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Abstract

The objective of this thesis is the development and the analysis of robust and consistent numerical
schemes for the approximation of compressible two-phase flow models in anisotropic and heteroge-
neous porous media. A particular emphasis is set on the anisotropy together with the geometric
complexity of the medium. The mathematical problem is given in a system of two degenerate and
coupled parabolic equations whose main variables are the nonwetting saturation and the global
pressure. In view of the difficulties manifested in the considered system, its cornerstone equations
are approximated with two different classes of the finite volume family.

The first class consists of combining finite elements and finite volumes. Based on standard
assumptions on the space discretization and on the permeability tensor, a rigorous convergence
analysis of the scheme is carried out thanks to classical arguments. To dispense with the underlined
assumptions on the anisotropy ratio and on the mesh, the model has to be first formulated in the
factional flux formulation. Moreover, the diffusive term is discretized by a Godunov-like scheme
while the convective fluxes are approximated using an upwind technique. The resulting scheme
preserves the physical ranges of the computed solution and satisfies the coercivity property. Hence,
the convergence investigation holds. Numerical results show a satisfactory qualitative behavior of
the scheme even if the medium of interest is anisotropic.

The second class allows to consider more general meshes and tensors. It is about a new positive
nonlinear discrete duality finite volume method. The main point is to approximate a part of the
fluxes using a nonstandard technique. The application of this idea to a nonlinear diffusion equation
yields surprising results. Indeed, not only is the discrete maximum property fulfilled but also the
convergence of the scheme is established. Practically, the proposed method shows great promises
since it provides a positivity-preserving and convergent scheme with an optimal convergence rate.

Mots clés : porous media, two-phase flow, compressible, immiscible, finite volumes, finite elements,
positive, DDFV monotone.
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Résumé

Cette thèse est centrée autour du développement et de l’analyse des schémas volumes finis robustes
afin d’approcher les solutions du modèle diphasique compressible en milieux poreux hétérogènes
et anisotropes. Le modèle à deux phases compressibles comprend deux équations paraboliques
dégénérées et couplées dont les variables principales sont la saturation du gaz et la pression globale.
Ce système est discrétisé à l’aide de deux méthodes différentes (CVFE et DDFV) qui font partie
de la famille des volumes finis.

La première classe à laquelle on s’intéresse consiste à combiner la méthode des volumes finis
et celle des éléments finis. Dans un premier temps, on considère un schéma volume finis upwind
pour la partie convective et un schéma de type éléments finis conformes pour la diffusion capillaire.
Sous l’hypothèse que les coefficients de transmissibilités sont positifs, on montre que la saturation
vérifie le principe du maximum et on établit des estimations d’énergies permettant de démontrer la
convergence du schéma. Dans un second temps, on a mis en place un schéma positif qui corrige le
précédent. Ce schéma est basé sur une approximation des flux diffusifs par le schéma de Godunov.
L’avantage est d’établir la bornitude des solutions approchées ainsi que les estimations uniformes sur
les gradients discrets sans aucune contrainte ni sur le maillage ni sur la perméabilité. En utilisant
des arguments classiques de compacité, on prouve rigoureusement la converge du schéma. Chaque
schéma est validé par des simulations numériques qui montrent bien le comportement attendu d’une
telle solution.

Concernant la deuxième classe, on s’intéressera tout d’abord à la construction et à l’étude d’un
nouveau schéma de type DDFV (Discrete Duality Finite Volume) pour une équation de diffusion
non linéaire dégénérée. Cette méthode permet d’ avantage de prendre en compte des maillages
très généraux et des perméabilités quelconques. L’idée clé de cette discrétisation est d’approcher
les flux dans la direction normale par un schéma centré et d’utiliser un schéma décentré dans la
direction tangentielle. Par conséquent, on démontre que la solution approchée respecte les bornes
physiques et on établit aussi des estimations d’énergie. La convergence du schéma est également
établie. Des résultats numériques confirment bien ceux de la théorie. Ils exhibent en outre que la
méthode est presque d’ordre deux.

Mots clés : milieux poreux, diphasique compressible, immiscible, volumes finis, éléments finis,
positif, DDFV monotone.
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Introduction

0.1 Contexte général et objectifs de la thèse

Ce mémoire de thèse est consacré à l’analyse numérique des schémas volumes finis positifs pour
des écoulements diphasiques compressibles en milieux poreux hétérogènes et anisotropes.

La modélisation des écoulements en milieux poreux joue un rôle important dans la compréhension
de nombreux phénomènes issus de la physique, de l’hydrogéologie, de l’environnement ... La mise en
équations de tels phénomènes permet de mieux les comprendre et espérer prévoir le comportement
de leurs variables potentielles.

La modélisation des problèmes physiques fait souvent intervenir des phénomènes de convec-
tion et de diffusion. Celle ci conduit à des systèmes d’équations aux dérivées partielles de type
hyperboliques ou/et elliptiques non linéaires. La résolution ou l’analyse mathématique (existence,
unicité et stabilité), des solutions du système obtenu n’est pas toujours évidente. Elle est même
délicate à cause de la non linéarité, la dégénérescence et au couplage des équations. A cet effet
l’approximation de ces systèmes reste la seule possibilité pour se faire une idée sur les profils de
leurs solutions. Cependant cette démarche génère d’autres difficultés spécifiques à l’approximation
tels que la consistance, la stabilité numérique et la convergence. Tout cela constituera le cœur de
notre préoccupation dans ce travail.

Le développement et l’analyse des méthodes numériques pour l’approximation des solutions des
systèmes en question a connu une rapide expansion dans les dernières décennies. Plusieurs méthodes
ont été utilisées pour leurs approximations : différences finies, éléments finis, éléments finis mixtes,
volumes finis, ... . Dans ce travail nous utiliserons des schémas numériques qui combinent les
volumes finis et les éléments finis (CVFE) d’une part et la méthode des DDFV (discrete duality
finite volume) d’autre part.

Le problème mathématique auquel nous nous intéressons au cours de ce mémoire de thèse est
constitué de deux équations paraboliques non linéaires dégénérées et fortement couplées. Outre la
non linéarité, l’anisotropie du milieu présente une sérieuse difficulté. Celle ci rend difficile la satis-
faction des solutions approchées des bornes physiques. A tire d’exemple, la saturation approchée
doit être comprise entre 0 et 1. Ce problème porte le nom du principe du maximum.

Outre le traitement des géométries complexes, la conservation des flux est parmi les avantages
qui motive l’usage des méthodes volumes finis en général, CVFE et DDFV en particulier. Dans notre
cas, l’ensemble des équations qui régissent les écoulements diphasiques résultent essentiellement de
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la loi de conservation de la masse. Ainsi, la conservation locale de la masse est une propriété tout
à fait naturelle qui doit être satisfaite à travers des interfaces des sous-domaines adjacents.

L’objectif primordial de ce travail est de concevoir des schémas volumes finis de type CVFE et
DDFV qui soient capables de simuler le modèle diphasique compressible et anisotrope. L’analyse
mathématique de chaque schéma est détaillée avec des validations numériques dans des chapitres
spécifiques. Les résumés des méthodes CVFE et DDFV sont présentés dans la section suivante.

0.2 Synthèse du manuscrit

Ce manuscrit est divisé en quatre chapitres. Le premier chapitre présente une brève motivation
de la thèse. Nous rappelons les concepts de base des écoulements en milieux poreux, notamment la
saturation, les perméabilités, l’anisotropie, la pression capillaire, la pression globale et les différentes
formulations des équations qui régissent des écoulements compressibles dans un milieu poreux. Ce
survol a comme but de mieux comprendre l’objectif des travaux réalisés tout au long de cette thèse.

Le deuxième chapitre est consacré à l’analyse numérique d’un schéma volumes finis/éléments
finis pour un système d’équations aux dérivées partielles paraboliques dégénérées. Ceci suppose
la positivité des coefficients de transmissivité comme hypothèse principale. En revanche, quand le
milieu est fortement anisotrope cette hypothèse n’est pas forcement vérifiée. Pour s’affranchir de
cette contrainte, nous proposons dans le troisième chapitre un schéma qui assure la positivité des
saturations malgré l’anisotropie. L’idée clé de cette approche consiste à approximer le terme de
diffusion comme s’il était de type hyperbolique.

Dans le quatrième chapitre et afin d’utiliser des maillages très généraux et des perméabilités
quelconques, nous construisons un schéma DDFV pour un problème de diffusion non linéaire.
L’apport majeur de ce nouveau schéma est qu’il vérifie le principe du maximum discret ainsi que
des estimations de type énergie au même temps.

Dans ce qui suit nous présenterons un survol descriptif de tous les chapitres du mémoire de
thèse.

0.2.1 Chapitre 2 : Analyse numérique d’un schéma volumes finis de type
”vertex-centered” pour un modèle eau-gaz en milieux poreux

Ce chapitre est centré sur l’analyse numérique d’un schéma volumes finis dit ”vertex-centered”,
de type CVFE (Control Volume Finite Element) approchant un système d’équations de convection-
diffusion qui modélise des écoulements immiscibles eau-gaz en milieux poreux. La phase gazeuse
est considérée compressible tandis que celle de l’eau est incompressible. Ce système est obtenu par
la loi de conservation de masse pour chaque phase et où la vitesse de l’écoulement est donnée par
la loi de Darcy-Muskat généralisée.

Modèle mathématique

Le problème est posé sur le cylindre QT = Ω × (0,T)) où Ω est un ouvert connexe, borné et
polyédrique de Rd (d = 2, 3). T est un réel strictement positif qui représente le temps physique.

2



Après certaines transformations, le système auquel on s’intéresse s’écrit sous la forme :

∂t(φρ(p)s)− div
(

Λρ(p)Mg(s)∇p
)
− div

(
Λρ(p)∇ξ(s)

)
+ div

(
Λρ2(p)Mg(s)~g

)
+ ρ(p)sqP = 0, (0.2.1)

∂t(φs) + div
(

ΛMw(s)∇p
)
− div

(
Λ∇ξ(s)

)
− div

(
ΛMw(s)~g

)
+ sqP = qP − qI . (0.2.2)

Les variables principales sont la saturation du gaz s et la pression globale p. On précise que la
saturation de l’eau est bien évidement égale à 1− s. Les autres coefficients sont : φ la porosité du
milieu, ρ la densité de la phase gazeuse, Λ désigne la matrice de la perméabilité absolue, Mg (resp.
Mw) la mobilité du gaz (resp. de l’eau) et ξ est une primitive qui s’annule en 0 du terme

γ(s) =
Mw(s)Mg(s)

M(s)
p′c(s) ≥ 0, ξ(s) =

∫ s

0
γ(u) du.

où pc(s) est la pression capillaire, qui est ici une fonction de la saturation du gaz. De plus, le vecteur
~g est l’accélération du pesanteur et qP , qI sont des fonctions sources. Le système (0.2.1)-(0.2.2) est
complété par la donnée de conditions initiales

p(x, 0) = p0(x) et s(x, 0) = s0(x) pour tout x ∈ Ω, (0.2.3)

et la donnée des conditions aux limites
p = 0, s = 0 sur ΓD × (0,T)(
Mg(s)Λ∇p+ Λ∇ξ(s)− ρ(p)Mg(s)Λ~g

)
· n = 0 sur ΓN × (0,T)(

Mw(s)Λ∇p− Λ∇ξ(s)− ρwMw(s)Λ~g
)
· n = 0 sur ΓN × (0,T)

. (0.2.4)

où {ΓN ,ΓD} est une partition du bord ∂Ω dont la mesure superficielle de ΓD est strictement
positive. Le vecteur n désigne la normale sortante de ∂Ω.

Nous supposons que les fonctions du problème (0.2.1)-(0.2.4) vérifient les hypothèses suivantes.

(H0) La pression globale initiale p0 est dans L2(Ω) et la saturation du gaz initiale s0 est dans
L∞(Ω) avec 0 ≤ s0(x) ≤ 1 p.p. dans Ω.

(H1) La porosité φ est une fonction de L∞ avec φ0 ≤ φ(x) ≤ φ1 p.p. dans Ω où φ0 et φ1 sont deux
constantes strictement positives.

(H2) La mobilité du gaz Mg, (resp. de l’eau Mw) est une fonction croissante (resp. décroissante)
de [0, 1] dans R+. Elle est prolongeable par 0 sur l’intervalle (] −∞, 0] (resp. [1,+∞[). De
plus, il existe une constante strictement positive telle que

m0 ≤Mg(s) +Mw(s), ∀s ∈ [0, 1].

(H3) La perméabilité absolue est donnée par une matrice symétrique définie positive dont les
coefficients appartiennent à L∞(Ω). De plus, elle est uniformément elliptique i.e. ils existent
Λ,Λ > 0 telles qu’on ait :

Λ |ζ|2 ≤ Λ(x)ζ · ζ ≤ Λ |ζ|2, pour tout ζ ∈ Rd et p.p. dans Ω.
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(H4) La fonction γ est continue sur [0, 1] et{
γ(s) > 0 pour 0 < s < 1

γ(0) = γ(1) = 0
.

On suppose également une continuité hölderienne d’ordre θ ∈ (0, 1] sur la fonction ξ−1.
Autrement-dit, il existe une constante positive C telle que :

pour tous a, b ∈ [0, ξ(1)], |ξ−1(a)− ξ−1(b)| ≤ C|a− b|θ.

(H5) Le terme d’injection qI et de production qP sont deux fonctions positives de L2(QT).

(H6) La densité du gaz est différentiablement continue sur R et uniformément bornée i.e. ρ0 ≤
ρ(pg) ≤ ρ1 où ρ0 et ρ1 sont deux constantes positives.

Le cadre fonctionnel dans lequel on cherche les solutions au sens faible du problème continu n’est
autre que l’espace de Sobolev classique

H1
ΓD

(Ω) = {v ∈ H1(Ω) / v = 0 on ΓD}.

C’est un espace de Hilbert muni de la norme

||v||H1
ΓD

(Ω) = ||∇v||(L2(Ω))d

Definition 0.2.1. (Solutions faibles) Sous les hypothèses (H0)–(H6), un couple de fonctions mesurables
(p, s) est dit solution faible du problème (0.2.1)-(0.2.4) si les conditions suivantes sont satisfaites :

0 ≤ s ≤ 1 p.p. dans QT,

ξ(s) ∈ L2(0,T;H1
ΓD

(Ω)),

p ∈ L2(0,T;H1
ΓD

(Ω)),

et pour tout ϕ,ψ ∈ C∞c (Ω× [0,T)), on a

−
∫
QT

φρ(p)s ∂tϕdx dt−
∫

Ω
φ ρ(p0)s0 ϕ(x, 0) dx

+

∫
QT

ρ(p)Mg(s)Λ∇p · ∇ϕdx dt+

∫
QT

ρ(p)Λ∇ξ(s) · ∇ϕdx dt

−
∫
QT

ρ2(p)Mg(s)Λ ~g · ∇ϕdx dt+

∫
QT

ρ(p)sqP ϕdx dt = 0, (0.2.5)

−
∫
QT

φs ∂tψ dx dt−
∫

Ω
φ(x)s0 ψ(x, 0) dx−

∫
QT

Mw(s)Λ∇p · ∇ψ dx dt

+

∫
QT

Λ∇ξ(s) · ∇ψ dx dt+

∫
QT

Mw(s)Λ ~g · ∇ψ dx dt

+

∫
QT

sqPψ dx dt =

∫
QT

(qP − qI)ψ dx dt. (0.2.6)

L’étude théorique du système précédent, notamment l’existence de solutions faibles, est réalisée
dans l’article [84]. La question d’unicité reste encore ouverte.
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Le maillage CVFE

Nous entamerons cette partie par la description du maillage utilisé et nous continuerons par
l’approximation des termes importants pour obtenir en fin le schéma final.

Nous nous plaçons dans le cas de la dimension deux en espace. En principe, la méthode CVFE
est définie sur un maillage dual qui est construit à partir d’un maillage initial. Ce dernier est une
triangulation T conforme au sens des éléments finis. La discrétisation T est alors un recouvrement
du domaine Ω c’est-à-dire Ω =

⋃
T∈T T . Étant donné un triangle T , on dénote xT son barycentre,

hT son diamètre, %T le rayon de la plus grande boule inscrite dans T et |T | son aire. L’ensemble
des arêtes de T est noté ET . La famille de tous les sommets de la triangulation est dénotée V. Pour
chaque sommet K ∈ V, on définit KT l’ensemble des triangles qui partagent le sommet K. On lui
associe également une et une seule maille duale, appelée volume de contrôle ωK . Elle est construite
en connectant le barycentre de chaque triangle de KT aux milieux des arêtes ayant K comme
extrémité. Le centre de ωK est le sommet xK et sa surface |ωK |. Pour deux volumes de contrôles
adjacents K et L qui s’intersectent dans un triangle T , on définit le segment σTKL = ∂K ∩ ∂L ∩ T
où |σTKL| est sa longueur et nσTKL

la normale dirigée de K vers L. Une illustration de ces deux

maillages est présentée sur la figure (1) ci-dessous.

Figure 1: Exemple de maillages initial, dual et volume de contrôle

On note h := max
T∈T

hT le pas du maillage triangulaire et θT := max
T∈T

hT
%T

. Pour toute suite

de maillages (θTm)m on suppose que la suite (θTm)m est uniformément majorée. Cette hypothèse
constitue une condition nécessaire de la convergence de la méthode des éléments finis. Elle est
appelée condition de régularité de la suite des maillages.

La discrétisation de l’intervalle (0,T) est donnée par une suite croissante de réels (tn)n=0,...,N ,
telle que :

t0 = 0 < t1 < · · · < tN−1 < tN = T.

Afin de simplifier l’exposé cette subdivision est considérée uniforme et le pas de temps est noté
δt.

Soit {unK}{K∈V, n=0,...,N} une famille de nombre réels. Dans le contexte du schéma CVFE, on
précise deux reconstructions de la solution :

(i) Une solution volume fini ũh,δt construite sur le maillage dual. Elle est constante par maille
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et définie presque partout sur le sous-domaine
⋃
K∈V

ω̊K × (0,T) par

ũh,δt(x, 0) =
∑
K∈V

u0
K χω̊K (x), ∀x ∈

⋃
K∈V

ω̊K ,

ũh,δt(x, t) =
N−1∑
n=0

∑
K∈V

un+1
K χω̊K×(tn,tn+1](x, t), ∀(x, t) ∈

⋃
K∈V

ω̊K × (0,T).

L ’ensemble de toutes ces fonctions est désigné par Wh,δt.

(ii) Une solution élément fini P1 en espace et constante par morceaux en temps

uh,δt(x, 0) =
∑
K∈V

u0
KϕK(x), ∀x ∈ Ω,

uh,δt(x, t) =
N−1∑
n=0

∑
K∈V

un+1
K ϕK(x) χ(tn,tn+1](t), ∀ (x, t) ∈ Ω× (0,T).

L’ensemble de toute ces fonctions forment l’espace Xh,δt. Si F (u) est une fonction non linéaire, on
notera son interpolation au sens des volumes (resp. éléments) finis par F (ũh,δt) (resp. F (uh,δt)).

Esquisse de la discrétisation du schéma CVFE pour le modèle diphasique

Pour rendre notre étude plus claire on néglige la gravité car elle ne pose aucune difficulté
majeure. Étant donné un entier n et un volume de contrôle dual ωK . On suit la démarche volumes
finis. A cet effet, on intègre sur la maille (tn, tn+1]×ωK l’équation de la phase gazeuse, on applique
la formule de Green. On obtient alors∫ tn+1

tn

∫
ωK

φ(x)∂t

(
ρ(p)s

)
dx−

∑
T∈KT

∑
σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p)Mg(s)Λ∇p · nσK dσ dt︸ ︷︷ ︸

terme convectif

−
∑
T∈KT

∑
σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p) Λ∇ξ(s) · nσK dσ dt︸ ︷︷ ︸

terme diffusif capillaire

+

∫ tn+1

tn

∫
ωK

ρ(p) s qP dx dt = 0,

où EK est l’ensemble des arêtes duales et nσK la normale à l’interface σ sortante de ωK .
Le terme évolutif est approximé à l’aide du schéma d’Euler implicite∫ tn+1

tn

∫
ωK

φ(x)∂t

(
ρ(p)s

)
dx dt ≈ |ωK |φK

(
ρ(pn+1

K ) sn+1
K − ρ(pnK) snK

)
.

Pour qu’on puisse obtenir un schéma stable, le flux convectif est discrétisé en utilisant un schéma
décentré. Un tel schéma est essentiellement décrit par la donnée d’un flux numérique Gg. Ainsi,
l’approximation de la partie convective devient

−
∫
σ
ρ(p)Mg(s)Λ∇p · nσK dσ ≈ ρn+1

KL ΛTKL Gg(s
n+1
K , sn+1

L ; δn+1
KL p),
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où le coefficient ρn+1
KL est la moyenne de la densité sur l’interface σTKL

ρn+1
KL :=


1

pn+1
K − pn+1

L

∫ pn+1
K

pn+1
L

ρ(z) dz, si pn+1
L 6= pn+1

K

ρ(pn+1
K ), sinon

, (0.2.7)

et ΛTKL représente le coefficient de transmissivité à travers l’interface σTKL des deux volumes de
contrôles K et L dans le triangle T

ΛTKL := −
∫
T

Λ(x)∇ϕK · ∇ϕL dx = ΛTLK , pour K 6= L

ΛTKK :=
∑

L∈VT \{K}
ΛTKL =

∫
T

Λ(x)∇ϕK · ∇ϕK dx sinon

. (0.2.8)

Le signe de ce coefficient est très important pour l’analyse du schéma. A cet effet, nous allons
dans ce chapitre supposer que toutes les transmissivités sont positives. Cette hypothèse n’est
pas forcement vérifiée pour n’importe quel maillage et tenseur. Par contre elle l’est dans des cas
particuliers. A titre d’exemple, si tous les angles des triangles sont inférieurs à π/2 et si le tenseur
de perméabilité se réduit à un scalaire alors toutes les transmissivités sont positives.

La fonction Gα (pour α = g, w) est un flux numérique, qui prend trois arguments et vérifie les
propriétés suivantes :

(C1) Gα(·, b; c) est croissante ∀b, c ∈ R et Gα(a, ·; c) est décroissante ∀a, c ∈ R,

(C2) Gα(a, b; c) = −Gα(b, a;−c) ∀a, b, c ∈ R,

(C3) Gg(a, a; c) = Mg(a)(−c), et Gw(a, a; c) = Mw(a)c, ∀a, c ∈ R. En outre, il existe une constante
C telle que :

∀ a, b, c ∈ R |Gα(a, b; c)| ≤ C(|a|+ |b|)|c|,

(C4) Il existe β > 0 tel que

∀ a, b, c ∈ R (Gw(a, b; c)−Gg(a, b; c))c ≥ β|c|2.

(C5) Il existe un module de continuité η : R+ −→ R+ tel que l’inégalité suivante ait lieu

∀ a, b, c, a′, b′ ∈ R |Gα(a, b; c)−Gα(a′, b′; c)| ≤ η (|a− a′|+ |b− b′|)|c|.

Un exemple classique de choix de la fonction Gα qui répond aux hypothèses (C1)-(C5) est celui
d’Engquist–Osher. Pour le construire, il suffit de décomposer la mobilité Mα en sa partie croissante
Mα ↑ et sa partie décroissante Mα ↓. On écrit alors

Gα(a, b; c) = c+
(
Mα ↑(a) +Mα ↓(b)

)
− c−

(
Mα ↑(b) +Mα ↓(a)

)
,

où c+ = max(c, 0) et c− = −min(c, 0). Mais, la mobilité du gaz est croissante tandis que celle de
l’eau est décroissante selon l’hypothèse (H2). Par conséquent, la formule précédente se réduit à

Gg(a, b; c) = −Mg(b)c
+ +Mg(a)c−, Gw(a, b; c) = Mw(b)c+ −Mw(a)c−.
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On exploite à nouveau l’hypothèse (H2) pour voir que les propriétés (C1)-(C5) sont bien satis-
faites.

Maintenant, on va décrire l’approximation du terme capillaire. Comme il s’agit d’un terme de
diffusion, ce dernier est naturellement approché par un schéma centré pour des raisons encore une
fois de stabilité.

−
∫
σ
ρ(p) Λ∇ξ(s) · nσK dσ ≈ −ρn+1

KL ΛTKL(ξn+1
L − ξn+1

K ).

Finalement, on approxime le terme source par sa moyenne sur le volume de contrôle K,∫ tn+1

tn

∫
ωK

ρ(p) s qP dx dt = δt ωK ρ(pn+1
K ) sn+1

K qn+1
P,K . (0.2.9)

Le schéma numérique

On assemble toutes les approximations qu’on vient de proposer afin d’acquérir le schéma CVFE
pour le système (0.2.1)-(0.2.4)

p0
K =

1

|ωK |

∫
ωK

p0(x) dx, ∀K ∈ V, (0.2.10)

s0
K =

1

|ωK |

∫
ωK

s0(x) dx, ∀K ∈ V. (0.2.11)

φK

(
ρ(pn+1

K ) sn+1
K − ρ(pnK) snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKLGg(s

n+1
K , sn+1

L ; δn+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKL(ξn+1

L − ξn+1
K )

+ δt ρ(pn+1
K ) sn+1

K qn+1
P,K = 0, (0.2.12)

φK

(
sn+1
K − snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKL Gw(sn+1
K , sn+1

L ; δn+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKL(ξn+1
L − ξn+1

K )

+ δt (sn+1
K − 1) qn+1

P,K = −δtqn+1
I,K , ∀n = 0, . . . , N − 1, ∀K ∈ V, xK /∈ ΓD.

(0.2.13)

Résultats obtenus

.
Sous la positivité des transmissivités on obtient les résultats suivants.

Lemma 0.2.1. (Principe du maximum discret) Soit n = 0, . . . , N − 1. Si (pn+1
K , sn+1

K )K∈V est une
solution du schéma (0.2.10)-(0.2.13) alors la saturation

0 ≤ sn+1
K ≤ 1 pour tout volume de contrôle ωK .
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L’idée de la preuve est standard. Pour établir que sn+1
K ≥ 0, on considère tout d’abord un

volume de contrôle ωK tel que sn+1
K = minL∈V(un+1

L ), puis on multiplie l’équation discrète du gaz
(0.2.12) par (sn+1

K )−. La monotonie et la consistance du flux numérique Gg renforce la monotonie
de la partie convective. En outre, la monotonie du terme dispersif découle de la positivité des
transmissivités. Finalement, on procède de la même façon pour démonter que sn+1

K ≤ 1. Il suffit
justement de choisir un ωK avec sn+1

K = maxL∈V(un+1
L ), multiplier l’équation (0.2.13) par (sn+1

K −1)+

et suivre le même raisonnement.

Proposition 0.2.1. (Estimations a priori) Soit n = 0, . . . , N −1. Si le couple (pn+1
K , sn+1

K )K∈V est
une solution du système (0.2.10)-(0.2.13) alors ils existent deux constantes Cp et C

ξ
dépendantes

de Ω,T, p0, s0,m0,qP ,qI ,Λ,Λ telles que :

N−1∑
n=0

δt
∥∥pn+1

h

∥∥2

Xh
≤ Cp, (0.2.14)

et

N−1∑
n=0

δt
∥∥ξ(sn+1

h )
∥∥2

Xh
≤ Cξ. (0.2.15)

On présente en premier la preuve de l’inégalité (0.2.14). Pour ceci, l’équation du gaz est mul-
tipliée par pn+1

K |ωK | et celle de l’eau par g(pn+1
K )|ωK | où g′(p) = −ρ(p). On ajoute les équations

résultantes et on somme sur tous les sommets K ∈ V et n = 0, . . . , N − 1. On fait appel à la
conservation du schéma pour pouvoir utiliser la formule d’intégration par parties. On introduit
le choix crucial du coefficient ρn+1

KL qui permet de découpler la corrélation de p et ξ. Grâce à la
positivité des coefficients ΛTKL on prouve une sorte de coercivité sur la pression globale.

Le traitement du terme source repose sur la sous-linéarité de g et l’inégalité de Poincaré discrète.
En combinant toutes ces estimations et en utilisant l’inégalité de Young on arrive à majorer le

gradient discret de p.

Pour la démonstration de la deuxième inégalité, on multiplie l’équation discrète de l’eau par
ξ(sn+1

K ), on somme sur tous les sommets K ∈ V et n = 0, . . . , N − 1. Pour conclure, on se sert des
techniques similaires qu’auparavant ainsi que l’estimation d’énergie sur la pression globale.

Lemma 0.2.2. (Existence d’une solution) Le système d’équations (0.2.3)-(0.2.4) sous les hy-
pothèses (H0)-(H6) admet un couple de solution (sh, ph).

Le principe du maximum et les estimations uniformes sur les gradients permettent d’établir le
résultat d’existence grâce au théorème de monotonie.

Theorem 0.2.1. Sous les hypothèses (H0)-(H6), soit (Tm)m une suite régulière de maillages de
Ω. On suppose en plus que les coefficients de transmissivités sont tous positifs. Soit (ph,δt, sh,δt)
une suite de solutions du schéma numérique (0.2.12)-(0.2.13). Quand (h, δt) tend vers (0, 0) cette
suite admet une sous-suite convergente vers une solution (s, p) faible du problème (0.2.1)-(0.2.4)
au sens de la Définition 0.2.1.

Après avoir établi des estimations sur les translatés en espace et en temps sur la suite ξ(sh,δt),
on peut extraire, selon le fameux théorème de Kolmogorov, une sous-suite encore notée (ph,δt, sh,δt)
telle qu’on ait la convergence forte du terme évolutif (en temps) pour chaque phase. Par contre on
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dispose seulement de la convergence faible à la fois de la pression globale et des gradients discrets.
Le passage à la limite suit des idées classiques, mais à un moment donné on doit prendre en
compte le fait que la suite ρ(ph,δt)ξ(sh,δt) converge fortement. Cette remarque permet davantage
de remplacer l’absence de la convergence forte de ph,δt.

A la fin de ce chapitre nous présentons les résultats de simulations numériques sur un maillage
triangulaire dont tous les angles sont aigus avec une perméabilité scalaire afin d’assurer la positivité
des coefficients de transmissivité. Le système algébrique non linéaire issu du schéma numérique est
résolu par la méthode de Newton-Raphson.

Le premier test est pris d’un benchmark. On voit que la méthode est d’ordre un, ce qui est
tout à fait naturel pour les schémas décentrés. Dans le deuxième test, nous nous intéressons
à simuler la récupération secondaire du gaz. Nous retenons de cette application que l’approche
CVFE manifeste un comportement acceptable et semblable à la réalité physique dans le cas d’un
milieu poreux isotrope. En particulier, quand le terme capillaire est négligeable i.e. la pression du
gaz est identique à celle de l’eau, la méthode permet alors de capter le cas purement hyperbolique
du système diphasique sans aucune oscillation.

0.2.2 Chapitre 3 : Un schéma volumes finis/éléments finis positif pour un
modèle diphasique compressible dégénéré en milieux poreux anisotropes

Dans ce chapitre nous allons proposer un schéma beaucoup plus général que celui du chapitre
3. En effet, nous avons vu que l’étude du schéma CVFE est essentiellement basée sur la positivité
de transmissivités. Cette hypothèse est très restrictive et elle ne tolère pas de maillages généraux,
en particulier quand certains angles sont obtus. En outre que la nature du maillage, l’anisotropie
du milieu poreux peut rendre l’hypothèse en question inutile. Par conséquent, on pourra perdre le
principe du maximum qui est une propriété primordiale qu’on souhaite établir.

Pour faire en sorte que ce problème de positivité soit surmonté nous allons corriger le schéma du
chapitre précédent. La première idée est de reformuler le système continu d’une façon équivalente
comme ci-après

∂t(φρ(p)s)− div
(
ρ(p)M(s)fg(s)Λ∇p

)
− div

(
ρ(p)γ(s)Λ∇s

)
+ ρ(p)sqP = 0, (0.2.16)

∂t(φs) + div
(
M(s)fw(s)Λ∇p

)
− div

(
γ(s)Λ∇s

)
+ sqP = qP − qI , (0.2.17)

où M n’est autre que la mobilité totale M = Mg+Mw qui est bien évidement une fonction minorée

uniformément loin de 0. La fonction fα :=
Mα

M
représente le flux fractionnaire de la phase α. Ainsi,

sa monotonie est induite par celles des mobilités.

Nous allons garder les mêmes hypothèses sur le modèle mathématique ainsi que les notations du
maillage et celles des fonctions discrètes. Cependant, on n’impose pas de restrictions majeures sur
les mailles. Cela veut dire que les angles des triangles peuvent être obtus comme ils peuvent être
aigus. De plus, la perméabilité du milieu peut être une matrice pleine dont le ratio d’anisotropie
peut considérablement varier. Il en résulte que les coefficients de transmissivité sont désormais
dans R et non dans R+.
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Le schéma CVFE positif pour le modèle diphasique compressible

Comme dans le chapitre précédent nous allons présenter l’approximation de l’équation du gaz
à l’aide du schéma CVFE positif. On fait de même pour l’équation de la phase eau.

Soient ωK une maille duale et n = 0, · · · , N−1. On intègre l’équation (0.2.16) sur (tn, tn+1)×ωK
et on applique le formule de Gauss-Green∫ tn+1

tn

∫
ωK

φ(x)∂t

(
ρ(p)s

)
dx−

∑
T∈KT

∑
σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p)M(s)fg(s)Λ∇p · nσK dσ dt

−
∑
T∈KT

∑
σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p) Λ∇ξ(s) · nσK dσ dt

+

∫ tn+1

tn

∫
ωK

ρ(p)sqP dx dt = 0. (0.2.18)

Ici, on approche le terme en temps par le schéma d’Euler implicite∫ tn+1

tn

∫
ωK

φ(x)∂t

(
ρ(p)s

)
dx dt ≈ |ωK |φK

(
ρ(pn+1

K ) sn+1
K − ρ(pnK) snK

)
.

Puis, le terme de convection est discrétisé par un schéma décentré i.e.

−
∫
σ
ρ(p)Mg(s)Λ∇p · nσK dσ ≈ ρn+1

KLM
n+1
T Gg

(
sn+1
K , sn+1

L ; ΛTKLδ
n+1
KL p

)
. (0.2.19)

ρn+1
KL est donnée par l’expression (0.2.20).

1

ρn+1
KL

:=



1

pn+1
K − pn+1

L

∫ pn+1
K

pn+1
L

1

ρ(z)
dz, si pn+1

L 6= pn+1
K

1

ρ(pn+1
K )

, sinon

(0.2.20)

La quantité Mn+1
T désigne l’approximation de la mobilité totale sur le triangle T . Elle est

exprimée par un schéma centré

Mn+1
T =

1

#VT

( ∑
K∈VT

M(sn+1
K )

)
.

On rappelle également que ΛTKL ∈ R s’écrit
ΛTKL := −

∫
T

Λ(x)∇ϕK · ∇ϕL dx = ΛTLK , pour K 6= L

ΛTKK :=
∑

L∈VT \{K}
ΛTKL sinon

. (0.2.21)

La fonction Gg signifie un flux numérique à trois arguments. Son expression peut être définie à
partir de celle de Gw. Soit alors gw(a, b) un flux monotone quelconque de fw dans le sens suivant :
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(g1) gw est une fonction croissante par rapport à la première variable et elle est décroissante par
rapport à la deuxième variable.

(g2) gw est consistent i.e. gw(a, a) = fw(a), ∀a ∈ R.

(g3) gw est lipschitzienne par rapport à a et b.

On définit maintenant

Gw(a, b, c) = gw(a, b)c+ − gw(b, a)c−, (0.2.22)

Gg(a, b, c) = Gw(a, b, c)− c. (0.2.23)

Ce dernier choix de Gg est remarquable. Certes, on s’en servira pour contrôler surtout le gradient
discret de la pression globale. On voit que les flux numériques Gg et Gw sont fortement liés au
choix de la fonction gw. La construction de gw est classique, il suffit de prendre en considération la
technique décentré pour en déduire que

gw(a, b) = fw(b), ∀a, b ∈ R.

D’après l’hypothèse sur le flux fractionnaire fw il vient que gw vérifie les propriétés (g1)-(g3).

Ensuite, la discrétisation du terme de diffusion est complètement différente de celle que nous
avons exposé au Chapitre 1. En fait, on traite la partie elliptique comme si elle était hyperbolique.
Elle est alors approximée par∫

σ
ρ(p)Λ∇ξ(s) · nσK dσ ≈ ρn+1

KL γ
n+1
KL ΛTKL(sn+1

L − sn+1
K ), (0.2.24)

où γn+1
KL est défini par le schéma de Goudnov

γn+1
KL :=


max
s∈In+1

KL

γ(s) si ΛTKL ≥ 0

min
s∈In+1

KL

γ(s) sion
, (0.2.25)

et
In+1
KL :=

[
min(sn+1

K , sn+1
L ),max(sn+1

K , sn+1
L )

]
.

Enfin, on approche le terme source par sa moyenne.
Pour résumer, le schéma CVFE positif pour le modèle diphasique consiste à trouver (pn+1

K , sn+1
K )K∈V ,

pour n = 0, · · · , N − 1 qui résolvent le système discret suivant

p0
K =

1

|ωK |

∫
ωK

p0(x) dx, ∀K ∈ V, (0.2.26)

s0
K =

1

|ωK |

∫
ωK

s0(x) dx, ∀K ∈ V. (0.2.27)

φK

(
ρ(pn+1

K ) sn+1
K − ρ(pnK) snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL Mn+1

T Gg(s
n+1
K , sn+1

L ; ΛTKL δ
n+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL γn+1

KL ΛTKL(sn+1
L − sn+1

K )

+ δt ρ(pn+1
K ) sn+1

K qn+1
P,K = 0, (0.2.28)
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φK

(
sn+1
K − snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

Mn+1
T Gw(sn+1

K , sn+1
L ; ΛTKL δ

n+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

γn+1
KL ΛTKL(sn+1

L − sn+1
K )

+ δt (sn+1
K − 1) qn+1

P,K = −δtqn+1
I,K , ∀n = 0, . . . , N − 1, ∀K ∈ V, xK /∈ ΓD.

(0.2.29)

Du point de vue numérique, l’avantage est que la méthode n’incorpore pas la fonction de Kirchoff
ξ(s). Ceci implique un gain significatif en terme de performance dans l’implémentation du schéma
car ξ est une primitive d’une fonction non linéaire. En effet, on considère le schéma du Chapitre
1. Dans la mise en œuvre de son terme elliptique, on est amené à approximer une intégrale pour
chaque valeur de saturation. Quand le maillage devient de plus en plus fin, le solveur demande
beaucoup plus de temps à cause du calcul des intégrales. En revanche, dans le cas du schéma
positif, on n’a pas ce problème.

Du point de vue analyse, l’avantage est que les résultats que nous allons présenter dans la
suite, à savoir la bornitude de la saturation, les estimations d’énergies, sont indépendants de la
triangulation choisie ainsi que du tenseur de perméabilité considéré.

Analyse du schéma CVFE positif

Au cours de l’analyse de convergence du schéma CVFE positif (0.2.26)-(0.2.29) on fait largement
appel à la théorie des éléments finis que celle des volumes finis. Pour en savoir plus, nous allons
utiliser par exemple le lemme suivant dans plusieurs endroits de preuves des résultats ci-après.

Lemma 0.2.3. On considère la fonction ψT =
∑
K∈V

ψKϕK , où (ϕK)K∈V est la famille de fonctions

de base P1. Alors, il existe C0 = C0(Λ, θT ) tel que∑
T∈T

∑
σTKL∈ET

∣∣ΛTKL∣∣ (ψK − ψL)2 ≤ C0

∫
Ω

Λ∇ψT · ∇ψT dx. (0.2.30)

Lemma 0.2.4. (Principe du maximum discret) Soit n = 0, . . . , N − 1. On suppose que le système
(0.2.26)-(0.2.29) possède une solution du schéma alors la saturation du gaz est bornée i.e.

0 ≤ sn+1
K ≤ 1, ∀K ∈ V.

La preuve de cet énoncé est légèrement différente de celle de la section précédente. En effet,
comme certaines transmissivités pourraient être de signes quelconques, le terme diffusif du schéma
peut engendrer des saturations négatives. L’introduction du schéma de Godunov permet de corriger
cette insuffisance et renforce sa monotonie en utilisant la dégénérescence de la fonction capillaire
γ. Dans le terme convectif discret, le coefficient ΛTKL est mis à l’intérieur de l’expression du flux
numérique. Le schéma décentré prend en compte son signe ce qui permet de renforcer la monotonie
du terme hyperbolique.

Proposition 0.2.2. (Estimations d’énergie) Soit n = 0, . . . , N−1. Soit (pn+1
K , sn+1

K )K∈V une solu-
tion éventuelle du système (0.2.26)-(0.2.29) alors ils existent deux constantes C ′p et C ′ξ dépendantes

de Ω,T, p0, s0,m0,qP ,qI ,Λ,Λ, θT telles que :

N−1∑
n=0

δt
∥∥pn+1

h

∥∥2

Xh
≤ C ′p, (0.2.31)
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et

N−1∑
n=0

δt
∥∥ξ(sn+1

h )
∥∥2

Xh
≤ C ′ξ. (0.2.32)

La preuve de l’estimation à priori sur la pression globale est préformée comme suite. On
multiplie l’équation du gaz par la fonction test |ωK | g(pn+1

K ) et celle de l’eau par − |ωK | pn+1
K où

g′(p) = 1/ρ(p). On effectue l’addition des deux équations et on somme sur tous les sommets K du
maillage et n = 0, . . . , N − 1. Après avoir introduit la formule de l’intégration par partie discrète,
chaque terme est majoré ou minoré proprement. Aussi, on utilise Lemme (0.2.3) et le principe du
maximum pour conclure. Idem pour la deuxième inégalité.

Theorem 0.2.2. Supposons (H0)-(H6) et soit (Th,δt)h,δt une suite de maillages triangulaires du
domaine Ω dont la régularité est uniformément bornée. On considère (ph,δt, sh,δt) une suite de

solutions du schéma (0.2.26)-(0.2.29). Étant donné que (h, δt) tend vers (0, 0) cette suite est con-
vergente à une sous-suite près vers une solution (p, s) faible du problème continu (0.2.1)-(0.2.4) au
sens de la Définition (0.2.1).

On rappelle que la gravité est négligeable pour que l’énoncé soit cohérent avec la définition de
la solution faible. La démonstration du théorème de convergence est grandement basée sur des
résultats de compacité. On établit alors des estimations uniformes sur les translatés en espace et en
temps sur la fonction ξ(sh,δt). On applique à nouveau le théorème de Kolmogorov pour montrer la
convergence forte de la suite (sh,δt), à une sous-suite près. Le passage à la limite découle également
de la convergence forte des termes évolutifs discrets. Toutes ces démarches sont détaillées dans ce
chapitre 3.

Dans la fin du chapitre nous présentons des simulations numériques en dimension deux. Elles
mettent en évidence l’effet de l’anisotropie et son influence sur le déplacement de l’eau. On vérifie
en outre que la saturation ne dépasse pas les bornes physiques.

0.2.3 Chapitre 4 : Convergence d’un schéma DDFV monotone pour les équations
parabolique non linéaires dégénérées

Ce chapitre a comme objectif de développer et d’analyser une méthode de volumes finis de type
”Discrete Duality Finite Volume” (DDFV) pour une équation de diffusion non linéaire. Les points
forts de cette discrétisation proposée sont la possibilité d’utiliser des maillages et des perméabilités
quelconques. Elle est en plus inconditionnellement coercitive.

Dans ce chapitre on met l’accent notamment sur le principe du maximum qui n’est pas connu
en général pour les schéma DDFV existants dans la littérature. La convergence du schéma est
rigoureusement prouvée à l’aide des outils classiques. La mise en œuvre montre qu’elle est d’ordre
deux indépendamment du maillage et du tenseur. Cela rend notre approche originale et novatrice
dans le contexte des méthodes DDFV.
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Équation de diffusion non linéaire

Soit Ω un ouvert borné connexe polygonal de Rd et T un réel positif. Le problème auquel on
s’intéresse est : 

∂tu−∇ ·
(
f(u)Λ∇u

)
= 0 dans QT := Ω× (0,T)

u = 0 sur ∂Ω× (0,T),

u(·, 0) = u0 dans Ω

(0.2.33)

où f est une fonction positive, Λ une matrice carrée d’ordre d et u0 la donnée initiale. La fonction
u désigne l’inconnue principale du problème. Du point de vu physique, cette quantité décrit, par
exemple, une concentration, une saturation ou une température. L’étude théorique (existence et
unicité de la solution) de ce problème modèle est classique. Nous nous intéressons alors à approximer
les solutions de ce modèle. A cet effet, nous précisons tout d’abord les hypothèses nécessaires pour
l’investigation du schéma.

(A1) La donnée initiale u0 est dans L∞(Ω) avec 0 ≤ u ≤ 1.

(A2) La fonction f appartint à C0([0, 1],R) telle que :{
f(u) > 0, si u ∈ (0, 1),

f(u) = 0, si u ∈ R\(0, 1).

On notera par F (resp. ξ) la primitive de f (resp. v :=
√
f) qui s’annule en 0. En conséquent,

F, ξ sont lipschitziennes. Par ailleurs, on suppose que la fonction v est absolument continue.

(A3) Le tenseur Λ : Ω → Sd(R), où Sd(R) est l’espace des matrices symétriques d’ordre d, est
supposé dans L∞(Ω)d×d. Il vérifie en plus la condition d’ellipticité uniforme :

Λ |ζ|2 ≤ Λ(x)ζ · ζ ≤ Λ |ζ|2 , pour tout ζ ∈ Rd and p.p. x ∈ Ω,

où Λ,Λ sont des constantes positives.

D’après la continué absolue de la fonction v, on est en droit de donner un sens au schéma Engquist-
Osher qu’on définira plus loin.

Le cadre fonctionnel dans lequel la solution vit est l’espace classique de Sobolev

H1
0 (Ω) = {v ∈ H1(Ω) / v = 0 sur ∂Ω}.

On rappelle que c’est un espace de Hilbert muni de la norme

||v||H1
0 (Ω) = ||∇v||L2(Ω)d .

On définit maintenant la notion de la solution faible de l’équation de diffusion non linéaire.

Definition 0.2.2. Une fonction mesurable u : QT −→ [0, 1] est dite solution faible du problème
(0.2.33) si

ξ(u) ∈ L2(0,T;H1
0 (Ω)),

−
∫
QT

u ∂tϕdx dt+

∫
QT

Λ∇F (u) · ∇ϕdx dt−
∫

Ω
u0 ϕ(·, 0) dx = 0, ∀ϕ ∈ C∞c (Ω× [0,T)).
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Maillages DDFV et notations

Nous décrivons les divers maillages utilisés dans le cadre des méthodes DDFV et nous précisons
aussi les notations adoptées dans ce chapitre.

Un maillage DDFV T est défini par trois maillages différents : primal, dual et diamant, notés
par M = M ∪ ∂M, M∗ = M∗ ∪ ∂M∗ et D respectivement. Le maillage primal intérieur M est la
donnée d’une famille finie de polygones (K)K∈M qui couvrent le domaine Ω i.e.

⋃
K∈MK = Ω.

Les sous-ensembles K sont souvent appelés des volumes de contrôle et ils ne sont pas forcement
convexes. Le maillage primal du bord ∂M est constitué des arêtes de M qui se trouvent sur le
bord ∂Ω. Ces arêtes sont considérées comme des mailles dégénérées. Ensuite, à chaque volume de
contrôle K on lui associe un et un seul centre xK . Par exemple xK pourrait être choisi comme le
centre de masse de K. On note V l’ensemble de tous ces centres ainsi que V∗ l’ensemble de tous
les sommets de M.

La construction du maillage dual M∗ est basée sur celle du maillage primal M, en particulier
les sommets et les centres. Pour chaque somment xK∗ ∈ V∗ on lui associe un unique polygone K∗

dit volume de contrôle dual dont les sommets sont les centres des mailles primales qui partagent le
même point xK∗ . Si le centre xK∗ ∈ V∗ ∩ ∂Ω alors il devient sommet de K∗ en plus des centres des
volumes de contrôle ayant xK∗ comme sommet. Les arrêtes des volumes de contrôle du maillage
dual sont constitués par les segments constitués par les centres du maillage primal.

On désigne par E (resp. E∗ ) l’ensemble des arêtes primales (resp. duales). Deux volumes de
contrôle sont dits voisins s’ils partagent au moins une arête. Autrement-dit, si K,L ∈ M (resp.
K∗, L∗ ∈ M∗) sont adjacents alors il existe au moins une arête σ ∈ E (resp. σ∗ ∈ E∗) telle que
σ = K ∩ L (resp. σ∗ = K∗ ∩ L∗).

Le maillage diamant D = (Dσ,σ∗)(σ,σ∗)∈E×E∗ est un recouvrement de Ω construit à partir des
arêtes primales. Ainsi, pour σ ∈ E on lui associe un unique diamant D := Dσ,σ∗ qui est un polygone
obtenu en joignant les extrémités de σ et les centres des volumes de contrôle qui la partagent (dans
sens horaire par exemple). Si σ est incluse dans ∂Ω le diamant correspondant n’est autre qu’un
triangle (Figure 2).

On pose T = (M,M∗). Pour M ∈ T on désigne donc par mM l’aire de M , EM l’ensemble des
arêtes de M , DM l’ensemble constitué de diamants Dσ,σ∗ tel que la mesure de Lebesgue m(Dσ,σ∗ ∩
M) > 0 et dM le diamètre de M . Pour chaque diamant D ∈ D de sommets (xK , xK∗ , xL, xL∗),
on définit son centre xD par l’intersection de ces principales diagonales, sa mesure par mD et son
diamètre par dD. La longueur de l’arête e ∈ E∪E∗ est notée par me. La notation nσK (resp. nσ∗K∗)
signifie la normale à σ (resp. σ∗) sortante de K (resp. K∗). D’une manière similaire, τK,L (resp.
τK∗,L∗) est la tangente à σ (resp. σ∗) dirigée de K (resp. K∗) à L (resp. L∗). On considère αD
l’angle entre les deux vecteurs τK,L et τK∗,L∗ .

Le pas du maillage T est défini par hD = max{dD,D ∈ D}. On détermine en outre le nombre

réel αT ∈]0,
π

2
] tel que

sin(αT ) := min
D∈D
|sin(αD)| .

On considère ρK (resp. ρK∗) le rayon de la plus grande boule incluse dans K (resp. K∗) dont le
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Figure 2: Exemple des diamants intérieur (gauche) et extérieur (droite).

centre est xK (resp. xK∗). On définit la régularité du maillage reg(T ) par

reg(T ) = max

(
1

sin(αT )
,max
D∈D

hD√
mD

,max
K∈M

dK√
mK

, max
K∗∈M∗

dK∗√
mK∗

,

max
K∈M

(dK
ρK

+
ρK
dK

)
, max
K∗∈M∗

(dK∗
ρK∗

+
ρK∗

dK∗

))
.

Cette quantité doit être bornée uniformément pour pouvoir démonter le théorème de convergence.
On désigne par R#T l’espace des vecteurs uT ayant la forme :

uT =
(

(uK)K∈M, (uK∗)K∗∈M∗
)
.

C’est un espace de Hilbert muni du produit scalaire

JuT , vT KT =
1

2

( ∑
K∈M

mKuKvK +
∑

K∗∈M∗
mK∗uK∗vK∗

)
, ∀uT , vT ∈ R#T .

Pour chaque uT ∈ R#T on construit deux fonctions discrètes uM et uM∗ telles que

uM =
∑
K∈M

uK1K , uM∗ =
∑

K∗∈M∗
uK∗1K∗ .

On notera également XT l’espace des fonctions uh = 1
2

(
uM + uM∗

)
. Pour prendre en compte le

temps on définit la reconstruction suivante : pour n = 0, · · · , N − 1 et t ∈ (tn, tn+1]

uh,δt(x, t) = uh(x)n+1, où uh ∈ XT .

Soit XT ,δt ⊂ L1(QT) l’ensemble de toutes ces fonctions discrètes. Par analogie, on donne les
définitions des fonctions uMh,δt, uM∗h,δt qui sont constantes par morceaux.

La formule du gradient discret est parmi l’un des avantages d’utilisation de la méthode DDFV.
Cet opérateur est défini sur le maillage diamant D. Son expression s’écrit sur chaque diamant
D ∈ D dans la base (nσK ,nσ∗K∗) par
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∇DuT =
1

sin(αD)

(uL − uK
mσ∗

nσK +
uL∗ − uK∗

mσ
nσ∗K∗

)
.

Afin de rendre notre approche lisible et plus compacte on introduit les notations suivantes

aKL :=
1

sin(αD)

mσ

mσ∗
ΛDnσK · nσK > 0, ηDσσ∗ :=

1

sin(αD)
ΛDnσK · nσ∗K∗ ∈ R,

gM := g(uM ), ∀M ∈ {K,L,K∗, L∗} and g ∈ {F, ξ},
δLKu := uL − uK , δL∗K∗u := uL∗ − uK∗ ,

où ΛD signifie la moyenne

ΛD =
1

mD

∫
D

Λ(x) dx.

Lorsque les paramètres de la discrétisation tendent vers 0, les suites (uMh,δt) et uMh,δt ne
convergent pas forcement vers la même limite. Ceci mène à des problèmes dans le passage à la
limite dans des termes non linéaires. Pour remédier cette difficulté on est obligé de pénaliser le
schéma numérique par la fonction PT qui est définie de R#T dans R#T , pour tout uT , par

PT uT =
(
PMuT ,PM∗uT ,P∂M

∗
uT

)
,

où PMuT = (PKuT )K∈M, PM∗uT = (PK∗uT )K∗∈M∗ , P∂M∗uT = (PK∗uT )K∗∈∂M∗ . Chaque
composante s’écrit explicitement comme suite :

PKuT =
1

mK

1

hεD

∑
K∗∈M∗

mK∩K∗
(
F (uK)− F (uK∗)

)
, ∀ K ∈M, (0.2.34)

PK∗uT =
1

mK∗

1

hεD

∑
K∈M

mK∩K∗
(
F (uK∗)− F (uK)

)
, ∀ K∗ ∈M∗. (0.2.35)

L’exposant ε est dans l’intervalle (0, 2). On signale que le choix de ce terme de pénalisation n’est
pas optimale.

Le schéma DDFV monotone pour l’équation de diffusion non linéaire

On présente brièvement ici la discrétisation de l’équation (0.2.33) sur le maillage primal et quant
au maillage dual la démarche est analogue. Soient n ∈ {0, . . . , N − 1} et K un volume de contrôle
primal. On intègre sur K×]tn, tn+1], on utilise la formule de Gauss-Green et un schéma implicite
en temps. On obtient donc∫ tn+1

tn

∫
K
∂tu dx dt−

∑
σ∈EK

∫ tn+1

tn

∫
σ
f(u) Λ∇u · nσK dσ dt = 0. (0.2.36)

La dérivée temporelle est approchée grâce au schéma d’Euler∫ tn+1

tn

∫
K
∂tu dx dt ≈ mK

(
un+1
K − unK

)
, (0.2.37)

où umK est la moyenne de u(., tm) sur K pour m = n, n+ 1. Puis, le terme de diffusion non linéaire
est approximée par un schéma centré et un schéma décentré au même temps

−
∫ tn+1

tn

∫
σ
f(u)Λ∇u · nσK dσ dt ≈ δt

(
aKL(F (un+1

K )− F (un+1
L )) + vn+1

KL η
D
σσ∗(ξ(u

n+1
K∗ )− ξ(un+1

L∗ ))

)
,

18



où F (resp. ξ) est la transformation de Kirchoff (resp. semi-Kirchoff) et vn+1
KL est une approximation

”upstream” de v sur l’arête primale σ. Elle est fournie par le schéma d’ Engquist-Osher :

vn+1
KL =

{
v↓(u

n+1
L ) + v↑(u

n+1
K ) si ηDσσ∗ (ξn+1

K∗ − ξ
n+1
L∗ ) ≥ 0

v↓(u
n+1
K ) + v↑(u

n+1
L ) sinon

. (0.2.38)

Les fonctions v↓, v↑ sont calculées à partir des formules suivantes :

v↑(u) :=

∫ u

0

(
v′(s)

)+
ds, v↓(u) := −

∫ u

0

(
v′(s)

)−
ds,

où x+ = max(x, 0), x− = max(−x, 0) pour tout x ∈ R. A la lumière de l’hypothèse (A2), les
intégrales définissants v↑, v↓ existent.

On remarque que la quantité vn+1
KL η

D
σσ∗(ξ

n+1
K∗ − ξ

n+1
L∗ ) peut être exprimée autrement à l’aide d’un

flux numérique G tel que

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u)) = vn+1

KL η
D
σσ∗(ξ

n+1
K∗ − ξ

n+1
L∗ ).

On rappelle qu’un flux numérique G est une fonction à trois arguments (a, b, c) ∈ R3 qui répond
aux axiomes suivants :

(G1) G(·, b, c) est croissante et continue pour tout b, c ∈ R,
et G(a, ·, c) est décroissante et continue pour tout a, c ∈ R;

(G2) G(a, b, c) = −G(a, b,−c) pour tout a, b, c ∈ R;

(G3) G(a, a, c) = v(a)c pour tout a, c ∈ R.

(0.2.39)

Finalement, notre schéma s’écrit en deux parties. La première (resp. deuxième) partie corre-
spond à la discrétisation du problème (0.2.33) sur le maillage primal (resp. dual).

u0
M =

1

mM

∫
M
u0(x) dx, ∀M ∈ T , (0.2.40)

mK

δt

(
un+1
K − unK

)
+

∑
Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) +G(un+1

K , un+1
L ; ηDσσ∗δ

n+1
L∗K∗ξ(u))

)
+ γ PKun+1

T = 0, ∀K ∈M, n ≥ 0, (0.2.41)
mK∗

δt

(
un+1
K∗ − u

n
K∗

)
+

∑
Dσ,σ∗∈DK∗

(
aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ ) +G(un+1

K∗ , u
n+1
L∗ ; ηDσσ∗δ

n+1
LK ξ(u))

)
+ γ PK∗un+1

T = 0, ∀K∗ ∈M∗, n ≥ 0. (0.2.42)

Le paramètre γ > 0 représente un coefficient de stabilisation du schéma. On remarque que les
mailles duales de ∂M∗ n’interviennent pas dans le système (0.2.40)-(0.2.42) à cause de la condition
aux limites de Dirichlet.
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Résultats principaux

On va énoncer les résultats obtenus dans ce chapitre. On insiste en particulier sur le principe du
maximum discret et les estimations à priori qui représentent majoritairement les points clés pour
établir le théorème de convergence du schéma.

Lemma 0.2.5. (La borne L∞) Soient 0 ≤ n ≤ N − 1 et (un+1
h ) un vecteur de R#T tels que le

schéma DDFV (0.2.40)-(0.2.42) soit vérifié. Alors, un+1
M , un+1

M∗
sont dans l’intervalle [0, 1].

On démontre tout d’abord par récurrence sur n que un+1
M ∈ [0, 1] et on fait de même pour un+1

M∗
.

A cet effet, on choisit un K ∈ M tel que un+1
K = minL∈M un+1

L . On multiplie ensuite l’équation
(0.2.41) par −(un+1

K )−. On obtient alors une équation dont la partie correspondante au terme de
diffusion est positive. Ceci est dû à la monotonie de F , le choix de du coefficient vn+1

KL et à la
dégénérescence de la fonction v en dehors de zéro. Puis, il est facile de voir que la contribution
du terme de pénalisation est toujours positive. On utilise enfin l’hypothèse de récurrence pour en

déduire que un+1
K ≥ 0. Pour prouver que un+1

K ≥ 1, on multiplie (0.2.41) par
(
un+1
K − 1

)+
et on se

sert des mêmes arguments afin de conclure.

Proposition 0.2.3. (Estimations d’énergie) Si un+1
h , où n = 0, . . . , N − 1, est une solution du

schéma DDFV (0.2.40)-(0.2.42) alors il existe C indépendamment de hD et δt tel que

N−1∑
n=0

δt
∥∥∥∇Dξn+1

h

∥∥∥2

2
+

γ

hεD

N−1∑
n=0

δt
∥∥∥ξ(un+1

M )− ξ(un+1
M∗

)
∥∥∥2

L2(Ω)
≤ C, (0.2.43)

et

N−1∑
n=0

δt
∥∥∥∇DFn+1

h

∥∥∥2

2
≤ C. (0.2.44)

Pour la démonstration de ce résultat, on multiplie d’abord (0.2.41) par un+1
K , on somme sur

K ∈ M et n = 0, . . . , N − 1. De la même façon, on multiplie maintenant (0.2.42) par un+1
K∗ , on

somme sur K∗ ∈ M∗ ∪ ∂M∗ et n = 0, . . . , N − 1. On additionne ensuite les relations résultantes.
On effectue des intégrations par parties et le choix du flux numérique permet d’achever l’estimation
(0.2.43). La deuxième inégalité (0.2.44) découle automatiquement de (0.2.43).

Theorem 0.2.3. Soient (Th) une suite de maillages DDFV telle que hD, δt tendent vers 0 et reg(Th)
soit bornée. Alors les convergences ci-dessous sont satisfaites à une sous-suite près.

uh,δt, uMh,δt, uM∗h,δt −→ u p.p. dans QT, (0.2.45)

∇DFh,δt −→ ∇F (u) faiblement dans L2(QT)2. (0.2.46)

Ensuite, 0 ≤ u ≤ 1 p.p. dans QT. Enfin, la fonction u est l’unique solution faible du problème
(0.2.33) au sens de la Définition 0.2.2.

La preuve de ce théorème est effectuée en plusieurs étapes. On établie en premier des estimations
sur les translatés en temps et en espace sur les deux suites ξ(uMh,δt) et ξ(uM∗h,δt). Deuxièmement
on s’assure que uMh,δt, uM∗h,δt et uh,δt convergent vers la même limite grâce à l’introduction du
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terme de la pénalisation et de la convergence faible du gradient (0.2.46). Finalement on passe à
la limite en utilisant des intégrations par parties, les estimations d’énergies, (0.2.45)-(0.2.46) et en
exploitant l’avantage de la pénalisation.

Pour la validation numérique, nous nous intéressons à évaluer et à étudier l’erreur de conver-
gence numériquement du schéma DDFV proposé pour l’équation de diffusion non linéaire dans des
cas tests particuliers. On considère pour cela des maillages généraux et des perméabilités dont le
ratio d’anisotropie est relativement important. On vérifie donc le principe de maximum discret qui
est le point le plus important dans notre étude pour ce type de schéma. Il en résulte que la méthode
est sensiblement d’ordre deux malgré la déformation du maillage et l’anisotropie du domaine.
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Chapter 1

A review of modeling flows in porous
media and state of the art

In this chapter we begin with some real-world applications that motivate the present thesis. We
next overview the fundamental concepts related to porous media flows. We also survey some
standard mathematical models accounted for the immiscible two-phase displacements in porous
media. Finally, we indicate several relevant works dealing with such systems from both theoretical
and numerical points of view.

1.1 Motivation

In the last decades, special attention has been paid to the two-phase flows in porous media. These
kinds of processes arise from a wide range of disciplines such as hydrology, nuclear wastes man-
agement, medicine and petroleum engineering. Indeed, a large variety of different experiments in
the fields of applications are overpriced or strictly prohibited to be carried out in reality for safety
concerns. This has led to their representation thanks to the physical and the mathematical models.
Unfortunately, exact solutions to such a model are inaccessible because of several factors related
to the used physical data and the nature of the involved system itself. Then, understanding such
a system allows to gain insight into the process in question. Hence, the numerical approximation
brings along a great contribution and offers an attractive alternative to grasp the underlined models
and therefore the studied phenomenon. Popular situations where the two-phase flow model occurs
are thereafter highlighted.

First, the groundwater accounts for a major source, about 50 %, of the drinking-water supply for
many countries in the world. In addition to irrigation, it is used for countless industrial processes
[22, 123]. This natural resource is located in aquifers whose depth depends strongly on geological
factors and the kind of climate. Because of intense human activities together with the current
industry, the groundwater is subject to inevitable contamination issued from fertilizers, pesticides,
storage tanks, landfills, etc (Fig. 1.1). The polluted water is then unsuitable and its use may lead to
serious health problems. As a result, preserving the quality of this precious resource and removing
the pollutants is of a great advantage for societies. Due to the scientific and the technological
progress, some potential cleanup strategies and techniques have been developed and installed in
order to remedy the affected zones. However, removal and remediation operations are often very
expensive. Therefore, performing efficient numerical simulations of the two-phase flow model is
commonly recommended for twofold : it first allows to predict the migration of the contaminants
in the underground and minimize the duration together with the costly tasks of the cleaning.
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Figure 1.1: Main origins of groundwater contamination.

Research is otherwise active for developing new economical and accurate methods so as to address
these issues.

Next, as a secondary source of energy, electricity is of a vital importance. It is generated from
several sources namely: coal, natural gas, wind, hydropower, nuclear fission reactions, etc. It is
worth mentioning that nuclear power plants provide a significant amount of energy for some devel-
oped countries like France, UK, Germany, and US. The latter type of power produces radioactive
wastes at every step of the nuclear fuel cycle. Nuclear wastes are accumulated in controlled and
safe repositories, but they are still considered as the most hazardous matter to which a person
is exposed. Management of such a substance has represented a challenging task that the engaged

Figure 1.2: Different steps of nuclear waste management.

societies have confronted for many years [87]. The main reasons behind this resides in an exorbitant
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cost of the waste management and the fact that the radioactive decay may take at least one million
years. Consequently, a safe disposal of nuclear wastes has been a major and long-term goal of the
current research. There exit already some options to get rid of these wastes. For instance, one
solution consists in burying them through geological disposal facilities. Another possibility is to
inject and store them in deep geological formations. Real applications of the latter is not actually
permitted yet, but pragmatic installations will probably take place in the coming few years. In any
case, the study of the two-phase flow model in porous media provides information on the ability of
such an option to ensure the safety of the environment.

Finally, in petroleum engineering many techniques have been developed for the recuperation
of the oil [47]. For instance, one can consider the enhanced recovery technique. Typically, this
situation consists of placing two wells within the field under consideration. One of them is referred
to as the injection well whereas the other one stands for the production well. A liquid such as water
with or without chemical substances is then injected in the concerned zone with a high pressure
in order to guarantee the migration of the hydrocarbons toward the production area. The cycle of
the recovery is illustrated in Fig 1.3.

Figure 1.3: Enhanced oil recovery.

To model the underlined situation one may resorts to the diphasic model in porous media. This
latter can give important ideas related to the motion of hydrocarbons in the field. It also allows to
predict and optimize the production rates of oil.

1.2 Basic porous media concepts

This section is devoted to setting up the basic ingredients that are necessary to define the governed
equations for the diphasic flows in a porous medium. Namely, this requires the properties of the
porous medium and the characteristics of the involved phases.
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Figure 1.4: A simple example of a porous medium.

1.2.1 The porous medium

According to Cory [55] a porous medium is a kind of a matter made of the solid matrix and void
(non-solid) space usually called pore space (see Fig. 1.4). This empty part can be occupied with
one or more fluids e.g. water, oil and/or gas. Typical examples of porous media are soil, sand,
bread, and lungs. In fact, not all physical object can belong to the framework of porous media.
In the mentioned reference the author stresses that every porous medium must fulfill the following
restrictions

(M1) the empty space of the porous medium is connected via free paths,

(M2) the smallest dimension of the pore space must be large enough compared to the mean-free
path of the fluid molecules,

(M3) dimensions of the pore space must be small enough so that the fluid flow is largely
controlled by interfacial forces, that is, only adhesive and cohesive forces govern the flow
whenever interfaces occur between two fluids.

The first point ensures that the fluid particles may move in the whole void region of the
medium. The second restriction allows to consider the continuum approach of the porous
medium so that one can apply fluid mechanics laws. This continuum approach consists of
considering the porous medium as an union of averaging volumes. The third assumption
deprives many matters such as the network of pipes from the preceding definition of a porous
medium.

A phase is referred to as a fluid like liquid or gas. We talk about a single-phase flow when the
whole void space of the medium is filled by only one fluid e.g. water or air. Two phases are said to
be immiscible if they cannot be mixed up such as oil and water. In a multiphase flow system, the
pore space is completely occupied by more than two immiscible fluids.

1.2.2 Porosity and representative elementary volume

Based on the continuum approach, one can derive the equations of flows on the macroscopic level.
In this case, the porous medium can be viewed as a system made of averaging volumes called
representative elementary volumes (REV). The choice and size of the latter is strongly depending
on the porosity. The porosity is a spacial function that allows to describe the distribution of the
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void space within the continuum. Formally, the porosity denoted by φ is defined to be the fraction
of the volume of the pores to the total volume of the REV

φ =
volume of the void in REV

total volume of REV
.

Note that the porosity is a dimensionless quantity and it is comprised between 0 and 1. To
determine the porosity of a porous medium e.g. a rock we resort to experimental results. For more
information, we refer the reader to Cory’s book [55].

1.2.3 Saturation

The saturation of a phase α represents the portion of this fluid within the representative elementary
volume i.e.

sα =
volume of the fluid α in REV

volume of the void in REV
.

It is a time-space dependent function and there holds∑
α

sα(x, t) = 1, 0 ≤ sα(x, t) ≤ 1.

Combining this definition of the saturation and that of the porosity we deduce that the volume of
the phase α within the medium is given by φsα.

1.2.4 Capillary pressure law

When two immiscible fluids flow simultaneously in a porous medium, fluid-fluid and fluid-solid
interactions occur at the separation interface. To illustrate this fact, we consider a vertical capillary
tube that is partially immersed in a beaker of water as depicted in Fig 1.5. After reaching its
maximum level, water forms a curved surface with an angle θ < π/2. This angle characterizes the
water-gas flow, according to which the water will be called the wetting phase while the gas will
be referred to as the non-wetting phase. This definition of the wettability can be extended to any
two-phase system. In the sequel, the index w refers to the wetting-phase whereas g stands for the
non-wetting phase.

Figure 1.5: Water-gas interface in a capillary tube.

The origin of the curved surface between water and gas is due to the capillary forces. On the
microscopic level, the fluid molecules are attracted to the solid by the adhesive forces whereas water
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molecules are attracted to that of gas (and vice versa) by the cohesive forces. At the contact surface
these forces are not balanced. Therefore, they give rise to a jump in terms of pressures between
the water and gas which yields the capillary pressure law.

By definition, the capillary pressure denoted by pc is the difference between the pressure of the
non-wetting phase (e.g. gas) pg and the pressure of the wetting phase (e.g. water) pw.

pc(sw) = pg − pw. (1.2.1)

Figure 1.6: Typical shape of the capillary function pc(sw).

Moreover, it is assumed to be dependent only on the wetting phase saturation sw. It is also a
positive and nonincreasing function with respect to sw. Although it is often determined empirically
or experimentally, the capillary pressure can be expressed in analytical formulas for particular
porous media problems. For instance, the most common examples for applications to the air-water
system are the models of Van Genuchten and Brooks–Corey. Their expressions of the capillary
pressure are written in terms of the effective and the residual saturation.

The residual saturation srw of the wetting phase (e.g. water) refers to the minimum amount
of the wetting fluid which remains within the pores after the drainage process. When sw comes
close to srw the flow of water becomes very slow. At the same time, the capillary pressure increases
rapidly and approaches a vertical asymptote at the point sw = srw, see Fig. 1.6 . On the other
hand, it is possible to obtain the residual saturation of the non-wetting phase. Then, the effective
or the renormalized saturation of the wetting phase sew and that of the non-wetting phase seg are
respectively defined to be

sew =
sw − srw
1− srg

, seg =
sg − srg
1− srw

. (1.2.2)

Thanks to the above relationships we obtain

sew + seg = 1 and sew, seg ∈ [0, 1].

Therefore, in the case of the water-gas flow system, the Van Genuchten [116] proposition for
the capillary pressure function reads

pc(sw) =
1

λ

(
s(q−1/q)
ew − 1

)1/q
, (1.2.3)
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Figure 1.7: The Van Genuchten (left) and Brooks–Corey (right) capillary pressure functions.

with λ is a real number and q is typically an integer between 2 and 5. In the left part of Fig. 1.7,
we plot the function (1.2.3) for three values of q and a fixed value of λ = 1/3.

Additionally, the Brooks–Corey [31] model incorporates the concept of the entry pressure pe
of the porous medium. This parameter corresponds to the value of the saturation for which the
gradient of capillary pressure becomes much bigger. It must be imposed so that the non-wetting
phase can penetrate the medium. Returning back to Fig. 1.6, we observe that pc increases rapidly
around sw = 1. Graphically, one sees that pe is approximately 0.1. So, the Brooks–Corey capillary
pressure model is given by

pc(sw) = pes
− 1
β

ew , (1.2.4)

where pe is the entry pressure of the medium and β is a real parameter that depends on the pore
size distribution. Typical values of β are in [0.2, 0.3]. In the left part of Fig. 1.7 we display the
behavior of Brooks–Corey’s capillary pressure functions.

1.2.5 Heterogeneity and anisotropy of a porous medium

Heterogeneity of a porous medium is closely related to its properties and provides information
on the variation of some parameters, based on the averaging approach, with respect to the spacial
variables. Otherwise, if the considered parameter is independent of the location, we then talk about
homogeneity. For instance, a medium is called heterogeneous with respect to the porosity if the
size of the pores varies spatially. This means that the medium might be composed of large, small
and tiny pores that are depending on the position. If the pores are identical therefore the porous
medium is homogeneous.

Anisotropy of a porous medium designates the dependency of tensorial quantities, e.g. intrinsic
permeability (see its definition below), on directions at a given position. On the other hand, if the
underlined quantity has the same value in any direction, the medium is said to be isotropic.

In Fig. 1.8 we reveal the concepts of heterogeneity and the anisotropy of such a porous medium.
The top-left sub-figure shows that the void paths are similar and uniformly distributed, hence the
medium in question is homogeneous and isotropic. Next, in the top-right sub-figure, we observe
that the empty space depends on the position whereas it is independent on the direction. As a
consequence, the fluid may flow rapidly through the upper side of the medium compared to the lower
one. In this case, we talk about the heterogeneous and isotropic structure of the medium. Now, in
the bottom-left sub-figure, the fluid flow in the y-direction can be more resistive than that in the
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Figure 1.8: Illustration of the heterogeneity and the anisotropy of a porous medium with respect
to the porosity and the permeability.

x-direction even if the size of the pores does not vary spatially. Then, the medium is homogeneous
but anisotropic. Finally, the medium depicted in the last sub-figure possesses a different porosity
in several parts as well as the permeability. Hence, it is heterogeneous and anisotropic.

1.2.6 Absolute and relative permeabilities

Absolute permeability

The absolute (or intrinsic) permeability denoted Λ is a peculiar property of the porous medium
(e.g. rock). It measures the ability of the rock to permeate any fluid which occupies the whole
void space within the rock. Hence, the absolute permeability of the rock depends strongly on the
geometric characteristics of the pores. It also remains the same in the medium despite of the fluid
nature (gas, oil or water).

From a mathematical point of view, the permeability is represented by a tensor whose physical
dimension is the m2. For anisotropic media in the three-dimensional setting, this tensor reads

Λ =

Λxx Λxy Λxz
Λyx Λyy Λyz
Λzx Λzy Λzz

 . (1.2.5)

Generally, this matrix is assumed to be positive-definite [101]. In the case of an isotropic
medium, the underlined matrix reduces to a scalar function.

Relative permeability

The relative permeability Krα is a dimensionless quantity that models the ability of the phase α to
pass through the porous medium in the presence of other fluids. This parameter allows to compare
which fluids can flow together. It further verifies 0 ≤ Krα ≤ 1. Note that in case of a single-phase
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flow one has Krα ≡ 1. In addition, the analytical formula of Krα is assumed to be a function which
depends only on the saturation sα [47]. The most famous relative permeability functions are that of
Van Genuchten and Brooks–Corey which are often utilized in the two-phase system (e.g. water and
gas). As we have seen for the capillary pressure functions, the Van Genuchten relative permeability
functions can be expressed in terms of the effective saturations as follows

Krw(sw) = (sew)λ

(
1−

(
1− (sew)

q
q−1

) q−1
q

)2

, (1.2.6)

Krg(sg) = (seg)
γ

(
1−

(
1− seg

) q
q−1

) 2(q−1)
q

. (1.2.7)

Figure 1.9: Van Genuchten relative permeabilities for residual saturations srw = srg = 0.1.

The parameters λ and γ are respectively set to λ = 1/2 and γ = 1/3. As before, q is a positive
integer chosen between 2 and 5. In Fig. 1.9, we plot the functions (1.2.6)-(1.2.7) for two values of
q (q = 2, 3) and with the same residual saturations srw = srg = 0.1. It shows that Krw increases
slowly for lower values of saturation of the wetting phase e.g. water. When sw approaches its
maximum value Krw grows rapidly, then the medium is almost saturated with water and the
quantity of non-wetting phase e.g. gas becomes very small within the pores. Concerning Krg, it
behaves in the opposite situation of Krw. It is known that the relative permeabilities can present
hysteresis. However, the influence of the latter can be neglected, see [55] for more details.

1.2.7 Fluid’s density and viscosity

Fluid’s density

As a basic definition, fluid’s density denoted ρ is the ratio of fluid’s mass to an infinitesimal el-
ementary volume. Therefore it is a positive quantity whose unit is Kg/m3. In particular, if the
mass has the same value in any REV then ρ is constant and the flow is said to be incompressible.
For example, in practical applications to the water-air flow system, the water is viewed as an in-
compressible phase compared to the air phase since the compressibility of the latter is much bigger
than that of water.

Yet, incompressibility can not be achieved in reality. Indeed, the fluid flow depends strongly
on several parameters namely temperature T , pressure p and the mass fraction mf of the chemical
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species constituting the fluid. For the sake of simplicity, we assume that the flow is isothermal and
the fluid is composed from identical molecules. Under these conditions, the state equation of the
density is only written in terms of the fluid pressure as follows [22]

ρ = ρ(p).

Differentiating this relation yields
dρ

dp
= βfρ(p), (1.2.8)

where the factor βf =
1

ρ

dρ

dp
stands for the compressibility of the fluid under study. Notice that

in the case that βf = 0 then the fluid of interest is incompressible. This coefficient is sometimes
considered constant on certain ranges of pressure. In this case (1.2.8) implies an explicit formula
of the density

ρ(p) = ρref exp
(
βf (p− pref)

)
. (1.2.9)

The factor ρref indicates the density at the reference pressure pref. Thanks to Taylor’s series expan-
sion we get

ρ(p) = ρref
(

1 + βf (p− pref) +
β2
f

2
(p− pref)2 + . . .

)
.

When the function p takes values around pref, then ρ(p) can be approximated by the first terms of
the previous series

ρ(p) ≈ ρref
(

1 + βf (p− pref)
)
.

In this case, the flow is referred to as slightly compressible.

Fluid’s viscosity

The dynamic viscosity µ of a phase measures the resistance of the fluid when it is subjected to the
shear stress. By stress we mean the cause that incites the deformation. Informally, the viscosity
allows to determine the thickness of the fluid. For example, honey is more viscous than water and
water is less viscous than oil. Moreover, it is known that the viscosity of water becomes small with
temperature while that of gas increases with temperature. Likewise, it depends on the pressure
and the interaction between molecules of the fluid. Hence, its equation of state has the following
form [22]

µ = µ(p,T, . . . ). (1.2.10)

On the other hand, let us denote by τ the shear stress and D the shear rate. These two quantities
are linked via the Newton law

τ = µD.

The fluid is said to be Newtonian if the viscosity is independent of the shear rate and varies
only with respect to the pressure and the temperature. Otherwise, it is called non-Newtonian.

The SI unit of dynamic viscosity is the Pascal second, Pa s. Throughout this thesis, we will
assume that the dynamic viscosity is constant.
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1.3 Mathematical formulations of flows in porous media

This section targets to survey some mathematical models describing the flow and transport in
porous media. To this end, we restrain our exposition to the single-phase flow and immiscible
two-phase flow models under the isothermal condition. Moreover, all the considered fluids are
Newtonian. The of model equations under study are derived from the mass conservation law and
Darcy law.

To fix the ideas, we assume that the porous medium Ω is assimilated to a bounded connected
open subset of Rd with a Lipschitz boundary. In practice, we are only interested in two or three
dimensions in space e.g. d = 2, 3. The real number T will stand for the physical time. We denote
|·|Rd or simply |·| the euclidean norm in Rd.

1.3.1 Mass conservation principle

Assuming that the medium is completely filled with a phase (its saturation equals to one), the
principle of the mass conservation of this phase states that the rate change of the total mass of
the fluid within a volume K ⊆ Ω is balanced by the mass flux across the boundary of K and the
contribution of sources or sinks within K. This statement is known as the integral form of the mass
conservation equation written as [109]

∂

∂t

∫
K
φρ dK =

∫
∂V
ρV · nK d∂K +

∫
K
ρF dK, (1.3.1)

where nK is the unit outward normal vector to the boundary ∂K and d∂K is an appropriate
superficial measure upon ∂K. Thanks to Gauss–Ostrogradski’s formula, the balance equation
(1.3.1) becomes

∂φρ

∂t
+ div ρV = ρF, (1.3.2)

where we specify the constitutive parameters in the following list.

φ(x) Porosity of the porous medium given in [m3]. It is a spacial-dependent function.

ρ(x, t) Density of the fluid given in [kg/m3]. The density of a fluid is only connected to its
pressure p. If it is constant then the flow is incompressible. Otherwise it is compressible.

V(x, t) Velocity of the fluid in [m/s].

F (x, t) Source/sink term with dimension [s−1].

In the case that more than two fluids are present in the medium, we actually take into account
the saturation sα of the α-phase. Hence, the mass continuity for each phase reads

∂φραsα
∂t

+ div ραVα = ραFα. (1.3.3)

As we are tacitly interested in Darcian flows, the velocity V given in (1.3.2) (resp. Vα) is
expressed according to the Darcy (resp. Darcy–Muskat) law that we detail in the next subsections.

1.3.2 Darcy’s law

In 1856 H. Darcy [58] observed experimentally that the flow occurs when a difference in pressure is
maintained. In the one-dimensional case, he established a linear relationship between fluid’s velocity
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and the gradient of pressure. Later on this relationship has been extended to the multi-dimensional
case as

V = − 1

µ
Λ
(
∇p− ρ~g

)
. (1.3.4)

The constitutive inputs are detailed below.

p(x, t) Fluid’s pressure in [Pa] = [N/m2].

~g Gravitational acceleration in [m/s2]. It is a vector pointing toward the opposite direction
of the z-coordinate (which points upward). Then, one may set g = (0, 0,−9.81)T .

Λ(x) Symmetric permeability tensor whose dimension is [m2].

µ(x, t) Dynamic viscosity of the fluid is expressed in [Pa.s]. It is assumed to be a constant
throughout this thesis.

Using the averaging volume method under some convenient assumptions, Darcy’s formula can
be rigorously obtained from the momentum conservation of the Navier–Stokes equation [119].

It is worth indicating that Darcy’s law remains valid only for extremely small velocities [17]. In
the case of a flow with a relatively high velocity, then its speed is linked to the pressure head via a
nonlinear relationship which is due to Forchheimer [80]. Considering flows with the latter kind of
velocity is beyond the scope of this thesis.

1.3.3 Darcy–Muskat’s Law

When two fluids share the pore space, as seen in the preceding section, each fluid resists to the
motion of the other one. This effect is obviously modeled by the relative permeabilities. Therefore,
the flow velocity expression for each phase take naturally into account this new parameter. In fact,
it is represented by the extended Darcy law known under the name of Darcy–Muskat’s law [104]
and given by the formula

Vα = −Krα

µα
Λ(∇pα − ρα~g), (1.3.5)

where, each phase has now its own characteristics :

Krα(sα) relative permeability of the phase α (dimensionless quantity),

µα(x, t) dynamic viscosity of the phase α,

pα(x, t) pressure of the phase α,

ρα(x, t) density of the α-phase.

In light of (1.3.5), the velocity of each fluid becomes very slow when sα comes closer to srα,
see Fig. 1.9. In addition, Vα vanishes when sα = srα. This is referred to as the degeneracy issue.
In fact, the absence phase in some parts of the medium can lead to serious problems in both the
theoretical and numerical investigations of the model.

1.3.4 Single-phase flow

The simplest model of flows in porous media is the single-phase flow. It is described by the mass
conservation equation where the velocity is expressed thanks to Dacry’s law. This situation, of
course, occurs when the whole medium is saturated by a single fluid with only one component.
To acquire its mathematical formulation, one substitutes the relationship (1.3.4) into the equation
(1.3.2). Therefore one obtains
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∂φρ(p)

∂t
− div ρ(p)

1

µ
Λ
(
∇p− ρ(p)~g

)
= ρ(p)F, in QT := Ω× (0,T). (1.3.6)

The primary unknown here is the pressure p. To close the above equation, boundary and initial
conditions must be specified. The initial datum p(·, t = 0) = p0 gives the state of the solution
at t = 0 whereas boundary conditions show in advance the behavior of the solution on some or
all parts of the boundary. The most common kinds of boundary conditions that we will take into
consideration are that of Dirichlet and Neumann. Let us then split the boundary ∂Ω into two
disjoint parts ∂Ω = ΓD ∪ ΓN with |ΓD| > 0. Thereby, we consider

p(x, t) = pD(x, t) on ΓD × (0,T) and ρ(p)V · n = η(x, t) on ΓN × (0,T). (1.3.7)

Without loss of generality, the given functions pD, η can be set to zero. Notice that the equation
(1.3.6) is of a parabolic type when ρ is not the constant function. Therefore, the compressibility
of the fluid maintains the parabolic nature of the single-phase flow model. Otherwise, it is of an
elliptic type.

Next, one might wonder whether (1.3.6) admits analytical expressions of solutions (when they
exist) for given data. The answer is positive for some particular situations. For instance, let us
consider a homogeneous and an isotropic medium with no gravity effects. We further assume that
we have no source term and the density is linear with respect to the pressure. Then (1.3.6) reduces
to

∂p

∂t
− div∇pγ = 0, with γ = 2. (1.3.8)

This identity is said to be the porous medium equation in the literature [117] whose unique
classical solution is

p(x, t) =
|x|2

1− t
, ∀t < 1. (1.3.9)

We point out that one can always build suitable exact solutions to (1.3.6). To this end, one
only needs to find an obvious physical expression for p, computes the left hand side of (1.3.6)
using the chosen function and sets the result to the source term. For general physical data and
assumptions, the step consists of seeking or studying the existence and/or uniqueness of exact or
classical solutions is often skipped due to the nonlinearity kind of the posed problem. Nonetheless,
weak solutions might exist implicitly when they are understood in the sense of distributions. For
further information about this topic in relation with (1.3.6), we refer to [82].

1.3.5 Immiscible two-phase flow

We here highlight a couple formulations to equations modeling the two-phase flow. In contrast
to the single-phase flow model, the diphasic one includes some peculiar quantities such as the
saturation, relative permeabilities and capillary pressure.

The displacement process is then governed by the mass conservation equation together with
Darcy-Muskat’s relationship for each phase [22, 47, 95]. For α ∈ {w, g}, plugging (1.3.5) into
(1.3.3) yields

∂φρα(pα)sα
∂t

− div ρα(pα)Mα(sα)Λ
(
∇pα − ρα(pα)~g

)
= ρα(pα)Fα, in QT, (1.3.10)

where the function Mα = Krα/µα is appended to designate the α-phase mobility. We hereafter
stress that the source term Fα, that will be specified later on, is an affine function in terms of
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the α-phase saturation. In addition to (1.3.10), the medium being completely occupied by the two
fluids entails

sw + sg = 1. (1.3.11)

This identity together with (1.3.10) for each phase lead to a system of two equations and three
unknowns, pg, pw, and sw. Another condition is required to relate these variables. A relevant
relation involving the three functions at the same time is provided by the capillary pressure law

p(sw) = pg − pw. (1.3.12)

Additionally, boundary conditions and initial data must be prescribed. This depends on the
choice of the primary variables. Several possibilities exist in order to determine the unknowns. For
instance, one selects the two pressures, pg and pw and deduces the saturation from (1.3.11)-(1.3.12).
Another option consists of taking a fluid pressure (either pg or pw) and saturation (either sg or sw)
as the main variables.

Pressure–pressure formulation

In this first formulation, we consider pg and pw as the main unknowns. Moreover, the capillary
pressure function is assumed to be invertible so that one can compute the saturation. Thus, one
gets sw = p−1

c (pg − pw) and sg = 1− p−1
c (pg − pw). Inserting these equations into (1.3.10) for each

phase one finds

−φ∂ρgp
−1
c

∂t
− div ρgMgΛ

(
∇pg − ρg~g

)
= ρgFg, (1.3.13)

φ
∂ρwp

−1
c

∂t
− div ρwMwΛ

(
∇pw − ρw~g

)
= ρwFw, (1.3.14)

subject to mixed boundary conditions

pg(x, t) = pDg on ΓD × (0,T), ρgVg · n = 0 on ΓN × (0,T), (1.3.15)

pw(x, t) = pDw on ΓD × (0,T), ρwVw · n = 0 on ΓN × (0,T), (1.3.16)

together with initial pressures

pw(x, 0) = p0
w(x) and pg(x, 0) = p0

g(x) in Ω. (1.3.17)

Practically, this approach can be achieved for particular cases where the inverse of the capillary
pressure has a good behavior especially near sw = 0. When the pc exhibits singularities near some
points, one may resorts to its approximation thanks to a regularization technique. At the discrete
level, pertinent approximations of the capillary pressure might, however, give rise to serious issues
in the nonlinear solver for very small values of p′c.

Generally, the very weak point of this formulation consists of excluding the hyperbolic occur-
rence when capillary effects are neglected i.e. pc ≡ 0. This motivates the following alternatives.

Phase pressure–saturation formulation

First, let us look at the formulation incorporating the nonwetting-phase saturation sg and the
wetting-phase pressure pw as the primary unknowns while sg and pg are substituted by

sw = 1− sg, and pg = pw + pc(1− sg).
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Consequently, (1.3.10) can be recast in the form:

φ
∂ρgsg
∂t

− div ρgMg(sg)Λ
(
∇pw +∇pc − ρg~g

)
= ρgFg, (1.3.18)

−φ∂ρwsg
∂t

− div ρwMw(1− sg)Λ
(
∇pw − ρw~g

)
= ρwFw. (1.3.19)

For the sake of simplicity, we henceforth consider homogeneous boundary conditions and initial
data as follows

pw(x, t) = 0 on ΓD × (0,T), ρgVg · n = 0 on ΓN × (0,T), (1.3.20)

sg(x, t) = 0 on ΓD × (0,T), ρwVw · n = 0 on ΓN × (0,T), (1.3.21)

sg(x, 0) = s0
g(x) and pw(x, 0) = p0

w(x) in Ω. (1.3.22)

In case of a compressible flow, the system (1.3.18)-(1.3.22) contains at least one degenerate
parabolic equation. In addition, it is nonlinear and strongly coupled. Otherwise, in the incom-
pressible case, it changes the type with respect to the presence and the absence of the nonwetting
phase. To see this, let us reformulate previous system in the following simple form. Notice that ρα
is constant. Replacing (1.3.19) with the sum of (1.3.18) and (1.3.19) implies

φ
∂sg
∂t
− divMg(sg)Λ

(
∇pw +∇pc − ρg~g

)
= Fg, (1.3.23)

− divM(sg)Λ
(
∇pw + fg∇pc −G

)
= Fg + Fw, (1.3.24)

where the function M is termed the total mobility. It is bounded away from zero. Moreover, the
factor fg denotes the fractional flow of the phase g. The term G stands for the modified gravity
vector. They are respectively defined as :

M = Mg +Mw, fw =
Mg

M
, G =

ρgMg + ρwMw

M
~g.

Particularly, we neglect the gravity and source contributions. Consequently, (1.3.24) is of type
elliptic with regard to pw. Hence, the initial condition on pw is not required. The saturation
equation is purely hyperbolic with respect to sg whenever the term including pc is neglected. In this
case, (1.3.23) is reduced to the famous Buckley–Leverett equation [33]. Otherwise, the underlined
equation turns out to be a nonlinear degenerate parabolic equation since Mg(sg = 0) = 0. From a
numerical perspective, the nonlinear diffusion coefficient Mgp

′
c has to be controlled near sg = 0.

Secondly, one can also choose pg and sw as the primary unknowns for solving the diphasic
mathematic model. This time, a careful attention should be paid to the variation of Mwp

′
c near

the singularity of p′c.
Finally, the formulations we discussed so far are degenerate, nonlinear and strongly coupled.

This can give rise to severe problems in the analysis of model’s equations at the continuous setting
as well as at the discrete one. This has led to the development of artificial unknowns in order to
overcome some of these major difficulties.

Global pressure alternative

The concept of the global pressure has been originally introduced by G. Chavent et al. [47]. Its
basic idea consists of expressing the phase pressures in terms of a unique intermediary pressure
with additional perturbations. These corrections exist, are well-defined and are assumed to depend
solely on the nonwetting phase saturation. In the sequel, we denote s = sg.
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The global pressure is defined as

p = pg + p̃g(s) = pw + p̃w(s), (1.3.25)

so that one has

∇p = ∇pg − fw(s)∇pc = ∇pw + fg(s)∇pc. (1.3.26)

The artificial pressures p̃g and p̃w satisfying (1.3.25)-(1.3.26) are respectively written under the
following form

p̃g(s) = −
∫ s

0
fw(u)p′c du, p̃w(s) =

∫ s

0
fg(u)p′c du. (1.3.27)

As a consequence of the preceding formulas and the fact that fg + fw = 1, one checks that

pg − pw = p̃w(s)− p̃g(s) = pc(s).

In case of incompressible flows, substituting pw = p − p̃w(s) into the system (1.3.18)-(1.3.19)
provides

φ
∂s

∂t
− divMg(s)Λ

(
∇p− ρg~g

)
= Fg, (1.3.28)

− divM(s)Λ
(
∇p−G

)
= Fg + Fw, (1.3.29)

where the main unknowns are now the saturation s and the global pressure p. Here the equations
are more easily to study theoretically and numerically. One actually sees that the unknowns are
decoupled and less degenerate compared to (1.3.18)-(1.3.19) since the difficulty coming from the
terms involving pc is tackled.

On the other hand, when one of fluids’ compressibility is included, the global pressure serves,
furthermore, to establish a link between its gradient and the gradients of both phases. According
to (1.3.26) one finds

|∇p|2 + fgfw |∇pc|2 = fg |∇pg|2 + fw |∇pw|2 . (1.3.30)

This is a great gain since the right hand side of this relationship shows that if one of the phases
is absent somewhere within the medium, we automatically lose the gradient of its pressure. Nev-
ertheless, the first term of the left hand side of (1.3.30) is independent of the degeneracy of each
phase while the second one is expressed only in terms of the saturation. This is the main strength
of the global pressure formulation. The equality (1.3.30) has played a fundamental role to establish
the a priori estimates, regardless the degeneracy issue, which are the crucial ingredient to prove the
existence of weak solutions to compressible flows [5, 95]. The passage from the phases pressures to
the global pressure was a key point in the work [44]. Analogous discrete inequalities to (1.3.30) were
also the cornerstone for the convergence analysis of the numerical schemes proposed in [72, 113].

In our study, we will rather focus on flows with small capillary effects. Hence, the density varies
a little bit with respect to the capillary pressure function. This amounts to suppose that the density
of the gas depends only on the global pressure as pointed out in [47]

ρα(pα) = ρ(p).
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Under this assumption, the governing equations of the compressible two-phase flow model reduce
to

∂φρα(p)sα
∂t

− div ρα(p)Mα(sα)Λ
(
∇p+ fτ(α)∇pc − ρα(p)~g

)
= ρα(p)Fα, in QT, (1.3.31)

with
sw + sg = 1,

where the permutation τ reads

τ(α) =

{
w, if α = g

g, if α = w
.

Moreover, the flow velocity of the phase α is reformulated so that

Vα = −Λ
(
Mα(sα)∇p+ γ(s)∇sα −Mαρα(p)~g

)
.

The nonlinear diffusion coefficient γ(s) is

γ(s) =
MgMw

M
p′c ≥ 0.

Note upon this that the total velocity in the presence of gravity becomes

Vw + Vg = −MΛ
(
∇p−G(p)

)
, and, G(p) =

ρg(p)Mg + ρw(p)Mw

M
~g.

As usual, the above system should be supplied with boundary conditions and initial data

p(x, t) = 0 on ΓD × (0,T), ρgVg · n = 0 on ΓN × (0,T), (1.3.32)

s(x, t) = 0 on ΓD × (0,T), ρwVw · n = 0 on ΓN × (0,T), (1.3.33)

s(x, 0) = s0(x) and p(x, 0) = p0(x) in Ω. (1.3.34)

Under some standard assumptions, existence results for problems like (1.3.31)-(1.3.34) were studied
in [32, 83, 84]. Numerical analysis for such a system using the finite volume approximation was
done in [23].

1.4 Sate of the art

The study and approximation theory of the governing equations of the flow and transport in
porous media have become of an increasing interest for the understanding of numerous physical
phenomena. This mechanism allows to rigorously understand, predict and optimize the behavior
of the phenomenon under consideration.

From a mathematical point of view, most of these models are formulated in a set of partial
differential equations together with initial and/or boundary conditions. Throughout this thesis,
the envisaged problems include diffusion and convection effects. They then incorporate elliptic
and hyperbolic characters. It is well known that the convection-dominated case can produce sharp
front and chocks. This means that the solution can vary rapidly within a very small region of the
domain. From a numerical perspective, the fact of capturing the localization of shocks is not an
obvious task. Design and convergence of efficient numerical approaches for these systems is then
of a practical importance.
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Once the problem is posed, it is of an advantage to examine its qualitative behavior, namely the
existence, uniqueness and properties of the solutions such as smoothness, asymptotic behavior and
so on. As a matter of fact, this depends strongly on the structure of the problem at hand and on
the kind of solutions sought e.g. classical, weak, entropic, renormalized solutions, etc. Moreover,
when the inputs of the system of interest are irregular or present some discontinuities, the nature
of the solution can be changed. In practical models of flow and transport in porous media, the
equations are extremely complicated to solve analytically. The most encountered difficulties may
arise from the physical assumptions on the data, the nonlinearity of the system under study and/or
the strong coupling of the constitutive variables.

Numerous theoretical analyses, with various assumptions on the data, of porous media flow
models have been reported in the literature of the past few decades. A particular emphasis has
been set on the two-phase flow systems. The existence and uniqueness investigation of immiscible
incompressible flows has been conducted in plenty contributions, for instance we cite [15, 47, 48,
49, 75, 74, 82, 98, 120] and the references are therein. The miscible incompressible case is also a
subject of interest which is treated in [7, 53, 77, 78]. A recent few works are devoted to analyzing the
mathematical models for compressible and immiscible displacements in porous media. Assuming
that the fluid densities are depending only on the global pressure, introduced in [47], the existence
of weak solutions have been studied in [83, 84, 85]. These latter results have been generalized in
[95, 96] without any major restriction on the densities. Amaziane et al. developed a new global
pressure formulation composed of a nonlinear parabolic equation for the global pressure equation
coupled to a nonlinear diffusion–convection equation for saturation [5, 6]. Recently, in a one-
dimensional case, Saad [115] showed an existence result for a slightly compressible and immiscible
two-phase flow problem where the density follows an exponential law with a small compressibility
factor.

On the other hand, it has become a tendency to introduce the scientific computing as a realistic
way to unveil the posed problem. Thanks to appropriate and modern numerical methods, it is
possible to design approximated solutions for porous media flow type problems. Popular choices of
these methods are: finite differences, (mixed) finite elements, finite volumes, discontinuous Galerkin
schemes and gradient scheme methods. As discussed above, we point out that the choice of the
discresattization has to take into account the character of the mathematical model in question.
In addition, the chosen meshes have to be adequate and adopted to the complex geometry of the
porous medium (one can bear in mind too distorted geological layers as a reference for instance).
Accordingly, the proposed numerical scheme must work on these kinds of meshes so that good
results can be achieved. Given a numerical method (in the framework of the present thesis), it is
desirable that it satisfies some relevant and prerequisite properties summarized in:

(i) stability,

(ii) preserving the physical ranges of certain unknowns,

(iii) convergence of the discrete unknowns towards their continuous corresponding ones.

By stability we mean the coercivity of the scheme. This property amounts to establish energy
estimates using appropriate discrete norms. The stability property allows also to guarantee the
existence of solutions to the equations of the numerical scheme. The second property ensures that
the discrete solutions are acceptable and meaningful from a physical perspective. These points are
crucial to conduct the analysis convergence of the proposed discretizations. The latter is essentially
based on compactness results consisting of space and time translates estimations together with
Kolmogorov’s criterion [30, 69]. The ultimate goal of the convergence part is to claim that the
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sequence of approximate solutions becomes closer to the solution of the problem of interest as the
mesh size decreases. A fourth property of importance that can be investigated is the a posteriori
error analysis. This step consists of providing an error estimate of the computed solution to the
solution of the continuous mathematical model. It additionally requires intricate techniques and
tools to prove these kinds of error estimates. The investigation of such an estimate is beyond the
scope of the present dissertation.

Uncountable numerical schemes for the approximation of solutions to the two-phase flow models
have been extensively implemented and studied in the recent decades. However, there are only a few
works dealing with the convergence analysis of such a scheme, especially in the case of compressible
flows. We thereafter review the main works related to this context. To begin with, traditional
finite difference methods are described in the books [17, 108]. Finite element and mixed finite
element schemes have been greatly of importance to deal with general meshes and constraints on
some physical data, see for instance [16, 52, 106, 110, 121]. In these references, the convergence
of schemes is carried out based on rigorous error estimates. They can be used whenever the
governing equations are of diffusion-dominated type. When the convection phenomenon is more
important than the diffusion, these schemes may lead to unphysical oscillations. This is due to
their weakness to capture the hyperbolic character of the model. For this reason, finite volume
discretizations [61, 69] have been developed. They are naturally adopted for conservation laws
thanks to their local conservativity of the fluxes. The pioneer finite volume scheme is the two-point
flux approximation (TPFA). It enjoys a standard stencil which ensures a simple implementation of
the method as well as satisfying the monotonicity property. A convergence result of this approach
for incompressible and immiscible flows is provided in [103]. Such a convergence analysis was
performed in [12, 72]. Using the feature of the global pressure, a TPFA scheme has been analyzed
in [23] for a degenerate compressible system. Similar ideas are extended to the case where the
density depends on its own pressure in the paper [113]. Although it is of great advantage, the
TPFA methodology requires an orthogonality condition on the mesh and a scalar permeability
tensor. To dispense with these restrictions, reliable schemes combining finite elements and finite
volumes are addressed in [1, 45, 73, 92, 114] for degenerate parabolic equations arising in the
diphasic models. Moreover, the study of a finite element and finite volume discretization owing to
a posteriori error analysis can be found for instance in [43, 118]. The gradient schemes method,
which includes various discretizations, has been devoted to the incompressible flows in [68]. For
more information on this topic, the reader can see the monograph [62].

Our goal in this thesis is to develop and analyze finite volume schemes satisfying the afore-
mentioned properties (i)–(iii) for a degenerate compressible two-phase flow system in anisotropic
porous media on almost general meshes. The convergence of all the proposed numerical schemes
is based on the a priori analysis and classical compactness estimates. Then, we propose two dif-
ferent methods of the finite volume family. The first approach is referred to as the control volume
finite element (CVFE) discretization which belongs to the vertex-centered finite volume (VCFV)
schemes. It has been studied in several works [34, 35, 36, 40, 42, 45, 67, 92]. The strength of this
discretization lies in its ability to deal with general meshes and offers a good approximation of the
diffusion counterpart. However, it sometimes suffers from an excessive numerical diffusion. This
situation may lead to inaccurate results and therefore underpredict the phenomenon modeled by
the considered equations. On the other hand, the method involves finite element meshes (triangles
in 2D) which makes it somewhat incapable to treat cases where the meshes coming from physical
applications are predefined and too distorted. This has led us to the investigation of other reliable
finite volumes schemes. So, the second approach is centered on the schemes of DDFV (Discrete
Duality Finite Volume) type. Its analysis in two dimensions has been reported in [11, 39, 46, 59, 60]
for various kinds of problems. It was also extended to the dimension three in [8, 9, 56, 97]. The
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advantage of the DDFV framework consists in providing a consistent reconstruction of the gradi-
ent, which is in duality with the discrete divergence operator thanks to the Stokes-like formula.
Furthermore, the method is stable and accurate of second order even if the mesh is too distorted
and the ratio of anisotropy is important.

The remainder of the manuscript is structured as follows : in Chapter 2 we start off a classical
VCFV discretization for a compressible two-phase flow system composed of degenerate parabolic
equations. The convection part is approximated according to the upstream technique including a
crucial choice of the mean value of the density on the interfaces. The diffusion term is approxi-
mated with a centered scheme. Assuming that the transmissibilities are nonnegative, the discrete
saturation remains bounded between 0 and 1 and uniform estimates on the discrete gradients are
established. By virtue of space and times translates estimations, the convergence of the scheme is
shown. At the end of the chapter we present numerical simulations to illustrate the displacement
of water through the domain of computation.

In chapter 3 we generalize the method studied in the previous chapter into a positive CVFE
scheme in order to get rid of the sign of stiffness coefficients. This essentially allows us to take the
anisotropy into account and utilize general triangular meshes. So, the idea is to write the system
in an equivalent form known as the fractional flow formulation. The core of the discretization
relies on the treatment of the diffusion contribution. This term is approximated thanks to the
upstream approach with respect to the sign of the transmissibilities. The convection fluxes are
also approximated in the same spirit as in the preceding chapter. Then, the discrete maximum
principle on the gas saturation holds. The coercivity-like property is proven and the control of
the discrete gradients is derived. In addition to these main ingredients, compactness estimates
are shown. Therefore the convergence of the scheme towards a weak solution of the continuous
problem is investigated. Numerical simulations are exhibited and aim to illustrate the impact of
the anisotropy on the flow of water in the porous medium.

Chapter 4 is devoted to the construction and analysis of a positive DDFV scheme for unsteady
degenerate diffusion equations in two dimensional space. A particular attention is paid to this
problem since it turns out to be somehow the cornerstone for the study of the diphasic model
encountered in the last chapters and many others models used in hydrology, biology and medicine.
Th idea of the presented method is to approximate the fluxes thanks to monotone schemes which
ensure the unconditional coercivity of the DDFV approach. Accordingly, one obtains a discrete
maximum principle on the solution and establishes easily an a priori estimate. Then, the numerical
scheme converges up to a penalization term which is not needed in practice. Numerical results
confirms that the method is positive and accurate with optimal convergence rates as expected.
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Chapter 2

Numerical analysis of a
vertex-centered finite volume scheme
for a gas-water porous media flow
model

This chapter is concerned with the numerical study of a vertex-centered finite volume scheme for
a coupled system modeling the simultaneous displacement of gas and water in porous media. This
approach requires two kinds of meshes, a primal mesh and barycentric dual mesh. We will then
use a P1-finite element method on the first one while we perform a finite volume discretization on
the second one. The analysis of the numerical scheme leans on the non-negativity of the stiffness
coefficients and on a classical regularity of the mesh. Some numerical simulations are given in two
space dimensions to illustrate the proper behavior of the proposed scheme.

2.1 Introduction

As advertised in the previous chapter, the process of modeling flows in porous media takes a
privileged place in solving some real-world problems. In this chapter, we are particularly interested
in a simplified compressible two-phase flow model with two main variables. It is a system composed
of two coupled and degenerate parabolic equations. Many efforts have been put into studying the
existence, uniqueness and properties of their solutions. From a physical point of view, illustrating
the behavior of these solutions is necessary so that one can grasp the phenomenon involving the
considered model. To this end, designing efficient and accurate numerical methods is still a suitable
compromise to discover the secret behind the mathematical model.

Plenty of numerical methods wit diverse assumptions on data have been addressed for solving
the equations of the two-phase flow model. First, finite difference schemes have been investigated
in [17, 108]. This method is generally avoided when system’s inputs are not smooth enough and
the domain of study is not structured. Due to their ability to deal with complex geometric forms,
finite element methods have also been the subject of several works [3, 47, 51]. They are efficient
and more accurate for diffusions type problems, but they may produce oscillations in case of an
important advection. Being cheap and reliable, finite volume schemes have received a huge attention
in the last decades [69, 61]. Basically, they are constructed from a balance equation together with
a proper approximation of the fluxes. They are often preferred and used to discretize partial
differential equations resulting from conservation laws, and including high dominated convection
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terms [1, 12, 21, 72, 103]. Furthermore, they naturally enjoy the local mass conservation property
and they can guarantee the discrete maximum principle which are two fundamental materials to
analyze such a finite volume scheme. Indeed, the conservation of the fluxes across the interfaces
of the control volumes allows to establish some essential arguments for the convergence of the
scheme. In addition, the maximum principle gives information about the physical admissibility
of discrete solutions. For instance, the saturation is between 0 and 1 by its nature, then any
proposed approximation should persevere these ranges, otherwise the obtained solution would not
be physically accepted.

The simplest finite volume method is the famous two-point flux approximation (TPFA). It
consists of approximating the fluxes by using only the values of the solution at the centers of the
two control volumes sharing the same interface. The convergence analysis of TPFA schemes for
compressible/incompressible flows has been carried out in a few works [12, 23, 103, 113]. Never-
theless, this approach stipulates an isotropic permeability tensor and an orthogonality constraint
on the mesh. These conditions are too restrictive compared to the physical data that already exist
in practical applications. To relax the impact of this issue, some schemes have been developed in
[1, 45, 92, 114]. The main point of these contributions lies in combining the features of the finite
element method, providing a simple discretization of the gradient, and the locally conservativity
characteristic of the finite volume approximation. More generally, a new mathematical framework
known as the gradient schemes method, including a large variety of discretizations, has been studied
and analyzed for incompressible two-phase flows in [62, 68].

The ultimate goal of this chapter is the convergence study of a nonlinear vertex-centered fi-
nite volume scheme (VCFV), based on a P1-finite element approach, in order to approximate the
mathematical model of the diphasic flow including the compressibility of the nonwetting phase. We
then broaden the ideas presented and developed in [1, 45, 92] to a coupled system made of two
degenerate parabolic equations, which are derived from the mass conservation equation for each
phase together with the generalized Darcy law. The convergence of the numerical scheme relies on
classical compactness arguments.

Before we go further, let us sketch out, without exclusivity, the dating of the used VCFV
method. The idea of this method was first introduced in [19] in order to deal with convection-
diffusion problems with a high Peclet number. It was also discussed in [34, 35, 36], where the
authors analyzed and applied it to elliptic problems. Later on, the convergence analysis of such a
scheme for a linear system consisting of a hyperbolic equation and an elliptic one was established in
[67]. We also mention the works of Feistauer et al. [76] that developed and analyzed a VCFV scheme
for a boundary-value problem incorporating a nonlinear conservation law with a diffusion term. In
addition, some variants of the VCFV methodology have been proposed in [50, 91] to discretize the
two-phase flow model while no convergence proof is provided. In [45, 92], the convergence analysis
of a VCFV scheme has been established for a system involving degenerate convection-diffusion-
reaction equations.

The remainder of this chapter is articulated as follows. Section 2.2 presents the mathematical
formulation of the compressible two-phase flow in porous media together with mixed boundary
conditions and initial data. Next, in Section 2.3 we define the used meshes namely primal and dual
meshes and we introduce the discrete functionals spaces. Section 2.5 is devoted to sketching out
the VCFV discretization and to how we derive the expected scheme. Section 2.6 is dedicated to
the discrete maximum principle and the a priori estimates on the discrete gradients. In Section
2.7, the existence of a discrete solution to the combined scheme is shown. Section 2.8 is concerned
with the space and time translates estimations. Finally, in Section 2.9 we concatenate the overall
properties of these sections to prove the convergence of the discrete solutions sequence towards a
weak solution to the continuous problem, which is the main result of this chapter.
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2.2 Model’s equations

In this section, we briefly give the mathematical formulation for a compressible two-phase flow
model in heterogeneous and anisotropic porous media. It is derived from the generalized Darcy law
together with the mass conservation equation for each phase. The two considered phases are: gas
as a nonwetting phase and water as a wetting-phase. We restrict ourselves to the case where the
first fluid is compressible and the second one is incompressible.

Let Ω be a bounded open subset of Rd, d ∈ {2, 3}, and T a fixed positive real number. We
denote QT = Ω× (0,T). Following [83], the governing equations for the compressible flow are :

φ(x)∂t(ρα(pα)sα) + div(ρα(pα)Vα) + ρα(pα)sαq
P = ρα(pα)sIαq

I , (α = g, w) in QT, (2.2.1)

where φ is the porosity of the medium, uα is the saturation of the α-phase, ρα is the density of the
phase α, qp is a production term, qI is an injection term, and sIα is the saturation of the injected
fluid. Vα is the velocity of the α-phase given by the generalized Darcy law (i.g. see[18, 22])

Vα = −Krα(sα)

µα
Λ
(
∇pα − ρα(pα)~g

)
, α = g, w, (2.2.2)

where Λ is the absolute permeability of the porous medium, Krα is the relative permeability of
the α-phase, µα is the viscosity of the phase α, which is constant in our study, pα the pressure of
the phase α and ~g is the gravitational acceleration. We assume that the whole porous medium is
occupied with the two fluids, meaning that the following identity is fulfilled

sw + sg = 1. (2.2.3)

In a capillary tube, the contact between the two fluids generates a curvature because of the
difference between their corresponding pressures. This jump stands for the capillary effects. The
physical function encoding this difference calls the capillary pressure, denoted by pc, and it is
assumed to be only in terms of the nonwetting phase saturation

pc(sg) = pg − pw.

We hereafter denote by s the gas saturation instead of sg. According to laboratory experiments,

see for instance [22], it has been exhibited that the function s −→ pc(s) is nondecreasing,
(dpc(s)

ds
≥

0, for any s ∈ [0, 1]
)
. Furthermore, when the gas fluid is completely disappeared this function

degenerates, thus one gets pc(s = 0) = 0.
From a theoretical point of view, one cannot control the energy of the above system since the

relative permeabilities degenerate whenever the saturation vanishes or is equal to 1. At the discrete
level, this degeneracy does not also allow to control the discrete gradients of both : the gas and
water pressures. This issue has been underlined in several studies [23, 103]. In order to tackle this
inconvenience, we make use of the global pressure formulation, which has been originally invented
by Chavent et al. in [47]. This formulation consists of introducing an intermediary pressure so that
the impact of the degeneracy and the strong coupling of the unknowns can be alleviated.

Hereafter p will stand for the global pressure. We then recall that p is defined via the following
relationship

M(s)∇p = Mw(s)∇pw +Mg(s)∇pg, (2.2.4)

where Mα designates the mobility of the α-phase and M is the total mobility. These quantities are
explicitly defined by

Mα =
Krα

µα
, M(s) = Mw(s) +Mg(s).
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On the other hand, the global pressure p can be viewed as a modification of the gas or water
pressure i.e.

p = pg + p(s) = pw + p̃(s), (2.2.5)

where we have set the artificial pressures p, p̃, to

p(s) = −
∫ s

0

Mw(u)

M(u)
p′c(u) du and p̃(s) =

∫ s

0

Mg(u)

M(u)
p′c(u) du. (2.2.6)

Now substituting (2.2.5) into (2.2.1) gives rise to a new nonnegative function denoted γ whose
expression is :

γ(s) =
Mw(s)Mg(s)

M(s)
p′c(s) ≥ 0.

Let us next perform the Kirchoff transformation ξ of the function γ. It is simply given by a primitive
of γ on the interval [0, 1] :

ξ(s) =

∫ s

0
γ(u) du =

∫ s

0

Mw(u)Mg(u)

M(u)
p′c(u) du,

= −
∫ s

0
Mg(u)p′(u) du =

∫ s

0
Mw(u)p̃′(u) du.

Thanks to the aforementioned relations, one can express main terms of the velocities given in (2.2.2)
with the aid of the global pressure p and the function ξ. Then

Mw(s)∇pw = Mw(s)∇p+∇ξ(s), (2.2.7)

Mg(s)∇pg = Mg(s)∇p−∇ξ(s). (2.2.8)

Consequently

Mg(s) |∇pg|2 +Mw(s) |∇pw|2 = M(s) |∇p|2 +
MgMw

M
|∇pc(s)|2 .

We point out that the degeneracy of the mobilities Mg and Mw makes it impossible to get a hand
on the energy of the system of interest. Nonetheless, the previous identity states that this energy
can be estimated by controlling the gradient of the global pressure and the gradient of capillary
term ξ.

The convergence analysis of the numerical scheme that we will propose later on amounts to
impose sIg = 0. We can also assume that the gas density varies slowly with respect to the capillary
pressure (see [47] for more details). In the sequel, we consider ρg ≈ ρ(p). Now, Plugging (2.2.7)-
(2.2.8) into the system (2.2.1)-(2.2.2), we derive the global pressure formulation for the compressible
two-phase flow

∂t(φρ(p)s)− div Λρ(p)Mg(s)∇p− div Λρ(p)∇ξ(s)
+ div Λρ2(p)Mg(s)~g + ρ(p)sqP = 0, (2.2.9)

∂t(φs) + div ΛMw(s)∇p− div Λ∇ξ(s)
− div ΛMw(s)~g + sqP = qP − qI . (2.2.10)

where the main unknowns are, from now on, the global pressure p and the gas saturation s. Mixed
boundary conditions and initial conditions are added to close the system (2.2.9) -( 2.2.10). Then,
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the boundary ∂Ω of Ω is divided into two parts ΓD and ΓN with |ΓD| > 0. On ΓD, we prescribe a
Dirichlet condition and on ΓN we have a Neumann condition as follows{

p(x, t) = 0, s(x, t) = 0 on ΓD × (0,T)

Vw.n = Vg.n = 0 on ΓN × (0,T)
, (2.2.11)

where n is the outward normal vector to ΓN . Furthermore, the initial conditions read

p(x, 0) = p0(x) in Ω, (2.2.12)

s(x, 0) = s0(x) in Ω. (2.2.13)

Let us now list the essential assumptions on the physical data and coefficients. They are classical
for the study of the two-phase flow model.

(H0) The initial global pressure p0 is in L2(Ω) and the initial gas saturation s0 belongs to L∞(Ω)
with 0 ≤ s0(x) ≤ 1 a.e. x ∈ Ω.

(H1) The porosity φ is a L∞-function and there exist two positive constants φ0 and φ1 such that
φ0 ≤ φ(x) ≤ φ1 a.e. x ∈ Ω.

(H2) The gas (resp. water) mobility Mg, (resp. Mw) is a nondecreasing (resp. nonincreasing)
continuous function from [0, 1] to R with Mg(s) = 0 for every s ∈]−∞, 0] and Mw(s) = 0 for
every s ∈ [1,+∞[). Moreover, there exists a positive constant m0 such that

m0 ≤Mg(s) +Mw(s), ∀s ∈ [0, 1].

(H3) The absolute permeability Λ is a map from Ω to Sd(R), where Sd(R) is the space of d-square
symmetric matrices. It is also is assumed to be in L∞(Ω)d×d. Furthermore, Λ verifies the
ellipticity condition i.e. there exist positive constants Λ and Λ such that

Λ|ζ|2 ≤ Λ(x)ζ · ζ ≤ Λ|ζ|2, for all ζ ∈ Rd and a.e. x ∈ Ω.

(H4) The function γ belongs to C0(R,R+) with{
γ(s) > 0 for 0 < s < 1

γ(0) = γ(1) = 0 otherwise
.

we also assume that ξ−1 is a θ-Hölder function on [0, ξ(1)] with θ ∈ (0, 1]. This means that
there exists a positive constant C such that for all a, b ∈ [0, ξ(1)], |ξ−1(a)−ξ−1(b)| ≤ C|a−b|θ.

(H5) The injection term qI and the production one qP are L2-functions with 0 ≤ qP (x, t), qI(x, t)
a.e. (x, t) ∈ QT.

(H6) The density ρ ∈ C1(R,R) is strictly increasing and uniformly bounded : ρ0 ≤ ρ(pg) ≤ ρ1 for
some positive constants ρ0, ρ1.

We define the natural space where weak solutions are sought

H1
ΓD

(Ω) = {v ∈ H1(Ω) / v = 0 on ΓD},

which is a Hilbert space endowing with the norm

||v||H1
ΓD

(Ω) = ||∇v||(L2(Ω))d

In the rest of this chapter, we assume that the hypotheses (H0)-(H6) are fulfilled. Now, we are in
a position to give the definition of weak solutions.
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Definition 2.2.1. (Weak solutions) A pair of measurable functions (p, s) is said to be a weak
solution to the problem (2.2.9)-(2.2.12) provided

0 ≤ s ≤ 1 a.e. in QT,

ξ(s) ∈ L2(0,T;H1
ΓD

(Ω)),

p ∈ L2(0,T;H1
ΓD

(Ω)),

and for every ϕ,ψ ∈ C∞c (Ω× [0,T)), one has

−
∫
QT

φρ(p)s∂tϕdx dt−
∫

Ω
φρ(p0)s0ϕ(x, 0) dx

+

∫
QT

ρ(p)Mg(s)Λ∇p · ∇ϕdx dt+

∫
QT

ρ(p)Λ∇ξ(s) · ∇ϕdx dt

−
∫
QT

ρ2(p)Mg(s)Λ~g · ∇ϕdx dt+

∫
QT

ρ(p)sqPϕdx dt = 0, (2.2.14)

−
∫
QT

φs∂tψ dx dt−
∫

Ω
φ(x)s0ψ(x, 0) dx−

∫
QT

Mw(s)Λ∇p · ∇ψ dx dt

+

∫
QT

Λ∇ξ(s) · ∇ψ dx dt+

∫
QT

ρwMw(s)Λ~g · ∇ψ dx dt

+

∫
QT

sqPψ dx dt =

∫
QT

(qP − qI)ψ dx dt. (2.2.15)

For the existence of a weak solution to the problem (2.2.14)-(2.2.15), we refer to this work [84].

2.3 Meshes and basic notations

In this section, we set up the main discrete tools and notations that are necessary to discretize the
considered model. To this purpose, we will define two kinds of meshes of the domain Ω ; a primal
mesh, which is a triangulation if d = 2 or a tetrahedralization if d = 3, and a barycentric dual mesh
which is constructed from the primal discretization. For the sake of simplicity, we will restrict our
attention to the case where d = 2. We further take into account polygonal connected domains.

A primal mesh T is a conforming triangulation of Ω in the sense of the finite element method;
that is, the intersection of two triangles is either an edge, a vertex or the empty set and Ω = ∪T∈T T .
The set of vertices of T (resp. T ∈ T ) is denoted by V (resp. VT ). We designate by E (resp. ET ) the
set of all edges of T (resp. T ). For a triangle T ∈ T , we define xT as its barycenter, hT = diam(T )
its diameter, and |T | its Lebesgue measure. Let %T be the diameter of the largest ball inscribed
within the triangle T . The size and the regularity of the triangulation T are respectively denoted
by hT and θT . They are defined by

hT := max
T∈T

(hT ), θT := max
T∈T

hT
%T
.

The construction of the dual barycentric mesh involves the vertices of the primal mesh, the
centers of the edges and the barycenters of the triangles. For each vertex K ∈ V we associate a
unique control volume, denoted ωK , of the dual mesh. We also denote by VD the set of these dual
sub-domains, then Ω = ∪K∈VDωK . Each dual cell is obtained by connecting (in the positive sense
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for instance) the barycenter of each triangle whose vertex is K with the midpoint of the edges
having K as an end point. For two vertices K,L ∈ VT , σTKL denotes the dual interface contained
in T and intersects with the segment [KL] whose extremities are K and L. By |σTKL|, we mean
the length of the interface σTKL and by nTσKL the unit normal vector to σTKL pointing from K to L.
Next, for K ∈ V, |ωK | is the d dimensional Lebesgue measure of ωK . We additionally designate by
KT the set of all triangles sharing the vertex K.

We now assume that the primal mesh is regular in the sense that there exists a positive constant
θ0 such that for any sequence of discretizations {Tm}m∈N, we have

θTm ≤ θ0. (2.3.1)

This inequality is well known as Ciarlet’s condition in the finite element literature [54], it prevents
the degeneracy of the triangulation. In other words, for any refinement of the mesh, the smallest
angle of the triangles is bounded far away from 0.

Figure 2.1: Visualization of the 2D primal and dual meshes.

We moreover consider a time discretization of the interval (0,T). It is given by a strictly
increasing sequence of real numbers (tn), for n = 0, . . . , N , such that :

t0 = 0 < t1 < · · · < tN−1 < tN = T.

The size of the time cell is denoted by δtn = tn+1− tn, for n = 0, . . . , N − 1 and δt = max
n=0,...,N−1

δtn

stands for the size of this discretization. To avoid heavy notations, one can assume that this
subdivision is uniform, i.e. δtn = δt is constant, for every n ∈ {0, . . . , N − 1}.

2.4 Approximation spaces and discrete functions

We now describe the approximation spaces where the discrete solutions will be lied in. On one
hand we consider a finite volume space usually called trial space, denoted by Wh, made of piecewise
constant functions on the dual mesh

Wh = {wh(x) =
∑
K∈V

wKχωK (x) / wK ∈ R ∀K ∈ V} ⊂ L2(Ω),
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where χ is the characteristic function of ωK , which is equal to 1 on ωK and 0 otherwise. On the
other hand we define two finite dimensional spaces, denoted receptively by Xh, X0

h and composed
of linear piecewise functions

Xh = {ϕ ∈ C0(Ω), ϕ|T ∈ P1, ∀T ∈ T } ⊂ H1(Ω),

X0
h = {ϕ ∈ Xh, φ(xK) = 0,∀K ∈ V, K ∈ ΓD} ⊂ H1

ΓD
(Ω).

The space Xh has a canonical basis which is comprised of shape functions (ϕK)K∈V with ϕK(xS) =
δKL, where δKL is the Kronecker symbol. We recall that, for every K,L ∈ V, one has

δKL =

{
1 if K = L

0 if K 6= L
.

For every uh ∈ Xh, the function uh writes

uh(x) =
∑
K∈V

uKϕK(x),

hence its gradient is defined as

∇uh(x) =
∑
K∈V

uK∇ϕK(x).

One notices that ∑
K∈V

ϕK = 1,
∑
K∈V
∇ϕK = 0 and ∇ϕK|T = −

∣∣σTK∣∣
2 |T |

nσTK
,

with σTK is the edge of the triangle T located in front of the vertex K and nσTK
is the outward

normal to the same interface (see Fig. 2.2). Moreover, the space Xh is equipped by the following
semi-norm

||uh||2Xh :=

∫
Ω
|∇uh|2 dx, ∀uh ∈ Xh.

This latter turns out to be a norm on X0
h thanks to the Poincaré inequality that will be defined

below.

For every n ∈ {0, . . . , N} and K ∈ V we consider unK as an approximation of u(xK , t
n). Thus,

the discrete unknowns will be denoted by {unK}{K∈V, n=0,...,N}.

Definition 2.4.1. (Discrete functions)
Consider discrete values {unK}{K∈V, n=0,...,N}. We define two approximate solutions as follows:

(i) A finite volume solution ũh,δt is piecewise constant and defined almost everywhere in
⋃
K∈V

ω̊K×

(0,T) with

ũh,δt(x, 0) =
∑
K∈V

u0
Kχω̊K (x), ∀x ∈

⋃
ωK∈V

ω̊K ,

ũh,δt(x, t) =

N−1∑
n=0

∑
K∈V

un+1
K χω̊K×(tn,tn+1](x, t), ∀(x, t) ∈

⋃
K∈V

ω̊K × (0,T).
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Figure 2.2: Illustration of dual interfaces and their unit normal vectors.

(ii) A finite element solution uh,δt is a continuous function in space, which is P1 per triangles,
and piecewise constant in time, such that :

uh,δt(x, 0) =
∑
K∈V

u0
KϕK(x), ∀x ∈ Ω,

uh,δt(x, t) =
N−1∑
n=0

∑
K∈V

un+1
K ϕK(x)χ(tn,tn+1](t), ∀ (x, t) ∈ Ω× (0,T).

To discretize nonlinear functions, we make an interpolation approximation. Let F be a nonlinear
function, we mean by F (ũh,dt) the finite volume reconstruction, which is defined almost everywhere,
and by F (uh,dt) the finite element reconstruction i.e.:

F (ũh,δt)(x, 0) =
∑
K∈V

F (u0
K)χω̊K (x), ∀x ∈

⋃
K∈V

ω̊K ,

F (ũh,δt)(x, t) =
N−1∑
n=0

∑
K∈V

F (un+1
K )χω̊K×(tn,tn+1](x, t), ∀(x, t) ∈

⋃
K∈V

ω̊K × (0,T),

F (uh,δt)(x, 0) =
∑
K∈V

F (u0
K)ϕK(x), ∀x ∈ Ω,

F (uh,δt)(x, t) =

N−1∑
n=0

∑
K∈V

F (un+1
K )ϕK(x)χ(tn,tn+1](t), ∀ (x, t) ∈ Ω× (0,T).

2.5 Numerical scheme for the diphasic flow in porous media

Stability and convergence of the scheme are two mandatory ingredients to ensure the validity of
finite volume method. To this purpose, we consider careful approximations of the fluxes, across
the interfaces of the dual cells, to guarantee these requirements. First, an implicit Euler scheme
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in time is performed. The mobilities are approximated with the aid of an upstream scheme with
respect to the sign of the discrete gradient of the global pressure. A mean value of the gas density is
introduced so that the effect of compressibility on the analysis of the scheme can be removed. This
particular choice is also fundamental to decouple the dependency of the variables. As it is need for
diffusion processes, a centered approximation is used for the discretization of the dissipative term.
In what follows, we sketch out how to get the scheme of the first equation (2.2.9) and in a similar
way we write that of the second one (2.2.10).

We stress that there is no loss of generality in assuming the flow with no gravity, i.e. ~g ≡ 0
as we will point out below. Hence, the term including the gravity has been dropped. Fix a time
superscript n = 0, · · · , N − 1 and ωK ∈ VD a dual control volume. As it is known for conservation
laws, especially for our model, the proposed finite volume approach is essentially based on the
balance equation. This standard step consists of integrating the gas equation (2.2.9) on the time-
space cell (tn, tn+1]× ωK and applying the Green-Gauss formula. This gives∫ tn+1

tn

∫
ωK

φ(x)∂t

(
ρ(p)s

)
dx

−
∑
T∈KT

∑
σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p)Mg(s)Λ∇p · nσK dσ dt︸ ︷︷ ︸

convective term

−
∑
T∈KT

∑
σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p)Λ∇ξ(s) · nσK dσ dt︸ ︷︷ ︸

capillary term

+

∫ tn+1

tn

∫
ωK

ρ(p)sqP dx dt = 0, (2.5.1)

where EK stands for the set of the edges of the dual control volume associated to K, nσK denotes
the unit normal vector to σ pointing outward to ωK and dσ is the d − 1 dimensional Lebesgue
measure on σ. Next, the evolution term is approximated using a forward Euler scheme as follows∫ tn+1

tn

∫
ωK

φ(x)∂t

(
ρ(p)s

)
dx dt

≈
∫
ωK

φ(x)
(
ρ(p(x, tn+1))s(x, tn+1)− ρ(p(x, tn))s(x, tn)

)
dx,

≈
∫
ωK

φ(x)
(
ρ(p̃

h,δt
(x, tn+1))s̃

h,δt
(x, tn+1)− ρ(p̃

h,δt
(x, tn))s̃

h,δt
(x, tn)

)
dx,

= |ωK |φK
(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
, (2.5.2)

where φK is the mean value of the porosity function φ over ωK . We would like to point out that we
do not take into account the contribution of σ ⊂ ΓN due to the homogeneous Neumann condition
specified in (2.2.11). Let us now look at the discretization of the elliptic term. To this end, we have
extended the ideas presented in [1, 92] where a VCFV scheme has been investigated for degenerate
parabolic equations. As a consequence we consider the following approximation which seems to be
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natural

−
∑
T∈KT

∑
σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p)Λ∇ξ(s) · nσK dσ

≈ −δt
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKL(ξn+1

L − ξn+1
K ), (2.5.3)

where the coefficients ΛTKL and ρn+1
KL are respectively given by

ΛTKL := −
∫
T

Λ(x)∇ϕK · ∇ϕL dx = ΛTLK , for K 6= L

ΛTKK :=
∑

L∈VT \{K}
ΛTKL =

∫
T

Λ(x)∇ϕK · ∇ϕK dx

, (2.5.4)

and

ρn+1
KL :=


1

pn+1
K − pn+1

L

∫ pn+1
K

pn+1
L

ρ(z) dz, if pn+1
L 6= pn+1

K

ρ(pn+1
K ), otherwise

. (2.5.5)

This expression of the density on the interface has been proposed in [23] to manage the issue related
to the compressibility of the gas. It also allows to tackle the strong coupling of the system.

In case of a dominated-convection flow the upwind approximation of the hyperbolic term pro-
duces no oscillations contrary to centered schemes. We thus follow this fashion to approximate the
second integral of the right hand side of (2.5.1). Therefore

−
∑
T∈KT

∑
σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p)Mg(s)Λ∇p · nσK dσ dt

≈ −δt
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KLM

n+1
gKL

ΛTKL(pn+1
L − pn+1

K ), (2.5.6)

where Mn+1
gKL

is explicitly written by the formula :

Mn+1
gKL

:=


Mg(s

n+1
L ) if pn+1

L − pn+1
K ≥ 0

Mg(s
n+1
K ) otherwise

.

We can extend the approximation (2.5.6) to more general expressions by the use of the numerical
flux function Gg whose entries are sn+1

K , sn+1
L and δn+1

KL p := pn+1
L − pn+1

K . Now, for α = g, w, the
function Gα of three arguments a, b, c ∈ R is said to be a numerical flux if it satisfies the following
items

(C1) Gα(·, b, c) is nondecreasing for all b, c ∈ R and Gα(a, ·, c) is nonincreasing for all a, c ∈ R;

(C2) Gα(a, b, c) = −Gα(b, a,−c) for all a, b, c ∈ R;
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(C3) Gg(a, a, c) = −Mg(a)c, and Gw(a, a, c) = Mw(a)c for all a, c ∈ R, and there exists a positive
constant C such that

∀a, b, c ∈ R |Gα(a, b, c)| ≤ C(|a|+ |b|)|c|; (2.5.7)

(C4) there exists a constant m0 such that

∀a, b, c ∈ R (Gw(a, b, c)−Gg(a, b, c))c ≥ m0|c|2; (2.5.8)

(C5) there exists a modulus of continuity η : R+ −→ R+ such that

∀a, b, c, a′, b′ ∈ R |Gα(a, b, c)−Gα(a′, b′, c)| ≤ η(|a− a′|+ |b− b′|)|c|. (2.5.9)

Remark 2.5.1. In order to obtain the numerical flux Gα employed in (2.5.6), we consider the
nondecreasing part Mα↑ and the nonincreasing part Mα↓ of the mobility function Mα. As a result

Gα(a, b; c) = c+
(
Mα↑(a) +Mα↓(b)

)
− c−

(
Mα↑(b) +Mα↓(a)

)
,

where c+ = max(c, 0) and c− = −min(c, 0). Let us check that Gα is well-defined. We know that
Mg is a nondecreasing function whereas Mw is a nonincreasing function. We then get

Gg(a, b; c) = −Mg(b)c
+ +Mg(a)c−,

Gw(a, b; c) = Mw(b)c+ −Mw(a)c−.

As a consequence, the properties (C1)-(C3) and (C5) hold. To verify the condition (C3), one
computes (

Gw(a, b; c)−Gg(a, b; c)
)
c = (Mg(b) +Mw(b))c+2

+ (Mg(a) +Mw(a))c−
2

≥ m0c
2. (2.5.10)

We indicate that this inequality will be of a great importance to establish the energy estimates on
the discrete gradient of the global pressure p.

Therefore (2.5.6) becomes

−
∑

σ∈EK∩T

∫
σ
ρ(p)Mg(s)Λ∇p · nσK dσ

≈
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKLGg(s

n+1
K , sn+1

L ; δn+1
KL p), (2.5.11)

where

Gg(s
n+1
K , sn+1

L ; δn+1
KL p) := −Mg(s

n+1
L )(δn+1

KL p)
+ +Mg(s

n+1
K )(δn+1

KL p)
−.

To summarize, the numerical scheme reads

p0
K =

1

|ωK |

∫
ωK

p0(x) dx, ∀K ∈ V, (2.5.12)

s0
K =

1

|ωK |

∫
ωK

s0(x) dx, ∀K ∈ V. (2.5.13)
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φK

(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKLGg(s

n+1
K , sn+1

L ; δn+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKL(ξn+1

L − ξn+1
K )

+ δtρ(pn+1
K )sn+1

K qn+1
P,K = 0, (2.5.14)

φK

(
sn+1
K − snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKLGw(sn+1
K , sn+1

L ; δn+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKL(ξn+1
L − ξn+1

K )

+ δt(sn+1
K − 1)qn+1

P,K = −δtqn+1
I,K , ∀n = 0, . . . , N − 1, ∀K ∈ V, xK /∈ ΓD.

(2.5.15)

We indicate that every solution to the numerical scheme is known on ΓD according to (2.2.11).
Therefore, the equations corresponding to the control volumes whose centers are located at the
boundary ΓD do not contribute in the above system.

The coefficient ΛTKL is referred to as the transmissibility between two neighbor control volumes
ωK and ωL. As we are interested in the monotony property of the numerical scheme, the sign of
ΛTKL is of a huge importance. Precisely, in case that all of these transmissibilities are nonnegative
the discrete gas saturation stays in the physical ranges of its initial state as we will see below,
otherwise it may exceed these ranges. For instance, if Λ = λI, where I is the identity matrix, and
all of the angles of the triangles are less than π/2, one has ΛTKL ≥ 0 for every σTKL. During this
chapter, we will assume that:

(H7) all the coefficients ΛTKL are nonnegative.

In the next chapter, we will deal with the general case. As a matter of fact, the problem necessitates
a reformulation of the convective term as well as the construction of a Godunov-like scheme instead
of a centered one in order to correct the diffusive counterpart. This strategy will ensure the physical
admissibility of the computed saturation and the satisfiability of the numerical scheme.

Remark 2.5.2. Taking into account gravitational effects (~g 6= 0), a new term denoted by FgK is
added to the first equation (2.5.14) of the scheme. This term is the approximation of the integral∫
∂K

ρ2
g(p)Mg(s)Λ~g · n dσ. Using the upwind scheme, it is given by

FgK =
δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

∣∣σTKL∣∣ (ρn+1
KL

)2(
Mg(s

n+1
K )ZTKL −Mg(s

n+1
L )ZTLK

)
,

where ZTKL =
(

Λ~g · nTKL
)+

=
(

Λ~g · nTLK
)−

. In the same way, we add the following expression,

denoted FwK , to the equation (2.5.15)

FwK =
δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

∣∣σTKL∣∣ ρw(Mw(sn+1
L )ZTKL −Mw(sn+1

K )ZTLK

)
.

Thanks to the monotonicity of the mobilities, the functions FgK and FwK are nondecreasing with
respect to sn+1

K and nonincreasing with respect to sn+1
L . In addition, they form numerical fluxes

which are consistent and conservative. As a consequence, the convergence analysis remains valid.
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2.6 Maximum principle and energy estimates

In this section, we prove the maximum principle on the approximate gas saturation and we uniformly
estimate the discrete gradient of the global pressure p and the discrete gradient of the Kirchoff
function ξ. We admit the existence of such solutions to the numerical scheme. The existence result
will be the object of the next section.

Lemma 2.6.1. For a time superscript n = 0, . . . , N − 1. Let (pn+1
K , sn+1

K )K∈V be a solution to
the combined scheme (2.5.12)-(2.5.15). Then, the computed saturation (sn+1

K )K∈V belongs to the
interval [0, 1].

Proof. The proof is conducted by induction on n. For n = 0, the lemma is a direct consequence of
Assumption (H1). We now assume that the sequence (skK)K∈V ⊂ [0, 1] for k ≤ n and we prove the
validity of the claim for k = n+ 1. So, let us consider a vertex K such that sn+1

K = min{sn+1
L }L∈V .

Multiplying the gas equation of the numerical scheme (2.5.14) by −(sn+1
K )− = min(−sn+1

K , 0) reads

− φK
(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
(sn+1
K )−

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKLGg(s

n+1
K , sn+1

L ; δn+1
KL p)(s

n+1
K )−

+
δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKL(ξn+1

L − ξn+1
K )(sn+1

K )−

− δtρ(pn+1
K )sn+1

K qn+1
P,K (sn+1

K )− = 0. (2.6.1)

We aim here to establish that the last three terms of the left hand side of (2.6.1) are nonnegative.
Obviously, one has sn+1

L ≥ sn+1
K . Using the fact that the numerical flux Gg is a nonincreasing

function with respect to sn+1
L (item (C1)) together with its consistency property (item (C3)), one

claims

Gg(s
n+1
K , sn+1

L ; δn+1
KL p)(s

n+1
K )− ≤ Gg(sn+1

K , sn+1
K ; δn+1

KL p)(s
n+1
K )−

= −Mg(s
n+1
K )δn+1

KL p(s
n+1
K )− = 0.

The last identity is satisfied since Mg is extended by zero for s ≤ 0. Consequently, the second term
in the left hand side of the equation (2.6.1) is nonnegative. In addition, the Kirchoff transform ξ is
a nondecreasing function and the coefficients ΛTKL are nonnegative. Thereby

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKLρ
n+1
KL (ξn+1

L − ξn+1
K )(sn+1

K )− ≥ 0. (2.6.2)

We observe that sn+1
K (sn+1

K )− = −
∣∣(sn+1

K )−
∣∣2. Thanks to the induction assumption on snK one gets

−φK
(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
(sn+1
K )−

= φK

(
ρ(pn+1

K )
∣∣(sn+1

K )−
∣∣2 + ρ(pnK)snK(sn+1

K )−
)
≤ 0.

As a result (sn+1
K )− = 0, which entails that sn+1

K ≥ 0.
To show that sn+1

K ≤ 1 for every n = 0, . . . , N −1 and K ∈ V, we continue by induction, but we
employ this time the water equation. Let ωK be then a dual control volume and sn+1

K the maximum
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of the finite family {sn+1
L }L∈V . We want to prove that sn+1

K ≤ 1. To this end, we multiply the
second equation (2.5.15) of the numerical scheme by (sn+1

K − 1)+. Whence

φK

(
sn+1
K − snK

)
(sn+1
K − 1)+

+
δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKL Gw(sn+1
K , sn+1

L ; δn+1
KL p)(s

n+1
K − 1)+

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKL (ξn+1
L − ξn+1

K )(sn+1
K − 1)+

+ δt(sn+1
K − 1)qn+1

P,K (sn+1
K − 1)+ = −δtqn+1

I,K (sn+1
K − 1)+. (2.6.3)

Once more, the function Gw is nonincreasing with respect to the second variable and is consistent.
Thus

Gw(sn+1
K , sn+1

L ; δn+1
KL p)(s

n+1
K − 1)+ ≥ Gw(sn+1

K , sn+1
K ; δn+1

KL p)(s
n+1
K − 1)+

= Mw(sn+1
K )δn+1

KL p(s
n+1
K − 1)+ = 0,

since the water mobility degenerates Mw(s) = 0 for s ≥ 1. By the nonnegativity of the transmissi-
bilities and the monotonicity of the function ξ we deduce∑

T∈KT

∑
L∈VT \{K}

ΛTKL(ξn+1
L − ξn+1

K )(sn+1
K − 1)+

=
∑
T∈KT

∑
L∈VT \{K}

ΛKL(ξn+1
L − ξn+1

K )(sn+1
K − 1)+ ≤ 0.

One can see in a straightforward way that δt(sn+1
K − 1)qn+1

P,K (sn+1
K − 1)+ = δt

∣∣(sn+1
K − 1)+

∣∣2 qn+1
P,K

and that the right hand side of (2.6.3) is nonpositive. Hence

φK

(
sn+1
K − snK

)
(sn+1
K − 1)+ ≤ 0.

According to this inequality, the induction assumption and the equality(
sn+1
K − 1

)
= (sn+1

K − 1)+ − (sn+1
K − 1)−,

we demonstrate that (sn+1
K − 1)+ = 0. Finally, we find that

sn+1
L ≤ sn+1

K ≤ 1, ∀ n = 0, . . . , N − 1, and ∀L ∈ V.

This concludes the proof.

Lemma 2.6.2. (Integration by parts) For every uh, vh ∈ Xh, there holds∫
Ω

Λ∇uh · ∇vh dx =
∑
T∈T

∑
σTKL∈ET

ΛTKL(uK − uL)(vK − vL). (2.6.4)

In particular, if uh = vh, one has∫
Ω

Λ∇uh · ∇uh dx =
∑
T∈T

∑
σTKL∈ET

ΛTKL(uK − uL)2. (2.6.5)
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Proof. We develop the right hand side of (2.6.4)∫
Ω

Λ∇uh · ∇vh dx =
∑
T∈T

∫
T

Λ∇uh · ∇vh dx.

Now in each triangle, one has∫
T

Λ∇uh · ∇vh dx =
( ∑
K∈VT

uK

∫
T

Λ∇ϕK|T dx
)
·
( ∑
K∈VT

vK∇ϕL|T
)
.

Thanks to (2.5.4) and
∑

K∈VT
∇ϕK|T = 0 we get (to be modified)

∫
T

Λ∇uh · ∇vh dx =
( ∑
K∈VT

uK

∫
T

Λ∇ϕK|T dx
)
·
( ∑
L∈VT

vL∇ϕL|T
)

=
∑
K∈VT

(
uKvK

∫
T

Λ(x)∇ϕK|T · ∇ϕK|T dx−
∑

L∈VT \{K}

ΛTKLuKvL

)
=
∑
K∈VT

(
ΛTKKuKvK −

∑
L∈VT \{K}

ΛTKLuKvL

)
=
∑
K∈VT

( ∑
L∈VT \{K}

ΛTKLuKvK −
∑

L∈VT \{K}

ΛTKLuKvL

)
=
∑
K∈VT

∑
L∈VT \{K}

ΛTKL(vK − vL)uK

=
∑

σTKL∈ET

ΛTKL(vK − vL)(uK − uL).

This establishes the required relationship.

As its continuous version, the discrete Poincaré-Inequality is a practical tool for the study of
coercive problems. It states that the solution is dominated by its derivatives up to a constant. Its
proof can found in [64].

Lemma 2.6.3. (Poincaré’s Inequality) There exists CPoin depending only on Ω such that

‖uh‖L2(Ω) ≤ CPoin ‖uh‖Xh , ∀uh ∈ X0
h. (2.6.6)

Let uT ∈ Xh and consider the piecewise constant functions uT , uT : Ω −→ R defined by

uT (x) = uT = sup
x∈T

uT (x), if x ∈ T ∈ T ,

uT (x) = uT = inf
x∈T

uT (x), if x ∈ T ∈ T .

We recall the following properties whose proofs are stemmed from the finite element literature
[28, 64].

Lemma 2.6.4. There holds∫
Ω
|uT (x)− uT (x)|dx ≤ 27

2
h

∫
Ω
|∇uT (x)| dx.
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Lemma 2.6.5. For (uK)K∈V ∈ R#V , let uT and uM be respectively the piecewise linear and the
piecewise constant reconstructions. Then∫

T
|uT (x)− uM(x)|2 dx ≤ ch2||∇uT ||2L2(Ω)d ,

where c is an absolute constant.

We hereafter denote (Ci)i∈I a finite collection of constants depending only on the data described
in the list of assumptions (H1)–(H6) and on the mesh regularity. We next determine some uniform
estimates on the discrete gradient of the global pressure and on the function ξ(s). This control of
the gradients will allow us to ensure the existence of a solution of the scheme and to establish some
compactness arguments.

Proposition 2.6.1. For every time level n = 0, . . . , N − 1 we consider (pn+1
K , sn+1

K )K∈V a solution
to the nonlinear system (2.5.12)-(2.5.15). Then, there exist two constants Cp and Cξ depending
only on Ω,T, φ1, ρ0, ρ1, , p

0, s0,m0,qP ,qI ,Λ,Λ such that

N−1∑
n=0

δt
∥∥pn+1

h

∥∥2

Xh
≤ Cp, (2.6.7)

and

N−1∑
n=0

δt
∥∥ξ(sn+1

h )
∥∥2

Xh
≤ Cξ. (2.6.8)

Proof. Let us begin with the proof of the first inequality. To this purpose, we define the function
H to be H(p) = g(p) +ρ(p)p with g(p)′ = −ρ(p) and let B be a primitive of the Kirchoff function ξ.
Note that H(0) = 0 and H(p) ≥ 0 for all p ∈ R. We next multiply the first equation (2.5.14) and
the second equation (2.5.15) of the numerical scheme by |ωK | pn+1

K and |ωK | g(pn+1
K ), respectively.

Adding them together and summing over K and n gives

S1 + S2 + S3 + S4 = 0.

Each term of this identity reads

S1 =
N−1∑
n=0

∑
K∈V
|ωK |φK

(
(ρ(pn+1

K )sn+1
K − ρ(pnK)snK)pn+1

K + (sn+1
K − snK)g(pn+1

K )
)
,

S2 =
N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

(
ρn+1
KL ΛTKLGg(s

n+1
K , sn+1

L ; δn+1
KL p)p

n+1
K +

ΛTKLGw(sn+1
K , sn+1

L ; δn+1
KL p)g(pn+1

K )
)
,

S3 = −
N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ΛTKL

(
ρn+1
KL (ξn+1

L − ξn+1
K )pn+1

K +

(ξn+1
L − ξn+1

K )g(pn+1
K )

)
,

S4 =
N−1∑
n=0

δt
∑
K∈V
|ωK |

(
ρ(pn+1

K )sn+1
K qn+1

P,K

)
pn+1
K +

(
(sn+1
K − 1)qn+1

P,K + qn+1
I,K

)
g(pn+1

K ).
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As it classical for the discrete time derivative, we should write or underestimate S1 with some
quantities incorporating only the initial and the final states of p and s. To this end, we follow the
same approach given in [23]. We first establish(

ρ(p)s− ρ(p∗)s∗
)
p+

(
s− s∗

)(
H(p)− ρ(p)p

)
≥ H(p)s−H(p∗)s∗, (2.6.9)

for all s, s∗ ≥ 0 and p, p∗ ∈ R. Developing the right hand side of the preceding inequality yields(
ρ(p)s− ρ(p∗)s∗

)
p+

(
s− s∗

)(
H(p)− ρ(p)p

)
= sH(p)− s∗

(
g(p) + ρ(p∗)p

)
= sH(p)− s∗H(p∗) + s∗

(
H(p∗)− g(p)− ρ(p∗)p

)
.

What is left is to show that
H(p∗)− g(p)− ρ(p∗)p ≥ 0.

We observe that

H(p∗)− g(p)− ρ(p∗)p = g(p∗) + ρ(p∗)p∗ − g(p)− ρ(p∗)p

= g(p∗)− g(p) + ρ(p∗)(p∗ − p)
= g(p∗)− g(p)− g′(p∗)(p∗ − p).

The concavity of the function g, since g′′ = −ρ′ ≤ 0, entails

g(p) ≤ g(p∗) + g′(p∗)(p− p∗).

Hence, (2.6.9) is proved. We make use of this fundamental inequality to deduce the following lower
bound ∑

K∈V
|ωK |φK

(
sNKH(pNK)− s0

KH(p0
K)
)
≤ S1.

By virtue of the discrete maximum principle, one gets

|S1| ≤
∑
K∈V
|ωK |φKs0

KH(p0
K).

Thanks to the conservativity property of the numerical fluxes, we can integrate by parts. We thus
obtain

S2 =−
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL

(
ρn+1
KL Gg(s

n+1
K , sn+1

L ; δn+1
KL p)(p

n+1
L − pn+1

K )+

Gw(sn+1
K , sn+1

L ; δn+1
KL p)(g(pn+1

L )− g(pn+1
K ))

)
.

By the definition of the coefficient ρn+1
KL given in (2.5.5), we find

ρn+1
KL

(
pn+1
L − pn+1

K

)
= −

(
g(pn+1

L )− g(pn+1
K )

)
. (2.6.10)
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Consequently

S2 =

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKLρ
n+1
KL

(
Gw(sn+1

K , sn+1
L ; δn+1

KL p)−

Gg(s
n+1
K , sn+1

L ; δn+1
KL p)

)
(pn+1
L − pn+1

K ).

Bearing in mind the nonnegativity of ΛTKL, we deduce from (2.5.10) that

m0ρ0

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL(pn+1
L − pn+1

K )2 ≤ S2.

In light of Lemma 2.6.4 and the coercivity of Λ we claim

ρ0m0Λ
N−1∑
n=0

δt
∥∥pn+1

h

∥∥2

Xh
≤ S2.

Next, integrating S3 by parts and a using repeatedly (2.6.10) leads to

S3 = −
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL(ξn+1
L − ξn+1

K )
(
ρn+1
KL (pn+1

K − pn+1
L ) + (g(pn+1

K )− g(pn+1
L ))

)
= 0.

Now, the sub-linearity of the function g i.e. |g(p)| ≤ Cg |p|, the discrete maximum principle, the
Cauchy-Schwarz inequality and the Poincaré inequality imply

|S4| ≤ (ρ1 + Cg)
N−1∑
n=0

δt
∑
K∈V
|ωK |

(
qn+1
P,K + qn+1

I,K

)
pn+1
K

≤ (ρ1 + Cg)
N−1∑
n=0

δt
∥∥∥qn+1
P,h + qn+1

I,h

∥∥∥
L2(Ω)

∥∥pn+1
h

∥∥
L2(Ω)

≤ C1

(N−1∑
n=0

δt
∥∥pn+1

h

∥∥2

Xh

)1/2
.

Using the elementary inequality ab ≤ a2

2
+
b2

2
, we get

|S4| ≤ C2 +
ρ0m0Λ

2

N−1∑
n=0

δt
∥∥pn+1

h

∥∥2

Xh
.

The proof of the first inequality is concluded by taking

Cp =
2

ρ0m0Λ

(
C2 +

∥∥∥φ̃hs̃h(·, 0)H(p̃h(·, 0))
∥∥∥
L1(Ω)

)
.

Let us now bound the discrete gradient of the Kirchoff function ξ(s). So, multiplying the
equation (2.5.15) by ξ(sn+1

K ) , summing up on all K ∈ V and n = 0, · · · , N − 1 gives

T1 + T2 + T3 + T4 = 0,
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where

T1 =

N−1∑
n=0

∑
K∈V
|ωK |φK(sn+1

K − snK)ξ(sn+1
K ),

T2 =

N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ΛTKLGw(sn+1
K , sn+1

L ; δn+1
KL p)ξ(s

n+1
K ),

T3 = −
N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ΛTKL(ξn+1
L − ξn+1

K )ξ(sn+1
K ),

T4 =

N−1∑
n=0

δt
∑
K∈V
|ωK |

(
(sn+1
K − 1)qn+1

P,K + qn+1
I,K

)
ξ(sn+1

K ).

The treatment of T1 keeps the same spirit as that of S1. Let B be a function such that B′(s) = ξ(s),
for every s ∈ [0, 1]. One can see in a straightforward way that

B(b)− B(a) =

∫ b

a
ξ(s) ds

= ξ(b)(b− a)−

≥0︷ ︸︸ ︷∫ b

a
γ(s)(s− a) ds

≤ ξ(b)(b− a), ∀a, b ∈ [0, 1].

Therefore ∑
K∈V
|ωK |φK

(
B(sNK)− B(s0

K)
)
≤ T1.

Utilizing once more the integration by parts property, Cauchy-Schwarz inequality and estimate
(2.6.7) we obtain

|T2| ≤ ‖Mw‖∞
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL
∣∣pn+1
L − pn+1

K

∣∣ ∣∣ξ(sn+1
L )− ξ(sn+1

K )
∣∣

≤ ‖Mw‖∞
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL
∣∣pn+1
L − pn+1

K

∣∣ ∣∣ξ(sn+1
L )− ξ(sn+1

K )
∣∣

≤
√
Cp ‖Mw‖∞

(N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL
∣∣ξ(sn+1

L )− ξ(sn+1
K )

∣∣2 )1/2

≤
Cp ‖Mw‖2∞ Λ

2Λ
+

Λ

2

N−1∑
n=0

δt
∥∥ξ(sn+1

h )
∥∥2

Xh
.

Integrate again by parts and use the coercivity of the tensor Λ to infer

T3 =
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL

(
ξ(sn+1

L )− ξ(sn+1
K )

)2

≥ Λ

N−1∑
n=0

δt
∥∥ξ(sn+1

h )
∥∥2

Xh
.
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Since function ξ is bounded then

|T4| ≤ ‖ξ‖∞
∥∥qP + qI

∥∥
L1(QT)

≤
√
T |Ω| ‖ξ‖∞

∥∥qP + qI
∥∥
L2(QT)

.

In conclusion, one gets

Cξ =
2

Λ

( ∑
K∈V
|ωK |φKB(s0

K) +
Cp ‖Mw‖2∞ Λ

2Λ
+
√
T |Ω| ‖ξ‖∞

∥∥qP + qI
∥∥
L2(QT)

)
.

Hence, the proof of Proposition 2.6.1 is concluded.

Remark 2.6.1. In the course of the above proof, we record once again that the nonnegativity of
the transmissibilities is a key role to derive the a priori estimate on the global pressure. Now if
some of them are negative, one can not control the gradients. This issue is addressed in the next
chapter. We are obliged to consider the fractional flow formulation of the convective term to save
these estimates.

2.7 Existence result

Based on the uniform estimates of the previous section, we show now that the numerical scheme
possesses a solution in the next lemma. This essentially relies on the following fundamental argu-
ment, that can be found in [65]. The latter result provides a sufficient condition so that a nonlinear
specified vector field can admit a zero.

Lemma 2.7.1. Let A be a finite dimensional space endowed with an inner product (·, ·)A and its
associated norm || · ||A. Let P be a continuous mapping from A into itself satisfying

(P(x), x)A > 0, for ||x||A = r > 0.

Then there exists x∗ ∈ A with ||x∗||A < r such that

P(x∗) = 0.

The following proposition states that the numerical scheme admits a solution at each time
iteration.

Proposition 2.7.1. (Existence)
For n = 0, . . . , N − 1, there exists a solution (pn+1

K , sn+1
K )K∈V to the coupled scheme (2.5.12)-

(2.5.15).

Proof. To apply Lemma 2.7.1 we should specify the space A, its inner product and the functional
P. For the sake of clarity, we prefer to adopt the following notations

q := Card{K ∈ V/xK /∈ ΓD},
s := {sn+1

K }K∈Rq ,
p := {pn+1

K }K∈Rq .
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Hence, we set A = Rq × Rq. It is equipped with its usual scalar product. The definition of the
functional P is not evident and it amounts to construct some adequate functions. To this end, we
first define the mapping Φ : Rq × Rq −→ Rq × Rq, such that

Φ(p, s) =
(
{Φ1,K}K∈V , {Φ2,K}K∈V

)
,

where the first (resp. second) component corresponds to the gas (resp. water) equations of the
numerical scheme as follows

Φ1,K = φK

(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKLGg(s

n+1
K , sn+1

L ; δn+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKL(ξn+1

L − ξn+1
K ) + δtρ(pn+1

K )sn+1
K qn+1

P,K ,

Φ2,K = φK

(
sn+1
K − snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKLGw(sn+1
K , sn+1

L ; δn+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKL(ξn+1
L − ξn+1

K ) + δt(sn+1
K − 1)qn+1

P,K + δtqn+1
I,K .

Thanks to the assumptions on the data, one can see in a straightforward way that Φ is well-defined
and continuous. To make use of the energy estimates proof, we need to define F : Rq × Rq −→
Rq × Rq, such that

F(p, s) = (p, v),

with v = {g(pn+1
K ) + ξ(sn+1

K )}K∈V . Notice that F exists and is continuous. As a consequence F is
a homeomorphism. Indeed, the expression of F−1 is:

F−1(p, v) =
(
u, ξ−1(v − g(p))

)
.

Whence, one sees that F owns similar properties of ξ. It is now sufficient to consider the continuous
mapping P defined as

P(p, v) = Φ ◦ F−1(p, v) = Φ(p, s).

The existence statement will be proved once we establish the inequality below(
P(p, v), (p, v)

)
R2q

> 0, for ||(p, v)||R2q = r, (2.7.1)

for some sufficiently large r. Reproducing the proof of Proposition 2.6.1 we compute(
P(p, v), (p, v)

)
R2q
≥ 1

δt

∑
K∈V
|ωK |φK

(
sn+1
K H(pn+1

K )− snKH(pnK)
)

+
1

δt

∑
K∈V
|ωK |φK

(
B(sn+1

K )− B(snK)
)

+
ρ0m0Λ

2
||pn+1

h ||2Xh +
Λ

2
||ξ(sn+1

h )||2Xh − C
′
p − C ′ξ.
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For some positive constants C ′p, C
′
ξ. Consequently(

P(u, v), (u, v)
)
R2q
≥− 1

δt

∑
K∈V
|ωK |φK

(
snKH(pnK) + B(snK)

)
+ min

(ρ0m0Λ

2
,
Λ

2

)(
||pn+1

h ||2Xh + ||ξ(sn+1
h )||2Xh

)
− C ′p − C ′ξ. (2.7.2)

Additionally, the usual norm ‖·‖R2q is equivalent to the norm ‖·‖V given by

‖u‖V =
∑
K∈V

ωK |uK |2 .

Hence, there exists CV > 0 such that ‖u‖R2q ≤ CV ‖u‖V . In view of Lemma 2.6.5, the Poincaré
inequality and the Lipschitz continuity of the function g, there exists a positive constant L which
is independent of the discretization parameters (h and δt ) such that

‖(p, v)‖2R2q =
∥∥∥({pn+1

K }K∈V , {g(pn+1
K ) + ξ(sn+1

K )}K∈V
)∥∥∥2

R2q

≤ CV

∥∥∥({pn+1
K }K∈V , {g(pn+1

K ) + ξ(sn+1
K )}K∈V

)∥∥∥2

V

≤ L
(∥∥ξ(sn+1

h )
∥∥2

Xh
+
∥∥pn+1

h

∥∥2

Xh

)
. (2.7.3)

Therefore, the last inequality ensures that (2.7.1) is fulfilled for a large enough r =
∥∥ξ(sn+1

h )
∥∥2

Xh
+∥∥pn+1

h

∥∥2

Xh
. The proof is concluded.

2.8 Space and time translates

In this section we aim to establish compactness properties consisting of space and time translates
estimations on the mass of gas sequence Uh,δt = φ̃hρ(ph,δt)sh,δt and on the mass of water sequence
Vh,δt = φ̃hsh,δt. To do that, we require the following claim. This result affirms that the difference
between the finite volume and the finite element reconstructions tend to zero as the size of the
mesh goes to zero.

Lemma 2.8.1. Let us denote Ũh,δt = φ̃hρ(p̃h,δt)s̃h,δt. Then∥∥∥Uh,δt − Ũh,δt
∥∥∥
L1(QT)

−→ 0 as h −→ 0.

Proof. The functions φh, ρ(ph,δt) and sh,δt are bounded. As a consequence∥∥∥Uh,δt − Ũh,δt
∥∥∥
L1(QT)

=

∫
QT

|Uh,δt − Ũh,δt| dx dt,

≤ D1 +D2,

where D1 and D2 read

D1 = φ1ρ1

∫
QT

|sh,δt − s̃h,δt|dx dt,

D2 = φ1

∫
QT

|ρ(ph,δt)− ρ(p̃h,δt)| dx dt.
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In light of the θ-Hölder continuity of the function ξ−1 we write

D1 ≤ Lξ
∫
QT

|ξ(sh,δt)− ξ(s̃h,δt)|θ dx dt.

Next, the application of Hölder’s inequality with θ ∈ (0, 1] leads to

D1 ≤ C3

(∫
QT

|ξ(sh,δt)− ξ(s̃h,δt)| dx dt
)θ

=: C3(D′1)θ,

where

D′1 =

∫
QT

|ξ(sh,δt)− ξ(s̃h,δt)|dx dt.

First, we observe that ξn+1
K = ξ(sh,δt(xK , t)). We develop the expression of D′1 as follows

D′1 =

N−1∑
n=0

δt
∑
T∈T

∑
K∈VT

∫
ωK∩T

|ξ(sh,δt)− ξ(s̃h,δt)|dx

=
N−1∑
n=0

δt
∑
T∈T

∑
K∈VT

∫
ωK∩T

|ξ(sh,δt(x, t))− ξ(sh,δt(xK , t))| dx

=
N−1∑
n=0

δt
∑
T∈T

∑
K∈VT

∫
ωK∩T

∣∣∇ξ(sh,δt)|T · (x− xK)
∣∣dx

≤
N−1∑
n=0

δt
∑
T∈T

∑
K∈VT

diam(T)|ωK ∩ T |
∣∣∇ξ(sh,δt)|T ∣∣

≤ h
N−1∑
n=0

δt
∑
T∈T
|T |
∣∣∇ξ(sh,δt)|T ∣∣

≤ (T |Ω|)
1
2h
(∫ T

0
‖∇ξ(sh,δt)‖2L2(Ω)2 dt

) 1
2

≤ C4h,

where we used the Cauchy-Schwarz inequality together with the a priori estimate (2.6.8). Thereby

D1 ≤ C5h
θ → 0 as h→ 0.

We next recall that the derivative of the density ρ′ is bounded, then we estimate

D2 ≤
∥∥ρ′∥∥∞ ∫

QT

|ph,δt − p̃h,δt|dx dt.

Similarly one estimates D2

D2 ≤ C6h→ 0 as h→ 0.

We finally deduce that the difference between Uh,δt and Ũh,δt converges to zero in L1(QT) as h
tends to zero. This completes the proof.

65



Lemma 2.8.2. (Space Translates) Let (ph,δt, sh,δt) be a solution to the system (2.5.12)-(2.5.15).
Then the following inequality holds∫ T

0

∫
Ω′

∣∣∣Ũh,δt(x+ y, t)− Ũh,δt(x, t)
∣∣∣dx dt ≤ β(|y|), (2.8.1)

for every y ∈ Rd,where Ω′ = {x ∈ Ω, [x, x+ y] ⊂ Ω} and β(|y|) −→ 0 as |y| goes to zero.

Proof. By the definition of Uh,δt, one has∫
Q
′
T

∣∣∣Ũh,δt(x+ y, t)− Ũh,δt(x, t)
∣∣∣dx dt,

=

∫
Q
′
T

∣∣∣(φ̃hρ(p̃h,δt)s̃h,δt

)
(x+ y, t)−

(
φ̃hρ(p̃h,δt)s̃h,δt

)
(x, t)

∣∣∣dx dt,

≤W1 +W2 +W3,

where W1,W2 and W3 are given by

W1 = φ1ρ1

∫
Q
′
T

|s̃h,δt(x+ y, t)− s̃h,δt(x, t)| dx dt, (2.8.2)

W2 = φ1

∫
Q
′
T

|ρ(p̃h,δt(x+ y, t))− ρ(p̃h,δt(x, t))| dx dt. (2.8.3)

W3 = ρ1

∫
Q
′
T

∣∣∣φ̃h(x+ y)− φ̃h(x)
∣∣∣dx dt. (2.8.4)

In order to overestimate W1, we introduce once more the θ-Hölder continuity of ξ−1. So, one has

W1 ≤ C7

∫
Q
′
T

|ξ(s̃h,δt(x+ y, t))− ξ(s̃h,δt(x, t))|θ dx dt.

The Hölder inequality allows us to write

W1 ≤ C8

(∫
Q
′
T

|ξ(s̃h,δt(x+ y, t))− ξ(s̃h,δt(x, t))| dx dt
)θ
.

As in the same spirit of [69], we define the function χσTKL
(x) for each σTKL by

χσKMS
(x) =

{
1, if the line segment [x, x+ y] intersects with σTKL,

0, else.
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for y ∈ R, x ∈ Ω′ and K,L ∈ VT . It is known that
∫

Ω′ χσKMS
(x) dx ≤ Cσ|σTKL||y|. Thereby

W1 ≤ C9

(N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

∣∣ξ(sn+1
L )− ξ(sn+1

K )
∣∣ ∫

Ω′
χσKMS

(x) dx
)θ
,

≤ C10|y|θ
(N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

∣∣σTKL∣∣ ∣∣ξ(sn+1
L )− ξ(sn+1

K )
∣∣ )θ,

≤ C11|y|θ
(N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

|T |
1
2

∣∣ξ(sn+1
L )− ξ(sn+1

K )
∣∣ )θ,

≤ C12|y|θ
(N−1∑
n=0

δt
∑
T∈T

|T |
∣∣∇ξ(sh,δt)|T ∣∣2 )θ/2,

≤ C13|y|θ
(∫ T

0
‖∇ξ(sh,δt)‖2L2(Ω)2 dt

)θ/2
,

≤ C14|y|θ,

where we have mainly used the regularity of the mesh, within the triangle ωK ∩T , and the Cauchy-
Schwarz inequality. Analogous arguments are employed to prove

W2 ≤ C15|y|. (2.8.5)

It is easy to see from Assumption (H1) on the porosity that the space translates are strongly
convergent which leads to

W3 → 0 as |y| → 0.

Finally, this inequality together with the previous one establish the required property (2.8.1).

The time translates on Ũh,δt are claimed in the following lemma.

Lemma 2.8.3. (Time translates)
Let (ph,δt, sh,δt) be a solution to the algebraic system (2.5.12)-(2.5.15). There exists a modulus of
continuity ω that is independent of h and δt such that∫

Ω×(0,T−τ)

∣∣∣Ũh,δt
(x, t+ τ)− Ũh,δt(x, t)

∣∣∣2 dx dt ≤ ω(τ), (2.8.6)

for all τ ∈ (0,T). Further, ω(τ) −→ 0 as τ −→ 0.

Proof. The proof mimics similar ideas as in [69] and later in [23].

2.9 Convergence of the numerical scheme

The scope of this section is to establish the strong convergence of the saturation, the weak conver-
gence of the global pressure and the weak convergence of the gradients. To this purpose, we have to
concatenate all the aforementioned properties together with the famous Riesz-Frechet-Kolmogorov
compactness criterion.
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Proposition 2.9.1. Under Assumptions (H1)-(H7), let (ph,δt, sh,δt) be a sequence of solutions to
the numerical scheme (2.5.12)-(2.5.15). As (h, δt) −→ (0, 0), the following convergences hold up to
a subsequence

Ũh,δt and Uh,δt −→ U strongly in Lr(QT), r ≥ 1, and a.e in QT, , (2.9.1)

s̃h,δt and sh,δt −→ s a.e. in QT, (2.9.2)

ph,δt ⇀ p weakly in L2(QT), (2.9.3)

∇ph,δt ⇀ ∇p weakly in L2(QT)d, (2.9.4)

∇ξ(sh,δt) ⇀ ∇ξ(s) weakly in in L2(QT)d. (2.9.5)

Moreover, ξ(s) and p are in L2(0,T;H1
ΓD

(Ω)) with

0 ≤ s ≤ 1, U = φρ(p)s a.e. in QT. (2.9.6)

Finally, for all functions Γ and κ ∈ C0
b (R), with κ(0) = 0, we have

Γ (ph,δt)κ(sh,δt) −→ Γ (p)κ(s) a.e. in QT (2.9.7)

Proof. It follows from the space and the time translates lemmas that the sequence Ũh,δt is relatively
compact in L1(QT) thanks to Kolmogorov’s compactness theorem [30, 69]. This yields the strong
convergence of an unlabeled subsequence of Ũh,δt :

Ũh,δt −→ U in L1(QT) and a.e. in QT,

and in virtue of Lemma 2.8.1, this subsequence Uh,δt converges to the same limit U . Also, it is
bounded and consequently the strong convergence occurs in Lr(QT), with r ≥ 1, which establishes
(2.9.1).

Same steps are followed, as for Ũh,δt, to check the space and the time translates on the function
φ̃hs̃h,δt. We apply once again Kolmogorov’s theorem to ensure the convergence almost everywhere
of a subsequence, still denoted, (φ̃hs̃h,δt). Hence

φ̃hs̃h,δt −→ φs a.e. in QT, (2.9.8)

and consequently,

sh,δt, s̃h,δt −→ s a.e. in QT. (2.9.9)

Form Proposition 2.6.1, the sequence (∇ph,δt) is bounded in L2(QT)d. Moreover, the Poincaré
inequality shows that the sequence (ph,δt) is also bounded in L2(QT). Hence there exists a function
p ∈ L2(0,T;H1

ΓD
(Ω)) such that the following convergences hold up to a subsequence

ph,δt ⇀ p weakly in L2(QT), (2.9.10)

∇ph,δt ⇀ ∇p weakly in
(
L2(QT)

)d
. (2.9.11)

Similarly, the estimate (2.6.8) confirms that (ξ(sh,δt)) is bounded in L2(QT). Thus there exist two
functions ξ∗ ∈ L2(QT) and ζ ∈ L2(QT)d such that

ξ(sh,δt) ⇀ ξ∗ weakly in L2(QT), (2.9.12)

∇ξ(sh,δt) ⇀ ζ weakly in
(
L2(QT)

)d
. (2.9.13)
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In view of (2.9.9) we can pasages to the limit thanks to the continuity of ξ :

ξ(sh,δt) −→ ξ(s) a.e. in QT. (2.9.14)

The uniqueness of the limit implies

ξ∗ = ξ(s) a.e. in QT.

One deduces now that
ζ = ∇ξ(s),

and in the meantime one shows that ξ(s) ∈ L2(0,T;H1
ΓD

(Ω)). We next introduce the fact that ρ is
(strictly) increasing to see that∫

QT

(
φ̃hρ(ph,δt)sh,δt − φ̃hρ(ϕ)sh,δt

)(
ph,δt − ϕ

)
dx dt ≥ 0, ∀ ϕ ∈ L2(QT).

The convergences (2.9.1) and (2.9.8) allow us to conclude that∫
QT

(
U − φρ(ϕ)s

)
(p− ϕ) dx dt ≥ 0, ∀ ϕ ∈ L2(QT).

We now take ϕ = p+ εw where ε ∈]0, 1] and w ∈ L2(QT). As a consequence∫
QT

(
U − φρ(p+ εw)s

)
(εw) dx dt ≥ 0, ∀ ε ∈]0, 1], ∀ w ∈ L2(QT).

Dividing each side by ε, letting ε go to zero, substituting w by −w leads to∫
QT

(
U − φρ(p)s

)
w dx dt = 0, ∀ w ∈ L2(QT).

In the absence of a strong convergence on the global pressure, we will use the strong convergence
of the mass of the gas phase, especially to show (2.9.7). On one hand, if sh,δt −→ 0 a.e., then
Γ (ph,δt)κ(sh,δt) −→ 0 = Γ (p)κ(s) a.e. (since κ(0) = 0 and Γ (p) is bounded). On the other hand,
when sh,δt −→ s 6= 0, in light of (2.9.1) we have Γ (ph,δt) −→ Γ (p) almost everywhere in QT. Then,
Γ (ph,δt)κ(sh,δt) −→ Γ (p)κ(s) almost everywhere in QT, since the functions Γ , κ are continuous.
This establishes (2.9.7).

We finally claim that any sequence of solutions converges towards a weak solution to the con-
sidered mathematical model.

Theorem 2.9.1. (Passage to the limit) Under Assumptions (H1)-(H7), the limit function (p, s) of
Proposition 2.9.1 is a weak solution to the problem (2.2.9)-(2.2.12) in the sense of Definition 2.2.1.

Proof. We detail the proof of the first equation of the numerical scheme. Likewise, the proof of the
second one is obtained. To this purpose, let ψ ∈ C∞c (Ω × [0,T)) and denote ψn+1

K = ψ(xK , t
n+1)

for all K ∈ V and n ∈ {0, . . . , N}. Multiply the equation (2.5.14) by δtψn+1
K and sum up on K ∈ V

and n ∈ {0, . . . , N} to find
Gh1 + Gh2 + Gh3 + Gh4 + Gh5 = 0,
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where

Gh1 =

N−1∑
n=0

∑
K∈V
|ωK |φK

(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
ψn+1
K ,

Gh2 = −
N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ΛTKLρ
n+1
KL (ξn+1

L − ξn+1
K )ψn+1

K ,

Gh3 =
N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKLGg(s

n+1
K , sn+1

L ; δn+1
KL p)ψ

n+1
K ,

Gh4 =

N−1∑
n=0

δt
∑
K∈V
|ωK |ρ(pn+1

K )sn+1
K qP,n+1

K ψn+1
K .

To start off, we treat the convergence of the evolution term Gh1 . Using the discrete integration by
parts in time and bearing in mind that ψNK = ψ(xK ,T) = 0, one gets

Gh1 =−
N−1∑
n=0

∑
K∈V
|ωK |φKρ(pn+1

K )sn+1
K

(
ψn+1
K − ψnK

)
−
∑
K∈V
|ωK |φKρ(p0

K)s0
Kψ

0
K

=−
N−1∑
n=0

∑
K∈V

∫ tn+1

tn

∫
ωK

φKρ(pn+1
K )sn+1

K ∂tψ(xK , t) dx dt−
∑
K∈V
|ωK |φKρ(p0

K)s0
Kψ

0
K

=−
∫
QT

Ũh,δt∂tψ̃h dx dt−
∫

Ω
φρ(p0)s0ψ̃h(x, 0) dx.

with ψ̃h(x, t) = ψ(xK , t) for all x ∈ K, K ∈ V and t ∈ [0,T). Due to the smoothness of the
test function, the sequence {ψ̃h} (resp. {∂tψ̃h}) is uniformly convergent towards ψ (resp. ∂tψ).
We recall that {Ũh,δt} converges strongly to φρ(p)s. Owing to Lebesgue’s Dominated Convergence
Theorem (LDCT) we deduce

lim
h,δt→0

Gh1 = −
∫
QT

φρ(p)s∂tψ dx dt−
∫

Ω
φρ(p0)s0ψ(x, 0) dx.

Next, let us study the convergence of the discrete elliptic operator. In other words, let us establish

lim
h→0
Gh2 =

∫
QT

ρ(p)Λ∇ξ(s) · ∇ ψ dx dt. (2.9.15)

The presence of the density in the diffusion term makes it hard to pass to the limit in the latter
since we have only a weak convergence on the global pressure. To tackle this issue, we need to
introduce the strong convergence result on the mass of gas (2.9.7) as we are going to show below.
We firstly reorder the expression Gh2 by triangles and dual edges to infer

Gh2 = −
N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ΛTKLρ
n+1
KL

(
ξ(sn+1

L )− ξ(sn+1
K )

)
ψn+1
K

=

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKLρ
n+1
KL

(
ξn+1
L − ξn+1

K

)(
ψn+1
L − ψn+1

K

)
.
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Now we see that the coefficient ρn+1
KL does not allow us to the above expression under an integral

form. As pointed out in [23], it is wiser to approach Gh2 with another term whose limit is (2.9.15).
Such a proposition consists of taking

Gh,∗2 =

∫
QT

ρ(ph,δt)Λ∇ξ(sh,δt) · ∇ψh,δt dx dt.

This integral can be rewritten as follows

Gh,∗2 =

∫
QT

Λ∇(ρ(ph,δt)ξ(sh,δt)) · ∇ψh,δt dx dt−
∫
QT

ξ(sh,δt)Λ∇ρ(ph,δt) · ∇ψh,δt dx dt.

We know that {ρ(ph,δt)} and {ξ(sh,δt)} are two bounded sequences and their gradients are so.
In addition, {ρ(ph,δt)ξ(sh,δt)} converges strongly to ρ(p)ξ(s) thanks to (2.9.7). Moreover, similar
arguments of the proof of Proposition 2.9.1 are utilized to get

∇(ρ(ph,δt)ξ(sh,δt)) ⇀ ∇(ρ(p)ξ(s)), weakly in L2(QT)d.

Furthermore, there exists ρ∗ ∈ L2(QT) such that

ρ(ph,δt) ⇀ ρ?, weakly in L2(QT),

and
∇ρ(ph,δt) ⇀ ∇ρ?, weakly in L2(QT)d.

According to the strong convergence in L2(QT)d of the sequences {∇ψh,δt}, {ξ(sh,δt)∇ψh,δt} we
claim

I := lim
h,δt→0

Gh,∗2 =

∫
QT

Λ∇(ρ(p)ξ(s)) · ∇ψ dx dt−
∫
QT

ξ(s)Λ∇ρ? · ∇ψ dx dt.

Extending the first integral in I gives

G2 =

∫
QT

ρ(p)Λ∇ξ(s) · ∇ψ dx dt+

∫
QT

ξ(s)(∇ρ(p)−∇ρ?) · Λ∇ψ dx dt.

Applying the integration by parts to the second integral in I leads to∫
QT

ξ(s)(∇ρ(p)−∇ρ?) · Λ∇ψ dx dt = −
∫
QT

(ρ(p)− ρ?)γ(s)∇s · Λ∇ψ dx dt

−
∫
QT

(ρ(p)− ρ?)ξ(s) div(Λ∇ψ) dx dt.

Now one can check that ρ(p)γ(s) = ρ?γ(s) and ρ(p)ξ(s) = ρ?ξ(s) almost everywhere in QT with
the aid of (2.9.7). Therefore, the last two integrals of the preceding equality vanish. Finally, this
shows that

lim
h,δt→0

Gh,∗2 =

∫
QT

ρ(p)Λ∇ξ(s) · ∇ψ dx dt.

What is left is to prove that
lim

h,δt→0
|Gh2 − G

h,∗
2 | = 0. (2.9.16)

To this end, we need to define the following piecewise functions uh,δt, uh,δt with u ∈ {p, s}.

un+1
T := sup

x∈T
un+1
h (x), un+1

T := inf
x∈T

un+1
h (x),

uh,δt|T×(tn,tn+1]
:= un+1

T , uh,δt|T×(tn,tn+1] := un+1
T .
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Now, setting

Dh2 =

∫
QT

ρ(p
h,δt

)Λ∇ξ(sh,δt) · ∇ψh,δt dx dt,

to deduce∣∣∣Gh2 − Gh,∗2

∣∣∣ ≤ ∣∣∣Gh2 −Dh2 ∣∣∣+
∣∣∣Dh2 − Gh,∗2

∣∣∣
≤ 2

N−1∑
n=0

δt
∑
T∈T

∣∣∣ρ(pn+1
T )− ρ(pn+1

T
)
∣∣∣ ∑
σTKL∈ET

ΛTKL
∣∣ξn+1
L − ξn+1

K

∣∣ ∣∣ψn+1
L − ψn+1

K

∣∣ .
In virtue of the Cauchy-Schwarz inequality and Lemma 2.6.4 we discover

∣∣∣Gh2 − Gh,∗2

∣∣∣ ≤ C16 ‖∇ψ‖∞ ‖∇ξ(sh,δt)‖L2(QT)d

(N−1∑
n=0

δt

∫
Ω

∣∣∣pn+1
h − pn+1

h

∣∣∣2 dx
)1/2

≤ C17h −→ 0, as h, δt −→ 0.

Let us move on to deal with the convective term Gh3 . We thus rewrite Gh3 by edges

Gh3 = −
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ρn+1
KL ΛTKLGg(s

n+1
K , sn+1

L ; δn+1
KL p)

(
ψn+1
L − ψn+1

K

)
.

We additionally define

Dh3 =

∫
QT

ρ(ph,δt)Mg(sh,δt)Λ∇ph,δt · ∇ψh,δt dx dt.

Using repeatedly (2.9.7), the sequence {ρ(ph,δt)Mg(sh,δt)∇ψh,δt} converges strongly to {ρ(p)Mg(s)∇ψ}
in L2(QT)d. Since {∇ph,δt} converges weakly to ∇p in L2(QT)d then

lim
h,δt→0

Dh3 =

∫
QT

ρ(p)Mg(s)Λ∇p · ∇ψ dx dt.

Define now

Dh,13 =

∫
QT

ρ(p
h,δt

)Mg(sh,δt)Λ∇ph,δt · ∇ψh,δt dx dt.

We show that
∣∣∣Dh3 −Dh,13

∣∣∣ → 0 as h, δt −→ 0. To do that, let us seek an upper bound of this

quantity

∣∣∣Dh3 −Dh,13

∣∣∣ ≤ C18 ‖∇ψ‖∞ ‖∇ph,δt‖L2(QT)d

(N−1∑
n=0

δt

∫
Ω

∣∣∣pn+1
h − pn+1

h

∣∣∣2 )1/2

≤ C19h −→ 0, as h, δt −→ 0.

Let us finally define Gh,∗3

Gh,∗3 =

∫
QT

ρ(p
h,δt

)Mg(sh,δt)Λ∇ph,δt · ∇ψh,δt dx dt.
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Moreover, we prove that ∣∣∣Dh,13 − Gh,∗3

∣∣∣→ 0, as h, δt −→ 0. (2.9.17)

Indeed, the Cauchy-Schwarz inequality, the θ-Hölder continuity of the function ξ−1, the Hölder
inequality with θ ∈ (0, 1], Proposition 2.6.1 and Lemma 2.6.4 entail

∣∣∣Dh,13 − Gh,∗3

∣∣∣ ≤ C20

(N−1∑
n=0

δt

∫
Ω

∣∣sh,δt − sh,δt∣∣2 )1/2

≤ C21

(N−1∑
n=0

δt

∫
Ω

∣∣ξ(sh,δt)− ξ(sh,δt)∣∣2 )θ/2, −→ 0, as h, δt −→ 0.

From the aforementioned expressions, we should now check that the sequence {Gh3 −G
h,∗
3 } tends to

zeros as h, δt go to zero. In view of the consistency property and the item (C3) of the numerical
flux Gg, we infer∣∣∣ρn+1

KL Gg(s
n+1
K , sn+1

L ; δn+1
KL p)−

(
− ρn+1

K,0 Mg(s
n+1
K,0 )δn+1

KL p
)∣∣∣ ∣∣δn+1

KL ψ
∣∣

=
∣∣∣ρn+1
KL Gg(s

n+1
K , sn+1

L ; δn+1
KL p)− ρ

n+1
K,0 Gg

(
sn+1
K,0 , s

n+1
K,0 ; δn+1

KL p
)∣∣∣ ∣∣δn+1

KL ψ
∣∣

≤ C22

(
η(
∣∣∣sn+1
K − sn+1

K,0

∣∣∣) +
∣∣∣ρn+1
KL − ρ

n+1
K,0

∣∣∣ ) ∣∣δn+1
KL p

∣∣ ∣∣δn+1
KL ψ

∣∣
≤ C23

(
η(
∣∣∣sn+1
K − sn+1

K,0

∣∣∣) +
∣∣∣ρn+1
KL − ρ

n+1
K,0

∣∣∣ )( ∣∣δn+1
KL p

∣∣2 +
∣∣δn+1
KL ψ

∣∣2 ),
where η(·) is the modulus of continuity of the numerical flux Gg defined in (2.5.9). Consequently∣∣∣Gh3 − Gh,∗3

∣∣∣ ≤ C22

∑
T∈T

(
η(
∣∣sn+1
T − sn+1

T

∣∣) +
∣∣∣pn+1
T − pn+1

T

∣∣∣ )
×

∑
σTKL∈ET

(
ΛTKL

∣∣δn+1
KL p

∣∣2 + ΛTKL
∣∣δn+1
KL ψ

∣∣2 )
≤ C24

∫
QT

(
η(
∣∣sh,δt − sh,δt∣∣) +

∣∣∣ph,δt − ph,δt∣∣∣ )dx dt.

Proceeding similarly as in the proof of (2.9.17) we conclude

lim
h,δt→0

∣∣∣Gh3 − Gh,∗3

∣∣∣ = 0. (2.9.18)

Finally, one gets

lim
h,δt→0

Gh3 =

∫
QT

ρ(p)Mg(s)Λ∇p · ∇ψ dx dt.

The last limit results from the almost everywhere convergence (2.9.7) and LDCT

lim
h,δt→0

Gh4 = lim
h,δt→0

N−1∑
n=0

δt
∑
K∈V
|ωK |ρ(pn+1

K )sn+1
K qn+1

P,Kψ
n+1
K =

∫
QT

ρ(p)sqPψ dx dt.

Whence, the proof of Theorem 2.9.1 is concluded.
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2.10 Numerical experiments

In this section we give two numerical tests in the two dimensional space in order to illustrate the
behavior and stability of the presented discretization. We point out that the implemented scheme
(2.5.12)-(2.5.15) yields a nonlinear algebraic system. Appropriate linearization schemes [100, 111,
112] can be proposed for solving the resulting system namely the Picard iteration technique, the
fixed point approach, the L-scheme strategy and the Newton method. For instance, the work [110]
is proposing and analyzing a linear iterative scheme for solving a related problem, involving Hölder
continuous nonlinearities. Using an improved Newton method, the authors suggested in [27] a
variable switching technique in the case of the Richards equation to overcome the issues linked
to the fully saturated or fully unsaturated regimes. In our case the underlined system is solved
thanks to Newton-Raphson’s method. Note that in our system the evolution terms are not in fact
degenerate since the conservative variables (s, ρ(p)s) are connected to the variables (p, ξ(s)) by a
diffeomorphism (see Lemma 4.3 in [84] for more details) and consequently due to the monotonicity
of the function ξ, the variables (p, s) are uniquely defined. Therefore, it is not necessary to switch
the variable with respect to the fully saturated regime. It is worth mentioning that at every time
iteration indexed by n, the solver is initialized by (pn, sn) where the stopping criterion is fixed to
10−10. It also includes the computation of a Jacobian matrix. In order to avoid the singularity
of this matrix, the algorithm necessitates a slight restriction on the time step δt < h even if the
numerical scheme is unconditionally stable. In the both tests below, we observe that the Newton
process requires a few iterations, between three and ten, to converge.

2.10.1 Test case 1

Being inspired by the benchmark test [106], this first academic example aims to evaluate the error
between the computed solution and the analytical solution to the following model problem∂tu− div

(
f(u)∇p+ ε∇u

)
= F in (0, 1)2 × (0, tf )

div
(
M(u)∇p

)
= 0 in (0, 1)2 × (0, tf )

, (2.10.1)

with f(u) = u/(0.5−0.2u), ε = 0.01,M(u) = 1/(0.5−0.2u) and tf = 0.05. For F = 2ε
π2

16
sin(

π

4
(x+

y + 2t)), the functions satisfying the above system read

u((x, y), t) = sin(
π

4
(x+ y + 2t)), p((x, y), t) =

0.2

π/4
cos(

π

4
(x+ y + 2t)) + 0.5(x+ y). (2.10.2)

We supplement the equations of (2.10.1) by Dirichlet boundary conditions and initial conditions
which correspond to (2.10.2). We consider a sequence of triangular meshes [88] where all the angles
are acute (see Fig 2.3) to discretize the domain Ω. We here indicate that the time step is divided
by 4 since the mesh size is divided by 2.

I In Table 2.1 we display the errors in L2(QT ) norm and the convergence rates computed on
successively refined meshes for the saturation and the pressure at final time tf = 0.2. Although
it is accurate of second order in case of linear problems, we can observe that the VCFV method
converges of first order with regard to the pressure and the saturation. This is classical and it is
due mainly to the upstream technique used in the numerical scheme. Compared to [106] the mixed
finite element–finite volume scheme converges also of first order towards the exact solution.
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Figure 2.3: Example of meshes used in the test case 1 with h = 0.250, 0.125 from left to right.

h ||u− uh,δt||L2(QT )
Rate ||p− ph,δt||L2(QT )

Rate minuh,δt

0.250 0.530 E-02 - 0.182 E-03 - 0
0.125 0.321 E-02 0.723 0.771 E-04 1.239 0
0.063 0.173 E-02 0.903 0.345 E-04 1.173 0
0.031 0.877 E-03 0.957 0.164 E-04 1.053 0
0.016 0.437 E-03 1.055 0.807 E-05 1.075 0

Table 2.1: Error study of the scheme for the saturation and the pressure.

2.10.2 Test case 2

In the second example we consider the test case treated in [23]. The domain of computation is Ω =
(0, 1)2. The porosity is set to φ = 0.206. The relative permeabilities and the capillary pressure are
respectively defined by: Krg(s) = s2,Krw(s) = (1−s)2, pc(s) = Pmaxs, where Pmax = 1.013×105Pa.
The viscosities of the two fluids read: µw = 10−3Pa.s, µg = 9 × 10−5Pa.s. The gas density is an
affine function: ρ(p) = ρr(1+ cr(p−pr)) with ρr = 400Kg.m−3, cr = 10−6Pa, pr = 1.013×105Pa.
The absolute permeability is given by Λ = 0.15 × 10−10[m2]. The initial gas saturation and gas
pressure are: sg(x, 0) = 0.9, pg(x, 0) = 1.013×105Pa. We point out that the initial global pressure
is obtained by the relationship (2.2.5).

We inject water in the left zone (x = 1, 0.8 ≤ y ≤ 1) of the medium with a saturation slw = 0.9
and a constant pressure P lg = 4.026 × 105Pa. The right zone (x = 1,0 ≤ y ≤ 0.2) is left to be
in contact with the air. Hence we impose P rg = 1.013 × 105Pa and consider a free flow meaning
that ∇ξ(s) · n = 0. The remainder of the boundary is impermeable. We further take no source
terms; that is qP = qI = 0. The final time is fixed to tf = 50s. The figures below illustrate the
motion of water saturation in the absence of capillary effects, which means that ξ = 0, Fig 2.5
and in the presence of them (ξ 6= 0) Fig 2.6 for different times T = 4s, 20s, 50s. In both cases we
observe that the discrete saturation remains in the interval [0.1, 1] as we have shown in Lemma
2.6.1. Moreover we observe a remarkable displacement of a sharp front between the two fluids in
the first test, toward the right zone where the pressure is lower, while a smooth one is recorded in
the second test which is due to the diffusive nature of the capillary term as expected. This tests
shows the robustness and the ability of the proposed approach to capture the shocks in the pure
hyperbolic case of the studied model.
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Figure 2.4: Primal mesh with 3584 triangles and 1857 vertices

Figure 2.5: Evolution of water saturation with Pmax = 0Pa at t = 4s, 20s, 50s.

Figure 2.6: Evolution of water saturation with Pmax = 1.013× 105Pa at t = 4s, 20s, 50s.

76



Chapter 3

Positive control volume finite element
scheme for a degenerate compressible
two-phase flow in anisotropic porous
media

In this chapter we are concerned with the convergence analysis of a positive control volume finite
element scheme (CVFE) for a degenerate compressible two-phase flow model in anisotropic porous
media. For this, we consider the global pressure saturation formulation. We next use an implicit
Euler scheme in time and a CVFE discretization in space. This approach rests on a particular choice
of the mean value of the gas density on the interfaces, a centered scheme of the total mobility and
the upwind approximation of fractional fluxes according to the total velocity. Thus, the maximum
principle is fulfilled without any constraint on the stiffness coefficients. Moreover uniform estimates
on the discrete gradient of the global pressure and the dissipative term are derived. As the mesh
size is sent to zero, we establish that the sequence of approximate solutions converges to a weak
solution of the continuous problem. Numerical tests are presented in two dimensions to exhibit the
behavior of the gas pressure and the water saturation through the medium.

3.1 Introduction

We are interested in the two phase flow model in porous media. Its applicability is of a great promi-
nence in engineering. More precisely, it occurs widely in oil recovery where, in general, the phases
are a gas and liquid. It can be applied in hydrology and many other fields. The mathematical for-
mulation of the two-phase flow model comprises a coupled nonlinear system of partial differential
equations with degenerate coefficients. Then, seeking analytical solutions is usually avoided due
to the complexity of the system. As a result, we resort to suitable numerical methods in order to
approximate the solutions of interest. Such a method should preserve some properties, which are
resumed in robustness and consistency.

Various contributions, with different hypotheses on the data, have been proposed for the dis-
cretization of the two-phase flow model. Beginning by finite difference approximation, we refer to
the works [17, 108]. This stipulates high regularity on the data and structured domains, which
excludes a large part of physical problems. So, finite volume methods have appeared and known
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a huge interest in the last decades [61, 69] since they are robust and cheap in view of the com-
putational cost. In addition, they are often used to discretize equations including high dominated
convection terms [1, 12, 21, 72, 103, 114]. Concerning compressible flows, we refer to [4, 23, 113]
for the convergence analysis of such finite volume schemes requiring both an isotropic permeability
tensor and an orthogonality condition on the mesh. The scheme proposed in [113, 114] consists of
a finite volume method on a specific mesh together with a phase-by-phase upstream scheme. The
authors showed that the proposed scheme satisfies the maximum principle for the saturations, and
obtained discrete energy estimates on the pressures under the assumption that the transmissibility
coefficients are nonnegative. Practically, this condition is very restrictive. It is satisfied for a scalar
permeability and for particular meshes. For instance in case of a triangulation, the angles of the
triangles must be acute. Generally, to deal with the anisotropic case, some attempts have been
investigated. In these studies, the feature of a finite element scheme and that of the finite volume
method are combined. The first one provides a simple discretization of the diffusion counterpart
while the second one preserves the locally conservative property of the numerical fluxes [73, 114].
More generally, the so-called gradient schemes method, which includes a large variety of discretiza-
tions, has been developed for the incompressible flows in [62, 68]. Nevertheless, this class of schemes
fails the preserve the physical ranges of the approximate solution, which is an important property
when it comes to deal with positive quantities such as the saturation and concentration.

The main point of this chapter focuses on the numerical analysis of a positive control volume
finite element scheme for the approximation of a compressible two-phase flow model. This approach
has been applied to a degenerate parabolic equation in [40] in which, the elliptic term is treated as
a hyperbolic one so that they could prove the maximum principle and derive an a priori estimate on
the discrete gradient. This methodology has been successfully extended to a system consisting of
two parabolic equations in [42]. Being inspired by these works, we will propose a nonlinear scheme
that will allow us to handle the issue due to the anisotropy of the medium. To get the desired
discretization, an implicit Euler scheme in time and a CVFE discretization in space are consid-
ered. The convective fluxes are approximated with the aid of an upwind scheme, the total mobility
is discretized with a centered scheme and the diffusive term is discretized using a Godunov-like
scheme. For more details about the dating and the analysis of the CVFE method for several partial
differential equations we refer the reader to this non-exhaustive list [19, 34, 35, 36, 67, 76].

The layout of this chapter is given as follows. In Section 3.2 we state the mathematical formu-
lation of the compressible two-phase flow in porous media, which is derived from the generalized
Darcy law and the mass conservation law. Section 3.3 is devoted to defining the primal mesh, the
dual mesh and to describing the discrete solution space and the discrete trial space. Section 3.4 is
devoted to sketching out the CVFE discretization and how we get the expected scheme. Next, we
survey some useful properties in Section 3.5. Moreover, Section 3.6 is dedicated to establishing the
maximum principle and a priori estimates on the discrete gradients. In Section 3.7, the existence of
a discrete solution to the combined scheme is proved. In Section 3.8, the space and time translates
estimations are established. Section 3.9 is concerned with the convergence of a discrete solution
towards a weak solution to the continuous problem, which is the main result of the present chapter.
Finally, in Section 3.10 some numerical tests are presented to display the flow of water and gas
through the medium with different rates of anisotropy.
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3.2 Presentation of the problem

The mathematical formulation of the compressible two-phase flow model is obtained by substitut-
ing the generalized Darcy law into the mass conservation equation for each phase. In addition, the
considered phases are: gas, which is compressible and water, which is incompressible. We empha-
size that the studied medium is anisotropic and heterogeneous.

To begin with, we consider a porous medium Ω as a bounded polygonal open of Rd (d ≥ 1) and
let T be a fixed positive real number. We denote QT = Ω× (0,T). According to [83] the governing
equations of the compressible flow are given in QT by

φ(x)∂t(ρα(pα)sα) + div(ρα(pα)Vα) + ρα(pα)sαq
P = ρα(pα)sIαq

I , (α = g, w) (3.2.1)

where φ is the porosity of the medium Ω, sα is the saturation of the α-phase, ρα is the density of
the phase α, qP is a production term, qI an injection term, and sIα is the saturation of the injected
fluid. Moreover, Vα is the velocity of the α-phase, which obeys the Darcy-Muskat law [18, 22]

Vα = −Krα(sα)

µα
Λ
(
∇pα − ρα(pα)~g

)
, α = g, w, (3.2.2)

where Λ is the absolute permeability of the porous medium, Krα is the relative permeability of the
α-phase, µα is the viscosity of the phase α, which is considered to be constant, pα the pressure
of the phase α and ~g is a gravitational term. We assume that the two phases occupy the whole
medium, which can be interpreted by the following identity

sw + sg = 1. (3.2.3)

In a capillary tube, the contact between the two fluids incites a curvature, which is due to
the difference of their corresponding pressures. This jump represents the capillary pressure law,
denoted by pc, and it is assumed to be only in terms of the nonwetting phase saturation. Owing
to (3.2.3) we write

pc(sg) = pg − pw. (3.2.4)

Physically, the capillary pressure function pc := pc(sg) is nondecreasing,
(dpc(sg)

dsg
> 0, for any

sg ∈ [0, 1]
)

[22]. In addition, it degenerates whenever the gas fluid disappears i.e. pc(sg = 0) = 0.
In the sequel, s = sg will stand for the gas saturation and sw = 1− s.

In studying the problem (3.2.1)-(3.2.4), the main difficulties are caused by the degeneracy and
the strong coupling of the system. To be more precise, the evolution and dissipative terms of each
phase vanish whenever the corresponding saturation is equal to zero. As a consequence, we possess
no control on the gradients of pressures at the discrete setting. In order to overcome this issue,
we need to reformulate this system otherwise with the help of the global pressure feature. This
alternative idea has been introduced in [47]. We recall that the global pressure, denoted by p, is
defined such that the following relationship holds

M(s)∇p = Mw(s)∇pw +Mg(s)∇pg, (3.2.5)

where Mα represents the mobility of the α-phase and M is the total mobility. These quantities are
defined by

Mα =
Krα

µα
, M(s) = Mw(s) +Mg(s). (3.2.6)
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Then, the global pressure p can be written in an explicit formula as

p = pg + p(s) = pw + p̃(s), (3.2.7)

with

p(s) = −
∫ s

0

Mw(u)

M(u)
p′c(u) du and p̃(s) =

∫ s

0

Mg(u)

M(u)
p′c(u) du, (3.2.8)

are artificial pressures. We note that the global pressure formulation includes the following function
referred to as a capillary term

γ(s) =
Mw(s)Mg(s)

M(s)
p′c(s) ≥ 0. (3.2.9)

Now, we define ξ as a primitive of the function γ, which is known under the name of Kirchoff
transform

ξ(s) =

∫ s

0
γ(u) du.

In case of a regular function γ, we obtain

∇ξ(s) =
Mw(s)Mg(s)

M(s)
∇pc(s).

It follows from the definitions of the global pressure and the Kirchoff transform ξ that

Mg(s)∇pg = Mg(s)∇p+∇ξ(s), (3.2.10)

Mw(s)∇pw = Mw(s)∇p−∇ξ(s). (3.2.11)

Hence, the relations (3.2.10) and (3.2.11) show the strong dependency of these ”new” variables
on the old ones. At the continuous level, to estimate the gradient of the pressures pg and pw we
only need to control the gradient of the global pressure p and that of the function ξ.

We stress that the water phase is incompressible, meaning ρw is constant while the gas den-
sity is merely depending on the global pressure, i.e. ρg(pg) = ρ(p), we refer to [47, 83] for more
details. We furthermore consider that sI = 0, meaning that no injection of gas is taken into account.

Substituting the previous relationships into the system (3.2.1)-(3.2.2) leads to the global pressure
formulation

∂t(φρ(p)s)− div
(
ρ(p)Mg(s)Λ∇p

)
− div

(
ρ(p)Λ∇ξ(s)

)
+ div

(
ρ2(p)Mg(s)~g

)
+ ρ(p)sqP = 0, (3.2.12)

∂t(φs) + div
(
Mw(s)Λ∇p

)
− div

(
Λ∇ξ(s)

)
− div

(
ρwMw(s)Λ~g

)
+ sqP = qP − qI , (3.2.13)

where, henceforth the main unknowns are the global pressure p and the gas saturation s. For
numerical analysis reasons, we would rather consider this system otherwise. Precisely, the present
form of the system yields no energy estimates, especially for the global pressure. So the idea is to
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take into account the nondegeneracy of the total mobility and the fraction flow formulation [26].
This formulation reads

∂t(φρ(p)s)− div
(
ρ(p)M(s)fg(s)Λ∇p

)
− div

(
ρ(p)Λ∇ξ(s)

)
+ div

(
ρ2(p)Mg(s)~g

)
+ ρ(p)sqP = 0 (3.2.14)

∂t(φs) + div
(
M(s)fw(s)Λ∇p

)
− div

(
Λ∇ξ(s)

)
− div

(
ρwMw(s)Λ~g

)
+ sqP = qP − qI , (3.2.15)

where fα is the fractional flow of the α-phase defined by

fα(s) =
Mα(s)

M(s)
, α = g, w.

We further add to the system (3.2.14)-(3.2.15) some mixed boundary conditions of Dirichlet-
Neumann type and initial conditions. The boundary ∂Ω of Ω comprises two parts ΓD and ΓN
whose measures are positive. On ΓD, we impose a homogeneous Dirichlet condition and on ΓN we
consider a homogeneous Neumann condition as follows

s(x, t) = 0, on ΓD × (0,T)

p(x, t) = 0, on ΓD × (0,T)

Vw · n = Vg · n = 0 on ΓN × (0,T),

(3.2.16)

where n is the outward unit normal vector to ΓN . Besides, the initial conditions are given by

p(x, 0) = p0(x) in Ω, (3.2.17)

s(x, 0) = s0(x) in Ω. (3.2.18)

Following we list the main assumptions on the physical data.

(H1) The porosity φ is a L∞(Ω) function such that there exist two positive constants
φ0 and φ1: φ0 ≤ φ(x) ≤ φ1 a.e. x ∈ Ω.

(H2) The gas (resp. water) mobility Mg (resp. Mw) is a nondecreasing (resp. nonincreasing)
Lipschitz continuous function from [0, 1] to R with Mg(s) = 0 (resp. Mw(s) = 0) for every
s ∈] − ∞, 0] (resp. [1,+∞[). Moreover, there exists a positive constant m0 such that, for
every s ∈ [0, 1] :

0 < m0 ≤M(s) = Mg(s) +Mw(s). (3.2.19)

Consequently, the fractional flows verify the same properties as the mobilities. In addition,
fg(s) + fw(s) = 1.

(H3) The absolute permeability Λ is a map from Ω to Sd(R), where Sd(R) is the space of d-square
symmetric matrices. It is also is assumed to be in L∞(Ω)d×d. Furthermore, Λ verifies the
following inequality

Λ|z|2 ≤ Λ(x)z · z ≤ Λ |z|2 , for all z ∈ Rd and a.e. x ∈ Ω

for some positive constants Λ and Λ.
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(H4) The function γ belongs to C0([0, 1],R+) with{
0 < γ(s) < 1, for 0 < s < 1,

γ(0) = γ(1) = 0.

We furthermore assume that ξ−1 is a θ-Hölder function with θ ∈ (0, 1] on [0, ξ(1)], which
means that there exists a positive constant Lξ such that for every a, b ∈ [0, ξ(1)], we have
|ξ−1(a)− ξ−1(b)| ≤ L

ξ
|a− b|θ. This inequality will play a fundamental role in the analysis of

the nonlinear CVFE scheme.

(H5) The functions qI and qP are in L2(QT) such that qP (x, t), qI(x, t) ≥ 0 a.e. (x, t) ∈ QT.

(H6) The density ρ belongs to C1(R,R), is strictly increasing, and there exist two constants ρ0, ρ1

such that 0 < ρ0 ≤ ρ(p) ≤ ρ1.

We next define the natural space where weak solutions are sought

H1
ΓD

(Ω) = {u ∈ H1(Ω) / u = 0 on ΓD}.

H1
ΓD

(Ω) is a Hilbert space endowed with the norm

||u||H1
ΓD

(Ω) = ||∇u||(L2(Ω))d .

We next give the definition of weak solutions to the continuous problem (3.2.14)-(3.2.18). In the
rest of this chapter, we assume that the hypothesis (H1)-(H6) are fulfilled.

Definition 3.2.1. (Weak solution) Let p0 be a L2(Ω)-function and s0 be a L∞(Ω)-function verifying
0 ≤ s0(x) ≤ 1 a.e. x ∈ Ω. Then, (p, s) is a weak solution to the problem (3.2.14)-(3.2.18) provided

0 ≤ s(x, t) ≤ 1 a.e. (x, t) ∈ QT,

ξ(s) ∈ L2(0,T;H1
ΓD

(Ω)),

p ∈ L2(0,T;H1
ΓD

(Ω)),

and such that for every ϕ,ψ ∈ C∞c (Ω× [0,T)), one has

−
∫
QT

φρ(p)s∂tϕdx dt−
∫

Ω
φ(x)ρ(p0)s0ϕ(x, 0) dx

+

∫
QT

ρ(p)M(s)fg(s)Λ∇p · ∇ϕdx dt+

∫
QT

ρ(p)Λ∇ξ(s) · ∇ϕdx dt

−
∫
QT

Λρ2(p)Mg(s)Λ~g · ∇ϕdx dt+

∫
QT

ρ(p)sqPϕdx dt = 0, (3.2.20)

−
∫
QT

φs∂tψ dx dt−
∫

Ω
φ(x)s0ψ(x, 0) dx−

∫
QT

M(s)fw(s)Λ∇p · ∇ψ dx dt

+

∫
QT

Λ∇ξ(s) · ∇ψ dx dt+

∫
QT

ρwMw(s)Λ~g · ∇ψ dx dt

+

∫
QT

sqPψ dx dt =

∫
QT

(qP − qI)ψ dx dt. (3.2.21)

For the existence of a weak solution to the problem (3.2.20)-(3.2.21), we refer to this paper [84].
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3.3 CVFE Mesh and discrete functions

In this section, we present two different types of meshes, a primal mesh and a dual barycentric
mesh. We also give a discretization of the time interval. In addition, we define the discrete spaces
and functions. To streamline the presentation, we restrict ourselves to the two space dimensions
case.

A primal mesh T is a conforming triangulation, of Ω in the sense of the finite element method;
that is, the intersection of two triangles is either an edge, a vertex or the empty set. The set of
vertices of T (resp. T ∈ T ) is denoted by V (resp. VT ). We designate by E (resp. ET ) the set of
all edges of T (resp. T ). For a triangle T ∈ T , we define xT as the barycenter, hT = diam(T ) the
diameter, and |T | the Lebesgue measure of T . Let %T be the diameter of the largest ball inscribed
in T . The size and regularity of the triangulation T are respectively denoted by h and θT . They
are defined to be

h := max
T∈T

(hT ), θT := max
T∈T

hT
%T
.

A dual or a barycentric mesh is constructed in the following way. For each vertex K ∈ V we
associate a unique control volume, denoted ωK , of the dual mesh. We also denote by VD the set
of these dual control volumes, then Ω = ∪K∈VDωK . Each dual cell ωK is obtained by connecting
the barycenter of every triangle whose vertex is K with the midpoint of the edges having K as an
endpoint. For two vertices K,L ∈ VT , we denote by σTKL the dual interface contained in T and
intersects with the segment [KL] whose extremities are K and L. By |σTKL|, we mean the length
of the interface σTKL and by nTσKL the unit normal vector to σTKL pointing from K to L. Next, for
K ∈ V, |ωK | is the d dimensional Lebesgue measure of ωK . We additionally designate by KT the
set of all triangles sharing the vertex K.

We assume that the primal mesh is regular in the sense that there exists a constant c0 such
that for any sequence of discretizations {Tm}m∈N we have

θTm ≤ c0 . (3.3.1)

Remark 3.3.1. It is worth noticing that the above discretizations of Ω are still valid and can be
obtained in a similar way in case of three dimensions. Indeed, one should perform a tetrahedral mesh
with slight changes in the terminology where for instance the triangles are substituted by tetrahedra.
Hence, edges and their midpoints are respectively replaced by faces and their barycenters. Also, this
3D partition of Ω verifies the shape-regularity (3.3.1) condition according to [64].

A time discretization of the interval (0,T) is given by a strictly increasing sequence of real
numbers (tn)n=0,··· ,N with

t0 = 0 < t1 < · · · < tN−1 < tN = T.

We designate by δtn = tn+1 − tn, for n = 0, . . . , N − 1 and δt = max
n=0,...,N

δtn. Without loss of

generality, we can assume that the time step is uniform.

We now present the approximation spaces, where the discrete unknowns lie in. We also describe
the construction of the discrete functions. To do that, let Xh be a finite dimensional space of
piecewise linear functions on the primal mesh and Wh the space of piecewise constant functions on
the dual mesh. One thus has

Xh = {ϕ ∈ C0(Ω), ϕ|T ∈ P1,∀T ∈ T } ⊂ H1(Ω). (3.3.2)
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Figure 3.1: Illustration of the primal and the dual meshes.

Let us consider

X0
h = {ϕ ∈ Xh, ϕ(xK) = 0,∀K ∈ V, xK ∈ ΓD}. (3.3.3)

Assuming that the extremities of the Dirichlet boundary ΓD belong to V as depicted in Fig. 3.1,
one gets directly the inclusion X0

h ⊂ H1
ΓD

(Ω). The space Xh possesses a canonical basis of shape
functions (ϕK)K∈V with ϕK(xL) = δKL, where δKL is the Kronecker symbol. Furthermore, it is
endowed by the following semi-norm

||uh||2Xh :=

∫
Ω
|∇uh|2 dx, ∀uh ∈ Xh,

which turns out to be a norm on X0
h. Moreover, we recall that

∑
K∈V

ϕK = 1,
∑
K∈V
∇ϕK = 0 and ∇ϕK|T = −

∣∣σTK∣∣
2 |T |

nσTK
,

where σTK is the opposite edge of the vertex K contained in T and nσTK
is the outward normal to

this edge.

For n ∈ {0, . . . , N} and K ∈ V we take unK an approximation of u(xK , t
n). Thus, the discrete

unknowns will be denoted by {unK}{K∈V, n=0,...,N}.

Definition 3.3.1. (Discrete functions)
Consider discrete unknowns {unK}{K∈V, n=0,...,N}. We define two approximate solutions as follows:

(i) A finite volume solution ũh,δt is a piecewise constant function defined almost everywhere in⋃
K∈V

ω̊K × (0,T) with

ũh,δt(x, 0) =
∑
K∈V

u0
Kχω̊K (x), ∀x ∈

⋃
K∈V

ω̊K ,

ũh,δt(x, t) =

N−1∑
n=0

∑
K∈V

un+1
K χω̊K×(tn,tn+1](x, t), ∀(x, t) ∈

⋃
K∈V

ω̊K × (0,T).
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(ii) A finite element solution uh,δt is a continuous function in space, which is P1 per triangle, and
piecewise constant in time, such that :

uh,δt(x, 0) =
∑
K∈V

u0
KϕK(x), ∀x ∈ Ω,

uh,δt(x, t) =
N−1∑
n=0

∑
K∈V

un+1
K ϕK(x)χ(tn,tn+1](t), ∀ (x, t) ∈ Ω× (0,T).

To discretize nonlinear functions, we utilize an interpolation approximation. So, let F be a
nonlinear function, we mean by F (ũh,δt) the finite volume reconstruction defined almost everywhere,
and by F (uh,δt) the finite element reconstruction i.e.:

F (ũh,δt)(x, 0) =
∑
K∈V

F (u0
K)χω̊K (x), ∀x ∈

⋃
K∈V

ω̊K ,

F (ũh,δt)(x, t) =
N−1∑
n=0

∑
K∈V

F (un+1
K )χω̊K×(tn,tn+1](x, t), ∀(x, t) ∈

⋃
K∈V

ω̊K × (0,T),

F (uh,δt)(x, 0) =
∑
K∈V

F (u0
K)ϕK(x), ∀x ∈ Ω,

F (uh,δt)(x, t) =
N−1∑
n=0

∑
K∈V

F (un+1
K )ϕK(x)χ(tn,tn+1](t), ∀ (x, t) ∈ Ω× (0,T).

3.4 The nonlinear CVFE scheme

In the proposed numerical scheme, we basically carry out a finite volume discretization where the
discrete gradient is approximated using a P1-finite element approximation. In what follows, we
sketch out how we obtain the discretization of the gas equation (3.2.14) and in an analogous way
we get that of the water equation (3.2.15).

Without loss of generality, we neglect the gravity effects; that is ~g ≡ 0. Then, integrating
(3.2.14) on the time-space cell (tn, tn+1] × ωK , for all n = 0, . . . , N − 1 and K ∈ V, and applying
the Green-Gauss formula yields∫

ωK

φ(x)
(
ρ(p(x, tn+1))s(x, tn+1)− ρ(p(x, tn))s(x, tn)

)
dx

−
∑
T∈KT

∑
σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p)M(s)fg(s)Λ∇p · nσK dσ dt

−
∑
T∈KT

∑
σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p)Λ∇ξ(s) · nσK dσ dt

+

∫ tn+1

tn

∫
ωK

ρ(p)sqP dx dt = 0, (3.4.1)

where EK stands for the set of all edges of the dual control volume associated to K and nσK denotes
the outward unit normal vector to σ and dσ is the d−1 dimensional Lebesgue measure on σ. Next,
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the evolution term is approximated by Euler’s scheme∫
ωK

φ(x)
(
ρ(p(x, tn+1))s(x, tn+1)− ρ(p(x, tn))s(x, tn)

)
dx

≈
∫
ωK

φ(x)
(
ρ(p̃

h,δt
(x, tn+1))s̃

h,δt
(x, tn+1)− ρ(p̃

h,δt
(x, tn))s̃

h,δt
(x, tn)

)
dx,

= |ωK |φK
(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
, (3.4.2)

where φK is the mean value of the porosity function φ over ωK . Let us now focus on the discretiza-
tion of the elliptic term. In the same spirit of [42, 40], this term is approximated as follows∑

σ∈EK∩T

∫ tn+1

tn

∫
σ
ρ(p)Λ∇ξ(s) · nσK dσ ≈ δt

∑
L∈VT \{K}

ρn+1
KL γ

n+1
KL ΛTKL(sn+1

L − sn+1
K ), (3.4.3)

where ρn+1
KL , γn+1

KL and ΛTKL are respectively given by

1

ρn+1
KL

:=


1

pn+1
K − pn+1

L

∫ pn+1
K

pn+1
L

1

ρ(z)
dz, if pn+1

L 6= pn+1
K

1

ρ(pn+1
K )

, otherwise

, (3.4.4)

γn+1
KL :=


max
s∈In+1

KL

γ(s) if ΛTKL ≥ 0

min
s∈In+1

KL

γ(s) otherwise
, (3.4.5)

with
In+1
KL :=

[
min(sn+1

K , sn+1
L ),max(sn+1

K , sn+1
L )

]
,

and 
ΛTKL := −

∫
T

Λ(x)∇ϕK · ∇ϕL dx = ΛTLK , for K 6= L,

ΛTKK :=
∑

L∈VT \{K}
ΛTKL.

(3.4.6)

We point out that the prominence of the choice of ρn+1
KL in (3.4.4) is exhibited in the following

identity

(pn+1
K − pn+1

L ) = ρn+1
KL

(
g(pn+1

K )− g(pn+1
L )

)
, with g(p) =

∫ p

0

1

ρ(z)
dz. (3.4.7)

One also notices that g is a concave function because ρ is an increasing function. Moreover, the
Godunov scheme in (3.4.5) is inspired from [42] and [40] which has been applied to degenerate
parabolic equations.

Concerning the convective term, we utilize an upstream value of the fractional flow functionfg
on the interface σTKL with respect to the sign of ΛTKL(pn+1

L − pn+1
K ). We further use a centered

approximation for the total mobility on each triangle T whose vertex is K. Consequently, we get

−
∑

σ∈EK∩T

∫
σ

[
Λρ(p)M(s)fg(s)∇p

]
· nσK dσ

≈
∑

L∈VT \{K}

ρn+1
KLM

n+1
T Gg

(
sn+1
K , sn+1

L ; ΛTKLδ
n+1
KL p

)
, (3.4.8)
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where, we hereafter denote δn+1
KL p = pn+1

L − pn+1
K , Gg is a numerical convection flux function.

Moreover, Mn+1
T is the approximate value of the total mobility

Mn+1
T =

1

#VT

( ∑
K∈VT

M(sn+1
K )

)
. (3.4.9)

The numerical convection flux functions {Gα}α=g,w, whose arguments are (a, b, c) ∈ R3, are
defined in the following way. Let gw(a, b) be any monotone numerical flux for fw, that is:

(C1) gw(a, b) is nondecreasing with respect to a and nonincreasing with respect to b,

(C2) gw(a, a) = fw(a),

(C3) gw is Lipschitz continuous with respect to a and b,

then one defines

Gw(a, b, c) = gw(a, b)c+ − gw(b, a)c−, (3.4.10)

Gg(a, b, c) = Gw(a, b, c)− c, (3.4.11)

where c+ = max(c, 0) and c− = −min(c, 0). This definition of Gg is required to the coupled
nonlinear system and plays a major role to obtain an estimate on the discrete gradient of the global
pressure.

Remark 3.4.1. In our context, one possibility to construct the numerical flux gw is to consider
the nondecreasing part fw↑ and the nonincreasing part fw↓ of the fractional flow fw such that

gw(a, b) = fw↑(a) + fw↓(b).

We know that fw is a nonincreasing function. Then, one gets

gw(a, b) = fw(b). (3.4.12)

Lemma 3.4.1. According to assumption (H2) together with (3.4.12), the numerical flux function
gw verifies the properties (C1)-(C3).

Finally, the source terms are approximated using the mean values of the functions ρ(p), s, qP

and qI .

Gathering the approximations (3.4.2), (3.4.3), (3.4.8) leads to the control volume finite element
scheme for the gas equation (3.2.14). In a similar way, we obtain the discretization of the water
equation (3.2.15). Then the final scheme reads

p0
K =

1

|ωK |

∫
ωK

p0(x) dx, ∀K ∈ V, (3.4.13)

s0
K =

1

|ωK |

∫
ωK

s0(x) dx, ∀K ∈ V. (3.4.14)

φK

(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KLM

n+1
T Gg(s

n+1
K , sn+1

L ; ΛTKL δ
n+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL γ

n+1
KL ΛTKL(sn+1

L − sn+1
K )

+ δtρ(pn+1
K )sn+1

K qn+1
P,K = 0, (3.4.15)
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φK

(
sn+1
K − snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

Mn+1
T Gw(sn+1

K , sn+1
L ; ΛTKL δ

n+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

γn+1
KL ΛTKL(sn+1

L − sn+1
K )

+ δt(sn+1
K − 1)qn+1

P,K = −δtqn+1
I,K , ∀n = 0, . . . , N − 1, ∀K ∈ V, xK /∈ ΓD.

(3.4.16)

Remark 3.4.2. Taking into account gravitational effects (~g 6= 0), a new term denoted by FgK
would be added to the first equation (3.4.15) of the scheme. This term is the approximation of the

integral

∫
∂K

ρ2
g(p)Mg(s)Λ~g · n dσ. Using the upwind scheme, it is given by

FgK =
δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

∣∣σTKL∣∣(ρn+1
KL

)2(
Mg(s

n+1
K )ZTKL −Mg(s

n+1
L )ZTLK

)
,

where ZTKL =
(

Λ~g · nTKL
)+

=
(

Λ~g · nTLK
)−

. In the same way, we add the following expression,

denoted FwK , to the equation (3.4.16)

FwK =
δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

∣∣σTKL∣∣ρw(Mw(sn+1
L )ZTKL −Mw(sn+1

K )ZTLK

)
.

Thanks to the monotonicity of the mobilities, the functions FgK and FwK are nondecreasing with
respect to sn+1

K and nonincreasing with respect to sn+1
L . In addition, they form numerical fluxes

which are consistent and conservative. As a consequence, the convergence analysis remains valid.

3.5 Preliminary properties

Throughout we will need these essential properties many times. Their proofs can be found in
[40, 42].

Lemma 3.5.1. Let ψT =
∑
K∈V

ψKϕK ∈ Xh, then there exists a constant C0 = C0(Λ, θT ) such that∑
T∈T

∑
σTKL∈ET

∣∣ΛTKL∣∣ (ψK − ψL)2 ≤ C0

∫
Ω

Λ∇ψT · ∇ψT dx. (3.5.1)

Lemma 3.5.2. (Integration by parts) For every uh, vh ∈ Xh, there holds∫
Ω

Λ∇uh · ∇vh dx =
∑
T∈T

∑
σTKL∈ET

ΛTKL(uK − uL)(vK − vL). (3.5.2)

Let uT ∈ Xh and consider the piecewise constant functions uT , uT : Ω −→ R defined by

uT (x) = uT = sup
x∈T

uT (x), if x ∈ T ∈ T ,

uT (x) = uT = inf
x∈T

uT (x), if x ∈ T ∈ T .
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Lemma 3.5.3. There exists an absolute constant c > 0 such that∫
Ω
|uT (x)− uT (x)|2 dx ≤ ch2

∫
Ω
|∇uT (x)|2 dx,

where c = 243
2π2 .

Remark 3.5.1. The previous lemma holds also in L1(Ω):∫
Ω
|uT (x)− uT (x)|dx ≤ 27

2
h

∫
Ω
|∇uT (x)| dx.

Lemma 3.5.4. For (uK)K∈V ∈ R#V , let uT and uM be respectively the piecewise linear and the
piecewise constant reconstructions. Then∫

T
|uT (x)− uM(x)|2 dx ≤ ch2||∇uT ||2L2(Ω)d ,

where c is the same constant as in Lemma 3.5.3.

3.6 Maximum principle and energy estimates

Our goal in this section is to prove the nonnegativity of the approximate saturation and control
the gradient of the global pressure p and that of ξ(s). The importance of these estimates will be
illustrated below, when we show the convergence of the discrete solutions.

Lemma 3.6.1. (Maximum principle)
For n = 0, . . . , N − 1, let (pn+1

K , sn+1
K )K∈V be a solution to the combined scheme (3.4.13)-(3.4.16).

If (s0
K)K∈V is in [0, 1] then (s̃h,δt) remains also in the interval [0, 1].

Proof. The claim is performed by induction on n. The property is indeed trivial for n = 0. We now
assume that the sequence (skK)K∈V ⊂ [0, 1] for k ≤ n and we prove that the proposition is true for
k = n + 1. For this, let us consider K ∈ V such that sn+1

K = min{sn+1
L }L∈V . Multiplying (3.4.15)

by −(sn+1
K )− gives

− φK
(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
(sn+1
K )−

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KLM

n+1
T Gg(s

n+1
K , sn+1

L ; ΛTKL δ
n+1
KL p)(s

n+1
K )−

+
δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL γ

n+1
KL ΛTKL(sn+1

L − sn+1
K )(sn+1

K )−

− δtρ(pn+1
K )sn+1

K qn+1
P,K (sn+1

K )− = 0. (3.6.1)

Notice that sn+1
L ≥ sn+1

K , Gg is a nonincreasing function with respect to the sn+1
L and Gg is

consistent i.e. Gg(a, a, c) = −fg(a)c. Thus

Gg(s
n+1
K , sn+1

L ; ΛTKL δ
n+1
KL p)(s

n+1
K )− ≤ Gg(sn+1

K , sn+1
K ; ΛTKLδ

n+1
KL p)(s

n+1
K )−

= −fg(sn+1
K )ΛTKLδ

n+1
KL p(s

n+1
K )− = 0,
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where we have used the fact that fg is extended by zero whenever s ≤ 0. Hence, the second term
in the left hand side of the equation (3.6.1) is nonnegative. Next, thanks to the definition of γn+1

KL

(3.4.5), and to the fact that γ(s) = 0 for any s ≤ 0, we deduce that

γn+1
KL (sn+1

K )− = 0, if ΛTKL ≤ 0.

Indeed, if sn+1
K ≥ 0 then (sn+1

K )− = 0 which gives γn+1
KL (sn+1

K )− = 0. Conversely, if sn+1
K < 0 then

we get γn+1
KL = min

s∈In+1
KL

γ(s) = 0 since ΛTKL ≤ 0. Consequently

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKLρ
n+1
KL γ

n+1
KL (sn+1

L − sn+1
K )(sn+1

K )−

=
δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

(ΛKL)+ρn+1
KL γ

n+1
KL (sn+1

L − sn+1
K )(sn+1

K )− ≥ 0. (3.6.2)

We observe that the source term is nonnegative. Due to the induction assumption on snK we find

−φK
(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
(sn+1
K )−

= φK

(
ρ(pn+1

K )((sn+1
K )−)2 + ρ(pnK)snK(sn+1

K )−
)
≤ 0. (3.6.3)

We then infer that (sn+1
K )− = 0, which implies that sn+1

K ≥ 0.

In order to prove that sn+1
K ≤ 1 for every n = 0, . . . , N − 1 and K ∈ V, we similarly argue by

induction as above. So, let ωK be a dual control volume such that sn+1
K = max{sn+1

L }L∈V and let
us check that sn+1

K ≤ 1. To do that, we multiply the equation (3.4.16) by (sn+1
K − 1)+

φK

(
sn+1
K − snK

)
(sn+1
K − 1)+

+
δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

Mn+1
T Gw(sn+1

K , sn+1
L ; ΛTKL δ

n+1
KL p)(s

n+1
K − 1)+

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ΛTKLγ
n+1
KL (sn+1

L − sn+1
K )(sn+1

K − 1)+

+ δt(sn+1
K − 1)qn+1

P,K (sn+1
K − 1)+ = −δtqn+1

I,K (sn+1
K − 1)+. (3.6.4)

We know that Gw is nonincreasing with respect to the second variable and that is consistent. Thus
we have

Gw(sn+1
K , sn+1

L ; ΛTKL δ
n+1
KL p)(s

n+1
K − 1)+ ≥ Gw(sn+1

K , sn+1
K ; ΛTKLδ

n+1
KL p)(s

n+1
K − 1)+

= fw(sn+1
K )ΛTKLδ

n+1
KL p(s

n+1
K − 1)+ = 0,

since the fractional flow fw is extended by 0 for s ≥ 1. Next, according to the definition of (3.4.5)
and the fact that γ is extended by zero whenever s ≥ 1, we write

γn+1
KL (sn+1

K − 1)+ = 0, if ΛTKL ≤ 0. (3.6.5)

This yields ∑
T∈KT

∑
L∈VT \{K}

ΛTKLγ
n+1
KL (sn+1

L − sn+1
K )(sn+1

K − 1)+

=
∑
T∈KT

∑
L∈VT \{K}

(ΛKL)+γn+1
KL (sn+1

L − sn+1
K )(sn+1

K − 1)+ ≤ 0.
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One notices that δt(sn+1
K −1)qn+1

P,K (sn+1
K −1)+ = δt

(
(sn+1
K −1)+

)2
qn+1
P,K and that the right hand side

of (3.6.4) is nonpositive. As a consequence

φK

(
sn+1
K − snK

)
(sn+1
K − 1)+ ≤ 0.

Combining this inequality with(
sn+1
K − 1

)
= (sn+1

K − 1)+ − (sn+1
K − 1)−,

we find that (sn+1
K − 1)+ = 0. As a result

sn+1
L ≤ sn+1

K ≤ 1, ∀ n = 0, . . . , N − 1, and ∀L ∈ V.

This concludes the proof.

In the sequel, we introduce (Ci)i = 1, · · · as a family of values depending only on the data
specified in Hypotheses (H1)− (H6) and they are independent of the mesh and the time steps. Our
concern now is to overestimate the discrete gradient of the global pressure p and that of ξ. We also
consider the fact that 0 ≤ s0(x) ≤ 0 a.e. x ∈ Ω.

Proposition 3.6.1. (A priori estimates)
Under hypotheses (H1)-(H6) and the regularity assumption on the mesh (3.3.1), we consider (pn+1

K , sn+1
K )K∈V ,

for each n = 0, . . . , N − 1, a solution to the combined scheme (3.4.13)-(3.4.16). Then, there exist
two constants Cp and Cξ depending only on Ω, T , p0, s0, m0, qP , qI , Λ, θT such that∑

K∈V
|ωK |φK

(
sNKH(pNK)− s0

KH(p0
K)
)

+
m0

2

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL(pn+1
K − pn+1

L )2 ≤ Cp, (3.6.6)

and ∑
K∈V
|ωK |φK

(
B(sNK)−B(s0

K)
)

+
1

2

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL(ξ(sn+1
K )− ξ(sn+1

L ))2 ≤ Cξ, (3.6.7)

where H(p) = ρ(p)g(p)− p with g′(p) =
1

ρ(p)
, and B′(s) = ξ(s).

Proof. We respectively multiply the gas equation (3.4.15) and the water equation (3.4.16) of the
combined scheme by |ωK | g(pn+1

K ), − |ωK | pn+1
K . Adding them together and summing over K and

n, leads to
A1 +A2 +A3 +A4 = 0,
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where

A1 =

N−1∑
n=0

∑
K∈V
|ωK |φK

(
(ρ(pn+1

K )sn+1
K − ρ(pnK)snK)g(pn+1

K )− (sn+1
K − snK)pn+1

K

)
,

A2 =
N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

(
ρn+1
KLM

n+1
T Gg(s

n+1
K , sn+1

L ; ΛTKL δ
n+1
KL p)g(pn+1

K )−

Mn+1
T Gw(sn+1

K , sn+1
L ; ΛTKL δ

n+1
KL p)p

n+1
K

)
,

A3 = −
N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ΛTKL

(
ρn+1
KL γ

n+1
KL (sn+1

L − sn+1
K )g(pn+1

K )−

γn+1
KL (sn+1

L − sn+1
K )pn+1

K

)
,

A4 =

N−1∑
n=0

δt
∑
K∈V
|ωK |

(
ρ(pn+1

K )sn+1
K qn+1

P,K

)
g(pn+1

K )−
(

(sn+1
K − 1)qn+1

P,K + qn+1
I,K

)
pn+1
K .

Using the fact that g is concave, we obtain, see [23, 114] for more details, that

(ρ(p)s− ρ(p∗)s∗)g(p)− (s− s∗)p ≥ H(p)s−H(p∗)s∗, ∀s, s∗ ∈ [0, 1]. (3.6.8)

It follows from this inequality that A1 can be underestimated with a telescopic series. Consequently∑
K∈V
|ωK |

(
H(pNK)sNK −H(p0

K)s0
K

)
≤ A1. (3.6.9)

Now we are interested in seeking a lower bound of A2. First of all, we rearrange the summation by
edges, we consider the relationship (3.4.7) and we use the inequality (3.4.11) Therefore

A2 =

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

Mn+1
T

(
ρn+1
KL Gg(s

n+1
K , sn+1

L ; ΛTKL δ
n+1
KL p)(g(pn+1

K )− g(pn+1
L ))−

Gw(sn+1
K , sn+1

L ; ΛTKL δ
n+1
KL p)(p

n+1
K − pn+1

L )
)
,

=
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

Mn+1
T

(
Gw(sn+1

K , sn+1
L ; ΛTKL δ

n+1
KL p)

−Gg(sn+1
K , sn+1

L ; ΛTKL δ
n+1
KL p)

)
(pn+1
L − pn+1

K ),

=

N−1∑
n=0

δt
∑
T∈T

Mn+1
T

∑
σTKL∈ET

ΛTKL(pn+1
L − pn+1

K )2.

︸ ︷︷ ︸
>=0

As a consequence of (3.2.19)

m0

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL(pn+1
L − pn+1

K )2 ≤ A2. (3.6.10)
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Using similar arguments for A3, we can easily check that

A3 =
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKLγ
n+1
KL

(
sn+1
K − sn+1

L

)(
ρn+1
KL

(
g(pn+1

K )− g(pn+1
L )

)
− (pn+1

K − pn+1
L )

)
.

It follows from the expression of the coefficient ρn+1
KL defined in (3.4.7) that

A3 = 0. (3.6.11)

Owing to the fact that g is sub-linear, i.e. |g(p)| ≤ Cg|p|, and that ρ is bounded, we deduce

|A4| ≤ C1

N−1∑
n=0

δt
∑
K∈V
|ωK |(qn+1

P,K + qn+1
I,K )|pn+1

K |.

The Cauchy-Schwarz inequality entails

|A4| ≤ C1

(N−1∑
n=0

δt
∑
K∈V
|ωK ||qn+1

P,K + qn+1
I,K |

2
) 1

2
(N−1∑
n=0

δt
∑
K∈V
|ωK ||pn+1

K |2
) 1

2
,

≤ C1||qP + qI ||L2(QT)

(N−1∑
n=0

δt||p̃n+1
h ||2L2(Ω)

) 1
2
. (3.6.12)

An application of the Poincaré inequality [29] yields

|A4| ≤ C2

(N−1∑
n=0

δt||pn+1
h ||2Xh

) 1
2
,

where C2 is also depending on ||qP + qI ||L2(QT). We now combine the Young inequality (ab ≤

εa2 + b2

4ε), with ε =
Λm0

2
, and the ellipticity of the tensor Λ to obtain

|A4| ≤ C3 +
Λm0

2

(N−1∑
n=0

δt||∇pn+1
h ||2

L2(Ω)2

)
,

≤ C3 +
m0

2

(∫
QT

Λ∇ph,δt · ∇ph,δt dx dt
)
. (3.6.13)

Finally, the discrete integration by parts formula (3.5.2) leads to

|A4| ≤ C3 +
m0

2

(N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL(pn+1
L − pn+1

K )2
)
. (3.6.14)

Thanks to the relations (3.6.9)-(3.6.11) and (3.6.14), we achieve the proof of the first estimation
(3.6.6).

Let us now turn our attention to overestimate the discrete gradient of the capillary term.
For this, we routinely multiply the equation (3.4.16) by ξ(sn+1

K ) and we sum on all K ∈ V and
n = 0, · · · , N − 1. Therefore

D1 +D2 +D3 +D4 = 0,
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where

D1 =

N−1∑
n=0

∑
K∈V
|ωK |φK(sn+1

K − snK)ξ(sn+1
K ),

D2 =

N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

Mn+1
T Gw

(
sn+1
K , sn+1

L ; ΛTKLδ
n+1
KL p

)
ξ(sn+1

K ),

D3 = −
N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ΛTKLγ
n+1
KL (sn+1

L − sn+1
K )ξ(sn+1

K ),

D4 =

N−1∑
n=0

δt
∑
K∈V
|ωK |

(
(sn+1
K − 1)qn+1

P,K + qn+1
I,K

)
ξ(sn+1

K ).

Consider B a primitive of the function ξ, i.e, B′(s) = ξ(s), for every s ∈ [0, 1]. Observe that

B(b)−B(a) =

∫ b

a
ξ(s) ds = ξ(b)(b− a)−

∫ b

a
γ(s)(s− a) ds︸ ︷︷ ︸

≥0

.

Thereby
(a− b)ξ(a) ≥ B(a)−B(b), ∀a, b ∈ [0, 1].

This inequality gives

D1 =

N−1∑
n=0

∑
K∈V
|ωK |φK(sn+1

K − snK)ξ(sn+1
K ) ≥

∑
K∈V
|ωK |φK

(
B(sNK)−B(s0

K)
)
. (3.6.15)

Reorganizing the expression of D2 by edges, we get

D2 = −
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

Mn+1
T Gw

(
sn+1
K , sn+1

L ; ΛTKLδ
n+1
KL p

)
(ξ(sn+1

L )− ξ(sn+1
K )).

An application of the Young inequality (ab ≤ εa2

2
+
b2

2ε
), with ε = C0 (this constant figures in

Lemma 3.5.1), yields

|D2| ≤ C5

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

|ΛTKL||pn+1
K − pn+1

L ||ξ(sn+1
L )− ξ(sn+1

K )|,

≤ C6

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

|ΛTKL|
(
pn+1
K − pn+1

L

)2

+
1

C0

1

2

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

|ΛTKL|
(
ξ(sn+1

L )− ξ(sn+1
K )

)2
.
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According to Lemma 3.5.1 and relation (3.5.2), we get

|D2| ≤ C6

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL(pn+1
K − pn+1

L )2

+
1

2

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL(ξ(sn+1
K )− ξ(sn+1

L ))2.

In virtue of the estimate (3.6.6), we obtain

|D2| ≤ C7 +
1

2

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL(ξ(sn+1
K )− ξ(sn+1

L ))2. (3.6.16)

Similarly, we reorganize the summation D3 by interfaces. We thereby discover

D3 =
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKLγ
n+1
KL

(
sn+1
L − snK

)(
ξ(sn+1

L )− ξ(sn+1
K )

)
.

The regularity of ξ ensures the existence of s∗ ∈ In+1
KL = [min(sn+1

K , sn+1
L ),max(sn+1

K , sn+1
L )] such

that
ξ(sn+1

L )− ξ(sn+1
K ) = γ(s∗)(sn+1

L − sn+1
K ).

Now if ΛTKL ≥ 0, we get ΛTKLγ(s∗) ≤ ΛTKLγ
n+1
KL since γn+1

KL is the maximum of γ on In+1
KL .

Otherwise, ΛTKL ≤ 0, ΛTKLγ(s∗) ≤ ΛTKLγ
n+1
KL , since the minimum of γ is γn+1

KL . In both cases, we
have ΛTKLγ(s∗) ≤ ΛTKLγ

n+1
KL . Next, ξ is a nondecreasing function, which yields the nonnegativity of

the term
(
sn+1
L − snK

)(
ξ(sn+1

L )− ξ(sn+1
K )

)
. Thus

D3 ≥
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKLγ(s∗)
(
sn+1
L − snK

)(
ξ(sn+1

L )− ξ(sn+1
K )

)
,

=

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL

(
ξ(sn+1

L )− ξ(sn+1
K )

)2
. (3.6.17)

The term D4 can be treated as A4. As a result, we check in a straightforward way that

|D4| ≤ C8 +
1

2

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL

(
ξ(sn+1

L )− ξ(sn+1
K )

)2
.

In conclusion, we get

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKL

(
ξ(sn+1

L )− ξ(sn+1
K )

)2
≤ C9. (3.6.18)

Hence, the proof of Proposition 3.6.1 is complete.
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3.7 Existence of discrete solutions

Here we claim that the combined finite volume finite element scheme possesses a solution. This
is essentially based on the following fundamental lemma, that can be found in [65]. This lemma
provides a sufficient condition so that a vector field can admit a zero.

Lemma 3.7.1. Let A be a finite dimensional space with inner product (·, ·) and norm || · ||, and
let P be a continuous mapping from A into itself satisfying

(P(x), x) > 0 for ||x|| = r > 0.

Then there exists x∗ ∈ A with ||x∗|| < r such that

P(x∗) = 0.

We are now in position to state and prove the existence result.

Proposition 3.7.1. (Existence)
Under hypotheses (H1)-(H6) and the regularity assumption on the mesh (3.3.1), there exists at least
one solution (pn+1

K , sn+1
K )K∈V , for n = 0, . . . , N , to the coupled scheme (3.4.13)-(3.4.16)

Proof. For the sake of clarity, we denote

q := Card{K ∈ V/xK /∈ ΓD},
s := {sn+1

K }K∈Rq ,
p := {pn+1

K }K∈Rq .

We define the mapping Φ : Rq × Rq −→ Rq × Rq, such that

Φ(p, s) =
(
{Φ1,K}K∈V , {Φ2,K}K∈V

)
,

where

Φ1,K = φK

(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KLM

n+1
T Gg(s

n+1
K , sn+1

L ; ΛTKLδ
n+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL γ

n+1
KL ΛTKL(sn+1

L − sn+1
K ) + δtρ(pn+1

K )sn+1
K qn+1

P,K ,

Φ2,K = φK

(
sn+1
K − snK

)
+

δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

Mn+1
T Gw(sn+1

K , sn+1
L ; ΛTKLδ

n+1
KL p)

− δt

|ωK |
∑
T∈KT

∑
L∈VT \{K}

γn+1
KL ΛTKL(sn+1

L − sn+1
K ) + δt(sn+1

K − 1)qn+1
P,K + δtqn+1

I,K .

It follows from the assumptions on the data that Φ is well-defined and continuous. We now define
the following homeomorphism F : Rq × Rq −→ Rq × Rq, such that

F(p, s) = (u, v),
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where, u = {g(pn+1
K )}K∈V and v = {−pn+1

K + ξ(sn+1
K )}K∈V . We next consider the continuous

mapping P as follows

P(u, v) = Φ ◦ F−1(u, v) = Φ(p, s).

It remains to check that (
P(u, v), (u, v)

)
> 0, for ||(u, v)||R2q = r, (3.7.1)

for some sufficiently large r. Being inspired by the calculus of the energy estimates proof, we find(
P(u, v), (u, v)

)
≥ 1

δt

∑
K∈V
|ωK |φK

(
sn+1
K H(sn+1

K )− snKH(snK)
)

+
1

δt

∑
K∈V
|ωK |φK

(
B(sn+1

K )−B(snK)
)

+
m0Λ

2
||pn+1

h ||2Xh +
Λ

2
||ξ(sn+1

h )||2Xh − C
′
p − C ′ξ,

for some positive constants C ′p, C
′
ξ. Consequently(

P(u, v), (u, v)
)
≥− 1

δt

∑
K∈V
|ωK |φK

(
snKH(snK) +B(snK)

)
+ min

(m0Λ

2
,
Λ

2

)(
||pn+1

h ||2Xh + ||ξ(sn+1
h )||2Xh

)
− C ′p − C ′ξ. (3.7.2)

In view of Lemma 3.5.4, the Poincaré inequality and the Lipschitz continuity of the function g,
there exists a positive constant L such that∥∥∥(u, v)∥∥∥2

R2q
=

∥∥∥({g(pn+1
K )}K∈V , {−pn+1

K + ξ(sn+1
K )}K∈V

)∥∥∥2

R2q
,

≤ L
(∥∥ξ(sn+1

h )
∥∥2

Xh
+
∥∥pn+1

h

∥∥2

Xh

)
. (3.7.3)

Therefore, the last inequality implies that (3.7.1) is fulfilled if r is large enough.

3.8 Space and time translates

In this section we aim to establish some compactness results, consisting of space and time translates
on the gas mass sequence φ̃hρ(ph,δt)sh,δt. To do that, we require the following lemma. This result
affirms that the difference between the finite volume and the finite element reconstruction of the
underlined sequence tends to zero whenever the size of the mesh goes to zero.

Lemma 3.8.1. The hypotheses (H1)-(H6) and the regularity assumption on the mesh (3.3.1) are
assumed to be fulfilled. Denote Uh,δt = φ̃hρ(ph,δt)sh,δt and Ũh,δt = φ̃hρ(p̃h,δt)s̃h,δt. Then∥∥∥Uh,δt − Ũh,δt

∥∥∥
L1(QT)

−→ 0 as h −→ 0.
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Proof. We simply write ∥∥∥Uh,δt − Ũh,δt
∥∥∥
L1(QT)

=

∫
QT

|Uh,δt − Ũh,δt| dx dt,

=

∫
QT

|φ̃hρ(ph,δt)sh,δt − φ̃hρ(p̃h,δt)s̃h,δt|dx dt,

≤ E1 + E2,

where E1 and E2 read

E1 = φ1ρ1

∫
QT

|sh,δt − s̃h,δt| dx dt,

E2 = φ1

∫
QT

|ρ(ph,δt)− ρ(p̃h,δt)|dx dt.

Using the fact that ξ−1 is a θ-Hölder function, we infer

E1 ≤ φ1Lξ

∫
QT

|ξ(sh,δt)− ξ(s̃h,δt)|θ dx dt.

Now Hölder’s inequality with θ ∈ (0, 1] implies

E1 ≤ C
(∫

QT

|ξ(sh,δt)− ξ(s̃h,δt)| dx dt
)θ

=: C(E′1)θ,

where

E′1 =

∫
QT

|ξ(sh,δt)− ξ(s̃h,δt)| dx dt.

This expression of E′1 can be developed as follows

E′1 =
N−1∑
n=0

δt
∑
T∈T

∑
K∈VT

∫
ωK∩T

|ξ(sh,δt)− ξ(s̃h,δt)| dx,

=
N−1∑
n=0

δt
∑
T∈T

∑
K∈VT

∫
ωK∩T

|ξ(sh,δt(x, t))− ξ(sh,δt(xK , t))|dx,

=

N−1∑
n=0

δt
∑
T∈T

∑
K∈VT

∫
ωK∩T

∣∣∇ξ(sh,δt)|T · (x− xK)
∣∣ dx,

≤
N−1∑
n=0

δt
∑
T∈T

∑
K∈VT

diam(T)|ωK ∩ T |
∣∣∇ξ(sh,δt)|T ∣∣ ,

≤ h
N−1∑
n=0

δt
∑
T∈T
|T |
∣∣∇ξ(sh,δt)|T ∣∣ ≤ (T |Ω|)

1
2h
(∫ T

0
‖∇ξ(sh,δt)‖2L2(Ω)d dt

) 1
2 ≤ C10h.

where we have applied the Cauchy-Schwarz inequality together with (3.6.7). As a result

E1 ≤ C11h
θ → 0 as h→ 0.
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The function ρ′ is bounded, then we estimate

E2 ≤ φ1

∥∥ρ′∥∥∞ ∫
QT

|ph,δt − p̃h,δt| dx dt.

The same conclusion can be drawn for E2

E2 ≤ C12h→ 0 as h→ 0.

We deduce that the difference between Uh,δt and Ũh,δt tends to zero as h goes to zero. This ends
the proof.

We now give the space translates result on Ũh,δt.

Lemma 3.8.2. (Space Translates)
Under the hypotheses (H1)-(H6) and the regularity assumption on the mesh (3.3.1), let (ph,δt, sh,δt)
be a solution to (3.4.13)-(3.4.16). Then the following inequality holds∫ T

0

∫
Ω′

∣∣∣Ũh,δt(x+ y, t)− Ũh,δt(x, t)
∣∣∣dx dt ≤ β(|y|), (3.8.1)

for every y ∈ Rd,where Ω′ = {x ∈ Ω, [x, x+ y] ⊂ Ω} and β(|y|) −→ 0 as |y| goes to zero.

Proof. In view of the expression of Uh,δt we have

∫
Q
′
T

∣∣∣Ũh,δt(x+ y, t)− Ũh,δt(x, t)
∣∣∣dx dt,

=

∫
Q
′
T

∣∣∣(φ̃hρ(p̃h,δt)s̃h,δt

)
(x+ y, t)−

(
φ̃hρ(p̃h,δt)s̃h,δt

)
(x, t)

∣∣∣ dx dt,

≤ R1 +R2 +R3,

where R1, R2 and R3 are given by

R1 = φ1ρ1

∫
Q
′
T

|s̃h,δt(x+ y, t)− s̃h,δt(x, t)| dx dt, (3.8.2)

R2 = φ1

∫
Q
′
T

|ρ(p̃h,δt(x+ y, t))− ρ(p̃h,δt(x, t))| dx dt. (3.8.3)

R3 = ρ1

∫
Q
′
T

∣∣∣φ̃h(x+ y)− φ̃h(x)
∣∣∣dx dt. (3.8.4)

In order to estimate R1, we introduce once more the θ-Hölder continuity of ξ−1. So, one has

R1 ≤ C13

∫
Q
′
T

|ξ(s̃h,δt(x+ y, t))− ξ(s̃h,δt(x, t))|θ dx dt.

The Hölder inequality allows us to write

R1 ≤ C14

(∫
Q
′
T

|ξ(s̃h,δt(x+ y, t))− ξ(s̃h,δt(x, t))|dx dt
)θ
.
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As in the same spirit of [69], we define the function χσTKL
(x) for each σTKL by

χσKMS
(x) =

{
1, if the line segment [x, x+ y] intersects σTKL,

0, else.

for y ∈ R, x ∈ Ω′ and K,L ∈ VT . It is known that
∫

Ω′ χσKMS
(x) dx ≤ Cσ|σTKL||y|. Thereby

R1 ≤ C14

(N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

∣∣ξ(sn+1
L )− ξ(sn+1

K )
∣∣ ∫

Ω′
χσKMS

(x) dx
)θ
,

≤ C15|y|θ
(N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

∣∣σTKL∣∣ ∣∣ξ(sn+1
L )− ξ(sn+1

K )
∣∣ )θ,

≤ C16|y|θ
(N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

|T |
1
2

∣∣ξ(sn+1
L )− ξ(sn+1

K )
∣∣ )θ,

≤ C17|y|θ
(N−1∑
n=0

δt
∑
T∈T

|T |
∣∣∇ξ(sh,δt)|T ∣∣2 )θ/2,

≤ C18|y|θ
(∫ T

0
‖∇ξ(sh,δt)‖2L2(Ω)d dt

)θ/2
≤ C19|y|θ,

where we have mainly used the regularity of the mesh, within the triangle ωK ∩T , and the Cauchy-
Schwarz inequality. Analogous arguments are employed to prove

R2 ≤ C|y||h|. (3.8.5)

It is easy to see from the assumption (H1) on the porosity that the space translates are strongly
convergent in L1(Ω) which leads to

R3 → 0 as |y| → 0.

This inequality together with the previous one establish the required property (3.8.1).

The following lemma asserts the time translates on Ũh,δt .

Lemma 3.8.3. (Time translates)
Under the hypotheses (H1)-(H6) and the regularity assumption on the mesh (3.3.1), let (ph,δt, sh,δt)
be a solution to the algebraic system (3.4.13)-(3.4.16). There exists a modulus of continuity ω that
does not depend on h nor on δt such that∫

Ω×(0,T−τ)

∣∣∣Ũh,δt
(x, t+ τ)− Ũh,δt(x, t)

∣∣∣2 dx dt ≤ ω(τ), (3.8.6)

for all τ ∈ (0,T). Moreover ω(τ) −→ 0 as τ −→ 0.

Proof. The proof follows analogous ideas as provided in [23, 69].
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3.9 Convergence of the control volume finite element scheme

We are now in a position to state and prove the main theorem of this chapter, which asserts the
convergence of any sequence of discrete solutions to the nonlinear CVFE scheme towards a weak
solution of the continuous problem. This result is essentially based on the energy estimates, and
the Kolmogorov compactness theorem.

Proposition 3.9.1. Let (Th)h be a family of meshes of Ω satisfying the regularity assumption
(3.3.1) with h = size(Th)→ 0 . Under assumptions (H1)-(H6), let (ph,δt, sh,δt) be a sequence of solu-
tions to the numerical scheme (3.4.13)-(3.4.16). Then, there exists a subsequence of ph,δt, sh,δt, p̃h,δt
and s̃h,δt satisfying the following convergences

Ũh,δt and Uh,δt −→ U strongly in Lr(QT), r ≥ 1, and a.e in QT, (3.9.1)

s̃h,δt and sh,δt −→ s a.e. in QT, (3.9.2)

p̃h,δt, ph,δt ⇀ p weakly in L2(QT), (3.9.3)

∇ph,δt ⇀ ∇p weakly in L2(QT)d, (3.9.4)

∇ξ(sh,δt) ⇀ ∇ξ(s) weakly in in L2(QT)d. (3.9.5)

Moreover, ξ(s) and p are in L2(0,T;H1
ΓD

(Ω)) with

0 ≤ s ≤ 1 a.e. in QT, (3.9.6)

U = φρ(p)s a.e. in QT. (3.9.7)

Finally, for all functions Γ and κ ∈ C0
b (R), with κ(0) = 0, we have

Γ (ph,δt)κ(sh,δt) −→ Γ (p)κ(s) a.e. in QT (3.9.8)

Proof. The proof is similar to that of Proposition 2.9.1.

Let us now demonstrate the main result of this chapter, which attests that any limit of the
sequence of solutions is a weak solution of the continuous problem.

Theorem 3.9.1. (Passage to the limit)
Under the assumptions of Proposition 3.9.1, the limit function (p, s) given in (3.9.2) and (3.9.3) is
a weak solution of the problem (3.2.14)-(3.2.18) in the sense of Definition 3.2.1.

Proof. For the ease of readability, some expressions and quantities exhibit only the index h whereas
they depend on both δt and h. We detail the proof in the case of the gas equation and that of
the water equation mimics the same steps. To this purpose, let ψ ∈ C∞c (Ω × [0,T)). Multiply the
equation (3.4.15) by δtψn+1

K := δtψ(xK , t
n+1) for all K ∈ V and n ∈ {0, . . . , N}, sum over K and

n. Then
Wh

1 +Wh
2 +Wh

3 +Wh
4 +Wh

5 = 0,
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where

Wh
1 =

N−1∑
n=0

∑
K∈V
|ωK |φK

(
ρ(pn+1

K )sn+1
K − ρ(pnK)snK

)
ψn+1
K ,

Wh
2 = −

N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ρn+1
KL ΛTKL

(
ξ(sn+1

L )− ξ(sn+1
K )

)
ψn+1
K ,

Wh
3 = −

N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ΛTKLρ
n+1
KL

(
γn+1
KL (sn+1

L − sn+1
K )− (ξ(sn+1

L )− ξ(sn+1
K ))

)
ψn+1
K ,

Wh
4 =

N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ρn+1
KLM

n+1
T Gg

(
sn+1
K , sn+1

L ; ΛTKLδ
n+1
KL p

)
ψn+1
K ,

Wh
5 =

N−1∑
n=0

δt
∑
K∈V
|ωK |ρ(pn+1

K )sn+1
K qP,n+1

K ψn+1
K .

We first rearrange the summation Wh
1 taking into account ψNK = ψ(xK ,T) = 0

Wh
1 =−

N−1∑
n=0

∑
K∈V
|ωK |φKρ(pn+1

K )sn+1
K

(
ψn+1
K − ψnK

)
−
∑
K∈V
|ωK |φKρ(p0

K)s0
Kψ

0
K ,

=−
N−1∑
n=0

∑
K∈V

∫ tn+1

tn

∫
ωK

φKρ(pn+1
K )sn+1

K ∂tψ(xK , t) dx dt−
∑
K∈V
|ωK |φKρ(p0

K)s0
Kψ

0
K .

As in [23] we show in a straightforward way that

lim
h,δt→0

Wh
1 = −

∫
QT

φρ(p)s∂tψ(x, t) dx dt−
∫

Ω
φρ(p0)s0 ψ(x, 0) dx.

We next demonstrate the following limit

lim
h,δt→0

Wh
2 =

∫
QT

ρ(p)Λ∇ξ(s) · ∇ ψ dx dt.

To do this, we integrate by parts Wh
2

Wh
2 = −

N−1∑
n=0

δt
∑
K∈V

∑
T∈KT

∑
L∈VT \{K}

ΛTKLρ
n+1
KL

(
ξ(sn+1

L )− ξ(sn+1
K )

)
ψn+1
K ,

=

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ΛTKLρ
n+1
KL

(
ξ(sn+1

L )− ξ(sn+1
K )

)(
ψn+1
L − ψn+1

K

)
.

Now consider

Wh,∗
2 =

∫
QT

ρ(ph,δt)Λ∇ξ(sh,δt) · ∇ψh,δt dx dt, (3.9.9)

and let us show that this expression converges to the desired limit. To start off, remark that

Wh,∗
2 =

∫
QT

Λ∇(ρ(ph,δt)ξ(sh,δt)) · ∇ψh,δt dx dt−
∫
QT

ξ(sh,δt)Λ∇ρ(ph,δt) · ∇ψh,δt dx dt.
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Using the fact that the functions ρ(ph,δt) and ξ(sh,δt), and their gradients are bounded. We deduce
that

∇(ρ(ph,δt)ξ(sh,δt)) ⇀ ∇(ρ(p)ξ(s)), weakly in L2(QT)d.

In addition, there exists ρ∗ ∈ L2(QT) such that

ρ(ph,δt) ⇀ ρ?, weakly in L2(QT),

and
∇ρ(ph,δt) ⇀ ∇ρ?, weakly in L2(QT)d.

Moreover, it follows from the strong convergence in L2(QT)d of the sequences (∇ψh,δt), (ξ(sh,δt)∇ψh,δt),
when h, δt→ 0, that

Wh,∗
2 −→W2 =

∫
QT

Λ∇(ρ(p)ξ(s)) · ∇ψ dx dt−
∫
QT

ξ(s)Λ∇ρ? · ∇ψ dx dt.

Expanding the first integral in W2 gives

W2 =

∫
QT

ρ(p)Λ∇ξ(s) · ∇ψ dx dt+

∫
QT

(ξ(s)∇ρ(p)− ξ(s)∇ρ?) · Λ∇ψ dx dt.

Finally, integrate once more by parts the second integral in W2 to obtain∫
QT

ξ(s)(∇ρ(p)−∇ρ?) · Λ∇ψ dx dt = −
∫
QT

(ρ(p)− ρ?)γ(s)∇s · Λ∇ψ dx dt

−
∫
QT

(ρ(p)− ρ?)ξ(s) div(Λ∇ψ) dx dt.

The last two integrals vanish since ρ(p)γ(s) = ρ?γ(s) and ρ(p)ξ(s) = ρ?ξ(s) almost everywhere in
QT. Consequently

lim
h,δt→0

Wh,∗
2 =W2 =

∫
QT

ρ(p)Λ∇ξ(s) · ∇ψ dx dt.

What is left is to show that
lim

h,δt→0
|Wh

2 −W
h,∗
2 | = 0. (3.9.10)

To this end, we need to introduce the functions ph,δt, ph,δt

pn+1
T := sup

x∈T
pn+1
h (x), pn+1

T
:= inf

x∈T
pn+1
h (x) (3.9.11)

ph,δt|T×(tn,tn+1]
:= pn+1

T , p
h,δt|T×(tn,tn+1] := pn+1

T
. (3.9.12)

We define

Vh2 =

∫
QT

ρ(p
h,δt

)Λ∇ξ(sh,δt) · ∇ψh,δt dx dt.

One observes that∣∣∣Wh
2 −W

h,∗
2

∣∣∣ ≤ ∣∣∣Wh
2 − Vh2

∣∣∣+
∣∣∣Vh2 −Wh,∗

2

∣∣∣ ,
≤ 4

∫
QT

∣∣∣ρ(ph,δt)− ρ(p
h,δt

)
∣∣∣ |Λ∇ξ(sh,δt) · ∇ψh,δt|dx dt.
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In view of the Cauchy-Schwarz inequality and Lemma 3.5.3 we find∣∣∣Wh
2 −W

h,∗
2

∣∣∣ ≤ ∫
QT

∣∣∣ρ(ph,δt)− ρ(p
h,δt

)
∣∣∣ |Λ∇ξ(sh,δt) · ∇ψh,δt|dx dt,

≤ Λ
∥∥ρ′∥∥∞ ‖∇ψ‖∞ ‖∇ξ(sh,δt)‖L2(QT)d

(N−1∑
n=0

δt

∫
Ω

∣∣∣pn+1
h − pn+1

h

∣∣∣2 dx
)1/2

,

−→ 0, as h, δt −→ 0.

Let us now establish that
lim

h,δt→0
Wh

3 = 0.

For this, let us define the coefficient γn+1
KL

γn+1
KL :=


ξ(sn+1

K )− ξ(sn+1
L )

sn+1
K − sn+1

L

, if sn+1
K 6= sn+1

L

γ(sn+1
K ), if sn+1

K = sn+1
L

. (3.9.13)

As a consequence Wh
3 becomes

Wh
3 =

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

ρn+1
KL ΛTKL

(
γn+1
KL − γ

n+1
KL

)(
sn+1
K − sn+1

L

)
(ψn+1

K − ψn+1
L ).

Using repeatedly the Cauchy-Schwarz inequality yields

∣∣∣Wh
3

∣∣∣ ≤ ρ1

∣∣∣∣∣∣
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

∣∣ΛTKL∣∣ (sn+1
K − sn+1

L

)2

∣∣∣∣∣∣
1
2

×X
1
2
h ,

where

Xh =

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

∣∣ΛTKL∣∣ (γn+1
KL − γ

n+1
KL

)2
(ψn+1

K − ψn+1
L )2. (3.9.14)

We next introduce the fact that ξ−1 is a θ-Hölder, which yields∣∣sn+1
K − sn+1

L

∣∣ ≤ L
ξ

∣∣ξ(sn+1
K )− ξ(sn+1

L )
∣∣θ .

According to this inequality together with (3.5.1), (3.5.2) and (3.6.7), there exists a positive constant
C so that ∣∣∣∣∣∣

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

∣∣ΛTKL∣∣ (sn+1
K − sn+1

L

)2

∣∣∣∣∣∣
1
2

≤ C.

Now the function γ◦ξ−1 is uniformly continuous on the compact [0, ξ(1)]. This ensures the existence
of a modulus of continuity of this function, denoted by η such that∣∣∣γn+1

KL − γ
n+1
KL

∣∣∣ ≤ η(ξn+1
T − ξn+1

T

)
, ∀σTKL,
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where, for every T ∈ Th, we consider

ξ
n+1
T = ξ(sn+1

T ), ξn+1
T

= ξ(sn+1
T ),

and, for all (x, t) ∈ T × (tn, tn+1), we define

sn+1
T := sup

x∈T
sn+1
h (x), sn+1

T := inf
x∈T

sn+1
h (x). (3.9.15)

Consequently, the term Xh given in (3.9.14) satisfies

0 ≤ Xh ≤ Yh,

with Yh as written under the following form

Yh =
N−1∑
n=0

δt
∑
T∈T

∣∣∣η(ξn+1
T − ξn+1

T

)∣∣∣2 ∑
σTKL∈ET

∣∣ΛTKL∣∣ (ψn+1
K − ψn+1

L )2.

In view of Lemma 3.5.1 and the regularity of the function ψ, we claim that

0 ≤ Yh ≤ C
∣∣∣η(ξh,dt − ξh,dt)∣∣∣2 ,

where C is a positive constant, which is independent of h and δt. So, to conclude the proof of

lim
h→0
Yh = 0, we require lim

h→0

(
ξh,dt − ξh,dt

)
= 0 a.e. in QT. Indeed, we consider a generalization of

Lemma 3.5.3 to get ∫
QT

∣∣∣ξh,dt − ξh,dt∣∣∣dx dt ≤ Ch
(∫

QT

|∇ξ(sh,δt)|2 dx dt
) 1

2
.

Thereby, up to a subsequence, there holds

lim
h→0

(
ξh,dt − ξh,dt

)
= 0 a.e. in QT.

By the continuity of ξ−1, we deduce

lim
h→0

(
sh,δt − sh,δt

)
= 0 a.e. in QT. (3.9.16)

Consequently

lim
h,δt→0

∣∣∣Wh
3

∣∣∣ = lim
h,δt→0

Yh = lim
h,δt→0

Xh = 0.

Let us next study the convergence of the convective termWh
4 . To this purpose, let us writeWh

4

by edges

Wh
4 = −

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

Mn+1
T ρn+1

KL Gg

(
sn+1
K , sn+1

L ; ΛTKLδ
n+1
KL p

)(
ψn+1
L − ψn+1

K

)
.

We additionally define

Vh4 =

∫
QT

ρ(ph,δt)M(sh,δt)fg(sh,δt)Λ∇ph,δt · ∇ψh,δt dx dt.
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Thanks to (3.9.8) and the smoothness of the test function, the sequence
(
ρ(ph,δt)M(sh,δt)fg(sh,δt)∇ψh,δt

)
converges strongly to

(
ρ(p)M(s)fg(s)∇ψ

)
in L2(QT)d. The sequence (∇ph,δt) converges weakly to

∇p in L2(QT)d. Then one gets

lim
h,δt→0

Vh4 =

∫
QT

ρ(p)M(s)fg(s)Λ∇p · ∇ψ dx dt.

Define now

Vh,14 =

∫
QT

ρ(p
h,δt

)M(sh,δt)fg(sh,δt)Λ∇ph,δt · ∇ψh,δt dx dt,

where p
h,δt

is given in (3.9.12). We show that Vh4 − V
h,1
4 → 0.

∣∣∣Vh4 − Vh,14

∣∣∣ ≤ C ‖M‖∞ Λ
∥∥ρ′∥∥∞ ‖∇ψ‖∞ ‖∇ph,δt‖L2(QT)d

(N−1∑
n=0

δt

∫
Ω

∣∣∣pn+1
h − pn+1

h

∣∣∣2 dx
)1/2

,

≤ C ′h −→ 0, as h, δt −→ 0.

We continue in this fashion to define Wh,∗
4

Wh,∗
4 =

∫
QT

ρ(p
h,δt

)M(sh,δt)fg(sh,δt)Λ∇ph,δt · ∇ψh,δt dx dt,

where sh,δt is defined in (3.9.15). Moreover, we show that

Vh,14 −Wh,∗
4 → 0. (3.9.17)

Using the Cauchy-Schwarz inequality and the strong convergence (3.9.16), we have

∣∣∣Vh,14 −Wh,∗
4

∣∣∣ ≤ C ′′(N−1∑
n=0

δt

∫
Ω

∣∣sh,δt − sh,δt∣∣2 dx
)1/2

,−→ 0, as h, δt −→ 0.

It remains to establish that the sequence (Wh
4 −W

h,∗
4 ) goes to zero as h, δt tend to zero. To this

end, we use the fact that the gas fractional flow, the total mobility and the density are bounded
functions together with the consistency and the Lipschitz continuity of the numerical flux Gg. To
be more precise, we compute∣∣∣ρn+1

KLM
n+1
T Gg

(
sn+1
K , sn+1

L ; ΛTKLδ
n+1
KL p

)
−
(
− ρn+1

K,0 M(sn+1
K,0 )fg(s

n+1
K,0 )ΛTKLδ

n+1
KL p

)∣∣∣ ∣∣δn+1
KL ψ

∣∣ ,
=
∣∣∣ρn+1
KLM

n+1
T Gg

(
sn+1
K , sn+1

L ; ΛTKLδ
n+1
KL p

)
− ρn+1

K,0 M(sn+1
K,0 )Gg

(
sn+1
K,0 , s

n+1
K,0 ; ΛTKLδ

n+1
KL p

)∣∣∣ ∣∣δn+1
KL ψ

∣∣ ,
≤ C

(
η(
∣∣∣sn+1
K − sn+1

K,0

∣∣∣) +
∣∣∣ρn+1
KL − ρ

n+1
K,0

∣∣∣+
∣∣∣Mn+1

T −M(sn+1
K,0 )

∣∣∣ ) ∣∣ΛTKL∣∣ ∣∣δn+1
KL p

∣∣ ∣∣δn+1
KL ψ

∣∣ ,
≤ C

(
η(
∣∣∣sn+1
K − sn+1

K,0

∣∣∣) +
∣∣∣ρn+1
KL − ρ

n+1
K,0

∣∣∣+
∣∣∣Mn+1

T −M(sn+1
K,0 )

∣∣∣ )
×
( ∣∣ΛTKL∣∣ ∣∣δn+1

KL p
∣∣2 +

∣∣ΛTKL∣∣ ∣∣δn+1
KL ψ

∣∣2 ),
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where η(·) is a modulus of continuity. The last inequality and Lemma 3.5.1 affirm that∣∣∣Wh
4 −W

h,∗
4

∣∣∣ ≤C ∑
T∈T

(
η(
∣∣sn+1
T − sn+1

T

∣∣) +
∣∣∣ρn+1
T − ρn+1

T

∣∣∣+
∣∣M(sn+1

T )−M(sn+1
T )

∣∣ )
×

∑
σTKL∈ET

( ∣∣ΛTKL∣∣ ∣∣δn+1
KL p

∣∣2 +
∣∣ΛTKL∣∣ ∣∣δn+1

KL ψ
∣∣2 ),

≤ C
∫
QT

(
η(
∣∣sh,δt − sh,δt∣∣) +

∣∣∣ρ(ph,δt)− ρ(p
h,δt

)
∣∣∣+
∣∣M(sh,δt)−M(sh,δt)

∣∣ )dx dt,

As a consequence of the convergence (3.9.16) and Lebesgue’s dominated convergence theorem, it
follows that the first and the third integrals on the right hand side go to zero as h, δt tend to zero.
Using again that the derivative of the density is bounded, Lemma 3.5.3 and the uniform estimate
on the global pressure (3.6.6), the second integral on the right hand side goes to zero too. We hence
obtain

lim
h,δt→0

∣∣∣Wh
4 −W

h,∗
4

∣∣∣ = 0. (3.9.18)

Therefore

lim
h,δt→0

Wh
4 =

∫
QT

ρ(p)M(s)fg(s)Λ∇p · ∇ψ dx dt.

Finally, in order to pass to the limit in Wh
5 , we make use of the result (3.9.8) and Lebesgue’s

dominated convergence theorem to attest that

lim
h,δt→0

Wh
5 = lim

h,δt→0

N−1∑
n=0

δt
∑
K∈V
|ωK |ρ(pn+1

K )sn+1
K qn+1

P,Kψ
n+1
K =

∫
QT

ρ(p)sqPψ dx dt,

as required.

3.10 Numerical experiments

Here we provide some numerical tests in two space dimensions so that we can show the robust-
ness and the stability of the proposed numerical scheme. More precisely, we are interested in the
secondary recovery of gas by injecting water. In addition, we consider an anisotropic permeability
tensor to illustrate its impact on the displacement of the fluids.

The domain of our study is Ω = [0, 1]2, then the length and the width of the medium are
Lx = Ly = 1m. Next we perform a primal mesh, which is a triangulation in the sense of the finite
element discretization, and a barycentric dual mesh constructed as described in Section 3.3. This
mesh consists of 3584 elements and 1857 vertices as depicted in Fig. 3.2. We emphasize that the
triangle angles are acute, which allows us to take into account the isotropic case, where the stiffness
coefficients are positive. Nevertheless, whenever the permeability tensor is not the identity matrix,
this property is no longer valid. Without loss of generality, other triangulations can be suggested.

For these simulations, we require some physical data. For this, we consider the test case of the
work [23] where the authors implemented a two-point flux approximation scheme and considered
an isotropic tensor. The porosity is then set to φ = 0.206. We recall that s = sg. The relative
permeabilities and the capillary pressure are respectively given by: Krg = s2,Krw = (1−s)2, pc(s) =
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Pmaxs, with Pmax = 1.013×105Pa. The viscosities of the two phases are: µw = 10−3Pa.s, µg = 9×
10−5Pa.s. The gas density is chosen as follows: ρ(p) = ρr(1+cr(p−pr)) with ρr = 400Kg.m−3, cr =
10−6Pa, pr = 1.013× 105Pa. We pick out the absolute permeability as

Λ = 0.15× 10−10

[
1 0
0 λ

]
[m2],

where λ is a parameter in [0, 1]. Besides, we present three case tests with λ ∈ {1, 0.1, 0.001}.

The gas saturation and gas pressure are initialized as follows: sg(x, 0) = 0.9, pg(x, 0) =
1, 013× 105Pa. Next, water is injected on the left zone (x = 0, 0.8 ≤ y ≤ 1) of the medium with a
constant saturation slw = 0.9, meaning that slg = 0.1 (see Fig. 3.2), and with a maintaining pressure

P lg = 4.6732×105Pa. The extraction zone (x = 1,0 ≤ y ≤ 0.2) is in contact with the air. Therefore,
in this region, the pressure is P rg = 1, 013× 105Pa and a free flow of the fluids is considered. What

remains of the boundary is impermeable. We furthermore have no source terms; that is qP = qI = 0.

The implemented CVFE scheme provides a nonlinear algebraic system. In order to solve it, we
apply the Newton-Raphson method. Moreover, we take ε = 10−10 as a stopping criterion. The
final time is set to tf = 40s for all the tests. The time step is chosen to be δt = 0.05 for λ = 1, 0.1
and δt = 0.005 for λ = 0.001. We present four numerical tests. The three first ones are devoted to
investigating the influence of the anisotropy on the compressible flow within the domain. The last
one compares the difference between the compressible and incompressible flows.

Figure 3.2: Primal mesh with 3584 triangles and 1857 vertices.
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3.10.1 First test λ = 1

In the first test, we illustrate the behavior of water saturation (top) and the gas pressure
(bottom) through an isotropic medium for different times tf = 2s, 10s, 40s. We then recall that
the transmissibility coefficients are nonnegative. We see that the discrete saturation remains in
the interval [0, 1] as we have established in Lemma 3.6.1. On one hand we observe a remarkable
displacement of a front between the two fluids toward the right zone where the pressure is lower.
On the other hand, we notice important diffusive effects on all these figures, which are due to the
capillary term.

3.10.2 Second test λ = 0.1

In the second test, we consider a weak anisotropy with λ = 0.1. We then show the influence of
this anisotropy on the flow of water through the medium. Contrary to the first test, some stiffness
coefficients are nonpositive. However, the physical ranges of the computed saturation are respected
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as claimed in Lemma 3.6.1. In addition, we record an important flow of the water from left to right
and this is natural since the permeability is much bigger in this direction.

3.10.3 Third test λ = 0.001

In the third simulation, the anisotropy ratio is too large compared to the previous tests. Then
some of the transmissibility coefficients are necessarily nonpositive. As noticed before, the water
pushes the gas in the x-direction. The displacement of the two fluids is very slow since the pores
are too tiny in the y-direction. We also observe small undershoots on the saturation, which may
be caused by the effect of anisotropy together with the Newton solver.

3.10.4 Fourth test: comparison between compressible and incompressible flows

In this test we compare the incompressible flow with various compressible flows in the absence of
the capillary effects. The capillary pressure is neglected in order to illustrate only the impact of the
compressibility of the gas. We finally display in Fig. 3.3–3.5 the evolution of water saturation and
gas pressure at three points of the medium Ω. We here consider an identical permeability i.e. λ = 1
and cr ∈ {0; 5× 10−6; 5× 10−5; 5× 10−4}[Pa]. Even if the flow is slightly compressible, we remark
that the velocity of the water through the domain is relatively slow. In the incompressible case the
flow is independent of the initial pressure whereas it plays a major role for the compressible flow.
As we observe in Fig. 3.3–3.5, there is a significant difference in terms of pressures in the first stage
of the evolution.
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Figure 3.3: Evolution of water saturation (left) and gas pressure (right) at point (0.5,0.5).

Figure 3.4: Evolution of water saturation (left) and gas pressure (right) at point (0.25,0.75).

Figure 3.5: Evolution of water saturation (left) and gas pressure (right) at point (0.25,0.25).
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Chapter 4

Convergence of a monotone nonlinear
DDFV scheme for degenerate
parabolic equations

In this chapter, we carry out the convergence analysis of a monotone DDFV method for approximat-
ing solutions of degenerate parabolic equations. The basic idea rests upon different approximations
of the fluxes on the same interface of the control volume. Precisely, the approximated flux is split
into two terms corresponding to the primal and dual normal components. Then the first term is
discretized using a centered scheme whereas the second one is approximated in a non evident way
by an upstream scheme. The novelty of our approach is twofold: on the one hand we prove that
the resulting scheme preserves the positivity and on the other hand we establish energy estimates.
Some numerical tests are then presented and they show that the scheme in question turns out to
be robust and efficient with an accuracy of second order.

4.1 Problem statement

Nonlinear degenerate parabolic equations are the main core to study some complex problems arising,
for instance, from petroleum engineering, hydrology and biology. Hence, seeking analytical or
approximate solutions of these equations is of an immense advantage. Throughout this chapter,
we will be interested in approximating, thanks to a new finite volume scheme, the solution to the
academic problem: 

∂tu−∇ ·
(
f(u)Λ∇u

)
= 0 in QT := Ω× (0,T)

u = 0 on ∂Ω× (0,T),

u(·, 0) = u0 in Ω

(4.1.1)

where Ω is a bounded polygonal open of Rd, T a fixed positive number, ∂Ω the boundary of Ω, Λ a
given d-square matrix (tensor) and f a given nonnegative function. In the context of porous media
flows, the function f is usually called the mobility while the tensor Λ stands for the permeability.
More precisely, the problem (4.1.1) describes the infiltration of a single fluid through a porous
medium with no gravity effects [47]. It is derived from the Darcy law together with the mass
conservation equation. On the other hand, this problem is known under the name of the porous
medium equation [117] whenever f(u) = um, for some nonnegative real number m. In view of
the theoretical study, the elliptic term of (4.1.1) can be formulated otherwise by introducing the
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so-called Kirchhoff transformation F . With some general assumptions on F , this formulation is
sometimes said to be the simplified Stefan problem [66], which is used to model free boundary value
problems. Even if this function seems to have no physical interpretation, it will play a remarkable
role to carry out the analysis of the scheme we consider here. It is then defined by

F (u) =

∫ u

0
f(s) ds, ∀u ∈ R. (4.1.2)

In this discretization, we will also introduce the semi-Kirchhoff transform denoted by ξ and defined
as

ξ(u) =

∫ u

0

√
f(s) ds, ∀u ∈ R. (4.1.3)

Different approximations, with various assumptions on the data, have been conducted to discretize
problems involving nonlinear diffusion equations of type (4.1.1). For an upstream finite difference
method, we cite the work [94]. Concerning finite volume schemes, we refer to this battery of con-
tributions [10, 14, 20, 23, 25, 61, 71, 70, 79, 99]. Plenty of these discretizations stipulate restrictive
constraints, especially an orthogonality condition on the mesh in the sense of Eymard et al. [69],
which excludes a large variety of interesting meshes. For example, in Hydrology, most geological
layers are quite deformed thus the meshes used to discretize the field are somehow distorted. In this
case, the orthogonality condition can not be satisfied for most of the edges. In addition, in the pres-
ence of anisotropic media, we may encounter the same difficulties. Yet, some works have combined
finite volume and finite element methods [1, 20, 63, 73, 93, 105]. Carrying out the analysis of these
schemes, the authors required a positivity assumption on the stiffness coefficients that does not
hold for all sort of meshes. To overcome this issue, positive schemes with their convergence studies
have been proposed in [40, 42]. More generally, a gradient scheme [62, 66] has been suggested
to discretize the Stefan problem, which is an equivalent formulation of (4.1.1) using the Kirchoff
transform. The Gradient schemes framewok encompasses a lot of popular discretizations, but it
may produce undershoots and overshoots in general. There is no hope of proving such bounds
without further assumptions.

In this chapter, we are concerned with the Discrete Duality Finite Volume (DDFV) method for
the discretization of the problem (4.1.1). This method belongs to the gradient schemes family and
is viewed as a particular class of the finite volume methods. It has been first introduced for the
Laplace equation in [89, 90]. It has been also proved to be equivalent to a nonconforming finite
element approach in [60]. In two dimensions, the convergence analysis of the DDFV scheme is
carried out later on for many types of partial differential equations of second order in several works
[11, 39, 46, 59, 60]. Such results have been extended to 3D in [8, 9, 56, 97]. The strength of this
discretization consists of producing a consistent discrete whole gradient on almost general grids
and any tensor. This is of a great importance since most of the meshes coming from physics are
somehow distorted. On the other hand, the reconstruction gradient operator verifies the discrete
Stokes formula, which is a powerful tool to analyze such a scheme. Moreover, the DDFV method
is unconditionally coercive, which ensures the stability of the scheme.

Practically (cf. FVCA5 benchmark) [88] the DDFV schemes fail to satisfy an explicit discrete
maximum principle. This property is crucial whenever we deal with positive physical quantities
by their nature like saturation and concentration. As to be more precise, let us consider the
DDFV discretization of the linear diffusion equation −∆u = f with Dirichlet boundary conditions.
Formally, it yields a stiffness matrix which is not monotone in the case of non admissible meshes
in the sense of Eymard et al. [69]. By choosing an appropriate positive source term, we can
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acquire a solution with some negative values. In general, the monotonicity of the DDFV scheme
has been a drawback for the method since it has appeared. However, in the work of [37] the authors
were able to design a monotone nonlinear DDFV scheme for the diffusion equation. It basically
rests upon the DDFV idea together with a nonlinear monotone two-point finite volume method
as investigated in [86, 102, 122]. Unfortunately, there is no convergence proof of the numerical
schemes proposed in [37, 86, 102, 122] since they suffer from the lack of coercivity as pointed
out in [38, 61]. Recently, in [39] the authors have employed a nonlinear technique to establish
the nonnegativity of the approximate solution in the case of a linear drift equation enclosed with
Neumann boundary conditions. Then, the contribution of our appraoch is to propose a new scheme
that fulfills the physical ranges of the discrete solution even on almost general meshes and for
possibly anisotropic tensors. Given an interface of a control volume (primal or dual), the key
point of our approach consists of approximating the flux across this interface with a TPFA (Two-
Point Flux Approximation) scheme with respect to the unit normal to the same interface and an
upwind scheme with respect to the corresponding dual interface. This technique is not standard in
the framework of DDFV methods, and it gathers the main ingredients to conduct the convergence
analysis. From a practical perspective our scheme yields surprising results with optimal convergence
rates.

We have chosen to introduce the proposed scheme for degenerate diffusive equations involving
homogeneous Dirichlet boundary conditions. The only reason behind the choice of the model prob-
lem is the ease readability of our scheme. This approach can be easily extended to more general
boundary conditions as done in [13, 60] as well as to models including convective and source terms
[39, 46, 57]. Indeed, the convective term does not provide any supplementary difficulties, since it
can be approximated using adequate upstream approaches in order to ensure the discrete maximum
principle and get the main elements for the convergence analysis.

The remainder of this chapter is structured as follows. In Section 4.2, we give the DDFV dis-
cretization, some related notations and definitions of discrete operators. In Section 4.3, we sketch
out how to derive the proposed DDFV scheme. In Section 4.4, we prove that this scheme pre-
serves the physical ranges of the approximate solution and we derive some energy estimates on the
discrete gradients. In Section 4.5, we establish that the nonlinear algebraic system has a solution
using a monotony criterion. In Section 4.6, we state some compactness properties and we apply
Kolmogorov’s theorem to ensure the existence of a convergent subsequence of a family of discrete
solutions. In Section 4.7, we demonstrate that this subsequence tends towards the weak solution
of the continuous problem. In Section 4.8, we exhibit some numerical results to show the efficiency
and robustness of our scheme.

Let us now formulate the main assumptions on the data.

(A1) The initial condition u0 is assumed to be in L∞(Ω) with 0 ≤ u ≤ 1.

(A2) The function f belongs to C0([0, 1],R) with{
f(u) > 0, for all u ∈ (0, 1),

f(u) = 0, for all u ∈ R\(0, 1).

As a consequence, F and ξ are Lipschitz continuous nondecreasing functions. We also assume
that v :=

√
f is absolutely continuous. This latter regularity on v is required so that the

Engquist-Osher scheme, to be presented later (Section 4.3), can be defined.

114



(A3) The tensor Λ : Ω → Sd(R), where Sd(R) is the space of d-square symmetric matrices, is
assumed to be in L∞(Ω)d×d and verifies the uniform ellipticity condition

Λ |ζ|2 ≤ Λ(x)ζ · ζ ≤ Λ |ζ|2 , for all ζ ∈ Rd and a.e. x ∈ Ω,

for some positive constants Λ and Λ.

We next define the natural space L2(0,T;H1
0 (Ω)) where the solution to the problem (4.1.1) will be

sought
H1

0 (Ω) = {v ∈ H1(Ω) / v = 0 on ∂Ω}.

Moreover, H1
0 (Ω) is a Hilbert space endowed with the norm

||v||H1
0 (Ω) = ||∇v||(L2(Ω))d .

This leads us to the definition of the weak solution.

Definition 4.1.1. (Weak solution) A measurable function u : QT −→ [0, 1] is called a weak solution
of the problem (4.1.1) provided

ξ(u) ∈ L2(0,T;H1
0 (Ω)),

−
∫
QT

u ∂tϕdx dt+

∫
QT

Λ∇F (u) · ∇ϕdx dt−
∫

Ω
u0 ϕ(·, 0) dx = 0, ∀ϕ ∈ C∞c (Ω× [0,T)).

The existence of a weak solution to the problem (4.1.1) has been investigated in [2]. The
uniqueness proof is already addressed in [81].

4.2 DDFV discretization

For the simplicity of the exposition, we follow most of the notations given in the works [11, 46].
From now on, we focus only on the two dimensions (in space) case.

4.2.1 Meshes and notations

A DDFV discretization requires three kinds of meshes, a primal mesh, dual mesh and diamond
mesh. The primal mesh is denoted by M = M ∪ ∂M, where M is a partition of Ω with polygonal
open disjoint subsets usually called control volumes and ∂M is the set of boundary edges viewed
as degenerate control volumes. These primal grids are not necessarily convex. For every K ∈ M,
the center of gravity of K is denoted by xK . We further define V as the family of these centers.

We designate by V∗ the set of all the vertices of the mesh M. It is composed of inner vertices V∗int
and boundary ones V∗ext. For each xK∗ ∈ V∗int (resp. xK∗ ∈ V∗ext), we associate a unique dual control
volume K∗ which is a polygon whose vertices are given by the set {xK ∈ V/xK∗ ∈ K, K ∈ M}
(resp.{xK∗} ∪ {xK ∈ V/xK∗ ∈ K, K ∈ ∂M} ). With these dual sub-domains, we construct the
dual mesh denoted by M∗ = M∗ ∪ ∂M∗ (see Fig. 4.1).

By E (resp. E∗) we mean the set of all the edges of M (resp. M∗). Two cells are said to be
neighbors if they share at least one edge. To be more precise, for every couple of neighboring primal
(resp. dual) control volumes K and L (resp. K∗ and L∗ ), there exists σ ∈ E (resp. σ∗ ∈ E∗) such
that σ = K ∩ L (resp. σ∗ = K∗ ∩ L∗).
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The diamond mesh D = (Dσ,σ∗)(σ,σ∗)∈E×E∗ is also a partition of Ω by diamond cells. For every

primal edge σ with σ * ∂Ω, the subset Dσ,σ∗ is a quadrilateral constructed by connecting the
endpoints of σ and σ∗. In the case where σ ∈ E ∩∂Ω, this quadrilateral Dσ,σ∗ is nothing more than
a triangle as depicted in Fig. 4.2.

Figure 4.1: Illustration of the DDFV meshes.

The DDFV mesh is then given by the union of T = (M,M∗) and D. For every M ∈ T (primal
or dual cell), the notation mM represents the measure of M , EM contains all the edges of M , DM is
made of all the diamonds Dσ,σ∗ such that m(Dσ,σ∗ ∩M) > 0, and dM refers to the diameter of M .
For each Dσ,σ∗ ∈ D, the vertices of Dσ,σ∗ are the extremities of both σ and σ∗ i.e. (xK , xK∗ , xL, xL∗).
The center xD of Dσ,σ∗ =: D is defined as the intersection of its main diagonals. mD stands for the
measure of D, dD its diameter, and αD is the angle between (xK , xL) and (xK∗ , xL∗). For every
edge e ∈ E ∪ E∗, we define me as its measure. By nσK (resp. nσ∗K∗) we mean the unit normal to σ
(resp. σ∗) outwards K (resp. K∗). Similarly, τK,L (resp. τK∗,L∗) is the unit tangent vector to σ
(resp. σ∗) oriented from K (resp. K∗) to L (resp. L∗).

Figure 4.2: Interior (left) and boundary (right) diamond cells.

Now, we define the regularity of the DDFV mesh that determines how flat the diamond cells are.
It also provides information about the difference between the size of a primal (resp. dual) control
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volume and the size of a diamond cell whenever their intersection is nonempty. This regularity
must be controlled for any sequence of meshes in order to perform the convergence analysis of the
scheme. Let us denote hD the largest diameter of the diamond cells, αT the unique real number in

]0,
π

2
] such that

sin(αT ) := min
D∈D
|sin(αD)| ,

and ρK (resp. ρK∗) the radius of the biggest inscribed ball in K (resp. K∗) whose center is xK
(resp. xK∗). Then, the regularity of the mesh is defined by

reg(T ) = max

(
1

sin(αT )
,max
D∈D

hD√
mD

,max
K∈M

dK√
mK

, max
K∗∈M∗

dK∗√
mK∗

,

max
K∈M

(dK
ρK

+
ρK
dK

)
, max
K∗∈M∗

(dK∗
ρK∗

+
ρK∗

dK∗

))

It follows from this relation that there exists a positive constant C depending only on reg(T ) such
that

mσmσ∗ ≤ CmK , m2
σ∗ ≤ CmD, m2

σ ≤ CmD, mσmσ∗ ≤ CmD.

A time discretization of the interval (0,T) is given by an increasing sequence of real numbers
(tn)n=0,...,N such that

t0 = 0 < t1 < · · · < tN = T.

For every n ∈ {0, . . . , N − 1}, we denote δtn = tn+1 − tn and we define δt = max
0≤n≤N−1

δtn. To

avoid heavy notations, we assume that the time step δtn is uniform. Then δt = δtn, for all
n ∈ {0, . . . , N − 1}.

4.2.2 Discrete operators

We now survey the discrete version of the unknowns and operators that will allow us to define the
nonlinear DDFV discretization for the problem (4.1.1). To begin with, let us specify the structure
of the space R#T . Any vector uT of this space is written under the form

uT =
(

(uK)K∈M, (uK∗)K∗∈M∗
)
.

Next, R#T is endowed by following scalar product

JuT , vT KT =
1

2

( ∑
K∈M

mKuKvK +
∑

K∗∈M∗
mK∗uK∗vK∗

)
, ∀uT , vT ∈ R#T .

Additionally, the set (R2)#D represents the space of vector fields of the form ζD = (ζD)D∈D
whose components are constant on the diamond cells. This space is endowed by the inner product(
·, ·
)
D,Λ

defined as (
ζD, ϕD

)
D,Λ

=
∑
D∈D

mDζD · ΛDϕD, ∀ζD, ϕD ∈ (R2)#D,

where

ΛD =
1

mD

∫
D

Λ(x) dx, ∀D ∈ D.
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Discrete gradient

In the framework of the DDFV method, the discrete gradient operator denoted ∇D is a linear
mapping from R#T to (R2)#D. It is defined for every uT ∈ R#T by

∇DuT =
(
∇DuT

)
D∈D

,

where the quantity ∇DuT is referred to as the restriction of the approximate gradient on the
diamond cell D ∈ D. On the one hand, for D ∈ D with D∩∂Ω∩E = ∅, such a restriction is defined
so that one can get

∇DuT · τK,L =
uL − uK
mσ∗

, ∇DuT · τK∗,L∗ =
uL∗ − uK∗

mσ
,

or equivalently,

∇DuT =
1

sin(αD)

(uL − uK
mσ∗

nσK +
uL∗ − uK∗

mσ
nσ∗K∗

)
.

On the other hand, our model problem is complemented with Dirichlet boundary conditions.
This latter states that the solution is known on ∂Ω. Consequently, for every D ∈ D with D∩∂Ω ⊂ E
(see Fig. 4.2), one has

∇DuT =
1

sin(αD)

(u|∂Ω(xD)− uK
mσ∗

nσK +
u|∂Ω(xL∗)− u|∂Ω(xK∗)

mσ
nσ∗K∗

)
.

Notice that the two components of the discrete gradient are reproduced so that one can ensure
a consistent approximation of the continuous gradient. This of course requires supplementary un-
knowns introduced on the dual cells.

For given uT , vT ∈ R#T and D ∈ D, we define δDuT =

[
uK − uL
uK∗ − uL∗

]
. Then, one sets(

∇DuT ,∇DvT

)
D,Λ

=
∑
D∈D

δDuT · AD,ΛδDvT , (4.2.1)

where the local matrix AD,Λ reads

AD,Λ =
1

4mD

[
m2
σΛDnσK · nσK mσmσ∗Λ

DnσK · nσ∗K∗
mσmσ∗Λ

DnσK · nσ∗K∗ m2
σ∗ ΛDnσ∗K∗ · nσ∗K∗

]
, ∀D ∈ D. (4.2.2)

One also defines

AD =
1

4mD

[
m2
σ mσmσ∗nσK · nσ∗K∗

mσmσ∗nσK · nσ∗K∗ m2
σ∗

]
, ∀D ∈ D. (4.2.3)

These matrices are positive-definite as given in Lemma A.0.2. Therefore, the bracket (·, ·)D,Λ is

indeed an inner product on (R2)#D.

In order to make a conspicuous scheme later, we will denote

aKL :=
1

sin(αD)

mσ

mσ∗
ΛDnσK · nσK > 0, ηDσσ∗ :=

1

sin(αD)
ΛDnσK · nσ∗K∗ ∈ R

gM := g(uM ), ∀M ∈ {K,L,K∗, L∗} and g ∈ {F, ξ}
δLKu := uL − uK , δL∗K∗u := uL∗ − uK∗ .
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Discrete divergence

The discrete divergence has been originally introduced in [60] so as to reproduce a discrete coun-
terpart of Green’s formula. It is defined by a mapping from (R2)#D to R#T as follows:

divT ΨD =
(

divMΨD, divM∗ΨD,div∂M
∗
ΨD

)
, ∀ΨD = (ΨD)D∈D ∈ (R2)#D,

with divMΨD = (divKΨD)K∈M, divM∗ΨD = (divK∗ΨD)K∗∈M∗ and div∂M
∗
ΨD = (divK∗ΨD)K∗∈∂M∗ .

Each component is explicitly given by

divKΨD =
1

mK

∑
Dσ,σ∗∈DK

mσΨD · nσK , ∀K ∈M,

divK∗ΨD =
1

mK∗

∑
Dσ,σ∗∈DK∗

mσ∗ΨD · nσ∗K∗ , ∀K∗ ∈M∗,

divK∗ΨD =
1

mK∗

( ∑
Dσ,σ∗∈DK∗

mσ∗ΨD · nσ∗K∗ +
∑

Dσ,σ∗∈DK∗∩∂Ω

mσ∗

2
ΨD · nσ∗K∗

)
, ∀K∗ ∈ ∂M∗.

4.2.3 Approximation spaces

This subsection is devoted to describing the discrete spaces together with some related notations.
First, a DDFV mesh is composed of three different partitions. Let us therefore define the discrete
functions on these meshes.

(i) We will denote uM (resp. uM∗) the first (resp. second) reconstruction on the primal (resp.
dual) mesh, which is a piecewise constant function defined as

uM =
∑
K∈M

uK1K , uM∗ =
∑

K∗∈M∗
uK∗1K∗ .

where 1K is the characteristic function of K. We then define the discrete function uh of L1(Ω)
as follows:

uh =
1

2

(
uM + uM∗

)
.

We henceforth denote XT the set of all these functions uh.

(ii) The third reconstruction uD concerns the diamond mesh. It is about piecewise constant
functions of the form uD :=

∑
D∈D

uD1D for a given vector (uD)D∈D. The set of all these

functions will be denoted by XD.

As a consequence, the approximation spaces read:

XT ,δt =
{
uh,δt ∈ L1(QT) : uh,δt(x, t) = un+1

h (x) / uh ∈ XT , ∀t ∈ (tn, tn+1], ∀n = 0, · · · , N − 1
}

XD,δt =
{
u

D,δt
∈ L1(QT) : u

D,δt
(x, t) = un+1

D (x) / uD ∈ XD, ∀t ∈ (tn, tn+1], ∀n = 0, · · · , N − 1
}
.

For each uh,δt ∈ XT ,δt, its gradient ∇Duh,δt ∈ XD,δt ×XD,δt is written by

∇Duh,δt(x, t) = ∇Dun+1
h (x) := ∇Dun+1

T (x), ∀t ∈ (tn, tn+1], ∀n = 0, · · · , N − 1.
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As for uh,δt ∈ XT ,δt, we take

u
M,δt

(x, t) = un+1
M (x), u

M∗,δt
(x, t) = un+1

M∗
(x) ∀t ∈ (tn, tn+1], ∀n = 0, · · · , N − 1.

Let us now consider a nonlinear function F : R −→ R. We will denote by Fh,δt the mean value of
F (u

M,δt
) and F (u

M∗,δt
):

Fh,δt =
1

2

(
F (u

M,δt
) + F (u

M∗,δt
)
)
.

We next equip the finite dimensional space XT with the norm |·|p,T . For every uh ∈ XT , we define

|uh|p,T =



(
1
2

∑
K∈M

mK |uK |p + 1
2

∑
K∗∈M∗

mK∗ |uK∗ |p
)1/p

if 1 ≤ p < +∞

max
(

max
K∈M

|uK |, max
K∗∈M∗

|uK∗ |
)

if p = +∞

.

This leads us to consider the discrete Sobolev norm as

‖uh‖1,p,T =


(
|uh|pp,T +

∥∥∇Duh
∥∥p
p

)1/p
if 1 ≤ p < +∞

|uh|∞,T +
∥∥∇Duh

∥∥
∞ if p = +∞

,

where the norm of the discrete gradient is∥∥∥∇Duh

∥∥∥p
p

=
∑
D∈D

mD
∣∣∇Duh∣∣p , ∀1 ≤ p < +∞, and

∥∥∥∇Duh

∥∥∥
∞

= max
D∈D

∣∣∇Duh∣∣ .
Observe that ∥∥∥∇Duh

∥∥∥2

2
=
∑
D∈D

δDuT · ADδDuT .

Finally we can also give the discrete counterpart of the Lq(0,T;W 1,p(Ω))-norm

‖uh,δt‖q;1,p,T =


( N∑
n=1

δt ‖unh‖
q
1,p,T

)1/q
if 1 ≤ p, q < +∞

max
n=1,··· ,N

‖unh‖1,∞,T if p = q = +∞

.

4.3 Numerical scheme

Belonging to the family of finite volume methods, the DDFV scheme is basically obtained by in-
tegrating the first equation of (4.1.1) over M×]tn, tn+1], where M is a primal or an internal dual
cell. Performing Green’s formula yields the balance equation. Then the resulting fluxes are approx-
imated by introducing the definition of the discrete gradient and that of the numerical flux function.

For the convenience of the reader, we briefly look at the discretization of (4.1.1) on the primal
mesh and it is deduced similarly in the case of the dual mesh. So, let n ∈ {0, . . . , N − 1} and K be
a primal control volume. Then, one gets∫ tn+1

tn

∫
K
∂tu dx dt−

∑
σ∈EK

∫ tn+1

tn

∫
σ
f(u) Λ∇u · nσK dσ dt = 0. (4.3.1)
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The evolution term is approximated thanks to the Euler scheme∫ tn+1

tn

∫
K
∂tu dx dt ≈ mK

(
un+1
K − unK

)
, (4.3.2)

where umK is the mean value of u(., tm) over K for m = n, n + 1. Concerning the diffusion part, it
is discretized as follows

−
∫ tn+1

tn

∫
σ
f(u)Λ∇u · nσK dσ dt ≈ δt

(
aKL(F (un+1

K )− F (un+1
L )) + vn+1

KL η
D
σσ∗(ξ(u

n+1
K∗ )− ξ(un+1

L∗ ))

)
where F (resp. ξ) is the Kirchoff (resp. semi-Kirchoff) function and vn+1

KL is an upstream approxi-

mation of v(u) :=
√
f(u) on the primal edge σ. We next provide a central formula concerning the

constructions of vn+1
KL . This consists of considering the Engquist-Osher scheme [107], which reads

vn+1
KL =

{
v↓(u

n+1
L ) + v↑(u

n+1
K ) if ηDσσ∗ (ξn+1

K∗ − ξ
n+1
L∗ ) ≥ 0

v↓(u
n+1
K ) + v↑(u

n+1
L ) else ,

(4.3.3)

where the functions v↓, v↑ are given by

v↑(u) :=

∫ u

0

(
v′(s)

)+
ds, v↓(u) := −

∫ u

0

(
v′(s)

)−
ds,

and x+ = max(x, 0), x− = max(−x, 0) for all x ∈ R. This convention will be adopted hereafter. In
light of hypothesis (A2), the functions v↑, v↓ exist.

We wish to emphasize that one can rewrite the quantity vn+1
KL η

D
σσ∗(ξ

n+1
K∗ − ξ

n+1
L∗ ) thanks to a

numerical flux function G as follows

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u)) = vn+1

KL η
D
σσ∗(ξ

n+1
K∗ − ξ

n+1
L∗ ).

We recall that a function G of arguments (a, b, c) ∈ R3 is said to be a numerical flux if the assertions
below are satisfied:

(H1) G(·, b, c) is nondecreasing and continuous for all b, c ∈ R,
and G(a, ·, c) is nonincreasing and continuous for all a, c ∈ R;

(H2) G(a, b, c) = −G(a, b,−c) for all a, b, c ∈ R;

(H3) G(a, a, c) = v(a)c for all a, c ∈ R.

(4.3.4)

As stressed in [11, 46], we require a penalization operator, which is crucial to pass to the limit
in the scheme. This penalty term permits to check that the approximate solution on the primal
mesh and the dual mesh tend to the same limit. It will be also a key point in our study for the
convergence of the diffusive term. To this purpose, let ε ∈]0, 2[ and uT ∈ R#T . The penalization
PT is a map from R#T to R#T defined, for all uT , by

PT uT =
(
PMuT ,PM∗uT ,P∂M

∗
uT

)
,

where PMuT = (PKuT )K∈M, PM∗uT = (PK∗uT )K∗∈M∗ , P∂M∗uT = (PK∗uT )K∗∈∂M∗ such that

PKuT =
1

mK

1

hεD

∑
K∗∈M∗

mK∩K∗
(
F (uK)− F (uK∗)

)
, ∀ K ∈M, (4.3.5)

PK∗uT =
1

mK∗

1

hεD

∑
K∈M

mK∩K∗
(
F (uK∗)− F (uK)

)
, ∀ K∗ ∈M∗. (4.3.6)
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Owing to the homogeneous Dirichlet boundary condition, one sets PK∗uT = 0 ∀ K∗ ∈ ∂M∗.
Based on the elementary inequality

(F (a)− F (b))(a− b) ≥ (ξ(a)− ξ(b))2, ∀a, b ∈ R, (4.3.7)

one can check that

JPuT , uT KT =
1

2

1

hεD

∑
K∗∈M∗

∑
K∈M

mK∩K∗ (F (uK)− F (uK∗))(uK − uK∗)

≥ 1

2

1

hεD

∥∥ξ(uM)− ξ(uM∗)
∥∥2

L2(Ω)
. (4.3.8)

Thanks to the DDFV discretization, an approximate solution for the problem (4.1.1) is defined
as a function uh,δt ∈ XT ,δt satisfying the set of equations:

u0
M =

1

mM

∫
M
u0(x) dx, ∀M ∈ T , (4.3.9)

mK

δt

(
un+1
K − unK

)
+

∑
Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) +G(un+1

K , un+1
L ; ηDσσ∗δ

n+1
L∗K∗ξ(u))

)
+ γ PKun+1

T = 0, ∀K ∈M, n ≥ 0, (4.3.10)
mK∗

δt

(
un+1
K∗ − u

n
K∗

)
+

∑
Dσ,σ∗∈DK∗

(
aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ ) +G(un+1

K∗ , u
n+1
L∗ ; ηDσσ∗δ

n+1
LK ξ(u))

)
+ γ PK∗un+1

T = 0, ∀K∗ ∈M∗, n ≥ 0. (4.3.11)

The coefficient γ is a positive parameter. Let us next check that G is well-defined. This is the
object of the following result.

Lemma 4.3.1. The numerical flux function G is well-defined, meaning that assertions (H1), (H2)
and (H3) of (4.3.4) are fulfilled.

Proof. Observe that items (H1), (H3) of (4.3.4) are direct consequences of the expression of vn+1
KL

given in (4.3.3) and the assumption (A2). It remains to check that the assertion (H2) holds. To
this end, we first point out that the discrete gradient on a fixed diamond, which we recall below, is
uniquely defined

∇DuT =
1

sin(αD)

(uL − uK
mσ∗

nσK +
uL∗ − uK∗

mσ
nσ∗K∗

)
.

In other words, we associate to the primal interface σ = K|L a unique dual interface σ = K∗|L∗.
Now if we permute K,L then K∗, L∗ are automatically permuted, but the coefficient ηDσσ∗ keeps
the same sign. In particular, this asserts that ηDσσ∗ = ηDσ∗σ. Accordingly

ηDσσ∗
(
ξn+1
K∗ − ξ

n+1
L∗

)
= − ηDσσ∗

(
ξn+1
L∗ − ξ

n+1
K∗

)
.

According to this identity and the definition of vn+1
KL introduced in (4.3.3), one finds

vn+1
KL = vn+1

LK .

122



Hence
G
(
un+1
K , un+1

L , ηDσσ∗(ξ
n+1
K∗ − ξ

n+1
L∗ )

)
= − G

(
un+1
L , un+1

K , ηDσσ∗(ξ
n+1
L∗ − ξ

n+1
K∗ )

)
.

Remark 4.3.1. In the case where Λ = Id, the coefficient ηDσσ∗ measures the flatting of the diamond
cells. In particular, if ηDσσ∗ ≡ 0 for all D, meaning that the mesh is orthogonal [69], the above
discretization reduces to the pioneer TPFA (Two-Point Flux Approximation) scheme for the problem
(4.1.1) on the primal mesh and on the dual mesh separately. Its convergence analysis can be found
in [71].

Remark 4.3.2. Let us fix the penalty coefficient to γ = 0. According to Lemma 4.3.1, the above
numerical scheme is locally conservative i.e. there exists a unique discrete flux Jn+1

D such that the
following relationship holds

Jun+1
T − unT + δtdivT Jn+1

D , ψT KT = 0, ∀ψT ∈ R#T and n ≥ 0. (4.3.12)

Indeed, the function Jn+1
D = (Jn+1

D )D∈D is defined via its two projections with respect to the primal
and dual units normals. In other words, it is sufficient to set

Jn+1
D · nσK =

1

mσ

(
aKL (Fn+1

K − Fn+1
L ) +G(un+1

K , un+1
L ; ηDσσ∗δ

n+1
L∗K∗ξ(u))

)
,

Jn+1
D · nσ∗K∗ =

1

mσ∗

(
aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ ) +G∗(un+1

K∗ , u
n+1
L∗ ; ηDσσ∗δ

n+1
LK ξ(u))

)
.

As a consequence, Jn+1
D is expressed in a unique way thanks to the crucial identity [11]

sin(αD)Jn+1
D = (Jn+1

D · nσK)τK,L + (Jn+1
D · nσ∗K∗)τK∗,L∗ .

Finally, (4.3.12) stems from the definition of the discrete divergence given above and that of the
scheme.

4.4 L∞ bounds and a priori estimates

In this section, we show that any solution to the equations of the proposed scheme verifies a L∞

bound. In addition, some a priori estimates are derived on the discrete gradient of the Kirchoff
function. These materials are of importance to prove the convergence.

4.4.1 Boundedness of discrete solutions

Lemma 4.4.1. For each fixed integer 0 ≤ n ≤ N − 1, let (un+1
T ) be a vector of R#T such that the

DDFV scheme (4.3.9)-(4.3.11) holds. Then, un+1
M , un+1

M∗ belong to [0, 1].

Proof. The proof is carried out by induction on n. Fix n ∈ {0, · · · , N − 1}. Let us assume that the
claim is true for unM, u

n
M∗ and check that it is so for un+1

M , un+1
M∗ . To this purpose, we perform the

proof in two steps .

Step 1 : We consider un+1
K = min

L∈M
(un+1
L ). Multiplying (4.3.10) by −(un+1

K )− yields

− mK

δt

(
un+1
K − unK

)
(un+1
K )− −

∑
Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) + G(un+1

K , un+1
L ; ηDσσ∗δ

n+1
L∗K∗ξ(u))

)
(un+1
K )−

− γ PKun+1
T (un+1

K )− = 0.
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Since F is a nondecreasing function, we obtain aKL (Fn+1
K − Fn+1

L ) ≤ 0. Furthermore

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u))(un+1

K )− ≤ 0.

Indeed, if 0 ≤ un+1
K then (un+1

K )− = 0. Otherwise, we use the fact that the numerical flux function
is nonincreasing with respect to the second argument and that it is consistent

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u))(un+1

K )− ≤ G
(
un+1
K , un+1

K ; ηDσσ∗δ
n+1
K∗L∗ξ(u)

)
(un+1
K )−

= v(un+1
K )ηDσσ∗δ

n+1
L∗K∗ξ(u)(un+1

K )− = 0.

The previous equality holds thanks to the degeneracy of the function v on ] −∞, 0]. Let us next
demonstrate that

− PKun+1
T (un+1

K )− ≥ 0. (4.4.1)

It follows from the definition of the penalization term highlighted in (4.3.5) that

−PKun+1
T (un+1

K )− =
1

mK

1

hεD

∑
K∗∈M∗

mK∩K∗
(
− F (un+1

K )(un+1
K )− + F (un+1

K∗ )(un+1
K )−

)
=

1

mK

1

hεD

∑
K∗∈M∗

mK∩K∗F (un+1
K∗ )(un+1

K )−,

where F (un+1
K )(un+1

K )− = 0. Since F (un+1
K∗ ) ≥ 0, regardless the sign of un+1

K∗ , inequality (4.4.1)
holds. Whence

−
(
un+1
K − unK

)
(un+1
K )− =

∣∣(un+1
K )−

∣∣ 2 + (un+1
K )−unK ≤ 0,

which implies, using the induction assumption, that (un+1
K )− = 0. Hence, un+1

K ≥ 0.

Step 2 : We here switch the role of the control volume K and take now un+1
K = max

L∈M
(un+1
L ).

Multiplying (4.3.10) by (un+1
K − 1)+ gives

mK

δt

(
un+1
K − unK

)
(un+1
K − 1)+

+
∑

Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) + G(un+1

K , un+1
L ; ηDσσ∗δ

n+1
L∗K∗ξ(u))

)
(un+1
K − 1)+

+ γ PKun+1
T (un+1

K − 1)+ = 0.

It is now evident that aKL (Fn+1
K − Fn+1

L )(un+1
K − 1)+ ≥ 0. Next, let us establish

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u))(un+1

K − 1)+ ≥ 0.

So, if un+1
K ≤ 1 then (un+1

K − 1)+ = 0. Otherwise, un+1
K ≥ 1, we utilize once again the consistency

of G and the fact that it is decreasing with respect to the second variable. Therefore

G(un+1
K , un+1

L ; ηDσσ∗δ
n+1
L∗K∗ξ(u))(un+1

K − 1)+ ≥ G
(
un+1
K , un+1

K ; ηDσσ∗δ
n+1
K∗L∗ξ(u)

)
(un+1
K − 1)+

= v(un+1
K )ηDσσ∗δ

n+1
L∗K∗ξ(u)(un+1

K − 1)+ = 0.

Let us show that PKun+1
T (un+1

K − 1)+ ≥ 0. We first observe that

PKun+1
T (un+1

K − 1)+ =
1

mK

1

hεD

∑
K∗∈M∗

mK∩K∗
(
F (un+1

K )− F (1) + F (1)− F (un+1
K∗ )

)
(un+1
K − 1)+.
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On the one hand, (F (un+1
K ) − F (1))(un+1

K − 1)+ = 0 for every un+1
K ≥ 0. On the other hand,

F (1)− F (un+1
K∗ ) ≥ 0 for all un+1

K∗ ∈ R. Thus, PKun+1
T (un+1

K − 1)+ ≥ 0. Utilizing now the identity(
un+1
K − unK

)
(un+1
K − 1)+ = (un+1

K − 1)+2
+ (un+1

K − 1)+(1− unK),

we deduce that (un+1
K − 1)+ = 0, which yields un+1

K ≤ 1.

Similarly, we mimic the same steps so that we prove the property in the case of the dual mesh.
Hence, the proof of the Lemma is concluded.

Remark 4.4.1. The degeneracy of the function v and the flux splitting scheme (4.3.3) enforce the
boundedness of the discrete solution. Also, this particular approach ensures the coercivity of the
discrete elliptic operator. One can notice that the Godunov scheme [69] does not fulfill this latter
property.

In the sequel, we will denote by C different constants in various occurrences, which depend
only on the physical data together with the regularity of the mesh and are independent of the
discretization parameters δt, hD.

4.4.2 Estimates on the discrete gradients

We first recall the following remarkable formula.

Lemma 4.4.2. (Discrete integration by parts) Let M be a primal or dual mesh of the domain Ω.
For every K ∈M, we denote by N(K) the set of neighbors of K. Let AKL, K ∈M and L ∈ N(K)
be a real value with AKL = −ALK , and let ϕ be a piecewise constant function on the cells of M.
Then ∑

K∈M

∑
L∈N(K)

AKLϕK = −1

2

∑
K∈M

∑
L∈N(K)

AKL(ϕL − ϕK).

Particularly, if AKL = TKL(cL − cK), with TKL = TLK , one infers∑
K∈M

∑
L∈N(K)

TKL(cL − cK)ϕK = −1

2

∑
K∈M

∑
L∈N(K)

TKL(cL − cK)(ϕL − ϕK).

Proof. The proof of this lemma is omitted since it is similar to that given in [23].

We next refer to [24, 69] for the proof of the following fundamental inequality.

Lemma 4.4.3. (The discrete Poincaré inequality) Consider T a mesh of Ω. Then there exists a
constant Cp, only depending on the diameter of Ω, such that for every wh ∈ XT one has

|wh|22,T ≤
1

2
‖wM‖2L2(Ω) +

1

2

∥∥wM∗

∥∥2

L2(Ω)
≤ Cp

∥∥∥∇Dwh

∥∥∥2

2
.

Proposition 4.4.1. (The discrete gradient estimate) Let (unT ) be in R#T , for n = 0, . . . , N , such
that the DDFV scheme (4.3.9)-(4.3.11) holds. Then

N−1∑
n=0

δt
∥∥∥∇Dξn+1

h

∥∥∥2

2
+

γ

hεD

N−1∑
n=0

δt
∥∥∥ξ(un+1

M )− ξ(un+1
M∗

)
∥∥∥2

L2(Ω)
≤ C, (4.4.2)

for some appropriate positive constant C.
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Proof. We multiply the first (resp. second) equation of the DDFV scheme (4.3.10)-(4.3.11) by un+1
K

(resp. un+1
K∗ ) and sum up over all the primal (resp. dual) cells and the integers n. Adding together

the resulting equations leads to
T1 + T2 + T3 = 0,

where we have set

T1 =
N−1∑
n=0

∑
K∈M

mK(un+1
K − unK)un+1

K +
N−1∑
n=0

∑
K∗∈M∗

mK∗(u
n+1
K∗ − u

n
K∗)u

n+1
K∗ ,

T2 =
N−1∑
n=0

δt
∑
K∈M

∑
Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) + vn+1

KL ηDσσ∗ (ξn+1
K∗ − ξ

n+1
L∗ )

)
un+1
K

+
N−1∑
n=0

δt
∑

K∗∈M∗

∑
Dσ,σ∗∈DK∗

(
aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ ) + vn+1

K∗L∗ η
D
σσ∗ (ξn+1

K − ξn+1
L )

)
un+1
K∗ ,

T3 =2
N−1∑
n=0

δt γ JPun+1
T , un+1

T KT .

First of all, observe that

x(x− y) ≥ 1

2
(x2 − y2), ∀x, y ∈ R.

According to the above inequality, one can underestimate T1

1

2

∑
K∈M

mK

(
(uNK)2 − (u0

K)2
)

+
1

2

∑
K∗∈M∗

mK∗

(
(uNK∗)

2 − (u0
K∗)

2
)
≤ T1. (4.4.3)

Let us now turn our attention to the term T2. To this end, we perform a discrete integration by
parts as given in Lemma 4.4.2 to obtain

T2 = T21 + T22,

with

T21 =
N−1∑
n=0

δt
∑
D∈D

(
aKL (Fn+1

K − Fn+1
L )(un+1

K − un+1
L ) + aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ )(un+1

K∗ − u
n+1
L∗ )

)
,

T22 =
N−1∑
n=0

δt
∑
D∈D

(
vn+1
KL ηDσσ∗ (ξn+1

K∗ − ξ
n+1
L∗ )(un+1

K − un+1
L ) + vn+1

K∗L∗ η
D
σσ∗ (ξn+1

K − ξn+1
L )(un+1

K∗ − u
n+1
L∗ )

)
.

The practical inequality (4.3.7) implies that

T21 ≥
N−1∑
n=0

δt
∑
D∈D

aKL (ξn+1
K − ξn+1

L )2 +
N−1∑
n=0

δt
∑
D∈D

aK∗L∗ (ξn+1
K∗ − ξ

n+1
L∗ )2.

Thanks to the monotonicity of the functions v↑, v↓ and the definition of vn+1
KL , we find

vn+1
KL

(
un+1
K − un+1

L

)
ηDσσ∗

(
ξn+1
K∗ − ξ

n+1
L∗

)
≥ ηDσσ∗

(
ξn+1
K − ξn+1

L

)(
ξn+1
K∗ − ξ

n+1
L∗

)
.
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Similarly

vn+1
K∗L∗

(
un+1
K∗ − u

n+1
L∗

)
ηDσσ∗

(
ξn+1
K − ξn+1

L

)
≥ ηDσσ∗

(
ξn+1
K − ξn+1

L

)(
ξn+1
K∗ − ξ

n+1
L∗

)
.

As a result we get

T22 ≥ 2
N−1∑
n=0

δt
∑
D∈D

ηDσσ∗
(
ξn+1
K − ξn+1

L

)(
ξn+1
K∗ − ξ

n+1
L∗

)
.

We deduce that

T2 ≥
N−1∑
n=0

δt
(
∇Dξn+1

h ,∇Dξn+1
h

)
D,Λ

. (4.4.4)

In view of the relationship (4.2.1) and Lemma A.0.1 we assert

T2 ≥ C
N−1∑
n=0

δt
∥∥∇Dξn+1

h

∥∥2

2
,

for some constant C > 0. Next, owing to (4.3.8), we write

T3 ≥
γ

hεD

N−1∑
n=0

δt
∥∥∥ξ(un+1

M )− ξ(un+1
M∗

)
∥∥∥2

L2(Ω)
. (4.4.5)

Combining(4.4.3)-(4.4.5), the energy estimate (4.4.2) follows as required.

Corollary 4.4.1. From the previous proposition, one gets

N−1∑
n=0

δt
∥∥∥∇DFn+1

h

∥∥∥2

2
≤ C,

Proof. This result is a direct consequence of Lemma A.0.1 together with inequality (4.4.2). It is
sufficient to observe that

F (a)− F (b) = v(x0)
(
ξ(a)− ξ(b)

)
,

for some x0 ∈ [min(a, b),max(a, b)] and notice that the function v is bounded.

4.5 Existence of discrete solutions

In this section, we prove that the nonlinear algebraic system, which comes from the DDFV scheme,
admits a solution. To this end, we will need the following fundamental lemma, that can be found
in [65]. This result ensures the existence of at least one zero of some specific vector fields.

Lemma 4.5.1. Let A be a finite dimensional Hilbert space with inner product (·, ·) and norm || · ||,
and let L be a continuous mapping from A into itself which verifies

(L(x), x) > 0, for ||x|| = r > 0.

Then, there exists x∗ ∈ A with ||x∗|| < r such that

L(x∗) = 0.

127



We now state the existence result in the proposition below.

Proposition 4.5.1. The DDFV scheme (4.3.9)-(4.3.11) has at least one solution un+1
T for every

n = 0, . . . , N − 1.

Proof. We proceed by induction on n. We then assume that unT is given and prove the existence
of un+1

T satisfying the numerical scheme (4.3.10)-(4.3.11). To this purpose, we define the mapping
L : R#T −→ R#T that associates for each un+1

T the vector :

L(un+1
T ) =

(
LM
)
M∈T

,

where

LK =
mK

δt
(un+1
K − unK)

+
∑

Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) + vn+1

KL ηDσσ∗ (ξn+1
K∗ − ξ

n+1
L∗ )

)
+ γ PKun+1

T , if M = K ∈M,

LK∗ =
mK∗

δt
(un+1
K∗ − u

n
K∗)

+
∑

Dσ,σ∗∈DK∗

(
aK∗L∗ (Fn+1

K∗ − F
n+1
L∗ ) + vn+1

KL ηDσσ∗ (ξn+1
K − ξn+1

L )
)

+ γ PK∗un+1
T , if M = K∗ ∈M∗,

LK∗ = 0, if M = K∗ ∈ ∂M∗.

The functional L is well-defined and continuous. It remains to demonstrate that(
L(un+1

T ), un+1
T

)
> 0, for ||un+1

T ||R#T = r, (4.5.1)

for some sufficiently large r. It follows from the calculation of the previous section, Lemma 4.4.1
and the Poincaré inequality given in Lemma 4.4.3 that(

L(un+1
T ), un+1

T

)
≥ 1

δt

∑
K∈M

mK

(
(un+1
K )2 − (unK)2

)
+

1

δt

∑
K∗∈M∗

mK∗

(
(un+1
K∗ )2 − (unK∗)

2
)

+ C
∥∥∇Dξn+1

h

∥∥2

2

≥ C ′
∣∣un+1
h

∣∣2
2,T −

2 |Ω|
δt

,

for some constants C,C ′ > 0. Thanks to the equivalence of the usual norms || · ||R#T ,|·|2,T on the

finite dimensional space R#T , inequality (4.5.1) is fulfilled provided a large r. We therefore obtain
the existence of at least one solution to the DDFV scheme (4.3.9)-(4.3.11).

4.6 Convergence

We first give some standard compactness properties. Their proofs follow similar arguments as, for
instance, in [11, 69].

Lemma 4.6.1. (Space Translates)
Let uh,δt be a discrete solution to the DDFV scheme (4.3.10)-(4.3.11). Then∫ T

0

∫
Ω′
|ξh,δt(x+ y, t)− ξh,δt(x, t)|dx dt ≤ ω(|y|), for every y ∈ R2, (4.6.1)

where Ω′ = {x ∈ Ω / x+ y ∈ Ω} and ω is a modulus of continuity independent of δt, hD, verifying
ω(|y|) −→ 0 as |y| −→ 0.
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Proof. The proof of this claim is made in the case of the primal mesh and it is similar for the dual
mesh, i.e. it is sufficient to prove that∫ T

0

∫
Ω′
|ξ(uM,δt(x+ y, t))− ξ(uM,δt(x, t))| dx dt ≤ ω(|y|), for every y ∈ R2. (4.6.2)

Now, for every x, y ∈ R2 and σ = K|L, we define the characteristic function χσ as

χσ(x, y) =

{
1, if [x, x+ y] ∩ σ 6= ∅,
0, else.

We know that

∫
Ω′
χσ(x, y) dx ≤ mσ |y| (see [69] for more details). As a consequence, since we have

|ξ(uM,δt(x+ y, t))− ξ(uM,δt(x, t))| ≤
∑

σ=K|L

χσ(x, y)
∣∣ξn+1
L − ξn+1

K

∣∣ ,
this gives ∫

Ω′
|ξ(uM,δt(x+ y, t))− ξ(uM,δt(x, t))| dx ≤ |y|

∑
σ=K|L

mσ

∣∣ξn+1
L − ξn+1

K

∣∣
≤ C |y|

∑
Dσ,σ∗∈D

mD

∣∣∣∣∣ξn+1
L − ξn+1

K

mσ∗

∣∣∣∣∣
for some appropriate C depending on the regularity of the mesh. On the other hand, we have∣∣∣∣∣ξn+1

L − ξn+1
K

mσ∗

∣∣∣∣∣ ≤ ∣∣∇Dξn+1
h

∣∣ .
As a result of the Cauchy-Schwarz inequality and the energy estimate (4.4.2), one infers∫ T

0

∫
Ω′
|ξ(uM,δt(x+ y, t))− ξ(uM,δt(x, t))| dx dt ≤ C |y| .

This completes the proof.

Lemma 4.6.2. (Time translates)
Let uh,δt be a solution to the DDFV scheme (4.3.9)-(4.3.11). Then there exists a constant C that
does not depend on hD nor on δt such that∫ T−τ

0

∫
Ω

∣∣∣ξ(uM,δt
(x, t+ τ))− ξ(u

M,δt
(x, t))

∣∣∣2 dx dt

+

∫ T−τ

0

∫
Ω

∣∣∣ξ(u
M∗,δt

(x, t+ τ))− ξ(u
M∗,δt

(x, t))
∣∣∣2 dx dt ≤ C (τ + δt), (4.6.3)

for all τ ∈ (0,T).
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Proof. The proof follows the main steps of [69, Lemma 4.6]. We will provide the proof of the first
integral in (4.6.3) and that of the second one is proved in a similar way. To begin with, let τ ∈ (0,T)
and t ∈ (0,T− τ). We set

A =

∫ T−τ

0

∫
Ω

∣∣∣ξ(uM,δt
(x, t+ τ))− ξ(u

M,δt
(x, t))

∣∣∣2 dx.

We next define n0(t) ∈ {0, · · · , N − 1} such that tn0(t) < t ≤ tn0(t) + 1 and n1(t) ∈ {0, · · · , N − 1}
such that tn1(t) < t+ τ ≤ tn1(t) + 1. One then can rewrite A as follows

A =

∫ T−τ

0

∑
K∈M

mK

∣∣∣ξ(un1(t)
K )− ξ(un0(t)

K )
∣∣∣2

≤ C
∫ T−τ

0

∑
K∈M

((
ξ(u

n1(t)
K )− ξ(un0(t)

K )
)
×

∑
t≤nδt<t+τ

mK

(
un+1
K − unK

))
dt,

for some constant C > 0 depending only on ξ. In light of the definition of the DDFV scheme, one
gets

A ≤ L
∫ T−τ

0

∑
K∈M

(
ξ(u

n1(t)
K )− ξ(un0(t)

K )
)

×
∑

t≤nδt<t+τ
δt

(
−

∑
Dσ,σ∗∈DK

(
aKL (Fn+1

K − Fn+1
L ) + vn+1

KL ηDσσ∗ (ξn+1
K∗ − ξ

n+1
L∗ )

)
+ γ PKun+1

T

)
dt.

Applying the integration by parts and the first mean value theorem ensures the existence of a
positive constant C that depends only on the regularity of the mesh, ξ, ‖ξ′‖∞ and on Λ with

A ≤ C
∫ T−τ

0

∑
t≤nδt<t+τ

δt
∑
D∈D

( ∣∣ξn+1
K − ξn+1

L

∣∣ ∣∣∣ξ(un1(t)
K )− ξ(un1(t)

L )
∣∣∣

+
∣∣ξn+1
K − ξn+1

L

∣∣ ∣∣∣ξ(un0(t)
L )− ξ(un0(t)

K )
∣∣∣

+
∣∣ξn+1
K∗ − ξ

n+1
L∗

∣∣ ∣∣∣ξ(un1(t)
K )− ξ(un1(t)

L )
∣∣∣

+
∣∣ξn+1
L∗ − ξ

n+1
K∗

∣∣ ∣∣∣ξ(un0(t)
L )− ξ(un0(t)

K )
∣∣∣ ) dt

− γ
∫ T−τ

0

∑
t≤nδt<t+τ

δt
∑
K∈M

(
ξ(u

n1(t)
K )− ξ(un0(t)

K )
)
PKun+1

T dt.

Let us now introduce the characteristic function β which is defined by (see [69])

β(n, t) =

{
1 if t ≤ (n+ 1)δt < t+ τ

0 otherwise
,

Using the elementary inequality ab ≤ 1
2a

2 + 1
2b

2 in the previous estimate leads to

A ≤ C

2

(
E1 + E2 + E3 + E4

)
+ E5
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where we have obtained

E1 =

N−1∑
n=0

δt

∫ T−τ

0
β(n, t)

∑
D∈D

(
ξn+1
K − ξn+1

L

)2
dt,

E2 =
N−1∑
n=0

δt

∫ T−τ

0
β(n, t)

∑
D∈D

(
ξ(u

n1(t)
K )− ξ(un1(t)

L )
)2

dt,

E3 =

N−1∑
n=0

δt

∫ T−τ

0
β(n, t)

∑
D∈D

(
ξ(u

n0(t)
K )− ξ(un0(t)

L )
)2

dt,

E4 =
N−1∑
n=0

δt

∫ T−τ

0
β(n, t)

∑
D∈D

(
ξn+1
K∗ − ξ

n+1
L∗

)2
dt,

E5 = −γ
N−1∑
n=0

δt

∫ T−τ

0
β(n, t)

∑
K∈M

(
ξ(u

n1(t)
K )− ξ(un0(t)

K )
)
PKun+1

T dt.

On the other hand, observe that

∑
D∈D

(
ξn+1
K − ξn+1

L

)2
≤ C1

∑
D∈D

mD

∣∣∣∣∣ξn+1
K − ξn+1

L

mσ∗

∣∣∣∣∣
2

≤ C1

∑
D∈D

mD
∣∣∇Dξn+1

h

∣∣2 ,
where C1 > 0 depends only on the regularity of the mesh. By virtue of the energy estimate

(4.4.2) and since

∫ T−τ

0
β(n, t) ≤ τ , there exists an appropriate constant C such that E1 ≤ Cτ and

E4 ≤ Cτ . Next, following [69, Lemma 4.6], one claims that

E2 ≤ C1

N−1∑
m=0

∫ tm+1

tm
δt

N−1∑
n=0

β(n, t)
∑
D∈D

mD
∣∣∇Dξmh ∣∣2 dt ≤ Cτ.

In an analogous way, one has E3 ≤ Cτ. Finally, to treat E5, we use the maximum principle and
the estimate (4.4.2) to get that E5 ≤ Cτ. Hence, the proof of the lemma is concluded.

We now claim a weak convergence of the discrete gradient and a strong convergence of uh,δt.

Proposition 4.6.1. Let (Th)h be a sequence of DDFV meshes such that hD, δt tend to zero and
reg(Th) is bounded. Then, the following convergences hold up to a subsequence:

uh,δt, uMh,δt, uM∗h,δt −→ u a.e. in QT, (4.6.4)

∇DFh,δt −→ ∇F (u) weakly in L2(QT)2. (4.6.5)

Moreover

0 ≤ u ≤ 1 a.e. in QT. (4.6.6)

Proof. Thanks to Kolmogorov’s compactness theorem [30], the sequences ξ(uMh,δt), ξ(uM∗h,δt) are

relatively compact in L1(QT). This ensures the existence of unlabeled subsequences of ξ(uMh,δt), ξ(uM∗h,δt)
converging almost everywhere :

ξ(uMh,δt) −→ ξ1 a.e. in QT, and ξ(uM∗h,δt) −→ ξ2 a.e. in QT.
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Since ξ−1 is continuous, we deduce that

uMh,δt −→ u1 := ξ−1(ξ1) a.e. in QT, and uM∗h,δt −→ u2 := ξ−1(ξ2) a.e. in QT.

In light of Proposition 4.4.1, we assert∥∥∥ξ(uM,δt
)− ξ(u

M∗,δt
)
∥∥∥2

L2(QT)
≤ C hεD. (4.6.7)

Thus, up to unlabeled subsequence, we get

ξ(u
M,δt

)− ξ(u
M∗,δt

) −→ 0, a.e. in QT.

Therefore
u

M,δt
− u

M∗,δt
−→ 0, a.e. in QT.

We then verify that u1 = u2 := u. Consequently

uh,δt −→ u a.e. in QT, and ξh,δt −→ ξ(u) a.e. in QT.

Thanks to the L∞ bound given in Lemma 4.4.1, we deduce from Lebesgue’s dominated convergence
theorem that

lim
hD,δt→0

‖uh,δt − u‖L2(QT) = 0.

Thereby
lim

hD,δt→0
‖Fh,δt − F (u)‖L2(QT) = 0.

Next, thanks to Corollary 4.4.1, the sequence (∇DFh,δt) is bounded in (L2(QT))d. Let us
establish that

∇DFh,δt −→ ∇F (u) weakly in (L2(QT))d.

We first show that ∇F (u) = G is the sense of distribution. To do this, let ϕ ∈
(
C∞(Ω× [0,T])

)2
.

Due to the weak convergence of (∇DFh,δt) and the strong one of (Fh,δt), one can pass to the limit
in

ITh,δt :=

∫
QT

∇DFh,δt · ϕdx dt+

∫
QT

Fh,δt divϕdx dt

−→
∫
QT

G · ϕ dx dt+

∫
QT

F (u) div ϕdx dt.

The definition of the discrete gradient allows us to write

∫
QT

∇DFh,δt · ϕdx dt =

N−1∑
n=0

δt
∑
D∈D

mD∇DFh,δt · ϕn+1
D , (4.6.8)

where ϕn+1
D =

1

δt mD

∫ tn+1

tn

∫
D ϕdx dt. For every diamond D = Dσ,σ∗ , we introduce ϕn+1

σ , ϕn+1
σ∗ and

ϕ̃n+1
D as follows

ϕn+1
σ =

1

δt mσ

∫ tn+1

tn

∫
σ
ϕ(s, t) ds dt, ϕn+1

σ∗ =
1

δt mσ∗

∫ tn+1

tn

∫
σ∗
ϕ(s, t) ds dt,

ϕ̃n+1
D · nσK = ϕn+1

σ · nσK , ϕ̃n+1
D · nσ∗K∗ = ϕn+1

σ∗ · nσ∗K∗ .
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Note that ϕ̃n+1
D is uniquely defined. Thanks to the smoothness of ϕ, we derive the estimate∣∣ϕn+1

D − ϕ̃n+1
D
∣∣ ≤ 1

sin(αT )

( ∣∣ϕn+1
D − ϕn+1

σ

∣∣+
∣∣ϕn+1
D − ϕn+1

σ∗
∣∣ )

≤ 2 reg(Th) hD ‖∇ϕ‖L∞ . (4.6.9)

Now, the expression (4.6.8) becomes∫
QT

∇DFh,δt · ϕdx dt =
N−1∑
n=0

δt
∑
D∈D

mD∇DFn+1
h · ϕ̃n+1

D

+

N−1∑
n=0

δt
∑
D∈D

mD∇DFn+1
h · (ϕn+1

D − ϕ̃n+1
D )

=: ATh,δt +BTh,δt.

In addition, inequality (4.6.9) and the energy estimate (4.4.2) lead to

lim
hD,δt→0

BTh,δt = 0.

We next return to the definition of the discrete gradient. It implies

ATh,δt =
1

2

N−1∑
n=0

δt
∑
D∈D

mσmσ∗

(
Fn+1
L − Fn+1

K

mσ∗
nσK +

Fn+1
L∗ − F

n+1
K∗

mσ
nσ∗K∗ , ϕ̃

n+1
D

)

= −1

2

N−1∑
n=0

δt
∑
K∈M

Fn+1
K

∑
σ∈EK

mσ

(
ϕ̃n+1
D ,nσK

)

− 1

2

N−1∑
n=0

δt
∑

K∗∈M∗
Fn+1
K∗

∑
σ∗∈EK∗

mσ∗

(
ϕ̃n+1
D ,nσ∗K∗

)
,

where we used discrete integration by parts (4.4.2). By virtue of the expression of ϕ̃n+1
D , one gets

ATh,δt = −1

2

N−1∑
n=0

∑
K∈M

Fn+1
K

∑
σ∈EK

∫ tn+1

tn

∫
σ
ϕ(s) · nσK ds dt

− 1

2

N−1∑
n=0

∑
K∗∈M∗

Fn+1
K∗

∑
σ∗∈EK∗

∫ tn+1

tn

∫
σ∗
ϕ(s) · nσ∗K∗ ds dt.

Stokes formula entails

ATh,δt = −1

2

N−1∑
n=0

∑
K∈M

Fn+1
K

∫ tn+1

tn

∫
K

divϕdx dt

− 1

2

N−1∑
n=0

∑
K∗∈M∗

Fn+1
K∗

∫ tn+1

tn

∫
K∗

divϕdx dt

= −
∫
QT

Fh,δt divϕdx dt.

As a consequence
lim

hD,δt→0
ITh,δt = 0.

Thereby we proved that F (u) ∈ L2(0,T;H1
0 (Ω)) and ∇F (u) = G. This finishes up the proof.
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4.7 Passage to the limit

In this section we prove that any limit of the approximate solution sequence converges towards the
weak solution of the main problem.

Theorem 4.7.1. Under hypotheses (A1)–(A3) and assuming a uniform boundedness of the mesh
regularity, the limit function u of Proposition 4.6.1 is the weak solution to the problem (4.1.1) in
the sense of Definition 4.1.1.

Proof. Let ψ ∈ C∞c (Ω × [0,T)), we denote by ψn+1
K = ψ(xK , t

n+1) and ψn+1
K∗ = ψ(xK∗ , t

n+1). We
multiply the equations (4.3.10), (4.3.11) by 1

2δtψ
n+1
K , 1

2δt ψ
n+1
K∗ respectively, sum over K, K∗ and

n. Next, one performs an integration by parts, adds and substracts
N−1∑
n=0

δt
(
∇DFn+1

h ,∇Dψn+1
h

)
D,Λ

to get
S1
Th,δt

+ S2
Th,δt

+ S3
Th,δt

+ S4
Th,δt

= 0,

where

S1
Th,δt

=

N−1∑
n=0

Jun+1
Th − u

n
Th , ψ

n+1
Th KTh ,

S2
Th,δt

=

N−1∑
n=0

δt
(
∇DFn+1

h ,∇Dψn+1
h

)
D,Λ

=

∫
QT

Λ∇DFn+1
h · ∇Dψn+1

h dx dt,

S3
Th,δt

=
1

2

N−1∑
n=0

δt
∑
D∈Dh

ηDσσ∗

[
vn+1
KL

(
ξn+1
K∗ − ξ

n+1
L∗

)
−
(
Fn+1
K∗ − F

n+1
L∗

)](
ψn+1
K − ψn+1

L

)

+
1

2

N−1∑
n=0

δt
∑
D∈Dh

ηDσσ∗

[
vn+1
K∗L∗

(
ξn+1
K − ξn+1

L

)
−
(
Fn+1
K − Fn+1

L

)](
ψn+1
K∗ − ψ

n+1
L∗

)
,

S4
Th,δt

= γ
N−1∑
n=0

δt JPun+1
Th , ψn+1

Th KTh .

Let us start off by establishing

lim
hD,δt→0

S1
Th,δt

= −
∫

Ω
u0 ψ(·, 0) dx−

∫
QT

u ∂tψ dx dt.

Using a summation by parts in time and the fact that ψNK = ψNK∗ = 0, yields

S1
Th,δt

= −Ju0
Th , ψTh(·, 0)KTh −

N−1∑
n=0

Jun+1
Th , ψn+1

Th − ψ
n
ThKTh

=: S1,1
Th,δt

+ S1,2
Th,δt

.

Thanks to the strong convergence of (ψTh(·, 0)), one obtains

lim
hD,δt→0

S1,1
Th,δt

= −
∫

Ω
u0ψ(·, 0) dx.
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Expanding the term S1,2
Th,δt

entails

S1,2
Th,δt

= −
N−1∑
n=0

Jun+1
Th − ψ

n
ThKTh

= −1

2

N−1∑
n=0

∑
K∈M

mK

∫ tn+1

tn
un+1
K ∂tψ(xK , t) dx dt− 1

2

N−1∑
n=0

∑
K∗∈M∗

mK∗

∫ tn+1

tn
un+1
K∗ ∂tψ(xK∗ , t) dx dt.

Bearing in mind that (∂tψ(xK , ·))K∈M and (∂tψ(xK∗ , ·))K∗∈M∗ converge uniformly towards ∂tψ, we
apply the Lebesgue dominated convergence theorem to find

lim
hD,δt→0

S1,2
Th,δt

= −
∫
QT

u ∂tψ dx dt.

Let us next prove the convergence of the diffusion part. To do so, we recall that the sequence
(∇DFn+1

h ) converges weakly towards ∇F (u) whereas (Λ∇Dψn+1
h ) converges uniformly towards

Λ∇ψ. Thereby

lim
hD,δt→0

S2
Th,δt

=

∫
QT

Λ∇F (u) · ∇ψ dx dt.

Let us turn our attention to the convergence of S3
Th,δt

. This term can be split up into two parts as

follows
S3
Th,δt

= S3,1
Th,δt

+ S3,2
Th,δt

,

where we have set

S3,1
Th,δt

=
1

2

N−1∑
n=0

δt
∑
D∈Dh

ηDσσ∗

[
vn+1
KL

(
ξn+1
K∗ − ξ

n+1
L∗

)
−
(
Fn+1
K∗ − F

n+1
L∗

)](
ψn+1
K − ψn+1

L

)
,

S3,2
Th,δt

=
1

2

N−1∑
n=0

δt
∑
D∈Dh

ηDσσ∗

[
vn+1
K∗L∗

(
ξn+1
K − ξn+1

L

)
−
(
Fn+1
K − Fn+1

L

)](
ψn+1
K∗ − ψ

n+1
L∗

)
.

Next, the first mean value theorem guarantees the existence of a constant

uK∗L∗ ∈ [min(un+1
K∗ , u

n+1
L∗ ),max(un+1

K∗ , u
n+1
L∗ )]

satisfying

Fn+1
K∗ − F

n+1
L∗ = v(uK∗L∗)

(
ξn+1
K∗ − ξ

n+1
L∗

)
.

Thus, using assumption (A3) on the tensor Λ and the regularity of the mesh, we get

∣∣∣S3,1
Th,δt

∣∣∣ ≤ C N−1∑
n=0

δt
∑
D∈Dh

mD
∣∣vn+1
KL − v(uK∗L∗)

∣∣ ∣∣∇Dξh,δt∣∣ ∣∣∇Dψh,δt∣∣ .
for some constant C > 0. We set

ξ
n+1

D := max
M∈VD

{ξ(un+1
M )}, ξn+1

D
:= min

M∈VD
{ξ(un+1

M )}

ξTh,δt |D×(tn,tn+1] := ξ
n+1

D , ξ
Th,δt

|D×(tn,tn+1] := ξn+1

D
,
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where VD stands for the set of vertices of the diamondD. The function ξ is increasing and continuous
on [0, 1] then its inverse is continuous on the compact [0, ξ(1)]. Therefore, there exists a modulus
of continuity ω of v ◦ ξ−1, which is continuous and bounded on the same interval with ω(0) = 0.
Using this latter fact and the Cauchy-Schwarz inequality yields

∣∣∣S3,1
Th,δt

∣∣∣ ≤ C ‖∇ψ‖∞ N−1∑
n=0

δt
∑
D∈Dh

mD ω
(
ξ
n+1

D − ξn+1

D

) ∣∣∇Dξh,δt∣∣
≤ C

(N−1∑
n=0

δt
∑
D∈Dh

mD ω
(
ξ
n+1

D − ξn+1

D

)2
)1/2

×
(N−1∑
n=0

δt
∑
D∈Dh

mD
∣∣∇Dξh,δt∣∣2)1/2

≤ C
(∫

QT

ω
(
ξTh,δt

− ξ
Th,δt

)2
)1/2

×
(N−1∑
n=0

δt
∥∥∥∇Dξn+1

h

∥∥∥2

2

)1/2

,

for some positive constant C. In view of Lemma A.0.2 together with (4.4.2), we deduce that

lim
hD,δt→0

S3,1
Th,δt

= 0.

Similarly, we establish that
lim

hD,δt→0
S3,2
Th,δt

= 0.

Finally, let us demonstrate that
lim

hD,δt→0
S4
Th,δt

= 0.

Owing to the definition of the penalization term we explore

N−1∑
n=0

δt
∣∣∣JPun+1

Th , ψn+1
Th KTh

∣∣∣ =

∣∣∣∣∣∣12 1

hεD

N−1∑
n=0

δt
∑

K∗∈M∗

∑
K∈M

mK∩K∗
(
F (un+1

K )− F (un+1
K∗ )

)(
ψn+1
K − ψn+1

K∗

)∣∣∣∣∣∣
≤ 1

2

‖v‖∞
hεD

N−1∑
n=0

δt
∑

K∗∈M∗

∑
K∈M

mK∩K∗
∣∣ξn+1
K − ξn+1

K∗

∣∣ ∣∣ψn+1
K − ψn+1

K∗

∣∣
≤ 1

2

‖v‖∞
hεD

∥∥∥ξMh,δt − ξM∗h,δt
∥∥∥
L2(QT)

∥∥∥ψMh,δt − ψM∗h,δt

∥∥∥
L2(QT)

.

On the other hand, the regularity of the function ψ ensures the existence of a constant C depending
only on the regularity of the mesh such that (see [46] for deep details)∥∥∥ψMh,δt − ψM∗h,δt

∥∥∥
L2(QT)

≤ ChD ‖ψ‖W 1,∞(Ω) .

Utilizing the energy estimate (4.4.2) and the fact that ε < 2 we obtain∣∣∣S4
Th,δt

∣∣∣ ≤ Ch1−ε/2
D −→ 0, hD, δt −→ 0.

This ends the proof of the theorem.
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4.8 Numerical results

In this section, we present some numerical tests so that we can show the efficiency and the stability
of the proposed DDFV scheme. As highlighted in the introduction of this chapter, this method will
allow us to take into account almost general meshes and any tensor. We also stress that boundary
conditions of Dirichlet type are prescribed. It is sufficient to take the trace of a given exact solution
on the boundary. This particularity provides analytical solutions of the continuous problem and
enables us to compare them with the discrete ones.

To begin with, let us consider the unit square Ω = [0, 1]2 as the domain of our study. Next, the
primal meshes are given by a sequence of distorted quadrangulation, refined Kershaw and triangu-
lar meshes of Ω. The first family is denoted by M1 while the second one is denoted by M2. These
kinds of meshes are taken from the FVCA5 benchmark [88]. Their corresponding dual meshes are
constructed as described in Section 4.2.

Figure 4.3: From left to right, Kershaw quadrangle and triangular meshes.

Furthermore, the mobility function is chosen as follows

f(u) = um(1− u)m, ∀u ∈ [0, 1] and m ∈ {1, 2}.

Notice that this function presents some degeneracy in u = 0 and u = 1. Additionally, we require the
computation of the functions v↑(u) and v↓(u) in order to calculate the numerical flux. In our study,
the function v admits a unique global maximum u = 1/2. Hence, one gets in a straightforward way
that

v↑(u) = v
(

min{u, 1

2
}
)
, and v↓(u) = v

(
max{u, 1

2
}
)
− v(

1

2
), for all u ∈ (0, 1)2.

We also focus on the case of anisotropic media to verify the validity of our discretization. To this
end, we select a diagonal tensor Λ :

Λ =

(
Λxx 0

0 Λyy

)
.

The DDFV scheme is formulated in a nonlinear algebraic system, which is solved thanks to
Newton’s method with a given tolerance ε = 1.e−10. We underline that the numerical scheme
(4.3.10)-(4.3.11) is fully implicit in time, unconditionally stable and convergent. Yet, we require
the time step to be proportional to the square of the mesh size as mentioned in [39] to assess
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numerical error estimates.

As we are interested in the accuracy of the scheme, we are going to evaluate the error of the
proposed discretization. In all the tests, we denote by ERL2 the difference between the analytical
solution and the numerical one in L∞(0, T ;L2(Ω))-norm. Moreover, we study the error between
the gradients of the semi Kirchoff functions in L2(Ω × (0, T ))2, which is denoted by ERGL2. The
convergence rate will be designated by Rate. More precisely

ERL2 = ||uex − uh,δt||L∞(0,T ;L2(Ω)), ERGL2 = ||∇ξ(uex)−∇ξ(uh,δt)||L2(Ω×(0,T ))2 .

Rate =
log
(
Erri+1/Erri

)
log
(
hi+1
D /hiD

) , Err = ERL2, ERGL2,

where i refers to the index of the space discretization Ti for i = 1, · · · , 5. In all the tables below
umin (resp. umax) stands for the minimum (resp. maximum) of the computed solution.

4.8.1 Test 1

In this test, we investigate the numerical convergence of the DDFV scheme (4.3.9)-(4.3.11) using
the exact solution:

uex(x, t) = 80x2
1(1− x1)2 × t, ∀x = (x1, x2) ∈ Ω, t ∈ (0, T ). (4.8.1)

Substituting this expression in the main problem (4.1.1) yields a nonnegative source term. One
notices that this solution degenerates at the line {x1 = 0} and at {x1 = 1}. The mobility function
f(u) = u2(1− u)2 is considered. Here, the final time is fixed to T = 0.15.

γ = 0 γ = 0.5

h # Unknowns ||u
M,δt
− u

M∗,δt
|| Rate ||u

M,δt
− u

M∗,δt
|| Rate

0.3420 41 0.111 E-01 - 0.110 E-01 -
0.1740 145 0.575 E-02 0.974 0.574 E-02 0.973
0.0920 545 0.296 E-02 1.034 0.295 E-02 1.034
0.0470 2113 0.146 E-02 1.059 0.146 E-02 1.059
0.0195 8321 0.705 E-03 0.823 0.705 E-03 0.823

Table 4.1: The norm ||u
M,δt
− u

M∗,δt
||L2(QT) with and without penalization term for n = m = 2.

First, we have seen that the penalization term has played a crucial role to establish that the two
reconstructions of the solution on the primal and dual meshes converge to the same limit. Second,
this fact holds numerically without the penalty term. To see this, we compute the difference in
L2(Ω × (0, T )) norm between the approximate solution on the primal mesh and that on the dual
mesh. For this, we consider two values of the stabilization parameter γ = 0 and γ = 0.5 with a
fixed ε = 1. As shown in Table 4.1, the presence or the absence of the penalization term does not
influence the convergence of the sequence ||u

M,δt
− u

M∗,δt
||L2(Ω×(0,T )). One can as well check that

the convergence rate is almost one.

Since the penalty term turns out to be useless numerically then we set the parameter γ to zero
in the sequel. Let us now return back to the accuracy assessment of the scheme using the exact
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solution (4.8.1). In Table 4.2 we list the obtained results with an isotropic tensor Λxx = Λyy = 1.
We can observe that the convergence rate of the solution is almost of second order for both kinds
of meshes. We thus reach the well known order of DDFV schemes for linear problems [39, 59, 90].
Despite of being of order between 1 and 2 for linear problems, the convergence rate of the discrete
gradient may be deteriorated with respect to the nonlinearity, the anisotropy and/or the discretiza-
tion error. For instance we refer to [11] where the authors have found an accuracy of order 0.4 for
an anisotropic Laplace equation. Here, for our nonlinear problem, we observe that the convergence
rate of the gradient is close to 1 in the case of the mesh family M1 whereas it is close to 2 for
the Kershaw meshes. We also verify that the computed solution preserves a maximum principle
property. Table 4.3 gives the errors in the anisotropic case where the tensor entries are Λxx = 1 and
Λyy = 0.01. It demonstrates that the numerical solution is always nonnegative with convergence
rates which are slightly similar to the isotropic case.

M1

h ERL2 Rate ERGL2 Rate umin umax

0.3420 0.127 E-01 - 0.324 E-01 - 0 0.703
0.1740 0.629 E-02 1.048 0.218 E-01 0.590 0 0.747
0.0920 0.216 E-02 1.669 0.134 E-02 0.755 0 0.748
0.0470 0.665 E-03 1.766 0.799 E-02 0.781 0 0.750
0.0195 0.126 E-03 1.880 0.345 E-02 0.947 0 0.750

M2

h ERL2 Rate ERGL2 Rate umin umax

0.2710 0.135 E-02 - 0.996 E-01 - 0 0.703
0.1355 0.369 E-03 1.870 0.265 E-01 1.910 0 0.744
0.0903 0.168 E-03 1.934 0.119 E-01 1.975 0 0.747
0.0677 0.959 E-04 1.954 0.671 E-02 1.990 0 0.749
0.0542 0.619 E-04 1.964 0.430 E-02 1.995 0 0.750

Table 4.2: Numerical convergence with isotropic tensor and n = m = 2.

M1

h ERL2 Rate ERGL2 Rate umin umax

0.342 0.130 E-01 - 0.327 E-01 - 0 0.736
0.174 0.649 E-02 1.030 0.221 E-01 0.583 0 0.748
0.092 0.244 E-02 1.529 0.142 E-01 0.695 0 0.749
0.047 0.898 E-03 1.499 0.909 E-02 0.666 0 0.751
0.0195 0.180 E-03 1.812 0.416 E-02 0.883 0 0.750

M2

h ERL2 Rate ERGL2 Rate umin umax

0.2710 0.146 E-02 - 0.997 E-01 - 0 0.739
0.1355 0.402 E-03 1.856 0.267 E-01 1.903 0 0.746
0.0903 0.184 E-03 1.928 0.120 E-01 1.923 0 0.748
0.0677 0.105 E-03 1.948 0.683 E-02 1.967 0 0.749
0.0542 0.680 E-04 1.957 0.441 E-02 1.963 0 0.750

Table 4.3: Numerical convergence with anisotropic tensor and n = m = 2.
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4.8.2 Test 2

We now test the accuracy and the stability of our scheme thanks to the analytical solution

uex(x, t) = 6x2
1 × t, ∀x = (x1, x2) ∈ Ω, t ∈ (0, T ),

where the mobility function is chosen to be f(u) = u(1−u). Note that this function is not a perfect
square with f(0) = f(1) = 0. This solution fulfills the continuous problem (4.1.1) with a corre-
sponding source term, which is also nonnegative. It vanishes at the line {x1 = 0}. The final time is
taken as T = 0.15. Tables 4.4 and 4.5 present the numerical convergence of the scheme including
the isotropic tensor, and anisotropic one (with Λxx = 1 and Λyy = 0.001) respectively. On the
mesh family M1, the first table shows that the numerical scheme is accurate of almost second order
whereas the second one exhibits an accuracy of order 1.5 which might be explained by the impact
of anisotropy. Notwithstanding the distortion of the mesh family M2, we get a super-convergence
for the solution and the gradient of its semi Kirchoff transform. In both cases we have not recorded
any undershoots nor overshoots.

M1

h ERL2 Rate ERGL2 Rate umin umax

0.342 0.104 E-01 - 0.367 E-01 - 0 0.840
0.174 0.425 E-02 1.335 0.242 E-01 0.622 0 0.895
0.092 0.132 E-02 1.821 0.138 E-01 0.878 0 0.897
0.047 0.365 E-03 1.933 0.696 E-02 1.026 0 0.900
0.0195 0.114 E-03 1.312 0.385 E-02 0.667 0 0.900

M2

h ERL2 Rate ERGL2 Rate umin umax

0.2710 0.124 E-02 - 0.102 E-00 - 0 0.882
0.1355 0.365 E-03 1.767 0.357 E-01 1.519 0 0.892
0.0903 0.173 E-03 1.849 0.212 E-01 1.286 0 0.897
0.0677 0.100 E-03 1.890 0.151 E-01 1.171 0 0.898
0.0542 0.654 E-04 1.914 0.118 E-01 1.111 0 0.900

Table 4.4: Numerical convergence with isotropic tensor and n = m = 1.

4.8.3 Test 3

This test concerns the porous medium equation. First, we compare our scheme with the following
two dimensional exact solution [41] to the main problem (4.1.1)

uex(x, t) =
λ1(x1 − 0.5)2 + λ2(x2 − 0.5)2

1− t
, ∀x = (x1, x2) ∈ Ω, t ∈ (0, T ),

with λ1 = 1
16Λxx

and λ2 = 1
16Λyy

. The mobility function is f(u) = 2u. Note that this choice

does not match with the assumption (A2). We then record the numerical convergence results in
Table 4.6 and Table 4.7 with a final time set to T = 0.2. On the first mesh sequence, one can
check that the method is accurate of second order even in the presence of anisotropy (Λxx = 0.1
and Λyy = 10). Analogous results have been observed in [41] for the same problem using a VAG
(Vertex Approximate Gradient) scheme. In contrast, the super-convergence is lost in the isotropic
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M1

h ERL2 Rate ERGL2 Rate umin umax

0.342 0.116 E-01 - 0.380 E-01 - 0 0.840
0.174 0.506 E-02 1.245 0.263 E-01 0.547 0 0.895
0.092 0.199 E-02 1.459 0.173 E-01 0.659 0 0.897
0.047 0.754 E-03 1.453 0.108 E-01 0.703 0 0.900
0.0195 0.207 E-03 1.459 0.580 E-02 0.701 0 0.900

M2

h ERL2 Rate ERGL2 Rate umin umax

0.2710 0.210 E-02 - 0.118 E-00 - 0 0.881
0.1355 0.672 E-03 1.646 0.533 E-01 1.148 0 0.893
0.0903 0.326 E-03 1.783 0.359 E-01 0.974 0 0.897
0.0677 0.193 E-03 1.833 0.272 E-01 0.961 0 0.898
0.0542 0.127 E-03 1.852 0.220 E-01 0.966 0 0.900

Table 4.5: Numerical convergence with anisotropic tensor and n = m = 1.

case for the second family of meshes. This is due to the severe distortion of the mesh in the x2-
direction. As expected, the second order is recovered in the anisotropic case since the contribution
of the term in x1 is less important. In any case, one can see that the method preserves the positivity.

M1

h ERL2 Rate ERGL2 Rate umin

0.342 0.426 E-03 - 0.945 E-02 - 0.206 E-03
0.174 0.260 E-03 0.733 0.773 E-02 0.299 0.243 E-04
0.092 0.789 E-04 1.860 0.462 E-02 0.803 0.304 E-05
0.047 0.213 E-04 1.965 0.252 E-02 0.909 0.612 E-06
0.0195 0.450 E-05 1.755 0.115 E-02 0.882 0.234 E-06

M2

h ERL2 Rate ERGL2 Rate umin

0.2710 0.410 E-03 - 0.679 E-01 - 0.537 E-05
0.1355 0.250 E-03 0.713 0.481 E-01 0.495 0.108 E-04
0.0903 0.186 E-03 0.732 0.367 E-01 0.667 0.554 E-05
0.0677 0.149 E-03 0.764 0.294 E-01 0.773 0.739 E-06
0.0542 0.125 E-03 0.802 0.244 E-01 0.831 0.507 E-08

Table 4.6: Numerical convergence of the scheme with Λxx = Λyy = 1.

Finally, we provide an example which exhibits a low space regularity due to the degenerate na-
ture of the considered problem. This test has been also treated in [41] using the VAG discretization.
It is about the one dimensional weak solution

uex(x, t) = max(2Λxxt− x1, 0) ∀x = (x1, x2),∈ Ω, t ∈ (0, T ),

to the porous medium equation (4.1.1) (we recall f(u) = 2u) complemented with the Dirichlet
boundary condition corresponding to this exact solution. In this test-case, we consider a sequence
of refined triangulations of Ω as primal meshes. We take Λxx = 1 and Λyy = 10. The final time is
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M1

h ERL2 Rate ERGL2 Rate umin

0.342 0.340 E-01 - 0.103 E-00 - 0.734 E-03
0.174 0.123 E-01 1.516 0.621 E-01 0.752 0.131 E-03
0.092 0.336 E-02 2.022 0.335 E-01 0.963 0.178 E-04
0.047 0.847 E-03 2.068 0.168 E-01 1.040 0.449 E-05
0.0195 0.222 E-03 1.509 0.884 E-02 0.728 0.234 E-06

M2

h ERL2 Rate ERGL2 Rate umin

0.2710 0.286 E-02 - 0.251 E-00 - 0.130 E-05
0.1355 0.713 E-03 2.004 0.119 E-00 0.987 0.108 E-05
0.0903 0.317 E-03 2.000 0.794 E-01 0.991 0.563 E-06
0.0677 0.179 E-03 1.991 0.598 E-01 0.988 0.739 E-07
0.0542 0.115 E-03 1.990 0.479 E-01 0.990 0.172 E-08

Table 4.7: Numerical convergence of the scheme with Λxx = 0.1 and Λyy = 10.

T = 0.25. The obtained results are given in Table 4.8. As expected, it is shown that the discrete
solution is nonnegative. It additionally converges with an order strictly less than 2 because of the
anisotropy and its low regularity. This phenomenon has been also indicated in [41].

Triangular meshes

h ERL2 Rate ERGL2 Rate umin

0.250 0.176 E-01 - 0.165 E-00 - 0
0.125 0.106 E-01 0.728 0.971 E-01 0.761 0
0.063 0.583 E-02 0.865 0.612 E-01 0.667 0
0.031 0.324 E-02 0.850 0.386 E-01 0.663 0
0.017 0.177 E-02 0.875 0.242 E-01 0.674 0

Table 4.8: Numerical convergence of the scheme with Λxx = 1 and Λyy = 10.
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Conclusion & Perspectives

In conclusion, in this thesis we have first studied a couple of finite volume schemes of CVFE
type for solving the governing equations of the two-phase flow model in anisotropic porous media.
Secondly, we developed a positive discrete duality finite volume scheme for the approximation
of degenerate parabolic equations on almost 2D general meshes. The basic idea for the analysis
of both methods is to approximate the fluxes properly thanks to monotone schemes bearing in
mind two main points. The first one consists in preserving the natural bounds of the solutions
which makes the latters meaningful from a physical point of view. The second point is to derive
some a priori estimates on the discrete gradients which is not an easy task especially when the
coercivity property is lost. This has led to make use of the upstream techniques so that this
central property can be recovered. In addition to these two fundamental elements, establishing
classical compactness arguments has played an essential role to carry out the convergence analysis
of the numerical scheme. Numerical experiments exhibited the ability of the schemes belonging
to the CVFE family to efficiently simulate the displacement of water through the porous medium
in question. They also gave interesting evidences on how the fluid moves in anisotropic media
whose ratio of anisotropy is important. On the other hand, the implementation of the proposed
DDFV scheme on too distorted meshes and anisotropic tensors showed spurring results. Indeed, the
method turned out to be accurate of almost second order even if the scheme is based on upwinding
techniques which lead generally to an accuracy of first order.

As an outlook of this thesis, we can always envisage the compressible two-phase flow model in
porous media with no major restrictions on the physical data. We may particularly consider the
case where the density depends on its own pressure. This case presents a challenging task since the
coercivity property does not hold due to the non-positivity of the stiffnesses coefficients. We then
need to design more reliable finite volume schemes ensuring the aforementioned two points in order
to address this issue. This will be the object of future works based on the DDFV framework.
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Appendix A

Technical lemmas

Let D be a fixed diamond cell. We define the following 2× 2 matrices

AD =
1

4mD

[
m2
σ mσmσ∗

mσmσ∗ m2
σ∗

]
=:

[
ADσ ADσ,σ∗
ADσ,σ∗ ADσ∗

]
, (A.0.1)

AD,Λ =
1

4mD

[
m2
σΛnσK · nσK mσmσ∗ΛnσK · nσ∗K∗

mσmσ∗ΛnσK · nσ∗K∗ m2
σ∗ Λnσ∗K∗ · nσ∗K∗

]
=:

[
ADσ AD,Λσ,σ∗

AD,Λσ,σ∗ AD,Λσ∗

]
, (A.0.2)

and

BD,Λ =

∣∣ADσ ∣∣+
∣∣∣AD,Λσ,σ∗

∣∣∣ 0

0
∣∣∣AD,Λσ,σ∗

∣∣∣+
∣∣∣AD,Λσ∗

∣∣∣
 , ∀D ∈ D. (A.0.3)

The following lemma claims a crucial property of the matrix AD,Λ. In particular, it states that
AD,Λ is positive definite.

Lemma A.0.1. [39] There exist some positive constants λ0 and λ1 depending only on the mesh
regularity and on Λ, Λ satisfying

AD,Λx · x ≤ BD,Λx · x ≤ λ1AD,Λx · x, ∀x ∈ R2, (A.0.4)

λ0ADx · x ≤ AD,Λx · x, ∀x ∈ R2. (A.0.5)

Proof. For the sake of completeness we reproduce the same proof as given in [39]. Let x = (x1, x2)
be a fixed vector of R2. Thus, for every D ∈ D, we have

AD,Λx · x ≤ BD,Λx · x ≤
∥∥AD,Λ∥∥

1
|x|2 .

where ‖.‖p is the usual p-norm matrix, p = 1, 2. The equivalence of norms on R2 ×R2, ensures the
existence of a coefficient L ≥ 1 such that∥∥AD,Λ∥∥

1
|x|2 ≤ L

∥∥AD,Λ∥∥
2
|x|2 ≤ L Cond2(AD,Λ)AD,Λx · x, (A.0.6)
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where Cond2 stands for the condition number with respect to the 2-norm. In addition, this number
can be overestimated as follows

Cond2(AD,Λ) ≤ Cond2(ΛD)

(
Q2
D +

√
Q2
D −

1

Cond2(ΛD)

)2

≤ 4reg(T )2 × Λ

Λ
.

where we have set

QD =
1

2 sin(αD)

( mσ

mσ∗
+
mσ∗

mσ

)
≥ 1.

This proves the inequality
AD,Λx · x ≤ BD,Λx · x ≤ λ1AD,Λx · x,

with λ1 = 4L reg(T )2 ×
(

Λ/Λ
)

. Using the elementary inequality

∣∣ADσ,σ∗∣∣x1x2 ≤
1

2

(
ADσ x2

1 + ADσ∗x2
2

)
,

one deduces that
ADx · x ≤ 2

(
ADσ x2

1 + ADσ∗x2
2

)
.

Now the ellipticity of the tensor Λ implies

ADx · x ≤ 2

Λ

(
ADσ x2

1 + AD,Λσ∗ x
2
2

)
≤ 2

Λ
BD,Λx · x.

Thanks to inequality (A.0.4), one gets

ADx · x ≤ 2λ1

Λ
AD,Λx · x.

Hence, the second inequality follows by setting λ0 =
Λ

2λ1
.

Lemma A.0.2. Consider the following piecewise constant functions

ξ
n+1

D := max
M∈VD

{ξ(un+1
M )}, ξn+1

D
:= min

M∈VD
{ξ(un+1

M )},

ξTh,δt |D×(tn,tn+1] := ξ
n+1

D , ξ
Th,δt

|D×(tn,tn+1] := ξn+1

D
,

where we denote VD = {K,L,K∗, L∗}. Then

lim
hD,δt→0

∥∥∥∥ξTh,δt − ξTh,δt
∥∥∥∥
L2(QT )

= 0. (A.0.7)

Proof. We first observe that∣∣∣ξn+1

D − ξn+1

D

∣∣∣2 ≤ |ξ(uK)− ξ(uL)|2 + |ξ(uK∗)− ξ(uL∗)|2 + |ξ(uK)− ξ(uK∗)|2 + |ξ(uL)− ξ(uL∗)|2 .
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This implies∑
D∈D

mD

∣∣∣ξn+1

D − ξn+1

D

∣∣∣2
≤
∑
D∈D

mD

( ∣∣ξn+1
K − ξn+1

L

∣∣2 +
∣∣ξn+1
K∗ − ξ

n+1
L∗

∣∣2 +
∣∣ξn+1
K − ξn+1

K∗

∣∣2 +
∣∣ξn+1
L − ξn+1

L∗

∣∣2 )

≤ h2
D

∑
D∈D

mD

( ∣∣∣∣∣ξn+1
K − ξn+1

L

mσ∗

∣∣∣∣∣
2

+

∣∣∣∣∣ξn+1
K∗ − ξ

n+1
L∗

mσ

∣∣∣∣∣
2 )

+
∑
D∈D

mD
∣∣ξn+1
K − ξn+1

K∗

∣∣2 +
∑
D∈D

mD
∣∣ξn+1
L − ξn+1

L∗

∣∣2
≤ h2

D

∑
D∈D

mD

( ∣∣∇Dξn+1
h · τK,L

∣∣2 +
∣∣∇Dξn+1

h · τK∗,L∗
∣∣2 )

+
∑
D∈D

mD
∣∣ξn+1
K − ξn+1

K∗

∣∣2 +
∑
D∈D

mD
∣∣ξn+1
L − ξn+1

L∗

∣∣2 .
Due to the estimates (4.4.2) and (4.6.7) one concludes that

lim
hD,δt→0

∥∥∥∥ξTh,δt − ξTh,δt
∥∥∥∥
L2(QT )

= 0.
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Titre : Volumes finis/Eléments finis pour des écoulements diphasiques compressibles en 
milieux poreux hétérogènes et anisotropes 
 
 
Mots clés : milieux poreux, diphasique compressible, immiscible, volumes finis, éléments finis, positif, DDFV. 

Résumé : Cette thèse est centrée autour du développement et de 
l'analyse des schémas volumes finis robustes afin d'approcher les 
solutions du modèle diphasique compressible en milieux poreux 
hétérogènes et anisotropes. Le modèle à deux phases 
compressibles comprend deux équations paraboliques 
dégénérées et couplées dont les variables principales sont la 
saturation du gaz et la pression globale. Ce système est discrétisé 
à l'aide de deux méthodes différentes (CVFE et DDFV) qui font 
partie de la famille des volumes finis.  
 
La première classe à laquelle on s'intéresse consiste à combiner la 
méthode des volumes finis et celle des éléments finis. Dans un 
premier temps, on considère un schéma volume finis upwind pour 
la partie convective et un schéma de type éléments finis 
conformes pour la diffusion capillaire. Sous l'hypothèse que les 
coefficients de transmissibilités sont positifs, on montre que la 
saturation vérifie le principe du maximum et on établit des 
estimations d'énergies permettant de démontrer la convergence du 
schéma. Dans un second temps, on a mis en place un schéma 
positif qui corrige le précédent.  Ce schéma est basé sur une 
approximation des flux diffusifs par le schéma de Godunov.  

L'avantage est d'établir la bornitude des solutions approchées ainsi 
que les estimations uniformes sur les gradients discrets sans 
aucune contrainte ni sur le maillage ni sur la perméabilité. En 
utilisant des arguments classiques de compacité, on prouve 
rigoureusement la converge du schéma. Chaque schéma est 
validé par des simulations numériques qui montrent bien le 
comportement attendu d'une telle solution.  
 
Concernant la deuxième classe, on s'intéressera tout d'abord à la 
construction et à l'étude d'un nouveau schéma de type DDFV 
(Discrete Duality Finite Volume) pour une équation de diffusion 
non linéaire dégénérée. Cette méthode permet d' avantage de 
prendre en compte des maillages très généraux et des 
perméabilités quelconques. L'idée clé de cette discrétisation est 
d'approcher les flux dans la direction normale par un schéma 
centré et d'utiliser un schéma décentré dans la direction 
tangentielle. Par conséquent, on démontre que la solution 
approchée respecte les bornes physiques et on établit aussi des 
estimations d'énergie. La convergence du schéma est également 
établie. Des résultats numériques confirment bien ceux de la 
théorie. Ils exhibent en outre que la méthode est presque d'ordre 
deux. 

 

 

Title :   Finite volume/finite element schemes for compressible two-phase flows inheterogeneous 
and anisotropic porous media 
 
Keywords : porous media, two-phase flow, compressible, immiscible, finite volumes, finite elements, positive, DDFV 

monotone. 
Abstract : The objective of this thesis is the  development and 

the analysis of robust and consistent numerical schemes for the 
approximation of compressible two-phase flow models in 
anisotropic and heterogeneous porous media. A particular 
emphasis is set on the anisotropy together with  the geometric 
complexity of the medium. The mathematical problem is given in a 
system  of two degenerate and coupled  parabolic equations 
whose main variables are the nonwetting saturation and the global 
pressure. In view of the difficulties manifested in the considered 
system, its cornerstone  equations are approximated with two 
different classes of the finite volume family. 
   
The first class consists of combining finite elements and finite 
volumes. Based on standard assumptions on the space 
discretization and on the permeability tensor, a rigorous 
convergence analysis of the scheme is carried out thanks to 
classical arguments. To dispense with the underlined assumptions 
on the anisotropy ratio and on the mesh, the model has to be first 
formulated in the factional flux formulation. 

 

Moreover, the diffusive term is discretized  by a Godunov-like 
scheme while the convective fluxes are approximated using an 
upwind technique. The resulting scheme  preserves the physical 
ranges of the computed solution and satisfies the coercivity 
property. Hence, the convergence investigation holds. Numerical 
results show a satisfactory qualitative behavior of the scheme 
even if the medium of interest is anisotropic.  
 
The second class allows to consider more general meshes and 
tensors. It is about a new positive nonlinear discrete duality finite 
volume method. The main point  is to approximate a part of the 
fluxes using a nonstandard technique. The application of this idea 
to a nonlinear diffusion equation yields surprising results. Indeed, 
not only is the discrete maximum property  fulfilled but also the 
convergence of the scheme is established. Practically, the 
proposed method shows great promises since it provides  a 
positivity-preserving and convergent scheme  with optimal 
convergence rates.  
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