases from zero to the switching voltage of the inverter inv1. At this time, the 
reset signal R goes to “1”; the DFF is reset, its logic output is low and the ILO output is high. 
This turns off M1 and turns on M0. The voltage across C1 is grounded while the capacitor C2 is 
charged by the bias current I0 until the switching voltage of inv2. When this voltage is reached, 
a rising edge appears at the clock input of the DFF, the flip-flop copies its input signal, which 
is at high logic level, and output switches from 1 to 0.  
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This cycle is repeated continuously, which makes ILO output oscillate between low and 
high logic levels with a frequency defined by the current source, the capacitance and the 
switching voltage of both inverters.  

The duty cycle of the obtained output signal is defined by capacitances C1 and C2 
(Equation (3.5)). Therefore, in order to obtain a 50% duty cycle, identical values are adopted 
for C1 and C2 (assuming that both inverters have identical switching voltage and both current 
sources are the same). 

𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 =
𝐶ଶ

𝐶ଶ + 𝐶ଵ
      (3.5) 

Figure 3.3 shows the timing diagram of the relaxation free running oscillator for two 
identical capacitances.  

 

Figure 3.3: Timing diagram of the free running oscillator. 

The oscillation frequency of the relaxation free running oscillator is given by: 

𝑓଴ =  
 𝐼଴

2 𝐶 𝑉௧௛
      (3.6) 

where C is the capacitance of C1 and C2 and Vth is the switching voltage of the inverters. 

3.2.2.1.2. Relaxation oscillator under injection locking 

A circuit based on a differential pair is used to lock the free running oscillator 
frequency to the frequency flock of an external signal Vlock (F. Badets et al. 2004) by 
modulating the charging currents of the capacitors which define the oscillation frequency. The 
locking is performed by varying periodically the capacitors charge current to make the 
average charging current equal to the current that makes the oscillator run at the locking 
frequency flock. This current is from now refereed as Ich and it is given by: 

𝐼௖௛ = 2 𝑓௟௢௖௞ 𝐶 𝑉௧௛        (3.7) 

Figure 3.4 shows the topology of the ILO; the free running oscillator and the locking 
circuit. 
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Figure 3. 4: Schematic of the Relaxation Injection Locked Oscillator. 

A locking current is added or subtracted to the nominal capacitor charging current I0 
according to the value of Vlock. For example, at high level of Vlock, a current I0-Ilock flows into 
C2, while a current I0+Ilock charges C2 at low level of Vlock (Figure 3.5).  However, the 
capacitor C2 is charged only when the ILO output is at high level. Hence, in order to be able to 
adjust the charge current by adding and subtracting the locking current, the ILO output OILO 

and the locking signal Vlock should not have the same phase.  

 

Figure 3.5: Timing diagram of the Injection Locked Oscillator. 

Table 3 presents the charge current of the two capacitors C1 and C2 according to the 
logic level of OILO and Vlock.  

Table 3. Charging current of the two capacitors. 

OILO Vlock C1 C2 
0 0 I0+Ilock X1 
0 1 I0-Ilock X1 
1 1 X1 I0-Ilock 
1 0 X1 I0+Ilock 

1  X means that the capacitor is grounded. 
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Based on figure 3.5, the average charge current of C2, Iaverage, is expressed as a function 
of the time delay td between OILO and Vlock , the nominal charge current I0, the locking current 
Ilock and the locking period Tlock (Figure 3.5). 

𝐼௔௩௘௥௔௚௘ =
(𝐼௟௢௖௞ + 𝐼଴)𝑡ௗ + (𝐼଴ − 𝐼௟௢௖௞)(

𝑇௟௢௖௞

2
− 𝑡ௗ)

𝑇௟௢௖௞

2

= 𝐼଴ + 𝐼௟௢௖௞(4
𝑡ௗ

𝑇௟௢௖௞
− 1)        (3.8) 

The time delay td, equivalent to the phase shift of the ILO output with respect to the 
locking signal, is comprised between 0 (obtained if Iaverage=I0-Ilock) and Tlock/2 (obtained if 
Iaverage=I0+Ilock). 

3.2.2.2. Phase shift of the Relaxation Injection Locked Oscillator 

The locking process sets the time delay between the ILO output OILO and the locking 
signal Vlock to the right delay that ensures an average charge current equal to Ich. Therefore, 
using equations (3.7) and (3.8), it can be written:  

𝐼଴ + 𝐼௟௢௖௞(4
𝑡ௗ

𝑇௟௢௖௞
− 1)   =  

2 𝐶 𝑉௧௛

𝑇௟௢௖௞
      (3.9) 

The time delay td and hence the phase shift of the ILO output ΦILO with respect to the 
locking signal can be derived from equation (3.9): 

𝑡ௗ =
𝐶 𝑉௧௛

2 𝐼௟௢௖௞
−

𝑇௟௢௖௞

4
൬

𝐼଴

𝐼௟௢௖௞
− 1൰      (3.10) 

𝛷ூ௅ை =
2𝜋 𝑡ௗ

𝑇௟௢௖௞
=

𝜋

2
+

𝜋

 2𝐼௟௢௖௞
൬

 2𝐶 𝑉௧௛

𝑇௟௢௖௞
− 𝐼଴൰  (3.11)  

Knowing that: 𝑓଴ =
ூబ

ଶ ஼ ௏೟೓
 (cf. equation (3.6)); the ILO phase shift is given by: 

𝛷ூ௅ை =
𝜋

2
+  

𝜋 𝐶 𝑉௧௛

𝐼௟௢௖௞
 (𝑓௟௢௖௞ − 𝑓଴)      (3.12) 

Equation (3.12) shows that the phase shift of the RILO is a linear function of (flock-f0). 
This proves the extended linear range of RILOs compared to their harmonic counterparts 

whose phase shift is 𝛷ூ௅ை = 𝑎𝑟𝑐𝑜𝑠 ቀ
ଶ(௙೗೚೎ೖି௙బ)

∆ி
 ቁ. 

From equation (3.11), it can be noticed that the phase shift of the RILO is also a linear 
function of the ILO bias current I0. Then, once this ILO is used in the sensor interface, if the 
ILO bias current is a linear function of the sensor output voltage VS, the ILO phase shift will 
be highly linear with respect to VS.  

3.2.2.3. Locking range of the Relaxation Injection Locked Oscillator 

The locking range of ILOs is defined by the locking frequency range where the ILO 
output is able to be locked on the locking signal (i.e., the ILO output runs at flock) (Huntoon 
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and Weiss 1947). It is limited by a lower locking frequency FL and an upper locking 
frequency FH. FL is defined by a zero phase shift between OILO and Vlock (i.e., td = 0) and FH is 
defined by a π phase shift between OILO and Vlock (i.e., td = Tlock/2). Hence, FL and FH are 
obtained from (E.Chabchoub et al. 2017): 

0 =
𝐶 𝑉௧௛

2 𝐼௟௢௖௞
−

1

4 𝐹௅
൬

𝐼଴

𝐼௟௢௖௞
− 1൰      (3.13) 

𝑇௟௢௖௞

2
=

𝐶 𝑉௧௛

2 𝐼௟௢௖௞
−

1

4 𝐹ு
൬

𝐼଴

𝐼௟௢௖௞
− 1൰      (3.14) 

Hence, FL and FH are expressed as: 

𝐹௅ =
𝐼଴ − 𝐼௟௢௖௞

2𝐶𝑉௧௛
= 𝑓଴ −

𝐼௟௢௖௞

2 𝐶 𝑉௧௛
      (3.15) 

𝐹ு =
𝐼଴ + 𝐼௟௢௖௞

2𝐶𝑉௧௛
= 𝑓଴ +

𝐼௟௢௖௞

2 𝐶 𝑉௧௛
      (3.16) 

Consequently, the RILO locking range is given by this equation: 

∆𝐹 = 2
𝐼௟௢௖௞

2 𝐶 𝑉௧௛
= 2

𝐼௟௢௖௞

𝐼଴
𝑓଴     (3.17) 

Equation (3.17) shows that the locking range is a function of the ILO topology (i.e., 
the capacitors value and the inverters threshold voltage Vth), its free running frequency f0, its 
biasing current I0 and the locking signal strength (i.e., the locking current Ilock).  

3.2.2.4. Simulation of the Relaxation Injection Locked Oscillator (locking range and phase 
shift) 

The RILO has been designed using a 0.18µm Partially-Depleted-Silicon-On-Insulator 
(PD-SOI) technology. The ILO parameters are the locking current Ilock, the locking frequency 
flock and the capacitance value C. The capacitance value C and the locking frequency are fixed 
to 10pF and 35kHz respectively. A locking current of 400nA is chosen to limit the ILO power 
consumption.  

3.2.2.4.1. Simulation of the locking range 

In order to characterise the ILO locking range (i.e., the range of flock where the ILO is 
locked), we vary flock while the free running oscillation frequency f0 is kept constant (at 35kHz 
for example). 

According to equation (3.17), the theoretical locking range ∆F is equal to 40kHz and it 
should be ranged from 15kHz (i.e., f0-∆F/2) to 55kHz (i.e., f0+∆F/2). Figure 3.6 shows some 
simulations of the output signal for locking frequencies ranging from 15 kHz up to 55kHz. It 
is demonstrated that the locking range is equal to 39kHz and that it is extended from 16 kHz 
up to 55kHz. Reversely, there is no locking for frequencies below 16 kHz (Figure 3.6.a) and 
above 55kHz (Figure 3.6.d). 
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Figure 3. 6: Simulation of the Relaxation Injection Locked Oscillator for different locking frequencies. 

3.2.2.4.2. Simulation of the phase shift 

In order to simulate the ILO phase shift, its locking frequency flock is fixed to 35kHz 
while its free running oscillation frequency f0 is swept from about 16kHz up to 55kHz by 
sweeping its bias current I0 (from 320nA to 1.1µA). 

Figure 3.7 reports the obtained phase shift, ΦILO, as a function of (flock- f0). A good 
linear behaviour is obtained; the maximal linearity error is of 0.046% and the goodness-of-fit 
of the linear regression is of 0.9996 (R2).  

 

Figure 3.7: Phase shift of Relaxation Injection Locked Oscillator.  

Simulation results of the last two sub-sections are in good agreement with the previous 
theoretical study. It is also confirmed that RILOs have a very good linearity over the entire 
locking range.  
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3.3. High temperature sensor interface using Relaxation Injection 
Locked Oscillators 

3.3.1. Architecture of the proposed sensor  

Figure 3.8 presents a detailed architecture of the proposed high temperature sensor 
interface. Compared to the previously given architecture (Figure 2.9), a Transconductance 
amplifier is added to perform the voltage-current conversion, and this in order to be able to 
control the RILOs free running oscillation frequencies by the sensor output voltage VS. In 
addition, a Bias block has been added to generate all biasing currents of the sensor interface; 
the locking current Ilock, the bias current of the Transconductance Amplifier (TA) IGM and the 
bias current of the reference oscillator IoscRef.  

 

Figure 3.8: Sensor interface circuit based on Relaxation ILOs.  

This interface converts the differential output voltage of the sensor into a pair of 
currents I01 and I02 thanks to a Transconductance Amplifier (TA). Both currents are then used 
to control the free running frequencies of both ILOs. The TA output currents (I01 and I02) vary 
symmetrically as a function of the sensor output voltage VS; this makes the free running 
frequencies of ILO1 and ILO2 (f01 and f02 respectively) also vary symmetrically. Ilock being 
constant, a phase shift difference appears between both ILOs outputs as soon as I01 and I02 are 
not equals; the sensor output voltage then drives proportionally and symmetrically the phase 
shifts of both ILOs (ΦILO1 and ΦILO2 which are respectively the phase shifts of ILO1 and 
ILO2). The difference ΦILO2-ΦILO1 is hence a function of the sensor output voltage. 

3.3.2. Behavioural modelling of the RILO based sensor interface  

A behavioural model has been developed using Verilog AMS, a high level modelling 
language. This model is developed in order to validate the overall architecture of the sensor 
interface from a behavioural point of view. Furthermore, it is used to validate the circuit 
parameters and the specification of its blocks. 
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3.3.2.1. Behavioural modelling of elementary blocks  

Figure 3.9 presents the behavioural model of the sensor interface where the 
constitutive blocks are considered as non-bandwidth-limited linear transfer functions (i.e., the 
bandwidths of these blocks are higher than that of the overall sensor interface).  

 
Figure 3.9: Illustration of the sensor interface behavioural model. 

 Transconductance amplifier (TA): the TA generates two symmetrical currents I01 and I02 
as follows:  

𝐼଴ଵ = 𝐼 ெ + 𝐺௠ 𝑉௦     (3.18) 

𝐼଴ଶ = 𝐼 ெ − 𝐺௠ 𝑉௦      (3.19) 

where Gm is the transconductance (its gain) of the TA block. 

 Injection locked oscillator (ILO): the ILO is modelled considering that its input is the bias 
current I0 and its output is the phase shift ΦILO as follows: 

𝛷ூ௅ை = 𝜋( 
 𝐶 𝑉𝑡ℎ

𝐼𝑙𝑜𝑐𝑘
 𝑓𝑙𝑜𝑐𝑘 +

1

2
 ) −

𝜋

2 𝐼௟௢௖௞
𝐼଴            (3.20)     

where Ilock is the ILO locking current. 

 The counter encodes the phase shift difference (ΦILO2 - ΦILO1) into a digital output N: 

𝑁 =
 𝑓

𝑐𝑜𝑢𝑛𝑡𝑒𝑟

2𝜋 𝑓௟௢௖௞

( 𝛷𝐼𝐿𝑂2 − 𝛷𝐼𝐿𝑂1)     (3.21) 

where fcounter and flock are respectively the counter clock frequency and the locking frequency. 

From the two last equations, the digital output of the sensor interface is given by: 

𝑁 =
1

4 𝐼௟௢௖௞

 𝑓௖௢௨௡௧௘௥

𝑓௟௢௖௞

( 𝐼଴ଵ − 𝐼଴ଶ)     (3.22) 

Then, the transfer function TF of the sensor interface circuit is expressed as: 
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𝑇ி =
𝑁

𝑉ௌ
=

𝐺𝑚

2 𝐼௟௢௖௞

 𝑓
𝑐𝑜𝑢𝑛𝑡𝑒𝑟

𝑓௟௢௖௞
       (3.23) 

 Frequency generation: locking and counter frequencies are generated from the frequency 
reference fRef. This latter is generated by means of an auxiliary oscillator not considered in 
the behavioural model. 

𝑓௟௢௖௞ =
𝑓ோ௘௙

𝐷
      (3.24) 

𝑓௖௢௨௡௧௘௥ = 𝑀𝑓ோ௘௙      (3.25) 

3.3.2.2. Identification of model parameters  

From the previous set of equations, it is possible to identify a list of parameters that 
will determine the sensor interface specifications. Knowing that some parameters have been 
previously fixed (C=10pF, Vth=1V, flock =35kHz and Ilock=400nA), five parameters must be 
determined: 

- The TA gain Gm and its bias current IGM  
- The counter frequency fcounter  
- The PLL multiplication factor M  
- The division factor of the frequency divider D  

 Value of IGM 

Based on equations (3.18) and (3.19), IGM defines the value of I01 and I02 at zero VS, 
which in turn defines the free running oscillation frequency of the ILOs at zero VS. 

The sensor interface is designed so that, at zero VS, the phase shifts of both ILOs 
would be equal to π/2. Based on equation (3.12), this is obtained if, at zero VS, the free 
running frequencies of ILO1 and ILO2, f01 and f02 respectively, are equal to the locking 
frequency flock (i.e., f01(Vs=0) = f02(Vs=0) = flock =35kHz). f01(Vs=0) and f02(Vs=0) are defined by the 
bias current of ILO1 and ILO2 at zero VS, I01(Vs=0) and I02(Vs=0) respectively (f01(Vs=0) =I01(Vs=0) 

/2CVth and f02(Vs=0) =I02(Vs=0) /2CVth). Therefore: 

𝐼଴ଵ(௏௦ୀ଴) = 𝐼଴ଶ(௏௦ୀ଴) = 2 𝐶 𝑉௧௛𝑓௟௢௖௞      (3.26) 

Consequently, the TA bias current must be equal to 2CVth flock which is of 700nA. 

𝐼 ெ = 700𝑛𝐴 

 Value of Gm 

The transconductance Gm is expressed as the following (Equations (3.18) and (3.19)): 

𝐺௠ =
𝐼଴ଵ − 𝐼଴ଶ

2 𝑉ௌ
      (3.27) 
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Then, Gm is defined according to the full scale of (I01 – I02) and the full scale of the 
sensor output voltage 𝑉௦ಷೄ

. This latter is a specification of the sensor interface.  

In order to determine the full scale of (I01 – I02), let’s take for example the case where 
VS is positive. I01 can vary only from IGM (at zero VS) until a maximum current I0max giving a 0 
rad phase shift (ILO1 for positive VS). I02 can vary only from IGM (at zero VS) until a minimum 
current I0min giving a π rad phase shift (ILO2 for positive VS). Then, it can be written:  

𝐼଴ଵಷೄ
= 𝐼଴୫ୟ୶ − 𝐼 ெ       (3.28) 

𝐼଴ଶಷೄ
= 𝐼 ெ − 𝐼଴௠௜௡      (3.29) 

By analogy, for a negative VS: 

𝐼଴ଵಷೄ
= 𝐼 ெ − 𝐼଴௠௜௡      (3.30) 

𝐼଴ଶಷೄ
= 𝐼଴୫ୟ୶ − 𝐼 ெ       (3.31) 

Hence, for both positive and negative VS, 

|𝐼଴ଵ − 𝐼଴ଶ|ிௌ =  𝐼଴௠௔௫ −  𝐼଴௠௜௡      (3.32) 

Using equation (3.11), these currents are expressed as: 

𝐼଴௠௜௡ =
2 𝐶 𝑉௧௛

𝑇௟௢௖௞
− 𝐼௟௢௖௞      (3.33) 

𝐼଴୫ୟ୶ =
2 𝐶 𝑉௧௛

𝑇௟௢௖௞
+ 𝐼௟௢௖௞      (3.34) 

 Therefore, it can be concluded that: 

|𝐼଴ଵ − 𝐼଴ଶ|ிௌ =  𝐼଴௠௔௫ − 𝐼଴௠௜௡ = 2 𝐼௟௢௖௞        (3.35) 

Consequently, the transconductance is defined as:  

𝐺௠ =
|𝐼଴ଵ − 𝐼଴ଶ|ிௌ

 2   𝑉௦ಷೄ

=  
𝐼௟௢௖௞

 𝑉௦ಷೄ

      (3.36)  

where 𝑉௦ಷೄ
 is the full scale of the sensor equal to ±66mV according to the sensing system 

specifications (section 3.1). Then: 

𝐺௠ =  6.06µA/V  

 Values of fcounter, M and D 

The counter frequency is chosen in order to satisfy the required resolution of 11 bits. 
This resolution is defined by the ratio fcounter/2flock. Hence, a counter frequency that is 4096 
times the locking frequency is required. Since the locking frequency is equal to 35kHz, the 
counter clock frequency is:  

𝑓௖௢௨௡௧௘௥ = 143.36𝑀𝐻𝑧 



68 
 

The 4096 factor between the locking and the counter frequency is obtained by means 
of the frequency multiplier and the frequency divider: 

𝑀. 𝐷 = 4096      (3.37) 

A multiplication factor of 256 is chosen in order to decrease the bandwidth constraint 
of the PLL. Hence, the reference oscillator must run at 560kHz and the frequency divider 
factor must be equal to 16 (in order to generate a 35kHz locking frequency). 

3.3.2.3. Simulation of the behavioural model 

 The behavioural model has been simulated using Cadence Virtuoso. Simulation results 
are presented in figure 3.10; it depicts the digital output as a function of the differential input 
VS. This voltage is swept from -66mV to 66mV as defined in the circuit specifications. 

 

Figure 3.10: Simulation of the behavioural model (Digital output N as a function of 𝑽𝒔).  

Obtained results are in good agreement with our expectations. Required specifications 
are obtained; a gain of 31.026LSB/mV corresponding to a resolution of 11 bit. A bit sign is 
used to discriminate positive and negative values of Vs. 

3.4. Design of the sensor interface 

3.4.1. Transconductance amplifier 

The Transconductance Amplifier (TA) must generate two symmetrical output currents 
I01 and I02; whose difference (I01- I02) is proportional to the input differential voltage VS.  I01 is 
the bias current of ILO1 and I02 is the bias current of ILO2. 

Since the TA is the first block in the sensor interface, it must be highly linear so that 
the sensor interface would achieve a good linearity. The straightforward implementation of a 
transconductance amplifier consists in using a differential pair. The so-obtained 
transconductance is equal to the transistor transconductances. Since, this topology of TA is 
highly non-linear (Sansen 2006), a degenerated TA is preferred because it has an extended 
linearity range (Elamien and Mahmoud 2016) (L and Yagain 2011).  
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Figure 3.11 depicts two well-known topologies of a degenerated TA. Both 
configurations are similar in terms of power consumption, transconductance and linearity 
rang. The first topology (Figure 3.11.a) has been selected because it has a higher input full 
scale (Sansen 2006).  

 

                        (a) First architecture                                                                  (b) Second architecture 
Figure 3.11: Possible architectures of degenerated TA. 

The transconductance of the selected TA is given by: 

𝐺௠ =
1

𝑅ீெ
      (3.38)  

According to section 3.3.2.2, a transconductance of 6.06µA/V, equivalent to a 
resistance RGM of 165kΩ, is required.  A P+poly resistance is used to implement RGM. 

The linearity range of the degenerated TA can be extended by means of some 
linearization techniques. One of the most common techniques is the local feedback that is 
implemented using operational amplifiers (OPA) as shown in figure 3.12. The feedback is 
realized by connecting the inverting input of each OPA to the source of each input transistor. 
By doing this, VS is applied across RGM and the current flowing through RGM is proportional to 
VS over a large range of voltage magnitudes.  

 

Figure 3.12: Degenerated TA with local feedback. 

Special attention has to be paid to the design of currents mirrors to have identical 
currents flowing inside M1 and M2 (so that the TA output currents would be equal at VS=0). 
Hence, transistors M1 and M2 must be well matched; in addition, small-signal output 
resistance of M1 and M2 must be large enough to avoid a significant change in IM1 and IM2 
with VS. These two constraints lead to large dimensions for M1 and M2. Assuming that 
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IM1=IM2=IGM over the full range of VS, we can now express the output currents of the TA as 
follows: 

𝐼଴ଵ = 𝐼ீெ + 𝑉ௌ 𝑅ீெ⁄      (3.39) 

𝐼଴ଶ = 𝐼ீெ − 𝑉ௌ 𝑅ீெ⁄       (3.40) 

Then, the difference between output currents (I01-I02) is given by:  

𝐼଴ଵ − 𝐼଴ଶ = 2 𝑉ௌ 𝑅ீெ⁄ = 2 𝐺௠𝑉ௌ      (3.41) 

In addition, special attention has to be paid to the design of the OPA; a high thermally 
stable gain is required in order to ensure negligible input referred offset voltages over the entire 
operation temperature range. Each amplifier is a two stages differential PMOS operational 
amplifier (Miller amplifier). In order to obtain a high gain, transistors with sufficiently large 
sizes form the input pair and the amplifier is biased with 5µA current. This biasing current is 
obtained from a constant gm bias circuit (Figure 3.13) to improve the thermal stability of the 
gain (Majerus, Merrill, and Garverick 2013) (Wang and Chodavarapu 2015). Indeed, the 
thermal stability of the amplifier gain depends on the gm stability, which in turn depends on 
the temperature coefficient of the resistance Rb. Therefore, a rpoly resistance with a 
temperature coefficient equal to -0.11×10-3/°C has been used to implement Rb.  

 

Figure 3.13: Architecture of the operational amplifier (OPA) using the constant gm bias circuit. 

We have first simulated the OPA frequency response (Figure 3.14.a) for temperatures 
ranging from -40°C up to 250°C. Then, the gain is reported versus temperature (Figure 3.14.b). 
At 27°C, the amplifier has a gain of 65dB, a unity gain frequency of 1.2 MHz and a bandwidth 
of 760 Hz. The amplifier gain varies only of 3.9dB over the full range of temperature.  

 

           (a) Simulated open-loop frequency response                 (b) The amplifier gain as a function of temperature 
Figure 3.14: Simulation result of the open-loop gain of the OPA at different temperatures. 
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We have then studied the linearity of the TA. Figure 3.15.a reports TA output currents 
as a function of the input voltage VS. A good linearity is confirmed by an INL of the 
difference between output currents (I01 - I02) always below than 0.1% (Figure 3.15.b); while an 
INL of 2% is obtained for a typical TA (Figure 3.15.c). 

 

(a)The TA output currents as a function of the input voltage. 

 

                                     (b) INL of designed TA.                                                                        (c) INL of typical TA. 
Figure 3.15: linearity assessment of the designed TA at 27°C. 

 a) output currents, b) INL of the chosen TA and, c) INL of a standard TA. 

The good linearity of our TA is maintained even with the variation of the temperature 
as illustrated on figure 3.16; an INL lower than 0.19% is obtained over the operation 
temperature range which extends from -40°C up to 250°C. 

 

Figure 3. 16: Simulation of the chosen TA over the operation temperature range. 
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3.4.2. Implementation of the reference oscillator  

The reference oscillator is used as an intermediate oscillator from which the locking 
and the counter clock signals are generated, respectively, by means of a frequency divider and 
a frequency multiplier.  As previously mentioned, the reference frequency must be 16 times 
higher than the locking frequency (i.e., 560kHz). 

The reference oscillator must be designed taking into consideration the following 
constraint; the locking frequency flock has to be equal to the free running oscillation frequency 
at zero VS of both ILOs whatever temperature is (f01(Vs=0) = f02(Vs=0) = f0(Vs=0) = flock). This 
equality is required to achieve a maximum full scale of π of the phase shift difference (ΦILO2- 
ΦILO1) over the full temperature range.  This condition can be obtained if the locking and the 
free running frequencies, particularly at zero VS, have the same thermal sensitivity.  

The thermal sensitivity of the locking signal frequency depends on that of the 
reference oscillator frequency (because the digital divider is temperature independent). 
Therefore, it is required for the reference and the free running oscillators to have identical 
thermal variations. This can be obtained if they have both the same topology. The chosen 
topology for the reference oscillator (Figure 3.17) is then identical to the free running 
oscillator (Figure 3.2). Its frequency is then given by: 

𝑓ோ௘௙ =
𝐼௢௦ ೃ೐೑

2 𝐶ோ௘௙ 𝑉௧௛
      (3.42) 

where Vth is the inverter switching voltage (equal to 1V), CRef is the capacitance and IoscRef is 
the bias current. 

 

Figure 3.17: Reference oscillator. 

Nevertheless, the thermal sensitivity of the reference oscillator does not depend only 
on its topology but also on the temperature dependence of its biasing current IoscRef. 
Consequently, this latter must have the same thermal variation as the ILOs bias currents IGM 
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that define f0 at zero VS. A simple solution is to use the same current IGM for the reference 
oscillator and for the free running oscillators. Then:  

𝑓ோ௘௙ =
𝐼 ெ

2 𝐶ோ௘௙ 𝑉௧௛
       (3.43) 

𝑓଴(௏ೄୀ଴) =
𝐼 ெ

2 𝐶 𝑉௧௛
      (3.44)      

where C is the 10pF capacitance used for the RILO. Since the requested ratio between both 
frequencies is 16, regardless of temperature and process variations, capacitance CRef must be 
equal to C/16 (i.e., 0.625pF). 

The reference oscillator has been simulated over a temperature range from -40°C up to 
250°C (Figure 3.18). The targeted frequency (560kHz @27°C) is not reached; assuming an 
exact ratio of capacitances, this may be caused by an effect of the voltage slope on Vth or an 
uncertainty on the current. This will be discussed later.  

 

Figure 3.18: Variation of the reference frequency as a function of the temperature.  

After dividing fRef using the frequency divider, we present in figure 3.19, the simulated 
variations of flock and f0 at zero VS over the full range of temperature. As expected, both 
frequencies have similar temperature dependence; obviously, the slight difference observed 
for fref is translated, after frequency division, into a mismatch of 450 Hz between flock and 
f0(Vs=0). 

 

                      (a) Frequencies versus temperature                                                        (b) Temperature coefficient 
Figure 3.19: Temperature variations of locking signal frequency and free running oscillator frequency at zero VS. 
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3.4.3. Implementation of the biasing block 

The role of the biasing block is to generate the locking current Ilock, the TA bias current 
IGM, the bias current of the reference oscillator IoscRef and the bias currents of the frequency 
multiplier. The biasing block is based on a bandgap voltage reference (BGVR) whose output 
voltage is converted into a reference current, from which the mentioned currents are 
generated.  

3.4.3.1 Bandgap voltage reference  

The bandgap voltage reference (BGVR) generates a temperature independent voltage 
reference; this voltage is generally equal to 1.22V. The principle of the bandgap voltage 
reference, described in figure 3.20, is to compensate the negative temperature dependence 
(CTAT: Complementary To Absolute Temperature) of a p-n junction threshold voltage with a 
positive temperature dependent voltage (PTAT: Proportional To Absolute Temperature). The 
PTAT voltage is generally the amplified difference between the base emitter voltages of two 
forward biased bipolar transistors. The amplification factor K is named as the adjustment 
factor.  

 

Figure 3.20: Principle of the bandgap voltage reference.  

The chosen topology of the bandgap reference voltage is depicted in figure 3.21. The 
PTAT voltage is obtained by means of a pair of bipolar transistors (Q1 and Q2), which are 
biased with the same current. The difference of their base-emitter voltages is expressed as: 

∆𝑉஻ா = 𝑉஻ா − 𝑉஻ாଵ = 𝑉௧ ln ൬
𝐼ௌଶ

𝐼ௌଵ
൰      (3.45) 

where IS1 and IS2 are respectively the saturation current of Q1 and Q2 and Vt is the thermal 
voltage which is expressed as: 

𝑉௧ =
𝑘஻ 𝑇

𝑞
      (3.46) 

where kB is the Boltzmann constant, T is the temperature and q is the elementary charge.  

The objective of the PTAT circuit is to obtain across Rp a voltage drop such as: 

𝑉ோು
= ∆𝑉஻ா + 𝑉௢௙௙௦௘௧ ≈ ∆𝑉஻ா      (3.47) 
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where Voffset is the offset voltage of the amplifier A1. Then, the offset voltage of the amplifier 
A1 must be neglected with respect to ∆VBE. To increase ∆VBE, a ratio IS2/IS1 of 100 is chosen. 
The obtained ∆VBE at 27°C is equal to 120mV. 

The current flowing inside the resistance RP is copied into the resistance RL thanks to 
the M2-M3 current mirror. Hence, the voltage across RL is a PTAT voltage and the obtained 
output voltage is finally expressed as follows: 

𝑉஻ீ = 𝑉஻ாಽ
+

𝑅௅

𝑅௉
 ∆𝑉஻ா      (3.48) 

 

Figure 3.21: Typical architecture of a bandgap voltage reference (BGVR). 

By analogy with figure 3.20, the ratio RL/RP is the adjustment factor K. This factor has 
to be correctly chosen so that the PTAT voltage VPTAT would vary with the same slope as the 
CTAT voltage VBEL. In other words, the adjustment factor is chosen so that: 

ቤ
𝑑𝑉஻ாಽ

𝑑𝑇
ቤ = 𝐾

𝑑(∆𝑉஻ா)

𝑑𝑇
      (3.49) 

where dVBEL/dT =-1.5mV/°C is the thermal derivate of VBEL and d(∆VBE)/dT = 0.39mV/°C is 
the thermal derivate of ∆VBE calculated from: 

𝑑∆𝑉஻ா

𝑑𝑇
=

𝑘஻

𝑞
ln(100)      (3.50) 

Therefore, the required adjustment factor K is equal to 3.85.  

A resistance RP of 15KΩ is then chosen in order to set the current flowing in each 
branch of the BGVR to 8µA under ∆VBE@27°C=120mV. Hence, a resistance RL equal to 
57.75kΩ is required to obtain the required value of K. 
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The designed BGVR has been first simulated using ideal RL and RP resistances (i.e., 
constant with temperature). In this case, the PTAT voltage is perfectly linear with respect to 
the temperature. Figure 3.22 shows the BGVR output voltage as a function of temperature. 
The BGVR exhibits a full scale of variation with temperature of about 12mV for temperature 
ranging from -40°C up to 250°C.  

 

Figure 3.22: Bandgap voltage reference as a function of the temperature using ideal resistances. 

We can notice that the output voltage of the BGVR has a curved thermal variation. 
This is caused by the non-linearity of the base-emitter voltage VBEL with respect to 
temperature. The thermal dependence of VBEL is a sum of a linear component and a non-linear 
one. In the BGVR of figure 3.21, the PTAT voltage is perfectly linear. Hence the non-linear 
component of VBEL(T) is still not compensated.  

To overcome this limitation, designers usually propose to add a non-linear component 
to the  PTAT voltage in order the compensate the non-linear component of VBEL (Jin et al. 
2016). What I propose, is to reduce the thermal non-linearity of the VBEL voltage while 
keeping the PTAT voltage linear with respect to temperature. 

The thermal non-linearity of VBEL is affected by the temperature dependence of its bias 
current Ibias_QL. The temperature dependence of this current depends not only on that of ∆VBE 
but also on that of the resistance RP (Equation (3.51)): 

𝐼௕௜௔௦_ொಽ
= 𝐼௉்஺் =

𝑉ோು

𝑅௉
=

∆𝑉஻ா

𝑅௉
      (3.51) 

Figure 3.23 depicts the non-linearity of VBEL with respect to temperature for different 
temperature coefficient of RP (tc_Rp is swept from -1.5m/°C and +1.5m/°C). It shows that VBEL 
exhibits the lowest thermal non-linearity for a temperature coefficient tc_Rp of -1.5m/°C, which 
is the minimum temperature coefficient available in the design technology. Hence, the 
resistance RP is implemented using a rnp resistance (tc_rnp = -1.5m/°C).  
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Figure 3.23: Thermal non-linearity of VBEL for different temperature coefficients of Rp.  

The same type of resistance is chosen for the resistance RL (i.e., a rnp resistance), and 
this is in order to keep the PTAT voltage, VRL=(RL/RP).(kBT/q).ln(IS2/IS1), linear with respect 
the temperature as explained before. 

Finally, VBEL and VPTAT voltages exhibit close and opposite thermal variations over the 
entire operation temperature range as shown in figure 3.24. 

 

Figure 3.24: temperature sensitivity of VBEL and VRL. 

In the end, the BGVR achieves a thermal variation of 5.72mV over the full 
temperature range from -40°C up to 250°C (Figure 3.25).   
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  Figure 3. 25: Bandgap voltage reference as a function of the temperature. 

We have then studied the robustness of the proposed BGVR with process variations. A 
hundred of Monte Carlo simulations have been performed and we report (Figure 3.26) the 
value of VBG (@27°C, right side) and the full scale of voltage variation ∆VBG (left side). 
Typical values (respectively 1.2V and 5.72mV) and immunity against process variations are 
demonstrated. 

 

           (a) Thermal variation of the BGVR      (b) BGVR output voltage at 27°C 
Figure 3.26: Monte Carlo simulation of the bandgap voltage reference (100 runs). 

3.4.3.2 Biasing block 

Figure 3.27 shows the architecture of the biasing block, which is based on the 
designed BGVR. The biasing block provides a reference current Iref of 700nA from which all 
biasing currents are generated (IoscRef, IGM, Ilock and the PLL input currents). 

 

Figure 3.27: Architecture of the biasing block core. 
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First, the bandgap voltage is attenuated by means of a voltage divider. Then, it is 
converted into a current using a resistance RBG. This architecture has been chosen to reduce 
the value of RBG and thus its surface. This surface optimisation is not detailed here. The 
reference current IRef is expressed as follows: 

𝐼ோ௘௙ =
𝑅ଵ

𝑅ଵ + 𝑅ଶ

𝑉஻ீ

𝑅஻ீ
      (3.52) 

It was decided to divide the bandgap voltage by four; a resistance R1 of 16.6 kΩ and a 
resistance R2 of 50kΩ are then used to respect maximum output current of the follower 
amplifier Amp1. Hence, a resistance RBG of only 430kΩ is required to obtain the required 
700nA reference current in the diode-like MOS transistor.  

From the reference current IRef (Figure 3.28), the TA bias current IGM and the reference 
oscillator bias current IoscRef are generated by means of current mirrors having a unit copy 
factor (M0/M1 and M0/M2) while the locking current Ilock is generated by means of a current 
mirror having a copy factor of 0.57 (M0/M3). IGM, IoscRef and Ilock are expressed as: 

𝐼 ெ = 𝐼ை௦௖ோ௘௙ = 𝐼ோ௘௙ =
1

4
 
𝑉஻ீ

𝑅஻ீ
      (3.53)  

𝐼௟௢௖௞ = 0.57 𝐼ோ௘௙ =
0.57

4
 
𝑉஻ீ

𝑅஻ீ
      (3.54)  

The main constraint of the biasing block is that the bias current of the TA IGM and the 
bias current of the reference oscillator IoscRef must be well matched at all temperatures. In fact, 
this equality is required so that the free running frequency of the ILOs at zero VS would be 
always equal to the locking frequency as explained in section 3.4.2. Consequently, large 
dimensions must be used for M0, M1, M2 and M3.  

 

Figure 3.28: Generation of IGM, IoscRef and Ilock. 

3.4.3.3 Simulation of the biasing block 

The obtained reference current is equal to 693nA at 27°C in typical simulation; which 
is very close to the specification. The difference between this obtained value and the targeted 
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value (i.e., 700nA) explains the difference between the obtained reference frequency and the 
targeted value (Figure 3.18).  

IGM and IoscRef are required to be identical over the operation temperature range. This is 
in order to have the same value for the bias current of the reference oscillator (IoscRef) and the 
ILOs bias current at zero VS (I0(Vs=0)) (I0(Vs=0) is indeed a copy of IGM by means of unit factor 
current mirrors). Figure 3.29 reports the effect of the temperature variation on these currents. 
It shows that IoscRef and I0(Vs=0) have almost the same thermal variation.  

 

Figure 3. 29: IGM and IoscRef as a function of the temperature. 

A slight difference is observed between these currents due to uncertainty on the 
copying factors of the current mirrors. This difference is at the origin of the difference 
between flock and f0(Vs = 0). According to equation (3.12), this difference makes the phase shifts 
of both ILOs at zero VS ΦILO(Vs=0) different from π/2. This affects the full scale of the sensor 
interface as illustrated in figure 3.30.  

 
ΦILO(Vs=0) = π/2      ΦILO(Vs=0) ≠ π/2 

Figure 3. 30: Explanation of the effect of ΦILO(Vs=0) on the full scale of the sensor interface. 
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3.4.4. Implementation of the counter  

The counter is used in order to convert the phase shift difference (ΦILO2 - ΦILO1) into a 
digital output word N of 11 bits plus a bit of sign. Hence, the counting is enabled when Vlock is 
up and only one of the ILO outputs is up (Figure 3.31). The enable signal is written as: 

𝐸஼ = 𝑉௟௢௖௞. [𝐼𝐿𝑂1. 𝑛𝑜𝑡(𝐼𝐿𝑂2) +  𝐼𝐿𝑂2. 𝑛𝑜𝑡(𝐼𝐿𝑂1)]      (3.55) 

 

                                        (a) VS >0                                                                                                        (b) VS <0 
Figure 3.31: Chronograms of the counting enable signal Ec. 

When counting is enabled (i.e., Ec is up), the counter output is incremented at each 
clock period until the counting reaches its end (i.e., Ec falls down).  Then, the counting result 
is saved in a register at the falling edge of the locking signal, and the output of the counter is 
reset and the counter is ready to count again at the next rising edge of the enable signal.  

The counter is able to detect which ILO output is in phase advance. This gives the sign 
of the sensor output voltage VS (which is the input voltage of the sensor interface). Indeed, 
when the output of ILO1 is in phase advance, this means that VS is positive (Figure 3.31). An 
additional lead/lag bit (i.e., the lead/lag between the two ILOs outputs) is used to give the sign 
of VS.  

Hence, a 12 bit digital word is obtained at the output of the counter; 11 bit for the 
digital output N and 1 bit for the lead/lag bit. The main sub-blocks of the counter are: 

  a 11 bits counter made of 11 half adders in series,  

 a detector of rising and falling edges to appear on the locking signal, 

 a sign detector for the sensor output voltage (lead/lag bit). 

Figure 3.32 depicts the sub-block used to detect the falling edge of the locking signal. 
It uses a synchronous DFF flip-flop (D1), which is activated on falling edge of the locking 
signal. The second flip flop D2 is a simple digital buffer which delivers the information about 
the occurrence of the falling edge signal synchronously with the counter clock. The same 
principle is used to detect the rising edge of Vlock. 
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Figure 3.32: Detector circuit of the falling edge of Vlock. 

Figure 3.33 depicts the sub-block used to detect the sign of Vs. A simple DFF 
controlled by the falling edge of Ec is used. From Figure 3.31, it is obvious that when VS is 
positive, the output of ILO1 is up on the falling edge of Ec and then, a high logic level is 
obtained at the output of the DFF (i.e., the lead/lag bit Av=’1’). The delay cell is used for 
delaying the signal OILO1 in order to respect the DFF timing constraint.  

 

Figure 3.33: Generator of the lead/lag bit. 

3.4.5. Implementation of the phase locked loop 

A Phase Locked Loop (PLL) is used to multiply the reference frequency fRef by a 
factor of 256. This block provides the counter clock signal fcounter. 

A PLL consists of five basic elements (Figure 3.34): a phase detector, a charge pump, 
a loop filter, a voltage controlled oscillator and a frequency divider (fin stands for fRef and fout 
stands for fcounter). 

 

 

Figure 3.34: Schematic diagram of the PLL. 

When the PLL is locked, the instantaneous phase difference between the input and the 
feedback signals (fin and ffdb respectively) is constant. Then, since the frequency is the derivate 
of the phase, the input and the feedback signals have the same oscillation frequency (fin=ffdb). 
Since the feedback frequency ffdb is 1/M the output frequency fout, where M is the division 
factor of the frequency divider, we obtain: 



83 
 

𝑓௢௨௧ = 𝑀 𝑓௜௡        (3.56) 

Hence, the division factor M is 256. 

The PLL works as follows: the phase frequency detector (PFD) compares the feedback 
signal to the input signal. It generates a digital output signal that charges or discharges the 
capacitor of the loop filter (LPF). Then, the LPF output voltage, which controls the frequency 
of the VCO, increases and decreases (according to the sign of the frequency difference 
between the input and the feedback signals) until it reaches the value that makes the VCO 
oscillate at the targeted output frequency (i.e., fout = M fin). The PLL is then locked.  

The PLL is required to perform the same multiplication factor over the entire operation 
temperature range and for all process corners. Thanks to its closed loop architecture, as long 
as the PLL is locked, the output frequency is always equal to the input frequency multiplied 
by 256. In order to make sure that the PLL is always locked, it is just required to make sure 
that the VCO can generate a signal whose frequency is 256 times the input frequency for a 
control voltage Vctrl between 0.3V and Vdd-0.3V. This is due to the operation condition of the 
charge pump. More details are presented next. 

3.4.5.1. Phase frequency detector (PFD) 

The PFD is the core element in a PLL, it detects not only the phase difference between 
the feedback and the input signals, but also their frequency difference. One key advantage of 
using a PFD compared to a simple phase detector is that the PFD compares not only the phase 
difference but also the frequency difference. A phase frequency detector avoids a false lock in 
the PLL, in which the PLL may be locked with a wrong input frequency or with a wrong input 
signal phase (e.g., the PLL may lock on a harmonic of the input signal).  

 

Figure 3.35: Phase frequency detector circuit. 

The PFD shown in figure 3.35 is based on D flip-flops. The delay cell, presented by 
the inverter, is used to avoid the dead zone induced by the reset of the two flip-flops. The PFD 
generates two digital signals (“up” and “down”). These signals (Figure 3.36) are then 
converted into analog signals by the charge pump to control the VCO through the loop filter. 
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To illustrate the frequency detection, let’s consider that the ffdb signal is twice the input 
frequency. In this case, the PFD generates a pulse on the up signal whose pulse width is equal 
to the phase difference. The short pulses appeared in the down signal is indeed parasitic picks, 
called “a spur”, and this is due to the delay in the reset path of the PFD. 

 

Figure 3.36: PFD chronograms when fin is in phase advance with respect to ffdb. 

3.4.5.2. Charge pump (CP) 

The charge pump converts the PFD output signals into an analog signal that drives the 
VCO through the loop filter. A double state CP with current steering switchers is used (Figure 
3.37). This structure has the advantage of a speed switching (Kalenteridis, Papathanasiou, and 

Siskos 2008). The charge pump current ICP is either pulled up or push down according to the 
PFD output signals which in turn depend on the sign of the frequency and phase difference 
between the input and feedback signals.  

The two transistors Mup and Mdown must be well matched so that the CP output current 
Iout would have the same value whatever if the current is flowing from Vdd (through Mup) or 
to the ground (through Mdown). Therefore, large dimensions are required for Mup and Mdown. 
Moreover, large W/L ratios, for Mdown and Mup, are required for faster switching (George Tom 
VARGHESE 2009).  

 

Figure 3.37: Charge pump circuit with current steering switchers. 
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3.4.5.3. Loop filter (LPF) 

The loop filter is a critical block in the PLL because it sets its bandwidth and ensures 
its stability. The filter integrates the current generated by the CP by means of a capacitor Cf in 
series with a resistance Rf. However, for each change in polarity of the charge current, a jump 
occurs across the RC circuit (George Tom VARGHESE 2009). Therefore, to filter these 
jumps, a second capacitor C2 is added in parallel with Rf  and Cf as shown in figure 3.38. The 
so obtained output voltage Vctrl is used to control the VCO. 

 

Figure 3.38: Loop filter circuit. 

3.4.5.4. Voltage controlled oscillator (VCO) 

The schematic of the VCO is presented in figure 3.39. It is composed of a 5 stages 
current starved ring oscillator, a buffer and a level shifter.  

 

Figure 3.39: Topology of the voltage controlled oscillator. 

The output frequency (Equation (3.57)) is given by the ring oscillator, which 
represents the core of the VCO. 

𝑓௢௨௧ =
1

5 𝑡஽
      (3.57) 

where tD is the delay of one stage of the ring oscillator. This delay is set by the ring oscillator 
bias current IDring. This current is the sum of a fixed bias current IVCO and a voltage controlled 
current ID: 

𝐼஽ೝ೔೙೒
= 𝐼஽ + 𝐼௏஼ை       (3.58) 
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The current ID is generated by means of a transistor MID whose gate is connected to 
Vctrl (Vctrl is the LPF output voltage); then ID a function of Vctrl as expresses the following 
equation: 

𝐼஽ =
1

2
µ௉𝐶௢௫

𝑤ெ಺ವ

𝐿ெ಺ವ

(𝑉௖௧௥௟ − 𝑉ௗௗ − 𝑉௧௛)ଶ      (3.59) 

Hence, the so-obtained VCO output frequency is a function of Vctrl. However, the so-
obtained frequency is a linear function of Vctrl only over a small range. This is due to the non-
linearity of ID with respect to Vctrl (Equation (3.59)). 

Dimensions of MID and of inverters must be carefully chosen so that MID would remain 
saturated. Besides, we must ensure that the value of the control voltage Vctrl that makes the 
VCO run at the targeted frequency is ranging between 0.3V and 1.5V (knowing that 
Vdd=1.8V). This voltage range arises from the saturation condition of the transistors Mup and 
Mdonw of the charge pump (Figure 3.37). 

The current IVCO, which is added to ID, is chosen in order to obtain a VCO frequency 
of 143MHz (the targeted output frequency of the PLL which is indeed the counter frequency) 
for an input voltage Vctrl around 900mV. 

The adopted buffer consists of 3 inverters whose supply voltage (Vdbuffer) is the same as 
that of the inverters of the 5 stages ring oscillator. This choice has been made to ensure the 
same dynamic range for the buffer and for the ring oscillator. As a consequence the output 
signal of the buffer has a limited dynamic range (0-Vdbuffer). Hence, a level shifter is added 
after the buffer so that the VCO output square signal would have the full dynamic range. 

Figure 3.40 shows that the VCO characteristic function is quasi-linear over a control 
voltage range extended from 0.3V to 1.1V. Frequencies from 110MHz up to 440MHz may be 
obtained with a gain of about 400MHz/V. 

 

Figure 3.40: Characteristic function of the VCO at 27°C. 

As mentioned before, the VCO must be able to generate a frequency 256 times the 
reference frequency for all temperatures. Knowing that the reference frequency (i.e., fin) varies 
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with temperature from 559kHz to 505kHz (Figure 3.18), and that the VCO itself is affected by 
temperature variations, the VCO must be able to generate frequencies between 143.1MHz and 
129.3MHz for an input voltage Vctrl ranging between 0.3V and 1.5V. The characteristic 
function of the VCO at different temperatures (Figure 3.41) shows that the VCO achieves this 
requirement. 

 

Figure 3.41: VCO characteristic function for different temperatures. 

3.4.5.5. Phase locked loop (PLL) 

The design of the PLL consists in choosing its parameters (ICP, Rf, Cf and C2) in order 
to guarantee its stability. This is ensured if the phase margin of the PLL is positive. The values 
of Rf, Cf and C2 have been chosen in order to obtain a phase margin of around 45°C (Equation (3.60)).  

𝑀𝜑 = arctan൫𝑅௙𝐶௙𝑤௖൯ −  arctan ൮
𝑅௙𝐶௙𝑤௖

1 +
𝐶௙

𝐶ଶ

൲   (3.60)   

where wc= 2π fin/10 and 𝐶௙𝑤௖ =
ට

಴೑

಴మ
 ூ಴ು ௄ೇ಴ೀ

ଶగ ே ௙೎
 ;  N=256. 

A PLL behavioural model, illustrated in figure 3.42, has been developed using Verilog 
AMS. It is used to extract the phase margin from the PLL different parameters and to validate 
the chosen parameters.  

 

Figure 3.42: Behavioural model of the PLL (KVCO is the VCO gain). 



88 
 

Finally, the PLL parameters are as follows: ICP =1µA, Cf =18pF, Rf =500kΩ and 
C2=2pF. Simulation of the PLL behavioural model shows that these values lead to a phase 
margin of 55° which satisfies the stability condition of the PLL.  

However, the PLL stability has to be maintained over temperature and process 
variations. In order to verify this stability, a worst-case simulation of the PLL behavioural 
model is performed. Equation (3.60) shows that the phase margin is a function of KVCO, ICP 
and Rf

.. After testing several combinations using the minimum and maximum values of these 
parameters, it was found that the minimum phase margin is obtained for the minimum values 
of KVCO, ICP and Rf over temperature and process variations. The so-obtained lowest phase 
margin is equal to 31.7° which satisfies the stability condition of the PLL. 

Finally, the timing diagram of the PLL is presented in figure 3.43. It shows that the 
PLL is well locked since the control voltage converges to a constant voltage value around 
900mV. 

 

Figure 3.43: Timing diagram of the PLL. 

3.4.6. Frequency divider 

The frequency divider generates the locking frequency from the reference oscillator; it 
must realise a division factor of 16. This is done using four D-type flip-flops connected in 
series, as describes figure 3.44, where each flip-flop performs a frequency division factor of 
two.  

 

Figure 3.44: Frequency divider circuit. 
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Since this technique is purely digital, this division factor is not sensitive to temperature 
and process variations. 

3.4.7. High temperature design considerations  

The sensor interface circuit converts the sensor output voltage into a phase shift 
difference. This latter is digitized using a high frequency counter. As previously 
demonstrated, the proposed sensor interface is robust against temperature variations. 
However, some high temperature design refinements need to be considered.  

3.4.7.1. Reduction of TA and ILO mismatches  

The phase shift difference between the two ILOs outputs, which defines the output of 
the sensor interface, is expressed as: 

𝛷ூ௅ைଶ − 𝛷ூ௅ைଵ =
𝜋

2 𝐼௟௢௖௞

(𝐼଴ଵ − 𝐼଴ଶ) =
𝜋

𝐼௟௢௖௞𝑅ீெ
  𝑉ௌ      (3.61) 

The locking current Ilock is generated from the reference current using a simple current 
mirror as described in section 3.4.3.2. Since the transistors of the current mirror are designed 
with sufficiently large dimensions, the copying factor of the current mirror αCM2 can be 
considered temperature independent (αCM2 = 0.57). 

Then, based on equation (3.54), Ilock is given by: 

𝐼௟௢௖௞ = 𝛽
𝑉஻ீ

𝑅஻ீ
      (3.62)  

where β is a temperature independent factor (β = αCM2/4). Using equation (3.62), equation 
(3.61) can be written as: 

𝛷ூ௅ைଶ − 𝛷ூ௅ைଵ =
𝜋

𝛽

𝑅஻ீ

𝑅ீெ 𝑉஻ீ
  𝑉ௌ      (3.63) 

Then, the thermal stability of the phase shift difference ΦILO2 - ΦILO1 is influenced by 
the non-zero temperature coefficient of the resistances RGM and RBG. If both RGM and RBG have 
the same temperature coefficient (i.e., same type of resistances), their ratio will be 
temperature independent. Consequently, the thermal stability of the phase shift difference, and 

therefore the thermal stability of sensor interface output N, after posing 𝑅௕௜௔௦ =  
ோಳಸ

ఉ
, depends 

only on that of the bandgap voltage: 

𝑁 =
1

2

𝑅஻௜௔௦

𝑅ீெ 
 
𝑓௖௢௨௡௧௘௥

𝑓௟௢௖௞
 

𝑉ௌ

𝑉஻ீ
      (3.64) 

3.4.7.2. Wheatstone bridge biasing 

To further improve the thermal stability of the sensor interface output N, the 
Wheatstone bridge is biased by the bandgap voltage (Figure 3.45). This eliminates the 
contribution of the bandgap voltage to the thermal sensitivity of the sensor interface output. 
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Indeed, by biasing the Wheatstone bridge by the bandgap voltage, the sensor output voltage 
VS is expressed as: 

𝑉ௌ =
−∆𝑅௦௘௡௦௢௥

2𝑅଴ + ∆𝑅௦௘௡௦௢௥
 𝑉஻ீ      (3.65) 

where 

∆𝑅௦௘௡௦௢௥ = 𝑅௦௘௡௦௢௥ − 𝑅଴      (3.66) 

Notice here that the sensor output voltage is inversely proportional to ∆Rsensor. This 
latter is inversely proportional to the value of the measured magnetic field “B” (“NVE AA and 

AB-Series Analog Sensors” n.d.). This finally makes the sensor output voltage proportional to 
“B” and hence proportional to the measured current. 

 

Figure 3.45: Wheatstone bridge sensor. 

Consequently, using equations (3.64) and (3.65), the sensor interface output is given 
by:  

𝑁 =
1

2

𝑅஻௜௔௦

𝑅ீெ 
 
𝑓௖௢௨௡௧௘௥

𝑓௟௢௖௞
   

−∆𝑅௦௘௡௦௢௥

2𝑅଴ + ∆𝑅௦௘௡௦௢௥
      (3.67) 

As a conclusion, using these two design refinements, the digital output is highly 
temperature independent. As a matter of fact, since fcounter and flock are both generated from the 
same reference oscillator using respectively a PLL and a frequency divider (which are 
insensitive to temperature variation), the ratio fcounter/flock is temperature independent. 
Furthermore, resistors embedded in the Wheatstone bridge have all the same temperature 
coefficient because they are of the same nature. Hence, the ratio of resistances ∆Rsensor/(2R0 + 
∆Rsensor) is insensitive to temperature variations. What is more, the use of the same resistance 
nature for RBG and RGM makes their ratio RBG /RGM temperature independent. Therefore, the 
digital output of the sensor interface achieves a low thermal dependence. 
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3.5. Simulation results  

The sensor interface is designed using a PD-SOI technology, which is chosen for its 
high robustness against temperature variations. The sensor interface is simulated for an input 
voltage with a full scale of ±66mV. This voltage is temperature independent and it emulates 
the sensor differential output voltage VS.  

3.5.1. Characteristic function: thermal stability and linearity 

The simulated digital output N of the sensor interface at 27°C as a function of the 
sensor output voltage VS shows that the input full scale of the sensor interface is equal to 
±63mV  (Figure 3.46). In addition, this simulation shows a gain of 29.4LSB/mV at 27°C and 
since the sensor interface achieves an output full scale of 1855LSB, 11 bits of resolution is 
obtained. 

 

Figure 3.46: Simulated characteristic function of the sensor interface at 27°C. 

Considering a temperature range from -40°C up to 250°C, the simulated input full 
scale is finally limited to only ±60mV as shown in figure 3.47. The sensor interface achieves 
a gain of about 30LSB/mV with 11 bits of resolution whatever temperature is.   

 

Figure 3.47: Simulated characteristic function of the sensor interface for different temperatures. 
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These results are in good agreement with the sensor interface specifications mentioned 
in section 3.1. The reduced full scale compared to the specifications is caused by the 
mismatch between the free running oscillation frequency at zero VS (f0(Vs=0)) and the locking 
frequency flock. This is due to the mismatch between the reference oscillator bias current IoscRef 
and the TA bias current IGM as previously mentioned. Indeed, this leads to an output full scale 
lower than π (π is the maximum output full scale equivalent to 2048LSB). Then, since the 
obtained gain corresponds to the expected gain, an input full scale lower than the targeted one 
is obtained.  

The thermal sensitivity of the sensor interface is evaluated using its relative thermal 
variation that is written as:  

  ∆𝑁ோ௘௟(𝑝𝑝𝑚/°𝐶) =
∆𝑁

𝑁ிௌ

10଺

∆𝑇
      (3.68) 

where 

∆𝑁 = 𝑁௠௔௫ − 𝑁௠௜௡     (3.69) 

where Nmin and Nmax are respectively the minimun and the maximum value of the digital 
output N over the temperature range ∆T and NFS is the output full scale. 

Figure 3.48 shows that the sensor interface achieves a low temperature dependence 
over a wide temperature range; the value of this thermal variation is lower than 34ppm/°C for 
a full scale of ±60mV. Furthermore, thermal sensitivity is null at zero VS since the sensor 
exhibits no offset whatever temperature is.  

 

Figure 3.48: Simulated relative thermal variation of the sensor interface output as a function of VS. 

The simulated characteristic function of the sensor interface over the full temperature 
range (Figure 3.47) highlights the good linearity of the sensor interface, which is obtained 
thanks to the use of RILOs. Figure 3.49 depicts the simulated integral non-linearity (INL), 
defined as (simulated value - linear fitted value)/(linear fitted value). An INL lower than 1.8% 
is obtained over the entire temperature range. 
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Figure 3.49: Simulated INL of the sensor interface over different temperatures. 

3.5.2. Effect of process variations 

The thermal stability of the sensor interface is influenced by process variations. Monte 
Carlo simulations have been performed to investigate the impact of process variations on the 
temperature dependence. Obtained results are presented in figure 3.50 for two different values 
of VS (30mV and 60mV). 

 

(a) VS =30mV                                                                                         

 

(b) VS = 60mV 
Figure 3.50: Monte Carlo Simulation of the thermal stability for the sensor interface circuit. 
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3.6. Conclusion 

In this chapter, the context and the required specifications of the sensor interface are 
firstly introduced. Based on these specifications, the parameters values of the sensor interface 
are chosen and then verified using a behavioural model.  

The sensor interface is based on Relaxation ILOs (RILOs) for their extended 
linearity range compared to their harmonic counterparts.  Thanks to this property, the sensor 
interface exhibits a good linear behaviour. Because of the use of RILOs, some design 
refinements are added to the original architecture to ensure a good thermal stability of the 
sensor interface. The digital output of the sensor interface depends on a ratio of several 
parameters from same nature. Hence, its thermal stability depends on the thermal variations 
of the sensor interface parameters ratios rather than their absolute thermal variations.  That is 
why a low temperature dependence can be obtained. Simulation results show that the sensor 
interface achieves a low sensitivity to temperature variations (34ppm/°C) over a wide 
temperature range extended from -40°C to 250°C.  

In the following chapter, experimental results obtained with a prototype of the sensor 
interface are reported. 
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This chapter presents measurement results obtained with the fabricated sensor interface. 
Static and dynamic characterisations have been performed over a wide temperature range. 
Measurement results show that the fabricated sensor interface meets the system specification 
and achieves very low thermal drift over a wide temperature range.     

4.1. Overview of the silicon prototype 

A sensor interface has been fabricated using a 0.18µm Partially Depleted Silicon On 
Insulator technology (PD-SOI) from XFab. Its layout is depicted in Figure 4.1. The overall 
chip dimension is 1860.1µm by 1885.9µm and the active area is of 0.21mm2.  

 

 

Figure 4.1: Layout of the sensor interface. 

The circuit has been packaged in a ceramic DIL-40 package. A ceramic package is 
chosen because of its robustness to high temperatures. The photography of the fabricated 
circuit is presented in figure 4.2.  
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           (a) Sensor interface in the package                  b) Sensor interface in the package (zoom)          (c) Chip Microphotography 
  Figure 4.2: Photography of the fabricated sensor interface. 

4.2. Characterisation test bench 

A Printed Circuit Board (PCB) has been realized to enable the circuit characterisation 
over a wide temperature range.  Input differential voltage and digital configuration bits are 
generated by a FPGA and digital-to-analog converters (Figure 4.3).  

The sensor output voltage VS is emulated through a temperature independent 
differential signal which is generated by means of an on-board signal generator.  

A LabVIEW test environment is used for automatic data acquisition. For each value of 
the differential input voltage VS, the digital output of the sensor interface is obtained by 
averaging 2000 samples.  

 

Figure 4.3: Principle of the measurement test bench. 

In order to characterise the circuit over a wide temperature range, a thermal conditioner 
(Thermostream ATS), which sets the operation temperature by blowing a temperature-
controlled air, is used. The prototype is placed under the nozzle of the thermal conditioner to 
vary its temperature from −20 °C to 220 °C, which are the minimum and maximum 
temperatures of the thermal conditioner (Figure 4.4). 
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Figure 4.4: Characterisation test bench for the fabricated prototype. 

4.3. Transfer function of the sensor interface 

The sensor interface converts the sensor output voltage VS into a phase shift difference 
between the two ILOs outputs, which is then converted into a digital output N.  

 Figure 4.5 depicts the locking signal Vlock and the two ILOs outputs OILO1 and OILO2 
visualised by an oscilloscope for positive and negative sensor output voltage VS. It shows that 
both ILOs are well locked on the locking signal; they run at the locking signal frequency 
which is equal to 38kHz (typical simulations run at 35kHz). Besides, Figure 4.5 also shows 
that the phase shift between the ILOs outputs is a function of the sensor output VS, which 
confirms the operating principle of the sensor interface. Moreover, as expected, ILO1 output 
is in phase advance with respect to ILO2 output for positive VS, while ILO2 output is in phase 
advance for negative VS.  

 

Figure 4.5: Visualisation of locking signal and ILO’s outputs (at room temperature). 
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The measured transfer function is reported in figure 4.6 over a temperature range 
extended from -20°C up to 220°C. It shows that the sensor interface LSB corresponds to 
33.3µV (i.e., the sensor interface gain is around 30LSB/mV) whatever temperature is. This 
result is in good agreement with the system specifications (chapter 3). In addition, since the 
output full scale is equal to 1872.5 LSB, the sensor interface achieves a resolution of 11 bits.  

A bit sign is used to differentiate positive from negative sensor output voltages (Figure 
4.7). The lead/lag output bit gives the sign of the sensor output voltage VS. This bit is at high 
logic level for positive VS and at low logic level for negative VS. 

 

Figure 4.6: Experimental transfer function of the sensor interface [-20°C; 220°C]. 

 

Figure 4.7: Measured lead/lag output bit to determine the sign of the differential input voltage. 

4.3.1. Full scale of the sensor interface  

4.3.1.1. Measured full scale 

The sensor interface was designed to interface sensors with an output full scale of 
±66mV. However, measurements show an input full scale lower than ±66mV leading to an 
output full scale lower than the specified one (i.e., 2048LSB).  

Figure 4.8 depicts the measured input and output full scales of the sensor interface as a 
function of the temperature. It shows that the maximum measurable sensor output voltage 
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(i.e., the sensor interface input full scale) and hence the sensor interface output full scale 
decreases with temperature. Considering the entire temperature range (-20°C to 220°C), the 
sensor interface is suitable for sensors with an output full scale of ±60mV.  

 

                                  (a) Input full scale VS-FS                                                                                                              (b) Output full scale NFS                                                                                               
Figure 4.8: Measured full scale of the sensor interface. 

4.3.1.2. Analysis of the sensor interface full scale  

This section is dedicated to explain the origin of the full scales reported in figure 4.8. 
Let’s recall the equation of the sensor interface output: 

𝑁 =
∆𝜙௢௨௧

2𝜋
 
𝑓௖௢௨௡௧௘௥

𝑓௟௢௖௞
     (4.1) 

where ∆Φout is the phase shift between the ILOs outputs. fcounter and flock are respectively the 
counter and the locking frequencies.  

Hypothesis 

The ILOs are designed to obtain a phase shift difference between the ILO’s outputs 
(i.e., ∆Φout) equal to π for a sensor output voltage VS of ±66mV.  

Then, if the phase shift difference ∆Φout has a full scale lower than π, the equivalent 
sensor output voltage VS, which represents the interface input full scale, is lower than ±66mV. 
Then, the full scale of the digital output (i.e., the output full scale) is also limited and its value 
is lower than 2048 LSB (a phase shift difference ∆Φout of π corresponds to 2048 LSB). 

Verification 

Figure 4.9 shows the ILO’s outputs at the input full scale of the sensor interface (i.e., 
±62.8mV at 20°C). It shows that the full scale of ∆Φout is lower than π; it is equal to 0.963π 
(tpw_FS =12.53µs). This confirms the previous hypothesis. 

The equivalent full scale of ∆Φout should correspond to an output full scale of ±1972 
LSB (fcounter/flock = 4096). Figure 4.8 shows that the measured output full scale of the sensor 
interface (NFS) at this temperature is of ±1968 LSB.  
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Figure 4.9: Timing diagram of the fabricated sensor interface at full scale; Temperature equals to 20°C.  

The small residual difference between NFS equivalent to the full scale of ∆Φout (i.e., 
±1972 LSB) and the measured NFS (i.e., 1969 LSB) can be explained by noise. Indeed, noise 
is at the origin of counter clock jitter that leads to some instabilities of fcounter (Figure 4.10) 
and, therefore, to some changes in the ratio fcounter/flock (fcounter/flock is then different from 4096).  

 

Figure 4.10: Visualisation of the counter clock signal. 
 

Discussion of the ∆Φout full scale  

The full scale of ∆Φout is lower than π because phase shifts of both ILOs at zero VS are 
different from π/2 (Figure 4.11). The full scale of the sensor interface is defined by the 
differential input voltage VS where one ILO saturates (i.e., its phase shift equals to zero or π). 

If phase shifts at zero VS are both equal to π/2 (Figure 4.11.a), both ILOs reach the end 
of their locking range for the same input voltage and the so-obtained full scale of ∆Φout is 
equal to π (for example ΦILO1 = 0 and ΦILO2 = π). In presence of mismatch-induced offset, 
ILOs phase shifts at zero VS are different from π/2 (Figure 4.11.b); when VS changes 
(increases in the given example), the two ILOs phase shifts vary symmetrically with respect to 
their initial value. Consequently, ILO1 saturates (i.e., ΦILO1 = 0) while ILO2 did not (i.e., 
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ΦILO2 < π). Consequently, the full scale of ∆Φout is lower than π; this phenomenon defines the 
full scale of the sensor interface. 

 

       (a) Ideal case         (b)Real case 
  Figure 4.11: Explanation of the reduced output full scale. 

From equation (3.12), it is obvious that the ILO’s phase shift is different from π/2 if 
and only if the locking frequency flock is not equal to the ILO’s free running frequency f0. We 
can then conclude that this difference is due to the difference between the locking frequency 
flock and the ILOs free running frequencies at zero VS: f0(Vs=0)=f01(Vs=0)=f02(Vs=0). 

This phenomenon, already identified in the design phase (Section 3.4.3.3), is due to a 
mismatch between the reference oscillator bias current (IOscRef) and the ILOs bias currents at 
zero VS (I0(Vs=0)). Moreover, this mismatch increases with temperature, which makes the 
difference between flock and f0(Vs=0) more important at higher temperatures. Consequently, as 
shown in figure 4.12, the full scale of ∆Φout decreases with temperature. This explains why 
the sensor interface full scales reduce with temperature. 

 

Figure 4.12: Measured full scale of ∆Φout of the fabricated sensor interface. 

A calibration loop can be implemented in order to obtain a full scale of π for ∆Φout 
over the whole temperature range. This could be performed by ensuring the equality between 



104 
 

the locking frequency flock and the ILOs free running oscillation frequencies at zero VS 

whatever temperature is. This would finally guarantee the specified input full scale (i.e., 
±66mV). 

4.3.2. Offset of the sensor interface 

4.3.2.1.  Input offset 

Considering the transfer function of the sensor interface (Figure 4.6), the input offset 
(i.e., the input voltage corresponding to N=0) is reported as a function of temperature (Figure 
4.13). 

 
Figure 4.13: Measured input offset for different temperatures. 

4.3.2.2. Output offset 
At zero input voltage VS, the digital output of the sensor interface is different from 

zero. Figure 4.14 depicts this output offset as a function of temperature. 

 

Figure 4.14: Measured output offset for different temperatures.  

4.3.2.3. Analysis of the sensor interface offset  

Since output and input offsets are related to each other, the analysis of the sensor 
interface offsets is limited to the analysis of the output offset. 
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The output offset of the sensor interface is caused either by the mismatch between the 
ILOs (i.e., the ILOs do not have the same phase shift when they are biased by the same 
current) or by an offset of the transconductance amplifier (i.e., the difference between the 
TA’s output currents is not equal to zero at zero input voltage). In order to investigate the 
origin of the output offset, mismatches between the ILOs and TA offset have been simulated 
in presence of process variations (at a fixed temperature of 20°C). 

Figure 4.15 shows Monte Carlo simulations of the pulse width tpw that represents the 
phase shift between the ILOs at Vs=0 (∆Φout = 2 π flock tpw). In this simulation, both ILOs are 
biased by the same current. A standard deviation of 100ns is obtained that corresponds to 
14LSB. 

 

Figure 4.15: Monte Carlo simulation results of the mismatch between the ILOs. 

Figure 4.16 shows the Monte Carlo simulations of the difference between the TA 
output currents I01-I02 at zero input voltage VS. A standard deviation of 31 nA corresponding to 
89LSB is obtained. Therefore, it can be concluded that the Transconductance Amplifier (TA) 
offset is the main source of offset. 

 

Figure 4.16: Monte Carlo simulation results of the TA output offset. 

According to the expression below (Equation (4.2)), the TA offset relies on 
mismatches between IGM1 and IGM2 and between Voffset1 and Voffset2: 
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𝐼଴ଵ − 𝐼଴ଶ = (𝐼 ெ − 𝐼 ெଶ) + 2 
𝑉ௌ + ൫𝑉௢௙௙௦௘௧ଵ − 𝑉௢௙௙௦௘௧ଶ൯

𝑅ீெ
     (4.2) 

where IGM1 and IGM2 are the TA bias currents which are generated from a reference current IGM 
by means of current mirrors. Voffset1 and Voffset2 are respectively the offset voltages of the left 
and right sides amplifiers (Figure 4.17).  

 
Figure 4.17: Transconductance amplifier. 

4.3.2.4. Proposed solution to reduce the offset of the sensor interface 

Since the mismatch between IGM1 and IGM2 is one of the causes of the measured output 
offset, the use of larger transistors for the transistors constituting the current mirrors (M0, M1 

and M2) should reduce it.  

Figure 4.18 depicts Monte Carlo simulation results of the mismatch between IGM1 and 
IGM2, for the currently used dimensions of M0, M1 and M2 (in blue) and after doubling their 
dimensions (in red). As expected, increasing the size of transistors reduces the mismatch 
between IGM1 and IGM2. The impact of this solution has been also evaluated at the output of the 
TA by evaluating again the offset of I01-I02 at zero input voltage VS (Figure 4.19). 

 

Figure 4.18: Effect of dimensions of M0, M1 and M2 on the mismatch between IGM1 and IGM2. 

On the one hand, it is demonstrated that the increase in dimensions of the current 
mirrors reduces the output offset but, on the other hand, the limitted improvement 
demonstrates that some effort should be concentrated on reducing the offset of both 
amplifiers. 
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Figure 4.19: Monte Carlo simulations of the TA offset after doubling transistor dimensions. 

4.4. Non linearity of the sensor interface 

The transfer function of the sensor interface exhibits a good linearity thanks to the use 
of RILOs as phase shifters. Figure 4.20 depicts the integral non-linearity of the circuit (INL), 
i.e., the difference between the measured values and values obtained from the linear fit of the 
experimental curve, for different temperatures.   

A maximum non-linearity of 6% of the full scale is observed at the extremities of the 
input range. Moreover, as temperature increases, the non-linearity of the sensor interface 
slightly increases. Note that measured INL is higher than the simulated one (section 3.5.1); 
this can be explained by process variations. 

 
Figure 4.20: Measured integral non-linearity of the fabricated sensor interface. 

4.4.1. Analysis of the sensor interface non-linearity 

The contributing blocks to the non-linear behaviour of the sensor interface are the TA 
and the ILOs. Simulations of non-linearity of the TA and the ILOs have been performed to 
identify the highest contribution to the sensor interface non-linearity. 
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4.4.1.1. Non linearity of the TA 

The non-linearity of the TA output current difference (I01-I02) is simulated for an input 
voltage VS ranging from -60mV up to 60mV (Figure 4.21). This figure shows that the TA has 
a good linearity since its INL is lower than 0.08%. 

 
Figure 4.21: Simulated INL of the TA. 

4.4.1.2. Non linearity of the ILO 

The non-linearity of the ILO phase shift ΦILO is simulated for an input bias current I0 
from 300 to 1100nA (Figure 4.22), respectively the minimum current I0min, that gives a π 
phase shift, and the maximum one I0max, that gives a 0 phase shift. Figure 4.22 shows that the 
maximum INL of the ILO is around one order of magnitude higher than that of the TA. 
Moreover, it shows that the ILO INL is higher at lower bias current. 

 
Figure 4.22: Simulated INL of the ILO. 

Origin of the non-linear behaviour of the ILO 

Let’s recall the expression of the ILO phase shift with respect to the input bias current 
I0: 

𝜙ூ௅ை = 𝜋( 
 𝐶 𝑉𝑡ℎ

𝐼𝑙𝑜𝑐𝑘
 𝑓𝑙𝑜𝑐𝑘 +

1

2
 ) −

𝜋

2 𝐼௟௢௖௞
𝐼଴    (4.3)    
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where Ilock is the locking current.  

Variations of the ILO phase ΦILO with I0 are inversely proportional to the locking 
current Ilock. Then, Ilock must be constant over the full range of the input current to obtain a 
good linear behaviour. This condition is obtained only if the locking current sources (Ilock_up 

and Ilock_down) are in the saturation region (Figure 4.23).  

By analysing the operation of the ILOs, it was found that the upper locking current 
source Ilock_up is always in the saturation region while the saturation of the lower locking 
current source Ilock_down depends on the voltage across the capacitor UC2 (Figure 4.23). Indeed, 
Ilock_down is in the saturation region (i.e., MID is saturated) only when UC2 is higher than 
Vds_sat(MID)+Vds(M2) (where Vds_sat(MID) is the saturation voltage of MID) (Figure 4.24). 

 
Figure 4.23: Architecture of the ILO. 

 

Figure 4.24: Explanation of the saturation condition of MID. 

         Given that Ilock_down contributes only during the first part of time of the Tlock period 
(Figure 4.24), the fact that Ilock_down is not always saturated is probably at the origin of the ILO 
non-linearity. 

On the one hand, when the locking current source connected to ground is not in the 
saturation region, the value of Ilock_down depends on the MID drain to source voltage Vds(MID) 
and thus its value is lower than expected.  
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On the other hand, the MID drain to source voltage is a function of the voltage UC2 and 
therefore, of the input bias current I0 (since the integration slope of UC2 depends on I0).  

Therefore, the value of Ilock_down depends on the ILO input bias current I0. Then, the 
gain of the ILO phase shift is not the same over the full range of input current I0 which 
explains the non-linear behaviour of the ILO.  

Figure 4.25 reports the magnitude of UC2 and Ilock_down for two different input currents 
I0. It is obvious that at lower bias current, the voltage UC2, and hence the drain to source 
voltage of MID, has a lower value particularly during ((Tlock/2) - td). Thus, Ilock_down obtained for 
a bias current I0 of 400nA is lower than that obtained for a bias current I0 of 550nA. This 
confirm the non-uniformity of the locking current Ilock_down over the range of the ILO input 
bias current I0.  

Knowing that the gain of the ILO is a function of the locking current, the difference 
between the ILO gain (i.e., π/Ilock_down) with respect to the ideal gain (i.e., π/Ilock_0) and hence 
the difference between the ILO phase shift (obtained for Ilock_down) with respect to the perfectly 
linear ILO phase shift (obtained for Ilock_0) is higher at lower bias current I0. This explains the 
harsher non-linearities at lower I0 values. 

 
            (a)Timing diagram of UC2 for different bias currents          (b) Generated Ilock_down current for different bias currents 

Figure 4. 25: Explanation of the high non-linearity of ILOs at lower bias current I0. 

4.4.1.3. Conclusion 

The non-linear behaviour of the sensor interface is the result of the TA non-linearity 
and the ILOs non-linearity according to equation (4.4). The demonstration of this equation is 
given in Appendix A: 

𝐼𝑁𝐿ௌூ = 𝐼𝑁𝐿்஺ + 𝐼𝑁𝐿ூ௅ை + 2 𝐼𝑁𝐿்஺ 𝐼𝑁𝐿ூ௅ை       (4.4) 
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where INLSI, INLTA and INLILO are respectively the Integral Non-Linearities of the sensor 
interface, the transconductance amplifier and the ILO. According to previous sections, the 
INLILO is much higher than that of the transconductance amplifier. Therefore, ILOs have the 
highest contribution to the non-linearity of the sensor interface. 

What is more, ILOs exhibit higher non-linearity at lower bias current which 
corresponds to the upper limit of their locking range (i.e., when the ILO phase shift is equal to 
π). Considering the overall sensor interface, the minimum ILO bias current I0min corresponds 
to the bias current of ILO1 when VS equals the positive input full scale (i.e., the upper 
extremity of the input full scale) and to the bias current of ILO2 when VS equals the negative 
input full scale (i.e., the lower extremity of the input full scale). Thus, at the upper extremity 
of the input full scale, ILO1 has a harsher non-linear behaviour; while at the lower extremity 
of the input full scale, ILO2 has a harsher non-linear behaviour. This explains why the overall 
sensor interface exhibits the highest INL at the extremities of its input full scale. 

Calibration techniques can be used to compensate the obtained non-linearity of the 
sensor interface by means of numerical techniques such as look up tables. 

4.4.2. INL of the sensor interface over a reduced full scale 

Since the maximum INL is obtained at the extremities of the full scale, it is interesting 
to limit the input full scale of the sensor interface in order to have a better linearity. Figure 
4.26 depicts the measured INL on a reduced full scale of ±40mV. The maximum measured 
INL is then lower than 1.5% of FS over the entire operation temperature range. 

 
Figure 4.26: Measured INL of the fabricated sensor interface over a full scale of ±40mV. 

Another possible solution to extend the linear range of the sensor interface is to 
decrease its gain (by using a higher locking current or a lower transconductance gain). This 
solution enables the extension of the input voltage range in which the sensor interface exhibits 
a good linearity but this is obtained at the expense of the sensor interface resolution. However, 
using a higher ratio fcounter/flock could resolve this problem. 

Moreover, the use of another RILO topology with a better linearity could improve the 
INL of the RILO-based sensor interface. Figure 4.27 shows an alternative RILO topology that 
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is expected to have a better linearity. Indeed, by analogy with the currently adopted RILO, 
and considering I0 as an input, the gain of the phase shift (i.e., dΦILO/dI0) of the RILO 
presented in figure 4.27 is a function of Ilock. Since the locking current sources Ilock are always 
saturated, their values are invariable and the gain of the RILO phase shift is expected to be 
constant which leads to a better linearity. 

 
Figure 4.27: Alternative topology of the Relaxation Injection Locked Oscillator (Badets et Belot 2003). 

4.5. Temperature dependence of the sensor interface 

The temperature dependence of the sensor interface is evaluated, for different values 
of the input voltage, using equation below that expresses the relative thermal variation of the 
digital output. 

∆𝑁ோ௘௟(𝑝𝑝𝑚/°𝐶) =
∆𝑁

𝑁ிௌ

10଺

∆𝑇
      (4.5) 

where 

∆𝑁 = 𝑁௠௔௫ − 𝑁௠௜௡    (4.6) 

where Nmin and Nmax are respectively the minimun and the maximum value of the digital 
output N over the temperature range ∆T and NFS is the output full scale. 

Figure 4.28 depicts the relative thermal variation of the digital output of the sensor 
interface as a function of the sensor output voltage VS for temperatures from -20°C to 220°C. 
It shows that the sensor interface achieves a low temperature dependence over this wide 
operation temperature range and that the maximum sensitivity is obtained at the extremities of 
the input full scale (i.e., 178ppm/°C for VS of ±56.2 mV).  

The measured relative thermal variation is higher than that obtained by simulations 
mainly at the extremities of the input full scale. Let’s recall the expression of the digital 
output of the sensor interface: 
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𝑁 =
1

2

𝑅஻௜௔௦

𝑅ீெ

𝑓௖௢௨௡௧௘௥

𝑓௟௢௖௞

𝑉ௌ

𝑉஻ீ
      (4.7) 

During experimentations, the sensor output voltage VS is emulated with a temperature 
independent voltage. Then, the thermal drift of the bandgap voltage VBG is not compensated. 
This contributes to an additional thermal variation of the prototype compared to that obtained 
by simulation. Two other sources of the measured thermal sensitivity are studied in the 
following section. 

 
Figure 4.28: Relative thermal variation of the fabricated sensor interface.  

4.5.1. Thermal variation of the ratio fcounter/flock 

The measured ratio between the counter and locking frequencies fcounter/flock is 
presented in figure 4.29. The observed variation of this ratio is probably caused by 
experimental noise that makes the counter clock signal slightly deviate from its ideal 
oscillation frequency (i.e., 4096 times flock). Yet, this ratio is stable over the entire operation 
temperature range (5.8 ppm/°C) and this stability is obtained thanks to the fact that both 
signals are generated from the same reference oscillator. Hence, this cannot explain the 
residual measured thermal variation (compared to simulations).  

 
Figure 4.29: Measured ratio fcounter / flock versus temperature. 
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4.5.2. Process variations and mismatch 

Thermal stability of the fabricated sensor interface is influenced by process variations 
and mismatches. Their effects on the thermal stability have been assessed through Monte 
Carlo simulations (Figure 4.30). The relative thermal variation of the different Monte Carlo 
samples is evaluated using the following equation: 

∆𝑁ோ௘௟(𝑝𝑝𝑚/°𝐶) =
𝑁௠௔௫ − 𝑁௠௜௡

𝑁ிௌ

10଺

∆𝑇
     (4.8) 

where Nmax and Nmin are respectively the maximum and the minimum digital output values 
over the temperature range ∆T. 

 
(a) VS =30mV 

 
(b) VS = 60mV 

Figure 4.30: Monte Carlo Simulation results of the thermal stability of the sensor interface. 

From the above graphs, it can be observed that relative thermal variations obtained by 
Monte Carlo simulation is higher than the one obtained by typical simulation (i.e., 24.36 
ppm/°C and 32 ppm/°C for VS equal to 30mV and 60mV respectively). Therefore, it can be 
concluded that the effect of process variation and mismatch may be the predominant cause of 
experimentally observed thermal sensitivity.  

In addition to that, the high temperature dependence measured at the extremities of the 
full scale mainly relates to the estimator that was used (Equation (4.8)). Indeed, dividing the 
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thermal dependence (Nmax-Nmin) by a constant (the full-scale NFS) is intrinsically a source of 
high sensitivity for large values of N. Moreover, this may be explained by the fact that the 
effect of process variation and mismatch is more pounced in the extremity of the full scale. 

4.5.3. Measured relative thermal variation over a reduced full scale 

Since the highest thermal sensitivity is obtained at the extremities of the full scale, it 
would be interesting to reduce the input full scale. Figure 4.31 depicts the relative thermal 
variation measured over an input full scale of ±40mV. For this reduced input full scale, a very 
low temperature dependence is obtained; the absolute value of the thermal variation is always 
below 65ppm/°C over the full temperature range. 

 
Figure 4.31: Measured relative thermal variation of the fabricated sensor interface over a reduced full scale. 

4.6. Dynamic behaviour of the sensor interface 

In the sensor interface, the TA, the counter and the ILOs may contribute to the 
dynamic behaviour of the circuit. Since the counter works at a high frequency rate (143MHz) 
and since the TA has a high bandwidth of about 790kHz, the dynamic behaviour of the 
fabricated sensor interface will be limited by the dynamic behaviour of the ILOs. 

4.6.1. Dynamic behaviour of the ILOs  

ILOs are intrinsically characterised by an acquisition time, Taq, which is defined as the 
time required for the ILO to be locked on the locking signal and to acquire the phase shift 
corresponding to the sensor output voltage VS. In other words, if the sensor output voltage VS 
changes during this acquisition time (i.e., changes faster than the acquisition time), ILOs will 
not be able to track the variations of VS and thus, the obtained phase shift will not match with 
the one corresponding to the dc input. To respect the Shannon criteria, the input voltage 
frequency must be two times lower than 1/Taq so that the ILOs and hence the sensor interface 
would follow the variation of VS and work correctly. 

Figure 4.32 shows the simulation result of the ILO acquisition time over the operation 
temperature range. Figure 4.32.a depicts the ILO phase shift as a function of time, from which 
the acquisition time is extracted as a function of the temperature in figure 4.32.b.  
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The maximum acquisition time of the ILO, extracted from figure 4.23, is roughly 
equal to 150µs which is equivalent to a frequency of 6.6kHz (1/Taq). Therefore, the maximum 
frequency of VS that ensures a proper function over the entire operation range is around 
3.3kHz. 

 

               (a) Phase shift of the ILO as a function of time.                                (b) ILO acquisition time vs temperature. 
Figure 4.32: Simulated dynamic behaviour of the ILO. 

 

4.6.2. Measured Bode Diagram of the sensor interface 

Bode diagram of the fabricated sensor interface is plotted in figure 4.33 for different 
temperatures for an input voltage VS with a peak-to-peak voltage of 50mV (fVs the frequency 
of the input voltage VS). 

 

Figure 4.33: Bode diagram of the fabricated sensor interface over the operation temperature range. 

Measurement shows that the circuit operates correctly until a 4kHz input frequency 
over the entire operation range. This zone is defined by the frequency range where the gain of 
the sensor interface is constant (i.e., 57.2dB).  

This is consistent with the ILOs dynamic behaviour described previously. In fact, for 
an input frequency fVs lower than 4kHz, the output N of the sensor interface can follow 
perfectly the input voltage VS.  

Above this frequency (i.e., 4kHz), there is an error in the digital output N because of 
the ILO acquisition time; which is manifested by a gradual decrease in the bode diagram 
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curves. For temperatures ranging from -20°C up to 220°C, an average bandwidth of 14kHz is 
measured. 

Figure 4.34 depicts the measured bandwidth of the sensor interface as a function of the 
temperature. This bandwidth is almost independent of the temperature. 

 

Figure 4.34: Measured bandwidth of the sensor interface as a function of the temperature. 

4.7. Consumption of the sensor interface 

Figure 4.35 depicts the power consumption of the sensor interface over the full 
temperature range. The maximum current is equal to 850µA which is equivalent to a 
maximum power consumption of 1.53mW (Vdd=1.8V). 

 
Figure 4.35:  Measured power consumption of the fabricated sensor interface vs temperature. 

Table 4 details the contribution of each constitutive block of the sensor interface to the 
overall power consumption. It gives their simulated values over the operation temperature 
range. 
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Table 4. Simulated power consumption of the sensor interface constitutive blocks. 

Sensor interface constitute blocks 
Power consumption (µW) 

-20°C 220°C 

Reference oscillator 2.5 8.2 

ILO11 1.5 6.4 

ILO22 1.7 6.4 

TA 119.8 138.1 

Bias block 228.8 305.1 

Frequency divider 40.1 46.1 

PLL 734.7 753.3 

Counter 249.1 265.6 
1the maximum power consumption is obtained at VS= + 60mV 
2the maximum power consumption is obtained at VS= - 60mV 

Among the sensor interface constitutive blocks, the PLL, the counter and the biasing 
block are the most consuming. The high power consumption of the biasing block is due, in 
addition to the multiple current mirrors, to the operational amplifiers and to the bandgap 
voltage reference (BGVR) that consume 66µW and 84µW respectively.  

The high power consumption of the PLL and the counter is due to their high operation 
frequency (the power consumption is proportional to the frequency).  

4.8. Conclusion 

The sensor interface has been fabricated using a 0.18µm Partially Depleted-SOI 
technology with 1.8 V power supply. Measurement results show that the sensor interface has 
a low temperature dependence over a wide temperature range extended from -20°C up to 
220°C (178ppm/°C over an input range of ±60mV and 65ppm/°C over an input range of 
±40mV).  

Measurements showed that the sensor interface is able to interface sensors with a full 
scale of ±60mV. Moreover, the fabricated sensor interface has a bandwidth around 14kHz. 

Overall performances are generally in agreement with that obtained by simulations 
and meet the system specifications. Several discrepancies between measured and simulated 
performances (residual temperature dependence, offset, higher non-linearity, and reduced full 
scale) have been explained by process variations and mismatches. Using devices with larger 
dimensions would be efficient to ameliorate the sensor interface performances. 

Table 5 summarizes the performances of the sensor interface compared to previous 
similar works. It shows that the presented sensor interface achieves good performances. 
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Table 5. Performances of the sensor interface. 

Performances This work 
Smedt et al. 

2013 
Gläser et al. 

2017 
De Smedt et 

al. 2012 
Portmann et al. 

2002 
Grezaud et al. 

2017 

Temperature 
range (°C) 

-40 to 250 (Sim.) 
-20 to 220 (Meas.) 

-20 to 100 
(Meas.) 

0 to 300    
(Meas.) 

-40 to 120   
(Sim.) 

25 to 300   
(Meas.) 

-40 to 180   
(Meas.) 

Thermal drift 
38ppm/°C (Sim.) 

65ppm/°C (Meas.)1 

178ppm/°C (Meas.)2 
79ppm/°C 

±1.3%FS 
(±43ppm/°C) 

N.A 
±4% of FS 

(±123ppm/°C) 
N.A 

Sensor type resistive resistive resistive resistive magnetic resistive 

Non-linearity 
 

5.79%FS (Meas.)1 

1.43%FS (Meas.)2 0.7% N.A 0.19% N.A N.A 

Consumption 
1.38mW at -20°C 
1.53mW at 220°C 

18 μA N.A 96µW 4.5 mA 34µA 

Resolution 
 

11 bit for the output 
+1 bit for the VS sign 

N.A 
 

N.A 
 

9 bit 
 

8 bit 
 

10 bit 
 

Maximum input 
frequency 

4kHz N.A N.A N.A N.A N.A 

Size 
 

1860.1x1885.9(µm2) 
0.21mm2 (active) 

550x300 (µm2) 
95x95(µm2) 

(active) 
N.A N.A 3.3 x 1.7(mm2) 4.25x4.25(mm2) 

Technology 
180nm HT SOI 

Vdd :1.8V 
40 nm CMOS 

Vdd : 1V 
N.A 

130 nm 
CMOS 

Vdd : 1.2V 

1 µm CMOS 
Vdd : 5V 

180nm HT SOI 
Vdd :1.8V 

1Measurements over a full scale of ±60mV.  
2Measurements over a full scale of ±40mV. 
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Conclusion and Future Works 

Conclusion 

The context of this thesis is related to the domain of sensor interfaces for harsh 
environments, particularly sensor interfaces for high temperature environment. High 
temperature sensing systems are exhibiting a continuous market growth in many applications 
(automotive, aeronautic and oil and gas applications). Therefore, developing high temperature 
sensor interfaces is getting more and more crucial.  

For the benefit of the Signal to Noise Ratio, the sensor interface must be put as close 
as possible to the sensor. Hence, the sensor interface electronics are exposed to high 
temperature environment.  

Temperature affects the parameters of CMOS technology; this degrades the 
performances of integrated sensor interfaces. Thus, the sensor interface electronics must be 
designed in a way to mitigate the effect of temperature variations. This issue was the subject 
of the research presented in this work.  

The objective of this thesis was to design an integrated sensor interface for high 
temperature applications, it must be able to sustain high temperature operation condition and 
to work under a wide operation temperature range.  

In chapter 2, the principle of the high temperature sensor interface was proposed. 
Chapter 3 detailes the architecture of the high temperature sensor interface using relaxation 
ILOs (RILOs). RILOs were chosen for their extended linearity range compared to typical 
ILOs. In chapter 4, experimental results of the fabricated sensor interface were presented as a 
proof of concept of the low temperature dependence of the sensor interface.  

The sensor interface has a fully differential time-domain architecture. Differential 
architecture offers good immunity against process variations and against common mode 
noise. Time Domain architecture leads to quasi-digital circuits which are known to have a 
good robustness against temperature variations compared to analog based sensor interfaces. 

The Time Domain architecture of the sensor interface is based on the use of Injection 
Locked Oscillators (ILOs) as phase shifters. Indeed, it is based on converting the sensor 
output signal into a Pulse Width Modulated signal. 

The sensor interface is designed to interface resistive sensors, typically Wheatstone 
bridge sensors. It converts the sensor output voltage into a phase shift difference which is 
converted into a digital signal by means of a Time –to- Digital Converter.  

The sensor interface is designed so that the digital output is a ratio of the circuit 
parameters. This makes the sensor interface achieve a low temperature dependence. 



121 
 

A proof-of-concept has been implemented using a 0.18µm Partially-Depleted SOI 
technology because of its higher robustness against temperature variations compared to 
CMOS bulk technologies. 

In order to demonstrate the low temperature dependence of the sensor interface, this 
latter is simulated over a temperature range from -40°C to 250°C and its prototype is 
characterised over a temperature range from -20°C to 220°C (due to the limitations of the 
characterisation bench).  

Simulations and experimental results show that the sensor interface achieves an 
excellent temperature stability over a wide temperature range. In simulations, the value of the 
maximum relative thermal variation is of 34ppm/°C over a temperature range extending from 
-40°C to 250°C. The relative thermal variation of the fabricated sensor interface, over a 
temperature range extended from -20°C to 220°C, is always below 178ppm/°C for an input 
full scale of ±60mV and below 65ppm/°C for an input full scale of ±40mV.  

Measured relative thermal variation is higher than that obtained by simulations. The 
residual temperature dependence is explained by process variations and mismatches. The use 
of larger area devices should reduce this effect and thus the obtaining of further improved 
performances. 

Static characterisation shows that, over the operation temperature range extended from 
-20°C to 220°C, the sensor interface is able to interface sensors with a full scale of ±60mV 
which is a consistent range with large numbers of sensors. 

Dynamic characterisation shows that the fabricated sensor interface has a bandwidth of 
14kHz over an operation temperature range from -20°C to 220°C. This means that the sensor 
interface is adapted to low bandwidth applications which are typically industrial monitoring 
applications. 

The measured maximum non-linearity over a -20°C to 220°C temperature range is 
equal to 6% of the output full scale over an input full scale of ±60mV and equal to 1.5% of 
the output full scale over an input full scale of ±40mV. 

The total power consumption of the sensor interface is 1.4mW at -20°C and 1.5mW at 
220°C.    

It can be concluded that the sensor interface achieves the initially defined objectives. 
The sensor interface has an excellent temperature stability over a wide temperature range. The 
obtained result (65ppm/°C for an input range of ±40mV) is, to our knowledge, the lower 
thermal drift ever reported for a 11 bit resolution. For the initially input range of ±60mV, the 
performance degrades both in terms of linearity and temperature stability. 
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Future works: Prospects 

The presented work opens many prospects. Main possible future works are 
summarized. 

1. The sensor is designed for resistive sensors but it can be used with any other type of 
sensors. The principle of the high temperature sensor interface remains the same, which is to 
convert the sensor output signal into a free running frequency of the ILO in order to obtain a 
phase shift function of the sensor output signal.  

However, if capacitive sensors are considered, the sensor interface is limited by the 
non-linearity of the ILO free running oscillation frequency (𝑓଴ = 𝐼଴/(2𝐶௦௘௡௦௢௥𝑉௧௛); where 
Csensor represents the sensor capacitance). 

2. Measurements show that the sensor interface suffers from reduced full scale compared to 
specifications which is due to the fact that the full scale of the phase shift difference is lower 
than π.  This makes the sensor interface not take advantage of its entire full scale. It has been 
shown that this is caused by the mismatch between the locking frequency flock and the free 
running oscillation frequency at zero input voltage f0(Vs=0). 

An auto-calibration loop can be used to ensure the equality between flock and f0(Vs=0). 
This auto-calibration loop detects the difference between the common mode of the two ILOs 
phase shifts (i.e., (ΦILO1+ΦILO2)/2, which represents the phase shift of both ILOs at zero input 
voltage ΦILO(Vs=0)) and π/2. This difference, which is proportional to the difference between 
f0(Vs=0) and flock., is converted into a current that is added to or subtracted from the ILOs bias 
currents. This acts on the free running oscillation frequency at zero input voltage of both ILOs 
identically in order to make them equal to the locking frequency.  

The calibration loop shifts the two ILOs phase shifts ΦILO1 and ΦILO2 similarly in a 
point where their common mode (i.e., (ΦILO1+ΦILO2)/2 which is equal to the ILOs phase shifts 
at zero VS) is equal to π/2. Figure 5.1 simplifies the principle of the auto-calibration loop. 

 

Figure 5. 1: Principle of the auto-calibration loop. 
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Thanks to the auto-calibration loop, the constraint of using the same topology for the 
reference oscillator and the ILO free running oscillator (whose goal is to ensure the quality 
between f0(Vs=0) and flock) is no longer a must. This leaves more freedom in the choice of 
topology of the reference oscillator. 

3.  According to the application, other than the thermal stability, the low power consumption 
could be a very important criterion especially in autonomous commutating node sensors. 

Since the PLL and the counter are the most consuming blocks, two options can be 
considered in order to reduce power consumption. 

a. Replace the counter-based time-to-digital converter by a low power new generation 
time-to-digital converter. 

b. Remove the PLL. Then, the reference oscillator must be replaced by a high 
frequency oscillator running at 4096 times the locking frequency flock (this choice aims to 
obtain a 11 bit resolution) and having another topology than that of the reference oscillator. 
Indeed, if the currently used reference oscillator must run at 143.36MHz (flock = 35kHz), it 
must be polarized with 179µA which is not feasible.  

Then, only digital divider, which has a low power consumption, is then required to 
generate the locking frequency from the reference high frequency oscillator (i.e., 
143.36MHz).   

 

4. Reliability and long term thermal stability of high temperature sensor interfaces is an 
essential criterion.  In the characterisation of the fabricated sensor interface, tests were 
performed only on short duration. Testing the sensor interface during longer test time 
(>few hundreds of hours) would be interesting to perform in order to study the stability of 
the circuit performances over time and the reliability of the sensor interface in the high 
temperature environment. 
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Appendix A: 
Demonstration of The Equation of The 
Sensor Interface INL  

 

Considering a system constituted of two non-linear blocks (Figure below). Each block 
is characterised by a gain G and a non-linearity coefficient λ. 

Here the system is indeed, the sensor interface. The two blocks are the 
transconductance amplifier (TA) and the injection locked oscillator (ILO). 

 

In order to express the INL of the sensor interface, let’s first express the INL of each 
block. 

The output of the first block, the TA, is given by: 

𝑂ଵ = ൫𝐼ଵ + 𝜆ଵ 𝐼ଵ
ଶ൯ 𝐺ଵ      (𝐴. 1) 

The INL is defined as the difference between the output of the block and the linear fit, 
divided by the linear fit: 

𝐼𝑁𝐿ଵ =
𝑂ଵ − 𝐺ଵ 𝐼ଵ

𝐺ଵ 𝐼ଵ
      (𝐴. 2) 

Then, the INL of the first block (i.e., the TA) is: 

𝐼𝑁𝐿ଵ = 𝐼𝑁𝐿்஺ =
𝐼ଵ 𝐺ଵ + 𝜆ଵ 𝐼ଵ

ଶ𝐺ଵ − 𝐺ଵ 𝐼ଵ

𝐺ଵ 𝐼ଵ
= 𝜆ଵ 𝐼ଵ       (𝐴. 3) 

 

By analogy, the INL of the second block (i.e., the ILO) is: 

𝐼𝑁𝐿ଵ = 𝐼𝑁𝐿ூ௅ை = 𝜆ଶ 𝐼ଶ       (𝐴. 4) 

 

Now, let’s express the output of the system O2 as a function of its input I1: 
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𝑂ଶ =  ൫𝐼ଶ + 𝜆ଶ 𝐼ଶ
ଶ൯ 𝐺ଶ =  (𝑂ଵ + 𝜆ଶ 𝑂ଵ ଶ) 𝐺ଶ      (𝐴. 5) 

𝑂ଶ = 𝑂ଵ  𝐺ଶ + 𝜆ଶ 𝑂ଵ
ଶ 𝐺ଶ      (𝐴. 6) 

𝑂ଶ = 𝐺ଶ 𝐺ଵ𝐼ଵ + 𝐺ଶ 𝐺ଵ𝜆ଵ 𝐼ଵ
ଶ + 𝜆ଶ 𝐺ଶ 𝐺ଵ

ଶ𝐼ଵ
ଶ(1 + 𝜆ଵ 𝐼ଵ)ଶ      (𝐴. 7) 

𝑂ଶ = 𝐺ଶ 𝐺ଵ𝐼ଵ + 𝐺ଶ 𝐺ଵ𝜆ଵ 𝐼ଵ
ଶ + 𝜆ଶ 𝐺ଶ 𝐺ଵ

ଶ𝐼ଵ
ଶ ൣ1 + 2 𝜆ଵ 𝐼ଵ + 𝜆ଵ

ଶ𝐼ଵ
ଶ ൧     (𝐴. 8) 

Neglecting the term 𝜆ଵ
ଶ𝐼ଵ

ଶ, we can write the following:  

𝑂ଶ = 𝐺ଶ 𝐺ଵ𝐼ଵ + 𝐺ଶ 𝐺ଵ𝜆ଵ 𝐼ଵ
ଶ + 𝜆ଶ 𝐺ଶ 𝐺ଵ

ଶ𝐼ଵ
ଶ + 2 𝜆ଵ𝜆ଶ 𝐺ଶ 𝐺ଵ

ଶ 𝐼ଵ
ଷ      (𝐴. 9)  

𝑂ଶ = 𝐺ଶ 𝐺ଵ𝐼ଵ൫1 + 𝜆ଵ 𝐼ଵ + 𝜆ଶ𝐺ଵ𝐼ଵ + 2 𝜆ଵ𝜆ଶ𝐺ଵ 𝐼ଵ
ଶ൯     (𝐴. 10)  

Therefore, the INL of the overall system (i.e., the sensor interface) is writing as 
following: 

𝐼𝑁𝐿ௌூ =
𝐺ଶ 𝐺ଵ𝐼ଵ൫1 + 𝜆ଵ 𝐼ଵ + 𝜆ଶ𝐺ଵ𝐼ଵ + 2 𝜆ଵ𝜆ଶ𝐺ଵ 𝐼ଵ

ଶ൯ − 𝐺ଶ 𝐺ଵ𝐼ଵ

𝐺ଶ 𝐺ଵ𝐼ଵ
      (𝐴. 11) 

Hence, 

𝐼𝑁𝐿ௌூ = 𝜆ଵ 𝐼ଵ + 𝜆ଶ𝐺ଵ𝐼ଵ + 2 𝜆ଵ𝜆ଶ𝐺ଵ 𝐼ଵ
ଶ      (𝐴. 12) 

By making the following approximation: 𝐼ଶ ≈ 𝐺ଵ𝐼ଵ , the previous expression is now: 

𝐼𝑁𝐿ௌூ = 𝜆ଵ 𝐼ଵ + 𝜆ଶ𝐼ଶ + 2 𝜆ଵ𝐼ଵ𝜆ଶ𝐼ଶ      (𝐴. 13) 

 

Based on equations (A.3) and (4.4), the INL of the sensor interface is expressed as:  

𝐼𝑁𝐿ௌூ = 𝐼𝑁𝐿ଵ + 𝐼𝑁𝐿ଶ + 2 𝐼𝑁𝐿ଵ𝐼𝑁𝐿ଶ      (𝐴. 14) 

Finally, the sensor interface INL is a function of the TA and the ILO INLs as follows: 

𝐼𝑁𝐿ௌூ = 𝐼𝑁𝐿்஺ + 𝐼𝑁𝐿ூ௅ை + 2 𝐼𝑁𝐿்஺𝐼𝑁𝐿ூ௅ை       (𝐴. 15) 


