
HAL Id: tel-02121071
https://theses.hal.science/tel-02121071v2

Submitted on 6 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic parallelization and scheduling approaches for
co-simulation of numerical models on multi-core

processors
Salah Eddine Saidi

To cite this version:
Salah Eddine Saidi. Automatic parallelization and scheduling approaches for co-simulation of numer-
ical models on multi-core processors. Modeling and Simulation. Sorbonne Université, 2018. English.
�NNT : 2018SORUS036�. �tel-02121071v2�

https://theses.hal.science/tel-02121071v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ SORBONNE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Salah Eddine SAIDI

Pour obtenir le grade de
DOCTEUR de l’UNIVERSITÉ SORBONNE

Sujet de la thèse :

Approches de Parallélisation Automatique et
d’Ordonnancement pour la Co-simulation de Modèles

Numériques sur Processeurs Multi-cœurs

soutenue le 18 Avril 2018

devant le jury composé de :

M. Pierre Siron Rapporteur
M. Nicolas Navet Rapporteur
M. Lionel Lacassagne Examinateur
M. Ramine Nikoukhah Examinateur
M. Hassen Hadj Amor Examinateur
M. Nicolas Pernet Encadrant
M. Yves Sorel Encadrant
Mme. Liliana Cucu-Grosjean Directrice de thèse

ii

Acknowledgements

First and above all, I thank Allah Almighty. All praise and gratitude are due to Him
for giving me the energy and the perseverance during this PhD journey. Only by His
grace was I able to complete this thesis.

I would like to acknowledge my gratitude to my supervisors who consistently assisted
and supported me during the preparation of this thesis. I would like to offer my sincerest
thanks to my supervisor Yves Sorel for guiding me with most care from the first to the
last day of this thesis. While he has given me the freedom to work autonomously, he
has always been there to ensure I stay on track and progress smoothly. I am extremely
grateful to my supervisor Nicolas Pernet. He knew how to put me at ease from day one.
Despite his busy schedule, he always found time for me whenever I needed his help. I
enjoyed every moment of our professional and friendly discussions which significantly
shaped my thesis and inspired my after-thesis goals. I would like to thank Liliana Cucu-
Grosjean for accepting the responsibility of being my thesis director, for her suggestions
and recommendations, and for having always been there for me.

I would like to thank the reviewers of the thesis, Pierre Siron and Nicolas Navet for
offering their time to review this thesis and for their insightful comments and questions.
I would like to thank the members of the defense committee, Lionel Lacassagne and
Hassen Hadj Amor for their discussion and feedback.

I would like to express my deepest appreciation and gratitude to the people who
constantly offered their assistance during this thesis. I would like to thank Abir El-Feki
for all the time and effort that she dedicated to assist me which got me well started on
the thesis. I would like to thank Mongi Ben Gaid who never hesitated to help me with
technical issues and to give me invaluable advice whenever I asked him.

My sincere appreciation goes to my colleagues at Inria and IFPEN for their wonderful
company and generous assistance during the preparation of this thesis. I am deeply
grateful to my friends for their constant encouragement and endless support.

This journey would not have been possible without the support of my family. To my
brothers and sisters, thank you for inspiring me every single day by your presence in my
life. Last but not least, I am eternally grateful to my parents. They have always been
my source of strength and motivation. While this achievement is a modest attempt to
pay back your sacrifice and limitless love and support, I know that I will never thank

you enough for what you have been and still are for me. My Lord, have mercy upon
them as they brought me up when I was small.

Abstract

When designing complex cyber-physical systems, engineers have to integrate numerical
models from different modeling environments in order to simulate the whole system and
estimate its global performances. If some parts of the system are physically available,
it is possible to connect these parts to the simulation in a Hardware-in-the-Loop (HiL)
approach. In this case, the simulation has to be performed in real-time where models
execution consists in periodically reacting to the real (physically available) components
and providing periodic output updates. The increase of requirements on the simulation
accuracy and its validity domain requires more complex models. Using such models,
it becomes hard to ensure fast or real-time execution without using multiprocessor
architectures. FMI (Functional Mocked-up Interface), an increasingly common standard
for model exchange and co-simulation, offers new opportunities for multi-core execution of
numerical models. One goal of this thesis is the extraction of potential parallelism in a set
of interconnected multi-rate models. We build on the RCOSIM approach that has been
previously developed at IFP Energies nouvelles and which allows the parallelization of
FMI models on multi-core processors. It is based on representing the co-simulation by a
dependence graph model. In the first part of the thesis, improvements have been proposed
to overcome the limitations of RCOSIM. In particular, we propose new algorithms in
order to allow handling models that exchange data at different rates and schedule them
on multi-core processors. Also, the improvements allow handling specific constraints
such as mutual exclusion and real-time constraints. Second, we propose algorithms for
the allocation and non preemptive scheduling of the dependence graphs, taking into
account their real-time, data dependence and allocation constraints. These algorithms
aim at accelerating the execution of the co-simulation or ensuring its real-time execution
in a HiL approach. The proposed solutions have been tested on randomly generated
dependence graphs and validated against an industrial use case which is an internal
combustion engine co-simulation. This thesis is part of a joint action IFP Energies
nouvelles - Inria in which Inria brings its real-time systems experience to the numerical
simulation challenges of IFP Energies nouvelles.

Contents

List of Figures xi

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 3
1.3 Thesis Outline . 4

2 Background 7
2.1 Modeling and Simulation . 7

2.1.1 Systems . 8
2.1.2 Modeling . 9
2.1.3 Simulation . 11
2.1.4 Co-simulation . 13
2.1.5 Co-simulation under Real-time Constraints 18
2.1.6 Languages and Tools for Modeling and Simulation 19

2.2 Parallel Computing . 23
2.2.1 Parallelism in Hardware . 24
2.2.2 Parallelism in Software . 26
2.2.3 Parallel Programming . 27
2.2.4 Parallel Scheduling . 29
2.2.5 Parallel Real-time Scheduling . 33
2.2.6 Parallel Execution . 36

2.3 Parallel Execution of Co-simulation . 37
2.3.1 Approaches . 37
2.3.2 Tools . 39

3 Problem Statement 41
3.1 Overview . 41
3.2 The RCOSIM Approach . 42
3.3 RCOSIM Limitations . 42
3.4 Open Research Issues and Thesis Objectives 43

vii

viii Contents

4 Dependence Graph Model for FMU Co-simulation 45

4.1 Dependence Graph of an FMU Co-simulation 46

4.1.1 Construction of the Dependence Graph of an FMU Co-Simulation 46

4.1.2 Dependence Graph Attributes . 48

4.2 Dependence Graph of a Multi-rate FMU Co-simulation 49

4.2.1 Repeatable Pattern of a Multi-rate Dependence Graph 50

4.2.2 Multi-rate Transformation Rules 51

4.2.3 Multi-rate Transformation Algorithm 52

4.3 Dependence Graph with Mutual Exclusion Constraints 53

4.3.1 Motivation . 54

4.3.2 Acyclic Orientation of Mixed Graphs 56

4.3.3 Problem Formulation . 57

4.3.4 Resolution using Linear Programming 59

4.3.5 Acyclic Orientation Heuristic . 60

4.4 Dependence Graph with Real-time Constraints 64

4.4.1 Preliminaries . 66

4.4.2 Definition of Real-time Constraints 68

4.4.3 Propagation of a Single Real-time Constraint 69

4.4.4 Propagation of Multiple Real-time Constraints 77

4.4.5 Propagation Algorithms . 79

5 Multi-core Scheduling of FMU Dependence Graphs 83

5.1 Scheduling of Dependence Graphs for Co-simulation Acceleration 84

5.1.1 Problem Formulation . 84

5.1.2 Resolution using Linear Programming 85

5.1.3 Multi-core Scheduling Heuristic . 87

5.2 Scheduling of FMU Co-simulation under Real-time Constraints 88

5.2.1 Problem Formulation . 88

5.2.2 Accounting for Dependence in Real-time Scheduling 90

5.2.3 Scheduling Interval . 91

5.2.4 Resolution using Linear Programming 92

5.2.5 Multi-core Scheduling Heuristic . 94

5.3 Code Generation . 96

Contents ix

6 Evaluation 99
6.1 Random Generator of Operation Graphs 99

6.1.1 Generation of Random Operation Graphs 100
6.1.2 Random Operation Graph Characterization 101

6.2 Performances of the Algorithms . 103
6.2.1 Acyclic Orientation Algorithms . 103
6.2.2 Scheduling Algorithms for Co-simulation Acceleration 104
6.2.3 Scheduling Algorithms for Co-simulation under Real-time Constraints108

6.3 Industrial Use Case . 111
6.3.1 Use Case Description . 111
6.3.2 Test Campaign . 111
6.3.3 Numerical Accuracy . 112
6.3.4 Speedup . 113
6.3.5 Comparison of Offline and Online Scheduling 114

7 Conclusion 121
7.1 Summary . 121
7.2 Perspectives . 123

References 125

x

List of Figures

2.1 A block diagram representation of a system. 8
2.2 Feedback control of a physical process. 9
2.3 Hybrid automaton of the bouncing ball system. 11
2.4 Trajectories obtained from the simulation of the bouncing ball model . . . 12
2.5 Time evolution and data exchange between two models during co-simulation. 14
2.6 Different types of co-simulation involved in the process of controller design. 16
2.7 FMI for Model Exchange. 17
2.8 FMI for Model Co-Simulation. 17
2.9 HLA federation. 18
2.10 Comparison of accelerated co-simulation and co-simulation under real-time

constraints. 19
2.11 Theoretical speedup computed using Amdahl’s law for a program in function

of the number of processors for different values of P. 24
2.12 Example of a task dependence graph. 31
2.13 Parameters of a real-time task. 34
2.14 The Algorithm-Architecture-Adequation methodology. 37

4.1 An example of inter and intra-FMU dependence of two FMUs connected
by the user . 47

4.2 Operation graph obtained from the FMUs of Figure 4.1 48
4.3 A basic example of a repeatable pattern of a multi-rate co-simulation . . . 51
4.4 Slow to fast dependence . 52
4.5 Fast to slow dependence . 52
4.6 Graph obtained by applying the multi-rate transformation algorithm on

the graph of Figure 4.2 . 54
4.7 Theoretical speed-up. 55
4.8 Runtime speed-up. 56
4.9 Example of co-simulation under real-time constraints. 66
4.10 Example of release propagation. 70
4.11 Example of deadline propagation. 72
4.12 Release back loop propagation phase. 74

xi

xii List of Figures

4.13 Second release forward propagation phase. 74
4.14 Deadline forward loop propagation phase. 75
4.15 Second deadline backward propagation phase. 75
4.16 Second deadline forward loop propagation phase. 76
4.17 Third deadline backward propagation phase. 76

5.1 Example of operation graph pattern for real-time scheduling 93
5.2 Illustration of the execution of generated code. 97

6.1 Random generation of an operation graph. 102
6.2 Comparison of the execution times of the acyclic orientation algorithms. . 104
6.3 Comparison of the critical path length. 105
6.4 Comparison of the scheduling execution time for 2 cores. 105
6.5 Comparison of the scheduling execution time for 4 cores. 106
6.6 Comparison of the scheduling execution time for 8 cores. 107
6.7 Comparison of the makespan for 2 cores. 107
6.8 Comparison of the makespan for 4 cores. 108
6.9 Comparison of the makespan for 8 cores. 108
6.10 Comparison of the real-time scheduling execution time for 2 cores. 109
6.11 Comparison of the real-time scheduling execution time for 4 cores. 110
6.12 Comparison of the real-time scheduling execution time for 8 cores. 110
6.13 Rate of schedulable operation graphs. 111
6.14 Spark Ignition (SI) RENAULT F4RT engine model. 112
6.15 Numerical results. 113
6.16 Speedup results. 114
6.17 Types of nodes supported by the Intel TBB Flow Graph interface. 115
6.18 Comparison of the different phases of the offline and online scheduling

approaches. 118

1
Introduction

Contents

1.1 Context . 1
1.2 Objectives . 3
1.3 Thesis Outline . 4

This thesis deals with the parallelization of co-simulations of numerical models on multi-
core architectures. In particular, it focuses on the acceleration and real-time execution of
co-simulations through multi-core parallelization. Different research questions related to
the aforementioned problems are studied. The work presented in this thesis represents
a continuation of two PhD theses that have been previously conducted at IFP Energies
nouvelles1. See [1, 2]. This first chapter gives an introduction to the research topic of the
thesis. First, we explain the general context of the studied research problems. Then, we
briefly present the objectives of the thesis. Finally, we give the structure of the thesis.

1.1 Context

The number of computers has grown very fast in recent decades and today they are
omnipresent. The most known kind of computers is general purpose computers that are
used for human consumption. However, the vast majority of the computers around the
world are less visible and are used for different purposes, mainly for controlling physical
entities. These computers are called embedded systems.

Systems that combine computational elements and physical processes are referred
to as Cyber-Physical Systems (CPS) [3]. The diversity of the involved disciplines
makes the process of building CPS challenging, costly and time consuming. Therefore,

1www.ifpenergiesnouvelles.fr

1

2 1.1. Context

applying appropriate methodologies that respond to challenges related to the design,
the development and the validation of CPS, is a crucial requirement. In particular,
enabling the prediction of the system’s behavior before its deployment has the potential
to reduce the risks, the cost and the needed effort. Simulation is an efficient way to
achieve these requirements as it allows imitating the functioning of the system on a
computer and assessing its design. System designers can then identify potential design
flaws and correct them before deploying the system.

In order to perform the simulation, the system is first modeled. Traditionally, subparts
of the system are modeled separately, and then integrated into one environment to perform
simulation at the system level. There exist several modeling formalisms, each of which
is adapted to certain kinds of problems. In the modeling formalism considered in this
thesis, a model is represented by a set of Ordinary Differential Equations (ODEs) that
describe the dynamics of the modeled system. The evolution of the simulation consists
in numerically integrating the ODEs while minimizing the error.

The simulation of dynamical systems such as CPS can be accomplished in different
ways according to the desired goal. In co-simulation, the different subsystems are
described by models of equations and connected together to simulate the whole system on
a computer. In this case, synchronized communications have to be ensured between the
different models where each model must be able to detect and respond to events raised
by the other models. Integrating heterogeneous models usually results in a complex and
computationally expensive co-simulation which increases the demand of processing power.
Consequently, a principal challenge of co-simulation is the question of how to reduce
the execution time. As is well-known, increasing CPU frequency by means of silicon
integration has reached its possible limits and semiconductor manufacturers switched
in last years to building multi-core processors, i.e. integrating multiple processors into
one chip allowing parallel processing on a single computer. Multi-core processors allow
reducing the execution time of a program by partitioning it into a set of computational
tasks and assigning a subset of tasks to each core to be processed in parallel.

In Hardware-in-the-Loop (HiL) co-simulation, physically available components, e.g.
controller hardware, are connected to simulated models on a computer. The controller
hardware runs the control algorithm (controller software) and is connected to the simulation
computer via electronic interfaces. The goal here is to emulate the behavior of the real
physical process so as to run the controller software under realistic conditions. The HiL
approach is usually used to test the controller software on its final execution platform.
However, the physically available component can instead be a part of the physical process.
In HiL, two concepts of time have to be correctly meshed: the simulated time and the
real time. Achieving a correct meshing of the simulated time and the real time defines a
set of timing constraints imposed on the simulated models. These constraints have to be
considered during the execution of the co-simulation. It is not always possible to satisfy
these constraints, especially on single-core processors. Performing HiL co-simulations
on multi-core processors can enhance the opportunities of satisfying timing constraints
which are infeasible on single-core processors.

1. Introduction 3

1.2 Objectives

There are two main research focuses in this thesis: acceleration of co-simulation and HiL
co-simulation under real-time constraints on multi-core architectures. We are interested
in co-simulations of CPS that are compliant with the FMI standard [4]. FMI facilitates
the coupling of diverse models originating from different developers and tools. As
already stated, a main problem of co-simulations is their expensive computational cost.
Unfortunately, many simulation tools have single-core simulation kernels and do not take
advantage of the computation power brought by multi-core architectures. Therefore,
enabling parallel execution of computationally expensive co-simulations on multi-core
processors is keenly sought by the developers and the users of simulation tools. In this
context, we aim at developing appropriate algorithms to efficiently exploit the parallelism
provided by multi-core processors in order to accelerate FMI co-simulations and possibly
satisfy timing constraints of HiL co-simulations. Different approaches for parallelizing
co-simulations are possible and have already been explored. In this thesis, we build on
the existing solutions developed at IFP Energies nouvelles and seek to improve them.

Developed at IFP Energies nouvelles, xMOD is a co-simulation and a virtual experi-
mentation platform which allows mixing stand-alone and tool coupling co-simulations and
optimizing complex models execution. The Refined CO-SIMulation (RCOSIM) approach
[5] is the parallelization approach used in xMOD. It uses the information given by FMI
about input-output relationships inside a model that is exported as a Functional Mock-up
Unit (FMU). A model’s FMU is a package that encapsulates an XML file containing,
among other data, the definitions of the model’s variables, and a library defining the
equations of the model as C functions. Given these features, various execution possibilities
can be realized. The parallelization of co-simulation models on a multi-core processor can
be seen as the following problem: find an allocation of the functions of the different models
to the different cores and define an execution order, i.e. schedule the functions that are
allocated to each core. When solving this problem, the utilization of the available cores
has to be optimized in order to achieve the best acceleration. Using parallel computing
terminology, the problem consists in finding a schedule for all the functions of the co-
simulation on a multi-core processor. In this thesis, we continue the work on RCOSIM by
addressing some of its limitations, presented below, in order to improve its performance
and also to extend its use to different kinds of co-simulations.

In [1] a set of rules is defined for propagating timing constraints from a physically
available component to simulated models in a HiL co-simulation. It defines the constraints
for each model of the co-simulation. In this thesis, we extend these rules to apply them on
FMI compliant models. Furthermore, we propose non preemptive multi-core scheduling
algorithms to satisfy the defined timing constraints.

The contributions of this thesis are the following:

• A dependence graph model for representing FMI co-simulations: Our
contributions consist in extending the dependence graph model of the RCOSIM
approach to handle additional requirements and constraints as follows:

4 1.3. Thesis Outline

1. We extend the mono-rate dependence graph model to handle multi-rate FMI
co-simulation. Such co-simulation involves FMUs that are assigned different
communication step sizes which define the data exchange rates of the FMUs.
Such co-simulations cannot be handeled by RCOSIM because the dependence
graph model fails to represent the different communication step sizes. We
propose a transformation algorithm that transforms the dependence graph of
a multi-rate FMI co-simulation. The result is a new graph that represents well
the data exchange rates of the different FMUs.

2. We propose a method for handling mutual exclusion constraints between
functions of a same FMU. It is not possible to execute such functions in parallel
because they share resources, e.g. variables. The RCOSIM approach handles
these constraints in a way that limits the attainable acceleration of the co-
simulation. Our proposed solution results in a new graph that defines an order
of execution for functions that are mutually exclusive. In order to obtain this
new graph, we propose an acyclic orientation ILP formulation and heuristic.

3. We add to the dependence graph model real-time constraints to perform HiL
FMI co-simulation when some models are replaced by there real counterparts
that are physically available. Since real-time constraints are imposed by the
real parts on some inputs and outputs of the simulated models, we propose
propagation algorithms that assign, according to the dependence, real-time
constraints (release and deadline dates) to the nodes of the dependence graph.

• Multi-core scheduling of FMI co-simulations: We improve the scheduling
heuristic used in the RCOSIM approach and propose other algorithms as follows:

4. We propose non preemptive multi-core scheduling algorithms for the problem
of co-simulation acceleration. We improve the multi-core scheduling heuristic
used in RCOSIM by using profiled execution times and accounting for syn-
chronization cost. Also, we propose an Integer Linear Programming (ILP)
formulation.

5. We propose an implementation of a runtime non preemptive scheduling solution
using the Intel TBB library [6] for the acceleration of FMI co-simulation.

6. We propose non preemptive multi-core scheduling algorithms for the problem
of HiL FMI co-simulation under real-time constraints. These algorithms consist
in an ILP formulation and a heuristic.

1.3 Thesis Outline

The rest of this thesis is structured in six chapters. In Chapter 2 we give basic concepts
and preliminaries related to the different domains that are involved in the thesis. In
the first section, we present basic concepts of modeling and simulation. First we specify
the type of systems that we are interested in. Then, we briefly present several modeling

1. Introduction 5

formalisms with an emphasis on differential equations and hybrid modeling. Next, we
present the principle of numerical simulation before defining the concept of co-simulation.
Co-simulation under real-time constraints is defined afterward. Finally, we review some
of the most known tools for modeling and simulation, and real-time simulation.

In Chapter 3, we give a detailed description of the research problem of this thesis.
We start, in the first section, by giving an overview of the problem. In the second
section, we present the RCOSIM approach that we aim at improving and extending
in this thesis. Next, we list the limitations of RCOSIM. Finally, we present the open
research issues and the objectives of the thesis in detail.

Chapter 4 focuses on the first part of our contributions, i.e. a dependence graph
model for representing FMI co-simulations. First, we present in detail the method of
construction of the dependence graph of an FMI co-simulation, used in the RCOSIM
approach. The next section is dedicated to multi-rate FMI co-simulation where we propose
a transformation algorithm for multi-rate dependence graphs and give a small illustrative
example. Then, we deal with the problem of handling mutual exclusion constraints. We
give a detailed description of the problem and formulate it as an acyclic orientation
problem. We propose a heuristic and and ILP formulation that perform the acyclic
orientation of the dependence graph. In the last section, we describe the problem of
propagating real-time constraints before detailing the proposed propagation algorithms.
We give small examples to illustrate the algorithms.

In Chapter 5, we present our proposed scheduling heursitics and ILP formulations
for both the acceleration of the co-simulation and the execution of HiL co-simulation
under real-time constraints.

We evaluate our proposed solutions in Chapter 6. First, we propose a random generator
of synthetic FMI co-simulations. Then we compare the performances of the heuristics and
the ILP formulations for the acyclic orientation and the scheduling respectively. Finally, we
evaluate our approach by applying it on an industrial use case. We compare its performance
with RCOSIM and a runtime scheduling solution based on the Intel TBB library.

Chapter 7 concludes this thesis. First, we give a summary of the objectives and the
contributions of the thesis. Then, we present some perspectives for future work.

6

2
Background

Contents

2.1 Modeling and Simulation . 7
2.1.1 Systems . 8
2.1.2 Modeling . 9
2.1.3 Simulation . 11
2.1.4 Co-simulation . 13
2.1.5 Co-simulation under Real-time Constraints 18
2.1.6 Languages and Tools for Modeling and Simulation 19

2.2 Parallel Computing . 23
2.2.1 Parallelism in Hardware . 24
2.2.2 Parallelism in Software . 26
2.2.3 Parallel Programming . 27
2.2.4 Parallel Scheduling . 29
2.2.5 Parallel Real-time Scheduling . 33
2.2.6 Parallel Execution . 36

2.3 Parallel Execution of Co-simulation 37
2.3.1 Approaches . 37
2.3.2 Tools . 39

This chapter describes fundamental concepts and gives literature review about research
topics that are involved in this thesis. Topics covered include modeling and simulation,
co-simulation, parallel computing, scheduling in the context of parallel computing, and
parallelization approaches related to (co-)simulation.

2.1 Modeling and Simulation

The design of complex systems imposes the study of their behavior before building them
with the objective of allowing preliminary evaluation, tuning and possibly redesign of

7

8 2.1. Modeling and Simulation

the solution. Simulation has proven successful in responding to this need and became
an indisputable step in the design process of complex systems. Simulation is an effective
way for cost reduction since it allows correcting design errors before building the system.
Simulation is performed by providing models which describe the system and then bringing
these models to life by running them in order to imitate, on a computer, the behavior
of the simulated system over time.

2.1.1 Systems

Before detailing the concepts and methods of modeling and simulation of systems, it is
important to understand what is meant by a system. See Definition 2.1.1.

Definition 2.1.1. A system is defined as a set of interacting parts which form a complex
whole and operate towards a common goal.

In order to have clearer understanding, the notion of a system should be conceived in
the scope of the context that it is used in. In engineering domains, in addition to the
definition given above, a system can be seen as an entity which consumes inputs and
produces outputs from and to the environment, and is characterized by an internal state.
The state of the system is affected by the inputs that it consumes, and, in turn, affects
the produced outputs. Figure 2.1 illustrates this view as usually found in block diagrams
where u represents the input of the system, y the output, and x the internal state.

x
u y

Figure 2.1: A block diagram representation of a system.

A kind of systems that falls within the scope of this thesis is known as Cyber-
Physical Systems (CPS) [3]. CPS consist of a combination of tightly or loosely interacting
computational elements and physical processes. The computational elements are called
embedded systems or controllers and are used to control the physical processes. They
are interfaced with the physical processes through sensors and actuators. The aim of the
controller is to bring the physical process to a desired state by sending digital control
data. If the physical process does not in turn send back data to the controller, the system
is referred to as open loop control. Alternatively, the controller’s behavior is possibly
adapted to the change in the state of the physical process which sends feedback data.
The term closed loop control is used to refer to such interaction between the controller
and the physical process. Basically, an error, which is the divergence between the aimed
behavior, called reference, and the actual behavior of the physical process is measured
and corrected. Figure 2.2 shows a basic example of a CPS with feedback control. It is
common that CPS contain multiple feedback loops and involve simple or sophisticated
networks that are used for the communication between the different parts of the CPS. A
Digital-to-Analog Converter (DAC) is used to convert the data produced by a controller

2. Background 9

and consumed by a physical process. Conversely, an Analog-to-Digital Converter (ADC)
is used to convert the data produced by a physical process and consumed by a controller.

Controller Physical process
Input

Sensor

Reference
Measured
error Output

−
Measured
output

Figure 2.2: Feedback control of a physical process.

Areas where CPS can be found are as important as automotive, aerospace, manufac-
turing, transportation and many others. The diversity of the involved disciplines makes
the process of building CPS challenging, costly and time consuming.

2.1.2 Modeling

Modeling a system consists in creating a mathematical abstraction of its behavior. The
first step is to choose a modeling formalism. This choice depends on the properties
of the system, the objective of the simulation, and the aimed level of detail in the
simulation. For instance, models can be built using continuous time variables to represent
continuous dynamics of a physical process. Such mathematical models consist of a set
of differential equations which describe the continuously changing physical quantities
of a process such as electrical circuits, fluid dynamics, chemical reactions, etc. Other
systems feature a behavior which evolves between a finite set of states. These systems
can be modeled using formalisms such as DEVS (Discrete Event System Specification)
[7], Statecharts [8], and Petri nets [9]. Finally, hybrid modeling allows the modeling of
systems with both continuous variables and discrete states. In other words, the system
jumps between discrete states and while it is in a certain state, it features a continuous
behavior, i.e. its quantities change continuously.

In this thesis, we focus on the modeling of dynamical systems using differential
equations. A differential equation expresses a variable as a function of its derivatives.
In the modeling of dynamical systems, the variables are the physical quantities and
the derivatives express their rates of change. A differential equation is called Ordinary
Differential Equation, abbreviated ODE, if it involves ordinary derivatives of the variables
with respect to an independent variable (usually the time in the modeling of dynamical
systems). The ordinary derivative consists in computing the derivative of the function
allowing all variables to vary. The term ordinary is used in contrast with the term Partial
Differential Equation presented below. Equation 2.1 is an ODE where x is the vector of the
variables of interest called the state variables, ẋ = dx

dt is the vector of the time derivatives
of the state variables, t is the time (the independent parameter), and f is a given function.

10 2.1. Modeling and Simulation

0 = f(ẋ, x, t) ≡ f(dx
dt
, x, t) (2.1)

A differential equation is called Partial Differential Equation, abbreviated PDE
if it involves unknown functions and their partial derivatives. A partial derivative
of a function is its derivative with respect to one variable while holding the other
variables constant. Equation 2.2 shows such PDE where x1, x2, . . . , xn are the parameters,
y = y(x1, x2, . . . , xn) is the unknown function, ∂y

∂xi
: 1 ≤ i ≤ n are the partial derivatives

of y, and f is a given function.

0 = f

(
x1, x2, . . . , xn, y,

∂y

∂x1
,
∂y

∂x2
, . . . ,

∂y

∂xn

)
(2.2)

A Differential Algebraic Equation, abbreviated DAE, is a system of equations which
involves algebraic equations in addition to differential equations. A DAE can be written in
the form shown in equation 2.3 where f represents differential equations involving deriva-
tives of variables and g represents algebraic equations which do not contain derivatives.

0 = f(ẋ, x, t) ≡ f(dx
dt
, x, t)

0 = g(x, t)
(2.3)

In this thesis, we are particularly interested in modeling dynamical systems using
ODEs. Typically, such systems are hybrid dynamical systems modeled using hybrid ODEs.
These systems exhibit continuous behavior interspersed with jumps triggered by some
events. There are two kinds of events: Events which occur at a particular instant in
time are called time events. The other kind of events, called state events or zero-crossing,
arise as a result of the value of a state variable crossing a specific threshold. Time events
are easier to handle than state events since they occur at known instants in time. A
classic example of such hybrid dynamical systems is the bouncing ball model where a
ball is dropped from a certain height above the ground. The ball falls with a velocity
subject to gravity and bounces when it hits the surface. Equation 2.4 gives a hybrid
system of equations which describes the behavior of the bouncing ball where x is the
position of the ball (height), v its velocity, g the gravity constant, and γ the coefficient
of restitution. The first and second time derivatives of x, ẋ = dx

dt and ẍ = d2x
dt2 represent

the velocity and the acceleration of the ball respectively.

ẋ = v

ẍ = −g if x > 0
ẋ := −γẋ if x = 0

(2.4)

The bouncing ball model exhibits a continuous behavior when x > 0 and discontinuities
occur at bounces, i.e. when x = 0, where the velocity of the ball is inverted and scaled
down by a factor equal to γ. In other words, the motion of the ball changes from
downward to upward. This hybrid dynamical system can be modeled using a hybrid
automaton as shown in Figure 2.3.

2. Background 11

x > 0

ẋ = v
ẍ = −g

ẋ := −γẋ

x = 0

Figure 2.3: Hybrid automaton of the bouncing ball system.

The discrete dynamics found in hybrid dynamical systems should be distinguished
from the discrete nature of the controllers. The controllers are digital systems, hence,
discrete systems. Control laws, i.e. the algorithms of control can be modeled in the
continuous domain. However, since these laws are intended to be implemented on
computers, a conversion from the continuous to the discrete domain is needed in order
to implement them as controller software. When simulated (see next section) with the
physical process, a control law that is modeled in the continuous domain is richer in terms
of the information it gives about the controller behavior than its discrete counterpart.
Also, continuous control laws allow better optimization of specific criteria that are of
interest. The discrete control laws obtained through discretization of the continuous
control laws are simulated with the physical processes in order to assess the effects of
the discretization and, finally, implement the controller software.

2.1.3 Simulation

Given a model of the system under study, the simulation consists in running this model
in order to produce and plot, on a computer, data consisting in time varying values of the
quantities of interest. These data are used in order to assess different aspects about the
functioning of the system. Technically speaking, running a model which consists of a set
of ODEs means solving these equations. In practice, it is not possible to find the solution
of such equations analytically which imposes the use of numerical methods to solve them.
Such numerical methods, called solvers, are based on the principle of discretization of
the time t. This means that the values of the state variables x(t) of an ODE in the form
of equation 2.1 evolve between discrete points of time, called time steps, (tk, tk+1, . . .)
instead of an evolution in continuous time t ∈ R+. The distance between two time steps
is called the time step size or the integration step size. The smaller is the integration
step size, the more accurate is the numerical resolution of the equations, i.e. the closer
it is to the exact solution. However, reducing the integration step size requires more
computations and, thus, slows down the execution of the solver. A tradeoff has to be
made according to the desired quality and computation speed.

The discretized time can be written as: tk = k × h where h is the integration step
size and k ∈ N. The solver computes a sequence: xk+1 = F (xk, tk) where xk is the value

12 2.1. Modeling and Simulation

of the variable x at tk, the kth time step and F is the solver or the integration function.
Starting from the initial time t0 and having the initial condition x0, which is the value of
x at time t0, the numerical resolution consists in computing approximate values of the
quantity x repeatedly with respect to the discretized time. The time step h has to be
chosen in such a way that the dynamics of the simulated system are well captured. When
the system exhibits dynamics heterogeneity, e.g. fast transients and slow evolutions of the
state variables, a fixed time step becomes less efficient. It is therefore more efficient to use
a variable time step. A solver with variable step controls the step size using a feedback
loop on the error. The step size is adapted according to an estimation of the error.

Solvers are characterized by a number of properties (e.g. order, explicit/implicit,
fixed/variable integration step size, convergence, speed, . . .) which should be taken into
consideration when choosing a solver for a specific problem.

As an example, the simulation of the bouncing ball model represented in Figure
2.3 produces the plots shown in Figure 2.4. The time-varying position and velocity
of the ball as it alternates between downward and upward movements are shown in
Figure 2.4a and Figure 2.4b respectively.

0 500 1000 1500 20000

5

10

15

20

25

(a) Position

0 500 1000 1500 2000

−20

−10

0

10

20

(b) Velocity

Figure 2.4: Trajectories obtained from the simulation of the bouncing ball model

Quantized State System (QSS) methods [10] offer an alternative to modeling an simu-
lation methods based on time discretization. Their principle is based on discretizing the
state and considering the time as continuous. The resolution consists in solving for the time

2. Background 13

when the state changes by a quantum. These methods are out of the scope of this thesis.

2.1.4 Co-simulation

Complex systems may involve heterogeneous interacting parts. For instance, In a CPS,
the controlled physical process constitutes a multi-physics system and is modeled in
the continuous time domain using (hybrid) Ordinary Differential Equations (ODEs).
On the other hand, because they are implemented on embedded computers, numerical
laws that control the physical process may be modeled in the discrete time domain.
For such systems, it becomes necessary to do the modeling at the subsystem level,
sometimes without a detailed view about the other subsystems. Models are then coupled
together in order to perform simulation at the system level, known as co-simulation.
In co-simulation, the different models are simulated in a black-box fashion and an
orchestration of their interactions has to be ensured. The interactions between the
involved models consist in data exchange.

Co-simulation is an alternative approach to monolithic simulation where a complex
system is modeled as a whole using differential equations and simulated by numerically
solving these equations. Co-simulation has a number of advantages over the monolithic
approach. It allows modeling each part of the system using the most appropriate modeling
tool instead of using a single one. Also, it allows a better intervention of the experts
of different fields at the subsystem level. Furthermore, co-simulation facilitates the
upgrade, the reuse, and the exchange of models.

In co-simulation of models based on ODEs, the equations of each model are integrated
using a solver separately. Models exchange data by updating their inputs and outputs at
fixed points in time called communication steps. The distance between two communication
steps is referred to as communication step size and denoted H. The communication step
size associated with a model is a multiple of the integration step size of the model and
defines the rate of communication (data exchange) of this model. It does not make any
sense to use a communication step size that is smaller than the integration step size
because communication should only be performed at points corresponding to integration
steps. Thus, the communication step size should be at least equal to the integration step
size. Using a communication step size that is a multiple of the integration step size is
interesting when the inputs or the outputs of the model don’t need to be updated at every
integration step. For instance, if at one out of two integration steps, the model consumes
new input values, its communication step size can be set to two times its integration
step size. Therefore, the equations of the model are computed at every integration step,
and its inputs and outputs are updated at every communication step. Figure 2.5 shows
the evolution of time and data exchange in a co-simulation of two models A and B. In
this example, the equations of model A are solved using a fixed step size hA whereas the
equations of model B are solved using a variable step size hB. The communication step
size H is considerably larger than both integrations step sizes, allowing fast progress of the
integration of the equations by restricting the data exchange to occur at communication
steps only. Between communication steps, each model considers that the values of data

14 2.1. Modeling and Simulation

produced by the other model are held constant. Another alternative is to estimate these
values by employing extrapolation techniques [11, 12].

time

M
od

el
A hA H

time

M
od

el
B hb

Figure 2.5: Time evolution and data exchange between two models during co-simulation.

For larger co-simulations involving more models, different communication step sizes
may be associated with different models. In this case, we talk about multi-rate co-
simulation.

In this thesis, we are interested, in particular, in co-simulations that are compliant with
the Functional Mock-up Interface (FMI) standard [4], presented hereafter. There exist
other standards which target the coupling of simulators, e.g. the High-Level Architecture
(HLA) [13]. We are interested in the FMI standard because it is adopted by many modeling
and simulation tools and is becoming the state of the art standard for co-simulation,
thanks to the different possibilities of simulators and models coupling that it offers.

In the context of CPS which contain embedded systems controlling physical processes,
different kinds of co-simulation, presented below, can be performed depending on the
stage of the controller design.

Model-in-the-Loop

At an early stage of the controller design, Model-in-the-Loop (MiL) co-simulation is
performed. In MiL, the model of the controller is included with the model of the
controlled physical process in a co-simulation in order to test and validate the functioning
scenarios of the controller. By using a system model, MiL aids in the design of control
algorithms and also the investigation of design concepts. Once the functions of the control
algorithm are specified, the controller software can be implemented.

Software-in-the-Loop

In the next stage, the controller software can be implemented to perform Software-in-
the-Loop (SiL) co-simulation. The controller software code can be generated from the
controller model. It is then integrated with the simulated models and executed on the
computer that runs the simulation. SiL is an inexpensive approach to perform realistic

2. Background 15

tests of the controller’s performance without the need for using a special hardware. It is
common to move back and forth between the MiL and the SiL stages to make necessary
rectifications if design flaws are detected.

Hardware-in-the-Loop

After the verification of the controller software, the next stage consists in performing
Hardware-in-the-Loop (HiL) co-simulation. In HiL, the controller software is implemented
on the controller hardware (e.g. Electronic Control Unit) which is connected to the
computer that runs the simulation of the physical process. HiL must run in real-time
in order to imitate the real interactions between the controller and the physical process.
If any problems are detected, one can go back to SiL or MiL stage to make necessary
corrections. Lamberg and Wältermann enumerate the following advantages of HiL [14]:

• The controller algorithm can be tested in an early stage of the development process,
allowing early potential corrections and tuning.

• HiL is an efficient alternative for expensive field trials, experiments in borderline
zones and hazardous situations.

• Parameters can be tuned in order to perform tests under unusual conditions, e.g.
extreme weather conditions.

• Failures that could lead to catastrophic damages in the real system can be tested
and corrected systematically.

• If needed, the tests can be reproduced repeatedly and automatically with high
precision.

Figure 2.6 gives a view of the different types of co-simulation performed as part
of the process of controller design.

Coupling models and performing co-simulation presents many technical challenges.
Some attempts have been made to establish methods that allow easy coupling of models
and running co-simulations. In the following, we present FMI, a prominent industrial
standard that was developed for model exchange and co-simulation.

The Functional Mock-up Interface Standard

The Functional Mock-up Interface (FMI) is a tool-independent and open standard designed
in the context of the European ITEA MODELISAR project1 and is currently developed
and maintained by the Modelica Association2 which promotes the Modelica language (see
Section 2.1.6). The FMI standard was developed in order to facilitate the co-simulation of
dynamical systems, such as CPS. It provides specifications in order to enable the exchange

1itea3.org/project/modelisar.html
2www.modelica.org/association/

16 2.1. Modeling and Simulation

Controller modelController modelController model

Controller softwareController softwareController software

Controller hardwareController hardwareController hardware

Physical process modelPhysical process modelPhysical process model

Physical processPhysical processPhysical process

Code generation

Implementation

Validation

MiL

SiL
HiL

HiL
HiL

Figure 2.6: Different types of co-simulation involved in the process of controller design.

and the co-simulation of heterogeneous dynamical models that may be developed by
different tools. A modeling tool that supports FMI can export a model as a Functional
Mock-up Unit (FMU) which can be used in co-simulation environments. FMI defines
interfaces for the involved models to allow their co-simulation.

An FMU is a package that encapsulates different files:

• An XML file that contains, among other data, the definition of the different variables
of the models and the description of the dataflow between these variables.

• Model functions: Standardized C functions that are used to create instances of the
FMU and run them. The functions can be provided as platform dependent binaries
(e.g. DLL files) or as C source code.

• Documentation: Optional files that contain documentation about the model.

The FMI standard is organized in two parts:

• FMI for Model Exchange: This specification provides interfaces and defines how
model equations should be encapsulated in components. It allows solving each
model independently using custom solvers. Accessing and computing the equations
is done through standardized function calls. Figure 2.7 illustrates the principle of
FMI for Model Exchange.

• FMI for Co-Simulation: This specification defines interfaces between a master
algorithm and slave models. It is intended to couple different simulators (models
with their solvers) in a co-simulation environment. Figure 2.8 illustrates the principle
of FMI for Co-Simulation.

In the context of FMI, we talk about model export and import. Model export means
that a model is developed in one tool and then shipped as an FMU. Model import refers

2. Background 17

FMU 1 FMU 2 FMU n

Tool
Solver

Model 1 Model 2 Model n
. . .

FMI

Figure 2.7: FMI for Model Exchange.

FMU 1 FMU 2 FMU n

Tool

Model 1 Solver 1 Model 2 Solver 2 Model n Solver n
. . .

FMI

Figure 2.8: FMI for Model Co-Simulation.

to using an FMU in a co-simulation environment different than the tool that was used
to develop the FMU. In Figure 2.7 and Figure 2.8, the different FMUs are imported
into and executed within the co-simulation environment.

The High-Level Architecture Standard

The High-Level Architecture (HLA) [13] is an IEEE standard developed by the U.S.
Modeling and Simulation Coordination Office (M&S CO)3. It consists in a specification
of a software architecture that allows building a distributed simulation composed of
several interacting simulations. Largely used for defense applications, it later gained
popularity in the civil domain.

In HLA, each involved simulation is called a federate and the distributed simulation
composed of interacting federates is called a federation. The specification describes how
communication is performed within a federation through the Run Time Infrastructure
(RTI) which is a middleware that provides services for data exchange, synchronization,
and coordination between the federates.

An HLA specification includes the following elements:

• An interface specification that describes how federates can be integrated and
coordinate by using services provided by the RTI. An Application Programming
Interface (API) is provided by the RTI to this end.

• An Object Model Template (OMT) that specifies a framework for communication
between the federates. It comprises the Federation Object Model (FOM) which
describes the interactions for the whole federation and the Simulation Object Model
(SOM) which describes the interactions for one federate.

3www.msco.mil

18 2.1. Modeling and Simulation

• A set of rules about that have to be respected in the federations and the federates.

Figure 2.9 shows an example of an HLA federation.

Federate 1 Federate 2 Federate n

Run Time Infrastructure (RTI)

. . .

Interface

Figure 2.9: HLA federation.

2.1.5 Co-simulation under Real-time Constraints

In the design process of complex systems, it is often necessary to test the behavior of the
system or a part of the system as it would be produced by the real system. Therefore,
the co-simulation is executed under real-time constraints such that the progress of the
simulated time matches the real-time. For example, if temperature takes three minutes to
reach 25° in the real system, the simulated temperature has to take three minutes as well
to reach the same value. Co-simulation under real-time constraints has to be executed
such that the simulated time is advanced at the same speed as real-time.

A typical application of co-simulation under real-time constraints is HiL co-simulation.
The key advantage of co-simulation under real-time constraints is that it allows testing
the controller under realistic conditions even if the physical process is not available.

Roughly speaking, the difference between co-simulation under real-time constraints
and co-simulation without real-time constraints is related to the notion of results validity.
For co-simulation without real-time constraints, one seeks to obtain results as soon as
possible. The validity of the results depends only on their numerical accuracy. For
co-simulation under real-time constraints, the validity of results depends not only on
their numerical accuracy but also on their availability time, i.e. they have to be available
within specific time deadlines. If such deadlines are missed, the results are considered
invalid even if their values are correct from a numerical standpoint.

Figure 2.10 illustrates the time evolution of a co-simulation under real-time constraints
in comparison to accelerated co-simulation without real-time constraints. For the former,
during the resolution of the differential equations, the value of each variable x is computed
at every time step. The computation of xn+1, the value of x at time step tn+1, cannot
start before the value of xn is computed as the computation of xn+1 depends on the
value of xn. If the time required to compute the value of xn+1 exceeds the step size,
the real-time constraints are violated which makes the co-simulation invalid. This is
known as an overrun. In the field of real-time systems, we talk also about deadline miss.
In the context of co-simulation under real-time constraints, the deadline of a variable
computation is the time step by which the value of the variable has to be provided,
e.g. time step tn for the computation of xn.

2. Background 19

A co-simulation under real-time constraints is executed repeatedly. The execution
is driven by real-time periods related to data exchange between the simulated part and
the real part, e.g. the controller. This period can be different (usually greater) than
the integration step sizes used in the co-simulation. In this case, not all computations
are required to meet their deadlines. Instead, we seek rendezvous points where time
steps and real-time periods match. Only the computations whose deadlines correspond
to these points must not overrun. Hence, a co-simulation can be guaranteed to satisfy
real-time constraints even if the rest of the computations miss their deadlines. Note
that this is the main reason we use the term co-simulation under real-time constraints
instead of real-time co-simulation. In fact, the latter implies that all computations
are subject to real-time constraints.

tn−1 tn tn+1 tn+2

xn
xn+1 xn+2

Idle Overrun
f(xn−1, tn) f(xn, tn+1) f(xn+1, tn+2)

xn xn+1 xn+2

f(xn−1, tn) f(xn, tn+1) f(xn+1, tn+2)

Time step

Real-time
co-simulation

Accelerated
co-simulation

tn−1 tn tn+1 tn+2
Time step

tn−1 tn tn+1 tn+2
Real-time

tn−1 tn tn+1 tn+2
Real-time

Figure 2.10: Comparison of accelerated co-simulation and co-simulation under real-time
constraints.

2.1.6 Languages and Tools for Modeling and Simulation

Building models of systems can be done manually and then transformed into software
using general purpose programming languages such as C. However, this approach is
not efficient in practice, especially when the modeled system is complex and changes
may be required in the model. Many tools and languages for modeling and simulation
have been developed in order to facilitate and make the modeling and simulation more
efficient. Such tools allow the user to specify an equation-based model in a straightforward
manner and come with built-in solvers. Below, we present a non exhaustive list of tools
and languages for modeling and simulation.

20 2.1. Modeling and Simulation

MATLAB Simulink

Simulink4, developed by The Mathworks is a graphical modeling environment. Simulink
can be used in the process of designing embedded systems. It allows the simulation of
embedded systems with the controlled physical processes. Models are built graphically in
Simulink using block diagrams. In addition, Simulink is integrated in MATLAB which
allows the incorporation of MATLAB functions in Simulink models. Finally, Simulink
enables automatic code generation from models.

Modelica

Modelica [15] is an object-oriented equation-based language for the modeling of complex
physical systems developed by the Modelica Association. Modelica allows the modeling
of physical systems by writing a set of equations. Modelica adopts an acausal approach,
i.e. the direction of the signal is not specified in the model. The simulator has to perform
symbolic manipulations in order to define inputs and outputs and find an order of execution
for these equations. There exist several tools that are based on the Modelica language.

OpenModelica5 is an open-source modeling and simulation environment based on
the Modelica language. It is developed and maintained by the Open Source Modelica
Consortium (OSMC). OpenModelica supports the FMI for Model Exchange standard.

Dymola6, developed by Dassault Systèmes AB, is a modeling and simulation envi-
ronment based on the Modelica modeling language. Dymola supports the FMI standard
and allows interfacing with other tools such as Simulink.

LMS Imagine.Lab Amesim

LMS Imagine.Lab Amesim7 is a modeling and simulation software developed by Siemens
PLM Software. It can be used for the modeling and simulation of mechatronic systems.
It is based on the Modelica modeling language. It is oriented towards the modeling of
complex physical systems instead of controller design. LMS Imagine.Lab Amesim provides
libraries containing collections of components that can be loaded and connected by the
user to build models. For simulation, LMS Imagine.Lab Amesim automatically selects
a solver that is adapted to the problem. It supports the FMI standard.

xMOD

xMOD8 is the modeling and co-simulation software developed by IFP Energies nouvelles.
It supports the FMI standard and provides an environment for the integration of
heterogeneous models built by different parties using different languages and tools. xMOD
can execute models with different integration and communication step sizes. Also, it

4www.mathworks.com/products/simulink
5www.openmodelica.org
6www.3ds.com/products-services/catia/products/dymola
7www.plm.automation.siemens.com/en_us/products/lms/imagine-lab/amesim
8www.xmodsoftware.com

2. Background 21

allows the co-simulation of models embedding different solvers or not. In the latter
case, xMOD provides a list of different solvers from which the user can choose one for
every model. xMOD does not replace original modeling and simulation tools. Instead,
it promotes and facilitates their coupling and existence.

DACCOSIM

The Distributed Architecture for Controlled CO-SIMulation (DACCOSIM)9 is a co-
simulation software developed and maintained by EDF Lab Paris-Saclay10 and Cen-
traleSupélec11. It supports the FMI standard and allows distributed co-simulation of
FMUs on multi-core architectures or clusters. DACOSSIM is able to execute FMUs
with different fixed or variable integration steps.

CosiMate

CosiMate12 is a co-simulation environment that enables distributed co-simulation. Multiple
simulators can be executed on different computers and communicate over a network.
CosiMate supports the FMI standard, interfacing with Simulink, and several languages
like Modelica, C++, and Java.

Hopsan

Hopsan13 is a free multi-domain system co-simulation tool developed at the division
of Fluid and Mechatronic Systems at Linköping university. Hopsan supports the FMI
standard and model export to Simulink.

The additional timing constraints found in real-time simulation require the use of
adapted tools. Many real-time simulation tools are developed in such a way to run the
simulated part on special dedicated hardware that provides an execution fast enough
to ensure real-time constraints. Other solutions tend to enable real-time co-simulation
using general purpose computers equipped with Real-Time Operations Systems (RTOS).
In [16], the authors give a list of the available real-time simulation tools and detail
their characteristics. In the following, we present a non exhaustive list of tools for
real-time simulation.

xMOD HiL

xMOD is doted with HiL capabilities. It allows connecting controller hardware to a
desktop computer running co-simulation in xMOD using the CAN protocol to perform
HiL testing. Also, it features a real-time communication driver, based on the UDP protocol
to connect xMOD to different types of HiL platforms such as dSPACE (see below).

9sourcesup.renater.fr/daccosim
10www.edf.fr
11www.centralesupelec.fr
12www.cosimate.com
13www.iei.liu.se/flumes/system-simulation/hopsan?l=en

22 2.1. Modeling and Simulation

Simulink Coder

MATLAB/Simulink offers the Simulink Coder solution for real-time simulation. Simulink
Coder generates C/C++ executable code from Simulink models and MATLAB functions.
The generated code can be used in a real-time simulation such as HiL testing. The
generated code can be deployed with or without a RTOS. Simulink Coder offers three
execution modes. In the Single-Tasking Mode, the generated code is executed in a single
thread. In the Multi-Tasking Mode, the user specifies sampling periods for parts of the
generated code, called rates in Simulink Coder, which are executed and scheduled by
a priority-based scheduler. The Asynchronous Mode allows specifying nonperiodic or
asynchronous rates. Simulink Coder generates the necessary code to handle such rates.

RT-LAB

OPAL-RT14, a company specializing in real-time simulation, develops the RT-LAB
real-time simulation software. RT-LAB transforms Simulink models into a real-time
application by generating and compiling C code. The generated code can be run
in parallel on multiple cores. OPAL-RT provides its own hardware targets for the
execution of real-time simulation combining COTS parallel computing technologies. Its
solution uses a Linux based RTOS.

dSpace

dSpace15 features the Real-Time Interface (RTI). dSpace relies on Simulink as the modeling
tool and uses RTI to extend Simulink Coder for automatic implementation of generated
code by Simulink Coder on the real-time hardware of dSpace. An RTI library in Simulink
allows adding blocks that implement I/O capabilities to Simulink models. The code
generated by Simulink Coder from such models is prepared to be executed on dSpace
hardware without manual editing of the code.

RTDS

Developed by RTDS Technologies16, RTDS is a real-time simulator of power systems.
It consists of a custom hardware and a custom software. The hardware is composed of
multiple chassis containing each a multi-core processor. The RTDS software is designed
for interfacing with the RTDS hardware. It consists of several modules necessary for
creating, tuning, loading a simulation into the RTDS hardware, and plotting and
visualizing the results.

14www.opal-rt.com
15www.dspace.com
16www.rtds.com

2. Background 23

Typhoon HiL

Multiple hardware platforms are proposed by Typhoon HiL17. It offers a complete
software solution comprising a schematic editor, a module for interfacing with Typhoon
hardware, a test suite to run some pre-certification tests, and a power systems toolbox
offering a variety of built-in models. Typhoon HiL targets primarily real-time HiL
simulation of power systems.

2.2 Parallel Computing

Parallel computing is a very important branch in the computing research and industry. It
refers to the discipline that focuses on executing multiple computations simultaneously to
solve one problem; thus, accelerating the total time of computation. Its basic idea is to
divide a computational task into several sub-tasks that can be performed at the same
time. From the beginning of the modern era of computing, computer software has been
typically written for sequential execution. In order to solve a problem, an algorithm is
designed as a sequence of instructions that are executed one after the other. In order to
increase the computation power of computers, the dominant method has for long been
frequency scaling. If a processor’s frequency is increased, it means that it can execute more
instructions per clock cycle and thus can execute a sequential program faster. Moore’s law
predicted that the number of transistors in a processor would double approximately every
two years [17]. This prediction proved correct for many years. However, frequency scaling
is facing technological limits and the last decade witnessed a wide shift to multi-core
processors among semiconductor manufacturers. The rise of multi-core processors has
caused the evolution of many parallel hardware and software technologies.

The main goal of parallel computing is to execute computer programs faster. The
speedup obtained from the parallelization can be predicted using Amdhal’s law [18].
It states that for a program that is paralellized in order to be executed on multiple
processors, the portion of the program that has to be executed sequentially limits the
attainable speedup. The speedup is, therefore, not linear according to the number of
processors and adding more processors does not make the program run faster than the
portion of the program that has to be executed sequentially. The following formula gives
the theoretical speedup computed using Amdahl’s law:

S(n) = 1
(1− P) + P

n

(2.5)

S(n) is the theoretical speedup, P is the portion of the program that can be parallelized
and n is the number of processors. Figure 2.11 shows the theoretical speedup of a program
in function of the number of processors for different values of P . It shows for example
that if 50% of a program can be parallelized, the maximum possible speedup is 2, and
if 95% of the program can be prallelized, the maximum speedup is around 20.

17www.typhoon-hil.com

24 2.2. Parallel Computing

1 2 4 8 16 32 64 12
8

25
6

51
2

10
20

20
50

41
00

81
90

16
40

0
32

80
0

65
50

0

0

5

10

15

20

Number of processors

Sp
ee
du

p

Parallelizable portion
50%
75%
90%
95%

Figure 2.11: Theoretical speedup computed using Amdahl’s law for a program in function of
the number of processors for different values of P.

2.2.1 Parallelism in Hardware

A computer program consists in a set of instructions. The first computers were only able to
execute programs sequentially, i.e. one instruction after another. Later, parallel computing
was made possible thanks to the introduction of parallel computers. Parallel computers
are of many types, some of which are adapted only to specific kinds of applications.
Parallel computers can be classified according to different criteria. Below, we present
the common classifications of parallel computers.

Flynn’s Taxonomy

The well-known Flynn’s taxonomy [19] classifies computers according to instruction and
data streams into the following categories:

Single Instruction Stream Single Data Stream (SISD) This is the basic unipro-
cessor which does not exhibit any parallelism. The execution is sequential where a single
instruction stream operates on a single data stream. Examples of such architecture
are old desktop computers.

2. Background 25

Single Instruction Stream Multiple Data Streams (SIMD) A SIMD computer
executes the same instruction stream on multiple data streams in parallel. A Graphics
Processing Unit (GPU) is one example of SIMD architectures.

Multiple Instruction Streams Single Data Stream (MISD) Multiple instruction
streams are executed on a single data stream. For example, in fault-tolerant computing,
the same operation is performed in parallel and the results of all the computations must
be the same. Pipeline architectures belong to the MISD class.

Multiple Instruction Streams Multiple Data Streams (MIMD) Different in-
struction streams are executed on different data streams in parallel. Examples of MIMD
computers include multi-core architectures, grid computers, and supercomputers.

Memory Models

Flynn’s taxonomy differentiates parallel computers based on their operational behav-
ior. Another important classification of parallel computers is the one based on the
organization of the memory.

Shared Memory In this class of parallel architectures, a common memory is shared
among multiple processors. All processors access the same global shared memory by
operating on a single address space. Communication between the processors is performed
through shared memory variables. Shared memory multiprocessors have the advantage
of low communication overhead thanks to the proximity of the memory to processors.
Scalability is a disadvantage of shared memory multiprocessors as increasing the number
of processors creates more traffic between the processors and the memory resulting in
memory contention. The latter means conflict between multiple accesses to memory. In
practice, shared memory architecture do not scale beyond 16 processors.

There are two kinds of shared memory designs, Uniform Memory Access (UMA)
and Non-Uniform Memory Access (NUMA). In the UMA design, the time needed to
access the memory is the same for all the processors. This architecture is referred to
as Symmetric Multiprocessor also. In the NUMA design, each processor has a local
memory, and the shared memory is composed of these local memories. Time to access
a specific memory region is not uniform for all processors. Processors access their local
memories faster than the local memories of other processors.

Message Passing In the message passing model, also known as distributed memory,
each processor has its own memory. Each processor operates on a distinct address space
and is only able to access its own memory. As the name suggests, communication between
the processors is performed by explicitly passing messages. If a processor requires data
from another processor, it explicitly sends a request to this processor and waits for its
response. An advantage of the distributed memory architecture is the scalability. If
the number of processors is increased, memory is increased also. A disadvantage of the

26 2.2. Parallel Computing

distributed memory architecture is the time needed to pass messages between processors.
This time becomes large in the case of a huge number of processors or long distances
between the processors. A typical distributed memory computer is a set of standalone
computers interconnected via a network, e.g. Ethernet.

Hybrid Memory It is possible to use both shared and distributed memory in a
computer. In this hybrid model, shared memory processors are connected via a network to
form a distributed memory architecture. This is the dominant memory architecture
in supercomputers today.

2.2.2 Parallelism in Software

Much progress has been made in the design of parallel hardware. That being said, taking
advantage of such architectures requires efficient ways for executing software on parallel
hardware. A difficult yet integral step in this direction is the process of detecting the
parallelism that is inherent in software. This parallelism can be classified into different
categories based on the nature of computations that are performed. The main classes
of software parallelism are the following:

Data Parallelism

Data parallelism is characterized by performing the same computation on a large set of
data. If several processors are available, the data can be distributed across them and
the same computation is executed on each processor. For instance a for-loop can be
parallelized by distributing the iterations over multiple processors. The same body of the
for-loop is executed on all the processors but operates on a different range of iterations
on each processor. Data parallelism corresponds to the SIMD parallel hardware.

Task Parallelism

In task parallelism, a program is divided into different computational tasks that are
distributed across the processors to be performed in parallel. The challenge here is the
question of how to divide the program efficiently so as to obtain the best speedup. In
task parallelism, tasks can operate on different data sets. Usually, data dependence
exists between the tasks. For instance, the result of one task is needed as input by
another task. Such dependence reduces the parallelism. Task parallelism corresponds
to the MIMD parallel hardware.

Pipeline Parallelism

Pipeline parallelism combines data and task parallelisms. Multiple tasks operate on
streams of data and are executed repeatedly in a sequence. Each task takes its input
from the preceding task and produces output to the next task. When a task finishes
processing a data element it passes it to the next task and starts processing a new

2. Background 27

data element even if the next task has not finished processing. Pipeline processing
is common in streaming applications such as video streaming. Pipeline parallelism
corresponds to the MISD parallel hardware.

2.2.3 Parallel Programming

In order to efficiently map software parallelism on hardware parallelism, many parallel
programming libraries, APIs, and standards have been developed. Basically they differ
according to the targeted type of memory. In the following, we define two fundamental
concepts found in parallel programming: processes and threads. Then, present parallel
programming models.

Process

A process is an instance of a program. It is characterized by the executable code of the
program and its context of execution including a unique process identifier, a memory
space, values of the processor’s registers, and other system resources. A program is a
set of instructions and a process is the actual execution of these instructions. A process
contains one or multiple threads (see below). The operating system offers Inter-Process
Communication (IPC) mechanisms to handle communication between multiple processes.

Thread

A thread is a unit of execution within a process. Multiple threads can exist within
a single process and be executed in parallel. Threads within the same process share
the same memory space and the same code. Also, since they share variables, they
can communicate directly, in contrast to processes which use IPC. Nevertheless, each
thread has its own context including a unique thread identifier, values of the processor’s
registers, and a call stack.

Let’s now present the different parallel programming models with some examples
of libraries and standards that follow such models.

Shared Memory Programming

Shared memory programming is based on threads. Multiple threads are created and
executed on multiple processors. The programmer does not need to worry about the
communication between threads as this is done implicitly via shared variables. Threads
may have private variables that are not shared with the other threads. A data consistency
problem occurs if two or more threads attempt to write data to the same memory
location. Threads must coordinate using synchronization mechanisms in order to avoid
data consistency problems. A synchronization mechanism ensures that only one thread
can execute a specific segment of code. There are many libraries and APIs for shared
memory programming. The following are some examples.

Open Multi-Processing (OpenMP) [20] is an API that has been designed to develop
applications that are meant to be executed on shared memory parallel computers such

28 2.2. Parallel Computing

as multi-core computers. OpenMP is supported by C, C++ and Fortran programming
languages. The basic idea of OpenMP is that a master thread is responsible for the
creation of slave threads that are allocated to processors to run in parallel. The creation
of slave threads is called forking. It is the duty of the developer to specify parts of the
code that can run in parallel using preprocessor directives. These directives cause the
threads to be created before their execution. When the execution of the slave threads
is finished, they join back to the master thread which continues the execution of the
program. OpenMP can be used for both data and task parallelism.

Intel Threading Building Blocks (Intel TBB) [6] is a C++ parallel programming
library. Using Intel TBB, the developer specifies the parallelism in the form of tasks, not
threads. Such tasks are pieces of code that can be executed in parallel but, in contrast
to threads, they are not explicitly assigned to hardware resources. For instance, on a
multi-core processor, the library creates one thread per core and automatically maps the
tasks onto the threads. Therefore, the developer focuses on specifying the parallelism
(what can be executed in parallel) instead of handling the parallelism (how to map the
parallelism). Intel TBB uses work stealing, i.e. it dynamically tries to balance the
computation load among the available processors at runtime.

Shared memory programming can be done using low level multi-threading also. For
instance by using POSIX threads (pthreads) or Windows threads. Such low-level approach
gives the developer more flexibility and control over the threads, e.g. thread creation and
mapping, compared to using libraries such as OpenMP or Intel TBB. Nonetheless,
the latter are simpler to use.

Distributed Memory Programming

Distributed memory programming is done using processes that are executed on different
processors. The data needs to be partitioned and mapped to the processors with the
corresponding tasks. Data is moved between processors if needed. An important challenge
is to keep data exchange as low as possible in order to minimize the communication
between the processors. Data consistency is not a concern in distributed programming,
since each process only writes to the local memory. Nevertheless, the developer needs to
implicitly specify the communication between the processors through message passing.

The classical standard for distributed memory programming is the Message Passing
Interface (MPI) [21]. MPI is a standard for programming distributed memory parallel
computers. It is supported by many programming languages and platforms. It defines a
communication protocol for performing the message passing and provides communication
and synchronization functionalities for collaborating processes that are allocated to
different processors. It supports different kinds of communications such as point-to-
point and collective communication. It is also possible to choose the topology of
communication to be used.

For more on parallel programming, one can refer to the survey presented in [22]. It
gives a very interesting review of the available parallel programming models and tools.

2. Background 29

2.2.4 Parallel Scheduling

Parallelization consists in partitioning a sequential program and allocating the different
parts in order to be executed on multiple processors. In order to be parallelized, a program
needs to be modeled in such a way to express the available parallelism. In general, a
model of a program can be made by dividing the program into tasks of computations and
defining dependence between them. If the number of the tasks is equal to the number
of processors, the parallelization of the program can be achieved by allocating each task
to a distinct processor. However, this is not the case in practice, i.e. there are much
more tasks than processors. In this case multiple tasks are allocated to one processor
and must be executed sequentially. Knowing the time needed to execute each task is
also important to model the program. Depending on the application, other properties
and constraints can be considered. Having a model of the program, the parallelization
consists in defining a schedule for the different tasks, i.e. an allocation to a processor
and a time for starting the execution of each task. Parallel computing has received much
interest in the scheduling theory community and many algorithms and models have been
proposed to solve the problem of application parallelization.

Scheduling in the broad sense refers to the theory, algorithms and systems that
deal with problems of sequencing and allocating tasks to resources. Scheduling theory
has numerous areas of application like manufacturing, transportation, logistics, sports
scheduling, project management, etc.A significant part of the research carried out in
the scheduling theory field treats problems related to scheduling computational tasks on
parallel computers. This kind of scheduling is known as parallel scheduling. We focus
in this section on parallel scheduling from a computing point of view.

In a parallel scheduling problem, the resources are the processors (or cores of a multi-
core processor) and the tasks are the computation functions of the application to be
executed. Resources are traditionally referred to as computers, or sometimes machines,
and tasks can be referred to as jobs. We use the terms processors, to refer to processing
elements of a parallel computing system, and tasks to refer to the computational tasks of
the application to be executed. A set of n tasks is denoted T = {τ1, τ2, . . . , τn} and a set
of m processors is denoted P = {p1, p2, . . . , pm}. Scheduling consists in allocating tasks
from T to processors from P with respect to predefined criteria, e.g. the minimization
of the total execution time of all tasks. Scheduling implies also the definition of an
execution order for the tasks that are allocated to the same processor by setting execution
start times for the tasks. In general, each task has to be allocated to one and only one
processor and a processor can execute at most one task at a time. Additional constraints
can be considered depending on the problem.

In scheduling problems, processors can be classified based on their speed of execution
[23]:

• Heterogeneous: The execution speed of a task depends on both the processor and
the task. Not all tasks may be executed on all processors.

• Homogeneous: The processors are identical. The execution speed of a given task is

30 2.2. Parallel Computing

the same on all processors.

• Uniform: The execution speed of a task depends only on the speed of the processor.
A processor of speed 2 will execute all tasks at exactly twice the speed of a processor
of speed 1.

A schedule is called preemptive if the execution of a task can be interrupted by
another task of higher priority and resumed later. If a schedule is not preemptive, it is
called non preemptive. Furthermore, scheduling algorithms can be classified into online
and offline algorithms. Online scheduling algorithms are used when some information
about the tasks is not known before the execution. The scheduling algorithm makes
scheduling decisions online as the information becomes available. Offline scheduling
algorithms can be used when the characteristics of the tasks, such as dependence between
them and their execution times, are known before the execution. It is then possible
to compute the schedule of the tasks offline.

Scheduling research has been active for over 60 years now and so many methods
and algorithms have been proposed to solve different scheduling problems. Different
performance measures can be considered such as the makespan objective, the total
completion time objective, and the number of late tasks objective [24]. The makepsan is
the time needed by a computer to process the whole set of tasks. The general objective
of parallel computing is to accelerate the execution of application which corresponds
to minimizing the makespan.

Task Dependence Graph

A set of tasks T which express the parallelism of an application can be represented by
a Directed Acyclic Graph (DAG) G(V,A) called the task dependence graph. Each task
τi ∈ T is represented by a vertex vi ∈ V : 0 ≤ i < n where n is the number of tasks
called, also, the size of graph G(V,A). Dependence between tasks is represented by
arcs (vi, vj) ∈ A : 0 ≤ i, j < n. A vertex may have one or more incoming edges which
connect it with its predecessors and one or more outgoing edges which connect it with
its successors. A task cannot start its execution unless all its predecessors have finished
their execution. Generally, dependence between two tasks is due to data transfer, i.e.
one task is executed and produces data that another task needs to consume to start its
execution. If a vertex has no predecessor it is called an entry or source vertex. A vertex
that has no successor is called an exit or sink vertex. The vertices may be weighted by
the execution times of the corresponding tasks. Figure 2.12 shows an example of a task
dependence graph. In the remainder of the thesis, for the sake of simplicity we will use
the term dependence graph instead of task dependence graph.

Potential and Effective Parallelisms

In industrial practice, we distinguish between the functional and non functional specifi-
cations. Functional specification consists in defining what has to be done. Mainly, the

2. Background 31

τ1 τ2 τ3 τ4

τ5 τ6

τ7 τ8

τ9 τ10 τ11

τ12 τ13

Figure 2.12: Example of a task dependence graph.

different functions of the application and the dependence between them are specified.
Non functional specification consists in defining how the functions have to be performed.
It provides a description of the hardware architecture, its different components and how
they are interconnected. It specifies also allocation constraints if there are any and the
timing parameters of the different functions, such as their execution times and periods.

Having both the functional and non functional specifications, the potential and the
effective parallelisms can be deduced. The potential parallelism is related to the functional
specification. It is defined by the functions that are not dependent as they can potentially
be executed in parallel, e.g. τ2 and τ3 in Figure 2.12. The effective parallelism is defined
by the hardware architecture, i.e. how many processing elements (processors, cores, . . .)
are able to execute functions in parallel. If the effective parallelism is less or equal to
the potential parallelism, the execution of the application is accelerated. If it is greater,
the execution is accelerated also but, no matter how much the effective parallelism is
increased, the speedup remains constant. This can be interpreted by Amdahl’s law which
describes how hardware parallelism limits the exhibition of software parallelism.

List Scheduling

Heuristics are usually used to solve parallel scheduling problems because these problems are
NP-complete [25] and using exact algorithms results in exponentially increasing execution
times. In particular, list scheduling heuristics have been successfully used in the context
of offline scheduling. All list scheduling heuristics are based on the same idea. Tasks
that are ready to be scheduled are kept in a list. A task becomes ready to be scheduled
once all its predecessors have been scheduled. The heuristic assigns priorities to the tasks
in the list and selects the task with the highest priority to schedule it. This process is
repeated untill all the tasks have been scheduled. The way the priorities of tasks are
computed differs from one list scheduling heuristic to another. In the following, we review
list scheduling heuristics that are proposed in the literature for makespan minimization.

A well-known algorithm to minimize the makespan of a dependence graph with no

32 2.2. Parallel Computing

transitive arcs is Hu’s algorithm [26]. It assigns a level to each task in the dependence
graph as follows: All tasks that have no immediate successor are at level one. Then, for
each of the other tasks, the level is equal to one plus the maximum level of its immediate
successors. Hu’s algorithm proceeds repeatedly by allocating each time the ready task
(whose all immediate predecessors have already been allocated) which has the highest
level among all ready tasks to the first available processor.

Coffman-Graham algorithm [27] performs the scheduling in two steps. First a task
is labeled with a label which is a function of the labels of its immediate successors
(the labeling algorithm is not detailed here). Tasks are then allocated following a
highest label first policy.

Papadimitriou and Yannakakis [28] studied the problem of scheduling interval-ordered
dependence graphs. In such a graph, two tasks are precedence-related if and only if
they can be mapped to non-overlapping intervals on the real number line [29]. A task is
assigned a priority based on the number of its successors. A list of the tasks is constructed
in a descending order of their priorities and then the tasks are allocated in this order.

In [30], level-based algorithms for scheduling dependence graphs are presented. The
proposed Highest Level First with Estimated Times algorithm labels the tasks of the
dependence graph with levels where a level corresponds to the length of the longest
path from the task to a sink task. It, then, allocates the tasks in a highest-level first
fashion. Therefore, the level of a task represents its priority. Highest Level First with No
Estimated Times algorithm works similarly but with the assumption that all tasks have
unit computation costs. In [31] a similar algorithm is proposed with the improvement of
breaking ties by selecting the task with the largest number of successors.

In [32], two algorithms are proposed: First, the Heavy Node First algorithm which
is based on a local analysis of the tasks at each level. In this algorithm, a level of
a task corresponds to the longest path from a source task to this task. It allocates
the heaviest task first. The second algorithm, Weighted Length (WL), considers a
global view of the dependence graph by taking into account the relationships among
the nodes at different levels.

The authors of [33] proposed the Insertion Scheduling Heuristic (ISH). The main
idea of ISH is to fill the scheduling holes which are the idle time slots that appear
as the schedule is being constructed.

The Modified Critical Path (MCP) algorithm proposed in [34] uses the measure of
how late can a task be delayed without increasing the makespan of the schedule. The
MCP algorithm assigns priorities to tasks in an ascending order of their latest start dates.

The Earliest Start Time algorithm [35] computes at each step, for each task, the
earliest start date and selects the task that has the smallest one to allocate it.

The Dynamic Level Scheduling (DLS) algorithm [36] assigns dynamic levels to tasks.
The Dynamic Level (DL) of a task is equal to the difference between the b-level (longest
path from the corresponding task to a sink task) of the task and its earliest start date. At
each step, the algorithm computes the dynamic levels for the ready tasks on all processors.
The task-processor pair that gives the largest DL is selected for scheduling.

2. Background 33

In [37], Yang and Gerasoulis present the Dominant Sequence Clustering (DSC)
algorithm that uses an attribute called the dominant sequence which is the critical
path of the dependence graph.

A current trend in multiprocessor scheduling is to use meta-heuristics such as Genetic
Algorithms (GA) [38–40].

2.2.5 Parallel Real-time Scheduling

Real-time scheduling concerns the scheduling of tasks in real-time systems. Real-time
does not mean fast. Instead, it refers to systems that must be able to respond to external
events within specified deadlines [41]. Real-time systems are typically found in the form
of embedded systems that control physical processes. They represent the cyber part in
a CPS. In general, real-time systems are computing systems that are characterized by
timing constraints in addition to the functional requirements. A part of this thesis deals
with HiL simulation which can be qualified as a real-time system because the simulated
part has to meet predefined deadlines in order to ensure correct results. In order to
implement real-time applications, first, real-time tasks are defined by characterizing the
functions obtained from the functional specification by a number of timing parameters. A
real-time task denoted τi is characterized by the following parameters (see Figure 2.13):

• Release time rki : Typical real-time applications consist of a set of tasks that are
executed repeatedly where each execution is called an occurrence. The time at
which an occurrence becomes ready to be executed is called the activation or the
release time. rki is the release time of the kth occurrence of the task τi;

• First release time: r0
i , called also offset;

• Start time ski : The time at which the kth instance starts its execution (ski ≥ rki);

• Execution time Ci: A real-time task has an execution time which cannot be
considered to be fixed and may vary from one execution to another. Therefore, a
real-time task is characterized by its Worst Case Execution Time (WCET);

• Finishing time fki : The time at which the kth occurrence finishes its execution;

• Response time Rki : The duration between the release time and the finishing time of
the kth occurrence: Rki = fki − rki ;

• Absolute deadline dki : The time by which the kth occurrence must finish its execution;

• Relative deadline Di: Starting from the release time, the duration within which the
task has to finish its execution;

• Laxity lki (t): Difference between the absolute deadline and the time for which the
task has been running: lki = dki − (t+ Ci(t)).

In addition, real-time tasks are characterized by a parameter related to how consecutive
occurrences of a task are activated. Three kinds of tasks can be distinguished:

34 2.2. Parallel Computing

• Periodic tasks: The occurrences of a given task are activated periodically with a
known period. A periodic task is characterized by its period Ti;

• Sporadic tasks: The occurrences of a task are activated such that the minimum
time between two successive activations is known. A sporadic task is characterized
by Ti, its minimum arrival time;

• Aperiodic tasks: The minimum delay between two activations is not known.

rki ski fki dki

Task τi (kth occurrence)

Ci

Di

Rki

Figure 2.13: Parameters of a real-time task.

Real-time systems can be classified based on the impact of missing deadlines. Hard
real-time systems are systems where all deadlines must be met. Violating this constraint
leads to the failure of the system and may result in a great loss such as serious injuries,
threatening human life, or damaging the surroundings. Soft real-time systems can tolerate
some deadlines to be missed but the quality of the result degrades consequently. Firm
real-time systems allow only a certain number of deadlines to be missed. We consider that
HiL simulation falls within the category of firm real-time systems. In fact, in order to
have correct HiL results, deadlines must be met. If a task misses its deadline, it produces
invalid results and may cause the failure of the system but the consequences are not as
catastrophic and harming as in the case of hard real-time systems.

Many different real-time scheduling algorithms have been proposed in the literature
but they are all based on the same idea; tasks are assigned priorities and then scheduled
in an order following their priorities. We distinguish between fixed priorities which do not
change during the execution and dynamic priorities which are computed by the scheduler
during the execution. Also, as in other kinds of scheduling problems, real-time scheduling
algorithms can be classified into offline/online and preemptive/non preemptive algorithms.

The main goal of scheduling in real-time systems is to satisfy the different timing
constraints of the tasks, i.e. release times, periodic activations, deadlines, etc. Schedu-
lability tests can be used to check whether the tasks can be scheduled using a given
scheduling algorithm in such a way to satisfy all the requirements. A schedulability
test verifies if the utilization or the density of the processor, defined below, when
it executes the set of tasks under test, is within a least upper bound. For a set of
n independent periodic tasks, the utilization factor and density, when a preemptive
scheduling algorithm is used, are respectively:

2. Background 35

U =
n∑
i=1

Ci
Ti

(2.6)

∆ =
n∑
i=1

Ci
Di

(2.7)

The most known real-time scheduling algorithms are the following:

• Fixed priorities

– Rate Monotonic (RM) [42]: Tasks are assigned priorities inversely proportional
to their periods. A set of tasks τi ∈ T : Di = Ti is schedulable by RM if
U ≤ n(2 1

n − 1).
– Deadline Monotonic (DM) [43]: Tasks are assigned priorities inversely propor-

tional to their relative deadlines. A set of tasks τi ∈ T : Di ≤ Ti is schedulable
by DM if ∆ ≤ n(2 1

n − 1).

• Dynamic priorities

– Earliest Deadline First (EDF) [42]: Priorities of tasks are inversely proportional
to their absolute deadlines. The priority of a task is fixed for one occurrence
but may change from one occurrence to another. EDF can schedule a set of
tasks τi ∈ T : Di = Ti iff: U ≤ 1.

– Least Laxity First (LLF) [44]: Priorities of tasks are inversely proportional to
their laxities. The priority may change for the same occurrence and from one
occurrence to another. The schedulability test is the same as for EDF.

For multiprocessor real-time scheduling, there exist two principal approaches [45]:

• Global scheduling: Each task can be scheduled on any processor. the scheduler is
responsible for migrating the tasks between the processors.

• Partitioned scheduling: The tasks are partitioned into groups, each of which is
allocated to one processor. Each processor has a single-processor scheduler.

Global multiprocessor scheduling has significant overhead due to the migration cost.
This is the reason why partitioned scheduling is usually used in hard real-time systems.
Partitioning and allocating a set of tasks is equivalent to the Bin Packing problem which
is NP-hard and heuristics are therefore used.

Assuming the tasks are sorted in a list and that processors are organized in a
certain order, the most known heuristics that can be used to allocate a set of tasks
to multiple processors are:

• Next Fit (NF): A task is tested on the available cores starting from the core the
heuristic last allocated a task to. The task is allocated to the first found core that
can schedule it. A task is schedulable on a given core if by allocating it to this core
the condition (U ≤ 1) is valid where U is the utilization of the core.

36 2.2. Parallel Computing

• First Fit (FF): Similar to NF but the search of the core that can schedule the task
always starts from the first one.

• Best Fit (BF): Test the task on all cores and allocate it to the one that gives the
minimum of U .

• Worst Fit (WF): Test the task on all cores and allocate it to the core that gives the
maximum of U .

2.2.6 Parallel Execution

It is important to understand how the previously presented concepts of parallel computing
are related. These concepts are involved in parallelization which refers to the process
that takes as input a sequential code and achieves a parallel execution of the program.
The first step of parallelization consists in detecting the potential parallelism of the
program. Depending on the class of parallelism (e.g. task or data), a model, such as a
dependence graph, is used in order to represent this potential parallelism. The targeted
parallel architecture has to be modeled as well in order to accomplish the parallelism
adaptation. Given the models of the potential parallelism and the effective parallelism,
a schedule has to be found. In other words, the different parts of the program are
allocated to the different components of the parallel architecture and their execution
is ordered. Finally, based on the computed schedule, a parallel code is generated to
be executed on the parallel architecture.

The AAA Methodology and SynDEx Software

The goal of the Algorithm-Architecture-Adequation (AAA) methodology [46] is to find out
the best implementation of an algorithm specifying the functions that the application has
to perform onto a multicomponent architecture, while satisfying real-time and embedding
constraints. The AAA methodology is based on graph models to exhibit both the potential
parallelism of the application algorithm and the available parallelism of the hardware
architecture. Adequation means an efficient implementation. The implementation consists
in distributing and scheduling the algorithm graph onto the multicomponent graph while
satisfying real-time constraints. This is formalized in terms of graph transformations.
Heuristics based on distributed real-time scheduling analyses taking into account timing
characteristics attached to tasks (period, worst case execution time of computations
and of inter-component communications), are used to automatically explore the possible
implementations of a given application onto a given multicomponent hardware that satisfy
real-time constraints, and to optimize the reaction time as well as resource allocation.
The result of graph transformations is an optimized Synchronized Distributed Executive
(SynDEx) dedicated to the application, automatically built from a library of architecture
dependent executive primitives composing each executive kernel. (Figure 2.14).

2. Background 37

Timing
characteristics

Algorithm
Potential parallelism
Algorithm graph

Architecture
Effective parallelism
Architecture graph

Adequation
Multiprocessor real-time
schedulability analyses

Scheduling table

Code generation

Figure 2.14: The Algorithm-Architecture-Adequation methodology.

2.3 Parallel Execution of Co-simulation

The more accurate is a simulation of a system, the more reliable is the assessment of its be-
havior. The numerical accuracy can be improved in different ways, for instance, by choosing
a small integration step size. However, this means that more computations are performed
and thus the computation load becomes large, decreasing the simulation performance. An
important challenge faced by the developers and the users of simulation tools is to achieve
a good simulation performance while maintaining an acceptable simulation accuracy.

The performance of a simulation can be significantly improved through parallel
execution. In this scope, different approaches for the parallelization of simulation have
been proposed in the literature. In this section we briefly review some of the approaches
for the parallelization of simulation that are found in the literature. We present also
some of the available simulation tools that support parallel simulation.

2.3.1 Approaches

In order to achieve simulation acceleration through parallel execution, different approaches
are possible. Parallelization approaches can be classified into three categories based on
the level at which the parallelization is introduced.

Parallelization across the Method

In this category, we find approaches that seek to parallelize the integration method. For
instance, a multi-stage solver requires several computations within one integration step
and it is possible to perform such computations in parallel. Such approach is studied in
[47] by proposing a theoretical framework for the parallelization of Runge-Kutta methods.
Another approach consists in parallelizing operations on vectors for ODE resolution like
in the PVODE solver [48] implemented using MPI.

In [49], the authors propose a method for parallelization of modelica programs on
CUDA-enabled GPUs. The proposed method relies on marking the functions to be

38 2.3. Parallel Execution of Co-simulation

executed on the GPU by identifying patterns that are GPU suitable such as loops. These
functions are then automatically translated into GPU code. In [50], ParModelica, an
algorithmic extension of Modelica is proposed. This extension is based on OpenCL and
allows stating the parallelism using special declarations in the code. An approach for
automatic parallelization of equations on many-core platforms is proposed in [51]. This
approach organizes the equations into a set of layers containing, each, a number of sections
that can be executed in parallel and computes an offline schedule for their execution. In
[52] an approach for the parallelization of multi-body simulation (simulation of systems
composed of rigid and flexible bodies) on shared memory multiprocessors is proposed.
This approach uses math-kernel libraries and OpenMP to parallelize matrix operations.

Parallelization across the Time

A simulation can be parallelized across the time steps. Examples of such approach are
the Parareal algorithm [53], the Parallel Implicit Time-Integrator (PITA) [54], and the
Parallel Full Approximation Scheme in Space and Time (PFASST) [55]. These methods
divide the time domain into a two-level grid. A solution is evaluated in parallel over a
fine time grid to improve a solution obtained sequentially over a coarse time grid.

Parallelization across the System

Finally, a simulation can be parallelized across the system, i.e. the equations used in
the simulation are solved in parallel. A well known approach that parallelizes across
the system is Waveform Relaxation (WR) [56], initially introduced for the simulation of
large scale integrated circuits. The WR method breaks down the system into coupled
subsystems of equations and computes the waveform, i.e. the solution, of each subsystem
over a given time interval while fixing the waveforms of the other subsystems. The
parallelization is made possible by computing the waveforms of several subsystems in
parallel. The term waveform is used as the method was originally used to solve differential
equations describing electrical circuits where signals are referred to as waveforms.

Transmission Line Modeling (TLM) [57] is a method that allows the decoupling and
the parallelization of models by representing them using transmission line graphs such
that decoupling points are chosen where variables change slowly because the models
are considered to be connected by constants at these points. The approaches presented
in [58, 59] are based on the TLM method.

An automatic parallelization approach based on dependence graph scheduling is
presented in [60]. For this, the simulation code is analyzed at the expression level to build
the dependence graph. A clustering algorithm is also proposed in this work to merge
tasks. Finally an offline scheduling heuristic is applied on the dependence graph.

Co-simulation is naturally adapted to parallelization across the system. In fact, as
shown in [61], splitting a model into several FMUs, by isolating discontinuities, may
reduce the simulation time, even in the case of a sequential execution. In [5], the
Refined CO-SIMulation (RCOSIM) approach is presented. It consists in using each FMU

2. Background 39

information on input/output causality to build a graph, with an increased granularity
and then exploiting the potential parallelism by using a heuristic to build an offline
multi-core schedule in order to accelerate the execution.

The parallelization approach of the DACCOSIM tool is presented in [62]. Thanks
to a graphical user interface, different FMUs of a co-simulation can be allocated to
different multi-core computing nodes manually. If two dependent FMUs are allocated
to different nodes, TCP connection is used for communication. Otherwise, interprocess
communication is used. Each FMU is executed on its own thread on a distinct core.
In addition, DACOSSIM is able to perform input extrapolation. This work has been
later extended in [63]. The extension allows encapsulating DACCOSIM and the FMUs
it controls in what is called a Matryoshka FMU. This allows to import DACCOSIM
into other FMI compliant tools.

In [64], the authors propose a solution that combines two parallelization approaches:
parallelization across the time and parallelization across the system. In particular, the
proposed solution allows performing several stages of the Runge-Kutta solver in parallel
within a single step. In addition, parallelization across the system is performed by paral-
lelizing the computations involved in evaluating the equations of the system. A dependence
graph of these computations is built and then scheduled on a multi-core processor.

2.3.2 Tools

More and more simulation tools are now endowed with parallel execution capabilities.
However, it should be noted that some of these tools adopt parallelization approaches that
do not target the numerical part of the simulation. For instance, the Parallel Computing
Toolbox in MATLAB allows launching multiple Simulink simulations of the same model
in parallel on a desktop multi-core computer or a cluster. These are separate independent
simulations of the same model. This feature allows running multiple simulations under
different configurations and conditions at the same time. It does not correspond to the
focus of this thesis, i.e. the parallelization of the numerical computations of a simulation.
Also, Simulink provides an execution mode known as Rapid Accelerator Mode which
consists in creating a standalone executable of the model and the solver. Simulink runs
in one process and this standalone executable runs in another process on a multi-core
processor. Again, although this approach may improve the performance of the simulation,
it does not lie within the scope of the thesis.

The Dymola tool enables automatic parallelization of equation resolution. The
parallelization approach of Dymola is detailed in [51]. LMS Imagine.Lab Amesim allows
launching multiple simulations in parallel, for example to run a model with different
parameters. It has also the capability of partitioning models and executing them on
multi-core processors. The TLM method, presented above, is integrated in the Hopsan
tool. Finally, MBSim parallelizes matrix and vector operations as described in [52].
The co-simulation software xMOD is able to execute FMI co-simulations in parallel on
multi-core architectures. It uses the RCOSIM approach [5] presented in Section 2.3.1.

40

3
Problem Statement

Contents

3.1 Overview . 41
3.2 The RCOSIM Approach . 42
3.3 RCOSIM Limitations . 42
3.4 Open Research Issues and Thesis Objectives 43

In the foregoing part of the thesis, we presented the background of the involved
research work. We presented preliminary concepts and state of the art review regarding
the different topics that are involved in this thesis. In this chapter, we detail the research
problem of the thesis. We give an overview of the adopted methods and explain the
research problems that this thesis attempts to solve.

3.1 Overview

This thesis addresses the problem of parallel execution of co-simulation. We are interested
in co-simulations that are compliant with the FMI standard. Both FMI for Model
Exchange and FMI for Co-Simulation are of interest in this thesis. In particular, we
focus on closed-source FMI co-simulations, i.e. co-simulations for which functions are
provided as executable binaries and the source code is not accessible.

From a hardware standpoint, we target shared-memory architectures, more specifically
multi-core architectures such as the ones found in desktop and laptop computers.

The research carried out in this thesis can be divided into two parts. The first
part deals with accelerated co-simulation, i.e. the goal of the paralleization of the co-
simulation is to accelerate its execution on multi-core architectures. In the second part,
we focus on co-simulation under real-time constraints. In particular, we are interested in

41

42 3.2. The RCOSIM Approach

HiL (Hardware-in-the-Loop) co-simulation where a part of the co-simulation is replaced
by its real counterpart that is physically available. The goal of this part is to satisfy
the constraints for a real-time execution of the simulated part through parallelization
on multi-core architectures.

3.2 The RCOSIM Approach

The contributions of this thesis constitute improvements to the RCOSIM approach briefly
presented in section 2.3.1. The RCOSIM approach is based on offline multi-core scheduling.
First, it transforms the co-simulation FMU graph into a dependence graph with finer
granularity. This process is detailed in Section 4.1. A multi-core list scheduling heuristic
is then used to compute a schedule for this dependence graph, i.e. an allocation of
its vertices, which represent functions, to the cores and an order of execution for the
vertices that are allocated to each core. Each run of this schedule corresponds to the
execution of one simulation step, i.e. update of the inputs, the outputs, and the state.
Therefore, the execution of the co-simulation consists in running this schedule repeatedly
until the number of desired simulation steps is reached.

In this thesis, we chose to build on the RCOSIM approach in order to achieve
parallelization of FMI co-simulations for both accelerated and real-time execution. We did
not use known parallel programming libraries for the following specific reasons. It is clear
that MPI is not suitable for our goal since we target shared memory architectures whereas
MPI is used to program distributed memory architectures. The other option is to use
OpenMP or similar libraries which are adapted to shared-memory architectures. However,
OpenMP is efficient especially in the case of data parallelism (e.g. loop parallelism) which
is not apparent in the co-simulations that we target. In fact, since we do not have access
to the source code of the functions, we can not perform parallelization of the functions
code, e.g. solver function, by using OpenMP pragmas. We only have information about
the co-simulation at the function level, i.e. the functions can only be called but their code
cannot be accessed. It should be noted that libraries such as OpenMP and Intel TBB offer
task programming features which can be used to execute multiple functions in parallel.
Note that the code of each function is not parallelized, but two or more functions can be
executed in parallel using this solution. However, they rely on online scheduling which
may introduce high overhead and thus decreases the performance. In addition, given that
information about dependence between functions is available and the execution times can
be measured, we assume that offline scheduling is more efficient to achieve our goal.

3.3 RCOSIM Limitations

Although RCOSIM resulted in interesting co-simulation speed-ups, it has some limitations
that have to be considered in the parallelization problem in order to obtain better
performances. We identify the following limitations of the RCOSIM approach:

1. So far, the multi-core scheduling heuristic uses empiric execution times of the

3. Problem Statement 43

different functions. By using realistic execution times, the multi-core execution of
the co-simulation should be improved.

2. Only mono-rate co-simulations, i.e. where all the FMUs have the same commu-
nication step size, can be handled by RCOSIM. The equations of each FMU are
integrated using a specific integration step size whereas its inputs and outputs are
updated according to a specific communication step size which is a multiple of the
integration step size. This is due to the lack of information about the communication
step sizes in the dependence graph constructed by RCOSIM.

3. The FMI standard does not presently require that functions of the same FMU have
to be thread-safe, i.e. they cannot be executed simultaneously as they may share
a resource (e.g. variable) that might be corrupted if two operations try to use it
at the same time. In other words, such functions have to be executed in strictly
disjoint time intervals. This is tackled in RCOSIM by modifying the multi-core
scheduling heuristic to always allocate the functions of a same FMU to the same
core. Consequently, the search space of the scheduling heuristic is reduced, i.e. for
a given function, if there is another function of the same FMU that has already
been allocated to a specific core, it is allocated to this same core without the need
to test it on the other cores. This restriction on the allocation possibilities limits
the exploitation of the potential parallelism.

4. The multi-core scheduling heuristic used in RCOSIM is not real-time. In fact,
RCOSIM targets only accelerated co-simulation and cannot be used for real-time
co-simulation.

5. The dependence graph constructed by RCOSIM does not contain information about
real-time constraints. Such information is necessary in order to be able to apply a
real-time scheduling algorithm. For instance, it is needed to know if the execution
of a given function has to be finished before a specific deadline.

3.4 Open Research Issues and Thesis Objectives

We aim in this thesis at proposing solutions to overcome the limitations of the RCOSIM
approach presented in the previous section. Below, we detail the research questions
that correspond to these limitations.

Multi-rate FMU Co-simulation

Most industrial applications are multi-rate, i.e. the different FMUs of the co-simulation
are executed according to different communication step sizes. In order to parallelize a
multi-rate co-simulation, it is needed to incorporate this information in the dependence
graph model. Depending on how this information is added, the multi-core scheduling
heuristic used in RCOSIM may need to be modified. Therefore, the research question

44 3.4. Open Research Issues and Thesis Objectives

related to this point is how should the dependence graph model be extended in order
to allow RCOSIM to handle multi-rate co-simulation and what is the impact of such
extension on the multi-core scheduling problem?

Mutual Exclusion Constraints in FMU Co-simulation

The non thread safe implementation of FMUs implies that at any instant during the
execution of the co-simulation, one and only one function of the same FMU can be
executed. Consequently, if the scheduling heuristic allocates two or more functions
belonging to the same FMU to different cores, a mechanism that ensures these operations
are executed in strictly different time intervals must be set up. We address the following
questions: How can such mutual exclusion constraints be satisfied while optimizing the
exploitation of the potential parallelism? Should the dependence graph model be extended
or should these constraints be handled by the multi-core scheduling heuristic?

Specification of Real-time Constraints for FMU Co-simulation

In a co-simulation under real-time constraints, and more specifically HiL co-simulation, the
physically available part periodically exchanges data with the simulated part, according
to specific periods. The simulated part has to deliver data to the physically available
components following these periods. Therefore, their execution has to be done within
specific deadlines. Otherwise, the co-simulation fails. Given the periods of data exchange,
we seek to define what are the constraints that have to be respected by the different
FMUs in order to satisfy the real-time constraints. In other words, how should the
executions of the different simulated FMUs be bounded so as to be able to deliver data
in time to the real components at every period?

Multi-core real-time scheduling for FMU Co-simulation

Based on the defined real-time constraints, a multi-core scheduling algorithm is needed
in order to allocate the functions of the simulated FMUs on the multi-core architecture
in such a way to respect the real-time constraints. We are interested also in defining
how the schedulability of a given co-simulation under real-time constraints on a given
multi-core architecture can be tested?

4
Dependence Graph Model for FMU Co-simulation

Contents

4.1 Dependence Graph of an FMU Co-simulation 46
4.1.1 Construction of the Dependence Graph of an FMU Co-Simulation 46
4.1.2 Dependence Graph Attributes . 48

4.2 Dependence Graph of a Multi-rate FMU Co-simulation . . . 49
4.2.1 Repeatable Pattern of a Multi-rate Dependence Graph 50
4.2.2 Multi-rate Transformation Rules 51
4.2.3 Multi-rate Transformation Algorithm 52

4.3 Dependence Graph with Mutual Exclusion Constraints . . . 53
4.3.1 Motivation . 54
4.3.2 Acyclic Orientation of Mixed Graphs 56
4.3.3 Problem Formulation . 57
4.3.4 Resolution using Linear Programming 59
4.3.5 Acyclic Orientation Heuristic . 60

4.4 Dependence Graph with Real-time Constraints 64
4.4.1 Preliminaries . 66
4.4.2 Definition of Real-time Constraints 68
4.4.3 Propagation of a Single Real-time Constraint 69
4.4.4 Propagation of Multiple Real-time Constraints 77
4.4.5 Propagation Algorithms . 79

This chapter describes a dependence graph model that we propose for representing an
FMU co-simulation. The different phases for building such model are explained including
the initial construction of the dependence graph, transformations that it undergoes in
order to represent multi-rate co-simulation and mutual exclusion constraints, and finally
rules for characterizing the graph with real-time parameters.

45

46 4.1. Dependence Graph of an FMU Co-simulation

4.1 Dependence Graph of an FMU Co-simulation

Automatic parallelization of computer programs embodies the adaptation of the potential
parallelism inherent in the program to the effective parallelism that is provided by the
hardware. Because computer programs are usually complex (multiple functions, nested
function calls, control flow jumps, etc.), this process of adaptation requires the use of a
model for abstracting the program to be parallelized. The aim of using such model is
to identify which parts of the program can be executed in parallel by expressing some
features of the program such as data dependence between different parts. Dependence
graphs are commonly used for this purpose (see Section 2.2.4). A dependence graph,
denoted G(V,A), where V is the set of vertices and A is the set if arcs, defines the partial
order to be respected when executing a set of tasks. This partial order describes the
potential parallelism of the program, i.e. vertices that are not in precedence relation
A which is asymmetric and transitive.

The co-simulation of FMUs lends itself to the dependence graph representation as
shown hereafter. According to the FMI standard, the code of an FMU can be exported
in the form of source code or as precompiled binaries. However, most FMU providers
tend to adopt the latter option for proprietary reasons. We are, thus, interested in this
case. The method for automatic parallelization of FMU co-simulation that we propose
in this thesis is based on representing the co-simulation by a dependence graph. We
present in the rest of this section how this graph is constructed and a set of attributes
that characterize it. The graph construction and characterization method is part of
the RCOSIM approach as presented in [5].

4.1.1 Construction of the Dependence Graph of an FMUCo-Simulation

The entry point for the construction of a dependence graph of an FMU co-simulation is a
user-specified set of interconnected FMUs as depicted in Figure 4.1a. At this stage, we
consider only co-simulations where all FMUs are assigned identical communication step
sizes (this restriction is relaxed in Section 4.2). We refer to the graph which represents
such co-simulation as mono-rate graph. The execution of each FMU is seen as computing
a set of inputs, a set of outputs, and the state of the FMU. A computation of an input,
output, or the state is performed by FMU C function calls. An input (resp. output) is
computed by calling the fmiSet (resp. fmiGet) function and the state is computed by
calling SetTime, GetDerivatives, SetContinuousStates, etc., functions in the case of FMI
for Model Exchange or the DoStep function in the case of FMI for Co-Simulation. Thanks
to FMI, it is additionally possible to access information about the internal structure of a
model encapsulated in an FMU. In particular, as shown in Figure 4.1b, FMI allows the
identification of Direct Feedthrough (e.g. YB1) and Non Direct Feedthrough (e.g. YA1)
outputs of an FMU and other information depending on the version of the standard:

• FMI 1.0: Dependence between inputs and outputs is given. The computation of
the state at a given time step tk is considered necessary for the computation of

4. Dependence Graph Model for FMU Co-simulation 47

every output at the same time step tk. It is considered that the computation of the
state at a simulation step tk+1 requires the computation of each of the inputs at
the simulation step tk.

• FMI 2.0: In addition to the information provided in FMI 1.0, more information
is given about data dependence. It is specified which output at a given time step
depends on the state computation at the same step. Also, it is specified which input
at time step tk needs to be computed before the computation of the state at the
step tk+1.

FMU A
UA1

UA2

YA1

YA2

YA3

FMU B
UB3

UB2

UB1

YB2

YB1

(a) Inter-FMU dependence specified by the user

FMU A
UA1

UA2

YA1

YA2

YA3

FMU B
UB3

UB2

UB1

YB2

YB1

(b) Intra-FMU dependence provided by FMI

Figure 4.1: An example of inter and intra-FMU dependence of two FMUs connected by the user

The information provided by FMI on input-output dependence allows transforming
the FMU graph into a graph with an increased granularity. For each FMU, the inputs,
outputs, and state are transformed into operations. An input, output, or state operation
is defined as the set of FMU function calls that are used to compute the corresponding
input, output, or state respectively. The co-simulation is described by a dependence graph
G(V,A), called the operation graph, where each vertex oi ∈ V : 0 ≤ i < n represents one
operation, each arc (oi, oj) ∈ A : 0 ≤ i, j < n represents a precedence relation between
operations oi and oj , and n = |V | is the size of the operation graph. The operation graph is
built by exploring the relations between the FMUs and between the operations of the same
FMU. A vertex is created for each operation and arcs are then added between vertices if
a precedence dependence exists between the corresponding operations. If FMI 1.0, which
does not give information about the dependence between the state computation and the
input and output variables computations, is used, we must add arcs between all input

48 4.1. Dependence Graph of an FMU Co-simulation

operations and the state operation of the same FMU. Furthermore, arcs connect all output
operations and the state operation of the same FMU because the computation at the time
step tk of an output must be performed with the same value of the state (computed at
simulation step tk) as for all the outputs belonging to the same FMU. An execution of the
obtained graph corresponds to one simulation step. Therefore, running the co-simulation
consists in repeatedly executing the graph until the desired number of steps is reached. A
new execution of the graph cannot be started unless the previous one was totally finished.
The operation graph corresponding to the FMUs of Figure 4.1 is shown in Figure 4.2.

YA1

UB3
YB1

UA2 YA3 UB1
ẊB

ẊA

UB2
YA2UA1

YB2

Figure 4.2: Operation graph obtained from the FMUs of Figure 4.1

4.1.2 Dependence Graph Attributes

The operation graph is used as input to a scheduling algorithm. In addition to the partial
order defined by the graph, the scheduling algorithm uses a number of attributes to
compute an efficient schedule of the operation graph. Many list scheduling algorithms
use attributes that are computed by the Critical Path Method [65]. Below, we define
a set of attributes and notations to characterize the operation graph.

The notation tpe(oi) is used to refer the type of the operation oi, i.e. tpe(oi) ∈
{updateinput, updateoutput, updatestate}, and fm(oi) denotes the FMU to which the opera-
tion oi belongs. Operation oj is a predecessor of operation oi if there is an arc from oj to
oi, i.e. (oj , oi) ∈ A. We denote the set of predecessors of oi by pred(oi). Operation oj
is an ancestor of operation oi if there is a path in G from oj to oi. The set of ancestors
of oi is denoted by ance(oi). Operation oj is a successor of operation oi if there is an
arc from oi to oj , i.e. (oi, oj) ∈ A. We denote the set of successors of oi by succ(oi).
Operation oj is a descendant of operation oi if there is a path in G from oi to oj . The
set of descendants of oi is denoted by desc(oi). A profiling phase allows measuring
the execution time of each operation oi ∈ V , denoted C(oi). For each operation, the
average execution time of multiple co-simulation runs is used. When co-simulation under
real-time constraints is aimed, Worst Case Execution Times (WCET) are used instead.

4. Dependence Graph Model for FMU Co-simulation 49

An operation oi is characterized by its communication step H(oi) which is equal to the
communication step assigned to the FMU fm(oi). The earliest start time from start
denoted S(oi) and the earliest end time form start denoted E(oi) are defined by equations
4.1 and 4.2 respectively. S(oi) is the earliest time at which the operation oi can start its
execution. S(oi) is subject to constraints imposed by precedence relations. The earliest
time the operation oi can finish its execution is E(oi).

S(oi) =
{

0, if pred(oi) = ∅.
maxoj∈pred(oi)(E(oj)), otherwise.

(4.1)

E(oi) = S(oi) + C(oi) (4.2)

The latest end time from end denoted E(oi) and the latest start time from end
denoted S(oi) are defined by equations 4.3 and 4.4 respectively.

E(oi) =
{

0, if succ(oi) = ∅.
maxoj∈succ(oi)(S(oj)), otherwise.

(4.3)

S(oi) = E(oi) + C(oi) (4.4)

The critical path of the graph is the longest path in the graph. The length of a path
is computed by accumulating the execution times of the operations that belong to it. The
length of the critical path of the operation graph denoted by CP is defined by equation
4.5. The critical path is a very important characteristic of the operation graph. It defines
a lower bound on the execution time of the graph, i.e. in the best case, the time needed
to execute the whole graph is equal to the length of the critical path.

CP = max
oi∈V

(E(oi)) (4.5)

The flexibility F (oi) is defined by equation 4.6. It expresses the length of a time
interval within which operation oi can be executed without increasing the total exe-
cution time of the graph.

F (oi) = CP − S(oi)− C(oi)− E(oi) (4.6)

4.2 Dependence Graph of a Multi-rate FMU Co-simulation

The operation graph model presented in the previous section allows modeling only
mono-rate FMU co-simulations. For some applications this model is sufficient to be
used for multi-core scheduling. However, many industrial co-simulation applications
feature behaviors that cannot be captured by this model. In particular, many industrial
applications involve FMUs that are executed according to different communication step
sizes. This is especially true when different FMUs of a co-simulation are provided by
different parties. It is very common that an FMU provider designs the FMU in such a

50 4.2. Dependence Graph of a Multi-rate FMU Co-simulation

way that its proper functioning depends on using specific communication step sizes. It
is, therefore, highly unrecommended, and in some cases even impossible, to change the
communication step size of the FMU. In other cases, even if it is possible and acceptable to
change the communication step size of a given FMU, better performance and/or accuracy
could be obtained when using a specific communication step size. As a consequence,
our operation graph model has to be extended in order to accommodate multi-rate data
exchange between operations. To fulfill this, we propose in this section, a method to
transform the initial operation graph G(V,A) into a new operation graph.

4.2.1 Repeatable Pattern of a Multi-rate Dependence Graph

Consider an operation graph that is constructed as described in the previous section from
a multi-rate co-simulation, i.e. a co-simulation where some FMUs are assigned different
communication step sizes. Such graph is referred to as a multi-rate operation graph. In
the case of mono-rate co-simulation, the initial operation graph constructed from the
co-simulation is sufficient because it describes a repeatable pattern for the execution of
the co-simulation. As such, a schedule of this graph can be run repeatedly in order to run
the co-simulation. In such schedule, each operation appears exactly once. In the case of
multi-rate co-simulation, the initial operation graph does not describe a pattern that can
be repeatedly executed. One way for making such operation graph suitable for multi-core
scheduling is to transform it into a mono-rate graph. In a schedule of the resulting
mono-rate graph , each operation appears exactly once. The aim of this transformation is
to obtain a repeatable pattern of the operation graph while ensuring that each operation
is executed according to the communication step size assigned to its respective FMU, and
also maintaining a correct data exchange between the different FMUs, whether they are
assigned different or identical communication step sizes. Similar algorithms have been used
in the real-time scheduling literature to deal with multi-rate scheduling problems [66, 67].

In the case of mono-rate co-simulation, the length of the repeatable pattern is equal to
the unique communication step size. In order to perform a transformation of a multi-rate
operation graph, we need, first, to specify the length of the repeatable pattern. We
define the notion of hyperstep (HS) in Definition 4.2.1.

Definition 4.2.1. In the context of multi-rate FMU co-simulation, the hyperstep is
the least common multiple (lcm) of the communication step sizes of all the operations:
HS = lcm(H(o1), H(o2), . . . ,H(on)).

The hyperstep is the smallest interval of time steps for describing an infinitely
repeatable pattern of all the operations. The transformation consists, first of all, in
repeating each operation oi, r(oi) times where r(oi) is called the repetition factor of oi
and r(oi) = HS

H(oi) . Each repetition of the operation oi is called an occurrence of oi and
corresponds to the execution of oi at a certain time step. We use a superscript to denote
the number of each occurrence, e.g. opi denotes the pth occurrence of oi. Operations
belonging to the same FMU have the same repetition factor since they are all executed
according to the communication step size assigned to the FMU that they belong to.

4. Dependence Graph Model for FMU Co-simulation 51

Therefore, we define the repetition factor of an FMU to be equal to the repetition factor of
its operations. Figure 4.3 shows an example of the execution of two operations oi and oj
such that H(oi) = 2 and H(oj) = 3. In this example, the hyperstep is HS = lcm(2, 3) = 6
and the repetitions factors are r(oi) = 6

2 = 3 and r(oj) = 6
3 = 2. It can be seen that

the execution pattern over an interval of length 6 is repeated.

oq−1
j oqj oq+1

j oq+2
j

time

op−1
i opi op+1

i op+2
i op+3

i op+4
i

time

oj

oi

Repeatable pattern

Figure 4.3: A basic example of a repeatable pattern of a multi-rate co-simulation

4.2.2 Multi-rate Transformation Rules

In order to complete the multi-rate transformation, we need to specify dependence between
the occurrences that are added by creating arcs. Arcs are added between operations
following the rules presented hereafter. Consider two operations oi, oj ∈ V connected by
an arc (oi, oj) ∈ A in the initial operation graph. Adding an arc (opi , o

q
j) to A, depends

on the time steps at which opi and oqj are executed. Let tkp and tkq be the time steps
at which opi and oqj are executed respectively. An arc is added between occurrences opi
and oqj if the following conditions are satisfied:

1. opi is executed at a time step that precedes or matches the time step at which opi is
executed, i.e. tkp ≤ tkq.

2. opi is the latest occurrence of oi that satisfies the first condition, i.e. p = max{p′ :
0 ≤ p′ < r(oi) and tkp′ ≤ tkq} where tkp′ denotes the times step at which occurrence
op

′

i is executed.

In the case where H(oi) = H(oj), and therefore r(oi) = r(oj), occurrences opi and
oqj which correspond to the same number, i.e. p = q, are connected by an arc. On the
other hand, if H(oi) 6= H(oj), we distinguish between two types of dependence: we call
the arc (oi, oj) ∈ A a slow to fast (resp. fast to slow) dependence if H(oi) > H(oj)
(resp. H(oi) < H(oj)). For a slow to fast dependence (oi, oj) ∈ A, one occurrence of oi
is executed while several occurrences of oj are executed. In this case, arcs are added
between each occurrence opi : p ∈ {0, 1, . . . , r(oi)− 1}, and the occurrence oqj such that:

q =
⌈
p× H(oi)

H(oj)

⌉
(4.7)

52 4.2. Dependence Graph of a Multi-rate FMU Co-simulation

Let operations oi and oj shown in Figure 4.3 be connected by an arc (oj , oi) in the
initial operation graph. For q = 1, the added arcs between the occurrences of oi and oj
can be represented on the time chart of the execution as shown in Figure 4.4.

o0
j o1

j o2
j o3

j

time

o0
i o1

i o2
i o3

i o4
i o5

i

time

oj

oi

Figure 4.4: Slow to fast dependence

We recall that for a slow to fast dependence, the master algorithm can perform
extrapolation of the inputs of the receiving FMU.

For a fast to slow dependence (oi, oj) ∈ A, arcs are added between each occurrence
opi , and the occurrence oqj : q ∈ {0, 1, . . . , r(oj) − 1} such that:

p =
⌊
q × H(oj)

H(oi)

⌋
(4.8)

Let operations oi and oj shown in Figure 4.3 be connected by an arc (oi, oj) in the
initial operation graph. For p = 1, the added arcs between the occurrences of oi and oj
can be represented on the time chart of the execution as shown in Figure 4.5.

o0
j o1

j o2
j o3

j

time

o0
i o1

i o2
i o3

i o4
i o5

i

time

oj

oi

Figure 4.5: Fast to slow dependence

Arcs are added also between the occurrences of the same operation, i.e. (opi , o
p′

i)
where p ∈ {0, 1, . . . , r(oi) − 2} and p′ = p + 1. Finally, for each FMU, arcs are added
between the pth occurrence of the state operation, where p ∈ {0, 1, . . . , r(oi) − 2}, and
the (p + 1)th occurrences of the input and output operations.

4.2.3 Multi-rate Transformation Algorithm

The multi-rate graph transformation is detailed in Algorithm 1. The algorithm traverses
all the graph by applying the aforementioned rules in order to transform the graph and
finally stops when all the nodes and the edges have been visited.

Figure 4.6 shows the graph obtained by applying the multi-rate transformation
algorithm on the graph of Figure 4.2. In this example HB = 2 × HA, where HA and
HB are the communication steps of FMUs A and B respectively.

4. Dependence Graph Model for FMU Co-simulation 53

Algorithm 1: Multi-rate graph transformation algorithm
Input : Initial operation graph G(V,A);
Output :Transformed operation graph G(V,A);
foreach oi ∈ V do

Compute the repetition factor of oi: r(oi)← HS
H(oi) ;

Repeat the operation oi: V ← V ∪ {opi }, p ∈ {1, . . . , r(oi)− 1};
foreach (oi, oj) ∈ A do

if H(oi) > H(oj) then
for p← 0 to r(oi)− 1 do

Compute q =
⌈
p× H(oi)

H(oj)

⌉
;

Add the arc (opi , o
q
j) to the graph: A← A ∪ {(opi , o

q
j)};

else if H(oi) < H(oj) then
for q ← 0 to r(oj)− 1 do

Compute p =
⌊
q × H(oi)

H(oj)

⌋
;

Add the arc (opi , o
q
j) to the graph: A← A ∪ {(opi , o

q
j)};

else
for p← 0 to r(oi)− 1 do

Add the arc (opi , o
p
j) to the graph: A← A ∪ {(opi , o

p
j)};

foreach oi ∈ V do
for p← 0 to r(oi)− 2 do

Add an arc between successive occurrences of oi: A← A ∪ {(opi , o
p+1
i)};

foreach oi ∈ V : tpe(oi) = state do
for p← 0 to r(oi)− 2 do

foreach oj ∈ V : fm(oj) = fm(oi) and tpe(oi) ∈ {input, output} do
Add the arc (opi , o

p+1
j) to the graph: A← A ∪ {(opi , o

p+1
j)};

Without any loss of generality, the superscript which denotes the number of the
occurrence of an operation is not used in the remainder of the thesis for the sake of
simplicity, unless needed to specify the occurrence. Each occurrence of an operation opi in
the graph G(V,A) becomes an operation that is referred to using the notation oj .

4.3 Dependence Graph with Mutual Exclusion Constraints

The FMI standard states that “FMI functions of one instance don’t need to be thread
safe”. Therefore, an FMU does not implement any service to support concurrent access
to its functions from multiple threads, and it is up to the executing environment to
ensure the calling sequences of the FMU functions are respected as specified in the FMI
standard. These restrictions introduce mutual exclusion constraints on the operations
of the same FMU. We propose in this section an offline method for handling these

54 4.3. Dependence Graph with Mutual Exclusion Constraints

Y p
A1

UpB3
Y p
B1

UpA2 Y p
A3 UpB1

Ẋp
B

Ẋp
A

UpB2
Y p
A2UpA1

Y p
B2

Up+1
A2

Y p+1
A1

Up+1
A1

Y p+1
A3

Y p+1
A2

Ẋp+1
A

Figure 4.6: Graph obtained by applying the multi-rate transformation algorithm on the graph
of Figure 4.2

constraints with low synchronization overhead.

4.3.1 Motivation

In order to study the impact of mutual exclusion constraints, we have evaluated the
performance obtained using two mutual exclusion strategies. In the first one, a dedicated
lock (system object that guarantees mutual exclusion) is used for each FMU. Every time
an FMU function call is made at runtime, the associated lock has to be acquired before the
execution of the function code can be started. This mechanism allows the synchronization
of threads that execute different functions of the same FMU sharing same resources.
Thanks to using the locks, each operation can be allocated to any core. We refer to such
allocation as unconstrained allocation. The second solution is explained in [5] and consists
in allocating the operations of a same FMU to the same core. We refer to such allocation
as constrained allocation. The scheduling heuristic that was used in these tests is presented
in Chapter 5. The theoretical speed-up was estimated by computing the makespan of the
operation graph. The makepsan is the total time needed to compute the whole graph.
Results are given in Figure 4.7. It shows that the expected speed-up using constrained
allocation is less than the one using unconstrained allocation, when the number of cores
is less than five, but similar when five cores or more are available. When using less than
five cores, the large number of output operations can be efficiently allocated only if the
unconstrained allocation is used: the speed-up difference between the constrained and
the unconstrained allocation cases is due to this restriction on the allocation. Five is the
minimal number of cores for enabling the execution of each state operation on a different
core. Due to the predominant execution times of the state operations, their impact on
the speed-up overrides the optimization of the allocation of the other operations. This
explains why the speed-up difference between the unconstrained and the constrained
allocation cases becomes very small using five cores or more.

4. Dependence Graph Model for FMU Co-simulation 55

2 3 4 5 6 7 8
1

2

3

Number of cores

Sp
ee
d-
up

Constrained allocation
Unconstrained allocation

Figure 4.7: Theoretical speed-up.

We implemented and tested both mutual exclusion strategies in order to compare
their runtime performance. Tests were performed on the industrial use case described in
Chapter 6. Execution times measurements were performed by getting the system time
stamp at the beginning of the execution and after 30 seconds of the simulated time. As
previously mentioned, we compared the speed-up by dividing the single-core co-simulation
execution time by the co-simulation execution time on a fixed number of cores. Figure
4.8 sums up the results. It shows the impact of mutex synchronization overhead on the
speed-up. Whatever the number of the available cores, the speed-up remains close to 1.3.
On the contrary, the implementation of the constrained allocation results in a runtime
speed-up that is similar to the theoretical speedup in terms of speed-up improvement
when the number of cores is increased until reaching five. Nevertheless, the maximum
measured speed-up (2.4) remains smaller than the theoretical one (3.5). In fact, the
theoretical speed-up computation considers the makespan ratio without any estimation of
the runtime overhead which certainly has an important impact on the speed-up.

The restrictions introduced by employing the tested mutual exclusion techniques
makes it highly desirable to find an alternative solution that could satisfy the mutual
exclusion constraints while: i) leaving as much flexibility as possible for allocating the
operations to the cores and; ii) introducing lower synchronization overhead. In the rest
of this section, we suggest a method for offline handling of mutual exclusion constraints.
The proposed method is based on modeling the mutual exclusion constraints in the
operation graph of the co-simulation.

56 4.3. Dependence Graph with Mutual Exclusion Constraints

2 3 4 5 6 7 8
1

1.5

2

Number of cores

Sp
ee
d-
up

Constrained allocation
Unconstrained allocation

Figure 4.8: Runtime speed-up.

4.3.2 Acyclic Orientation of Mixed Graphs

The operation graph model can be extended in order to represent scheduling problems that
involve precedence constraints and also mutual exclusion constraints. This is commonly
done using mixed graphs. A mixed graph G(V,A,D) is a graph which contains a set A of
directed arcs denoted (oi, oj) : 0 ≤ i, j < n and a set D of undirected edges denoted [oi, oj] :
0 ≤ i, j < n. In the scheduling literature, these graphs are known also as disjunctive graphs
[68]. In addition to the precedence constraints represented by arcs as described in Section
4.1, mutual exclusion relations are represented by edges in a mixed graph such that:

• Precedence constraints: ∀(oi, oj) ∈ A, oi must finish its execution before oj can start
its execution.

• Mutual exclusion constraints: ∀[oi, oj] ∈ D, oi and oj must be executed in strictly
disjoint time intervals.

Operations belonging to the same FMU can be executed in either order but not in
parallel. Undirected edges can be added between these operations in order to represent
such mutual exclusion constraints. This transforms the operation graph into a mixed
graph. In order to compute a schedule for such mixed graph, an execution order has to be
defined for each pair of operations connected by an undirected edge which is interpreted
by assigning a direction to this edge. Cycles must not be introduced in the graph while
assigning directions to edges, otherwise, the scheduling problem becomes infeasible. Once
all edges have been assigned directions, the result is a new operation graph which is a
DAG. Since the final goal is to accelerate the execution of the co-simulation which comes
down to minimizing the makespan of the operation graph, the acyclic orientation of the

4. Dependence Graph Model for FMU Co-simulation 57

mixed graph has to minimize the length of the critical path of the resulting DAG. We
recall that the length of the critical path of the operation graph represents a lower bound
on the makespan of the graph. This problem is known as acyclic orientation [69]. We
denote the acyclic orientation as a function φ : [oi, oj] ∈ D → {(oi, oj), (oj , oi)}

The acyclic orientation problem is closely related to vertex coloring of a graph [70].
In its general form, i.e. when all edges of the graph are undirected, vertex coloring is
a function α : V → {1, 2, . . . , k} which labels the vertices of the graph with integers,
called colors, such that the inequality 4.9 holds.

∀ [oi, oj] ∈ D, α(oi) 6= α(oj) (4.9)

The acyclic orientation of the graph can then be obtained by assigning a direction
to every edge such that the color of the corresponding tail vertex is smaller than the
color of the corresponding head vertex. A graph coloring with k colors is referred to
as k-coloring. In its general form, vertex coloring aims at finding a minimum vertex
coloring, i.e. minimizing k the number of the used colors. The minimum number of
colors required to color an undirected graph G is called the chromatic number and is
denoted χ(G). The Gallai–Hasse–Roy–Vitaver theorem [71–74] links the length of the
longest path of the graph, obtained by the orientation which minimizes this length, to
vertex coloring of the graph. It states that the length of the longest path of a directed
graph is at least χ(G). Thus, a minimum vertex coloring leads to an acyclic orientation
that minimizes the length of the critical path of the resulting graph. Computing the
chromatic number of a graph is NP-complete [75].

The acyclic orientation of a mixed graph can be obtained via vertex coloring also.
However, vertex coloring of a mixed graph has to take into account both arcs and
edges of the graph. More precisely, a vertex coloring of a mixed graph is a function
α : V → {1, 2, . . . , k} such that inequalities 4.9 and 4.10 hold.

∀ (oi, oj) ∈ A, α(oi) < α(oj) (4.10)

A coloring of a mixed graph G(V,A,D) exists only if it is cycle-free [76], i.e. the
directed graph G(V,A, ∅) does not contain any cycle. The problem of acyclic orientation
of mixed graphs has been studied in the literature in [77–79]. Efficient algorithms have
been proposed for the orientation of special types of mixed graphs. It has been shown
that, in the general case, the problem is NP-Hard.

4.3.3 Problem Formulation

Let G(V,A) be an operation graph of an FMU co-simulation constructed as described in
Section 4.1. In order to represent mutual exclusion constraints between FMU operations,
the initial operation graph G(V,A) is transformed into a mixed graph by connecting
each pair of mutually exclusive operations oi, oj by and edge [oi, oj]. The resulting mixed
graph is denoted G(V,A,D), where V is the set of operations, A is the set of arcs,
and D is the set of edges. Once the mixed graph is constructed, directions have to

58 4.3. Dependence Graph with Mutual Exclusion Constraints

be assigned to its edges in order to define an order of execution for mutually exclusive
operations. The precedence and mutual exclusion relations represented by the mixed
graph G(V,A,D) are given by expressions 4.11 and 4.12 respectively. If operations oi
and oj are connected by an arc (oi, oj), the time interval (S(oi), E(oi)] must precede the
time interval (S(oj), E(oj)]. Otherwise, if operations oi and oj are connected by an edge
[oi, oj], time intervals (S(oi), E(oi)] and (S(oj), E(oj)] must be strictly disjoint.

∀ (oi, oj) ∈ A, E(oi) ≤ S(oj) (4.11)

∀ [oi, oj] ∈ D, (S(oi), E(oi)] ∩ (S(oj), E(oj)] = ∅ (4.12)

The timing attributes of the operations in the mixed graph G(V,A,D) are the same
as in the initial graph G(V,A) because the added set of edges [oi, oj] ∈ D does not impact
the computation of these attributes. The attributes of an operation oi, connected by an
edge with another operation, may change only when this edge is assigned a direction
following the order of the execution intervals of oi and oj .

An edge [oi, oj] is called a conflict edge if the intervals (S(oi), E(oi)] and (S(oj), E(oj)]
in the graph G(V,A) overlap. This can be written in the form of expression 4.13. If
for a given edge [oi, oj] either E(oi) ≤ S(oj) or E(oj) ≤ S(oi), there is no conflict and
the edge can be assigned a direction.

E(oi) > S(oj) and E(oj) > S(oi) (4.13)

It should be noted that, for a given edge [oi, oj], choosing either of the execution
orders does not impact the numerical results of the co-simulation since these operations
do not have data dependence. An order have to be defined only because we have to
ensure mutual exclusion between them due to the non-thread-safe implementation of FMI.
Following the definition given in the previous section, the corresponding vertex coloring is
a function α : V → {1, 2, . . . , k} which is equivalent to mapping the operations oi ∈ V
to the time intervals [S(o1), E(o1)], [S(o2), E(o2)], . . . , [S(on), E(on)].

The problem of acyclic orientation of the mixed graph G(V,A,D) can be stated
as an optimization problem as follows:

Input Mixed graph G(V,A,D)

Output DAG G(V,A)

Find Coloring α : V → {1, 2, . . . , k}

Minimize Number of colors k

Subject to Precedence constraints: ∀ (oi, oj) ∈ A, α(oi) < α(oj)
Mutual exclusion constraints: ∀ [oi, oj] ∈ D, α(oi) 6= α(oj)

4. Dependence Graph Model for FMU Co-simulation 59

4.3.4 Resolution using Linear Programming

Let G(V,A,D) be a mixed graph constructed form the operation graph G(V,A) as
described in the previous sections to represent precedence and mutual exclusion constraints
between operations of an FMU co-simulation. In the following, we present an Integer
Linear Programming formulation for the problem of acyclic orientation of G(V,A,D).
The proposed formulation is based on the scheduling notation which gives a more compact
set of constraints compared to a formulation that uses the vertex coloring notation.

Variables and Constants

Tables 4.1 and 4.2 summarize the variables and the constants that are used in the
ILP formulation respectively.

Table 4.1: Variables used in the ILP formulation of the acyclic orientation problem

Variable Type Description
S(oi) Integer Start time of operation oi
E(oi) Integer End time of operation oi
bij Binary Orientation decision variable associated with edge [oi, oj] ∈ D
CP Integer Length of the critical path of the graph

Table 4.2: Constants used in the ILP formulation of acyclic orientation problem

Constant Type Decription
C(oi) Integer Execution time of operation oi
M Integer Large positive number

Constraints

The following set of constraints is used in the ILP formulation of the acyclic orientation
problem:

• Precedence constraints: The start time of each operation is equal to the maximum
of the end times of all its predecessors. Expression 4.14 captures this constraint.
Note that expression 4.14 indicates that the start time of operation oj is greater
or equal to the end time of each predecessor oi. This is sufficient to express
S(oj) = maxoi∈pred(oj)(E(oi)) since the formulated problem is a minimization
problem.

∀(oi, oj) ∈ A,S(oj) ≥ E(oi) (4.14)

• Mutual exclusion constraints: We define the binary variable bij which is associated
with the direction that is assigned to edge [oi, oj]. bij is set to 1 if the edge [oi, oj] is

60 4.3. Dependence Graph with Mutual Exclusion Constraints

assigned a direction from oi to oj , i.e. φ([oi, oj]) = (oi, oj) and to 0 otherwise. Note
that bij is the complement of bji. For every pair of operations that are connected
by and edge, we have to ensure that their time intervals are strictly disjoint, i.e.
∀ [oi, oj] ∈ D, (S(oi), E(oi)]∩ (S(oj), E(oj)] = ∅. Expressions 4.15 and 4.16 capture
this constraint where M is a large positive integer.

∀[oi, oj] ∈ E,S(oi) ≥ E(oj)−M × (1− bij) (4.15)

∀[oi, oj] ∈ E,S(oj) ≥ E(oi)−M × bij (4.16)

• Time intervals: Expression 4.17 is used to compute the end time of each operation.

∀oi ∈ V,E(oi) = S(oi) + C(oi) (4.17)

• Length of the critical path: The critical path CP is equal to the maximum of the
end times of all the operations as stated by expression 4.18.

∀oi ∈ V,CP ≥ E(oi) (4.18)

Objective

The objective of this linear program is to minimize the length of the critical path of
the operation graph (expression 4.19).

min(CP) (4.19)

While exact algorithms such as ILP give optimal results, they suffer form very long
execution times that are not acceptable for the users. For many real world applications,
ILP fails to produce the results within acceptable times. Heuristics are usually good
alternatives. While the optimality of the solution cannot be guaranteed when using
heuristics, they, in most cases, provide results of good quality, not too far from the
optimal solution within acceptable execution times.

4.3.5 Acyclic Orientation Heuristic

We propose in this section a heuristic for the acyclic orientation of the mixed graph
G(V,A,D). A straightforward acyclic orientation can be obtained by sorting the operations
in a non decreasing order of their start times S(oi) and assigning directions to edges
following this order, i.e. ∀[oi, oj] ∈ D,S(oi) ≤ S(oj), φ([oi, oj]) = (oi, oj). This is a fast
greedy acyclic orientation, however it can be improved as we show hereafter.

Let s be the sum of the repetition factors of all the FMUs. The set of operations
V can be represented as a union of mutually disjoint non empty subsets such that

4. Dependence Graph Model for FMU Co-simulation 61

every subset contains all operations that belong to the same FMU and that correspond
to the same occurrence:

V =
s⋃

k=1
Vk : ∀ opi , o

q
j ∈ Vk, k ∈ {0, 1, . . . , s}, fm(opi) = fm(oqj) and p = q (4.20)

We know that edges in the set D exist only between operations that belong to the
same FMU. Furthermore, for every edge [opi , o

q
j] ∈ D, operations opi and oqj correspond to

the same occurrence, i.e. p = q. Although operations which belong to the same FMU and
correspond to different occurrences are mutually exclusive, it is not needed to connect
them by an edge because an execution order is already ensured for these operations by
the way the operation graph is constructed. In other words, all the operations of an FMU,
and which correspond to the same occurrence p have to finish their execution before the
next occurrence p+ 1 of any operation can start its execution. Similarly to the operation
set, the edge set D can be subdivided into mutually disjoint non empty subsets:

D =
s⋃

k=1
Dk, ∀ [opi , o

q
j] ∈ Dk, k ∈ {0, 1, . . . , s}, fm(opi) = fm(oqj) and p = q (4.21)

In view of the above, we define the set of subgraphs which constitute the graph
G(V, ∅, D) = ⋃s

k=1G(Vk, Dk). Theorem 4.3.1 states the relationship between the acyclic
orientations of the subgraphs G(Vk, Dk) and the acyclic orientation of the mixed graph
G(V,A,D).

Theorem 4.3.1. An acyclic orientation of the mixed graph G(V,A,D) can be obtained by
finding an acyclic orientation for every subgraph Gk(Vk, Dk) following the non decreasing
order of the start times of the operations as described previously.

Proof. In order to prove this, we have to show that every edge in D is assigned a direction
and that the resulting orientation does not lead to the creation of a cycle. We use a proof
by contradiction to prove this statement. Since every edge [oi, oj] belongs to one subset
of edges Dk, finding acyclic orientations for all the subgraphs Gk(Vk) leads to assigning a
direction to every edge in D. The existence of a cycle in the resulting graph means that
there exists at least an edge [oi, oj], such that S(oi) > S(oj), that has been transformed
into the arc (oi, oj). However, this is not possible because the greedy acyclic orientation
assigns directions to edges following a non-decreasing order of the start times of the
operations which contradicts the previous assertion and thus proves Theorem 4.3.1.

Consider now that the acyclic orientation of each subgraph Gk(Vk, Dk) is obtained by
finding a vertex coloring for this subgraph. This vertex coloring can be seen as a sequence
of assignments α1, α2, . . . , α|Dk|, such that every assignment αl assigns a color to one
operation oi ∈ Vk and leads to assigning directions to edges that connect oi with other
already colored operations oj ∈ Vk. The number of assignments needed to perform the
acyclic orientation of Gk(Vk, Dk) is at most equal to the number of edges |Dk|. Following

62 4.3. Dependence Graph with Mutual Exclusion Constraints

the coloring of an operation and the engendered assignment of directions, the attributes
of some operations may change. Two situations have to be distinguished:

• Coloring αl of operation oi does not lead to assigning a direction to any conflict
edge. In this case, no changes of the timing attributes occur.

• Coloring αl of operation oi leads to assigning a direction to at least one conflict
edge [oi, oj] ∈ Dk. Without any loss of generality, suppose that the edge [oi, oj]
is transformed into the arc (oi, oj). The start time S(oj) is changed as follows:
S(oj)← E(oi). This leads to changing the end time E(oj) also and possibly causes a
domino effect for the start times and end times of all the descendants oj′ ∈ desc(oj)
(see Algorithm 2). Moreover, if S(oj) > E(oi), the end time from end E(oi) is
changed as follows: E(oi)← S(oj). Similarly, this leads to changing the start time
from end S(oj) and possibly causes a domino effect for the start times and end
times of all the ancestors oi′ ∈ ance(oi) (see Algorithm 3).

Algorithm 2: Update of the start and end times following an assignment αl
Input :Attributes of the mixed graph G(V,A,D), partially colored subgraph

Gk(Vk, Ak, Dk);
Output :Update of the start and end times of a subset of operations {oi} ⊂ V ;
Set αl the last assignment of color made to an operation oi ∈ Vk;
Set Ak,l = {(ot, oh)} the set of all arcs created from the orientations engendered
by αl;
foreach (ot, oh) ∈ Ak,l do

if S(oh) < E(ot) and S(ot) < E(oh) then
S(oh)← E(ot);
E(oh)← S(oh) + C(oh);
update(oh);

Procedure update(oh)
if succ(oh) 6= ∅ then

foreach oh′ ∈ succ(oh) do
if S(oh′) < E(oh) then

S(oh′)← E(oh);
E(oh′)← S(oh′) + C(oh′);
update(oh′);

return;

We now describe our proposed acyclic orientation heuristic. The heuristic takes as
input a mixed graph G(V,A,D) and the attributes of the operations oi ∈ V as computed
for the digraph G(V,A, ∅), and assigns directions to all the edges [oi, oj] ∈ D. By
applying Theorem 4.3.1, the heuristic consists in finding vertex colorings of the subgraphs
which constitute the graph G(V,A,D). In the first step, the graph G(V, ∅, D) obtained

4. Dependence Graph Model for FMU Co-simulation 63

Algorithm 3: Update of the start and end times from end following an
assignment αl
Input : Input Attributes of the mixed graph G(V,A,D), partially colored

subgraph Gk(Vk, Ak, Dk);
Output :Output Update of the start and end times from end of a subset of

operations {oi} ⊂ V ;
Set αl the last assignment of color made to an operation oi ∈ Vk;
Set Ak,l = {(ot, oh)} the set of all arcs created from the orientations engendered
by αl;
foreach (ot, oh) ∈ Ak,l do

if S(oh) < E(ot) and S(ot) < E(oh) then
if E(ot) < S(oh) then

E(ot)← S(oh);
S(ot)← E(ot) + C(ot);
update(ot);

Procedure update(ot)
if pred(ot) 6= ∅ then

foreach ot′ ∈ pred(ot) do
if E(o∗t) < S(ot) then

E(ot′)← S(ot);
S(ot′)← E(ot′) + C(ot′);
update(ot′);

return;

by removing all the arcs (oi, oj) ∈ A from the mixed graph G(V,A,D) is partitioned
into s subgraphs where s is the sum of the repetition factors of all FMUs such that
each subgraph contains all the operations of one FMU which correspond to the same
occurrence and all the edges that connect them: G(V, ∅, D) = ⋃s

k=1Gk(Vk, ∅, Dk). Then,
the set of operations oi ∈ V is sorted in a non decreasing order of the start times
S(oi). Next, the heuristic iteratively assigns colors to operations. It keeps a list of of
already colored operations Lk for each subgraph G(Vk, ∅, Dk). The operations of every
list oi ∈ Lk are sorted in increasing order of their assigned colors. At each iteration,
the heuristic selects among the operations not yet colored oi ∈ V , the operation which
has the earliest start time S(oi) to be assigned a color. Ties are broken by selecting
the operation with the least flexibility. We call the operation to be colored at a given
iteration, the pending operation. The heuristic checks in the order of Lk if the edges
which connect the pending operation oi ∈ Vk with the operations oj ∈ Lk are conflict
edges. If a conflict edge [oi, oj] ∈ Dk : oj ∈ Lk is detected, the pending operation is
assigned the color α(oj) and the colors assigned to all the already colored operations
oi′ ∈ Lk : α(oi′) ≥ α(oi), are increased α(oi′)← α(oi′) + 1. The corresponding edges are
then accordingly assigned directions. Afterward, the timing attributes of the operations

64 4.4. Dependence Graph with Real-time Constraints

are updated using Algorithms 2 and 3. At this point, the increase in CP , the critical path
of the graph, is evaluated. Next, the operations oi′ ∈ Lk: α(oi′) > α(oi) are reassigned
their previous colors α(oi′) = α(oi′)−1, and the pending operation is assigned a new color
α(oi)← α(oi) + 1. The increase in the critical path is evaluated again similarly. After
repeating this process for all the edges [oi, oi′] ∈ Dk : oi′ ∈ Lk, the pending operation
is finally assigned the color which leads to the least increase in the critical path, and
edges [oi, oi′] ∈ Dk : o′i ∈ Lk are assigned directions accordingly. The heuristic begins
another iteration by selecting a new operation to be colored. The heuristic assigns a color
to one operation at each iteration. Every operation is assigned a color higher than the
colors of all its predecessors which guarantees that no cycle is generated. The heuristic
finally stops when all the operations have been assigned colors.

Complexity

The outermost loop (while loop) of the acyclic orientation heuristic is repeated n times,
such that at each iteration, one operation is assigned a color. Recall that n is the number
of operations in the operation graph G(V,A). The selection of the operation with latest
start time is done in O(logn). The first inner loop iterates over all the edges connecting
the selected operation. It is repeated at most e times, where e is the maximum number
of edges connecting one operation. The inner most loop is executed twice in all cases.
This results in an execution of the nested inner loops in O(e). In addition Algorithms
2 and 3 that are called in the heuristic have each a complexity of O(n) since they are
based on a recursion whose depth is at most n. Therefore, the complexity of the acyclic
orientation heuristic is evaluated to O(n2e).

4.4 Dependence Graph with Real-time Constraints

Real-time (co-)simulation, a widely used term in the literature, refers to co-simulation
that requires that the amount of time needed to compute all equations of a model must be
less than the integration step size of the model [80]. In this thesis, we talk instead about
co-simulation under real-time constraints. The difference between the two notions will be
clarified through this section. In particular, we are interested in such co-simulation within
the context of HiL testing. In this section, we focus on defining these real-time constraints
which are not given as it is usually the case in classical real-time systems. First, we
explain what these constraints are and where they originate from. Then, we describe
how to define real-time constraints for a co-simulation represented by an operation graph.
The work presented in this section is based on the method of propagating real-time
constraints described in [1]. This method was proposed for co-simulations where only
partial information about intra-model dependence is available. Our work is an adaptation
of this method to FMU co-simulation represented by a dependence graph which provides
information about input/output/state dependence.

4. Dependence Graph Model for FMU Co-simulation 65

Algorithm 4: Acyclic orientation heuristic
Input :Mixed graph G(V,A,D)
Output :DAG G(V,A);
Set s the number of all occurrences of all FMUs;
Partition the graph G(V, ∅, D) into s subgraphs: G(V, ∅, D) = ⋃s

k=1Gk(Vk, ∅, Dk);
Initialize lists Lk ← ∅ : 0 ≤ k < s;
Set Ω the set of all the operations not already colored;
while Ω 6= ∅ do

Select the operation oi ∈ Vk : S(oi) = maxoj∈Ω(S(oj)), 0 ≤ k < s (break ties
by selecting the operation with the least flexibility);
if Lk = ∅ then

α(oi)← 1; Lk ← Lk ∪ {oi};
else

Set σ ←∞; // Initialize the increase in the critical path
foreach oj ∈ Lk do

if S(oi) < E(oj) and S(oj) < E(oi) then
foreach c ∈ {α(oj), α(oj) + 1} do

α(oi)← c;
evaluate(oi, Lk);
foreach oi′ ∈ Lk: α(oi′) > α(oi) do

Reassign oi′ its previous color: α(oi′)← α(oi′)− 1;

if S(oi) ≥ E(oj) then
α(oi)← α(oj) + 1;
evaluate(oi, Lk);

else
α(oi)← α(oj);
evaluate(oi, Lk);

α(oi) = color;
foreach oi′ ∈ Lk do

if α(oi′) > α(oi) then
Assign a direction to the edge [oi, oi′] ∈ Dk : φ([oi, oi′])← (oi, oi′);

else
Assign a direction to the edge [oi, oi′] ∈ Dk : φ([oi, oi′])← (oi′ , oi);

Update the timing attributes using Algorithms 2 and 3;
Remove oi from Ω; Lk ← Lk ∪ {oi};

Procedure evaluate(oi, Lk)
foreach oi′ ∈ Lk : α(oi′) ≥ α(oi) do

α(oi′)← α(oi′) + 1;
Update the timing attributes using Algorithms 2 and 3;

Compute the new critical path and set σ′ the increase in the critical path;
if σ′ < σ then

color ← α(oi); σ ← σ′;
return;

66 4.4. Dependence Graph with Real-time Constraints

4.4.1 Preliminaries

A HiL setup is composed of a simulated component and a physically available component
that is interfaced with the simulated component via inputs and outputs. It should be
noted that multiple parts may be physically available and involved in HiL, e.g. multiple
controllers interacting with multiple parts of physical processes. We refer to all these
parts as the real component. Figure 4.9 shows a basic example of a HiL co-simulation.
The simulated component is represent by an operation graph. It consists of two FMUs A
and B whose operations are colored in green and yellow respectively. The real component
has one input and one output connected to an output operation and and an input
operation of the simulated component respectively.

o5

o4
o8

o1 o7 o2
o11

o10

o3
o6o0

o9

Output

Input

Real component Simulated component

Figure 4.9: Example of co-simulation under real-time constraints.

The goal of the HiL testing phase in the model based design process is mainly to
run realistic tests. In other words, it aims at estimating the performance of the real
component by providing a realistic environment through the simulated component. The
simulated component has to interact with the real component at the same rate as its
real counterpart. As such, the inputs and outputs of the real component, which are
periodically sampled, define real-time constraints which involve that the simulated time
has to match the real time. These constraints are initially defined on the outputs and
inputs of the simulated component that are connected with the inputs and outputs
of the real component respectively. Since these inputs and outputs of the simulated
component depend on other operations of the co-simulation, the real-time constraints
are propagated towards the other operations.

In [1], it has been shown that the real-time constraints have to be propagated in
different ways depending on the type of the operation (input, output, state) and also
the type of intra-model connections (direct feedthrough, non direct feedthrough). In
this work, the author dealt with co-simulation at the model level, i.e. a co-simulation
is represented by a graph of models. Moreover, the author distinguishes between direct

4. Dependence Graph Model for FMU Co-simulation 67

feedthrough and non direct feedthrough model. A direct feedthrough model contains
at least one output which directly depends on an input while a non direct feedthrough
models contains none. For further details, one should consult the original work. Because
we adopted a different approach which takes advantage of the FMI standard to represent
a co-simulation with finer granularity, we cannot apply the method proposed in [1].
Instead, we propose a new method that we present in this section. First, we give in
the following some preliminaries about the propagation of real-time constraints on a
dependence graph representing an FMU co-simulation.

Different hardware and software components such as communication buses and software
acquisition modules are used to connect the real component with the simulated component
(co-simulation). In our work, we abstract the details about all these communication
components away by representing the connection as a data dependence between an input
(resp. output) of the real component and an output (resp. input) of the co-simulation
(see Figure 4.9). The co-simulation periodically reads and writes data from and to the
real component. Therefore, the real-time constrainsts are initially defined on the inputs
and outputs that are directly connected with the real component. For instance, the real
component sends data via its output to update an input of the co-simulation every 20ms.

We consider that the simulated component consists in an FMU co-simulation repre-
sented as an operation graph constructed and upon which the different transformations
(multi-rate, acyclic orientation) have been applied as described in previous sections.
All operations of the co-simulation including the inputs (resp. outputs) of the co-
simulation that are connected with the real component may have successors or not.
This is an important difference from the method proposed in [1] where outputs of the
co-simulation do not have successors.

We assume that the sampling period of a given input/output of the real component is
a multiple of the communication step size of the operation of the simulated component
that is connected with it. In contrast to [1], we do not consider the case where cycles
exist in the operation graph since, as we showed previously, the operation graphs we
deal with are cycle-free by construction.

The propagation of real-time constraints loosens the constraints imposed on the co-
simulation compared to classical real-time co-simulation [80]. The latter, indeed, requires
setting a periodic deadline for the computations of each model’s equations that is equal to
its integration step size. This approach, in the case of HiL co-simulation where only data
exchange between the real and the simulated component have to be performed in real-time,
usually over-constrains the co-simulation. We chose to use the term co-simulation under
real-time constraints over the term real-time co-simulation because, in our approach, not
every operation is constrained to be executed in real-time, i.e. with a periodic deadline
that is equal to its integration step size. In the subsequent sections, we present how
the real-time constraints are computed and propagated.

68 4.4. Dependence Graph with Real-time Constraints

4.4.2 Definition of Real-time Constraints

Real-time systems are based on real-time tasks which represent the elementary units of
execution. These tasks are characterized by a number of parameters such as periods,
Worst Case Execution Times (WCET), deadlines, and release dates. Such parameters
constitute an abstract model of the tasks that is used for the design and the analysis of
real-time systems. We consider co-simulation under real-time constraints to be a real-time
system where the operations of the co-simulation represent the real-time tasks. Therefore,
the operation graph model presented in Section 4.1 has to be completed with real-time
parameters that will allow the design and the analysis of real-time multi-core scheduling
algorithms for co-simulation under real-time constraints. Hereinafter, we define real-time
constraints that are assigned to operations, necessary for performing HiL co-simulation.

Let the inputs and the outputs of the real component be sampled with sampling
periods Tx and Ty respectively where x and y denote the numbers of the corresponding
input and output respectively. In other words, an input (resp. output) of the real
component is periodically activated every Tx (resp. Ty) units of time. The sampling
periods of the different inputs and outputs of the real component can be identical or
different.We refer to operations of the simulated component that are directly connected
to the real component as gate operations, e.g. operations o4 and o5 in Figure 4.9.

The periodic activation of an output of the real component leads to producing data
that are consumed by an input gate operation oi of the simulated component. This input
gate operation is periodically updated by the values produced by the output of the real
component following a sampling period Ty. Therefore, at the zth sample z× Ty, the input
gate operation oi is updated to its value corresponding to simulated time z × Ty. This
defines a periodic release for this input gate operation, i.e. time points at which its value
is periodically updated following consumption of data produced by the real component.

Definition 4.4.1. A release is a real-time constraint applied on an input gate operation
oi of the simulated component in a HiL co-simulation. Such constraint is defined by its
period R(oi) = Ty where Ty is the sampling period of the output of the real component
that is connected with oi. The occurrences of a release constraint are written z×Ty, z ∈ N.
This means that the value of the gate operation oi for simulated time z × Ty is available
at real time z × Ty.

Similarly, the periodic activation of an input of the real component requires data
produced by an output gate operation oj of the simulated component to be available.
This output gate operation periodically produces data that is consumed by the input of
the real component following a sampling period Tx. Therefore, before the wth sample
w × Tx, the output gate operation oj has to produce its value corresponding to simulated
time w × Tx. This defines a periodic deadline for this output gate operation, i.e. it
has to periodically produce its updated value to be consumed by the real component
before specific periodic dates.

Definition 4.4.2. A deadline is a real-time constraint applied on an output gate oj of
the simulated component in a HiL co-simulation. Such constraint is defined by its period

4. Dependence Graph Model for FMU Co-simulation 69

D(oj) = Tx where Tx is the sampling period of the input of the real component that is
connected with oj . The occurrences of a deadline constraint are written w × Tx, w ∈ N.
This means that the value of oj for simulated time w×Tx has to be available at the latest
by real time w × Tx.

The aforementioned definitions specify real-time constraints for gate operations that
are directly connected with the real component. These operations being dependent
on other operations and vice versa, it becomes necessary to define the impact of the
real-time constraints on the rest of the operations.

4.4.3 Propagation of a Single Real-time Constraint

In this section, we assume that all the gate operations are subject to a single real-time
constraint, i.e. all the real-time periods of the inputs and outputs of the real component
are equal. In classical real-time co-simulation, real-time constraints are defined by setting
a real-time period for each model that is equal to its integration step size. Such approach,
if used in a HiL co-simulation, may lead to pessimistic constraints. In other words, it may
overconstrain the co-simulation by setting stringent requirements that are not needed in
order to ensure the real-time exchange between the simulated and the real components. In
our approach, we only impose the necessary constraints on the gate operations. Then, these
constraints are propagated to the remaining operations of the graph. These operations
become subject to constraints that are induced from the constraints imposed on the
gate operations. As stated previously, the main advantage of our approach is potentially
loosening the real-time constraints imposed on the co-simulation.

Property 4.4.1. An operation graph G(V,A) is said to satisfy property 4.4.1 if every
operation oi ∈ V is assigned a release and a deadline.

The final goal is to apply real-time multi-core scheduling algorithm on the operation
graph. For this, the operation graph model need to be completed with release and deadline
constraints defined previously. We consider that any real-time multi-core scheduling
algorithm will use these parameters. Therefore, we only consider operation graphs that
satisfy Property 4.4.1. In the following, we present the process of propagating real-time
constraints in an operation graph. We, also, derive a necessary condition that ensures
that the operation graph resulting from the propagation of the real-time constraints
is conformant with property 4.4.1.

Propagation of Release Constraints

Let a release constraint of period Ty be applied on an input gate operation oi ∈ V . A subset
of the occurrences of oi, opi , 0 ≤ p < r(oi) that appear in the operation graph are subject
to occurrences of the release constraint. The zth occurrence of the release constraint
z×Ty = tk is applied on the occurrence op,tki , i.e. the occurrence p of operation oi executed
at time step tk, where 0 ≤ p < r(oi) and tk ∈ R+. Since we consider the release constraint
period to be a multiple of the communication step size of oi, we can determine which

70 4.4. Dependence Graph with Real-time Constraints

occurrences of oi are subject to occurrences of the release constraint. More specifically,
the occurrence z× Ty of the release constraint is applied on occurrence opi : p = z× Ty

H(oi) .
Therefore opi is assigned a release R(opi) = z × Ty. Once opi is released and executed, the
operations that depend on opi can be released. Therefore, the release constraint R(opi) is
propagated towards all the successors of opi . This propagation is given by expression 4.22.

∀oi′ ∈ succ(oi) : R(oi′) = R(oi) (4.22)

Let’s consider, for example, the HiL co-simulation shown in Figure 4.9. Let HA = 2
and HB = 4 be the communication step sizes of FMUs A and B respectively and let the
sampling period of the output of the real component be Tout = 4. Figure 4.10 shows the
propagation of the release constraint in the operation graph. Note that the multi-rate
transformation algorithm is applied before the propagation. The operations that are
assigned a release are colored in blue. The release assigned to each operation is shown below
or above the corresponding operation. The dashed blue arrow indicates the direction of
the propagation which is from a predecessor to a successor. The propagation of the release
constraint is performed iteratively. Starting from the input gate operation op4, for each
operation that is assigned a release constraint, this constraint is propagated towards all its
successors as described above. The values of release that are shown correspond to the first
occurrence of the release constraint z×Tout = 0×4 = 0. In order to find the occurrence of
the input gate operation o4 that is subject to this occurrence of the release constraint, we
use the formula given above: p = z × Tout

H(o4) = 0× 4
4 = 0. Therefore, in Figure 4.10, p = 0.

op5

op4
op8

op1 op7 op2
op11

op10

op3
op6op0

op9

op+1
1

op+1
5

op+1
0

op+1
7

op+1
6

op+1
10

0
0

0 0 0
0

0
0

0

0 0

0

0

Output
(TO = 4)

Input

Figure 4.10: Example of release propagation.

The process of propagating a release constraint can be summarized as follows:

1. Let G(V,A) be the operation graph representing the simulated component and let
oi ∈ V be an input gate operation connected to an output of the real component
whose sampling period and its occurrences are denoted Ty and z × Ty respectively.

4. Dependence Graph Model for FMU Co-simulation 71

2. Assign to the occurrences opi , 0 ≤ p < r(oi), the release constraints R(opi) = z × Ty :
p = z × Ty

H(oi) .

3. For every operation oi assigned a release constraint in the previous step: If succ(oi) =
∅, stop. Otherwise, propagate R(oi) towards all the successors oi′ ∈ succ(oi).

4. Repeat the previous step for ever operation that is newly assigned a release constraint.

Propagation of Deadline Constraints

Now let a deadline constraint of period Tx be applied on an output gate operation oj of
the operation graph. Occurrences of this deadline constraint are applied on a subset of
the occurrences of operation oj , oqj : 0 ≤ q < r(oj) that appear in the operation graph.
The wth occurrence of the deadline constraint w × Tx = tk is applied on the occurrence
oq,tkj , i.e. the occurrence q of operation oj executed at time step tk, where 0 ≤ q < r(oj)
and tk ∈ R+. The deadline constraint is a multiple of the communication step size of
oj , hence, we can compute which occurrences of oj are subject to occurrences of the
deadline constraint. The occurrence w × Tx = tk of the deadline constraint is applied on
occurrence oqj : q = w × Tx

H(oj) . Each occurrence of the operation oj that is subject to an
occurrence of the deadline constraint w × Tx

H(oj) is assigned a deadline D(oqj) = w × Tx
H(oj) .

This constraint is, then, propagated towards all the predecessors of oqj . The propagation
of a deadline constraint is given by Expression 4.23.

∀oj′ ∈ pred(oj) : D(oj′) = D(oj) (4.23)

Figure 4.11 illustrates the propagation of the deadline constraint in the operation
graph. The sampling period of the input of the real component is Tin = 4. We recall that
the execution of the co-simulation consists in running the operation graph repeatedly.
Therefore, each run corresponds to a pattern that involves specific occurrences of the
operations. While in the pattern of the operation graph that is shown previously, operation
op5 does not have a predecessor, the state operation op−1

10 belonging to the preceding pattern
is a predecessor of op5. The operations that are assigned a deadline are colored in red.
The deadline assigned to each operation is shown above the corresponding operation. The
dashed red arrow indicates the direction of the propagation which is from a successor
to a predecessor. The propagation of the deadline constraint is performed iteratively.
Starting from the output gate operation oq5, for each operation that is assigned a deadline
constraint, this constraint is propagated towards all its predecessors. The values of
deadline that are shown correspond to the second occurrence of the release constraint
w × Tin = 1× 4 = 4. In order to find the occurrence of the output gate operation o5 that
is subject to this occurrence of the release constraint, we use the formula given previously:
q = w × Tin

H(o5) = 1 × 4
2 = 2. Therefore, in Figure 4.11, q = 2.

The process of propagating a deadline constraint can be summarized in the following
steps:

72 4.4. Dependence Graph with Real-time Constraints

oq5

oq4
oq8

oq1 oq7 oq2
oq11

oq10

oq3
oq6oq0

oq9

oq+1
1

oq+1
5

oq+1
0

oq+1
7

oq+1
6

oq+1
10

Input
(TI = 4)

Output

oq−1
10

4

4

Figure 4.11: Example of deadline propagation.

1. Let G(V,A) be the operation graph representing the simulated component and let
oj ∈ V be an output gate operation connected to an input of the real component
whose sampling period and its occurrences are denoted Tx and w × Tx respectively.

2. Assign to the occurrences oqj , 0 ≤ q < r(oj), the deadline constraints D(oqj) =
w × Tx : q = w × Tx

H(oj) .

3. For every operation oj assigned a deadline constraint in the previous step: If
pred(oqj) = ∅, stop. Otherwise, propagate D(oj) towards all the predecessors
oj′ ∈ pred(oj).

4. Repeat the previous step for ever operation that is newly assigned a deadline
constraint.

Propagation of Real-time Constraints through Looping

It can be seen that the propagation of the real-time constraints is based on graph
traversal. The Breadth First Search (BFS) or the Depth First Search (DFS) graph
traversal algorithms can be used to perform this propagation. On the one hand, the
release constraints are propagated following the topological ordering of the graph since
the constraint is always propagated from a predecessor to a successor. We refer to
such propagation as forward propagation. On the other hand, the deadline constraint is
propagated in reverse topological ordering of the graph because the constraint is always
propagated from a successor to a predecessor. We refer to such propagation as backward
propagation. This means that the release (resp. deadline) constraint cannot propagate
towards the operations that come before (resp. after) the input (resp. output) gate
operation that is subject to this constraint.

For the operation graph to be scheduled by a real-time multi-core scheduling algorithm,
it has to satisfy Property 4.4.1. Below, we propose a method to assign release and deadline

4. Dependence Graph Model for FMU Co-simulation 73

constraints to operations that are not traversed in the forward and backward propagation
phases respectively. This method is based on looping the propagation. In other words, a
release (resp. deadline) constraint is propagated in a reverse order of the forward (resp.
backward) propagation phase. Such looping is possible because we can define a pattern
of the operation graph that is repeated periodically in runtime.

Definition 4.4.3. In the context of co-simulation under real-time constraints, the
hyperperiod is the least common multiple of the real-time sampling periods of all inputs
and outputs of the real component and the communication step sizes of all operations of
the simulated component: HP = lcm(H(o1), H(o2), . . . ,H(on), T1, T2, . . . , Tm) where n
is the number of operations in the operation graph and m is the number of inputs and
outputs of the real component.

The hyperperiod notion resembles the notions of hyperperiod found in the real-time
literature and of hyperstep defined in Section 4.2. More specifically, it specifies a time
interval for describing a periodic pattern of the real-time constraints assigned to operations.
It only differs from both notions in that it combines real-time periods and communication
step sizes. In the context of co-simulation under real-time constraints, we apply the multi-
rate transformation algorithm over the hyperperiod instead of the hyperstep. Therefore,
the repetition factor of each operation oi ∈ V (see Section 4.2) becomes r(oi) = HP

H(oi) .
Given the periodic pattern of the operation graph, a release constraint can be written as

follows:

∀opi , o
p′

i : p′ = p− HP

H(oi)
, R(op

′

i) = R(opi)−HP (4.24)

Similarly, a deadline constraint can be written as follows:

∀oqj , o
q′

j : q′ = q + HP

H(oj)
, D(oq

′

j) = D(oqj) +HP (4.25)

Let’s consider that a release constraint is propagated in the operation graph G(V,A)
starting from the gate operation oi. Also, consider that the multi-rate transformation
algorithm has been applied on the operation graph over the hyperperiod HP . Then,
opi′ , the last occurrence of the state operation oi′ : fm(opi′) = fm(oi) that is assigned a
release constraint during the forward propagation phase corresponds to the time step
that is equal to the hyperperiod, i.e. it can be written op,HPi′ . In order to propagate
the release constraint to the operations that come before oi in the graph, we loop back
to the occurrence op

′

i′ of the state operation oi′ by performing a negative shift of the
release constraint whose length is equal to the hyperperiod. The occurrence op

′

i′ is a
predecessor of the first occurrence of the gate operation oi that appear in the periodic
pattern of the operation graph. This is done for every FMU, for which the state operation
is assigned a release. An example is shown in Figure 4.12.

Afterward, starting from the operations that are newly assigned release constraints,
a new forward propagation phase is applied. In Figure 4.13, this phases starts from

74 4.4. Dependence Graph with Real-time Constraints

op5

op4
op8

op1 op7 op2
op11

op10

op3
op6op0

op9

op+1
1

op+1
5

op+1
0

op+1
7

op+1
6

op+1
10
0

0
0

0 0 0
0

0
0

0

0 0

0

0

Output
(TO = 4)

Input

op−1
10 op−1

11

-4

-HP

-4

-HP

Figure 4.12: Release back loop propagation phase.

operations op−1
10 and op−1

11 . The propagation ends after this phase as every operation
is assigned a release date.

op5

op4
op8

op1 op7 op2
op11

op10

op3
op6op0

op9

op+1
1

op+1
5

op+1
0

op+1
7

op+1
6

op+1
10
0

0
0

0 0 0
0

0
0

0

0 0

0

0−4
−4−4

−4−4

Output
(TO = 4)

Input

op−1
10 op−1

11

-4 -4

Figure 4.13: Second release forward propagation phase.

Now consider that a deadline constraint is propagated in the graph G(V,A) starting
from the gate operation oj . Let oq

′

j′ be the occurrence of the state operation oj′ : fm(opj′) =
fm(oj) that is a predecessor of the first occurrence of the gate operation oj that appear
in the periodic pattern of the operation graph. Also, let oqj′ be the last occurrence of
the state operation oj′ that appear in the periodic pattern of the operation graph. Like
for the release constraint, the operations that come after oj in the operation graph
can be assigned deadline constraints by looping forward the deadline constraint that is

4. Dependence Graph Model for FMU Co-simulation 75

assigned to oq
′

j′ towards oqj′ . In other words, a positive shift equal to the length of the
hyperperiod is applied by looping forward to the last occurrence of the state operation
oqj′ . This is performed for every FMU whose state operation was assigned a deadline
date. Figure 4.14 shows an example of such looping.

op5

op4
op8

op1 op7 op2
op11

op10

op3
op6op0

op9

op+1
1

op+1
5

op+1
0

op+1
7

op+1
6

op+1
10
8Input

(TI = 4)

Output

op−1
10

4

4

+HP

Figure 4.14: Deadline forward loop propagation phase.

A backward propagation phase, starting from the operations that are newly assigned
deadline constraints, is then applied as shown if Figure 4.15.

op5

op4
op8

op1 op7 op2
op11

op10

op3
op6op0

op9

op+1
1

op+1
5

op+1
0

op+1
7

op+1
6

op+1
10
8

8
8

8 8
8

8

8

8 8

8

8
88

8

Input
(TI = 4)

Output

op−1
10 op−1

11

4

4 8

Figure 4.15: Second deadline backward propagation phase.

Figure 4.16 shows the forward loop propagation that is is then performed. Finally,
a last backward propagation phase is applied starting from operation op11.

76 4.4. Dependence Graph with Real-time Constraints

op5

op4
op8

op1 op7 op2
op11

op10

op3
op6op0

op9

op+1
1

op+1
5

op+1
0

op+1
7

op+1
6

op+1
10
8

8
8

8 8
8

8

8

8 8

8

8
88

8

12

Input
(TI = 4)

Output

op−1
10 op−1

11

4

4 8

+HP

Figure 4.16: Second deadline forward loop propagation phase.

op5

op4
op8

op1 op7 op2
op11

op10

op3
op6op0

op9

op+1
1

op+1
5

op+1
0

op+1
7

op+1
6

op+1
10
8

8
8

8 8
8

8

8

8 8

8

8
88

8

12

12

12

Input
(TI = 4)

Output

op−1
10 op−1

11

4

4 8

Figure 4.17: Third deadline backward propagation phase.

Necessary Condition for Covering the Operation Graph

After presenting the method for assigning real-time constraints to the operations, we give,
here, a necessary condition to satisfy Property 4.4.1. We recall that if Property 4.4.1
is not satisfied, it is not possible to apply a real-time multi-core scheduling algorithm
on the operation graph. For the propagation of real-time constraints to result in an
operation graph that satisfies Property 4.4.1, the necessary condition stated in Theorem
4.4.1 must be satisfied.

Theorem 4.4.1. Let G(V,A) be an operation graph representing an FMU co-simulation
under real-time constraints. Let oi and oj denote the input and an output gate operations
respectively. The propagation of the release (resp. deadline) constraint applied on a gate

4. Dependence Graph Model for FMU Co-simulation 77

operation oi (resp. oj) leads to assigning a release (resp. deadline) constraint to every
operation ok ∈ V only if there exists at least one path from an operation oi′ : fm(oi′) =
fm(oi) (resp. ok′ : fm(ok′) = fm(ok)) to at least one operation ok′ : fm(ok′) = fm(ok)
(resp. oj′ : fm(oj′) = fm(oj)).

Proof. Suppose that there is an FMU whose operations are denoted ok ∈ V : k 6= i

such that there exists no path from an operation oi′ : fm(oi′) = fm(oi) to an operation
ok′ : fm(ok′) = fm(ok). Running the forward propagation phase, no operation o′k :
fm(ok′) = fm(ok) (including ok) is traversed. Thus, none of these operations is a assigned
a release constraint during the forward propagation phase. As a consequence, it is not
possible to loop back on the state operation of the FMU fm(ok). Therefore, the operation
ok is not reached by the forward propagation phase nor by the back loop phase.

4.4.4 Propagation of Multiple Real-time Constraints

In the previous section, we considered that the operation graph is subject to real-time
constraints that are equal, i.e. there is a single value for the sampling periods of the inputs
and outputs of the real-time component. In industrial applications, this is not always
the case. In this section, we consider that multiple input and output gate operations
are subject to different release and deadline constraints respectively. This means the
sampling periods of the inputs and the outputs of the real component are different. As
before, we consider that every sampling period is a multiple of the communication step
size of the gate operation that is applied to.

In order to propagate multiple real-time constraints, we follow the propagation process
described previously. The release constraints are propagated by iteratively running
forward propagation and back loop propagation phases whereas deadline constraints are
propagated by iteratively running backward propagation and forward loop propagation
phases. The main difference here is that during propagation, several constraints may be
applied on the same operation. We handle this situation in a similar way to [1].

Gate operations are always subject to only one constraint because they are directly
assigned the constraints imposed by the real component. Therefore, assigning constraints
to gate operations remains unchanged. On the other hand, the rest of the operations of
the operation graph may have several predecessors and successors. In fact, if an operation
oi ∈ V has no more than one predecessor, i.e. |pred(oi)| ≤ 1, the propagation of a
release constraint towards this operation remains unchanged. Similarly, if an operation
oj ∈ V has no more than one successor, i.e. |succ(oj)| ≤ 1, the propagation of a deadline
constraint towards this operation remains unchanged. Hence, we are interested in this
section in propagating release (resp. deadline) constraints towards operations which have
more than one predecessor (resp. successor), i.e. |pred(oi)| > 1 (resp. |succ(oj)| > 1).

We denote by R(oi) the set of release constraints propagated towards the operation
oi and by D(oj) the set of deadline constraints propagated towards the operation oj .
The set R(oi) is built as the union of all the release constraints propagated towards
oi from its predecessors, i.e. R(oi) = {R(oi′) : oi′ ∈ pred(oi)}. Each operation

78 4.4. Dependence Graph with Real-time Constraints

oi must be assigned only one release constraint which is chosen from the set R(oi).
A release constraint specifies the earliest date the associated operation can start its
execution. As such, the most constraining release constraint has to be chosen from
the set R(oi) as stated by expression 4.26.

∀oi ∈ V,R(oi) = max
R(oi′)∈R(oi)

(R(oi′)) (4.26)

The process of propagating the release constraints described previously becomes as fol-
lows:

1. Let G(V,A) be the operation graph representing the simulated component and
let o1, o2, . . . oin,∈ V be input gate operations connected to outputs of the real
component whose sampling periods and their occurrences are denoted T1, T2, . . . , Ton
and z1 × T1, z2 × T2, . . . , zon × Ton respectively.

2. For every input gate operation oi, assign to the occurrence opi , 0 ≤ p < r(oi), the
release constraint R(opi) = zk × Tk

H(oi) : p = zk × Tk
H(oi) .

3. For every operation oi assigned a release constraint in the previous step: if succ(oi) =
∅, stop. Otherwise, propagate the constraint R(oi) towards all the successors
o′i ∈ succ(oi).

4. Repeat the previous step for every operation that is newly assigned a release
constraint.

5. For every operation oi towards which multiple release constraints have been propa-
gated, build the set R(oi). Assign to oi a single release constraint using expression
4.26.

In the same way, the set D(oj) is built as the union of all the deadline constraints
propagated towards oj from its successors, i.e. D(oj′) : oj′ ∈ succ(oj). Each operation
must be assigned only one deadline constraint which is chosen from the set D(oj). A
deadline constraint specifies the latest date by which the associated operation must
finish its execution. Therefore, the most constraining deadline constraint is selected
from the set D(oj) as specified by expression 4.27.

∀oj ∈ V,D(oj) = min
D(oj′)∈D(oj)

(D(oj′)) (4.27)

The process of propagating the deadline constraints described previously is adapted
as follows as follows:

1. Let G(V,A) be the operation graph representing the simulated component and
let o1, o2, . . . ojn,∈ V be output gate operations connected to inputs of the real
component whose sampling periods and their occurrences are denoted T1, T2, . . . , Tin
and w1 × T1, w2 × T2, . . . , win × Tin respectively.

4. Dependence Graph Model for FMU Co-simulation 79

2. For every output gate operation oj , assign to the occurrence oqj , 0 ≤ q < r(oj), the
deadline constraint D(okj) = wk × Tk

H(oj) : q = wk × Tk
H(oj) .

3. For every operation oj assigned a deadline constraint in the previous step: if
pred(oi) = ∅, stop. Otherwise, propagate the constraint R(oj) towards all the
predecessors o′j ∈ succ(oj).

4. Repeat the previous step for every operation that is newly assigned a deadline
constraint.

5. For every operation oj towards which multiple release constraints have been
propagated, build the set D(oj). Assign to oj a single deadline constraint using
expression 4.27

4.4.5 Propagation Algorithms

We propose two algorithms to perform the propagation of release and deadline constraints,
respectively, in an operation graph. The proposed algorithms are based on the previously
presented concepts. As stated previously, the propagation is based on graph traversal
and therefore the propagation algorithms can be based on graph traversal algorithms
such as BFS or DFS. Since only graphs that satisfy Property 4.4.1 are considered, we,
first check that the necessary condition stated in Theorem 4.4.1 is satisfied. Otherwise,
we consider that the co-simulation cannot be properly run under real-time constraints.
We aim at formulating propagation algorithms with low complexity. The order in which
the different phases of the the propagation are performed may affect the algorithm’s
complexity. Therefore, this order should be chosen carefully as detailed hereafter.

Let’s start with the propagation of the release constraint. The propagation starts
with the forward phase where, starting from the gate operations, the release constraints
are propagated form each operation subject to the release constraint to its successors.
The proposed algorithm performs these propagations iteratively, in a decreasing order
of the periods of the release constraints. Following such order may avoid performing
unnecessary propagations. To show this, consider, for instance, that operation oi is subject
to two different release constraints T1 and T2 such that T1 > T2. If the propagation of
T2 is performed first, all the paths in the operation graph that start at oi are traversed
twice, first to propagate T2 and then to propagate T1. However, if the T1 is propagated
first, the said paths are only traversed once, propagating T1. The propagation of T2
is stopped at oi with the use of expression 4.26.

The same idea applies to the order in which occurrences of a release constraint are
propagated. For each release constraint, the proposed algorithm successively performs
the propagation of its occurrences in a decreasing order, i.e. starting with the last
occurrence and finishing with first one. Following the same reasoning presented in the
previous paragraph, it can be seen how such order may avoid unnecessary traversals.
Consider, for example, the propagation of occurrences of the release constraint Ty applied
to operation oi. Suppose that the first occurrence 0× Ty is propagated first. This assigns

80 4.4. Dependence Graph with Real-time Constraints

the release constraint 0×Ty to occurrence o0
i and leads to propagating it to all subsequent

occurrences opi : 0 < p < r(oi) and their successors. Then, propagating the subsequent
occurrence 1× Ty assigns the release constraint 1× Ty to occurrence op

′

i : p′ = 1× Ty

H(oi)

and leads to propagating it to all subsequent occurrences op
′′

i : p′ < p′′ < r(oi) and
their successors. As such, all the paths that start at op

′

i are traversed twice. However,
performing the propagation in a decreasing order of the occurrences of Ty remedies to
this issue For instance, in above example, after R(op

′

i) is propagated, the propagation
of R(o0

i) stops at op
′

i with the use of expression 4.26. Therefore, the paths starting at
op

′

i are not unnecessarily traversed again.
The last phase of the propagation of the release constraints is the loop back phase.

This phase is performed following the same technique, i.e. starting with the greatest
constraint. Similarly, this avoids performing unnecessary traversals. Algorithm 5 lists
the proposed algorithm for propagation of release constraints.

We now describe, in a similar way, the algorithm of deadline propagation. The
propagation starts with the backward porpagation phase. Deadline constraints are defined
for gate operations and then propagated to the successors of every operation that is
assigned a deadline constraint. The propagations of different deadline constraints are
performed following an increasing order of the the periods of these constraints. As stated
previously for the release propagation, this order is chosen in order to minimize the
complexity of the propagation algorithm by avoiding unnecessary traversals of the graph.
For example, consider an operation oj that is subject to two deadline constraints T1
and T2 such that T1 < T2. Propagating T2 first leads to traversing twice all the paths
that end at oj , propagating T2 and then T1. If, instead, T1 is propagated first, those
paths are only traversed once, propagating T1. Then, the propagation of T2 is stopped
at oj thanks to the rule given by expression 4.27.

In a similar way, the occurrences of a deadline constraint are propagated in an
increasing order. For instance, let the operation oj be subject to the deadline constraint
Tx. Suppose that the occurrences of Tx are propagated in a decreasing order. Therefore,
the last occurrence w × Tx is propagated first. This assigns the deadline constraint
w × Tx to the operation occurrence oqj : q = w × Tx

H(oj) and all the preceding occurrences
oq

′

j : 0 ≤ q′ < q and their predecessors. The propagation of the preceding occurrence
(w − 1) × Tx assigns the deadline constraint (w − 1) × Tx to the operation occurrence
oq

′′

j : q′′ = (w − 1)× Tx
H(oj) and propagates (w − 1)× Tx to all the preceding operation

occurrences oq
′′′

j : 0 < q′′′ < q′′ and their predecessors. This leads to traversing all the
paths that end at oq

′

j twice. In order to avoid these unnecessary traversals, the occurrences
of Tx are traversed in a decreasing order. In the aforementioned example, after oq

′′

j is
propagated, the propagation of oqj stops at oqj by using expression 4.27. Consequently,
the paths that end at oq

′′

j are not traversed again.
Lastly, the loop forward phase of propagation is performed, always, in an increasing

order of the deadline constraints. Algorithm 6 details the proposed algorithm for the
propagation of deadline constraints.

4. Dependence Graph Model for FMU Co-simulation 81

Algorithm 5: Release propagation algorithm
Input :Operation graph G(V,A), sampling periods of the real component
Output :Assignment of release constraints to operations oi ∈ V
Set O the set of input gate operations;
Set Ti the period of the output of the real component that is connected to oi;
Sort O in a decreasing order of Ti : oi ∈ O;
Set HP the hyperperiod;
foreach oi ∈ V do

R(oi)← −∞;
// Forward propagation phase
foreach operation oi ∈ O do

for p← r(oi)− 1 downto 0 by Ti
H(oi) do

z ← p× H(oi)
Ti

;
R(opi)← z × Ti;
propagate(opi);

// Back loop propagation phase
foreach FMU M whose last occurrence of the state operation ouj has been
assigned a release date do

Let ou′
j be the occurrence of the state operation oj of FMU M which precedes

the operation graph pattern;
R(ou′

j)← R(ouj)−HP ;
propagate(o0

j);
Procedure propagate(oi)

if succ(oi) 6= ∅ then
foreach oi′ ∈ succ(oi) do

if R(oi′) < R(oi) then
R(oi′)← R(oi);
propagate(oi′);

return;

82 4.4. Dependence Graph with Real-time Constraints

Algorithm 6: Deadline propagation algorithm
Input :Operation graph G(V,A), sampling periods of the real component
Output :Assignment of deadline constraints to operations oj ∈ V
Initialization;
Set O the set of output gate operations;
Set Tj the period of the input of the real component that is connected to oj ∈ O;
Sort O in an increasing order of Tj : oj ∈ O;
Set HP the hyperperiod;
foreach oj ∈ V do

D(oj)←∞
// Backward propagation phase
foreach operation oj ∈ O do

for q ← 0 to r(oj)− 1 by Tj

H(oj) do
w ← q × H(oj)

Tj
;

D(oqj)← w × Tj ;
propagate(oqj);

// Forward loop propagation phase
foreach FMU M whose the occurrence of the state operation osi which precedes
the operation graph pattern has been assigned a deadline constraint do

Let os′
i be the last occurrence of FMU M in the operation graph;

D(os′
i)← D(osi) +HP ;

propagate(oui);
Procedure propagate(oj)

if pred(oj) 6= ∅ then
foreach oj′ ∈ pred(oj) do

if D(oj′) > D(oj) then
D(oj′)← D(oj);
propagate(oj′);

return;

5
Multi-core Scheduling of FMU Dependence

Graphs

Contents

5.1 Scheduling of Dependence Graphs for Co-simulation Accel-
eration . 84

5.1.1 Problem Formulation . 84
5.1.2 Resolution using Linear Programming 85
5.1.3 Multi-core Scheduling Heuristic 87

5.2 Scheduling of FMU Co-simulation under Real-time Constraints 88
5.2.1 Problem Formulation . 88
5.2.2 Accounting for Dependence in Real-time Scheduling 90
5.2.3 Scheduling Interval . 91
5.2.4 Resolution using Linear Programming 92
5.2.5 Multi-core Scheduling Heuristic 94

5.3 Code Generation . 96

This chapter presents methods for scheduling an operation graph on a multi-core
architecture. Once the operation graph has been constructed and undergone the different
phases of transformations as described in the previous chapter, it is scheduled on the
multi-core platform. First, we consider scheduling the operation graph with the goal
of accelerating the execution of the co-simulation. Second, we consider scheduling the
operation graph while satisfying real-time constraints.

83

84 5.1. Scheduling of Dependence Graphs for Co-simulation Acceleration

5.1 Scheduling of Dependence Graphs for Co-simulation
Acceleration

In order to achieve fast execution of the co-simulation on a multi-core processor, an efficient
allocation and scheduling of the operation graph has to be achieved. The scheduling
algorithm has to be applied taking into account functional and non functional specification
in order to produce an allocation of the operation graph vertices (operations) to the cores
of the processor, and assign a starting time to each operation. We present hereafter a
linear programming model and a heuristic for scheduling operation graphs on multi-core
processors with the aim of accelerating the execution of the co-simulation. Note that
no real-time constraints are involved when the goal is to accelerate the co-simulation.
Therefore, the transformations that are applied on the operation graph ahead of applying
the scheduling algorithm are only the multi-rate transformation and the acyclic orientation.

5.1.1 Problem Formulation

The acceleration of the co-simulation corresponds to the minimization of the makespan
of the operation graph. The makespan is the total execution time of the whole graph.
The operation graph that is fed as input to the scheduling algorithm is a DAG, therefore,
it represents a partial order relationship in the execution of the operations, since two
operations connected by an arc must be executed sequentially whereas the other ones
can be executed in parallel. A scheduling algorithm makes decisions on allocating the
operations to the cores while respecting this partial order and trying to minimize the
total execution time of the operation graph. In addition to the execution time of the
operations, the scheduling algorithm has to take into consideration, the cost of inter-core
synchronization. The set of cores is denoted P = {p1, p2, . . . , pm} where m is the number
of cores. In this thesis we adopt a non preemptive scheduling solution. The scheduling
problem can be stated as an optimization problem as follows:

Input Operation graph G(V,A)

Output Offline Schedule of operations on a multi-core processor

Find Allocation of operations to cores: α : V → P
Assignment of start times to operations: β : V × P → N

Minimize Makespan of the graph: min(mkp) : mkp = maxoi∈V (E(oi))

Subject to Precedence constraints: ∀ (oi, oj) ∈ A, S(oj) ≥ E(oi)

5. Multi-core Scheduling of FMU Dependence Graphs 85

5.1.2 Resolution using Linear Programming

As a first attempt to solve the problem of scheduling the operation graph, we decided
to use the ILP approach which is an exact algorithm. By using ILP, we guarantee that
the obtained schedule is optimal. In addition, ILP allows us to model the problem by
means of linear relationships between variables and feed this model to an existing ILP
solver to compute the solution. Below, we give our ILP formulation of the problem of
scheduling the operation graph for co-simulation acceleration.

Variables and Constants

Tables 5.1 and 5.2 summarize respectively the variables and the constants that are used
in the ILP formulation of the scheduling problem for co-simulation acceleration.

Table 5.1: Variables used in the ILP formulation of the scheduling problem

Variable Type Description
xik Binary Decision variable for scheduling operation oi on core pk
S(oi) Integer Start time of operation oi
E(oi) Integer End time of operation oi
syncijk Binary Synchronization between oi and oj if oj scheduled on pk
bij Binary oi is executed before oj
Qik Integer Earliest start time of successors oi oi that are scheduled on pk
Vik Binary oi not scheduled on pk
mkp Integer Makespan

Table 5.2: Constants used in the ILP formulation of the scheduling problem

Constant Type Decription
C(oi) Integer Execution time of operation oi
M Integer Large positive number
synCost Integer Cost of synchronization

Constraints

We define the decision binary variables xik which indicates whether the operation oi is
allocated to core pk or not. Expression 5.1 states the constraint that each operation
has to be allocated to one and only one core.

∀ oi ∈ V,
∑
pk∈P

xik = 1 (5.1)

The end time of each operation oi is computed using the expression 5.2

∀oi ∈ V,E(oi) = S(oi) + C(oi) (5.2)

86 5.1. Scheduling of Dependence Graphs for Co-simulation Acceleration

For operations that are allocated to the same core and that are completely independent,
i.e. no path exists between them, we have to ensure that they are executed in non
overlapping time intervals. Expressions 5.3 and 5.4 capture this constraint. bij is a binary
variable that is set to one if oi is executed before oj .

∀pk ∈ P,∀ oi, oj ∈ V, (oi, oj), (oj , oi) /∈ A,E(oi) ≤ S(oj) +M × (3−xik−xjk− bij) (5.3)

∀pk ∈ P,∀ oi, oj ∈ V, (oi, oj), (oj , oi) /∈ A,E(oj) ≤ S(oi) +M × (2−xik−xjk + bij) (5.4)

The cost of synchronization is taken into account as follows. A synchronization
cost is introduced in the computation of the start time of an operation oj , if it has a
predecessor oi that is allocated to a different core and if its start time is the earliest
among the successors of oi that are allocated to the same core as the operation oj .
syncijk is a binary variable which indicates whether synchronization is needed between
oi and oj if oj is allocated to pk. Therefore, syncijk = 1 iff α(oj) = p and α(oi) 6=
p and S(oj) = maxoj′∈succ(oi): α(oj′)=p(S(oj′)). Expressions 5.5 and 5.6 capture this
constraint. Vik is a binary variable that is set to one only if α(oi) 6= p. It is used to
define for which cores a synchronization is needed between oi and its successors. In other
words, if a successor is allocated to the same core as oi, no synchronization is needed.
Expressions 5.7 and 5.8 capture this constraint. Variable Qik denotes the earliest start
time among the start times of all the successors of oi that are allocated to processor
pk. It is computed using expressions 5.9 and 5.10.

∀oi ∈ V,
∑

∀pk∈P,∀oj∈pred(oi)
syncijk = Vik (5.5)

∀oi ∈ V,∀oj ∈ succ(oi), syncijk ≤ xjk (5.6)

∀oi ∈ V,∀oj ∈ succ(oi), Vik ≥ xjk − xik (5.7)

∀oi ∈ V, Vik ≤
∑

∀oj∈succ(oi)

(
xjk − xik

)
(5.8)

∀oi ∈ V,∀oj ∈ succ(oi), Qik ≤ S(oj) +M × (1− xjk) (5.9)

∀oi ∈ V,∀oj ∈ succ(oi), Qik ≥ S(oj)−M × (1− syncijk) (5.10)

The start time of each operation oj is computed using expression 5.11. The syn-
chronization cost is introduced taking into account the synchronizations with all the
predecessors of oj that are allocated to different cores.

5. Multi-core Scheduling of FMU Dependence Graphs 87

∀oj ∈ V,∀oi ∈ pred(oj), S(oj) ≥
[
E(oi) +

∑
∀pk∈P,∀oi′∈pred(oj)

synci′jk × synCost
]

(5.11)

The makespan is equal to the latest end time among the end times of all the operations
as stated by expession 5.12

∀oi ∈ V,mkp ≥ E(oi) (5.12)

Objective

The objective of this linear program is to minimize the makespan of the operation graph.

min(mkp) (5.13)

5.1.3 Multi-core Scheduling Heuristic

Multi-core scheduling problems are known to be NP-hard resulting in exponential
resolution times when exact algorithms are used. Heuristics have been extensively
used in order to solve multi-core scheduling problems. In most situations they lead to
results of good quality in practicle resolution times. In particular, list heuristics presented
in Chapter 2 are widely used in the context of offline multi-core scheduling.

A variety of list multi-core scheduling heuristics exist in the literature and each
heuristic may be suitable for some specific kinds of multi-core scheduling problems. We
detail in this section a heuristic that we have chosen to apply on the operation graph
G(V,A) in order to minimize its makespan. Because of the number of fine-grained
operations, and since the execution times and the dependence between the operations
are known before runtime, it is more convenient to use an offline scheduling heuristic
which has the advantage of introducing lower overhead than online scheduling heuristics.
We use an offline scheduling heuristic similar to the one proposed in [81] which is a fast
greedy algorithm whose cost function corresponds well to our minimization objective. In
accordance with the principle of list scheduling heuristics, this heuristic is priority-based,
i.e. it builds a list of operations that are ready to be scheduled, called candidate operations
and selects one operation based on the evaluation of the cost function. We denote by ρ
the cost function and call it the schedule pressure. It expresses the degree of criticality
of scheduling an operation. The schedule pressure of an operation is computed using its
flexibility and the penalty of scheduling which refers to the increase in the critical path
resulting from scheduling an operation as stated by expression 5.14.

ρ = S(oi) + C(oi) + E(oi)− CP (5.14)

The heuristic considers the different timing attributes of each operation oi in order
to compute a schedule that minimizes the makespan of the graph. It schedules the
operations on the different cores iteratively and aims at minimizing the schedule pressure

88 5.2. Scheduling of FMU Co-simulation under Real-time Constraints

of an operation on a specific core while taking into account the synchronization costs.
The heuristic updates the set of candidate operations to be scheduled at each iteration.
An operation is added to the set of candidate operations if it has no predecessor or
if all its predecessors have already been scheduled. For each candidate operation, the
schedule pressure is computed on each core and the operation is allocated to its best
core, the one that minimizes the pressure. Then, a list of candidate operation-best core
pairs is obtained. Finally, the operation with the largest pressure on its best core is
selected and scheduled. Synchronization operations are added between the scheduled
operation and all its predecessors that were allocated to different cores. The heuristic
repeats this procedure and finally stops when all the operations have been scheduled.
Algorithm 7 details the scheduling heuristic.

Complexity

The scheduling heuristic contains three nested loops. The outermost loop is executed until
all the operations are scheduled. At each iteration, one operation is scheduled. Therefore,
the outermost loop is executed n times where n is the number of operations in the operation
graph. In the inner loops, the heuristic attempts to schedule all the ready operations on
all the available cores. As such, the inner loops execute in O(nm), where m is the number
of cores. From the foregoing, the complexity of the heuristic is evaluated to O(mn2).

5.2 Scheduling of FMU Co-simulation under Real-time Con-
straints

In this section, we are interested in multi-core scheduling of FMU co-simulation under
real-time constraints. We consider FMU co-simulation in the context of HiL consisting
of a simulated component and a real component. Also, we consider that the real-time
constraints that are applied by the real component have been propagated through the
operation graph as described in Section 4.4. Therefore, the aim here consists in scheduling
the operations of the operations graph on a multi-core architecture, such that these
constraints are satisfied. Note that in contrast to the previous section, how much the
execution is sped up is not of a crucial importance here as long as the real-time constraints
are respected. Hereafter, we present an ILP formulation and a heuristic for scheduling
operation graphs under real-time constraints.

5.2.1 Problem Formulation

The problem of scheduling FMU co-simulation under real-time constraints can be
considered as a satisfaction problem instead of an optimization problem. In fact, in
its basic form, the problem does not involve an objective function to be optimized, the
goal being to ensure the real-time constraints are satisfied. More precisely, the problem
consists in scheduling the operations of the operation graph such that each operation
starts its execution no earlier than its release date and finishes its execution by its deadline

5. Multi-core Scheduling of FMU Dependence Graphs 89

Algorithm 7: Multi-core scheduling heuristic
Input :Operation graph G(V,A), set of cores P ;
Output : Schedule of operations oi ∈ V on cores pk ∈ P ;
Set O the set of operations without predecessors;
Set sync the cost of one synchronization operation;
Set Lk : pk ∈ P the length of schedule of core pk;
foreach pk ∈ P do

Lk ← 0;
while O 6= ∅ do

foreach oi ∈ O do
ρ←∞; // Initialize the schedule pressure of oi
S(oi)← maxoj∈pred(oi)(E(oj));
foreach pk ∈ P do

syncCost← 0;
S(oi)← max(S(oi), Lk); // Start time of oi if executed on pk
foreach oj ∈ pred(oi) do

if oj is scheduled on a core pk′ 6= pk then
syncCost← syncCost+ sync;

S(oi)← S(oi) + syncCost;
E(oi)← S(oi) + C(oi);
ρ′ ← S(oi) + C(oi) + E(oi)− CP ; // Cost of oi if executed on pk
if ρ′ < ρ then

Set ρ← ρ′;
BestCore(oi)← pk;

Find oi′ with maximal cost ρ in O;
Schedule oi′ on its core BestCore(oi′);
pbest ← BestCore(oi′);
Lbest ← E(oi′);
Remove oi′ from the set O;
Add to the set O all successors of oi′ for which all predecessors are already
scheduled;

date. There are other constraints that are common with the problem of scheduling for co-
simulation acceleration, namely, respecting the partial order of the operation graph. Also,
the cost of inter-core synchronization is taken into account in computing the schedule in
the same way. Finally, the computed schedule is non preemptive. The scheduling of FMU
co-simulation under real-time constraints can be stated as a satisfaction problem as follows:

90 5.2. Scheduling of FMU Co-simulation under Real-time Constraints

Input Operation graph G(V,A)

Output Offline schedule of operations on a multi-core processor

Find Allocation of operations to cores: α : V → P
Assignment of start times to operations: β : V × P → N

Subject to Precedence constraints: ∀(oi, oj) ∈ A,S(oj) ≥ E(oi)
Release constraints: ∀oi ∈ V, S(oi) ≥ R(oi)
Deadline constraints: ∀oi ∈ V,E(oi) ≤ D(oi)

5.2.2 Accounting for Dependence in Real-time Scheduling

The model of computation for (co-)simulation is close to the synchronous paradigm [82,
83]. In this paradigm, a program evolves according to a sequence of ticks of logical
time at which computations are considered to produce their results instantaneously. The
propagation of the release and deadline constraints presented in Chapter 4 follows this
model of computation. However, when real-time constraints are involved, co-simulation
becomes incompatible with the synchronous paradigm. In fact, each operation takes a
certain execution time to run and, therefore, cannot produce the result instantaneously.
In order to proceed to scheduling the operation graph, it is necessary to account for
the execution times of the operations.

We adopt an approach similar to the one proposed in [84] to modify the release
and deadline dates assigned to each operation in order to account for execution times.
This modification is needed given that:

• The execution of an operation can start no earlier than its release but also only
after the execution of all its predecessors is finished.

• The execution of an operation must be finished before its deadline and also be
finished so that the execution of its successors can be finished before their deadlines.

Let oi and oj be two operations such that oj ∈ pred(oi). For a given schedule of
the operation graph to be valid, the relations S(oi) ≥ R(oi) and S(oi) ≥ E(oj) must be
satisfied. Therefore, a new release date for oi can be computed using expression 5.15.

R(oi) = max(R(oi), max
oj∈pred(oi)

(E(oj))) (5.15)

Consider now two operations oi and oj such that oj ∈ succ(oi). For the operation
graph to be schedulable, the relations E(oi) ≤ D(oi) and E(oi) ≤ D(oj) − C(oj) must
be satisfied. In fact, D(oj) − C(oj) represents the latest time to start the execution
of the successor oj such that its deadline can be met. Therefore, a new deadline date
of oi can be computed using expression 5.16.

5. Multi-core Scheduling of FMU Dependence Graphs 91

D(oi) = min(D(oi), min
oj∈succ(oi)

(D(oj)− C(oj))) (5.16)

5.2.3 Scheduling Interval

In offline scheduling, the schedule is computed over an interval of time. This schedule
is then executed repetitively. For the acceleration of co-simulation, we have seen that
the length of the schedule interval is equal to the hyperstep. For co-simulation under
real-time constraints, a natural approach is to apply techniques that are used for classical
real-time systems (such co-simulation is considered a real-time system after all). For this,
we need first to represent the operation graph with a model that involves the parameters
that are usually used for classical real-time systems. In particular, we need to define a
relative deadline and a period for each operation. Note that so far, we have only spoken
about sampling periods of data exchange between the real and the simulated component.
Although related to the sampling periods, the periods that we seek to define for each
operation are different and correspond to task periods that are found in classical real-time
systems. We handle this requirement as follows. We consider that every operation that
appears in the hyperperiod pattern of the operation graph is a distinct operation. In
other words, occurrences of one operation are not regarded as repetitions of a single
operation. Accordingly, we consider that the operation graph is mono-period, i.e. all the
operations have the same period. The value of this period is equal to the hyperperiod
(see Definition4.4.3). The relative deadline of each operation can then be defined as
the duration between its release and deadline.

In the real-time literature, we find contributions regarding the schedule interval
targeting different kinds of real-time tasks, schedulers, and architectures. For instance,
in [85], the authors study synchronous task systems, i.e. where the release dates of
all tasks are equal to zero, with constrained deadlines, i.e. where the relative deadline
of each task is less or equal to its period. They show that the schedule of such task
system on uniform multiprocessors reaches a cyclic behavior after one hyperperiod. The
length of the schedule interval for co-simulation under real-time constraints cannot be
chosen in a straightforward manner to be equal to the hyperperiod. This is because the
operation graph features arbitrary deadlines, i.e. relative deadlines that are greater than
the periods which may result in hyperperiod spill [86]. The latter refers to operations that
are not scheduled in their hyperperiod and spill over the next one. In [87], a schedule
interval is given for preemptive scheduling of tasks with arbitrary deadlines on uniform
multiprocessors. A more general result is given in [88] taking into account different
constraints (mutual exclusion, precedence constraints, non-preemptive tasks, etc.) for
uniprocessor and multiprocessor scheduling. The authors give an upper bound for the
schedule interval when a deterministic memoryless scheduler is used. A scheduler is
deterministic and memoryless if and only if, when building the schedule, the scheduling
decision is the same for any identical configuration encountered. The given bound is:

92 5.2. Scheduling of FMU Co-simulation under Real-time Constraints

n∏
i=1

((max(Oi +Di − Ti, 0) + 1))×H (5.17)

where n is the number of tasks, Oi, Di, and Ti are the offset (release date), relative
deadline, and period of task τi respectively, and H is the hyperperiod. This result is
applicable to non-preemptive scheduling with arbitrary deadlines which is the case in our
problem. However, the proposed bound is intractable, i.e. as the size of the operation
graph grows and depending on the parameters of the operations, it results in very large
schedule intervals and we cannot guarantee to compute the schedule within an acceptable
time. Therefore, we choose to start with a schedule interval whose length is equal to
the hyperperiod and iteratively increase it if we cannot determine the schedulability
of the operation graph.

As shown in Section 4.4, the propagation of the real-time constraints in an operation
graph may lead to assigning negative release dates to some operations. This means
that such operations can be executed before launching the co-simulation under real-time
constraints. Therefore, they are not scheduled and are removed from the first repetition
of the operation graph. See, for example, the operations colored in gray in Figure 5.1a.
However, since these operations must appear in the subsequent repetitions of the schedule
of the operation graph, we have to add the repetitions of these operations that belong
to the second repetition of the operation graph to the operation graph pattern that is
scheduled. Figure 5.1 shows an example of the operations that belong to the operation
graph pattern that is scheduled. The operations that are colored in green belong to this
pattern. It can be seen that operations that are assigned negative release dates are not
scheduled in the first repetition of the operation graph. Instead, their occurrences that
belong to the second repetition of the operation graph are added to the pattern.

5.2.4 Resolution using Linear Programming

The ILP formulation that we propose is in most part similar the ILP formulation that we
proposed for co-simulation acceleration. The main differences consist, first, in adding the
inequalities that express the real-time constraints. Second, we need not set an objective
function since the real-time scheduling consists in a satisfaction problem.

The ILP formulation for multi-core scheduling of co-simulation under real-time
constraints is given below. We do not explain most of the constraints since these are
common with the ILP formulation given in Section 5.1.2 where we explained them in
detail. We explain only the following additional constraints. The start date of every
operation must be at the earliest equal to its release date. Expression 5.20 captures
this constraint. The deadline date of every operation is the latest time before which the
operation has to finish its execution. Expression 5.21 specifies this constraint.

∀ oi ∈ V,
∑
pk∈P

xik = 1 (5.18)

5. Multi-core Scheduling of FMU Dependence Graphs 93

op5

op4
op8

op1 op7 op2
op11

op10

op3
op6op0

op9

op+1
1

op+1
5

op+1
0

op+1
7

op+1
6

op+1
10
0

0
0

0 0 0
0

0
0

0

0 0

0

0−4
−4−4

−4−4

Output
(TO = 4)

Input

(a) First repetition of the operation graph

op+2
5

op+1
4

op+1
8

op+2
1 op+2

7 op+1
2

op+1
11

op+2
10

op+1
3

op+1
6op+2

0
op+1

9

op+3
1

op+3
5

op+3
0

op+3
7

op+3
6

op+3
10

4
4

4 4 4
4

4
4

4

4 4

4

40
00

00

Output
(TO = 4)

Input

(b) Second repetition of the operation graph

Figure 5.1: Example of operation graph pattern for real-time scheduling

∀oi ∈ V,E(oi) = S(oi) + C(oi) (5.19)

∀ oi ∈ V, S(oi) ≥ R(oi) (5.20)

∀ oi ∈ V,E(oi) ≤ D(oi) (5.21)

∀pk ∈ P,∀ oi, oj ∈ V, (oi, oj), (oj , oi) /∈ A,E(oi) ≤ S(oj)+M×(3−xik−xjk−bij) (5.22)

∀pk ∈ P,∀ oi, oj ∈ V, (oi, oj), (oj , oi) /∈ A,E(oj) ≤ S(oi)+M×(2−xik−xjk+bij) (5.23)

94 5.2. Scheduling of FMU Co-simulation under Real-time Constraints

∀oi ∈ V,
∑

∀pk∈P,∀oj∈pred(oi)
syncijk = Vik (5.24)

∀oi ∈ V,∀oj ∈ succ(oi), syncijk ≤ xjk (5.25)

∀oi ∈ V,∀oj ∈ succ(oi), Vik ≥ xjk − xik (5.26)

∀oi ∈ V, Vik ≤
∑

∀oj∈succ(oi)

(
xjk − xik

)
(5.27)

∀oi ∈ V,∀oj ∈ succ(oi), Qik ≤ S(oj) +M × (1− xjk) (5.28)

∀oi ∈ V,∀oj ∈ succ(oi), Qik ≥ S(oj)−M × (1− syncijk) (5.29)

∀oj ∈ V,∀oi ∈ pred(oj), S(oj) ≥
[
E(oi) +

∑
∀pk∈P,∀oi′∈pred(oj)

synci′jk × synCost
]

(5.30)

5.2.5 Multi-core Scheduling Heuristic

Removing the objective function from the scheduling problem might indicate that the
complexity of the scheduling problem is reduced in the real-time case compared to the
acceleration case. However, adding the strict release and deadline constraints adds to
the complexity of the problem which remains an NP-Hard problem that is equivalent
to the bin packing problem.

In the following, we propose a heuristic for scheduling operation graphs representing
FMU co-simulations under real-time constraints. There are some considerations that are
common with the scheduling problem for co-simulation acceleration. Mainly, we propose
an offline heuristic which we consider to be more suitable given the fine granularity of
the operations and since information about the execution times of the operations and
the dependence between them is available before runtime.

We propose to adapt the scheduling heuristic that we use for the acceleration of FMU
co-simulation. In particular, we modify the computation of the scheduling priority such
that the criticality of a given operation expresses how close it is to miss its deadline if
scheduled on a specific processor. The priority of an operation is a dynamic priority
as its computation depends on the partial scheduling solution that has already been
computed. This priority is given by expression 5.31.

ρi,k = D(oi)− E(oi) (5.31)

Where ρi,k and Ej(oi) are the scheduling priority and the end date of operation oi
respectively, computed when the latter is scheduled on core pk.

5. Multi-core Scheduling of FMU Dependence Graphs 95

The proposed heuristic is a list scheduling heuristic. It builds the multi-core schedule
iteratively. At each iteration, a list of candidate operations is constructed. An operation
is added to the list of candidate operation if all its predecessors have been scheduled. The
heuristic computes the priority for each candidate operation on every core and selects
the core for the which the priority is maximized. After that, a list of operation-best
core pairs is obtained. The heuristic selects from this list the operation whose priority is
the smallest among all the operations in the list. Synchronization operations are added
between the scheduled operation and all its predecessors that were allocated to different
cores. The heuristic repeats this procedure and finally stops when all the operations have
been scheduled. Algorithm 8 lists the proposed real-time multi-core scheduling heuristic.

Algorithm 8: Multi-core scheduling heuristic
Input :Operation graph G(V,A), set of cores P ;
Output : Schedule of operations oi ∈ V on cores pk ∈ P ;
Set O the set of operations without predecessors;
Set sync the cost of one synchronization operation;
Set Lk : pk ∈ P the length of schedule of core pk;
foreach pk ∈ P do

Lk ← 0;
while O 6= ∅ do

foreach oi ∈ O do
ρ←∞; // Initialize the priority of oi
S(oi)← max(R(oi),maxoj∈pred(oi)(E(oj)));
foreach pk ∈ P do

syncCost← 0;
S(oi)← max(S(oi), Lk); // Start time of oi if executed on pk
foreach oj ∈ pred(oi) do

if oj is scheduled on a core pk′ 6= pk then
syncCost← syncCost+ sync;

S(oi)← S(oi) + syncCost;
E(oi)← S(oi) + C(oi);
ρ′ ← D(oi)− E(oi); // priority of oi if executed on pk
if ρ′ > ρ then

Set ρ← ρ′;
Set BestCore(oi)← pk;

Find oi′ with the smallest priority ρ in O;
Schedule oi′ on its core BestCore(oi′);
pbest ← BestCore(oi′);
Lbest ← E(oi′);
Remove oi′ from the set O;
Add to the set O all successors of oi′ for which all predecessors are already
scheduled;

96 5.3. Code Generation

Complexity

Algorithms 7 and 8 are two variations of the same list scheduling heuristic and have
the same complexity as they consist of the same steps. Therefore, the complexity
of Algorithm 8 is O(mn2).

5.3 Code Generation

In this section, we describe how the FMU co-simulation code is generated based on the
schedule tables produced by the proposed scheduling algorithms. Note that while the
schedule tables are produced using different algorithms, the code generation is done in
a similar way for both acceleration of co-simulation and co-simulation under real-time
constraints. Since the FMU co-simulation is intended to be executed on multi-core desktop
computers running general purpose or real-time operating systems, the implementation
is achieved using native threads. Such threads consist in threads that are provided by
the operating system in contrast to threads that are related to a specific programming
language and/or rely on a specific runtime library.

In the generated code, as many threads are created as there are cores. Each thread is
responsible for the execution of the schedule of one core. Therefore, each thread reads
from the schedule table of its corresponding core and executes the operations that are
saved in this table. These operations can be computational operations, i.e. input, output,
and state operations, or synchronization operations. The synchronization operations are
implemented using semaphores provided by the operating system. They are of two types:
signal and wait operations. The execution of a signal operation by a thread consists in
signaling the corresponding semaphore. The execution of a wait operation by a thread
consists in block waiting for the corresponding semaphore. Each thread executes its
associated schedule table repeatedly, and thus executes FMU operations and synchronizes
with the other threads. Hereafter, we refer to these threads as schedule threads.

The orchestration of the co-simulation is ensured by a master thread which runs the
FMI master algorithm. The master thread creates and launches the schedule threads.
During the execution, the master thread and the schedule threads are synchronized at
fixed points. First, the master thread signals to the schedule threads the start of the
co-simulation which launches their execution. Each thread starts, then, the execution of
its associated schedule table as described in the previous paragraph. When it finishes
the execution of the whole schedule table, its signals this to the master thread and waits
for a new signaling from it. The master thread block waits until all the schedule threads
signal that they finished the execution of their respective schedule tables. Then, the
master thread launches a new iteration by signaling to the schedule threads to start
executing their corresponding schedule tables again. This process is repeated until the
desired simulation time is reached. Figure 5.2 shows an example of the execution of the
generate code for an FMU co-simulation on a two-core processor.

5. Multi-core Scheduling of FMU Dependence Graphs 97

Master
thread

Schedule
thread 1 Schedule table 1

Schedule
thread 2

Schedule table 2

Schedule table 1

Schedule table 2

Synchronization Synchronization

. . .

. . .

. . .

Waiting Waiting

Release of
schedule
threads

Signal completion
of schedule
execution

Second repetitionStart
End

Figure 5.2: Illustration of the execution of generated code.

98

6
Evaluation

Contents

6.1 Random Generator of Operation Graphs 99
6.1.1 Generation of Random Operation Graphs 100
6.1.2 Random Operation Graph Characterization 101

6.2 Performances of the Algorithms 103
6.2.1 Acyclic Orientation Algorithms 103
6.2.2 Scheduling Algorithms for Co-simulation Acceleration 104
6.2.3 Scheduling Algorithms for Co-simulation under Real-time Con-

straints . 108
6.3 Industrial Use Case . 111

6.3.1 Use Case Description . 111
6.3.2 Test Campaign . 111
6.3.3 Numerical Accuracy . 112
6.3.4 Speedup . 113
6.3.5 Comparison of Offline and Online Scheduling 114

In this Chapter, we evaluate our proposed approach. We start by describing a method
for randomly generating benchmark operation graphs. Then, we present the evaluation
of the performances of the acyclic orientation and the scheduling heuristics. Finally,
we give runtime performance and numerical accuracy results obtained by applying our
approach on an industrial use case.

6.1 Random Generator of Operation Graphs

Due to the difficulty in acquiring enough industrial FMU co-simulation applications for
assessing our approach, we had to use a random generator of FMU dependence graphs.
The generator creates the graphs and characterizes them with attributes. In the case

99

100 6.1. Random Generator of Operation Graphs

of co-simulation under real-time constraints, the generator generates real components
and connects them to the operation graph.

6.1.1 Generation of Random Operation Graphs

The random generator that we have implemented is inspired by the random generator
presented in [89]. However, it differs from this work in that the generation is done in
two stages. First, we generate the different FMUs of the co-simulation and their internal
structures. Second, we generate the dependence graph by creating inter-FMU dependence
in such a way that the resulting operation graph is a DAG. The proposed generator is
based on a technique of assignment of operations to levels. The level of an operation is
the number of operations on the longest path from a source operation to this operation.
The dependence graph can then be visualized on a grid of levels as depicted in Figure
6.1. The generator uses the following parameters:

• The graph size n: the number of operations;

• The number of FMUs m;

• The graph height h: the maximum number of levels in the graph;

• The graph width w: the maximum number of nodes on one level.

Note that parameters n and m are related. In other words, for a given size of a
graph n, an adequate number of FMUs m has to be chosen.

The generation of the dependence graph is performed as follows:

• Input: Size of the graph n, number of FMUs m, height of the graph h, and width
of the graph w.

• Step 1: Randomly distribute the n operations across the m FMUs. Given the
number of operations of each FMU, we randomly determine the number of its input
operations and the number of its output operations. Every FMU has one state
operation.

• Step 2: Randomly generate the intra-FMU arcs. This step is controlled by two
parameters. The number of arcs to generate and the number of NDF outputs of the
FMU. These outputs are not considered when randomly generating the arcs.

• Step 3: Randomly assign the operations to the grid levels. This step is performed
by assigning output operations and then input operations repeatedly.

1. Assign all NDF operations to level 0 of the grid.

2. Randomly assign remaining output operations to even levels (2, 4, . . . , h− 3)
of the grid.

6. Evaluation 101

3. Assign the input operations to the odd levels (1, 3, . . . , h− 4) of the grid such
that any input operation oi that is connected to an output operations oj
(intra-FMU dependence) is assigned to the level preceding the level to which
oj has been assigned.

4. Assign the remaining input operations (each of which is not connected with
any output operation) to the level h− 2 of the grid. These operations will be
connected only with the state operations of their respective FMUs.

5. Add the state operations to the last level of the grid.

• Step 4: Create the arcs of the dependence graph. At this step, we randomly
generate inter-FMU dependence. For each operation oi on the level lvl of the grid,
we randomly select an output operation oj from the preceding level lvl − 1 and
which belongs to a different FMU than oi. We create an arc from oj to oi. If no such
output operation is found at level lvl − 1, we select randomly an output operation
from any level lvl′ < lvl − 1 and connect it with the operation oi. Finally the arcs
from input and output operations to state operations are created.

Figure 6.1 illustrates the steps of our proposed random operation graph generator.
In the case of co-simulation under real-time constraints, the following additional

steps are performed:

• Step 5: Create the real component and randomly generate the numbers of its
inputs and outputs. These numbers are generated taking into account the size of
the operation graph n.

• Step 6: Randomly connect the inputs (resp. outputs) of the real component with
outputs (resp. inputs) of the operation graph. This step is performed in such a way
that the condition stated in Theorem 4.4.1 is satisfied.

6.1.2 Random Operation Graph Characterization

In addition to random generation of the dependence graph structure, we need to generate
the attributes of the graph. In particular, the following attributes are generated by
our random generator:

• Communication step sizes of the FMUs: A range for the values of the communication
step sizes is specified. The generator randomly assigns a communication step size
within this range to every FMU.

• Execution times of the operations: Different ranges of the execution times are
specified for input, output, and state operations. Execution times are generated
randomly in such a way that state operations have longer execution times than
output and input operations.

102 6.1. Random Generator of Operation Graphs

FMU A
o0

o1

o2

o3

FMU B
o4

o5

o6

o7

Step 1
Each FMU: 2 inputs + 2 outputs + 1 state

Total = 10 operations

FMU A
o0

o1

o2

o3

FMU B
o4

o5

o6

o7

Step 2

o2 o6

o3

o7

o5

o1

o4

o0

o9o8

h = 8

w = 4

Step 3
o8 : State operation of FMU1
o9 : State operation of FMU2

o2 o6

o3

o7

o5

o1

o4

o0

o9o8

Inter-FMU dependence
Input/Output to state arcs
Intra-FMU dependence

Step 4

FMU A
o0

o1

o2

o3

FMU B
o4

o5

o6

o7

FMU-level view

n = 10,m = 2, h = 8, w = 4

Figure 6.1: Random generation of an operation graph.

6. Evaluation 103

• Sampling periods of the real component: In the case of co-simulation under real-time
constraints, each input (resp. output) of the real component is assigned a sampling
period that is a multiple of the communication step size of the output (resp. input)
operation that is connected with it.

6.2 Performances of the Algorithms

We have carried out different tests in order to evaluate our proposed approach. For both
the acyclic orientation and the scheduling for acceleration, we compared the execution
time of our proposed heuristic with the execution time of the ILP, and the value of the
objective function of the heuristic with the value of the objective function of the ILP. For
real-time scheduling we compared the execution time of our proposed heuristic with the
execution time of the ILP, and evaluated the schedulability rate of our proposed heuristic.
For ILP resolution, we used three solvers: lpsolve [90], Gurobi [91], and CPLEX [92].
With lpsolve, we were only able to solve small instances of the scheduling problem. Gurobi
was much more efficient but we obtained the best performance using CPLEX. Therefore,
the results presented hereafter were obtained using CPLEX. Tests were performed on a
desktop computer with a 6-core Intel Xeon processor running at 2.7 GHz with 16GB RAM.

6.2.1 Acyclic Orientation Algorithms

Comparison of Execution Times

In order to compare the execution time of our acyclic orientation heuristic with the execu-
tion time of the acyclic orientation ILP, we have generated 200 random operation graphs
of different sizes between five and 10000. We considered 10000 as the maximum size of the
operation graph because it corresponds to the size of typical large industrial applications.

We executed the acyclic orientation heuristic and ILP on all of the generated random
graphs and measured the elapsed time between the start and the end of the execution.
For the ILP, the execution is stopped if the optimal solution is not found within two
days. The obtained execution times are shown on a logarithmic scale in Figure 6.2.
The acyclic orientation ILP cannot be resolved in practical times when the size of the
operation graph exceeds 250. When the number of operations is less than 250 the ILP
finds the optimal solution in reasonable times, except for two graphs. In addition, we
observe that an increase in the graph size does not always result in an increase in the
execution time. This can be explained by the fact that other factors impact the speed
of resolution, e.g. number of conflict edges. Still, it is important to notice that the
application of the acyclic orientation ILP is limited to relatively small graphs. On the
other hand, the acyclic orientation heuristic produces results in practical execution times
even for very large operation graphs (10000).

104 6.2. Performances of the Algorithms

10 100 1000 10000

0.01

0.1

1

10

100

1000

10000

100000

Number of operations

Ex
ec
ut
io
n
tim

e
(s
)

Acyclic orientation heuristic
Acyclic orientation ILP

Figure 6.2: Comparison of the execution times of the acyclic orientation algorithms.

Comparison of Critical Path Lengths

We compared the values of the critical path length obtained using the acyclic orientation
heuristic and ILP. Tests were performed using the same set of operation graphs described
in the previous section. However, we consider only graphs for which the ILP was able to
return the optimal solution within the resolution time limit that we set, i.e. two days.
Thus, we applied our proposed heuristic and ILP on 12 operation graphs of sizes between
20 and 240 and saved the obtained length of the critical path. Results are depicted in
Figure 6.3. For most of the operation graphs, our acyclic orientation heuristic produces
a length of the critical path that is equal to the length of the critical path produced by
the acyclic orientation ILP. The heuristic returns a longer length of the critical path for
three graphs but the gap is very small remaining below 8%.

6.2.2 Scheduling Algorithms for Co-simulation Acceleration

Comparison of Execution Times

Similarly to the acyclic orientation tests, we compared the execution time of the scheduling
heuristic with the execution time of the scheduling ILP using 200 random operation
graphs of different sizes between five and 10000. We set a two day limit for the resolution
of the ILP. Tests were run for the scheduling problem with 2, 4, and 8 cores. Execution
times were measured by fixing the number of cores and varying the number of operations

6. Evaluation 105

20 40 60 80 100 120 140 160 180 200 220 240
0

50

100

150

200

250

300

350

400

Number of operations

C
rit

ic
al

pa
th

le
ng

th

Acyclic orientation heuristic Acyclic orientation ILP

Figure 6.3: Comparison of the critical path length.

(graph size). The results are depicted for 2, 4, and 8 cores in Figure 6.4, Figure 6.5, and
Figure 6.6 respectively. All results are plotted on a logarithmic scale. In these figures, we
see that the execution time of the ILP resolution increases exponentially as the graph size
increases, and only small instances are resolved within acceptable times. On the other
hand, the scheduling heuristic is very fast and produces results in short times and even
for very large graphs, the execution times remain within practical bounds.

10 100 1000 10000

0.01

0.1

1

10

100

1000

10000

100000

Number of operations

Ex
ec
ut
io
n
tim

e
(s
)

Scheduling heuristic
Scheduling ILP

Figure 6.4: Comparison of the scheduling execution time for 2 cores.

106 6.2. Performances of the Algorithms

10 100 1000 10000

0.01

0.1

1

10

100

1000

10000

100000

Number of operations

Ex
ec
ut
io
n
tim

e
(s
)

Scheduling heuristic
Scheduling ILP

Figure 6.5: Comparison of the scheduling execution time for 4 cores.

Comparison of Makespans

We run tests to compare the value of the makespan obtained using the acyclic orientation
heuristic and ILP. For these tests we have generated ten operation graphs of size n = 15.
We have used graphs of size 15 because the ILP resolution returns the optimal solution in
very short times which is not the case for large graphs. The graphs are different from
each other because they are generated randomly which leads to different graph structures
and execution times of the operations. We run the scheduling heuristic and ILP on these
graphs to obtain the values of the makespan. Results are shown in Figure 6.7, Figure
6.8, and Figure6.9 for 2, 4, and 8 cores respectively. Overall, the results show that the
scheduling heuristic produces a makespan which is very close to the makespan produced
by the scheduling ILP. The gap between the heuristic and the ILP result lies between
0% and 16%. We notice that the gap is smaller when 4 or 8 cores are used than when
2 cores are used. In fact, when 2 cores are used the maximum gap is 16%, whereas
when 4 or 8 cores are used the maximum gap is 6%. This shows that the scheduling
heuristic performs better when the effective parallelism is increased. It can be explained
by the fact that the scheduling heuristic attempts more allocation possibilities which
leads to a better exploitation of the potential parallelism.

6. Evaluation 107

10 100 1000 10000

0.01

0.1

1

10

100

1000

10000

100000

Number of operations

Ex
ec
ut
io
n
tim

e
(s
)

Scheduling heuristic
Scheduling ILP

Figure 6.6: Comparison of the scheduling execution time for 8 cores.

Graph1 Graph2 Graph3 Graph4 Graph5 Graph6 Graph7 Graph8 Graph9 Graph10
0

50

100

150

200

250

M
ak
es
pa

n

Heuristic ILP

Figure 6.7: Comparison of the makespan for 2 cores.

108 6.2. Performances of the Algorithms

Graph1 Graph2 Graph3 Graph4 Graph5 Graph6 Graph7 Graph8 Graph9 Graph10
0

20

40

60

80

100

120

140

160

180

200

M
ak
es
pa

n

Heuristic ILP

Figure 6.8: Comparison of the makespan for 4 cores.

Graph1 Graph2 Graph3 Graph4 Graph5 Graph6 Graph7 Graph8 Graph9 Graph10
0

20

40

60

80

100

120

140

160

180

200

M
ak
es
pa

n

Heuristic ILP

Figure 6.9: Comparison of the makespan for 8 cores.

6.2.3 Scheduling Algorithms for Co-simulation under Real-time Con-
straints

Comparison of Execution Times

We compared the execution times of the real-time scheduling ILP and heuristic. We
ran these tests on a smaller set of operation graphs than the previous ones. In fact,
the real-time scheduling heuristic and the scheduling heuristic are two variations of the
same list scheduling algorithm and have the same complexity. Therefore, we tested the
real-time scheduling heuristic on fewer graphs with a maximum number of operations
of 1000. Tests were performed by fixing the number of cores and varying the number
of operations. The obtained results are shown in Figure 6.10, Figure 6.11, and Figure
6.12 for 2, 4, and 8 cores respectively. While the real-time scheduling ILP is able to solve

6. Evaluation 109

larger graphs than the acceleration ILP within acceptable times, the execution time of
the resolution still increases exponentially as the graph size increases. On the other hand,
the real-time scheduling heuristic produces results in short times keeping the execution
times within practical bounds similarly to the acceleration scheduling heuristic.

10 100 1000
0.001

0.01

0.1

1

10

100

1000

10000

100000

Number of operations

Ex
ec
ut
io
n
tim

e
(s
)

Real-time scheduling heuristic
Real-time scheduling ILP

Figure 6.10: Comparison of the real-time scheduling execution time for 2 cores.

Schedulability

We run tests in order to measure the rate of schedulability of our proposed heuristic.
Because the execution of the ILP takes long times, we limited these tests to operation
graphs of small sizes. We generated five sets of operation graphs containing each 10
graphs of sizes between five and 50. We make sure that all the generated operation graphs
are schedulable by applying the ILP. Then, we apply our heuristic and save the number
of schedulable operation graphs for which the heuristic is able to find a solution. Figure
6.13 shows the obtained rates of schedulability for different numbers of cores. It can
be seen that the application of the heuristic results in interesting schedulability rates,
especially when considering its very fast execution time compared to the ILP algorithm.
As expected, the rate of schedulability increases as the number of cores increases. Indeed,
the more there are cores, the more chances the heuristic has to find a solution.

110 6.2. Performances of the Algorithms

10 100 1000

0.001

0.01

0.1

1

10

100

1000

10000

Number of operations

Ex
ec
ut
io
n
tim

e
(s
)

Real-time scheduling heuristic
Real-time scheduling ILP

Figure 6.11: Comparison of the real-time scheduling execution time for 4 cores.

10 100 1000

0.001

0.01

0.1

1

10

100

1000

10000

Number of operations

Ex
ec
ut
io
n
tim

e
(s
)

Scheduling heuristic
Scheduling ILP

Figure 6.12: Comparison of the real-time scheduling execution time for 8 cores.

6. Evaluation 111

2 4 8
0

0.2

0.4

0.6

0.8

1

Number of cores

Sc
he

du
la
bi
lit
y
ra
te

Figure 6.13: Rate of schedulable operation graphs.

6.3 Industrial Use Case

We tested our proposed approach for co-simulation acceleration on an industrial use case.
Tests have been performed on a computer with an 8-core Intel core i7 processor running
at 2.7 GHz with 16GB RAM. In the rest of this section, we first give a description of
the use case and then present the tests and the obtained results.

6.3.1 Use Case Description

Our use case consists in a Spark Ignition (SI) RENAULT F4RT engine co-simulation. It
is a four-cylinder in line Port Fuel Injector (PFI) engine in which the engine displacement
is 2000 cm3. The air path is composed of a turbocharger with a mono-scroll turbine
controlled by a waste-gate, an intake throttle and a downstream-compressor heat exchanger.
See Figure 6.14. This co-simulation is composed of six FMUs: an FMU of the airpath,
four FMUs of the four cylinders, and one FMU of the controller. The engine model was
developed using ModEngine library [93]. ModEngine is a Modelica library that allows
the modeling of a complete engine with diesel and gasoline combustion models. The
engine model was imported into xMOD using the FMI export features of the Dymola1

tool. The operation graph of this use-case contains over 100 operations.

6.3.2 Test Campaign

We based our tests on three different versions of RCOSIM. We refer to our proposed
method as MUO-RCOSIM (Multi-Rate Oriented RCOSIM). We compared the obtained
results with two approaches: The first one is RCOSIM which is mono-rate and thus we
had to use the same communication step size for all the FMUs. We used a communication
step size of 20µs. The second one consists in using RCOSIM with the multi-rate graph

1http://www.3ds.com/products-services/catia/products/dymola

112 6.3. Industrial Use Case

Airpath

Cylinders

Figure 6.14: Spark Ignition (SI) RENAULT F4RT engine model.

transformation algorithm. We refer to it as MU-RCOSIM (for Multi-Rate RCOSIM).
For MUO-RCOSIM and MU-RCOSIM we used the recommended configuration of the
communication step sizes for this use case. For each cylinder, we used a communication
step size of 20µs. The communication step size used for the airpath is 100µs. The airpath
has slower dynamics than the cylinders and this configuration of the communication step
sizes corresponds to the specification given by engine engineers. For each FMU, we used a
Runge-Kutta 4 solver with a fixed integration step size that is equal to the communication
step size. The graph of this use case is transformed by Algorithm 1 into a graph containing
over 280 operations that are scheduled by the multi-core scheduling heuristic.

6.3.3 Numerical Accuracy

The validation of the numerical results of the co-simulation using the proposed method
is achieved through the comparison of the co-simulation outputs with reference outputs.
Since it is not possible to solve the equations of the FMU analytically, the reference
outputs are obtained by using RCOSIM which has been shown in [5] to give a very good
accuracy of the numerical results. Figure 6.15 shows the obtained results for the torque
(an output of the airpath). We note that the results match with the reference, and the
generated error is very small remaining within an acceptable bound (< 1%). Similar
accuracy results were obtained for the different outputs of the co-simulation.

6. Evaluation 113

0.8 0.802 0.804 0.806 0.808 0.81−100

−50

0

50

100

Time (s)

To
rq
ue

(N
.m

)

RCOSIM
MUO-RCOSIM

Figure 6.15: Numerical results.

6.3.4 Speedup

The speedup obtained using MUO-RCOSIM is compared with the speedups obtained using
RCOSIM and MU-RCOSIM. The speedup was evaluated by running the co-simulation in
xMOD. Execution times measurements were performed by getting the system time stamp
at the beginning and at the end of the co-simulation. For a given run of the co-simulation,
the speedup is computed by dividing the single-core co-simulation execution time of
RCOSIM by the co-simulation execution time of this run on a fixed number of cores.
Figure 6.16 sums up the results. The same speedup obtained using both MUO-RCOSIM
and MU-RCOSIM is higher than the one obtained using RCOSIM even when only 1
core is used. This speedup is obtained thanks to using the multi-rate configuration.
More specifically, increasing the communication step size of the airpath from 20µs to
100µs results in fewer calls to the solver leading to an acceleration in the execution of
the co-simulation. By using multiple cores, speedups are obtained using both MUO-
RCOSIM and MU-RCOSIM. Additionally, MUO-RCOSIM outperforms MU-RCOSIM
with an improvement in the speedup of approximately 30% when 2 cores are used, and
approximately 10% when 4 cores are used. This improvement is obtained thanks to the
acyclic orientation heuristic which defines an efficient order of execution for the operations
of each FMU that are mutually exclusive. This defined order tends to allow the multi-core
scheduling heuristic to better adapt the potential parallelism of the operation graph to
the effective parallelism of the multi-core processor (number of cores) resulting in an

114 6.3. Industrial Use Case

improvement in the performance. MU-RCOSIM, on the other hand, uses the solution of
RCOSIM which consists in simply allocating mutual exclusive operations to the same core
introducing restrictions on the possible solutions of the multi-core scheduling heuristic.
When using 8 cores, no further improvement is possible since the potential parallelism
is fully exploited. Worse still, the overhead of the synchronization between the cores
becomes counter-productive, which explains why the speedup with 8 cores is less than
the speedup with 4 cores for all the approaches. The best performance is obtained using
5 cores with slight improvement compared to using 4 cores.

1 2 4 8
0

0.5

1

1.5

2

2.5

3

Number of cores

M
ak
es
pa

n

RCOSIM MU-RCOSIM MUO-RCOSIM

Figure 6.16: Speedup results.

6.3.5 Comparison of Offline and Online Scheduling

In this thesis, we adopted an offline scheduling heuristic assuming it is more efficient than
online scheduling since it introduces lower overhead. This choice was based on the fact that
the grain size of the operation graph is small which makes it unsuitable for online scheduling
which involves more decision overhead in runtime than offline scheduling. In fact, the
decision overhead in runtime may become much more costly then the execution of the
operations. Moreover, the different operations perform different tasks and have different
execution times in contrast to applications that exhibit data parallelism which could be
efficiently handled by online scheduling. In addition, the execution times of the operations
and the dependence between them are known before the execution which allows the
application of offline scheduling. In order to confirm this assumption, we have compared
our approach with a runtime scheduling approach, i.e. online scheduling. For this end, we
have used Intel TBB library for the parallelization of the co-simulation. We performed
several speedup tests and compared the results obtained using the two approaches.

6. Evaluation 115

Intel TBB Flow Graph

We have chosen Intel TBB to implement an online scheduling because it offers a
programming interface introduced in Intel TBB 4.0, which allows easy parallelization of
programs represented as graphs. It can be combined with loop parallelism supported by
Intel TBB to further improve the parallelism exploitation. In Intel TBB, we distinguish
between dependence graphs and data flow graphs. In dependence graphs, a dependence
represents a precedence constraint between two nodes. During execution, this dependence
acts as a signal to inform a node that a predecessor has finished its execution. In data
flow graphs, a dependence is accompanied by data transfer from a predecessor to a
node. In our implementation we used dependence graphs as explained hereafter. Intel
TBB offers a wide range of classes that can be used to implement dependence graphs.
In particular the graph class and other related classes are used for this purpose. In
general, a dependence graph involves three main components: a graph object, nodes,
and edges. A graph object provides methods for the execution of tasks created from
the nodes of the graph and to wait for the execution of the dependence graph to finish.
Provided node classes allow the creation of different types of nodes. These nodes can
be classified into four categories as shown in Figure 6.17.

f(x)

Functional Buffering Split/Join Other

Figure 6.17: Types of nodes supported by the Intel TBB Flow Graph interface.

Functional nodes can be used to execute user code provided as a body object. Buffering
nodes allow accumulating messages as they flow through the graph and forwarding them
to successors. Different buffering protocols are supported by Intel TBB such as FIFO,
arbitrary order, or priority order. Split/Joint nodes can be used for aggregation and
deaggregation of messages. There exist several other specific purpose node types, e.g.
broadcast node. Inputs and outputs of nodes are called ports. The user creates a graph,
its nodes and then specifies dependence between them. In Intel TBB, edges are used to
create the dependence. These edges can be created using dedicated functions provided
by Intel TBB. Such functions can be used for the creation and removal of edges in the
graph, as well as managing ports of nodes. The classes and functions of Intel TBB are
highly parametrized to allow many possibilities of implementation.

The execution of the dependence graph follows the partial order specified by the
created edges. When a node receives a signal of completion, a task is spawned to
execute the body of this node.

We present here the fundamental concepts necessary to describe how we used Intel TBB.
The official documentation2 of Intel TBB should be consulted for more detailed explana-
tion.

2software.intel.com/en-us/tbb-reference-manual

116 6.3. Industrial Use Case

Scheduling in Intel TBB

Intel TBB is based on programming with tasks instead of threads. Tasks are atomic
units of execution that are allocated to threads to be executed. The objective is to make
programming simpler by thinking at a higher level, i.e. specifying the potential parallelism
of the program without having to handle the adaptation to the effective parallelism. The
threads that run the tasks are called worker threads. The allocation is automatically done
in runtime using an online scheduling algorithm known as work stealing. Each thread
keeps a pool of tasks that are ready to be executed in a deque which is a double-ended
queue. Elements can be pushed onto or popped from a deque from both ends. Threads
are responsible for task creation, known as task spawning. When a task is spawned by
a thread, it is pushed onto the deque of this thread from the top. The thread always
pops the task on the top of its deque and executes it. As such, a thread uses its local
deque as a stack. If the local deque is empty, the thread tries to pick a task from another
randomly chosen thread, called the victim. It pops a task from the bottom of the deque
of the victim thread, therefore using the deque of the victim as a queue.

In the case of an application implemented as a dependence graph, tasks are spawned on
behalf of the nodes of the graph. When a node receives messages from all its predecessors, a
task is spawned on behalf of this node. When run, this task executes the body of the node.
When a task finishes its execution it sends a message that is transferred to its predecessors.

Implementation

We used Intel TBB to implement parallel FMI co-simulation in xMOD. The first part
which consists in creating the operation graph through the analysis of inter and intra-FMU
dependence is the same as in RCOSIM. If the co-simulation is multi-rate, the multi-rate
graph transformation is performed as well. Once the operation graph is constructed,
an Intel TBB dependence graph which represents this operation graph is automatically
created. The graph is of a dependence graph type because we do not manage explicitly
data transfer between the different operations since the functions of the FMUs are provided
in the form of binaries. Data transfer is implicitly managed by the partial order defined
in the operation graph. In other terms, an operation that produces data is necessarily
executed before the operation that consumes it. Data writing and reading is done through
shared memory and is hidden from the developer. It follows from this that data flow
graphs provided by Intel TBB are not suitable for representing such co-simulations because
they require explicit management of data transfer between the nodes.

The creation of the dependence graph is done as follows: First, a graph is created
and then nodes and edges are added to this graph. A node is created for each operation
and added to an array that stores all the created nodes. The first node that is created
is a source node which has no predecessor. This node becomes a predecessor of all the
nodes that have no predecessor in the operation graph. The body of this node contains
the initialization of the co-simulation. Then, for each operation in the operation graph,
a function node is created. A function node can have multiple ports to be connected

6. Evaluation 117

with multiple predecessors and successors. The body of each function node contains
the FMU function calls of the corresponding operation. Finally, the edges that connect
the nodes are added to the graph. All the created edges are of type continue message.
Such edges are used to signal that the execution is finished.

The execution of the co-simulation consists in executing this dependence graph
repeatedly, similarly to our offline scheduling approach, i.e. the whole graph is executed
at each iteration before a new execution can begin. Initially, one thread is responsible for
the creation of the dependence graph and launching the source node. Only the source
node, which performs the initialization of the co-simulation, is executed explicitly using
a function provided by the Intel TBB library. When this function is called, a task is
spawned to execute the body of the source node. Afterward, the runtime library handles
the flow of messages in the graph. When the execution of the source node body is finished,
it sends a continue message to all its predecessors. Tasks are spawned for the nodes
that receive the messages to be executed which in turn send continue messages when
their execution is finished and so forth. After all the nodes are executed, the execution
is restarted in the same way. The scheduling is managed by the runtime library which
creates a pool of working threads and uses the work stealing algorithm described above.

Comparison

We implemented a parallelization approach of FMI co-simulations using Intel TBB for the
purpose of comparing it with our proposed offline scheduling approach. We have measured
the speedups obtained on different numbers of cores using both approaches. First of all,
let’s summarize the differences between the two approaches. Figure 6.18 illustrates the
main steps of both approaches. As stated above, the two first two phases which consist in
the construction of the operation graph and the graph transformation in the case of a
multi-rate co-simulation are performed in the same way in both approaches. If online
scheduling is used, the next step is execution. On the other hand, if offline scheduling
is used, two more phases are performed before the execution. The acyclic orientation
heuristic is applied on the operation graph to handle mutual exclusion constraints. After
this, the offline scheduling heuristic is used to compute a schedule of the operations. During
execution, in both the offline and online scheduling approaches, a thread is executed
on each core. In the case of offline scheduling, each thread reads the schedule table of
its corresponding core and executes the operations in the order of this schedule, which
does not change during execution. In the case of online scheduling, since no schedule
is computed before execution, the runtime library distributes the operations across the
the threads during execution in such a way to balance the load. Each thread pushes
the operations onto its deque from the top. It executes these operations by popping the
operation on the top from its deque, or if its deque is empty, it steals work form another
thread by popping an operation from the bottom of this victim thread. Mutual exclusion
constraints are handled in online scheduling using lightweight mutex locks provided by
the runtime library. These locks have lower cost than mutex locks provided by the OS.

We ran the co-simulation of the use case on an 8-core Intel core i7 processor running at

118 6.3. Industrial Use Case

Scheduling table of core 1

Scheduling table of core 2

Core 1

thread 1

Core 2

thread 2

Core 1

thread 1

Deque 1

Core 2

thread 2

Deque 2

Operation graph
construction

Multi-rate
graph

transformation

Acyclic orientation

Compute offline schedule

Offline Scheduling Online Scheduling

Execution Execution

Figure 6.18: Comparison of the different phases of the offline and online scheduling approaches.

6. Evaluation 119

2.7 GHz with 16GB RAM. The results are shown in table 6.1. The speedup obtained using
offline scheduling is better than the one obtained using online scheduling which confirms
our assumption. The decision overhead of online scheduling is very costly compared to
the execution times of operations which decreases the performance.

Table 6.1: Comparison of speedup obtained using offline and online scheduling

Scheduling Approach Offline Online
Speedup 2.76 1.64

120

7
Conclusion

Contents

7.1 Summary . 121
7.2 Perspectives . 123

This chapter concludes the thesis. First we give a summary of the contributions
presented in the previous chapters. Second, we give some perspectives for future work.

7.1 Summary

The complexity of CPS is steadily increasing due to several factors. A lot of efforts is
being made in industry as well as in academia in order to implement technologies and
methods that respond to the requirements and challenges in the design of complex CPS.
Co-simulation is increasingly being adopted as a system-level simulation approach in the
context of CPS design thanks to its advantages over monolithic simulation. Strengths of co-
simulation include easy upgrade, reuse, and exchange of models, improved computational
performance compared to monolithic simulation, and allowing better intervention of
experts at the subsystem level in multi-domain design projects. This being said, co-
simulation faces a number of challenges that have to be addressed. This thesis constitutes
a contribution towards solving some of these challenges.

In this thesis, we are interested in the rising requirements on the computational
performance of FMI co-simulation. We build on the work that was previously developed
at IFP Energies nouvelles and aim at improving the existing methods. The focus of the
thesis is on multi-core execution of co-simulation. In particular, there are two main goals
for the research in this thesis. First, we aim at overcoming the limitations of the RCOSIM
approach in order to allow the acceleration of different kinds of co-simulation. Second,

121

122 7.1. Summary

we aim at extending the use of RCOSIM to co-simulation under real-time constraints in
the context of HiL. Below we summarize the contributions of this thesis.

In Chapter 4 we propose extensions to the operation graph model used in RCOSIM
to represent the co-simulation. The first extension targets multi-rate co-simulation. We
propose some rules for transforming a multi-rate operation graph into a mono-rate one
in order to prepare its multi-core scheduling. Based on these rules, we propose an
algorithm that performs this transformation.

The second extension consists in transforming the operation graph in order to handle
mutual exclusion constraints between operations. First, the operation graph is transformed
into a mixed graph by adding (non oriented) edges between mutually exclusive operations.
Then, an acyclic orientation is computed for the mixed graph by assigning a direction
to each edge. We propose two algorithms to perform the acyclic orientation: an ILP-
based exact algorithm and a heuristic.

The last extension aims at completing the operation graph of a co-simulation under real-
time constraints to enable the application of a real-time multi-core scheduling algorithm.
We focus on HiL co-simulation composed of a real and a simulated components. We
propose methods for propagating real-time constraints imposed by inputs and outputs
of the real component on gate operations of the simulated component. Such constraints
are propagated to all the operation of the graph assigning a release and a deadline date
to each operation. We propose two algorithms to perform the propagation of release
and deadline constraints respectively.

In Chapter 5 we propose multi-core scheduling algorithms. First, we focus on co-
simulation acceleration. For this we propose two multi-core scheduling algorithms. The
first algorithm is an ILP-based exact algorithm and the second one is a list scheduling
heuristic. The schedule is computed using either of these algorithms over the hyperstep.
During execution, this schedule is executed repeatedly.

Second, we propose algorithms for multi-core scheduling of co-simulation under real-
time constraints. Similarly, we propose an ILP-based exact algorithm and a list scheduling
heuristic. Also, we propose a simple technique to study the schedulability of the operation
graph and determining a periodic pattern of the schedule.

Finally, in Chapter 6, we evaluate our proposed approach. First, we propose a random
generator of operation graphs. We use this graph to generate a large number of synthetic
operation graphs of different sizes and structures and with different attributes. For
co-simulation under real-time constraints, the generator generates also a random number
of inputs and outputs of the real component and connect it to the operation graph.

We evaluate the performances of our proposed ILP-based exact algorithms and
heuristics for the acyclic orientation, scheduling for co-simulation acceleration, and real-
time scheduling respectively. The obtained results show the efficiency of our heuristics.
While the proposed ILP algorithms give optimal results for small operation graphs they
suffer from intractable execution times. Our proposed heuristics, on the other hand,
give acceptable results within acceptable execution times.

Last, we validate our approach for co-simulation acceleration against an industrial

7. Conclusion 123

use case. The obtained results show the improvements made thanks to using multi-
rate co-simulation and also using the acyclic orientation to handle mutual exclusion
constraints. In addition, we compare our approach with a runtime (online) scheduling
approach. Our approach outperforms it which consolidates our choice of adopting
an offline scheduling approach.

7.2 Perspectives

We present below some possible research directions for future work.

Grain Size Determination

Our proposed approach relies on partitioning the co-simulation into operations that are
scheduled in parallel. The size of the operations, referred to as grain size in parallel
computing terminology, may have an important impact on the achievable performance.
In fact, there is a tradeoff between the grain size and the overhead of scheduling.

Addressing the problem of grain size determination in operation graphs should
strengthen our proposed approach. There exist some approaches in the literature such as
[94] that can be tested on operation graphs at first. Then, the use of graph clustering
algorithms can be explored in order to address this problem.

Quantized State Systems

In this thesis we were interested only in co-simulation using solvers based on time
discretization. A interesting alternative to such solvers are QSS solvers. The latter are
known for performing well especially for solving ODEs with discontinuities [95]. Therefore,
it is worth investigating the impact of using QSS solvers on the acceleration and the
execution under real-time constraints of co-simulation

Real-time Schedulability Analysis

In our proposed approach for scheduling co-simulation under real-time constraints, we
used a schedulability analysis based on simulation. In addition, we do not determine the
schedulability interval before computing the schedule. Moreover, the existing results on the
schedulability interval for real-time systems with arbitrary deadlines are very pessimistic.
Therefore, it is very important to derive an analytic schedulability condition. Alternatively,
finding a more optimistic schedulability interval than the existing results for performing
schedulability analysis based on simulation would represent a major enhancement.

Latency Constraints

In our work, we enabled the execution of co-simulation under real-time constraints by first
propagating these constraints to all the operations of the graph. We made this choice in
order to be able to apply real-time scheduling algorithms which require that each operation
be characterized by classical real-time parameters. We briefly explored an alternative to

124 7.2. Perspectives

our method which consists in defining latency constraints on gate operations only. By
using such technique, scheduling algorithms suitable for latency constraints can be applied.
For example, in future work, the algorithms proposed in [96] can be tested for this purpose.

Preemptive Scheduling

In this thesis, we adopted a non preemptive scheduling policy for both the acceleration
and the execution under real-time constraints of co-simulation. In future work, it is
worth investigating preemptive scheduling policies. This may be related to the grain
size determination question. In fact, preemption may be beneficial only if it does not
introduce an overhead more costly than the execution of the operations.

References

[1] C. Faure. “Real-time simulation of physical models toward hardware-in-the-loop validation”.
PhD thesis. Champs-sur-Marne, France: Université Paris-Est, Oct. 2011.

[2] A. Ben Khaled. “Distributed real-time simulation of numerical models: application to
powertrain”. PhD thesis. Grenoble, France: Université de Grenoble, May 2014.

[3] E. A. Lee and S. A. Seshia. Introduction to embedded systems: a cyber-physical systems
approach. 2nd ed. MIT Press, 2017.

[4] FMI development group. Functional mock-up interface for model exchange and
co-Simulation. July 2014.

[5] A. Ben Khaled et al. “Fast multi-core co-simulation of cyber-physical systems: application
to internal combustion engines”. In: Simulation Modelling Practice and Theory 47 (2014),
pp. 79–91.

[6] J. Reinders. Intel threading building blocks: outfitting C++ for multi-core processor
parallelism. " O’Reilly Media, Inc.", 2007.

[7] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of modeling and simulation: integrating
discrete event and continuous complex dynamic systems. Academic press, 2000.

[8] D. Harel. “Statecharts: a visual formalism for complex systems”. In: Science of Computer
Programming 8.3 (1987), pp. 231–274.

[9] C. A. Petri. “Kommunikation mit automaten”. PhD thesis. Bonn, Germany: Institut für
Instrumentelle Mathematik, 1962.

[10] E. Kofman and S. Junco. “Quantized-state systems: a DEVS Approach for continuous
system simulation”. In: Transactions of The Society for Modeling and Simulation
International 18.3 (2001), pp. 123–132.

[11] A. Ben Khaled et al. “Context-based polynomial extrapolation and slackened
synchronization for fast multi-core simulation using FMI”. In: Proceedings of the 10th
International Modelica Conference. Linköping University Electronic Press. 2014,
pp. 225–234.

[12] A. Ben Khaled-El Feki et al. “CHOPtrey: contextual online polynomial extrapolation for
enhanced multi-core co-simulation of complex systems”. In: Simulation 93.3 (2017),
pp. 185–200.

[13] IEEE Standards Association et al. 1516–2010-IEEE Standard for modeling and simulation
(M&S) High Level Architecture (HLA). 2012.

[14] K. Lamberg and P. Wältermann. “Using HIL simulation to test mechatronic components in
automotive engineering”. In: dSPACE GmbH, Munich 15 (2000), p. 16.

[15] Modelica Association. The Modelica Language Specification Version 3.4. 2017.
[16] M. O. Faruque et al. “Real-time simulation technologies for power systems design, testing,

and analysis”. In: IEEE Power and Energy Technology Systems Journal 2.2 (2015),
pp. 63–73.

125

126 References

[17] G. E. Moore. “Cramming more components onto integrated circuits”. In: Electronics 38.8
(Apr. 1965), pp. 114–117.

[18] G. M. Amdahl. “Validity of the single processor approach to achieving large scale
computing capabilities”. In: AFIPS ’67 (Spring) Proceedings of the April 18-20, 1967,
spring joint computer conference. Apr. 1967.

[19] M. J Flynn. “Some computer organizations and their effectiveness”. In: IEEE transactions
on computers 100.9 (1972), pp. 948–960.

[20] OpenMP. “OpenMP application programming interface”. In: (Nov. 2015). Available at
www.openmp.org, version 4.5, November, 2015.

[21] MPI. MPI: A Message-Passing Interface Standard. Available at www.mpi-forum.org,
version 3.1. June 2015. url: http://www.mpi-forum.org/.

[22] J. Diaz, C. Munoz-Caro, and A. Nino. “A survey of parallel programming models and tools
in the multi and many-core era”. In: IEEE Transactions on Parallel and Distributed
Systems 23.8 (2012), pp. 1369–1386.

[23] R. I. Davis and A. Burns. “A survey of hard real-time scheduling for multiprocessor
systems”. In: ACM Computing Surveys 43.4 (Oct. 2011).

[24] J. Y.-T. Leung, ed. Handbook of scheduling: algorithms, models, and performance analysis.
Boca Raton, FL, USA: Chapman&Hall/CRC, 2004.

[25] M. R. Garey and David S. Johnson. Computers and intractability. Vol. 29. W. H. Freeman
& Co. New York, 2002.

[26] T. C. Hu. “Parallel sequencing and assembly line Problems”. In: Operations Research 9
(1961), pp. 841–848.

[27] E. G. Coffman Jr. and R. L. Graham. “Optimal scheduling for two-processor systems”. In:
Acta Informatica 1 (1972), pp. 200–213.

[28] C. H. Papadimitriou and M. Yannakakis. “Scheduling interval-ordered tasks”. In: SIAM
Journal on Computing 8.3 (1979), pp. 405–409.

[29] P. C. Fishburn. Interval orders and interval graphs: a study of partially ordered sets. New
York, NY.: John Wiley and Sons, Inc., 1985.

[30] T. L. Adam, K. M. Chandy, and J. R. Dickson. “A comparison of list scheduling for parallel
processing systems”. In: Communications of the ACM 17.12 (Dec. 1974), pp. 685–690.

[31] H. Kasahara and S. Narita. “Practical multiprocessor scheduling algorithms for efficient
parallel processing”. In: IEEE Transactions on Computers C-33.11 (Nov. 1984),
pp. 1023–1029.

[32] B. Shirazi, M. Wang, and G. Pathak. “Analysis and evaluation of heuristic methods for
static task scheduling.” In: Journal of Parallel and Distributed Computing 10.3 (Nov. 1990),
pp. 222–232.

[33] B. Kruatrachue and T. G. Lewis. Duplication scheduling heuristics (DSH): a new precedence
task scheduler for parallel processor systems. Tech. rep. Oregon State University, 1987.

[34] M.-Y Wu and D. D. Gajski. “Hypertool: A programming aid for message-passing systems.”
In: IEEE Transactions on Parallel and Distributed Systems 1.3 (July 1990), pp. 330–343.

[35] J.-J. Hwang et al. “Scheduling precedence graphs in systems with interprocessor
communication times”. In: SIAM Journal on Computing 18.2 (Apr. 1989), pp. 244–257.

[36] G. C. Sih and E. A. Lee. “A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures”. In: IEEE Transactions
on Parallel and Distributed Systems 4.2 (Feb. 1993), pp. 75–87.

http://www.mpi-forum.org/

References 127

[37] T. Yang and A. Gerasoulis. “DSC: scheduling parallel tasks on an unbounded number of
processors”. In: IEEE Transactions on Parallel and Distributed Systems 5.9 (Sept. 1994),
pp. 951–967.

[38] E. S. H. Hou, N. Ansari, and H. Ren. “A genetic algorithm for multiprocessor scheduling”.
In: IEEE Transactions on Parallel and Distributed Systems 5.2 (Aug. 1994), pp. 113–120.

[39] A. S. Wu et al. “An incremental genetic algorithm approach to multiprocessor scheduling”.
In: IEEE Transactions on Parallel and Distributed Systems 15.9 (Sept. 2004), pp. 824–834.

[40] F. A. Omara and M. M. Arafa. “Genetic algorithms for task scheduling problem”. In:
Journal of Parallel and Distributed Computing 70.1 (Jan. 2010), pp. 13–22.

[41] J. A. Stankovic. “Misconceptions about real-time computing: a serious problem for
next-generation systems”. In: Computer 21.10 (1988), pp. 10–19.

[42] C. L. Liu and J. W. Layland. “Scheduling algorithms for multiprogramming in a
hard-real-time environment”. In: Journal of the ACM (JACM) 20.1 (1973), pp. 46–61.

[43] J. Y.-T. Leung and J. Whitehead. “On the complexity of fixed-priority scheduling of
periodic, real-time tasks”. In: Performance evaluation 2.4 (1982), pp. 237–250.

[44] A. Mok. “Fundamental design problems of distributed systems for the hard real-time
environment”. PhD thesis. Cambridge, MA, USA: Massachusetts Institute of Technology,
May 1983.

[45] B. Andersson and J. Jonsson. “Fixed-priority preemptive multiprocessor scheduling: to
partition or not to partition”. In: Proceedings of the 7th International Conference on
Real-Time Computing Systems and Applications. IEEE. 2000, pp. 337–346.

[46] Y. Sorel. “Real-time embedded image processing applications using the algorithm
architecture adequation methodology”. In: Proceedings of IEEE International Conference
on Image Processing, ICIP’96. Lausanne, Switzerland, Sept. 1996.

[47] A. Iserles and S. P. Nørsett. “On the theory of parallel runge-kutta methods”. In: IMA
Journal of Numerical Analysis 10.4 (1990), pp. 463–488.

[48] G. D. Byrne and A. C. Hindmarsh. “PVODE, an ODE solver for parallel computers”. In:
International Journal of High Performance Computing Applications 13.4 (1999),
pp. 254–365.

[49] H. Elmqvist et al. “Automatic GPU code generation of modelica functions”. In: Proceedings
of the 11th International modelica conference. Versailles, France, 2015.

[50] M. Gebremedhin et al. “A data-parallel algorithmic modelica extension for efficient
execution on multi-core platforms”. In: Proceedings of the 9th International Modelica
Conference. Munich, Germany, 2012.

[51] H. Elmqvist, S.E. Mattsson, and H. Olsson. “Parallel model execution on many cores”. In:
Proceedings of the 10th International Modelica Conference. Lund, Sweden, 2014.

[52] J. Clauberg and H. Ulbrich. “An adaptive internal parallelization method for multibody
simulations”. In: 12th Pan-American Congress of Applied Mechanics. 2012.

[53] J.-L. Lions, Y. Maday, and G. Turinici. “Résolution d’EDP par un schéma en temps
«pararéel»”. In: Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 332.7
(2001), pp. 661–668.

[54] C. Farhat and M. Chandesris. “Time-decomposed parallel time-integrators: theory and
feasibility studies for fluid, structure, and fluid–structure applications”. In: International
Journal for Numerical Methods in Engineering 58.9 (2003), pp. 1397–1434.

[55] M. Emmett and M. Minion. “Toward an efficient parallel in time method for partial
differential equations”. In: Communications in Applied Mathematics and Computational
Science 7.1 (2012), pp. 105–132.

128 References

[56] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli. “The waveform relaxation
method for time-domain analysis of large scale integrated circuits”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 1.3 (July 1982), pp. 131–145.

[57] S. Y. R. Hui and C. Christopoulos. “Numerical simulation of power circuits using
transmission-line modelling”. In: IEE Proceedings A (Physical Science, Measurement and
Instrumentation, Management and Education) 137.6 (Nov. 1990), pp. 379–384.

[58] M. Sjölund et al. “Towards efficient distributed simulation in Modelica using transmission
line modeling”. In: 3rd International Workshop on Equation- Based Object-Oriented
Languages and Tools EOOLT. Oslo, Norway: Linköping Univ. Electronic Press, 2010,
pp. 71–80.

[59] R. Braun and P. Krus. “Multi-threaded real-time simulations of fluid power systems using
transmission line elements”. In: 8th International Fluid Power Conference. Dresden,
Germany, 2012.

[60] P. Aronsson. “Automatic parallelization of equation-based simulation programs”.
PhD thesis. Linkoping, Sweden: Linkoping University, 2006.

[61] A. Ben Khaled et al. “Multicore simulation of powertrains using weakly synchronized model
partitioning”. In: Proceedings of IFAC Workshop on Engine and Powertrain Control
Simulation and Modeling ECOSM. Rueil-Malmaison, France, 2012, pp. 448–455.

[62] V. Galtier et al. “FMI-based distributed multi-simulation with DACCOSIM”. In:
Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium. Society for Computer Simulation International. 2015, pp. 39–46.

[63] V. Galtier et al. “Experimenting with matryoshka co-Simulation: building parallel and
hierarchical FMUs”. In: Proceedings of the 12th International Modelica Conference. 2017.

[64] H. Lundvall and P. Fritzson. “Automatic parallelization of object oriented models executed
with inline solvers”. In: Proceedings of the European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting. Springer. 2007, pp. 365–372.

[65] W. H. Kohler. “A preliminary evaluation of the critical path method for scheduling tasks on
multiprocessor systems”. In: IEEE Transactions on Computers 100.12 (1975),
pp. 1235–1238.

[66] Omar Kermia and Yves Sorel. “A rapid heuristic for scheduling non-preemptive dependent
periodic tasks onto multiprocessor”. In: Proceedings of ISCA 20th international conference
on Parallel and Distributed Computing Systems, PDCS’07. 2007.

[67] K. Ramamritham. “Allocation and scheduling of precedence-related periodic tasks”. In:
IEEE Transactions on Parallel and Distributed Systems 6.4 (Apr. 1995), pp. 412–420.

[68] E. Balas. “Machine sequencing via disjunctive graphs: an implicit enumeration algorithm”.
In: Operations research 17.6 (1969), pp. 941–957.

[69] V. C. Barbosa and J. L. Szwarcfiter. “Generating all the acyclic orientations of an
undirected graph”. In: Information Processing Letters 72.1-2 (1999), pp. 71–74.

[70] T. R. Jensen and B. Toft. Graph coloring problems. Vol. 39. John Wiley & Sons, 2011.
[71] T. Gallai. “On directed paths and circuits”. In: Theory of Graphs (1968), pp. 115–118.
[72] B. Roy. “Nombre chromatique et plus longs chemins d’un graphe”. In: Revue française

d’informatique et de recherche opérationnelle 1.5 (1967), pp. 129–132.
[73] M. Hasse and H. Reichel. “Zur algebraischen Begründung der Graphentheorie. III”. In:

Mathematische Nachrichten 31.5-6 (1966), pp. 335–345.
[74] L. M. Vitaver. “Determination of minimal coloring of vertices of a graph by means of

boolean powers of the incidence matrix”. In: Doklady Akademii Nauk SSSR 147 (1962),
pp. 758–759.

References 129

[75] R. M. Karp. “Reducibility among combinatorial problems”. In: Complexity of Computer
Computations. Springer, 1972, pp. 85–103.

[76] B. Ries. “Coloring some classes of mixed graphs”. In: Discrete Applied Mathematics 155.1
(2007), pp. 1–6.

[77] G. V. Andreev, Y.i N. Sotskov, and F. Werner. “Branch and bound method for mixed
graph coloring and scheduling”. In: Proceedings of the 16th International Conference on
CAD/CAM, Robotics and Factories of the Future, CARS and FOF. 2000, pp. 1–8.

[78] Y. N. Sotskov, V. S. Tanaev, and F. Werner. “Scheduling problems and mixed graph
colorings”. In: Optimization 51.3 (2002), pp. 597–624.

[79] F. S. Al-Anzi et al. “Using mixed graph coloring to minimize total completion time in job
shop scheduling”. In: Applied Mathematics and Computation 182.2 (2006), pp. 1137–1148.

[80] J. Bélanger, P. Venne, and J. N. Paquin. “The what, where and why of real-time
simulation”. In: Planet RT 1.0 (2010), p. 1.

[81] T. Grandpierre, C. Lavarenne, and Y. Sorel. “Optimized rapid prototyping for real-time
embedded heterogeneous multiprocessors”. In: Proceedings of the 7th International
Workshop on Hardware/Software Co-Design, CODES’99. Rome, Italy, May 1999.

[82] A. Benveniste and G. Berry. “The synchronous approach to reactive and real-time systems”.
In: Proceedings of the IEEE 79.9 (1991), pp. 1270–1282.

[83] A. Benveniste et al. “The synchronous languages 12 years later”. In: Proceedings of the
IEEE 91.1 (2003), pp. 64–83.

[84] H. Chetto, M. Silly, and T. Bouchentouf. “Dynamic scheduling of real-time tasks under
precedence constraints”. In: Real-Time Systems 2.3 (1990), pp. 181–194.

[85] L. Cucu and J. Goossens. “Feasibility intervals for fixed-priority real-time scheduling on
uniform multiprocessors”. In: Proceedings of Emerging Technologies and Factory
Automation, ETFA’06. IEEE. 2006, pp. 397–404.

[86] B. P. Dave, G. Lakshminarayana, and N. K. Jha. “COSYN: hardware-software co-synthesis
of heterogeneous distributed embedded systems”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 7.1 (1999), pp. 92–104.

[87] L. Cucu and J. Goossens. “Feasibility intervals for multiprocessor fixed-priority scheduling
of arbitrary deadline periodic systems”. In: Proceedings of Design, Automation & Test in
Europe Conference & Exhibition, DATE’07. IEEE. 2007, pp. 1–6.

[88] E. Grolleau, J. Goossens, and L. Cucu-Grosjean. “On the periodic behavior of real-time
schedulers on identical multiprocessor platforms”. In: arXiv preprint arXiv:1305.3849
(2013).

[89] H. Kalla. “Génération automatique de distributions/ordonnancements temps réel fiables et
tolérant les fautes”. PhD thesis. Grenoble, France: Institut National Polytechnique de
Grenoble, 2004.

[90] M. Berkelaar, K. Eikland, P. Notebaert, et al. “lpsolve: open source (mixed-integer) linear
programming system”. In: Eindhoven University of Technology (2004).

[91] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2016. url:
http://www.gurobi.com.

[92] IBM ILOG CPLEX. “V12. 7: user’s manual for CPLEX”. In: International Business
Machines Corporation (2017).

[93] Z. Benjelloun-Touimi et al. “From physical modeling to real-time simulation: feedback on
the use of modelica in the engine control development toolchain”. In: Proceedings of the 8th
International Modelica Conference. Dresden, Germany: Linköping Univ. Electronic Press,
Mar. 2011.

http://www.gurobi.com

130 References

[94] Boontee Kruatrachue and Ted Lewis. “Grain size determination for parallel processing”. In:
IEEE software 5.1 (1988), pp. 23–32.

[95] Gustavo Migoni, Ernesto Kofman, and François Cellier. “Quantization-based new
integration methods for stiff ordinary differential equations”. In: Simulation 88.4 (2012),
pp. 387–407.

[96] O. Kermia. “Ordonnancement temps réel multiprocesseur de tâches non préemptives avec
contraintes de précédence, de périodicité stricte et de latence”. PhD thesis. Orsay, France:
Université de Paris Sud, 2009.

