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Résumé

Jets relativistes : Modélisation des écoulements magnétisé dans I’environnement
des trous noirs de Kerr utilisant des méthodes auto-similaires

Les jets sont des phénomenes d'éjection collimatée de plasma magnétisé. Ces phénomenes liés a I'accrétion
d'un disque sur un objet central, sont relativement répandus dans I'univers : les environnements des étoiles
jeunes (objets Herbig-Haro, étoiles T Tauri), des binaires X, des sursauts gamma et les noyeaux actifs de
galaxies... Les jets extra-galactiques sont issus des trous noirs super-massifs au centre de galaxies telles que
les quasars ou les radiogalaxies. lls sont caractérisés par leur taille, leur puissance et la vitesse du plasma.

Les jets extragalactiques sont étudiés dans de ce travail de thése, méme si les outils et méthodes
développés peuvent étre utilisés pour les binaires X et les microquasars. Nous poserons en particulier
les questions des mécanismes de lancement, d'accélération et de collimation de ces écoulements. Nous
traiterons également de la source énergétique a l'origine de I'écoulement qui peut atteindre une puissance
de I'ordre de 10%7erg.s™!.

Le liens avec l'accrétion, la proximité de la base des jets avec le trou noir central, les vitesses
d'écoulement observées dans certains jets, montrent que le traitement de ces questions doit inclure les
effet de la relativité générale. Nous étudierons donc des solutions de la décomposition 341 des équations
de la magnéto-hydrodynamique en métrique de Kerr. Nous nous appliquerons au développement d'un mod-
ele d'écoulement meridional-auto-similaire avec un traitement consistant du cylindre de lumiere. Ce modele
pouvant s'appliquer a la fois au jet et a I'accrétion. Nous explorons les mécanismes d'accélération et de
collimation des solutions produites. Nous calculerons des solutions de I'écoulement entrant dans I'horizon
et de I'écoulement sortant a l'infini incluant des termes d'injection de paires. Le rdle du mécanisme de
création de paires et des processus d'extraction de I'énergie du trou noir sera exploré.

Mots clés : Jets relativistes - magnétohydrodynamique en relativité général - auto-similarité - jets
extra-galactique - physique des trous noirs

Abstract

Relativistic Jets: Meridional self-similar model for MHD flows around Kerr black
holes

Jets are collimated ejection phenomena of magnetized plasma. These phenomena related to the accretion
of a disk on a central object, are relatively common in the universe: the environment of young stars (Herbig-
Haro Objects, T Tauri stars...), X-ray binaries, Gamma-ray-bursts, and active galactic nuclei... Extragalactic
jets come from super-massive black holes in the center of galaxies such as quasars or radiogalaxies. They
are characterized by their size, their power and speed of the plasma.

Extragalactic jets will be the subject of studies in this thesis work, although the tools and methods
developed can be used for X-ray binaries and microquasars. In particular, we will ask questions about the
mechanisms of launching, accelerating and collimating these flows, but also about the energy source at the
origin of the flow that can reach a power in the order of 10*7erg.s™.

The links with the accretion, the proximity of the jet base to the central black hole, flow velocities
observed in some jets, show that the treatment of these issues must include the effects of general relativity.
We will therefore study solutions of the 34+1 decomposition of magneto-hydrodynamic equations in Kerr
metric. We will apply ourselves the development of a meridional self-similar magnetized flow model with
a consistent treatment of the light cylinder effect. This model can be applied to both spine jet and inflow
onto the black hole. We explore the mechanisms of acceleration and collimation of the obtained solutions.
We will calculate solutions of the incoming flow on the horizon and the outgoing flow reaching infinity
including injection terms. The role of the pair creation mechanism and the processes of extracting energy
from the black hole are explored.

Keywords : Relativistic jets - general relativistic magnetohydrodynamics - auto-similarity - extragalac-

tic jets - black hole physics
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Extra-galactic jets are astrophysical phenomena of collimated magnetized relativistic plasma
outflows traveling through space in the two opposite directions. The bipolar outflows are always
associated to accretion disks. The accretion around a central super-massive black hole seems
to be the cause of the launching of relativistic jets. These jets are also present in accreting
X-ray binary systems, Gamma Ray Bursts (GRBs) and micro-quasars. Many types of high en-
ergy astrophysical sources can be explored in order to explain the jet formation and evolution,
the mechanisms of acceleration and collimation of plasma outflows and the power involved in
them. Indeed, these powerful phenomena involve high energy particles physics, fluid mechanics,
magnetohydrodynamics, turbulence and shocks in flows, non-equilibrium thermodynamics, gen-
eral relativity, and numerical simulation,... In short, they are still relatively poorly understood
phenomena and are a very active field of current astrophysical researches.

In this introduction, we do not pretend to make a complete state of the art regarding obser-
vations of extragalactic jets and accretion disks around black holes. Thus, we present a summary
of observations that give some jet properties and an order of magnitude of the quantities we need
to model the jet launching and propagation into the inter-galactic medium. Here we restrict our
presentation to jets in blazars and radiosources. Our model has application to microquasars or
GRB but the range of spatial, temporal and luminosity scales is different.
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We now get some measurements of
supermassive black hole spin. How-

IRAS?3b£(A:IJE—38O9 a,; E)Ig)gn) ever measurement of the spin param-
Mrk110 ~0.99 eter a of supermassive black holes is
NGC4051 ~0.99 currently an issue in astrophysical ob-
1H0707-495 ~0.98 servations. Different techniques have
RBS1124 ~0.98 been explored. A technique consists
NGC3783 > 0.98 in analyzing the Ka iron line. Bambi
NGC1365 0.97+001 [2013] presents the results obtained for
Swift J0501-3239 S 0?3'((;)4 nearby extragalactic jets (see Tab.1.1).
PDS456 ~0.96 These super-massive black holes ex-
Ark564 0.96+001 hibit spin between 0.56 (forMrk841)
3C120 >()ng)6 to quasi maximally rotating black hole
Mrk79 ~0.95 (e.g. Mrk110). To derive the spin
MCG-6-30-15 0.91+006 it is necessary to model the d|lsk a-nd
TonS180 0.91+0.02 the shape of the corona. This kind
1H0419-577 >OT§§9 of technique also allows Choudhury
IRAS00521-7054 >0.84 et al. [2018] to test general relativity
Mrk335 0_83:,8:%(; in stror?g fleld§, using Johansen me.:t—
Ark120 0.81+010 ric, which deviates from Kerr metric.
Swift J21274-5654 0.6I§j§18 They apply this method to Mrk 335
Mrk841 >0_.56 and without deviation to general rela-
Fairallo 0.52+0.19 tivity, they find a value between 0.9 et
=015 0.97. Which is quite a high value of

spin compared to the one mentioned in
Table 1.1 — Table of measures of a for some Active Galaxy Tab.(1.1), (Parker et al. [2014]). An-
Nuclei (AGN) given by (Credits : Bambi [2018]). Refer-  other technique was used by Gou et al.
ences for each source are presented in the mentioned paper. [2014] to measure the spin of the black

hole of Cygnus X-1 binary.

Nevertheless these methods are model dependent for the accretion disk. Such kind of methods
and others technics are efficient for measuring black hole spin in X-ray binaries. X-ray binaries or
microquasars may be less suitable for steady-state modeling because the variability of accretion
has short time scales between hours and months.

Let us also mention the very important detection of gravitational waves (Abbott et al. [2016])
resulting from a fusion of two black holes, and whose pattern gives us a strong indication on
the masses, spins of the initial and final black holes. However, this technique does not allow to
measure the spin of black holes that do not emit or only faint gravitational waves.

It is now recognized that jets from AGN are made of several components. It seems that
outflow has at least two components, a surrounding disk wind and a spine jet the source of which
is subject to discussion. Indeed, the spine jet plasma may come from the accreting material or
from the black hole corona. But also pairs may be created by highly energetic photons emitted
from the disk.

To explain the peculiar emission of BL Lac objects, Ghisellini et al. [2005] proposed a transver-
sally structured jet model with two components. This two-component transverse structure was
also used by Sikora et al. [2016] to explain blazar emission. Sikora et al. [2016] develop such a
stratification model for the emission of strong-line blazars. It has also be done by Gaur et al.
[2017] to study the energy distribution of non thermal particles in the blazar PKS 2155-304.

Fabian and Rees [1995]; Henri and Pelletier [1991]; Sol et al. [1989] studied theoretically the
two component models. Henri and Pelletier [1991] explore the idea of a relativistic central jet
composed of electron positron pairs and surrounded by classical Magneto-Hydrodynamic (MHD)
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wind. Dynamical interactions between components are also explored. For example Gracia et al.
[2009] explain the collimation of the spine jet by the presence of an efficiently collimated outer-disk
wind component. Hervet et al. [2017] show the role of shock reflection in relativistic transverse
stratified jets, for formation and motion of knots.

Numerical simulations including Special Relativistic Magneto-Hydrodynamic (SRMHD) or
General Relativistic Magneto-Hydrodynamic (GRMHD) have also been performed to model the
jet formation and study their two components structuration. Millas et al. [2017] explored, using
the AMR-VAC simulation code, the role of toroidal velocity and magnetic field in the stability
of two-component jets. Many simulations after the ones of McKinney and Blandford [2009] ex-
hibit Poynting flux force-free spine jets. From numerical simulations, McKinney et al. [2012]
and Tchekhovskoy et al. [2011] have also derived a scaling law from between accretion rate and
magnetic flux threading the black hole horizon. In Zamaninasab et al. [2014] the authors justify
this scaling law from observations and analysis.

The ejection process, in particular in the spine jet, is deeply linked to the accretion process
on the central object. It is therefore essential to study the accretion on the central object to see
how it can influence the jet. The standard accretion-ejection models include accretion models
dominated by advection. These accretion models are applied to the internal part of the disks,
except for very high accretion efficiency, (see Narayan and Yi [1994]). The study of accreting
flows is also motivated by rotational energy transfer from the black hole to external medium.
The Penrose process (Penrose [1969]) and the Blandford&Znajek process (Blandford and Znajek
[1977]) are suspected to play an important role regarding the power observed in jets.

Nevertheless, to evaluate them properly, it is necessary to solve the GRMHD equations up to
the horizon of the black hole. These process are not fully explained. At some time a controversy
debate occurred about the the "Meissner effect”. Komissarov and McKinney [2007] took part
in this debate, showing that solutions of electro-magnetic fields are different in vacuum electro-
dynamics and in MHDs. The authors conclude that the black hole horizon "Meissner effect”
does not hold for highly conductive magnetospheres. Nathanail and Contopoulos [2014] also get
the same conclusion about "Meissner effect”. They calculate solution that extract of black hole
rotational energy via Poynting flux. They solve force free solutions of Graad-Shafranov equation for
a Kerr magnetosphere. Their solutions are calculated for three different geometries (to infinite)
and high values of black hole spin. They smoothly cross the inner and outer light cylinders.
Komissarov [2009] also discusses the difference between both processes and the interpretation
of Blandford&Znajek one. The pure Penrose process, because of the small number of particle
fissions in the ergosphere that satisfy the process conditions, seems almost inefficient. (Bardeen
et al. [1972], Wald [1974]). However, Wagh et al. [1985] proved that the electromagnetic field
may supply the required energy to push particles into negative energy orbits. This allows to obtain
Penrose type extraction. The energetic interaction between the black hole rotational energy and
the ideal steady-state MHD fields have been studied by Takahashi et al. [1990] and Hirotani et al.
[1992]. The coupling between the fluid field and the electromagnetic field allows an effective
Penrose process. Numerical simulations also seem to show that the extraction process plays an
important role in jet formation. In most of the simulations (Komissarov 2005, McKinney 2006),
the extraction is dominated by the Poynting flux.

The central part of AGNs is possibly filled with high-energy photons from the disk. These pho-
tons can be at the origin of a mechanism for creating pairs (electron-positron, see Rees [1984]).
It can explain part of the core material of the jet. In fact, this mechanism, witch loading material
on magnetic field lines, can (a) fill the environment of the black hole (b) feed an accretion into
the black hole (inflow) and (c) launch a spine jet (outflow) on the same fieldline. The works
of Globus and Levinson [2013] and Globus and Levinson [2014] explore the importance of this
phenomena for final jet energy composition. Indeed for a magnetic field-line passing through the
horizon, in this treatment the energy flux inside the jet comes from the pair energy injection and
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energy flux extraction from the black hole.

The study of a magnetized plasma can be done using a microscopic description (Boltzmann's
equation, Vlasov's equation...) or a mesoscopic description - MHD - which can be derived from
the microscopic description. The MHD description will be favored in this work. The microphysics
description will serve to us for deriving source terms due to fluid species interaction.

Research on plasma flow is done in two directions,

e Numerical simulations
They allow to study the evolution over time of a given field configuration. The ambition to
test more complex physical effects and situations motivate the improvement of the digital
power and efficiency of algorithms.

e The resolution of steady-state MHD equations.
It has been chosen here. It consists to solve a partial differential equation system of mixed
elliptic-hyperbolic type. The resolution of this system is very complex because of the singular
points in the equations whose position can only be determined during the calculations. That
is why we will look for a subset of solutions of these equations.

VLA 20cm M87 = Virgo A

VLA 90cm

VLBA 2¢cm

Figure 1.1 — Radio images of the galaxy M87 at different scales (Credits : Image courtesy of NRAO/AUI)

It seems reasonable to add the axi-symmetry assumption. Indeed, jets from AGN such as
M87 seem relatively stable and axisymmetric on a spatial scale of few hundred parsec ( see 400pc
Figs.1.1). The quantities of our problem now depend on only 2 variables x!,x>. The auto-
similarity hypothese consists in choosing for the fundamental functions of the problem f(x!,x?)

4
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a form of the type : f(xl,xz) :F(xl,f,-:lm(xz)). Where F(xl,fi:lm) is given explicitly and the
fi(x?) are unknown real functions. If the F functions are correctly chosen then, injecting them
into the equations of the MHD allows a decoupling of the variables. Thus we obtain an ordinary
numerically integrable differential system of the fi(xz) functions. In such a treatment, the variable

x! is called the auto-similarity variable.

More concretely about the MHD, there are two main classes of self-similar models.

e Radial self-similarity : which is adapted to disk wind. For the non-relativistic flow, Li [1995]
shows how to connect the wind of solutions to the disk characteristics. While Ferreira
[1997] constructs solutions for magnetically driven outflow from Keplerian disks. Vlahakis
et al. [2000] build self-similar solutions that cross all critical points. Then Vlahakis and
Konigl [2003a,b] extend these models for relativistic flows and study some of the solutions.
Nevertheless the radial self-similar solution cannot by construction, applied to the polar axis.
That's one of the reasons this kind of solutions is well adapted for disk-winds.

e Meridional self similar solution : this type is most adapted to describe flows close to the
rotational axis. Tsinganos and Trussoni [1991] began to build the meridional self-similar
model for MHD flows. Then Sauty and Tsinganos [1994] exposed two classes of solutions
and a criterion which allows to characterize these flows. Then Meliani et al. [2006] extended
a meridional self-similar model for magnetized flow around Schwarzschild black hole. And
Globus et al. [2014] extended it to the magnetized flows around Kerr black hole.

The purpose of this work is to construct solutions from the accretion on the horizon of the
black hole and the collimated ejection up to infinity. This allows us to ask ourself the question
of acceleration and collimation of the spine jet. We want to explore the amount of energy in the
jet coming from the rotational energy of the black hole and the amount coming from the loading
term (pairs creation mechanism).

In order to build these solutions, we will start with a presentation of the theoretical foundations
of the model. First of all, we will present properties of the 3+1 formalism in Ch.(2). Then
we will derive in Ch.(3) the equations of the MHD for a magnetized fluid filled by the pair
creation mechanism from statistical physics in curved space-time. Finally, we will derive the main
results concerning the General Relativistic Axi-symmetric Stationary Ideal Magneto-Hydrodynamic
(GRASIMHD) with source terms. The source terms are necessary to build complete solutions
outside the hypothesis of a rarefied flow and are presented in Ch.(4).

The way to find solutions for the considered equations will be done using an extension of
the meridionnal self-similar model in Kerr metric built by Globus et al. [2014]. We present the
construction of this model in Ch.(5). Then we develop the numerical method used to solve the
equations of the models in Ch.(6).

In the Ch.(7), we will present the main characteristics of the ouflow solutions generated by
our model. These solutions could be used to describe the flow of magnetized plasma from the
spine jets. Finally we in Ch.(8) we explore the use of this meridional self-similar model to build
inflow solutions, allowing us to model a magnetized accretion onto the black hole. We have also
to quantified the energy exchanges between the rotating black hole and the MHD fields. The
articulation of these two types of flow allows us to build complete solutions using source terms.
We have to estimate the source term values.
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CHAPTER 2. 3+1 METHODS

The 3+1 formalism is an approach to general relativity using the notion of foliation of four di-
mensional spacetime varieties (.#) with three dimensional imbedded sub-varieties (X;). These
sub-varieties must be "similar” to space. Such that, the general spacetime induces a Riemannian
metric. In others words the induced metric is a definite positive bilinear form. This formalism
makes possible to systematically rewrite the equations of general relativity in a convenient form.
This form is similar to the equations of classical mechanics even if it incorporates relativistic ef-
fects. In this formulation the physical meaning of the equations of general relativity appears more
clearly. The 3+1 decomposition of Einstein’s equations also gives a new perspective on general
relativity, the so-called chrono-geometric interpretation of general relativity [Wheeler, 1964], i.e.
the evolution over time of the geometry of three dimensional manifold representing space.

The 3+1 formalism also allows us to introduce an observer and a particular frame in which
the different physical quantities related to magneto-hydrodynamics are measured. Indeed some
quantities as the electric and the magnetic fields have a meaning only in a considered reference
frame. This is an important requirement to give a physical meaning to the field we study.

Historically, the development of these methods started at the beginning of last century with
the work of Darmois, Lichnerowicz [1939] and Choquet-Bruhat and Geroch [1969]. These last
two authors were the first to prove the unicity of the solution to Cauchy's problem arising from
the 3+1 decomposition of Einstein's equations. After the Second World War, the 3+1 formalism
received great interest because it serves as a basis to the work on Hamiltonian formulation of
general relativity, the same way as the chrono-dynamic formulation in general relativity did, (see
Arnowitt et al. [2008]). Later on this formalism became one of the essential tools of numerical
relativity.

This chapter is not an exhaustive treatment of the 3+1 decomposition methods. It is a sum-
mary of useful results and definitions used further down for calculations. This chapter is inspired
from the work done by Gourgoulhon [2007]. We shall first study the geometry of the submerged
submanifold. Then we shall see how to reconstruct the geometry of full time space from the folia-
tion. Finally we shall express the the Kerr's spacetime foliation and calculate the useful remaining
associated quantities.

2.1 Geometry of imbedded hypersurfaces in spacetime

Before introducing the foliation of spacetime, let us give some general results on imbedded sub-
manifolds. These results are valid for any type of submanifold or spacetime, independently of the
fact that the considered spacetime is a solution or not of Einstein's equations. Moreover these
results can be applied to the black hole horizon, which is a submanifold and is not directly issued
from a 3+1 foliation. These results constitute the first step to establishe the tools useful for the
3+1 decomposition of the covariant equations.

2.2 Framework and notations

Let us call .4 a smooth spacetime manifold and g a Lorentzian metric on .# with a signature
(—;+;+;+). Here we consider only time orientable spacetime manifold .4 . This means that a con-
tinuous construction of future-directed and past-directed for non-spacelike vectors can be made

over the entire manifold.

We note V the covariant derivative associated to g. VP € ., we also note Ip(#) the tangent
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CHAPTER 2. 3+1 METHODS

space of .4 around point P. This is a 4-dimensional vectorial space. We call %*(‘/%) its four
dimensional dual space. It contains the ordinary one form. In order to simplify our notations,
except in case of ambiguity, we use the same notation for the dual of the tangent space, the
tensorial product of the tangent space with itself and the tangent space itself.

We adopt the following convention for the tensor indices. Greek letters run for 4 dimensions,
{0,1,2,3}. We use as far as possible the first letter of the greek alphabet for uncontracted indices
such as a,f,y and other letters such as |, v for contracted indices. Latin letters are used for the
3 dimensions, 1,2,3.

If (x%) is a mapping of .4 then we note ey the natural basis associated to this mapping. We
also note Iy the Christoffel symbols, which are associated to this system of coordinates and the
covariant derivative V.

We also note u-v=g(u,v) the scalar product, @ the direct sum of the vectorial space and ®
the tensor product.

2.2.1 Hypersurfaces

A hypersurface of .4 is a subset of .4, which is a three dimensional submanifold.

Definition

The first method, the immersion method to define a hypersurface, consists in using a none zero
volume part of ¥ <R3 to construct a parameterized subset of .#. Let call it X' c ./ if there is a
61-diffeomorphism @: 3 — X. Then X is a three-dimensional imbedded manifold.

The second method is submersion. It consists by using a sufficiently smooth scalar function
t: M — R, such that we can define a three-dimensional imbedded manifold using X2'={M € ./ |
t(M) =0}. This definition works only if Vi #0.

We recall that the tangent space in P € X is generated by all tangent vectors of all €' curves
passing through P. Because the set of €' curves of X passing through P is contained into the set
of €' curves of ., it implies that Ip(X) c Ip(#). Note that Vdxe Ip(X). We get Vt-dx=dt,
which is null because of the definition of X. Thus we have Ip(X) c (RVH)<L.

Normal unit vector

Using the definition of submersion, the hypersurface X' can be locally of 3 different types,

e A spatial hypersurface if the normal is a time vector g(Vt,Vt) <0,
e A null surface if the normal is a null vector g(V¢,Vi)=0

e A Lorentzian surface if the normal is a spatial vector g(V¢,Vit) >0

In the following, we concentrate our interest on the case of spatial or null hypersurfaces. In
the case of spatial or Lorentzian hypersurfaces, let us define the normal unit vector n,

Vi
n=-———— =-hcVt, (2.1)
1g(Ve, V) |
which defines the direction perpendicular to the 3 dimensional hypersurfaces Y. In the case of a
null hypersurface, we call £ the normal vector. In this case £ is orthogonal and also tangent to X

The minus sign is chosen such that the normal vector is oriented towards the future.
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Figure 2.1 — The construction of hypersurface tangent space (Credits : Gourgoulhon [2007])

Induced metric

If X is a spatial hypersurface, the normal unit vector is a time vector. It means that for each
point P € X, the projector on Ip(Y), which is normal to n, can be expressed as,

P Tl —  Tp()

v — v+ (v-n)n (22)

The induced metric y on X' is also called the first fundamental form. It corresponds to the
usual metric, for each vector field of 97 (X). To extend its definition to all vectors of I (&), we
use the projector in the argument of the usual metric. After some calculations we get,

[Y=gpO),p0)=g+nan| (23)

We can easily show that this induced metric y is defined, positive and thus its signature is
(+;+;+), which justifies calling it spatial hypersurface metric.

In case of a null hypersurface, it is a bit more complex. Indeed, we can always choose for all

P € X an orthonormal basis €y, where € is the time vector. Note that €; is chosen such that the

decomposition of the normal can be written £=C(ep+€1)/v/2. Introducing k= (€ —€1)/Cv/2, you

get two null vector £ and k satisfying £-k=—1. Thus, it is easy to see that the operator defined
by

n o Ip(l) —  Ip(L)

v — v+ (v-Ok’ (24)
is the projector on Jp(X), perpendicular to £. Thus we get for the induced metric,
q=g(@(),n()=g+kel+Lfek| (2.5)

We also show that this induced metric q is degenerate. Its signature is (0;+;+). In the
following of this chapter we only consider spatial hypersurfaces.
Decomposition of tangent space

Because VP € X, 9p(X) is a vector space of dimension 3, and because Jp(X) cVect(VH)t, it is
easy to show that,

1
Tp(M)=Tp(X) @ Rn|, (2.6)
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It implies that we can decompose all tensors in different component kinds, function of the
"size"” of the considered tensor. For instance,

1. the rest mass density pg, which has no decomposition,

2. the four electric-current j=—p.cn+]J, with J is the "three dimensional electric-current, more
explanations will be given on the physical meaning of this decomposition on Sec.(4.1.3).

3. the energy-impulsion tensor, which can be rewritten, T=en®n+pe®n+n®p+S, where
Se I (X)? is its spatial component and pe I (X) its temporal one.

To obtain the spatial part of any tensor, it is enough to project each order on Ip (X)),

(Xl,...,(Xp _

("M "0 = pUpy) P Py My (2.7)

2.2.2 Curvature of manifolds

We introduce here how to calculate the derivative on a submanifold. In order to re-write the
equations, such as the continuity or the Euler equation in a form similar to the classical ones,
an important step is to link four dimensional-covariant derivatives V to an object, which plays
the role of ordinary gradient. We show that usual "derivatives’ are composed of an internal
"derivative”, which contains the variation where the submanifold is considered by itself and an
extrinsic "derivative”, which contains the curvature of the imbedded submanifold.

Intrisic curvature

Note that Y is also a manifold, qualified as a spatial manifold, with y as induced metric. We know
that there is a unique, torsion-free connection, entirely determined by the induced metric y and its
partial derivatives. We will note this connection D. By definition Dy =0. This connection allows
us to define the intrinsic curvature, the >-Riemann tensor ER also called intrinsic curvature of
(X,Y). Note that Yve I (1),

(DeDp —DDe) v =~ RY 17 (2.8)

oaff ~ °

We can use the usual formula (Eq.A.5) of the Riemann tensor with the Christoffel symbols.
However, here we need to be careful and use the Christoffel symbols associated with the induced
metric. D plays the role of the ordinary 3-dimensional gradient of the non-relativistic form of
the equations. Thus all the spatial usual operators are defined as functions of D (see An.B.2).
The expression of this affine connection is intrinsically linked to the geometry of the "space”
submanifold.

Using the concept of foliation, we see that to reconstruct the entire knowledge on the geometry
of our spacetime, it is sufficient to know the intrinsic curvature of the submanifold of the foliation
and the way its submanifold is bent in spacetime.

Extrinsic curvature

The form of general relativity equations makes appear the global connection V associated to the
metric g on 4. This connection contains D, the X affine connection associated to the metric
Y and also the term coming from the variation "along” n of any tensor on .#. These terms may
contain some of the components along X'. We call it the extrinsic curvature. It is due to the
projection along X’ of the variation of n. So we define what we call the second fundamental form,

K : 9p(U)xIp(M) — R

(u,v) — —pW)-Vpyn '’ (29)

To have a good idea about the meaning of the intrinsic and the extrinsic curvatures, it is
useful to give some examples using some surface imbedded in the three dimensional flat space.
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Figure 2.2 — Intrinsic and Extrinsic curvature on the
usual two-dimensionnal submanifold cylinders (Cred-

its : Gourgoulhon [2007])

Let us now define the helicoid. The
non diagonal component K;; with i #j
of the extrinsic curvature measures
the torsion of the submanifold. Thus
the submanifold defines an helicoidal
surface of revolution along the z-axis.
The perpendicular direction rotates in
the ¢-direction, as one moves along
the z-direction. It gives a component

Kz

The intrinsic curvature is null because
the helicoid is a ruled surface, even if
the induced metric is not flat.

Figure 2.3 — Intrinsic and Extrinsic

About the usual cylinder, since this
surface can be made from a "rolled”
plane, it is intuitive to see that the
intrinsic curvature is null. Indeed it is
easy to see that the induced metric
on the cylinder is the usual metric
of the plane, which implies that the
intrinsic curvature is the same as the
planar manifold. Thus the cylinder
have null intrinsic curvature. While
the extrinsic curvature clearly gets a
non-zero component in the direction
¢d. Indeed the perpendicular direction
rotates around the z-axis as one moves
along the ¢-direction. It implies that

some of the components along ¢ of
Ven are not zero.

L

curvature on the

usual two-dimensionnal submanifold Helicoid (Credits
: Wikipedia)

The extrinsic curvature is a symmetric tensor, thus,

V(u,v)eT (X) Ku,v) =

—u-Vyn
~u®vP [V (hdu 1)]

— ———
=0

— | u 0P @) @at) + hu P (D50 t) - T, Dyt

~u VP [ @)@ 1) + h (0a(@pD) ~ gDyt |
—u* VP [(Dah) (p1) + hV(p1)] = —u*vP [Vo (hOp )]
K(v,u).

In the above demonstration from line 3 to 4, we used the Schwarz property and the symmetry
of the Christoffel symbols associated to V and also the fact that (u,v) € 5 (X)) c (Rn)~.

To relate the four dimensional covariant derivative V to the the spatial covariant derivative D,
the first step is to link the covariant derivative of the orthogonal Vn with the second fundamental

14
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form K.

Y(u,v)eT () Kuv) = —-[u+@-nn]-[Vyn+ (v-n)Vyn]

—u-Vyn—(m-v)(Vpnru)—-(m-u)y(n-Vyn) —m-u)(n:-v)n-Vyn,
0 0

which leads to

Vﬁna:—Kaﬁ—a(xnﬁ y (2.10)

where a=Vun. We show later that a represents the acceleration of a specific observer.

2.2.3 Link between connections

Let us show that D, the Levi-Civita connection associated to the metric y, is the spatial part of
the usual four dimensional Levi-Civita connection V, for any tensor of (1),

DT2p*VT|. (2.11)

For any vector (u,v) € (L), this definition gives,

(Dyv)” popy Pty v

= pl\iupp()x\vv vt
= u'pyVy A
= (Vuav)*+u'mVy Mo

= (VgV)*— (v- Vgn)n®.

Since (u,v) € 7 (X), we can rewrite this equation as,

’Duv:Vuv-#K(u,v)n . (2.12)

Let us show that this definition (eq.2.11) is satisfactory. There is a unique Levi-Civita con-
nection on a Riemann manifold. Then to proove that D is the Levi-Civita connexion on X we
only need to show that this expression (eq.2.11) satisfies the property of a torsion-free connection.
Using (eq.2.7) Y(u,v,w) € J (X)) and V f € €, the following results are obtained,

Belonging
Using (eq.2.7) DT=p*VTe g (%)

Linearity
D ruswV=P" [V fusw?] = p* [ fVuV+ V] = fp* [Vuv] + p* [VwV] = fDuv +Dyv

Leibniz’ rule
Dy (fv)= P* [Vu(fV)] = p* [(Vuf)V+ fVyuv] = p* [(VufIv] + p* [fVuV] = DufIV+ fDuv

Differential of a scalar
Duf =p* [Vuf] = pipautVaf = plutorf = utorf=df(u

Existence of symmetric Christoffel symbols
Using (eq.2.12), we get, Do P = 9o 1P + ([ﬁ)\ +KanP)vr. Note that {EY} :l'E‘Y+K0(Ynﬁ are

the Christoffel symbols associated to D. Since K is symetric, {gY} are symmetric too.

Covariant derivative of associated metric
Using (eq.2.3) Dy =p* [V(g+n®n)|=p*[Vn®n+n®Vn|= [Vnep(n) +pn) ® Vn] =0

So, D is the only torsion-free connection associated with the induced metric y.
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2.3 Foliation of spacetime

Now we build a foliation of the spacetime. The foliation is composed of a family of spatial hyper-
surfaces (X}) er, Which covers our spacetime .. In the previous section, we discussed about the
geometry of a hypersurface imbedded in our spacetime (#,g). All the results and decompositions
can only be done for points, which belong to this hypersurface 2. Thus with the foliation, because
the family of hypersurfaces covers our spacetime, we shall extend the results of the last section
to all points of our spacetime. This construction implies the existence of an observer occupying
the entire spacetime because of the spatiality of the foliation. Indeed the universe lines of these
observers are the lines moving orthogonally to the foliation. Thus our observers are defined by
the choice of spacetime foliation.

By foliation or slicing, we mean the existence of a scalar smooth function 7:.# — R, which
generates a family of hypersurfaces X, = {M € .4 | i(M) = t} covering our spacetime, such that we

have .4 = U X;. These hypersurfaces need to verify ;N Xy = for t #1'.
teR

2.3.1 Lapse function

As before, we can define the normal vector n, except that now this vector can be defined in the
whole spacetime. It is a unit vector, directed towards the future. This vector field gives the four
velocity of a specific observer that we call Fiducial observer (Fiducials Observers (FIDO)). This
observer is also called Zero Angular Momentum Observer (ZAMO), in the case of stationary and
axisymmetric spacetime. The function h, which appears in Eq. 2.1, is now defined on the whole
spacetime and called the lapse function. Indeed, if we define the normal evolution vector
m= hn, we can easily show that,

Vim=-w'zl = Vpet=l = [000=Vemet) (213)

Figure 2.4 — The normal elementary evolution displacement. (Credits : Gourgoulhon [2007])

This is easily interpreted. If you make an elementary displacement ¢dfm in spacetime .4 the
scalar function ¢ varies of an infinitely small quantity 8¢. Thus, we easily build X5, from an
elementary displacement ¢dtm of each point of X;.

The proper time 8t spent by the FIDO for the same displacement is the magnitude of this
displacement divided by the speed of light.

o=, 210

which justifies the name given to the function h, because it links the evolution of "time coordinate”
to the proper time of the FIDO observer.
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2.3.2 Shift vector

Let us choose a system of coordinates of .4 such that the scalar function ¢ plays the role of
time coordinate. We note the coordinates (x°, x!, x2,x%) = (ct, x', x?, x?). This kind of coordinate
system is known to be adapted to the foliation. As a coordinate system, we have the usual relation
Oy - VxP = 8% which allows us to find the component along n of 341 decomposition of 8y,

%a:hnw . (2.15)

We note the spatial part of this decomposition B the shift vector. Indeed, for an elementary
displacement c¢dtm, we get,

x'(P+cdtm) = x'(P+5t8, —pcdt) =x' (P +818,) —p'cdt = x' (P) —p'cdt, (2.16)

The definition of the natural basis is, Oy = OaM | yrarcs: for p#£a. It implies that x'(P+8¢8,) =
x(P). Thus the coordinate of the FIDO shift of a quantity is —pcd¢ during the universal time
delay &t. This justifies the denomination shift vector for f5.

~— Tr+at

X! = const.

Figure 2.5 — The shift of coordinates between two sheets of space. (Credits : Gourgoulhon [2007])

Let us calculate the covariant derivative of m. We obtain,

Vm=-hK-Dh®n+n®Dh—-V,hnen, (2.17)

2.3.3 3+1 decomposition of the metric

By definition the metric element is gop = Oq - Gp. Using Eq. (2.15) we can calculate the metric
and the inverse function of the metric as a function a of the lapse function h, shift vector p and
inverse function of the spatial metric y~!,

-c*h?+p*> P o1 [ p
IR I TN S (218)

Note that the nature of the vector field 8, depends of the respective size of h? and p?,
o If p? < h? then 9, is time-like
o If 2= h? then 9, is null

o If 2 = h? then 8, is spatial
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In this last case, we have a super-luminal shift. For example, this situation can appear in
the environment of the ergosphere of a rotating black hole (ergo-region), described by the Kerr
metric. A rapid calculation of the determinant of metric gives,

—detg=h*dety (2.19)

Calculating the spatial metric determinant is useful to derive the integrals on this space-like
hypersurface. This decomposition leads to another expression of the line element, using adapted
coordinates,

ds? =—hcPd i +vij (dx" +ﬁ"cdt) (dxf +ﬁjcdt) (2.20)

2.3.4 Acceleration of FIDO

The acceleration of the FIDO is,
a=Vpn, (2.21)

which justifies the notation choosen earlier. After some algebra, we get,
aq = ntVyng
= —n"V,(hd1)
= —nM"VhVut—hnt'V Ot
= n*Vylnhng+ hnuva%
= nen"Vylnh+Vgelnh
= pgvplnh,

where we used the Schwarz' property and n?=—1. So we finally get,

(2.22)

This acceleration corresponds to the force acting on the FIDO to stay on its universe line.
An interesting result, using the expression of the acceleration of the FIDO, is the link between
the spacetime and the spatial divergence for a spatial vector. For ve I (Y), using the definition
Eq.(2.11) and the Eq.(2.22), few lines of calculation lead to the useful result,

V_D-(hv)
h

(2.23)

This result is also related to Eq.(2.19), because of the divergence expression on a manifold,
Eq. (A.4). From the divergence of n, using the decomposition, Eq.(2.15) and Eq.(2.23) for
the shift B, and Eq.(A.4) for 9;, we get a link between the trace of the extrinsic curvature, the
divergence of the shift vector and the volum element of space,
10lny

D-p—hK=-

2.24
c Ot ( )

2.4 A foliation of Kerr spacetime

In the case spacetime contains a rotating black hole and different kinds of stress-energy tensor,
the spacetime geometry is close to the Kerr spacetime. The case, which we are interested in,
is the case where we have a set of particles embedded into an electro-magnetic field in the
close environment of a rotating black hole. The order of perturbation hsg to the Kerr metric
g =gk +hsg coming from the self-gravitation of the particles and the electromagnetic field has to
be proportional to the compactness of the physical system,
8n¥Y (E
hsg = — (f) )

. (2.25)
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where E is approximately the energy and L the typical size of mass and electromagnetic field
distribution. If hsg <|| gk — &Mminsk |, Where gminsk is the Minkowski metric, we can neglect the
self-gravitation of the second component, which is valid when compactness of the magnetized flow

EMHD ~ 8;;_4@ (%)MHD < 1 (the compactness of Kerr Hole is between 0.5 and 1 by definition). Thus
we can study the evolution of the particles and of the electro-magnetic field fixing the geometry
to the Kerr metric and neglecting the self-gravitation of these fields. This is the assumption made
in the following chapters. So it is useful to calculate the different quantities associated to the

foliation of the Kerr geometry.

2.4.1 Kerr metric

A Kerr manifold is a spacetime manifold describing an isolated rotating black hole. This geometry
is axi-symmetric and stationary. There is two Killing vectors fields, one n for the stationarity and
another one & for axi-symmetry. The metric can be expressed in the Boyer-Lindquist coordinates
(t,1,0,0),

2 2 2
b
ds? = (1 - izr) i - D sin?0did + L dr? + 02d6? + 5 sin?0do?, (2.26)
p p p
with,
2.2
A :r2+rs4a — 71T, (2.27)
2,2
02 =24 r34“ c0s20, (2.28)
2.2 2 2.2
52 :(r2+%) - 5% Asin?e. (2.29)

GM. 7
c2

c
We note the rotation parameter a = Cfﬁ e [-1;1] and rg= the Schwarzschild radius.

In these coordinates, we get n=3; and §=0y. It implies that all geometrical quantities are
independent of ¢ and ¢.

We note _¢ the angular momentum of the massive central object and Mz its mass.

This spacetime contains four notable sub manifolds. The first one is the hole singularity,
which corresponds to p=0 (r=0 and 0 =m/2). It is the unique real singularity of the Kerr
geometry. A geometrical analysis shows that this submanifold is a ring of radius % included in
the equatorial plane.

The next two submanifolds are three dimensional imbedded manifolds, the outer event hori-
zon and the inner event horizon defined by the equation A =0. It leads to the two solu-
tions 7 ={Me.u | r(m =r_ =5 (1-VI= @)} and 7, = {Me.a| ry =1, = 5 (1+VI= a2}
These two hypersurfaces are null. Contrary to intuition, another geometrical analysis shows that
for t=cst, these surfaces are not spheres. They are some kind of ellipsoids flattened at the poles.
This comes from the fact that the Boyer-Lindquist radius coordinate does not coincide with the
spherical radius. We can show that surfaces can only be crossed in one direction. In our study,
only the outer event horizon appears because we will be interested in the field outside of the outer
event horizon . We call it the event horizon #x for the sake of simplicity.

The last part is also a three dimensional imbedded manifold defined by &x = {M €. | g(n,n) =0
=rM)= % (1 +V1-a?cos? 6)} called the ergosphere. The region between the event horizon
and the ergosphere is called the ergoregion. In this region, the Killing time vector n is a space-
like or a null vector. It implies some interesting properties about the energy circulation, see Sec.
(4.3.3).

We will be only interested in the fields which fill spacetime outside of the external horizon.
Using Boyer-Lindquist coordinates to solve equations which makes the crossing the horizon diffi-
cult.
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Figure 2.6 — Different Kerr remarkable geometrical structure (Credits : Wikipedia)

2.4.2 Choice of foliation system

We choose the time Boyer-Lindquist coordinate ¢ to construct the foliation of our Kerr spacetime.
It gives, using Eq. (2.20), a new expression for the Kerr metric,

ds® =122 di? + h2dr? + h3de® + 1 (d+pPedr)”, (2.30)
where,
p X,
hy=—, ho=p, he =®=—sin0. 2.31
r \/Z 0 =P (O] o ( )

® can be interpreted as the cylindrical radius. For the lapse function,

hz‘/l—%+ﬁ¢ﬁ¢:%\/z. (2.32)

B=p*ay, ﬁ"’:—%, [S(b:—%mz,. (2.33)

and the shift vector,

We note o the shift pulsation,

cargr
This foliation has the advantage of being immediately accessible even if, unfortunately, the
space hypersurface X; = X' contains a coordinate-singularity on the horizon. The spatial hyper-

surfaces do not evolve and are axi-symmetric. We also introduce the spatial orthonormal base
€i=1,2,3, Which is decomposed in the natural base e;-; 23 associated to the adapted Boyer-Lindquist

(2.34)

coordinates Vi=1,2,3 e; = h;e;. We note V! =V; the component in the orthonormal base, such

we have V=V'e;. We summary here the relations of the transformation between the orthonormal
and the natural basis,

€e; = h,-ei ( )
, . 2.35
Vi=hiVi= V!
The four speed of the ZAMO observer is decomposed along the two killing vectors,
hn=n+ %a (2.36)
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2.4.3 Expression of the extrinsic curvature

We calculate the trace of the extrinsic curvature, using stationarity, axi-symmetry and Eq.(2.15),

1 1 1 pe
= — u:—— M =—— —_—)— —_ =
K=-Vun \/gap(\/gn ) 7 8t(‘/§h) 0p(VE )] =0 (2.37)

It is a bit more complex to calculate the extrinsic curvature. Using the expression of the
inverse metric function Eq.(2.18), we get,

K,’j = —an,-—nj&-lnh
= 0j(h8) +I7;nq+850;h
= _hﬂi’j

h
= —Egoa(aigja"'ajgi(x—a(xgij)
h
= —58"(0igja+0;gid)
1
= 57, [(9igjo+0;8i0) =B (9igjo+ Djgio)] -

So if i and j are different from ¢ we have K;; =0.
Using the symmetry of K, we have only to calculate Ky;,

1
Koj = 57 (07800 =B*0j800]

1
= o [@m—ﬁ%hﬁ)]
(DZ
- _2hcajw

1
= “ohe &-8) (V(D'ej)
Then, using the fact that Dw = Vw we can write,

1
K:—%[Dw®£+£®Dw] (2.38)

2.4.4 Spatial operators in Boyer-Lindquist coordinates

Many calculations of non-relativistic field theories, such as fluid mechanics or electromagnetism,
are based on the use of spatial operators. This use comes from the fact that these operators have
useful properties for the derivation of the equations. The definition of these operators can be
extended here on the "spatial” manifold X of the Kerr spacetime. We give the expression of these
operators under the assumption of axisymmetry of the field on which they act.

Expression of Spatial operators in Boyer-Lindquist coordinates

First of all, we express these operators using the Boyer Lindquist-coordinates. The gradient vector
D in the ZAMO orthogonal base (€; = hiiei) is,

3 =
D-Y %ai (2.39)
i=1 1
The divergence of a vector V=eri is,
1 . A
D-V= ' & 2.4
e |0 (ho@V") + By (h, V) (2.40)
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For the scalar Laplace operator, we get,
D’A = D-DA
1 hg® h:®
0 O0rA|+0
Iy he® ( e ) 9( o

The curl operator (eq.B.28) on a vector V is given as,

|

%L@ae(mv%
DxVs= 5 Or@V?) (2.41)
i (9 (hoV®) = 9, V)

To obtain the advection term we use (eq.B.2), and after some calculations, we get for the
poloidal components of the advection term,

A— ‘VhL;arvf aevw 891n(hr)——8 In(hg) — iza In(hy) (2.42)
oV + g 8 v9+ a ln(hg)——aeln(hr)— o7r ) 8L 9 In(hg)
It can be useful to get the non—symmetrlc advection term,
Eo.ch+ B a cr+BhC aeln(h,)- €9, In(g) — B, In(ig)
[(B-D)C] = g: 0,C0+ B hea ch+ CBy, ln(he) BC dpIn (h )- & C¢8eln(h¢) (2.43)

¥ g.che B aec¢+ 8ln(h¢)+ B 5, In(hy)

Cylindrical Coordinates

To plot a scalar or a vector field, it is useful to introduce cylindrical coordinates. The first intuitive
proposition for the cylindrical radius is to choose ®(r,0), because 2n® represents the length of
the circle defined in X, with r and 0 constant. Nevertheless, this definition is not satisfactory for
different reasons. First, the function ®?(r,0) is a rational function of radius and latitude, and if
we choose z=rcos0 for the vertical coordinate, the inversion of the system of equations to obtain
r and 0 as functions of ® and z leads to solving a 8th degree polynomial equation. Doing it for
each point is numerically possible but increases dramatically the computing time. Further more
the proposition z=rcos0 is not justified by geometrical arguments.

Then another point of view consists in choosing a line of constant radius r = Cst in the poloidal
plane. The line element of this line is,

2 2
arz=[2+ r4 )d92 (2.44)

This line element di? corresponds to the line element of an ellipse. lIts semi-minor axis is

aligned with the symmetry axis and its value is r. The semi-major axis, /2 + =% r is contained
in the equatorial plane. Then we can introduce the usual parametrization of th|s ellipse,

ZZ 2
a I’V
Zeyl = rcos0 ar 2 (chﬁry] 7 )
r=1\/z%,+1r2
2 42 < eyl eyl g 2 (2.45)
s .
Feyi=\/ 1%+ sin® 1 Teyl
tanb = —
2 42 Zeyl
14 1@ Zoy
4r? (chlrrcyl)

This parameterization is used to define the cylindrical coordinates. They are more practical
than the use of ®?. Indeed these are analytically invertible. Nevertheless these coordinates do
not correspond to any obvious physical distances contrary to ®?. Note that for small latitudes we
have rey = ®.
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2.5 Conclusion

The system of equations (egs.B.9, B.22, B.24) is derived in details in the Appendix (B.1). It gives
the so called chrono-geometric point of view of general relativity. In this point of view, space is a
non-euclidian manifold in which the geometry evolves as function of a stress tensor, a momentum
density flux and energy density measured by a specific observer called ZAMO.

In this point of view, stress energy tensors play the role of a source term. They are the quan-
tities that govern the evolution of the geometry. Nevertheless this system needs to be coupled
to some specific physical constrains, some specific form of the stress energy tensor, to add an
equation which governs the evolution of the stress-energy tensor. Indeed, for a set of particles
inside an electromagnetic field, we need to add equations which control the evolution of the dis-
tributions function of each species and the Maxwell’s equations. This point of view is developped
in Chapter (3). In the case of a perfect ideal gas in an electro-magnetic field, the evolution of
these quantities is given by the continuity equation, the conservation of the stress-energy tensor,
the equation of state and Maxwell's equations. This point of view is exposed in Chapter (4).

Thus, putting all these equations together gives a complete description of a self-gravitating
stress-energy tensor. This really general case can be useful for describing very compact objects
such as a neutron star or a binary compact system. In the following we neglect self-gravitating
formulation.

The object of our study, inter-galactic spin jets, can be described via a kinetic plasma of
magnetized relativistic electron-positron or hadronic particles or via a magnetized ionized fluid of
electron-positron or hadron-electron pairs. In this case, the approach is simplified, because as in
Sec.(2.4) we neglect the self-gravitation of the particles and the electromagnetic field which is in
the vicinity of the black hole. Thus we choose a Kerr metric for our spacetime. The evolution
of the different fields, which compose our system around the blach hole, will be the object of the
two next chapters. The tools developed here are useful to write the General Relativistic Magneto-
Hydrodynamic (GRMHD) in Kerr metric in a form similar to the classical one. This formulation
of GRMHD equations constitutes the base of our model.
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Some material component of the relativistic spine-jet is likely to be composed of electron-
positron pairs extracting energy from the black hole. This plasma is produced via a pair creation
mechanism from highly energetic photons or neutrinos from the disk. In function of the emission
of the accretion disk (neutrinos for Gamma Ray Burst (GRB), photons for Active Galaxy Nuclei
(AGN) disk) the source of pair plasma is the annihilation of neutrinos or photons (see. McKinney
[2005b], McKinney [2005a]). The effect on pair plasma injection by neutrino annihilation for GRB
is studied in various publications (e.g. Birkl et al. [2007], Globus and Levinson [2014], Zalamea
and Beloborodov [2011]). The fluid has several components, which can interact with each other.
If there is a mechanism of pair creation, then the fluid components do not conserve their particle
number. Thus in ideal, axi-symmetric and stationary MHD, the mass flux along the stream line
is not conserved. Indeed the line can be mass loaded or unloaded in function of the evolution of
the processes of creation/annihilation. Because of this process, the flow on these lines can be in
both directions. The plasma is flowing down on a part of the line which is linked to the black
hole (inflow). On the other part, the plasma flows away (outflow). If such lines are connected
to the horizon of the black hole, then the exchange of energy between the rotational energy of
the black hole and the Magneto-Hydrodynamic (MHD) field via Penrose and/or Blandford-Znajek
processes can play an important role in powering the outflow. Indeed we show that the MHD flow
of energy far away from the event horizon of the black hole is composed to the energy given by
the black hole and the energy brought into this flow by the loading of pairs (Sec.4.3.3).

First, we must introduce how the pair creation reacts on the flow. In order to correctly analyze
and calculate the particle creation rate, the volume forces, the energy and momentum supplied,
resulting from the mechanism of creating pairs , it is necessary to start from relativistic statistical
mechanics. Once we get Boltzmann's equation, we derive the magneto-hydrodynamic equations of
the plasma of pairs, including the effect of the creation/annihilation mechanism. This theoretical
work gives the opportunity to formally introduce the phenomena of thermal agitation and internal
energy which appear in the following chapters to be essential for understanding the phenomena.

3.1 From relativistic Boltzmann system of equation to the General
Relativistic Magneto-Hydrodynamic (GRMHD) description of
plasma

This section is based on Marle [1969a], Marle [1969b], Droz-Vincent [1968] and Hakim [2011]
works. They study the specific case of a fluid composed of three species, with a mechanism of
pair creation. As in the previous section, we consider a spacetime (.#,g), which can be foliated
i
by a set of hypersurfaces .4 = U X, such as Ip (M) =Tp(X) EB Rn.
reR

3.1.1 Particles content

We consider that this spacetime contains a set of particles of three species. A set of indistinguish-
able, massive m., positively charged +¢g particles {q+,i}i:1...N+' another set of indistinguishable,
massive m_, negatively charged —g particles {q_,j}jzl_‘_N_, and another set of indistinguishable
neutral particles r. A pair of charged particles is produced or annihilated via a mechanism we can
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write as follows,
2r=e,+e_ (3.1)

Practically, the positive and negative species are electrons and hadrons (hadronic model) or
electrons and positrons (leptonic model). Leptonic pairs are produced by highly energetic photons
(non massive particles) or neutrinos (massive particles). We also introduced in this spacetime
two four-force fields F, and F_ which act on charged particles. We note p; ;=m,cuy;, p- j=
m_cu_ ; and p,; the four-momentum of the i-th positively particles, the j-th negatively charged
particles and the [-th neutral particles. In all cases, the charged particles are massive such that
P+,i=mycuy; and p_j=m_cu_; are future oriented time vectors. If the neutral particles are
massive (non-massive) then p,; is a future oriented time (null vector, respectively). Thus the
equations of motion for each particle are,

Vué,,il3+,i =F, (x:i,p+,i)
Vo poj=F (< p ) (3:2)
Vpr,lpl‘,l = 0

which are valid V(i,j,1). In practice, the force field is the Lorentz force (electric and mag-
netic forces) due to the presence of an electro-magnetic-field F, (xti,qu,i) =F(,qu_;) and

F_ (xf’j,u_,]-) =F(,—qu_ ). Fis a second order fully anti-symmetric electro-magnetic tensor.

o

dua- m du .
i MY+ 00 Hov |, Qe p
ercder'i == ar m+l°‘pvu+’iu+'i+ chuJﬁi
du*. g v_.du*.
= Y- - kv _9pa, b
m- = = —-m_ I3 u" .u’ . —=Fu" . 3.3
ds_ h dt A (3:3)
dk;xl T (LAY
dhej pRATLaS T

Note that y4; = —n-uy ; (Y- j = —n-u_ ;) is the Lorentz factor of the positively charged particles
(negatively charged respectively) seen by the Fiducials Observers (FIDO). The electro-magnetic
tensor field Fog, which appears here, is a solution of the covariant Maxwell's equations where the
source term is composed by the "discrete” four current associated to the motion of each particule
individually as in Sec.(3.1.3, 3.1.7).

3.1.2 Phase space properties

For a particle of a determined massive species (non massive species), if we do not care about the
evolution of its spin, its state is entirely determined by the information of its position (M € .4),
and its four-speed u for a massive particle (the quadri-impulsion vector k for non massive particle
respectively).

Phase space geometry of massive particles

The position in phase space of a massive particle is composed of its position in spacetime and
its four velocity (M,u) € 4 x Ty (M) = Pg. Nevertheless, the four velocity u verifies u? = -1 and
u' =0 (because four velocities are future oriented), so the four velocity of the particles in M is
embedded inside a sub-manifold 2y « 9y (). The sub-manifold 27 imbedded in J\(4), is
the future map of the hyperboloid defined by u?=-1 < uce Q¢ p=02p0 2, The past map is
denoted §2,,. For the sake of simplicity from here on, the future map (2f is noted {2 and called
four speed hyperboloid. Because the tangent space is flat, note that the four speed hyperboloid
sub-manifold (2 plunged in the tangent space 9\ (#4) is fully determined by the metric tensor gm
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with the choice of a basis of this tangent spacetime. We can choose an orthogonal base or the
natural basis adapted to the coordinate system which maps our spacetime.

The four speed hyperboloid sub-manifold 2 is plunged in the tangent space I (), which
is a flat Minkowskian space. Then the geometry of this four speed hyperboloid, as well as the
geometry of the future light cone are independent of the localisation in spacetime. Only the
description of this object, using the natural basis, which is a basis of I(#), depends on the
considered P € .4 point in spacetime. We proove it in the following paragraph.

Using the natural basis of spacetime as base of our tangent space, a point on this sub-
manifold is characterized by the three "spatial” components of the four speed u/. These three
spatial components can be chosen as coordinates for this sub-manifold. Indeed following Debbasch
and van Leeuwen [2009a], for the further expansion in the model, it is very useful to calculate
the contravariant u° and covariant 1y components of the four speeds as function of u/ and the
metric tensor at the point M only. Using the definition of the future sheet of the hyperboloid we
get,

0

1 ; ; o
u = —E goiu’+\/(goiul)z—goo(1+gijulu1)

(3.4)

o = V(o) ~ goo (1 + gijui )

Thus the three "spatial” components of the four speed constitute a coordinate system to the
future sheet of the hyperboloid §2. A point of ./ x {22 p describes the state of a particle. We call
phase space this p space. It is a 7-dimensional manifold. A point of this variety is noted using
a tilde over a upper index coordinate, zM = (x*, /). We introduce (ey) the natural basis of the
spacetime, which depends on the position in spacetime, and (0;) the natural basis of the four-
speed hyperboloid associated with the u’ coordinate. The (0;) basis depends on the position on
the four-speed hyperboloid, but also on the point in spacetime. The coordinate u’ corresponds
to the spatial component of the four-speed in the natural basis. Then the natural basis of p
phase space associated to the coordinates z" depends on the position in spacetime. We note
(my) = (e, 0;) its natural basis. Following the path, which leads to Eq. (3.4), we also obtain the
derivative in phase space coordinates z" of the time covariant component g of the four speed.
These results are used to achieve properly some of the following calculations,

Ouo _08ov v _ 80 08ov o v Oug _ 8ojlo — ool

OxM  OxM 2ug OxM oul U

o’ 1 08y o and o (3.5)
Oxi T 2ug Oxh -

Metric of massive particles phase space

If we use u* as the coordinates of S\ (#), the metric is gv. The hyperboloid is locally defined
by the submersion f:u® — gy (u,u) = guyutu’. Then the normal vector of {2 is Oy f (u)du® =
2uqdu® =2u =2ng). It is fully determined by the u’ component. This is obviously a future
time oriented vector and so {2 is a spatial sub-manifold. Therefore the induced metric of (2 is
gn=8gv+udu. It will be used for the construction of the metric of the phase space p.

If we use u® as coordinates of I (#4) associated to the natural basis ey, the metric coefficients
are gum = gop (M) dx*®dxP. These coefficients depend on the point M in spacetime. Nevertheless it
is an artifact coming from the description of (.#) choosing e, as a basis. In fact, the tangent
space is a flat space. If we choose an orthonormal base or an orthonormal system of coordinates
to described it, then the components of the metric tensor in this basis are the usual Minkowskian
ones.

Once we have the induced metric of {2, we get the metric of the phase space y,

G= [g g"g] . (3.6)
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The zero terms came from the construction of the phase space p. Remark that the metric of
phase space is fully determined by the given spacetime metric. In fact, if we choose an orthonormal
system of coordinates to describe J\(.#), then g) only depends on the position on the future
sheet of the hyperboloid f2.

Volume form of phase space for massive particles

To integrate properly the tensor fields on spacetime, on the the four speed hyperboloid or again on
the phase space, we need to determine the volume form of each of these spaces. For spacetime,
the volum form, is written from Levi-Civita tensor, in any system of coordinates,

e=/—gdx’ ndx' Adx® A dXP, (3.7)

where g is the determinant of the matrix composed of the covariant components gqp = g (€, €p)
in the natural basis associated to the x® coordinates of ..

For the four speed hyperboloid, we note ® the volume form of Iy (#) and w the volume form
of £2. Since ny) is the normal timelike future oriented unit vector of {2 as a plunged sub-variety
in Im(A4), we have ®=-nHAw.

Writing separately the components along e for the four velocity, we can use Eq. (3.4) to
express u(ul) = uiei +u0(ui)e0 the four velocity in function of u' only. When ut goes in whole R3
space then u(u?) spans the whole futur sheet of the hyperboloid £2. Then as for any manifold, the
volumic element of {2 can be written as @ =, /det(gQ)dul Adu? Adu’. g0 is the determinant of
the metric composed of the covariant components 80i; =80 (ol-,oj), with (0;) the natural basis

of 2 associated to the u! coordinates.

Using u as coordinates of J(.#), the volume form can be written as @ = ,/gMduO Adu' A
du® Adu®, where /gy is the determinant of the matrix of covariant components gop =8(eire)).
As a matter of fact, the natural basis associated to the use of uM coordinates is the natural basis
of spacetime ey associated to x" coordinates.

Using np=u= ukduk, we finally show that —upy/det(g)) = /—det(gm). Thus we find the
volume form of the four speed hyperboloid is,

Vv—8Mm
w=—Y Mgyl A du? A du® (3.8)
Up

Another way to write this expression consists to remark that the tangent space is flat and
its expression is valid for each base of the tangent space. We choose an orthonormal base f,
of Im(A) and note f" the coordinates in this base, where /=gy =1, adapted to some time
vector defining the first vector fy of the base. Then we can now introduce a spherical change of
coordinates,

f*=—fo=coshy

f!= fi =sinhysinBcos
f? = f, =sinhysinBsind
f1 = fs =sinhycos0

(3.9)

We get a well adapted system of coordinates of the hyperboloid and find the volum form in this
coordinate system.

o =sinh?ysin0dy A d6 A dd (3.10)

In the following we note 8%u the integrand. It is independent of the coordinate system used to

described the hyperboloid. 8%u = ——V;fMd3u for the coordinate system u! issued from the natural

basis or equivalently from &%u = sinh?® ysin®@dwyd0d¢. From here, it is trivial to get the phase
space volumic element,

det
|1=—e:/\oo:%dxo/\dxl/\dxz/\dx3/\dul/\duz/\du3 (3.11)
0
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So the determinant of G is, VdetG= d%gg).

Phase space geometry of non-massive particles

In case of non massive particles, the four-impulsion vector k, which is tangent to the trajectory of
the non massive particles, is a future oriented null vector. This peculiarity brings some difficulty
to carry out the following calculations correctly. So the four-impulsion of a non massive particle
in M e . is included in a well know hypersurface ke €, c S (4) the future light cone. Like
the previous sub-manifold (2 the following relation showes that the future light cone is described
by the spatial component of k,

1 . . .
K= —— [g()ikl + \/(gOikl)z — 8oog&ijk' kI
800 (3.12)

ko = \/(gOiki)z_gOOgijkikj

After some calculations, we show that the normal vector to €. is k. Thus the future cone is
a null hypersurface. Therefore, it brings the peculiar property that the normal is included in its
own tangent space ke 95 (¥;). The relation Eq.3.5 is also valid on the future light cone,

O kY ko _ gojko — gook;

Ok _ 3g0v K ﬁagov

Oxh ~ Oxh 2ko OxM okl ~ ko

d 3.13
ico __ O8ov KoKy o ok° _ kj ( )
OxMH B 2k0 OxM 8kf B k()

If we use a spatial foliation of the spacetime, we can make a 3+1 decomposition of the four
impulsion k = %(n+s), where s is a spatial unit vector and E the energy of this non massive
particle. It allows us to define the ingoing null vector £= £ (n—s). By construction the four
momentum k and the ingoing null vector verifies £2=k?=0 and £-k=—-1. Using it and Eq.(2.5),
we can show that the induced metric q on the light cone is degenerate.

q=g@(),n()=g+kel+Lek (3.14)

Like all metric of a null sub-manifold, this metric is degenerate. We call the phase space of
non-massive particles p=.4 x €.

Volume form of non-massive particles phase space

The same kind of development can be made to calculate the volume element of the future light
cone.

w:——V;CgMdkl AdIC A dKS (3.15)
0

As in Eq. (3.10), it is possible to find an adapted coordinate system of the future oriented
cone. Expressing coordinates of k in any orthonormal directed oriented basis of the tangent space,
we use the following system of coordinates,

f=-fo=1
fl=fi=1sinBcos¢

3.16
2= fo=1sinB@sin¢g ( )
fl=f3=1cos®

we find an similar expression,
w=1[sinBdIAdOAdD. (3.17)
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Figure 3.1 — Plot of the hyperboloid sub-manifold (blue) for massive particles and future cone (red) for
non-massive particles. It represents the geometry where momentum is embedded

3.1.3 Conservation of volume form along motion

If we consider that particles having a charge g, are plunged in a global electro-magnetic field, the
evolution of the state (x%, u/) of the particles is determined from the four velocity and Eq.(3.3),

dx® o

ds “ dzt o

- , = ZEax(@) V()R (E), (3.18)
W: —F{lvu“uv‘l‘EF]pu“'i‘C] Zﬁ(z\"f)

where XM = (u"‘, —I’{wu“uv).

It corresponds to a geodesic evolution of the state of particles in phase space, and Y® =
(00‘,%Fj“uu) to an electromagnetic acceleration. CM represents the term due to collisions or
interactions with others species of particles. The electromagnetic forces here, contrary to those in
Eq.(3.3), are divided in two parts. The first part Y* contains only the "average” electromagnetic
forces, that is to say the forces due to the average electromagnetic field and the average current.
More precisions are given in Sec. (3.1.7). A useful lemma exposed in Marle [1969a] is that the
Lie derivative of the volume form p along the collisionless evolution in phase space is null, i.e.,

[ Zm=0]. (3.19)

This property means that for a set of particles, which forms an infinitesimal volume in the
phase space, if these particles evolve following Eq.(3.18) where we neglect the collision term, the
volume of this set remains constant. This property is also valid for each kind of motion having a
Hamiltonian (see.Debbasch and van Leeuwen [2009b]). To show this property, let use the property
of linearity of the Lie derivative Eq.(A.9 & eq.A.10),

8—form=0
—_— 1 0 Ny
Ln=Z-derw) +d(Z-p)= T (VdetGzP)u.
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For the geodesic evolution, using Eqs.3.18& 3.5), the anti-symmetry of F and the property
(A.3), we get,

L0 (vaerox®) =

()t ()

VdetG B T WP B T
our 0 (g B 9
= ﬁ+u“@ln(u—o)l+?uvu“uvaui lnu(i—f”u o (utu)
a b < 4
—_— fxp:O, (320)

Details of the calculations are given in Sec. (C.1). For the evolution due to electro-magnetic
forces, we also get,

quy 9 (Fuu!
—|+=—|p =0
Up

Thus we have demonstrated Eq. (3.19). All the results of this chapter are valid for all kinds of
particles, whatever their charge. For the rest of the section, we call py =4 x 24, u_ =4 x {2_,
and p, =4 x {2, the phase space of the positive, negative or neutral particles, respectively.

3.1.4 Relativistic distribution function

Using the results of Sec.(C.2), for a set of N particles, evolving in our spacetime following Egq.
(3.18), we can introduce the world line distribution function defined as,

~ N ~ ~
R(zV)EfSERdSZSm (2"~ )| (3.21)

i=1

If the particles are not distinguishable, the function R, defined on the phase space, contains the
entire information on the line of universe of this set of particles and their distribution in the phase
space. We note o, =2/, x {2 a foliation of phase space associated with a foliation of spacetime.
Le us write Eq.(C.4) for the set of particles,

N:f
O

Even if the world line distribution function contains a lot of information on this system, this
function is not useful because it is not smooth. So to obtain the usual distribution function,
one needs to build some mean value of the world line distribution function in order to smooth R.

R() T (<°)| oo | (3.22)

FMw(RMw ) |. (3.23)

We assume that the previous results Eq.(3.22) on the world line distribution function is valid
for the distribution function.
N= [
O

The vector field f(2") % (2") can be considered as the 7-number current of particles in phase
space. This is valid for any spatial foliation of .4, which implies that the 7-number current field
inside the integral of the phase space is conserved on p manifold. Using the expression of the
divergence on the phase space manifold we get,

F(e%) F ()| oo (3.24)

w 0 (gda
g 0z" \ug ds

2(f]= (") £(=")]=0]. (3.25)
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This is the so called Liouville equation for the distribution function, where .Z is the Liouville
operator. This should not be confused with the Lie derivative. When particles which are created
or annihilated, collide, the null right hand side of this equation needs to be replaced by the collision
term and the rate of creation of particles minus the rate of annihilation per unit volume in the
phase space. This term is specified in Sec. (3.1.6).

The averaging used to build the distribution function is still a problem concerning the invariance
of the function f, (see Debbasch et al. [2001] for more details on the subject). It is important
to write the number of particles inside an infinitesimal element of phase space. Let us define the
elementary volume on the spatial hypersurface X'y around a point x € X,

8% ={xe s, | Viel1,23] x'(e|xix+dx |}, (3.26)
and an infinitesimal part of the hyperboloid of four-speed around the speed u € {2; 4,
53Qt,x,u={ue(zt,x | Vie[,2,3] u(we [ui;ui+du"]}c9. (3.27)

Finally, we note 660t,x'u :637/” x 8302, c u. To get the number of particles inside 660t,x,u we

need to start from the integral, Eq.3.22, but only on the infinitesimal elements of the hypersurface

8% xu, using 8%0 = —hiuodgxde‘u and g—g ‘N=-hu®. After some calculations, we get,

0
8N [83;0, 6% 21 ] = f f(M,u)%dsdeu : (3.28)
0

Orx,u

Another quantity, which is useful to introduce, is J the number four-current also call Feynman

current,
J= ]”(M,u)u;gdulduzdu3 . (3.29)
u’eR3 Ug
This quantity allows us to define in the rest frame the fluid particle number density and the

four speed associated to the fluid,

J (3.30)

3.1.5 Boltzmann’s equations system

Let us consider a system with different species. We note the distribution functions of charged
particles, for the positive, the negative and the neutral particles fi:ps — Ry, fo:ip. — Ry
and f;:pn, — Ry, respectively. These species are plunged in a curved spacetime and an electro-
magnetic field, such that the particles evolve following Eq.(3.18).

From Eq.(3.25), replacing dz"/ds using Eq. (3.18), we treat separately Z, which stays on
the left hand side and C*, which contains the collision effect and is moving on the right hand
side. Using volume conservation in phase space Eq.(3.19), the left hand side can be simplified.
Thus the system of equations, which governs the different distribution functions becomes,

of+ ; of+ . yOf+
u”%—ﬂguvuc%—%ﬂ V% =L | (3.31)

-1,

These equations are called Boltzmann’s equations system. It can be adapted for a more
general configuration of species mixing. On the right hand side we get some source terms due
to collision and creation or annihilation of pairs, which will be calculated in details in the next
section. The left hand side contains the effect of gravity and average electromagnetic Lorentz
force.

33



CHAPTER 3. STATISTICAL PHYSICS IN CURVED SPACETIME & RELATIVISTIC
THERMODYNAMICS

3.1.6 Collision terms

Regarding the model develloped here, this section is the most important part of this chapter. In-
deed, the collision term is the groundwork of the calculations allowing us to link microphysics and
dynamical processes of the flow. Indeed, we see that these terms can take into account Compton
and inverse Compton processes. It can also take into account, how the creation and annihilation
of pairs play a role on the distribution functions of each species.

First, we see that elastic or unelastic particle collisions are characterized by a unit spatial vector
which characterizes a reflection symmetry. The set of collisions is described by making this vector
crossing the unity sphere of the sub-space where it belongs. Second, based on Chernikov [1963],
we see how to calculate these terms. A collision probability function needs to be introduced. This
function, related to the notion of effective cross-section, is not calculated here. It contains the
micro-physical characteristics of each process.

In order to consider collisions, we assume the following hypotheses,
e First, we consider only collisions with two particles.

e Second, we consider that the collision time (clean particle time) is infinitely short compared
to the characteristic time of motion created by mean fields. Thus collisions are considered
as punctual and instantaneous.

e Third, elastic collisions concern collisions in which the species before and after the collision
are identical.

e Fourth, inelastic collisions concern collisions in which the species before and after the colli-
sion are not the same.

The second hypothesis on the punctuality of the collisions may be a problem for collisions
between charged particles. However, we assume that the density of the gas is sufficiently low to
ensure the validity of this assumption.

Elastic collisions

In the case of an elastic collision, at M € .4 where the collision occurs, the two particles of four-
momentum p and q before the collision become p’ and ¢’ after it. The conservation of momenum
during the collision implies that p+q=p’+q’. The elasticity implies that the deviation of four
momentum p—p’ and q—q' is a spatial vector. Writing the conservation of the four momentum,
p-p =-(q—q'). It proves that the deviation vectors are aligned. We deduce the existence of a
vector n such as,

'=p-2(p-n)n

{pl p-2(p'n) (3.32)
q=q-2(q'n)n

Elasticity induces that n is proportional to a difference between the two four-momentum

of particles of the same mass. Thus n is a spatial vector, which is perpendicular to the total

momentum of the two particles.

{(p+q)-n=1p’+q’)-n=0 (3.33)

n2:

Egs. (3.32) indicates that a collision is characterized by a reflexion symmetry with respect
to the hyperplane orthogonal to n in Jy (). In the following we called this hyperplane nt.
This hyperplane is fully characterized by the spatial unit vector n orthogonal to p+q. Thus,
n describes the 2-sphere unit 4t cp+qt c Iu () plunged in the sub-space orthogonal to
p+q. Normalizing the vector p+q we get the four speeds of the reference frame of center of
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mass, then n is a vector of the "space” seen by an observer of the center of mass reference frame.
We describe all the possible elastic collisions for a given value of p+q. It means that, when n
scans the sphere yp+gL, Eqgs.(3.32) give us all pos'sible p' and ¢’ values of an elastic collision.
The property of reflexion symmetry allows us to write,

p=p' -2(p''n)n

{q=q’—2(q’-n)n

We can remark that this transformation, described by a spatial unit vector n, is also valid for
collisions of particles, either massive or not.

(3.34)

Figure 3.2 — Display of elastic collision of two massive particles, in the plane defined by the four-velocity in
the barycentric frame p+q and the vector n of the collision. The dotted lines correspond to some possible
real trajectory of the particles.

The Fig.3.2 displays the elastic collision of two massive particles. The dotted line corresponds
to some possible real possible trajectories. Nevertheless the assumption of punctual and instan-
taneous treatment of collision implies that the considered trajectory is the one which follows the
line along four-velocity vector.

Inelastic collisions

For an inelastic collision we need to proceed in two steps. Considering that the collision starts
with particles of proper masses m, and m,; to produce particles of masses my and mg. Like
before the four-momentum is conserved, so we get p+q=p’+q’. Let us suppose we get a couple
Py, qp) resulting from the collision of the two four-momenta pj, corresponding to a mass of m,,
and qq, corresponding to a mass of mg, all the couples (p’,q') verify,

{p’:p(’)—z(pg-n)n

(3.35)
q'=qy-2(qy-n)n
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where the vector n follows the condition,

(p'+9q')-n=(py+qy)-n=0
{ 2 (3.36)

We look for an inelastic transformation (p,q ” Py, dp). Which combined to all elastic
unelastic

transformations (p;,qy o p’,q') describes all inelastic collisions. Indeed, the composition of
elastic,n

an inelastic collision (mp, mg — m;,, my,
collision (mp, mg — mj,, my).

Finally, we need to find the couple (p;,qg). The idea is to search for this couple in the plane
generated by (p,q). If we note P4 the operator of projection perpendicular to (p+q), this plan
is also generated by (p+q,Pp.+q(P)) or (p+q,Ppi1q(q). Thus we can seek the scalars (a,), such
that,

) with an elastic collision Eq. (3.32) is another inelastic

{pb:a(p+q) +PPpq(P) (3.37)

qo=1-a) (p+q)+PPpiq(q)
To obtain the resulting masses (m;,, m;) from the initial masses (m, m4) before the collision,
we take the square of each equation, and get after some calculations,

2 2
1 mp,—mq,
“5(“7)
2 2
{N=-(p+q) . (3.38)

) [—)\2 +(my - mqr)z] [—)\2 +(my + mqr)z]

) [—)\2 +(my - mq)z] [—)\2 +(mp+ mq)z]

Using the fact that the scalar product of two four-velocities is less than —1, we deduce that
A2+ (mp + mq)2 <0, using a second inequality we also get —A?+ (mj, — mq)2 <0. These two
inequalities are also valid for m;, and mg. Thus B? exists because each term is negative, which
implies that the fraction in the last equation (3.38) is positive.

Because the tangent space is a flat space, the volume element associated to #,. 4. is the
usual element of volume (sin?0d0d¢) of the sphere independently of the collision center in the
momentum frame p+q. The axis defining 6, ¢ is any couple orthogonal axis of the sphere #, 4.

Decomposition of collision terms

The collision term of Boltzmann's equations system Eq.(3.31) is the balance of particles of each
species, which leave and enter (in-out) some fluid volume in the phase space due to collision or pair
creation-annihilation. This term is calculated in Chernikov [1963] and Marle [1969a]. Each part
can be decomposed in different terms, which represent the collision between 2 different species,

L=+ 0+ 4127
=D +120+120+1%, (3.39)
L=+ + 1+ 5+ 1+ 1,

Thus the term IIZ represents the rate of elastic collision between electron and positron.
The terms 132,112,117, 122,127, 137 constitute the elastic collision rates and 127,13~ the inelastic
ones. The terms 111, 177,17 are the elastic collisions between electrons and positrons. If the
neutral species is photon, we may have radiative transfer, especially Compton and inverse-Compton
processes. The effect of those physical processes on the evolution of the distribution is determined
by I_) and IH The terms 15" and 1?’,) contain the effect of the creation of positrons and
electrons, respectively. Therefore IJ~ contains the effect of the annihilation of pairs on the
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neutral component. Chernikov [1963] was the first to derive explicitly these expressions assuming
collisions.

I} (Mu)= LE 0 fn . {f+ (w') f- (%) - frf- (mi) }Ai: (meu, q,m) sin® B,d0ndyf3.40)
o ra \/_g

me qo

Y _2dq'dq*dq® (3.41)

The differential cross section terms A%~ (m.u,q,n) are proportional to the probability of col-
lision characterized by the vector n between a positron of momentum m,u and an electron of
momentum p. The other collision terms have the same form as in Eq.(3.41), except that the
differential cross section is different. The differential cross section terms must verify the following
properties,

° Af]l is a positive function.

e It respects the symmetry Af]l (p.q,n) :Aé’]? (p.q,n) :A’;l{ (q,p,n), which means that the prob-
ability of collisions (p,q;» p’,q') is equal to the probability of the collision (p,q: q,p)
and is also equal to the probability of (q,p ;»p’,q’).

e There is an equal probability of the inverse process, Afj’ (p.q,n) 63q:A§; (p'.q,n)8%q".

These properties of symmetry are important for future developments. This differential cross
section term contains all the essential elements of physics of the collisions. In order to understand
the role of the creation of pairs, we need to calculate the Ii\(_ and I;Y_ terms. The calculation
of these differential cross-sections involves the standard particle model and will not be discussed
here. You can find details in Berestetskii et al. [1982].

3.1.7 Maxwell’s equations

We show here how to properly integrate Maxwell's equations in order to link the distribution
function to the electromagnetic field. Generally speaking, the evolution of the electro-magnetic
anti-symmetric tensor F is given by the Maxwell’s equations in Gaussian Unit (GU) that we can
write in its covariant form,

4m,
V-F= —j

where «F is the Hodge dual Eq.(A.16). The source term is due to the circulation of charges in
spacetime. Indeed j is the charged four-current vector. About the current, two definitions appear,
the discrete one or the continuous one,

dxt ; N_ dx”
= (9= 28 (M-M-j(9) —
ds =

u;g du'du?du®
0

\/_

(M-M. ;(9) du'du?

(s)] ds= qf R+ M,u)—R- M, u))u——
uleR3

je=q0:-19=q ) _ (fi Mw-f Muw)u
: (3.43)

The first expression of the current treats the source as a discrete function linked to the world-

line distribution function. In this case, the electromagnetic field solution of Maxwell's equations

is the sum of the contribution of each particle. The problem of this solution is that it includes

all singularities of the field in the environment of particles. The second expression considers the
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source as a continuous field linked to the distribution function. Here, the solution of Maxwell's
equations gives us a continuous average field. If we remember the discussion in the beginning of
Sec. 3.1.3, the electromagnetic field, which appears in the Boltzmann system is the averaged one.
Thus in the following, except if we mention it, the charge current refers to the continuous field.
Note that J is the four-current number also called Feynman's current mentioned in Eq. (3.29).

3.1.8 GRMHD equations system and coupling terms between species

Compiling all informations introduced in this chapter, we are now building in this section the
equations of the positron-electron fluid motion according to the effects and the mechanism of
pair annihilation/creation and elastic interaction between species. To calculate the rate of ap-
parition of pairs, one needs to integrate the Boltzmann equation on all possible velocities. The
divergence of the energy momentum tensor of each species is given by the integration on the
velocity space {2 of the first order momentum equation of the Boltzmann system. The terms due
to the interactions (Compton, Inverse Compton, pair creation or annihilation) between photons
and electron-positron fluid is integrated in many astrophysical system studies concerning high en-
ergy phenomena. Fargion and Salis [1998] study the effect of elastic processes (Compton, Inverse
Compton) on the emission spectrum.

The use of this kind of term are really important in astrophysics. Especially for highly energetics
flow, GRB, AGN... Let mention the discussion about pairs creation rate in the environnement of
black hole magnetosphere for AGN jets. The work of (Levinson and Rieger [2011]) argue that in
the best condition for the accretion disk the pair formation rate via annihilation of photons could be
always too low to get the Goldreich-Julian density (for steady and ideal magneto-hydrodynamics)
of pairs. In region where injection is too low ideal MHD break down and a gap is formed and
Hirotani and Pu [2016] propose a model of steady gap. These models are subject to recent
study as the work of Ford et al. [2017] which study the condition in such solution to have
an efficient Blandford-Znajek. Nevertheless the work of Levinson and Segev [2017] argue that
solutions of these models exists only under restrictive conditions which could not apply to concrete
astrophysical system, they conclude that the assumption of steady flow could not hold in the
magnetosphere of the black hole. The study of such a solution needs a bi-fluid+radiative treatment
in order to include the terms of interaction between photons and electon-positron fluid, and
the effect of annihilation or creation processes, Compton/inverse Compton type processes, and
synchrotron emission. Birkl et al. [2007] and Zalamea and Beloborodov [2011] have examined
the pair production mechanism via neutrino source in the environnement of accreting black hole
magnetosphere.

Maxwell-Enskog transfer equation

Following Chernikov [1963] and Marle [1969a], to get the equation of motion of each component
of the fluid, it is useful to obtain what we call a transfer equation. We introduce the tensorial
observable determined by the state of the particles, V(k, 1) € N?

t @ pu=Ax02 — TMreT* M)
; ; , (3.44)
(xu')  — t(xM, u')
This observable can be the mass t=m, the momentum t=mu or the energy of the particles
measured by a specific observer t=mc?u-v, where v is the four velocity of the observer. From
this tensorial observable, we can build its spacetime observable flux-density,

A :f uY (X1 (x“, ui)f(x“, ui) (—_ : —g) du, (3.45)
uieR3 ﬁ

L
Bry--Pr 1o U

which is a (k+1,1) usual tensor. The observable density per unit volume measured by a specific

observer is simply fgf&’“ = Zgl’al"[;l’a" vy, where v is the four velocity of the observer. Using
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Boltzmann's equation Eq.(3.31), we can calculate the divergence of the observable flux-density,

19 (\/__gi_p(xl ..... ak) _ o _\:O__g {I (x”,ui) tgll '''''''''' éxl k (x“,ul') +f(x”, ul)f tS}l ~~~~~~~~~ éxl k

(3.46)

This equation is the relativistic analogous of Maxwell-Enskog transfer equation. Details

of the demonstration are proposed in Appendix (C.3). This equation is valid for each species

of the different fluid components. The application of this equation on mass (or on unity) gives

the continuity equation of each component. For the momentum, it gives the conservation of the

energy-momentum tensor of each component of the fluid. The derivation of these equations is
the object of the next subsections.

Particle number conservation

If we take as tensorial observable the scalar function, which is 1 everywhere on the phase space,
the density flux associated with this observable is the quantity already introduced called 4-current
number Eq.(3.29). The application of the transfer equation gives the particle number conservation
of each species.

V-Ji=q+=kn
V- J_=q-=kn . (3.47)
V-Jy=qy=-2kn

The source term is,

P q P q
S P PO N 1 s Vo O P Pl v |
) mLeE“Q miee_Q NES) gl & Me Ir Me S Me ! Me (3.48)
A%, (p,q,n)sin?6pdBnddn x 5°p x 8¢

In fact the symmetry of the differential cross section and the property of elastic collisions
Eq.(3.34) imply that each contribution from the elastic collision is null. This is developed in
details in Appendix (C.4). If we combine the electrons and the positrons together, we get the
fluid of pairs separately from the fluid of photons. The four current of the fluid of pairs is simply
the sum of the electron component and the positron component J=J_ +]J,. Its divergence is,

V=2 (349

This equation can be simply interpreted. The pair creation mechanism gives the amount of
loading or unloading of pairs. ky corresponds to the rate of pair creation in the fluid frame. Then
2kn corresponds to the rate of apparition of the particles, electrons or positron. Thus to estimate
this rate and to see how it affects the continuity equation, the fundamental quantities to estimate

. . . . . 2y
are the differential cross sections of pairs creation A, (p,q,n).

Conservation of momentum

If we take as tensorial observable the momentum of the particles, by definition, the momentum
flux density of each component corresponds to the fluid contribution of each fluid component to
the energy-momentum tensor,

TFL:mczfuieW 63u[u®uf(x“,ui)] . (3.50)

m is the mass of the particles of the considered component.
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Applying the transfer equation to each species, we get,

V-TeL, +F(’—+,.) “ke,
Cc

V'TFL,—+F(]?_y-)=k—»e_ (3.51)

v'TFL,r =k—>r

The details of the proof are given in Appendix (C.5). ji or j—, is the charge current due to
positrons or electrons, respectively. Each component may be decomposed into,

2r=e,+e_
k_,e+ =ke__>e+ +kr_>e+ +kae+ +
Koo =ke, oo +kroo +KET0TE (3.52)

2r=e;.+e_
key=ke, —rtke - +kZ

It is possible to show that no force appears due to collisions between particles of the same
species (internal forces to the fluid component). For interactions between different species, the
explicit expression of the terms implies some equality between these terms. More fundamentally
this is a consequence of the action/reaction principle. The action of an electron on a positron is
the back reaction of the force of a positron on an electron ke —,, + ke, —. =0. It is the same for
elastic interactions between positrons or electrons and the neutral component k, .., +ke,—, =0
(ky—e +ke —; =0). The last interaction concerns the creation of pairs. We get kz_,rfe*e’ +
k%75 %+ = _K*T=%  The action-reaction between components implies that the total stress
energy tensor is conserved,

V. (TFL,+ + TFL,— + TFL,r +TEM) =0. (353)

Indeed, we have used here the well know result that F(j,.) = V-Tgm. Yet, the object of our
work is to study the effect on pair fluid of the pair injection mechanism. So as in the last section,
we need to consider the fluid of pairs. Introducing klfl_a,sgi%_ =k;—e, +kr—. , the force of elastic
collisions between pairs and neutrals is kz_,rffj”* =K@or=c,+e)—e, + K@r—e,+e_)—e_. This is the
force on pairs due to the creation of pairs and Tgp, = Tgr, + + Trr, - is the energy momentum tensor

of pair plasma fluid. We get,

V- -TgL +F

E" r—e.e_ —e,e_ r—e,e_ —e, e

j ) _ kElastic + k2ri€+e- — V-Tyup = Elastic erﬁ:w_ . (3'54)

where Tyup = Ter + Tem with for the electro-magnetic energy momentum tensor,

oaf
Tem =

g‘*ﬁ] . (3.55)

Thus there are two processes applying forces on pairs.
First, there is the elastic collision with neutrals, which is the force due to Compton/Inverse —
Compton effect on the fluid when the neutral component is composed of photons.

Hlastic :f f p {f+(p—,)fr(i’)—ﬂ(i)fr(i)}A”(p,q,n)
r—ese_ mLeE“Q M%EQ ne,, . me Me Mme Mme +r (3.56)

SR EATE T e —

Second, there is the force on the pairs by the creation/annihilation mechanism,

’

sin? B dOndpn x 3p x 83¢
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3.1.9 H Theorem

Using for the i-th species t=—kg [In(f;)) — 1] in the equation of transfer Eq.(3.46), we get,

V-s;= —kaquRS 63uln(f,- (x”,ui))l,- (x”, ui)

Precisions on the derivation are given in Appendix C.6).

species s; is defined as,

i=—tn [ uuin(r(su) 1] st )

Using the symmetry of the differential cross section and changing of variables in the collision
integral, the total enthalpy flux density s=s, +s_ +s; verifies,

(3.58)

The entropy flux density of i—th

(3.59)

Ves=sctl+5.20 +scor +sctl + 520, (3.60)
where
++ _ Ef f f f+(P)f+(q) _ 2 3 3
Ty moef2Jef2ne f+(P')f+(Q’) £+ @) /(@) = f- D f (@] Ar (p.g ) 87 x 5°p x B
_ ka f f f—(P)f—(q) / / — 2 3 3
=— — | f- ~ -f- "~ A ,q,n)d 0 0
] T Jeen LeInes, p+qJ— f—(P')f—(Q') -0 f-@) = f- D f-@] A (p.g ) 5°n x &"p x &g
—+ ka f f @) fi(@ / / 4 2 3 3
L= — — | f- - f_ AZ7 (p,q,n)6 0 0
Se-+=7 L)L efdIne p+ql f—(p’)f+(q’) -0+ (@)~ f- D f @] A (p.g ) 8" x 5" p x B
- ka f f fr(p) fr(q) / / rr 2 3 3
crr — || fr (q) - f- A, (p,q,n)8°nx6’pxd
s N " o0 fi ) [fr®) fr@) - - f+ @] A, (p,q,n) 5°n x §°p x &°¢q

(3.61)

Because the distribution function and the differential cross section are positive functions and
also because the function x — Inx (x—1) is positive for all positive reals, we deduce that all
terms are positive terms. We get the so-called H theorem, which is equivalent to the second

principle of thermodynamics,

3.1.10 Notion of thermodynamics equilibrium

(3.62)

We assume that the positron component and the electron component are in thermodynamical
equilibrium if we have s.I¥ =0 and s.ZZ =0, respectively. The positron and electron are in equi-
librium means sc+_ =0. The neutral component and the positron (electron) gas are in equilibrium
only if sf7'=0 (sZJ =0, respectively). The pair creation-annihilation transformation is in thermo-
dynamical eqU|I|br|um if sc2” =0. The thermodynamical equilibrium implies that the distribution

function is a Maxwell distribution.

If we impose thermodynamical equilibrium between massive species of index i+ j = k+1, it
is possible to prove (see Appendix C.7) that,

VMM e ITeR and up €Iy (A) } wich depends of the

da;,aj,ar,a;€R  suchthata;a;=aga;
fi (x“, u’) =a;i(x")exp (Bjuys;-u)

fr (x”, ui) = ai (x")exp (Bruy; - u)

i+j=k+1 ‘
fi (x“, u’) =a;(x")exp(Bjus; -u)
fi (x“, ui) =a;(x")exp (Byus;-u)
(3.63)

. 2 - - - . . -
where B; = % for massive particles. This factor defines the temperature of the equilibrium.
The four vector ugs is the four velocity of the fluid, thus it is a unit time vector. The scalars

in equilibrium
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aj,aj,ar,aj are linked to the number of particles per unit volume in the fluid referential frame for

each species.
n 0OZ
—== = Z :—f 83 uexp [puys;-u 3.64
a= % (B)=- . 0 uexp[pus u] (3.64)
For photons, this expression is not convenient because it does not follow Planck’s law for a
black body. Thus, to treat properly the gas of photons, an analysis based on quantum mechanics

is required.

3.2 Pair plasma gas in thermodynamical equilibrium

To have an idea of the behavior of the pair plasma, we look at the consequences of the gas
equilibrium. We derive an expression of the Feynman current, the energy-momentum tensor and
the entropy flux density. This gives us a way to get an expression of the pairs production rate and
of the recoiling forces due to pair production.

3.2.1 Synge-Jiittner distribution function

First of all, we consider that the gas of pairs is in thermodynamical equilibrium, which implies
that each of its component is in equilibrium. Thus the distribution function is,

o (w4, = oy 21w 0]

& (p.)
[B-uyi-u] (369)
. exp |p-ur;-u
f_ (x“" ul) - n_(x“)p—fl
%6
a5 B-
_ m, c* _ m_c? . . . .
where B4 = 7T and B_ = T M+ and n_ is the density in the fluid rest frame, of four-speed

uy;. The unique temperature T expresses that the two components are in equilibrium together.
Using adapted orthonormal basis in tangent spacetime Eq.(3.10) gives,

Z(ﬁ):—%l(ﬁ):—fuimg 5*uexp [Puy;-u] |. (3.66)

(Ki)nen is @ modified Bessel function of the second kind, which significant properties are
described in Appendix.(A.5). In this notation, the number four current is,

Ji=nsug } - pous;=miJi +m-_J- (3.67)

J-=n_uy where po=mins+m_n_

We introduce here the mass flux density pouys; of the two fluid components.

3.2.2 Energy momentum tensor

Using the definition, Eq.3.50, and the expression of the distribution function Eq.(3.65) and intro-
ducing b=puy;, we find,

r aa ( azﬁ ) ~
B (s ab+
T:fl:—ercszr T
! S (3.68)
T(x[i’) _ 2 abS (m)
1= myc n- —&
.
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Using Eqs.(C.17,C.18) and Eq. (A.12), we get,

2 Ks(ﬁ+) 1 Tyi-+ = potcuy ©up +Pg
Ty pi=nimic ([5 )ufl@ufl"Lﬁ_g] man Ks(ﬁ+)+ n Ks(B-)
i h K (p) T T Ke(po)
K3 (B-) where &= Mmin, +m-n
T_,fl:n_m_cz ufl®ufl+ ] 0 -
K (ﬁ ) and P=(n.+n_)kgT=nkgT

(3.69)

Then we interpreted £ as the adimensionate specific enthalpy of the pairs plasma fluid. Then
[ ﬁ+ K3(ﬁ+) 1

the internal energy at equilibrium of positron (electron) component is 1+ = %E) " Br
B-) _ Ks(p- : ; ;
(1+ & ﬁ = Kzgg_; - ﬁ%) P is the pressure of the pair fluid.

3.2.3 Specific entropy

For the entropy flux density, a quick calculation using the same method as for the energy momen-
tum tensor leads to,

sy =kg|P Ks B+ +ln(4ﬂK2(ﬁ+))

(8-+)
e (B+) niP+
(ﬁ ) T
If there are no third species, there cannot be creation of pairs then kx =0 and thus V-nuy; =

In this case, the H-theorem Eq.(3.62) becomes Vy,,s >0, which means that the specific entropy
should increase along the fluid world line.

Si_=S:Ji+sJ-
oo where . (3.70)

=(nySe+ n_s_)ufl =nsuf

s =kp

3.2.4 First principle

If we have a fluid particle of a single gas component in thermodynamical equilibrium, Egs. (3.70,
3.69) lead to the link between the differential forms,

dap T
dé¢=——+—d 3.71
¢ poc? e’ (3.71)

This parallel evolution between these quantities is true for a gas in thermodynamical equilib-
rium. Indeed, the temperature is properly defined only for such a gas.

3.2.5 Specific internal energy

The specific energy is the energy per unit of mass in the fluid frame. The specific internal energy
corresponds to the specific energy of the fluid, where one removes the rest mass energy. To build
the density flux of the internal energy, we need to use Eq.(3.45) choosing t = mcz(—ufl-u—l). From
there we can easily show that the specific energy of each species is linked to the fluid referential
component of the energy-momentum tensor of the species via nymyc*(1+ %) =T, s (uy,uy),

K1(6+) 3
_e(f’+)= +__1
KZ(B+) _n+m+e++n_m_e_ p
° —e(p.) K1(6)+3 1 = = nm, o Vnal (7)
E () B

This equation, which links the specific internal energy with the temperature, is called the
(Equation of state (EOS)). This EOS (e=e(B)) is valid for gas in thermodynamical equilibrium
and for relativistic and non-relativistic temperature regimes. This form of EOS was first derived
by Synge [1957]. Thus we call this equation of states the Synge EOS.
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3.2.6 Taub-Mathews approximation

For pair fluid in thermodynamical equilibrium, the internal energy of each component follows a
Synge's EOS Eq.(3.72). We can study the different regimes of the Synge’'s EOS with temper-
ature Eq.(3.72). For ultra-relativistic temperatures, § — 0 and the non-relativistic temperatures

correspond to B — oco. Using the expansion EEZ; u:ﬂ% and E;% e 1- 23—u we remark that in

the relativistic regime,

e 1 3
LeB) 1 -
c 1+ egg) p—o0 P
In the non relativistic regime we also have,
e 1 3 1
1+ @ - 1 (3.74)

3
-~ +— ~ —
CZ 1+e£_[25)ﬁ—>oo Zﬁ 1+2:3—ﬁ[3—>00ﬁ

Thus Taub and Mathews proposed an approximation to the Synge EQS, which is given by,

1 e 1 P
- — 1 + (S) — = > | (375)
3 c 1+ e((:g) PocC

=~

The last equality is valid only for a single component or for fluid with two-components where
my =m_. That we can write,

3 P 3 P \?
%:——2+ 1+(——) -1 (3.76)
> 2ppc 2 poc?

This law, that we call Taub-Mathews’ approximate equation of state, follows the behavior
of the Synge's equation of state in both relativistic and non relativistic temperature regimes.
We can check this on the graph comparing the internal energy using synge Juttner EQS or
Taub-Mathews's one in Fig. (3.3) and the graphic drawing the effective polytropic index d5 =

Feflf_ldpo% in Fig. (3.4).

Internal energy % Effective polytropic index T,

1.70

— Taub-Mathews approximation
— Synge equation of state

£ 11| ISR - O

155k .............. U L

1.65F ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,

B LB0f s B NG\ o

1450 ............................................................. -

1.40}
1351 — Taub-Mathews approximation|_ .}
— Synge equation of state
130 107 107 100
Figure 3.3 — Specific internal energy for Synge Figure 3.4 — Effective polytropic index for Synge's
equation of state and Taub-Matthews approxi- equation of state and Taub-Matthews' approxi-
mate equation of state mate equation of state

The Taub-Mathews' approximation Eq.(3.75) for a specific internal energy of a gas in thermo-
dynamical equilibrium is a good alternative to Synge's equation of state. Indeed this EOS is more
practical for analytical and numerical purposes because there is no need to calculate the second
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special modified Bessel function. Mignone and McKinney [2007] investigated the difference on
numerical simulations between different I*law equations of state (5 = ﬁ% for non-relativistic
and ultra-relativistic I" polytropic index) and the Taub-Matthews' equation of state for adiabatic

flows, using the PLUTO code.

3.2.7 How the mechanism of pair creation acts on the dynamics?

To understand how the mechanism of pair creation acts on the dynamics, an interesting sub
case to explore consists on studying a gas composed of three species (electrons, positrons and
neutrinos), in which all kind elastic collision is in thermodynamical equilibrium. That is to say
all elastic collision between particles of a singles species e;e, = e e, e_e_ =e_e_, VV=1VV,
VvV = VvV, but also all elastic collision between two different species e;e- = e;e_, e.v=-e,V,
e_v=e_v are supposed to be in thermodynamics equilibrium. Then the distribution function of
all species is equals to a Maxwell distribution function with the same temperature and the same
fluid four velocity,
fe, X u) = ae, (x*) exp (Beug - u)
fe (M, w) = ae_ (x*)exp (Beun - u)
foxH,w) = ay (x*) exp (Byvug - u)
foxt,u) = ay (x*) exp (Byug - u)

(3.77)

. 2 2 . _pe . - .
with B = 74 and By = 5. Nevertheless we do not make assumption of equilibrium for inelastic

reaction VvV = e,e_, then a priori we do not have d., a._ # avay. In this case, we are able to
calculate the direction and the evolution of the amplitude of the creation rate and the forces due to
the creation/annihilation of pairs vv=e;e_. Then the number of particles creation/annihilation

rate kn and the force k2';_o*¢ due to the creation/annihilation mechanism are given by

kn = [avas — ae, ae |F25. o7 () where F25 o (T) = f f f AY (p.q,n)
R L)) ac(QJn
2v=ege 8F2—>r: gj “ ﬁ " e
e = lavasmae ae 7o (Bun exp | —ugr - (p+q) | sin?OndBndpn x 5°p x 8°¢
Ne
(3.78)
2 —
where B = - and F2.o (B) is a positive and decreasing scalar function of B. Then the

pair creation rate increases with temperature. The function F2\s. "% (B) is characteristic of the

differential cross section of this mechanism. The creation/annihilation rate is a function of the
sign [avay —aya-]. If ayay = aya_, the pair creation rate is bigger than the annihilation rate
and if ayay < asa—, pairs annihilation rate is bigger than creation rate. The equilibrium of this
mechanism is reach when,

2
ny Ny Kz (Bv) me
= — 1, (3.79)
nin_leg \ Ko (p) my
2
where By = n]:;”i" . Because of the very low mass of the neutrinos, this equilibrium constant means

that the process is efficient for a very high density of neutrinos in comparison to the density of
pairs. In fact, due to modified Bessel fonction property we have nyny/ne ne — (me/my) ~
(1/4.8x1073)% ~ 7.3 x 103 for highly relativistic temperature. The equilibrium fraction Fig.(3.5)
decrease with the temperature which means that this is more easy to produce pairs for relativistic
temperature. In this case the pair production rate is positive and the four-force exerted on the
pair fluid is oriented in the direction of the four velocity of the fluid. In fact the neutrinos, which
are the source of pairs, transfer their momentum to the pair fluid. The momentum of neutrino
fluid is oriented along uy;. It is the same for the forces.

In a more general case, let us consider, that neutrinos are in thermodynamic equilibrium. And
the pairs are in thermodynamic equilibrium, without imposing balance of elastic collisions between
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;
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©=kzT/m,c’

Figure 3.5 — Value of nnvﬁv when creation and annihilation of electron positron pairs from neutrino and

e. e—
anti-neutrino reach equiITbrium for different value of temperature ©

neutrinos and the pairs. Then we obtain a temperature Tpairs and a four velocity upairs for the
pairs and a temperature Ty and a four velocity u, for the neutrinos. Reasonably the four-force
due to the creation of pairs must be inside the 2D plane Span(upairs,uv).

3.3 Heated fluid

A lot of astrophysical phenomena, as the acceleration of the solar wind, can be explained only
if we consider that there is a source of heating. In this section, we explore different ways to
treat this heating in the relativistic regime. First, we briefly summarize the treatment of heating
by conduction. Then we explore how to treat a fluid containing an additional source of internal
energy.

3.3.1 Conductive heating

We change notation replacing uy; by u. The treatment of conduction in general relativity has
been discussed at length since the first proposition of Eckart [1940]. Indeed this treatment of
conduction changed the nature of the equations of hydrodynamics, allowing waves to propagate
at super luminous velocities, which is physically problematic with respect to the causality princi-
ple. Landau and Lifshitz [1958] also proposed a model but it suffers the same kind of problem as
Eckart's model. Marle [1969b] solved Krook's equation near equilibrium (Boltzmann's equation
with a collision term replaced by a relaxation term). Using Chapman-Enskog expansion, he ended
up to a model close to Eckart's one. After Carter [1988] proposed the so-called regular solution
to this problem.

We expose here Eckart's formulation. Its formulation consists to introducing the heat flux q
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to write the mass flux density flux P and the energy momentum tensor T of the fluid as,

- 2 P
T=poéc'u®u+qeu+ueq+Pg £:1+£2+_2 with
P:pou c PoC
1
J where de:—Pdp—+Tds ,
0
V-T=0 1
q=—-«T?(g+ueu)- |VT+-a
V-P=0 T

(3.80)

where a=Vyu and s are the specific entropies. The constant k is the scalar conductivity of

the fluid. Marle [1969b], gives a value of this conductivity as a function of the temperature T, the

rest frame mass density py and the relaxation time of the distribution function. The expression
of q is the simplest expression leading in any case to an increase of the entropy.

3.3.2 Isotropic non-equilibrium distribution function

In our model, we consider a plasma with no heat flux. Here the "internal” energy and the pressure
contain some additional terms for which the nature is not explored here. However, it should be
noted that these terms could incorporate effects due to turbulence or the installation of stationary
MHD waves in the plasma.

In general, we can build a distribution function for the two-component fluid, (ms + m_) fy_ =
my fi + m_f-. Indeed f allows us to easily define the mass 4-current of the fluid, noting m =
my +m_). Using equations similar to Eqs. (3.30) and (3.50), we obtain,

poug =m S uuf (M, u)

uef? . (3.81)
TpLzmczf ulueu f(x* u)]

uieR3

We assume that the distribution function is out of equilibrium. This kind of hypothesis
is justified for non-collisional plasmas. We also assume that in the frame of the fluid, which
is unambiguously defined as soon as there is a distribution function, the velocity in the fluid
reference frame and we have y (V/c) = (1-V2/c2)™"/%). Using these notations, the isotropy of the
distribution function in the fluid reference frame is mathematically written as f(x*,u) = f (x*,V).
This assumption is verified for Synge's distribution function. This is a reasonable assumption
even if the anisotropy could exist due to the magnetic field or due to the particular direction of
curvature (Riemman tensor) in spacetime. Using this assumption, the mass flux and the energy
momentum tensor of the multi-component fluid can be put in the form,

P=pou
{ botn (3.82)
T=poéc ug ®ug +Pg
where we have,
posz 8Suyf(M,V)
uef?
P Buy?f M,V
€:1+£+— with 1+£:f“€9 y/enw) (3.83)
¢ poc? 2 [, enduyfMV)

4
S uy?V2 f (M, V) = 1 f AVVAYEF (M, V)
3 Juef2 3 Jver
Let us consider the difference between our distribution function f and the Synge function

feqBeft, no, ug,u) for any temperature @ = Oeff = k,’ich‘;ff, but with the same density and the same
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fluid four speed. We note f = foq+06f. In this case we have different relations,

po=m 063uy(feq(ﬁeff,no,uﬂ,u)+8f(M,V)):p0+m 083uyﬁf(M,V):' 963uyﬁf(M,V):6p0:0

ue e e
P
p- 82 uY*V? (feq (Bett» o, ug, ) + 81 (M, V) =Pegr + 6P with  O2— = Oeg + 6O
3 Juef2 00
1 kgT Ceq + Oe ) 63u 26 M, V)
and @eff: _—= B sz also 1+ iz -1+ eq > with _Ze — quQ . Y f
Betf  MC c c c 0B uyf MLV)

(3.84)

The temperature Pegr can be chosen in order to contain the whole pressure P = Peg, then

© = Octr. And this will be the case of our first analysis. Then the deviation from the Synge

gas only appears as a supplement of internal energy. In the following, we call this choice pure

additional internal energy out of thermodynamic equilibrium. The characteristic function
eeq Of the Synge gas Eq.(3.72) follows the first principle of thermodynamics,

1
deeq= —Peffdp— +Tdseq (3.85)
0

Where s¢q is given in Eq.(3.70). You have O = % = % which is valid with the definition
using the Synge-Jiittner distribution. Few lines of derivation give the well-know result called Joule's
law, eeq = €eq(Oesr). In fact we interpret ecq and Pefr (or Oefr) as equilibrium internal energy of
effective thermal temperature. The 8e and 8P (or 80) are modeling the effects of turbulence or
MHD waves on the flow. Recombining the first principle Eq.(3.85) with the projection along the
flow of momentum-energy conservation Eq.(3.54), and using ideality of the flow (F(u,.)=0), we
obtain,

—TVys=Vyde+ 6PV, (i) J b k+ ik

o (3.86)

Po

with k;,, = kn(m. +m_) and k:klflj‘,setice_ +k2_,r:§_*e’. We see that these additional pressure and

additional internal energy can heat the flow, but also act for the loading of pairs.

Polytropic extra-internal energy

Consider a fluid with a given Joule's law ex = ex (T). If we make the extra assumption of no
extra-pressure 8P =0, having a polytropic law with constant index I', which links the pressure and
the rest mass density P p{, we find that,

oe T I- Feff(T) P
d— =—=ds= 3.87
2 2C T T -1 T-1 " po? (3.87)
with an effective polytropic index define by deeq = T (IT) N kLmT =T f;) 1d#‘ The gas has
eff - eff -

an adiabatic evolution only if I'= I'e(T) (I-law equation of state). It is not expected for a gas
where the temperature present strong variations. A mono-atomic polytropic gas may have an adi-
abatic evolution only in both the non-relativistic (and I'=5/3) and the ultra-relativistics (I'=4/3)
limits.

Other ways can be explored for retrieving the pressure in function of density rest mass for
a relativistic temperature. By example for a Taub-Matthews EQOS, Meliani et al. [2004] calcu-
lated the pressure P =P(pg) (eq.15 in their paper) for a mono-atomic gas and the assumption of

polytropic internal energy (in our notation 5 (2+C—"’2) o p{_ 1 with a constant value of D).
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3.3.3 Use of relativistic k-distribution function

The distribution function of plasma with highly energetic particles, for example in planetary mag-
netospheres, usually have the characteristics of a pronounced high energy tail. One way to model
distribution functions with high energy tail is to use k-distribution functions. The k-distribution
functions were introduce in the domain of astrophysics by Chateau and Meyer-Vernet [1991] but
also more precisely to model the solar wind Scudder [1992]. They are also used in planetary
environments, see Meyer-Vernet [2001]. Even if there is some difficulties in the normalization,
extension of the k-function to relativistic temperatures was proposed by Xiao [2006]. The main
idea of the k-distribution function, is to have a family of distribution function s(fK)KE[&wo] char-
acterized by a pseudo-temperature Py, a four-speed of the fluid ug and a density in the rest frame
Po, such that if k — +oo the distribution function reaches the Synge-Jiittner one. We follow
Xiao [2006] without the anisotropy for the dependance in velocity of the relativistic k-distribution
function. From the useful expression of volume element Eq.(3.10) and Eq.(3.84) for the value of
the normalization function, we get

no 1

fK (BK’HOruﬂ)u): ”
2 () (1 + ﬁ?" (ug-u+ 1)) o

inh®Wcosh¥
with 2 (By) =4 f qp— ST TS
ek (148 (coshw-1))

(3.88)

The normalization function, z(B«) is different from the normalization function proposed by
Xiao [2006] in their paper (eq.25). Indeed, the definition of the fluid rest frame in relativistic
statistical physics is linked to the notion of Feynmann's four-current Eq.(3.30), which is the first
moment of the four-speed. For classical temperatures (non-relativistic velocity of particles in fluid
rest frame) u~ (ug+Y), then u-ug ~ -1 which justifies the classical normalization. Yet, for
relativistic temperatures, we need to choose ng = [83uyf and not ng = [83uf, which justifies
the expression in Eq.(3.88). Fundamentally the difference comes from the fact that the number
density of particles n is not a frame independent quantity, because of the volume contraction.
Indeed, the number density measured by an observer of four speed v is n=—v-J. Then the defi-
nition of Feynmann's four-current replaces the classical definition of normalization.

Then, from Eq. (3.84), using a gas with pure additional internal energy out of thermodynam-
ical equilibrium, we can calculate the extra energy dey as a function of Og=60 = %. This extra
energy reaches zero, where x — +oco. This is logical because the distribution function reaches the
Synge-Jiittner one. If k — 3, and for fixed value of By the internal energy reaches oo, nevertheless
the effective temperature Oegr=P/poc? = Oer(k, By) also reaches infinity. Then the equilibrium en-
ergy for effective temperature eeq (Oeff) — +00 reaches infinity. And we have an undifferentiated
limit. Nevertheless numerical calculation seems indicate that this extra energy reaches % — +1.
Thus for each given value of O and 0 < 8e,/c? <1, we have an adapted value of k.
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Figure 3.6 — Additional specific internal energy dey for pure additional internal energy out of thermodynamic
equilibrium k-gas as a function of temperature and for different values of k.

3.4 Conclusion

A statistical approach allows us to calculate how micro-physics interactions, elastic collisions or
creation/annihilation, act on the dynamics of the fluid. We apply a relativistic treatment from
the beginning to the end. We derive the modification of the usual fluid equations, which comes
from the interaction between different species. Nevertheless, to be complete, we need to add to
the process a more rigorous derivation of the differential cross section (Berestetskii et al. [1982]).
Another approach could be, as in Levinson and Segev [2017] and Ford et al. [2017] to introduce
some model for these differential cross section terms.

We treat the case of thermodynamical equilibrium. We derive the expression of a several
thermodynamical quantities, especially the internal energy as function of temperature, Synge's
EOS and its approximation by Taub and Matthews.

We also see how a plasma, out of thermodynamical equilibrium, but with an isotropic distri-
bution of speed in the rest frame, could be considered as a gas with an extra internal energy in
comparison to the gas in thermodynamical equilibrium, with the same effective temperature. We
treat in details the case of gas for which the distribution function is a relativistic x distribution
function.

In the following chapters, we use the results of these two chapters to derive the main results
on loaded/unloaded axi-symmetric, stationary ideal MHD flows.
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CHAPTER 4. MAGNETO-HYDRODYNAMICS IN CURVED SPACETIME

This chapter describes the general results concerning Magneto-Hydrodynamic (MHD) with
equations including loading terms in curved spacetime, the General Relativistic Magneto-Hydrodynamic
(GRMHD). Indeed to take into account the effect of the creation/annihilation of pairs on a MHD
flow, we saw on the last chapter Ch.(3), that it is possible to modify in adding some source
terms in the continuity equation Eq.(3.49) and in the conservation of energy momentum equation
Eq.(3.54). We also gave an explicit value of these source terms as a function of the different
differential cross sections of interaction Eq.(3.48, 3.56, 3.78). In the following we seek to ex-
tract general results on flow regardless of the form and values of the source terms even if they
are included as an unknown functions. These general results form the theoretical basis for the
construction of the MHD flow model close to a Kerr black hole. The construction of this model
is explained in the following chapter.

The effect of pair creation mechanism or Compton/inverse Compton mechanism is studied in
the dynamics of magnetized astrophysical flows. Globus and Levinson [2013] built an inflow/out-
flow model for a radial geometry of the flow and Pu et al. [2015] for a parabolic geometry. In
their work Globus and Levinson [2014] implement a split monopole model of flows incorporate
realistic and volumic plasma injection around Kerr black hole. The recent works of Levinson and
Segev [2017] and Ford et al. [2017] study the steady gap solution for black hole magnetosphere
including the rate of pair creation and the role of Compton/Inverse Compton forces.

First, we derive the 34+1 form of the MHD equations in any spacetime framework before
writing these equations in Kerr geometry. We continue with the search of the motion integrals of
General Relativistic Axi-symmetric Stationary ldeal Magneto-Hydrodynamic (GRASIMHD) flow,
which are the main assumptions of the flow described by the solution of our model. Then we
discuss briefly about the Grad-Shafranov approach of this problem. Finally, we calculate the quan-
tities such as the mass, angular momentum and the energy exchanged at the level of the event
horizon between the Kerr black hole and the MHD fields.

4.1 341 Decomposition of GRMHD

The goal of this section is to use the main results from Ch.(2) to perform a 341 decomposition
of the covariant expression of magneto-hydrodynamics. We consider a foliated spacetime (. =

U 2,8 with a space sub-manifold X';. We choose a coordinate system adapted to this foliation.
teR

Our spacetime is filled with an electromagnetic field and an injected fluid.
4.1.1 Covariant form

As we mentioned before, the GRMHD equations can be derivated in their covariant form from a
statistical approach. The electromagnetic tensor evolves with the covariant Maxwell's system of
equations in Gaussian Unit (GU) Eq.(3.42), that we write here,

4m,

V-F= —j

c (4.1)
V-xF= 0

Note that the creation of plasma does not perturb the usual Maxwell's equations. We suppose
that the plasma pair has an infinite conductivity such that the electromagnetic field adapts itself
continuoulsy in order to always cancel the electric field in the fluid frame. This condition is called
ideality condition.

F(u,.)=0 (4.2)
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The second expression is already the 3+1 form of ideality condition. For the mass four-
current and the fluid energy momentum tensor, we choose the form given in Sec.(3.3.2). The
fluid is loaded in spacetime via some source terms Eq.(3.47). Thus we have the covariant form
of continuity equation,

V- (pou) = ki, |- (4.3)

where ky, = (my + m_) kx is given by Eq. (3.48). For the equation of motion the loading induces
some extra terms (see Eq.3.54), and we get,

=,.
C

V-TFL+F(’ ):k. (4.4)

The force due to the injected plasma k=kF¢ + K276+ is expressed via Egs. (3.56, 3.78).
Eqgs. (4.1, 4.3, 4.4) constitute the GRMHD system of equations in a covariant form describing the
flow of loaded/unloaded plasma. The goal here is to use 3+1 formalism to write these equations

in a more adapted form.

4.1.2 Kinematics

Let us consider the motion of a fluid element, ¢t — M(¢) € 4. Its four velocity is denoted u= ‘:1—“;[,

where ds=cdTy is the arclength of its trajectory in spacetime, which is proportional to the proper
time of the fluid element. Now we consider the displacement of the element when it starts to
some point P € Y, to reach the point Q€ X, 4,. We have dM =PQ.

n
-

dt '
I >
dx VA

== U
dt
L
X' = const.

Figure 4.1 — Representation of the decomposition of the four speed (Credits , Gourgoulhon [2007]). The
notations used are Gourgoulhon ones. Here U is the Fiducials Observers (FIDO) velocity, and V the
coordinate velocity.

Following Fig. (4.1), we decompose the variation of position PQ using the 3+1 procedure
PQ=PQ +Q'Q. Then PQ’ = cdtrmpon = chdin, where dtgmpo is the proper time of the FIDO
observer. We used Eq. (2.14). Note that Q'Q=d/ is the spatial displacement measured by the
FIDO. If we introduce y the Lorentz factor which links the proper time dtppo of the FIDO to the
proper time of the fluid frame dtpr, we have dtripo = YdtrL. Then the four speed of the fluid is,

ds

TFIDO

- and dTFIDO = YdTFL (45)

A%
u=y(n+—) where V=
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V is the velocity measured by the FIDO. We call it FIDO velocity. After some calculations
we get,

(4.6)

The definition of the shift of coordinates Eq.(2.16) implies that d€ = dx+ fd¢, where dx
corresponds to the coordinate variation of the fluid element. Thus we can introduce W= g—’; the
velocity in terms of the variation of the coordinates, that we call coordinate velocity. Using the
lapse function Eq.(2.14), the coordinate velocity is link to the FIDO velocity via

hV=W+p (4.7)
Thus, using Eq.(2.15) we can write,

_ Vi XY
u_y(n+ c)_hc (0:+Wc) (4.8)

These different definitions of the velocities are important for the physical understanding of the
following section.

4.1.3 3+1 Decomposition of Maxwell’s equations

The electric (magnetic) field measured by the FIDO is E=F(.,n) (B=xF(n,.), respectively) by
definition of the electromagnetic tensor. Let us introduce the 2-form G=F—-nAE, which is
identically null along n. Then the information of G on I (), is entirely determined by the
value of G on nt =9 (Y). G |pL is @ 2-form on a 3 dimensional space. Because nt is a three
dimensional space, then G|,. has at least one real eigenvalue. However, G|,. is antisymmetric
thus the real eigenvalue is null, which is equivalent to say that there is a non null vector B in
the kernel of G|,.. Then, as before, the information of G |,. is equivalent to the information
of G |gperp)t- Thus since G|puerpy: is @ 2-form of dimension 2 on a space of dimension 2,
G | gneprp). 1S Proportional to the Levi-Civita (determinant) form on this space. If one chooses B
properly, then G|(Rne;RB)i:2€(-» J=*em,B.,.). Thus we have,

{ F=nAE+*emn,B,.,.)

, 4.9
xF=—-nAE+*em,E, .,.) (4.9)

As a matter of fact, the 4-speed, the source term of the Maxwell's equations, the four-current
charge, can be decomposed as,
j=pecn+] (4.10)
where p, is the charge density per unit volume measured by the FIDO and J the charge current
measured by the FIDO. Thus for an elementary surface dS € 9 (X)), in the FIDO, one measures a
charge 83Q =J-dSdt, which crosses the surface during its proper time dt. After some calculations
, the details are given in Appendix (D.1.1), we get,

D-B=0 D-E=4mp,
10 4nh 10

(4.11)
This system corresponds to Maxwell’s equations in 3+1 form expressed in GU. The addi-

tional term proportional to the Lie derivative of the electric or the magnetic field along the shift

is the term, which compensates the coordinates shift. Indeed, %% —%p=Lm- Thus this term

is some kind of time coordinate derivative in the FIDO frame. Also remark the presence of the
lapse function in the rotational equation. This system is reduced to the usual one when the mass
and the angular momentum of the black hole reach zero.

The ideality condition became,
VxB
E+——=0 (4.12)
c
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4.1.4 The 3+1 form of continuity equation

For the continuity equation, we get,

0
% —cp-DpoY — pocYK+D- (poYhV) = hcky, (4.13)

Details of the calculations are given in Appendix (D.1.2). In comparison to the non-relativistic
expression, the first thing to remark is that we replace the rest frame density by the FIDO density
poY.- The velocity term is the FIDO velocity, measured in the time-coordinate hV. The term
cp-Dpoy compensates the effect of the shift of coordinates in order to get a time coordinate
derivative but in the FIDO frame. The term —pyocyYK compensate the effect of expansion of
volume seen by the FIDO's (indeed K=-V-n).

4.1.5 Spatial part of stress energy tensor conservation

To get the details of the derivation see Appendix.(D.1.3).

B
—p(’gc A YEV+ 0oy (V- D) YEV = —DP — poy2E2DIn s+ p () — YEkmcV + poE+ D | (4.14)
C

Note that in this expression the term £, YEV is calculated for the linear form y§V,. Because
of the property of Lie derivative Eq.(B.8), this term is included in I (X). This term also contains
the frame dragging forces, that we express in more details in the Kerr geometry. First of all in
comparison to the classical model, we remark that in the term of "acceleration” (left-hand side of
the equation), the accelerated quantity is not the velocity of the fluid but YEV. This implies that a
fluid with more specific enthalpy or with FIDO velocity closest to c, is more difficult to accelerate.
We also observe the usual gradient of pressure —DP, and the gravitational forces —poYy?Ec?DIn h.
We also have the electrical forces p.E and the Lorentz force %. The term p (k) — Y&k, cV, where
p is the projector normal to n Eq.(2.2) is the recoiling forces due to the loading of plasma.

4.1.6 Evolution of internal energy along the flow

Using Eq.(4.12), the projection of Eq.(4.4) along the four speed gives,

VuP = poc? V& +u-k+Ec%ky, (4.15)

As in Sec.(3.3.2), we note that the loaded term can heat the flow.

4.1.7 Axisymmetric GRMHD in Kerr metric

We know that that, in Kerr metric the FIDO observer associated to Boyer-Lindquist coordinates
has a motion with no angular momentum, which justifies the denomination that we use in the
denomination Zero Angular Momentum Observer (ZAMO). Using the result of Sec.(2.4), we are
able to quickly obtain the system,

D-B=0 Maxwell — Flux D x (hE) = —%%B + (B . D%) o€ Maxwell — Faraday

D-E=4mp, Maxwell - Gauss D x (hB) = #I+ %%E— (ED%) o€y Maxwell - Ampere
{E+ v z B_ 0 Ideality % +D-(poyhV) = hcky, Continuity

% 82?’ +poY (V-D) yéV=—DP — pgy?ec® [DInh + m;l”—fDlnw +peE+ ¥ +p k) - yEkp,cV  Euler

% (0 +Vp-D)P=pgcy (0; +Vp-D)E+u-k+Ec?ky,  First principle along the flow

(4.16)
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In the Maxwell's system of equations the shift of coordinate add ssome terms which take into
account the gradient of shift pulsation Dw along field (magnetic for Maxwell-Faraday, electric field
for Maxwell-Ampere). This differential rotation is the differentiation of the toroidal coordinate
of the Zero Angular Momentum Observer (ZAMO). This term is due to the nature of the Lie
derivative of vector field. By axisymmetry the variation of the electric field along the shift is null,
but the variation of the shift along the electric field is non-null. Such kind of explanation applies
to Maxwell-Ampere.

In the decomposition of the term proportional to ZnYEV of Euler equation, we get a term
from the differential rotation of the coordinate system. We call this term the frame-dragging

force —poyzﬁczaﬁ—yDlnw. The frame-dragging effect can act as a repulsive (attractive) force

as a function of the sign of toroidal velocity. This term is repulsive for v® >0 and attractive
for V® <0. A quick comparison of gravity forces leads to a non-negligible frame dragging force

A . . T _3asin® . . ~
for r.el.atlwstlc tor0|d.a| speed. and for .radlus below mE Teied Thus this force will play a non
negligible role especially for inflows with an extreme spin a = 0.8—1, and should not be neglected
in the construction of the model. The frame dragging force may be interpret as a Coriolis forces

coming from the relative rotation.

4.2 General results on General Relativistic Axi-symmetric Station-
ary ldeal Magneto-Hydrodynamic (GRASIMHD) in Kerr ge-
ometry

The aim of this section is to derive the general results on GRASIMHD in Kerr geometry. We use

here the convention introduced in Sec.(2.4.1). First we discuss briefly about the coupled system
of equations of GRASIMHD in Kerr geometry. Then we will derive the motion-integral.

4.2.1 Expression of GRASIMHD

Apply stationarity on ideal, axisymmetry GRMHD in Kerr metric means removing all derivative
O terms in Eq.(4.16). We quickly obtain,

D x (hE) = (B, - D Maxwell - Farad
D-B,=0 Maxwell - Flux x( )‘( P’ Z)‘De‘b ¢l ~ raraday
.E= _ 4mth
D-E=4mp, Maxwell - Gauss D x (hB) = 22y _ (E-Dg) e Maxwell - Ampere
c c
VxB . L
E+ =0 Ideality D (poYhVp) = hcky,  Continuity

¢
poY (V-D) YEV = —DP — pgy?Ec? Dlnh+%Dlnw +peE+¥+p(k)—yE,kch Euler

k+&c%k
Vp,-DP =pg CZVp -DE+ cw First principle along the flow
Y

(4.17)

4.2.2 Motion integrals

The GRASIMHD equations system can be partially integrated to get several field /streamline inte-
grals (Beskin [2010]). Motion integrals are important functions of GRASIMHD flows. Physically
these integrals concern the general properties of the flow and some of them express "extensive”
quantities. We shall also see later on that, in the case of a plasma considered as a ideal gas which
reaches thermodynamic equilibrium and without loading of material, these motion integrals can be
written as combination of each other. So we will choose one of these integrals to be the "master
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potential” and then express all the others integrals in function of it. Knowing the dependence
of the motion integrals with the "master potential”, its "master potential” value and its spatial
derivative on the critical surface are sufficient to completely solve the equations of GRASIMHD.

Magnetic Flux

First of all the Maxwell-Flux equation Eq.(4.17) coupled with axisymmetry, implies the existence
of a potential vector A for the poloidal magnetic field B, =D x (A). Let us decompose the potential
vector A2A;, + 2y, using the expression of the rotational differential operator Eq.(2.41), D x A,
is a toroidal field, thus D x A, =0. So using Eq.(B.30) but also Eq.(2.41) to prove that D x %’ =0
we finally obtain,

, (4.18)

B D (A ) DAX€¢
= X | —€ =
p o ¢ ®

Using the theorem of Kelvin-Stokes Eq.(B.33) on a circle €(r,0) = {M € X'| r(M) = r and 6(M) =6},
and calling &# an axisymmetric surface such that € = 0%, we obtain,

ZTIA
B'dS:ff B ~dS:f A-dE:fA'e d :f —€p®D-€pddP=2TA 4.19
ffy 4 P € o 0o @ ® o ( )

where the passage of the first to the second equality is justified by the axisymmetry of &#. For
the second to the third equality we used the Kelvin-Stokes theorem Eq.(B.33). Then A is the
magnetic flux inside the circle €(r,0). Because of Eq.(4.19), the axi-symmetry and the symmetry
0 — -0, the magnetic flux function is a symmetric and m-periodic function of 6, which cancels
out on the axis. Then we can decompose the magnetic flux,

A=Y a,(r)sin®0. (4.20)

n=1

Current

The current J is the electric current, seen by the ZAMO. Then if we took an elementary surface dS
plunged in X, J-dSdt = 83Q is the amount of charges that the ZAMO sees crossing the elementary
surface dS during the ZAMO proper time dt. Using the lapse function to link this proper time to
the universal time coordinate Eq.(2.14), we obtain hJ-dSdt=2583Q. This justifies that the charges,
which cross the € circle during a step dt of coordinate time are,

I:%:ffyh]ds. (4.21)

Using Maxwell-Ampere Eq.(4.17) and the theorem of Kelvin-Stokes Eq.(B.33) leads to,

A ub
IZLH Dx(hB)-dS:if B odg= B2 (4.22)
ant J) o 4n J¢ 2

It allows us to express the magnetic field as a function of the magnetic flux A and the current
intensity I,

DA><€¢ 21
B= +—€y. 423
) hoc ¢ ( )

Isorotation law & Mass flux

Let us write the Maxwell-Faraday equation Eq.(4.17). Using Eq.(4.18), the permutativity property
of the mixed product given by Eq.(B.27) and the relation which gives the rotational of scalar times

a vector Eq.(B.30), we are able to write (Bp -D9)®e¢ =Dx(2DA). This implies Dx (hE— 2DA) =
c

0. Then there exists a scalar field, the electric potential &, such that

hE="DA-D®. (4.24)
C
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Then there is no toroidal electric field. Introducing the family of surface 3 ={M e X'| A(M) = A}
that we call flux tubes. These surfaces are axisymmetric. Then Eq.(4.23) of the magnetic field
shows that B is tangent to these surfaces, B-DA =0. With the ideality condition Eq.(4.17), and
the nonexistence of toroidal electric field imply that VxB-€g =0. Using the permutativity of
mixed product Eq.(B.27) and Eq.(4.18), we obtain V-DA =0, which is equivalent to say that V
is tangent to the flux tube. Then the field line of V and B are included on the flux tube Jj4.
Using Eq.(4.24) and multiplying the ideality condition given in Eq.(4.17) by xDA, we prove that
D®xDAx DAx (BxV)=B(V-DA)—B(V-DA)=0. Then D@ || DA, which is equivalent to say that

& =0 (A) (See Appendix.A.1)). Then introducing the isorotation function 2(A) = Cfiqu' we get,

_ @
C0pa  with 2wzl (4.25)

E=-
hc dA

Reminding that V and B are tangent to the flux tube 93 = {M € Y| A(M) = A}, the poloidal
velocity is proportional to the magnetic field. It exists a function ¥, such that,

WaBp =4mpoYhVp = By, DYy =4nhcky, |. (4.26)

The function ¥, is linked to the mass flux function. As for the current of charge poYV is the
current of mass measured by the ZAMO. Then 83m = poYV-dSdT is the mass which crosses dS
measured by the ZAMO during a ZAMO proper time dt. Then for a coordinate lapse of time dt
we have 83m =pohyV-dSdt. It implies,

v, DA xe
M= ff pohYV,,-dS = ff AT gs, (4.27)
74

To finish the calculation, let us introduce the curvilinear poloidal coordinate along a flux tube
£(R,0). Then, except for a particular case or a particular point, (A,¢,¢) is a coordinate system.
Because ( is a curvilinear length, we have || DA || 8y = DA x€g. This system of coordinates is
adapted to the case we are studying. Using this coordinate system we write Eq.(4.26) getting the
different equalities,

¢ 4mthck,,
[ Bp |l

¢ 4mthcek;,
[1Bp |l

7

By DYy =Bp — -

- WA(A,E)zwA(A,OHf
0

A=cst A=cst

drdAa (4.28)

A A A
:>¢(A,€)£f Ta(A,0) |£:C5tdA:/ WA(A,O)dA+f f
0 0 0 JO

A dnhcky,
[ Bp ||

=W, DA =DV - ( f dA) D/
0

L=cst

In Eq.(4.27), we are free to choose . as long as it is axisymmetric and its boundaries are €.
If we choose & (1,0)={Me X' |£=£(r,0) and A<A(r,0)}. Then let us replace the last equality
of Eq.(4.28) in Eq.(4.27). The second term proportional to D/ disappears in the integral, because
the choice of . implies dS oc D/ and then (D x€y)-dS =0. Using it for all functions f such as,

% =D x (éeq)) similarly to the current function and applying the theorem of Kelvin-Stokes

Eq.(B.33), we get,
f fﬁ arthcky,
[ Bp ||

1 C anhek
- WA(A,OHf TR Em
2 o 1Byl

The factor 2, is well adapted because M is the mass flux for one hemisphere. The total mass
flux is 2M. The second term in the right hand side of the equation represents the mass flux

(4.29)

dM
—dA=

{| dA
dA

A=cst
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between two flux tubes, Ip and Jarqa. We see here that the mass flux is composed of the
mass-flux at the base of the flow, plus the mass flux injected in the system by the loading term.
The mass flux is conserved for non loaded flow (k;; =0), and in this case ¥4 =Wy (A).

After injection in the ideality condition of the expression of the electric field Eq.(4.25) and
the expression of poloidal velocity Eq.(4.27), we obtain the Isorotation frequency as a function of
toroidal velocity and magnetic field.

- w,Bd

hive_

R=w+—1|V
®

-0 Vb wB* v V,Bé
poQUeme) VI BT VR BB 430
hc ¢ 4mpohyc ¢ ¢ Bp

4mpohy

Here we introduce the physical quantity x, the cylindrical radius in unit of the light cylinder
ve  Vppd
c T ¢ By
the light cylinder with x =1, the toroidal magnetic field must be negative and sufficiently strong

because toroidal velocity stays lower than the speed of light. One of the two following conditions
must be fulfilled, either we have | B® [> By, or Vp > V® | or both. Outside this surface, the
flow does not necessarily have a relativistic rotational velocity, but it is sufficient to have a large
magnetic screw pitch | B® [> By, and quite relativistic poloidal velocity. The expression of (2 allows
us to express a link between the velocity field V and the magnetic field B,

radius. The light cylinder surface is defined for x> =1 where x= When the flow crosses

A" '

=——B+xe 4.31

¢ A4mnpohyc q> ( )

This expression allows us to interpret x as the difference of rotation between magnetic and
velocity field lines.

Specific Angular momentum

We recall that § =9y is the Killing vector of axisymmetry. Following the work of Lasota et al.
[2014], we introduce and calculate the Noether angular momentum Flux,

M2T(E,.) = V-M=k& (4.32)

where T =Tg. +Tem Eq.(3.54, 3.55). The advantage to work with the Noether flux instead of
the flux measured by the ZAMO observer is that this flux respects some conservation equations.
Using the axisymmetry and the stationarity of the flow, the conservation equation Eq.(4.32) can
be written as,

D-(hMp) = hk-& (4.33)

Then using Egs.(3.55, 3.82) for the energy momentum tensor, and for electromagnetic tensor
the 3+1 decomposition Eq.(4.9), the 3+1 decomposition of four velocity Eq.(4.5), and the def-
inition of the mass flux per unit of magnetic flux Eq.(4.26), we obtain for the poloidal Noether
Angular momentum flux,

yevh -

VA
hM,, = pohyLV, = ﬁnp with 120 7

(4.34)

. hB¢)

We define here the function L, which is the total specific angular momentum. Indeed M,
is the Angular momentum Noether flux. If pgyhV} is the mass flux, we can consider L as a
specific angular momentum. This total specific angular momentum is composed of the specific
angular momentum of the fluid and of the specific angular momentum of the electro-magnetic
field. W4L is the angular momentum flux per unit of magnetic flux. The evolution along the flow
of the angular momentum flux per unit of magnetic flux is calculated using the conservation of
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the Noether Angular momentum flux Eq.(4.33). Combine the expression of this flux Eq.(4.34)
and the Maxwell-Flux equation Eq.(4.17), we get,

]Bp D (WyL) = 4mhk-§ (4.35)

Then as for the mass flux, we interpret W4L as the angular momentum flux per unit of magnetic
flux. We derive a result for the angular momentum flux equivalent to Eq.(4.29) for the mass flux,

C 4nhk-&
[ Bp |l

dJot
dA

(4.36)

=WAL=WAL(A,€=O)+f
0

A=cst

Then the angular momentum flux between two flux tubes at some altitude is composed of the
angular momentum flux at the base of the tube plus the angular momentum flux brought by the
loading term 4mhk-&. The angular momentum flux per unit of magnetic flux is also conserved
along the tube of magnetic flux for flow without plasma injection k,, =k=0.

Specific Total Energy , Bernoulli Integrals

Following the same logic as for the angular momentum, we can introduce the Noether energy
flux. Indeed, let us remind that n= %8; is the Killing vector of stationarity. Then we can define
and calculate the Noether energy flux,

Pz2-T(n,.) = V-P=-k-n = D-(hPp)=—hk-n (4.37)

where the last implication comes from the stationarity and axisymmetry assumptions. If
the stress-energy tensor satisfies what we call the dominant energy condition. Which can be
formulated as follows Vx € €, () a future oriented vector —T(x,.) is a future oriented vector.
Then everywhere outside the ergosphere, P is a future oriented vector. Now using the different
equations Eqs.(3.55, 3.82, 4.9, 4.5, 4.26, 2.33, 2.15, 4.25, 4.18) we obtain,

Upé i hof?
2B, with  &2hyEc® +yE@wV?P -
47tC A

hP, = poYhEV,, = B (4.38)

We define here the function &, which is the total specific energy. Indeed Py, is the covariant
Noether energy flux. Eq.(4.37) allows us to interpret hPp as the ZAMO Noether energy flux.
Then if pgYhV), is the mass flux, we can consider & as some kind of total Noether specific energy.
This total Noether specific energy is composed of the specific energy of the fluid and the specific
energy of the electro-magnetic field. The specific energy of the fluid contains the gravitational
potential, the kinetics energy, the enthalpy energy and the frame dragging energy. W & is the
total Noether energy flux per unit of magnetic flux. The evolution along the flow of the Noether
energy flux per unit of magnetic flux is calculated using the conservation of the Noether Angular
momentum Flux Eq.(4.37), the expression of this flux with E Eq.(4.38) and the Maxwell-Flux
equation Eq.(4.17),

’Bp~DLPAé°: —4nhck-n‘ (4.39)

As before for the mass flux and for the angular momentum flux, we can derive an equivalent
result to Eq.(4.29) for this energy flux.

dé ¢ 4xthek-
ﬂ:QJAg:lpAg(A,z:m—f H dl (4.40)
0 p

dA

A=cst

U,& is the Noether energy flux per unit of magnetic flux. The Noether energy flux between two
flux tubes is composed of the Noether energy flux at the base of the tube plus the Noether energy
flux brought by the loading term 4nhk-&. The Noether energy flux per unit of magnetic flux is also

62



CHAPTER 4. MAGNETO-HYDRODYNAMICS IN CURVED SPACETIME

conserved along the tube of magnetic flux for non-loaded flow. The definition of Noether energy
flux is practical for calculation because this quantity is attached to some conservation relation
Eq.(4.37), but this flux does not correspond to any energy flux measured by an observer except
at infinity. In particular it is the case in the ergoregion where the nature of n is not time like and
so is not even proportional to some four velocity. Indeed the energy-flux measured by an observer
of four-speed v is —T(v,.). Thus it will be interesting to introduce the energy flux measured by

the ZAMO as —T(n,.). Then calculating its poloidal part, we obtain vy (6 —Lw)Bp. Thus we

4dnhc
can interpret g—th as the specific energy measured in the ZAMO frame,

. =yéc 7 B (4.41)

Alfvénic Mach Number

One of the fundamental function of magnetized flow is called the Alfvén Mach number. This
number is the ratio of the poloidal velocity with the velocity of Alfvén waves. We use, in the rest
of the document, the poloidal Mach number given by,

2
Yo _

5 = .
VA,p 41po

M5 2h? (4.42)

Following Breitmoser and Camenzind [2000] we introduce here for practical reasons the lapse
function in the definition. Indeed KV} is the velocity of fluid measured by the ZAMO in term
of coordinate time hV) = ‘é—l\f, where dM is measured in the ZAMO frame. We define here the
Alfvénic poloidal velocity by,

B)

) 4mpogY?

2

Vi, (4.43)

Expression of the enthalpy and the toroidal fields

Using this definition of the Mach number Myy;, Eq.(4.42), the system of first integrals including the
isorotation frequency {2 Eq.(4.30), the specific angular momentum L, Eq.(4.34) and the specific
energy &, Eq.(4.38), can be inversed to express some important quantities of the flow,

2

21(02- ho (22— w) B® 2 (x% - x M
_2I( u))z_ ({2—-w) (6 -Lo)— ( _ MR)2 =(£—Lw)—1,
QZ4C QZA hdAH-_ h (1—-x ) 9
VP (& -Lw) Mixig — Q- x5 RPX* (& -Lo) A
y hYe—=— > =— (4.44)
c c2x M3, — b2 (1 - x?) c2x 9
M2 — h?(1 - x2.,) N
YhEC? = (€ ~ Lw) 0 MR = (& -Lw) 22,
M3, — b2 (1 - x2) 2
where, we used the following definition,
L(2-w)
2
== 4.45
MR= 210 (4.45)

xI%,IR measures the fraction of magnetic rotator energy L({2—w) divided by the specific energy in

the ZAMO frame. This new parameter xR, conversely to the previous one xs defined in Meliani
et al. [2006], is not any more a constant along a field line, since w is not an integral of the motion.
These quantities have the same denominator, which makes appear a singular surface.

Iaz{Me X2 =M;;— h*(1-x*) =0} (4.46)
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We call this surface the Alfvén surface. Therefore all quantities need to be regular at the
Alfvén surface crossing. The conditions of regularity of the quantities B‘I), hyiv%b and yhg imply
that the numerator of the equations also cancel out each other. Furthermore, the numerator of
the current I and the numerator of hyEVTLD are linear functions of the denominator 2 and the

2 2
numerator of hyf. Indeed A =D —Ng and Ay = (%+x2)ﬂfg— %@, the regularity of hyg
implies the regularity of the two others. Then the condition of regularity implies that for each

pOiIIt on the Alfvén sur ace,
2 2 2
@_MAlf_h (l—x)_O

(4.47)
N =M~ h*(1 - x) =0

MEEA = {

4.2.3 The volumic poloidal forces

We present here different ways to decompose and re-organize the forces, which act on the GRMHD
flow. First of all, we see the decomposition of the forces, which is used to draw the forces applying
on the fluid in the solution of the model. This decomposition is really adapted for a dynamical
analysis of the flow. Then we give a mathematically "simple” decomposition, which is the basis of
the Grad-Shafranov approach of the problem.

Decomposition used in the model

Les us start from the Euler equation. The variation of angular momentum along a field line,
Eq.(4.35), is equivalent to the toroidal component of the Euler equation. Putting the advection
term on the forces side in order to analyze the dynamics from the fluid frame point of view, we
get,

Fa+Fo+Fr1+Fp+Fp+FMm+FL=0 (4.48)

where the &; term are the poloidal forces. We have,

Fa=—poy(V-D)YEV]|p, Advection force
Fg= —poﬁyz *Dinh, Gravitational force
Dwv?
Fir= —pOE,yz wTDln(u , Lense — Thirring force
D-E
Fp=peE= 4—E , Electric force (4.49)
T
B [Dx (hB B E:-D
Fm= b:: = D Elnh)] 2 47szA, Magnetic force
Fm=-DP, Pressure force
Fr=p&) — Yk cV, Loading force

where we directly used Maxwell-Gauss an Maxwell-Ampere equations to replace the charge density
and the current of charges measured by the ZAMO. The loading force is composed by a force
due to the interaction with the source (Creation/Annihilation + Compton/Inverse Compton) p (k)
and a force due to the change of volumic mass of the fluid Y&k, cV. The study of forces will be
restricted to the analysis of poloidal forces. The poloidal advection may be decomposed in one
term coming from the poloidal velocity and one term coming from the toroidal velocity,

2
Fp, = V¥ DIno Centrifugal forces
9A=_90YW'D)Y£V=<§AP+9A¢ - Ag PoSy 8
F A, =—PoY (Vp-D) Y&V, Poloidal velocity advection force

(4.50)

The term F 4, is simply the centrifugal force. The term coming from the poloidal velocity

advection force can also be decomposed. Indeed using Leibniz rule on the derivation of & x YV,
we also decompose the poloidal velocity advection force into two components,
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2

V V
Fr=v* L Fp +v(u-k+EcPk,y,) = enthalpy force
Fa,==P0Y(Vp D) YEVp = Fe+Fpp = =Y Tty (ke ichn) < by

Fa, =—00&Y (Vp-D)YVp Poloidal acceleration force

(4.51)
where we note Fp| = —(e|-DP)e|, with ey =Bp/By, is the unit spatial vector parallel to the flow in
the poloidal plane. The first term, that we call enthalpy force, is due to the variation of enthalpy
along line. This term can be written as a function of the pressure force along the line using the
projection of first principle along the flow. The second term is simply the poloidal acceleration
which is the acceleration for a motion in poloidal plane. This term can be traditionally decom-
posed in its part along the line (pure acceleration), and a "tension” term due to the curvature
of the poloidal field line. But we shall not use this decomposition in the presentation of the results.

The second force to be decomposed is the poloidal magnetic force. Separating the magnetic
field into its poloidal and toroidal parts, we get,

D (nBy)] xBy | [P x[1B%)| xBo%, g, Do

F
M 4mh 4mth 4mch

DAZQQ'M,Bp +gM,B‘b +gM,w (4'52)

Knowing the expression of the curl operator, Eq.(2.41), the mixed terms are both either zero
or along €. Now using the Leibniz operation Eq.(B.30) on the gradient of a scalar product, we
decompose the vector product of a field with the curl operator of the same field. Thus for the
poloidal magnetic force,

h hBy D2 By e
T = 2 (Bp- D) hBp — D FMTB, = 4_p(%Tl
h?B2 h?B2 P
1 1
= h*B2 (e|-D)ej—{D—2- — |e; - D—— F =——— D, h?B?
e »(er-D)ey { ej-D— MEB, =~ g DLIB),
(4.53)

The curvature radius appears using the usual relation (ej-D)e) = %p. The first term is called
the magnetic poloidal tension. This force acts on the flow and pushes the poloidal fieldlines to
straighten up, i.e. to reduce their curvature 92%,” or in an equivalent way to flatten them, i.e. to
increase their radius of curvature %;,. This force is proportional to the curvature of the line and
its orientation is directed towards the inside of the field line. The second term is the poloidal
pressure. The orthogonal operator is defined by D, f=(e, -Df)e,. Then this force is orthogonal
to the poloidal fieldline. This force pushes to distribute the poloidal magnetic pressure, so it
tends to open the lines when there is an "over-density” of magnetic fieldlines (which is equivalent
to a magnetic field locally relatively strong), and to close them when there is an under-density
(which is equivalent to a magnetic field locally relatively weak). For the toroidal magnetic force,
we obtain,

~2
1 i i h?B® <2
F. o=—— | hB®(ey,-D) hBPey — D B®
M,B¢ 4T[h2 (‘P ) b 2 gMTB‘I’:__Ll DIn®
N T, .

A2 1 *2
B® 1 g2 F s ppp = ———DI?BY

__57 _ $

=--—Dlno- —DI’B MPBP = T g7

(4.54)
In the toroidal decomposition, we use the axisymmetry and the expression of the advection
term Eq.(2.42) to show that (ep-D)ey = —DIn@®. The first term is called toroidal magnetic

magnetic tension. Its effect is to collimate the magnetic tube flux when B? is strong. This force is
decreasing when the toroidal field decreases. The second term is the toroidal magnetic pressure.
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Decomposition-reorganization, prelude for Grad-Shafranov

The derivation of the Grad-Shafranov equation is relatively difficult. To prepare and avoid fastid-
ious development, it is useful to present a way to decompose forces adapted to this issue. Let us
start with the advection forces. The centrifugal force keeps the same expression as in Eq.(4.50),
but we do not proceed to the same decomposition as in Eq.(4.51) for the poloidal velocity ad-
vection force. Indeed we try here to decompose-recompose the maximum of force terms in order
to make the transversal terms appear. A clever derivation presented in (An.D.2.1) leads to the
decomposition,

i 1 M3 [DA?
ns =—
Y2V e Y
M3 DA?
4JT9AP12=WD1DI’Z
FAa=Fp1+Fpro+Fa. +Eycky,V, with 1
A=F a1+ Fp2+Fa, +EycknVp ) M2 DA\ | DA
I 2=\ D T || T
VA (& -Lw)? (M )?
p, - L (g
v Mycth? \x2

(4.55)
The term proportional to k;, V), is simplified by the second term of the advection velocity
forces. A similar calculation presented in Appendix.(D.2.1) leads for the magnetic force,

NPy, = —— DI
ey
_ _ hDA\] DA
gM:gM(@'FJMp"'gM,w with 47[91\/[1): D- F 7 (456)
(2-w)
4]'[@1\/['0) = —W (DA-Dw)DA
Then for the electrical force (see details of calculation in Appendix.(D.2.1)
hx*DA\ -0 df2] DA
AnFg=|D- - — | — —-4nF 4.57
”E[(QZ)hCZdA]h”M'” (4.57)
For the gravity force we get,
U2 (& — Lw)? Ne 2
AnF :—A—(—) DInh 4.58
nre Mz, c2h? \ 2 (4.58)
And the Lense-thirring force,
VA (8 - Lw)? 0w (NN
47[?14’1‘ =— Milfcghgx ( 9?2 )Dlnu) (459)

Then it is useful to write the energy integrals Eq.(4.44), using the expression of the Lorentz
factor, y Eq.(4.6). Expressing 1/y2, as a function of poloidal and toroidal velocities, and multi-
plying both side of equation per h?y2E? combined with Eq.(4.44) and Eq.(4.18, 4.26), we obtain,

4 2
Mg, IDAIZ
@2 B

T2 (6 - Lw)® MF — X2 N2
+

2¢2 2
W’ZL‘h &e c? x29?2

(4.60)

This equation is sometimes called the wind equation. It gives the evolution of the Alfvénic
Mach number with the first integrals, magnetic flux and enthalpy in the flow. This equation is
not a differential equation in Mf\lf' This is the primitive of Euler-equation along the flow. So
this equation is a first order term in Alfenic Mach number. These decomposition and the use of
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equation Eq.(4.60) allow us to make some simplifications, which bring in the recomposition of
the forces to the poloidal plane equation,

4 2
M, DA

D2

2 2
= 77753 DI’ ~47DP -

P-0dlp 4k
—_— T
h2c2 dA b

[D (@DA)] DA 1
) 2 1| 7 2
ho h zthMf

A2
v 7 (E-Lw)io T2 (& — Lw)?
—4npoﬁcz(1+(Y ))Dlnh— a6~ L) “(%M)Dlnwu(%

2
— | DIn®=0

2 31,3 2 2 272 )

MAlfc h3x 9 MAlfc h X9

(4.61)

The first term is a second differential non-linear order term in the magnetic flux. The presence

of the 9 inside of the derivation shows again the importance of this term for the property and

the regime of the flow. Indeed the first term can be interpreted as the term which opens or closes

the flux tube (some kind of global transversal inertia of the tube). Eq.(4.60) must be used to

calculate and decompose the second term. The third term is coming from the effect of the toroidal

magnetic field. The fifth term is linked to the effect of electrical field on the tube geometry. The

seventh term is composed by the gravitational terms and some term from advection. We also

use Eq.(4.60) to obtain the term in parenthesis. The two last terms are the Lense-thirring and
centrifugal forces.

4.2.4 Grad-Shafranov approach

The Grad-Shafranov approach consists to use all given first integrals in order to resume the study of
GRASIMHD magnetized flow in a simultaneous resolution of the motion along the flow Eq.(4.60)
and a resolution of the motion orthogonally to the flow from Eq.(4.61). These equations gives
the topology of the poloidal flow.

This approach can be done only for magnetized flows which satisfy specific properties. Grad-
Shafranov approach concern ideal gaz in thermodynamics equilibrium, no heating, and no ideal
conduction. This kind of approach was introduced in the case of force free magnetized gases
by Grad and Rubin [1958] and Shafranov [1966], which worked on plasmas in Tokamak. This
approach was imported in the domain of astrophysical flows by Okamoto [1974, 1975] and Heine-
mann and Olbert [1978]. The derivation in the case of Schwarzchild metric was done by Mobarry
and Lovelace [1986]. For Kerr metric, the equation was obtained by the work of Nitta et al.
[1991] and Beskin and Par'ev [1993]. This is the approach we expose here. The more general
Grad-Shafranov equation concerns the case of a fluid in any axisymmetric and stationary space-
time. The first to obtain such an equation were loka and Sasaki [2003]. Let us also mention the
fully covariant derivation done by Gourgoulhon et al. [2011]. This approach may also be used for
analytical work on magnetospheres in the free-force context as it has been done by Nathanail and
Contopoulos [2014].

Transverse equation for a plasma out of equilibrium and with loaded terms

We need to find an equation which is characteristic to the transversal evolution of the flow.
Started from Eq.(4.61), we need to work on the non-transversal term (not o< DA). The second
term of Eq.(4.61) is proportional to the gradient of a quantity expressed in Eq.(4.60). The third
term of Eq.(4.61) is the gradient of I* expressed in Eq.(4.44). These two quantities inside the
gradient of the first end the third term of Eq.(4.61) are function of Milf,E,, h,®,w,Wy,2,Y4L and
Us&. Then we decompose these terms (see the details in Appendix.D.2.2) and reorganize them
with the other terms.
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Finally we get the transverse equation out of equilibrium and with the injection terms kj,,k,

1[ (@DA)] VD Us(E-Lo) N -0 ,|d2 WsEc? DU, -DA
=) - AL DA% | =+
h h®? he Mi, X2 h*c? dA M. DA?
Uy —-L o0 Ng N DYLL-DA Uy (& -Lw) Ng DU4,E-DA 4
L) 5 W) |00 N N | DY >+ A(z w) Az D S+ nz{(pOECZDE—DP+kp)-DA}
cM5,,® hec 9 x2 DA M;h? 2 DA DA

(4.62)

Critical surface of Grad Shafranov formulation

To achieve and complete the Grad-Shafranov formulation of GRASIMHD, we need to do additional
assumptions. Choose a case without loading term (k;;; =k=0) and with a plasma which reaches
everywhere its thermodynamical equilibrium. Let us remove also the heating terms. In this case
several simplifications appear. First of all, first integrals are now constants of motion along the
flow, and thus, are function of the magnetic flux ¥4 =W, (A), L=L(A) and & =&(A). The plasma
is in thermodynamical equilibrium, thus we can use the first principle Eq.(3.71). This principle
associated with the last equation of Eq.(4.17) implies that the specific entropy is also a constant
of motion,

V,-Ds=0 = s=s(A) (4.63)

Thus the entropy is a function of magnetic flux A. There is an adiabatic evolution along field
line. The transverse equation Eq.(4.62) can be simplified and we get,

dudlizals
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(4.64)

The thermodynamic equilibrium implies that the main thermodynamical quantities of the
plasma are those of Synge-Jiittner's gas Sec.(3.2). And these quantities obey to the first principle
Eq.(3.71). Using that Synge-Jiittner's gas is an ideal gas (# =O= %) and the first principle,
we prove (Joule's law) that £=&(T). Then the first principle can be written as,

2 2 :
9 lops , O . ¢ 1 0P o
ccdg=¢— (d c +—ds) with === =— ) 4.65
Po c? P kg g 8p002 s=Cst i(ﬁ—l) ( )
where & = ;—é. We can use Eqgs.(A.13, A.12) to calculate the sound speed. The last equation

implies that £ =¢(s,T). Let us differentiate the Alfvén Mach number Eq.(4.42) and replace the
term proportional to dpc? with Eq.(4.65). We obtain,

g __ale (d%‘ My, © ds) (4.66)

& 1-cd/e2 |\ v M, +kB

Thus the specific dimensionless enthalpy & = &(s, M4, %3) = £(A,M3,). With the same kind

of arguments, we can also write @:@(A'Mzlef)' Then Eq.(4.64, 4.60) are sufficient to solve the

GRASIMHD system. The nature of the transverse equation is determined by the coefficients of the

highest degree in magnetic flux derivatives. The transverse equation is a second order differential

equation in the magnetic flux. Then the next step is to get away the dependence in the gradient

of M4, in the first term of Eq.(4.64). The gradient of Alfvén Mach number DM3 . contain the
second order derivative of magnetic flux, and appears in the following equation,

2
DA-DM2,
2

1 [D. (QDA)] 2 i (4.67)

h ha? )|~ n2a?
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Where the ..., means all the terms which do not have a second order spatial derivative term
in magnetic flux. To calculate the second term, let us use Eq.(4.60) to express explicitly DA?
as a function of Milf’a h,®,0,¥y,2,P4L and ¥4&. We write the gradient of this relation, using
Eq.(4.66) to avoid the term in DE,

DSk > 2 2
(DA-D)DA=—DM%,;+2,Dh* + D5D®° + D,Dw

g AR © © (4.68)
+ Q%DWA + @WALDWAL + 9% g,DWAéa +9,Ds,

were,
)
DA? 2B 29 c2/c?
o= 7 - S 2V, V5 (Yics + Y (VA— VD)) +YaV5 (Vi , — Vi
" M3j¢ B} YZVSI—CE/cZ 2V4 [Y (Yoe + Y2 (VR - VD) + s ( E)]

(4.69)
The details of the calculation of Qgr term are given in Appendix.(D.2.2). FoIIowing l\/lobarry

and Lovelace [1986], we introduce Vi=V§p+V2 the Alfvén velocity, where V A(b _V2 Ap B2 is the

toroidal Alfvén velocity. We also introduce Y2 = ﬁ and the Alfvén-like velocity V2 _xzvzp.
. 2 2 oy 2 . .
Using Eq.(4.43), it is simpler to introduce U=y (V -Vp) = 4np Ecz’ and U M"pw, including
U2=vy%c2. We get,
4 2072 (112
Dy = Y4V4 [y V- Y*V2 (U2+U3) + U2UE | (4.70)

The roots of this polynomial equation Eq.(4.70) define the slow and fast magneto-sonic ve-
locities.

YV =(U2+U3 - /(U2 +U2)2-4U2U2 )72 Slow - Magneto - Sonic
(4.71)

Y2V1%M (U2+UA \/ (U2+U2)2 4U%U )/2 Fast —Magneto — Sonic

Using Eq.(4.68) to calculate the second order term derivative term of magnetic flux we get,

1[ (2DA\] 2 DA- {(DA-D) DA}
D[ || = 5= [2A+
h ho? h2®? SF
A N A A2
_1(,,DATYPA 1 2DADA’ PA 1 [ DAY | PA (4.72)
- h% or  hyhg Dsg  000r h2 Dsp | 002

Then we see that the slow-magneto-sonic and fast-magneto-sonic are singular points of this
equation. Nevertheless this analysis do not leads to conclude to the fact that these singular surface
are equivalent to the fast-magnetosonic separatrix surface which is linked to causal connections
of the flow. Indeed Bogovalov [1994] shows that in addition to @ there is an additional singular
surface called modified fast-magnetosonic surface, which corresponds to the fast-magnetosonic
separatrix surface. The determinant of Eq.(4.72) is given as,

2v72 2
4(U§+Ui) Y°Vp—Ug
hzhs Y4Vp - y2V3 (US +U3) + UfUi’p

Ags = , (4.73)

where we introduce the cusp-velocity U? = U2U2 /(U2+Ui). The region is hyperbolic for
Ags =0 and elliptic for Ags <0. Then for Y*V; < max(USM,UE) you are in an elliptic regime, for

Y?V; = max(UZ,;, UZ) you are in an hyperbolic region.

Following Beskin and Par’ev [1993], we notice that when we move toward the horizon, the
first integrals need to be continuous, then from Eq.(4.22) we have B® ~ 1/h associated to the
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relation Eq.(4.34). It implies that YEV® remains finite. Thus Eq.(4.38) involves that yE ~ 1/h
near the black hole. The proper density pg, the pressure P, the specific dimensionnless enthalpy
¢ have a meaning in the fluid reference-frame. They must remain continuous as they cross the
black hole horizon and we need to have yV, — oco. Then the flow is super-fast magneto sonic,
near the horizon. It implies that any disturbance can move up along the flow from a given surface,
the super-fast magnetosonic surface.

It is also interresting to note, that on the horizon, the electric field is directed only towards 0
and the poloidal magnetic field is aligned with the radial vector. Using the fact that the mass flux
also remains finite, the Alfvén Mach number also needs to remain finite. Combining Eq.(4.60)

with Egs.(4.44, 4.25) and the expression of gradient, leads to hEé = hBJ’ on the black hole horizon.

4.3 Flux on the horizon of event for a Kerr black hole

Since the work of Penrose and Floyd [1971], we know that a rotating black hole could exchange
its rotational energy with its environment. Blandford and Znajek [1977] generalize the idea of
Penrose by studying the interaction between a Kerr hole with an electro-magnetic field. Extraction
processes became a potential source of energy (even there is no general agreement) to explain the
phenomenal power of relativistic jets ejected from stellar massive black holes of binary systems or
an accreting super massive black holes. Lasota et al. [2014] generalization allows us to consider
a most general interactions and especially the case of a full GRASIMHD.

The Blandford&Znajek mechanism is still subject to much debates and discussions. We
mention here the discussion induced by the discovery of Meisner effect related to the vacuum
electro-dynamics around a Kerr black hole. Indeed, the discussion appears since Wald [1974]
calculated the exact solution of Maxwell’s equations vacuum for a magnetic field which tends to
be uniform and aligned with its rotation axis at infinity. He observed a decrease followed by a
total disappearing of the magnetic flux, which crosses the black hole when the spin reaches its
maximum value. Bicak and Janis [1985] remark the same kind of phenomena for axi-symetric
steady state vacuum solutions. Nevertheless the development of GRMHD simulation do not show
this phenomena. Komissarov and McKinney [2007] explain that this phenomena hold for vacuum
electrodynamics but not for GRMHD. Indeed they show that, for a sufficiently high conduction
medium around the black hole, especially for ideal plasma, this phenomena does not appear.

Let us introduce (.#,g) a spacetime with two Killing vectors, one for stationarity, 1, the other
for axisymmetry, &. We do the extra-assumption that our spacetime is circular (Se definition in
Appendix.(A.7)). It is the presence of an ergoregion (a region in contact with the horizon of the
black hole where n is space-like) which is the essential property allowing the extraction of the
rotational energy from the rotating black hole.

In this section we briefly summary the basis of Penrose’s process and the notion of ergosphere
in this process. Then we detail the general conditions for energy extraction from black holes.
Finally we apply this to the interaction between a Kerr black hole and the GRASIMHD fields.

4.3.1 Penrose process

The Penrose process was theorized by Penrose and Floyd [1971] to extract rotational energy from
a rotating black hole. The process is quite simple. A test-particle (1) coming from infinity enters
in the ergoregion then splits (event P € .#) into two particles. One of the pieces (2) escapes from
the black hole, the other (x) fall into the horizon without getting out. The motion of each of
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these particles (test particles) is a geodesic motion. The conservation of impulsion during the
splitting implies that on the P splitting event, in the tangent space Jp (), we have,

miu = mauy + MxUx (4-74)

The property of killing vector implies that for a geodesic motion of four speed u we have
Vu(u-n)=0. Then if we note £ the geodesic considered world line, we have u-n|¢=Cst. If we
note £, % and % the world lines of the test particles (1), (2) and (x). The world line & starts
from infinity and reaches the point P. Therefore %, starts from P and reaches the infinity. Then
myc®uy N | g = mic®u; N lp= mic*uy -1 o= mic®u; -nloo=—E1 and mac?uy - |e=mac*uy - nlp=
My N |oo= M2c?uy N |oo= —Ey. Relation Eq.(4.74) implies that the difference of energy is
E,—-E; = m*czu*-r] |, . The world line £ is included inside the ergoregion. On this line, n is
a space-like four vector and it is possible for some configuration to extract energy from the black
hole. In order to extract energy we simply need to have —AE 7 = E, —E; = mxc?ux -1 |2, = 0.
Note that if the (x) particle leaves the ergoregion in a part of its world line then the extraction
is not possible. Indeed outside of the ergoregion n is time like and future oriented like the four
speed, which implies n-ux <0.

We also have an other killing vector § associated to axi-symmetry. Then, for a geodesic motion,
we have J = mcu-§ | »=Cst. We could interpret J as the angular momentum of the geodesic motion.
Thus for the variation of the black hole angular momentum, we have —AJ 7 =J, —J; = —mxc&-ux.
For circular spacetime we show that we can choose a system of coordinates adapted to circularity.
The ZAMO four speed is given by Eq.(A.19). The energy measured by the ZAMO observer is
always positive. Then —mxc?ux-n=0 on the world line Zx. This condition implies,

’(D]ﬁA]ijAEJf . (4.75)

where w_g is the maximal value of the function w. This maximum value is reached on the horizon.
The last relation implies that, during a Penrose process, negative angular momentum absorption
is a necessary condition to have extraction of rotational energy.

4.3.2 General calculus of the extraction for any stress-energy tensor field

This subsection is strongly inspired from the work of Lasota et al. [2014]. As before, let us consider
an axi-symmetric (§=0;) and stationary (n=30y) spacetime (.#,g), which contains a black-hole.
So there is an horizon # which is a null hypersurface. The coordinate system is chosen to avoid
any singularity on the horizon. We use a foliation .4 = U X;. We call & =4 n X}, which is a

two dimensional closed surface into the three dimensionatIERE[ manifold. Note s the normal to #
considered as an hypersurface of Y. Let us introduce £ defined on # to be the normal vector to
. Because A is a null hypersurface, £ is a null vector and £ € I (#°). Let us choose to normalize
£ such that its 3+1 decomposition is £ = hcn+b, with be 5 (Y). Then Vve T (H) c T (H)
£-v=0, we also have Vve T (#) c T (L) n-v=0. This implies that Vve I (%) b-v=0 then
beF,andbe T (X)), and £=hc(m+s). We introduce k= ﬁ (n—s), which is a null vector normal
to # verifying k-£=—1. Then we could use Eqgs.(2.4, 2.5) to calculate the projection on # and
the induced metric on .

v— v+ (£-v)k Orthogonal projector on A2
{ SOnat o) (4.76)

q=g+k®l+lek=g+nen—-sos Induced metric on A

We note that the degenerate metric q on # is also identically equal to the induced metric
on . It is possible to show (rigidity theorem) that the tangent £ to the horizon .# vector field
can be decomposed as,

. n+%€, (4.77)
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of the black hole horizon. We suppose that this tensor obeys to a minimal physical condition, the
null energy condition, at the event horizon,

with 2 = —g—g constant on #. We consider a stress-energy tensor field T that fills the environment

T, €) | =0 (4.78)

This condition is the weakest version of the weak energy condition, which requires that
the density of energy measured by any observer is always positive. This condition replace, in the
general case, the role taken by the ZAMO observer n in the Penrose process to get an equivalent
version of Eq.(4.75).

Let us introduce the Noether angular momentum flux Eq.(4.32) and energy flux Eq.(4.37).
At present, we do not suppose that these two fluxes obey to any symmetry property. We also
took the case with no loading term k=0. Then we took any volume of spacetime 7; c 3J which
is in contact with the horizon. Thus the boundary is composed of J%; = A% U Gext Wwhere A is
a part of % and Oex is a two dimensional sub-manifold, which is restricted to be outside of the

horizon. Then we introduce % = 7,. Thus we have 0% = mmu%u(u Ay,)u

relt,t+ A1) relt,t+ At
(Ute[r,r+At] O'ext). Let us integrate Eq.(4.32) and Eq.(4.37) on % and applying the Stokes theorem

Eq.(A.11) using Eq.(A.9), we obtain,

{EHAI_Et"'?ZEeXt_ZAZEJf:O , (4.79)
Jt+At_]t+A Jext‘A JJZ":O
where
Eth (P-n) \/?dxldx3dx3
%
+ At
{ A?Bey = f ( hP-dS) cdt . (4.80)
t Oext
r+ At
AZE;f:—f (f P-Edzq)cdt
¢ A,

Similar expressions are valid for the angular momentum replacing M instead of P. The details
of this calculus are given in Appendix.(D.3). (x!,x% x%) is a coordinate system of X, dS is the
surface vector of Yoy and d?q is the surface element of .%;. We interpret A?E as an energy
flux flowing out of the hole, using the fact that far from the horizon of the black hole the Noether
energy flux P is also the energy flux measured by the ZAMO. Assuming stationarity, we have
E;=E,, A,andJ;=J, A, Thesurface oey is chosen as the surface build by the flow of hP which
starts from the line 0A.%;. Supposing that the line flow of P started from 0A.% reaches infinity,
as in Fig.(4.2).

Then we have,
AZE;{::AZEGH:[ hP-dScAt (4.81)
Oco

The surface 0 can be chosen as far as we want. We interpret the integrals in Eq.(4.81) as
an energy flux which crosses o during At. It allows us to interpret A%E_z as the flux of energy
which crosses the part of horizon A during the period of time dt. The same kind of analysis
and work could be done for angular momentum flux. In a similar way, we prove that A?Jz is
the flux of angular momentum, which crosses the horizon of the black hole during the amount of
time dt.

Let us take the null energy condition, Eq.(4.78), we immediately find,

(J.)JfAZIﬁ = AZE;&& (4.82)
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Figure 4.2 — Representation of the different surfaces of integration. In black is a spatial surface of horizon
of the hole &, in green the surface element A, in blue the choose of gex which is based on the flow of
P (red lines)

Then as announced before, the same inequality as during a Penrose process holds between
the variation of energy and the variation of angular momentum of a black hole. Again, to have
extraction of energy of the black hole A%E <0, we need to have A?Jz <0, then a process of
extraction may appear only when the black hole absorbs negative angular momentum.

4.3.3 Extraction via GRASIMHD field in Kerr metric

Now let discuss the special case of the interaction with a loaded GRASIMHD field. In this case,
the stress energy tensor can be decomposed in three part T =T, + Tem + Tk = Tmup + Tk, where
Ty represents the stress energy tensor of the source of pairs (photons or neutrinos or others
particles). Then the Noether fluxes are also composed of their MHD part and their source part
(M:MMHD + My and P=Pyup +Pk).

An another conserved quantity is the Feynmann mass 4-current given as F = Fpp + Fy = pou+Fy.
This quantity verifies,

V-F=0 = D-(hF,)=0 (4.83)
The GRASIMHD parts of the fluxes are given by,
' A
mehFFL’p = HV X (ae(j))
WyL A
hM =—Vx|[—e; 4.84
y "iMmuD,p an ( me‘b) (4.84)
Uu& A
hP =22 Vx| =e;
MHD.p 4mc * (@e‘b)

It is necessary to pay attention to the flux coming from GRASIMHD. We choose for A% the
part of ¥ where the magnetic flux is between A and A+ dA. The Eq.(4.84) implies immediately
that the surface Oext, which is built by the flow of the conserved flux, Eq.(4.84), is simply the

73



CHAPTER 4. MAGNETO-HYDRODYNAMICS IN CURVED SPACETIME

magnetic flux tube that we stop at a certain radius rex. Thus the expression of Eq.(4.81) and its
analogous with the angular momentum and mass flux become,

A’M
==Yy, (A, dA
A7 MHD A (A, Text)
d*)
3 = —W,L(A, Fex) dA (4.85)
dt |mup
2
E
TEx| 58 A e da
dt  |vuaD

We calculate here the contribution of GRASIMHD field between A and A+ dA to the evolution
of the black hole. In fact Carter [2010] showed (Chapter 8 of Carter [2010]) that only the two
last equations of Eq.(4.85), contribute to the evolution of the black hole parameters. He cor-
rectly deduced that the mass parameter of the black hole is linked to the Noether energy flux and
the angular momentum parameter to the Noether angular momentum flux. The first equation
is linked to the conservation of the number of particles. A Kerr black hole is characterized by
two parameters its mass and its angular momentum. The way the black hole evolves with the
exchange of particles allows us to introduce the chemical potential of the black hole, its entropy
and some effective temperature. To know the total evolution of the black hole we need to add
the contribution of the source term. In the following we make the assumption, that this source
term becomes null in the environment of the horizon, i.e. for a radius 7y < rext < r¢. Then the
evolution of the hole is entirely determined by the value of ¥y, W4L and ¥4& for radius in the
range 1z < ext < I't-

Thus, we get three time scales, which correspond to the evolution of the black hole parameter.
About the energy, it is useful to decompose the energy flux in its different physical contributions,

AWV
Pe =W =WayvEhc® |1+
& =Ya& =VyEhc ( o2

¢ A
)— h®2B® = Opp + Py (4.86)

The first term is the fluid energy flux @gr and corresponds to the Noether energy flux. the
Noether Poynting flux @\ corresponds to electromagnetic energy flux. Note that the perfect
fluid contribution @gr, can be written as,

Ppy, = —WEc® (u-m) (4.87)

Eqgs.(4.85) are valid, for each value of rext > 1% and also valid in the limit of rext — 7. So it
is useful to calculate this decomposition on the black hole horizon,

Miiel

+ 0%, (02— 0z)?/c?

Pyg| o =— (UaLw 7 —Ws8)

2
MAIf'Jf
®2,0.72(02—w)/ c?
{ Purle=VaZLon+ *

(PALw 72 — Ua6) 4.88
M2 |+ 0%, 2wzl (4.88)

D%, 20 72— ()1 ¢

(EpAL(.O T~ WAéa )

Pol = Mz | L, + @2, (22— 0.7)2/ 2

We claim that the electromagnetic extraction process is active when @y > 0. Fluide energy
flux can be decomposed, in the internal energy flow @y; and the Lense-Thirring flux @pr. Lense-
Thirring flux sign depends on the sign of V®. We claim that the ideal fluid extraction process is
active when @pp =@+ Pp > 0. The definition of a black hole implies that sufficiently close the
horizon the mass flux becomes negative ¥4 < 0. The null energy condition at the event horizon is
equivalent to,

Up8E <V Lwygp (489)

74



CHAPTER 4. MAGNETO-HYDRODYNAMICS IN CURVED SPACETIME

There is a generalized extraction between A and A+dA, if 0 < W8 <V L wz. The Eq.(4.88)
combined with the null energy condition Eq.(4.89) implie that the electromagnetic extraction
process is active if 0 <2< wz. The null energy condition Eq.(4.89) associated with Eq.(4.88)
imply that the internal energy flow inside the horizon of black hole. This energy flux increases the
mass of the black hole.

Eq.(4.87) implies that for an inflow (¥4 < 0) outside of the ergosphere (reminding that outside
of the ergosphere n is a timelike vector thus n-u = 0) we have @pr < 0. Thus in the hydrodynamical
case (Ppm =0, Pg = Ppr, = Cst along a poloidal fieldline flow), to get active fluide extraction
process we need to have the pairs creation inside of the ergosphere. Indeed, let us consider a
magnetic flux line A=cst. This line starts from the horizon r =14 and crosses the ergosphere
radius 1 = rerg(A) and the point where we start to produce pairs r = ri(A) Fig.(4.3). In the
hydrodynamical case, for r < ry, we have ®P\(A, 17 <1 < 11(A)) = Cst, then if reg(A) < i (A) we
know it for rerg(A) <71 <rr(A). Then we have (1 (A)) =Py (r(A)) <0. See Fig.(4.3). This is
equivalent to the Penrose process for splitting particles inside the ergosphere. In the MHD case,
you can have extraction via a process of fluid extraction and have pairs creation only outside of the
ergosphere because we can have exchange between the ideal fluid energy flux and the Poynting
flux. Thus, in this case, the Poynting flux increases as we move outward of the ergosphere while
the perfect fluid flux became positive inside the ergosphere, being negative outside the ergosphere.
Then it seems less restrictive to have a global extraction in the GRASIMHD case than in the pure
hydrodynamical one.

e (A)

Ergosphere

Figure 4.3 — Representation of flow line configuration with stagnation radius outside of the ergosphere. For
a pure fluid interaction, because rerg(A) < ri(A) no extraction can be achieved. The ergosphere and the
horizon are represented for a maximally rotating black hole respectively in green and red. The black line
represents a poloidal field line.

Using eqs.(4.26, 4.35, 4.39), if we consider a line which starts at some point on the horizon
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and reaches infinity, then we get,

d*M © 4nchk
vt A) = - 0. (A f T d
AW = QA | = dr
d?] ® 4mh§ -k
WAL (A) = - 0.7 (A +f k d 4.90
CAM W ==y G+ | == | dr (4.90)
dE z ® 4nchn-k
Ta8) " (A) = — 0.7 (A —f _— d
Wa&)" (A) dtdA(]f( ) . B lca r

This can be simply interpreted. The energy and the angular momentum following this line is
composed of the angular momentum and the energy fluxes of the black hole plus the contribution of
the loading term (pair creation mechanism, by example photons in the mechanism y+y=e;+e_).
One of the issue to understand the power of magnetized jets launched from a supermassive black
hole is to quantify both terms.

4.4 Conclusion

Using the 34+1 method, we saw how the loading terms (k,, and k) change the general equation
of GRASIMHD Eq.(4.17). Maxwell's equations stay identical. Then the usual electromagnetic
integrals, the magnetic flux, and the isorotation remain the same as usual. They are function of
each others. Nevertheless the source term acts as a load of mass-flux, Eq.(4.26), of angular mo-
mentum flux, Eq.(4.35), and of energy flux, Eq.(4.39). The material source of the pair transfer,
its number, its angular momentum and its energy to the GRASIMHD fields.

We also see different way to decompose/recompose the forces which appear in Euler equation.
This decomposition-recomposition help us to understand the role of each forces in the flow, or
to obtain the Grad-Shafranov equation. The analysis of this equation allows us to determine
the singular surface of GRASIMHD, linked to some regime of the flow velocity. It introduces 3
specific velocities for which the system is singular, the slow-magneto-sonic velocity, the Alfvén
velocity, the fast-magneto-sonic velocity. These velocities also correspond to the velocity of wave
propagation in the GRMHD fields.

The last part gives us the different exchanges of flux between the GRASIMHD field and the
black hole, and then the evolution of the black hole parameters. The extraction of energy may
concern different processes; it could be dominated by electromagnetic processes or by an ideal
fluid process. This analysis also gives the interesting result, that for a line which links the horizon
of the hole to the infinity, the angular momentum flux (the energy flux) at infinity is composed
of the angular momentum (respectively energy) extracted from the hole, plus the contribution
brought by the loading term (e.g. the source of pair, for pair creation/annihilation mechanism).
Then the goal is to quantify these two terms. This can be done solving the GRASIMHD equations
from the black hole horizon to infinity. This is the object of the following chapter.
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CHAPTER 5. MERIDIONAL SELF-SIMILAR MODEL

The model we propose is an extension in Kerr geometry of previous meridional self-similar
models for ideal axi-symmetric and stationary MHD flows. It generalizes and solves the difficulty
of the treatment of the light cylinder effect compared to previous models from Meliani et al.
[2006a] and Globus et al. [2014]. Indeed, this effect appears in a Special Relativity (SR) treat-
ment of Axi-symmetric Stationary ldeal Magneto-Hydrodynamic (ASIMHD) and is modified by a
General Relativity (GR) treatment. When a fluid element crosses the light cylinder, the isorota-
tional "velocity” measured by the Zero Angular Momentum Observer (ZAMO) reaches the speed
of light. The light cylinder is also the surface where the electric field is equal in magnitude to the
magnetic poloidal field. The isorotational "velocity" does not correspond to a fluid velocity but to
the rotational velocity associated with the electric potential per unit of magnetic flux (isorotation
Ferraro's law).

There is no physical problem for a fluid line to cross this surface. This effect of the light
cylinder leads to a change for the critical Alfvénic surface. Thus including this effect in the model
makes incompatible the assumptions of a radial Mach Alfvénic number and a spherical Alfvénic
critical surface. This contradiction was previously solved by choosing to construct an analytical
solution in area where the light cylinder effect is negligible. In order to take into account this
effect, one of the two above assumptions has to be released. We choose to keep the sphericity of
the critical surface while we let Mach number to follow a given form. This new formulation results
in a model that can describe the flow in areas where the light cylinder effect is not negligible,
particularly outside the light cylinder. As in the previous self-similar model the fast-magnetosonic
surface could coincide with the Alfvénic surface.

In the second section of this chapter, we present the construction of our meridional self-similar
model published in Chantry et al. [2018]. Parts which are extracted from the publication are in-
dicated by a grey band in the left margin. Note that in the article the notation V is reserved for
the covariant derivative on the space surface of the Kerr metric foliation proposed in sec.2.4.1.
Thus V corresponds to the Kerr geometry analogous to the flat gradient. Then, in the third
section, we present with some details the derivation of the equations, especially the expression
and the decomposition of each force component. Finally in the fourth section we present the way
to obtain and discuss the differential equation system of the model.

5.1 Construction of the meridional self-similar model

We choose to use our article Chantry et al. [2018] published in the A&A newspaper to present
the model. The following will therefore be the first three sections of the article

5.1.1 Steady axisymmetric relativistic MHD outflows
Kerr metric

The first step in building self-similar solutions in relativistic flows is to define the metric.
In fact the central massive black hole dominates the gravitational field in the near regions
and determines completely the metric field. Thus, in Kerr metric, the geodesics are defined
as follows.

2 2
ds® =— (1 - %) 2di® - zr;#sinzedtdm pZer +p2d6? + %sinzed(bz (5.1)
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We have the usual notations of the elements,

A =r*+a®-ryr, (5.2)
0> =r?+a’cos’0, (5.3)
32 =(r*+a®»? - a®Asin®0, (5.4)

29G4
c 2

We note that _# is the angular momentum of the massive central object, ./ is its mass,
h is the lapse function, w is the angular velocity of zero angular momentum observers
(ZAMO) and we use a for the length-scale related to the angular momentum of the black
hole (Kerr scale). We can define the dimensionless spin of the black hole ay in units of the
gravitational radius rs/2 such that, agy=2a/rs. Furthermore, f is the shift vector.

The lapse function h, the angular velocity w of zero angular momentum observers
(ZAMO) and the shift vector coordinates can be written as,

where a=-Z— and rg=

e vz /I
h= 1—F+ﬁ ﬁ(b :E A, (55)
acrsr 5 oy O
= , =——®", =" 5.6
0="77 B - p - (5.6)

with @ = —sinB. The corresponding line elements for the Kerr metric are given in Ap-

p
pendix.A of Chantry et al. [2018].

Maxwell’s equations

The next step is to define the electromagnetic field in this metric. Using covariant deriva-
tives, we can write Maxwell’s equations in Kerr space, assuming stationarity and axisym-

metry,
V-E = 4mp., (5.7)
V-B = 0,
Vx(hE) = (B-V%)G)eq,, (5.9)
anth
Vx(hB) = %I—(E-V%)@eq}, (5.10)

where (€;);=1..3 is the space orthonormal basis. We note that all quantities in the above
equations are given in the ZAMO frame. We can split all vector fields in a poloidal compo-
nent in the meridional plane and a toroidal one along the azimuthal direction. The poloidal
magnetic field B}, can be expressed in terms of the magnetic flux function A,

A
B,=Vx|—€y], 5.11
0=V x(Se) G.11)
and using Faraday's law, we get the electric field,
®
Vx (hE- ;VA) =0. (5.12)

We can introduce the electric potential, @, but the electric field E is not directly proportional
to the gradient of the electric potential,

hE:%VA—V@. (5.13)
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The condition of ideal MHD for infinite electrical conductivity leads to

VxB
E+—— -0, (5.14)
C

We note that V is the covariant derivative on a space hypersurface; see Appendix.B of
Chantry et al. [2018] for the expression of its coordinates.
Equations of motion

In the Kerr metric, the 341 formalism gives the equation for mass conservation, the Euler
equation, and the energy conservation, respectively,

V- (poyhV) =0, (5.15)
veé B

poY (V- V) (YEV) + poEY? 2vInh+ 22 Vine +VP:peE+]XT, (5.16)
) woVv? J-E

Y po&c | V- VIn(y&h) + o2 V-Vinw = (5.17)

Here V® is the toroidal component of the bulk flow speed as seen by the ZAMO. The factor
Y is the bulk Lorentz factor, pg is the mass density, and &c? the specific enthalpy measured
in the comoving frame of the outflow, that contains kinetic enthalpy of perfect relativistic
gas &k and some heating term Q/c?.

§:§K+%. (5.18)

For the kinetic enthalpy we use the Taub-Matthews approximation of ideal fluid equation
of state; for more details see Taub [1948], Meliani et al. [2004] and Mignone et al. [2005].

5( P 3P \2
== |— ) 1
x 2(p062)+ +(2pocz) (5.19)

The energy conservation has been derived in the frame of the ZAMO and equivalently
the first law of thermodynamics can be obtained by projecting the conservation of the
energy-momentum tensor along the fluid 4-velocity but in the comoving frame. Assum-
ing infinite conductivity, the contribution of the electromagnetic field is null and only the
thermal energy affects the variation of the enthalpy of the fluid, giving,

po (Vp-V) (Ec®) = (Vp-V)P. (5.20)

Constants of motion

Under the assumptions of steadiness and axisymmetry, the magnetohydrodynamic equations
in general relativity can be partially integrated to yield several field /streamline constants
(Beskin 2010). We already deduced those constants including the magnetic field with the
same formalism in Cayatte et al. [2014]. Here we present the derivation of the equations,
following the notations of Tsinganos 1982, in order to compare with previous self-similar
models, for example, Meliani et al. [2006b] and give the choice of the first integrals.
Steady and axisymmetric flows are characterized by a function A that defines the ge-
ometry of the magnetic flux surfaces. In the poloidal plane, field lines are lines of constant
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magnetic flux A and first integrals will be functions of A, among which the mass flux ¥.
The poloidal velocity can be expressed in terms of ¥,

4
4npoYhVp =V x (5%) . (5.21)

The frozen-in condition for ideal MHD flows, gives, in the toroidal direction, combined with
Eq. (5.11),

47[p()Yth = WABp y

where ¥, = d¥/dA is the magnetic to mass flux ratio.

The poloidal components of the law of flux freezing (Eq. 5.14) give in turn the iso-
rotation law, A )
_hv®  w,B®

- - ,
0] 4TPeY®

(5.22)

where (2(A) = cd®/dA, which is the isorotation frequency, constant along each magnetic
flux tube.

By integrating the Euler equation in the toroidal direction, we get the conservation of
the angular momentum flux L(A),

) $
L= yav"’—hi). (5.23)

U

The last equation to integrate is the energy conservation. In other words, we may take
the Euler equation projected along the time axis of the 3+1 decomposition, and integrate
it under the hypothesis of steadiness,

B ho(2—w) g

& -Lw = ythc®
w=YEhc A

(5.24)

Toroidal fields

Using the three last integrals of motion, we may express the toroidal components of the
velocity and the magnetic fields and the enthalpy density as functions of these first integrals
and the poloidal components. Using the standard procedure of inversion we get

(DhB(I) B L[h?c* + @*w(2-w)] - E0%(2- o)

= , 5.25
WUp (M5 — h2) 2 + @ (2 - w)? (5.25)
- M2 Lc?— (8 -1 (2-w)
@yEVP= A - —, (5.26)
(MZ . — h?) ¢ + @?(2 - w)
M3 (& — Lw) — h*(& - L)
yhe= ——— = (5.27)
(M&;— h?) ¢ + @% (12— w)
where we have defined the poloidal Alfvén Mach number,
Vp?  Anh?peEy?Vp? W2
M2, =2 b = pOEZY pt_ Y (5.28)
VAlf Bp 47pg

This definition of the poloidal Alfvén Mach number is consistent with the definition
used by Meliani et al. [2006b] and includes the lapse function. This is also the definition
taken by Breitmoser and Camenzind [2000] because the velocity, hV,, calculated with the
universal time is continuous across the event horizon.
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The numerator and denominator of Eq. (5.25) are zero at the Alfvén transition surface,
if the following two equations are satisfied,

®2(2-wy)?
Miyly=h3 [1- === |, (5.29)
a
®5(2-0a)*  L(2-wy) (5.30)

hic2  (E-Lwy) '

The denominators of Egs. (5.26) and (5.27) are identical to the one of Eq. (5.25) and there

numerators are a linear combination of Egs. (5.29) and(5.30). Hence, the numerators and

the denominators of Egs. (5.26) and (5.27) are also zero at the Alfvén transition surface.

We can reformulate the above equations by changing variables. We rescale the cylindri-

cal radius with ch/(f2— w) leading to the dimensionless cylindrical radius x and introduce
the parameter xyg,

L_00-0)  , LW2-w)

R )y 5.31
he MR (& L) (5:31)
Hence we can write,
L (G-l XX
é - = Cx‘”) A, (5.32)
A (1-x?)
h EV_&_ (€ —Lw) Milfxf/m—(l—xﬁ,m)hzxz (5.33)
Yo T T M2 —h?(1-x2) '
& —Lw) M2 . —h?(1-x2%.)
yhe= &) A MR (5.34)

c? Milf—hz(l—xz) '

The second condition, Eq. (5.30), at the Alfvén transition surface becomes, keeping
the first one unchanged,

x2|a: xl%/IR|a' (5'35)

In Kerr metric, the parameter xﬁ/IR is an extension of xf\ defined by Meliani et al. [2006b)].

It measures the amount of energy carried by the electromagnetic field. This is the energy

flux of the magnetic rotator (MR) divided by the total energy flux of the outflow in the

co-rotating frame, & —Lw. This new parameter xy, conversely to the previous xa, is not
any more constant along a field line, since w is not an integral of the motion.

5.1.2 Model equations
Angular expansion

The MHD equations and the metric constitute a coupled set of highly nonlinear equations
that cannot be solved analytically. The approach followed so far for Newtonian flows has
been to look for solutions with separable variables in the frame of self-similarity. However,
this technic cannot be applied in the frame of general relativity due to the complexity of
the metric even for the simpler cases of a Schwarzschild or a Kerr metric. Instead, we may
model the jet close to its symmetry axis, that is, to describe the spine jet, by expanding all
variables with sin0 to second order.

Along the polar axis where ® and 0 go to zero, we may define the spherical Alfvén
radius to be the distance rx from the center where the Alfvén transition surface condition,
Milf,,,:o = h%, applies. The subscript x denotes the value of a physical quantity at the Alfvén
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transition surface, along the polar axis. We shall use this location to write all our quantities
in dimensionless form. Thus, the dimensionless spherical radius is

r
R=—. (5.36)
I'x
At R=1, the velocity is Vi, the magnetic field By, the density py, the enthalpy &« and
the lapse function hs. Because of the Alfvén transition along the polar axis, we have,
B~2k =4T[Y*2p*E,*V*2 . (537)

Thus the dimensionless magnetic flux function a is defined as,

2
= A. 5.38
« I‘*ZB* ( )

Moreover we can expand to the second order the metric of the system in dimensionless
form using the characteristic dimensions of the system defined in the previous Section. This
introduces the two following new parameters,

r a 2a 21
s 1 L > —=—,

H=—, =—=

== 5.39
T'x rx ACri '« M ( )

which are respectively the Schwarzschild radius in units of the Alfvén radius and the dimen-
sionless black hole spin.

Another dimensionless parameter is needed to describe the gravitational potential, as in
the classical model. This parameter v represents the escape speed at the Alfvén point along
the polar axis in units of Vx. Then, the value of V4 is fixed by the following condition,

V= Vesc,* _ 2@./%

= V2= 2. 5.40
Vi reV2 * (5.40)

Thus, to second order in sin® the ZAMO angular velocity and the lapse function are

written as,
lcuR Ph?
- in’0 41
@ T LRIt ( TRt ) (541)
MR ul’R . 9 )
h = 1- - 0. 5.42
R2 + 12 2(R2 + 12)2 S ( )

In order to simplify our notation, we define the lapse function along the polar axis,

/ R
h2(R) = h(R,0=0) = 1-#, (5.43)

and the polar shift of the metric,

lcuR

0:(R) =R 0=0) =577

(5.44)
See sec. 2.4.1 (Appendix A in the paper) for details.
It will be useful to introduce the dimensionless polar shift function (see also Eq. 5.59),

w.rx  ly/HVR

.(R) = _ .
w0 = T IR )2

(5.45)
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We also expand the magnetic flux function to second order in sinB. The magnetic flux
is an even function which is zero along the polar axis due to axisymmetry and because
of the symmetry around the equatorial plane. Thus all odd orders are zero and the first
nonvanishing even order is the second order in colatitude. If we keep the lowest order in
the expansion we get

a(R,0) = f(R)sin”0, (5.46)

where f is the inverse of the classical expansion factor for solar coronal holes (see Tsinganos
and Sauty 1992). This expansion, similarly to the classical self similar model of Sauty and
Tsinganos [1994], is equivalent to a hypothesis of separation of the variables in the magnetic
flux function.

Thus from Eq. (5.50), the cylindrical radius can also be seen as an expansion in the
magnetic flux. This is physically more meaningful as the magnetic flux is constant on
a given mass flux tube. Moreover, several free integrals depend solely on this magnetic
flux.We define the dimensionless cylindrical radius G in units of the polar Alfvén radius as,

G(R) = R+ P (5.47)
Vo '

The cylindrical radius can be written in the various following forms,

@ = r,z((R2 +1%)sin?0 = r’G’a= GZ(Dfl. (5.48)

We can also write the metric as an expansion in a (see also Appendix 2.4.1 (Appendix
A in the paper)),
IcpR I’h,2G?
= + , 5.49
T R+ 22 ( ®R2+ 12)20‘) (5.49)

_ R (_ HI’RG? a)
R? + 2 2R2+12)% )

h = 1

(5.50)

Of course we can always reverse our point of view and go back to the expansion in 0. This
would be the case if we wanted to use the steady analytical solution as initial conditions
for numerical simulations.

We can parametrize the geometry of the flux tubes with the logarithm derivative of f
denoted F,

F (5.51)

“dinR “\RZ+2 dInR
The angle x of the magnetic poloidal field line with the radial direction (see Sauty et al.
1999) is given in our metric by,

_dinf ( R? dlnG)

VR?+ 12— R

Ftanf. (5.52)
2R

tany =

Choice of the Alfvén surface and pressure

We can expand all physical quantities to the first order in a. Thus the Alfvén number is
given by,
Mair=M®R) 1 +M;R)a) . (5.53)

Contrary to previous self-similar models, the Alfvén number cannot be spherically symmetric
because of the presence of the cylindrical radius in units of the "light cylinder” x, in the
numerator and the denominator of Eqgs. (5.32),(5.33), and (5.34). This is induced by the
regularity conditions, Eqgs (5.29) and (5.30), and the sphericity of the Alfvén surface. The
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surface x =1 is the so-called outer "light cylinder”. Of course this surface may not be exactly
cylindrical if x depends also on a, which may be the case for instance close to the black
hole where w has a strong dependence on « or if {2 is not constant with a. Therefore, this
is rather a light surface, but for the sake of simplicity we refer to it as a "light cylinder” in
the rest of the text.

Similarly, the pressure can be expanded to first order,

2 V. 2
P(R,a) :Hﬁ%ﬂ(m (1+K®R)) (5.54)

where Py is a constant.

In order to simplify and as a first step, we assume for both equations that the radial
dependence of the nonpolar component of the Alfvén number and the pressure are simply
constant, Mj(R) = mj =cst, K(R) =k =cst. Thus,

Mait=M®) (1 + m«) . (5.55)

We note that we have my =0 in previous models; see Meliani et al. [2006b] and Globus
et al. [2014].

Choice of the free integrals

Free integrals are also expanded to the first order in the magnetic flux. The mass to
magnetic flux ratio is similar to the one in the classical case, expanded as,

4mpoy h3

p2 (o) = (1+8a). (5.56)

*
where § is a free parameter describing the deviations from spherical symmetry of the ratio
number density/enthalpy as in Meliani et al. [2006b] and not of the density itself, conversely
to Sauty and Tsinganos [1994].
The total angular momentum loss flux density is given by
LY,
I'=YpoLhV, = —B,. (5.57)

47
Thus it is natural to expand the quantity LW, rather than L itself. LW, is also the poloidal
current density along the polar axis and writes as

LQ/A = )\h*B*T*O(. (558)
The isorotation law can be expanded to first order as well as the total energy,
2= Q*(1+LU10(), (559)

and
E=Ex(1+e10), (5.60)

where we see from Eq. (5.24) that &x = hyxyx&xc?.

Although we have some freedom with the choice of w; and e;, we could choose e; =0
and w; = —8/2 to restrict ourselves to the values of the previous models, in particular in
Schwarzschild metric; see Meliani et al. [2006b] and Meliani et al. [2010]. In fact, the
isorotation function {2 does not need to be expanded beyond the zeroth-order term because
{2 always appears multiplied by another quantity as in ({2—w)® or Lf2. Thus, the value
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of wy is free and does not affect the solution. Conversely, the value of e; affects the
whole dynamics and we shall study the effects of its variation in a future publication. We
already discussed the fact that taking a weak dependence of {2 on a has the advantage of
minimizing the variation of the "light cylinder” near the base of the jet. Thus for the sake
of simplicity, we shall study here the case where e; =0 and w; =0.

Constraints on the Alfvén Mach number, the isorotation law, and the angular
momentum flux

The value of m, is, in fact, determined by the prescription to cross the Alfvén transition
surface. In order for the denominator in Eqgs.5.25, 5.26, and 5.27 to vanish at the Alfvénic
transition, the two following relations given in Eqs.5.29 and 5.30 must be fulfilled. They
can be expanded to first order. For the first regularity condition we get,

Maifla = hx (1 + mya) 'thm——E(A—2+ £ ) (5.61)
Alfla = Pk 100 Wi 1= Zrares) :

2

The first term in the right part of Eq.5.61 is due to the "light cylinder”, and the second one
to the nonsphericity of the gravitational field in Kerr metric. m; is negligible whenever the
rotational speed AVy is sub-relativistic and either the p parameter or the angular momentum
of the black hole are negligible too. Since m; <0, there is a limiting field line where we
have Myjs=0 since the magnetic flux increases going out from the polar axis.

To apply the second regularity condition we use the numerator of Eq. 5.25 and we get
to the first order in «,

V
.Q*—(.U*Z A *h*. (562)
I'x
Thus we can write
Dd(2-w) = GRVaAVxhtAR), (5.63)
where,
\/Hvl( 1 R )
AR = |1 - . .64
®) T \ 0122 ®e+ 122 (5.64)

The regularity conditions on the Alfvén surface fixes the value of m;. Thus the critical
Alfvén surface is a sphere, as in previous meridional self-similar models. We warn, however,
that the Alfvén transition surface is a generalized or modified Alfvén surface as it takes
into account the modification by the "light cylinder” .

Simultaneously, surfaces of constant Poloidal Alfvén Mach Number, My =const. (see
Eq.(5.55))are not spherical surfaces, conversely to the one defined by Meliani et al. [2006b].
Two effects modify it; first the "light cylinder” effect, which was neglected in Meliani et al.
[2006b] and Globus et al. [2014], and second the frame-dragging effect (Lense-Thirring).

Expansion of the velocity and magnetic fields

The model is obtained using an expansion to the second order for sinf in the Euler equation.
Due to axisymmetry, first-order terms are zero along r and ¢ while the antisymmetry along
0 gives the zeroth and second orders as null along the colatitude.
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Then, for the poloidal velocity field, this gives

R VM2 I>h2
r _
vV = hz 2{1+sm6 (R2+12 1)
R+ 1% (AN°u (A’Ng @, )
e (wlp et
A VhMZ\/R2 I2F
Voo X T sine. (5.65)
2hiRG?

And for the poloidal magnetic field, we get

. B* 12 2

B" = @ Z(RZ —1)s1n 0 (5.66)
A Bxh,FVR2 + [2

Be = —*ZZTSH'IG. (567)

Now from Egs.(5.25) and (5.26), we can calculate to the first order in sin® the toroidal
components of fields

2 AVih ANy ——— .
V(b:—m R2+1231ne, (568)
; B ANgVR? + [2
B‘Pz—)\ xhy AN ! sinf, (5.69)
h,DG?

where the functions Ny, N , and D have been generalized,

Ny=—rr ~-G? (5.70)
h? 2
Ng = hz_z/l -G (5.71)
h% —M?
D= th . (5.72)
Expansion of the enthalpy, densities, and electric field
We used Eq. (5.27) to deduce the enthalpy,
Nu(A’Ng ®
YhECZZY*h*E*C 1+O((€1—7( D B +%))] , (573)
and the mass density is given by
4 2
2| MR
Y p()E Y*po*ﬁ* 1+sin6 {m
+1? 2)\2p A’Ng  ©
+T(261—2m1+6— 7 ( 5 +TZ )H (5.74)

In GRMHD, we also need the expressions of the electric field and the charge density.
The electric field is a second-order term for the radial component and a first-order term for
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the B-component,

i AVihyBi (R®+1°)FA

.2
E' = 2e TR 0 (5.75)
A AV hyBx AVRZ + [2
A i 7 sine. (5.76)
c h,G?

Using Maxwell-Gauss Eq. 5.7, we calculate the charge density from the divergence of the
above electric field, to zeroth order only,

AViByihx A
2nrxc  h,G?’

Pe =

(5.77)

With all these quantities we are able to expand the Euler equation. The radial component
is expanded to the second order and the colatitude component to the first order. From the
expansion of poloidal components in the Euler equation (Eq. 5.16) and using Eq. (5.51),
we can reverse the system to get the equations of the model (see sec. 5.3 for details
(Appendix C in the paper)).

"Light cylinder”

The rescaling value ch/(£2—w) for the cylindrical radius used in Egs. (5.32 - 5.34) has been
defined by Meliani et al. [2006b] as the "light cylinder”. It is a surface of revolution Xi¢
where, , )
2_ Q%T"” -1 (5.78)
On the "light cylinder”, the electric field | E| is equal to the poloidal component of the
magnetic field | By |. In the present publication, Xic designed the external "light cylinder”,
that is, x =+1, though, strictly speaking, this is not a cylinder as explained earlier, but a
surface of revolution. This external "light cylinder” is outside the Alfvén surface since the
denominator of Egs. (5.32 - 5.34) is equal to Milf on the "light cylinder”, is negative before
crossing the Alfvén transition surface, and is positive after crossing it. At large distance
in the jet, the lapse function h goes to unity and {2— w tends to (2, which is assumed
constant in our model. Thus, Xy is located on a constant cylindrical radius along the z
axis, becoming a real cylinder.
From the iso-rotation law, we get,

vé w,B® Vv, B®

—— =Xt — . 5.79
c x+4npoyhc o Bp (5:79)

As in special relativity, the second term of Eq. 5.79 cannot be neglected in the vicinity
of the "light cylinder”. The sign of B® is such that V® always remains less than the speed of
light (Vlahakis 2015). Moreover after crossing the "light cylinder” one of the two following
conditions must be fulfilled. Either, we have |B‘Ab [> B}, or Vp, > V‘I’, or both.

The term x was neglected in the equation of the previous relativistic meridional-self-
similar models, Globus et al. [2014]; Meliani et al. [2006b]. Hence, these models could not
produce jets crossing the "light cylinder”. Conversely, in this model this quantity is taken
into account. We assume an expansion in sin(0) of this quantity.

Contrary to the two previous models we can choose the dependence of the isorotation
frequency with the magnetic flux (see discussion on Eq. 5.59) and this choice will not
affect the solution. Thus, if {2 does not depend strongly on the magnetic flux A, even at
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the base of the jet, the ratio h/(f2— w) will be nearly constant. The reason for this is that
® is larger than the Alfvén radius, which is at least a few times the Schwarzschild radius.
As a consequence, the departure of X from a real cylinder is unnoticeable.

Domain of validity

The equations of the model are the result of an inversion of the expanded conservation
equations. Therefore, it will be useful to quantify the relative error of the expansion we
made in order to properly analyze our results and to obtain the domain of validity of these
results. To have an idea of the domain of validity, we quantify the rest in the expansion of
the momentum equation, for each force F!(R,sin0),

F'(R,sin0) = F)(R) + F} (R) sin + F4(R) sin” 0 + R’ (R, sin0) sin>0, (5.80)

where F is one of the following forces, gravitational, centrifugal, inertial, electric or magnetic
pressure, and so on. We define a new function in order to map the relative error,

R'(R,sin0) 6~0g"(R). (5.81)

For example, in the case of the electric force, in Schwarzschild metric, we get, assuming
solid rotation (w; =0),

| Rg;(R,sin0) |=

B: A?hip R (thg Fh? 3+dF)
dnryx V¢ h2GH

—+
2 2 dR
F2 13
x 1+sin28(TZ—1). (5.82)

The relative error on the electric force which tends to zero in the asymptotic regime of
cylindrical jets is defined as

|REl(R, sinB)sin®0 |

err = .
| FEL(R, sin O) |

Even at the base of the jet this error can be reduced, as can be seen in Fig. 5.1 for the

solution in Kerr metric presented in Sect. 7.2 when the co-latitude is less than 30 degrees.

(5.83)

To get an estimate of the error in the expanded forces, we should add all relative error terms
or take the largest one. This gives an estimate of the domain of validity of the solutions
for a given set of parameters. We postpone the full error analysis for a future paper.

The magnetic collimation efficiency, €

By writing the first law of thermodynamics in the frame of the fluid along streamlines of
an axisymmetric flow, we can construct a constant of the motion, as in the classical case.
The first law of thermodynamics reduces to the adiabatic law if the heating is included in
some effective enthalpy (see Eq. 5.20). Thus (Ec?) is an effective specific enthalpy, like for
polytropic flows where the enthalpy also hides the heating (cf. Sauty and Tsinganos 1994)
but generalized for relativistic outflows (see Eq. 5.18).Using Eq. (5.28), we can rewrite the
first law of thermodynamics in the following form,

da dp
E&l'/f\ c¢? —E = 4tM?

— . 5.84
dR a=cst Alf dR a=cSt ( )
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Figure 5.1 — Relative error on the electric force for a recollimating oscillating solution in Kerr metric (K1, see
Sect. 7.2). Colored isocontours correspond to the relative error in the electric force. Field lines anchored
into the black hole magnetosphere and in the accretion disk are plotted in black solid lines. The limiting
field line between the inner jet coming from black hole corona and the outflow outgoing from the accretion
disk is plotted in red. The "light cylinder” is indicated by a green solid line. The cylindrical radius and the
distance above the equatorial plane are in units of Schwarzschild radius.
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As the magnetic-to-mass-flux ratio and the total energy flux are constant along each stream-
line, this is equivalent to

AWREc?) , dp
_— =8nMy,, —= 5.85)
dR a=cst A dr o=cst (
We note that Wx&c? is proportional to the thermal energy. If we write
UREc? = [WRE2 1o (R) + alPRE% ¢ (R), (5.86)

and using the expressions of the pressure and the Mach number, we get an equation of the
form
A&y dIWREE ]
daR T 4R
We see, as in the classical case, that the second term of the pressure is proportional to the
first one such that,

dir
:BiMzﬁ [1+ (K +2my)a]. (5.87)

d[PAE%c?)o ~

du‘,Z 2.2
atpseh ) —(K+2m) =0. (5.88)

dR dR
We deduce from the previous equation that the quantity € , which is defined by

e(R)BS = [TAE2 %)y — (k +2my) [TAEX cP]p = cst., (5.89)

is a dimensionless constant for all the field lines. To give explicitly [P3E2c?]o and [PAE%c%]y,
it may be useful to write

4 4 2
(hy&c)? wvh?2) My By
VRE et =0 (1— |
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Finally the calculation leads to

M* h2F? R2 12 R?
e - ( 0 (5.90)
h2h*G2(R2 + [2) T R2+12)
(RZ + %) v (261—2m1+6—K)R

(k—2my)

G? hZ(R? +12)
v2I2RG? 2)\2 (AZNB s @) 2 ( ANy )2
h2(R2 + 2y 2\ D A h.GD)

This equation is similar to Eq. (71) in Meliani et al. [2006b] and can be interpreted the
same way. The parameter € measures the efficiency of the magnetic rotator to collimate
the flow. At the outflow base, € is the relative difference of the transverse variation of
internal energy that is simply the exchange of work done by the macroscopic forces. As
this is perpendicular to the flow axis, this means that € really measures the transverse force
which collimates the flow and mainly its magnetic component.

We note that the quantity —2m,; appears twice in Eq. (5.90). First, it is associated
with k, having a similar effect to the nonspherically symmetric pressure in the term which
is given as a factor of M*. Second, it is associated with 2e; in the term corresponding to
the excess or the deficit of the gravitational energy not compensated by the thermal driving
at the base of the jet.

To conclude we can also derive the magnetic collimation efficiency in a different form;
after some calculations, we can write

(5.91)

m
|

Nt ) (P—Po)
pyzh2 O Po

hii(l— )g( In(po¢)

-
a=0

This new relation brings a link between the total enthalpy on the axis and its logarith-
mic variation with a. In particular, the sign of € seems to connect the balance between
logarithmic variation of total enthalpy per unit of volume and the meridional increase of
the pressure. The factor indicates that |e| probably tends to decrease for solutions which
reach ultra-relativistic speed.

5.2 Expansion of the forces

To finish our model, we expand to second order in colatitude each forces of Egs.(5.16). More
precisely we use the decomposition given in Sec.(4.2.3). We introduce the generic expansion of
each force,
B2 [ 1
F=-"= (Z +0*%)e,
Anry | 2G?

+0 (0°) (5.92)

where X, =R?+1? and X_=R?>-°.

5.2.1 Magnetic Forces

Let us start with the magnetic forces. For the magnetic poloidal pressure, we get,

Xwmps, =0
hF [3R2F?X, [ pX- R?> 2ul’R
PupB, =53 | "z TN 2 -3
" RG 4R 4hZRX, Xy X2 (5.93)
1 [3REF*X,  , [ pXo R?> 2ul’R
ZMpB, =5 |~ %z — th —1|-——-
TPOX, | 4R? 4h2RX, Xy X2
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For the magnetic toroidal pressure,

%M,p,qu =0
o _ 2Nh ANBX, | ANp dM? . ANB( RZ) G2 (\/Hvl 12 -3R? . A (F 2R2)) HANyX_
MR T TR DG | 2D?2 dR DR\ Xi) D (Am xRl X¢J) m2p2x2
A% h2 A2NZ
Zwpp, = — 5
h2D
(5.94)
For magnetic poloidal tension,
Xwm,1B,=0
o __heF [_ hX+ dF s RZF°Xs  hZFX_  pFX- s 7
MIB,~"RG2| 2R dR = 4R? 2R2  RX, X, (5.95)
1 [h2Xy dF  KW2FPX,  , (X. = pXo I?
ZMTB, = o i e i (1 o e -5
P X, | 2R AR 4R2 2R?  4h2RX,) X4
And finally, for the toroidal tension,
Zwm,1B, =0
2\?h3 A*N2R
| M, = h,D2G2 (5.96)
A2h3 A*N2
ZM,T,By = T2

For the global magnetic force, we obtain,

+1+
2R dR x2 2RX, 2R?

h.F [ h?X, dF 2PpR _ pFX- .\ h?X,F(1-F)

3 . 2A%h% ANgX, | ANg dM? . ANgF .\ G? (\/ﬁvl I2-3R> A (F 2R2)) HANyX_
hiD? dR DR D X, h2D2X2

+
h,DG? Ahy X3 R
_ h_§£+ h2F(F-1) | HEX L( ~ ZpRlz) 2\%h5 A*N2
2R dR 2R? 2RX2 X, x2 h2D?

M

(5.97)

5.2.2 Electrical Force

For the electrical force, we obtain,

XE=0
222y h2 AFX,

v hRG2 (5.98)
2\2p W3 A2

vZ R

W = -

Fp=—
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5.2.3 Advection forces

The expand of poloidal advection force gives,

2 dv?  2M? ( 2R? pr_)
X = + F-" -
’" h,G* dR  h,G*R Xy 2hZX2
2 312 2miX,\dM?>  M? [F?h2 2R%[? 2R*>  uRX_ 312 2mX
g, o2 (1230 2me)dNE WP IFE ORE L 2GS 2m)
7 h,G*\ 2Xy  G* ) dR  RiRG?| 2 X2 Xy 2hZX3 X,  G?
1 dM?F) M?I> M2F(F-2)
.ZA === + -
7 2R dR = h2X2 4R?
(5.99)
For the centrifugal advection forces, we get,
X, =0
20\*h5 A*NZ h R
Yno =~ G2D2M2 (5.100)
A2h2 A2N?
qu,:—M
M2D?2
5.2.4 Gravitational Force
For the gravitational force, we obtain,
VZhiGZX_
T M
VZR3G? [ul®R X 202y ( A°N 12 3R% -2
S Y=g s +—+{261—2m1+6— “( B+%)}+ (1+2h§ )]
m2x2 | X2 G? v2 D A 22X, _
v2I2 ARG
Zo=——g
h2Mm2x3
(5.101)
5.2.5 Lense-Thirring Force
For the Lense-Thirring force, we obtain,
%LTZO
2A\Iv /ANy RS (3R% - 12)
Y7 = 5.102
R (5.102)
Zir=0
5.2.6 Pressure Force
For the pressure force, we obtain,
dll
Xp=h,G*—
P z dR
1°h,G*\ dIl «IIFh,X
B = |khXy + 2 | 22 KR (5.103)
2X 4 dR R
Zp =xIIG*
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5.3 Differential equation system
Let us add the different contributions of each force, we get at the end

%:%M"‘%E"'%Ap+%A¢+%G+%LT+%P
Y =W +@/E+@/A,, +@/A¢+@/G+@LT +% (5.104)
.Z:.ZM+=ZE+=ZAP+.ZA¢+=ZG+.ZLT+=ZP

Each function X =X (R), & =% (R) and Z = Z(R) is function of radius only. Then, because
of the unicity of the expansion we have & =0, % =0 and Z =0. Note that in the expression of
these three terms, we could put together the terms proportional to the derivative, we get,

M2 F 11
N T
2 F 11
dR +@F%+@H?1_R
2 dF dall
avi  zFar el
@R TR @R

X=x +0

+ay0 (5.105)

+Z0

Then we can write our system of first order differential equations in the form

M g F gl M2 20

d
M gf gl = F =% (5.106)
P I 1 e z°

The final ordinary differential equations of our model can be written as,

t/VMZ
M2 9(M2,G22,F,H,R)
2R
d| | | ¢ErF
7 2M2,G2,ELIR)
Jii
2M2,G2ELLR)
where,
2 RZ+12 2\ AN2APN2X, RiF%X,
2(m? G, ER) = — —D(1+ —2my)——— — — | + B 2 .| (5.108
(e ) R (K=2m) == ~x, D2 4122 (5.108)

This function 2 is a possible singular point of our system Eqs.(5.107). 2 is not the 1-D
equivalent of the singular value obtain from Grad-Shafranov Eq.(4.69). This singular point seems
to be related (or close) to the modified slow-magneto-sonic transition as it as been inferred by
Tsinganos et al. [1996]. They gave more details and discussion about singular points of meridional
self-similar model. A%, A4y are function of R,M?,G?,F IT and the seven parameters introduced in
the model A,k,8,Vv, [, 1, e;. Note that this system is of order one in the function which characterizes
the speed M? and of second order in the function G® which characterizes the geometry. The system
of Eq.(5.107) is a generalization including the light cylinder and the variation of the energy of
Bernoulli with magnetic flux around a rotating Kerr black hole of the work of, Meliani et al.
[2006b] near a Schwarzchild black hole and Globus et al. [2014] for Kerr blach hole and with a
light cylinder pushed toward infinity. With this generalized model we can recover solutions for a
Kerr black hole neglecting the light cylinder effect (m; — 0) and variation of energy integral, effect
(e1 — 0) and the same for Schwarzschild case studied by Meliani et al. [2006b] (I, m1,e; — 0).

The terms A% and A2 are given as,
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2 N2APNZX,

FM? | E ( h2F F Xy
N = —| = -1|+|=-1]|1+-2m)— —— +
! 12 2( 2 ) (2 )( A R X
RZR2 [X 2 4N2uh2A%X,  41%uR 2 NAPNZX,  R2F%X
+ 5 | FE-D -5 - H2*4 - - 2p2 L+ (k=2m) = = 3~ = 3 - -
X, h2 | R h2 v2hi h2x2 G2 X, D 4R
2kJIG*R?  WFRX_ X, 2 NAPNZX, hZFX
+ (K LK )[1+(K—2ﬁ11)_+___ B _ = +]
h hiX2 G* X, D3 4R?

12

PEM'RX- 1+ (K —2my) —
V& X,

Vv2h2FG?*R X_
—(K—Zel +2m —6) i e w
212 h2X2

|

+ —_—
2h2M2 X,
MNuA’NgNyFRX_  A2ANph2FX 2R?\ A?ph2FG?®RX_ (A’Ng @

+ AHANBWvIRA- A ANBATAY *( __)+ U7, ( B+%) (5.109)

h2D3 X, h2D2 X, M2 X, \ D A
4N2A%R% (NZ  h2 N2 X, B NAPNEX. h2F
+ — _123__Z_V 1+(K_2m1)_+___—B+_L
hZ D2 2M2 D2 G X, D3 2
AGP’FR(3R?*-1%) ( Ng Ny
+ AVpvih, -—
L R (hiD MZ)
2v2 122 G4 R 12 X, AZAPNZX, (x_ hg)
- L 1l-—+(&-2m) = - +|— +=|F
Mz X3 + G? D3 4RZ 2
2M? [2R? Lt e 2mn 12 A2A2N23X++h§FX+(3R2+( ) )X+)
K=2my)—— o — K—=2mi)—= ||,
h2 h2X2 Y& x, D3 R |\2X, aes
And
M4 4R?? R? X, I?
Me = —h2F? 4+ 2F - —4(F—2—)(1+ -2 —+——)
M 4h§[ 2 X2 X (kK=2m)e ~ %,
h2M? [ h2X, F3  h2F? X_ X.FE A2 h? R? 2R> 3R%*I> FI?>(3
+ = ol z (1+ ! )+(K—2m1) - —F—”X+A2—*—2——(K—2m1)—+———(——hﬁ)]
h? 8R? 4 h2RX, G? v2 h2 X4 G*  x2 X2
2h*DRG? X_ X, h? DM?2uRX_ X, 1?1 ApRA’NNy X_
v T T (k=84 2my —2e) + K EFITIGM? - —— = |1+ (k= 2my) = — — |+ B
2h2M2 Xy h? 2h2X2 G2 X, D X,
N2 p2 N2 R2 R? ) A2ANgh2X R?\ A2uhiRGEX Dr,w
bo2ax, (B o Ty (2M2—+h2F—2—)——Z+( - _)+—*_-( 2N + 2L )
D2 2M2 D2 X, 2 X+) D X, M2 X, BTNV, .
I>v2RG*h? RX_ I2-3R? (Nyh? N
~ hiD(3R2—12+“2—)+h§FX+ +AVEVILRGEA— ( Vz*——B),
2Mm2x3 h2X, X2 M D
(5.110)
dIl 2 d M? 2R? 1 R*-P? Mm*
al__ [—M2+—(F— - ( 2 jt—“—) , (5.111)
dR ~ h2G* |dR R R2+12)| hiM2 (R?+12)? G*
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We see that our system of Eqgs.(5.107) has two singular points. One of them corresponds to
the cancellation of D (Alfvén point) and the other to the cancellation of 2.

5.4 Conclusion

We have presented here a way, from the General Relativistic Axi-symmetric Stationary ldeal
Magneto-Hydrodynamic (GRASIMHD) system of partial differential equations, which allow to de-
rive a ordinary differential system of first order equations, Eq.(5.107), under certain assumptions.
This type of differential equations allows to compute solution faster than integrating directly the
GRASIMHD partial differential system.

This system of equations allow us to describe the GRASIMHD field in the proximity of the
Kerr black hole axis. This system is characterized by seven parameters A,x,8,,v,1,e;. The first
one W and [ are link to the gravitational field and the Alfvén surface. The parameter p is directly
the relative value of Schwarzschild radius (Mass of the black hole) with the Alfvén surface. The
second one is link to dimensionless spin parameter [ =2a/p of the black hole. The next parameter
v (once choose ) fix the value of launched speed v =c\/[i/Vx. This parameter is negative for
inflow and positive for outflow. The A parameter is the dimensionless ratio of angular momentum
flux per unit of magnetic flux A = zrh_**% The next two ones 8 and e; are the logarithmic vari-

dinW,

ation rate of mass flux §=2=_,2 and Bernoulli energy e :Zdé;f with magnetic flux. The last
parameter x is the variation of pressure with the magnetic flux, k= %.

We shall see in the next chapter, Ch.(6), that an entire solution is characterized by these
seven parameters and the initial value of II = I14, that we could constrain for outflow solution
Sec.(6.3).

The model takes into account the second order term in latitude coming from the light cylinder
radius x. It implies a non spherical Mach Alfvén number, in order to keep the assumption of
spherical Alfvén surface.

For this model we generalize the expression of the magnetic collimation parameter € Eq.(5.90).
This expression can be written, Eq.(5.92), in order to have a thermodynamical interpretation of
this quantity.
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CHAPTER 6. NUMERICAL INTEGRATION AND METHODS

6.1 Introduction

The goal of this section is to present the mathematical and numerical resolution of the system
Eq.(5.107). First of all, we present the main characteristics of the solutions for Egs.(5.107) and the
numerical way used to obtain them. We also discuss the nature of singular points of Eq.(5.107)
and the numerical strategy used to cross them. Then we show how to use the last degree of
freedom for an outflow solution characterized by the seven parameters (A,x,8,v, 1,1, e;) to obtain
solutions which obey to specific constraints at infinity. Finally, we explain how we seek solutions
with physical characteristics.

6.2 Resolution of the system

The system of Eqs.(5.107) has two singular points. The Alfvén point is found for D =0, which
means that flow reaches the Alfvén speed, and the slow-magneto-sonic point for 2 =0. We seek
the solutions of the system, which cross these singular points. First of all we present the general
architecture of the code. Then we dicuss the regularity condition required on the Alfvén point.
Finally we will see how we automatize the crossing of the slow-magneto-sonic point.

6.2.1 General architecture of code

To integrate the system of differential equations Eq.(5.107), | build a Fortran 90 code. The
architecture of the code is built around a main programm jet_thetkerr .f90 which receives the
information via the file jet_thetkerr .in. This file contains the parameters for integration, the
parameters of the solution and the type of solution we want to calculate. With these informations
the main program calls one of the six principal subroutines defined in dmin.f90 depending on the
solution type.

Data
Jet_thetkerr.in |—>| Jet_thetkerr.f90 [—>> dmin.f90 < >|zci)lset;r:;cement
Data-Det

/4 Y A

init.f90 — Y A
\ fonction.fo0

Figure 6.1 — Schema of code architecture.

The first subroutine calculates an inflow solution, the second one an outflow solution. The
third and the fourth calculate respectevely a cylindrical or conical outflow solution in which we
minimize IIx Sec.(6.3). The fifth subroutine calculates one hundred sub-afvenic branches for
different value of p, Sec.(6.2.3). This is useful when there is a problem in the automatic search
of the slow-magneto-sonic point crossing. The two last ones (one for inflow and one for outflow)
concern the evolution of a solution under constraints, see Sec.(6.4). These subroutine call a
Runge-Kutta of the order 4 integrator defined in RK4.f90. Eqgs.(5.107) of the system we integrate
are defined in fonction .f90. One program init .f90 contains some important values such as the
precision of the number used in the rest of the program or the value of m. Once the calculus has
been done in the subroutine, the program writes the result in a file .dat in the directory Data—Det
or Data. Then a post treatment using different python.py codes allows us to calculate and to
draw the different graphics needed to understand and represent the solution.
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6.2.2 Regularity on the Alfvén point

The solution crosses the singular Alfvén point if the functions, which appear in Egs.(5.107), re-
main continuous at the crossing of the singularity. The assumption on the sphericity of Alfvén
surface, implies that the Alfvén point is located for R=1. The construction of the model, espe-
cially the definition and the assumption on the Alfvén surface, insures that M? e h5 and using

the definition of By, we get G? e 1.

The regularity condition of the system Eq.(5.32) implies that the ratio remains finite, % adls

Then using Eqgs.(5.70, 5.71, 5.72), we have % adlli 1. It implies that A42 remains regular at

the Alfvén radius R=1. Using Eq.(5.111), it also implies that A7 remains finite. It also implies
that the the slope p= %| » remains finite. F is defined everywhere, then ‘2—?{2 " ﬁ —Fx.

Thus, we can use I'H6pita|'s_ru|e to link T, p and Fy.

dNp hz( 2 . )_ -1 hdypv 1P-3
N _gr s +2 ) a2 A (Q+12)3 (6.1)
- Dl db -2 ’ '
dR I+ p- (1+12)2
About Alfvén radius, we still have the case of the singularity that appears in A%. Indeed,

. . Fy 1. .
near the Alfvén point we have Af ~ w. In order, that the slope of the expansion factor

F remains finite, the condition required on the value of T,Fx, Ilx is & (1,Fx, I1x) =0, which is
equivalent to A£D|x =0. Using some algebra, this condition leads to,

HMDlx=0 =  Fyp=2Z) (6.2)

The definition of the slope of M2 p, implies also that Px = pAMyzx. Nevertheless, this
equation is equivalent to a F*p=zz£. Then, using some algebra on F*p=22£(T,F*, I1), and
removing the T dependence using Eq.(6.2), the only condition needed for regularity on the Alfvén
point is,

o (P)F> + B(p)F, +6(p,11,) =0, (6.3)
with
oA(p) = )\2h4+h—?‘( —M)Z (6.4)
pro= AT P T ey '
o [rppa- L, 2 2u(1-13) Iyfivh. 3—12)
%p) = E((1+12)2_p) —2A h*(p+1+12_ B T x x| 6Y)
2
2 2K, 2p-1») lyBvh. 3-1 )
Cp Il = )‘( 2 0422 A a+p2p (6:6)
1 202 , PPeu+v? (- %))
’ ( TareE v N T ey )(P—(le)z) €7

The equation Eq.(6.3) implies that for given values of p and I, we get the value of Fy.
The two degrees of freedom on p and 1y, will allow later on for the crossing of the other critical
surfaces. The degree of freedom on the slopes of M? implies that in the (R,M?) plan the Alfvén
point is a star point.

6.2.3 Crossing the slow-magneto-sonic point

To build the solution, we start the integration near the Alfven point. For outflows, we start the
integration in R=1-dR. We know the value of M?2,G2,E IT on the Alfvén point as a function
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of p and IIx. Then, we are able to evaluate the value of these functions at 1—-dR. We use
p to evaluate M2(1 - dR) = hi—de, and Fyx to evaluate G(1—dR). From Eq.(5.90) we know
that the magnetic collimation parameter, €, is constant and it allows to evaluate F(1—-dR). From
Eq.(5.111) we can evaluate II(1—-dR). Then we start the integration to reach the slow-magneto-
sonic point. Depending of the value of p, we determine two kind of branches and a limiting value
for p in Fig.(6.2). The first family of branches has positive values for 2 everywhere, the second
family has negative values for 2 on the part where dR <0. For inflow solutions the same analysis
is done with —dR < dR, the slow magnetosonic point being located above the Alfvén point.

Determinant D(R)

T T

D(R)

-0.01

—0.02 ' '
1.170 1.172 1.174

1.176 1.178 1.180 1.182

Figure 6.2 — 2 in function of R for hundred sub-alfvenic solutions of an inflow with different values of p.

The physical solution, which crosses the slow-magneto-sonic point, is obtained by determining
the limiting value of pym with a sufficient precision. Then we cut the branch near the slow-
magneto-sonic point and jump over the critical point, using the slope of the solution just before
the bifurcation. Then we finish the rest of the integration to determine the sub-slow-magneto-
sonic region solution. The integration stops for a null value of the function M?2.

Two subroutines, one for inflow solutions and one for outflow solutions allow to search au-
tomatically the pjm, value, using a dichotomous principle. Indeed, we start with two values, p_,
which correspond to one family, and p4, which corresponds to the other family. We test which
family corresponds to the solution with 2p=p_+ p,, and then we determine a new value of p_ or
p+. These subroutines also give the value of the function M?,G?,F IT for the two final solutions,
and the point, which is closer to the bifurcation for these two solutions. Then we build another
set of two subroutines, one for inflow solutions and one for outflow solutions, to jump beyond the
critical point and restart the integration.

The calculation of an inflow or outflow solution is completed by the integration of the super-
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Alfvénic branch. Then, we merge the tables corresponding to the values of M?,G?,E IT for the 3
regimes considered. We get a solution characterized by seven parameters (A,x,5,v,,1,e;) and
I,

6.2.4 The equilibrium at infinity

We aim at determining the asymptotic region of the flow. We can study the forces equilibrium in
the asymptotic region, for solutions which are cylindrical or conical. This is equivalent to G ~R°
for cylindrical solutions and G ~R! for conical solutions. We get a transverse equilibrium between
electrical, centrifugal, toroidal magnetic and pressure forces. The toroidal magnetic force plays
the role of a collimating force, while the electrical and the centrifugal ones are decollimating
forces. The pressure term increases the collimation (kIl =0 for over-pressurized jets) or decol-
limates the flow (kI <0 for under pressurized jets). In most cases, the solutions of the model
are under-pressurized jets (in which the pressure is lower in the periphery at infinity). Then the
transverse force balance of the flow can be written as,

1T, G2 1 (Ny2
Klooboo _ M (V°° N2) (6.8)

- = 4 — —
2N2A2 p2 v DZamz, PR

The left hand-side is characteristic of a term due to transversal pressure. In the right hand
side, we have, first the term due to electrical forces, second the centrifugal forces, and eventually

the toroidal magnetic force. It seems there is an ambiguity for conical flows (G? i 00) in the
—00
left-hand side of the previous equation. However we can show that for conical flows GZHR—> Cst.
—00
In the conical case, the first term in parenthesis disappears for conical outflows. A second equation

is needed to solve the value (cylindrical) or the behavior (conical) of M? and G? at infinity. From
the value of € Eq.(5.90), we get,

M (k-2 N Ny?
for cylindrical solutions iz =—— 01 (x ;ﬂ J +/1§O Bl 4 %
2\ hiGi,  2A Dl 2hiGED?| (6.9)
. , € 1 M G? , 5 G
for conical solutions PYViaiaer ey ey (K=2m)+ — — A hy —
2\ 2N%hy G R? | M2 |,

The main difference of the analysis in comparison to the Schwarzschild case is the introduction
of the parameter m;, which takes into account the effect of the light cylinder and the spin of the
black hole. m; becomes zero in the case of a light cylinder pushed towards infinity and for a non
rotating black hole. The second difference is the value Ao, = 2xerr/ {2schwarzschild Which contains
the deviation due to the black hole spin, for keeping continuity at Alfvén surface.

6.3 Choice of 1, for outflow solutions

An inflow or an outflow solution is characterized by the value of the parameters and the value
of ITx. A generalization of the parametric study presented in Sauty et al. [2002] allows us to
determine for outflows, a specific value of I1y jim, which minimizes the oscillation of the velocity on
the axis. This specific value is determined and calculated numerically using two different processes
in function of the nature of the outflow. Indeed there are two kinds of outflow depending on the
limiting value of F when the radius reaches infinity.

6.3.1 Cylindrical Solutions

For the first kind of outflows, the geometry of the flow becomes asymptotically cylindrical (F o

—00
2) at infinity. The solutions with constant values of A, k, 8, v, ¢, u and e; and different value of

I are divided into two classes separated by a limiting value Iy iy, which is function of the rest
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of the parameters. To describe this two classes, we present an example for this set of parameters,

1]102|135|05|0.049 | 0.1 | 0.0001

We show in Figs.(6.3, 6.4) the function II(R) and the factor velocity B(R) along the axis.
And in Figs.(6.5, 6.6) are plotted G*(R) and its derivative for the same set of parameters. These
solutions are plotted with different values of Il between 0.19 and 0.38.

0.20 H(yR) . ' Factelvjr B(R)
— M,-0.190000
lag 11, =0.240000
0.15} — 11,=0.270000
10l — 11, =0.286000
“I| — m,=0.287000
0.10} — 11, =0.300000
1.0d — 11, =0.330000
— 11, =0.380000
0.05F
0.8}
= Q.
0.00}
0.6
— 11,-0.190000
— 1,=0.240000
=0.05H — 1, =0.270000 1 0.4}
— T11,=0.286000
— 1I1,=0.287000
—0.10{ — m, =0.300000 1 0.2}
— 11, =0.330000
— 11,=0.380000
0'110" 10! 102 10° 10* o'i)o" 10! 10° 10° 10*
R/Ry R/Ry
Figure 6.3 — Value of II(R) for different value of Figure 6.4 — Value of B(R) speed on the axis for
1T different value of I1x

We observe different trends when the solution reaches infinity. Indeed for values ITx < Iy Jim,
the solution does not get enough pressure to collimate and starts to flare/decollimate Fig.(6.5)
at some point. This flaring could lead to a super-luminal motion Fig.(6.4) and thus unphysical
solutions. The other solutions, with ITx = T Jim, start to recollimate (decrease of Gz) and create
oscillations for M? and G? at some point.

2 2
50 ‘ G '(R) . " ' Facteur‘dG /dR}
— 11, =0.190000 — 11, =0.190000
— 1, =0.240000 — 1,=0240000
— 1I1,=0.270000 — 11, =0.270000
a0l — 1, =0.286000 8H — 11, =0.286000
[| — m,=0.287000 — 1, =0287000 /
— 11, =0.300000 — 11, =0.300000
— 11,=0.330000 6l — 11, =0.330000 /
— T1I1,=0.380000 — 11, =0.380000
30}
a1
o = g
o] o
S
20}
2
101 ol
0 s ‘ -2 s . -
10° 10! 10° 10° 10* 10° 10" 10° 10° 10*
R/Ry R/Ry
. . . 2 .
Figure 6.5 — Value of G?(R) for different value of Figure 6.6 — Value of %(R) speed on the axis
115 for different value of ITx

The final size of the jet decreases as the value of Iy increases Fig.(6.5). Indeed, this implies
the increase of pressure and collimating work. The value of the final velocity increase with the
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increasing of ITx as a consequence of the decrease of the final size of the jet, Fig.(6.4).

The most physically satisfying solution, even if some solutions with IIx = I, iy, are physical,
is the solution with IIx = IT jim. This is the solution with no oscillation on the polar velocity
curve, even if the curve of G? slightly oscillates. We explore the boundaries of the physical solu-
tions in the parameter space, and find a solution in which the maximum velocity is reached in the
asymptotic regime.

For a cylindrical solution, we calculate numerically the value of Iy )in. For that we use a
criterion to recognize the solution with IT, < T4 jim. Such a solution, for a sufficiently large value
of the integration boundary, verifies, Fig.(6.6),

EIRlinv VRmax = Rlim
Iy < Ty jim <= { dG? . " dG? (6.10)
dR ( maX)_Re[l;giaxl( dR)

Using this characterization, we build a subroutine to automatize the search for I1x jim ()\, K6,v, 0,1, el).

A first numerical test is built to find Ryjy,. After that a second test using the equality is numerically
applied in order to find Ilxim by dichotomy of the two solution families. Finally we get Ilxjim
with a choosen relative error. In the following, unless mentioned by us, any outgoing cylindrical
flow solution will be calculated with the approximate value Iy . of 14 jim (in order to avoid the
explosion of the factor beta on the axis). So the cylindrical outflow solution is characterized by the
seven parameters A, k, 0, v, ¢, p and ey, since the value of 14y, is function of those parameters.

6.3.2 Conical Solution

The same kind of approach is applied for conical solutions with fixed values of A, x, 6, v, ¢, g and
e1, and varying IIx. Indeed, there are also two classes of solutions separated by a limiting value
of Ilx = Il im. To show this partition, as before, we take an example of eight solutions with, the
set of parameters given as, and for different value of I1x taken between 0.24 and 0.27.

A K ) A% l Ho| e
0.0143 | 1.451 | 3.14 |1 08| 015|040 | O

2 F(.R) ‘ . Factegr B(R)

T, —0.240000
11, =0.248000
1, =0.252000
11, =0.254100
11, =0.254300
1, =0.256000
11, =0.260000
1, =0.270000

1.4}

1.2

1.0}

FErrrrnd

0.8f

0.6

-2k

—4

10° 10" 10°
R/Ry

10°

Figure 6.7 — Values of expansion factor F(R) for

different value of IT4
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11, =0.254300
11, =0.256000 ||
11, =0.260000
11, =0.270000

10°

W)

10 10% 10
R/Ry

10*

Figure 6.8 — Values of B(R) speed on the axis for
different value of IT4
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In figs.(6.7, 6.8) we observe different asymptotic behaviors. For both families the fieldline
reaches some radial regime (we see that for a range of radius around 10 in Fig.(6.7)). Then either
it recollimates rather violently or, to the contrary, it opens suddenly, see Fig.(6.9).

Facteur dG* /dR

11, —0.240000
11, =0.248000
11, =0.252000
11, =0.254100
11, =0.254300
11, =0.256000
11, =0.260000
11, =0.270000

11, —0.240000 TTT /
11, =0.248000 | /
11, =0.252000 ||
11, 0254100 / / |
11, 0254300 [
11, =0.256000 [
11, 0260000 |

11, =0.270000

300H

200H

Frrrrr

2
Wl = 100}
S
2|
o}
1t
—100f+
{}o" 100 10° 10° 10* _20{)0° 100 107 10
R/Ry R/Ry
: 2 . . 2 .
Figure 6.9 — Value of %(R) for different values of Figure 6.10 — Value of %(R) for different values
H* of H*

Note that contrary to the cylindrical outflows, for a sufficiently large value of the radius, solu-
tions of both families become unphysical. Nevertheless, the closer the value of Il is to the value
of Il Jim. the more physical the solution at large radius remains. Thus, for radial outflow solu-
tions, the choice of ITx = Iy im is more important because it makes possible to describe solutions
with a larger radius. Another point to note is that the limiting value at infinity for I7 is zero for
the choose of ITx = Iy lim

The criteria chosen to numerically distinguish the two kinds of family with a certain error on
the value of Il im relates to the asymptotic behavior of the expansion factor F. Indeed it seems
that we have,

EIRlim, VRmalx = Rlim

FR = M F
(Rmax) RG[I;%iax]( )

H* = H*,lim =

(6.11)

This test is quite easy to compute numerically. Thus a subroutine was built using this criteria.
It starts to check that the limit of integration of the Runge-Kutta 4 is sufficiently large to lead
effectively to a good criterion. This condition is a little bit more sensitive than in the case of a
cylindrical outflow. So it starts, as before, with a dichotomic process, to approach with a higher
precision the value of Il )im. In the following, any outgoing conical solution is calculated with
the lower approximate value of Iy jim. So conical outflow solutions are characterized by the seven
parameters A, k, 8, v, £, p and ej, and the initial value of IIx taken equals to I1x iy estimation.

6.4 Strategies of optimization under constraints

The code is able to calculate outflow and inflow solutions accurately enough depending on the
parameters to enter. Then the goal is to choose parameter sets either able to model a source with
given observational characteristics (opening angle, temperature, final velocity or Lorentz factor...)
or to extract a solution with interesting physical properties (nature of the energy exchange with the
black hole...). We expose in the following the processes that we have used in order to effectively
explore the parameter space, avoiding the location with non-physical solutions, pathologies or lack
of solution for Eq.(5.107). This section will be really useful for obtaining the different kinds of
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energy exchange between an inflow solution and the rotational energy of a black hole, See Ch.(8).
It is also useful to match inflow and outflow solutions in order to obtain a physically satisfying
complete solution from the horizon of the black hole until the infinity, Sec.(8.4).

6.4.1 Search method

Let us consider the case, where we need to obtain a solution with a set of characteristics. Each
of these characteristics could be transformed in a real value that we will call in the following the
structural value. For example, for outflow solutions it could be the value of final velocity along the
axis, the stagnation radius, the opening angle in the case of conical flow, the value of isorotation
function, the spin of the hole etc... For inflow solutions we can use the stagnation radius, the
isorotation function, the spin of the black hole, the fluid velocity of fluid when it crosses the
horizon, the latitude value for the beginning of extraction but also different energy flux, etc...

In the following, we consider that we have jyax (jmax <7 for outflows and jyax < 8 for in-
flows) structural parameters. We will note them (fj)].:leMax. For any set of parameters we can
obtain the structural parameters of the formula using some arithmetical operations applied to
the parameters and the solution functions. Thus all the structural parameters are a function of
the parameters of the solution. Thus for inflows we have f; = f; ()\,K,S,v,f, W, el,H*). We shall
see how to move through the parameter space in order to match the values of these structural
parameters.

A solution consists to use a Monte-Carlo program. Nevertheless the automatization of the
solution search using a great number of "while” loops, but also the frequency to get unphysical
solutions, or no solution makes this kind of program painstaking to use. So we choose to use a
more robust approach, which allows to learn about the evolution of structural parameters with
solution parameters during the process of searching.

We do the hypothesis that, except in certain areas of the parameter space, the structural
parameter functions must be differentiable according to the solution parameters. Thus knowing
the order of evolution for these parameters we move step by step in the wanted direction.

In case of discontinuity, we try to quantify them in order to prevent the induced pathology.
To give an example, during the calculation of inflow solutions, there is some domain of parameter
space for which the solution does not cross the sub-alfvenic point. In this case, the value of p
needed to cross the slow-magneto-sonic point implies the lack of reals roots of the polynome of
Eq.(6.3). For this kind of solution either we cross the critical Alfvén point and not the slow point,
or we cross the critical slow point and not the critical Alfvén point. In all cases, this kind of solution
is not physically satisfying in our search. Nevertheless for any solution which does not have this
pathology, the value of the determinant of the polynomial Eq.(6.3) depending on pjim gives an in-
dication of how far we are in the parameter space from the discontinuity. The boundary is defined
in the solution parameters space by Det(pjim) =0. So including this determinant in the scalar pa-
rameter gives us the possibility to move in the parameter space in order to avoid this discontinuity.

6.4.2 Gradient descent method

If these structural parameters are €' function of the solution parameters, it is possible to make
an expansion to the first order in the parameter variations. We note s=(A,x,8,v,/,, e1, ITx) for
inflow solution and s=(A,,8,v,, 1, e;) for outflow one the set of parameter. Then we have the
usual formula,

Vi€ll, jmax] fj(s+ds)=fj(s)+Vfj(s)-ds+0(ldsl?) (6.12)

109



CHAPTER 6. NUMERICAL INTEGRATION AND METHODS

Let us suppose we have a solution such that the values of f5...fj, .. are satisfying and we need
to increase the value of fj. Then it is possible to move in the direction of the projection of
Vfi (s) orthogonally to the vectorial sub- parameter space generated by Span (V f,...,V fj,..). We
note d=pjy.—1 (Vfi; Vo Vi) Where piv.—1(5V ... V) the orthogonal projector to
Span (Vf,...,Vfjy..). Then choosing ds=dsd we have,

fils+ds)=fi(s)+Vfi(s)-ds+0(llds|?)

] ] ) (6.13)
Vj €2, jmax] fj(s+ds)=fj(s)+0O(llds|%)

Furthermore Vfi (s) - ds is positive for positive values of ds. Then, for a sufficiently small
positive value of ds we obtain fj(s+ds) = fi(s). The last difficulty now consists in calculat-
ing the orthogonal projection d=pjy. —1(Vfi;Vf2 ... Vfjy.)- To calculate this projector we use
a recurrence reasoning, the demonstration by reccurence being presented in Appendix.(E). We
obtain,

Pj-1 (w2, ..., u;) =pj—2 (p1 (wisu;);p1 (w2 ;) .o p1 (wj-15u;)) (6.14)

We have to build a code which calculates the gradient of the structural parameters. Thus
the recurrence formula allows us to calculate the direction where to move in order to obtain the
wished evolution of these structural parameters. To explain the interest of these calculations we
give here an example of a set of outflow solutions, using the tools exposed here. The structural
parameters taken into account here are the stagnation radius normalized by the black hole horizon
radius Rs/R_#, the dimensionless black hole spin a =21/, the isorotation frequency per unit of
black hole pulsation 2/w_z and the maximal Lorentz factor of the flow on the axis yo. We use
the tools built to calculate solutions with different stagnation radius and with the same spin, the
same isorotation frequency and the same maximal Lorentz factor of the flow on the axis. We
compute the parameter (up to a precision of 1073) in the table,

A K ) v v e I jim a 2i0z | Yoo | Rs/Rae

S1|1.171 | 0.291 | 1.319 | 0.600 | 0.184 | -0.063 | 0.265 | 0.519 | 0.502 | 10.04 | 1.175

S2 | 1.170 | 0.286 | 1.325 | 0.613 | 0.187 | -0.049 | 0.282 | 0.519 | 0.502 | 10.03 | 1.225

S3 | 1.169 | 0.280 | 1.333 | 0.627 | 0.190 | -0.037 | 0.298 | 0.519 | 0.502 | 10.05 | 1.275

S4 | 1.169 | 0.274 | 1.336 | 0.641 | 0.193 | -0.027 | 0.317 | 0.519 | 0.502 | 10.05 | 1.325

S5 | 1.170 | 0.269 | 1.341 | 0.655 | 0.196 | -0.016 | 0.335 | 0.519 | 0.502 | 10.04 | 1.375

S6 | 1.173 | 0.265 | 1.345 | 0.668 | 0.198 | -0.004 | 0.352 | 0.519 | 0.502 | 10.09 | 1.425

S7 | 1.177 | 0.260 | 1.349 | 0.681 | 0.200 | 0.009 | 0.370 | 0.519 | 0.502 | 10.05 | 1.475

S8 | 1.182 | 0.257 | 1.353 | 0.694 | 0.202 | 0.022 | 0.388 | 0.519 | 0.502 | 10.08 | 1.525

Table 6.1 — Set of parameters for 8 solutions calculated in order to get different values of stationary radius.
We keep constant the final Lorentz factor, isorotation and spin of the black hole.

We remove here the parameter £ because it is simply linked to the black hole spin and the
value of p via a=2¢/pu. We observe here the ability of the model to produce solutions with the
same values of spin parameter, isorotation and final velocity. It shows the independence of these
structural parameters in the considered area of parameter. Indeed, when a structural parameter
is function of others, it means that the generated gradient is not a free vector in the parameter
space. In some situations, we observe in part of the parameter space, a gradient "close” to be
a linear combination of some other gradients. In this case it is sometimes difficult to move ef-
ficiently in the parameter space. Indeed, in this case, using the projection Eq.(6.13), implies to
use a direction close to orthogonality with the gradient of the structural parameter we want to
evolve keeping the others constant. The table Tab.(6.1) shows the evolution of the parameter
Rs/R.. Note that the evolution of the parameter is not linear when you move from S1 up to S8.
In particular, the parameter A starts to decrease and then increases. This non linearity reveals

110



CHAPTER 6. NUMERICAL INTEGRATION AND METHODS

the evolution of the gradient in the parameter space and then a globally linear analysis is not
sufficient to describe the evolution of solutions in the parameter space. Thus the displacement in
the parameter space from a linear analysis needs to be sufficiently small to give a good evolution
behavior.

See on Fig.(6.11), the evolution of the curve of velocity along the axis. We note, for this
set of solutions, the evolution of B(R) when the stationary radius increases. The "bump” on the
speed curve decreases and the initial acceleration also. Indeed as we see in the following chapter
Sec.(7.2), the acceleration on the axis being dominated by the pressure force,this force must be
stronger to leave the gravitational well as the radius of stationarity approaches the black hole
horizon.
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Figure 6.11 — Factor p on the axis for the list of solution S1 to S8

6.5 Conclusion

We saw in this chapter the different tools used to solve numerically and automatically the system
of Egs.(5.107). We find the solution which crosses the different critical points. We also build
some sub-routines to seek the adapted value of 1, for outflow solutions, whatever the asymptotic
geometry of them is cylindrical or conical.

Finally we present a subroutine which is useful to explore the parameter space by small steps
in order to find solutions with characteristic values of given structural parameters.

All these tools are useful to construct the outflow solutions, Ch.(7), and the inflow solutions,
Ch.(8). The Sec.(6.4.2) will be particularly useful in Ch.(8) to find a matching between an outflow
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solution and an inflow one.
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CHAPTER 7. OUTFLOW SOLUTIONS

7.1 Introduction

This chapter is dedicated to the presentation of outflow solutions. Given the large variety of jets
morphologies we want to emphasize the ability of the model to reproduce different kind of outflow.
First of all, as in Ch.(5.1), we reproduce here part of Chantry et al. [2018] which presented four
outflow solutions. We discuss the effect of deviation to sphericity of Alfvén Mach number m; in
the acceleration and the collimation of the jet. We present the different solutions, a moderately
relativistic collimated solution K1, an ultra-relativistic collimated one K2, a solution K3 which
may model the M87 source and a conical one K4. We also present the effect of the spin of black
hole black hole spin [ on the solutions. We also show the effect of parameter e; on solutions. And
finally we present some discussion about matter content and departure from thermodynamical
equilibrium.

7.2 Published solutions

Effect of a nonspherical Alfvén number in a Schwarzschild metric

To illustrate our model, we present the following two solutions, which are built in the
framework of the Schwarzschild metric. The first one corresponds to a solution of a model
presented in Meliani et al. [2006], in which m; =0.

The chosen values of the other parameters are A=1.0,x=0.2,6=1.2,v=0.8,(=0,u=
0.1, e; =0. We compare this solution to a solution with the same parameters but by keeping
the value of my given by Eq. (5.61), m; =—-0.078. In both solutions, the value of ITx is
the minimum value of the limiting solution. Such solutions have the minimum amplitude
of oscillations in the jet.

1.0
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/T,

Figure 7.1 — Evolution of the radial velocity along the polar axis for solutions in a Schwarzschild metric,
with m; =0 ( blue) and m; =—-0.078 (red). The second case has a smaller terminal velocity.
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In Fig. 7.1 the radial velocity on the polar axis is compared for the two solutions, while
field lines in the poloidal plane are plotted in Fig. 7.2. We note that in Egs. (5.107) and
(5.110) and Egs. (5.107) and (5.109), giving the plasma acceleration and the variation of
the expansion factor with the radius R, respectively, there are several terms proportional to
the factor (k —2my). As my is always negative, it is evident that —m; effectively increases
the transverse pressure gradient, which is proportional to k. In other words, the effect of
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Figure 7.2 — Field lines for a solution in a Schwarzschild metric, with parameters A=1.0,k=0.2,8=1.2,v=
0.8,/ =0,u=0.1,e; =0 and m; =0 (left) and m; = —0.078 (right). We note that the case m; = —0.078
corresponds to a more tightly collimated jet. Lengths are in units of the Schwarzschild radius. The red
lines are connected to the magnetosphere of the central object while the green lines are connected to the
disk. The separating line is in blue and the light cylinder in black.

—my is similar to the effect of x which enforces collimation for x > 0. Hence, taking into
account a nonspherical Alfvén number (m; #0) introduces an extra collimation force which
explains why the second solution with a nonzero m; is more collimated. Indeed, the width
of the jet at infinity over its value at the base, Go/Gq, decreases from 13.74 to 9.42, which
is similar to an increase of x and this fact can be checked directly by looking at the poloidal
field line's shape shown in Fig. (7.2).

Since more tightly collimated solutions have a smaller super-Alfvénic acceleration, the
second solution reaches a lower Lorentz factor asymptotically. Thus, similarly to k, the
introduction of a negative m; #0 leads to a decrease of the velocity because of the tighter
collimation. The higher collimation reduces the pressure gradient along the axis, which in
turn decreases the acceleration due to pressure driving on large distances (see Sauty et al.
2004).

Additionally, m; appears within the term (k+2m;—08—2e;) which appears in the plasma
acceleration function A4 in Egs. (5.107) and (5.110) and the function A% determining
the expansion factor F in Eqgs. (5.107) and (5.109). The first three terms (k +2m; — )
arise from the variation across the field lines of the heat content P/p with «, that is,
01 9 ITTRM? (R)] (1 + k) (1 + my )/ (1 + dal} = [ITIR)M?(R)](x + 21y — ), while the fourth
term ey is proportional to the variation of the total energy & with a. The bigger this term
is, the larger the initial acceleration (see Sauty and Tsinganos 1994), because it is linked
with the distribution of the heating which opposes gravity to accelerate the outflow. As
the weight of the plasma decreases with the latitude, then the pressure gradient increases
along the axis resulting in a larger acceleration close to the base, as explained in Tsinganos
and Sauty [1992]. This term decreases rapidly as the Alfvén surface is reached. Thus, it
is responsible only for the initial acceleration. With the parameter m; being negative, the
second solution is more accelerated between the base and the Alfvén surface. The velocity
of the second solution reaches the velocity of the first one at the Alfvén surface. This effect
disappears far from the source.
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7.2.1 Solutions in a Kerr metric

In the following, we discuss four different solutions in a Kerr metric to illustrate the present
model. A more detailed parametric study is postponed to a following paper. For the
purposes of the present paper, we show three cylindrically collimated solutions with high
asymptotic Lorentz factor, typical of AGNs and GRBs. Those solutions cross the "light
cylinder” and are sorted with increasing magnetic collimation efficiency parameter €. We also
exhibit a conical solution crossing the "light cylinder” with high Lorentz factor and strongly
negative €, something that was not possible with the previous relativistic meridionally self-
similar solutions.

In order to get a Lorentz factor as high as possible in the asymptotic part of the col-
limated part of the jet, we know from the study of the classical solutions that among all
cylindrical solutions, the limiting solutions with the lowest value of IIx reach the highest
terminal velocity. These solutions are the so called limiting solutions in Sauty et al. [2002].
As Il is negative for the limiting solutions, we have to add a positive Py value to the
pressure. Of course, it is always possible for those cylindrical solutions to have a higher
pressure Py, but by doing so it also increases the effective temperature, in particular in the
asymptotic part. For the same set of parameters, it is also possible to get cylindrical solu-
tions by increasing I1x. However, such solutions usually have a strong initial decollimation
associated with a peak in both the Lorentz factor and temperature, while the asymptotic jet
is decelerated to lower Lorentz factors and smaller radii, a result that we used to interpret
the FRI/FRII dichotomy [cf. Meliani et al. [2010]].

A K o v 11 1

K1 1.0 0.2 2.3 0.9 0.1 | 0.05
K2 1.0 0.2 | 135 0.46223 | 0.1 | 0.05
K3 1.2 0.005 | 2.3 0.42 0.08 | 0.024
K4 | 0.0143 | 1.451 | 3.14 0.8 0.41 | 0.15

Table 7.1 — Set of parameters used for the four selected solutions in the Kerr metric. K1 is the solution
displayed in Figs. 7.3, 7.4, and 7.5 (blue line). Solution K2 is displayed in Figs. 7.5 (red line) and 7.6,
while solution K3 is displayed in Figs. 7.11 and 7.12. Finally, solution K4 is shown in Figs. 7.13 and 7.14.

€ my | Iy jim | To/rs
K1l | -1.76 | -0.062 | 0.826 5.72
K2 | -0.04 | -0.234 | 0.216 1.57
K3 | 0.55 | -0.326 | 0.189 2.55
K4 | -5.84 | -0.004 | 0.255 1.39

Table 7.2 — Output parameters for the four solutions in the Kerr metric. Those parameters result from the
integration of the equations.
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Solutions K1 and K2 have been obtained for maximally rotating black holes, that is, ay
close to 1 (a=r,/2). In solution K4 the value of ay has been fixed to 0.73 (a=0.73r,/2).
We do not expect all black holes to be maximally rotating. For example, in M87, the
dimensionless spin should be above 0.65 (i.e., a>0.65r5/2), (Li et al. 2009) but not too
close to one. Other examples can be found and for K3 we will use the value ay = 0.6
(a=0.6r5/2) adopted in Mertens et al. [2016] for M87.
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A mildly relativistic collimated solution with oscillations (K1)

The collimated solution K1 corresponds to an over-pressured outflow (k = 0) in a Kerr
metric. As € <0, the collimation of the jet is not fully magnetic but it has a significant
contribution by the gas pressure, at least during the phase of strong acceleration up to
=~ 30rs. In this solution, field lines are strongly oscillating compared to the two previous
solutions in the Schwarzschild metric. The outflow undergoes series of strong oscillations
connected to the balance between the toroidal magnetic tension and the decollimation
forces (centrifugal and electric forces and transverse pressure gradient) of the plasma.

Figure 7.3 — Three-dimensional (3D) representation of the field lines and streamlines for the thermally
collimated solution K1 at the base of the jet and for two flux tubes. The blue lines correspond to streamlines,
the red lines to magnetic field lines. The length is in units of the Alfvén radius, that is, ten times the
Schwarzschild radius.
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Figure 7.4 — Poloidal field lines and "light cylinder” for the thermally collimated solution K1, for A=1.0,kx =
0.2,8=2.3,v=0.9,u=0.1,£=0.05, ;1 =0. The length unit is the Schwarzschild radius.
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The significant contribution of the transverse pressure gradient also explains these strong
oscillations in the flow, as is also shown in the classical solutions. The parameters of this
solution are displayed in the first row K1 of Table 1 and the output values of m; and €
in Table 2. We note that m; = —0.062 is a relatively small value, which clearly indicates
that the Alfvén surface is almost spherically symmetric in this case. As a consequence, the
light cylinder is relatively far from the jet axis. Most of the central field lines (see the inner
5 to 7 central red lines in Fig. 7.4) remain within the "light cylinder”, which means that
despite the important role of the magnetic field in the collimation, the jet is pressure or
enthalpy driven in the relativistic case. However, unlike in the classical solutions, the electric
field is the dominant decollimating force for the lines that cross the "light cylinder”. This
decollimation and expansion after the Alfvén surface is associated with a strong pressure
gradient yielding a strong acceleration of the jet in the super-Alfvénic regime. More details
on this will be given in the following solution. The pressure gradient is the gas pressure
gradient close to the axis but assisted by the toroidal magnetic pressure outside the "light
cylinder”. This is similar to superfast flows in radially self-similar models for disk winds (see
Vlahakis and Konigl 2003a and Vlahakis and Koénigl 2003b). Moreover, in the relativistic
regime the inertia increases faster when the flow is accelerated such that the collimation
from the magnetic field is delayed to larger distances.

In Fig. 7.4 we see that the expansion after the Alfvén surface is strong and leads to a
late acceleration of the flow. After the large expansion, the jet recollimates smoothly and
consequently decelerates slightly because of the compression.

In Fig. 7.3, we clearly see that there is a strong azimuthal magnetic field, although the
scale of the Figure tends to exaggerate this phenomenon.

The Lorentz factor y of this solution reaches a relatively small value around 3.7, typical
of less powerful AGN jets like some of the FRI radio-galaxies.

A highly relativistic collimated solution with oscillations (K2)

The solution K2 is collimated and has an extremely high Lorentz factor, which may be
typical of GRBs. This K2 model corresponds to the values of the parameters given in the
second line of Table 1, that is, A=1.0,x=0.2,8=1.35, v=0.46223, /=0.5, un=0.1, ¢; =0 and
the second line of Table 2 for the output parameters, m; =—0.234 and €=—-0.04.

For this model, the outflow starts very close to the black hole horizon at ry=1.57r5,
(see Fig. 7.6), and thus at the base of the jet the effects of general relativity play an
important role. The final velocity is highly relativistic, as is shown in Fig. 7.5.

The parameter v of the K2 solution is accurately adjusted (to the fifth digit), so as
to obtain a rather high Lorentz factor (larger than 100). This proves the versatility of
the model which handles any magnitude of Lorentz factors. In order to obtain such high
Lorentz factors, we must carefully tune the parameter directly linked to gravitation, v, as
mentioned above. The same parameter is also responsible for the thermal acceleration in
the classical model (Sauty and Tsinganos 1994).

In Figs. 7.7 and 7.8 we plot the forces along and perpendicular to a field line defined
by a=0.01aym where gy is the dimensionless magnetic flux between the inner jet and an
external accretion disk wind.

The strong decollimation associated with the slow acceleration enhances the electric
force as in the previous solution K1. This can be seen in Fig. 7.8. However due to the
higher rotation here, more field lines cross the light cylinder, which is very close to the axis,
such that the decollimation from the electric field is much stronger in this solution.

The feedback of this strong electric field is to further increase the decollimation beyond
the Alfvén surface at large distances. Again, the large expansion increases the pressure and
enthalpy gradient as seen in Fig. 7.7. Thus, the pressure force increases, resulting in a very



CHAPTER 7. OUTFLOW SOLUTIONS

wn
o

1001

L
~
5

n
&
o

80

L
W
%]

60

L
w
o

L
N
&)

401

Lorentz factor v for K2 solution
Lorentz factor ~ for K1 solution

L
N
o

20

=
w

‘ i . . . . 10
10° 10t 102 10° 10* 10° 10° 107
r/r,

Figure 7.5 — Lorentz factor y for the K1 (blue line) and K2 (red line) solutions. Distances are given in
Schwarzschild radius units.

long acceleration phase up to 10°r;. Thus, the thermal acceleration becomes very efficient
and the plasma asymptotically reaches an extremely high Lorentz factor. Indeed, the jet
radius increase of this solution is also very high with an expansion factor Go/Gg =~ 1300, as
can be seen in Fig. 7.6.

The value of € is still negative but very close to zero (e =—0.04). As in the classical
case, this means the magnetic efficiency to collimate the flow is higher in this model at
larges distances. However the decollimating force that ensures the equilibrium is no longer
the centrifugal force or the pressure gradient but the electric force on the lines that cross
the "light cylinder”. This is a specific feature of relativistic jets.

To further analyze the jet acceleration we may calculate the contribution of the different
components of the total energy and the conversion of the magnitude of each component to
another form along the streamlines. First, we want to obtain a physically acceptable heating
term which goes to zero at infinity along the axis of the flow. By defining the enthalpy in
Eqgs. (5.18) and (5.19) and its analytical expression in our model in Eq. (5.34), we may fix
a streamline limiting the zone where the pressure is positive. Once this field line has been
chosen, for example, at a=0.4am, the dimensionless pressure Pg/pxc? can be calculated.
In the particular case presented here, we have taken Py/pxc®>=4.3-10"7 . The pressure P
in Eq. (5.54) is chosen such that the gas pressure is equal to zero, when II(R) reaches its
minimum value. For some value of «, the term Py =Py(x) = —[Bi/SR]Hmin(l +xa) will be
too large to ensure that Q goes to zero at infinity along the axis. Indeed, a can take any
value below a maximum opyax.We can consider that the solution can be valid only in the
region wherein the pressure is positive. When « is fixed and Po/p*c2 is deduced, we are
able to calculate &x. In this particular case, a value &4 =78 is chosen.

Figure 7.9 shows the normalized total energy on the axis &/c? = hy&, the kinetic com-
ponent hy&x and the external heating hyQ/c?. We find a decrease of the external heating
and a related increase of the kinetic part. Thus, the kinetic enthalpy represents the major
component up to r=10?rs.

Figure 7.10 shows the same energetic distribution, but on a streamline with o =0.050;,.
Out of the polar axis, there are extra energetic components, such as the frame-dragging
and the Poynting fluxes. Both these energetic contributions are very small on this field line,
as compared to the total energy. Hence, the jet is enthalpy-driven from the axis right up to
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Figure 7.6 — Poloidal field lines and "light cylinder” for the K2 solution, that is, for A =1.0,x=0.2,8 =
1.35, v=0.46223, u=0.1, £=0.05, e; =0. Distances are given in Schwarzschild radius units.
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the limiting line. We also note that at the base of the jet, the frame-dragging energy is of
the same order as the Poynting flux. Contrary to the energetic distribution along the axis,
the external heating constitutes the larger part of energy at infinity. While along the axis
a high value of Yo, =100 is obtained, the Lorentz factor at infinity on this particular line
IS Yoo = 3.6. Hence, since the acceleration of the plasma and the resulting final flow speed
at infinity on this particular field line are small, the external heating is not consumed when
accelerating the flow and therefore it is left unused at infinity, contrary to what happens
along the axis; Fig. 7.9.

A mildly relativistic collimated solution without oscillations (K3)

From VLBI imaging, Mertens et al. [2016] recovered a detailed two-dimensional velocity
field in the jet of M87 at sub-parsec scales. They confirmed the stratification of the flow
from the very beginning of the jet and identified a relativistic sheath,that is, an accelerating
layer, which is launched from the inner part of the accretion disk at a cylindrical distance
of around 5 rg. Mertens et al. [2016] interpret this outer sheath layer as the internal part
of an external disk wind. They also interpret the inner spine jet as a component coming
from the internal accretion disk. However, it is not clear that the inner spine necessarily
has to be one of the disk wind components. Instead we propose that the inner spine jet
originates from the black hole corona and has a higher Lorentz factor. The authors note
that this fast inner spine jet cannot be detected in their data because of its lower emissivity
compared to that of the sheath layer or because its speed is too high.

We propose here, as an alternative scenario, that the spine beam may originate from
the magnetosphere of the black hole, either connected to the black hole itself, as in the
Blandford-Znajek-Penrose mechanism, or connected to the inner part of the accretion disk.
In the first case, the spine jet would be a leptonic plasma, and in the second it would be a
hadronic one. In such a case, we can model the spine jet with our meridionally self-similar
solutions. We note that unlike Poynting-flux-dominated models, our model is valid on the
jet axis.

The Lorentz factor profile inferred by Mertens et al. [2016] (see their Fig. 19) supposes
that the velocity structure observed in the 43 GHz VLBA maps at a deprojected distance
of z=10mas =~ 130075 is due to the sheath layer. The Lorentz factor of the sheath has a
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Figure 7.7 — Plot of the longitudinal forces, that is, along the field line, for the K2 solution, along the line
a=0.01oy5m,. Distances are given in Schwarzschild radius units.

value y=2.4 at R=1000r;.

From the curve deduced for the spine jet with an approximated MHD disk wind solution,
those authors, following Anderson et al. [2003], model the acceleration and collimation of
the flow with a Lorentz factor y = 7. We propose that it is possible to construct a MHD
solution along the lines of the model analysed in this paper, by choosing a positive value of
€ =~ 0.5 and a similar velocity profile. The solution K3 presented here has a Lorentz factor
y =5 at R=10007s. By appropriately tuning the parameters, we could obtain even higher
Lorentz factors from 7 to 10, as is observed at the distance of the knot HST-1, where this
velocity is observed in the optical band. However, the spine jet is deboosted relative to the
sheath and a precise measurement of its Lorentz factor is difficult.

Solution K3 with a maximum Lorentz factor on the axis y = 5.5 has an asymptotic
spine jet radius Goo =207;. At this distance from the axis, the Lorentz factor has dropped
to a value y =2.4 consistent with the radius and the Lorentz factor at the inner observed
distance of the outer sheath jet of Mertens et al. [2016]. Thus, our solution may model the
initial spine jet inside the sheath layer. However, to confirm that, we need to use this initial
solution in simulations similar to those in Hervet et al. [2017]. The spine jet/sheath jet
interaction will probably produce shocks and rarefaction waves that may further accelerate
the jet.

Therefore, although we can obtain such a type of collimated solution for different sets
of the parameters, we focus here on the specific solution K3, where A =1.2,x =0.005, 8 =
2.3,v=0.409,£=0.024 and p=0.08. Compared to the other Kerr solutions studied in this
paper, A is higher and x is very small, leading to a solution with a positive value of the
magnetic collimation efficiency, €=0.55. Another advantage of this solution is the fact that
the pressure depends only very weakly on the magnetic flux function, that is, on a particular
field line.

Interestingly, in Mertens et al. [2016], the radius of the base of this spine jet is equal
to rg = 2.4rs, which is consistent with their model of a disk wind solution, by fixing the
jet shape and solving the Bernoulli equation. In our self-similar solution, we have a similar
radius for the magnetospheric polar cup, where our jet solution starts. Clearly, this is an
alternative scenario.

Moreover, the angular velocity of the field lines anchored in this polar cup above the
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Figure 7.8 — Plot of the transverse forces, that is, perpendicular to the field line, for the K2 solution, along

the line a=0.01ay,. We see that the Lorentz force is collimating and is balanced by the electric force that
decollimates. Distances are given in Schwarzschild radius units.
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Figure 7.9 — Relative normalized contribution to the total energy of the kinetic enthalpy hy&; and the
external heating distribution hyQ/c? along the axis.

black hole can be calculated from our parameters,

VA
v 1+12) 1+12)72

By taking the value of the M87 distance and the black hole mass, as in Mertens et al.
[2016], we can calculate {2« in the context of this K3 solution. This value may directly
be compared to the values they deduced in two jet regions from the conservation of total
energy and angular momentum fluxes in the approximation of special relativity.

Hence, we find 2% =~1.03x107%s71, a value which is for the spine jet almost the same
value as the isorotation frequency of a Keplerian speed at the launching location of the
sheath layer. It also corresponds to the initial toroidal velocity of the Blandford and Payne
[1982] mechanism.

Our model corresponds to an alternative configuration, because the spine jet may either
originate from the Keplerian disk, in which case it would be hadronic, or form via the

CcH
I's

~6.2x10722 (7.1)
Is

O =
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Figure 7.10 — Relative normalized contribution to the total energy of the kinetic enthalpy hy&; and the
external heating distribution hyQ/c? along the streamline o= 0.0504;m

generalized Penrose-Blandford-Znajek mechanism. In this second alternative, the jet would
be a leptonic beam with an angular frequency proportional to the spin of the central black
hole. The Blandford-Znajek mechanism allows us to extract energy from the black hole
when 0 < {2 < wpy, with a maximum value for 0.5wpy. We note that wgy is, by definition,
the angular velocity of ZAMO at the location of the outer event horizon and is given by,

aygc

WBH = ————————,
rs(1+\/1—a12{)

where ay is the dimensionless spin of the black hole in units of the gravitational radius
rs/2. Indeed simulations of such Poynting-dominated and force-free jets (Tchekhovskoy
2015) have shown that the angular speed of a field line anchored in the magnetosphere
is about half the black hole angular speed wgy. Our value of {2« is one third of 0.5wgy
(Nathanail and Contopoulos 2014). In order to determine if the spine jet of our solutions
originates from a Keplerian disk or from a black hole via a generalized Penrose-Blandford-
Znajek mechanism, we need to solve the MHD equations up stream up to the black hole
horizon. Moreover, in order to model the full jet of M87, a complete MHD simulation
including a disk wind and a spine jet must be developed. Something that should be done
in the future.

We note that as is already known, at the interface of the spine jet and the sheath layer,
a re-collimation shock may occur, producing compression and rarefaction waves which may
accelerate the flow (Hervet et al. 2017). For those reasons we have chosen here to adjust
the value of v to v=0.42, in order to get the solution K3, with a lower Lorentz factor but
suppressing completely the oscillations of the field lines. The value calculated above for
{2« is not changed, but radio emission maps, which are obtained for the M87 jet, will be
produced by re-collimation shocks due to the interaction between the fast spine jet and the
sheath layer.

(7.2)

As can be seen in Fig. 7.11 for the K3 model, the Lorentz factor reaches a nearly
constant value at the distance of the B structure observed in the 43 GHz VLBA maps and
Y is larger than that deduced for the sheath layer by Mertens et al. [2016]. As explained
above, the interaction between the sheath layer and the spine jet can induce a bulk flow
acceleration. However, as we mention, the Lorentz factor y is maximum along the axis and
decreases with latitude such that at its outer boundary it matches the sheath layer value.

The values of the parameters of the K3 model are given in the third line of Tables 1 and
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Figure 7.11

Lorentz factor for the nonoscillating collimated solution K3.

2. The radius at the base of this spine jet is equal to ry =2.55rs and the magnetic efficiency
to collimate the flow is larger compared to the other two Kerr solutions discussed in this
paper, as € is now positive, which means that the jet is fully magnetically collimated. The
field lines displayed for K3 in Fig. 7.12 are nearly cylindrical above the equatorial plane, at
distances 10* rs, with a smooth flaring occurring after the Alfvén surface.
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Figure 7.12 — Poloidal field lines and "light cylinder” for the nonoscillating collimated solution K3, that is,
for A=1.2,x=0.005,8=2.3,v=0.42, u=0.08, £ =0.024, e; =0. Distances are given in Schwarzschild radius

units.
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Conical solution

The parameters of the conical solution K4 are given in Tables 1 and 2. Such radial solutions
could be useful to describe relativistic noncollimated outflows, such as those seen in asso-
ciation with radio-quiet galaxies, such as Seyfert galaxies. Conical solutions could also be
useful to model GRBs, wherein an unstable noncollimated relativistic wind may fragment
into small pieces under some instabilities. In such cases, the apparent collimation of the
GRB would be due to fragmentation — see Meliani and Keppens [2010]; van Eerten et al.
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[2011].

A conical solution is a solution in which the limiting value of F at infinity is 0. In this
solution, the spherical part of the Mach number diverges, M — co. The same effect occurs
for the cylindrical radius of the flow, G. To obtain this conical solution, we started with
the parameters used for modeling the solar wind, as in Sauty et al. [2005]. The magnetic
collimation parameter must be strongly negative, €/(2A?) < 0. We adjust the solution to
the relativistic case and increase the velocity by taking a larger value for 8. For the radial
solution K4, the parameters A and «k are adjusted as well in order to obtain a terminal
Lorentz factor larger than 8. Thus, we find a conical solution K4 for the following set of
parameters: A=0.0143,k=1.451,06=3.14,v=0.8,(=0.15, u=0.41, m; =—-0.004 and e; =0.

For this set of parameters we get a much more negative value for the magnetic collima-
tion efficiency parameter, € =—5.68. The solution quickly reaches the conical regime (see
Fig. 7.13), and most of the field lines cross the "light cylinder” plotted as a black solid line.
The axial radial velocity profile is plotted in Fig. 7.14. As can be seen, high Lorentz factors
are obtained.
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Figure 7.13 — Poloidal field lines and "light cylinder” for the conical solution K4, that is, for A=0.0143, x =
1.451,8=3.14,v=0.8, u=0.41, /=0.15, e; =0. Distances are given in Schwarzschild radius units.
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Figure 7.14 — Lorentz factor for the conical solution K4. Distances are given in Schwarzschild radius units.
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Magnetic collimation efficiency versus black hole spin

As already mentioned, the constant € is a measure of the efficiency of the magnetorotational
forces to collimate the flow. We have studied how € relates to the black hole spin ay =21
/ W, keeping unchanged all the other parameters: A, k, 8, v, and p.

In Fig. 7.15, we plot € versus the black hole spin ay, for several cases studied in the
context of our model. First we note that for solutions with parameters similar to the K3
solution, referred to here as K3-type solutions, the value of € is positive, it increases with the
black hole spin ay and shows the largest variation in relative magnitude with an absolute
total variation equal to 0.05. On the other hand, for K1-type and K4-type solutions, the
values of epsilon are negative. The total variation for K1-type solutions is equal to 0.10 and
for the K4-type solutions is equal to 0.25. We see that € is increasing with the black hole spin
ay for K1-type and K3-type solutions. It also presents a minimum value for K4 at a black
hole spin slightly smaller than ay =0. This means that the magnetic collimation efficiency
is lower for counter-rotating black holes in relation to their accretion disk for K1-type and
K3-type solutions and depends weakly on the spin directionfor K4-type ones. However, K4-
type solutions are conical, contrary to all other solutions, which are cylindrically collimated.
In all cases € does not vary linearly with the black hole spin ay.
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Figure 7.15 — Variation of the magnetic collimation efficiency parameter € vs. the black hole spin parameter
ay for K1-type, K3-type, and K4-type solutions. The value of € has been normalized by [e(0)| when it is
negative and by €(0) when it is positive.
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This nonlinear variation of epsilon with the black hole spin ay is explained if we try to
derive it at the base of the jet where the Alfvénic number is equal to 0, since some terms
of the second order in [ cannot be neglected in the following equation.

202 (AN ©, ANy \?

= | ——+ £ +A° 7.
¢ hg( D A)+ (h*GOD) (73)
vZ(2e; —2m; +8-x)Ry  VZI’RyGy?

h2(R3 + 12) hZ(R3 + 12)3

An increase in € coincides with a decrease in the maximal Lorentz factor for the col-
limating Kerr solutions, as we will see for Kl-type and K3-type solutions. This explains
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why it was not possible to obtain physical solutions by decreasing [ for K2-type solutions.
For this second Kerr solution, we performed a fine tuning of the parameters to obtain the
largest possible Lorentz factor at large distances from the maximally rotating black hole.
Then, decreasing [ leads automatically to exceed the value of the speed of light, ¢, for the
polar velocity at some distance in the jet. The acceleration phase does not vary for K1-type
and K3-type solutions with [ except immediately before R =500 where the Lorentz factor
reaches a plateau. The value of the maximum Yy increases when [ decreases.
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Figure 7.16 — Plot of the cylindrical jet radius normalized to its value at the Alfvén surface, G, for K1-type
solutions, as a function of the distance along the polar axis, for five different values of the black hole spin
ay. The function G is equal to 1 at the Alfvén distance r =10r;.
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Figure 7.17 — Plot of the Lorentz factor y for K4-type solutions when the black hole spin parameter ay
varies between —0.99 and 0.99.

For the two collimated solutions K1 and K3, there is a clear effect of collimation induced
by the rotation of the black hole. In Fig. 7.16 we plot for five values of the black hole spin
the evolution of the factor G along the jet, that is, i.e., the ratio of the jet cylindrical radius
divided by its value at the Alfvén surface. From this plot it can be seen that the maximum
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of the radius of the jet is reached at different distances, as the spin varies, and decreases
when ay increases. The same trend is observed for the terminal jet radius but the ratio of
Goo/Go decreases only by a factor of 0.96 between a nonrotating and a maximally rotating
black hole (a=0.99). Hence, the faster the black hole rotates, the smaller the maximal
jet radius. This result is expected because for a fast black hole rotation, the magnetic
collimation efficiency parameter (€) is higher.

The case of K3-type solutions is simple, as the factor G increases with distance until
it reaches a constant value. The ratio Goo/Go gives directly the expansion factor which is
decreasing when ay increases from —0.99 up to 0.99.

As can be seen from Fig. 7.17, the Lorentz factor maximum follows the opposite trend
to € for the conical K4-type solutions: the minimum value of € is obtained for ayg =0 and for
a nonrotating black hole the Lorentz factor curve reaches a maximum before decreasing up
to a plateau at large distances. This type of curve is no longer observed when the absolute
value of ay goes above some threshold. The increase of the plateau value for the Lorentz
factor is much more pronounced for ay >0 but can be seen also for negative values of the
spin. At a distance of r=1000r; Y increases from a value of the order of 6 for a;;=0 up to
14 for ayx =0.99.
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Figure 7.18 — Plot of the ratio of the cylindrical radius to the spherical radius for the conical K4-type
solutions with a spin parameter ay varying between —0.99 and 0.99 vs. the distance z above the equatorial
plane in units of the Schwarzschild radius.
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For the conical solutions wherein the asymptotic geometry is fixed, their geometry is less
affected. The effect of varying € is different in this case, as compared to this effect for the
cylindrically collimated solutions. To analyze the effect of collimation induced by the black
hole spin, we plot the ratio of the cylindrical to spherical radius of the field lines for K4-type
solutions and five different values of the black hole spin. We note that the ratio of the
cylindrical to spherical radius of the field lines gives their opening angle with respect to the
axis. The field lines start at the base of the jet with an opening angle which increases with
the radial distance and expands away from the polar axis more rapidly for higher black hole
rotation.The effect is more pronounced for negative spin parameters. At some distances
above the equatorial plane (z = 100r) the opening angle becomes constant as the field
lines are finally becoming radial. It is found that for a given ratio of a/am, where oy, is
the last open field line, the asymptotic opening angle is constant for all K4-type solutions,
regardless of the spin of the black hole.
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As seen in Fig. 7.18, the collimation of the jet increases with | ag | which is consistent
with the increase of €. We note also that the base of the jet becomes slightly closer to the
black hole horizon as | ay | increases.

Globally we see that the total geometry of the solution, and in particular the expansion
of the jet radius, is extremely sensitive to the black hole speed.

The magnetic flux and power of the jets

Intuitively, by physical arguments of magnetic flux conservation, it is expected that magnetic
fields not only play a dominant role in collimating large-scale AGN jets, but also critically
affect the origin of the jets in accretion disks of black hole systems, which are accordingly
termed magnetically arrested disks (Narayan et al. 2003). Indeed, theoretical modeling
concludes that magnetic fields at the base of AGN jets are related to the corresponding
accretion rate (Tchekhovskoy and McKinney 2012). Zamaninasab et al. [2014] reported
that the measured magnetic flux of the jet and the accretion disk luminosity are tightly cor-
related over several orders of magnitude for a sample of many radio-loud AGN, concluding
thus that the jet-launching region is threaded by a dynamically important magnetic field.
The magnetic fields of AGN can be measured either by the effect of a frequency-dependent
shift of the VLBI core position (known as the core-shift effect), or by Faraday rotation
(e.g., Marti-Vidal et al. 2015, who reported magnetic fields of at least tens of Gauss on
scales of the order of several light days - 0.01 parsecs - from the black hole). Furthermore,
magnetohydrodynamic simulations in the frame of general relativity allow us to calculate
the saturation or equilibrium value for the poloidal magnetic flux @gy; threading the black
hole (McKinney 2005, Tchekhovskoy et al. 2011, McKinney et al. 2012).

In Zamaninasab et al. [2014] this poloidal flux @y is calculated as a function of the

mass-accretion rate M as,
(pBH ZSO\IMC(E)Z. (7.4)
2

We consider that since such a strong magnetic flux can thread the black hole, we can
use this formula to link our value of poloidal magnetic field at the Alfvén point By« with the
mass-accretion rate M. In our model the magnetic flux from each hemisphere is given by
Ppy = n(x)f,B* = nr,z(B*oqim. Then, the magnitude of the magnetic field is calculated from

the expression
c NL/2 o172
5 =25p———. (7.5)
T Alim T % Alim

By =257

In order to compare the jet power for the K2 and K3 solutions with the one obtained
by general relativistic magnetohydrodynamic simulations, we calculate this power in terms
of the parameters of our model. Similarly to the way we deduced the angular momentum
flux density in Egs. (5.57) and (5.58), we may calculate the jet+counterjet power by
substituting ¥ from Eq. (5.56) and & =&« (1 +eja) with &« from Eq. (5.60), and with
the help of Eq. (5.40), we obtain, in terms of the constants of our model,

Alim
Pjet = 0 WAgdA
VhiC(B )Zfaﬁmu W1+ oad (7.6)
+ + . .
2\/ﬁ * Fx o e1x xaux
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Hence, we finally get

V22 Qi
Pjet=625—2*Mczf 1+e)V1+dada. (7.7)
2mag 0

Therefore, for the efficiency nje; = Pjetll\'/lc2 for our K2 model we obtain a value nje; =
0.52, while for our K3 model we obtain nje; = 0.40. On the other hand, McKinney [2005] de-
termined self-consistently the jet power in Blandford-Znajek numerical models and deduced
an efficiency njec between 0.01 and 0.1 for ultra-relativistic Poynting-dominated jets with
ay larger than 0.8. Later, Tchekhovskoy et al. [2011] and McKinney et al. [2012] increased
the magnetic flux which can be pushed near the black hole leading to magnetically arrested
accretion and obtained values of the net flow efficiency larger than 1 for rapidly spinning
black holes with ay larger than 0.9. Their models that develop a highly non-axisymmetric
magnetically choked accretion flow, initially have the poloidal component of the magnetic
field dominant and the wind has an efficiency always smaller than that of the jet. We note
that the net flow efficiency for the jet is equal to (Pje—Muc®)/[Muc?]; where My is the
black hole mass-accretion rate and [Myc?]; is the time-averaged value of accretion power.
This black hole mass-accretion rate could be smaller than the mass-accretion rate measured
by Zamaninasab et al. [2014]. In fact, they deduced the accretion power by dividing the
bolometric luminosity with a radiative efficiency of 0.4. Larger values of the inflow rates
Min,i and Min,o have been obtained by McKinney et al. [2012] at radii 575 and 257, respec-
tively.Zdziarski et al. [2015] found also that the jet power moderately exceeds the accretion
power Mc? for blazars estimating the magnetic flux from the radio-jet core-shift effect and
the self-absorbed flux evaluation. However, there is a large scatter around the mean value
for blazars njer =~ 1.3 and the jet power for radio galaxies is smaller, especially for M87.
Therefore, our estimations of jet power from our K2 and K3 solutions with mass loading
could perfectly match that for less-efficient blazars and radio galaxies. Moreover, they do
not overly depend on the spin parameter ay, since ajm keeps a value slightly smaller than
1 when the spin parameter varies for the K3-type solutions, even for retrograde black holes.

At this point, we prefer to postpone a further discussion of the jet power, until we
have completed our study, which also includes inflow solutions and leads to a spin-energy
extraction or addition from the black hole.

7.2.2 Summary and Conclusions

As was pointed already in 1957 by Parker (see also Parker 1963), for the driving of the solar
wind and similar enthalpy-driven astrophysical outflows, some energy/momentum addition
is required. The original isothermal and polytropic models with a heat conduction, have
shown that effectively energy and/or momentum are necessary for producing supersonic/su-
perAlfvénic outflows at large distances, to also meet the respective causality requirements.
Quasi-radial wind-type astrophysical outflows with shock transitions (Habbal and Tsinganos
1983) have been applied to explain the appearance of emission knots in galactic (Silvestro
et al. 1987) and extragalactic objects (Ferrari et al. 1984, Ferrari et al. 1986), also in the
framework of special relativity (Ferrari et al. 1985).

When deviations of the outflow geometry from radial expansion exist and the problem
is fully two-dimensional, these outflows can be collimated in the form of jets (Sauty and
Tsinganos 1994) mainly by magnetic fields with a suitable external gas pressure distribution.
Along these lines, in Vlahakis and Tsinganos [1998], the original Parker model was extended
to include general MHD effects, in the context of meridional self-similarity. The present
paper takes the extra step of using the framework of a Kerr metric to explore analogous
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enthalpy- or generalized pressure-driven outflows from the environment of a rotating black
hole.

Specifically, in this paper we present an exact MHD solution for an outflow in a Kerr
metric, constructed by using the assumption of self similarity and the mechanism for driving
the outflow which is developed in Sauty and Tsinganos [1994]. Additionally, the model
is based on a first-order expansion of the governing general relativistic equations in the
magnetic flux function around the symmetry axis of the system. It yields four nonlinear and
coupled differential equations as a function of the radius, for the Alfvén number, the gas
pressure, the expansion function and the radius of the jet. The model depends on seven
parameters. Two of them are the meridional increase of the gas pressure and the mass to
magnetic flux ratio, x and §, respectively. There is also the meridional increase of the total
energy with the magnetic flux function, e;, the poloidal current density flowing along the
system axis, A, the escape speed in units of the Alfvén speed, v, the Schwarzschild radius in
units of the Alfvén radius, y, and the dimensionless black hole spin . In addition to those
seven parameters, we have to adjust the pressure at the Alfvénic transition. We chose to
adjust it such as to minimize the oscillations of the magnitude of the flow speed along the
axis and taking the limiting solution. We also fix the magnetic field at the Alfvén transition,
Bx, and a uniform pressure constant Py to ensure a zero external heating at infinity along
the axis where the Lorentz factor is maximum.

The model takes into account the light cylinder effects and the meridional increase of
the Alfvén number with the magnetic flux function, m;. This parameter is deduced from
the regularity conditions at the Alfvén transition surface.

The classical energetic criterion for the transition from conical winds to cylindrical jets
is generalized in general relativity and it amounts to say that if the total available energy
along a nonpolar streamline exceeds the corresponding energy along the axis, then the
outflow collimates in a jet.

In the framework of a Kerr metric, we illustrate the model with four different enthalpy-
driven solutions wherein the contribution of the Poynting flux is rather small. The first
three solutions are cylindrically collimated, while the fourth represents a conical outflow
at infinity. The flow collimation is induced by electromagnetic forces. In all four models,
relativistic speeds are obtained, while in one of them the Lorentz factor y obtains ultra-
relativistic values. A preliminary application of one of our Kerr solutions (K3) was explored
to model the spine jet in M87, yielding encouraging results. A more complete modeling
for the M87 jet including an external disk-wind component will be explored in another study.

Our analytical solutions of the full general relativistic MHD equations in a Kerr metric
may contribute to a better understanding of relativistic AGN jets and are complementary
to sophisticated numerical simulations of such jets (e.g., McKinney 2005, Tchekhovskoy
et al. 2011, McKinney et al. 2012). In both the analytical and the numerical approach, the
outflows are electromagnetically confined. However, while in the above numerical simula-
tions the outflow is driven electromagnetically (e.g., via the Blandford-Znajek mechanism),
in the present analytical solutions the outflow from the hot corona surrounding the black
hole is enthalpy- or generalized pressure-driven (e.g., via the Sauty-Tsinganos mechanism).
Nevertheless, it is interesting to note that the jet powers for the two representative ana-
lytical solutions we present in this paper are similar to those determined by the numerical
simulations.

The present model can also serve to construct an inflow solution, in order to link
it with an outflow solution and the physical creation of leptonic pairs to determine the
energy balance of the black hole, via a generalized Penrose process as compared to the
Blandford-Znajek mechanism. This undertaking is in progress and will be presented in
another publication.
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7.3 Magnetization of K2 and K3 solution
Define the levels of magnetization as,

G hoBY 210 NpAwANg
T WphyEc?  Wahyéc® V2 kD

a+0?) (7.8)

the ration between Poynting flux (h(DQB‘I’ per unit of magnetic flux) and the internal energy flux
(WahyEc? also per unit of magnetic flux). This quantity measured the importance of toroidal
magnetic magnetic field in the fluids dynamics. Neglecting the variation of Lense-Thirring energy
flux, the diminution of this ratio along magnetic flux tube means there is a transfer of Poynting
flux to Internal energy one. The magnetization is also play a role of collimation, indeed strong
magnetization could be characterized by strong electric currant and thus a strong importance of
toroidal magnetic field in collimation.

In Millas et al. [2017] the authors study on numerical simulation the role of maximal magne-
tization, toroidal speed and Lorentz factor of spine-jet for transversal stability of two component
jets. The maximal magnetization used in this study is between 0.001 and 0.1. The authors note
in their simulation that whatever the central Lorentz factor or the maximum toroidal velocity the
increase in magnetization always results in a decrease in Rayleigh-Taylor instability mixing the
components and thus stabilizing this two-component solution in order to maintain the central
solution with high Lorentz factor.
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Figure 7.19 — Magnetisation parameter map o for Figure 7.20 — Magnetisation parameter map o for
K1 solution K2 solution

The magnetization on the field line with a = 0.5y, start from 0.05 at stagnation radius to
reach 0.02 at infinity for K1 solution. On the same field line this evolution start from 0.17 to
reach 0.16 fo K2 solution. For K3 solution it start at 0.4 to reach 0.22 and from 0.0045 to 0.0015
for K4. We deduce that the solution K2 and K3 have higher magnetization than solution K1 and
K4. This is understandable from an analytical point of view from Eq.(7.8), indeed the term that

mainly determines the transversal evolution of magnetization is )‘5—2“ This is also characteristic of
transversal equilibrium difference between these solution which much more important role given
on toroidal magnetic collimation in the solution K2 and K3.

The other term of Eq.(7.8) depending on the radius ASBD remains around one and determines
the evolution of magnetization along the line. In all solution we see a decreasing of magnetization,
it means that the toroidal magnetic field contributes to the acceleration of the flow on the non
axial field lines where magnetization at the base of the flow is bigger. Nevertheless, for these

solutions it remains less important than the acceleration the acceleration due to pressure.
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7.4 Effect of the variation of energy integral with magnetic flux

We extend our study, by searching how a solution evolves with the parameter e;. We choose to
start a solution with the other parameters given in Table.(7.3).

A x ) v l vl
1102|135 |05]0.049 | 0.1

Table 7.3 — Set of parameters for a solution calculated in order to study the impact of parameter e; around
this solution

Note that the initial value of ITx is chosen equal to ITxim (Sec.6.3), with an accuracy of
1077, We plot on Fig.(7.23) the evolution of the expansion factor G? for different values of e,
from —0.1 to 0.1. We observe that the final value of Gcz>o increases when e increases. Increasing
the variation of & with « implies an increasing of final expansion of the magnetic field-lines. The
evolution with e; of the opening angle factor F is represented on Fig.(7.24). It shows the decrease
of the frequency and amplitude of the oscillations of the jet.

In Fig.(7.25) we plot the evolution of the proper velocity factor By along the polar axis with e;.
The final proper velocity and the stagnation radius increase with e;. In the last figure, Fig.(7.26),
we show the asymptotic transversal profile of the poloidal 5, factor. We observe that in addition
to the increase of the velocity on the axis, the increase of e; reduces the decrease of 3, in the
transverse direction at infinity.

This evolution can be energetically interpreted. Indeed, the transverse distribution of energy
available in the poloidal field lines varies with the parameter e;. Eq.(4.44) implies that the in-
crease of ej, leads to an increase of & —Lw and thus of all the energetic flux and function which
appears in Eq.(4.44) for a#0. Thus it explains why the velocity does not decrease as fast in the
case of e; =0 than in the case e; = 0. There is more energy available for kinetic and internal
energy in the case e; =0. This amount of energy increases also the strength of the gravitational
forces, Eq.(5.101). It also explains the increase of the stagnation radius with e;. Indeed, the
stationary radius of the flow moves away from the black hole to compensate for the increase in
the gravitational forces.

When we look carefully at the functions involved in the system of Egs.(5.107), we note that
the differential system is only a function of 2e; +8, and not e; and 8 separately. Thus the effects
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of e; and 8/2 are the same for the evolution of the functions M2, G2, IT. Intuitively, this degeneracy
is the expression, in the equations of the model, of the equivalence principle which implies the
identity of the inertial mass and the gravitational mass. Thus only e; +8/2, which is the first
order variation in a of Wa& appears in the model equations. If things were that simple, then
Grad-Shafranov analysis, Sec.(4.2.4), should also be able to do without ¥4, which is not the case.
This property therefore seems to be related to the construction of the model.

7.5 Observational constraints

It is useful to aplly observationalal constrain to solutions from the model (K2 and K3). We present
here a short analysis illustrating the capabilities of the model. This complement the discussion
about magnetic flux and jet efficiency, Sec.(7.2). These results must be handled carefully and are
subject to discussion. In the following, we discuss the material composition of the jet using the
observed brightness temperature given by Homan et al. [2006]. Then we continue the discussion
started in Sec.(7.2), using the tools of Sec.(3.3.3), in order to estimate the deviation to the
thermodynamical equilibrium.
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7.5.1 Matter content from temperature estimation

The basic equations, Eqgs.(4.17), used to build our model, are based on the fluid stress-energy
tensor, Eq.(3.82, 3.83), of an isotropic non-equilibrium distribution functions. We consider a
fluid composed of leptons (electron/positron) and protons, such that the distribution function of
species is an isotropic non-equilibrium distribution function with the same fluid 4-speed. Then
each species could be represented by an equilibrium distribution function as in Eq.(3.84), with
an effective temperature Tegr;. We choose these temperatures in order to have for each species
O0P; =0. Then we obtain,

P=P1+Ph=k]3 (aneff,]'f'ineff’p) . (79)

We make the reasonable assumption that the effective leptonic temperature and the proton
temperature are of the same order of magnitude (same order of magnitude of the thermal agitation
energy for each species) T; =T, =T. In this case, it is possible to calculate leptonic fraction,

m — ——
np P B¢
yi= =

- - , (7.10)
np+np mp—m,

where © =P/pgc? is the dimensionless model temperature. It is the pressure-related quantity that
accelerates the flow in the model solutions. To give an order of magnitude of this fraction we
consider that the effective temperature could be at the same order of the brightness temperature
T =T}, we are able to give an order of magnitude of this leptonic fraction. The observed brightness
temperatures mentioned in Homan et al. [2006] for a large sample of AGN are around T} ~2.10!! —
5.10'K. In Kim et al. [2016] the brightness temperature measured for the source M87, Mrk421 and
NGC1052 for different wavelengths and on different locations in the range Tj, ~5.10'° —5.10'?K.
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Figure 7.27 — Values of dimensionless model tem- Figure 7.28 — Values of dimensionless model tem-
perature for K3 solution perature for K2 solution

On Fig.(7.27, 7.28), the dimensionless model temperature © = P/pyc? of the K2 solution dur-
ing the jet acceleration phase are between 5—15 and between 0.5—1 for K3 solution. Keeping the
values of brightness temperature mentioned by Homan et al. [2006], we obtain a leptonic fraction
V1 ~0.995-0.9995 for K2 during the jet acceleration phase and y; ~0.945-0.98 for K3. So it
seems that these two solutions are mostly composed of leptons. For the same mass density of
matter and the same temperature, a leptonic gas has more pressure, which is necessary for its
acceleration along the axis.

Nevertheless, this analysis is done with the extra-assumption of an identical effective temper-
ature of the two species equals to brightness temperature and that the two fluids have the same
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velocity. The implicit assumption in Eq.(7.9) saying that the model pressure has is of thermal
origin can also be discussed. The thermal pressure entering in Eq.(7.9) could be a fraction of
the total pressure P, which allows to accelerate the flow. It would decrease the thermal © values
in Eq.(7.10) and thus increase the value of the proton fraction. Furthermore, the temperature
presents variations inside the jet, which are the same order of the observed brightness tempera-
ture. Thus there is good reasons to think that the fraction of the species could also evolve across
the jet. This species evolution could allow a continuity between a spine jet which matter source
is the pair creation and a disk wind. On Fig.(7.27, 7.28) the temperature decreases from the axis
up to the border of the jet.

7.5.2 Cooling time scale

In the previous subsection we see that if the brightness temperature is a good estimation for the
effective temperature, then the leptonic fraction y; ~1 which means that the medium is mostly
composed of highly temperature electron positron pair. In such environment the leptons loss their
energy via Syncrotron and Inverse Compton emission. In the fluid reference frame, the mean
value of energy for an electron (positron) is m.c® <y >=m,(c?+e) (where e is the specific energy
mention in Eq.(3.84)). This single electron (positron) in presence of a magnetic field or radiation
radiated away a power estimated to,

4
Pr:§0T0<Y2ﬁ2>u (7.11)

where o1 =~ 6.65x 1025cm? is the Thomson cross section, and u could be the magnetic field energy
density ug = B?/8m for synchrotron emission or radiation energy density u, for Inverse Compton
emission. Then the typical time scale such that the electron loss its internal energy is,

3mec <Yy> 3mec 1 3mec
T, =~ ~ =
" 4oru<ypi> 4doru<y> 4doruE-0)

(7.12)

We will call this time scale as typical cooling time scale. Indeed the electrons loss their internal
energy. We can compare this cooling time scale with the dynamical time scale of cooling due to
transfer between internal energy and Kinetic energy. This time scale could be define as,

3/2 h2 2

7.13
Td rs Vv hi G? dR ( )
From bolometric luminosity L we are able to estimate radiation energy density,
L 2
s (7.14)

Uy = -
4nr2cRe

For the bolometric luminosity we will use the value for M87 L=2,7x10%*erg.s™! mention by Prieto
et al. [2016]. For the magnetic energy density we get

Bfy,. G*(10R)
UB= o~ "Cim)
8n G*(R)

(7.15)

where we use the value at ten Schwarzschild radius Byg,, = 1-15G of M87 supermassive black hole
mention in Kino et al. [2014]. Combining the different previous equation we are able to calculate
the ratio of the different time scale,

2 M2 delc?
T 3mmecry 1, G dR
Ta otL V\/ﬁ(l + 0_62) C_ez

W2 GEM2 delc?
Ty 6mmec> Vv K GUI0R) dR

(7.16)
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Using for luminosity the bolometric luminosity of M87 mentioned in Prieto et al. [2016] we obtain,
TrsB%Orr

otk _ ~(.11634 and >

3Tmec3ry 6mm,c?
scale,

=7,7x107°=1.7x1072. We also are able to plot this ratio of time
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Figure 7.29 — Evolution for the different solution Figure 7.30 — Evolution for the different solution

of the ratio between the Compton cooling time of the ratio between the synchrotron cooling time

scale and the dynamical time scale 1./14 along scale and the dynamical time scale t4/14 along

the axis in function of distance R/R #» the axis in function of distance R/R »

On Fig.(7.29) we observe that cooling time scale due to Compton cooling is quite small in
comparison of dynamical cooling time scale in large part of the jet, nevertheless it became really
small for all solution behind dynamical time scale at large distance, we deduce that this phenomena
need to be include to describe the jet dynamics and especially at large distance.

On Fig.(7.30), we observe that for all solution the synchrotron time scale became small behind
the dynamical time scale for each solution at the base of the jet, it imply that the dynamics of
the base of the jet must be impact by the synchrotron cooling. In the conical solution K4 the
ration between synchrotron emission dynamical cooling time explode at large distance, it is due
to a faster decreasing of the magnetic field. In collimated solution, the magnetic field reach a
non-null value, which imply more or less strong magnetic energy density at large distance, More
the expansion factor G, is large more small is this energy density and more long is the cooling
time due to synchrotron emission. It explain why K2 and K3 solution also have t4/145 < 1 for
R/R 7 =10°. Final cooling time ratio is also determine by the final value of internal energy.

7.5.3 Deviation from thermodynamical equilibrium

It is also interesting to see if it is possible to estimate the deviation from thermodynamical
equilibrium needed to produce the additional total enthalpy and effective temperature. Here we
use the main results of Sec.(3.3.3) in order to estimate the k value of relativistic k-distribution
function required on the axis (not the deviation of pressure sphericity x). So we propose to look
at the extra-energy and the effective temperature for solutions K2 and K3.

On Fig.(7.31, 7.32), we present the evolution on the axis of the effective temperature © = P

(,'2
as a function of the radius. On Fig.(7.33, 7.34) is plotted the evolution along the axis of‘:cohe
internal energy component &= eq + % for solutions K2 and K3. First of all, we note that the
curves are similar for the two solutions. Most of the extra-internal energy is localized at the base
of the flow during the acceleration phase. The effective temperature decreases at the beginning
then increase and reaches a maximum before it happens a new decrease towards a limiting value.
The specific dimensionless enthalpy & decreases during the whole acceleration phase of the flow.
Indeed, hy& remains constant along the axis. This enthalpy constitutes a kind of energy reservoir.
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Part of the total enthalpy is transformed into kinetic energy when moving away from the central

black hole.

Nevertheless, the value of (8e/c?,©) ~ (40 —80,6—18) of K2 requires that the distribution
function is far from equilibrium. It cannot be modeled by a k-distribution function because, in
this case the extra-internal energy is two large. Thus other types of non-equilibrium distribution
functions or other mechanisms should be explored to explaining the acceleration phase of the K2
solution. For K3 we have values of 8e ~0.5—4, with values of ©® ~0.5—1 at the base of the flow.
Part of this area could therefore be explained by using the x-distribution function with values in

range x ~3—3.5.

7.6 Conclusion

We have presented several solutions with flow accelerations and different geometries.

We have explored the effect of introducing the deviation from sphericity of the Alfvén Mach
number, to take into account the previously neglected effect of the light cylinder. The effect

138



CHAPTER 7. OUTFLOW SOLUTIONS

is similar to an increase in the transverse pressure gradient. It increases the collimation, which
results in a lower terminal velocity. Other modifications due to the introduction of this deviation
include an effect of the increased gravity force, which results in a stronger initial acceleration.

The outflow solutions can be divided into two main categories, cylindrical and conical solu-
tions. For cylindrical solution, collimation may be insured by transverse pressure gradient , e.g.
K1 or by toroidal magnetic field e.g. K2 and K3. On the axis, all solutions are accelerated by
the total enthalpy, which contains the gas enthalpy for the effective temperature P/pg plus an
extra-internal energy. It seems difficult with this model to increase the role of the electromagnetic
forces for the gas acceleration out of the axis. However, the solutions were not obtained taking
this goal into account. The Poynting flux of K2 can reach 20% of the total energy flux at the
edge of the jet. High Lorentz factors can be obtained at the infinity yk3 ~ 5.5 or yk2 ~ 100 by
adapting the solution parameters.

We obtained a solution K3 for modeling the extragalactic jet of M87. It has Lorentz factors,
a width and a launching base of the jet close to those evaluated by Mertens et al. [2016].

The plot the magnetization map of the solution, and we see that even if the model is an
expand near the axis where magnetization is zero, the magnetization can grow quickly and reach
non negligible value especially at the base of the flow and for collimated solution. We also observe
a transfer from Poynting to Kinetic energy on the non axial field line, even if ithe gas is mainly
pressure driven.

We also studied the role of the new parameters introduced in this model, namely the spin of
the black hole I and the variation e; of the energy integral & with the magnetic flux a.

e About the [ parameter, it is not obvious that the different parameters of the model depend
on the [ parameter. Thus, from this parametric study on [, no single structural parameter
appears, which is only a function of I/u (or strongly dependent on /) allowing an indi-
rect measurement of the spin of the central black holes through the measurable physical
characteristics of the jet. Nevertheless, by fixing all the other parameters, it seems that the
increase of the black hole spin leads to an increase of the magnetic collimation parameter
for collimated jets. For conical jets, this increase is produced regardless of the direction of
rotation of the black hole. The maximal value of the Lorentz factor decreases with 1.

e Concerning ey, this parameter allows to distribute the energy flow in the jet. If it is positive
then the energy available for the flow increases as one moves away from the axis. Thus
the stratification of the velocity in the jet decreases less fast for positive values of e; and
faster for negative values of e;. The final velocity of the flow increases with e; while the
collimation decreases with the increase of e;. It plays a role similar to 6.

The efficiency of cylindrical jets is calculated admitting the scaling relation between magnetic
flux and accretion rate given in Zamaninasab et al. [2014]. We obtain an efficiency of nje; = 0.52
for K2 and njec = 0.40 for K3.

The comparison between the effective temperature © = P/pgc? of the solutions and the bright-
ness temperature observed by Homan et al. [2006] leads to conclude that the matter in the hottest
jet zone is composed mostly of leptons rather than baryons. However our analysis is limited by
the interpretation of the effective temperature. Indeed, it depends if the temperature includes
supplementary amounts to the thermal temperature. The baryon proportion should a priori in-
crease as one moves away from the axis of the jet.
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Such high temperature potentially increase the synchrotron and the Compton emission. We
estimated the typical cooling time of these process we compare these cooling time with a dynam-
ical cooling time. We observe a potentially strong influence on dynamics of Compton emission
particularly at large distance, when the synchrotron emission need to be taken account at the
base of the flow. Conical solution are less dynamically influence by synchrotron at large distance.
Others model need to be construct to taken these process account in order to get physically
relevant description of such flow.

The internal energy supplement 8e/c? of the solution K2 is too large for a k-distribution func-
tion. For K3 only part of the jet can be interpreted as having a k-distribution function. This does
not mean that the internal energy supplement cannot be explained by means of a velocity dis-
tribution out of thermal equilibrium. Yet this out-of-equilibrium distribution cannot be explained
only by a k-distribution function.
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CHAPTER 8. INFLOW/OUTFLOW SOLUTIONS AND SOURCE TERMS

8.1 Introduction

The study of magnetized flows around massive rotating black holes is an extremely active research
domain. Considering, the strong gravitational field, the reservoir of rotational energy of the black
hole and the presence of an accretion disks may induce high energy phenomena as creation of pair
mechanism, Compton and Inverse/Compton. These mechanisms need to be included in the Gen-
eral Relativistic Magneto-Hydrodynamic (GRMHD) the dynamical treatment of the flow. Indeed
the X-rays and y-ray emission could be explained taking into account Compton/ Inverse Compton
scattering and pair formation mechanismes inside the jet dynamics Blandford and Levinson [1995];
Levinson and Blandford [1995].

The rotational energy extraction of the black hole leads to a lot of investigations. In this re-
search on the extraction of rotational energy by the Poynting flux, the final calculation of Blandford
and Znajek [1977] assumes an expansion, in the force-free assumption, with the black hole spin,
from a solution where the magnetic flux is radial or parabolic. Nathanail and Contopoulos [2014]
obtain solutions of the force-free Grad-Shafranov equation for black hole magnetosphere. They
explore three kind of solutions, with high value of spin, where the infinite geometry of poloidal
magnetic flux field lines is one of a split-monopole, the paraboloidal and vertical. They use a
method which allows them to cross smoothly the two light cylinders (critical surfaces of the free-
force problem), for the two configuration where the lines cross these surfaces. They also conclude
as Komissarov and McKinney [2007] that no Meissner effect will ever occur in force-free magne-
tosphere. About Blanford-Znajek extraction process, they insist on the role for studying magnetic
flux accumulation on black-hole horizon. To explore a wider set of configurations as different
geometries and to include matter density, it is useful to solve the equations of GRMHD up to
the black hole horizon in order to calculate the energy and angular momentum flux exchange
with the black hole. Takahashi et al. [1990] and Hirotani et al. [1992] started to include full
Magneto-Hydrodynamic (MHD) analysis for calculation of energy fluxes on the horizon. Globus
and Levinson [2013, 2014] explored the role of the amount of pairs (and their energy) in the energy
exchange with the black hole. Their solutions are calculated in the radial geometry without force
free assumption. They obtained a decrease of the energy flux extracted from the black hole with
the increase of created pairs. They obtained also limiting mass flux flowing into the black hole for
getting an active extraction process. In the first paper Globus and Levinson [2013], the loading
of the flow is done at stationarity surface. In the second paper Globus and Levinson [2014] build
a model with a volumic loading of mass and energy adapted to neutrino annihilation in Gamma
Ray Burst (GRB). Pu et al. [2015] built magnetized solutions by matching the inflow and the
outflow solutions in a parabolic geometry. Nevertheless, they imposed a continuity for the current
distribution T at the stagnation radius, where pairs are created. Thus there is no Poynting flux
creation by the injection in the flow. This is not be the case here in this chapter; it could be an
extra-assumption. Broderick and Tchekhovskoy [2015] argued about the region close to the stag-
nation surface as a natural site of formation and acceleration of pairs. More and more simulations
McKinney [2005a,b] explored the role of the loading of pairs in the behavior of astrophysical flows.

The purpose of this chapter is to present some properties of inflows from the self-similar model
presented in Ch.(5). We also explore the variety of possible exchanges between these inflows and
the black hole. Then we talk about the geometry we obtain for these inflows. Finally, we pro-
pose different solutions matching the inflow with the outflow where we evaluate the source terms
required to produce this matching. We also study the different surface currents produced by
different source terms.
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8.2 Inflow model

The model of meridional self-similar General Relativistic Axi-symmetric Stationary ldeal Magneto-
Hydrodynamic (GRASIMHD) flows develloped in Ch.(5) can be used to produce inflow solutions.
We present here the main properties of the inflow solutions. Then we present three kind of
inflows characterized by the type of exchange they have with the black hole. Finally, we discuss
the geometry of the inflowsolutions.

8.2.1 Properties of inflow solutions

Following the construction of the model, we can notice that the modelisation of ¥, Eq.(5.56)
could be written without loss of generality, using Eq.(5.37) and Eq.(5.40),

Byxhicv
hxéxyxc? /1

Indeed for infalling material flowing into the system at the x point Vx <0 then v<0and ¥, <0,
which is equivalent to say that material is falling. Thus inflow solutions need to be searched in
the range of parameter where v <0. The whole thread of model development can be followed as
for the construction of the outflow. Then the system of equation, Eqgs.(5.107) with v<0, is also
valid to build Inflow solutions. Using Eq.(4.29), this equation taken at the zero-th order allows us
to find a relation, similar to the one presented in McKinney [2005]; Tchekhovskoy and McKinney
[2012]; Tchekhovskoy et al. [2011], or McKinney et al. [2012]. It is also experimentally presented
by Zamaninasab et al. [2014]. They link the accretion mass rate falling into the black hole with
the magnetic flux crossing the black hole horizon.

From our model, we find,

Up (o) = V1+da (8.1)

e -]
Py ~ MInG, Minfc(—) (8.2)

where the infall mass rate Mjys is calculated with Eq.(4.29) and we neglect the source term along
the infall fieldlines (k;, =0). The magnetic flux of the black hole is simply the value of magnetic
flux on equator horizon, @gy=A(r = rz,n/2). It should be emphasized that here the mass rate
Mint is the one of the produced pairs falling on the black hole horizon and not the accretion mass

rate. The value of the proportionality factor between &gy and \/MinfC(%)z is a function of the
parameters of the model. If we can constrain by the observations this proportionality factor we
can deduce the value of &x. In a first step we could take the value of this factor equals to 50
as in the work of Zamaninasab et al. [2014]. The Eq.(8.2) could concern only a fraction of the
accreted mass since we do not take into account the matter accreted by the black hole in the
equatorial plane.

Note that for [ =0, the system of equations, Eqgs.(5.107), is invariant by the transformation
v — —v. This property implies that the GRMHD system around a Schwarzschild black hole is
unchanged under the transformation V < —V, which is not the case for a rotating black hole.
Indeed the rotation and the induced Lense-thirring forces break the symmetry of the system. In
the Kerr case, the GRASIMHD system, Eqs.(4.17), is invariant under these transformations,

Ve -V Ve —V {V v Ve —V (8 3)
=— — — - , .
4 —a J -1 or PP Ao -\

It explains why in all case the transformation keeping the absolute value of all parameters v < —v
needs to be accompanied with the transformation v < —v and Al < —Al. Indeed, the Lense-
Thirring force is proportionnal to wV®. Using Eq.(4.44), the first expansion term in a of wV®
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(which is of the order required to build the model) is proportional to WaLw/Wx % The Noether
energy flux of solution is,

h2Byve
VIt 6a(l + ey (8.4)
VR

Then for an inflow solution (v <0), the energy flux is flowing into the black hole along the
axis. The only possibility to have some energy extraction from the black hole, is to have negative
values of the e; parameter and sufficient magnetic flux which crosses the black hole horizon.

UpE =

The null energy condition Eq.(4.89) implies that for finding solutions which extract energy
from rotational energy of the black hole, we need to have the angular momentum extracted from
the black hole. Then we need to seek solution with A = 0. The first integrals Eq.(8.4) and
Eq.(5.58) insure that the zero energy condition Wp& < W) L w s is automatically satisfied on the
axis. However for e; <0 exists an «a value for which the zero energy condition no longer holds.
We shall focus on solutions where the zero energy condition is satisfied everywhere into the horizon.

The equation Eq.(5.68) implies that toroidal velocity is null on the horizon. Equivalently
Eq.(5.69) implies that the toroidal magnetic field becomes infinite on the horizon. Nevertheless,
the charge current I, which is an invariant quantity remains finite on the horizon.

In inflow solutions, the critical points of the system are crossed when R decreases from the
stagnation surface up to the horizon. On the horizon the Lorentz factor of fluid measured by
Zero Angular Momentum Observer (ZAMO) becomes infinite to avoid the divergence of effective
enthalpy £. Going upstream, the field lines reach the Alfvén point then the slow-magnetic point
and finally the point of stagnation.

We need to analyze now how, our differential system of equations reacts when the integration
point gets closer and closer to the horizon. Indeed using the Boyer-Lindquist coordinates system it
is possible to meet some discontinuity arriving from the coordinate singularity on this hypersurface.

The horizon surface is defined for the radius R z = % (1 +4/1- (%’)) Note that just outside of the

. _ - 2 - g V1-a? .
horizon for R=R _# + dR, we have X, R MR +2R 7#dR and hf R, 1+de. First of all,

—R -

note that € being constant, Eq.(5.90), is equivalent to,

1 M X, P 2 212G? A’Ng &
€ ~ — ——4(1+(K—2m1)—;——)—V—(Zel—2m1+6—|<)—V 5 2)\2( B+&)
R—Rx hy | G?hiX, G* X; v W3R ~ A
ANy \?
+A2 (—V )
hx«GD
(8.5)
Since € is constant, it implies that there is a constant €’ such that,
4 X 12 2 2122 A2N <
——(1+(K—2m1)—+——)—V—(261—2m1+6—1<)—v +2)\2( B +&) .
(:‘l2 hiX_'. G2 X+ lJ. l,lgRij D A R—R»
(8.6)

To see if our system Eqs.(5.107) contains a singularity when the solution approaches to the
black hole horizon. We need to verify the continuity of Ay and A% near the horizon. Using
Eq.(5.110), and grouping terms proportional to 1/h% we get,

dM? whiDRG? M* X, BBYy V2, .
Me =Rap——D e~ - 1+ (k—2my) = — — | - — (2" —2m' +5-x
MEZRATAR T R—Roe 22X M2 GzhiX+( =2l X+) M (2e )
212G? AN )
—VS > +2)\2( B 1220 | + Rye
H°R%, D A

148




CHAPTER 8. INFLOW/OUTFLOW SOLUTIONS AND SOURCE TERMS

The first term is proportional to the term of Eq.(8.6), then

phi DRG?€

; ~ +R 88
“RoRx 2X, M2 M (8:8)

M

Thus My is continuous. 2 given in Eq.(5.108), remains continuous on the horizon. Then dd—l\f:

remains continuous when we approach to the black hole horizon. Nevertheless A% W Cst/h?
— R
is not continuous when we reach the horizon. Some dependance implies that FR ~ In(R—R_g»),
—hw

then the opening angle factor in Eq.(5.52) thR = VR=Rz#In(R-R ») R—}»{O. The field line
4 — Rz

—

enters radially into the black hole horizon, and we have BY =V =0 on the horizon. The function
G* ~ Gi? has a limit on the horizon. Let us have a look to the differential equation Eq.(5.111).

R—Ry
The function representing the pressure I can be smoothier on the black hole horizon, only if the

velocity on the axis reaches ¢ in the ZAMO frame at the horizon. To keep finite enthalpy £ on
the horizon, the convergence of this velocity has to be such as 1—p2, ~ h2. Thus for a finite

R—Rue
4
value of enthalpy at the horizon, the factor v2h} — ‘% — h?, and the derivative ‘%Y — hl%
Then the pressure function II evolves with a logarithmic dependance HR ~ In(R—-Rz). The
—hw

parameters shall be adapted to obtain such a solution. The property of Egs.(5.107) allows to inte-
grate as close as we want of the horizon. The solution can get as close as we ask from the horizon.

An another way to avoid the horizon "singularity” without changing fundamentally the model
is to change coordinates. Keeping the time coordinate, for example using {(R) such that d{= %.

It may help us to transform and smooth the system of Eqs.(5.107).

8.2.2 Energetic exchange on the black hole horizon

We present now three solutions, for which the exchange of energy of the black hole differs in the
nature of energetic flux decomposition Eqgs.(4.88). First solution is a solution in which there is no
extraction. The exchange is dominated by @y, the matter falling everywhere on the black hole.
The second contains some zone with out flowing of Noether energy (extraction). This extraction
is dominated by the Lense-Thirring energy flux @1r. The last presented solution gets also some
zone where the Noether energy flux flows out of the horizon, but is dominated by the Poynting
flux QEM

11 : A solution dominated with negative energy flux on the horizon

First, we look at a physically solution. This means that the stress-energy tensor respects the null
energy condition everywhere. We also ask a positive value of the isorotation function. We find
the following set of parameters for solution I1,

A K 0 v ¢ v Iy el
11 | 0.036 | 0.468 | 0.075 | -1.79 | 0.12 | 0.442 | 1.4 | -0.21

Table 8.1 — Parameter values (with 1073 accuracy) for solution 11

First of all, we present the evolution along the inflow of the four radial function M?,G?,E IT
which characterize the solution.

On Fig.(8.2) note that, as expected, the expansion factor hF reaches 0 on the black hole
horizon. This confirms that the poloidal field lines are radial when they enter the horizon. The
stagnation radius is around 3.17Rz. The flux tube in Fig.(8.1), is in expansion (R — G* is
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Figure 8.2 — Plot of the expansion factor function

Figure 8.1 - Value of the flux tube radius function h.F as a function of the radius for the solution 11

G? as function of the radius for the solution 11
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Figure 8.3 — Plot of the Alfvén polar Mach num-
ber M2 as a function of the radius for the solution
11

Figure 8.4 — Plot of the polar Mach number IT
as function of the radius for the solution 11

increasing with) in the whole flow. Near the horizon the expansion factor varies between 0 and
0,2, which corresponds, Eq.(5.52), to positive opening angles. The expansion is weaker than
the radial expansion of the tube. For R = 1.6R the expansion factor becomes negative. The
expansion of the tube is stronger than the radial expansion. This strong expansion leads to the
formation of a magnetosphere.

The Alfvénic Mach number M2, see Fig.(8.3), is 0 on the axis for the stagnation radius and
starts to increase, following the flow (RY\,). Then at R ~ 2.5R # it decreases to reach a finite
value on the horizon. The evolution of M? and G? is such that the velocity of the plasma reaches
almost the speed of light (Y ~20) on the axis when it enters the horizon. See Fig.(8.4). From
the horizon going upstream (R ) along the axis, the pressure IT decreases. The pressure slows
down the accelerating of the flow. Then from R ~ 1.25R » the pressure increases. The pressure is
driving and accelerates the flow. Finally for R ~ 2.75R », the pressure decreases again.

Now let us analyze the role of the different forces in the flow. As for the dynamical analysis of
the Outflow Sec.(7.2), we project the forces parallel (longitudinal forces) or orthogonally (trans-
verse forces) to the flow. We choose the projection vector aligned with the flow. So a longitudinal
force accelerating the flow is positive in the following graphs. For transverse forces, we choose
as projection vector the unit vector perpendicular to the flow tube directed inside it. Thus any
transverse forces pushing the matter towards the axis (collimation) is positive in the following
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graphs.

We see in Fig.(8.5) the evolution of the different forces on a field line. Positive values cor-
respond to forces which accelerate the flow falling down into the horizon. The force driving the
fall is mainly gravity, not surprisingly. There is also the pressure forces in the phase where the [T
function decreases. The decrease of the pressure is probably due to the acceleration in the fall.
The toroidal magnetic tension is also a driving force as the flow tubes are tightened. Surprisingly
the toroidal magnetic pressure, mainly a braking force in the flow, becomes at some radius a
driving force. Indeed the variation of the effective toroidal magnetic pressure, i.e. hB?, starts to
decrease around 1.25R . This decrease is probably due to the change of the opening angle factor
which becomes weaker than the radial expansion in this region.

The main force that slows down the gas is its own inertia. Lense-Thirring forces is one order
lower close the black hole. Weaker, in the middle of the flow, the magnetic forces start acting
against the fall, mainly because of the toroidal pressure. Then there is a decreasing of the toroidal
pressure hB?® along the flow. This decrease involves a change in the regime of the magnetic forces
that opposes the acceleration of the flow. It becomes a driving force close to the black hole.

We see on Fig.(8.6) the evolution of the different transversal forces along a given field line.
In the transverse equilibrium, the main force opening the tube is the force of gravity, when the
flaring of the lines is greater than radial. The second forces opening the tube is the electric force,
mainly in the environment of the horizon, where it becomes the main force. The electrical force
is cancelled at the radius where the isorotation frequency is equal to that of the coordinate shift.
The cancellation of the electric field also leads to the cancellation of the charge density measured
by the ZAMO. This property of the electric field motivates some work on the gap solutions (
Levinson and Segev [2017] and Ford et al. [2017]). Indeed as discussed in the introduction of
Sec.(3.1.8), a gap region could exist since the pairs production rate is not strong enough to obtain
the Goldreich-Julian density. This density is the one obtained by the electric field for an ideal
conductor medium. Then the ideal conductivity assumption couldn’t be kept in this region and we
obtain an electric field component parallel to the flow. This kind of situation could occur where
the Goldreich-Julian density is cancelled and this surface is called the null surface. The electric
field cancellation in our model is equivalent to this null surface. Levinson and Segev [2017] showed
that the existence of this gap couldn't stay steady. The poloidal magnetic tension acts as a force
bringing the poloidal field lines back to their radial situation, so this force opens the tube when it
widens faster than a radial tube and vice versa. Centrifugal force is, as usual, a force that pushes
to open the tube where infall occurs.

The force pushing the inflow towards the axis of rotation is mainly the strength of the toroidal
magnetic field. Then comes the poloidal advection force in the part of the flow where the tube
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opening rate is faster than the radial tube opening rate (flaring tubes). The transverse pressure
force changes sign. Indeed, while at the top of the flow, close to the stagnation point, the
pressure is lower on the axis, it pushes the material into the axis. The drop and then the change
of sign from II eventually reverses this situation. The pressure becomes greater on the axis and
contributes to the opening of the tubes close to the black hole.
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In Fig. (8.7), we see that the energy fluxes of this solution on the horizon of the black hole
are dominated by the matter. In comparison, the Poynting flux remains extremely low. This is
not surprising considering that this flow has an isorotation of 2~ 6.2%w . The flow also falls
into the black hole in the direction of its rotation axis, so the Lense-Thirring flux is also negative.
This type of solution, therefore, gives energy to the black hole. The mass of the black hole grows.
Nevertheless, A =0 so the black hole gives angular momentum to the MHD field, its own angular
momentum decreases Eq.(4.85). We are in a configuration such that anywhere on the horizon
YUprE <0<UpLw_gp.

12 : A solution dominated by fluid type extraction

From the solution 11, we search, using the tools developed in Sec.(6.4) to move in the parameter
space, to obtain a solution with Ve positive on the equator of the horizon. We also seek an energy
flux dominated by @17, while keeping the null energy condition. We have obtained the following
parameter set for solution 12,

A K o v 4 Tl ITs e
12 | 0.392 | 1.341 | 0.355 | -1.562 | 0.17 | 0.807 | 0.859 | -0.349

Table 8.2 — Parmameter values (with 1073 accuracy) for solution 12

The stagnation point of this inflow is closer to the horizon R = 1.503R . We see in Fig.(8.9),
as for the solution 11, the cylindrical section of the flow tubes G? is growing monotonously as we
move upstream (R ). Nevertheless, Fig.(8.10) unlike I1 this solution, does not have a region
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in the black hole environment where the opening angle factor h,F is positive. This implies that
everywhere in the flow, the expansion of the tubes is faster than the radial expansion.

The Figs.(8.11, 8.12) for the Alfvénic Mach number on the axis M? and the pressure factor
1T have quite similar evolution as for the solution I1.
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Figure 8.10 — Plot of the expansion factor func-
tion h,F as a function of the radius for the solu-
tion 12

Figure 8.9 — Value of the flux tube radius function
G? as function of the radius for the solution 12
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Figure 8.11 — Plot of the Alfvén polar Mach num-
ber M2 as a function of the radius for the solution
12

Figure 8.12 — Plot of the polar Mach number IT
as function of the radius for the solution 12

About flow dynamics, let us first examine the forces along the flow, see Fig. (8.13). These
are quite similar to those of the solution I1, but it is interesting to note the change in sign of
the toroidal velocity along the flow. Cayatte et al. [2014] gave a criterion of counter rotation
in GRASIMHD outflows, that can be extended to inflow solutions. This reversal of the toroidal
velocity cancels the centrifugal force and is associated with a reversal of the frame dragging force.
Remember that this graph concerns the longitudinal forces along the lines, shown in orange in
Fig. (8.26).

The transverse forces are very different due to the very fast expansion in this 12 solution of
the flow tubes. Indeed, such an opening angle factor h,F maintains the gravitational force as a
force contributing to the opening of the tubes. The electric force does not cancel out, in fact,
this flow is so close to the black hole that the isorotation frequency is constantly lower than the
pulsation of coordinate shift. In this case, the cancellation of the electric field must be above the
stagnation point. The pressure changes sign twice due to the faster increase of I at the entry into
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the horizon Fig.(8.12). Since the tube opening rate is constantly faster than the radial opening,
the poloidal magnetic tension does not change sign and contributes to the opening of the tubes.

2102 |

12 13
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Figure 8.13 — Longitudinal Forces on a poloidal
field line plotted in orange in Fig.(8.26) for the
solution 12

Figure 8.14 — Transversal Forces on a poloidal
field line represented in orange in Fig.(8.26) for
solution 12

Concerning the distribution of energy flux between the fluid and the electromagnetic fields on
the horizon of the black hole, see Fig. (8.15), the solution is, as before, clearly dominated by the
flux of the fluid. Indeed, the isorotation is relatively low, 2=9.6%w . Nevertheless, we note that
the flux @pp changes sign around n/3. The decomposition of the flux ®pp =Py + @iy Fig.(8.16)
shows that the Lense-Thirring flux changes sign and becomes quite dominant near the equator.
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This kind of solution is therefore dominated by the Lense-Thirring flux @1 near the equator
plane. It respects the zero energy condition everywhere. Nevertheless, it should not be forgotten
that the model is the result of a two-order expansion in latitude close to the axis. So the solution is
restricted to small angles among the axis. Nevertheless, it seem possible under specific conditions
that the inflow into the black hole activates the Penrose process.
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13 : A solution dominated by Poynting type extraction

The goal to find the last inflow solution is to increase the extraction of Poynting flux. We move
in the parameter space by increasing {2/w_ while keeping the angle of the extraction nearly
constant, but also by keeping the zero energy condition. We also tried to keep the stagnation
radius as high as possible during this parametric exploration. Indeed, the stagnation radius tends
to decrease sharply as we increase 2/w . In practice, other constraints need to be added, but
this is a purely technical issue that we will not discuss here. Finally, the set of parameters for
solution 13 is,

A K ) v l 11 . el
13 | 0.388 | 5.898 | 0.259 | -1.443 | 0.25 | 0.978 | 0.275 | -0.555

Table 8.3 — Parmameter values (with 1073 accuracy) for solution 13

The main functions which characterize the solution 13 are represented in Fig.(8.17, 8.18, 8.19,
8.20). They have the same kind of evolution as the one for the solution I12. The stagnation radius
is really close to the black hole, Rgt = 1.175R s horizon. Thus, the expansion angle factor is lower
(h.F reaches —2.5) than for the solution 12. Then the poloidal fieldlines open themselves faster.
Also note that the pressure function I1 stays positive. It implies that the pressure remains a force
which pushes the material towards the axis, everywhere in the flow.
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Figure 8.17 — Value of the flux tube radius func- Figure 8.18 — Plot of the expansion factor func-
tion G2 as function of the radius for the solution tion h,F as a function of the radius for the solu-
13 tion 13

We look at the evolution of the longitudinal equilibrium of the forces along the field lines,
Fig.(8.21). As for the previous solutions, gravity is the main force accelerating the flow. We
can see that unlike the previous flow, the pressure at the top of the flow is already a force
that accelerates the flow. Then the pressure variation reverses from the middle of the fall and
counteracts the acceleration of the flow towards the horizon. As for 12, we observe a change in
the sign of the toroidal velocity.

Regarding the transverse forces Fig.(8.22), we have a situation where the opening forces of the
tubes are dominated, as in the other solutions, by the gravity and the electric force. Conversely
the forces pushing the mater on the axis are dominated by the poloidal advection and the pressure,
which is not the case for the solution 12 and 13.

By obtaining 13, where 2= 0.5w 7, we increase the values of the Poynting flux Eq.(4.88) with
respect to isorotation. We can continue to improve this value by working on the Mach number
values on the horizon, or increasing agy. We obtain, Fig.(8.23), a solution where the Poynting
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solution 13 solution 13

flux exceeds the matter flux for latitudes on the horizon around m/4 —mn/3. The material flux
increases on the upper hand over the poles and the on equator at the horizon.

The decomposition of the perfect fluide flux Fig. (8.24) shows that, in this solution the
Lense-Thirring flux is absolutely not negligible. And it remains as in solution 12 dominating at
the equator while it is the internal energy flux that dominates on the poles.

We see that our model is able to produce solutions where the Poynting flux becomes the main
component of the energy exchanges with the black hole. The rotational energy of this solution,
can feed energy to the GRMHD fields via either the Lense-Thirring flux (Solution 12), or via the
Poynting flux (Solution 13). This supply of energy flux can be turned into another type of energy
flux along the flow.

8.2.3 Geometry of inflow solutions

During our description of the three inflow solutions characterized by a different types of energy
exchange with the black hole, we have shown that the flow geometry is related to the the dynamical
behavior.

It seems that in our model, all inflow solutions are characterized by a high expansion rate
of the magnetic flux tubes, h.F <2, between the black hole horizon and the stagnation radius.
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Nevertheless regarding the geometry, we can put aside the solution 11 where the region close to
the horizon has a slower flux tube expansion than the radial expansion h,F = 0. And on the other
hand for the solutions 12 and 13, in any position in the flow the opening of the tubes is faster
than the radial expansion, h,F <0.

In the case of solution 11, we see that the change in the tube opening regime results in a
change in the role of gravity, as we increase or decrease the cross-sectional area of the flow tubes.
The force of gravity is mainly radial Eq.(5.101), although the non radial gravity Zg due to the
rotation of the black hole pushes the tubes to open. Gravity tends to align the flow with the direc-
tion of its field, a=DIn i, which is the case for our tube at the horizon since h,F| 7 =0. When the
flow is pushed outwards by the other transverse forces, it pushes the tubes inwards and vice versa.
Gravity tends to stabilize the geometry. While the electric force is still trying to push the tubes
out, the toroidal magnetic forces have the opposite action. They always push the tubes inwards.
From a dynamical point of view, the essential change between inflow 11, on the one hand, and in-
flows 12 and 13, on the other hand seems to be the absence of the cancellation of the electric field.
It implies for solution 12 and I3 a reinforcement of the work of the forces pushing the flow tubes
towards the outside which could explain the differences of the h,F regime between the two groups.

From a kinetic point of view, the positivity of h,F near the horizon for solution 11 implies the

157



CHAPTER 8. INFLOW/OUTFLOW SOLUTIONS AND SOURCE TERMS

formation of a torus represented in red (8.25) on the field line. The material inside the torus is
trapped or accreted. Nevertheless, it should not be forgotten that the results of this model are
questionable at high latitudes near the equatorial plane. Especially when the quantification of the
stationarity brought by the expansion in latitude is not done. Indeed, for all solutions, the lines
connecting the equator to the horizon can only be physically explained by an accretion from the
disk or by a source term in the equatorial plane. In figures Figs.(8.26, 8.27) the red line represents
the last line that could be fed by the plasma from the stagnation point. The mater inside the
red field line of this inflowing "magnetosphere” may be matter coming from an accretion disk
surronding the black hole in the equatorial plane.

8.3 Conditions for matching inflow/ouflow

Now, we build a "complete” solutions, including both the inflow (falling flow) and the outflow from
the system (spine jet). Such solutions are very interesting because some lines of the magnetic field
possibly connect the horizon from the black hole to infinity. Thus the energy exchanges between
the black hole and the GRMHD fields can explain a fraction of the energy transported in these
lines to infinity.

The easiest way, to build a "complete” solution is to match an inflow solution with an out-
flow solution in the frame of our model. These solutions have the same stagnation radius. We
therefore consider two solutions of the model built from the GRASIMHD, without sources in their
flow except on the stagnation radius. The matching between these two solutions is only possible
with the presence of a source term at the interface. We calculate here the minimum necessary
conditions allowing the matching between these solutions.

8.3.1 The continuity relation and the surface current

In order to describe the MHD field, from the horizon to infinity we need to use a matter source.
Indeed this means that the loading terms k;, and k are null except at the stagnation radius of
the solution. In fact, the shape of these loading terms are adapted to the mechanism of pair
creation/annihilation from neutral particles. The way they are included in the basic equations,
Eq. (4.17) does not directly disturb Maxwell's equations. The electro-magnetic field is only due
to the charge four-current. Nevertheless the loading term on this thin layer, acting directly on
others fields can be at the origin of surface charge four current of our gas in the layer which will
imply some continuity-discontinuity of the electromagnetic fields.

First let us consider some thin layer at stagnation radius r € [rsta - %; Tsta + %] where load-
ing term ky,, k aren’t null. The Maxwell equations without source (Maxwell-Flux) and (Maxwell-
Faraday) ensures the continuity of the magnetic flux, Eq.(4.18), and the continuity of the isoro-
tation function, Eqgs.(4.24, 4.17,), along each magnetic field line,

{ BP ‘DA= 0 Aout (Rexos e) = Ain (Rexo» 9) (89)

=

Bp ‘Df2= 0 Ar—o { Qout (Rexo» 0) = Qin (Rexme)
The surface current is included in the stagnation sphere. Then using Maxwell-Ampere equa-

tion, it implies that the magnetic field component B normal to the layer (here a sphere) needs

to be continuous, and that,
a6A0ut (Rexo’ 9) = aeAin (Rexo; e) (810)

Thus, using Maxwell-Gauss, the meridional electric field EY is also continuous across the
layer surface with loading terms. We may have discontinuity of 0,A at the sheet layer. This

158



CHAPTER 8. INFLOW/OUTFLOW SOLUTIONS AND SOURCE TERMS

discontinuity is source of toroidal surface flux current Ig and surface density of charge g,. From
some integration of Maxwell-Gauss and Maxwell-Ampere Eq.(4.17), we get,

2-w
- hhoc (OrAout Rexor0) — 0rAin (Rexo,0)) =  4mo,
. ) (8.11)
1 4 1)
7 (aerut (Rexo; 9) - arAin (Rexo; 9)) = _]()'
Dh, c

where the surface current is generally defined by ]Z; = lim fr“aJrAr/ZIicdr, with k=0 or ¢. Note
Ar—0 rsta—Ar/Z

that o,.c= —ng.

Using the inversion of first integrals, Eqs.(4.44), the toroidal magnetic field is also linked to the
charge current, Eq.(4.22) which crosses the surface inside the circle €, ={Me€ X'|0(M) =0, (M) = r}.

In the axi-symmetric and stationarity assumption, the toroidal magnetic field contains information

on the poloidal Poynting flux I}, = —h‘D,;(CZB{be = —%ZB,Q.

This current function, which is also proportional to the Poynting flux, @y = —221 is not
constant along the line,

M2 @2 2((2-w) @?(2-w)
21= L |1 - A7 - (8.12)
M3, — h? (1 - x2) M3, — b2 (1 - x2)

Eqs.(4.26, 4.35, 4.39) imply the discontinuity of ¥, WAL and W& on the sheet layer. Thus
looking at Eq.(8.12), we also get some discontinuity for the current function I. Which is equiva-
lent to some discontinuity of B Then we also have a discontinuity of the Poynting flux, which
implies the presence of a meridional ]g surface current.

An apparent paradox appears because charges seem to accumulate somewhere on the sheet
layer due to the existence of a non null J%. Looking at the following sketch on Fig.(8.28) of the iso
contours of current intensity I in the poloidal plane, we see that in reality there is no accumulation
of charges.

In our model Ar — 0 and we get a discontinuity of the current intensity, which implies a
discontinuity of hJ". This is linked to the variation with 8 of the surface current J9. After
some calculations, using the equation of charge conservation, we obtain for the radial current
discontinuity at each latitude,

. . 1 0 . &
hllrn (Rsta) = hIcrmt (Rgta) + m % (p sin 9]2) (813)

Keeping fixed the black hole mass and the angular momentum values for both flows and the
stagnation radius, we finally obtain,

I'kinRin,sta=  T'x,outRout,sta } Rinsta Rout,sta

I'x,in Min = I'x,out Hout Hin Hout (8 14)
ﬁﬂ _ gout
Hin  Hout

To summarize all the conditions we get for matching an inflow to an outflow in term of the
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>
sta G)

Figure 8.28 — Sketch representing the current intensity isocontour I in the layer of Ar thickness. Blue lines
are iso contour of I. Red lines represent the boundary of the thin layer. The dotted red line is the surface
of stagnation.

parameters of the model presented in Ch.(5). We get,

Rsta,in _ Rsta,out
Min - Mout
Min  Hout
< B*,inﬁn (Rsta,in) _ B*,outfout (Rsta,out) (8'15)
uizn Mout
lin Hizn + Ain Hi{z Pk in lout P‘%ut Aout Hg{lzt Pk out
(1+6)’ Vin (1+6w)” Vout

8.3.2 Energetic balance at stagnation radius

The mass, angular momentum and energy exchanges with the Kerr black hole on the horizon are
explicitly given by the equations Egs.(4.85). In order to describe the MHD fields from the black
hole horizon up to the infinity, we build two types of flows, calculated from our semi-analytical
model. A matching between the inflow and outflow solutions has to be done, taken into account
the loading terms. Thus the loading term of plasma pairs, k;;;, and the recoiling force on pairs
fluid k is proportional to a Dirac distribution function,

km= km,sta 0)0(r —rsta) » (816)
k=Kkgia (0) 0 (r — 75ta) - (8.17)
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The integration at the stagnation radius of Eqs.(4.26,4.35,4.39) gives the variation of mass,
angular momentum and energy fluxes at the stagnation radius. We get,

4mich

U (A) =W (A) + —57 Kmsta Osta (A) (8.18)
out in 4T[h
(Zal)*™ (A) = (PaL)™ (A) + 578 - Ksta (Osta (A)) , (8.19)
. 47tch
(WAE)°U (A) = (Tp&)™ (A) - ’;—ﬁn Keta (Osta (A)) - (8.20)

In the outflow, the mass flux is positive, whereas in the inflow, it is negative. Applying the
first condition to Eq.(8.18) implies that for each colatitude 4’};§h kmsta (0 (A) = (—W‘;{l (A)). [t means
that the rate of pair creation needs to be sufficient to reverse the mass flux and allows to produce
inflow and outflow.

These fluxes are conserved in the inflow. Let us consider a magnetic flux line, which crosses
the horizon of the hole, using Eqs.(4.85). It is interesting to link these fluxes to the exchange of

these quantities with the black hole:

d*M 4ntch
R =-—— (6.7 (M) + ——Kmsta Osta (A)) (8.21)
a? z 4mh
out _ — ¥
(ZAL)** (A) = = =5 O (A)) + —5=8 - Ksta (Osta (A) (8.22)
dzEJf 4nich
out _ _ .
(a8)*" (A) = === (O (A)) = —7= M Ksta (Osta (A) (8.23)

Thus for a line which cross the black hole horizon the flux at infinity is constituted of the flux
given by the black hole and the flux given by the source terms. For creating leptonic pairs via
photon annihilation, the photons which are transformed in pairs transfer to the pair fluid their
energy and their angular momentum.

8.4 Inflow/ouflow solutions

We now use the minimal condition of matching Eqs.(8.15) to find for each of the inflows, a
corresponding outflow. This one is not unique. We call "matching” the combination of these
two flows. This "matching” allows to describe the fields from the horizon of the black hole to
infinity. Eqgs.(8.18, 8.23), allow to calculate the contribution of the source term in function of
mass creation rate, angular momentum and energy to match the two flows. Then we compare
these rates with the exchange of the same quantities associated between the fields MHD and the
Kerr black hole. We also examine the surface density and the current surface, Eqs.(8.11, 8.13),
at the stagnation radius.

8.4.1 Parameters and main characteristics of matched outflow solution

In what follows, we refer to the "matched” solutions as M1, M2 or M3. They contain one of the
inflows 11, 12 or 13 presented above and a corresponding outflow O1, O2 or O3 presenting the
minimal conditions of matching Eqs.(8.15). We start by giving the parameters of the different
outflow solutions,

The minimal conditions of matching Egs.(8.15) are almost satisfied using the tools developed
in Sec.(6.4).

The minimal condition of matching Eqs.(8.15) are tuned to precision of 1073 Tab.(8.5). For a
given inflow solution the outflow solution, satisfies the minimal conditions of matching. With the
minimization of ITx Sec. (6.3), an outflow solution is characterized by 7 parameters. Thus, since
the minimal conditions of matching, Eqs.(8.15), impose 3 effectives conditions on the outflow so-
lution parameters, all outflow solutions corresponding to a given inflow must be a sub-variety of di-
mension 7—3 =4 in the outflow parameter space. The set of solutions (Inflow+Outflow+Minimum
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A K ) v 14 v el

010,985 | 0,230 | 1,328 | 0,386 | 1,016.107% | 3,758.107% | 6,892.1073
02 ] 0,998 | 0,280 | 1,296 | 0,234 | 6,502.107% | 3,012.107% | 6,892.1073
03 | 1.171 | 0.291 | 1.319 | 0.600 | 4,767.10~ 0.184 -6,268.1072

Table 8.4 — Set of parameter of matched outflow solution

a 21wz Rsta/R7 | Ymax,axe Ex
M1 | 11 | 05429 | 6,2167,107> | 3,1777 15 253
01 | 0,5410 | 6,2047.107%2 | 3,1771 1,47 | 1.42
M2 | 12 | 0,4316 | 9,6912.107%2 | 1,5031 11 136
02 | 0,4316 | 9,6912.10°2 | 1,5031 4 15
M3 | 13 | 0,5189 0.5022 1,1755 12 162
03 | 0,5189 0.5022 1,1750 10 78

Table 8.5 — Values for minimal conditions of matching function for each inflow solution

conditions of continuity) is therefore characterized by a variety of dimension 4+8=12. This im-
plies a large variety of solutions.

Some interesting subsets can be searched by imposing other conditions of continuity. For
example, we can, as Pu et al. [2015], impose the continuity of the Poynting flux. This is equivalent
to the continuity of the current and thus at the absence of poloidal surface current j® Eq.(8.13,
8.12) on the stagnation surface. One can also impose the €' continuity of the magnetic flux
which implies the absence of any toroidal surface current and charge density, Eq.(8.11), on the
stagnation surface.Finally, other types of requirements such as the final Lorentz factor value can be
used as a constraint. The value of &x i is calculated in order to have in Eq.(8.2) the proportionality
factor equals to 50 as in Zamaninasab et al. [2014]. The value of &x oyt is chosen as in Sec.(7.2).

- -1 -
10° 10" 10° 10° 10° 10° 10° 10 i0° 10" 10° 10° 10° 10° 10° 10 10° 10" 10° 10° 10° 10° 10°
R/Ry R/Ry RIRy

Figure 8.29 — Celerity on the axis Figure 8.30 — Celerity on the axis Figure 8.31 — Celerity on the axis
YP for the M1 matched solution yf for the M2 matched solution YP for the M3 matched solution
in green the inflow part and in red in green the inflow part and in red in green the inflow part and in red
the outflow part the outflow part the outflow part

Start by briefly presenting the curve Figs.(8.29, 8.30, 8.30). We plot the celerity yp on the
axis of the three matching M1, M2 and M3. In green we plot the curve corresponding to the
inflow and in red the curve corresponding to the outflow. We see that the outflow of the matching
solutions M2 and M3 reaches relatively high Lorentz factor values y ~4-10,
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8.4.2 Geometry

Let us have a look at the geometry of the first M1 matching. We have plotted on Figs.(8.32,
8.33) the poloidal field lines of M1. In red, we have the stagnation surface separating the inflow
and the outflow. In blue the Alfvén surfaces and in green the slow magnetosonic surfaces. We
also represent the ergosphere in magenta. The outer light cylinder is in orange and the inner light
cylinder in brown.

=50 0 50

@Ry "

@/Ry

Figure 8.32 — Geometry of the poloidal field lines

for the M1 matched solution, in orange the ex-

ternal light-cylinder, in red the stagnation radius,
in green the slow-magnetosonic surface.

Figure 8.33 — Geometry of poloidal field lines for
the M1 matched solution, in brown the internal
light cylinder, in magenta the ergosphere.

Although continuous field lines are not €' at the stagnation surface, they are more open at
the beginning of the outflow than at the beginning of the inflow, Fgiout < Fstain. This implies
that there are toroidal surface currents twisting the poloidal magnetic field lines at the stagnation
surface, but also the surface charge density, Eq.(8.11). For M1, about 14% of the magnetic flux
that crosses the horizon of the black hole reaches infinity. The rest of this magnetic flux crosses
the horizon in the magnetosphere outside the torus for solution M1.

For M2 matching geometry, in Figs.(8.34, 8.35), the same convention of colors is adopted for
the different lines.

For M2, we observe a more open outflow than the inflow at the stagnation radius, Fgtaout <
Fstain. The magnetosphere of this matching is extremely large. The fraction of the magnetic
flux going through the black hole contained in the open lines is less than 1% of the magnetic
flux through the black hole. Here the strong opening of the inflow and outflow is combined
and reduces this fraction. The inner light cylinder is very close to the ergosphere but within the
ergoregion.

Contrary to the two previous matched solutions, the solution M3 has less open field lines than
the inflow at the stagnation radius Fsta,out = Fsta,in. The size of magnetosphere is then smaller than
in M2. The fraction of magnetic flux contained in the open line is around 8.8% of the magnetic
flux which crosses the horizon. The ergosphere is larger and the stagnation radius approaches
the Alfvén surface. The outer light cylinder is closer to the black hole horizon than the previous
solutions. The internal light cylinder is contained within the ergosphere quite close to the horizon.
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Figure 8.34 — Geometry of the poloidal field lines
for the M2 matched solution, in orange the ex-
ternal light-cylinder, in red the stagnation radius,
in green the slow-magnetosonic surface.

Figure 8.35 — Geometry of poloidal field lines for
the M2 matched solution, in brown the internal
light cylinder, in magenta the ergosphere.
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Figure 8.36 — Geometry of the poloidal field lines
for the M3 matched solution, in orange the ex-
ternal light-cylinder, in red the stagnation radius,
in green the slow-magnetosonic surface.

Figure 8.37 — Geometry of poloidal field lines for
the M3 matched solution, in brown the internal
light cylinder, in magenta the ergosphere.

8.4.3 Source terms

We are now able to compare the fluxes of mass, angular momentum, and energy supplied/ab-
sorbed by the black hole and those supplied by the loading terms. Do not forget that these terms
are calculated in order to make the connection between inflow and outflow. We stil have to justify
this physically. The formulas given in Eqs.(3.48, 3.56, 3.78) can be used in a later analysis to see
if the loading terms can be explained by the creation of pairs or in some other ways.

For simplicity, we present the different mass, angular momentum and energy fluxes by unit
of solid angle. We also present them in a dimensionless way. Indeed in our models the mass
fluxes by unit of solid angles are easily calculated in units of Bi irlrsz/c. The angular momentum
flux will be dimensioned by Bi,inrf and the energy flux by Bi'inrszc. In order to obtain orders
of magnitude, the values of these quantities are given in the following tables for a black hole

mass My = (6,6 +0.4) x 109My = Mg x 10°M,, close to those of the M87 supermassive black hole
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mentioned in Gebhardt et al. [2011] and for the same object a magnetic field = 5+4G Kino et al.
[2014] at 107,. It corresponds well to the magnetic field of the outflow at some smaller radius.
Then we get By out USINg By out/G*(1075) = 1G. Using Eq.(8.15) we can get By in from By out,
then we obtain:

Biyinrf/c (g.s_l) Bi)inrs3 (g.cmz.s_z) Bi,inrszc (erg.s_l)
M1 1.09 x 10%* 6.39 x 10%° 9.84 x 10%*
M2 2.17 x 10%° 1.24 x 10°2 1.91 x 10%7
M3 1.62 x 10%° 9.47 x 10°° 1.45 x 1046

Table 8.6 — Value of the dimensionnless parameters for a black hole of M =6,6 x 10°M,, and By out = 1G

Try to estimate realistic total mass injection rate of M87. Using the calculation of pairs
creation/annihilation total cross section presented in Svensson [1982] with mildly relativistic speed
Bm ~1/v2, we get Oyy ~ 1.56x 10~25cm?. Then the volume injection rate is = O'chni. The typical
size of material injection from photon is some Schwarzschild radius. The highly energetic photon
are originate from the disk, then a model of disk emission is needed to estimate the photon density
in the environment of the black hole. In his work, Levinson and Rieger [2011] estimate sufficiently
energetic photon able to produce pairs emitted by the disk and its Radiative inefficient accretion
flow (RIAF). They use cooling function for electron-ion and electron-electron bremsstrahlung from
Narayan and Yi [1995] and choosing typically middly relativistic temperature for electron they are
able to estimate the energy flux escaping from the accretion flow and the disk. Then using typical
scale of the disk they are able to determine sufficiently energetic photon density in the system,
ny =7x 10'1(rs/1)?In(r/1rs) MMy where iz is the the accretion rate is measured in units of the
Eddington rate. Di Matteo et al. [2003] mention a value of 7iz=6x10"*. Compiling these result
we are able to estimate mass injection rate for M87 system.

Mth,M87 ~2,3x 1026 IH(L) (E) 17'14M9g.s_1 (824)
reJ\r

Because of the factor rir*, for 71 < rityy, the scale value of injected mass from model Tab.(8.6)
could be bigger than a realistic value estimated by Eq.(8.24). Nevertheless these value depend
of the choose of &xin and &xout Which as been chosen with a discutable method. Secondly even
considering the solution only on the non-connected to equatorial plane field line the effective
injection reduce the injection of models solution, using Mg = 6,6 + 0.4 and keeping the value
adopted for £x we get a limiting value of iy, = 9.1072 for M1, 7ty = 2.107! for M2 and
Miim = 1,5.107! for M3, these value are still some order of magnitude more than those mentioned
in Di Matteo et al. [2003] for M87. It is a typical problem also meet with force free model where
Goldreich-Julian value of electric density is biggest than the density allowed by mass injection.
Hirotani and Pu [2016] try to solves this difficulty introducing steady state gap solution of MHD.
Nevertheless Levinson and Segev [2017] argue that such kind of models could not apply to concrete
astrophysical system and propose to break down steady state assumption. In our case, we still
can adapt the value of &.

The power values for M1 and M2 are quite high in comparison with the value = 10*erg.s™!
mentioned in Prieto et al. [2016] for M87 jets. Nevertheless to obtain the final value of the jet
power of modelized jet you need to multiply these powers, with the integrals on the solide angle
of the sphere of curves presented below in Figs.(8.40, 8.41). Furthermore, these solutions were
not obtained in order to match with some observational constraints but just to present the ability
of the model. Nevertheless, VLT /SINFONI imaging spectroscopy Nesvadba et al. [2017] mention
stronger jet powers for different sources.

First we plot the mass fluxes. On the left Fig.(8.38), shows the accreted mass by the black
hole and on the right Fig.(8.39) shows the mass rate from the loading terms, for the matching
solution M1. It appears that the accreted mass rate is two orders of magnitude lower than the
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mass rate created. The created mass rate depends of the choice of the value &x for the inflow
and the outflow.

The flux and angular momentum are more interesting. We plot in Fig.(8.40), the flux of
energy (red) and angular momentum (blue) at the horizon of the black hole. The black hole
absorbs the energy of the field, but transmits angular momentum to the flow. In Fig.(8.41), we
plot the same flux from the loading terms. The loading terms bring more energy than the black
hole absorbs; it also brings an additional angular momentum to the flow, which is quite of the
same order than the angular momentum given by the black hole. Because of the general opening
of the inflow magnetic field lines, all the available flux on the horizon does not reach the stagna-
tion surface. M1 solution is dominated by the loading term of mass flux compared to mass flux
on the horizon. But the energy and angular momentum fluxes of pairs have the same orders of
magnitude between the amount extracted from the hole and the amount bring by the loading term.

For M2 solution, we have,
We have in Figs.(8.42, 8.43) the accreted mass rate (left) and the mass rate produced by
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the loading terms (right). As before, we have a solution where most of the mass created by the
loading term is found in the outgoing flow, with a bit less than two orders of magnitude difference

between the 2 mass fluxes.

For the energy and angular momentum in Figs.(8.44, 8.45), it should be noted first that the
loading terms bring a negative angular momentum to the flow. Nevertheless, this contribution
is negligible compared to the angular momentum provided by the black hole. The energy fluxes
have the same order of magnitude. It does not seem strange that the absolute value of energy
flux of the loading term is lower on the axis the one that absorbed by the black hole. This is
due to the high expansion rate of the field lines. In fact, the energy flux by unit of solid angle of
the inflow is diluted with the opening of the tubes, increasing the solid angle between two flux
tubes. As before, M2 is dominated by loading terms because of the mass flux, but the energy
and angular momentum flux of pairs have quite same orders of magnitude.

For M3 solution, we have, the same quantities plotted in Figs.(8.46,8.47, 8.48, 8.49)
The accreted mass rates (left) and the one produced by the loading terms (right). The mass
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flow is again dominated by the loading terms (with 2 orders of magnitude difference).

The energy and the angular momentum of the solution M3, are plotted in Figs.(8.48, 8.49).
We observe that the energy provided by the loading term is greater than the one provided by
the black hole. The black hole loss of angular momentum is higher (one order of magnitude
difference) than the one provided by the loading terms.

8.4.4 Surface current

Using Egs.(8.11, 8.13), we are able to draw for our matched solutions the value of charge surface
density, and the value of poloidal surface current.

The first result is the change in the sign of the surface density. Indeed, the Eq. (8.11) shows
that the sign of surface density current depends on (2— w) (Fsta,out —Fsta,in). Thus since the can-
cellation of £2—w occurs in the inflow for the M1 solution and in the ouflow for M2 and M3, and
we have Fga out < Fsta,in for M1 and M2, and the opposite for M3. Indeed the sign change of o,
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Figure 8.50 — Surface density and Figure 8.51 — Surface density and Figure 8.52 — Surface density and
current of charge for M1 solution current of charge for M2 solution current of charge for M3 solution

between M1 and M2 is explained by the change in the sign difference of {2—w on the stagnation
surface of the two matching solution. The second sign change between M2 and M3 is explained
by the sign change of Fsa out — Fsta,in between the two solutions.

The current values are generally negative in the axis environment for inflow or outflow. Nev-
ertheless, for the 3 solutions M1, M2 and M3, the surface charge current is in the opposite
direction €g. This further reduces the current values at the outflow level. (See in Figs.8.28)

8.5 Conclusion

In this chapter we have just explored the main properties of the inflows of our meridional self-
similar model.

First of all, we shown that the model verifies, a scaling law between the magnetic flux through
the black hole horizon and the infall mass rate. This equivalent to the scaling law observed in the
simulations of McKinney [2005] or Tchekhovskoy et al. [2011] and experimentally by Zamaninasab
et al. [2014], excepte the used the mass infall rate. The magnetic flux through the black hole
horizon is proportional to the square root of the accretion rate. We also verified the ability of the
model equations to be integrated up to the black hole horizon.

In our model, we have also shown with 3 inflow solutions, that different energy exchanges
with the rotating black hole can occur. Three main categories are presented in Sec.(8.2). The
first solution shows a dominating material energy flux everywhere on the horizon and then no
extraction. The second solution where the Lense-Thirring flux dominates above a given angle
allowing an extraction for some flux tubes. Finally in the third solution, the Poynting flux could
become the most important flux, also allowing the extraction of the energy from the black hole.
This variability in the behavior of energy fluxes is interesting, but it seems possible to obtain so-
lutions with less open poloidal lines and flow tubes starting extraction closer to the black hole axis.

About geometry of field line, the resulting inflow solution has a magnetosphere. This means
that expansion factor of flus tube is mostly negative. Nevertheless solution I1 is different because
in this solution the flux tube have positive expansion factor nearest to the black hole horizon.
For all these inflow, the principal driving force is mostly gravity, the magnetic tension could also
participate to the acceleration. The slowing down force is principally the inertial forces, but pres-
sure and toroidal magnetic pressure could also play a role. The solution 12 and I3 present a
change of rotational speed along the flow. The fluid first turns in the opposite direction of the
black hole, then changes direction as it approaches the horizon. This being the case for field
lines sufficiently close to the axis, this change of direction is not done for lines of sufficiently high
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magnetic flux, which allows the Penrose process to be triggered for these lines. The pressure and
the toroidal magnetic are the mainly force wich push matter toward the axis, therefore electric
force and gravity are the main force pushing it on the equatorial plane.

Then we introduced the minimum conditions to make the matching between an inflow and
an outflow minimally physically acceptable. This allows us to search and find 3 outflow solutions
01, 02 and O3 matching the 11, 12 and solution 13. We finally discussed the main physical
properties of the 3 matching solutions. Although there are still degrees of freedom regarding the
construction of the outflow, most energy fluxes are dominated by the energy flux of the loading
terms. Comparing our result to those of Globus and Levinson [2013, 2014] it seems that our
loading terms are bigger than the upper limit of pairs production allowing for extracting energy
from the black hole.
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9.1 Conclusion

The underlying motivation for this work is the study of the infall and ejection mechanism of mag-
netized flows from the environment near the super massive black holes of Active Galaxy Nuclei
(AGN). On the one hand, we focus mainly on the launching, acceleration and collimation of extra-
galactic jets. On the other hand, we study the interaction of pair inflow with the central black hole
and in particular the possibility for the black hole to provide energy to the Magneto-Hydrodynamic
(MHD) field. Finally, we try to combine these two types of flows in order to describe in a rel-
atively consistant way the flow in the environment of the rotation axis from the horizon of the
black hole to infinity. The power involved in these phenomena makes them a real challenge for
our community. Nevertheless, in addition to the pure astronomical and astrophysical interests in
measuring and understanding the objects and material formation outside our atmosphere. The
study of these flows presents an obvious interest for high-energy physics and theoretical research
on strong field gravitation. These objects are real laboratories for using and testing these theories.
It is also relevant to the behavior and understanding of black holes. In addition, the study of these
phenomena contains an interest for studying the composition of intergalactic medium in which
AGN are immersed O’Sullivan et al. [2011].

In this goal we have constructed a meridional self-similar model, presented in Ch.(4, 5), of
the General Relativistic Axi-symmetric Stationary Ideal Magneto-Hydrodynamic (GRASIMHD) in
Kerr metric. This model integrates the effects of the light cylinder, neglected until now in previous
models of this type. These solutions describe the flow in the environment of the symmetry axis.
The MHD equations in the Kerr geometry were formulated using the tools of 3+1 formalism
presented in Ch.(2). First, we did not take into account, in the construction of the model, the
possible source terms that could come from, or take into account phenomena such as the pair
production or the material injection in field lines at the base of the jet by the turbulent flow of
the corona around the central object. The solutions of the model are calculated from the solution
of an ordinary differential system of four equations. This system itself is characterized by seven
parameters. Among these parameters, four of them A,k,3,e; are related to the variation of the
first integrals or pressure with the magnetic flux. The next two [, are characteristic of the
gravitational field and the position of the Alfvén surface. The last parameter v is linked to the
launching velocity. The parameter e; is an additional parameter taking into account the variation
of the Bernoulli integral with the magnetic flux. The effects of the light cylinder were integrated in
the model by assuming a non-spherical Alfvénic Mach number. The new dependence of this quan-
tity with the magnetic flux is determined by the regularity conditions at the Alfvén surface. We
have also generalized the expression of the magnetic collimation efficiency integral € characteristic
of the differential system for the self-similar models. We have also proposed a new expression,
allowing it to be linked to the balance between (a) logaritmic variation with the magnetic flux
of the effective enthalpy per unit volume and (b) logaritmic variation with the magnetic flux of
the pressure. The integration of the differential system was performed using an RK4 algorithm
presented in Ch.(6). We have also developed within the code the possibility to automatically find
the solutions of these equations crossing all the singular points (Sec.6.2.3) or choosing the most
appropriate pressure value at the Alfvén point (Sec.6.3). A dedicated subroutine that allows us
to continuously exploring the parameter space under certain constraints (Sec.6.4).

We started by using the model to produce outflow solutions. As in previous meridional self-
similar models, the model contains two large classes of outflows according to the regime reached
at some distance from the black hole. Indeed, the geometry of the poloidal field lines tends to
those of a radial or cylindrical geometry at infinity. This says nothing about the geometry of the
lines at the base or inside the flow, for which the behavior mays vary according to the solutions.
As presented in Ch.(7), our solutions results in a wide variety of flow velocities on the polar axis.
Close to the axis, all our solutions are enthalpy driven. Collimation is mainly ensured by the
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toroidal magnetic field. By taking into account or not the Alfvénic Mach number dependency
with magnetic flux, we are able to calculate solutions that takes into account the light cylinder
radius effect x. When we include the effect of the light cylinder, we observed an increase in the
final collimation, but also a decrease in the final velocity of the jet. We explored the effect of the
[ parameter by varying it, and thus the rotation of the black hole, keeping the other parameters
constant, and exploring all possible rotation values. This study was done around a parameter
set of a cylindrical solution and around a parameter set of a conical solution and it seems to
show that conical solutions are more collimated to infinity when the absolute value of rotation
increases, while the collimation of cylindrical solutions to infinity increases with I. We also did
the same type of analysis around a cylindrical solution for the e; parameter. The increase of e;
corresponds to more energy to be distributed in the poloidal field-lines flow outside of the axis.
Thus the transverse stratification of velocities shows a decrease for higher values of e;. Collima-
tion decreases with e; increases. We can link the effect of e; on the solutions to the effect of 8.
Using a scaling law from numerical simulations of McKinney [2005]; Tchekhovskoy and McKinney
[2012]; Tchekhovskoy et al. [2011], or McKinney et al. [2012] but also comparing to observations
(Zamaninasab et al. [2014]), we were also able to calculate, the efficiency of our jets. We measure
by calculating the fraction of rest mass power accretion which leaves the central system with the
part of the of the rest mass energy power of the accretion. We obtain efficiency values similar
to those of the simulations. The magnetization define by the ratio of Poynting flux with internal
energy flux is null by construction on the axis, but could reach 0.2—-0.4 on region quite close from
the axis. The magnetization decrease with distance on a field line, it imply that even if this effect
is quite small, their is an acceleration due to the toroidal magnetic field. Assuming that our fluid
contains leptons and baryons with the same effective temperature and fluid velocity, the effective
pressure accelerating our flow can be interpreted as the sum of the pressure of the leptons and
those of the baryons. This allows, by comparing the effective temperature of a solution with the
brightness temperature from the observations (Homan et al. [2006]), to calculate the leptonic and
baryonic fractions inside the jet. This analysis seems to indicate a leptonic composition at the
core of the jet that decreases in favor of the baryonic fraction as we move away from the axis. The
effective temperature require to accelerate the flow in the models allow us to estimate the ratio
between typical cooling time due to Compton, synchrotron process and dynamical cooling time.
We see that is we interpret this effective temperature as thermal temperature the synchrotron
process need to be taken account at the base of the jet and the Compton process qui everywhere
in the jet. We have also tried to quantify, using the x-relativistic distribution function (Sec.3.3.3),
the deviation from the thermodynamical equilibrium required to produce the additional internal
energy necessary for the enthalpy driven acceleration of our solutions. This analysis can be satis-
factory for some solutions. For our solutions, the deviation from the thermodynamic equilibrium
increases at the base of the flow.

The outflow solutions of the model are able to describe the flow outside a stagnation radius.
We call this sphere the stagnation surface. In order to know if the energy contained in the mag-
netic field lines of the outflow comes from the disk or from the black hole, we have solved the
MHD equations up to the horizon of the black hole. How to use the model to calculate flow
solutions entering the black hole horizon is presented in Ch.(8). Indeed, although suffering from
a discontinuity on the horizon due to the choice of coordinates, we showed, (Sec.8.2.1), that the
equations of the model could be integrated upstream to the horizon. We also mentioned that
the inflow model obeys the same type of scaling law as the one extracted from the numerical
simulations of McKinney et al. [2012] and Tchekhovskoy et al. [2011] and those confirmed by
Zamaninasab et al. [2014]. This scaling law connects the magnetic flux passing through the hori-
zon and the infalling mass rate (not the accretion mass rate as in the previous mentioned work)
as a function of the model parameters. We have started to calculate different inflow solutions
(Sec.8.2). The dynamical analysis shows that at the base of the inflow, close to the stagnation ra-
dius, the pressure pushes the flow away from the equator to fall into the horizon. The acceleration
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of the flow is dominated by gravity forces. We also observed in some of these flows a cancellation
of the electrical force when the isorotation frequency {2 is equal to the frequency of the shift of the
coordinates w. This cancellation of the electric field has motivated various studies such as those of
Levinson and Segev [2017] and Ford et al. [2017] concerning an electric gap. This property occurs
relatively close to the black hole and may be above or below the stagnation radius. In Sec.(4.3),
we detailed the calculations of the different energy fluxes at the black hole horizon. The different
fields outside the horizon can benefit from the rotational energy of the black hole in two ways
that can be combined in the case of the MHD, through the Poynting flux (Blandford-Znajek) or
through the Lense-Thirring flux (Penrose). Using the numerical tools presented in Sec.(6.4), to
cleverly explore our parameter space, we were able to find three solutions exposing with different
compositions of the energy exchange with the black hole. All the calculated solutions slowed down
the rotation of the black hole. The first solution was such that the black hole absorbed positive
energy. In the second solution, for high latitude values we obtain lines with negative energies, the
extraction process being dominated by the Lense-Thirring flux. The last solution also has negative
energy lines dominated by the Poynting flux. In all three solutions, the Poynting flux comes out
of the black hole.

Without source term, the mass flow remains constant over a field line of poloidal magnetic
fields. It is therefore necessary to use the equations of the MHD with source terms, (Egs.4.3,
4.4) to develop inflow/outflow solutions. The equation shape was calculated in case this filling
was done using the pair creation mechanism in Sec.(3.1.8) with explicit expression of the source
terms. This analysis can also be used to calculate the force of Compton and Inverse Compton
effects on the fluid. The effects of these source terms on the first integrals of the GRASIMHD
is studied in particular in Sec.(4.2.2). Nevertheless, the solutions of our model did not include
these terms in their development, so we follow a similar approach to the one presented in Globus
and Levinson [2013] and especially in Pu et al. [2015]. It consists to apply the minimal matching
condition between an inflow solution and an outflow solution. A thin layer at the stagnation radius
includes the necessary source terms to the two solutions. Electrical current and charge density
are derived from the matching condition in Sec.(8.3.1). The minimum conditions of continuity
at the stagnation radius do not fully constrain the outflow. We have calculated three outflow
solutions which can match the inflow solutions presented previously using an injection of mass
term. We calculated the solution of the MHD equations with poloidal field-lines connecting the
black hole to infinity. We are able to calculate, for the lines reaching infinity, the source of the
energy whether it comes from the source terms or from the black hole energy extraction. In
our solutions, most of the mass loaded by source terms goes in the outflow. Nevertheless, we
observe that the typical values of the energy fluxes and angular momentum fluxes are within one
order variation between black hole and loading term contributions. We also discussed the values
obtained for charge density and electric current per unit area.

9.2 Prospects

Indeed, it is necessary to explore in more details the different mechanisms which can explain the
origin of the additional energy in the model solutions. This work was initiated by proposing an ex-
planation based on a gas that would not be in thermodynamical equilibrium. The high energy tail
of relativistic k-distribution functions are not sufficient to explain the effective internal energy of
some model solutions. Indeed, it is necessary to explore in more details the different mechanisms
that can explain the origin of the additional energy of the model solutions. Other distribution
functions could probably solve this problem. Nevertheless the processes leading to the formation of
such distribution functions must also be explained (turbulence, magnetic reconnection, electrical
gap...). Various explorations must also be pursued, such as questioning the energy of a radiative
component, turbulence or the presence of MHD waves in the flow. It would also be interesting
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to develop an emission model, or even a semi-analytical MHD model associated with a simplified
radiative component. Indeed, an optically thick assumption for the gas (even if it is not the case
for jets) could allow a mathematical treatment of the radiation in terms of additional pressure
and internal energy for plasma. This treatment is really important to take account properly the
effect on the flow dynamics of Compton and Synchrotron emission.

For matched solutions, we will search to obtain some where the extraction process is even more
efficient. Indeed we need to adjust our parameters to decrease the spherical deviation —eja _» for
the Bernoulli energy, in order to increase the accreted magnetic flux. Doing that we will increase
the energy release by the black hole. Finally, it would be useful to build a model that includes a
more realistic injection term than the one included here. Other processes such as the Compton
and Inverse Compton process could also be included. We also want to build a code to automatize
the search for matching solutions presented in Sec.(8.4). We also need to investigate deeper
on the role of electric field cancellation when the isorotation frequency is included in the range
0<2<wz. We want to explore the implication of the position of this cancellation relatively to
the stagnation surface.

It will also be crucial to test, using simulations, the stability of these solutions resulting from
a latitudinal expansion of the Euler equations. First, we plan to work on the stability of our
flows away from the source using the PLUTO code. Finally, it will be interesting to carry out
some simulations with the AMR-VAC code, combining the two components of the flow, the spine
jet using this model and the disk wind using a radial self-similar solution in order to study their
interaction.

Finally, the model being the result of a expansion of Euler equations, we still have to calculate
and quantify more precisely the non stationarity deviation of the model solutions. It would also be
very interesting to search for exact self-similar models in Kerr metric. This type of work requires
an accurate modeling of the MHD functions in order to obtain a successful variable separation.
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Appendix A

Algebra

A.1 Parallel gradient

Took two n-variable function, A and @ and for each point of the space their exist a scalar A such
that D@ =A(M)DA. Noting (x) ;=1 the system of coordinate, if A is not constant then we do not
loss generality saying that (A(xL,...x™), x2,...,x™) is also a coordinate system (changing of privilegied
coordinate if we need). Then noting DA, x2, ..., x™) = P(x!, x%,..., x™), we can differentiate this
equation after few calculation and use of the main property we get,

ob b .

This imply that S=P(A, x2,..., x") =D(A).

A.2 Covariant derivative usual property

1
Iy =58 (Oa8po + Ip o~ o gap) (A-2)
I =0Iny=g (A.3)
This implies a common expression of the divergence vector,
\Y% v—;i(,/— vH) (A.4)
- /—g OxH § '
Rgys =0y g5 —%I‘SY”‘;‘APS& ~Igp 'y (A-5)

A.3 Lie derivative

The Lie derivative of a field vector v along a field vector u expresses as,
Luv=[uMovY - vHo,u'] e, (A.6)

For a form w = w,dx¥,
Law = (UM 0 wa + 05 Oqu”) dx™ (A7)

Instead of the partial derivative 0, we can use any connection without torsion as V. Indeed,
for any tensor we get,

£~
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p AV(p) p' v(p)

Figure A.1 — The construction of Lie derivation of a vector field (Credits : Gourgoulhon [2007])

A.4 Exterior derivative

If we call € the volume form, d the external derivative and v a vector field, we get the property,

dv-e)=(V-v)e (A.9)
For a p-form w, we get,
Zyw=v-dw+d (V- w) (A.10)
Stokes theorem,
f dw:[ ® (A.11)
wu ou

A.5 Modified Bessel function

1 d (Ky(x) __Kn+1(x)
;dx( N ]_ i+l (A.12)
2p
Kps1 () ~Kpo1 (9 = 2K, (0 (A.13)

A.6 Hodge Dual

The hodge dual of a p-form wich act on vector space of dimension n is a (n-p)-form. The dual is
proportional to its total contraction with the levi-civita tensor €. Then

*W=€ -0 O (A.14)
~—~—
p times

Thus for form on 4-dimensional spacetime
*V)apy =" € apy Uu (A.15)

For a two form we have
4

1
(*F)(Xf) = 5 etV (XﬁFIJV (A16)
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A.7 Circular spacetime

Let introduce (., g) an axi-symmetric (§) and stationnary (n) four dimensionnal space-time. Then
Carter [1970] show that no generality is lost considering that these Killing vector commute. This
property imply that the curve parameter of these two Killing vector can be chosen as coordinate,
then we have § =08y and cn=0;. For each point P € ./, noting IIp :Span(r],ﬁ) c Ip (M) the
two plan subset of tangant space. Then we can decompose our tangent space,

1
Te() =TT EP I+ (A.17)

If there is a family 22,y < ./ of two dimensional sub-manifold, which cover our spacetime
Urp Pro = A such that VP € 4 we have Ip (Pyp) ¢r)) =II". Then we say that ./ is a circular
space-time. In this case n,§ are perpendicular to the poloidal sub manifold 2; 4, .4 . According
to Frobenius theorem the necessary and sufficient conditions to be circular are.

Chp2x(NAEAdY)=0

Ce2x(NAEADE) =0 (A.18)

Introducing a coordinate (r,0) system for the familly of poloidal sub-manifold. Then the natural
basis associated to these coordinate (9,,0p) are tangent to the poloidal sub-manifold. Which
imply, using (eq.A.17) 0;- 0y =0;-89 =00y = By -0 =0. Using the fact that the coordinate
1,0,¢ are adapted to the 34+1 decomposition, then the vector normal n is also perpendicular to
0;,09,0¢, we can proove that the shift vector is only directed along &, then we have

) . 0w  ng
hn=n+— th —=-—12 A19
n=n+—§ wi T TE (A.19)
The metrics took the form,
ds® = —h?c*dr + @ (dd — wdt)® + h2dr? +2h% drdd + h3do? (A.20)

Where the function h?, @2, w, h% hfe and hg are only function of r,0 because of stationarity
and axi-symmetry.
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Appendix B

Chapter 1 - 3+1 Methods

B.1 341 Decomposition of Einstein equations

Using the main tools of the 341 formalism, we propose here to detail the main steps to develop the
chrono-geometric point of view of general relativity. As in Sec. (2.3) assume that the spacetime,
A, can be foliated with a spatial hyper-surface Xy of orthogonal unit vector n.

Gauss and Codazzi relation

To get a chrono-geometric point of view on relativity, we need to be able to make a 3+1 de-
composition of Einstein Equations. It means we need to be able to express all 3+1 components
of the Ricci tensor, as presented here 2.2.1 for the energy-momentum tensor. First, let us begin
with the Codazzi relations. We start projecting along n of Riemann tensor. To do so, we use the
definition of Riemann tensor on the normal vector,

(VaVp - VpVo) nY =Riem' .n*, (B.1)

Hop

Projecting this relation, we get,
papy Py (VuVy = Vo V) 0P = pk py pyRiemG, n°, (B-2)
To go further, remark that,

PapppyVuVvn® = —phpyppVu[KS +any]
= —p(‘;pgpg[VMKS+Vuapnv+aqunv]

= p&lpgpg [—VHKQ, +a® (Kyy + avny)]

= —DaKg +a"Kep

Because of the symmetry of the extrinsic curvature, we get the Codazzi-Mainardi relation,

Pk P pyRiem, n° = DKL~ DK} | (B.3)

To get the component of the Ricci tensor, contract this relation. Using the anti-symmetry of
the Riemann tensor we get,

ppRovn’ :DﬁK—Dng ) (B.4)

Which is the contracted Codazzi relation. It gives the mixed component of the Ricci tensor.
Now, we find a way to get the spatial component. Let us start from the first term of the intrinsic
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curvature definition (eq.2.8),

Dy (DgvY)

PaPy Py Vi (Dy o)

= phpypVi (PIpiVer!)

= P&PyPy

- pg‘pgp{(vunv)novo oA = p&lpgpg(vunp) \Vony + pg‘pgp{vuvo oA

A A A
= —papPy Py Kwun Vv — pa pg ppKpKae v + papg o)V Vo v

= —pyno(VevMKpe —KiKpp o™ + pipg prvu Vo v,

Vo {pi ((Vun)n® +ny (Vun®) + p (VunP)ny + (Vun)\)np)} + PSPV Vo)

Which writes, 5
A
R}Yw(ﬁ oM = (Kng — KK V" + ]9f,1pglepp0 vH,
Because it is valid for each ve I (), we obtain,

ph pg pg pgRiemgu\, - Riem:io‘[3 + (K(YXK55 - KgKO@) . (B.5)
This is the equation called gauss relation. It can be interesting to calculate the contraction

to show up the Ricci tensor,

Py (Ruv + n nPRiemyry) = Rep + KK — KoK | (B.6)

This is the contracted gauss relation. Contract again to express the scalar curvature,

R+2R(m,n) = R+K2 — Ky KHY |, (B.7)

Indeed, using the symmetry of the Riemann tensor, we can show that n)‘npp“"Riemw,)\V =
R(n,n). This equation is called the scalar Gauss relation. It is a remarkable theorem because
it links the intrinsic curvature >R to the extrinsic curvature K2 —KuwK"Y and of the curvature of
the manifold which contains the sub-manifold.

B.1.1 Lie derivative along m

There are some other important results to present in order to get the 3+1 decomposition of
Einstein equations. First of all, let show that for for each vector field, Vv e I (};), we have
LaVET (Xy). Thereis a geometrical demonstration coming from the definition of Lie's derivative.
Instead, we prefer to present here an analytical method using Eq. (A.6),

g(me'Il

= m"v¥0,(hoyt) — v* (O hn')n,

= —m“(@ulnh)w+hm“vv8pavt+ vouh+hvt'(Oyn)-n
0 v

= hm"vY0,0,t+v"0uh

n
= —hm" vvﬁvﬁ +vHouh

0

1
= —hv' n“@vnu+h2v"8vﬁ +vMoh=0,
———
0

This property of Lie's derivative along m can be extended to any kind of tensor 9 (X;), using
Eq.(A.8). We can calculate the Lie derivative along m of the projector pg :gﬁ"‘ +ngn®

ZLmp = m”Vp(n“np)+pEVum°‘+pﬁVﬁm“

m*V, (nany) + pg [th +D%n, - n“Vph] - Py [hKE +D"hng — n*Vgh

Dahl’lf, + nO‘Dﬁh+ th +0- no‘Dﬁh— th—D"‘nﬁ +0=0,
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This implies that for any tensor tangent to the spatial hyper surface,

VTeT (X)) = ZLaTeT (X)) | (B.8)

We also need Lie's derivation along m of the spatial metrics. A similar calculation gives,

LmYop=—2hKep &  LmyP=2hKP|. (B.9)

In the following we need to calculate Lie's derivative of the extrinsic curvature, using the
property B.8,

e%mKaﬁ

PapyLmKyy

papp [Mm° VoK + Koy Vym® +KyoVym®]
pg‘pg [hn° VoK — 2hK6KS — Ko D hny — KyD hny |,

So we get,
LewKop = hpl ppn°VoKyy - ZhKang ) (B.10)

B.1.2 341 Decomposition of Ricci tensor

The decomposion of the Ricci tensor is the basis of the 341 decomposition of Einstein's equations.
In sec.B.1 we start establishing some useful relations to decompose the Ricci tensor. From
contracted Gauss relation (eq.B.6), in order to calculate the spatial part of the Ricci tensor we

need to express the mixed Riemman tensor p&lpgn)‘npR‘:mV in term of the 341 quantities.

pgPuan’Riemgyn® = pgpuan’ (VyVo = Vo Vy) nt
= ppPuant’ [Vy{-K5 -D*Inhng} + Ve {K} + D*Inhny}]
= PyPuat’ [VoKg = VyKg + Vo (D¥Inh) ny + D*In hVony — Vy (D*In k) g — D In hVy 1|
= p[‘j’pw n°vyKh — pgpr{; (K +D%Inhny) + pgpuaD“In hay + p[‘j’pwvv (D¥In k)
DgDoh

P

Pp Puant® VoK —KaoKp +
Using Eq. (B.10), we end up with,

DﬁD(xh/
T +K(XGK0; (B].l)

So, using the contracted Gauss relation (eq.B.6) and Eq. (B.11), we are able to express the
spatial component of the Ricci tensor, called Ricci equation,

. 1
Pg Py n°Riemy,;n® = Ejmeaﬁ +

1 DDA
p*R:—Eme—T+2R+KK—2K-K. (B.12)

The mixed component of the Ricci tensor is given by the contracted Codazzi relation (eq.B.4),
that we write in a different form,

R(p(),n)=DK-D-K|. (B.13)

Take the spatial trace of Eq. (B.12), using also Eq. (B.9) to get the temporal part,

va D2h
YUApngRHV — _szva _ T +Z RO‘)\YGA + KO‘AYGA . ZKHVva
1 K D?h
YRy = —— LKt 2 gyt - — 2 VR4 K2 - 2K K
h h h
1 D?h
R+Rmm) = —- K+ 2K KM — — +2 R+ K2 - 2K, KM,
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Thus we have,

1 D?h
R+R(n,n):—E$mK—T+ER+K2, (B.14)

Which combined with (eq.B.7) gives,

1 D?h
R(n,n)=E§€mK+T+KHVK“V . (B].S)

B.1.3 Decomposition of Stress-Energy tensor

In order to decompose Einstein's equations, the second step is to decompose the stress-energy
tensor. Let introduce the energy density measured by the Zero Angular Momentum Observer
(ZAMO).

E=T(n,n) (B.16)

In a similar way we can introduce the momentum density flux measured by the ZAMO,

p=-T(np() (B.17)

Finally, the spatial part, which can be interpreted as a stress tensor measured by ZAMO, is,

S=-T(p(),p()) (B.18)

The introduction of these quantities allows us to decompose the stress energy tensor with
respect to the ZAMO observer,

T:En®n+n®p+p®n+S‘ (B.19)

This relation is fully general and can satisfy different kind of physical situations. Indeed, one
just need to add the different kind of stress-energy tensors which compose the different physical
components of the studied problem. Thus the trace of the stress-energy tensor is

T=S-E (B.20)

B.1.4 Decomposition of Einstein equations

After the work done before the decomposition of Einstein equation will be easy. Indeed from
Einstein equation:

1 8nY 8nY 1

we can easily took the full spatial projection of the second way of writing the Einstein
equation (eq.B.21), of these equations, using (eq.B.12) for the geometric left hand side, and
(eq.B.20&B.18) for the physical right hand side. We obtain:

8y
xmK:—D2h+h{2R+KK—2K-K+“—4((S—E)y—2$)}. (B.22)
C

Where each term belongs to 9p(Y;). We called this equation full spatial projection of
Einstein equation. It gives you the time evolution of the second fundamental form. For the full
temporal projection, using the first way of writing the Einstein equation (eq.B.21), after replace
the left-hand side in using the contracted Gauss relation (eq.B.7) and for the left hand side
the definition of energy density (eq.B.16) and the calculus of the trace of stress-energy tensor
(eq.B.20), we obtain,

161¥¢

SRAK2 K Kty = (B.23)
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This equation is also called the Hamiltonian constraint. It represented the link between the
sum of intrisic and extrinsic scalar curvature and the density of energy of stress-tensor. Finally
let’s calculate the mixed projection. Using the first way of writing the Einstein equation (eq.B.21),
after for the left hand side using the mixed projection of Ricci tensor (eq.B.13) and the definition
of the momentum density flux (eq.B.17), we finally obtain:

8n¥
D K-DK=—rp|. (B.24)

That we called mixed projection of Einstein equation. The Einstein equation is equiva-
lent to the system of equation (eqs.B.22 &B.24 &B.23). The full spatial projection of Einstein
equation (eq.B.22) is a symetric and second tensorial order equations of Jp (X}), so it contains 6
scalars equations. For the mixed projection (eq.B.24) of Einstein equation it is a vectorial equation
of IpX; so it gives 3 scalars equations. And finally the Hamiltonian constrain (eq.B.23) gives one
equation. So finally we get the 10 usual scalar Einstein equations. In fact the system is a second
order system in term of the space-time metrics }. Adding the equation (eq.B.9), and re-ordering
terms, we get a second order partial differential system ruling the evolution of (y,K, h,p), with
the two constrain equation (eq.B.24&B.23).

The system constitutes by (eqs.B.9 &B.22 &B.24 &B.23) only imply quantity's define in
g (X)) and their time derivative thus it implies that we can consider only a manifold X'; which
evolves during time, this is the chronogeometrics point of view on general relativity developed by
Wheeler [1964]. The considered system do not contain any time derivative of the lapse function
of shift vector, they are not dynamical variable. Which is not surprising if we remember us that
they are function of the choice of the slicing (or temporal coordinate). In fact the gauge freedom
for the system of coordinate in general relativity implies that we can impose a condition on the
shift vector and the lapse function without change the physical solution. After integrating the
equation an thus the knowledge of a volume of the spacetime we always can coming back to a
different system of coordinate. The choose of the constraint need to be done in order to avoid
singularity on coordinate.

B.2 General definition, property and composition of spatial oper-
ators

Using the definition of spatial covariant derivative D we are able, to construct the usual operators.
The gradient is simply the application of spatial covariant derivative on a scalar function @. The

co-variant component are the same but we need to be careful about the contra-variant one:
D;¥=0,¥
. . ) (B.25)

D'U=0'¥+nto,¥n'

The expression (eq.A.4) is also valid for space manifold, where the determinant of the metric
is the determinant of spatial induced metrics. The link between spatial and space-time divergence
is already calculate in (eq.2.23). Using the definition (eq.B.31) we are able to introduce the curl
product,

AxB=¢¥;jA'Ble; (B.26)

Introduce also the property of permutativity of mixed product, wich came from permutativity
of Levi-Civita tensor,

(AxB)-C=(CxA)-B (B.27)

And thus, the curl operator:

DxV=+DV=2¢ ;%9;(v))e, (B.28)
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We also introduce the non symmetric advection operator,
(A-D)B=A"D,B"&;

For the Laplacian operator,
AV =D- (DY)

(B.29)
A¥U=D (D-A)
These definition allow us to calculate some product based on Leibniz rule,
D-(cA)=aD-(A) +Da-A
D x (axA) =aD x (A) + Da x A
DA-B)=(A-D) B+ (B-D)A+Ax(DxB)+Bx (D xA)
(B.30)

Dx(AxB)=(B-D)A-(A-D)B+(D-B)A- (D-A)B
D-(AxB)=—A-(DxB)+B- (D xA)
Daf =pDa + oD

B.3 Integration on hypersurfaces

As in 2.1 used a three dimensional plunged sub-manifold X, and note n his normal vector field.
Then the induced Levi-Civita tensor on this hyper surface is

*e=tem,.,.,.) (B.31)

Apply the Stocks theorem on the Hodge dual of a one form w on a 3-dimensional subset

¥V <X, we have
[ s [, =
/4 ov

Using (eq.A.9) and (eq.A.14) we obtain,

[ -, o

This is the Green-Ostrogradskii theorem, often written in the form:

fffVD-deszyB-ds (B.32)

Took an hypersurface & of X, then & is a 2-dimensionnal manifold. We can apply the Stocks
theorem for a one form w and using the definition of curl operator (eq.B.28) and the fact that
the composition of Hodge dual is identity, we get,

f w:ffdw
0 S
_ ff Onopdx® A dx™
8%
:ff % (D x w)
P
:ff Dxw)3e
P

This is the Kelvin-Stokes theorem, often written in the form:

ff (DxA)-dS:/A-dE (B.33)
& €
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Appendix C

Chapter 2 - Magneto-Hydrodynamics
in curved spacetime

C.1 Conservation of volume form of phase space

Find here the detail of calculus which lead to the conservation of the volume form of space phase
along geodesic movement (eq.3.20), for the a and b term we get:

out  ou’ - dlng 1 Jug
“oxk  Ox0 - AxM ug Oxt (1)
_ ]. ang u _zuu[ﬁ ago\/ upu + 8 gOO a(g()'V uo‘ u\/uu ’
" 2up 0x0 HooOxt uy  2uf OxH

For ¢ and d term we get:

.0 814"
. Hyv . d=Iy+—(uMu —2F Jut
c=F‘u\,u“uViln Ug = HFV (goiuo — gooui) WY oul ( ) oul
ou! us M \ou*
u“uv . +I‘l u )
I [Fuv (gOiu()_gOOUz)"‘[O (goouo—goouo)] ( ou'

u

0

i H

uly I,)\ 2[:)}1 o 211 u
=Ly (8oato — gootia)

Uy

([0 ug+ It u,) Zl‘gpu“

utu (0 0,
O
Uy _2—[’)‘ u)\—zf’;‘\pu“
_uMuY Ogoy | uMu’ 08wy goout u’u® Ogovy
Coud oxM o 2wy Ox° 2u3 OxM - ”pu 8&3 —2r) u
up Ox H (c2)

About the movement due to electro-magnetism forces, using the relation (eq.3.5) and the
anti-symmetry of electro-magnetic tensor, the t term gives:

()
- Moui
i ut Jug  Out
M uo oul  ou
=- ué (gmuo—gooui)+F k57 " Fog (C.3)
FY ut . Cous
u
== (gOVLto—goouv)+Fli—Flo—l
uo Up
Fotu FvutuY LU
__ 20t B “VZ +F, —F y— =0
Uo uO Uo
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C.2 Flux of Feynmann four current of phase space

Took one particle denote %, wich are plunged into our space-time manifold and obeys to (eq.3.18)
so, get a trajectory in space phase: zi : 5 — z+(s)" € . Using one spatial hyper-surface X, of
our foliation, we note ;=Y x 2 a foliation of the space phase. Using the fact that N=n®0 is
normal to o; and that N- ¥ = -0 = —h“‘X and the fact that elematary volume element of o is

8% = ;5- dxldxzdx3du1du2du if partlcles “aren't being created or annihilated we can write:

1 :f 50 (xi - xi(s(to))) 5® (uj - ui(s(to))) dx'dx?dx3duldu®du®
O

0

f 8¢ (x —xk (s(to)))6(3

- f O =1 (sa%)
le

o o 0
:f f 53 (x’ - X} (s(xo)) 5® (uf - ui (s(xo))) ) (xO -x2 (s(%))) dlds dx!dx®dx*du!du®du®
o teR ds

wl - ul (s(10)))

( f 5 (x° — xY (s(£)) dx° | dx'dx2dx*du’ du’du’
teR

5®) (uj —ul (s(xo))) 8 (x0 - xY (s(t))) dx® dx' dx*dx*du’ du®du®

]
I dx?
:f [f 57 (z“—zi(s)) — ds| dx'dx*dx®du’ du?®du®
Oty seR ds
g 1 dz
:f [f 57 (z“—zi (s)) (N —)ds dx!'dx*dx®*du'du®du®
h d
dz
f f (7) ZH— z*(s))ds— N2 § dx'dx*dx*du’du®du®
04y JsER g ds hug

f ( 57 (" - 2k 9) ds) E] ‘N&%o

(C.4)

C.3 Equation of transfer

Consider % < .# any subsets of spacetime. Note # =% x {2 c | a subset of space phase, let
calculate the integrals,

I =f7,/£2 [f(M, ui) tgll """ & (M, u) g d4xd3 (C.5)

.....

= [, F (M, u?) tgll """ o " (M, u) Z“NMESB

.....

Indeed the Liouville operator is the composition of th multiplication by the speed in space
phase with the divergence in this space phase. The border of the considered pieces of space | phase

can be decomposed 9% = 0% x 2+ x O2. Noticed that f (M, u’) 5" a’ (M u) Z"8%q ul — 000.

Remark that if we note ng (8%)* the normal unit vector of % then N nne 0T T W)t is
the normal unit vector of O#. So we get,

fa@f ) a5 M0 k0

Further more 8%0 = 83x8%u where 83x is the volume element of 9% and 83u is the volume
element of (2. So using the definition of (eq.3.45), we get:

.....

— ‘H(Xl ----- 3

.....

= fu A= (VEER ) =R d (C.6)

.....
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Restart from (eq.C.5), cause Liouville operator is order 1 linear differential operator and so
respect the Leibniz rule. Using (eq.3.31), we get,

1= f{I(M W £ (M) + (M, w 2| “f]}§d4xd3u (C.7)
W

Because it is true for each subset % of spacetime, it achieve the demonstration.

C.4 Particles number conservation

From the transfer equation (eq.3.46) apply to =1, immediately gives,
v-]:f _—V_g{I(M,u)+f(M,u)£2[1]}d3u (C.8)
ueRd  Ug

However £ [1] =0, so all that remains is calculated the contribution of all the collisions. Note
k,1=—,+,Y, we get for elastic collision,

mleeﬁ miee(Z neywqj_ nme me me me
=f f fk(_p, )fz(—q, )Aﬁ(p,q»n)ﬁznxﬁ?’px&”’q
%EQ m%e() nes,, Me m

ferzf < (ne f’“(me)ﬁ( )Akl(pq’ n)5°nx8°p x 5°q

pqt

— Akl n 62nl><63 /X63 /
f;;eﬁf:}l;eﬁﬁl’eypmj_fk(me)fl( ) kl(p q ) d

_ Akl n 62nx63 X53
f”‘:eeﬂfr;‘eeﬂ nes, 1 fk( )fl( ) kl(pq ) P U
=0

Where we used between the second and the third line the fact that the symmetry wich
correspond to elastic collision (eq.3.34) conserve the volum. We also used the property of equality
of differential section of inverse collision Akl (p.q,n') = Akl (p,g,n). Thus the only term wich
brings creation of number of particles is the term due to |nelast|c collision due to creation or
annihilation of pairs.

C.5 Conservation of impulsion

2

Use the transfer equation with t=mc“u, we get,

1

= (g = [

8 u {I (x“, ui) mc?u® (x“, ui) +f (x“, ui) L|mc? uo‘]} ,  (C9)

ic[R3
First of all let concentrate our effort to the Liouville operators of the second term in left hand

191



APPENDIX C. CHAPTER 2 - MAGNETO-HYDRODYNAMICS IN CURVED SPACETIME

side
1 2
N C v oux “q ., ou” ou® 1 (0u° auf 1
Z[u)==Lott"uo ou' +EFquV ou' = oul :_u_o(ﬁu’ % ou! 63‘) A g 14180 = 0%

It u¥ud u’u®
:wu—o(ui6g—u06(ix):u—o([t,lal,tHSS‘—[eGuoﬁ ]1 u06 )
uwu’ 5
:u—(IﬂOuHSg—[ﬁouoﬁﬁ):—fﬁ‘ouvuo ” WM u® o, grg = I u¥ u°
0 0 ﬁ—/
=0
_4 you? q _;u’ qu’(_; ; qu¥
Fl 8ul = —EFQM—O (ul-fig‘ - uOES‘i") = _Eu_o (Fi, uiﬁg —Fi, u06‘l.") = _Eu_o (Ft,lMHSBx —Ftluofif‘l)
‘7 o v
=—Fyu
m

Thus we finally get,

VTH + F M = mc? fuieu@ 63u{1 (x“, ui) u® (x“, u’)} , (C.10)

The term due to collision is composed of each kind of collision between each species of the
gas. But for collision between particles of one species, using symmetry of the general expression
and the differential cross section to do some change of variable we are able to rewrite,

f,genf;egfneﬂ lp{fk(%@)ﬁc(%) _f’“(%e)fk(i)}f*ii (p,an)8°nx8°px8°q
:;Lf,;;e(zfqen hes i(pm_p/_q,){f’c( )fk( ) fi (%)fk(mie)}Aﬁﬁ(P»q,n)Sznx63px63q:o
o 3 (C.11)

Thus the only forces due to collision for the k—th species is due to its unelastic collision or
collision with others species.

C.6 H-theorem

To established properly the H theorem the first step consisted as before to calculus the second
term of right hand side of transfer equation. In this case using the Boltzmann system (eq.3.31)
we get,

[ ( )] f:%[fl ) (C.12)

xiul) ()

From there we easily get (eq.3.58). Now for the sum of term due to, we used the same kind
of calculation trick,

,-,]Z,;"Cylf,geﬁf"‘}eﬁfney n (ﬂ(p)){fi(:}j) ( ) (%) ( )}Aklpq, )62nx63px83q
q

pP+q

A2 ool () () (2 (L) s anstnstost
T ooleol, @ a2 (E) A L)) s manncsnest
—é”zk,f A I (AT EARAE

_fk(_e)fl(n(:e)}Akl (p.an)d’nx8’px8°q
- fx

!/
)
. /i@ P (4 p q kI 2 83 &3
_41',]'%,1[,,';60[,,‘,‘942 nEprrqiln(fk(p,)fl(q,)){fl(me)f](me) (me)fl(me)}A (p.q,m)87n x8"p x &%

(C.13)
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Between the first and the second equality we exchange p < q on the second integral term. For
the next line we exchange the index on species i — j and k < [. For the next line we re-separate
in two our expression and make the following change of variables on the second term p <~ p’ and
q < q', after that a new change of index i < k and j < [, using symetry of differential cross
section we obtain the last line.

C.7 Notion of thermodynamics equilibrium

We will demonstrate the shape of the distribution function to the thermodynamic equilibrium Eq.
(3.63). Let us consider a gas composed of a kind of particle, in thermodynamic equilibrium. That
is to say,

ka f f I (f(p)f(q) )[ ff@
8 ! -

=% brealicohes, TP O Fonran) ' Fonra)
(C.14)

However, x — In (x) (1 — x) is strictly positive on Ry «. In addition, p— f(p) and (p,q,n) —
A(p,q,n) are also positive. So s.=0 implies that V¥ (p,q,p’,q’) € m{2 such that p+q=p’'+q we
have,

A(p,qn)=08’nx8°px8q

fef@=re)fq" (C.15)
We admit that this property is also valid for V¥ (p,q,p’,q’) € I (4), see Marle [1969] to have

more details. Let's introduce F:ln(%). It is then easy to show that F is checking,

f(p+q)
70

_ln(f(p+q)f(0)) _ln(f(p)f(q)
) f02 ) f?

Which is sufficient adding the continuity of f to the fact that F is a linear form which imply
that there exist A such that F(p)=A-p. Then we have f(p) = f((0))exp(A-p). We finally prove
that A is a future time oriented vector, using the definition of number four current. Indeed the
number four-current Eq.(3.29) by definition is a future oriented vector. Then using calculation
Eq.(3.67), you easily prove that A =Pug. Which achieve the demonstration. The case of a gas
with several species can be reduced to the case of a gas with one species.

vV (p,q) F(p+q)=ln( )=F(p)+F(q) (C.16)

C.8 Energy momentum tensor

oz O7ZOV-B2  IZb
Z=7(bM=Z@)=Z(V-b") = =T % 005 - opp (C17)

2] H a5

obP

P

(C.18)
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Appendix D

Magneto-Hydrodynamics in curved
spacetime

D.1 341 Decomposition of GRMHD

D.1.1 341 Decomposition of Maxwell equation

Using (eq.4.1&4.9) for the divergence of the exterior product,

V-mAB)*=V, (n*B*-B*n")
=—[n"VBY -B*V n® — n®V B —KB"|
1
=-7 (m*VBY -B*V, m* +B*n*V h) - n*D,B* — n*B*V In h — KB (d.1)
1
== (LmB)* + (D-B) n® + KB*

1
= V-(n/\B):—Esz+(D-B)n+KB

Where we used between the second and the third line the definition of m the normal evolution
vector (eq.2.13), but also the trace of extrinsic curvature. For the third line we also used the link
between the divergence (eq.2.23) and the Lie derivative expression of a vector field (eq.A.6). For
the second divergence we have

V-(€mE,.,.)" =V, [*e"""n,Eq|

=1 P! [V Eg + EgVyun |

=* PV [V Eg — Eg (Kyp + Dy n )|
=*eP""[n,V,Eg — EgnyDyInh|

D.2
=3 €7 [0yEq — EqOyIn k] (b2)

1 3
= "0, (hEo)
> V-(e(n,E,.,.)):%Dx(hE)
D.1.2 The 3+1 form of Continuity equation
1
V- (pou) = V- (poyn) + EV' (PoYV)

D (poyhV)
hc

(D.3)
=VnpoY—poYK+
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D.1.3 Spatial part of stress energy tensor conservation

For the divergence of the fluid stress-energy tensor,

Vi (poEc® ut tig) = Ekp ¢ g + poc* ut Vi (Eua)

VH V,
= Ekp P Uq + poc? UtV (Eynq) + poc®y (n“ + —) Vi (YE' a)
c c

PocyY [

= &k € i + Poc* UMV (EY) 1 — pofyc* uM (Ko + Do Inhny ) + m*Vy (Y&Vq) + YEV Vamt — YEV Vem! ]

+poYVH [Dy (YEVa) + K V¥ 4 |

C
N +PoY?Ec?DyInh + % (ZmYEV), + oY (V-D) YEV,

(D.4)
Where we used a lot of time (eq.2.10), but also the definition of lie derivative of a 1-form
(eq.A.7) and the continuity equation (eq.4.3)
This can be rewrote

1 1
=&k g + |VnlnyE+ —VyInhy& + = K(V,V)
C C

1 1
V-(po&c*u®u) = Ekpc*u+ply?c? | VylnyE + zvvlnhyﬁ+§K(V,V) n+p0Y2Eclenh+p0—hYC££my£V+poy(V-D) YEV

(D.5)

The pressure term gives immediately
V- (Pg)=VP (D.6)

The electro-magnetic term
j JxB J-E

Fl=,.|=—peE— -— D.7
(c ) Pe c c " (D7)

D.2 General results on GRASIMHD in Kerr geometry

D.2.1 The volumic poloidal forces
Decomposition-reorganization: prelude for Graad-Shafranov

For the poloidal advection using the link between poloidal magnetic fied and poloidal speed
(eq.4.26) and the definition of Alfvenic Mach number (eq.4.42) we quickly obtain

Fn,=—poY(V-D)YEV [,

Up EWA
=~ amn B D) g By
Po (D.8)
1 [M:iB, \M3B,
=— -D + k., V
4nMi( h h SyckmVy

The second term is destroyed with the second term of the loading forces. Le continue our
work with the second term. Using the composition operation (eq.B.30) with the gradient of a

scalar product:
2
MjBp
h

2 2 42 2
1 M,Byp D M,Byp - b D M,Bj _ %B x 4D x
Mi| h h M 2h? ho?

=4mn [gApl +9Ap2]

(D.9)
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For calculation of F4 2, let use the composition (eq.B.30) for a curl of a vectorial product.
We obtain,

1 MDA €y
Tmr=Ty DX{TXE *By
1€ M2DA (M2DA e €p T M2DA M2DA)| €
S (—¢~D) AT A p| 24 !p. AT _Ip.[—A =B,
hi\lo h h o) ® h h ®
11 (€ MiDA 1 M4iDA\| €| DAxeg
=——|—=|— -Dln®|ey— ‘-D— ey —<D- — | %
h @(m )"’ o Tel? h ® ®
1[ 1 (MiDA| M3DA . (DAxe)
A P ) B ‘D—| €4 % X €
h| @2 h h 2| ¢
MDA\ | DA
-|D- j—
h®? h
(D.10)

The third term at the second line is null because of axisymmetry. For the first and the second
term of this second line use the expression mixed advection (eq.2.43), a lot of term are simplify

M2DA . . € - . .
because —4— is poloidal and 5“’ is a toroidal field.

D.2.2 Grad-Shafranov approach

Introducing fi (Mi,i, h?, %, 0,9, WAL, ¥p&,02) and f> (Mi,ﬁ, h?, 02,0, ¥a, WAL, UAE, 2),

fi=W e +

Up (€ — Lw) ]2 NE—XPNZ
c x29?2

(D.11)

£ WA(g—Lw)]Z @A
2= c 4h2x292
1 M} DA? 2 1 2
=T o o2 Az T 3222 2= 2 szl_ 2.2 2f2
2h MA 0} hecc® 2h MA hece®
= 1 afl — 2 8f2 DM2 + 1 %_—2 % D£+ 1 %_ 2 %
2h2MZ M2 h2c2@? OMZ | M [2h2M2 OE  h2c2@? OF 2h2MZ D2 h2C2@? Oh?
v on 2 opl 1 i 2 Of 1 0h 2 O
2h2M3 0%  h*c*®? 002 2h?M34 0w h2c20 Ow 2h°M35 OWn  h*c*@* O
1 oh 2 Ofs oh 2 of»
+ - DULL + - DV,L\&
2R2ME DUAL - 2@ WAL | T | 2h2M2 OUpE W22 DUNE |
1 0ffi 2 0f]an
+ e s .
2h?M4 002 h?c?o 002 | dA
0 f 2f h ) 1 0fi 1 0 |, hf 2f> 2
= - + pe+——— |h - Dh
OMZ (thMi h2c2®@? |~ 2h?M& A | 2h2mE o 12 o 2h2M;  h?c*@?
O (A 2R | _2f o | O A 2f N h2fh
002 \2n*M%  h2ct@?| h*ct@? Oow \2h*M35  h*c*®? Op \2h2M5 W2 c2®?
0 f 2f> h 2f> 0 h 2f, |df?
+ - DUAL + - DUAE + — - —DA
OUAL (thMi h22e? | N onag \2m2M2 2202 | T 00 22 ME T h2c2? ) dA
(D.12)

So it is useful to do the calculus of the different term to remark that we can simplify the
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expression,
fl 2f2 Wiazcz Ua(€ —Lw) 2 Mo . 21 4 2 2 9 2 2
SIPME W22 - onZ T c SIPMEalg  SLT 82 with  Ap = [MA(XMR_X )+ h*x” (1 - xyp) ]
A A A

(D.13)
In the last equality of (eq.D.12), a fastidious calculs imply that the first term (o< DM3) is
identically null. The second term is equal to 4mpo&c®DE and will be recombine with the pressure.
In the same kind of calculs as the first term, the third term of the last equality of (eq.D.12) is
exactly the opposite term of the term o« DIn% in (eq.4.61). The same simplification happens for
the two following term, they are simplify with the term o« DIn®? and o DInw in (eq.4.61).
Then using all the development the Euler equation becomes,

2DA\| DA 8gg 2-w 2 das? 2 8g1 agz 8g2
D- —+| == —-—-5DA"| —DA+|4 DE-DP +k,) + DY, + DY,L + DY) & | =0
[ ( ho? ) ho R he dA 7 (pote D2 P+ o, DU Gy, L DYAL* G, g DY
(D.14)
The calculus of the term derivative of g; and g» leads to,
02 _ 4mpo 21 981 _ 4mpote?
69 lpA Cc WA q/A (D15)
dg> _4mpoy [V‘I’ Lo ] dg> _ 4mpoy
O¥AL B Upr® h OUAE B Upnh

Indeed decompose 47 (poEc®DE—DP —k,) in a part along and a part transversal to the flow.
It allows us to use the last equation of (eq.4.17) to replace term along the flow with something
with the loading term. The rest of the term could also be simplify using the 3+1 decomposition
of four-speed (eq.4.5), and the 3+1 decomposition of time killing vector § (eq.2.36).

47 4mc
47 (po€c”*DE-DP —kp) = DAZ {(po&c*DE —DP) - DA} DA — W [u-k+ &%k | V), + 47k,

47 5 4mc
= W {(pOEC DE,_DP +kp) DA}DA— @

O L 7 SN PR
{n k+®C(V e )}a K+ Ec2kym,

h
(D.16)
These term will be combine with the term o« D@, o DUAL and o« D%, & in (eq.D.12). Indeed
decompose these gradient term in their component along the flow and their component normal
to the flow and using (eqs.4.26&:4.35&4.39). We are able to reorganize, recombine the term in
parenthesis in (eq.D.14), we obtain,

Vp

0g1 0go 0g>
4 ’DE—DP +k,) + —=—DW, + DUAL + DUAE
7 (poZe”DZ p)+ g DIA+ 5y DAL+ 5 2 DU

4n ) 4npoEc® DY, - DA 4TPOY .4 Ow]D¥,L-DA
- Di—-DP+k,)-DA!DA DA Ve — | —2—" " pA
paz {(Poc"DE-DP +kp) DA} DA + 7y DAZ " wAm[ Tl T DAz

4 2DY,&-DA

PoYC AE DA

Uph DA2

(D.17)

Let present the details which leads to (eqs.4.68&4.69), rewrote again Bernoulli,

DA |2 1 K FM2,&, h, @, 0, P, 2, UAL, UAE) V2 (& —Lw)? N — x* N?
Il I __ 2(”12@2@12\5,2624-—):— E' A A Al with K= A( ) \% &
2 2M5 P2 2 c? x2
(D.18)
Then, using (eq.4.65) we have,
OF 282 OF c2/c? , OF _, OF , OF OF 282 OF c2lc?
—2MDA-DDA=|— -2 ——35 " IDM2+—DW +—Dd’+ —Do+|—-—2——3" D@
( ) oMz M3 962 1—c3/c? AT On? dD? dw v W o1-cker| M
OF OF
+ ——DW\L+ DUL\E
WAL AT owe A
(D.19)
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Then we have

2| OF 282 0F c2/c?
D=2 | 2 OF Gl (D.20)
2 |oM3 M3 982 1—c2/c?
OF
So let calculate YA
OF 2 (5 0,., K) 1 0K
o =g (R G
A A A A
2F 203 2 a2 (12222 ~2 2 2.2 2(1222.2 2 2 2.2
=——2 ﬁ[@ {MA(L h“c—® (éa—L(D) )+h ) (éa—L(J))}—@{MA(L h“c—o® (éa—L(D) )+h ) (4
M3 cMA@
2F 204

R [-h2(1 - x)ME (L2h?® - 0% (& - Lw)?) - @R (1 - %) (€ - Lw)? - h*0* (& - L2)* )]
A My
2F 204 (6-Lw)* K
TTME Mi‘g;3 (Qw)w)Z [(1 = )M (g = 2%) + 2712 (1= x%) (1= xpp)” + 2% (1 = x3pp) "M
A A -
—X*h* (1= x{p)* (1 — x)]

2F 205 (& -Lw)*h!

M i)’
M3 M:i28(2-w)
72
_2DA? [ n?B® )
T M2 B 2
M2 PB?

(D.21)
262 Op c2/c?

M g - e immediately get get

For the last term

ct ket

- ) (D.22)

Y2V5, 1-c5/c?

282 OF c%/c®?  2DA?
NPT 2,2 w2
M3 082 1—c5/c? My

D.3 Flux on the horizon of event for a Kerr hole

Let demonstrate and precise the form of the integrals Eqs.(4.80). Start to integrate on %, the
conservation equation Eq.(4.37) (without loading term), using Stokes theorem we get,

fa%G(P,dXI,dX2,dX3) (D23)

Where if (x!,x% x%) is a system of coordinate on 0%, the vector dx; = dx'0;. Then we
decompose 0% =V;44: UV U (Ute[t,t+At] A,Sﬂt) u (Ute[tt+At] oext), which allow us to decompose

the integrals. Use a coordinate system on .4, t,u',u?, u® adapted to the 341 foliation, and note
(04,1 the natural associated basis. Started with the easiest one,

f (P, 8u,1,8u,2,8u,3)du1du2du3 :—f (P-n)e(n, Buyl,au,g,auyg)dulduzdug
7/t+dt

Vivar

=_f (P-m)e(n, Dy, Bz, Ous)du'duldu®  (D.24)
7/t+dt
:_f P-n) ydu'du’du’

7/t+dt

Continue with the integrals on (Ute[[ 1 Ad oext). Suppose we get a system of coordinate x2, x3

ON Oeyt, such that ¢, x!,x? is a system of coordinate on (Ute[tt+At] Gext), then the natural basis
associated to this system of coordinate is n=0;, Ox2,0x3 €I (X). Took the normal s to Ty is
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include inside 9 (X). This vector allow us to make a decomposition of P. Then we obtain,

€(P,0;,0y,2,0x3) cdtdx®*dx® = f (P-s)e(s,n,0y2,0x3) hed rdx*dx®
(Ute[t,t+At] OEXI) (UZE[t,HAt] oem)

:f( )(P-s)dZShcdt&
Ute[t,t+At] Oext

+ At
:f ( hP-dZS)cdt
t Oext
(D.25)

Where d?S =e(s, n, ax,z,ax,s) dx*dx3®. Let finish with the integrals on the horizon of the black
hole, (Uze[t,t+Az] AS%) = AF is a null hypersurface. Its normal vector is £=n+ 2£§, it is also

Cc
tengant to the horizon. As in Sec.(2.2.1), we can build the vector k in order to get the projector

Eq.(2.4). Introducing y!,y? a coordinate system on .#; then,

€(P.0:,0,2,0y3) cdidy’dy’ =~ | (®-0)€(k 8,8y, 8y3) cdrdy’dy®
(Ute[t,HAz]Ay’) ( v J”?’) ra (Uts[t.HAt]Ayt) ( At y,3) yay

- P-0e(k 6,8y, 83) cdrdydy’
[(Ute[t,HAﬂAyt) ( 2 }’3) yeay

t+ At
:—f (f P-Edzq)cdt
t Az,

(D.26)
Where d?q =€ (k. 2, 0y,2, 8y,3) dy*dy’
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Resolution of the system and
numerical work

Let prove the property used in Subsec.(6.4.2). Yue IR%)I\%I using the definition of projector orthogonal
to u,
p1(;uw: RN — RN

x—x-37u (E.1)
Introduce the proposal, for N=n =2
N pN L L
Vijeqm €R R =Span (ieri;)) & Span (Wieqi;m)
. . mN N
gzn . then Pn (.,ul,....,un) : RT—R (E2)
X — Pn-1(P1 X up);p1 (W5 uy), ..o, p1 (Wp—15up))
is the orthogonal projector adapted to the decomposition
Base case.The first step consist to prove 2%,. The calculation of p; (x;u,V) gives,
- wv-u-vxv) xvu-(u-v)(x-u)
P2 (X1, V) =X~ u- \4 (E.3)

u?v? — (u-v)? u?v2 — (u-v)?

Which easily allows us to prove that p, (x;u,v) € Span(u,v)l and x—p2 (x;u,v) € Span (u,v)
which prove that p, (.;u,v) is the orthogonal projector associated to the orthogonal decomposi-

1
tion RN = Span (u,v) @ Span (u,v)*.

Induction step. Let's assume Z,_; true, let's try to prove &,. 22, is true, thenVx,

1
Pr-1(P1 X us);p1 (U uy) ., P1 (Wp—1;u,)) € Span((pl (ui;un))ie[l;n_u) , then,

. u;-uy
Vie[lin—-11 pup-1(p1&u,);p1u;ug), .. pr (un—l;un))'(ui_ 2 un)
n

=0 (E.4)

Py_1 is true, then p,_; (P1 (5 u,);p1 (U5 Uy), e, P1 (Wp—15U,))—P1 (K Uy) € Span((p1 (ui;un))ie[l;n_u)
which implies 3(A;)e[1:n-17 such that,

n-1
Pr-1(P1 X u,);p1 (U)o, P1 (Ws—15Wp)) — P1 (5U,) = ) Aipr (W5u) (E5)
i=1 .

= pu-1 (P & wy);pr (s uy), . pr (Wp—15u,)) -u, =0

It implies that Vx, p,, (X;uy,....,u,) € Span((u,-)ie[l;n])L but also x—p, (X;uy, ....,u,) € Span ((W;) je(1.n).
which completes the demonstration. |
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Appendix F

List of acronyms

AGN Active Galaxy Nuclei. xvii, 2-4, 26, 38, 174

ASIMHD Axi-symmetric Stationary ldeal Magneto-Hydrodynamic. 80
EOS Equation of state. 43, 44, 48, 50
FIDO Fiducials Observers. xi, 9, 16-18, 27, 55-57

GR General Relativity. 80

GRASIMHD General Relativistic Axi-symmetric Stationary ldeal Magneto-Hydrodynamic. vii,
ix, 5, 53, 58, 59, 67, 68, 70, 73-76, 98, 147, 153, 158, 174, 176, 196

GRB Gamma Ray Burst. 1, 26, 38, 146

GRMHD General Relativistic Magneto-Hydrodynamic. vii, 3, 23, 25, 26, 38, 53-55, 57, 58, 64,
70, 76, 146, 147, 156, 158

GU Gaussian Unit. 37, b4, 56
MHD Magneto-Hydrodynamic. 2-5, 26, 38, 50, 54, 73, 146, 152, 160, 161, 165, 174-177
RIAF Radiative inefficient accretion flow. 165

SR Special Relativity. 80

SRMHD Special Relativistic Magneto-Hydrodynamic. 3

ZAMO Zero Angular Momentum Observer. 16, 20, 23, 58-64, 71, 72, 80, 148, 149, 151, 186
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RESUME

Les jets sont des phénoménes d'éjection collimatée de plasma magnétisé. Ces phénoménes liés
a l'accrétion d'un disque sur un objet central, sont relativement répandus dans l'univers : les
environnements des étoiles jeunes (objets Herbig-Haro, étoiles T Tauri), des binaires X, des
sursauts gamma et les noyaux actifs de galaxies... Les jets extra-galactiques sont issus des
trous noirs super-massifs au centre de galaxies telles que les quasars ou les radiogalaxies. lls
sont caractérisés par leur taille, leur puissance et la vitesse du plasma.

Les jets extragalactiques sont étudiés dans de ce travail de thése, méme si les outils et
méthodes développés peuvent étre utilisés pour les binaires X et les microquasars. Nous
poserons en particulier les questions des mécanismes de lancement, d'accélération et de
collimation de ces écoulements. Nous traiterons également de la source énergétique a l'origine
de I'écoulement qui peut atteindre une puissance de l'ordre de 10%” erg.s™.

Le liens avec l'accrétion, la proximité de la base des jets avec le trou noir central, les
vitesses d'écoulement observées dans certains jets, montrent que le traitement de ces questions
doit inclure les effet de la relativité générale. Nous étudierons donc des solutions de la
décomposition 3+1 des équations de la magnéto-hydrodynamique en métrique de Kerr. Nous
nous appliquerons au développement d'un modele d'écoulement auto-similaire meridional avec
un traitement consistant du cylindre de lumiere. Ce modéle pouvant s'appliquer a la fois au jet et
a l'accrétion. Nous explorons les mécanismes d'accélération et de collimation des solutions
produites. Nous calculerons des solutions de I'écoulement entrant dans I'horizon et de
I'écoulement sortant a l'infini incluant des termes d'injection de paires. Le réle du mécanisme de
création de paires et des processus d'extraction de I'énergie du trou noir sera exploré.

MOTS CLES

Jets relativistes - Magnétohydrodynamique en relativité général - Auto-similarité - Jets extra-
galactique - Physique des trous noirs

ABSTRACT

Jets are collimated ejection phenomena of magnetized plasma. These phenomena related to the
accretion of a disk on a central object, are relatively common in the universe: the environment of
young stars (Herbig-Haro Objects, T Tauri stars...), X-ray binaries, Gamma-ray-bursts, and active
galactic nuclei... Extragalactic jets come from super-massive black holes in the center of galaxies
such as quasars or radiogalaxies. They are characterized by their size, their power and speed of
the plasma.

Extragalactic jets will be the subject of studies in this thesis work, although the tools and
methods developed can be used for X-ray binaries and microquasars. In particular, we will ask
questions about the mechanisms of launching, accelerating and collimating these flows, but also
about the energy source at the origin of the flow that can reach a power in the order of 10*7erg.s™.

The links with the accretion, the proximity of the jet base to the central black hole, flow
velocities observed in some jets, show that the treatment of these issues must include the effects
of general relativity. We will therefore study solutions of the 3+1 decomposition of magneto-
hydrodynamic equations in Kerr metric. We will apply ourselves the development of a meridional
self-similar magnetized flow model with a consistent treatment of the light cylinder effect. This
model can be applied to both spine jet and inflow onto the black hole. We explore the
mechanisms of acceleration and collimation of the obtained solutions. We will calculate solutions
of the incoming flow on the horizon and the outgoing flow reaching infinity including injection
terms. The role of the pair creation mechanism and the processes of extracting energy from the
black hole are explored.

KEYWORDS

Relativistic jets - General relativistic magnetohydrodynamics - Self-similarity - Extragalactic jets -
Black hole physics
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