
HAL Id: tel-02119930
https://theses.hal.science/tel-02119930

Submitted on 4 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polymorphic set-theoretic types for functional languages
Tommaso Petrucciani

To cite this version:
Tommaso Petrucciani. Polymorphic set-theoretic types for functional languages. Programming Lan-
guages [cs.PL]. Università di Genova; Université Sorbonne Paris Cité – Université Paris Diderot, 2019.
English. �NNT : �. �tel-02119930�

https://theses.hal.science/tel-02119930
https://hal.archives-ouvertes.fr

U���������́ S������� P���� C���́
É���� D�������� 386

S������� M����́������� �� P���� C�����

PEDECIBA — F������� �� I��������́�
U���������� �� �� R���́�����

U������

R�́�����������́ �������� �� ������ �� ����

THÈSE
en vue d’obtenir les grades de

DOCTEUR DE L’UNIVERSITÉ SORBONNE PARIS CITÉ
en Informatique Fondamentale

DOCTOR DE LA UNIVERSIDAD DE LA REPÚBLICA
en Matemática

Présentée et soutenue par

Étienne M����
le 17 Novembre 2017

devant le jury composé de:

Hugo H������� Directeur de thèse Directeur de Recherche, INRIA
Alexandre M���� Directeur de thèse Professeur, Universidad de la República

Laurent R������ Rapporteur Professeur, Université Aix-Marseille
�omas S�������� Rapporteur Professeur, Technische Universität Darmstadt
�omas E������ Président du Jury Directeur de Recherche, CNRS

Walter F����� S����� Examinateur Professeur, Universidad de la República
Assia M������� Examinatrice Chargée de recherche, INRIA

Colin R��� Examinateur Maı̂tre de conférence, ÉNS de Lyon

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ SORBONNE PARIS CITÉ

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ SORBONNE PARIS CITÉ

Spécialité Informatique

École Doctorale 386 – Sciences Mathématiques Paris-Centre

Concurrency, References and Linear Logic

Préparée et présentée par

Yann HAMDAOUI

À L’UNIVERSITÉ PARIS DIDEROT (PARIS VII)

soutenue le 25 septembre 2018 devant le jury composé de:

Mme. Claudia Faggian Directrice de thèse
M. Benoit Valiron Co-directeur
M. Lorenzo Tortora de Falco Rapporteur
M. Ian Mackie Rapporteur
Mme. Christine Tasson Examinatrice
M. Thomas Ehrhard Examinateur
M. Laurent Regnier Examinateur
M. Daniele Varacca Examinateur

Joint Ph.D. Thesis

Università di Genova
Dipartimento di Informatica,

Bioingegneria, Robotica
e Ingegneria dei Sistemi

Ph.D. Thesis
in Computer Science

and Systems Engineering
(Computer Science Curriculum)

Université Sorbonne Paris Cité
Université Paris Diderot

École Doctorale de Sciences
Mathématiques de Paris Centre

Ph.D. Thesis
in Computer Science

Polymorphic set-theoretic types
for functional languages

Tommaso Petrucciani

March 2019

U���������́ S������� P���� C���́
É���� D�������� 386

S������� M����́������� �� P���� C�����

PEDECIBA — F������� �� I��������́�
U���������� �� �� R���́�����

U������

R�́�����������́ �������� �� ������ �� ����

THÈSE
en vue d’obtenir les grades de

DOCTEUR DE L’UNIVERSITÉ SORBONNE PARIS CITÉ
en Informatique Fondamentale

DOCTOR DE LA UNIVERSIDAD DE LA REPÚBLICA
en Matemática

Présentée et soutenue par

Étienne M����
le 17 Novembre 2017

devant le jury composé de:

Hugo H������� Directeur de thèse Directeur de Recherche, INRIA
Alexandre M���� Directeur de thèse Professeur, Universidad de la República

Laurent R������ Rapporteur Professeur, Université Aix-Marseille
�omas S�������� Rapporteur Professeur, Technische Universität Darmstadt
�omas E������ Président du Jury Directeur de Recherche, CNRS

Walter F����� S����� Examinateur Professeur, Universidad de la República
Assia M������� Examinatrice Chargée de recherche, INRIA

Colin R��� Examinateur Maı̂tre de conférence, ÉNS de Lyon

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ SORBONNE PARIS CITÉ

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ SORBONNE PARIS CITÉ

Spécialité Informatique

École Doctorale 386 – Sciences Mathématiques Paris-Centre

Concurrency, References and Linear Logic

Préparée et présentée par

Yann HAMDAOUI

À L’UNIVERSITÉ PARIS DIDEROT (PARIS VII)

soutenue le 25 septembre 2018 devant le jury composé de:

Mme. Claudia Faggian Directrice de thèse
M. Benoit Valiron Co-directeur
M. Lorenzo Tortora de Falco Rapporteur
M. Ian Mackie Rapporteur
Mme. Christine Tasson Examinatrice
M. Thomas Ehrhard Examinateur
M. Laurent Regnier Examinateur
M. Daniele Varacca Examinateur

Thèse de doctorat
de l’Università di Genova

et de l’Université Sorbonne Paris Cité

Préparée à l’Université Paris Diderot
ED 386 – Sciences Mathématiques de Paris Centre

Institut de Recherche en Informatique Fondamentale

Polymorphic set-theoretic types
for functional languages

par

Tommaso Petrucciani

Thèse de doctorat en Informatique

Dirigée par Giuseppe Castagna

Présentée et soutenue publiquement à Gênes (Italie)
le 14 mars 2019 devant le jury composé de

Directeur de thèse Giuseppe Castagna
Directeur de recherche, CNRS

Rapporteur Mariangiola Dezani
Professeur émérite, Università di Torino

Président du jury et rapporteur Alan Mycroft
Professeur, University of Cambridge

Rapporteur Sam Tobin-Hochstadt
Maître de conférence, Indiana University

Co-directeur de thèse Elena Zucca
Professeur, Università di Genova

Joint Ph.D. Thesis

Ph.D. Thesis in Computer Science and Systems Engineering (S.S.D. INF/01)
Dipartimento di Informatica, Bioingegneria,
Robotica e Ingegneria dei Sistemi
Università di Genova

Ph.D. Thesis in Computer Science
École Doctorale 386 – Sciences Mathématiques de Paris Centre
Université Sorbonne Paris Cité – Université Paris Diderot

Candidate

Tommaso Petrucciani
Tommaso.Petrucciani@dibris.unige.it

Title

Polymorphic set-theoretic types for functional languages

Advisors

Giuseppe Castagna
IRIF, CNRS, Université Paris Diderot
Giuseppe.Castagna@irif.fr

Elena Zucca
DIBRIS, Università di Genova
Elena.Zucca@unige.it

External Reviewers

Mariangiola Dezani
Dipartimento di Informatica, Università di Torino
dezani@di.unito.it

Alan Mycroft
Computer Laboratory, University of Cambridge
Alan.Mycroft@cl.cam.ac.uk

Sam Tobin-Hochstadt
School of Informatics, Computing, and Engineering, Indiana University
samth@cs.indiana.edu

Location

DIBRIS, Univ. di Genova
Via Opera Pia, 13
I-16145 Genova, Italy

Submi�ed On

March 2019

mailto:Tommaso.Petrucciani@dibris.unige.it
mailto:Giuseppe.Castagna@irif.fr
mailto:Elena.Zucca@unige.it
mailto:dezani@di.unito.it
mailto:Alan.Mycroft@cl.cam.ac.uk
mailto:samth@cs.indiana.edu

Abstract

title Polymorphic set-theoretic types for functional languages

keywords type systems, subtyping, type inference, gradual typing, non-
strict semantics

We study set-theoretic types: types that include union, intersection, and nega-
tion connectives. Set-theoretic types, coupled with a suitable subtyping rela-
tion, are useful to type several programming language constructs – including
conditional branching, pattern matching, and function overloading – very
precisely. We de�ne subtyping following the semantic subtyping approach,
which interprets types as sets and de�nes subtyping as set inclusion. Our
set-theoretic types are polymorphic, that is, they contain type variables to
allow parametric polymorphism.

We extend previous work on set-theoretic types and semantic subtyping
by showing how to adapt them to new settings and apply them to type vari-
ous features of functional languages. More precisely, we integrate semantic
subtyping with three important language features.

In Part I we study implicitly typed languages with let-polymorphism and
type inference (previous work on semantic subtyping focused on explicitly
typed languages). We describe an implicitly typed λ-calculus and a declarative
type system for which we prove soundness. We study type inference and prove
results of soundness and completeness. Then, we show how to make type
inference more precise when programs are partially annotated with types.

In Part II we study gradual typing. We describe a new approach to add
gradual typing to a static type system; the novelty is that we give a declarative
presentation of the type system, while previous work considered algorithmic
presentations. We �rst illustrate the approach on a Hindley-Milner type sys-
tem without subtyping. We describe declarative typing, compilation to a cast
language, and sound and complete type inference. Then, we add set-theoretic
types, de�ning a subtyping relation on set-theoretic gradual types, and we
describe sound type inference for the extended system.

In Part III we consider non-strict semantics. The existing semantic subtyping
systems are designed for call-by-value languages and are unsound for non-
strict semantics. We adapt them to obtain soundness for call-by-need. To do so,
we introduce an explicit representation for divergence in the types, allowing
the type system to distinguish the expressions that are already evaluated from
those that are computations which might diverge.

5

Résumé

titre Types ensemblistes polymorphes pour les langages fonctionnels

mots-clés systèmes de types, sous-typage, inférence de types, typage
graduel, sémantiques non-strictes

Cette thèse porte sur l’étude des types ensemblistes : des types qui contiennent
des connecteurs d’union, d’intersection et de négation. Les types ensemblistes
permettent de typer de manière très précise plusieurs constructions des lan-
gages de programmation (comme par exemple les branches conditionnelles,
le �ltrage par motif et la surcharge des fonctions) lorsqu’ils sont utilisés avec
une notion appropriée de sous-typage. Pour dé�nir celle-ci, nous utilisons
l’approche du sous-typage sémantique, dans laquelle les types sont interpré-
tés comme des ensembles, et où le sous-typage est dé�ni comme l’inclusion
ensembliste. Dans la plupart de cette thèse, les types ensemblistes sont poly-
morphes, dans le sens où ils contiennent des variables de type pour permettre
le polymorphisme paramétrique.

La thèse étend les travaux précédents sur les types ensemblistes et le sous-
typage sémantique en montrant comment les adapter à de nouveaux contextes
et comment les utiliser pour typer plusieurs aspects des langages fonctionnels.
Elle se compose de trois parties.

La première partie porte sur une étude des langages typés de manière
implicite avec polymorphisme du let et inférence de types (contrairement aux
travaux précédents sur le sous-typage sémantique qui étudiaient des langages
typés explicitement). Nous y décrivons un λ-calcul typé implicitement avec
un système de types dont nous démontrons la correction. De même, nous
y étudions l’inférence de types dont nous démontrons la correction et la
complétude. En�n, nous montrons comment rendre l’inférence plus précise
quand les programmes sont partiellement annotés avec des types.

La deuxième partie décrit une nouvelle approche permettant d’étendre un
système de types statique avec du typage graduel; l’originalité venant du
fait que nous décrivons le système de types de façon déclarative, lorsque
les systèmes existants proposent des descriptions algorithmiques. Nous illus-
trons cette approche en ajoutant le typage graduel à un système de types à
la Hindley-Milner sans sous-typage. Nous décrivons pour cela un système de
types déclaratif, un processus de compilation vers un langage avec véri�cations
de type dynamiques (ou “casts”), et nous présentons un système d’inférence
de types correct et complet. Ensuite, nous y ajoutons les types ensemblistes,
en dé�nissant une relation de sous-typage sur les types graduel ensemblistes,
puis en présentant un système d’inférence de types correct pour le système
étendu.

7

La troisième partie porte sur l’étude des sémantiques non-strictes. Les sys-
tèmes existants qui utilisent le sous-typage sémantique ont été développés
pour des langages avec appel par valeur et ne sont pas sûrs pour des séman-
tiques non-strictes. Nous montrons ici comment les adapter pour garantir leur
sûreté en appel par nécessité. Pour faire ça, nous introduisons dans les types
une représentation explicite de la divergence, a�n que le système des types
puisse distinguer les expressions qui ne demandent pas d’évaluation de celles
qui la demandent et pourraient ainsi diverger.

8

Résumé substantiel
Cette thèse porte sur l’étude des types ensemblistes avec sous-typage séman-
tique et de leur utilisation pour typer plusieurs aspects des langages de pro-
grammation fonctionnels. En particulier, nous considérons le typage implicite
et l’inférence des types, le polymorphisme du let, le typage graduel et les
sémantiques non-strictes.

Les types ensemblistes permettent de typer de manière très précise plusieurs
constructions des langages de programmation : par exemple, les branches
conditionnelles, le �ltrage par motif et la surcharge des fonctions. Cependant,
pour utiliser ces types e�cacement, il faut dé�nir une notion appropriée
de sous-typage. Nous suivons l’approche du sous-typage sémantique : nous
dé�nissons une interprétation n · o des types comme des ensembles et nous
utilisons celle-ci pour dé�nir le sous-typage entre les types comme l’inclusion
ensembliste de leurs interprétations. Dans la plupart de la thèse, les types
ensemblistes sont polymorphes, dans le sens où ils contiennent des variables
de type permettant le polymorphisme paramétrique.

Dans cette thèse, nous montrons comment étendre les travaux précédents
sur les types ensemblistes pour les adapter à de nouveaux contextes et langages.
Nous tâchons d’y montrer que le sous-typage sémantique est une approche
e�cace pour dé�nir le sous-typage dans les systèmes considérés. En particulier,
nous montrons comment réutiliser directement certains des résultats existants
sur le sous-typage sémantique (notamment ceux qui concernent la procédure
de décision) dans di�érents contextes.

La thèse se compose de trois parties.

Typage implicite et inférence de types

La première partie porte sur une étude des langages typés de manière implicite
avec polymorphisme du let et inférence de types. Les travaux précédents sur
le sous-typage sémantique étudiaient des langages où les fonctions étaient
annotées explicitement avec leurs types (Frisch, Castagna et Benzaken, 2008 ;
Castagna et al., 2014) et considéraient au plus l’inférence de types locale pour
l’instantiation des fonctions polymorphes (Castagna et al., 2015b).

Nous étudions un λ-calcul étendu avec des constantes, des paires, une
construction de “typecase” (pour modéliser la sélection de type durant l’execu-
tion et le �ltrage par motif), ainsi que des déclarations let.

Nous décrivons un système de types pour ce langage : un système à la
Hindley-Milner étendu avec les deux règles structurelles suivantes pour la
subsomption et pour l’introduction des types intersection.

[T≤]
Γ ` e : t ′

Γ ` e : t
t ′ ≤ t [T∧]

Γ ` e : t1 Γ ` e : t2
Γ ` e : t1 ∧ t2

9

Le système est simple à décrire ; la di�culté est dans la preuve de correction
par rapport à la sémantique. À cause de la présence de la règle [T∧] et des types
négation, pour que la réduction du sujet soit valable, nous devons étendre le
système avec une règle pour dériver des types négation pour les fonctions,
pour avoir, par exemple, ` λx . x : ¬(Int → Bool). Cette di�culté a déjà été
résolue dans des travaux précédents (Frisch, Castagna et Benzaken, 2008),
mais ici elle demande une solution di�érente car les fonctions ne sont pas
annotées. Nous développons cette solution et la preuve de correction pour le
système étendu, qui implique aussi la correction pour le système original.

Ensuite, nous étudions l’inférence de types en dé�nissant un algorithme
d’inférence de types fondé sur la génération et la résolution de contraintes.
Nous utilisons des contraintes similaires à celles de Pottier et Rémy (2005) ;
tandis que la résolution de contraintes réutilise l’algorithme de tallying de
Castagna et al. (2015b). Nous prouvons que l’inférence est correcte par rapport
au système de types, et complète par rapport à la restriction du système sans
la règle [T∧]. Nous ne comparons pas l’inférence directement au système de
types original, mais à un système di�érent – fondé sur les “règles de typage
reformulées” de Dolan et Mycroft (2017) – dont nous montrons l’équivalence
avec le système original. Ce système di�érent gère la généralisation du let
d’une manière qui est plus adaptée à la comparaison à l’algorithme d’inférence.

Ensuite, nous ajoutons des annotations de type au langage et nous mon-
trons comment l’inférence peut les utiliser pour calculer des types plus précis
(notamment, des types intersection pour les fonctions). Finalement, nous pré-
sentons comment éteindre le langage avec des fonctionnalités ultérieures : le
�ltrage par motif, les variants polymorphes à la OCaml, et les enregistrements.

Typage graduel

La deuxième partie porte sur l’étude du typage graduel, une approche qui
permet de faire coexister dans un même langage le typage statique et le ty-
page dynamique (Siek et Taha, 2006). On fait cela en introduisant un type
inconnu, noté ?, et en assouplissant le système de types pour que les expres-
sions de ce type ? soient utilisables dans tout contexte. Les programmes ne
sont donc controlés statiquement que en partie ; pour garantir la sûreté de
l’exécution, il sont ensuite compilés vers un langage avec véri�cations de
type dynamiques. Un résultat de correction garantit alors que l’exécution d’un
programme bien typé produit une valeur ou bien échoue dans l’évaluation
d’une des ces véri�cations, mais ne peut pas échouer pour d’autres raisons.

Nos apports à l’étude du typage graduel sont la description d’une nouvelle
approche permettant d’ajouter le typage graduel à un système statique existant,
et le développement de cette approche pour des systèmes aussi bien avec que
sans sous-typage.

D’abord, nous ajoutons le typage graduel à un système à la Hindley-Milner
sans sous-typage. La nouveauté de notre approche est que nous dé�nissons
le système de types graduel en ajoutant une seule règle au système statique :
une règle structurelle qui utilise la relation de précision déjà connue dans la

10

littérature sur le typage graduel. En revanche, les systèmes existants pour le
typage graduel utilisent une notion de cohérence (consistency) qui ne peut pas
être utilisée dans une règle structurelle car elle n’est pas transitive. La di�érence
entre notre système et ceux des travaux précédents est donc similaire à celle
entre les descriptions déclaratives (c’est-à-dire, avec des règles structurelles)
et algorithmiques (sans ces règles) des systèmes avec sous-typage.

Nous dé�nissons ensuite le langage avec véri�cations de type dynamiques
et nous décrivons la compilation vers celui-ci : chaque utilisation de la règle
structurelle pour la précision correspond à l’insertion d’une véri�cation de
type dans le programme compilé. Nous décrivons l’inférence de types et nous
en démontrons la correction et la complétude. Nous montrons que, pour la
résolution des contraintes d’inférence, nous pouvons réutiliser l’uni�cation
en traduisant les types graduels dans des types statiques (en remplaçant les
occurrences de ? par des variables de type).

Nous ajoutons ensuite du sous-typage au système précédent. Ajouter le
sous-typage sémantique au système de types revient à ajouter une règle de
subsomption : cependant, cette règle doit utiliser une relation de sous-typage
sur les types graduels. Cette relation ne peut pas être dé�nie directement
en étendant l’interprétation ensembliste n · o aux types graduels, car le type
dynamique ? ne peut pas être interprété comme un ensemble. Pour palier à
ce problème, nous traduisons les types graduels dans des types ensemblistes
polymorphes, cette fois aussi en remplaçant les occurrences de ? par des va-
riables de type (en faisant attention à l’interaction de ? avec les types négation).
Nous étendons l’inférence de types au sous-typage et nous prouvons qu’elle
est correcte (mais pas complète).

Le typage graduel est une technique essentielle pour ajouter une forme de
typage statique à des langages qui étaient auparavant typés dynamiquement.
Ce travail est donc un pas vers l’objectif de rendre les types ensemblistes avec
sous-typage sémantique un outil e�cace pour typer ces langages.

Langages non-stricts

La troisième partie montre comment adapter les systèmes avec types ensem-
blistes à des langages avec sémantiques non-strictes. Les systèmes existants
qui utilisent le sous-typage sémantique ont été développés pour des langages
avec appel par valeur. Il ne sont pas sûrs pour des sémantiques non-strictes, à
cause de la manière dont le sous-typage traite le type minimum (noté 0). Ce
type correspond à l’ensemble vide des valeurs et il ne peut être dérivé que pour
les expressions qui sont sûrement divergentes. Certaines des équivalences
satisfaites par le sous-typage sémantique utilisant ce type ne sont pas appro-
priées pour les sémantiques non-strictes. Par exemple, les deux types 0 × Int
et 0 × Bool sont considérés équivalents : en e�et, dans un langage avec appel
par valeur, aucun des deux ne contient une valeur (étant donné qu’il n’y a pas
de valeurs de type 0 et qu’une valeur dans un type produit est une paire de
valeurs). Dans un langage non-strict, on ne peut pas identi�er ces deux types
parce qu’ils peuvent être distingués : les projections des paires peuvent être

11

évaluées même si une composante de la paire diverge.
Pour recouvrer la correction, nous ne changeons pas le sous-typage séman-

tique dans ses fondements car cela nous empêcherait de réutiliser beaucoup
des résultats existants (notamment ceux qui concernent l’algorithme de dé-
cision du sous-typage). Par contre, nous ajoutons un nouveau type ⊥ pour
representer la divergence : ce type nous permet de distinguer au niveau des
types les expressions qui terminent de celles qui pourraient diverger. Nous
modi�ons les règles de typage pour prendre en compte la divergence, avec
une forte approximation : nous supposons que toute expression qui demande
une évaluation pourrait éventuellement diverger.

Nous décrivons ce système de types pour un λ-calcul typé de manière expli-
cite qui est assez proche au langage étudié par Frisch, Castagna et Benzaken
(2008), mais qui est évalué en appel par nécessité. La choix de l’appel par né-
cessité (au lieu de l’appel par nom) est motivé par la présence des types union,
qui exigeraient une règle complexe de disjunction de l’union pour garantir
la réduction du sujet (et qui, si on étendait le langage avec des constructions
non déterministes, feraient en fait échouer la réduction du sujet). Nous prou-
vons que le système de types obtenu est correct. La relation de sous-typage
maintient beaucoup des propriétés du sous-typage sémantique pour langages
stricts : en particulier, elle permet le même usage des types intersection pour
typer les fonctions surchargées.

12

Contents

Introduction 23

1 Introduction 25
1.1 Background and motivations 25

1.1.1 Set-theoretic types . 26
1.1.2 Subtyping on set-theoretic types 29
1.1.3 Semantic subtyping . 30

1.2 Overview and contributions 31
1.2.1 Implicit typing and type inference 32
1.2.2 Gradual typing . 32
1.2.3 Non-strict languages 33

1.3 Relationship with published or submitted work 34
1.4 Outline . 35
1.5 Notational conventions . 36

2 Background 39
2.1 Introduction . 39

2.1.1 Semantic subtyping for �rst-order languages 41
2.1.2 Adding arrow types 41
2.1.3 Adding type variables 44

2.2 Types . 46
2.2.1 Type substitutions . 48

2.3 Semantic subtyping . 49
2.4 Study of the subtyping relation 50

2.4.1 De�ning subtyping using quanti�cation 50
2.4.2 Subtyping and type substitutions 53
2.4.3 Decomposition of subtyping on arrow types 55

I Implicit typing and type inference 59

3 An implicitly typed language with set-theoretic types 61
3.1 Language syntax and semantics 61

3.1.1 Syntax . 61
3.1.2 Semantics . 62

3.2 Type system . 63
3.3 Type soundness . 66

3.3.1 Why subject reduction does not hold 67
3.3.2 Negation types for functions 68
3.3.3 Deriving negations of arrow types 70

13

Contents

3.3.4 Substitution and weakening properties 72
3.3.5 Inversion of the typing relation 76
3.3.6 Relating ground types and sets of values 78
3.3.7 Progress, subject reduction, and soundness 80

4 Type inference 87
4.1 The reformulated type system 89

4.1.1 The problem with generalization 89
4.1.2 De�nition of the reformulated type system 91
4.1.3 Relating the systems T i and T r 93
4.1.4 Inversion for the type system T r\∧ 100

4.2 Constraints and constraint generation 101
4.2.1 Constraints and constraint satisfaction 101
4.2.2 Constraint generation 102
4.2.3 Relating typing with constraint satisfaction 104
4.2.4 Properties of structured-constraint satisfaction 107

4.3 Constraint solving . 108
4.3.1 Type-constraint solving by tallying 108
4.3.2 Structured-constraint simpli�cation 110

4.4 Results and discussion . 115
4.4.1 Non-determinism and lack of principal solutions . . . 116

5 Adding type annotations 119
5.1 Language syntax and type system 119

5.1.1 Syntax . 119
5.1.2 Reformulated type system 120

5.2 Constraints and constraint solving 122
5.2.1 Constraints and constraint satisfaction 122
5.2.2 Constraint generation 123
5.2.3 Constraint solving . 126

5.3 Results and discussion . 128
5.3.1 Towards a stronger completeness result 129

6 Language extensions 131
6.1 Binding typecase and pattern matching 131

6.1.1 Binding typecase . 131
6.1.2 Pattern matching . 132

6.2 Polymorphic variants . 133
6.3 Records . 134

6.3.1 Polymorphic typing of record operations 135

7 Discussion 137
7.1 Related work . 137
7.2 Future work . 140

14

Contents

II Gradual typing 143

8 Introduction 145
8.1 Gradual typing with polymorphic set-theoretic types 145
8.2 Our approach . 147
8.3 Overview . 149

9 Gradual typing for Hindley-Milner systems 151
9.1 Source language . 151

9.1.1 Types and expressions 151
9.1.2 Type system . 152
9.1.3 Static gradual guarantee 155
9.1.4 Relationship with standard gradual type systems . . . 156

9.2 Cast language . 158
9.2.1 Syntax . 158
9.2.2 Type system . 159
9.2.3 Semantics . 160
9.2.4 Compilation . 161

9.3 Type inference . 162
9.3.1 Type constraints and solutions 163
9.3.2 Type-constraint solving 164
9.3.3 Structured constraints and constraint generation . . . 166
9.3.4 Constraint solving . 167
9.3.5 Soundness of type inference 171
9.3.6 Completeness of type inference 173
9.3.7 An example of type inference 174

9.4 Adding subtyping . 175
9.4.1 Declarative system . 176
9.4.2 Type inference . 176

10 Gradual typing for set-theoretic types 179
10.1 Type frames, static types, and gradual types 179

10.1.1 Subtyping on type frames and static types 181
10.1.2 Materialization . 181

10.2 Subtyping on gradual set-theoretic types 181
10.2.1 Polarity, parity, and variance 182
10.2.2 Subtyping using polarized discriminations 183
10.2.3 Avoiding existential quanti�cation 184
10.2.4 Equivalence of the di�erent characterizations of sub-

typing . 186
10.2.5 Properties of subtyping 190

10.3 Source and cast languages . 193
10.3.1 Syntax and typing . 193
10.3.2 Semantics . 193

10.4 Type inference . 194
10.4.1 Type constraints and solutions 194

15

Contents

10.4.2 Type-constraint solving 194
10.4.3 Structured constraints, generation, and simpli�cation . 197
10.4.4 Soundness of type inference 197

11 Discussion 201
11.1 Related work . 201
11.2 Future work . 203

III Non-strict languages 205

12 Introduction 207
12.1 Semantic subtyping for non-strict languages 207
12.2 Our approach . 208
12.3 Contributions . 211
12.4 Related work . 211

13 A call-by-need language with set-theoretic types 213
13.1 Types and subtyping . 213

13.1.1 Properties of subtyping 215
13.2 Language syntax and semantics 216

13.2.1 Source language . 217
13.2.2 Internal language . 218
13.2.3 Semantics . 218

13.3 Type system . 221
13.3.1 Type system of the source language 222
13.3.2 Type system of the internal language 223

13.4 Proving type soundness . 225
13.4.1 Call-by-name and call-by-need 226
13.4.2 Proving subject reduction: challenges 227
13.4.3 Decompositions of product types 228
13.4.4 Additional results . 230
13.4.5 Progress and subject reduction 232

14 Discussion 233
14.1 On the interpretation of types 233
14.2 Future work . 237

Conclusion 239

15 Conclusion 241
15.1 Future work . 242

16

Contents

Appendices 245

a Additional proofs 247
Implicit typing and type inference 247

Adding type annotations . 247
Gradual typing . 251

Gradual typing for Hindley-Milner systems 251
Gradual typing for set-theoretic types 269

Non-strict languages . 291
A call-by-need language with set-theoretic types 291
Discussion . 307

b Semantics of the cast languages 313
b.1 Semantics of the cast language without subtyping 313

b.1.1 Adding subtyping . 314
b.2 Semantics of the cast language with set-theoretic types 315

b.2.1 De�ning cast application and projection operators . . 319

Bibliography 323

17

List of �gures

3.1 Reduction rules . 63
3.2 T : Typing rules . 65
3.3 T n: Size-indexed typing rules 71

4.1 T i: Typing rules . 88
4.2 T r: Reformulated typing rules 92
4.3 T ri: Reformulated typing rules with explicit instantiations . . 96
4.4 Csat: Constraint satisfaction rules 103
4.5 Constraint generation . 103
4.6 Csim: Constraint simpli�cation rules 109

5.1 T ra: Reformulated typing rules (with type annotations) 121
5.2 Csata: Constraint satisfaction rules (with type annotations) . . 122
5.3 Constraint generation (with type annotations) 124
5.4 Csima: Constraint simpli�cation rules (with type annotations) . 127

6.1 Semantics of patterns . 132
6.2 Environment typing for patterns 133

9.1 T?: Typing rules of the source language 153
9.2 Lifting of the materialization relation to expressions 155
9.3 Monomorphic restriction of the implicative fragment of T? . . 157
9.4 Polymorphic restriction of the implicative fragment of T? . . . 158
9.5 T?〈〉 : Typing rules of the cast language 160
9.6 T? : Compilation from the source language to the cast language 162
9.7 Constraint generation . 167
9.8 C?

sim: Constraint simpli�cation rules 168
9.9 Algorithmic compilation . 170

13.1 Reduction rules . 220
13.2 T⊥s: Typing rules of the source language 222
13.3 T⊥i: Typing rules of the internal language 224

b.1 Reduction rules of the cast language without subtyping 314
b.2 Reduction rules of the cast language with set-theoretic types . 317

19

List of inference systems

We list here the main inference systems used throughout this thesis to de�ne
type systems and constraint-based type inference. For each system, we give
its name (e.g., T or T λ¬) and the shape of its judgments (e.g., Γ ` e : t), and
we point to where it is de�ned.

Part I

T Γ ` e : t Figure 3.2 (p. 65)

T n Γ `n e : t De�nition 3.8 (p. 70), Figure 3.3 (p. 71)

T λ¬ Γ ` e : t De�nition 3.11 (p. 72), Figure 3.2 (p. 65)

T i Γ ` e : t Figure 4.1 (p. 88)

T i\∧ restriction of T i without the rule [T∧]

T r P ;M
 e : t De�nition 4.2 (p. 91), Figure 4.2 (p. 92)

T r\∧ restriction of T r without the rule [T r
∧]

T ri P ;M
 e : t | I De�nition 4.7 (p. 95), Figure 4.3 (p. 96)

Csat P ;M ;σ
 C De�nition 4.19 (p. 102), Figure 4.4 (p. 103)

Csim P ` C { D | M | ®α De�nition 4.26 (p. 110), Figure 4.6 (p. 109)

T ra P ;M ;∆
 e : t Section 5.1.2 (p. 120), Figure 5.1 (p. 121)

T ra\∧ restriction of T ra without the rule [T ra
∧]

Csata P ;M ;∆;σ
 C Section 5.2.1 (p. 122), Figure 5.2 (p. 122)

Csima P ;∆ ` C { D | M | ®α Section 5.2.3 (p. 126), Figure 5.4 (p. 127)

Part II

T? Γ ` e : τ Section 9.1.2 (p. 152), Figure 9.1 (p. 153)

T?〈〉 Γ ` E : τ Section 9.2.2 (p. 159), Figure 9.5 (p. 160)

T? Γ ` e E : τ Section 9.2.4 (p. 161), Figure 9.6 (p. 162)

C?
sim Γ ;∆ ` C { D | ®α Section 9.3.4 (p. 167), Figure 9.8 (p. 168)

Part III

T⊥
s Γ ` e : t Section 13.3.1 (p. 222), Figure 13.2 (p. 222)

T⊥
i Γ ` e : t Section 13.3.2 (p. 223), Figure 13.3 (p. 224)

21

Introduction

1 Introduction

In this thesis, we study set-theoretic types: types that include union, intersec-
tion, and negation connectives. Set-theoretic types can be used to type several
language constructs – including conditional branching, pattern matching, and
function overloading – very precisely when coupled with a suitable subtyping
relation. We de�ne subtyping following the semantic subtyping approach of
Frisch, Castagna, and Benzaken (2008).

Set-theoretic types and semantic subtyping have been adapted to various
settings and language features over time. In this thesis, we continue along this
path by showing how to use set-theoretic types to design type systems for
di�erent functional languages: implicitly typed languages with type inference,
gradually typed languages, and non-strict languages.

1.1 Background and motivations

Much research on type systems for programming languages tries to devise
systems that are more accurate in characterizing the behaviour and properties
of programs, so that type checkers can recognize more kinds of errors while
rejecting fewer correct programs. Polymorphism is a major ingredient towards
this goal. In a polymorphic type system, expressions may have more than one
type; these types express how they behave in di�erent contexts or describe
them more or less precisely. We often distinguish three forms of polymorphism,
as follows.

Parametric polymorphism: describing code that can act uniformly on any
type, using type variables that can be instantiated with any type (e.g.,
typing the identity function as ∀α . α → α).

Ad-hoc polymorphism: allowing code that can act on more than one type,
possibly with di�erent behaviour in each case, as in function overloading
(e.g., allowing “+” to have both types Int× Int→ Int and Real×Real→ Real,
corresponding to di�erent implementations).

Subtype polymorphism: creating a hierarchy of more or less precise types
for the same code (e.g., typing 3 as both Int and Real, with Int ≤ Real).

All three forms feature prominently in this thesis. Subtype polymorphism is
fundamental for set-theoretic types and is used throughout all of the thesis
except for Chapter 9. The systems of Parts I and II feature parametric poly-
morphism; we consider let-polymorphism in the style of ML – also called
prenex polymorphism – and not the �rst-class polymorphism of System F.
Intersection types and the typecase construct allow ad-hoc polymorphism in
the systems of Parts I and III.

25

1 Introduction

1.1.1 Set-theoretic types

Set-theoretic types include union types t1 ∨ t2, intersection types t1 ∧ t2, and
negation types ¬t . Intuitively:

• t1 ∨ t2 is the type of values that are either of type t1 or of type t2;
• t1 ∧ t2 is the type of values that are both of type t1 and of type t2;
• ¬t is the type of values that are not of type t .

We speak of polymorphic set-theoretic types when set-theoretic types include
type variables to allow prenex parametric polymorphism (as in Parts I and II).

These types allow us to type several features and idioms of programming
languages e�ectively. We illustrate this with some examples.

union types: The simplest use cases for union types include branching
constructs. In a language with union types, we can type precisely conditionals
that return results of di�erent types: for instance, if e then 3 else true has type
Int∨Bool (provided that e has type Bool). Without union types, it could have an
approximated type (e.g., a top type) or be ill-typed. Similarly, we can use union
types for structures like lists that mix di�erent types: for instance, typing [1,
false, "string"] as List(Int ∨ Bool ∨ String).

This makes union types invaluable to design type systems for previously
untyped languages: witness for example their inclusion in Typed Racket (Tobin-
Hochstadt and Felleisen, 2008) and in TypeScript (Microsoft, 2018) and Flow
(Facebook, 2018), both of which extend JavaScript with static type checking.

function overloading: We can use intersection types to assign more
than one type to an expression. This is particularly relevant for functions. For
example, the identity function can be typed as (Int → Int) ∧ (Bool → Bool):
this means it has both types Int → Int and Bool → Bool, because it maps
integers to integers and Booleans to Booleans. This type describes uniform
behaviour over two di�erent argument types, which can also be described using
parametric polymorphism. However, intersection types let us express ad-hoc
polymorphism if coupled with some mechanism that allows functions to test
the type of their argument. For example, the function λx . x ∈ Int ? (x + 1) : ¬x
checks whether its argument x is an Int and returns the successor of x in that
case, its negation otherwise. The function can be applied to integers, returning
their successor, and to Booleans, returning their negation. This behaviour
can be described by the same type (Int → Int) ∧ (Bool → Bool) but does not
correspond to parametric behaviour.

A function of type (t1 → t ′1) ∧ (t2 → t ′2) can be applied safely to any
argument of type t1 ∨ t2, since it is de�ned on both t1 and t2. We know that
the result will always have type t ′1 ∨ t ′2. However, if we know the type of the
argument more precisely, we can predict the type of the result more precisely:
for example, if the argument is of type t1, then the result will be of type t ′1.

We have said that the type (Int → Int) ∧ (Bool → Bool) can be assigned
to the identity function and expresses parametric behaviour. In this respect,

26

1.1 Background and motivations

we can see intersection types as a �nitary form of parametric polymorphism;
however, they are not constrained to represent uniform behaviour, as our
other example illustrates. Conversely, we could see a polymorphic type (or
type scheme) ∀α . α → α as an in�nite intersection (intuitively,

∧
t ∈Type t → t ,

where Type is the set of all types), but in�nite intersections do not actually
exist in our types.

occurrence typing: Occurrence typing or �ow typing (Tobin-Hochstadt
and Felleisen, 2010; Pearce, 2013; Chaudhuri et al., 2017) allows the type of a
variable to be made more precise in the branches of conditionals. For example,
if x is of type Int ∨ Bool, then to type an expression x ∈ Int ? e1 : e2 we can
assume that the occurrences of x in e1 have type Int and those in e2 have type
Bool, because the �rst branch will only be reached if x is an Int and the second
if it is not an Int (and is therefore a Bool). Intersection and negation types
are useful to describe this type discipline. If we test for the type Int as in our
example, then we can assign to x the type Int if the test succeeds and ¬Int if it
fails. Using intersections, we can add this information to what we had already,
so the type of x is (Int ∨ Bool) ∧ Int (which should be equal to Int) in the �rst
branch and (Int ∨ Bool) ∧ ¬Int (which should be equal to Bool) in the second
branch.

This method of re�ning types according to conditionals is important in
type systems for dynamic languages and in those that enforce null safety:
some examples include Ceylon (King, 2017), Flow, Kotlin (JetBrains, 2018),
Typed Racket, TypeScript, and Whiley (Pearce and Groves, 2013). In particular,
Ceylon relies on intersection types (King, 2017; Muehlboeck and Tate, 2018)
and Whiley on both intersection and negation types (Pearce, 2013).

encoding disjoint union types: Disjoint union types (also known
as variant or sum types) are an important feature of functional programming
languages. They can be encoded using union types and product (or record,
or object) types. It is also useful to have singleton types, that is, types that
correspond to a single value: for example, two types true and false for the
respective constants, both subtypes of the Boolean type (which we can see as
the union true ∨ false).

For instance, consider this example in Flow.1
type Success = { success: true, value: boolean }
type Failed = { success: false, error: string }
type Response = Success | Failed

function handleResponse(response: Response) {
if (response.success) { var value: boolean = response.value }
else { var error: string = response.error }

}

The type Response is the union (denoted by “|”) of two object types: both have
a Boolean �eld success, but the types state that success must be true for objects

1 From the documentation of Flow, available at https://flow.org/en/docs/types/unions.

27

https://flow.org/en/docs/types/unions

1 Introduction

of type Success and false for objects of type Failure. An analogous type could be
declared in OCaml as type response = Success of bool | Failed of string. Occurrence
typing is used to distinguish the two cases, like pattern matching could do in
ML: if response.success is true, then response must be of type Success; if it is
false, response must be of type Failure.

typing pattern matching: Pattern matching is widely used in func-
tional programming. However, using pattern matching in ML-like languages,
we can write functions that cannot be given an exact domain in the type
system. For instance, the OCaml code let f = function 0→ true | 1→ false de�nes
a function that can only be applied to the integers 0 and 1, but OCaml infers
the unsafe type int → bool (albeit with a warning that pattern matching is
not exhaustive). The precise domain cannot be expressed in OCaml. Using
set-theoretic types and singleton types, we can express it precisely as 0 ∨ 1.
Intersection and negation types are also useful, as for occurrence typing, to
describe the types of variables in the patterns.

encoding bounded polymorphism: Using union and intersection
types, we can encode bounded polymorphism as unbounded polymorphism.
For example, a type scheme with bounded polymorphism is ∀(α ≤ t). α → α :
it describes functions that can be applied to arguments of any subtype of t and
that return a result of the same type as the argument. Using intersection types,
we can write ∀α . (α ∧ t) → (α ∧ t), writing the bound on the occurrences of
the type variable and not on the quanti�er. Analogously, we can use union
types to represent lower bounds: in general, a bound t ′ ≤ α ≤ t on a type can
be eliminated by replacing every occurrence of α in the type with (α ∧ t) ∨ t ′.

negation types: Assume that x has type Int ∨ Bool; to type the typecase
x ∈ Int ? e1 : e2, we can assume that the occurrences of x in e2 have type
(Int ∨ Bool) ∧ ¬Int (which should be Bool). We express this using negation
types. To avoid introducing negation in types, instead, we could use a meta-
operation of type di�erence, written t1 \ t2, such that (Int ∨ Bool) \ Int =
Bool. However, sometimes we would not be able to express the result of type
di�erence precisely: for example, α \ Int could not be expressed as a type.
Using negation types, instead, di�erence is just a shorthand for intersection
with the negation type: t1 \ t2

def
= t1 ∧ ¬t2. Consider for instance a function

λx . x ∈ Int ? (x + 1) : x . It can act on arguments of any type, computing
the successor of integers and leaving other arguments unchanged. Using
intersection and di�erence types, plus parametric polymorphism, we can type
it as ∀α . (Int→ Int)∧(α \ Int→ α \ Int), which expresses its behaviour precisely.

Castagna et al. (2015b, app. a) present a compelling example of the use of
polymorphic set-theoretic types to type the function to insert a new node in a
red-black tree. The types enforce three out of the four invariants of red-black
trees,2 requiring only the addition of type annotations to the code and no other

2 Speci�cally, that the root of the tree is black, that the leaves of the tree are black, and that

28

1.1 Background and motivations

change to a standard implementation (due to Okasaki, 1998). The type of the
balancing function is

∀α, β .
(
Unbalanced(α) → Rtree(α)

)
∧

(
β\Unbalanced(α) → β\Unbalanced(α)

)
and uses di�erence types like our example above: it maps unbalanced binary
trees (of elements of type α) to red-rooted balanced trees, and it leaves any
other argument unchanged.

1.1.2 Subtyping on set-theoretic types

We have given examples of the use of set-theoretic types, but up to now we have
glossed over exactly how a type checker should treat them. It is essential to
de�ne a suitable notion of subtyping on these types. The informal description
we have given suggests that certain properties should hold. In particular, we
expect union and intersection types to satisfy commutative and distributive
properties. Moreover, we expect, for example,

(Int→ Int) ∧ (Bool→ Bool) ≤ (Int ∨ Bool) → (Int ∨ Bool)

to hold to have the typing of functions with typecases work as we sketched.
To model occurrence typing, we want (Int ∨ Bool) ∧ Int to be equivalent to Int
and (Int ∨ Bool) ∧ ¬Int to be equivalent to Bool.

Arguably, it is intuitive to view types and subtyping in terms of sets and set
inclusion, especially to describe set-theoretic types.3 We can see a type as the
set of the values of that type in the language we consider. Then, we expect t1
to be a subtype of t2 if every value of type t1 is also of type t2, that is, if the set
of values denoted by t1 is included in that denoted by t2. In this view, union
and intersection types correspond naturally to union and intersections of sets;
negation corresponds to complementation with respect to the set of all values.

However, most systems reason on subtyping using rules that are sound but
not complete with respect to this model: that is, they do not allow t1 ≤ t2
in some cases in which every value of type t1 is in fact a value of type t2.
Incompleteness is not necessarily a problem, but it can result in unintuitive
behaviour. We show two examples below.

lack of distributivity: Consider this code in Flow.4

type A = { a: number }
type B = { kind: "b", b: number }
type C = { kind: "c", c: number }

type T = (A & B) | (A & C)
function f (x: T) { return (x.kind === "b") ? x.b : x.c }

no red node has a red child; the missing invariant is that every path from the root to a leaf
should contain the same number of black nodes.

3 For instance, this model is used to explain subtyping in the online documentation of Flow at
https://flow.org/en/docs/lang/subtypes.

4 Adapted from the StackOver�ow question at https://stackoverflow.com/questions/44635326.

29

https://flow.org/en/docs/lang/subtypes
https://stackoverflow.com/questions/44635326

1 Introduction

The �rst three lines declare three object types; in B and C, "b" and "c" are the
singleton types of the corresponding strings. The type T is de�ned as the union
of two intersection types (Flow denotes intersection by “&”).

The function f is well typed: as in handleResponse before, occurrence typing
recognizes that x is of type A & B in the branch x.b and of type A & C in the
branch x.c. However, if we replace the de�nition of T to be type T = A & (B | C),
the code is rejected by the type checker of Flow. Occurrence typing does not
work because T is no longer explicitly a union type. Flow considers (A & B) |
(A & C) a subtype of A & (B | C): indeed, this can proven just by assuming that
unions and intersections are respectively joins and meets for subtyping. But
subtyping does not hold in the other direction, because Flow does not consider
distributivity.

union and product types: Apart from distributivity laws, we could
also expect interaction between union and intersection types and various
type constructors. Consider product types; we might expect the two types
(t1 × t) ∨ (t2 × t) and (t1 ∨ t2) × t to be equivalent: intuitively, both of them
describe the pairs whose �rst component is either in t1 or in t2 and whose
second component is in t . But this reasoning is not always re�ected in the
behaviour of type checkers.

For example, consider this code in Typed Racket (similar examples can be
written in Flow or TypeScript).

(define-type U-of-Pair (U (Pair Integer Boolean) (Pair String Boolean)))
(define-type Pair-of-U (Pair (U Integer String) Boolean))

(define f (lambda ([x : U-of-Pair]) x))
(define x (ann (cons 3 #f) Pair-of-U))
(f x)

We de�ne two type abbreviations. In Typed Racket, U denotes a union type
and Pair a product type, so U-of-Pair is (Integer × Boolean) ∨ (String × Boolean),
and Pair-of-U is (Integer ∨ String) × Boolean. The two types are not considered
equivalent. To show it, we de�ne a function f whose domain is U-of-Pair (for
simplicity, we take the identity function) and try to apply it to an argument x
of type Pair-of-U; to de�ne x, we use an explicit type annotation (ann) to mark
the pair (cons 3 #f) as having type Pair-of-U. The application is rejected. If we
exchange the two type annotations, instead, it is accepted: the type checker
considers U-of-Pair a subtype of Pair-of-U, but not the reverse.

1.1.3 Semantic subtyping

To de�ne subtyping for set-theoretic types, we use the semantic subtyping
approach, following Frisch, Castagna, and Benzaken (2008) and later work.
We give a detailed introduction to this approach in Chapter 2. In brief, using
semantic subtyping means that we interpret types as sets and de�ne subtyping
as set inclusion. Therefore, we take the intuitive view of subtyping that we
have discussed and use it as the actual de�nition of subtyping, except that, as

30

1.2 Overview and contributions

we will explain, we cannot interpret types directly as sets of values, but we
must �nd an alternative interpretation that induces the subtyping relation we
want.

An advantage of semantic subtyping is that the interpretation of types serves
as a simple speci�cation of the behaviour of a subtyping algorithm derived
from it. Properties such as distributivity of intersections over unions and the
equivalence of product types above can be veri�ed easily on the interpretation
that we will describe. If the interpretation and the language match well enough,
subtyping can be complete with respect to the intuitive interpretation of types
as sets of values. While we will not have such a result in this work, we will
have some partial results of this kind. For instance, in the system of Part I we
will prove that the values in a type t1 ∨ t2 are exactly those either in t1 or in t2,
provided that t1 and t2 are ground (i.e., without type variables).

Semantic subtyping was �rst developed for domain-speci�c languages for
XML processing with the work on XDuce by Hosoya and Pierce (2003). It has
been extended to consider higher-order functions (Benzaken, Castagna, and
Frisch, 2003; Frisch, Castagna, and Benzaken, 2008) and parametric polymorph-
ism (Castagna and Xu, 2011; Gesbert, Genevès, and Layaïda, 2011; Castagna
et al., 2014, 2015b). This approach has also been used in di�erent settings in-
cluding object-oriented languages (Dardha, Gorla, and Varacca, 2013; Ancona
and Corradi, 2016), XML and NoSQL query languages (Benzaken et al., 2013;
Castagna et al., 2015a), and process calculi (Castagna, De Nicola, and Varacca,
2008). However, its interaction with many other language features remains
unexplored.

1.2 Overview and contributions

In this thesis we study how to use set-theoretic types with semantic subtyping
to type di�erent features of functional programming languages. Speci�cally,
we consider implicit typing and type inference, let-polymorphism, gradual
typing, and non-strict semantics.

We argue that set-theoretic types allow us to obtain rich type systems for
these di�erent settings and language features. We also argue that semantic
subtyping is an e�ective approach to de�ne subtyping in such systems. In
particular, in all this work we show that we can reuse directly many of the
previous results on semantic subtyping – notably, the algorithms to decide
subtyping and to solve subtyping constraints – even in these di�erent settings;
however, we will also point out adaptations that should be made in order
to continue this work and improve on its results. While we do not prove
that subtyping is complete with respect to an interpretation of types as sets
of values, using semantic subtyping we still obtain an expressive subtyping
relation which satis�es the properties we need to obtain the type discipline
that we have sketched.

The thesis is organized in three parts in which we consider di�erent language
features. We introduce each of these in the next three subsections.

31

1 Introduction

1.2.1 Implicit typing and type inference

In Part I we study how to use polymorphic set-theoretic types for implicitly
typed languages with let-polymorphism and type inference. In contrast, pre-
vious work on semantic subtyping studied languages where functions are
explicitly annotated with their type (Frisch, Castagna, and Benzaken, 2008;
Castagna et al., 2014) and considered at most local type inference to infer the
instantiations of polymorphic functions (Castagna et al., 2015b).

The language we study is a call-by-value λ-calculus with constants, pairs,
a typecase construct (to model runtime type dispatch and pattern matching),
and let binders.

We describe a type system for this language: a standard Hindley-Milner
system extended with the following structural rules for subsumption and
intersection introduction.

[T≤]
Γ ` e : t ′

Γ ` e : t
t ′ ≤ t [T∧]

Γ ` e : t1 Γ ` e : t2
Γ ` e : t1 ∧ t2

The system is straightforward to describe. However, the proof of soundness
with respect to the semantics is challenging because of the presence of [T∧]
and of negation types. To ensure subject reduction, we must extend the system
with a rule to derive negation types for functions, in order, for example, to
have ` λx . x : ¬(Int→ Bool). This di�culty is already solved for previous work
(Frisch, Castagna, and Benzaken, 2008), but here it is more challenging and
requires a di�erent solution because functions are not annotated. We develop
this solution and the proof of soundness for the extended system; this implies
soundness also for the simpler system without that rule.

We then study type inference, de�ning a type inference algorithm based on
constraint generation and solving. The constraints we use are similar to those
of Pottier and Rémy (2005); constraint solving reuses the tallying algorithm
of Castagna et al. (2015b). We prove that inference is sound with respect to
the type system and complete with respect to the restriction of the system
without the rule [T∧]. We do not relate inference to the original type system
directly, but to a di�erent one – closely based on the “reformulated typing
rules” of Dolan and Mycroft (2017) – which we show to be equivalent to the
original. This di�erent system handles generalization for let in a way that is
more convenient to relate to the inference algorithm.

Then, we add type annotations to the language and show how inference
can use them to compute more precise types (notably, intersection types for
functions). Finally, we outline how to extend the language with additional
features: pattern matching, OCaml-style polymorphic variants, and records.

1.2.2 Gradual typing

Part II studies gradual typing, an approach that allows static and dynamic
typing to coexist in the same language (Siek and Taha, 2006). This is achieved
by introducing an unknown type, written “?”, and by relaxing the type system

32

1.2 Overview and contributions

allowing expressions of type ? to be used in any context. Therefore, programs
are type checked statically only in part; to ensure safe execution, they are
compiled to a cast language with runtime type tests. Soundness ensures that
well-typed programs produce a value, diverge, or fail because of such tests,
but cannot go wrong otherwise.

Our contributions are the description of a new approach to make a static
type system gradual and its development for type systems both without and
with subtyping.

We �rst add gradual typing to a standard Hindley-Milner type system. The
novelty is that we de�ne a gradual type system by adding a single rule to the
static system: a subsumption-like structural rule using the precision relation
from gradual typing literature. In contrast, the existing systems for gradual
typing rely on the consistency relation, which cannot be used in a structural
rule because it is not transitive: therefore, they embed checks for consistency
in several rules. The di�erence between our system and the existing ones thus
mirrors that between declarative (i.e., with structural rules) and algorithmic
(without them) type systems with subtyping. We de�ne a cast language with a
standard semantics and describe compilation to it: each use of the structural
rule for precision corresponds to the insertion of a cast in the compiled program.
We describe type inference for the system and prove it sound and complete.
We show that, for constraint solving, we can use uni�cation by translating
gradual types to static types, changing occurrences of ? to type variables.

Then, we add subtyping. Adding semantic subtyping to the type system
amounts to adding a subsumption rule, but this rule must use a subtyping
relation on gradual types. This cannot be de�ned directly by extending the
interpretation n·o to gradual types: the dynamic type ? cannot be given a
set-theoretic interpretation. Rather, we translate gradual types to polymorphic
set-theoretic types, again by changing occurrences of the dynamic type ? to
type variables (some care is needed for negation). We extend type inference to
subtyping and prove it sound (but not complete).

Gradual typing has emerged as an essential technique to add static typing
to previously untyped languages. Therefore, this work is a step towards mak-
ing set-theoretic types with semantic subtyping a viable tool to type such
languages.

1.2.3 Non-strict languages

In Part III we show how to adapt set-theoretic type systems for non-strict
languages. The existing type systems using semantic subtyping are designed
for call-by-value languages. They are unsound for non-strict semantics because
of how subtyping deals with the bottom type 0. This type corresponds to the
empty set of values and can be assigned soundly only to expressions that
can be proven to diverge. Some of the laws satis�ed by semantic subtyping
are inappropriate for non-strict semantics. For instance, the types 0 × Int and
0 × Bool are considered equivalent: indeed, in a call-by-value language, none
contains any value (a value in a product type must be pair of values, and there

33

1 Introduction

are no values in 0). In a non-strict language, it is unsound to identify them
because they can be distinguished: projections of pairs can be evaluated even
if a component of the pair diverges.

To obtain soundness, we do not change semantic subtyping essentially:
doing so would require modi�cation of many previous results, including those
related to the algorithm to check subtyping. Instead, we add a new type ⊥ to
represent divergence: this allows us to distinguish terminating and possibly
diverging expressions at the type level. We modify the typing rules to track
divergence, with a very coarse approximation (they treat every expression
that requires any evaluation as possibly diverging).

We describe this type system for an explicitly typed λ-calculus closely based
on the language considered by Frisch, Castagna, and Benzaken (2008), but
with a call-by-need semantics. The choice of call-by-need is motivated by the
presence of union types, which would require a complex union disjunction rule
to have subject reduction hold (and would make subject reduction fail outright
if the language included non-deterministic constructs). We prove that the type
system is sound. The subtyping relation (mostly) maintains the behaviour
of call-by-value semantic subtyping, allowing, for instance, the same use of
intersection types to type overloaded functions.

1.3 Relationship with published or submi�ed work

The contents of Part I originate from the work on typing polymorphic variants
presented at ICFP 2016 (Castagna, Petrucciani, and Nguy˜̂en, 2016).5 However,
they have been greatly reworked. In particular, the soundness proof for the
type system in Chapter 3 is new: the system of the cited paper did not include
the rule [T∧] and therefore admitted a simpler proof. Moreover, type inference
has been overhauled to correct a problem in the original proof of completeness
and to improve the description of constraint solving. The material in Chapter 5
is also new.

The material in Part II has been presented at POPL 2019. It is joint work
with Giuseppe Castagna, Victor Lanvin, and Jeremy Siek. In this presentation,
I concentrate on declarative typing and type inference, which are the parts of
the paper on which I have worked more directly, and which are closer to the
rest of the thesis. The operational semantics of the cast language is discussed
only cursorily (its full de�nition is in Appendix b). The di�culties we met in
de�ning this semantics are outside the main scope of this thesis: in particular,
the semantics is driven by type information, whereas in the rest of thesis we
concentrate on designing type systems for semantics that do not depend on
static types.

The material in Part III is currently under submission for publication in
the post-proceedings of TYPES 2018. It is joint work with Giuseppe Castagna,
Davide Ancona, and Elena Zucca.

The results in Parts II and III have both been presented at TYPES 2018.
5 A prototype implementation of the type inference algorithm described in the cited work is

available at http://www.cduce.org/ocaml.

34

http://www.cduce.org/ocaml

1.4 Outline

1.4 Outline

Chapter 2 introduces the semantic subtyping approach, recapitulating the
previous work that constitutes the starting point for this thesis. We de�ne
set-theoretic types and the subtyping relation on them, and we prove several
properties of subtyping.

The greater portion of the thesis is structured in three parts.

part i We study how to use polymorphic set-theoretic types for implicitly
typed languages with type inference.

Chapter 3 We describe the syntax and semantics of an implicitly typed
λ-calculus. We de�ne a type system for it and prove it sound.

Chapter 4 We show how to perform type inference for the system of the
previous chapter, and prove results of soundness and completeness.

Chapter 5 We describe how to make type inference more precise when
programs contain some type annotations.

Chapter 6 We sketch how to extend the language with additional features
including pattern matching, polymorphic variant types, and records.

Chapter 7 We discuss the results we have obtained in this part, their rela-
tionship with previous work, and possible directions for future research.

part ii We describe our approach to gradual typing and how to combine
gradual typing with polymorphic set-theoretic types.

Chapter 8 We motivate the work by describing the kind of type discipline
which the combination of gradual typing, polymorphic set-theoretic types,
and type inference can provide. Then, we introduce our approach and
methods.

Chapter 9 We describe a gradual type system for an ML-like language with
let-polymorphism but no subtyping. We describe the source language and
its type system, the cast language with its type system and the compilation
procedure, and the type inference algorithm.

Chapter 10 We show how to extend our approach to set-theoretic types,
notably by de�ning a subtyping relation on gradual set-theoretic types.

Chapter 11 We conclude by discussing our results, their relation to previous
work, and some objectives to work towards in the future.

part iii We show how to adapt set-theoretic type systems to languages
with non-strict semantics.

Chapter 12 We explain why standard systems with semantic subtyping
are unsound for non-strict languages, and we introduce our approach to
achieve soundness.

35

1 Introduction

Chapter 13 We describe our results: we de�ne a call-by-need λ-calculus
and a type system for it featuring set-theoretic types; we prove soundness
of the type system.

Chapter 14 We discuss the results of the previous chapter and present
directions for future work. In particular, we show how we could work
towards an alternative interpretation of types.

Finally, in Chapter 15, we summarize the results in the thesis and the main
directions for future work.

Two appendices complete the thesis. Appendix a includes all the proofs
omitted from the main text. We leave many of the proofs of Part I in the text
because they illustrate the techniques we use; in contrast, in Parts II and III we
omit most of them since they usually rely on similar techniques. Appendix b
de�nes the operational semantics of the cast calculi in Part II, which we do
not give in the main text because we concentrate on typing.

1.5 Notational conventions

powerset: Given a set A, we denote by P(A) the powerset of A (i.e., the
set of all sets A′ such that A′ ⊆ A). We denote by P�n(A) the �nite powerset of
A (i.e., the set of all �nite sets A′ such that A′ ⊆ A).

vectors: We write vectors (or tuples) using a superscript arrow (®·). For
instance, we write vectors of types t as ®t . When we write a vector of type
variables (®α , ®β , ®γ and, in Part II, also ®X , ®Y , ®A) we always assume that they are
all distinct. Therefore, we often convert implicitly between vectors and sets of
type variables. We sometimes use an overline to indicate sets: for instance, α
for sets of α type variables.

disjointness: We use] to indicate disjointness of sets of type variables:
when A and B are sets of type variables, we write A] B for A ∩ B = �.

We use this notation also with other terms in place of sets of type variables;
in this case we refer to the type variables in the term. For instance, this term
can be a type, a type scheme (i.e., a type with some quanti�ed variables), a
type environment (i.e., a mapping from expression variables to type schemes),
or a type substitution (i.e., a mapping from type variables to types). When
we write a type, a type scheme, or a type environment, we take the set of
the type variables in it (written var(·) elsewhere, but left implicit when using
]). When we write a type substitution, we refer to both the variables in its
domain and those in the types in its range (dom(·)∪ var(·), where var(·) denotes
the variables appearing in the types in the range). When more than one term
appears on one side of the symbol], we take the union of the sets.

For instance: we write α] ®α, ®β to mean {α } ∩ (®α ∪ ®β) = � (treating vectors
of variables as sets by the convention above); we write α] t to mean that α
does not occur in t ; we write ®α] σ (when σ is a type substitution) to mean
that the variables in ®α are not instantiated and are not introduced by σ .

36

1.5 Notational conventions

In Part II, we distinguish two kinds of variables in types, type variables and
frame variables: we use this notation for both.

statements and proofs: We sometimes write statements in a con-
densed form using braces for conjunction and implicitly quantifying univer-
sally over all variables that are not quanti�ed explicitly. For example, we
write

P1(X)

P2(X ,Y)

}
=⇒ ∃Z .

{
Q1(X ,Z)

Q2(X ,Y ,Z)

(where the Pi and the Qi are already de�ned predicates) to mean

∀X ,Y .
((
P1(X) ∧ P2(X ,Y)

)
=⇒ ∃Z .

(
Q1(X ,Z) ∧Q2(X ,Y ,Z)

))
.

In proofs, we sometimes use circled letters (A○, B○, C○, . . .) to refer to parts of
the hypotheses or to intermediate results in a proof.

We write IH to abbreviate “induction hypothesis” in the proofs.

37

2 Background

This chapter introduces the background needed for the rest of the work: the
theory of semantic subtyping for polymorphic set-theoretic types. Most of the
de�nitions and results presented here come from the work of Frisch, Castagna,
and Benzaken (2008), Castagna and Xu (2011), and Gesbert, Genevès, and
Layaïda (2015).

In the three parts of the thesis, we will rely extensively on these results. In
Part I, we use them directly. In Parts II and III, we will make some adaptations
and develop more results, but most of the material here will only need slight
modi�cations.

chapter outline:

Section 2.1 We give a general introduction to semantic subtyping.

Section 2.2 We de�ne the language of types that we will use.

Section 2.3 We de�ne the subtyping relation.

Section 2.4 We study some properties of subtyping. To do so, we also
introduce an alternative de�nition of subtyping and prove it equivalent
to that of Section 2.3.

2.1 Introduction

In the previous chapter, we have given examples of why union, intersection,
and negation types – that we collectively refer to as set-theoretic types – are
useful to type programming languages. To add them to a type system, though,
we should de�ne a suitable notion of subtyping on them.

Arguably, when reasoning on types in a programming language, it is in-
tuitive to view a type as representing a set of values of the language. Then,
set-theoretic types have a natural interpretation as the corresponding set-
theoretic notions (negation being complementation with respect to the set
of all values). Following this view, we want subtyping to satisfy natural dis-
tribution laws. For example, it should treat (t1 × t) ∨ (t2 × t) and (t1 ∨ t2) × t
as equivalent, since they correspond to the same set of pair values. Likewise,
(t → t1) ∧ (t → t2) and t → (t1 ∧ t2) should be equivalent, since they identify
the same set of functions.

Subtyping is often de�ned by axiomatizing it in a system of inference rules.
However, a system would need many rules to capture the properties we want.
As a result, it could be complex to work with and lack intelligibility. An
alternative way to de�ne subtyping is to build a model of the language and
interpret types as subsets of the model; then, subtyping is de�ned as inclusion

39

2 Background

between the sets denoted by the types. The di�culty is to �nd a suitable
denotational model of the language.

Semantic subtyping as presented here takes a middle ground between these
two possibilities. Subtyping is de�ned using a set-theoretic interpretation
of types and not by axiomatizing it in a deduction system. However, this
interpretation is not part of a full-�edged denotational model of the language:
it is only used to de�ne subtyping. It is, indeed, an interpretation of types and
not necessarily connected to an interpretation of the terms of the language. In
principle, we can interpret types into sets in any way that induces a subtyping
relation with the properties we want. Of course, the interpretation will have
to be somehow connected to the actual meaning of types in the language, if
we want subtyping to behave correctly (e.g., to ensure type soundness for the
type system that uses it). A better correspondence could yield a more precise
subtyping relation (one that accepts more programs, while remaining sound).
However, it is not necessary to be able to prove a formal connection between
the interpretation of types and any semantic notion of the language.

This is the essence of the semantic subtyping approach. To de�ne subtyping,
we �x some set Domain as our domain of interpretation of types. Domain should
represent, at least in some intuitive sense, the set of values in the language.
Then, we de�ne an interpretation function n · o : Type → P(Domain) which
maps types into subsets of Domain. Finally, we de�ne the subtyping relation ≤
as t1 ≤ t2

def
⇐⇒ nt1o ⊆ nt2o.

Types will include some type constructors and the set-theoretic type con-
nectives (union ∨, intersection ∧, and negation ¬) plus the bottom type 0 and
the top type 1:

t F · · · | t ∨ t | t ∧ t | ¬t | 0 | 1 ,

leaving the type constructors unspeci�ed for now. We will allow types to
be recursive, not by using explicit binders but by interpreting the grammar
coinductively (with restrictions of regularity and contractivity). We want the
interpretation to satisfy

nt1 ∨ t2o = nt1o ∪ nt2o n0o = �
nt1 ∧ t2o = nt1o ∩ nt2o n1o = Domain

n¬to = Domain \ nto
to ensure that subtyping indeed treats set-theoretic types set-theoretically.
(Actually, this interpretation means that we can treat some forms as derived:
in our formalization, we de�ne t1 ∧ t2

def
= ¬(¬t1 ∨ ¬t2) and 1

def
= ¬0). Since

these interpretations are �xed, de�ning n · o consists essentially in de�ning
the interpretation of type constructors: we will discuss this below.

Once we have de�ned n · o, we can use it to de�ne subtyping as set con-
tainment. To use the subtyping relation in a type system we must do more,
of course. We must prove some properties of subtyping, at least those that
we need to show type soundness for the system. To implement the system
in a practical type checker, we must �nd an algorithm to check subtyping.
An advantage of this approach is that many properties are simple to derive

40

2.1 Introduction

(transitivity, for instance, holds trivially). To �nd an algorithm, we can rely
on set-theoretic calculations on the interpretation of types. Note in passing
that, using the notation t1 \ t2 for t1 ∧ ¬t2, we have nt1o ⊆ nt2o if and only
if nt1 \ t2o = �. Therefore, checking subtyping is equivalent to checking
emptiness of types.

We do not discuss here the algorithmic problem of deciding subtyping.
Rather, we continue the introduction by explaining how the interpretation of
types is de�ned in previous work.

2.1.1 Semantic subtyping for �rst-order languages

The starting point for this approach was the work on the XML processing
language XDuce (Hosoya, Vouillon, and Pierce, 2005). The authors show that
subtyping can be de�ned semantically without building a full model of the
language: a model of the types is enough, and it can be obtained by interpreting
types as sets of values of the language.

The language they study is monomorphic and �rst-order. Rephrasing this
outside the context of XML, let us take a language which does not include
higher-order functions. Values are constants or pairs of values: v F c | (v,v).
Types include base types b for constants, product types t1×t2, and set-theoretic
types; they can also be recursive. In this setting, we can interpret a type as
the set of values of that type in the language: we interpret each base type into
the appropriate set of constants – e.g., nBoolo = {true, false} – and we de�ne
nt1 × t2o = nt1o × nt2o. We use n · o to de�ne the subtyping relation as set
inclusion; then, the relation can be used in a type system for the language.

Hosoya, Vouillon, and Pierce study this setting, noting that the obtained
subtyping relation reduces to the inclusion problem of tree automata; they
develop a practical algorithm to decide it.

2.1.2 Adding arrow types

Frisch, Castagna, and Benzaken (2008) extend the previous approach to higher-
order languages where types include arrow types t1 → t2. This requires a
major change in the approach. We can no longer interpret types directly as sets
of values, because of a problem of circularity. Assume that we want to interpret
a type as the set of the values of that type in the language. Then we should
de�ne nt1 → t2o = { λx . e | ` λx . e : t1 → t2 }: but the de�nition of the typing
relation ` e : t relies itself on the de�nition of subtyping, which is what we are
trying to de�ne using the interpretation of types. If values are only constants
or pairs, the approach works because the typing relation restricted to values is
straightforward. The typing of functions, instead, is more di�cult because it
involves the typing of function bodies, which are arbitrary expressions.

So, we cannot have λ-abstractions in Domain because, at this stage, we do
not yet know how to associate types to them. But, as we have said, we do not
need Domain to be exactly the set of syntactic values. Indeed, we do not care
at all about what the elements in a set nto are: we just care about how those

41

2 Background

in two sets nt1o and nt2o are related, because we use the interpretation only to
de�ne subtyping as set inclusion.

We can try to see functions extensionally, as graphs. Then, we could interpret
arrow types like this:

nt1 → t2o = { R ⊆ Domain2 | ∀(d,d ′) ∈ R. d ∈ nt1o =⇒ d ′ ∈ nt2o } .
Intuitively, a relation R = { (di ,d

′
i) | i ∈ I } represents a function that maps

each di to the corresponding d ′i and diverges on elements that do not appear
in its domain {di | i ∈ I }. The relations in nt1 → t2o must map elements of
nt1o to elements of nt2o, but they are not required to map all of them (since
they can be partial), and they can also map elements outside nt1o without
restrictions. We do not demand functionality – that is, we allow a relation to
contain two pairs (d,d1) and (d,d2) with d1 , d2 – because we assume that the
functions in our language could be non-deterministic.

How should we de�ne Domain to use this interpretation? The domain should
include constants, pairs, and relations: it should satisfy the equation

Domain = Const] Domain2] P(Domain2) ,

where Const is the set of language constants,] denotes the disjoint union, and
P(·) the powerset. But no such set can exist: the cardinality of P(Domain2) is
always strictly greater than that of Domain.

To solve this di�culty, Frisch, Castagna, and Benzaken propose to use �nite
relations only. Considering the restriction of the powerset to �nite sets, the
equation above becomes satis�able: we can de�ne domain elements as the
�nite terms d given by d F c | (d,d) | {(d,d), . . . , (d,d)} (where c ∈ Const).
Of course, �nite relations are not a faithful representation of the functions in
languages in which, presumably, functions can be de�ned on an in�nite domain.
For example, the set nInt→ Into no longer contains the successor function on
integers; however, it contains all its �nite approximations. This restriction is
not a problem for subtyping, because it does not a�ect set inclusion: note that
P(A) ⊆ P(B) ⇐⇒ A ⊆ B ⇐⇒ P�n(A) ⊆ P�n(B) holds for any two sets A
and B (where P�n denotes the restriction of the powerset to �nite sets). Frisch,
Castagna, and Benzaken use their notions of extensional interpretation and of
model to argue more precisely that using �nite relations does not compromise
subtyping.

Taking the restriction to �nite sets, we can indeed de�ne Domain as we have
said and de�ne the interpretation as

nBoolo = {true, false} (and similarly for other base types)
nt1 × t2o = nt1o × nt2o
nt1 → t2o = { R ∈ P�n(Domain

2) | ∀(d,d ′) ∈ R. d ∈ nt1o =⇒ d ′ ∈ nt2o }
plus the already given de�nitions on type connectives, 0, and 1.

There is one further problem. With this de�nition, we have t1 → t2 ≤ 1→ 1

for any two types t1 and t2. This means that any λ-abstraction that is well
typed (with some type t1 → t2) can be applied to any argument whatsoever (by
subsuming t1 → t2 to 1→ 1). This is unsound in a language with constants:

42

2.1 Introduction

for instance, (λx . x 3) true has type 1, but it reduces to the stuck term true 3.
The solution is to allow a new element Ω, representing a runtime type error,
to occur in the second components of pairs in relations, while not being
in Domain. That is, we de�ne Domain as the set of �nite terms d given by
d F c | (d,d) | {(d,dΩ), . . . , (d,dΩ)}, where dΩ F d | Ω. Intuitively, a pair
(d,Ω) in a relation means that the function crashes on the input d . With this
change, 1→ 1 is no longer a supertype of all arrows, but only of those of the
form 1 → t . For example, Int → Int ≤ 1 → 1 no longer holds, because the
relations in Int → Int can contain the pair (true,Ω), since true < nInto, while
the relations in 1→ 1 cannot.

This change allows us to de�ne a subtyping relation which has the correct
properties to be used in a sound type system. It is also decidable: Frisch,
Castagna, and Benzaken (2008) describe an algorithm, and there are several
optimizations to it used in the implementation of �Duce, which relies on this
subtyping relation.

An important result of Frisch, Castagna, and Benzaken (2008) is that – for
their interpretation, language, and type system – they show a close correspond-
ence between the interpretation of types and the sets of values in a type. As
we have said, types cannot be directly interpreted as sets of values because of a
problem of circularity. However, once we have an interpretation n · o, de�ned as
above, we can de�ne the subtyping relation and, using it, the type system. Then,
we can de�ne the interpretation we wanted at �rst: ntoV def

= {v | ` v : t }. Frisch,
Castagna, and Benzaken prove ∀t1, t2. nt1o ⊆ nt2o ⇐⇒ nt1oV ⊆ nt2oV .
Showing the result above implies that, once the type system is de�ned, we can
indeed reason on subtyping by reasoning on inclusion between sets of values.

This result is useful in practice: when type checking fails because a subtyping
judgment t1 ≤ t2 does not hold, we know that there exists a value v such that
` v : t1 holds while ` v : t2 does not. This value v can be shown as a witness
to the unsoundness of the program while reporting the error.1 Moreover, at a
more foundational level, the result nicely formalizes the intuition that types
statically approximate computations: a type t corresponds to the set of all
possible values of expressions of type t .

This is a very brief introduction to the work of Frisch, Castagna, and Benza-
ken (2008). In particular, we have described how to �nd a speci�c interpretation
that induces a suitable subtyping relation. The authors instead identify more
general properties that an interpretation should satisfy, using their notions of
extensional interpretation and of model to capture these properties and to argue
that the restriction to �nite relations does not pose problems for subtyping.
We refer the interested reader to their work for more details on this.

1 In case of a type error, the �Duce compiler shows to the programmer a default value for the
type t1 ∧ ¬t2. Some heuristics are used to build a value in which only the part relevant to
the error is detailed.

43

2 Background

2.1.3 Adding type variables

The next step is to allow types to contain type variables. We need to do
so to use the subtyping relation for type systems with prenex parametric
polymorphism. (Types with quanti�ers that bind type variables, to use for
�rst-class polymorphism, have not been studied yet in semantic subtyping.)

In syntactic subtyping, we would normally expect a type variable α to be
treated similarly to an abstract type: it should be unrelated to any other type
except by trivial rules (e.g., α ≤ 1 if 1 is the top type) and by re�exivity (e.g.,
α ≤ α ∨ t holds because α ≤ α). To achieve soundness, we should ensure that
if t1 ≤ t2 holds, then t1σ ≤ t2σ holds for any type substitution σ .

In semantic subtyping, we can proceed as follows. We add type variables α ,
drawn from a set TVar, to the grammar of types. We parameterize the inter-
pretation of types making it depend on an assignment which gives meaning to
the type variables. An assignment is a function η : TVar→ P(Domain) which
maps type variables to subsets of Domain. The interpretation is now a function
n · o : Type →

(
TVar → P(Domain)

)
→ P(Domain). We de�ne nαoη as η(α).

Ground types, instead, have the same interpretation in every η: for instance,
nBooloη = {true, false}. Subtyping is de�ned as

t1 ≤ t2
def
⇐⇒ ∀η : TVar→ P(Domain). nt1oη ⊆ nt2oη .

This ensures that t1 ≤ t2 implies t1σ ≤ t2σ for every σ .
Hosoya, Frisch, and Castagna (2009) and Castagna and Xu (2011) discuss

two problems of this approach. One is algorithmic: the relation is not known
to be decidable, and it is conjectured to be NEXPTIME-complete if it is, with
no practical algorithm known. In particular, it seems di�cult to reuse the
algorithms for monomorphic subtyping to decide it.

The other problem is that, arguably, the behaviour of subtyping does not
match one’s intuitive expectations, and it does not match the behaviour of
syntactic subtyping. The problematic example of Castagna and Xu (2011) is

t × α ≤ (t × ¬t) ∨ (α × t)

where t is some ground type (so its interpretation is the same for every η). One
could expect this judgment not to hold, because the type variable α appears in
unrelated positions (in the second component on the left, in the �rst one on
the right). According to this de�nition, instead, the judgment holds if and only
if t is a singleton type (that is, if ntoη is a singleton for every η). The judgment
is equivalent to

∀η : TVar→ P(Domain). ntoη×η(α) ⊆ (ntoη×(Domain\ntoη))∪ (
η(α)×ntoη) .

If, for some d , we have ∀η. ntoη = {d}, then the judgment is equivalent to

∀η : TVar→ P(Domain). {d} × η(α) ⊆
(
{d} × (Domain \ {d})

)
∪

(
η(α) × {d}

)
,

which is true because, for every η, either d ∈ η(α) or η(α) ⊆ Domain \ {d}.
In contrast, is t is not a singleton, taking η(α) to be a proper subset of ntoη
disproves the containment.

44

2.1 Introduction

Castagna and Xu (2011) argue that we should only consider interpretations
where judgments such as the above do not hold. This should ensure that
subtyping on type variables behaves closer to the expectations for parametric
polymorphism, so that a type variable can occur on the right-hand side of
a subtyping judgment only if it occurs in a corresponding position on the
left-hand side.

Castagna and Xu propose convexity as a general property of interpretations
of types that avoid this problematic behaviour. An interpretation n · o is convex
if, for every �nite set of types {t1, . . . , tn}, it satis�es

∀η.
(nt1oη = � or . . . or ntnoη = �)

⇐⇒ (∀η. nt1oη = �) or . . . or (∀η. ntnoη = �) .
An interpretation where there are ground singleton types (i.e., types t such that
∃d .∀η. ntoη = {d}) is not convex because ∀η. (nt ∧αo = � or nt ∧¬αo = �) is
true if and only if t is a singleton, while ∀η. nt ∧ αo = � and ∀η. nt ∧¬αo = �
never hold.

To achieve convexity, Castagna and Xu suggest to interpret all ground
types into in�nite sets. This loses in part the intuitive set-theoretic meaning
of types: for example, Bool cannot be interpreted as {true, false}. However, it
seems su�cient to ensure convexity and this, in turn, to have a subtyping
relation that avoids problematic judgments such as that shown above and
that is easier to compute by extending the previous work on monomorphic
semantic subtyping.

We can de�ne Domain as the set of the �nite terms d generated by d F cL |

(d,d)L | {(d,dΩ), . . . , (d,dΩ)}
L , where L is a label drawn from some countable

set Label. The interpretation of base types contain constants with every possible
labelling, and likewise for products and arrow: for instance,

nBooloη = { cL | c ∈ {true, false}, L ∈ Label }
nt1 × t2oη = { (d1,d2)

L | (d1,d2) ∈ nt1oη × nt2oη, L ∈ Label } .
Gesbert, Genevès, and Layaïda (2011, 2015) study polymorphic semantic

subtyping to give an algorithm to decide it using a logical solver. They adopt
the idea of interpreting ground types into in�nite sets. They also show how
we can avoid using quanti�cation and give a �xed interpretation to type
variables. Indeed, assume that labels are �nite sets of type variables, that is,
Label = P�n(TVar). Then, we can de�ne subtyping in two di�erent ways:

• by de�ning subtyping using quanti�cation, having n · o depend on an
assignment η, and having nαoη = η(α);

• by de�ning subtyping as set containment of the interpretations, with n · o
mapping types to sets of values (without using an assignment), de�ning
nαo = {d ∈ Domain | α ∈ tags(d) }, where tags(d) denotes the top-level
label of d .

It can be shown that the two de�nitions produce the same relation (as we will
see in Section 2.4.1). The latter interpretation is arguably less intuitive, but it
is very convenient to work with because it interprets types directly as sets.

45

2 Background

In the rest of the chapter, we will de�ne types and subtyping formally using
the approach of Gesbert, Genevès, and Layaïda (2015) to interpret type vari-
ables without quanti�cation; then, we will introduce the interpretation with
quanti�cation and prove the equivalence. Like Gesbert, Genevès, and Layaïda,
we �x for simplicity a speci�c interpretation of types; in contrast, Castagna
and Xu study more in general the properties a suitable interpretation should
satisfy, but there are some inconsistencies in their technical development of
this more general theory.

2.2 Types

Types should include type variables and base types (which are the types of
language constants). Therefore, we assume that there exist three sets TVar,
Const, and Base: for these, we use the metavariables listed below.

TVar 3 α, β,γ type variables
Const 3 c language constants
Base 3 b base types

We assume that TVar is countably in�nite and disjoint from Base. We also
assume that there exist two functions

b(·) : Const→ Base �(·) : Base→ P(Const)

which map constants to base types and base types to sets of constants. Given
a constant c , the base type bc is its most precise type. Given a base type b, the
constants in �(b) are all the language constants that can be given type b.

We assume that Base includes singleton types for each constant and therefore
that �(bc) = {c} for every c ∈ Const. We also assume that there exists a base
type 1B ∈ Base such that�(1B) = Const. Singleton types and 1B are not strictly
necessary in the theory, but they simplify parts of the technical development.
Singleton types are also useful for typing,2 and, in our system, to be able to
represent pattern matching using typecase constructs.

example: As an example, we could take the following de�nitions

Const = {true, false} ∪ � Base = Const ∪ {Bool, Int, 1B}

bc = c �(b) =


{c} if b = c
{true, false} if b = Bool
� if b = Int
Const if b = 1B

(we represent the singleton type of each constant by the constant itself). �

Assuming any suitable de�nition of TVar and Base, we de�ne types as follows.

2 They are used, for instance, in Typed Racket, TypeScript, and Flow to be able to type check
some idioms of dynamic programming.

46

2.2 Types

2.1 definition (Types): The set Type of types is the set of terms t generated
coinductively by the following grammar

t F α type variable
| b base
| t × t product
| t → t arrow
| t ∨ t union
| ¬t negation
| 0 empty

(where α ranges over TVar and b over Base) and that satisfy the following two
conditions:

(regularity) the term has �nitely many distinct subterms;

(contractivity) every in�nite path in the term contains in�nitely many
occurrences of the × or→ constructors. �

The only primitive set-theoretic connectives in types are union and negation,
but we introduce the following abbreviations.

t1 ∧ t2
def
= ¬(¬t1 ∨ ¬t2) intersection

t1 \ t2
def
= t1 ∧ (¬t2) di�erence

1
def
= ¬0 any

We refer to b, × and → as type constructors and to ∨, ¬, ∧, and \ as type
connectives.

Note that types are de�ned coinductively rather than inductively, so they
can be in�nite trees (subject to the conditions of regularity and contractivity).
This is a way to have equi-recursive types, alternative (but equivalent) to using
explicit binders for recursion.

The purpose of the regularity condition imposed on types is simply to ensure
the decidability of the subtyping relation. Contractivity, instead, is fundamental
to exclude terms which do not have a meaningful interpretation as types or sets
of values: for instance, the trees satisfying the equations t = t ∨ t (which gives
no information on which values are in it) or t = ¬t (which cannot represent
any set of values).

Contractivity also ensures that the binary relation . ⊆ Type2 de�ned by
t1 ∨ t2 . ti and ¬t . t is Noetherian (that is, strongly normalizing). This gives
an induction principle on types that we will use without explicit reference
to the relation .. This induction principle allows us to apply the induction
hypothesis below type connectives (union and negation), but not below type
constructors. As a consequence of contractivity, types cannot contain in�nite
unions or intersections.

Given a type t , we write var(t) for the set of type variables occurring in it.

47

2 Background

The following equalities hold.

var(α) = {α } var(b) = �

var(t1 × t2) = var(t1) ∪ var(t2) var(t1 → t2) = var(t1) ∪ var(t2)

var(t1 ∨ t2) = var(t1) ∪ var(t2) var(¬t) = var(t)

var(0) = �

Note that these equalities cannot be taken directly as an inductive de�nition of
var(·), because types are de�ned coinductively. We say that a type t is ground
or closed if var(t) = �.

2.2.1 Type substitutions

The description of polymorphic typing and type inference relies on type
substitutions. We give a standard de�nition here.

2.2 definition: A type substitution σ is a mapping from type variables to
types which is the identity everywhere except on a �nite set of type variables,
the domain dom(σ) = { α ∈ TVar | σ (α) , α } of the type substitution.

We write tσ for the application of the type substitution σ to the type t . �

The application of a type substitution satis�es the following equalities.

ασ = σ (α) bσ = b

(t1 × t2)σ = (t1σ) × (t2σ) (t1 → t2)σ = (t1σ) → (t2σ)

(t1 ∨ t2)σ = (t1σ) ∨ (t2σ) (¬t)σ = ¬(tσ)

0σ = 0

We extend the application of a type substitution to vectors of types by
de�ning it pointwise. We use the notation [®t/ ®α] to denote the substitution
σ such that dom(σ) ⊆ ®α and ®ασ = ®t . We write [] to denote the empty (or
identity) substitution.

We de�ne var(σ) to be the set
⋃
α ∈dom(σ) var(ασ).

We writeσ1∪σ2 for the union of disjoint type substitutions (i.e., substitutions
with disjoint domains), de�ned by:

(σ1 ∪ σ2)(α)
def
=


σ1(α) if α ∈ dom(σ1)

σ2(α) if α ∈ dom(σ2)

α if α < dom(σ1 ∪ σ2)

We write σ2 ◦ σ1 to denote the composition of type substitutions, de�ned by
(σ2 ◦σ1)(α)

def
= ασ1σ2. We use the notations σ | ®α and σ |r ®α to denote restrictions

of type substitutions. These are de�ned as follows.

(σ | ®α)(α)
def
=

{
σ (α) if α ∈ ®α
α otherwise

σ |r ®α
def
= σ |dom(σ)\ ®α

48

2.3 Semantic subtyping

2.3 Semantic subtyping

As anticipated, in semantic subtyping we interpret types as subsets of an
interpretation domain. This domain corresponds intuitively to the sets of values
of a language, but it represents functions as �nite relations and uses a labelling
technique to interpret type variables.

In the following de�nition, we pick a distinguished symbol Ω (which is not
in Const) to represent type errors.

2.3 definition: The interpretation domain Domain is the set of �nite terms d
generated inductively by the following grammar

d F cL | (d,d)L | {(d,dΩ), . . . , (d,dΩ)}
L

dΩ F d | Ω

where c ranges over Const and L over P�n(TVar). �

We have described the reasoning behind this de�nition in Section 2.1. The
use of �nite sets of type variables, in particular, is meant to be able to interpret
type variables without using quanti�cation. For this purpose, we de�ne a
function tags on domain elements as

tags(cL) = tags((d1,d2)
L) = tags({ (di ,diΩ) | i ∈ I }

L) = L ,

that is, tags(d) is the outermost set of type variables labelling d .
Having de�ned the domain, we now de�ne the interpretation of types, which

is a function mapping each type to a subset of Domain. We want to de�ne the
interpretation nto of a type t so that it satis�es the following equalities:

nαo = {d | α ∈ tags(d) }
nbo = { cL | c ∈ �(b) }

nt1 × t2o = { (d1,d2)
L | d1 ∈ nt1o ∧ d2 ∈ nt2o }

nt1 → t2o =
{
{ (di ,diΩ) | i ∈ I }

L
�� ∀i ∈ I . di ∈ nt1o =⇒ diΩ ∈ nt2o

}
nt1 ∨ t2o = nt1o ∪ nt2o

n¬to = Domain \ nto
n0o = �

If types were de�ned inductively, we could take these equalities as an
inductive de�nition of n · o. Since they are de�ned coinductively, instead, we
give the following de�nition, which satis�es these equalities and relies on the
aforementioned induction principle on Type and on structural induction on
Domain.

2.4 definition (Set-theoretic interpretation of types): We de�ne a binary
predicate (d : t), where d ∈ Domain and t ∈ Type, by induction on the pair (d, t)

49

2 Background

ordered lexicographically. The predicate is de�ned as follows:

(d : α) = α ∈ tags(d)
(cL : b) = c ∈ �(b)

((d1,d2)
L : t1 × t2) = (d1 : t1) ∧ (d2 : t2)

({ (di ,diΩ) | i ∈ I }
L : t1 → t2) = ∀i ∈ I . (d

i : t1) =⇒ (diΩ , Ω) ∧ (diΩ : t2)
(d : t1 ∨ t2) = (d : t1) ∨ (d : t2)
(d : ¬t) = ¬(d : t)
(d : t) = false otherwise

We de�ne the set-theoretic interpretation n · o : Type→ P(Domain) as

nto = {d ∈ Domain | (d : t) } . �

Finally, we de�ne the subtyping preorder and its associated equivalence
relation as follows.

2.5 definition (Subtyping): We de�ne the subtyping relation ≤ and the sub-
type equivalence relation ' on types as:

t1 ≤ t2
def
⇐⇒ nt1o ⊆ nt2o

t1 ' t2
def
⇐⇒ (t1 ≤ t2) ∧ (t2 ≤ t1) . �

2.4 Study of the subtyping relation

In this section, we study the properties of the subtyping relation and we
prove the main results we need in the rest of the work. First, we give an
alternative de�nition of subtyping and show that it is equivalent to that of
De�nition 2.5. Then, we use this alternative de�nition to prove that type
substitutions preserve subtyping. Finally, we study subtyping judgments of a
particular form (t1 ≤ t2 where t1 and t2 are unions or intersections of arrow
types) to derive properties that we need in the proofs of soundness.

Previous work (mainly Frisch, Castagna, and Benzaken, 2008; Castagna and
Xu, 2011), contains other results which are used to describe subtyping algorith-
mically: for instance, they prove that types can always be put in a disjunctive
normal form and study subtyping judgments on unions and intersections of
product types. We do not treat these results here because we do not need them
for most of the work, though we will introduce some of them in Part III.

2.4.1 De�ning subtyping using quanti�cation

The subtyping relation that we have just de�ned is simple to describe and
to work with. Arguably, though, it would be more intuitive for subtyping on
polymorphic types to be based on quanti�cation, as introduced in Section 2.1.3.
Gesbert, Genevès, and Layaïda (2015) give an alternative de�nition using
quanti�cation, for comparison with the system of Castagna and Xu (2011). We

50

2.4 Study of the subtyping relation

describe this de�nition and report their proof of equivalence. Apart from its
interest as a di�erent characterization, this de�nition is useful to prove that
subtyping is preserved by type substitutions.

In this de�nition, the interpretation domain is the same as before. However,
the interpretation of a polymorphic type depends on the meaning we give to
the type variables in it. This meaning is given by an assignment, which is a
function η : TVar→ P(Domain) that maps type variables to subsets of Domain.

We give alternative de�nitions of (d : t), nto, and ≤ based on quanti�cation
(we mark them with a superscript q to distinguish them from the previous
de�nitions).

2.6 definition: We de�ne a ternary predicate (d :η t)q, where d ∈ Domain,
t ∈ Type, and η : TVar → P(Domain), by induction on the pair (d, t) ordered
lexicographically. The predicate is de�ned as follows:

(d :η α)q = d ∈ η(α)
(cL :η b)q = c ∈ �(b)

((d1,d2)
L :η t1 × t2)q = (d1 :η t1)q ∧ (d2 :η t2)q

({ (di ,diΩ) | i ∈ I }
L :η t1 → t2)

q = ∀i∈I . (di :η t1)q =⇒ (diΩ , Ω) ∧ (diΩ :η t2)q

(d :η t1 ∨ t2)q = (d :η t1)q ∨ (d :η t2)q

(d :η ¬t)q = ¬(d :η t)q

(d :η t)q = false otherwise

The interpretation ntoqη of a type t with respect to an assignment η is

ntoqη def
= {d ∈ Domain | (d :η t)q } .

The quanti�cation-based subtyping relation ≤q is given by

t1 ≤
q t2

def
⇐⇒ ∀η : TVar→ P(Domain). nt1oqη ⊆ nt2oqη . �

The two subtyping relations ≤ and ≤q actually coincide. First, note that the
interpretation function n · o can be obtained from n · oq by using the canonical
assignment η̂ : TVar→ P(Domain) de�ned by η̂(α) = {d | α ∈ tags(d) }.

2.7 lemma: For every type t , nto = ntoqη̂. �

Proof: The statement is equivalent to

∀t ∈ Type. ∀d ∈ Domain. (d : t) ⇐⇒ (d :η̂ t)q

which can be shown by induction on the pair (d, t). �

This already shows that t1 ≤q t2 implies t1 ≤ t2: if t1 ≤q t2, then, for every
η : TVar → P(Domain), we have nt1oqη ⊆ nt2oqη; therefore, nt1oqη̂ ⊆ nt2oqη̂
and nt1o ⊆ nt2o. We use the following lemma (due to Gesbert, Genevès, and
Layaïda, 2015) to prove the other implication.

51

2 Background

2.8 lemma: Let V be a �nite subset of TVar. Let T = { t ∈ Type | var(t) ⊆ V }.
Then, for every t ∈ T ,

ntoqη̂ = � =⇒ ∀η : TVar→ P(Domain). ntoqη = � . �

Proof: For an arbitrary V (and T de�ned from V), we prove the statement
by contraposition, proving

∀t ∈ T .
(
∃η ∈ P(Domain)TVar. ntoqη , �) =⇒ ntoqη̂ , � .

by proving for arbitrary η the stronger statement

∀t ∈ T . ∀d ∈ Domain. (d :η t)q ⇐⇒ (F
η
V (d) :η̂ t)

q ,

where the function F
η
V is de�ned as follows:

F
η
V (d) =


c`

η
V (d) if d = cL

(F
η
V (d1), F

η
V (d2))

`
η
V (d) if d = (d1,d2)

L

{ (F
η
Ω(d

i), F
η
Ω(d

i
Ω)) | i ∈ I }

`
η
V (d) if d = { (di ,diΩ) | i ∈ I }

L

`
η
V (d) = { α ∈ V | d ∈ η(α) }

The function F
η
V transforms domain elements by changing the labels L

recursively. Each label is changed according to η. The requirement that V be
�nite ensures that the new labels are always �nite (only �nite subsets of TVar
are allowed as labels).

The proof is by induction on the pair (d, t) ordered lexicographically.

Case: t = α
We have

(d :η α)q ⇐⇒ d ∈ η(α)

(F
η
V (d) :η̂ α)

q ⇐⇒ F
η
V (d) ∈ η̂(α) ⇐⇒ α ∈ tags(FηV (d))

⇐⇒ α ∈ `
η
V (d) ⇐⇒ (α ∈ V) ∧ (d ∈ η(α))

which is the result we need, since α ∈ T implies α ∈ V .

Case: t = b
If d is not of the form cL , then both (d :η b)q and (FηV (d) :η̂ b)

q do not hold.
If d = cL , then (cL :η b)q ⇐⇒ c ∈ �(b) ⇐⇒ (F

η
V (c

L) :η b)q.

Case: t = t1 × t2
As in the previous case, the equivalence is straightforward unless d is of
the form (d1,d2)

L . In that case, we have

((d1,d2)
L :η t1 × t2)q ⇐⇒ (d1 :η t1)q ∧ (d2 :η t2)q

(F
η
V ((d1,d2)

L) :η̂ t1 × t2)q ⇐⇒ (F
η
V (d1) :η̂ t1)q ∧ (FηV (d2) :η̂ t2)q

and (d1 :η t1)q ⇐⇒ (F
η
V (d1) :η̂ t1)q and (d2 :η t2)q ⇐⇒ (F

η
V (d2) :η̂ t2)q

hold by IH.

52

2.4 Study of the subtyping relation

Case: t = t1 → t2
As in the previous two cases, the interesting case is when d is of the form
{ (di ,diΩ) | i ∈ I }

L . In that case, we have

(d :η t1 → t2)
q ⇐⇒ ∀i ∈ I . (di :η t1)q =⇒ (diΩ :η t2)q

(F
η
V (d) :η̂ t1 → t2)

q ⇐⇒ ∀i ∈ I . (F
η
V (d

i) :η̂ t1)q =⇒ (F
η
V (d

i
Ω) :η̂ t2)

q

and the equivalence holds by IH.

Case: t = t1 ∨ t2
We have

(d :η t1 ∨ t2)q ⇐⇒ (d :η t1)q ∨ (d :η t2)q

(F
η
V (d) :η̂ t1 ∨ t2)

q ⇐⇒ (F
η
V (d) :η̂ t1)

q ∨ (F
η
V (d) :η̂ t2)

q

and both (d :η t1)q ⇐⇒ (F
η
V (d) :η̂ t1)

q and (d :η t2)q ⇐⇒ (F
η
V (d) :η̂ t2)

q

hold by IH.

Case: t = ¬t ′

We have

(d :η ¬t ′)q ⇐⇒ ¬(d :η t ′)q

(F
η
V (d) :η̂ ¬t

′)q ⇐⇒ ¬(F
η
V (d) :η̂ t

′)q

and ¬(d :η t ′)q ⇐⇒ ¬(F
η
V (d) :η̂ t

′)q holds by IH.

Case: t = 0

Straightforward because (d :η 0)q never holds for any d and η. �

2.9 proposition: For all types t1 and t2, t1 ≤ t2 holds if and only if t1 ≤q t2. �

Proof: We have (applying Lemma 2.8):

t1 ≤ t2 ⇐⇒ nt1 \ t2o = � ⇐⇒ nt1 \ t2oqη̂ = �
t1 ≤

q t2 ⇐⇒ ∀η : TVar→ P(Domain). nt1 \ t2oqη = �
If t1 ≤ t2, we obtain t1 ≤

q t2 by applying Lemma 2.8 with V = var(t1 \ t2).
If t1 ≤q t2, we obtain t1 ≤ t2 because η̂ : TVar→ P(Domain). �

2.4.2 Subtyping and type substitutions

We now show that subtyping judgments are preserved if we apply a type
substitution to both types. This result is needed to ensure soundness for
polymorphic type systems. The proof is adapted from Castagna and Xu (2011)
and relies on the de�nition of subtyping based on quanti�cation.

2.10 lemma: For every t , σ , and η, if η′ is de�ned by η′(α) = nσ (α)oqη, then
ntσoqη = ntoqη′. �

53

2 Background

Proof: Consider arbitrary σ and η : TVar → P(Domain). Let η′ be de�ned
from σ and η as in the statement. We can show

∀t ∈ Type. ∀d ∈ Domain. (d :η tσ)q ⇐⇒ (d :η′ t)q

by induction on (d, t). All cases are straightforward. �

2.11 proposition: If t1 ≤ t2, then t1σ ≤ t2σ for any type substitution σ . �

Proof: By de�nition of subtyping and by Proposition 2.9, from t1 ≤ t2 we
have ∀η : TVar→ P(Domain). nt1 \ t2oqη = �.

We show ∀η : TVar→ P(Domain). n(t1 \ t2)σoqη = �. Consider an arbitrary
η: we must show n(t1 \ t2)oqη = �. Take η′ de�ned by η′(α) = nσ (α)oqη. By
Lemma 2.10, we have n(t1\t2)σoqη = nt1\t2oqη′. Sinceη′ : TVar→ P(Domain),
we have nt1 \ t2oqη′ and n(t1 \ t2)σoqη.

From ∀η : TVar → P(Domain). n(t1 \ t2)σoqη = � we have t1σ ≤ t2σ by
applying again Proposition 2.9. �

We now show that type substitutions that are equivalent (meaning that they
map each type variable to equivalent types) map any given type to equivalent
types. We �rst de�ne subtype equivalence on type substitutions pointwise.

2.12 definition: Two type substitutions σ1 and σ2 are equivalent, written
σ1 ' σ2, if, for every type variable α , we have ασ1 ' ασ2. �

2.13 lemma: If σ1 ' σ2, then tσ1 ' tσ2. �

Proof: Assuming σ1 ' σ2, we prove the result

∀d, t . (d : tσ1) ⇐⇒ (d : tσ2) ,

which is equivalent to the statement.
The proof is by induction on the pair (d, t) ordered lexicographically.

Case: t = α
We have ασ1 ' ασ2, therefore (d : ασ1) ⇐⇒ (d : ασ2).

Case: t = b Straightforward because tσ1 = b = tσ2.

Case: t = t1 × t2
We have

(d : tσ1) ⇐⇒ ∃d1,d2, L. d = (d1,d2)
L and (d1 : t1σ1) and (d2 : t2σ1)

(d : tσ2) ⇐⇒ ∃d1,d2, L. d = (d1,d2)
L and (d1 : t1σ2) and (d2 : t2σ2)

and we conclude by applying the IH to (d1, t1) and (d2, t2).

Case: t = t1 → t2
Analogous to the previous case.

54

2.4 Study of the subtyping relation

Case: t = t1 ∨ t2
We have:

(d : tσ1) ⇐⇒ (d : t1σ1) or (d : t2σ1)

⇐⇒ (d : t1σ2) or (d : t2σ2)

⇐⇒ (d : tσ2) .

Case: t = ¬t ′

If (d : tσ1), then ¬(d : t ′σ1). Then, by IH, ¬(d : t ′σ2). Therefore, (d : tσ2).

Case: t = 0 Straightforward because tσ1 = 0 = tσ2. �

2.4.3 Decomposition of subtyping on arrow types

The results in this section show how subtyping judgments involving unions
and intersections of arrow types can be decomposed to subtyping judgments
on subterms of these types. They are adapted from the work of Frisch (2004)
and Frisch, Castagna, and Benzaken (2008).

2.14 lemma: Let X and Y be two sets and (Xi)i ∈I and (Yi)i ∈I two �nite families
of sets. Then:(

X × Y
)
\

(⋃
i ∈I

Xi × Yi
)
=

⋃
I ′⊆I

(
X \

⋃
i ∈I ′

Xi

)
×

(
Y \

⋃
i ∈I\I ′

Yi
)

�

Proof: Note that, for any four sets A,B,C,D, we have (A × B) \ (C × D) =
((A \C) × B) ∪ (A × (C \ D)).

We proceed by induction on |I |.

Case: I = � Straightforward.

Case: I = I ′] {i0}

We have (
X × Y

)
\
(⋃

i ∈I Xi × Yi
)

=
((
X × Y

)
\
(
Xi0 × Yi0

))
\
(⋃

i ∈I ′ Xi × Yi
)

=
((
(X \ Xi0) × Y

)
∪

(
X × (Y \ Yi0)

))
\
(⋃

i ∈I ′ Xi × Yi
)

=
((
(X \ Xi0) × Y

)
\
(⋃

i ∈I ′ Xi × Yi
))

∪

((
X × (Y \ Yi0)

)
\
(⋃

i ∈I ′ Xi × Yi
))

and, by IH,

=
(⋃

I ′′⊆I ′
(
(X \ Xi0) \

⋃
i ∈I ′′ Xi

)
×

(
Y \

⋃
i ∈I ′\I ′′ Yi

))
∪

(⋃
I ′′⊆I ′

(
X \

⋃
i ∈I ′′ Xi

)
×

(
(Y \ Yi0) \

⋃
i ∈I ′\I ′′ Yi

))

55

2 Background

=
(⋃

I ′′⊆I ′
(
X \

⋃
i ∈I ′′∪{i0 } Xi

)
×

(
Y \

⋃
i ∈I ′\I ′′ Yi

))
∪

(⋃
I ′′⊆I ′

(
X \

⋃
i ∈I ′′ Xi

)
×

(
Y \

⋃
i ∈(I ′∪{i0 })\I ′′ Yi

))
=

⋃
I ′′⊆I

(
X \

⋃
i ∈I ′′ Xi

)
×

(
Y \

⋃
i ∈I\I ′′ Yi

)
. �

2.15 lemma: Let (Xi)i ∈P and (Xi)i ∈N be two �nite families of sets, with P non-
empty. Then:⋂

i ∈P

P�n(Xi) ⊆
⋃
j ∈N

P�n(X j) ⇐⇒ ∃j0 ∈ N .
⋂
i ∈P

Xi ⊆ X j0 �

Proof: Note that
⋂

i ∈P P�n(Xi) = P�n(
⋂

i ∈P Xi) and that, for all sets A and
B, A ⊆ B implies P�n(A) ⊆ P�n(B). The implication ⇐= is straightforward
to prove using these two facts.

For the reverse implication, assume that
⋂

i ∈P P�n(Xi) ⊆
⋃

j ∈N P�n(X j),
that is, that P�n(

⋂
i ∈P Xi) ⊆

⋃
j ∈N P�n(X j). Let X =

⋂
i ∈P Xi . By contradic-

tion, assume that no j ∈ N is such that X ⊆ X j . Then, for every j ∈ N , there
exists an x j ∈ X \X j . Consider the �nite set { x j | j ∈ N }. It is in P�n(X) but
not in

⋃
j ∈N P�n(X j), which disproves the hypothesis. �

2.16 lemma: Let P , N be two �nite sets of types of the form t1 → t2, with P

non-empty. Then:∧
t1→t2∈P

t1 → t2 ≤
∨

t1→t2∈N

t1 → t2 ⇐⇒ ∃(t̂1 → t̂2) ∈ N .

(
t̂1 ≤

∨
t1→t2∈P

t1
)
∧

(
∀P ′ (P .

(
t̂1 ≤

∨
t1→t2∈P ′

t1
)
∨

(∧
t1→t2∈P\P ′

t2 ≤ t̂2
))
�

Proof: Writing D1 for Domain ∪ {Ω}, D2 for Domain × D1, and A
B for B \A,

note that

nt1 → t2o
=

{
{ (di ,diΩ) | i ∈ I }

L
�� ∀i ∈ I . di ∈ nt1o =⇒ diΩ ∈ nt2o

}
=

{
{ (di ,diΩ) | i ∈ I }

L
�� { (di ,diΩ) | i ∈ I } ∈ P�n(nt1o × nt2oD1

D2

)
}
.

We have∧
t1→t2∈P t1 → t2 ≤

∨
t1→t2∈N t1 → t2

⇐⇒
⋂

t1→t2∈Pnt1 → t2o ⊆ ⋃
t1→t2∈N nt1 → t2o

⇐⇒
⋂

t1→t2∈P P�n(nt1o × nt2oD1
D2

) ⊆
⋃

t1→t2∈N P�n(nt1o × nt2oD1
D2

)

(we can ignore the sets of type variables labelling the domain elements,
because arrow types always contain each relation with all possible labels).

56

2.4 Study of the subtyping relation

By Lemma 2.15,

⇐⇒ ∃t̂1 → t̂2 ∈ N .
⋂

t1→t2∈P nt1o × nt2o
D1

D2

⊆ nt̂1o × nt̂2o
D1

D2

⇐⇒ ∃t̂1 → t̂2 ∈ N . D2 \
(⋃

t1→t2∈Pnt1o × nt2o
D1)
⊆ D2 \

(nt̂1o × nt̂2oD1)
⇐⇒ ∃t̂1 → t̂2 ∈ N . nt̂1o × nt̂2o

D1
⊆

⋃
t1→t2∈Pnt1o × nt2o

D1

and, applying Lemma 2.14,

⇐⇒ ∃t̂1 → t̂2 ∈ N . ∀P
′ ⊆ P .(nt̂1o ⊆ ⋃

t1→t2∈P ′nt1o
)
∨

(nt̂2oD1
⊆

⋃
t1→t2∈P\P ′ nt2o

D1)
⇐⇒ ∃t̂1 → t̂2 ∈ N .((nt̂1o ⊆ ⋃

t1→t2∈Pnt1o
)
∨

(nt̂2oD1
⊆

⋃
t1→t2∈� nt2o

D1))
∧(

∀P ′ (P .
(nt̂1o ⊆ ⋃

t1→t2∈P ′nt1o
)
∨

(nt̂2oD1
⊆

⋃
t1→t2∈P\P ′ nt2o

D1))
⇐⇒ ∃t̂1 → t̂2 ∈ N .

(nt̂1o ⊆ ⋃
t1→t2∈Pnt1o

)
∧(

∀P ′ (P .
(nt̂1o ⊆ ⋃

t1→t2∈P ′nt1o
)
∨

(nt̂2oD1
⊆

⋃
t1→t2∈P\P ′ nt2o

D1))
(because nt̂2o

D1
is never empty)

⇐⇒ ∃t̂1 → t̂2 ∈ N .
(nt̂1o ⊆ ⋃

t1→t2∈Pnt1o
)
∧(

∀P ′ (P .
(nt̂1o ⊆ ⋃

t1→t2∈P ′nt1o
)
∨

(⋂
t1→t2∈P\P ′nt2o ⊆ nt̂2o))

⇐⇒ ∃t̂1 → t̂2 ∈ N .
(
t̂1 ≤

∨
t1→t2∈P t1

)
∧(

∀P ′ (P .
(
t̂1 ≤

∨
t1→t2∈P ′ t1

)
∨

(∧
t1→t2∈P\P ′ t2 ≤ t̂2

))
�

2.17 corollary: Let P , N be two �nite sets of types of the form t1 → t2, with
P non-empty. Then:∧

t1→t2∈P

t1 → t2 ≤
∨

t1→t2∈N

t1 → t2

⇐⇒ ∃(t̂1 → t̂2) ∈ N .
∧

t1→t2∈P

t1 → t2 ≤ t̂1 → t̂2 .

�

Proof: Consequence of Lemma 2.16. �

57

Part I

Implicit typing and type inference

3 An implicitly typed language
with set-theoretic types

This chapter describes the syntax, operational semantics, and type system of a
language: a typed, call-by-value λ-calculus with some additional constructs,
notably a form of runtime type testing. The language is typed implicitly and
de�ned in Curry style: the operational semantics is de�ned independently of
typing. The type system features set-theoretic types and semantic subtyping.
We study the properties of the type system and establish a standard type
soundness result. We do not study algorithmic type checking or type inference;
the latter is the object of the following chapters.

Compared to previous work on semantic subtyping (notably Frisch, Castagna,
and Benzaken, 2008; Castagna et al., 2014; Castagna et al., 2015b) the contribu-
tion here is in considering an implicitly typed language. In contrast, in previous
work functions were always annotated with their type. Implicit typing and a
restriction of the typecase construct allow us to give a very simple operational
semantics. The explicitly typed language of Castagna et al. (2014), instead, has
a more complex semantics since type information must be propagated during
reduction and updated when polymorphic functions are instantiated.

Here as in previous work on semantic subtyping, we need to handle negation
types carefully to ensure subject reduction. This is the main technical di�culty
of this chapter: the problem was already studied by Frisch, Castagna, and
Benzaken (2008), but the implicitly typed setting requires a di�erent solution.

chapter outline:

Section 3.1 We describe the syntax and the semantics of the language.

Section 3.2 We describe its type system.

Section 3.3 We develop the proof of soundness. The proof actually requires
a modi�cation of the type system – adding a rule to derive negation types
for functions – which we introduce here and not in Section 3.2 in order
to motivate it properly.

3.1 Language syntax and semantics

3.1.1 Syntax

The language is an untyped λ-calculus extended with a few constructs.
To de�ne the syntax, we take an arbitrary, countable set EVar of expression

variables, ranged over by x , y, z, We also consider the set Const of language
constants used to de�ne types in Section 2.2.

61

3 An implicitly typed language with set-theoretic types

3.1 definition: The expressions of the language are the terms e de�ned in-
ductively by the grammar

e F x | c | λx . e | e e | (e, e) | πi e | e ∈ t ? e : e | let x = e in e

where x ranges over EVar, c over Const, i over {1, 2}, and where t is a type in
Type generated coinductively by the following grammar:

tF b | t × t | 0→ 1 | t ∨ t | ¬t | 0 . �

As customary, expressions are considered up to α-renaming of bound vari-
ables. In λx . e , x is bound in e . In let x = e1 in e2, x is bound in e2.

Expressions include the forms of the λ-calculus: variables x , λ-abstractions
λx . e , and applications e e . There are also constants c , pairs (e, e) and pair
projections πi e , the typecase expression e ∈ t ? e : e , and the let construct
let x = e in e .

A typecase e0 ∈ t ? e1 : e2 is a dynamic type test. It is evaluated by evaluating
e0 and then, if e0 reduces to a value v (the syntax of values is given below),
evaluating e1 if v has type t or e2 otherwise.

Typecases cannot test arbitrary types, since they use the restricted grammar
for t. There are two restrictions with respect to the types of De�nition 2.1: types
must be ground (α does not appear), and the only arrow type that can appear
is 0→ 1, which is the type of all functions.1 This means that typecases can
distinguish functions from non-functions but cannot distinguish, for instance,
the functions that have type Int→ Int from those that do not. In previous work
on semantic subtyping, there is no such restriction. However, if we allowed
tests on function types, in a practical implementation the semantics would
depend on the behaviour of the type checking or type inference algorithms.
Thanks to this restriction, instead, the semantics does not depend on the type
system: it could be implemented without keeping track of compile-time types at
runtime. Moreover, the interest of the typecase construct in this work is mostly
to encode a pattern matching construct. Standard pattern matching cannot
check function types, so the restriction is not a problem for this. Typecases of
this form also have the same expressiveness as the type-testing primitives of
dynamic languages like JavaScript and Racket.

3.1.2 Semantics

We de�ne the operational semantics of the language in small-step style. The
evaluation is call-by-value. First, we de�ne the values of the language.

3.2 definition: A value v is an expression generated by the grammar
v F c | λx . e | (v1,v2)

and that is closed, that is, that does not contain any free variable.
We write Values for the set of all values. �

1 Actually, we could remove even 0→ 1 from the grammar: it can be expressed without using
arrow types, because it is equivalent to ¬(1B ∨ (1×1)), the type of all values that are neither
constants nor pairs. We leave it in the grammar for clarity.

62

3.2 Type system

[Rapp] v1 v2 { e[v2/x] if v1 = λx . e

[Rproj] πi (v1,v2) { vi

[R let] let x = v in e { e[v/x]

[R 1
case] v ∈ t ? e1 : e2 { e1 if typeof(v) ≤ t

[R 2
case] v ∈ t ? e1 : e2 { e2 if typeof(v) ≤ ¬t

[R ctx] E[e] { E[e ′] if e { e ′

figure 3.1 Reduction rules

The semantics uses evaluation contexts to direct the order of evaluation.
These are standard contexts for call-by-value, left-to-right reduction.

3.3 definition: A context is obtained from an expression by replacing one of
the subterms with a hole, written []. When C is a context, we write C[e] for
the expression obtained from C by replacing the hole with e .

An evaluation context E is a context generated by the following grammar:
E F [] | E e | v E | (E, e) | (v, E) | πi E | E ∈ t ? e : e | let x = E in e . �

To de�ne the semantics, we also use a standard de�nition of substitution
mapping an expression variable to a value. The notation e[v/x] indicates the
expression obtained by replacing all free occurrences of x in e by v .

3.4 definition: The reduction relation e { e ′ between expressions is de�ned
by the rules in Figure 3.1. The rules use the typeof function, de�ned as

typeof(v)
def
=


bc if v = c
0→ 1 if v = λx . e

typeof(v1) × typeof(v2) if v = (v1,v2)

to map values to types for the evaluation of typecases. �

The rules [Rapp], [Rproj], and [R let] are entirely standard, as is the context
closure rule [R ctx]. Evaluation of typecases uses two rules, [R 1

case] and [R 2
case],

which reduce the expression to either of its branches depending on whether
the tested value has the type t or the type ¬t (Lemma 3.29 will show that
exactly one of the two must hold). This test relies on the function typeof to
map values to types. Note that typeof maps every λ-abstraction to 0 → 1,
so it does not depend on static types. This approximation is allowed by the
restriction on arrow types in typecases.

3.2 Type system

We now equip the language with a type system. We give a declarative de�nition
of the type system: by declarative we mean that we rely on structural, non-
syntax-directed rules for subtyping and for the introduction of intersection

63

3 An implicitly typed language with set-theoretic types

types.2 The next two chapters will focus instead on the study of algorithmic
type inference.

The type system described here is very similar to a standard Hindley-Milner
system: the di�erences are just the addition of subtyping and intersection
introduction, as well as a rule for typecases. However, we will see in the next
section that, to prove type soundness, we need to augment the system with a
less standard rule.

As in Hindley-Milner type systems, we introduce a notion of type scheme
separate from that of types.

3.5 definition: A type scheme is a term of the form ∀®α . t . We view types as
a subset of type schemes by identifying ∀®α . t with t itself if ®α is empty. �

Type schemes are treated up to α-renaming of their bound variables. We
extend var(·) to type schemes by de�ning var(∀®α . t) = var(t) \ ®α . We extend the
application of type substitutions to type schemes: (∀®α . t)σ = ∀®α . (tσ) when
®α] σ (i.e., when the variables in ®α do not appear in dom(σ) and var(σ)); this
condition can always be ensured by α-renaming.

We give a standard de�nition for type environments too.

3.6 definition: Type environments Γ are �nite mappings from expression
variables to type schemes. We write � for the empty type environment. �

We write dom(Γ) for the domain of the type environment. We write var(Γ) for
the set of type variables that appear in Γ : that is, var(Γ) =

⋃
x ∈dom(Γ) var(Γ (x)).

We write type environments as �nite sets of bindings with the standard nota-
tion x1 : ∀®α1. t1, . . . , xn : ∀®αn . tn , where we assume that each xi is distinct. We
write Γ , x : ∀®α . t to denote the type environment obtained by extending Γ with
the new binding x : ∀®α . t , assuming that x does not already occur in Γ (which
in practice is typically ensured by α-renaming). We extend the application of
type substitutions to type environments as the pointwise application of the
substitution to all type schemes in the environment.

We can now start to de�ne the type system. Figure 3.2 presents ten of the
typing rules de�ning the typing relation Γ ` e : t . The relation that we de�ne
formally (De�nition 3.11) includes one more rule, which we need to prove
soundness: a rule to type functions with negations of arrow types. That rule
is less standard, and its inclusion demands more motivation. For now, we
describe the ten rules of Figure 3.2. In the study of type inference, we will only
consider the system with these ten rules. We refer to the inference system and
associated typing relation de�ned by these rules as T .

The �rst six rules – for variables, constants, λ-abstractions, applications,
pairs, and projections – are entirely standard. So is the [Tlet] rule for let: it

2 In contrast, an algorithmic presentation does not use structural rules and embeds subtyping
and intersection introduction into the other rules so as to be syntax-directed and closer to
an actual typechecking algorithm. We use this terminology following, among others, Pierce
(2002).

64

3.2 Type system

[Tx]
Γ ` x : t[®t/ ®α]

Γ (x) = ∀®α . t [Tc]
Γ ` c : bc

[Tλ]
Γ , x : t ′ ` e : t

Γ ` λx . e : t ′→ t
[Tapp]

Γ ` e1 : t ′→ t Γ ` e2 : t ′

Γ ` e1 e2 : t

[Tpair]
Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1, e2) : t1 × t2

[Tproj]
Γ ` e : t1 × t2
Γ ` πi e : ti

[Tcase]

Γ ` e0 : t0
either t0 ≤ ¬t or Γ ` e1 : t either t0 ≤ t or Γ ` e2 : t

Γ ` (e0 ∈ t ? e1 : e2) : t

[Tlet]
Γ ` e1 : t1 Γ , x : ∀®α . t1 ` e2 : t

Γ ` let x = e1 in e2 : t
®α] Γ

[T≤]
Γ ` e : t ′

Γ ` e : t
t ′ ≤ t [T∧]

Γ ` e : t1 Γ ` e : t2
Γ ` e : t1 ∧ t2

figure 3.2 T : Typing rules

allows generalization of the variables ®α , which must not occur in Γ ; this is
expressed by the notation ®α] Γ , which, following our conventions (Section 1.5),
means ®α∩var(Γ) = �. The [T≤] rule is a subsumption rule, using the subtyping
relation of De�nition 2.5. The [T∧] is a standard intersection-introduction rule.

The most complex rule is [Tcase], to type typecase expressions. It corresponds
to four distinct rules with di�erent side conditions, which are written in a
compact form here using the “either . . . or . . . ” shorthand. To type a typecase
e0 ∈ t ? e1 : e2, we �rst type e0 with some type t0. Then, we can type both
branches e1 and e2 with the type t . However, if t0 ≤ ¬t, we do not need to
type the �rst branch; if t0 ≤ t, we do not need to type the second. This is
because, if either of the two condition holds, we can predict statically that the
corresponding branch can never be selected at run time. The typecase reduces
to its �rst branch if e0 reduces to a value of type t, but this cannot happen if e0
has type ¬t; likewise for the second branch. If t0 ≤ t and t0 ≤ ¬t both hold,
then e0 will diverge (because then t0 ≤ 0, and there are no values of type 0),
so we type neither branch.

remark (Typing of typecases): It is very important for the type system
that we do not always need to type both branches of a typecase. Changing the
rule so that both premises must always be typed makes intersection types less
useful to type functions de�ned with typecases.

For example, the negation function λx . x ∈ btrue ? false : true can be given

65

3 An implicitly typed language with set-theoretic types

the type (btrue → bfalse) ∧ (bfalse → btrue). This relies on the fact that, in the
derivation for the type btrue → bfalse, we know that the second branch will
never be taken (and vice versa for the other arrow type). Otherwise, we could
only derive the less precise type Bool→ Bool. �

remark (Recursive functions): Since types can be recursive, we do not
need to introduce recursive functions explicitly. We can represent the recurs-
ive function µf . λx . e as fix (λf . λx . e), where fix is the call-by-value �xpoint
combinator fix ≡ λf . (λx . λy. f (x x) y) (λx . λy. f (x x) y).

Assume that we want to type the recursive function with the type t =∧
i ∈I t

′
i → ti , so we assume to have (f : t) ` λx . e : t . Hence, λf . λx . e has type

t → t . We must therefore type fix as (t → t) → t . In particular, we type it as
follows:

[Tλ]
[Tapp]

f : (t → t) ` (λx . λy. f (x x) y) : t̄ → t

f : (t → t) ` (λx . λy. f (x x) y) : t̄
f : (t → t) ` (λx . λy. f (x x) y) (λx . λy. f (x x) y) : t

� ` fix : (t → t) → t

where t̄ is the recursive type satisfying t̄ = t̄ → t . The typing derivation for
(λx . λy. f (x x) y) is

[Tλ]
[T∧]*

∀i ∈ I .

{
[Tλ]

...

f : (t → t), x : t̄,y : t ′i ` f (x x) y : ti
f : (t → t), x : t̄ ` λy. f (x x) y : t ′i → ti

f : (t → t), x : t̄ ` λy. f (x x) y : t
f : (t → t) ` (λx . λy. f (x x) y) : t̄ → t

where [T∧]* denotes multiple applications of the rule [T∧]. To type f (x x) y,
note that x x has type t and therefore f (x x) has type t too. Since t ≤ t ′i → ti ,
the application f (x x) y has type ti . �

3.3 Type soundness

We want to show that the systemT is type safe by establishing a type soundness
result which states that “well-typed programs do not go wrong”. More precisely,
a program (i.e., a closed expression) that is well typed must either reduce to a
value or diverge: it cannot get stuck.

Following the well-known syntactic approach of Wright and Felleisen (1994),
we show type soundness as a corollary of the following two properties.

Progress: closed, well-typed expressions that cannot reduce are values.

Subject reduction or type preservation: reduction preserves types.

However, the system T de�ned by the rules in Figure 3.2 does not satisfy
subject reduction. It can occur that Γ ` e : t and e { e ′, while Γ ` e ′ : t does
not hold. In the following, we show why this is the case. Then, we describe

66

3.3 Type soundness

how to augment T with one more rule to recover subject reduction, albeit
partially – it will only hold for expressions typed with ground types (i.e., types
without type variables), but this is enough for soundness to hold. Then, we
develop all the lemmas we need and prove soundness. Proving soundness
for the system extended with this rule (which we will denote by T λ¬) also
implies soundness for the system of Figure 3.2, since the latter allows fewer
derivations.

3.3.1 Why subject reduction does not hold

The problem with subject reduction arises from the presence of negation types
and from the set-theoretic de�nition of subtyping. In particular, these make it
so that, for subject reduction to hold, the following property must be true.

For every type t and every well-typed value v , (?)
either � ` v : t or � ` v : ¬t holds.

We �rst illustrate why this is needed. Consider the expression λx . (x, x) and
the following typing derivation (for some arbitrary type t).

[T≤]
[T∧]

...

� ` λx . (x, x) : t → (t × t)

...

� ` λx . (x, x) : ¬t → (¬t × ¬t)
� ` λx . (x, x) :

(
t → (t × t)

)
∧

(
¬t → (¬t × ¬t)

)
� ` λx . (x, x) : 1→

(
(t × t) ∨ (¬t × ¬t)

)
The subsumption rule can be applied because(

t → (t × t)
)
∧

(
¬t → (¬t × ¬t)

)
≤ 1→

(
(t × t) ∨ (¬t × ¬t)

)
:

in general, it holds that (t ′1 → t1) ∧ (t
′
2 → t2) ≤ (t

′
1 ∨ t ′2) → (t1 ∨ t2), and

t ∨ ¬t ' 1. Now consider an arbitrary type t and a well-typed value v . Since
v has type 1 by subsumption, the application (λx . (x, x)) v can be typed as
(t×t)∨(¬t×¬t). This application reduces to (v,v) by the rule [Rapp]. Therefore,
either (v,v) has type (t × t) ∨ (¬t × ¬t) or subject reduction does not hold.
Since t × t and ¬t ×¬t are disjoint, to derive the union type for v we need v to
have either type t or type ¬t . This illustrates the need for the property above.

Unfortunately, that property does not hold for the typing relation T de�ned
by the rules of Figure 3.2. The problems concern type variables and arrow
types: the following are two examples.

• Take v = 3 and t = α . The most precise type we can derive for 3 is
its singleton type b3. By de�nition of subtyping, b3 � α and b3 � ¬α .
Therefore, we can derive neither � ` 3 : α nor � ` 3 : ¬α .

• Take v = λx . x and t = Int → Bool. Clearly, � ` v : t is not, and should
not, be derivable. We would need � ` v : ¬t , but does it hold?

A λ-abstraction can be typed with an arrow type using [Tλ]. The
rules [T∧] and [T≤] can be used to intersect multiple types and to derive

67

3 An implicitly typed language with set-theoretic types

supertypes. To derive ¬t , we would need (t ′1 → t1)∧ · · · ∧ (t
′
n → tn) ≤ ¬t ,

where each arrow in the intersection can be derived by [Tλ].
Note that (t ′1 → t1) ∧ · · · ∧ (t

′
n → tn) ≤ ¬t holds if and only if

(t ′1 → t1) ∧ · · · ∧ (t
′
n → tn) ∧ t ≤ 0. But an intersection of arrows is

never empty: all arrows are supertypes of 1→ 0, whose interpretation is
non-empty (intuitively, it contains functions that always diverge).

The problem with type variables can be avoided by showing a restricted
version of subject reduction where we only consider expressions typed with
ground types. For a proof by induction to work, we also require that the
environment be ground (as for types, Γ is ground if var(Γ) = �). We obtain
the following statement.

Let Γ be a ground type environment and t a ground type.
If Γ ` e : t and e { e ′, then Γ ` e ′ : t .

This statement is su�cient to show soundness, since soundness only in-
volves programs, that is, closed expressions typed in the empty environment.

Once we restrict to considering only ground types, the property above is
sensible: if a goal of semantic subtyping is to be able to see (ground) types as
sets of values, then we expect any value that is not in a given type to be in its
complement. However, the problem with arrow types remains. To solve it, we
need a rule to derive negations of arrow types.

3.3.2 Negation types for functions

The di�culty we have described is not unique to our system: it arises naturally
from the combination of semantic subtyping, negation types, and intersection
introduction. Frisch, Castagna, and Benzaken (2008) solve it, but in a di�erent
setting: their language has explicitly typed functions and no polymorphism.
In their system, functions are typed using the following rule.

∀i ∈ I . Γ , x : t ′i ` e : ti
Γ ` (λ�x . e) : � ∧ t


� =

∧
i ∈I t

′
i → ti

t =
∧

j ∈J ¬(t
′
j → tj)

� ∧ t ; 0

A function is explicitly annotated with a �nite intersection � of arrow types, its
interface. It is well-typed if its body satis�es all the arrow types in �. Then, we
can assign to it any type made by intersecting � with any number of negated
arrows, with the only constraint that the type must be non-empty. (Both I and
J must be �nite because of the contractivity condition on types.)

This rule is arguably counter-intuitive. We can use it, for instance, to type
λInt→Intx . x as (Int→ Int) ∧ ¬(Bool→ Bool) even though the identity function
could very well be given the type Bool → Bool. However, the language is
explicitly typed: as such, this annotated version of the identity function cannot
be given the type Bool→ Bool, so it makes sense to derive its negation.

The rule ensures that, for any type t ′ → t , either t ′ → t can be obtained
by subsumption from � or ¬(t ′→ t) can be added to the intersection. In turn,

68

3.3 Type soundness

this ensures that, for any function and any type t , either the function has type
t or it has type ¬t .

Our setting is di�erent because of the lack of function interfaces. There is
no explicit syntactic information in the λ-abstraction specifying and limiting
which arrow types can be derived for it. The obvious adaptation of the rule
above would be

∀i ∈ I . Γ , x : t ′i ` e : ti
Γ ` (λx . e) : � ∧ t


� =

∧
i ∈I t

′
i → ti

t =
∧

j ∈J ¬(t
′
j → tj)

� ∧ t ; 0

but it cannot be used because, in conjunction with [T∧], it would allow us
to assign empty types to functions, as follows. We could use it to derive
Γ ` λx . x : (Int → Int) ∧ ¬(Bool → Bool), but also Γ ` λx . x : Bool → Bool.
Using [T∧] we would then get an empty type.

We need a rule by which an arrow type ¬(t ′→ t) can be derived for λx . e
if and only if t ′→ t cannot be derived. Since we only need to derive negation
types for values, we can assume that λx . e is closed (this simpli�es the problem
because then its typing does not depend on Γ). We can consider ground arrow
types only because of the aforementioned restriction of subject reduction. We
want the rule for negation to be something like

x : t ′1 ` e : t1
Γ ` λx . e : ¬(t ′→ t)


λx . e closed
t ′→ t closed
λx . e cannot have type t ′→ t

(the premise x : t ′1 ` e : t1 is there just to ensure that the rule can only be
applied to functions whose body is well typed) but it remains, of course, to
de�ne what “λx . e cannot have type t ′→ t” means.

When can a type t ′ → t be derived for a function λx . e? It must be a
supertype of some intersection of arrow types which we can assign to the
function, that is, it must hold that

∃{(t ′1, t1), . . . , (t
′
n, tn)}.(

∀i ∈ {1, . . . ,n}. x : t ′i ` e : ti
)
∧

(∧
i ∈{1, ...,n } t

′
i → ti ≤ t ′→ t

)
.

Hence, we might de�ne “λx . e cannot have type t ′→ t” as the negation

∀{(t ′1, t1), . . . , (t
′
n, tn)}.(

∀i ∈ {1, . . . ,n}. x : t ′i ` e : ti
)
=⇒

(∧
i ∈{1, ...,n } t

′
i → ti � t ′→ t

)
.

Of course, this de�nition cannot be used because it depends on the de�nition
of Γ ` e : t itself, which – when we introduce the rule for negation – is the very
system we are de�ning. This rule cannot be written in an inference system and,
indeed, it would correspond to an inference operator that is not monotone.
This means that there is no guarantee that a �xed point exists, so we cannot
use the operator to de�ne a relation by induction.

The solution that we present below is based on recognizing that we do not
need the side condition to refer to the typing relation itself. Note that the
typing rule we want to add is used to type the expression λx . e , whereas the

69

3 An implicitly typed language with set-theoretic types

side condition considers derivations for e , which is a strictly smaller expression.
We can therefore use in the side condition a restricted typing relation which
can only type expressions that are strictly smaller than λx . e . We explain below
this notion of a strati�ed inference system and how we can use it to de�ne a
rule to derive negations of arrow types.3

3.3.3 Deriving negations of arrow types

We associate to each expression a size which we compute straightforwardly.

3.7 definition: The size s(e) of an expression e is de�ned as follows.
s(x) = 1 s((e1, e2)) = 1 + s(e1) + s(e2)

s(c) = 1 s(πi e) = 1 + s(e)
s(λx . e) = 1 + s(e) s(e0 ∈ t ? e1 : e2) = 1 + s(e0) + s(e1) + s(e2)

s(e1 e2) = 1 + s(e1) + s(e2) s(let x = e1 in e2) = 1 + s(e1) + s(e2) �

For any natural number n, we de�ne a typing relation that can only type
expressions which are no larger thann. It uses the same rules we have presented
before (except for the restriction on size) plus the rule [T n

λ¬] for negations of
arrows. This last rule can only be applied when n is positive, and it has a side
condition referring to the typing relation for a strictly smaller size.

3.8 definition: For any natural number n,

• the n-th size-indexed typing relation Γ `n e : t is de�ned by the rules in
Figure 3.3;

• the relation 6⦂n between closed λ-abstractions and closed arrow types is
de�ned by

λx . e 6⦂n t ′→ t
def
⇐⇒ ∀{ (t ′i , ti) | i ∈ I }.(
∀i ∈ I . x : t ′i `n e : ti

)
=⇒

∧
i ∈I t

′
i → ti � t ′→ t

(where I must be non-empty and �nite). �

The de�nition is by induction onn. Forn < 2, the rule [T n
λ¬] is not applicable,

because s(λx . e) ≥ 2. For n ≥ 2, the rule is applicable and the relation 6⦂s(e) is
well de�ned, since it relies of the size-indexed typing relation for s(e), which
is strictly less than n.

De�ning an in�nite family of type systems could seem a cumbersome tech-
nique; however, the systems are all so similar that relating them is very simple.
The following properties hold.

3.9 lemma: If Γ `n e : t , then s(e) ≤ n. �

3 Chugh, Rondon, and Jhala (2012) use a similar strati�cation technique in a type system
with re�nement types where re�nement predicates include typing judgments and negation
(which introduces a circularity similar to ours).

70

3.3 Type soundness

[Tn
x]

Γ `n x : t[®t/ ®α]

{
Γ (x) = ∀®α . t
s(x) ≤ n

[Tn
c]

Γ `n c : bc
s(c) ≤ n

[Tn
λ]

Γ , x : t ′ `n e : t
Γ `n λx . e : t ′→ t

s(λx . e) ≤ n [Tn
app]

Γ `n e1 : t ′→ t Γ `n e2 : t ′

Γ `n e1 e2 : t
s(e1 e2) ≤ n

[Tn
pair]

Γ `n e1 : t1 Γ `n e2 : t2
Γ `n (e1, e2) : t1 × t2

s((e1, e2)) ≤ n [Tn
proj]

Γ `n e : t1 × t2
Γ `n πi e : ti

s(πi e) ≤ n

[Tn
case]

Γ `n e0 : t0
either t0 ≤ ¬t or Γ `n e1 : t
either t0 ≤ t or Γ `n e2 : t
Γ `n (e0 ∈ t ? e1 : e2) : t

s(e0 ∈ t ? e1 : e2) ≤ n

[Tn
let]

Γ `n e1 : t1 Γ , x : ∀®α . t1 `n e2 : t
Γ `n let x = e1 in e2 : t

{
®α] Γ
s(let x = e1 in e2) ≤ n

[Tn
≤]

Γ `n e : t ′

Γ `n e : t

{
t ′ ≤ t
s(e) ≤ n

[Tn
∧]

Γ `n e : t1 Γ `n e : t2
Γ `n e : t1 ∧ t2

s(e) ≤ n

[T n
λ¬]

x : t ′1 `n e : t1
Γ `n λx . e : ¬(t ′→ t)


λx . e closed
t ′→ t closed
s(λx . e) ≤ n
λx . e 6⦂s(e) t ′→ t

figure 3.3 T n: Size-indexed typing rules

71

3 An implicitly typed language with set-theoretic types

Proof: Immediate, because all the rules require s(e) ≤ n. �

3.10 lemma: If Γ `n e : t , then Γ `n′ e : t holds for all n′ ≥ s(e). �

Proof: By induction on the derivation of Γ `n e : t and by case analysis on
the last rule applied. All cases are straightforward. �

Finally, we de�ne the typing relation we wanted to de�ne previously, using
the rules of Figure 3.2 plus a rule for negations of arrows that relies on the
size-indexed systems.

3.11 definition: The typing relation Γ ` e : t is de�ned by the rules of Fig-
ure 3.2 plus the following rule:

[Tλ¬]
x : t ′1 ` e : t1

Γ ` λx . e : ¬(t ′→ t)


λx . e closed
t ′→ t closed
λx . e 6⦂s(e) t ′→ t

�

We write T λ¬ to refer to this typing relation and the inference system it is
de�ned from. (A list of the inference systems used throughout the thesis can
be found on page 21.)

This is the relation for which we will prove soundness by progress and (a
restricted form of) subject reduction. However, soundness will also hold for T
(the system without [Tλ¬]), since T allows fewer derivations than T λ¬.

We can relate this typing relation to the strati�ed systems as follows.

3.12 lemma: Γ ` e : t ⇐⇒
(
∃n. Γ `n e : t

)
. �

Proof: Both directions are shown easily by induction on the typing deriva-
tions and by case analysis on the last rule applied. �

We now proceed to develop the needed lemmas in order to show progress
(Lemma 3.31), subject reduction (Lemma 3.32), and �nally soundness as a
corollary of the two (Corollary 3.33). Throughout the rest of this chapter, we
always consider the typing relation T λ¬.

3.3.4 Substitution and weakening properties

We begin the proof of soundness by showing some standard properties of the
typing relation.

3.13 lemma (Stability under type substitutions): If Γ ` e : t , then Γσ ` e : tσ for
any type substitution σ . �

72

3.3 Type soundness

Proof: By induction on the derivation of Γ ` e : t and by case analysis on
the last rule applied.

Case: [Tx]
We have Γ (x) = ∀®α . tx and t = tx [®t/ ®α].
By α-renaming, we can assume ®α] σ . Then, (Γσ)(x) = ∀®α . txσ .
By [Tx], we derive Γσ ` x : txσ [®tσ/ ®α].
We have txσ [®tσ/ ®α] = tx [®t/ ®α]σ .

Case: [Tc] Straightforward.

Case: [Tλ], [Tapp], [Tpair], [Tproj], [T∧] Direct application of the IH.

Case: [Tcase]
We have:

Γ ` (e0 ∈ t ? e1 : e2) : t Γ ` e0 : t0
if t0 � ¬t then Γ ` e1 : t if t0 � t then Γ ` e2 : t .

By IH, we have Γσ ` e0 : t0σ .
Note that t is ground, therefore tσ = t.
If t0σ � ¬t, then we have t0 � ¬t by the contrapositive of Proposition 2.11.
Then, by IH, we have Γσ ` e1 : tσ . Similarly, if t0σ � t, we have Γσ ` e2 : t .
Therefore, by [Tcase], we have Γσ ` (e0 ∈ t ? e1 : e2) : tσ .

Case: [Tlet]
We have:

Γ ` let x = e1 in e2 : t
A○ Γ ` e1 : t1 B○ Γ , x : ∀®α . ®t ` e2 : t ®α] Γ .

We choose ®β such that ®β] Γ ,σ , and we de�ne ρ = [®β/ ®α].
By IH (applying σ ◦ ρ to A○ and σ to B○), we have

Γρσ ` e1 : t1ρσ Γσ , x : (∀®α . t1)σ ` e2 : tσ .

We have Γρσ = Γσ , since ®α] Γ .
We have (∀®α . t1)σ = (∀ ®β . t1ρσ) by α-renaming, since ®β] σ . Therefore:

Γσ ` e1 : t1ρσ Γσ , x : ∀®β . t1ρσ ` e2 : tσ ®β] Γσ .

We conclude by [Tlet].

Case: [T≤]
We have Γ ` e : t ′ with t ′ ≤ t .
By IH, we have Γσ ` e : t ′σ . By Proposition 2.11, t ′σ ≤ tσ . We conclude
by [T≤].

73

3 An implicitly typed language with set-theoretic types

Case: [Tλ¬]
We have Γ ` λx . e1 : ¬(t ′1 → t1).
We derive Γσ ` λx . e1 : ¬(t ′1 → t1)σ by [Tλ¬]: the side conditions of [Tλ¬]
do not mention Γ , and ¬(t ′1 → t1)σ = ¬(t

′
1 → t1) because the type is

closed. �

We de�ne an order of generality on type schemes according to instantiation
and subtyping.

3.14 definition: A type scheme ∀®α1. t1 is more general than a type scheme
∀®α2. t2 – written (∀®α1. t1) ≤

∀ (∀®α2. t2) – if for every type substitution [®t2/ ®α2]

there exists a type substitution [®t1/ ®α1] such that t1[®t1/ ®α1] ≤ t2[®t2/ ®α2].
A type environment Γ1 is more general than a type environment Γ2 – written

Γ1 ≤
∀ Γ2 – if, for all x ∈ dom(Γ2), we have x ∈ dom(Γ1) and Γ1(x) ≤

∀ Γ2(x). �

The following lemma gives an alternative characterization of the relation.

3.15 lemma: Let ∀®α1. t1 and ∀®α2. t2 be two type schemes such that ®α2] t1. Then,
(∀®α1. t1) ≤

∀ (∀®α2. t2) holds if and only if there exists a type substitution [®t/ ®α1]

such that t1[®t/ ®α1] ≤ t2. �

Proof: If (∀®α1. t1) ≤
∀ (∀®α2. t2), then we have ∃[®t1/ ®α1].t1[®t1/ ®α1] ≤ t2 by

applying the de�nition of ≤∀ for the identity substitution [®α2/ ®α2].
For the other direction, if there exists [®t/ ®α1] such that t1[®t/ ®α1] ≤ t2, then

given [®t2/ ®α2] we take the substitution [(®t[®t2/ ®α2])/ ®α1]. Since ®α2] t1, we have
t1[(®t[®t2/ ®α2])/ ®α1] = t1[®t/ ®α1][®t2/ ®α2]. Moreover, t1[®t/ ®α1][®t2/ ®α2] ≤ t2[®t2/ ®α2]. �

3.16 lemma (Weakening): If Γ2 ` e : t and Γ1 ≤
∀ Γ2, then Γ1 ` e : t . �

Proof: By induction on the derivation of Γ2 ` e : t and by case analysis on
the last rule applied.

Case: [Tx]
Since t is an instance of Γ2(x), by de�nition of Γ1 ≤

∀ Γ2 there is an
instance t ′ of Γ1(x) such that t ′ ≤ t .
We apply [Tx] and [T≤] to derive Γ1 ` x : t .

Case: [Tc], [Tλ¬]
Immediate, because the environment is not used in the rules.

Case: [Tλ], [Tapp], [Tpair], [Tproj], [Tcase], [T≤], [T∧]
Straightforward by IH.

Case: [Tlet]
We have:

A○ Γ2 ` e1 : t1 B○ Γ2, x : ∀®α . t1 ` e2 : t C○ ®α] Γ2

We choose ®β such that ®β] Γ1 and let ρ = [®β/ ®α]. The type schemes ∀®α . t1

74

3.3 Type soundness

and ∀®β . t1ρ are equivalent by α-renaming.
From A○ by Lemma 3.13 we have D○ Γ2ρ ` e1 : t1ρ.
We have Γ2ρ = Γ2 by C○.
By IH from D○ and B○ (using Γ1, x : ∀®β . t1ρ ≤∀ Γ2, x : ∀®α . t1) we have

Γ1 ` e1 : t1ρ Γ1, x : ∀®β . t1ρ ` e2 : t

and we conclude by [Tlet]. �

We prove two further lemmas concerning the type environment. The �rst
is that we can remove useless bindings from an environment while preserving
typing. We denote as Γr®x the restriction of Γ to the variables not in ®x .

3.17 lemma: If Γ ` e : t and if no variable in ®x occurs free in e , then we have
Γr®x ` e : t . �

Proof: By induction on the derivation of Γ ` e : t and by case analysis on
the last rule applied. All cases are straightforward. �

Finally, we have a standard property allowing substitution of values for
variables.

3.18 lemma: If Γ , x : ∀®α . t ′ ` e : t and Γ ` v : t ′, then Γ ` e[v/x] : t . �

Proof: By induction on the derivation of Γ , x : ∀®α . t ′ ` e : t and by case
analysis on the last rule applied.

Case: [Tx]
We have either e = x or e = y with y , x .
In the former case, we have Γ , x : ∀®α . t ′ ` x : t with t = t ′[®t/ ®α]. Since
x[v/x] = v , we must derive Γ ` v : t ′[®t/ ®α] to conclude.

We have Γ ` v : t ′ by hypothesis.
By Lemma 3.17, � ` v : t ′ (note that values have no free variables).
By Lemma 3.13, � ` v : t ′[®t/ ®α]. By Lemma 3.16, Γ ` v : t ′[®t/ ®α].

In the latter case, we have Γ , x : ∀®α . t ′ ` y : t and we must derive Γ ` y : t ,
which holds because (Γ , x : ∀®α . t ′)(y) = Γ (y).

Case: [Tc], [Tλ¬] Straightforward.

Case: [Tλ], [Tlet]
The three cases are analogous: we consider the �rst. We have

Γ , x : ∀®α . t ′ ` λy. e : t1 → t2 A○ Γ , x : ∀®α . t ′,y : t1 ` e : t2

and we must derive Γ ` (λy. e)[v/x] : t1 → t2.
We can assume y , x by α-renaming. Then, (λy. e)[v/x] = λy. (e[v/x])

and (Γ , x : ∀®α . t ′,y : t1) = (Γ ,y : t1, x : ∀®α . t ′). By IH from A○ we have
Γ ,y : t1 ` e[v/x] : t2. We obtain the result by [Tλ].

75

3 An implicitly typed language with set-theoretic types

Case: [Tapp], [Tpair], [Tproj], [Tcase], [T≤], [T∧] Straightforward by IH.

Case: [Tλ¬]
Straightforward because the environment is not used in the side con-
ditions and because the expression is closed (and hence una�ected by
[v/x]). �

3.3.5 Inversion of the typing relation

We now develop results on the inversion of the typing relation: that is, we show
how, given a judgment Γ ` e : t , we can derive judgments for the sub-terms of
e . We will use these results in Section 3.3.6 to study which values belong to a
ground type and prove the property (?) that we have identi�ed as necessary
at the beginning of Section 3.3.1.

To study inversion, we give a di�erent characterization of the type system
which is syntax-directed, with one rule for each shape of expression.

3.19 definition (Syntax-directed typing rules): The relation Γ s̀d e : t is
de�ned inductively by the following rules.

Γ s̀d x : t

{
Γ (x) = ∀®α . t ′∧

i ∈I t
′[®ti/ ®α] ≤ t Γ s̀d c : t

bc ≤ t

∀i ∈ I . Γ , x : t ′i s̀d e : ti
Γ s̀d λx . e : t



∧
i ∈I t

′
i → ti ∧

∧
j ∈J ¬(t

′
j → tj) ≤ t

∀j ∈ J . λx . e 6⦂s(e) t ′j → tj
I , �
J = � or λx . e closed
∀j ∈ J . t ′j → tj ground

Γ s̀d e1 : t ′→ t Γ s̀d e2 : t ′

Γ s̀d e1 e2 : t

Γ s̀d e1 : t1 Γ s̀d e2 : t2
Γ s̀d (e1, e2) : t

t1 × t2 ≤ t
Γ s̀d e : t1 × t2
Γ s̀d πi e : ti

Γ s̀d e0 : t0 t0 ≤ ¬t or Γ s̀d e1 : t t0 ≤ t or Γ s̀d e2 : t
Γ s̀d (e0 ∈ t ? e1 : e2) : t

Γ s̀d e1 : t1 Γ , x : ∀®α . t1 s̀d e2 : t
Γ s̀d let x = e1 in e2 : t

®α] Γ

(In the �rst and third rules, the variables that appear only in the side conditions
are implicitly existentially quanti�ed.) �

The system is obtained by embedding the uses of [T≤] in the rules for
variables, constants, functions, and pairs and the uses of [T∧] in the rules
for variables and functions. We prove that the two rules [T≤] and [T∧] are
admissible in this system.

3.20 lemma: If Γ s̀d e : t ′ and t ′ ≤ t , then Γ s̀d e : t . �

76

3.3 Type soundness

Proof: By induction on the derivation of Γ s̀d e : t ′ and by case analysis on
the last rule applied. All cases are straightforward. �

3.21 lemma: If Γ s̀d e : t1 and Γ s̀d e : t2, then Γ s̀d e : t1 ∧ t2. �

Proof: By structural induction on e and by case analysis on the shape of e .
Since all the rules are syntax-directed, if we know the shape of e , we also
know the last rule applied in both derivations.

Case: e = x

Immediate: we just apply the rule to typex with an intersection containing
all instantiations used in both derivations.

Case: e = c
Immediate: if bc ≤ t1 and bc ≤ t2, then bc ≤ t1 ∧ t2.

Case: e = λx . e ′

We have: ∧
i ∈I1(t

′
i → ti) ∧

∧
j ∈J1 ¬(t

′
j → tj) ≤ t1

∀i ∈ I1. Γ , x : t ′i s̀d e
′ : ti ∀j ∈ J1. λx . e

′ 6⦂s(e ′) t ′j → tj

I1 , � J1 = � or λx . e ′ closed ∀j ∈ J1. t
′
j → tj ground∧

i ∈I2(t
′
i → ti) ∧

∧
j ∈J2 ¬(t

′
j → tj) ≤ t2

∀i ∈ I2. Γ , x : t ′i s̀d e
′ : ti ∀j ∈ J2. λx . e

′ 6⦂s(e ′) t ′j → tj

I2 , � J2 = � or λx . e ′ closed ∀j ∈ J2. t
′
j → tj ground

Therefore we have∧
i ∈I1∪I2(t

′
i → ti) ∧

∧
j ∈J1∪J2 ¬(t

′
j → tj) ≤ t1 ∧ t2

∀i ∈ I1 ∪ I2. Γ , x : t ′i s̀d e
′ : ti ∀j ∈ J1 ∪ J2. λx . e

′ 6⦂s(e ′) t ′j → tj

I1 ∪ I2 , � J1 ∪ J2 = � or λx . e ′ closed ∀j ∈ J1 ∪ J2. t
′
j → tj ground

and we conclude using the rule for λ-abstraction.

Case: e = e1 e2
We have:

Γ s̀d e1 : t ′1 → t1 Γ s̀d e2 : t ′1 Γ s̀d e1 : t ′2 → t2 Γ s̀d e2 : t ′2
By IH, we have

Γ s̀d e1 : (t ′1 → t1) ∧ (t
′
2 → t2) Γ s̀d e2 : t ′1 ∧ t ′2

and, since (t ′1 → t1) ∧ (t
′
2 → t2) ≤ (t

′
1 ∧ t

′
2) → (t1 ∧ t2), by Lemma 3.20

we have Γ s̀d e1 : (t ′1 ∧ t ′2) → (t1 ∧ t2). We conclude using the rule for
applications.

Case: e = (e1, e2), e = πi e
′, or e = (e0 ∈ t ? e1 : e2)

Similar to the previous cases.

77

3 An implicitly typed language with set-theoretic types

Case: e = (let x = e1 in e2)

We have:

Γ s̀d e1 : t ′1 Γ , x : ∀®α1. t
′
1 s̀d e2 : t1 ®α1] Γ

Γ s̀d e1 : t ′2 Γ , x : ∀®α2. t
′
2 s̀d e2 : t2 ®α2] Γ

By IH we have Γ s̀d e1 : t ′1 ∧ t ′2.
We have (∀®α1, ®α2. t

′
1 ∧ t

′
2) ≤

∀ (∀®αi . t
′
i) for both i .

Hence, by Lemma 3.16, we have Γ , x : ∀®α1, ®α2. t
′
1 ∧ t

′
2 s̀d e2 : ti for both i .

By IH we obtain Γ , x : ∀®α1, ®α2. t
′
1 ∧ t

′
2 s̀d e2 : t1 ∧ t2, and we conclude using

the rule for let. �

Now, we prove that the syntax-directed typing relation is equivalent to the
relation of De�nition 3.11. We will use this result to invert typing judgments
Γ ` e : t and derive judgments on the subterms of e .

3.22 lemma: Γ s̀d e : t holds if and only if Γ ` e : t . �

Proof: Both implications are proved easily by induction on the derivation
and by case analysis on the last rule applied.

To prove that Γ s̀d e : t implies Γ ` e : t , in all cases we obtain Γ ` e : t
from the judgments obtained by IH from the premises of Γ s̀d e : t , applying
the rules speci�c to the shape of e (both [Tλ] and [Tλ¬] for λ-abstractions)
plus [T≤] and [T∧].

To prove that Γ ` e : t implies Γ s̀d e : t , if the last rule applied is [T≤], we
apply the IH and Lemma 3.20; if it is [T∧], we apply the IH and Lemma 3.21;
in all other cases, we apply the IH and then the rule corresponding to the
shape of e . �

3.3.6 Relating ground types and sets of values

Now we establish some results relating sets of values in di�erent ground
types. These results show that (as far as ground types are concerned) union,
intersection, and negation types correspond to the set-theoretic notions: for
instance, Lemma 3.26 proves that the values in a union of ground types t1 ∨ t2
are exactly those in t1 and those in t2. We map types to sets of values using
the functionV(t) def

= {v | � ` v : t }. First, we check that the empty type 0 is
actually uninhabited.

3.23 lemma: V(0) = �. �

Proof: We show that � ` v : t implies t � 0, by induction on v and using
Lemma 3.22.

Case: v = c We have bc ≤ t and bc is not empty: therefore t � 0.

Case: v = λx . e

78

3.3 Type soundness

We have
∧

i ∈I t
′
i → ti ∧

∧
j ∈J ¬(t

′
j → tj) ≤ t .

We show that, for all j ∈ J ,
∧

i ∈I t
′
i → ti � t ′j → tj .

For all i ∈ I , we have x : t ′i ` e : ti .
By Lemmas 3.10 and 3.12, we have x : t ′i `s(e) e : ti .
For all j ∈ J , we have λx . e 6⦂s(e) t ′j → tj . By de�nition, this implies
that

∧
i ∈I t

′
i → ti � t ′j → tj .

By the contrapositive of Corollary 2.17, we have
∧

i ∈I t
′
i → ti �

∨
j ∈J t

′
j →

tj , which is
∧

i ∈I t
′
i → ti ∧

∧
j ∈J ¬(t

′
j → tj) � 0.

Case: v = (v1,v2)

We have � ` v1 : t1, � ` v2 : t2, and t1 × t2 ≤ t .
By IH, t1 � 0 and t2 � 0: therefore, t1 × t2 � 0. �

We show that the values in a ground intersection type t1 ∧ t2 are exactly
those in both t1 and t2.

3.24 lemma: Let t1 and t2 be ground types. Then,V(t1∧t2) = V(t1)∩V(t2). �

Proof: If � ` v : t1 ∧ t2, then by [T≤] we have � ` v : t1 and � ` v : t2
Conversely, if� ` v : t1 and� ` v : t2, then� ` v : t1∧t2 holds by [T∧]. �

Now, we prove that all well-typed values – that is, values in V(1) – are
either inV(t) orV(¬t), for any ground type t . This is the result (?) that we
stated in Section 3.3.1.

3.25 lemma: Let t be a ground type. Then,V(¬t) = V(1) \ V(t). �

Proof: Using the previous two results, we have that, if v ∈ V(t) ∩ V(¬t),
then v ∈ V(t ∧¬t); but then v ∈ V(0), which is impossible. Therefore,V(t)
andV(¬t) are disjoint.

We show thatV(t) ∪ V(¬t) = V(1), which yields the result we need. We
show this by proving, for every well-typed value v and every ground type t ,
that either � ` v : t or � ` v : ¬t holds. The proof is by induction on (v, t).

Case: t = b
If a well-typed value v is not a constant, it always has type ¬b.
If v is a constant c , it has type bc . Since nbco is a singleton, it is a subset
of either nbo or n¬bo: therefore, v has either type b or type ¬b by [T≤].

Case: t = t1 × t2
If a well-typed value v is not a pair, it always has type ¬(t1 × t2).
If v = (v1,v2), then, by IH, v1 has either type t1 or ¬t1, and v2 has either
type t2 or ¬t2. Then, v has one of these four types: (t1 × t2), (¬t1 × t2),
(t1×¬t2), or (¬t1×¬t2). In the last three cases, by [T≤] it has type¬(t1×t2).

Case: t = t1 → t2
If a well-typed valuev is not a λ-abstraction, it always has type¬(t1 → t2).

79

3 An implicitly typed language with set-theoretic types

Otherwise, we havev = λx . e . Either we can derive � ` λx . e : ¬(t1 → t2)

using [Tλ¬] or not. In the latter case, we show � ` λx . e : t1 → t2.
If we cannot apply [Tλ¬], then it must be either because no premise cannot
be found or because one of the side conditions does not hold. The �rst
possibility cannot actually occur because λx . e is well typed: therefore
its body must be well typed under some assumption for x . Therefore, it
must be that λx . e 6⦂s(e) t1 → t2 does not hold.
As a consequence, we have

∃{ (t ′i , ti) | i ∈ I }.
(
∀i ∈ I . x : t ′i `s(e) e : ti

)
∧

(∧
i ∈I t

′
i → ti ≤ t1 → t2

)
(where I is �nite and non-empty). By Lemma 3.12 and by [Tλ], [T∧], and
[T≤], we obtain � ` λx . e : t1 → t2.

Case: t = t1 ∨ t2
By IH, v has either type t1 or ¬t1, and either type t2 or ¬t2.
Therefore, either it has type t1 ∨ t2 by [T≤] or it has both types ¬t1 and
¬t2, in which case it has type ¬(t1 ∨ t2) by [T∧] and [T≤].

Case: t = ¬t ′ Straightforward by IH.

Case: t = 0 Since v is well typed, it has type ¬0 by [T≤]. �

As a consequence of these results, the values in a ground union type are
exactly those in at least one of the types in the union.

3.26 lemma: Let t1 and t2 be ground types. Then,V(t1∨t2) = V(t1)∪V(t2). �

Proof: If v ∈ V(t1), then � ` v : t1. Then, by [T≤], � ` v : t1 ∨ t2. Hence,
v ∈ V(t1 ∨ t2). Likewise if v ∈ V(t2).

If v ∈ V(t1 ∨ t2), then � ` v : t1 ∨ t2. Since v is well typed, we have
v ∈ V(1). By Lemma 3.25, either � ` v : t1 or � ` v : ¬t1 must hold. In the
former case, we have v ∈ V(t1). In the latter, since (t1 ∨ t2) ∧ ¬t1 ' t2, we
have � ` v : t2 by [T∧] and [T≤]; hence, v ∈ V(t2). �

3.27 corollary: If Γ ` v :
∨

i ∈I ti and if
∨

i ∈I ti is ground, then there exists an
i0 ∈ I such that Γ ` v : ti0 . �

Proof: Consequence of Lemma 3.26, shown by induction on |I | (note that I
is necessarily �nite). �

3.3.7 Progress, subject reduction, and soundness

We prove three auxiliary lemmas and then the main results of progress and
subject reduction. The �rst lemma is a result of inversion of typing for values.

3.28 lemma: The following hold:

80

3.3 Type soundness

• if Γ ` v : t ′→ t , thenv = λx . e and there exists a non-empty intersection∧
i ∈I t

′
i → ti such that

∧
i ∈I t

′
i → ti ≤ t ′ → t and that, for all i ∈ I , we

have Γ , x : t ′i ` e : ti ;

• if Γ ` v : t1 × t2, then v = (v1,v2) and Γ ` v1 : t1 and Γ ` v2 : t2. �

Proof: Both points are consequences of Lemma 3.22.
In particular, when Γ ` v : t ′→ t , by Lemma 3.22 we know that v must be

of the form λx . e . Then, we have
∧

i ∈I t
′
i → ti ∧

∧
j ∈J ¬(t

′
j → tj) ≤ t ′ → t .

However, since
∧

i ∈I t
′
i → ti ∧

∧
j ∈J ¬(t

′
j → tj) is not empty (by Lemma 3.23),

we also have
∧

i ∈I t
′
i → ti ≤ t ′→ t by Corollary 2.17. �

The following lemma ensures that the evaluation of a well-typed typecase
cannot get stuck.

3.29 lemma: For every v and t, either typeof(v) ≤ t or typeof(v) ≤ ¬t. �

Proof: By induction on the pair (v, t) and by case analysis on the shape of t.

Case: t = b
If v is a function or a pair, typeof(v) ≤ ¬t.
If v is a constant c , then typeof(c) = bc . The type bc is a singleton type,
that is, �(bc) = {c}. As a result, we have either �(bc) ⊆ �(b) or �(bc) ⊆
Const \�(b). This implies that either bc ≤ b or bc ≤ ¬b.

Case: t = t1 × t2
If v is a constant or a function, then typeof(v) ≤ ¬t.
If v is a pair (v1,v2), then typeof(v) = typeof(v1) × typeof(v2).
By IH, we have

either typeof(v1) ≤ t1 or typeof(v1) ≤ ¬t1
either typeof(v2) ≤ t2 or typeof(v2) ≤ ¬t2 .

If typeof(v1) ≤ t1 and typeof(v2) ≤ t2, then typeof(v) ≤ t. In all other cases,
typeof(v) ≤ ¬t.

Case: t = 0→ 1

If v is a constant or a pair, then typeof(v) ≤ ¬t.
If v is a function, then typeof(v) = t.

Case: t = t1 ∨ t2
By IH, we have

either typeof(v) ≤ t1 or typeof(v) ≤ ¬t1
either typeof(v) ≤ t2 or typeof(v) ≤ ¬t2 .

If typeof(v) ≤ t1 or typeof(v) ≤ t2, then typeof(v) ≤ t.
Otherwise, we have typeof(v) ≤ ¬t1 and typeof(v) ≤ ¬t2. Then, we have
typeof(v) ≤ ¬t1 ∧ ¬t2, and ¬t1 ∧ ¬t2 ' ¬t.

81

3 An implicitly typed language with set-theoretic types

Case: t = ¬t′ By IH.

Case: t = 0 We have typeof(v) ≤ ¬t ' 1. �

The next lemma proves that, for every well-typed v , typeof(v) is indeed a
derivable type for v .

3.30 lemma: If Γ ` v : t , then Γ ` v : typeof(v). �

Proof: By induction on v and by case analysis on the shape of v .

Case: v = c We have Γ ` c : bc by [Tc].

Case: v = λx . e

By Lemma 3.22, we have Γ , x : t ′ ` e : t ′′ for some t ′ and t ′′.
Hence, by [Tλ], Γ ` λx . e : t ′→ t ′′ and, by [T≤], Γ ` λx . e : 0→ 1.

Case: v = (v1,v2)

By Lemma 3.22, v1 and v2 are well typed. Then, by IH, we have both
Γ ` v1 : typeof(v1) and Γ ` v2 : typeof(v2). We conclude by [Tpair]. �

Finally, we can prove progress and subject reduction.

3.31 lemma (Progress): Let e be a closed expression. If � ` e : t , then either e is
a value or there exists an expression e ′ such that e { e ′. �

Proof: By induction on the derivation of � ` e : t and by case analysis on
the last rule applied.

Case: [Tx] Impossible, because a variable is not closed.

Case: [Tc], [Tλ], [Tλ¬] The expression is a value.

Case: [Tapp]
We have e = e1 e2, and both e1 and e2 are closed and well typed.
We apply the IH to both sub-expressions. If e1 reduces, or if e1 is a value
and e2 reduces, then e reduces by [R ctx].
Otherwise, e1 and e2 are both values. Then, by Lemma 3.28, since � `
e1 : t ′→ t , we have e1 = λx . e ′, and e reduces by [Rapp].

Case: [Tpair]
We have e = (e1, e2), and both e1 and e2 are closed and well typed.
By IH, either e1 is a value or it reduces; in the latter case, e reduces by
[R ctx].
In the former case, by IH either e2 is a value or it reduces. If it is a value,
then e is a value as well. Otherwise, it reduces by [R ctx].

Case: [Tproj]
We have e = πi e

′, and e ′ is closed and well typed.

82

3.3 Type soundness

Therefore, by IH, either e ′ is a value or it reduces.
In the latter case, e reduces by [R ctx].
In the former case, by Lemma 3.28, since � ` e ′ : t1 × t2, we have e ′ =

(v1,v2). Then, e reduces by [Rproj].

Case: [Tcase]
We have e = (e0 ∈ t ? e1 : e2), and e0 is closed and well typed.
Therefore, by IH, either e0 is a value or it reduces.
In the latter case, e reduces by [R ctx].
In the former case, e reduces either by [R 1

case] or by [R 2
case] according to

whether typeof(e0) ≤ t or typeof(e0) ≤ ¬t holds. By Lemma 3.29, either
must hold.

Case: [Tlet]
We have e = (let x = e1 in e2), and e1 is closed and well typed.
Therefore, by IH, either e1 is a value or it reduces.
Hence, e reduces by either [R let] or [R ctx].

Case: [T≤], [T∧] Immediate by application of IH. �

3.32 lemma (Subject reduction): Let e be an expression. Let Γ be a ground type
environment and t a ground type. If Γ ` e : t and e { e ′, then Γ ` e ′ : t . �

Proof: By induction on the derivation of Γ ` e : t and by case analysis on
the last typing rule applied and on the reduction rule.

Case: [Tx], [Tc], [Tλ], [Tλ¬]
Impossible, because such expressions cannot reduce.

Case: [T≤], [T∧]
The conclusion follows directly by IH.

Case: [Tapp], [Tpair], [Tproj], [Tcase], [Tlet] when e { e ′ occurs by [R ctx]
Straightforward by IH.

Case: [Tapp] when e { e ′ occurs by [Rapp]
We have Γ ` v1 v2 : t derived from

A○ Γ ` v1 : t ′→ t B○ Γ ` v2 : t ′ C○ v1 = λx . e1

and we must show Γ ` e1[v2/x] : t .
From A○ and C○, by Lemma 3.28, we �nd

∧
i ∈I t

′
i → ti such that

D○
∧

i ∈I t
′
i → ti ≤ t ′→ t E○ ∀i ∈ I . Γ , x : t ′i ` e1 : ti .

Let ®α = var(
∧

i ∈I t
′
i → ti) ∪ var(t ′) and let σ = [0/ ®α]. (The choice of 0 is

arbitrary: any ground type can replace it.)
By Proposition 2.11 from D○ and by Lemma 3.13 from E○ we have

F○
∧

i ∈I t
′
iσ → tiσ ≤ t ′σ → t G○ ∀i ∈ I . Γ , x : t ′iσ ` e1 : tiσ

83

3 An implicitly typed language with set-theoretic types

(note that Γ and t are ground and hence una�ected by σ).
From F○, by Lemma 2.16, we have t ′σ ≤

∨
i ∈I t

′
iσ .

From B○, by Lemma 3.13, we have Γ ` v2 : t ′σ .
By [T≤], we have Γ ` v2 :

∨
i ∈I t

′
iσ .

By Corollary 3.27, since
∨

i ∈I t
′
iσ is ground, then there exists an i0 ∈ I

such that H○ Γ ` v2 : t ′i0σ .
From G○, we have I○ Γ , x : t ′i0σ ` e1 : ti0σ .
From H○ and I○, by Lemma 3.18, we have Γ ` e1[v2/x] : t .

Case: [Tproj] when e { e ′ occurs by [Rproj]
We have

Γ ` πi (v1,v2) : ti A○ Γ ` (v1,v2) : t1 × t2
and we must show Γ ` vi : ti .
From A○, by Lemma 3.28, we obtain Γ ` v1 : t1 and Γ ` v2 : t2, which yields
the result we need.

Case: [Tcase] when e { e ′ occurs by [R 1
case]

We have Γ ` (v ∈ t ? e1 : e2) : t derived from

A○ Γ ` v : t0 B○ t0 ≤ ¬t or Γ ` e1 : t C○ t0 ≤ t or Γ ` e2 : t

and we have D○ typeof(v) ≤ t. We must show Γ ` e1 : t .
First, we derive E○ Γ ` v : t0 ∧ t.

From A○, by Lemma 3.30, we have Γ ` v : typeof(v).
Applying [T≤], using D○, we have Γ ` v : t.
Then, from A○ and applying [T∧], we have Γ ` v : t0 ∧ t.

We prove by contradiction that t0 ≤ ¬t does not hold.
Assume that t0 ≤ ¬t holds. Then, t0 ∧ t ≤ 0.
By [T≤] from E○, Γ ` v : 0.
By Lemma 3.17, since v has no free variables, we have � ` v : 0.
Hence, v ∈ V(0), which is impossible by Lemma 3.23.

Since t0 ≤ ¬t, from B○ er have Γ ` e1 : t .

Case: [Tcase] when e { e ′ occurs by [R 2
case]

Analogous to the previous case.
Instead of D○, we have typeof(v) ≤ ¬t. We use it to show that t0 ≤ t is
impossible, so from C○ we obtain Γ ` e2 : t .

Case: [Tlet] when e { e ′ occurs by [R let]
We have Γ ` let x = v in e2 : t derived from

A○ Γ ` v : t1 B○ Γ , x : ∀®α . t1 ` e2 : t ®α] Γ

and we must show Γ ` e2[v/x] : t .
We obtain it by Lemma 3.18 from A○ and B○. �

3.33 corollary (Type soundness): Let e be a closed expression. If � ` e : t ,
then either e diverges or there exists a value v such that e {∗ v . �

84

3.3 Type soundness

Proof: Let σ = [®t/ ®α] where ®α = var(t) and where all types in ®t are ground.
Then, tσ is ground. By Lemma 3.13, we have � ` e : tσ .

If e does not diverge, then there exists a reduction sequence e0 { · · · { en
such that e = e0 and that en does not reduce. By Lemma 3.32, we have
� ` en : tσ . Then, by Lemma 3.31, en is a value. �

85

4 Type inference

This chapter studies the problem of type inference or type reconstruction1 for the
type system of the previous chapter. We consider the typing relation T given
by the rules of Figure 3.2 and not the full typing relation T λ¬ of De�nition 3.11.
That is, we do not attempt to infer the negation types that can be derived using
[Tλ¬] (we added that rule only to be able to prove type soundness).

The system T includes the intersection-introduction rule [T∧]. It is well
known that intersection types can be used to de�ne type systems that can
type all and only those λ-terms that are strongly normalizable (Coppo and
Dezani-Ciancaglini, 1980); as a consequence, type inference is undecidable
for such systems. That result does not hold directly in our case – though
T is not known to be decidable – since we can also type diverging terms
(using recursive types). In any case, in this chapter, we will not attempt to
infer intersection types: that would complicate type inference because we
cannot easily know how many types we should infer and intersect for a given
expression, notably for a function. Therefore, we will prove that type inference
is sound with respect to T and that it is complete with respect to the restriction
of T without the rule [T∧].

chapter outline:

Section 4.1 We describe a new declarative type system – closely based on
the “reformulated rules” of Dolan and Mycroft (2017) – which is better
suited to being compared to an inference algorithm. We prove a result of
equivalence between T and the new system.

Section 4.2 We start to describe type inference, which consists of con-
straint generation and solving. We de�ne the notions of constraints and
constraint satisfaction. We show how to generate constraints from ex-
pressions. Then, we relate typing with constraint satisfaction, proving
results of soundness and completeness.

Section 4.3 We describe how to solve constraints algorithmically, reusing
the tallying algorithm of Castagna et al. (2015b). We prove soundness and
completeness of the algorithm with respect to the declarative notion of
constraint satisfaction.

Section 4.4 We summarize and discuss the results of the whole chapter.
We also outline two possible modi�cations of the inference algorithm.

1 Throughout this thesis, we refer to the process of reconstructing type information for
programs as type inference. The term is widely used in this sense, but the process is also
called type reconstruction, notably by Pierce (2002).

87

4 Type inference

[Tx̂]
Γ ` x̂ : t[®t/ ®α]

Γ (x̂) = ∀®α . t [Tx]
Γ ` x : t

Γ (x) = t [Tc]
Γ ` c : bc

[Tλ]
Γ , x : t ′ ` e : t

Γ ` λx . e : t ′→ t
[Tapp]

Γ ` e1 : t ′→ t Γ ` e2 : t ′

Γ ` e1 e2 : t

[Tpair]
Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1, e2) : t1 × t2

[Tproj]
Γ ` e : t1 × t2
Γ ` πi e : ti

[Tcase]

Γ ` e0 : t0
either t0 ≤ ¬t or Γ ` e1 : t either t0 ≤ t or Γ ` e2 : t

Γ ` (e0 ∈ t ? e1 : e2) : t

[Tlet]
Γ ` e1 : t1 Γ , x̂ : ∀®α . t1 ` e2 : t

Γ ` let x̂ = e1 in e2 : t
®α] Γ

[T≤]
Γ ` e : t ′

Γ ` e : t
t ′ ≤ t [T∧]

Γ ` e : t1 Γ ` e : t2
Γ ` e : t1 ∧ t2

figure 4.1 T i: Typing rules

notation and conventions: Throughout this chapter and the next,
we distinguish syntactically the variables bound by let bindings from those
bound by λ-abstractions. We have not done so in the previous chapter because
they could be treated uniformly. Now, it is more convenient to distinguish
them: we will use x̂ for variables bound by let and keep x for those bound by
λ-abstractions. We therefore use the following syntax for expressions

e F x | x̂ | c | λx . e | e e | (e, e) | πi e | e ∈ t ? e : e | let x̂ = e in e

and we also distinguish the variables in the domain of type environments:
only x̂ variables can be bound to type schemes with quanti�ed variables. We
denote the set of all x̂ variables as EVarlet and that of all x variables as EVarλ;
the set EVar of Section 3.1.1 is their union.

The typing rules that we will consider are those of Figure 4.1: we refer to
them as T i (the “i” marks it as the system we study for type inference). They
are the rules of T (Figure 3.2), except that we use two rules for the two kinds
of variables and change the rule for let to use x̂ instead of x . As mentioned
earlier, we do not include the rule [Tλ¬].

We will often consider the restriction of T i without the rule [T∧]: we refer
to this restricted system as T i\∧. (A list of the di�erent inference systems we
use with pointers to their de�nition can be found on page 21.)

88

4.1 The reformulated type system

4.1 The reformulated type system

As a �rst step in our study of type inference, we de�ne a new type system
which is easier to relate to the inference algorithm that we will de�ne next. The
two systems di�er in the treatment of type environments and generalization.

This reformulated type system is based on the lambda-lifted presentation
of type systems from previous work on type inference with subtyping. The
reformulated typing rules of Dolan and Mycroft (2017) – described in more
detail in Dolan’s PhD thesis (Dolan, 2016) – are the closest model. Earlier work
include that of Trifonov and Smith (1996) and Pottier (1998).

We begin by describing why this alternative type system is useful: handling
generalization during type inference is problematic in our system. Then, we
describe the system itself. Finally, we study its relation with the type system
T i and prove that, for each closed expression, the two systems derive exactly
the same types.

4.1.1 The problem with generalization

A subtlety of the Hindley-Milner type system is in generalization: to type e2 in
let x̂ = e1 in e2, we can assign to x̂ the type scheme obtained from the type of
e1 by quantifying over all type variables except those that are free in the type
environment. This restriction is needed to ensure soundness.

Therefore, whether the binding for a variable x̂ is polymorphic or not (and if
it is, which type variables we can instantiate) depends on a comparison of the
type variables that appear syntactically in the type of the bound expression
and in the type environment.

This is problematic with semantic subtyping: we want to see types up to the
equivalence relation ' (that is, to identify types with the same set-theoretic
interpretation), but two types can be equivalent while having di�erent type
variables in them. For instance, α ∧ 0 and α \ α are both equivalent to 0, but α
occurs in them and not in 0.

This mismatch is not a problem in the type system, but it complicates the
de�nition of type inference. Let us examine how type inference for letx = e1 in
e2 in a type environment Γ could proceed.

1. We assign a type variable α to stand for the type of e1.

2. We attempt to infer the type of e1. Assuming we obtain a solution, this
solution is a type substitution σ , and the inferred type of e1 is ασ . Note
that σ can also instantiate type variables that appear in Γ .

3. We add (x : ∀®α . ασ), where ®α = var(ασ) \ var(Γσ), to the environment.

4. We attempt to infer the type of e2 in the expanded environment.

The third step compares the variables that occur in ασ and Γσ to compute ®α .
This implies that replacing σ with a σ ′ such that ∀α . ασ ' ασ ′ can change ®α :
type substitutions cannot be seen up to equivalence in this step. This is undesir-
able, because it means that type inference must consider types syntactically

89

4 Type inference

(taking care to introduce as few variables as possible) and not up to equivalence.
For instance, in our work we want to reuse the tallying algorithm (Castagna
et al., 2015b) to compute solutions (just like uni�cation can be used as a step
in Hindley-Milner type inference). Tallying has a completeness property that
is stated up to equivalence: any solution σ of a set of subtyping constraints2
{(t1

1 Û≤ t2
1), . . . , (t

1
n Û≤ t2

n)} is equivalent to some instantiation of a solution σ ′
found by tallying. However, the substitution found by tallying could introduce
more type variables than needed (e.g., by mapping some variable to α \ α

instead of 0, but more complex cases exist, of course). Therefore, we cannot
reuse tallying for type inference unless we describe its behaviour in more
syntactic detail, which is inconvenient and runs counter to the principles of
semantic subtyping.

In previous work (Castagna, Petrucciani, and Nguy˜̂en, 2016), we have tried
to overcome this di�culty by introducing a notion of meaningful type variables
of a type. These are given by mvar(t) = min⊆{ var(t ′) | t ′ ' t }: the meaningful
type variables of t are those that occur in every type t ′ equivalent to t . In the
cited work, they are de�ned as mvar(t) = { α ∈ var(t) | t[0/α] ; t }; the two
de�nitions are equivalent. This notion is interesting because equivalent types
have the same meaningful variables. We have used mvar instead of var for
generalization in a type inference algorithm. We previously believed that we
had proven the algorithm sound and complete; however, we have later found a
mistake in the proof of completeness, and we have realized that the approach
was not wholly correct. Indeed, mvar is not as convenient to use as var, because
it is di�cult to determine the type variables that occur in mvar(tσ) knowing t

and σ ; in contrast, for var, we have the equality var(tσ) =
⋃
α ∈var(t) var(ασ). A

step of the proof implicitly, and wrongly, assumed this equality also for mvar.
To correct the proof, we would need to consider the behaviour of constraint
solving in greater detail than we did, to prove that it does not introduce too
many type variables. We conjecture that it is possible, but it seems to tie up too
closely the general process of inference to the speci�cs of constraint solving.

Here, we follow a di�erent approach: we introduce the reformulated type
system, where type schemes and generalization are replaced by typing schemes
that record dependence on the environment explicitly.

To illustrate the di�erence between the two type systems, consider the
expression λx . (let x̂ = λy. (x,y) in e), for some e . In the type system of the
previous chapter, we can choose α as the type of x and type λy. (x,y) as
β → α × β . Then, to type e , we can assign to x̂ the type scheme ∀β . β → α × β .
While β can be quanti�ed, α cannot since it appears free in the environment:
the let construct is typed assuming (x : α).

In the reformulated system, in contrast, x̂ could be assigned the typing
scheme 〈x : α〉(β → α × β) (typing schemes are de�ned formally below). In
this typing scheme, we treat all type variables as implicitly quanti�ed (the
typing rules allow us to instantiate any variable). Instead of distinguishing

2 We write (t1 Û≤ t2) to denote a constraint that requires the solution to satisfy subtyping
between the substitution instances of t1 and t2: this is de�ned formally in De�nition 4.17.

90

4.1 The reformulated type system

between quanti�ed and non-quanti�ed variables, the typing scheme records
explicitly the assumptions made on the type of free expression variables:
in this case, 〈x : α〉. We could equivalently choose for x̂ the typing scheme
〈x : γ 〉(δ → γ × δ): we do not care which type variables we use, but only that
the dependency is recorded correctly.

Using this system, the di�culties with generalization do not arise because
we do not rely on comparing the type variables that occur in a type and in
the environment. We will show how to build a type inference algorithm for
this system. However, we actually want type inference for the previous, more
standard system, T i. Therefore, we also need to study the relation between
the standard and the reformulated system.

4.1.2 De�nition of the reformulated type system

Instead of using a single type environment Γ for both λ- and let-bound identi�-
ers, the reformulated type system uses two separate ones: a let-environment P
for let-bound, polymorphic binders, and a λ-environment M for monomorphic
ones. More importantly, let-environments do not use type schemes: rather,
they use typing schemes which record explicitly (using a λ-environment) the
assumptions on the types of λ-bound variables.

4.1 definition: A λ-environment M is a �nite mapping of variables in EVarλ
to types. A typing scheme is a pair of a λ-environment and a type, written
〈M〉t . A let-environment P is a �nite mapping of variables in EVarlet to typing
schemes. �

We adopt the same notation to write these environments as for normal
type environments. On λ-environments, we de�ne some additional notions.
We write M1 ≤ M2 when, for every binding (x : t2) in M2, there is a binding
(x : t1) in M1 such that t1 ≤ t2. We write M1∧M2 for the λ-environment whose
domain is the union of the two domains and such that

(M1 ∧M2)(x) =


M1(x) if x ∈ dom(M1) \ dom(M2)

M2(x) if x ∈ dom(M2) \ dom(M1)

M1(x) ∧M2(x) if x ∈ dom(M2) ∩ dom(M1)

We write Mrx for M with the binding for x removed.
The reformulated type system is then de�ned by typing rules very similar

to those of the standard system. Following Dolan and Mycroft (2017), we use
the symbol
 in the judgments instead of `.

4.2 definition: The reformulated typing relation P ;M
 e : t is de�ned by
the rules of Figure 4.2. �

We write T r to refer to this system and T r\∧ to refer to its restriction
without the rule [T r

∧].

91

4 Type inference

[T r
x̂]

P ;Mσ
 x̂ : tσ
P(x̂) = 〈M〉t [T r

x]
P ;M
 x : t

M(x) = t [T r
c]

P ;M
 c : bc

[T r
λ]

P ; (M, x : t ′)
 e : t
P ;M
 λx . e : t ′→ t

[T r
app]

P ;M
 e1 : t ′→ t P ;M
 e2 : t ′

P ;M
 e1 e2 : t

[T r
pair]

P ;M
 e1 : t1 P ;M
 e2 : t2
P ;M
 (e1, e2) : t1 × t2

[T r
proj]

P ;M
 e : t1 × t2
P ;M
 πi e : ti

[T r
case]

P ;M
 e0 : t0
either t0 ≤ ¬t or P ;M
 e1 : t either t0 ≤ t or P ;M
 e2 : t

P ;M
 (e0 ∈ t ? e1 : e2) : t

[T r
let]

P ;M1
 e1 : t1 (P, x̂ : 〈M1〉t1);M
 e2 : t
P ;M
 let x̂ = e1 in e2 : t

∃σ .M ≤ M1σ

[T r
≤]

P ;M ′
 e : t ′

P ;M
 e : t

{
t ′ ≤ t

M ≤ M ′
[T r
∧]

P ;M
 e : t1 P ;M
 e : t2
P ;M
 e : t1 ∧ t2

figure 4.2 T r: Reformulated typing rules

Compared to the rules of Figure 4.1, the interesting di�erences are for [T r
x̂],

[T r
let], and [T r

≤]. For [T r
x̂], we can instantiate all type variables in the typing

scheme 〈M〉t of x̂ : there is no restriction on the domain of σ . In this sense we
say that typing schemes behave with respect to typing as if all type variables
in them were implicitly quanti�ed. However, note that the λ-environment
must correspond to the substitution. In [T r

let], to type e1 we can use a di�erent
λ-environment than the one in the main derivation. However, we must make
sure that the assumptions used to type e1 are re�ected in M . To do so, we could
ask M ≤ M1. We require instead the weaker condition ∃σ .M ≤ M1σ , which
simpli�es the proofs that relate this system with inference. The subsumption
rule [T r

≤] acts on both the type and the λ-environment.

comparison to the rules of dolan and mycroft: Our refor-
mulated typing rules are very similar to those of Dolan (2016) and Dolan and
Mycroft (2017). The main di�erence is that they put M to the right of the turn-
stile, so that the rules derive a typing scheme and not a type: P
 e : 〈M〉t (or
Π
 e : [∆]τ using their metavariables and notation). They allow instantiation
in the rule [T r

≤], while we allow it in [T r
x̂]. We choose our presentation for

ease of comparison with the standard rules and with type inference.

92

4.1 The reformulated type system

4.1.3 Relating the systems T i and T r

We want to relate the standard type system T i and the reformulated system
T r so that the results we develop next on type inference, which consider the
latter, can be transferred also to the former.

In the work of Trifonov and Smith (1996) and Pottier (1998), the lambda-lifted
style was used to de�ne the type system for which type soundness was proven.
However, it has the disadvantage of being a less standard way to describe a
type system. A claim of Dolan and Mycroft (2017) is that they can relate the
standard and the reformulated type systems, proving that (with our notation)
for every e and t , � ` e : t holds if and only if �;�
 e : t . This is the result we
want too.

The proof of Dolan and Mycroft is described in the �rst author’s PhD
thesis (Dolan, 2016). It relies on two lemmas (Lemmas 33 and 34) to prove
the two implications. For induction to work, the lemmas also consider non-
empty environments and show how to convert Γ into P and M , and vice versa.
Unfortunately, Lemma 34 – which converts derivations in the reformulated
system to derivations in the standard one – does not actually hold.3

We develop a di�erent proof to show the same result. Our proof relies on
the presence of the rule [T r

∧], which Dolan and Mycroft do not have. In the
rest of the section, we prove this equivalence result:

∀e, t . � ` e : t ⇐⇒ �;�
 e : t .

Additionally, we prove that the implication =⇒ holds also in the restricted
systems T i\∧ and T r\∧ (those without the rules [T∧] and [T r

∧], respectively).
We cannot prove the reverse implication for the restricted systems, because
the proof relies on using [T r

∧]. However, we conjecture that it holds too.
Converting derivations in T i to derivations in T r is fairly simple. We give

the following de�nition to express when a pair of a P and an M can be used to
represent a Γ .

4.3 definition: A pair of a let-environment P and a λ-environment M is
adequate to represent a type environment Γ , written P ;M � Γ , if:

• for every binding (x : t) in Γ , there is a binding (x : t ′) in M and t ′ ≤ t ;

• for every binding (x̂ : ∀®α . t) in Γ , there is a binding (x̂ : 〈M ′〉t) in P with
M ≤ M ′ and ®α] M ′;

• var(M) ⊆ var(Γ). �

3 Con�rmed by Dolan in personal communication with the author.
Lemma 34 states that “if Π
 e : [∆]τ , then r (Π) u ∆ ` e : τ ”. However, if we take

Π = (x̂ : [x : α]α), then using (Var-Π) and (Sub) with the substitution [Int/α] we have
Π
 x̂ : [x : Int]Int. If the lemma held, we should be able to derive r (Π) u (x : Int) ` x̂ : Int.
However, r (Π) u (x : Int) is (x : α, x̂ : α) u (x : Int) = (x : α u Int, x̂ : α), which does not allow
this derivation.

Dolan proposes an alternative proof which relies on encoding expressions so that, in each
let x = e1 in e2, e1 has no free λ-bound variables. While appealing, this proof is not fully
developed yet.

93

4 Type inference

Next we prove the following result to convert a typing derivation Γ ` e : t
in T i to a derivation P ;M
 e : t in T r.

4.4 lemma: If Γ ` e : t and P ;M � Γ , then P ;M
 e : t .
Moreover, if Γ ` e : t can be derived in T i\∧, then P ;M
 e : t can be derived

in T r\∧. �

Proof: By induction on the derivation of Γ ` e : t and by case analysis on
the last rule applied. Note that we only apply [T r

∧] in the case for [T∧].

Case: [Tx̂]
We have Γ (x̂) = ∀®α . t ′ and t = t ′[®t/ ®α]. Then, P(x̂) = 〈M ′〉t ′, and M ≤ M ′

and ®α] M ′.
We derive P ;M ′[®t/ ®α]
 x̂ : t ′[®t/ ®α] by [T r

x̂]. Since ®α] M ′, we have
M ′[®t/ ®α] = M ′. We obtain P ;M
 x̂ : t ′[®t/ ®α] by [T r

≤].

Case: [Tx]
We have Γ (x) = t , therefore M(x) ≤ t . We derive the conclusion by [T r

x]
and [T r

≤].

Case: [Tc] Immediate.

Case: [Tλ]
We have Γ ` λx . e ′ : t1 → t2 and Γ , x : t1 ` e ′ : t2.
We have P ; (M, x : t1) � (Γ , x : t1). (In particular, note that M, x : t1 ≤ M

and therefore M ≤ M ′ implies M, x : t1 ≤ M ′.)
By IH, we have P ; (M, x : t1)
 e ′ : t2. We conclude by [T r

λ].

Case: [Tapp], [Tpair], [Tproj], [Tcase], [T≤], [T∧]
Straightforward by IH. Note that the case for [T∧] is the only one for
which we must use the rule [T r

∧].

Case: [Tlet]
We have Γ ` let x̂ = e1 in e2 : t , derived from

Γ ` e1 : t1 Γ , x̂ : ∀®α . t1 ` e2 : t ®α] Γ .

We have (P, x̂ : 〈M〉t1);M � (Γ , x̂ : ∀®α . t1). (In particular, note that P ;M �
Γ implies var(M) ⊆ var(Γ), therefore ®α] M .)
By IH we obtain

P ;M
 e1 : t1 (P, x̂ : 〈M〉t1);M
 e2 : t

and we conclude by [T r
let]. �

The other direction is more challenging. The proof requires us to convert a
pair of a let-environment and a λ-environment to a type environment. We do
so by exploiting a property of type systems with intersection types: instead
of using a type scheme containing quanti�ed variables, we can use the type
formed by taking the intersection of all the instantiations of the type scheme

94

4.1 The reformulated type system

that we actually use in the derivation. There are always �nitely many di�erent
instantiations (at most one for each use of the bound variable).

We give a description of the reformulated type system where the derivation
keeps track of the instantiations used for each typing scheme. We do so by
adding a new part to the typing judgment: a function that maps each variable
in EVarlet to the set of type substitutions used to instantiate that variable in the
derivation.

4.5 definition: An instantiation map I is a total function from EVarlet to
�nite sets of type substitutions.

We write ϵ for the instantiation map such that ϵ(x̂) = � for every variable x̂ .
We write (x̂ 7→ {σ }) for the instantiation map such that (x̂ 7→ {σ })(x̂) = {σ }
and (x̂ 7→ {σ })(ŷ) = � for every variable ŷ , x̂ . �

Given two instantiation maps I1 and I2, we can de�ne their pointwise union
I1 t I2, such that (I1 t I2)(x̂) = I1(x̂) ∪ I2(x̂) for every x̂ .

Given an instantiation mapI and a �nite set { σi |i ∈ I } of type substitutions,
we write I{ σi | i ∈ I } for the instantiation map such that

(I{ σi | i ∈ I }) (x̂) = { σi ◦ σ | σ ∈ I(x̂), i ∈ I } .

We write Iσ for I{σ }.
We write I1 v I2 when I1(x̂) ⊆ I2(x̂) for every x̂ .
We write Irx̂ for the instantiation map such that (Irx̂)(x̂) = � and that
(Irŷ)(ŷ) = I(ŷ) for every ŷ , x̂ .

4.6 lemma: For any two instantiation maps I1 and I2, we have I1 v I1 t I2
and I2 v I1 t I2. �

Proof: Straightforward. �

4.7 definition: The reformulated typing relation with explicit instantiations
P ;M
 e : t | I is de�ned by the rules of Figure 4.3. �

We refer to this modi�ed system as T ri. Adding instantiations to the rules
is mostly straightforward. The most complex case is that of [T ri

let]: we compose
the instantiations needed to type e1 with the instantiations of x̂ used to type
e2 (plus the substitution σ that we already had in the side condition of [T r

let]).
The following are a few lemmas that relate the rules with explicit instanti-

ations with the previous ones and the derived type and set of instantiations
with the environments.

4.8 lemma: P ;M
 e : t holds in T r if and only if there exists an instantiation
map I such that P ;M
 e : t | I holds in T ri. �

95

4 Type inference

[T ri
x̂]

P ;Mσ
 x̂ : tσ | (x̂ 7→ {σ })
P(x̂) = 〈M〉t [T ri

x]
P ;M
 x : t | ϵ

M(x) = t

[T ri
c]

P ;M
 c : bc | ϵ

[T ri
λ]

P ; (M, x : t ′)
 e : t | I
P ;M
 λx . e : t ′→ t | I

[T ri
app]

P ;M
 e1 : t ′→ t | I1 P ;M
 e2 : t ′ | I2
P ;M
 e1 e2 : t | I1 t I2

[T ri
pair]

P ;M
 e1 : t1 | I1 P ;M
 e2 : t2 | I2
P ;M
 (e1, e2) : t1 × t2 | I1 t I2

[T ri
proj]

P ;M
 e : t1 × t2 | I
P ;M
 πi e : ti | I

[T ri
case]

P ;M
 e0 : t0 | I0
either t0 ≤ ¬t and I1 = ϵ or P ;M
 e1 : t | I1
either t0 ≤ t and I2 = ϵ or P ;M
 e2 : t | I2
P ;M
 (e0 ∈ t ? e1 : e2) : t | I0 t I1 t I2

[T ri
let]

P ;M1
 e1 : t1 | I1
(P, x̂ : 〈M1〉t1);M
 e2 : t | I2
P ;M
 let x̂ = e1 in e2 : t | I

∃σ .

{
M ≤ M1σ

I =
(
I1σ

)
t

(
I1 (I2(x̂))

)
t

(
I2rx̂

)
[T ri
≤]

P ;M ′
 e : t ′ | I
P ;M
 e : t | I

{
t ′ ≤ t

M ≤ M ′
[T ri
∧]

P ;M
 e : t1 | I1 P ;M
 e : t2 | I2
P ;M
 e : t1 ∧ t2 | I1 t I2

figure 4.3 T ri: Reformulated typing rules with explicit instantiations

96

4.1 The reformulated type system

Proof: Straightforward proofs by induction on the typing derivations. �

4.9 lemma: If P ;M
 e : t | I, then for every σ there exists an I ′ such that
P ;Mσ
 e : tσ | I ′ and I ′ v Iσ . �

Proof: By induction on the derivation of P ;M
 e : t | I and by case analysis
on the last rule applied.

Case: [T ri
x̂]

By hypothesis we have P ;Mσ ′
 x̂ : tσ ′ | (x̂ 7→ {σ ′}).
We can derive P ;Mσ ′σ
 x̂ : tσ ′σ | (x̂ 7→ {σ ◦ σ ′}).
We have (x̂ 7→ {σ ◦ σ ′}) = (x̂ 7→ {σ ′})σ .

Case: [T ri
x], [T ri

c] Straightforward.

Case: [T ri
λ], [T ri

app], [T ri
pair], [T ri

proj], [T ri
case], [T ri

≤], [T ri
∧]

Straightforward by IH.
Note that I ′1 v I1σ and I ′2 v I2σ imply I ′1 t I ′2 v (I1 t I2)σ .
The case for [T ri

case] is the only one in which we do not have I ′ = Iσ ,
because t0σ ≤ ¬t and t0σ ≤ t could hold when t0 ≤ ¬t and t0 ≤ t do not.

Case: [T ri
let]

We have

P ;M
 let ŷ = e1 in e2 : t | I
A○ P ;M1
 e1 : t1 | I1 B○ (P, ŷ : 〈M1〉t1);M
 e2 : t | I2

C○ M ≤ M1σ
′ I =

(
I1σ

′
)
t

(
I1 (I2(ŷ))

)
t

(
I2rŷ

)
By IH from B○ we have (P, ŷ : 〈M1〉t1);Mσ
 e2 : tσ | I ′2 with I ′2 v I2σ .
From C○ we obtain Mσ ≤ M1σ

′σ .
Applying [T ri

let] to A○ and B○, we have:

P ;Mσ
 let ŷ = e1 in e2 : tσ | I ′

I ′ =
(
I1σ

′σ
)
t

(
I1 (I

′
2 (ŷ))

)
t

(
I ′2 rŷ

)
and we conclude by observing that I ′ v Iσ . �

4.10 lemma: If P ;M
 e : t | I then, for every (x̂ : 〈M ′〉t ′) in P and σ ∈ I(x̂),
we have M ≤ M ′σ . �

Proof: By induction on the derivation of P ;M
 e : t | I and by case analysis
on the last rule applied.

Case: [T ri
x̂], [T ri

x], [T ri
c] Straightforward.

Case: [T ri
λ]

We have e = λx . e ′. We assume by α-renaming that x does not occur in
the typing schemes in P .
By IH, (M, x : t ′) ≤ M ′σ . Since x is not in P , M ≤ M ′σ .

97

4 Type inference

Case: [T ri
app], [T ri

pair], [T ri
proj], [T ri

case], [T ri
≤], [T ri

∧]
Straightforward by IH.

Case: [T ri
let]

We have

P ;M
 let ŷ = e1 in e2 : t | I P(x̂) = 〈M ′〉t ′ σ ∈ I(x̂)

A○ P ;M1
 e1 : t1 | I1 B○ (P, ŷ : 〈M1〉t1);M
 e2 : t | I2
C○ M ≤ M1σ

′ I =
(
I1σ

′
)
t

(
I1 (I2(ŷ))

)
t

(
I2rŷ

)
and we must show M ≤ M ′σ .
We can assume by α-renaming that x̂ , ŷ.
There are three cases.

Subcase: σ ∈
(
I1σ

′
)
(x̂)

Then σ = σ ′ ◦ σ1 with σ1 ∈ I1(x̂).
By IH from A○ we have M1 ≤ M ′σ1. We obtain M ≤ M ′σ from C○.

Subcase: σ ∈
(
I1 (I2(ŷ))

)
(x̂)

Then σ = σ2 ◦ σ1 with σ1 ∈ I1(x̂) and σ2 ∈ I2(ŷ).
By IH from A○ we have M1 ≤ M ′σ1 and from B○ we have M ≤ M1σ2.
We have M1σ2 ≤ M ′σ1σ2 and therefore M ≤ M ′σ .

Subcase: σ ∈
(
I2rŷ

)
(x̂)

Then σ ∈ I2(x̂), and we obtain the result by IH from B○. �

We de�ne when a type environment Γ can represent a triple of P , M , and I.

4.11 definition: A type environment Γ is adequate to represent a triple of a
let-environment P , a λ-environment M , and an instantiation map I, written
Γ � P ;M ;I, if:

• for every binding (x : t) in M , there is a binding (x : t ′) in Γ and t ′ ≤ t ;

• for every binding (x̂ : 〈M ′〉t) in P and every σ ∈ I(x̂), there is a binding
(x̂ : ∀®α . t ′) in Γ and a vector ®t such that t ′[®t/ ®α] ≤ tσ . �

4.12 lemma: If Γ � P ;M ;I and I ′ v I, then Γ � P ;M ;I ′. �

Proof: Straightforward. �

We now show how to convert derivations in T r to those in T i.

4.13 lemma: If P ;M
 e : t | I and Γ � P ;M ;I, then Γ ` e : t . �

Proof: By induction on the derivation of P ;M
 e : t | I and by case analysis
on the last rule applied.

Case: [T ri
x̂]

We have P ;Mσ
 x̂ : tσ | (x̂ 7→ {σ }) and Γ � P ;Mσ ; (x̂ 7→ {σ }).

98

4.1 The reformulated type system

Therefore, we have Γ (x̂) = ∀®α . t ′ and t ′[®t/ ®α] ≤ tσ for some ∀®α . t ′ and ®t .
We derive Γ ` x̂ : tσ by [Tx̂] and [T≤].

Case: [T ri
x]

We obtain Γ ` x : t by [Tx] and [T≤] since M(x) = t and Γ (x) ≤ M(x).

Case: [T ri
c] Immediate.

Case: [T ri
λ]

Since Γ � P ;M ;I, we have (Γ , x : t ′) � P ; (M, x : t ′);I.
We apply the IH and conclude using [Tλ].

Case: [T ri
app], [T ri

pair], [T ri
proj], [T ri

case], [T ri
∧]

Straightforward by IH using Lemmas 4.6 and 4.13.

Case: [T ri
let]

We have

P ;M
 let x̂ = e1 in e2 : t | I A○ Γ � P ;M ;I
B○ P ;M1
 e1 : t1 | I1 C○ (P, x̂ : 〈M1〉t1);M
 e2 : t | I2

D○ M ≤ M1σ I =
(
I1σ

)
t

(
I1 (I2(x̂))

)
t

(
I2rx̂

)
and we must derive Γ ` let x̂ = e1 in e2 : t .
Let { σk | k ∈ K } = I2(x̂).
From B○ by Lemma 4.9 we have

P ;M1σ
 e1 : t1σ | I ′1 I ′1 v I1σ

P ;M1σk
 e1 : t1σk | Ik1 Ik1 v I1σk .

From C○ by Lemma 4.10 we have M ≤ M1σk for every k ∈ K .
Therefore, by [T ri

≤] we have

P ;M
 e1 : t1σ | I ′1 P ;M
 e1 : t1σk | Ik1
and, by [T ri

∧], E○ P ;M
 e1 : t ′1 | I ′′1 where

t ′1 = t1σ ∧
∧

k ∈K σk I ′′1 = I
′

1 t
⊔

k ∈K I
k

1 .

We have Γ � P ;M ;I ′′1 by Lemma 4.12 since I ′′1 v I.
Therefore, by IH from E○, we have F○ Γ ` e1 : t ′1.
We show (Γ , x̂ : t ′1) � (P, x̂ : 〈M1〉t1);M ;I2.

(It su�ces to observe that t ′1 ≤ t1σk for all k ∈ K .)
Therefore, by IH from C○, we have G○ Γ , x̂ : t ′1 ` e2 : t .
We conclude by [Tlet] from F○ and G○.

Case: [T ri
≤]

Since Γ � P ;M ;I and M ≤ M ′, we have Γ � P ;M ′;I.
We apply the IH and conclude using [T≤]. �

Finally, we obtain that the two systems assign the same types to every
expression in empty environments.

99

4 Type inference

4.14 theorem (Equivalence of T i and T r): For any e and t , � ` e : t holds if
and only if �;�
 e : t .

Moreover, if � ` e : t can be derived in T i\∧, then �;�
 e : t can be derived
in T r\∧. �

Proof: If � ` e : t , we can obtain �;�
 e : t by Lemma 4.4 because �;� � �
holds by De�nition 4.3.

If�;�
 e : t , by Lemma 4.8 we have�;�
 e : t | I for some instantiation
map I (in particular, I will be ϵ because the let-environment is empty). By
De�nition 4.11, we have � � �;�; ϵ . We obtain � ` e : t by Lemma 4.13. �

Theorem 4.14 is the result we need to relate the two systems. It is inconveni-
ent, however, that we have proven the equality for the full system, but only
one implication for the restricted systems without [T∧]. This is unavoidable
with this proof technique, but we conjecture that the equivalence also holds
for the restricted systems. In particular, as suggested by Dolan and Mycroft
(see footnote 3 on p. 93), typing an expression in the reformulated rules seems
to correspond to typing a “lifted” expression in the standard rules, where this
lifting ensures that let-bound expressions have no free λ-bound variables, for
example by transforming λx . let x̂ = (x, 3) in x̂ to λx . let x̂ = λy. (y, 3) in x̂ x . If
we proved that �;�
 e : t implies � ` li�(e) : t , then it would only remain to
prove that the latter implies� ` e : t , which seems intuitively correct. However,
we have not attempted to develop this proof in detail yet.

4.1.4 Inversion for the type system T r\∧

We show here a result on the inversion of the typing rules T r\∧, that is, the
reformulated typing rules without [T r

∧]. We will use it later to relate this
system to constraint satisfaction. Similarly to what we did in Section 3.3.5, we
give a syntax-directed characterization of the system.

4.15 definition (Syntax-directed reformulated typing rules): The relation
P ;M
sd e : t is de�ned inductively by the following rules.

P ;M
sd x̂ : t


P(x̂) = 〈M ′〉t ′

∃σ .

{
t ′σ ≤ t

M ≤ M ′σ
P ;M
sd x : t

M(x) ≤ t

P ;M
sd c : t
bc ≤ t

P ; (M, x : t1)
sd e : t2
P ;M
sd λx . e : t

t1 → t2 ≤ t
P ;M
sd e1 : t ′→ t P ;M
sd e2 : t ′

P ;M
sd e1 e2 : t

P ;M
sd e1 : t1 P ;M
sd e2 : t2
P ;M
sd (e1, e2) : t

t1 × t2 ≤ t
P ;M
sd e : t1 × t2
P ;M
sd πi e : ti

100

4.2 Constraints and constraint generation

P ;M
sd e0 : t0 t0 ≤ ¬t or P ;M
sd e1 : t t0 ≤ t or P ;M
sd e2 : t
P ;M
sd (e0 ∈ t ? e1 : e2) : t

P ;M1
sd e1 : t1 (P, x̂ : 〈M1〉t1);M
sd e2 : t
P ;M
sd let x̂ = e1 in e2 : t

∃σ .M ≤ M1σ

�

Compared to the rules of T r\∧, the di�erence is that [T r
≤] has been merged

with the rules for variables, constants, functions, and pairs.

4.16 lemma: P ;M
sd e : t holds if and only if P ;M
 e : t can be derived in
T r\∧. �

Proof: First, we can prove by induction that

P ;M ′
sd e : t ′

t ′ ≤ t

M ≤ M ′

 =⇒ P ;M
sd e : t

(the proof is straightforward).
Using this fact, both implications are shown easily by induction. �

4.2 Constraints and constraint generation

In this section, we begin to describe type inference itself. Inference consists in
constraint generation and constraint solving. Here, we introduce constraints
and a notion of constraint satisfaction. We show how to generate constraints
from expressions to describe the conditions under which an expression has a
given type. Finally, we relate the type system T r\∧ (the reformulated system
without [T r

∧]) with constraint satisfaction, proving results of soundness and
completeness.

4.2.1 Constraints and constraint satisfaction

We introduce two notions of constraint. The �rst, type constraints (t1 Û≤ t2),
constrain a solution (a type substitution σ) to satisfy subtyping between two
types (that is, to satisfy t1σ ≤ t2σ).

4.17 definition (Type constraints and satisfaction): A type constraint is a term
of the form (t1 Û≤ t2). A type-constraint set is a �nite set of type constraints.
We use the metavariable D to range over type-constraint sets.

A type substitution σ satis�es a type constraint (t1 Û≤ t2) if t1σ ≤ t2σ ; it
satis�es a type-constraint set if it satis�es every type constraint in it. We write
respectively σ
 (t1 Û≤ t2) and σ
 D to denote this relation.

When ∆ is a �nite set of type variables, we write σ
∆ D to mean that σ
 D
and that dom(σ)] ∆. �

101

4 Type inference

In the absence of let-polymorphism, the type inference problem can be re-
duced to solving such type constraints, as done by Wand (1987) for uni�cation.
In our setting, as for type inference for ML, it would force us to mix constraint
generation with constraint solving. Therefore, we introduce structured con-
straints, which allow us to keep the two phases of constraint generation and
constraint solving separate. These constraints can mention expression vari-
ables and include binders to introduce new variables. Constraints are closely
related to those in the work of Pottier and Rémy (2005) on type inference for
ML.

4.18 definition (Structured constraints): A structured constraint is a term C

generated inductively by the following grammar:
C F (t Û≤ t) | (x Û≤ t) | (x̂ Û≤ t) | C ∧C | C ∨C | ∃ ®α .C

| def x : t in C | let x̂ : ∀α[C]. α in C �

Structured constraints are treated up to α-renaming of bound variables. In
∃®α . C , the ®α variables are bound in C . In def x : t in C , x is bound in C . In
let x̂ : ∀α[C1]. α in C2, α is bound in C1 and x̂ is bound in C2.

Structured constraints include type constraints but also several other forms.
The two forms (x Û≤ t) and (x̂ Û≤ t) constrain the type or typing scheme of
the variable. Constraints include conjunction and disjunction. The existential
constraint ∃®α . C introduces new type variables: this is useful to simplify
freshness conditions. Finally, the def and let constraints introduce the two
forms of expression variables and are used to describe the constraints for
λ-abstractions and let constructs.

We describe the meaning of these constraints by de�ning a constraint sat-
isfaction relation: it describes when two environments P and M and a type
substitution σ satisfy a structured constraint C .

4.19 definition (Structured-constraint satisfaction): The structured-constraint
satisfaction relation P ;M ;σ
 C is de�ned by the rules of Figure 4.4. �

We refer to the rules of Figure 4.4 and the resulting relation as Csat.
The rule [C sat

Û≤] corresponds to type-constraint satisfaction. The rule [C sat
x]

can be understood as the combination of [T r
x] and [T r

≤] of the reformulated
system; likewise for [C sat

x̂], which corresponds to [T r
x̂] and [T r

≤]. The rules
[C sat
∧], [C sat

∨], and [C sat
∃

] are unsurprising. The rule [C sat
def] expands the λ-

environment, applying σ to t (note that, when the λ-environment is used in
[C sat

x], σ is not applied to it because it has already been applied here). Finally,
[C sat

let] corresponds closely to [T r
let].

4.2.2 Constraint generation

We now de�ne a function 〈〈(·) : (·)〉〉 that, given an expression e and a type t ,
yields a structured constraint 〈〈e : t〉〉. This constraint expresses the conditions
under which e has type tσ for some type substitution σ .

102

4.2 Constraints and constraint generation

[C sat
Û≤]

P ;M ;σ
 (t1 Û≤ t2)
t1σ ≤ t2σ

[C sat
x]

P ;M ;σ
 (x Û≤ t)
M(x) ≤ tσ [C sat

x̂]
P ;M ;σ
 (x̂ Û≤ t)


P(x̂) = 〈M1〉t1

∃σ1.

{
t1σ1 ≤ tσ

M ≤ M1σ1

[C sat
∧]

P ;M ;σ
 C1 P ;M ;σ
 C2

P ;M ;σ
 C1 ∧C2
[C sat
∨]

P ;M ;σ
 Ci

P ;M ;σ
 C1 ∨C2

[C sat
∃

]
P ;M ;σ ∪ [®t/ ®α]
 C
P ;M ;σ
 ∃®α .C

[C sat
def]

P ; (M, x : tσ);σ
 C
P ;M ;σ
 def x : t in C

[C sat
let]

P ;M1;σ1
 C1 (P, x̂ : 〈M1〉ασ1);M ;σ
 C2

P ;M ;σ
 let x̂ : ∀α[C1]. α in C2
∃σ ′1 .M ≤ M1σ

′
1

figure 4.4 Csat: Constraint satisfaction rules

〈〈x̂ : t〉〉 = (x̂ Û≤ t)

〈〈x : t〉〉 = (x Û≤ t)

〈〈c : t〉〉 = (bc Û≤ t)

〈〈(λx . e) : t〉〉 = ∃α1,α2. (def x : α1 in 〈〈e : α2〉〉) ∧ (α1 → α2 Û≤ t) α1,α2] t

〈〈e1 e2 : t〉〉 = ∃α . 〈〈e1 : α → t〉〉 ∧ 〈〈e2 : t〉〉 α] t

〈〈(e1, e2) : t〉〉 = ∃α1,α2. 〈〈e1 : α1〉〉 ∧ 〈〈e2 : α2〉〉 ∧ (α1 × α2 Û≤ t) α1,α2] t

〈〈πi e : t〉〉 = ∃α1,α2. 〈〈e : α1 × α2〉〉 ∧ (αi Û≤ t) α1,α2] t

〈〈(e0 ∈ t ? e1 : e2) : t〉〉 = ∃α . 〈〈e0 : α〉〉 ∧
(
(α Û≤ ¬t) ∨ 〈〈e1 : t〉〉

)
∧

(
(α Û≤ t) ∨ 〈〈e2 : t〉〉

)
α] t

〈〈(let x̂ = e1 in e2) : t〉〉 = let x̂ : ∀α[〈〈e1 : α〉〉]. α in 〈〈e2 : t〉〉

figure 4.5 Constraint generation

103

4 Type inference

4.20 definition: The constraint generation function 〈〈(·) : (·)〉〉 is de�ned by the
equations in Figure 4.5. �

This de�nition is closely based on that of Pottier and Rémy (2005). We
use def constraints to introduce function parameters. This, together with let
constraints for let expressions, allows constraint generation to be described
independently from the environment; thanks to this, we can keep constraint
generation separate from constraint solving. For typecases, we use disjunctive
constraints ∨ to translate the conditions “either . . . or . . . ” in [T r

case].
Note that the constraint for a function associates to it a single arrow type

α1 → α2: as anticipated, we do not attempt to infer intersection types.
We have mentioned that existential constraints simplify freshness condi-

tions: indeed, many of the cases mention that the bound variables should be
distinct from those that occur in t , but we do not need global conditions. It is
easy to check that the free type variables in 〈〈e : t〉〉 are exactly those in t .

4.2.3 Relating typing with constraint satisfaction

In this section we connect the reformulated type system with constraint gen-
eration and constraint satisfaction, by showing (for all P , M , e , t , and σ):

P ;M
 e : tσ is derivable in T r\∧ ⇐⇒ P ;M ;σ
 〈〈e : t〉〉 .

The two implications are proven next as Lemma 4.21 (soundness of constraints
w.r.t. typing) and Lemma 4.22 (completeness).

4.21 lemma: If P ;M ;σ
 〈〈e : t〉〉, then P ;M
 e : tσ is derivable in T r\∧. �

Proof: By induction on e and by case analysis on the shape of e .

Case: e = x̂

We have P ;M ;σ
 (x̂ Û≤ t), therefore:

P(x̂) = 〈M1〉t1 t1σ1 ≤ tσ M ≤ M1σ1 .

We derive P ;M
 x̂ : tσ by [T r
x̂] and [T r

≤].

Case: e = x

We have P ;M ;σ
 (x Û≤ t), therefore M(x) ≤ tσ .
We derive P ;M
 x : tσ by [T r

x] and [T r
≤].

Case: e = c
We have P ;M ;σ
 (bc Û≤ t), therefore bcσ ≤ tσ .
We derive P ;M
 c : tσ by [T r

c] and [T r
≤].

Case: e = λx . e ′

We have:

P ;M ;σ
 ∃α1,α2. (def x : α1 in 〈〈e
′ : α2〉〉) ∧ (α1 → α2 Û≤ t) α1,α2] t .

104

4.2 Constraints and constraint generation

Therefore there exist t1 and t2 such that

P ; (M, x : t1); (σ ∪ [t1/α1, t2/α2])
 〈〈e
′ : α2〉〉 t1 → t2 ≤ tσ .

We apply the IH and conclude by [T r
λ] and [T r

≤].

Case: e = e1 e2
We have:

P ;M ;σ
 ∃α . 〈〈e1 : α → t〉〉 ∧ 〈〈e2 : α〉〉 α] t .

Therefore there exists a t ′ such that

P ;M ; (σ ∪ [t ′/α])
 〈〈e1 : α → t〉〉 P ;M ; (σ ∪ [t ′/α])
 〈〈e2 : α〉〉 .

We apply the IH and conclude by [T r
app].

Case: e = (e1, e2) or e = πi e
′

Similar to the previous cases.

Case: e = (e0 ∈ t ? e1 : e2)

We have

P ;M ;σ
 ∃α . 〈〈e0 : α〉〉 ∧
(
(α Û≤ ¬t) ∨ 〈〈e1 : t〉〉

)
∧

(
(α Û≤ t) ∨ 〈〈e2 : t〉〉

)
(with α] t), therefore for some t ′ we have:

P ;M ;σ ∪ [t ′/α]
 〈〈e0 : α〉〉
t ′ ≤ ¬t or P ;M ;σ ∪ [t ′/α]
 〈〈e1 : t〉〉
t ′ ≤ t or P ;M ;σ ∪ [t ′/α]
 〈〈e2 : t〉〉

By IH we obtain

P ;M
 e0 : t ′ t ′ ≤ ¬t or P ;M
 e1 : tσ t ′ ≤ t or P ;M
 e2 : tσ

and we conclude by [T r
case].

Case: e = (let x = e1 in e2)

We have P ;M ;σ
 let x̂ : ∀α[〈〈e1 : α〉〉]. α in 〈〈e2 : t〉〉. Therefore

P ;M1;σ1
 〈〈e1 : α〉〉 (P, x̂ : 〈M1〉ασ1);M ;σ
 〈〈e2 : t〉〉 M ≤ M1σ
′
1 .

By IH we have

P ;M1
 e1 : ασ1 (P, x̂ : 〈M1〉ασ1);M
 e2 : tσ

and we conclude by [T r
let]. �

To prove completeness of constraint generation and satisfaction with respect
to T r\∧, we use Lemma 4.16 to invert the typing derivation for e .

4.22 lemma: If P ;M
 e : tσ can be derived in T r\∧, then P ;M ;σ
 〈〈e : t〉〉. �

Proof: By induction on e and by case analysis on the shape of e .
In each case, we use Lemma 4.16 to invert the judgment P ;M
 e : tσ .

105

4 Type inference

Case: e = x̂

We have
P(x̂) = 〈M ′〉t ′ t ′σ ′ ≤ tσ M ≤ M ′σ ′

therefore P ;M ;σ
 (x̂ Û≤ t).

Case: e = x

We have M(x) ≤ tσ , therefore P ;M ;σ
 (x Û≤ t).

Case: e = c
We have bc ≤ tσ , therefore (since bc is ground) P ;M ;σ
 (bc Û≤ t).

Case: e = λx . e ′

We have P ; (M, x : t1)
 e ′ : t2 and t1 → t2 ≤ tσ .
Let α1 and α2 be such that α1,α2] t,σ . Let σ̂ = σ ∪ [t1/α1, t2/α2].
Then, 〈〈e : t〉〉 = ∃α1,α2. (def x : α1 in 〈〈e ′ : α2〉〉) ∧ (α1 → α2 Û≤ t), and we
have P ; (M, x : α1σ̂)
 e

′ : α2σ̂ .
Therefore, by IH, P ; (M, x : α1σ̂); σ̂
 〈〈e ′ : α2〉〉.
Hence, we have P ;M ;σ
 〈〈e : t〉〉.

Case: e = e1 e2
We have P ;M
 e1 : t ′→ tσ and P ;M
 e2 : t ′.
Let α be such that α] t . Let σ̂ = σ ∪ [t ′/α].
Then, 〈〈e : t〉〉 = ∃α . 〈〈e1 : α → t〉〉 ∧ 〈〈e2 : α〉〉.
We have P ;M
 e1 : (α → t)σ̂ and P ;M
 e2 : ασ̂ .
Therefore, by IH,

P ;M ; σ̂
 〈〈e1 : α → t〉〉 P ;M ; σ̂
 〈〈e2 : α〉〉 .

Hence, we have P ;M ;σ
 〈〈e : t〉〉.

Case: e = (e1, e2) or e = πi e
′

Analogous to the previous cases.

Case: e = (e0 ∈ t ? e1 : e2)

We have:

P ;M
 e0 : t0 t0 ≤ ¬t or P ;M
 e1 : tσ t0 ≤ t or P ;M
 e2 : tσ

Let α be such that α] t . Let σ̂ = σ ∪ [t0/α].
Then, 〈〈e : t〉〉 = ∃α . 〈〈e0 : α〉〉 ∧

(
(α Û≤ ¬t) ∨ 〈〈e1 : t〉〉

)
∧

(
(α Û≤ t) ∨ 〈〈e2 : t〉〉

)
.

By IH, we have

P ;M ; σ̂
 〈〈e0 : α〉〉
ασ̂ ≤ ¬t or P ;M ; σ̂
 〈〈e1 : t〉〉 ασ̂ ≤ t or P ;M ; σ̂
 〈〈e2 : t〉〉

and therefore P ;M ;σ
 〈〈e : t〉〉.

Case: e = (let x = e1 in e2)

We have:

P ;M1
 e1 : t1 (P, x̂ : 〈M1〉t1);M
 e2 : tσ M ≤ M1σ
′

106

4.2 Constraints and constraint generation

We choose a type variable α , and we have P ;M1
 e1 : α[t1/α].
Therefore, by IH,

P ;M1; [t1/α]
 〈〈e1 : α〉〉 (P, x̂ : 〈M1〉t1);M ;σ
 〈〈e : t〉〉

and we obtain P ;M ;σ
 〈〈e : t〉〉. �

4.2.4 Properties of structured-constraint satisfaction

We prove two weakening properties of structured-constraint satisfaction that
we use in the next section to relate it to algorithmic constraint solving.

4.23 lemma: If P ;M ;σ
 C and M ′ ≤ M , then P ;M ′;σ
 C . �

Proof: Straightforward proof by structural induction on C . �

We introduce an order of generality on typing schemes and let-environments
analogous to that of De�nition 3.14 and its alternative characterization in
Lemma 3.15. We write 〈M1〉t1 ≤

∀ 〈M2〉t2 if there exists σ1 such that t1σ1 ≤ t2
and M2 ≤ M1σ1. We extend this pointwise to let-environments.

4.24 lemma: If P ′;M ;σ
 C and P ≤∀ P ′, then P ;M ;σ
 C . �

Proof: By structural induction on C and by case analysis on the shape of C .
All cases are straightforward except the following two.

Case: C = (x̂ Û≤ t)

We have:

P ′(x̂) = 〈M ′1〉t
′
1 t ′1σ1 ≤ tσ M ≤ M ′1σ1 .

Since P ≤∀ P ′, we have P ′(x̂) = 〈M1〉t1 and there exists a σ ′ such that
t1σ
′ ≤ t ′1 and M ′1 ≤ M1σ

′.
Hence, t1(σ1 ◦ σ

′) ≤ tσ and M ≤ M1(σ1 ◦ σ
′). We conclude by [C sat

x̂].

Case: C = (let x̂ : ∀α[C1]. α in C2)

We have:

P ′;M ;σ
 let x̂ : ∀α[C1]. α in C2

P ′;M1;σ1
 C1 (P ′, x̂ : 〈M1〉ασ1);M ;σ
 C2 M ≤ M1σ
′
1

Note that (P, x̂ : 〈M1〉ασ1) ≤
∀ (P ′, x̂ : 〈M1〉ασ1).

By IH we obtain:

P ;M1;σ1
 C1 (P, x̂ : 〈M1〉ασ1);M ;σ
 C2

and we conclude by [C sat
let]. �

This concludes the study of constraint satisfaction from a declarative per-
spective: in the next section, we show how to look for solutions algorithmically.

107

4 Type inference

4.3 Constraint solving

To solve type-constraint sets, we reuse the tallying algorithm of Castagna
et al. (2015b). We do not describe the algorithm in detail here: we state some
properties of it below and rely only on them in the rest of the development.
Then, we show how to solve structured constraints by simplifying them to
type-constraint sets that can be solved by tallying.

4.3.1 Type-constraint solving by tallying

The tallying problem, as de�ned by Castagna et al. (2015b), is the problem of
�nding solutions to type-constraint sets. It is the analogue of the uni�cation
problem for subtyping, instead of equality, constraints.

The authors of the cited work study the problem in order to do local type
inference for an explicitly typed polymorphic language with set-theoretic types
(speci�cally, to infer instantiations of polymorphic functions). They de�ne a
sound and complete algorithm to solve tallying. We refer to this algorithm as
tally, and assume it has the following properties.

4.25 property: There exists a function tally(·)(·) such that, when D is a type-
constraint set and ∆ is a �nite set of type variables, tally∆(D) is a �nite set of
type substitutions. Moreover, the following properties hold.

• Soundness: if σ ∈ tally∆(D), then σ
∆ D.

• Completeness: if σ
∆ D, then there exist σ ′ ∈ tally∆(D) and σ ′′ such that
σ ' σ ′′ ◦ σ ′.

• If σ ∈ tally∆(D), then dom(σ) ⊆ var(D) \ ∆.

We write tally(D) to abbreviate tally�(D). �

These results are proven as Theorems C.45 and C.46 in Castagna et al. (2015b).
Moreover, Theorem C.47 states that tally always terminates.

The soundness property is straightforward. In the statement of completeness,
by σ ' σ ′′ ◦ σ ′ we mean that ασ ' ασ ′σ ′′ for every α . Note that tallying does
not yield a single type substitution, but a �nite set of them. If tally∆(D) = �,
then (by completeness) there exists no σ such that σ
∆ (D). Otherwise, all the
type substitutions in tally∆(D) are solutions, and every other solution can be
obtained from one of them (by composition with some other substitution and
up to equivalence '). In this sense, the set of type substitutions is a principal
solution, though none of the substitutions is itself principal.

We give two examples of why the principal solution cannot be a single
type substitution. The constraint α1 × α2 Û≤ (Int × Int) ∨ (Bool × Bool) has two
incomparable solutions: [Int/α1, Int/α2] and [Bool/α1, Bool/α2]; no solution is
more general than both. Likewise, the constraint Int → Bool Û≤ α → β has
a solution [(Int ∧ α)/α, (Bool ∨ β)/β] (which is valid because Int → Bool ≤
(Int ∧ α) → (Bool ∨ β)), but also [0/α] (which is valid because arrow types of
the form 0→ t are greater than any arrow type).

108

4.3 Constraint solving

[C sim
Û≤]

P ` (t1 Û≤ t2) { {t1 Û≤ t2} | � | �
[C sim

x]
P ` (x Û≤ t) { � | (x : t) | �

[C sim
x̂]

P ` (x̂ Û≤ t) { {t1[®β/ ®α] Û≤ t} | M1[®β/ ®α] | ®β


P(x̂) = 〈M1〉t1
®α = var(〈M1〉t1)
®β] t

[C sim
∧]

P ` C1 { D1 | M1 | ®α1 P ` C2 { D2 | M2 | ®α2

P ` C1 ∧C2 { D1 ∪ D2 | M1 ∧M2 | ®α1 ∪ ®α2

{
®α1] ®α2,C2
®α2] C1

[C sim
∨]

P ` Ci { D | M | ®α

P ` C1 ∨C2 { D | M | ®α
[C sim
∃

]
P ` C { D | M | ®α ′

P ` ∃ ®α .C { D | M | ®α ′ ∪ ®α
®α ′] ®α

[C sim
def]

P ` C { D | M | ®α

P ` def x : t in C { D ∪ D ′ | Mrx | ®α

D ′ =

{
{t Û≤ M(x)} if x ∈ dom(M)
� otherwise

®α] t

[C sim
let]

P ` C1 { D1 | M1 | ®α1
(P, x̂ : 〈M1σ1〉ασ1) ` C2 { D2 | M2 | ®α2

P ` let x̂ : ∀α[C1]. α in C2 { D2 | M | ®α2 ∪ ®β



σ1 ∈ tally(D1)

®α = var(M1σ1)

M = M1σ1[®β/ ®α] ∧M2
®α1] α
®β] C1, ®α2

figure 4.6 Csim: Constraint simpli�cation rules

remark (Introduction of fresh type variables in tally): The tallying al-
gorithm described by Castagna et al. (2015b) introduces new type variables to
convert subtyping constraints to equations: for example, (α Û≤ Int) becomes
α = Int∧α ′. If ®α are the type variables in the type-constraint set, then tallying
introduces new variables ®α ′, each corresponding to one in ®α .

In our description, we assume that tally returns type substitutions where
we have already performed a renaming [®α/ ®α ′] to map each new variable to
the original one. For example, for the constraint above we assume that tally
returns [(Int∧α)/α] instead of [(Int∧α ′)/α]. As a result, the type substitutions
in general are not idempotent, unlike in the speci�cation of Castagna et al.
(2015b).

This allows us to state completeness as we do. If σ̂ ∈ tally∆(D) introduced
new type variables, then we would have (σ ∪ σ̌) ' (σ ∪ σ̌) ◦ σ̂ instead of
σ ' σ̌ ◦σ̂ . This is because the new variables introduced by σ̂ , being fresh, would
be di�erent from those in the domain of σ , and σ̌ would need to instantiate
them. �

109

4 Type inference

4.3.2 Structured-constraint simpli�cation

We solve structured constraints by simplifying them to type-constraint sets
which can be solved by tallying. Because of let-polymorphism, the constraint
simpli�cation algorithm also uses tallying internally to simplify let constraints.

4.26 definition: The structured-constraint simpli�cation relation P ` C {

D | M | ®α is de�ned by the rules in Figure 4.6. �

We refer to this system as Csim. The rules are syntax-directed. We can
read them as an algorithm that takes two inputs, a let-environment P and a
structured constraint C , and produces three outputs: the type-constraint set
D which we then solve by tallying, the λ-environment M which collects the
(x Û≤ t) constraints in C , and the vector ®α of the type variables introduced
during simpli�cation (for example, to instantiate existential constraints).

The rules [C sim
Û≤] and [C sim

x] are straightforward. In [C sim
x̂], we take a fresh

instance of the typing scheme P(x̂), instantiating all its type variables with
the new variables ®β . The rules for conjunctive, disjunctive, and existential
constraints are unsurprising. In [C sim

def], we simplify the constraint C and then
add one more constraint (t Û≤ M(x)), unless x is never used and thus does not
occur in M , to remove the binding of x from M . Therefore, the domain of the λ-
environment obtained from simpli�cation is always the set of free λ-variables
in C . In [C sim

let], we �rst simplify the constraint C1 and solve the resulting D1
using tallying. We use a solution σ1 to obtain the typing scheme for x̂ and
simplify C2 in the expanded environment. The �nal λ-environment we return
is the intersection of M2 and a fresh renaming of M1σ1: this corresponds to
the condition M ≤ M1σ

′
1 in [C sat

let]. In most rules, the side conditions force the
choice of fresh variables.

Constraint simpli�cation is not deterministic: we can build di�erent deriv-
ations from the same P and C . Apart from the choice of di�erent variables
for ®α (which is immaterial as long as the disjointness conditions are satis�ed)
there are two sources of non-determinism: disjunctive constraints and the side-
condition σ1 ∈ tally(D1) in [C sim

let], since tally(D1) can contain more than one
type substitution. This means that a practical implementation will have to test
multiple possible choices by backtracking, possibly compromising e�ciency
(we outline in Section 4.4.1 two approaches to mitigate this problem).

We want to connect structured-constraint satisfaction with simpli�cation.
First, we describe which type variables can occur in the D and M that we
obtain by simpli�cation.

We de�ne var(·) on type-constraint sets and on structured constraints. For
type-constraint sets, we de�ne var(D) =

⋃
(t1 Û≤t2)∈D var(t1) ∪ var(t2). For struc-

110

4.3 Constraint solving

tured constraints, we must consider binders, as follows.

var(t1 Û≤ t2) = var(t1) ∪ var(t2) var(x Û≤ t) = var(t) var(x̂ Û≤ t) = var(t)

var(C1 ∧C2) = var(C1) ∪ var(C2) var(C1 ∨C2) = var(C1) ∪ var(C2)

var(∃ ®α .C) = var(C) \ ®α var(def x : t in C) = var(t) ∪ var(C)
var(let x̂ : ∀α[C1]. α in C2) = (var(C1) \ {α }) ∪ var(C2)

4.27 lemma: If P ` C { D | M | ®α , then var(D) ∪ var(M) ⊆ var(C) ∪ ®α . �

Proof: Straightforward proof by structural induction on C . �

The following lemma proves that simpli�cation is sound with respect to
structured-constraint satisfaction.

4.28 lemma: If P ` C { D | M | ®α and σ
 D, then P ;Mσ ;σ |r ®α
 C . �

Proof: By structural induction on C .

Case: C = (t1 Û≤ t2)

Straightforward, because we have t1σ ≤ t2σ and σ |r� = σ .

Case: C = (x Û≤ t)

Straightforward: we must show P ; (x : t)σ ;σ |r�
 (x Û≤ t), which just
requires tσ ≤ tσ |r�.

Case: C = (x̂ Û≤ t)

We have

P ` C { {t1[®β/ ®α] Û≤ t} | M1[®β/ ®α] | ®β t1[®β/ ®α]σ ≤ tσ

P(x̂) = 〈M1〉t1 ®α = var(〈M1〉t1) ®β] t

and we must show P ;M1[®β/ ®α]σ ;σ |
r ®β
 C , which requires �nding a σ1

such that
t1σ1 ≤ tσ |

r ®β M1[®β/ ®α]σ ≤ M1σ1 .

We choose σ1 = [®β/ ®α]σ . Note that tσ = tσ |
r ®β since ®β] t .

Case: C = (C1 ∧C2)

We have:

P ` C1 ∧C2 { D1 ∪ D2 | M1 ∧M2 | ®α1 ∪ ®α2 σ
 D1 ∪ D2

P ` C1 { D1 | M1 | ®α1 P ` C2 { D2 | M2 | ®α2

®α1] ®α2,C2 ®α2] C1

Since ®α1] ®α1,C2, by Lemma 4.27 we have ®α1] D2,M2.
Analogously, ®α2] D1,M1.
Therefore, σ |r ®α2
 D1 and σ |r ®α1
 D2.

111

4 Type inference

By IH, we obtain:

P ;M1σ |r ®α2 ;σ |r(®α1∪ ®α2)
 C1 P ;M2σ |r ®α1 ;σ |r(®α1∪ ®α2)
 C2

We conclude because M1σ |r ®α2 = M1σ and M2σ |r ®α1 = M2σ .

Case: C = (C1 ∨C2)

We have:

P ` C1 ∨C2 { D | M | ®α ∃i . P ` Ci { D | M | ®α

By IH we obtain P ;Mσ ;σ |r ®α
 Ci . Therefore, P ;Mσ ;σ |r ®α
 C1 ∨C2.

Case: C = (∃ ®α .C ′)
We have:

P ` ∃ ®α .C ′ { D | M | ®α ′ ∪ ®α P ` C ′ { D | M | ®α ′

By IH we obtain P ;Mσ ;σ |r ®α ′
 C ′.
Since σ |r ®α ′ = σ |r(®α ′∪ ®α)∪[®ασ/ ®α], we have P ;Mσ ;σ |r(®α ′∪ ®α)∪[®ασ/ ®α]
 C ′.
Therefore, P ;Mσ ;σ |r(®α ′∪ ®α)
 ∃®α .C ′.

Case: C = (def x : t in C ′)
We have:

P ` def x : t in C ′ { D ′ ∪ { t Û≤ M ′(x) | x ∈ dom(M ′) } | M ′rx | ®α

P ` C ′ { D ′ | M ′ | ®α ®α] t

Since σ
 D, we have σ
 D ′ and, if x ∈ dom(M ′), tσ ≤ M ′(x)σ .
By IH we obtain P ;M ′σ ;σ |r ®α
 C ′.
We have

(
(M ′rx)σ , x : t(σ |r ®α)

)
≤ M ′σ .

This amounts to showing that t(σ |r ®α) ≤ M ′(x)σ if x ∈ dom(M ′).
It holds because, if x ∈ dom(M ′), tσ ≤ M ′(x)σ , and because ®α] t .

By Lemma 4.23, we obtain P ;
(
(M ′rx)σ , x : t(σ |r ®α)

)
;σ |r ®α
 C ′.

Therefore, P ; (M ′rx)σ ;σ |r ®α
 C .

Case: C = (let x̂ : ∀α[C1]. α in C2)

We have:

P ` C { D2 | M1σ1[®β/ ®α] ∧M2 | ®α2 ∪ ®β σ
 D2

P ` C1 { D1 | M1 | ®α1 (P, x̂ : 〈M1σ1〉ασ1) ` C2 { D2 | M2 | ®α2

σ1 ∈ tally(D1) ®α = var(M1σ1) ®α1] α ®β] C1, ®α2

By Property 4.25, we have σ1
 D1.
By Lemma 4.27, since ®β] C1, ®α2, then ®β] D2. Therefore, σ |

r ®β
 D2.
By IH we obtain:

P ;M1σ1;σ1 |r ®α1
 C1 (P, x̂ : 〈M1σ1〉ασ1);M2σ |r ®β ;σ2 |r(®α2∪ ®β)

 C2

We have ασ1 = ασ1 |r ®α1 because ®α1] α .
We have M2σ |r ®β = M2σ because ®β] M2 (by Lemma 4.27).
Therefore, we have (P, x̂ : 〈M1σ1〉ασ1 |r ®α1);M2σ ;σ2 |r(®α2∪ ®β)

 C2.

112

4.3 Constraint solving

We have (M1σ1[®β/ ®α] ∧M2)σ ≤ M2σ .
Therefore, by Lemma 4.23,

(P, x̂ : 〈M1σ1〉ασ1 |r ®α1); (M1σ1[®β/ ®α] ∧M2)σ ;σ2 |r(®α2∪ ®β)

 C2 .

To conclude, we also need to �nd σ ′1 such that

(M1σ1[®β/ ®α] ∧M2)σ ≤ M1σ1σ
′
1 :

we take σ ′1 = [®β/ ®α]σ . �

Completeness of structured-constraint simpli�cation is proven by the fol-
lowing lemma.

4.29 lemma:

P ;M ;σ
 C =⇒ ∃D,M ′, ®α,σ ′.


P ` C { D | M ′ | ®α

σ ∪ σ ′
 D

M ≤ M ′(σ ∪ σ ′)

dom(σ ′) ⊆ ®α

�

Proof: We use the metavariable U to range over in�nite subsets of TVar. We
prove the following stronger claim (for all P , M , σ , C , and U).

P ;M ;σ
 C
U] C

}
=⇒ ∃D,M ′, ®α,σ ′.


P ` C { D | M ′ | ®α

σ ∪ σ ′
 D

M ≤ M ′(σ ∪ σ ′)

dom(σ ′) ⊆ ®α ⊆ U

This implies the statement: take U to be TVar \ var(C).
We prove the claim by structural induction on C .

Case: C = (t1 Û≤ t2)

Straightforward: take D = {t1 Û≤ t2}, M ′ = �, ®α empty, and σ ′ = [].

Case: C = (x Û≤ t)

Take D = �, M ′ = (x : t), ®α empty, and σ ′ = [].
We have M ≤ (x : t)(σ ∪ σ ′) because M(x) ≤ tσ .

Case: C = (x̂ Û≤ t)

By hypothesis:

P(x̂) = 〈M1〉t1 t1σ1 ≤ tσ M ≤ M1σ1 .

Let ®α1 = var(〈M1〉t1) and choose ®α in U (this ensures ®α] t , since U] C).
Then, we have P ` (x̂ Û≤ t) { {t1[®α/ ®α1] Û≤ t} | M1[®α/ ®α1] | ®α .
Take σ ′ = [®α1σ1/ ®α].

113

4 Type inference

We have:

t1[®α/ ®α1](σ ∪ σ
′) = t1σ1 ≤ tσ = t(σ ∪ σ1)

M ≤ M1σ1 = M1[®α/ ®α1](σ ∪ σ
′) .

Case: C = (C1 ∧C2)

By hypothesis, we have P ;M ;σ
 C1 and P ;M ;σ
 C2.
We partition U into two in�nite sets U1 and U2.
By IH, we have:

P ` C1 { D1 | M
′
1 | ®α1 P ` C2 { D2 | M

′
2 | ®α2

σ ∪ σ ′1
 D1 σ ∪ σ ′2
 D2

M ≤ M ′1(σ ∪ σ
′
1) M ≤ M ′2(σ ∪ σ

′
2)

dom(σ ′1) ⊆ ®α1 ⊆ U1 dom(σ ′2) ⊆ ®α2 ⊆ U2

By Lemma 4.27 we obtain ®α1] D2,M
′
2 and ®α2] D1,M

′
1.

Therefore, we have:

P ` C { D1 ∪ D2 | M
′
1 ∧M

′
2 | ®α1 ∪ ®α2 σ ∪ σ ′1 ∪ σ

′
2
 D1 ∪ D2

M ≤ (M ′1 ∧M
′
2)(σ ∪ σ

′
1 ∪ σ

′
2) dom(σ ′1 ∪ σ

′
2) ⊆ ®α1 ∪ ®α2 ⊆ U

Case: C = (C1 ∨C2)

By hypothesis, there exists an i such that P ;M ;σ
 Ci .
By IH, we obtain

P ` Ci { D | M ′ | ®α σ ∪ σ ′
 D

M ≤ M ′(σ ∪ σ ′) dom(σ ′) ⊆ ®α ⊆ U

We can conclude directly by applying [C sim
∨].

Case: C = (∃ ®α .C ′)
Assume by α-renaming that ®α is in U and take U′ = U \ ®α .
By hypothesis, for some ®t we have P ;M ;σ ∪ [®t/ ®α]
 C ′.
By IH, we obtain

P ` C ′ { D | M ′ | ®α ′ σ ∪ [®t/ ®α] ∪ σ ′1
 D

M ≤ M ′(σ ∪ [®t/ ®α] ∪ σ ′1) dom(σ ′1) ⊆ ®α
′ ⊆ U′

We conclude by [C sim
∃

] and by taking σ ′ = [®t/ ®α] ∪ σ ′1.

Case: C = (def x : t in C ′)
By hypothesis, we have P ; (M, x : tσ);σ
 C ′.
By IH, we obtain:

P ` C ′ { D | M ′ | ®α σ ∪ σ ′
 D

(M, x : tσ) ≤ M ′(σ ∪ σ ′) dom(σ ′) ⊆ ®α ⊆ U

Note that ®α] t because U] C . Therefore, t(σ ∪ σ ′) = tσ .

114

4.4 Results and discussion

By [C sim
def] we have:

P ` C { D ∪ { t Û≤ M ′(x) | x ∈ dom(M ′) } | M ′rx | ®α .

If x ∈ dom(M ′), we have t(σ ∪ σ ′) ≤ M ′(x)(σ ∪ σ ′).
Since (M, x : tσ) ≤ M ′(σ ∪ σ ′), we have M ≤ (M ′rx)(σ ∪ σ ′).

Case: C = (let x̂ : ∀α[C1]. α in C2)

By hypothesis:

A○ P ;M1;σ1
 C1 B○ (P, x̂ : 〈M1〉ασ1);M ;σ
 C2 C○ M ≤ M1σ̃1 .

By α-renaming, we assume α ∈ U.
We partition U into {α }, U1, U2, and U3.
By IH from A○ (using U1) we have:

D○ P ` C1 { D1 | M
′
1 | ®α1

E○ σ1 ∪ σ
′
1
 D1 F○ M1 ≤ M ′1(σ1 ∪ σ

′
1) dom(σ ′1) ⊆ ®α1 ⊆ U1

By Property 4.25, from E○ we �nd σ̂ and σ̌ such that

σ̂ ∈ tally(D1) σ1 ∪ σ
′
1 ' σ̌ ◦ σ̂ dom(σ̂) ⊆ var(D1) .

We show (P, x̂ : 〈M ′1σ̂ 〉ασ̂) ≤∀ (P, x̂ : 〈M1〉ασ1).
To instantiate the type scheme on the left, we use σ̌ . We have ασ̂σ̌ '
α(σ1 ∪ σ

′
1) = ασ1 and M1 ≤ M ′1(σ1 ∪ σ

′
1) ' M ′1σ̂ σ̌ .

Then, by Lemma 4.24, from B○ we have G○ (P, x̂ : 〈M ′1σ̂ 〉ασ̂);M ;σ
 C2.
By IH from G○ (using U2) we have:

H○ (P, x̂ : 〈M ′1σ̂ 〉ασ̂) ` C2 { D2 | M
′
2 | ®α2

σ ∪ σ ′2
 D2 M ≤ M ′2(σ ∪ σ
′
2) dom(σ ′2) ⊆ ®α2 ⊆ U2

Let ®β = var(M ′1σ̂) and take ®γ from U3.
Then from D○ and H○ we derive

P ` C { D2 | M
′
1σ̂ [®γ/

®β] ∧M ′2 | ®α2 ∪ ®γ .

We take σ ′ = σ ′2 ∪ [®βσ̌σ̃/®γ].
By Lemma 4.27, ®γ] D2,M

′
2. Therefore, we have σ ∪ σ ′
 D2.

We show M ≤ (M ′1σ̂ [®γ/
®β] ∧M ′2)(σ ∪ σ

′).
We have M ≤ M ′2(σ ∪ σ

′) because M ≤ M ′2(σ ∪ σ
′
2) and ®γ] M ′2.

Moreover,

M ≤ M1σ̃ ≤ M ′1(σ1 ∪ σ
′
1)σ̃ ' M ′1σ̂ σ̌ σ̃ = M ′1σ̂ [®γ/

®β](σ ∪ σ ′) . �

4.4 Results and discussion

We have built an inference algorithm for the type system T i of Figure 4.1
in three steps: we have de�ned the reformulated type system T r, de�ned
constraints and given a declarative notion of constraint satisfaction, and �nally
shown how to solve constraints algorithmically. Now, we put the three steps
together and state soundness and completeness for type inference for programs

115

4 Type inference

(that is, closed expressions).

4.30 theorem (Soundness of type inference): Let e be a program and α a type
variable. If � ` 〈〈e : α〉〉 { D | � | ®α and σ ∈ tally(D), then � ` e : ασ . �

Proof: Consequence of Property 4.25, Lemma 4.28, Lemma 4.21, and The-
orem 4.14. �

The λ-environment obtained by simpli�cation is � because the constraint
〈〈e : α〉〉 will not have any free x variable, since e is closed.

4.31 theorem (Completeness of type inference): Let e be a program and t a
type such that � ` e : t can be derived in T i\∧. Let α be a type variable. Then,
there exist D, ®α , and σ such that � ` 〈〈e : α〉〉 { D | � | ®α , that σ ∈ tally(D),
and that, for some σ ′, ασσ ′ ' t . �

Proof: Since we can derive � ` e : t in T i\∧, by Theorem 4.14 we can derive
�;�
 e : t in T r\∧.

Since t = α[t/α], by Lemma 4.22, we have �;�; [t/α]
 〈〈e : α〉〉.
Then, by Lemma 4.29, we �nd D, M , σ , and ®α such that

� ` 〈〈e : α〉〉 { D | M | ®α [t/α] ∪ σ ′′
 D

� ≤ M([t/α] ∪ σ ′′) dom(σ ′′) ⊆ ®α .

Let σ ′ = [t/α] ∪ σ ′′.
Since � ≤ Mσ ′, we have M = �.
By Property 4.25, we �nd σ ∈ tally(D) and σ ′′′ such that σ ′ ' σ ′′′ ◦ σ .

Therefore, since ασ ′ = t , we have ασσ ′′′ ' t . �

These two results state that type inference is sound with respect to the
type system T i of Figure 4.1 and complete with respect to its restriction T i\∧

without intersection introduction.
We conjecture that type inference is also sound with respect to T i\∧ be-

cause it cannot infer intersection types for functions (since we use a single
arrow type in the constraint) nor for let-bound variables (since we allow a
single instantiation). To attempt to prove this, we should use a di�erent proof
technique to relate the standard and the reformulated type systems.

4.4.1 Non-determinism and lack of principal solutions

Type inference can infer more than one type for a program. Indeed, the type
system T i\∧ does not have principal types.4 As an example, assume that ē is
some ill-typed expression and that b1 and b2 are two disjoint base types. Then,
the function

λx .
(
λy.y ∈ (b1 × b1) ∨ (b2 × b2) ? 3 : ē

)
(π1 x, π2 x)

4 We do not know whether the system T i including [T∧] has principal types.

116

4.4 Results and discussion

can be given type b1 × b1 → Int or b2 × b2 → Int, but it cannot be given any
type that is more general than both. Using [T∧], it could be given the type
(b1×b1 → Int)∧(b2×b2 → Int), which is equivalent to (b1×b1)∨(b2×b2) → Int.
In contrast, to derive the type (b1 × b1) ∨ (b2 × b2) → Int without using [T∧],
we would need to type the body of the function as Int assuming that x has
type (b1 × b1) ∨ (b2 × b2). But, under that assumption, (π1 x, π2 x) has type
(b1∨b2)×(b1∨b2). Therefore, we need to type λy.y ∈ (b1×b1)∨(b2×b2) ? 3 : ē
as (b1∨b2)×(b1∨b2) → Int. We cannot do so because, since (b1∨b2)×(b1∨b2)

is not a subtype of (b1 × b1) ∨ (b2 × b2), to do so we would need ē to be well
typed. The absence of a principal type in this case means that the algorithm
must return two distinct solutions and proceed to check the rest of the program
once for each of them by backtracking.

In a practical implementation, we might want to reduce non-determinism
as far as possible. We outline next two modi�cations of the system to do so.

constraints for typecases: To generate constraints for typecases,
we have used disjunctive constraints to match the “either . . . or . . . ” conditions
in the typing rule [Tcase]. This means that the constraints for a typecase can be
solved in four possible ways, and algorithmic constraint simpli�cation should
check all of them. While this is not the only source of non-determinism (since
tally can compute more than one type substitution), we could still want to use
a more restrictive constraint which is simpler to solve.

We can replace the de�nition in Figure 4.5 with

〈〈(e0 ∈ t ? e1 : e2) : t〉〉 = ∃α . 〈〈e0 : α〉〉 ∧ 〈〈e1 : t〉〉 ∧ 〈〈e2 : t〉〉 .

This constraint demands that both branches be well typed. Using it, type
inference accepts fewer programs: soundness (Lemma 4.21) remains valid,
but completeness (Lemma 4.22) does not. To recover the same statement as
Lemma 4.22, we should modify the typing rule for typecases so that it also
forces the typing of every branch. We use the rule

P ;M
 e0 : t0 P ;M
 e1 : t P ;M
 e2 : t
P ;M
 (e0 ∈ t ? e1 : e2) : t

instead of [T r
case] in T r and, correspondingly,

Γ ` e0 : t0 Γ ` e1 : t Γ ` e2 : t
Γ ` (e0 ∈ t ? e1 : e2) : t

instead of [Tcase] in T i.
This restriction would cripple the e�ectiveness of intersection types to type

overloaded functions, as we have remarked in Section 3.2. However, inference
does not infer intersection types for functions anyway. Hence, the restriction
would not be too limiting: in the type systems without [T∧], it only a�ects
programs with dead code (a branch of a typecase that we do not need to type
in a derivation without [T∧] can never be reached during evaluation).

117

4 Type inference

introducing intersection types: If we adopt the constraints for
typecases that we have just described, the only source of non-determinism is
the rule [C sim

let]: tally can compute more than one type substitution, and any of
them can be chosen to continue simpli�cation.

To some extent, this is unavoidable: di�erent substitutions can make in-
compatible assumptions on the types of free λ-variables in the constraints.
However, in some cases, the solutions are not incompatible and therefore we
can use intersection types to merge them. We consider here the case of let
bindings where the bound expression has no free λ-variables.

We can add one more rule for let constraints:
P ` C1 { D1 | � | ®α1

(P, x̂ : 〈�〉
∧

i ∈I ασi) ` C2 { D2 | M | ®α2

P ` let x̂ : ∀α[C1]. α in C2 { D2 | M | ®α2

{
tally(D1) = { σi | i ∈ I } , �

®α1] α

This rule should be used instead of [C sim
let] when the λ-environment obtained

by simplifying C1 is empty. Instead of choosing a single solution, we take the
intersection of all of them. Since

∧
i ∈I ασi is a subtype of all ασi , using it

ensures that we �nd all solutions that we could �nd choosing any of the σi .
Adding this rule makes Lemma 4.28 fail: constraint simpli�cation is no

longer sound with respect to constraint satisfaction. However, we can add a
corresponding rule to Csat to recover soundness:

∀i ∈ I . P ;�;σi
 C1 (P, x̂ : 〈�〉
∧

i ∈I ασi);M ;σ
 C2

P ;M ;σ
 let x̂ : ∀α[C1]. α in C2
I , �

Adding this rule makes Lemma 4.21 (soundness of Csat with respect to T r\∧)
fail, but the system is still sound with respect to the type system T r including
[T∧], that is, we have:

If P ;M ;σ
 〈〈e : t〉〉, then P ;M
 e : tσ .

This means that soundness for type inference (Theorem 4.30) still holds.
A typical program could be of the form let x̂1 = e1 in . . . let x̂n = en in e:

a sequence of de�nitions of top-level identi�ers followed by an expression
e to be evaluated. None of the ei would have free λ-variables. Without this
modi�cation, the constraints for e1 could have multiple incomparable solutions:
then, we would need to try to infer types for the rest of the program once for
each solution. With the modi�ed rules, instead, backtracking might still be
needed during inference for e1, but then we choose a single typing scheme for
x̂1 and use it for the rest of the program, making the analysis modular.

118

5 Adding type annotations

In this chapter, we describe how to extend type inference so that it can infer
more precise types for programs that are partially annotated with type in-
formation. We do so essentially by changing constraint generation, so that we
generate di�erent constraints for an expression if it is annotated with a type;
this also requires some changes to the syntax of constraints and to constraint
satisfaction and solving.

In this system, adding type annotations to functions allows type inference
to assign intersection types to them. For example, the annotated expression(

(λx . x ∈ btrue ? false : true) :: (btrue → bfalse) ∧ (bfalse → btrue)
)

is assigned the intersection type in the annotation, which we cannot infer for
the expression without the annotation, but we can derive in the declarative
type system using [T∧].

Likewise, inference can exploit annotations on x̂ variables to derive types
that are the intersection of multiple instances: for example, we can write
(x̂ :: (Int→ Int) ∧ (Bool→ Bool)) when x̂ has the typing scheme 〈�〉α → α .

chapter outline:

Section 5.1 We add type annotations to the syntax of expressions and show
how to modify the type system to account for them.

Section 5.2 We show how to extend constraints and the notions of con-
straint satisfaction, generation, and solving to account for type annota-
tions; we prove soundness and completeness properties.

Section 5.3 We summarize the results: type inference is sound and, on
expressions without annotations, it enjoys the same completeness result
as in the previous chapter (while being able to type more terms if we add
annotations). We also point out directions for future work, in particular
towards stronger completeness results.

5.1 Language syntax and type system

5.1.1 Syntax

The annotated expressions e are the terms generated inductively by the follow-
ing grammar:

eF x̂ | x | c | λx . e | e e | (e, e) | πi e | e ∈ t ? e : e | let ®α x̂ = e in e | (e :: t) .

There are two di�erences with respect to the syntax of De�nition 3.1. Of course,
we add type ascription (e :: t). We also change the syntax of let constructs,

119

5 Adding type annotations

adding a decoration ®α , which is a vector of type variables. In let ®α x̂ = e1 in e2,
the ®α variables are bound in e1. This decoration serves as a binder for the type
variables in annotations and marks their scope. This controls whether they
are polymorphic or not. For instance, let α x̂ = ((λx . x) :: α → α) in x̂ 3 is well
typed, because α is bound in the let and can be instantiated in the body of the
let. Instead, let ϵ x̂ = ((λx . x) :: α → α) in x̂ 3 (where ϵ is the empty vector) is
ill-typed, because α is not bound in the let and cannot be instantiated when
typing the body x̂ 3 – in practice, this means it is bound in some outer scope
and is polymorphic only outside that scope.

We see the expressions of De�nition 3.1 as a subset of annotated expressions
by identifying let ϵ x̂ = e1 in e2 with let x̂ = e1 in e2.

Given an annotated expression e, we denote by erase(e) the expression in
the syntax of De�nition 3.1 obtained by erasing the ascriptions and decorations
in e. That is, we have

erase(let ®α x̂ = e1 in e2) = let x̂ = erase(e1) in erase(e2)

erase((e :: t)) = erase(e)

and, for all other cases, erase(·) propagates the erasure to the subterms.

5.1.2 Reformulated type system

We describe the type system of the annotated language directly following the
presentation in Section 4.1. We add one more parameter to the typing relation:
a set ∆ of type variables. The type variables in ∆ cannot be instantiated in the
derivation. To type a program, we normally take ∆ to be the set of free type
variables in the annotations of the expression we type: as anticipated, we do
not allow free type variables in annotations to be instantiated.

The typing relation P ;M ;∆
 e : t is de�ned by the rules in Figure 5.1. We
write T ra to refer to this system and T ra\∧ to refer to its restriction without
the rule [T ra

∧].
The interesting di�erences compared to T r are in the rules [T ra

x̂] and [T ra
let].

In [T ra
x̂], as anticipated, the type substitution σ cannot instantiate the variables

in ∆, as imposed by the side condition dom(σ)] ∆. In [T ra
let], to type e1 we

expand the set ∆ adding ®α : this is because the ®α variables should be kept
monomorphic while typing e1. We ask that ®α be chosen disjoint from ∆ (this
can be ensured by α-renaming) but also that it is disjoint from M1. This is
because M1 holds the assumptions on the types of free x variables in e1; the
type variables in ®α cannot appear there, or they would be escaping their scope.

Two simple results relate typing in the systems T ra and T r.

5.1 lemma: If P ;M ;∆
 e : t can be derived in T ra, then P ;M
 erase(e) : t can
be derived in T r.

Moreover, if P ;M ;∆
 e : t can be derived in T ra\∧, then P ;M
 erase(e) : t
can be derived in T r\∧. �

120

5.1 Language syntax and type system

[T ra
x̂]

P ;Mσ ;∆
 x̂ : tσ

{
P(x̂) = 〈M〉t

dom(σ)] ∆
[T ra

x]
P ;M ;∆
 x : t

M(x) = t

[T ra
c]

P ;M ;∆
 c : bc

[T ra
λ]

P ; (M, x : t ′);∆
 e : t
P ;M ;∆
 λx . e : t ′→ t

[T ra
app]

P ;M ;∆
 e1 : t ′→ t P ;M ;∆
 e2 : t ′

P ;M ;∆
 e1 e2 : t

[T ra
pair]

P ;M ;∆
 e1 : t1 P ;M ;∆
 e2 : t2
P ;M ;∆
 (e1, e2) : t1 × t2

[T ra
proj]

P ;M ;∆
 e : t1 × t2
P ;M ;∆
 πi e : ti

[T ra
case]

P ;M ;∆
 e0 : t0
either t0 ≤ ¬t or P ;M ;∆
 e1 : t
either t0 ≤ t or P ;M ;∆
 e2 : t
P ;M ;∆
 (e0 ∈ t ? e1 : e2) : t

[T ra
let]

P ;M1;∆ ∪ ®α
 e1 : t1 (P, x̂ : 〈M1〉t1);M ;∆
 e2 : t
P ;M ;∆
 let ®α x̂ = e1 in e2 : t

{
∃σ .M ≤ M1σ

®α] ∆,M1

[T ra
::]

P ;M ;∆
 e : t
P ;M ;∆
 (e :: t) : t

[T ra
≤]

P ;M ′;∆
 e : t ′

P ;M ;∆
 e : t

{
t ′ ≤ t

M ≤ M ′
[T ra
∧]

P ;M ;∆
 e : t1 P ;M ;∆
 e : t2
P ;M ;∆
 e : t1 ∧ t2

figure 5.1 T ra: Reformulated typing rules (with type annotations)

121

5 Adding type annotations

[C sata
Û≤]

P ;M ;∆;σ
 (t1 Û≤ t2)
t1σ ≤ t2σ

[C sata
x]

P ;M ;∆;σ
 (x Û≤ t)
M(x) ≤ tσ [C sata

x̂]
P ;M ;∆;σ
 (x̂ Û≤ t)


P(x̂) = 〈M1〉t1

∃σ1.


t1σ1 ≤ tσ

M ≤ M1σ1

dom(σ1)] ∆

[C sata
∧]

P ;M ;∆;σ
 C1 P ;M ;∆;σ
 C2

P ;M ;∆;σ
 C1 ∧C2
[C sata
∨]

P ;M ;∆;σ
 Ci

P ;M ;∆;σ
 C1 ∨C2

[C sata
∃

]
P ;M ;∆;σ ∪ [®t/ ®α]
 C
P ;M ;∆;σ
 ∃®α .C

[C sata
def]

P ; (M, x : tσ);∆;σ
 C
P ;M ;∆;σ
 def x : t in C

[C sata
let]

P ;M1;∆ ∪ ®α ;σ1
 C1 (P, x̂ : 〈M1〉ασ1);M ;∆;σ
 C2

P ;M ;∆;σ
 let x̂ : ∀®α ;α[C1]. α in C2


∃σ ′1 .M ≤ M1σ

′
1

dom(σ1)] ∆, ®α

®α] ∆,M1

figure 5.2 Csata: Constraint satisfaction rules (with type annotations)

Proof: Straightforward proof by induction on the typing derivation. �

5.2 lemma: If P ;M
 e : t , then P ;M ;�
 e : t .
Moreover, if P ;M
 e : t can be derived in T r\∧, then P ;M ;�
 e : t can be

derived in T ra\∧. �

Proof: Straightforward induction proof. �

5.2 Constraints and constraint solving

5.2.1 Constraints and constraint satisfaction

We extend the syntax of structured constraints from the previous chapter by
adding binders in let constraints to match the decorations of let expressions.
The modi�ed syntax is the following:

C F (t Û≤ t) | (x Û≤ t) | (x̂ Û≤ t) | C ∧C | C ∨C | ∃ ®α .C

| def x : t in C | let x̂ : ∀®α ;α[C]. α in C .

We see the structured constraints of De�nition 4.18 as a subset of these by
identifying let x̂ : ∀ϵ ;α[C1]. α in C2 with let x̂ : ∀α[C1]. α in C2. We refer to
the structured constraints of the previous chapter as structured constraints
without explicit polymorphism.

We adapt structured-constraint satisfaction by adding the parameter ∆ and
adapting the rule for let constraints. The relation is de�ned by the rules Csata

122

5.2 Constraints and constraint solving

in Figure 5.2. The interesting rules are [C sata
x̂] and [C sata

let], which adapt [C sat
x̂]

and [C sat
let] of Figure 4.4 as we did for [T ra

x̂] and [T ra
let]. Note that, in [C sata

let], we
add the ®α variables to ∆ in the �rst sub-derivation and we require that the
type substitution σ1 does not instantiate these type variables, because they
cannot be instantiated while they are in scope.

5.2.2 Constraint generation

We modify constraint generation to exploit type annotations. In particular, we
want to generate di�erent constraints for an x̂ variable or a function when
we know the type it should have. For instance, if a function is annotated as
((λx . e) ::

∧
i ∈I t

′
i → ti), then we want to generate separate constraints from e

for each arrow: we break up the intersection into the set { t ′i → ti | i ∈ I } and
generate a constraint for each element in the set. If the type in the annotation
is not syntactically an intersection of arrow, we can still try to rewrite it to
an equivalent intersection (as a trivial example, we could treat the annotation
(t ′ → t) ∨ 0 like t ′ → t). To model this rewriting, we rely on two functions,
one for constraints on variables, the other for constraints on functions, to
decompose types to sets of types, breaking up intersections after (possibly) re-
writing the type to some equivalent intersection type. We leave these functions
unspeci�ed except for the properties we need in the proofs.

5.3 property: There exist two functions d and d→ such that:

1. given a type t , d(t) is a �nite, non-empty set of types;

2. given a type t and a set ∆ of type variables, d∆→(t) is a �nite set of arrow
types;

3. the functions satisfy the following properties, for every t and ∆:

• t '
∧

t ′∈d(t) t
′

• d∆→(t) = { t
′
i → ti | i ∈ I } , � =⇒


t '

∧
i ∈I t

′
i → ti

var(
∧

i ∈I t
′
i → ti) ⊆ ∆

∀i ∈ I . t ′i ' 0 =⇒ ti ' 1
�

The function d maps a type t to some set of types whose intersection is
equivalent to t . The function d→ does similarly, but it always produces a set
of arrow types, and it ensures additional properties which we discuss below;
it can yield � if it fails to decompose t ensuring these properties.

We can give simple syntax-based implementations for d and d→ as follows.

• If t =
∧

i ∈I ti , then d(t) = { ti | i ∈ I }; otherwise, d(t) = {t}.

• If t =
∧

i ∈I t
′
i → ti and var(t) ⊆ ∆, then d∆→(t) = { t ′i → t ′′i | i ∈ I }, where,

for each i ∈ I , we have t ′′i = 1 if t ′i ' 0 and t ′′i = ti otherwise.

123

5 Adding type annotations

〈〈x̂ : t〉〉∆ =
∧

i ∈I (x̂ Û≤ ti)

where d(t) = { ti | i ∈ I }
〈〈x : t〉〉∆ = (x Û≤ t)

〈〈c : t〉〉∆ = (bc Û≤ t)

〈〈(λx . e) : t〉〉∆ =



∧
i ∈I

(
def x : t ′i in 〈〈e : ti 〉〉∆

)
if d∆→(t) = { t ′i → ti | i ∈ I } , �

∃α1,α2. (def x : α1 in 〈〈e : α2〉〉
∆) ∧ (α1 → α2 Û≤ t)

if d∆→(t) = �, where α1,α2] t, e,∆

〈〈e1 e2 : t〉〉∆ = ∃α . 〈〈e1 : α → t〉〉∆ ∧ 〈〈e2 : α〉〉∆

where α] t, e1, e2,∆

〈〈(e1, e2) : t〉〉∆ = ∃α1,α2. 〈〈e1 : α1〉〉
∆ ∧ 〈〈e2 : α2〉〉

∆ ∧ (α1 × α2 Û≤ t)

where α1,α2] t, e1, e2,∆

〈〈π1 e : t〉〉∆ = 〈〈e : t × 1〉〉∆

〈〈π2 e : t〉〉∆ = 〈〈e : 1 × t〉〉∆

〈〈(e0 ∈ t ? e1 : e2) : t〉〉∆ = ∃α . 〈〈e0 : α〉〉∆ ∧
(
(α Û≤ ¬t) ∨ 〈〈e1 : t〉〉∆

)
∧

(
(α Û≤ t) ∨ 〈〈e2 : t〉〉∆

)
where α] t, e0, e1, e2,∆

〈〈(let ®α x̂ = e1 in e2) : t〉〉∆ = let x̂ : ∀®α ;α[〈〈e1 : α〉〉∆∪ ®α]. α in 〈〈e2 : t〉〉∆

where α, ®α] e1,∆

〈〈(e :: t ′) : t〉〉∆ = 〈〈e : t ′〉〉∆ ∧ (t ′ Û≤ t)

figure 5.3 Constraint generation (with type annotations)

124

5.2 Constraints and constraint solving

These implementations are unsatisfying, since they give di�erent results for
equivalent types, but they su�ce for our purpose here.

Using these functions, we de�ne constraint generation in Figure 5.3. The
set ∆ is an additional parameter. It is passed through because it is used by d→,
where it is important to know which type variables are �xed and which will
be instantiated by the solution of the constraints (see the remark below).

Comparing to Figure 4.5, the important di�erences are in the cases for x̂
variables and functions, where we use d and d→ and generate an intersection
with one constraint for each type in d(t) or d∆→(t).

remark (Decomposition of function types): The properties of d→ include
two requirements that have no analogue for d. They are needed because of
the behaviour of semantic subtyping; if we did not impose them, a constraint
〈〈e : t〉〉∆ for an expression e without annotations could be unsatis�able even
when 〈〈e : t〉〉 is satis�able. Hence, completeness with respect to the algorithm
of the previous chapter (Theorem 5.12) would not hold. Let us see why.

In semantic subtyping, types of the form t → t ′ with t ' 0 are supertypes
of all arrow types (whatever t is). Therefore, for example, 0→ Int ' 0→ Bool.

If we removed the condition ∀i ∈ I . t ′i ' 0 =⇒ ti ' 1, we could have
d∆→(0→ Bool) = {0→ Bool} and

〈〈(λx . 3) : 0→ Bool〉〉∆ = def x : 0 in 〈〈3 : Bool〉〉∆ .
This constraint is unsatis�able. In contrast, 〈〈(λx . 3) : 0→ Bool〉〉 is

∃α1,α2. (def x : α1 in 〈〈3 : α2〉〉) ∧ (α1 → α2 Û≤ 0→ Bool)

and is satis�able (mapping α2 to Int).
The condition on type variables has the same purpose. Without it, we could

have 〈〈(λx . 3) : α → Bool〉〉∆ = def x : α in 〈〈3 : Bool〉〉∆ , which is unsatis�able,
while 〈〈(λx . 3) : α → Bool〉〉 is satis�ed by [0/α]. To avoid this, we only allow
d→ to decompose a type when the decomposition only contains variables that
cannot be instantiated (in practice, variables that come from annotations). �

remark (Constraint generation for pairs): Here we de�ne constraint gen-
eration for pairs as in the previous chapter. It could be interesting to allow
propagation of type information for pairs by de�ning instead

〈〈(e1, e2) : t〉〉∆ = 〈〈e1 : t1〉〉∆ ∧ 〈〈e2 : t2〉〉∆

when t ' t1×t2. However, we run in similar problems as with functions. Indeed,
for this constraint to be complete, we would need to know that, if (e1, e2) has
type t1×t2, then e1 has type t1 and e2 has type t2. This is not true with semantic
subtyping. Product types are interpreted as Cartesian products and therefore
all products with an empty component are identi�ed: for instance, we have
0 × Int ' 0 × Bool ≤ Int × Bool. As a result, if ē has type 0, then (ē, 3) can be
typed as Int × Bool

To achieve completeness, we would have to duplicate the constraints for
the components, for example by de�ning 〈〈(e1, e2) : t〉〉∆ as(
〈〈e1 : t1〉〉∆ ∧ 〈〈e2 : t2〉〉∆

)
∨

(
∃α1,α2. 〈〈e1 : α1〉〉

∆ ∧ 〈〈e2 : α2〉〉
∆ ∧ (α1 × α2 Û≤ t)

)
when t ' t1 × t2. �

125

5 Adding type annotations

A simple observation is that constraints generated from expressions without
annotations have no explicit polymorphism (that is, they are in the syntax of
De�nition 4.18).

5.4 lemma: For every e , t , and ∆, the structured constraint 〈〈e : t〉〉∆ has no
explicit polymorphism. �

Proof: By induction on e . If e is a let expression, its decoration is empty and
therefore the let constraint we generate has no explicit polymorphism. In all
other cases, we just apply the IH. �

To relate typing and constraint satisfaction, we prove two results of sound-
ness and completeness (analogous to Lemma 4.21 and Lemma 4.22). For the
latter, we consider only expressions without annotations and typing deriva-
tions that do not use intersection introduction.

5.5 lemma: If P ;M ;∆;σ
 〈〈e : t〉〉∆ and if dom(σ)] ∆ and var(e) ⊆ ∆, then
P ;M ;∆
 e : tσ . �

Proof in appendix (p. 247). Analogous to the proof of Lemma 4.21. The
di�erences are in the cases of x̂ variables and functions, which are simple to
prove using Property 5.3.

5.6 lemma: If P ;M ;�
 e : tσ can be derived in T ra\∧, then P ;M ;�;σ

〈〈e : t〉〉�. �

Proof in appendix (p. 249). Similar to the proof of Lemma 4.22.

5.2.3 Constraint solving

To solve constraints, we use tallying as in the previous chapter. In Section 4.3.1,
it already allowed for a set ∆ of type variables that cannot be instantiated: we
always used � in the previous chapter, but we will need it here.

We need to update structured-constraint simpli�cation: we do so in Fig-
ure 5.4 (Csima). We add ∆ as an additional parameter and modify [C sima

x̂] and
[C sima

let] to match the changes in structured-constraint satisfaction.
We �rst prove a result of soundness analogous to Lemma 4.28.

5.7 lemma: If P ;∆ ` C { D | M | ®α and σ
∆ D, then P ;Mσ ;∆;σ |r ®α
 C . �

Proof in appendix (p. 250). Similar to the proof of Lemma 4.28.

We now prove completeness for constraints without explicit polymorphism,
analogously to Lemma 4.29. To do so, we reuse Lemma 4.29 directly by proving
that the new de�nitions of structured-constraint satisfaction and simpli�cation

126

5.2 Constraints and constraint solving

[C sima
Û≤]

P ;∆ ` (t1 Û≤ t2) { {t1 Û≤ t2} | � | �

[C sima
x]

P ;∆ ` (x Û≤ t) { � | (x : t) | �

[C sima
x̂]

P ;∆ ` (x̂ Û≤ t) { {t1[®β/ ®α] Û≤ t} | M1[®β/ ®α] | ®β


P(x̂) = 〈M1〉t1
®α = var(〈M1〉t1) \ ∆
®β] t,∆

[C sima
∧]

P ;∆ ` C1 { D1 | M1 | ®α1 P ;∆ ` C2 { D2 | M2 | ®α2

P ;∆ ` C1 ∧C2 { D1 ∪ D2 | M1 ∧M2 | ®α1 ∪ ®α2

{
®α1] ®α2,C2
®α2] C1

[C sima
∨]

P ;∆ ` Ci { D | M | ®α

P ;∆ ` C1 ∨C2 { D | M | ®α
[C sima
∃

]
P ;∆ ` C { D | M | ®α ′

P ;∆ ` ∃ ®α .C { D | M | ®α ′ ∪ ®α
®α] ∆, ®α ′

[C sima
def]

P ;∆ ` C { D | M | ®α

P ;∆ ` def x : t in C { D ∪ D ′ | Mrx | ®α

D ′ =

{
{t Û≤ M(x)} if x ∈ dom(M)
� otherwise

®α] t

[C sima
let]

P ;∆ ∪ ®α ` C1 { D1 | M1 | ®α1
(P, x̂ : 〈M1σ1〉ασ1);∆ ` C2 { D2 | M2 | ®α2

P ;∆ ` let x̂ : ∀®α ;α[C1]. α in C2 { D2 | M | ®α2 ∪ ®γ



σ1 ∈ tally∆∪ ®α (D1)

®α] ∆,M1σ1
®β = var(M1σ1) \ ∆

M = M1σ1[®γ/ ®β] ∧M2
®α1] α

®γ] C1, ®α2,∆

figure 5.4 Csima: Constraint simpli�cation rules (with type annotations)

127

5 Adding type annotations

coincide with those of the previous chapter for constraints without explicit
polymorphism.

5.8 lemma: Let C be a constraint without explicit polymorphism. Then, we
have P ;M ;σ
 C if and only if P ;M ;�;σ
 C . �

Proof: Straightforward proof by induction on C .
Note that, ifC is a let constraint, its vector ®α must be empty becauseC has

no explicit polymorphism. �

5.9 lemma: Let C be a constraint without explicit polymorphism. Then, we
have P ` C { D | M | ®α if and only if P ;� ` C { D | M | ®α . �

Proof: Straightforward proof by induction on C . �

These two lemmas, together with the result on completeness of constraint
solving from the previous chapter, give us the following corollary.

5.10 corollary:

P ;M ;�;σ
 C
C has no explicit polymorphism

}
=⇒ ∃D,M ′, ®α,σ ′.


P ;� ` C { D | M ′ | ®α

σ ∪ σ ′
� D

M ≤ M ′(σ ∪ σ ′)

dom(σ ′) ⊆ ®α

�

Proof: Corollary of Lemmas 5.8, 5.9 and 4.29. �

5.3 Results and discussion

Combining the results of the previous section, we obtain the following state-
ment of soundness. (By “closed”, for an annotated expression, we mean that it
has no free expression variables and no free type variables.)

5.11 theorem (Soundness of type inference): Let e be a closed annotated ex-
pression and α a type variable.

If �;� ` 〈〈e : α〉〉� { D | � | ®α and σ ∈ tally�(D), then �;�;�
 e : ασ . �

Proof: Consequence of Property 4.25, Lemma 5.7, and Lemma 5.5. �

The following theorem states that the modi�ed type inference algorithm
enjoys the same completeness property as that of the previous chapter.

128

5.3 Results and discussion

5.12 theorem (Completeness of type inference): Let e be a closed expression
and t a type such that � ` e : t in T i\∧. Let α be a type variable.

Then, there exist D, ®α , and σ such that �;� ` 〈〈e : α〉〉� { D | � | ®α , that
σ ∈ tally�(D), and that, for some σ ′, ασσ ′ ' t . �

Proof: Since we can derive� ` e : t in T i\∧, by Theorem 4.14 and Lemma 5.2
we can derive �;�;�
 e : t in T ra\∧.

Since t = α[t/α], by Lemma 5.6, we have �;�;�; [t/α]
 〈〈e : α〉〉�.
By Lemma 5.4, 〈〈e : α〉〉� has no explicit polymorphism.
Then, by Corollary 5.10, we �nd D, M , σ , and ®α such that

�;� ` 〈〈e : α〉〉� { D | M | ®α [t/α] ∪ σ ′′
� D

� ≤ M([t/α] ∪ σ ′′) dom(σ ′′) ⊆ ®α .

Let σ ′ = [t/α] ∪ σ ′′.
Since � ≤ Mσ ′, we have M = �.
By Property 4.25, we �nd σ ∈ tally(D) and σ ′′′ such that σ ′ ' σ ′′′ ◦ σ .

Therefore, since ασ ′ = t , we have ασσ ′′′ ' t . �

5.3.1 Towards a stronger completeness result

Theorem 5.12 is interesting because it proves that using this modi�ed algorithm
we keep the same completeness property as in the previous chapter. Moreover,
we can derive intersection types using type annotations, while this was im-
possible in the previous algorithm: this algorithm is strictly more powerful.
However, stronger properties would be desirable. For a start, we would like
to ensure completeness also for expressions with annotations as long as they
can be typed in T ra\∧. Moreover, we should try to ensure that, whenever an
expression e has some type t in T ra (possibly derived using [T∧]), there is
some way to annotate it (producing e such that erase(e) = e) so that type
inference can accept it with the same type.

Achieving these results is challenging because explicit annotations reintro-
duce the di�culties with generalization discussed in Section 4.1.1 and avoided
there thanks to the reformulated type system. The rules [T ra

let], [C sata
let], and

[C sima
let] all state that the variables ®α bound by the let construct must not occur

in some λ-environment. In [C sima
let], this condition is ®α] M1σ1: it depends

on which type variables are introduced by σ1. Therefore, equivalent type
substitutions behave di�erently, which is undesirable.

We could try to solve this by modifying the tallying algorithm so that we
can impose the constraint that some type variables (®α) should not appear
in the solution of other type variables (those in M1). This has been done in
other type inference systems using uni�cation under a mixed pre�x (Miller,
1992); for example, see the treatment of explicit type annotations in Pottier and
Rémy (2003). However, it is not clear how to adapt this approach to semantic
subtyping.

There is another di�culty to prove the stronger result. Assume that a

129

5 Adding type annotations

function λx . e is given the type (Int → Int) ∧ (Bool → Bool) using [T∧]. We
want to annotate it so that type inference can obtain this type. In the original
derivation, the body of the function is typed twice: assuming (x : Int) and
deriving Int, and assuming (x : Bool) and deriving Bool. These two derivations
might require di�erent, possibly con�icting, annotations. Therefore, we should
generalize type annotations, allowing expressions that are annotated with sets
of types so that we can annotate the body of the function with all annotations
needed for each typing. The typing rule [T ra

::] becomes then

P ;M ;∆
 e : ti
P ;M ;∆
 (e :: { ti | i ∈ I }) : ti

(during typing, we can choose freely which annotation to consider) and con-
straint generation is

〈〈(e :: { ti | i ∈ I }) : t〉〉∆ =
∨

i ∈I
(
〈〈e : ti 〉〉∆ ∧ (ti Û≤ t)

)
.

This solution is used in previous work on intersection type systems (Pierce,
1991; Reynolds, 1997; Davies, 2005; Dun�eld, 2007). Introducing sets of type
annotations can pose problems for e�ciency, since each annotation must be
tested in turn by backtracking. To avoid this, Dun�eld (2007) augments type
annotations with a fragment of the type environment which the type checker
uses to select the correct annotation for each typing of the expression. We
could adopt this solution also in our case.

130

6 Language extensions

In this chapter we describe a few possible extensions to the language of
Chapter 3. We outline how to modify the semantics and the type system
to account for them.

6.1 Binding typecase and pa�ern matching

6.1.1 Binding typecase

The typecase expression in our language has the form e0 ∈ t ? e1 : e2. In
contrast, Frisch, Castagna, and Benzaken (2008) include a binder in their
typecase: (x = e0) ∈ t ? e1 : e2, where x is bound in e1 and e2. Such a typecase
is evaluated by evaluating e0 to a value v , binding x to v , and evaluating either
e1 or e2 according to whether v has type t or ¬t.

As Castagna et al. (2014, app. e) observed, typecases with binders can be
encoded as:

(x = e0) ∈ t ? e1 : e2 ≡ (λx . x ∈ t ? e1 : e2) e0 .

To add them as primitive, instead, we use the following two reduction rules
(x = v) ∈ t ? e1 : e2 { e1[v/x] if typeof(v) ≤ t

(x = v) ∈ t ? e1 : e2 { e2[v/x] if typeof(v) ≤ ¬t
and add (x = E) ∈ t ? e : e to the grammar of evaluation contexts. We use the
typing rule:

Γ ` e0 : t0
either t0 ≤ ¬t or Γ , x : t0 ∧ t ` e1 : t either t0 ≤ t or Γ , x : t0 \ t ` e2 : t

Γ ` ((x = e0) ∈ t ? e1 : e2) : t
To type each branch, we assign to x a subtype of t0: in the �rst branch, it
is t0 ∧ t because the branch will be selected only for values of type t; in the
second, correspondingly, it is t0 \ t. For example, if x has type Int ∨ Bool, then
(y = x) ∈ Int ? (y + 1) : 0 is well typed because, in the �rst branch, y has type
(Int ∨ Bool) ∧ Int and (Int ∨ Bool) ∧ Int ' Int. In contrast, the typecase without
binder x ∈ Int ? (x + 1) : 0 is ill-typed because x has type Int ∨ Bool also in the
�rst branch, and + cannot be applied to an Int ∨ Bool.

These rules can all be derived for the encoding. To derive the typing rule, in
particular, we type (λx . x ∈ t ? e1 : e2) as (t0 ∧ t→ t) ∧ (t0 \ t→ t).

In practice, we might want to treat x ∈ t ? e1 : e2 as syntactic sugar for
(x = x) ∈ t ? e1 : e2, with a new binding of x that shadows the previous one.
This allows typecases on variables to re�ne the type of the variable in the
branches, making x ∈ Int ? (x + 1) : 0 well typed without explicit rebinding. It
is a simple form of occurrence typing or �ow typing (as studied, among others,
by Tobin-Hochstadt and Felleisen, 2010; Pearce, 2013; Chaudhuri et al., 2017).

131

6 Language extensions

v/t =

{
[] if typeof(v) ≤ t

fail otherwise
v/x = [v/x]

v/(p1,p2) =

{
ς1 ∪ ς2 if v = (v1,v2), v1/p1 = ς1, and v2/p2 = ς2

fail otherwise

v/p1&p2 =

{
ς1 ∪ ς2 if v/p1 = ς1 and v/p2 = ς2

fail otherwise

v/p1 |p2 =

{
v/p1 if v/p1 , fail

v/p2 otherwise

figure 6.1 Semantics of patterns

6.1.2 Pattern matching

Typecases in our language can be used to represent a form of pattern matching.
Here, we outline how we can add full-�edged pattern matching directly to the
language. Similar formalizations of pattern matching for set-theoretic type
systems have been described by Frisch (2004), Castagna et al. (2015b, app. e),
and Castagna, Petrucciani, and Nguy˜̂en (2016).

For simplicity, we only consider two-branch pattern matching. We extend
the syntax with the match construct and with patterns:

e F · · · | match e with p → e | p → e

p F t | x | (p,p) | p&p | p |p ,

with some restrictions on the variables that can appear in patterns: in (p1,p2)

and p1&p2, p1 and p2 must have distinct variables; in p1 |p2, p1 and p2 must
have the same variables.

A more familiar syntax for patterns is p F _ | c | x | (p,p) | p as x | p |p,
with wildcards and constants instead of t types and with as-patterns “p as x”
(in OCaml syntax; x@p in Haskell) instead of conjunction. We can encode _
and c as 1 and bc (both are in the grammar for t), while “p as x” is p&x , as will
soon be clear.

To describe the semantics of pattern matching, we de�ne a function (·)/(·)
that, given a value v and a pattern p, yields a result v/p which is either fail
or a substitution ς mapping the variables in p to values (subterms of v). This
function is de�ned in Figure 6.1. Then, we augment the reduction rules with
(matchv with p1 → e1 | p2 → e2) { e1ς if v/p1 = ς

(matchv with p1 → e1 | p2 → e2) { e2ς if v/p1 = fail and v/p2 = ς

and add matchE with p1 → e1 | p2 → e2 to the grammar of evaluation contexts.
Set-theoretic types prove very useful to type pattern matching precisely.

Given each pattern p, we can de�ne a type NpO that describes exactly the values

132

6.2 Polymorphic variants

t/t a � t/x a (x : t ′)
t ≤ t ′

t1/p1 a Γ1 t1/p1 a Γ1

t/(p1,p2) a Γ1 ∪ Γ2
t ≤ t1 × t2

t/p1 a Γ1 t/p2 a Γ2

t/p1&p2 a Γ1 ∪ Γ2

(t ∧ Np1O)/p1 a Γ (t \ Np1O)/p2 a Γ

t/p1 |p2 a Γ

figure 6.2 Environment typing for patterns

that match the pattern:

NtO = t Nx O = 1

N(p1,p2)O = Np1O × Np2O Np1&p2O = Np1O ∧ Np2O Np1 |p2O = Np1O ∨ Np2O

It can be shown that, for every well-typed v and every p, we have v/p , fail
if and only if � ` v : NpO. This allows us to formalize the exhaustiveness and
redundancy checks that are often performed on pattern matching purely at
the level of types. The typing rule for match is the following.

Γ ` e0 : t0
either t0 ≤ ¬Nt1O or Γ , Γ1 ` e1 : t
either t0 ≤ Nt1O or Γ , Γ2 ` e2 : t

Γ ` match e0 with p1 → e1 | p2 → e2 : t


t0 ≤ Np1O ∨ Np2O

(t0 ∧ Np1O)/p1 a Γ1
(t0 \ Np1O)/p2 a Γ2

The “either . . . or . . . ” conditions have the same purpose as for typecases. The
side condition t0 ≤ Np1O ∨ Np2O ensures that matching is exhaustive: any value
produced by e0 has type t0 and therefore matches either p1 or p2. The other
side conditions rely on the relation t/p a Γ , de�ned in Figure 6.2. This relation
describes which types we can assume for the variables in p when a value of
type t is matched against p and matching succeeds. In particular, the following
holds for every t , p, and v : if t/p a Γ and � ` v : t and v/p = ς , then, for every
variable x in p, � ` xς : Γ (x).

6.2 Polymorphic variants

Polymorphic variants are a feature of OCaml that provides a limited form
of union types within a Hindley-Milner type system without subtyping. In
contrast to normal variant types (in OCaml terminology; also called sum or
disjoint union types) which require explicit type declarations like, for instance,
type t = A of int | B of bool and require di�erent types to have distinct labels,
polymorphic variants do not require type declarations and allow di�erent
types to share some labels, thus providing a form of subtyping. In OCaml,
we can build a polymorphic variant value simply as the pair of a tag and an
argument: À 3 or B̀ true, for example. We do not need to declare types, and
we can write functions that are de�ned on some arbitrary tags. For example,

let f = function À x→ (x mod 2 = 0) | B̀ x→ x

133

6 Language extensions

de�nes a function whose domain is (intuitively) the union (À of int)∨(B̀ of bool)
and which returns Booleans. Another function could be de�ned on the same
tags, on more or fewer, or could associate the same tags to di�erent types.

Polymorphic variants are typed in OCaml with a system described by Gar-
rigue (2002, 2015), following the earlier work of Ohori (1995). This formalization
avoids the introduction of true subtyping, but encodes a form of union subtyp-
ing into a uni�cation-based setting. Other formalizations in Hindley-Milner
type systems exist, for example, see Rémy (1989) and Blume, Acar, and Chae
(2006), based on row polymorphism.

Polymorphic variant types and values can be added to our setting easily,
since they are just a restricted form of union type. If we assume that constants
include tags like À and B̀, then polymorphic variants can be encoded as pairs of
a tag and a value. Otherwise, we can them add primitively as a new production
t̀ag(t) (for each tag t̀ag) in the grammar of types, whose interpretation can be

derived from the encoding. We then add t̀ag(e) to the syntax of expressions.
Destructors can then be added by extending pattern matching, adding patterns
of the form t̀ag(p).

In Castagna, Petrucciani, and Nguy˜̂en (2016), we have described polymorphic
variants at length. We have modelled the fragment of the type system of OCaml
that concerns polymorphic variants by extending the work of Garrigue (2002,
2015). We prove that set-theoretic types allow us to give a more expressive type
system and avoid some of the problematic and arguably unintuitive behaviour
of polymorphic variants in OCaml.1

6.3 Records

Record types and expressions can be added to the language as follows. We
add record types by representing them as �nite functions from �elds f, drawn
from a set Field, to types: we write such functions as { fi : ti | i ∈ I }. We add

t F · · · | { fi : ti | i ∈ I }

to the syntax of types, and we also add records to the domain of interpretation
as �nite functions from �elds to domain elements (with, as usual, a label L):

d F · · · | { fi : di | i ∈ I }L .

Then, we extend the interpretation to have

n{ fi : ti | i ∈ I }o =
{
{ fi : di | i ∈ I ∪ J }L

�� ∀i ∈ I . di ∈ ntio }
:

the interpretation of a record type contains records with at least the labels
speci�ed in the type. This interpretation can be obtained by extending the
relation (d : t) as follows:

({ fi : di | i ∈ I ∪ J }L : { fi : ti | i ∈ I }) = ∀i ∈ I . (di : ti) .

1 We refer the reader to Castagna, Petrucciani, and Nguy˜̂en (2016) for some examples of this
behaviour.

134

6.3 Records

In the language syntax, we add record expressions and values representing
them once more as �nite functions. We also add record �eld access.

e F · · · | { fi : ei | i ∈ I } | e.f v F · · · | { fi : vi | i ∈ I }

We add the reduction rule

{ fi : vi | i ∈ I }.fi0 { vi0 if i0 ∈ I

and we add records to evaluation contexts (in order to keep evaluation determ-
inistic, we need to choose some ordering on �eld names).

The typing rules are:

∀i ∈ I . Γ ` ei : ti
Γ ` { fi : ei | i ∈ I } : { fi : ti | i ∈ I }

Γ ` e : {f : t }
Γ ` e.f : t

Record types in semantic subtyping have been described �rst in a mono-
morphic setting in Frisch’s PhD thesis (Frisch, 2004). Frisch uses quasi-constant
functions instead of �nite functions to consider also records with in�nite do-
main. Such records could be constructed by specifying a default initializer
for every �eld except those mentioned explicitly: for example, allowing an
expression {f1 : e1, . . . , fn : en, _ : e}, where e is the default. Record types as de-
scribed here can be recovered by having a value undef that can be used for
e , signifying that only the �elds fi are de�ned. We have used �nite relations
to give a concise and familiar description, but quasi-constant functions with
an explicit domain element for unde�ned �elds are useful to represent more
notions uniformly. For example, they can represent also closed record types,
which allow depth subtyping but not width subtyping.2

6.3.1 Polymorphic typing of record operations

The de�nitions in this section allow polymorphic typing of record access. For
example, the function λx . (x .f) can be given the type scheme ∀α . {f : α }→ α .
The type states that the function can be applied to records with a �eld f and
any number of other �elds, and captures correctly the dependence between
the input and output types.

However, it seems that we cannot describe precise polymorphic typing of
record update operations. For instance, consider an operator rf which, applied
to a record value, removes the �eld f it it is present. Then, we would like
the function λx . (xrf) to be applicable to any record. We would like its type
scheme to express this behaviour, that is, that the output record has all �elds
in the input record (with the same types) except for f. Such a type scheme
cannot be expressed in our system, unlike, for instance, in other systems (e.g.,
Rémy, 1989, 1993; Blume, Acar, and Chae, 2006) using row polymorphism or
similar features. It remains to be seen whether and how such features can be
integrated with semantic subtyping.

2 Such types are available in Flow, for example, as exact object types.

135

7 Discussion

In the four previous chapters, we have studied how to use set-theoretic types
and semantic subtyping, as de�ned in Chapter 2, for implicitly typed languages
with type inference. Initially, in Chapter 3, we have given a declarative present-
ation of the type system (relying on the structural rules [T≤] and [T∧]), which
is simple to understand but does not directly yield an algorithm. Then, in
Chapter 4, we have described a type inference algorithm for the type system.
In Chapter 5, we have described how to make type inference more e�ective in
the presence of type annotations. Finally, in Chapter 6, we have outlined how
to extend the language with more features.

The main technical contribution of Chapter 3 is to show how to use poly-
morphic set-theoretic types for implicitly typed languages. The main di�culty
is the proof of type soundness: as a consequence of the presence of semantic
subtyping and negation types, it required us to extend the type system with a
novel rule [Tλ¬] to derive negation types for functions. We prove soundness for
the type system extended with that rule (T λ¬); as a consequence, the system
T without that rule is sound too (since it allows fewer derivations).

In Chapter 4, the main contribution is the description of type inference,
with its results of soundness and completeness. To achieve these results, we
have reworked techniques from previous work on inference with subtyping
(notably, the reformulated type system) to solve di�culties in the treatment of
generalization for let bindings.

In this chapter, we discuss the relationship between this work and related
work concerning subtyping, union and intersection types, and type inference.
We also point out some directions for future work.

7.1 Related work

set-theoretic types and semantic subtyping: This work builds
upon those of Frisch, Castagna, and Benzaken (2008) and Castagna et al. (2014,
2015b) on typing functional languages with set-theoretic types.

Frisch, Castagna, and Benzaken (2008) only consider monomorphic typ-
ing. In contrast, Castagna et al. (2014) describe a type system with prenex
polymorphism for an explicitly typed language: every function must be annot-
ated with its type and the instantiation of polymorphic functions is explicit
too. The semantics is complex because it must propagate instantiations of
polymorphic functions during reduction (intersection types make this more
di�cult). Castagna et al. (2015b) show how to add local type inference to infer
instantiations, while functions remain explicitly typed. They also outline how
to do full type inference, but without any result of completeness; inference for
let-polymorphism is treated only cursorily.

137

7 Discussion

Here, we move to an implicitly typed setting. This, together with our re-
striction on typecases (forbidding arrow types apart from 0→ 1), allows us
to give a standard operational semantics which does not depend on static
types (it only assumes some form of runtime tagging for values, as found
in dynamic languages). Moreover, we develop type inference for programs
without annotations fully, proving completeness with respect to the system
without intersection introduction.

algebraic subtyping: A notable recent work on subtyping and type
inference is that of Dolan and Mycroft (2017), already mentioned in Chapter 4.
Dolan and Mycroft de�ne subtyping and use it, together with let-polymorphism,
in the type system of a language for which they prove soundness, complete-
ness, and principality of type inference. We also combine subtyping and let-
polymorphism in our type system, and we prove soundness and completeness;
principality, however, does not hold (as exempli�ed in Section 4.4.1).

An important aspect of their work is the algebraic de�nition of subtyping.
This yields a subtyping relation with very di�erent behaviour as compared to
semantic subtyping. Important di�erences include the following.

• Algebraic subtyping is based on an open-world assumption and strives to
ensure extensibility. As a result, for example, subtyping does not identify
with the bottom type some intersection types that we can expect to be
uninhabited (e.g., (Int→ Bool) ∧ (Int × Bool)). The reasoning is that this
makes the behaviour of subtyping simpler and more regular, but also
that it makes subtyping more amenable to extensions – a language might
introduce a new value that acts as both a function and a pair, for example.
This precludes reasoning on negation as in semantic subtyping; indeed,
Dolan and Mycroft do not include negation types.

• Algebraic subtyping does not seem to be suited to a system with ad-
hoc polymorphism in the form of overloaded functions (as discussed by
Dolan, 2016, Section 10.2.3) nor, presumably, for systems with intersection
introduction. This is because the following equivalence holds:

(t1 → t2) ∧ (t
′
1 → t ′2) ' (t1 ∨ t

′
1) → (t2 ∧ t

′
2) .

In a system with the rule [T∧], instead, we expect λx . x to have type
(Int→ Int) ∧ (Bool→ Bool) but not (Int ∨ Bool) → (Int ∧ Bool).

• Dolan and Mycroft prove that type inference infers principal types and,
moreover, that these types are polar : by this they mean, in a nutshell, that
union types never appear in contravariant position and intersection types
never appear in covariant position. This simpli�es the form of constraints
that they must solve. This property seems unachievable in our system
because of the typing that we want to allow for typecases. Indeed, the
principal type of a function like λx . x ∈ Int ? x + 1 : ¬x should use the
union Int ∨ Bool in the domain.

In brief, this work and that of Dolan and Mycroft should be seen as very
di�erent approaches to adding subtyping to implicitly typed languages with

138

7.1 Related work

type inference. However, it would be interesting to study whether the algebraic
construction of Dolan and Mycroft could be adapted to describe a subtyping
relation closer to ours (notably, without the equivalence on intersections of
arrows shown above) without losing its advantages in terms of extensibility
and more regular behaviour.

other systems with union and intersection types: Much
work on intersection types for the λ-calculus, including that of Coppo and
Dezani-Ciancaglini (1980), Barendregt, Coppo, and Dezani-Ciancaglini (1983),
and Barbanera, Dezani-Ciancaglini, and de’Liguoro (1995) and the work of
Reynolds (1997) on the Forsythe language, does not allow intersections that
correspond to overloading as in our system (the theory of Barbanera, Dezani-
Ciancaglini, and de’Liguoro (1995) satis�es the equivalence (t1 → t2) ∧ (t

′
1 →

t ′2) ' (t1 ∨ t
′
1) → (t2 ∧ t

′
2) that we have discussed above). Instead, the work

on re�nement types with datatype re�nements (Freeman and Pfenning, 1991;
Davies, 2005; Dun�eld, 2007) uses intersection types in a way that is more
similar to ours, though the arrows in an intersection must all re�ne a single
ML type.

Recently, Muehlboeck and Tate (2018) have described a way to integrate
union and intersection types in an existing subtyping relation. This approach
has been used in the Ceylon programming language by Red Hat. However, their
work concerns speci�cally the de�nition of subtyping and its decision proced-
ure: it is therefore more closely related to the work we have as background
than to the new results in this thesis.

type inference for subtyping: The addition of subtyping to a lan-
guage presents a signi�cant challenge for type inference, and there is a long
line of work on this problem (Fuh and Mishra, 1988; Mitchell, 1991; Aiken
and Wimmers, 1993; Pottier, 2001), the aforementioned work of Dolan and
Mycroft (2017) being a recent result. There is also a long history of work on
type inference with intersection types (Ronchi Della Rocca, 1988; Kfoury and
Wells, 2004) and union types, including in the work on soft typing (Cartwright
and Fagan, 1991; Aiken, Wimmers, and Lakshman, 1994), as well as both com-
bined (Aiken and Wimmers, 1993). These challenges are intertwined because
intersection and union types (or at least meet and join meta-operations on
types) are needed to describe type inference and to simplify type constraints.

type inference with type annotations: The combination of ML-
style type inference with explicit type annotations has often been studied in
order to add higher-order polymorphism to ML. For instance, Odersky and
Läufer (1996) describe type inference and reduce it to uni�cation under a mixed
pre�x (Miller, 1992). Peyton Jones et al. (2007) build on that work, combining
it with local type inference (Pierce and Turner, 2000) to reduce the number of
required annotations. We have a di�erent goal – to use annotations to allow
intersection introduction – but annotations with explicit polymorphism also
seem to require some analogue to uni�cation under a mixed pre�x.

139

7 Discussion

Much work on type inference for partially annotated programs has con-
sidered local type inference, often using bidirectional type checking. This nor-
mally means that the types of function parameters are not inferred from their
use, though it is not necessarily so: Dun�eld and Krishnaswami (2013) and
Peyton Jones et al. (2007), for instance, propose bidirectional type checking
algorithms that can also infer types for function parameters. Local type infer-
ence techniques have also seen wide use in industry – for instance, in Scala
(Odersky, Zenger, and Zenger, 2001), C] (Bierman, Meijer, and Torgersen,
2007), and TypeScript (Bierman, Abadi, and Torgersen, 2014). We have pre-
ferred to add annotations while keeping the structure of constraint-based type
inference, but we could also attempt to restructure our algorithm in a way
inspired by these presentations.

7.2 Future work

Possible directions for future work include improving the description of type
inference, considering di�erent strategies for type checking partially annotated
programs, and studying precise typing of record operations.

soundness of type inference: Chapter 4 presents results of sound-
ness and completeness of type inference. A limitation is that we cannot prove
that type inference is sound with respect to the type system T i\∧ (that without
the intersection-introduction rule [T∧]), though we conjecture it. To solve this,
we should �nd a di�erent proof of equivalence between the standard and the
reformulated type systems, one that does not rely on [T∧]. Moreover, the cur-
rent proof is quite convoluted, relying as it does on tracking the instantiations
of typing schemes. A better proof could be easier to extend, notably to have an
equivalent result for the language with type annotations. Dolan and Mycroft
have suggested an alternative proof technique (see footnote 3 on p. 93) which
is still to be explored.

type inference with annotations: The development of type in-
ference in the presence of type annotations in Chapter 5 is a �rst step, but
much more can be done. In Section 5.3.1, we have outlined how we can work
towards stronger results of completeness. It would be interesting to prove that
any expression typed using [T∧] can be annotated so that type inference can
accept it with the same type. It would also be useful to characterize which
expressions and typing derivations require annotations and which do not,
especially to ensure that the system can be used e�ectively without having to
write an excessive amount of annotations.

In Chapter 5 we try to derive intersection types for expressions only when
they are annotated. We could try to study techniques to infer intersection
types also for some functions without annotations. For example, we can try to
exploit the information in typecases inside the function to �nd out how many
and which arrows we should check.

140

7.2 Future work

local type inference: In Chapters 4 and 5 we have studied global
type inference: our algorithm tries to infer the type of the parameter of a
function from its uses in the body. In contrast, local type inference techniques
often do not do so (see, e.g., Pierce and Turner, 2000): they infer types for
parameters only if they are known from the context. As a result, these systems
are often simpler to describe, to implement e�ciently, and to extend with more
features, while requiring only a modest amount of type annotations. It would
be worthwhile to study how such an approach can be used to type check our
language. Castagna et al. (2015b) have already studied local type inference
for polymorphic set-theoretic types, but they did not consider any form of
bidirectional propagation, meaning that all functions had to be annotated and
only the instantiations of polymorphic functions were inferred.

record typing: We have sketched a simple treatment of record types
in Section 6.3. However, as we have mentioned, it does not allow precise
polymorphic typing of record operations including �eld update, �eld deletion,
and record concatenation. It would be interesting to explore how to provide
this additional expressiveness in our framework, possibly by integrating some
form of row polymorphism.

141

Part II

Gradual typing

8 Introduction

This part of the thesis is devoted to gradual typing, an approach that combines
the safety guarantees of static typing with the �exibility of dynamic typing
(Siek and Taha, 2006). The initial goal of this work was to study how gradual
typing could be used in polymorphic type systems with set-theoretic types. It
has led, however, to a novel approach to the de�nition of gradual type systems,
independent of the idea of set-theoretic types. Therefore, we �rst illustrate
our approach in a Hindley-Milner type system with implicit parametric poly-
morphism but no subtyping. Then, we study the extension with set-theoretic
types.

The core idea of gradual typing is to introduce an unknown type, denoted by
“?”, used to inform the compiler that additional type checks may be needed at
run time. Programmers can add type annotations to a program gradually and
control precisely how much checking is done statically versus dynamically.
The type checker ensures that the parts of the program that are typed with
static types (i.e., types that do not contain ?) enjoy the type safety guarantees
of static typing – well-typed expressions never get stuck – while the parts
annotated with gradual types (i.e., types in which the dynamic type ? occurs)
enjoy the same property modulo the possibility to fail on some dynamic type
check inserted by the type-driven compilation.

8.1 Gradual typing with polymorphic set-theoretic types

Some practical bene�ts of combining gradual typing with union and intersec-
tion types were presented by Castagna and Lanvin (2017) in a monomorphic
setting. With this work we extend such bene�ts to a polymorphic setting with
type inference.

For a glimpse of what can be done in this setting, consider the following
ML-like code snippet adapted from Siek and Vachharajani (2008):

let mymap (condition) (f) (x: ?) =
if condition then Array.map f x else List.map f x

According to the value of the argument condition, the function mymap applies
either the array version or the list version of map to the other two arguments.
This example cannot be typed using only simple types: the type of x and
the return type of mymap change depending on the value of condition. By
annotating x with the gradual type ?, the type inference system for gradual
types of Siek and Vachharajani (2008) can type this function with the type
Bool→ (α → β) → ?→ ?. That is, inference recognizes that the parameter
condition must be bound to a Boolean value, and the compilation process adds
dynamic checks to ensure that the value bound to x will be, according to the

145

8 Introduction

case, either an array or a list whose elements are of a type compatible with
the actual input type of f.

This type however is still imprecise. For example, if we pass a value that is
neither an array nor a list as the last argument to mymap, then the application
is well typed, even though its execution will always fail, independently of the
value of condition. Moreover, the type gives no useful information about the
result of mymap, even though it will always be either a list or an array of β
elements. These problems can be remedied by using set-theoretic types:

let mymap (condition) (f) (x: (α array ∨ α list) ∧ ?) =
if condition then Array.map f x else List.map f x

The union indicates that a value of this type is either an array or a list, both
of α elements. The intersection indicates that x has both type α array ∨ α list
and type ?. Intuitively, this type annotation means that the function mymap
accepts for x a value of any type (which is indicated by ?), as long as this
value is also either an array or a list of α elements (α being the domain of
the f argument). The use of the intersection of a union type with ? to type
a parameter corresponds to a programming style in which the programmer
asks the system to enforce statically that the function will be applied only to
arguments in the union type and delegates to the system any dynamic check
regarding the use of the parameter in the body of the function. A system like
that in Chapter 10 could deduce for this de�nition the type:

Bool→ (α → β) → ((α array ∨ α list) ∧ ?) → (β array ∨ β list)

This type forces the last argument of mymap to be either an array or a list of
elements whose type is the input type of the argument bound to f. Note that
the return type of mymap is no longer gradual: the union type allows us to
de�ne it without any loss of precision and to capture its correlation with the
return type of the argument bound to f. The derivation of this type is used
by the compiler to insert dynamic type checks that ensure type soundness.
In particular, the compilation process described in Section 9.2.4 inserts in the
body of mymap the casts that check dynamically that the �rst occurrence of x
is bound to an array of elements of the appropriate type, and that the second
occurrence of x is bound to a list of such elements, producing code like

let mymap (condition) (f) (x: (α array ∨ α list) ∧ ?) =
if condition then Array.map f (x 〈α array〉) else List.map f (x 〈α list〉)

where e 〈t〉 is a type cast expression that checks dynamically whether the result
of e has type t .

This kind of type discipline is out of reach of current systems. Castagna and
Lanvin (2017) have described it only in a monomorphic setting and without
type inference. A similar discipline is allowed by the gradual unions of Toro and
Tanter (2017), but they too do not consider polymorphism and type inference.
To obtain the system we aim for, we want gradual typing to coexist with
polymorphic set-theoretic types with semantic subtyping.

146

8.2 Our approach

8.2 Our approach

Standard presentations of gradual typing rely on the consistency relation ∼.
Given two gradual types τ1 and τ2, τ1 ∼ τ2 holds when τ1 and τ2 are equal
everywhere except where they contain ?. For example:

? ∼ Int Int ∼ ? Int � Bool ?→ Int ∼ (Int→ Bool) → ? .

Consistency is re�exive and symmetric but not transitive; its transitive closure
is the total relation on gradual types, because every type is consistent with ?.
Since it is not transitive, consistency cannot be added to a type system by a
subsumption-like structural rule,1 as that would yield a system which accepts
every program, even those that do not contain ? and would be ill-typed in a
sound type system. Therefore, consistency is normally added by embedding it
in elimination rules: for instance, by replacing the normal rule for application
in the simply typed λ-calculus with the following two rules.

Γ ` e1 : τ ′→ τ Γ ` e2 : τ2

Γ ` e1 e2 : τ
τ ′ ∼ τ2

Γ ` e1 : ? Γ ` e2 : τ2

Γ ` e1 e2 : ?

Adding consistency to the rules is not necessarily an ad-hoc process: there has
been work on formalizing the transition from a static to a gradual type system
(e.g., Cimini and Siek, 2016; Garcia, Clark, and Tanter, 2016).

The presentation of these type systems resembles that of algorithmic type
systems for languages with subtyping: instead of a structural rule for sub-
sumption, subtyping judgments are embedded in several rules. This style of
presentation describes e�ectively the behaviour of a type checker. However,
adding subtyping by a single structural rule gives a concise way to describe the
relation between a system with subtyping and one without, and also to com-
pare di�erent algorithmic type systems. We show that this holds for gradual
typing as well, and we describe what is to our knowledge the �rst presentation
of a gradual type system that relies entirely on a single structural rule to
“gradualize” an existing static type system.

This structural rule does not, of course, use consistency. It uses instead the
relation that we call materialization and denote by v. Given τ1 and τ2, τ1 v τ2
holds when τ2 is more precise than τ1, that is, when τ2 is obtained from τ1
by replacing some occurrences of ? by gradual types.2 Materialization is a
preorder and can therefore be used in a structural rule. Adding the rule

[Tv]
Γ ` e : τ ′

Γ ` e : τ
τ ′ v τ

1 In logic, logical rules refer to a particular connective (here, a type constructor, that is, either
→, or×, orb), while identity rules (e.g., axioms and cuts) and structural rules (e.g., weakening
and contraction) do not.

2 This is the relation that Siek and Vachharajani (2008) name “less or equally informative”. A
�tting and concise name would be “precision”: we avoid it because it is already used for the
inverse relation, with ? at the top, by Garcia (2013) and others.

In Castagna et al. (2019), the symbol used is 4. We use v, following Siek and Vachharajani
(2008), to make it more distinguishable from ≤.

147

8 Introduction

is enough to add gradual typing to a static type system. A type system de�ned
using consistency corresponds to a particular strategy of building derivations
using [Tv].

To have both gradual typing and subtyping in the same type system, it
su�ces to have both [Tv] and a standard subsumption rule. However, to do so
we must extend an existing subtyping relation ≤ on static types to be de�ned
on gradual types; we denote the relation on gradual types by ≤?. How should
it treat the unknown type? We follow previous approaches (notably Siek and
Taha, 2007) in having subtyping treat ? simply as a new base or abstract type:
that is, we have ? ≤? ? but not, for instance, ? ≤? Int or Int ≤? ?. Subtyping
and materialization then have clearly separated purposes. Subtyping and
gradual typing are added to the type system as two separate structural rules,
without a�ecting the other typing rules. This stands in contrast with previous
work, including that by Siek and Taha (2007), that uses both subtyping and
consistency or combines them to obtain a non-transitive consistent-subtyping
relation (e.g., Siek and Taha, 2007; Garcia, Clark, and Tanter, 2016; Castagna
and Lanvin, 2017).

De�ning a suitable subtyping relation for gradual set-theoretic types is
challenging. It turns out that we cannot give a set-theoretic interpretation to
the unknown type directly: we will see that we cannot treat ? \ ? as an empty
type, like we would expect with a set-theoretic subtyping relation. Instead,
we de�ne subtyping on gradual types in terms of subtyping on static types
by replacing the occurrences of ? with type variables, an operation that we
name discrimination. To de�ne subtyping, we distinguish whether ? occurs
under a negation type or not, in order to ensure that the problematic judgment
? \ ? ≤? 0 does not hold.

This idea of interpreting gradual types by replacing occurrences of ? with
static types originated as a way to de�ne subtyping, but it informs our entire
approach. It gives us a way to de�ne materialization in terms of discrimination
and type substitutions, which is useful because it works for both inductively
and coinductively de�ned types. It also allows us to describe type inference
for gradual typing by reusing directly the algorithms for static type system –
uni�cation in the absence of subtyping and tallying (as in Section 4.3) with
set-theoretic types – by adding pre- and post-processing steps that turn occur-
rences of ? to variables and back to ?.

Finally, our approach to de�ning gradual typing using materialization sheds
some light on the logical meaning of gradual typing. It is well known that
there is a strong correspondence between systems with subtyping and systems
without subtyping but with explicit coercions: every usage of the subsumption
rule in the former corresponds to the insertion of an explicit coercion in the
latter. Our de�nition of materialization yields an analogous correspondence
between a gradually typed language and the cast calculus to which the language
is compiled: every usage of the materialization rule in the former corresponds
to the insertion of an explicit cast in the latter. As such, the cast calculus looks
like an important ingredient for a Curry-Howard isomorphism for gradual

148

8.3 Overview

typing disciplines. An intriguing direction for future work is to study the logic
associated with these expressions.

8.3 Overview

Our �rst step, in Chapter 9, is to use our approach to add gradual typing to
ML-like languages. We de�ne the type system of a gradually typed language in
declarative form, using the structural rule [Tv] for materialization. Then, we
de�ne an associated cast language and compilation. We study type inference
and prove it sound and complete with respect to declarative typing. Finally,
we outline how the declarative type system could be extended with subtyping,
considering a simple syntactic subtyping relation without set-theoretic types.

Then, in Chapter 10, we study how to apply our approach with set-theoretic
types in order to obtain a system that allows the typing discipline discussed in
Section 8.1. We describe two challenges. One is to de�ne a suitable subtyping
relation on gradual set-theoretic types. The other is to adapt type inference
to subtyping. For the latter, we prove soundness of type inference, but not
completeness.

We conclude in Chapter 11 by discussing our results, comparing our approach
to previous work, and pointing out directions for future research.

In the work on which this part of the thesis is based (Castagna et al., 2019),
we de�ne operational semantics for the cast calculi of Chapter 9 and Chapter 10
and prove soundness for their type systems. Here, we only give a quick over-
view of the semantics, whereas the full de�nition is given in appendix and, for
the proofs of the result, we refer the reader to the cited work. There are several
reasons for this omission, which we have already anticipated in Chapter 1.
Notably, the challenges and concerns in the de�nition of the semantics of a
cast calculus (one with set-theoretic types, in particular, since the cast calculus
of Chapter 9 has a simple and standard semantics) are quite di�erent from
those studied in the rest of the thesis, which concentrates on typing (the study
of subtyping, declarative typing, and type inference) and considers simple
semantics that are independent of typing (like those in Chapters 3 and 13).

149

9 Gradual typing
for Hindley-Milner systems

In this chapter we add gradual typing to a language with ML-style polymorph-
ism, following the approach that we have introduced.

chapter outline:

Section 9.1 We describe the syntax of types and of the source language
and the declarative type system. We explain the relationship between our
presentation and standard gradual type systems.

Section 9.2 We describe the cast language and how to compile expressions.

Section 9.3 We describe type inference for the source language and prove
it sound and complete.

Section 9.4 We outline how we can add subtyping to the declarative system.
However, we do not study how to extend type inference for subtyping:
we will do so in the next chapter when we consider set-theoretic types.

9.1 Source language

9.1.1 Types and expressions

Let α, β , and γ range over a countable set TVar of type variables. Let b range
over a set Base of base types (e.g., Base = {Int, Bool}). Let c range over a set
Const of constants.

Static and gradual types are inductively de�ned by the following two gram-
mars

SType 3 t F α | b | t × t | t → t static types
GType 3 τ F ? | α | b | τ × τ | τ → τ gradual types

and source language expressions by

e F x | c | λx . e | λx : τ . e | e e | (e, e) | πi e | let ®α x = e in e .

(For simplicity, in this chapter we do not consider recursive types.)
Static types SType (ranged over by t) are the types of an ML-like language:

type variables, base types, products, and arrows. Gradual types GType (ranged
over by τ) add the unknown type ? to them.

The source language is a fairly standard λ-calculus with constants, pairs
(e, e), projections for the elements of a pair πi e (where i ∈ {1, 2}), plus a

151

9 Gradual typing for Hindley-Milner systems

let construct. It is similar to the language in Chapter 3 without the typecase
construct, but there are two aspects to point out.

One is that there are two forms of λ-abstraction: λx . e and λx : τ . e . In the
latter, the annotation τ �xes the type of the argument, whereas in the former
the type can be chosen during typing (and will in practice be computed by
inference). Furthermore, the type τ in the annotation is gradual, while in λx . e

the inferred type of the parameter must be a static type t (cf. Figure 9.1, rule
[Tλ]). This is the same restriction imposed by Garcia and Cimini (2015) to
properly reject some ill-typed programs. For example, without this restriction
λx . (x + 1,¬x) would be well typed since, by inferring the type ? for x , we
can deduce for λx . (x + 1,¬x) the type ? → Int × Bool. But λx . (x + 1,¬x) is
not a well-typed term in ML, therefore by the principles of gradual typing
(see Theorem 1 of Siek et al., 2015) it must be rejected unless its parameter is
explicitly annotated by a type in which ? occurs (here, annotated by ? itself).

The second non-standard element of this syntax is that the let binding is
decorated with a vector ®α of type variables, as in let ®α x = e1 in e2. This
decoration (we reserve the word annotation for types annotating parameters
in λ-abstractions) serves as a binder for the type variables that appear in
annotations occurring in e1. For instance, let α z = λx : α . x in e and let z =
λx . x in e are equivalent, while letz = λx : α . x in e means thatα was introduced
in an outer expression such as λy : α . let z = λx : α . x in e . The normal let from
ML can be recovered as the case where ®α is empty (which would always be
the case if, as in ML, function parameters never had type annotations). We
have used analogous decorations for the same purpose in Chapter 5.

As customary, we consider expressions modulo α-renaming of bound vari-
ables. In λx . e and λx : τ . e , x is bound in e; in let ®α x = e1 in e2, x is bound in
e2 and the ®α variables are bound in e1. Following standard usage, we refer to
the source language also as the gradually typed language.

9.1.2 Type system

We describe the declarative type system of the source language.
We use the standard notion for type schemes and type environments. A type

scheme has the form∀®α . τ , where ®α is a vector of distinct variables. We identify
type schemes with an empty ®α with gradual types. A type environment Γ is a
�nite function from variables to type schemes.

The type system T? is de�ned by the rules in Figure 9.1.
The �rst eight rules are almost those of a standard Hindley-Milner type

system. In [Tc], we use bc to denote the base type for a constant c (e.g., b3 = Int).
One important aspect to note is that the types used to instantiate the type
scheme in [Tx] and the type used for the domain in [Tλ] must all be static
types, as forced by the use of the metavariable t .

The other non-standard aspect is the rule for let. To type let ®α x = e1 in e2,
we type e1 with some type τ1; then, we type e2 in the expanded environment
in which x has type ∀®α, ®β . τ1. The �rst side condition (®α, ®β] Γ) asks that all the
variables we generalize do not occur free in Γ ; this is standard. The second

152

9.1 Source language

[Tx]
Γ ` x : τ [®t/ ®α]

Γ (x) = ∀®α . τ [Tc]
Γ ` c : bc

[Tλ]
Γ , x : t ` e : τ

Γ ` (λx . e) : t → τ
[Tλ:]

Γ , x : τ ′ ` e : τ
Γ ` (λx : τ ′. e) : τ ′→ τ

[Tapp]
Γ ` e1 : τ ′→ τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

[Tpair]
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2
[Tproj]

Γ ` e : τ1 × τ2

Γ ` πi e : τi

[Tlet]
Γ ` e1 : τ1 Γ , x : ∀®α, ®β . τ1 ` e2 : τ

Γ ` (let ®α x = e1 in e2) : τ

{
®α, ®β] Γ
®β] e1

[Tv]
Γ ` e : τ ′

Γ ` e : τ
τ ′ v τ

figure 9.1 T?: Typing rules of the source language

condition (®β] e1) states that the type variables ®β must not occur free in
e1. This means that the type variables that are explicitly introduced by the
programmer (by using them in annotations) can only be generalized at the
level of a let binding by explicitly specifying them in the decoration. In contrast,
type variables introduced by the type system (i.e., the fresh variables in the
type t in the rule [Tλ]) can be generalized at any let (implicitly, that is, by the
type system), provided they do not occur in the environment. Note that we
recover the standard Hindley-Milner rule for let bindings when expressions
do not contain annotations and decorations are empty.

As anticipated, the type system does not need to deal with gradual types
explicitly except in one rule. Indeed, the �rst eight rules do not check anything
regarding gradual types (they only impose restrictions that some types must
be static). The last rule, [Tv], is a subsumption-like rule that allows us to make
any gradual type more precise by replacing occurrences of ? with arbitrary
gradual types. This is accomplished by the materialization relation v de�ned
below.

materialization: Intuitively, τ1 v τ2 holds when τ2 can be obtained
from τ1 by replacing some occurrences of ? with arbitrary gradual types,
possibly di�erent for every occurrence. This relation can be de�ned easily by
the following inductive rules, which merely add the re�exive case for type

153

9 Gradual typing for Hindley-Milner systems

variables to the rules of Siek and Vachharajani (2008):1

? v τ α v α b v b

τ1 v τ
′
1 τ2 v τ

′
2

τ1 × τ2 v τ
′
1 × τ

′
2

τ1 v τ
′
1 τ2 v τ

′
2

τ1 → τ2 v τ
′
1 → τ ′2

However, this de�nition is intrinsically tied to the syntax of types. Instead,
we want the de�nition of materialization to remain valid also when we extend
the language of types we use (notably with recursive types, which preclude
giving an inductive de�nition in this way). Therefore, we give a de�nition
based on our view, anticipated earlier, of occurrences of ? as type variables.

First, let us de�ne a new sort of types, type frames, as follows:
TFrame 3 T F X | α | b | T ×T | T → T

where X ranges over a set FVar of frame variables disjoint from TVar. Type
frames are like gradual types except that, instead of ?, they have frame variables.
We write TFrame for the set of all type frames.

We introduce some additional notation that we will use later. We write
Var for TVar ∪ FVar and use A to range over it. We write var(T) for the set of
variables in a type frame T , and we write tvar(T) and fvar(T) respectively for
var(T) ∩ TVar and var(T) ∩ FVar. We use var(·) also for static and gradual types,
as well as for type schemes and type environments (to denote the set of free
type variables).

Given a type frame T , we write T † for the gradual type obtained by repla-
cing all frame variables in T with ?. The reverse operation, which we call
discrimination, is de�ned as follows.

9.1 definition (Discrimination of a gradual type): Given a gradual type τ ,
the set ?(τ) of its discriminations is de�ned as:

?(τ)
def
= {T ∈ TFrame | T † = τ } . �

The de�nition of materialization, stated formally below, says that τ2 materi-
alizes τ1 if it can be obtained from τ1 by �rst replacing all occurrences of ? with
arbitrary variables in FVar and then applying a substitution which replaces
those variables with gradual types.

9.2 definition (Materialization): The materialization relation on gradual
types τ1 v τ2 (“τ2 materializes τ1”) is de�ned as follows:

τ1 v τ2
def
⇐⇒ ∃T ∈ ?(τ1),σ : FVar→ GType.Tσ = τ2 . �

In the above, σ : FVar → GType is a type substitution (i.e., a mapping that
is the identity on a co�nite set of variables) from frame variables to gradual
types. We use dom(σ) to denote the set of variables for which σ is not the
identity (i.e., dom(σ) = {X | Xσ , X }).

It is not di�cult to prove that the materialization relation of De�nition 9.2
and the one de�ned by the inductive rules we have given are equivalent, and
that they are inverses of the precision relation (Garcia, 2013) and of naive
subtyping (Wadler and Findler, 2009).
1 Henglein (1994) de�nes an equivalent relation for monomorphic types (called “subtyping”)

but with di�erent rules.

154

9.1 Source language

x v x c v c

e v e ′

(λx . e) v (λx . e ′)

e v e ′

(λx : τ . e) v (λx : τ ′. e ′)
τ v τ ′

e1 v e ′1 e2 v e ′2

e1 e2 v e ′1 e
′
2

e1 v e ′1 e2 v e ′2

(e1, e2) v (e
′
1, e
′
2)

e v e ′

πi e v πi e
′

e1 v e ′1 e2 v e ′2

let ®α x = e1 in e2 v let ®α x = e ′1 in e
′
2

figure 9.2 Lifting of the materialization relation to expressions

9.1.3 Static gradual guarantee

The presence of [Tv] in T? yields the static gradual guarantee property of Siek
et al. (2015) for free. We lift the materialization relation to terms as usual by
relating type annotations via materialization. The relation is de�ned by the
rules in Figure 9.2.

The static gradual guarantee states that if� ` e : τ and e ′ v e , then� ` e ′ : τ .
Making the annotations in a program less precise preserves its type.

To prove the static gradual guarantee, we show a weakening property. First,
we de�ne an order of generality on type schemes that considers instantiation
and materialization. Given two type schemes S1 = ∀®α1. τ1 and S2 = ∀®α2. τ2,
we write S1 v

∀ S2 when, for every instance τ2[®t2/ ®α2] of S2, there exists an
instance τ1[®t1/ ®α1] such that τ1[®t1/ ®α1] v τ2[®t2/ ®α2]. We extend this de�nition
to type environments: when Γ1 and Γ2 are two environments with the same
domain, we write Γ1 v

∀ Γ2 when, for every x ∈ dom(Γ1), Γ1(x) v
∀ Γ2(x).

We have the following results.

9.3 lemma: Let S = ∀®α . τ . The following hold:

• for every instance τ [®t/ ®α] of S , var(S) ⊆ var(τ [®t/ ®α]);
• there exists an instance τ [®t/ ®α] of S such that var(S) = var(τ [®t/ ®α]). �

Proof: For the �rst point, just observe that var(τ [®t/ ®α]) ⊇ var(τ) \ ®α = var(S).
For the second, take any instance in which ®t is a vector of closed types. �

9.4 lemma: If τ1 v τ2, then var(τ1) ⊆ var(τ2). �

Proof: Since τ1 v τ2, we have T1σ = τ2 with T1 such that T †
1 = τ1 and with

σ : FVar → GType. Since σ only maps frame variables, every type variable
α ∈ var(τ1), which occurs in T1, must also occur in T1σ . �

9.5 lemma: If S1 v
∀ S2, then var(S1) ⊆ var(S2). If Γ1 v

∀ Γ2, then var(Γ1) ⊆

var(Γ2). �

155

9 Gradual typing for Hindley-Milner systems

Proof: Let S1 = ∀®α1. τ1 and S2 = ∀®α2. τ2 be such that S1 v
∀ S2. By Lemma 9.3,

we can �nd an instance τ2[®t2/ ®α2] of S2 such that var(τ2[®t2/ ®α2]) = var(S2). By
de�nition of S1 v

∀ S2, there exists an instance τ1[®t1/ ®α1] of S1 such that
τ1[®t1/ ®α1] v τ2[®t2/ ®α2]. By Lemma 9.3, we have var(S1) ⊆ var(τ1[®t1/ ®α1]). By
Lemma 9.4, we have var(τ1[®t1/ ®α1]) ⊆ var(τ2[®t2/ ®α2]). Hence, var(S1) ⊆ var(S2).

The result on type environments is a straightforward corollary. �

9.6 lemma: If Γ2 ` e : τ and Γ1 v
∀ Γ2, then Γ1 ` e : τ . �

Proof in appendix (p. 251).

Using weakening, we can prove the static gradual guarantee easily.

9.7 proposition (Static gradual guarantee): If � ` e : τ and e ′ v e , then
� ` e ′ : τ . �

Proof: We prove the stronger claim that, for every Γ , e , e ′, and τ , if Γ ` e : τ
and e ′ v e , then Γ ` e ′ : τ . The proof is by induction on the typing derivation
of Γ ` e : τ and by case analysis on the last rule applied. All cases are
straightforward except that for [Tλ:].

In that case, we have e = (λx : τ1. e1), τ = τ1 → τ2, and Γ , x : τ1 ` e1 : τ2.
Since e ′ v e , we have e ′ = (λx : τ ′1 . e ′1) with τ ′1 v τ1 and e ′1 v e1. By IH,
Γ , x : τ1 ` e

′
1 : τ2. By Lemma 9.6, Γ , x : τ ′1 ` e ′1 : τ2. By [Tλ:] we derive that

Γ ` e ′ : τ ′1 → τ2. By [Tv], we conclude Γ ` e ′ : τ . �

9.1.4 Relationship with standard gradual type systems

The type system T? is declarative in the sense that all auxiliary relations (here
materialization) are handled by structural rules (here [Tv]) added to an existing
set of logical and identity rules. In a declarative system, every term may have
di�erent types and derivations; removing the structural rules corresponds to
�nding an algorithmic system that for every well-typed term chooses one
particular derivation and, thus, one type of the declarative system. This is
usually obtained by moving the checks of the auxiliary relations into the
elimination rules: this yields a system that is easier to implement but less
understandable. This is exactly what current gradual type systems do. It is
possible to show that the set of typable terms of our declarative system is the
same as the set of typable terms of the existing gradual type systems that use
consistency.

Consistency for our types is de�ned by the following inductive rules.

? ∼ τ τ ∼ ? α ∼ α b ∼ b

τ1 ∼ τ
′
1 τ2 ∼ τ

′
2

τ1 × τ2 ∼ τ
′
1 × τ

′
2

τ1 ∼ τ
′
1 τ2 ∼ τ

′
2

τ1 → τ2 ∼ τ
′
1 → τ ′2

As remarked by Siek and Vachharajani (2008), the following result holds.

156

9.1 Source language

GType 3 τ F ? | b | τ → τ gradual types
e F x | c | λx : τ . e | e e source language expressions

[Tx]
Γ `1 x : t

Γ (x) = t [Tc]
Γ `1 c : bc

[Tλ:]
Γ , x : τ ′ `1 e : τ

Γ `1 (λx : τ ′. e) : τ ′→ τ
[Tapp]

Γ `1 e1 : τ ′→ τ Γ `1 e2 : τ ′

Γ `1 e1 e2 : τ

[Tv]
Γ `1 e : τ ′

Γ `1 e : τ
τ ′ v τ

figure 9.3 Monomorphic restriction of the implicative fragment of T?

9.8 proposition: For every two types τ1 and τ2,

τ1 ∼ τ2 ⇐⇒ ∃τ . τ1 v τ and τ2 v τ . �

Proof in appendix (p. 252).

The relation between our system T? and the gradual type system of Siek and
Taha (2006) can be stated formally. Let `ST denote the typing judgment of Siek
and Taha (2006). Let `1 denote the monomorphic restriction of the implicative
fragment of T?, that is, our gradual types without type variables and products
and the typing rules of the simply typed λ-calculus plus materialization: see
Figure 9.3. Then we have the following result.

9.9 proposition: If Γ `ST e : τ , then Γ `1 e : τ . Conversely, if Γ `1 e : τ , then
there exists a type τ ′ such that Γ `ST e : τ ′ and τ ′ v τ . �

Proof sketch (full proof in appendix, p. 253): Both implications can be shown
by induction on the typing derivation. In the proof that Γ `ST e : τ implies
Γ `1 e : τ , the interesting case is that for the rule [GApp2] of Siek and Taha
(2006):

[GApp2]
Γ `ST e1 : τ ′→ τ Γ `ST e2 : τ2

Γ `ST e1 e2 : τ
τ2 ∼ τ

′

This rule is derivable in T?. By Proposition 9.8, τ2 ∼ τ
′ implies that there is

some τ3 such that τ2 v τ3 and τ ′ v τ3. Then, we have Γ `1 e1 : τ3 → τ and
Γ `1 e2 : τ3 by two uses of [Tv]. We apply [Tapp] to conclude. �

The (polymorphic) implicative fragment of T? (i.e., T? without products),
denoted by →̀ and presented in Figure 9.4, is yet another well-known gradual

157

9 Gradual typing for Hindley-Milner systems

GType 3 τ F ? | α | b | τ → τ gradual types
SType 3 t F α | b | τ → τ static types

e F x | c | λx . e | λx : τ . e | e e source language expressions

[Tx]
Γ →̀ x : τ [®t/ ®α]

Γ (x) = ∀®α . τ [Tc]
Γ →̀ c : bc

[Tλ]
Γ , x : t →̀ e : τ

Γ →̀ (λx . e) : t → τ
[Tλ:]

Γ , x : τ ′ →̀ e : τ
Γ →̀ (λx : τ ′. e) : τ ′→ τ

[Tapp]
Γ →̀ e1 : τ ′→ τ Γ →̀ e2 : τ ′

Γ →̀ e1 e2 : τ
[Tv]

Γ →̀ e : τ ′

Γ →̀ e : τ
τ ′ v τ

figure 9.4 Polymorphic restriction of the implicative fragment of T?

type system: it coincides with the ITGL type system of Garcia and Cimini
(2015), denoted by `GC , as stated by the following result.

9.10 proposition: If Γ `GC e : τ then Γ →̀ e : τ . Conversely, if Γ →̀ e : τ , then
there exists a type τ ′ such that Γ `GC e : τ ′ and τ ′ v τ . �

Proof: The proof is mostly the same as the proof of Proposition 9.9. The
main di�erence is the presence of the rule for untyped λ-abstractions [Tλ],
which is however identical to the rule [Uλ] of Garcia and Cimini (2015). �

In other words, the relationship between our new declarative approach and
the standard ones that use consistency is analogous to the usual relationship
between a declarative type system with subtyping (i.e., one with a subsumption
rule) and an algorithmic type system.

9.2 Cast language

As customary with gradual typing, the semantics of the gradually typed lan-
guage is given by translating its well-typed expressions into a cast language
or cast calculus, which we de�ne next. As anticipated, we do not describe the
semantics here, but we refer to the appendix for its de�nition and to Castagna
et al. (2019) for the proofs.

9.2.1 Syntax

The syntax of the cast language is de�ned as follows:
E F x | c | λτ→τx . E | E E | (E, E) | πi E | let x = E in E

| Λ ®α . E | E [®t] | E〈τ ⇒
p
τ 〉

158

9.2 Cast language

This is an explicitly typed λ-calculus similar to the source language with a few
di�erences and the addition of explicit casts.

There is now just one kind of λ-abstraction, which is annotated with its
arrow type (rather than just the parameter type as in λx : τ . e).2

The let construct no longer binds type variables; instead, there are explicit
type abstractionsΛ ®α . E and applications E[®t]. For example, the source language
expression let α z = λx : α . λy. x in z 42, of type β → Int, is translated into the
cast calculus as let z = Λαβ . λα→β→αx . λβ→αy. x in z [Int, β] 42. Despite the
presence of type abstractions, the cast calculus does not support �rst-class
polymorphism; the syntax of types remains unchanged from Section 9.1.1 and
does not include universally quanti�ed types.

Finally, the most important addition to the calculus are explicit casts of
the form E〈τ ⇒

p
τ ′〉 where, as usual, p ranges over a set of blame labels. Such

an expression dynamically checks whether E, of static type τ , produces a
value of type τ ′; if the cast fails, then the label p is used to blame the cast.
These casts are inserted during compilation to perform runtime checks in
dynamically typed code: for instance, the function λx : ?. x + 1 will be compiled
into λ?→Intx . x 〈?⇒

p
Int〉 + 1, which checks at run time whether the function

parameter is bound to an integer value (and if not blames the label p). As
customary blame labels have a polarity, and we follow the standard convention
of using ` to range over positive labels and ¯̀ for negative ones.

9.2.2 Type system

The typing rules for the cast language are presented in Figure 9.5. Type envir-
onments associate variables to type schemes of the form ∀®α . τ (rule [Tx]) and
we use the standard rules for the introduction [TΛ] and elimination [T[]] of
type schemes.

Our typing rules for casts are more precise than the current literature: they
capture invariants that are typically captured by a separate “safe-for” relation
which is used to establish the blame theorem (Tobin-Hochstadt and Felleisen,
2006; Wadler and Findler, 2009). Our casts are well-typed if they go from the
type of the casted expression τ ′ to either a more precise (positive label) or a less
precise (negative label) gradual type τ (rules [T〈〉v] and [T〈〉w], respectively).
Blame safety usually involves two subtyping relations, called positive subtyping
(<:+) and negative subtyping (<:−), characterizing respectively casts that cannot
yield positive blame and casts that cannot yield negative blame. By the factoring
theorem for naive subtyping (Wadler and Findler, 2009), τ ′ v τ implies τ ′ <:+
τ , so a cast that satis�es rule [T〈〉v] is safe for `. Conversely, τ v τ ′ implies
τ ′ <:− τ , so a cast that satis�es rule [T〈〉w] is also safe for `.

2 We need to have the arrow type, rather than just the domain, for the operational semantics
of the cast language with set-theoretic types (cf. the operator “type” in Appendix b.2).

159

9 Gradual typing for Hindley-Milner systems

[Tx]
Γ ` x : ∀®α . τ

Γ (x) = ∀®α . τ [Tc]
Γ ` c : bc

[Tλ]
Γ , x : τ ′ ` E : τ

Γ ` (λτ
′→τx . E) : τ ′→ τ

[Tapp]
Γ ` E1 : τ ′→ τ Γ ` E2 : τ ′

Γ ` E1 E2 : τ

[Tpair]
Γ ` E1 : τ1 Γ ` E2 : τ2

Γ ` (E1, E2) : τ1 × τ2
[Tproj]

Γ ` E : τ1 × τ2

Γ ` πi E : τi

[Tlet]
Γ ` E1 : ∀®α . τ1 Γ , x : ∀®α . τ1 ` E2 : τ

Γ ` (let x = E1 in E2) : τ

[TΛ]
Γ ` E : τ

Γ ` Λ ®α . E : ∀®α . τ
®α] Γ [T[]]

Γ ` E : ∀®α . τ
Γ ` E [®t] : τ [®t/ ®α]

[T〈〉v]
Γ ` E : τ ′

Γ ` E〈τ ′⇒
`
τ 〉 : τ

τ ′ v τ [T〈〉w]
Γ ` E : τ ′

Γ ` E〈τ ′⇒
¯̀
τ 〉 : τ

τ v τ ′

figure 9.5 T?〈〉 : Typing rules of the cast language

9.2.3 Semantics

As anticipated, we describe the operational semantics of the cast calculus in
appendix. Here we just summarise it brie�y. The (strict) semantics is de�ned
as a small-step reduction relation ↪→ by which a cast language expression can
reduce to another cast language expression or to a cast error, written blame p
to indicate the label that is blamed.

The reduction rules closely follow the presentation of Siek, Thiemann, and
Wadler (2015). The reductions for the application of casts to a value use the
technique by Wadler and Findler (2009) that consists in checking whether
a cast is performed between two types with the same top-level constructor
and failing when this is not the case. To do so, we use the notion of ground
type of Wadler and Findler (2009), albeit employing a di�erent notation that is
more convenient when we extend the system to set-theoretic types. A ground
type is a type di�erent from ? and whose strict subterms are all ?: for example,
?→ ? and Int are ground, but Int→ ? is not.3

The soundness of the cast calculus is proved via progress and subject reduc-
tion. These are not proved directly; rather, the results are shown for the cast
calculus with set-theoretic types, which is shown to be a conservative exten-
sion of this. The same holds for the property of blame safety. For reference,

3 This notion of “ground type” is unrelated to the usage of “ground”, synonymous with “closed”,
for a type without type variables. In this Part we always use “closed” for the latter to avoid
confusion. Note that α is a ground type, but of course it is not closed.

160

9.2 Cast language

the properties are the following.

Soundness: For every term E such that � ` E : ∀®α . τ , there exists a valueV
such that E ↪→∗ V , or there exists a label p such that E ↪→∗ blame p, or E
diverges.

Blame safety: For every term E such that � ` E : ∀®α . τ and every blame
label `, E 6↪→∗ blame ¯̀.

The statement of blame safety is unlike that of Wadler and Findler (2009)
because the typing rules enforce a correspondence between the polarity of
the label of a cast and the direction of materialization. That is, we only have
casts of the form 〈τ ⇒p τ ′〉 where τ ′ v τ (i.e., τ <:n τ ′) for a negative p and
τ v τ ′ (i.e., τ ′ <:n τ) for a positive p. Therefore, only negative labels can cause
blame. Since all this information is encoded in the typing rules, blame safety is
a corollary of subject reduction and can be stated without resorting to positive
and negative subtyping.

9.2.4 Compilation

The �nal ingredient of the declarative de�nition of the system is to show how
to compile a well-typed expression of the source language into an expression
of the cast calculus and prove that compilation preserves types. This result,
combined with the soundness of the cast language, implies the soundness of
the gradually typed language: a well-typed expression is compiled into an
expression that can only either return a value of the same type, return a cast
error, or diverge.

Compilation is driven by the derivation of the type for the source language
expression. Conceptually, compilation is straightforward: every time the de-
rivation uses the [Tv] rule on some sub-expression for a relation τ1 v τ2, a
cast 〈τ1 ⇒

`
τ2〉 must be added to that sub-expression. Technically, we achieve

this by enriching the judgments of typing derivations with a compilation part:
Γ ` e E : τ means that the source language expression e of type τ compiles
to the cast language expression E. These judgments are derived by the same
rules as those given for the source language in Figure 9.1 to whose judgments
we add the compilation part. The modi�ed rules are in Figure 9.6.

The only rules that are modi�ed in a non-trivial way are [Tx], [Tλ], [Tlet],
and [Tv]. In [Tx], we compile occurrences of polymorphic variables by adding
a type application corresponding to the instantiation. In [Tλ], we explicitly
annotate the function with the type deduced by inference. In [Tlet], we intro-
duce a type abstraction for the type variables that are generalized. Finally,
the core of compilation is given by the rule [Tv], which corresponds to the
insertion of an explicit cast (with a positive fresh label `). All the remaining
rules are straightforward modi�cations of the rules in Figure 9.1 insofar as
their conclusions simply compose the compiled expressions in the premises.

Compilation is de�ned for all well-typed expressions and preserves typing.

9.11 proposition: If Γ ` e : τ , then there is an E such that Γ ` e E : τ . �

161

9 Gradual typing for Hindley-Milner systems

[Tx]
Γ ` x x [®t] : τ [®t/ ®α]

Γ (x) = ∀®α . τ [Tc]
Γ ` c c : bc

[Tλ]
Γ , x : t ` e E : τ

Γ ` (λx . e) (λt→τx . E) : t → τ
[Tλ:]

Γ , x : τ ′ ` e E : τ
Γ ` (λx : τ ′. e) (λτ ′→τx . E) : τ ′→ τ

[Tapp]
Γ ` e1 E1 : τ ′→ τ Γ ` e2 E2 : τ ′

Γ ` e1 e2 E1 E2 : τ

[Tpair]
Γ ` e1 E1 : τ1 Γ ` e2 E2 : τ2

Γ ` (e1, e2) (E1, E2) : τ1 × τ2
[Tproj]

Γ ` e E : τ1 × τ2

Γ ` πi e πi E : τi

[Tlet]
Γ ` e1 E1 : τ1 Γ , x : ∀®α, ®β . τ1 ` e2 E2 : τ

Γ ` (let ®α x = e1 in e2) (let x = Λ ®α, ®β . E1 in E2) : τ

{
®α, ®β] Γ
®β] e1

[Tv]
Γ ` e E : τ ′

Γ ` e E〈τ ′⇒
`
τ 〉 : τ

τ ′ v τ

figure 9.6 T? : Compilation from the source language to the cast language

Proof: By induction on the derivation of Γ ` e : τ . �

9.12 proposition: If Γ ` e E : τ , then Γ ` e : τ and Γ ` E : τ . �

Proof: By induction on the derivation of Γ ` e E : τ and by case analysis
on last rule applied. Showing Γ ` e : τ is trivial.

Showing Γ ` E : τ is also straightforward. If the last rule is [Tx], we use
[Tx] and [T[]]. If the last rule is [Tc], [Tapp], [Tpair], or [Tproj], we use the
same rule. If is is [Tλ] or [Tλ:], we use [Tλ]. If it is [Tv], we use [T〈〉v].

Finally, if the last rule is [Tlet], from the premise Γ ` e1 E1 : τ1 we get,
by IH, Γ ` E1 : τ1. Then (since ®α, ®β] Γ) we get Γ ` Λ ®α, ®β . E1 : ∀®α, ®β . τ1 by [TΛ].
From the premise Γ , x : ∀®α, ®β . τ1 ` e2 E2 : τ we get, by IH, Γ , x : ∀®α, ®β . τ1 `

E2 : τ . We apply [Tlet] to conclude. �

9.13 corollary: If Γ ` e : τ , then there exists an E such that Γ ` e E : τ and
Γ ` E : τ . �

Proof: Corollary of Propositions 9.11 and 9.12. �

9.3 Type inference

In this section we show how to decide whether a given term of the source
language is well typed or not: we de�ne a type inference algorithm that is

162

9.3 Type inference

sound and complete with respect to the system of Section 9.1.2. The algorithm
is mostly based on the work of Pottier and Rémy (2005) and of Castagna,
Petrucciani, and Nguy˜̂en (2016), adapted for gradual typing. Our algorithm
di�ers from that of Garcia and Cimini (2015) in that ours literally reduces the
inference problem to uni�cation. To infer the type of an expression, we gener-
ate constraints that specify the conditions that must hold for the expression
to be well typed; then, we solve these constraints via uni�cation to obtain a
solution (a type substitution).

Our presentation proceeds as follows. We �rst introduce type constraints
(Section 9.3.1) and show how to solve sets of type constraints using standard
uni�cation (Section 9.3.2). Then we show how to generate constraints for a
given expression (Section 9.3.3). To keep constraint generation separated from
solving, generation uses more complex structured constraints (this is essentially
due to the presence of let-polymorphism) which are then solved by simplifying
them into the simpler type constraints (Section 9.3.4). Finally, we present our
results of soundness and completeness of type inference.

As compared to the work in Chapters 4 and 5, the form of structured con-
straints we use is very similar. However, instead of de�ning the reformulated
type system and describing separate notions of constraint satisfaction and
simpli�cation, we work directly on the original type system and only de-
scribe constraint simpli�cation. The approach of Chapters 4 and 5 is meant
for subtyping and cannot be used as is for a Hindley-Milner system.

9.3.1 Type constraints and solutions

A type constraint has either the form (t1 Û≤ t2) or the form (τ Ûv α); we describe
their meaning below. Type-constraint sets (ranged over by the metavariable D)
are �nite sets of type constraints.

We write var(D) for the set of type variables appearing in the type constraints
in D. We write var Ûv(D) for the set of type variables appearing in the gradual
types in materialization constraints in D: that is, var Ûv(D) =

⋃
(τ Ûvα)∈D var(τ).

When α ⊆ TVar is a set of type variables and σ is a type substitution, we de�ne
the application ασ of σ to α to be the set of type variables

⋃
α ∈α var(ασ).

A type substitution σ : TVar→ GType is a solution of a type-constraint set D
(with respect to a �nite set ∆ ⊆ TVar), written σ
∆ D, if:

• for every (t1 Û≤ t2) ∈ D, we have t1σ = t2σ ;
• for every (τ Ûv α) ∈ D, we have τσ v ασ and, for all β ∈ var(τ), βσ is a

static type;
• dom(σ) ∩ ∆ = �.

A subtyping constraint (t1 Û≤ t2) forces the substitution to unify t1 and t2.
We use Û≤ instead of, say Û=, to have uniform syntax with the later section on
subtyping (Section 9.4).

A materialization constraint (τ Ûv α) imposes two distinct requirements:
the solution must make α a materialization of τ and must map all variables
in τ to static types. These two conditions might be separated but in practice

163

9 Gradual typing for Hindley-Milner systems

they must always be imposed together, and their combination simpli�es the
description of constraint solving. Note that the constraint (α Ûv α) forces ασ
to be static (since the other requirement, ασ v ασ , is trivial).

Finally, the set ∆ is used to force the solution not to instantiate certain type
variables.

9.3.2 Type-constraint solving

We solve a type-constraint set in three steps: we convert the type constraints to
uni�cation constraints between type frames (by changing every occurrence of
? into a di�erent frame variable); then we compute a uni�er; �nally, we convert
the uni�er into a solution (by renaming some variables and then changing
frame variables back to ?).

We de�ne this process as an algorithm solve(·)(·)which, given a type-constraint
set D and a �nite set ∆ ⊆ TVar, computes a set of type substitutions solve∆(D).
This set is either empty, indicating failure, or a singleton set containing the
solution (which is unique up to variable renaming).4

We do not describe a uni�cation algorithm explicitly; rather, we rely on
properties satis�ed by standard implementations (e.g., that by Martelli and
Montanari (1982)). We use uni�cation on type frames: its input is a �nite set
T 1 Û= T 2 of equality constraints of the form T 1 Û= T 2. We also include as input
a �nite set ∆ ⊆ TVar that speci�es the variables that uni�cation must not
instantiate (i.e., that should be treated as constants). We write unify∆(T 1 Û= T 2)

for the result of the algorithm, which is either fail or a type substitution
σ : Var→ TFrame.

We assume that unify satis�es standard properties of soundness and com-
pleteness, and that it computes idempotent substitutions. In particular, we
assume that the following holds.

• If unify∆(T 1 Û= T 2) = σ , then:

– dom(σ) ⊆ var(T 1 Û= T 2) \ ∆;
– var(σ) ⊆ var(T 1 Û= T 2) \ dom(σ);
– for every (T 1 Û= T 2) ∈ T 1 Û= T 2, we have T 1σ = T 2σ .

• If σ ′ is a uni�er for T 1 Û= T 2 and dom(σ ′) ∩ ∆ = �, then there exists σ
such that unify∆(T 1 Û= T 2) = σ and σ ′ = σ ′ ◦ σ .

(As in Section 2.2.1, we use var(σ) for the set of variables appearing in the type
in the range of σ : that is, var(σ) =

⋃
A∈dom(σ) var(Aσ), where A ranges over

both type and frame variables.)
Uni�cation is the main ingredient of our type-constraint solving algorithm,

but we need some extra steps to handle materialization constraints.
Let D be of the form { (t1

i Û≤ t2
i) | i ∈ I } ∪ { (τj Ûv α j) | j ∈ J }: then solve∆(D)

is de�ned as follows.

4 We use a set because, in the extension with subtyping, constraint solving can produce
multiple incomparable solutions (it relies on tallying, described in Section 4.3.1).

164

9.3 Type inference

1. Let T 1 Û= T 2 be { (t1
i Û= t2

i) | i ∈ I } ∪ { (Tj Û= α j) | j ∈ J }

where the Tj are chosen to ensure:
a. for every j ∈ J , T †

j = τj ;
b. every frame variable X occurs in at most one of the Tj , at most once.

2. Compute unify∆(T 1 Û= T 2):
a. if unify∆(T 1 Û= T 2) = fail, return �;
b. if unify∆(T 1 Û= T 2) = σ0, return {(σ ′0 ◦ σ0)

† |TVar} where:
i. σ ′0 = [®α

′/ ®X] ∪ [®X ′/ ®α]

ii. ®X = FVar ∩ var Ûv(D)σ0
iii. ®α = var(D) \ (∆ ∪ dom(σ0) ∪ var Ûv(D)σ0)

iv. ®α ′ and ®X ′ are vectors of fresh variables

In step 1, we convert D to a set of type frame equality constraints. To do
so, we convert all gradual types in materialization constraints by replacing
each occurrence of ? with a di�erent frame variable. In step 2, we compute a
uni�er for these constraints. If a uni�er σ0 exists (step 2b), we use it to build
our solution: however, we need a post-processing step to ensure that α and X

variables are treated correctly. For example, a uni�er could map α to X when
(α Ûv α) ∈ D: then, converting type frames back to gradual types would mean
mapping α to ?, which is not a solution because α is mapped to a gradual type,
but a static type is required. Therefore, to obtain the result we �rst compose σ0
with a renaming substitution σ ′0; then, we apply † to change type frames back
to gradual types, and we restrict the domain to TVar. The renaming introduces
fresh variables to replace some frame variables with type variables ([®α ′/ ®X])
and some type variables with frame variables ([®X ′/ ®α]). It has two purposes.
One is to ensure that the variables in var Ûv(D) are mapped to static types, which
we need for σ
∆ D to hold. The other is to have the substitution introduce as
few type variables as possible.

The following soundness property holds.

9.14 proposition (Soundness of solve): If σ ∈ solve∆(D), then the following
hold:

• σ
∆ D;
• dom(σ) ⊆ var(D);
• var(D)σ ⊆ var Ûv(D)σ ∪ ∆. �

Proof in appendix (p. 254).

The last property states that a solution σ returned by solve introduces as
few variables as possible. In particular, the variables it introduces in D are
only those in ∆ and those that appear in the solution of variables in var Ûv(D)
(whose solution must be static). To ensure this, we perform the substitution
[®X ′/ ®α]. This avoids useless materializations of ? to type variables (and thus
the insertion of useless casts at compilation): for example, it ensures that, in

165

9 Gradual typing for Hindley-Milner systems

let y = x in e , if x has type ?, then y is given type ? too. In the declarative
system, it can be typed also as ∀α . α , but then the compiled expression has
a cast: let y = Λα . x 〈?⇒` α〉 in E. We prefer the compilation without this cast,
which is why we replace as many type variables as possible with ?.

We prove also a result of completeness. It relies on the following lemma.

9.15 lemma: Let σ : TVar→ GType and σ ′ : Var→ TFrame be two type substitu-
tions such that ∀α ∈ TVar. (ασ ′)† = ασ . For everyT , we haveT †σ v (Tσ ′)†. �

Proof in appendix (p. 255).

9.16 proposition (Completeness of solve): If σ
∆ D, then there exist two
type substitutions σ ′ and σ ′′ such that:

• σ ′ ∈ solve∆(D);
• dom(σ ′′) ⊆ var(σ ′) \ var(D);
• for every α , ασ ′(σ ∪ σ ′′) v α(σ ∪ σ ′′);
• for every α such that ασ ′ is static, ασ ′(σ ∪ σ ′′) = α(σ ∪ σ ′′). �

Proof in appendix (p. 256).

As compared to a standard statement of completeness for uni�cation, instead
of having ασ ′(σ ∪ σ ′′) = α(σ ∪ σ ′′) for every α , we have a weaker condition
that allows for materialization, except when ασ ′ is static.

9.3.3 Structured constraints and constraint generation

As discussed in Section 4.2, without let-polymorphism we can de�ne type
inference using type constraints alone; with let-polymorphism, instead, we
would need either to mix constraint generation and solving or to copy con-
straints for let-bound expressions multiple times. To avoid this, we introduce
structured constraints like those in Section 4.2.

A structured constraint is a term generated by the following grammar:

C F (t Û≤ t) | (τ Ûv α) | (x Ûv α) | C ∧C | ∃ ®α .C

| def x : τ in C | let x : ∀®α ;α[C] ®α . α in C

Structured constraints are considered equal up to α-renaming of bound vari-
ables. In ∃®α .C , the ®α variables are bound in C . In let x : ∀®α ;α[C1]

®α ′ . α in C2, α
and the ®α variables are bound in C1.

Structured constraints include type constraints and �ve other forms. A
constraint (x Ûv α) asks that the type scheme for x has an instance that
materializes to the solution of α . Existential constraints ∃®α .C bind the type
variables ®α occurring inC ; this simpli�es freshness conditions, as in Chapter 4.
C ∧C is simply the conjunction of two constraints; in Chapter 4 we included
disjunction as well, but we do not need it here. The def and let constraint forms
are generated to type λ-abstractions and let-expressions.

166

9.3 Type inference

〈〈x : t〉〉 = ∃α . (x Ûv α) ∧ (α Û≤ t) α] t

〈〈c : t〉〉 = (bc Û≤ t)

〈〈(λx . e) : t〉〉 = ∃α1,α2. (def x : α1 in 〈〈e : α2〉〉) ∧ (α1 Ûv α1) ∧ (α1→α2 Û≤ t) α1,α2] t, e

〈〈(λx : τ . e) : t〉〉 = ∃α1,α2. (def x : τ in 〈〈e : α2〉〉) ∧ (τ Ûv α1) ∧ (α1→α2 Û≤ t) α1,α2] t, τ , e

〈〈e1 e2 : t〉〉 = ∃α . 〈〈e1 : α → t〉〉 ∧ 〈〈e2 : α〉〉 α] t, e1, e2
〈〈(e1, e2) : t〉〉 = ∃α1,α2. 〈〈e1 : α1〉〉 ∧ 〈〈e2 : α2〉〉 ∧ (α1 × α2 Û≤ t) α1,α2] t, e1, e2
〈〈πi e : t〉〉 = ∃α1,α2. 〈〈e : α1 × α2〉〉 ∧ (αi Û≤ t) α1,α2] t, e

〈〈let ®α x = e1 in e2 : t〉〉 = let x : ∀®α ;α[〈〈e1 : α〉〉]var(e1)\ ®α . α in 〈〈e2 : t〉〉 α] ®α, e1

figure 9.7 Constraint generation

Figure 9.7 de�nes a function 〈〈(·) : (·)〉〉 such that, for every expression e

and every static type t , 〈〈e : t〉〉 is a structured constraint that expresses the
conditions that must hold for e to have type tσ for some substitution σ .

We point out some peculiarities of the rules. For variables, we generate a
constraint combining materialization and subtyping. This allows us to use the
form (x Ûv α) instead of (x Ûv t); more importantly, it means that the same
de�nition for constraint generation can be reused when we add subtyping.
For a λ-abstraction, constraint generation wraps the constraint for the body
in a def constraint to introduce the type of the parameter. In the absence of
annotations, the constraint (α1 Ûv α1) is used to ensure that the parameter will
have a static type. For annotated functions, the constraint (τ Ûv α1) allows
the domain of the function to be materialized. This is needed, for example, to
obtain solvable constraints for the abstraction (λx : ?. x) in a context expecting
Int→ Int. For let, we build a let constraint including the constraints of the two
expressions and recording the variables that must be generalized (®α) and those
that must not be (var(e1) \ ®α).5 In all rules, the side conditions force the choice
of fresh variables.

9.3.4 Constraint solving

In Chapter 4, we gave both a declarative de�nition of constraint satisfaction
and a constraint solving algorithm. Here, we de�ne directly constraint solving.
We use a constraint simpli�cation system, de�ned in Figure 9.8, to convert a
structured constraint to a type-constraint set; then, we compute a solution
using the algorithm solve of Section 9.3.2. Because of let-polymorphism, con-
straint simpli�cation also uses type-constraint solving internally to compute
partial solutions. Constraint simpli�cation is similar to that of Chapter 4,
but there are di�erences in the treatment of type environments (since we
use a single type environment Γ instead of distinguishing between λ- and
let-environments).

5 We include the latter for convenience: actually, they can be recomputed from the rest since
var(e1) = var(〈〈e1 : α〉〉) \ {α }.

167

9 Gradual typing for Hindley-Milner systems

Γ ;∆ ` (t1 Û≤ t2) { {t1 Û≤ t2} | � Γ ;∆ ` (τ Ûv α) { {τ Ûv α } | �

Γ ;∆ ` (x Ûv α) { {τ [®β/ ®α] Ûv α } | ®β

{
Γ (x) = ∀®α . τ
®β] Γ

(Γ , x : τ);∆ ` C { D | ®α

Γ ;∆ ` def x : τ in C { D | ®α

Γ ;∆ ` C { D | ®α ′

Γ ;∆ ` (∃ ®α .C) { D | ®α ′ ∪ ®α
®α] Γ , ®α ′

Γ ;∆ ` C1 { D1 | ®α1 Γ ;∆ ` C2 { D2 | ®α2

Γ ;∆ ` C1 ∧C2 { D1 ∪ D2 | ®α1 ∪ ®α2
®α1] ®α2

Γ ;∆ ∪ ®α ` C1 { D1 | ®α1
(Γ , x : ∀®α, ®β . ασ1);∆ ` C2 { D2 | ®α2

Γ ;∆ ` let x : ∀®α ;α[C1]
®α ′ . α in C2 { D2 ∪ equiv(σ1,D1) | ®α3



σ1 ∈ solve∆∪ ®α (D1)

®α] Γσ1
®β = var(ασ1) \ (var(Γσ1) ∪ ®α ∪ ®α

′)

]
{
{α }, ®α, ®α1, ®α2, (var(σ1) \ var(D1))

}
α, ®α] Γ ,∆

®α3 = {α } ∪ ®α ∪ ®α1 ∪ ®α2
∪ (var(σ1) \ var(D1))

where equiv(σ ,D)
def
=

{
(α Ûv α)

�� α ∈ var Ûv(D) ∪ var(D)σ }
∪

⋃
α ∈dom(σ)
ασ static

{
(α Û≤ ασ), (ασ Û≤ α)

}
figure 9.8 C?

sim: Constraint simpli�cation rules

Constraint simpli�cation is a relation Γ ;∆ ` C { D | ®α . Γ is a type
environment used to assign types to the variables in constraints of the form
(x Ûv α). ∆ is a �nite subset of TVar used to record variables that must not be
instantiated. When simplifying constraints for a whole program, we take Γ to
be empty and ∆ to be the set of free type variables in the program (presumably
empty as well). Finally, C is the constraint to be simpli�ed, D the result of
simpli�cation, and ®α are the fresh variables introduced during the process.
We will often omit ®α and write Γ ;∆ ` C { D when we are not interested in
keeping track of these variables (in particular, in the proof of soundness).

The rules are syntax-directed and deterministic (modulo the choice of fresh
variables). Subtyping and materialization constraints are left unchanged. Vari-
able constraints (x Ûv α) are converted to materialization constraints by repla-
cing x with a fresh instance of its type scheme. To simplify a def constraint,
we update the environment and simplify the inner constraint. For ∃®α .C , we
simplify C after performing α-renaming, if needed, to ensure that ®α is fresh.
To simplify C1 ∧C2, we simplify C1 and C2 and take the union of the resulting
sets.

Finally, the rule for let constraints is of course the most complicated. To
simplify a constraint let x : ∀®α ;α[C1]

®α ′ . α in C2, we perform �ve steps:

1. we simplify the constraint C1 to obtain a set D1;
2. we apply the solve algorithm to D1 to obtain a solution σ1, if one exists;

168

9.3 Type inference

3. we compute the type scheme for x by generalizing the type given by the
solution;

4. we simplify the constraint C2 in the expanded environment to obtain a
set D2;

5. �nally, we add to D2 the set equiv(σ1,D1), whose purpose is to constrain
the solution to be an instantiation of σ1 and to yield static types where
needed.

In steps 1 and 2, we add ®α to∆ to ensure that the ®α variables are not instantiated
while solving C1, otherwise we could not generalize them later. The type ασ1
for x is generalized by quantifying over the ®α variables (checking that they are
not introduced in the environment by σ1) as well as over ®β , which contains
all variables in ασ1 that do not appear in any of Γσ1, ®α , or ®α ′. Recall that we
record in ®α ′ the variables that cannot be generalized (typically because they
appeared in the expression but not in the decoration of the let construct).

We use the set equiv(σ1,D1) to constrain a solution σ to adhere to σ1 in two
ways. First, σ must map to static types all variables in var Ûv(D1) (which σ1 had
to map to static types) and all variables introduced by σ1. Also, σ must satisfy
ασ1σ = ασ whenever ασ1 is a static type. To ensure the latter, we add the two
subtyping constraints (α Û≤ ασ1) and (ασ1 Û≤ α). Adding both is redundant
here (both require equality), but they are needed when we add subtyping.

compilation: The results of type inference can also be used for com-
pilation. When e is an expression, D is a derivation of Γ ;∆ ` 〈〈e : t〉〉 { D,
and σ
∆ D, we can compute a cast language expression ⦃e⦄Dσ . Figure 9.9
de�nes this compilation algorithm. It is de�ned by induction on e . For each
case, we deconstruct the derivation D to obtain the sub-derivations used to
compile the sub-expressions of e . We write the derivation D in a compressed
form where we collapse applications of the rules for de�nition, existential, and
conjunctive constraints. We writeD :: Γ ;∆ ` C { D to denote a derivation of
Γ ;∆ ` C { D that we name D. The de�nition is lengthy, but straightforward:
to compile a variable, we insert the appropriate type application and cast; to
compile other expressions, we just compile their sub-expressions; annotated
λ-abstractions require a cast. The compilation of let constructs is a bit more
involved because there are two di�erent type substitutions to consider: σ and
the intermediate solution σ1; to compose them, we use another substitution ρ
to ensure that they are distinct from the variables introduced by σ .

properties of type inference: This concludes our description of
type inference. The remainder of this section presents the proofs of soundness
and completeness. The statements we will obtain are the following.

Soundness LetD be a derivation of Γ ; var(e) ` 〈〈e : t〉〉 { D. Let σ be a type
substitution such that σ
var(e) D. Then, we have Γσ ` e ⦃e⦄Dσ : tσ .

Completeness If Γ ` e : τ , then, for every fresh type variable α , there exist
D and σ such that Γ ; var(e) ` 〈〈e : α〉〉 { D and [τ/α] ∪ σ
var(e) D.

169

9 Gradual typing for Hindley-Milner systems

⦃x⦄Dσ = x [®βσ]〈τ [®β/ ®α]σ ⇒
`
ασ 〉

with ` fresh
where D =

Γ ;∆ ` 〈〈x : t〉〉 { {(τ [®β/ ®α] Ûv α), (α Û≤ t)}

⦃c⦄Dσ = c

⦃λx . e⦄Dσ = λ(α1→α2)σx . ⦃e⦄D
′

σ

where D =
D ′ :: (Γ , x : α1);∆ ` 〈〈e : α2〉〉 { D ′

Γ ;∆ ` 〈〈(λx . e) : t〉〉 { D ′ ∪ {(α1 Ûv α1), (α1 → α2 Û≤ t)}

⦃λx : τ . e⦄Dσ = (λ(τ→α2)σx . ⦃e⦄D
′

σ)〈(τ → α2)σ ⇒
`
(α1 → α2)σ 〉

with ` fresh

where D =
D ′ :: (Γ , x : τ);∆ ` 〈〈e : α2〉〉 { D ′

Γ ;∆ ` 〈〈(λx : τ . e) : t〉〉 { D ′ ∪ {(τ Ûv α1), (α1 → α2 Û≤ t)}

⦃e1 e2⦄
D
σ = ⦃e1⦄

D1
σ ⦃e2⦄

D2
σ

where D =
D1 :: Γ ;∆ ` 〈〈e1 : α → t〉〉 { D1 D2 :: Γ ;∆ ` 〈〈e2 : α〉〉 { D2

Γ ;∆ ` 〈〈e1 e2 : t〉〉 { D1 ∪ D2

⦃(e1, e2)⦄
D
σ = (⦃e1⦄

D1
σ ,⦃e2⦄

D2
σ)

where D =
D1 :: Γ ;∆ ` 〈〈e1 : α1〉〉 { D1 D2 :: Γ ;∆ ` 〈〈e2 : α2〉〉 { D2

Γ ;∆ ` 〈〈(e1, e2) : t〉〉 { D1 ∪ D2 ∪ {α1 × α2 Û≤ t}

⦃πi e⦄
D
σ = πi ⦃e⦄

D′

σ

where D =
D ′ :: Γ ;∆ ` 〈〈e : α1 × α2〉〉 { D ′

Γ ;∆ ` 〈〈πi e : t〉〉 { D ′ ∪ {αi Û≤ t}

⦃let ®α x = e1 in e2⦄
D
σ = let x = Λ ®α1, ®β1. ⦃e1⦄

D1
σ1 ρσ in ⦃e2⦄

D2
σ

where D =
D1 :: Γ ;∆ ∪ ®α ` C1 { D1 D2 :: (Γ , x : ∀®α, ®β . ασ1);∆ ` C2 { D2

Γ ;∆ ` 〈〈let ®α x = e1 in e2 : t〉〉 { D2 ∪ equiv(σ1,D1)

and σ1 ∈ solve∆∪ ®α (D1) ®α1, ®β1 fresh ρ = [®α1/ ®α, ®β1/ ®β]

figure 9.9 Algorithmic compilation

170

9.3 Type inference

The latter result, combined with completeness of solve, ensures that inference
can compute most general types for all expressions. In particular, starting from
a program (i.e., a closed expression) e , we pick a fresh variable α and generate
〈〈e : α〉〉. Completeness ensures that, if the program is well typed, we can �nd
a derivation D for �;� ` 〈〈e : α〉〉 { D and D has a solution. Since solve
is complete, we can compute the principal solution σ of D. Then, ασ is the
most general type for the program and ⦃e⦄Dσ is its compilation driven by the
derivation D.

9.3.5 Soundness of type inference

We say that a type substitution σ is static if it maps type variables to static
types. When α is a set of type variables, we say that σ is static on α , and we
write static(σ ,α), to mean that ασ is static for every α ∈ α .

The following lemma states that typing is preserved by static type substi-
tutions. It is not necessarily preserved by non-static substitutions, because
the typing rules require some types to be static (the parameters of functions
without annotations and the types used to instantiate type schemes). For ex-
ample, λx . x has type α → α but not ? → ?: typing is not preserved by the
substitution [?/α].

9.17 lemma (Stability of typing under type substitution): If Γ ` e E : τ , then,
for every static type substitution σ , we have Γσ ` eσ Eσ : τσ . �

Proof in appendix (p. 257).

The following two results are straightforward. In the �rst, the hypothesis
static(σ ′, var(D)σ) is not needed. We include it to highlight the fact that it holds
when we apply it: it will be important when we add subtyping, because then
the proof of the result will require it.

9.18 lemma: Let σ and σ ′ be two type substitutions such that σ
∆ D and
static(σ ′, var(D)σ). If (t1 Û≤ t2) ∈ D, then t1σσ

′ = t2σσ
′. �

Proof: By de�nition of σ
∆ D, we have t1σ = t2σ . Then, t1σσ ′ = t2σσ
′. �

9.19 lemma: Let σ and σ ′ be two type substitutions. If σ
∆ D and (τ Ûv α) ∈ D,
then τσσ ′ v ασσ ′. �

Proof: By de�nition of σ
∆ D, we have τσ v ασ . Then, τσσ ′ v ασσ ′. �

The following two results give an inversion principle on the constraint sim-
pli�cation relation and characterize which variables appear in the constraints
obtained by simpli�cation.

9.20 lemma: Let D be a derivation of Γ ;∆ ` 〈〈e : t〉〉 { D. Then:

171

9 Gradual typing for Hindley-Milner systems

• if e = x , then Γ (x) = ∀®α . τ and D = {(τ [®β/ ®α] Ûv α), (α Û≤ t)} (for some τ ,
α , ®α , ®β);

• if e = c , then D = {bc Û≤ t};
• if e = λx . e ′, thenD contains a sub-derivation of (Γ , x : α1);∆ ` 〈〈e ′ : α2〉〉 {

D ′, and D = D ′ ∪ {(α1 Ûv α1), (α1 → α2 Û≤ t)};
• if e = λx : τ . e ′, thenD contains a sub-derivation of (Γ , x : τ);∆ ` 〈〈e ′ : α2〉〉 {

D ′, and D = D ′ ∪ {(τ Ûv α1), (α1 → α2 Û≤ t)};
• if e = e1e2, thenD contains two sub-derivations of Γ ;∆ ` 〈〈e1 : α → t〉〉 {

D1 and Γ ;∆ ` 〈〈e2 : α〉〉 { D2 (for some α , D1, and D2), and D = D1 ∪ D2;
• if e = (e1, e2), then D contains two sub-derivations of Γ ;∆ ` 〈〈e1 : α1〉〉 {

D1 and Γ ;∆ ` 〈〈e2 : α2〉〉 { D2 (for some α1, α2, D1, and D2), and D =

D1 ∪ D2 ∪ {α1 × α2 Û≤ t};
• if e = πie

′, thenD contains a sub-derivation of Γ ;∆ ` 〈〈e ′ : α1×α2〉〉 { D ′,
and D = D ′ ∪ {αi Û≤ t};

• if e = (let ®α x = e1 in e2), then D contains two sub-derivations of Γ ;∆ ∪
®α ` 〈〈e1 : α〉〉 { D1 and (Γ , x : ∀®α, ®β . ασ1);∆ ` 〈〈e2 : t〉〉 { D2, and the
following hold:

D = D2 ∪ equiv(σ1,D1) σ1 ∈ solve∆∪ ®α (D1)

®α] var(Γσ1) ®β = var(ασ1) \ (var(Γσ1) ∪ ®α ∪ var(e1)) �

Proof: Straightforward, since the constraint simpli�cation rules are syntax-
directed. �

9.21 lemma: If Γ ;∆ ` C { D, then var(Γ) ∩ var(D) ⊆ var(C) ∪ var Ûv(D). �

Proof in appendix (p. 258).

We prove that the solutions obtained by solve map the variables in the type
environment to static types. This is important because the variables in the
type environment can correspond to the parameters of functions without
annotations, which must be static types.

9.22 lemma:

∀Γ ,∆, e,α,D,σ .

Γ ;∆ ` 〈〈e : α〉〉 { D

σ ∈ solve∆(D)

var(e) ⊆ ∆

α < var(Γ)


=⇒ static(σ , var(Γ))

�

Proof in appendix (p. 259).

The following result states that the de�nition of the set equiv is sound. The
statement is quite involved because it considers four di�erent substitutions. In

172

9.3 Type inference

essence, it states that, if σ satis�es equiv(σ1,D1), then it behaves on the type
environment Γ like the composition of itself with ρ ◦ σ1. The statement could
be simpli�ed here by removing σ ′: we use this form because it matches the
one we need in the extension with subtyping.

9.23 lemma:

∀Γ ,∆,D1,σ1, ρ,σ ,σ
′.

σ
∆ equiv(σ1,D1)

dom(ρ)] Γσ1

static(σ ′, var(equiv(σ1,D1))σ)

static(σ1, var(Γ))


=⇒ Γσσ ′ = Γσ1ρσσ

′

�

Proof in appendix (p. 259).

Finally, we prove soundness itself.

9.24 theorem (Soundness of type inference): LetD be a derivation of Γ ; var(e) `
〈〈e : t〉〉 { D. Let σ be a type substitution such that σ
var(e) D. Then, we have
Γσ ` e ⦃e⦄Dσ : tσ . �

Proof in appendix (p. 260). The proof is by structural induction on e . It
relies on Lemmas 9.18 to 9.20 and, when e is a let expression, on Lemmas 9.22
and 9.23. The induction hypothesis must consider an additional substitution
σ ′ to deal with let expressions, where D includes a substitution computed
by solve which is di�erent from σ .

9.3.6 Completeness of type inference

We �rst state an inversion principle for the declarative typing relation.

9.25 lemma: Let Γ ` e : τ . Then:

• if e = x then Γ (x) = ∀®α . τx and τx [®t/ ®α] v τ ;
• if e = c , then τ = bc ;
• if e = λx . e1 then τ = t → τ1 and Γ , x : t ` e1 : τ1;
• if e = λx : τ ′. e1 then τ = τ ′1 → τ1, τ ′ v τ ′1 , and Γ , x : τ ′ ` e1 : τ1;
• if e = e1 e2, then Γ ` e1 : τ ′→ τ and Γ ` e2 : τ ′;
• if e = (e1, e2), then τ = τ1 × τ2, Γ ` e1 : τ1, and Γ ` e2 : τ2;
• if e = πi e

′, then Γ ` e ′ : τ1 × τ2 and τ = τi ;
• if e = (let ®α x = e1 in e2), then Γ ` e1 : τ1, Γ , x : ∀®α, ®β . τ1 ` e2 : τ , ®α, ®β] Γ ,

and ®β] e1. �

Proof: The derivation of Γ ` e : τ must end with the rule corresponding to
the shape of e , possibly followed by applications of [Tv]. We proceed by case

173

9 Gradual typing for Hindley-Milner systems

analysis on the derivation, possibly applying [Tv] to the derivations in the
premises to obtain the needed results. �

The following are three auxiliary results used to prove completeness.

9.26 lemma: If Γ ;∆ ` C { D | ®α , then var(D) ⊆ var(Γ) ∪ var(C) ∪ ®α . �

Proof in appendix (p. 263).

9.27 lemma: If Γ ;∆ ` 〈〈e : t〉〉 { D | ®α , then var(t) ⊆ var(D). �

Proof in appendix (p. 264).

9.28 lemma: Let σ and σ1, . . . ,σn be type substitutions, such that the σi are pair-
wise disjoint and every σi is disjoint from σ . Let D1, . . . ,Dn be type constraint
sets such that, for every i1 , i2, σi1] var(Di2).

If, for every i ∈ {1, . . . ,n}, we have σ ∪ σi
∆ Di , then σ ∪
⋃n

i=1 σi
∆⋃n
i=1 Di . �

Proof: Straightforward since, because of the disjointness conditions, for
every i0 and every α ∈ var(Di0), we have α(σ ∪

⋃n
i=1 σi) = α(σ ∪ σi0). �

Finally, we give the statement of completeness of type inference.

9.29 theorem (Completeness of type inference): If Γ ` e : τ , then, for every
fresh type variable α , there exist D and σ such that Γ ; var(e) ` 〈〈e : α〉〉 { D

and [τ/α] ∪ σ
var(e) D. �

Proof in appendix (p. 264).

Throughout the proof of completeness, we use variable pools to choose fresh
variables: a set U ⊆ Var is a variable pool if both U ∩ TVar and U ∩ FVar are
countably in�nite. We can partition variable pools to obtain new pools. For
example, we write U = {α }] U1] U2 to mean that we partition U into three
sets: a singleton set α and two variable pools U1 and U2.

9.3.7 An example of type inference

Let e be the term let α x = (λy : α .y) in 1 +
(
x ((λz : ?. z) 3)

)
(we assume to have

a + operator in the language). Since x ((λz : ?. z) 3) is used as a number, to be
well typed it should be given type Int. In the declarative system, λz : ?. z has
type ?→ ?, which can be materialized to Int→ Int; then its application to 3
has type Int; therefore applying the identity function x , we also get type Int.

174

9.4 Adding subtyping

Inference can �nd this solution, as follows. We use a type variable β as the
expected type, and we generate the constraints below. We have:
〈〈e : β〉〉 = 〈〈let α x = (λy : α .y) in 1 +

(
x ((λz : ?. z) 3)

)
: β〉〉

= let x : ∀α ;α1[C1]
ϵ . α1 in C2

where
C1 = 〈〈(λy : α .y) : α1〉〉

= ∃α2,α3.
(
def y : α in 〈〈y : α3〉〉

)
∧ (α Ûv α2) ∧ (α2 → α3 Û≤ α1)

C2 = 〈〈1 +
(
x ((λz : ?. z) 3)

)
: β〉〉 = (Int Û≤ β) ∧ 〈〈x ((λz : ?. z) 3) : Int〉〉

= (Int Û≤ β) ∧
(
∃α4. 〈〈x : α4 → Int〉〉

∧
(
∃α5. 〈〈(λz : ?. z) : α5 → α4〉〉 ∧ (b3 Û≤ α5)

))
and

〈〈y : α3〉〉 = ∃α6. (y Ûv α6) ∧ (α6 Û≤ α3)

〈〈x : α4 → Int〉〉 = ∃α7. (x Ûv α7) ∧ (α7 Û≤ α4 → Int)

〈〈(λz : ?. z) : α5 → α4〉〉 = ∃α8,α9.
(
def z : ? in ∃α10. (z Ûv α10) ∧ (α10 Û≤ α9)

)
∧ (? Ûv α8) ∧ (α8 → α9 Û≤ α5 → α4)

We simplify 〈〈e : β〉〉 in the empty environment with ∆ = �. To do this, we
�rst simplify C1: we have

�; {α } ` C1 {
{
(α Ûv α6), (α6 Û≤ α3), (α Ûv α2), (α2 → α3 Û≤ α1)

}
.

By uni�cation we obtain the solution σ1 = [(α → α)/α1,α/α2,α/α3,α/α6].
We obtain the expanded environment x : ∀α . α → α . Then, we simplify C2.
We have (x : ∀α . α → α);� ` C2 { D2 with

D2 =
{
(γ → γ Ûv α7), (α7 Û≤ α4 → Int),

(? Ûv α10), (α10 Û≤ α9), (? Ûv α8), (α8 → α9 Û≤ α5 → α4), (b3 Û≤ α5)
}
.

The �nal constraint set is D = D2 ∪ equiv(σ1,D1), with
equiv(σ1,D1) = {(α Ûv α), (α1 Û≤ α → α), (α → α Û≤ α1),

(α2 Û≤ α), (α Û≤ α2), (α3 Û≤ α), (α Û≤ α3), (α6 Û≤ α), (α Û≤ α6)} .

A solution to D is
σ = σ1 ∪ [Int/α4, Int/α5, (Int→ Int)/α7, Int/α8, Int/α9, Int/α10, Int/β, Int/γ] .

Let D be the derivation of constraint simpli�cation that we have described.
Then, the compiled expression ⦃e⦄Dσ is (omitting identity casts)

let x = (Λα . λα→αy.y) in(
x [Int]

) (
(λ?→Intz. z〈?⇒

`1 Int〉)〈?→ Int⇒
`2 Int→ Int〉 3

)
.

9.4 Adding subtyping

In this section we explain how to add subtyping to the system of the previous
sections. We outline the necessary additions in brief. We present only the
declarative system and not the type inference algorithm. The extension of
type inference with subtyping is, of course, challenging; as we explain in
Section 9.4.2, it requires some form of union and intersection operations on
types. Therefore, we postpone it to the next chapter, where we add set-theoretic
types to the language.

175

9 Gradual typing for Hindley-Milner systems

9.4.1 Declarative system

subtyping: We add subtyping to the language by de�ning a preorder ≤?
on gradual types. In the absence of set-theoretic type connectives and recursive
types, subtyping can be de�ned with simple inductive rules. We start from
a preorder ≤? on Base (e.g., Nat ≤? Int ≤? Real) and extend it to GType by the
inductive application of the following inference rules:

? ≤? ? α ≤? α

τ1 ≤
? τ ′1 τ2 ≤

? τ ′2

τ1 × τ2 ≤
? τ ′1 × τ

′
2

τ ′1 ≤
? τ1 τ2 ≤

? τ ′2

τ1 → τ2 ≤
? τ ′1 → τ ′2

These rules are standard: covariance for products, co-contravariance for arrows.
Just notice that, from the point of view of subtyping, the dynamic type ? is
only related to itself, just like a type variable (cf. Siek and Taha, 2007).

type system: The extension of the source gradual language with subtyp-
ing could not be simpler: it su�ces to add to the declarative typing rules of
Figure 9.1 the standard subsumption rule [T≤].

[T≤]
Γ ` e : τ ′

Γ ` e : τ
τ ′ ≤? τ

The de�nition of the dynamic semantics does not require any essential
change, either. The cast calculus is the same as in Section 9.2, except that the
[T≤] rule above must be added to its typing rules and that two cast reduction
rules (in appendix) that use type equality must be generalized to subtyping.
The de�nition of the compilation of the source language into the “new” cast
calculus does not change either (subsumption is neutral for compilation). The
proof that compilation preserves types stays essentially the same, since we
have just added the subsumption rule to both systems.

9.4.2 Type inference

The changes required to add subtyping to the declarative system are minimal:
de�ne the subtyping relation, add the subsumption rule, and recheck the proofs
since they need slight modi�cations. On the contrary, de�ning algorithms to
decide the relations we have just de�ned is more complicated. As we saw in
Section 9.3, this amounts to generating and solving constraints.

Constraint generation is not problematic. The form of the constraints and
the generation algorithm given in Section 9.3 already account for the extension
with subtyping: hence, they do not need to be changed, neither here nor in the
next chapter. Constraint resolution, instead, is a di�erent matter. In the previous
section, constraints of the form α Û≤ t were actually equality constraints (i.e.,
α Û= t) that could be solved by uni�cation. The same constraints now denote
subtyping, and their resolution requires the computation of intersections and
unions.

To see why, consider the following OCaml code snippet (that does not
involve any gradual typing):

fun x→ if (fst x) then (1 + snd x) else x

176

9.4 Adding subtyping

We want our system to deduce for this de�nition the following type:6

(Bool × Int) → (Int ∨ (Bool × Int))

To that end, a constraint generation system like ours could assign to the
function the type α → β and generate the following set of four constraints:

{(α Û≤ Bool × 1), (α Û≤ 1 × Int), (Int Û≤ β), (α Û≤ β)}

where 1 denotes the top type (that is, the supertype of all types). The �rst
constraint is generated because fst x is used in a position where a Boolean is
expected; the second comes from the use of snd x in an integer position; the
last two constraints are produced to type the result of the conditional branch
with a supertype of the types of both branches. To compute the solution of
two constraints of the form α Û≤ t1 and α Û≤ t2, the resolution algorithm must
compute the greatest lower bound of t1 and t2 (or an approximation thereof);
likewise for two constraints of the form s1 Û≤ β and s2 Û≤ β the best solution is
the least upper bound of s1 and s2. This yields Bool× Int for the domain (i.e., the
intersection of the upper bounds for α) and Int ∨ (Bool × Int) for the codomain
(i.e., the union of the lower bounds for β).

In summary, to perform type reconstruction in the presence of subtyping,
one must be able to compute unions and intersections of types. In some cases,
as for the domain in the example above, the solution of these operations is
a type of ML (or of the language at issue): then the operations can be meta-
operations computed by the type checker but not exposed to the programmer.
In other cases, as for the codomain in the example, the solution is a type which
might not already exist in the language: therefore, the only solution to type
the expression precisely is to add the corresponding set-theoretic operations
to the types of the language.

The full range of these options can be found in the literature. For instance,
Pottier (2001) de�nes intersection and union as meta-operations, and it is not
possible to simplify the constraints to derive a type like the one above. Other
systems include both intersections and unions in the types, starting from the
earliest work by Aiken and Wimmers (1993) to more recent work by Dolan
and Mycroft (2017). In the next chapter, we add set-theoretic connectives to
gradual types, and we show how to adapt type inference to that setting.

6 Using set-theoretic types, we could give a more precise type: (Bool × Int) ∧ α → Int ∨ α . For
instance, using this type (with the instantiation [(Bool × Nat)/α]) we can predict that the
application of the function to an expression of type Bool × Nat has type Int ∨ (Bool × Nat)
instead of Int ∨ (Bool × Int).

177

10 Gradual typing for set-theoretic types

In this chapter, we study how to apply our approach to gradual typing in order
to de�ne a gradual type system featuring set-theoretic types and semantic
subtyping. In Section 9.4, we have outlined how to add subtyping to the type
system. To extend the declarative presentation of typing, we only need to de�ne
a suitable subtyping relation on gradual types. The relation in Section 9.4.1
is straightforward – it treats ? just like a type variable – but its extension to
set-theoretic types is more di�cult. Adding set-theoretic types also makes
it more complex to de�ne the operational semantics of the cast calculus but,
as in the previous chapter, we will only introduce the problem because we
concentrate on typing. Finally, the extension of type inference to set-theoretic
types can be done by replacing the type-constraint solving algorithm with one
adapted to set-theoretic types and subtyping constraints. We show how to do
so and prove soundness of type inference; however, completeness does not
hold, the main di�culty being the treatment of recursive types.

chapter outline:

Section 10.1 We de�ne type frames, static, and gradual types including
set-theoretic type connectives. Type frames use the subtyping relation of
Chapter 2.

Section 10.2 We de�ne subtyping on set-theoretic gradual types by translat-
ing them to type frames. We consider di�erent possible characterizations
and prove their equivalence. Finally, we study some properties of the
subtyping relation and of its interaction with materialization.

Section 10.3 We describe how to update the syntax and type systems of
the source and cast languages of Sections 9.1 and 9.2 to add set-theoretic
types. We introduce brie�y the needed changes in the semantics.

Section 10.4 We describe type inference with set-theoretic types, relying
on the tallying algorithm of Castagna et al. (2015b) already used in Part I.

10.1 Type frames, static types, and gradual types

We start by de�ning the di�erent sorts of types that we will use.
As in the previous chapter, we distinguish two sorts of variables: we use

type variables to express polymorphism and frame variables to replace ? in
type frames in the de�nition of materialization and, as we will see, also in that
of subtyping. We consider a countable set Var, partitioned into two countable
sets: the set TVar of type variables and the set FVar of frame variables. We use

179

10 Gradual typing for set-theoretic types

the metavariable A to range over Var, α (and also β and γ) to range over TVar,
and X (and also Y) to range over FVar.

As in Section 2.2, we also consider a set Const of language constants (ranged
over by c), a set Base of base types (ranged over by b), and two functions

b(·) : Const→ Base �(·) : Base→ P(Const)

that map constants to base types and base types to sets of constants. We assume
that each constant has an associated singleton type: that is, for every c ∈ Const,
we assume that �(bc) = {c}.

We de�ne type frames with both type and frame variables, static types with
type variables only, and gradual types with type variables and ?.

10.1 definition (Type frames, static types, and gradual types): The sets TFrame
of type frames, SType of static types, and GType of gradual types, are the sets
of terms T , t , and τ , respectively, generated coinductively by the following
grammars:

TFrame 3 T F A | b | T ×T | T → T | T ∨T | ¬T | 0 type frames
SType 3 t F α | b | t × t | t → t | t ∨ t | ¬t | 0 static types
GType 3 τ F ? | α | b | τ × τ | τ → τ | τ ∨ τ | ¬τ | 0 gradual types

(where A ranges over Var, α over TVar, and b over Base) and that satisfy the
following two conditions:

(regularity) the term has �nitely many distinct subterms;

(contractivity) every in�nite path in the term contains in�nitely many
occurrences of the × or→ constructors. �

We introduce the usual abbreviations

T1 ∧T2
def
= ¬(¬T1 ∨ ¬T2) T1 \T2

def
= T1 ∧ (¬T2) 1

def
= ¬0

for type frames and likewise for static and gradual types.
Given a type frame T , we write var(T) for the set of variables occurring

in T . We write tvar(T) for var(T) ∩ TVar and fvar(T) for var(T) ∩ FVar. We use
this notation also for static and gradual types – of course, for these, var(·) and
tvar(·) coincide and fvar(·) is always empty.

Note that static types are included in both gradual types and type frames;
in particular, SType = {T ∈ TFrame | fvar(T) = � }.

Type substitutions are de�ned as in Section 2.2.1. For gradual types, we have
?σ = ? for every type substitution σ . Substitutions can instantiate both type
and frame variables, and their range can include any of these sorts of types.
WhenV is a set of type variables and T a set of types, we write σ : V → T
to mean that dom(σ) ⊆ V and to restrict which types can be in the range of σ .
For instance, we write σ1 : TVar→ SType if σ1 maps α variables to static types
and σ2 : FVar→ GType if σ2 maps X variables to gradual types.

180

10.2 Subtyping on gradual set-theoretic types

10.1.1 Subtyping on type frames and static types

Type frames and static types use the subtyping relation ≤ and the equivalence
relation ' de�ned in Section 2.3. We do not repeat the de�nitions here: they
are exactly as in Section 2.3 except that we replace TVar with Var everywhere,
since type frames include both α and X variables. The following property
holds (proven as Proposition 2.11).

10.2 proposition: If T1 ≤ T2, then T1σ ≤ T2σ for any type substitution σ . �

10.1.2 Materialization

As in the previous chapter, we write T † for the gradual type obtained from T

by replacing all frame variables with ?. We de�ne the set ?(τ) of the discrim-
inations of τ as

?(τ)
def
= {T ∈ TFrame | T † = τ } .

To de�ne materialization, nothing needs to change. De�nition 9.2, which
de�nes materialization as

τ1 v τ2
def
⇐⇒ ∃T1 ∈ ?(τ1),σ : FVar→ GType.T1σ = τ2

using discrimination and type substitutions, is equally valid here though we
have changed the syntax of types. In contrast, an inductive de�nition would
no longer work because types are de�ned coinductively.

Like static subtyping, materialization is preserved by type substitutions.

10.3 proposition: If τ1 v τ2, then τ1σ v τ2σ for any type substitution σ . �

Proof: By de�nition of τ1 v τ2, we have T1σ1 = τ2 for a T1 such that T †
1 = τ1

and a σ1 : FVar→ GType.
Choose a σ ′ : TVar→ TFrame such that, for every α , (ασ ′)† = ασ and that

fvar(σ ′) ∩ dom(σ1) = �.
Then we have (T1σ

′)† = τ1σ and therefore T1σ
′ ∈ ?(τ1σ).

Consider σ ′1 = [Xσ1σ/X]X ∈dom(σ1) ∪ [?/X]X ∈fvar(σ ′).
We have T1σ

′σ ′1 = T1σ1σ because:

• for every α ∈ var(T1), if α ∈ dom(σ), then ασ ′σ ′1 = (ασ ′)† = ασ = ασ1σ ,
and, if α < dom(σ), then ασ ′σ ′1 = α = ασ1σ ;

• for everyX ∈ var(T1), we must haveX ∈ dom(σ1) (otherwise,T1σ1 would
not be a gradual type): then Xσ ′σ ′1 = Xσ ′1 = Xσ1σ .

Since T1σ1σ = τ2σ , we have τ1σ v τ2σ . �

10.2 Subtyping on gradual set-theoretic types

In Section 9.4 we de�ned the subtyping relation ≤? on gradual types by treating
? exactly like a type variable. This ensured that subtyping could not convert

181

10 Gradual typing for set-theoretic types

between ? and static types (in contrast to the consistent-subtyping relation of
other formalizations): that role is performed by materialization, and we want
to keep the two separate.

We might be tempted to do the same here. Then, τ1 ≤
? τ2 would hold if

and only if T1 ≤ T2, where each Ti is obtained from the corresponding τi by
replacing every occurrence of ? with a distinguished frame variable X ◦.

This relation is not satisfactory. Indeed, note that it would satisfy ? \ ? ≤? 0
(because X ◦ \ X ◦ ≤ 0). As a consequence, combined with materialization, it
would imply that the declarative type system can type every program, even
fully static and nonsensical ones (inserting casts that always fail). This is
because any type could be converted to any other: for example,

Int ≤? Int \ (? \ ?) v Int \ (Int \ ?) ≤? 0 ≤? Bool .

This is undesirable, of course: a gradual type system must reject programs that
do not use ? and are ill-typed in a static type system.

This indicates that a well-behaved subtyping relation on gradual set-theoretic
types cannot give a set-theoretic interpretation to ? directly, since that would
make ?\ ? an empty type, which we do not want. To de�ne subtyping, then, we
keep our idea of replacing ? with type variables, but we take care to distinguish
occurrences that appear below negation from those that do not. There are
di�erent ways to perform such a replacement.

Using discrimination, we could try to de�ne subtyping as

τ1 ≤
? τ2 ⇐⇒ ∃T1 ∈ ?(τ1),T2 ∈ ?(τ2).T1 ≤ T2 .

Of course, this has the same problem as using just one frame variable: ?\ ? ≤? 0
holds. So we need to restrict the possible choices of T1 and T2. To de�ne
subtyping, below, we will ask T1 and T2 to be polarized: by this we mean that
no frame variable occurs in them both positively (under an even number of
negations) and negatively (under an odd number of negations). This implies
that, if τ1 is ? \ ?, we cannot choose asT1 the type frame X \X , but only a type
frame with two distinct variables (for example, X \ Y); therefore, ? \ ? ≤? 0
does not hold.

In the remainder of this section, we de�ne some terminology to describe
the position of variables in types and characterize di�erent particular discrim-
inations of a gradual type. We use them to give several characterizations of
subtyping. Then, we prove that they are all equivalent. These di�erent charac-
terizations are suitable to obtain di�erent results; in particular, we use one to
prove that subtyping commutes with materialization.

10.2.1 Polarity, parity, and variance

Given a type frame and an occurrence of a type or frame variable in it, we can
represent the path from the root of the type frame to that occurrence of the
variable as a string on the alphabet {×L,×R,→L,→R,∨L,∨R,¬} describing the
constructors and connectives traversed along the path and the direction of
traversal (to the left or to the right) for binary ones. For example, the path to

182

10.2 Subtyping on gradual set-theoretic types

X in (Int→ X) ∨ Bool is ∨L→R. A variable can have multiple occurrences in a
type at di�erent paths – even in�nitely many of them, if the type is recursive.
For example, there are in�nitely many occurrences of α in the typeT described
by the equation T = (α ×T) ∨ b; their paths are all the strings described by
the regular expression (∨L×R)∗∨L×L.

We distinguish three characteristics of occurrences according to their path.

Polarity: an occurrence is positive if ¬ occurs an even number of times in
its path; it is negative otherwise.1

Parity: an occurrence is even if→L occurs an even number of times in its
path; it is odd otherwise.

Variance: an occurrence is covariant if it is both positive and even or both
negative and odd; it is contravariant otherwise.

The notion of variance coincides with the normal notion of variance for
subtyping: descending below a negation or to the left of an arrow �ips the
variance.

We introduce some notation to refer to the variables that occur in spe-
ci�c positions in a type frame. We write var+(T), var−(T), varcov(T), varcnt(T),
vareven(T), and varodd(T) to denote the sets of variables that have at least one
occurrence in T in the speci�ed position – respectively, positive, negative,
covariant, contravariant, even, or odd. We use the same notation also for tvar(·)
and fvar(·). All the notions here also apply to static and gradual types.

Given a type frame T , we say

• that T is polarized if no frame variable has both positive and negative
occurrences in it, that is, if fvar+(T) ∩ fvar−(T) = �;

• that T is variance-polarized if no frame variable has both covariant and
contravariant occurrences in it, that is, if fvarcov(T) ∩ fvarcnt(T) = �.

We write TFramepol and TFramevar, respectively, for the sets of polarized and
variance-polarized type frames.

10.2.2 Subtyping using polarized discriminations

We de�ne two subsets of the set ?(τ) of the discriminations of τ :
?pol(τ)

def
= ?(τ) ∩ TFramepol polarized discriminations

?var(τ)
def
= ?(τ) ∩ TFramevar variance-polarized discriminations.

We use the �rst of these to de�ne subtyping.

10.4 definition (Subtyping on gradual types): We de�ne the subtyping rela-
tion ≤? and the subtype equivalence relation '? on gradual types as:

τ1 ≤
? τ2

def
⇐⇒ ∃T1 ∈ ?

pol(τ1),T2 ∈ ?
pol(τ2).T1 ≤ T2

τ1 '
? τ2

def
⇐⇒ (τ1 ≤

? τ2) ∧ (τ2 ≤
? τ1) . �

1 This notion of polarity is unrelated to the polarity of blame labels in the cast calculus and to
the notions of positive and negative subtyping: it only concerns negation in types.

183

10 Gradual typing for set-theoretic types

We could alternatively characterize subtyping using variance instead of
polarity, having τ1 ≤

? τ2 hold if and only if

∃T1 ∈ ?
var(τ1),T2 ∈ ?

var(τ2).T1 ≤ T2 .

We will prove that the two de�nitions are equivalent. The former is interesting
because it makes it explicit that we only need to use distinct variables because
of negation types. The latter, however, is more convenient to use for some
proofs.

10.2.3 Avoiding existential quanti�cation

The de�nition of subtyping could be computationally problematic because of
the existential quanti�cation. However, it turns out that we do not need to
check every discrimination. It is enough to use the discrimination in which just
two frame variables appear (thus eliminating the existential quanti�cation):
one to replace all positive occurrences of ? and another for all negative ones.
Equivalently, one variable could be used for all covariant occurrences and
another for all contravariant occurrences. We introduce some terminology to
describe these alternative de�nitions.

In the following, we assume that X 1 and X 0 are two distinguished variables
in FVar. We de�ne four subsets of type frames as follows.

TFramepol1
def
=

{
T ∈ TFrame

�� fvar+(T) ⊆ {X 1} and fvar−(T) ⊆ {X 0}
}

TFramepol0
def
=

{
T ∈ TFrame

�� fvar+(T) ⊆ {X 0} and fvar−(T) ⊆ {X 1}
}

TFramevar1
def
=

{
T ∈ TFrame

�� fvarcov(T) ⊆ {X 1} and fvarcnt(T) ⊆ {X 0}
}

TFramevar1
def
=

{
T ∈ TFrame

�� fvarcov(T) ⊆ {X 0} and fvarcnt(T) ⊆ {X 1}
}

We refer to type frames in these sets as being, respectively, strongly polarized,
strongly negatively polarized, strongly variance-polarized, and strongly negat-
ively variance-polarized.

Given a gradual type τ , there is a unique type frame in ?(τ) that is strongly
polarized; likewise for the other forms of polarization. We de�ne notation to
refer to such speci�c discriminations of a gradual type τ .

τ ⊕ positive discrimination unique element of ? (τ) ∩ TFramepol1

τ 	 negative discrimination unique element of ? (τ) ∩ TFramepol0

τ T covariant discrimination unique element of ? (τ) ∩ TFramevar1

τ U contravariant discrimination unique element of ? (τ) ∩ TFramevar0

184

10.2 Subtyping on gradual set-theoretic types

We have the following equalities

?⊕ = X 1 ?	 = X 0

α ⊕ = α α 	 = α

b⊕ = b b	 = b

(τ1 × τ2)
⊕ = τ ⊕1 × τ

⊕
2 (τ1 × τ2)

	 = τ 	1 × τ
	
2

(τ1 → τ2)
⊕ = τ ⊕1 → τ ⊕2 (τ1 → τ2)

	 = τ 	1 → τ 	2
(τ1 ∨ τ2)

⊕ = τ ⊕1 ∨ τ
⊕
2 (τ1 ∨ τ2)

	 = τ 	1 ∨ τ
	
2

(¬τ)⊕ = ¬(τ) (¬τ)	 = ¬(τ ⊕)

0⊕ = 0 0	 = 0

and similar equalities for τ T and τ U , except that on the left of arrows we switch
from (·)T to (·)U .

Note that, for every T , we have:

T ∈ TFramepol1 =⇒ (T †)⊕ = T T ∈ TFramepol0 =⇒ (T †)	 = T

T ∈ TFramevar1 =⇒ (T †)T = T T ∈ TFramevar0 =⇒ (T †)U = T

These de�nitions allow us to give several di�erent characterizations of
subtyping. We will prove that, for any τ1 and τ2, all the following statements
are equivalent

τ ⊕1 ≤ τ
⊕
2 τ 	1 ≤ τ

	
2 τ T1 ≤ τ

T
2 τ U1 ≤ τ

U
2

and that they are equivalent to subtyping as de�ned in De�nition 10.4.
The equivalence of the �rst and second statements are straightforward: they

are the same up to the type substitution switching X 1 and X 0; likewise for the
equivalence of the third and the fourth. The equivalence between τ ⊕1 ≤ τ

⊕
2

and τ T1 ≤ τ
T
2 is non-trivial, but the intuition is that it does not matter whether

or not we switch between the two variables on the left of arrows, because
subtyping never compares two subterms of the types unless they are to the
left of the same number of arrows.

The equivalence between these notions and De�nition 10.4 is tricky to
establish. Clearly, τ ⊕1 ≤ τ ⊕2 implies ∃T1 ∈ ?

pol(τ1),T2 ∈ ?
pol(τ2). T1 ≤ T2,

because, for every τ , τ ⊕ ∈ ?pol(τ). For the other direction, assume to have
T1 ∈ ?

pol(τ1) and T2 ∈ ?
pol(τ2) such that T1 ≤ T2; we want τ ⊕1 ≤ τ ⊕2 . If no

frame variable appears with opposite polarity inT1 andT2, then fromT1 andT2
we can obtain τ ⊕1 and τ ⊕2 by applying a type substitution, so we conclude by
Proposition 10.2. The di�culty is when some frame variables occur in positive
position in T1 and in negative position in T2. For example, a variable X might
occur positively in T1 and negatively in T2. Then, we cannot obtain τ ⊕1 and τ ⊕2
by applying a single substitution toT1 andT2: we will prove that we can apply
two di�erent substitutions while preserving subtyping.

These equivalences, which we show in the next section, are useful because
they allow us to avoid quanti�cation. In particular, they show that subtyping
on gradual types can be computed using the same algorithm used for subtyping
on static types, simply by performing a type substitution.

185

10 Gradual typing for set-theoretic types

Note that, while for subtyping we do not need to consider quanti�cation,
the same does not hold for materialization, where we must consider discrim-
inations using more variables (to allow, for instance ? → ? v Int → Bool).
However, the problem is otherwise simpler because, rather than subtyping, it
considers syntactic equality up to a single type substitution.

10.2.4 Equivalence of the di�erent characterizations of subtyping

We introduce additional notation to refer to the variables in speci�c positions
in type frames. We write var+cov(T), var+cnt(T), var−cov(T), and var−cnt(T) to
denote the sets of variables that have at least one occurrence in T that is
in both speci�ed positions – respectively, both positive and covariant, both
positive and contravariant, both negative and covariant, or both negative and
contravariant. (We use these also for tvar(·) and fvar(·) and also for static and
gradual types.)

For brevity, we will often write var(T1, . . . ,Tn) for var(T1) ∪ · · · ∪ var(Tn) and
similarly for fvar(·), fvar+(·), etc.

The following lemma and its corollaries state that, given a type frame (or
a gradual type in the last corollary), we can obtain another type frame by
renaming each occurrence of each variable in it according to the polarity,
parity, and variance of the occurrence.

10.5 lemma: Let T be a type frame with var(T) = {Ai | i ∈ I }. There exists a
type frame T ′ such that the four sets

var+cov(T ′) ⊆ {A+∧i | i ∈ I } var+cnt(T ′) ⊆ {A+∨i | i ∈ I }

var−cov(T ′) ⊆ {A−∧i | i ∈ I } var−cnt(T ′) ⊆ {A−∨i | i ∈ I }

are pairwise disjoint and that

T = T ′
(
[Ai/A

+∧
i]i ∈I ∪ [Ai/A

+∨
i]i ∈I ∪ [Ai/A

−∧
i]i ∈I ∪ [Ai/A

−∨
i]i ∈I

)
. �

Proof in appendix (p. 269).

10.6 corollary: Let T be a type frame with fvar(T) = {X1, . . . ,Xn}. There ex-
ists a type frameT ′, with fvarcov(T ′) ⊆ {X1, . . . ,Xn} disjoint from fvarcnt(T ′) ⊆
{X ′1, . . . ,X

′
n}, such that T = T ′[Xi/X

′
i]
n
i=1. �

Proof: Consequence of Lemma 10.5. We apply the lemma to �nd a type
where type and frame variables are renamed according to their position
(polarity and variance); then, we apply a substitution to unify the positions
we do not want to distinguish. �

10.7 corollary: Let T be a type frame with fvar(T) = {X1, . . . ,Xn}. There ex-
ists a type frameT ′, with fvareven(T ′) ⊆ {X1, . . . ,Xn} disjoint from fvarodd(T ′) ⊆
{X ′1, . . . ,X

′
n}, such that T = T ′[Xi/X

′
i]
n
i=1. �

186

10.2 Subtyping on gradual set-theoretic types

Proof: Consequence of Lemma 10.5, similarly to Corollary 10.6. �

10.8 corollary: Let τ be a gradual type with var(τ) = {α1, . . . ,αn}. There
exists a gradual type τ ′, with var+(τ ′) ⊆ {α1, . . . ,αn} disjoint from var−(τ ′) ⊆
{α ′1, . . . ,α

′
n}, such that τ = τ ′[αi/α ′i]ni=1. �

Proof: Consequence of Lemma 10.5, similarly to Corollary 10.6. We �rst
choose a T such that T † = τ ; then, we apply the lemma and a substitution to
unify the positions that we do not need to distinguish; �nally, we apply † to
obtain a gradual type. �

The following lemma is one of the key ingredients for the proof of equi-
valence. Given a type frame T such that T � 0, we do not normally know
whether T [X/Y] � 0 holds or not (conversely, if T ≤ 0, then T [X/Y] ≤ 0

holds by Proposition 10.2). However, if X and Y always occur with the same
polarity in T , then we can prove that T [X/Y] � 0 must hold. For example, we
have X \ Y � 0 and X \ X ≤ 0, but X and Y occur with opposite polarity in
X \ Y . When they occur with the same polarity (as in X ∧ Y or X × Y) the
substitution [X/Y] cannot make the type empty.

10.9 lemma:
T � 0

either {X ,Y }] fvar−(T) or {X ,Y }] fvar+(T)

}
=⇒ T [X/Y] � 0

�

Proof in appendix (p. 270).

The following lemma is a consequence of the one above, proved by using
the equivalence T1 ≤ T2 ⇐⇒ T1 \T2 ≤ 0 and the contrapositive of the result
above.

10.10 lemma:
T1 ≤ T2

X ∈ fvar+(T1) =⇒ X < fvar+(T2)

X ∈ fvar−(T1) =⇒ X < fvar−(T2)

Y] T1,T2,X


=⇒ T1[Y/X] ≤ T2

�

Proof in appendix (p. 274).

We generalize the lemma above to consider more than two variables. This
shows that, when some variables occur with one polarity in a type and the
opposite polarity in the other, we can rename them in one of the types while
preserving subtyping.

187

10 Gradual typing for set-theoretic types

10.11 lemma:

T1 ≤ T2

∀X ∈ ®X .

{
X ∈ fvar+(T1) =⇒ X < fvar+(T2)

X ∈ fvar−(T1) =⇒ X < fvar−(T2)

®Y] T1,T2, ®X


=⇒ T1[®Y/ ®X] ≤ T2

�

Proof: By induction on ®X . If ®X is empty, there is nothing to prove.
Otherwise, we have ®X = X0 ®X

′ and ®Y = Y0 ®Y
′. By Lemma 10.10, we have

T1[Y0/X0] ≤ T2. Then, by IH, we haveT1[Y0/X0][®Y
′/ ®X ′] ≤ T2 and we conclude

since T1[Y0/X0][®Y
′/ ®X ′] = T1[®Y/ ®X]. �

The following lemma is similar to Lemma 10.9. In that case, the condition
under which the substitution does not make T empty is that the two vari-
ables occur with di�erent parity in T (X is never even and Y never odd). We
generalize this result too to multiple variables.

10.12 lemma:
T � 0

X < fvareven(T)

Y < fvarodd(T)

 =⇒ T [X/Y] � 0

�

Proof in appendix (p. 275).

10.13 lemma:
T � 0

®X] fvareven(T)

®Y] fvarodd(T), ®X

 =⇒ T [®X/®Y] � 0

�

Proof: By induction on ®X . If ®X is empty, there is nothing to prove.
Otherwise, we have ®X = X0 ®X

′ and ®Y = Y0 ®Y
′. By Lemma 10.12, we have

T [X0/Y0] � 0. Then, by IH, we have T [X0/Y0][®X
′/®Y ′] � 0 and we conclude

since T [X0/Y0][®X
′/®Y ′] = T [®X/®Y]. �

The next lemma, which relies on Lemma 10.12, proves that if T is empty
then we can �nd a type frame T ′ which is also empty and in which no frame
variable appears with both parities. The following lemma is a consequence of
this; we use it to prove that the subtyping relation can be de�ned equivalently
using polarity or variance.

188

10.2 Subtyping on gradual set-theoretic types

10.14 lemma:

T ≤ 0 =⇒ ∃T ′, ®X , ®Y .


T ′ ≤ 0

T = T ′[®X/®Y]

fvareven(T ′)] fvarodd(T ′)

�

Proof in appendix (p. 277).

10.15 lemma:

T1 ≤ T2 =⇒ ∃T ′1,T
′
2, ®X , ®Y .


T ′1 ≤ T

′
2

T1 = T
′
1 [
®X/®Y]

T2 = T
′
2 [
®X/®Y]

fvareven(T ′1,T
′
2)] fvar

odd(T ′1,T
′
2)

�

Proof: Let T = T1 \T2. We have T ≤ 0 by de�nition of subtyping.
By Lemma 10.14, we �nd T ′, ®X , and ®Y such that

T ′ ≤ 0 T = T ′[®X/®Y] fvareven(T ′)] fvarodd(T ′) .

Since T ′ is empty, it cannot be a type variable or a frame variable. Then,
we must have T ′ = T ′1 \ T

′
2 for two types such that T1 = T ′1 [

®X/®Y] and
T2 = T

′
2 [
®X/®Y].

We have T ′1 ≤ T ′2 by de�nition of subtyping.
We have fvareven(T ′1,T

′
2) = fvareven(T ′) and fvarodd(T ′1,T

′
2) = fvarodd(T ′),

therefore the two sets are disjoint. �

To relate the di�erent de�nitions of subtyping, we de�ne one more speci�c
discrimination of gradual types. Let X+∧, X+∨, X−∧, and X−∨ be four distin-
guished variables in FVar. Given a gradual type τ , we de�ne τ • as the unique
type frame T such that T † = τ , fvar+cov(T) ⊆ {X+∧}, fvar+cnt(T) ⊆ {X+∨},
fvar−cov(T) ⊆ {X−∧}, and fvar−cnt(T) ⊆ {X−∨}.

The following result is straightforward: if T1 ≤ T2 holds for two discrimin-
ations of τ1 and τ2 which have distinct variables in di�erent positions, then
τ •1 ≤ τ

•
2 holds too. This is because we can obtain τ •i from Ti by performing a

type substitution.

10.16 lemma:
T1 ≤ T2

T †
1 = τ1 and T †

2 = τ2

fvar+cov(T1,T2), fvar+cnt(T1,T2), fvar−cov(T1,T2),
and fvar−cnt(T1,T2) are pairwise disjoint


=⇒ τ •1 ≤ τ

•
2

�

189

10 Gradual typing for set-theoretic types

Proof: We de�ne

σ = [X+∧/X]X ∈fvar+cov(T1,T2) ∪ [X
+∨/X]X ∈fvar+cnt(T1,T2)

∪ [X−∨/X]X ∈fvar−cov(T1,T2) ∪ [X
−∧/X]X ∈fvar−cnt(T1,T2) .

It is well de�ned because the four sets are disjoint. We have T1σ = τ
•
1 and

T2σ = τ
•
2 . We have T1σ ≤ T2σ by Proposition 10.2. �

Finally, we prove that the di�erent notions of subtyping that we have pro-
posed are all equivalent.

10.17 lemma: If τ1 ≤
? τ2, then τ •1 ≤ τ •2 . �

Proof in appendix (p. 278).

10.18 lemma: Let τ1 and τ2 be two gradual types. LetT1 ∈ ?
var(τ1) andT2 ∈ ?

var(τ2)

be such that T1 ≤ T2. Then, τ •1 ≤ τ •2 . �

Proof in appendix (p. 279).

10.19 proposition: Let τ1 and τ2 be two gradual types. The following statements
are all equivalent:

A○ τ1 ≤
? τ2 B○ τ ⊕1 ≤ τ

⊕
2 C○ τ 	1 ≤ τ

	
2

D○ ∃T1 ∈ ?
var(τ1),T2 ∈ ?

var(τ2).T1 ≤ T2

E○ τ T1 ≤ τ
T
2 F○ τ U1 ≤ τ

U
2 G○ τ •1 ≤ τ

•
2 �

Proof: We have A○ =⇒ G○ by Lemma 10.17 and D○ =⇒ G○ by Lemma 10.18.
The equivalences B○ ⇐⇒ C○ and E○ ⇐⇒ F○ are shown trivially by

Proposition 10.2 since, for every τ , we have τ ⊕ = τ 	[X 1/X 0,X 0/X 1] and
τ T = τ U[X 1/X 0,X 0/X 1]

We can show G○ =⇒ B○ ∧ E○ by Proposition 10.2. If τ •1 ≤ τ •2 , then
τ •1 σ ≤ τ •2 σ holds for every type substitution σ . To show B○, we choose
σ = [X 1/X+∧,X 1/X+∨,X 0/X−∧,X 0/X−∨] and have τ •1 σ = τ

⊕
1 and τ •2 σ = τ

⊕
2 .

We prooced analogously to show E○.
The implication B○ =⇒ A○ holds because, for any τ , τ ⊕ ∈ ?pol(τ). Likewise

for the implication E○ =⇒ D○. All other implications follow by transitivity.
�

10.2.5 Properties of subtyping

In this section we study some properties of subtyping on gradual types and of
its interaction with materialization.

Subtyping on static types and type frames is preserved by type substitutions
(Proposition 10.2). In contrast, subtyping on gradual types is not: we have

190

10.2 Subtyping on gradual set-theoretic types

α \ α ≤? 0 but ? \ ? �? 0, though ? \ ? = (α \ α)[?/α]. However, we can prove
that subtyping on gradual types is preserved by static type substitutions, that
is, by substitutions that map type variables to static types.

10.20 proposition: If τ1 ≤
? τ2 then, for any static type substitution σ , we have

τ1σ ≤
? τ2σ . �

Proof: If τ1 ≤
? τ2, then by Proposition 10.19 we have τ ⊕1 ≤ τ

⊕
2 . Then, τ ⊕1 σ ≤

τ ⊕2 σ by Proposition 10.2. We have τ ⊕1 σ = (τ1σ)
⊕ because (τ ⊕1)† = τ1σ and

because τ ⊕1 σ is strongly polarized (sinceσ does not introduce frame variables).
Similarly, we have τ ⊕2 σ = (τ2σ)

⊕ . Therefore, τ1σ ≤
? τ2σ . �

We show next that we can commute applications of subtyping and mater-
ialization to apply materialization �rst. This is interesting in order to study
the inversion of the typing relation. To type expressions in the declarative
type system, we can apply the rule [T≤] and [Tv] as many times as and in
whichever order we want. It is useful to show that this chain of applications
can always be collapsed to one application of [Tv] followed by one of [T≤].

We �rst prove an auxiliary result. When τ1 v τ2, by de�nition of v we have
Tσ = τ2 for T and σ such that T † = τ1 and σ : fvar(T) → GType. We prove
that we can always choose T so that no frame variable has both covariant and
contravariant occurrences in it.

10.21 lemma: If τ1 v τ2, then there exist a T and a σ : fvar(T) → GType such that
T † = τ1, that Tσ = τ2, and that fvarcov(T)] fvarcnt(T). �

Proof: By de�nition of τ1 v τ2, there exist aT1 and a σ1 : FVar→ GType such
that T †

1 = τ1 and that T1σ1 = τ2. Let fvar(T1) = {X1, . . . ,Xn}.
By Corollary 10.6, we can �nd a T such that fvarcov(T) ⊆ {X1, . . . ,Xn}

is disjoint from fvarcnt(T) ⊆ {X ′1, . . . ,X
′
n} and such that T1 = T [Xi/X

′
i]
n
i=1.

Clearly, T † = T †
1 = τ1.

We take σ to be [Xiσ1/Xi]
n
i=1 ∪ [Xiσ1/X

′
i]
n
i=1 restricted to fvar(T). We have:

Tσ = T ([Xiσ1/Xi]
n
i=1 ∪ [Xiσ1/X

′
i]
n
i=1) = T [Xi/X

′
i]
n
i=1σ1 = T1σ1 = τ2 . �

We also give the following result on type substitutions. Given two type
substitutions σ1 and σ2, we write σ1 ≤ σ2 when, for every A, Aσ1 ≤ Aσ2. When
A ⊆ Var, we de�ne σ |A as the type substitution such that Aσ |A = Aσ if A ∈ A
and Aσ |A = A otherwise (as in Section 2.2.1). The following lemma states
that Tσ1 ≤ Tσ2 holds when Aσ1 ≤ Aσ2 for every A that is covariant in T and
Aσ2 ≤ Aσ1 for every A that is contravariant in T .

10.22 proposition:

∀T ,σ1,σ2.
σ1 |varcov(T) ≤ σ2 |varcov(T)

σ2 |varcnt(T) ≤ σ1 |varcnt(T)

}
=⇒ Tσ1 ≤ Tσ2

�

191

10 Gradual typing for set-theoretic types

Proof in appendix (p. 279).

Now we show that materialization can always be applied before subtyping.

10.23 lemma: If τ1 ≤
? τ2 v τ3, then, for some τ ′2 , we have τ1 v τ

′
2 ≤

? τ3. �

Proof in appendix (p. 281).

We write v<? for the preorder on gradual types that combines subtyping and
materialization, de�ned inductively by the following rules.

τ v<? τ

τ1 ≤
? τ2 τ2 v<

? τ3

τ1 v<
? τ3

τ1 v τ2 τ2 v<
? τ3

τ1 v<
? τ3

Then, we obtain the following corollary of the result above.

10.24 corollary: If τ1 v<
? τ2, then there exists a type τ such that τ1 v τ ≤

? τ2. �

Proof: By induction on the derivation of τ1 v<
? τ2.

If τ1 = τ2, then τ1 v τ1 ≤
? τ2.

If τ1 ≤
? τ ′ v<? τ2, then by IH we �nd τ ′′ such that τ ′ v τ ′′ ≤? τ2, by

Lemma 10.23 we �nd τ such that τ1 v τ ≤
? τ ′′, and �nally (by transitivity of

≤?) we have τ1 v τ ≤
? τ2.

If τ1 v τ
′ v<? τ2, then by IH we �nd τ ′′ such that τ ′ v τ ′′ ≤? τ2, and (by

transitivity of v) we have τ1 v τ
′′ ≤? τ2. �

There are two observations we can make about this corollary. One is that it
justi�es the constraint we use for variables:

〈〈x : t〉〉 = ∃α . (x Ûv α) ∧ (α Û≤ t) .

Our use of a materialization constraint and a subtyping constraint is justi�ed
by the fact that a typing derivation for a variable can always be reduced to
the application of three rules: [Tx], [Tv], and [T≤], in this order; instantiation,
done by [Tx], is merged into materialization constraints. This result would
therefore be useful to prove completeness of type inference (though we do not
achieve completeness for other reasons that we will discuss).

Another observation is that this corollary proves that, for any static type t
and any τ , if t v<? τ then t ≤ τ . Using subtyping, we can go from static types to
gradual types (e.g., t ≤ t ∨ ?), but then materialization on these gradual types
is not useful, because subtyping could be used in its place. This is important
because it shows that undesirable judgments like Int v<? Bool, for example, do
not hold (while it would if we did not consider polarity when we turn ? to
frame variables). This ensures that the gradual type system still behaves like a
static type system when no type annotation contains ?.

Finally, we prove a result analogous to Lemma 2.13: type substitutions that
are pointwise equivalent according to '? map the same type to equivalent
types. This holds also if the substitutions are not static.

192

10.3 Source and cast languages

10.25 proposition: Let τ be a gradual type and σ1 and σ2 two substitutions
such that ∀α ∈ var(τ). ασ1 '

? ασ2. Then, τσ1 '
? τσ2. �

Proof in appendix (p. 281).

10.3 Source and cast languages

10.3.1 Syntax and typing

To add set-theoretic types to the source language and to the cast language, we
do not need to change their syntax, except, of course, by allowing set-theoretic
types in the syntax (wherever types appear: in annotations, casts, and type
applications). The type system is also de�ned using the same rules as before
(those of Figure 9.1 for the source language and those of Figure 9.5 for the cast
language) except that we add the subsumption rule

[T≤]
Γ ` e : τ ′

Γ ` e : τ
τ ′ ≤? τ

using the subtyping relation of De�nition 10.4. Compilation also stays the
same as in Section 9.2.4 except that we add compilation for the rule [T≤] as
follows.

[T≤]
Γ ` e E : τ ′

Γ ` e E : τ
τ ′ ≤? τ

10.3.2 Semantics

The de�nition of the operational semantics is challenging, but here we just
outline the main di�culties. The full de�nition is in Appendix b.2.

The addition of set-theoretic type connectives makes the form of casts more
complicated. Previously, either a cast had ? as its source or target type (like
〈?⇒

p
Int→ Int〉 and 〈Int→ Int⇒

p
?〉) or it acted only under a type constructor

(like 〈Int → Int⇒
p
? → ?〉). Here, casts can act under type connectives: for

example, 〈(Int→ Int)∧ (Bool→ Bool) ⇒
p
(Int→ Int)∧ ?〉. The notion of ground

type must be generalized to deal with such casts.
The reduction of applications and projections with casts is challenging.

Consider the case of applications as an example. Without set-theoretic types,
the reduction rule(

V 〈τ1 → τ2 ⇒
p
τ ′1 → τ ′2〉

)
V ′ ↪→

(
V (V ′〈τ ′1 ⇒

p̄
τ1〉)

)
〈τ2 ⇒

p
τ ′2〉

can be used to reduce the application of a value with a cast, splitting the cast
into two casts, one on the argument and one on the result of the application. We
can split a cast in this way only if both its source and its target types are arrows.
With set-theoretic types, function types can be union or intersection of arrows,
in which case the rule cannot be applied directly. To reduce an application
(V 〈τ ⇒

p
τ ′〉)V ′, we must compute two arrow types that approximate τ and τ ′,

193

10 Gradual typing for set-theoretic types

to replicate the same construction of the rule above. This approximation is
performed by an operator ◦, whose result depends on the cast and on the type
of the argument V ′.

The cast language satis�es the soundness and blame safety properties
already stated in Section 9.2.3 for the cast language without set-theoretic
types. Moreover, it is a conservative extension of the latter: indeed, the proof
of soundness for the cast language of Section 9.2.3 follows by conservativity
from the proof for this extension.

10.4 Type inference

We describe what must be changed to adapt the type inference system in
Section 9.3 to set-theoretic types. The description of that system was meant
to be extended here; this motivated some design choices, including the use of
subtyping constraints. We must rede�ne type-constraint solving; on the other
hand, the de�nition of constraint simpli�cation remains unchanged.

10.4.1 Type constraints and solutions

We keep the same de�nition for type constraints except, of course, for the
di�erent de�nition of types. However, the conditions for a type substitution σ
to be a solution of a type-constraint set D in ∆ must be changed: subtyping
constraints now require subtyping instead of equality. We now write σ
∆ D

to mean that:

• for every (t1 Û≤ t2) ∈ D, we have t1σ ≤? t2σ ;
• for every (τ Ûv α) ∈ D, we have τσ v ασ and, for all β ∈ var(τ), βσ is a

static type;
• dom(σ) ∩ ∆ = �.

10.4.2 Type-constraint solving

To solve type-constraint sets, we replace uni�cation with an algorithm de-
signed for set-theoretic types and semantic subtyping: the tallying algorithm
of Castagna et al. (2015b), which we have already described in Section 4.3.1.
Given a set T 1 Û≤ T 2 of subtyping constraints between type frames, tallying
computes a �nite set Σ of type substitutions such that, for every σ ∈ Σ and
(T 1 Û≤ T 2) ∈ T 1 Û≤ T 2, we have T 1σ ≤ T 2σ . Tallying can compute a set con-
taining more than one type substitution, because some constraints do not
have a single type substitution that is their principal solution. Tallying veri�es
soundness and completeness properties described in Property 4.25.

We want to use tallying to de�ne an algorithm to solve type constraints.
Previously, we converted materialization constraints (τ Ûv α) to equality con-
straints (T Û= α) and used uni�cation. To do the same here, we �rst need to
extend tallying to handle such equality constraints. This is easy to do in our
case by adding simple pre- and post-processing steps. We are only interested

194

10.4 Type inference

in using this when the equality constraints are those we will generate from
materialization constraints. Therefore, we give an algorithm tally Û= tailored to
this situation, which fails unless certain conditions are satis�ed. In practice,
these conditions should never occur when solving the constraints we generate
in our system. We do not prove this here, though, because the proof would
only be needed to show completeness for type inference, and completeness
does not hold anyway, as we will explain.

The algorithm tally Û=∆({ (t
1
i Û≤ t2

i) | i ∈ I }∪{ (Tj Û= α j) | j ∈ J }) is the following.

1. If any of the following conditions holds, return �:
• there exist j1, j2 ∈ J such that α j1 = α j2 and Tj1 , Tj2 ;
• there exist j1, j2 ∈ J such that α j1 ∈ var(Tj2);
• there exists j ∈ J such that α j ∈ ∆.

2. Compute Σ = tally∆({ (t1
i [Tj/α j]j ∈J Û≤ t2

i [Tj/α j]j ∈J) | i ∈ I }).

3. Return { σ0 ∪ [Tjσ0/α j]j ∈J | σ0 ∈ Σ }.

In step 1 the algorithm fails if some conditions are met. These should never
occur when the algorithm is used for type inference, because α in a constraint
(τ Ûv α) (which will become (T Û= α)) is always chosen fresh. As anticipated,
we do not prove this formally.

The algorithm works by inlining the equality constraints in the subtyping
constraints and relying on tallying to �nd a solution. Then, in step 3, the
solutions found by tallying are extended with mappings for the variables in
the equality constraints. The union in step 3 is well de�ned because σ0 is not
de�ned on the α j , since they do not appear in the input to tally.

The algorithm satis�es the following property.

10.26 proposition (Soundness of tally Û=):

∀σ ∈ tally Û=∆

(
t1 Û≤ t2 ∪T Û= α

)
.


∀(t1 Û≤ t2) ∈ t1 Û≤ t2. t1σ ≤ t2σ

∀(T Û= α) ∈ T Û= α . Tσ = ασ

dom(σ) ⊆ var
(
t1 Û≤ t2 ∪T Û= α

)
\ ∆

�

Proof in appendix (p. 282).

Using tally Û=, we can de�ne the version of solve for set-theoretic types fol-
lowing the same approach as before. However, there are two di�culties.

The main di�culty is the presence of recursive types and their behaviour
with respect to materialization. Consider the recursive type de�ned by the
equation τ = (?×τ)∨b, where b is some base type. It corresponds to the type of
lists of elements of type ?, terminated by a constant in b. Since recursive types
in our de�nition are in�nite regular trees (and not �nite trees with explicit
binders), τ = (? × τ) ∨ b and τ ′ = (? × ((? × τ ′) ∨ b)) ∨ b denote exactly the
same type. What types can τ materialize to? Clearly, both τ1 = (Int × τ2) ∨ b

195

10 Gradual typing for set-theoretic types

and τ2 = (Int × ((Bool × τ2) ∨ b)) ∨ b are possible. Indeed, ? occurs in�nitely
many times in τ . Materialization could in principle allow us to change each
occurrence to a di�erent type. However, since types must be regular trees, only
a �nite number of occurrences can be replaced with di�erent types (otherwise,
the resulting tree would not be a gradual type). While �nite, this number is
unbounded.

Recall that step 1 of solve (in Section 9.3.2, p. 165) picked a discrimination Tj
of each τj such that no frame variable appeared more than once in Tj . If we
consider the recursive type τ above, there is no T such that T † = τ and that T
has no repeated frame variables: it would need to have in�nitely many frame
variables and thus be non-regular. While we will never need in�nitely many
variables, we do not know in advance (in this pre-processing step) how many
we will need.

A solution to this would be to change the tallying algorithm so that discrim-
ination is performed during tallying. Then, it could be done lazily, introducing
as many frame variables as needed. However, this sacri�ces the modularity of
our current approach.

Currently, we give a de�nition where no constraint is placed on how many
frame variables are used to replace ?. Of course, a sensible choice is to use dif-
ferent variables as much as possible except for the in�nitely many occurrences
of ? in a recursive loop.

There is a second di�culty. For a subtyping constraint (t1 Û≤ t2), a substi-
tution σ computed by tallying ensures t1σ ≤ t2σ . However, what we want is
rather (t1σ)† ≤? (t2σ)†. This does not necessarily hold unless the type frames
t1σ and t2σ are polarized. For example, if the constraint is (α Û≤ 0) and the
substitution is [(X \X)/α], we have X \X ≤ 0 but ? \ ? �? 0. We de�ne solve so
that it ensures polarization in these cases by adjusting the variable renaming
step we already had.

Having described these di�erences, we can give the de�nition of the al-
gorithm. Let D be of the form { (t1

i Û≤ t2
i) | i ∈ I } ∪ { (τj Ûv α j) | j ∈ J }: then

solve∆(D) is de�ned as follows.

1. Let T Û= α be { (Tj Û= α j) | j ∈ J , τj , α j } where, for each j ∈ J , T †
j = τj ;

2. Compute Σ = tally Û=∆
(
{ (t1

i Û≤ t2
i) | i ∈ I } ∪T Û= α

)
;

3. Return { (σ ′0 ◦ σ0)
† |TVar | σ0 ∈ Σ },

where, for every σ0 ∈ Σ, σ ′0 is computed as follows:

a. σ ′0 = [®α
′/ ®X] ∪ [®X ′/ ®α]

b. A = var Ûv(D)σ0 ∪
⋃

i ∈I
(
var±(t1

i σ0) ∪ var±(t2
i σ0)

)
c. ®X = FVar ∩A
d. ®α = var(D) \ (∆ ∪ dom(σ0) ∪A)

e. ®α ′ and ®X ′ are vectors of fresh variables

In step 3b, we write var±(T) for var+(T) ∩ var−(T): the set of variables that
have at least both positive and negative occurrences in T . A type frame T is

196

10.4 Type inference

polarized when var±(T)∩FVar = �: the renaming substitution σ ′0 is constructed
to ensure this for all type frames t1

i σ0σ
′
0 and t2

i σ0σ
′
0.

The following result states soundness for solve.

10.27 proposition: If σ ∈ solve∆(D), then σ
∆ D and dom(σ) ⊆ var(D). �

Proof in appendix (p. 282).

10.4.3 Structured constraints, generation, and simpli�cation

The syntax of structured constraints can be kept unchanged except for the
change in the syntax of types. Constraint generation is also unchanged. Con-
straint simpli�cation still uses the same rules, but it relies on the new solve
algorithm. Soundness still holds, with the same statement as Theorem 9.24.

Let D be a derivation of Γ ; var(e) ` 〈〈e : t〉〉 { D. Let σ be a type substitu-
tion such that σ
var(e) D. Then, we have Γσ ` e ⦃e⦄Dσ : tσ .

However, completeness no longer holds. The main obstacle to completeness
is the aforementioned problem with materialization of ? in recursive types.
Therefore, the �rst step to attempt to recover completeness for inference
would be to study how to change the solve algorithm to make it complete.
This probably requires a modi�cation of tallying to handle materialization
directly. In that case, tally Û= would no longer be needed; indeed, while su�cient
for our purpose here, its awkward de�nition would complicate a proof of
completeness because it relies very much on the speci�cs of the constraints
we generate.

There is one further obstacle to achieve completeness. In this presentation,
we have used the same general structure for type inference for subtyping as
without. However, this means that a proof of completeness would run into
the same problems as those described in Sections 4.1.1 and 5.3.1. Therefore,
while we have chosen here a uniform presentation, the best path towards
completeness is probably to adapt the work in Part I for this setting.

10.4.4 Soundness of type inference

Here we develop the proof of soundness. The intermediate results we need
are mostly the same as in Section 9.3.5. We begin with standard properties of
stability under type substitutions and of weakening for declarative typing and
compilation.

10.28 lemma (Stability of typing under type substitution): If Γ ` e E : τ , then,
for every static type substitution σ , we have Γσ ` eσ Eσ : τσ . �

197

10 Gradual typing for set-theoretic types

Proof in appendix (p. 284).

Given two type schemes S1 and S2, we write S1 ≤
? S2 when the schemes have

the same quanti�ed variables and their types are in the subtyping relation:
that is, ∀®α . τ1 ≤

? ∀®α . τ2 if and only if τ1 ≤
? τ2. We write Γ1 ≤

? Γ2 when
dom(Γ1) = dom(Γ2) and, for all x ∈ dom(Γ1), Γ1(x) ≤

? Γ2(x).

10.29 lemma (Weakening): Let Γ1 and Γ2 be two type environments such that
Γ1 ≤

? Γ2. If Γ2 ` e E : τ , then Γ1 ` e E : τ . �

Proof in appendix (p. 285).

We prove the following six auxiliary results and �nally the proof of sound-
ness of type inference (Theorem 10.36). The statements and general proof
technique correspond closely to those in Section 9.3.5. For the �rst lemma,
note that the hypothesis static(σ ′, var(D)σ) is important because subtyping is
only preserved by type substitutions that map type variables to static types.

10.30 lemma: Let σ and σ ′ be two type substitutions such that σ
∆ D and
static(σ ′, var(D)σ). If (t1 Û≤ t2) ∈ D, then t1σσ

′ ≤? t2σσ
′. �

Proof: By de�nition of σ
∆ D, we have t1σ ≤? t2σ . Since var(t1) ∪ var(t2) ⊆
var(D), we have var(t1σ) ∪ var(t2σ) ⊆ var(D)σ . Because static(σ ′, var(D)σ), the
restriction of σ ′ to var(t1σ) ∪ var(t2σ) is a static substitution. By Proposi-
tion 10.20, t1σσ ′ ≤? t2σσ ′. �

10.31 lemma: Let σ and σ ′ be two type substitutions. If σ
∆ D and (τ Ûv α) ∈ D,
then τσσ ′ v ασσ ′. �

Proof: By de�nition of σ
∆ D, we have τσ v ασ . Then, τσσ ′ v ασσ ′

follows by Proposition 10.3. �

10.32 lemma: Let D be a derivation of Γ ;∆ ` 〈〈e : t〉〉 { D. Then:

• if e = x , then Γ (x) = ∀®α . τ and D = {(τ [®β/ ®α] Ûv α), (α Û≤ t)} (for some τ ,
α , ®α , ®β);

• if e = c , then D = {bc Û≤ t};
• if e = λx . e ′, thenD contains a sub-derivation of (Γ , x : α1);∆ ` 〈〈e ′ : α2〉〉 {

D ′, and D = D ′ ∪ {(α1 Ûv α1), (α1 → α2 Û≤ t)};
• if e = λx : τ . e ′, thenD contains a sub-derivation of (Γ , x : τ);∆ ` 〈〈e ′ : α2〉〉 {

D ′, and D = D ′ ∪ {(τ Ûv α1), (α1 → α2 Û≤ t)};
• if e = e1e2, thenD contains two sub-derivations of Γ ;∆ ` 〈〈e1 : α → t〉〉 {

D1 and Γ ;∆ ` 〈〈e2 : α〉〉 { D2 (for some α , D1, and D2), and D = D1 ∪ D2;
• if e = (e1, e2), then D contains two sub-derivations of Γ ;∆ ` 〈〈e1 : α1〉〉 {

D1 and Γ ;∆ ` 〈〈e2 : α2〉〉 { D2 (for some α1, α2, D1, and D2), and D =

D1 ∪ D2 ∪ {α1 × α2 Û≤ t};

198

10.4 Type inference

• if e = πie
′, thenD contains a sub-derivation of Γ ;∆ ` 〈〈e ′ : α1×α2〉〉 { D ′,

and D = D ′ ∪ {αi Û≤ t};
• if e = (let ®α x = e1 in e2), then D contains two sub-derivations of Γ ;∆ ∪
®α ` 〈〈e1 : α〉〉 { D1 and (Γ , x : ∀®α, ®β . ασ1);∆ ` 〈〈e2 : t〉〉 { D2, and the
following hold:

D = D2 ∪ equiv(σ1,D1) σ1 ∈ solve∆∪ ®α (D1)

®α] var(Γσ1) ®β = var(ασ1) \ (var(Γσ1) ∪ ®α ∪ var(e1)) �

Proof: Straightforward, since the constraint simpli�cation rules are syntax-
directed. �

10.33 lemma: If Γ ;∆ ` C { D, then var(Γ) ∩ var(D) ⊆ var(C) ∪ var Ûv(D). �

Proof in appendix (p. 286).

10.34 lemma:

∀Γ ,∆, e,α,D,σ .

Γ ;∆ ` 〈〈e : α〉〉 { D

σ ∈ solve∆(D)

var(e) ⊆ ∆

α < var(Γ)


=⇒ static(σ , var(Γ))

�

Proof in appendix (p. 287).

10.35 lemma:

∀Γ ,∆,D1,σ1, ρ,σ ,σ
′.

σ
∆ equiv(σ1,D1)

dom(ρ)] Γσ1

static(σ ′, var(equiv(σ1,D1))σ)

static(σ1, var(Γ))


=⇒ Γσσ ′ ≤? Γσ1ρσσ

′

�

Proof in appendix (p. 287).

10.36 theorem (Soundness of type inference): LetD be a derivation of Γ ; var(e) `
〈〈e : t〉〉 { D. Let σ be a type substitution such that σ
var(e) D. Then, we have
Γσ ` e ⦃e⦄Dσ : tσ . �

Proof in appendix (p. 288).

199

11 Discussion

The original goal of the work described in this part of the thesis was to com-
bine polymorphic gradual typing and set-theoretic types. The di�culty lies in
the intrinsic di�erences between the two: gradual typing is essentially syn-
tactic (“?” is a syntactic placeholder), while subtyping for set-theoretic types is
de�ned using a semantic-oriented interpretation of types. To overcome this
discrepancy, we have sought to interpret gradual types indirectly, using the
operation of discrimination, so that we could rely on the existing interpretation
of static types. Discrimination is a key ingredient of our approach because we
use it to de�ne subtyping, materialization, and even type inference; for the
latter, it allows us to reuse existing algorithms for constraint solving.

Finally, our approach led us to realize that gradual typing could be perceived
and captured neatly by a subsumption-like rule using the preorder on types that
we refer to as materialization. Since this preorder is orthogonal to subtyping,
the two can be coupled in a type system without much interference (but a lot of
interplay). Despite our new de�nition, materialization was already well known
by several names (less or equally informative, precision, naive subtyping).
However, it had never been singled out in a dedicated structural rule. We have
done so, and thereby we have demonstrated how adding the rule [Tv] alone is
enough to endow a declarative type system with graduality. We believe that
this declarative formulation is a valuable contribution to the understanding of
gradual typing and complements the algorithmic systems that were the focus
of previous work. As an example, materialization gives a new meaning to the
cast calculus: its expressions encode the proofs of the declarative systems, and
casts spot the places where [Tv] was used.

That said, it is not all a bed of roses. Despite this novel presentation, subtyp-
ing and type inference for gradual set-theoretic types rely on long and tedious
proofs that have to deal with the syntax of types. The same applies to the
de�nition of the semantics for the cast language, which we have omitted from
this presentation. Nevertheless, we believe that our declarative formalization
makes graduality more intelligible and that our work raises new questions and
opens fresh perspectives. We discuss at the end of this chapter two directions
for future work that are particularly relevant for the topics discussed in this
thesis.

11.1 Related work

The contributions of this work include the replacement of consistency with
materialization to de�ne gradual type systems and the integration of gradual
typing with set-theoretic types (intersection, union, negation, recursion) and
Hindley-Milner polymorphism (with type inference). The integration of all of

201

11 Discussion

these features is novel, but prior work has studied the combination of subsets
of these features.

Castagna and Lanvin (2017) study the combination of gradual typing with
set-theoretic types, but without polymorphism. They employ the approach
of Garcia, Clark, and Tanter (2016) that uses abstract interpretation to guide
the design of the operations on types. Compared to the work of Castagna
and Lanvin (2017), our work adds Hindley-Milner polymorphism with type
inference and gives a new operational semantics that includes blame tracking
and better lines up with the prior work on gradual typing. Ortin and García
(2011) also investigate the combination of intersection and union types with
gradual typing, but without higher-order functions and polymorphism. Toro
and Tanter (2017) introduce a new kind of union type inspired by gradual
typing, that provides implicit downcasts from a union to any of its constituent
types. There is some overlap in the intended use cases of these gradual union
types and our design, though there are considerable di�erences as well, given
that our work handles polymorphism and the full range of set-theoretic types.
A similar overlap exists with the work by Jafery and Dun�eld (2017), who
introduce gradual sum types, yet, with the same kind of limitations as Toro
and Tanter (2017). Ângelo and Florido (2018) study the combination of gradual
typing and intersection types, but in a somewhat limited form, as the design
does not support subtyping or the other set-theoretic types.

As discussed in Chapter 8, Siek and Vachharajani (2008) showed how to
do uni�cation-based inference in a gradually typed language. Garcia and
Cimini (2015) took this a step further, providing inference for Hindley-Milner
polymorphism and proving that their algorithm yields principal types. The
present work builds on this prior work and contributes the additional insight
that a special-purpose constraint solver is not needed to handle gradual typing,
but an o�-the-shelf uni�cation algorithm can be used in combination of some
pre- and post-processing of the solution. In another line of work, Rastogi,
Chaudhuri, and Hosmer (2012) develop a �ow-based type inference algorithm
for ActionScript to facilitate type specialization and the removal of runtime
checks as part of their optimizing compiler. Campora et al. (2017) improve the
support for migrating from dynamic to static typing by integrating gradual
typing with variational types. They de�ne a constraint-based type inference
algorithm that accounts for the combination of these two features.

The combination of gradual typing with subtyping has been studied by
many authors in the context of object-oriented languages. Siek and Taha
(2007) showed how to augment an object calculus with gradual typing. Their
declarative type system uses consistency in the elimination rules and has a
subsumption rule to support subtyping. Their algorithmic type system com-
bines consistency and subtyping into a single relation, consistent-subtyping.
Many subsequent works adapted consistent-subtyping to di�erent settings (Ina
and Igarashi, 2011; Bierman, Abadi, and Torgersen, 2014; Swamy et al., 2014;
Maidl, Mascarenhas, and Ierusalimschy, 2014; Garcia, Clark, and Tanter, 2016;
Lehmann and Tanter, 2017; Xie, Bi, and Oliveira, 2018).

202

11.2 Future work

Ours is not the �rst line of work that tries to attack the syntactic hegemony
currently ruling the gradual types community. The �rst and, alas hitherto
unique, other example of this is the already cited work of Garcia, Clark, and
Tanter (2016) on “Abstracting Gradual Typing” (AGT) (and its several follow-
ups) which was a source of inspiration both for our work and for Castagna
and Lanvin (2017). AGT uses abstract interpretation to relate gradual types to
sets of static types. This is done via two functions: a concretization function
that maps a gradual type τ into the set of static types obtained by replacing
static types for all occurrences of ? in τ ; an abstraction function that maps a set
of static types to the gradual type whose concretization best approximates the
set. Like AGT, we map gradual types to sets of static types, although they are
di�erent from those obtained by concretization, since we use type variables
rather than arbitrary static types. As long as only concretization is involved, we
can follow and reproduce the AGT approach in ours: (1) AGT concretizations
of a type τ can be de�ned in our system as the set of static types to which τ can
materialize; (2) this de�nition can be used to give a di�erent characterization
of the AGT consistency relation; and (3) by using that characterization we can
show consistency to be decidable, de�ne consistent-subtyping, and show that
the problem of deciding consistent-subtyping in AGT reduces in linear time to
deciding semantic subtyping. But then it is not possible to follow the approach
further, because the AGT de�nition of the abstraction function is inherently
syntactic and, thus, is un�t to handle type connectives whose de�nition is
fundamentally of semantic nature. In other terms, we have no idea about
whether – let alone how – AGT could handle set-theoretic types and this is
why we had to �nd new characterizations of constructions that in AGT are
smoothly obtained by a simple application of the abstraction function.

11.2 Future work

This work lays a foundation for integrating gradual typing and polymorphic
set-theoretic types. As such, it opens new questions and issues. There are two
main issues that it would be important to address in the future.

type inference with set-theoretic types: In the description of
type inference in Section 10.4, we have tried to rely on the existing algorithm
for tallying, de�ning solve by adding pre- and post-processing steps to it. This
is not appropriate to handle recursive types, as we have discussed. Therefore,
it would be interesting to study how to extend tallying with materialization
constraints in order to obtain a complete algorithm for type-constraint solving.

This would be an important step towards achieving completeness for type
inference as a whole. However, the di�culties that we have described for in-
ference without gradual typing – the treatment of generalization (Section 4.1.1)
and of explicit polymorphism from annotations (Section 5.3.1) – exist here
too, though we have not met them because we have only proven soundness.
We have chosen to describe constraint simpli�cation in a uniform way both
without and with subtyping. However, to obtain a more robust description

203

11 Discussion

and possibly achieve completeness, we should reframe the type system in the
reformulated form of Section 4.1 and de�ne constraint simpli�cation following
the de�nition in Section 4.3.

intersection types for functions: We have not included in our
type system an intersection-introduction rule like [T∧] in Chapter 3. This
was an early design choice of this work, motivated by several reasons. The
presence of such a rule would complicate the dynamic semantics of the cast
calculus (see Castagna and Lanvin (2017), where this restriction is not present),
especially when combined with a typecase construct, which we need to use
intersection types for overloading as in Part I. Moreover, in the study of type
inference, we would have considered the restriction of the system without
[T∧] anyway.

The drawback is, of course, that function types are not as expressive as they
could be. For instance, consider the type deduced for mymap in Chapter 8:

Bool→ (α → β) → ((α array ∨ α list) ∧ ?) → (β array ∨ β list) .

This type is not completely satisfactory: it does not capture the precise correl-
ation between input and output. As a matter of fact, the following program
(which transforms lists into arrays and vice versa) would get the same type as
mymap:

let mymap2 (condition) (f) (x: (α array ∨ α list) ∧ ?) =
if condition then Array.to_list (Array.map f x) else Array.of_list (List.map f x)

We plan to study how to add typecases to the language and intersection
introduction to the type system so that this restriction can be removed and
that we can derive intersection types at least for annotated functions. Then,
(an annotated version of) mymap could be given the type

Bool→ (α → β) →
((
(α array ∧ ?) → β array

)
∧

(
(α list ∧ ?) → β list

))
whereas mymap2 would have the di�erent type

Bool→ (α → β) →
((
(α array ∧ ?) → β list

)
∧

(
(α list ∧ ?) → β array

))
.

204

Part III

Non-strict languages

12 Introduction

Semantic subtyping has been developed for languages with strict, call-by-
value semantics. The type systems described in previous work and in the �rst
two parts of this thesis (for instance, the system of Chapter 3) are unsound
for non-strict languages. In this part, we show how to adapt the semantic
subtyping approach to obtain soundness for non-strict semantics – speci�cally,
for call-by-need.

To do so, we introduce an explicit representation for divergence in the types:
a type ⊥ which is distinct from the type 0 associated to diverging expressions
in call-by-value semantic subtyping. We modify the type system so that it
keeps track of divergence, albeit with a very coarse approximation. As a result,
we recover soundness while maintaining much of the behaviour of subtyping
from the call-by-value case.

In this chapter, we show why existing type systems with semantic subtyping
are unsound for non-strict languages. Then, we introduce the approach we
use to design a sound type system, and we motivate our choice of studying
call-by-need instead of call-by-name.

12.1 Semantic subtyping for non-strict languages

This work started as an attempt to design a type system for the Nix Expression
Language (Dolstra and Löh, 2008), an untyped, purely functional, and lazily
evaluated language for Unix/Linux package management. Since Nix is un-
typed, some programming idioms it encourages require advanced type system
features to be analyzed properly. Notably, the possibility of writing functions
that use type tests to have an overloaded-like behaviour made intersection
types and semantic subtyping a good �t for the language. However, existing
semantic subtyping relations are unsound for non-strict semantics; this was
already observed by Frisch, Castagna, and Benzaken (2008) and no adaptation
has been proposed later.

Current semantic subtyping systems are unsound for non-strict semantics
because of how they deal with the bottom type 0. The type 0 corresponds to
the empty set of values; accordingly, we have n0o = � (cf. Section 2.1). The
intuition is that a reducible expression e can be safely given a type t only if all
results (i.e., values) it can return are of type t . Thus, 0 can only be assigned
to expressions that are statically known to diverge (i.e., that never return a
result). For example, the ML expression let rec f x = f x in f () can be given type 0.
Let us use ē to denote any diverging expression that, like this, can be given
type 0. Consider the following typing derivations, which are valid in current

207

12 Introduction

semantic subtyping systems (for example, the system of Chapter 3).

[']
` (ē, 3) : 0 × Int
` (ē, 3) : 0 × Bool
` π2 (ē, 3) : Bool

[']
` λx . 3 : 0→ Int

` λx . 3 : 0→ Bool ` ē : 0
` (λx . 3) ē : Bool

Both π2 (ē, 3) and (λx . 3) ē diverge in call-by-value semantics (since ē must
be evaluated �rst), while they both reduce to 3 in call-by-name or call-by-need.
The derivations are therefore sound for call-by-value, while they are clearly
unsound with non-strict evaluation.

Why are these derivations valid? The crucial steps are those marked with
['], which convert between types that have the same interpretation. With
semantic subtyping (as de�ned in Chapter 2, for example), 0 × Int ' 0 × Bool
holds because all types of the form 0×t are equivalent to 0 itself: none of these
types contains any value (indeed, product types are interpreted as Cartesian
products and therefore the product with the empty set is itself empty). The
equivalence 0 → Int ' 0 → Bool holds too. Intuitively, we interpret a type
t1 → t2 as the set of functions which, on arguments of type t1, either diverge
or return results in type t2. There are no arguments of type 0 (because, in call-
by-value, arguments are always values); hence, all types of the form 0→ t are
equivalent: they all contain every well-typed function. (As we have discussed
in Chapter 2, arrow types are not really interpreted as sets of functions, but
the actual interpretation behaves as if they were.)

12.2 Our approach

The intuition behind our solution is that, with non-strict semantics, it is not
appropriate to see a type as the set of the values that have that type. In a
call-by-value language, operations like application or projection occur on
values: thus, we can identify two types (and, in some sense, the expressions
they type) if they contain (and their expressions may produce) the same values.
In non-strict languages, though, operations also occur on partially evaluated
results: these, like (ē, 3) in our example, can contain diverging sub-expressions
below their top-level constructor.

As a consequence, it is unsound, for example, to type (ē, 3) as 0 × Int and at
the same time to have 0 × Int ' 0 × Bool. It is also unsound to have a notion of
subtyping on arrow types that assumes implicitly that every argument to a
function must be a value.

One approach to solve this problem would be to change the interpretation
of 0 so that it is non-empty. However, the existence of types with an empty
interpretation is important for the internal machinery of semantic subtyping.
Notably, the decision procedure for subtyping relies on them (checking whether
t1 ≤ t2 holds is reduced to checking whether the type t1 ∧ ¬t2 is empty).
Therefore, we keep the interpretation n0o = �, but we change the type system
so that this type is never derivable, not even for diverging expressions. We
keep it as a purely “internal” type useful to describe subtyping, but never used
to type expressions.

208

12.2 Our approach

We introduce instead a separate type ⊥ as the type of diverging expressions.
This type is non-empty but disjoint from the types of constants, functions, and
pairs: n⊥o is a singleton whose unique element represents divergence.

Introducing the ⊥ type means that we track termination in types. In par-
ticular, we distinguish two classes of types: those that are disjoint from ⊥
(for example, Int, Int → Bool, or Int × Bool) and those that include ⊥ (since
the interpretation of ⊥ is a singleton, no type can contain a proper subset of
it). Intuitively, the former correspond to computations that are guaranteed to
terminate: for example, Int is the type of terminating expressions producing
an integer result. Conversely, the types of diverging expressions must always
contain ⊥ and, as a result, they can always be written in the form t ∨ ⊥, for
some type t . Subtyping veri�es t ≤ t ∨ ⊥ for any t : this ensures that a ter-
minating expression can always be used when a possibly diverging one of the
same type is expected.

This subdivision of types suggests that ⊥ is used to approximate the set of
diverging well-typed expressions: an expression whose type contains ⊥ is an
expression that may diverge; an expression of type⊥ is one that surely diverges.
Actually, the type system we propose performs a rather gross approximation.
We derive “terminating types” (i.e., subtypes of ¬⊥) only for expressions that
are already results and cannot be reduced: constants, functions, or pairs thereof.
Applications and projections, instead, are always typed by assuming that they
might diverge. The typing rules are written to handle and propagate the ⊥
type. For example, we type applications using the following rule.

Γ ` e1 : (t ′→ t) ∨ ⊥ Γ ` e2 : t ′

Γ ` e1 e2 : t ∨ ⊥
This rule allows the expression e1 to be possibly diverging: we require it to
have the type (t ′ → t) ∨ ⊥ instead of the usual t ′ → t . We type the whole
application as t ∨ ⊥ to signify that it can diverge even if the codomain t does
not include ⊥, since e1 can diverge.

This system avoids the problems we have seen with semantic subtyping:
no expression can be assigned the empty type, which was the type on which
subtyping behaved incorrectly. The new type ⊥ does not cause the same
problems because n⊥o is non-empty. For example, the type of expressions like
(ē, 3) – where ē is diverging – is now ⊥ × Int. This type is not equivalent to
⊥ × Bool: the two interpretations are di�erent because the interpretation of
types includes an element (n⊥o) to represent divergence.

Typing all applications as possibly diverging – even very simple ones like
(λx . 3) e – is a very coarse approximation which can seem unsatisfactory. We
could try to amend the rule to say that if e1 has type t ′→ t , then e1 e2 has type
t instead of t ∨ ⊥. However, we prefer to keep the simpler rules since they
achieve our goal of giving a sound type system that still enjoys most bene�ts
of semantic subtyping.

An advantage of the simpler system is that it allows us to treat ⊥ as an
internal type that does not need to be written explicitly by programmers.
Since the language is explicitly typed, if ⊥ were to be treated more precisely,

209

12 Introduction

programmers would presumably need to include it or exclude it explicitly
from function signatures. This would make the type system signi�cantly
di�erent from conventional ones where divergence is not explicitly expressed
in the types. In the present system, instead, we can assume that programmers
annotate programs using standard set-theoretic types and⊥ is introduced only
behind the scenes and, thus, is transparent to programmers.

We de�ne this type system for a call-by-need variant of the language studied
by Frisch, Castagna, and Benzaken (2008), and we prove its soundness in terms
of progress and subject reduction. The language is similar to that of Chapter 3,
but, for simplicity, we use explicitly typed functions and do not consider
polymorphism.

The choice of call-by-need rather than call-by-name stems from the beha-
viour of semantic subtyping on intersections of arrow types. Our type system
would actually be unsound for call-by-name if the language were extended
with constructs that can reduce non-deterministically to di�erent answers. For
example, the expression rnd(t) of Frisch, Castagna, and Benzaken (2008) that
returns a random result of type t could not be added while keeping sound-
ness. This is because in call-by-name, if such an expression is duplicated, each
occurrence could reduce di�erently; in call-by-need, instead, its evaluation
would be shared. Intersection and union types make the type system precise
enough to expose this di�erence. In the absence of such non-deterministic
constructs, call-by-name and call-by-need can be shown to be observationally
equivalent, so that soundness should hold for both; however, call-by-need also
simpli�es the technical work to prove soundness.

We show an example of this, though we will return on this point later. The
example is similar to the one we have discussed in Section 3.3.1. Consider the
following derivation, where ē is an expression of type Int ∨ Bool.

[≤]
` λx . (x, x) : (Int→ Int × Int) ∧ (Bool→ Bool × Bool)

` λx . (x, x) : Int ∨ Bool→ (Int × Int) ∨ (Bool × Bool) ` ē : Int ∨ Bool
` (λx . (x, x)) ē : (Int × Int) ∨ (Bool × Bool)

We type λx . (x, x) with the intersection (Int→ Int× Int)∧ (Bool→ Bool×Bool)
using, for instance, the rule [T∧] of Figure 3.2. Then, the step marked with
[≤] applies subsumption, which is possible because the intersection type is
a subtype of (Int ∨ Bool) → ((Int × Int) ∨ (Bool × Bool)). We obtain that the
application (λx . (x, x)) ē is well typed with type (Int × Int) ∨ (Bool × Bool). In
call-by-name, it reduces to (ē, ē): therefore, for the system to satisfy subject
reduction, we must be able to type (ē, ē) as (Int × Int) ∨ (Bool × Bool) too. But,
intuitively, this type would be unsound for (ē, ē) if each occurrence of ē could
reduce independently and non-deterministically either to an integer or to a
Boolean. Using a typecase we can actually exhibit a term that breaks subject
reduction (we return on this in Section 13.4.1).

There are several ways to approach this problem. We could try to make
(Int ∨ Bool) → ((Int × Int) ∨ (Bool × Bool)) no longer derivable for λx . (x, x),
by changing the type system or the subtyping relation. However, this would

210

12.3 Contributions

curtail the expressive power of intersection types as used in the semantic
subtyping approach. We could instead assume explicitly that the semantics
is deterministic. In this case, intuitively the typing would not be unsound,
but a proof of subject reduction would be di�cult: we should give a complex
union disjunction rule to type (ē, ē). We choose instead to consider a call-
by-need semantics because it solves both problems. With call-by-need, non-
determinism poses no di�culty because of sharing. We still need a union
disjunction rule, but it is simpler to state since we only need it to type the let
bindings that we will introduce to represent shared computations.

12.3 Contributions

The main contribution of this part of the thesis is the development of a type sys-
tem for non-strict languages based on semantic subtyping; to our knowledge,
this had not been studied before.

Although the idea of our solution is simple – to track divergence – its
technical development is not trivial. Our work highlights how a type system
featuring union and intersection types is sensitive to the di�erence between
strict and non-strict semantics and also, in the presence of non-determinism, to
that between call-by-name and call-by-need. This shows once more how union
and intersection types can express very �ne properties of programs. The main
technical contribution is the description of sound typing in the presence of
union types for the let bindings which many formalizations of call-by-need use
to represent shared computations. Finally, this work shows how to integrate
the ⊥ type, which is an explicit representation for divergence, in a semantic
subtyping system. It can thus also be seen as a �rst step towards the de�nition
of a type system based on semantic subtyping that performs a non-trivial form
of termination analysis.

12.4 Related work

Previous work on semantic subtyping does not discuss non-strict semantics.
Castagna and Frisch (2005) describe how to add a type constructor lazy(t)
to semantic subtyping systems, but this is meant to have lazily constructed
expressions within a call-by-value language.

Many type systems for functional languages (the simply typed λ-calculus
or Hindley-Milner typing, for example) are sound for both strict and non-
strict semantics. However, di�culties similar to ours are found in work on
re�nement types. Vazou et al. (2014) study how to adapt re�nement types for
Haskell. Their types contain logical predicates as re�nements: for instance, the
type of positive integers is {v : Int | v > 0 }. They observe that the standard
approach to type checking in these systems (checking implication between
predicates with an SMT solver) is unsound for non-strict semantics. In their
system, a type like {v : Int | false } is analogous to 0 in our system insofar
as it is not inhabited by any value. These types can be given to diverging
expressions, and their introduction into the environment causes unsoundness.

211

12 Introduction

To avoid this problem, they stratify types, with types divided into diverging
and non-diverging ones. This corresponds in a way to our use of a type ⊥ in
types of possibly diverging expressions. As for ours, their type system can
track termination to a certain extent. Partial correctness properties can be
veri�ed even without precise termination analysis. However, with their kind
of analysis (which goes beyond what is expressible with set-theoretic types)
there is a signi�cant practical bene�t to tracking termination more precisely.
Hence, they also study how to check termination of recursive functions.

The notion of a strati�cation of types to keep track of divergence can also
be found in work of a more theoretical strain. For instance, Constable and
Smith (1987) use it to model partial functions in constructive type theory. This
strati�cation can be understood as a monad for partiality, as it is treated by
Capretta (2005). Our type system can also be seen, intuitively, as following
this monadic structure. Notably, the rule for applications in a sense lifts the
usual rule for application in this partiality monad. Injection in this monad is
performed implicitly by subtyping via the judgment t ≤ t ∨ ⊥. However, we
have not developed this intuition formally.

The fact that a type system with union and intersection types can require
changes to account for non-strict semantics is also discussed in work on re�ne-
ment types. Dun�eld and Pfenning (2003, p. 8, footnote 3) remark how a union
elimination rule cannot be used to eliminate unions in function arguments
if arguments are passed by name: this is analogous to the aforementioned
di�culties which led to our choice of call-by-need (their system uses a dedic-
ated typing rule for what our system handles by subtyping). Dun�eld (2007,
Section 8.1.5) proposes as future work to adapt a subset of the type system he
considers (of re�nement types for a call-by-value e�ectful language) to call-by-
name. He notes some of the di�culties and advocates studying call-by-need as
a possible way to face them. In this work we show, indeed, that a call-by-need
semantics can be used to have the type system handle union and intersection
types expressively without requiring complex rules.

212

13 A call-by-need language
with set-theoretic types

This chapter presents the technical development of our approach. We �rst
de�ne a language with a non-strict, call-by-need semantics and a monomorphic
type system for it that uses semantic subtyping. Then, we show that the type
system is sound, highlighting the technical di�culties and how our approach
deals with them.

chapter outline:

Section 13.1 We de�ne types, their interpretation, and subtyping. The de�n-
itions are very close to those in Chapter 2, but we add the new type ⊥
and do not include type variables.

Section 13.2 We de�ne the syntax and operational semantics of the lan-
guage we study. The syntax is similar to that of Chapter 3 but with
explicitly typed functions.

Section 13.3 We describe the type system, which is unlike that of Chapter 3
because it keeps track of divergence in the typing rules.

Section 13.4 We develop the proof of soundness. We discuss in more detail
our choice of call-by-need for the semantics and how it impacts the proof.

13.1 Types and subtyping

In this section, we describe the types and the subtyping relation of our system.
The de�nitions here are very similar to those in Sections 2.2 and 2.3, so we give
them with minimal comment. The di�erences are that types do not include
type variables (because the type system we de�ne is monomorphic) and that
they include the new type ⊥.

As in Section 2.2, we start from a set Const of language constants (ranged
over by c), a set Base of base types (ranged over by b), and two functions

b(·) : Const→ Base �(·) : Base→ P(Const)
mapping constants to base types and base types to sets of constants. We
assume that base types include singleton types for constants: therefore, for
every c ∈ Const, we assume that �(bc) = {c}.

13.1 definition (Types): The set Type of types is the set of terms t generated
coinductively by the following grammar

t F ⊥ | b | t × t | t → t | t ∨ t | ¬t | 0

and that satisfy the following two conditions:

213

13 A call-by-need language with set-theoretic types

(regularity) the term has �nitely many distinct subterms;

(contractivity) every in�nite path in the term contains in�nitely many
occurrences of the × or→ constructors. �

We introduce the usual abbreviations:

t1 ∧ t2
def
= ¬(¬t1 ∨ ¬t2) t1 \ t2

def
= t1 ∧ (¬t2) 1

def
= ¬0 .

To de�ne subtyping, we �rst introduce the interpretation domain. As in
Section 2.3, we pick a symbol Ω outside Const to represent type errors.

13.2 definition: The interpretation domain Domain is the set of �nite terms d
generated inductively by the following grammar

d F ⊥ | c | (d,d) | {(d,dΩ), . . . , (d,dΩ)} dΩ F d | Ω

where c ranges over Const. �

Compared to De�nition 2.3, we add ⊥ to represent divergence explicitly in
the domain, and we remove labels on the elements because they were only
needed to describe subtyping with type variables.

We want the interpretation of types n · o to satisfy the following equalities:

n⊥o = {⊥}
nbo = �(b)

nt1 × t2o = nt1o × nt2o
nt1 → t2o =

{
{ (di ,diΩ) | i ∈ I }

�� ∀i ∈ I . di ∈ nt1o =⇒ diΩ ∈ nt2o
}

nt1 ∨ t2o = nt1o ∪ nt2o
n¬to = Domain \ nto
n0o = �

We proceed as in Section 2.3 to de�ne n · o accounting for recursive types.

13.3 definition (Set-theoretic interpretation of types): We de�ne a binary
predicate (d : t), where d ∈ Domain and t ∈ Type, by induction on the pair (d, t)
ordered lexicographically. The predicate is de�ned as follows:

(⊥ : ⊥) = true
(c : b) = c ∈ �(b)

((d1,d2) : t1 × t2) = (d1 : t1) ∧ (d2 : t2)
({ (di ,diΩ) | i ∈ I } : t1 → t2) = ∀i ∈ I . (d

i : t1) =⇒ (diΩ , Ω) ∧ (diΩ : t2)
(d : t1 ∨ t2) = (d : t1) ∨ (d : t2)
(d : ¬t) = ¬(d : t)
(d : t) = false otherwise

We de�ne the set-theoretic interpretation n · o : Type→ P(Domain) as

nto = {d ∈ Domain | (d : t) } . �

214

13.1 Types and subtyping

Finally, we de�ne subtyping and subtype equivalence as usual.

13.4 definition (Subtyping): We de�ne the subtyping relation ≤ and the sub-
type equivalence relation ' on types as:

t1 ≤ t2
def
⇐⇒ nt1o ⊆ nt2o t1 ' t2

def
⇐⇒ (t1 ≤ t2) ∧ (t2 ≤ t1) . �

We have intentionally stayed very close to the original de�nitions of se-
mantic subtyping. This allows us to reuse existing results, including the al-
gorithm to decide subtyping (since ⊥ is added just like a new base type). To
ensure soundness, instead of changing subtyping, we change the type system.
A drawback of this approach is that the interpretation of types is not as appro-
priate for non-strict languages as it is for strict ones: in Section 14.1, we will
discuss this extensively and point out directions for further improvement.

13.1.1 Properties of subtyping

We collect here some properties of subtyping on arrow types that we rely
on later. In particular, we show how we can compute from an intersection of
arrow types an equivalent intersection where all arrows have disjoint domains:
this is convenient to describe the typing of functions.

13.5 lemma:∧
i ∈I

t ′i → ti ≤
∨
j ∈J

t ′j → tj ⇐⇒

∃j0 ∈ J .

(
t ′j0 ≤

∨
i ∈I

t ′i

)
∧

(
∀I ′ (I .

(
t ′j0 ≤

∨
i ∈I ′

t ′i

)
∨

(∧
i ∈I\I ′

ti ≤ tj0

))
�

Proof: Analogous to the proof of Lemma 2.16. �

13.6 corollary: Let
∧

i ∈I t
′
i → ti (with |I | > 0) be such that, for every i1, i2 ∈ I ,

if i1 , i2 then t ′i1 ∧ t
′
i2 ' 0. Then:∧

i ∈I

t ′i → ti ≤ t ′→ t =⇒
(
t ′ ≤

∨
i ∈I

t ′i
)
∧

(
∀i ∈ I . (t ′i ∧ t

′ ; 0) =⇒ (ti ≤ t)
)
�

Proof in appendix (p. 291).

13.7 corollary: Let t̄ = (
∧

i ∈I t
′
i → ti) ∧ (

∧
j ∈J ¬(t

′
j → tj)). If t̄ ; 0 and

t̄ ≤ t ′→ t , then (
∧

i ∈I t
′
i → ti) ≤ t ′→ t . �

215

13 A call-by-need language with set-theoretic types

Proof in appendix (p. 292).

13.8 lemma: For every �nite set J and every set { tj | j ∈ J },∨
J ′⊆ J

(∧
j ∈J ′ tj ∧

∧
j ∈J \J ′ ¬tj

)
' 1

(with the convention that an intersection over an empty set is 1). �

Proof in appendix (p. 292).

13.9 lemma: Let � =
∧

i ∈I t
′
i → ti (with |I | > 0) be a type. Then:

� '
∧
�(I ′⊆I sI ′ → uI ′ where sI ′

def
=

∧
i ∈I ′ t

′
i ∧

∧
i ∈I\I ′ ¬t

′
i and uI ′

def
=

∧
i ∈I ′ ti

(with the convention:
∧

i ∈� ¬t
′
i = 1). �

Proof in appendix (p. 292).

13.2 Language syntax and semantics

We consider a language based on that studied by Frisch, Castagna, and Ben-
zaken (2008): a λ-calculus with recursive explicitly annotated functions, pair
constructors and destructors, and a typecase construct. Compared to the lan-
guage in Chapter 3, the main di�erence is that here functions are explicitly
annotated with their type: an interface �, which is an intersection of arrow
types. Moreover, functions are recursive (with a binder for the recursion para-
meter), and typecases include a binder (as in Section 6.1.1).

We actually de�ne two languages: a source language in which programs will
be written and a slightly di�erent internal language on which we de�ne the
semantics. The internal language adds a let construct; this is a form of explicit
substitution used to model call-by-need semantics in a small-step operational
style, following a standard approach (Ariola et al., 1995; Ariola and Felleisen,
1997; Maraist, Odersky, and Wadler, 1998). Typecases are also de�ned slightly
di�erently in the two languages (to simplify the semantics), so we show how to
compile source programs to the internal language. The let construct used here
is unlike that of Part I: it is only used in the semantics and is not a binder used
in programs for polymorphic de�nition (the type system is monomorphic).

As anticipated, we want ⊥ to be an internal type, used in the description
of the type system but not by programmers explicitly. To do so, we introduce
two restricted grammars of types (T and t, below) where ⊥ does not appear
explicitly. Programs will only contain types from these grammars.

First, we introduce the abbreviations:

〈t〉
def
= t ∨ ⊥ t1 〈〉→ t2

def
= 〈t1〉 → 〈t2〉 t1 〈〉× t2

def
= 〈t1〉 × 〈t2〉 .

These are compact notations for types including ⊥. The �rst, 〈t〉, is an abbre-
viated way to write the type of possibly diverging expressions whose result
has type t . The latter two are used in type annotations: programmers use 〈〉→

216

13.2 Language syntax and semantics

and 〈〉× instead of→ and ×, so that ⊥ is introduced implicitly. The→ and ×
constructors are never written directly in programs.

We de�ne the following restricted grammars of types

TF b | T 〈〉× T | T 〈〉→ T | T ∨ T | ¬T | 0

tF b | t 〈〉× t | 0→ 1 | t ∨ t | ¬t | 0

both of which are interpreted coinductively, with the same restrictions of
regularity and contractivity as in the de�nition of types. The types de�ned by
these grammars will be the only ones which appear in programs.

In particular, functions will be annotated with T types, where the use of 〈〉×
and 〈〉→ ensures that every type below a constructor is of the form t ∨ ⊥.

Typecases, instead, will check t types. The only arrow type that can appear
in them is 0→ 1, which is the top type of functions. This is the same restriction
that we have imposed in Section 3.1: typecases cannot test function types. We
impose it here mostly for uniformity: with explicitly typed functions and no
polymorphism, the restriction can be lifted without di�culty.

13.2.1 Source language

The source language expressions are the terms e produced inductively by the
grammar

eF x | c | µf : �. λx . e | e e | (e, e) | πi e | (x = e) ∈ t ? e : e
�F

∧
i ∈I T′i 〈〉→ Ti |I | > 0

where f and x range over a set EVar of expression variables, c over the set Const
of constants, i in πi e over {1, 2}, and where t in (x = e) ∈ t ? e : e is such that
t ; 0 and t ; 1.

A λ-abstraction µf : �. λx . e is a possibly recursive function, with recursion
parameter f and argument x , both of which are bound in the body; the function
is explicitly annotated with its interface �, which is a �nite intersection of types
of the form T′ 〈〉→ T.

A typecase expression (x = e0) ∈ t ? e1 : e2 has the following intended
semantics: e0 is evaluated until it can be determined whether it has type t or
not, then the selected branch (e1 if the result of e0 has type t, e2 if it has type
¬t: one of the two cases always occurs) is evaluated in an environment where
x is bound to the result of e0. Actually, to simplify the presentation, we will
give a non-deterministic semantics in which we allow to evaluate e0 more
than what is needed to ascertain whether it has type t.

In the syntax de�nition above we have restricted the types t in typecases by
requiring t ; 1 and t ; 0. A typecase checking the type 1 is useless: since all
expressions have type 1, it immediately reduces to its �rst branch. Likewise, a
typecase checking the type 0 reduces directly to the second branch. Therefore,
the two cases are uninteresting to consider. We forbid them because this allows
us to give a simpler typing rule for typecases. Allowing them is just a matter
of adding two (trivial) typing rules speci�c to these cases, as we show later.

217

13 A call-by-need language with set-theoretic types

As customary, we consider expressions up to renaming of bound variables.
In µf : �. λx . e, f and x are bound in e. In (x = e0) ∈ t ? e1 : e2, x is bound in
e1 and e2.

We do not provide mechanisms to de�ne cyclic data structures. For example,
we do not have a direct syntactic construct to de�ne the in�nitely nested
pair (1, (1, . . .)). We can de�ne it by writing a �xpoint operator or by de�ning
and applying a recursive function which constructs the pair. A general letrec
construct (as in Ariola and Felleisen, 1997) might be useful in practice (for
e�ciency or to provide greater sharing) but we omit it here since we are only
concerned with typing.

13.2.2 Internal language

The internal language expressions are the terms e produced inductively by the
grammar

e F x | c | µf : �. λx . e | e e | (e, e) | πi e | (x = ε) ∈ t ? e : e | let x = e in e

ε F x | c | µf : �. λx . e | (ε, ε)

where metavariables and conventions are as in the source language.
There are two di�erences with respect to the source language. One is the

introduction of the construct let x = e1 in e2, which is a binder used to model
call-by-need semantics (in let x = e1 in e2, x is bound in e2). The other di�erence
is that typecases cannot check arbitrary expressions, but only expressions of
the restricted form given by ε .

A source language expression e can be compiled to an internal language
expression dee as follows. Compilation is straightforward for all expressions
apart from typecases:

dxe = x dce = c

dµf : �. λx . ee = µf : �. λx . dee de1 e2e = de1e de2e

d(e1, e2)e = (de1e, de2e) dπi ee = πi dee

and for typecases it introduces a let binder to ensure that the checked expres-
sion is a variable:

d(x = e0) ∈ t ? e1 : e2e = (let y = de0e in (x = y) ∈ t ? de1e : de2e)

where y is chosen to avoid variables free in e1 and e2. (The other forms for ε
can appear during reduction.)

13.2.3 Semantics

We de�ne the operational semantics of the internal language as a small-step
reduction relation using call-by-need. The semantics of the source language
is then given indirectly through the compilation. The choice of call-by-need
rather than call-by-name was brie�y motivated in Chapter 12 and will be
discussed more extensively in Section 13.3.

218

13.2 Language syntax and semantics

We �rst de�ne the sets of answers (ranged over by a) and of values (ranged
over by v) as the subsets of expressions produced by the following grammars:

a F c | µf : �. λx . e | (e, e) | let x = e in a

v F c | µf : �. λx . e

Answers are the results of evaluation. They correspond to expressions which
are fully evaluated up to their top-level constructor (constant, function, or
pair) but which may include arbitrary expressions below that constructor (so
we have (e, e) rather than (a,a)). Since they also include let bindings, they
represent closures in which variables can be bound to arbitrary expressions.
Values are a subset of answers treated specially in a reduction rule.

The semantics uses evaluation contexts to direct the order of evaluation. A
context C is an expression with a hole (written []) in it. We write C[e] for the
expression obtained by replacing the hole in C with e . We write Cpxeqy for C[e]
when the free variables of e are not bound by C: for example, let x = e1 in x
is of the form C[x] – with C ≡ (let x = e1 in []) – but not of the form Cpxxqy;
conversely, let x = e1 in y is both of the form C[y] and Cpxyqy.

Evaluation contexts E are the subset of contexts generated by the following
grammar:

E F [] | E e | πi E | (x = F) ∈ t ? e : e | let x = e in E | let x = E in Epxxqy
F F [] | (F , ε) | (ε, F)

Evaluation contexts allow reduction to occur on the left of applications and
below projections, but not on the right of applications and below pairs. For
typecases alone, the contexts allow reduction also below pairs, since this
reduction might be necessary to be able to determine whether the expression
has type t or not. This is analogous to the behaviour of pattern matching in
lazy languages, which can force evaluation below constructors. The contexts
for let are from standard presentations of call-by-need (Ariola and Felleisen,
1997; Maraist, Odersky, and Wadler, 1998). They always allow reduction of the
body of the let, while they only allow reduction of the bound expression when
it is required to continue evaluating the body: this is enforced by requiring
the body to have the form Epxxqy.

Figure 13.1 presents the reduction rules. They rely on the typeof function,
de�ned as

typeof(ε)
def
=


1 if ε = x

bc if ε = c
0→ 1 if ε = µf : �. λx . e
typeof(ε1) × typeof(ε2) if ε = (ε1, ε2)

that assigns types to expressions in the grammar for ε .
The rule[Rapp] is the standard application rule for call-by-need: the applic-

ation (µf : �. λx . e) e ′ reduces to e pre�xed by two let bindings that bind the
recursion variable f to the function itself and the parameter x to the argument
e ′. [R let

app] instead deals with applications with a let expression in function

219

13 A call-by-need language with set-theoretic types

[Rapp] (µf : �. λx . e) e ′ { let f = (µf : �. λx . e) in let x = e ′ in e

[R let
app] (let x = e in a) e ′ { let x = e in a e ′

[Rproj] πi (e1, e2) { ei

[R let
proj] πi (let x = e in a) { let x = e in πi a

[Rv
let] let x = v in Epxxqy { (Epxxqy)[v/x]

[R let
pair] let x = (e1, e2) in Epxxqy { let x1 = e1 in let x2 = e2 in (Epxxqy)[(x1, x2)/x]

[R let
let] let x = (let y = e in a) in Epxxqy { let y = e in let x = a in Epxxqy

[R 1
case] (x = ε) ∈ t ? e1 : e2 { let x = ε in e1 if typeof(ε) ≤ t

[R 2
case] (x = ε) ∈ t ? e1 : e2 { let x = ε in e2 if typeof(ε) ≤ ¬t

[R ctx] E[e] { E[e ′] if e { e ′

figure 13 . 1 Reduction rules

position: it moves the application below the let. The rule is necessary to pre-
vent loss of sharing: substituting the binding of x to e in a would duplicate e .
Symmetrically, there are two rules for pair projections, [Rproj] and [R let

proj].
There are three rules for let expressions. They rewrite expressions of the

form let x = a in Epxxqy: that is, let bindings where the bound expression is an
answer and the body is an expression whose evaluation requires the evaluation
of x . If a is a value v , [Rv

let] applies and the expression is reduced by replacing
v for x in the body. If a is a pair, [R let

pair] applies: the occurrences of x in the
body are replaced with a pair of variables (x1, x2) and each xi is bound to ei by
new let bindings (replacing x directly by (e1, e2) would duplicate expressions).
Finally, the [R let

let] rule moves one let binding out of another.
There are two rules for typecases, [R 1

case] and [R 2
case], by which a typecase

construct (x = ε) ∈ t ? e1 : e2 can be reduced to either branch, introducing
a new binding of x to ε . The rules apply only if either of typeof(ε) ≤ t or
typeof(ε) ≤ ¬t holds. If neither holds, then the two rules do not apply, but the
[R ctx] rule can be used to continue the evaluation of ε .

examples of the evaluation of typecases: We start with a simple
example. Let ē1 be the expression (x = true) ∈ btrue ? 1 : 2, where btrue
denotes the singleton type of true. This typecase corresponds to the conditional
expression if true then 1 else 2. Since typeof(true) = btrue ≤ btrue, we can apply
[R 1

case] and reduce ē1 to let x = true in 1.
As a more complex example, consider the expression ē ≡ (let y = ē1 in ē2),

where ē1 is de�ned as before and ē2 is (z = (y, 2)) ∈ (Int 〈〉× Int) ? true : false.
Note that typeof((y, 2)) = 1×b2 (where b2 is the singleton type of 2) and that

neither of 1×b2 ≤ Int 〈〉× Int or 1×b2 ≤ ¬(Int 〈〉× Int) holds. Hence, the typecase
cannot reduce directly. However, ē is of the form lety = E1[ē1] in E2pxyqy, taking
E1 to be [] and E2 to be (z = ([], 2)) ∈ (Int 〈〉× Int) ? true : false. Therefore, it can

220

13.3 Type system

be evaluated as follows:

ē { let y = (let x = true in 1) in ē2 by [R ctx] and [R 1
case]

{ let x = true in let y = 1 in ē2 by [R let
let]

{ let x = true in ē2[1/y] by [R ctx] and [Rv
let]

≡ let x = true in (z = (1, 2)) ∈ (Int 〈〉× Int) ? true : false
{ let x = true in let z = (1, 2) in true by [R ctx] and [R 1

case]

The answer we obtain has useless let bindings. We did not include a garbage
collection rule to get rid of these, though it could be added without di�culty.

comparison to other presentations of call-by-need: These
reduction rules mirror those from standard presentations of call-by-need (Ariola
et al., 1995; Ariola and Felleisen, 1997; Maraist, Odersky, and Wadler, 1998). A
di�erence is that, in [Rv

let] or [R let
pair], we replace all occurrences of x in Epxxqy

at once, whereas in the cited presentations only the occurrence in the hole
is replaced: for example, in [Rv

let] they reduce to Epxvqy instead of (Epxxqy)[v/x].
Our [Rv

let] rule is mentioned as a variant by Maraist, Odersky, and Wadler
(1998, p. 38). We use it because it simpli�es the proof of subject reduction while
maintaining an equivalent semantics.

non-determinism in the rules: The semantics is not deterministic.
There are two sources of non-determinism, both related to typecases. One
is that the contexts F include both (F , ε) and (ε, F) and thereby impose no
constraint on the order with which pairs are examined. The second is that
the contexts for typecases allow us to reduce the bindings of variables in the
checked expression even when we can already apply [R 1

case] or [R 2
case].

For example, take let x = e in (y = (3, x)) ∈ (Int 〈〉× 1) ? e1 : e2. It can be
immediately reduced to let x = e in let y = (3, x) in e1 by applying [R ctx] and
[R 1

case], because typeof((3, x)) = b3 × 1 ≤ Int 〈〉× 1. However, we can also use
[R ctx] to reduce e , if it is reducible: we do so by writing the expression as
let x = e in Epxxqy, where E is (y = (3, [])) ∈ (Int 〈〉× 1) ? e1 : e2. To model a lazy
implementation more faithfully, we should forbid this reduction and state that
(x = F) ∈ t ? e : e is a context only if it cannot be reduced by [R 1

case] or [R 2
case].

In both cases, we have chosen a non-deterministic semantics because it
is less restrictive: as a consequence, the soundness result will also hold for
semantics that �x an order.

13.3 Type system

We de�ne here the typing relations for the two languages.
A type environment Γ is a �nite mapping of type variables to types. We

write � for the empty environment. We say that a type environment Γ is well
formed if, for all (x : t) ∈ Γ , we have t ; 0. Since we want to ensure that
the empty type is never derivable, we will only consider well-formed type
environments in the soundness proof.

221

13 A call-by-need language with set-theoretic types

[T s
x]

Γ ` x : t
Γ (x) = t [T s

c]
Γ ` c : bc

[T s
λ]
∀i ∈ I . Γ , f : �, x : 〈T′i 〉 ` e : 〈Ti 〉

Γ ` (µf : �. λx . e) : �
� =

∧
i ∈I T′i 〈〉→ Ti

[T s
app]

Γ ` e1 : 〈t ′→ t〉 Γ ` e2 : t ′

Γ ` e1 e2 : 〈t〉

[T s
pair]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1, e2) : t1 × t2

[T s
proj]

Γ ` e : 〈t1 × t2〉
Γ ` πi e : 〈ti 〉

[T s
case]

Γ ` e0 : 〈t ′〉
either t ′ ≤ ¬t or Γ , x : (t ′ ∧ t) ` e1 : t either t ′ ≤ t or Γ , x : (t ′ \ t) ` e2 : t

Γ `
(
(x = e0) ∈ t ? e1 : e2

)
: 〈t〉

[T s
≤]

Γ ` e : t ′

Γ ` e : t
t ′ ≤ t

figure 13 .2 T⊥
s: Typing rules of the source language

13.3.1 Type system of the source language

Figure 13.2 presents the typing rules T⊥s of the source language. The rules [T s
x]

and [T s
c] for variables and constants are standard.

The [T s
λ] rule for functions is also straightforward. Function interfaces have

the form
∧

i ∈I T′i 〈〉→ Ti , that is,
∧

i ∈I 〈T′i 〉 → 〈Ti 〉 (by de�nition of 〈〉→). To type
a function µf : �. λx . e, we check that it has all the arrow types in �. Namely,
for every arrow T′i 〈〉→ Ti (i.e., 〈T′i 〉 → 〈Ti 〉), we assume that x has type 〈T′i 〉
and that the recursion variable f has type �, and we check that the body has
type 〈Ti 〉.

The [T s
app] rule is the �rst one that deals with ⊥ in a non-trivial way, instead

of being the standard modus ponens rule of call-by-value semantic subtyping
systems (as in Parts I and II). We allow the function term e1 to have the type
〈t ′ → t〉 (i.e., (t ′ → t) ∨ ⊥) to allow it to be possibly diverging. We use
〈t〉 as the type of the whole application, signifying that it might diverge. As
anticipated, we do not try to predict whether applications will converge.

The rule [T s
pair] for pairs is standard; [T s

proj] handles ⊥ as in applications.
[T s

case] is the most complex one, but it’s very similar to the [Tcase] in Fig-
ure 3.2, and even more so to that of Frisch, Castagna, and Benzaken (2008). We
type the checked expression e0 and then, possibly, one branch or both, depend-
ing on the conditions t ′ ≤ ¬t and t ′ ≤ t, which hold when we know statically
that the �rst or second branch, respectively, cannot be selected. Compared to

222

13.3 Type system

the rule in Figure 3.2, here we type the branches in an extended environment
because the checked expression is bound in the body. We treat ⊥ as in [T s

app]
and [T s

proj].
The subsumption rule [T s

≤] is used to apply subtyping. Notably, it allows
expressions with surely converging types (like a pair with type Int × Bool) to
be used where diverging types are expected: t ≤ 〈t〉 holds for every t (since
nto ⊆ nto ∪ {⊥} = nt ∨ ⊥o = n〈t〉o).

As anticipated, in the syntax we have restricted the type t in typecases
requiring t ; 1 and t ; 0. Typecases where these conditions do not hold
are uninteresting, since they do not actually check anything. The rule [T s

case]
would be unsound for them because these typecases can reduce to one branch
even if e0 is a diverging expression that does not evaluate to an answer. For
instance, if ē has type ⊥ (that is, 〈0〉), then (x = ē) ∈ 1 ? 1 : 2 could be
given any type, including unsound ones like 〈Bool〉. To allow these typecases,
we could add the side condition “t ; 1 and t ; 0” to [T s

case] and give two
specialized rules as follows:

Γ ` e0 : t ′ Γ , x : t ′ ` e1 : t
Γ `

(
(x = e0) ∈ t ? e1 : e2

)
: 〈t〉

t' 1
Γ ` e0 : t ′ Γ , x : t ′ ` e2 : t
Γ `

(
(x = e0) ∈ t ? e1 : e2

)
: 〈t〉

t' 0

13.3.2 Type system of the internal language

Figure 13.3 presents the typing rules T⊥i of the internal language. These include
a new rule for let expressions and a modi�ed rule for λ-abstractions; the other
rules are the same as those for the source language (except for the di�erent
syntax of typecases).

The rule [Tλ] for the internal language di�ers from that of the source
language because it allows us to derive negations of arrow types. It is taken
directly from Frisch, Castagna, and Benzaken (2008). We have discussed why
such a rule is needed in Section 3.3 (that was for call-by-value, but the situation
is similar for call-by-need). The explicitly typed and monomorphic setting
makes it easier to de�ne it here than in Chapter 3. Note that the negated arrows
in t can be chosen freely providing that the intersection �∧t remains non-empty.
This can look surprising. For example, it allows us to type µf : (Int 〈〉→ Int). λx . x
as (Int 〈〉→ Int) ∧ ¬(Bool→ Bool) even though, disregarding the interface, the
function does map Booleans to Booleans. But the language is explicitly typed,
and thus we can’t ignore interfaces (indeed, the function cannot be given the
type Bool→ Bool).

The [Tlet] rule combines a standard rule for (monomorphic) binders with a
union disjunction rule: it lets us decompose the type of e1 as a union and type
the body of the let once for each summand in the union. The purpose of this rule
was hinted at in Section 12.2 and will be discussed again in Section 13.4, where
we show that this rule – combined with the property on union types above – is
central to this work: it is the key technical feature that ensures the soundness of
the system (see in particular Section 13.4.2 later on). For the time being, just note
that the type of e1 can be decomposed in arbitrarily complex ways by applying

223

13 A call-by-need language with set-theoretic types

[Tx]
Γ ` x : t

Γ (x) = t [Tc]
Γ ` c : bc

[Tλ]
∀i ∈ I . Γ , f : �, x : 〈T′i 〉 ` e : 〈Ti 〉

Γ ` (µf : �. λx . e) : � ∧ t


� =

∧
i ∈I T′i 〈〉→ Ti

t =
∧

j ∈J ¬(t
′
j → tj)

� ∧ t ; 0

[Tapp]
Γ ` e1 : 〈t ′→ t〉 Γ ` e2 : t ′

Γ ` e1 e2 : 〈t〉

[Tpair]
Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1, e2) : t1 × t2

[Tproj]
Γ ` e : 〈t1 × t2〉
Γ ` πi e : 〈ti 〉

[Tcase]

Γ ` ε : 〈t ′〉
either t ′ ≤ ¬t or Γ , x : (t ′ ∧ t) ` e1 : t either t ′ ≤ t or Γ , x : (t ′ \ t) ` e2 : t

Γ `
(
(x = ε) ∈ t ? e1 : e2

)
: 〈t〉

[Tlet]
Γ ` e1 :

∨
i ∈I ti ∀i ∈ I . Γ , x : ti ` e2 : t
Γ ` let x = e1 in e2 : t

[T≤]
Γ ` e : t ′

Γ ` e : t
t ′ ≤ t

figure 13 .3 T⊥
i: Typing rules of the internal language

224

13.4 Proving type soundness

subsumption. For example, if e1 is a pair of type (Int ∨ Bool) × (Int ∨ Bool), by
applying [T≤] we can type it as (Int×Int)∨(Int×Bool)∨(Bool×Int)∨(Bool×Bool)
and then type e2 once for each of the four summands.

The [Tλ] and [Tlet] rules introduce non-determinism respectively in the
choice of the negations to introduce and of how to decompose types as unions.
This would not complicate a practical implementation, since a type checker
would only need to check the source language.

13.4 Proving type soundness

In this section, we prove the soundness property for our type system. We want
to obtain the following familiar statement for the internal language.

Let e be a well-typed, closed expression (i.e., � ` e : t holds for some t).
If e {∗ e ′ and e ′ cannot reduce, then e ′ is an answer and � ` e ′ : t .

Soundness for the source language then follows from this proposition.

13.10 proposition: If Γ ` e : t , then Γ ` dee : t . �

Proof: Straightforward proof by induction on the typing derivation. �

We prove soundness using the two results of progress and subject reduction
for the internal language, stated as follows.

Progress: Let Γ be a well-formed type environment. Let e be an expression
that is well typed in Γ (that is, Γ ` e : t holds for some t). Then either e is
an answer, or e is of the form Epxxqy, or ∃e ′. e { e ′.

Subject reduction: Let Γ be a well-formed type environment. If Γ ` e : t
and e { e ′, then Γ ` e ′ : t .

The statement of progress is adapted to call-by-need: it applies also to expres-
sions that are typed in a non-empty Γ , and it allows a well-typed expression to
have the form Epxxqy. We recover the usual statement in empty environments
because Epxxqy can only be well typed in a non-empty environment.

We introduced the ⊥ type for diverging expressions because assigning the
type 0 to any expression causes unsoundness. We must hence ensure that no
expression can be assigned the type 0. In well-formed type environments, we
can prove this easily by induction.

13.11 lemma: If Γ ` e : t and Γ is well formed, then t ; 0. �

Proof: By induction on the derivation of Γ ` e : t and by case analysis on
the last typing rule applied.

Case: [Tx] Straightforward since Γ is well formed.

Case: [Tc], [Tλ], [Tapp], [Tproj], [Tcase] Straightforward.

225

13 A call-by-need language with set-theoretic types

Case: [Tpair]
By IH, t1 and t2 are non-empty.
Then, by de�nition of subtyping, t1 × t2 is non-empty as well.

Case: [Tlet]
By IH we derive that

∨
i ∈I ti is non-empty.

Therefore, there exists an i0 ∈ I such that ti0 is non-empty.
Then, Γ , x : ti0 is well formed, and, by IH, t ; 0.

Case: [T≤] Direct by IH. �

Set-theoretic types and semantic subtyping make proving subject reduction
challenging. These di�culties have also motivated our choice of using call-by-
need. We review and discuss in more detail this choice in order to explain the
main challenges in the proof.

13.4.1 Call-by-name and call-by-need

In Section 12.2, we gave two reasons for our choice of call-by-need rather than
call-by-name. One is that the system is only sound for call-by-name if we make
assumptions on the semantics that might not hold in an extended language:
for example, introducing an expression that can reduce non-deterministically
either to an integer or to a Boolean would break soundness. The other reason is
that, even when these assumptions hold (and when presumably call-by-name
and call-by-need are observationally equivalent), call-by-need is better suited
to the soundness proof.

Let us review the example from Section 12.2. Consider the source language
function µf : �. λx . (x, x), where � = (Int 〈〉→ Int 〈〉× Int) ∧ (Bool 〈〉→ Bool 〈〉× Bool).
It is well typed with type �. By subsumption, we can also derive the type
(Int ∨ Bool) 〈〉→ (Int 〈〉× Int) ∨ (Bool 〈〉× Bool), which is a supertype of �: in
general we have (t ′1 → t1) ∧ (t

′
2 → t2) ≤ (t

′
1 ∨ t

′
2) → (t1 ∨ t2) and therefore

(t ′1 〈〉→ t1) ∧ (t
′
2 〈〉→ t2) ≤ (t

′
1 ∨ t

′
2) 〈〉→ (t1 ∨ t2).

Therefore, if ē has type Int ∨ Bool ∨ ⊥, the application (µf : �. λx . (x, x)) ē is
well typed with type (Int 〈〉× Int) ∨ (Bool 〈〉× Bool) ∨ ⊥. Assume that ē can reduce
either to an integer or to a Boolean: for instance, assume that both ē { 3 and
ē { true can occur.

With call-by-name, (µf : �. λx . (x, x)) ē reduces to (ē, ē); then, the two oc-
currences of ē reduce independently. It is intuitively unsound to type (ē, ē) as
(Int 〈〉× Int) ∨ (Bool 〈〉× Bool) ∨ ⊥: there is no guarantee that the two components
of the pair will be of the same type once they are reduced. We can �nd terms
that break subject reduction. Assume for example that there exists a Boolean
“and” operation; then this typecase is well typed (as 〈Bool〉) but unsafe:

(y = (µf : �. λx . (x, x)) ē) ∈ (Int 〈〉× Int) ? true : (π1 y and π2 y) .

Since the application has type 〈(Int 〈〉× Int) ∨ (Bool 〈〉× Bool)〉, to type the second
branch of the typecase we can assume the type ((Int 〈〉× Int) ∨ (Bool 〈〉× Bool)) \
(Int 〈〉× Int) for y. This is a subtype of Bool 〈〉× Bool (it is actually equivalent to

226

13.4 Proving type soundness

(Bool 〈〉× Bool) \ (⊥ × ⊥)). Therefore, both π1 y and π2 y have type 〈Bool〉. We
deduce then that (π1 y and π2 y) has type 〈Bool〉 as well (we assume that “and”
is de�ned so as to handle arguments of type ⊥ correctly).

A possible reduction in a call-by-name semantics would be the following:

(y = (µf : �. λx . (x, x)) ē) ∈ (Int 〈〉× Int) ? true : (π1 y and π2 y)

{ (y = (ē, ē)) ∈ (Int 〈〉× Int) ? true : (π1 y and π2 y)

(the typecase must force the evaluation of (ē, ē) to know which branch should
be selected)

{∗ (y = (true, ē)) ∈ (Int 〈〉× Int) ? true : (π1 y and π2 y)

(now we know that the �rst branch is impossible, so the second is chosen)

{ π1 (true, ē) and π2 (true, ē) { true and ē { ē { 3

The integer 3 is not a Bool: this disproves subject reduction for call-by-name
if the language contains expressions like ē. No such expressions exist in our
language, but they could be introduced if we extended it with non-deterministic
constructs like rnd(t) in the work of Frisch, Castagna, and Benzaken (2008).

Since we use a call-by-need semantics, instead, expressions such as ē do not
pose problems for soundness. With call-by-need, (µf : �. λx . (x, x)) ē reduces
to let f = µf : �. λx . (x, x) in let x = ē in (x, x). The occurrences of x in the pair
are only substituted when ē has been reduced to an answer, so they cannot
reduce independently.

To ensure subject reduction, we allow the rule for let bindings to split union
types which occur in the type of the bound term. This means that the following
derivation is allowed.
Γ ` ē : Int∨ Bool Γ , x : Int ` (x, x) : Int 〈〉× Int Γ , x : Bool ` (x, x) : Bool 〈〉× Bool

Γ ` let x = ē in (x, x) : (Int 〈〉× Int) ∨ (Bool 〈〉× Bool)

13.4.2 Proving subject reduction: challenges

While the typing rule for let bindings is simple to describe, proving subject
reduction for the two reduction rules that perform substitutions – [Rv

let] and
[R let

pair] – is challenging.
For the reduction let x = v in Epxxqy { (Epxxqy)[v/x], we prove

If Γ ` v :
∨

i ∈I ti , then there exists an i0 ∈ I such that Γ ` v : ti0 . (?)

from a proposition corresponding to that discussed in Section 3.3.1:

Let v be a value that is well typed in Γ (i.e., Γ ` v : t ′ holds for some t ′).
Then, for every type t , we have either Γ ` v : t or Γ ` v : ¬t .

Consider for example the reduction let x = v in (x, x) { (v,v). If v has type
Int ∨ Bool, then let x = v in (x, x) has type (Int 〈〉× Int) ∨ (Bool 〈〉× Bool) as in the
derivation above. Without the result (?), for (v,v) we could only derive the

227

13 A call-by-need language with set-theoretic types

type (Int ∨ Bool) × (Int ∨ Bool), which is not a subtype of the type deduced for
the redex. Applying the result (?), we deduce that v has either type Int or Bool;
in both cases (v,v) can be given the type (Int 〈〉× Int) ∨ (Bool 〈〉× Bool).

The problem is similar to that for strict languages, and the solution is the
same: ensuring that we can derive negations of arrow types for functions (in
Chapter 3, type variables also posed di�culties, but we do not have them here).
Since functions are explicitly typed here, we can reuse the typing rule from
Frisch, Castagna, and Benzaken (2008) instead of the more involved approach
from Chapter 3.

For the reduction
let x = (e1, e2) in Epxxqy { let x1 = e1 in let x2 = e2 in (Epxxqy)[(x1, x2)/x] ,

instead, we use the following result.

If Γ ` (e1, e2) :
∨

i ∈I ti , then there exist two types
∨

j ∈J tj and
∨

k ∈K tk
such that Γ ` e1 :

∨
j ∈J tj and Γ ` e2 :

∨
k ∈K tk and

∀j ∈ J . ∀k ∈ K . ∃i ∈ I . tj × tk ≤ ti .

This is the result we need for the proof: let x = (e1, e2) in Epxxqy is typed by
assigning a union type to (e1, e2) and then typing Epxxqy once for every ti in the
union, while the reduct let x1 = e1 in let x2 = e2 in (Epxxqy)[(x1, x2)/x] must be
typed by typing e1 and e2 with two union types and then typing the substituted
expression with every product tj × tk . Showing that each tj × tk is a subtype
of a ti ensures that the substituted expression is well typed. The proof consists
in recognizing that the union

∨
i ∈I ti must be a decomposition into a union of

some type t1 × t2 and that therefore t1 and t2 can be decomposed separately
into two unions.

All these results rely on the distinction between types that contain ⊥ and
those that do not: they would not hold if we assumed that every type implicitly
contains ⊥.

Despite some technical di�culties, call-by-need seems quite suited to the
soundness proof. Hence, it would probably be best to use it for the proof
even if we assumed explicitly that the language does not include problematic
expressions like rnd(t). Soundness would then also hold for a call-by-name
semantics that is observationally equivalent to call-by-need.

In the following, we develop the proof in detail. In Section 13.4.3, we study
the decomposition of product types into unions to derive the result we need for
subject reduction for [R let

pair] (Lemma 13.19). Then, in Section 13.4.4, we derive
the other intermediate results we need, including those needed to deal with
[Rv

let] (Lemma 13.26 and Corollary 13.27). Finally, in Section 13.4.5, we prove
progress and subject reduction.

13.4.3 Decompositions of product types

A standard result in semantic subtyping – rephrased here from Frisch, Castagna,
and Benzaken (2008) – is that we can put types into a disjunctive normal form
while preserving their interpretation as sets of values.

228

13.4 Proving type soundness

13.12 definition (Atoms and disjunctive normal forms): An atom is a type of
the form ⊥, b, t1 × t2, or t1 → t2.

A disjunctive normal form is a �nite set of pairs of �nite sets of atoms: that
is, a set { (Pi ,Ni) | i ∈ I } where I is �nite and where, for each i , Pi and Ni are
�nite sets of atoms.

We extend the de�nition of n · o to disjunctive normal forms by de�ning
n{ (Pi ,Ni) | i ∈ I }o def

=
⋃

i ∈I
(⋂

t ∈Pi nto \
⋃

t ∈Ni nto
)
. �

13.13 definition: The functions dnf and dnf from types to disjunctive normal
forms are de�ned by mutual induction as follows:

dnf(t) = {({t},�)} dnf(t) = {(�, {t})} if t atom
dnf(t1 ∨ t2) = dnf(t1) ∪ dnf(t2) dnf(t1 ∨ t2) = dnf(t1) u dnf(t2)

dnf(¬t) = dnf(t) dnf(¬t) = dnf(t)

dnf(0) = � dnf(0) = {(�,�)}

where { (Pi ,Ni) | i∈I }u { (Pj ,Nj) | j∈J }
def
= { (Pi ∪Pj ,Ni ∪Nj) | i∈I , j∈J }. �

Induction in this de�nition is well-founded because it is never applied below
type constructors, and contractivity ensures that there are no in�nite chains
of union and negation in types (as explained in Section 2.2).

13.14 proposition: For every type t , nto = ndnf(t)o. �

Proof: The stronger claim ∀t . nto = ndnf(t)o = Domain \ ndnf(t)o can be
proven easily by induction. �

A further result is that any subtype of 1 × 1 (that is, any type whose inter-
pretation only contains pairs) can be expressed as a product decomposition,
that is, a �nite union of product atoms (t1

1 × t
2
1) ∨ · · · ∨ (t

1
n × t

2
n). To develop

the result we need for subject reduction of the rule [R let
pair], we study these

decompositions of product types. In particular, we introduce a speci�c form of
product decomposition (fully disjoint decompositions) that is convenient to
derive the result we need.

13.15 definition (Product decomposition): A product decomposition Π is a �-
nite set of product atoms, that is, of types of the form t1 × t2.

We say that a product decomposition Π = { t1
i × t

2
i | i ∈ I } is fully disjoint

if ∀i ∈ I . t1
i × t

2
i ; 0 and if the following conditions hold for all i1 , i2 ∈ I :

• (t1
i1 ∧ t

1
i2 ' 0) ∨ (t1

i1 ' t
1
i2);

• (t2
i1 ∧ t

2
i2 ' 0) ∨ (t2

i1 ' t
2
i2). �

13.16 lemma: For every type t such that t ≤ 1 × 1, there exists a product decom-
position Π such that t '

∨
t1×t2∈Π t1 × t2. �

229

13 A call-by-need language with set-theoretic types

Proof in appendix (p. 293).

13.17 lemma: For every product decomposition Π , there exists a product decom-
position Π ′ such that Π ′ is fully disjoint, that

∨
t ∈Π t '

∨
t ′∈Π ′ t

′, and that
∀t ′ ∈ Π . ∃t ∈ Π . t ′ ≤ t . �

Proof in appendix (p. 294).

13.18 lemma: Let Π = { t1
i × t

2
i | i ∈ I } be a fully disjoint product decomposition

and let t1 and t2 be two types such that t1×t2 '
∨

i ∈I t
1
i ×t

2
i . Then, t1 '

∨
i ∈I t

1
i ,

t2 '
∨

i ∈I t
2
i , and ∀i1, i2 ∈ I . ∃i ∈ I . t1

i1 × t
2
i2 ≤ t1

i × t
2
i . �

Proof in appendix (p. 295).

13.19 lemma: If Γ ` (e1, e2) :
∨

i ∈I ti , then there exist two types
∨

j ∈J tj and∨
k ∈K tk such that

Γ ` e1 :
∨

j ∈J tj Γ ` e2 :
∨

k ∈K tk ∀j ∈ J . ∀k ∈ K . ∃i ∈ I . tj × tk ≤ ti . �

Proof in appendix (p. 296).

13.4.4 Additional results

We derive here the other auxiliary results we need to prove progress and
subject reduction. Most are standard results, and they are developed similarly
to those in Section 3.3.

13.20 lemma (Weakening): Let Γ and Γ ′ be two type environments such that,
whenever x ∈ dom(Γ), we have x ∈ dom(Γ ′) and Γ ′(x) ≤ Γ (x).

If Γ ` e : t , then Γ ′ ` e : t . �

Proof in appendix (p. 296).

13.21 lemma (Admissibility of intersection introduction): If Γ ` e : t1 and Γ `

e : t2, then Γ ` e : t1 ∧ t2. �

Proof in appendix (p. 297).

13.22 lemma (Expression substitution): If Γ , x : t ′ ` e : t and Γ ` e ′ : t ′, then
Γ ` e[e ′/x] : t . �

230

13.4 Proving type soundness

Proof: By induction on the typing derivation for e . �

13.23 lemma (Generation): Let Γ be a well-formed type environment and let a
be an answer such that Γ ` a : t holds. Then:

• if t = 〈t1 → t2〉, then a is of the form µf : �. λx . e or let x = e in a′;

• if t = 〈t1 × t2〉, then a is of the form (e1, e2) or let x = e in a′. �

Proof in appendix (p. 299).

13.24 lemma: If ε is well typed in an environment Γ (i.e., if Γ ` ε : t holds for
some t), then Γ ` ε : typeof(ε). �

Proof: By induction on ε . If it is a variable, a constant, or a function, the
result is straightforward (note that 0→ 1 is greater than any functional type).
If it is a pair, we apply the induction hypothesis and use rule [Tpair]. �

13.25 lemma: Let ε̄ be an expression generated by the grammar

ε̄ F c | µf : �. λx . e | (ε̄, ε̄)

(that is, an expression ε without variables). For every t, either typeof(ε̄) ≤ t or
typeof(ε̄) ≤ ¬t. �

Proof in appendix (p. 299).

13.26 lemma: Let v be a value that is well typed in Γ (i.e., Γ ` v : t ′ holds for
some t ′). Then, for every t , we have either Γ ` v : t or Γ ` v : ¬t . �

Proof in appendix (p. 300).

13.27 corollary: If Γ ` v :
∨

i ∈I ti , then, for some i0 ∈ I , Γ ` v : ti0 . �

Proof in appendix (p. 300).

13.28 lemma: Let � =
∧

i ∈I t
′
i → ti (with |I | > 0) be a type. There exists a type

�′ =
∧

k ∈K t ′k → tk (with |K | > 0) such that:

• � ' �′;

• ∀k1 , k2 ∈ K . tk1 ∧ tk2 ' 0;

• if Γ ` (µf : �. λx . e) : �, then ∀k ∈ K . Γ , f : �, x : t ′k ` e : tk . �

231

13 A call-by-need language with set-theoretic types

Proof in appendix (p. 301).

13.4.5 Progress and subject reduction

13.29 theorem (Progress): Let Γ be a well-formed type environment. Let e be
an expression that is well typed in Γ (that is, Γ ` e : t holds for some t). Then
e is an answer, or e is of the form Epxxqy, or ∃e ′. e { e ′. �

Proof in appendix (p. 301). By induction on the derivation of Γ ` e : t and
by case analysis on the last typing rule applied. In the cases for [Tapp] and
[Tpair], we use Lemma 13.23. In that for [Tcase], we use Lemma 13.25.

13.30 theorem (Subject reduction): Let Γ be a well-formed type environment.
If Γ ` e : t and e { e ′, then Γ ` e ′ : t . �

Proof in appendix (p. 303). By induction on the derivation of Γ ` e : t and
by case analysis on the last typing rule applied. In the case for [Tapp], we
use Corollaries 13.6 and 13.7 and Lemma 13.28. For [Tproj] and [Tcase], we use
Lemma 13.11; for [Tcase], we also use Lemmas 13.21 and 13.24. For [Tlet], if
the reduction occurs by [Rv

let], we use Lemma 13.22 and Corollary 13.27; if it
occurs by [R let

pair], we use Lemmas 13.19, 13.20 and 13.22; if it occurs by [R let
let],

we use Lemma 13.20.

We use the following lemma to recover the standard statement of progress
for empty type environments.

13.31 lemma: If Γ ` Epxxqy : t , then x ∈ dom(Γ). �

Proof in appendix (p. 307).

We obtain soundness as a corollary of the previous results.

13.32 corollary (Type soundness): Let e be a well-typed, closed expression
(that is, � ` e : t holds for some t). If e {∗ e ′ and e ′ cannot reduce, then e ′ is
an answer and � ` e ′ : t . �

Proof: Corollary of Theorems 13.29 and 13.30 and Lemma 13.31. �

13.33 corollary (Type soundness for the source language): Let e be a well-
typed, closed source language expression (that is, � ` e : t holds for some t). If
dee {∗ e ′ and e ′ cannot reduce, then e ′ is an answer and � ` e ′ : t . �

Proof: Corollary of Proposition 13.10 and Corollary 13.32. �

232

14 Discussion

We have described how to adapt the framework of semantic subtyping to
non-strict languages. We have done so by reusing the subtyping relation of
Frisch, Castagna, and Benzaken (2008) unchanged (except for the addition
of ⊥) and reworking the typing rules to avoid the pathological behaviour of
semantic subtyping on empty types. Notably, typing rules for constructs like
application and projection must handle ⊥ explicitly. This ensures soundness
for call-by-need.

Using our approach, subtyping still behaves set-theoretically: we can still
see union, intersection, and negation in types as the corresponding operations
on sets. We can still use intersection types to express function overloading
since familiar subtyping judgments like

(t ′1 → t1) ∧ (t
′
2 → t2) ≤ (t

′
1 ∨ t

′
2) → (t1 ∨ t2)

still hold. Moreover, an advantage of this approach is that we can reuse directly
the existing results on semantic subtyping (especially as concerns the decision
procedure): we have added ⊥, but it is treated just like a new base type.

The type ⊥ we introduce has no analogue in well-known type systems
like the simply typed λ-calculus or Hindley-Milner typing. However, ⊥ never
appears explicitly in programs (it does not appear in types of the forms T and
t given at the beginning of Section 13.2). Hence, programmers do not need to
use it and to consider the di�erence between terminating and non-terminating
types while writing function interfaces or typecases. Still, sub-expressions
of a program can have types with explicit ⊥ (e.g., the type Int ∨ ⊥). Such
types are not expressible in the grammar of types visible to the programmer.
Accordingly, error reporting should be more elaborate to avoid mentioning
internal types that are unknown to the programmer.

In the next section, we discuss the interpretation of types and its relationship
with the expressions that are actually de�nable in the language; we explain
how we could look for an interpretation that is a better �t for non-strict
languages. Then, we present a few directions for future work.

14.1 On the interpretation of types

We have shown that a set-theoretic interpretation of types, adapted to take
into account divergence (De�nition 13.3), can be the basis for designing a
sound type system for a language with non-strict semantics. In this section,
we analyze the relation between this interpretation and the expressions that
we can de�ne in the language.

Let us �rst recap some notions of semantic subtyping. The initial intuition
which guides semantic subtyping is to see a type as the set of values of that type

233

14 Discussion

in the language we consider. However, we cannot use this intuition directly
to de�ne the interpretation, because of a problem of circularity (as discussed
in Section 2.1.2). Frisch, Castagna, and Benzaken (2008) solve this by giving
an interpretation n · o of types as subsets of an interpretation domain where
�nite relations replace λ-abstractions. Then, they show the result

∀t1, t2. nt1o ⊆ nt2o ⇐⇒ nt1oV ⊆ nt2oV where ntoV def
= {v | � ` v : t }

meaning that a type t1 is a subtype of a type t2 if and only if every value
v that can be assigned the type t1 can also be assigned the type t2. As we
have said in Section 2.1.2, this means that we can really reason on subtyping
by reasoning on inclusion between sets of values, with both theoretical and
practical advantages.

In the following we discuss how an analogous result could hold with a non-
strict semantics. First of all, clearly the correspondence cannot be between
interpretations of types and sets of values in our case, since then we would
identify⊥with 0. Hence we should consider, rather than values, sets of “results”
of some kind, including (a representation of) divergence. However, whichever
notion of result we consider, it is hard to de�ne an interpretation of types such
that the desired correspondence holds, that is, such that a type t corresponds
to the set of all possible results of expressions of type t .

As one could expect, the key challenge is to provide an interpretation
where, as it seems sensible, an arrow type t1 → t2 corresponds to the set
of λ-abstractions { (µf : �. λx . e) | � ` (µf : �. λx . e) : t1 → t2 }. Our proposed
de�nition of n · o (De�nition 13.3) is sound with respect to this correspondence,
but not complete, that is, not precise enough. We devote the rest of this section
to explain why and to discuss the possibility of obtaining a complete de�nition.

Consider the type Int→ 0. By De�nition 13.3, we have

nInt→ 0o = {
{ (di ,diΩ) | i ∈ I }

�� ∀i ∈ I . di ∈ nInto =⇒ diΩ ∈ n0o
}

=
{
{ (di ,diΩ) | i ∈ I }

�� ∀i ∈ I . di < nInto }
(since n0o = �, the implication can only be satis�ed if d < nInto). This type is
not empty, therefore, if a result similar to that of Frisch, Castagna, and Benzaken
(2008) held, we would expect to be able to �nd a function µf : �. λx . e such
that � ` (µf : �. λx . e) : Int→ 0. Alas, no such function can be de�ned in our
language. This is easy to check: interfaces must include ⊥ in the codomain of
every arrow (since they use the 〈〉→ form), so no interface can be a subtype of
Int→ 0. Lifting this syntactic restriction to allow any arrow type in interfaces
would not solve the problem: for a function to have type Int → 0, its body
must have type 0, which is impossible and indeed must be impossible for the
system to be sound. It is therefore to be expected that Int→ 0 is uninhabited
in the language. This means that our current de�nition of nInt → 0o as a
non-empty type is imprecise.

Changing n · o to make the types of the form t → 0 empty is easy, but it does
not solve the problem in general. Using intersection types we can build more
challenging examples: for instance, (Int ∨ Bool→ Int) ∧ (Int ∨ String→ Bool).
While neither codomain is empty, and neither arrow should be empty, the

234

14.1 On the interpretation of types

whole intersection should: no function, when given an Int as argument, can
return a result which is both an Int and a Bool.

In the call-by-value case, it makes sense to have Int→ 0 and the intersection
type above be non-empty, because they are both inhabited by functions that
diverge on integers. This is because divergence is not represented in the types
(or, to put it di�erently, because it is represented by the type 0). A type like
t1 → t2 is interpreted as a speci�cation of partial correctness: a function of this
type, when given an argument in t1, either diverges or returns a result in t2.
In our system, we have introduced a separate non-empty type for divergence.
Hence, we should see a type as specifying total correctness, where divergence
is allowed only for functions whose codomain includes ⊥.

Let us consider again the current interpretation of arrow types.
nt1 → t2o =

{
{ (di ,diΩ) | i ∈ I }

�� ∀i ∈ I . di ∈ nt1o =⇒ diΩ ∈ nt2o
}

An arrow type is seen as a set of �nite relations: we represent functions
extensionally and approximate them with all their �nite representations. We
use relations instead of functions to account for non-determinism. Within a
relation, a pair (d,d ′) means that the function returns the output d ′ on the
input d ; a pair (d,Ω) that the function crashes with a runtime type error on
d ; by contrast, divergence is represented simply by the absence of a pair. In
this way, as said above, a function diverging on some element of nt1o could
erroneously belong to the set even if nt2o does not contain ⊥.

To formalize the requirement of totality on the domain, we could modify
the de�nition in this way:
nt1 → t2o =

{
{ (di ,diΩ) | i ∈ I }

��
nt1o ⊆ {di | i ∈ I } and ∀i ∈ I . di ∈ nt1o =⇒ diΩ ∈ nt2o

}
However, if we consider only �nite relations as above, the de�nition makes

no sense, since nt1o ⊆ {di | i ∈ I } can hold only when nt1o is �nite, whereas
types can have in�nite interpretations. As discussed in Section 2.1.2, the re-
striction to �nite relations is needed because otherwise Domain would have to
contain P(Domain × DomainΩ) (writing DomainΩ for Domain ∪ {Ω}), which is
impossible by cardinality.

Frisch, Castagna, and Benzaken (2008) point out this problem of cardinality
and use �nite relations in the domain to avoid it. They motivate this choice
with the observation that, while �nite relations are not really appropriate to
describe functions in a language (since these might have an in�nite domain),
they are suitable to describe types as far as subtyping is concerned. It can be
shown that
∀t1, t

′
1, t2, t

′
2. nt ′1 → t1o ⊆ nt ′2 → t2o ⇐⇒ (nt ′1o⇀ nt1o) ⊆ (nt ′2o⇀ nt2o)

where
X ⇀ Y

def
= { R ∈ P(Domain × DomainΩ) | ∀(d,d

′) ∈ R. d ∈ X =⇒ d ′ ∈ Y }

builds the set of possibly in�nite relations. This can be generalized to more
complex types:�∧

i ∈P t
′
i → ti

�
⊆

�∨
i ∈N t ′i → ti

�
⇐⇒⋂

i ∈P
(nt ′i o⇀ ntio) ⊆ ⋃

i ∈N
(nt ′i o⇀ ntio) .

235

14 Discussion

The equivalence above is used by Frisch, Castagna, and Benzaken (2008),
through the notion of extensional interpretation, to argue that the restriction
to �nite relations does not impair the precision of subtyping.

Let us try to proceed analogously in our case: that is, to �nd a new interpret-
ation of types that matches the behaviour of possibly in�nite relations that
are total on their domain, while introducing an approximation to ensure that
the domain is de�nable. The latter point means, notably, that functions must
be represented as �nite objects. The following de�nition of a model speci�es
the properties that such an interpretation should satisfy.

14.1 definition (Model): A set Domainm along with a function n · om : Type→
P(Domainm) is a model if the following hold:

1. the set Domainm satis�es

Domainm = {⊥}] Const] (Domainm × Domainm)] Domainmfun

for some set Domainmfun;

2. for all b, t , t1, and t2,

n⊥om = {⊥} nt1 ∨ t2om = nt1om ∪ nt2om
nbom = �(b) n¬tom = Domainm \ ntom

nt1 × t2om = nt1om × nt2om n0om = �
3. for all t1 and t2, nt1 → t2om ⊆ n0→ 1om = Domainmfun;
4. for every �nite, non-empty intersection

∧
i ∈P t

′
i → ti and every �nite

union
∨

i ∈N t ′i → ti ,

n∧i ∈P t
′
i → tiom ⊆ n∨i ∈N t ′i → tiom ⇐⇒⋂

i ∈P
(nt ′i om � ntiom)

⊆
⋃

i ∈N
(nt ′i om � ntiom)

where

X � Y
def
=

{
R ∈ P(Domainm × Domainm)

��
dom(R) ⊇ X and ∀(d,d ′) ∈ R. d ∈ X =⇒ d ′ ∈ Y

}
(with dom(R) = {d | ∃d ′. (d,d ′) ∈ R }). �

We set the above conditions for an interpretation n · om : Type→ P(Domainm)
to form a model. The �rst constrains Domainm to have the same structure as
Domain, except that we do not �x the subset Domainmfun in which arrow types
are interpreted. The second and third conditions �x the de�nition of n · om
completely except for arrow types. The fourth condition ensures that subtyp-
ing on arrow types behaves as set containment between the sets of relations
that are total on the domains of the arrow types.1

1 We do not use the error element Ω in the de�nition of X � Y , because the requirement of
totality makes it unnecessary: errors on a given input can be represented in a relation by
the absence of a pair.

236

14.2 Future work

An interesting result is that, even though we do not know whether an
interpretation of types which is a model can actually be found, we can compare
such a hypothetical model with the interpretation n · o de�ned in Section 13.1.
Indeed n · o turns out to be a sound approximation of every model; that is,
the subtyping relation ≤ de�ned in De�nition 13.4 from n · o is contained in
every subtyping relation ≤n · om de�ned from some interpretation n · om that
is a model. We prove here that this holds for non-recursive types. The proof
relies on the following lemma, which is analogous to (one implication of)
Lemma 2.16.

14.2 lemma: Let n · om : Type→ P(Domainm) be a model. Let P and N be �nite
sets of types of the form t1 → t2, with P , �. Then:

∃t ′1 → t ′2 ∈ N . nt ′1 \
∨

t1→t2∈P t1om = � and(
∀P ′ (P . nt ′1 \

∨
t1→t2∈P ′ t1om = � or n∧t1→t2∈P\P ′ t2 \ t

′
2om = �

)
=⇒

⋂
t1→t2∈Pnt1 → t2om ⊆ ⋃

t1→t2∈N nt1 → t2om
�

Proof in appendix (p. 307).

14.3 proposition: Let n · om : Type→ P(Domainm) be a model. Let t1 and t2 be
two �nite (that is, non-recursive) types. If nt1o ⊆ nt2o, then nt1om ⊆ nt2om. �

We conjecture that the result holds for recursive types too, but that proof is
left for future work.

Showing that models exist would be important to understand the connection
between our types and the semantics. To use a model n · om to de�ne subtyping
for the use of a type checker, though, we would also need to show that the
resulting de�nition is decidable. Otherwise, n · o would remain the de�nition
used in a practical implementation since it is sound and decidable, though less
precise (that is, incomplete with respect to the correspondence that we have
discussed).

14.2 Future work

A natural goal for future work is to search for an alternative interpretation of
types that satis�es the conditions of De�nition 14.1. Other directions include
the following.

implicit typing and polymorphism: It would be interesting to recast
the work in this chapter in an implicitly typed setting like that of Chapter 3.
The di�culty is that the approach described in Section 3.3 to derive negation
types for functions cannot be reused here without modi�cation. This is because
it allows us to derive negation types only for functions that are closed (without
free variables). In Section 3.3, this is not a problem: we need to derive negation

237

14 Discussion

types only for values, and only closed functions are values. Here, instead, we
need the rule to be applicable also to functions with free variables; then, the
relation λx . e 6⦂n t ′→ t must be changed to account for the type environment,
but this change is problematic.

Giving an implicitly typed presentation should also allow us to extend the
system with polymorphism without di�culty. In contrast, adding polymorph-
ism to the explicitly typed language would require us to give a more complex
semantics similar to that of Castagna et al. (2014), with explicit tracking of
instantiations.

ensuring soundness by changing subtyping: A di�erent ap-
proach to use semantic subtyping with non-strict languages would be to
change the interpretation of types (and, as a result, the de�nition of subtyping)
to avoid the pathological behaviour on 0, and then to use standard typing
rules. This would avoid the need to introduce ⊥ explicitly in the types.

We have explored this alternative approach, but we have not found it prom-
ising. A modi�ed subtyping relation loses important properties – especially
results on the decomposition of product types – that we need to prove sound-
ness via subject reduction. The approach we have adopted here is more suited
to this technical work. However, a modi�ed relation could yield a di�erent
type system for the source language, provided that we can relate it to the
current system for the internal language.

track termination more precisely: It would also be interesting
to study more expressive typing rules that can track termination with some
precision. For example, we could change the application rule so that it does
not always introduce ⊥. In function interfaces, some arrows could include
⊥ and some could not: then, overloaded function types would express that
a function behaves di�erently on terminating or diverging arguments. For
example, λx . x+1 could have type (Int→ Int)∧(⊥ → ⊥), while λx . 3 could have
type 1→ Int: the former diverges on diverging arguments, the latter always
terminates. It would be interesting to explore forms of termination analysis
to obtain greater precision. The di�culty is to ensure that the type 0 remains
uninhabited and that all diverging expressions still have types that include ⊥.
This is trivial in the current system, but it is no longer straightforward with
more precise typing rules.

language and type system extensions: A further direction for
future work is to extend the language and the type system we have considered
with more features. The starting inspiration for the work in this chapter was
the Nix Expression Language. To type Nix e�ectively, we would need to study
how to add polymorphism, record types, some form of type inference, and
gradual typing (since some dynamic programming idioms will surely remain
beyond the reach of the type system). The work in the other parts of this thesis
can provide a starting point towards this goal.

238

Conclusion

15 Conclusion

The semantic subtyping approach that we follow was developed initially
for XDuce (Hosoya and Pierce, 2003), a domain-speci�c language for the
processing of XML documents. Its extension with higher-order functions
(Benzaken, Castagna, and Frisch, 2003; Frisch, Castagna, and Benzaken, 2008)
made the approach more viable for general-purpose functional languages. The
addition of parametric polymorphism (Castagna and Xu, 2011; Castagna et al.,
2014, 2015b) continued along this path. Other work has applied the semantic
subtyping approach to di�erent settings, including object-oriented languages
(Dardha, Gorla, and Varacca, 2013; Ancona and Corradi, 2016), XML and NoSQL
query languages (Benzaken et al., 2013; Castagna et al., 2015a), and process
calculi (Castagna, De Nicola, and Varacca, 2008).

This thesis contributes to this path by studying three di�erent settings and
showing how to adapt set-theoretic types and semantic subtyping to them.

The �rst setting is that of implicitly typed languages with type inference.
We have shown how to de�ne inference and have soundness and completeness
properties. This has also required work to prove type safety: negation types
pose challenges that had been considered up to now only for explicitly typed
languages.

The second line of work is that on gradual typing. Gradual typing with
set-theoretic types had only been studied in a monomorphic setting. We have
extended it to a polymorphic setting and de�ned sound (though not complete)
type inference. Moreover, during this work we have realized that a declarative
formulation of gradual typing was possible, and indeed useful to integrate
polymorphic gradual typing with set-theoretic types while keeping a simple
description. We have described this formulation also for systems without
subtyping.

Finally, we have considered non-strict languages, that had not been stud-
ied up to now in relation to semantic subtyping. We have shown how to
give a sound type system for such languages by adding to types an explicit
representation for divergence.

A point to be stressed is that, throughout this work, we have been able to
preserve the existing results on semantic subtyping. Notably, the subtyping
relations de�ned in the di�erent parts of the thesis can all be decided by
the existing algorithms, with at most trivial modi�cations. Analogously, we
can rely on the tallying algorithm for constraint solving. We argue that this
illustrates that semantic subtyping is an e�ective technique to de�ne expressive
subtyping relations with set-theoretic types in a wide variety of settings.

We have also met some limits of the approach. For example, in Parts I and II,
we have suggested that changes to the tallying algorithm might be desirable. It
must be noted also that the original semantic connotation of semantic subtyp-

241

15 Conclusion

ing does not always hold in these settings. It is, indeed, already weakened in
polymorphic semantic subtyping by having to treat all types as non-singletons
(as explained in Section 2.1.3). It fails more noticeably in Part II (where we
must have ? \ ? be non-empty) and in Part III (as discussed in Section 14.1).
However, union and intersection types can still be thought of in terms of their
set-theoretic counterparts (and negation too except in Part II): therefore, the
guiding intuition of semantic subtyping is still valid to some extent. We have
also proven some results that show that thinking of types as sets of values
is partly justi�ed, especially when considering type connectives and ground
types (for example, the results in Section 3.3.6). However, the focus has been
more on how to obtain expressive subtyping and less on justifying it semantic-
ally. We have outlined how we could look for a better-�tting interpretation in
Part III. It is less clear whether it would make sense to try to have subtyping on
gradual types be set-theoretic too. Currently, it seems to yield an ill-behaved
subtyping relation. It is possible that this could be changed by using a di�erent
de�nition of materialization, but the current de�nition has the advantage of
coinciding with a well-known relation from the gradual typing literature.

15.1 Future work

We have discussed directions for future work in Section 7.2, in Section 11.2,
and in Sections 14.1 and 14.2. We recall here some of the most signi�cant.

Type inference with annotations: The work on type inference in Chapter 5
should be improved to achieve stronger completeness results and to char-
acterize when type annotations are needed. This could require an adapta-
tion of the tallying algorithm to deal better with explicit polymorphism
from type annotations.

Record typing: While the type system in Part I is very expressive, it lacks a
way to type record-update operations precisely as permitted by row poly-
morphism. We should explore whether we can add row polymorphism or
other features that can provide similar expressiveness.

Complete type inference for gradual set-theoretic types: Type inference in
Section 10.4 is sound but not complete. We can try to achieve completeness
by leveraging the techniques in Chapters 4 and 5 and by modifying tallying
to deal with materialization constraints.

Intersection types with gradual typing: The type system in Chapter 10 does
not include a rule to introduce intersection types. This makes intersection
types less useful, in particular to express function overloading. Adding
typecases to the language and extending the type system to allow inter-
section introduction would be a major step forward in expressiveness.

Finding a model of types for non-strict languages: Reusing the set-theoretic
interpretation of types from Chapter 2 and adjusting the type system
has allowed us to describe sound typing also for non-strict languages.

242

15.1 Future work

However, as we have discussed, a di�erent interpretation could provide
more precise subtyping with a closer connection to the semantics.

Implicit typing for non-strict languages: The language in Part III is expli-
citly typed. Considering an implicitly typed language would make an
extension with polymorphism simpler, since we would not need to con-
sider types in the semantics. To do so, we need to adapt the techniques
used in Chapter 3.

243

Appendices

a Additional proofs

We report here the proofs that we had omitted or only sketched in the main
text. The statements follow the same numbering as in the text.

Implicit typing and type inference

Adding type annotations

5.5 lemma: If P ;M ;∆;σ
 〈〈e : t〉〉∆ and if dom(σ)] ∆ and var(e) ⊆ ∆, then
P ;M ;∆
 e : tσ . �

Proof: By induction on e and by case analysis on the shape of e.

Case: e = x̂

We have P ;M ;∆;σ

∧

i ∈I (x̂ Û≤ ti) where d(t) = { ti | i ∈ I }.
Therefore, P(x̂) = 〈M1〉t1 and, for every i ∈ I there is a σi such that:

t1σi ≤ tiσ M ≤ M1σi dom(σi)] ∆ .

By Property 5.3, I is not empty and
∧

i ∈I ti ' t ; therefore,
∧

i ∈I tiσ ' tσ .
For every i ∈ I , we have P ;M1σi ;∆
 x̂ : t1σi by [T ra

x̂].
Then, by [T ra

≤], we have P ;M ;∆
 x̂ : tiσ .
Using [T ra

∧], P ;M ;∆
 x̂ :
∧

i ∈I tiσ . By [T ra
≤], P ;M ;∆
 x̂ : tσ .

Case: e = x

We have P ;M ;∆;σ
 (x Û≤ t), therefore M(x) ≤ tσ .
We derive P ;M ;∆
 x : tσ by [T ra

x] and [T ra
≤].

Case: e = c
We have P ;M ;∆;σ
 (bc Û≤ t), therefore bcσ ≤ tσ .
We derive P ;M ;∆
 c : tσ by [T ra

c] and [T ra
≤].

Case: e = λx . e′

Subcase: d∆→(t) = { t
′
i → ti | i ∈ I } , �

We have P ;M ;∆;σ

∧

i ∈I (def x : t ′i in 〈〈e′ : ti 〉〉
∆).

Therefore, for every i ∈ I , we have P ; (M, x : t ′iσ);∆;σ
 〈〈e′ : ti 〉〉∆ .
By IH and [T ra

λ], we obtain P ;M ;∆
 λx . e′ : (t ′i → ti)σ .
Applying [T ra

∧], we have P ;M ;∆
 λx . e′ :
∧

i ∈I (t
′
i → ti)σ .

By Property 4.25, we have
∧

i ∈I (t
′
i → ti) ' t . We conclude by [T ra

≤].

Subcase: d∆→(t) = �
We have:

P ;M ;∆;σ
 ∃α1,α2. (def x : α1 in 〈〈e′ : α2〉〉
∆) ∧ (α1 → α2 Û≤ t)

247

a Additional proofs

(with α1,α2] t, e′,∆). Therefore there exist t1 and t2 such that

P ; (M, x : t1);∆;σ ∪ [t1/α1, t2/α2]
 〈〈e′ : α2〉〉
∆ t1 → t2 ≤ tσ .

We apply the IH and conclude by [T ra
λ] and [T ra

≤].

Case: e = e1 e2
We have:

P ;M ;∆;σ
 ∃α . 〈〈e1 : α → t〉〉∆ ∧ 〈〈e2 : α〉〉∆ α] t, e1, e2,∆ .

Therefore there exists a t ′ such that

P ;M ;∆;σ ∪ [t ′/α]
 〈〈e1 : α → t〉〉∆ P ;M ;∆;σ ∪ [t ′/α]
 〈〈e2 : α〉〉∆ .

We apply the IH and conclude by [T ra
app].

Case: e = (e1, e2)

Similar to the previous cases.

Case: e = πi e′

We consider the case i = 1; the other is symmetrical.
We have P ;M ;∆;σ
 〈〈e ′ : t × 1〉〉∆ .
By IH, P ;M ;∆
 e ′ : t × 1. By [T ra

proj], P ;M ;∆
 π1 e
′ : t .

Case: e = (e0 ∈ t ? e1 : e2)

We have

P ;M ;∆;σ
 ∃α . 〈〈e0 : α〉〉∆∧
(
(α Û≤ ¬t)∨ 〈〈e1 : t〉〉∆

)
∧

(
(α Û≤ t)∨ 〈〈e2 : t〉〉∆

)
(with α] t, e0, e1, e2,∆), therefore for some t ′ we have:

P ;M ;∆;σ ∪ [t ′/α]
 〈〈e0 : α〉〉∆

t ′ ≤ ¬t or P ;M ;∆;σ ∪ [t ′/α]
 〈〈e1 : t〉〉∆

t ′ ≤ t or P ;M ;∆;σ ∪ [t ′/α]
 〈〈e2 : t〉〉∆

By IH we obtain

P ;M ;∆
 e0 : t ′ t ′ ≤ ¬t or P ;M ;∆
 e1 : tσ t ′ ≤ t or P ;M ;∆
 e2 : tσ

and we conclude by [T ra
case].

Case: e = (let ®α x = e1 in e2)

We have P ;M ;∆;σ
 let x̂ : ∀®α ;α[〈〈e1 : α〉〉∆∪ ®α]. α in 〈〈e2 : t〉〉∆ . Therefore

P ;M1;∆ ∪ ®α ;σ1
 〈〈e1 : α〉〉∆∪ ®α (P, x̂ : 〈M1〉ασ1);M ;∆;σ
 〈〈e2 : t〉〉∆

M ≤ M1σ
′
1 dom(σ1)] ∆, ®α ®α] ∆,M1 .

By IH we have

P ;M1;∆ ∪ ®α
 e1 : ασ1 (P, x̂ : 〈M1〉ασ1);M ;∆
 e2 : tσ

and we conclude by [T ra
let].

248

Implicit typing and type inference

Case: e = (e′ :: t ′)
We have P ;M ;∆;σ
 〈〈e ′ : t ′〉〉∆ ∧ (t ′ Û≤ t).
Therefore, P ;M ;∆;σ
 〈〈e ′ : t ′〉〉∆ and t ′σ ≤ tσ .
Since var(e) ⊆ ∆, var(t ′) ⊆ ∆. Since dom(σ)] ∆, t ′σ = t ′.
By IH we have P ;M ;∆
 e′ : t ′. By [T ra

::] and [T ra
≤], P ;M ;∆
 e : tσ . �

5.6 lemma: If P ;M ;�
 e : tσ can be derived in T ra\∧, then P ;M ;�;σ

〈〈e : t〉〉�. �

Proof: By induction on e and by case analysis on the shape of e .
In each case, we invert the judgment P ;M ;∆
 e : tσ . The inversion lemma

can be derived analogously to how we did for the reformulated system
without annotations in De�nition 4.15 and Lemma 4.16.

Case: e = x̂

We have P(x̂) = 〈M ′〉t ′ and, for some σ ′, t ′σ ′ ≤ tσ and M ≤ M ′σ ′.
By Property 5.3, we have d(t) = { ti | i ∈ I } , � and

∧
i ∈I ti ' t .

Since t ≤
∧

i ∈I ti , for each i ∈ I we have t ≤ ti . Therefore, t ′σ ′ ≤ tiσ .
Therefore, P ;M ;�;σ

∧
i ∈I (x̂ Û≤ ti).

Case: e = x

We have M(x) ≤ tσ , therefore P ;M ;∆;σ
 (x Û≤ t).

Case: e = c
Straightforward.

Case: e = λx . e ′

We have P ; (M, x : t1);�
 e ′ : t2 and t1 → t2 ≤ tσ .

Subcase: d∆→(t) = { t
′
i → ti | i ∈ I } , �

We have 〈〈e : t〉〉� =
∧

i ∈I (def x : t ′i in 〈〈e ′ : ti 〉〉
�).

By Property 5.3, we have:∧
i ∈I t

′
i → ti ' t var(

∧
i ∈I t

′
i → ti) = �

∀i ∈ I . t ′i ' 0 =⇒ ti ' 1 .

For every i ∈ I , we prove P ;M ;�;σ
 defx : t ′i in 〈〈e ′ : ti 〉〉
� as follows.

Note that t ′iσ = t ′i and tiσ = ti .
Since t1 → t2 ≤ tσ , we have t1 → t2 ≤ t ′i → ti . By de�nition of
subtyping, either we have t ′i ≤ t1 and t2 ≤ ti or t ′i ≤ 0; but in the
latter case, we have ti ' 1, which also ensures t2 ≤ ti .
Therefore, we have P ; (M, x : t ′i);�
 e ′ : ti by [T ra

≤].
By IH, we obtain P ; (M, x : t ′i);�;σ
 〈〈e ′ : ti 〉〉�.
We conclude by [C sata

def].

Subcase: d∆→(t) = �
Let α1 and α2 be such that α1,α2] t,σ . Let σ̂ = σ ∪ [t1/α1, t2/α2].

249

a Additional proofs

Then, 〈〈e : t〉〉� = ∃α1,α2. (def x : α1 in 〈〈e ′ : α2〉〉
�) ∧ (α1 → α2 Û≤ t),

and we have P ; (M, x : α1σ̂);�
 e ′ : α2σ̂ .
Therefore, by IH, P ; (M, x : α1σ̂);�; σ̂
 〈〈e ′ : α2〉〉

�.
Hence, we have P ;M ;∆;σ
 〈〈e : t〉〉�.

Case: e = e1 e2
We have P ;M ;�
 e1 : t ′→ tσ and P ;M ;�
 e2 : t ′.
Let α be such that α] t . Let σ̂ = σ ∪ [t ′/α].
Then, 〈〈e : t〉〉� = ∃α . 〈〈e1 : α → t〉〉� ∧ 〈〈e2 : α〉〉�.
We have P ;M ;�
 e1 : (α → t)σ̂ and P ;M ;�
 e2 : ασ̂ .
Therefore, by IH,

P ;M ;�; σ̂
 〈〈e1 : α → t〉〉� P ;M ;�; σ̂
 〈〈e2 : α〉〉� .

Hence, we have P ;M ;�;σ
 〈〈e : t〉〉�.

Case: e = (e1, e2)

Analogous to the previous case.

Case: e = πi e
′

We consider the case i = 1; the other is symmetrical.
We have P ;M ;�
 e ′ : tσ × 1.
By IH, we obtain P ;M ;�;σ
 〈〈e ′ : t × 1〉〉�.

Case: e = (e0 ∈ t ? e1 : e2)

Analogous to the previous cases.

Case: e = (let x = e1 in e2)

We have:

P ;M1;�
 e1 : t1 (P, x̂ : 〈M1〉t1);M ;�
 e2 : tσ M ≤ M1σ
′

We choose a type variable α , and we have P ;M1;�
 e1 : α[t1/α].
Therefore, by IH,

P ;M1;�; [t1/α]
 〈〈e1 : α〉〉 (P, x̂ : 〈M1〉t1);M ;�;σ
 〈〈e : t〉〉

and we obtain P ;M ;�;σ
 〈〈e : t〉〉. �

5.7 lemma: If P ;∆ ` C { D | M | ®α and σ
∆ D, then P ;Mσ ;∆;σ |r ®α
 C . �

Proof: By structural induction on C and by case analysis on the shape of C .
Most cases are analogous to those in the proof of Lemma 4.28. The interesting
cases are those for (x̂ Û≤ t) and let constraints.

Case: C = (x̂ Û≤ t)

We have

P ;∆ ` C { {t1[®β/ ®α] Û≤ t} | M1[®β/ ®α] | ®β t1[®β/ ®α]σ ≤ tσ

P(x̂) = 〈M1〉t1 ®α = var(〈M1〉t1) \ ∆ ®β] t,∆

250

Gradual typing

and we must show P ;M1[®β/ ®α]σ ;∆;σ |
r ®β
 C , which requires �nding a σ1

such that

t1σ1 ≤ tσ |
r ®β M1[®β/ ®α]σ ≤ M1σ1 dom(σ1)] ∆ .

We choose σ1 = [®β/ ®α]σ . We have tσ = tσ |
r ®β since ®β] t .

Case: C = (let x̂ : ∀®α ;α[C1]. α in C2)

We have:

P ;∆ ` C { D2 | M1σ1[®γ/ ®β] ∧M2 | ®α2 ∪ ®γ σ
∆ D2

P ;∆ ∪ ®α ` C1 { D1 | M1 | ®α1

(P, x̂ : 〈M1σ1〉ασ1);∆ ` C2 { D2 | M2 | ®α2

σ1 ∈ tally∆∪ ®α (D1) ®α] ∆,M1 ®β = var(M1σ1) ®α1] α ®γ] C1, ®α2,∆

By Property 4.25, we have σ1
∆∪ ®α D1.
Analogously to Lemma 4.27, we can prove that, if P ;∆ ` C { D | M | ®α ,
then var(D) ∪ var(M) ⊆ var(C) ∪ ®α ∪ ∆.
Since ®γ] C1, ®α2,∆, then ®γ] D2. Therefore, σ |r®γ
 D2.
By IH we obtain:

P ;M1σ1;∆ ∪ ®α ;σ1 |r ®α1
 C1

(P, x̂ : 〈M1σ1〉ασ1);M2σ |r®γ ;∆;σ2 |r(®α2∪®γ)
 C2

We have ασ1 = ασ1 |r ®α1 because ®α1] α .
We have M2σ |r®γ = M2σ because ®γ] M2.
Therefore, we have (P, x̂ : 〈M1σ1〉ασ1 |r ®α1);M2σ ;σ2 |r(®α2∪ ®β)

 C2.
We have (M1σ1[®β/ ®α] ∧M2)σ ≤ M2σ .
Therefore, by the same result as Lemma 4.23,

(P, x̂ : 〈M1σ1〉ασ1 |r ®α1); (M1σ1[®β/ ®α] ∧M2)σ ;σ2 |r(®α2∪®γ)
 C2 .

To conclude, we also need to �nd σ ′1 such that

(M1σ1[®β/ ®α] ∧M2)σ ≤ M1σ1σ
′
1 :

we take σ ′1 = [®β/ ®α]σ . �

Gradual typing

Gradual typing for Hindley-Milner systems

9.6 lemma: If Γ2 ` e : τ and Γ1 v
∀ Γ2, then Γ1 ` e : τ . �

Proof: By induction on the derivation of Γ2 ` e : τ and by case analysis on
the last rule applied.

Case: [Tx]

251

a Additional proofs

We have e = x . By inversion of [Tx], we have:

Γ2(x) = ∀®α2. τ2 τ = τ2[®t2/ ®α2]

By de�nition of Γ1 v
∀ Γ2, we have Γ1(x) v

∀ Γ2(x). Let ∀®α1. τ1 be Γ1(x).
Then we can �nd an instance τ1[®t1/ ®α1] of Γ1(x) such that τ1[®t1/ ®α1] v τ .
We have Γ1 ` x : τ1[®t1/ ®α1] by [Tx] and Γ1 ` x : τ by [Tv].

Case: [Tc] Straightforward.

Case: [Tλ], [Tλ:], [Tapp], [Tpair], [Tproj], [Tv]
By direct application of the IH.
For [Tλ] and [Tλ:], for every τ , τ v∀ τ : therefore (Γ1, x : τ) v∀ (Γ2, x : τ).

Case: [Tlet]
We have derived Γ2 ` (let ®α x = e1 in e2) : τ from the premises:

Γ2 ` e1 : τ1 Γ2, x : ∀®α, ®β . τ1 ` e2 : τ ®α, ®β] Γ2 and ®β] Γ2

By IH, we have A○ Γ1 ` e1 : τ1.
Since v∀ is re�exive, Γ1, x : ∀®α, ®β . τ1 v

∀ Γ2, x : ∀®α, ®β . τ1.
By IH, we have B○ Γ1, x : ∀®α, ®β . τ1 ` e2 : τ .
By Lemma 9.5, we have C○ var(Γ1) ⊆ var(Γ2).
From C○ we obtain D○ ®α, ®β] Γ1.
From A○, B○, D○, and ®β] e1, we have Γ1 ` (let ®α x = e1 in e2) : τ . �

9.8 proposition: For every two types τ1 and τ2,

τ1 ∼ τ2 ⇐⇒ ∃τ . τ1 v τ and τ2 v τ . �

Proof: We �rst prove the implication from left to right.
Note that if τ1 = ? then we can take τ = τ2 since ? v τ2 and τ2 v τ2.

Similarly, if τ2 = ? then we can take τ = τ1. We prove the result by induction
on τ1 for the cases where both τ1 and τ2 are not ?.

Case: τ1 = α Then we have τ2 = α and we can take τ = τ1 = τ2.

Case: τ1 = b Then we have τ2 = b and we can take τ = τ1 = τ2.

Case: τ1 = τ
′
1 × τ

′′
1

By consistency, we have τ2 = τ
′
2 × τ

′′
2 where τ ′1 ∼ τ ′2 and τ ′′1 ∼ τ ′′2 .

By IH, there exist two types τ ′ and τ ′′ such that τ ′i v τ ′ and τ ′′i v τ ′′ for
every i ∈ {1, 2}.
Then, we have τ ′i × τ ′′i v τ ′ × τ ′′ for every i ∈ {1, 2}, whence the result.

Case: τ1 = τ
′
1 → τ ′′1 Analogous to the previous case.

We now prove the other direction. As before, if τ1 = ? or τ2 = ? then the
result is immediate. We reason by induction over τ for the cases where both
τ1 and τ2 are not ?.

Case: τ = ? We have τ1 = τ2 = ?, which is impossible.

252

Gradual typing

Case: τ = α Then τ1 = τ2 = α , and the result is immediate.

Case: τ = b Same as before.

Case: τ = τ ′→ τ ′′

By materialization, we have τi = τ ′i → τ ′′i where τ ′i v τ ′ and τ ′′i v τ ′′ for
every i ∈ {1, 2}. By IH, we then have τ ′1 ∼ τ ′2 and τ ′′1 ∼ τ ′′2 and the result
follows by de�nition of consistency.

Case: τ = τ ′ × τ ′′ Analogous to the previous case. �

9.9 proposition: If Γ `ST e : τ , then Γ `1 e : τ . Conversely, if Γ `1 e : τ , then
there exists a type τ ′ such that Γ `ST e : τ ′ and τ ′ v τ . �

Proof: We prove the two results by induction over e and the last rule used
in the typing derivation.

To prove that Γ `ST e : τ implies Γ `1 e : τ , the cases are the following.

Case: [GVar]
We have Γ `ST x : τ and, by hypothesis, Γ (x) = τ . We conclude by [Tx].

Case: [GConst]
We have Γ `ST c : τ and, by hypothesis, ∆c : τ , which is equivalent to
bc = τ in our system. We conclude by [Tc].

Case: [GLam] This rule is identical to [Tλ:].

Case: [GApp1]
We have Γ `ST e1 e2 : ?, with Γ `ST e1 : ? and Γ `ST e2 : τ2.
By IH, we have Γ `1 e1 : ? and Γ `1 e2 : τ2.
Then, by [Tv] we obtain Γ `1 e1 : τ2 → ? since ? v τ2 → ?.
We can then apply rule [Tapp] to deduce that Γ `1 e1 e2 : ?.

Case: [GApp2]
We have Γ `ST e1 e2 : τ ′, with Γ `ST e1 : τ → τ ′, Γ `ST e2 : τ2 and τ ∼ τ2.
By IH, we have Γ `1 e1 : τ → τ ′ and Γ `1 e2 : τ2.
Moreover, by Proposition 9.8, we know that there exists a type τ such
that τ v τ and τ2 v τ .
Therefore, by applying [Tv] we deduce that Γ `1 e1 : τ → τ ′ and Γ `1
e2 : τ . We conclude by applying [Tapp] to deduce that Γ `ST e1 e2 : τ ′.

For the opposite direction, the cases are the following.

Case: [Tx] By hypothesis, Γ (x) = τ . We conclude by rule [GVar].

Case: [Tc]
We have bc = ∆c in the system of Siek and Taha (2006).
We conclude by rule [GConst].

Case: [Tapp]

253

a Additional proofs

We have Γ `1 e1 e2 : τ , with Γ `1 e1 : τ ′→ τ and Γ `1 e2 : τ ′.
By IH, we have Γ `ST e1 : τ1 and Γ `ST e2 : τ2 where τ1 v τ ′ → τ and
τ2 v τ

′. Then, if τ1 = ? then we deduce by rule [GApp1] that Γ `ST e1 e2 : ?
and ? v τ , hence the result. Otherwise, we have τ1 = τ

′
1 → τ ′′1 where

τ ′1 v τ ′ and τ ′′1 v τ . Since τ2 v τ ′, we deduce by Proposition 9.8 that
τ ′1 ∼ τ2. Therefore, we deduce by rule [GApp2] that Γ `ST e1 e2 : τ ′′1 and
the result follows from the fact that τ ′′1 v τ .

Case: [Tλ:]
We have Γ `1 λx : τ ′. e : τ ′→ τ , with Γ , x : τ ′ `1 e : τ . By IH, Γ , x : τ ′ `ST
e : τ ′′whereτ ′′ v τ . Thus, by rule [GLam], we obtain Γ `ST λx : τ ′. e : τ ′→
τ ′′, and the result follows from the fact that τ ′→ τ ′′ v τ ′→ τ .

Case: [Tv]
We have Γ `1 e : τ , with Γ `1 e : τ ′ and τ ′ v τ . By IH, we have Γ `ST e : τ ′′
where τ ′′ v τ ′. By transitivity of the materialization, τ ′′ v τ and the
result follows. �

9.14 proposition (Soundness of solve): If σ ∈ solve∆(D), then the following
hold:

• σ
∆ D;
• dom(σ) ⊆ var(D);
• var(D)σ ⊆ var Ûv(D)σ ∪ ∆. �

Proof: Let σ be in solve∆(D), where D = { (t1
i Û≤ t2

i) | i ∈ I } ∪ { (τj Û≤ α j) |

j ∈ J }. Then, we have:

σ = (σ ′0 ◦ σ0)
† |TVar σ0 = unify∆(T 1 Û= T 2) σ ′0 = [®α

′/ ®X] ∪ [®X ′/ ®α]

T 1 Û= T 2 = { (t1
i Û= t2

i) | i ∈ I } ∪ { (Tj Û= α j) | j ∈ J }

®X = FVar ∩ var Ûv(D)σ0 ®α = var(D) \ (∆ ∪ dom(σ0) ∪ var Ûv(D)σ0)

®α ′, ®X ′ fresh

We �rst prove σ
∆ D. First, we show that, for every i ∈ I , we have
t1
i σ = t2

i σ . Note that, since var(t1
i) ∪ var(t

2
i) ⊆ TVar, we have t1

i σ = (t
1
i σ0σ

′
0)
†

and t2
i σ = (t

2
i σ0σ

′
0)
†. By the properties of uni�cation, we have t1

i σ0 = t2
i σ0.

Then, we also have t1
i σ0σ

′
0 = t2

i σ0σ
′
0 and �nally t1

i σ = t2
i σ .

Now, we show that, for every j ∈ J , we have τjσ v α jσ . We have τjσ =
(τjσ0σ

′
0)
† and α jσ = (α jσ0σ

′
0)
†. By the properties of uni�cation, we have

Tjσ0 = α jσ0 and therefore (Tjσ0σ
′
0)
† = (α jσ0σ

′
0)
†. Therefore, we must show

(τjσ0σ
′
0)
† v (Tjσ0σ

′
0)
†, which holds trivially since τj = T †

j .
Now, we show that, for every j ∈ J and every β ∈ var(τj), βσ is a static

type. Note that β ∈ var Ûv(D). We have βσ = (βσ0σ
′
0)
†. If βσ were not static,

there would be an X ∈ var(βσ0σ
′
0): we show that this cannot happen. If there

were an X ∈ var(βσ0σ
′
0), then there would be an A ∈ TVar ∪ FVar such that

A ∈ var(βσ0) and X ∈ var(Aσ ′0). We would have A ∈ var Ûv(D)σ0. Therefore, if

254

Gradual typing

A ∈ FVar, then A ∈ ®X and it would be mapped to a static type variable; if
A ∈ TVar, then it could not be in dom(σ ′0), so it could not be mapped to a type
containing frame variables.

Finally, we show that dom(σ) ∩ ∆ = �. Let α ∈ ∆. We show α < dom(σ),
that is, ασ = α . We have ασ = (ασ0σ

′
0)
†. By the properties of uni�cation,

since α ∈ ∆, we have ασ0 = α . We also have ασ ′0 = α because α < ®α .
To prove dom(σ) ⊆ var(D), consider α < var(D). We prove α < dom(σ),

that is, ασ = α . We have ασ = (ασ0σ
′
0)
†. By the properties of uni�cation,

since α < var(D), ασ0 = α . Then, since α < var(D), we have α < ®α ; hence,
ασ ′0 = α .

To prove var(D)σ ⊆ var Ûv(D)σ ∪ ∆, consider an arbitrary α ∈ var(D)σ . We
show α ∈ var Ûv(D)σ∪∆. By de�nition of var(D)σ , there must exist a β ∈ var(D)
such that α ∈ var(βσ). We have βσ = (βσ0σ

′
0)
†. Either α ∈ var(βσ0) \ dom(σ ′0)

or α ∈ var(σ ′0).

• If α ∈ var(βσ0) \ dom(σ ′0), then α ∈ var(D) (because β ∈ var(D) and
because solutions of uni�cation do not introduce new variables). Then,
α ∈ ∆∪dom(σ0)∪var Ûv(D)σ0. The case α ∈ dom(σ0) is impossible because
σ0 is idempotent. Therefore, α ∈ ∆ ∪ var Ûv(D)σ0 and (since α < dom(σ ′0))
α ∈ ∆ ∪ var Ûv(D)σ .

• If α ∈ var(σ ′0), then α ∈ ®Xσ ′0. Therefore, there exists an X ∈ var Ûv(D)σ0
such that α ∈ var(Xσ ′0). Hence, α ∈ var Ûv(D)σ . �

9.15 lemma: Let σ : TVar→ GType and σ ′ : Var→ TFrame be two type substitu-
tions such that ∀α ∈ TVar. (ασ ′)† = ασ . For everyT , we haveT †σ v (Tσ ′)†. �

Proof: We choose σ̂ : TVar→ TFrame such that:

∀α ∈ TVar. (ασ̂)† = ασ fvar(σ̂)] dom(σ ′), fvar(T) .

We de�ne σ̌ : FVar→ GType as

σ̌ = [(Xσ ′)†/X]X ∈dom(σ ′) ∪ [?/X]X ∈fvar(T σ̂)\dom(σ ′) .

We have (Tσ̂)† = T †σ because:

• for every α ∈ var(T), we have (ασ̂)† = ασ = α †σ ;

• for every X ∈ var(T), we have (Xσ̂)† = X † = ? = ?σ = X †σ .

We have Tσ̂σ̌ = (Tσ ′)† because:

• for everyα ∈ var(T)∩dom(σ̂), since fvar(σ̂)] dom(σ̌), we haveασ̂σ̌ = ασ̂
and α(σ̂ ∪ σ̌) = ασ̂ ;

• for every α ∈ var(T) \ dom(σ), since ασ = α , also ασ̂ = α and ασ ′ = α :
then we have ασ̂σ̌ = α = (ασ ′)†;

• for every X ∈ var(T) ∩ dom(σ ′), we have Xσ̂σ̌ = Xσ̌ = (Xσ ′)†;

255

a Additional proofs

• for every X ∈ var(T) \ dom(σ ′), we have X ∈ var(Tσ̂) \ dom(σ ′): then,
Xσ̂σ̌ = Xσ̌ = ? = X † = (Xσ ′)†.

Therefore, we haveTσ̂ ∈ ?(T †σ) andTσ̂σ̌ = (Tσ ′)† with σ̌ : FVar→ GType:
hence, T †σ v (Tσ ′)†. �

9.16 proposition (Completeness of solve): If σ
∆ D, then there exist two
type substitutions σ ′ and σ ′′ such that:

• σ ′ ∈ solve∆(D);
• dom(σ ′′) ⊆ var(σ ′) \ var(D);
• for every α , ασ ′(σ ∪ σ ′′) v α(σ ∪ σ ′′);
• for every α such that ασ ′ is static, ασ ′(σ ∪ σ ′′) = α(σ ∪ σ ′′). �

Proof: Let D = { (t1
i Û≤ t2

i) | i ∈ I } ∪ { (τj Û≤ α j) | j ∈ J } and let σ :
TVar→ GType be such that σ
∆ D. The �rst step of computing solve∆(D) is
to construct

T 1 Û= T 2 = { (t1
i Û= t2

i) | i ∈ I } ∪ { (Tj Û= α j) | j ∈ J }

with each Tj such that T †
j = τj and with unique frame variables.

First, we show that from σ we can obtain a substitution σ̌ : Var→ TFrame
which is a uni�er for T 1 Û= T 2. For every j ∈ J , we have τjσ v α jσ ; further-
more, σ is static on all variables of τj . By de�nition of materialization, there
exist a type frameT ′j ∈ ?(τjσ) and a substitution σj : FVar→ GType such that
T ′j σj = α jσ . In particular, we can chooseT ′j = Tjσ (becauseTjσ ∈ ?(τjσ) and
because it has unique frame variables) and we can assume dom(σj) = fvar(Tj).
Let σ̂ = σ ∪

⋃
j ∈J σj : σ̂ is well de�ned since the frame variables in every Tj

are distinct. We choose an arbitrary frame variable X̌ . Let σ̌ : Var→ TFrame
be such that ∀A ∈ Var. (Aσ̌)† = Aσ̂ and that fvar(σ̌) ⊆ {X̌ }. We have
dom(σ̌) ∩ ∆ = �, since dom(σ) ∩ ∆ = �, dom(σ̌) \ dom(σ) ⊆ FVar, and
∆ ⊆ TVar. Moreover, σ̌ is a uni�er for T 1 Û= T 2.

By the properties of uni�cation, we have unify∆(T 1 Û= T 2) = σ0 and σ̌ =
σ̌ ◦ σ0.

By de�nition of solve, we have:

σ ′ ∈ solve∆(D) σ ′ = (σ ′0 ◦ σ0)
† |TVar σ ′0 = [®α

′/ ®X] ∪ [®X ′/ ®α]

®X = FVar ∩ var Ûv(D)σ0 ®α = var(D) \ (∆ ∪ dom(σ0) ∪ var Ûv(D)σ0)

®α ′, ®X ′ fresh

Since ®α ′ and ®X ′ are fresh, we can assume they are outside dom(σ̌) and var(σ̌).
We choose σ ′′ = [(®Xσ̌)†/ ®α ′]. Since ®α ′ is chosen fresh by solve, it is outside

of var(D): therefore, it is in var(σ ′) \ var(D).
We must show:

∀α . ασ ′(σ ∪ σ ′′) v α(σ ∪ σ ′′)

∀α . ασ ′ =⇒ ασ ′(σ ∪ σ ′′) = α(σ ∪ σ ′′)

256

Gradual typing

If α < dom(σ ′), the results hold trivially.
We consider the case α ∈ dom(σ ′). Then, we have α < ®α ′.
We have:

α(σ ∪ σ ′′) = ασ = (ασ̌)† = (ασ0σ̌)
†

We have:

ασ ′(σ ∪ σ ′′) = (ασ0σ
′
0)
†(σ ∪ σ ′′)

v (ασ0σ
′
0(σ̌ ∪ [®Xσ̌/ ®α

′]))† by Lemma 9.15
= (ασ0([®α

′/ ®X] ∪ [®X ′/ ®α])(σ̌ ∪ [®Xσ̌/ ®α ′]))†

= (ασ0(σ̌ |dom(σ̌)\ ®α ∪ [®X
′/ ®α]))†

v (ασ0σ̌)
†

If ασ ′ is static, then fvar(ασ0σ
′
0) = � and therefore var(ασ0)] ®α and

fvar(ασ0) ⊆ ®X . Then:

ασ ′(σ ∪ σ ′′) = (ασ0σ
′
0)
†(σ ∪ σ ′′)

= ασ0σ
′
0(σ ∪ σ

′′)

= ασ0[®α
′/ ®X](σ ∪ [(®Xσ̌)†/ ®α ′]

= ασ0(σ ∪ [(®Xσ̌)
†/ ®X]

= (ασ0σ̌)
† �

9.17 lemma (Stability of typing under type substitution): If Γ ` e E : τ , then,
for every static type substitution σ , we have Γσ ` eσ Eσ : τσ . �

Proof: By induction on the derivation of Γ ` e E : τ and by case analysis
on the last rule applied.

Case: [Tx]
We have Γ ` x x [®t] : τ [®t/ ®α], with Γ (x) = ∀®α . τ .
By α-renaming, ®α] σ . Therefore, (Γσ)(x) = ∀®α . τσ .
Since the ®tσ are all static, by [Tx] we have A○ Γσ ` x x [®tσ] : τσ [®tσ/ ®α].
Since ®α] σ , we have B○ τσ [®tσ/ ®α] = τ [®t/ ®α]σ .
From A○ and B○, we have Γσ ` x x [®t]σ : τ [®t/ ®α]σ .

Case: [Tc]
Straightforward, since bcσ = bc .

Case: [Tλ], [Tλ:], [Tapp], [Tpair], [Tproj]
Direct application of the IH. For [Tλ], note that tσ is always static.

Case: [Tv]
τ ′ v τ implies τ ′σ v τσ for any type substitution σ .

Case: [Tlet]
We have Γ ` (let ®α x = e1 in e2) (let x = Λ ®α, ®β . E1 in E2) : τ , derived

257

a Additional proofs

from

A○ Γ ` e1 E1 : τ1 B○ Γ , x : ∀®α, ®β . τ1 ` e2 E2 : τ
C○ ®α, ®β] Γ and ®β] e1

Let ®α1 and ®β1 be vectors of distinct variables chosen outside var(Γ), var(e1),
dom(σ), and var(σ). Let ρ = [®α1/ ®α] ∪ [®β1/ ®β].
By IH from A○ we have Γρ ` e1ρ E1ρ : τ1ρ.
By C○, we have D○ Γ ` e1[®α1/ ®α] E1ρ : τ1ρ.
By IH from D○ we have E○ Γσ ` e1[®α1/ ®α]σ E1ρσ : τ1ρσ .
By IH from B○ we have F○ Γσ , x : (∀®α, ®β . τ1)σ ` e2σ E2σ : τσ .
By α-renaming from F○ we have G○ Γσ , x : (∀®α1, ®β1. τ1ρ)σ ` e2σ

E2σ : τσ .
From G○, since ®α1, ®β1] σ , we have H○ Γσ , x : (∀®α1, ®β1. τ1ρσ) ` e2σ

E2σ : τσ .
By [Tlet] from E○ and H○, we have Γσ ` (let ®α1 x = e1[®α1/ ®α]σ in e2σ)

(let x = Λ ®α1, ®β1. E1ρσ in E2σ) : τσ .
This concludes the proof because let ®α1 x = e1[®α1/ ®α]σ in e2σ and (let ®α x =
e1 in e2)σ are equivalent by α-renaming, as are letx = Λ ®α1, ®β1. E1ρσ in E2σ

and (let x = Λ ®α, ®β . E1 in E2)σ . �

9.21 lemma: If Γ ;∆ ` C { D, then var(Γ) ∩ var(D) ⊆ var(C) ∪ var Ûv(D). �

Proof: By induction on C (the form of C determines the derivation).

Case: C = (t1 Û≤ t2) or C = (τ Ûv α) We have var(D) ⊆ var(C).

Case: C = (τ Ûv α) We have var(D) ⊆ var Ûv(D) ∪ {α } and α ∈ var(C).

Case: C = (def x : τ in C ′)
By IH, var(Γ , x : τ) ∩ var(D) ⊆ var(C ′) ∪ var Ûv(D). This directly yields the
result since var(C ′) ⊆ var(C).

Case: C = (∃ ®α .C ′)
By IH, var(Γ) ∩ var(D) ⊆ var(C ′) ∪ var Ûv(D). The side condition on the
rule imposes ®α] Γ . Then, var(Γ) ∩ var(D) ⊆ var(C) ∪ var Ûv(D) since
var(C) = var(C ′) \ ®α .

Case: C = (C1 ∧C2)

By IH, for both i , var(Γ) ∩ var(Di) ⊆ var(Ci) ∪ var Ûv(Di). This directly
implies var(Γ) ∩ var(D1 ∪ D2) ⊆ var(C1 ∧C2) ∪ var Ûv(D1 ∪ D2).

Case: C = (let x : ∀®α ;α[C1]
®α1 . α in C2)

By IH,

var(Γ) ∩ var(D1) ⊆ var(C1) ∪ var Ûv(D1)

var(Γ , x : ∀®α, ®β . ασ1) ∩ var(D2) ⊆ var(C2) ∪ var Ûv(D2)

258

Gradual typing

We have

D = D2 ∪ equiv(σ1,D1)

var(D) = var(D2) ∪ var(D1)σ1 ∪ var Ûv(D1) ∪ S ∪ Sσ1

var Ûv(D) = var Ûv(D2) ∪ var(D1)σ1 ∪ var Ûv(D1)

var(C) = (var(C1) \ (®α ∪ {α })) ∪ var(C2)

where S = { α ∈ dom(σ1) | ασ1 static }.
Consider an arbitrary β ∈ var(Γ) ∩ var(D).
Subcase: β ∈ var(D2)

Then β ∈ var(C2) ∪ var Ûv(D2) and hence β ∈ var(C) ∪ var Ûv(D).

Subcase: β ∈ var(D1)σ1 ∪ var Ûv(D1)

Then β ∈ var Ûv(D).

Subcase: β ∈ S
Then β ∈ dom(σ1). By Proposition 9.14, β ∈ var(D1).
Since β ∈ var(Γ) ∩ var(D1), we have β ∈ var(C1) ∪ var Ûv(D1). Since
β ∈ var(Γ), by the side conditions of the rule we know β , α and
β < ®α . Therefore, β ∈ var(C) ∪ var Ûv(D).

Subcase: β ∈ Sσ1
Then β ∈ var(γσ1) for some γ ∈ dom(σ1) such that γσ1 is static.
By Proposition 9.14, γ ∈ var(D1). Then β ∈ var(D1)σ1 ⊆ var Ûv(D). �

9.22 lemma:

∀Γ ,∆, e,α,D,σ .

Γ ;∆ ` 〈〈e : α〉〉 { D

σ ∈ solve∆(D)

var(e) ⊆ ∆

α < var(Γ)


=⇒ static(σ , var(Γ))

�

Proof: Consider an arbitrary β ∈ var(Γ). We show that βσ is static.

Case: β < dom(σ) Then βσ = β , which is static.

Case: β ∈ dom(σ)
Then β ∈ var(D) (by Proposition 9.14), and therefore β ∈ var(Γ) ∩ var(D).
By Lemma 9.21, β ∈ var(〈〈e : α〉〉) ∪ var Ûv(D).
Subcase: β ∈ var(〈〈e : α〉〉)

This case is impossible because var(〈〈e : α〉〉) = var(e) ∪ {α }, dom(σ)]
var(e) (because var(e) ⊆ ∆), and α < var(Γ).

Subcase: β ∈ var Ûv(D) Since σ
∆ D, βσ must be static. �

259

a Additional proofs

9.23 lemma:

∀Γ ,∆,D1,σ1, ρ,σ ,σ
′.

σ
∆ equiv(σ1,D1)

dom(ρ)] Γσ1

static(σ ′, var(equiv(σ1,D1))σ)

static(σ1, var(Γ))


=⇒ Γσσ ′ = Γσ1ρσσ

′

�

Proof: Consider an arbitrary x ∈ dom(Γ). We have Γ (x) = ∀®α . τ . We as-
sume by α-renaming that ®α] σ1, ρ,σ ,σ

′; then, (Γσσ ′)(x) = ∀®α . τσσ ′ and
(Γσ1ρσσ

′)(x) = ∀®α . τσ1ρσσ
′. We must show τσσ ′ = τσ1ρσσ

′. We show
∀α ∈ var(τ). ασσ ′ = ασ1ρσσ

′. Consider an arbitrary α ∈ var(τ).

Case: α ∈ ®α
Then (by our choice of naming) ασσ ′ = α and ασ1ρσσ

′ = α .

Case: α < ®α
Then α ∈ var(Γ) and hence: var(ασ1) ⊆ var(Γσ1), and ασ1ρ = ασ1, and
ασ1 is static.

Subcase: α < dom(σ1)

Then ασ1 = α , ασ1ρ = α , and ασ1ρσσ
′ = ασσ ′.

Subcase: α ∈ dom(σ1)

Then {(α Û≤ ασ1), (ασ1 Û≤ α)} ⊆ equiv(σ1,D1).
Therefore, we have ασ1σ = ασ and ασ1σσ

′ = ασσ ′. �

9.24 theorem (Soundness of type inference): LetD be a derivation of Γ ; var(e) `
〈〈e : t〉〉 { D. Let σ be a type substitution such that σ
var(e) D. Then, we have
Γσ ` e ⦃e⦄Dσ : tσ . �

Proof: We show the following, stronger result (for allD, Γ , ∆, e , t , D, σ , σ ′):

D :: Γ ;∆ ` 〈〈e : t〉〉 { D

σ
∆ D

static(σ ′, var(D)σ)

var(e) ⊆ ∆


=⇒ Γσσ ′ ` eσ ′ ⦃e⦄Dσ σ

′ : tσσ ′

This result implies the statement: we take ∆ = var(e) and σ ′ = [] (the
identity substitution).

The proof is by structural induction on e .

Case: e = x

We have

A○ D :: Γ ;∆ ` 〈〈x : t〉〉 { D B○ σ
∆ D C○ static(σ ′, var(D)σ) .

260

Gradual typing

By Lemma 9.20 from A○:

Γ (x) = ∀®α . τ D = {(τ [®β/ ®α] Ûv α), (α Û≤ t)} .

Assuming ®α] σ ,σ ′ by α-renaming, we have (Γσσ ′)(x) = ∀®α . τσσ ′.
By B○ and C○, we know that the types ®βσσ ′ are static.
Since ®α] σ ,σ ′, we have ∀α ∈ var(τ). ασσ ′[®βσσ ′/ ®α] = α[®β/ ®α]σσ ′.
Therefore, τσσ ′[®βσσ ′/ ®α] = τ [®β/ ®α]σσ ′.
By Lemma 9.19, τ [®β/ ®α]σσ ′ v ασσ ′.
By Lemma 9.18, ασσ ′ = tσσ ′.
By [Tx], Γσσ ′ ` x x [®βσσ ′] : τσσ ′[®βσσ ′/ ®α].
By [Tv], Γσσ ′ ` x x [®βσσ ′]〈τ [®β/ ®α]σσ ′⇒

`
ασσ ′〉 : tσσ ′.

This concludes this case since ⦃x⦄Dσ σ
′ = x [®βσσ ′]〈τ [®β/ ®α]σσ ′⇒

`
ασσ ′〉.

Case: e = c
We have D :: Γ ;∆ ` 〈〈c : t〉〉 { D.
By Lemma 9.20, D = {bc Û≤ t}. By Lemma 9.18, bcσσ ′ = tσσ ′.
By [Tc], Γσσ ′ ` cσσ ′ c : tσσ ′. Note that ⦃c⦄Dσ σ ′ = c .

Case: e = λx . e ′

We have D :: Γ ;∆ ` 〈〈λx . e ′ : t〉〉 { D.
By Lemma 9.20:

D ′ :: (Γ , x : α1);∆ ` 〈〈e ′ : α2〉〉 { D ′

D = D ′ ∪ {(α1 Ûv α1), (α1 → α2 Û≤ t)}

We know that α1σσ
′ is static.

By Lemma 9.18, (α1 → α2)σσ
′ = tσσ ′.

By IH, Γσσ ′, x : α1σσ
′ ` e ′σσ ′ ⦃e ′⦄D

′

σ σ ′ : α2σσ
′.

By [Tλ], Γσσ ′ ` (λx . e ′σσ ′) λ(α1→α2)σσ ′x . ⦃e ′⦄D
′

σ σ ′ : (α1 → α2)σσ
′.

Therefore, Γσσ ′ ` (λx . e ′σσ ′) λ(α1→α2)σσ ′x . ⦃e ′⦄D
′

σ σ ′ : tσσ ′.
Note that ⦃λx . e⦄Dσ σ ′ = λ(α1→α2)σσ ′x . ⦃e ′⦄D

′

σ σ ′.

Case: e = λx : τ . e ′ We have D :: Γ ;∆ ` 〈〈λx : τ . e ′ : t〉〉 { D.
By Lemma 9.20:

D ′ :: (Γ , x : τ);∆ ` 〈〈e ′ : α2〉〉 { D ′

D = D ′ ∪ {(τ Ûv α1), (α1 → α2 Û≤ t)} .

By Lemma 9.19, τσσ ′ v α1σσ
′.

By Lemma 9.18, (α1 → α2)σσ
′ = tσσ ′.

By IH, Γσσ ′, x : τσσ ′ ` e ′σσ ′ ⦃e ′⦄D
′

σ σ ′ : α2σσ
′.

By [Tλ:], Γσσ ′ ` (λx : τ . e ′)σσ ′ λ(τ→α2)σσ ′x . ⦃e ′⦄D
′

σ σ ′ : (τ → α2)σσ
′.

By [Tv],

Γσσ ′ ` (λx : τ . e ′)σσ ′ (
λ(τ→α2)σσ ′x . ⦃e ′⦄D

′

σ σ ′
)
〈(τ → α2)σσ

′⇒
`
(α1 → α2)σσ

′〉 : (α1 → α2)σσ
′.

261

a Additional proofs

Therefore,

Γσσ ′ ` (λx : τ . e ′)σσ ′ (
λ(τ→α2)σσ ′x . ⦃e ′⦄D

′

σ σ ′
)
〈(τ → α2)σσ

′⇒
`
(α1 → α2)σσ

′〉 : tσσ ′ .

Note that

⦃λx : τ . e⦄Dσ σ ′ =(
λ(τ→α2)σσ ′x . ⦃e ′⦄D

′

σ σ ′
)
〈(τ → α2)σσ

′⇒
`
(α1 → α2)σσ

′〉 .

Case: e = e1 e2
We have D :: Γ ;∆ ` 〈〈e1 e2 : t〉〉 { D.
By Lemma 9.20:

D1 :: Γ ;∆ ` 〈〈e1 : α → t〉〉 { D1 D2 :: Γ ;∆ ` 〈〈e2 : α〉〉 { D2

D = D1 ∪ D2

By IH, Γσσ ′ ` e1σσ
′ ⦃e1⦄

D1
σ σ ′ : (α → t)σσ ′.

By IH, Γσσ ′ ` e2σσ
′ ⦃e2⦄

D2
σ σ ′ : ασσ ′.

By [Tapp], Γσσ ′ ` (e1 e2)σσ
′ ⦃e1⦄

D1
σ σ ′ ⦃e2⦄

D2
σ σ ′ : tσσ ′.

We have ⦃e1 e2⦄
D
σ σ
′ = ⦃e1⦄

D1
σ σ ′ ⦃e2⦄

D2
σ σ ′.

Case: e = (e1, e2)

We have D :: Γ ;∆ ` 〈〈(e1, e2) : t〉〉 { D.
By Lemma 9.20:

D1 :: Γ ;∆ ` 〈〈e1 : α1〉〉 { D1 D2 :: Γ ;∆ ` 〈〈e2 : α2〉〉 { D2

D = D1 ∪ D2 ∪ {α1 × α2 Û≤ t}

By Lemma 9.18, (α1 × α2)σσ
′ = tσσ ′.

By IH, Γσσ ′ ` e1σσ
′ ⦃e1⦄

D1
σ σ ′ : α1σσ

′.
By IH, Γσσ ′ ` e2σσ

′ ⦃e2⦄
D2
σ σ ′ : α2σσ

′.
By [Tpair], Γσσ ′ ` (e1, e2)σσ

′
(
⦃e1⦄

D1
σ σ ′,⦃e2⦄

D2
σ σ ′

)
: tσσ ′.

We have ⦃(e1, e2)⦄
D
σ σ
′ =

(
⦃e1⦄

D1
σ σ ′,⦃e2⦄

D2
σ σ ′

)
.

Case: e = πi e
′ We have D :: Γ ;∆ ` 〈〈πi e ′ : t〉〉 { D.

By Lemma 9.20:

D ′ :: Γ ;∆ ` 〈〈e ′ : α1 × α2〉〉 { D ′ D = D ′ ∪ {αi Û≤ t}

By Lemma 9.18, αiσσ ′ = tσσ ′.
By IH, Γσσ ′ ` e ′σσ ′ ⦃e ′⦄D

′

σ σ ′ : (α1 × α2)σσ
′.

By [Tproj], Γσσ ′ ` (πi e ′)σσ ′ πi (⦃e
′
⦄

D′

σ σ ′) : tσσ ′.
We have ⦃πi e

′
⦄

D
σ σ
′ = (πi ⦃e

′
⦄

D′

σ)σ
′.

Case: e = (let ®α x = e1 in e2)We haveD :: Γ ;∆ ` 〈〈let ®α x = e1 in e2 : t〉〉 { D.

262

Gradual typing

By Lemma 9.20:

D1 :: Γ ;∆ ∪ ®α ` 〈〈e1 : α〉〉 { D1

D2 :: (Γ , x : ∀®α, ®β . ασ1);∆ ` 〈〈e2 : t〉〉 { D2

D = D2 ∪ equiv(σ1,D1) σ1 ∈ solve∆∪ ®α (D1)

®α] var(Γσ1) ®β = var(ασ1) \ (var(Γσ1) ∪ ®α ∪ var(e1))

Let ®α1 and ®β1 be vectors of distinct variables chosen outside var(e1),
dom(σ), var(σ), dom(σ ′), and var(σ ′). Let ρ = [®α1/ ®α] ∪ [®β1/ ®β].
Since ®β] e1 and ®α1] σ

′, we have eσ ′ = (let ®α1 x = e1ρσ
′ in e2σ

′).
We have ⦃e⦄Dσ =

(
let x = (Λ ®α1, ®β1. ⦃e1⦄

D1
σ1 ρσ) in ⦃e2⦄

D2
σ

)
.

Since ®α1, ®β1] σ
′, we have

⦃e⦄Dσ σ
′ =

(
let x = (Λ ®α1, ®β1. ⦃e1⦄

D1
σ1 ρσσ

′) in ⦃e2⦄
D2
σ σ ′

)
.

Considering e1, we have σ1
∆∪ ®α D1.
We prove static(σ ′ ◦ σ ◦ ρ, var(D1)σ1).

Take an arbitrary α ∈ var(D1)σ1.
• If α ∈ dom(ρ), then αρ is a variable in ®α1, ®β1 and αρ = αρσσ ′

(because ®α1, ®β1] σ ,σ
′): hence αρσσ ′ is static.

• If α < dom(ρ), then αρσσ ′ = ασσ ′.
We have (α Ûv α) ∈ equiv(σ1,D1).
Since equiv(σ1,D1) ⊆ D, ασ is static. Furthermore, var(ασ) ⊆

var(D)σ ; hence, ασσ ′ is static too.
We have var(e1) ⊆ ∆ ∪ ®α .
By IH, Γσ1ρσσ

′ ` e1ρσσ
′ ⦃e1⦄

D1
σ1 ρσσ

′ : ασ1ρσσ
′.

Since dom(σ) ∩ var(e1ρ) = �, we have e1ρσσ
′ = e1ρσ

′.
By inversion, α < var(Γ).
By Lemma 9.22, we have static(σ1, var(Γ)).
By Lemma 9.23, Γσσ ′ = Γσ1ρσσ

′.
We obtain Γσσ ′ ` e1ρσ

′ ⦃e1⦄
D1
σ1 ρσσ

′ : ασ1ρσσ
′.

Considering e2, we have:

σ
∆ D2 static(σ ′, var(D2)σ) var(e2) ⊆ ∆

By IH, Γσσ ′, x : (∀®α, ®β . ασ1)σσ
′ ` e2σ

′ ⦃e2⦄
D2
σ σ ′ : tσσ ′.

Since ®α1, ®β1] σ ,σ
′, (∀®α, ®β . ασ1)σσ

′ = (∀®α1, ®β1. ασ1ρσσ
′).

We obtain Γσσ ′, x : (∀®α1, ®β1. ασ1ρσσ
′) ` e2σ

′ ⦃e2⦄
D2
σ σ ′ : tσσ ′.

Moreover, ®α1, ®β1] Γσσ
′ and ®β1] e1ρσ

′.
Therefore, by [Tlet], Γσσ ′ ` eσ ′ ⦃e⦄Dσ σ

′ : tσσ ′. �

9.26 lemma: If Γ ;∆ ` C { D | ®α , then var(D) ⊆ var(Γ) ∪ var(C) ∪ ®α . �

Proof: By induction on the derivation of Γ ;∆ ` C { D | ®α . All cases are
straightforward except that of let constraints.

LetC = letx : ∀®α ;α[C1]
®α ′ . α in C2. Assume Γ ;∆ ` C { D2∪equiv(σ1,D1) |

263

a Additional proofs

®α3. Consider an arbitrary β ∈ var(D2) ∪ equiv(σ1,D1). We must show β ∈

var(Γ) ∪ var(C) ∪ ®α3.

Case: β ∈ var(D2)

By IH, we have β ∈ var(Γ) ∪ var(∀®α, ®β . ασ1) ∪ var(C2) ∪ ®α2.
If β ∈ var(Γ) ∪ var(C2) ∪ ®α2, then β ∈ var(Γ) ∪ var(C) ∪ ®α3.
If β ∈ var(∀®α, ®β . ασ1), then either β = α or β ∈ var(σ1).

• If β = α , then β ∈ ®α3.

• If β ∈ var(σ1), either β ∈ var(D1) or not. In the latter case, β ∈ ®α3.
In the former, by IH, we have β ∈ var(Γ) ∪ var(C1) ∪ ®α1. Note that
var(C1) ⊆ var(C) ∪ {α } ∪ ®α . Then, β ∈ var(Γ) ∪ var(C) ∪ ®α3.

Case: β ∈ var(equiv(σ1,D1))

By Proposition 9.14, dom(σ1) ⊆ var(D1). Then, β ∈ var(D1) ∪ var(σ1). Both
cases have already been treated above. �

9.27 lemma: If Γ ;∆ ` 〈〈e : t〉〉 { D | ®α , then var(t) ⊆ var(D). �

Proof: We de�ne a functionv mapping structured constraints to sets of type
variables. We show these two results, which together imply the statement:

• for every t and e , var(t) ⊆ v(〈〈e : t〉〉);

• for every Γ , ∆, C , D, and ®α , if Γ ;∆ ` C { D | ®α , then v(C) ⊆ var(D).

The function v is de�ned by induction on the structured constraint as
follows:

v(t1 Û≤ t2) = var(t2) v(τ Ûv α) = � v(x Ûv α) = �

v(def x : τ in C) = v(C) v(∃ ®α .C) = v(C) \ ®α

v(C1 ∧C2) = v(C1) ∪v(C2) v(let x : ∀®α ;α[C1]
®α ′ . α in C2) = v(C2)

The two results are proven easily by induction, respectively on e and on
the derivation of Γ ;∆ ` C { D | ®α . �

9.29 theorem (Completeness of type inference): If Γ ` e : τ , then, for every
fresh type variable α , there exist D and σ such that Γ ; var(e) ` 〈〈e : α〉〉 { D

and [τ/α] ∪ σ
var(e) D. �

Proof: We show the following, stronger result (for all Γ , σ , e , t , ∆, and U):

Γσ ` e : tσ
static(σ , Γ)

dom(σ)] ∆ ⊇ var(e)

U] ∆, t, Γ , dom(σ)


=⇒ ∃D, ®α,σ ′.


Γ ;∆ ` 〈〈e : t〉〉 { D | ®α

σ ∪ σ ′
∆ D

dom(σ ′) ⊆ ®α ⊆ U

This result implies the statement: take t = α (with α] Γ , var(e)), σ = [τ/α],

264

Gradual typing

and ∆ = var(e).
The proof is by structural induction on e .

Case: e = x

We have Γσ ` x : tσ . Therefore, x ∈ dom(Γ).
Let Γ (x) be ∀®α . τ and assume, by α-renaming, ®α] σ . Then, (Γσ)(x) =
∀®α . τσ .
By inversion of the typing rules, there exists an instance τσ [®t/ ®α] of
(Γσ)(x) such that τσ [®t/ ®α] v tσ .
We take α ∈ U. Then, 〈〈x : t〉〉 = ∃α . (x Ûv α) ∧ (α Û≤ t) (since α] t).
We take ®β ∈ U (with ®β] α). We have

Γ ;∆ ` (x Ûv α) { {τ [®β/ ®α] Ûv α } | ®β Γ ;∆ ` (α Û≤ t) { {α Û≤ t} | �

and therefore (since α] Γ , ®β)

Γ ;∆ ` 〈〈x : t〉〉 { {(τ [®β/ ®α] Ûv α), (α Û≤ t)} | ®β ∪ {α }

We take σ ′ = [tσ/α]∪ [®t/β] and show σ ∪σ ′
∆ {(τ [®β/ ®α] Ûv α), (α Û≤ t)}:
• α(σ ∪ σ ′) = tσ and t(σ ∪ σ ′) = tσ ;

• τ [®β/ ®α](σ ∪ σ ′) = τσ [®t/ ®α] (because var(τ) \ ®α ⊆ var(Γ)] dom(σ ′));

• σ ∪ σ ′ is static on var(τ [®β/ ®α]), because σ is static on var(Γ) and σ ′
is static on ®β .

Case: e = c
By Lemma 9.25, tσ = bc .
Moreover, 〈〈c : t〉〉 = (bc Û≤ t).
We can derive Γ ;∆ ` 〈〈c : t〉〉 { (bc Û≤ t) | �.
Taking σ ′ = [], we have σ ∪σ ′
∆ (bc Û≤ t) since bc = tσ and dom(σ)] ∆.

Case: e = (λx . e1)

By Lemma 9.25:

tσ = t1 → τ1 Γσ , x : t1 ` e1 : τ1

We partition the variable pool as U = {α1,α2}] U1.
Let σ̂ = σ ∪ [t1/α1] ∪ [τ1/α2].
We have

〈〈(λx . e1) : t〉〉
= ∃α1,α2. (def x : α1 in 〈〈e1 : α2〉〉) ∧ (α1 Ûv α1) ∧ (α1 → α2 Û≤ t)

since α1,α2] t, e1.
Since α1,α2] t, Γ , we have Γσ = Γσ̂ and tσ = tσ̂ .
We have static(σ̂ , (Γ , x : α1)) and (Γ , x : α1)σ̂ ` e1 : α2σ̂ .
By IH:

(Γ , x : α1);∆ ` 〈〈e1 : α2〉〉 { D1 | ®α1 σ̂ ∪ σ ′1
∆ D1 dom(σ ′1) ⊆ ®α1 ⊆ U1

265

a Additional proofs

Then we have

Γ ;∆ ` 〈〈(λx . e1) : t〉〉 { D1 ∪ {(α1 Ûv α1), (α1 → α2 Û≤ t)} | ®α1 ∪ {α1,α2}

since α1,α2] Γ , ®α1.
We take σ ′ = [t1/α1] ∪ [τ1/α2] ∪ σ

′
1. Note that σ ∪ σ ′ = σ̂ ∪ σ ′1.

We haveσ∪σ ′
∆ D1∪{(α1 Ûv α1), (α1 → α2 Û≤ t)} becauseα1(σ∪σ
′) = t1

is static and because (α1 → α2)(σ ∪ σ
′) = t1 → τ1 = tσ = t(σ ∪ σ ′).

Case: e = (λx : τ . e1)

By Lemma 9.25:

tσ = τ ′→ τ1 τ v τ ′ Γσ , x : τ ` e1 : τ1

We partition the variable pool as U = {α1,α2}]U1. Let σ̂ = σ ∪ [τ ′/α1] ∪

[τ1/α2].
We have

〈〈(λx : τ . e1) : t〉〉
= ∃α1,α2. (def x : τ in 〈〈e1 : α2〉〉) ∧ (τ Ûv α1) ∧ (α1 → α2 Û≤ t)

since α1,α2] t, τ , e1.
Since α1,α2] t, Γ , we have Γσ = Γσ̂ and tσ = tσ̂ .
We have τ σ̂ = τσ = τ because α1,α2] τ and var(τ) ⊆ ∆.
We have static(σ̂ , (Γ , x : τ)) and (Γ , x : τ)σ̂ ` e1 : α2σ̂ .
By IH:

(Γ , x : τ);∆ ` 〈〈e1 : α2〉〉 { D1 | ®α1 σ̂ ∪ σ ′1
∆ D1 dom(σ ′1) ⊆ ®α1 ⊆ U1

Then we have

Γ ;∆ ` 〈〈(λx : τ . e1) : t〉〉 { D1 ∪ {(τ Ûv α1), (α1 → α2 Û≤ t)} | ®α1 ∪ {α1,α2}

since α1,α2] Γ , ®α1.
We take σ ′ = [τ ′/α1] ∪ [τ1/α2] ∪ σ

′
1. Note that σ ∪ σ ′ = σ̂ ∪ σ ′1.

We have σ ∪ σ ′
∆ D1 ∪ {(τ Ûv α1), (α1 → α2 Û≤ t)} because τ (σ ∪ σ ′) =
τ v τ ′ = α1(σ ∪ σ

′), because σ ∪ σ ′ is static on τ (since it is the identity),
and because (α1 → α2)(σ ∪ σ

′) = τ ′→ τ1 = tσ = t(σ ∪ σ ′).

Case: e = e1 e2
By Lemma 9.25, we have Γσ ` e1 : τ → tσ and Γσ ` e2 : τ .
We partition the variable pool as U = {α }] U1] U2. Let σ̂ = σ ∪ [τ/α].
Since α] t, e1, e2, we have 〈〈e1 e2 : t〉〉 = ∃α . 〈〈e1 : α → t〉〉 ∧ 〈〈e2 : α〉〉.
Since α] t, Γ , Γσ = Γσ̂ and tσ = tσ̂ .
We have static(σ̂ , Γ), Γσ̂ ` e1 : (α → t)σ̂ and Γσ̂ ` e2 : ασ̂ .
By IH:

Γ ;∆ ` 〈〈e1 : α → t〉〉 { D1 | ®α1 σ̂ ∪ σ ′1
∆ D1 dom(σ ′1) ⊆ ®α1 ⊆ U1

Γ ;∆ ` 〈〈e2 : α〉〉 { D2 | ®α2 σ̂ ∪ σ ′2
∆ D2 dom(σ ′2) ⊆ ®α2 ⊆ U2

266

Gradual typing

Then, since ®α1] ®α2 and α] Γ , (®α1 ∪ ®α2), we have Γ ;∆ ` 〈〈e1 e2 : t〉〉 {
D1 ∪ D2 | ®α1 ∪ ®α2 ∪ {α }.
We take σ ′ = [τ/α] ∪ σ ′1 ∪ σ ′2.
By Lemma 9.26, we have that σ ′1] var(D2) and σ ′2] var(D1).
Then, by Lemma 9.28, σ ∪ σ ′
∆ D1 ∪ D2.

Case: e = (e1, e2) or e = πi e1
Analogous to the previous cases.

Case: e = (let ®α x = e1 in e2)

By Lemma 9.25:

Γσ ` e1 : τ1 Γσ , x : ∀®α, ®β . τ1 ` e2 : tσ ®α, ®β] Γσ ®β] e1

By α-renaming, we can assume ®α ⊆ U. We partition the variable pool as
U = {α }] ®α] U1] U2] U3. Let σ̂ = σ ∪ [τ1/α]. We have:

〈〈e : t〉〉 = let x : ∀®α ;α[〈〈e1 : α〉〉]var(e1)\ ®α . α in 〈〈e2 : t〉〉
Γσ = Γσ̂ and tσ = tσ̂ static(σ̂ , Γ) Γσ̂ ` e1 : ασ̂

By IH (using ∆ ∪ ®α instead of ∆):

Γ ;∆ ∪ ®α ` 〈〈e1 : α〉〉 { D1 | ®α1 σ̂ ∪ σ ′1
∆∪ ®α D1 dom(σ ′1) ⊆ ®α1 ⊆ U1

Since σ̂ ∪ σ ′1
∆∪ ®α D1, by Proposition 9.16, there exist two substitutions
σ1 and σ̃1 such that

σ1 ∈ solve∆∪ ®α (D1) dom(σ̃1) ⊆ var(σ1) \ var(D1)

∀α . ασ1(σ̂ ∪ σ
′
1 ∪ σ̃1) v α(σ̂ ∪ σ

′
1 ∪ σ̃1)

∀α . ασ1 static =⇒ ασ1(σ̂ ∪ σ
′
1 ∪ σ̃1) = α(σ̂ ∪ σ

′
1 ∪ σ̃1)

We can choose the variables in var(σ1) \ var(D1) freely from a set of fresh
variables: we take them from U3.
Let σ̌ = σ ∪ [τ1/α] ∪ σ

′
1 ∪ σ̃1.

We have Γσ = Γσ̌ and tσ = tσ̌ .
Let ®γ = var(ασ1) \ (var(Γσ1) ∪ ®α ∪ (var(e1) \ ®α)) = var(ασ1) \ (var(Γσ1) ∪

®α ∪ var(e1)). Let Γ ′ = (Γ , x : ∀®α,®γ . ασ1).
We show static(σ1, Γ). Take β ∈ var(Γ). If β < var(D1), then βσ1 = β , which
is static. Otherwise, by Lemma 9.21, we have β ∈ var(〈〈e1 : α〉〉) ∩ var Ûv(D1).
We have var(〈〈e1 : α〉〉) = var(e1) ∩ {α }. The case β = α is impossible
because α < var(Γ). If β ∈ var(e1), then βσ1 = β . If β ∈ var Ûv(D1), then βσ1
is static.
Note that σ̌ = σ̂ ∪ σ ′1 ∪ σ̃1. Therefore we have:

∀α . ασ1σ̌ v ασ̌ ∀α . ασ1 static =⇒ ασ1σ̌ = ασ̌

We have Γσ̌ = Γσ1σ̌ because, for every α ∈ var(Γ), ασ1 is static.
We show U2] Γ

′.

267

a Additional proofs

We already have U2] Γ . It remains to show that the variables of
∀®α,®γ . ασ1 are not in U2, which is true because all these variables are
either α or variables in var(σ1), and var(σ1) ⊆ var(D1) ∪ U3.

We show static(σ̌ , Γ ′).
We have static(σ̌ , Γ) since σ̌ and σ are equal on var(Γ). We must show
that, for every variable β ∈ var(∀®α,®γ . ασ1), βσ̌ is a static type. We have
β ∈ var(ασ1)\(®α∪®γ). By de�nition of ®γ , we have β ∈ var(Γσ1)∪var(e1).
If β ∈ var(Γσ1), then there exists a γ ∈ var(Γ) such that β ∈ var(γσ1);
since γ σ̌ is static and γ σ̌ = γσ1σ̌ , γσ1σ̌ is static; therefore, βσ̌ is static
as well. If β ∈ var(e1), then β ∈ ∆ and βσ̌ = β .

We show static(σ̌ , var(D1)σ1).
Consider γ ∈ var(D1)σ1. By Proposition 9.14, γ ∈ var Ûv(D1)σ1 ∪ ∆ ∪ ®α .
If γ ∈ ∆ ∪ ®α , we have γ σ̌ = γ . If γ ∈ var Ûv(D1)σ1, there exists γ ′ ∈
var Ûv(D1) such that γ ∈ var(γ ′σ1). We know that γ ′σ̌ is static. Since
γ ′σ1 is static too, we have γ ′σ1σ̌ = γ

′σ̌ . This implies that γ σ̌ must be
static.

Now we show Γ ′σ̌ ` e2 : tσ̌ .
We apply Lemma 9.6 by showing Γ ′σ̌ v∀ (Γσ , x : ∀®α, ®β . τ1). Since
Γσ̌ = Γσ , we must only show (∀®α,®γ . ασ1)σ̌ v

∀ ∀®α, ®β . τ1. Note that
ασ̌ = τ1 and ασ1σ̌ v ασ̌ . Hence, we have ∀®α, ®β . ασ1σ̌ v

∀ ∀®α, ®β . τ1.
Since v∀ is transitive, we conclude by showing

(∀®α,®γ . ασ1)σ̌ v
∀ ∀®α, ®β . ασ1σ̌ .

We choose fresh variables ®α1,®γ1 (ensuring ®α1,®γ1] σ̌) and let ρ =
[®α1/ ®α] ∪ [®γ1/®γ]; then (∀®α,®γ . ασ1)σ̌ = ∀®α1,®γ1. ασ1ρσ̌ .
To show ∀®α1,®γ1. ασ1ρσ̌ v

∀ ∀®α, ®β . ασ1σ̌ , we consider an arbitrary in-
stance ασ1σ̌ σ̃ of ∀®α, ®β . ασ1σ̌ , with σ̃ : ®α, ®β → SType. We choose the
instance ασ1ρσ̌σ̃

′ of ∀®α1,®γ1. ασ1ρσ̌ , with σ̃ ′ = [®ασ̃/ ®α1] ∪ [®γ σ̌σ̃/®γ1].
We must show that σ̃ ′ is a valid instantiation. It has the correct do-
main, but it remains to show that ®ασ̃ and ®γ σ̌σ̃ are static. For ®ασ̃ , the
result is immediate. If γ ∈ ®γ , instead, we must show that γ σ̌σ̃ is static.
We have γ ∈ var(ασ1). By Lemma 9.27, we have α ∈ var(D1). Hence,
γ ∈ var(D1)σ1. We have already shown static(σ̌ , var(D1)σ1). Hence,
γ σ̌ is static; since σ̃ is static, γ σ̌σ̃ is static too. Now, we must show
ασ1ρσ̌σ̃

′ v ασ1σ̌ σ̃ ; actually, we show that the two types are equal.
Consider β ∈ var(ασ1): we must show βρσ̌σ̃ ′ = βσ̌σ̃ .

• If β ∈ dom(ρ), then βρσ̌σ̃ ′ = βρσ̃ ′. In particular, if β ∈ ®α , then
βρσ̌σ̃ ′ = βσ̃ = βσ̌σ̃ (because βσ̌ = β since σ̌ is not de�ned on
®α). If β ∈ ®γ , then βρσ̌σ̃ ′ = βσ̌σ̃ .

• If β < dom(ρ), then βρσ̌σ̃ ′ = βσ̌ . Since β ∈ var(ασ1), neces-
sarily β ∈ var(Γσ1) ∪ var(e1). If β ∈ var(Γσ1), then var(βσ̌) ⊆
var(βσ1σ̌) = var(Γσ); but then, since dom(σ̃)] Γσ , we have
βσ̌σ̃ = βσ̌ . If β ∈ var(e1), since β < α , we have β ∈ ∆ and
therefore βσ̌σ = β = βσ̌ .

268

Gradual typing

We apply the IH using the premises:

Γ ′σ̌ ` e2 : tσ̌ static(σ̌ , Γ ′)

dom(σ̌)] ∆ ⊇ var(e2) U2] ∆, t, Γ
′, dom(σ̌)

We derive:

Γ ′;∆ ` 〈〈e2 : t〉〉 { D2 | ®α2 σ̌ ∪ σ ′2
∆ D2 dom(σ ′2) ⊆ ®α2 ⊆ U2

We show ®α] Γσ1 by contradiction. Assume that there exists an α ∈ ®α

such that α ∈ var(Γσ1). Then, since σ̌ is not de�ned on ®α , we would have
α ∈ var(Γσ1σ̌). But Γσ1σ̌ = Γσ̌ = Γσ . Then, we would have α ∈ var(Γσ),
which is impossible.
From the premises

Γ ;∆ ∪ ®α ` 〈〈e1 : α〉〉 { D1 | ®α1

(Γ , x : ∀®α,®γ . ασ1);∆ ` 〈〈e2 : t〉〉 { D2 | ®α2

σ1 ∈ solve∆∪ ®α (D1) ®α] Γσ1

®γ = var(ασ1) \ (var(Γσ1) ∪ ®α ∪ (var(e1) \ ®α))

we derive
Γ ;∆ ` 〈〈e : t〉〉 { D2 ∪ equiv(σ1,D1) | ®α3

where ®α3 = {α } ∪ ®α ∪ ®α1 ∪ ®α2 ∪ (var(σ1) \ var(D1)) ⊆ U.
Let σ ′ = [τ1/α] ∪ σ

′
1 ∪ σ̃1 ∪ σ

′
2. We have dom(σ ′) ⊆ ®α3 ⊆ U.

It remains to prove that σ ∪ σ ′
∆ D2 ∪ equiv(σ1,D1). Note that σ ∪ σ ′ =
σ̌ ∪ σ ′2. Therefore, we have σ ∪ σ ′
∆ D2. We show that σ ∪ σ ′ solves
equiv(σ1,D1).

• When β ∈ var Ûv(D1), we must show that β(σ ∪ σ ′) is a static type.
Note that, since σ̂ ∪ σ ′1
∆∪ ®α D1, we know β(σ̂ ∪ σ ′1) is static. This
gives the result we need since σ ∪ σ ′ = (σ̂ ∪ σ ′1) ∪ (σ̃1 ∪ σ

′
2) and

dom(σ̃1 ∪ σ
′
2)] var(D1).

• When β ∈ var(D1)σ1, we must show that β(σ∪σ ′) is a static type. We
have shown static(σ̌ , var(D1)σ1). This is su�cient because σ ∪ σ ′ =
σ̌ ∪ σ ′2 and dom(σ ′2)] var(D1) ∪ var(σ1).

• When β ∈ dom(σ1) and βσ1 is static, we must show β(σ ∪ σ ′) =

βσ1(σ ∪ σ
′). We have βσ̌ = βσ1σ̌ , which gives the result we need

since σ̌ and σ ∪ σ ′ di�er only on variables outside dom(σ1) and
var(σ1). �

Gradual typing for set-theoretic types

10.5 lemma: Let T be a type frame with var(T) = {Ai | i ∈ I }. There exists a
type frame T ′ such that the four sets

var+cov(T ′) ⊆ {A+∧i | i ∈ I } var+cnt(T ′) ⊆ {A+∨i | i ∈ I }

var−cov(T ′) ⊆ {A−∧i | i ∈ I } var−cnt(T ′) ⊆ {A−∨i | i ∈ I }

269

a Additional proofs

are pairwise disjoint and that

T = T ′
(
[Ai/A

+∧
i]i ∈I ∪ [Ai/A

+∨
i]i ∈I ∪ [Ai/A

−∧
i]i ∈I ∪ [Ai/A

−∨
i]i ∈I

)
. �

Proof: Clearly, T ′ is de�nable as a tree: it is the tree that coincides with T

except on variables, and that, whereT has a variable Ai , has one of A+∧i , A+∨i ,
A−∧i , or A−∨i depending on the position of that occurrence of Ai . The tree T ′
is also clearly contractive and the sets of variables in di�erent positions are
disjoint.

For T ′ to be a type frame, it must also be regular. Since T is regular, it can
be described by a �nite system of equations

x1 = T̄1
...

xn = T̄n

such that every T̄i is an inductively generated term of the grammar

T̄ F x | X | α | b | T̄ × T̄ | T̄ → T̄ | T̄ ∨ T̄ | ¬T̄ | 0

(x serves as a recursion variable) and that (reading the equations as a tree)
T = x1.

Then, T ′ can be de�ned as x+∧1 where

x+∧1 = f +∧(T̄1)

x+∨1 = f +∨(T̄1)

x−∧1 = f −∧(T̄1)

x−∨1 = f −∨(T̄1)

...

x−∨n = f −∨(T̄n)

and where (de�ning + = −, − = +, ∧ = ∨, and ∨ = ∧) f pv (T̄) is de�ned
inductively as:

f pv (x) = xpv f pv (X) = Xpv f pv (α) = αpv f pv (b) = b

f pv (T̄1 × T̄2) = f pv (T̄1) × f pv (T̄2) f pv (T̄1 → T̄2) = f pv (T̄1) → f pv (T̄2)

f pv (T̄1 ∨ T̄2) = f pv (T̄1) ∨ f pv (T̄2) f pv (¬T̄ ′) = ¬f pv (T ′) f pv (0) = 0

At most 4n equations are needed to de�ne T ′ (they could be less, since
some xpvi could be unreachable from x+∧1). Therefore, T ′ is regular. �

10.9 lemma:

T � 0

either {X ,Y }] fvar−(T) or {X ,Y }] fvar+(T)

}
=⇒ T [X/Y] � 0

�

270

Gradual typing

Proof: We �rst give some auxiliary de�nitions.
Let s range over the two symbols � and �. We de�ne s as follows: � def

= �

and � def
= �.

Given a type frame T ′, we write T ′ � � if {X ,Y }] fvar−(T) and T ′ � � if
{X ,Y }] fvar+(T).

Note that, for all T ′, T1, and T2, we have:

(¬T ′ � s) =⇒ (T ′ � s)

(T1 ∨T2 � s) =⇒ (T1 � s) ∧ (T2 � s)

(T1 ×T2 � s) =⇒ (T1 � s) ∧ (T2 � s)

(T1 → T2 � s) =⇒ (T1 � s) ∧ (T2 � s)

We de�ne a function F s on domain element tags (�nite sets of variables):

F�(L) =

{
L ∪ {X ,Y } if X ∈ L or Y ∈ L
L otherwise

F�(L) =

{
L \ {X ,Y } if X < L or Y < L
L otherwise

We also de�ne F on domain elements as follows:

F s (cL) = cF
s (L)

F s ((d1,d2)
L) = (F s (d1), F

s (d2))
F s (L)

F s ({(d1,d
′
1), . . . , (dn,d

′
n)}

L) = {(F s (d1), F
s (d ′1)), . . . , (F

s (dn), F
s (d ′n))}

F s (L)

F s (Ω) = Ω

We must show:
T � 0

either {X ,Y }] fvar−(T) or {X ,Y }] fvar+(T)

}
=⇒ T [X/Y] � 0

This can be restated as:
∃d ∈ Domain. (d : T)
∃s .T � s

}
=⇒ ∃d ′ ∈ Domain. (d ′ : T [X/Y])

We prove the following, stronger claim:

∀d,T , s . T � s =⇒

{
(d : T) =⇒ (F s (d) : T [X/Y])
¬(d : T) =⇒ ¬(F s (d) : T [X/Y])

by induction on the pair (d,T), ordered lexicographically. For a given d , T ,
and s , we assume T � s and proceed by case analysis on T and d .

Let σ = [X/Y].

271

a Additional proofs

Case: T = α
Since ασ = α , we must show

(d : α) =⇒ (F s (d) : α) ¬(d : α) =⇒ ¬(F s (d) : α) .

If (d : α), then α ∈ tags(d) and also α ∈ tags(F s (d)).
Likewise, if d < nαo, then α < tags(d) and also α < tags(F s (d)).

Case: T = Z , with Z , X and Z , Y

Like the previous case.

Case: T = X

Since X ∈ fvar+(X), we have s = �.
We must show

(d : X) =⇒ (F�(d) : X) ¬(d : X) =⇒ ¬(F�(d) : X) .

If (d : X), then X ∈ tags(d) and X ∈ tags(F�(d)). If ¬(d : X), then
X < tags(d) and X < tags(F�(d)).

Case: T = Y
Since Y ∈ fvar+(Y), we have s = �.
We must show

(d : Y) =⇒ (F�(d) : X) ¬(d : Y) =⇒ ¬(F�(d) : X) .

If (d : Y), then Y ∈ tags(d) and X ∈ tags(F�(d)).
If ¬(d : Y), then Y < tags(d) and then X < tags(F�(d)).

Case: T = b
Since bσ = b, we must show

(d : b) =⇒ (F s (d) : b) ¬(d : b) =⇒ (F s (d) : b) .

If (d : b), then d = cL with c ∈ �(b). Then, F s (d) = cF s (L) and (F s (d) : b).
If ¬(d : b) and d is of the form cL , then c < �(b): then, F s (d) < nbo. If d is
not of the form cL , then F s (d) is not either and we have F s (d) < nbo.

Case: T = T1 ×T2
Since T � s , we have T1 � s and T2 � s .
We must show

(d : T1 ×T2) =⇒ (F s (d) : T1σ ×T2σ)

¬(d : T1 ×T2) =⇒ ¬(F s (d) : T1σ ×T2σ) .

If (d : T1 ×T2), then d is of the form (d1,d2)
L and, for both i , (di : T1). We

have F s (d) = (F s (d1), F
s (d2))

F s (L). By IH, (d1 : T1) implies (F s (d1) : T1σ);
likewise for d2. Therefore, (F s (d) : T1σ ×T2σ).
If ¬(d : T1 × T2) and d = (d1,d2)

L , then either ¬(d1 : T1) or ¬(d2 : T2).
Then, by IH, either¬(F s (d1) : T1σ) or¬(F s (d2) : T2σ). Therefore,¬(F s (d) :
T1σ ×T2σ). If d is of another form, then the result is immediate.

272

Gradual typing

Case: T = T1 → T2
Since T � s , we have T1 � s and T2 � s .
We must show

(d : T1 → T2) =⇒ (F s (d) : T1σ → T2σ)

¬(d : T1 → T2) =⇒ ¬(F s (d) : T1σ → T2σ) .

If (d : T1 → T2), then d is of the form { (dj ,d ′j) | j ∈ J }L and, for all j ∈ J ,
we have:

(dj : T1) =⇒ (d ′j : T2) .

We have F s (d) = { (F s (dj), F
s (d ′j)) | j ∈ J }

F s (L).
For every j, by the induction hypothesis applied to T1 and dj , and to T2
and d ′j , we get

(dj : T1) =⇒ (F s (dj) : T1σ) ¬(dj : T1) =⇒ ¬(F s (dj) : T1σ)

(d ′j : T2) =⇒ (F s (d ′j) : T2σ) ¬(d ′j : T2) =⇒ ¬(F s (d ′j) : T2σ) .

We must show, for all j ∈ J :

(F s (dj) : T1σ) =⇒ (F s (d ′j) : T2σ)

which we prove using the induction hypothesis (in particular, using the
contrapositive of the second implication derived by induction).
If ¬(d : T1 → T2) and d is of the form { (dj ,d ′j) | j ∈ J }L , then there exists
a j0 ∈ J such that

(dj0 : T1) ¬(d ′j0 ∈ T2) .

We have F s (d) = { (F s (dj), F
s (d ′j)) | j ∈ J }

F s (L). By IH, we show

(F s (dj0) : T1σ) ¬(F s (dj0) : T2σ) .

If d is of another form, we have the result directly. then we get the result
directly.

Case: T = T1 ∨T2
Since T � s , we have T1 � s and T2 � s .
By the induction hypothesis applied to d and Ti , we get

(d : Ti) =⇒ (F s (d) : Tiσ) ¬(d : Ti) =⇒ ¬(F s (d) : Tiσ) .

We must show

(d : T1 ∨T2) =⇒ (F s (d) : T1σ ∨T2σ)

¬(d : T1 ∨T2) =⇒ (F s (d) : T1σ ∨T2σ) .

To show the �rst implication, assume (d : T1 ∨T2): then either (d : T1) or
(d : T2); then either (F s (d) : T1σ) or (F s (d) : T2σ); then (F s (d) : T1σ ∨T2σ).
To show the second, assume ¬(d : T1 ∨T2): then ¬(d : T1) and ¬(d : T2);
then ¬(F s (d) : T1) and ¬(F s (d) : T2); then ¬(F s (d) : T1 ∨T2).

273

a Additional proofs

Case: T = ¬T ′

Since T � s , T ′ � s .
By applying the induction hypothesis to d and T ′, we get

(d : T ′) =⇒ (F s (d) : T ′σ) ¬(d : T ′) =⇒ ¬(F s (d) : T ′σ) .

We must show

(d : ¬T ′) =⇒ (F s (d) : ¬(T ′σ)) ¬(d : ¬T ′) =⇒ ¬(F s (d) : ¬(T ′σ)) .

For the �rst implication, assume (d : ¬T ′): then ¬(d : T ′), ¬(F s (d) : T ′σ),
and (F s (d) : ¬(T ′σ)). For the second, assume ¬(d : ¬T ′): then ¬¬(d : T ′),
that is, (d : T ′); hence (F s (d) : T ′σ), and ¬(F s (d) : ¬(T ′σ)).

Case: T = 0

Both implications are trivial. �

10.10 lemma:
T1 ≤ T2

X ∈ fvar+(T1) =⇒ X < fvar+(T2)

X ∈ fvar−(T1) =⇒ X < fvar−(T2)

Y] T1,T2,X


=⇒ T1[Y/X] ≤ T2

�

Proof: If X < fvar(T1), the result is immediate because T1[Y/X] = T1. If
X < fvar(T2), then we have T2 = T2[Y/X] and the result can be derived by
Proposition 10.2. We consider the case X ∈ fvar(T1) ∩ fvar(T2). In this case, we
have X < fvar+(T1) ∩ fvar−(T1): otherwise, X could not occur in T2. Therefore,
X occurs only positively or only negatively in T1.

Given T1, T2, X , and Y satisfying

X ∈ fvar+(T1) =⇒ X < fvar+(T2) X ∈ fvar−(T1) =⇒ X < fvar−(T2)

Y] T1,T2,X ,

we must show T1 ≤ T2 =⇒ T1[Y/X] ≤ T2.
We show the contrapositive: T1[Y/X] � T2 =⇒ T1 � T2. Assume

T1[Y/X] � T2.
We have T1 = T1[Y/X][X/Y] and T2 = T2[X/Y]. Let T = T1[Y/X] \T2. We

have T � 0 by de�nition of subtyping.
We show that either {X ,Y }] fvar−(T) or {X ,Y }] fvar+(T) holds. Note that

fvar+(T) = fvar+(T1[Y/X]) ∪ fvar
−(T2)

fvar−(T) = fvar−(T1[Y/X]) ∪ fvar
+(T2) .

If X ∈ fvar+(T1), then X < fvar−(T1) and X < fvar+(T2): therefore, {X ,Y }]
fvar−(T). If X ∈ fvar−(T1), then X < fvar+(T1) and X < fvar−(T2): therefore,
{X ,Y }] fvar+(T).

274

Gradual typing

By Lemma 10.9, we have T [X/Y] � 0: that is, (T1[Y/X] \ T2)[X/Y] � 0;
that is, T1[Y/X][X/Y] � T2[X/Y], which is T1 � T2. �

10.12 lemma:
T � 0

X < fvareven(T)

Y < fvarodd(T)

 =⇒ T [X/Y] � 0

�

Proof: We �rst give some auxiliary de�nitions.
Let s range over the two symbols 4 and O. We de�ne s as follows: 4 def

= O

and O def
= 4.

Given a type frame T ′, we write T ′ � 4 if X < fvarodd(T ′) and Y <

fvareven(T ′); we write T ′ � O if X < fvareven(T ′) and Y < fvarodd(T ′).
Note that, for all T ′, T1, and T2, we have:

(¬T ′ � s) =⇒ (T ′ � s)

(T1 ∨T2 � s) =⇒ (T1 � s) ∧ (T2 � s)

(T1 ×T2 � s) =⇒ (T1 � s) ∧ (T2 � s)

(T1 → T2 � s) =⇒ (T1 � s) ∧ (T2 � s)

We de�ne a function F s on domain element tags (�nite sets of variables)
as:

F 4(L) = L FO(L) =

{
L ∪ {X } if Y ∈ L
L \ {X } if Y < L

We also de�ne F on domain elements as follows:

F s (cL) = cF
s (L)

F s ((d1,d2)
L) = (F s (d1), F

s (d2))
F s (L)

F s ({(d1,d
′
1), . . . , (dn,d

′
n)}

L) = {(F s (d1), F
s (d ′1)), . . . , (F

s (dn), F
s (d ′n))}

F s (L)

F s (Ω) = Ω

We must show:
T � 0

X < fvareven(T)

Y < fvarodd(T)

 =⇒ T [X/Y] � 0

This can be restated as:
∃d ∈ Domain. (d : T)
T � O

}
=⇒ ∃d ′ ∈ Domain. (d ′ : T [X/Y])

We prove the following, stronger claim:

∀d,T , s . T � s =⇒
(
(d : T) ⇐⇒ (F s (d) : T [X/Y])

)

275

a Additional proofs

by induction on the pair (d,T), ordered lexicographically. For a given d , T ,
and s , we assume T � s and proceed by case analysis on T and d .

Let σ = [X/Y].

Case: T = α
Note that ασ = α .

(d : α) ⇐⇒ α ∈ tags(d)

⇐⇒ α ∈ tags(F s (d))

(neither F 4 nor FO a�ect variables other than X)

⇐⇒ (F s (d) : α)

Case: T = Z , with Z , X and Z , Y

Like the previous case.

Case: T = X

Note that we must haveT � 4 because X ∈ fvareven(X) and X < fvarodd(X).
Note that Xσ = X .

(d : X) ⇐⇒ X ∈ tags(d)

⇐⇒ X ∈ tags(F 4(d))

⇐⇒ (F 4(d) : X)

Case: T = Y
Note that we must have T � O because Y ∈ fvareven(Y) and Y < fvarodd(Y).
Note that Yσ = X .

(d : Y) ⇐⇒ Y ∈ tags(d)

⇐⇒ X ∈ tags(FO(d))

⇐⇒ (FO(d) : X)

Case: T = b
Note that bσ = b.
If (d : b), thend must be of the form cL with c ∈ �(b). Then, F s (d) = cF s (L)
and (F s (d) : b).
If (F s (d) : b), then F s (d) must be of the form cL with c ∈ �(b). Then,
d = cL

′ and (d : b).

Case: T = T1 ×T2
If (d : T1 × T2), then d = (d1,d2)

L , (d1 : T1), and (d2 : T2). We have
F s (d) = (F s (d1), F

s (d2))
F s (L). By IH we have, for i ∈ {1, 2}, (di : Ti) ⇐⇒

(F s (di) : Tiσ); hence, (F s (d) : T1σ ×T2σ).
If (F s (d) : T1σ × T2σ), then F s (d) = (d1,d2)

L , (d1 : T1σ), and (d2 : T2σ).
Then, we have d = (d ′1,d ′2)L

′ , with d1 = F s (d ′1) and d2 = F s (d ′2). By IH we
have, for i ∈ {1, 2}, (d ′i : Ti) ⇐⇒ (di : Tiσ); hence, (d : T1 ×T2).

276

Gradual typing

Case: T = T1 → T2
Note that, since T � s , we have T1 � s and T2 � s .
If (d : T1 → T2), then d = { (dj ,d

′
j) | j ∈ J }

L and

∀j ∈ J . (dj : T1) =⇒ (d ′j : T2) .

Then, F s (d) = { (F s (dj), F s (d ′j)) | j ∈ J }F
s (L). By IH, for every j ∈ J ,

(dj : T1) ⇐⇒ (F s (dj) : T1σ) (d ′j : T2) ⇐⇒ (F s (d ′j) : T2σ) .

Therefore, we have

∀j ∈ J . (F s (dj) : T1σ) =⇒ (F s (d ′j) : T2σ)

and hence (F s (d) : T1σ → T2σ).
If (F s (d) : T1σ → T2σ), then F s (d) = { (dj ,d

′
j) | j ∈ J }

L and

∀j ∈ J . (dj : T1σ) =⇒ (d ′j : T2σ) .

Then, d = { (d̄j , d̄ ′j) | j ∈ J }L
′ , with, for every j ∈ J , F s (d̄j) = dj and

F s (d̄ ′j) = d
′
j . By IH, for every j ∈ J ,

(d̄j : T1) ⇐⇒ (dj : T1σ) (d̄ ′j : T2) ⇐⇒ (d ′j : T2σ) .

Therefore, we have

∀j ∈ J . (d̄j : T1) =⇒ (d̄ ′j : T2)

and hence (d : T1 → T2).

Case: T = T1 ∨T2

(d : T1 ∨T2) ⇐⇒ (d : T1) ∨ (d : T2)

⇐⇒ (F s (d) : T1σ) ∨ (F
s (d) : T2σ) by IH

⇐⇒ (F s (d) : T1σ ∨T2σ)

Case: T = ¬T ′

(d : ¬T ′) ⇐⇒ ¬(d : T ′)
⇐⇒ ¬(F s (d) : T ′σ) by IH
⇐⇒ (F s (d) : ¬(T ′σ))

Case: T = 0

Trivial, since (d : 0) never holds for any d and since 0σ = 0. �

10.14 lemma:

T ≤ 0 =⇒ ∃T ′, ®X , ®Y .


T ′ ≤ 0

T = T ′[®X/®Y]

fvareven(T ′)] fvarodd(T ′)

�

277

a Additional proofs

Proof: Assume that fvar(T) = {X1, . . . ,Xn}.
By Corollary 10.7, we can �nd T ′ such that fvareven(T ′) ⊆ {X1, . . . ,Xn} is

disjoint from fvarodd(T ′) ⊆ {X ′1, . . . ,X
′
n} and that T = T ′[Xi/X

′
i]
n
i=1.

We must prove T ′ ≤ 0. We have T ≤ 0, which is T ′[Xi/X
′
i]
n
i=1 ≤ 0.

Therefore, we also have T ′[Xi/X
′
i]
n
i=1[X

′
i /Xi]

n
i=1 ≤ 0 (by Proposition 10.2),

which is T ′[X ′i /Xi]
n
i=1 ≤ 0.

Let ®X be the vector X1 . . .Xn and ®X ′ be the vector X ′1 . . .X ′n . We have
®X] fvarodd(T ′) and ®X ′] fvareven(T ′). We also have ®X] ®Y .

By Lemma 10.13, we have

T ′ � 0 =⇒ T ′[®X ′/ ®X] � 0

and, by contrapositive,

T ′[®X ′/ ®X] ≤ 0 =⇒ T ′ ≤ 0

which yields T ′ ≤ 0. �

10.17 lemma: If τ1 ≤
? τ2, then τ •1 ≤ τ •2 . �

Proof: By de�nition of τ1 ≤
? τ2, there exist T1 and T2 such that:

T †
1 = τ1 T †

2 = τ2 T1 ≤ T2

fvar+(T1)] fvar
−(T1) fvar+(T2)] fvar

−(T2) .

Let ®X =
(
fvar+(T1)∩ fvar−(T2)

)
∪

(
fvar−(T1)∩ fvar+(T2)

)
and let ®Y be a vector

of variables outside T1 and T2. Since T1 and T2 are polarized, we have

∀X ∈ ®X .

{
X ∈ fvar+(T1) =⇒ X < fvar+(T2)

X ∈ fvar−(T1) =⇒ X < fvar−(T2)

and we can apply Lemma 10.11 to derive T1[®Y/ ®X] ≤ T2.
We have

fvar+(T1[®Y/ ®X],T2)] fvar
−(T1[®Y/ ®X],T2) .

We apply Lemma 10.15 to T1[®Y/ ®X] and T2 to �nd T ′1 , T ′2 , ®X ′, and ®Y ′ such
that:

T ′1 ≤ T
′
2 T1[®Y/ ®X] = T

′
1 [®X

′/®Y ′] T2 = T
′
2 [®X

′/®Y ′]

fvareven(T ′1,T
′
2)] fvar

odd(T ′1,T
′
2) .

We have

τ1 = T
†
1 = (T1[®Y/ ®X])

† = (T ′1 [®X
′/®Y ′])† = (T ′1)

†

τ2 = T
†
2 = (T

′
2 [®X

′/®Y ′])† = (T ′2)
† .

We also have

fvar+(T ′1,T
′
2)] fvar

−(T ′1,T
′
2) fvareven(T ′1,T

′
2)] fvar

odd(T ′1,T
′
2)

278

Gradual typing

and therefore the following four sets are disjoint

fvar+cov(T ′1,T
′
2) fvar+cnt(T ′1,T

′
2) fvar−cov(T ′1,T

′
2) fvar−cnt(T ′1,T

′
2) .

Then, by Lemma 10.16, we have τ •1 ≤ τ •2 . �

10.18 lemma: Let τ1 and τ2 be two gradual types. LetT1 ∈ ?
var(τ1) andT2 ∈ ?

var(τ2)

be such that T1 ≤ T2. Then, τ •1 ≤ τ •2 . �

Proof: We have

T †
1 = τ1 T †

2 = τ2

fvarcov(T1)] fvar
cnt(T1) fvarcov(T2)] fvar

cnt(T2) T1 ≤ T2 .

We apply Lemma 10.15 to T1 and T2 to �nd T ′1 , T ′2 , ®X , and ®Y such that:

T ′1 ≤ T
′
2 T1 = T

′
1 [®X/®Y] T2 = T

′
2 [®X/®Y]

fvareven(T ′1,T
′
2)] fvar

odd(T ′1,T
′
2) .

Since we have

fvarcov(T ′1)] fvar
cnt(T ′1) fvarcov(T ′2)] fvar

cnt(T ′2)

fvareven(T ′1,T
′
2)] fvar

odd(T ′1,T
′
2) ,

we also have

fvar+(T ′1)] fvar
−(T ′1) and fvar+(T ′2)] fvar−(T ′2) .

Let ®X ′ =
(
fvar+(T ′1) ∩ fvar

−(T ′2)
)
∪

(
fvar−(T ′1) ∩ fvar

+(T ′2)
)

and let ®Y ′ be a
vector of variables outside T ′1 and T ′2 . We have

∀X ∈ ®X ′.

{
X ∈ fvar+(T ′1) =⇒ X < fvar+(T ′2)

X ∈ fvar−(T ′1) =⇒ X < fvar−(T ′2)

and we can apply Lemma 10.11 to derive T ′1 [®Y ′/ ®X ′] ≤ T ′2 .
We have

τ1 = T
†
1 = (T

′
1 [®X/®Y])

† = (T ′1)
† = (T ′1 [®Y

′/ ®X ′])†

τ2 = T
†
2 = (T

′
2 [®X/®Y])

† = (T ′2)
† .

Let T ′′1 = T
′
1 [
®Y ′/ ®X ′].

We also have

fvar+(T ′′1 ,T
′
2)] fvar

−(T ′′1 ,T
′
2) fvareven(T ′′1 ,T

′
2)] fvar

odd(T ′′1 ,T
′
2)

and therefore the following four sets are disjoint

fvar+cov(T ′′1 ,T
′
2) fvar+cnt(T ′′1 ,T

′
2) fvar−cov(T ′′1 ,T

′
2) fvar−cnt(T ′′1 ,T

′
2) .

Then, by Lemma 10.16, we have τ •1 ≤ τ •2 . �

279

a Additional proofs

10.22 proposition:

∀T ,σ1,σ2.
σ1 |varcov(T) ≤ σ2 |varcov(T)

σ2 |varcnt(T) ≤ σ1 |varcnt(T)

}
=⇒ Tσ1 ≤ Tσ2

�

Proof: We de�ne

P(T ,σ1,σ2)
def
⇐⇒

(
σ1 |varcov(T) ≤ σ2 |varcov(T)

)
and

(
σ2 |varcnt(T) ≤ σ1 |varcnt(T)

)
and note that the following hold

P(A,σ1,σ2) =⇒ Aσ1 ≤ Aσ2

P(T1 ×T2,σ1,σ2) =⇒ P(T1,σ1,σ2) and P(T2,σ1,σ2)

P(T1 → T2,σ1,σ2) =⇒ P(T1,σ2,σ1) and P(T2,σ1,σ2)

P(T1 ∨T2,σ1,σ2) =⇒ P(T1,σ1,σ2) and P(T2,σ1,σ2)

P(¬T ′,σ1,σ2) =⇒ P(T ′,σ2,σ1)

We show the following result (which implies the statement)

∀σ1,σ2,d,T .
P(T ,σ1,σ2)

(d : Tσ1)

}
=⇒ (d : Tσ2)

by induction on (d,T).

Case: T = b or T = 0 Trivial, since Tσ1 = T = Tσ2.

Case: T = A

We have Aσ1 ≤ Aσ2 and (d : Aσ1), which implies (d : Aσ2).

Case: T = T1 ×T2
We have Tσ1 = (T1σ1) × (T2σ1) and Tσ2 = (T1σ2) × (T2σ2).
Since (d : Tσ1), we have d = (d1,d2) and (di : Tiσ1).
Since P(Ti ,σ1,σ2) holds for both i , by IH we have (di : Tiσ2).
Then, (d : Tσ2).

Case: T = T1 → T2
We have Tσ1 = (T1σ1) → (T2σ1) and Tσ2 = (T1σ2) → (T2σ2).
Since (d : Tσ1), we have d = { (di ,d

′
i) | i ∈ I } and, for every i ∈ I ,

(di : T1σ1) =⇒ (d ′i : T2σ1).
We have P(T1,σ2,σ1) and P(T2,σ1,σ2).
For every di such that (di : T1σ2), by IH we have (di : T1σ1), therefore
(d ′i : T2σ1), and, by IH, (d ′i : T2σ2).
Therefore, ∀i ∈ I . (di : T1σ2) =⇒ (d ′i : T2σ2), and hence (d : Tσ2).

Case: T = T1 ∨T2
We have either (d : T1σ1) or (d : T2σ1). Therefore, since P(Ti ,σ1,σ2)

holds for both i , by IH we have either (d : T1σ2) or (d : T2σ2), and hence
(d : Tσ2).

280

Gradual typing

Case: T = ¬T ′

We have ¬(d : T ′σ1). Since P(T ′,σ2,σ1), by IH (d : T ′σ2) =⇒ (d : T ′σ1).
Therefore, by contrapositive, we have ¬(d : T ′σ2), hence (d : ¬T ′σ2). �

10.23 lemma: If τ1 ≤
? τ2 v τ3, then, for some τ ′2 , we have τ1 v τ

′
2 ≤

? τ3. �

Proof: By Lemma 10.21, since τ2 v τ3, there existT2 and σ : fvar(T2) → GType
such thatT †

2 = τ2, thatT2σ = τ3, and that fvarcov(T2) ∩ fvarcnt(T2) = �. Assume
that fvarcov = {X1, . . . ,Xn} and fvarcnt = {Y1, . . . ,Ym}.

Let σ̄ = [(Xiσ)
T/Xi]

n
i=1 ∪ [(Yiσ)

U/Yi]
n
i=1. We have (T2σ̄)

† = T2σ = τ3.
Let σ̂ = [

∧n
j=1 X j σ̄/Xi]

n
i=1 ∪ [

∨m
j=1 Yj σ̄/Yi]

m
i=1.

Let σ̌ = [
∧n

j=1 X j σ̄/X
1,

∨m
j=1 Yj σ̄/X

0].
We have:

∀i = 1, . . . ,n. Xi σ̂ ≤ Xi σ̄ ∀i = 1, . . . ,m. Yi σ̄ ≤ Yiσ

We take τ ′2 = (τ
T
1 σ̌)

†. We must show:

τ1 v (τ
T
1 σ̌)

† (τ T1 σ̌)
† ≤? τ3

The former holds because (τ T1 σ̌)† = τ
T
1 [

∧n
j=1 X jσ/X

1,
∨m

j=1 Yjσ/X
0] and

τ T1 ∈ ?(τ1).
To show the latter, we show:

(τ T1 σ̌)
† ≤? (τ T2 σ̌)

† τ T2 σ̌ = T2σ̂ (T2σ̂)
† ≤? (T2σ̄)

†

We show (τ T1 σ̌)† ≤? (τ
T
2 σ̌)

†. By Proposition 10.19, τ1 ≤
? τ2 implies τ T1 ≤ τ

T
2 .

By Proposition 10.2, τ T1 σ̌ ≤ τ
T
2 σ̌ . Both τ T1 σ̌ and τ T2 σ̌ are strongly polarized

according to variance; therefore, (τ T1 σ̌)†
T
= τ T1 σ̌ and (τ T2 σ̌)†

T
= τ T2 σ̌ . Hence,

(τ T1 σ̌)
† ≤? (τ T2 σ̌)

†.
To show τ T2 σ̌ = T2σ̂ , just note that τ T2 = T2([X

1/Xi]
n
i=1 ∪ [X

0/Yi]
m
i=1).

Now we show (T2σ̂)
† ≤? (T2σ̄)

†. First, note that σ̂ |varcov(T2) ≤ σ̄ |varcov(T2) and
σ̄ |varcnt(T2) ≤ σ̂ |varcnt(T2). Hence, by Proposition 10.22, we haveT2σ̂ ≤ T2σ̄ . Since
both T2σ̂ and T2σ̄ are strongly polarized according to variance, we have
T2σ̂ = ((T2σ̂)

†)T and T2σ̄ = ((T2σ̄)
†)T . This yields the result we need. �

10.25 proposition: Let τ be a gradual type and σ1 and σ2 two substitutions
such that ∀α ∈ var(τ). ασ1 '

? ασ2. Then, τσ1 '
? τσ2. �

Proof: Let var(τ) = {α1, . . . ,αn}. By Corollary 10.8, we �nd τ ′ such that
var+(τ ′) ⊆ {α1, . . . ,αn} is disjoint from var−(τ ′) ⊆ {α ′1, . . . ,α

′
n} and that

τ = τ ′[αi/α
′
i]
n
i=1.

Now, we de�ne

σ̂1 = [(αiσ1)
⊕/αi]

n
i=1 ∪ [(αiσ1)

	/α ′i]
n
i=1

σ̂2 = [(αiσ2)
⊕/αi]

n
i=1 ∪ [(αiσ2)

	/α ′i]
n
i=1 .

Let T = τ ′⊕ .
We show that, for every A, Aσ̂1 ' Aσ̂2. Note that, for every i ∈ I , we

281

a Additional proofs

have αiσ1 '
? αiσ2 and therefore, by Proposition 10.19, (αiσ1)

⊕ ' (αiσ2)
⊕ and

(αiσ1)
	 ' (αiσ2)

	 . If A < { αi | i ∈ I } ∪ { αi | i ∈ I }, then Aσ̂1 = A = Aσ̂2.
If A = αi for some i ∈ I , then Aσ̂1 = (αiσ1)

⊕ ' (αiσ2)
⊕ = Aσ̂2. If A = α ′i for

some i ∈ I , then Aσ̂1 = (αiσ1)
	 ' (αiσ2)

	 = Aσ̂2.
Since, for every A, Aσ̂1 ' Aσ̂2, we have σ̂1 |varcov(T) ≤ σ̂2 |varcov(T), σ̂2 |varcnt(T) ≤

σ̂1 |varcnt(T), σ̂2 |varcov(T) ≤ σ̂1 |varcov(T), and σ̂1 |varcnt(T) ≤ σ̂2 |varcnt(T). By Proposi-
tion 10.22, we have Tσ̂1 ' Tσ̂2.

We have:

Tσ̂1 = τ
′⊕σ̂1 = (τσ1)

⊕ Tσ̂2 = τ
′⊕σ̂2 = (τσ2)

⊕

Therefore, we have (τσ1)
⊕ ' (τσ2)

⊕ . Hence, τσ1 '
? τσ2. �

10.26 proposition (Soundness of tally Û=):

∀σ ∈ tally Û=∆

(
t1 Û≤ t2 ∪T Û= α

)
.


∀(t1 Û≤ t2) ∈ t1 Û≤ t2. t1σ ≤ t2σ

∀(T Û= α) ∈ T Û= α . Tσ = ασ

dom(σ) ⊆ var
(
t1 Û≤ t2 ∪T Û= α

)
\ ∆

�

Proof: Let σ ∈ tally Û=∆
(
t1 Û≤ t2 ∪T Û= α

)
, with

t1 Û≤ t2 = { (t1
i Û≤ t2

i) | i ∈ I } T Û= α = { (Tj Û= α j) | j ∈ J }

By de�nition of tally Û=, we have:

σ0 ∈ tally∆
({
(t1
i [Tj/α j]j ∈J Û≤ t2

i [Tj/α j]j ∈J)
�� i ∈ I }) σ = σ0 ∪ [Tjσ0/α j]j ∈J

Let i ∈ I . We must show t1
i σ ≤ t2

i σ .
By the properties of tallying, t1

i [Tj/α j]j ∈Jσ0 ≤ t2
i [Tj/α j]j ∈Jσ0. We have

t1
i [Tj/α j]j ∈Jσ0 = t1

i σ t2
i [Tj/α j]j ∈Jσ0 = t2

i σ

and therefore t1
i σ ≤ t2

i σ .
Let j ∈ J . We must show Tjσ = α jσ . We have α jσ = Tjσ0. We also have

Tjσ = Tjσ0 because var(Tj) ∩ { α j | j ∈ J } = � (this is checked in step (1) of
the algorithm).

Finally, by the properties of tallying,

dom(σ0) ⊆ var
({
(t1
i [Tj/α j]j ∈J Û≤ t2

i [Tj/α j]j ∈J)
�� i ∈ I }) \ ∆

and, as a consequence,

dom(σ) ⊆ dom(σ0) ∪ { α j | j ∈ J } ⊆ var
(
t1 Û≤ t2 ∪T Û= α

)
\ ∆ . �

10.27 proposition: If σ ∈ solve∆(D), then σ
∆ D and dom(σ) ⊆ var(D). �

282

Gradual typing

Proof: Let

D = { (t1
i Û≤ t2

i) | i ∈ I } ∪ { (τj Ûv α j) | j ∈ J } ∪ { (αk Ûv αk) | k ∈ K }

(where we assume, for all j ∈ J , that τj , α j).
Let σ ∈ solve∆(D). Then, by de�nition of solve, we have the following:

σ = (σ ′0 ◦ σ0)
† |TVar σ0 ∈ tally

Û=
∆({ (t

1
i Û≤ t2

i) | i ∈ I } ∪T Û= α)

σ ′0 = [®α
′/ ®X] ∪ [®X/ ®α]

T Û= α = { (Tj Û= α j) | j ∈ J } ∀j ∈ J .T †
j = τj

A = var Ûv(D)σ0 ∪
⋃

i ∈I (var
±(t1

i σ0) ∪ var±(t2
i σ0))

®X = FVar ∩A ®α = var(D) \ (∆ ∪ dom(σ0) ∪A) ®α ′ and ®X fresh

We must show the following results:

∀i ∈ I . t1
i σ ≤

? t2
i σ ∀j ∈ J . τjσ v α jσ

static(σ ,
⋃

j ∈J var(τj) ∪ { α j | j ∈ J }) dom(σ) ⊆ var(D) \ ∆

To show∀i ∈ I .t1
i σ ≤

? t2
i σ , consider an arbitrary i ∈ I . By Proposition 10.26,

we have t1
i σ0 ≤ t2

i σ0. Then, by Proposition 10.2, we have t1
i σ0σ

′
0 ≤ t2

i σ0σ
′
0. We

show that t1
i σ0σ

′
0 and t2

i σ0σ
′
0 are polarized, which implies that (t1

i σ0σ
′
0)
† ≤?

(t2
i σ0σ

′
0)
† since every polarized type frame T is such that T ∈ ?pol(T †). Con-

sider an arbitrary j ∈ {1, 2}: we must show fvar+(t ji σ0σ
′
0) ∩ fvar

−(t ji σ0σ
′
0) = �.

By contradiction, assume X ∈ fvar+(t ji σ0σ
′
0) ∩ fvar

−(t ji σ0σ
′
0). Since the vari-

ables in ®α ′ and ®X ′ are all distinct, σ ′0 does not map di�erent variables to the
same variable. Moreover, note that var(σ ′0)] var(t

j
i). Therefore, there are two

cases:

• X ∈ fvar+(t ji σ0) ∩ fvar−(t
j
i σ0) and X < dom(σ ′0);

• there exists an A ∈ var+(t ji σ0) ∩ var−(t
j
i σ0) such that Aσ ′0 = X .

In the �rst case, the �rst condition implies X ∈ A: but then X < dom(σ ′0)
is impossible. In the second case, we would have A ∈ A: therefore, Aσ ′0 =
X is impossible. Finally, (t1

i σ0σ
′
0)
† ≤? (t2

i σ0σ
′
0)
† implies t1

i σ Û≤ t2
i σ because

var(t1
i) ∪ var(t

2
i) ⊆ TVar.

To show∀j ∈ J .τjσ v α jσ , consider an arbitrary j ∈ J . By Proposition 10.26,
we have Tjσ0 = α jσ0. Moreover,

τjσ = (τjσ0σ
′
0)
† = (T †

j σ0σ
′
0)
† α jσ = (α jσ0σ

′
0)
† = (Tjσ0σ

′
0)
†

We have σjσ v α jσ because, for every α ∈ tvar(Tj), (α †σ0σ
′
0)
† = (ασ0σ

′
0)
†.

To show dom(σ) ⊆ var(D) \ ∆, consider α < var(D) \ ∆: we show ασ = α .
(Note that, trivially, Xσ = X for every X .) By Proposition 10.26, we have

dom(σ0) ⊆ var
(
{ (t1

i Û≤ t2
i) | i ∈ I } ∪T Û= α

)
\ ∆

Since tvar
(
{ (t1

i Û≤ t2
i) | i ∈ I } ∪ T Û= α

)
⊆ var(D), we have ασ0 = α . Then,

ασ ′0 = α since dom(σ ′0) ∩ TVar ⊆ var(D).

283

a Additional proofs

Finally, to show static(σ ,
⋃

j ∈J var(τj) ∪ { α j | j ∈ J }), consider an arbitrary
α ∈

⋃
j ∈J var(τj) ∪ { α j | j ∈ J }: we show that ασ is static, that is, that

fvar(ασ0σ
′
0) = �. Note that α ∈ var Ûv(D). We have var(ασ0) ⊆ var Ûv(D)σ0 and

var(ασ0σ
′
0) =

⋃
A∈var(ασ0) var(Aσ

′
0). Therefore, if there existed X ∈ var(ασ0σ

′
0),

there should exist A ∈ var(ασ0) such that X ∈ var(Aσ ′0). By de�nition of σ ′0,
we would need A ∈ ®α or A ∈ FVar \ dom(σ ′0): but ®α is disjoint from var Ûv(D)σ0,
and FVar ∩ var Ûv(D)σ0 ⊆ dom(σ ′0). �

10.28 lemma (Stability of typing under type substitution): If Γ ` e E : τ , then,
for every static type substitution σ , we have Γσ ` eσ Eσ : τσ . �

Proof: By induction on the derivation of Γ ` e E : τ and by case analysis
on the last rule applied.

Case: [Tx]
We have Γ ` x x [®t] : τ [®t/ ®α], with Γ (x) = ∀®α . τ .
Since, by α-renaming, ®α] σ , we have (Γσ)(x) = ∀®α . τσ .
By [Tx], since the ®tσ are all static, we have A○ Γσ ` x x [®tσ] : τσ [®tσ/ ®α].
Since ®α] σ , we have ∀α ∈ var(τ). ασ [®tσ/ ®α] = α[®t/ ®α]σ and therefore we
have B○ τσ [®tσ/ ®α] = τ [®t/ ®α]σ .
From A○ and B○, we have Γσ ` x x [®t]σ : τ [®t/ ®α]σ .

Case: [Tc]
Straightforward, since bcσ = bc .

Case: [Tλ], [Tλ:], [Tapp], [Tpair], [Tproj]
Direct application of the IH. For [Tλ], note that tσ is always static.

Case: [T≤]
By Proposition 10.20, τ ′ ≤? τ implies τ ′σ ≤? τσ because σ is static.

Case: [Tv]
By Proposition 10.3, τ ′ v τ implies τ ′σ v τσ .

Case: [Tlet]
We have Γ ` (let ®α x = e1 in e2) (let x = Λ ®α, ®β . E1 in E2) : τ .
By inversion of [Tlet]:

A○ Γ ` e1 E1 : τ1 B○ Γ , x : ∀®α, ®β . τ1 ` e2 E2 : τ
C○ ®α, ®β] Γ and ®β] e1

Let ®α1 and ®β1 be vectors of distinct variables chosen outside var(Γ), var(e1),
dom(σ), and var(σ). Let ρ = [®α1/ ®α] ∪ [®β1/ ®β].
By IH from A○, since ρ is static, we have Γρ ` e1ρ E1ρ : τ1ρ.
By C○, we have D○ Γ ` e1[®α1/ ®α] E1ρ : τ1ρ.
By IH from D○, we have E○ Γσ ` e1[®α1/ ®α]σ E1ρσ : τ1ρσ .
By IH from B○, we have F○ Γσ , x : (∀®α, ®β . τ1)σ ` e2σ E2σ : τσ .
By α-renaming from F○, G○ Γσ , x : (∀®α1, ®β1. τ1ρ)σ ` e2σ E2σ : τσ .

284

Gradual typing

From G○, since ®α1, ®β1] σ , H○ Γσ , x : (∀®α1, ®β1. τ1ρσ) ` e2σ E2σ : τσ .
By [Tlet] from E○ and H○ we have

Γσ ` (let ®α1x = e1[®α1/ ®α]σ in e2σ) (letx = Λ ®α1, ®β1. E1ρσ in E2σ) : τσ .

This concludes the proof because let ®α1 x = e1[®α1/ ®α]σ in e2σ and (let ®α x =
e1 in e2)σ are equivalent by α-renaming, as are letx = Λ ®α1, ®β1. E1ρσ in E2σ

and (let x = Λ ®α, ®β . E1 in E2)σ . �

10.29 lemma (Weakening): Let Γ1 and Γ2 be two type environments such that
Γ1 ≤

? Γ2. If Γ2 ` e E : τ , then Γ1 ` e E : τ . �

Proof: By induction on the derivation of Γ2 ` e E : τ and by case analysis
on the last rule applied.

Case: [Tx]
We have Γ2 ` x x [®t] : τ [®t/ ®α], where Γ2(x) = ∀®α . τ . By de�nition of
Γ1 ≤

? Γ2, we have Γ1(x) ≤
? Γ2(x), therefore Γ1(x) = ∀®α . τ

′ and τ ′ ≤? τ .
By [Tx] we derive Γ1 ` x x [®t] : τ ′[®t/ ®α]; then by [T≤] we derive
Γ1 ` x x [®t] : τ [®t/ ®α] since τ ′[®t/ ®α] ≤? τ [®t/ ®α] (by Proposition 10.20,
subtyping is preserved by static type substitutions).

Case: [Tc] Straightforward.

Case: [Tλ], [Tλ:], [Tapp], [Tpair], [Tproj], [T≤], [Tv]
We conclude by direct application of the induction hypothesis. For [Tλ]
and [Tλ:], note that Γ1 ≤

? Γ2 implies (Γ1, x : τ) ≤? (Γ2, x : τ) for every τ .

Case: [Tlet]
We have derived Γ2 ` (let ®α x = e1 in e2) (let x = Λ ®α, ®β . E1 in E2) : τ
from the premises

Γ2 ` e1 E1 : τ1 Γ2, x : ∀®α, ®β . τ1 ` e2 E2 : τ

®α, ®β] Γ2 and ®β] e1 .

Let ®α1 and ®β1 be vectors of variables chosen outside var(Γ1) and var(e1).
Let ρ = [®α1/ ®α] ∪ [®β1/ ®β]. Since ρ is a static type substitution, we can
apply Lemma 10.28 to derive Γ2ρ ` e1ρ E1ρ : τ1ρ, which is Γ2 ` e1ρ

E1ρ : τ1ρ because the ®α and ®β variables do not occur in Γ2.
By induction, we derive Γ1 ` e1ρ E1ρ : τ1ρ and Γ1, x : ∀®α, ®β . τ1 ` e2

E2 : τ . By α-renaming, ∀®α, ®β . τ1 is equivalent to ∀®α1, ®β1. τ1ρ. Note that the
®β1 variables do not occur in e1ρ, because they do not occur in e1 and they
are introduced by ρ only on variables which themselves do not occur in
e1. Therefore, we have

Γ1 ` e1ρ E1ρ : τ1ρ Γ1, x : ∀®α1, ®β1. τ1ρ ` e2 E2 : τ

®α1, ®β1] Γ1 and ®β1] e1ρ

285

a Additional proofs

from which we derive Γ1 ` (let ®α1 x = e1ρ in e2) (let x = Λ ®α1, ®β1. E1ρ in
E2) : τ , which is the result we need since, by α-renaming, let ®α x = e1 in e2
and let ®α1 x = e1ρ in e2 are equivalent, as are (let x = Λ ®α, ®β . E1 in E2) and
(let x = Λ ®α1, ®β1. E1ρ in E2). �

10.33 lemma: If Γ ;∆ ` C { D, then var(Γ) ∩ var(D) ⊆ var(C) ∪ var Ûv(D). �

Proof: By induction on C (the form of C determines the derivation).

Case: C = (t1 Û≤ t2) or C = (τ Ûv α) We have var(D) ⊆ var(C).

Case: C = (τ Ûv α) We have var(D) ⊆ var Ûv(D) ∪ {α } and α ∈ var(C).

Case: C = (def x : τ in C ′)
By IH, var(Γ , x : τ) ∩ var(D) ⊆ var(C ′) ∪ var Ûv(D). This directly yields the
result since var(C ′) ⊆ var(C).

Case: C = (∃ ®α .C ′)
By IH, var(Γ) ∩ var(D) ⊆ var(C ′) ∪ var Ûv(D). The side condition on the
rule imposes ®α] Γ . Then, var(Γ) ∩ var(D) ⊆ var(C) ∪ var Ûv(D) since
var(C) = var(C ′) \ ®α .

Case: C = (C1 ∧C2)

By IH, for both i , var(Γ) ∩ var(Di) ⊆ var(Ci) ∪ var Ûv(Di). This directly
implies var(Γ) ∩ var(D1 ∪ D2) ⊆ var(C1 ∧C2) ∪ var Ûv(D1 ∪ D2).

Case: C = (let x : ∀®α ;α[C1]
®α1 . α in C2)

By IH,

var(Γ) ∩ var(D1) ⊆ var(C1) ∪ var Ûv(D1)

var(Γ , x : ∀®α, ®β . ασ1) ∩ var(D2) ⊆ var(C2) ∪ var Ûv(D2)

We have

D = D2 ∪ equiv(σ1,D1)

var(D) = var(D2) ∪ var(D1)σ1 ∪ var Ûv(D1) ∪ S ∪ Sσ1

var Ûv(D) = var Ûv(D2) ∪ var(D1)σ1 ∪ var Ûv(D1)

var(C) = (var(C1) \ (®α ∪ {α })) ∪ var(C2)

where S = { α ∈ dom(σ1) | ασ1 static }.
Consider an arbitrary β ∈ var(Γ) ∩ var(D).
Subcase: β ∈ var(D2)

Then β ∈ var(C2) ∪ var Ûv(D2) and hence β ∈ var(C) ∪ var Ûv(D).

Subcase: β ∈ var(D1)σ1 ∪ var Ûv(D1) Then β ∈ var Ûv(D).

Subcase: β ∈ S
Then β ∈ dom(σ1). By Proposition 10.27, β ∈ var(D1).

286

Gradual typing

Since β ∈ var(Γ) ∩ var(D1), we have β ∈ var(C1) ∪ var Ûv(D1). Since
β ∈ var(Γ), by the side conditions of the rule we know β , α and
β < ®α . Therefore, β ∈ var(C) ∪ var Ûv(D).

Subcase: β ∈ Sσ1
Then β ∈ var(γσ1) for some γ ∈ dom(σ1) such that γσ1 is static.
By Proposition 10.27, γ ∈ var(D1). Then β ∈ var(D1)σ1 ⊆ var Ûv(D). �

10.34 lemma:

∀Γ ,∆, e,α,D,σ .

Γ ;∆ ` 〈〈e : α〉〉 { D

σ ∈ solve∆(D)

var(e) ⊆ ∆

α < var(Γ)


=⇒ static(σ , var(Γ))

�

Proof: Consider an arbitrary β ∈ var(Γ). We show that βσ is static.

Case: β < dom(σ) Then βσ = β , which is static.

Case: β ∈ dom(σ)
Then β ∈ var(D) (by Proposition 10.27), and therefore β ∈ var(Γ) ∩ var(D).
By Lemma 10.33, β ∈ var(〈〈e : α〉〉) ∪ var Ûv(D).
Subcase: β ∈ var(〈〈e : α〉〉)

This case is impossible because var(〈〈e : α〉〉) = var(e) ∪ {α }, dom(σ)]
var(e) (because var(e) ⊆ ∆), and α < var(Γ).

Subcase: β ∈ var Ûv(D) Since σ
∆ D, βσ must be static. �

10.35 lemma:

∀Γ ,∆,D1,σ1, ρ,σ ,σ
′.

σ
∆ equiv(σ1,D1)

dom(ρ)] Γσ1

static(σ ′, var(equiv(σ1,D1))σ)

static(σ1, var(Γ))


=⇒ Γσσ ′ ≤? Γσ1ρσσ

′

�

Proof: Consider an arbitrary x ∈ dom(Γ). We have Γ (x) = ∀®α . τ . We as-
sume by α-renaming that ®α] σ1, ρ,σ ,σ

′; then, (Γσσ ′)(x) = ∀®α . τσσ ′ and
(Γσ1ρσσ

′)(x) = ∀®α . τσ1ρσσ
′. We must show τσσ ′ ≤? τσ1ρσσ

′. We show
∀α ∈ var(τ). ασσ ′ '? ασ1ρσσ

′, which implies τσσ ′ '? τσ1ρσσ
′ by Proposi-

tion 10.25.
To show ∀α ∈ var(τ). ασσ ′ '? ασ1ρσσ

′, consider an arbitrary α ∈ var(τ).

Case: α ∈ ®α
Then (by our choice of naming) ασσ ′ = α and ασ1ρσσ

′ = α .

Case: α < ®α

287

a Additional proofs

Then α ∈ var(Γ) and hence: var(ασ1) ⊆ var(Γσ1), and ασ1ρ = ασ1, and
ασ1 is static.

Subcase: α < dom(σ1)

Then ασ1 = α , ασ1ρ = α , and ασ1ρσσ
′ = ασσ ′.

Subcase: α ∈ dom(σ1)

Then {(α Û≤ ασ1), (ασ1 Û≤ α)} ⊆ equiv(σ1,D1). Therefore, we have
ασ1σ '

? ασ and static(σ ′, var(ασ) ∪ var(ασ1σ)). By Proposition 10.20,
ασ1σσ

′ '? ασσ ′. �

10.36 theorem (Soundness of type inference): LetD be a derivation of Γ ; var(e) `
〈〈e : t〉〉 { D. Let σ be a type substitution such that σ
var(e) D. Then, we have
Γσ ` e ⦃e⦄Dσ : tσ . �

Proof: We show the following, stronger result (for allD, Γ , ∆, e , t , D, σ , and
σ ′):

D is a derivation of Γ ;∆ ` 〈〈e : t〉〉 { D

σ
∆ D

static(σ ′, var(D)σ)

var(e) ⊆ ∆


=⇒ Γσσ ′ ` eσ ′ ⦃e⦄Dσ σ

′ : tσσ ′

This result implies the statement: we take ∆ = var(e) and σ ′ = [] (the
identity substitution).

The proof is by structural induction on e .

Case: e = x

We have:

A○ D :: Γ ;∆ ` 〈〈x : t〉〉 { D B○ σ
∆ D C○ static(σ ′, var(D)σ)

By Lemma 10.32 from A○:

Γ (x) = ∀®α . τ D = {(τ [®β/ ®α] Ûv α), (α Û≤ t)}

Assuming ®α] σ ,σ ′ by α-renaming, we have (Γσσ ′)(x) = ∀®α . τσσ ′.
From B○ and C○, we know that the types ®βσσ ′ are static.
Since ®α] σ ,σ ′, we have ∀α ∈ var(τ).ασσ ′[®βσσ ′/ ®α] = α[®β/ ®α]σσ ′. There-
fore, τσσ ′[®βσσ ′/ ®α] = τ [®β/ ®α]σσ ′.
By Lemma 10.31, we have τ [®β/ ®α]σσ ′ v ασσ ′.
By Lemma 10.30, we have ασσ ′ ≤? tσσ ′.
By [Tx], we have Γσσ ′ ` x x [®βσσ ′] : τσσ ′[®βσσ ′/ ®α].
By [Tv] and [T≤], Γσσ ′ ` x x [®βσσ ′]〈τ [®β/ ®α]σσ ′⇒

`
ασσ ′〉 : tσσ ′.

This concludes this case since ⦃x⦄Dσ σ
′ = x [®βσσ ′]〈τ [®β/ ®α]σσ ′⇒

`
ασσ ′〉.

Case: e = c
We have D :: Γ ;∆ ` 〈〈c : t〉〉 { D.

288

Gradual typing

By Lemma 10.32, D = {bc Û≤ t}. By Lemma 10.30, bcσσ ′ ≤? tσσ ′.
By [Tc] and [T≤], Γσσ ′ ` cσσ ′ c : tσσ ′. Note that ⦃c⦄Dσ σ ′ = c .

Case: e = λx . e ′

We have D :: Γ ;∆ ` 〈〈λx . e ′ : t〉〉 { D.
By Lemma 10.32:

(Γ , x : α1);∆ ` 〈〈e ′ : α2〉〉 { D ′ D = D ′ ∪ {(α1 Ûv α1), (α1 → α2 Û≤ t)}

We know that α1σσ
′ is static.

By Lemma 10.30, (α1 → α2)σσ
′ ≤? tσσ ′.

By IH, Γσσ ′, x : α1σσ
′ ` e ′σσ ′ ⦃e ′⦄D

′

σ σ ′ : α2σσ
′.

By [Tλ], Γσσ ′ ` (λx . e ′σσ ′) λ(α1→α2)σσ ′x . ⦃e ′⦄D
′

σ σ ′ : (α1 → α2)σσ
′.

By [T≤], Γσσ ′ ` (λx . e ′σσ ′) λ(α1→α2)σσ ′x . ⦃e ′⦄D
′

σ σ ′ : tσσ ′.
We have ⦃λx . e⦄Dσ σ

′ = λ(α1→α2)σσ ′x . ⦃e ′⦄D
′

σ σ ′.

Case: e = λx : τ . e ′
We have D :: Γ ;∆ ` 〈〈λx : τ . e ′ : t〉〉 { D.
By Lemma 10.32:

D ′ :: (Γ , x : τ);∆ ` 〈〈e ′ : α2〉〉 { D ′

D = D ′ ∪ {(τ Ûv α1), (α1 → α2 Û≤ t)}

By Lemma 10.31, τσσ ′ v α1σσ
′.

By Lemma 10.30, (α1 → α2)σσ
′ ≤? tσσ ′.

By IH, Γσσ ′, x : τσσ ′ ` e ′σσ ′ ⦃e ′⦄D
′

σ σ ′ : α2σσ
′.

By [Tλ:], Γσσ ′ ` (λx : τ . e ′)σσ ′ λ(τ→α2)σσ ′x . ⦃e ′⦄D
′

σ σ ′ : (τ → α2)σσ
′.

By [Tv],

Γσσ ′ ` (λx : τ . e ′)σσ ′ (
λ(τ→α2)σσ ′x . ⦃e ′⦄D

′

σ σ ′
)
〈(τ → α2)σσ

′⇒
`
(α1 → α2)σσ

′〉 : (α1 → α2)σσ
′.

By [T≤],

Γσσ ′ ` (λx : τ . e ′)σσ ′ (
λ(τ→α2)σσ ′x . ⦃e ′⦄D

′

σ σ ′
)
〈(τ → α2)σσ

′⇒
`
(α1 → α2)σσ

′〉 : tσσ ′ .

We have

⦃λx : τ . e⦄Dσ σ ′ =(
λ(τ→α2)σσ ′x . ⦃e ′⦄D

′

σ σ ′
)
〈(τ → α2)σσ

′⇒
`
(α1 → α2)σσ

′〉 .

Case: e = e1 e2
We have D :: Γ ;∆ ` 〈〈e1 e2 : t〉〉 { D.
By Lemma 10.32:

D1 :: Γ ;∆ ` 〈〈e1 : α → t〉〉 { D1 D2 :: Γ ;∆ ` 〈〈e2 : α〉〉 { D2

D = D1 ∪ D2

289

a Additional proofs

By IH:

Γσσ ′ ` e1σσ
′ ⦃e1⦄

D1
σ σ ′ : (α → t)σσ ′

Γσσ ′ ` e2σσ
′ ⦃e2⦄

D2
σ σ ′ : ασσ ′

By [Tapp], Γσσ ′ ` (e1 e2)σσ
′ ⦃e1⦄

D1
σ σ ′ ⦃e2⦄

D2
σ σ ′ : tσσ ′.

Note that ⦃e1 e2⦄
D
σ σ
′ = ⦃e1⦄

D1
σ σ ′ ⦃e2⦄

D2
σ σ ′.

Case: e = (e1, e2)

We have D :: Γ ;∆ ` 〈〈(e1, e2) : t〉〉 { D.
By Lemma 10.32:

D1 :: Γ ;∆ ` 〈〈e1 : α1〉〉 { D1 D2 :: Γ ;∆ ` 〈〈e2 : α2〉〉 { D2

D = D1 ∪ D2 ∪ {α1 × α2 Û≤ t}

By Lemma 10.30, (α1 × α2)σσ
′ ≤? tσσ ′.

By IH,

Γσσ ′ ` e1σσ
′ ⦃e1⦄

D1
σ σ ′ : α1σσ

′

Γσσ ′ ` e2σσ
′ ⦃e2⦄

D2
σ σ ′ : α2σσ

′

By [Tpair] and [T≤], Γσσ ′ ` (e1, e2)σσ
′

(
⦃e1⦄

D1
σ σ ′,⦃e2⦄

D2
σ σ ′

)
: tσσ ′.

We have ⦃(e1, e2)⦄
D
σ σ
′ =

(
⦃e1⦄

D1
σ σ ′,⦃e2⦄

D2
σ σ ′

)
.

Case: e = πi e
′

We have D :: Γ ;∆ ` 〈〈πi e ′ : t〉〉 { D.
By Lemma 10.32:

D ′ :: Γ ;∆ ` 〈〈e ′ : α1 × α2〉〉 { D ′ D = D ′ ∪ {αi Û≤ t}

By Lemma 10.30, αiσσ ′ ≤? tσσ ′.
By IH, Γσσ ′ ` e ′σσ ′ ⦃e ′⦄D

′

σ σ ′ : (α1 × α2)σσ
′.

By [Tproj] and [T≤], Γσσ ′ ` (πi e ′)σσ ′ πi (⦃e
′
⦄

D′

σ σ ′) : tσσ ′.
We have ⦃πi e

′
⦄

D
σ σ
′ = (πi ⦃e

′
⦄

D′

σ)σ
′.

Case: e = (let ®α x = e1 in e2)

We have D :: Γ ;∆ ` 〈〈let ®α x = e1 in e2 : t〉〉 { D.
By Lemma 10.32:

D1 :: Γ ;∆ ∪ ®α ` 〈〈e1 : α〉〉 { D1

D2 :: (Γ , x : ∀®α, ®β . ασ1);∆ ` 〈〈e2 : t〉〉 { D2

D = D2 ∪ equiv(σ1,D1) σ1 ∈ solve∆∪ ®α (D1) ®α] var(Γσ1)

®β = var(ασ1) \ (var(Γσ1) ∪ ®α ∪ var(e1))

Let ®α1 and ®β1 be vectors of distinct variables chosen outside var(e1),
dom(σ), var(σ), dom(σ ′), and var(σ ′). Let ρ = [®α1/ ®α] ∪ [®β1/ ®β].
Since ®β] e1 and ®α1] σ

′, we have eσ ′ = (let ®α1 x = e1ρσ
′ in e2σ

′).
We have ⦃e⦄Dσ =

(
let x = (Λ ®α1, ®β1. ⦃e1⦄

D1
σ1 ρσ) in ⦃e2⦄

D2
σ

)
.

290

Non-strict languages

Since ®α1, ®β1] σ
′, we have ⦃e⦄Dσ σ

′ =
(
let x = (Λ ®α1, ®β1. ⦃e1⦄

D1
σ1 ρσσ

′) in
⦃e2⦄

D2
σ σ ′

)
.

Considering e1, we have σ1
∆∪ ®α D1.
We show that static(σ ′ ◦ σ ◦ ρ, var(D1)σ1).

To check static(σ ′ ◦ σ ◦ ρ, var(D1)σ1), take an arbitrary α ∈ var(D1)σ1.
• If α ∈ dom(ρ), then αρ is a variable in ®α1, ®β1 and αρ = αρσσ ′

(because ®α1, ®β1] σ ,σ
′): hence αρσσ ′ is static.

• If α < dom(ρ), then αρσσ ′ = ασσ ′.
We have (α Ûv α) ∈ equiv(σ1,D1). Since equiv(σ1,D1) ⊆ D, ασ

is static. Furthermore, var(ασ) ⊆ var(D)σ ; hence, ασσ ′ is static
too.

We have var(e1) ⊆ ∆ ∪ ®α .
By IH, Γσ1ρσσ

′ ` e1ρσσ
′ ⦃e1⦄

D1
σ1 ρσσ

′ : ασ1ρσσ
′.

Since dom(σ) ∩ var(e1ρ) = �, we have e1ρσσ
′ = e1ρσ

′.
By inversion, α < var(Γ).
By Lemma 10.34, static(σ1, var(Γ)).
By Lemma 10.35, Γσσ ′ ≤? Γσ1ρσσ

′.
By Lemma 10.29, Γσσ ′ ` e1ρσ

′ ⦃e1⦄
D1
σ1 ρσσ

′ : ασ1ρσσ
′.

Considering e2, we have σ
∆ D2, static(σ ′, var(D2)σ), var(e2) ⊆ ∆.
By IH, Γσσ ′, x : (∀®α, ®β . ασ1)σσ

′ ` e2σ
′ ⦃e2⦄

D2
σ σ ′ : tσσ ′.

Since ®α1, ®β1] σ ,σ
′, (∀®α, ®β . ασ1)σσ

′ = (∀®α1, ®β1. ασ1ρσσ
′).

We have Γσσ ′, x : (∀®α1, ®β1. ασ1ρσσ
′) ` e2σ

′ ⦃e2⦄
D2
σ σ ′ : tσσ ′.

We have ®α1, ®β1] Γσσ
′ and ®β1] e1ρσ

′.
Finally, by [Tlet], Γσσ ′ ` eσ ′ ⦃e⦄Dσ σ

′ : tσσ ′. �

Non-strict languages

A call-by-need language with set-theoretic types

13.6 corollary: Let
∧

i ∈I t
′
i → ti (with |I | > 0) be such that, for every i1, i2 ∈ I ,

if i1 , i2 then t ′i1 ∧ t
′
i2 ' 0. Then:∧

i ∈I

t ′i → ti ≤ t ′→ t =⇒
(
t ′ ≤

∨
i ∈I

t ′i
)
∧

(
∀i ∈ I . (t ′i ∧ t

′ ; 0) =⇒ (ti ≤ t)
)
�

Proof: By applying Lemma 13.5, we get(
t ′ ≤

∨
i ∈I t

′
i
)
∧

(
∀I ′ (I . (t ′ ≤

∨
i ∈I ′ t

′
i) ∨ (

∧
i ∈I\I ′ ti ≤ t)

)
.

Now consider an arbitrary i0 ∈ I such that t ′i0 ∧ t
′ ; 0; we must show ti0 ≤ t .

Instantiating the quanti�er above with I ′ = I \ {i0} we get

(t ′ ≤
∨

i ∈I\{i0 } t
′
i) ∨ (

∧
i ∈I\(I\{i0 }) ti ≤ t) .

We show t ′ �
∨

i ∈I\{i0 } t
′
i , which concludes the proof since the second term

of the union is ti0 ≤ t .

291

a Additional proofs

By contradiction, assume t ′ ≤
∨

i ∈I\{i0 } t
′
i . Note that t ′i0 ∧

∨
i ∈I\{i0 } t

′
i ' 0

(because the t ′i are disjoint); therefore we would also have t ′i0 ∧ t ' 0, which
is false by hypothesis. �

13.7 corollary: Let t̄ = (
∧

i ∈I t
′
i → ti) ∧ (

∧
j ∈J ¬(t

′
j → tj)). If t̄ ; 0 and

t̄ ≤ t ′→ t , then (
∧

i ∈I t
′
i → ti) ≤ t ′→ t . �

Proof: By de�nition of subtyping, we have

t̄ ; 0 ⇐⇒ (
∧

i ∈I t
′
i → ti) ∧ (

∧
j ∈J ¬(t

′
j → tj)) � 0

⇐⇒
∧

i ∈I t
′
i → ti �

∨
j ∈J t

′
j → tj

and

t̄ ≤ t ′→ t ⇐⇒
∧

i ∈I t
′
i → ti ≤ (

∨
j ∈J t

′
j → tj) ∨ (t

′→ t)

Let j̄ be such that j̄ < J and let t ′j̄ = t ′ and t j̄ = t . By Lemma 13.5, we derive

∀j0 ∈ J . ¬
((
t ′j0 ≤

∨
i ∈I t

′
i
)
∧

(
∀I ′ (I . (t ′j0 ≤

∨
i ∈I ′ t

′
i) ∨ (

∧
i ∈I\I ′ ti ≤ tj0)

))
∃j0 ∈ J ∪ {j̄}.

(
t ′j0 ≤

∨
i ∈I t

′
i
)
∧

(
∀I ′ (I . (t ′j0 ≤

∨
i ∈I ′ t

′
i) ∨ (

∧
i ∈I\I ′ ti ≤ tj0)

)
where clearly the existentially quanti�ed proposition must be true for j̄,
which allows us to conclude. �

13.8 lemma: For every �nite set J and every set { tj | j ∈ J },∨
J ′⊆ J

(∧
j ∈J ′ tj ∧

∧
j ∈J \J ′ ¬tj

)
' 1

(with the convention that an intersection over an empty set is 1). �

Proof: We prove this by induction on |J |. If |J | = 0, then the only J ′ is J
itself, and the equivalence holds. If |J | > 0, consider an arbitrary j0 ∈ J and
let J̄ = J \ {j0}. We have∨

J ′⊆ J
(∧

j ∈J ′ tj ∧
∧

j ∈J \J ′ ¬tj
)

'
∨
J ′⊆ J̄

(∧
j ∈J ′ tj ∧

∧
j ∈ J̄ \J ′ ¬tj ∧ ¬tj0

)
∨

∨
J ′⊆ J̄

(
tj0 ∧

∧
j ∈J ′ tj ∧

∧
j ∈ J̄ \J ′ ¬tj

)
'

(
¬tj0 ∧

∨
J ′⊆ J̄ (

∧
j ∈J ′ tj ∧

∧
j ∈ J̄ \J ′ ¬tj)

)
∨

(
tj0 ∧

∨
J ′⊆ J̄ (

∧
j ∈J ′ tj ∧

∧
j ∈ J̄ \J ′ ¬tj)

)
' (¬tj0 ∧ 1) ∨ (tj0 ∧ 1)

(by the induction hypothesis)

' 1 . �

13.9 lemma: Let � =
∧

i ∈I t
′
i → ti (with |I | > 0) be a type. Then:

� '
∧
�(I ′⊆I sI ′ → uI ′ where sI ′

def
=

∧
i ∈I ′ t

′
i ∧

∧
i ∈I\I ′ ¬t

′
i and uI ′

def
=

∧
i ∈I ′ ti

292

Non-strict languages

(with the convention:
∧

i ∈� ¬t
′
i = 1). �

Proof: We �rst show � ≤
∧
�(I ′⊆I sI ′ → uI ′ . To do this, we show that, for

every I ′ such that � (I ′ ⊆ I , we have � ≤ sI ′ → uI ′ , that is,

� ≤
(∧

i ∈I ′ t
′
i ∧

∧
i ∈I\I ′ ¬t

′
i
)
→

(∧
i ∈I ′ ti

)
.

We have

� =
∧

i ∈I t
′
i → ti

≤
∧

i ∈I ′ t
′
i → ti

≤
(∧

i ∈I ′ t
′
i
)
→

(∧
i ∈I ′ ti

)
≤

(∧
i ∈I ′ t

′
i ∧

∧
i ∈I\I ′ ¬t

′
i
)
→

(∧
i ∈I ′ ti

)
.

We now consider the opposite direction. To show
∧
�(I ′⊆I sI ′ → uI ′ ≤ �,

we show that, for every i ∈ I , we have
∧
�(I ′⊆I sI ′ → uI ′ ≤ t ′i → ti . Consider

an arbitrary i0 ∈ I and let I = I \ {i0}. We have∧
�(I ′⊆I sI ′ → uI ′

≤
∧
�(I ′⊆I
i0∈I ′

sI ′ → uI ′

'
∧

I ′⊆I s(I ′∪{i0 }) → u(I ′∪{i0 })

'
∧

I ′⊆I

((
t ′i0 ∧

∧
i ∈I ′ t

′
i ∧

∧
i ∈I\I ′ ¬t

′
i
)
→

(
ti0 ∧

∧
i ∈I ′ ti

))
≤

(∨
I ′⊆I

(
t ′i0 ∧

∧
i ∈I ′ t

′
i ∧

∧
i ∈I\I ′ ¬t

′
i
))
→

(∨
I ′⊆I

(
ti0 ∧

∧
i ∈I ′ ti

))
'

(
t ′i0 ∧

∨
I ′⊆I

(∧
i ∈I ′ t

′
i ∧

∧
i ∈I\I ′ ¬t

′
i
))
→

(
ti0 ∧

∨
I ′⊆I

(∧
i ∈I ′ ti

))
' t ′i0 →

(
ti0 ∧

∨
I ′⊆I

(∧
i ∈I ′ ti

))
(by Lemma 13.8)

≤ t ′i0 → ti0 . �

13.16 lemma: For every type t such that t ≤ 1 × 1, there exists a product decom-
position Π such that t '

∨
t1×t2∈Π t1 × t2. �

Proof: Let t be such that t ≤ 1×1. Let dnf(t) = { (Pi ,Ni) | i ∈ I }. By Propos-
ition 13.14, we have nto = ndnf(t)o = nto = ⋃

i ∈I
(⋂

t ′∈Pi nt ′o \
⋃

t ′∈Ni nt ′o
)
.

We show that, for every i ∈ I , there exists a product decomposition Πi

such that ⋂
t ′∈Pi nt ′o \

⋃
t ′∈Ni nt ′o =

⋃
t1×t2∈Πi nt1 × t2o .

This yields the result we need, taking Π =
⋃

i ∈I Πi .
Consider an arbitrary i ∈ I .
Since t ≤ 1 × 1, we have

⋂
t ′∈Pi nt ′o \

⋃
t ′∈Ni nt ′o ≤ n1 × 1o.

If
⋂

t ′∈Pi nt ′o \
⋃

t ′∈Ni nt ′o, we take Πi = �.
Otherwise, every t ′ ∈ Pi must be a product atom. Moreover, we have⋂
t ′∈Pi nt ′o \

⋃
t ′∈Ni nt ′o =

⋂
t ′∈Pi nt ′o \

⋃
t ′∈N ′i

nt ′o, where N ′i is the intersec-

293

a Additional proofs

tion of Ni with the set of all product atoms (i.e., N ′i is Ni minus all atoms that
are not product atoms).

Using the two properties (for all sets A1, A2, B1, and B2)

(A1 ×A2) ∩ (B1 × B2) = (A1 ∩ B1) × (A2 ∩ B2)

(A1 ×A2) \ (B1 × B2) =
(
(A1 \ B1) ×A2

)
∪

(
A1 × (A2 \ B2)

)
we obtain that⋂

t1×t2∈Pi

nt ′o \
⋃

t1×t2∈N ′i

nt ′o

=
⋃

N ′′⊆N ′i

©­«
(⋂
t1×t2∈Pi

nt1o \
⋃

t1×t2∈N ′′
nt1o

)
×

©­«
⋂

t1×t2∈Pi

nt2o \
⋃

t1×t2∈N ′i \N
′′

nt2oª®¬ª®¬
which yields directly a product decomposition. �

13.17 lemma: For every product decomposition Π , there exists a product decom-
position Π ′ such that Π ′ is fully disjoint, that

∨
t ∈Π t '

∨
t ′∈Π ′ t

′, and that
∀t ′ ∈ Π . ∃t ∈ Π . t ′ ≤ t . �

Proof: Let Π = { t1
i × t

2
i | i ∈ I }. When i ∈ I and I ′, I1, I2 ⊆ I , and k ∈ {1, 2},

we de�ne

�
k (i, I ′) = tki ∧

∧
j ∈I ′ t

k
j ∧

∧
j ∈I\{i }\I ′ ¬t

k
j

�(i, I1, I2) = �
1(i, I1) × �

2(i, I2)

and we consider the product decomposition

Π ′ =
⋃

i ∈I {�(i, I1, I2) | I1 ⊆ I \ {i}, I2 ⊆ I \ {i},�1(i, I1) ; 0,�2(i, I2) ; 0 } .

We �rst show that Π ′ is fully disjoint. First, consider an arbitrary element
of Π ′, �(i, I1, I2) = �1(i, I1) × �

2(i, I2). We must show �(i, I1, I2) ; 0, which
holds because we explicitly require both �k (i, Ik) to be non-empty. Now, we
consider two arbitrary elements of Π ′:

�(i, I1, I2) = �
1(i, I1) × �

2(i, I2) �(i ′, I ′1, I
′
2) = �

1(i ′, I ′1) × �
2(i ′, I ′2)

and we must prove:(
�

1(i, I1) ∧ �
1(i ′, I ′1) ' 0

)
∨

(
�

1(i, I1) ' �
1(i ′, I ′1)

)(
�

2(i, I2) ∧ �
2(i ′, I ′2) ' 0

)
∨

(
�

2(i, I2) ' �
2(i ′, I ′2)

)
.

We prove the �rst (the second is proved identically). Note that if {i} ∪ I1 =
{i ′} ∪ I ′1, then �1(i, I1) and �1(i ′, I ′1) are the same up to reordering of the
intersections: therefore�1(i, I1) ' �

1(i ′, I ′1) holds. Otherwise, assume without
loss of generality that there exists an i0 such that i0 ∈ {i}∪ I1 but i0 < {i ′}∪ I ′1.
Then, we have�1(i, I1) ≤ t1

i0 and�1(i ′, I ′1) ≤ ¬t
1
i0 . Then,�1(i, I1)∧�

1(i ′, I ′1) ≤

t1
i0 ∧ ¬t

1
i0 ≤ 0.

294

Non-strict languages

Now we show that, for every �(i, I1, I2) = �1(i, I1) × �
2(i, I2) in Π ′, there

exists a i ′ ∈ I such that �(i, I1, I2) ≤ t1
i′ × t

2
i′ . We simply take i ′ = i , since both

�1(i, I1) ≤ t1
i and �2(i, I2) ≤ t2

i always hold.
Finally, we show that

∨
i ∈I t

1
i × t

2
i '

∨
t ∈Π ′ t . We do so by showing that,

for every i ∈ I ,

t1
i × t

2
i '

∨
i ∈I ,I1⊆I\{i },I2⊆I\{i },�1(i ,I1);0,�2(i ,I2);0�(i, I1, I2) .

Note that we can show this by showing

t1
i × t

2
i '

∨
i ∈I ,I1⊆I\{i },I2⊆I\{i } �(i, I1, I2) ,

without the conditions of non-emptiness (we have more summands in the
union, but they are empty). We have∨

i ∈I ,I1⊆I\{i },I2⊆I\{i } �(i, I1, I2)

=
∨

i ∈I ,I1⊆I\{i },I2⊆I\{i } �
1(i, I1) × �

2(i, I2)

'
∨

i ∈I ,I1⊆I\{i }
(∨

I2⊆I\{i } �
1(i, I1) × �

2(i, I2)
)

'
∨

i ∈I ,I1⊆I\{i } �
1(i, I1) ×

(∨
I2⊆I\{i } �

2(i, I2)
)

(subtyping of product types satis�es
∨

i ∈I (t × ti) ' t × (
∨

i ∈I ti))

'
∨

i ∈I ,I1⊆I\{i } �
1(i, I1) ×

(∨
I2⊆I\{i }

(
t2
i ∧

∧
j ∈I2 t

2
j ∧

∧
j ∈I\{i }\I2 ¬t

2
j
))

'
∨

i ∈I ,I1⊆I\{i } �
1(i, I1) ×

(
t2
i ∧

∨
I2⊆I\{i }

(∧
j ∈I2 t

2
j ∧

∧
j ∈I\{i }\I2 ¬t

2
j
))

'
∨

i ∈I ,I1⊆I\{i } �
1(i, I1) ×

(
t2
i ∧ 1

)
(by Lemma 13.8)

'
∨

i ∈I ,I1⊆I\{i } �
1(i, I1) × t

2
i

' t1
i × t

2
i

(proceeding as above). �

13.18 lemma: Let Π = { t1
i × t

2
i | i ∈ I } be a fully disjoint product decomposition

and let t1 and t2 be two types such that t1×t2 '
∨

i ∈I t
1
i ×t

2
i . Then, t1 '

∨
i ∈I t

1
i ,

t2 '
∨

i ∈I t
2
i , and ∀i1, i2 ∈ I . ∃i ∈ I . t1

i1 × t
2
i2 ≤ t1

i × t
2
i . �

Proof: We have

t1 × t2 '
∨

i ∈I t
1
i × t

2
i ≤

(∨
i ∈I t

1
i
)
×

(∨
i ∈I t

2
i
)

and therefore t1 ≤
∨

i ∈I t
1
i and t2 ≤

∨
i ∈I t

2
i , since all t1

i and t2
i are non-empty.

Since
∨

i ∈I t
1
i × t

2
i ≤ t1 × t2, we have, for all i ∈ I , t1

i × t
2
i ≤ t1 × t2 and

hence (by de�nition of subtyping, since t1
i and t2

i are non-empty) t1
i ≤ t1

and t2
i ≤ t2. Hence, we also have

∨
i ∈I t

1
i ≤ t1 and

∨
i ∈I t

2
i ≤ t2. This yields

t1 '
∨

i ∈I t
1
i and t2 '

∨
i ∈I t

2
i .

To prove ∀i1, i2 ∈ I . ∃i ∈ I . t1
i1 × t

2
i2 ≤ t1

i × t
2
i , we consider arbitrary i1 and

i2 in I ; we must show ∃i ∈ I . t1
i1 × t

2
i2 ≤ t1

i × t
2
i . Note that t1

i1 × t
2
i2 ≤ t1 × t2.

295

a Additional proofs

Hence, we have

t1
i1 × t

2
i2 ' (t

1
i1 × t

2
i2) ∧ (t

1 × t2)

' (t1
i1 × t

2
i2) ∧ (

∨
i ∈I t

1
i × t

2
i)

'
∨

i ∈I
(
(t1
i1 × t

2
i2) ∧ (t

1
i × t

2
i)

)
'

∨
i ∈I

(
(t1
i1 ∧ t

1
i) × (t

2
i2 ∧ t

2
i)

)
.

Since t1
i1×t

2
i2 is not empty, there must exist an i0 ∈ I such that (t1

i1∧t
1
i0)×(t

2
i2∧t

2
i0)

is not empty, that is, an i0 such that t1
i1 ∧ t

1
i0 ; 0 and t2

i2 ∧ t
2
i0 ; 0. Since the

decomposition is fully disjoint, we have t1
i1 ' t1

i0 and t2
i2 ' t2

i0 : therefore
t1
i1 × t

2
i2 ' t

1
i0 × t

2
i0 . �

13.19 lemma: If Γ ` (e1, e2) :
∨

i ∈I ti , then there exist two types
∨

j ∈J tj and∨
k ∈K tk such that

Γ ` e1 :
∨

j ∈J tj Γ ` e2 :
∨

k ∈K tk ∀j ∈ J . ∀k ∈ K . ∃i ∈ I . tj × tk ≤ ti . �

Proof: Since Γ ` (e1, e2) :
∨

i ∈I ti , by inversion of the typing derivation, we
have Γ ` e1 : t1, Γ ` e2 : t2, and t1 × t2 ≤

∨
i ∈I ti .

If t1 ' 0 or t2 ' 0, then we choose
∨

j ∈J tj = t1 and
∨

k ∈K tk = t2 (i.e.,
|J | = |K | = 1), which ensures the result.

Now we assume t1 ; 0 and t2 ; 0. We have t1× t2 ' (
∨

i ∈I ti)∧ (t
1× t2) '∨

i ∈I (ti ∧ (t
1 × t2)). For every i , we have ti ∧ (t1 × t2) ≤ 1 × 1; therefore, by

Lemma 13.16, we can �nd a product decompositionΠi such that ti ∧(t1×t2) '∨
(t1,t2)∈Πi t1 × t2. Then, Π =

⋃
i ∈I Πi is itself a product decomposition, such

that
∨
(t1,t2)∈Π t1 × t2 ' t

1 × t2.
By Lemma 13.17, there exists a fully disjoint product decomposition Π ′

such that ∨
(t1,t2)∈Π t1 × t2 '

∨
(t1,t2)∈Π ′ t1 × t2

∀(t ′1, t
′
2) ∈ Π

′. ∃(t1, t2) ∈ Π . t
′
1 × t

′
2 ≤ t1 × t2 .

Since t1 × t2 '
∨
(t1,t2)∈Π ′ t1 × t2, by Lemma 13.18 we have

t1 '
∨
(t1,t2)∈Π ′ t1 t2 '

∨
(t1,t2)∈Π ′ t2

∀(t ′1, t
′
2), (t

′′
1 , t
′′
2) ∈ Π

′ .∃(t1, t2) ∈ Π
′. t ′1 × t

′′
2 ≤ t1 × t2 .

Taking the two decompositions above for t1 and t2, we have by subsump-
tion

Γ ` e1 :
∨
(t1,t2)∈Π ′ t1 Γ ` e2 :

∨
(t1,t2)∈Π ′ t2 .

It remains to prove that ∀(t ′1, t ′2), (t ′′1 , t ′′2) ∈ Π ′ .∃i ∈ I . t ′1×t ′′2 ≤ ti . Consider
two arbitrary (t ′1, t ′2) and (t ′′1 , t ′′2) in Π ′. There exists a (t1, t2) ∈ Π ′ such
that t ′1 × t ′′2 ≤ t1 × t2. Therefore, there exists also a (t1, t2) ∈ Π such that
t ′1×t

′′
2 ≤ t1×t2. This (t1, t2) ∈ Π belongs to some Πi and therefore t1×t2 ≤ ti ,

implying also t ′1 × t
′′
2 ≤ ti . �

296

Non-strict languages

13.20 lemma (Weakening): Let Γ and Γ ′ be two type environments such that,
whenever x ∈ dom(Γ), we have x ∈ dom(Γ ′) and Γ ′(x) ≤ Γ (x).

If Γ ` e : t , then Γ ′ ` e : t . �

Proof: For every Γ and Γ ′, we de�ne

Γ ≤ Γ ′
def
⇐⇒ ∀x ∈ dom(Γ). (x ∈ dom(Γ ′)) ∧ (Γ ′(x) ≤ Γ (x)) .

We prove that, if Γ ` e : t and Γ ′ ≤ Γ , then Γ ′ ` e : t . We proceed by
induction on the derivation of Γ ` e : t and by cases on the last rule applied.

Case: [Tx] We conclude by [Tx] and [T≤].

Case: [Tc] Straightforward.

Case: [Tλ]
We can assume by α-renaming that f and x do not appear in Γ and Γ ′;
then, we have (for all i) (Γ ′, f : �, x : 〈T ′i 〉) ≤ (Γ , f : �, x : 〈T ′i 〉) and we
apply the IH to conclude.

Case: [Tapp], [Tpair], [Tproj], [T≤] Straightforward by IH.

Case: [Tcase], [Tlet] Similar to the previous case. �

13.21 lemma (Admissibility of intersection introduction): If Γ ` e : t1 and Γ `

e : t2, then Γ ` e : t1 ∧ t2. �

Proof: By induction on the derivations of Γ ` e : t1 and of Γ ` e : t2. As a
measure we use the sum of the depth of the two derivations.

If the last rule applied in the derivation of Γ ` e : t1 is [T≤], we have
Γ ` e : t ′1 and t ′1 ≤ t1. We apply the induction hypothesis to Γ ` e : t ′1 and
Γ ` e : t2 to derive Γ ` e : t ′1 ∧ t2 and then apply [T≤] since t ′1 ∧ t2 ≤ t1 ∧ t2. If
the last rule applied for e1 is not [T≤], and that for e2 is, we do the reverse.

Having dealt with the cases where the last rule applied in one derivation
at least is [T≤], we can assume for the remainder that the derivations end
with the same rule: every derivation for e must end with the application of
the rule corresponding to the form of e , possibly followed by applications of
[T≤].

Case: [Tx], [Tc]
We have t1 = t2 and we can derive Γ ` x : t1 ∧ t2 by subsumption.

Case: [Tλ]
We have

t1 = � ∧ (
∧

j ∈J ¬(t
′
j → tj)) t2 = � ∧ (

∧
k ∈K ¬(t

′
k → tk))

and we must derive t1 ∧ t2.

297

a Additional proofs

By [Tλ] to derive � ∧ (
∧

j ∈J ¬(t
′
j → tj)) ∧ (

∧
k ∈K ¬(t

′
k → tk)) (which is

non-empty by Corollary 13.7 since t1 and t2 are both non-empty).
We conclude by [T≤].

Case: [Tapp]
We have e = e1 e2 and

Γ ` e1 : 〈t ′1 → t ′′1 〉 Γ ` e2 : t ′1 t1 = 〈t
′′
1 〉

Γ ` e1 : 〈t ′2 → t ′′2 〉 Γ ` e2 : t ′2 t2 = 〈t
′′
2 〉

and, by induction, we derive

Γ ` e1 : 〈t ′1 → t ′′1 〉 ∧ 〈t
′
2 → t ′′2 〉 Γ ` e2 : t ′1 ∧ t ′2 .

We have

〈t ′1 → t ′′1 〉 ∧ 〈t
′
2 → t ′′2 〉 = ((t

′
1 → t ′′1) ∨ ⊥) ∧ ((t

′
2 → t ′′2) ∨ ⊥)

' ((t ′1 → t ′′1) ∧ (t
′
2 → t ′′2)) ∨ ⊥ ≤ 〈(t

′
1 ∧ t

′
2) → (t

′′
1 ∧ t

′′
2)〉

and conclude by [T≤] and [Tapp].

Case: [Tpair], [Tproj]
Similar to the previous case.
We use the following properties of subtyping:

(t1
1 ∧ t

1
2) × (t

2
1 ∧ t

2
2) ' (t

1
1 × t

1
2) ∧ (t

2
1 × t

2
2)

〈t1
1 × t

2
1〉 ∧ 〈t

1
2 × t

2
2〉 ≤ 〈(t

1
1 ∧ t

1
2) × (t

2
1 ∧ t

2
2)〉

Case: [Tcase]
We have

Γ `
(
(x = ε) ∈ t ? e1 : e2

)
: 〈t1〉 Γ ` ε : 〈t ′1〉

t ′1 ≤ ¬t or Γ , x : (t ′1 ∧ t) ` e1 : t1 t ′1 ≤ t or Γ , x : (t ′1 \ t) ` e2 : t1
Γ `

(
(x = ε) ∈ t ? e1 : e2

)
: 〈t2〉 Γ ` ε : 〈t ′2〉

t ′2 ≤ ¬t or Γ , x : (t ′2 ∧ t) ` e1 : t2 t ′2 ≤ t or Γ , x : (t ′2 \ t) ` e2 : t2

and we derive Γ `
(
(x = ε) ∈ t ? e1 : e2

)
: 〈t1 ∧ t2〉 from the premises

Γ ` ε : 〈t ′1 ∧ t ′2〉
t ′1 ∧ t

′
2 ≤ ¬t or Γ , x : ((t ′1 ∧ t ′2) ∧ t) ` e1 : t1 ∧ t2

t ′1 ∧ t
′
2 ≤ t or Γ , x : ((t ′1 ∧ t ′2) \ t) ` e2 : t1 ∧ t2

The �rst premise can be derived by applying the induction hypothesis
and then subsumption, since 〈t ′1〉∧〈t ′2〉 ' 〈t ′1∧t ′2〉. For the second premise,
note that, when t ′1 ∧ t

′
2 � ¬t, we have t ′1 � ¬t and t ′2 � ¬t and therefore

we have
Γ , x : (t ′1 ∧ t) ` e1 : t1 Γ , x : (t ′2 ∧ t) ` e1 : t2

and, by weakening (Lemma 13.20),

Γ , x : ((t ′1 ∧ t ′2) ∧ t) ` e1 : t1 Γ , x : ((t ′1 ∧ t ′2) ∧ t) ` e1 : t2 .

298

Non-strict languages

Hence, we derive the premise by the induction hypothesis. The third
premise is derived analogously to the second. Finally, we apply subsump-
tion since 〈t1 ∧ t2〉 ' 〈t1〉 ∧ 〈t2〉.

Case: [Tlet]
We have

Γ ` let x = e1 in e2 : t1 Γ ` e1 :
∨

i ∈I ti ∀i ∈ I . Γ , x : ti ` e2 : t1
Γ ` let x = e1 in e2 : t2 Γ ` e1 :

∨
j ∈J tj ∀j ∈ J . Γ , x : tj ` e2 : t2

By the induction hypothesis we derive Γ ` e1 : (
∨

i ∈I ti) ∧ (
∨

j ∈J tj); by
subsumption we obtain Γ ` e1 :

∨
(i , j)∈I×J (ti ∧ tj) since the two types are

equivalent. Then, for every (i, j) ∈ I × J , we want to show Γ , x : (ti ∧ tj) `
e2 : t1 ∧ t2, which we show by applying Lemma 13.20 and the induction
hypothesis. �

13.23 lemma (Generation): Let Γ be a well-formed type environment and let a
be an answer such that Γ ` a : t holds. Then:

• if t = 〈t1 → t2〉, then a is of the form µf : �. λx . e or let x = e in a′;

• if t = 〈t1 × t2〉, then a is of the form (e1, e2) or let x = e in a′. �

Proof: The typing derivation Γ ` a : t must end with the application of
the rule corresponding to the form of a (for an answer, one of [Tc], [Tλ],
[Tpair], or [Tlet]) possibly followed by applications of [T≤]. Therefore, if a = c ,
then we must have bc ≤ t : by de�nition of subtyping, this excludes both
t = 〈t1 → t2〉 and t = 〈t1 × t2〉. Similarly, a non-empty intersection of the
form (

∧
i ∈I t

′
i → ti) ∧ (

∧
j ∈J ¬(t

′
j → tj)) cannot be a subtype of 〈t1 × t2〉, nor

can a type t1 × t2 be a subtyping of 〈t1 → t2〉, except if it is empty (which is
impossible by Lemma 13.11). �

13.25 lemma: Let ε̄ be an expression generated by the grammar
ε̄ F c | µf : �. λx . e | (ε̄, ε̄)

(that is, an expression ε without variables). For every t, either typeof(ε̄) ≤ t or
typeof(ε̄) ≤ ¬t. �

Proof: By induction on the pair (ε̄, t) and by case analysis on ε̄ and t.
If t = 0, we have typeof(ε̄) ≤ ¬t.
If t = t1 ∨ t2, we apply the induction hypothesis to both ti . If typeof(ε̄) ≤ t1

or typeof(ε̄) ≤ t2, then typeof(ε̄) ≤ t1∨t2. Otherwise, we must have typeof(ε̄) ≤
¬t1 and typeof(ε̄) ≤ ¬t2; hence, typeof(ε̄) ≤ ¬t1 ∧ ¬t2 ' ¬(t1 ∨ t2).

If t = ¬t′, we apply the induction hypothesis to t′. If typeof(ε̄) ≤ t′, then
typeof(ε̄) ≤ ¬t. Conversely, if typeof(ε̄) ≤ ¬t′, then typeof(ε̄) ≤ t.

If t = b and ε̄ = c , then typeof(ε̄) = bc . Since nbco = {c}, either typeof(ε̄) ≤ b

or typeof(ε̄) ≤ ¬b holds. If instead ε̄ is not a constant, then typeof(ε̄) ≤ ¬b.

299

a Additional proofs

If t = t1 〈〉× t2 and ε̄ = (ε̄1, ε̄2), we apply the induction hypothesis to (ε̄1, t1)
and (ε̄2, t2). If typeof(ε̄1) ≤ t1 and typeof(ε̄2) ≤ t2, then typeof((ε̄1, ε̄2)) ≤ t1 〈〉× t2.
Otherwise, typeof((ε̄1, ε̄2)) must be subtype of one of the following types:
¬t1 × t2, t1 × ¬t2, or ¬t1 × ¬t2. We also have typeof((ε̄1, ε̄2)) ≤ ¬⊥ × ¬⊥. The
intersection of any of the three types above with ¬⊥ × ¬⊥ is a subtype of
¬(t1 〈〉× t2). Finally, if ε̄ is not a pair, then typeof(ε̄) ≤ ¬(t1 〈〉× t2).

If t = 0→ 1, then if ε̄ = µf : �. λx . e , we have typeof(ε̄) ≤ t; otherwise, we
have typeof(ε̄) ≤ ¬t. �

13.26 lemma: Let v be a value that is well typed in Γ (i.e., Γ ` v : t ′ holds for
some t ′). Then, for every t , we have either Γ ` v : t or Γ ` v : ¬t . �

Proof: A value v is either a constant c or an abstraction µf : �. λx . e . If v = c ,
then Γ ` v : bc holds. By subsumption, we have Γ ` v : t whenever bc ≤ t . By
de�nition, bc ≤ t is equivalent to c ∈ nto. Since c ∈ Domain, for every type t ,
either c ∈ nto or c ∈ n¬to = Domain \ nto must hold. Hence, either Γ ` v : t
or Γ ` v : ¬t is derivable.

Consider now v = µf : �. λx . e . Note that, since v is well typed, we know
by inversion of the typing rules that Γ ` v : � holds. We prove the result by
induction on t .

If t = ⊥, t = b, t = t1 × t2, or t = 0, we have � ≤ ¬t and hence Γ ` v : ¬t .
If t = t1 → t2, either � ≤ t1 → t2 holds or not. If it holds, we can derive

Γ ` v : t1 → t2 by subsumption. If it does not hold we have (by de�nition of
subtyping) �∧¬(t1 → t2) ; 0. We can therefore derive Γ ` v : �∧¬(t1 → t2)

and, by subsumption, Γ ` v : ¬(t1 → t2).
If t = t1 ∨ t2, we apply the induction hypothesis to t1 and t2. If either

Γ ` v : t1 or Γ ` v : t2 hold, Γ ` v : t1 ∨ t2 holds by subsumption. Otherwise,
we must have both Γ ` v : ¬t1 and Γ ` v : ¬t2. Then, by Lemma 13.21, we
have Γ ` v : (¬t1) ∧ (¬t2) and, by subsumption, Γ ` v : ¬(t1 ∨ t2) since
(¬t1) ∧ (¬t2) ' ¬(t1 ∨ t2).

If t = ¬t ′, by the induction hypothesis we have either Γ ` v : t ′ or Γ `
v : ¬t ′. In the former case, we have Γ ` v : ¬t since t ′ ' ¬¬t ′ = ¬t ; in the
latter, we have Γ ` v : t . �

13.27 corollary: If Γ ` v :
∨

i ∈I ti , then, for some i0 ∈ I , Γ ` v : ti0 . �

Proof: By induction on |I |. If |I | = 1, the result is straightforward.
If |I | = 2, that is, if Γ ` v : t1 ∨ t2, either Γ ` v : t1 holds or not. In the

former case, the result holds. In the latter, by Lemma 13.26, we must have
Γ ` v : ¬t1. Hence, by Lemma 13.21, we have Γ ` v : (t1 ∨ t2) ∧ ¬t1, and
(t1 ∨ t2) ∧ ¬t1 ' (t1 ∧ ¬t1) ∨ (t2 ∧ ¬t1) ≤ t2, so we can derive Γ ` v : t2 by
subsumption.

300

Non-strict languages

If |I | = n > 2, we have Γ ` v : (t1 ∨ · · · ∨ tn−1) ∨ tn . We apply the induction
hypothesis to conclude. �

13.28 lemma: Let � =
∧

i ∈I t
′
i → ti (with |I | > 0) be a type. There exists a type

�′ =
∧

k ∈K t ′k → tk (with |K | > 0) such that:

• � ' �′;

• ∀k1 , k2 ∈ K . tk1 ∧ tk2 ' 0;

• if Γ ` (µf : �. λx . e) : �, then ∀k ∈ K . Γ , f : �, x : t ′k ` e : tk . �

Proof: Given �, we take

�
′ =

∧
�(I ′⊆I sI ′ → uI ′

where sI ′
def
=

∧
i ∈I ′ t

′
i ∧

∧
i ∈I\I ′ ¬t

′
i and uI ′

def
=

∧
i ∈I ′ ti

(de�ning
∧

i ∈� ¬t
′
i to be 1). By Lemma 13.9, we have � ' �′. To prove that

the domains are pairwise disjoint, let I ′1 and I ′2 be two non-empty, arbitrary
subsets of I ; if I ′1 , I ′2, then there exists an i0 ∈ I which is in one set and not
in the other. Assume, without loss of generality, i0 ∈ I ′1 and i0 < I

′
2. Then:

sI ′1 ∧ sI
′
2

=
(∧

i ∈I ′1
t ′i ∧

∧
i ∈I\I ′1

¬t ′i
)
∧

(∧
i ∈I ′2

t ′i ∧
∧

i ∈I\I ′2
¬t ′i

)
'

(
t ′i0 ∧

∧
i ∈I ′1\{i0 }

t ′i ∧
∧

i ∈I\I ′1
¬t ′i

)
∧

(
¬t ′i0 ∧

∧
i ∈I ′2

t ′i ∧
∧

i ∈I\{i0 }\I ′2
¬t ′i

)
' t ′i0 ∧ ¬t

′
i0 ∧

(∧
i ∈I ′1\{i0 }

t ′i ∧
∧

i ∈I\I ′1
¬t ′i

)
∧

(∧
i ∈I ′2

t ′i ∧
∧

i ∈I\{i0 }\I ′2
¬t ′i

)
' 0 .

To prove the third condition, note that Γ ` (µf : �. λx . e) : � implies that,
for every i ∈ I , we can derive Γ , f : �, x : t ′i ` e : ti . Now consider an arbitrary
I ′ such that � (I ′ ⊆ I . We must show Γ , f : �, x : sI ′ ` e : uI ′ . Note that
sI ′ ≤ t ′i for every i ∈ I ′. Hence, by Lemma 13.20, we have (for all i ∈ I ′)
Γ , f : �, x : sI ′ ` e : ti . By Lemma 13.21, we have Γ , f : �, x : sI ′ ` e : uI ′ since
uI ′ =

∧
i ∈I ′ ti . �

13.29 theorem (Progress): Let Γ be a well-formed type environment. Let e be
an expression that is well typed in Γ (that is, Γ ` e : t holds for some t). Then
e is an answer, or e is of the form Epxxqy, or ∃e ′. e { e ′. �

Proof: By induction on the derivation of Γ ` e : t and by case analysis on
the last typing rule applied.

Case: [Tx] In this case e = x , and therefore e has the form Epxxqy.

Case: [Tc], [Tλ], [Tpair] In all cases, e is an answer.

301

a Additional proofs

Case: [Tapp]
We have

e = e1 e2 Γ ` e : 〈t〉 Γ ` e1 : 〈t ′→ t〉 Γ ` e2 : t ′ .

We apply the induction hypothesis to e1. If e1 reduces, then e reduces by
the rule [R ctx]. If e1 is of the form Epxxqy, then e is of the form E ′pxxqy with
E ′ = E e2.
If e1 is an answer, then by Lemma 13.23 it is either of the form µf : �. λx . e ′
or of the form let x = e ′′ in a. Therefore, e reduces by [Rapp] or [R let

app].

Case: [Tproj]
We have

e = πi e
′ Γ ` e : 〈ti 〉 Γ ` e ′ : 〈t1 × t2〉 .

We apply the induction hypothesis to e ′. If e ′ reduces, then e reduces by
the rule [R ctx]. If it is of the form Epxxqy, then e is of the form E ′pxxqy with
E ′ = πi E.
If e ′ is an answer, then by Lemma 13.23 it is either of the form (e1, e2) or
of the form let x = e ′′ in a. Then e reduces by [Rproj] or [R let

proj].

Case: [Tcase]
We have

e = ((x = ε) ∈ t ? e1 : e2) Γ ` e : 〈t〉 Γ ` ε : 〈t ′〉
t ′ ≤ ¬t or Γ , x : (t ′ ∧ t) ` e1 : t t ′ ≤ t or Γ , x : (t ′ \ t) ` e2 : t .

We apply the induction hypothesis to ε . If it reduces, then e reduces by
[R ctx]. If it is of the form Epxyqy, then we must have ε = y and E = []

because all other productions in the grammar for E do not appear in the
grammar for ε . Then, we have ε = F pxyqy (with F = []), and hence e is of
the form Epxyqy with E = ((x = []) ∈ t ? e1 : e2).
If ε is an answer, it is either generated by the restricted grammar ε̄ F
c | µf : �. λx . e | (ε̄, ε̄) (i.e., it does not contain variables except under
abstractions) or not. In the latter case, ε is of the form F pxyqy for some F

andy, and hence e is of the form Epxyqy. In the former case, by Lemma 13.25,
either typeof(ε) ≤ t or typeof(ε) ≤ ¬t. Then e reduces by [R 1

case] or [R 2
case].

Case: [Tlet]
We have e = (let x = e1 in e2) and

Γ ` e : t Γ ` e1 :
∨

i ∈I ti ∀i ∈ I . Γ , x : ti ` e2 : t .

Since Γ is well formed, by Lemma 13.11, we know that
∨

i ∈I ti is not empty.
As a consequence, at least one of the ti is non-empty, and hence at least
one of the environments (Γ , x : ti) is well formed, and we can apply the
induction hypothesis to it.
We derive that e2 is an answer, or it has the form Epxyqy, or it reduces. If e2
is an answer, then e is an answer as well. If e2 reduces, then e reduces by

302

Non-strict languages

[R ctx]. If e2 is of the form Epxyqy for some context E and variable y, then
either x = y or not. In the latter case, e is of the form E ′pxyqy too.
If x = y, we apply the induction hypothesis to e1. If e1 is of the form
E ′′pxzqy for some context E ′′ and variable z, then e is of such form as well.
If e1 reduces, then e reduces by [R ctx]. If e1 is an answer, then e reduces
by [Rv

let], [R let
pair], or [R let

let].

Case: [T≤]
We apply the induction hypothesis to the premise and conclude. �

13.30 theorem (Subject reduction): Let Γ be a well-formed type environment.
If Γ ` e : t and e { e ′, then Γ ` e ′ : t . �

Proof: By induction on the derivation of Γ ` e : t and by case analysis on
the last typing rule applied.

Case: [Tx], [Tc], [Tλ], [Tpair]
These cases do not occur, because e { e ′ cannot hold when e is a variable,
a constant, an abstraction, or a pair.

Case: [Tapp]
We have

e = e1 e2 Γ ` e : 〈t〉 Γ ` e1 : 〈t ′→ t〉 Γ ` e2 : t ′ .

If e1e2 { e ′ occurs by the rule [R ctx], then e ′ = e ′1e2 and, by the induction
hypothesis, Γ ` e ′1 : 〈t ′→ t〉: we apply [Tapp] again to type e ′.
If the reduction occurs by [Rapp], we have

e = (µf : �. λx . e3) e2 e ′ =
(
let f = (µf : �. λx . e3) in let x = e2 in e3

)
and we must show Γ ` e ′ : 〈t〉. Let � =

∧
i ∈I T′i 〈〉→ Ti . The typing

derivation for e is

[Tapp]
[T≤]

[Tλ]
∀i ∈ I . Γ , f : �, x : 〈T′i 〉 ` e3 : 〈Ti 〉

Γ ` (µf : �. λx . e3) : � ∧
∧

j ∈J ¬(t
′
j → tj)

Γ ` (µf : �. λx . e3) : 〈t ′→ t〉 Γ ` e2 : t ′

Γ ` (µf : �. λx . e3) e2 : 〈t〉

The side conditions of [Tλ] and [T≤] ensure

� ∧
∧

j ∈J ¬(t
′
j → tj) ; 0 � ∧

∧
j ∈J ¬(t

′
j → tj) ≤ 〈t

′→ t〉

from which we have (by de�nition of subtyping) � ∧
∧

j ∈J ¬(t
′
j → tj) ≤

t ′→ t and, by Corollary 13.7 , � ≤ t ′→ t .
By Lemma 13.28, we �nd a type �′ =

∧
k ∈K t ′k → tk such that � ' �′, that

t ′k1
∧ t ′k2

' 0 when k1 , k2, and that, for all k ∈ K , Γ , f : �, x : t ′k ` e3 : tk .
Since � ≤ t ′ → t , we also have �′ ≤ t ′ → t . By Corollary 13.6, we have

303

a Additional proofs

t ′ ≤
∨

k ∈K t ′k . Let K̄ = { k ∈ K | t ′ ∧ t ′k ; 0 }. We have t ′ ≤
∨

k ∈K̄ t ′k . By
Corollary 13.6, we also have

∨
k ∈K̄ tk ≤ t and therefore

∨
k ∈K̄ tk ≤ 〈t〉.

We build the typing derivation for e ′ as follows:

Γ , f : � ` e2 : t ′

Γ , f : � ` e2 :
∨

k ∈K̄ t ′k ∀k ∈ K̄ .

Γ , f : �, x : t ′k ` e3 : tk
Γ , f : �, x : t ′k ` e3 :

∨
k ∈K̄ tk

Γ , f : �, x : t ′k ` e3 : 〈t〉
Γ , f : � ` (let x = e2 in e3) : 〈t〉

Γ ` (µf : �. λx . e3) : � Γ , f : � ` (let x = e2 in e3) : 〈t〉
Γ `

(
let f = (µf : �. λx . e3) in let x = e2 in e3

)
: 〈t〉

If the reduction occurs by the rule [R let
app], we have

e = (let x = e ′1 in a) e2 e ′ = (let x = e ′1 in a e2)

and we must show Γ ` e ′ : 〈t〉. The typing derivation for e (collapsing
the use of [T≤]) is

Γ ` e ′1 :
∨

i ∈I ti ∀i ∈ I . Γ , x : ti ` a : t ′′

Γ ` (let x = e ′1 in a) : 〈t ′→ t〉
t ′′ ≤ 〈t ′→ t〉

Γ ` e2 : t ′

Γ ` (let x = e ′1 in a) e2 : 〈t〉

from which we build the derivation of Γ ` (let x = e ′1 in a e2) : 〈t〉 by
deriving, for every i ∈ I ,

Γ , x : ti ` a : t ′′

Γ , x : ti ` a : 〈t ′→ t〉
t ′′ ≤ 〈t ′→ t〉

Γ ` e2 : t ′

Γ , x : ti ` a e2 : 〈t〉

Case: [Tproj]
We have

e = πi e
′′ Γ ` e : 〈ti 〉 Γ ` e ′′ : 〈t1 × t2〉 .

If e reduces by rule [R ctx], we obtain the result from the induction hy-
pothesis. Otherwise, the reduction must occur by rule [Rproj] or rule
[R let

proj].
If [Rproj] applies, we have e = πi (e1, e2) and e ′ = ei . We must show
Γ ` ei : 〈ti 〉. Note that we have Γ ` (e1, e2) : 〈t1 × t2〉: by inversion of the
typing derivation, we have Γ ` e1 : t ′1, Γ ` e2 : t ′2, and t ′1× t ′2 ≤ 〈t1× t2〉. By
Lemma 13.11, we know t ′1 ; 0 and t ′2 ; 0; hence, by de�nition of subtyping
we have t ′1 ≤ t1 and t ′2 ≤ t2. Therefore we can derive Γ ` ei : 〈ti 〉 by [T≤].

304

Non-strict languages

If [R let
proj] applies, we have e = πi (let x = e ′′′ in a) and e ′ = (let x = e ′′′ in

πi a). The typing derivation for e (collapsing the use of [T≤]) is

Γ ` e ′′′ :
∨

i ∈I ti ∀i ∈ I . Γ , x : ti ` a : t
Γ ` (let x = e ′′′ in a) : t

Γ ` πi (let x = e ′′′ in a) : 〈ti 〉
t ≤ 〈t1 × t2〉

from which we build the derivation for Γ ` e ′ : 〈ti 〉 as follows:

Γ ` e ′′′ :
∨

i ∈I ti ∀i ∈ I .

Γ , x : ti ` a : t
Γ , x : ti ` πi a : 〈ti 〉

t ≤ 〈t1 × t2〉

Γ ` (let x = e ′′′ in πi a) : 〈ti 〉

Case: [Tcase]
We have

e = ((x = ε) ∈ t ? e1 : e2) Γ ` e : 〈t〉 Γ ` ε : 〈t ′〉
t ′ ≤ ¬t or Γ , x : (t ′ ∧ t) ` e1 : t t ′ ≤ t or Γ , x : (t ′ \ t) ` e2 : t .

If e reduces by rule [R ctx], we obtain the result from the induction hypo-
thesis. Otherwise, it reduces by either [R 1

case] or [R 2
case].

If [R 1
case] applies, we have e ′ = (letx = ε in e1) and typeof(ε) ≤ t. Note that

ε cannot be a variable: if it were, we would have typeof(ε) = 1, but this
would require t ' 1, which is forbidden by the syntax of typecases. Since ε
is not a variable, we have typeof(ε) ≤ ¬⊥. Hence, we also have typeof(ε) ≤
t ∧ ¬⊥. By Lemma 13.24, we can derive Γ ` ε : typeof(ε); then we can
derive Γ ` ε : t ∧ ¬⊥ by [T≤] and Γ ` ε : 〈t ′〉 ∧ t ∧ ¬⊥ by Lemma 13.21;
again by [T≤], we derive Γ ` ε : t ′ ∧ t because 〈t ′〉 ∧ t ∧ ¬⊥ ≤ t ′ ∧ t. If
Γ , x : (t ′ ∧ t) ` e1 : t holds, we can derive Γ ` e ′ : 〈t〉 by applying [Tlet]
and [T≤]. If Γ , x : (t ′ ∧ t) ` e1 : t does not hold, by hypothesis we would
have t ′ ≤ ¬t: we show that this cannot occur. If we had t ′ ≤ ¬t, we could
derive Γ ` ε : ¬t ∧ t and Γ ` ε : 0 by subsumption. This is impossible by
Lemma 13.11.
If [R 2

case] applies, we proceed similarly. We have e ′ = (let x = ε in e2) and
typeof(ε) ≤ ¬t. We have typeof(ε) ≤ ¬⊥ because ε cannot be a variable
(since in that case we would have t ' 0, which is forbidden by the syntax).
We can derive Γ ` ε : t ′ ∧¬t, and, if Γ , x : (t ′ \ t) ` e2 : t holds, Γ ` e ′ : 〈t〉.
As before, we can show that Γ , x : (t ′ \ t) ` e2 : t must always hold by
showing that the alternative, t ′ ≤ t, cannot occur: if we had t ′ ≤ t, we
would have Γ ` ε : t ∧ ¬t, which is impossible.

Case: [Tlet]
We have e = (let x = e1 in e2) and

Γ ` e : t Γ ` e1 :
∨

i ∈I ti ∀i ∈ I . Γ , x : ti ` e2 : t .

If e reduces by rule [R ctx], we obtain the result from the induction hypo-
thesis. Otherwise, e reduces by [Rv

let], [R let
pair], or [R let

let].

305

a Additional proofs

If [Rv
let] applies, we have e = (let x = v in Epxxqy) and e ′ = (Epxxqy)[v/x].

We must show Γ ` e ′ : t . Since Γ ` v :
∨

i ∈I ti , by Corollary 13.27 we
have Γ ` v : ti0 for some i0 ∈ I . We also have Γ , x : ti0 ` Epxxqy : t . By
Lemma 13.22, we derive Γ ` (Epxxqy)[v/x] : t .
If [R let

pair] applies, we have

e =
(
let x = (e ′1, e

′′
1) in Epxxqy

)
e ′ =

(
let x ′ = e ′1 in let x

′′ = e ′′1 in (Epxxqy)[(x
′, x ′′)/x]

)
and must show Γ ` e ′ : t . Since Γ ` (e ′1, e ′′1) :

∨
i ∈I ti , by Lemma 13.19 we

can �nd two types
∨

j ∈J tj and
∨

k ∈K tk such that

Γ ` e ′1 :
∨

j ∈J tj Γ ` e ′′1 :
∨

k ∈K tk

∀j ∈ J . ∀k ∈ K . ∃i ∈ I . tj × tk ≤ ti .

We show Γ ` e ′ : t by showing

∀j ∈ J . ∀k ∈ K . Γ , x ′ : tj , x ′′ : tk ` (Epxxqy)[(x ′, x ′′)/x] : t

which can be derived by Lemma 13.22 from

∀j ∈ J . ∀k ∈ K .

{
Γ , x ′ : tj , x ′′ : tk ` (x ′, x ′′) : tj × tk
Γ , x ′ : tj , x ′′ : tk , x : tj × tk ` Epxxqy : t

For every j and k , the second derivation is obtained from

∀i ∈ I . Γ , x : ti ` Epxxqy : t

by weakening (Lemma 13.20), because tj × tk ≤ ti for some i ∈ I .
If [R let

let] applies, we have

e =
(
let x = (let y = e ′′ in a) in Epxxqy

)
e ′ =

(
let y = e ′′ in let x = a in Epxxqy

)
.

The typing derivation for e (collapsing the use of [T≤]) is

Γ ` e ′′ :
∨

j ∈J tj ∀j ∈ J . Γ ,y : tj ` a : t ′

Γ ` (let y = e ′′ in a) :
∨

i ∈I ti
t ′ ≤

∨
i ∈I ti

Γ ` (let y = e ′′ in a) :
∨

i ∈I ti ∀i ∈ I . Γ , x : ti ` Epxxqy : t
Γ `

(
let x = (let y = e ′′ in a) in Epxxqy

)
: t

We show Γ ` e ′ : t as follows:

∀j ∈ J .
Γ ,y : tj ` a :

∨
i ∈I ti ∀i ∈ I . Γ ,y : tj , x : ti ` Epxxqy : t

Γ ,y : tj ` (let x = a in Epxxqy) : t

Γ ` e ′′ :
∨

j ∈J tj ∀j ∈ J . Γ ,y : tj ` (let x = a in Epxxqy) : t
Γ `

(
let y = e ′′ in let x = a in Epxxqy

)
: t

The premise for the typing of Epxxqy is derived by weakening (Lemma 13.20):
we can assume y < dom(Γ) by α-renaming.

306

Non-strict languages

Case: [T≤]
We have Γ ` e : t ′ for some t ′ ≤ t . By the induction hypothesis, we derive
Γ ` e ′ : t ′, and we apply [T≤] to conclude. �

13.31 lemma: If Γ ` Epxxqy : t , then x ∈ dom(Γ). �

Proof: By induction on the derivation of Γ ` Epxxqy : t and by case analysis
on the last rule applied.

Case: [Tx] We have Epxxqy = x and x ∈ dom(Γ).

Case: [Tc], [Tλ], [Tpair]
impossible, since Epxxqy cannot be a constant, a function, or a pair.

Case: [Tapp]
We have Epxxqy = e1 e2, therefore E = E ′ e2 and e1 = E ′pxxqy; we conclude by
applying the induction hypothesis to the derivation of Γ ` e1 : 〈t ′→ t〉.

Case: [Tproj]
We have Epxxqy = πi e , therefore E = πi E

′ and e = E ′pxxqy; we conclude by
applying the induction hypothesis to the derivation of Γ ` e : 〈t1 × t2〉.

Case: [Tcase]
We have Epxxqy =

(
(y = ε) ∈ t ? e1 : e2

)
, therefore E =

(
(y = F) ∈ t ? e1 :

e2
)

and ε = F pxxqy (hence, x , y); we also have that ε is well typed in Γ , so
we can conclude by showing, by induction on F , that Γ ` F pxxqy : t implies
x ∈ dom(Γ).

Case: [Tlet]
Since Epxxqy =

(
let y = e1 in e2

)
we have either E =

(
let y = e1 in E ′

)
and

e2 = E ′pxxqy or E =
(
let y = E ′ in E ′′pxyqy

)
and e1 = E ′pxxqy; in both cases we

have a derivation for E ′pxxqy and, by the induction hypothesis, we derive
x ∈ dom(Γ) (in the �rst case, the derivation is in an environment (Γ ,y : ti),
but we have x , y).

Case: [T≤] We conclude directly by IH. �

Discussion

14.2 lemma: Let n · om : Type→ P(Domainm) be a model. Let P and N be �nite
sets of types of the form t1 → t2, with P , �. Then:

∃t ′1 → t ′2 ∈ N . nt ′1 \
∨

t1→t2∈P t1om = � and(
∀P ′ (P . nt ′1 \

∨
t1→t2∈P ′ t1om = � or n∧t1→t2∈P\P ′ t2 \ t

′
2om = �

)
=⇒

⋂
t1→t2∈Pnt1 → t2om ⊆ ⋃

t1→t2∈N nt1 → t2om
�

307

a Additional proofs

Proof: We de�ne

Tot(X)
def
= { R ∈ P(Domainm × Domainm) | dom(R) ⊇ X }

X ⇀ Y
def
= { R ∈ P(Domainm × Domainm) | ∀(d,d ′) ∈ R. d ∈ X =⇒ d ′ ∈ }

X � Y
def
= { R ∈ P(Domainm × Domainm) |

dom(R) ⊇ X and ∀(d,d ′) ∈ R. d ∈ X =⇒ d ′ ∈ Y }

and therefore we have X � Y = Tot(X) ∩ (X ⇀ Y). We also have X ⇀ Y =

P(X × Y
D1

D2

), using the notation A
B for B \A and writing D1 for Domainm

and D2 for Domainm × Domainm.
To show

⋂
t1→t2∈Pnt1 → t2om ⊆ ⋃

t1→t2∈N nt1 → t2om, by the de�nition
of model, it su�ces to show

⋂
t1→t2∈Pnt1om � nt2om ⊆ ⋃

t1→t2∈N nt1om �
nt2om. We will actually show

⋂
t1→t2∈Pnt1om � nt2om ⊆ nt ′1om � nt ′2om,

which is enough to conclude.
To show it, we �rst show

⋂
t1→t2∈Pnt1om ⇀ nt2om ⊆ nt ′1om ⇀ nt ′2om,

without the requirement of totality.
The premise

nt ′1 \
∨

t1→t2∈P t1om = �
and

(
∀P ′ (P . nt ′1 \

∨
t1→t2∈P ′ t1om = � or n∧t1→t2∈P\P ′ t2 \ t

′
2om = �

)
can be rewritten as

nt ′1om ⊆ n∨t1→t2∈P t1om
and

(
∀P ′ (P . nt ′1om ⊆ n∨t1→t2∈P ′ t1om or n∧t1→t2∈P\P ′ t2om ⊆ nt ′2om

)
and implies

nt ′1om ⊆
⋃

t1→t2∈Pnt1om
and

(
∀P ′ (P . nt ′1om ⊆

⋃
t1→t2∈P ′nt1om or nt ′2om

D1
⊆

⋃
t1→t2∈P\P ′ nt2om

D1)
and therefore implies

∀P ′ ⊆ P . nt ′1om ⊆
⋃

t1→t2∈P ′nt1om or nt ′2om
D1
⊆

⋃
t1→t2∈P\P ′ nt2om

D1

as well. We can apply Lemma 6.4 of Frisch, Castagna, and Benzaken (2008)
to obtain

nt ′1om × nt ′2om
D1
⊆

⋃
t1→t2∈Pnt1om × nt2om

D1

whence ⋃
t1→t2∈Pnt1om × nt2om

D1
D2

⊆ nt ′1om × nt ′2om
D1

D2

and ⋂
t1→t2∈P nt1om × nt2om

D1
D2

⊆ nt ′1om × nt ′2om
D1

D2

and �nally⋂
t1→t2∈P P

(nt1om × nt2omD1
D2)
⊆ P

(nt ′1om × nt ′2omD1
D2)

308

Non-strict languages

where note that the powerset construction obtained is equivalent to the
de�nition of⇀.

Now we have ⋂
t1→t2∈Pnt1om ⇀ nt2om ⊆ nt ′1om ⇀ nt ′2om

and we want ⋂
t1→t2∈Pnt1om � nt2om ⊆ nt ′1om � nt ′2om ,

that is,⋂
t1→t2∈P

(
Tot(nt1om) ∩ (nt1om ⇀ nt2om)

)
⊆ Tot(nt ′1om) ∩ (nt ′1om ⇀ nt ′2om) .

The latter is further equivalent to

Tot(n∨t1→t2∈P t1om) ∩
⋂

t1→t2∈P (nt1om ⇀ nt2om)
⊆ Tot(nt ′1om) ∩ (nt ′1om ⇀ nt ′2om) .

Note that nt ′1 \
∨

t1→t2∈P t1om = � implies nt ′1om ⊆ n∨t1→t2∈P t1om. Therefore,
we have Tot(nt ′1om) ⊇ Tot(n∨t1→t2∈P t1om). This allows us to conclude that
the containment above holds. �

14.3 proposition: Let n · om : Type→ P(Domainm) be a model. Let t1 and t2 be
two �nite (that is, non-recursive) types. If nt1o ⊆ nt2o, then nt1om ⊆ nt2om. �

Proof: First, note that nt1o ⊆ nt2o ⇐⇒ nt1 \ t2o = � and that nt1om ⊆
nt2om ⇐⇒ nt1 \ t2om = �. We therefore show this equivalent proposition:
for all �nite t , if nto = �, then ntom = �.

We de�ne the function h(·) on �nite types by structural induction as
follows:

h(⊥) = h(b) = h(0) = 0 h(t1 × t2) = h(t1 → t2) = max(h(t1),h(t2)) + 1
h(t1 ∨ t2) = max(h(t1),h(t2)) h(¬t) = h(t)

That is, h(t) is the maximum number of × and→ constructors found on paths
from the root of t to the leaves. We use h(·) as the measure for induction.

Now, let us consider an arbitrary �nite type t such that nto = �. We want
to show ntom = �.

Let dnf(t) = { (Pi ,Ni) | i ∈ I }. By Proposition 13.14, we have nto = ndnf(t)o.
We can extend the de�nition of n · om to disjunctive normal forms as done
for n · o; we obtain that ntom = ndnf(t)om.

Since nto = �, we have

∀i ∈ I .
⋂

t ∈Pi nto \
⋃

t ∈Ni nto = � .
We want to show

∀i ∈ I .
⋂

t ∈Pi ntom \
⋃

t ∈Ni ntom = � .
which would conclude our proof.

309

a Additional proofs

We partition atoms into four kinds, according to their form: ⊥, b, t1 × t2, or
t1 → t2. If t1 and t2 are two atoms of di�erent kind, then nt1om ∩ nt2om = �
(the same holds for n · o).

Consider an arbitrary i ∈ I . Either Pi is empty or it contains at least one
atom. First we show that if Pi contains atoms of at least two di�erent kinds,
then

⋂
t ∈Pi ntom \

⋃
t ∈Ni ntom is empty. This holds because the intersection

is a subset of nt1om ∩ nt2om, where t1 and t2 are two atoms of di�erent kind
in Pi , and we have remarked that atoms of di�erent kinds have disjoint
interpretations.

There remain two cases to consider: Pi = � or Pi non-empty and composed
of atoms of a single kind. We consider the case Pi = � �rst. Note that in that
case ⋂

t ∈Pi nto \
⋃

t ∈Ni nto
= Domain \

⋃
t ∈Ni nto

= ({⊥} ∪ Const ∪ n1 × 1o ∪ n0→ 1o) \⋃t ∈Ni nto
because the domain Domain can be decomposed as a union of four sets cor-
responding to the four kinds of atoms. Since the intersection is empty, we
have

{⊥} \
⋃

t ∈Ni nto = � Const \
⋃

t ∈Ni nto = �
n1 × 1o \⋃t ∈Ni nto = � n0→ 1o \⋃t ∈Ni nto = �

Setting aside the intersection with Const for a moment, observe that the
others are equivalent to ⋂

t ∈{⊥}nto \⋃t ∈Ni nto = �⋂
t ∈{1×1}nto \⋃t ∈Ni nto = �⋂
t ∈{0→1}nto \⋃t ∈Ni nto = �

so they can be treated together with the case of non-empty Pi .
As for the intersection with Const, if Const \

⋃
t ∈Ni nto = �, then Const ⊆⋃

b ∈Ni �(b) (we can ignore atoms of di�erent kind in Ni). But then Const ⊆⋃
b ∈Ni nbom, and therefore Const ⊆

⋃
t ∈Ni ntom, which shows that Const \⋃

t ∈Ni ntom = �.
Now, assuming

{⊥} \
⋃

t ∈Ni ntom = �
Const \

⋃
t ∈Ni ntom = �

n1 × 1om \⋃t ∈Ni ntom = �
n0→ 1om \⋃t ∈Ni ntom = �

we have

({⊥} ∪ Const ∪ n1 × 1om ∪ n0→ 1om) \⋃t ∈Ni ntom = �

310

Non-strict languages

which is
Domainm \

⋃
t ∈Ni ntom = � .

We now consider the remaining case. That is, we assume⋂
t ∈Pi nto \

⋃
t ∈Ni nto = �

with Pi non-empty and formed of atoms of a single kind, and we show⋂
t ∈Pi ntom \

⋃
t ∈Ni ntom = � .

Equivalently, we assume
⋂

t ∈Pi nto ⊆
⋃

t ∈Ni nto and we show
⋂

t ∈Pi ntom ⊆⋃
t ∈Ni ntom. In doing so, we can disregard the atoms in Ni that are not of the

same kind as those in Pi . Therefore, we consider that Ni only contains atoms
of that same kind.

If the atoms of Pi are of the kind of ⊥ (that is, if Pi = {⊥}) or if they
are base types, the result is immediate because the two interpretations are
de�ned identically on these kinds of atoms.

If the atoms of Pi are all products, then we have (by Lemmas 6.4 and 6.5 of
Frisch, Castagna, and Benzaken (2008)):⋂

t ∈Pi nto ⊆
⋃

t ∈Ni nto ⇐⇒
∀N ⊆ Ni . n∧t1×t2∈Pi t1 ∧

∧
t1×t2∈N ¬t1o = �

or n∧t1×t2∈Pi t2 ∧
∧

t1×t2∈Ni \N ¬t2o = �
(with the convention

∧
t1×t2∈� ¬ti = Domain). Since n · om also satis�es nt1 ×

t2om = nt1om × nt2om, we also have⋂
t ∈Pi ntom ⊆

⋃
t ∈Ni ntom ⇐⇒

∀N ⊆ Ni . n∧t1×t2∈Pi t1 ∧
∧

t1×t2∈N ¬t1om = �
or n∧t1×t2∈Pi t2 ∧

∧
t1×t2∈Ni \N ¬t2om = �

(with the convention
∧

t1×t2∈� ¬ti = Domainm). This allows us to conclude⋂
t ∈Pi ntom ⊆

⋃
t ∈Ni ntom, because we can apply the induction hypothesis to

all the types
∧

t1×t2∈Pi t1 ∧
∧

t1×t2∈N ¬t1 and
∧

t1×t2∈Pi t2 ∧
∧

t1×t2∈Ni \N ¬t2.
Indeed, note thath(·) on these types is always strictly less than max{h(t1×t2) |
t1 × t2 ∈ Pi ∪ Ni }, because the × constructor has been eliminated. Also,
h(t) ≥ max{h(t1 × t2) | t1 × t2 ∈ Pi ∪ Ni } because any atom t1 × t2 appeared
under t .

The last case to examine is that of Pi composed only of arrow types. In
that case, by Lemma 13.5, we have⋂

t1→t2∈Pi nt1 → t2o ⊆ ⋃
t1→t2∈Ni nt1 → t2o ⇐⇒

∃t ′1 → t ′2 ∈ Ni . nt ′1 \
∨

t1→t2∈Pi t1o = � and(
∀P (Pi . nt ′1 \

∨
t1→t2∈P t1o = � or n∧t1→t2∈Pi \P t2 \ t

′
2o = �

)

311

a Additional proofs

and, by Lemma 14.2,

∃t ′1 → t ′2 ∈ Ni . nt ′1 \
∨

t1→t2∈Pi t1om = � and(
∀P (Pi . nt ′1 \

∨
t1→t2∈P t1om = � or n∧t1→t2∈Pi \P t2 \ t

′
2om = �

)
=⇒

⋂
t1→t2∈Pi nt1 → t2om ⊆ ⋃

t1→t2∈Ni nt1 → t2om
and we can therefore conclude by applying the induction hypothesis (with
the same argument as before to show that h(·) decreases). �

312

b Semantics of the cast languages

We present here the de�nition of the operational semantics for the cast lan-
guages of Chapters 9 and 10. We give the de�nitions together with some
explanation and state the main results: for the proofs, we refer to the full
treatment in the paper (Castagna et al., 2019).

Note that we have changed some of the notation with respect to the cited
paper for uniformity with the rest of the thesis. Notably, materialization,
subtyping on static types, and subtyping on gradual types are denoted here by
v, ≤, and ≤?, respectively, while in the paper they are 4, ≤T , and ≤. We have
changed the names of the typing rules, but not those of the reduction rules.

b.1 Semantics of the cast language without subtyping

The cast language has a strict reduction semantics de�ned by the reduction
rules in Figure b.1. The semantics is de�ned in terms of values (ranged over
by V), evaluation contexts (ranged over by E), and ground types (ranged over
by ρ). The �rst two are de�ned as follows:

V F c | λτ→τx . E | (V ,V)

| V 〈τ1 → τ2 ⇒
p
τ ′1 → τ ′2〉 | V 〈τ1 × τ2 ⇒

p
τ ′1 × τ

′
2〉 | V 〈ρ ⇒

p
?〉

E F � | E E | E V | E [®t] | (E, E) | (E,V) | πi E | let x = E in E | E〈τ ⇒
p
τ 〉

As usual there are three value forms with casts (Siek, Thiemann, and Wadler,
2015).

The notion of ground type was introduced by Wadler and Findler (2009)
to compare types in casts, with the idea that incompatibility between ground
types is the source of all blame. We give a de�nition of ground types equivalent
to the one of Wadler and Findler (2009), but which uses a di�erent notation
that is more convenient when we extend the system to set-theoretic types.

b.1 definition (Grounding and ground types): For every type τ ∈ GType, we
de�ne the grounding of τ with respect to ?, written τ /?, as follows:

b/? = b α /? = α ?/? = ?
τ1 → τ2/? = ?→ ? τ1 × τ2/? = ? × ?

Types τ such that τ , ? and that satisfy τ /? = τ are called ground types and
are ranged over by ρ. �

The reduction rules of Figure b.1 closely follow the presentation of Siek,
Thiemann, and Wadler (2015). They are divided into two groups, the reductions
for the application of casts to a value and the reductions corresponding to

313

b Semantics of the cast languages

Cast reductions

[ExpandL] V 〈τ ⇒
p
?〉 ↪→ V 〈τ ⇒

p τ /?〉〈τ /?⇒
p
?〉 if τ /? , τ and τ , ?

[ExpandR] V 〈?⇒
p
τ 〉 ↪→ V 〈?⇒

p τ /?〉〈τ /?⇒
p
τ 〉 if τ /? , τ and τ , ?

[CastId] V 〈τ ⇒
p
τ 〉 ↪→ V

[Collapse] V 〈ρ ⇒
p
?〉〈?⇒

q
ρ〉 ↪→ V

[Blame] V 〈ρ ⇒
p
?〉〈?⇒

q
ρ ′〉 ↪→ blame q if ρ , ρ ′

Standard reductions

[CastApp] V 〈τ1 → τ2 ⇒
p
τ ′1 → τ ′2〉V

′ ↪→ V (V ′〈τ ′1 ⇒
p̄
τ1〉)〈τ2 ⇒

p
τ ′2〉

[App] (λτ1→τ2x . E)V ↪→ E[V /x]

[ProjCast] πi (V 〈τ1 × τ2 ⇒
p
τ ′1 × τ

′
2〉) ↪→ (πi V)〈τi ⇒

p
τ ′i 〉

[Proj] πi (V1,V2) ↪→ Vi
[TypeApp] (Λ ®α . E) [®t] ↪→ E[®t/ ®α]

[Let] let x = V in E ↪→ E[V /x]

[Context] E[E] ↪→ E[E ′] if E ↪→ E ′

[CtxBlame] E[E] ↪→ blame p if E ↪→ blame p

figure b.1 Reduction rules of the cast language without subtyping

the elimination of type constructors. For the former we use the technique
by Wadler and Findler (2009) which consists in checking whether a cast
is performed between two types with the same top-level constructor and
failing when this is not the case. This amounts to checking whether grounding
the two types (by the rules [Expand_]) yields the same ground type (rule
[Collapse]) or not (rule [Blame]). In regards to an implementation, the
[ExpandL] rule corresponds to tagging a value with its type constructor
(as done in Lisp implementations) and the [Collapse] rule corresponds to
untagging a value. Most of the rules of the standard reductions group are
taken from Siek, Thiemann, and Wadler (2015) too: we added the rules for type
abstractions and applications, for projections, and for let bindings (all absent
in the cited work). As usual, the function .̄ is involutory, that is, ¯̄p = p.

The soundness of the cast language is proved via progress and subject
reduction. We do not give a direct proof of these properties. They follow
from the corresponding properties of the cast language with set-theoretic
types of the next section (Lemmas b.3 and b.4) and the conservativity of the
extension (Theorem b.7). The same holds true for the property of blame safety
(Corollary b.6).

b.1.1 Adding subtyping

If we add subtyping to the declarative type system of the cast language as
described in Section 9.4, we should also modify the semantics by changing the
two rules that use type equality as follows.

[Collapse] V 〈ρ ⇒
p
?〉〈?⇒

q
ρ ′〉 ↪→ V if ρ ≤? ρ ′

[Blame] V 〈ρ ⇒
p
?〉〈?⇒

q
ρ ′〉 ↪→ blame q if ρ �? ρ ′

314

b.2 Semantics of the cast language with set-theoretic types

b.2 Semantics of the cast language with set-theoretic types

To add set-theoretic types to the cast language, the operational semantics must
be rede�ned insofar as it depends on the syntax of types.

The �rst de�nition we extend is that of grounding. The idea is the same as
in Appendix b.1: to compute an intermediate type between two types that are
in the materialization relation. However, in Appendix b.1 one of these two
types was always ? for non-trivial materializations (so that [Collapse] and
[Blame] could then eliminate it); but now, because of type connectives, both
endpoints may be di�erent from ?. For example, the cast 〈(Int→ Int)∧(Bool→
Bool) ⇒

p
(Int→ Int) ∧ ?〉 makes a transition between Bool→ Bool and ?, which

can be decomposed by �rst transitioning to the intermediate type ?→ ?, as
done in Appendix b.1. The intermediate type for this cast would therefore
be (Int → Int) ∧ (? → ?) and the endpoint (Int → Int) ∧ ?. The intuition
to generalize this idea is to apply the grounding operation of Appendix b.1
recursively under type connectives, as formalized in the following de�nition.

b.2 definition (Grounding and relative ground types): For all types τ , τ ′ ∈
GType such that τ ′ v τ , we de�ne the grounding of τ with respect to τ ′, noted
τ /τ ′, as follows:
(τ1 ∨ τ2)/(τ ′1 ∨ τ

′
2) = (

τ1/τ ′1) ∨ (
τ2/τ ′2)

¬τ /¬τ ′ = ¬(τ /τ ′)

(τ1 ∨ τ2)/? = (τ1/?) ∨ (τ2/?) ¬τ /? = ¬(τ /?)

(τ1 → τ2)/? = ?→ ? (τ1 × τ2)/? = ? × ?

b/? = b 0/? = 0

α /? = α τ /τ ′ = τ
′ otherwise

A type τ is ground with respect to τ ′ if and only if τ /τ ′ = τ . �

Note that τ ′ v τ is a precondition to computing τ /τ ′. Therefore to ease the
presentation any further reference to τ /τ ′ will implicitly imply that τ ′ v τ .

In Appendix b.1, ground types are types ρ such that ρ/? = ρ. They are
“skeletons” of types whose only information is the top-level constructor.
The values of the form V 〈ρ ⇒

p
?〉 record the essence of the loss of inform-

ation induced by materialization. We extend this de�nition to match the
new de�nition of grounding by saying that a type τ is ground with respect
to τ ′ if τ /τ ′ = τ . Then, the expressions of the form V 〈τ ⇒

p
τ ′〉 are values

whenever τ is ground with respect to τ ′. Intuitively, casts of this form lose
information about the top-level constructors of a type: an example is the cast
〈(Int→ Int) ∧ (?→ ?) ⇒

p
(Int→ Int) ∧ ?〉, where we lose information about the

?→ ? part, which becomes ?. Once again, this kind of cast records the essence
of this loss.

We have accounted for one kind of cast value, but we also need to update
the de�nition of cast values of the form V 〈τ1 → τ2 ⇒

p
τ ′1 → τ ′2〉 (and similarly

for pairs), because function types are not necessarily syntactic arrows any-
more (they can be unions and/or intersections thereof). This can be done by

315

b Semantics of the cast languages

considering the opposite case of the previous de�nition, that is, types such
that τ /τ ′ = τ ′. Intuitively, a cast 〈τ ⇒p τ ′〉 where τ /τ ′ = τ ′ does not lose or
gain information about the top-level constructors of a type: it only acts below
the top constructors. That is, both the origin and target of such a cast have
the same syntactic structure “above” constructors, the same “skeleton”. For
example, 〈(Int→ Int) ∧ (?→ ?) ⇒

p
(Int→ Int) ∧ (Bool→ Bool)〉 is such a cast.

Putting everything together, we obtain the following new de�nition of
values:

V F c | λτ→τx . E | (V ,V) | Λ ®α . E

| V 〈τ1 ⇒
p
τ2〉 where τ1 , τ2

and where τ1/τ2 = τ1 or τ1/τ2 = τ2 or τ2/τ1 = τ1

We say that a value is unboxed if it is not of the formV 〈τ1 ⇒
p
τ2〉. We next need

to de�ne a new operator “type” on values (except type abstractions) to resolve
particular casts:

type(c) = bc type(λτ1→τ2x . E) = τ1 → τ2

type((V1,V2)) = type(V1) × type(V2) type(V 〈τ1 ⇒
p
τ2〉) = τ2

The semantics is de�ned by the reduction rules in Figure b.2.
The rules [ExpandL] and [ExpandR] are the immediate counterparts of

the rules of the same name presented in Appendix b.1, adapted for the new
grounding operator. The other rules of this group use the information provided
by the grounding operator to reduce to types that can be easily compared.
For example, consider V 〈τ1 ⇒

p
τ2〉〈τ

′
1 ⇒

q
τ ′2〉. If τ1/τ2 = τ1, then τ1 contains all

the information about type constructors which the cast lost by going into τ2.
Likewise, if τ ′2/τ ′1 = τ

′
2 , then all the information about type constructors is

in τ ′2 , so the second cast adds constructor information. Therefore, to simplify
the expressions, it su�ces to compare τ1 and τ ′2 , which is what is done in
the rules [Collapse] and [Blame] (the set-theoretic counterparts of their
namesakes in Section 9.2.3). The remaining rules for cast reductions follow the
same idea, but handle cases that only arise because of set-theoretic types. For
example, we can give a constant a dynamic type by subtyping (e.g., Int ≤? Int∨?
implies 3 : Int∨?), and thus we can immediately cast the type of a constant to
a more precise type, as in the expression 3〈Int ∨ ?⇒p Int ∨ (?→ ?)〉. The rules
[UnboxSimpl] and [UnboxBlame] handle such cases by checking if the cast
can be removed. The intuition is that the dynamic part of such casts is useless
since it has been introduced by subtyping.

The rules for applications and projections also need to be updated because
function and product types can now be unions and intersections of arrows or
products. For applications, we de�ne a new operator, written ◦, which, given
a function cast and the type of the argument, computes an approximation of
the cast such that both its origin and target types are arrows, so that the usual
rule for cast applications as in Appendix b.1 can be applied. More formally,
the operation 〈τ ⇒p τ ′〉 ◦ τv computes a cast 〈τ1 → τ2 ⇒

p
τ ′1 → τ ′2〉 such that

τv ≤
? τ ′1 , τ ′2 = min{τ | τ ′ ≤? τv → τ }, τ ≤? τ1 → τ2, and such that the

316

b.2 Semantics of the cast language with set-theoretic types

Cast reductions

[ExpandL] V 〈τ1 ⇒
p
τ2〉 ↪→ V 〈τ1 ⇒

p τ1/τ2〉〈τ1/τ2 ⇒
p
τ2〉 if τ1/τ2 , τ1, τ1/τ2 , τ2

[ExpandR] V 〈τ1 ⇒
p
τ2〉 ↪→ V 〈τ1 ⇒

p τ2/τ1〉〈τ2/τ1 ⇒
p
τ2〉 if τ2/τ1 , τ1, τ2/τ1 , τ2

[CastId] V 〈τ ⇒
p
τ 〉 ↪→ V (∗)

[Collapse] V 〈τ1 ⇒
p
τ2〉〈τ

′
1 ⇒

q
τ ′2〉 ↪→ V if τ1 ≤

? τ ′2 , τ ′2/τ ′1 = τ
′
2

and τ1/τ2 = τ1 or τ2/τ1 = τ1
[Blame] V 〈τ1 ⇒

p
τ2〉〈τ

′
1 ⇒

q
τ ′2〉 ↪→ blame q if τ1 �

? τ ′2 , τ ′2/τ ′1 = τ
′
2

and τ1/τ2 = τ1 or τ2/τ1 = τ1
[UpSimpl] V 〈τ1 ⇒

p
τ2〉〈τ

′
1 ⇒

q
τ ′2〉 ↪→ V 〈τ1 ⇒

p
τ2〉 if τ2 ≤

? τ ′2 , τ1/τ2 = τ2, τ ′2/τ ′1 = τ
′
2

[UpBlame] V 〈τ1 ⇒
p
τ2〉〈τ

′
1 ⇒

q
τ ′2〉 ↪→ blame q if τ2 �

? τ ′2 , τ1/τ2 = τ2, τ ′2/τ ′1 = τ
′
2

[UnboxSimpl] V 〈τ1 ⇒
p
τ2〉 ↪→ V if type(V) ≤? τ2, τ2/τ1 = τ2, V is unboxed

[UnboxBlame] V 〈τ1 ⇒
p
τ2〉 ↪→ blame p if type(V) �? τ2, τ2/τ1 = τ2, V is unboxed

(∗) To ease the notation and to avoid redundant conditions, the rule [CastId] takes precedence
over the following ones. All other casts are therefore considered to be non-identity casts.

Standard reductions

[CastApp] V 〈τ ⇒
p
τ ′〉V ′ ↪→ (V V ′〈τ ′1 ⇒

p̄
τ1〉)〈τ2 ⇒

p
τ ′2〉 if τ ′/τ = τ or τ /τ ′ = τ ′

where 〈τ ⇒p τ ′〉 ◦ type(V ′) = 〈τ1 → τ2 ⇒
p
τ ′1 → τ ′2〉

[CastProj] πi (V 〈τ ⇒
p
τ ′〉) ↪→ (πi V)〈τi ⇒

p
τ ′i 〉 if τ ′/τ = τ or τ /τ ′ = τ ′

where 〈τi ⇒
p
τ ′i 〉 = πi (〈τ ⇒

p
τ ′〉)

[FailApp] V 〈τ ⇒
p
τ ′〉V ′ ↪→ blame p if 〈τ ⇒p τ ′〉 ◦ type(V ′) undef.

[FailProj] πi (V 〈τ ⇒
p
τ ′〉) ↪→ blame p if πi (〈τ ⇒

p
τ ′〉) undef.

[SimplApp] V 〈τ ⇒
p
τ ′〉V ′ ↪→ V V ′ if τ /τ ′ = τ

[SimplProj] πi (V 〈τ ⇒
p
τ ′〉) ↪→ πi V if τ /τ ′ = τ

[App] (λτ1→τ2x . E)V ↪→ E[V /x]

[Proj] πi (V1,V2) ↪→ Vi
[TypeApp] (Λ ®α . E) [®t] ↪→ E[®t/ ®α]

[Let] let x = V in E ↪→ E[V /x]

[Context] E[E] ↪→ E[E ′] if E ↪→ E ′

[CtxBlame] E[E] ↪→ blame p if E ↪→ blame p

figure b.2 Reduction rules of the cast language with set-theoretic types

317

b Semantics of the cast languages

materialization relation between the two parts of the cast is preserved. This
ensures that the resulting approximation is still well typed. The de�nition of
this operator is quite involved, so we present it in the next section. The most
important point of this de�nition is that it requires both types of the cast to be
syntactically identical above their constructors, which explains the presence
of the grounding condition in [CastApp]. Moreover, this operator can also be
unde�ned in some cases, such as if the origin type of the cast is not an arrow
type or if the second type is empty (e.g. 〈(? → ?) ∧ ¬(Int → Int) ⇒

p
(Int →

Int)∧¬(Int→ Int)〉). Such ill-formed casts are handled by [FailApp]. We apply
the same idea to projections and de�ne an operator, written πi, that computes
an approximation of the �rst or second component of a cast between two
product types. This yields the rules [CastProj] and [FailProj]. The two
remaining rules, [SimplApp] and [SimplProj], handle cases that only appear
due to the presence of set-theoretic types. For instance, it is now possible
to apply (or project) a value that has a dynamic type: V 〈(Int → Int) ∧ (? →
?) ⇒

p
(Int→ Int)∧?〉V ′. Here, by subtyping, the function has both type Int→ Int

and ?, so it can be applied but it is also dynamic. We show that such casts
are unnecessary and can be harmlessly removed; the rules [SimplApp] and
[SimplProj] do just that.

We next state the usual type soundness lemmas and theorems for this cast
language.

b.3 lemma (Progress): For every term E such that � ` E : ∀®α .τ , either there
exists a value V such that E = V , or there exists a term E ′ such that E ↪→ E ′,
or there exists a label p such that E ↪→ blame p. �

b.4 lemma (Subject reduction): For all terms E, E ′ and every context Γ , if Γ `
E : ∀®α .τ and E ↪→ E ′, then Γ ` E ′ : ∀®α .τ . �

b.5 theorem (Soundness): For every term E such that � ` E : ∀®α .τ , either
there exists a value V such that E ↪→∗ V , or there exists a label p such that
E ↪→∗ blame p, or E diverges. �

Another result for our language is blame safety (Tobin-Hochstadt and Fel-
leisen, 2006; Wadler and Findler, 2009), which guarantees that the statically
typed part of a program cannot be blamed. In our system, recall that the typing
rules that we presented in Section 9.2 enforce the correspondence between
the polarity of the label of a cast and the direction of materialization. That
is, we only have casts of the form 〈τ ⇒p τ ′〉 where τ ′ v τ (i.e., τ <:n τ ′) for a
negative p and τ v τ ′ (i.e., τ ′ <:n τ) for a positive p. Since all this information
is encoded in the typing rules, blame safety is a corollary of Lemma b.4, and
can be stated without resorting to positive and negative subtyping:

b.6 corollary (Blame safety): For every term E such that � ` E : ∀®α .τ , and
every blame label `, E 6↪→∗ blame ¯̀. �

318

b.2 Semantics of the cast language with set-theoretic types

Lastly, an important aspect of the cast language de�ned in this section is
that it is a conservative extension of the cast language de�ned in Section 9.4;
this justi�es the choice of the reduction rules. Denoting by Sub the system
de�ned in Section 9.4 and Appendix b.1 and by Set the system de�ned in this
section, there is a strong bisimulation relation between Set and Sub, as stated
by the following result.

b.7 theorem (Conservativity): For every term E such that � `Sub E : τ :

E ↪→Sub E ′ ⇐⇒ E ↪→Set E ′

E ↪→Sub blame p ⇐⇒ E ↪→Set blame p �

b.2.1 De�ning cast application and projection operators

We refer to a type frame of the form b, T1 × T2, or T1 → T2 as an atom. We
write Atombasic, Atomprod, and Atomfun for the set of type frames of the forms b,
T1 ×T2, and T1 → T2, respectively. In the following, we use the metavariable a
to range over the set Atombasic ∪ Atomprod ∪ Atomfun ∪ Var.

b.8 definition (Uniform normal form): A uniform (disjunctive) normal form
(UDNF) is a type frame T of the form

∨
i ∈I

(∧
a∈Pi

a ∧
∧
a∈Ni

¬a

)
such that, for all i ∈ I , one of the following three condition holds:

• Pi ∩ Atombasic , � and (Pi ∪ Ni) ∩ (Atomprod ∪ Atomfun) = �;

• Pi ∩ Atomprod , � and (Pi ∪ Ni) ∩ (Atombasic ∪ Atomfun) = �;

• Pi ∩ Atomfun , � and (Pi ∪ Ni) ∩ (Atombasic ∪ Atomprod) = �. �

We de�ne here a function UDNF(T) which, given a type frame T , produces a
uniform normal form that is equivalent to T .

We �rst de�ne two mutually recursive functions N and N ′ on type frames.
These are inductive de�nitions as no recursive uses of the functions occur
below type constructors.

N(a) = a

N(T1 ∨T2) = N(T1) ∨ N(T2)

N(¬T) = N ′(T)

N(0) = 0

319

b Semantics of the cast languages

N ′(a) = ¬a

N ′(T1 ∨T2) =
∨

i ∈I , j ∈J

(∧
a∈Pi∪Pj

a ∧
∧

a∈Ni∪Nj

¬a
)

where N ′(T1) =
∨

i ∈I
(∧

a∈Pi a ∧
∧

a∈Ni ¬a
)

and N ′(T2) =
∨

j ∈J
(∧

a∈Pj a ∧
∧

a∈Nj ¬a
)

N ′(¬T) = N(T)

N ′(0) = 1

In the de�nition above, we see 0 as the empty union
∨

i ∈�Ti and 1 as the
singleton union of the empty intersection

∨
i ∈{i0 }

∧
a∈� a.

The �rst step in the computation of UDNF(T) is to compute N(T). Then,
assuming

N(T) =
∨
i ∈I

(∧
a∈Pi

a ∧
∧
a∈Ni

¬a︸ ︷︷ ︸
Ii

)
we de�ne

UDNF(T)
def
=

∨
i ∈I

Ibasei ∨
∨
i ∈I

I
prod
i ∨

∨
i ∈I

I funi

where

Ibasei
def
= 1B ∧

∧
a∈Pi∩(Atombasic∪Var)

a ∧
∧

a∈Ni∩(Atombasic∪Var)

¬a

I
prod
i

def
= (1 × 1) ∧

∧
a∈Pi∩(Atomprod∪Var)

a ∧
∧

a∈Ni∩(Atomprod∪Var)

¬a

I funi
def
= (0→ 1) ∧

∧
a∈Pi∩(Atomfun∪Var)

a ∧
∧

a∈Ni∩(Atomfun∪Var)

¬a

b.9 definition (Product decomposition and projections): Given a type frame
T ≤ 1 × 1, we de�ne its decomposition π(T) as

π(T)
def
=

⋃
i ∈I ,Ii�0

{(∧
T1×T2∈P i

T1 ∧
∧

T1×T2∈N ′
¬T1︸ ︷︷ ︸

T 1

,
∧

T1×T2∈P i

T2 ∧
∧

T1×T2∈N i \N ′

¬T2︸ ︷︷ ︸
T 2

)
���N ′ ⊆ N i ,T 1 � 0,T 2 � 0

}
and its i-th projection πi (T) as

πi (T)
def
=

∨
(T1,T2)∈π(T)

Ti

where

UDNF(T) =
∨
i ∈I

(∧
a∈Pi

a ∧
∧
a∈Ni

¬a

)
︸ ︷︷ ︸

Ii

and where P i = Pi ∩ Atomprod and N i = Ni ∩ Atomprod. �

320

b.2 Semantics of the cast language with set-theoretic types

We now extend the previous de�nition of atoms to gradual types. That is,
we refer to a gradual type of the form b, τ1 × τ2, or τ1 → τ2 as an atom. We
write Atom?

basic, Atom?
prod, and Atom?

fun for the set of gradual types of the forms
b, τ1 × τ2, and τ1 → τ2, respectively.

In the following, the metavariable a ranges over the set Atom?
basic∪Atom

?
prod∪

Atom?
fun ∪ Var ∪ {?}.

b.10 definition (Uniform gradual normal form): A uniform gradual (disjunct-
ive) normal form (UGDNF) is a gradual type τ of the form∨

i ∈I

(∧
a∈Pi

a ∧
∧
a∈Ni

¬a

)
such that, for all i ∈ I , one of the following three condition holds:

• Pi ∩ Atom?
basic , � and (Pi ∪ Ni) ∩ (Atom?

prod ∪ Atom
?
fun) = �;

• Pi ∩ Atom?
prod , � and (Pi ∪ Ni) ∩ (Atom?

basic ∪ Atom
?
fun) = �;

• Pi ∩ Atom?
fun , � and (Pi ∪ Ni) ∩ (Atom?

basic ∪ Atom
?
prod) = �. �

For every type τ , we de�ne UGDNF(τ) = (UDNF(τ ⊕))†.
In the following, we use ς as an additional metavariable for gradual types.

b.11 definition (Function cast approximation): For every pair of types τ , τ ′
such that τ ′ ≤? 0→ 1, and every type ς , if

(1) UGDNF(τ) =
∨
i ∈I

∧
p∈Pi

ap ∧
∧
n∈Ni

¬an︸ ︷︷ ︸
Ii

(2) UGDNF(τ ′) =
∨
i ∈I

∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n︸ ︷︷ ︸
I′i

(3) ∀i ∈ I . Ii �? 0 =⇒ I ′i �
? 0

(4) ∀i ∈ I .∀p ∈ Pi . ap ∈ Atom?
fun ⇐⇒ a′p ∈ Atom

?
fun

then we de�ne the approximation of 〈τ ⇒p τ ′〉 applied to ς , noted 〈τ ⇒p τ ′〉 ◦ ς
as follows.
〈τ ⇒

p
τ ′〉 ◦ ς =

〈 ∧
i ∈I
I′i �

?0

∧
S ⊆P̄i

ς ≤?
∨
p∈S ς ′p

∨
p∈S

ςp →
∨
i ∈I
I′i �

?0

∨
S(P̄i

ς�?
∨
p∈S ς ′p

∧
p∈P̄i \S

τp

p
=⇒∧

i ∈I
I′i �

?0

∧
S ⊆P̄i

ς ≤?
∨
p∈S ς ′p

∨
p∈S

ς ′p →
∨
i ∈I
I′i �

?0

∨
S(P̄i

ς�?
∨
p∈S ς ′p

∧
p∈P̄i \S

τ ′p

〉
where, to ease the notation, we pose

P̄i = {p ∈ Pi | ap ∈ Atom
?
fun} = {p ∈ Pi | a

′
p ∈ Atom

?
fun}

and for every p ∈ P̄i , ap = ςp → τp and a′p = ς
′
p → τ ′p .

Otherwise, 〈τ ⇒p τ ′〉 ◦ ς is unde�ned. �

321

b Semantics of the cast languages

b.12 definition (Cast projection): For every pair of types τ , τ ′ such that τ ′ ≤?
1 × 1, if

(1) UGDNF(τ) =
∨
i ∈I

∧
p∈Pi

ap ∧
∧
n∈Ni

¬an︸ ︷︷ ︸
Ii

(2) UGDNF(τ ′) =
∨
i ∈I

∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n︸ ︷︷ ︸
I′i

(3) ∀i ∈ I . Ii �? 0 =⇒ I ′i �
? 0

(4) ∀j ∈ I .∀N ⊆ N̄j .∀i ∈ {1, 2}. πi (τ jN) �
? 0 =⇒ πi (τ

′j
N) �

? 0

(5) ∀i ∈ I .∀p ∈ Pi . ap ∈ Atom?
prod ⇐⇒ a′p ∈ Atom

?
prod

(6) ∀i ∈ I .∀n ∈ Ni . an ∈ Atom
?
prod ⇐⇒ a′n ∈ Atom

?
prod

then we de�ne the i-th projection of 〈τ ⇒p τ ′〉, noted πi (〈τ ⇒
p
τ ′〉) as follows.

πi (〈τ ⇒
p
τ ′〉) =

〈 ∨
j ∈I
I′j �

?0

∨
N ⊆N̄j

π1 (τ
′j
N)�

?0

π2 (τ
′j
N)�

?0

πi (τ
j
N)

p
=⇒

∨
j ∈I
I′j �

?0

∨
N ⊆N̄j

π1 (τ
′j
N)�

?0

π2 (τ
′j
N)�

?0

πi (τ
′j
N)

〉

where

P̄i = {p ∈ Pi | ap ∈ Atom
?
prod} = {p ∈ Pi | a

′
p ∈ Atom

?
prod}

N̄i = {n ∈ Ni | an ∈ Atom
?
prod} = {n ∈ Ni | a

′
n ∈ Atom

?
prod}

τ iN =
(∧

p∈P̄i
ap=τ1×τ2

τ1 ∧
∧
n∈N

an=τ1×τ2

¬τ1,
∧
p∈P̄i

ap=τ1×τ2

τ2 ∧
∧

n∈Ni \N
an=τ1×τ2

¬τ2
)

τ ′iN =
(∧

p∈Pi
a′p=τ

′
1×τ

′
2

τ ′1 ∧
∧
n∈N

a′n=τ
′
1×τ

′
2

¬τ ′1,
∧
p∈Pi

a′p=τ
′
1×τ

′
2

τ ′2 ∧
∧

n∈Ni \N
a′n=τ

′
1×τ

′
2

¬τ ′2

)
otherwise, πi (〈τ ⇒

p
τ ′〉) is unde�ned. �

322

Bibliography

Aiken, Alexander and Edward L. Wimmers (1993). Type inclusion constraints
and type inference. In: Proceedings of the Conference on Functional Program-
ming Languages and Computer Architecture. fpca ’93. acm, pp. 31–41. doi:
10.1145/165180.165188. Cited on pp. 139, 177.

Aiken, Alexander, Edward L. Wimmers, and T. K. Lakshman (1994). Soft typing
with conditional types. In: Proceedings of the 21st acm sigplan-sigact Sym-
posium on Principles of Programming Languages. popl ’94. acm, pp. 163–173.
doi: 10.1145/174675.177847. Cited on p. 139.

Ancona, Davide and Andrea Corradi (2016). Semantic subtyping for imperative
object-oriented languages. In: Proceedings of the 2016 acm sigplan Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and
Applications. oopsla 2016. acm, pp. 568–587. doi: 10.1145/2983990.2983992.
Cited on pp. 31, 241.

Ângelo, Pedro and Mário Florido (2018). Gradual intersection types. In: Work-
shop on Intersection Types and Related Systems. Cited on p. 202.

Ariola, Zena M. and Matthias Felleisen (1997). The call-by-need lambda calculus.
In: Journal of Functional Programming 7.3, pp. 265–301. Cited on pp. 216, 218,
219, 221.

Ariola, Zena M., John Maraist, Martin Odersky, Matthias Felleisen, and Philip
Wadler (1995). A call-by-need lambda calculus. In: Proceedings of the 22nd
acm sigplan-sigact Symposium on Principles of Programming Languages.
popl ’95. acm, pp. 233–246. doi: 10.1145/199448.199507. Cited on pp. 216, 221.

Barbanera, Franco, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro (1995).
Intersection and union types: syntax and semantics. In: Information and
Computation 119.2, pp. 202–230. doi: 10.1006/inco.1995.1086. Cited on p. 139.

Barendregt, Henk, Mario Coppo, and Mariangiola Dezani-Ciancaglini (1983).
A �lter lambda model and the completeness of type assignment. In: Journal
of Symbolic Logic 48.4, pp. 931–940. doi: 10.2307/2273659. Cited on p. 139.

Benzaken, Véronique, Giuseppe Castagna, and Alain Frisch (2003). �Duce:
an xml-centric general-purpose language. In: Proceedings of the 8th acm
sigplan International Conference on Functional Programming. icfp ’03. acm,
pp. 51–63. doi: 10.1145/944705.944711. Cited on pp. 31, 241.

Benzaken, Véronique, Giuseppe Castagna, Kim Nguy˜̂en, and Jérôme Siméon
(2013). Static and dynamic semantics of NoSQL languages. In: Proceedings of
the 40th Annual acm sigplan-sigact Symposium on Principles of Program-
ming Languages. popl ’13. acm, pp. 101–114. doi: 10.1145/2429069.2429083.
Cited on pp. 31, 241.

Bierman, Gavin M., Martín Abadi, and Mads Torgersen (2014). Understanding
TypeScript. In: ecoop 2014 – Object-Oriented Programming. Springer Berlin
Heidelberg, pp. 257–281. Cited on pp. 140, 202.

323

https://doi.org/10.1145/165180.165188
https://doi.org/10.1145/174675.177847
https://doi.org/10.1145/2983990.2983992
https://doi.org/10.1145/199448.199507
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.2307/2273659
https://doi.org/10.1145/944705.944711
https://doi.org/10.1145/2429069.2429083

Bibliography

Bierman, Gavin M., Erik Meijer, and Mads Torgersen (2007). Lost in trans-
lation: formalizing proposed extensions to C] . In: Proceedings of the 22nd
Annual acm sigplan Conference on Object-oriented Programming Systems
and Applications. oopsla ’07. acm, pp. 479–498. doi: 10.1145/1297027.1297063.
Cited on p. 140.

Blume, Matthias, Umut A. Acar, and Wonseok Chae (2006). Extensible pro-
gramming with �rst-class cases. In: Proceedings of the 11th acm sigplan In-
ternational Conference on Functional Programming. icfp ’06. acm, pp. 239–
250. doi: 10.1145/1159803.1159836. Cited on pp. 134, 135.

Campora, John Peter, Sheng Chen, Martin Erwig, and Eric Walkingshaw (2017).
Migrating gradual types. In: Proceedings of the acm on Programming Lan-
guages 2.popl, 15:1–15:29. doi: 10.1145/3158103. Cited on p. 202.

Capretta, Venanzio (2005). General recursion via coinductive types. In: Logical
Methods in Computer Science Volume 1, Issue 2. doi: 10.2168/LMCS-1(2:1)2005.
Cited on p. 212.

Cartwright, Robert and Mike Fagan (1991). Soft typing. In: Proceedings of the
acm sigplan 1991 Conference on Programming Language Design and Imple-
mentation. pldi ’91. acm, pp. 278–292. doi: 10.1145/113445.113469. Cited on
p. 139.

Castagna, Giuseppe, Rocco De Nicola, and Daniele Varacca (2008). Semantic
subtyping for the pi-calculus. In: Theoretical Computer Science 398.1-3, pp. 217–
242. doi: 10.1016/j.tcs.2008.01.049. Cited on pp. 31, 241.

Castagna, Giuseppe and Alain Frisch (2005). A gentle introduction to se-
mantic subtyping. In: Proceedings of the 7th acm sigplan International Con-
ference on Principles and Practice of Declarative Programming. ppdp ’05. acm,
pp. 198–199. doi: 10.1145/1069774.1069793. Cited on p. 211.

Castagna, Giuseppe, Hyeonseung Im, Kim Nguy˜̂en, and Véronique Benzaken
(2015a). A core calculus for XQuery 3.0. In: Programming Languages and
Systems. Springer Berlin Heidelberg, pp. 232–256. Cited on pp. 31, 241.

Castagna, Giuseppe, Kim Nguy˜̂en, Zhiwu Xu, and Pietro Abate (2015b). Poly-
morphic functions with set-theoretic types. Part 2: local type inference and
type reconstruction. In: Proceedings of the 42nd Annual acm sigplan-sigact
Symposium on Principles of Programming Languages. popl ’15. acm, pp. 289–
302. doi: 10.1145/2676726.2676991. Cited on pp. 9, 10, 28, 31, 32, 61, 87, 90, 108,
109, 132, 137, 141, 179, 194, 241.

Castagna, Giuseppe, Kim Nguy˜̂en, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet,
and Luca Padovani (2014). Polymorphic functions with set-theoretic types.
Part 1: syntax, semantics, and evaluation. In: Proceedings of the 41st acm
sigplan-sigact Symposium on Principles of Programming Languages. popl
’14. acm, pp. 5–17. doi: 10.1145/2535838.2535840. Cited on pp. 9, 31, 32, 61, 131,
137, 238, 241.

Castagna, Giuseppe and Victor Lanvin (2017). Gradual typing with union and
intersection types. In: Proceedings of the acm on Programming Languages
1.icfp, 41:1–41:28. doi: 10.1145/3110285. Cited on pp. 145, 146, 148, 202–204.

324

https://doi.org/10.1145/1297027.1297063
https://doi.org/10.1145/1159803.1159836
https://doi.org/10.1145/3158103
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1145/113445.113469
https://doi.org/10.1016/j.tcs.2008.01.049
https://doi.org/10.1145/1069774.1069793
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2535838.2535840
https://doi.org/10.1145/3110285

Castagna, Giuseppe, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek
(2019). Gradual typing: a new perspective. In: Proceedings of the acm on
Programming Languages 3.popl, 16:1–16:32. doi: 10.1145/3290329. Cited on
pp. 147, 149, 158, 313.

Castagna, Giuseppe, Tommaso Petrucciani, and Kim Nguy˜̂en (2016). Set-theoretic
types for polymorphic variants. In: Proceedings of the 21st acm sigplan In-
ternational Conference on Functional Programming. icfp 2016. acm, pp. 378–
391. doi: 10.1145/2951913.2951928. Cited on pp. 34, 90, 132, 134, 163.

Castagna, Giuseppe and Zhiwu Xu (2011). Set-theoretic foundation of paramet-
ric polymorphism and subtyping. In: Proceedings of the 16th acm sigplan
International Conference on Functional Programming. icfp ’11. acm, pp. 94–
106. doi: 10.1145/2034773.2034788. Cited on pp. 31, 39, 44–46, 50, 53, 241.

Chaudhuri, Avik, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel
Levi (2017). Fast and precise type checking for JavaScript. In: Proceedings
of the acm on Programming Languages 1.oopsla, 48:1–48:30. doi: 10.1145/
3133872. Cited on pp. 27, 131.

Chugh, Ravi, Patrick M. Rondon, and Ranjit Jhala (2012). Nested re�nements:
a logic for duck typing. In: Proceedings of the 39th Annual acm sigplan-
sigact Symposium on Principles of Programming Languages. popl ’12. acm,
pp. 231–244. doi: 10.1145/2103656.2103686. Cited on p. 70.

Cimini, Matteo and Jeremy G. Siek (2016). The Gradualizer: a methodology
and algorithm for generating gradual type systems. In: Proceedings of the
43rd Annual acm sigplan-sigact Symposium on Principles of Programming
Languages. popl ’16. acm, pp. 443–455. doi: 10.1145/2837614.2837632. Cited
on p. 147.

Constable, Robert L. and Scott Fraser Smith (1987). Partial objects in construct-
ive type theory. In: ieee Symposium on Logic in Computer Science (lics),
pp. 183–193. Cited on p. 212.

Coppo, Mario and Mariangiola Dezani-Ciancaglini (1980). An extension of
the basic functionality theory for the λ-calculus. In: Notre Dame Journal of
Formal Logic 21.4, pp. 685–693. doi: 10.1305/ndjfl/1093883253. Cited on pp. 87,
139.

Dardha, Ornela, Daniele Gorla, and Daniele Varacca (2013). Semantic subtyp-
ing for objects and classes. In: Formal Techniques for Distributed Systems.
Springer Berlin Heidelberg, pp. 66–82. Cited on pp. 31, 241.

Davies, Rowan (2005). Practical re�nement-type checking. PhD thesis. Carnegie
Mellon University. Cited on pp. 130, 139.

Dolan, Stephen (2016). Algebraic subtyping. PhD thesis. University of Cam-
bridge. Cited on pp. 89, 92, 93, 138.

Dolan, Stephen and Alan Mycroft (2017). Polymorphism, subtyping, and type
inference in MLsub. In: Proceedings of the 44th acm sigplan Symposium
on Principles of Programming Languages. popl 2017. acm, pp. 60–72. doi:
10.1145/3009837.3009882. Cited on pp. 10, 32, 87, 89, 91–93, 100, 138–140, 177.

Dolstra, Eelco and Andres Löh (2008). NixOS: a purely functional Linux distri-
bution. In: Proceedings of the 13th acm sigplan International Conference on

325

https://doi.org/10.1145/3290329
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/3133872
https://doi.org/10.1145/3133872
https://doi.org/10.1145/2103656.2103686
https://doi.org/10.1145/2837614.2837632
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1145/3009837.3009882

Bibliography

Functional Programming. icfp ’08. acm, pp. 367–378. doi: 10.1145/1411204.
1411255. Cited on p. 207.

Dun�eld, Joshua (2007). A uni�ed system of type re�nements. PhD thesis.
Carnegie Mellon University. Cited on pp. 130, 139, 212.

Dun�eld, Joshua and Neelakantan R. Krishnaswami (2013). Complete and easy
bidirectional typechecking for higher-rank polymorphism. In: Proceedings of
the 18th acm sigplan International Conference on Functional Programming.
icfp ’13. acm, pp. 429–442. doi: 10.1145/2500365.2500582. Cited on p. 140.

Dun�eld, Joshua and Frank Pfenning (2003). Type assignment for intersections
and unions in call-by-value languages. In: Foundations of Software Science
and Computation Structures. Springer Berlin Heidelberg, pp. 250–266. Cited
on p. 212.

Facebook (2018). Flow documentation. Available at https://flow.org/en/docs/.
Cited on p. 26.

Freeman, Tim and Frank Pfenning (1991). Re�nement types for ML. In: Proceed-
ings of the acm sigplan 1991 Conference on Programming Language Design
and Implementation. pldi ’91. acm, pp. 268–277. doi: 10.1145/113445.113468.
Cited on p. 139.

Frisch, Alain (2004). Théorie, conception et réalisation d’un langage de program-
mation adapté à xml. PhD thesis. Université Paris 7 – Denis Diderot. Cited
on pp. 55, 132, 135.

Frisch, Alain, Giuseppe Castagna, and Véronique Benzaken (2008). Semantic
subtyping: dealing set-theoretically with function, union, intersection, and
negation types. In: Journal of the acm 55.4, 19:1–19:64. doi: 10.1145/1391289.
1391293. Cited on pp. 9, 10, 12, 25, 30–32, 34, 39, 41–43, 50, 55, 61, 68, 131, 137,
207, 210, 216, 222, 223, 227, 228, 233–236, 241, 308, 311.

Fuh, You-Chin and Prateek Mishra (1988). Type inference with subtypes. In:
esop ’88. Springer Berlin Heidelberg, pp. 94–114. Cited on p. 139.

Garcia, Ronald (2013). Calculating threesomes, with blame. In: Proceedings of
the 18th acm sigplan International Conference on Functional Programming.
icfp ’13. acm, pp. 417–428. doi: 10.1145/2500365.2500603. Cited on pp. 147,
154.

Garcia, Ronald and Matteo Cimini (2015). Principal type schemes for gradual
programs. In: Proceedings of the 42nd Annual acm sigplan-sigact Sym-
posium on Principles of Programming Languages. popl ’15. acm, pp. 303–315.
doi: 10.1145/2676726.2676992. Cited on pp. 152, 158, 163, 202.

Garcia, Ronald, Alison M. Clark, and Éric Tanter (2016). Abstracting Gradual
Typing. In: Proceedings of the 43rd Annual acm sigplan-sigact Symposium
on Principles of Programming Languages. popl ’16. acm, pp. 429–442. doi:
10.1145/2837614.2837670. Cited on pp. 147, 148, 202, 203.

Garrigue, Jacques (2002). Simple type inference for structural polymorph-
ism. In: International Workshop on Foundations of Object-Oriented Languages
(fool). Informal proceedings. Cited on p. 134.

326

https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1145/2500365.2500582
https://flow.org/en/docs/
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/2500365.2500603
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2837614.2837670

Garrigue, Jacques (2015). A certi�ed implementation of ML with structural
polymorphism and recursive types. In: Mathematical Structures in Computer
Science 25.4, pp. 867–891. doi: 10.1017/S0960129513000066. Cited on p. 134.

Gesbert, Nils, Pierre Genevès, and Nabil Layaïda (2011). Parametric polymorph-
ism and semantic subtyping: the logical connection. In: Proceedings of the
16th acm sigplan International Conference on Functional Programming. icfp
’11. acm, pp. 107–116. doi: 10.1145/2034773.2034789. Cited on pp. 31, 45.

Gesbert, Nils, Pierre Genevès, and Nabil Layaïda (2015). A logical approach
to deciding semantic subtyping. In: acm Transactions on Programming Lan-
guages and Systems 38.1, p. 3. doi: 10.1145/2812805. Cited on pp. 39, 45, 46, 50,
51.

Henglein, Fritz (1994). Dynamic typing: syntax and proof theory. In: Science of
Computer Programming 22.3, pp. 197–230. doi: 10.1016/0167-6423(94)00004-2.
Cited on p. 154.

Hosoya, Haruo, Alain Frisch, and Giuseppe Castagna (2009). Parametric poly-
morphism for xml. In: acm Transactions on Programming Languages and
Systems 32.1, 2:1–2:56. doi: 10.1145/1596527.1596529. Cited on p. 44.

Hosoya, Haruo and Benjamin C. Pierce (2003). XDuce: a statically typed xml
processing language. In: acm Trans. Internet Technol. 3.2, pp. 117–148. doi:
10.1145/767193.767195. Cited on pp. 31, 241.

Hosoya, Haruo, Jérôme Vouillon, and Benjamin C. Pierce (2005). Regular
expression types for xml. In: acm Transactions on Programming Languages
and Systems 27.1, pp. 46–90. doi: 10.1145/1053468.1053470. Cited on p. 41.

Ina, Lintaro and Atsushi Igarashi (2011). Gradual typing for generics. In: Pro-
ceedings of the 2011 acm International Conference on Object Oriented Pro-
gramming Systems Languages and Applications. oopsla ’11. acm, pp. 609–
624. doi: 10.1145/2048066.2048114. Cited on p. 202.

Jafery, Khurram A. and Joshua Dun�eld (2017). Sums of uncertainty: re�ne-
ments go gradual. In: Proceedings of the 44th acm sigplan Symposium on
Principles of Programming Languages. popl 2017. acm, pp. 804–817. doi:
10.1145/3009837.3009865. Cited on p. 202.

JetBrains (2018). Kotlin documentation. Available at http://kotlinlang.org/docs/
reference. Cited on p. 27.

Kfoury, A. J. and J. B. Wells (2004). Principality and type inference for inter-
section types using expansion variables. In: Theoretical Computer Science
311.1-3, pp. 1–70. doi: 10.1016/j.tcs.2003.10.032. Cited on p. 139.

King, Gavin (2017). The Ceylon language speci�cation, version 1.3. Available at
https://ceylon-lang.org/documentation/1.3/spec. Cited on p. 27.

Lehmann, Nico and Éric Tanter (2017). Gradual re�nement types. In: Pro-
ceedings of the 44th acm sigplan Symposium on Principles of Programming
Languages. popl 2017. acm, pp. 775–788. doi: 10.1145/3009837.3009856. Cited
on p. 202.

Maidl, André Murbach, Fabio Mascarenhas, and Roberto Ierusalimschy (2014).
Typed Lua: an optional type system for Lua. In: Proceedings of the Workshop

327

https://doi.org/10.1017/S0960129513000066
https://doi.org/10.1145/2034773.2034789
https://doi.org/10.1145/2812805
https://doi.org/10.1016/0167-6423(94)00004-2
https://doi.org/10.1145/1596527.1596529
https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/1053468.1053470
https://doi.org/10.1145/2048066.2048114
https://doi.org/10.1145/3009837.3009865
http://kotlinlang.org/docs/reference
http://kotlinlang.org/docs/reference
https://doi.org/10.1016/j.tcs.2003.10.032
https://ceylon-lang.org/documentation/1.3/spec
https://doi.org/10.1145/3009837.3009856

Bibliography

on Dynamic Languages and Applications. Dyla’14. acm, 3:1–3:10. doi: 10.1145/
2617548.2617553. Cited on p. 202.

Maraist, John, Martin Odersky, and Philip Wadler (1998). The call-by-need
lambda calculus. In: Journal of Functional Programming 8.3, pp. 275–317.
Cited on pp. 216, 219, 221.

Martelli, Alberto and Ugo Montanari (1982). An e�cient uni�cation algorithm.
In: acm Transactions on Programming Languages and Systems 4.2, pp. 258–
282. doi: 10.1145/357162.357169. Cited on p. 164.

Microsoft (2018). The TypeScript handbook. Available at https://www.typescriptlang.
org/docs/handbook/basic-types.html. Cited on p. 26.

Miller, Dale (1992). Uni�cation under a mixed pre�x. In: Journal of Symbolic
Computation 14.4, pp. 321–358. doi: https://doi.org/10.1016/0747-7171(92)90011-R.
Cited on pp. 129, 139.

Mitchell, John C. (1991). Type inference with simple subtypes. In: Journal of
Functional Programming 1.3, pp. 245–285. doi: 10.1017/S0956796800000113.
Cited on p. 139.

Muehlboeck, Fabian and Ross Tate (2018). Empowering union and intersection
types with integrated subtyping. In: Proceedings of the acm on Programming
Languages 2.oopsla, 112:1–112:29. doi: 10.1145/3276482. Cited on pp. 27, 139.

Odersky, Martin and Konstantin Läufer (1996). Putting Type Annotations
to Work. In: Proceedings of the 23rd acm sigplan-sigact Symposium on
Principles of Programming Languages. popl ’96. acm, pp. 54–67. doi: 10 .
1145/237721.237729. Cited on p. 139.

Odersky, Martin, Christoph Zenger, and Matthias Zenger (2001). Colored local
type inference. In: Proceedings of the 28th acm sigplan-sigact Symposium
on Principles of Programming Languages. popl ’01. acm, pp. 41–53. doi:
10.1145/360204.360207. Cited on p. 140.

Ohori, Atsushi (1995). A polymorphic record calculus and its compilation. In:
acm Transactions on Programming Languages and Systems 17.6, pp. 844–895.
doi: 10.1145/218570.218572. Cited on p. 134.

Okasaki, Chris (1998). Purely Functional Data Structures. Cambridge University
Press. doi: 10.1017/CBO9780511530104. Cited on p. 29.

Ortin, Francisco and Miguel García (2011). Union and intersection types to
support both dynamic and static typing. In: Information Processing Letters
111.6, pp. 278–286. doi: 10.1016/j.ipl.2010.12.006. Cited on p. 202.

Pearce, David J. (2013). Sound and complete �ow typing with unions, inter-
sections and negations. In: Veri�cation, Model Checking, and Abstract Inter-
pretation. Springer, pp. 335–354. Cited on pp. 27, 131.

Pearce, David J. and Lindsay Groves (2013). Whiley: a platform for research in
software veri�cation. In: Software Language Engineering. Springer Interna-
tional Publishing, pp. 238–248. Cited on p. 27.

Peyton Jones, Simon, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields
(2007). Practical type inference for arbitrary-rank types. In: Journal of Func-
tional Programming 17.1, pp. 1–82. doi: 10.1017/S0956796806006034. Cited on
pp. 139, 140.

328

https://doi.org/10.1145/2617548.2617553
https://doi.org/10.1145/2617548.2617553
https://doi.org/10.1145/357162.357169
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://doi.org/https://doi.org/10.1016/0747-7171(92)90011-R
https://doi.org/10.1017/S0956796800000113
https://doi.org/10.1145/3276482
https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/360204.360207
https://doi.org/10.1145/218570.218572
https://doi.org/10.1017/CBO9780511530104
https://doi.org/10.1016/j.ipl.2010.12.006
https://doi.org/10.1017/S0956796806006034

Pierce, Benjamin C. (1991). Programming with intersection types and bounded
polymorphism. PhD thesis. Carnegie Mellon University. Cited on p. 130.

Pierce, Benjamin C. (2002). Types and programming languages. mit Press. Cited
on pp. 64, 87.

Pierce, Benjamin C. and David N. Turner (2000). Local type inference. In: acm
Transactions on Programming Languages and Systems 22.1, pp. 1–44. doi:
10.1145/345099.345100. Cited on pp. 139, 141.

Pottier, François (1998). Type inference in the presence of subtyping: from theory
to practice. Research Report 3483. inria. Cited on pp. 89, 93.

Pottier, François (2001). Simplifying subtyping constraints: a theory. In: In-
formation and Computation 170.2, pp. 153–183. Cited on pp. 139, 177.

Pottier, François and Didier Rémy (2003). The essence of ML type inference.
Unpublished draft of an extended version. Available at http://cristal.inria.fr/
attapl/emlti-long.pdf. Cited on p. 129.

Pottier, François and Didier Rémy (2005). The essence of ML type inference. In:
Advanced topics in types and programming languages. mit Press. Chapter 10,
pp. 389–489. Cited on pp. 10, 32, 102, 104, 163.

Rastogi, Aseem, Avik Chaudhuri, and Basil Hosmer (2012). The ins and outs
of gradual type inference. In: Proceedings of the 39th Annual acm sigplan-
sigact Symposium on Principles of Programming Languages. popl ’12. acm,
pp. 481–494. doi: 10.1145/2103656.2103714. Cited on p. 202.

Rémy, Didier (1989). Type checking records and variants in a natural extension
of ML. In: acm sigplan-sigact Symposium on Principles of Programming
Languages (popl), Austin, Texas, usa, pp. 77–88. Cited on pp. 134, 135.

Rémy, Didier (1993). Type inference for records in a natural extension of ML. In:
Theoretical Aspects of Object-Oriented Programming. Types, Semantics and
Language Design. mit Press. Cited on p. 135.

Reynolds, John C. (1997). Design of the programming language Forsythe. In:
Algol-like languages. Birkhäuser, pp. 173–233. Cited on pp. 130, 139.

Ronchi Della Rocca, Simona (1988). Principal type scheme and uni�cation for
intersection type discipline. In: Theoretical Computer Science 59.1-2, pp. 181–
209. Cited on p. 139.

Siek, Jeremy G. and Walid Taha (2006). Gradual typing for functional lan-
guages. In: Proceedings of Scheme and Functional Programming Workshop.
acm, pp. 81–92. Cited on pp. 10, 32, 145, 157, 253.

Siek, Jeremy G. and Walid Taha (2007). Gradual typing for objects. In: Pro-
ceedings of the 21st European Conference on Object-Oriented Programming.
ecoop’07. Springer-Verlag, pp. 2–27. Cited on pp. 148, 176, 202.

Siek, Jeremy G., Peter Thiemann, and Philip Wadler (2015). Blame and coercion:
together again for the �rst time. In: Proceedings of the 36th acm sigplan
Conference on Programming Language Design and Implementation. pldi ’15.
acm, pp. 425–435. doi: 10.1145/2737924.2737968. Cited on pp. 160, 313, 314.

Siek, Jeremy G. and Manish Vachharajani (2008). Gradual typing with uni�ca-
tion-based inference. In: Proceedings of the 2008 Symposium on Dynamic

329

https://doi.org/10.1145/345099.345100
http://cristal.inria.fr/attapl/emlti-long.pdf
http://cristal.inria.fr/attapl/emlti-long.pdf
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2737924.2737968

Bibliography

Languages. dls ’08. acm, 7:1–7:12. doi: 10.1145/1408681.1408688. Cited on
pp. 145, 147, 154, 156, 202.

Siek, Jeremy G., Michael M. Vitousek, Matteo Cimini, and John Tang Boyland
(2015). Re�ned criteria for gradual typing. In: 1st Summit on Advances in
Programming Languages (snapl 2015). Vol. 32. Leibniz International Pro-
ceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, pp. 274–293. doi: 10.4230/LIPIcs.SNAPL.2015.274. Cited on pp. 152,
155.

Swamy, Nikhil, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan
Chen, Pierre-Yves Strub, and Gavin Bierman (2014). Gradual typing embed-
ded securely in JavaScript. In: Proceedings of the 41st acm sigplan-sigact
Symposium on Principles of Programming Languages. popl ’14. acm, pp. 425–
437. doi: 10.1145/2535838.2535889. Cited on p. 202.

Tobin-Hochstadt, Sam and Matthias Felleisen (2006). Interlanguage migration:
from scripts to programs. In: Companion to the 21st acm sigplan Sym-
posium on Object-oriented Programming Systems, Languages, and Applica-
tions. oopsla ’06. acm, pp. 964–974. doi: 10.1145/1176617.1176755. Cited on
pp. 159, 318.

Tobin-Hochstadt, Sam and Matthias Felleisen (2008). The design and imple-
mentation of Typed Scheme. In: Proceedings of the 35th Annual acm sigplan-
sigact Symposium on Principles of Programming Languages. popl ’08. acm,
pp. 395–406. doi: 10.1145/1328438.1328486. Cited on p. 26.

Tobin-Hochstadt, Sam and Matthias Felleisen (2010). Logical types for untyped
languages. In: Proceedings of the 15th acm sigplan International Conference
on Functional Programming. icfp ’10. acm, pp. 117–128. doi: 10.1145/1863543.
1863561. Cited on pp. 27, 131.

Toro, Matías and Éric Tanter (2017). A gradual interpretation of union types.
In: Proceedings of the 24th Static Analysis Symposium. sas ’17. Springer In-
ternational Publishing, pp. 382–404. Cited on pp. 146, 202.

Trifonov, Valery and Scott Smith (1996). Subtyping constrained types. In: Static
Analysis. Springer Berlin Heidelberg, pp. 349–365. Cited on pp. 89, 93.

Vazou, Niki, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-
Jones (2014). Re�nement types for Haskell. In: Proceedings of the 19th acm
sigplan International Conference on Functional Programming. icfp ’14. acm,
pp. 269–282. doi: 10.1145/2628136.2628161. Cited on p. 211.

Wadler, Philip and Robert Bruce Findler (2009). Well-typed programs can’t
be blamed. In: Proceedings of the 18th European Symposium on Programming.
esop ’09. Springer-Verlag, pp. 1–16. doi: 10.1007/978-3-642-00590-9_1. Cited
on pp. 154, 159–161, 313, 314, 318.

Wand, Mitchell (1987). A simple algorithm and proof for type inference. In:
Fundamenta Informaticae 10, pp. 115–122. Cited on p. 102.

Wright, Andrew K. and Matthias Felleisen (1994). A syntactic approach to type
soundness. In: Information and Computation 115.1, pp. 38–94. doi: 10.1006/
inco.1994.1093. Cited on p. 66.

330

https://doi.org/10.1145/1408681.1408688
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/2535838.2535889
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1863543.1863561
https://doi.org/10.1145/1863543.1863561
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093

Xie, Ningning, Xuan Bi, and Bruno C. d. S. Oliveira (2018). Consistent subtyp-
ing for all. In: Programming Languages and Systems. Springer International
Publishing, pp. 3–30. Cited on p. 202.

331

	Abstract
	Résumé
	Résumé substantiel
	Introduction
	Introduction
	Background and motivations
	Set-theoretic types
	Subtyping on set-theoretic types
	Semantic subtyping

	Overview and contributions
	Implicit typing and type inference
	Gradual typing
	Non-strict languages

	Relationship with published or submitted work
	Outline
	Notational conventions

	Background
	Introduction
	Semantic subtyping for first-order languages
	Adding arrow types
	Adding type variables

	Types
	Type substitutions

	Semantic subtyping
	Study of the subtyping relation
	Defining subtyping using quantification
	Subtyping and type substitutions
	Decomposition of subtyping on arrow types

	Implicit typing and type inference
	An implicitly typed language with set-theoretic types
	Language syntax and semantics
	Syntax
	Semantics

	Type system
	Type soundness
	Why subject reduction does not hold
	Negation types for functions
	Deriving negations of arrow types
	Substitution and weakening properties
	Inversion of the typing relation
	Relating ground types and sets of values
	Progress, subject reduction, and soundness

	Type inference
	The reformulated type system
	The problem with generalization
	Definition of the reformulated type system
	Relating the systems Ti and Tr
	Inversion for the type system Tr\and

	Constraints and constraint generation
	Constraints and constraint satisfaction
	Constraint generation
	Relating typing with constraint satisfaction
	Properties of structured-constraint satisfaction

	Constraint solving
	Type-constraint solving by tallying
	Structured-constraint simplification

	Results and discussion
	Non-determinism and lack of principal solutions

	Adding type annotations
	Language syntax and type system
	Syntax
	Reformulated type system

	Constraints and constraint solving
	Constraints and constraint satisfaction
	Constraint generation
	Constraint solving

	Results and discussion
	Towards a stronger completeness result

	Language extensions
	Binding typecase and pattern matching
	Binding typecase
	Pattern matching

	Polymorphic variants
	Records
	Polymorphic typing of record operations

	Discussion
	Related work
	Future work

	Gradual typing
	Introduction
	Gradual typing with polymorphic set-theoretic types
	Our approach
	Overview

	Gradual typing for Hindley-Milner systems
	Source language
	Types and expressions
	Type system
	Static gradual guarantee
	Relationship with standard gradual type systems

	Cast language
	Syntax
	Type system
	Semantics
	Compilation

	Type inference
	Type constraints and solutions
	Type-constraint solving
	Structured constraints and constraint generation
	Constraint solving
	Soundness of type inference
	Completeness of type inference
	An example of type inference

	Adding subtyping
	Declarative system
	Type inference

	Gradual typing for set-theoretic types
	Type frames, static types, and gradual types
	Subtyping on type frames and static types
	Materialization

	Subtyping on gradual set-theoretic types
	Polarity, parity, and variance
	Subtyping using polarized discriminations
	Avoiding existential quantification
	Equivalence of the different characterizations of subtyping
	Properties of subtyping

	Source and cast languages
	Syntax and typing
	Semantics

	Type inference
	Type constraints and solutions
	Type-constraint solving
	Structured constraints, generation, and simplification
	Soundness of type inference

	Discussion
	Related work
	Future work

	Non-strict languages
	Introduction
	Semantic subtyping for non-strict languages
	Our approach
	Contributions
	Related work

	A call-by-need language with set-theoretic types
	Types and subtyping
	Properties of subtyping

	Language syntax and semantics
	Source language
	Internal language
	Semantics

	Type system
	Type system of the source language
	Type system of the internal language

	Proving type soundness
	Call-by-name and call-by-need
	Proving subject reduction: challenges
	Decompositions of product types
	Additional results
	Progress and subject reduction

	Discussion
	On the interpretation of types
	Future work

	Conclusion
	Conclusion
	Future work

	Appendices
	Additional proofs
	Implicit typing and type inference
	Adding type annotations

	Gradual typing
	Gradual typing for Hindley-Milner systems
	Gradual typing for set-theoretic types

	Non-strict languages
	A call-by-need language with set-theoretic types
	Discussion

	Semantics of the cast languages
	Semantics of the cast language without subtyping
	Adding subtyping

	Semantics of the cast language with set-theoretic types
	Defining cast application and projection operators

	Bibliography

