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Abstract
Characterizing community detection algorithms and detected modules in large

scale complex networks

by Vinh-Loc DAO

It is widely believed that real-world networks are organized in a way that their nodes
establish modular groups. Attracted by this remark, many efforts have been de-
voted to developing methods that can efficiently highlight these hidden structures
inside networks, yielding a new research domain called community detection and
eventually becoming a fundamental task in network analysis. Many applications of
community detection nowadays that can be mentioned such as: identifying groups
of similar users in social networks; discovering communities of malicious web do-
mains in network security; detecting plausible candidates for biological modules in
protein-protein interaction networks, etc.

The problem that raises up our research question is: there is not any universal
accepted definition of community structure due to the contextual-dependency of the
definition community itself. By consequence, there exists a fundamental difficulty in
the evaluation and the interpretation of the results of community discovery without
a priori information on expected criteria. This thesis provides a recommendation
for choosing appropriate methods of community detection. In order to do that, first
we introduce theoretical concepts of popular methods existing in the literature to
illustrate different classes of mechanisms that they employ given that these mecha-
nisms strongly impact the final results. Then we point out some defective instances
of traditional evaluation metrics and propose a descriptive approach for verifying
and interpreting detected communities. Specifically, this approach helps to describe
internal and external structure of communities in low-dimensional spaces to assist
one in analyzing community structure produced by different detection methods.
Interestingly, our empirical study exploiting this approach uncovers that networks
across different categories including communication, technological, information, bi-
ological and social networks might have different community structures and can
be described by distinguishable characterized topologies corresponding to popular
graph models in the literature. Finally, we demonstrate a study on the commu-
nity structural similarity of detection methods based on the likeliness of their out-
puts produced from a large dataset of real world networks. Our results show that
some methods might identify statistically comparable community structures pro-
vided that a particular quality is given. The outcome of our analysis supplies proofs
to convince practitioners in which kind of situations a suitable choice of method
is crucial or insignificant. The result is also important in the sense that it helps to
decide an analysis strategy, whether an expensive solution need to be pursued or
a simple solution suffices. Instead of providing ready-to-use formula, we analyze
a large spectrum of instances in three principle dimensions: network, method and
quality metric. The analysis provides empirical supports on which one can rely to
determine best methods for particular cases.
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Résumé

Ces dernières décennies ont vécu une explosion phénoménale des recherches sur
des systèmes complexes grâce à une conjoncture favorable de plusieurs facteurs:
l’augmentation de puissance des ressources de calculs; la facilité d’échanger, de col-
lecter et d’enregistrer de l’information; et surtout le développement de nouveaux
algorithmes pour traiter de très grands graphes. Le concept central de ces études,
en modélisant des systèmes complexes par des interactions entre leurs constituants,
nous permet d’utiliser des modèles mathématiques tels que la théorie de graphe
pour appréhender et expliquer des phénomènes collectifs se produisant et s’expliquant
non pas par des individus mais exclusivement par leurs interactions. Une telle mod-
élisation des systèmes complexes nous permet également d’intervenir dans de très
nombreux domaines tel que la biologie, la sociologie, la technologie, l’informatique,
etc dont les objets d’études peuvent être modélisés par des graphes d’interactions1.

Parmi plusieurs caractéristiques surprenantes, les réseaux complexes possèdent
une propriété structurelle non triviale appelée structure communautaire (Fortunato
and Hric, 2016; Chakraborty et al., 2017; Labatut and Orman, 2017), consistant en
des groupes d’acteurs fortement connectés entre eux et faiblement liés aux autres
groupes dans leur réseau d’interactions. Cette propriété se retrouve dans des réseaux
de très nombreux domaines et offre des perspectives intéressantes. C’est la raison
pour laquelle de très nombreuses méthodes d’exploitation de structure communau-
taire ont été proposées dans la communauté scientifique depuis l’apparition d’une
première méthode proposée par (Girvan and Newman, 2002). Rien qu’en trois an-
nées de 2015 à 2018, il y a environ 500 mille publications scientifiques indexées sur
la plate-forme Google Scholar concernant le sujet de community detection (detection
de communautés en anglais). Cette profusion de travaux nous conduit à des algo-
rithmes les plus avancés et efficaces. Pourtant, cet avancement implique également
la nécessité de développer en parallèle de nouvelles techniques capables d’évaluer,
ou au moins aider à interpréter de manière automatique, des résultats produits par
ces algorithmes.

Cette thèse, en s’inscrivant dans ce contexte, a pour l’objectif d’analyser et de
comparer des méthodes de détection de communautés proposées dans la littérature.
Nous nous intéressons à investiguer des techniques pouvant assister des analystes à
choisir une ou plusieurs méthodes qui leur conviennent selon différentes contextes
ainsi que des qualités structurelles attendues de communautés. Les analyses et les
résultats exposés dans cette thèse sont loin d’être exhaustifs pour aborder tous les
aspects de structures communautaires. Ils constituent cependant un des premiers ef-
forts pour rapprocher les développements théoriques au sein de la communauté sci-
entifique du monde des analystes, parfois non spécialistes, qui ont besoin d’étudier
des réseaux d’interactions dans des cas concrets pour des simples explorations ou
pour des prises de décision.

1Parfois appelés: réseaux complexes, réseaux d’interactions, graphes de terrain ou tout simplement
graphes ou réseaux.
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0.1 Contributions

Les travaux de cette thèse s’organisent autour de plusieurs problématiques sur la
détection de structures communautaires dans des réseaux complexes et ont pour
but d’aider des analystes à choisir des méthodes d’exploration et à interpréter les
résultats obtenus. De nombreuses analyses et études ont été menées selon trois axes
principaux correspondant à trois lignes de contributions majeures:

• Premièrement, il s’agit de la caractérisation de structures communautaires.
À l’heure actuelle, il n’existe pas encore de moyen intuitif pour décrire de
manière systématique des structures communautaires au sein d’un réseau, ren-
dant difficile l’interprétation de différentes solutions de partitions. En con-
séquence, il est primordial d’inventer des techniques pour caractériser et dis-
tinguer différentes structures communautaires d’un réseau. La caractérisation
de structure communautaire proposée dans cette thèse utilisant une approche
empirique a pour l’objectif de décrire des motifs d’interactions entre les noeuds
dans des réseaux. De plus, cette caractérisation nous permet de profiler des
communautés identifiées dans des réseaux de différents domaines d’études et
les associer à des modèles génératifs de graphe dans la littérature. De cette
manière, nous avons montré que des réseaux dans des domaines différents
peuvent avoir des motifs d’interactions très différentes (Dao, Bothorel, and
Lenca, 2018a).

• Deuxièmement, malgré l’existence de multiples métriques de qualité pour éval-
uer des structures communautaires ainsi que des communautés, la valorisation
de performance d’une méthode selon la qualité de résultat qu’elle produit n’est
pas toujours interprétable de manière évidente. C’est pour cette raison que
nous proposons une évaluation des communautés identifiées par divers méth-
odes de l’état de l’art en fonction de leur efficacité à repérer des communautés
possédant différentes qualités. Cette évaluation nous permet de conclure que
la plupart de méthodes de détection découvre des structures communautaires
de très bonnes qualités par rapport à des communautés métadonnées dans le
même graphe qui sont souvent pourtant utilisées comme vérités terrains pour
la validation de performance de détection (Dao, Bothorel, and Lenca, 2017a),
(Dao, Bothorel, and Lenca, 2017b).

• Enfin, pour pouvoir identifier des méthodes de détection appropriées selon le
contexte, il faut réaliser des expériences pouvant exposer des différences selon
des aspects variés de qualité. Nous abordons des techniques et des analy-
ses pour évaluer de manière comparative des résultats trouvés par ces méth-
odes dans l’état de l’art sur de très grands jeux de données. Plus précisément,
une étude approfondie sur le temps de calcul empirique de chaque méthode
a été présentée avec pour objectif de prédire le temps de calcul nécessaire en
fonction de taille de réseau à traiter. D’autres analyses sur la distribution de
taille de communautés caractérisant les méthodes de détection sont également
abordées en comparaison avec des analyses basant sur des mesures de vali-
dation traditionnelle (tel que des variantes de l’information mutuelle). Nous
proposons en plus une nouvelle mesure de co-performance qualifiant des cor-
rélations entre les méthodes de détection selon leur aptitude à exposer une
certaine qualité. La méthodologie proposée permet aux analystes de se munir
des informations nécessaires aux choix d’une ou plusieurs méthodes qui leur
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conviennent selon le contexte (Dao, Bothorel, and Lenca, 2018c), (Dao, Both-
orel, and Lenca, 2018b).

Ces trois axes principaux seront détaillés dans les Section 0.3, 0.4 et 0.5 pour la
caractérisation, l’évaluation et la comparaison des structures communautaires re-
spectivement. Mais en tout premier lieu, nous dédions la Section 0.2 à une brève in-
troduction du problème de détection de structure communautaire, aux enjeux dans
l’étude de structure communautaire ainsi que quelques approches principales et les
méthodes de l’état de l’art prises en compte dans les analyses suivantes.

0.2 La détection de structures communautaires

0.2.1 Définition de problème

Étant donné un graphe G = (V , E) composé d’un ensemble de n = |V| sommets
(ou noeuds) et d’un ensemble de m = |E | liens (ou arêtes) étant des paires de som-
mets, l’objectif de la détection de structures communautaires (ou détection de com-
munautés) est de trouver une partition P = (C1, C2, ..., Ck) des sommets du graphe,
dans laquelle chaque communauté Ci représente un sous-graphe densément con-
necté. Dans cette thèse, nous nous intéressons particulièrement à des problèmes
de détection de structures communautaires sur des graphes non-orientés et non-
pondérés. Autrement dit, des liens entre des sommets n’ont pas d’ordre et sont
tous égaux. Ces graphes peuvent être représentés mathématiquement par des ma-
trices d’adjacences binaires et symétriques A dont chaque élément aij représente la
présence (aij = 1) ou l’absence (aij = 0) d’un lien entre deux sommets i et j. La Fig-
ure 1 illustre le problème de détection de structures communautaires qui peut être
considéré comme un processus de réorganisation des lignes et des colonnes d’une
matrice d’adjacence de manière à ce que les valeurs non-nulles établissent des blocs
sur la diagonale de la matrice2.

La performance d’une méthode de détection est souvent évaluée à travers des
fonctions des qualitésQ qui associent des indices de qualité à toute partition P d’un
graphe G selon certains critères conformant à différentes notions de structure com-
munautaire. Ces fonctions de qualité prennent en compte des informations telles
que des densités de liens à l’intérieur et entre les communautés, des homogénéités
stochastiques des connexions des sommets dans les communautés ainsi que des
qualités représentant des processus dynamiques qui ont lieu dans les communautés,
etc. Parmi plusieurs fonctions de qualité, la plus communément utilisée est la modu-
larité mesurant la différence entre la fraction de liens observés à l’intérieur des com-
munautés et cette fraction dans un graphe associé dont la structure communautaire
est démolie en réservant la distribution des degrés des sommets (appelé null model
en anglais) (Newman and Girvan, 2004). Dans le cas où la structure communau-
taire d’un graphe est connue, la performance d’une méthode est déterminée par la
ressemblance entre la structure découverte et cette structure (appelée la vérité ter-
rain). Pourtant, en réalité, la partition attendue est souvent inconnue et il peut y
avoir plusieurs solutions significatives correspondantes chacune à des besoins spéci-
fiques. C’est pour cette raison que depuis deux dernières décennies, plusieurs méth-
odes de détection ont été proposées, chacune avec différents mécanismes et parfois

2Cette équivalence est susceptible d’une généralisation de concept provenant d’une redéfinition du
problème de détection de communautés ces dernières années. Cependant, dans cette thèse, on parle de
la notion primitive de structure communautaire considérée par la plupart de méthodes de détection.
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(A) (B)

(C) (D)

FIGURE 1: (A) Un graphe se composant de 36 sommets et 217 liens
avec une structure communautaire, des noeuds ayant la même forme
sont supposées d’appartenir à une même communauté. (B) La ma-
trice d’adjacence du graphe avec un ordre aléatoire. (C) Des noeuds
sont regroupés dans des communautés densément connectées. (D) La
matrice d’adjacence du même graphe réordonnée pour faire émerger

la structure communautaire.

différentes fonctions d’objectifs (Fortunato and Hric, 2016). Pourtant, puisque la dé-
tection de structure communautaire est un problème mal-défini3, ce n’est pas facile
de pouvoir déterminer des méthodes appropriées dans des différents contextes.

Dans cette thèse, nous envisageons d’examiner les performances de plusieurs
méthodes sur de multiples aspects de qualité par une approche empirique afin de
montrer leurs performances dans des cas réels. Dans cette vision, nous sommes
exposés à plusieurs défis scientifiques dont les plus marquants sont cités ci-après.

0.2.2 Les défis majeurs

• A l’heure actuelle, comme il n’y a pas de consensus sur la définition de la no-
tion de structure communautaire elle-même, cela conduit à de multiples confu-
sions dans l’évaluation ainsi que dans l’utilisation des techniques de détection
des communautés dans des cas applicatifs concrets. A moins que le contexte
ne soit bien précisé, un seul benchmark d’évaluation ne suffirait pas à démon-
trer plusieurs aspects des structures communautaires. Bien déterminer des
métriques clefs à examiner n’est pas une tâche triviale.

3Ce qui veut dire qu’il n’y a ni objectif clair, ni processus formel pour trouver des solutions, ni
solution optimale.
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• La détection de structures communautaires est un domaine qui évolue rapi-
dement depuis ces dernières années. De nombreux efforts ont été consacrés
à résumer le développement de ce sujet dans le littérature (Fortunato, 2010),
(Coscia, Giannotti, and Pedreschi, 2011), (Orman, Labatut, and Cherifi, 2012),
(Yang, Algesheimer, and Tessone, 2016), (Agreste et al., 2017). Pourtant, la plu-
part d’entre eux se focalisent soit sur des aspects théoriques afin d’exposer et
d’expliquer les différents comportements des méthodes, soit sur des contextes
bien déterminés en utilisant des modèles de graphes artificiels avec des struc-
tures communautaires bien connues. L’étude pragmatique des méthodes sur
des réseaux réels est peu connue et moins investie. Une évaluation par une
approche empirique nécessite un grand nombre de traitements, de mesures,
d’analyses sur des jeux de données variés et potentiellement grande échelle.

• Plusieurs méthodes visent à trouver des partitions optimisant des fonctions
objectifs, ce qui est souvent un problème de type NP-difficile. Par conséquent,
les mécanismes employés sont souvent heuristiques et non-déterministes. Les
résultats trouvés par une méthode sur un graphe donné peuvent être très dif-
férents d’un calcul à l’autre. Il est donc important de déterminer des critères
qui caractérisent bien les comportements des méthodes.

0.2.3 Méthodes de détection

Nous allons présenter ici les principales approches et méthodes qui ont été pro-
posées dans l’état de l’art. Bien que la liste prenne en compte les méthodes les plus
répandues, elle est pourtant non exhaustive. Nous rappelons que notre objectif final
n’est pas de résumer les récents développements, mais de proposer des expériences
pouvant aider les analystes à identifier les méthodes qui leur conviennent.

Approche séparative

L’idée principale des méthodes de cette approche est d’essayer de scinder le graphe
en question en plusieurs communautés en supprimant progressivement les liens
reliant des communautés distinctes. Basée sur le concept que des sommets dans
la même communauté sont plus densément connectés, les méthodes de cette ap-
proche identifient des liens inter-communautaires et les retirent un à un pour faire
apparaître des composantes connexes du graphe qui constituent des candidats pour
des communautés du graphe. On peut citer quelques méthodes bien connues dans
cette famille telles que celle de (Girvan and Newman, 2002) basée sur la centralité
d’intermédiarité ou celle de (Radicchi et al., 2004) basée sur le clustering d’arêtes.

Approche optimisation de modularité

La modularité est une fonction qui mesure la qualité de structure communautaire
d’un graphe (Newman and Girvan, 2004). Elle est souvent utilisée comme une fonc-
tion objectif dans plusieurs méthodes. Le principe de ces méthodes est de chercher
des partitions qui maximisent la différence entre la fraction de liens intra-communau-
taires et une fraction attendue si les liens avaient été distribués de manière aléa-
toire. Dans cette famille, on analyse l’algorithme glouton (Clauset, Newman, and
Moore, 2004), une méthode muti-échelle communément appelée Louvain (Blondel et
al., 2008) et une approche spectrale utilisant une matrice de modularité (Newman,
2006).
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Approche utilisant des processus dynamiques

Des méthodes utilisent des processus aléatoires dans les graphes souvent représen-
tés par des marches aléatoires pour estimer des structures communautaires. Le com-
portement stochastique des marches aléatoires sur un graphe étant fortement lié à
la structure du graphe, elles aident à identifier des sous-graphes densément connec-
tés. Quelques méthodes populaires de cette approche peuvent être citées telles ques
Walktrap (Pons and Latapy, 2005), Infomap (Rosvall and Bergstrom, 2008).

Approche statistique

Ces dernières années, la communauté scientifique s’intéresse aux méthodes qui es-
saient de reconstruire des paramètres latents d’un modèle génératif basé sur la distri-
bution de liens dans un graphe observé. Les méthodes dans cette approche consid-
èrent que la probabilité que deux sommets dans un graphe soient connectés dépend
des communautés auxquelles ils appartiennent. Ensuite, on calcule la vraisemblance
qu’un graphe soit généré par un ensemble de paramètres pour déduire la struc-
ture communautaire. Parmi les variantes de cette approche proposées, on analyse
les méthodes basées sur des modèles stochastiques comme Infomod de (Rosvall and
Bergstrom, 2007) ou (DC)SBM de (Riolo et al., 2017) ainsi qu’une méthode basée sur
la signification statistique des communautés appelée Oslom de (Lancichinetti et al.,
2011).

Autres approches

Il existe de nombreuses autres approches pour la détection de structures communau-
taires. On peut citer des méthodes basées sur les mécanismes de verre de spins (Re-
ichardt and Bornholdt, 2006), sur un processus simulant la propagation de l’information
(Raghavan, Albert, and Kumara, 2007), (Xie and Szymanski, 2012) ou celles qui
utilisent une approche hybride employant des informations globales et locales de
connectivité afin d’identifier des communautés dans un graphe (Meo et al., 2014).
Les méthodes étudiées dans cette thèse sont résumées dans Tableau 1.

Approche Référence Label

Séparative
(Girvan and Newman, 2002) GN
(Radicchi et al., 2004) (g = 3) RCCLP-3
(Radicchi et al., 2004) (g = 4) RCCLP-4

Optimisation de
modularité

(Clauset, Newman, and Moore, 2004) CNM
(Blondel et al., 2008) Louvain
(Newman, 2006) SN

Processus
dynamiques

(Pons and Latapy, 2005) Walktrap
(Rosvall, Axelsson, and Bergstrom, 2009) Infomap

Inférence
statistique

(Rosvall and Bergstrom, 2007) Infomod
(Lancichinetti et al., 2011) Oslom
(Riolo et al., 2017) (DC)SBM

Autres
méthodes

(Reichardt and Bornholdt, 2006) RB
(Raghavan, Albert, and Kumara, 2007) LPA
(Xie and Szymanski, 2012) SLPA
(Meo et al., 2014) Conclude

TABLE 1: Un résumé des méthodes de détection de structures com-
munautaires incluses dans nos études.
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Transitivité: Faible
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La grille

Transitivité: Forte
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L'étoile

Transitivité: Faible

Centralité hub: Forte
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La clique

Transitivité: Forte

Centralité hub: Forte

(d)

FIGURE 2: Une illustration des modèles topologiques d’interactions:
(a) La chaîne, (b) La grille, (c) L’étoile, (d) La clique

0.3 La caractérisation de structure communautaire

Étant donné que le concept d’une “bonne” structure communautaire est lié au con-
texte dans lequel un graphe est étudié, il est important de discerner différentes as-
pects structurels qui existent au sein des graphes. Nous allons présenter dans cette
section une caractérisation des communautés structurelles identifiables dans des
réseaux empiriques. La caractérisation présentée par la suite vise à répondre aux
questions: “À quoi ressemblent les structures communautaires dans des réseaux réels?”
et “Y-a-t’il des différences majeures entre les structures communautaires dans réseaux réels
appartenant à des domaines différents?”.

Nous proposons une caractérisation basée sur des indices topologiques quantifi-
ant la présence de certains motifs d’interactions entre des sommets dans une com-
munauté. En réalité, puisque plusieurs métriques mesurant de différentes notions
de qualité structurelle des communautés sont corrélées (Yang and Leskovec, 2013),
il est possible de choisir quelques métriques représentatives afin de caractériser des
communautés structurelles. Le choix des métriques qui conviennent le mieux pour
distinguer des communautés peut être varié selon le contexte, mais d’une manière
générique, nous nous intéressons aux métriques dont la combinaison nous four-
nit des informations sur des topologies d’interaction entre sommets. Une analyse
profonde de correlation entre de différentes métriques nous permet d’identifier des
modèles d’interactions principales entre les sommets d’une communauté grâce aux
deux propriétés structurelles appelant la transitivité et la centralité hub (Dao, Bothorel,
and Lenca, 2018a). La transitivité (communément connue par son nom “clustering
coefficient” en anglais) quantifie la probabilité que deux voisins d’un sommet soit
connectés. Un bon score de transitivité implique une profusion de structures tri-
angulaires dans la communauté. Tandis que la centralité hub mesure la présence
des sommets fortement connectés au sein d’une communauté. Un bon score de cen-
tralité hub signifie une forte structure centralisée. Une combinaison des scores de
transitivité et de centralité hub nous conduit à des topologies illustrées sur la Fig-
ure 2. Comme nous pouvons constater, ces deux mesures sont complémentaires et
apportent une information topologique sur des communautés.

Si l’on représente une communauté par un point dans un système des coordon-
nées déterminé par les deux dimensions que sont la transitivité et la centralité hub, la
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position de ce point peut nous aider à identifier la topologie de la communauté. En
plus, cette description nous permet d’associer les familles topologiques à des mod-
èles génératifs de graphes comme illustrée sur la Figure 3. Basé sur l’idée que des
réseaux réels sont construits par un certain mécanisme (ou processus), cette tech-
nique de représentation agit d’une manière intuitive pour associer un réseau et ses
structures des communautés aux différents modèles génératifs de graphes.

Transitivité

Centralité hub

Sans échelle
Modèle de 

Barabási-Albert

Aléatoire
Modèle de 

Erdős-Rényi

Petit monde
Modèle de

Watts-Strogatz 

Quasi-complet

Faible

Faible

Forte

Forte

Chaîne

CliqueÉtoile

Grille

FIGURE 3: Des modèles génératifs de graphe associés aux structures
topologiques

Pour illustrer comment des structures des communautés calculées dans des réseaux
réels se situent dans un tel espace à deux dimensions, nous utilisons un corpus con-
tenant une centaine de réseaux comme illustré dans le Tableau 2. L’objectif de notre
expérience est de montrer comment la caractérisation par des familles topologiques
peut nous renseigner sur les différences des communautés issues de réseaux provenant
de différents domaines d’études, comme par exemple les réseaux biologiques, les
réseaux sociaux, etc. La Figure 4 démontre les distributions des communautés dé-
couvertes dans chaque famille de réseaux. Comme l’on peut le constater, les struc-
tures des communautés dans ces domaines sont bien distinctes. Par exemple, dans
les réseaux de communication et les réseaux sociaux, la plupart des communautés
ont de très forts hubs et il y a peu de connexions triangulaires. Ce modèle d’interaction
est très proche avec le modèle d’attachement préférentielle (Barabási and Albert,
1999). Tandis que sur les réseaux d’information, il existe une haute fréquence de
groupes dont les sommets sont connectés de manière très compacte comme ceux de
modèle petit monde (Watts and Strogatz, 1998). On constate bien une diversité struc-
turelle de motifs d’interactions dans les réseaux réels que des modèles de graphes
théoriques n’arrivent pas forcement à imiter. Cette diversité implique également une
nécessité de construire des modèles génératifs décrivant mieux des graphes ayant
des structures communautaires hétérogènes.
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Domaine Nb. Sommets Liens Exemple

Biologie 7 1860 10763 Protein, levure
Communication 9 39595 195032 Email, forums
Information 25 38358 159812 Citation, Amazon
Sociale 37 6888 49666 Facebook, Youtube
Technologie 19 18431 48494 Internet, P2P
Divers 11 4298 49033 Ecologie, synthetique
Total 108 1.99M 9.08M

TABLE 2: Un résumé des réseaux analysés. Nb.: Le nombre de
réseaux concernés, Sommets: Nombre moyen de sommets dans les
réseaux, Liens: Nombre moyen de liens dans les réseaux, Total: Le
nombre total de tous les réseaux et leurs sommets et liens. Source:
http://networkrepository.com (Rossi and Ahmed, 2015), http:

//konect.uni-koblenz.de (Jerome, 2013), http://snap.stanford.
edu (Leskovec and Krevl, 2014)
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FIGURE 4: Les distributions des communautés identifiées dans des
réseaux de différents domaines. Sur l’abscisse et sur l’ordonnée de
chaque sous-figure se trouve la transitivité (CCF) et la centralité hub
(hub_dom) respectivement. De haut en bas, de gauche à droite (a)
Communication, (b) Technologie, (c) Information, (d) Biologie, (e) So-

ciale, (f) Divers.

http://networkrepository.com
http://konect.uni-koblenz.de
http://konect.uni-koblenz.de
http://snap.stanford.edu
http://snap.stanford.edu
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0.4 L’évaluation de structure communautaire

Une des techniques pour évaluer la performance d’une méthode de détection de
structure communautaire sur un graphe est de comparer la structure qu’elle a trou-
vée avec une vérité terrain. Si la structure découverte par la méthode correspond
bien à la vérité terrain, nous concluons que la méthode fonctionne bien. À l’inverse,
si les deux structures ne correspondent pas, nous parlons d’une mauvaise perfor-
mance. En réalité, la vérité terrain n’existe pas dans une application de type non
supervisée, autrement dit, nous ne disposons pas de structure communautaire à
identifier4. Souvent, des métadonnées provenant des identifiants des sommets sont
utilisées en tant que vérités terrains. Cette utilisation conduit souvent à des conclu-
sions non pertinentes sur la performance de détection (Peel, Larremore, and Clauset,
2017).

À travers plusieurs expériences, nous constatons que ces communautés méta-
données fournies avec certains réseaux réels ne sont pas structurellement bonnes.
Cela veut dire également qu’en appliquant des méthodes de détection de structure
communautaire, nous pouvons trouver de meilleures structures communautaires.

Graphe N E k̂ ᾱ CCF Communautés métadonnées

zachary 34 78 4.6 -2.2 0.26 Séparation du club
football 115 613 10.7 -9.1 0.41 Ligues de champions
polblog 1222 16714 27.4 -3.7 0.23 Partis politiques
youtube 39841 224235 11.3 -2.8 0.06 Groupes d’abonnement
livejournal 84438 1521988 36.1 -2.4 0.77 Groupes d’abonnement
dblp 317080 1049866 6.6 -3.3 0.31 Lieus de publication
amazon 334863 925872 5.5 -3.6 0.21 Catégories de produits

TABLE 3: Une description de réseaux réels avec des commu-
nautés métadonnées. N - nombre de sommets, E - nombre de
liens, k̂ - degré moyen, ᾱ - l’exposant estimé de la séquence de
degré selon une loi de puissance, CCF - Coefficient de cluster-
ing. Source: http://www-personal.umich.edu/~mejn/netdata/ et

http://snap.stanford.edu/data/

À titre exemple, nous évaluons des communautés structurelles identifiées par les
méthodes présentées dans la Section 0.2 sur les quelques réseaux réels avec des com-
munautés identifiées par des métadonnées (Tableau 3). Nous considérons quelques
mesures de qualité structurelle dans notre analyse:

• La densité: mesure la fraction entre le nombre de liens existants dans une com-
munauté et le nombre de liens maximal que l’on peut construire entre ses som-
mets.

• La compacité: suggère qu’une bonne communauté doit avoir une forte densité
et un faible diamètre pour que les sommets soit facilement accessibles l’un avec
l’autre (Creusefond, Largillier, and Peyronnet, 2015).

• Le coefficient de clustering: mesure la fraction entre le nombre de triangles exis-
tants et le nombre de triangles maximal que l’on peut construire.

4Dans certain contexte, sous réserve d’une hypothèse que le graphe en question soit créé par un
modèle théorique dont la structure communautaire est formellement définie, nous pouvons parler
d’une vérité terrain déterminée par le modèle.

http://www-personal.umich.edu/~mejn/netdata/
http://snap.stanford.edu/data/
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• La modularité de communauté: mesure la différence entre la fraction de liens dans
une communauté et cette fraction attendue si les liens avaient été distribués
aléatoirement.

• L’embeddedness: valorise l’idée que les voisins d’un sommet dans une commu-
nauté devrait mieux appartenir à cette communauté.

• La separabilité: est basée sur le concept qu’une bonne communauté doit être
bien separée (faiblement connectée) des autres communautés du graphe.

Méthode Sep Emb Den Com CCF Q

CNM 6.18 1.46 2.79 1.79 0.99 2.71
Louvain 11.01 1.50 2.68 6.02 0.94 12.67

Infomap 2.24 1.26 3.34 0.96 0.90 0.75
Walktrap 1.87 1.19 3.35 0.78 0.93 0.65
Oslom 1.69 1.10 1.29 1.21 1.05 0.83
LPA 2.72 1.40 1.84 1.15 1.11 1.06
SLPA 5.34 1.39 2.54 1.19 1.03 0.84
Conclude 1.42 1.13 2.52 0.72 1.33 0.63
Ratio moyen 4.06 1.30 2.54 1.73 1.03 2.52

TABLE 4: Ratio de qualité entre des communautés structurelles
et des communautés métadonnées. Sep - La separabilité, Emb -
L’embeddedness, Den - La densité, Com - La compacité, CCF - Le coeffi-
cient de clustering, Q - La modularité de communauté. Le meilleur ratio

de chaque qualité est mis en gras.

Nous mesurons les scores de qualité définis par ces derniers métriques sur les
communautés structurelles découvertes par les différentes méthodes sur les réseaux
présentés dans le Tableau 3 et les comparons avec ceux des communautés métadon-
nées. Le Tableau 4 présente les ratios entre les scores des communautés structurelles
et des communautés définies par des métadonnées. Nous pouvons facilement re-
marquer qu’il y a des améliorations significatives de toutes les qualités analysées
sur les communautés découvertes par les méthodes de détection (une ratio > 1 sig-
nifie une amelioration de qualité). Ce résultat est aussi vérifié dans les graphes ar-
tificiels générés par le modèle de LFR (Lancichinetti, Fortunato, and Radicchi, 2008)
dont les communautés métadonnées sont souvent considérées comme les meilleures
solutions (Dao, Bothorel, and Lenca, 2017a). Dans le cas des réseaux réels, ce résul-
tat est explicable. Puisque les communautés métadonnées ne sont pas construits
basées sur des informations structurelles mais seulement sur des attributs des som-
mets, par exemple des catégories de produits sur Amazon, il est peu probable que
leurs sommets soient systématiquement densément connectés. Sur des réseaux LFR,
les communautés vérité terrain sont générées en assurant une ratio entre le nombre
de liens intra-communautés et inter-communautés (mixing parameter en anglais).
Dans cette manière de configuration, il est toujours possible de diviser une commu-
nauté métadonnées pour augmenter la densité, la compacité ou au contraire fusion-
ner plusieurs communautés pour augmenter la modularité, etc.

Notre évaluation a montré que la plupart de méthodes arrivent à trouver des par-
titions ayant de meilleures structures par rapport aux métadonnées. De plus, nous
apportons des preuves pour démontrer l’inadéquation de l’utilisation des métadon-
nées en tant que vérité terrain dans l’évaluation de la performance des méthodes
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de détection. Nos analyses ont indiqué également que, étant donnée une fonction
de qualité, nous pouvons toujours identifier une méthode qui expose une meilleure
performance que d’autres (Dao, Bothorel, and Lenca, 2017a).

0.5 La comparaison des méthodes de détection

Dans cette section, nous nous concentrons sur des analyses comparatives entre dif-
férentes méthodes de détection de structures communautaires. Les méthodes con-
cernées ont été introduites dans le Tableau 1 de la Section 0.2. Nous considérons
plusieurs aspects: le temps d’exécution empirique en fonction de la taille des réseaux,
la distribution des tailles des communautés, la similarité entre partitions, etc (Dao,
Bothorel, and Lenca, 2018b). Nous soulignons ci-dessous quelques analyses impor-
tantes.

0.5.1 Temps de calculs

Le temps d’exécution est un facteur important à considérer lors du choix d’une al-
gorithme surtout pour des applications temps réel. Des méthodes de détection de
structures communautaires sont souvent proposées avec des estimations de com-
plexité, ces estimations fournissent pourtant peu d’information sur le temps de cal-
cul réel qui peut fortement varié entre deux méthodes de même complexité. Nous
mesurons les durées de temps de calcul des méthodes dans le Tableau 1 pour dé-
tecter des communautés sur les réseaux présentés dans le Tableau 2. Ensuite, nous
estimons le temps requis par chaque méthode en fonction de la taille du réseau en
utilisant une méthode de régression locale (Cleveland, 1979).
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FIGURE 5: Une estimation de temps d’exécution en fonction de taille
de réseaux (nombre de sommets et nombre de liens).

La Figure 5 illustre le temps estimé5 requis par chaque méthode en fonction
du nombre de sommets (à gauche) et du nombre de liens (à droite). Nous pou-
vons facilement constater que, entre la méthode la plus lente et la méthode la plus
rapide, pour un graphe de même taille, la consommation en temps peut varier d’une

5Temps estimé basé sur les implémentations de bibliothèque igraph dans la plupart de cas et
provenant des auteurs dans d’autres cas. Les paramètres par défaut des implémentations sont util-
isés.
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manière très sévère. Il est donc crucial de considérer le temps de calculs pratique
pour le choix d’une méthode de détection, surtout pour des applications temps réel.
Notre analyse fournit une prédiction fiable et informative du temps consommé en
fonction de taille des données pour des analystes ayant besoin de déployer des méth-
odes de détection des communautés.

0.5.2 Distribution de taille de communauté

Lors de la décomposition d’un graphe en plusieurs sous-graphes, on s’intéresse à
savoir combien de communautés sont produites et quelles sont les tailles de ces
communautés6. Cette question est équivalente à la question de combien de clus-
ters sont identifiés et quelles sont leurs tailles dans un problème de clustering tra-
ditionnel. Dans une toute première idée de la détection des communautés, il est
important qu’une méthode puisse proposer d’une manière automatique le nom-
bre de communautés dans un graphe. Puisque les méthodes ont des stratégies
différentes pour identifier automatiquement les structures communautaires d’un
graphe et fournissent souvent des uniques répartitions, on peut les distinguer par
une analyse sur les nombres de communautés identifiées. Cependant, nous nous
rendons compte que deux méthodes produisant un nombre équivalent de commu-
nautés peuvent répartir des sommets d’un graphe par des manières très distinctes.
Par conséquent, nous nous intéressons à analyser la distribution de taille de commu-
nauté qui est directement liée au nombre de communautés caractérisant les méth-
odes de détection. De plus, une analyse compréhensive en distribution de taille
de communauté d’une méthode est informative car elle prédit l’information sur
d’autres qualités de structure communautaire en question comme la modularité, la
densité, la conductance, etc qui sont corrélées avec les tailles des communautés.
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FIGURE 6: Les distributions des tailles de communautés détectées par
chaque méthode de détection de structure communautaire.

6Lors qu’on dit taille d’une communauté, il s’agit du nombre de sommets contenant dans cette com-
munauté parfois appelé volume de communauté.
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Concrètement, la Figure 6 montre la distribution des tailles des communautés
découvertes par toutes méthodes présentées dans la Section 0.2 sur les graphes ré-
sumés dans le Tableau 2. Les fonctions de densité ont été estimées à partir des fonc-
tions de masse associées en utilisant un estimateur par noyau de type Gaussien.
Cette démonstration affiche plusieurs stratégies de division parmi les méthodes analysées.
Nous montrons qu’une classification des méthodes se basant sur cet aspect nous
permet d’exposer des différences ou des similarités qu’une évaluation par une tech-
nique traditionnelle (comme l’information mutuelle ou l’indice de Rand) n’arrive
pas à faire. En effet, il est possible de définir une fonction de similarité entre deux
méthodes pour comparer les distributions qu’elles produisent. Deux méthodes sont
considérées similaires si elles détectent des communautés de tailles comparables. À
partir de cette idée, nous définissons la similarité de deux méthodes comme étant
l’aire commune sous les courbes de deux distributions associées (Dao, Bothorel, and
Lenca, 2018c).
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FIGURE 7: La similarité entre les méthodes étudiées en terme de taille
de communautés qu’elles produisent.

La Figure 7 montre les estimations de scores de similarité par cette dernière
définition. On distingue nettement trois à quatre stratégies de répartition parmi
les méthodes étudiées représentant une différence fondamentale dans la manière
qu’elles considèrent les structures communautaires des graphes dans notre jeu de
données. Un rapport plus détaillé sur cette analyse peut se trouver dans (Dao, Both-
orel, and Lenca, 2018b).

0.5.3 Autres analyses

Nous avons réalisé de nombreuses analyses afin de montrer différents aspects de
structure communautaire qui font la nuance entre les méthodes de détection. Bien
qu’une liste limitée de mesures ne peut pas tout démontrer, nous essayons de cerner
les parties les plus fondamentales. Concrètement, nous avons analysé la similar-
ité entre ces derniers méthodes par une approche traditionnelle en utilisant des
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métriques de validation telles que l’information mutuelle (normalisée et ajustée)
(Vinh, Epps, and Bailey, 2010), ou l’indice de Rand (ajusté ou non). Nous avons
présenté également une nouvelle mesure de co-performance quantifiant la similarité
entre des méthodes en termes de capacité à repérer des communautés montrant une
certaine qualité. Plusieurs métriques des qualités ont été étudiées telles que la mod-
ularité de Newman-Girvan, la modularité densité, la Z-modularité, la Significance, la Sur-
prise (Dao, Bothorel, and Lenca, 2018b).

0.6 Conclusions et discussions

Le choix d’une méthode de détection de structure communautaire est un problème
très ouvert dont une solution claire n’existe pas à moins que le contexte et la moti-
vation d’analyse soient très bien déterminés. Il faut préciser que l’interprétation du
résultat d’une répartition est aussi difficile et discutable que la détection elle-même.
Dans cet état d’esprit, nous avons réalisé de nombreuses analyses afin d’aider des
utilisateurs à interpreter, caractériser différentes types de structures et évaluer dif-
férentes méthodes. Même quand la détection de structure communautaire est un
domaine qui évolue rapidement ces dernières et même si la notion de structure com-
munautaire est perçue de manière très variable, les approches proposées dans cette
thèse restent valides puisqu’elles servent qu’à démontrer des informations struc-
turelles. Ces informations peuvent aussi assister des utilisateurs potentiels à réduire
le nombre d’analyses nécessaires à réaliser afin de traiter uniquement des méthodes
dont les perspectives leur conviennent.

Les études réalisées dans cette thèse ne permettent cependant pas de répondre
directement à quelle méthode utiliser dans quel contexte, ce qui reste malgré tout
une tâche ambitieuse. Pourtant, de récents développements ont éclairci de plus en
plus d’aspects de structure communautaire qui peuvent être considérés (Schaub et
al., 2017). Dans ces travaux, le problème de detection de structure communautaire
se décompose en quatre perspectives: minimization de taille de coupe (min cut en
anglais), problème de clustering basé sur la densité de liens, regroupement stochas-
tique des sommets ou identification des groupes dynamiques. Cette décomposition
du problème est fondamentale pour des analystes voulant analyser leurs réseaux car
elle précise de différents objectifs dont les solutions optimales sont très distinctes.
Autrement dit, un analyste qui cherche à minimiser la taille de coupe d’une répar-
tition ne va pas avoir besoin de prendre en compte des méthodes stochastiques ou
dynamiques par exemple. Dans le cas où il réfléchit entre deux méthodes de même
perspective, la tâche de choisir une méthode optimale peut revenir à un problème
de type NP-difficile. À ce moment-là des analyses empiriques comme celles intro-
duites ci-dessus deviennent significatives. Puisque la plupart des méthodes pro-
posées dans le problème de détection de structure communautaire appartiennent à
une perspective de clustering, nous avons focalisé nos analyses sur cette direction.

Même quand une vérité terrain n’existe pas, ce qui est généralement le cas, nous
avons obtenu plusieurs constats significatifs à travers des analyses guidant à des
choix appropriés. Par exemple, pour une application temps réels, l’utilisation de la
méthode Louvain ou des variantes de LPA seraient favorables grâce à leur scalabilité.
Si le perspective est de chercher des groupes de tailles homogènes ayant une forte
transitivité à l’intérieur, Infomap est une bonne méthode à employer. Afin d’identifier
des groupes de sommets qui sont stochastiquement similaires (en terme de connex-
ion intérieure et extérieure de communautaire), l’approche utilisant des modèles de
blocs stochastiques pourrait être considéré en premier lieu.
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Finalement, l’analyse et l’interprétation de la structure d’un réseau exige une
connaissance et de l’expertise sur le domaine en question. La détection des commu-
nautés est seulement une étape dans une suite d’analyses séquentielles qui facilite
des travaux qui la suivent. Par conséquent, l’évaluation de la performance d’une
partition ne peut pas explicitement être considérée sans prendre en compte l’objectif
ultime et les différentes modélisations réalisées au cours des autres étapes. La fin
de cette thèse est plutôt une ouverture de nouveaux problèmes à considérer et à
résoudre afin de démystifier la détection des communautés et en faciliter la prise
en main à des analystes, qu’ils soient décideurs ou chercheurs, spécialistes en anal-
yse de réseau ou non, avec des problématiques algorithmiques ou économiques,
sociales, etc.
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Chapter 1

Introduction

The study of complex systems can be considered in a brief locution: interaction learn-
ing. If we take a look, our world is full of interactions such that everyone can tell
inexhaustibly hundreds of examples and the only limit that exists is, unluckily, our
imagination. Think about the complexity of social relations between friends, fami-
lies, professionals; communications between any single molecule with the others in
every single living thing; tonnes of data exchanging between computers and servers
though millions of navigating packages in an exploding Internet system, etc. There
is too much information that we can study from these interactions in order to under-
stand and to explain the functionality of real world systems. This abundancy is, in
fact, at the same time an opportunity and a great challenge.

In a methodological reductionism point of view, if it is complicated to under-
stand the behaviors of components of real-world systems, it must be exponentially
more challenging to comprehend phenomena produced from their complex orga-
nized interactions. However, ignoring the intrinsic complexity of single individu-
als, emerge fascinating collective patterns that could not be explained separately by
examining systems at individual levels. Therefore, there is a necessity to find ap-
propriate scientific tools that could help to understand complex systems. And from
that demand, with an appealing philosophical approach, network science becomes
naturally an eligible and legitimate solution for discovering real-world complex in-
teractions.

The study of complex systems in a modern network science approach can be
briefly summarized into three principle mainstreams: network discovering, network
modeling and processes on networks:

• In network discovering, people study different algorithms and methods to
understand network structures in different levels: microscopic, mesoscopic and
macroscopic structures (Reichardt, Alamino, and Saad, 2011). Exploring the mi-
croscopic level of a network consists in studying properties of nodes through
their interaction rules with the others, such as measuring centrality, transitivity,
reciprocity, etc. (Newman, 2010). On the other end, the macroscopic structure
of a network discloses information in a global view resulting from microscopic
rules regulated by nodes, such as: average degree, diameter, network spec-
trum, etc. It is also possible to discover a network in an intermediate level, i.e.
mesoscopic level constituted by groups of nodes, large enough so that collec-
tive properties can be reasonably discoursed and small enough so that there
can be a representative constituent member for each one (Porter, Onnela, and
Mucha, 2009).

• In network modeling, researchers are interested in representing real-world sys-
tems through networks characterized by different statistical rules. There is a
close relation between network modeling and network discovering, such that
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quantifying different properties of observed networks allows to better develop
theoretical models. Indeed, it is not difficult to create a network model but cre-
ating models that cover well various real-world phenomena is very challeng-
ing. The most notable and widely studied network models in the literature of
network science that could be mentioned are: Erdős-Rényi model (Erdős and
Rényi, 1959) commonly known as random graphs, Watts-Strogatz model (Watts
and Strogatz, 1998) commonly known as small world graphs and Barabási-Albert
model commonly known as scale-free graphs (Barabási and Albert, 1999). Ac-
cording to a specific context, some models could be preferable than the other
in describing complex networks.

• Studying processes on networks is a very appealing domain in network sci-
ence recently thanks to the availability of sophisticated analysis tools as well as
novel techniques that help to collect more efficiently dynamics network data.
Since the world is not static, systems inside it also expose different dynamic
mechanisms. Many researches aim to explain real life phenomena in social
science, biology, information and technology, etc. controlled by different in-
teraction rules on associated networks. Prominent work that could be found
on this axis consists in epidemics, resilience on networks, dynamical systems
(Masuda and Lambiotte, 2016), etc.

1.1 Context and problems

In this dissertation, we invite readers to be interested in the discovery of mesoscopic
structure of networks, widely known as community structure in the literature of net-
work science. There are several reasons why one might want to decompose a net-
work into smaller groups of vertices. In accordance with the availability of informa-
tion as well as the final objective, one could possibly consider different techniques.
For instance, community detection with attributes (Yang, McAuley, and Leskovec,
2013), (Bothorel et al., 2015) could be used if information about nodes and/or edges
are available or community search (Sozio and Gionis, 2010) when only communities
of a portion of nodes need to be queried. In a traditional way, when graph structure
is the only available information, community detection is referred to as using algo-
rithms to divide the vertices of a given graph into several groups according to the
distribution of edges in the graph (Newman, 2010).

The notion of community could be considered for different aspects in real life and
each technique to discover communities has its own attractiveness. In this thesis, we
are interested in studying different community detection methods and the character-
izations of associated community structures. However, community notions defined
by the principle techniques as presented above are not directly comparable since
they process different kind of information and have different objectives. Therefore,
we restrict ourself in a context where the only available information is the structure
of networks. Hence, and from now on, community detection is implicitly under-
stood as stated by the definition of Newman and many others authors (Danon et
al., 2005), (Porter, Onnela, and Mucha, 2009), (Fortunato, 2010), meaning structural
information characterized by the distribution of edges in a network.

Although showing a high similitude with traditional unsupervised data cluster-
ing, community detection methods have just been becoming prosperous in the last
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two decades remarked by the invention of modularity (Newman and Girvan, 2004)1

and the availability of a large volume of networks thanks to the development of
Internet and notably the richness of social platforms. Since then, a numerous num-
ber of detection algorithms with various approaches have been proposed (Fortunato
and Hric, 2016) to resolve this problem, each one with its own mechanism and some-
times with different objective functions 2. However, this multiplicity of choices also
leads to a confusion in deciding which method to choose to automatically discover
community structures of a given network as there is no standard choice. Specifically
when there is still no consensus on a closed-form expression of community structure.
Indeed, some recent researches indicate that no algorithm can globally perform bet-
ter than all of the others in a general No Free Lunch theorem (Peel, Larremore, and
Clauset, 2017). It implies that in some specific contexts, some methods will be better
than the others. For that reason, we are interested in investigating different state-
of-the-art and well-known community detection methods in order to answer some
following questions:

1. What do real world communities in networks look like and how to describe
them?

2. How much community detection algorithms are good in detecting community
structures?

3. How the structures of communities in different kinds of networks are seen by
community detection algorithms?

4. How can we help practitioners to choose an appropriate community detection
method corresponding to different criteria?

1.2 Challenges

As community detection is a quite new problem in network science, it has been
drawing huge attention in recent years and presents several challenges to our work.
Some principle ones that are worth mentioning:

• The researches in finding new community detection methods and evaluation
metrics are very active. There are hundreds of algorithms presented each year
in conferences and scientific journals making it very challenging to be able to
include as many as possible novel representative methods in our experimental
study.

• There is no consensus on the formulation of community detection problem 3.
Indeed, community detection is sometimes decomposed into many sub-problems
such as: vector partitioning problems (Newman, 2006), optimization problems
(Duch and Arenas, 2005), (Brandes et al., 2008) or inverse problems (Karrer and
Newman, 2011), (Peel, Larremore, and Clauset, 2017) etc. Hence, comparing
community detection methods becomes comparing their sub-problems, which
is not straightforward.

1No one has contributed to the development of the domain of community detection as much as
Newman does. Therefore, similarly to many other scientific publications of the same subject, a huge
number of references in this thesis are connected to his work.

2We provoke a small difference between objective and objective function here, as two methods may
have the same objective (finding a community structure) but use different objective functions.

3Community detection is widely considered as an ill-defined problem (Fortunato and Hric, 2016),
meanings “it does not have clear goals, solution paths or expected solution” (Arifin et al., 2017)
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• Surveys in the literature normally address theoretical aspects by analytical ar-
guments (Fortunato, 2010), (Coscia, Giannotti, and Pedreschi, 2011) to deduce
the properties that are regulated by different detection mechanisms. Empiri-
cal work exists (Orman, Labatut, and Cherifi, 2012), (Agreste et al., 2017) but
requires a huge number of processing, experiments and analyses, especially
when many standards in representing and modeling communities exist.

• Finally, understanding community structures in networks is not a destination,
but a long journey of discovery. The more we understand them, the more we
need to step back to in order to reevaluate the appropriateness of our objectives
and pursue suitable ones.

1.3 Contributions

From the research questions that have been introduced recently in the context of this
thesis, after a three-year-long period, approximately 20 thousands experiments on
more than a hundred of networks using 16 state-of-the-art and well-known com-
munity detection methods were conducted. These methods allow us to discover
more than 1.35 million communities, which were evaluated by more than 40 differ-
ent quality metrics. The outcome of our study gives rise to the following principle
contributions:

1. We presented a novel descriptive approach to describe ground-truth commu-
nity structures in some real world large scale networks (such as DBLP network
reflecting the co-authorship relations of scientists or Amazon network illustrat-
ing co-purchase products). Our method allows to classify real world commu-
nity structures that could be classified in 6 different classes characterized by
6 interaction archetypes. This characterization also helps to demonstrate that
ground-truth communities in real world networks are not structurally good,
and leads to the next contribution (Section 4.2).

2. From the notice that real world communities are not structurally good, we are
interested in quantifying how different community detection methods could
improve different types of quality of communities on networks. This quantifi-
cation gives a quick view on how good methods are in discovering communi-
ties and which method one should chose in order to extract a given structural
quality (Section 4.3).

3. We characterized the structures of communities detected by different meth-
ods on a large number of networks using a low-dimensional space. Our study
uncovers that networks across different categories including communication,
technological, information, biological and social networks show different com-
munity structures, which can be described by popular network models in the
literature. This discovery could open a possibility to design new models that
adapt better networks in different contexts (Section 5.1).

4. We provide a practical study of real computation time of different community
detection methods in function of network size. Although theoretical time play
an important role in evaluating the scalability of a method, our study provide
concretely a good prediction of necessary time which is not always in agree-
ment with theoretical estimates (Section 6.1).
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5. We invent a new approach to estimate the similarity of different community
detection methods based on the estimated distribution of community sizes that
they detect. Our findings show that there are three different partition strate-
gies. According to an expected distribution of community sizes, one could
based on our analysis to choose a detection method or target appropriate alter-
native methods when the favorite methods are not eligible (Section 6.2).

6. Finally, we demonstrated a new quality evaluation paradigm that helps to
identify groups of methods that expose similar performance in terms of some
qualities. We present an coefficient called co-performance index, that reveals a
prediction about how the outcome of a method could help us to guess about
the outcome of the others. This contribution helps network practitioners to
quickly identify equivalent methods for a given expect quality (Section 6.3 and
6.4).

1.4 Instructional outline

The next parts of this dissertation is organized in the following way:

• Chapter 2 is an introduction about complex networks and graphs. In this chap-
ter, we present briefly many state-of-the-art studies of complex systems in dif-
ferent domains, which draw huge attention in the network science community.
Then, some fundamental notions of graphs are presented as a prerequisite part
in studying networks as well as community detection. They are some very
important statistical measures in networks such as: degree distribution, lo-
cal clustering and node centrality. Beside, generative network models are also
presented in the line with networks since these models reflect the way that net-
works are thought. Readers who are not familiar with the literature of complex
network or network science are encouraged to have a look on this chapter. On
the contrary, readers can skip this chapter and navigate directly to Chapter 3
dedicated to community detection.

• Since we are interested in comparing community detection methods, in Chap-
ter 3, we introduce essential notions of community detection as well as some
major challenges. Then, an introduction of different state-of-the-art and widely-
used methods studied in this thesis will follow. These methods are classified
according to different theoretical approaches in Section 3.2 in order to highlight
theoretical distinctions between the associating mechanisms that community
structures are explored. Readers who are familiar with community detection
methods in the literature could proceed directly to a summary of these meth-
ods presented in Section 3.3 after Section 3.1.

• Chapter 4 presents our contributions on the evaluation and the characteriza-
tion of meta-data community structures in many wide-known real-world net-
works. We introduce in this chapter a representation of communities using a
descriptive approach that helps to unveil interesting structural information of
community structures. By using this approach, we find that communities in
real-world networks are usually not structurally good and are not always eli-
gible to be employed as “ground-truth” in the problem of community detection.
Then, we demonstrate a quantification showing that almost all popular detec-
tion methods can find significantly better clusters in function of many common
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quality scores of meta-data communities or even planted communities in syn-
thetic networks.

• If Chapter 4 focuses on structural information of meta-data communities, in
Chapter 5, we investigate different kinds of topological communities detected
by community detection methods. The studies in this chapter is based on the
premise that community structures in different network categories can be dis-
tinguishable. By consequence, we employ some popular community detection
methods as a tool to discover node interaction patterns in many types of net-
works. It turns out these patterns are very discernible from one network cate-
gory to another and they could be matched to some popular network models
in the literature. Analyses in this chapter help us to characterize community
structure and connect well-studied network categories with well-known net-
work models.

• In the previous chapter, we focused on modular structures inside networks
and used community detection methods as a discovery tool to characterize
them. In Chapter 6, we demonstrate several comparisons of community de-
tection methods using different quality criteria. These comparisons expose
various traits that help to profile community detection methods and provide
several sources of information that could assist network practitioners to de-
cide best methods for particular cases. We address several critical issues of the
problem of community detection such as: practical time computation, number
of communities, community size distribution.

• Finally, Chapter 7 is dedicated for discussion in regards to the study of com-
munity detection. Also, three-year is still a short period in order to discover
comprehensively all of interesting aspects of this domain and we are definitely
aware of some existing limitations. From that, the dissertation is closed by our
perspectives of potential future work.
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Chapter 2

Complex network and graph

Interest in using networks to resolve complex problems dates back to the 18th cen-
tury with the seven bridges of Königsberg puzzle. In fact, back to 1736 Leonhard Euler
resolved this puzzle by employing nodes and edges to illustrate connections and
hence placed a foundation for graph theory. However, until the 20th century, due to
the computer revolution and the rapid development of the Internet, huge amounts
of data and computational resources have began to be available and join in the net-
work playground which engender an emancipation of graphs from just a theoretical
domain to pervade widely computer science. During the past decades, we have wit-
nessed more than ever before, an evolution in the study of network science1 in order
to discover the structures of colossal networks. Since networks are considered as a
natural language to represent interactions in complex systems, they are not restricted
to only represent bridges and landmasses but have been expanding in many fields of
study such as biology, social, information, communication, etc. in order to leverage
powerful mathematical tools for discovering their mechanisms and functionalities.

Our study focuses on many facets of evaluating community detection techniques
on networks, hence many compulsory and common state-of-the-art concepts will
be repeatedly mentioned and employed ubiquitously in the later chapters. Conse-
quently, every theoretical point one needs to know for a better comprehension of the
following contents of this thesis are introduced in this chapter. We present in Sec-
tion 2.1 a simplified global picture of complex system science perceived from a net-
work science approach, this introduction allows to locate and formulate the problem
of network analysis in general or specifically the problem of community detection
from a more global perspective. From that, Section 2.2 establishes mathematical no-
tations that help to demonstrate different definitions and measurements in networks
such as essential statistical properties of graphs, generative network models. Com-
munity structure, which is the core of our study and some indispensable related
keys are presented in Section 3.1, followed by community detection techniques in
Section 3.2.

2.1 Complex systems

Although the problem of community detection was born independently in differ-
ent domains as fundamental objectives, recently in a more global picture of science
revolution, it has been studied widely in the complexity science community due to

1The distinction between network and graph is quite subtle in the literature. In this document, they
are used interchangeably in many cases according to commonly usages in the literature. Note that
some authors prefer to designate graphs to abstract mathematical objects and networks to actual sys-
tems. In this way, we say network science but not graph science, graph theory but not network theory and
hypergraph but not hypernetwork.
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FIGURE 2.1: A summarized learning cycle using network analysis
tools to extract and comprehend complex system information. The

process is illustrated in a network science viewpoint.

the development of computer calculation capacity. It is hence important to contex-
tualize the study of network analysis techniques a systematic relation with complex
systems in order to avoid any further ambivalence. Emerged as a interdisciplinary
domain, there is generally no officially accepted definitions in the world of com-
plexity and most problems must be resolved in a domain-specific context. Since the
generalization of complex science is far from the context of this thesis as long as
cutting edge achievements of the domain, the utilization of complexity-related terms
in this dissertation will be unambiguously abused in a thinking-network way. Fig-
ure 2.1 depicts a global picture that elucidates the intervention of network analysis
tools in the process to study different collective behaviors of complex systems. It
also helps to perceive whether a perspective could be theoretically attained or not
using different network analysis techniques on the two stages shown in the figure.
The following clarifications assist to decipher different blocks in the schema which
serves as a context introduction.

Definition 2.1.1 A complex system is a group composed of multiple entities which inter-
act with each other. From these relationships, a collective behavior arises that can not be
explained by the properties of the individual components.2

It is also indicated that: "Complex is different from complicated in the sense that
a system comprising a large number of entities is not necessarily complex". On the
other hand, a simple and small system where interactions engender collective be-
haviors could be considered complex. Another definition of complex systems given
by the Complex System Society:

Definition 2.1.2 Complex systems are systems where the collective behavior of their parts
entails emergence of properties that can hardly, if not at all, be inferred from properties of the
parts.3

2The definition given by Institut d’Études des Systèmes Complexes de Toulouse: https://xsys.
fr/en/welcome/

3The definition given by the Complex System Society: https://cssociety.org/about-us/

what-are-cs

https://xsys.fr/en/welcome/
https://xsys.fr/en/welcome/
https://cssociety.org/about-us/what-are-cs
https://cssociety.org/about-us/what-are-cs
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The common point between the two definitions is the justification of the system’s
collective behavior or properties that can only be inferred or exploited from the in-
teractions of its parts but not the individuals themselves. This makes the principle
difference with the traditional reductionism whose approaches endeavor to explain
phenomena in terms of their elementary constituents. A plethora of real world sys-
tems can be cited as complex systems such as predator-prey ecosystems, protein-
protein interaction, human economics, telecommunication infrastructure, social and
communication systems. A complex system can contain in itself different complex
systems which could even be more complicated, or can be hosted in other systems.

Since the study of complex systems spans a wide range of disciplines, the method-
ologies employed and favorite tools in each field are also discernible from one to an-
other. Network is probably the one of the most widely used tool to decrypt complex
systems. As illustrated in Figure 2.1, information of interest in complex systems are
extracted and presented in form of raw networks (Papadopoulos et al., 2012) which
can be seen as their projections in a specific data structure. In raw networks, many
contextual information about system’s entities and their connection are available for
sophisticated analysis tools. In real world as well as human-created complex sys-
tems, there are most of the time several types of entities, which raise an immense
challenge for even the most modern and sophisticated tool for an exhaustive analy-
sis. So that, according to a concrete purpose, suitable information need to be gath-
ered from the studied system to allow ensuing processes to be realized faithfully.
That is one of the reason why information extraction play a very fundamental role
in the process of comprehending complex systems.

In the schema presented in Figure 2.1, from the left hand side to the right hand
side, the amount of processable information decrease in exchange for a flexibility
in using network analysis tools. In other words, simplified networks allow a wide
spectrum of methods and techniques for system exploitation. On the other hand,
in hypergraph and attributed network analysis tools, the constraints are much more
severe and tools or analysis processes are usually designed for a specific context or
domain due to the high complexity of objects of study. Particularly, in community
discovering, the majority of methods are not applicable to hypergraphs or attributed
graphs unless a preprocessing integration into structural information are had been
done to obtain compatible processing data. For a clearer idea about the terminology
used, we illustrate a specimen of a raw network using the context of Social Media
depicted in Figure 2.2. The network contains three types of entities including user,
published content and comment as well as many information related to these entities
and their relations. It can be presented as a tri-partite graphs; hypergraphs where
each hyperlink connects users, contents and comments; or attributed graphs where
users are described by birth place, birthday, gender, career, etc.

The utilization of networks analysis methods to understand real world complex
systems have been emerging with an enormous speed in several domains. Specifi-
cally, many efforts have been given to investigate the structures of communication,
technological, information, biological, social systems (Newman, 2010). However,
procedural tasks in the learning cycle could be different from one domain to an-
other. Imagine the processes of collecting and integrating interactions of social sys-
tems could be totally different with those of biological systems as well as the set
of available techniques do not allow researchers to realize the same action. In the
scope of thesis, domain-related challenges are not focused although the great influ-
ences of their alternative solutions on the final result. Our study is based on a prime
hypothesis that relevant information are satisfactorily synthesized for succeeding
analysis and we are not judging domain-related techniques employed to collect data
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FIGURE 2.2: A visual representation of a fraction of a social network.
Only a small set of exploitable information from most contemporary

social media are illustrated.4

and their quality. In fact, all of real-world networks that are used in our analysis are
well-known networks and have been widely used in many specialized researches.
The quality of these networks is, on the other hand, evaluated using structural mea-
sures. The understanding of these underlying network structures is indispensable
for the reasoning of appropriate metrics using in each analysis process. Essential
structural measures will be presented in Section 2.2, but let us first introduce some
highlight researches which have been conducted to understand the specificity of
some principle network categories widely studied in the contemporary network sci-
ence community.

Social and communication networks

Social networks comprise sets of social individuals and their mutual interactions,
which are normally represented by networks in order to explain emerging social col-
lective phenomena. In traditional studies, individuals are usually be people called
actors and their social interactions, such as friendship, called ties in the lingo of social-
ists. Many other types of social interaction have been investigated such as networks
of drug consumers or terrorists, movie actors, sexual contact networks, business re-
lations between companies, etc. Although antecedent work of social analysis exists
back toward the end of the nineteenth century, Jacob Levy Moreno, an American
psychiatrist, is generally considered as the pioneer of the domain. With a presenta-
tion of relations by sociograms, he promulgated the first concepts of sociometry sci-
ence to study the dynamics of social interactions in small groups of people (Moreno
and Jennings, 1934). Another well discussed example of conventional social study
is the case of the affiliation network called Southern Women Study of 18 women who
participated to 14 different social events, presented by Davis et al. The authors in-
spected the social circles of these women by connecting those who attended at least
to a common event and found out two subgroups of tightly connected clusters of

4Figure credit: some icons are from https://www.freepik.com/

https://www.freepik.com/
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acquaintances with weak inter-cluster interactions (Davis, Gardner, and Gardner,
1941). However, traditional studies in sociology are heavily contingent upon the
methodology of collecting information which was mainly questionnaires, interviews
or direct observations. Hence, they are subject to several restraints such as limited
survey sample sizes, cognitive biases, etc. It was not until the 1960s, an innovative
experiment of Stanley Milgram, a psychologist, was first introduced to study so-
cial networks differently (Stanley, 1967) in the well-known small-world experiment.
The itineraries of 96 tracked packages which were intentionally sent from Omaha,
Nebraska to Boston, Massachusetts through many intermediate recipients were an-
alyzed. The author quantified the geodesic distance between actors in the social net-
work, which characterizes the average number of maximal intermediate relations
between any two arbitrary actors. The uncovering about this unexpectedly short
distance has been inspiring many researches afterward and being subject to many
further discussions.

Accompanying with the explosion of the Internet and online social network plat-
forms, many innovative approaches leverage the availability of increasingly volumi-
nous and often more reliable data sources. Although many privacy protection regu-
lations are changing day by day research methodologies and accessible information,
recent development of social media has unchained major constraints to the expan-
sion of the domain. Nowadays, online databases contain social networks of people
across many geographical areas, in a dynamical and evolving representation, with
an massive amount of individuals which was, separately, already a big challenge.
The example illustrated in Figure 2.2 reveals solely a small aspect of the complexity
of contemporary social networks and the interactions of their constituents. Many
prominent researches have been well leveraging the wave of technology to exploit
collaboration networks between scientists (Newman, 2001b), dynamical aspect of
high resolution student interaction networks (Sekara, Stopczynski, and Lehmann,
2016) and large-scale social networks (Leskovec, Kleinberg, and Faloutsos, 2007),
social recommendations by detection of community of interest (Brun and Boyer,
2012), privacy-related questions of online social network profiles (Kevin, Jason, and
Nicholas, 2008).

Communication networks consist of information exchanging systems between
any kind of artefacts or humans such as signal transmission between computers or
servers, email or message exchanges, phone calls, etc. They usually have a close
relation with social and information aspects in many cases since people principally
communicate within their social contacts. As a consequence, there is a similar evo-
lution in communication patterns with that of social interactions along with the in-
tervention of the Internet and collaborative platforms. In fact, the classification of
networks into different categories is quite relative and fuzzy. Many networks can be
classified into one category or another according to the aspect that we are interested
in. Some popular studies focused on discovering communication networks of infor-
mation exchange include: structure discovery in e-mail traffic networks (Eckmann,
Moses, and Sergi, 2004), (McCallum, Wang, and Corrada-Emmanuel, 2007), large
dynamic graph approach for fraud detection in telecommunication (Cortes, Pregi-
bon, and Volinsky, 2001), strength ties in mobile communication networks (Onnela
et al., 2007), human communication capacity and interaction strategies (Miritello et
al., 2013).
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Information networks

Information networks consist of interconnected systems of information contained
items, which are mostly man-made. Some representative examples of information
networks include the World Wide Web (WWW), networks of connected blogs or
journals, the web of citations between scientific papers, peer to peer networks, etc.
Information networks also have a close relation with social and communication net-
works. In fact, depending on the aspect that is considered, some networks could be
classified at the same time to be in either of these categories.

The structure of the Web attracts enormous attentions in the scientific community
over the last decades due to the availability of automatic computer programs such
as web crawler. Specifically, the Web is widely considered as a network in which
the vertices are web pages and the edges are the hyperlinks contained in these web
pages which redirect users from the actual page to another. A web crawler receives
an arbitrary initial page as source and scans all of its contents to find its connected
pages represented in the form of Uniform Resource Locator - widely known as URL
- to discover the Web throughout a breath first search process. However, given a
web page, one is only able to discover a part of the Web since not every web pages
are reachable from a single source. Moreover, many web pages are also technically
invisible to some web crawlers. By consequence, the picture of the Web network
is generally an assembly of many small fragments discovered independently from
many parts of it. The study of the whole structure of the Web is challenging and time
consuming due to its highly dynamical structure, a colossal size5 and the unreacha-
bility of many web pages. Several notable discoveries to comprehend the structure
of the Web could be found in the literature (Kleinberg et al., 1999), (Albert, Jeong,
and Barabási, 1999), (Andrei et al., 2000), (Bosch, Bogers, and Kunder, 2016).

Other well-studied types of information network include the citation network
between academic papers. In fact, each paper normally refers to many other pub-
lished papers in its bibliography part to indicate the sources of reference. A network
of citation constructed from these connections between papers could help to re-
veal interesting information about the picture of the research collaboration between
authors or the relationship between different scientific disciplines as well as their
evolution during time (Rosvall and Bergstrom, 2008), (Newman, 2001b). Besides,
recommender networks of products on many commercial platforms have been also
studied. Such that, along with the development of online shopping behavior, a wide
variety of algorithms have been developed to attract consumers by recommending
them relevant products that they are likely to buy. The relation between the effi-
ciency of these collaborative filtering algorithms and the network structures began
to draw the attention of some researches (Cano et al., 2006), (Su, Sharma, and Goel,
2016) similarly the effect of social connection recommendation on networks (Daly,
Geyer, and Millen, 2010).

Technological networks

Technological networks include physical infrastructure networks constructed to fa-
cilitate or enable some specific demands. The Internet is probably the most well
known and celebrated technological network, which links different information sys-
tems or devices together by electrical or optical cables, wireless for fast data connec-
tions. Besides the Internet, some other types of networks could be classified into

5It is estimated by http://www.worldwidewebsize.com/ that there is around 47 billions reachable
static pages on the WWW between May 2016 to May 2018.

http://www.worldwidewebsize.com/
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technological networks such as: transportation networks, distribution networks,
telephone infrastructure networks (Newman, 2001b). Since technological networks
are man-made systems and are regulated under different artificial mechanisms, their
structural characteristics are very distinguishable from those of the other types of
networks. Several researches have been conducted to understand complex proper-
ties of technological systems, notably the topology of the Internet in many structural
levels including router-level, subnet-level, domain-level, autonomous system-level
(Faloutsos, Faloutsos, and Faloutsos, 1999), (Pastor-Satorras and Vespignani, 2004),
(Magoni and Pansiot, 2001). The telephone network topology is also studied using
tomographic methods inspired by medical imaging (Rabbat et al., 2005), (Treichler
et al., 2004). Besides, many statistical properties of technological networks whose
topologies are highly impacted by geographical and demographic conditions such
as electric power networks, airline traffic networks, road way networks, railway
networks, etc. are well investigated (Amaral et al., 2000), (Porta, Crucitti, and La-
tora, 2006), (Sen et al., 2003), (Watts and Strogatz, 1998). In fact, the understanding
of these networks could reveal valuable information for many real life issues such
as vehicle traffic controlling, highway infrastructure development, efficient delivery
and distribution problems and many other economical and management problems.

Biological networks

Networks are widely used in biology to represent interactions between biological el-
ements as a very natural way. Biological networks cover a very wide scale: from
macro networks such as interactions of different species in an ecosystem known
as food webs to micro networks such as biochemical reactions between substances
within cells. The mechanisms that many biological networks are determined are
quite discernible from those of the other types of networks since they are usually de-
pendent to available experimental techniques in biology. For instance, in a metabolic
network where each node represents a chemical substance called metabolite and each
edge represents a reaction, its is quite complicated in many cases to determine ex-
actly the exhaustive participating components of every reactions. In protein-protein
interaction networks or neural networks, the processes for determining whether an
interaction exists between two proteins or two neurons respectively are usually time
consuming and expensive. Hence, in many cases, analysis in biological networks
are often conducted on small systems or just on a local fraction of the whole picture.
There are still many challenges in constructing a full map of knowledge in many
biological organisms.

The study of brain functionality using networks to represent neuron interactions
by neuroscientists is probably the most common in this group. A full comprehension
of human neural network requires an enormous number of experiments and many
parts of the human brain stay mysterious up to the present time. In parallel, several
researches have been focused on the structure of smaller neural networks such as the
one of the nematode C. Elegans - a type of soil worm (Green et al., 2011), (Hizanidis
et al., 2016) where the entire neural network has been successfully mapped (White
et al., 1986). Besides, protein-protein interaction networks also received a great at-
tention in biochemical biology. For example, some methodologies and experimen-
tal methods to translate protein interaction data into network presentations for un-
derstanding cellular processes are introduced in (Nils, 2014); the robustness of the
Saccharomyces cerevisiae yeast’s proteome against removal of proteins with different
levels of centrality within its protein network in (Jeong et al., 2001); the dynamics
of protein complexes that reveals previously unknown modules (Lichtenberg et al.,
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2005), etc. At a smaller scale, structural properties of some metabolic reaction net-
works have been also studied to understand key aspects of cellular functionality
and robustness. For instance, the metabolite hierarchical modularity organization as
well as cellular functionality and gene regulation in E. coli intestinal bacterium are
inspected using metabolite pathway structures (Stelling et al., 2002), (Ravasz et al.,
2002), (Wunderlich and Mirny, 2006). Although an exhaustive list of current research
trends in biology using network approaches requires undoubtedly a larger scale of
investigation and domain knowledge, a few examples should suffice to expose a
remarkable presence of network science in this area.

2.2 Preliminary definitions

In this section, some preliminary theoretical tools and concepts for the analysis and
description of networks are introduced. Since networks are naturally represented by
graphs, most analysis of real world networks in the literature leverage several meth-
ods and algorithms developed in graph theory to explain their structures, function-
alities and relating phenomena. By consequence, essential notions of graph theory
that help to understand network characteristics, analysis processes especially com-
munity detection are presented in this part. These concepts help to understand what
do networks look like on a global scale, how do they evolve over time, whether they
are robust against external stimulations and how do they change under perturba-
tions, etc.

Several extensive researches using statistical tools have discovered many fasci-
nating characteristics of real world networks such as small-world phenomenon (Watts
and Strogatz, 1998) as also known alternatively as six degree of separation in an ear-
lier version (Stanley, 1967), the power-law degree distributions, heterogeneous struc-
ture (Estrada, 2010), modular structure (Newman, 2006), self similarity (Chaoming,
Shlomo, and Hernán A., 2005), etc . Not only in static networks, statistical proper-
ties also help to disclose many interesting properties in dynamic networks such as
shrinking diameters, densification power-law, phase transition, etc.

Then, some traditional data clustering approaches will also be mentioned subse-
quently as they are involved in the partition process of some community detection
algorithms. In fact, one popular approach in community detection consists in trans-
forming network data into adapted forms represented by pairwise proximity dis-
tance between individuals and then performing conventional clustering techniques.
It is hence requisite to expound the mechanisms of data clustering, at least in a per-
spective from where they will be adapted in community detection context. However,
it is not supposed to be a comprehensive introduction for neither of the above con-
tents. More complete details could be found in (Newman, 2010), (Estrada, Ernesto,
2011) for introduction of networks, in (Cormen et al., 2009) for graph theory and in
(Hastie, Tibshirani, and Friedman, 2009a) for clustering techniques.

2.2.1 Graph

A network composing of individuals and their interactions can be represented by a
graph - a type of data structure that allows several techniques to discover the network
under question. A graph G = (V , E) consists of a set V of nodes (or vertices - vertex
in singular) representing individuals of the associated network and a set E of edges
(or links) representing interactions between pairs of individuals. The number of
nodes and edges in graph G are denoted by n = |V| and m = |E | respectively. When
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two nodes i and j ∈ E of a graph are connected by an edge eij = (i, j) ∈ E , we can
refer to them as neighboring nodes or sometimes incident nodes of edge eij.

The edges of a graph can be optionally described by a weight function w(i, j) :
E → R

+ : i, j ∈ V which allows to quantify the interactions between its nodes. In
case where ∃i, j ∈ V : w(i, j) /∈ {0, 1}, we call the graph weighted graph and denote it
by G = (V , E , w). The weight of an edge (i, j) ∈ E between two nodes i and j can be
alternatively denoted as wij : w(i, j) > 0, which implies that a null weight indicates
a nonexistent edge wij = 0 ⇔ (i, j) /∈ E . In the case that only the existence of edges
in considered, we call the graph is unweighted graph or binary graph, which literally
means w(i, j) = 0 if (i, j) /∈ E and w(i, j) = 1 if (i, j) ∈ E . We simply omit the weight
function and use G = (V , E) to denote unweighted graphs. Besides, when no further
information is indicated, a graph is considered undirected, which means its edges are
symmetrical and there is no specific order in the connection between two nodes: that
is (i, j) = (j, i). On the opposite, the graph is called directed if (i, j) 6= (j, i). In this
case, (i, j) ∈ E indicates an edge whose direction is from node i called source to node
j called target. In a directed graph, edges are visually depicted by arrows from source
nodes to target nodes while edges in a undirected graph are simply represented by
links connects their extremities. Normally, without further indication, networks that
we analyze in this work are represented by undirected and unweighted graphs.

Most of the time, graphs have at most one single edge between any pair of ver-
tices. In some cases, it is also possible that there are more than one edge between
the same pair of vertices called multi-edges and/or there are edges that connect ver-
tices to themselves called self-edges or self-loops. Graphs that contain multi-edges are
called multi-graphs and possibly have also self-edges. When a graph have no multi-
edge nor self-edge, we call it a simple graph. Depending the context or analysis pur-
pose, a multi-graph could be simplified by a simple graph by removing self-loops
and presenting multi-edges by a weight function. Most of community detection
methods in the literature are designed to work with simple graphs. Figure 2.3 illus-
trates an example of a simple network which is modeled as a simple graph 2.3(a) or
a multi-graph 2.3(b).

A very important property of nodes in graphs, which is repeatedly discussed in
many network analysis contexts, is node degree. The degree d(i) of a node i ∈ V in
graph G is defined as the number of connections that it has in the graph. In other
words, it is the number of neighbors that node i possesses in graph G. The degree
distribution of nodes in a graph is a principle property that is usually studied to
understand its global structure. Besides, for weighted graphs, we also define a node
weight w(i) of node i ∈ V to be the sum of the weights of its incident edges. Since
∀i, j ∈ V : (i, j) /∈ E , wij = 0, we can write for all node i in V :

w(i) = ∑
j∈V

wij (2.1)

Graph representation

There are many ways to represent a graph G = (V , E) mathematically such as: a
collection of adjacency lists, an edge list or an adjacency matrix. Each type of pre-
sentation has its own advantages according to the task that one needs to conduct
on the graph. While the adjacency list representation provides an efficient way to
represent sparse graphs; the edge list representation is appropriate for processing
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FIGURE 2.3: An example of a simple network represented by: (a) A
simple graph, (b) A multi-graph with multi-edges and self-loops.

dynamic graphs whose edges are added or removed regularly; and the adjacency
matrix representation facilitates algebraic calculations on graphs.

If we consider an undirected graph with n vertices which are indexed each one
by a unique label, for example, from 1..n as the graph illustrated in Figure 2.3(a). We
can present this graph of 5 vertices and 5 edges by an adjacency list: {(1 : 2, 3), (2 :
1, 3), (3 : 1, 2, 5), (4 : 5), (5 : 3, 4)} where (k : i, j) indicates that node i and j are
adjacent to node k in graph G. The adjacency list representation, as indicated by its
name, itemizes every neighbors of each node in the graph one by one. It works like a
list of pointers in computer programming that contains addresses to all neighboring
nodes. Hence it facilitates navigating procedures and is a preferred representation in
the implementation of many algorithms in graph theory such as Prim algorithm for
searching minimum spanning tree (Prim, 1957) or Dijkstra algorithm for searching
the shortest path problem (Dijkstra, 1959), etc. The same graph in Figure 2.3(a) could
be also represented by an edge list {(i, j)}: {(1, 2), (1, 3), (2, 3), (3, 5), (4, 5)}. Edge
lists and adjacency lists are often used to store networks in computers since they re-
quire much less memory than adjacency matrices, especially in sparse graphs where
the number of edges m is much less than the number of possible edges n2. Besides,
edge weights could also be stored easily in by adding w(k, i), w(k, j) in the adjacency
list of k or simply a third element w(i, j) in the edge list representation. However,
for mathematical manipulation purposes, it is advantageous to use the adjacency

matrix, where nodes are presented in rows and columns, and the elements of the
matrix represent the weights of associated edges:

Aij =

{
wij if (i,j) ∈ E
0 if (i,j) /∈ E

When G is an unweighted graph, the wij elements in the adjacency matrix is then
replaced by 1. For instance, the adjacency matrix A of the graph G presented in
Figure 2.3(a) is:

A =




0 1 1 0 0
1 0 1 0 0
1 1 0 0 1
0 0 0 0 1
0 0 1 1 0




Simple unweighted and undirected graphs corresponds to symmetrical binary adja-
cency matrices whose diagonals elements are all zero. When a network is directed,
its associated graph is not anymore symmetrical since aij 6= aji. Multi-graph ad-
jacency matrices are, on the other hand, filled by integer values corresponding to
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number of edges between pairs of nodes and non-null diagonal values correspond-
ing to self-loops. Finally, in weighted graphs, these values are non negative real
numbers which quantify interactions between nodes reflected by weight functions.

Graph connectivity

In order to understand about graph connectivity, it is necessary to understand the
notion of walk and path in graphs. In simple words, a walk can be understood as
a way of getting from one node to another node in a graph. It consists of a finite
sequence of edges beginning at one node and finishing at the other, in which two
consecutive edges are always adjacent or identical. A path is a special case of walks,
where no node appears more than once in the edges sequence, which means edges
must not be identical. For example, in Figure 2.3(a) 1 → 2 → 3 → 5 → 4 is a path
from node 1 to node 4 throughout a sequence of edges (1, 2) → (2, 3) → (3, 5) →
(5, 4). There may be several paths between two nodes in a graph and the length
of shortest paths among them are called geodesic distance or just distance for short.
The average geodesic distance between two generic nodes in a graph is sometimes
called characteristic path length L (Watts and Strogatz, 1998) to describe a dimension
of graphs. Note dij be the distance between i and j, it can be written:

L =
1

n(n− 1) ∑
i,j,i 6=j

dij (2.2)

The notion of geodesic distance between nodes in networks is sometimes used
as a function of proximity (or similarity) to determine input data for traditional clus-
tering methods. However, this utilization provokes essential inappropriatenesses
for network clustering problems. As real world networks are commonly sparse and
have small diameters, nodes which are geodetically close sometimes should be con-
sidered to belong to different clusters. Inversely, geodetically distant nodes could, in
some cases, affiliate to the same cluster. More advanced methods which have been
developed to determine node closeness for network clustering will be discussed in
Section 3.1.

An important notion to be mentioned in the analysis of networks is component
distribution. It is an important feature to consider in order to get some insight into
the network’s global structure. In undirected graphs, we refer to a connected compo-
nent as a subgraph where exists at least a path between any two arbitrary nodes. It
means that, in a connected component, every node is reachable from any other node
through at least one path. The component distribution reveals informative details
about network connectivity, scarcity, vulnerability, etc. against some certain internal
or external disturbance. Nevertheless, on the perspective of analyzing community
structure in networks, without losing the generality, only connected networks are ex-
amined. Actually, in networks consisting of several connected components, the node
clustering problem always has an evident solution in which each connected compo-
nent is considered as a separated community. This seems to be a reasonable solution
since it is somewhat arbitrary to group nodes from disconnected parts of a network
into the same community. Hence, the community detection problem in a discon-
nected network can be effectuated independently in each connected component6.
Hence, a pre-calculation of connected components is often required to make the net-
work compatible with detection algorithms. Finding all connected components only

6Actually, in many community detection algorithms, it is implied that the input network must only
have one connected component, otherwise a converged solution is not obtainable.
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requires linear time in terms of the graph size by using a breath first search or a
depth first search O(|V|+ |E |). Besides, singletons representing nodes without any
connection in their networks are also ignored in the community detection problem
due to its triviality. Figure 2.4 illustrates the concepts of connected components and
singletons in graphs. From later on, without any further mention, networks under
our analysis include one and only one connected component, and every node has
at least one edge connecting it to the other nodes in its network. These constraints
also ensure important preliminary requirements for the correct functionality of some
community detection algorithms.

Random walks

We introduce in this part an important stochastic process in graph theory called ran-
dom walk process, which is a diffusion process that helps to understand the concepts
of some community detection algorithms that make use of it. Basically, a random
walk is a random sequence of nodes selected by a random walker based on a specific
probability function similarly to Markov chains on a directed graph. That is, given a
graph and a departing node, the walker choose stochastically a neighbor of its cur-
rent node and move to this node. Then, the process continues through several time
steps and creates a sequence of nodes called random walk. The probability that the
walker chooses a neighbor for its next step does not depend on the past steps but
only on its current position on the graph. This property is referred as the memori-
lessness of the process.

We define the transition probability of a random walker going from node i to
node j in an undirected and unweighted graph, based on the above notations:

pij =
wij

wi
=

wij

∑k∈V wik
. (2.3)

The possibility of going from a node i to another node is the portion of its weight
to that node. For a connected graph with no singleton, di > 0 : ∀i ∈ V , pij is finite
and receives a value 0 ≤ pij ≤ 1. The transition matrix (or stochastic matrix) P that
characterizes the random walk process is then written:

Pij =

{
pij if (i,j) ∈ E ,

0 if (i,j) /∈ E .
(2.4)



2.2. Preliminary definitions 19

We can write the transition matrix P in function of adjacency matrix A and diagonal
matrix D where Dii = wi = di as following:

P = D−1A. (2.5)

An important property of a random walk process is the probability of the posi-
tion of the walker after a finite discrete time steps t = 0, 1, 2, ... Given ρi(t) repre-
senting the probability of the random walker being at node i at time step t, we have
∀i ∈ V , ρi(t) ≥ 0 and ∑i∈V ρi(t) = 1. This can be interpreted that every node in the
graph could be reached if t is sufficiently large and at a certain time step, the walker
must be somewhere in the graph. The probability of position of the walker at node
j and time t + 1 depends on the probability of position at time t and the probability
of transition to node j as following:

∀j ∈ V , ρj(t + 1) = ∑
i∈V

ρi(t)pij. (2.6)

It can be written in a matrix form that ρ(t + 1) = PTρ(t) where PT is the transpose
of transition matrix P. A simple recursive construction gives us:

ρ(t) = (PT)tρ(0), (2.7)

where ρ(0) represents the initial distribution of the random walker’s position. The
element pt

ij of matrix (PT)t quantifies the probability that, starting at a node i, a ran-
dom walker reach j in t steps. This probability of transition is time reversible, meaning
that a random walk reserves its stochastic properties in two direction towards from
i to j and backwards from j to i. Mathematically, it can be written that:

∀i, j ∈ V ,
Pt

ij

w(j)
=

Pt
ji

w(i)
. (2.8)

The probability of a random walker to go between two nodes depends only on their
weights in weighted graphs or their degrees in unweighted graphs. This can be
equivalently written in a matrix form:

PtD−1 = D−1(Pt)
T

. (2.9)

The vector of probability distribution of position of the random walker, denoted
as ρ(t) is proven to be stationary (or steady-state) when t → ∞ in connected and
aperiodic graphs, independently of the initial probability distribution of position. In
this stationary state, the probability being found at a node is proportionate to the
weight ratio between the node to the whole graph (László, 1993), (Pons and Latapy,
2005):

∀i ∈ V , limt→∞ρi(t) =
w(i)

∑k∈V wik
= π(i) (2.10)

Many approaches of community detection have been inspired from the random
walk process’s properties. Although based on different ways of formulation, many
of them search community structures by exploiting the properties of random walks
such as time reversible, stationary state or regularity of walking patterns in different
conceptualizations. Pons et al. define a similarity function between nodes in net-
works by using small steps random walks (Pons and Latapy, 2005). Then they use a
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traditional hierarchical clustering method to effectuate clustering on their networks
(Joe H. Ward, 1963) to minimize the average distance between nodes and their com-
munities. Another popular community detection method exploiting random walks
in an information theoretical approach that has been proposed by Rosvall et al. The
authors describe nodes by encoded binary digits of different lengths in a way to max-
imize the compression rate of random walks which are represented by sequences of
adjacency nodes (Rosvall and Bergstrom, 2008), (Rosvall, Axelsson, and Bergstrom,
2009). An efficient compression will encode nodes in a dense sub-graph by the same
binary header, hence discloses potential candidates for communities. Many other
approaches that exploit that random walk processes to detect dense structures in
networks could be found in (Dongen, 2000), (Francois et al., 2004), (Haijun and Rein-
hard, 2004). However, these methods struggle with large scale networks due to high
complexity of calculation time (in the order of n3 where n is the number of nodes).
The high complexity make them become less popular for many real world applica-
tions. For instant, an algorithm whose time complexity is in an order of O(n2) takes
hours for a fast personal computer to complete the calculation for a network of a
million nodes, which is not quite affordable for many real-time applications; and the
ones in an order of O(n3) requires several years to solve large-scale networks of a
million of nodes, which is quite an unreasonable time for most of the cases.

2.2.2 Statistical measures

Some concepts and statistical measures are indispensable to understand the func-
tionality and the mechanism of different learning methods on networks. They con-
sist in basis elements of a whole structure which are omnipresent in network analysis
processes. Some essential concepts, which directly concern important community
detection techniques in the literature are introduced below.

Degree distribution

As presented in the previous section, the degree di (sometimes denoted as ki) of node
i in graph G signifies the number of edges that it shares with other nodes in G. It can
be interpreted as the number of connections or the number of neighbors of a node in
its network. Mathematically, the degree of a node in an undirected graph equals the
number of non null values of the corresponding row (or column) in the adjacency
matrix. This calculation could be simplified to be the sum of row i or column i in the
adjacency matrix of the unweighted graph.

di =
n

∑
j=1

Aij =
n

∑
j=1

Aji. (2.11)

In directed networks, one could distinguish incoming degree din
i and outcoming de-

gree dout
i of a node representing the number of links pointing to node i and the num-

ber of links leaving from node i respectively. In fact, the way that nodes connect to
each other differs from one network to another and it is important to understand
connection property of networks. Normally, we characterize the connectivity of a
network by its degree distribution p(di = k) representing the probability of node i
having k neighbors in the network. The degree distribution reveals whether nodes
connect in a homogeneous or heterogeneous way and quantitatively how edges are
expanded over a network.
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One the most early pioneer theoretical study in the contemporary network sci-
ence about the degree distribution of random networks could probably be attributed
to (Erdős and Rényi, 1959) and (Gilbert, 1959). More recently, Barabási et al. intro-
duced an appealing empirical analysis of many real-world networks and disclosed a
frequently observed property of scale-free degree distribution according to which the
authors consider to be a consequence of self-organizing phenomena in the develop-
ment of networks (Barabási and Albert, 1999). The finding eventually attracts many
attentions in the research community. A detail technical discussion about popular
probability functions, including power-laws, Pareto distributions (Pareto, 1964), Zipf’s
law (Zipf, 1949) which are frequently found in degree distributions of many real
world networks, is reviewed meticulously in (Newman, 2005) and (Clauset, Rohilla
Shalizi, and Newman, 2009).

In the network science community, many efforts have been given in the recent
years to model network degree distribution in order to characterize the nature of
real world systems and to describe mechanisms that are responsible for their for-
mation. While bell-shaped distribution such as Gaussian gained a great success to
describe many random processes in nature, they are not very compatible to explain
phenomena in network connectivity patterns. Imagine the number of links point to
a web site, the number of citations to a scientific paper, the number of interactions
of a protein or a gene, etc. they are not distributed massively around their average
values in general such as the distribution of noise in signals or height of humans.
The common point that characterizes their connectivity is the profusion of connec-
tions in some few individuals in the expense of a small number of connections for
the majority of individuals (Faloutsos, Faloutsos, and Faloutsos, 1999), (Barabási and
Albert, 1999). In many real world networks, if we plot the degree distribution by a
histogram, it will be highly right-skewed, which means the bulk of the distribution is
found mainly in the small values range and there are only a small number of high
degree nodes exhibiting in a long tail on the right of the histogram. It is to say, there
is a high dynamic in the probability variation from small degrees to large degrees.
Interestingly, if we illustrate the histogram in a logarithm scale in the horizontal and
vertical axes, the distribution becomes quite a straight line. This means the distribu-
tion pk that node i has k neighbors can be estimated to follow a linear relation in a
logarithm scale, which allows us to write:

log(pk) = −αlog(k) + c, (2.12)

where α and c are constants. If we take an exponential of both sides, this relation can
be written equivalently:

pk = Ck−α, (2.13)

where C = ec such that, ∑
∞
k=1 pk = 1. The degree sequence in this case is said

to follow a power-law distribution since the probability of a node having k neigh-
bors degrades polynomially in function of k. The α constant is often call power-law
exponent or power law coefficient, which is estimated to vary normally between
2 ≤ α ≤ 3 in many real world networks but sometimes networks with α > 1 or α < 4
are found (Dorogovtsev and Mendes, 2002), (Newman, 2003). Some authors use the
term heavy-tailed or fat-tailed distributions to generalize these particular degree dis-
tribution decaying polynomially instead of exponentially as the degree k → ∞ and
hence having unbounded variances (Mary, Leman, and Christos, 2011).

Figure 2.5 illustrates this idea of degree distribution which characterizes a large
number of real world networks. Concretely, Figure 2.5(a) depicts the degree proba-
bility distribution in Amazon network containing products that are frequently bought
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FIGURE 2.5: Degree distribution (left column) and degree cumula-
tive distribution (right column) of some popular networks. From top
to bottom: (a,b) Network of products that have been bought on a
same cart in Amazon online commercial platform, (c,d) The network
of connection between CAIDA Autonomous Systems recored in 2004,
(e,f) Exchanges of around half million emails between different users
in Enron company, (e,f) Live journal online friendship blogging com-

munity where users form groups and connect to each other.
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together on Amazon7 commercial website. The distribution shows are straight line
in a logarithm scale with several dwindled samples on the right-hand side corre-
sponding to high degree nodes (all distribution functions on the left column). This
noisy phenomenon is due to the small number of large-degree nodes which cre-
ates a fluctuation in the distribution on the tail. The estimation of power-law fitting
could be erroneous, especially on small networks. Using logarithmic binning tech-
nique with incremental intervals could palliate this problem and reduce statistical
errors, however unlikely to be used due to the context dependent that requires fur-
ther inspections for adapted intervals. Instead, the cumulative distribution function is
employed to delineate the degree sequence. Such that, the probability Pk that a node
has k or more connections can be calculate:

Pk =
∞

∑
k

pk =
C

α− 1
k−(α−1), (2.14)

where the exponent α > 1. Hence, the cumulative distribution function Pk also fol-
lows a power law, but with a smaller exponent α− 1. One could easily deduce the
original coefficient by estimating the slope of Pk, which is 1 unit shallower. The cu-
mulative distribution of the above mentioned networks are illustrated in the right
column of Figure 2.5 with a much smoother quality. Nevertheless, one could un-
doubtedly recognize that the distributions do not follow the power-law on the whole
ranges of degree. In many cases, they are just well fitted for high-degree enough
nodes k > kmin such as shown in Figure 2.5(h) of the Live Journal network where
the law is only becoming well suited from kmin ≈ 100. Sometimes, the distribution
reassembles power law over a range of smaller degrees and decays faster for higher
degrees as shown in Figure 2.5(f). This is considered as an exponential cutoff by
some authors (González, Hidalgo, and Barabási, 2008), (Clauset, Rohilla Shalizi, and
Newman, 2009) who model the distribution by adding an exponential term:

pk = Ce
−k
K k−α, (2.15)

where e
−k
K is the exponential cutoff. Studying the degree distribution of a network

reveals a lot of insight about it. The power law distribution implies that there are a
lot of hubs or connectors that attract a large fraction of nodes in their neighborhood
whether the majority of nodes just have a few neighbors. This characteristic engen-
ders many interesting properties that will be discussed more in the later sections.

Local clustering

Another important structural feature of networks that are widely studied, especially
in the context of social networks, is clustering coefficient. It reflect the likelihood of
occurring an edge between two incident nodes of any arbitrary node in a network.
In a friendship network for example, a high clustering coefficient means people who
have a mutual friend is more likely to be friends than two randomly chosen people.
It is not clear when and where the concept was first used to study networks, neither
why the clustering coefficient are named in such a way since it is not directly related
to network clustering problem. However, according to (Newman, 2010), the term
was probably first proposed by (Watts and Strogatz, 1998), (Watts, 1999) but similar
concepts have been used before to analyze a node property in networks called struc-
tural hole (Burt, 1992) reflecting the opposite idea, which is the missing links between

7https://www.amazon.com/
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FIGURE 2.6: The average local clustering coefficient of the above
presented networks. From top to bottom, left to right: (a) Net-
work of products that have been bought on a same cart in Ama-
zon online commercial platform, (b) The network of connection be-
tween CAIDA Autonomous Systems recored in 2004, (c) Exchanges
of around half million emails between different users in Enron com-
pany, (d) Live journal online friendship blogging community where

users form groups and connect to each other.

neighbors of a node. Since the first appearance, there are many derived formulas to
demonstrate different versions of clustering coefficient (Barrat et al., 2004), (Mar-
cus, 2008), which are sometimes very distinguishable. Nevertheless, the most well-
known and used version of local clustering Ci of a node i is expressed as (Watts and
Strogatz, 1998):

Ci =
Number of triangles connected to node i
Number of pairs of neighbors of node i

(2.16)

It quantifies the fraction between the number of connected pairs of neighbors of node
i and the total number of pairs, meaning the average possibility that two friends of i
are also friends of one another. In case that a node have zero or only one neighbor, Ci
can be defined as 0 or 1 according to the specific context and by definition 0 ≤ Ci ≤ 1.

Figure 2.6 illustrate the average local clustering coefficient of nodes in the 4 pre-
viously mentioned networks in function of their node degrees in the networks. As
we can easily observe, the general trend of local clustering is quite clear: the higher
the degree of a node, the lower the possibility that its neighbors are connected. In
fact, according to the context, different local values will be expected. For example,
to evaluate whether a node is a high connector of information flow in a network, a
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low local clustering coefficient would be expected since a low value means most of
its neighbors must go through it in order to to propagate information between each
other. On the other hand, in the context of traffic circulation where a node repre-
sents a city and an edge represents a road, a high local clustering coefficient of a
city implies a good signal since there are several alternative itineraries between its
surroundings. The local clustering concept shows a close relation with between-
ness centrality (Burt, 1992), which will be introduced in the next section, but much
more simpler to calculate. Therefore it is sometimes used to replace the betweenness
measure to reduce time complexity, especially in large-scale networks. Some re-
searches show that the local clustering of nodes in function of their degrees in some
networks such as the Internet, words co-occurrence networks, urban streets system
could be estimated to follow a scaling law distribution: C(k) ≈ k−0.75 (Vázquez,
Pastor-Satorras, and Vespignani, 2002) or C(k) ≈ k−1 (Erzsébet and Albert-László,
2003) and between C(k) ≈ k−1.26 and k−0.5 (Porta, Crucitti, and Latora, 2006).

In some cases, it is preferable to analyze local clustering on a network level. It
can be calculated as following (Watts and Strogatz, 1998):

C(G) = 1
n ∑

i∈G
Ci (2.17)

In many real-world networks, this coefficient is often found in the range between
0.1 and 0.9. However, as can be seen in the previous section about degree distribu-
tion, there are normally an enormous number of small degree nodes in real-world
networks. Further more, it can been seen in Figure 2.6 that there are many differ-
ences between the local clustering coefficient of small degree and large degree nodes.
The coefficient given by Equation (2.17) will be highly dominated by low connected
nodes. Hence, another definition of global clustering (Barrat and Weigt, 2000), (Bar-
rat et al., 2004) are sometimes preferable:

CBW(G) = Number of closed paths of length two
Number of paths of length two

(2.18)

This coefficient is usually used to evaluate characteristics of small-world networks
and community structure in networks, which will be discussed in more details under
the name Clustering Coefficient (CCF) in later sessions.

Node centrality

Social influence is becoming a very fashionable subject of discussion in recent years
from static network to streaming network contexts (Matthew, 2008), (Flaviano et al.,
2016), (Subbian, Aggarwal, and Srivastava, 2016) and are penetrating a multidisci-
plinary playground gathering economics, viral marketing, management, etc. The
study of social structures, information diffusion, customer behaviors are closely re-
lated using network approaches under the assumption that people tend to follow
the behaviors of their friends. Among available techniques, the analyzing of node
centrality in networks contributes a principle role in these fields of study to evaluate
the impact of each individual to different collective phenomena. Depending on the
context, there are several variations of centrality metrics that can be used to reflect
the desired concept. The most commonly discussed centrality metrics in the liter-
ature that could be cited consist in degree centrality or simply degree (presented in
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Section 2.2.1) closeness centrality (Sabidussi, 1966), Katz centrality (Katz, 1953), eigen-
vector centrality (Newman, 2008) and betweenness centrality (Freeman, 1977; Newman
and Girvan, 2004).

Specifically, the degree centrality of a vertex is simply the number of edges at-
tached to it, it is often a highly effective indicator to evaluate the influence of a node
in its network. For instance, a person who has many friends in social networks
probably gains more social influence than a low connected person. Eigenvector cen-
trality is, on the other hand, a little bit more sophisticated than degree centrality
since it takes into account the associated centrality of neighboring nodes of the node
under consideration. Taking the famous Pagerank algorithm (Page et al., 1998) of
Google search engine as an example, its very first version considers a website pop-
ularity based on not only the number of its hyperlinks from other websites but also
on the their qualities. Imagine the notoriety of a website would not increase in the
same way if it receives a citation from a famous review and from a personal blog.
Katz centrality derives degree centrality in a slightly different way, it weights the
influences of other nodes to the centrality of the node of interest in function of their
geodesic distances. A direct neighbor will contribute an amount of β to Katz central-
ity but a neighbor of a neighbor will contribute only β2. In this way, longer walks
will be heavily penalized in the calculation of Katz centrality.

The closeness centrality and betweenness centrality are both based on the con-
cept of path in network. While closeness centrality reflects the notion of geodesic
distance, i.e. shortest path between two vertices, the higher the closeness centrality
score of a vertex, the lower the average geodesic distance from it to the other ver-
tices of the graph. This notion is close to the characteristic path length of networks
described by Equation (2.2) in the previous section, but in a node-scale instead of
network-scale. Betweenness centrality of a vertex i measures the fraction of short-
est paths between every pair of vertices in the network that traverse i. It represents
somehow an influence in the sense of information flow between individuals based
on the hypothesis that information flows along geodesic path and every vertex is
equally seen as information source. Besides, local clustering presented in the pre-
vious section can also considered as a kind of node centrality in networks, which
reflects the transitive central notion.

2.2.3 Generative network models

The previous sections introduced a summarized picture of some essential charac-
teristics of real-world networks that have been discovered in the contemporary net-
work science community. The understanding of these notions is the first step, if not
the most important stages in the analysis of networks. It helps to construct appro-
priate exploratory processes, to choose most suitable metrics for concrete cases, to
interpret obtained results and to get insight into hidden information in networks.
Due to the explosion of technological advances in the age of information, a plethora
of data are becoming available for researching different learning methods. However,
real world networks contain uncontrolled properties for the evaluation of the per-
formance of different methods, and hence restrict independent experiments. Many
network models and benchmarks are invented under some specific hypotheses to
circumvent this obstacle and allow analysts to ensure testing conditions. The most
well-known models that are worth to be mentioned are Erdős-Rényi (ER) model to
create random networks, Watts-Strogatz (WS) model to create small world networks
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ER model (a) BA model (b) WS model (c)

ER model (d) BA model (e) WS model (f)

FIGURE 2.7: Some network instances created by different network
models with n = 60 nodes each one. Networks are illustrated in
a random layout in the first row and in Fruchterman-Reingold lay-
out (Fruchterman and Reingold, 1991) in the second row. Figure (a)
and (d) in the first column represent a random network created by
Erdős-Rényi model with a probability p = 0.05, that two nodes are
connected; (b) and (e) in the second column represents a scale free net-
work created by Barabási-Albert model where each new node connect
to two other nodes when it comes to the network, hence the average
degree 〈k〉 = 4; (c) and (f) in the third column represents a small world
network created by Watts-Strogatz model where each node is con-
nected to 〈k〉 = 4 closest neighbors and the rewiring probability that

a connection are moved randomly is p = 0.1

and Barabási-Albert (BA) model to create scale-free networks. These generative net-
work models produce networks with some expected structural properties to under-
stand the behaviors of real world networks and different analysis methods. In the
context of community detection, sometimes one needs additional information about
modular structure of networks under consideration as a reference to evaluate his
or her method. In this occasion intervened the Girvan-Newman (GN) benchmark
and the Lancichinetti–Fortunato–Radicchi (LFR) benchmark which produces networks
accompanied with associated ground truth community structure to response to this
demand.

Figure 2.7(a-c) illustrates some networks produced by these models in two dif-
ferent layouts. With similar network configurations (number of nodes, average de-
gree), it is difficult to distinguish the differences of network’s structure in a random
layout, even when the degree distribution in these networks and the responsible



28 Chapter 2. Complex network and graph

mechanisms for their creation are quite discernible. The same networks are illus-
trated in a different layout in Figure 2.7(d-f), it is easier to interpret the fundamental
organizing principles of network connectivity behavior. In a random network, there
is a regularity in the connectivity between nodes since edges are constructed ran-
domly between each pair of nodes. In scale free networks, there are several hubs
(node connectors) with high degrees that reach a large portion of nodes in their net-
works. In small world networks, nodes create compact and tight-knit connections
in their local neighborhoods with a small fraction of remote connections that helps
to reduce significantly network’s diameter with comparison to a random network.
More details about these generative network models will be presented in Section
5.1.5 in order to describe different topologies of community structure in networks.

It would require a much more detailed synthesis to address all important no-
tions of complex network and graph theory relating to the problem of community
detection. We presented in this chapter some of the most important and compulsory
ones, which are well presented and utilized in community detection algorithms. In
the following chapter, we are introducing more technical contents relating to com-
munity structures as well as well-known and state-of-the-art detection methods that
are analyzed in this thesis.
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Chapter 3

Community structure and detection
methods

In this chapter, Section 3.1 is dedicated to a brief introduction of some essential no-
tions of community detection. It is followed by Section 3.2 being a technical intro-
duction of some highlight community detection methods that will be analyzed in
the next chapters. Readers who are familiar with community detection methods in
the literature can skip this section and go directly to a brief summary presented in
Section 3.3.

3.1 Community structure and challenges

Due to different natural or artificial mechanisms that regulate the complex connec-
tivity of nodes in networks, their organizations are generally not random nor regu-
lar but dissimulate highly inhomogeneity and some special patterns. These mecha-
nisms provoke some typical properties of real world networks that are not exposed
in random networks such as: power law degree distribution, small characteristic
path length and recently widely studied community structure. In fact, in many net-
works, nodes are not connected to each other equally with an invariant probability,
but they have a tendency to connect more frequently with some specific ones.

For example, in social networks peoples are often connected to their friends or
acquaintances, their geographical neighbors at home or at work, more than an ar-
bitrary people that they met. This preference connectivity phenomena give rise to
the occurrence of groups of densely connected nodes in networks called commu-
nities (Wasserman, 1994), (Girvan and Newman, 2002). On the Internet, websites
are more likely to refer each other in the same topic through hyper-links. For in-
stance, a cooking blog might contain more connections to other cooking blogs, fo-
rums, magazines than to political on-line newspapers or scientific discovery chan-
nels. In protein-protein interaction (PPI) networks, proteins interact very frequently
if they belong to the same functional blocks, i.e. proteins having similar biological
functions, which are expected to be involved in the similar processes. The detec-
tion of these groups in PPI networks are important for the prediction of cancer and
metastasis. However, such groups of content-similar blogs, functional biological
molecules or real-life friends in social networks are not that explicit. However, if we
are able to construct networks to describe complex systems in a way that there are
much more connections between nodes insides real modules, then the identification
of these modules could be solved through the detection of dense subgraphs.
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3.1.1 Problem identification

In network science, community detection, sometimes called graph clustering1 is one of
fundamental challenges to discover the structure of networks in a mesoscopic level.
However, it is an ill-defined problem such that there exists no universal definition
or closed form formula of what kind of objects one should be looking for (Fortunato
and Hric, 2016), and consequently there is ambiguity on what should be used as
a golden standard to assess the quality of a community and the performance of a
detection algorithm.

The most frequently found definition of community in network science literature
is derived from the mechanism of connection preference. It implies that a community
is a group of nodes (a subgraph) in a graph where there must be many edges (denser) connect-
ing them together than edges connecting the community with the rest of the graph (Radicchi
et al., 2004), (Fortunato, 2010). Newman defines a community as a "group of vertices
with a higher-than-average density of edges connecting them" (Newman, 2006). Depend-
ing on the context, a community may be called a cluster, a module, a class or a modular
group. This definition is the most basic that sets the fundamental requirement for
most of its derivative definitions. Many different variations of community could be
found in (Wasserman, 1994), for instance LS− set, which is a set of nodes in a net-
work such that each of its proper subsets has more ties to its complement within
the set than outside; or k− core, which is a subgraph in which each node is adjacent
to at least a minimum number k of the other nodes in the subgraph. However, in
recent developments of community detection algorithms, there is no consensus of
the quantity of edges in reality that could be considered as "many", communities are
just algorithmically defined, i.e. they are final products of the algorithm without any
precise a priori definition (Fortunato, 2010).

Community detection definition

Given a network that could be presented by a graph G = (V , E), a community de-
tection algorithm task is to find a partition P = {C1, C2, ..., Cp} of nodes V in or-
der to satisfy the basis condition of community structure stated above. This means
that there must be much more edges inside communities than edges between com-
munities. The quality of detected communities is often evaluated through a quality
function2 Q, which quantifies the fitness of discovered groups in function of a spe-
cific aspect. Many quality functions exist in the literature, but there is still not a
consensus on which is the best one. Nevertheless, the most commonly used quality
function is the modularity (Newman and Girvan, 2004) whose formula will be first
introduced in Section 3.2.2.

When ∀i 6= j, Ci ∩ Cj = ∅, we say that the communities are disjointed, otherwise
they are called overlapped. Normally, community detection methods attribute at
least one community for each node of the network, which means

⋃p
i=1 Ci = V . There

are recently some community discovering methods that try to reformulate the prob-
lem by identifying only local communities for a subset of nodes in networks or just

1The concept of graph clustering might refer to two different meanings existing in the literature.
The first one implies a categorization of many graphs into different sets within which graphs share a
common similar feature. The second one relates to the problem of partitioning nodes of a graph into
densely connected groups. Here we means graph clustering in the latter case.

2Quality function can be sometimes called goodness function, objective function, fitness function
or benefit function according to the context. While goodness/quality function are often used for the
evaluation of detected communities, objective/fitness function are related to an estimation or an opti-
mization process.
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(A) Random layout (B) Random order

(C) Force-directed layout (Fruchterman and
Reingold, 1991)

(D) Ordered by group affiliation

FIGURE 3.1: (a) A network of 36 nodes, 217 edges with hidden
densely connected nodes. Nodes with the same shape are supposed
to be connected more frequently than two randomly chosen nodes.
(b) The associated adjacency matrix of the network when its nodes
are numerated randomly without knowing its clustering structure.
Black pixels represent non-null values and gray pixels represent null
values. (c) The network are plotted to clarify a clustering structure
whose nodes are grouped in 3 clusters (communities) and are illus-
trated in dark-background colors, intra-community edges are drawn
more bold than inter-community edges. (d) The reordered adjacency
matrix of the network whose indexes are enumerated in a way that

nodes having the same shape are placed next to each other.
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significant communities that have good qualities. However, the methods employing
this approach are not focused on this thesis.

In order to illustrate the task of community detection in networks, we create a
network with a strong community structure embedded inside and later use an al-
gorithm to find it. Figure 3.1(a) illustrates an artificial network whose nodes are
visualized in a random layout as we do not take into consideration the community
structure embedded. By this representation, we do not have a lot of information
about how nodes interact. It is difficult to recognize that we actually configure on
purpose to make nodes having the same shape (triangle, circle, square) more con-
nected to each other than between nodes of different shapes. Figure 3.1(b) on the
right-hand side represents the associated adjacency matrix of the network with a
random numeration where black pixels indicate edges between associated rows and
columns. Once again, the adjacency matrix is not directly interpretable and does not
convey connection patterns of nodes in the network.

Figure 3.1(c) presents the same network as shown in Figure 3.1(a) but we applied
an community detection algorithm and it turns out that there are probably three
different densely connected groups which are highlighted in three different colored
background. On the right-hand side, the columns and rows of the adjacency matrix
are reshuffled in such an order that nodes belonging to the same group are placed
next to each other. Since there are more edges inside each group called internal edges
than edges that across between two groups called external edges, the adjacency matrix
expose a diagonal block form. This block form shows the connection likelihood
between nodes in the network and is sometimes chosen as visualization technique
to demonstrate community structure. Finally, the role of a community detection
algorithm can be globally resumed as to find an arrangement of nodes in a adjacency
matrix to make emerge a diagonal block form.

However there are more constraints in reality, which are sometimes not explicitly
expressed, than that appeared in the announcement of the problem. If one only look
for a partition of graph that maximize the number of internal edges and minimize
the number of external edges, then the graph itself can be considered as a big com-
munity and there is none external connection. Another solution is to let the node
having the smallest degree into one community, and all other nodes into another
community. This solution could also maximize the ratio between external and inter-
nal edges. However, these monotonous solutions seem not be a seductive one for
most (if not to say all) analysts who consider using a method to detect communi-
ties. In fact, it is preferable to cluster a network into at least 2 relatively similar size
communities or more3 (Newman, 2010). It means that somehow, the relative size
of communities with respect to the network is important without having explicitly
been announced. Besides, there are many other criteria that could be mentioned
such as community complete mutuality, reachability, vertex degree distribution and
the comparison of internal versus external cohesion (Wasserman, 1994), (Fortunato,
2010). There exists a subtle compromise between adding new vertices as well as
their edges into a community and conserving the common property that defines the
group. In fact, different community detection methods usually have different ways
to divide a network into multiple subsets of nodes. There are many reasons that
could lead to these contentions between detection methods:

3Community detection is identified in the research community as the search for natural groups in
networks without a given number of clusters. When the number and the size of clusters are specified,
the problem is often referred as graph partitioning or graph bisection for a division into only two clusters.
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• Different algorithms may have different notions of community meaning that
what an algorithm finds in a network may strongly depend on the assumptions
it makes about community structure.

• When two algorithms define the same concept of community, it may also math-
ematically and algorithmically be formalized in different ways (the same ob-
jective but different objective functions) and hence lead us to different results.

• Even when two algorithms have exactly the same objective function, the algo-
rithmic mechanism they employ to find communities also decides what they
are going to find, especially in heuristic searching approaches.

• Initial configuration in also another important factor that affects the final result
of an algorithm, many community detection methods are not deterministic.

• Each method may include a consideration between obtaining optimized re-
sults in its sense and providing a high-performance method (in terms of cal-
culation time, memory consumption, etc.). This trade-off may be considered
differently across the methods.

• Some algorithms are variable in function of input data and will prove more or
less performant on some kinds of inputs than on others.

• Variations due to implementation factors could also impact the final result of
an algorithm.

• Finally, in some algorithms, there are tie-break situations where the algorithm
have to chose randomly without any factor related their final objectives. It may
also affect heavily the result that one would get if the tie-break problems have
been resolved in a different way.

A computational challenge

Searching for a good partition among all possible ways to divide a network into dif-
ferent parts is computationally complex, even for a small network in a graph bisec-
tion or graph partitioning problem - the simplest scenarios of community detection.
In fact, an exhaustive search for every partition in a network is prohibitively expen-
sive in terms of computation time. There is ( n

n1
) = ( n

n2
) = n!

n1!n2! possible divisions of
a graph of n vertices into two groups of n1 and n2 vertices, given that n1 + n2 = n.
By applying Stirling’s approximative formula n! ≈
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(3.1)

When one needs to have two equal size communities, this number becomes 2n+1√
2πn

.
It means for a very small network such as the Zachary karate network (Zachary,
1977) consisting of 34 nodes, one have approximately in the order of billions of pos-
sible ways to divide 34 nodes into two equal-sized groups of 17 nodes. The amount
of time needed for this simple case of graph bisection for an exhaustive check grows
exponentially with the size of the network. In fact, finding optimal solutions for
many objective functions in community detection is at least a NP-hard problem. In
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other words, finding an optimal solution takes a non-polynomial time and even ver-
ifying whether a given solution is an optimal one according to an objective function
could also require a non-polynomial time.

One of the earliest solution to graph partitioning is the Kernghan-Lin algorithm
(Kernighan and Lin, 1970), which was inspired from the problem of distributing
electronic circuits onto boards in minimizing the number of inter-board conductive
wires with a constraint on the limit number of elements on each board. The algo-
rithm greedily optimizes an objective function R representing the difference between
the number of intra-board wires and the number of inter-board wires. Given an ini-
tial partition, equal-sized subsets of elements are swapped between two boards to
obtain a maximal increase of R. The partition with the largest value of R is chosen
after a limited number of swaps. The performance of the algorithm depends heavily
on the initial configuration of the partition and can be pretty poor if one does not
have additional information on the attribution of nodes (Fortunato, 2010). More-
over, the runtime complexity of the algorithm is O(n3), which is not scalable for
large networks. To make it even more critical, finding an exact partition to minimize
the number of edges traversing clusters could be solved in O(nc2

) time, where c de-
notes the number of clusters (Goldschmidt and Hochbaum, 1988). Clearly, these ap-
proaches are not quite scalable for the problem of community detection. Since then,
a plethora of methods have been proposed to resolve the problem. Many heuristic al-
gorithms have been invented to estimate relatively good solutions for some different
objective functions related to the quality of communities. These approximation algo-
rithms are commonly non-deterministic, which means they deliver different solutions
for the same input network, with different initial conditions or parameters. Among
them, some notable and widely used techniques will be presented in Section 3.2.
In many cases, a tolerant bound condition related to the goodness of the solution
could be implicitly or explicitly required in order to determine the stopping condi-
tion of the algorithms. Regulating stopping condition in approximation algorithms
can be viewed as compromising between getting an optimal quality and reducing
computational complexity.

3.1.2 Vertex similarity

In traditional data clustering, a widely used approach to cluster different individu-
als into an unknown numbers of groups is based on the notion of similarity4. This
measure is normally a function of different features selected meticulously to best
characterize individuals in a way that reflects how we want data points to be dis-
tinguished. In graph clustering, it is also a natural approach to assume that a good
community consists of vertices which are similar to each other. Equivalently with
traditional data clustering, one can compute the similarity between each pair of ver-
tices in a graph with respect to some proclivity properties based on local, global
characteristics or both. Depending on similarity function, vertices could be similar
even they are not connected in their network. Pairwise similarity scores are then
used to attribute nodes into communities using conventional clustering methods
such as hierarchical clustering, partitional clustering.

The simplest technique to define vertex similarity is probably to calculate the
number of common neighbors that two vertices have. The more neighbors two ver-
tices share, the more similar they are. In an undirected and unweighted network,

4Depending on the context, different authors may reflect this notion through an inverse notion of
dissimilarity when the differences between individuals need to be highlighted or a notion of proximity
or distance when the spatial aspect is emphasized.
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the distance dn(i, j) measuring the number of common neighbors between node i
and node j can be calculated as:

dn(i, j) = ∑
k

Aik Akj (3.2)

However, this simple definition of similarity seems not be a good measure of sim-
ilarity, especially for small-degree nodes which occupy a large portion of networks.
Additionally, the quality of this measure also depends on the connectivity of the
network in question. For example, two people having five mutual friends seems not
be considered as very "similar", however two cities sharing five common highways
could be very similar in the functionality of a transportation system. In fact, sim-
ply counting the number of common neighbors will neglect the relative information
about node connectivity. Having one common neighbor with a one-degree node
would not be comparable to having one common neighbor with a one hundred-
degree node.

An alternative solution that takes into account the number of total degree of each
node into consideration is the Jaccard distance:

dJaccard(i, j) =
∑k Aik Akj

∑k Aik + ∑k Akj
(3.3)

Another metric that could palliate the problem by normalizing the number of
common neighbors is the cosine similarity:

dcosine(i, j) =
Ai· · Aj·

|Ai·||Aj·|
=

∑k Aik Akj√
∑k A2

ik

√
∑k A2

kj

(3.4)

Where Ai· is the ith row of the associated adjacency matrix and · is the dot product
of two vectors. In an unweighted and simple network, A2

ij = Aij since Aij contains
only binary values, ∑k A2

ik = di, where di is the degree of node i, the cosine similarity
can be written as:

dcosine(i, j) =
∑k Aik Akj√

didj
=

dn(i, j)√
didj

(3.5)

Simply said, the distance between two nodes is normalized by the geometric mean
of their degrees. Another way to normalize the distance dn(i, j) is to compare this
amount with the expected value of number of common neighbors that the nodes
would take if nodes choose their neighbors randomly. In this way, we have the
Pearson similarity5 describing a notion of structural equivalence between two nodes in
their network, which can be written as:

dPearson(i, j) =
∑k(Aik − 〈Ai〉)(Ajk − 〈Aj〉)

√
∑k(Aik − 〈Ai〉)2

√
∑k(Ajk − 〈Aj〉)2

(3.6)

Where 〈Ai〉 = 1
n ∑k Aik is the expected degree of node i in the network. The Pearson

distance measure between two node i, j varies in the range −1 ≤ dPearson(i, j) ≤ 1. A
positive value means two nodes have more common neighbors than expected and
a negative value indicates that they have fewer common neighbors than expected.
The Pearson coefficient is widely used as a measure of similarity. Another widely
used similarity metric in this group is proposed by (Leicht, Holme, and Newman,

5This similarity function is often referred as Pearson correlation coefficient
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2006), who propose that two vertices are similar if their immediate neighbors in the
networks are also similar.

A traditional technique to define a similarity function between pairs of vertices
in to embed vertices into an multi-dimensional Euclidean space. It means that each
vertex is assigned to a position described by a coordinate system. Then one could use
different well-known norms to deduce the distance of these vertices. Supposing that
two vertices i and j are embedded in an Euclidean space with different coordinates
I = (i1, i2, ..., i f ) and J = (j1, j2, ..., j f ), one could use one of many different Lm norms
to calculate the distance between two vertices:

• Manhattan distance

dManhattan(i, j) =
f

∑
k=1
|ik − jk| (3.7)

• Euclidean distance

dEuclidean(i, j) =

(
f

∑
k=1

(ik − jk)
2

) 1
2

(3.8)

• Chebyshev distance

dChebyshev(i, j) = lim
m→∞

(
f

∑
k=1

(ik − jk)
m

) 1
m

= max
1≤k≤ f

|ik − jk| (3.9)

• Canberra distance

dCanberra(i, j) =
f

∑
k=1

|ik − jk|
|ik|+ |jk|

(3.10)

These distances are often used in traditional data clustering to determine the
similarity of different data points that need to be clustered. In the context of graph
clustering, nodes in networks could be described by several features often called
attributes. For example, in social networks where users are represented by nodes,
they could be described by additional information such as: name, age, occupation,
geographical position, etc. as depicted in Figure 2.2. A simple and straightforward
approach to embed nodes into a normed vector space is to associate each node’s
attribute (as called feature) to a dimension in the Euclidean space in case that they
are described by quantitative variables. In this way, each dimension in the space
describe a physical property that characterize and distinguish nodes among them.

In order to calculate other measures of structural equivalence of nodes using
these normed distances in a vector space, one could embed each node i into a n
dimensional space by assigning a value of wij to the j-th dimension. The value wij is
the weight of edges between node i and node j. In this way, each node is associated
to a dimension and the position of a node in a dimension equals to the strength
of its connection to the node associated to that dimension6. The normed distances
previously presented could be rewritten as following:

6The position of a node in its associated dimension are 0 for simple graphs or can be defined as the
number of self-loops
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• Manhattan distance

dManhattan(i, j) =
n

∑
k=1
|Aik − Ajk| (3.11)

• Euclidean distance

dEuclidean(i, j) =

(
n

∑
k=1

(Aik − Ajk)
2

) 1
2

(3.12)

• Chebyshev distance

dChebyshev(i, j) = lim
m→∞

(
n

∑
k=1

(Aik − Ajk)
m

) 1
m

= max
1≤k≤n

|Aik − Ajk| (3.13)

• Canberra distance

dCanberra(i, j) =
n

∑
k=1

|Aik − Ajk|
|Aik|+ |Ajk|

(3.14)

Besides, there are some other ways to define vertex similarity using the notion of
paths, geodesic distance and walks between vertices. These metrics reflect the dynamic
aspect of flows when we consider a network as a transporting medium where a ver-
tex represents an individual and an edge represents a communication channel. This
is a quite popular context when analyzing dynamical systems such as: information
propagation on social networks, vehicle circulation in transport systems, communi-
cation between biological modules in living things, etc. One of the earliest way to de-
fine vertex similarity using this approach is to count the number of edge-dependent
(or vertex-independent) paths7 between them. This similarity function is inspired
from the max-flow min-cut theorem (Elias, Feinstein, and Shannon, 1956) where each
independent path between two vertices is considered to be a channel with limited
capacity to convey a flow between a source and a destination. However, this simi-
larity notion does not take into account the length of each path between vertices. In
other words, a direct connection between two vertices are considered equally with
a long path having the same extremities, which is sometimes an inappropriate way
to model the problem. Consequently, some measures weight paths between pairs of
distant vertices to decrease the influence of long paths to the similarity measure, i.e.
vertices which are connected by many short paths will be more similar to each other
than vertices which are connected by distant paths (Estrada, Higham, and Hatano,
2009). For instance, one could use an exponential amount of αl to penalize paths of
length l between two vertices (Katz, 1953), where 0 < α < 1 has a small value. The
pairwise similarity values can be represented in a matrix form:

W =
∞

∑
l=0

(αA)l = [I − αA]−1 (3.15)

Some probabilistic approaches propose to measure vertex pairwise distances based
on the probability of a random walker to move between two points in a limited num-
ber of steps (Harel and Koren, 2001), (Nadler et al., 2006). Among the metrics in

7Two paths are called edge-independent (or vertex-independent) if they do not share any common
edge (or vertex) in their way.
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this group, the most well-known measure distance in the context of community de-
tection could probably attributed to (Pons and Latapy, 2005), where the authors use
short-step (usually from 3 to 5 steps) random walks to define a distance between
every reachable pair of vertices in networks8 in order to detect communities in very
large networks. Some other popular notions of dynamic distance is hitting time and
commute time (Fouss et al., 2007), (Von Luxburg, Radl, and Hein, 2014), which rep-
resents the average number of steps required for a random walker, starting from a
vertex, to reach the other vertex for the first time (hitting) and to come back to the
starting vertex (commute). Further information about the utilization of stochastic
processes to infer pairwise distance will be presented in later parts.

It is worth mentioning that even a plethora of vertex similarity measures exists,
each one reflects a different notion of similarity which could be totally different from
one to another. In reality, sometimes vertex similarity measures are used to deter-
mine, for instance, similar items for a given product, similar user profiles on enter-
tainment platforms, etc. Community detection is just one of possible applications,
which employs vertex similarity functions to group vertices into different groups.
However, not every similarity metric could be well fitted in this context since in
community detection, sometimes very close vertices are not necessarily expected to
belong to a same cluster. Hence, the choice of a similarity function is very subtle to
the performance of the detection method and this is still a very open subject in the
research community to determine appropriate metrics and no consensus function
are widely known to the best of our knowledge.

3.2 Community detection methods

We present in this section some popular community detection methods that have
been widely used and discussed in the literature. Note that in recent years, there are
a large number of innovative methods which are proposed to solve either generic or
specific cases. However, an empirical and exhaustive analysis of all methods would
be impractical if not to say unrealizable. In the best of our knowledge, we introduce
the most important and representative methods among several approaches for the
community detection task.

In fact, there are many possible theoretical taxonomies for community detection
methods depending on the final objective of each categorization. For instance, one
could classify methods according to differences in searching mechanisms, objective
functions, assumptions about the structure to be found, expected qualities, hypoth-
esis models, or even theoretical model employed, etc. Moreover, many methods
are not just some simple algorithms to resolve a specific problem but instead are
combinations of many different approaches in order to leverage as much as pos-
sible algorithmic power provided from each one, which makes the problem more
tricky. There is not a consensus on how different methods are similar and how they
can be classified into different families whose functionality can be resumed in some
simple words. (Porter, Onnela, and Mucha, 2009) uses centrality based, local tech-
niques, modularity optimization9, spectral clustering to describe communities in net-
works. (Fortunato, 2010), (Fortunato and Hric, 2016) group community detection

8In fact, input network must be modified to satisfy some additional probabilistic conditions in order
that the transition probability between two arbitrary vertices can be determined. Some preprocessing
steps are applied on input network to assure the functionality of the method.

9This notion we be explained according in the community detection methods and further informa-
tion could be found in Apendix A.1
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methods into traditional data clustering methods, divisive algorithms, modularity-
based methods, spectral algorithms, dynamic algorithms, statistical inferences based
methods. (Coscia, Giannotti, and Pedreschi, 2011) summaries community discov-
ering into feature distance based, internal density, bridge detection, diffusion pro-
cess, closeness based, structural pattern based, link clustering, meta clustering. In
a context of Social Media, (Papadopoulos et al., 2011) compares methods in sub-
structure detection, vertex clustering, community quality optimization, divisive and
model-based. (Bohlin et al., 2014) aggregates different approaches into three princi-
ple classes: null models, block models and flow models10. (Schaub et al., 2017) clas-
sifies methods into four perspectives: cut based, clustering internal density based,
stochastic equivalent based and dynamical based showing four different facets of
community structure.

In the following section, commonly used community detection methods are in-
troduced according different theoretical approaches including traditional data clus-
tering, removal based, modularity based, spectral partitioning, dynamic process
based and statistical inference based. The order in which some approaches are or-
ganized may relate to some historical reasons since some methods were invented to
circumvent some issues of their predecessors, to encompass an unsolved obstacle or
to improve performance. Although every theoretical taxonomy can be questionable,
this categorization is expected support the empirical analysis in the next chapters to
answer how theoretical and conceptual closeness could engender quality closeness
in practice.

3.2.1 Traditional detection methods

Before describing popular community detection methods, we introduce some pre-
liminary concepts of earlier traditional methods for detecting communities. One
will see in fact a smooth and gradual evolution of different concepts to resolve the
problem of community detection.

In the context of social network analysis, it seems to be a very natural approach
to leverage the vertex similarity information (introduced in Section 3.1.2) to detect
classes of closely related individuals. Among different techniques that can employ
vertex similarity to detect these kinds of groups, hierarchical clustering (Joe H. Ward,
1963), (Hastie, Tibshirani, and Friedman, 2009b) is probably one of the most com-
monly used. Depending on the sequential order that vertices are considered, the
mechanism of hierarchical clustering can be separated into two groups of agglomer-
ative methods and divisive methods.

Agglomerative methods

Methods of this group consider an initial configuration of a network where each
vertex belongs to its own community, i.e. there are as many communities as ver-
tices at the beginning. Then, based on a predefined pairwise similarity function (as
mentioned in Section 3.1.2), the most similar pair of vertices is aggregated into the
same community. Since two communities are merged in this step, the number of
communities is decreased by one and the process is iterated until all vertices are
grouped together. However, it is worth mentioning that from the second iteration,
one needs to define another similarity function between groups of vertices in or-
der to decide which cluster to merge in the next steps. Widely used conventional

10These models can be corresponded to the methods presented in Section 3.2.3, 3.2.5 and 3.2.6
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(A) The Zachary network where 34 vertices represents 34 members of the karate network
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(B) A hierarchical clustering on the Zachary network. From top to bottom of the dendro-
gram, there are 34 levels representing 34 different partitions. One cluster is divided into two
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The 5 groups of nodes in Figure (A) are framed into corresponding colored boxes.

FIGURE 3.2: A hierarchical clustering in the Zachary network
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FIGURE 3.3: A typical problem of agglomerative clustering meth-
ods where highly similar nodes (connected by bold edges) are
merged without their peripheral nodes, even intuitively nodes in
each dashed box are supposed to belong to the same community.
Reprinted figure from (Newman and Girvan, 2004) with permission

RNP/18/JUN/005057 c©2004 by American Physical Society.

methods answering this call consist in single linkage clustering, average linkage cluster-
ing and complete linkage clustering, which calculate the distance between two clusters
based on the closest distance, the average of all distances and the largest distance
of every pair between two clusters respectively. In bioinformatics, another method
called neighbor-joining method (Saitou and Nei, 1987) is used to locate a new central
vertex representing each couple of vertices after their aggregation. The central ver-
tices are designated to represent their groups of vertices in each iteration. The result
of a hierarchical clustering, hence agglomerative clustering, is often delineated in
form of a dendrogram as illustrated in Figure 3.2(B) especially by sociologists. It is a
special form of tree with nested nodes or groups of nodes in different levels. Each
level corresponds to an iteration in the process described above. Notwithstanding
the fact that dendrogram contains a lot of information of a network structure, it is
only convenient for small networks and is rarely used to evaluate community detec-
tion performance.

Divisive methods

Agglomerative methods shows an essential default when applied to the context of
community detection due to its mechanism. In fact, it merges very high similar ver-
tices in the early iterations and normally detects efficiently the cores of communities
but not the periphery parts who are loosely connected. An illustrative example of
this problem is depicted in Figure 3.3. Actually, after the cores of the two clusters
have been identified, peripheral vertices continue to be allocated. However, as cores
are reduced into single nodes, they are susceptible to be merged again before the al-
location of distant peripheral vertices. Finally, peripheral vertices are aggregated in
a quite random way without knowing their core. Moreover, the mechanism of tak-
ing only the closest element without considering the trade-off with other elements
conducts to a large quantity of errors, especially in real world networks where low
degree nodes are omnipresent.

Methods using divisive approach employ a reverse process to discover hierar-
chical clusters in networks. Instead of accumulating clusters from local areas in net-
works, they explore the network of interest from a global view with the presence
of all vertices and edges. The whole network is recurrently cut into smaller parts.
Equivalently, a divisive process can be literally translated as a top-down procedure
in the dendrogram presented in Figure 3.2b. At the beginning, least similar con-
nected couples of vertices are identified and the corresponding edges are removed
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until the network are disconnected. Then the process is repeated and disconnected
sub graphs become smaller and smaller until every node are separated. In other
words, divisive methods search for inter-community edges based on the hypothesis
that they connect low similar vertices, which is not always the case.

A common point between these two classes of methods is that they are very sen-
sitive to the definition of similarity function in use. The same hierarchical clustering
mechanism can provide totally different partitions if one modifies slightly the as-
sumption of similarity. Another reason why hierarchical clustering methods are not
directly used alone is due to the fact that they all provide groups of different parti-
tions. Hence, there must be additional quality measures to evaluate different hierar-
chical levels discovered. Such a combination will be presented in detail throughout
particular methods in the following sections.

3.2.2 Centrality removal based approach

Girvan-Newman’s method

Being a member of the divisive family, this method, on the contrary to agglomera-
tive methods, aims to find communities by removing edges progressively to discon-
nect tightly-knit groups of vertices. Firstly introduced in a former version (Girvan
and Newman, 2002) and then complemented with a more detailed version in (New-
man and Girvan, 2004), the method has exploded many research interests in the
field of community detection. One of the two elements that make the method much
more competitive in solving the problem of community detection with respect to
the other homologous methods is the utilization of edge betweenness11 instead of us-
ing conventional similarity functions. Specifically, it based on an intuition that if
there are communities in a graph who are only loosely connected by a few inter-
group edges, then shortest paths between vertices in different communities must go
along these few edges, making their edge betweenness centrality higher than those
of intra-community edges. Consequently, if one could detect and then remove these
border edges assumed having high betweenness scores, community structure will be
highlighted. The concept is illustrated in Figure 3.4 where inter-community edges
are gray. In case when there are several shortest paths going between two vertices,
the final contribution of each path for the centrality of its edges are normalized. For
example, if there are three shortest paths going between two vertices, each edge on
the three paths will be assigned an additional value of 1

3 to its total centrality score.
The divisive method of Girvan and Newman is presented in Algorithm 1, where

BETWEENNESS(G) is the calculation of edge betweenness scores of graph G pre-
sented in Algorithm 3. Summarily, in order to determinate communities, the algo-
rithm executes the following steps:

1. Calculate betweenness scores for all edges in the graph.

2. Remove the edge with the highest betweenness score.

3. Recalculate betweenness scores for all edges after the removal

4. Repeat from step 2 until no edges remain.
11The betweenness centrality of an edge is slightly different with the betweenness centrality of (Free-

man, 1977) presented in Section 2.2.2.
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FIGURE 3.4: A graph with community structure. The gray edges
that connect different communities has the highest edge betweenness
among all edges since all shortest paths between two communities
must go through them. Reprinted figure from (Girvan and Newman,

2002) with permission. c©2002 National Academy of Sciences.

Algorithm 1: Girvan-Newman’s method
Input: G = (V , E)
Output: Edge removal sequence S

1 Gπ = (V , Eπ)← G = (V , E)
2 S← empty list
3 while Eπ 6= ∅ do

4 CB[u, v]← BETWEENNESS(Gπ), ∀(u, v) ∈ Eπ

5 e = (um, vm)← max(CB[u, v])
6 Gπ(V , Eπ)← Gπ(V , Eπ − {e})
7 APPEND(S, e)
8 end

9 return S

The third step of is the second essential element that make the success of this
method that outperforms traditional hierarchal clustering algorithms. In fact, the
authors discovered that in some cases, edge betweenness centrality scores may not
distributed equally all along every inter-community edge, which makes many of
them invisible before the suppression of the most central edge. Hence, it is neces-
sary to recalculate every betweenness score after the removal of any edge. However,
this is also the action that produce a very high complexity in the calculation time
of the method, which make it less competitive to large-scale graphs, even when a
fast method are implemented to calculate betweenness centrality. This method re-
quires O(m2n) time to calculate complete community structure in worst case and is
reduced to O(n3) on a spare graph, which is quite infeasible for graphs with more
than a ten thousand of vertices even when parallel computing is applied. The algo-
rithm used to calculate edge betweenness centrality is described in Appendix A.2.

Since the Algorithm 1 produces a hierarchical structure of communities, which
consists in a nested structure of partitions, it is not practical if one need to compare
the quality of different partitions or to work with large-scale graphs. The author
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also proposed a new quality fitness function called modularity to compare the good-
ness of different partitions. This function has been inspiring an enormous num-
ber of work in the scientific community and became a golden standard to compare
the quality of community detection algorithms12. The modularity is invented based
on an intuition that a good partition must contain communities where edges in-
side communities are more present than one would expect if edges are distributed
around vertices in a random way. Specifically, the modularity function compares
the difference between the fraction of edges inside communities with the expected
fraction of those edges in a null model where edges are redistributed in remaining
the expected graph’s degree sequence. The modularity function is very polyvalent
in the context of community detection. It can be used as objective function in opti-
mization process, as quality function in the evaluation of community structure or as
a decision function in hierarchical clusterings. The formula of modularity function
is can be found with further details in Appendix A.1.

Radicchi et al.’s method

We introduce in this part another divisive method proposed by (Radicchi et al.,
2004). As presented in the previous section, the method of Girvan and Newman
requires repetitive calculations of betweenness centrality, which is a global quantity
and expensive to calculate. Hence, Radicchi et al. proposed to replace the between-
ness centrality by a class of local quantities that is easier to compute. Being local
quantities, they also require less time to recalculate after each removal since there is
only a small part of the graph is affected.

The method of Radicchi et al. exploits the topology of the graph of interest to
detect communities. The principle argument of the authors relies on an assumption
of a structural property of community structure that "edges connecting nodes in differ-
ent communities are included in few or no triangles". From this intuition, the proposed
method considers the edge-clustering coefficient13, which measures the fraction be-
tween the number of triangles to which an edge belong with the maximum number
of triangles lied on that edge that could be established. Formally, the edge-clustering
coefficient is defined as:

C(3)(i, j) =
|∆ij|

min[(di − 1), (dj − 1)]
(3.16)

where |∆ij| represents the number of triangles constructed based on edge (i, j)
and min[(di − 1), (dj − 1)] is the maximal number of possibly constructed from that
edge with the neighbors of its extremities i and j. However, the coefficient becomes
degraded when an edge does not participate to any triangle. In this case, C3(i, j) = 0
regardless of di, dj and hence it hides the degree information of i and j. Moreover,
when min[(di − 1), (dj − 1)] = 0, the coefficient is indeterminate, hence it is only
applicable for edges whose extremities have degrees higher than 1, which is quite
reasonable since nodes connecting to only one neighbor can be naively grouped to
the community of their neighbors. A modified version of edge clustering coefficient
is hence suggested:

12Despite of some critics indicating its defaults in discovering small-size communities and many
advanced modifications, the modularity quality function is still very widely used and, in the best of
our knowledge, there is currently no quality function that could represent all goodness aspects.

13By definition, this topological quantity is very similar to the common node clustering coefficient
presented in Section 2.2.2, but instead of quantifying triadic closure by vertex, it measures on edges.
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C̃(3)(i, j) =
|∆ij|+ 1

min[(di − 1), (dj − 1)]
(3.17)

The edge clustering coefficient is also generalized to higher orders of cycle:

C̃(g)(i, j) =
z(g)

ij + 1

s(g)
ij

(3.18)

where z(g)
ij represents the number of cyclic structure of order g to which the edge

(i, j) belongs, and s(g)
ij is the maximum number of cyclic structures of order g that

can be built.
The method is represented in Algorithm 2, where n(g−3)

ij denotes the number of
shortest path of distance (g− 3) between i and j. In case g = 3 or 4, which is recom-

mended by the authors, n(g−3)
ij becomes the Kronecker function δ(i, j) or the value aij

of the adjacency matrix A respectively. Note that in this method, instead of remov-
ing the edge containing the highest betweenness centrality score, the edge having
the smallest value of edge clustering coefficient is removed as indicated in line 14

of Algorithm 2. Since the smaller the value of the coefficient, the more possible that
the corresponding edge is inter-community. Furthermore, the authors also reinforce
their argument about the replacement of betweenness centrality by clustering coeffi-
cient by illustrating an anti-correlation of these measures on some networks. In this
way of view, removing edges based on these two metrics are statically equivalent.

In terms of complexity, since the clustering coefficients of distant edges from a
removed edge are not affected, the calculation from line 5 to line 12 of Algorithm 2
are recomputed only in a small sub-graph. Hence, the time consumption of Radicchi
et al. method is much inferior to that of the Girvan and Newman. The method takes
O(m4/n2) in comparison to O(m2n) of the edge betweenness method, hence can
tackle larger graphs.
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Algorithm 2: Radicchi et al. method
Input: G = (V , E), g ∈ N, g ≥ 3
Output: Edge removal sequence S

1 Gπ = (V , Eπ)← G = (V , E)
2 S← empty list
3 while Eπ 6= ∅ do

4 for (u, v) ∈ Eπ do

5 z(g)
uv ← 0

6 for each i ∈ Gπ.Adj[u] do

7 for each j ∈ Gπ.Adj[v] do

8 z(g)
uv ← z(g)

uv + n(g−3)
ij

9 end

10 end

11 s(g)
uv =
min[(|Gπ.Adj[u]| − 1)(|Gπ.Adj[v]| − 1)]

12 C(g)[u, v]← z(g)
uv +1
s(g)

uv

13 end

14 e = (um, vm)← min(C(g)[u, v])
15 Gπ(V , Eπ)← Gπ(V , Eπ − {e})
16 APPEND(S, e)
17 end

18 return S

3.2.3 Modularity optimization based approach

Clauset-Newman-Moore’s method

Clauset et al. proposed a hierarchical agglomeration algorithm for detecting com-
munity structure by optimizing greedily the modularity quality function (Clauset,
Newman, and Moore, 2004), which is an improved version of (Newman, 2004) in
terms of time and memory consumption. Although having a similar discovering
process with that of conventional hierarchical clustering, the method shows a good
performance in practice thanks to the utilization of modularity. Since it is not com-
pulsory to define a proximity function between a vertex and a community or be-
tween two vertices14, the method is self-consistent to the assumption of community
quality.

The main concept of this method is grouping repeatedly communities in a graph
together in order to acquire a maximum increase ∆Q of modularity from the ag-
glomerative action. The algorithm begins with an initial partition of a graph where
each vertex belongs uniquely to its own community, meaning there are in total as
many communities as vertices, and finishes when all vertices are grouped in the
same community. Since calculating the gain ∆Qcicj of merging two communities ci
and cj as well as finding the pair ci, cj with the largest ∆Qcicj are time-consuming,
the authors employ efficient data structures to reduce computational complexity.

First, the modularity function is represented in a convenient form allowing fast
updates of changes after each step:

14In fact, the modularity function implicitly determines how different communities are similar by the
gain/loss of its value when they are placed together.
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Q = ∑
ci

(ecici − a2
ci
), (3.19)

where ecicj represents the fraction of edges that join vertices in community ci to ver-
tices in community cj:

ecicj =
1

2m ∑
uv

Auvδ(cu, ci)δ(cv, cj), (3.20)

and aci is the fraction of degrees of vertices belonging to community ci:

aci =
1

2m ∑
u

kuδ(cu, ci), (3.21)

with ku is the degree of vertex u. In order to reduce the number of calculations, the
changes of modularity are only calculated for communities that are connected since
joining two distant communities can not produce any increase in Q. At the initial
step, when each vertex belongs to each own community:

∆Qcicj =
1

2m
− kik j

4m2 . (3.22)

Thus the matrix ∆Qcicj representing the changes of modularity is sparse, its rows
can be represented by balanced binary trees for fast searches and also by max-heaps
(one by row) to find the largest value of ∆Qci· in constant time. A max-heap H is
also used to store the largest elements of rows of the ∆Q matrix. The fast algorithm
can be executed:

1. Compute initial values of ∆Qcicj and aci then the max-heap H populated by
maxcj(∆Qci·).

2. Select the largest ∆Qcicj from H and merge corresponding communities. Up-
date ∆Q, H, aci and Q by ∆Qcicj .

3. Repeat step 2 until all vertices belong to one community.

The changes of modularity gain after each aggregation in step 2 can be calculated
easily. By naming cj the community resulting from merging ci and cj, the change of
modularity gain when merging the new cj and ck is:

∆Q
′
cjck

=





∆Qcick + ∆Qcjck , if ci, cj, ck are connected ,

∆Qcick − 2acj ack , if ck is not connected to cj,

∆Qcjck − 2aci ack , if ck is not connected to ci.

(3.23)

The algorithm find communities in O(md log(n)) time where d is the depth of the
dendrogram describing the community structure. In practice, it is often estimated
that d ∼ log(n) leading the to a total time complexity ofO(m log2(n)), which makes
the algorithm being the fastest at the time for discovering community structure using
an optimization of modularity.

Blondel et al.’s method

The method of Clauset-Newman-Moore (CNM) sometimes discloses two large com-
munities in detecting community structure of large networks. Also, it sometimes
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identify partitions whose modularity are significantly lower than what could be
found using some traditional optimization processes (Blondel et al., 2008). Hence,
Blondel et al. proposed a new method called Louvain based on a very similar con-
cept of that of the Clauset-Newman-Moore’s method, which can palliate the above
problems and can work on very large networks.

This method also try to maximize the modularity function by aggregating itera-
tively communities together in order to obtain a maximum increase of of modularity.
Nevertheless, the process is divided into two iterative phases. Similarly, Blondel et
al.’s method also initiates the beginning state as a partition of one-vertex communi-
ties. In the first phase, every vertex in the graph is considered to be moved to the
community of one of its neighbors in order to acquire a maximum improvement of
modularity, but in contrast to CNM’s method, only if the gain is positive. Another
difference of this step with the method of CNM is lied on the possibility of remov-
ing a vertex from its community after it has been merged provided that there is an
interest. This possibility is enable thanks to two mechanisms:

• A vertex that has been visited can be revisited several times,

• The aggregation is not considered merely between two communities, but be-
tween a vertex and a community which allow a higher flexibility.

The process is repeated until no further improvement of modularity can be achieved
knowing that the modularity change after each moving can be calculated using
Equations (3.19), (3.20), (3.21).

After the first phase has been done, the modularity is locally optimized. The
algorithm continues to build a multi-graph whose vertices15 are the communities
found in the end of the first phase and edges are edges between those communi-
ties16. Once the second phase is finished, the first phase are reapplied and the pro-
cess continues until only one community remains.

In terms of complexity, since the number of vertices to be considered decreases
substantially after each construction of meta-graph, the time needed to discover
community structure depends essentially on the first pass. For example, the algo-
rithm needs only 6 passes to discover a community structure of an ad-hoc graph of
10000 vertices. However, the computation time of the algorithm is contingent on
the order that vertices are analyzed, hence is not deterministic. Although unknown,
the time complexity is estimated at O(n log(n)) which is one of the biggest of its
advantages. It can work on graphs up to 100 million nodes and billion of edges.

3.2.4 Spectral partitioning approach

The division of a graph into subgraphs by optimizing a quality of the partition such
as number of inter-community edges can be resolved by an approach called spectral
partitioning. There are intense work dedicated to study network structure through
the spectrum of derivatives of adjacency matrix associating to the graph in the lit-
erature of computer science field (Pothen, Simon, and Liou, 1990), (Schaeffer, 2007).
The main concept of this approach is to represent a desired quality of partitions us-
ing a spectral decomposition of a matrix corresponding to the graph. Then, finding a
partition to optimize the quality function is equivalent to optimizing the associated
spectral decomposition. The most well-known method using spectral approach for

15Sometimes called meta-vertices as they represent a groups of vertices.
16In this multi-graph, vertices can have self-loops representing intra-community edges in the first

step and edges can be weighted according to the number of inter-community edges in the first step
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graph partitioning is probably the optimization of partition cut size using the spec-
trum of Laplacian matrix17. Even able to find good clusters, spectral bisection meth-
ods using the Laplacian matrix is known being not a good solution for discover-
ing community structure in networks (Fortunato, 2010), (Nascimento and Carvalho,
2011) as it requires preliminary assumptions on the cluster sizes (see Appendix A.3).

Several solutions have been proposed to palliate the constraint. Among them,
the most popular and well-known solution using spectral approach is possibly at-
tributed to (Newman, 2006). By representing the modularity function in a matrix
form, the author demonstrates that the task community structure can be conducted
using a spectral decomposition approach in a similar way of classical spectral parti-
tioning using Laplacian matrix. The method is presented in the following part.

Newman’s method

The modularity can be used as an objective function in other to search for commu-
nities in graphs. Newman adapted the modularity function in order to execute a
spectral approach to discover community structure (Newman, 2006). The concept of
this method hence also rely on the idea that a good community should have more
edges between its nodes than edges connecting it with other communities. The mod-
ularity function from Equation (A.1) is rewritten in a matrix form as following:

B = A− P, (3.24)

where A is the adjacency matrix and P is the matrix containing the expected
number of edges falling between each pair of vertices. Matrix B is called modularity
matrix and its values for a given graph depends on how one chooses the null model
expressing by the matrix P. This choice reveals the notion of an equivalent random-
ized network model in which community structure is considered to be negligible,
hence null. The standard choice for null model that works very well in the literature
mentioned in Equation (A.1) can be rewritten:

Pij =
kik j

2m
, (3.25)

where ki and k j represents the degree of vertex i and vertex j respectively; m is the
number of edges in the graph. By employing the same index vector s as presented
above, the modularity in Equation (A.1) can be reformulated as:

Q =
1

4m ∑
ij
[Aij − Pij](sisj + 1) =

1
4m ∑

ij
[Aij − Pij]sisj, (3.26)

given that ∑ij Pij = ∑ij Aij = 2m and ∑j Pij = ki, the modularity matrix is real
and symmetric. The familiar form of the spectral clustering approach expressed in
Equation (A.10) can be found in this case:

Q =
1

4m
sTBs, (3.27)

where s = ∑
n
i=1 aivi with ai = vT

i s. Similarly to the previous processes, the
modularity can be represented by a linear combination of normalized eigenvectors
vi corresponding to eigenvalues λi of matrix B:

17The Laplacian matrix is very common in the problem of graph partitioning using spectral ap-
proach, which aims to optimize objective functions based on an eigen-decomposition of the matrix.
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Q =
1

4m ∑
i

a2
i λi. (3.28)

The only difference between this case with the previous case is that it consists in a
maximization of modularity instead of minimization. Hence, the task of community
detection is then translated into choosing s in such a way to maximize coefficients
a2

i weighting the largest eigenvalues. If we label eigenvalues in an decreasing order
λ1 ≥ λ2 ≥ ... ≥ λn, again the straightforward solution would be choosing s to be as
close to parallel with the leading eigenvector v1 as possible. A good solution could be
obtained by assigning:

si =

{
±1 if v(1)i ≥ 0,

∓1 if v(1)i < 0.
(3.29)

The choice of modularity as objective function in the spectral approach inherits a
remarkable advantage over the traditional cut size as it does not impose the sizes of
clusters. Hence, this method is much more suitable for detecting natural groups than
the traditional graph partitioning. In order to discover more than two communities,
the author suggest several solutions. Among them, the simplest one consisting in
a subdivision strategy work nicely in practice. Specifically, after each partitioning
one continues to divide repeatedly communities into smaller communities. In func-
tion of the modularity contribution ∆Q that the division of a community provides in
each iterative step, the process will be stopped if ∆Q is not positive. Other relating
solutions to divide networks to more than two communities by using vector parti-
tioning to maximize the modularity of Equation (3.28) can be found in the original
paper (Newman, 2006). Again, the complexity of the method relies principally on
the calculation of the largest eigenvector, hence the multiplication of matrices. Even
the modularity matrix is usually not a sparse one, an appropriate decomposition of
B can executes the task O(n(n + m)) time. In practice, one needs O(log(n)) itera-
tive steps corresponding to the depth of the dendrogram describing the community
structure, which makes the final time complexity up to O(n(n + m) log(n)).

3.2.5 Dynamic process based approach

This approach of community detection, instead of using directly topological struc-
ture of networks, captures the behaviors of dynamic process models that could oc-
cur on the associated real systems to infer meaningful modules. Naturally, methods
based on this approach make use of a random walk process describing real world
phenomena such as information propagation on networks, and from that extract
patterns followed by the random walker to constitute communities.

Rosvall et al.’s method

First presented in (Rosvall and Bergstrom, 2008), (Rosvall, Axelsson, and Bergstrom,
2009), the method of Rosvall et al. is probably the most well-known method in this
category using flow models. Since its first apparency, many improvements and func-
tionalities have been added to the initial method making it become a powerful net-
work analysis tool. Nevertheless, we present here the principle and original concept
in which consist the core functionality of the method to resolve the task of commu-
nity detection. The method is commonly called Infomap.

In this method, the task of detecting communities can be translated into the
task of finding a two-level encryption coding rule to minimize the total codewords
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FIGURE 3.5: Communities are detected by optimizing the compres-
sion rate of the description of information flows on the network. (A)
The description of the trajectory of a random walk on a network high-
lights network structure. (B) The traditional approach in information
theory to to encode vertices using Huffman code needs 314 bits (be-
low the graph) to describe the random walk trajectory. (C) If ver-
tices are encoded using a two-level description (cluster code + vertex
code), only 243 bits (below the graph) are needed to describe the same
trajectory. (D) Community level description of the graph illustrated
in (A) where a vertex are encoded by short-length binary numbers.
Reprinted figure from (Rosvall and Bergstrom, 2008) with permission

c©2008 National Academy of Sciences.

needed to describe paths of random walks on the graph18. An analogous way to in-
terpret this approach is the technique used in cartography. It is not necessary to use
unique name for every district and street on over the world making them extremely
long, one can reused the same names in geographically distant areas. There can be
two streets in two different cities having the same name. If we consider streets being
vertices in a graph and cities being communities, we can employ a similar technique
to index vertices in a way that the description length needed is minimized. This
concept is illustrated in Figure 3.5

From the presented idea, the detection of communities can be done through min-
imizing a special function called the Map equation expressing the average number of
bits per step needed to describe an infinite random walk using a two-level encoding
corresponding to the partition. By denoting P = {P1, P2, ..., Pm} as a partition of
graph G, this average description length can be expressed as:

L(P) = qyH(Q) +
m

∑
i=1

pi
�H(Pi). (3.30)

The first term of the description qyH(Q) consists in the entropy of the move-
ment between communities and the second term ∑

m
i=1 pi

�H(Pi) is the entropy of the
within-community movements. In the equation, qy is the probability that the ran-
dom walk switches communities at any moment and pi

� is the probability that the
random walker stay inside community i at any step. Besides, Q and Pi are the distri-
butions of visit frequencies to the communities in the graph and to the vertices in the
community i respectively. The entropy H(Q) and H(Pi) are the lower limits of the
averages length of codewords used to label communities and vertices of community
i respectively. They are calculated according to Shannon’s source coding theorem

18The authors then extended the method to a multilevel code length compression to identify hierar-
chical modular structure (Rosvall and Bergstrom, 2011)
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(Shannon, 1948). The shorter the description length, the higher the performance of
the corresponding partition P in compressing code’s length.

In order to find a partition that has a low value of description length, a greedy
search is first used. Each vertex is assigned to unique community and then com-
munities are chosen to be merged in a way to get the largest decrease in description
length (similar to the CNM method). This step is repeated until the length can not
be reduced anymore. In the second step, a refinement is applied using simulated
annealing technique (Kirkpatrick, Gelatt, and Vecchi, 1983) with the initial partition
provided by the greedy search. Finally, the partition corresponding to the smallest
description length is consider to be the best solution. The time complexity of the
method is estimated to be linear at O(m).

The earlier information-theoretic approach

Additionally, an earlier concept of this approach for the task of community detection
had been published by the same authors (Rosvall and Bergstrom, 2007) using an in-
formation theoretic model. In this earlier version, the graph of interest in considered
as the information that need to be transfered over a limited capacity transmission
channel. A signaler knows the full structure of the graph and wants to send as much
information as possible to a receiver through this channel. Therefore, the signaler
must encode the graph G into community structure C in a way that minimizes the
transfered information L(C) and the information loss about the graph at the side of
the receiver L(G|C). The loss means the additional information that is needed to
specify exactly the full graph structure after the receiver had already decoded the
modular structure information. The method hence minimizes objective function:

L = L(C) + L(G|C) (3.31)

Finally, the simulated annealing method is also use simulated annealing technique
to find the optimized configuration.

Pons-Latapy’s method

Another widespread solution of community detection using dynamic process based
approach, commonly called Walktrap, has been introduced in (Pons and Latapy,
2005). The common point of this method with the method of Rosvall et al. is, of
course, the exploitation of stochastic process on the network of interest in order to
discover community structure. However, instead of calculating the regularity of an
infinite walk on the graph, the authors proposed a new measure of vertex proximity
based on short step random walks. After defining a distance function representing
vertex structural similarity, the problem of community detection is equivalent to tra-
ditional data clustering. An agglomerative clustering based on Ward’s method (Joe
H. Ward, 1963) is applied on the graph in order to find significant communities. It
is similar to the one of CNM’s method presented in Section 3.2.3. However, instead
of maximize the increase of modularity in each agglomerative step, Pons-Latapy’s
method minimize the increase of average Euclidean distance causing by the fusion
of two communities. Finally, the algorithm provides a hierarchical structure of com-
munity after n fusions. In order to choose the best partition, the method has the
same approach with Girvan-Newman’s method and Radicchi’s method, meaning
the partition corresponding to the highest modularity is taken.

Going into the innovative aspect making the difference of the method, it is ar-
gued that if two vertices i and j are in the same community, the probability Pt

ij that
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a random walker goes from i to j in t steps must be high and the distance between i
and j must be small. Moreover, "two vertices belonging to the same community tend to
"see" all other vertices in the same way", which means the probability of going from i
and j to other vertices in the graphs are similar: Pt

ik ≈ Pt
jk, ∀k ∈ V (see Section 2.2.1).

From these arguments, a function of distance is defined:

rij =

√√√√ n

∑
k=1

(Pt
ik − Pt

jk)
2

d(k)
= ||D−1/2Pt

i· −D−1/2Pt
j·||, (3.32)

where d(k) is the degree of vertex k, D is the diagonal degree matrix, Pt
i· is the i-th

column of the matrix Pt representing the probabilities of going between two vertices
in t step. Similarly, the distance between two communities Ci and Cj is straightfor-
ward:

rCiCj =

√√√√ n

∑
k=1

(Pt
Cik
− Pt

Cjk
)2

d(k)
= ||D−1/2Pt

Ci·
−D−1/2Pt

Cj·
||, (3.33)

where Pt
Ci j

= 1
|Ci | ∑i∈Ci

Pt
ij is the probability of going from community Ci to vertex j

in t steps.
In terms of complexity, by using properties of Euclidean distance and consider-

ing only adjacent communities for the fusion step, the algorithm’s global complexity
is estimated at O(mn(d + t)). Given t being the length of the walk often chose at
t ≈ O(log(n)), d being the height of partition’s dendrogram estimated at O(log(n))
in balanced trees, the complexity is O(mn log(n)) and is reduced to O(n2 log(n)) in
sparse graphs.

3.2.6 Statistical inference approach

Statistical inference is also leveraged to discover community structure in networks
and usually provides good results. The principled concept of this approach is from
the idea that empirical graphs that are observed are the results of some latent mod-
els described by sets of parameters. Several methods using this approach employ
different variants of stochastic block models to infer the likeliness that a given graph
is generated from compatible models, and then suggest the most likely sets of model
parameters. The community structure of the graph is then obtained from the con-
figuration of the model that is the most representative for the observed graph. If
these methods are applied to graphs that are likely to be generated from the same
block model, they can correctly recover the block structure. A meticulous review
about different probabilistic models that can be developed to solve the task of com-
munity detection is recently published in (Peixoto, 2018). In this empirical analysis,
we present one of the most popular variant considered as the standard Stochastic
Block Model (SBM) and its corrected version Degree-Corrected Stochastic Block Model
(DC-SBM) adapted for the problem of community detection (Karrer and Newman,
2011). Here, we are introducing only some representative approaches.

Stochastic Block Model

In the standard SBM, graph G of n vertices and m edges can be generated from
a probabilistic generative block model with a hidden group structure c assigning
each vertex i to a community ci, where ci ∈ {1, ..., k} given that k is the number
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of communities. Supposing that edges are placed between any pair of vertices i
and j independently and randomly so that vertex degrees follow Poisson distribu-
tions. In this block model, the expected value of the adjacency matrix element Aij
only depends on the groups to which i and j belong. Denote these groups ci and
cj for vertex i and j respectively, this expected value of edges between i and j is the
ωcicj element of matrix ω revealing the block structure of the generative model. If
∀r 6= s ∈ {1, ..., k}, ωrr > ωrs, there could be a latent community structure in graphs
generated from the model. Note that in this model, even vertices in group r could
have self-edges with an expected value of ωrr/2 and such phenomenon is rare in
real world networks, the model used is not really effected when n becomes large.
Community structure can be estimated from the probability P(G|ω, c) of graph G
given the block matrix and the group assignment c as following:

P(G|ω, c) = ∏
i<j

(ωcicj)
Aij

Aij!
exp(−ωcicj)∏

i

( 1
2 ωcici)

Aii
2

( Aii
2 )!

exp(−1
2

ωcici), (3.34)

given that A and ω are symmetric.
However, this traditional SBM does not work well in practice for the task of

community detection since it does not take into account the variation of degrees
often observed in real networks. In fact, since edges are only distributed among
vertices of a graph in function of blocks to which they belong regardless of their real
degrees, similar degree vertices tend to be grouped into the same blocks creating
unrealistic communities. Consequently, a corrected version of the stochastic block
model called DC-SBM is proposed (Karrer and Newman, 2011) (Riolo et al., 2017),
taking into consideration of node degree by introducing parameters θi that control
the expected degree of vertices. In this version, the expected value of Aij becomes
θiθjωcicj . The probability of the observed graph in Equation (3.34) can be rewritten:

P(G|ω, c) = ∏
i<j

(θiθjωcicj)
Aij

Aij!
exp(−θiθjωcicj)∏

i

( 1
2 θ2

i ωcici)
Aii
2

( Aii
2 )!

exp(−1
2

θ2
i ωcici), (3.35)

The final goal of method is is to maximize the probability that graph G is created
from the partition c with respect to parameters ωrs. Karrer and Newman proposed to
solve this optimization problem using a two-step procedure. Firstly, the maximum
likelihood values ω̂rs of the model parameters are calculated in function of the parti-
tion parameters c. Then, the most likely community structure corresponding to the
partition ĉ is defined by maximizing the log-likelihood L(G|c, ω̂) derived from the
above probability. The implementation of the method consists of initializing a par-
tition where vertices are assigned randomly into k communities. Then, vertices are
swapped between communities in a similar way of the presented Kernghan-Lin’s
optimization process (Kernighan and Lin, 1970) in order to acquire an optimal par-
tition. The complexity of the method depends principally on the complexity of the
sampling process to create different partition candidates.

Lancichinetti et al.’s method

Lancichinetti et al. proposed a polyvalent method that can handle multiple type of
graphs and which is also claimed to be able to distinguish communities from pseudo-
communities (Lancichinetti et al., 2011). Reasoning that densely connected groups



3.2. Community detection methods 55

of vertices in a graph could be a result of random fluctuations and they can not
be considered as non-trivial structures of the graph, the authors then suggested to
optimize locally a statistical significance function of presented community structure
with respect a global null model. This significance function is equivalent with a
fitness measure to evaluate the quality of communities.

The method, also known as OSLOM for Order Statistics Local Optimization Method
makes use of the significance level that a community receives a new vertex with re-
spect to a redistribution of degree outside of it according to a configuration model.
Specifically, for community C and vertex i found outside of C in graph G, the proba-
bility P(kin

i |i, C,G) that i has kin
i neighbors in C expresses the likelihood that there is

a topological relation between i and C. So it vertex i has more edges with the vertices
of community C than one would expect, we could consider to include i in C as the
relation is unexpectedly strong. The method calculates the cumulative probability
r(kin

i ) of vertex i having the number of internal connections with C equal or larger
than kin

i :

r(kin
i ) =

ki

∑
j=kin

i

p(j|i, C,G). (3.36)

If the cumulative distribution of the smallest r value is smaller than a given toler-
ance, the inclusion is considered to be significant, and the corresponding vertex is
added to the community. In other way the second smallest r is checked and so on.
The algorithm begins with an initial partition, in order to speed up, it can use the re-
sult of a fast algorithm. Then it looks for significant communities until no vertex can
be incorporated into any community. The mechanism of the method makes open
straightforward possibilities to assume overlapping and hierarchical clustering, also
it is possible that a vertex is homeless, which means it does not belong to any com-
munity. The time complexity of the methods depends on the community structure
of the network and is estimated at O(n2).

3.2.7 Some other methods

Reichardt et al. method using Potts model

Reichardt and Bornholdt demonstrated that the problem of community detection
can be reformulated as the problem of finding the ground state of a spin glass model
(Reichardt and Bornholdt, 2006). Although this method does not try to optimize
the modularity function of graph partitions, there is a close relation between the
method’s objective function and the modularity function.

At the initial phase of the method, each vertex is assigned by a Potts spin la-
bel σi indicating the state corresponding to the community that it belongs. The
states of vertices are then gradually updated according to a basic principle that ver-
tices belonging to the same classes should be connected and have the same spin
state whereas vertices of different classes should be disconnected and have different
states. The different of this approach of finding communities from the assumption
of modularity is that instead of favoring only intra-community edges and penaliz-
ing inter-community edges, the method also favors inter-community non edges and
penalizes intra-community non-edges. Consequently, the objective of the method
is to optimize the energy contributed by edges and non-edges connecting different
spin states. The spin glass energy of a configuration is expressed by the Hamiltonian
function:
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H({σ}) = −∑
i<j

Jijδ(σi, σj) = −∑
i<j

J(Aij − γpij)δ(σi, σj), (3.37)

where J > 0 is the coupling strength normally chose at 1. Jij expresses the coupling
strength between spins that are both ferromagnetic and anti-ferromagnetic, making
an amount of contribution of (J − Jγpij) > 0 for an intra-edge and −Jγpij < 0 for
an intra non-edge. Similarly to the modularity function, pij represents the expected
number of edges connecting i and j in a null model. The flexibility of the method
relies on the tunning parameter γ, which can be chosen arbitrarily, regulating the in-
clusion level of the null model into the final quality function. When γ = 1, the
function becomes the traditional modularity function. Following the Hamiltonian
objective function, the method makes use of the simulated annealing process (Kirk-
patrick, Gelatt, and Vecchi, 1983) to estimate the configuration that has the minimal
energy corresponding to the community structure outcome. The theoretical time
complexity of the method is estimated at O(n3.2) for sparse graphs.

Raghavan et al.’s method based on label propagation

The method (Raghavan, Albert, and Kumara, 2007), proposed to detect communities
in large-scale networks, possesses a quite different approach to all the above men-
tioned methods. Such that it uses solely graph topology in order to identify commu-
nity structure without having to predefine an objective function for an optimization
process nor to assume some prior information about the community structure. Even
though, the method shows some desirable qualities such as parameter-free, easy for
implementation and fast calculation.

Closely related to message passing paradigms or epidemic spreading, the prin-
cipled idea of the label propagation method is based on the concept that vertices
should probably belong to the community of most of their neighbors. Following
this concept, the authors propose a Label Propagation Algorithm (LPA) in which each
vertex is initiated with a different label denoting the community to which they be-
long. Then, in each iterative step, each vertex determines its new label regarding to
the label that a maximum number of its neighbors have and the process continues
until the vertices’ labels are stabilized. The order in which vertices are examined
are shuffled randomly after each iteration. In this way, labels are first located in the
regions where they are initiated, then are propagated across the graph. Groups with
densely connected vertices will quickly reach a consensus on a unique label and the
algorithm stops when every vertex has the label that the maximum number of their
neighbors have. The labels in the final step indicate the outcome community struc-
ture of the graph identified by the label propagation process. In terms complexity,
this method is one of the most performing as it finishes in linear time O(m).

Xie-Szymanski’s method using speaker-listener label propagation

The label propagation method presented above receives high attention thanks to its
simplicity, high performance in terms of calculation time as well as leaving room
improvement. Although not being the first who suggests a modified version of LPA,
the version of Xie et al. is probably the most mentioned in the literature.

The new method introduce a new label update strategy that could reduce around
5 to 10 times the execution time with respect to the traditional LPA method (Xie and
Szymanski, 2011). The time reduced is thanks to a new indicator stocked in each ver-
tex beside label to represent the sensibility to label changes. A vertex is in fact can
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be considered as passive interior, passive boundary or active boundary correspond-
ing to interior vertex, boundary vertex but not subject to label change and boundary
vertex whose label could be changed respectively. By this way, only a fraction of
vertices are considered when the community membership of the others are well de-
termined. Secondly, the author introduce a new paradigm to generalize the label
propagation process. The method considers a vertex that is subject to a label change
is a listener and their neighbors are speakers (Xie and Szymanski, 2012). The method
called Speaker-listener Label Propagation Algorithm (SLPA) also known as GANXis
creates a memory for each vertex to contain the information that they receive. Simi-
larity to the previous method, in each step, the listener incorporates solely the most
common among the labels that it receives from the speakers. However, when a ver-
tex transmits signals to its neighbors as speaker, a label is chosen randomly from the
memory with a probability proportional to its frequency. This flexibility allows ver-
tices to contain more information about their affiliates to communities and reduces
unbalances of boundary vertices. The process are repeated after a certain number of
iterations and the labels having the highest frequency in each vertex are used to as-
sign community structure. Moreover, the approach of this method makes it straight-
forward to determined communities under an overlapping assumption. Again, the
time complexity of the method is in linear in function of graph size O(m).

De Meo et al.’s method using a hybrid local-global approach

Two principle mainstreams presented in the previous sections to detect community
structure in network consist in:

• Optimizing the modularity function reflecting the structural difference of a
graph with an expected null model’s configuration,

• Employing dynamic processes on a graph in an theoretical approach to esti-
mate modular structure.

De Meo et al. propose a method called CONCLUDE (for COmplex Network CLUster
DEtection) combining the two previous approaches to exploit community structure
in networks, according to which the authors believe to be able to leverage local and
global information of graphs in the detection process (Meo et al., 2014). Specifically,
the proposed method uses random and non-backtracking walks of finite length to
define a new proximity function between every pair of vertices in the graph of in-
terest. This approach can be considered to be in the same family with the one used
by Pons et al.’s method introduced in Section 3.2.5 representing the exploitation of
global information described by the authors. However, the authors suggest to cal-
culate the distance between two vertices i and j differently:

dij = 1−
(

∑
k∈V

[Lκ(eik)− Lκ(ejk)]
2

dk

) 1
2

, (3.38)

where Lκ(eik) is a measure of edge centrality of edge e(i, k) estimating its role in a
message transmitting paradigm to spread information, dk is the degree of vertex k.

After distances of vertices has been defined, De Meo et al. reuse the multi-level
local modularity optimization strategy published by Blondel et al. (presented in Sec-
tion 3.2.3). However, instead of revising direct neighbors of each vertex in each each
loop of the swapping step to improve the modularity, the defined distances are used
to split and merge verices with communities. However, the objective function stays
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the modularity in the original version. In terms of time complexity, the method re-
quires only O(m + n) time.

3.3 A summary of presented community detection methods

3.3.1 Edge removal

Edge betweenness (GN) of (Newman and Girvan, 2004) detects communities by re-
moving edges progressively according to their betweenness centrality scores. This
method is based on the intuition that dense zones in a graph are loosely connected
by a few edges that contribute a high inclusion in the shortest paths between every
pair of nodes. Removing these edges would reveals densely connected communi-
ties.
Edge clustering coefficient (RCCLP) of (Radicchi et al., 2004) suggests to replace
the edge betweenness centrality of Girvan-Newman’s method by edge clustering
coefficient, which requires less computation time and hence reduces the algorithm
complexity. In this thesis, we analyze two configurations of this method correspond-
ing to triangular (g = 3 denoted by RCCLP-3) and quadrangular (g = 4 denoted by
RCCLP-4) versions.

3.3.2 Modularity optimization

Greedy optimization (CNM) of (Clauset, Newman, and Moore, 2004) greedily max-
imizes the modularity function Q by aggregating iteratively connected communities
which induce a maximum increase or smallest decrease in modularity ∆Q.
Louvain method of (Blondel et al., 2008) adopts two-step agglomerative process
similar to that of the greedy optimization method. However, in each iteration of the
first step, it allows nodes to move between communities until no additional gain in
modularity can be obtained due to local switch. Then, a new graph whose vertices
are the communities resulting from the first step is build and the process is repeated
on the new graph to reduce computation time.
Spectral method (SN) of (Newman, 2006) identifies community structure by finding
leading eigenvectors corresponding to largest eigenvalues of a modularity matrix.
In this method, the problem of modularity optimization is translated to the problem
of vector partitioning of modularity matrix.

3.3.3 Dynamic process

Walktrap of (Pons and Latapy, 2005) defines a pairwise dynamic distance between
nodes of a graph and then applies traditional hierarchical clustering to detect com-
munity structure. The distance is formulated using the transition probability of a
random walker based on the concept that nodes belonging to the same community
tend to "see" other nodes in the same way.
Infomod of (Rosvall and Bergstrom, 2007) uses an information theoretic model where
a signaler try to send the structure of a network over a limited capacity transmission
channel to a receiver. The network must be encoded in community structure in a
way that minimizes the transfered information and the information loss tat the side
of receiver.
Infomap of (Rosvall, Axelsson, and Bergstrom, 2009) represents networks by a two-
level structure description. Analogically, each node in a network is encrypted by
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a unique codeword composed by two parts: a prefix representing the community
to which it belongs and a suffix representing the local code. Detecting community
structure becomes equivalent to searching the coding rule to minimize the average
code length describing random walks on the network.

3.3.4 Statistical inference

Stochastic Block Model (SBM) of (Riolo et al., 2017) uses a Monte Carlo sampling
scheme to maximize a Bayesian posterior probability distribution over possible di-
visions of the network into communities. This probability implies an expected net-
work model to be fitted from the observed network data. In this block model variant,
the authors employ a new prior on the number of communities based on a queueing-
type mechanism to calculate posterior probability. We analyze in the following sec-
tions both traditional SBM and degree-corrected version DCSBM (Karrer and New-
man, 2011), which is proved to perform better in practice.
Order statistics local optimization (Oslom) of (Lancichinetti et al., 2011) measures
the statistical significance of a community by calculating the probability of finding a
similar one in a null model. Following this concept, nodes are gradually aggregated
into communities to find significant communities. Then nodes are considered to be
swapped between communities in order to increase significance level.

3.3.5 Other methods

Spin glass model (RB) of (Reichardt and Bornholdt, 2006) finds communities by fit-
ting the ground state of a spin glass model. Instead of favoring only intra-community
edges and penalizing inter-community edges like the traditional modularity, this
model also favors inter-community non edges and penalizes intra-community non-
edges.
Label propagation (LPA) of (Raghavan, Albert, and Kumara, 2007) exploits the topol-
ogy of networks to infer community structure. It is closely related to the context
of message passing paradigms or epidemic spreading. The principled idea of this
method is based on the concept that nodes should belong to the community of most
of their neighbors. Hence, they gradually update their memberships according to
their incident nodes.
Speaker-listener label propagation (SLPA) - of Xie and Szymanski (Xie and Szy-
manski, 2012) modifies the propagation mechanism above by a new label update
strategy. Also, instead of keeping only hard membership information, each node is
equipped by a memory to contain the labels that it receives. Then, in the update
phase, nodes transmit the membership to their neighbors according to the member-
ship frequency in the memories.
Mixing global and local information (Conclude) of (Meo et al., 2014) combines a
dynamic distance with a modularity optimization process to identify community
structure. Firstly, the authors define a new pairwise proximity function using ran-
dom and non-backtracking walks of finite length to determine distances between
vertices. Then, the muti-level modularity optimization strategy of Louvain method
(Blondel et al., 2008) is employed in combining with the defined distance to find
community structure.

Table 3.1 summaries the methods presented previously grouped by different ap-
proaches. Since community detection is getting more and more attention in the net-
work science community, there is a huge volume of work that has been published
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in the recent years to evaluate different methods including both theoretical and em-
pirical approaches. However, there is not any quantitative definition of community
that is explicitly implemented inside algorithms, therefore it is challenging to distin-
guish the topological differences of community structures using different methods,
even when the associated concepts are quite theoretically discernible. Additionally,
it is still not clear yet whether a proximity in the assumption of community concept
will engender a structural similarity of communities that could be detected. Our
comparative analysis in the next chapters will try to address these questions in more
details.

Approach Reference Label Order
Edge

removal
(Girvan and Newman, 2002) GN O(nm2)
(Radicchi et al., 2004) RCCLP O(m4/n2)

Modularity
optimization

(Clauset, Newman, and Moore, 2004) CNM O(m log2(n))
(Blondel et al., 2008) Louvain O(n log(n))
(Newman, 2006) SN O(nm log(n))

Dynamic
process

(Pons and Latapy, 2005) Walktrap O(n)
(Rosvall and Bergstrom, 2007) Infomod NA
(Rosvall, Axelsson, and Bergstrom, 2009) Infomap O(m)

Statistical
inference

(Lancichinetti et al., 2011) Oslom O(n2)
(Karrer and Newman, 2011) (DC)SBM Parametric

Other
methods

(Reichardt and Bornholdt, 2006) RB O(n2log(n))
(Raghavan, Albert, and Kumara, 2007) LPA O(m)
(Xie and Szymanski, 2012) SLPA O(m)
(Meo et al., 2014) Conclude O(n + m)

TABLE 3.1: A summary of presented community detection methods.
The first column group methods into theoretical concepts, the second
column shows the original reference, the third column indicate the
abbreviation of the methods that will be used in following analysis
illustration and the final column shows estimated time complexity

with m ≈ n for sparse graphs.
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Chapter 4

Evaluating community structure

We presented in the previous chapters many fundamental concepts related to gen-
eral properties and characteristic of real-world networks that are exploited to dis-
cover community structure as well as many commonly used discovery methods in
the literature. However, community evaluation has not been discussed apart from
the modularity function, which is as the same time used as a common objective
function for many discovery methods. In this chapter, we will focus on a descriptive
approach to evaluate structural quality of meta-data communities.

4.1 Community structure evaluation

There are actually two principled ways that are normally used to evaluate the ef-
ficiency of any community detection method: using validation metrics1 to compare
ground-truth information with discovered community structures, or using struc-
tural goodness metrics to deduce characteristics of detected communities2. In this
chapter, we will first focus on the evaluation of community structure using topo-
logical metrics which is a subclass of goodness metrics. The other type of goodness
metrics based on network modeling, such as the modularity (Appendix A.1), as well
as community evaluation using validation metrics will be investigated in more de-
tails in Chapter 6.

Remind that we are not trying to deliver an exhaustive list of metrics to evalu-
ate communities and algorithms. Many meticulous surveys and reviews that can
be found in the literature do a much better job, for instance some of them can be
found in Table 4.1. These surveys encompass a huge variety of community qualities,
characteristics and metrics that one could expect to analyze in some specific cases.
Instead, we are interested in a shortlist of commonly studied measures in order to
perform profound analysis on detectable communities and to infer their character-
istics. These analysis also justify our later choices in the comparative analysis of
various community detection methods, which is the main content of the next chap-
ter.

4.1.1 Community using topological metrics

Many metrics have been invented to quantify the quality of community structure. In
practice, most of them are constructed with an intuition to favor groups of vertices

1Sometimes called similarity metric
2In fact, there is an hybrid approach that tries to characterize communities by combining the two

approaches. However this approach is very context-sensitive and can not be applied in a generic
manner. Therefore, methods belonging to this approach will not be mentioned in this work
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Reference Main content

(Chakraborty et al., 2017) Survey of different state-of-the art metrics
for community analysis.

(Labatut and Orman, 2017) Interpretable metrics for charactering com-
munity structure.

(Khan and Niazi, 2017) A survey of surveys on community detec-
tion.

(Fortunato and Hric, 2016) Community validation approaches using
benchmarks, meta-data and real world net-
works.

(Hric, Darst, and Fortunato, 2014) Comparing structural communities and
meta-data in networks

(Van Laarhoven and Marchiori, 2014) Some requirements of property for commu-
nity quality functions.

(Yang and Leskovec, 2013) Evaluating various qualities of community
structure based on meta-data information.

(Malliaros and Vazirgiannis, 2013) Community detection and metrics for qual-
ity evaluation, especially in directed net-
works

(Orman, Labatut, and Cherifi, 2012) Evaluating community structure based on a
topological approach.

(Vinh, Epps, and Bailey, 2010) Some adjusted information theoretic mea-
sures for comparing clustering partitions.

(Mislove et al., 2007) Statistical measurement demonstrating
structural characteristic of social networks

TABLE 4.1: A summary of some reviews and studies on community
structure measurements, metrics, detection methods and analysis.

with many connections between the members and few connections from the mem-
bers to the rest of the graph. According to specific cases, the mathematical formu-
lation of this intuition could be different. Some inceptive efforts have been given to
regularize this kind of community quality functions. For instances, (Van Laarhoven
and Marchiori, 2014) suggests to impose six properties on quality metrics includ-
ing: permutation invariance, scale invariance, richness, monotonicity, locality and
continuity. We present in this section some well-known structural quality functions
which are widely used in the literature. They are later used in our empirical anal-
yses to characterize interaction patterns between nodes in community structure of
networks.

Firstly, we remind some notations that will be used to describe structural char-
acteristic of communities. A graph G = (V , E) consisting of n = |V| vertices and
m = |E | edges can be represented by an associated adjacency matrix A. Given a
community C of nC vertices being a subgraph of G in an arbitrary partition P, a
function f (C) or f (P) quantifies a structural goodness feature of community C or
the whole partition P according to a particular expectation of community structure.
Let mc be the number of edges inside community C, mC = |(i, j) ∈ E : i ∈ C, j ∈ C|,
lC be the number of edges that connect C to other vertices outside of C, lC = |(i, j) ∈
E : i ∈ C, j 6∈ C|. Any vertex i belonging to community C has an internal degree kint

iC
and an external degree kext

iC satisfying kint
iC + kext

iC = ki, where ki is the total degree of
vertex i. The internal and external degree can be expressed via the adjacency matrix
A as: kint

iC = ∑j∈C Aij and kext
iC = ∑j/∈C Aij. If vertex i in community C has kext

iC > 0 and
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kint
iC ≥ 0 , i is called boundary vertex since i has neighbor(s) outside of C. Otherwise, if

kext
iC = 0 and kext

iC > 0, i is called internal vertex which only has connections with other
vertex in the same community. We formulate some structural goodness functions
that are classified in the following groups (Yang and Leskovec, 2013):

Internal connectedness measures

• Average internal degree: discloses the absolute average number of degree inside
the community of interest. It is desirable that communities have a high num-
ber of internal degree instead of external degree. Since the number of total
degree in a graph is fixed for a given graph, maximizing internal degree also
means minimizing the number of inter-community edges. The average inter-
nal degree is calculated as follows:

f (C) =
∑i∈C kint

iC

nC
. (4.1)

• Internal density: measures the edge density of a community. It is considered as
one of the major structural quality since it is expected that there must be much
more edges inside than edges connecting the community with the rest of the
graph.

f (C) =
mC

nC(nC − 1)
. (4.2)

• Scaled density: in practice, edge density shows some weaknesses in evaluating
real world networks since the number of edges often increases linearly with re-
spect to the size of the community, but the number of possible edges increases
quadratically. Therefore, edge density often favors small communities over
large communities and is not directly applicable when there is a high variation
of community sizes. Scaled density is a kind of normalized edge density which
is defined as nC times the density of the community (Lancichinetti et al., 2010),
(Labatut and Orman, 2017):

f (C) =
mC

(nC − 1)
. (4.3)

It is easy to see that the concept of scaled density is very close to the average
internal degree presented in Equation (4.1). Actually, for a large community,
nC − 1 ≈ nC and the scaled density approaches the average internal degree
(multiplying by 0.5).

• Compactness: implies that a good community should be at the same time highly
populated by edges and vertices must be close from one to another, i.e it must
have a high edge density and a small diameter (Creusefond, Largillier, and
Peyronnet, 2016). The compactness is calculated as follows:

f (C) =
mC

dC
, (4.4)

where dC is the diameter of community C being the geodesic distance between
the two farest vertices of C.

• Fraction over median degree (FOMD): compares the internal degree of vertices in
a community with the median degree dm of the graph to which the community



64 Chapter 4. Evaluating community structure

belongs. The FOMD is defined as the fraction of vertices in C that have internal
degree higher than dm. It implies a requirement that a good community must
have many vertices relatively more connected to than the majority of vertices
in the graph. It is calculated as follows:

f (C) =
|i : i ∈ C, |{(i, j) : j ∈ C}| > dm|

nC
. (4.5)

• Triangle participation (TPR): calculates the fraction of vertices in a community
that participate in at least one triadic closure with other vertices of the same
community. This metric reflects a characteristic usually observed in real world
communities where direct neighbors of a node are likely to be connected. It is
computed as:

f (C) =
|i : i ∈ C, {j, k ∈ C, (i, j) ∈ E , (i, k) ∈ E , (j, k) ∈ E} 6= ∅|

nC
. (4.6)

• Clustering coefficient (CCF): is a well-known metric to measure the transitivity of
community whose local version (at node level) has been mentioned in Section
2.2.2. The global version is calculated on the level of graph. The concept is
very close to that of the TPR metric. However, instead of measuring the actual
fraction of vertices participating in triangular connections inside a community,
it quantifies the fraction of triangles over the total number of such pattern that
could be established from the set of vertices of the community. Hence, the
clustering coefficient penalizes more heavily the expansion of a community by
getting weakly and locally connected vertices. Many variants of the clustering
coefficient exist, in the following analysis, we compute this metrics as follows:

f (C) =
∑i,j,k∈C Aij Ajk Aki

∑i,j∈C Aij Ajk
=

6 x Number of triangle
Number of paths of length two

(4.7)

• Hub dominance: reflects the notion of hub, authority or influencer in a network
or a community. Internal edges of a community can be distributed in various
ways around its vertices, either concentrating around a few numbers of highly
centralized ones or uniformly divided into every vertex. The hub dominance
metric is designed to identify the level of central organization around well con-
nected nodes. The higher the score, the more likely the community of interest
has a hub-like structure. Again, there are many way to define the notion of
hub dominance, we use the following presented by (Lancichinetti et al., 2010):

f (C) =
maxi∈Ckint

iC

nC − 1
(4.8)

External connectedness measures

• Expansion: computes the number of edges per vertex that point outside the
community. It reveals accessibility from one community to the others in a net-
work. The higher the expansion score, the more it is in contact with the rest of
network. In a common sense, a good community should be relatively isolated
and hence has a low expansion score, which is calculated as:
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f (C) =
lC

nC
(4.9)

• Cut ratio: measures the fraction of existing edges between a community and
the rest of the network to which it belongs over the total all possible of such
edges. The concept is similar to the internal density, but it characterizes the
external density. It is calculated as follows:

f (C) =
lC

nC(n− nC)
(4.10)

Hybrid measures

Many structural metrics combine internal and external connectivity factors to quan-
tify the quality of communities, i.e. they include both internal degree and external
degree in their calculation of goodness score. Some of commonly used are listed in
the following:

• Conductance: measures the fraction of total edge volume that point outside a
community C.

f (C) =
lC

2mC + lC
(4.11)

• Embeddedness: is defined as the ratio between the internal degree and the total
degree of a community. Actually it is the complement to one of conductance:

f (C) =
2mC

2mC + lC
(4.12)

• Separability: measures the ratio between internal connections and external con-
nections of nodes belonging to a community. This feature is based on the con-
cept that a good community could be well separated by a rupture in edges
distribution. This feature is quantified by the following function:

f (C) =
mC

lC
(4.13)

• Maximum ODF (Out Degree Fraction): is the maximum of the fraction of edges
connecting a vertex inside C to other vertices outside. A good community is
expected to have a low maximum value of out degree fraction.

f (C) = max
i∈C

kext
iC

ki
(4.14)

• Average ODF is defined similarly to the maximum ODF metrics, but instead of
taking the maximum value, the average ODF is taken:

f (C) =
1

nC
∑
i∈C

kext
iC

ki
(4.15)
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• Deviation ODF: is proposed to measure the variation of external connectivity
of vertices in a community to external vertices. The idea of this metric is to in-
vestigate how inter-community edges are distribute among vertices of a com-
munity. The difference in the distribution of external edges around boundary
vertices characterizes the interaction of the community to the rest of the net-
work. It is calculated as follows:

f (C) =
1

(nC − 1)
1
2

(

∑
i∈C

kext
iC

ki
− 1

nC
∑
i∈C

kext
iC

ki

) 1
2

(4.16)

We demonstrate in the next section that a combination of different structural
goodness functions could reveals interesting patterns in community structure
and could be used to evaluate ground truth communities as well as communi-
ties discovered by any detection method. Such combinations shed light on the
community structure in real world networks.

4.2 Meta-data structure in real-world networks

Evaluating a network partition by comparing it with a reference provides useful
information about the global fitness with expected structures. However, when the
reference community structure (ground-truth) is not well understood or chosen arbi-
trary according to the availability of meta-data, this approach could result mislead-
ing interpretation. In fact, although meta-data is commonly assigned as ground-
truth in order to justify the performance of community detection methods, its is
not always a good choice since they correspond to different aspects of networks.
While meta-data identifies different information about nodes and edges of a net-
work, ground-truth on the other hand is the expected structural community struc-
ture charactering the interaction between nodes. Recently, Peel et al. demonstrate
clear evidences about the uncertainty relationship between ground-truth and meta-
data, which arise different possible scenarios to be considered when a method fails
to find good division correlating to meta-data in a network (Peel, Larremore, and
Clauset, 2017). Specifically, it is important to understand the relation between meta-
data and network structure in order to appraise the appropriateness of using meta-
data as ground-truth. In this section, we introduce a novel method presented in
(Dao, Bothorel, and Lenca, 2017b) that allows one to expose structural information
of communities in a network partition in a comprehensive way. This method, al-
though simple, sheds light on the structure of meta-data affiliation groups in many
real world networks as well as provides a useful tool to evaluate communities de-
tected by different community detection methods.

4.2.1 Community anatomy via Out Degree Fraction

The idea behind quality goodness metrics is that given a partition, they indicate how
the component subgraphs fit their concepts of community. We present a methodol-
ogy that assist to analyze communities in networks based on the study of Out Degree
Fraction (ODF) (presented in Section 4.1.1) of vertices in communities of a partition.

Specifically, when evaluating community structure of a partition, it is very im-
portant to know how component communities interact with each other. Since ODF-
based measures quantify the internal and external participation of vertices within
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communities, they can be used to deduce whether a vertex is a boundary or an in-
ternal member of its community as well as the interaction of different communities
within a partition. Therefore, a statistical observation of ODF values of vertices in a
community can help classify communities into several structural archetypes.

We employ the average and the standard deviation of fraction of out degrees,
denoted by meanODF and sdODF, characterizing the amount of external interac-
tion and the distribution of external edges around boundary vertices respectively.
Remind that meanODF and sdODF scores of community C can be computed from
Equation (4.15), (4.16) as:

meanODF(C) =
1

nC
∑
i∈C

kext
iC

ki
(4.17)

sdODF(C) =
1

(nC − 1)
1
2

(

∑
i∈C

kext
iC

ki
− 1

nC
∑
i∈C

kext
iC

ki

) 1
2

(4.18)

A low meanODF value implies that vertices of the community under considera-
tion connect mostly with other vertices inside it while a high meanODF means that
vertices connect preferably to vertices in other communities rather than to the ones
in its own. We could refer low meanODF and high meanODF characteristics to as-
sortative and disassortative structure respectively. A medium value of meanODF in
this case signifies a hybrid structure of the community. Different classes characteriz-
ing community external interactions in function of meanODF and sdODF scores are
illustrated in Figure 4.1. Such that, for a given decomposition of a graph into com-
munities, locating the associated couple of values (meanODF, sdODF) could help to
describe the principle components of the community structure.

There are several goodness metrics that could be used to describe community
as introduced in Section 4.1. One might wonder why we chose the average and
the standard deviation of ODF values of vertices in order to describe a community.
In fact, each quality metric has its own meaning and reveals a different aspect of
community structure Yang and Leskovec (2013). Because the notion of community
also changes according to domains of application and analysis purposes, there is
actually no universal metric that can generalize the goodness of communities. Gen-
erally, one would expect a clustering where the majority of edges reside between
nodes in a same cluster while there are few edges that cross to other clusters. The
meanODF and sdODF are used together in order to describe the distribution edges
among nodes in an informative way.

4.2.2 Structural archetypes of communities

Following this line of argumentation, we classify communities into different struc-
tural groups based on their node orientations and their structure homogeneities.
Community structures in real networks are undeniably much more complex and
can not just only be described by meanODF and sdODF values. However, we are
going to show that this simplification helps to give a general view of networks by
qualifying community anatomy. Here, we suggest to classify communities into 6
following groups, which are illustrated in Figure 4.1:

• Conventional communities (S1 - low meanODF and low sdODF): This structure
corresponds to the traditional definition of community where the majority of
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FIGURE 4.1: Six representative structures that can be measured by
community’s nodes out degree fractions (meanODF and sdODF).
Blue edges represent intra-community connections and red edges
(stubs) represent inter-community connections. Dark background
zones in S4, S5, S6 structures illustrate a core-periphery arrangement
(Dao, Bothorel, and Lenca, 2017b) c©Springer International Publish-

ing AG 2017.

edges locate inside communities. Most of actual community detection meth-
ods are based on this notion. In addition, community’s out degrees are homo-
geneously spread over its nodes.

• Casual communities (S2 - medium meanODF and low sdODF): Modular struc-
ture is not very clear in this type of community since there is not a clear propen-
sity in node connections inside and outside of communities.

• Extrovert communities (S3 - high meanODF and low sdODF): This structure
exposes an explicit disassortative structure where members in a same com-
munity are not joined together generally, but rather connect with members of
other communities.

• Full-core communities (S4 - low meanODF and high sdODF): This group of com-
munities shows a striking similarity with ones of S1 structure since both pos-
sess relatively dense inner connections. The only distinction between S1 and
S4 structure is that S4 contains a few numbers of active connector nodes, which
attract most out links. These connectors form a peripheral zone, whereas the
other nodes constitute a core as illustrated in Figure 4.1.

• Half-core communities (S5 - medium meanODF and high sdODF): These com-
munities also display core-periphery structure, but there is not anymore a huge
dominance of core nodes over periphery nodes like that of in structure S4.

• Seed-core communities (S6 - high meanODF and high sdODF): Core-periphery
structure in this class of communities is degenerated or even disappeared since
out-bound connectors predominate in the whole community. Most nodes con-
nect mainly outside their community with a few exceptions. This structure
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Network N E C S µ̄ Community nature
Livejournala 4.0M 34.7M 664414 10.79 0.95 User-defined communities
Youtubea 1.13M 3.0M 16386 7.89 0.91 User-defined groups
DBLPa 0.32M 1.05M 13477 53.41 0.62 Publication venues
Amazona 0.33M 0.93M 75149 30.22 0.58 Product categories

a http://snap.stanford.edu/data/

TABLE 4.2: A summary of networks in used with meta-data com-
munities: N number of nodes (in millions), E number of edges (in
millions), C number of communities, S average community size, µ̄

average conductance of communities.

have many similarities with S3 structure and S5 structure and could be con-
sidered as a transition state of community evolution between S3 and S5.

Descriptive evaluation process

The following process helps to decompose network partitions into classes of struc-
turally similar communities. For a given network partition:

1. Compute meanODF and sdODF values over all communities (cf Section 4.2.1).

2. Present each community by its couple of values (meanODF, sdODF) to observe
the distribution of these quality metrics.

3. Choose thresholds for each quality metric in order to describe desired structure
qualities for communities.

4. Identify structure profiles of all communities based on a representative map
(cf Figure 4.1) defined from step 3.

Replacing meanODF and sdODF in step 1 by other couples of quality metrics
could also provide further structural information on community structures of net-
works under consideration. Based on contextual requirements or characteristics of
the dataset of interest, thresholds to be chosen in step 3 could be varied and must
not necessarily cover the whole range of score. In this latter case, the methodology
also serves as a filter to eliminate unqualified communities. In the next section, the
presented processes will be applied on well-known real-world network data with
meta-data information about vertex affiliation (usually used as ground-truth). This
description helps to complement structural aspect of meta-data community and in-
dicate how likely structural goodness could be improved in comparison to meta-
data by using community detection techniques on the network.

4.2.3 A descriptive evaluation of meta-data communities

We analyze undirected, unweighted networks with meta-data communities on SNAP
dataset (Leskovec and Krevl, 2014). These communities are overlapped and do not
cover the whole network, which means one node can belong to no community or
can be member of many communities at a same time. The community sizes, the
overlap sizes and the community memberships per node in these networks follow a
power-law distribution (Yang and Leskovec, 2013).

The dataset used in this analysis is summarized in Table 4.2. Among the four
networks, Livejournal network is an online blogging community where users declare

http://snap.stanford.edu/data/
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their friendships. Youtube network represents a social network on Youtube video
sharing website. DBLP computer science bibliography co-authorship network is
constructed in a way that two authors are connected if they published at least one
paper together. Amazon co-purchased network represents products which are fre-
quently bought together on Amazon website. A description of these networks and
measures on their ground-truth communities can be found in Table 4.2.

Our descriptive approach presented above could help to disclose more detailed
information about community composition of networks that using only one single
conventional quality goodness metric could not. Here, we take the average con-
ductance µ̄ (introduced in Equation (4.11)) as an example. This metric could tell us
a global score of community quality, but they can not distinguish many different
structures that exist simultaneously in networks. For instance, the average conduc-
tance µ̄ shows that there are above 90% of edges in Livejournal and Youtube that
cross communities, meanwhile these numbers are about 60% in DBLP and Amazon.
However, one could not gain more insight into the differences of community struc-
ture between Livenetwork and Youtube, or between DBLP and Amazon. In fact, by
using a two dimensional representation of community structure as introduced in the
process above, we disclose that community composition is very discernible in these
networks.
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FIGURE 4.2: The distribution of meta-data communities represented
by meanODF, sdODF scores. Each community in a network corre-
sponds to a point in the heatmap. The more communities found in
an area, the more the corresponding color moves toward a hot color.
Deep blue color corresponds to an absence of community. The dashed
lines represent thresholds between the 6 presented structures S1 to S6.

c©Springer International Publishing AG 2017.

Figure 4.2 presents the landscape of meanODF, sdODF values of all ground-truth
communities in the 4 networks. Since no discontinuous transition is found on the
distribution, we classify arbitrarily these communities into the 6 groups as presented
in Section 4.2.1 by choosing thresholds for meanODF at 0.3, 0.7 and for sdODF at
0.2. The landscape helps us to analyze the composition of ground-truth community
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structures in each network. We remind that the density landscapes in Figure 4.2
do not represent the networks themselves, but the community structures in these
networks.

Network S1 S2 S3 S4 S5 S6

Livejournal 0.29 0.74 90.17 0.31 3.88 4.61
Youtube 0.08 2.36 65.36 1.37 17.55 13.28

DBLP 6.28 2.07 4.87 23.44 57.86 5.48
Amazon 8.33 31.13 23.57 9.13 26.63 1.21

TABLE 4.3: The composition of communities in the 4 networks (in
percentage). Bold values indicate dominant structure(s) of commu-

nity class found on each network.

We can see that the structural patterns of communities within 4 networks are
totally distinct. Normally, one would expect that ground-truth communities in a
network have a quite similar structure, but the density landscapes in Figure 4.2 il-
lustrate a more mixture community composition. While in Livejournal and Youtube
networks, the majority of communities have a similar structure, those in DBLP and
Amazon networks vary in a much more larger range. Table 4.3 describes a global
composition of the 4 networks in terms of the 6 basic structural groups (S1 to S6). We
find that S3 structure occupies around 90% and 65% of communities in Livejournal
and Youtube networks respectively. This implies the fact that most users in these
networks usually have friendships outside their communities rather than inside. In
addition, there are many closely-knit members in Youtube network, who are not very
active outside their communities (S5 and S6).

In DBLP and Amazon networks, although there is aways a dominance of some
structures, we notice a more equilibrate repartition of communities over the land-
scapes. In the case of DBLP, nearly 60% of publication venues (S5) attract a variety
type of authors in term of cooperation profile. These communities could represent
traditional publication venues which gather at the same time high influence authors
and newcomers. Meanwhile, there is about 23.44% publication venues where pre-
sented just a few active eminent authors. In Amazon network, the high presence of S2
and S3 structures explains that products are more often co-purchased with ones of
other categories. Besides, there are also many miscellaneous product categories (S1,
S4, S5) which consist of a high portion of products that are mostly complemented
by ones in the same categories. Further analysis in natures and functionalities of
products need to be conducted in order to understand this commercial network.

Clearly, this descriptive decomposition of community structure exposes addi-
tional information that a single quality goodness metric, such as conductance, could
not be able to reveal. The issue raised here is that, on the contrary to the common
belief that real-world communities in social networks are normally assortative, dis-
assortative communities assigned by vertex labels are not very uncommon in prac-
tice (Dao, Bothorel, and Lenca, 2017b). Consequently, community structure deduced
from meta-data is not always suitable as ground-truth communities. In our specific
case, since it is expected that community methods must identify dense subgraphs,
there is even an inverse correlation between expected structure’s quality and meta-
data community structure’s quality. That is to say, meta-data communities usually
exhibit poor structural qualities that are normally not expected to be the outcome of
a community detection process. Hence, it is likely that using a community detec-
tion method will help to discover sub-graphs with better structural qualities. From
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that notice, we would like to go further to see how different community detection
methods could improve structural qualities. The next section is hence dedicated to
a quantification of different methods in improving some popular structural quality
notions. We will demonstrate that this quantification of structural quality improve-
ment provides useful information that helps to rank different methods in function
of their capacity to identify good communities according to some certain metrics.
Consequently, our study could also help to determine suitable community detection
methods to be employed in order to optimize a given quality.

4.3 A quantification of community quality improvement

In this section, we are interested in quantifying the performance of some popular
community detection methods in their capacity to identify good structural clusters.
We rely on the assumption that there exists communities whose structures are better
than “ground-truth”3. To avoid further confusion, we use the word meta-data instead
of ground-truth to describe communities identified in a semantic way in real-world
networks (for instance, authors participating to a publication venue, users showing
the same interest on a social network, etc.) as well as planted communities in syn-
thetic networks. The main idea of this analysis is to use meta-data communities as a
reference in a quantitative ratio as follows:

Suppose that a method M discovers nM communities in a network, which con-
tains n0 meta-data communities, we define a goodness ratio which quantifies the
improvement of quality feature Q promoted by method M by (Dao, Bothorel, and
Lenca, 2017a):

R(M, Q) =

[
∑

nM
i=1 gQ(Ci)

]
/nM[

∑
n0
j=1 gQ(Cj)

]
/n0

, (4.19)

where gQ is one of the goodness function representing quality Q presented in sec-
tion 4.1.1 of community C. This ratio can vary from zero to infinity. R(M, Q) = 1
indicates that the method M provides communities that are as good as meta-data
communities in terms of quality Q, while R(M, Q) > 1 and R(M, Q) < 1 implies an
enhancement and a degradation respectively. As some quality metrics show general
agreements in evaluating structural quality of communities (Yang and Leskovec,
2012), we only choose some representative goodness functions in our quantification
measured by Equation (4.19) to demonstrate the effectiveness of community detec-
tion methods as follows:

• Density: captures the idea that nodes in a community must be well connected.
It quantifies the fraction of edges inside C over the total possible edges which
could be established in C - Equation (4.2).

• Compactness: suggests that good communities should be at the same time dense
and easily reachable from nodes to nodes. This quality is calculated by the
fraction between number of internal edges and the diameter of community C
(Creusefond, Largillier, and Peyronnet, 2015) - Equation (4.4).

3In fact, the term ground-truth community is sometimes abused in the context of community de-
tection evaluation. When they are groups of nodes attributed by the same label(s), they can be called
meta-data communities.
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• Clustering coefficient: is a well-known metric which is used to evaluate com-
munity quality. It is based on the concept that pairs of nodes with common
neighbors are more likely to be connected - Equation (4.7).

• Community modularity: measures the difference between edges inside C and
the expected number of such edges in a random network with the same degree
distribution - Equation (A.1).

• Embeddedness: reflects how much the direct neighbors of a node belong to its
community. It is measured as the ratio of internal degree to the total degree of
a community. - Equation (4.12).

• Separability: is based on the concept that a good community should be well
separated by a rupture in edges distribution. This function measures the ra-
tio between internal connections and external connections of nodes inside a
community - Equation (4.13).

4.3.1 Network dataset with meta-data

Graph N E k̂ ᾱ CCF
zachary4 34 78 4.6 -2.2 0.26
football4 115 613 10.7 -9.1 0.41
polblog4 1222 16714 27.4 -3.7 0.23
youtube5 39841 224235 11.3 -2.8 0.06
livejournal5 84438 1521988 36.1 -2.4 0.77
dblp5 317080 1049866 6.6 -3.3 0.31
amazon5 334863 925872 5.5 -3.6 0.21
lfr1 5000 26836 10.7 -3.0 0.19
lfr2 10000 24617 4.9 -3.1 0.31
lfr3 25000 133429 10.7 -3.1 0.02
lfr4 100000 480978 9.6 -2.5 0.18
lfr5 100000 1056963 21.1 -2.5 0.06

TABLE 4.4: A description of dataset with meta-data in use. N - num-
ber of nodes, E - number of edges, k̂ - average degree of nodes, ᾱ -
estimated power law exponent of node degree sequence, CCF - clus-

tering coefficient.

In this experiment, we need to collect graphs with meta-data information, which
could be constructed from real world networks of synthetic networks. Hence, we
reuse graphs presented in Table 4.2. Besides, some synthetic networks with built-in
communities from LFR benchmark (Lancichinetti, Fortunato, and Radicchi, 2008) in
the second part. These synthetic networks are created in a way that their structural
parameters approach those of real-world networks as shown in Table 4.4 with corre-
sponding meta-data communities in Table 4.5. Specifically, node degree in networks
follows power-law distributions with exponent coefficients around −2.5. The aver-
age degrees are set from 5 to 20 to acquire relatively sparse networks. Besides, in
order to obtain a variety of community quality, the lfr1-lfr5 networks are configured
with mixing parameters µ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} which represents the probability
that an edge of a node is connected to nodes outside of its community.

4http://www-personal.umich.edu/ mejn/netdata/
5https://snap.stanford.edu/data/
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Graph C S A β̄ Meta-data
zachary 2 17.0 1.0 NA Membership
football 12 9.6 1.0 NA Team groups
polblog 2 611 1.0 NA Political alignment
youtube 5000 14.6 1.8 -2.2 Subscription
livejournal 5000 27.8 1.7 -2.8 Membership
amazon 75149 30.2 6.8 -2.1 Product categories
dblp 13477 53.4 2.3 -3.1 Publication venues
lfr1 515 13.6 1.4 -3.1 Planted groups
lfr2 1473 6.8 1.0 -3.3 Planted groups
lfr3 3002 21.7 2.6 -2.1 Planted groups
lfr4 9434 13.1 1.2 -2.5 Planted groups
lfr5 4729 21.2 1.0 -2.6 Planted groups

TABLE 4.5: A description of structural information of meta-data
groups. C - number of communities, S - average community size, A -
community membership per node, β̄ - estimated power law exponent

of community size distribution

4.3.2 Experimental results

Method Section Sep Emb Den Com CCF Q
Fast greedy 3.2.3 6.18 1.46 2.79 1.79 0.99 2.71
Louvain 3.2.3 11.01 1.50 2.68 6.02 0.94 12.67

Infomap 3.2.5 2.24 1.26 3.34 0.96 0.90 0.75
Walktrap 3.2.5 1.87 1.19 3.35 0.78 0.93 0.65
Oslom 3.2.6 1.69 1.10 1.29 1.21 1.05 0.83
Label propagation 3.2.7 2.72 1.40 1.84 1.15 1.11 1.06
Speaker-Listener LPA 3.2.7 5.34 1.39 2.54 1.19 1.03 0.84
Conclude 3.2.7 1.42 1.13 2.52 0.72 1.33 0.63
Average ratio 4.06 1.30 2.54 1.73 1.03 2.52

TABLE 4.6: Average goodness score ratios on real-world networks.
Ratio between average structural goodness scores of detected com-
munities over those of meta-data communities calculated based on
equation (4.19). Sep - separability, Emb - embeddedness, Den - density,
Com - compactness, CCF - clustering coefficient, Q - cluster modularity,
Avg - average quality improvement score. The best method of each qual-

ity is written in bold.

We measure all goodness scores of all communities detected by each method and
calculate goodness ratios based on Equation (4.19). The average ratios are showed in
Table 4.6 and 4.7 for real-world networks and synthetic networks respectively. Each
row corresponds to a method and each column corresponds to a goodness metric.

Surprisingly, we observe a significant quality improvement in most methods
and goodness metrics, even in synthetic networks where it is widely believed that
planted communities are the best decomposition to be found, there are still improve-
ments of many qualities in general. This phenomenon is explainable since LFR
benchmark only create communities based on a mixing parameter condition which
is not always preferred by all goodness functions. Hence, it is generally possible to
get higher goodness scores just by some simple actions such as merging, dividing
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Method Section Sep Emb Den Com CCF Q
Fast greedy 3.2.3 1.94 1.22 0.35 14.97 0.80 36.70

Louvain 3.2.3 1.57 1.21 0.09 7.10 0.73 26.62
Infomap 3.2.5 1.22 1.08 0.95 0.99 0.98 1.00
Walktrap 3.2.5 1.22 1.07 1.27 0.79 1.04 0.83
Oslom 3.2.6 1.10 1.04 0.86 1.13 0.97 1.25
Label propagation 3.2.7 1.20 1.64 0.88 0.87 0.87 0.79
Speaker-Listener LPA 3.2.7 1.14 1.04 1.04 0.84 0.96 1.03
Conclude 3.2.7 1.00 0.97 1.26 0.76 1.22 0.77
Average ratio 1.30 1.16 0.84 3.43 0.95 8.62

TABLE 4.7: Average goodness score ratios on synthetic networks. The
abbreviations are reused from Table 4.6.

communities, etc. However, we can see in Table 4.7 that no method can improve
all goodness scores of synthetic communities at the same time. Each method will
indeed improve some goodness scores while reduce some others in a proportionate
manner as can be observed in Table 4.6 and 4.7.

Importantly, it can be seen that the average improvement of goodness scores in
real-world networks is generally higher than that of in synthetic networks. This
is completely reasonable since meta-data communities in synthetic networks are
planted based on many topological conditions while meta-data communities in real-
world networks are often chosen by semantic meanings, functional criteria or some-
times in a subjective way. As a consequence, there is obviously less correlation be-
tween meta-data communities and structural communities in real-world networks.
For this reason, community detection algorithms could ameliorate more remarkably
structural goodness scores of real-world meta-data groups.

Density is the only goodness metric that shows a global degradation in synthetic
networks. Though, it is totally explainable since the link density of a subgraph C is
measured by the ratio between the number of links inside C and the total number
maximum of links that could be formed, which is nC(nC − 1)/2. While link den-
sity increases linearly with the size of C in sparse graphs, the number of possible
links increases quadratically. So it is clear that density favors small communities in
general. Since synthetic community sizes follow power-law distributions with high
exponent coefficients, there are plenty of tiny communities in synthetic networks.
This explains why density is not often improved. Walktrap is always the method that
identified the most dense sub-graphs in two cases (real-world networks and syn-
thetic networks) due to a large number of small communities in comparison to the
other methods. Other analyses in Chapter 6 will clarify more on this point.

Since both metrics separability and embeddedness are both built on the notion that
good communities have relatively higher number of internal edges than number of
external edges, one can remark that there is a correlation between these two metrics
throughout all methods in both cases. Compactness favors short diameter communi-
ties where nodes are easily accessible from one to another. This conception explains
why methods that discover nodes of networks in a local manner such as Louvain, Fast
greedy usually improve significantly this goodness feature. Even though communi-
ties detected by these methods are normally very large, the associated diameters are
often upper-bounded.

Modularity is the most atypical among the studied metrics as it is improved more
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significantly in synthetic networks. Since modularity is designed as an accumula-
tive function, it can be misbehaved by using a ratio between two averaged cluster
modularity (i.e the standard modularity is measured as a sum over all communi-
ties of a partition). Unsurprisingly, it is not unpredictable to see that modularity
optimization-based methods such as Fast greedy and Louvain enhance remarkably
this metric. Our experiments confirm that methods detecting larger communities
are likely to obtain higher modularity values, as also shown in the well-known res-
olution limit problem (Fortunato and Barthelemy, 2006).

4.4 Conclusion

In conclusion, we demonstrate in Section 4.3 a detailed quantification showing how
good communities discovered by some popular detection methods in comparison to
meta-data communities in terms of six well-known quality functions. Our findings
reinforce the result presented in Section 4.2 showing that real-world communities
are not structurally dense in most cases. Specifically, many real-world communities,
such as user-defined groups in Livejournal or Youtube as presented in Table 4.2 are dis-
assortative, i.e. there are normally more edges connecting nodes of different groups
than edges connecting nodes of the same group (defined by node label). Since the
functionality of any community detection method is searching for relatively densely
connected sub-graphs, it is very likely that quality scores favouring dense structures
could be augmented. Consequently, using disassortative (or unknown) community
structure as ground-truth in order to validate a community detection method will
probably result in misleading conclusions. Therefore, a pre-analysis of real-world
community structure is necessary in case that it is used as an expected outcome.
Otherwise, synthetic networks with planted communities should be used in the val-
idation of a community discovery method. Also, it is better to verify the outcome of
a method by several quality functions since the improvement of a quality could be a
predictive signal of the deterioration of another quality. Among all methods that we
analyzed, no one exhibits permanently good results in all cases (quality functions)
and inversely, no one exhibits bad results in all cases. That is the reason why deter-
mining an expected objective function is a very essential presumption that help to
choose well performed methods. Based on this notice, our results presented in Sec-
tion 4.3.2 provide a global reference demonstrating the performance of some popular
community detection methods that could assist network practitioners in deciding el-
igible methods according to their quality criteria. Finally, the analyses in this chapter
can lead us to some brief conclusions:

• Meta-data communities (node attributes) in real-world networks are not al-
ways structurally good. Hence using them as ground-truth in the evaluation
of community detection algorithms needs to be performed with caution. Fur-
ther processes to analyze the correlation between meta-data and structure in-
formation need to be conducted. (Peel, Larremore, and Clauset, 2017) propose
some interesting approaches.

• In many case, some algorithms could identify communities that structurally
better than meta-data communities, even in synthetic benchmarking networks
(LFR). However, an improvement of some qualities could also imply a diminu-
tion in some other qualities. It means that if one knows exactly what kind of
structure she or he needs to find in her or his network, it is possible to find a
method that can perform better than ground-truth information.
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• Some algorithms may perform better in optimizing some certain qualities. For
instance, Louvain method finds significantly high modularity’s structures and
Walktrap tends to choose small and dense communities, although they both
use the same objective function (modularity) at their final step. Hence, looking
only at final objective function could lead to undesired outcomes.

Besides, our finding showing that meta-data communities are not structurally
good raise a necessity to interpreting and characterizing structural communities
identified by different community detection methods. This characterization is im-
portant in the sense that it helps to understand structures that can be obtained by
using community detection algorithms as well as how can we model community
structure. This content will be the main focus of Chapter 5.
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Chapter 5

Characterizing community
structure

In this chapter, we focus on characterizing structural communities obtained by us-
ing different community detection methods in Section 5.1. Specifically, we reintro-
duce some notable community quality topological metrics that help to characterize
community structure in Section 5.1.1. Then, Section 5.1.2 introduces the dataset con-
taining networks of different categories that will be analyzed in this chapter as well
as in Chapter 6. Next, Section 5.1.3 demonstrates a pre-analysis of these topologi-
cal metrics based on structural communities detected on the presented dataset. This
pre-analysis provides guidance information to select representative metrics charac-
terizing community structures. We describe in Section 5.1.4 some popular interac-
tion patterns of nodes found in structural communities by using a combination of
two representative metrics. In Section 5.1.5 these interaction patterns are matched to
well-known network models of the literature. Finally, Section 5.2 illustrates an as-
sociation between networks of some well-studied categories with the characterized
structures and models.

5.1 Structural community characterization

In the previous section, we unravel structural information of real-world communi-
ties in some large-scale networks assigned by different node labels. Our analysis
show that community detection techniques can identify sub-graphs with substan-
tially improved internal degree fraction, meaning that they detected significant com-
munities. However, we desiderate to go further. It is worth exploring community
structures in an in-depth analysis to answer the intriguing question: "What do struc-
tural communities in real world networks look like?" or, "Is there any significant difference
between structural communities across network categories?". Therefore, we are interested
in characterizing structural communities in several real world network categories. It
is expected that a well understanding of community structures could help network
analysts to discern different types of community that could be found on their net-
works. Furthermore, the insight into community structure may guide for a good
conception of detection mechanism or lead to appropriate choices of community de-
tection technique (Dao, Bothorel, and Lenca, 2018a).

We focus on the evaluation of structural communities, which means communi-
ties are distinguished by interaction between their nodes through edges but not by
contextual information neither network meta-data. One could criticize this approach
since it is also possible that real communities in networks are not structurally good
but yet well cohesive according to a more natural sense of community. This remark
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is logical whilst invalid since community detection methods are designed to cap-
ture structural organization of networks, not community in a wide sense1. Addi-
tionally, a generic analysis using only interaction information enables a comparative
approach to contrast communities throughout different network categories, which
are not allowed by sophisticated approaches using contextual information.

5.1.1 Topological metrics

We propose to use structural metrics to characterize community structure on differ-
ent networks. Some of them are introduced in Section 4.1.1 as a tool to compute the
goodness of communities. In this part, we proceed an analysis on different metrics
in order to choose suitable ones that can efficiently distinguish and describe vertex
interactions in communities. Since it is not expected that a finite set of structural
features could fit every intuition of community and the choice of any set of metrics
would be adversarial unless a specific context is clearly defined under a constrained
circumstance. We restrict our list of quality metrics of interest in the analysis by
applying the following criteria from the highest to the lowest priority:

• Since we are characterizing communities in different types of networks, we are
only interested in metrics which delineate communities themselves, not based
on a hypothesis that they are created from a network model nor relative re-
lation with the global structure of the network where they are found (such as
Cut ratio which depends on the number of vertices of the whole graph; dif-
ferent variants of modularity impacted by null models; or Description Length
resulted from a dynamic process on a global scale) even though their efficiency
in identifying meaningful community structures has been proven.

• Potential metrics for the analysis must be relatively uncorrelated from one to
another throughout a wide range of networks in order to illustrate different
aspects of structural characteristics. Some metrics could be very similar in their
concepts, hence have high mutual information. Only one representative will
be analyzed in this case.

• A metric whose concepts can be represented intuitively and visually in order
to describe most distinguishable characteristics is preferable than a metric that
reflects statistical ideas which are difficult to be presented by simple topolo-
gies. Therefore, in order to characterize community structure, we restrict our
analysis on topological metrics.

Following the previous indications and some preliminary analysis to keep the
characterization in control, we selected some topological metrics introduced in Sec-
tion 4.1.1 and remind their topological meanings as follows:

1. Metrics based on internal edge density

1.1. Density (Equation 4.2): captures the idea that nodes in a community must
be densely connected wherever possible. It quantifies the fraction of edges
inside a community over the total possible edges that could be estab-
lished.

1Actually, they are more commonly used to deduce "real communities" or predict missing meta-data
information with some assumptions about their correlations.
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1.2. Scaled density (Equation 4.3): is a kind of normalized density which is de-
fined as the density of the community multiplied by community size. This
normalization is usually applied to palliate an issue due to the fact that the
number of edges in a sparse network increases linearly with its size, how-
ever the number of possible edges increase quadratically. It is believed to
reflect better edge density concept in real world networks (Lancichinetti
et al., 2010).

2. Metrics based on centralized/hub structure

2.1. Hub dominance (Equation 4.8): Internal edges of a community can be dis-
tributed in various ways around its nodes, either concentrating around a
few numbers of high centralized nodes or uniformly divided into every
node. The hub dominance metric is designed to identify the level of cen-
tral organization around well connected nodes. The higher this metric of
a community, the more likely it has a hub-like structure. Hub dominance
can be considered as a normalized version of degree centrality introduced
in Section 2.2.2.

3. Metrics based on triadic structure

3.1. Community clustering coefficient (Equation 4.7): reflects the probability that
the adjacent vertices of a vertex are connected. This is a well-known
metric which is usually used to evaluate modular structure in networks.
It is based on the concept that pairs of nodes with common neighbors
are more likely to be connected (Watts and Strogatz, 1998), (Barrat et al.,
2004).

3.2. Triangle partition ratio (Equation 4.6): measures the fraction of nodes in a
community that participate to at least a triadic structure. It is used to mea-
sure the quality of communities, as it is expected that in good communi-
ties, most of nodes must cohesively connected to each other and establish
compacted structure.

4. Metrics based on external connectivity

4.1. Expansion (Equation 4.9): measures the number of edges per node that
point out side a cluster. It represents the relative out degree of a cluster
over its size. The higher the expansion of a community, the stronger the
its connection with the rest of the network.

4.2. Conductance (Equation 4.11): represents the fraction of degrees of a com-
munity that points outside over the total of its degrees. The conductance
reveals how much the direct neighbors of a node in the community be-
long to neighborhood communities. Leskovec et al. show that finding a
configuration in networks that minimizes the conductance of communi-
ties helps to identified good network community profile (Leskovec et al.,
2008).

4.3. Average Out Degree Fraction (Equation 4.15): indicates the average of out
degree fraction of nodes in a community, a low value implies that nodes in
the community connect primarily with other nodes inside the community
while a high value means that nodes connect preferably to nodes in other
communities rather than to the ones in its own.
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4.4. Maximum Out Degree Fraction (Equation 4.14): reflects the maximum of
fraction of edges of a node in a community that connect to the external
nodes. This metric helps to quantify the interaction of the most active
node of a community with the rest of the network.

We conduct an empirical analysis in order to understand how topological metrics
are correlated in practice. Since our objective in this part is to characterize different
modular structures that could potentially be identified on real-world networks, we
employ community detection techniques as a tool to discover communities. The
following analysis is based on a premise that community detection methods allow
to discover modular structures of networks. The partitions provided by clustering
methods are supposed to yield a low granular structures inside communities. By
examining the these structures, we are inspecting how nodes in complex networks
constitute communities, how are they connected and is there any difference in the
way that they interact in different networks.

We chose a few numbers of methods presented in Section 3.2 whose perfor-
mances have been proven in the literature in order to examine different structural
metrics. The only criterion we take into account is that these methods use different
approaches to discover communities. These methods are used to detect communities
in a large network dataset, which will later serve our analysis of metrics. Detection
methods used in this section are resumed in Table 5.1. While the edge betweenness
method (Girvan and Newman, 2002) is based on edge centrality detection in order to
break networks into several communities; the Louvain method (Blondel et al., 2008)
optimizes local modularity by iteratively folding nodes into meta-nodes; the label
propagation (Raghavan, Albert, and Kumara, 2007) determines the community of
a node by considering the memberships of its neighbors; and the Infomap method
(Rosvall and Bergstrom, 2008) relies on finding a configuration that maximizes the
compression of a random walks represented by an encoded binary sequence. Of
course one could argue that by using only a few numbers of methods, it is likely
that some kind of structures are not well covered in the analysis. Although it is a
very pertinent requirement, within this study, the authors find that the utilization
of some representative methods could already help to reveal substantially many in-
teresting community structures. Further analysis with other discovery approaches
could probably disclose many other interesting patterns.

5.1.2 Categorized network dataset

In this section, we describe some statistical properties of networks that will be in-
cluded in the following analysis. It is expected that networks in each category are
spread in a wide range of structural measures. However, available biological net-
works that have been published and analyzed widely are relatively small in com-
parison to the other networks of the other families. Besides, due to the complexity
of the analysis process, we limit the domains of interest at 5 categories which are
commonly researched and where numerous networks are available. The number of
networks considered is 108 which is relatively large in comparison to many stud-
ies. Many notable related work where some of these networks are also employed to
study community structure could be mentioned for a quick reference: Orman et al.
use 6 networks to evaluate the structure of communities discovered by several detec-
tion techniques (Orman, Labatut, and Cherifi, 2012); Lancichinetti et al. use 15 net-
works to characterize structural communities (Lancichinetti et al., 2010); Hric et al.
use 16 networks to reveal differences between structural communities and ground
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Method Approach Reference

Edge betweenness Edge centrality detection Girvan and Newman,
2002

Fast greedy Modularity optimization Clauset, Newman, and
Moore, 2004

Louvain Multilevel modularity Blondel et al., 2008
Spectral Vector partitioning Newman and Girvan,

2004
Walktrap Dynamic distance Pons and Latapy, 2005
Infomap Information compression Rosvall and Bergstrom,

2008
Label propagation Topological closeness Raghavan, Albert, and

Kumara, 2007
Spin glass Energy model Reichardt and Born-

holdt, 2006

TABLE 5.1: A summary of community detection methods used to
study community structure in our analysis. They are used as a tool to
identify latent modular structures hiding in a large network dataset.

truth (Hric, Darst, and Fortunato, 2014) ; Leskovec et al. use over 100 networks
to analyze network community profile (Leskovec et al., 2008) and 230 networks to
evaluate the goodness of ground-truth communities in social networks, within this
number, 225 samples of the Ning online social networking platform’s networks2 are
aggregated (Yang and Leskovec, 2013). Table 5.2 resumes the composition of net-
works that have been analyzed in this section.

Some notable structural measures of networks in the dataset are illustrated in
Figure 5.1. It is noticeable that apart from biological networks which are relatively
small, the other classes cover quite a wide range of number of nodes, edges, mean
degree, clustering coefficient and edge density. Since real world networks are rel-
atively sparse, the number of edges increase linearly in function of the number
of nodes and consequently, the edge densities decrease linearly by the number of
nodes (since the number of possible connections increase quadratically by the num-
ber of nodes in a community). This sparsity property can be easily noticed from
Figure 5.1(a,d). Specifically, the number of edges increases linearly in function of
the number of nodes with equivalent rates among different network categories as
can be deduced from the gradients of the linear estimates. From Figure 5.1(b), it
can be seen that the average degree of the networks in the dataset varies principally
between 1 and 100 edges per node except for 2 communication networks. Also, the
majority of networks has an average degree of approximately from 10 to 20 connec-
tions. In a global point of view, networks in the dataset have a quite strong modular
quality since most of them have relatively high clustering coefficient as shown in
Figure 5.1(c).

5.1.3 Choosing representative topological metrics

In other to characterize structural communities in different types of networks, we
apply various community detection methods on the dataset grouped by network
category. Once communities are produced, the topological metrics are used to in-
vestigate the structure of detected communities. Since many metrics reflect close

2https://www.ning.com/
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Category Size Nodes Edges Notable networks

Biological 7 1860 10763 Protein, yeast
Communication 9 39595 195032 Email, forums
Information 25 38358 159812 Citation, Amazon
Social 37 6888 49666 Facebook, Youtube
Technological 19 18431 48494 Internet, P2P
Miscellaneous 11 4298 49033 Ecology, synthetic
Total∗ 108 1.99M 9.08M

TABLE 5.2: A summary of network dataset used in this analy-
sis where Size is the number of networks analyzed in each cate-
gory, Nodes and Edges indicates the average number of nodes and
edges of networks in each category respectively. ∗The last row
shows the total number of networks, nodes and edges in the whole
dataset. This dataset is collected from several sources including:
http://networkrepository.com (Rossi and Ahmed, 2015), http:

//konect.uni-koblenz.de (Jerome, 2013), http://snap.stanford.
edu (Leskovec and Krevl, 2014)
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structural properties, we analyze the correlations between the corresponding qual-
ities on the detected community sets. This analysis allows to select only the most
representative structural metrics to delineate community structures.

Figure 5.2 illustrates the correlation matrices of different structural qualities mea-
sured on various community sets identified by the set of community detection meth-
ods in Table 5.1 over 5 classes of networks and the whole dataset in Table 5.1. Only
communities whose sizes are at least 3 nodes are taken into consideration in the fig-
ure since many metrics are meaningless for too small communities (which contain
one or two nodes). It is important to note that although some statistical metrics are
only significant when measuring on large communities, the corresponding correla-
tion matrices for large scale communities resemble globally with those of Figure 5.2.
Specifically, a calculation using only large communities of more than 10 nodes gives
quite similar and consistent correlation scores. The employment of representative
some certain quality metrics can be globally justifiable on the whole range of com-
munity size scales.

As we can see in Figure 5.2, there are two groups where metrics are consistently
correlated from one to another. The first group includes maxODF, meanODF and con-
ductance which represent community external connection with very high correlation
coefficients (except for maxODF and meanODF in information networks with a rela-
tively weak relation of 0.51). Besides, the expansion metric also belong to this group
in technological, information and biological networks with high correlation scores
and more loosely in the other types of networks. The second group consists in TPR
and CCF which expose triadic tight-knit structures and are observed with very high
correlation scores in every case of network category. The lowest correlation score be-
tween TPR and CCF is reported at 0.81 in information networks and approximately
around 0.90 in all the other cases. Without loosing the generality, in our analysis,
these 2 groups of metrics could be reduced to two representative metrics represent-
ing these two kinds of structural properties.

Hub dominance (hub_dom) is the only metric who is quite independent of all
metrics in the two previous groups in every network category. The highest absolute
correlation score between hub_dom with these metrics is 0.42 with maxODF in social
networks, which is still a relative low correlation. This latter, however, is generally
correlated with density except for the case of communication networks where they
are quite orthogonal. In the mean while, scaled density (sc_den) shows an inconsis-
tent association throughout the studied network categories. It is close to CCF and
TPR in biological networks but approaches expansion in social networks.

Based on this analysis, the above community quality metrics can be grouped in 6
classes that are presented in Table 5.3 according to their correlations over the studied
dataset. In other words, these quality metrics are more correlated with ones in the
same groups than with the others. Consequently, it is preferable to describe com-
munity structure using a cross combination of metrics in these groups. We present
in the following section a characterization of internal community structure by a de-
scriptive approach using an association between metrics in 2 different groups. Then
we demonstrate by empirical evidences that our approach helps to recognize differ-
ent community structures in communication, information, technological, biological,
social, ecological and synthetic networks.

In fact, Figure 5.2 discloses that internal and external structures of communities
are generally not related in structural communities. Meaning that having informa-
tion about community internal structure would not provide much information about
the external structure and how communities interact. They reflect different facets of
community structure in networks. In Section 4.2, we used two external topological



86 Chapter 5. Characterizing community structure

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
m

ax
O
D
F

m
ea

nO
D
F

co
nd

uc
ta

nc
e

ex
pa

ns
io
n

hu
b_

do
m

de
ns

ity

sc
_d

en

TPR
C
C
F

maxODF

meanODF

conductance

expansion

hub_dom

density

sc_den

TPR

CCF

Communication

1 0.75

1

0.87

0.9

1

0.27

0.42

0.38

1

-0.25

-0.15

-0.11

-0.08

1

-0.66

-0.3

-0.47

-0.06

0.32

1

0.02

0.02

-0.04

0.4

-0.25

0.04

1

0.28

0.31

0.21

0.28

-0.38

-0.15

0.26

1

0.18

0.29

0.16

0.32

-0.23

-0.01

0.31

0.87

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
m

ax
O
D
F

m
ea

nO
D
F

co
nd

uc
ta

nc
e

ex
pa

ns
io
n

hu
b_

do
m

de
ns

ity

sc
_d

en

TPR
C
C
F

maxODF

meanODF

conductance

expansion

hub_dom

density

sc_den

TPR

CCF

Technological

1 0.7

1

0.83

0.83

1

0.73

0.77

0.84

1

-0.41

-0.19

-0.21

-0.39

1

-0.34

0.04

-0.05

-0.13

0.58

1

-0.04

-0.11

-0.17

0.1

-0.16

-0.07

1

-0.17

-0.14

-0.24

0

-0.11

0.12

0.48

1

-0.21

-0.13

-0.24

-0.03

-0.05

0.24

0.43

0.93

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
m

ax
O
D
F

m
ea

nO
D
F

co
nd

uc
ta

nc
e

ex
pa

ns
io
n

hu
b_

do
m

de
ns

ity

sc
_d

en

TPR
C
C
F

maxODF

meanODF

conductance

expansion

hub_dom

density

sc_den

TPR

CCF

Information

1 0.51

1

0.64

0.88

1

0.57

0.61

0.69

1

-0.25

0.18

0.18

0

1

-0.39

0.2

0.05

-0.1

0.71

1

0.05

-0.08

-0.13

0.38

0

0.02

1

-0.08

0.06

-0.07

0.14

0.23

0.35

0.4

1

-0.23

0.12

-0.04

0.06

0.41

0.71

0.32

0.81

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
m

ax
O
D
F

m
ea

nO
D
F

co
nd

uc
ta

nc
e

ex
pa

ns
io
n

hu
b_

do
m

de
ns

ity

sc
_d

en

TPR
C
C
F

maxODF

meanODF

conductance

expansion

hub_dom

density

sc_den

TPR

CCF

Biological

1 0.7

1

0.84

0.85

1

0.63

0.6

0.72

1

-0.32

-0.06

-0.07

-0.16

1

-0.39

0.03

-0.12

-0.23

0.69

1

-0.16

-0.3

-0.37

0.11

-0.21

-0.17

1

-0.42

-0.4

-0.52

-0.13

0.06

0.12

0.69

1

-0.48

-0.38

-0.51

-0.2

0.14

0.33

0.55

0.9

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
m

ax
O
D
F

m
ea

nO
D
F

co
nd

uc
ta

nc
e

ex
pa

ns
io
n

hu
b_

do
m

de
ns

ity

sc
_d

en

TPR
C
C
F

maxODF

meanODF

conductance

expansion

hub_dom

density

sc_den

TPR

CCF

Social

1 0.66

1

0.77

0.85

1

0.36

0.43

0.42

1

-0.42

-0.15

-0.18

-0.19

1

-0.46

0.03

-0.12

-0.13

0.6

1

0.08

0.05

-0.02

0.61

-0.17

-0.09

1

0.03

0.11

0

0.27

-0.07

0.2

0.35

1

-0.04

0.09

-0.03

0.16

0.04

0.36

0.21

0.94

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
m

ax
O
D
F

m
ea

nO
D
F

co
nd

uc
ta

nc
e

ex
pa

ns
io
n

hu
b_

do
m

de
ns

ity

sc
_d

en

TPR
C
C
F

maxODF

meanODF

conductance

expansion

hub_dom

density

sc_den

TPR

CCF

All networks

1 0.64

1

0.76

0.87

1

0.47

0.58

0.58

1

-0.32

-0.04

-0.04

-0.14

1

-0.45

0.01

-0.15

-0.14

0.65

1

-0.05

-0.11

-0.19

0.33

-0.03

0.06

1

-0.23

-0.16

-0.35

-0.05

0.11

0.38

0.36

1

-0.29

-0.11

-0.31

-0.08

0.24

0.63

0.31

0.9

1

FIGURE 5.2: The Pearson correlations of community topological met-
rics measured on the communities detected by the set of community
detection methods on the network dataset. These correlation are cal-
culated based on scores of metrics measured on communities that
contain at least 3 nodes. Metric correlations are analyzed by group of
networks in different domains. Quality metrics are presented in the
6 sub-figures in the same order for a comparative observation. Cor-
relation scores with low estimated significant levels (P-value > 0.01)
are reproduced in a blank background. maxODF/meanODF, hub_dom,
sc_den, TPR, CCF are shorten forms of maximum/average out degree
fraction, hub dominance, scaled density, triangle participation ratio

and community clustering coefficient respectively.
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Metrics Common concept

maxODF,meanODF,conductance External activeness
expansion External connectivity
hub_dom Centralized connectivity
density Internal edge density
sc_den Average internal density
CCF, TPR Internal triadic closure

TABLE 5.3: Groups of quality metrics that reflect different commu-
nity structure aspects. Two metrics belong to a same category if they
show a high correlation over the sets of structural communities. The
Common concept column precises common structural features that

members of each group reflect.

metrics to characterize different community archetypes and demonstrated commu-
nity composition in real communities. Consequently, in this section, we focus merely
on internal topology. However, the method is extensible for other choices as long as
the metrics of interest expose meaningful connection patterns.

5.1.4 A bivariate description of topological communities

In this part, we present a categorization of community structure in an intuitive way
to illustrate different modular structures detected in the network dataset. This can
be considered as an extension of our previous proposition in evaluating communi-
ties using a descriptive approach (Dao, Bothorel, and Lenca, 2017b) the for internal
aspect of community structure. We propose a categorization of modular structures
using a couple of representative goodness variables to reflect highlight structural
characteristics of communities in real world networks. Here, we focus on internal
community structure, i.e. density, sc_den, CCF, TPR and hub_dom, will be in the short-
list of interest.

Which metrics?

It is well-known that density have a weakness in describing communities of differ-
ent sizes since in real networks, the number of edges normally increases linearly
with its size (real networks are often sparse) but the number of possible connection
increases quadratically. As a consequence, the quality of large communities is usu-
ally under evaluated in comparison to small communities. Scaled density (sc_den)
palliates this issue by multiplying the density with the community size, so mathe-
matically its concept is very close with the average degree of a community which is
measured by 〈k〉 = 2mC

nC
. This metric reflects a very important feature of communi-

ties and is often used to evaluate community quality in a common sense. However,
given a specific value of scaled density, one have several ways to redistribute edges
inside a community in a manner that its internal topology changes crucially. In other
words, scaled density does not characterize community internal configuration of de-
gree. This is the reason why we do not use scaled density or traditional density to
represent community topology.

The clustering coefficient and the triangle participation ratio (CCF and TPR re-
spectively) are relatively close in their definition and it has been proved to be highly
correlated through the previous empirical analysis. They both reflect an important
topological feature by implying the concept that two arbitrary neighbors of a node
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in a community should be also connected. This idea is somehow relatively close
with the two variants of density since a network with high CCF, TPR scores is nor-
mally dense; however the opposite way is not always correct, which means a dense
network does not necessarily have many triangular connections. Here, we select
one metric among CCF and TPR to describe a common structural property called
transitivity. Depending on the topology of networks or communities under consid-
eration, one metric will work better than the other. On a same network, CCF score is
generally lower than TPR score and hence CCF has a better resolution for networks
where triangles are dense. On the the other side, TPR magnifies better topological
differences in networks where only a few triangles exist. A further investigation on
the dataset shows that there is approximately 90% of networks whose clustering co-
efficients are larger than 0.01 and this number is around 60% for a coefficient of 0.1
(see Figure 5.1(d)). This evidence leads to a preference of CCF over TPR to describe
the clique dominance characteristic since the networks of interest are quite dense.

Another topological dimension that we employ to describe communities is hub
dominance which is represented by hub_dom metric. Similarly to CCF and TPR, this
metric reflect a structural feature of edge organization in a network or community.
Specifically, it characterizes whether edges are distributed around one or a few mem-
bers of their community and make them becoming hubs of connection. We illustrate
in the next section that the combination two dimensions quantified by a couple of
values (CCF, sc_den) reveals distinctive topological structures that could help to get
insights on how communities in different networks look like.

Characterized topological community

After choosing two characteristics corresponding to two dimensions of community
quality space, we describe internal community structures in different locations of
this space. In order to maintain a clear distinction of representative topologies in dif-
ferent coordinates stays clear, we profile them in a coarse-grained description level.
Specifically, we considerate 4 fundamental coordinated zones corresponding to 4 un-
derlying topologies which are emphasized in Table 5.4. These classes of topologies
could be explained as follows:

Type Transitivity Hub dominance Topology

1 Low Low String-based
2 High Low Grid-based
3 Low High Star-based
4 High High Clique-based

TABLE 5.4: Four distinctive topologies characterized by Transitivity
(CCF) and Hub dominance (hub_dom). There is no clear boundary be-
tween high and low values in the two dimensions, it is to be speci-
fied in accordance with the context. The distinction is more clear for

medium and large size communities.

• String-based topology of a community is determined by low values of tran-
sitivity and hub dominance metrics. The low scores in these two representa-
tive dimensions regulate that there is relatively nearly no presence of clique
structure nor hub node. For large communities, there could be one or a few
hubs and cliques established, but not enough to dominate the global struc-
ture. These communities can be considered as a consequence of a ramification
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between several sub-strings which generate a few loops and hubs in their in-
tersections. String-based topologies could have a form that looks like chains,
braids, rings, etc. as shown in Figure 5.3(a) depending on the context.

• Grid-based topology can be recognized by high values of transitivity and low
values of hub dominance metric. The absence of hub nodes in the commu-
nity organization is probably the most common feature with the string-based
topology. Hence there is a homogeneity in the connection pattern between
nodes of the grid-based topology. Besides, a high value of transitivity imply
that the majority of nodes participate in tight-knit triangular structures which
could themselves, at the same time, be attached between one to another to cre-
ate larger and compacted structures. Grid-based communities generally have
large sizes since small ones are usually degenerated into strings, loops or hub
structures. In other words, grid-based structures are not recognizable by ob-
serving in a small scale or a local scale of communities. Popular topologies
of this family consist of lattice topology, partially mesh topology as shown in
Figure 5.3(b).

• Star-based topology which sometimes can be considered as tree-based topol-
ogy is probably one of the most popular structures in networks of many fields.
It can be perceived by low values of transitivity and high values of hub dom-
inance. A low transitivity indicates that there is not or very few cliques. On
the other hand, a high hub dominance value implies the occurrence of a “key
connection" which attracts many edges in its community to become a hub.
Some popular topologies which could be found in this class include: flake
structure with one central hub and several peripheral hubs; hierarchical tree
structure. There is actually a close relation between star-based/tree-based and
string-based topology such that in some contexts, a hierarchical tree could be
seen as a string and vice versa depending on the point of view. The essential
difference of these two topologies which can be observed from our representa-
tion space is that the more edge-attractive the hub(s) in a community, the more
it approaches the star-based topology. Note that in graph theory, a tree is an
acyclic connected graph. However, in this context, trees accompanied by a few
loops are classified in star-based topology unless loops dominate excessively
the global community structure. Some representative star-based topologies are
shown in Figure 5.3(c).

• Clique-based topology is quite common in small and very small communi-
ties but very rare in medium and large communities. It is recognized by high
scores of transitivity and hub dominance. A simple interpretation of this class
of topology is that every node must be connected with every other node of
its community in an ideal situation. In a more relaxed context, nodes are not
required to connect with all other nodes, but with a majority in order to estab-
lish a tight and compact structure. The clique-based topology is quite close to
the grid-based topology in many ways. The most notable difference between
them is that in a clique-based community, every node must be in the neighbor-
hood of the other nodes of the community (direct connection or by one/two
intermediate connections maximum), whether it is not necessary that every
node must be close to each other in grid-based topology. Some representative
clique-based topologies are shown in Figure 5.3(d).
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String-based
Transitivity: Low

Hub dominance: Low
(a)

Grid-based
Transitivity: High

Hub dominance: Low
(b)

Star-based
Transitivity: Low

Hub dominance: High
(c)

Clique-based
Transitivity: High

Hub dominance: High
(d)

FIGURE 5.3: Topology families, from left hand side to right hand side
(a) String-based, (b) Grid-based, (c) Star-based, (d) Clique-based. De-
pending on the context, one community can belong to different topo-
logical families according to specific criteria of analyst reflected by

their determination of frontiers between these families.

A community structure whose transitivity and hub dominance scores are medium
needs more investigation to be deduced. Since neither hub, clique nor random struc-
ture could dominate the whole community, its topology depends on the distribution
of hubs and cliques in the community. It can be composed of a mixture of different
component structures presented previously to become a homogeneous and more
complex topology. It can also be a simple attachment between various dissimilar
structures to establish a heterogeneous unit. In a point of view of dynamic commu-
nity’s evolution, communities in this class might be considered as being in a tran-
sition period between elementary structures. Alternatively, it could be a saturated
state where communities attain a certain diversity and remain their complex struc-
tures. Further extent researches are deserved to cover more exhaustive aspects of
communities in specific cases.

5.1.5 Locating network models in our topological space

Based on the idea that real networks and communities are constructed throughout
different mechanisms, their topologies could be in some ways mimicked by using
graph generative models. We attempt to locate networks created by popular graph
models of the literature in the presented space in order to match them with the most
resembling representative topology.

• Erdős-Rényi model (Erdős and Rényi, 1959) is among the first models pro-
posed to describe the generation of random graphs. In this models, two param-
eters are required to generate a graph which is a fixed number of vertices n
and a connection probability p between two arbitrary vertices (alternatively
the number of edges m). Each pair of vertices is then connected indepen-
dently of the other pairs with the probability p, which reflect the randomness
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Transi-
tivity

Hub dominance

Scale-free
BA model

Random
Erdos-Renyi model

Small-world
Watts-Strogatz model

Nearly-
completed

Grid-based 

Low

Low

High

High

String-based 

Star-based 

hub_dom = 1

hub_dom ~ 0

CCF = 1CCF = 0

Clique-based 

FIGURE 5.4: A categorization of internal community structure ac-
cording to two topological property dimensions: hub dominance and
transitivity represented by hub_dom and CCF respectively. Four repre-
sentative topological communities are exemplified in 4 coordinating
zones according to their corresponding (hub_dom,CCF) scores. The
borders between different topologies are usually not clear and can be
delineated according to the context. Characteristic community size
should be taken into consideration when separating characterized
zones since the bigger the community size, the more likely that hubs
and cliques become less significant, which means lower thresholds

will be more plausible.

property of the resulting graph. The expected number of edges and mean de-
gree of the graph is calculated by 〈m〉 = pn(n−1)

2 and 〈k〉 = p(n − 1) respec-
tively. The distribution of degree is binomial or Poisson for large graphs (New-
man, 2001b). If we set n and p parameters of the model in a way that the
model creates a random graph whose average degree approaches real net-
works: 〈k〉 = p(n− 1) = c > 1, where c is a constant and c ≪ n; the graph
will almost surely have a big component containing a large portion of vertices
and very small components of less thanO(log(n)) vertices. This configuration
produces vertices that have all around c > 1 connections. In this context, with-
out any further mentions, we refer to random graphs as ones created by this
configuration, whose average node degrees approach those of real networks.
Since a random network is constructed from a homogeneous stochastic mech-
anism, there is normally no hubs nor cliques which means low transitivity and
low hub dominance values. A typical random graph constructed with a small
value of p will have its largest component topology resembles the string-based
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topology as shown in Figure 5.3(a). In an extreme regime, when the probabil-
ity of connection p approaches 1, the associated random graph becomes nearly
complete as the average degree < k > approaches n − 1, which means every
vertex connects with almost every other vertex as illustrated in Figure 5.3(d).
The location of typical random graph’s topology in function of two dimen-
sions: transitivity and hub dominance is illustrated in Figure 5.4 in the bottom
left-hand conner which associates to low scores of CCF and hub_dom.

• Watts-Strogatz model produces networks with small-world property, which
normally means that any arbitrary pair of nodes can be connected through a
small number of intermediate nodes and the average geodesic distance grows
proportionally to the logarithm of the number of nodes n of the network:
L ∝ log(n). The model is built to characterize the observation that many
real world networks show this property of small path length connectivity and
highly clustered like regular lattices which implies a high presence of triadic
closures (Watts and Strogatz, 1998). The generation of a small world network
can somehow be considered as an interpolation between regular pattern net-
works and random networks. From a ring lattice with n nodes and k edges per
node, each edge is redistributed randomly with a probability 0 < p < 1. The
authors find that a small value of p reduce significantly the path length char-
acteristic of a regular network where nodes are only connected locally. This
can be explained as rewired edges create shortcuts between remote areas of
the network and hence reduce considerably network characteristic distance. A
typical small-world network can be described using an intermediate value of
p, so that the distance of two arbitrary nodes are very small, the clustering co-
efficient stay high since the random perturbation is not strong enough to break
the local structures of nodes in the lattice ring. Besides, the shape of the degree
distribution in the network is quite similar to that of a random graph where
every node has around k neighbors and there is normally no hub dominance
phenomenon. The topology of a typical small-world network is relatively ho-
mogeneous and looks like a grid-based topology from a local observation as
shown in Figure 5.3(b). The location of its topology in function of two dimen-
sions: transitivity and hub dominance is illustrated in Figure 5.4 in the bottom
right-hand corner which associates to high CCF scores and low hub_dom scores.

• Barabási-Albert (BA) model (Barabási and Albert, 1999) is originated from
a discovery that the distribution of vertex degrees in many real world net-
works such as: genetic networks and World Wide Web networks, are quite
heterogeneous. Specifically, vertex connectivity follows a power-law distribu-
tion, which means the probability that a vertex connecting to k neighbors in its
network equals p(k) = Ck−α where the constant C is fixed by a normalization
requirement and α is the power-law coefficient. This coefficient varies between
2 and 3 in many networks where the degree sequences are estimated to fol-
low this model. Networks possessing this statistical feature are called scale-free
by Barabási et al. to highlight the scale invariance property. This feature is
explained by the authors as a consequence of two main mechanisms: firstly,
networks expand gradually by attracting new vertices to existing ones; sec-
ondly, these new vertices have a tendency to attach preferentially to vertices
that are already well connected. That is why this model is often known as
preferential attachment model, implying that the more connected a vertex, the
more likely it receives new edges. This mechanism makes scale-free networks
hub-profuse since “richer nodes get richer", and hence hub dominance values
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of scale-free networks are usually high. On the other hand, the associated
clustering coefficients are usually low and are decayed quickly in function of
network sizes (Klemm and Eguíluz, 2002), (Fronczak, Fronczak, and Hołyst,
2003), which means low transitivities. Consequently, typical scale-free net-
works have a close structure with that of star-based topologies as depicted
in Figure 5.3(c). The location of scale-free networks in function of two dimen-
sions: transitivity and hub dominance is illustrated in Figure 5.4 in the top
left-hand corner which associates to low CCF and high hub_dom scores.

5.2 Community profiles in different network categories

In this section, we show empirical evidences to associate structural communities
in real world networks with corresponding topologies determined by the bivari-
ate representation. In order to do that, first CCF and hub_dom quality scores are
calculated over the whole set of communities detected on the network dataset by
the presented algorithms. Later, these communities are located in the characterized
space in function of their couples of values (CCF,hub_dom) which represent transi-
tivity and hub dominance respectively. The distribution of communities on this two
dimensional space helps to match the most corresponding topologies with each set
of communities thanks to the topology characterization presented in the previous
section. Since it has been noticed that some structural characteristics might differ
between small communities called micro-communities and large communities called
macro-communities (Lancichinetti et al., 2010), we proceed to analyze them separately.
Figure 5.5 delineates the distributions of small communities of 10 nodes or less in 6
different network groups including communication, technological, information, bi-
ological, social and miscellaneous networks as described in Table 5.2. The homol-
ogous distributions for large communities of more than 10 nodes are depicted in
Figure 5.6.

At a first sight, it is easy to remark that there is a much higher diversity of struc-
tures at the large scale communities than at the small scale communities as the distri-
butions are much more expanded over the space in the former case. It is reasonable
since there are much more possibilities how nodes can be connected in a large com-
munity than in a small one. Hence large communities’ structures are more distinc-
tive and at the same time more complex. Specifically, most of small communities are
found around two axis where CCF = 0 or hub_dom = 1, especially at their crosspoint
where CCF = 0 and hub_dom = 1. It means star-based and hub dominated struc-
tures are very well representative for small communities of every network category.
On the other hand, grid structure is totally absent at this size scale, which is quite
predictable since it requires a large number of nodes for a grid to be formed. Addi-
tionally, the heavy-tail degree distribution recognized in many real world networks
make grids less likely to be established.

In information and miscellaneous groups, communities are much more rich in
structure comparing to the other categories at both scales. Concretely, besides star-
like modules, there are also many clique-like communities and mixture structures
since clustering coefficient values in these groups stretch across the whole range.
Similarly for hub dominance values which are measured approximately from 0.4 to
1 at the small scale and from 0 to 1 at the large scale. Although there are some differ-
ences in community structure between various network categories, at a small scale,
it not very obvious to distinguish them using the proposed representation. We in-
troduce in the following part a detail inspection, especially for large communities,
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which would reveal essential distinctions between community structure of each net-
work category. The distribution of communities over the profiled map characterizes
the mesoscopic structural identity of networks.

5.2.1 Communication networks

Communication communities consist in subnetworks of message exchange in so-
cial networks, email communications, discussions in forums, etc. From the bivariate
distributions of communities shown in Figure 5.6(a) and 5.5(a), it can be recognized
that structural communities are quite homogeneous in terms of topology in both
large and small communities. The majority of them have star-based topologies with
very strong hubs which connect to almost every other node in their communities
and very few number of clique connections. In other words, communication com-
munities are in general very remarkably high centralized and very low transitive.
This property is less clear in large communities than in small communities since the
larger a community, the more likely non-hub nodes have chances to create inter-
connections and possibly establish peripheral hubs. This mechanism also gives rise
to a few numbers of multi-hub topologies in large communities. Besides, a small
number of hub-absent communities and mesh communities can be discerned. How-
ever, they are quite outnumbered by hub structures in this network category. This
revelation denotes that exchanges in communication networks often happen around
some central elements which convey access to their surrounding elements. Figure 5.7
illustrates some typical structural community topologies that have been identified
in the communication network dataset. Among them, star-like topologies with one
dominating hub as shown in Figure 5.7(a),(b) are among the most representative.
Besides, there are also communities where hubs are less influential and the presence
of a few cliques can be recognized as illustrated in Figure 5.7(c),(d). However, within
the list of network categories that has been analyzed in this study, communication
communities show a clearest and strongest hub-periphery connection pattern with
more than 80% of communities where there are at least 1 node connected to at least
90% of node members in its community and very few periphery-periphery connec-
tions. By consequence, communication communities are commonly quite sparse in
comparison to other types of networks. Moreover, previous study demonstrated in
Figure 5.4 helps to infer that communities networks reveal strong scale-free property.
Consequently, a preferential attachment mechanism with an amplified connection
probability to hub nodes would efficiently mimic the structure of real world com-
munication networks.

5.2.2 Technological networks

Technological communities include subnetworks in peer-to-peer Gnutella file shar-
ing networks, Internet, highway and airport circulation systems, etc. The most no-
table similarity between technological communities and communication communi-
ties is the high presence of hub-based topologies, especially in small communities as
can be seen in Figure 5.5(b). In large communities, however, technological commu-
nities show a quite discernible connection pattern as hubs are less powerful in their
local as can be interpreted from Figure 5.6(b). Quantitatively, the majority of hubs in
technological networks embrace around 40% to 60% of nodes in their communities.
Additionally, the withdraw of super dominating hubs is replaced by the occurrence
of more triadic connections in technological communities. It can be explained by
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FIGURE 5.5: Heat maps of distributions of small structural commu-
nities detected on different categories of networks are presented on
a two dimensional space characterized by transitivity (CCF) and hub
dominance (hub_dom). Only communities of 10 nodes or less are in-
cluded. From left to right, top to bottom (a) Communication, (b) Tech-
nological, (c) Information, (d) Biological, (e) Social, (f) Miscellaneous
consists in power networks, ecological networks, artificial networks,

etc.
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FIGURE 5.6: Heat maps of distributions of large structural commu-
nities detected on different categories of networks are presented on
a two dimensional space characterized by transitivity (CCF) and hub
dominance (hub_dom). Only communities of more than 10 nodes
are included. From left to right, top to bottom (a) Communication,
(b) Technological, (c) Information, (d) Biological, (e) Social, (f) Mis-
cellaneous consists in power networks, ecological networks, artificial

networks, etc.
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(a)

(b)

(c) (d)

FIGURE 5.7: Some representative topologies detected in Commu-
nication networks with their corresponding scores (CCF, hub_dom).
Topologies are ordered from the most famous to the less famous in
their network category as shown in Figure 5.6(a), 5.5(a). Hub nodes
are darker than peripheral nodes. (a) Email traffic in an European
research institution (Rossi and Ahmed, 2015) community - (0, 1); (b)
Wikipedia adminship vote (Leskovec and Krevl, 2014) community -
(0.03, 0.87); (c) Email communication Enron network - (0.07, 0.90); (d)

Community of email exchange in an university - (0.28, 0.23).

the fact that in some infrastructure networks such as highway networks or the In-
ternet, hubs are often constructed to have a controlled influence and are normally
compensated by resilient connections or supplement hubs in order to reduce work-
load, vulnerability or crucial impact caused by their dysfunctionality. Figure 5.8 il-
lustrates some community topologies that have been identified in the technological
network dataset. Topologies whose hubs connect to around a half of node members
as depicted in Figure 5.8(a),(b) are among the most representative of networks in
this class. There is usually a stratification in the connection pattern as many nodes
are connected to a central node by intermediate nodes. This phenomenon can be
considered as a presence of hierarchical organization frequently found in technolog-
ical systems. Besides, there is also a considerable number of star-based structures
such as those of communication case and string-based structures as shown in Fig-
ure 5.8(c) and 5.8(d) respectively. In a general view, the scale free property is quite
clear although hub attractiveness is relatively reduced comparing to communication
networks. A preferentially attachment fitness provided by a model such as Barabási-
Albert would allow to imitate well technological structural networks.

5.2.3 Information networks

Information communities contain subnetworks in citation networks, scientific col-
laboration networks, research engine networks, recommendation networks, etc. Within
the studied networks, information networks exhibit the most diverse topological
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(a)

(c)

(b)

(d)

FIGURE 5.8: Some representative topologies detected in Technological
networks with their corresponding scores (CCF, hub_dom). Topologies
are ordered from the most famous to the less famous in their network
category as shown in Figure 5.5(b), 5.6(b). Hub nodes are darker
than peripheral nodes. (a) A community of users of the Pretty-Good-
Privacy algorithm for secure information interchange - (0.01, 0.48);
(b) WHOIS Internet IP community - (0.07, 0.65); (c) A community of
AS Caida Internet infrastructure recorded in 2007 - (0.01, 0.92); (d) A

Gnutella peer-to peer network community - (0.01, 0.07).

pattern with the bivariate distribution of communities expanded over a wide range
of hub dominance axis and transitivity axis as shown in Figure 5.5(c), 5.6(c). Glob-
ally, information communities are different from communities of the other network
categories by their high transitivity. Such that cliques are very well presented in
many information networks as depicted in Figure 5.9. Many information communi-
ties can be considered as mixtures of different basic topologies of star-based, string-
based, clique-based and grid-based such as the community of collaboration in Arxiv
Condensed Matter network shown in Figure 5.9(h). The presence of hubs in infor-
mation networks is still high, however they are not anymore the only elements who
connect different members of networks. Consequently, information networks are
normally much more dense and well connected than other types of networks of the
same size scale. This is probably the most representative connectivity feature of in-
formation networks. Similar results related to dense and clique structures have been
also found by Lancichinetti et al. (Lancichinetti et al., 2010). Figure 5.9(a-h) depict
some representative communities that have been discovered in some information
networks. While the structure in Figure 5.9(d) resembles a star-based topology with
a sequence of periphery-periphery connections; the one in Figure 5.9(e) of Arxiv
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High Energy Physics collaboration looks like a complete network with some ill-
connected nodes. Figure 5.9(c,g) demonstrating web and recommendation systems
reveal a mixture structure where hubs can be well recognized and clique presence
is also remarkable at the same time. The hybrid structure is globally more blended
in communities of Figure 5.9(a,b,h) than the others. The diversity in the structure
of information networks can be explained by the way we define this category. In
fact, a commercial recommendation system could be very unalike a web citation or
a collaboration network, even though they are all considered to be information sys-
tems in the network science community. Furthermore, their structures are normally
exposed to several complex phenomena that regulate network interactions. Hence,
simulating information networks merits more investigation on each concrete case to
determine the mechanism that reflects well the mesoscopic organization.

(a)

(b)

(c)

(d) (e) (f)

(g)
(h)

FIGURE 5.9: Some representative topologies detected in Information
networks with their corresponding scores (CCF, hub_dom). Topologies
are ordered from the most famous to the less famous in their network
category as shown in Figure 5.5(c), 5.6(c). Hub nodes are darker than
peripheral nodes. (a,b,g) Amazon recommendation groups of prod-
ucts - (0.40, 0.52), (0.33, 0.45) and (0.24, 0.76) respectively; (c) An ed-
ucational web system cluster - (0.30, 0.43); (d) A group of Indochina
websites recorded in 2004 - (0.05, 0.98); (e-f) A community of Arxiv
High Energy Physics collaboration - (0.99, 0.97) and (0.95, 0.99); (h)
A collaboration community of Arxiv Condensed Matter network -

(0.44, 0.36).

5.2.4 Biological networks

Biological communities comprise subnetworks in brain networks, yeast networks,
protein-protein interaction networks, metabolic reaction networks, etc. In some
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ways, their topologies resemble with technological networks as it can be observed
through their distributions in Figure 5.6(b) and 5.6(d). The most remarkable discrim-
ination of connection pattern between biological networks with the other ones are
their string-based rich structure as can be seen through communities shown in Fig-
ure 5.10(a), (b), (c). The high presence of chains or strings in biological networks has
been also found by the other studies using different approaches such as in (Lanci-
chinetti et al., 2010), (Guimerà, Sales-Pardo, and Amaral, 2006). This may be caused
by the fact that many biological pathways, which are series of molecular interactions,
are included in the analysis and contribute to the high presence of strings. Addition-
ally, many biological networks are only constructed partially due to high complex-
ity in construction time and technical constraints in biochemistry (Newman, 2010).
Therefore, we often observe and analyze small fragments of networks where many
connections are missing.

Still, there exist biological networks whose topologies are star-based or hybrid as
those of communication networks, technological networks or information networks.
However, the hub dominance is globally less important as biological communities
are normally small and hubs connect to much less number of their surrounding
neighbors. A local observation on biological networks probably discloses random
structures in many parts of the networks although hubs are still well widespread.
This emergence of random structures could be the most typical characteristic that
differs biological networks from the others. Finally, popular properties such as scale-
free, small-world are less significant in biological class than in information or techno-
logical class.

5.2.5 Social networks

Social communities involve subnetworks of friendship networks, share or re-tweet
networks, followings in Google Plus, Facebook, Twitter, Youtube, etc. Our analysis
shows a high similarity in the distribution of large communities in the social net-
works and communication networks as depicted by Figure 5.6(a), Figure 5.6(e). For
small communities, social networks are closer to technological networks and biolog-
ical networks as shown in Figure 5.5(b), 5.5(d), 5.5(e). A reasonable explanation for
the popularity of the star-based topology in social network is that there are many
well-known users who are followed or subscribed by a large number of peoples and
are becoming mega-connected hubs. Additionally, many samples of social networks
that are studied consist of ego networks of celebrities in social media, which makes
them intrinsically high centralized around some mega-hub nodes. The only differ-
ence with communication communities that has been found in this study is that
there are generally more connections between peripheral nodes in social commu-
nities. This can be interpreted by the fact that friendship relations or following in-
teractions are generally more frequent than communication interactions. Although
different networks of social and communication have been used in this analysis, it
makes sense to explain that many users are connected in a social media without or
very few communicating interactions in the same channel. For example, two users
could be connected on Facebook as friends, but they never exchange any message
on the Facebook conversation platform which makes that the number of social con-
nections exceeds the number of communications. Figure 5.11 demonstrates some
popular topologies of communities in social networks. Note that these topologies
are not chosen to argument the differences between various social networks and it
is not the objective of this study. They are listed to illustrate some typical and rep-
resentative structural communities that we discover in the network dataset. Social
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(a)

(b)

(c)

(d) (e) (f)

FIGURE 5.10: Some representative topologies detected in Biological
networks with their corresponding scores (CCF, hub_dom). Topologies
are ordered from the most famous to the less famous in their network
category as shown in Figure 5.5(d), 5.6(d). Hub nodes are darker
than peripheral nodes. (a) A circuit of medulla of drosophila fly brain
- (0.06, 0.44); (b-c) A protein-protein interaction network of yeast -
(0.03, 0.16) and (0.05, 0.16) respectively; (d-e) protein interactions of
drosophila melanogaster (0, 1) and (0.01, 0.95); (f) A cluster of human

disease network (0.47, 0.51).

networks show a clear scale-free property as in communication and technological
networks, however they are less affected by mega-hubs and are partially occupied
by clique-based structures and many random connections like that of small-world
phenomenon.

5.2.6 Ecological, infrastructure and synthetic networks

This group covers subnetworks in ecological networks, some power system net-
works, sport competition networks, synthetic networks, etc. Here, we find many
structures, especially in Lancichinetti-Fortunato-Radicchi (LFR) synthetic networks
(Lancichinetti, Fortunato, and Radicchi, 2008), that are not very popular in the pre-
viously studied networks. Specifically, except for information networks, structural
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(a)
(b)

(c) (d)

FIGURE 5.11: Some representative topologies detected in Social net-
works with their corresponding scores (CCF, hub_dom). Topologies
are ordered from the most famous to the less famous in their network
category as shown in Figure 5.5(e), 5.6(e). Hub nodes are darker
than peripheral nodes. (a) A structural community in Youtube video
sharing friendship network - (0.01, 0.81); (b) A community in Google
Plus network - (0.02, 0.95); (c) A political re-tweet network in Twitter
- (0.12, 0.60) ; (d) A subnetwork of location-based social networking

Brightkite - (0.27, 0.51).

communities in the other types of networks are usually very hub-centralized and rel-
atively low in transitivity. On the contrary, in LFR networks, cliques are quite pop-
ular and normally aggregated to produce compacted structures as illustrated in Fig-
ure 5.12(c), which makes the communities highly transitive. Additionally, although
structures of LFR networks are regulated by many configuration parameters, their
hubs generally have less impact in their neighborhoods than those of real world net-
works such as in social or communication. This is one property that makes a huge
difference between LFR benchmarking networks and real world networks. Some
other discovered structural communities are illustrated in Figure 5.12. In a general
view, community detection methods identified well compacted sub-graphs in most
of the cases.

Our previous empirical study uncovers that networks across different categories
including communication, technological, information, biological and social networks
might have different community structures and can be described by distinguishable
characterized topologies.

The difference of modular topology between networks in various categories could
help to construct network profiles or network signatures by domain of study, and
hence open a possibility for creating adapted network generative models, network
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(a) (b)

(c) (d)

FIGURE 5.12: Some representative topologies detected in miscel-
laneous group with their corresponding scores (CCF, hub_dom).
Topologies are ordered from the most famous to the less famous in
their network category as shown in Figure 5.5(f), 5.6(f). Hub nodes
are darker than peripheral nodes. (a) A cluster of a power net-
work system - (0.07, 0.21); (b) A quadratic sieve of a factorization
of a 130 bit number - (0.08, 0.39); (c) A cluster of a Lancichinetti-
Fortunato-Radicchi (LFR) synthetic network (Lancichinetti, Fortu-
nato, and Radicchi, 2008) - (0.56, 0.18); (d) A cluster in an ecological

network - (0.51, 0.94).

class prediction algorithms, dynamical processes simulation and analysis, etc. Specif-
ically, since networks in each domain reveal some particular modular structures,
the mechanisms which are responsible for their creations, evolutions, degradations
are also discernible. Hence, different simulation or analysis strategies will generate
different impacts on the networks in a predictable way if their structures are well
understood. In other words, the network structure profiling assists to achieve suit-
able network analysis processes and to interpret obtained results without requiring
expensive brute force analysis.

5.3 Related work

Many efforts have been devoted to characterizing community structure in networks,
each one with a specific approach to reveal different structural properties. In the best
of our knowledge, we have not yet well-known empirical study that leverage the
availability of a large corpus of real-world networks in order to understand topolog-
ical properties across different domains. Although many researches have been well
inspecting different quality metrics to understand community structure in ad-hoc
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networks, a concrete and systematic method for summarizing and extracting topo-
logical information is still in demand. The content presented in this chapter is a part
of an effort to discover real-world networks and community structures. Even being
a novel approach, our work were strongly inspired by several closely-related studies
in the art, which can be cited in the following.

Lancichinetti et al. characterize community structures of complex networks in
different domains by observing the evolution of various qualities such as commu-
nity scaled density, average shortest path, max internal degree, etc. in large scale
networks according to discovered community size (Lancichinetti et al., 2010). The
evolution of these qualities in function of number of nodes in each cluster helps
the authors to deduce and characterize different structures found in many class of
networks such as: Internet, communication, information, biological and social net-
works.

Guimera et al. demonstrate that modular networks in real world can be clas-
sified into distinct functional classes depending on the composition of connection
profiles between their nodes (Guimerà, Sales-Pardo, and Amaral, 2006). Specifically,
by using two metrics including within-module degree z and participation ratio P
(Guimerà, Sales-Pardo, and Amaral, 2004), a node in a community is characterized
by seven different roles of hubs and non-hub nodes. Once the role of every node
in a network partition is determined, the connectivity profiles of interactions in the
network can be analyzed. Specifically, the authors determine two main classes of
networks based on the presence of role-to-role connectivity profiles. The first class
called string-periphery includes metabolic and air transportation networks which are
rich in ultra peripheral interactions and hub interactions. The second class called
multi-star includes protein interactome and Internet networks which are, on the
other hand, rich in ultra peripheral-provincial hub interactions.

Leskovec et al. investigate the variation of community structure in large scale net-
works using conductance metric (Leskovec et al., 2008). In fact, the authors measure
the variation of the lowest community conductance in function of community size.
This variation depicts a so-called network community profile which helps to character-
ize community quality over a wide range of size scales. The authors also point out
that communities attain the best quality (in terms of conductance) at a characteristic
size of around 100 nodes and provide evidences of a high presence of core-periphery
community structure in real networks through numerous empirical experiences. In
another paper (Yang and Leskovec, 2013), the authors also compared the perfor-
mance of 13 quality functions in terms of their efficiencies to identify community
goodness properties such as density, cohesiveness as well as the consistency of these
quality functions to many simulated perturbations. The studies contribute to the
understanding of the property of different quality functions.

Coscia et al. generalize the problem of community detection discovery by recon-
sidering the question of what can be considered to be a community (Coscia, Gian-
notti, and Pedreschi, 2011). The authors then resume popular methods in the lit-
erature according different quality aspects such as density-based, vertex similarity-
based, action-based or influence propagation-based. A definition-based classifica-
tion of community discovery methods according to a large number of community
features is then introduced. This classification approach shifts the attention from
how communities are detected to what kind of communities to detect and provides
another point of view regarding to community detection.

The most common and fundamental point between this study and the previously
mentioned work is the exploratory objective to characterize communities in complex
networks by observing qualities using statistical metrics. Concretely, we contribute
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a methodology to describe community topologies in a systematic and generic way
that can be extended to any category of networks. This means one can mechanically
apply the same analysis procedure to explore community structures of any network
of interest.

5.4 Conclusion

In this chapter, we provide a novel analysis process to categorize mesoscopic or-
ganization of networks into four essential topological groups which show different
node interaction patterns. Each representative group is then associated to the corre-
sponding graph generative model that produces a high similarity in connection pat-
terns. Surprisingly, our empirical study uncovers that networks across different cat-
egories including communication, technological, information, biological and social
networks might have different community structures and can be described by dis-
tinguishable characterized topologies. These differences sheds light on how differ-
ent network models should be used to represent real-world networks and also how
these models should be parameterized. For instance, Barabási-Albert model can be
adopted to describe communication or technological networks while Watts-Strogatz
model could be better for information networks. It is worth noting that a devel-
opment of domain-specific clustering techniques is envisioned as an important task
(Fortunato, 2010).

Revealing the difference of modular topology between networks in various cate-
gories could help to construct network profiles or network signatures by domain of
study, and hence open a possibility for creating adapted network generative mod-
els, network class prediction algorithms, dynamical processes simulation and anal-
ysis, etc. Specifically, since networks in each domain reveal some particular modu-
lar structures, the mechanisms which are responsible for their creations, evolution,
degradation are also discernible. Hence, different simulation or analysis strategies
will generate different impacts on the networks in a predictable way if their struc-
tures are well understood. In other words, the network structure profiling assists to
achieve suitable network analysis processes and to interpret obtained results with-
out requiring expensive brute force analysis.

Finally, since we focused on characterizing different aspects of community struc-
tures, community detection algorithms are used to compare networks across differ-
ent domains without questioning too much about their performance. This approach
allows to shed light on different ways that nodes in real-world networks interact
with each other. Certainly, the differences between these algorithms can not be ne-
glected, which is why the next chapter will be dedicated to a more comprehensive
analysis on this direction.





107

Chapter 6

Comparative evaluation of
community detection methods

In Chapter 5, we have focused on characterizing community structure in networks
and proposed a generalized method to categorize node interactions by several topo-
logical categories. We used community detection as magnifier to look inside large-
scale graphs and extract structural information. The difference between discovery
methods in identifying communities have not been questioned to leave the space
for analyzing network structure. In this chapter, another investigation be will be
conducted in order to access the performance of community detection methods ac-
cording to different quality criteria. These are two essential parts that need to be
inquired in order to be able to determine suitable detection mechanisms. Although
there are several comparative approaches to highlight the distinction between these
methods, we focus on some of the most primary aspects. Section 6.1.1 demonstrates
a meticulous analysis about the computation time performance in a comparison to
theoretical calculations. Section 6.1.2 reveals the fitting quality, i.e. the number of
clusters detected by each method, as it is an important factor that one would con-
sider for a clustering problem. The analyses in the latter section give raise to our
novel approach proposed to estimate the closeness between different community
detection methods based on community size distribution, which will be presented
in Section 6.2. Then, many advanced quality functions are examined to profile the
behaviors and the performances of community detection methods. We are interested
in studying the similarity of methods in their capacity of discovering communities
having some expected qualities in Section 6.3. Finally, we estimate empirical pair-
wise proximity of these methods by comparing community sets that they discover
on the network dataset in Section 6.4. These analyses reveal interesting information
that are useful for drawing conclusion about detection performance.

We reuse the dataset introduced in Chapter 5, which consists in more than one
hundred networks of five different categories. The information about these net-
works are summarized in Table 5.2 and some important statistical measures on are
illustrated in Figure 5.1 of Chapter 5. As mentioned previously, this dataset consists
in networks whose structural properties spread over a wide range of values. This
make our analysis less impacted by the dependence of detection performance on the
input data.
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Approach Method (section) Label Implementation

Edge
removal

Girvan-Newman (3.2.2) GN igraph
Radicchi et al. (3.2.2) for g = 3 RCCLP-3 Authors1

Radicchi et al. (3.2.2) for g = 4 RCCLP-4 Authors

Modularity
optimization

Clauset et al. (3.2.3) CNM igraph
Blondel et al. (3.2.3) Louvain Authors2

Newman (3.2.4) SN igraph

Dynamic
process

Pons et al. (3.2.5) Walktrap Authors/igraph
Rosvall et al. (2007) (3.2.5) Infomod Authors3

Rosvall et al. (2009) (3.2.5) Infomap Authors4/igraph
Statistical
inference

Lancichinetti et al. (3.2.6) Oslom Authors5

Karrer et al. (3.2.6) DCSBM Authors6

Other
methods

Reichardt et al. (3.2.7) RB igraph
Raghavan et al. (3.2.7) LPA igraph
Xie-Szymanski (3.2.7) SLPA Authors7

Demeo et al. (3.2.7) Conclude Authors8

TABLE 6.1: Formal implementation sources of community detection
methods included in our analyses. The implementations of igraph
tool (in R, Python or C/C++) can be founded at http://igraph.org/.

6.1 Preliminary analysis of detection methods

6.1.1 Computation time performance

Since computation time is a crucial factor to be considered in the selection of an al-
gorithm, it is worth analyzing experimental performances to see how different com-
munity detection methods accomplish their task in real-world networks. By reusing
the dataset summarized in Table 5.2, we proceed to assess official implementations
of community detection methods introduced in Table 3.1. These implementations
are provided officially either from their own authors or popular network analysis
tools, which can be easily accessed from a large public. The corresponding sources
of implementations which have been used are outlined in Table 6.1.

We employed all implementations stated above to identify community structures
on all networks contained in the dataset and measured the time needed for each
implementation to accomplish. The default parameters configured by the imple-
mentations are kept unchanged during the test. The calculations were executed on
a server equipped by an Intel Xeon CPU E5-2650 with 32 cores of 2.60 GHz and a
memory capacity of approximately 100 GBytes. However, due to the high complex-
ity of some methods, only processes that finish in a practical amount of time (less
than 4 hours) are taken into account. However, for a reference purpose, we let some
of longer computations go on, for example, Conclude method took approximately 9
days to identify community structure on a network of 300 thousand vertices and 1
million edges; GN method did not finish its calculation for networks of more than

1Published at http://homes.sice.indiana.edu/filiradi/resources.html
2Published at https://sourceforge.net/projects/louvain/
3Published at http://www.tp.umu.se/~rosvall/code.html
4Published at http://www.mapequation.org/
5Published at http://www.oslom.org/
6Published at http://www-personal.umich.edu/~mejn/
7Published at https://sites.google.com/site/communitydetectionslpa/
8Published at http://www.emilio.ferrara.name/code/conclude/

http://igraph.org/
http://homes.sice.indiana.edu/filiradi/resources.html
https://sourceforge.net/projects/louvain/
http://www.tp.umu.se/~rosvall/code.html
http://www.mapequation.org/
http://www.oslom.org/
http://www-personal.umich.edu/~mejn/
https://sites.google.com/site/communitydetectionslpa/
http://www.emilio.ferrara.name/code/conclude/
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4 thousand nodes and 40 thousand edges within 2 days. Consequently, the exper-
iments that theoretically require too much time are neglected in the test. It is also
worth noting that the calculations of communities on large-scale networks are also
restrained by limited memory, therefore calculations that are supposed to be finished
within 4 hours but required too much memory can not be shown here neither. We
repeat the calculations 5 times on average for each pair graph/method to reduce the
fluctuation impact. Eliminating all the cases that do not satisfy our requirements,
the final successful rate (number of partitions identified over the number of possible
tests) ended up at around 44.72%, mainly due to time/memory surpassing.
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FIGURE 6.1: The execution time needed by GN, RCCLP-3 and
RCCLP-4 methods to identify community structures on networks of

the dataset.

In the following figures (from 6.1 to 6.6) that illustrate the analyses on experimen-
tal time consumption, some conventions are commonly used. Points in the figures
correspond to separated executions that have been measured. The solid lines with
the same corresponding colors to the points are estimated relations between com-
putation time and network size (number of vertices and number of edges) using
a local regression model (Cleveland, 1979). The dark colored backgrounds around
the regression curves represent 95% confidence intervals of the model parameters.
Besides, we show the worst case theoretical execution time (number of calculation
needed in this case) of associated algorithms are included for a comparative refer-
ence purpose. From the analysis of structural characteristics of the dataset as shown
in Figure 5.1(a), it is noticeable that most networks are sparse, i.e the number of
edges (m) increase in a linear function by the number of nodes (n). Hence, in our
estimate, we plot theoretical execution time by assigning n = m. For the simplicity
of illustration, we grouped the measures of the methods by their approaches (Ta-
ble 6.1).

The first group of methods consists in centrality detection techniques to identify
community structure. As we can see in Figure 6.1, the GN method can not be accom-
plished in our test for networks of more than 4 thousand of nodes or 30 thousand
of edges. The outcome is quite reasonable since the theoretical estimation for this
method is O(nm2), which grows quickly in function of network size. Remind that
one of the primal purpose of the RCCLP method is to reduce the time complexity
of the GN method. We can easily observe that this objective is achieved since the
RCCLP-3 reduces an order of around 103 times for graphs from 3 hundred nodes.
RCCLP-3 can well function with graphs up to millions of edges. However, when we
proceeded the same test with RCCLP-4, the method rarely reached its terminus for
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large graphs as well as small graphs. As we can see in the figure, there are few dots
at the two sides. The reason is that there are not many (or even absent) 4-step close
paths on real world networks. As it is not very probable that such structures exist
in small graphs, finding them in large graphs also require a huge amount of time,
RCCLP-4 shows a poor performance in our test. Therefore, this configuration of the
method is not recommended, as well as versions with g > 4 would logically poorly
perform. It is also worth noticing that RCCLP-3 and RCCLP-4 are extremely mem-
ory consuming and are not suitable for limited resource devices. Finally, theoretical
and practical time seem to find a consensus as the increments of time in function of
network size are quite consistent in the three cases.
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FIGURE 6.2: The execution time needed by CNM, Louvain and SN
methods to identify community structures on networks of the dataset.

The next group includes methods using modularity optimization processes whose
experimental measures are shown in Figure 6.2. Practically, the three methods in this
family require a reasonable time for calculating community structures. The most
time consumed experiment took less than 2 hours for a graph of 1 million edges.
Louvain method is the fastest in this group whose computation increases approxi-
mately in linear time. It took only 9 seconds for the largest graph. Among the three
methods, the optimization using spectral approach is the most expensive. However,
all of these three methods have higher performance than the methods in the edge
removal group previously stated. The experimental results also justify theoretical
estimates about the complexity of these methods.

Similarly to the two previous group, the computation time needed by methods in
the dynamic process group is illustrated in Figure 6.3. In terms of time consumption,
this group shows a better performance with respect to the first group, but generally
worse than the modularity optimization group (except for the Walktrap method for
small and average size graphs). Among them, Infomod has the poorest performance.
In the meanwhile, Walktrap and Infomap work asymptotically equally good with a
slightly better rendition for Walktrap in small and average size graphs.

The same analyses for methods in the two final groups are shown in Figure 6.4
and Figure 6.5. We can easily see that DCSBM and Oslom have practically identi-
cal performance in terms of time consumption with a slightly less expensive on the
side of DCSBM. In the last group, the results are quite discernible between different
methods. The label propagation method LPA shows a clear distinctive curve indicat-
ing its out-performance over the other methods. Besides, SLPA works quite well, but
less fast than LPA although it employs some special techniques to reduce the com-
putation time (as mentioned in Section 3.2.7). This difference in the performance
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FIGURE 6.3: The execution time needed by Infomap, Infomod and
Walktrap methods to identify community structures on networks of

the dataset.
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FIGURE 6.4: The execution time needed by DCSBM and Oslom meth-
ods to identify community structures on networks of the dataset.

is due to the more complicated mechanism that SLPA uses in comparison to LPA.
The fact that SLPA has to reserve dedicated memories for all nodes of the network
to stock the membership information that they received during the detection pro-
cess and update them regularly to transfer into their neighbors makes it demanding.
Therefore, despite of a 5 to 10 times of improvement in the label update strategy, the
global performance can not surpass that of LPA method. In terms of scalability, LPA
and SLPA seem to exhibit the same comportment which is nearly linear for small and
medium graphs but accelerate in large graphs. The spin glass model RB manifests
a better than expected presentation with an undeviating linear augmentation. The
only unexpected behavior is spotted in Conclude method, as when the size of input
graphs exceed some thousands, the required time has been inflated by a factor of n,
making it very demanding for large graphs.

Finally, we aggregate all the analysis measures in the 5 previous groups into a
common illustration as shown in Figure 6.6. At the same time, for a more conve-
nient observation, we remove all the points corresponding to the experiments and
keep only the regression curves, which are the estimates of execution time for these
methods in function of number of vertices on the left hand side and number of edges
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FIGURE 6.5: The execution time needed by RB, LPA, SLPA and Con-
clude methods to identify community structures on networks of the

dataset.

on the right hand side. At a first sight, it is easy to see that except for GN, the nec-
essary execution time for all other methods are limited in a range that increases
polynomially in function of network size, which reflect well theoretical estimates.
This range is upper-bounded by Conclude/Oslom and lower-bounded by LPA which
corresponds to worst and best performed method(s) respectively. Another impor-
tant information which can be deduced from this figure is that, for most real world
networks of size in the range up to 1 million edges, choosing a fast detection method
could economize an order of 103 times to 105 times calculation effort. This is an im-
portant element to be considered in applications where time consuming is a serious
problem.

We demonstrate in Table 6.2 the ranking of these methods according to our test
for reference purpose. GN and RCCLP-4 are not involved in this ranking since they
failed to accomplish their tasks in large graphs, which also means they are the most
time consumed methods within the methods that we analyze. We show both the
ranking by the average and the median of time. Since the average-time ranking
is heavily affected by the measures on large graphs, i.e. methods that succeeded
to discover communities on very large graphs are lower ranked than methods that
were not able to do so. In these cases, the ranking by median is more accurate and
it reflects well the relative performance on small and medium graphs between the
methods. For large graphs, using the ranking by average would better fit.

6.1.2 Analysis on community size distribution

The number of latent communities that should be induced from a given network
is one of the major question in community detection context (Fortunato and Hric,
2016), (Riolo et al., 2017), equivalent to the subject of the expected number of clus-
ters in classical clustering problem. Observing the number of communities discloses
useful information about the mesoscopic structure of a network. Specifically, the
variation of the number of communities in a network implicates different level of
resolutions, and according to the context, one would prefer to observe the modular
structure of a network of interest regarding a certain resolution. An analogous way
to describe the concept of resolution is the distance from an object that we prefer in
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FIGURE 6.6: The estimated execution time needed for each method
to identify community structures on networks of the dataset using a
local regression model. Methods of the same theoretical family (in the

same group) are represented by chromatically similar color.

order to contemplate it. The closer we get to an object, the more its detailed micro-
structures that could be perceived, in the meanwhile the less information about the
global organization that tends to be clear. Although several multi-resolution ap-
proaches (Lambiotte, 2010), (Pons and Latapy, 2011) incorporating resolution param-
eters into their solutions to provide more flexible mechanisms and different modular
scales of networks, it is not always obvious to regulate appropriately these parame-
ters without ad-hoc cases. The inclusion of multi-resolutions parameters, of course,
widen the possibility of understanding networks, but in the expense of the automatic
aspect that is sometimes required in clustering problems (at least for neophytes -
#smiling emoticons).

In this section, by using the same network corpus presented in the previous sec-
tions, we are motivated to evaluate this aspect of the mentioned detection methods.
By keeping all default configurations of the implementations unchanged as previ-
ously done to ensure the consistency of future results, we proceed to explore the
resolutions of these methods in a comparative way. From the antecedent analyses,
some modifications will be applied on our testing process as follows:

1. From the observation of the network size distribution in Figure 5.1(a) as well as
the previous computation time analyses, the linear relation between number of
vertices and number of edges of networks in our corpus becomes evidenced.
As a consequence, it will be redundant to address the relation of dependent
variables in respect of these two latter predictors. Therefore, only analyses in
function of number of vertices will be introduced.

2. In community detection problem, showing only the numbers of communities
discovered on networks or their statistical derivatives would not always be
enough. Assume that the sizes of communities in an arbitrary network follow
a negative power-law distribution, its means that the number of communi-
ties depends heavily on the number of tiny communities. Therefore, we also
observe the distribution of community size to discern the differences between
methods which could not be recognized by seeing solely the number of blocks.
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Method label Rank by average Rank by median Scalability

RCCLP-3 9 8 Low
CNM 5 3 Medium
Louvain 1 2 High
SN 3 5 High
Walktrap 4 4 High
Infomod 12 9 Low
Infomap 6 7 Medium
Oslom 11 14 Low
DCSBM 8 12 Low
RB 10 13 Low
LPA 2 1 High
SLPA 7 6 Medium
Concude 13 11 Low

TABLE 6.2: Ranking of analyzed methods according to their amount
of time consumed to identify community structure on networks of the
dataset. Methods are ranked by average time required and median
time. The scalability shows experimental result for the possibility of

processing large scale graphs.

3. Due to a huge number of required calculations and a limited hardware re-
source, discovering processes in the last section were interrupted unless they
are finished in a few hours. Here, some more efforts have been flexibly given
if a method is supposed to be finished in a reasonable amount of time.

For a given network in the dataset, we applied all of the presented methods to
identify the set of communities predicted by each one and measured their volumes.
Similarly to the last part, for the simplicity of observation, we group methods by
different families depending on their approaches. We illustrate the obtained results
of community repartition measures in Figure 6.7 to 6.11 by using some conventions
as follows:

Conventions for Figure 6.7 to Figure 6.11

1. A figure (denoted A) on the top contains three following sub-figures:

1.1. The central figure (A1): shows a scatter plot about the distribution
of communities in function of the number of vertices of the network
to which they belong. The solid lines in the figure represent the es-
timated average community size in function of number of vertices
using a local regression model (Cleveland, 1979). Dark colored back-
grounds around the lines are 95% confidence intervals of the esti-
mates.

1.2. The top figure (A2): exhibits marginal density distributions of com-
munities found in each range of network sizes. They are rendered
from a Gaussian kernel estimator.

1.3. The right figure(A3): illustrates another type of marginal density dis-
tributions of communities in function of their sizes. They are also
rendered from a Gaussian kernel estimator.
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2. A figure on the bottom (denoted B) presents the number of communities in
function of the number of vertices of different networks as well as the esti-
mated relation between these variables using the regression model stated
above. Dark colored backgrounds around the lines shows 95% confidence
intervals of the estimate relations.

Edge removal approach: GN, RCCLP-3 and RCCLP-4

(A)

(B)

FIGURE 6.7: Fitting quality of GN, RCCLP-3 and RCCLP-4 methods
on the networks of the dataset.

From Figure 6.7, we can notice again that GN method can only be able to func-
tion on small and medium networks due to its high complexity, which is quite ob-
vious from theoretical analysis. RCCLP-3 and RCCLP-4 can detect up to the largest
networks in our corpus. By observing the right marginal density distribution, sur-
prisingly, all of these methods identify a huge number of singleton communities9.
The average number of singleton communities is around 24% which can be up to
60% in some cases. The reason for this aberrant phenomenon is that in some dense
and small networks, there exists too many high and equivalent central vertices and

9Communities that contains only one vertex
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edges. The separating mechanism employed by this approach keeps removing cen-
tral nodes or edges until a large number of vertices are isolated, creating singletons
or very small communities. Since GN only works on small graphs, it is highly im-
pacted by this phenomenon in our experiment. Besides, in a global observation, we
can see in the top figure that the majority of communities detected by these meth-
ods are very small for the same reason. From Figure 6.7(A), we can see that a large
number of communities have only less than 10 vertices even in very large networks
which can be deduced from Figure 6.7(A1). This makes the number of communities
increase rapidly as one can remark on Figure 6.7(B). Remind that the distributions
of community size have right-skewed shapes, meaning that the majority of commu-
nities are small and most of them are found under the lines of average community
sizes. Therefore, the three methods of this family have very high resolutions as ob-
served on our experiment. Notwithstanding, this result need to be understand with
caution due to two reasons:

1. The density function in Figure 6.7(A1) reveals that the successful rate on dis-
covering community structures of the three methods are distinguished funda-
mentally. In fact, due to the high complexity of time and memory, many net-
works are not successful resolved, which degrade importantly the comparison
quality.

2. As a consequence of the first reason, there is a high fluctuation in the depen-
dent variables which make the confidence intervals quite large. A deeper in-
vestigation on the quality on small and medium networks could partially pal-
liate this problem.

Although the previously mentioned issues, this class of methods remain the one
which conjectures the highest number of communities with a great consensus. The
following analyses will reinforce this remark.

Modularity optimization approach: CNM, Louvain and SN

On this second group, our measures are more complete since all three methods suc-
ceeded to resolve large networks. From Figure 6.8(A2), it can be seen that there
is a regularity between the distributions of communities over the whole range of
networks except for the range of very large networks. Actually, in this range, the
behavior is very different with the three methods. While CNM determines a very
large number of medium and small communities, Louvain identifies less small com-
munities and more medium and large communities. On the other hand, SN only
proposes a partition of two giant communities. For instance, if we take the Amazon
network introduced in Table 4.2, while CNM detected 1480 clusters, this number be-
comes 249 for Louvain and only two for SN. The same phenomenon is also remarked
for another example, the DBLP network which is also presented in Table 4.2, the
corresponding numbers are 3077, 275 and 2 in the same order. This notice can also
be remarked in smaller networks as can be seen in Figure 6.8(B), however gap be-
tween the number of communities reduces gradually from the right to the left of the
figure. But in general, the order remain unaltered in our observation, i.e. the aver-
age number of communities detected by CNM is larger than that of Louvain which
is in its turn larger than that of SN. Consequently, the order of community sizes are
inversed since the sizes of graphs are fixed as can be seen in 6.8(A1). Another re-
mark can be extracted from Figure 6.8(A3) about the diversity of community size,
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(A)

(B)

FIGURE 6.8: Fitting quality of CNM, Louvain and SN methods on the
networks of the dataset.

while CNM and CN consistently move towards small and medium communities re-
spectively, Louvain on the other hand tends to propose both small and medium size
communities.

Dynamic process approach: Infomap, Infomod and Walktrap

At a first glance, we can see a clear separation within the three methods. While In-
fomap and Walktrap display quite comparable evolution of average community size
depicted by Figure 6.9(A1) as well as marginal distribution as depicted by Figure
6.9(A2-A3), Infomod is driven distinctly apart. Diving into the measures, we notice
that in Infomod, there is a relatively uniform repartition of communities which is
upper-bounded by the largest containing 6948 vertices. Unlike many other meth-
ods including Infomap and Walktrap, the number of medium and large communi-
ties discovered by Infomod does not outnumber the number of small communities
as stipulated by heavy-tailed distributions. As a consequence, the total number of
communities observed remains low and increases with a small constant pace.
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Infomap and Walktrap tend to keep their average community size limited around
10 to 30 over the whole range of networks. This phenomenon keeps them away from
the resolution limit issue. In both methods, the most popular community size can be
found around 10 nodes or smaller. Our more specific measure on the median com-
munity size shows almost similar results for Infomap while this number decreases
slightly for Walktrap. Above these values, the number of communities decreases pro-
foundly. The biggest difference between these two methods can be easily observed
at the spurious region on the marginal distribution of Figure 6.9(A3). In fact, unlike
Infomap which produces very moderately small communities, Walktrap identifies a
huge number of isolated nodes (around 10% according to the statistics) and small
communities similarly to RCCLP-3 and RCCLP-4. This problem may be due to the
agglomerative hierarchical clustering employed by Walktrap to detect communities
which engenders orphaned peripheral vertices, which has been introduced in Sec-
tion 3.2.1 and illustrated Figure 3.3. This problem, however, is quite simple to be
palliated since these peripheral vertices could be assigned to their closest neighbor’s
community. By removing this issue, we have got a quite similar result for Infomap
and Walktrap.

In terms of average number of communities, Infomap and Walktrap show practi-
cally the same behavior. The evolutions are nearly coincided over the whole range
of networks with small confidence intervals, especially in the middle range. For
medium and large networks, as seen in Figure 6.9(B), it is very likely that Infomod
identify much less number of communities. In fact, more than 75% of Infomod’s par-
titions have less communities than those of the other two methods.

Statistical inference approach: SBM, DCSBM and Oslom

In the case of statistical inference, we see a quite similar phenomenon previously ex-
perienced in the dynamic approach. Specifically, the distributions of community size
of the two implementations SBM and DCSBM are nearly coincided with a slightly
higher average community size for the former. In fact, in this Bayesian block model,
it is necessary that the prior distribution of number of block is given. According to
different block model variants, one could assume various hypotheses about underly-
ing mechanisms that create observed network under the corresponding regulations
of block structures and define a prior probability. In the implementation that has
been employed, the authors initialize the community discovering process by assign-
ing nodes randomly to groups according to a queuing-type mechanism and then use
a Monte Carlo sampling process to maximize the posteriori probability. However,
the calculation becomes extremely time consuming when the maximum number of
communities is too large (Riolo et al., 2017). Hence, by default, the maximum num-
ber of communities is configured at 25 as proposed, which leads to an underestima-
tion of medium and large graphs as shown in Figure 6.10(B) as also be noticed by
the authors. One can see the impact of this regulation as the number of communi-
ties approaches asymptotically 25 independently with the network size on the right
hand side of the figure.

By observing the distribution of community size in Figure 6.10(A1), it is under-
standable that the average block size of SBM and DCSBM increases linearly in func-
tion of number of vertices. As the number of communities remains constant, the
average community size must increase proportionately. Besides, the Figure 6.10(A3)
also reveals that community sizes are well spread around their mean values, which
makes the marginal distribution quite symmetric for both SBM and DCSBM. There
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(A)

(B)

FIGURE 6.9: Fitting quality of Infomap, Infomod and Walktrap meth-
ods on the networks of the dataset.

is nearly no particular inclination towards small communities as acknowledged in
some previous methods.

For the case of Oslom, the separation is quite clear. It unveils much more com-
munities, making their sizes very small. Figure 6.10(A1) shows that the majority of
Oslom’s communities are found under the average values of the associated partitions
of SBM and DCSBM. Our demonstrations show that there is indeed a significant dif-
ference in the repartition strategies of these methods.

RB, LPA, SLPA and Conclude methods

In the last group, we discover that there is a remarkable coincidence in all distribu-
tions of the three methods LPA, SLPA and Conclude. In fact, the difference between
them is nearly indistinguishable on the marginal measures. There is only a small
discrepancy in the number of detected communities in very large networks as can
be noticed from Figure 6.11(A2), such that LPA detected slightly more communi-
ties than SLPA and Conclude. From Figure 6.11(A3), one can see that the majority of
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(A)

(B)

FIGURE 6.10: Fitting quality of SBM, DCSBM and Oslom methods on
the networks of the dataset.

communities are quite small in these three methods. Similarly to CNM, Infomap or
Walktrap, the majority of communities are small, i.e. have less than 10 nodes.

On the three methods, one could see that the variation of the data is significantly
large, which produce also a large variation in our estimates. Since the associated
prediction intervals for the estimates are likely to be larger, predictions related to
community size distribution are not expected to be accurate.

On the other hand, RB method shows a solid consistency with much less varia-
tions in our examination. Average community size increases regularly and number
of communities becomes saturated from medium size networks. The behavior of RB
method is very resembling to that of DCSBM observed in Figure 6.9. Consequently,
it is supposed to suffer the resolution limit for large networks. Notwithstanding,
since RB is provided with a resolution tune parameter, the method may escape from
this effect if the parameter is correctly chosen.
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(A)

(B)

FIGURE 6.11: Fitting quality of RB, LPA, SLPA and Conclude meth-
ods on the networks of the dataset.

Summary

For the final step of this part, in the same manner as the previously presented time
computational analysis, we put all methods in a comparative view. We aggregate
the estimates of average community size and the number of detected communities
in function of number of vertices in the network in Figure 6.12(A) and 6.12(B) re-
spectively. One can see that there exists several repartition strategies hidden in these
methods. If we use the preference of theoretical number of recoverable communi-
ties in a k-planted partition model (Ames, 2013), being O(

√
n), the studied methods

could be considered to over-fit (create more than k clusters) or under-fit (create less
than k clusters) as presented in Table 6.3, in the third column.

We can see that, in a general view from the second and third column of Table 6.3,
methods belonging to the same theoretical class which shares a common assumption
about the definition of community have a tendency to show the same fitting qual-
ity, as also discovered by (Ghasemian, Hosseinmardi, and Clauset, 2018). However,
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FIGURE 6.12: A summary of community size estimation quality

although being useful to help practitioners to presume the expected number of clus-
ters a method would detect with respect to the theoretical experience, it is still very
embarrassing to know which method to use since the reference is based on an hy-
pothesis about an underlying model. This also means that if the hypothesis about the
partition model change (another model than k-planted model), the expected number
of communities will be diversified, and hence the indicated fitting quality preference
becomes disproved. As a consequence, we propose a novel technique to estimate the
similarity of community detection methods based on community size distributions
in the next section. Certainly, this is only one among interesting quality aspects that
differentiate one method from the others. Nonetheless, we will demonstrate that it
also allows to get more insight into the difference in terms of partitioning strategy.

6.2 Similarity based on community size distributions

A very naive but efficient approach to evaluate the similarity of two methods is to
inquire into the “closeness” of the two corresponding community size distributions.
As such, two methods could be supposed to be similar if their corresponding density
distributions expose a large intersection area as shown in Figure 6.13(A). From this
notice, we can define our new similarity function as follows (Dao, Bothorel, and
Lenca, 2018c):
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Method label Wrt. k-planted model Fitting

GN Bigger Over-fit
RCCLP-3 Bigger Over-fit
RCCLP-4 Bigger Over-fit
CNM Close Over-fit
Louvain Close Under-fit
SN Smaller Under-fit
Walktrap Bigger Over-fit
Infomod Close Under-fit
Infomap Bigger Over-fit
Oslom Smaller Under-fit
SBM Smaller Under-fit
DCSBM Smaller Under-fit
RB Smaller Under-fit
LPA Bigger Over-fit
SLPA Bigger Over-fit
Concude Bigger Over-fit

TABLE 6.3: Ranking of analyzed methods according to their num-
ber of detected communities. A method is considered to over-fit if it
detects asymptotically more than

√
n clusters. The group numbers

exhibit the estimated similarity based on fitting quality.

First, we denote two 2-tuples (A, na) and (B, nb) being the multisets representing
all communities detected on a set of networks G = {G} by method A and method B
respectively, where A = {xa

1, xa
2, ..., xa

r} and B = {xb
1, xb

2, ..., xb
s} being the ascending

ordered sets of sizes of communities: 1 ≤ xa
1 < xa

2 < ... < xa
r and 1 ≤ xb

1 < xb
2 <

... < xb
s . The multiplicity functions na : A → N≥1 and nb : B → N≥1 measure the

number of communities of sizes xa
i and xb

i respectively. Let Na = ∑
r
i=1 na(xa

i ) and
Nb = ∑

s
i=1 nb(xb

i ) being the total number of communities of all sizes detected by
each method, we define a similarity function describing the closeness of A and B on
G as:

SG(A, B) =
1
2

r

∑
i=1

s

∑
j=1

min

{
na(xa

i )

Na ,
nb(xb

j )

Nb

}
δ(xa

i , xb
j ), (6.1)

where δ(xa
i , xb

j ) = 1 if xa
i = xb

j and 0 otherwise. Equation (6.1) is simply the
common fraction of same-size communities detected on G by both A and B: 0 ≤
SG(A, B) ≤ 1. This definition seems to be intuitive but does not work well in prac-
tice. As illustrated in Figure 6.13(B), when the sizes interlace each other, a low score
will be produced although the similarity in this case is as much as that of the case in
Figure 6.13(A). Choosing an appropriate binning interval would mitigate the prob-
lem. This solution is, however very inflexible, sensible to the characteristic of data as
well as to the functionality of the methods in use. A straightforward alternative can
be envisioned by using a kernel density estimator to uncover the probability density
function as shown by the solid lines in Figure 6.13(B). In this way, we approximate
the common fraction of same-size communities of Equation (6.1) by the overlapping
area of two corresponding continuous distributions. The premise behind this esti-
mation is that two similar methods must not compulsorily produce a large portion
of exactly same-size communities but rather a large portion of comparable-size ones.
Hence, we consider the following estimator to take into account local information of
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FIGURE 6.13: The distribution of sizes of communities detected by
two different methods. On the left (A) overlap fraction using his-
togram, on the right (B) when community sizes interlace, the similar-

ity is better estimated using a kernel density estimator.

community size x0:

f̂ (x0) =
1

hn ∑
i

K
(

xi − x0

h

)
, (6.2)

where h is the bandwidth controlling the neighborhood interval around x0 and K
is the kernel function controlling the weight given to the observations {xi} chosen
as Gaussian in our analysis. Using this estimator, we rewrite the similarity function
defined in Equation (6.1) as follows:

SG(A, B) =
∫

min{ f̂ (a)(x), f̂ (b)(x)}dx, (6.3)

where

f̂ (u)(x) =
1

hNu

Nu

∑
i

[
nu(xu

i )K
(

xu
i − x

h

)]
, (6.4)

with u ∈ {a, b}. In the estimations of this paper, the bandwidth h is selected based
on the normal reference rule (Silverman, 1986) to minimize the mean integrated
squared error. The only exception is the cases illustrated Figure 6.14 where a higher
value has been chosen to get a higher smoothing quality for a better illustration.

Using Equations (6.3) and (6.4) to estimate the similarity between pairs of de-
tection methods on a large dataset will help us discovering different behaviors of
community detection methods. Since the accuracy of the estimator depends on the
networks of the dataset that we analyze, the result will have obviously to be rel-
ativized. However, our large and representative corpus would help to reduce the
dependency impact.

6.2.1 Experimental results

From the communities identified in the previous section, we proceed to measure the
volumes of communities detected by each method to determine the elements of the
corresponding 2-tuples. Finally, we use the similarity function defined by Equation
(6.3) to estimate the closeness between each pair of methods. Due to the huge num-
ber of experiments, only processes having a reasonable theoretical estimated time
and memory consumption are maintained (less than a few days and at most 30 to 40
GBytes of memory). The outcome distributions are illustrated in Figure 6.14.
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FIGURE 6.14: The distributions of communities by sizes contained
in the partitions detected on the networks of the dataset. They are
smooth using a Gaussian kernel estimator. The illustrative gradient

color is only for the ease of view purpose.

As we can see, there is a clear difference in the densities of community size, show-
ing that these methods have various partitioning strategies. Knowing that methods
belonging to the same theoretical group (as shown in Table 6.1) are placed next to
each other, we can notice some agreements between the theoretical families with
practical outcomes as follows:

Edge removal: GN and RCCLP-3 have very similar distributions where a large
number of communities are very small. This is due to the fact that in some
highly local centralized networks having star-like structures (as shown in the
previous chapter), they have a tendency to remove edges connecting hub and
peripheral nodes and create singletons (single node community). This phe-
nomenon is less distinguishable on RCCLP-4 since there are much less quad-
rangular than triangular connections in networks.

Modularity optimization: Modularity is known to suffer from resolution limit
phenomenon (Fortunato and Barthelemy, 2006), which often aggregates small
communities in large scale networks. We can see from Figure 6.14 that Louvain
and SN found very large communities as predicted. In the meanwhile, there
are also a comparable number of small communities which are found on small
graphs. However, the behavior is a little bit different on CNM method, which
is an agglomerative clustering algorithm based on modularity optimization.

Dynamic process: Methods in this family show very discernible distributions
although all based on dynamic processes. In fact, they make different assump-
tions about community structure and searching mechanisms. Therefore, be-
long to the same theoretical family does not lead to a similarity in practical
results.
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Statistical inference: the Bayesian SBM and DCSBM uses Monte Carlo sam-
pling process which is very time demanding in order to sweep the solution
space. This makes the method unfeasible if the maximum number of clusters
is not limited. Indeed, in the default version, the maximum number of commu-
nities is limited at 25 making (DC)SBM methods find very large communities
in large networks. On the other hand, Oslom method use an agglomerative
discovery mechanism and identify globally smaller communities.

Other methods: In this group, LPA, SLPA (both based on label propagation)
and Conclude display nearly identical distributions. RB method, being based
on a very close concept with modularity (with a tuning parameter), exhibits a
similarity with modularity optimization based methods.
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FIGURE 6.15: The similarity between community detection methods
in term of size fitting quality. Two methods are considered to be sim-
ilar if they share a large fraction of same-size communities. Methods
are ordered using hierarchical clustering (Joe H. Ward, 1963). The
dendrogram proposes a hierarchical structure of the fitting closeness.

Blue colors mean high similarity.

Quantitatively, applying the estimator presented in Equation (6.4) to compute
pairwise similarities between the methods leads us to the results demonstrated in
Figure 6.15. As we can see, according to the community size criterion, these meth-
ods can be classified into different classes of partitioning strategy. The separations
are very shaped showing that the distinction is very clear between groups. There-
fore, we choose to characterize these methods by 3 (possibly 4) principle groups as
follows:

1. Group 1 - RB, DCSBM, SBM, Infomod, SN, Louvain: Methods in this group
discover communities whose size vary in wide range of spectrum, from very
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small to very large communities. The characterized community size distribu-
tion is quite flat, meaning all sizes are nearly equally considered.

2. Group 2 - GN and RCCLP-3: These two methods identify a huge number of
very small communities including singletons regardless of network size. As a
consequence, there are few variations in community volume.

3. Group 3 - the others: These methods produce communities whose sizes ap-
proach bell-shaped distribution. The strategy can be translated as: not left not
right, i.e. not too small and not too big communities.

This characterization could help us to identify appropriate group of community
detection methods according to different community size fitting strategies. Also, it
helps to avoid brute-force tries when a method does not succeed to propose desired
partitions by proposing substitute solutions. Moreover, by combining with the pre-
vious time computation analysis in Section 6.1.1, one could also choose a group of
methods corresponding to size distinction criteria, and then select the fastest method
that lead to a desired outcome.

The community distribution (or number of communities) is just one possible
quality dimension, even it could possibility be the most important information when
choosing a clustering method. In the next part, we demonstrate some techniques
that can be used to define other similarity aspects. We show that these notions of
similarity can be combined to accentuate the distinction between different commu-
nity detection methods.

6.3 Detection performance profiling

6.3.1 Fitness functions

As mentioned in the previous chapter, a popular way to evaluate the structure of
communities is to design quality goodness metrics in order to measure different ex-
pected characteristics from subgraphs that we want to obtain. In Chapter 5, some
topological goodness metrics are employed to characterize popular interaction pat-
terns between nodes in communities. However, in practice, other goodness metrics
using network models are sometimes preferable when there is an assumption about
the underlying generative mechanism. One of the most widely used metric of this
class that quantifies the quality of community structure that has been mentioned
all along Section 3.2 of Chapter 3 is the modularity function. The idea here is to
reveal how the quality of identified community structures are different from what
would be expected. Although some unexpected phenomena known as resolution
limit (Fortunato and Barthelemy, 2006), (Traag, Dooren, and Nesterov, 2011) have
been exposed when the scale of community size is too small, modularity remains to
be the standard measure of quality.

The advantage of this approach is that one can "embed" the assumption of com-
munity structure inside quality functions, hence they provide better performance in
some cases. However, community structure is quite an open question, such that ac-
cording to different mechanisms that render the structure of networks, there will be
models that are more suitable than others. Modeling networks hence contributes a
great impact on the evaluation of network structure as well as community structure.

We present some quality metrics in this class to evaluate community structure.
Many of them are initially or gradually employed as objective functions in some
community detection methods since they expose good performance in searching
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processes. By reusing the notations introduced in Chapter 4, we analyze the fol-
lowing functions:

• Modularity: The standard version of modularity (Newman and Girvan, 2004)
reflects the difference the fraction of intra community edges of a partition with
the expected number of such edges if distributed according to a null model.
In the standard version of modularity, the null model preserves the expected
degree sequence of the graph under consideration. In other words, the mod-
ularity compares the real network structure with a corresponding one where
nodes are connected without any preference about their neighbors. There are
several ways to mathematically express the modularity, in order to compare
the standard modularity with other variants, it is convenient to consider the
modularity as a sum of contributions from pairs of vertices of the same com-
munity:

QNG(P) =
1
m ∑

c∈P

[
mc −

(2mc + lc)2

4m

]
(6.5)

• ER Modularity: The Newman-Girvan modularity has attracted much attention
in the research literature. Many alternative derivations have been proposed to
adapt to different contexts. Some of them use different null models to quan-
tify the modular structure of partitions. For example, one could assume that
vertices in a network are connected randomly with a constant probability p as
formulated in the Erdős-Rényi (ER) model (Erdős and Rényi, 1959). The con-
nection probability is calculated as p = 2m

n(n−1) being the number of presented
edges over the total number of edges that could be established. The expected
number of edges in a community of size nc becomes 〈mc〉 = p(nc

2 ). This null
model leads us to the ER Modularity:

QER(P) =
1
m ∑

c∈P

[
mc −

mnc(nc − 1)
n(n− 1)

]
(6.6)

• Modularity Density (D-value or D-modularity): The standard modularity is found
to be impacted by resolution limits (Fortunato and Barthelemy, 2006), i.e. it is
claimed that the sizes of detected modules depend on the size of the whole
network such that optimizing standard modularity can not identify commu-
nities having a small number of vertices. The expected number of intra com-
munity edges is highly sensitive to the total number of edges in the whole
network (Rosvall and Bergstrom, 2007) as can be observed in the second term
of Equation (6.5). The modularity density (Li et al., 2008) is one of several
propositions that envisioned to palliate this issue. The idea of this metric is
to include the information about community size into the expected density of
community to avoid the negligence of small and dense communities. For each
community C in partition P, it uses the average modularity degree calculated by
d(C) = dint(C) − dext(C) where dint(C) and dext(C) are the average internal
and external degrees of C respectively to evaluate the fitness of C in its net-
work. Finally, the modularity density can be calculated as follows:

QD(P) = ∑
c∈P

1
nc

(

∑
i∈c

kint
ic −∑

i∈c
kext

ic

)
(6.7)
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• Z-modularity: This is another variant of the standard modularity proposed to
avoid the resolution limit (Miyauchi and Kawase, 2016). The concept of this
version is based on an observation that the difference between the fraction of
edges inside communities and the expected number of such edges in a null
model should not be considered as the only contribution to the final quality of
community structure. Specifically, the authors recommend that the statistical
rareness of a community should be also taken into consideration. Such that
an additive contribution amount of a community to the final modularity of a
partition would be more important if its structure is less likely to be happen.
Therefore, the variance of the probability distribution of the fraction of the
number of edges within each community is included into the quality function
throughout a standardization using Z-score. Following the null model of the
standard modularity, the probability that an edge in placed inside community
C is p = (DC

2m )2, where DC = 2mC + lC is the total degree of community C. The
number of edges in each community follows a binomial distribution with the
probability p and its normalized value approaches a normal distribution when
the number of edges is sufficiently large. The statistical rarity of partition P in
terms of the fraction of the number of intra-community edges using Z-score is
hence translated into Z-modularity as follows:

QZ(P) =

[

∑
c∈P

mc

m
− ∑

c∈P

(
Dc

2m

)2
] [

∑
c∈P

(
Dc

2m

)2
(

1− ∑
c∈P

(
Dc

2m

)2
)]−1

2

(6.8)

• Surprise: This statistical approach proposes a quality metric assuming that
edges between vertices emerge randomly according to a hyper-geometric dis-
tribution (Aldecoa and Marín, 2011). Specifically, for a graph of n vertices and
m edges, there are M = (n

2) possible ways of drawing m edges. For a partic-
ular partition, there are Mint = ∑C∈P (

nc
2 ) possible ways of drawing an intra-

community edge. Surprise metric computes the (minus logarithm of) prob-

ability of observing at least mint = ∑C∈P
kint

C
2 intra-community edges within

m draws without replacement from the population of M possible choices in
which consist precisely Mint possible intra-community edges. This probability
is formalized as follows:

S(P) = − log
min(m,Mint)

∑
k=mint

(Mint

k )(M−Mint

m−k )

(M
m)

. (6.9)

However, this formulation is not straightforward to work with in large-scale
networks due to numerical computational problems. Hence, (Traag, Alde-
coa, and Delvenne, 2015) provides an asymptotic approximation for the metric
which is a good alternative. By assuming that the relative number of intra-
community edges q = mint

m and the relative number of expected intra-community

edges 〈q〉 = Mint

M remain fixed, Surprise metric is approximated at:

S(P) ≈ mD(q||〈q〉), (6.10)

where D(q||〈q〉) is the Kullback–Leibler divergence (Kullback and Leibler, 1951):
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D(q||〈q〉) = p log
p
〈q〉 + (1− q) log

1− q
1− 〈q〉 . (6.11)

According to the Surprise metric, the higher the score of a partition, the less
likely it is resulted from a random realization, the better the quality of the
community structure.

• Significance: This metric use a similar approach to Surprise metric. It estimates
how likely a partition of dense communities appear in a random graph (Traag,
Aldecoa, and Delvenne, 2015). However, Significance estimates the unlikeness
of dense communities in a random graph in a different way. While Surprise
uses global quantities q and 1− 〈q〉, Significance compares each community
density pC = mC

(nC
2 )

to the average graph density p = m
M . The asymptotic form

of Significance can be written as:

Z(P) = ∑
C∈P

(
nC

2

)
D(pC||p). (6.12)

Similarly, D(x||y) is the Kullback–Leibler divergence defined in Equation (6.11).
Generally, if the number of communities is relatively large or the graph is rel-
atively dense, Significance is more discriminative than Surprise. On the other
hand, in case that 〈q〉 > p, Surprise can be better than Significance (Traag,
Aldecoa, and Delvenne, 2015).

6.3.2 Detection co-performance index

We devise a new comparative approach using a matrix called community detection
co-performance matrix. The idea is that, given an expected quality function, one could
investigate whether there exist a correlation in the efficiency of enhancing (or aggra-
vating) its scores between different methods. The co-performance matrices reveal
how understanding the performance of a method in optimizing a quality would al-
low us to predict the performance of other methods on the same quality. Therefore,
an exhaustive analysis of co-performance matrices on many qualities allows to pro-
file the characteristics of community detection methods in a comparative way. The
index could be calculated as follows:

Let methods A and B divide a graph Gi = (Vi, Ei) of dataset G = {Gi|i = 1..N}
into α and β communities described by partitions Pa

Gi
= {Ca

1Gi
, Ca

2Gi
, ..., Ca

αGi
} ∈ PGi

and Pb
Gi

= {Cb
1Gi

, Cb
2Gi

, ..., Cb
βGi
} ∈ PGi respectively, we consider solely hard clustering

methods, meaning Ca
uGi
∩ Ca

vGi
= ∅ : 1 ≤ u < v ≤ α and Cb

uGi
∩ Cb

vGi
= ∅ : 1 ≤ u <

v ≤ β. A function Q : PGi → R quantifies a quality of a partition of graph Gi
according to a particular goodness aspect (or model).

We define a co-performance index of two methods A and B on G by their mutual
capacity in discovering community structures showing a particular quality Q. In
other words, each couple of methods should be assigned a high index according to a
quality Q if knowing the performance of one method reveals significantly the infor-
mation about the performance of the other. A straightforward solution for defining
the index is using Pearson correlation. Denoting qa

i = Q(Pa
Gi
) and qb

i = Q(Pb
Gi
), the

co-performance index can be calculated as follows:

IG(A, B, Q) =
N ∑ qa

i qb
i −∑ qa

i ∑ qb
i

[N ∑(qa
i )

2 − (∑ qa
i )

2]1/2[N ∑(qb
i )

2 − (∑ qb
i )

2]1/2
, (6.13)
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where 0 ≤ IG(A, B, Q) ≤ 1. A high positive (negative) score implies that two meth-
ods often find a strong consensus (disagreement) in discovering communities hav-
ing a particular quality. In order words, given a co-performance index, knowing the
quality scores of one method could provide predictive information about the out-
comes of the other method on the same dataset. This information in fact could be
very useful in a context where alternative solutions must be deployed while main-
taining an assumed quality is expected. We present in the following part the mutual
performance of the presented detection methods by the previously presented quality
functions.
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FIGURE 6.16: The co-performance matrices of different methods. The
"+" marks indicate cases where p-values are larger than 0.05. (A)
Newman-Girvan modularity, (B) Erdős-Rényi modularity, (C) Den-

sity modularity and (D) Z modularity.

Figure 6.16 illustrates the co-performance matrices according to six different qual-
ity goodness criteria. Again, similarly to the previous section, goodness functions
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FIGURE 6.16: The co-performance matrices of different methods (cont.)
(D) Surprise and (E) Significance.

with a close concept are placed together. For instance, NG modularity and ER modu-
larity are both based on null models whose concept use an expected fraction of intra-
community edges. While the hypothesis of NG version is to keep the expected de-
gree sequence of the graph in question, the ER version redistributes edges randomly
with a constant average degree for every nodes. D-modularity and Z-modularity at-
tempt to penalize large communities by including community sizes and significance
level respectively. One can notice a very slight similarity in the experimental results
of the co-performance indexes between different quality functions. Also, it seems
that the assumption about the quality of community structure has an impact on the
co-performance outcome.

As shown in Figure 6.16, there is a class of methods (Louvain, GN, CNM, RB,
Infomod, Infomap, Walktrap, Oslom, LPA, SLPA, Conclude) in which all methods show
very consistent results, except for the case of D-modularity10. Besides, there is also
a strong relation between SBM and DCSBM. For the other methods (RCCLP and
SN), no clear tendency could be observed from this experiment. The similarity of a
large number of methods by many quality functions imply that, globally, if a method
performs well on a given network, there is a signal that the others (from the same
group) could also reach good results. In other words, if the community structure in
a network is clear, most method will be able to detect it with more or less accuracy
and inversely. This is not contradictory with the conclusion stated in the last chapter,
indicating that some methods could be better in improving some qualities. As the
co-performance indexes also vary significantly (0.2 to 0.3) inside the groups, there
will be always a remarkable difference if one go from on method to another.

Within the case of density modularity shown in Figure 6.16(C), we discover that
the sizes of detected communities have a great impact on the co-performance. Since
density is a measure that penalizes heavily large size communities, especially in
sparse networks, D-modularity gives very small values of giant communities and

10In fact, density modularity is somehow apart from other traditional ways to define the modularity,
as it is not defined based on a null model but solely on edge density. The term D-modularity is abused
in this sense
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very high values for small ones. Concretely, the methods SBM, DCSBM, Infomod,
RB, SN discover very large communities (as shown in Section 6.2) and their co-
performances in terms of D-modularity are very weak, showing that internal den-
sities of communities detected by these methods are not linearly correlated. The
reason is that the corresponding densities fluctuate unpredictably around zero. Sim-
ilarly, GN and RCCLP-3 found many tiny communities making the density either
very high or zero (if internal degree is equal to external degree), consequently the co-
performance index can not show significant information. On the other hand, we no-
tice a consistency between the similarity of community size and the co-performance
when methods identify medium size communities. Specifically, we find high co-
performance indexes between CNM, Conclude, Oslom, Walktrap, LPA, SLPA, Infomap
methods in most of the cases of the six quality fitness functions. This finding ex-
poses a global agreement with our categorization determined by community size
distributions.

The co-performance matrices also disclose interesting information about qual-
ity functions. As we can see in Figure 6.16(A,B,D), the matrices imply a similarity
between NG modularity, ER modularity and Z-modularity in the assumptions of
quality. In the same way, Surprise and Significance are quite close in practice as
illustrated in 6.16(D,E). This experiment shows again another proof about the close-
ness between the theoretical assumption of community structure and the practical
outcome. Moreover, although being based on different aspects of goodness, the per-
formance of many methods tends to reach agreement on the modular structure of
networks in general. This is to say, methods in the same group identify roughly and
globally comparable results although there are always significance differences. In
order to strengthen and validate our conclusion, we are interested in using other
popular approaches in the literature to compare these community detection algo-
rithms, which will be presented in the next section.

6.4 Evaluation using validation metrics

This section is dedicated to using conventional clustering validation metrics from
the literature to verify the previous similarity analyses. We employ some popular
metrics in the traditional clustering context (and also widely used in community
detection context), which measure directly the likeliness of partitions using their
corresponding contingency tables. These metrics do not take into consideration the
structural information of community structures, but only use the common numbers
of nodes that are shared by pairs of communities in two partitions.

6.4.1 Validation metrics

The consensus of two partitions P1 = {c(1)1 , c(1)2 , ..., c(1)R } and P2 = {c(2)1 , c(2)2 , ..., c(2)S }
can be more practically observed using a contingency table (sometimes called con-
fusion matrix or association matrix) whose elements nij = |c(1)i ∩ c(2)j | corresponds
to the number of common vertices between the i-th community of P1 and the j-th
community of P2 as shown in Table 6.4.

In the evaluation of community structure using a validation metric, some follow-
ing validation metrics are often used in the context of community detection to define
the matching coefficient between two arbitrary partitions of a network:
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Partition P1

Partition P2

c(2)1 c(2)2 · · · c(2)S ∑

c(1)1 n11 n12 · · · n1S n1·

c(1)2 n21 n22 · · · n2S n2·
...

...
...

. . .
...

...
c(1)R nR1 nR2 · · · nRS nR·

∑ n
·1 n

·2 · · · n
·S n

TABLE 6.4: Contingency table of P1 and P2 on the same graph pro-
vides information about the similarity between the two partitions.

Rand Index (RI)

The rand index is a pair-counting based measure, defined as the ratio of the num-
ber of vertex pairs correctly classified (either in the same community or in different
communities) by the total number of pairs (Rand, 1971). The RI penalizes both false
positive and false negative decisions of the clusterings. When the false positive need
to be neglected, we can refer to the Jaccard index (Kuncheva and Hadjitodorov, 2004).
The rand index value of two partitions can be calculated by the following:

RI(P1, P2) =
(n

2) + 2 ∑i ∑j (
nij
2 )−

[
∑i (

ni·
2 ) + ∑j (

n
·j

2 )
]

(n
2)

(6.14)

The value varies between 1 (meaning the two partitions are identical) and 0 (in-
dicating that the two partitions do not agree on any pair of vertices). However, this
value is only observed in the scenario when one partition consists in one community
and the other consists in n community of 1 vertex, which has little practical value.
Another shortcoming of the rand index is that its expected value for two randomly
chosen partitions does not take a constant value which is normally expected for a
good matching index (Vinh, Epps, and Bailey, 2010). Therefore, a modified version
of RI has been suggested, taking into consideration the expected value of random-
ness (Hubert and Arabie, 1985), which is introduced in the following.

Adjusted Rand Index (ARI)

The corrected version of rand index takes the form:

Adjust_index =
Index− Expected_Index

Max_Index− Expected_Index
(6.15)

It quickly becomes a replacement recommended for measuring agreement be-
tween two partitions in the analysis of clusterings. Its values ranges from −1 to 1
indicating completely different and identical partitions respectively. It is known to
be less sensitive to the difference of the number of communities between two parti-
tions. An ARI value of 0 indicates that the similarity is equal to the expected value
from randomly chosen partitions. It can be calculated as:

ARI(P1, P2) =
∑ij (

nij
2 )−

[
∑i (

ni
2 )∑j (

nj
2 )
]

/(n
2)

1
2

[
∑i (

ni
2 ) + ∑j (

nj
2 )
]
−
[
∑i (

ni
2 )∑j (

nj
2 )
]

/(n
2)

(6.16)
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Normalized Mutual Information (NMI)

Information theoretic based metrics constitute another approach for validating com-
munity structure with a given reference partition. Using the same notations as pre-
viously presented, the Mutual Information (MI) between two partitions quantifying
the mutual dependence is calculated as:

I(P1, P2) = ∑
ij

p(c(1)i , c(2)j ) log
p(c(1)i , c(2)j )

p(c(1)i )p(c(2)j )
= ∑

ij

nij

n
log

nijn
ni·n·j

(6.17)

It measures how much knowing a repartition of vertices in one way would re-
duce the uncertainty about the other way. In order words, it could be considered
as an indicator of information closeness expressing by the joint distribution between
two variables. Therefore, the mutual information can be used as similarity measure
between two partitions. However, it need to be normalized to reflect a consistency
between different measures. The normalization is applied by using the entropy of
each partition as:

H(P) = −∑
k

nk

n
log

nk

n
(6.18)

Several variants of normalization can be considered, for instance taking the average,
the root or the maximum of entropy of the two partitions as the denominator (Ana
and Jain, 2003). In this document, we use the average version which is widely used
in the context of community analysis (Danon et al., 2005), (Chakraborty et al., 2017).
The closed form of NMI is hence defined from Equation (6.17) and (6.18) as follows:

NMI(P1, P2) =
2I(P1, P2)

H(P1) + H(P2)
=

−2 ∑ij nij log
(

nijn
ninj

)

∑i ni log
( ni

n

)
+ ∑j nj log

(
nj

n

) (6.19)

Likewise, the NMI similarity between two partitions varies between 0 corre-
sponding to independent relation and 1 when two partitions are identical. The NMI
does not follow triangle inequality.

Adjusted Mutual Information (AMI)

Similarly to the Rand Index, the Mutual Information is also subject to the effect of
randomness, i.e. there is not a constant baseline value between random partitions
of a graph. This issue raises many difficulties in the comparison mechanism since
it is expected that a comparative index should preserve the relativity between dif-
ferent clusterings and enhance intuitiveness about the mutual agreement. For that
reason, the traditional Mutual Information is proposed to be normalized with a sup-
plementary correction for chance and recently attracted attentions for comparing
graph partitions. It is calculated as follows (Vinh, Epps, and Bailey, 2010):

AMI(P1, P2) =
I(P1, P2)− E{I(M)|ni·n·j}

1
2 (H(P1) + H(P2))− E{I(M)|ni·n·j}

, (6.20)

where I(P1, P2) and H(P) are introduced in Equation (6.17) and (6.18) respectively.
E{I(M)|ni·n·j} is the expected mutual information value of all feasible contingency
tables constructed from the actual table M with the same marginals ni·, n

·j.
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Normalized Variation of Information (NVI)

Another popular metric that is often used in the context of comparing community
partition similarity is the Variation of Information (VI) (Meilă, 2003), which is de-
fined as:

VI(P1, P2) = H(P1) + H(P2)− 2I(P1, P2) (6.21)

The VI metric can be interpreted as an index of shared information distance be-
tween two partitions. Its lower bound is 0 and is occurred when the two partitions
are identical whether the upper bound log(n) happens when they are completely
different. It is also preferable to use a normalized version with chance corrected to
avoid the effect of randomness. Similarly to the construction of the Adjusted Mu-
tual Information, with the same notation, the Normalized Variation of Information
is calculated as follows:

NVI(P1, P2) =
H(P1) + H(P2)− 2I(P1, P2)

H(P1) + H(P2)− 2E{I(M)|ni·n·j}
. (6.22)

However, it turns out that NVI discloses the same information with AMI since from
Equation (6.20) and (6.22), one has NVI(P1, P2) = 1− AMI(P1, P2). By consequent,
calculating VI and NVI is unnecessary. We will be interested in using RI, ARI, NMI
and AMI in our experiment. A summary of these validation metrics are shown in
Table 6.5.

Label Range Measure

RI [0, 1] Fraction of commonly grouped and separated ver-
tices in two partitions.

ARI [0, 1] Rand index with a chance correction, less sensitive to
differences of community sizes.

NMI [0, 1] Information theoretic approach, indicate how much
information knowing one partition will help to guess
the other.

AMI [0, 1] Similar with NMI, with a chance correction to set a
constant baseline for random partitions.

VI [0, log(n)] Shared information distance measures the amount of
mutual information. The higher the value, the less
resembling the two partitions.

NVI [0, 1] Normalized version of shared information distance
with chance correction.

TABLE 6.5: Some popular validation metrics for comparing commu-
nity partitions

Validation metrics are often used in the context of community structure evalu-
ation to measure the difference between the partition identified by a method with
an expected partition of the network under consideration (ground-truth). The more
similar the discovered partition to the ground-truth, the higher the performance of
the method. However, in this section, validation metrics are exploited as a tool to
compare community structures of different detection methods. They estimate the
practical proximity of different algorithms through detected partitions, which con-
stitutes a supplement source of information for evaluating their performance in a
comparative approach.
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6.4.2 Empirical results

Once again, the experimental process is the same as those of the previous sections.
From the partitions detected by the methods on the dataset, we calculate pairwise
scores quantified by each validation metric on each network. Figure 6.17 illustrates
pairwise average scores of the 4 metrics over the networks of the dataset11.
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FIGURE 6.17: The similarity between community detection methods
quantified by different validation metrics based on partitions discov-
ered on networks of the dataset. Rows and columns are ordered ac-
cording an hierarchical clustering method (Joe H. Ward, 1963). In the

order, the average score of (A). NMI, (B). AMI, (C). RI, (D). ARI.

Again, by observing the dendrograms in Figure 6.17, one can see that all of the
4 metrics classify methods into two principle groups in a similar way that the co-
performance matrices exposed in the previous section. The group of methods CNM,
Conclude, Oslom, Walktrap, LPA, SLPA, Infomap mentioned in the last section also
show very strong similarities in this experiment. Especially, LPA and SLPA being

11Where the corresponding methods are able to finish using a reasonable amount of time and mem-
ory as mentioned in the previous experiments.



138 Chapter 6. Comparative evaluation of community detection methods

based on label propagation mechanism show nearly identical results in many cases.
Besides, one could also discern another group including RB, CNM, GN and Louvain
(modularity based), which show a high consistency in general. Additionally, even
with weaker scores, SBM and DCSBM are often found in the same group as well as
RCCLP-3 and RCCLP-4. In a global view, it seems that methods with a close theo-
retical approach tend to provide more similar results, which is also noticed in the
previous sections.

Another information that could be extracted from this experiment is that RI
should not be used as validation metrics for evaluating detection performance. Since
its average values vary generally in a small range (0.9 to 1.0), it is more difficult to
see the different between partitions. On the other hand, NMI and AMI shows very
close results in our experiment, which are between 0.5 and 1.0 meaning that struc-
tural communities detected by different methods are quite comparable as concluded
in the previous section. Finally, ARI seems to magnify the differences between meth-
ods, however there is no major difference in the similarity evaluation in comparison
with the other metrics.

6.5 Related work

Orman et al. publish a comparative evaluation of eight community detection algo-
rithms which most of them are also studied in this chapter (Orman, Labatut, and
Cherifi, 2012). Different validation metrics are also used to compare detection per-
formance and they also find that these metrics (RI, ARI, NMI) “agree with each other
with small differences when considering the way they rank algorithms”, as also illustrated
in Section 6.4. Beside, the authors also focus on analyzing many topological as-
pects of community structure including also community size, transitivity, density,
etc. These topological qualities are then used to inspect community structures de-
tected by different algorithms. The analyses allow the authors to conclude that these
two approaches (topological metrics and validation metrics) to evaluate community
structures are “complementary and needed to perform a relevant and complete analysis
of community detection results”. They also propose that the “traditional approach (RI,
ARI, NMI) is much faster and easier to apply”, and hence is proposed to be used first.
However, in practice, reference community structures (ground-truths) are not usu-
ally available12. Therefore, from these above notices, our analyses in this chapter
could be an important support dispensing additional information about the close-
ness between methods both in terms of topological aspect and partition-based as-
pect.

Agreste et al. evaluate different community detection algorithms in a empirical
and comparative approach, especially for the context of web data analytic (Agreste
et al., 2017). The authors find that “time complexity is a crucial factor in the selection of
a community detection algorithm” and recommend that the label propagation method
(LPA) “has outstanding performance in scalability on both artificial and real graphs”, which
is also in a global agreement with our analysis in Section 6.1.1 providing predictions
about required time of each method in function of network size. They also conclude
that “Infomap algorithm showcased the best trade-off between accuracy and computational
performance” based on NMI score. The conclusion could be valid in some specific

12In the context where a new algorithm is invented, one normally uses networks whose community
structures are well known in order to validate the proposed method. In reality, since community
detection is often employed to discover structures of new networks, hence it is not likely that reference
community structures always exist.
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cases when the reference community structure is well understood. Otherwise, as
demonstrated in Section 4.2 of Chapter 4, some additional analyses should be done
to obtain other structural aspects. Our conclusion is not as precise as the above ones,
but are expected to give a more specific and quantitative information.

Ghasemian et al. present in a recent publication that an evaluation of overfit-
ting and underfitting of several community detection models (Ghasemian, Hossein-
mardi, and Clauset, 2018). The authors study the number of communities detected
in practice by many methods and the maximum number of detectable clusters ac-
cording to a theoretical model. Some conclusions are drawn about fitting qualities of
methods in comparison to theoretical estimates. This study provides evidences that
help to choose an appropriate method in function of fitting quality. Community de-
tection methods are also grouped in distinct families based on their outputs on many
real-world networks (similarity to our analysis in Section 6.4.1) using AMI metric.
The authors also find that “what an algorithm finds in a network depends strongly on the
assumptions it makes about what to look for”, which is aligned with our results through
several analyses.

6.6 Conclusion

Finally, it is quite challenging to say which method is better in which scenario. It
is at least as much demanding as defining all possible scenarios in the reality that
could happen. Our experiments in this chapter provide several experiments demon-
strating different aspects of community structure quality, which can be combined
together in a flexible way to assist network analysts to find appropriate methods
according to their context. Some questions could be sequentially asked during deci-
sion making processes:

1. What is the size of the network of interest and what is the acceptable compu-
tation time?

2. What are the expectancy about the number of communities as well as the com-
munity size distribution?

3. Is there any fitness function that should be optimized?

4. In case where the targeted method can not be deployed, is there any alternative
solution?

The experiments and results in this chapter could help to identify quickly suit-
able method(s) if one is able to response the previous questions. Even still very far
from being an exclusive analysis, our experiments cover a wide range of popular as-
pects of community structure that are studied in the state-of-the-art. Some primary
conclusions that could be extracted from the analyses in this chapter can be cited:

• A consideration of computation time is very crucial in the process of choos-
ing a community detection method for a problem at hand. As such, a well
performed method in the literature can help one to reduce approximately 104

times of required computation time, which is significantly important in dis-
covering large graph. Theoretical estimate of time complexity is important and
reveals the scalability of a community detection method. On the other hand,
practical computation time is worth being studied in practice for specific ap-
plications. Our estimates shown in Figure 6.6 provide detailed information
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of practical time required by many popular community detection methods in
function of network size. It could help network analysts to determine a suit-
able method(s) according to time availability.

• The expected number of communities to be obtained is another important cri-
terion in choosing a community detection methods. According to the con-
text, one would prefer different granularity levels to discover a network. Our
study show that there are globally three main strategies that community de-
tection methods decompose a network. Specifically, some identify communi-
ties whose size vary regularly in a wide range of values from very small to
very large communities, some others divide networks into a huge number of
very small communities and very few large communities, the last ones dis-
tribute nodes into similar-size communities. Therefore, knowing how a net-
work should be broken down is very useful in order to end up with an appro-
priate community discovery method.

• In cases where one can determine a targeted objective function, designing
new algorithms (or employing existing algorithms) that optimize the func-
tion would be the most evident. Since improving an objective function usu-
ally means expending more computation time, a compromise between getting
higher fitness score and using less time needs to be considered. However,
finding a good method to optimize an objective function satisfying a time
constraint condition in the problem of community detection is not straight-
forward and needs many investigations. Our approach presented in the co-
performance analysis provides network practitioners a quick glance about how
different methods perform in improving some widely-used quality functions.
This predictive information about the effect of using alternative methods in
achieving good fitness scores would suggest network analysts multiple solu-
tions for a certain objective function. This scenario is specifically useful when
the desired method is too expensive in terms of computation time. Therefore, a
combination of analyses presented in Section 6.1.1 and Section 6.3 is expected
to eligible community detection method(s) for specific cases.

• Finally, we find that using some validation metrics to estimate the similarity
between community detection methods would also provide interesting infor-
mation that could help the decision process of network analysts. However,
the distinction between the performance of different methods is less signifi-
cant than that of the previous analyses. In case when one know exactly what
should be found (ground-truth information), an analysis in this direction is im-
portant as it provides useful information about how a method is able to reach
the desired result. However, this scenario is normally not popular in practice
since community detection is often used to discover the structures of networks
of which we do not a priori information. In these cases, validation metrics
should be used as complementary evaluation to verify the appropriateness of
using a method. For example, methods such as SBM or RCCLP-4 detect parti-
tions which are very discernible from that of the others. This means there could
be significance differences in the way that nodes are distributed into commu-
nities in these two methods in comparison to those of the others. Hence, the
use of these methods need to be examined in specific cases.
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Chapter 7

Conclusion and perspectives

In this thesis, we study many aspects of the problem of community detection, which
is an important exploratory task to discover large scale structure of networks with-
out knowing any additional information, such as number of communities or size dis-
tribution. Thanks to a promising perspective that community detection could help
to understand the mesoscopic structure of complex networks in many domains, a
plethora of methods has have been invented in the last decades. However, commu-
nity detection is an ill-defined problem, i.e. there is no consensus on what should be
considered as a good community structure. Therefore, although some protocolaire
procedures exist in the evaluation of detection accuracy, the disagreement on com-
munity structure goodness still provokes many discussions in the literature. There
is a need to revisit essential notions of the community detection problem in order to
better understand community structure in real world networks as well as commu-
nity detection methods. For that reasons, we conduct the following analyses:

Firstly, we provided a novel analysis process to characterize community struc-
ture of networks into many topological groups which show different node organi-
zation patterns. Each representative group is then associated to a corresponding
graph generative model that produces a high similarity in connection patterns in-
cluding star-like, tree-like, grid-like, string-like. Our empirical study uncovers that
networks across different categories including communication, technological, infor-
mation, biological and social networks might have different community structures
and can be described by distinguishable characterized topologies. The difference of
modular topology between networks in various categories could help to construct
network profiles or network signatures by domain of study, and hence open a pos-
sibility for creating adapted network generative models, network class prediction
algorithms, etc. Specifically, since networks in each domain reveal some particular
modular structures, the mechanisms which are responsible for their creation, evolu-
tion, degradation are also discernible. Hence, different simulation or analysis strate-
gies will generate different impacts on the networks in a predictable way if their
structures are well understood. In other words, the network structure profiling as-
sists to achieve suitable network analysis processes and to interpret obtained results
without requiring expensive brute force analysis.

On the other hand, we study many state-of-the-art community detection meth-
ods. However, the evaluation of these methods still presents many challenges. Specif-
ically, a conventional way to evaluate the accuracy of an algorithm is to design an
objective function reflecting how a solution is “close” to the expected one. If the ex-
pected community structure can be defined clearly, evaluating the performance of
a method would be straightforward and universal via a unique function. On the
contrary, it is also possible that in each domain or each specific application, one will
expect to discover modular structures of one kind or another due to some reasons. In
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this case, modular structure is context dependent and corresponding objective func-
tions must be designed accordingly. These two approaches are principally different
and the way that we define what community detection is will crucially impact the
way algorithms are designed and evaluated.

• Global approach: If a universal notion of community structure could be de-
fined by an objective function, then evaluating the quality of a method will
become simply inspecting its corresponding scores measured by the function.
The problem of community detection becomes similar to the traveling sales-
man problem, where the notion of optimal result is clearly defined. In this sce-
nario, other algorithms whose objective are different from the standard one
should not be called community detection since they are looking for something
else. Consequently, evaluating the performance of a community detection al-
gorithm is simply analyzing the expected fitness scores of its outcomes.

• Contextual approach: Community detection is a problem-dependent task, al-
gorithms to detect community structures should be attached with specific con-
texts. In other words, there will be an objective function for each context (based
on network model for example ) and the term community detection should not
be considered as a specific task, but a class of methodologies. In this scenario,
the evaluation of any community detection algorithm should take into con-
sideration corresponding hypotheses which were embedded into the algorithm.
For example, a method which is designed to discover community structure on
bipartite network should not be validated on a traditional ground-truth par-
tition. In the same way that a method designed to discover core-periphery
community structure should not be verified on other kinds of modular struc-
tures.

There is no consensus in the literature on how the problem of community detec-
tion should be considered. Reaching a global agreement for the task of community
detection is unrealistic as it is somehow irrational to impose a unique objective func-
tion on this exploratory task. Recent approaches in finding community structure
try to search for solutions that optimize likelihood functions that are regulated by
different underlying network models based on stochastic block models. Here, a con-
text can be considered as a network model that controls the nascency of a network
(configuration) by some certain probability functions. In this scenario, defining con-
textual network models that explain well network structures in specific problems are
vital. That is the reason why many studies need to be conducted to understand the
underlying mechanisms that are responsible for the interactions of nodes in different
kind of networks.

Which method then?

Since there is no agreement on the expected community structure that should be
found on networks, proposing a comprehensive recommendation of community de-
tection methods is not straightforward and is dependent on specific context. Never-
theless, the experiments and analyses presented in this thesis provoke some guide-
lines that could support network analysts to determine eligible detection methods
as follows:

• Time complexity is an important factor to be examined when one needs to
consider different solutions. For example, a fast method can be 104 times
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faster than a slow method, even on very small networks of less than a hun-
dred nodes. A detailed time computation analysis could be found in Section
6.1.1

• In the scenarios where no information about the expected structure or parti-
tion is available, Louvain method and LPA are very good points to start. These
methods are among the highest scalable methods and can be accomplished in
a few seconds for networks with some million nodes and edges. The modular-
ity of their clustering results are relatively high. In general, Louvain provides
larger communities and higher modularity with respect to LPA. However, one
could choose lower-levels of hierarchical clusters to acquire small communi-
ties in Louvain or aggregate several clusters to acquire large communities in
LPA if another resolution needs to be examined.

• In cases where one needs to investigate networks at a certain resolution, fur-
ther inspections on community size distribution as introduced in Section 6.1.2
and/or size distribution similarity as shown in Section 6.2 could be beneficial.
They provide informative indications on the expected granularity that could
be produced by different community detection methods.

• When one has a specific objective function, community detection is reduced
to an optimization problem. In this case, it is better focus on methods whose
objective functions correspond to the desired function. However, when the
optimization process of an objective function is too expensive, alternative so-
lutions could be envisaged based on a co-performance analysis as presented in
Section 6.3.

• Validation metrics (such as AMI, ARI, etc.) should be used to verify the out-
comes of detection methods when several solutions need to be compared as
mentioned in Section 6.4. This kind of analysis is especially valuable when ob-
jective function (or reference modular structure) is not available. Specifically, it
could help to identify groups of methods whose outcomes are relatively com-
parable. Hence, one can reduce significantly the number of necessary calcula-
tions by focusing only on some representative methods.

• Finally, if quality metrics could not help to get insight into the differences of
community structures detected by different methods, it is worth investigating
into details information about topological structure. Specifically, it is advan-
tageous to examine the distribution of different interaction patterns of nodes
in communities detected by each method as described in Chapter 5 and Chap-
ter 6. Indeed, choosing a community detection method is also about how to
explain and interpret its results which is also very challenging. The introduced
characterization contributes a practice that helps to explore community struc-
ture in an intuitive and informative way.

Limitations and perspectives

Although we try to cover as much as possible several aspects of community struc-
ture, there are still many important tasks to be done which were not addressed in
our study:

• The quality of network data needs to be examined in more details. In a con-
ventional manner, we include many well-studied networks in the literature in
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our experiments. However, there must be considerable impact from the char-
acteristic of the involved dataset on the final analytical outcomes. Analyzing
the detection performance of community detection methods with respect to
the variation of input data could provide insightful information and is worth
studying. There is a need of developing a framework to deal with the problem
of data reliability (Guimerà and Sales-Pardo, 2009).

• In Chapter 5, we characterize many topological patterns showing how nodes
interact with each other in networks of different categories. The difference
in topology implies that algorithms could be highly specialized to get better
performance on some specific cases. Therefore, there should be specialized al-
gorithms and associating evaluation benchmarks in order to validate detection
performance.

• We concentrated on the most traditional notions of community detection, i.e.
networks considered are unweighted, undirected and communities are dis-
jointed. Another breath analysis direction into directed and/or weighted net-
works as well as overlapping communities could be addressed in order to
cover other scenarios of community detection in practice.

Finally, we conclude this dissertation by some important notices that would be
beneficial in community detection analysis:

• Determining what is called community structure is very indispensable in con-
structing appropriate analytical process. Since the term community may relate
to many things in practice (ground-truth, semantic, structural, communities
with attributes, etc.) and many models in network science, understanding
what we are looking for helps to identify appropriate analysis tools.

• Understanding various characteristics of the network under consideration pro-
vides valuable information for the analysis process. For example, one should
investigate how large and how dense is the network; what is the degree distri-
bution; what could be the underlying mechanisms that are responsible for the
connection of nodes; how many communities could be appropriate and how
large are they, etc.

• There are many reasons why one would like to discover community structure
on a network in, practice. Clarifying the main purpose that motivates us to
analyze community structure could lead to suitable objective functions, quality
metrics and eventually detection methods.
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Supporting Information

A.1 Modularity

Given a graph G of m edges, the expected probability of having an edge between
a vertex i of degree ki and vertex j of degree k j can be calculated by rewiring dis-
connected edges (stubs) while conserving the number of edges leaving each vertex.
The probability pi of choosing a stub incident with i is pi =

ki
2m as there are ki stubs

connecting i to other parts of the graph out of 2m stubs (total degree). Hence, the

expected number of edges between i and j is pij = 2mpi pj =
kik j

2m as there are 2m
times of choosing a stub randomly. The modularity can be calculated as:

Q =
1

2m ∑
i,j∈V

(
Aij −

kik j

2m

)
δ(ci, cj), (A.1)

where ci is the community of vertex i, δ(ci, cj) is the Kronecker delta function which
is equal to 1 when ci = cj and to 0 otherwise. This quality measure can be literally
translated as:

Q = (number of edges inside communities)− (expected number of such edges).
(A.2)

Because only intra-community edges contribute to the final score of modularity,
the equation A.1 can be rewritten by grouping the amount of contributions of edges
in the same communities in the same factions as:

Q =
nc

∑
c=1

[
lc

m
−
(

dc

2m

)2
]

, (A.3)

where nc is the number of communities, lc is the total number of edges connect-
ing vertices of community c and dc is the total degree of vertices in community c.
The modularity function varies between −1 < Q < 1 where negative (positive) val-
ues indicate a partition in which there are more inter-community (intra-community)
edges than the expectancy. Values approaching 1 represent very strong community
structure and accordingly −1 for heterophily structure while Q ≈ 0 implies random
regrouping. In practice, modularity scores often fall in the range between 0.3 and
0.7.

Methods that produce multiple partitions such as hierarchical clustering often
use the modularity quality function to rank partitions’ quality. The partition corre-
sponding to the highest community score is often taken as the final outcome. Besides
the utilization as a quality metric, the modularity function is also used as an objective
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function for many clustering optimization problems, such as approaches presented
in Section 3.2.3.

A.2 Edge betweenness centrality

Going into the calculation of edge betweenness centrality, calculating the shortest
path between a pair of vertices in a graph using breadth first search takesO(m) time
and there are O(n2) pairs of vertices. In total, it would take O(mn2) time to calcu-
late all edge betweenness scores for a graph, which is really impractical. The authors
proposed to use a faster algorithm, invented independently by (Brandes, 2001) and
(Newman, 2001a) that performs the calculation inO(mn) time for each removal. The
algorithm uses a first-in first out queue Q similarity to the classical breath first search
algorithm in order to discover the other vertices in the graph from a source vertex
s. Additionally, a last-in first out stack S is also in use to stock vertices in order of
non-increasing distance from the source vertex s. These ordered vertices are served
to accumulate betweenness centrality scores from the most distant vertices (leaves)
towards the source vertex s. We maintain for each vertex v a list of direct predecessors1

v.P that is either null or a list of other vertex/vertices. In addition, each vertex v con-
tains its geodesic distance v.d to source s, the number of shortest paths v.σ from the
source s to v, the vertex betweenness centrality v.δ representing the sum of the cen-
trality contributions of its direct successor edge(s) for its direct predecessor edge(s).
Assuming that graph G = (V , E) is represented by an adjacency list G.Adj[v], v ∈ V ,
the processes to calculate edge betweenness centrality are presented in Algorithm 3.

1The shortest distance path(s) going from the source vertex s to vertex v must go through the pre-
decessor(s) of v before reaching v.
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Algorithm 3: Edge betweenness centrality

Input: G = (V , E)
Output: CB[u, v]; e = (u, v) ∈ E ; u, v ∈ V

1 CB[u, v] = 0; (u, v) ∈ E
2 for s ∈ V do

3 S← empty stack
4 w.P← empty list, w ∈ V
5 t.σ← 0, t ∈ V , s.σ← 1
6 t.d← −1, t ∈ V , s.d← 0
7 Q← empty queue
8 ENQUEUE(Q, s)
9 while Q 6= ∅ do

10 v← DEQUEUE(Q)
11 PUSH(S, v)
12 for each w ∈ G.Adj[v] do

13 // If w is found for the first time
14 if w.d < 0 then

15 ENQUEUE(Q, w)
16 w.d← v.d + 1
17 end

18 // If v is a direct predecessor of w
19 if w.d = v.d + 1 then

20 w.σ← w.σ + v.σ
21 APPEND(w.P, v)
22 end

23 end

24 end

25 v.δ← 0, v ∈ V
26 while S 6= ∅ do

27 w← POP(S)
28 if w 6= s then

29 for each v ∈ w.P do

30 CB[v, w]← CB[v, w] + v.σ
w.σ (1 + w.δ)

31 v.δ← v.δ + v.σ
w.σ (1 + w.δ)

32 end

33 end

34 end

35 end

36 return CB[u, v]
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A.3 Graph spectral partitioning

Given a graph G with an associated adjacency matrix A. It is possible to represent
the number of inter-cluster edges called cut size of a graph bisection into two clusters
as:

R =
1
2 ∑

ij
Aij(1− δcicj), (A.4)

where ci and cj represents the cluster of vertex i and vertex j receptively; δcicj =
1 if ci = cj and 0 elsewhere. Every partition of graph G of n vertices into two clusters
can be represented using an index vector s = [s1, s2, ..., sn]T, whose components is +1
if the associated vertex belongs to cluster 1 and −1 if the associated vertex belongs
to cluster 2:

si =

{
+1 if vertex i belongs to group 1,

−1 if vertex i belongs to group 2.
(A.5)

Then we have:

1
2
(1− sisj) = (1− δcicj) =

{
1 if ci 6= cj,

0 if ci = cj.
(A.6)

The partition cut size presented in Equation (A.4) can be rewritten as:

R =
1
4 ∑

ij
Aij(1− sisj) (A.7)

The first term in Equation (A.7) can be represented as:

∑
ij

Aij = ∑
i

∑
j

Aij = ∑
i

ki = ∑
i

s2
i ki = ∑

ij
sisjkiδij, (A.8)

Equation (A.7) is then:

R =
1
4 ∑

ij
sisj(kiδij − Aij), (A.9)

which can be represented in matrix form as:

R =
1
4

sT(D−A)s =
1
4

sTLs, (A.10)

where D = diag(k1, k2, ..., kn) is the diagonal degree matrix of graph G and L =
D−A is called Laplacian matrix. The minimization of cut size quality is equivalent
to choosing a partition, hence the vector s, in such a way that R in minimized. The
index vector s can be written as a linear combination of the normalized eigenvectors
vi = [v(i)1 , v(i)2 , ..., v(i)n ]T of the Laplacian matrix:

s =
n

∑
i=1

aivi, (A.11)
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where ai = vT
i s. Since sTs = n, the linear combination coefficients are constrained

by:
n

∑
i=1

a2
i = n. (A.12)

The cut size hence follows:

R = ∑
i

aiv
T
i L ∑

j
ajvj = ∑

ij
aiajλjδij = ∑

i
a2

i λi, (A.13)

where λi is the eigenvalue corresponding to eigenvector vi
2 of matrix L.

Equation (A.13) shows that the cut size of a graph partition can be represented as
a linear combination of all eigenvalues of the corresponding Laplacian matrix. Thus,
the task of minimizing cut size is equivalent to the task of choosing the quantities
a2

i , hence s = ∑i aivi, so as to place as much as possible of the weight a2
i to the low-

est eigenvalues λi provided that Equation (A.12) requires a normalization constraint
∑

n
i=1 a2

i = n. Without loss of generality, these eigenvalues can be labeled in an in-
creasing order as: λ1 ≤ λ2 ≤ ... ≤ λn. The task is minimizing a2

i corresponding to
small values of i.

The Laplacian matrix is symmetric and the sum of every row (and column) is
zero:

∑
j

Lij = ∑
j
(kiδij − Aij) = ki − ki = 0, (A.14)

Thus the vector [1, 1, 1, ...]T is always an eigenvector corresponding to eigenvalue
λ1 = 0 of the Laplacian matrix (all eigenvalues are nonnegative, which makes 0 al-
ways the smallest eigenvalue). Following the normalization condition of the eigen-
vectors, one has v1 = [1, 1, 1, ...]T/

√
n. Hence, it is straightforward to see that the

cut size R can be minimized by choosing s = [1, 1, 1, ...] paralleling to v1, then all the
weights of a2

i in Equation (A.13) are concentrated in a2
1 = n corresponding to eigen-

value λ1 = 0 and all other terms are zero. This choice leads us to the result R = 0
which is the smallest possible value of cut size. The partition of this solution, in
fact a division of the graph into one big cluster containing all vertices and the other
having no vertex, is trivial and not helpful for the graph partitioning task. Several
approaches are proposed to eliminate this trivial solution, but the most common is
to define the sizes of two clusters being n1 and n2, where n1 + n2 = n. Since the
value of v1 is constant, this imposition fixes the coefficient corresponding to λ1:

a2
1 = (vT

1 s)2 =
(n1 − n2)2

n
(A.15)

The coefficient a1 gets the lowest value when n1 = n2 = n
2 . The minimization

of R leads us to distributing other coefficients a2
i , for i > 1 of Equation (A.13) to

small eigenvalues. A straightforward solution would be choosing the index vector
s proportional to the second eigenvector v2 called Fiedler vector (Fiedler, 1973) cor-
responding to the second smallest eigenvalue known as algebraic connectivity. This
choice implies a value of zero to other coefficients ai for i > 2, since eigenvectors are
orthogonal vT

i s = 0, ∀i > 2. However, since index vector elements si can not receive
every value but only +1 or −1, s can not be choosen to be parallel with v2. Hence,
one try to choose s to be as close to parallel with v2 as possible. Since

2Eigenvectors of matrix L are orthogonal, hence for all i and j < n, we can write vT
i vj = δij
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|a2| = |vT
2 s| = |

n

∑
i=1

v(2)i si| ≤
n

∑
i=1
|v(2)i |, (A.16)

the indexes si can be chosen so as to make the terms v(2)i si all positive or all negative:

si =

{
±1 if v(2)i ≥ 0,

∓1 if v(2)i < 0.
(A.17)

Taking into account the constraint about the sizes of clusters stated previously, it is
not possible to attain the equality sign in Equation (A.16) unless the Fiedler vector
has the proportion of nonnegative values being n1/n or n2/n. In the most optimist
scenario, one can rarely obtain this optimal solution. The best solution is achieved
by distributing vertices into two clusters in order of the values of the Fiedler vector.
In other words, vertices corresponding to n1 largest (or smallest) values of {v(2)i }
are assigned to cluster 1 and the rest are assigned to cluster 2. The solution that
produce the smaller cut size R among the two solutions will be preferable. The
time complexity of the algorithm depends principally on the step of calculation of
eigenvectors. Since the Laplacian matrix is often sparse, it requires O(n + m) time
for each ofO(n) operations using the iterative power method or the Lanczos method
(Lanczos, 1950). In total, the time complexity is O(n(n + m)).
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Titre : Évaluation de structures de communautés

Mot clés : Structure communautaire, Evaluation, Caractérisation, Aide à la décision

Resumé : La détection de communauté est une

technique qui décompose des graphes en sous-

graphes densément connectés, ce qui est particu-

lièrement utile dans le cas de (très) grands réseaux

complexes dont la visualisation est difficile. De très

nombreuses méthodes, très variées, ont été pro-

posées ces dernières années. Dans un contexte

où aucun consensus n’émerge autour de la notion

même de communauté, ces méthodes provoquent

de multiples discussions scientifiques autour de la

qualité de leur résultat. Dans cette thèse, nous pro-

posons plusieurs types d’évaluation comparative et

approfondie de 16 méthodes bien connues de l’état

de l’art ainsi que la caractérisation exhaustive des

structures communautaires découvertes dans des

réseaux réels variés provenant de domaines diffé-

rents. Nos résultats — méthodes et analyses —

constituent un début de boîte à outils pour l’ana-

lyste bien en peine de choisir la méthode adaptée

à son étude.

Title : Evaluation of community structures

Keywords : Community structure, Evaluation, Characterization, Decision Aid

Abstract : Community detection is a tech-

nique used to separate graphs into several den-

sely connected groups of vertices, especially po-

werful when visualization techniques are infeasible

for large-scale structures of networks. Thanks to a

plethora of potential applications in the golden age

of social interaction, many detection techniques

have been invented in the last decades. Their per-

formance in discovering significant structures has

been a hot topic in the network science community

since there is still no consensus on what good com-

munities are. In this dissertation, we invite readers

to go through several comprehensive analyses of

various state-of-the-art community detection me-

thods as well as modular structures of real net-

works belonging to a large variety of domains. Our

results provide intuitive illustrations of community

structures and useful information that helps rea-

ders to choose their context-based rule-of-thumb

solution.
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