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Runtime Verification of
Hierarchical Decentralized Specifications

Abstract

Runtime Verification (RV) [LS09a, FHR13, BFB+17a] is a lightweight formal method which consists in verifying
that a run of a system is correct with respect to a specification. The specification formalizes the behavior of the
system typically using logics (such as variants of Linear-Time Temporal Logic, LTL) or finite-state machines. The
system is considered as a black box that feeds events to a monitor. An event is a set of atomic propositions that
describe some abstract operations or states in the system. The sequence of events transmitted to the monitor is
referred to as the trace. Based on the received events, the monitor emits verdicts in a truth domain that indicate
whether the run complies or not with the specification. For this thesis, we consider the truth domain to be a set
{>,⊥, ?} where verdicts > and ⊥ indicate respectively that a program complies or violates the specification, and
verdict ? indicates that no final verdict could be reached yet. Truth domains can also include additional verdicts such
as currently true and currently false, to indicate a finer grained truth value [BLS10]. While RV comprehensively
deals with monolithic systems, multiple challenges are presented when scaling existing approaches to decentralized
systems, that is, systems with multiple components with no central observation point. These challenges are
inherent to the nature of decentralization; the monitors have a partial view of the system and need to account for
communication and consensus.

In this thesis, we focus particularly on three challenges: managing partial information, separating monitor deploy-
ment from the monitoring process itself, and reasoning about decentralization in a modular and hierarchical way.
Several algorithms have been designed [BF12, FCF14, BFRT16, CF16a] and used [Bar13] to monitor decentralized
systems. They typically consist of starting with an initial global formula of the system, then depending on the
technique, the approaches utilize monitors to relay partial information, decide consensus, or monitor a partial part
of the specification and rely their information to other monitors.

We focus on the notion of decentralized specification wherein multiple specifications are provided for separate
parts of the system. The system specification is constructed bottom up, by defining specifications over other
specifications. Taking into account dependencies and abstracting subspecifications provides various advantages
such as allowing for realistic monitor synthesis of the specifications, and the ability to modularize specifications.
We recall that synthesis algorithms are doubly exponential in the size of the formula, it becomes infeasible to
synthesize a monitor for a large formula representing all the properties of a system. We also present a general
monitoring algorithm for decentralized specifications, and a general datastructure to encode automata execution
with partial observations. This allows us to compare existing approaches in a uniform manner predictably since we
use automata. We develop the THEMIS tool, which provides a platform for designing decentralized monitoring
algorithms, metrics for algorithms, and simulation to better understand the algorithms. THEMIS provides tools for
designing reproducible experiments which can be extended to include new algorithms and metrics.

We illustrate the approach with multiple applications. First, we use decentralized specifications to analyze, adapt,
compare, and simulate three existing decentralized monitoring algorithms [CF16a]. We perform a worst-case
analysis and look at the usefulness of simulations to determine the advantages or disadvantages of certain algorithms
in specific scenarios. We compare the algorithms under two scenarios. The first scenario explores synthetic
benchmarks, that is, we consider random traces and specifications. This allows us to account for different types
of behavior. The second scenario explores a specific example associated with a common pattern in programming.
For that, we consider a publish-subscribe system, where multiple publishers subscribe to a channel (or topic), the
channel publishes events to the subscribers. We use the Chiron user interface example [ACD+99, Tea99], along
with the specifications formalized for it [DAC99a].

Second, we use decentralized specifications to check various properties in a smart apartment. The properties can be
broken down into three types: behavioral correctness of the apartment sensors, detection of specific user activities
(known as activities of daily living), and composition of properties of the previous types. The context of the smart
apartment provides us with a complex system with a large number of components with two different hierarchies
to group properties and sensors: geographically within the same room, floor, or globally in the apartment, and
logically following the different types of properties. This allows us to re-use specifications, and combine them to:
(1) scale beyond existing centralized RV techniques, and (2) greatly reduce computation and communication costs.
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Furthermore, we elaborate on utilizing decentralized specifications for the decentralized online monitoring of
multithreaded programs. We first expand on the limitations of existing tools and approaches when meeting the
challenges introduced by concurrency, and ensure that concurrency needs to be taken into account by considering
partial orders in traces, we provide perspectives on the monitoring of multithreaded programs using a form of
decentralized specifications, where different specifications are provided for the various concurrency regions in a
program. We detail the description of such concurrency areas in a single program execution, and provide a general
approach which allows re-using existing RV techniques. In our setting, monitors are deployed within specific
threads, and only exchange information upon reaching synchronization regions defined by the program itself. That
is, they use the opportunity of a lock in the program, to evaluate information across threads. As such, we refer to this
approach as opportunistic RV for multithreaded programs. The general approach provides additional semantics for
delimiting and processing concurrent regions, so that the result can be checked soundly using existing techniques.
By using the existing synchronization, our approach reduces additional overhead and interference to synchronize at
the cost of adding a delay to determine the verdict. We utilize a textbook example of readers-writers as it contains
concurrent regions, and show how opportunistic RV is capable of expressing specifications on concurrent regions,
without incurring significant delay. We present a manual monitoring implementation for readers-writers, and show
that the overhead of our approach scales particularly well with the number of concurrent events in a given region.

Keywords: decentralized monitoring, decentralized specifications, runtime verification, LTL, LTL3 monitors, smart
homes, multithreaded programs, eventual consistency, concurrency.
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Vérification à l’Exécution de
Spécifications Décentralisées Hiérarchiques

Résumé

La vérification à l’exécution [LS09a, FHR13, BFB+17a] (RV) est une méthode formelle légère qui consiste à
vérifier qu’une exécution d’un système est correcte par rapport à une spécification. La spécification exprime
de manière rigoureuse le comportement attendu du système, en utilisant généralement des formalismes basés
sur la logique (comme les variantes de la Logique Temporelle Linéaire, LTL) ou les machines à états finies. Le
système est considéré comme une boite noire qui fournit des évènements à un moniteur. Un évènement est un
ensemble de propositions atomiques qui décrit des opérations ou des états abstraits dans le système. La suite
d’évènements transmis au moniteur est appelée la trace. À partir des évènements reçus, le moniteur produit des
verdicts dans un domaine de vérité qui indique si l’exécution est conforme ou non à la spécification. Pour cette
thèse, nous considérons le domaine de vérité {>,⊥, ?}, dans lequel les verdicts > et ⊥ indiquent respectivement
qu’un programme respecte ou viole la spécification, et le verdict ? indique qu’aucun verdict final n’a pu être atteint
pour le moment. Les domaines de vérité peuvent aussi inclure des verdicts additionnels tels que « correct pour le
moment » et « incorrect pour le moment », pour indiquer une valeur de vérité plus précise [BLS10]. Alors que la
verification a l’éxecution traite les systèmes monolithiques de manière exhaustive, plusieurs difficultés se présentent
lors de l’application des techniques existantes à des systèmes décentralisés, c-à-d. des systèmes avec plusieurs
composants sans point d’observation central. Ces difficultés sont inhérentes à la nature de la décentralisation; les
moniteurs ont une vue partielle du système et requièrent une prise en compte des problèmes de communication et
de consensus.

Dans cette thèse, nous nous concentrons particulièrement sur trois problèmes : la gestion de l’information partielle,
la séparation du déploiement des moniteurs du processus de vérification lui-même et le raisonnement sur la
décentralisation de manière modulaire et hiérarchique. Plusieurs algorithmes ont été conçus [BF12, FCF14,
BFRT16, CF16a] et utilisés [Bar13] pour vérifier des systèmes décentralisés. Ils consistent généralement à partir
d’une formule initiale globale du système, puis, selon la technique, les approches utilisent des moniteurs pour relayer
l’information partielle, décider les consensus, ou vérifier une partie de la spécification et relayer l’information aux
autres moniteurs.

Nous nous concentrons sur la notion de spécification décentralisée dans laquelle plusieurs spécifications sont
fournies pour des parties distinctes du système. La spécification du système est construite de bas en haut, en
définissant les spécifications en s’appuyant sur d’autres spécifications. Prendre en compte les dépendances
et abstraire les sous-spécifications a divers avantages tels que permettre une synthèse de moniteurs à partir
des spécifications complexes et la possibilité de modulariser les spécifications. Nous rappelons que comme les
algorithmes de synthèse sont doublement exponentiels sur la taille de la formule, il devient impossible de synthétiser
un moniteur pour une grosse formule représentant toutes les propriétés du système. Nous présentons également un
algorithme général de vérification pour les spécifications décentralisées et une structure de données pour représenter
l’exécution d’un automate avec observations partielles. Cela nous permet de comparer les approches existantes
de manière uniforme et prévisible puisque nous utilisons les automates. Nous développons l’outil THEMIS,
qui fournit une plateforme pour concevoir des algorithmes de vérification décentralisée, des mesures pour les
algorithmes et une simulation pour mieux comprendre les algorithmes. THEMIS fournit des outils pour concevoir
des expérimentations reproductibles qui peuvent être étendues pour inclure de nouveaux algorithmes et de nouvelles
mesures.

Nous illustrons notre approche avec diverses applications. Premièrement, nous utilisons des spécifications décentral-
isées pour analyser, adapter, comparer et simuler trois algorithmes de vérification décentralisée existants [CF16a].
Nous menons une analyse de pire cas et étudions l’utilité des simulations pour déterminer les avantages et in-
convénients de certains algorithmes dans des scénarios spécifiques. Nous comparons des algorithmes dans deux
scénarios. Le premier scénario explore des benchmarks synthétiques : nous considérons des traces et spécifications
générées aléatoirement. Cela nous permet de prendre en compte différents types de comportement. Le deuxième
scénario explore un exemple spécifique associé avec un schéma répandu en programmation. Pour cela, nous
considérons un système de type publication-abonnement, dans lequel de multiples diffuseurs s’abonnent à un canal
(ou sujet), le canal publie des évènements aux abonnés. Nous utilisons l’exemple de l’interface humain-machine
Chiron [ACD+99, Tea99], avec la spécification formalisée pour cet exemple [DAC99a].
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Deuxièmement, nous utilisons des spécifications décentralisées pour vérifier diverses propriétés dans un appartement
intelligent. Les propriétés peuvent être classées dans trois catégories : correction du comportement des capteurs
de l’appartement, détection d’activité spécifiques de l’utilisateur (activités de la vie quotidienne) et composition
de propriétés des deux catégories précédentes. Le contexte de l’appartement intelligent nous fournit un système
complexe avec un grand nombre de composants avec deux hiérarchies différentes pour groupe les propriétés et les
capteurs : géographiquement dans la même pièce, le même étage ou globalement dans l’appartement, et suivant
logiquement les différents types de propriétés. Cela nous permet de réutiliser les spécifications, et de les combiner
pour: (1) aller au-delà des techniques RV centralisées existantes, et (2) réduire grandement les coûts en calcul et
communication.

Enfin, nous élaborons sur l’utilisation de spécifications décentralisées pour la vérification décentralisée pendant
l’exécution de programmes parallélisés. Nous commençons par discuter les limitations des approches et des outils
existants lorsque les difficultés introduites par le parallélisme sont rencontrées et affirmer que le parallélisme doit
être pris en compte en utilisant des ordres partiels dans les traces, nous ouvrons des perspectives sur la vérification
de programmes parallèles en utilisant une forme de spécifications décentralisées, où les différentes spécifications
sont fournies pour les diverses zones parallèles dans un programme. Nous détaillons la description de telles
zones de parallélisme d’une unique exécution d’un programme et décrivons une approche générale qui permet
de réutiliser des techniques RV existantes. Dans notre configuration, les moniteurs sont déployés dans des fils
d’exécutions spécifiques et échangent de l’information uniquement lorsque des points de synchronisation définis par
le programme lui-même sont atteints. Autrement dit, ils prennent partie d’un verrou dans le programme pour évaluer
l’information à travers les fils d’exécutions. Ainsi, nous qualifions cette approche de vérification opportuniste pour
les programmes parallèles. L’approche générale fournit une sémantique additionnelle pour délimiter et traiter les
zones concurrentes, afin que le résultat puisse être vérifié correctement en utilisant les techniques existantes. En
utilisant les points de synchronisation existants, notre approche réduit les interférences et surcoûts résultant de la
synchronisation, au prix d’un retard pour déterminer le verdict. Nous utilisons un exemple typique des lecteurs
et rédacteurs parce qu’il contient des zones concurrentes et montre la capacité de la vérification opportuniste
d’exprimer des spécifications sur des zones concurrentes, sans entraîner de retard significatif. Nous présentons une
implémentation de vérification manuelle pour le problème des lecteurs et rédacteurs et montrons que le surcoût de
notre approche passe particulièrement bien à l’échelle par rapport au nombre d’évènements concurrents dans une
zone donnée.

Mots-clés: vérification décentralisée, monitoring décentralisé, spécifications décentralisées, vérification à l’exécution,
runtime verification, LTL, moniteurs LTL3, habitats intelligents, programmes parallèles, concurrence.
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CHAPTER 1

Introduction

“When we had no computers, we had no programming problem either.
When we had a few computers, we had a mild programming problem.

Confronted with machines a million times as powerful,
we are faced with a gigantic programming problem.”

– Edsger W. Dijkstra, EWD963, 1986

Computer and information systems are becoming ubiquitous in everyday life. Human societies now rely heavily
on automation. Computer systems are responsible for controlling a wide range of systems spanning space,

aviation, nuclear reactors, military equipment, medical equipment, business processes, financial markets, supply
chain management, entertainment (video games, movie production), and phone applications. Computer systems
now form the infrastructure of a modern society and are becoming more complex. Modern information systems
operate on a larger scale than ever, spanning multiple computers, or utilizing complex architectures and parallelism.
As we grow more dependent on computer systems, and as the systems themselves become more complex, it is
crucial to be able to know that they are indeed running as expected. Nobody wants to live in a building with faulty
infrastructure after all.

Unfortunately, computer systems often include errors (informally referred to as “bugs”). Software errors are not
all dangerous, as they can impact various parts of the system, ranging from minor inconvenience, to failure of the
software to perform its functions. Some errors can even go unnoticed until combined with other errors, leading to
yet more confusion. Ensuring that a system has no errors is a massive, and sometimes impossible task; as such,
multiple techniques are introduced and combined to ensure more confidence that the system performs as expected –
as Dijkstra so well put it: “Testing shows the presence, not the absence of bugs”. By employing more techniques,
we raise our confidence level in the software, but also increase the cost of the software. Therefore, reliability is
one of many other considerations (such as performance) when building software, and it is often not the priority.
Improving reliability while maintaining low costs is a challenge in software development.

Reliability is a priority for critical systems. A critical system is a system whose failure results in loss of life, major
environmental harm (or disaster), or significant economic loss. Consider a phone application: a possible crash is
easily averted in the worst case by simply rebooting the specific phone in question. While inconvenient, and so
long as it does not happen frequently, it has no significant impact. However, a phone update which modifies the
firmware of the phone and causes hardware damage is to be considered a critical system, as phones will no longer
be operable and thus a recall is necessary, introducing a financial burden on the company. Historically various
errors have caused critical systems to fail or provide unreliable information. To illustrate the scale and potential
consequences, we present four failures in Example 1.

Example 1 (Failure of critical systems) The Therac-25 was a computer-controlled radiation therapy machine
produced in 1982. Between the years 1985 and 1987, the faulty software controlling the machine led to admin-
istering lethal doses of radiation to patients killing three and critically injuring three [Baa08]. The error was a
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synchronization error, wherein the machine would be in different modes based on how fast the operator entered
keystrokes, without updating properly the display to the operator, leaving them unaware of the issue.

In December 1994, Intel recalled its early Intel Pentium processors due to an error affecting the float-pointing
unit [Nic11]. The error (referred to as the FDIV bug) caused some divisions to return an incorrect result. The total
cost of the product recall was $475 million.

On June 4, 1996 an unmanned Ariane 5 rocket launched by the European Space Agency exploded forty seconds
after its lift-off during its first voyage [LLF+96]. The rocket was a result of a decade of development costing $7
billion. The destroyed rocket and its cargo were valued at $500 million. The report states the main cause to be a

“software exception [..] during execution of a data conversion from 64-bit floating point to 16-bit signed integer
value. The floating point number which was converted had a value greater than what could be represented by a
16-bit signed integer”.

Finally, we present the case of Oko, the soviet early-warning missile defense system during the cold war era.
Oko utilizes various satellites to warn against incoming nuclear ballistic missiles by detection of their engines’
exhaust plume in infrared light. On 26 September 1983, shortly after midnight, the computer reported that one
intercontinental ballistic missile was heading toward the Soviet Union from the United States [Hof99]. Luckily, the
officer on duty – lieutenant colonel Stanislav Petrov, correctly assumed that it was a false alarm. Petrov reasoned
that a first strike by the United States would involve more than one missile, as it would trigger the Soviet Union
to retaliate with its full nuclear arsenal. Multiple false alarms were issued (and ignored) on the same night. The
false alarms were caused by rare alignment of sunlight on high-altitude clouds and the satellites’ orbits. Had Petrov
followed protocol, the software error could have started a nuclear war. ∗

Realizing that the cost of failure is high in some situations, multiple techniques have been developed to increase the
confidence in the correctness of systems. The improvements encompass all aspects of the system’s cycle, including
techniques for managing the process of the system development, regulation that requires specific methods as well
as processes be utilized to set minimums for industries, and approaches for verifying the code which constitutes the
system. For the scope of this thesis, we will be focusing on verifying the correctness of the code itself.

1.1 Software Verification

Software verification is a discipline of software engineering concerned with ensuring that software meets the
expected behavior by its designers. The expected behavior is referred to as a specification. Techniques for software
verification are numerous. When discussing them we focus on six considerations.

1.1.1 Considerations for Verification

First, we focus on the soundness and completeness of the approach. Soundness states that the approach is capable
of detecting correctly when the program conforms to or violates the specification. That is, whenever the verification
logic detects that a program has conformed to (resp. violated) the specification, the program has indeed conformed
to (resp. violated) the specification. Completeness states that all conformance and violations are detected by
the approach. In this case, the approach does not miss cases where the program violates or complies with the
specification. A sound and complete approach is capable of detecting all situations where a program violates or
complies with the specification, and all the detected instances are detected correctly. Verification techniques seek to
always be sound; when discussing them we will focus on completeness.

Second, we consider the rigor of the method: this involves typically the modeling of the system or specification. As
such, we distinguish between informal approaches and formal approaches. Formal approaches rely on mathematical
models of the system and expected behavior (specification). The additional modeling, formalization, and checking
of the system can be expensive both in terms of budget and computational resources. Formal approaches may also
be required in specific domains by standards. For example, they are required for avionics software compliant with
the DSO-178C standard [GP12], and for railway software compliant with the highest safety integrity level (SIL4)
in the CENELEC 50128 standard [EN501, FFM12b].
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Third, we determine the degree of internal knowledge of a system: a system is seen either as a black box, a gray box,
or a white box. A black-box system is a system whose internals are not known. That is, the verification procedure
has no access to the internals of the system, but typically only to its interface. In contrast, a white-box system is a
system whose entire code is known. A gray-box system is a system which some internals are known but others are
not. For example, consider a process that invokes a system call or another library. While the code of the process
may be known, a developer is only aware of the interface of the additional call, but not its code.

Fourth, we distinguish whether the analysis occurs using only the program source, or during the program execution.
The former is referred to as static analysis, it relies on information extracted from the program source (high
language source file, or binary format). Static analysis is generally performed once to verify the source, paying the
computational cost up front and once for the verification. The latter is referred to as dynamic analysis, it relies on
information extracted while the program is executing. Dynamic analysis is performed at every execution, and thus
its overhead is directly added to the program execution. Since dynamic analysis is performed during the execution,
it typically considers states reached by the program at runtime. Additionally dynamic analysis is useful when we
are dealing with non white-box systems, as certain conditions cannot be modeled or controlled for.

Fifth, we distinguish the level of automation. An approach is either manual or automatic. Manual approaches
require developers to write the verification code. Automatic approaches are capable of synthesizing all needed
verification code, and also integrating it automatically with the target program. Automatic approaches are preferred
as they reduce the possibility of human error in the verification code. Manual approaches are typically well adapted
to the target system and specification, they are generally more fine tuned, and have better performance. We also
classify interactive approaches as manual, since the developer input may be required during the verification.

Sixth, we focus on the scalability of the approach. The more scalable the approach, the more it is able to tackle
more complex and larger systems. Scalability in our setting is based on the computational cost needed to perform
the verification.

Using the different conditions to classify techniques, we now present some representative verification techniques.

1.1.2 Testing

Testing generally involves establishing a relationship between a given input and an expected output of the part, or
entirety of the program being tested [Kas18, BMP18, Run06]. Testing can be done manually, or through tests ran
or generated automatically.

Manual testing. Developers rely on a wide set of techniques when performing manual testing [IML09]. These
techniques includes pre-scripted scenarios in which a developer performs manually a testing scenario set forth by
a designer, top-down exploration of the software in which a developer starts from the highest level operations in
the software and refines the testing to more details, or simply relying on experience instead of documentation to
attempt to find bugs. These techniques are all informal, manual, and not complete. While time consuming, they do
verify minimal functionality with respect to usage scenarios.

Automated test execution. To avoid the tedious effort required to perform manual testing, it is possible to utilize
assertions and exception handling to write custom (informal) tests that can be executed automatically alongside
the application at runtime [Run06]. Testing frameworks – like the successful JUnit [DF14, Bec04] framework for
Java – are capable of managing and automatically executing a large collection of tests. The tests target typically an
interface at various levels of an application (method, or all methods in a class), referred to as a unit. Tests are called
unit tests, they verify parts of the software independently Unit testing adapts to all levels of the system knowledge
as tests operate at the level of an interface. Unit tests account for the input generated by the tester, they are not
complete. Executing unit tests is highly scalable, as it can be applied to a large system, as it targets units of it.
However, designing tests for a full system is a tedious task.

Automated test generation. Designing tests is also challenging when accounting for edge cases, or unexpected
input for the system. While the automatic test execution relies on a human tester to design the test, it is also possible
to generate the tests automatically [GA14, RC17, McM04]. Different approaches combine static and dynamic
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Table 1.1: Comparison of verification techniques.

Technique Complete Formal Knowledge Stage Automated Scalable

Testing no some grey-box dynamic some execution only
Model Checking yes yes white-box static yes no
Bounded Model Checking no yes white-box hybrid yes yes
Theorem Proving no yes white-box static some no
Assertion Checking no yes white-box dynamic some yes
Runtime Verification no yes black-box dynamic yes yes

analysis, and range from formal approaches that synthesize tests from proofs [EH07] or from a formal model of the
system (known as conformance testing [AMF14, ACM+18]) to non-formal approaches that synthesize tests using
genetic algorithms [RDCN18].

1.1.3 Techniques Relying on Formally Modeling Programs

Model checking. Model checking approaches [GV08, CE81, QS08] reason on a model of the program. As such,
they formalize the program behavior as a model and the specification using (temporal) logics, and then verify that
the model complies or violates the specification. This allows such approaches to be complete, i.e. to exhaustively
account for all edge cases that a programmer might be unaware of. Model checking approaches need to model all
possible states of a program, and as such often end up suffering from a combinatorial explosion, and are therefore
not very scalable. To avoid explicitly enumerating all possible states and improve scalability, it is possible to use
(sound) abstractions of the program semantics with techniques like abstract interpretation [CC77]. Furthermore,
it is possible to define abstractions over groups of states by constraint solving. This is known as bounded model
checking [CBRZ01].

Contracts. Another approach to model the behavior of programs is to use contracts. Contracts are formally based
on Hoare triples [Hoa69], and are used to describe the expected behavior of a system. A triple ({P}C {Q}) consists
of a given system operation (C) and two predicates (also called assertions): a pre-condition (P) and a post-condition
(Q) governing the effect of the operation on the system. The triple states that if P holds before executing an operation
C, then Q must hold after executing C, assuming C terminates without errors1. Hoare triples allow us to also
express invariants on the program states (i.e., having the same predicate as pre-condition and post-condition). The
principle is used for modeling Java programs with the Java Modeling Language (JML) [LBR06], and C programs
with the ANSI/ISO C Specification Langage (ACSL) [BFM+18, Dor15]. Contracts can be checked statically using
deductive reasoning with techniques such as weakest precondition [Dij75], and theorem proving [Duf91]. Checking
contracts statically can be costly, and as such is hard to scale. They can also be checked dynamically by evaluating
the predicates at runtime, as in assertion checking [SKV17, AGVY11, KHBZ15, RLL+13]. Finally, static and
dynamic approaches can be combined to minimize the assertions needed to be checked online. Frameworks such
as Frama-C [KKP+15] use a plugin system to combine multiple approaches. Furthermore, while assertions are
typically written down by users, they can also be generated automatically. For example, Frama-C automatically
generates assertions to account for valid memory accesses and pointer de-referencing.

We next present runtime verification, a formal method which consists in verifying that a single run of a system is
correct with respect to a specification.

1Hoare triples as defined in [Hoa69] do not express the termination property for the entire program, it must be checked separately.
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Figure 1.1: Overview of basic concepts of RV and their interactions.

1.2 Runtime Verification

1.2.1 Overview

Runtime Verification (RV) [LS09a, FHR13, BFB+17a] is a lightweight formal method which consists in verifying
that a run of a system is correct with respect to a formal specification typically expressed in logics (such as variants
of Linear-Time Temporal Logic, LTL) or finite-state machines. Figure 1.1 illustrates how RV is used to perform
verification. First, a monitor is synthesized (usually automatically) from the specification. It contains code necessary
to perform verification against the specification. Second, the system is instrumented to generate and feed events to
a monitor. An event usually consists of a set of observations. An observation associates an atomic proposition
that describes some abstract operation or state in the system to a truth value. The sequence of events transmitted
to the monitor is referred to as the trace. The system can be typically seen as a black-box since, for performing
verification, all that is required is the trace. Third, based on the received trace, the monitor emits verdicts in a truth
domain that indicates whether or not the run complies with the specification. A typical truth domain is the set
{>,⊥, ?} where verdicts > and ⊥ indicate respectively that a program complies or violates the specification, and
verdict ? indicates that no final verdict could be reached yet. Truth domains can also include additional verdicts
such as currently true and currently false, to indicate a finer grained truth value. We illustrate a simple case of a
light switch and a light bulb in Example 2.

Example 2 (Switch triggers bulb) Consider a system that contains a light switch and a light bulb. The possible
states for each of the switch and bulb consist of being on or off. Let us associate the states with the atomic
propositions s and `, respectively. Using the atomic propositions, we are able to generate observations about the
system. For example, the observation 〈s,⊥〉 indicates that the switch is in the state off. An event is simply a set of
observations. The event {〈s,>〉, 〈`,⊥〉} indicates that the switch is on, and the light is off. We next define (informally)
a property of the system: “The light bulb must be on one timestamp after the switch is on, until the switch is
turned off”. Now let us consider two traces: tr0

def
= {〈s,⊥〉, 〈`,⊥〉} · {〈s,>〉, 〈`,⊥〉} · {〈s,>〉, 〈`,>〉} · {〈s,⊥〉, 〈`,⊥〉}

and tr1
def
= {〈s,⊥〉, 〈`,⊥〉} · {〈s,>〉, 〈`,⊥〉} · {〈s,>〉, 〈`,⊥〉}. We see that tr0 complies with the specification, while tr1

violates it as the light is not turned on after the switch is turned on. ∗

Since RV targets one execution of the program, it explores a smaller number of states than model-checking does,
avoiding the state explosion problem. RV sacrifices completeness in order to be scalable and expressive when
verifying only one run of the system. Table 1.1 shows how RV compares to some of the techniques mentioned in
the earlier section (Section 1.1). We note that verifying that the currently running program is behaving according
to the specification is useful, as some factors could impact the program beyond its own code. These are typically
environmental (external) to the program, such as hardware failure and radiation induced faults [dOPSR16]. This
allows the program to detect correctly the error, and also possibly react to it (see Section 1.2.2). A challenge for RV
is to keep the overhead low, since the overhead is paid at runtime for every execution of the program. Multiple
considerations are needed to monitor even a single run. We elaborate on the major concepts often dealt with in
runtime verification in the next section.

1.2.2 A Field With Many Considerations ([FKRT18])

Monitoring even a single execution of a program introduces considerations on many levels. In [FKRT18], the
authors suggest multiple concepts that RV approaches tend to deal with. We show a high-level mindmap in
Figure 1.2.
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Figure 1.2: High-level mindmap overviewing the taxonomy of Runtime Verification (from [FKRT18]).

Traces. First, an RV approach has to consider the trace, as it provides all the information about the system to
the RV technique. Traces can take on two roles, they can be used to represent the information extracted from the
program execution, they can also be used as a mathematical object to reason about properties of the RV technique
(such as considering finite, or infinite traces). Furthermore, an RV technique must define the necessary information
from the program, and encode it appropriately. For example, it must determine whether the information is events
generated by function calls or triggers, sampling of the system state, or a continuous signal. To build up the trace,
information is often associated with a notion of time, as such evaluation pertains to whether the trace captures
points in time or intervals.

Specifications. The information needed in the trace depends on the chosen specification formalism. Specifications
are defined under a certain view and assumptions on the system (referred to as the system model). Specifications
are either implicit or explicit. An implicit specification denotes correctness properties that are important but
do not necessarily need to be defined by the developer. These properties are universally understood and can be
hard-coded. Examples of implicit specifications include deadlock freedom, data-race freedom, and ensuring safe
memory accesses. An explicit specification denotes properties that are important to the programmer and typically
defined using behavioral formalisms (like finite state machines and time logics).

Monitors. Specifications are used to create monitors. Monitors are the components responsible for performing
the verification. As such RV, techniques have to deal with monitor generation and execution. The automatic
creation of monitors from specifications is the problem of monitor synthesis (c.f. [BLS11, BL11]). Monitor
execution can be either direct or indirect. A directly executable monitor is simply code in the target programming
language that contains the verification logic. An indirectly executable monitor consists of a reification of more
generic monitoring logic (e.g. part of some framework), that is initialized with specific parameters to monitor
the specification. Finally, the decision procedure of the executing monitor can be analytical or operational. An
analytical decision procedure is capable of randomly seeking records (e.g. in a database) to determine relationships
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between the various records with respect to the execution. An operational decision procedure decides as it receives
information, using an iterative process over the trace. Operational decisions procedures utilize formalisms like
automata or are based on formula rewriting.

Deployment. Monitors are designed to verify a given execution of the system, and therefore decisions must
be made to determine when, where, and how they are placed in the system. The stage of a monitor determines
when the verification occurs. We distinguish between two stages: online and offline. Online monitoring consists in
running the monitors during the execution, while offline monitoring consists in analyzing the trace of the execution
postmortem. The placement of a monitor determines where the verification occurs. Monitors can be placed to
execute in the same address space as the target system (i.e. same process or thread), in which case monitoring
is said to be inline. In contrast, monitors can be run in a separate process or device (for example, on GPUs or
FPGAs in parallel), in which case it monitoring is said to be outline. The architecture of monitors determines
how monitors are placed. That is, it determines how many monitors will be run in the system, and whether or not
monitors will communicate together. If the system contains only one monitor, it is said to be centralized, otherwise
it is said to be decentralized.

Interference. By introducing monitors in a system for verification, it is often the case that a technique interferes
with the existing system in order to monitor it. Monitors or trace capturing techniques may affect the memory
layout of the application, or the schedule of threads in a concurrent program. They can also incur additional delays
in systems such as real-time systems. There is interest in minimizing the interference of runtime verification,
which can rely on the platform itself providing the trace such as JVM snapshotting and hardware modules for
non-intrusive trace capture.

Reaction. Runtime verification techniques are primarily used to observe the system and verify the run against
a specification. In this sense, they are said to be passive, since they only observe, and then report or fail
when a specification is violated. The monitoring reaction can also be active, in which case the monitoring
logic interferes in the target system to ensure that it is compliant with the specification. This is the case of
runtime enforcement [Fal10, FMFR11, FMRS18], in which monitors are capable of snapshotting, rolling back, and
suppressing events in a program. It is also possible to allow the program to deviate from the specification for a fixed
amount of time, after which the monitor logic is supposed to restore the compliance with the specification or fail.

In this thesis, we focus on tackling concepts pertaining to passive monitoring when monitors are deployed in a
decentralized fashion. We next introduce the problem of decentralized runtime verification.

1.3 Decentralized Runtime Verification

Decentralized runtime verification [CF16a, FCF14, NCMG17, SVAR04] (DRV) is concerned with verifying
systems of multiple components. A component can be seen as a separate computing unit such as a thread, a
process, or an interface with another system. In DRV, checking the specification requires observations from multiple
components and cannot be performed on each component in isolation. In this setting, there is no single observation
point, monitors may be deployed on various components and need to communicate to perform the verification.
We use the term global state to refer to all the observations across all components of the system, and the term
partial state (and partial observations) to refer to a subset of all observations. To illustrate the setting consider the
switch and the bulb from Example 2. In this setting, the observations on each of the switch and bulb are not in
a monolithic architecture, but rather are separated. As such, one must consider deploying code on the switch or
bulb to possibly send observations to the other in order to verify the specification. DRV approaches differ based on
the assumptions on the system. For example: synchronous versus asynchronous communication, presence of a
global clock, and reliable or unreliable communication links. While we elaborate on the approaches in detail in
Chapter 3, we present three general strategies as examples of monitor setups from [CF16a] in Section 1.3.1, discuss
their common challenges in Section 1.3.2, and present the thesis contributions in Section 1.3.3.
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Figure 1.3: Different DRV strategies. Numbers illustrate hops (delay) needed to propagate information.

1.3.1 Strategies

Organizing monitors in a decentralized architecture requires consideration for their topology when integrated in the
system. In [CF16a] the authors discuss three general yet different algorithms that organize monitors: Orchestration,
Migration, and Choreography. They are illustrated in Figure 1.3. In this section, we introduce a high-level view of
the strategies, and use them as examples in the remainder of the thesis. In particular, we analyze and compare them
in detail in Chapter 8.

Orchestration. The orchestration algorithm (Orch) shown in Figure 1.3a emulates a centralized monitoring
algorithm. To do so, it first sets up a main monitor (m0) in charge of monitoring the entire specification. Then,
since that monitor cannot access all observations on all components, Orch introduces one monitor per component
to forward the observations to the main monitor. In Orch, only one component performs monitoring, while the
components simply send all observations. While this is a simple approach to monitoring, it does not effectively
distribute the computation across components, and requires that all observations be communicated at all times,
which can be costly (Chapter 8).

Migration. A migration algorithm shown in Figure 1.3b performs monitoring by moving the monitor across
components to complete the information needed for verification. In brief, a migration algorithm places the monitor
on an initial component, captures observations, then decides whether or not to transfer the monitor to another
component using a heuristic. As such, it attempts to minimize communication messages as a monitor is transferred
whenever information from other components is needed. The migration algorithm relies on a heuristic to decide on
transferring the monitor, in this thesis we use two heuristics: earliest obligation from [CF16a] and round-robin.
The earliest obligation heuristic ensures that the atomic proposition with the least timestamp (soonest) determines
which component to choose next. The round-robin heuristic always transfers the monitor in a cyclical manner
starting from m0. By using the heuristics we define two variants of the migration algorithms: Migr and Migrr,
respectively.

Choreography. The choreography algorithm (Chor) shown in Figure 1.3c performs an analysis on the specifi-
cation (written in LTL), splits the specification into subspecifications, assigns monitors to each subspecification,
and organizes the monitors in a directed acyclic graph (DAG). As such, the information needed to analyze the
specification propagates in the DAG, allowing each monitor to complete its verification, until it reaches the root
monitor (m0), which determines the verdict. In Chor, a monitor may perform verification multiple times to
determine the verdict associated with the subspecificiation on the same trace but starting at different timestamps
(the process is called respawning). Orch can be seen as a special case of Chor with a tree of height 1, where leaves
consist of subspecifications formed only by a single atomic proposition.
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The presented strategies encompass different approaches to decentralize monitors when performing DRV. However,
multiple challenges and common considerations arise when performing DRV using similar strategies. We elaborate
on the challenges in the next section (Section 1.3.2).

1.3.2 Challenges

Multiple common challenges arise when performing DRV. In this thesis, we focus particularly on three challenges:
managing partial observations, separating deployment from monitoring, and reasoning about decentralization in a
modular and hierarchical way.

Partial observations. Since algorithms performing DRV have no access to the global state of the system, they
must maintain partial information on the execution. The partial information for a given monitor depends on the
component assigned to it, and the information communicated by other monitors. Therefore, a common theme
to all approaches pertains to managing partial observations, maintaining possible reachable verdicts, and then
resolving the global state when sufficient information is obtained. While this can be implemented arbitrarily by
buffering information in memory and always waiting for all information to be available, it is sometimes the case
that monitoring can progress when sufficient partial information is gathered. It is then of interest to be able to model
partial information in a uniform way across the different strategies in order to parametrize and assess them.

Separation of problems. DRV approaches are concerned with the monitor deployment given a specific global
specification. They typically analyze the specification to determine the monitor architecture while also managing the
monitoring itself. As such, the problem of generating the monitor network and assigning monitors to components is
often tangled with the problem of the monitoring itself. While some DRV approaches (detailed in Section 3.2.2)
enable specifications to assign specific atomic propositions to components which are used when synthesizing the
monitor network, they do not explicitly model the deployment and monitoring as two separate phases of monitoring.
Separating the problems of deployment from monitoring allows for more control and analysis of the monitoring
approaches, and more importantly opens the possibility to enable the deployment to target the system architecture.

Modular hierarchical specifications. Using a single global specification to represent system properties hides the
relationships between various parts of a decentralized system. A global specification requires that the monitoring
technique perform additional (potentially costly) analysis to determine the relationships and dependencies between
the various subspecifications. Having a large specification presents scalability issues both in the design and
maintenance of specifications, and the automatic synthesis of monitors. Therefore, we seek to modularize
specifications and determine relationships between subspecifications and the various components of a system.

1.3.3 Thesis contributions

We summarize the contributions of the thesis as follows:

• To account for the challenge of managing partial observations, we introduce in Chapter 5 a data structure
(Execution History Encoding, EHE) which encodes an execution of an automaton. The EHE keeps track
of potential reachable states given partial information, by modeling paths to possible states as boolean
expressions. By doing so, the EHE allows us to make the most of partial information. By performing
boolean simplifications we are able to determine reachable states without requiring all atomic propositions
be provided. Furthermore, the EHE data structure replicates under strong eventual consistency regardless of
the order of messages. That is, for any two monitors exchanging their EHE, they are able to determine the
same information about the verification of the system.

• The EHE data structure also allows us to unify the analysis of different decentralization strategies, as the EHE
relies on boolean formulae instead of LTL formulae which are easier to manipulate at runtime and have a
known minimal form [BU08] (see Section 3.1.3 for details).
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• We also present decentralized specifications in Chapter 6, which allow specifications to account for decentral-
ization. A decentralized specification consists of a set automata-based specifications that are able to reference
each other. Referencing other specifications explicitly models the relationships between specifications in the
system, allowing us to separate the problem of generating subspecifications (i.e. synthesis of a decentralized
specification) from the monitoring itself, and thus establish a generic decentralized monitoring algorithm
consisting of two phases: setup which performs deployment, and monitor which accounts for the monitoring
technique. We elaborate on their semantics (i.e. how to evaluate the references), and two of their properties.
The first extends the property of what one can monitor (i.e. monitorability) to decentralized specs. The
second defines the property of compatibility between a specification and a system architecture.

• We detail the design decisions behind developing THEMIS (Chapter 7), a framework designed to handle
decentralized specifications. We show how THEMIS can be used to design, analyse and simulate decentralized
monitoring algorithms .

• We present two applications of decentralized specifications and EHE. First, they are used to compare the
three strategies (mentioned in Section 1.3.1) using analysis and simulation in Chapter 8. This extends
previous work [CF16a] with analysis, and replicates the experiment with additional metrics. Second, we use
decentralized specifications to monitor smart homes and user behavior in Section 9, on real traces of over
36,000 timestamps spanning 27 sensors in a smart apartment. We show how to go beyond system properties,
to specify user behavior using RV, and more complex interdependent specifications defined on up to 27
atomic propositions. We illustrate the modularity of decentralized specifications to: (1) scale beyond existing
centralized RV techniques, and (2) greatly reduce computation and communication costs.

• We instantiate decentralized specifications to account for RV of multithreaded programs. After detailing
the limitations and challenges of RV for multithreaded programs, we utilize a two-level decentralized
specification. The decentralized specifications determines behavior at two levels. At the first level, properties
are defined on the thread itself. At the second level, properties are defined over concurrency regions (referred
to as scopes).

1.4 Thesis Overview

The thesis is split into three parts. We present an overview of the parts and their chapters.

Chapter 2: We introduce the general concepts often used in runtime verification. Particularly, we introduce
two formalisms: Linear-time temporal logic (LTL), and LTL3 monitors. Furthermore, we present aspect-oriented
programming on which a large amount of RV techniques rely for instrumentation.

Chapter 3: We present related work, focusing on techniques applicable for decentralized RV. We tackle techniques
relying on formula rewriting, specific approaches for monitoring distributed and multithreaded programs, and
finally we cover stream-based RV which models various input sources as named streams.

Part One: Hierarchical Decentralized Specifications

Part one tackles the challenges presented in Section 1.3.2 by introducing the theory used in the remainder of the
thesis and the THEMIS tool designed to incorporate it. In particular it introduces the EHE data structure used to
encode partial information, and decentralized specifications.

Chapter 4: We introduce the basic concepts and notation used in the remainder of the thesis.

Chapter 5: We introduce the Execution History Encoding (EHE) data structure. The EHE data structure encodes
the execution of an automaton while preserving soundness and determinism.
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Chapter 6: We define hierarchical decentralized specifications. We elaborate on the basic structure of a de-
centralized specification, elaborate on its semantics, and detail properties of monitorability and compatibility.
Monitorability ensures that given a specification, monitors are able to eventually emit a verdict, for all possible
traces. Compatibility ensures that a monitor topology can be deployed on a given system.

Chapter 7: In this chapter, we explain the design goals and architecture of THEMIS. THEMIS is a modular tool to
facilitate the design, development, and analysis of decentralized monitoring algorithms; developed using Java and
AspectJ. THEMIS is designed with the ability to interface with other tools while providing a uniform workflow for
designing algorithms, metrics, and running reproducible experiments.

Part Two: Applications

Part two illustrates two applications of decentralized specifications. The first application compares various
decentralized monitoring algorithms using a unified analysis and simulation approach. The second applies runtime
verification to a smart home, which presents a hierarchical architecture and multiple inter-dependencies between
specifications.

Chapter 8: In this chapter, we aim to compare different decentralized monitoring algorithms in terms of compu-
tation, communication, and memory overhead. We elaborate on the general phases of decentralized monitoring
algorithms and illustrate the approach to analyze and simulate them by adapting the algorithms explained in
Section 1.3.1.

Chapter 9: We use decentralized specifications to check various specifications in a smart apartment. The
specifications can be broken down into three types: behavioral correctness of the apartment sensors, detection of
specific user activities (known as activities of daily living), and composition of specifications of the previous types.
We illustrate how decentralized specifications allow us to re-use specifications, and combine them to: (1) scale
beyond existing centralized RV techniques, and (2) greatly reduce computation and communication costs.

Part Three: Instantiation for Multithreaded RV

Part three reuses the concept of decentralized specifications modifying the semantics to target multithreaded
programs. We begin by introducing the challenges to multithreaded RV, and then present a two-level decentralized
specification that targets multithreaded programs.

Chapter 10: We review some of the main RV approaches and tools that handle multithreaded Java programs to
highlight the challenges RV faces when targeting multithreaded programs. We discuss their assumptions, limitations,
expressiveness, and suitability when tackling parallel programs such as producer-consumer and readers-writers. By
analyzing the interplay between specification formalisms and concurrent executions of programs, we identify four
questions RV practitioners may ask themselves in order to classify and determine the situations in which it is sound
to use the existing tools and approaches.

Chapter 11: We introduce the decentralized monitoring of multithreaded programs using the main idea behind
decentralized specifications. Monitors are deployed to monitor specific threads, and only exchange information
upon reaching synchronization regions defined by the program itself. That is, they use the opportunity of a lock in
the program, to evaluate information across threads. We utilize a textbook example of readers-writers as it contains
concurrent regions, and show how opportunistic monitoring is capable of expressing specifications on concurrent
regions, without incurring significant delay.
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1.5 Associated Publications

[EHF17a] presented at ISSTA’17 introduces the basic theory behind EHE and decentralized specifications only
commenting on the soundness property. Furthermore it also features the preliminary analysis and simulation
presented in Chapter 8.

[EHF17b] is a tool demonstration paper presented at ISSTA’17 for THEMIS, it discusses an older version of
THEMIS presented in Chapter 7.

[EHF18a] is a case study paper in RV’18 for monitoring smart homes which we present in more detail in Chapter 9.

[EHF18b] presents a tutorial in RV’18 covering monitoring multithreaded programs and the limitations of existing
RV tools. We cover the topic in Chapter 9.
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Expressing Properties and Instrumenting Programs
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We introduce the general concepts often used in runtime verification. Particularly, we introduce two formalisms in
Section 2.1: Linear-time temporal logic (LTL), and LTL3 monitors. The two formalisms are used in the remainder
of the thesis when defining decentralized specifications (Chapter 6), and when writing specifications (in Chapters 8,
9, and 11). Furthermore, we introduce in Section 2.2 aspect-oriented programming (AOP) on which a large amount
of RV techniques rely for instrumentation. We use AOP in the THEMIS tool (Section 7.6) to automatically instrument
metrics and we discuss limitations of using AOP for RV when monitoring multithreaded programs (Section 10.3).

2.1 Specifying Expected System Behavior

The specification formalizes the expected behavior for the system. The execution of a program is checked against
the specification to ensure it is correct. Since RV is a formal technique, it is expected that specifications be expressed
using a formalism. In this section, we introduce two basic formalisms on which extensions are typically used. First,
we introduce linear-time temporal logic in Section 2.1.1 to specify the behavior of programs with respect to time.
Then, we introduce specific Moore automata generated to monitor programs referred to as LTL3 monitors.

2.1.1 Specifying Behavior with Linear-time Temporal Logic (LTL)

Linear-time Temporal Logic (LTL) intoduced by Pnueli [Pnu77] is a formalism used to express properties over
a sequence of system states. The sequence order is of temporal nature, the sequence shows the evolution of the
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Figure 2.1: LTL operators and their effect on evaluating formulae on a sequence of states. Numbers indicate
timestamps (index in the sequence).

system state across time. We denote by AP the set of possible atomic propositions, then Σ = 2AP is the alphabet of
atomic propositions. An LTL formula defined over Σ, can be expressed using the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ,where p ∈ AP

LTL formulae are evaluated over (infinite) words defined over Σ and ranging over Σω as per Definition 1. The
notation wi indicates the sequence w starting at i (suffix), while w(i) indicates the element of the sequence at i.

Definition 1 (LTL semantics) Let w ∈ Σω and i ∈ N . Satisfaction of an LTL formula by w at time (index) i is
defined inductively:

wi |= p ⇔ p ∈ w(i), for any p ∈ AP
wi |= ¬ϕ ⇔ wi 6|= ϕ
wi |= ϕ0 ∨ ϕ1 ⇔ wi |= ϕ0 or wi |= ϕ1
wi |= Xϕ ⇔ wi+1 |= ϕ
wi |= ϕ0 Uϕ1 ⇔ ∃k ∈ [i,∞[ wk |= ϕ1 and ∀l ∈ [i, k[ wl |= ϕ0

An LTL formula consisting of an atomic proposition p is satisfied by checking if p holds at the current time, i.e
p appears in the set of w(i). The operator X is referred to as the next operator, as for a given timestamp i and a
formula ϕ, it checks if ϕ is satisfied at the next timestamp (i.e. wi+1). The operator U is called the until operator.
Given two formulae ϕ0 and ϕ1, the formula ϕ0 Uϕ1, states that ϕ0 must hold until a time instant k where ϕ1 holds,
at which ϕ0 no longer affects the satisfaction of the formula. Using these fundamental operators, we can extend
the syntax of LTL for convenience as follows: > def

= p ∨ ¬p, ⊥ def
= ¬>, ϕ0 ∧ ϕ1

def
= ¬(¬ϕ0 ∨ ¬ϕ1), Fϕ def

= >Uϕ, and
Gϕ

def
= ¬F (¬ϕ). Operator F indicates that eventually (or finally) ϕ holds, it is typically used to express liveness

properties, that is, it expresses states that are eventually reached by the program execution. Operator G indicates
that globally (or always) ϕ holds, it is typically used to express safety properties, that is, it expresses states that the
program execution must not reach. Figure 2.1 illustrates the introduced time operators, we see on the left a formula
written in LTL using the operator, and on the right a trace which satisfies the formula.

Example 3 (Specifying behavior with LTL) Let us recall the light switch and bulb from Example 2. Our set of
atomic propositions is AP = {s, `}. We are interested in specifying the following: “The light bulb must always be
on one timestamp after the switch is on, until the switch is turned off”. The corresponding LTL formula is then:
G(s =⇒ X(`U¬s)) That is, we want to check that at all times (G), when a switch is on (s), we verify at the next
timestamp (X) that the light switch is on until the switch is off (`U¬s). Using LTL, we are able to specify the
behavior of the interaction of the light switch and bulb. We note that, in this case, we chose to allow the light to
stay on after the switch is toggled off. We only require the light be on while the switch is on, while other factors
can impact it staying on as well, or give the light a given fading duration before it turns off, i.e. a few timestamps
before it is turned off. It is also possible to enforce a stricter relation between the light and the switch by using a
specification such as G(s⇔ X`). ∗
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q0 q1 q2
¬s
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Figure 2.2: LTL3 monitor for the light switch and bulb specification. The verdicts associated with the states are ⊥:
dotted red, and ?: single yellow.

2.1.2 Specifying Behavior with Moore Automata

An LTL3 monitor is a typical automaton used in RV (c.f. [BLS11, FCF14]). An LTL3 monitor is a complete,
minimal, and deterministic Moore automaton where states are labeled with the verdicts in the set B3 = {>,⊥, ?},
and transitions are labeled with expressions defined over an alphabet of atomic propositions. Atomic propositions
are used to represent abstract states of the system. Verdicts > and ⊥ respectively indicate that the current execution
complies and does not comply with the specification, while verdict ? indicates that the verdict has not been
determined yet. Verdicts > and ⊥ are called “final”, as once the monitor outputs > or ⊥ for a given trace, it cannot
output a different verdict for any extension of that trace. The automaton can be automatically generated from an
LTL specification using various transformations detailed in [BLS11].

Example 4 shows the LTL3 monitor for checking the interaction between the light switch and bulb.

Example 4 (LTL3 Monitor) We introduced in Example 3 the property G(s =⇒ X(`U¬s)). The LTL3 monitor
that checks for the property is presented in Figure 2.2. The automaton consists of three states: q0, q1, and q2
associated respectively with the verdicts ?, ?, and ⊥. Upon reaching q2, the verdict is final as it can no longer
change. The final verdict indicates that, at some point in the execution, the light was off while the switch was on.∗

In the case of Example 4, it is possible to imagine one monitor running (with or alongside) the program, and having
access to the global state of the program. We refer to such a scenario as centralized monitoring of a centralized
specification. There is one global specification of the system, being checked by a given monitor that has access to
all the information about the atomic propositions.

2.2 Instrumenting Programs with Aspect-Oriented Programming (AOP)

Specifications define the way a program execution should behave typically over events. Events represent abstract
states of a program. Eventually, it is required that these events be extracted during an execution. This is typically
done by instrumenting the program. While RV techniques are capable of defining their own instrumentation
technique, there exist general purpose dedicated tools for instrumenting programs. In this section, we elaborate
on the aspect-oriented programming paradigm as it provides a modular way to describe and intercept and inject
code into an existing program. The AOP paradigm has an explicit compiler for an extension of Java called
AspectJ [KHH+01a] which integrates its principles at the source-code level, and recently DiSL [MZA+15, MVZ+12]
which integrates AOP concepts for dynamic analysis at the byte-code level.

2.2.1 Overview of AOP

A typical system consists of its main logic along with tangled code that implements multiple other functionalities.
Such functionalities are often seen as secondary to the system. For example, logging is not particularly related
to the main logic of most systems, yet it is often scattered throughout multiple locations in the code. Logging
and the main code are separate domains and represent different concerns. A concern is defined in [CES97] as a
“domain used as a decomposition criterion for a system or another domain with that concern”. Domains include
logging, persistence, and system policies such as security. Concerns are often found in different parts of a system,
or in some cases multiple concerns overlap one region. These are called crosscutting concerns. Aspect-Oriented
Programming (AOP) [KHH+01a] aims at modularizing crosscutting concerns by identifying a clear role for each
of them in the system, implementing each concern in a separate module, and loosely coupling each module to
only a limited number of other modules. Essentially, AOP defines mechanisms to determine the locations of the
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Account

�- + getOwner() : User
�S + getBalance() : Dollars
PL-S + deposit(amt : Dollars)
PL-S + withdraw(amt : Dollars)

AccountController

PL-S + wire(from : Account, to : Account, amt : Dollars) : bool
PL-S + close(acct : Account) : bool
PL-S + open(user : User, balance : Dollars) : Account
-LC- + list(user : User) : Account[ ]

UserController

PL-S + create(data : UserData) : User
�C- + get(code : Integer) : User
�C- + find(name : String) : User[ ]
PL-S + block(user : User) : bool

User

�CS + getInfo() : UserData
�- + getCode() : Integer
-L� + getLastActivity() : Date

P: Persistence L: Logging C: Caching S: Security Policy

Figure 2.3: Multiple concerns in a simple system

concerns in the system execution by introducing the concept of joinpoints and pointcuts. Then, it determines what
to do at these locations by introducing the concept of advices. Finally, it provides a mechanism to coordinate all
the advices happening at a location by introducing the concept of weaving. We elaborate on the various concepts
in Section 2.2.3. Since RV can be seen as a crosscutting concern, AOP techniques are often used to instrument
systems as utilizing pointcuts is a simple way to describe events.

2.2.2 Crosscutting Concerns

The implementation of crosscutting concerns mentioned in the introduction leads to two typical problems: scattering
and tangling [LLO03].

• Tangling happens when concerns overlap in one region of the program. Consequently, enforcing one concern
may affect others.

• Scattering is the dual situation of tangling. It happens when one concern is spread across different regions of
the program. Scattering concerns go against encapsulation. Developers have to manually keep track of the
location of a specific concern in multiple areas of the system.

In the following example, we illustrate the above two problems on an example.

Example 5 (Crosscutting concerns and their issues.) Figure 2.3 illustrates four different crosscutting concerns:
logging, caching, persistence and security policy. We present a class diagram describing the main methods of the
classes. We omitted describing their relationships for clarity. The class diagram methods are prefixed with the
four concerns as flags. We identify each concern by a label, if the method is annotated by the label, then some
code related to the logic of that concern is included in the method. For example, the method Account.withdraw has
three tangled concerns: persistence, logging, and policy. Thus, method withdraw has to include code for persistence,
logging, and logic. This code enforces the policy in addition to its own main logic. The policy concern is scattered
across all four classes, hence maintaining it requires one to modify all four classes when a change is needed. ∗

2.2.3 AOP Concepts

The purpose of AOP is to localize crosscutting concerns in an aspect. An aspect is defined in [KHH+01a] as “a well
modularized implementation of a crosscutting concern”. These concerns are separated from the main program logic
and contained in separate logical units. One example of separation of concerns is achieved by AspectJ [KHH+01a],
which is an aspect-oriented extension to the Java programming language.

A joinpoint is a well-defined point in program execution where a concern needs to be handled. It acts as a reference
point to coordinate the behavior of multiple concerns. A pointcut refers to a set of joinpoints and execution
context information. Basic pointcuts can be composed and identified so as to increase re-usability. Pointcuts are
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Listing 1 Logging aspect combining the pointcut with advice.
1 public aspect Logging {
2 private static Logger logger = Logger.getLogger(Logging.class.getName());
3 pointcut log() :
4 call(void Account.deposit(Dollars))
5 || call(void Account.withdraw(Dollars))
6 || call(* AccountController.*(*))
7 || call(Date User.getLastActivity())
8 || call(User UserController.create(UserData))
9 || call(bool UserController.block(User)

10

11 after() returning(Object res) : log() {
12 logger.info(thisJoinPoint.getSignature().toShortString()
13 + Arrays.toString(thisJoinPoint.getArgs())
14 + " -> " + res);
15 }
16 }

the syntactic elements used to select joinpoints. A pointcut specifies a function signature, a variable name, and
a module that needs to be matched. Furthermore, pointcuts are able to specify dynamic execution constraints,
such as a function being invoked while inside another function (e.g. cflow pointcut in AspectJ). A pointcut
regulates scattering by describing the joinpoints needed to implement the concern. An advice defines the additional
behavior to be executed at each specific joinpoint selected by a pointcut. An aspect serves as the modular unit that
encapsulate advices, pointcuts, and additional behavior. Furthermore, aspects may introduce their own variables,
methods, and fields. This is referred to as inter-type declarations. The term inter-type designates the fact that
these extra objects and code are accessible in different types (based on the matching joinpoints). The main task
of an AOP language implementation is to coordinate the execution of the non-aspect code with the aspect code.
This coordination has to ensure a correct execution at the joinpoint of both primary and secondary concerns. This
process is called weaving and can be done at compile-time, load-time, or run-time.

Example 6 (Implementation of a logging concern with AspectJ) Listing 1 implements parts of the logging con-
cern shown in Example 5 using AspectJ. In the case of logging, the inter-type variable is a Logger object (Line
2). The pointcut expression (lines 4-9) specifies the various method invocations to be intercepted and names the
pointcut log. The advice implements the logging code. It consists of code necessary to (i) capture the arguments of
the method invoked using the getArgs() method on the thisJoinPoint object, (ii) capture the return value of the
method invoked, and (iii) pass it to the logger. The advice is set to trigger after the pointcut (line 11), in which case,
it means after a method returns. Effectively, for any of the methods defined in the pointcut, the logger will log the
name of the method called, its arguments and return value. ∗

2.2.4 Fine-grained AOP Instrumentation

AOP is a paradigm introduced to tackle tangling and scattering (Section 2.2.2). The concepts introduced in
Section 2.2.3 apply to programs in general. AspectJ [KHH+01a] enables AOP concepts at the source-code level
and targets Java programs. However, in RV, one may also be interested in instrumenting programs at the byte-code
level, as properties may account for a much more fine-grained granularity of events.

RV tools can opt to use bytecode instrumentation frameworks such as ASM [BLC02] and the Byte Code Engi-
neering Library (BCEL) [The17]. However, bytecode instrumentation frameworks are low-level, require expertise
for instrumentation, and are verbose and error-prone when describing the needed instrumentation. Therefore,
finding higher-level abstractions for the instrumentation has been the target of works such as Soot [VGH+00]
and Shrike [IBM15]. For example1, Soot is used by the RVPredict tool [HMR14] for bytecode instrumentation
(introduced in Section 3.3.1).

More recently, the Domain Specific Language for Instrumentation (DiSL) [MZA+15, MVZ+12] has been designed
for dynamic program analysis. DiSL allows for AOP concepts to be expressed at the byte-code level while providing
access to comprehensive static and dynamic context information. Furthermore, DiSL employs efficient weaving to
reduce the overhead of the instrumentation.

1JTrek –a bytecode instrumentation tool– is used by the Java PathExplorer RV tool [HR04]. However, its webpage is no longer accessible.
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Chapter abstract

This chapter presents related work, focusing on techniques applicable for decentralized RV. We tackle techniques
relying on formula rewriting, and illustrate the limitations of using rewriting, a key motivation for using automata
for decentralized specifications. We also discuss specific approaches for monitoring distributed and multithreaded
programs. For the former, we discuss techniques that (1) evaluate predicates on a global state of the distributed
system, (2) distribute explicitly the LTL specification on the system components, and (3) are able to monitor even
when faults occur. For the latter, we discuss utilizing predictive trace analysis techniques to infer the order of
events between the various threads, and elaborate on an instrumentation technique that interfers minimally with the
schedule of the threads. Finally we cover stream-based RV which models various input sources as named streams,
and discuss their relation to complex event processing approaches.
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3.1: Monitoring by Formula Rewriting

P(p ∈ AP, σ) = p ∈ σ P(>, σ) = >

P(ϕ1 ∨ ϕ2, σ) = P(ϕ1, σ) ∨ P(ϕ2, σ) P(⊥, σ) = ⊥

P(ϕ1 ∧ ϕ2, σ) = P(ϕ1, σ) ∧ P(ϕ2, σ) P(¬ϕ, σ) = ¬P(ϕ, σ)
P(ϕ1Uϕ2, σ) = P(ϕ2, σ) ∨ P(ϕ1, σ) ∧ ϕ1Uϕ2 P(Xϕ, σ) = ϕ
P(Gϕ, σ) = P(ϕ, σ) ∧ Gϕ P(Fϕ, σ) = P(ϕ, σ) ∨ Fϕ

Figure 3.1: LTL rewriting rules (from [BLS11]).

We present an overview of approaches that are either directly used for decentralized runtime verification, or can
be used for such purpose. In Section 3.1, we introduce the rewriting technique for RV, and show how it is used
for decentralized monitoring. Then, we present in Section 3.2 and Section 3.3 approaches to monitor respectively
distributed and multithreaded programs. Finally, we present stream-based RV in Section 3.4 as it is capable of
decentralized monitoring. We also refer to [FPS18] for a recent overview.

3.1 Monitoring by Formula Rewriting

The first class of approaches consists in monitoring by formula rewriting. The property is written as a formula,
and upon observing events in the system, the formula is rewritten and simplified until it is equivalent to > (true) or
⊥ (false) at which point the algorithm terminates. Approaches to rewriting of LTL, and Metric Temporal Logic
(MTL) – an extension to LTL with temporal operators – are presented in the centralized context in Section 3.1.1,
and the decentralized one in Section 3.1.2. Limitations of rewriting, especially when used for partial observations
are presented in Section 3.1.3. These approaches use a centralized specification to describe the system behavior.
Furthermore, they rely on a global clock, as the rewrites are performed on a sequence of events.

3.1.1 Centralized Rewriting

LTL. The usage of rewriting for the efficient monitoring of LTL specifications is tackled in [RH05]. The approach
focuses on monitoring LTL online using term rewriting, and is implemented in Maude [CDE+03], a framework
for rewriting formulae. Generally, the rewriting is represented as a progression function noted P which takes as
input an existing formula ϕ and an event σ, and returns a new formula ϕ′. An event, in the context of progression
(in [BLS11, BF12, CF16a]) is a set of atomic propositions (in 2AP) observed to be >. The progression function P
consists of performing multiple rewrite rules. We present those for LTL in Figure 3.1, based on the work in [BLS11].
The resulting formula ϕ′ = P(ϕ, σ) is rewritten to include the knowledge provided by reading σ for the given input
formula ϕ. We illustrate rewriting in Example 7.

Example 7 (LTL progression.) Consider the formula ϕ def
= G(a ∧ b ∨ c), defined over the atomic propositions

in AP def
= {a, b, c}. Given an event σ = {c}, the resulting progressed formula using the rules in Figure 3.1 is

ϕ′ = P(ϕ, σ) = P(a ∧ b ∨ c, σ) ∧ ϕ = ((a ∈ σ) ∧ (b ∈ σ) ∨ (c ∈ σ)) ∧ ϕ = > ∧ ϕ = ϕ. Notice that by applying the
rule relative to operator G we doubled the size of the formula. After using basic boolean simplification rules, we
reduce the size of ϕ′ by simplifying it to be equivalent to ϕ. ∗

The size of the evolving formula is in the worst-case exponentially bounded by the size of the original LTL formula.
Furthermore, an exponential space explosion cannot be avoided in certain unfortunate cases. The authors of [RH05]
point out that using memoization to cache the results of rewriting (a feature provided by Maude), improves the
outcome by an order of magnitude.

MTL. Focusing on real-time systems often involves large traces with the notion of time. In [TR05], the authors
extend rewriting to use Metric Temporal Logic (MTL). MTL introduces discrete time operators to LTL formulae,
which requires maintaining information about large portions of a given trace. Traces are typically available only
incrementally and they are much larger than the formulae against which they are checked. When monitoring online,
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it is impossible to store an entire execution trace and then perform the formal analysis by having random access to
the trace. The authors present a general monitoring algorithm for monitoring MTL which is exponential in the size
of the formula but independent from the size of the trace, while covering lower bound analysis on monitoring MTL
formulae.

Improving rewriting. Future approaches that have focused on improving the rewriting of both LTL and MTL
formulae include the Eagle rewriting engine [BGHS04]. Eagle improves the upper bounds for rewriting LTL, and
is capable of rewriting MTL. An additional improvement on the Eagle engine is introduced as RuleR [BRH10],
which allows rewriting rules to be named and carry parameters.

3.1.2 Decentralized Rewriting

LTL rewriting as presented in Section 3.1.1 has been extended by [BF12, CF16a] to perform decentralized
monitoring. While still performing monitoring of one global formula of the decentralized system, the approach
uses rewriting to monitor the three different strategies for decentralized monitoring introduced in Section 1.3.1:
orchestration, migration, and choreography.

Orchestration is effectively an “emulation” of centralized monitoring. A monitor on each component sends the
observations to a central monitor, the center monitor combines them to form an event, and regular centralized
progression is performed on the formula by the main monitor, as explained in Section 3.1.1. For the remaining two
approaches, the events in the formula account for partial observations. In the case of migration, when a monitor is
unable to observe some atomic propositions, it adds an obligation in the formula. An obligation is defined using the
past-time operators of LTL, to encode in the rewritten formula, that the atomic proposition must have held in the
past. The monitor then decides to possibly move to another component, in order to observe the atomic propositions
it is missing, and rewrite the obligations. To monitor choreography, an analysis is performed to split the formula
into multiple subformulae. Each subformulae will be assigned a reference and a component The original formula
is rewritten to add the references to the subformulae, and the progression function is extended to account for
references.

The provided tool DecentMon is used to compare the three strategies in terms of number of progressions, messages
size, messages exchanged, and added delay. The comparison is provided on random traces and specifications, for
multiple sizes of the decentralized alphabet, and different probability distributions.

3.1.3 Limitations of Rewriting

Overview. The rewriting techniques presented in Sections 3.1.1 and 3.1.2 are simple and elegant. However,
rewriting varies significantly during runtime based on observations, thus analyzing the runtime behavior could
prove difficult if not unpredictable. When excluding specific syntactic simplification rules, G(>) could be rewritten
> ∧G(>) and will keep growing in function of the number of timestamps. As such, the size of the formula relies
significantly on LTL simplification. In Example 7, we illustrated an example where the formula doubles in size in
the presence of the operator G. The event contained information about the global state. As such, we had information
about all atomic propositions in AP. The growth in size is made worse in the presence of partial information, as
some subformulae cannot be immediately evaluated. In the remainder of this section, we elaborate on the effect of
simplification and using partial information on the size of the progressed LTL formula.

Limitations of LTL simplification. As we have seen in Example 7, a key factor in keeping the formula size small
is simplification. In [CF16a], the authors elaborate on the limitations of minimizing LTL formulae. The size of the
LTL formula representing the dynamic monitor state poses challenges as it may become too big [RH05, BRH10].
Therefore, it is necessary to simplify the formula at hand, that is, determining a smaller formula that remains
semantically equivalent to the original formula. It is possible to simplify LTL by either (i) using translations of
formulae into equivalent automata and using automata minimisation (cf. [BLS11, MC13]) or (ii) by generating
optimal equivalent monitors by coinduction [SRA03]. The complexity of such procedures (at least PSPACE-
hard) renders these techniques not applicable at runtime and not suitable for monitoring. Note also that existing
axiomatisations of LTL could not be used either for their purposes since what is needed is a finite confluent rewriting
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system. To the best of the authors’ knowledge, the existence or non-existence of such rewriting system for LTL
formula simplification is still an open question.

Effect of partial information on size. To illustrate progression with partial information, we utilize the decentral-
ized progression function from [BF12] (we denote it by P′). In the decentralized setting, atomic propositions are
associated with components, and a formula is progressed on a given component. To account for atomic propositions
that are not found on the component on which the formula is being progressed (referred to in this paragraph as
non-local), obligations are added to the formula. An obligation ensures that an atomic proposition was observed at
a given point in the past. For that, we use the operator previous (X) which is the dual of operator X. For a given
index i, the operator Xϕ evaluates ϕ on the event at index i − 1. Information about obligation is progressed by
adding X to non-local atomic propositions, and obligations involving them. The progressed formula can then be
transferred to another component to evaluate the obligations (following some heuristic). The history of events (the
trace) typically needs to be kept to be able to evaluate the past. We illustrate decentralized progression with partial
information in Example 8.

Example 8 (Progression with partial information.) Let us consider the same formula from Example 7, ϕ =

G(a ∧ b ∨ c), defined over the atomic propositions AP def
= {a, b, c}. However, we partition the atomic propositions

over three components as follows AP0
def
= {a}, AP1

def
= {b}, and AP2

def
= {c}. Let the sequence of events be w def

=

{a, b} · {a, c} · {b, c}. We begin by progressing ϕ on component 0: ϕ0 = P′(ϕ, {a, b}) = P′(a ∧ b ∨ c, {a}) ∧ ϕ =

(P′(a, {a}) ∧ Xb ∨ Xc) ∧ ϕ = (Xb ∨ Xc) ∧ ϕ. We can see that the partial observations have been added to the
formula as obligations, thus increasing its size. Now we suppose that the monitoring logic chooses component
2 to progress the formula, we note that the event at index 0, had c be ⊥. We now have: ϕ1 = P′(ϕ0, {c}) =

(P′(Xb, {c})∨P′(Xc, {c}))∧ (P′(a, {c})∧P′(b, {c})∨P′(c, {c}))∧ϕ = ((XXb)∨⊥)∧ (Xa∧Xb∨>)∧ϕ = (XXb)∧ϕ.
By performing repetitive simplifications, we are able to maintain the size of the formula manageable. However,
we can see that the less information is available, the more obligations are added to the formula and propagated.
Furthermore, we can see that the size varies significantly at runtime based on observed atomic propositions and the
strategy used to pass around the formula. ∗

Using automata. To tackle the unpredictability of rewriting LTL formulae, another approach [FCF14] uses
automata for monitoring regular languages, and therefore (i) can express richer specifications, and (ii) has more
predictable runtime behavior. The system property is expressed as one big automaton shared among all monitors.
The monitoring procedure keeps track of potential reachable states and updates the set of reachable states as soon
as sufficient partial information is relayed between monitors. In particular, monitors communicate observations,
and reached states. This approach avoids LTL rewriting. As such, it does not rely on minimizing LTL, and does not
suffer from the exponential increase of the formula size at runtime. However, it requires that all monitors verify the
same centralized specification automaton. Furthermore, monitors must be aware of the entire specification. In this
thesis, we focus on avoiding LTL rewriting as well, and rely on automata when defining decentralized specifications
in Chapter 6. In addition, we focus on black-box specifications, wherein monitors are capable to refer to other
monitors without knowing explicitly their specification. Furthermore, the execution history encoding (EHE) data
structure presented in Chapter 5, presents a uniform approach to encode reachable potential states with partial
information and share it between monitors without having to send all information, while relying on rewriting and
simplifying boolean expressions (instead of LTL). In Section 5.1.2, we illustrate how the EHE data structure can be
used for decentralized monitoring of a centralized specification as in [FCF14].

3.2 Monitoring Distributed Systems

In this section, we introduce techniques which monitor in a decentralized fashion a centralized specification in
distributed systems. These approaches do not assume a global clock, and rely on acquiring global snapshots of the
distributed system.
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3.2.1 Global Predicate Detection

Distributed slicing. Monitoring distributed systems typically consider the problem of detecting global predicates.
Global predicate detection [NCMG17, OG07] consists in evaluating predicates on the global state of a distributed
system. Enumerating all the global states of a distributed system with multiple processes is costly, as the state
space could grow exponentially. As such, the authors rely on the technique of computational slicing [MSG07],
which is an abstraction technique that enumerates only the global states satisfying a given predicate. The slice
containing all the global states that satisfy the predicate can be exponentially smaller than that of the whole set
of global states. In these approaches, the authors focus on performing online distributed slicing exploiting the
information from all processes and the structure of the predicate. Approaches performing predicate detection are
capable of distributing the evaluation across a distributed system, and evaluate regular predicates which include
some temporal logic predicates (such as globally G and eventually F). The evaluation is done online, and as such
can be seen as runtime verification.

Application to RV. In [MB15] the authors extend the approach from [NCMG17] beyond safety properties to
monitor temporal properties in distributed systems. Starting from a global automaton representing the system
specification, a monitor is generated per process with its own copy of the automaton (instantiated based on its local
observations). In the presence of concurrent events, that is, events that can be ordered in multiple ways, the monitor
explores the paths (in the specification automaton) resulting from the different possible interleavings of such events.
The approach is tested on specifications defined for drones, notably relying on a leader drone and set of followers.
The authors show that the overhead for number of messages is linear with respect to the number of generated events
for three properties. While the authors claim the algorithm is sound and complete, no argument is made to justify
soundness and completeness.

3.2.2 Distributing LTL Specifications

Another set of approaches consider a centralized specification defining the system behavior written in a variant
of LTL. These approaches target asynchronous distributed systems, by allowing specifications to refer to specific
snapshot states of the global system. In [SVAR04], the authors introduce distributed past-time LTL (pt-DTL) to
specify safety properties across processes for a given distributed system. pt-DTL allows for a new operator that
adds references to a given snapshot state for a given formula of a given process. The approach is extended beyond
safety properties to the 3-valued LTL semantics in [SS14]. The authors of [SS14] improve the monitor generation
process to allow for more monitorable properties. The process is improved by integrating pt-DTL monitor synthesis
with the synthesis techniques of LTL3 monitors.

3.2.3 Fault-tolerant Monitoring

Another class of research focuses on handling a different problem that arises in distributed systems – that of faults.
In these approaches, monitors are subject to faults ranging from failure to receive messages of other monitors to
receiving wrong state information.

Consensus. In [BFRT16, BFR+16], monitors are subject to many faults such as failing to receive correct obser-
vations or to communicate their state with other monitors. In this setting, all monitors monitor the same global
specification. The problem handled is that of reaching consensus with fault-tolerance. That is, it is ensuring that all
distributed monitors reach the same verdict. The approach tackles the problem by determining the necessary verdict
domain needed to be able to reach a consensus. The added verdicts represent a degree of certainty of the formula
evaluation. In addition to the added verdicts, it introduces a monitoring algorithm that uses the added verdicts to
ensure a consistent verdict to be reached by all monitors.

Knowledge gaps. By only considering failure in receiving messages, the approach in [BKZ15] extends the MTL
approach (explained in Section 3.1.1) to deal with incomplete knowledge and out-of-order messages. In this setting,
the timed model of distributed computing [CF99] is used, which assigns a time for each observation based on local
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clocks, and ensures observations follow a total order. Failures are modeled as knowledge gaps and the approach
ensures that these gaps are resolved, the more monitors communicate. For this purpose, the approach extends
the MTL verdict domain to include the three valued domain (B3), where verdict ? models the “unknown” verdict.
Verdicts are partially ordered by their knowledge content wherein ? ≺ > and ? ≺ ⊥. A given formula is decomposed
into multiple subformulae to form a dynamic graph, where each node contains a subformula and a time interval,
and edges represent guards. Each node is associated with a truth value, and a set of guards. Guards are of two types
incoming to the node (“preconditions”), and outgoing from the node (“triggers”). Guards encode the operators
and are used to propagate the truth values of the nodes. The graph is dynamic, nodes and guards are created and
removed as the monitors exchange messages. The changes in the topology of the graph indicate the evolution of the
verdicts for each subformula. For example, a node with a certain time interval, could be split into multiple nodes
partitioning the interval, so as to illustrate the knowledge about part of an interval.

3.3 Monitoring Multithreaded Systems

3.3.1 Predictive Trace Analysis

Overview. Predictive Trace Analysis (PTA) approaches [CSR08, SWYS11, HMR14, HLR15] are dynamic
analysis techniques that extend verification from the events in a given single run to a set of possible re-orderings
of the events, given a model of the concurrency. PTA approaches model the program execution as a set of traces
corresponding to the different orderings of a trace. As such, they encode the trace minimally, then restrict the set
of valid permutations based on the model that is allowed. In this section, we illustrate how PTA approaches have
been used to check for concurrency errors such as data-race freedom in multithreaded programs, and specifically
extended to runtime verification [CSR08, HMR14, HLR15].

PTA and data-races. The approach in [SWYS11] verifies for the absence of data-race in multithreaded programs.
Data-race detection is modeled as a constraint solving problem, wherein a formula is used to encode all valid
re-orderings of traces to consider during the execution. The constraint checking at runtime relates the current run,
to other symbolic permutations of the traces. A violation of the constraint amounts to detecting a concurrency error.
While the approach proved to be reliable in detecting data-races, it suffered from weaknesses. It did not take into
account data-flow, and thus made conservative estimations on certain concurrency areas to remain sound. This leads
to some data-races to be missed. This approach is extended in [HMR14], where authors suggest encoding data-flow
in the constraints, proving that their model is sound and maximal. That is, they are able to detect all data-races
that occur, and that detected data-races are indeed true positives. The approach provides the tool RVPredict
which detects efficiently data-races in multithreaded programs. While [HMR14] can, in theory, model behavioral
properties, RVPredict monitors only data races, but does so very efficiently.

Behavioral properties. Using the same sound and maximal model for predictive trace analysis [HMR14], the
approach in [HLR15] extends the specification past data-races to behavior. Specifications are able to include
behavioral, user-specified events, and are extended with thread identifiers, atomic regions, and concurrency. Events
are defined similarly to Java-MOP using AspectJ for instrumentation. Atomic regions are special events that denote
either the start or end of an atomic region. Each atomic region is given an ID. The specification formalism used
is regular expressions extended with the concurrency operator “||” which allows events to happen in parallel. For
example the specification “read(t1)||write(t2)” allows a read event from thread 1 to happen in parallel with a write
event from thread 2. We elaborate in detail on GPredict in Section 10.4.1.

3.3.2 Runtime Assertion Checking with Minimal Interference

An important problem that arises when monitoring multithreaded programs pertains to interference with the original
program (discussed in Section 1.2.2). The monitoring logic may require additional synchronization to maintain
a consistent global state. As such, it is able to modify the schedule of various threads while executing. We
show how some of the existing RV tools cause such changes in the schedule later in the thesis in Section 10.3.
In [KHBZ15], the authors present extensions to a runtime assertion checker for JML specifications. They are able
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to verify assertions on shared data in multithreaded programs, with minimal interference with the program. This is
accomplished by using JVM snapshots, then performing the checks asynchronously with some delay.

3.4 Stream-based Monitoring

Stream-based techniques include LOLA [DSS+05], BeepBeep [HKG17], and more recently, the Temporal Stream-
Based Specification Language [DGH+17, CHL+18, DDG+18], and streams that process time intervals [KHJF18].
Stream-based specifications rely on named streams to provide events. These streams are then aggregated using
various functions that modify the timing, filter events, and output new events as a new stream. The output domain
extends beyond the Boolean domain and encompasses types. The stream approach to monitoring has the advantage
of aggregating types, as such operations such as summing, averaging or pulling statistics across multiple streams is
also possible.

Stream aggregation is provided by general-purpose functions which are more expressive than automata, but more
complex to analyze. While streams are general enough to express monitoring, they do not address decentralized
monitoring explicitly. As such, there is no explicit assignment of monitors to components and parts of the system,
nor consideration of architecture. Furthermore, there is no algorithmic consideration addressing monitoring in a
decentralized fashion.

3.4.1 Monitoring Synchronous Streams

LOLA [DSS+05] is a stream-based specification language designed to monitor synchronous streams. When using
LOLA, a programmer is able to write stream expressions to define the relation between the input and output events
on a stream. These expressions are typed and support parameters. Expressions can be built bottom-up starting with
constants and stream atomic propositions. Expressions are combined using boolean or arithmetic operators with the
two additional constructs: an if-then-else construct for branching, and an offset construct to retrieve the value of an
atomic proposition at relative timestamps. LOLA defines dependency graphs between various stream information.
Furthermore, LOLA defines properties for specifications on streams. The concepts of well formed, and efficiently
monitorable LOLA specifications is introduced. The former ensures that dependencies in the trace can be resolved
before they are needed, and the latter ensures that the memory requirement is no more than constant with respect to
the length of the trace.

3.4.2 Monitoring Real-time Systems with Streams

Focusing more on real-time systems, the Temporal Stream-Based Specification Language (TeSSLa) [DGH+17,
CHL+18] provides syntax wherein events are not passed to streams at discrete time intervals, but are treated as
changes to a signal. TeSSLa allows aggregation operators on signals to be defined recursively and provides memory
and delay guarantees, based on a similar analysis of dependency graphs and operators used in the aggregation.
Furthermore, TeSSLa provides multiple “fragments” – a restriction over the TeSSLa semantics to enable certain
guarantees. For example the boolean fragment restricts streams to booleans instead of arbitrary data types. By
defining various fragments, TeSSLa manages bounds on the computation, delay and memory as a trade-off for
expressiveness. In [DDG+18], TeSSLa monitors have been synthesized on FPGAs to monitor CPU cores, and
memory accesses. Monitors are able to process trace data in real-time, enabling continuous observation of the state
of a core.

3.4.3 Monitoring Streams of Time Intervals

Another stream-based verification approach is centered around reasoning about intervals of time. The nfer
formalism [KHJF18] adopts a rule based approach to perform stream-based processing, where events consist of a
labeled time interval (start, end) and a map of values. The formalism is inspired by Allen’s Temporal Logic, and
its semantics operates on matching, creating, merging, or splitting intervals, while comparing and modifying the
map containing arbitrary values. The approach aims to handle global constraints on the pool of events and feasibly
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process a large stream of events. An example of a constraint is minimality. Minimality states that there must exist
at most one interval with the same time period and name while processing the stream. A DSL is introduced to write
specifications for nfer. The semantics are implemented as rewriting rules written in both Scala and C. The resulting
implementation is used to process three data-sets of large traces spanning at least 50,000 events.

3.4.4 Relation to Complex Event Processing

Overview of CEP. Complex Event Processing (CEP) [Luc05] encompasses a series of approaches that deal with
processing events formed by aggregating other events. That is CEP consists of processing complex information in a
system and outputting events that summarize, or provide a higher level view of the system. The primary objective
of CEP is not verification, but rather understanding the state of a given system by recursively aggregating data. For
example, by grouping a prepare and commit event in a database system, we can form a transaction event, then we
can form more complex events that count the number of transactions performed or computing the average time
needed to complete a transaction.

CEP and RV. Stream-based RV can be seen as a special case of CEP that aggregates the data in a way that
performs verification [Hal16]. Tools used for CEP can be specialized to perform stream-based RV by defining
aggregate functions that perform verification, as is the case of BeepBeep [HKG17]. It is possible to define a stream
aggregation function that takes a stream of events as an input, and runs the sequence of events against an FSM, or a
rewrite-based engine.
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CHAPTER 4

Monitoring with Boolean Expressions
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This chapter introduces the basic concepts and notation used in the remainder of the thesis. In particular, we
introduce the concept of replicated data types (CRDTs) (Section 4.1), and their property of strong eventual
consistency. CRDTs allow objects to have several replicas which eventually converge towards the same state.
Then, we introduce the dict data structure (Section 4.2) used to build more complex data structures, define the
basic concepts and notation for centralized and decentralized monitoring (Section 4.3), and we use them to define
centralized monitoring of a centralized specification in the context of this thesis (Section 4.4).

4.1 Replicated Data Types

When monitoring decentralized systems, we see that algorithms require managing partial information. We presented
three various strategies in Section 1.3.1. These strategies have utilized a single specification representing the
behavior of the system, and multiple monitors. Monitors are deployed on different components, and need to
communicate to infer information about the global state of the system. For monitors, we are interested in ensuring
that they observe the same global state of the system once they exchange their information. To that end, we
introduce the notion of a conflict-free replicated data type (CRDT) from [SPBZ11].

CRDTs and decentralized runtime verification. In [SPBZ11], the authors consider an object with multiple
replicas at different parts of a distributed system. A replicated object with m replicas is a tuple 〈S , sinit, 〈s0, . . . , sm−1〉,
query, update, merge〉, where S denotes the possible states the objects can be in, sinit the initial state, si ∈ S (for
i ∈ [0,m − 1]) denotes the state for each replica, and three operations that are performed on replicas: query which
retrieves the object state for a given replica (i.e., si for a replica i), update which changes the state of a particular
replica (i.e., modifies the object only affecting a given replica si), and merge which combines two replicas of the
same object. When reasoning about the global state of a property for a decentralized system, the global state can be
seen as an object, where each replica is the local copy for a given monitor deployed on a component. In particular,
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we introduce later two data structures which represent replicated objects: memory (Section 4.3) and execution
history encoding (Section 5.1). The memory represents observations received by monitors, and the execution
history encoding represents the execution of the automaton associated with the global state of specification on a
trace of observations. For these two objects, replicas constitute the local view associated with each monitor.

Since operations can occur on replicas, we are interested in ensuring that all replicas converge towards the same
state of the object. In this context, state equivalence between any two replicas means that the result of operation
query is the same across the replicas. CRDTs can be either state-based or operation-based. For state-based CRDTs
(CvRDTs), a replica sends and receives another state for another replica, upon reception, the state of the remote
replica is merged with the local state to create a new updated state. While for operation-based CRDTs (CmRDTs)
the history of operations performed on a replica is communicated, and other replicas replay the operations to infer
the state. For the purposes of this thesis, we focus on state-based replication, as we will mostly send the state of the
object itself. However, both state-based and operation-based CRDTs are shown to be equivalent in [SPBZ11].

Properties of CvRDTs [SPBZ11]. The state of a specific replica is subject to change locally. The change should
eventually be propagated for all replicas. Eventual consistency (Definition 2) states that replicas eventually converge
to equivalent states.

Definition 2 (Eventual Consistency) Eventual consistency applied to replicated objects consists of the fol-
lowing conditions:

Eventual delivery: an update delivered at some replica is eventually delivered to all replicas.

Convergence: replicas that have been delivered the same updates eventually reach equivalent states.

Termination: operations query, update, and merge terminate.

Systems that are eventually consistent are capable of reaching the same state eventually. This may cause problems
when updates can be conflicting, and a strategy for conflict-resolution (rollback) may be required. As such, a
stronger condition is needed to ensure that upon receiving the same updates, replicas are in equivalent states. The
added condition is referred to as strong eventual consistency (SEC).

Definition 3 (Strong Eventual Consistency (SEC)) Replicas that have been delivered the same updates have
equivalent states.

To achieve SEC, the authors of [SPBZ11] distinguish objects with specific properties, called monotonic semilattice
objects.

Definition 4 (Monotonic semilattice object) A state-based object equipped with a partial order ≤ with the
following properties is a semilattice object: (1) the set of its states S forms a semilattice ordered by ≤, (2)
merging a replica state s with a remote state s′ computes the least upper bound (LUB) of the two states (i.e.,
merge(s, s′) = s t s′), and (3) the state is monotonically non-decreasing across updates.

By converging to the LUB of the semilattice, and ensuring the update operation is monotonically non-decreasing,
we guarantee that replicas performing the same merges converge to the same state.

Proposition 1 (CvRDT) By assuming eventual delivery and termination, a monotonic semilattice object is
guaranteed to be SEC (see [SPBZ11] for details).

We illustrate a simple CvRDT called the add-only set in Example 9.

Example 9 (Add-only set) An add-only set [SPBZ11] is a CvRDT defined as 〈2{v0,v1,v2}, ∅, 〈s0, s1, s2〉, q, a,∪〉,
where S is the superset of all possible values that can be added, the initial state is the empty set, we have three
replicas with the emptyset as the initial state, and the three operations are as follows: q which queries the CRDT
returns the value for the local replica, a adds an element to the set (at the replica), and ∪ is the merge operations
which perform set union. The states can be ordered using set inclusion (⊆) which forms a semilattice. Furthermore,
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s0

s1

s2

∅ {v0} {v0, v1, v2} {v0, v1, v2} .

q a(v0) {v0} ∪ {v0, v1, v2} q .
. . . . .
∅ {v1} {v0, v1} {v0, v1, v2} {v0, v1, v2} .

q a(v1) {v0} ∪ {v1} a(v2) q .
. . . . . .
∅ {v0, v1, v2} {v0, v1, v2} .

q ∅ ∪ {v0, v1, v2} q .
. . . .

Figure 4.1: Add-only set replication using 3 replicas. For each replica we show the local state, and the operations
performed. Update operations are shown in yellow, dashed arrows illustrate sending a state to another replica.

the merge operation which performs set union (∪) only adds elements to the set, and thus is monotonically
non-decreasing.

Figure 4.1 shows three replicas (s0, s1 and s2) of an add-only set CvRDT object. The initial state is the empty set.
The first two replicas perform concurrently an add operation, to add respectively the elements v0 and v1 to the set.
At this point in the execution, the replicas all have different local states {v0}, {v1} and ∅ for s0, s1 and s2, respectively.
Upon sending the state of s0 to s1, s1 performs a merge and updates its state to be {v0, v1}. However since s1 did
not send its state to s0, s0 still has not seen update a(v1). We notice that in the end, once all replicas have received
information that precedes all updates, the query operation returns the same set for all three {v0, v1, v2}. ∗

State-based replicated data types are capable of converging to the same state across multiple replicas. As such,
when designing our data structures, we also would like to have the SEC property. This allows multiple monitors
checking the same specification (i.e. decentralized monitoring of a centralized specification) to be easily spread in
the system and eventually converge to the same view of the global system (whether for the observations, or the
specification evaluation). In the next section (Section 4.2), we introduce the common data structure template that
we rely on for the remainder of the thesis, designed to account for SEC.

4.2 The dict Data Structure

As introduced in Section 4.1 when monitoring decentralized systems, monitors typically have a state, and attempt
to merge other monitor states with theirs to maintain a consistent view of the running system, that is, at no point in
the execution, should two monitors receive updates that conflict with one another. We would like in addition, that
any two monitors receiving the same information be in equivalent states. Therefore, we are interested in designing
data structures that can replicate their state under strong eventual consistency (SEC).

We use a dictionary data structure (noted dict) as our basic building block that assigns a value to a given key.
Data structure dict will be used to define the memory of a monitor (Section 4.3), and data structure EHE which
encodes the execution of an automaton (Section 5.1).

We model dict as a partial function f. The domain of f (denoted by dom(f)) is the set of keys, while the codomain
of f (denoted by codom(f)) is the set of values. dict supports two operations: query and merge. The query
operation checks if a key k ∈ dom(f) and returns f(k). If k < dom(f), then it is undefined. The merge operation of a
dict f with another dict g, is modeled as function composition. Two partial functions f and g are composed using
operator †op where op : (dom(f) × dom(g))→ (codom(f) ∪ codom(g)) is a binary function.

f †op g : dom(f) ∪ dom(g)→ codom(f) ∪ codom(g)

f †op g(x) =


op(f(x), g(x)) if x ∈ dom(f) ∩ dom(g)
g(x) if x ∈ dom(g) \ dom(f)
f(x) if x ∈ dom(f) \ dom(g)
undef otherwise
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On sets of functions, †op applies pairwise:
⊎op{f1, . . . fn} = ((f1 †op f2) . . . fn). The following two operators are

used in the rest of the paper: †2 and †∨. We define both of these operators to be commutative, idempotent, and
associative to ensure SEC.

†2(x, x′) =

{
x′ if x ≺ x′

x otherwise †∨ (x, x′) = x ∨ x′

Operator †2 acts as a replace function based on a total order (≺) between the elements, so that it always chooses the
highest element to guarantee idempotence and the join on the semilattice, while †∨ uses the logical or operator to
combine elements. Respectively, we denote the associated pairwise set operators by

⊎2 and
⊎∨. Data structure

dict can be composed by only using operation merge. When using dict to define subsequent data structures,
we must ensure that the state itself can be ordered as a semilattice, and updates ensure the state is monotonically
non-decreasing in that order (see Definition 4). Furthermore, we ensure that the merge is idempotent, commutative,
and associative (with the two operators †2 and †∨) so as to be insensitive to the order of message delivery and the
same message being received multiple times.

4.3 Basic Monitoring Concepts

We recall the basic building blocks of monitoring. We consider the set of verdicts B3 = {>,⊥, ?} to denote the
verdicts true, false, not reached (or inconclusive) respectively. A verdict in B2 = {>,⊥} is a final verdict. It indicates
that the monitor has concluded its monitoring, and any further input will not affect it. Abstract states of a system are
represented as a set of atomic propositions (AP). A monitoring algorithm typically includes additional information
such as a timestamp associated with the atomic propositions. We capture this information as an encoding of the
atomic propositions (Atoms), this encoding is left to the monitoring algorithm to specify.

Definition 5 (Event) An observation is a pair in AP × B2 indicating whether or not a proposition is observed.
An event is a set of observations in 2AP×B2 .

Example 10 (Event) We recall the example of a light switch and bulb from Example 2. We have AP = {s, `}. The
event {〈s,>〉, 〈`,⊥〉} indicates that the switch is observed to be on (i.e., the atomic proposition s is observed to be
true), while the light bulb is observed to be off (i.e., the atomic proposition ` is observed to be false). ∗

A decentralized monitoring algorithm requires retaining, retrieving and communicating observations. Monitoring
algorithms are versatile, and may require additional information associated with atomic propositions. This
information can include timestamps indicating when the atomic proposition was observed, or a component ID, to
determine where the atomic proposition was observed. As such, when stored, atomic propositions are typically
encoded to add this additional information by the monitoring algorithm. To abstract the additional information, and
remain general, the monitors store the encoded atomic proposition (instead of the atomic proposition itself), the
encoded atomic proposition is referred to as atom. ExprAtoms (resp. ExprAP) denotes the set of Boolean expressions
over Atoms (resp. AP). When omitted, Expr refers to ExprAtoms. An encoder is a function enc : ExprAP → ExprAtoms
that encodes the atomic propositions into atoms. In this paper, we use two encoders: idt which is the identity
function (it does not modify the atomic proposition), and tst which adds a timestamp t to each atomic proposition.

Definition 6 (Memory) A memory is a dict with the merge operator †2, and is modeled as a partial function
M : Atoms→ B3 that associates an atom to a verdict. The set of all memories is defined as Mem.

An event can be converted to a memory by encoding the atomic propositions to atoms, and associating their truth
value: memc : 2AP×B2 × (ExprAP → ExprAtoms)→ Mem.

Example 11 (Memory) We recall from Example 10 the event: evt = {〈s,>〉, 〈`,⊥〉}. At t = 1, the resulting
memories using encoders idt and ts1 are: memc(evt, idt) = [s 7→ >, ` 7→ ⊥],memc(evt, ts1) = [〈1, s〉 7→ >, 〈1, `〉 7→
⊥], respectively. ∗
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In order to ensure SEC, we require that the state of the memory be a semilattice, with an update function that
ensures the state is monotonically non-decreasing (see Section 4.1). For that, we require an order on the set of
atoms (Atoms). This order can be assumed, as users can define an arbitrary order over AP, and extend it to the
encoding. For encoder idt, we have Atoms = AP, no additional ordering is needed. For encoder ts, the order can
be extended such that they are additionally ordered by timestamps. A memoryM can be seen as a set of pairs
{〈x, y〉 | M(x) = y}. This is the same as treating it as an add-only set (Example 9). Therefore, a memory is a
semilattice ordered by set-inclusion. An observation that is present in one but not the other memory is simply added
(i.e. set union). Memories with conflicting observations can be replaced using an order between atoms. Since our
assumption ensures that no two memories provide conflicting observations for the same atom1, and are constructed
only by merging existing memories, and if we impose a certain order on Atoms, then two memoriesM1 andM2
can be merged by applying operator †2, which computes the LUB. This ensures that the operation is idempotent,
associative and commutative. Then, it follows from Proposition 1 that the memory data structure is a CvRDT.
Monitors that exchange their memories and merge them have a consistent snapshot of the memory, regardless of
the message ordering.

Corollary 1: A memory with operation †2 is a CvRDT. ♦

In this paper, we perform monitoring by manipulating expressions in Expr. The first operation we provide is rw,
which rewrites the expression to attempt to eliminate Atoms.

Definition 7 (Rewriting an expression) An expression e is rewritten with a memoryM using function rw :
Expr ×Mem→ Expr defined as follows:

rw(e,M) = match e with

| a ∈ Atoms →

{
M(a) if a ∈ dom(M)
a otherwise

| ¬e′ → ¬rw(e′,M)
| e1 ∧ e2 → rw(e1,M) ∧ rw(e2,M)
| e1 ∨ e2 → rw(e1,M) ∨ rw(e2,M)

Using information from a memoryM, the expression is rewritten by replacing atoms with a final verdict (a truth
value in B2) inM when possible. Atoms that are not associated with a final verdict are kept in the expression.
Operation rw yields a smaller formula to work with.

Example 12 (Rewriting) We extend the set of atomic propositions from Example 10 to include a motion sensor. We
associate the motion sensor state with the atomic proposition pres, where if pres is observed to be >, then the sensor
is detecting motion. We have AP = {s, `, pres}. We consider the memory from Example 11: M = [s 7→ >, ` 7→ ⊥];
and an expression e = (s ∨ `) ∧ pres. In this case, we want to check if the light or switch are on only when the
motion detects presence. We haveM(s) = >,M(`) = ⊥,M(pres) = ?. Since pres is associated with ? < B2 then it
will not be replaced when the expression is evaluated. The resulting expression is rw(e,M) = (> ∨ ⊥) ∧ pres. ∗

We eliminate additional atoms using Boolean logic. We denote by simplify(expr) the simplification of expression
expr 2.

Example 13 (Simplification) Using the same setting as Example 12, we consider memory M = [s 7→ >] and
expression e = (s ∧ `) ∨ (s ∧ ¬`). We have e′ = rw(e,M) = (` ∨ ¬`). We notice that rewriting e′ does not yield a
final verdict. However, atoms can be eliminated with simplify(e′). We finally get >. ∗

We combine both rewriting and simplification in the eval function which determines a verdict from an expression e.

1We are able to handle conflicts by imposing an order on B3.
2This is also known as The Minimum Equivalent Expression problem [BU08].
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Definition 8 (Evaluating an expression) The evaluation of a Boolean expression e ∈ Expr using a memory
M yields a verdict. Function eval : Expr ×Mem→ B3 is defined as:

eval(e,M) =


> if simplify(rw(e,M)⇔ >,
⊥ if simplify(rw(e,M)⇔ ⊥,
? otherwise.

Function eval returns the verdict > (resp. ⊥) if the simplification after rewriting is (Boolean) equivalent to > (resp.
⊥), otherwise it returns verdict ?.

Example 14 (Evaluating expressions) We recall from Example 12 memoryM = [s 7→ >, ` 7→ ⊥]; and expression
e = (s ∨ `) ∧ pres. We have simplify(rw(e,M)) = simplify((> ∨ ⊥) ∧ pres) = pres, and eval(e,M) = ? which
depends on pres. We cannot emit a final verdict before observing pres. ∗

A decentralized system is a set of components C. We assign a sequence of events to each component using a
decentralized trace function.

Definition 9 (Decentralized trace) A decentralized trace of length n is a total function tr : [1, n] × C →
2AP×B2 (where [1, n] denotes the interval of the n first non-zero natural numbers).

Function tr assigns an event to a component for a given timestamp. We denote by T the set of all possible
decentralized traces. We additionally define function lu : AP→ C to assigns an atomic proposition to a component.
We assume that (1) no two components can observe the same atomic propositions3, and (2) at least one atomic
proposition is associated with a component (a component with no atomic propositions to monitor, can be simply
considered excluded from the system under monitoring). Function lu is defined as lu(ap) = c s.t. ∃t ∈ N,∃v ∈ B2 :
〈ap, v〉 ∈ tr(t, c).

We consider timestamp 0 to be associated with the initial state, therefore our traces start at 1. The length of a
trace tr is denoted by |tr|. An empty trace has length 0 and is denoted by ε. Monitoring using LTL or finite-state
automata relies on sequencing the trace. Events must be totally ordered. A timestamp indicates simply the order of
the sequence of events. As such, a timestamp represents a logical time, it can be seen as a round number. Every
round consists in a transition taken on the automaton after reading a part of the word. While tr gives us a view of
what components can locally see, we reconstruct the global trace to reason about all observations. A global trace
of the system is therefore a sequence of events. A global trace encompasses all observations observed locally by
components. While a global trace will never be used in practice, we use it for the purpose of reasoning about the
global state (Section 4.4), and ensuring the correctness of our approach (Proposition 3).

Definition 10 (Reconstructing a global trace) Given a decentralized trace tr of length n, we reconstruct the
global trace using function ρ :

(
[1, n] × C → 2AP×B2

)
→

(
[1, n]→ 2AP×B2

)
defined as ρ(tr) = evt1 · . . . · evtn s.t.

∀i ∈ [1, n] : evti =
⋃

c∈C tr(i, c).

For each timestamp i ∈ [1, n], we take all observations of all components and union them to get a global event.
Consequently, an empty trace yields an empty global trace, ρ(ε) = ε.

Example 15 (Traces) Using the switch and light bulb from Example 2, we define multiple components. We
consider a system of two components lswitch and bulb, that are associated with atomic propositions s and `
respectively. An example decentralized trace of the system is given by tr = [1 7→ lswitch 7→ {〈s,>〉}, 1 7→ bulb 7→
{〈`,>〉}, 2 7→ lswitch 7→ {〈s,>〉}, 2 7→ bulb 7→ {〈`,⊥〉}]. That is, component lswitch observes proposition s to be >
at both timestamps 1 and 2, while bulb observes ` to be > at timestamp 1 and ⊥ at timestamp 2. The associated
global trace is: ρ(tr) = {〈s,>〉, 〈`,>〉} · {〈s,>〉, 〈`,⊥〉}. ∗

3This is not necessary, it makes the presentation clearer. For components sharing observations, we can encode their own ID in the atom to
make it unique.
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4.4 Monitoring a Centralized Specification with Expressions

We now focus on a decentralized system specified by one global automaton. We consider automata that emit 3-valued
verdicts in the domainB3, similar to those in [CF16a, BLS11] for centralized systems. Using automata with 3-valued
verdicts has been the topic of a lot of the Runtime Verification literature [BLS11, BF12, CF16a, FCF14, BKZ15],
we focus on extending the approach for decentralized systems in [CF16a] to use a new data structure called
Execution History Encoding (EHE). Typically, monitoring is done by labeling an automaton with events, then
playing the trace on the automaton and determining the verdict based on the reached state. Specifications are
similar to the Moore automata generated by [BLS11]. We modify labels to be Boolean expressions over atomic
propositions (in ExprAP). We choose to label the transitions with Boolean expressions as opposed to events, to keep
a homogeneous representation (with EHE)4.

Definition 11 (Specification) The specification is a deterministic and complete Moore automaton
〈Q, q0, δ, ver〉 where q0 ∈ Q is the initial state, δ : Q×ExprAP → Q is the transition function and ver : Q→ B3
is the labeling function.

The labeling function associates a verdict with each state. When using multiple automata we use labels to separate
them, A` = 〈Q`, q`0 , δ`, ver`〉. We fix A to be a specification automaton for the remainder of this section. For
monitoring, we are interested in events (Definition 5), we extend δ to events, and denote it by ∆5.

Definition 12 (Transition over events) Given an event evt, we build the memoryM = memc(evt, idt). Then,
function ∆ : Q × 2AP×B2 → Q is defined as follows:

∆(q, evt) =

{
q′ if evt , ∅ ∧ ∃q′ ∈ Q,∃e ∈ ExprAP : δ(q, e) = q′ ∧ eval(e,M) = >,
q otherwise.

A transition is taken only when an event contains observations (i.e., evt , ∅). This allows the automaton to
wait on observations before evaluating, as such it remains in the same state (i.e., ∆(q, ∅) = q). Upon receiving
observations, we useM to evaluate each label of an outgoing transition, and determine if a transition can be taken
(i.e., ∃q′ ∈ Q,∃e ∈ ExprAP : δ(q, e) = q′ ∧ eval(e,M) = >).

To handle a trace, we extend ∆ to its reflexive and transitive closure in the usual way, and note it ∆∗. For the empty
trace, the automaton makes no moves, i.e., ∆∗(q0, ε) = q0.

Example 16 (Monitoring using expressions) Recall the monitor from Example 4 monitoring the light switch and
bulb interaction. Let us consider the global trace from Example 15: evt0 · evt1, with evt0 = {〈s,>〉, 〈`,>〉} and
evt1 = {〈s,>〉, 〈`,⊥〉}. The resulting memory at t = 1 isM = memc(evt0, idt) = [s 7→ >, ` 7→ >] (see Example 11).
The transition from q0 to q1 is taken since eval(s,M) = >. Thus we have ∆(q0, evt0) = q1 with verdict ver(q1) = ?.
We continue by repeating the process for t = 2. The memory isM′ = memc(evt1, idt) = [s 7→ >, ` 7→ ⊥]. The
transition from q1 to q2 is taken since eval(s∧¬`,M) = >. Thus we have ∆(q1, evt1) = q2 with verdict ver(q2) = ⊥.
We can see that for this trace, the property is violated. ∗

Remark 1 (Properties and normalization) We recall that the specification is a deterministic and complete
automaton. Hence, there are properties on the expressions that label the transition function. For any q ∈ Q, we
have:

1) ∀M ∈ Mem : (∃〈q, e〉 ∈ dom(δ) : eval(e,M) = >) =⇒ (@〈q, e′〉 ∈ dom(δ) \ {〈q, e〉} : eval(e′,M) = >);
and

2) the disjunction of the labels of all outgoing transitions results in an expression that is a tautology.

4Indeed, an event can be converted to an expression by the conjunction of all observations, negating the terms that are associated with the
verdict ⊥.

5We note that in this case, we are not using any encoding (Atoms = AP).
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The first property states that for all possible memories encoded with idt no two (or more) labels can evaluate to
> at once. It results from determinism: no two (or more) transitions can be taken at once. The second property
results from completeness: given any input, the automaton must be able to take a move. Furthermore, we
note that for each pair of states 〈q, q′〉 ∈ Q × Q, we can rewrite δ such that there exists at most one expression
e ∈ ExprAP, such that δ(q, e) = q′, without loss of generality. This is because for a pair of states, we can always
disjoin the expressions to form only one expression, as it suffices that only one expression needs to evaluate to
> to reach q′. By having at most one transition between any pair of states, we simplify the topology of the
automaton. ∗

After introducing the fundamentals of using boolean expressions for monitoring, and examining centralized
monitoring of centralized specifications, we shift the focus in the next chapter (Chapter 5) to account for partial
observations by encoding the automaton execution using the execution history encoding data structure.
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Managing Partial Observations with Execution History Encoding

Contents
5.1 Monitoring using Execution History Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 The Execution History Encoding (EHE) data structure . . . . . . . . . . . . . . . . . . . 42
5.1.2 Decentralized Monitoring with EHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Data Structure Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1 Storing and Merging Partial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 Information delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 EHE Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.4 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

39



CHAPTER 5. MANAGING PARTIAL OBSERVATIONS WITH EXECUTION HISTORY ENCODING

Chapter abstract

This chapter introduces the Execution History Encoding (EHE) data structure. The EHE data structure encodes the
execution of an automaton using boolean expressions while preserving soundness and determinism. Furthermore, it
is constructed to replicate under strong eventual consistency, ensuring that any two monitors exchanging their EHE
are able to determine the same information about the global state. By analyzing the size of the EHE, we are able to
determine the computation and communication costs incurred by decentralized monitoring algorithms utilizing
it. Computation cost is affected by the rewriting and simplifying boolean of expressions, while communication
impacts how large the EHE grows, and thus, the cost of exchanging it.
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Introduction

This chapter introduces the Execution History Encoding (EHE) data structure to account for the challenge of
managing partial observations. The EHE is used in the remainder of the thesis when encoding partial information.

Motivation. The EHE data structure encodes an execution of an automaton. The EHE keeps track of potential
reachable states given partial information, by modeling paths to possible states as boolean expressions. Using
boolean expressions allows us to utilize boolean simplification [BU08] to simplify information that is no longer
necessary to determine the state. By doing so, the EHE allows us to make the most of partial information without
requiring the full information to conclude. Furthermore, the EHE data structure provides additional properties useful
in a decentralized context. Namely, we focus on the ability of the EHE to replicate under strong eventual consistency.
That is, for any two monitors exchanging their EHE encoding the same automaton, they are able to determine the
same information about the verification of the system. The EHE data structure also allows to unify the analysis of
different decentralization strategies, as the EHE relies on rewriting boolean expressions instead of LTL. Therefore,
EHE has a predictable size, and more predictable bounds, as opposed to standard rewriting based approaches for
LTL for which the formula size evolves unpredictably at runtime, and we are unable to determine the minimal
expression (see Section 3.1.3).

Chapter organization. In Section 5.1, we introduce the EHE data structure, we elaborate on its operations, we
also illustrate properties, and utilize it for decentralized monitoring. In Section 5.2, we elaborate on costs for
utilizing EHE, and identify the information delay parameter. Information delay is used to describe the delay it takes
before partial knowledge is able to determine a global state. We study how information delay impacts the size of
the EHE, which affects computation and communication costs.

Key contributions. The key contributions of this chapter can be summarized as follows:

1. Introducing the EHE data structure for encoding partial information;

2. Elaborating on two properties for EHE: determinism (Proposition 2) and soundness when encoding automata
(Proposition 3);

3. Showing how EHE can be used for decentralized monitoring due to its strong eventual consistency property
(Section 5.1.2); and

4. Presenting the cost model for EHE, as a unified model for analyzing algorithms with partial information
(Section 5.2).

5.1 Monitoring using Execution History Encoding

The execution of the specification automaton, is in fact, the process of monitoring, upon running the trace, the
reached state determines the verdict. An execution of the specification automaton can be seen as a sequence
of states q0 · q1 · . . . qt . . .. It indicates that, for each timestamp t ∈ N∗, the automaton is in the state qt

1. In
a decentralized system, a component receives only local observations and does not necessarily have enough
information to determine the state at a given timestamp. Typically, when sufficient information is shared between
various components, it is possible to know the state qt that is reached in the automaton at t (we say that the state qt

has been found, in such a case). The aim of the EHE is to construct a data structure which follows the current state
of an automaton, and in case of partial information, tracks the possible states the automaton can be in. For that
purpose, we need to ensure strong eventual consistency in determining the state qt of the execution of an automaton.
That is, after two different monitors share their EHE, they should both be able to find qt for t (if there exists enough
information to infer the global state), or if not enough information is available, they both find no state at all.

1We note that in the case of RV, traces are typically finite.
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5.1.1 The Execution History Encoding (EHE) data structure

Execution History Encoding (EHE) is a data structure designed to encode an execution of an automaton using
boolean expressions while accounting for partial observations.

Definition 13 (Execution History Encoding - EHE) An Execution History Encoding (EHE) of the execution
of an automatonA is a partial function I : N × Q→ Expr.

Intuitively, for a given execution, an EHE encodes the conditions to be in a state at a given timestamp as an
expression in Expr. I(t, q) is an expression used to track whether the automaton is in state q at t, i.e., I(t, q) holds
iff the automaton is in state q at timestamp t. We begin by defining the EHE at timestamp t = 0 which indicates
the initial state of the execution. For a given automaton with an initial state q0, we know that we are indeed in the
initial state at t = 0. As such, the initial EHE for the beginning of the execution is the function [0 7→ q0 7→ >]. For
future timestamps, the EHE is extended inductively based on reachable states.

Definition 14 (Constructing an EHE) An EHE encoding the execution till timestamp t, noted It is constructed
inductively using function mov : (N × Q→ Expr) × N × N→ (N × Q→ Expr)

It def
= mov([0 7→ q0 7→ >], 0, t)

mov(I, ts, te) def
=

{
mov(I′, ts + 1, te) if ts < te,
I otherwise,

with I′ = I †∨

∨⊎
q′∈next(I,ts)

{ts + 1 7→ q′ 7→ to(I, ts, q′, tsts+1)}, and

to(I, t, q′, enc) def
=

∨
{〈q,e′〉| δ(q,e′)=q′}

(I(t, q) ∧ enc(e′))

next(I, t) def
= {q′ ∈ Q | ∃〈t, q〉 ∈ dom(I),∃e ∈ Expr : δ(q, e) = q′}.

The automaton is in the initial state at t = 0. We start building up I with the initial state and associating it with
expression >: [0 7→ q0 7→ >]. Then, for a given timestamp t, we use function next to check the next set of reachable
states in the automaton (at t + 1) by looking at the outgoing transitions for all states in I at t (i.e., we find a state q′

such that ∃〈t, q〉 ∈ dom(I),∃e ∈ Expr : δ(q, e) = q′).

We now build the necessary expression to reach a state q′ from multiple states by disjoining the transition labels
using to(I, t, q′, enc), as it suffices to take only one such path to reach q′. Since the label consists of expressions in
ExprAP we use an encoder (enc) to get an expression in ExprAtoms. If an expression I(t, q) encodes the condition to
reach q at t, and q′ is reachable from q at t + 1 using the condition e′, then it suffices to compute the conjunction.

Finally, I′ is obtained by considering the next states and merging all their expressions with I: I′ = I†∨

∨⊎
q′∈next(I,ts)

{ts +1 7→

q′ 7→ to(I, ts, q′, tsts+1)}. We recall from Section 4.2 that operator †∨ performs the disjunction between entries,

while operator
∨⊎

on EHE adds expressions for given timestamps and states that are not present, and merges multiple
EHEs row by row using disjunction when the entry exists. As such, an EHE is assembled for t + 1 by combining all

expressions for reachable states at t + 1 using
∨⊎

. The assembled EHE for t + 1 is then combined with the EHE for t
(I) using †∨, to form the EHE that contains both (I′).

We use the notation rounds(I), to denote all the timestamps that the EHE encodes, i.e., rounds(I) = {t ∈ N | 〈t, q〉 ∈
dom(I)}. Similarly to automata notation, if multiple EHEs are present, we use a label in the subscript to identify
them and their respective operations (I` denotes the EHE ofA`).

Example 17 (Constructing an EHE) We encode the execution of the automaton presented in Example 16. For this
example, we use the encoder tsn which appends timestamp n to an atomic proposition. We have I0 = [0 7→ q0 7→ >].
From q0, it is possible to go to q0 or q1, therefore next(I0, 0) = {q0, q1}. To stay at q0 at t = 1, we must be at q0
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Table 5.1: A tabular representation of I2

t q e
0 q0 >

1 q0 ¬〈1, s〉
1 q1 〈1, s〉
2 q0 (¬〈1, s〉 ∧ ¬〈2, s〉) ∨ (〈1, s〉 ∧ ¬〈2, s〉)
2 q1 (〈1, s〉 ∧ 〈2, s〉 ∧ 〈2, `〉) ∨ (¬〈1, s〉 ∧ 〈2, s〉))
2 q2 〈1, s〉 ∧ 〈2, s〉 ∧ ¬〈2, `〉

⊥

¬s ∧ ` s ∧ ¬`s ∧ ` ¬s ∧ ¬`

s ` ¬s ¬`

>

Figure 5.1: Ordering boolean expressions with =⇒ .

at t = 0, and have : to(I0, 0, q0, ts1) = I0(0, q0) ∧ ¬〈1, s〉. To move to q1 at t = 1, we must be at q0 at t = 0. The
following condition must hold: to(I0, 0, q1, ts1) = I0(0, q0) ∧ 〈1, s〉 = 〈1, s〉. The encoding up to timestamp t = 2
is obtained with I2 = mov(I0, 0, 2) and is shown in Table 5.1. We notice that when a state can be reached from
multiple states, their expressions are disjoined. For instance, to reach q0 at t = 2, we can either have stayed at q0 at
t = 1 and taken the loop transition or have moved to q1, then taken the transition back to q0 (¬〈2, s〉). ∗

Constructing an EHE with function mov is done only through merges using operator †∨. We can impose a partial
order on the set of boolean expressions using =⇒ , as it is reflexive, transitive, and antisymmetric. As such, =⇒

guarantees a semilattice construction with > as the maximal element. We illustrate the order between two atomic
propositions s and ` in Figure 5.1. We see that using logical OR (∨) computes the LUB of the lattice. By creating
an arbitrary order on the states (noted ≺Q) in the specification automaton, we can then compare any two entries
of the EHE. One can see that similarly to memory in Definition 6, we can enumerate the state of the EHE I as
a set of tuples: {〈t, q, e〉 | I(t, q) = e}. We are then able to compare any such two tuples 〈t, q, e〉 v 〈t′, q′, e′〉 iff
t ≤ t′ ∧ q �Q q′ ∧ e =⇒ e′. By merging with †∨ (Section 4.2) the entries not found in both are added using set
union, and conflicting entries are disjoined (∨), effectively computing the LUB. As such, the EHE is a CvRDT.

Corollary 2: An EHE constructed with mov and merged with †∨ is a CvRDT. ♦

By constructing the EHE, we have for each timestamp t and each state q in the EHE an expression. Using information
from the execution stored in a memoryM, if eval(I(t, q),M) is >, then we know that the automaton is indeed in
state q at timestamp t. Given a memoryM which stores atoms, function sel determines if a state is reached at a
timestamp t. If the memory does not contain enough information to evaluate the expressions, then the state is undef.
The state q at timestamp t with a memoryM is determined by:

sel(I,M, t) =

{
q if ∃q ∈ Q : eval(I(t, q),M) = >,
undef otherwise.

We note that q such that eval(I(t, q),M) = > is unique. Since we are encoding deterministic automata, we recall
from Remark 1 that when a state q is reached at a timestamp t resulting from an execution, no other state can be
reached at t for the same execution. Moreover, the EHE construction using operation mov and encoder ts preserves
determinism.

Proposition 2 (Deterministic EHE) Given an EHE I constructed with operation mov using encoder ts, we
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have:

∀t ∈ rounds(I),∀M ∈ Mem,∃q ∈ Q : eval(I(t, q),M) = > =⇒ ∀q′ ∈ Q \ {q} : eval(I(t, q′),M) , >.

Determinism is preserved since, by using encoder ts, we only change an expression to add the timestamp. By
construction, when there exists a state q s.t. eval(I(t, q),M) = >, such a state is unique, since the EHE is built using
a deterministic automaton. The full proof is in Appendix A.

Function verAt is a short-hand to retrieve the verdict at a given timestamp t:

verAt(I,M, t) =

{
ver(q) if ∃q ∈ Q : q = sel(I,M, t),
? otherwise.

Example 18 (Monitoring with EHE) We recall from Example 17 the constructed EHE shown in Table 5.1. Let
us consider the global trace from Example 15: evt0 · evt1, with evt0 = {〈s,>〉, 〈`,>〉} and evt1 = {〈s,>〉, 〈`,⊥〉}.
We create a memory with the events of the two timestamps. Let M = memc(evt0, ts1) †2 memc(evt1, ts2) =

[〈1, s〉 7→ >, 〈1, `〉 7→ >, 〈2, s〉 7→ >, 〈2, `〉 7→ ⊥, ]. It is possible to infer the state of the automaton at t = 2 using
I2 = mov([0 7→ q0 7→ >], 0, 2) by using sel(I2,M, 2), we evaluate:

eval(I2(2, q0),M) = (¬〈1, s〉 ∧ ¬〈2, s〉) ∨ (〈1, s〉 ∧ ¬〈2, s〉) = ⊥

eval(I2(2, q1),M) = (〈1, s〉 ∧ 〈2, s〉 ∧ 〈2, `〉) ∨ (¬〈1, s〉 ∧ 〈2, s〉)) = ⊥

eval(I2(2, q2),M) = 〈1, s〉 ∧ 〈2, s〉 ∧ ¬〈2, `〉 = >

We find that q2 is the selected state, with verdict ver(q2) = ⊥. ∗

While the construction of an EHE preserves the determinism found in the automaton, an important property is in
ensuring that the EHE encodes correctly the execution of the automaton.

Proposition 3 (Soundness) Given a decentralized trace tr of length n, we reconstruct the global trace ρ(tr) =

evt1 · . . . · evtn, we have: ∆∗(q0, ρ(tr)) = sel(In,Mn, n), with:
In = mov([0 7→ q0 7→ >], 0, n), and
Mn =

⊎2
t∈[1,n]{memc(evtt, tst)}.

EHE is sound wrt the specification automaton; both the automaton and EHE will indicate the same state reached
with a given trace. Thus, the verdict is the same as it would be in the automaton. The proof is by induction on the
reconstructed global trace (|ρ(tr)|).

Proof sketch We first establish that both the EHE and the automaton memories evaluate two similar expressions
modulo encoding to the same result. That is, for the given length i, the generated memories at i + 1 with encodings
idt and tsi+1 yield similar evaluations for the same expression e. Then, starting from the same state qi reached at
length i, we assume ∆∗(q0, evt1 · . . . · evti) = sel(Ii,Mi, i) = qi holds. We prove that it holds at i + 1, by building the
expression (for each encoding) to reach state qi+1 at i + 1, and showing that the generated expression is the only
expression that evaluates to >. As such, we determine that both evaluations point to qi+1 being the next state. The
full proof is in Appendix A.

5.1.2 Decentralized Monitoring with EHE

EHE provides interesting properties for decentralized monitoring. Two (or more) components sharing EHEs and
merging them will be able to infer the same execution history of the automaton. That is, components will be able to
aggregate the information of various EHEs, and are able to determine the reached state, if possible, or that no state
was reached. Merging two EHEs of the same automaton with †∨ allows us to aggregate information from two partial
histories.
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However, two EHEs for the same automaton contain the same expression if constructed with mov. To incorporate
the memory in an EHE, we generate a new EHE that contains the rewritten and simplified expressions for each
entry. To do so we define function inc to apply to a whole EHE and a memory to generate a new EHE: inc(I,M) =⊎2
〈t,q〉∈dom(I){[〈t, q〉 7→ simplify(rw(I(t, q),M))]}. We note, that for a given I and M, inc(I,M) maintains the

invariant of Proposition 2. We are simplifying expressions or rewriting atoms with their values in the memory
which is what eval already does for each entry in the EHE. That is, inc(I,M) is a valid representation of the same
deterministic and complete automaton as I. However, inc(I,M) incorporates information from memoryM in
addition.

Proposition 4 (Memory obsolescence)

∀〈t, q〉 ∈ dom(inc(I,M)) : eval(I(t, q),M)⇔ eval(inc(I,M)(t, q), []).

Proof : Follows directly by construction of inc and the definition of eval (which uses functions simplify and rw).

Proposition 4 ensures that it is possible to directly incorporate a memory in an EHE, making the memory no longer
necessary. This is useful for algorithms that communicate the EHE, as they do not need to also communicate the
memory.

By rewriting the expressions, the EHEs of two different monitors receiving different observations contain different
expressions. However, since they still encode the same automaton, and observations do not conflict, merging with
†∨ shares useful information.

Corollary 3: Given an EHE I constructed using function mov, and two memoriesM1 andM2 that do not
observe conflicting observations2, the two EHEs I1 = inc(I,M1) and I2 = inc(I,M2) have the following
properties ∀〈t, q〉 ∈ dom(I′):

1) I′ = I1 †∨ I2 is deterministic (Proposition 2);
2) eval(I′(t, q), []) =⇒ eval(I(t, q),M1 †2M2);
3) eval(I′(t, q), []) = > =⇒ eval(I′(t, q),M1) = > ∧ eval(I′(t, q),M2) = >;
4) eval(I′(t, q), []) = > =⇒ eval(I1(t, q),M1) , ⊥ ∧ eval(I2(t, q),M2) , ⊥. ♦

The first property ensures that the merge of two EHEs that incorporate memories are still indeed representing a
deterministic and complete automaton, this follows from Proposition 2 and Proposition 4. Since operation †∨
disjoins the two expressions, and since the two expressions come from EHEs that each maintain the property, the
additional disjunction will not affect the outcome of eval. The second property extends Proposition 4 to the merging
of EHE with incorporated memories. It follows directly from Proposition 4, and the assumptions that the memories
have no conflicts. The third property adds a stronger condition. It states that merging two EHEs with incorporated
memories results in an EHE that evaluates to true, cannot evaluate to anything else with the two different memories.
This follows from the second property and the fact that the memories do not have conflicting observations. Finally,
the fourth property ensures that merging an EHE with an entry that evaluates to ⊥ does not result in an entry that
evaluates to >. That is, if an EHE has already determined that a state is not reachable, merging it with another
EHE does not result in the state being reachable. This ensures the consistency when sharing information. This
property follows from the merging operator †∨ which uses ∨ to merge entries in two EHEs. We recall that an entry
in 〈t, q〉 ∈ dom(I′) is constructed as: eval(I1(t, q),M1) ∨ eval(I2(t, q),M2). For eval(I′(t, q), []) to be >, either
eval(I1(t, q),M1) or eval(I2(t, q),M2) has to be >, if one is already ⊥, then the other has to be >. This leads to a
contradiction, since both I1 and I2 encode the same deterministic automaton, as such, the automaton cannot be in
two states at once.

Example 19 (Reconciling information) We consider the specification presented in Example 4, and the decentral-
ized trace and two components: lswitch and bulb presented in Example 15. We recall the trace tr = [1 7→ lswitch 7→
{〈s,>〉}, 1 7→ bulb 7→ {〈`,>〉}, 2 7→ lswitch 7→ {〈s,>〉}, 2 7→ bulb 7→ {〈`,⊥〉}]. Furthermore, we associate respec-
tively two monitors m0 and m1 with components lswitch and bulb. We focus on the timestamp at t = 2. The
monitors can observe the propositions s and ` respectively and use one EHE each: I2

0 and I2
1 respectively. Their

memories are respectivelyM2
0 = [〈1, s〉 7→ >, 〈1, s〉 7→ >] andM2

1 = [〈1, `〉 7→ >, 〈2, `〉 7→ ⊥]. Table 5.2 shows the
EHEs (where I2 denotes the non-rewritten EHE). The columns [M2

0] and [M2
1] show the result of performing eval
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Table 5.2: Reconciling information by combining EHEs.I2 indicates the non-rewritten EHE. The columns [M2
0] and

[M2
1], the result of performing eval on the EHE †2

∨ using memoriesM2
0 andM2

1 respectively. A dash (-) indicates
the expression is the same as I2.

t q I2 I2
0 I2

1 †2
∨ [M2

0] [M2
1]

0 q0 > > > > > >

1 q0 ¬〈1, s〉 ⊥ - - ⊥ ?
1 q1 〈1, s〉 > - > > >

2 q0 (¬〈1, s〉 ∧ ¬〈2, s〉) ∨
(〈1, s〉 ∧ ¬〈2, s〉)

⊥ - - ⊥ ?

2 q1 (〈1, s〉 ∧ 〈2, s〉 ∧
〈2, `〉) ∨ (¬〈1, s〉 ∧
〈2, s〉))

〈2, `〉 ¬〈1, s〉 ∧ 〈2, s〉) 〈2, `〉 ∨ (¬〈1, s〉 ∧ 〈2, s〉) ? ?

2 q2 〈1, s〉∧〈2, s〉∧¬〈2, `〉 ¬〈2, `〉 〈1, s〉 ∧ 〈2, s〉 ¬〈2, `〉 ∨ (〈1, s〉 ∧ 〈2, s〉) > >

on the EHE †2
∨ using memoriesM2

0 andM2
1 respectively.

Constructing the EHE I2 follows similarly from Example 17. We show the rewriting for both I2
0 and I2

1 respectively
in the next two columns. Then, we show the result of combining the rewrites using †∨. We notice initially that
since s is ⊥, m0 could evaluate 〈1, s〉 = > and know that the automaton is in state q1. However, for m1, this is not
possible until the expressions are combined. By evaluating the combination, m1 determines that the automaton is
in state q0 at t = 1. We see at t = 2 for both q1 and q2 the expression resulting from combining the EHE is much
weaker than the one present in each of the individual EHEs. After evaluating with the local memory, both monitors
determine that the automaton is in state q2.

In this case, we are only looking for expressions that evaluate to >. We notice that monitor m0 can determine that
q0 is not reachable (since ¬〈1, s〉 = ⊥) while m1 cannot, as the expression ¬〈1, s〉 cannot yet be evaluated to a final
verdict, and thus the combination evaluates to ?. This does not affect the outcome, as we are only looking for one
expression that evaluates to >, since both I2

0 and I2
1 are encoding the same execution. In the future, we would like

to also propagate the information about the non-reachable states by tweaking the combination of EHEs. ∗

5.2 Data Structure Costs

We first consider the parameters and the cost for the basic functions of the EHE and memory data structures. We use
sE to denote the size necessary to encode an element of the set E. For example, sAP is the size needed to encode
an element of set AP. To do so, we first address the cost to store partial functions and merge them. Then, we
parametrize the size of the EHE by accounting for delay introduced to relay partial observations. Finally, we present
the size of both EHE and memory data structures.

5.2.1 Storing and Merging Partial Functions

Since memory and EHE are partial functions, to assess their required memory storage and iterations, we consider
only the elements defined in the function.

Storing. The size of a partial function f , denoted | f |, is the size to encode all x = f (x) mappings. We recall
that | dom( f )| the number of entries in f . The size of each mapping x = f (x) is the sum of the sizes |x| + | f (x)|.
Therefore | f | =

∑
x∈dom( f ) |x| + | f (x)|.

Merging Merging two memories or two EHEs is linear in the size of both structures in both time and space.
In fact, to construct f †op g, we first iterate over each x ∈ dom( f ), check whether x ∈ dom(g), and if so assign
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t 7→ q 7→ >

δt



t + 1 7→

q0 7→ e10
q1 7→ e11

...
q|Q|−1 7→ e1(|Q|−1)


|Q|

t + 2 7→

q0 7→ e20
...

q|Q|−1 7→ e2(|Q|−1)

 |Q|

...

t + δt 7→

q0 7→ eδt0
q1 7→ eδt1

...
q|Q|−1 7→ eδt(|Q|−1)

 |Q|

Figure 5.2: Size of the EHE (worst-case) with respect to information delay.

op( f (x), g(x)), otherwise assign f (x). Finally we assign g(x) to any x ∈ dom(g) ∩ dom( f ). This results in
| dom( f †op g)| = | dom( f ) ∪ dom(g)| which is at most | dom( f )| + | dom(g)|.

5.2.2 Information delay

The main goal of the EHE data structure is to keep track of partial states of an automaton execution. Keeping track
of partial states becomes unnecessary once enough information is gathered to determine which state was reached
during an execution. An EHE associates an expression with a state for any given timestamp. When an expression e
associated with a state qkn for some timestamp tkn is evaluated to >, we know that the automaton is in qkn at tkn.
We call qkn a ‘known’ (or stable) state. The information delay δt is the number of timestamps needed to reach a
new known state from an existing known state. That is, it is the number of timestamps in the EHE storing partial
information without determining a stable state. Information delay is a runtime measure, as it depends on the updates
done to the EHE as it evolves through time. Given an EHE at timestamp tkn such that qkn is a known state for a given
memoryMtkn i.e. sel(Itkn ,Mtkn , tkn) = qkn. The next known timestamp is the least timestamp tnewkn > tkn, such
that sel(Itnewkn ,Mtnewkn , tnewkn) , undef, where It andMt at some timestamp t is used to denote respectively the
changes to the EHE and memory through time in the execution3. The information delay for this evaluation of a
state is δt = tnewkn − tkn. While information delay needs to be computed each time a stable state is reached, it is
often the case that it is measured for a whole execution of an algorithm, in which case we can consider an average
information delay and a maximum information delay, where we aggregate the various information delays (for
reaching each known state) by computing their average and maximum. Since we know the automaton is in qnewkn,
prior information is no longer necessary, therefore it is possible to discard all entries in I with t < tnewkn. Thus,
reducing the number of expressions in the EHE. This can be seen as a garbage collection strategy [WB86, SPBZ11]
for the memory and EHE. We next show how the information delay parameter affects the size of the EHE.

5.2.3 EHE Encoding

For the EHE data structure, we consider the three functions: mov, eval, and sel4 (see Section 5.1). Function mov
depends on the topology of the automaton. We quantify it using the maximum size of the expression that labels a
transition in a normalized automaton (see Remark 1) L, and the number of states in the automaton |Q|). From a
known state each application of mov considers all possible transitions and states that can be respectively taken and
reached, for each outbound transition, the label itself is added. Therefore, the rule is expanded by L per outbound
state for each move beyond tkn. We illustrate the expansion in Figure 5.2, where for each timestamp, we associated
with each state an expression.

3We note that tnewkn is not necessarily equal to tkn + 1, as the EHE can determine a known state by simplification, and therefore skip
intermediate states. We allow skipping states as it is reasonable for LTL3 semantics, since final verdicts do not change for all suffixes.

4verAt is simply a sel followed by a O(1) lookup
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We use S(n) to denote the size of an expression at a given timestamp after a known state. As such to reach a given
state, we require a previous expression (i.e., S(n − 1)), and add the label of a given transition (i.e., L). In the worst-
case, the automaton is a fully connected graph, a state can be reached by all other states (including itself). Hence,
we require the disjunction of |Q| such expressions. The recurrence relation is given by: S(n) = |Q|(S(n − 1) + L).
The size of the expression at the known timestamp is 1, as the expression >. By summing all timestamps we have,∑n

i=0 |Q|
iL = L

∑n
i=0 |Q|

i where
∑n

i=0 |Q|
i is a geometric series of ratio equal to a > 1. We can then deduce that the

size of the expression is exponential in the number of timestamps, i.e. S(n) = Θ(|Q|nL).

An EHE contains δt |Q| expressions, its’ size is then (in the worst-case):

|Iδt | = Θ(δt × |Q| × |Q|δt L) = Θ(|Q|δt+1δtL).

For a given expression e, we use |e| to denote the size of e, i.e., the number of atoms in e. Given a memoryM, the
complexity of function eval(e,M) is the cost of simplify(rw(e,M)). Function rw(e,M) looks up each atom in e
inM and attempts to replace it by its truth-value. The cost of a memory lookup is Θ(1), and the replacement is
linear in the number of atoms in e. It effectively takes one pass to syntactically replace all atoms by their values,
therefore the cost of rw is Θ(|e|). However, applying function simplify() requires solving the Minimum Equivalent
Expression problem which is Σ

p
2 -complete [BU08], it is exponential in the size of the expression, making it the

most costly function. |e| is bounded by δtL. Function sel() requires evaluating every expression in the EHE. For
each timestamp we need at most |Q| expressions, and the number of timestamps is bounded by δt.

5.2.4 Memory

The memory required to storeM depends on the trace, namely the amount of observations per component. Recall
that once a state is known, observations can be removed, the number of timestamps is bounded by δt. The size of
the memory is then:

i+δt∑
t=i

|tr(c, t)| × (sN + sAP + sB2 ).

The size of the memory depends for each timestamp on the number of observations associated with the component
(|tr(c, t)|), and the size of each observation. The size of an observation is the size needed to encode the timestamp
(sN), the atomic proposition (sAP) and the verdict (sB2 ).

Conclusion

We have introduced the execution history encoding (EHE) data structure. The EHE data structure is used to encode
the possible states reached when executing an automaton given partial information. We elaborated on the properties
of EHE, particularly on determinism, soundness, its ability to integrate the memory, and strong eventual consistency
when used for decentralized monitoring of centralized specifications. We have introduced a cost model for the
EHE that relies on information delay. The information delay represents the time needed to acquire sufficient partial
information to infer the next state in the execution of the specification automaton. We show that the size of the EHE
scales exponentially with the information delay, and linearly with the maximum length of the expressions labeling
the specification automaton.

In the next chapter (Chapter 6), we shift the focus from centralized specifications to decentralized specifications.
While the EHE property of SEC is useful when performing decentralized monitoring of centralized specifications,
the EHE can be used as a general cost model when dealing with partial information, as using boolean expression
simplification we make the most out of the partial information.
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CHAPTER 6. HIERARCHICAL DECENTRALIZED SPECIFICATIONS

Chapter abstract

In this chapter, we define hierarchical decentralized specifications. We define the basic structure of a decentralized
specification as Moore automata similar to Section 2.1.2, but with added constraints on the atomic propositions,
and references to other monitors. After a brief informal overview of decentralized specifications, we elaborate on
the semantics to evaluate the references, and detail properties of monitorability and compatibility. Monitorability
ensures that given a specification, monitors are able to eventually emit a verdict, for all possible traces. Compatibility
ensures that a monitor topology can be deployed on a given system.
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6.0:

Introduction

Motivation. We noticed that so far, decentralized monitoring allows for several monitors that monitor the same
specification. Typically, a decentralized monitoring algorithm will consider one (global) specification, and either
generate necessary monitors that are tasked with monitoring a part of the specification, or allow for consensus
among multiple monitors to find the global verdict (Chapter 3). We focus on multiple monitors each having their
own independent specification, of which others are normally unaware. We thus consider decentralized monitoring
of decentralized specifications. We note that centralized monitoring of decentralized specifications makes little
sense as there does not exist more than one monitor. We noted that existing techniques often start from a global
specification and then synthesize local monitors with either a copy of the global specification [BFRT16] or a
completely different specification to monitor (typically a subformula of the original formula) [BF12, FCF14]. In
this case, we would like to split the problem of generating equivalent decentralized specifications from a centralized
one (synthesis) from the problem of monitoring. In addition, works on characterizing what one can monitor (i.e.,
monitorability [KVB+99, PZ06, FFM12a]) for centralized specifications exist [BLS11, FFM12a, DL14], but do
not extend to decentralized specifications. For example, by splitting an LTL formula ad hoc, it is possible to obtain
a non-monitorable subformula as we illustrate in Example 20. Obtaining a non-monitorable subformula interferes
with the completeness of a monitoring algorithm.

Example 20 (Non-monitorable subformulae) We use the example from [CF16a] of the formula ϕ def
= G F(a) ∧

¬(G F(a)), where G F(a) means that a should hold infinitely often. One can see that ϕ is monitorable, as it can
be simplified to ⊥, since it has the form ϕ′ ∧ ¬ϕ′. We notice that if we split ϕ into two subformulae G F(a) and
¬(G F(a)), the obtained subformulae are non-monitorable. ∗

In addition to the separation of deploying monitors and the monitoring itself, using a large global specification to
specify the whole behavior of the system can prove problematic when synthesizing monitors. We recall that the
monitor synthesis algorithm presented in [BLS11] is doubly exponential in the length of the formula, and alphabet
(atomic propositions) in a formula. We point out that since we are dealing with partial observations, we have to use
atomic propositions and not events, as such the size of the alphabet grows sufficiently large, that for small systems,
we often find it difficult to synthesize a monitor.

Example 21 (Limitation of synthesis) Let us consider a simple property that verifies a sensor-actuator system such
as a switch and a light (as used in Example 2). One can verify that whenever a switch is pressed, the light must
stay on until the switch is no longer pressed. We consider n to be the number of pairs of such switches and lights.

The global property of the system is a large conjunction:
n∧

i=1
G(si =⇒ X(`i U¬si)). Within a reasonable limit of n

(generally n ≥ 3), existing synthesis tools will timeout when attempting to produce the synthesized monitor within
a reasonable time frame (2 hours). ∗

Building specifications bottom up by composing existing specifications via references provides a modular way to
build and hide subformulae (and atomic propositions) as they are composed. By referencing other subspecifications,
we model explicitly the dependency relationships between various specifications. The generated hierarchy provides
advantages to scalability and performance, on which we elaborate in Chapter 9.

Chapter organization. The chapter is split into three sections. In Section 6.1, we introduce an overview of
decentralized specifications, their structure, and their semantics. In Section 6.2, we elaborate two properties
(compatibility and monitorability) of decentralized specifications, and present algorithms to decide them. In
Section 6.3, we discuss future perspectives, and problems introduced by decentralized specifications.

Key contributions. The key contributions of this chapter can be summarized as follows:

1. Introducing of decentralized specifications wherein each monitor has their own specification limited to what is
observable for the monitor, and references to other monitors;

2. Elaborating on the semantics used to evaluate the references in specifications;
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qi0 qi q′i
[1, n − 1] ¬mj

mj

>

Ai

q j0 q j
[n, m − 1]

>

Aj

0 n n + 1 m

n : mj 7→ ⊥

Figure 6.1: Evaluating Monitor References

3. Presenting a two step view of decentralized monitoring, which consists in the separation between topology of
monitors and the monitoring;

4. Characterizing and computing two properties of decentralized specifications: compatibility of a specification
to a target system, and monitorability of a given decentralized specification (extended from monitorability of
centralized specifications); and

5. Discussing other properties of interest for future exploration tackling synthesis and equivalence.

6.1 Decentralized Specifications

In this section, we shift the focus to a specification that is decentralized. A set of automata represent various
requirements (and dependencies) for different components of a system. In this section, we define the notion of a
decentralized specification and its semantics, and in Section 6.2, we define various properties on such specifications.

6.1.1 Informal Overview

Informally, a decentralized specification considers the system as a set of components, defines a set of LTL3 monitors
(see Section 2.1.2), additional atomic propositions that represent references to monitors, and attaches each monitor
to a component. Attaching monitors to components allows a monitor specification to explicitly reference atomic
propositions that are associated with the component. However, the transition labels in a monitor are restricted
to only atomic propositions related to the component on which the monitor is attached, and references to other
monitors.

A monitor reference is evaluated as if it were an oracle as shown in Figure 6.1. That is, to evaluate a monitor
reference m j, in a monitorAi, at a timestamp n, the monitor referenced (A j) is executed starting from the initial
state by looking at observations in the trace starting at n. The atomic proposition m j at n takes the value of the
final verdict reached by the monitor A j starting its evaluation from n. Details of the semantics are provided in
Section 6.1. Furthermore, to evaluate reference we need the resulting oracle execution to be able to reach a final
verdict, which is not always guaranteed. As such, it is important to define some of the properties of decentralized
specifications such as monitorability, which indicates that a final verdict is co-reachable from any state in a given
monitor (Section 6.2.1). We elaborate on characterizing and computing properties of decentralized specifications in
Section 6.2.

6.1.2 Decentralizing a Specification

We recall that a decentralized system consists of a set of components C. To decentralize the specification, instead
of having one automaton, we have a set of specification automata (Definition 11) Mons = {A` | ` ∈ APmons},
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q0start

q1

q2

s ¬s

¬s

s ∧ `

>

s ∧ ¬`

(a) Centralized

q0start

q1

q2

s ¬s

¬s

s ∧m1

>

s ∧ ¬m1

q′0start

q′1

q′2

`

¬`

>

>

Am0 Am1

(b) Decentralized

Figure 6.2: Monitor(s) for the centralized and decentralized light switch and bulb specification presented in
Example 4. The verdicts associated with the states are ⊥: dotted red , >: double green, and ?: single yellow.

where APmons is a set of monitor labels. We refer to these automata as monitors. To each monitor, we associate
a component using a function L : Mons → C. However, the transition labels of a monitor mon ∈ Mons are
expressions restricted to either observations local to the component the monitor is attached to (i.e., L(mon)), or
references to other monitors. Transitions are labeled over APmons \ {mon} ∪ {ap ∈ AP | lu(ap) = L(mon)}. This
ensures that the monitor is labeled with observations it can locally observe or depend on other monitors. To evaluate
a trace as one would on a centralized specification, we require one of the monitors to be a starting point, we refer to
that monitor as the root monitor (rt ∈ Mons).

Definition 15 (Decentralized specification) A decentralized specification is a tuple 〈APmons, Mons, C, L, rt〉,
where APmons is the set of monitor references, Mons is the set of monitors, C is the set of components, L is a
function assigning monitors to components, and rt is the root monitor.

We note that a centralized specification is a special case of a decentralized specification, with one component
(global system, sys), and one monitor (g) attached to the sole component, i.e. 〈{g}, {Ag}, {sys}, [Ag 7→ sys],Ag〉.

As automata expressions now include references to monitors, we first define function dep : Expr → 2Mons, which
determines monitor dependencies in a given expression. Then, we define the semantics of evaluating (decentralized)
specifications with references.

Definition 16 (Monitor dependency) The set of monitor dependencies in an expression e is obtained by
function dep : Expr → 2Mons, defined as1: dep(e) = match e with:
| id ∈ APmons →{Aid} | e1 ∧ e2 → dep(e1) ∪ dep(e2)
| ¬e → dep(e) | e1 ∨ e2 → dep(e1) ∪ dep(e2)

Function dep finds all monitors referenced by expression e, by syntactically traversing it.

Example 22 (Decentralized specification) Figure 6.2b shows a decentralized light switch and bulb specification
corresponding to the centralized specification in Example 4 (shown in Figure 6.2a for side-by-side comparison). We
recall from Example 15 that the system consists of two components the light switch and bulb, labeled lswitch and
bulb, respectively. We associated the components lswitch and bulb with the monitorsAm0 andAm1 , respectively.
We use Am0 as the root monitor for the decentralized specification. We consider the two atomic propositions s
and ` can only be observed by component lswitch and bulb respectively. Am0 depends on the verdict from m1 and
only observations local to lswitch, whileAm1 is only labeled with observations local to bulb. Given the expression
s ∧m1, we have dep(s ∧m1) = {Am1 }. ∗

6.1.3 Semantics of a Decentralized Specification

The transition function of the decentralized specification is similar to the centralized automaton with the exception
of monitor ids.
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Definition 17 (Semantics of a decentralized specification) Consider the root monitor Art and a decentral-
ized trace tr with index i ∈ [1, |tr|] representing the timestamps. Monitoring tr starting from Art emits the
verdict verrt(∆′∗rt (qrt0 , tr, 1)) where for a given monitor label `:

∆′∗` (q, tr, i) =

{
∆′∗` (∆′`(q, tr, i), tr, i + 1) if i < |tr|
∆′`(q, tr, i) otherwise

∆′`(q, tr, i) =


q′ if tr(i,L(A`)) , ∅ ∧ ∃e ∈ ExprAP :

δ`(q, e) = q′ ∧ eval(e,M) = >

q otherwise

where M = memc(tr(i,L(A`)), idt) †2

2⊎
A`′∈dep(e)

{[`′ 7→ ver`′ (q`′f )]}

and q`′f = ∆′∗`′ (q`′0 , tr, i)

For a monitorA`, we determine the new state of the automaton starting at q ∈ Q`, and running the trace tr from
timestamp i to timestamp t by applying ∆′∗` (q, tr, i). To do so, we evaluate one transition at a time using ∆′` as would
∆∗` with ∆` (see Definition 12). To evaluate ∆′` at any state q ∈ Q`, we need to evaluate the expressions so as to
determine the next state q′. The expressions contain atomic propositions and monitor ids. For atomic propositions,
the memory is constructed using memc(tr(i,L(A`)), idt) which is based on the event with observations local to the
component the monitor is attached to (i.e., L(A`)). However, for monitor ids, the memory represents the verdicts
of the monitors. To evaluate each reference `′ in the expression, the remainder of the trace starting from the current
event timestamp i is evaluated recursively on the automatonA`′ from the initial state q`′0 ∈ A`′ . Then, the verdict
of the monitor is associated with `′ in the memory.

Example 23 (Monitoring of a decentralized specification) We consider the decentralized specification from Ex-
ample 22. We have the monitors Am0 (root) and Am1 associated to components lswitch and bulb respectively.
Furthermore, we consider the decentralized trace from Example 15: tr = [1 7→ lswitch 7→ {〈s,>〉}, 1 7→ bulb 7→
{〈`,>〉}, 2 7→ lswitch 7→ {〈s,>〉}, 2 7→ bulb 7→ {〈`,⊥〉}].

To evaluate tr on Am0 (from Figure 6.2b), we use ∆′∗m0
(q0, tr, 1). To do so, we first evaluate ∆′m0

(q0, tr, 1). In this
case, the expressions only depend on the atomic proposition s, which does not depend on any other monitor. We
haveM1

m0
= memc(〈s,>〉, idt) = [s 7→ >], and eval(s,M1

m0
) = >. Thus, we obtain ∆′m0

(q0, tr, 1) = q1.

In q1 at t = 2, we now evaluate ∆′m0
(q1, tr, 2). Transitions from q1 are labeled with expressions that depend on m1.

Therefore, we evaluate the decentralized trace on Am1 starting at t = 2 by evaluating ∆′∗m1
(q′0, tr, 2). We start by

evaluating ∆′m1
(q′0, tr, 2). We haveM2

m1
= memc(〈`,⊥〉, idt) = [` 7→ ⊥], and eval(¬`,M2

m1
) = >. Thus, we obtain

∆′m1
(q′0, tr, 2) = q′2 labeled by the verdict ⊥. Having reached a final verdict for m1, we can construct the memory for

m0. We haveM2
m0

= memc(〈s,>〉, idt) †2 [m1 7→ ⊥] = [s 7→ >,m1 7→ ⊥]. Knowing that eval(s ∧ ¬m1,M
2
m0

) = >,
we conclude that the next state is ∆′m0

(q1, tr, 2) = q2. Since q2 is labeled by verdict ⊥, the monitoring concludes and
we detect a violation of the specification. ∗

6.2 Properties for Decentralized Specifications

A key advantage of using decentralized specifications is to make the association of monitors with components
explicit. Since monitors have been explicitly modeled as a set of automata with dependencies between each
other, we can now determine properties on decentralized specifications. In this section, we revisit the concept of
monitorability, characterize it for automata, define it for decentralized specifications, and describe an algorithm for
deciding monitorability. Furthermore, we explore compatibility, that is the ability of a decentralized specification to
be deployed on a given architecture.
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q0>

Figure 6.3: A trivial nonmonitorable specification

6.2.1 Decentralized Monitorability

An important notion to consider when dealing with runtime verification is that of monitorability [PZ06, Fal10]. In
brief, monitorability of a specification determines whether or not an RV technique is applicable to a specification.
That is, a monitor synthesized for a non-monitorable specification is unable to check if the execution complies or
violates the specification for all possible traces. Consider the automaton shown in Figure 6.3, one could see that
there is no state labeled with a final verdict. In this case, we can trivially see that no trace allows us to reach a
final verdict. We also notice similar behavior when monitoring LTL expressions with the pattern GF(p) with p
is an atomic proposition. The LTL expression requires that at all times F(p) holds >, while F(p) requires that p
eventually holds >. As such, at any given point of time, we are unable to determine a verdict, since if p is ⊥ at the
current timestamp, it can still be > at a future timestamp, and thus F(p) will be > for the current timestamp. And if
F(p) is > at the current timestamp, the G requires that it be > for all timestamps, so in the future there could exist a
timestamp which falsifies it. Consequently, when monitoring such an expression, a monitor will always output ?, as
it cannot determine a verdict for any given timestamp. In this section, we first characterize monitorability in terms
of automata and EHE for both centralized and decentralized specifications. Then, we provide an effective algorithm
to determine monitorability.

Characterizing Monitorability

Centralized monitorability of properties Monitorability in the sense of [PZ06] is defined on traces. A property
is monitorable if for all finite traces t (a sequence of events) in the set of all (possibly infinite) traces, there exists a
continuation t′ such that monitoring t · t′ results in a true or false verdict. Informally, it can be seen as whether or
not continuing to monitor the property after reading t can still yield a final verdict. We note that this definition deals
with all possible traces, it establishes monitorability to be oblivious of the input trace.

Centralized monitorability in automata We express monitorability to reach “true” or “false” verdict to the
notion of reaching a final verdict, and associate it with automata. For automata, monitorability can be analyzed in
terms of reachability and states.

Definition 18 (Monitorability of an automaton.) Given a automatonA = 〈Q, q0 ∈ Q, δ, ver〉, a state q ∈ Q
is monitorable (noted monitorable(q)) iff ver(q′) ∈ B2 or ∃q′ ∈ Q such that ver(q′) ∈ B2 and q′ is reachable
from q. AutomatonA is said to be monitorable (noted monitorable(A)) iff ∀q ∈ Q : monitorable(q).

Defining monitorability using reachability is consistent with [PZ06]. After reading a finite trace t and reaching
q (q = ∆∗(q0, t)), there exists a continuation t′ that leads the automaton to a state q′ (q′ = ∆∗(q, t′)), such that
ver(q′) ∈ B2. We note that an automaton is monitorable according to this definition iff, in the automaton, all
paths from the initial state q0 lead to a state with a final verdict. As such, it is sufficient to analyze the automaton
to determine monitorability irrespective of possible traces (see Section 6.2.1)2. We illustrate monitorability of
automata in Example 24.

Example 24 (Centralized monitorability of automata.) Figure 6.2a illustrates the automaton that expresses the
light switch and bulb specification. It is monitorable, as the states q0, q1, and q2 are monitorable. For both q0 and
q1, it is possible to reach q2 labeled with the final verdict ⊥. We note that monitorability is a necessary but not
sufficient condition for termination (with a final verdict). An infinite trace consisting of repetitions of the event
{¬〈s,⊥〉, 〈`,⊥〉} never lets the automaton reach q2. However, monitorability guarantees the possibility of reaching a
final verdict. If a state q is not monitorable, we know that it is impossible to reach a final verdict from q, and can
abandon monitoring. ∗

2The expressions leading to q′ must all be also satisfiable. However, satisfiability is guaranteed as our automaton is normalized, see
Remark 1.
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Centralized monitorability with EHE Reachability in automata can be expressed as well using the EHE data
structure. A path from a state q to a state q′ is expressed as an expression over atoms. We define paths(q, q′) to
return all possible paths from q to q′.

paths(q, q′) = {e ∈ Expr | ∃t ∈ N : It(t, q′) = e ∧ It = mov([0 7→ q 7→ >], 0, t)}

Each expression is derived similarly as would an execution in the EHE (Definition 13). We start from state q and
use a logical timestamp starting at 0 incrementing it by 1 for the next reachable state. A state q is monitorable iff
∃e f ∈ paths(q, q f ), such that (1) e f is satisfiable; (2) ver(simplify(e f )) ∈ B2. The first condition ensures that the
path is able to lead to the state q f , as an unsatisfiable path will never evaluate to true. The second condition ensures
that the state is labeled by a final verdict. An automaton is thus monitorable iff all its states are monitorable. We note
that paths(q, q′) can be infinite if the automaton contains cycles, however path expressions could be “compacted"
using the pumping lemma. Using EHE we can frame monitorability as a satisfiability problem which can benefit
from additional knowledge on the truth values of atomic propositions. For the scope of this paper, we focus on
computing monitorability on automata in Section 6.2.1.

Decentralized monitorability In the decentralized setting, we have a set of monitors Mons. The labels of
automata include monitor ids (APmons). We recall that the evaluation of a reference ` ∈ APmons consists in running
the remainder of the trace onA` starting from the initial state q`0 . As such, for any dependency on a monitorA`,
we know that ` evaluates to a final verdict iff monitorable(A`). We notice that monitorability of decentralized
specification is recursive, and relies on the inter-dependencies between the various decentralized specifications.
This is straightforward for EHE, since a path is an expression. For a path e f , the dependent monitors are captured in
the set dep(e f ). The additional condition on the path is thus: ∀A` ∈ dep(e f ) : monitorable(A`).

Computing Monitorability

Centralized specification We compute the monitorability of a centralized specificationA, with respect to a set
of final verdicts B2

3. We denote monitorability by monitorable(A,B2). In the remainder of the thesis we always use
B2, thus, we write monitorable(A). Computing monitorability consists in checking that all states of the automaton
are co-reachable from states with final verdicts. As such, it relies on a traversal of the graph starting from the states
that are labeled with final verdicts. To do so, we use a variation of the work-list algorithm. We begin by adding all
states labeled by a final verdict to the work list. These states are trivially monitorable. Conversely, any state that
leads to a monitorable state is monitorable. As such, for each element in the work list, we add its predecessors to
the work list. We maintain a set of marked states (Mark), that is, states that have already been processed, so as to
avoid adding them again. This ensures that cycles are properly handled. The algorithm stabilizes when no further
states can be processed (i.e., the work list is empty). All marked states (Mark) are therefore monitorable. To check
if an automaton is monitorable, we need all of its states to be monitorable. As such we verify that |Mark| = |Q|. The
number of edges between any pair of states can be rewritten to be at most 1 (as explained in Section 4.4). As such,
one has to traverse the graph once, the complexity being linear in the states and edges (i.e., O(|Q| + |δ|)). Hence
in the worst case, an automaton forms a complete graph, and we have

(
|Q|
2

)
edges. The worst case complexity is

quadratic in the number of states (i.e., O(|Q| + 1
2 |Q|(|Q| − 1))).

Decentralized specifications In the case of decentralized specifications, the evaluation of paths (using eval) in
an automaton depends on other monitors (and thus other automata). To compute monitorability, we first build the
monitor dependency set for a given monitorA` (noted MDS(A`)) associated with a monitor label `.

MDS(A`) =
⊎

{e∈Expr | ∃q,q′∈Q`: δ`(q,e)=q′}

dep(e)

The monitor dependency list for a monitor contains all the references to other monitors across all paths in the given
automaton (A`), by examining all the transitions. It can be obtained by a simple traversal of the automaton.

Second, we construct the monitor dependency graph (MDG), which describes the dependencies between monitors.
The monitor dependency graph for a set of monitors Mons is noted MDG(Mons) = 〈Mons,DE〉 where DE is the set

3While we use B2, this can be extended without loss of generality to an arbitrary set Bf .
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q0start q1 q′0start q′1

m1 ∨ b

¬(m1 ∨ b) >

a ∨m0

¬(a ∨m0) >
Am0 Am1

Figure 6.4: A monitorable decentralized specification with cyclically dependent monitors. When observing 〈a,>〉,
and 〈b,>〉, the disjunction cancels out the dependency.

of edges which denotes the dependency edges between the monitors, defined as: DE = {〈A`,A`′〉 ∈ Mons×Mons |
A`′ ∈ MDS(A`)}. A monitor Ami depends on another monitor Am j iff m j appears in the expressions on the
transitions ofAmi .

Proposition 5 (Sufficient conditions for monitorability of decentralized specifications.) A decentralized
specification is monitorable if the two following conditions are met: (i) MDG(Mons) has no cycles; and
(ii) ∀` ∈ Mons : monitorable(A`).

The first condition ensures that no cyclical dependency exists between monitors. The second condition ensures
that all monitors are individually monitorable. We note, that both conditions are decidable. Furthermore, detecting
cycles in a graph can be done in linear time with respect to the sum of nodes and edges, by doing a depth-first
traversal with back-edge detection, or by finding strongly connected components [Tar72]. Thus, in worst case, it
is quadratic in |Mons|. Monitorability is therefore quadratic in the number of monitors and states in the largest
automaton.

We illustrate the monitorability of the decentralized light switch and bulb specification in Example 25.

Example 25 (Decentralized monitorability of decentralized specifications.) We consider the decentralized coun-
terpart of the light switch and bulb presented in Example 24. The decentralized specification is shown in Figure 6.2b,
it introduces two monitorsAm0 andAm1 . The set of monitors is Mons def

= {Am0 ,Am1 }.

We compute the monitor dependency sets for each monitor. We have MDS(Am0 ) = dep(>) ∪ dep(s) ∪ dep(¬s) ∪
dep(s ∧ m1) ∪ dep(s ∧ ¬m1) = {Am1 }, and MDS(Am1 ) = dep(>) ∪ dep(`) ∪ dep(¬`) = ∅. Using the monitor
dependency sets, we construct the monitor dependency graph: MDG(Mons) = 〈Mons, {〈Am0 ,Am1〉}〉. The monitor
dependency graph has no cycles, as it contains only one edge indicating the dependency ofAm0 onAm1 .

We now verify the monitorability of each monitor separately using centralized monitorability. BothAm0 andAm1

are monitorable as the states q2 and q′1 or q′2 are reachable from all states. ∗

The requirement for no cycles is sufficient but not necessary, it is possible for certain cycles to exist while the
decentralized specification is still able to reach a final verdict. This is because boolean expressions may cancel
out the dependency, or dependencies can be on different timestamps (i.e., future transitions in the automaton). We
illustrate a monitorable decentralized specification in Figure 6.4 with two monitors that depend on each other.
Regardless of the choice of the root monitor, it is possible to still avoid the dependency if one operands of the
disjunction holds true. That is, if we observe 〈a,>〉 then it is no longer necessary to evaluate m0, and therefore no
real dependency exists.

6.2.2 Compatibility

A key advantage of decentralized specifications is the ability to associate monitors to components. This allows us
to associate the monitor network with the actual system architecture constraints.

The monitor network is a graph N = 〈Mons, E〉, where Mons is the set of monitors, and E representing the
communication edges between monitors. The monitor network is typically generated by a monitoring algorithm
during its setup phase (See Section 8.1). For example, N could be obtained using the construction MDG(Mons)
presented in Section 6.2.1. The system is represented as another graph S = 〈C, E′〉, where C is the set of components,
and E′ is the set of communication channels between components.
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Defining compatibility We now consider checking for compatibility. Compatibility denotes whether a monitoring
network can be actually deployed on the system. That is, it ensures that communication between monitors is
possible when those are deployed on the components. We first consider the reachability in both the system and
monitor graphs as the relations reachS : C → 2C, and reachM : Mons→ 2Mons, respectively. Second, we recall that
a monitor may depend on other monitors and also on observations local to a component. If a monitor depends on
local observations, then it provides us with constraints on where it should be placed. We identify those constraints
using the partial function cdep : Mons → C. We can now formally define compatibility. Compatibility is the
problem of deciding whether or not there exists a compatible assignment.

Definition 19 (Compatible assignment) A compatible assignment is a function compat : Mons → C that
assigns monitors to components while preserving the following properties:

1) ∀m1,m2 ∈ Mons : m2 ∈ reachM(m1) =⇒ compat(m2) ∈ reachS(compat(m1));
2) ∀m ∈ dom(cdep) : cdep(m) = compat(m).

The first condition ensures that reachability is preserved. That is, it ensures that if a monitor m1 communicates
with another monitor m2 (i.e. m2 ∈ reachM(m1)), then m2 must be placed on a component reachable from where
m1 is placed (i.e. compat(m2) ∈ reachS(compat(m1))). The second condition ensures that dependencies on local
observations are preserved. That is, if a monitor m depends on local observations from a component c ∈ C (i.e.
cdep(m) = c), then m must be placed on c (i.e. cdep(m) = compat(m)).

Computing compatibility We next consider the problem of finding a compatible assignment of monitors to
components. Algorithm 1 finds a compatible assignment for a given monitor network (〈Mons, E〉), system (〈C, E′〉),
and an initial assignment of monitors to components (cdep). The algorithm can be broken into three procedures:
procedure verifyCompatible verifies that a (partial) assignment of monitors to components is compatible, procedure
compatibleProc takes as input a set of monitors that need to be assigned and explores the search space (by iterating
over components), and finally, procedure compatible performs necessary pre-computation of reachability, verifies
that the constraint is first compatible, and starts the search.

We verify that an assignment of monitors to components (s : Mons → C) is compatible using algorithm
verifyCompatible (Lines 1-8). We consider each assigned monitor (m ∈ dom(s)). Then, we constrain the set
of reachable monitors from m to those which have been assigned a component (M′ = reachM(m) ∩ dom(s)). Using
M′, we construct a new set of components using s (i.e., C′ = {s(m′) ∈ C | m′ ∈ M′}). Set C′ represents the
components on which reachable monitors have been placed. Finally, we verify that the components in the set C′

are reachable from where we placed m (i.e., C′ ⊆ reachS(s(m))). If that is not the case, then the assignment is not
compatible (Line 4). To iterate over all the search space, that is, all possible assignments of monitors to components,
procedure compatibleProc (Lines 9-24) considers a set of monitors to assign (M), selects a monitor m ∈ M (Line
13), and iterates over all possible components, verifying that the assignment is compatible (Lines 14-22). If the
assignment is compatible, it iterates over the remainder of the monitors (i.e., M \ {m}), until it is empty (Line 16). If
the assignment is not compatible, it discards it and proceeds with another component. For each monitor we seek
to find at least one compatible assignment. One can see that the procedure eventually halts (as we exhaust all the
monitors to assign), and is affected exponentially based on the number of monitors to assign |Mons \ dom(cdep)|
(Line 31) with a branching factor determined by the possible values to assign (|C|, Line 14). It is important to note
that the number of monitors to assign is in practice particularly small. The number of monitors to assign includes
monitors that depend only on other monitors and not local observations from components, as the dependency on
local observations requires that a monitor be placed on a given component (that is, it will be in dom(cdep)).

Example 26 (Compatibility) Figure 6.5 presents a simple monitor network of 3 monitors, and a system graph of 4
components. We consider the following constraint: cdep = [m0 7→ c0,m2 7→ c2]. For compatibility, we must first
verify that cdep is indeed a compatible (partial) assignment, then consider placing m1 on any of the components
(i.e., both properties of Definition 19). Procedure compatible computes the set of reachable nodes for both the
monitor network and the system. They are presented in Figure 6.5c and Figure 6.5d, respectively. We then proceed
with line 28 to verify the constraint (cdep) using procedure verifyCompatible. We consider both m0 and m2. For
m0 (resp. m2) we generate the set (Line 3) {c0} (resp. {c2}), and verify that it is indeed a subset of reachS(c0) (resp.
reachS(c2)). This ensures that the constraint is compatible.
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m1m0 m2

(a) Monitor Network

c0 c1 c2 c3

(b) System

m0 {m0,m1}

m1 {m1}

m2 {m2,m1}

(c) reachM

c0 {c0, c1, c2, c3}

c1 {c1, c2, c3}

c2 {c2, c3}

c3 {c3}

(d) reachS

Figure 6.5: Example Compatibility

We then proceed to place m1 by calling compatibleProc(cdep, {m1}, {c0, c1, c2, c3}, reachM, reachS). While procedure
compatibleProc attempts all components, we consider for the example placing m1 on c1. On line 15, partial function
s′ is cdep †2 [m1 7→ c1]. We now call verifyCompatible to verify s′. We consider the assigned monitors m0, m1, and
m2. For m0 (resp. m1, m2) we generate the set {c0, c1} (resp. {c1}, {c2, c1}). We notice that for m0, {c0, c1} is indeed a
subset of reachS(c0). This means that m0 is able to communicate with m1. However, it is not the case for m2, the set
{c2, c1} is not a subset of reachS(c2) = {c2, c3}. The monitor m2 will not be able to communicate with m1 if m1 is
placed on c1. Therefore, assigning m1 to c1 is incompatible. Example of compatible assignments for m1 are c2 and
c3 as both of those components are reachable from c2.

Procedure compatibleProc continues by checking other components, and upon reaching c2 or c3 stops and returns
that there is at least one compatible assignment. Therefore, the monitor network (Figure 6.5a) is compatible with
the system (Figure 6.5b). ∗

6.3 Future Extensions

By introducing decentralized specifications, we separate the monitor topology from the monitoring algorithm. As
such, we address future directions that result from analyzing the topology of monitors, and thus, define properties
on such topologies, studying the monitoring by improving metrics, and applying decentralized specifications to the
problem of runtime enforcement [Fal10].

Optimized compatibility The first direction is to extend the notion of compatibility (Section 6.2.2) to not only
decide whether or not a specification is applicable to the architecture of the system, but also use the architecture to
optimize the placement. That is, one can generate a decentralized specification that balances computation to suit
the system architecture, or optimize specific algorithms for specific layouts of decentralized systems.

Verdict equivalence We can also compare decentralized specifications to ensure that two specifications emit
the same verdict for all possible traces, we elaborate on this property as verdict equivalence. We consider two
decentralized specificationsD andD′, constructed with two sets of monitors Mons and Mons′ (as per Section 6.1).
Let the root monitors be rt, and rt′, respectively. We recall the notation from Section 4.4, for a given monitor
label `, q`0 , ∆` and ver` indicate the initial state, transition relation and the verdict function for a given monitor
(automaton). One way to assess equivalence is to verify, that for all traces, both specifications yield similar
verdicts. It suffices to evaluate the trace on the transition function starting from the root monitor, and check
the verdict of the reached state. That is, two decentralized specifications D and D′ are verdict equivalent iff
∀t ∈ T : verrt(∆′∗rt (qrt0 , t, 1)) = verrt′(∆′∗rt′(qrt′0 , t, 1)). The verdict equivalence property establishes the basis for
comparing two specifications that eventually output the same verdicts for the same traces. For all possible traces
(∀t ∈ T ), we first evaluate the trace on the root monitor ofD (i.e., qf = ∆′∗rt (qrt0 , t)), and similarly we evaluate the
same trace on the root monitor of D′ (i.e., q′f = ∆′∗rt′(qrt′0 , t)). The states qf and q′f reached respectively for each
decentralized specificationD andD′ need to be labeled by the same verdict. While both specifications yield the
same verdict for a given trace, one could also extend this formulation to add bounds on delay.

Specification synthesis Another interesting problem to explore is that of specification synthesis. Specification
synthesis considers the problem of generating a decentralized specification, using various inputs. Typically, we
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Algorithm 1 Computing Compatibility

1: procedure verifyCompatible(s, reachM, reachS) . Verify assignment s
2: for each m ∈ dom(s) do . Consider only assigned monitors
3: if {s(m′) | m′ ∈ (reachM(m) ∩ dom(s))} * reachS(s(m)) then . Check reachability
4: return false
5: end if
6: end for
7: return true
8: end procedure
9: procedure compatibleProc(s, M, C , reachM, reachS) . Explore assignments

10: if M = ∅ then . No monitors left to assign
11: return 〈true, s〉 . Successfully assigned all monitors
12: end if
13: m← pick(M) . Pick a monitor from those left to assign
14: for each c ∈ C do . Explore assigning monitor to all possible components
15: s′ ← s †2 [m 7→ c] . Add assignment to the existing solution
16: if verifyCompatible(s′, reachM, reachS) then . Is it compatible?
17: 〈res, sol〉 ← compatibleProc(s′,M\{m},C, reachM, reachS) . Recurse on the rest
18: if res then . Found a compatible assignment for all the rest of M
19: return 〈res, sol〉
20: end if
21: end if
22: end for
23: return 〈false, []〉 . No compatible assignment found
24: end procedure
25: procedure compatible(〈Mons, E〉, 〈C, E′〉, cdep)
26: reachM ← computeReach(〈Mons, E〉) . Precompute reachability
27: reachS ← computeReach(〈C, E′〉)
28: if ¬verifyCompatible(cdep, reachM, reachS) then . Check constraint first
29: return 〈false, []〉 . Constraint not satisfied
30: end if
31: return compatibleProc(cdep,Mons \ dom(cdep),C, reachM, reachS) . Begin exploring
32: end procedure
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would expect another specification as reference and possibly the system architecture. For example, given a central-
ized specification, we generate a decentralized specification, by splitting the specification into subspecifications
and assigning the subspecifications to monitors. Generating a decentralized specification using a centralized one
as reference is used in some algorithms such as choreography [CF16a] (See Section 8.1). Starting from an LTL
formula, the formula is split into subformulas hosted on the various components of the system (this is detailed
further in Section 8.1). Given a decentralized specificationD, and a system graph 〈C, E′〉, the problem consists in
generating a specificationD′. The variants of the synthesis problem depend on the properties thatD′ must have,
we list (non-exhaustively) example properties:

1. D′ is monitorable (Section 6.2.1);

2. D′ is compatible with 〈C, E′〉 (Section 6.2.2);

3. D′ andD are verdict equivalent.

Synthesis problems could also be expanded to handle optimization techniques, with regards to specifications. The
specification determines the computation and communication needed by the monitors. As such, it is possible to
optimize, the size of automata, and references so as to fine-tune load and overhead for a given system architecture.

Conclusion

We have introduced decentralized specifications wherein a specification is provided for each monitor, the specifica-
tion is limited to what the monitor can observe and references other specifications. We presented their semantics,
and assessed two of their properties: monitorability and compatibility. Monitorability ensures that given a specifica-
tion, monitors are able to eventually emit a verdict, for all possible traces. Compatibility ensures that a monitor
topology can be deployed on a given system. Furthermore, we elaborated on the potential properties to explore in
the future. In the next chapter (Chapter 7), we present our tool that enables us to generate and monitor decentralized
specifications, and thus enable programers to implement decentralized specifications.
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Chapter abstract

In this chapter, we explain the design goals and architecture of THEMIS. THEMIS is a modular tool to facilitate
the design, development, and analysis of decentralized monitoring algorithms; developed using Java and AspectJ.
It consists of a library and command-line tools. THEMIS provides an API, data structures and measures for
decentralized monitoring. These building blocks can be reused or extended to modify existing algorithms, design
new more intricate algorithms, and elaborate new approaches to assess existing algorithms. THEMIS is designed
with the ability to interface with other tools while providing a uniform workflow for designing algorithms, metrics,
and running reproducible experiments.

LIG - December 2018 64 Antoine El-Hokayem



7.0:

Design

Instrument

Execute

Analyze

Design Design a monitoring algorithm

Instru-
ment

Create or re-use metrics.
Metrics are automatically in-

strumented using AspectJ

Execute
Use existing tools to execute

one or more monitoring run(s)

Analyze
Measures are stored in a

database for postmortem analysis

Figure 7.1: Using the THEMIS Framework

Introduction

Methodology THEMIS [EHF17c] is written in Java, uses AspectJ [KHH+01a] and is provided as a library with
a set of command-line tools. The primary goal of THEMIS is to design and analyze decentralized monitoring
algorithms. It is addressed mostly to researchers to experiment, tune, and compare decentralized monitoring
algorithms. To assess the behavior of an algorithm, we identify four phases (Figure 7.1): design, instrument,
execute, and analyze. The design phase consists in elaborating a monitoring algorithm. THEMIS implements the
generalized decentralized monitoring steps (setup and monitor, and provides an API to describe the operations.
Furthemore, THEMIS provides the data structures used throughout the thesis: Memory and EHE (Chapter 5). These
operations are used as building-blocks to assemble an algorithm. The instrument phase consists in the definition
of measures. Measures are instrumented into both THEMIS and the algorithms at load-time (bytecode loading
in the JVM). Measures are defined at a high-level as they operate on the API and data structures. The execute
phase consists in using the THEMIS set of tools to run simulations of the monitoring algorithms and record the
measures. The analyze phase consists in using the recorded measures to study, compare, and refine the algorithm.
An instrumented program can directly interact with THEMIS by providing a stream of events. In a future chapter
(Chapter 8), we illustrate the usage of THEMIS to assess three different decentralized monitoring algorithms on
synthetic and real traces.

Design Goals The main design goal of THEMIS is to provide a general API for decentralized monitoring. That
is, to provide an environment that accounts for changes at all levels: traces, specification, monitoring logic. By
doing so, we allow for new approaches implementing the API to benefit from all existing metrics and analysis.
Additionally, this allows metrics to be assessed at the abstract level, for example the metric messages sent could
be simply reused if new algorithms exchange messages. Furthermore, to accomplish this goal, we also aimed
that our measures be stored per run in a database. This allows for analysis and benchmarking to be reduced to
querying and analysis of the database. This effectively separates the analysis from the monitoring. Third-party
tools can be used to explore and analyze the data. Another important design goal is reproducibility. We wanted to
minimize the effort of re-running older simulations or comparing new approaches with older ones. This is reflected
with the Experiment command-line tool which, in short, allows users to bundle all traces, specifications and
algorithms. Since metrics are designed to work at the API level and data structures, any algorithm using the same
building blocks can be measured similarly without added effort. This allows for new algorithms or variants of older
algorithms to be easily compared against older ones with the same data and measures. By accomplishing these two
primary goals, we minimize the overhead needed to design new algorithms and study them, and let researchers focus
on the algorithm and the monitoring itself. Finally, THEMIS is designed to introduce decentralized specifications
(Chapter 6). While some approaches [BKZ15, CF16a] do in effect introduce a decentralized specification, they
primarily focus on presenting one global formula of the system from which they derive multiple specifications.
THEMIS encompasses [CF16a] and in addition supports any decentralized specification.
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Chapter organization. We begin by introducing the general client-server architecture of THEMIS in Section 7.1.
Then, elaborate on the modules needed to write specifications (Section 7.2) and components that read traces
(Section 7.3). We elaborate on the usage of data structures (Section 7.4) to write decentralized monitoring
algorithms (Section 7.5). To assess decentralized monitoring algorithms, we illustrate the design and integration of
measures (Section 7.6). In Section 7.7, we discuss THEMIS nodes which consitute the servers on which algorithms
are executed. And finally, in Section 7.8, we elaborate on clients that interact with nodes to deploy components and
monitors.

Key contributions. The key contributions of this chapter can be summarized as follows:

1. We present the THEMIS framework with an API and data structure that implement the ideas in this thesis;

2. The modular design allows for THEMIS to interact with other programs whether for monitor synthesis, LTL and
Boolean simplification, visualization, and trace and specification generation;

3. THEMIS presents a uniform workflow for designing, assessing, recording simulations, or even directly running
decentralized monitoring algorithms;

4. THEMIS allows for reproducible experiments by allowing all algorithms, metrics, traces and specifications to be
packaged and re-run with different algorithms or metrics; and

5. Metrics are instrumented using AspectJ, and stored in a database for postmortem analysis by any third party
software.

7.1 Architecture Overview

We begin by introducing an overview of the main modules that constitute the THEMIS framework. Then, we
elaborate on each module and its design decisions and considerations. As mentioned at the start of the chapter,
the primary goal of THEMIS is to facilitate the design and analysis of decentralized monitoring algorithms, while
introducing decentralized specifications. To accomplish this, the monitoring is abstracted using a general API and
data structures. The general design of THEMIS is a client-server design.

Server. The server is referred to as a THEMIS node. One or more nodes can be deployed on a given platform.
A node receives information (via commands) to deploy components and monitors on the current platform. Each
component contains one or multiple peripheries, it represents a logical component to monitor. A periphery is an
input stream to the component, that generates observations. Peripheries follow a stream interface, and wait on
a call to generate the next observations. Monitors are attached to components, and receive the observations that
components receive. Thus, a node follows a publish subscribe model. Components can be seen as topics, where a
monitor registers to a topic. Peripheries produce a stream of observations for components. Peripheries can include
reading traces from files, over network sockets, or can be generated in a stream. Nodes can communicate with other
nodes in a distributed manner, through sockets. The implementation of a node defines the high level assumptions of
monitoring, we elaborate on node implementations in Section 7.7.

Client. A THEMIS client is charged with processing a specification, and based on the algorithm, generate and
deploy monitors on one or more nodes. As such, one of the client responsibilities is to invoke the setup phase
of a decentralized monitoring algorithm. The client controls deployed nodes, and provides them with necessary
information to perform monitoring, and a callback to allow nodes to notify clients of relevant events such as the
end of the monitoring. Several provided command-line tools act as clients, performing one or several monitoring
runs. We elaborate on THEMIS command-line tools in Section 7.8.

Modules. The architecture highlighting the main modules is presented in Figure 7.2, the remainder of this chapter
is used to elaborate on the various modules. We illustrate how one can write specifications, decentralized monitoring
algorithms, measures, and use the provided data structures and backend.
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indicate instrumentation (during Java class loading).

7.2 Writing Decentralized Specifications

THEMIS is designed to manage decentralized specifications, as such the expected input specification is by default
a collection of specifications. We elaborate on how to load specifications and interface with other tools for the
purpose of synthesis.

7.2.1 Loading Specifications

Specifications are loaded and passed to a monitoring algorithm as a Map, where each specification is assigned
a unique key. Specifications are loaded from an xml file using SpecLoader by calling loadSpec(File). Each
specification must provide two attributes: an id and a class name. The id is a string name for the specification, it
is used by the algorithm during the setup phase. The class name is a string representing a full class name of the
specification class.

Example 27 (Writing a light-switch specification) Listing 2 shows an example of a decentralized specification
written in THEMIS. It is used to express the property that ensures a light bulb is turned on after a switch is pressed,
until the switch is no longer pressed. This specification is used when monitoring the smart home in Chapter 9 and
detailed in Example 36. We see it consists of 3 subspecifications, that are written in LTL. The first two specifications
are used to check when a light or switch is turned on. They are given the ids light and switch, respectively. The
third specification (with id checklight) references the other two, to ensure the property described. The @ sign is
used to indicate references to other specifications. These specifications are converted to automata during the setup
phase of an algorithm, and a decentralized specification is formed (see Section 7.5.2). Let us consider specification
switch1 to illustrate how THEMIS loads it. In this case, an object of class SpecLTL is instantiated, on which method
void setLTL(String) is called with the parameter “office_switch”. ∗
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Listing 2 Decentralized specification for a light-switch.
<specifications>
<specification id="switch1" class="uga.corse.themis.monitoring.specifications.SpecLTL">

<setLTL><![CDATA[(office_switch)]]></setLTL>
</specification>
<specification id="light1" class="uga.corse.themis.monitoring.specifications.SpecLTL">

<setLTL><![CDATA[(office_light)]]></setLTL>
</specification>
<specification id="checklight" class="uga.corse.themis.monitoring.specifications.SpecLTL">

<setLTL><![CDATA[@switch1 -> X(@light1 U !@switch1))]]></setLTL>
</specification>

</specifications>

Listing 3 Template for light-switch.
1 <specifications>
2 <template id="lightswitch">
3 <arg>room</arg>
4 <arg>roomid</arg>
5 <specification id="switch%roomid%" class="uga.corse.themis.monitoring.specifications.SpecLTL">
6 <setLTL><![CDATA[(%room%_switch)]]></setLTL>
7 </specification>
8 ...
9 </template>

10 <instanciate template="lightswitch">
11 <room>office</room>
12 <roomid>1</roomid>
13 </instanciate>
14 ...
15 </specifications>

7.2.2 Templates

Writing complex specifications often involves writing similar specifications multiple times. For example, consider
instantiating the checklight specification for multiple rooms. THEMIS makes it possible to define templates which
are pre-processed into specifications. Templates define arguments, which are then bound when instantiated. The
pre-processing involves replacing a variable reference with the passed argument. The tag template defines a
template, it is given an identifier id. It is then followed by multiple arg tags used to specify the name of the
arguments for the template. A template may contain one or more specifications. For each specifications all text (id,
class, arguments to method calls), detects arguments and replaces them. A variable reference is surrounded by the
% sign. The template is instanitated with the tag instanciate with an attribute template indicating the template id to
instanciate. The instantiation tag then contains a tag for each argument providing its value.

Example 28 (Specification template) Listing 3 shows an example of using templates in the specifications file. It
defines the template lightswitch (lines 2-9) which takes two arguments: room and roomid, which determine the
name of the room and its index. The template defines the three specifications explained in Example 27. For
simplicity, we show only one, and focus on the id of the specification “switch%roomid%” (line 5). Lines 10-13
instantiate the template with the value of 1 for argument roomid. When the specification is loaded, this will append
the specification in the template with an id of “switch1”. ∗

7.2.3 Integration with Monitor Synthesis Tools

We recall that the decentralized specification semantics defined in Section 6.1 relies on automata for monitoring. In
general, we allow specifications to be arbitrarily defined and passed to the setup phase of an algorithm to manage
them. As such, it is possible to even write custom specifications and algorithms that do not rely on automata (e.g.
rewrite-based). However, for the purpose of the thesis we focus on automata-based specifications. For convenience,
the THEMIS framework provides a conversion utility, used to convert arbitrary specifications into automata. Class
Convert is designed to assist developers in converting specifications by automatically calling monitor synthesis
tools (such as ltl2mon [BLS11], and LamaConv [Ins]). It also provides additional functionality for completing
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Listing 4 Specification expressed in SALT stating that the entrance door must alternate between open and closed
at least twice. The event %empty% serves as a symbol to be replaced by an arbitrary event to allow for partial
observations (by extending the alphabet).

1 <specifications>
2 <specification id="showup" class="uga.corse.themis.smarthome.specs.SpecRTLConv">
3 <arg>-salt</arg>
4 <arg>-ltl</arg>
5 <arg>-moore</arg>
6 <arg>-min</arg>
7 <line>event entrance_door,%empty%</line>
8 <line>assert occurring[>=2] entrance_door</line>
9 </specification>

10 </specifications>

Listing 5 Using LamaConv to convert SALT specifications.
1 Convert.Converter rtlconv = new Convert.Converter() {
2 @Override
3 public SpecAutomata toAutomata(Specification spec) {
4 SpecRTLConv rtlspec = (SpecRTLConv) spec;
5 try {
6 Automata aut = RTLConv.RTLConv(rtlspec.getInput(), rtlspec.getArgs());
7 Convert.completeEvents(aut);
8 return new SpecAutomata(aut);
9 }catch(Exception e) {

10 log.fatal(e.getLocalizedMessage(), e);
11 }
12 return null;
13 }
14 };
15 Convert.registerConvert("uga.corse.themis.smarthome.specs.SpecRTLConv", rtlconv);

automata, and simplify the automata transitions (to normalize them, see Remark 1). To convert an arbitrary
Specification to a SpecAutomata, class Convert provides the method SpecAutomata makeAutomataSpec(Specification).
By default THEMIS provides a converter for LTL that uses l2ltmon. A converter is a simple interface that defines
the method SpecAutomata toAutomata(Specification spec), which generates a SpecAutomata from an arbitrary
Specification. It is possible to customize the conversion by providing a custom converter to Convert using the
method void registerConvert(String classname, Converter conv).

Example 29 (Synthesis of SALT specifications) We illustrate a specification written in Smart Assertion Language
for Temporal Logic (SALT) [BL11], an imperative-like temporal specification language suited for software
engineers. It is possible to synthesize monitors written in SALT using LamaConv [Ins]. Listing 4 displays the
custom SpecRTLConv specification written to call LamaConv with a SALT specification. Lines 3-6 pass the
necessary command-line arguments for LamaConv to indicate that the specification is a SALT specification (as
LamaConv supports multiple specification formalisms). Lines 7-8 describe the SALT specification. Line 7 defines
the alphabet of events, the event entrance_door indicates the opening of the door, while the special event %empty%
is used to expand the alphabet, as to account for partial observations, since SALT is event based and we need
to specify atomic propositions. Line 8 defines the assertion that the event entrance_door must alternate at least
twice (that is hold > then ⊥ then > again). Listing 5 shows the code needed to implement the converter. The class
RTLConv is used to abstract the call to the LamaConv process, and parse its output. The converter calls LamaConv
(line 6), then completes the provided automaton (line 7). Line 15 shows the code necessary to register the converter
with the class SpecRTLConv. ∗

Now that we defined specifications, we present in the next section (Section 7.3) the remaining input to a decentralized
monitoring algorithm: traces and observations.
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7.3 Managing Components and Traces

In this section, we discuss the provided mechanisms to manage decentralized traces (Definition 9), the main input
to a monitoring algorithm. We recall from Section 1.3, that our view of a system is a set of components. One or
more monitors can be attached to a component. The component provides one or more observations to the attached
monitors. In THEMIS a component consists in a logical unit that groups multiple observation sequences (called
peripheries). We discuss the mechanism to define a periphery in Section 7.3.1. Then, we elaborate on grouping
peripheries to form a component, and discuss the deployment of components in Section 7.3.2.

7.3.1 Peripheries

A periphery is a two-way link between the THEMIS framework and an observed entity. Interface Periphery provides
the main form of input for the THEMIS framework. It consists of three methods: next, notify and stop. Method
Memory<Atom> next() returns a memory containing all observations observed since the last call to next. Method
void notify(Control) allows the THEMIS framework to send control signals to the periphery. This is designed for
enabling interaction with the periphery, in the case the periphery is a process or thread, or remote system. Finally,
void stop() signals that observations are no longer necessary. This is used to notify peripheries of the end of the
monitoring. Upon initialization by the THEMIS framework, a periphery is typically passed a configuration string in
its constructor to set it up.

THEMIS provides various implementations for a periphery. The shared main format for observations consist of
a string representing an atomic proposition, followed by a column, followed by a t or f to indicate respectively
>, and ⊥. Events are defined as comma-separated observations (see Definition 5 for details). Typically, a call to
method next returns the next available event. For example the event: a:t,b:f consists of two observations a and b
associated with > and ⊥ respectively. The provided implementations are as follows:

TraceString A periphery that reads a sequence of events delimited by the character “>”. This is rarely used, but
provided for debugging purposes.

TraceFile A periphery that reads a sequence of events from a file, each line constitutes an event.

TraceNetPlain A periphery that reads a sequence of events from a network socket, allowing events to be streamed
over a network. Events are delimited by lines. This makes it easy to allow input streams to come from
networked processed or systems, the plain format allows utilities like cat or telnet to easily transmit
remote log files to THEMIS.

Example 30 (TraceFile periphery) Listing 6 shows the implementation of TraceFile. We notice that the con-
structor (Line 4) configuration string consists of the file path to open. Method next (Lines 8-21) provides the
observations by reading the file. It reads the next line in the file (Line 12), and parses the event (Line 15-19), adding
to the memory the atomic propositions encountered (Line 18). Method stop (Lines 22-26) closes the files, as the
monitoring has completed. ∗

A component is associated with multiple peripheries, and it controls the process of reading observations provided
by each periphery. We next elaborate on components in Section 7.3.2.

7.3.2 Managing Components

Building Components. A component constitute a logical unit which groups and communicates with one or
more peripheries. A component is identified by a unique identifier (its name), and can be assigned one or more
peripheries. The component is initialized and invoked by a THEMIS node, to return observations, that will be fed to
monitors. The abstract class Component provides the main functionality for managing the names of components.
The necessary interface for managing, fetching observations is provided in Listing 7. The provided implementation
for a component is AsyncObservations, method observe calls method next of each periphery asynchronously, and
awaits the event. Once all peripheries have returned their events, it merges them into one memory and returns them.
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Listing 6 The TraceFile periphery implementation.
1 public class TraceFile implements Periphery {
2 BufferedReader trace;
3 FileReader fr;
4 public TraceFile(String fname) throws FileNotFoundException {
5 fr = new FileReader(new File(fname));
6 trace = new BufferedReader(fr);
7 }
8 public Memory<Atom> next() throws IOException {
9 Memory<Atom> mem = new MemoryAtoms();

10 String line = null;
11 //Read next event
12 line = trace.readLine();
13 if (line == null || line.isEmpty()) return mem;
14 //Parse Event
15 String[] aps = line.split(",");
16 for (String ap : aps) {
17 String[] obs = ap.split(":");
18 mem.add(new AtomString(obs[0]), obs[1].equals("t"));
19 }
20 return mem;
21 }
22 public void stop() {
23 try {
24 trace.close(); fr.close();
25 } catch (IOException e) {}
26 }
27 }

Listing 7 Abstract Component methods.
1 public abstract void addInput(Periphery per);
2 public abstract Collection<? extends Periphery> getInput();
3 public abstract Memory<Atom> observe() throws Exception;

Configuration and deployment. It is important to note that components are deployed on the THEMIS node as
opposed to being instantiated on the client. This means that components execute on the system where the node is
deployed. As such, it is important to account for the configuration string to be correct, in the presence of paths.
Clients typically only define the necessary information needed for the node to create components.

Trace convention. The default tools bundled with THEMIS illustrated in Section 7.8 rely on a simple trace
convention to load components. While the THEMIS framework allows clients to manage components as they
please, we present a simple trace format used by both the Run and Experiment tool to avoid defining components,
peripheries and traces for executing algorithms. The trace format defines a single input folder, where multiple files
are placed. Components are given letter names starting from the letter “a”, and traces are given an id. For example,
for the trace with id 0, with 3 components, the input folder contains 3 files named 0-a.trace, 0-b.trace, and
0-c.trace. Each component is then associated with a periphery of type TraceFile.

With the input to a decentralized monitoring algorithm defined, we shift the focus to the data structures useful for
writing decentralized monitoring algorithms. We present them in Section 7.4.

7.4 Data Structures Implementations

THEMIS provides a modular implementation of the two data structures presented in this thesis: Memory (Definition 6)
and EHE (Chapter 5). These data structures are used as building blocks to write and assess decentralized algorithms.
Both data structures implement Cloneable and Serializable, as are to be communicated through nodes.
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Listing 8 Memory interface.
1 void add(Atom a, boolean observed);
2 Verdict get(Atom a);
3 boolean isEmpty();
4 void merge(Memory<K> m);
5 void clear();

7.4.1 Memory

The memory data structure is at the core of any decentralized monitoring algorithm, as it is used to store observations,
and the result of other monitors. The generic Memory interface is parameterized by the type of its content but
must always be able to process atoms. This allows any memory implementation to process atoms, and receive
observations as atoms, while keeping its internal storage type abstracted.

Atoms. At the core of the memory are atoms, designed internally by interface Atom. The main responsibility of
an implementation of Atom is to provide comparison with other atoms, as it is important to establish a total order
between atoms for eventual consistency (Section 4.2). Another important method to implement is observe which is
supposed to return a unique string representing the atom, as this is used to encode the atom when transmitted to
simplifiers. THEMIS currently provides 4 implementations of Atom:

AtomString A string representing an atomic proposition.

AtomObligation A pair of timestamp and an AtomString, associating a timestamp for an atomic proposition.

AtomNegation An atom indicating the negation of another included atom (string or obligation).

AtomEmpty A special atom indicating the absence of any atomic proposition.

Operations. The main operations performed on a memory are the addition of atoms, merging of another memory,
and checking if an atom is included in the memory. They are shown in in Listing 8. When adding atoms to the
memory using method add, it is necessary to associate it with whether or not it has been observed. The memory is
responsible for managing the internal representation by either negating it or using its own internal representation.

Remark 2 (Memory of events) Our implementation allows memory to be also used to store events as in
[CF16a], atoms implement a specific method group, which returns a key for each atomic proposition. Atomic
propositions sharing the same key are grouped to form an event. Event matching follows the semantics of
subset matching, with special consideration for negation and empty events. ∗

Memory implementations. The default memory implementation provided is MemoryAtoms which follows the
structure and semantics used in this thesis. An additional memory implementation MemoryRO is a wrapper that
contains an arbitrary Memory inside of it. It adds the read-only constraint, such that it is not possible to modify the
enclosed memory through it. MemoryRO is useful when managing collected observations or resulting observations,
due to the multithreaded nature of THEMIS, ensuring no concurrent access or change to underlying observations.
When dealing with long traces, memories tend to get big, as such it is important to perform garbage collection. The
last implementation MemoryIndexed stores only AtomObligation, and is used to group all obligations by timestamp,
such that it is easy to remove all observations past a certain timestamp.

7.4.2 Execution History Encoding

The EHE data structure is implemented as Representation, it supports all operations used in Chapter 5 with the
addition of other useful operations. An EHE is instantiated with an automaton (for which it encodes the execution),
and a simplifier, which is used for performing boolean simplification of its entries. In addition to containing
the entries encoding the execution as explained in Definition 13, the EHE implementation keeps track of (1) the
minimal timestamp (start), (2) the maximal timestamp (end), (3) the last timestamp for which an expression
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simplified to > for a given state (lastResolved), and (4) similar to (3) but the state was labeled with a final verdict
(lastVerdict). The extra information is useful for developers designing algorithms, as it allows them to optimize
the usage of the EHE.

Initializing and expanding. The initial state of an EHE is by default assigned timestamp 0, and is set to the initial
state of the associated automaton. However, it may become necessary to change the timestamp, when for example
having to run the same monitor from a different timestamp. Method void addInitRule(int) takes a timestamp, and
adds the initial state of the automaton but at the specified timestamp. However, this does not reset the state of
the EHE. For resetting the EHE state, it is possible to use void reset(int) which performs the similar function but
also clears the EHE entries and its state. Now that we can initialize the EHE, method void tick(), performs a mov
by 1 timestamp (see Section 5.1.1) from the end. To merge EHEs, the method void mergeForward(Representation)

merges all entries that start from at least the timestamp start.

Resolving. Method boolean update(Memory, int) performs the main logic of the EHE data structure, it simplifies
and rewrites each expression of the entries using a memory, starting from a given timestamp (by default it uses
lastResolved + 1), upon resolving a state it stops and returns >, if no state is resolved it returns ⊥. For
performance improvement, method update stores the verdict associated with the resolved state to be queried later.
As such, when it returns >, it is possible to use method VerdictTimed scanVerdict() to return the last found verdict.
Class VerdictTimed contains the verdict and its associated timestamp.

Garbage collection. It is possible to remove all entries inferior to a given timestamp using method int drop(int)

which takes a timestamp and removes all entries with an earlier timestamp. The method returns the number
of timestamps removed. For easier management, method int dropResolved() removes all entries before the
lastResolved timestamp, which are essentially no longer needed.

Improving performance. The adopted EHE implementation relies on the simplifier as it mostly performs sim-
plifications. By changing the simplifier it is possible to obtain better performance. This is because EHE is built
iteratively, by starting with smaller expressions, the resulting expressions for the next timestamp are smaller. By
doing so, we keep the size from growing too large. For our implementation we rely on ltlfilt from SPOT [DL13],
which also simplifies LTL expressions. Let us consider two profiles: Quick and Aggressive. The profile Quick
uses ltlfilt with default parameters for simplification. Furthermore, it calls the simplifier for every expression
in the EHE. We note that this does not perform the most thorough boolean simplification. The profile Aggressive
utilizes the flag − − boolean − to − isop which rewrites boolean formulas as irredundant sum of products, as
such ensuring a more aggressive simplification strategy. This strategy is more costly in terms of memory and
computation. Therefore, we make calls to the simplifier only for complex simplifications, and implement the basic
Boolean simplification while traversing the expression to replace atomic propositions by looking up the memory
(in the operation rw). Figure 7.3 shows the data transferred for the two variants of the migration algorithms, which
is associated with the size of the EHE. The x-axis indicates the algorithm’s variant and the number of components,
where Migr (resp. Migrr) stands for earliest obligation (resp. round-robin) variant. The y-axis is presented in
logarithmic scale, it illustrates the size of the EHE. The size is presented as an abstract metric by counting the size
necessary to encode expressions. We notice that the algorithms can be compared similarly for any given profile.
However, for the more aggressive simplification, we observe a significant drop in the size of the EHE.

Now that we defined the necessary data structures and input for monitoring, we can proceed in the next section
(Section 7.5) to detail the process of writing a decentralized monitoring algorithm.

7.5 Writing Decentralized Monitoring Algorithms

Designing a decentralized monitoring algorithm consists of two phases. As such, when implementing a decentralized
monitoring algorithm, THEMIS provides two classes to manage the phases: Bootstrap and Monitor. They
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Figure 7.3: Size of EHE for different algorithms and components.

correspond respectively to the two phases: setup and monitor. Section 7.5.1 illustrates writing a Bootstrap,
Section 7.5.2 details the structure of Monitor.

7.5.1 Setup Phase: Writing the Boostrap

The Bootstrap interface presents the minimal necessary implementation for a monitoring algorithm to perform the
setup phase. It consists of a single method implementation: Set<? extends Monitor> getMonitors(Topology). The
method is passed a Topology object containing information about the system graph. It displays the number of
components and the connections between components (similar to that for compatibility in Section 6.2.2). The
method must return a set of objects implementing Monitor, this set contains all monitors to deploy. We elaborate
on the Monitor interface in the next section (Section 7.5.2).

While interface Bootstrap presents the minimal necessary requirements to be fullfilled, it does not pass the
specification to the algorithm, and this needs to be done manually. The interface StandardMonitoring (which
extends Bootstrap) adds the additional requirement of managing the specification. It adds the following method:
void setSpecification(Map<String, Specification>), which is tasked with initializing the specifications. As such,
all algorithms that are implemented in this thesis, and all tools, will focus on StandardMonitoring. We illustrate
the setup phase of algorithm Orch in Example 31.

Example 31 (Orchestration Setup) The orchestration algorithm (Orch) consists in setting up a main monitor
which will be in charge of monitoring the entire specification. However since that monitor cannot access all
observations on all components, orchestration introduces one monitor per component to forward the observations
to the main monitor. Therefore, for our setup, we consider the case of a main monitor (labeled m0) placed on
component c0 which monitors the specification and |C| − 1 forwarding monitors that only send observations to m0
(labeled mk with k ∈ [1, |C| − 1]).
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Listing 9 Setup phase for orchestration.
1 public class Orchestration implements StandardMonitoring {
2 protected Automata aut;
3 public void setSpecification(Map<String, Specification> decentSpec) {
4 Specification main = decentSpec.get("root");
5 if(main == null) throw new IllegalArgumentException("No Root Spec found");
6 setMainSpec(Convert.makeAutomataSpec(main));
7 }
8 public void setMainSpec(Specification spec) {
9 if(!(spec instanceof SpecAutomata))

10 throw new IllegalArgumentException("Specification must be an automaton!");
11 aut = ((SpecAutomata) spec).getAut();
12 if(aut == null) throw new IllegalArgumentException("Automaton is not valid");
13 aut = Convert.simplifyTransitions(aut);
14 }
15 public Set<? extends Monitor> getMonitors(Topology topology) {
16 int c = topology.getCountComponents();
17 Set<Monitor> mons = new HashSet<>(c+1);
18 if(c <= 0) return mons;
19 if(aut == null) throw new IllegalStateException("No Automaton provided");
20 Set<String> comps = topology.getGraph().keySet();
21 Iterator<String> iter = comps.iterator();
22 int i = 0;
23 MonOrchMain main = new MonOrchMain(i);
24 main.setSpec(aut);
25 main.setComponentKey(iter.next());
26 mons.add(main);
27 for(i = 1; i < c; i++) {
28 MonOrchSlave slave = new MonOrchSlave(i);
29 slave.setComponentKey(iter.next());
30 mons.add(slave);
31 }
32 return mons;
33 }
34 }

To implement the setup phase of Orch, we create a class Orchestration that implements StandardMonitoring.
The class is shown in Listing 9. Then, we begin by implementing the setSpecification method (lines 3-7). Since
Orch performs decentralized monitoring of a centralized specification, we use as convention the key root to denote
the centralized specification (Line 4). Then, we convert the specification to an automata-based specification (Line
6) as explained in Section 7.2.3, and pass it to the setMainSpec method, which extracts the automaton from the
specification and simplifies the expressions on its transitions. Now that the main automaton is generated, we
implement the call to getMonitors, which deploys monitors (Lines 15-33). To do so, we first get the number of
components in the system using the Topology class (Line 16). If there is more than one component, we retrieve
the iterator on components (Line 20). Then, we instantiate the main Orch monitor with id 0 (Line 23). The main
monitor is passed the automaton (Line 24), and is deployed on the first available component (Line 25). For each
remaining component, we create a forwarding monitor (Line 28), and associate it with the component (Line 29).∗

7.5.2 Monitor Phase: Writing Monitors

In Section 7.5.1 we explained how decentralized monitoring algorithms using a specification and a topology are
able to perform their setup phase and deploy monitors. We now elaborate on writing monitors with the help of the
data structures presented in Section 7.4. Listing 10 presents the most relevant methods of the API. We classify the
methods into 3 groups: deployment, communication, and monitoring.

Deployment. Monitors are first instantiated in a client and configured using the Bootstrap implementation of a
given algorithm. Their data is transferred to the node on which they will perform monitoring. Therefore, monitors
implement Serializable as they are transferred as objects to a THEMIS node. Upon receipt on a node, a monitor is
capable to initialize its state using method setup. At the end of monitoring, the method cleanup is called so that
monitor can perform its necessary cleanup code. A special method reset is used to “soft reset” the monitor, that is,
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Listing 10 Relevant methods for interface Monitor.
1 void setup();
2 void cleanup();
3 void reset() throws Exception;
4

5 void setNetwork(Network net);
6 void send(int to, Message msg);
7 Message recv(boolean consume);
8

9 void monitor(MemoryRO<Atom> observations, MonitorCallback callback) throws Exception;
10 void communicate();
11 Verdict getCurrentVerdict();

it informs the monitor that it only needs to reset to its initial state. Method reset is used to indicate to the monitor
that the specification is still the same. This method is useful for monitoring multiple traces on the same monitor, or
recovering in a given node, when necessary.

Communication. Monitors communicate with each others using a Network object provided with method
setNetwork. The communication is abstracted for the monitor, as such it is only able to send a message to another
monitor knowing its id (using method send), or read any messages sent to it stored in a queue (using method
recv). Method recv by default consumes the message received, it can be passed a boolean (⊥) to keep the message.
THEMIS provides the class GeneralMonitor that implements the basic communication functionality. As such, it
suffices to extend it and focus on implementing the monitoring logic.

Monitoring. The monitor main logic is contained in method monitor. An additional method communicate is
provided when it is necessary to separate the monitoring from communication, for example, when simulating
certain models of computation (such as the Bulk Synchronous Parallel model [Val90]). Method monitor receives a
read-only memory containing observations, and a handler MonitorCallback for interacting with the node. The
handler contains two methods notifyVerdict and notifyAbort. Monitors can use those methods to respectively
notify the node when reaching a verdict, or request that monitoring be aborted. Method notifyVerdict takes as
parameter the monitor id of the monitor that reached the verdict, the verdict reached, and additional data to send
to the node (anything that extends Object). Method ntofiyAbort takes as parameter the monitor id and an enum
representing the type of abort: whether to abort all monitoring on the given node, or to issue a global abort on
all participating nodes. Finally, method getCurrentVerdict returns the current verdict of the monitor, this includes
non-final verdicts.

Example 32 (Main monitor for Orch) Following the setup phase of Orch presented in Example 31, we now illus-
trate the main monitoring logic of the main (central) monitor. Listing 11 shows the partial source of MonOrchMain
implementing the methods mentioned in this section. Lines 1-6 show method setup, which is called when the
monitor is deployed on the node. We see here that it begins by creating an EHE (Line 2), a memory (Line 3),
initiates the simplifier process (Line4), and initializes the current verdict to ?. For method reset, we simply clear
the memory (Line 8) and re-initialize the EHE (Line 9). For method cleanup, we simply stop the simplifier process
(Line 11). The main monitoring logic is provided by implementing method monitor (Lines 12-36). First, we merge
the observations local to the component we attached the monitor (Line 13). Second, we process all incoming
messages (Lines 16-19), and merge all received memories (Line 18). Third, we increment the EHE state (Line 24),
rewrite and simply it with the existing memory (Line 25), and get the last resolved verdict (Line 26). Details on
these operations is presented in Section 7.4.2. For the scope of our experimentation, we had a delay of 1 timestamp,
so it was safe to clear the memory (Line 27). However, for an arbitrary fixed delay, it is best to use a memory of
type MemoryIndexed and manage the garbage collection. Fourth, we verify if the obtained verdict is final. If the
verdict is not final, we continue monitoring. Otherwise, we use the MonitorCallback to notify the node that we
have reached a final verdict (Line 30). Then since we know this is the main monitor, we initiate an abort (Line 31).∗

After elaborating on the sturcture and design of decentralized monitoring algorithms, we discuss in (Section 7.6)
writing measures to assess their performance.
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Listing 11 Main monitor of Orch.
1 public void setup() {
2 autRep = new Representation(spec);
3 memory = new MemoryAtoms();
4 simplifier = SimplifierFactory.spawnDefault();
5 verdict = Verdict.NA;
6 }
7 public void reset() {
8 memory.clear();
9 autRep = new Representation(spec, simplifier);

10 }
11 public void cleanup() { simplifier.stop(); }
12 public void monitor(MemoryRO<Atom> observations, MonitorCallback callback) throws Exception {
13 memory.merge(observations);
14 Message m;
15 //Handle incoming messages
16 while ((m = recv()) != null) {
17 MemoryPacket packet = (MemoryPacket) m;
18 memory.merge((Memory<Atom>) packet.mem);
19 }
20 //Nothing observed: Either first timestamp or end of trace
21 if (memory.isEmpty())
22 return;
23 else
24 autRep.tick();
25 autRep.update(memory, -1);
26 VerdictTimed v = autRep.scanVerdict();
27 memory.clear(); //Since we know the maximum delay is 1 we can remove all elements
28 if (v.isFinal()) {
29 this.verdict = v.getVerdict();
30 callback.notifyVerdict(id, v.getVerdict(), new VerdictTimed(v.getVerdict(), v.getTimestamp()));
31 callback.requestAbort(id, MonitorCallback.ABORT_TYPE.ABORT_RUN);
32 return;
33 }
34 autRep.dropResolved();
35 return ;
36 }

7.6 Writing Measures

THEMIS uses AspectJ [KHH+01a] (introduced in Section 10.3) to record measures of a metric for a given algorithm.
Writing a measure for an algorithm consists in using AspectJ’s aspects to intercept the points in the execution. In
this section, we illustrate the support provided by THEMIS to simplify writing (Section 7.6.1), storing, and analyzing
measures (Section 7.6.2).

7.6.1 Measurements API

Measures in THEMIS are implemented as aspects, written in AspectJ. The details of AspectJ instrumentation are
provided in Section 2.2. Since THEMIS provides interfaces for data structures (Section 7.4) and the monitoring
(Section 7.5), designing measures is highly modular, as measures are instrumented for any class that implements
the interface. For example, measures related to communication are instrumented on any class implementing the
Network interface. Additionally, THEMIS provides classes to simplify writing measures for users unfamiliar with
AspectJ.

Aspect-oriented programming. We recall the basic principles. A joinpoint is a well-defined point in program
execution where additional code is to be injected. A pointcut is a syntactic element which refers to a set of joinpoints
and execution context information. Basic pointcuts can be composed and identified (referred to as named pointcuts)
so as to increase re-usability. Pointcuts can refer to compile-time information such as function signature, a variable
name, and a module that needs to be matched. Additionally, pointcuts are able to specify dynamic execution
constraints, such as a function being invoked while inside another function (e.g. cflow pointcut in AspectJ). An
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Listing 12 Named pointcuts for aspect Commons, and their usage.
1 //Starting Monitoring, call happens before exec
2 pointcut monitoringStartCall(Map<String, Serializable> tags)
3 pointcut monitoringStartExec(Map<String, Serializable> tags)
4 //Stopping Monitoring, Exec happens before call
5 pointcut monitoringStopExec()
6 pointcut monitoringStopCall()
7 //During monitoring
8 pointcut inMonitor(Monitor mon) //Capture the monitor object
9 pointcut monitorStep(Monitor mon, MemoryRO<Atom> obs) //Call to Monitor.monitor

10 pointcut monitoringStep(Integer t) //Timestamp when performing round-based monitoring
11 pointcut sendMessage(Integer to, Message m) //Capture sent message
12 pointcut onVerdict(Integer monid, Verdict verdict) //Capture emitted verdict
13 //Usage
14 after(Integer mid, Verdict v) : Commons.onVerdict(mid, v) {
15 System.out.println("Verdict found by monitor " + mid + ": " + v);
16 }

advice defines the additional code to be executed at each specific joinpoint selected by a pointcut. An aspect serves
as the modular unit that encapsulate advices, pointcuts, and additional behavior.

Common pointcuts. To simplify the process of writing measures, THEMIS provides the Commons aspect which
only introduces named pointcuts on the relevant parts of monitoring. These named pointcuts can be used when
defining measures by the user. The main named pointcuts of aspect Commons are presented in Listing 12. These
pointcuts are related to the main flow when monitoring with a decentralized monitoring algorithm as explained
in Section 7.5.2. The start of the monitoring (Lines 2-3) pointcut includes the tags passed to the node when
monitoring begins (detailed in Section 7.7). Tags could include information as to the name of run or objects useful
for benchmarking, this allows measures to capture them. The end of the monitoring (Lines 5-6) pointcut is used by
measures when cleanup is needed after monitoring. Multiple pointcuts are provided during monitoring to (1) get
the underlying monitor context (Line 8) when for example counting evaluations, (2) capture every monitor call
(Line 9) for measures relying on analyzing observations or monitor progress, (3) capture the round number (Line
10) for round-based monitoring algorithms, (4) message exchange (Line 11), and (5) capturing the emitted verdict.
Finally, we show the use a pointcut from Commons to print the obtained verdict after it is reached (Lines 14-16).

Remark 3 (Hooks) While we provide the named pointcuts in Commons to write measures, they can also be
used to write hooks to execute additional logic when monitoring. Specifically for hooks, we introduce the
class RunHook which simplifies the task by providing three abstract methods to implement: prestart, start
and end. The first two methods allow a hook to run before executing monitoring where prestart is executed
before start. The last method allows a hook to run at the end of the run of a monitoring algorithm. ∗

Measures. Measures are defined as objects of class Measure. A measure groups (1) a string representing the
measure name (similar to a variable identifier) (key), (2) a small string describing the measure (description), (3) an
object which represents the value of the measure, and (4) a variable arguments update function invoked to update
the value of the measure (defined as interface MeasureFunction). A collection of update functions is provided
by class Measures which include computing sum, max, min of integers and floats. Invoking update on a measure
calls its update function. To initialize, group and update measures we extend the abstract aspect Instrumentation.
Aspect Instrumentation provides the base functionality for managing measures. It uses the named pointcuts in
Commons and associates with each pointcut introduced in Listing 12 an empty advice function. Programmers can
then override the empty function to implement their own logic. As such, it is possible to write measures with no
knowledge of AspectJ, and use AspectJ only when advanced measures are necessary. We illustrate writing two
communication measures in Example 33

Example 33 (Writing communication measures) We consider counting the number of messages exchanged be-
tween monitors and their size. Furthermore, we count the number for each message type exchanged (which we
store in a HashMap shown at Line 2). First, we define an aspect that extends Instrumentation (Line 1). Second,
we override method setup (Lines 3-9) to define and initialize the measures. Line 4 defines the description for the
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Listing 13 Writing measures for communication.
1 public aspect Communication extends Instrumentation {
2 HashMap<String, Long> comms = new HashMap<String, Long>();
3 protected void setup(Node n, Map<String, Serializable> tags) {
4 setDescription("Communication");
5 addMeasures(
6 new Measure("msg_num" , "Number of Messages", 0L, Measures.addLong)
7 , new Measure("msg_data", "Data Exchanged" , 0L, Measures.addLong)
8 );
9 }

10 protected synchronized void printAll() {
11 super.printAll();
12 Commons.printSection("Messages Details");
13 for (Entry<String, Long> entry : comms.entrySet())
14 Commons.printMeasureln(entry.getKey(), Commons.FMT_NUM, entry.getValue());
15 comms.clear();
16 }
17 after(Integer to, Message m): Commons.sendMessage(to, m)
18 {
19 synchronized(comms) {
20 String s = m.getClass().getSimpleName();
21 Long n = 0l;
22 if (comms.containsKey(s))
23 n += comms.get(s);
24 n++;
25 comms.put(s, n);
26 update("msg_num", 1L);
27 update("msg_data", Config.sizeMessage(m, new Config.SizeDefault()));
28 }
29 }
30 }

group of measures we are creating (the entire aspect). Lines 5-8 add two measures, the number of messages and
the message data exchanged. The number of messages (Line 6) is given the key “msg_num” to identify it, it is
initialized to 0l, and uses the update function Measures.addLong, which sums long numbers. Since we added
the HashMap to count detailed messages counts, we override the printAll (Lines 10-16) which by default prints
all added mesaures, and we simply print the map entries. Using the named pointcut sendMessage in Commons, we
define the advice to increment our measures (Lines 17-30). First, we capture the message classname (Line 20), and
increment the number of messages of that classname (Lines 20-25). We note that since the node runs multithreaded
code, it is important to synchronize appropriately on the HashMap. Second, we update the number of messages by
calling update("msg_num", 1L), this calls the update function of the measure with the key “msg_num” and passes it
“1” as argument. Since the update function adds long numbers, it will basically increment the count. Third, we
perform a similar update on the data transferred by invoking a helper function which determines the size of the
message. Thus, we have defined an aspect that computes the sum of messages and data transferred across an entire
run of a monitoring algorithm. ∗

In the next section (Section 7.6.2), we discuss how to enable, disable, and store measures in THEMIS.

7.6.2 Managing Measures

Measures in THEMIS are aspects, as such they are instrumented into the system using the AspectJ compiler through a
process called weaving. It is possible to weave aspects at compile time by recompiling the code with the aspects, or
at load-time when classes are loaded in the JVM. THEMIS utilizes AspectJ load-time weaving (LTW) to incorporate
measures during load-time.

Enabling and disabling measures. It is possible to enable or disable aspects by configuring the AspectJ load-
time weaver. The weaver is configured using an xml file called aop.xml found under META-INF on the classpath.
The file contains the aspects to weave, by overriding the file it is possible to specify which measures to use. It
is also possible to exclude certain aspects using the xml tag <exclude within="uga.corse.themis.somepackage.*"/>.
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Listing 14 Default weaver configuration.
1 <aspectj>
2 <aspect name="uga.corse.themis.utils.AutomataCache"/>
3

4 <aspect name="uga.corse.themis.measurements.Commons"/>
5 <aspect name="uga.corse.themis.measurements.RunHook"/>
6 <aspect name="uga.corse.themis.measurements.Instrumentation"/>
7 <aspect name="uga.corse.themis.measurements.DatabaseStore"/>
8

9 <aspect name="uga.corse.themis.measurements.basic.ExecutionHistory"/>
10 <aspect name="uga.corse.themis.measurements.basic.GlobalRun"/>
11 <aspect name="uga.corse.themis.measurements.basic.Simplifications"/>
12 <aspect name="uga.corse.themis.measurements.basic.Evaluations"/>
13

14 <aspect name="uga.corse.themis.algorithms.orchestration.MsgSize"/>
15 <aspect name="uga.corse.themis.algorithms.migration.MsgSize"/>
16 <aspect name="uga.corse.themis.algorithms.choreography.MsgSize"/>
17 </aspectj>

Figure 7.4: Querying the database to summarize and retreive measures using sqlitebrowser. Here we summarize
the measures by grouping by algorithm and number of components. We report the message number and data
transferred as well as the total number of executions summarized.

Listing 14 shows the default aop.xml file provided by THEMIS. Aspect AutomataCache is used to cache calls to
monitor synthesis tools, while aspect DatabaseStore (Line 7) is used to store measures in a database. Lines 4-6
introduce the aspects necessary to implement the rest of the measures or hooks. Lines 9-12 introduce the measures
that are later used when comparing algorithms (Chapter 8). Lines 14-16 are used to define hooks that register
handlers to compute the message size for each algorithm.

Storing measures. Aspect DatabaseStore intercepts other aspects of type Instrumentation to retrieve their
measures automatically and store them in a SQLite database [Hwa]. The name of the database file is provided in an
environment variable THEMIS_BENCH_DB. In the database, a table is created (called bench) that has all measures as
columns, the name of each column is associated with the key of the given measure. Aspect DatabaseStore manages
the creation and update of the table automatically to include measures. At the end of every monitoring run, a new
record is added to the table with the value of each measure at the end of the run. Measures are also automatically
printed at the end of a monitoring run, as such it is also possible to disable the database and rely on log files.

Processing measures. Measures are processed by either querying the database directly, or exporting the database
as CSV and then providing it as input to other software like R. This allows third-party tools to visualize, plot and
analyze the result of the measures. Figure 7.4 illustrates querying the database to summarize measures given unique
algorithms and number of components in the system. In practice, we avoid summarizing information before the
complete analysis. As such, we typically export the information as csv and analyze and plot it in R.
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Decentralized monitoring algorithms are run on THEMIS nodes. Measures are typically woven on the THEMIS node,
running the algorithm. In the next section (Section 7.7), we describe nodes and their design considerations.

7.7 Nodes and Runtime

At the backbone of the THEMIS framework lies the node. A node receives necessary information to deploy
components (Section 7.3), and monitors (Section 7.5). The main task of a THEMIS node is to execute the monitoring
logic. Therefore, it manages (1) gathering observations from components and sending them to monitors, (2)
communication between monitors on the same node or other nodes, and (3) manages control signals to start and
stop monitoring. In Section 7.7.1, we introduce a general overview of nodes. In Section 7.7.2, we show how to
write a node. Finally, in Section 7.7.3 we illustrate how to execute nodes.

7.7.1 Overview of Nodes

A THEMIS node implements the main logic of monitoring with the addition of control logic to manage the monitoring.
It is ultimately responsible of deploying monitors and components, and executing the monitoring logic of the
monitors.

Monitoring logic. Nodes encode the high-level assumptions on the system, as they manage how observations are
retrieved and passed to the monitors. We illustrate the default node implementation in Example 34.

Example 34 (NodeRounds monitoring logic.) Our node implementation NodeRounds manages the monitoring by
rounds. For every round, it submits tasks to gather observations for each component asynchronously. As soon
as observations are ready, it submits one task per monitor associated with the component to call method monitor,
passing the observations. It waits for all monitors to execute their monitor method. This constitutes a monitoring
round. The node then increments the timestamp counter and initiates a new round. The process continues until a
monitor notifies the node of a verdict, aborts or a limit on the number of rounds is reached (timeout). ∗

Management. In addition to executing the monitoring logic, a node keeps track of the platform. A platform is a
collection of addresses of all monitors and components. Since multiple nodes are able to coordinate to execute a
monitoring algorithm in a distributed fashion, nodes ultimately manage the communication between the various
monitors across nodes. We recall that monitors only communicate by providing the id of the monitor they wish
to send a message to. Nodes are controlled via commands. A command is a control message sent to the node
instructing it to perform a specific operation. The logic of a command is implemented via the interface CmdRuntime.
Component and monitor deployment, as well as, starting, stopping and restarting monitoring are all implemented as
commands. Communication between monitors across nodes is implemented with commandMonitorPayload that
wraps a monitor message. Implementing a THEMIS node allows programmers to fine tune the assumptions on the
monitoring execution and simulation they wish to have, without modifying the underlying monitoring code (for the
algorithms) or dealing with the trace.

In the next section (Section 7.7.2), we illustrate the interface, and the main methods needed to implement a node.

7.7.2 Writing a Node

The interface describing the necessary behavior to be implemented by a node is presented in Listing 15. We break
it down 3 groups: management objects, monitoring control, and observers.
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Listing 15 Interface of a THEMIS Node.
1 public interface Node {
2 //Information managed by a node (setters)
3 void setAddress(String addr);
4 void addComponent(Component comp);
5 boolean attachMonitor(String comp, Monitor mon);
6 boolean changePlatform(Platform platform);
7 void setDispatcher(Dispatcher disp);
8 void setNetwork(Network net);
9 //... (getters)

10 //Retreive monitoring related information
11 Integer getMonitorCount();
12 Integer getComponentCount();
13 Component getComponentForMonitor(Integer integer);
14 Set<Monitor> getMonitorsForComponent(String componentKey);
15 Map<String, Component> getManagedComps();
16 Map<Integer, Monitor> getManagedMonitors();
17 //Main monitoring functionality
18 void start(Map<String, Serializable> tags);
19 void stop();
20 void reset();
21 boolean isStarted();
22 //Observers on nodes used for executing additional code unrelated
23 //to the monitoring logic
24 int observerRegister(NodeObserver obs);
25 void observerRemove(int id);
26 }

Management objects. The first group (Lines 2-16) consists of methods for managing the data that surrounds
the monitoring logic. It includes the address given to the node, the functionality to add components, attach
monitors, and manage the platform, the dispatcher, and the network. A dispatcher is responsible for sending and
receiving commands (explained in Section 7.7.1). The default dispatcher (Sockets) notification utilizes sockets and
serializes objects to communicate across nodes. The network represents the abstract communication model for
managing communication between monitors. The default network (NetworkDistributed) models communication
by associating a queue for each monitor. As such when sending a message to another monitor, the message is
appended to its queue, when receiving a message the queue is popped. When a monitor is not found on the local
node, the network queries the node to retrieve the address of the node hosting the monitor, and issues a command to
the node with the message payload.

Monitoring control. The second group (Lines 17-21) contains the main logic for monitoring a node must
implement. It contains methods start, stop, restart, and isStarted. Method start is the method that initiates the
monitoring. It contains the logic to gather observations and invoke monitors, until completion. Method stop is
used to interrupt the monitoring on a node (for example, upon receiving an abort), when stopping the node does
not clear its state. Method reset is used to stop monitoring and clear the node state. When clearing the state, the
node removes all information about the deployed components and monitors, and will be available to receive a
new deployment and monitoring algorithm. It is important to note that upon normal completion of the monitoring
algorithm, the node performs a reset.

Observers. The third group (Lines 24-25) consists of registering and removing observers. Node observers
manage additional event handling code to be performed on the node. It allows clients to interact with the node as its
state changes. For example, the observer DispatchEnd notifies a client when a node stops. This allows a client to
know that the monitoring has ended. Observers also provide an extension to the node logic that is independent from
the monitor logic or assumptions.

7.7.3 Running a Node

Once a node is written it consistutes the server-side of THEMIS. To initialize a node, we invoke the Runtime tool, us-
ing java -javaagent:/path/to/themis.jar uga.corse.themis.Runtime host port nodeclass or with
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the script themis-node host port nodeclass. The Java agent includes THEMIS on the classpath and utilizes
the AspectJ weaver to weave necessary measures at load-time during the execution (see Section 7.6.2). The
parameters passed include the host and port to use for communicating with the node, and the class (implementation)
to use as a node. The third argument is optional and by default references NodeRounds. To run a custom node, it
suffices to add its implementation on the classpath, and provide its full class name to the Runtime tool.

In the current section, we elaborated on how to design and deploy nodes. In the next section (Section 7.8), we
elaborate on clients that interact with nodes to generate and deploy monitors.

7.8 Using Tools to Perform Monitoring

After elaborating on the approach to design algorithms (Section 7.5), and measures to assess them (Section 7.6),
we now discuss the THEMIS tools designed to execute the decentralized monitoring algorithms. We first introduce
performing a single monitoring run in Section 7.8.1. Then we elaborate on the Experiment client useful for creating
reproducible experiments in Section 7.8.2. Finally, we elaborate on some other tools provided to help design,
visualize and debug algorithms in Section 7.8.3. The tools presented in this section are used in both Chapter 8 to
compare the algorithms presented in Section 1.3.1, and Chapter 9 to monitor a smart apartment.

7.8.1 Running a Monitoring Algorithm

We recall that THEMIS operates in client-server mode, where nodes (Section 7.7) are the servers, and tools are
built using clients that interact with nodes. Additionally, clients are tasked with executing the setup phase of a
monitoring algorithm, wherein the network of monitors is created.

General use-case. Clients typically have to manage and deploy components and monitors on nodes. To that
end, multiple helper classes are provided to aid in that task. We introduced in Section 7.2.3 the class SpecLoader,
which helps manage loading and initializing decentralized specifications. Upon loading the specification, the client
must load the component information. The client never initializes components, but summarizes information about
the platform and components (their class and peripheries). After determining the platform and the specification,
the client invokes the setup phase of an algorithm (Section 7.5.1), which initializes a set of monitors. The client
relays the information of the platform, components, and monitors to one or more THEMIS node(s). Once nodes are
configured, the client sends the nodes a signal to begin monitoring and waits on notifications.

Deployment. Since most clients rely on the same code to communicate with nodes, the helper class Deploy is
provided to simplify interaction with nodes. It provides three static methods to deploy components, monitors, and
begin monitoring. In addition to sending data to nodes, clients often have to wait on the node to notify them. This
is the case when the client is waiting on the monitoring to finish. A simple server (SemaphorePingback) is provided,
that takes a semaphore and releases it when the node reports completion or failure of the monitor. This semaphore
is usually used to block the main thread, until the node completes its execution.

Basic client. THEMIS provides a basic tool that accomplishes the general use-case. The Run tool performs one
or more execution of the same decentralized monitoring algorithm with the same decentralized specification on
multiple traces. The decentralized trace follows the convention explained in Section 7.3.2. The tool is called using:

themis-run -nc <INT> -nr <INT> -in <PATH> \
-spec <PATH> -alg <CLASS> -tid <INT> -tmax <INT> \
-node <NODE> -listen <NODE>

Its arguments are as follows:

- nc indicates the number of components in the system;
- nr indicates the length of the run (after which to timeout);

Thesis 83 Antoine El-Hokayem



CHAPTER 7. THEMIS: A FRAMEWORK FOR DECENTRALIZED MONITORING OF DECENTRALIZED
SPECIFICATIONS

- in indicates the input path of the folder containing the decentralized trace;
- spec indicates the XML file containing the decentralized specification;
- alg provides the full classname of the Bootstrap class of the algorithm to execute;
- tid id of the trace to run;
- if tmax is provided, then all traces with id in the range [tid, tmax] are executed;
- node contains the node address as a string “host:port” to deploy on; and
- listen contains the address of the server listening to the completion message.

7.8.2 Experiments

When multiple runs are required with fixed specifications and traces, THEMIS provides the Experiment tool. An
experiment is a bundle of configuration parameters and a collection of traces, decentralized specifications, and
decentralized monitoring algorithms. It provides a uniform way to execute a full experiment with THEMIS to
compare, gather metrics, and explore the behavior of decentralized monitoring algorithms. The experiment is a two
step process. The first step is a verification phase that runs a test on each provided decentralized specification. The
second step is an execution phase that runs the provided algorithms on the traces for each specification.

Verification phase. During the verification phase, the client loads each specification (specified as a list in a text
file), and runs a test on it. The test is defined using interface TestOracle, which provides one method verify.
Method verify takes as input a decentralized specification and returns a boolean indicating the specification has
passed or failed the test. If all specifications pass the test, the client moves to the next phase. If at least one
specification fails the test, two new files are generated with the extensions .keep and .discard. They indicate
respectively the specifications that passed and failed the test. An example test to verify synthesis and monitorability
of LTL formulae is provided in Example 35.

Example 35 (TestLTL) Oracle TestLTL considers a centralized LTL specification, it extracts the formula, synthe-
sizes the automaton, and verifies if it is monitorable. It returns ⊥ if the automaton cannot be synthesized (monitor
synthesis tool times out), or the automaton is not monitorable (Section 6.2.1). ∗

Execution phase. After verifying that all specifications comply to the test, the client begins executing the traces
for each algorithm for every specification. The client Experiment is capable of using multiple nodes to run the
experiment, it splits the traces to monitor for one algorithm evenly among all nodes.

Configuration. To configure an experiment, we rely on a main (.properties) configuration file. Algorithms
and specifications are stored each in a text file, where each line indicates respectively the Bootstrap classname of
an algorithm to run (Section 7.5.1), and the path to a decentralized specification to load (Section 7.2). Listing 16
shows a configuration file for an experiment. We first state that we want to execute the verification phase (Line
1), and generated the files with the specifications that passed and failed the test (Line 2). Then, we provide the
test oracle (Line 3). To configure traces, we define the trace directory (Line 4), and the number of traces to read
(Line 5). By setting the number of traces to 100, we read all traces with id in the range [0, 99]. For more details on
the convention adopted for traces see Section 7.3.2. To configure the run, we specify the length of the run (Line
6), after which to timeout. The number of components to initialize (Line 7), this must be inferior or equal to the
number of components for the trace. The file containing the list of specifications (Line 8), and algorithms (Line 9).
To configure the node information, we first specify the nodes to use for the experiment (Line 10). In this case, we
use two nodes. Then, we specify the notification address (Line 11), to use for the node to notify the client when
monitoring completes. Finally, we can add any additional environment variables that could be useful. For this
experiment, we specify the variable THEMIS_CACHE_LTL (Line 12), which defines the path of the cache for the
synthesized automata from LTL (Section 7.3.2).
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Listing 16 Experiment configuration file.
1 tests.skip=false
2 tests.discard=true
3 tests.oracle=uga.corse.themis.tools.experiment.TestLTL
4 traces.dir=/path/to/traces/
5 traces.maximum=100
6 run.length=110
7 run.components=3
8 run.specs=specs.txt
9 run.algorithms=../algs.txt

10 node.targets=localhost:8056,localhost:8057
11 node.host=localhost:8091
12 THEMIS_CACHE_LTL=cache

Bundling. Experiments are bundled in a simple folder, which can be compressed to form a bundle of traces,
algorithms, and specifications. We note that the measures are defined on the node, and not in the experiment. While
this may seem counter-intuitive, we recall that the node is instrumented at load-time Section 7.6.2. This means
that measures are defined when the node is executed. In which case, it suffices to provide a simple Makefile
that initializes the node. The command could add to the classpath necessary custom measures, and define its own
aop.xml which includes which measures to use and exclude. The necessary sources of the added measures or
algorithms could be bundled as a jar in the experiment folder, and added to the classpath appropriately. Since all
measures are stored in a database, the experiment folder can also include necessary scripts to query, dump, and
process the outcome of the measures. For example, it can include additional R scripts to analyze and plot the data.

Re-using and extending. Experiments can be re-used and re-run easily as they are self-contained in a folder.
Furthermore, it is easy to add additional algorithms to test, it amounts to ensuring its source is on the classpath,
and its Bootstrap implementation is added as a new entry to the text file listing the algorithms. Similarly, by
instrumenting new measures on the node itself, an experiment can be run to investigate or compare the existing
algorithms under the new measures. This ensures that minimal effort is needed to re-run existing experiments with
minor modifications.

While writing algorithms, measures, and designing experiments is error-prone, additional tools are provided to ease
the tasks. We introduce them in the next section (Section 7.8.3).

7.8.3 Utility Tools

In addition to providing the core functionality for performing monitoring, the THEMIS framework provides additional
tools to assist programmers in designing algorithms, or setting up experiments. In this section, we cover three tools:
visualization of automata, generation of random traces, and generation of random specifications.

Automata visualization. Since an automaton is a graph, we utilize the Graphstream [PDGO08] graph library
to draw automata. The interface provided is found under the themis-ui package, using the tool Draw, and the
helper class UI. The drawing tool can be directly invoked from the command-line to draw the synthesized automata
specifications found in a decentralized specification file (Section 7.2.3). The tool provides additional options to
simplify the expressions, select a subset of the specifications for drawing, and synthesize and draw directly a
provided LTL formula. The helper class can be also directly used from within a program using the static method
draw which takes an arbitrary automaton and draws it. Figure 7.5 illustrates an example output of the tool with
simplified expressions.

Trace generation. THEMIS provides the tool Generator used to generate random traces using COLT [CER99].
COLT provides a set of open source libraries for high performance scientific and technical Computing in Java. In
particular, COLT provides implementation for random engines and probability distributions. The generator tool
relies on a COLT profile file to decide which engine and probability distribution to use in COLT, along with the
parameters to initialize the distribution. An example COLT profile is shown in Listing 17. We use the DRand
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Figure 7.5: A drawn automaton using Graphstream.

Listing 17 COLT profile for binomial distribution.
<generator>

<engine seed="" type="NOW">cern.jet.random.engine.DRand</engine>
<distribution cls="cern.jet.random.Binomial">

<param type="INT">100</param>
<param type="DOUBLE">0.3</param>

</distribution>
</generator>

engine from COLT, seeded with the current time (NOW). We define the distribution to be Binomial with the two
parameters n = 100 and p = 0.3. Using the COLT library, observations are generated by setting the ⊥ verdict
threshold at 0.5, values less or equal to 0.5 are associated with ⊥ while those greater than are associated with >.
The environment variable VERDICT_INVERT can be set to “true” to invert the verdicts. We invoke the generator
tool using the following script:

themis_gentrace ntraces trace_length ncomps nobspercomp profile out [keep]

The parameters are as follows:

- ntraces indicates the number of traces to generate;
- trace_length indicates the length of the trace;
- ncomps denotes the number of components in the trace;
- nobspercomp denotes the number of observations to generate per component;
- profile is a path to the COLT profile file;
- out is the output folder under which to store the trace; and
- keep is an optional argument used to keep the folder as by default the output folder is compressed and deleted.

Specification generation. THEMIS provides scripts to generate random LTL specifications by invoking the
randltl tool from SPOT [DL13]. The command to generate multiple specifications is as follows:

themis_genspec nspecs ncomps nobs template out [keep]

The parameters are as follows:

- nspecs denotes the number of specifications to generate;
- ncomps denotes the number of components to reference in the specification;
- nobs is the number of observations per component to reference;
- template is the template file, a decentralized specification xml file which contains the string “%form%”, the

string is replaced with the generated formula by randltl;
- out is the output folder where specifications are written; and
- keep is an optional argument used to keep the folder as by default the output folder is compressed and deleted.
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THEMISModule Functionality Tool/Library

Specifications Monitor synthesis LamaConv [Ins]
Specifications Monitor synthesis ltl2mon [BLS11]
EHE Boolean and LTL simplification ltlfilt (SPOT) [DL13]
Measures Storage/Querying SQLite3 [Hwa]
Measures Instrumentation AspectJ [KHH+01a]
Random specification generation Random LTL ltlrand (SPOT) [DL13]
Random trace generation Randomness COLT [CER99]
Automata visualization Graph visualization Graphstream [PDGO08]

Table 7.1: Tools and libraries used by THEMIS.

Conclusion

We presented THEMIS, a modular framework for the design, analysis, and simulation of decentralized monitoring
algorithms. We introduced an overview of the architecture and details to write decentralized specifications,
algorithms that utilize the provided data structures. We also elaborated on the various possibilities to incorporate
observations to feed them to monitors. Futhremore, we presented in detail the client-server of THEMIS by defining
nodes and clients that deploy components and monitors on nodes. In particular, we explained the client Experiment
which allows developers to write and bundle experiments that utilize THEMIS. Finally, we illustrated some of the
additional tools for generating traces, specifications and visualizing automata. The modular aspect of THEMIS allows
it to interact with existing tools (summarized in Table 7.1) to provide a common workflow for their integration into
one monitoring framework.

In the following two chapters, we illustrate how to utilize THEMIS to evaluate existing decentralized monitoring
algorithms (Chapter 8), and second to apply decentralized specifications in the context of smart homes (Chapter 9).
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CHAPTER 8

Comparing Decentralized Monitoring Algorithms

“How can we use decentralized specifications to compare existing decentralized monitoring algorithms?”
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Chapter abstract

In this chapter, we aim to compare different decentralized monitoring algorithms in terms of computation, commu-
nication, and memory overhead. We elaborate on the general phases of decentralized monitoring algorithms and
illustrate the approach to analyze them by adapting algorithms from [CF16a] as examples. The chosen algorithms
are examples of different strategies used for decentralizing monitoring. In brief, we analyze the (worst-case)
behavior of each algorithm by looking at its usage of the data structures (Memory and EHE). Then, using THEMIS
(Chapter 7), we look at the usefulness of simulations to determine the advantages or disadvantages of certain
algorithms in two scenarios. The first scenario explores synthetic benchmarks, that is, we consider random traces
and specifications. This allows us to explore various levels of coverage. The second scenario explores a common
pattern in programming: publish-subscribe. For that, we consider a publish-subscribe system, where multiple
publishers subscribe to a channel (or topic), the channel publishes events to the subscribers. We use the Chiron user
interface example [ACD+99, Tea99], along with the specifications formalized for it [DAC99a].
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Introduction

Motivation. In Chapter 3, we introduced the various approaches of decentralized monitoring. Decentralized
monitoring algorithms are primarily designed to address one issue at a time and are typically experimentally
evaluated by considering runtime and memory overheads. However, such algorithms are difficult to compare as they
may combine multiple approaches at once. For example, algorithms that use LTL rewriting [BF12, CF16a, RH05]
(Section 3.1) not only exhibit variable runtime behavior due to the rewriting, but also incorporate different monitor
synthesis approaches that separate the specification into multiple smaller specifications. Such techniques start from
a global specification and then synthesize local monitors with either a copy of the global specification [BFRT16] or
a completely different specification to monitor (typically a subformula of the original formula) [BF12, FCF14]. In
this thesis, we referred to the former as a centralized specification and to the latter as a decentralized specification.
These different approaches of synthesis are separate from monitoring and their evaluation is of interest.

Utility. Decentralized specifications (Chapter 6) allow us to split the problem of generating equivalent decentral-
ized specifications from a centralized one (synthesis) from the problem of monitoring by defining two phases for
decentralized monitoring: the setup, and monitor phases. By examining the topology of the monitors created after
the setup phase, the usage of the data structures Memory and EHE, and the monitor phase of algorithms, we are
able to analyze and identify scenarios that advantage certain strategies over others. In Chapter 7, we introduced
the THEMIS tool which allows us to execute the different algorithms and gather different metrics. By adapting
the existing algorithms in THEMIS, we extends the work of [CF16a] and look at the usefulness of simulations to
determine the advantages or disadvantages of certain algorithms in two scenarios. The first is based on randomly
generated traces and specifications, and the second utilizes the Chiron user-interface application with a provided
formal specification.

Chapter organization. In Section 8.1, we present an analysis of the behavior of three different decentralized
monitoring algorithms by looking at their usage of the data structures Memory and EHE. We first consider the
parameters and the cost for the basic functions of the EHE and memory data structures in Section 5.2. Then, we
analyze each of the presented decentralized monitoring algorithms in Section 8.1. In Section 8.2, we elaborate
on the metrics and experimental setup used to simulate the three algorithms. Then, we compare the decentralized
monitoring algorithms using the synthetic benchmark (Section 8.2.3) and Chiron (Section 8.2.4). Finally, we
conclude in Section 8.2.4 and present future perspectives.

Key contributions. The key contributions of this chapter can be summarized as follows:

1. Adapting existing decentralized monitoring algorithms to our approach (API and data structures), in a uniform
manner for the purpose of analysis and simulation;

2. Parametrizing the analysis of decentralized monitoring algorithms with information delay incurred by partial
observations;

3. Performaing worst-case analysis of decentralized monitoring algorithms relying on automata-based approaches,
utilizing boolean rewriting (with a known minimal form) instead of LTL rewriting;

4. Simulating three decentralized monitoring algorithms (and comparing variants of the same algorithm) in a
synthetic benchmark and a user interface application to validate the analysis;

5. Exploring the effect of using different random probability distributions for trace generation, and their impact on
coverage; and

6. Exploring the performance of various decentralized monitoring algorithms for different patterns of specifica-
tions [DAC99a] of the same application.
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8.1 Analyzing Existing Algorithms

We aim to compare decentralized monitoring algorithms in terms of computation, communication, and memory
overhead. We recall that the EHE and memory data structures are used to abstract the behavior of a monitoring
algorithm. Their size and parameters have been identified in Section 5.2. We elaborate on the general phases of de-
centralized monitoring algorithms and illustrate the approach to analyze them by adapting algorithms from [CF16a]
as examples.

8.1.1 Overview and General Approach

We shift the focus to the algorithms and their usage of the data structures. We first present an overview of the
abstract phases performed by decentralized monitoring algorithms. We then elaborate on our approach to model
their behavior. Finally, as an example, we present the analysis for each of the algorithms adapted from [CF16a]
(presented in Section 1.3.1): Orchestration (Orch), Migration (Migr), and Choreography (Chor). The algorithms
contain both multiple monitors monitoring the same specification (Orch, and Migr), and a decentralization algorithm
which splits one global specification to multiple subspecifications distributed on monitors (Chor). We later explore
the trends provided by the analysis by benchmarking in Section 8.2.

Overview. A decentralized monitoring algorithm consists of two phases: setting up the monitoring network, and
monitoring. In the first phase, an algorithm initializes the monitors, defines their connections, and attaches them
to the components. We represent the connections between the various monitors using a directed graph 〈Mons, E〉
where E ⊆ 2Mons×Mons defines the edges describing the sender-receiver relationship between monitors. For example,
the network 〈{m0,m1}, {〈m1,m0〉}〉 describes a network consisting of two monitors m0 and m1 where m1 sends
information to m0. In the second phase, an algorithm proceeds with monitoring, wherein each monitor processes
observations and communicates with other monitors.

We consider the existing three algorithms: Orchestration, Migration and Choreography [CF16a] adapted to use
EHE. We note that these algorithms operate over a global clock, therefore the sequence of phases can be directly
mapped to the timestamp. We choose an appropriate encoding of Atoms to consist of a timestamp and the atomic
proposition (Atoms = N × AP). These algorithms are originally presented using an LTL specification instead of
automata, however, it is possible to obtain an a Moore automaton equivalent to the specification as described in
[BLS11].

Approach. A decentralized monitoring algorithm consists of one or more monitors that use the EHE and memory
data structures to encode, store, and share information. We recall from Section 5.2 that the cost of utilizing the
data structures and their size depends on (1) information delay (δt) which parametrize the time needed to resolve
partial observations, (2) the number of states in the automaton (|Q|), and (3) the maximum size of an expression
labeling a transition in the automaton (L). We recall that the notation |It | denotes the size of the EHE at timestamp t.
Therefore, by studying δt, we derive the size of the EHE and the memory a monitor would use. Knowing the sizes,
we determine the computation overhead of a monitor, since we know the bound on the number of simplifications
a monitor needs to make (δt |Q|), and we know the bounds on the size of the expression to simplify (δtL). Once
the cost per monitor is established, the total cost for the algorithm can be determined by aggregating the costs
per monitors. This can be done by summing to compute total cost or by taking the maximum cost in the case of
concurrency following the Bulk Synchronous Parallel (BSP) [Val90] approach.

8.1.2 Orchestration

As explained in Section 7.5.1, the orchestration algorithm (Orch) consists in setting up a main monitor which will
be in charge of monitoring the entire specification. However since that monitor cannot access all observations on all
components, orchestration introduces one monitor per component to forward the observations to the main monitor.
Therefore, for our setup, we consider the case of a main monitor m0 placed on component c0 which monitors the
specification and |C| − 1 forwarding monitors that only send observations to m0 (labeled mk with k ∈ [1, |C| − 1]).
We consider that the reception of a message takes at most d rounds. The information delay δt is then bounded by a

LIG - December 2018 94 Antoine El-Hokayem



8.1: Analyzing Existing Algorithms

constant, δt ≤ d. The number of messages sent at each round is |C| − 1, i.e., the number of forwarding monitors
sending their observations. The size of a message is linear in the number of observations for the component, for a
forwarding monitor labeled with mk, the size of the message is |tr(t, ck)| × (sN + sAP + sB2 ), where |tr(t, ck)| represents
the number of observations for the component on which a monitor is attached, and sN + sAP + sB2 denotes the size
of an observation associated with a given timestamp (i.e. memory entry).

8.1.3 Migration

The migration algorithm (Migr) initially consists in rewriting a formula and transferring the result of the rewriting
from one or more component to other components to fill in missing observations [CF16a]. We call the monitor
rewriting the formula the active monitor. Our EHE encoding guarantees that two monitors receiving the same
information are in the same state (see Section 5.1.2). Therefore, monitoring with Migration amounts to rewriting
the EHE and migrating it across components. Since all monitors can send the EHE to any other monitor, the monitor
network is a strongly-connected graph. In Migr, the delay depends on the choice of function choose, which
determines which component to migrate to next upon evaluation. By using a simple function choose, which causes
a migration to the component with the atom with the smallest timestamp, it is possible to view the worst case as an
expression where for each timestamp we depend on information from all components, therefore |C| − 1 rounds
are necessary to get all the information for a timestamp (δt = |C| − 1). We parametrize Migr by the number of
active monitors at a timestamp m. Function choose in [CF16a] selects exactly one component if there is a need for
communication and zero if there is no need. Therefore, after the initial choice of m, subsequent rounds can have at
most m active monitors.

We illustrate Migr in Algorithm 2. The state of a migration monitor consists of a variable isActive that determines
whether or not the monitor is active, and I that is an EHE encoding the same automaton shared by all monitors. At
each round the monitor receives a timestamp t and a set of observations o. Line 2 displays the memory update with
observations for that round. Lines 3 to 9 describe the reception of EHEs from other monitors. Upon receiving an
EHE, the monitor state is set to active (Line 7). An active monitor will then update its EHE by first ensuring that it is
expanded to the current timestamp using mov (Line 11), then rewriting and evaluating each entry (Lines 12-17).
The number of entries in the EHE depends on δt. If any of the entries is evaluated to a final verdict (Line 14), then
the verdict is found and we terminate. While the verdict is not found, the migration algorithm first removes all
unnecessary entries in the EHE (Line 18). Unnecessary entries are entries for which the state is known, the last
known state is only kept, entries for all previous timestamps are removed. After removing unnecessary entries, we
determine a new monitor to continue monitoring using the function choose (Lines 19-22). The initial choice of
active monitors is bounded by m ≤ |C|. Since at most m − 1 other monitors can be running, there can be (m − 1)
merges. In the worst-case the information delay requires the formula to be passed around to all components, as
such δt = |C| − 1. The size of the resulting EHE is m × |Iδt | = m(|C| − 1)2|Q|L. In the worst case, the upper bound on
the size of EHE is (|C| − 1)3|Q|L. The number of messages is bounded by the number of active monitors m. The size
of each message is however the size of the EHE, since Migr requires the entire EHE to be sent.

8.1.4 Choreography

Choreography (Chor) presented in [CF16a] splits the initial LTL formula into subformulas and delegates each
subformula to a component. Thus Chor can illustrate how it is possible to monitor decentralized specifications. We
now consider the setup and monitor phases of Chor.

Setup. Choreography begins by taking the main formula, then deciding to split it into subformulae. Each monitor
will monitor the subformula, notify other monitors of its verdict, and when needed respawn . Recall from the
definition of ∆′ (see Definition 17), that monitoring is recursively applied to the remainder of a trace starting at the
current event. That is, initially we monitor from e0 to en and then from e1 to en and so forth. To do so, it is necessary
to reset the state of a monitor appropriately, this process is called in [CF16a] a respawn. Once the subformulae are
determined, we generate an automaton per subformula to monitor it. Then, we construct the network of monitors in
the form of a tree, in which the root is the main monitor. Verdicts for each subformula are then propagated in the
hierarchy until a verdict can be reached by the root monitor.

A choreography monitor is a tuple 〈id,Aϕid , ref id, coref id, respawnid〉 where:
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Algorithm 2 Migration
1: procedure Migration(t, o)
2: M←M†2 memc(o, tst) . Add observations to memory
3: while Received I′ do . Received an EHE from another monitor
4: if isActive then . If the monitor is active, the monitor EHE has information
5: I ← I †∨ I

′ . Merge information with existing information
6: else
7: I ← I′; isActive← > . Monitor becomes active after it receives an EHE
8: end if
9: end while

10: if isActive then
11: t′ ← getEnd(I); I ← mov(I, t′, t) . Build EHE up to current timestamp
12: for each tv ∈ dom(I) do . Go through all EHE timestamps
13: v← verAt(I,M, tv) . Evaluate the entries associated with timestamp tv
14: if v ∈ B2 then . Found a final verdict
15: Report v and terminate
16: end if
17: end for
18: I ← dropResolved(I) . Purge EHE of non-needed entries
19: ck ← choose(I) . Determine the next component
20: if ck , c then . Is the next component not local
21: isActive← ⊥; Send I to mk . Send to relevant monitor, stop monitoring
22: end if
23: end if
24: end procedure

• id denotes the monitor unique identifier (label);

• Aid the automaton that monitors the subformula;

• ref id ⊆ 2Mons the monitors that this monitor should notify of a verdict;

• coref id ⊆ 2Mons the monitors that send their verdicts to this monitor;

• respawnid ∈ B2 specifies whether the monitor should respawn;

To account for the verdicts from other monitors, the set of possible atoms is extended to include the verdict of a
monitor identified by its id. Therefore, Atoms = (N × AP) ∪ (Mons × N). Monitoring is done by replacing the
subformula by the id of the monitor associated with it.

Before splitting a formula, it is necessary to determine the component that hosts its monitor. The component score is
computed by counting the number of atomic propositions associated with a component in the subformula [CF16a].

scor(ϕ, c) : LT L × C → N

= match ϕ with

| a ∈ AP →

{
1 if lu(a) = c
0 otherwise

| op φ → scor(φ, c)
| φ op φ′ → scor(φ, c) + scor(φ′, c)

The chosen component is determined by the component with the highest score [CF16a], using chc : LT L→ C:

chc(ϕ) = argmax
c∈C

(scor(ϕ, c))

In order to setup the network of monitors, firstly the LTL expression is split into subformulae and the necessary
monitors are generated to monitor each subformula. The tree of monitors is generated by recursively splitting the
formula at the binary operators. We present the setup phase as a tree traversal of the LTL formula to generate the
monitor network, merging nodes at each operator, which is a different flavor of the recursive generation procedure
in [CF16a]. Given the two operands, we choose which operands remains in the host component, and (if necessary)
which would be placed on a different component. Therefore, we add the constraint that at least one part of the LTL
expression must still remain in the same component. Given two formulas ϕ and ϕ′ and an initial base component cb
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we determine the two components that should host ϕ and ϕ′ with the restriction that one of them is cb:

c1 = chc(ϕ), c2 = chc(ϕ′)
s1 = scor(ϕ, cb), s2 = scor(ϕ′, cb)

split(ϕ, ϕ′, cb) =


〈cb, cb〉 if c1 = c2 = cb

〈c1, cb〉 if (c1 , cb)
∧ (c2 = cb ∨ s2 > s1)

〈cb, c2〉 otherwise

Algorithm 3 displays the procedure to split the formula. We define the needed information to create monitors: a
unique identifier, and an LTL formula. Monitor data is a pair 〈id, spec〉 that represents respectively the id of the
monitor and the formula that it monitors. We next construct a tree of monitor data. For each binary operator, we
determine which of the operands needs to be hosted in a new component. The result is a tuple: 〈root,N,E〉 where:

• root is the root of the tree;

• N is the set of generated monitor data nodes;

• E is the set of edges between the various nodes (using only ids).

We use the dot notation root.spec to refer to the formula associated with the root node. The generation procedure is
as follows.

• First, chc determines the host component where the root monitor resides (Line 3).

• Second, the AST of the LT L formula is traversed using netx, which splits on binary operators (Line 4).

– When the formula is an atomic proposition, we simply generate a monitor that monitors the atomic
proposition (Lines 8-10).

– When both formulae can be monitored with the same monitor, it does not split (Line 17-21).

– Otherwise

1. We recurse on the side kept, to further split the formula (Lines 24,31);

2. We recurse on the side split, with a new host and id (Lines 25,30);

3. We merge the subnetworks by: (Lines 27,33)

(a) Generating the host monitor with the formula resulting from the recursion;

(b) Connecting the split branch’s root monitor to the current host monitor;

(c) Adding the split branch’s root monitor to the set of additional monitors;

(d) Merging the set of additional monitors and edges from both branches.

Once the monitor data tree is created, monitors are created accordingly, generating an automaton for the subformula,
where some of its atomic propositions have been replaced with monitor ids. Each monitor is initialized with the
refs and corefs sets based on the edges setup.

Remark 4 (Compacting the network) The monitor network can further be compacted as follows; monitors
with the same subformula are merged into one, and their refs and corefs will be the result of the set union.
However, one or more merged monitor will have to replace all occurrences of the id of the other monitors in
all subformulae of all monitors. ∗

Monitor. Once the subformulae are determined by splitting the main formula, we adapt the algorithm to generate
an automaton per subformula to monitor it. To account for the verdicts from other monitors, the set of possible
atoms is extended to include the verdict of a monitor identified by its id. Therefore, Atoms = (N×AP)∪ (Mons×N).
Monitoring is done by replacing the subformula by the id of the monitor associated with it. Therefore, monitors
are organized in a tree, the leaves consisting of monitors without any dependencies, and dependencies building
up throughout the tree to reach the main monitor that outputs the verdict. Since each monitor is in charge of
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Algorithm 3 Setting up the monitor tree
1: procedure NET_CHOR(ϕ,C)
2: id ← 0 . Start with id 0.
3: ch ← chc(ϕ) . Choose the starting component.
4: 〈root,mons, edges〉 ← netx(ϕ, id, ch) . Split the formula recursively.
5: return 〈{root} ∪ mons, edges〉
6: end procedure
7: procedure netx(ϕ, idc, ch) . Split a formula, given placed on a component
8: if ϕ ∈ AP then . Reached a leaf, don’t split.
9: m← 〈ϕ, idc〉

10: return 〈m, ∅, ∅〉 . No additional nodes or edges needed.
11: else if ϕ matches op e then . Unary operator requires no split.
12: 〈root,N,E〉 ← netx(e, idc, ch) . Process the subformula recursively.
13: m← 〈op root.spec, idc〉 . Replace root monitor to apply the unary operator to the resulting formula.
14: return 〈m,N,E〉 . Propagate back to parent, with the resulted edges and nodes.
15: else if ϕ matches e op e′ then . We decide to split only on binary operators.
16: 〈c1, c2〉 ← split(e, e′, ch) . Determine host components for subformulae.
17: if c1 = c2 = ch then . No Split, both components are the same (host component)
18: 〈rootl,Nl,El〉 ← netx(e, idc, ch) . Process left sub-branch
19: 〈rootr,Nr,Er〉 ← netx(e′, idc, ch) . Process right sub-branch
20: m← 〈rootl.spec op rootr.spec, idc〉 . Merge results
21: return 〈m,Nl ∪ Nr,El ∪ Er〉

22: else if c1 = ch then . Split right branch. Keep left subformula on the host component.
23: idn ← newid() . Generate a new ID.
24: 〈rootl,Nl,El〉 ← netx(e, idc, ch) . Recurse on the subformula hosted on the same component
25: 〈rootr,Nr,Er〉 ← netx(e′, idn, c2) . Recurse on the subformula moved to a new component
26: m← 〈rootl.spec op idn, idc〉 . Replace right side with the reference
27: return 〈m, (Nl ∪ Nr ∪ {rootr}), (El ∪ Er ∪ {〈idn, idc〉})〉 . Merge nodes and edges, add a dependency edge.
28: else . Split left branch, analogous to the right split.
29: idn ← newid()
30: 〈rootl,Nl,El〉 ← netx(e, idn, c1)
31: 〈rootr,Nr,Er〉 ← netx(e′, idc, ch)
32: m← 〈idn op rootr.spec, idc〉

33: return 〈m, (Nl ∪ Nr ∪ {rootl}), (El ∪ Er ∪ {〈idn, idc〉})〉
34: end if
35: end if
36: end procedure
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Table 8.1: Scalability of existing algorithms. |C|: number of components, |APc|: number of observations per
component, |tr|: size of the trace, |E|: number of edges between monitors, m: active migration monitors, and
depth(rt): depth of the monitor network.

Algorithm δt # Msg |Msg|
Orchestration Θ(1) Θ(|C|) O(|APc|)
Migration O(|C|) O(m) O(m|C|2)
Choreography O(depth(rt) + |tr|) Θ(|E|) Θ(1)

evaluating a subformula, the monitors communicate the evaluation of the formula as a verdict in B2 when it is
resolved. Furthermore, monitors may instruct other monitors to stop monitoring as they are no longer necessary.
The two messages are referred to as msgver and msgkill, respectively. For each monitor labeled ` ∈ APmons, we
determine the set coref ` ∈ 2APmons which contains the labels of monitors that send their verdicts to monitorA`. The
information delay for a monitor depends on its depth in the network tree. The depth of a monitor labeled ` that
depends on the set of monitors coref `, is computed recursively as follows:

depth(`) =


1 if monitorable(A`) ∧ coref ` = ∅,
1 + max({depth(`′) | `′ ∈ coref `}) if monitorable(A`) ∧ coref ` , ∅,
∞ otherwise,

A monitor synthesized from a non-monitorable specification will never emit a verdict (Section 6.2.1), therefore
its depth is∞. A leaf monitor has no dependencies, its depth is 1. Since the depth controls the information delay
(δt), it is possible in the case of choreography to obtain a large EHE depending on the specification. In the worst
case, the size of the EHE can be linear in the size of the trace δt = |tr|, as it will be required to store the EHE until the
end of the trace. As such, properties of the specification such as monitorability (see Section 6.2.1) impact greatly
the delay, and thus performance. In terms of communication, the number of monitors generated determines the
number of messages that are exchanged. By using the splitting function (presented in [CF16a]), the number of
monitors depends on the size of the LTL formula. Therefore, we expect the number of messages to grow with the
number of atomic propositions in the formula. Denoting by |E| the number of edges between monitors, we can say
that the number of messages is linear in |E|. The size of the messages is constant, it is the size needed to encode a
timestamp, id and a verdict in the case of msgver, or only the size needed to encode an id in the case of msgkill.

8.1.5 Discussion

Choosing an algorithm. We summarize the main parameters that affect the algorithms in Table 8.1. This
comparison could serve as a guide to choose which algorithm to run based on the environment (architectures,
networks etc). For example, on the one hand, if the network only tolerates short message sizes but can support a
large number of messages, then Orch or Chor is preferred over Migr. On the other hand, if we have heterogeneous
nodes, as is the case in the client-server model, we might want to offload the computation to one major node, in this
scenario Orch would be preferable as the forwarding monitor require no computation. This choice can be further
impacted by the network topology. In a ring topology for instance, one might want to consider using Migration
(with m = 1), as using Orch might impose further delay in practice to relay all information, while in a star topology,
using Orch might be preferable. In a more hierarchical network, Chor can adapt its monitor tree to the hierarchy of
the network.

Explaining earlier results. In [CF16a], the authors conducted experiments to compare the various algorithms. In
particular, they broke down the metrics by delay, message count, message size and number of progressions (rewrites
to the formula). We focus on the first three ignoring the last, since we do not monitor by rewriting. First, the authors
rank the algorithms from lowest to highest as follows: Orch, Chor, and Migr. This is consistent with our analysis,
since Orch has a constant delay, Chor a delay depending on the depth of the network, and Migr on the number of
components. However, we note that there are (small) cases where Chor will have a worst-case delay of the size
of the trace, this is not reflected in [CF16a]. Second, the authors discuss the number of messages sent by each
algorithm (assuming a round-based scheme). The lowest algorithm is Migr (with m = 1), followed by Chor, which
is followed by Orch. We note that in our analysis, the number of messages in migration depends on the number
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of active monitors, in choreography on the number of edges in the network, and in orchestration on the number
of components. Considering that the monitors are organized in a DAG, there will be generally less edges than
components (using the splitting strategy), this contributes to choreography outperforming orchestration. This can
be seen as the authors state that exceptions allow Orch to preform better than Orch. In particular "for [..] randomly
generated formulae of size 5, or when the depth of the network is greater than or equal to 3.". A larger formula and
a deeper network require a more complex network organization, which could result in more edges. We recall that
the experiment ranged on a number of components between 3 and 5, where not all components were referenced at
all times. Third, the authors discuss the size of the messages, ranking the algorithms from short to long messages as
follows: Orch, Chor, and Migr. We recall that for Chor the message size is constant, while for Orch the message
size depends on the number of observations per component. Either way both are significantly smaller than Migr
which sends the full monitoring information. While the analysis shows that in theory, Chor should perform better
than Orch with respect to size of the message, we are unsure how the size was captured. Since in the experiments
in [CF16a], the size for Chor grows linearly with the size of the formula, while by definition the message is defined
with a fixed size (ids + verdict). As such, we believe the encoding scheme has an impact on the size of the message.

Since we perform a worst-case analysis, we investigate in the next section (Section 8.2) the trends shown by
simulating the behavior of the algorithms on a benchmark consisting of randomly generated specifications and
traces. Furthermore, we use a real example in Section 8.2.4 to refine the comparison by looking at six different
specifications.

8.2 Comparing Algorithms using Simulation in THEMIS

We use THEMIS to compare the adapted versions of existing algorithms (Orch, Migr, and Chor), introduced as
examples to validate the trends presented in the analysis in Section 8.1. Furthermore, since the analysis presented
worst-case scenarios, we look at the usefulness of simulations to determine the advantages or disadvantages of
certain algorithms. The THEMIS tool, the data for both scenarios used, the scripts used to process the data, and the
full documentation for reproducing the experiments is found at [EHF18c].

8.2.1 Overview of Scenarios

We additionally consider a round-robin variant of Migr, Migrr, and use that for analyzing the behavior of the
migration family of algorithms as it has a predictable heuristic (function choose). We compare the algorithms
under two scenarios. The first scenario explores synthetic benchmarks, that is, we consider random traces and
specifications. This allows us to account for different types of behavior. The second scenario explores a specific
example associated with a common pattern in programming. For that, we consider a publish-subscribe system,
where multiple publishers subscribe to a channel (or topic), the channel publishes events to the subscribers. We use
the Chiron user interface example [ACD+99, Tea99], along with the specifications formalized for it [DAC99a].

8.2.2 Monitoring metrics

Using information delay. The first considered metric is that of information delay (δt) (Section 5.2). The
information delay impacts the size of the EHE and therefore the computation, communication costs to send an
EHE structure, and also the memory required to store it. We recall that the information delay is the number of
timestamps it took a EHE starting from a known state, to find a new known state. That is, it indicates the timestamps
needed to acquire sufficient (partial) information to determine the global state (Section 5.2). To compute the average
information delay (average delay), we sum all the timestamps across the entire run, and count the number of
resolutions. By doing so, we acquire the average number of timestamps stored in an EHE. We note that this metric
does not depend on the number of monitors, as it is normalized by the number of resolutions. Furthermore, it
is possible for delay to fall below 1, as some traces can cause some monitors to emit a verdict at the very first
timestamp. By considering our analysis in Section 8.1, we split our metrics into two main categories: computation
and communication. The EHE structure requires the evaluation and simplification of a Boolean expression which is
costly (see Section 5.1).

LIG - December 2018 100 Antoine El-Hokayem



8.2: Comparing Algorithms using Simulation in THEMIS

Computation, To measure computation, we can count the number of expressions evaluated (using memory
lookup), and the number of calls to the simplifier. For this experiment, we consider the calls to the simplifier, count-
ing the number of simplifications needed. Since algorithms may have more than one monitor active, we consider for
a given round the monitor with the most simplifications. We sum the maximum number of simplifications per round
across all the rounds, and then normalize by the number of rounds. This allows us to determine the slowest monitor
per round, as other monitors are executing in parallel. Therefore, we determine the bottleneck. We refer to this
metric as critical simplifications. This can be similarly done by considering the number of expressions evaluated.

Load-balance. Since monitors can execute in parallel, we also want to account for load-balance in the com-
putation. As such, we introduce convergence as a metric to capture load balancing across a run of length n,
where:

conv(n) =
1
n

n∑
t=1

∑
c∈C

(
st

c

st −
1
|C|

)2
 , with st =

∑
c∈C

st
c.

At a round t, we consider all simplifications performed on all components st and for a given component st
c. The

ideal scenario is when computations have been spread evenly across all components. Thus, the ideal ratio is 1
|C|

.

We compute the ratio for each component ( st
c

st ), then its distance to the ideal ratio. Distances are added for all
components across all rounds then normalized by the number of rounds. The higher the convergence the further
away we are from having all computations spread evenly across components. Convergence can also be measured
similarly on evaluated expressions.

Communication. We consider communication using three metrics: number of messages, total data transferred,
and the data transferred in a given message. The number of messages is the total messages sent by all monitors
throughout the entire run. The data transferred consists of the total size of messages sent by all monitors throughout
the entire run. Both the number of messages and the data transferred are normalized using the run length. Finally,
we consider the data transferred in a given message to verify the message sizes. To do so, we normalize the total
data transferred using the number of messages.

8.2.3 Synthetic Benchmark

Experimental Setup

We generate the specifications as random LTL formulas using randltl from Spot [DL13] then converting the
LTL formulae to automata using ltl2mon [BLS11]. We generate traces by using the Generator tool in THEMIS
which generates synthetic traces using various probability distributions (see Section 7.8.3). For all algorithms we
considered the communication delay to be 1 timestamp. That is, messages sent at t are available to be received at
most at t + 1. In the case of migration, we set the active monitors to 1 (m = 1). For our experiment, we vary the
number of components between 3 and 5, and ensure that for each number we have 100 formulae that reference
all components. We were not able to effectively use a larger number of components since most formulae become
sufficiently large that generating an automaton from them using ltl2mon fails. The generated formulae were fully
constructed of atomic propositions, there were no terms containing > or ⊥1. We use 200 traces of 60 events per
component, we associate with each component 2 observations. Traces are generated using 4 probability distributions
(50 traces for each probability distribution). The used distributions [PH66] include normal (µ = 0.5, σ2 = 1),
binomial (n = 100, p = 0.3), and two beta distributions: beta-1 (α = 2, β = 5), and beta-2 (α = 5, β = 1). The
varied distributions provide different probability to assign > and ⊥ to observations in the traces, as such we achieve
varied coverage2. Figure 8.1a shows the outcome of runs for different probability distributions. We notice that, by
varying the distributions, we obtain different distributions of verdicts across all runs for all given specifications. The
trace length is chosen to be 60, based on the consideration that random formulae usually cause monitor verdicts to
either be returned very early or timeout (Figure 8.1b). The percentage of runs that lasted more than 60 timestamps
and returned a final verdict is less than 0.1% of total runs. When computing sizes, we use a normalized unit to

1To generate formulae with basic operators, string “true=0,false=0,xor=0,M=0,W=0,equiv=0,implies=0,ap=6,X=2,R=0” is passed to
randltl.

2 An observation is assigned > if the generated number is strictly greater than 0.5, and is otherwise ⊥. For the binomial distribution, we
consider p = 0.3 the probability of obtaining >.
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butions, using all random generated formulae.

Figure 8.1: Verdicts emitted by different run lengths.

separate the encoding from actual implementation strategies. Our assumptions on the sizes follow from the bytes
needed to encode data (for example: 1 byte for a character, 4 for an integer). We normalized our metrics using the
length of the run, that is, the number of rounds taken to reach the final verdict (if applicable) or timeout, as different
algorithms take different numbers of rounds to reach a verdict. In the case of timeout, the length of the run is 65
(length of the trace, and 5 additional timestamps to timeout).

Increasing Coverage

In Table 8.2, we examine the variance by observing metrics wrt probability distributions used to generate the traces.
To exclude the variance due to the number of components, we fix |C| = 6, as it provides the highest variance. For
each metric, we present the mean and the standard deviation (between parentheses). All metrics are normalized
by the length of the run. The metrics in order of columns are: average information delay (δt), average number of
messages (#Msgs), total data transferred (Data), average maximum simplifications per monitor (S), and convergence
based on expressions evaluated (ConvE). We observe that by changing the probability distribution, the metrics vary
significantly. This is particularly prominent for the information delay (especially in the case of Chor), and data
transferred. As such, by varying the trace generation, we are able to increase our benchmarking coverage.

Comparing Algorithms

Figures 8.2 and 8.3 display the metrics for each of the algorithms. Figure 8.2a shows the average information
delay. As expected, orchestration never exceeds a delay of 1. For migration, the delay depends on the heuristic
used, as mentioned in Section 8.1, its worst case is the number of components. Migration can still have a lower
delay than orchestration in some cases (as observed for |C| ≥ 4). This observation is due to the initial monitor
placement, as in our case we chose the first component always to be where we place the main orchestration monitor
(component A), while for migration, the heuristic function (choose) decides which monitor starts. As such, in a
specification where the verdict can be resolved at the first timestamp, migration has an advantage. For Chor, the
delay is at least 1, as the network depth affects the delay. Furthermore, we notice that the delay for Chor is not
particularly affected with the number of components. We know that its worst-case will depend on traces in cases of
non-monitorability, we inspect that further in Section 8.2.4. Figure 8.2b shows the average maximum computation
done by a monitor for a given round. By looking at computation, we notice that Orch performs no simplifications.
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Table 8.2: Variation of average delay, number of messages, data transfer, critical simplifications and convergence
with traces generated using different probability distributions for each algorithm. Number of components is |C| = 6.
Table cells include the mean and the standard deviation (in parentheses).

Alg. Trace δt #Msgs Data Scrit ConvE

Orch

normal 0.69 (0.46) 7.13 (1.38) 94.87 (18.46) 0.00 (0.00) 0.83 (0.01)
binomial 0.69 (0.46) 7.15 (1.39) 93.10 (18.13) 0.00 (0.00) 0.83 (0.01)

beta-1 0.70 (0.46) 6.98 (1.47) 96.11 (20.17) 0.00 (0.00) 0.83 (0.02)
beta-2 0.69 (0.46) 6.91 (1.71) 83.37 (20.66) 0.00 (0.00) 0.82 (0.02)

Migr

normal 1.72 (1.42) 0.50 (0.32) 110.13 (276.43) 7.01 (5.01) 0.82 (0.03)
binomial 1.67 (1.40) 0.49 (0.32) 95.44 (221.65) 6.86 (4.91) 0.82 (0.04)

beta-1 1.82 (1.44) 0.53 (0.32) 133.15 (313.44) 7.14 (5.16) 0.82 (0.04)
beta-2 1.53 (1.36) 0.47 (0.38) 56.48 (114.54) 5.95 (4.24) 0.82 (0.03)

Migrr

normal 2.64 (1.93) 0.70 (0.35) 177.48 (358.61) 7.50 (5.18) 0.83 (0.03)
binomial 2.59 (1.95) 0.69 (0.36) 171.64 (318.94) 7.49 (5.21) 0.83 (0.03)

beta-1 2.82 (1.94) 0.74 (0.34) 210.02 (452.83) 7.49 (5.23) 0.82 (0.03)
beta-2 2.55 (2.08) 0.66 (0.41) 162.28 (287.28) 6.93 (4.90) 0.82 (0.02)

Chor

normal 2.02 (1.97) 5.92 (1.60) 52.54 (14.23) 12.68 (3.63) 0.13 (0.10)
binomial 1.93 (1.86) 5.95 (1.61) 52.76 (14.33) 12.55 (3.70) 0.13 (0.10)

beta-1 2.59 (4.58) 5.80 (1.64) 51.54 (14.48) 13.29 (4.33) 0.14 (0.12)
beta-2 2.95 (7.26) 5.81 (1.79) 51.52 (15.93) 13.50 (9.91) 0.14 (0.14)

This is the case as expressions in the EHE do not become sufficiently complex to require simplification. We recall
that for orchestration, the memories of all local observations are sent to the main monitor within one timestamp.
And as such, by memory lookup, the expression is immediately evaluated without the need to simplify. We notice
that for the average case, Migr performs a small number of simplifications, and Chor still executes a reasonable
number of simplifications. Figure 8.2c shows the convergence for the algorithms. Since Chor is the only algorithm
that performs computations at different components in a given round, we notice that the convergence is much lower.

For communication, we first consider the number of messages transferred normalized by the length of the run.
We notice that for algorithms Orch and Chor, the number of messages increases with the number of components.
Since Chor depends on the edges that connect monitors, it scales better with the number of components than Orch
(the depth of the network is usually smaller than the number of components). In contrast, we notice that for Migr
and Migrr, the number of messages is independent from the number of components, as it depends on the number
of active monitors. Figure 8.3a presents the total data transferred normalized by the run length. We notice by
examining algorithm Orch that sending all observations can be costly. Algorithms Migr and Migrr are capable
of sending much less data on average, but have variable behavior, and scale poorly, we notice an increase as |C|
increases. Algorithm Chor performs better than Orch, and scales much better with component size. While Migr and
Migrr send fewer messages than the other algorithms, and have better scaling in the number of messages transferred,
they can still, in total, send more data depending on the traces and specification. We notice that the 75% quartile for
Migrr still exceeds that of Orch. Since total data transferred includes both the number of messages and their sizes,
we present the size of the message in Figure 8.3b by dividing the total data transferred by the number of messages.
We observe that for Orch and Chor the size of a message is constant, not very variable and does not depend on
|C|, while for Migr and Migrr we observe a significant increase as |C| increase. We recall from Section 8.1 that the
migration algorithms send the EHE which expressions grow exponentialy in the size of the information delay.

Comparing Variants

Using the same dataset, we look at another use case of THEMIS; that of comparing variants of the same algorithm.
In this case, we focus on differences between Migr and Migrr. The heuristic of Migr improves on the round-robin
heuristic of Migrr by choosing to transfer the EHE to the component that can observe the atomic proposition with
the earliest timestamp in the EHE (referred to as earliest obligation [CF16a]). Using the simple heuristic, we notice
a drop in the delay starting from |C| > 4 (Figure 8.2a). The simple heuristic of earliest obligation seems to reduce
on average the delay of the algorithm, interestingly, it maintains a mean of 1. Furthermore, we observe a drop in
both messages transferred (Figure 8.3a) and size of messages (Figure 8.3b). Consequently, this constitutes a drop in
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Figure 8.2: Comparison of delay, computation and number of messages. Algorithms are presented in the following
order: Orch, Migr, Migrr, Chor.

the total data transferred (Figure 8.3a). We note that the message size is also the size of the EHE. The drop in the
number of messages sent is explained by the decision not to migrate when the soonest observation can be observed
by the same component, while for Migrr, the round-robin heuristic causes the EHE to always migrate. However,
this does not lead to a much lower number of simplifications (Figure 8.2b). Using THEMIS to compare the variants
shows us that the earliest obligation heuristic reduces the size of the EHE, and thus, the size of the message, but also
the number of messages sent. However, it does not seem to impact computation as the number of simplifications
remains similar.
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Figure 8.3: Data Transfer

Discussion

The observed behavior of the simulation aligns with the initial analysis described in Section 8.1. We observe that
the EHE presents predictable behavior in terms of size and computation. The delay presented for each algorithm
indeed depends on the listed parameters in the analysis. With the presented bounds on EHE, we can determine and
compare the algorithms that use it. Therefore, we can theoretically estimate the situations where algorithms might
be (dis)advantaged. However, both Figures 8.2 and 8.3 show that for most metrics, we observe a large variance
(as evidenced by the inter-quartile difference). Furthremore, Table 8.2 shows that metrics vary for the different
probability distributions. As such, we caution that while the analysis presents trends where algorithms have the
advantage, it is still necessary to address exceptions, hence the need for simulation.

To account for exceptions, we explore the differences in the algorithms in Section 8.2.4 by considering real examples
with existing formalized specifications.

8.2.4 The Chiron User Interface

Overview

Moving away from synthetic benchmarks, we consider properties that apply to patterns of programs and specifica-
tions. In this section, we compare the algorithms by looking at a real example that uses the publish-subscribe pattern.
To that extent, we consider the Chiron user interface example [ACD+99]. Chiron consists of artists responsible of
rendering parts of a user interface, that register for various events via a dispatcher. A dispatcher receives events from
an abstract data type (ADT) and forwards them to the registered artists. We chose Chiron for two practical reasons.
Firstly its example source code (in ADA), and its specifications are available online [Tea99]. The specification
is completely formalized and utilizes various LTL patterns described in [DAC99a, DAC99b]. Thus, it covers a
multitude of patterns for writing specifications. Secondly, the Chiron system can be easily decomposed into various
components, we consider four components, the dispatcher (A), the two artists (B,C) and the main thread (D). The
main thread is concerned with observing termination of the program.
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Table 8.3: List of Chiron atomic propositions and components.

C Name Original (AP) AP Comments

A Dispatcher

registered_event_a1_e1 a0
True after an artist has completed registra-
tion

registered_event_a1_e2 a1
registered_event_a2_e1 a2
registered_event_a2_e2 a3

notify_a1_e1 a4
True when starting to dispatch an event to
an artist

notify_a1_e2 a5
notify_a2_e1 a6
notify_a2_e2 a7

lst_sz0_e1 a8

Tracking the size of the list (state)lst_sz0_e2 a9
lst_gt2_e1 a10
lst_gt2_e2 a11

B Artist1

notify_client_a1_e1 b0
Artist receives a notificationnotify_client_a1_e2 b1

register_event_a1_e1 b2 Artist requests to register for event
register_event_a1_e2 b3

unregister_event_a1_e1 b4 Artist requests to unregister
unregister_event_a1_e2 b5

C Artist2

notify_client_a2_e1 c0

See Artist1

notify_client_a2_e2 c1
register_event_a2_e1 c2
register_event_a2_e2 c3

unregister_event_a2_e1 c4
unregister_event_a2_e2 c5

D Main term d0 Main program terminates

Experimental Setup

We broke down the Chiron system based on analysis of the examples provided in [Tea99, DAC99a], using the
various specifications rewritten in [DAC99c]. Table 8.3 displays various associations we used to generate our traces
and events. Column C assigns an ID to the component. Column Name lists the logical module of the system we
considered as a component. Column Original (AP) lists the atomic propositions provided by the authors of Chiron,
and then edited by [DAC99a]. Column AP maps the atomic propositions to our traces. Column Comments includes
comments on the atomic propositions.

Table 8.4 lists the subset of the Chiron specification we considered. For each property, column ID references the
original property name in [Tea99], column B3 references the expected verdict at the end of the trace3, and column
pattern identifies the LTL pattern corresponding to the formula. We modify the Chiron example program [Tea99] to
output a trace of the program, and consider the specifications listed in Table 8.44. For example, we consider the
specification 15b shown in Listing 8.1. It states that the first artist always unregisters before the program terminates.
Since an artist cannot register for the same event twice, we need only check that an unregister event responds to a
register event.

Since we monitor offline, we generate the trace by inserting a global monitor that contains information about all
relevant atomic propositions. The program is then instrumented to notify the monitor of events. Specifications and
traces are then provided as input to THEMIS to process with the existing algorithms. We randomized the events
dispatched in the Chiron example, and generated 100 traces of length 279. We targeted generating traces under 300
events. This corresponds to the ADT dispatching 91 events, in addition to events to register, and unregister artists.

3In the case where the expected verdict is ?, the specification is designed to falsify the property, as such if no falsification is found, we will
terminate with verdict ?.

4We exclude specification 7 as we were unable to generate an automaton using ltl2mon for it. This is due to the formula either being too
complex, or non-monitorable.
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Table 8.4: Monitored Chiron specifications. CRC stands for Constrained Response Chain.

ID B3 Pattern Description
1 ? Absence An artist never registers for an event if she is already registered for that event, and an

artist never unregisters for an event unless she is already registered for that event.
2 ? CRC (2-1) If an artist is registered for an event and dispatcher receives this event, it will not

receive another event before passing this one to the artist.
3 > Precedence Dispatcher does not notify any artists of an event until it receives this event from the

ADT.
5 ? Absence Dispatcher does not block ADT if no one is registered (this means that if no artists

are registered for events of kind 1, dispatcher does nothing upon receiving an event
of this kind from the ADT).

7* ? CRC (3-1) The order in which artists register for events of kind 1 is the order in which they are
notified of an event of this kind by the dispatcher. In other words, if artist1 registers
for event2 before artist2 does, then once dispatcher receives event2 from the ADT, it
will first send it to artist1 and then to artist2.

15a ? Universal The program never terminates with an artist registered.
15b > Response An artist always unregisters before the program terminates. Given that you can’t

register for the same event twice, we need only check that unregisters respond to
registers

Listing 8.1: Chiron specification (15b): “An artist always unregisters before the program terminates”

(register_event_a1_e1 -> (!term U unregister_event_a1_e1)) U (term | [](!term))

Comparing algorithms

Figure 8.4 presents the means for the metrics of average delay, convergence, and both critical and maximum
simplifications5. We immediately notice for Chor the high average delay for specifications 2 and 15b (133.86,
and 116.52, respectively). In these two cases, the heuristic to generate the monitor network for choreography
has split the network inefficiently, and introduced a large delay due to dependencies. We recall that the heuristic
used for choreography consider LTL formulae. For a given formula it counts the number of references to atomic
propositions of a given component. The monitor tasked with monitoring the formula will then be associated with
the highest component. To generate a decentralized specification, the heuristic starts with an LTL formula and
splits it into two subformulas, then one of the subformulas is chosen to remain on the current component while the
other is delegated to the component with the most references to atomic propositions. We see in this case that simply
counting references and breaking ties using the lexicographical order of the component name can yield inefficient
decompositions. Furthermore, we notice that while Orch maintains the lowest delay, other algorithms can still yield
comparable delays. In the case of specification 15a, we observe that Orch, Migr, and Chor have similar delay (1.0).
While Migr may outperform Chor for specifications 2 and 15b, it is the opposite for specifications 1, 3 and 5. This
highlights that the network decomposition of monitors (i.e., the setup phase) is an important consideration when
designing decentralized monitoring algorithms.

Figure 8.4b presents the convergence (computed using the number of expressions evaluated). We see that the poor
decomposition also yields non-balanced workloads on the monitors. In the case of specifications 2 and 15b, we
observe a convergence of 0.67 to 0.71 for Chor, respectively. The observed convergence is comparable with that of
Orch and Migr. Furthermore, it is still possible to improve on the load balance for specifications 3 and 15a, as the
convergence is high (0.33 and 0.47).

Figure 8.4c illustrates critical simplifications, we see that Chor has a higher cost compared to Migr in terms of
computation. We also notice that Migr performs better than Migrr for all specifications. The heuristic of migrating
the formula based on the atomic proposition with the earliest timestamp (earliest obligation) does indeed improve
computation costs. More importantly, we notice that the highest delay for Chor is for specifications 2 and 15b. To

5We note that since we broke down the metrics per specification, we have little variation in the data, for details and standard deviations refer
to Appendix B.1.
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Figure 8.4: Comparison of delay, convergence and number of simplifications. Algorithms are presented in the
following order: Orch, Migr, Migrr, Chor. Orch is omitted in the simplifications count as it is zero.

inspect that, we look at the maximum delay induced in a given monitor for an entire run, and consider the mean
across all traces to obtain the worst-case maximum simplifications in Figure 8.4d. Indeed, we notice a peak in
the maximum number of simplification in a given round for specifications 2 and 15b. Particularly, we notice that
while comparable in other specifications (e.g., for specification 15a, we have 10 max simplifications for Chor as
opposed to 8.64 and 10.00 for Migr and Migrr, respectively), the maximum number of simplifications for Chor
increases to 2,798 (compared to 12 for Migrr), and 3,387 (compared to 16.86 for Migrr) for specifications 2 and
15b, respectively. In this particular case, we see how delay can impact the maximum number of simplifications.

We now consider communication costs by observing the number of messages transferred in Figure 8.5a. We see
that Migr and Migrr perform well compared to the other two algorithms, with Migr performing consistently better
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Figure 8.5: Data Transfer

than Migrr. We note that the analysis of Migr indicates that the number of messages per round will be in the worst
case the number of active monitors (in our case that is 1). One can see in specification 5 that Migr sends only 0.02
messages on average per round, compared to Migrr with 1.01, followed by Orch with 2.95, and finally Chor with
4.89. We see that Orch outperforms Chor in the case of specifications 1, 2, 3 and 5, where generally Orch sends 1-2
messages less. We note that this pattern is in line with the trends shown in Figure 8.2d. We see for |C| = 4 that Orch
and Chor overlap, with Migrr outperforming both, and Migr outperforming all other algorithms. Interestingly, we
find that in the case of specification 15a in Figure 8.5a, Chor sends a number of messages (0.98) slightly higher than
Migr (0.97), and lower than Migrr (1.01). The difference in the number of messages is consistent with the lower
whiskers in Figure 8.2d. Similarly, when considering the total data transferred in Figure 8.5b, we see as a trend
across specifications Migr being particularly good, while still being slightly outperformed by Chor in specifications
15a and 15b. Furthermore, we notice that Migrr performs poorly and indeed sends more data than Orch in most
cases, indicating that a heuristic can indeed be instrumental in the success of designing the family of migration
algorithms. We notice also that the trends from Figure 8.3a seem to apply in most cases, Orch sends a lot more data
than Migr and Chor, with Migrr possibly surpassing Orch.

Conclusion and Perspectives

Conclusion. We have shown how decentralized specifications can be used to aid in the analysis and simulation of
decentralized monitoring algorithms. Particularly by providing a general description of a decentralized monitoring
algorithm in two phases: setup and monitor, and two data structures which account for partial information: Memory
and EHE. We then mapped three existing algorithms: Orchestration, Migration and Choreography to our approach
using our data structures. Using the THEMIS tool and its metrics (introduced in Chapter 7), we implement three
algorithms (and one additional variant) in THEMIS under our model and data structures: orchestration (Orch),
migration using earliest obligation (Migr), migration using round-robin (Migrr), and choreography (Chor). We
analyze their behavior by running simulations. Using THEMIS and the designed metrics, we explore simulations
of the algorithms with various metrics for delay, computation, and communication costs, on two scenarios and
validate the trends observed in the analysis. In general, we observe for the three algorithms in both the simulation
and the Chiron example, the similar trends predicted in the analysis. For information delay, orchestration proves
to be the most efficient with a constant delay, as there is no complex messaging and processing. In the case of
migration this delay can grow significantly with the number of components depending on the heuristic. In the
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case of choreography the delay depends on the depth of the network, which is maintained lower than the number
of components. However, in extreme cases, the delay for choreography could be tied to the length of the trace
which makes it impossible to use with large traces. The low delay of orchestration does not make it efficient in
all situations however. Orchestration requires that all information be always communicated, which generates a
large amount of messages of small size. Migration sends the least amount of messages at the cost of sending
large messages. Choreography distributes the messages to be sent in a hierarchical setting, which allows it to send
less messages than orchestration, while still maintaining constant size. In terms of computation, orchestration
requires all computation to be performed on a single node. For migration, monitors need to be able to perform the
computations on all nodes, as a monitor may migrate to any. For choreography, the subspecification of each monitor
determines the computational cost of that monitor. Knowing how these algorithms behave proves important when
performing decentralized runtime verification, as the system being monitored can exhibit constraints either in terms
of computation or communication.

Perspectives. Using analysis and simulation to decide which decentralized algorithm to use to monitor specific
situations proves useful, as it can characterize key advantages of such algorithms over others. For example, if we
are constrained to monitor on a system that supports high throughput, one can utilize algorithms that communicate
a large number of small messages. However, for systems with high latency, it is preferable to communicate large
messages but less frequently. In the future, one could consider creating new metrics for THEMIS to analyze more
aspects of decentralized monitoring algorithms. In particular to assess and characterize the setup phase of an
algorithm and the topology of monitors. We see that this is important, as in two specifications out of the five when
using Chiron traces (Section 8.2.4), the choreography algorithm, using a simple heuristic, generated an inefficient
decentralized specification. New metrics would be automatically instrumented on all existing algorithms and
experiments could be easily replicated to compare them.
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Bringing Runtime Verification Home: Hierarchical Monitoring of Smart
Homes

“Are decentralized specifications advantageous to monitor smart homes?”

Contents
9.1 Writing Specifications for the Apartment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.1.1 Devices and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.1.2 Specification Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2 Monitoring the Apartment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.2.1 Monitor Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.2.2 Using Decentralized Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.2.3 Advantages of Decentralized Specifications . . . . . . . . . . . . . . . . . . . . . . . . 119

9.3 Trace Replay with THEMIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.3.1 Using THEMIS for Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.3.2 Generating the Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.3.3 Considerations for Large Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.4 Assessing the Monitoring of the Appartment . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.4.1 Monitoring Efficiency and Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.4.2 ADL Detection using RV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.4.3 Specification Adaptation for ADL Detection . . . . . . . . . . . . . . . . . . . . . . . 126

9.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

111



CHAPTER 9. BRINGING RUNTIME VERIFICATION HOME: HIERARCHICAL MONITORING OF SMART
HOMES

Chapter abstract

We use decentralized specifications to check various specifications in a smart apartment. The specifications can be
broken down into three types: behavioral correctness of the apartment sensors, detection of specific user activities
(known as activities of daily living), and composition of specifications of the previous types. The context of the smart
apartment provides us with a complex system with a large number of components with two different hierarchies to
group specifications and sensors: geographically within the same room, floor or globally in the apartment, and
logically following the different types of specifications. We illustrate how decentralized specifications allow us to
re-use specifications, and combine them to: (1) scale beyond existing centralized RV techniques, and (2) greatly
reduce computation and communication costs.
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9.0:

Introduction

Smart homes. Sensors and actuators are used to create “smart” environments which track the data across sensors
and human-machine interaction. One particular area of interest consists of homes (or apartments) equipped with a
myriad of sensors and actuators, called smart homes [CC15]. Smart homes are capable of providing added services
to users. These services rely on detecting the user behavior and the context of such activities [BCR09], typically
detecting activities of daily living (ADL) [TIL04, CHN+12] from sensor information. Detecting ADL allows to
optimize resource consumption (such as electricity [APS+17]), improve the quality of life for the elderly [MAN+17]
and users suffering from mild impairment [TNM18].

RV in the smart home context. Relying on information from multiple sources and observing behavior is not
just constrained to activities. It is also used with RV techniques that verify the correct behavior of systems. RV
techniques have been used for instance in the context of automotive [CFB+12] and medical [LSàT16] systems. In
both cases, RV is used to verify communication patterns between components and their adherence to the architecture
and their formal specifications. While RV can be used to check that the devices in a smart home are performing
as expected, we believe it can be extended to monitor ADL, and complex behavior on the activities themselves.
We identify three classes of specifications for applying RV to a smart home. The first class pertains to the system
behavior. These specifications are used to check the correct behavior of the sensors, and detect faulty sensors.
Ensuring that the system is behaving correctly is what is generally checked when performing RV. However, it is
also possible to use RV to verify other specifications. The second class consists of specifications for detecting ADL,
such as detecting when the user is cooking, showering or sleeping. The third class pertains to user behavior. These
specifications can be seen as meta-specifications for both system correctness and ADL, they can include safety
specifications such as ensuring that the user does not sleep while cooking, or ensuring that certain activities are
only done under certain conditions.

Motivation. However, standard RV techniques are not directly suitable to monitor the three classes of spec-
ifications. This is mainly due to scalability issues arising from the large number of sensors, as typically RV
techniques rely on a large formula to describe specifications. Synthesizing centralized monitors from certain
large formulas considered in this paper is not possible using the current tools. Instead, we make use of RV with
decentralized specifications (Chapter 6) as it allows monitors to reference other monitors in a hierarchical fashion.
The advantage of this is twofold. First, it provides an abstraction layer to relate specifications to each other. This
allows specifications to be organized and changed without affecting other specifications, and even to be expressed
with different specification languages. Second, it leverages the structure and layout of the devices to organize the
hierarchies. On the one hand, we have a geographical hierarchy resulting from the spacial structure of the apartment
from a given device, to a room, a floor, or the full apartment. On the other hand, we have a logical hierarchy defined
by the interdependence between specifications, i.e. ADL, specifications that use other ADL specifications, and
specifications that combine sensor safety with ADL specifications. For example, informally, consider checking two
activities: sleeping and cooking, which can be expressed using formulae ϕs and ϕc respectively. A monitor that
checks whether the user is sleeping and cooking requires to check ϕs ∧ ϕc and as such will replicate the monitoring
logic of another monitor that checks ϕs alone, instead of re-using the output of that monitor. The formula will
be written twice, and changing the formula for detecting sleeping requires changing the formula for the monitor
that checks both specifications. An artifact [EHF] that contains data, documentation, and software, is provided to
replicate and extend on the work of this chapter.

Chapter organization. We begin by introducing the smart apartment context and elaborating on properties for
RV in Section 9.1.1. Then we introduce decentralized specifications and their advantages for monitoring the smart
apartment Section 9.1. In Section 9.3, we illustrate how trace data acquired from the Orange4Home dataset is
processed and adapted to THEMIS. In Section 9.4, we evaluate using decentralized specifications for monitoring
the apartment, by considering scalability, and portability to other datasets. Futhermore, we overview possible
approaches for ADL monitoring in Section 9.5.

Key contributions. The key contributions of this chapter can be summarized as follows:

Thesis 113 Antoine El-Hokayem



CHAPTER 9. BRINGING RUNTIME VERIFICATION HOME: HIERARCHICAL MONITORING OF SMART
HOMES

Entering Entrance

Up Staircase

Showering Bathroom

Sink Bathroom

Down Staircase

TV Livingroom

Up Staircase

Computing Office

Down Staircase

Preparing Kitchen

Cooking Kitchen

Eating Livingroom

Dishes Kitchen

Cleaning Kitchen

Up Staircase

Sink Bathroom

Dressing Bedroom

Reading Bedroom

Napping Bedroom

Dressing Bedroom

Computing Office

TV Office

Down Staircase

Leaving Entrance

08:00

08:30

09:00

11:30

11:45

12:00

13:00

13:15

13:45

14:00

16:30

17:00

Figure 9.1: Suggested Schedule (Tuesday, Jan 31 2017)

1. We apply decentralized RV to analyze traces of over 36,000 timestamps spanning 27 sensors in a real smart
apartment (Section 9.1.1).

2. We show how to go beyond system properties, to specify ADL using RV, and more complex interdependent
specifications defined on up to 27 atomic propositions (Section 9.1.2).

3. We leverage the hierarchies, modularity and re-use afforded by decentralized specifications (Section 9.2) to both
be able to synthesize monitors and to reduce overhead when monitoring complex interdependent specifications
(Section 9.4.1).

4. We use RV to effectively monitor ADL and identifying some insights and limitations inherent to using formal
LTL specifications to determine user behavior (Section 9.4.2).

5. We elaborate on the advantages of modularity by adapting parts of the specification to the ARAS [AEIE13]
dataset (Section 9.4.3).

9.1 Writing Specifications for the Apartment

9.1.1 Devices and Organization

We consider a single actual apartment, with multiple rooms, where activities are logged using sensors. Ami-
qual4Home is an experimental platform consisting of a smart apartment, a rapid prototyping platform, and tools for
observing human activity.

Overview of Amiqual4Home. The Amiqual4Home apartment is equipped with 219 sensors and actuators spread
across 2 floors [LLR+17]. Amiqual4Home uses the OpenHab 6 integration platform for all the sensors and actuators
installed. Sensors communicate using KNX, MQQT or UPnP protocols sending measurements to OpenHab over
the local network, so as to preserve privacy. The general layout of the apartment consists of 2 floors: the ground and
first floor. On the ground floor (resp. first floor), we have the following rooms: entrance, toilet, kitchen, and
livingroom (resp. office, bedroom, and bathroom). Between the two floors, there is a connecting staircase.
This layout reveals a geographical hierarchy of components, where we can see the rooms at the leaves, grouped by
floors then the whole apartment. While in effect all device data is fed to a central observation point, it is reasonable
to consider the hierarchy in the apartment as a simpler model to consider hierarchies in general, as one is bound
to encounter a hierarchy at a higher level (from houses, to neighborhoods, to smart cities, etc.). Furthermore,
hierarchies appear when integrating different providers for devices in the same house.

Reusing the Orange4Home dataset. Amiqual4Home has been used to generate multiple datasets that record all
sensor data, this includes an ADL recognition dataset [LLR+17] (ContextAct@A4H), and an energy consumption
dataset [CLRC17] (Orange4Home). In this paper, we reuse the dataset from [CLRC17]. The case study involved a
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Table 9.1: Specifications considered in this paper. (*) indicates added ADL specifications. G indicates specification
group: system (S), ADL (A), and meta-specifications (M). |AP|d (resp. (|AP|c): atomic propositions needed to
specify specification in decentralized (resp. centralized) specifications. d is the maximum depth of monitor
dependencies.

G Scope Name Description |AP|d |AP|c d

S Room sc_light(i) light switch turns on light (i ∈ [0..3]). 2 2 1
M House sc_ok All light switches are ok. 4 8 2

A Toilet toilet∗ Toilet is being used. 1 1 0
A Bathroom sink_usage Sink is being used. 1 2 1
A Bathroom shower_usage Shower is being used. 1 2 1
A Bedroom napping Tenant is sleeping on the bed. 1 1 1
A Bedroom dressing Tenant is dressing, using the closet. 2 3 1
A Bedroom reading Tenant is reading. 3 5 2
A Office office_tv Tenant is watching TV. 1 1 1
A Office computing Tenant is using the computer. 1 1 1
A Kitchen cooking Tenant is cooking food. 2 2 1
A Kitchen washing_dishes Tenant is cleaning dishes. 2 3 1
A Kitchen kactivity∗ Using cupboards and fridge. 4 9 1
A Kitchen preparing Tenant is preparing to cook food. 2 11 2
A Living livingroom_tv Tenant is watching TV. 2 2 1
A Floor 0 eating Tenant is eating on the table. 2 2 1

M Floor 0 actfloor(0) Activity triggered on floor 0. 6 16 3
M Floor 1 actfloor(1) Activity triggered on floor 1. 7 11 3
M House acthouse Activity triggered in house 2 27 4
M House notwopeople No 2 simultaneous activities on dif. floors. 2 27 4
M House restricttv No watching TV for more than 10s. 2 3 3
M House firehazard No cooking while sleeping. 2 3 2

person living in the home and following (loosely) a schedule of activities spread out across the various rooms of the
house, set out by the authors. Figure 9.1 displays the suggested schedule of activities for Tuesday, Jan 31 2017.
This allows us to nicely reconstruct the schedule from the result of monitoring the sensors. Furthermore, the person
living in the home provided manual annotations of the activities done, which helps us assess our specifications. We
chose to use [CLRC17] over [LLR+17] as it involves only one person living in the house at a time which simplifies
specifying and validating specifications.

Monitoring environment. In total, we formalize 22 specifications that make use of up to 27 sensors, and evaluate
them over the course of a full day of activity in the apartment. That is, we monitor the house (by replaying the trace)
from 07:30 to 17:30 on a given day, by polling the sensors every 1 second, creating a trace of a total of 36,000
timestamps. Specifications are elaborated in Section 9.1.2 and expressed as decentralized specifications (introduced
in Chapter 6). Traces are replayed using the THEMIS tool (Chapter 7) which supports decentralized specifications
and provides a wide range of metrics. We elaborate on the trace replay in Section 9.3.

9.1.2 Specification Groups

We now specify specifications that describe different behaviors of components in the smart apartment. Specifi-
cations can be subdivided into 3 groups: system-behavior specifications, user-behavior specifications, and meta
specifications on both system and user behavior. The specifications we considered are listed in Table 9.1.

System behavior. The first group of specifications consists in ensuring that the system behaves as expected.
That is, verifying that the sensors are working properly. These properties are the subject of classical RV tech-
niques [FHR13, BLS11] applied to systems. For the scope of this case study, we verify light switches as system
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properties. We verify that for a given room i, whenever the switch is toggled, then the light must turn on until
the switch is turned off. We verify the property at two scopes, for a given room, and the entire apartment. While
this property appears simple to check, it does highlight issues with existing centralized techniques applied in a
hierarchical way. We develop the property in Section 9.2.1, and show the issues in Section 9.2.2.

ADL. The second group of specifications is concerned with defining the behavior of the user inferred from sensors.
The sensors available in the apartment provide us with a wealth of information to determine the user activities. The
list of activities of interest is detailed in [Kat83] and includes activities such as cooking and sleeping. By correctly
identifying activities, it is possible to decide when to interact with the user in a smart setting [APS+17], provide
custom care such as nursing for the elderly [MAN+17], or help users who suffer from mild impairment [TNM18].
Inferring activities done by the user is an interesting problem typically addressed through either data-based or
knowledge-based methods [CHN+12]. The first method consists in learning activity models from preexisting
large-scale datasets of users’ behaviors by utilizing data mining and machine learning techniques. The built
models are probabilistic or statistical activity models such as Hidden Markov Model (HMM) or Bayesian networks,
followed by training and learning processes. Data-driven approaches are capable of handling uncertainty, while
often requiring large annotated datasets for training and learning. The second method consists in exploiting prior
knowledge in the domain of interest to construct activity models directly using formal logical reasoning, formal
models, and representation. Knowledge-driven approaches are semantically clear, but are typically poor at handling
uncertainty and temporal information [CHN+12]. We elaborate on such limitations in Section 9.4.2. Writing
specifications can be seen as a knowledge-based approach to describe the behavior of sensors. As such, we believe
that runtime verification is useful to describe the activity as a specification on sensor output. We formalize a
specification for the following ADL activities described in [CLRC17] (see Table 9.1). We re-use the traces to verify
that our detected activities are indeed in line with the schedule proposed. Figure 9.2 displays the reconstructed
schedule after detecting ADL with runtime verification. Each specification is represented by a monitor that outputs
(with some delay) for every timestamp (second) verdicts > or ⊥. To do this, the monitor finds the verdict for a
timestamp t then respawns to monitor t + 1. Verdict > indicates that the specification holds, that is, the activity is
being performed. The reconstructed schedule shows the eventual outcome of a specification for a given timestamp
ignoring delay. In reality some delay happens based on the specification itself, and the dependencies on other
monitors.

Meta-specifications. Specifications of the last group are defined on top of the other specifications. That is, we
refer to a meta specification as a specification that defines the interactions between various specifications. While
one can easily define specifications by defining predicates over existing ones, such as checking that the light switch
specification holds in all rooms or whether or not detecting an activity was performed on a specific floor or globally
in the house, we are interested more in specifications that relate to each other. We consider a meta specification that
reduces fire hazards in the house. In this case, we specify that the tenant should not cook and sleep at the same
time, as this increases the risk of fire. In addition to mutually excluding specifications, we can also constrain the
behavior of existing specifications. For example, we can specify a specification regulating the duration of watching
TV to be at most 10 timestamps.

9.2 Monitoring the Apartment

We show how we monitor the apartment using decentralized specifications, while highlighting their advantages.

9.2.1 Monitor Implementation

To monitor the apartment, we rely on LTL3 monitors [BLS11] (Section 2.1.2). We recall that an LTL3 monitor is a
complete and deterministic Moore automaton where states are labeled with the verdicts B3 = {>,⊥, ?}. Verdicts >
and ⊥ respectively indicate that the current execution complies and does not comply with the specification, while
verdict ? indicates that the verdict has not been determined yet. Verdicts > and ⊥ are called final, as once the
monitor outputs > or ⊥ for a given trace, it cannot output a different verdict for any suffix of that trace. Using LTL3
monitors for representing specifications allows us to take advantage of the multiple RV tools that convert different
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Figure 9.2: Detected ADL for Tuesday, Jan 31 2017. Time is in hours starting from 7:30.

specification languages to LTL3 monitors. For our monitoring, we use the THEMIS tool (Chapter 7) which is able to
use both ltl2mon [BLS11] and LamaConv [Ins] to generate monitors.

Example 36 (Check light switch) Let us consider property sc_light(i) (sensor check light): “Whenever a light
switch is triggered in a room i at some timestamp t, then the light must turn on at t + 1 until the switch is turned
off again”. We recall the LTL3 monitors for the property in Example 22. We define the monitors over the set of
atomic propositions extended with the room index, as we consider multiple rooms. Each monitor checks whether
the property is falsified (as it is a safety property). ∗

For the scope of this chapter and for clarity, we use LTL extended with two (syntactic) operators, mostly to
strengthen and relax time constraints. We consider the operator eventually within t (F≤t) which considers a
disjunction of next operators. It is defined as: F≤t ap def

= ap ∨ Xap ∨ XXap ∨ ...Xtap, where ap is an atomic
proposition. Intuitively, the eventually within states that ap holds within a given number of timestamps. Operator
F≤t allows us to relax the time constraints for a given atomic proposition. Similarly, we consider the operator
globally within t (G≤t) which is the dual of the previous operator. Operator G≤t is a conjunction of next operators.
G≤t ap def

= ap ∧ Xap ∧ XXap ∧ Xtap.

Example 37 (Check light switch modalities) The property expressed in Example 36 can be expressed in LTL as:
sc_light(i) def

= G(si =⇒ X(`i U¬si)). The property can be modified with the extra operators to relax or constrain
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the time on the light. The relaxed property sc_light′(i) def
= G(si =⇒ F≤3(`i U¬si)) allows the right-hand side of

the implication to hold within any of the next 3 timestamps instead of immediately after. The bounded property
sc_light′′(i) def

= G(si =⇒ G≤3(`i)) states that the light is on starting from the timestamp the switch is turned on
and the subsequent two (for a total of 3). An example of such a property is the restriction on watching TV for a
specific duration (Table 9.1) where restricttv def

= G(tv =⇒ F≤10 ¬tv). ∗

9.2.2 Using Decentralized Specifications

While simple specifications can be expressed with both LTL and automata, it quickly becomes a problem to scale
the formulae or account for hierarchies (see Sect. 9.2.3). As such, we use decentralized specifications (Chapter 6).

Overview. We recall from Chapter 6 that a decentralized specification considers the system as a set of components,
defines a set of monitors, additional atomic propositions that represent references to monitors, and attaches each
monitor to a component. A decentralized trace is a partial function that assigns to each component and timestamp
an event. Each monitor is a Moore automaton as described in Section 9.2.1 where the transition label is restricted
to only atomic propositions related to the component on which the monitor is attached, and references to other
monitors. A monitor reference is evaluated as if it were an oracle. That is, to evaluate a monitor reference mi at a
timestamp t, the monitor referenced (Ai) is executed starting from the initial state on the trace starting at t. The
atomic proposition mi at t takes the value of the final verdict reached by the monitor.

Example 38 (Decentralized light switch) Figure 6.2b shows the decentralized specification for the check light
property from Example 36. We have two monitorsAsc_lighti

andA`i . They are respectively attached to the light
switch, and light bulb components. In the former, the atomic propositions are either related to observations on the
component (si, switch on), or references to other monitors (m`i ). The light switch monitor first waits for the switch
to be on to reach q1. In q1, at some timestamp t, it needs to evaluate reference m`i by running the trace starting
from t on monitorA`i . ∗

Assumptions. The assumptions of decentralized specifications are sufficient to monitor smart homes. We recall
the assuptions: no monitors send messages that contain wrong information; no messages are lost, they are eventually
delivered in their entirety but possibly out-of-order; all components share one logical discrete clock marked by
round numbers indicating relevant transitions in the system specification. While security is a concern in the smart
apartment setting, the first two assumptions are met in this case study as the apartment sensor network operates on
the local network, and we expect monitors to be deployed by the sensor providers, and users of the apartment. The
last assumption is also met in the smart setting, as all sensors share a global clock.

Hierarchical dependencies. Decentralized specifications allow us to analyze the dependencies between various
monitors, and organize them in logical hierarchies represented as directed acyclic graphs (DAGs). The DAGs help
us relate specifications to other specifications and analyze the inter-dependent behavior of monitors. We elaborate
on the benefits of the hierarchical dependencies in Section 9.2.3.

Example 39 (Hierarchical dependencies) Figure 9.3 presents the dependency DAG of specification preparing.
We can see that specification preparing depends directly on both specifications kactivity and cooking.
Specification kactivity depends on specifications cubpoard, sink_water, presence, and fridge_door, as it
depends on the tenant being present in the kitchen, opening or closing cupboards or the fridge, or using the sink.
The later specifications do not depend on other specifications but on direct observations from the components. We
note that while presence is not used in this case study to determine the cooking activity, since a tenant can start
cooking and leave the kitchen. One could imagine that specifications can share dependencies, as such the hierarchy
is indeed best represented as a DAG. Let us consider the monitor checking specification cupboard. Since we have
5 cupboard doors, we have 5 sensors in total (1 for each door). The monitor observing the 5 different observations
simply checks if one is open and relays its verdict upwards, transmitting only the summary of observations instead
of the totality. In this example, the hierarchy can be seen starting from different sensors on the same component,
and expanding geographically to the different components in the room (kitchen). ∗
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preparing

kactivity cooking

sink_water fridge_door presencecupboard cooktop oven

_oven∗_cook∗_pres∗_fdoor∗_cold∗ _hot∗

_c2∗ _c3∗ _c4∗ _c5∗
_c1∗

Figure 9.3: Dependencies for preparing. * indicates an atomic proposition of a component.

Specifications list. The formulae associated with each specification from Table 9.1 are listed in Table 9.2. The
formulae are designed to be representative of behavior, we did not aim for a formula to encompass all possible user
behavior.

9.2.3 Advantages of Decentralized Specifications

Modularity and re-use. Monitor references in decentralized specifications allow specifications writers to modu-
larize behavior. Given that a monitor represents a specific specification, this same monitor can be re-used to define
more complex specifications at a higher level, without consideration for the details needed for this specification.
This allows specification writers to reason at various levels about the system specification.

Let us consider the ADL specification cooking (resp. sleeping) which specifies whether the tenant is cooking
(resp. sleeping) in the apartment. One can reason about the meta-specification firehazard using both cooking
and sleeping specifications without considering the lower level sensors that determine these specifications, that is

firehazard
def
= G(sleeping =⇒ ¬cooking).

While we can define cooking as

cooking
def
= kitchen_presence ∧ F≤5(kitchen_cooktop ∨ kitchen_oven).

Additionally, any specification that requires either sleeping or cooking specifications can re-use the verdict
outputted by their respective monitors. For example the specifications actfloor(0) and actfloor(1) require
the verdicts from monitors associated with cooking and sleeping, respectively, since cooking happens on the
ground floor while sleeping on the first floor. Furthermore, we can disjoin actfloor(0) and actfloor(1) to easily
specify that an activity has happened in the house, acthouse def

= actfloor(0) ∨ actfloor(1). While specification
acthouse can be seen as a quantified version of actfloor(i), we can use modular specifications for behavior, for
example we can verify the triggering of an alarm in the house within 5 timestamps of detecting a fire hazard, i.e.
checkalert

def
= firehazard =⇒ F≤5(firealert).

In addition to providing a higher level of abstraction and reasoning about specifications, the modular structure of
the specifications present three additional advantages. The first allows the sub-specifications to change without
affecting the meta-specifications, that is if the sub-specification cooking is changed (possibly to account for
different sensors), no changes need to be propagated to specifications firehazard, actfloor(0), acthouse,
and checkalert. The second advantage is controlling duplication of computation and communication, as such
sensors do not have to send their observations constantly to all monitors that verify the various specifications. The
specification cooking requires knowledge from the kitchen presence sensor, the kitchen cooktop (being enabled)
and the kitchen oven. Without any re-use these three sensors (presence, cooktop, and oven) need to send their
information to monitors checking: firehazard, actfloor(0), acthouse, and checkalert. The third advantage
is a consequence of modeling explicitly the dependencies between specifications. This allows the monitoring to
take advantage of such dependencies and place the monitors that depend on each other closer depending on the
hierarchy, either geographically (i.e., in the same room or floor) or logically (i.e., close to the monitors of the
dependent sub-specifications). Furthermore, knowing the explicit dependencies between specifications allows the
user to choose a placement for their monitors, adjusting the placement to the system architecture. In the case a
placement is not possible, it is possible to create intermediate specifications that simply relay verdicts of other
monitors, to transitively connect all components that are not connected.
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Table 9.2: List of specifications. A prefixed atomic proposition with m_ indicates that the monitor is deployed on
the component.

Name Formula

sc_light(i) G(switchi =⇒ X(lighti U¬switchi), i ∈ [0..3]
sc_ok

∧
i∈[0..3] sc_light(i)

m_toilet toilet_water
sink_usage G≤3(m_bathroom_sink_water)
m_bathroom_sink_water bathroom_sink_cold ∨ bathroom_sink_hot
shower_usage G≤2(m_bathroom_shower_water)
napping G≤25(m_bedroom_bed_pressure)
dressing F≤4(m_bedroom_closet_door ∨ m_bedroom_drawers))
reading m_bedroom_light ∧ F≤4(¬dressing ∧ ¬napping)
office_tv F≤3(m_office_tv)
computing F≤3(m_office_deskplug)
cooking F≤5(m_kitchen_cooktop ∨ m_kitchen_oven)
washing_dishes F≤3(m_kitchen_dishwasher ∨ m_kitchen_sink_water)
kactivity m_kitchen_presence ∧ F≤3(m_kitchen_sink_water ∨

m_kitchen_fridgedoor ∨ m_kitchen_cupboard)
preparing kitchen_activity ∧ ¬cooking
livingroom_tv F≤3(m_livingroom_tv ∧ m_livingroom_couch)
eating ¬m_kitchen_presence ∧G≤6(m_livingroom_table)

actfloor(0) cooking ∨ preparing ∨ eating ∨ washing_dishes ∨
livingroom_tv ∨ m_toilet

actfloor(1) computing ∨ dressing ∨ napping ∨ office_tv ∨ reading ∨
shower_usage ∨ sink_usage

acthouse actfloor(0) ∨ actfloor(1)
notwopeople ¬(actfloor(0) ∧ actfloor(1))
restricttv_office office_tv =⇒ F≤10(¬office_tv)
restricttv_living livingroom_tv =⇒ F≤10(¬livingroom_tv)
restricttv restricttv_living ∧ restricttv_office
firehazard napping =⇒ ¬cooking

Abstraction from implementation. Decentralized specifications define modular specifications that can be com-
posed together to form bigger and more complex specifications. One setback for learning-based techniques to
detect ADL is their specificity to the environment. That is, the training set is specific to a house layout, user profile
(i.e., elderly versus adults) [vKEK10].

By using references to monitors, we leave the implementation of the specification to be specific for the house or
user profile. Using our existing example, cooking is implemented based on the available sensors in the house,
which would change for different houses. However, the meta-specifications such as firehazard can be defined
independently from the implementation of both cooking and sleeping.

Furthermore, using monitor references, which are treated as oracles, opens the door to utilizing existing techniques
in the literature for non-automata based monitors. That is, as a reference is expected to eventually evaluate to > or
⊥, any implementation of a monitor that can return a final verdict for a given timestamp can be incorporated to
form more complex specifications. For example, one can use the various machine learning techniques [BCR09,
vKEK10, TIL04] to define monitors that detect specific ADLs, then reference them in order to define more complex
specifications.

Scalability. Decentralized specifications allow for a higher level of scalability when writing specifications, and
also when monitoring. By using decentralized specifications, we restrict a given monitor to atomic propositions
local to the component on which it is attached, and references to other monitors (see Section 9.2.2). This greatly
reduces the number of atomic propositions to consider when synthesizing the monitor and reduces its size, as the
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sub-specifications are offloaded to another monitor.

For example, let us consider writing specifications using LTL formulae. The classical algorithm that converts
LTL to Moore automata is doubly exponential in the size of the formula including all permutations of atomic
propositions (to form events) [BLS11]. As such reducing both the size of the formula and the number of atomic
propositions used in the formula helps significantly when synthesizing the monitors, allowing us to scale beyond the
limits of existing tools. For a large formula, it becomes impossible to generate a central monitor using the existing
synthesis techniques. Decentralized specifications provide a way to manage the large formula by subdividing it into
subformulae. The decomposition ensures that the formula evaluates to the same verdict given the same observations,
at the cost of added delay.

Example 40 (Synthesizing check light) Recall the system property sc_light(i) in Example 37 responsible for
verifying that in a room i a light switch does indeed turn a light bulb on until the switch is turned off. We recall the
LTL specification sc_light(i) def

= G(si =⇒ X(`i U¬si)). To verify the property across n rooms of the house, we
formulate a property sc_ok def

=
∧

i∈[0..n] sc_light(i). In the case of a decentralized specification the formula will
reference each monitor in each room, leading to a conjunction of n atomic propositions. However, in the case of
a centralized specification, the specification needs to be written as: sc_okcent def

=
∧

i∈[0...n] G(si =⇒ X(`i U¬si)),
which is significantly more complex as a formula consisting of 4n operators (to cover the sub-specification), along n
conjunctions, and defined over each sensor and light bulb atomic propositions (2n). Given that monitor synthesis is
doubly exponential, both ltl2mon [BLS11] and lamaconv [Ins] require significant resources and time to generate
the minimal Moore automaton (in our case1, both tools where unable to generate the monitor for n = 3 after a
timeout of one hour). ∗

9.3 Trace Replay with THEMIS

To perform monitoring we use THEMIS (Chapter 7) which is a tool for defining, handling, and benchmarking
decentralized specifications and their monitoring algorithms. For replaying the trace, we perform monitoring by
defining a start time, an end time and a polling interval. For this case study, for a given date, we use 07:30 as start
time, 17:30 as an end time, and a 1 second polling interval.

We first recall important aspects of monitoring with THEMIS in Section 9.3.1 Then, in Section 9.3.2, we elaborate
on the trace format provided in the public dataset, and our adaptation for replay to perform the monitoring. In
brief, the process consists of extracting each sensor data converting it to observations (atomic propositions and
verdicts), and passing the observation to a logical component for multiple related sensors. Finally, in Section 9.3.3,
we introduce extra considerations when using THEMIS for monitoring large traces.

9.3.1 Using THEMIS for Monitoring

Overview. We recall from Chapter 7 that THEMIS is a tool to facilitate the design, development, and analysis of
decentralized monitoring algorithms; developed using Java and AspectJ. It consists of a library and command-line
tools. THEMIS provides an API, data structures, and measures for decentralized monitoring. These building blocks
can be reused or extended to modify existing algorithms, design new algorithms, and elaborate new approaches to
assess existing algorithms. THEMIS encompasses existing approaches [BKZ15, CF16a] that focus on presenting
one global formula of the system from which they derive multiple specifications, and in addition supports any
decentralized specification.

Monitoring. THEMIS defines two phases for a monitoring algorithm: setup and monitor. In the first phase, the
algorithm creates and initializes the monitors, connects them to each other so they can communicate, and attaches
them to components so they receive the observations generated by components. In the second phase, each monitor
receives observations at a timestamp based on the component it is attached to. The monitor can then perform some
computation, communicate with other monitors, abort monitoring or report a verdict. The two distinct phases

1On an Intel(R) Core(TM) i7-6700HQ CPU, using 16GB RAM, and running openjdk 1.8.0_172, with ltl2mon 0.0.7.
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separate the monitor generation (monitor synthesis) problem from the monitoring, giving algorithms the freedom to
generate monitors and deploy them on components, while integrating with existing tools for monitor synthesis such
as [BLS11, Ins]. The monitors used in this case study use similar logic than choreography [CF16a], as they are
defined over a shared global clock. All monitors start monitoring at t = 0. A monitor monitors the compliance of
the specification for a given timestamp t, which could take a fixed delay d to check. After reaching the delay at t + d,
the monitor reports the verdict for t to all other monitors that depend on it, and starts monitoring the specification
again for t + 1 (i.e., it respawns). As such, the communication between monitors consists of sending verdicts for
given timestamps.

Data structures. THEMIS provides two main data structures for monitoring: memory and execution history
encoding (EHE), they are detailed in Chapter 5. The memory buffers all observations the monitor received, either
from being attached to a component or from other monitors. The EHE encodes the execution of the underlying
automaton, keeping track of potential states when receiving partial observations. In brief, an EHE can be modeled
as a partial function that associates a timestamp t and a state q of the automaton with a boolean expression e,
whenever e holds, we are sure that the automaton is in state q at timestamp t. As such, EHE relies on boolean
simplification to determine the state of the automaton. The memory footprint for monitors consists of the sizes of
their memory and EHE.

9.3.2 Generating the Trace

Provided trace. The trace from [CLRC17] is given as a database with a table for each sensor. We extract each
table as a csv file for each sensor. The provided sensor data is stored as entries of values associated with timestamps,
representing the changes in the sensor data across time. Typically, a new entry is provided whenever a change in
the sensor data occurs. The data provided either consists of Boolean domains or numbers such as integers or reals
(double).

Generating atomic propositions. The sensor data needs to be processed to create observations, as LTL3 monitors
(see Section 9.2.1) operate on atomic propositions. Each sensor is implemented as an input (Periphery in THEMIS)
to a logical component. For example, for the shower water, we use both cold and hot water sensors but define only
a single component (“shower water”), from an RV perspective, “hot” and “cold” are multiple observations passed
to the “shower water” component. To process different sensor data, we implemented two peripheries: SensorBool
and SensorThresh. The first periphery parses Boolean values from the csv file associated with timestamps. The
processing associates Boolean values > (resp. ⊥) based on sensor data such as: "ON" (resp. "OFF"), and "OPEN"
(resp. "CLOSED"). The second periphery reads real (double) values, and returns a Boolean based on whether the
number is below or above a certain threshold. Both peripheries associate the generated Boolean with a given atomic
proposition to generate an observation.

Synchronizing traces. The provided dataset only provides sensor updates, that is, the data only contains times-
tamps and values for a sensor when the value changes. Our monitoring strategy, however, requires polling the
devices at given fixed time intervals. Since the system has a global clock, to synchronize observations, our periphery
implementations synchronize on a date at the start and an increase (in our case 1 second) and a default Boolean
value for the observation. When polled, the periphery returns the default value if nothing is observed yet, or the
last value observed otherwise. The last value observed is updated when changes occur in the csv file. In short, we
interpolate values between changes to return the oldest value before a change.

Determining the polling rate. We take advantage of the system’s global clock to evaluate the specification
synchronously for all components. As such, we need a fixed interval to poll the monitors in order to evaluate the
specification, that is, take the necessary transition in each of the automata. We refer to this interval as the polling
rate. The polling rate determines the frequency of evaluation of the specification; the higher the rate, the more
rounds, and the more monitors process and communicate. To determine the minimal rate, we consider the rate of
change for all sensors involved in the specification. We are interested in ensuring that no sensor changes twice in
between the evaluation of the specification. To do so, we write a simple program that processes the trace files for
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Listing 18 Rates of change for sensor data. The highlighted sensors are skipped since their data never change.
1 livingroom_table SensorBool 28.csv Min: 3000 Max: 230704000 (ms) [OK]
2 kitchen_dishwasher SensorThresh 167.csv Min: 2190810000 Max: 2190810000 (ms) [SKIP]
3 office_deskplug SensorThresh 119.csv Min: 6000 Max: 231159000 (ms) [OK]
4 office_tv SensorBool 283.csv Min: 420000 Max: 343980000 (ms) [OK]
5 livingroom_couch SensorBool 45.csv Min: 3000 Max: 247031000 (ms) [OK]
6 kitchen_presence SensorBool 269.csv Min: 2000 Max: 230702000 (ms) [OK]
7 kitchen_c1 SensorBool 300.csv Min: 1000 Max: 259080000 (ms) [OK]
8 kitchen_c2 SensorBool 315.csv Min: 1000 Max: 431493000 (ms) [OK]
9 kitchen_c3 SensorBool 316.csv Min: 1000 Max: 259095000 (ms) [OK]

10 kitchen_c4 SensorBool 317.csv Min: 1000 Max: 259051000 (ms) [OK]
11 kitchen_c5 SensorBool 355.csv Min: 1000 Max: 779361000 (ms) [OK]
12 kitchen_sink_hotwater SensorThresh 184.csv Min: 12000 Max: 260085000 (ms) [OK]
13 kitchen_sink_coldwater SensorThresh 189.csv Min: 12000 Max: 260501000 (ms) [OK]
14 bedroom_closet_door SensorBool 339.csv Min: 7000 Max: 605093000 (ms) [OK]
15 bedroom_luminosity SensorThresh 120.csv Min: 1000 Max: 254250000 (ms) [OK]
16 kitchen_cooktop SensorThresh 36.csv Min: 7000 Max: 260333000 (ms) [OK]
17 bathroom_shower_coldwater SensorThresh 22.csv Min: 12000 Max: 345139000 (ms) [OK]
18 bathroom_shower_hotwater SensorThresh 201.csv Min: 12000 Max: 345066000 (ms) [OK]
19 kitchen_fridge_door SensorBool 314.csv Min: 1000 Max: 260749000 (ms) [OK]
20 livingroom_tv SensorBool 282.csv Min: 840000 Max: 344040000 (ms) [OK]
21 toilet SensorThresh 254.csv Min: 12000 Max: 518222000 (ms) [OK]
22 bathroom_sink_coldwater SensorThresh 86.csv Min: 12000 Max: 260437000 (ms) [OK]
23 bathroom_sink_hotwater SensorThresh 264.csv Min: 25000 Max: 25000 (ms) [SKIP]
24 kitchen_oven SensorThresh 232.csv Min: 2191235000 Max: 2191235000 (ms) [SKIP]
25 bedroom_drawer_1 SensorBool 357.csv Min: 1000 Max: 345825000 (ms) [OK]
26 bedroom_drawer_2 SensorBool 358.csv Min: 2000 Max: 515617000 (ms) [OK]
27 bedroom_bed_pressure SensorThresh 349.csv Min: 1000 Max: 342361000 (ms) [OK]
28

29 (Detected Rate) Min: 1000 Max: 779361000 (ms)

each sensor in an input specification, to determine the rate of change. Listing 18 shows an example output on the
27 sensors used for ADL detection. It shows the atomic proposition associated with the sensor, the sensor type,
the trace file, the fastest change rate (min), and the slowest change rate (max), and whether or not it is skipped.
The rates are provided in milliseconds. Then, we aggregate over all sensors by computing the fastest and slowest.
Sensors are not included in the aggregate computation (i.e., skipped) if no change appears in their entire trace file.
In this case, we choose 1 second as our polling rate, as no sensor will change twice within a second.

9.3.3 Considerations for Large Traces

Managing the trace length (36,000) is an issue for decentralized specifications. They rely on eventual consistency
and will wait on input for the length of the trace, which requires a lot of memory. This was not an issue for the
small traces (of length 100) used to compare algorithms. One can see that utilizing the data structures and monitors
as presented in Section 9.3 poses a challenge due to the large trace length and specific specifications, as delay could
grow to be the size of the trace.

Garbage collection. For processing large traces we utilize implementation MemoryIndexed of the data structure
memory that is used to store observations to add garbage collection. Observations are indexed by timestamp. When
the monitor concludes with a final verdict for timestamp t, and respawns to monitor timestamp t + 1, all observations
associated with a timestamp less than or equal to t are removed from the memory.

Delay considerations. The EHE data structure is designed to be as general as possible, and keeps expanding
while it has not detected the state the automaton is in. For large trace sizes, this can cause an EHE to grow quickly
to consume all available memory and prevents the monitoring from completion. This is prominently the case when
monitoring safety properties. Safety properties such as p def

= G(ap) will only conclude when ap is ⊥. So long as
ap is >, the monitor checking p does not reach a final verdict, and does not report it to its parent. Consequently,
a monitor that checks a safety property that is never violated, incurs a delay that is as long as the trace size. To
alleviate this problem, we carefully crafted the specifications to apply operators G and F on subspecifications that
can be evaluated within a very small delay. Another approach is to limit the expansion of the EHE to a fixed length
(assuming a fixed maximal delay), and use a sliding window to maintain the limit. This approach, however, may
cause monitoring not to conclude in some cases.
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9.4 Assessing the Monitoring of the Appartment

Monitoring the smart apartment requires leveraging the interdependencies between specifications to be able to
scale, beyond monitoring system properties, to more complex meta-specifications (as detailed in Section 9.1.2). We
assess using decentralized specifications to monitor the apartment by conducting three scenarios. The first scenario
(Section 9.4.1) evaluates the advantages of using decentralized specifications presented in Section 9.2.3 (modularity,
scalability, and re-use) by looking at the complexity of monitor synthesis, and communication and computation
costs when adding more complex specifications that re-use sub-specifications. The second scenario (Section 9.4.2)
evaluates the effectiveness of detecting ADL by looking at various detection measures such as precision and recall.
The third scenario (Section 9.4.3) portrays the advantages of modularity by (i) adapting specification napping to
use different sensors without modifying dependencies, and (ii) porting specification firehazard to a completely
different environment (using the ARAS dataset [AEIE13]).

9.4.1 Monitoring Efficiency and Hierarchies

Monitor synthesis. Table 9.1 displays the number of atomic propositions referenced by each specification for
the decentralized (|APd|) and the centralized (|APc|) settings. Column d indicates the maximum depth of the
directed acyclic graph of dependencies, so as to assess how many levels of sub-specifications need to be computed.
When d = 0, it indicates that the specification can be evaluated directly by the monitor placed on the component,
while d = 1 indicates that the monitor has to poll at most 1 monitor for its verdict (which typically relays the
component observations). More generally, when d = n, it indicates that the specification depends on a monitor
that has at most depth n − 1. The atomic propositions indicate either direct references to sensor observations (in
the centralized setting) or references to either sensor observations or dependent monitors (in the decentralized
setting). For certain specifications such as toilet which relies only on the water sensor in the toilet to be detected,
there is no difference between using a centralized or decentralized specification, as it resolves to the observations.
Reduction becomes more pronounced when specifications re-use other specifications as sub-specifications. For
example, specification acthouse def

= actfloor(0) ∨ actfloor(1), when decentralized, uses only 2 references (for
each of the sub-specifications). However, when expanded, it references all 27 sensors used to detect activities.
Additionally, specification notwopeople def

= ¬(actfloor(0)∧ actfloor(1)) does not re-use the sub-specifications
and requires all sensors again. This greatly reduces the formula size and allows us to synthesize the monitors
needed to check the formulae, as the synthesis algorithm is doubly exponential as mentioned in Section 9.2.3.

Assessing re-use and scalability. Reducing the size of the atomic propositions needed for a specification not
only affects monitor synthesis, but also performance, as atomic propositions represent the information needed
to determine the specification (Section 9.2.3). To assess re-use and scalability, we perform two tasks and gather
two measures pertaining to computation and communication, and present results in Figure 9.4. The first task
compares a centralized (SW-C) and a decentralized (SW-D) version of specification sc_ok presented in Example 40
using only 2 rooms. The second task introduces large meta-specifications on top of the ADL specifications to
check scalability. Firstly, we measure the communication and computation for monitoring ADL specifications
(ADL). Secondly, we introduce specifications actfloor(0), actfloor(1) and acthouse (ADL+H) as they require
information about all sensors for ADL. Thirdly, we add specification notwopeople (ADL+H+2), as it re-uses the
same sub-specifications as specification acthouse. Lastly, we show all measures for all meta-specifications in
Table 9.1 (ADL+M). We re-use two measures from Section 8.2: the total number of simplifications the monitors
are doing, and the total number of messages transferred. These measures are provided directly with THEMIS. The
total number of simplifications (#Simplifications) abstracts the computation done by the monitors, as they attempt
to simplify Boolean expressions that represent automaton states, which are the basic operations for maintaining the
monitoring data structures (Section 5.2). The total number of messages abstracts the communication (#Msgs), as
our messages are of fixed length, they also represent the total data transferred. Both measures are normalized by
the number of timestamps in the execution (36,000). The resulting normalized measures represent the number of
simplifications and messages per round.

Results. Figure 9.4a shows the normalized number of messages sent by all monitors. For the first task, we notice
that the number of messages is indeed lower in the decentralized setting, SW-D sends on average 2 messages per
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Figure 9.4: Scalability of communication and computations in decentralized specifications.

timestamp less than SW-C, which corresponds to the difference in the number of atomic propositions referenced (6
for SW-D and 8 for SW-C). For the second task, we notice that on the baseline for ADL, we observe 24 messages
per timestamp, a smaller number than the sensors count (27). This is because some ADL like toilet are directly
evaluated on the sensor without communicating, and other ADL like preparing, re-use other ADL specifications
like kactivity. By introducing the 3 meta-specifications stating that an activity occurred on a floor or globally
in a house, the number of messages per round only increases by 15. This also coincides with the number of
atomic propositions for the specifications (6 for actfloor(0), 7 for actfloor(1), and 2 for acthouse) as those
monitors depend in total on 15 other monitors to relay their verdicts. This costs much less than polling 16 sensors
to determine actfloor(0), 11 sensors to determine actfloor(1), and 27 (a total of 54) to determine acthouse.
To verify this, we notice that the addition of notwopeople (ADL+H+2) that needs information from all 27 sensors,
only increases the total number of messages per timestamp by 2. The specification notwopeople reuses the
verdicts of the two monitors associated with each actfloor specification. After adding all the meta-specifications
(ADL+M), the total number of messages per timestamp is 46, which is less than the number needed to verify adding
actfloor, and acthouse in a centralized setting (54). We notice a similar effect for computation (Figure 9.4b).

9.4.2 ADL Detection using RV

Measurements. Table 9.3 displays the effectiveness of using RV to monitor all ADL specifications on the trace
of three days with different schedules. To assess the effectiveness, we considered the provided self-annotated data
from [CLRC17], where the user annotated the start and end of each activity. We measure precision, recall and F1
(the geometric mean of precision and recall). To measure precision, we consider a true positive when the verdict >
of a monitor for a given timestamp fell indeed in the self-annotated interval for the activity. To measure recall, we
measure the proportion of the intervals that have been determined > using RV. This approach is more fine-grained
than the approach used in [LLR+17] where the precision and recall are computed for the start and end of intervals.

Results. The effectiveness of detection depends highly on the specification. Our approach performs well for the
specifications computing, cooking, office_tv, as it exhibits high precision and high recall. The second group of
specifications contains specifications such as shower_usage, and livingroom_tv. It exhibits high precision but
medium recall, that is, we were able to determine around 40 to 50% of all the timestamps where the specifications
held according to the person annotating, without any false positives. The third group is similar to the second group
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Table 9.3: Precision, Recall, and F1 of monitoring all ADL specifications on three days with different schedules.

Tuesday, Jan 31 2017 Monday, Feb 20 2017 Tuesday, Feb 21 2017
Specification Precision Recall F1 Precision Recall F1 Precision Recall F1

computing 0.98 0.99 0.99 0.94 0.99 0.96 0.99 0.99 0.99
office_tv 1.00 0.80 0.89 1.00 0.94 0.97 -
cooking 0.88 0.88 0.88 0.90 0.93 0.92 -

shower_usage 1.00 0.50 0.67 - 1.00 0.63 0.77
washing_dishes 1.00 0.47 0.64 0.93 0.63 0.75 -
livingroom_tv 1.00 0.43 0.60 - 1.00 0.47 0.64
dressing 1.00 0.41 0.58 1.00 0.31 0.47 -

toilet∗ 1.00 0.18 0.30 - 0.75 0.24 0.36
sink_usage 1.00 0.13 0.23 1.00 0.24 0.35 0.003 0.16 0.01

eating 0.61 0.35 0.44 0.70 0.73 0.71 -

napping 0.43 0.95 0.60 0.38 0.94 0.54 -
preparing 0.23 0.77 0.35 0.21 0.79 0.34 -

reading 0.37 0.04 0.06 0.02 0.10 0.03 -

but has very low recall (13-18%) and contains the specifications toilet and sink_usage. We notice that for
sink_usage specific user behavior can throw it off, as seen for the trace of Feb 21, we elaborate on the limitations
in the next paragraph. The fourth group, which includes the specifications napping and preparing, shows high
recall but a high rate of false positives. And finally, specification reading is not properly detected, as it has a high
rate of false positives and covers almost no annotated intervals.

Limitations of RV for detecting ADL. The limitations of using RV to detect ADL are due to the modeling. As
mentioned in Section 9.1.2, RV can be seen as a knowledge-based approach to activity detection, as such it suffers
from similar weaknesses and limitations [CHN+12]. The activity is described as a rigid formal specification over the
sensor data, and this has two consequences. Firstly, since RV relies purely on sensor data, activities which cannot be
inferred from existing sensors will be poorly detected or not detected at all. This is the case for reading, as there
are no sensors to indicate that the tenant is reading. We infer reading by checking that the light is on in the room and
no other specified activity holds. Secondly, given that specifications are rigid, we expect the user to behave exactly
as specified for the activity to be detected, any minor deviation results in the activity not being detected (as seen in
on Feb 21). To illustrate this point, the specification computing relies on the power consumption of the plug in
the office. Had the tenant been charging his phone instead of computing, the recall would have suffered greatly.
Another great example of this is the shower_usage specification, that is captured by inspecting the water usage of
the shower. The time the tenant spends getting into the shower and out of the shower will not be considered, which
greatly impacts recall. The above issues are further compounded by the annotation being carried out by a person.
The annotator can for example take a few seconds to annotate some events which could impact recall, especially
for short intervals of activity. However, even with the inherent limitations of using knowledge-based approaches,
our observed groups and results fall within the expected range, of knowledge-based approaches such as [LLR+17],
and also have similar effectiveness as model-based SVM approaches such as [CFC15]. We elaborate on how the
introduced modularity from decentralized specifications can alleviate some of these issues in Section 9.4.3.

9.4.3 Specification Adaptation for ADL Detection

Decentralized specifications introduce numerous advantages (see Section 9.2.3) for monitoring hierarchical systems
that can change. We illustrated in Section 9.4.1 the scalability of decentralized specifications with hierarchies.
Decentralized specifications allows specifications to be written with references to other specifications. The
references allow specifications to be modular, changing the referenced specification can be done transparently with
no modification to the specifications that depend on it. In this section, we illustrate the advantages of modularity
in two cases. In the first case, we improve the detection of the activity napping by adding relevant sensors. The
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Table 9.4: Modifying the decentralized specification to improve detection, and adapt to new environment.

(a) Refining napping using the bedroom sensors: bed pressure
(weight), presence (pres), and light (`).

Formula Precision Recall F1

G≤25(weight) 0.43 0.95 0.60
G≤3(weight) 0.43 0.99 0.60
F≤3(weight) 0.43 1.0 0.60

G≤3(pres ∧ weight) 0.34 0.14 0.20
G≤3(¬` ∧ weight) 1.00 0.97 0.99

(b) Modifications to detect firehazard in ARAS.

Specification Formula

preparing F≤3(m_kdrawer ∨ m_fridge ∨ m_cupboard)
cooking preparing

beds bed1 ∨ bed2

beds′ bed1 ∧ bed2

napping G≤25(beds)

firehazard napping =⇒ ¬cooking

change only requires changing the monitor for napping, and no change is necessary for the remaining dependent
specifications. In the second case, we apply the specification firehazard and all its dependencies on a completely
different environment using the ARAS dataset [AEIE13].

Improving activity detection. We modify the specification napping to better capture the activity. This requires
no change to specifications that depend on napping. Table 9.4a shows the changes in precision and recall, for
various versions of the specification napping. We modify the formula to relax the time constraints on the output of
the bed pressure sensor. We notice, that while this could slightly improve recall (0.95 to 1), it does not translate to
any precision improvement (it remains at 0.43). We explore using additional sensors in the room to capture the
specification better. Using the presence sensor proves to be detrimental as it reduces precision to 0.34 and recall to
0.14. This is reasonable, as the presence sensor is a motion detector, and when someone is sleeping there may be no
motion at all. However, people typically tend to turn the lights off when sleeping. Using the additional light sensor
to detect lights are off, helps us increase precision to 1 and recall to 0.99. One could see that the effect of ADL
detection is behavior specific, a tenant that sleeps with lights on will have undetected sleep using our specification.
Being able to change the specific specification without impacting the rest of the specification provides the flexibility
to tune the ADL detection to specific users and behaviors.

Adapting to new environments. In Section 9.1.2 we mentioned that ADL can be challenging as the detection of
the specification does not only depend on the user behavior, but also on the environment in which it is monitored. In
the context of learning techniques, using information learned from one environment to apply it to detection of ADL
in other environments is discussed in [vKEK10]. Since decentralized specifications provide both a hierarchical
and modular approach to designing specifications, it is possible to adapt specifications to new environment, by
only changing the relevant parts or dependencies, and reasoning at the appropriate level. For instance, while
specifications specifying ADL may change depending on the sensors and user behavior, meta-specifications do not
necessarily change. We adapt specification firehazard and all its dependencies in the ARAS [AEIE13] dataset.
The ARAS dataset features contact, pressure, distance, and light sensors, recording the interactions of two tenants
with the sensors over a period of 30 days.

Table 9.4b shows the changes in the decentralized specification compared with that of Amiqual4Home found in
Table 9.2. For activity preparing, we follow a similar pattern, looking at the usage of cubpoards, fridge, and
kitchen drawers. Thus, we adapt the formula to reflect the available sensors in the kitchen. However, the ARAS
dataset does not provide any electricity sensors for appliances, nor any way to detect heat being turned on. As
such it is impossible to detect cooking using any sensors. Since we cannot tell preparing and cooking apart,
we define cooking to simply be equivalent to preparing. Notice how in this case, we inverted the dependency
from Figure 9.3 (in ARAS, cooking depends on preparing). The ARAS dataset records the behavior of two
people, instead of just one. As such, activity napping needs to be adjusted for the two beds. There are two ways
to do so, the first assumes either one of the tenants is napping (beds), and the second assumes both are napping
simultaneously (beds′). We notice that the meta-specification firehazard remains unchanged. However, it has
two different interpretations. If we use beds, then it is possible to trigger firehazard when one tenant is cooking
while the other is sleeping. We verify that, and notice that it is indeed falsified in 8 days (7, 9, 16, 17-19, 24, 27).
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Using beds′, allows us to only capture firehazard when both tenants are sleeping. It is then possible to refer
napping to allnapping and anynapping, then using firehazard on allnapping, which would apply in both
scenarios.

Discussion. We see that modularity provides several advantages. It allows us to make local change to specifica-
tions that do not need to be propagated upwards. It also makes it possible to generalize and abstract the specification
to adapt to multiple environments. Decentralized specifications allow specifications to be written in a modular and
adaptable fashion, allowing specifications to be adapted to target changes in user behavior and environment. It can
be seen much like component-based design [SGM02], which separate the implementation of each component in
software, from its interaction with other components.

9.5 Related Work

We present similar or useful techniques for detecting ADL in a smart apartment that use log analysis and complex
event processing. Then, we present techniques from stream-based RV that can be extended for monitoring smart
apartments.

ADL detection using log analysis. Detecting ADL can be performed using trace analysis tools. The approach
in [LLR+17] defines parametric events using Model Checking Language (MCL) [MT08] based on the modal
mu-calculus (inspired by temporal logic and regular expressions). Traces are read and transformed into actions, then
actions are matched against the specifications to determine locations in the trace that match ADL. Five ADL (sleep,
using toilets, cooking, showering, and washing dishes) are specified and checked in the same smart apartment as
our work. While this technique is able to detect ADL activities, it amounts to checking traces offline, and a high
level of post-processing is required to analyze the data. In [BCE+16], the authors describe an approach for log
analysis at very large scale. The specification is expressed using Metric First Order Temporal Logic (MFOTL), and
logs are expressed as a temporal structure. The authors develop a MapReduce monitoring algorithm to analyze
logs generated by more than 35,000 computers, producing approximately 1 TB of log data each day. While this
approach is designed for distributed systems, does not map dependencies, and works offline, it could be used to
process and monitor rich specifications over sensor data seen as log files.

ADL detection using Complex Event Processing. Reasoning at a much higher level of abstraction than sensor
data, the approach in [HGB16] attempts to detect ADL by analyzing the electrical consumption in the household. To
do so, it employs techniques from Complex Event Processing (CEP), in which data is fed as streams and processed
using various functions to finally output a stream of data. In this work, the ADL detection is split into two phases,
one which detects peaks and plateaus of the various electrical devices, and the second phase uses those to indicate
whether or not an appliance is being used. This illustrates a transformation from low-level data (sensor signal)
to a high-level abstraction (an appliance is being used). The use of CEP for detecting ADL is promising, as it
allows for similar scalability and abstraction. However, CEP’s model of named streams makes it hard to analyze the
specification formally, making little distinction between specification and implementation of the monitoring logic.

ADL detection using Runtime Verification. Similarly to CEP but focusing on Boolean verdicts, various stream-
based RV techniques have been elaborated such as LOLA [DSS+05] which are used to verify correctness properties
for synchronous systems such as the PCI bus protocol and a memory controller. A more recent approach uses the
Temporal Stream-Based Specification Language (TeSSLa) to verify embedded systems using FPGAs [DDG+18].
Stream-based RV is particularly fast and effective for verifying lengthy parametric traces. However, it is unclear
how these approaches handle monitor synthesis for a large number of components and account for the hierarchy in
the system.

Discussion. Stream-based systems such as stream-based RV and CEP are bottom-up. Data in streams is eventually
aggregated into more complex information and relayed to a higher level. Decentralized specifications also support
top-down approaches, which would increase the efficiency of monitoring large and hierarchical systems. To
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illustrate the point, consider the decentralized specification in Figure 6.2b. In the automaton Asc_lighti
, the

evaluation of the dependent monitor A`i only occurs when reaching q1, so long as the automaton is in q0, no
interaction with the dependent monitor is necessary. This top-down feedback can be used to naturally optimize
dependencies and increase efficiency. Because of the oracle-based implementation of decentralized specifications,
it is possible to integrate any monitoring reference that eventually returns a verdict. One could imagine integrating
other stream-based monitors or even data-driven ADL detection approaches. The integration works both ways, as
monitors can be considered a (blocking) stream of verdicts for the other techniques.

Conclusion and Future Work

Conclusion. Monitoring a smart apartment presents RV with interesting new problems as it requires a scalable
approach that is compositional, dynamic, and able to handle a multitude of devices. This is due to the hierarchical
structure imposed by either limited communication capabilities of devices across geographical areas or the
dependencies between various specifications. Attempting to solve such problems with centralized specifications is
met with several obstacles at the level of monitor synthesis techniques (as we are presented with large formulae),
and also at the level of monitoring as one needs to model interdependencies between formulae and re-use the
sub-specifications used to build more complex specifications. We illustrate how decentralized specifications tackle
such systems by explicitly modeling of interdependencies between specifications. Furthermore, we illustrate
monitoring specifications that detect ADL in addition to system properties and even more specifications defined
over both types of specifications.

Future work. We believe that the use of decentralized specifications could be further extended to bring mon-
itoring closer to data (collected on sensors), and make RV a suitable verification technique for edge computing.
One challenge of the case study was to determine the correct sampling period for monitor to operate. Further
investigation is required to layout the tradeoffs between the sampling period, communication overhead, and energy
consumption. Also, decentralization is only supported by specifications based on the standard (point-based) LTL3
semantics. We believe that the use and decentralization of richer specification languages are desirable. For instance,
we consider (i) using a counting semantics able to compute the number of steps needed to witness the satisfaction
or violation of a specification [BBNR18] (ii) using techniques allowing to deal with uncertainty (e.g., in case of
message loss) [BG13] (iii) using spatio-temporal specifications (e.g. [HJK+15]) to reason on physical locations
in the house, and (iv) using a quantitative semantics possibly with time [BFMU17]. Finally, we consider using
runtime enforcement [Fal10, FMFR11, FMRS18] techniques (especially those for timed specifications [FJMP16])
to guarantee system properties and improve safety in the house (e.g., disabling cooking equipment whenever speci-
fication firehazard is violated). This requires to define the foundations for decentralized runtime enforcement on
the theoretical side, and provide houses and monitors with actuators on the practical side.
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Chapter abstract

In this chapter, we review some of the main RV approaches and tools that handle multithreaded Java programs to
highlight the challenges RV faces when targeting multithreaded programs. We recall that programs are instrumented
to extract necessary information from the execution and feed it to monitors tasked with checking the properties.
Parallel programs generally introduce an added level of complexity on the program execution due to concurrency. A
concurrent execution of a parallel program is best represented as a partial order. A large number of RV approaches
generate monitors using formalisms that rely on total order, while more recent approaches utilize formalisms that
consider multiple traces. We discuss their assumptions, limitations, expressiveness, and suitability when tackling
parallel programs such as producer-consumer and readers-writers. By analyzing the interplay between specification
formalisms and concurrent executions of programs, we identify four questions RV practitioners may ask themselves
to classify and determine the situations in which it is sound to use the existing tools and approaches.
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10.0:

Listing 10.1: A shared queue for producer-consumer.
1 p u b l i c c l a s s SynchQueue {
2 p r i v a t e L i n k e d L i s t < I n t e g e r > q = new L i n k e d L i s t < I n t e g e r > ( ) ;
3 p u b l i c vo id produce ( I n t e g e r v ) { q . add ( v ) ; }
4 p u b l i c I n t e g e r consume ( ) { re turn q . p o l l ( ) ; }
5 }

Thread 0 (Producer) Thread 1 (Consumer)

sq.produce(0);

sq.produce(1);

sq.consume(); //0

sq.consume(); //1

1

3

2

4

Figure 10.1: Operations for a single producer and a single consumer thread operating on a shared queue (sq).
Shaded circles specify a given number associated with the statement.

Introduction

Traces typically contain operations and events that a program executes. They are versatile: they serve to analyze,
verify and characterize the behavior of a program. A single trace records information of a program execution.
Information serves to profile the run of a program [ABF+10] so as to optimize its performance. Alternatively, a
trace abstracts a single program execution, to verify behavioral properties expressed using formal specifications.
A collection of traces model the program behavior as it allows to reason about possible executions or states. As
such, multiple traces serve to check for concurrency properties [LFKV18] such as absence of data races [HMR14,
SWYS11] and deadlock freedom [HR04].

In RV, Programs are instrumented to extract necessary information from the execution and feed it to monitors
(Section 1.2). This information is typically referred to as the trace [RH16]. Monitors are synthesized from
behavioral properties, they check if the trace complies with the properties. From the monitor perspective, the system
is a black box; the trace is the sole system information provided. Therefore, for any RV technique, providing traces
with correct and sufficient information is necessary for sound and expressive monitoring1.

Parallel programs introduce an added level of complexity because of concurrency. The introduction of concurrency
can result in the collected trace not being representative of the actual concurrent execution of a parallel program.
A concurrent execution is best modeled as a partial order over actions executed by the program. The actions can
represent function calls, or even instructions executed at runtime. The order typically relates actions based on time,
it states that some actions happened before other actions. Actions that are incomparable are typically said to be
concurrent. This model is compatible with various formalisms that define the behavior of concurrent programs such
as weak memory consistency models [AG96, ANB+95, MPA05], Mazurkiewicz traces [Maz86, GK10], parallel
series [LW01], Message Sequence Charts graphs [MR04], and Petri Nets [NPW81]. We introduce a text-book
example of a multithreaded program, producer-consumer in Example 41.

Example 41 (Producer-consumer) We consider the classical producer-consumer example where a thread pushes
items to a shared queue (generating a produce event), and another thread consumes items (one at a time) from the
queue for processing (generating a consume event). We specify that consumers must not remove an item unless
the queue contains one, and all items placed on the queue must be eventually consumed. Figure 10.1 illustrates
the statements executed by two different threads: thread 0, and thread 1, representing respectively a producer and
a consumer. Each statement is given a number for clarity. Both the producer and consumer use a shared queue
shown in Listing 10.1. Statements in different threads can execute concurrently. We illustrate some correct and
incorrect executions. Two correct executions have the following orders: 1 2 3 4 and 1 3 2 4 ; they comply with
the specification. The execution with the order: 2 1 3 4 is incorrect, as a consume attempts to retrieve an element
from an empty queue. The execution with only the statements: 1 3 2 is incorrect, as there remains an element to be
consumed. The execution with the order: 2 4 1 3 violates both conditions in the specification, since two consume
events happen when the queue is empty, and after the executions there are two elements left to be consumed. ∗

1By soundness, we refer to the general principle of monitors detecting specification violation or compliance only when the actual system
produces behavior that respectively violates or complies with the specification.
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1Thread 0

Thread 1

2 4

3

Program/Concurrent Execution

Instrumentation

1

3

2 4

1 2

3

4

Linear Traces

Mϕ

Monitor

Specification (ϕ) Verdict

true

false

Figure 10.2: RV flow and the impact of linearizing traces. Before runtime, RV is applied to a program with a
concurrent execution (dashed): a monitorMϕ is synthesized from a property ϕ, and the program is instrumented to
retrieve its relevant events. At runtime, we observe two possible linear traces that could lead to verdicts (true or
false) when processed by the same monitor.

Monitoring multithreaded programs. RV has initially focused on utilizing totally ordered traces, as it uses
formalisms inspired from Linear Temporal Logic (LTL) or finite-state machines as specifications [LS09b, BHL+10,
RCR15, MJG+12], until recently with the introduction of stream-based RV [DSS+05, HKG17, DGH+17], decen-
tralized monitoring [BF12], and RV of hyperproperties [CS10]. Most of the top2 existing tools for the online
monitoring of Java programs rely on totally ordered traces and provide multithreaded monitoring support using
one or more of the three modes. The first mode allows per-thread monitoring. The per-thread mode specifies that
monitors are only associated with a given thread, and receive all events of the given thread. Monitors are unable
to check properties that involve events across threads. This boils down to doing classical RV of single-threaded
programs, assuming each thread is an independent program. When examining each thread or process while
excluding others, one ignores the inter-thread dependencies, and it is therefore insufficient. For example, it is
impossible to monitor producer-consumer illustrated in Example 41, as events happen on separate threads. In
that setting, a specification cannot express behavior involving events across threads. The second mode allows for
global monitoring. It spawns global monitors, and ensures that events are fed to the monitor atomically, by utilizing
locks. As such, a program execution is linearized so that it can be processed by the monitors. Locks force events
to be totally ordered across the entire execution, which oversimplifies and ignores concurrency, as illustrated in
Example 42.

Example 42 (Linearization) Figure 10.2 illustrates the typical RV flow for some property ϕ with a monitorMϕ,
where during the execution, an instrumented parallel program feeds a trace to a monitor. Filled circles represent the
events relevant to the RV specification, and are numbered simply to distinguish them. We notice that, in the case of
a concurrent execution, the trace could differ based on the linearization strategy which influences the observation
order. In the first trace, event 3 precedes event 2, while in the second trace, we have the opposite. This could
potentially impact the verdict of the monitor if the specification relies on the order between events 2 and 3. We
recall producer-consumer from Example 41: if the program is not properly synchronized, linearizing the concurrent
events could lead two different traces: 1 2 3 4 , and 2 1 3 4 . The first trace complies with the specification while
the second violates it. ∗

The third mode allows monitors to receive events concurrently. This is typically done by providing a flag
unsynchronized. In this mode, practitioners should handle the concurrency on their own, and in some cases
specify their own monitoring logic. Writing additional concurrency logic, and managing concurrency has three
disadvantages. First, by writing the monitors manually, we defeat the purpose of automatically generating monitors
from a given formalism. Second, the manual monitors created may miss key information needed for managing
concurrency. This extra information may require to implement additional instrumentation outside the tool. Third,
the process is complicated due to concurrency, and is error-prone. We elaborate on the complications in Section 10.3.
As such, we first ask if monitors are to be generated from a formalism.

Q0: Is the developer using the tool to automatically generate monitor logic?

For the scope of this chapter, we focus on the formalisms from which monitors could be synthesized. As such, we
consider the answer to Q0 is yes.

2Based on the first three editions of the Competition on Runtime Verification [BBF14, FNRT15, RHF16, BFB+17b].
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Chapter Overview. In this chapter, we explore RV tools that explicitly handle multithreaded programs. We
illustrate the problem of monitoring a parallel program using existing techniques. In doing so, we overview the
related approaches, some of the existing tools, and their shortcomings. We discuss their assumptions, advantages,
limitations, and suitability when tackling two textbook parallel programs: producer-consumer and readers-writers.
In particular, we use manually written monitors using AspectJ [KHH+01b, The18], Java-MOP [CR05, CR07,
MJG+12], and RVPredict [HMR14] to explore the challenges to monitoring multithreaded programs. By analyzing
the interplay between specification formalisms and concurrent executions of programs, we propose four questions
RV practitioners may ask themselves to classify and determine the situations in which it is reliable to use the
existing tools and approaches as well as the situations where we believe more work is needed.

An online tutorial [EF18] is provided with the programs, tools, and an interactive guide to reproduce and experiment
with the examples provided in this chapter. The examples included in the online tutorial are marked in the rest of
the chapter with the dagger sign (†).

Key Contributions. This chapters explores challenges for multithreaded RV.

Overall, the challenges of monitoring multithreaded programs stem from the following facts:

• events in a concurrent program follow a partial order;

• most formalisms used by RV do not account for partial orders, but specify behavior over sequences of events
(i.e., events are totally ordered); and

• an instrumented program must capture the order of events as it happens during the execution to pass it to
monitors.

Moreover, we explore the situations where:

• a linear trace does not represent the underlying program execution;

• a linear trace hides some implicit assumptions which affect RV; and

• it is insufficient to use a linear trace for monitoring multithreaded programs.

10.1 Exploring Tools and Their Supported Formal Specifications

Runtime Verification approaches typically automatically synthesize monitors by relying on a formal specification
of the expected behavior. A specification formalism allows to express properties that partition the system behaviors
into correct and incorrect ones. As such, for a multithreaded program, we must first check the available properties
that we can verify. We first classify the various approaches by considering the specification formalism alone.

10.1.1 Approaches Relying on Total-Order Formalisms

The first pool consists of tools and approaches where the specification language itself relies on a total order of
events, as the input to monitors consists of words. We consider the tools commonly used for RV using those found
in the RV competitions [BFB+17b, FNRT15, RHF16].

Java-MOP. Java-MOP [CR05, CR07, MJG+12] follows the design principle that specifications and programs
should be developed together. Java-MOP provides logic plugins to express the specifications in several formalisms.
Logic plugins include: finite-state machines, extended regular expressions, context-free grammars, past-time linear
temporal logic, and string rewriting systems.
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Tracematches. Tracematches [AAC+05, BHL+10] is another approach that uses regular expressions over user-
specified events as specifications. Tracematches defines points in the execution where events occur, and specifies
the actions to execute upon matching. Tracematches considers the semantics of such matching on large programs
or multiple program runs, while binding the context associated with each event to the sequence. For example, it
considers when a pattern matches multiple times, or matches multiple points in the program.

MarQ. MarQ [RCR15] is designed for monitoring properties expressed as Quantified Event Automata (QEA) [BFH+12].
MarQ focuses on performing highly optimized monitoring, by providing full control of monitors lifecycles and
garbage collection. Furthermore, it introduces quantification and distinguishes quantified from free variables in a
specification, this allows finer control over the monitoring procedure by managing the replication of monitoring
(slicing). MarQ relies on the developer to instrument the program with AspectJ to send the events to the QEA.

LARVA. LARVA [CPS09b] uses dynamic automata with timers and events [CPS09a]. LARVA focuses on moni-
toring real-time systems where timing is of importance. LARVA specifications feature timeouts and stopwatches.
LARVA is also capable of verifying large programs by storing events in a database and allowing the monitors to
“catch up” with the system as it executes [CPA10].

Remark 5 (Unsynchronized monitors) While we focus on formalisms capable of automatically generating
monitors, we note that it is still possible to write unsynchronized monitors manually. We explain in Section 10.3
the difficulties that make the process error-prone. Java-MOP provides the unsynchronized flag to specify that
no additional locks should be added, thus allowing monitors to receive events concurrently. Logic plugins
would no longer be used to automatically synthesize monitors. MarQ by default is not thread safe [RCR15].
The developer must pre-process the events before passing them to the QEA monitor. ∗

10.1.2 Approaches Focusing on Detecting Concurrency Errors

The second pool of tools is concerned with specific behavior for concurrent programs. We consider absence of
data races and deadlock freedom. Tools used that can verify specific properties related to concurrency errors
include RVPredict [HMR14] and Java PathExplorer (JPaX) [HR04]. Further discussion on concurrency errors and
additional tools are discussed in [LFKV18].

RVPredict. RVPredict relies on Predictive Trace Analysis (PTA) [HMR14, SWYS11]. PTA approaches model
the program execution as a set of traces corresponding to the different orderings of a trace. As such, they encode
the trace minimally, then restrict the set of valid permutations based on the model that is allowed. The approach
in [HMR14] describes a general sound and complete model to detect data races in multithreaded programs and
implement it in RVPredict. Traces are ordered permutations containing both control flow operations and memory
accesses, and are constrained by axioms tailored to data race and sequential consistency. While [HMR14] can, in
theory, model behavioral properties, RVPredict monitors only data races, but does so very efficiently.

JPaX. Similar to RVPredict, Java PathExplorer (JPaX) [HR04] is a Java tool designed for multithreaded programs.
JPaX uses bytecode-level instrumentation to detect both race conditions and deadlocks in a multithreaded program
execution. To do so, JPaX tracks information on locks and variables accessed by various threads during an
execution. JPaX supports standard formalisms such as LTL and finite-state machines. However, it separates those
from the two mentioned concurrency properties, and defaults to providing an event stream to the monitors similar
to automata-based approaches.

10.1.3 Approaches Utilizing Multiple Traces

The third pool consists of approaches specifying behavior that spans multiple traces.
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Stream-based techniques. Stream-based techniques introduced in Section 3.4 include LOLA [DSS+05], Beep-
Beep [HKG17], and more recently, the Temporal Stream-Based Specification Language [DGH+17, CHL+18,
DDG+18]. Stream-based specifications rely on named streams to provide events. These streams are then aggregated
using various functions that modify the timing, filter events, and output new events.

Decentralized monitoring. Decentralized monitoring introduced in Section 3.1.2 considers the system as a
set of components sharing a logical timestamp. It uses monitoring algorithms and communication strategies to
monitor one specification over components by avoiding synchronization and with the aim of minimizing the
communication costs. Algorithms manage a decentralized trace associating each event with a component and a
timestamp; essentially managing for each component a totally ordered trace. DecentMon [BF16, CF16b] is a tool
capable of simulating the behavior of decentralized monitoring algorithms.

Hyperproperties. Hyperproperties [CS10] are specified over sets of traces. They are used to relate properties
over different multiple runs of a program. Notably, these include security policies as they regulate how a pro-
gram can be used, and those cannot be inferred by only considering one execution. Typically, hyperproperties
make use of variables that are quantified over multiple traces. Examples of hyperproperties include secure in-
formation flow which regulates what information can be learned by users when interacting with the system. RV
approaches have been implemented to verify hyperproperties using rewriting [BSB17], and using model checking
and automata [FRS15]. RVHyper [FHST18] is a tool capable of verifying hyperproperties on sets of traces.

10.1.4 Outcome: A First Classification

Since concurrent executions exhibit a partial order between events, formalisms that rely on total order require that
the partial order be coerced into a total order. Our first consideration for monitoring concurrent programs relies
solely on the specification formalism.

Q1: Are the models of the specification formalism based on a total order?

If the answer to Q1 is yes, then we are concerned with the first pool of tools. We elaborate on further considerations
for total order approaches in Section 10.2. Otherwise, we verify whether or not we are checking very specific
properties on partial orders, such as data race or deadlock freedom.

Q2: Are we only concerned with the absence of data races or deadlock freedom?

If the answer to Q2 is yes, then we are concerned with the second pool of tools, keeping in mind that they are
unable to handle arbitrary specifications. Otherwise, we are concerned with the third pool, we elaborate on the
potential of using these approaches in Section 10.4.2.

10.2 Linear Specifications for Concurrent Programs

In this section, we are concerned with RV approaches that rely on total-order formalisms (e.g., automata, LTL,
regular expressions). We refer to specifications that use total-order formalisms to describe the behavior of the
system as linear specifications. We explore the assumptions and outcomes of checking properties specifying
total-order behavior.

10.2.1 Per-thread Monitoring

Overview. A simple approach to monitor multithreaded programs is to consider each thread in the program
execution independent. That is, the monitoring technique assumes that each thread is a separate serial program to
monitor. A monitor is assigned to each thread and receives only events pertaining to that thread. This is called
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Table 10.1: Monitoring 10,000 executions of 2 variants of producer-consumer using global monitors. Reference
(REF) indicates the original program. Column V indicates the variant of the program. Column Advice indicates
intercepting after (A) and before (B) the function call, respectively. Columns True and False indicate the number
of executions (#) and the percentage over the total number of executions (%) for which the tool reported these
verdicts.

V Consumers Tool Advice True False Timeout
# % # % # %

1 1-2

REF - 0 (0%)
A 10,000 (100%) 0 (0%) 0 (0%)

JMOP
B 10,000 (100%) 0 (0%) 0 (0%)
A 10,000 (100%) 0 (0%) 0 (0%)

MarQ
B 10,000 (100%) 0 (0%) 0 (0%)
A 10,000 (100%) 0 (0%) 0 (0%)

LARVA
B 10,000 (100%) 0 (0%) 0 (0%)

2 1

REF - 631 (6.3%)
A 4,043 (40.43%) 5,957 (59.57%) 0 (0%)

JMOP
B 7,175 (71.75%) 6 (0.06%) 2,819 (28.19%)
A 4,404 (44.04%) 5,583 (55.83%) 13 (0.13%)

MarQ
B 9,973 (99.73%) 16 (0.16%) 11 (0.11%)
A 4,755 (47.55%) 5,245 (52.45%) 0 (0%)

LARVA
B 9,988 (99.88%) 2 (0.02%) 10 (0.10%)

2 2

REF - 4,785 (47.85%)
A 128 (1.28%) 9,220 (92.20%) 652 (6.52%)

JMOP
B 1,260 (12.60%) 7,617 (76.17%) 1,123 (11.23%)
A 33 (0.33%) 9,957 (99.57%) 10 (0.10%)

MarQ
B 432 (4.32%) 9,530 (95.30%) 38 (0.38%)
A 250 (2.50%) 9,488 (94.88%) 262 (2.62%)

LARVA
B 5,823 (58.23%) 4,131 (41.31%) 46 (0.46%)

per-thread monitoring. Java-MOP and Tracematches support flag perthread [AAC+05, For18] to monitor a property
on each thread independently. It is also possible to use MarQ by quantifying over the threads, to monitor each
thread independently for a given property.

Example 43 (Per-thread iterator†) We use for example the classical property described in [CR05] “An iterator’s
method hasNext must always be called at least once before a call to method next”. Monitoring per-thread proves
useful, when we are concerned about the usage of iterators in a given thread, and not across threads. Using
Java-MOP, we can monitor a simple program that has two threads processing a shared list of integers concurrently.
Each thread creates an iterator on the shared list, the first finds the minimum, while the second finds the maximum.
In this case, it is sufficient to check that the iterator usage is correct for each thread independently. ∗

Limitations. Since per-thread monitoring performs RV on a single thread, and all events in a given thread are
totally ordered, it follows that monitoring is sound in such situations. However, in most cases, we may be interested
in monitoring events across threads. This is the case with producer-consumer detailed in Example 41. To monitor
the program we need to keep track of produces and consumes. By considering threads separately, one is not able at
all to monitor the correct behavior, as producer and consumer are separate threads. Monitoring per-thread is not
useful in this setting. Therefore, it becomes important to distinguish between properties for which events are shared
across threads.

Q3: Does there exist a model of the specification where events are generated by more than a single thread?

We addressed in this section the tools and limitations when the answer to Q3 is no. When the answer to Q3 is yes,
a developer has to consider global monitoring, explained in Section 10.2.2.
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10.2.2 Global Monitoring

Overview.

Whenever the specification formalism relies on events across threads, the existing approaches that use a total-order
formalism typically define global monitors. This is the default mode for Java-MOP, MarQ, and for Tracematches
this is called “global tracematch”. This is the only mode for LARVA. Furthermore, these tools typically include
synchronization guards on such monitors. For example, LARVA synchronizes events passed to the monitors, such
that a monitor cannot receive two events concurrently, while MarQ requires the developer to specify synchronization
when needed, and Java-MOP offers an unsynchronized flag, to disable locking on monitors.

We discussed the implications of using unsynchronized in Section 5. We next present Example 44 in which we
monitor producer-consumer (Example 41) using Java-MOP, LARVA, and MarQ3.

Example 44 (Monitoring producer-consumer†) The property can be expressed as a context-free grammar (CFG)
using the rule: S -> S produce S consume | epsilon. We specify the property for each tool and associate
events produce and consume with adding and removing elements from a shared queue, respectively. We first
verify this example using per-thread monitoring using Java-MOP, and notice quickly that the property is violated,
as the first monitor is only capable of seeing produces, and the second only consumes. Using global monitoring, we
monitor a large number of executions (10,000) of two variants of the program, and show the result in Table 10.1.
For each execution, the producer generates a total of 8 produce events, which are then processed using up to
2 consumers. The first variant is a correctly synchronized producer-consumer, where locks ensure the atomic
execution of each event. The second variant is a non-synchronized producer-consumer, and allows the two events to
be fed to the monitors concurrently. In both cases, the monitor is synchronized to ensure that the monitor processes
each event atomically. Additional locks are included by Java-MOP and LARVA, we introduce a lock for MarQ, as
it is not thread-safe. This is consistent as to check the CFG (or the automaton for LARVA and MarQ), we require a
totally ordered word, as such traces are eventually linearized.

In the first variant, the monitor outputs verdict true for all executions. This is consistent with the expected behavior
as the program is correctly synchronized, as such it behaves as if it were totally ordered. However, with no proper
synchronization, produce and consume happen concurrently, we obtain one of two possible traces:

tr1 = produce · consume and tr2 = consume · produce.

While tr1 seems correct and tr2 incorrect, produce and consume happen concurrently. After doing 10,000
executions of the second variant, monitoring is unreliable: we observe verdict true for some executions, while
for others, we observe verdict false. Even for the same tool, and the same number of consumers, we notice that
the reported verdicts vary depending on whether or not we choose to intercept before or after the function call to
create the event. For example, even when using a single consumer with Java-MOP, we see that the verdict rate for
verdict false goes down from 60% when intercepting before the function call, to almost 0% when intercepting after
the function call. We note that selecting to intercept before or after a method call can depend on the specification.
For consistency reasons, we chose to intercept both events in the same way. Either choice produces inconsistent
verdicts when concurrency is present, due to context switches.

In the second variant, the consumer must check that the queue has an element, and then poll it to recover it. Since it
is badly synchronized, it is possible to deadlock as the check and the poll are not atomic. In this case, the program
cannot terminate. To distinguish deadlocked executions, we terminate the execution after 1 second, and consider it
a timeout, since a non-deadlocked execution takes less than 10 milliseconds to execute. It is important to note that
when the specification detects a violation the execution is stopped, this could potentially lower the rate of timeouts.
The rate of timeout of the original program (REF) is given as reference. We notice that the tools interfere with
the concurrency behavior of the program in two ways. First, the locking introduced by the global monitoring can
actually force a schedule on the program. We observe that when a single consumer is used and locks are used
before the function call. In this case, the rate of getting verdict true is higher than when introduced after the call
(72% for Java-MOP, 99.7% for MarQ, and 99.8% for LARVA). When the locks are applied naively, they can indeed
correct the behavior of the program, as they force a schedule on the actions produce and consume. This, of course,
is coincidental, when 2 consumers are used, we stop observing this behavior. Second, we observe that changing

3On Java openjdk 1.8.0_172, using Java-MOP version 4.2, MarQ version 1.1 commit 9c2ecb4 (April 7, 2016), and LARVA commit 07539a7
(Apr 16, 2018). The equivalent specifications are presented in in Appendix B.2
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Figure 10.3: Concurrent execution fragments of producer-consumer variants. Double circle: produce, normal:
consume. Events are numbered to distinguish them.

Listing 19 RVPredict (partial) output for producer-consumer variant 2.
1 ----------------Instrumented execution to record the trace-----------------
2 [RV-Predict] Log directory: /tmp/rv-predict2523508450121758452
3 [RV-Predict] Finished retransforming preloaded classes.
4 main Complete in 28
5 Data race on field java.util.LinkedList.$state:
6 Read in thread 14
7 > at SynchQueue.consume(SynchQueue.java:24)
8 at Consumer.run(Consumer.java:14)
9 Thread 14 created by thread 1

10 at java.util.concurrent.ThreadPoolExecutor.addWorker(Unknown Source)
11

12 Write in thread 13
13 > at SynchQueue.produce(SynchQueue.java:18)
14 at Producer.run(Producer.java:19)
15 Thread 13 created by thread 1
16 at java.util.concurrent.ThreadPoolExecutor.addWorker(Unknown Source)

the interception from before to after the function call modifies the rate of timeout. For example, when using 1
consumer, the reference rate is 6% (REF). When using Java-MOP (B), the rate goes up to 28%, while for LARVA
(B) it goes down to 0.1%. It is possible to compare the rate of timeout of Java-MOP (B) and LARVA (B) since the
monitor is not forcing the process to exit early, as the rate of reaching verdict false is low for both (< 0.1%). We
elaborate more on the effect of instrumentation on concurrency in Section 10.3. ∗

To understand the inconsistency in the verdicts, we look at the execution fragments of each variant in Figure 10.3.
In the first variant, the program utilizes locks to ensure the queue is accessed atomically. This allows the execution
to be a total order. For the second variant, we see that while we can establish order between either produce, or
consume, we cannot establish an order between events. During the execution, multiple total orders are possible,
and thus different verdicts are possible.

Limitations.

It is now possible to distinguish further situations where it is reliable to use global monitors. We notice that to
evaluate a total order formalism, we require a trace which events are totally ordered. When dealing with a partial
order, tools typically use locks and ensure that the partial order will be coerced into a total order. We see that the
monitoring of the second variant failed since the program was not properly synchronized. One could assume that it
is necessary to first check that the program is properly synchronized, and perhaps deadlock-free as well. To do so,
one could use RVPredict or JPaX to verify the absence of data race (as shown in Example 45). Upon verifying that
the program is synchronized, one could then run global monitors.

Example 45 (Detecting data race†) Let us consider the second variant of producer-consumer as described in
Example 44. Listing 19 displays the (partial) output of executing RVPredict on the program. Particularly, we focus
on one data race report (out of 4). We notice that in this case, lines 7 and 13 indicate that the data race occurs
during those function calls. Yet, these are the calls we used to specify the produce and consume events. In this
case, we can see that the data race occurs at the level of the events we specified. Upon running RVPredict on the
first variant, it reports no data races, as it is properly synchronized. ∗

While checking the absence of data race is useful for the case of producer-consumer, it is not enough to consider a
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Figure 10.4: Concurrent execution fragment of 1-Writer 2-Readers. Double circle: write, normal: read. Events
are numbered to distinguish them. Events 2 and 6 are an example of concurrent events as there is no order between
them.

properly synchronized program to be safe when using global monitors. This is due to the possible existence of
concurrent regions independently from data race. We illustrate the case of concurrent regions in Example 46.

Example 46 (1-Writer 2-Readers†) Figure 10.4 illustrates a concurrent execution fragment of 1-Writer 2-Readers,
where a thread can write to a shared variable, and two other threads can read from the variable. The threads can
read concurrently, but no thread can write or read while a write is occurring. In this execution, the first reader
performs 3 reads (events 2, 4, and 5), while the second reader performs 2 reads (events 3 and 6). We notice that
indeed, no reads happen concurrently. In this case, we see that the program is correctly synchronized (it is data-race
free and deadlock-free). However, we can still end up with different total orders, as there still exists concurrent
regions. By looking at the concurrent execution, we notice that we can still have events on which we can establish a
total order4. ∗

On the one hand, a specification relying on the order of events found in concurrent regions (i.e., “the first reader
must always read before the second”) can still result in inconsistent monitoring, similarly to producer-consumer.
On the other hand, a specification relying on events that can always be totally ordered (i.e., “there must be at least
one read between writes”) will not result in inconsistent monitoring. We notice that to distinguish these two cases,
we rely (i) on the order of the execution (concurrent regions), and (ii) the events in the specification. Two events
that cannot be ordered are therefore called concurrent events. For example, the events 2 and 6 are concurrent,
as there is no order relation between them. Instrumenting the program to capture concurrent events may also be
problematic as we will explain in Section 10.3.

10.2.3 Outcome: Refining the Classification

We are now able to formulate the last consideration for totally ordered formalisms.

Q4: Is the satisfaction of the specification sensitive to the order of concurrent events?

If the answer to Q4 is no, then it is possible to linearize the trace to match the total order expressed in the
specification. Otherwise, monitoring becomes unreliable as the concurrency can cause non-determinism, or even
make it so the captured trace is not a representation of the execution as we explain in Section 10.3.

Remark 6 (Expressiveness) We noticed that utilizing linear specifications for monitoring multithreaded pro-
grams works well when the execution of the program can be reduced to a total order. On the one hand, we see
per-thread monitoring (Section 10.2.1) restricting events to the same thread. On the other hand, we see global
monitoring restricting the behavior to only those that can be linearized. As such, in these cases, the interplay
between trace and specification constrains the expressiveness of the monitoring to either the thread itself, or
the segments in the execution that can be linearized. ∗

4This is similar to the notion of linearizability [HW90].
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Thread 0
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Figure 10.5: Advice execution (mon) with context-switches leading to incorrect trace capture.

1 g f_trace
2 f g_trace
3 f f_trace
4 g g_trace
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6 g g_trace
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(a) Comparison between the system trace (left)
and the trace collected by the monitor (right).

Tool Advice Sync Identical Different

AspectJ A
3

4,912 5,088
B 9,170 830

A 1,737 8,263Java-MOP B 3 9,749 251
A 8,545 1,455LARVA B 3 9,992 8

A
7

2,026 7,974Java-MOP B 9,517 483

(b) Comparing traces collected with AspectJ, LARVA, and Java-MOP across
10,000 executions. The column Advice indicates respectively intercepting after
(A) and before (B) the function call.

Figure 10.6: Comparison of collected traces using instrumentation and the system trace.

10.3 Instrumentation: Advice Atomicity

Generally, trace collection is done after instrumentation of the program using AspectJ, or other techniques (such as
bytecode instrumentation). As mentioned in Section 5, it is still possible to specify unsynchronized monitors and
handle concurrency without the tool support. We note that using AspectJ for instrumentation is found in Java-MOP,
Tracematches, MarQ, and LARVA [BFB+17b]. In this section, we show that instrumentation may lead to unreliable
traces in concurrent regions.

10.3.1 Extracting Traces

Extracting a trace from a program execution often requires executing additional code at runtime. For example,
to capture a method call, one could insert a print statement before or after the method call. This extra running
code is referred to as advice by AspectJ. When an action is executed, the code responsible for gathering the trace
will not, in general, execute atomically with the action. For multithreaded programs, the execution order may be
incorrectly captured due to context switches between threads. To illustrate the issues caused by context switches,
we have two threads with a race condition on a call to function f and g respectively, we match the call and execute
the advice right after the call. We show this by adding a call to the advice code mon(), right after the function call.
We see in Figure 10.5 that in the execution the call to function f precedes the call to function g, however, due to
context switches, the advice associated with g (mon(g)) executes before that associated with function f (mon(f)). In
this case the order perceived by the monitors is g · f while the order of the execution is f · g. In this scenario, the
generated trace is not representative of the execution, and thus the check performed by the monitor is unreliable.

Example 47 (Advice Atomicity†) For this example, we create two threads such that each calls a unique function
(f and g, respectively) an equal number of times. Each function consists of a single print statement (to stdout)
indicating the function name. We create a simple monitor that prints (to stderr) the same function name while
appending “_trace”. Then, we verify that the traces are identical, that is the prints from within the functions follow
the same order as those in the monitor. Figure 10.6a shows a fragment of a trace that is different. We see at lines
(1-2) that the trace of the monitor starts with f · g while in the program execution the order is g · f. Figure 10.6b
shows the difference between the captured trace by the monitor and the trace of the system, using monitors created
manually with AspectJ, and automatically with Java-MOP and LARVA. The monitor created manually with AspectJ
is also representative of MarQ as MarQ relies on the user writing the event matching in AspectJ, then calling the
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QEA monitor. Column Sync distinguishes the case when using unsynchronized in Java-MOP. We notice that the
traces differ from the actual program execution for AspectJ, Java-MOP and LARVA. Traces appear to differ more
when intercepting after the function call. In AspectJ, the rate of identical traces drops from 91% (B) to 49% (A).
This drop is also visible for LARVA and Java-MOP. This is not surprising as Java-MOP and LARVA use AspectJ
for instrumentation while introducing some variation as each tool has some additional computation performed on
matching. The rate change could be associated with either the specific program or the virtual machine in this case,
as the added computation from the monitors and AspectJ could affect the schedule. More importantly, we notice
that even when the monitors are synchronized, the captured trace is not guaranteed to be identical to that of the
execution. ∗

This problem can only be solved if atomicity for the granularity level can be guaranteed. In general, source-level
instrumentation of method calls with AspectJ, or even bytecode instrumentation at the INVOKE level will still not
be atomic. Adding a lock not only increases overhead, but can also introduce deadlocks if the method invocation
is external to the code being instrumented (e.g., calls to libraries). However, by adding locks one can modify the
behavior of the program as illustrated in Example 47, as such one needs to minimize the area to which the lock is
applied.

10.3.2 Discussion

In certain conditions, capturing traces can still be done in the case of concurrent events. First, a developer must have
full knowledge of the program (i.e., it must be seen as a white box), this allows the developer to manually instrument
the locks to ensure atomic capture, avoiding deadlocks and managing external function calls carefully. Second, we
require that the instrumented areas tolerate the interference, and therefore must prove that the interference does not
impact significantly the behavior of the program, by modifying the schedule. In this case, one could see that global
monitoring (Section 10.2.2) reports correct verdicts for the single execution.

Remark 7 (Monitor placement) An additional important aspect for tools pertains to whether the monitors
are inlined in the program or execute separately. For multithreaded programs, instrumentation can place
monitors so that they execute in the thread that triggers the event, or in a separate thread, or even process.
These constitute important implementation details that could limit or interfere with the program differently.
However, for the scope of the thesis, we focus on issues that are relevant for event orders and concurrency. ∗

10.4 Reasoning About Concurrency

Section 10.2 shows that approaches relying on total order formalisms are only capable of reliably monitoring
a multithreaded program when the execution boils down to a total order. Therefore, it is important to reason
about concurrency when designing monitoring tools, while still allowing behavioral properties. We present
GPredict [HLR15] in Section 10.4.1, a concurrency analysis tool that can be used for specifying behavior over
concurrent regions. We discuss in Section 10.4.2 the potential of multitrace approaches, first introduced in
Section 10.1.3. In Section 10.4.3, we present certain approaches from outside RV that may prove interesting and
provide additional insight.

10.4.1 Generic Predictive Concurrency Analysis

Concurrent behavior as logical constraints solving. The more general theory behind RVPredict (Section 10.1.2)
develops a sound and maximal causal model to analyze concurrency in a multithreaded program [HMR14]. In
this model, the correct behavior of a program is modeled as a set of logical constraints, thus restricting the
possible traces to consider. The theory supports any logical constraints to determine correctness, it is possible to
encode a specification on multithreaded programs as a set of logical constraints. However, allowing for arbitrary
specifications to be encoded while supports in the model, is not supported in the provided tool (RVPredict).
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Listing 10.2: GPredict specification depicting atomic regions.

1 A t o m i c i t y V i o l a t i o n ( O b j e c t o ) {
2 event b e g i n b e f or e ( O b j e c t o ) : e x e c u t i o n (m ( ) ) ;
3 event r e a d b e f or e ( O b j e c t o ) : g e t (* s ) && t a r g e t ( o ) ;
4 event w r i t e b e f or e ( O b j e c t o ) : s e t (* s ) && t a r g e t ( o ) ;
5 event end a f t e r ( O b j e c t o ) : e x e c u t i o n (m ( ) ) ;
6
7 p a t t e r n : b e g i n ( t1 , < r1 ) r e a d ( t 1 ) w r i t e ( t 2 ) w r i t e ( t 1 ) end ( t1 , > r1 )
8 / / p a t t e r n : read ( t 1 ) | | w r i t e ( t 2 )
9 }

GPredict. Using the same sound and maximal model for predictive trace analysis [HMR14] discussed in Sec-
tion 10.1.2, GPredict [HLR15] extends the specification formalism past data-races to behavior. Specifications are
able to include behavioral, user-specified events, and are extended with thread identifiers, atomic regions, and
concurrency. Events are defined similarly to Java-MOP using AspectJ for instrumentation. Atomic regions are
special events that denote either the start or end of an atomic region. Each atomic region is given an ID. The
specification formalism uses regular expressions extended with the concurrency operator “||” which allows events
to happen in parallel.

Example 48 (Specifying concurrency) Listing 10.2 shows a specification for GPredict written for a multithreaded
program, we re-use the example from [HLR15]. The program consists of a method (m) of an object which reads
and writes to a variable (s). Lines 2 and 5 specify the events that denote respectively reaching the start and end of
method (m). Line 3 and 4 specify respectively the read and write events. Lines 7 and 8 illustrate respectively
specifications for atomic regions and concurrency. The events in the specification can be parametrized by the thread
identifier, and a region delimiter. To specify an atomic regions, an event can indicate whether it is the start or end of
a region using the characters > and < respectively. The delimiter is followed by a region identifier, which is used to
distinguish regions in the specification. In this case, we see that the begin and end events emitted by thread t1
delimit an atomic region in which a read by thread t1 must be followed by a write by thread t2, which is followed
by a write by thread t1. The specification is violated if any of the events happen in a different order or concurrently.
To specify concurrent events, one must utilize “||” as shown on Line 8. In this case, the specification says that a
read in thread t1 can happen in parallel with a write in thread t2. ∗

Limitations. While GPredict presents a general approach to reason about behavioral properties in concurrent
executions, and hence constitutes a solution to monitoring when concurrency is present, it still requires additional
improvements for higher expressiveness and usability. Notably, GPredict requires specifying thread identifiers
explicitly in the specification. This requires specifications with multiple threads to become extremely verbose, and
cannot handle a dynamic number of threads. For example, in the case of readers-writers, adding extra readers or
writers requires rewriting the specification and combining events to specify each new thread. The approach behinds
GPredict can also be extended to become more expressive, e.g. to support counting events to account for fairness in
a concurrent setting. Furthermore, GPredict relies on recording a trace of a program before performing an offline
analysis to determine concurrency errors [HLR15]. Ideally, we prefer to be able to detect the error during the
execution and not postmortem.

10.4.2 Multi-trace Specifications: Possible Candidates?

RV approaches and tools that utilize multiple traces include approaches that rely on streams, decentralized
specifications, and hyperproperties (as described in Section 10.1.3).

Thread events as streams. Stream-based RV techniques deal with synchronized streams in general, the order
of the events is generally total. It is possible to imagine that ordering could be performed by certain functions
that aggregate streams. For example, it is possible to create a stream per event per thread, and then aggregate
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them appropriately to handle the partial order specifications. However, as is, either specifying or adding streams to
multithreaded programs remains unclear, but presents an interesting possible future direction.

Thread-level specifications as references. Decentralized specifications present various manners to implicitly
deal with threads, but do not in particular deal with multithreaded programs. Since monitors are merely references,
and references can be evaluated as oracles at any point during the execution. Monitors are triggered to start
monitoring, and are required to eventually return an evaluation of a property. Even when specifications are totally
ordered, in the sense that they are automata-based, the semantics that allow for eventual evaluation of monitors
make it so monitors on threads can evaluate local specifications and explicitly communicate with other threads for
the additional information. In the next chapter (Chapter 11), we introduce a two-level decentralized specification to
monitor multithreaded programs online.

Concurrent executions as multiple serial executions. Hyperproperties are properties defined on a set of traces.
Generally used for security, they allow for instance to check different executions of the same program from multiple
access levels. By executing a concurrent program multiple times, we can obtain various totally ordered traces
depending on the concurrent regions. As such, a possible future direction could explore how to express concurrency
specifications as hyperproperties, and the feasibility of verifying a large set of totally ordered traces.

10.4.3 Inspiration From Outside RV

Static Techniques

Static techniques for checking concurrency errors often reason on the memory operations performed by threads. We
discuss applications of separation logics, fence inference, and model checking to verify multithreaded programs.

Separation logic approaches. Separation logic [OP99, Rey02] is an extension to Hoare logic (described in
Section 1.1). It extends obligations to apply to the program memory by reasoning independently (in separation)
about small program states (called frames). The concurrent version of separation logic is referred to as concurrent
separation logic (CSL) [O’H07]. Implicit Dynamic Frames (IDF) [SJP09, SJP12] extends separation logic with
first-order expressions over memory. In [ABH16], the authors present a layered approach combining both CSL and
IDF to reason about the program states at three layers. The first layer reasons about data race freedom of multiple
threads independently modifying a shared object. The second layer adds a local state for each thread, to allow
expressing consistency between the local state and the global state of a shared object. The third layer captures all
operations performed on a shared object to form a history. The history is captured by tracing local operations, then
when threads synchronize they share their information about operations. The three-layered approach is not only
able to verify lock-based programs but also lock-free programs.

Fence Inference. Other approaches similar to RVPredict (Section 10.1.2) perform automatic verification by
performing fence inference under relaxed memory models [BLP15, KVY11]. Fences are special instructions
that enforce ordering constraints on the operations in a program. They are typically used to explicitly disallow
a compiler or a CPU to re-order operations in certain regions. These approaches are mainly concerned with the
automatic detection of locations in the program to add fences, as doing so manually by the developer may prove
incorrect. Fence inference can be seen as determining concurrency segments in a program of interest with respect
to the memory operations.

Reasoning on execution graphs. Approaches for model checking concurrency often rely on exploring inter-
leaving operations which occur in the program execution. In [KLSV18], the authors focus on execution graphs
directly for verifying weak memory models, in particular the RC11 (repaired C++5) model [LVK+17]. That is,
instead of having the algorithm consider the set of all thread interleavings accounting for weak memory models and
determining equivalence classes, they instead only explore consistent execution graphs of a program. The problem

5Called repaired as it fixes soundness of the C++ concurrency model presented by [BOS+11].
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Figure 10.7: RV approaches and considerations for monitoring multithreaded programs.

becomes to effectively enumerate all consistent execution graphs of a program. As such, they reason using partial
orders directly, relying on the principle that RC11 consistency is prefix-closed.

Dynamic Techniques

We present two interesting dynamic techniques that rely on capturing the trace probabilistically, and testing rare
schedules.

Relying on heuristics. Determining exact concurrency regions is costly during execution or may interfere with the
execution. An interesting direction is to utilize heuristics to determine concurrent regions. BARRACUDA [EPP+17]
detects synchronization errors on GPUs by instrumenting CUDA applications and performing binary-level analysis.
BARRACUDA avoids large overhead as it uses heuristics to approximate the synchronization in linear traces.

Testing schedules. PARROT [CSL+13] is a testing framework that explores the interleavings of possible threads
to test concurrent programs. PARROT analyzes the possible schedules of threads, and forces the application to
explore them, thus exposing concurrency issues. The motivation behind PARROT is the realization that certain
schedules occur in low probability under very specific circumstances.
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Conclusion

We overviewed RV approaches that support multithreaded programs. By considering the various specifications
formalisms, we are able to classify the tools by looking at whether or not they rely on total-order formalisms. We
investigated the limitations of linear traces in the case of RV tools relying on formalisms that use total order, and
noted the situations where linear traces lead to inconsistent verdicts. After presenting tools capable of checking
specific properties, we mentioned various recent RV techniques using properties over multiple traces, and discussed
their potential for monitoring multithreaded programs. Figure 10.7 summarizes the decisions a developer must
consider when choosing RV tools for multithreaded monitoring, and the limitations of the existing approaches.
We caution users of tools that using a formalism in which events are specified as a total order is not reliable
when monitoring concurrent events (as we cannot reliably answer Q4). It is possible to monitor multithreaded
programs that exhibit concurrency using GPredict (Section 10.4.1). However, there are still limitations with
writing specifications easily and expressively, and also GPredict performing offline analysis. Furthermore, RV
techniques capable of specifying properties over multiple traces prove to be interesting candidates to extend to
monitor multithreaded programs.

In the next chapter (Chapter 11), we introduce a two-level decentralized specification approach to monitoring
multithreaded programs online.
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CHAPTER 11. OPPORTUNISTIC RV FOR MULTITHREADED PROGRAMS USING A TWO-LEVEL
DECENTRALIZED SPECIFICATION

Chapter abstract

Decentralized monitoring consists in deploying multiple monitors to focus on monitoring a given specification.
Typically monitors need to communicate to relay important information determined by their local monitoring. In
this chapter, we introduce the decentralized monitoring of multithreaded programs using the main idea behind
decentralized specifications. In our setting, monitors are deployed to monitor specific threads, and only exchange
information upon reaching synchronization regions defined by the program itself. That is, they use the opportunity
of a lock in the program, to evaluate information across threads. As such, we refer to this approach as opportunistic
RV. By using the existing synchronization, our approach reduces additional overhead and interference to synchronize
at the cost of adding a delay to determine the verdict. We utilize a textbook example of readers-writers as it contains
concurrent regions, and show how opportunistic RV is capable of expressing specifications on concurrent regions,
without incurring significant delay. We present a manual monitoring implementation for readers-writers, and show
that the overhead of our approach scales particularly well.
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Introduction

Motivation. In Chapter 10, we overviewed the challenges for RV of multithreaded programs. We noted that RV
tools relying on total order and global monitoring may linearize the trace wrongly when concurrency is present
in the program. We also pointed out that perthread monitoring is not expressive enough to include specifications
with events defined across threads. The solution that stood out for multithreaded monitoring included GPredict
(Section 10.4.1). However we noted its limitations. First, it requires that thread identifiers be explicitly modeled in
the specification, without accounting for the dynamic number of threads. Second, its expressiveness only accounts
for regular expressions, and as such does not account for counting. Third, its analysis is performed offline, and we
would like that the monitoring technique detects the error during the execution.

Approach. In this chapter, we present a generic approach to monitor lock-based multithreaded programs. Our
approach consists of a two-level monitoring technique that relies on existing locks in the program. At the first
level, a thread-local specification checks a given property on the thread itself, where events are totally ordered. At
the second level, we define scopes which delimit concurrency regions. Scopes rely on operations in the program
guaranteed to follow a total order. The guarantee is ensured by the platform itself, either the program model, the
execution engine (JVM in our case), or the compiler. In this chapter, we utilize lock acquires to delimit scopes.
Upon reaching the totally ordered operations, a scope monitor utilizes the result of all thread-local monitors that
executed in the concurrent region to construct a scope state, and perform monitoring on a sequence of such states.
This approach heavily relies on existing totally ordered operations in the program. However, it incurs minimal
interference and overhead as it does not add additional locks.

An instantiation of decentralized specifications. Our approach can be seen as an instantiation of decentralized
specifications targeting multithreaded programs. Decentralized specifications as presented in Chapter 6 rely on
references to evaluate subspecifications. This requires that subspecifications eventually return a result (i.e. eventual
consistency) to be able to progress, all while abstracting delay and time as each reference could be linked to
a different automaton. Determining a common time for references to be evaluated is necessary only to relate
atomic propositions to each other. However, using the same concept of decentralized specifications, we instantiate
semantics that are useful for multithreaded programs. In this approach to decentralized multithreaded monitoring,
local properties denote the leaves of the dependency tree of specifications, while scope properties depend on the
local properties. Local properties are processed for each concurrency region to generate atomic propositions for the
scope property, which triggers a step in the monitoring at the level of the scope.

Key contributions. The key contributions of this chapter can be summarized as follows:

1. Introducing a two-level decentralized specification for the sound online monitoring of multithreaded programs;

2. Ensuring that the approach is sufficiently generic to be used by existing RV techniques, including streams and
techniques which formalism uses total order;

3. Extending expressiveness to specify behavior over an arbitrary number of threads, and include arbitrary
transformations to the result of local monitoring; and

4. Expressing properties for readers-writers that cannot be expressed using existing approaches, and monitoring
them efficiently.

11.1 Modeling The Program Execution

We are concerned with an abstraction of a program execution, we focus on a model that can be useful for monitoring
behavioral properties of programs. Furthermore, we seek not to constrain the model to a specific program execution
model, but encompass existing ones. We first choose the smallest observable execution step done by a program. We
refer to this step as an action. We are interested in determining the granularity and the order of these actions.
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Figure 11.1: Concurrent execution fragment of 1-Writer 2-Readers. The action labels l, u,w, r, ci, cd indicate
respectively the following: lock, unlock, write, read, increment readers counter and decrement readers counter. The
lock ids t, s, c indicate the following locks respectively: test for readers, service, and readers counter. Actions with a
double border indicate actions pertaining to locks. The reading and writing actions are filled to highlight them.

Definition 20 (Action) An action is a tuple 〈lbl, id, ctx〉, where: lbl is a label, id is a unique identifier, and ctx
is the context of the action.

An action consists in the runtime information of the smallest step executed by the program, and is usually tied
to a syntactic element lbl (label). The label captures the instruction name, the opcode, the function name, or the
specific task information depending on the granularity of actions. Since the action is a runtime object, the same
syntactic element could execute more than once, as such, we use id to distinguish two executions of the same
element. Finally, the context (ctx) is a set containing all necessary annotations for the assumptions of the model.
For example, it can contain thread id, process id, lock identifier, or memory addresses. Since we will be focusing
on multithreaded examples of actions in the rest of the chapter, we include the threadid and possible resource labels
(such as lock identifiers) in the context. We use the notation id.lblthreadidresource to denote an action, omit resource
when it is absent, and omit id when there is no ambiguity. Furthremore, we use the notation a.threadid for a given
action a to retreive the threadid in the context.

Definition 21 (Concurrent Execution) A concurrent execution is a partially-ordered set of actions (A,→).

We capture the order of actions as a partial order, as it is general enough to represent various formalisms and
models of concurrent systems. This model is compatible with various formalisms that define the behavior
of concurrent programs such as weak memory consistency models [AG96, ANB+95, MPA05], Mazurkiewicz
traces [Maz86, GK10], parallel series [LW01], Message Sequence Charts graphs [MR04], and Petri Nets [NPW81].

Example 49 (Concurrent fragment for 1-Writer 2-Readers.) Figure 11.1 shows a concurrent execution frag-
ment for 1-Writer 2-Readers introduced in Example 46. We recall that a thread can write to a shared variable, and
two other threads can read from the variable. The threads can read concurrently, but no thread can write or read
while a write is occurring. The concurrent execution fragment contains all actions performed by all threads, along
with the partial order inferred from locks. We included redundant information to show all order information that
can be obtained. We have three locks: test for readers (t), service (s), and readers counter (c). Lock t checks if any
reader is currently reading, this lock gives preference to writers. Lock s is used to regulate access to the shared
resource, it can be either obtained by readers or one writer. Lock c is used to regulate access to the readers counters,
it only synchronizes readers. In this concurrent execution, we have three synchronizations on the resource. First,
the writer acquires the resource and writes. Second, the readers acquire the resource and read in parallel. Third,
the writer acquires the resource and writes. Action 1.l1s represents the execution of a lock acquire instruction by a
thread with threadid 1 on the shared resource lock (s). ∗

11.2 Opportunistic Multithreaded RV

Overview. Opportunistic RV considers thread-local monitors that check local properties, and dedicated monitors
for concurrency regions defined over additional synchronization events. First, we introduce events that account for
the dynamic number of threads in Section 11.2.1. Second, we elaborate on the notion of scopes in Section 11.2.2.
Third, we define the semantics to evaluate scope properties in Section 11.2.3. Fourth, we present the procedure to
monitor scopes in Section 11.2.4.
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11.2.1 Dynamic Events and Threads

Goal. Threads are typically created at runtime, each thread has a given identifier, we refer to it as a threadid. We
denote the set of all threadids by TID. However, threadids are subject to change from one execution to another, and
it is not known in advance how many threads will be spawned during the execution. Therefore, the goal for the
specification language is to allow for properties to be assigned to threads generically, regardless of their number
and changes in threadid. For the remainder of this section we fix the concurrent execution 〈A,→〉.

Distinguishing threads. To allow for dynamic number of threads, we first define thread types T, to distinguish
threads that are relevant to the specification. For example, thread types for readers-writers are in the set Trw

def
=

{reader,writer}. Thread types allows us to express a property over all threads of the same type. In order to assign a
type to a thread in practice, we define a set of actions S ⊆ A called “spawn” actions. For example in readers-writers,
we can assign the spawn action of a reader (resp. writer) to be the method invocation of Reader.run (Writer.run).
Function spawn : S → T, assigns a thread type to a spawn action. The threads that match a given type are
determined based on the spawn action(s) present during the execution. We note that a thread is able to have multiple
types. To reference all threads assigned a given type, we use function pool : T→ 2TID. That is, given a type t, a
thread with threadid tid ∈ pool(t) iff ∃a ∈ A : spawn(a) = t ∧ a.threadid = tid. This approaches allows a thread to
have multiple types, as it is possible for different properties to operate on different events in the same given thread.

Events. Thread types are used to determine threads that are relevant for specific properties. For example, we are
interested in verifying properties that apply to readers only. Properties are evaluated by processing a sequence
of events. We note that actions (A) illustrate information about the program execution at runtime. Actions need
to be converted to events, that will be processed by the specification. As such, we define for each thread type
type ∈ T, the alphabet of events: Etype. The set Etype contains all the events that can be generated from actions for
the particular thread type type ∈ T. The empty event E is a special event that indicates that no events are matched.
Then, we provide a total function evtype : A → {E} ∪ Etype. The implementation of ev relies on the specification
formalism used, it is capable of generating events based on the action itself, its label, id or context. For example,
the conversion can utilize runtime context of actions to generate parametric events when needed. We illustrate a
simple event alphabet containing atomic propositions, and a function ev that matches using the label of an action in
Example 50.

Example 50 (Events.) We identify for readers-writers (Example 49) two thread types: Trw
def
= {reader,writer}. We

are interested in the events Ereader
def
= {read}, and Ewriter

def
= {write}. For a specification at the level of a given thread,

we have either a reader or a writer, the event associated with the reader (resp. writer) is read (resp. write).

evreader(a) def
=

{
read if a.lbl = “r”,
E otherwise evwriter(a) def

=

{
write if a.lbl = “w”,
E otherwise.

While we illustrated a simple case that is sufficient to monitor readers-writers, we can also consider more complex
cases where events are generated using the action context. As such, let us consider the new more complex type
reader′. Consider that read actions operate on an array of size n, and their context contain the index read (stored in
the key ind), the reader will read all values in the array starting from the index 0 to n − 1. We define for reading the
start and end events: Ereader′

def
= {startread, endread}. We associate them with actions as follows:

evreader′ (a) def
=


startread if a.lbl = “r” ∧ a.ctx(ind) = 0,
endread if a.lbl = “r” ∧ a.ctx(ind) = n − 1,
E otherwise. ∗

11.2.2 Scopes: Properties Over Concurrent Regions

Overview. Multithreaded programs provide a complicated execution flow for all threads: threads can be sleeping,
active, or running concurrently with other threads. This is challenging for verification techniques to manage the
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order of events among threads, and relate it to other threads in the entirety of the execution. For our approach,
we define the notion of scope. A scope defines a projection of the concurrent execution to delimit the concurrent
regions to consider along with the properties that need to be checked. A scope allows verification to be performed
at level of concurrent regions instead of the entire program. This provides a hierarchy at the level of concurrent
regions, where properties checked independently on threads are aggregated for every concurrent region.

Synchronizing actions. A scope s is associated with a synchronizing predicate syncs : A → B2 which is
used to determine synchronizing actions (SAs). The set of synchronizing actions for a scope s is defined as:
SAs = {a ∈ A | syncs(a) = >}. SAs constitute synchronization points in a concurrent execution for multiple threads,
they are actions that do not occur concurrently. A valid set of SAs is such that there exists a total order on all actions
in the set (i.e., no two SAs can occur concurrently). As such SAs are sequenced, and can be mapped to indices.
Function idxs : A→ N∗ returns the index of a synchronizing action. For convenience, we map them starting at 1,
as 0 will indicate the initial state. The notation |idxs| indicates the length of the sequence.

Example 51 (Synchronizing predicate) While multiple scopes for readers-writers (Example 49) are possible due
to the three locks types. In this example, we consider the resource lock (s) to be the one of interest, as it denotes
the concurrent regions which allow either a writer to write or readers to read. We label the scope by res for
the remainder of the chapter. The synchronizing predicate syncres selects all actions such that their label is
equal to l (lock acquire), and with the lock id s present in the context of the action. It is defined as follows:
syncres(〈lbl, id, ctx〉) def

= (lbl = l ∧ ctx(resid) = s). The sequence of SAs obtained is 0.l0s · 1.l
1
s · 2.l

0
s. The value of

idxres for each of the obtained SAs is respectively 1, 2 and 3. ∗

Scope region. A scope region is a projection of the concurrent execution delimited by two successive SAs.
It delimits actions that fall between the two SAs. In the remainder of the chapter, we define two “special”
synchronizing actions: begin, end ∈ A common to all scopes that are needed to evaluate the first and last region.
The actions refer respectively to the beginning and end of a program execution.

Definition 22 (Scope region) A scope region for a scope s and an associated index function idxs : A→ N∗ is
a function Rs : codom(idxs) ∪ {0, |idxs| + 1} → 2A:

Rs(i)
def
=


{a ∈ A | 〈a′, a〉 ∈→ ∧〈a, a′′〉 ∈→ ∧ issync(a′, i − 1) ∧ issync(a′′, i)} if 1 ≤ i ≤ |idxs|,
{a ∈ A | 〈a′, a〉 ∈→ ∧〈a, end〉 ∈→ ∧ issync(a′, i − 1)} if i = |idxs| + 1,
{a ∈ A | 〈begin, a〉 ∈→ ∧〈a, a′′〉 ∈→ ∧ issync(a′′, 1)} if i = 0
∅ otherwise,

where: issync(a, i) def
= (syncs(a) = > ∧ idxs(a) = i).

We illustrate scope regions on readers-writers in Example 52.

Example 52 (Scope regions) Figure 11.2a depicts the scope regions for scope res obtained when synchronizing
on the resource lock (Example 51). Every lock acquire delimits parts of the concurrent execution. The region k+1 in-
cludes all actions between the two lock acquires 0.l0s and 1.l1s. That is,Rres(k+1) = {0.w0, 0.u0s, 0.u

0
t, 1.l

1
t, 0.l

1
c, 0.i

1}.
The region k + 2 contains two concurrent reads. ∗

Local properties. For a given scope region, we assign a property for each thread type. A thread of a given type
evaluates locally a given property on local events. We refer to those properties as local properties. These properties
can be seen as the analogous of per-thread monitoring applied between two SAs. For a specific thread, we have a
guaranteed total order on the local actions being formed.

Definition 23 (Local property) A local property is a tuple 〈type,EVS,RT, eval〉 with:

• type ∈ T is the thread type for which the local property applies;
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(a) Scope regions using SAs that acquire lock s (indicated with a pattern). The index of each SA is displayed above it. The vertical dashed lines
indicate the limits of a region. The region index is shown for each region.

k + 1 k + 2 k + 3

0.l0s 0.w0(write) 2.l0s 1.w0(write)

1.l1s r1(read)

r2(read)

[threadid:0, type:writer]

[threadid:1, type:reader]

[threadid:2, type:reader]

(b) Projected actions using the scope and local properties, and their corresponding events.

Figure 11.2: View of a scope in a concurrent execution fragment of 1-Writer 2-Readers. The action labels
l, u,w, r, ci, cd indicate respectively the following: lock, unlock, write, read, increment readers counter and
decrement readers counter. The lock ids t, s, c indicate the following locks respectively: test for readers, service, and
readers counter. Filled actions indicate actions for which function ev for the thread type returns an event. Actions
with a pattern background indicate the SAs for the scope.

• EVS ⊆ Etype is a subset of (thread type) events relevant to the property evaluation;

• RT is the resulting type of the evaluation (called return type); and

• eval : (N→ EVS)→ RT is the evaluation function of the property, taking as input a sequence of events,
and returning the result of the evaluation.

We use the dot notation: for a given property prop = 〈type,EVS,RT, eval〉 we use prop.type, prop.EVS, prop.RT,
and prop.eval respectively.

Example 53 (At least one read) The property “at least one read”, defined for the thread type reader, states that a
reader must perform at least one read event. It can be expressed using LTL as ϕ1r

def
= F(read). Let LTL3ap

ϕ denote the
evaluation of LTL3 semantics on a set of atomic propositions ap and a formula ϕ. To check on readers, we specify it
as the local property: 〈reader, {read},B3,LTL3{read}

ϕ1r 〉. Similarly we can define the local specification for at least one
write. For more complex specifications, we recall from Example 50 the type reader′, which tracks the start and end
of reading using the events startread and endread. In this case, we can modify the local specification to determine
that a read happened in two ways: use only the start of reading ignoring the end, or we can consider reading to be
the start followed by an end. In the first case, we have EVS0 = {readstart}, and the property is F(readstart). In the
second case, we have EVS1 = {readstart, readend}, and the property is F(readstart ∧ Xreadend). ∗

Scope trace. To evaluate a local property, we restrict the trace to actions local to a given thread contained within
a scope region. A scope trace is analogous to acquiring the trace for per-thread monitoring [AAC+05, For18] in a
given scope region (Section 10.2.1).

Definition 24 (Scope trace) A scope trace is a projection of the concurrent execution that determines the
sequence of relevant events for a given local property p = 〈type,EVS,RT, eval〉, in a scope region Rs with
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index i, for a given thread with tid ∈ TID.

proj(tid, i, p,Rs)
def
=

{
evproj(a0) · . . . · evproj(an) if i ∈ dom(Rs) ∧ tid ∈ pool(type),
E otherwise, ,

with: ∀` ∈ [0, n] : evproj(a`)
def
=

{
e if evtype(a`) ∈ EVS
E otherwise,

where · is the sequence concatenation operator (such that a · E = E · a = a), with (∀ j ∈ [1, n] : 〈a j−1, a j〉 ∈→

) ∧ (∀k ∈ [0, n] : ak ∈ Rs(i)∧ ak.threadid = tid.

To create the scope trace for a given local property and thread, we first consider all actions in a scope region (as
we did in Example 52), then we filter the actions to include only actions that are associated with the threadid of
the considered thread (i.e., ak.threadid = tid), the considered thread has the correct type associated with the local
specification (i.e., tid ∈ pool(type)), and finally the action is associated with an event for the local property (i.e.,
evtype(a`) ∈ EVS). We illustrate scope traces in Example 54.

Example 54 (Scope trace.) Figure 11.2b illustrates the projection on the scope regions defined using the resource
lock (Example 52) for each of the 1 writer and 2 reader threads, where the properties “at least one write” or “at least
one read” (Example 53) apply. We see the scope traces for region k + 1 are respectively write,E,E for the threads
with threadids 0, 1, and 2 respectively. For that region, we can now evaluate the local specification independently
for each threads on the resulting traces. ∗

Scope state. A scope state aggregates the result of evaluating all local properties for a given scope region.
To define a scope state, we consider a scope s, with a vector of local properties 〈prop0, . . . , propn〉 of return
types respectively 〈RT0, . . . ,RTn〉. Since a local specification can apply to multiple threads dynamically, for
each specification we create the type as a dictionary binding a threadid to the return type (represented as a total
function). We use the type na to determine a special type indicating the property does not apply to the thread (as
the thread type does not match the property). We can now define the return type of evaluating all local properties
as RI def

= 〈TID→ {na} ∪ RT0, . . . ,TID→ {na} ∪ RTn〉. Function states : RI→ Is processes the result of evaluating
local properties to create a scope state of type Is.

Example 55 (Scope state) We illustrate the scope state by evaluating the properties “at least one read” (pr) and
“at least one write” (pw) (Example 53) on scope region k + 2 in Figure 11.2b. We have TID = {0, 1, 2}, we
determine for each reader the trace (being (read) for both), and the writer being empty (i.e. no write was observed).
As such for property pr (resp. pw), we have the result of the evaluation [0 7→ na, 1 7→ >, 2 7→ >] (resp.
[0 7→ ?, 1 7→ na, 2 7→ na]). We notice that for property pr, the thread of type writer evaluates to na, as it is not
concerned with the property.

We now consider the state creation function states. We consider the following atomic propositions activereader,
activewriter, allreaders, and onewriter that indicate respectively: at least one thread of type reader performed a
read, at least one thread of type writer performed a write, all threads of type reader (|pool(reader)|) performed at
least a read, and at most one thread of type writer performed a write. The scope state in this case is a vector of 4
boolean values indicating the each atomic proposition respectively. As such by counting the number of threads
associated with >, we can compute the Boolean value of each atomic proposition. For the region k + 2, we have the
following state: 〈>,⊥,>,⊥〉. We can establish a total order of scope states. For k + 1, k + 2 and k + 3, we have the
sequence 〈⊥,>,⊥,>〉 · 〈>,⊥,>,⊥〉 · 〈⊥,>,⊥,>〉. ∗

We are now able to define formally a scope by associating an identifier to a synchonizing predicate, a list of
local properties, a spawn predicate, and a scope property evaluation function. We denote by SID the set of scope
identifiers.

Definition 25 (Scope) A scope is a tuple 〈sid, syncsid, 〈prop1, . . . , propn〉, statesid, sevalsid〉, where:
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• sid ∈ SID is the scope identifier;

• syncsid : A→ B2 is the synchronizing predicate that determines SAs;

• 〈prop0, . . . , propn〉 is a list of local properties (Definition 23);

• statesid : 〈TID→ {na}∪prop0.RT, . . . ,TID→ {na}∪propn.RT〉 → Is is the scope state creation function;

• sevalsid : N × Is → O is the evaluation function of the scope property over a sequence of scope states.

In the next section (Section 11.2.3), we elaborate properties at the level of scopes (i.e., sevalsid). We define two
ways to evaluate properties and present three scope properties for readers-writers (in Example 56).

11.2.3 Semantics for Evaluating Scopes

After defining scope states, we are now able to evaluate properties on the scope. We consider two evaluation
schemes distinguished by the evaluation of local properties in concurrency regions. The first evaluation scheme
evaluates the local property starting from the start of the region till its end. In this scheme local specifications are
designed to reason only about the concurrent region. The second evaluation scheme evaluates the local property
starting from the beginning of the program till the current end of a concurrent region, passing synchronization
events to local monitors. The second scheme allows for more properties to be expressed at the cost of more complex
semantics.

Evaluating scopes by reasoning on concurrency regions. To evaluate a scope property, we first evaluate each
local property for each scope region, we then use statesid to generate the scope state for the region. After producing
the sequence of scope states, function sevalsid evaluates the property at the level of a scope.

Definition 26 (Evaluating a scope property) Given the concurrent execution, using the synchronizing predi-
cate syncsid, we obtain the regions Rsid(i) for i ∈ [0,m] with m = |idxsid|+ 1. The evaluation of a scope property
(noted res) for the scope 〈sid, syncsid, 〈prop0, . . . , propn〉, statesid, sevalsid〉 is computed as:

res = sevalsid(SR0 · . . . · SRm),
where SRi = statesid(〈LR0, . . . ,LRn〉)

and ∀tid ∈ TID,∀ j ∈ [0, n],LR j =

{
tid 7→ prop j.eval(proj(tid, i, prop j,Rsid)) if tid ∈ pool(prop j.type)
tid 7→ na otherwise

Example 56 (Evaluating scope properties) We use LTL to formalize three different scope properties based on the
scope states form Example 55 operating on the alphabet {activereader, activewriter, allreaders, onewriter}:

1. Mutual exclusion between readers and writers: ϕ0
def
= activewriter XOR activereader.

2. Mutual exclusion between writers: ϕ1
def
= activewriter =⇒ onewriter.

3. All readers must read a written value: ϕ2
def
= activereader =⇒ allreaders.

We recall that a scope state is a vector of boolean values for the atomic propositions in the following order:
activereader, activewriter, allreaders, and onewriter. The sequence of scope states form Example 55: 〈⊥,>,⊥,>〉 ·
〈>,⊥,>,⊥〉 · 〈⊥,>,⊥,>〉 complies with the specification ϕ0 ∧ ϕ1 ∧ ϕ2. ∗

Evaluating with concurrency information. We notice that in Definition 26 monitors on local properties are
reset for each concurrency region. As such, they are unable to express properties that are local to threads but span
multiple concurrency regions. The semantics of function res conceptually focus on treating concurrency regions
independently. However, we can account for elaborating the expressiveness of local properties by extending the
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alphabet for each local property with the atomic proposition sync which delimits the concurrency region. The
atomic proposition sync denotes that the scope synchronizing action has occurred, and adds it to the trace. We
need to take careful consideration that threads may sleep and in fact not receive any events during a concurrent
region. For example, consider two threads waiting on a lock, when a thread gets the lock, the other will not. As
such, to pass the sync event to the local specification of the sleeping thread requires we instrument very intrusively
to account for that, a requirement we do not want to impose. Therefore, we add the restriction that local properties
are only evaluated if at least one event relevant to the local property is encountered in the concurrency region (that
is not the synchronization event). Using that consideration, we are able to define an evaluation that considers all
events starting from concurrent region 0 up to i, and adding sync events between scopes. This allows local monitors
to account for synchronization, either to reset or check more expressive specifications such as “a reader can read at
most n times every m concurrency regions”, and “writers must always write a value that is greater than the last
write”.

Definition 27 (Evaluating a scope property without resetting) Given the concurrent execution, using the
synchronizing predicate syncsid, we obtain the regions Rsid(i) for i ∈ [0,m] with m = |idxsid|+ 1. The evaluation
of a scope property without reset (noted reswsync) for the scope 〈sid, syncsid, 〈prop0, . . . , propn〉, statesid, sevalsid〉

is computed as:

reswsync = sevalsid(SR0 · . . . · SRm),
where SRi = statesid(〈LR0, . . . ,LRn〉)

and ∀tid ∈ TID,∀ j ∈ [0, n],LR j =

{
tid 7→ prop j.eval(tr0 · sync · . . . · sync · tri) if tid ∈ pool(prop j.type) ∧ tri , E

tid 7→ na otherwise

∀k ∈ [0..i], trk = proj(tid, k, prop j,Rsid)

11.2.4 Monitoring Scopes

Overview. Our main concern when developing an algorithm for evaluating scope properties is to not introduce
additional synchronization. We also seek to interfere the least we can in the program execution. As such we rely on
the synchronization found in the program itself. We recall from Section 11.1, that the program execution model
consists of actions and a partial order among those actions. While serving as a theoretical model, it is not efficient
to capture all actions, and their order. In this section, we do not focus on instrumentation to capture actions. Actions
can be captured using any instrumentation framework such as AspectJ or DiSL, or through custom instrumentation.
The reason for this is that all actions local to a thread are already totally ordered, and synchronizing actions are
guaranteed by the underlying model to be totally ordered. For example, synchronizing actions based on locking are
guaranteed to be totally ordered by the JVM implementation. Instead, we focus on the assembly and evaluation of
scope states.

Scope channel. Local properties are evaluated by thread local monitors, which result is stored in a scope state
for a given scope region (see Section 11.2.2). We use the notion of a scope channel to store information about the
various scope states during the execution. We associate each scope with one scope channel, and each scope channel
with its own timestamp and scope monitor responsible of checking the scope property. The timestamp can only be
incremented by the scope monitor, which is only invoked when the synchronizing action for the scope is reached.
The timestamp is shared and can only be read by monitors of local properties. The scope channel provides for each
timestamp and for each monitor an exclusive memory slot to write its result, such that it does not conflict with other
monitors.

Example 57 (Scope channel) Figure 11.3 displays the channel associated with the scope monitoring discussed in
Example 55. For each scope region, the channel allows each monitor an exclusive memory slot to write its result (if
it chooses to participate). The slots marked with a dash (-) are not necessary. Furthermore, na indicates that the
thread was given a slot, but it did not write anything in it (see Definition 26). ∗

For a timestamp t, local monitors no longer write any information for any scope state with timestamp inferior to t,
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k + 1 k + 2 k + 3

0.l0s 0.w0(write) 2.l0s 1.w0(write)

1.l1s r1(read)

r2(read)

[threadid:0, type:writer]

[threadid:1, type:reader]

[threadid:2, type:reader]

Channel
0 1 2

reader - na na

writer > - -

0 1 2

reader - > >

writer na - -

0 1 2

reader - na na

writer > - -

Figure 11.3: Example of a scope channel for 1-Writer 2-Readers.

this makes such states always consistent to be read by any monitor associated with the scope. While this is not in
the scope of the paper, it allows monitors to effectively access past data of other monitors consistently.

Thread-local monitors. Thread-local monitors are responsible for monitoring a local property for a given thread.
Multiple such monitors can exist on a given thread, depending on the needed properties to check, and the thread
types the thread belongs to. A thread-local monitor is associated with a scope channel. It receives an event, performs
checking and is able to write its result on the channel at the current timestamp (of that channel).

Scope monitors. As mentioned when defining scope channels, scope monitors are responsible for checking the
property at the level of the scope. Upon reaching a synchronizing action by any of the threads associating with
the scope, the given thread will invoke the scope monitor. The scope monitor relies on the scope channel (shared
among all threads) to have access to all observations, additional memory can be allocated for its own state, but
it has to be shared among all threads associated with the scope. The scope monitor is invoked atomically after
reaching the scope synchronizing action. First, it compiles the scope state based on the results of the thread-local
monitors stored in the scope channel. Second, it invokes the verification procedure on the generated state. Finally,
before completing, it increments the timestamp associated with the scope channel.

In the next section (Section 11.3), we present our priliminary findings for monitoring readers-writers with the
specifications discussed in this section (Example 55).

11.3 Preliminary Evaluation

In this section, we monitor readers-writers with our approach, using the specification found in Example 55. For
the purpose of this example, we utilize the standard LTL3 semantics defined over the B3 verdict domain. As such,
we all the local and scope properties types are B3. We introduce the syntax needed to describe scope properties in
Section 11.3.1, and preliminary results on hand-written monitors in Section 11.3.2.

11.3.1 Expressing Properties

We recall from Example 55, the properties that we check. Locally we check for an eventual read and write
(resp. F(read) and F(write)), then we count the threads participating, to form the following atomic propositions:
activereader, activewriter, allreaders, onewriter. They indicate respectively that: at least one reader, at least one
writer, the number of readers that performed a read is equal to the number of reader threads in the program, and
exactly one writer performed a write. We recall the scope properties from Example 56 they are: mutual exclusion
between readers and writers, ensuring that all readers perform a read when at least one does, and mutual exclusion
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Listing 11.1: Readers-writers specification.
1 s e l e c t o r s {
2 event AR
3 on " R e e n t r a n t L o c k . Acqu i r e "
4 when "%lockname == Sha redAr r . r e s o u r c e L o c k "
5 }
6
7 t y p e s {
8 r e a d e r {
9 spawn on " Reader . Run "

10 event r e a d on " Sha redAr r . r e a d "
11 }
12 w r i t e r {
13 spawn on " W r i t e r . Run "
14 event w r i t e on " Sha redAr r . w r i t e "
15 }
16 }
17
18 scope s0 (AR) {
19 property s 0 r on r e a d e r ( r e a d ) i s "LTL=F ( r e a d ) "
20 property s0w on w r i t e r ( w r i t e ) i s "LTL=F ( w r i t e ) "
21
22 atom a c t i v e r e a d e r : count ( s0 r , T ) > 0 ,
23 atom a c t i v e w r i t e r : count ( s0w , T ) > 0 ,
24 atom o n e w r i t e r : count ( s0w , T ) == 1 ,
25 atom a l l r e a d e r s : count ( s0 r , T ) == s i z e ( r e a d e r )
26
27 check "LTL=G(
28 ( a c t i v e r e a d e r XOR a c t i v e w r i t e r )
29 && ( a c t i v e w r i t e r => o n e w r i t e r )
30 && ( a c t i v e r e a d e r => a l l r e a d e r s )
31 ) "
32 }

between writers. These properties are all defined on the same scope, the one that alternates between readers and
writers (Example 51).

Listing 11.1 illustrates the specification for writing local properties and a single scope with the three scope properties.
We first define the synchronizing predicates using the selectors keyword (Lines 1-5). In this case we define the
predicate AR by looking for an action labeled ReentrantLock.Acquire, and we match on its context using the
lockname key.

After defining the synchronizing predicates, we define the thread types and their associated events (Lines 7-16).
For each type we determine the spawn event (Lines 9,13), then all remaining events (Lines 10,14). In this case we
match reading and writing based on the action label. Once thread types are defined, we determine scopes (Line
18-32).

We introduce one scope with the id s0, and specify that its synchronizing predicate is AR (Line 2-4). Then we
determine the local properties, by giving a name for each property (Lines 19-20), determining the thread type and
the events it applies on. In this case each property is expressed using the same string passed to LamaConv [Ins],
which is used to synthesize the monitors. After defining the local property, we define the atomic propositions
needed for the scope state (Lines 22-25). For this purpose, we use the helper function count to compute a count of
how many monitors (on multiple threads) returned a certain verdict for a local property. Using the function count to
summarize the result of local properties, we establish the atomic propositions needed for the scope state. Finally,
we introduce the scope property (Lines 27-31), which is generated similarly to a local property but using the atomic
propositions for the scope.

11.3.2 Preliminary Assessment of Overhead

Experiment setup. For the purpose of the experiment, we instrument readers-writers to insert our monitors,
and compare our approach to global monitoring using a custom aspect written in AspectJ. In total, we have three
scenarios: non-monitored, global, and opportunistic. In the first scenario (non-monitored), we do not perform
monitoring. In the second and third scenario, we perform global and opportunistic monitoring. Using our approach
we verify the three properties expressed in Section 11.3.1: mutual exclusion between readers and writers, mutual
exclusion between the writers themselves, and ensuring all readers participate in reading a written value. For global
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k + 1 k + 2

0.l0s 0.w0(write) 2.l0s

1.l1s 0.r1(read) `.r1(read)

0.r2(read) `.r2(read)

[threadid:0, type:writer]

[threadid:1, type:reader]

[threadid:nreaders, type:reader]

.

.

.
.
.
.

cwidth

nreaders

Figure 11.4: Parametrizing concurrency regions using number of participating parallel threads (nreaders) and width
of the concurrency region (cwidth) with ` def

= cwidth − 1.

monitoring, we are unable to check concurrency properties, as such we verify only the third property (ensuring
all readers participate), as it amounts to counting the different threads of type reader that performed a read action
between any two write actions, and ensuring the count matches the total number of readers. As such, the custom
aspect simply locks and increments necessary counters to check a single scope property. We recall that global
monitoring introduces additional locks for reads that occur concurrently. We perform the experiment on a NUMA
machine consisting of 24 NUMA nodes containing each a 6-core Intel(R) Xeon(R) CPU E5-2620 v2 using Java
HotSpot(TM) 64-Bit Server VM (build 25.0-b70, mixed mode) with the AspectJ compiler version 1.8.9.

Measures. In order to evaluate the overhead of our approach, we are interested in defining parameters to
characterize concurrency regions found in readers-writers. We identify two parameters: the number of readers
(nreaders), and the width of the concurrency region (cwidth). They are illustrated in Figure 11.4. On the one hand,
nreaders determines the maximum parallel threads that are verifying local properties in a given concurrency region.
On the other hand, cwidth determines the number of reads each reader performs concurrently. Parameter cwidth
is measured in number of read events generated. By increasing the size of the concurrency regions, we increase
lock contention when multiple concurrent events cause a global monitor to lock. We fix the number of writers to 1,
nreaders ∈ {1, 3, 7, 15, 23, 31, 63, 127} and cwidth ∈ {1, 5, 10, 15, 30, 60, 100, 150}. We perform a total of 100, 000
writes and 400, 000 reads, where reads are distributed evenly across readers. We measure the execution time (in ms)
of 50 runs of the program for each of the parameters and scenarios.

Preliminary results. We report the results using the averages, while providing the scatter plots with linear
regression curves in Figures 11.5, and 11.6. Figure 11.5 shows the overhead when varying the number of readers
(nreaders). We notice that for the base program (non-monitored), the execution time increases from 1058 ms (when
nreaders = 1) to 1377 ms (when nreaders = 127) as lock contention overhead becomes more prominent and the
JVM is managing more threads. In the case of global monitoring, we notice a stable runtime ranging from 1215
ms (when nreaders = 1) to 1218 ms (when nreaders = 127), while for opportunistic monitoring, we see a much
greater increase ranging from 1341 ms (when nreaders = 1) to 1816 ms (when nreaders = 127). We recall that for
global monitoring, we utilize only one monitor for verifying the entire program, and the overhead is merely that
of locking, while for opportunistic monitoring, we deploy monitors on each thread of the program, and evaluates
the scope property using one monitor. Since we have more monitors running the more threads are executing, the
increase in overhead is expected. Overall, the overall overhead is acceptable, as opportunistic is also checking two
additional properties (for mutual exclusion). We now consider the width of the concurrency region.

Figure 11.6 shows the overhead when varying the width of the concurrency region (cwidth). We observe that for
the base program (non-monitored), the execution time decreases from 1506 ms (when cwidth = 1) to 810 ms (when
cwidth = 150), as the more reads can be performed concurrently. In the case of global monitoring, we notice a
decrease from 1655 ms (when cwidth = 1) to 1166 ms (when cwidth = 150), while for opportunistic monitoring,
we see a much greater decrease going from 2159 ms (when cwidth = 1) to 1018 ms (when cwidth = 150). By
increasing the number of concurrent events in a concurrency region, we highlight the overhead introduced by
locking the global monitor. We recall that a global monitor must lock to linearize the trace, and as such interferes
with the concurrency of a program. This can be seen by looking at the two curves for global and opportunistic
monitoring, we see that opportunistic follows closer the speedup of the non-monitored program, while global
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Figure 11.5: Execution time for readers-writers for non-monitored, global, and opportunistic monitoring. Parameter
nreaders indicates the number of readers.

monitoring is much slower. For opportunistic monitoring, we expect a positive performance payoff when events in
concurrency regions are dense.

Conclusion and Perspectives

Conclusion. We introduced a generic two-level decentralized specification to express properties on multithreaded
programs. Our approach distinguishes between thread-local properties and properties that span concurrency regions,
referred to as scopes. Using scopes, we are able to establish scope states that follow a total order, allowing any
existing technique to verify scope-level properties. Our approaches relies heavily on existing totally-ordered
operations in the program. However, by utilizing the existing synchronization, we are able to reduce overhead and
remain sound when monitoring online. Finally, our preliminary evaluation suggests that monitoring with two-levels
incurs a low overhead.

Perspectives. While the preliminary results appear promising, additional work needs to be invested to thoroughly
investigate overhead, and complete the automatic synthesis and instrumentation of monitors. Furthermore, expres-
siveness of the specification can be increased by allowing for scopes to be contained in other scopes. This allows
for properties that target not just thread-local properties, but also concurrent regions enclosed in other concurrent
regions, utilizing the full hierarchical setting of decentralized specifications.

LIG - December 2018 164 Antoine El-Hokayem
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CHAPTER 12

Conclusion and Perspectives

This chapter concludes the thesis with a summary of contributions for all parts, and perspectives for future work.

Summary of Contributions

Focusing on decentralized RV, this thesis aims to improve on existing work by responding to three challenges: (1)
managing partial information in decentralized monitoring, (2) separating the monitor deployment problem from the
monitoring procedure itself, and (3) introducing decentralization in the specification semantics in a modular and
hierarchical way.

Part one. To respond to these challenges, we introduced in the first part the EHE data structure (Chapter 5) and
decentralized specifications (Chapter 6). We summarize the contributions:

1. We designed the EHE data structure (Chapter 5) to manage partial information. EHE replicates under strong
eventual consistency while presenting two additional properties: determinism (Proposition 2) and soundness
when encoding automata (Proposition 3). Furthermore, we have shown how EHE can be used for decentralized
monitoring and presented the cost model for EHE as a generic model for analyzing algorithms with partial
information (Section 5.2).

2. In Chapter 6, we introduced decentralized specifications which aim to answer the challenges (2) and (3).
Decentralized specifications operates over multiple monitors, such that each monitor has its own specification
limited to what is observable for the monitor, and references to other monitors. We elaborated on the semantics
used to evaluate references while presenting a two-step view of decentralized monitoring, which consists in
separating the monitor topology from the monitoring.

3. By separating between monitor deployment and execution and determining a hierarchy of specifications (based
on dependency), we characterize and compute two properties of decentralized specifications (in Section 6.2):
compatibility of a specification to a target system, and monitorability of a given decentralized specification
(extended from monitorability of centralized specifications).

4. Furthermore, we introduced the design of THEMIS (Chapter 7), our framework for designing, monitoring,
analyzing and simulating decentralized monitoring algorithms. THEMIS integrates with other tools (notably for
monitor synthesis), and is able to provide an experimental environment for assessing existing decentralized
monitoring algorithms, and new algorithms that rely on decentralized specifications.
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Part two. After elaborating on the theory needed to tackle the challenges, we explored applications of decentral-
ized specifications in two contexts: comparison of decentralized monitoring algorithms (Chapter 8), and monitoring
smart homes (Chapter 9).

1. In Chapter 8, we adapted three existing decentralized monitoring algorithms (presented in Section 1.3.1) to
our approach, using an API and dedicated data structures, in a uniform manner for the purpose of analysis and
simulation. This allowed us to parametrize the analysis of decentralized monitoring algorithms with information
delay incurred by partial observations.

2. We conducted a worst-case analysis of three decentralized monitoring algorithms relying on automata-based
approaches, utilizing boolean rewriting (with a known minimal form) instead of LTL rewriting;

3. We simulated the three decentralized monitoring algorithms in a synthetic benchmark and a user interface appli-
cation to validate the analysis while (1) exploring the effect of using different random probability distributions
for trace generation, and their impact on coverage, and (2) studying the performance of various decentralized
monitoring algorithms for different patterns of specifications of the same application.

4. Focusing on the strength of decentralized specifications, we explored their use in a hierarchical setting for
monitoring smart homes in Chapter 9. We applied decentralized RV to analyze traces of over 36,000 timestamps
spanning 27 sensors in a real smart apartment (Section 9.1.1). We showed how to go beyond system properties, to
specify ADL using RV, and more complex interdependent specifications defined on up to 27 atomic propositions
(Section 9.1.2).

5. We highlighted the modularity and scalability of decentralized specifications by being able to synthesize monitors
(where existing approaches are unable to) and to reduce overhead when monitoring complex interdependent
specifications (Section 9.4.1).

6. Furthermore, we identified limitations inherent to using formal LTL specifications to determine user behavior
(Section 9.4.2).

Part three. After elaborating on direct applications of decentralized specifications, we instantiated a special form
of decentralized specifications to monitor multithreaded RV. In our technique a specification for a multithreaded
program can be formed of two levels, the first targeting thread-local properties, and the second focusing on
concurrency regions.

1. In Chapter 10, we explored and identified the limitations of existing RV techniques when dealing with multi-
threaded programs. In particular the challenges of monitoring multithreaded programs stem from the following
facts: (1) events in a concurrent program follow a partial order; (2) most formalisms used by RV do not account
for partial orders, but specify behavior over sequences of events (i.e., events are totally ordered); and (3) an
instrumented program must capture the order of events as it happens during the execution to pass it to monitors.
As such, we explored situations where: (1) a linear trace does not represent the underlying program execution;
(2) a linear trace hides some implicit assumptions which affect RV; and (3) it is insufficient to use a linear trace
for monitoring multithreaded programs.

2. By considering all the challenges, we identified GPredict (Section 10.4.1) as the tool able to effectively monitor
multithreaded programs. However, it does so with multiple limitations: (1) the analysis is performed offline,
(2) the specifications do no take into account a variable number of threads, and (3) it cannot express succinctly
important properties that rely on counting.

3. To account for the limitations of GPredict, we introduce in Chapter 11 a two-level decentralized specification
which is used to monitor multithreaded programs. Our approach relies on existing operations in the program
that follow a total order, and utilizes atomic regions in the program to avoid locking. By using the hierarchies of
decentralized specifications, it defines two levels of monitoring. The first checks local properties on a given
thread, the second verifies properties in a given concurrent region delimited by operations that follow a total
order. In this manner, we have a total order that is sound on both levels.

4. We ensured that the approach is sufficiently generic to be used by existing RV techniques, including streams and
techniques which formalism uses total order, and extended expressiveness to specify behavior over an arbitrary
number of threads, and include arbitrary transformations to the result of local monitoring.
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Perspectives

Whether to improve the underlying solutions or expand beyond them, the various challenges tackled in this thesis
inspire us to tackle new problems in the future. We identify three tracks for future work relative to decentralized
specifications: theoretical extensions, implementation extensions, and application scope expansions.

Theoretical Extensions

The first track for future work deals with theoretical extensions to decentralized specifications. Since decentralized
specifications allow us to explicitly model dependencies between the various subspecifications of a given system,
and separate the topology of monitors from the monitoring logic itself. Utilizing the additional relationships allows
us to tackle more properties and better incorporate system knowledge.

Extending properties for decentralized specifications. By introducing decentralized specifications, we separate
the monitor topology from the monitoring algorithm. We presented two properties: compatibility and monitorability
(Section 6.2). Monitorability ensures that given a specification, monitors are able to eventually emit a verdict,
for all possible traces. Compatibility ensures that a monitor topology can be deployed on a given system. This
opens the way to reason about additional properties of the specifications (summarized in Section 6.3) such as
equivalence of specifications, optimization of compatibility, and synthesis in general. Defining equivalence between
decentralized specifications and computing it proves challenging, as delay needs to be taken into account when
comparing various decentralized specifications. For example, it is possible to define equivalence as a relation
between any two decentralized specifications that emit the same verdict for all possible traces. However, computing
such a relation is not trivial and a challenging problem.

In Section 6.2.2, we discussed the compatibility of a decentralized specification with a given architecture. We
defined the notion of a compatible assignment (Definition 19), which ensures that the communication dependency
between monitors is respected when deployed on components. In brief, if two monitors must communicate, then
they must be deployed on components capable of communicating. We recall that for monitors that solely depend on
other monitors and not component observations, we have freedom to place them on multiple possible components.
While compatibility provides the minimal requirement for monitors to be able to communicate, it does not account
for performance. Knowing that we have a graph for the system, and a graph for the monitors dependencies, it is
possible to annotate the system graph by labeling vertices by computation resources (such as compute power or
memory limit of a given system component), and add weights to edges that represent communication resources
(such as communication bandwidth or restrictions). Therefore, we are able to compute the optimal monitor
placement that maximizes the usage of resources of a given system architecture. The problem becomes that of
optimal compatibility.

We recall from Section 1.3.2 that we aimed in this thesis to separate the generation of the monitor topology
from the monitoring itself. By separating the problems, we are now able to define extensions to the monitor
synthesis problem. In particular, we can are no longer just interested in generating monitors, but also considering
additional properties based on their inter-dependencies. All the properties discussed in this thesis and possible
future properties become relevant when synthesizing decentralized specifications. For example, we are able to
extend the synthesis problem as follows: starting from a decentralized specification D, can we generate a new
decentralized specificationD′ that is verdict equivalent toD, while optimizing the compatibility for memory (or
communication) for a given system architecture? Furthermore, it is possible to add constraints on specifications to
manage delay, as currently we only consider eventual consistency. By analyzing the specification it is possible to
devise stricter guarantees on delay, or transform it so as to reduce delay to improve performance when monitoring.

Incorporating system knowledge. Utilizing information about the system can prove useful when performing
monitoring. Typically, the truth value of atomic propositions is assumed to be independent. However, this is not
the case in some systems. For example, when branching, it is possible to know which events are possible for a
given side of the branch and which are not. In [ZLD12], the authors utilize knowledge about the system (namely,
the relationships between events) to predict the next elements in a trace allowing the monitoring to often conclude
before observing the entire trace. As such, by assuming some relationships between atomic propositions, it is

Thesis 171 Antoine El-Hokayem



CONCLUSION AND PERSPECTIVES

possible to incorporate the same approach to decentralized specifications. This allows us to simplify the needed
partial information required to progress with the monitoring, allowing for more performant decentralized monitoring.
Furthermore, given that we model the dependencies between subspecifications, we are able to go beyond only
considering relationships between atomic propositions, to determine the relationships between subspecifications
themselves in a large decentralized specification. For example, if we consider the specifications tied to detecting
the user activity in the smart apartment (Section 9.1.2), it is possible to define that activities need not be checked
so long as the user has not entered the apartment. In large decentralized system, some monitors can be turned off

when certain conditions are met, allowing better scalability and more customized verification.

Towards decentralized runtime enforcement. In this thesis, we have utilized the concept of decentralized
specifications for runtime verification. Runtime verification does not interfere with the system being observed.
However, it is possible to consider the usefulness of decentralized specifications for runtime enforcement [Fal10,
FMFR11, FMRS18]. In runtime enforcement, monitors are capable of taking snapshots of the execution, rolling
back, and suppressing events in a program. Performing runtime enforcement can be challenging since the delay
of detecting violations in decentralized systems is not always clear. Furthermore, there are two notions of delay:
one to verify and one to apply the correction. Decentralized specifications provide enforcers with additional
information about relationships between specifications that is useful when enforcing specifications across a large
system. The added information can be used to deploy decentralized enforcers, determine guarantees by analyzing
the dependencies and the various subspecifications, and determine the communication and dependencies between
enforcers in a similar fashion as would monitors in decentralized runtime verification.

Implementation Extensions

Possible improvement in the future could be focused on improving the EHE data structures as it is at the core
of dealing with partial information, and improving the THEMIS metrics for a deeper analysis of decentralized
monitoring algorithms.

Improving the EHE. Our implementation of the EHE can be seen as a proof-of-concept implementation simply
to illustrate the presented approaches in this thesis. As such, it is not optimized for efficient monitoring. It is
possible to improve the EHE by improving the internal representation of expressions, and performing additional
simple simplifications before calling external simplifiers. For example, it is possible to use information about
states that cannot be reached (i.e., the associated expression evaluates to ⊥), to deduce additional information to
deduce the reached state. Trivially, one can see that if n states are reachable in the EHE, and during the execution
we determined that n − 1 are non-reachable, we can deduce using determinism that the remaining state has been
reached. In Section 7.4.2, we discussed the impact of choosing simplifiers and garbage collection on improving
the performance of EHE. Since EHE is used as the unified representation data structure for partial information, any
improvement to its performance, immediately reflects as an improvement on all algorithms utilizing it.

Improving THEMIS metrics. We also consider creating new metrics for THEMIS to analyze more aspects of
decentralized monitoring algorithms. For example, in Section 8.2.2, we considered extended the metrics based
on delay, simplifications, and messages size and frequency with convergence which measures load-balance. By
identifying important aspects for decentralized specifications, we are able to detect the best scenario for a given
decentralized monitoring algorithm. We see that this is important, as in two specifications out of the five in
a real scenario when using Chiron traces (Section 8.2.4), the choreography algorithm using a simple heuristic
generated an inefficient decentralized specification. A key advantage of THEMIS’ design is that new metrics would
be automatically instrumented on all existing algorithms and experiments could be easily replicated to compare and
validate them.

Application Scope Expansions

The last track of future work focuses on improving expressiveness when using decentralized specifications for
monitoring. In particular we look at monitoring user activities (Chapter 9) and hierarchies for multithreaded
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monitoring (Chapter 11).

Expanding RV to monitor activities. Our assessment in Chapter 9 has shown that RV can be effective in
monitoring user behavior in the addition of system properties. However, the level of confidence is still lower than
one would expect from system behavior (for critical systems). The main limitation of RV is tied to the rigidity of
formalizing behavior. The rigidity itself makes it so that users must perform exactly the expected behavior and not
an approximation of it, for it to count as a detected activity. It is possible to improve the detection rate by improving
the expressiveness of specifications and also using hybrid detection strategies.

Expanding the expressiveness of specifications helps in improving the detection rate, as it can describe more
behavior. For example, when using MTL instead of LTL (see Section 3.1.1), it is possible to describe better the
interaction with respect to time, as MTL is specifically designed to assign properties over intervals of time. More
generally, we believe that the decentralization of richer specification languages is desirable. For instance, we
consider (i) using a counting semantics able to compute the number of steps needed to witness the satisfaction
or violation of a specification [BBNR18] (ii) using techniques allowing to deal with uncertainty (e.g., in case of
message loss) [BG13] (iii) using spatio-temporal specifications (e.g. [HJK+15]) to reason on physical locations in
the house, and (iv) using a quantitative semantics possibly with time [BFMU17].

Furthermore, since decentralized specifications rely on references to manage the monitoring of subspecifications
(so long as they eventually return a verdict), they essentially reference other subspecifications as black-boxes. As
such, it is possible to incorporate other detection techniques in different levels of the hierarchies to account for
both strict and non-strict user behavior. For example, it is possible to use machine learning to detect that the user is
sitting on a couch using a camera, when no pressure sensor exists for the couch. The machine learning technique
could be easily integrated in the decentralized specification tree (but not analyzed), so long as it is modeled as
a monitor that eventually returns a verdict when one is necessary. If we were to apply the same decentralized
specification in a different house with an accurate couch sensor, we can then use a monitor on sensor data directly.
From the point of view of all specifications depending on the reference to detecting whether or not the user on a
couch, the way it is detected is not relevant.

Finally, we consider using runtime enforcement [Fal10, FMFR11, FMRS18] techniques (especially those for
timed specifications [FJMP16]) to guarantee system properties and improve safety in the house (e.g., disabling
cooking equipment whenever specification firehazard is violated). This requires to define the foundations for
decentralized runtime enforcement on the theoretical side, and provide houses and monitors with actuators on the
practical side.

Scope hierarchies for multithreaded monitoring. For monitoring multithreaded programs in Chapter 11, we
introduced a two-level decentralized specification. At the first level we specified local properties, checked for each
thread. Then, on the second level, we defined scope properties, which uses the local properties to determine a
more complex property in a concurrent region. For this to work, we relied on the notion of scopes, which delimits
concurrency regions using operations in the program guaranteed to follow a total order (such as acquiring locks).
However, it is possible for scopes to be enclosed within other scopes. For example, consider in readers-writers,
there exists a lock that manages the counter keeping track of the number of active readers. The readers counter
lock is only accessed when the readers are active and have already taken the lock to the resource (thus forbidding
writers to access it). Any scope defined on this lock will be enclosed in the scope that alternates between readers
and writers defined on the resource lock. In the future, we hope to expand the two-level specification to account for
multi-level concurrency regions, by considering not only local properties in a given scope, but also other scope
properties for scopes enclosed within other scopes. By doing so, we are able to express more properties, and to
define a fully hierarchical decentralized specification for multithreaded programs.
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Runtime Verification with Tracematches. Journal of Logic and Computation, 20(3):707–723, June
2010.

[BKZ15] David A. Basin, Felix Klaedtke, and Eugen Zalinescu. Failure-aware runtime verification of distributed
systems. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference on
Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015, December 16-
18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 590–603. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015.

[BL11] Andreas Bauer and Martin Leucker. The theory and practice of SALT. In NASA Formal Methods -
Third International Symposium, NFM 2011. Proceedings, volume 6617 of Lecture Notes in Computer
Science, pages 13–40. Springer, 2011.

[BLC02] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: A code manipulation tool to implement
adaptable systems. In In Adaptable and extensible component systems, 2002.

[BLP15] John Bender, Mohsen Lesani, and Jens Palsberg. Declarative fence insertion. In Proceedings
of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, pages 367–385. ACM, 2015.

[BLS10] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing LTL semantics for runtime
verification. J. Log. Comput., 20(3):651–674, 2010.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol., 20(4):14, 2011.

[BMP18] Francesco Adalberto Bianchi, Alessandro Margara, and Mauro Pezzè. A survey of recent trends in
testing concurrent software systems. IEEE Trans. Software Eng., 44(8):747–783, 2018.

[BOS+11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing C++

concurrency. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, pages 55–66. ACM,
2011.

[BRH10] Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule systems for run-time monitoring:
from eagle to ruler. J. Log. Comput., 20(3):675–706, 2010.

Thesis 177 Antoine El-Hokayem



BIBLIOGRAPHY

[BSB17] Noel Brett, Umair Siddique, and Borzoo Bonakdarpour. Rewriting-Based Runtime Verification for
Alternation-Free HyperLTL. In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 77–93, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg.

[BU08] David Buchfuhrer and Christopher Umans. The complexity of boolean formula minimization. In
Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata,
Complexity, and Games, volume 5125 of Lecture Notes in Computer Science, pages 24–35. Springer,
2008.

[CBRZ01] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Robert M. Graham, Michael A.
Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977, pages 238–252. ACM, 1977.

[CC15] James L. Crowley and Joelle Coutaz. An ecological view of smart home technologies. In Boris
De Ruyter, Achilles Kameas, Periklis Chatzimisios, and Irene Mavrommati, editors, Ambient Intelli-
gence, pages 1–16, Cham, 2015. Springer International Publishing.

[CDE+03] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer,
and Carolyn L. Talcott. The maude 2.0 system. In Robert Nieuwenhuis, editor, Rewriting Techniques
and Applications, 14th International Conference, RTA 2003, Proceedings, volume 2706 of Lecture
Notes in Computer Science, pages 76–87. Springer, 2003.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Dexter Kozen, editor, Logics of Programs, Workshop, 1981, volume
131 of Lecture Notes in Computer Science, pages 52–71. Springer, 1981.

[CER99] CERN. http://dst.lbl.gov/acssoftware/colt/, 1999. http://dst.lbl.gov/ACSSoftware/colt/.

[CES97] Krzysztof Czarnecki, Ulrich W Eisenecker, and Patrick Steyaert. Beyond objects: Generative
programming. In CES97a [1 46]. The 23rd International Conference On Software Engineering, pages
5–14. Citeseer, 1997.

[CF99] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system model. IEEE Trans.
Parallel Distrib. Syst., 10(6):642–657, 1999.

[CF16a] Christian Colombo and Yliès Falcone. Organising LTL monitors over distributed systems with a
global clock. Formal Methods in System Design, 49(1-2):109–158, 2016.

[CF16b] Christian Colombo and Yliès Falcone. Organising LTL monitors over distributed systems with a
global clock. Formal Methods in System Design, 49(1-2):109–158, 2016.

[CFB+12] Sylvain Cotard, Sébastien Faucou, Jean-Luc Béchennec, Audrey Queudet, and Yvon Trinquet. A
data flow monitoring service based on runtime verification for AUTOSAR. In Geyong Min, Jia Hu,
Lei (Chris) Liu, Laurence Tianruo Yang, Seetharami Seelam, and Laurent Lefèvre, editors, 14th
IEEE International Conference on High Performance Computing and Communication & 9th IEEE
International Conference on Embedded Software and Systems, HPCC-ICESS 2012, Liverpool, United
Kingdom, June 25-27, 2012, pages 1508–1515. IEEE Computer Society, 2012.

[CFC15] Beichen Chen, Zhong Fan, and Fengming Cao. Activity recognition based on streaming sensor data
for assisted living in smart homes. In 2015 International Conference on Intelligent Environments, IE
2015, pages 124–127. IEEE, 2015.

[CHL+18] Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel, Malte Schmitz, and Daniel
Thoma. Tessla: Temporal stream-based specification language. CoRR, abs/1808.10717, 2018.

LIG - December 2018 178 Antoine El-Hokayem

http://dst.lbl.gov/ACSSoftware/colt/


[CHN+12] Liming Chen, Jesse Hoey, Chris D. Nugent, Diane J. Cook, and Zhiwen Yu. Sensor-based activity
recognition. IEEE Trans. Systems, Man, and Cybernetics, Part C, 42(6):790–808, 2012.

[CLRC17] Julien Cumin, Grégoire Lefebvre, Fano Ramparany, and James L. Crowley. A dataset of routine
daily activities in an instrumented home. In Ubiquitous Computing and Ambient Intelligence - 11th
International Conference, UCAmI 2017, Proceedings, volume 10586 of Lecture Notes in Computer
Science, pages 413–425. Springer, 2017.

[CPA10] Christian Colombo, Gordon J. Pace, and Patrick Abela. Compensation-aware runtime monitoring.
In Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace,
Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors, Runtime Verification - First International
Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings, volume 6418 of Lecture
Notes in Computer Science, pages 214–228. Springer, 2010.

[CPS09a] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic event-based runtime monitoring
of real-time and contextual properties. In Darren Cofer and Alessandro Fantechi, editors, Formal
Methods for Industrial Critical Systems, pages 135–149, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[CPS09b] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. LARVA — Safer Monitoring of Real-
Time Java Programs (Tool Paper). In Dang Van Hung and Padmanabhan Krishnan, editors, Seventh
IEEE International Conference on Software Engineering and Formal Methods, SEFM 2009, Hanoi,
Vietnam, 23-27 November 2009, pages 33–37. IEEE Computer Society, 2009.
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APPENDIX A

Proofs of Chapter 5

Proof (Proof of Proposition 2) : The proof is by induction on the number of timestamps in the EHE, i.e., n =

|rounds(I)|. Without loss of generality, we can assume the automaton being encoded is normalized (see Remark 1),
that is, all shared edges between any two states are replaced by one edge which is labeled by the disjunction of their
labels.

One could see that the base case only contains the initial state of an automaton, i.e., I0 = [0 7→ q0 7→ >], and as
such the proposition holds.

Let us consider n = 2, we have I1 = mov(I0, 0, 1). To compute mov, we first consider next(I0, 0) which considers
all states reachable from q0 as the only tuple in I0 is 〈0, q0〉, i.e., next(I0, 0) = {q′ ∈ Q | ∃e ∈ Expr : δ(q0, e) = q′},
we know that only one such e can evaluate to > for any memory encoded with the identity encoder (idt), since the
automaton is deterministic. Let us collect all such states and their expressions as P = {〈q′, e〉 ∈ Q × Expr | ∃e ∈
Expr : δ(q0, e) = q′}. We note that I1(0, q0) = > is the only entry for timestamp 0. The property holds trivially for
that entry. We now consider the entries in I1 for timestamp 1. Each of tuple 〈q′, e〉 ∈ P corresponds to the expression
I1(1, q′), constructed with to(I0, 0, q′, ts1) = I0(0, q0) ∧ ts1(e). We note that ts1 only adds the timestamp 1 to each
atomic proposition. As such, for any given memory encoded with ts1 only one such expression can be evaluated to>.

Inductive step: We assume that the property holds on In−1 for some n ∈ N, that is:
∀M ∈ Mem,∀t ∈ rounds(In−1),∃q ∈ Q : (eval(In−1(t, q),M) = >) =⇒ (∀q′ ∈ Q\{q} =⇒ eval(In−1(t, q′),M) ,
>). Let us prove that the property holds for In.

The approach is similar to that of n = 2 using the recursive structure of the EHE to generalize. We decompose In,
using the definition of mov, as follows:

In = In−1 †∨

∨⊎
q′∈next(In−1 ,n)

{n 7→ q′ 7→ to(In−1, n − 1, q′, tsn)}

We know that rounds(In) = rounds(In−1) ∪ {n}. The induction hypothesis states that the property holds for all

entries in In−1 (i.e. for t ∈ rounds(In−1)), we consider the entries for timestamp n only. Since
∨⊎

applies †∨ on the
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entire set, and it is associative and commutative we consider the expression for a given state after all the merges,
without consideration of order of merges. As such the states associated with timestamp n are computed using
next(In−1, n). We have ∀q′ ∈ next(In−1, n):

In(n, q′) = to(In−1, n − 1, q′, tsn) (Def. mov)

=
∨

{〈q,e′〉| δ(q,e′)=q′}

(In−1(n − 1, q) ∧ tsn(e′)) (1)

(1) follows from the definition of to. If we examine the disjunction we notice using the induction hypothesis
that there can only be a unique qu ∈ Q with In−1(n − 1, qu) that evaluates to > at timestamp n − 1. As such, the
conjunction can only hold for one such qu. Consequently, we can rewrite (1) by simplifying the disjunction and
considering only states reachable from qu, as the rest cannot evaluate to >. Let us collect all such states and
expressions in the set Pu = {〈q′, e′〉 | q′ ∈ next(In−1, n) ∧ ∃e′ ∈ ExprAP : δ(qu, e′) = q′}. The only entries that can
still evaluate to > are:

∀〈q′, e′〉 ∈ Pu : In(n, q′) = In−1(n − 1, qu) ∧ tsn(e′)
= tsn(e′)

Since the automaton is deterministic, we know that we have one unique expression eu that can evaluate to >, given
any memory encoded with idt. Since tsn only adds the timestamp n to the atomic propositions without changing the
expression, we deduce that only tsn(eu) evaluates to >. As such, there is a unique expression that can evaluate to >
for any given memory encoded with tsn. Furthermore, we know that the expression has only been encoded with tsn

so when memories encoded with different timestamps or encoders are merged, they do not affect the evaluation of
tsn(eu). As such, we have a unique entry In(n, q′u) s.t. δ(qu, eu) that can evaluate to >. Therefore:

∀M ∈ Mem,∀t ∈ rounds(In),∃q ∈ Q :
(eval(In(t, q),M) = >) =⇒

(∀q′ ∈ Q : q′ , q =⇒ eval(In(t, q′),M) , >)

Lemma (Evaluation modulo encoding) : Given a trace tr of length i and a reconstructed global trace ρ(tr) = evt1 ·

. . . · evti, we consider two memories Mi
A

and Mi generated under different encodings. We consider Mi
A

=

memc(evti, idt), andMi =
⊎2

t∈[1,i]{memc(evtt, tst)}. We show that an expression encoded using different encodings
evaluates the same for the memories, that is:

∀e ∈ ExprAP : eval(idt(e),Mi
A)⇔ eval(tsi(e),Mi).

Proof (Proof of Lemma 1) : We first note that for the first evaluation eval(idt(e),Mi
A

), we rely only on the event
evti sinceMi

A
= memc(evti, idt). This is not the case for eval(tsi(e),Mi) asMi =

⊎2
t∈[1,i]{memc(evtt, tst)}. However,

we notice that for the second evaluation we evaluate the expression tsi(e), that is, where the expression where all
atomic propositions have been encoded by the timestamp i. Therefore, let us denote the memory with the timestamp
i byM′ = memc(evti, tsi). We can rewriteMi as follows:

Mi = memc(evti, tsi) †2
⊎2

t∈[1,k]{memc(evtk, tsk)}
=M′ †2

⊎2
t∈[1,k]{memc(evtk, tsk)}.

We know that all entries 〈k, a〉 ∈ dom(Mi) with k < i do not affect at all the evaluation of an expression encoded
with tsi. As such we have:

∀e ∈ ExprAP : eval(tsi(e),Mi)⇔ eval(tsi(e),M′)

We now show that the two memoriesMi
A

andM′ contain simply an encoding of the same atomic propositions. We
have by construction the following:

∀a ∈ dom(Mi
A) :〈i, a〉 ∈ dom(Mi) ∧ Mi

A(a) =M′(〈i, a〉)

∀〈i, a′〉 ∈ dom(M′) :a′ ∈ dom(Mi
A) ∧ M′(〈i, a′〉) =Mi

A(a′)

As such we have: ∀e ∈ ExprAP : eval(idt(e),Mi
A

)⇔ eval(tsi(e),M′)⇔ eval(tsi(e),Mi).
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Proof (Proof of Proposition 3) : Given a trace tr of length i and a reconstructed global trace ρ(tr) = evt1 · . . . · evti,
the proof is done by induction on the length of the trace |ρ(tr)|. We omit the label ` for clarity.

Base case: |ρ(tr)| = 0, ρ(tr) = ε

∆∗(q0, ε) = q0 = sel(I0, [ ], 0)

I0 = mov([0 7→ q0 7→ >], 0, 0) = [0 7→ q0 7→ >]

We only have expression > which is mapped to q0 at t = 0. Expression > requires no memory to be evaluated.

Inductive step: We assume that the property holds for a trace of length i for some i ∈ N, that is ∆∗(q0, evt1 ·. . .·evti) =

sel(Ii,Mi, i) = qi. Let us prove that the property holds for any trace of length i + 1.

We now consider the transition functions in the automaton:

qi+1 = ∆∗(q0, evt1 · . . . · evti+1)
= ∆(∆∗(q0, evt1 · . . . · evti), evti+1) (Definition 12)
= ∆(qi, evti+1) (Induction Hypothesis)
⇔ ∃e ∈ ExprAP :

δ(qi, expr) = qi+1 ∧ eval(e,Mi+1
A ) = > (1)

We note that, since the automaton is deterministic, there is a unique qi+1 such that qi+1 = ∆(qi, evti+1).

We now consider the EHE operations to reach qi+1 from qi.

qi = sel(Ii,Mi, i)

⇔ e = Ii(i, qi) with eval(e,Mi) = > (2)

∧ ∀q′i ∈ Q : q′i , qi =⇒ eval(Ii(i, q′i)) , > (Proposition 2)

⇔ to(Ii, i, qi+1, tsi+1) = > (3)

(3) From the induction hypothesis, we know that Ii(i, qi) = >, thus:

to(Ii,i, qi+1, tsi+1)

=
∨

{〈q,e′〉|δ(q,e′)=q′i+1}

(Ii(i, q) ∧ tsi+1(e′))

=
∨

{〈q,e′′〉|δ(q,e′′)=q′i+1∧q,qi}

(Ii(i, q) ∧ tsi+1(e′′))

∨
∨

{〈qi,e′′′〉|δ(qi,e′′′)=q′i+1}

(tsi+1(e′′′)).

We split the disjunction to consider the expressions that only come from state qi, we now show that one such
expression evaluates to >. We know from (1), that one such expression can be taken in the automaton:

∃e ∈ ExprAP : δ(qi, e) = qi+1 ∧ eval(e,Mi+1
A ) = > (1)

⇔ eval(tsi+1(e),Mi+1) = > (4)

⇔ to(Ii, i, qi+1, tsi+1) = > (5)

(4) is obtained using Lemma 1 and idt(e) = e.
(5) follows from the disjunction.
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Using the same approach, we can show that ∀q′ ∈ next(Ii, i) : q′ , qi+1 =⇒ to(Ii, i, q′, tsi+1) , >, since the first
part of the conjunction does not evaluate to >, and we know that the second part cannot evaluate to > by (2).
Finally, to(Ii, i, qi+1, tsi+1) = > iff sel(Ii+1,Mi+1, i + 1) = qi.
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APPENDIX B

Additional Details

B.1 Detailed Data for Section 8.2

Tables B.1 and B.2 present the detailed comparison for the synthetic scenario and Chiron, respectively. The metrics
presented are (in order of columns): average information delay (δt), normalized average number of messages
(#Msgs), normalized data transferred (Data), maximum simplifications done by any given monitor per run, averaged
across all runs (Smax), normalized critical simplifications (Scrit), and convergence based on expressions evaluated
(ConvE). For more details on the metrics, see Section 8.2.2.

Table B.1: Synthetic Benchmark. Cells contains mean and standard deviation in parentheses.

Alg. |C| δt #Msgs Data Smax Scrit ConvE

Orch

3 0.48 (0.50) 2.44 (0.61) 31.84 (8.07) 0.00 (0.00) 0.00 (0.00) 0.65 (0.02)
4 0.53 (0.50) 3.85 (0.94) 50.05 (12.39) 0.00 (0.00) 0.00 (0.00) 0.74 (0.02)
5 0.64 (0.48) 5.30 (1.16) 69.20 (15.55) 0.00 (0.00) 0.00 (0.00) 0.79 (0.02)
6 0.69 (0.46) 7.04 (1.50) 91.86 (20.02) 0.00 (0.00) 0.00 (0.00) 0.83 (0.02)

Migr

3 0.58 (0.58) 0.27 (0.32) 8.46 (15.32) 4.72 (4.41) 3.08 (2.66) 0.65 (0.02)
4 0.71 (0.67) 0.32 (0.34) 17.45 (35.87) 6.10 (6.17) 4.03 (3.75) 0.73 (0.03)
5 0.96 (0.71) 0.43 (0.34) 30.41 (56.68) 7.41 (6.18) 4.97 (3.76) 0.79 (0.03)
6 1.19 (0.86) 0.50 (0.34) 98.80 (244.94) 10.09 (8.32) 6.74 (4.87) 0.82 (0.04)

Migrr

3 0.76 (0.69) 0.78 (0.33) 14.51 (18.40) 5.62 (4.99) 3.51 (2.93) 0.65 (0.02)
4 1.02 (0.90) 0.76 (0.36) 31.76 (51.55) 7.64 (7.16) 4.58 (4.04) 0.74 (0.03)
5 1.39 (1.04) 0.75 (0.35) 62.83 (91.89) 9.70 (7.88) 5.70 (4.25) 0.79 (0.03)
6 1.72 (1.19) 0.70 (0.37) 180.35 (360.25) 12.56 (9.76) 7.35 (5.14) 0.82 (0.03)

Chor

3 1.47 (1.99) 2.79 (1.10) 24.98 (9.85) 60.22 (242.88) 12.27 (6.55) 0.16 (0.12)
4 1.36 (1.52) 3.84 (1.23) 34.36 (10.94) 44.71 (184.05) 12.95 (5.98) 0.13 (0.12)
5 1.41 (1.55) 4.63 (1.37) 41.17 (12.16) 44.06 (223.15) 12.68 (6.06) 0.12 (0.11)
6 1.29 (1.38) 5.87 (1.66) 52.09 (14.77) 38.35 (215.27) 13.01 (6.01) 0.13 (0.12)
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Table B.2: Metrics for Chiron traces. Cells contains mean and standard deviation in parentheses.

Alg. Spec δt #Msgs Data Smax Scrit ConvE

Orch

1 0.77 (0.42) 2.95 (0.00) 87.46 (0.00) 0.00 (0.00) 0.00 (0.00) 0.74 (0.00)
2 1.00 (0.00) 2.95 (0.00) 87.46 (0.00) 0.00 (0.00) 0.00 (0.00) 0.74 (0.00)
3 0.99 (0.10) 3.42 (0.02) 101.62 (1.00) 0.00 (0.00) 0.00 (0.00) 0.75 (0.00)
5 0.94 (0.24) 2.95 (0.00) 87.46 (0.00) 0.00 (0.00) 0.00 (0.00) 0.74 (0.00)

15a 1.00 (0.00) 2.95 (0.00) 87.46 (0.00) 0.00 (0.00) 0.00 (0.00) 0.74 (0.00)
15b 1.00 (0.00) 3.00 (0.01) 88.90 (0.16) 0.00 (0.00) 0.00 (0.00) 0.75 (0.00)

Migr

1 1.66 (0.03) 0.02 (0.00) 0.52 (0.00) 8.00 (0.00) 2.03 (0.00) 0.74 (0.00)
2 1.00 (0.00) 0.57 (0.00) 13.09 (0.10) 4.00 (0.00) 3.10 (0.01) 0.74 (0.00)
3 1.86 (0.00) 0.88 (0.01) 70.23 (1.00) 13.00 (0.00) 9.76 (0.05) 0.75 (0.00)
5 1.67 (0.00) 0.02 (0.00) 0.52 (0.00) 8.00 (0.00) 2.03 (0.00) 0.74 (0.00)

15a 1.00 (0.00) 0.97 (0.00) 10.71 (0.04) 4.00 (0.00) 3.90 (0.00) 0.74 (0.00)
15b 1.00 (0.00) 1.00 (0.00) 19.36 (0.35) 9.02 (2.00) 7.00 (0.03) 0.75 (0.00)

Migrr

1 1.98 (0.00) 1.01 (0.01) 50.19 (0.33) 9.80 (1.37) 5.29 (0.07) 0.74 (0.00)
2 1.81 (0.02) 1.01 (0.01) 212.55 (3.17) 12.00 (0.00) 5.82 (0.05) 0.74 (0.00)
3 2.37 (0.03) 0.89 (0.02) 147.00 (3.97) 15.97 (0.22) 10.65 (0.09) 0.75 (0.01)
5 1.98 (0.01) 1.01 (0.00) 50.16 (0.30) 9.80 (1.35) 5.28 (0.06) 0.74 (0.00)

15a 1.99 (0.01) 1.01 (0.01) 83.80 (0.34) 8.64 (0.94) 4.91 (0.01) 0.74 (0.00)
15b 2.50 (0.01) 1.00 (0.00) 136.05 (0.27) 16.86 (0.35) 11.41 (0.01) 0.75 (0.00)

Chor

1 1.01 (0.00) 4.89 (0.00) 44.02 (0.00) 20.00 (0.00) 15.88 (0.32) 0.20 (0.01)
2 133.86 (0.17) 2.95 (0.00) 26.52 (0.00) 2798.38 (211.11) 21.41 (0.74) 0.67 (0.02)
3 1.22 (0.04) 4.40 (0.13) 39.64 (1.16) 23.65 (0.87) 18.18 (0.93) 0.33 (0.02)
5 1.01 (0.00) 4.89 (0.00) 44.02 (0.00) 20.00 (0.00) 15.85 (0.33) 0.20 (0.01)

15a 1.00 (0.00) 0.98 (0.00) 8.84 (0.00) 10.00 (0.00) 9.25 (0.07) 0.47 (0.01)
15b 116.52 (1.19) 2.00 (0.00) 18.00 (0.00) 3387.04 (316.16) 28.01 (1.13) 0.71 (0.00)

B.2 Specifications for Producer Consumer

We present the specifications used for monitoring producer-consumer using Java-MOP (Listing B.1), LARVA
(Listing B.2), and MarQ (Listing B.3). The detailed findings and description is found in Section 10.2.2. The
monitors were designed for global monitoring, to ensure the trace is fed to the corresponding formalism as a total
order. As such, for MarQ locking was needed.

Listing B.1: Java-MOP specification and monitor for producer-consumer.
1 ProdCons ( ) {
2 event produce b e f or e ( ) :
3 c a l l (* Queue . add ( * ) )
4 && cf low ( e x e c u t i o n (* SynchQueue . p roduce ( * ) ) )
5 { }
6 event consume b e f or e ( ) :
7 c a l l (* Queue . p o l l ( ) )
8 && cf low ( e x e c u t i o n (* SynchQueue . consume ( ) ) )
9 { }

10 c f g : S −> S produce S consume | e p s i l o n
11 @fai l {
12 System . o u t . p r i n t l n ( " F a i l e d ! " ) ;
13 System . e x i t ( 1 ) ;
14 }
15 }
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Listing B.2: LARVA specification and monitor for producer-consumer.
1 IMPORTS { import j a v a . u t i l . * ; }
2 GLOBAL{
3 VARIABLES { i n t c n t = 0 ; }
4 EVENTS{
5 produce ( ) = { Queue . add ( ) }
6 consume ( ) = { Queue . p o l l ( ) }
7 }
8 PROPERTY p r o d c o n s {
9 STATES{

10 BAD { bad {
11 System . e r r . p r i n t l n ( " F a i l e d ! " ) ;
12 System . e x i t ( 1 ) ;
13 }}
14 NORMAL { ok }
15 STARTING { s t a r t i n g }
16 }
17
18 TRANSITIONS{
19 s t a r t i n g −> bad [ consume ]
20 s t a r t i n g −> ok [ p roduce \ \ c n t ++ ; ]
21 ok −> ok [ consume \ c n t > 1 \ cn t −− ;]
22 ok −> s t a r t i n g [ consume \ c n t == 1 \ cn t −− ;]
23 ok −> ok [ p roduce \ \ c n t ++ ; ]
24 ok −> bad [ consume \ c n t == 0 \ ]
25 bad −> bad [ p roduce ]
26 bad −> bad [ consume ]
27 }
28 }
29 }
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Listing B.3: MarQ specification and monitor for producer-consumer.
1 p u b l i c a s p e c t MarQProdCon {
2 / / E v e n t s
3 p r i v a t e f i n a l i n t PRODUCE = 1 ;
4 p r i v a t e f i n a l i n t CONSUME = 2 ;
5 / / Produce Counter
6 p r i v a t e i n t c o u n t e r = 0 ;
7 / / Moni tor + Lock
8 Moni to r m o n i t o r ;
9 p r i v a t e O b j e c t LOCK = new O b j e c t ( ) ;

10
11 b e f or e ( ) : / / Handle Even t : Produce
12 c a l l (* Queue . add ( * ) )
13 && cf low ( e x e c u t i o n (* SynchQueue . p roduce ( * ) ) )
14 {
15 synchronized (LOCK) {
16 check ( m o n i t o r . s t e p (PRODUCE, c o u n t e r ) ) ;
17 c o u n t e r ++;
18 }
19 }
20 b e f or e ( ) : / / Handle Even t : Consume
21 c a l l (* Queue . p o l l ( ) )
22 && cf low ( e x e c u t i o n (* SynchQueue . consume ( ) ) )
23 {
24 synchronized (LOCK) {
25 check ( m o n i t o r . s t e p (CONSUME, c o u n t e r ) ) ;
26 c o u n t e r −−;
27 }
28 }
29 p r i v a t e vo id check ( V e r d i c t v e r d i c t ) {
30 i f ( v e r d i c t ==V e r d i c t . FAILURE ) {
31 System . e r r . p r i n t l n ( " F a i l e d ! " ) ;
32 System . e x i t ( 1 ) ;
33 }
34 }
35 / / Cr ea t e QEA S p e c i f i c a t i o n
36 p u b l i c vo id i n i t ( ) {
37 QEABuilder b = new QEABuilder ( " ProdCon " ) ;
38 i n t t i c k e t = 1 ;
39 b . a d d T r a n s i t i o n ( 1 , PRODUCE, new i n t [ ] { t i c k e t } ,
40 Ass ignment . i n c r e m e n t ( t i c k e t ) , 1 ) ;
41 b . a d d T r a n s i t i o n ( 1 , CONSUME, new i n t [ ] { t i c k e t } ,
42 Guard . v a r I s G r e a t e r T h a n V a l ( t i c k e t , 0 ) ,
43 Ass ignment . dec remen t ( t i c k e t ) , 1 ) ;
44 b . a d d T r a n s i t i o n ( 1 , CONSUME, new i n t [ ] { t i c k e t } ,
45 Guard . v a r I s E q u a l T o I n t V a l ( t i c k e t , 0 ) , 2 ) ;
46 b . a d d F i n a l S t a t e s ( 1 ) ;
47 m o n i t o r = M o n i t o r F a c t o r y . c r e a t e ( b . make ( ) ) ;
48 }
49 p u b l i c MarQProdCon ( ) { i n i t ( ) ; }
50 }
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Other Works

C.1 Aspect-Oriented Design for Component Based Systems

[EFJ18] Antoine El-Hokayem, Yliès Falcone, and Mohamad Jaber. Modularizing behavioral and architectural
crosscutting concerns in formal component-based systems - Application to the Behavior Interaction Priority
framework. J. Log. Algebr. Meth. Program., 99:143-177, 2018.

[EFJ16] Antoine El-Hokayem, Yliès Falcone, and Mohamad Jaber. Modularizing crosscutting concerns in
component-based systems. In Software Engineering and Formal Methods - 14th International Conference,
SEFM 2016, Held as Part of STAF 2016. Proceedings, pages 367-385, Berlin, Germany, 2016. Springer.

Abstract. We define a method to modularize crosscutting concerns in Component-Based Systems (CBSs)
expressed using the Behavior Interaction Priority (BIP) framework. Our method is inspired from the Aspect
Oriented Programming (AOP) paradigm which was initially conceived to support the separation of concerns during
the development of monolithic systems. BIP has a formal operational semantics and makes a clear separation
between architecture and behavior to allow for compositional and incremental design and analysis of systems.
We distinguish local from global aspects. Local aspects model concerns at the component level and are used
to refine the behavior of components. Global aspects model concerns at the architecture level, and hence refine
communications (synchronization and data transfer) between components. We formalize local and global aspects as
well as their composition and integration into a BIP system through rigorous transformation primitives. We present
AOP-BIP, a tool for Aspect-Oriented Programming of BIP systems, demonstrate its use to modularize logging,
security, and fault tolerance in a network protocol, and discuss its possible use in runtime verification of CBSs.

Relevance. Runtime verification can be seen as a crosscutting concern. In fact, many approaches listed in
Section 2.2 use AspectJ for instrumenting Java programs. RV frameworks for CBSs, and particularly for BIP
systems (RV-BIP [FJN+15] and RVMT-BIP [NFBB17]) have been already developed. They define specific
transformations to instrument components and insert monitors as components in the new system (RV-BIP for
sequential systems and RVMT-BIP for multithreaded systems). However, since runtime verification is a crosscutting
concern, it is possible to instrument a system with aspects (both global and local) to generate necessary events
for monitoring in a generic manner for CBSs. When applying RV for BIP, we note that we are dealing with a
grey box system (as normally, RV works on black box systems). As such, it knows more information about the
structure and parts of the system. This allows to 1) have formal guarantees on the behavior of monitors, 2) allow for
a more expressive RV, as it has access to more information about the system, such as the result of static analysis
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performed on the system. We define two types of monitors, at the global and local level. At the global level, it
is possible to monitor interactions by intercepting their ports and variable accesses. Thus, by describing global
pointcuts, we can generate events that are global, and synthesize global aspects that implement monitors. At the
local level, it is possible to monitor the component state by using local pointcuts. Thus we can generate events
that are local to the component. Using local aspects, we can then describe local monitors that are embedded in the
component to check for local events. Certain properties however require information from multiple local monitors,
thus it is impossible to handle the synchronization with our current approach. Directly writing monitors as aspects
is not handled for these types of properties. However, it is possible for each local monitor to print out an event,
and a separate monitoring mechanism to verify the entirety offline. In this work, we do not tackle the automatic
synthesis of monitors from a specification. However, we show how AOP-BIP can be used to write manual monitors
for specific properties. The monitors are integrated in the system as BIP components and interactions. Properties
are specified on the Dala robot [FHC97], a large and realistic modular interactive system, which [FJN+15] uses for
the RV approaches to CBSs.

C.2 Hierarchical Decentralized Monitoring of Business Processes

[HKB+18] Sylvain Hallé, Raphaël Khoury, Quentin Betti, Antoine El-Hokayem, and Yliès Falcone. Decentralized
enforcement of document lifecycle constraints. Inf. Syst., 74(Part):117-135, 2018.

[HKEF16] Sylvain Hallé, Raphaël Khoury, Antoine El-Hokayem, and Yliès Falcone. Decentralized enforcement
of artifact lifecycles. In 20th IEEE International Enterprise Distributed Object Computing Conference,
EDOC 2016, pages 1-10. IEEE Computer Society, 2016.

Abstract. Artifact-centric workflows describe possible executions of a business process through constraints
expressed from the point of view of the documents exchanged between principals. A sequence of manipulations
is deemed valid as long as every document in the workflow follows its prescribed lifecycle at all steps of the
process. So far, establishing that a given workflow complies with artifact lifecycles has mostly been done through
static verification, or by assuming a centralized access to all artifacts where these constraints can be monitored
and enforced. We present in this paper an alternate method of enforcing document lifecycles that requires neither
static verification nor single-point access. Rather, the document itself is designed to carry fragments of its history,
protected from tampering using hashing and public-key encryption. Any principal involved in the process can
verify at any time that the history of a document complies with a given lifecycle. Moreover, the proposed system
also enforces access permissions: not all actions are visible to all principals, and one can only modify and verify
what one is allowed to observe. These concepts have been implemented in a software library called Artichoke, and
empirically tested for performance and scalability.

Relevance. In this work, the document is a set of values that are modified by various principals (referred to as
“peers”). Peers may belong to one or more groups. Groups represent access levels. In a business environment,
groups could represent different department, or levels in the managerial hierarchy. Peers interact with the document
using actions. Actions are classified into two groups: altering and observation actions. Altering actions modify a
certain value in the document, for example, it can be seen as filling a certain field in a form. Observation actions,
can be seen as actions that do not modify the document, but indicate some action related to the process. An action
contains the peer performing the action, the group on behalf the peer is doing the action, and data (such as a label,
field change, and data to modify the document). In this paper, actions follow a total-order, the sequence of actions
forms the trace. As such, verifying the trace against a specification is similar to performing RV. However, since
access levels may prevent certain peers from observing what other peers do, traces defer based on the access
group(s) the peer belongs to. To prevent peers access to the actions performed and their data, encryption is used,
to authenticate peers we assume a public-private key scheme is used. Based on the decryption result, each peer
observes a different trace. To verify the trace, we utilize a set of automata, where each group has their own
specification. Peers in multiple groups need to combine the specifications to perform additional checking that
overlaps the multiple groups. As such we have the notion of border actions, which serve a similar purpose to
references in decentralized specifications, and are used to synchronize the automata of the various groups.
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Runtime Verification of Hierarchical Decentralized Specifications

Runtime Verification (RV) is a lightweight formal method which consists in verifying that a run of a system is correct
with respect to a specification. The specification formalizes the behavior of the system typically using logics or finite-state
machines. While RV comprehensively deals with monolithic systems, multiple challenges are presented when scaling
existing approaches to decentralized systems, that is, systems with multiple components with no central observation
point. We focus particularly on three challenges: managing partial information, separating monitor deployment from
the monitoring process itself, and reasoning about decentralization in a modular and hierarchical way. We present the
notion of a decentralized specification wherein multiple specifications are provided for separate parts of the system.
Decentralized specifications provide various advantages such as modularity, and allowing for realistic monitor synthesis
of the specifications. We also present a general monitoring algorithm for decentralized specifications, and a general
datastructure to encode automata execution with partial observations. We develop the THEMIS tool, which provides a
platform for designing decentralized monitoring algorithms, metrics for algorithms, and simulation to better understand
the algorithms, and design reproducible experiments.
We illustrate the approach with two applications. First, we use decentralized specifications to perform a worst-case
analysis, adapt, compare, and simulate three existing decentralized monitoring algorithms on both a real example of a
user interface, and randomly generated traces and specifications. Second, we use decentralized specifications to check
various specifications in a smart apartment: behavioral correctness of the apartment sensors, detection of specific user
activities (known as activities of daily living), and composition of properties of the previous types.
Furthermore, we elaborate on utilizing decentralized specifications for the decentralized online monitoring of multithreaded
programs. We first expand on the limitations of existing tools and approaches when meeting the challenges introduced
by concurrency and ensure that concurrency needs to be taken into account by considering partial orders in traces.We
detail the description of such concurrency areas in a single program execution, and provide a general approach which
allows re-using existing RV techniques. In our setting, monitors are deployed within specific threads, and only exchange
information upon reaching synchronization regions defined by the program itself. By using the existing synchronization,
we reduce additional overhead and interference to synchronize at the cost of adding a delay to determine the verdict.

Vérification à l’Exécution de Spécifications Décentralisées Hiérarchiques

La vérification à l’exécution est une méthode formelle légère qui consiste à vérifier qu’une exécution d’un système est
correcte par rapport à une spécification. La spécification exprime de manière rigoureuse le comportement attendu du
système, en utilisant généralement des formalismes basés sur la logique ou les machines à états finies. Alors que la
verification a l’éxecution traite les systèmes monolithiques de manière exhaustive, plusieurs difficultés se présentent lors
de l’application des techniques existantes à des systèmes décentralisés, c-à-d. des systèmes avec plusieurs composants
sans point d’observation central. Dans cette thèse, nous nous concentrons particulièrement sur trois problèmes : la
gestion de l’information partielle, la séparation du déploiement des moniteurs du processus de vérification lui-même
et le raisonnement sur la décentralisation de manière modulaire et hiérarchique. Nous nous concentrons sur la notion
de spécification décentralisée dans laquelle plusieurs spécifications sont fournies pour des parties distinctes du système.
Utiliser une spécification décentralisée a divers avantages tels que permettre une synthèse de moniteurs à partir des
spécifications complexes et la possibilité de modulariser les spécifications. Nous présentons également un algorithme de
vérification général pour les spécifications décentralisées et une structure de données pour représenter l’exécution d’un
automate avec observations partielles. Nous développons l’outil THEMIS, qui fournit une plateforme pour concevoir
des algorithmes de vérification décentralisée, des mesures pour les algorithmes, une simulation et des expérimentations
reproductibles pour mieux comprendre les algorithmes.
Nous illustrons notre approche avec diverses applications. Premièrement, nous utilisons des spécifications décentralisées
pour munir une analyse de pire cas, adapter, comparer et simuler trois algorithmes de vérification décentralisée existants
dans deux scénarios: l’interface graphique Chiron, et des traces et spécifications générées aléatoirement. Deuxièmement,
nous utilisons des spécifications décentralisées pour vérifier diverses propriétés dans un appartement intelligent: correction
du comportement des capteurs de l’appartement, détection d’activité spécifiques de l’utilisateur (Activities of Daily
Living, ADL) et composition de spécifications des deux catégories précédentes.
En outre, nous élaborons sur l’utilisation de spécifications décentralisées pour la vérification décentralisée pendant
l’exécution de programmes parallélisés. Nous commençons par discuter les limitations des approches et des outils
existants lorsque les difficultés introduites par le parallélisme sont rencontrées. Nous détaillons la description de zones
de parallélisme d’une unique exécution d’un programme et décrivons une approche générale qui permet de réutiliser
des techniques de verification à l’éxécution existantes. Dans notre configuration, les moniteurs sont déployés dans des
fils d’exécution spécifiques et échangent de l’information uniquement lorsque des points de synchronisation définis par
le programme lui-même sont atteints. En utilisant les points de synchronisation existants, notre approche réduit les
interférences et surcoûts résultant de la synchronisation, au prix d’un retard pour déterminer le verdict.
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