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Diversity ,  Ecology and Evolution of  Monocaulous Plants 
in New Caledonia  

-  
Diversité ,  Ecologie et  Evolut ion des Plantes Monocaules 

de Nouvel le-Calédonie 



Résumé: L’évolution convergente des formes de croissance est un phénomène fondamental reliant 

l’écologie et l’évolution des plantes. Remarquablement illustré dans plusieurs systèmes insulaires, ce 

phénomène n’a jamais été clairement identifié en Nouvelle-Calédonie, pourtant connue pour la richesse et 
l’originalité de sa flore. Par une approche combinant architecture des plantes, traits fonctionnels, taxonomie, 
phylogénie et données environnementales, cette thèse analyse l’histoire évolutive de la monocaulie, une 
forme de croissance mal connue, en Nouvelle-Calédonie. Les monocaules sont des plantes autoportantes 
ligneuses dont les fonctions majeures sont assurées par une seule tige apparente. En Nouvelle-Calédonie, 
elles sont représentées par 182 espèces dicotylédones appartenant à 41 genres et 30 familles et sont souvent 
menacées d’extinction. L’évolution répétée de la monocaulie en Nouvelle-Calédonie, issue d’au moins 31 

événements d’apparition, est l’un des cas les plus remarquables de convergence en milieu insulaire. Dans le 
genre Atractocarpus, la monocaulie est apparue récemment deux à trois fois via diverses réductions des 
branches en inflorescences, montrant l’importance des processus hétérochroniques dans l’évolution des 

formes de croissance. La monocaulie est fortement corrélée à plusieurs traits démontrant des contraintes 
majeures dans la coordination fonctionnelle. L’évolution de la monocaulie est fortement associée aux forêts 
denses humides et au substrat ultramafique, et pourrait avoir contribué à la diversification des lignées par 
des phénomènes de partitionnement de niche. La remarquable convergence de la monocaulie en Nouvelle-
Calédonie peut s’expliquer par quatre hypothèses majeures liées (i) à la structure particulière des forêts 
denses humides (en lien avec les cyclones) favorisant l’exploration unidirectionnelle de l’espace, (ii) aux 
contraintes édaphiques liées aux substrats ultramafiques induisant une paupérisation architecturale, (iii) à
l’absence historique de grands brouteurs, auxquels les monocaules sont particulièrement sensibles, et (iv) à
la persistance des forêts denses humides lors des épisodes glaciaires (servant de refuges pour ces espèces 
sensibles) et leur expansion post-glaciaire (fournissant de nombreuses opportunités écologiques). 

Mots-clés : Architecture des plantes, Convergence évolutive, Forme de croissance, Îles, Phylogénie, Traits 
fonctionnels 

Abstract: Convergent evolution in growth habit is a fundamental phenomenon linking plant ecology and 
evolution. Remarkably illustrated in island biotas, this phenomenon has not clearly been identified in the 
distinctive and megadiverse New Caledonian biodiversity hotspot. Through an approach combining plant 
architecture, functional traits, taxonomy, phylogeny and environmental data, this thesis analyses the 
evolutionary history of the poorly known monocaulous growth habit in New Caledonia. Monocauls are self-
supporting woody plants whose cardinal functions rely on a single visible stem. In New Caledonia, they are 
represented by 182 dicotyledonous species belonging to 41 genera in 30 families and are often endangered.
The repeated evolution of monocauly in New Caledonia, resulting from at least 31 independent events, is 
one of the most remarkable cases of convergence in insular environments. In the genus Atractocarpus
(Rubiaceae), monocauly evolved recently two or three times through branch reductions into inflorescences,
emphasizing the importance of heterochronic processes in the evolution of growth habit. Monocauly is 
strongly correlated with several traits illustrating major constraints in functional coordination. The evolution 
of monocauly is strongly associated with rainforests and ultramafic substrate, and could have contributed to 
the diversification of lineages through niche partitioning. The remarkable convergence toward monocauly 
in New Caledonia can be explained by four major hypotheses: (i) structural features of rainforests (related 
to cyclone frequency and intensity) favoring unidirectional exploration of space, (ii) the edaphic constraints 
associated with ultramafic substrates inducing architectural pauperization, (iii) the historical absence of 
large native browsers to which monocauls are particularly sensitive, and (iv) the persistence of rainforest 
during glacial episodes – and expansion afterward – that served as refugia and further provided ecological 
opportunities. 

Keywords: Convergent evolution, Functional traits, Growth habit, Islands, Phylogeny, Plant architecture 
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« C’est l’île aux mille rivières limpides prenant leur source dans des forêts primitives, l’île des 

falaises et des cimes empanachées de pins colonnaires, l’île des kaoris, des palmiers, des fougères 

géantes, comme c’est l’île des maquis aux floraisons d’une infinie variété et des niaoulis chatoyant 

soir et matin aux rayons obliques du soleil. […] mais plus encore, ce sont les détails qui retiennent 

l’attention, l’architecture étrange d’un arbre, le dessin d’un feuillage, la couleur d’une fleur. On est 

surpris de la richesse et de la fantaisie de la décoration, car chaque massif a sa flore, chaque forêt 

recèle des plantes rares. » 

Maurice Schmid (1981) 

 

 

 

 

 

 

À la Nouvelle-Calédonie et ses habitants, 

Terre de Parole, Terre de Partage 
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Chapter 1 — General Introduction 

1.1 Islands as models in ecology and evolution 

Most of major ecological and evolutionary theories have been influenced by works on 

island biotas (Darwin, 1859; Wallace, 1880; MacArthur and Wilson, 1967; Warren et al., 2014; 

Whittaker et al., 2017). Given their isolation and particular environmental conditions and history, 

oceanic islands are exceptionally suited for the investigation of convergent evolution and adaptive 

radiation (Elmer and Meyer, 2011; Whittaker et al., 2017). One of the most famous and remarkable 

adaptations of insular floras, involved in both convergent evolution (Givnish, 2010; Lens et al., 

2013) and adaptive radiation (Bramwell, 1975; Jorgensen and Olesen, 2001), is the so-called 

“secondary woodiness” (i.e. the evolution of woodiness in herbaceous lineages). This notable 

pattern was formerly described by Darwin (1859), extensively studied by Carlquist (1974), and 

remains a hot topic in plant science (e.g. Lens et al., 2012a; Rowe and Paul-Victor, 2012). Though 

first described from islands, the phenomenon also occurs in continental floras, leading to a

generalization of concepts (Lens et al., 2012b; Lens et al., 2013; Kidner et al., 2016; Whittaker et 

al., 2017). 

Islands, as natural laboratories for the study of ecology and evolution, continue to provide 

opportunities for understanding general patterns and processes of plant evolution (Whittaker et al., 

2017). In particular, information on functional traits and phylogenetic relations of island species 

represent gaps that need to be filled (Santos et al., 2016; Keppel et al., 2018). 

Among islands, New Caledonia has been recognized as a particularly promising model for 

ecological and evolutionary studies (Grandcolas et al., 2008; Murienne, 2009; Jaffré et al., 2013; 

1



Grandcolas, 2017). The long-term isolation and particular history of New Caledonia have resulted 

in a flora that harbors many peculiarities, including the outstanding richness in endemic and 

microendemic species (Lowry, 1998; Grandcolas et al., 2008; Morat et al., 2012; Wulff et al., 2013; 

Ibanez et al., 2017b), a high incidence of relictual lineages, which remains puzzling (Pillon, 2012; 

Pillon et al., 2017), and an exceptional diversity of some globally rare lineages (Jaffré, 1995; Pillon 

et al., 2010; Pouteau et al., 2015). Recent biogeographic and phylogenetic studies failed to find 

much evidence for old in situ radiations and rather indicates that the island’s richness might result 

from a combination of relictual lineages, repeated colonization events, and recent speciation 

(Grandcolas et al., 2008). This led some authors to consider New Caledonia as an “old Darwinian 

island” (Grandcolas et al., 2008; Swenson et al., 2014) and one of the world’s main biogeographical 

regions (Guillaumin, 1934; Good, 1964; Takhtajan, 1969; van Balgooy, 1971; Morat et al., 1994).

Despite these peculiarities, virtually no example of remarkable convergence has been demonstrated 

to date, in contrast with striking cases of convergent evolution and adaptive radiation found in other 

islands (Elmer and Meyer, 2011; Whittaker et al., 2017).

1.2 Convergence and adaptive value of traits 

An important feature of insular biota is their taxonomic and functional disharmony 

(Carlquist, 1974; Cody and Overton, 1996; Gillespie, 2001; Pillon et al., 2010; Lens et al., 2013; 

Schlessman et al., 2014). Taxonomic disharmony, i.e. the uneven representation of some lineages, 

is widely regarded as a strong evidence of long-distance dispersal and has been largely documented 

(e.g. Carlquist, 1974; Loope et al., 1995; Pillon et al., 2010). Functional disharmony, i.e. the uneven 

representation of functional trait attributes, has rather been studied through the concept of “island 

syndromes” (Whittaker et al., 2017). Among frequently cited trait attributes, those over-represented 

on islands are woodiness (Carlquist, 1974; Shmida and Werger, 1992; Lens et al., 2013), sexual 

2



dimorphism (Sakai and Weller, 1999; Jorgensen and Olesen, 2001; Schlessman et al., 2014),

heterophylly (Cockayne, 1919; Friedmann and Cadet, 1976; Givnish, 1994), monocarpy 

(Jorgensen and Olesen, 2001; Read et al., 2008), and loss of dispersability (Carlquist, 1974; Cody, 

1986; Fresnillo and Ehlers, 2007). The high frequency of a trait attribute in islands could result 

from (i) preferential establishment of species presenting the attribute, (ii) repeated in situ

independent evolution of the attribute, and/or (iii) in situ diversification of lineages presenting the 

attribute (Figure 1.1). Identifying which mechanisms account for the high incidence of a given trait 

attribute is thus crucial for understanding which ecological and evolutionary processes have driven 

the development of the current taxonomic and functional diversity.  

Among the important phenomena of evolutionary theory stands convergent evolution, i.e. 

the appearance of a similar trait attribute under similar selection pressures but not inherited from a 

common ancestor (McGhee, 2011; Givnish, 2016). While the term “convergence” has been 

expanded in community ecology, where it concerns plant association rather than plant evolution 

(e.g. Cody, 1973; Lamont et al., 2002; Díaz et al., 2004; Fukami et al., 2005; Grime, 2006), a 

phylogenetical approach is needed to demonstrate evolutionary convergences. Convergence 

provides the most powerful line of evidence for adaptive evolution, i.e. the selective advantage of 

traits in a given environment (Endler, 1986; Grime, 2006; Wake et al., 2011; Givnish, 2016).

Convergent evolution is particularly striking when environmental conditions are constraining, as 

in arid (e.g. Arakaki et al., 2011), frost-prone (e.g. Givnish, 2010; Boucher et al., 2016) or nutrient 

poor environments (e.g. Albert et al., 1992; Ellison and Gotelli, 2001). By contrast, when the 

environment is less constraining (or at smaller phylogenetic scale), biotic factors (i.e. competition) 

prevail, leading to divergent selection among close relatives (Weiher and Keddy, 1995; Givnish, 

2016). Divergent selection, sometimes leading to adaptive radiation (i.e. the rise of a diversity of 
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FIGURE 1.1 – Illustration of theoretical mechanisms leading to island syndromes. Each form 

represents a hypothetical attribute and each color represents a hypothetical lineage. High 

occurrence of an attribute (here ) in the island could be due to (A) establishment of species 

presenting the trait (dispersion filter and establishment filter), (B) repeated evolution of the 

trait and/or (C) diversification of lineages presenting the trait.
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ecological roles, Givnish, 2016) results from different exploitation of resources among closely 

related species (Schluter, 2000; Grime, 2006). However, while convergent and divergent evolution 

are opposite evolutionary phenomena, divergent selection, when occurring repeatedly in distinct 

lineages, can also lead to convergence (Thomson and Wilson, 2008). 

Some authors consider that convergence is related to the concept of evolutionary constraint,

i.e. that evolutionary pathways are constrained by a limited set of functional and developmental 

possibilities (Thomson and Wilson, 2008; McGhee, 2011). Convergence has often been used as a 

key argument against stochasticity in evolutionary theories (Patterson, 1988; Wake, 1991; 

Kreitman and Akashi, 1995; Schluter and Nagel, 1995). Physical laws and phylogenetic 

background are though to impose functional constraint, while environment provides an overall 

standard value (McGhee, 2011; Díaz et al., 2016; Olson et al., 2018). Convergence thus provides 

a framework for elucidating evolutionary constraints and prerequisites of some trait associations. 

This might especially pertain to functional traits that are widely represented in global plant spectra 

(Westoby et al., 2002; Reich et al., 2003; Westoby and Wright, 2003; Wright et al., 2004; Wright 

et al., 2007; Díaz et al., 2016) and whose correlated evolution leads to more integrative plant traits 

such as growth habit.  

1.3 Convergence in growth habit 

Most of the striking examples of convergence in the plant world concern growth habit, 

illustrated for instance by rosette-trees in high-elevation tropical regions (Givnish, 2010, 2016),

cactoid trees in deserts (Arakaki et al., 2011; Hernàndez-Hernàndez et al., 2011), cushion plants in 

high-alpine mountains (Boucher et al., 2012; Boucher et al., 2016), and lianas in tropical (seasonal) 

rainforests (Gianoli, 2015; Isnard and Feild, 2015).
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Growth habit, the general physiognomical appearance of a plant, results from the 

combination of morphological and anatomical traits, with a particular importance of structural traits 

(see Du Rietz, 1931; Lacza and Fekete, 1969; Millan, 2016 for reviews). The term is used in this 

study as a synonym for other widely used terms with similar definitions (e.g. vegetative form, life 

form, growth form… Warming, 1909). Despite different terminologies, the notion of growth habit 

reflects specific strategies of resource acquisition and use, and consequently involves strong 

relations with the environment. Such integrative plant traits are of ecological and evolutionary 

interest (Eriksson and Bremer, 1992; Dodd et al., 1999; Gianoli, 2004; Bonser and Geber, 2005) 

because they involve a set of underlying traits, potentially reinforcing the effect on fitness (Arakaki 

et al., 2011). For instance, convergence toward a liana habit implies correlated evolution of a suite 

of traits at the morphological scale (e.g. climbing organs, Isnard and Silk, 2009; Couvreur et al., 

2015; Sousa-Baena et al., 2018), anatomical scale (e.g. heteroxylly, Angyalossy et al., 2015; Isnard 

and Feild, 2015) and physiological scale (e.g. high specific hydraulic conductivity, Ewers et al., 

1989; Zhu and Cao, 2009; Santiago et al., 2015). Hence, the liana growth habit is present in at least 

130 plant families (Gentry, 1991; Isnard and Feild, 2015) and can account for up to 40% of species 

and stems in some tropical forests (Pérez-Salicrup and Sork, 2001; Schnitzer, 2005; Schnitzer et 

al., 2015). The evolution of the liana growth habit was shown to increase clade diversification rates 

(Gianoli, 2004; Couvreur et al., 2015; Gianoli, 2015), as found for other growth habits (e.g. Roquet 

et al., 2013; Frenzke et al., 2016).

Convergence toward a particular growth habit often preferentially occurs in some clades 

(Arakaki et al., 2011; Boucher et al., 2016), showing the importance of prerequisites and 

evolutionary constraints for growth habit evolution (Rowe and Speck, 2005). For instance, some 

anatomical constructions and morphological attributes facilitate the evolution of a climbing habit 
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(Isnard et al., 2003; Isnard and Rowe, 2008). By contrast, anatomical characteristics associated 

with the evolution of a climbing habit can constrain evolution toward self-supporting shrubs and 

trees (Rowe and Speck, 2005; Wagner, 2010; Wagner et al., 2012). As we move forward in 

developing our understanding of plant habit evolution (e.g. Dubuisson et al., 2003; Verboom et al., 

2004; Bonser and Geber, 2005; Rowe and Speck, 2005; Mort et al., 2007; Wagner et al., 2012; 

Givnish et al., 2014), the integrative, and yet relevant, framework provided by plant architecture 

lags behind other approaches (see Bateman, 1994; Bateman, 1999; Meyer-Berthaud et al., 2010; 

Isnard et al., 2012). 

1.4 Linking functional traits and plant architecture 

Growth habit results from the integration of a combination of several individual traits (e.g. 

branching pattern, body size and shape, position of inflorescences, anatomy…) that have often been 

studied separately (e.g. Carlquist, 1984; Givnish et al., 2009; Isnard et al., 2012; Wagner et al., 

2014). As such, growth habit provides some evidence for the correlated evolution (sensu Pagel, 

1994) of two or more traits across lineages. Some of these trait associations, known as global 

spectra (e.g. Reich et al., 2003; Wright et al., 2004; Chave et al., 2009; Díaz et al., 2016), are 

considered as primary drivers of plant evolution and functional diversity worldwide (Díaz et al., 

2004; Poorter and Bongers, 2006; Díaz et al., 2016). Among the oldest and best documented are 

Corner’s rules (Corner, 1949, 1953-1954) describing a universal correlation between branching 

intensity, leaf size, stem size, fruit size, and inflorescence complexity (Corner, 1949; White, 1983b; 

Bond and Midgley, 1988; Lauri, 1988; Brouat et al., 1998; Cornelissen, 1999; Brouat and McKey, 

2001; Westoby et al., 2002; Preston and Ackerly, 2003; Westoby and Wright, 2003; Pickup et al., 

2005; Sun et al., 2006; Normand et al., 2008). As such, selection on a single trait is likely to affect 

whole plant form and function (Figure 1.2). In this context, evolution of growth habit needs to be 
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FIGURE 1.2 – Schematic illustration of Corner’s rules (Corner 1949) corresponding to two principles; (i) “Axial conformity. The 

stouter, or more massive, the axis in a given species, the larger and more complicated its appendages” and (ii) “Diminution on 

ramification. The greater the ramification, the smaller become the branches and their appendages”. Following these principles, 

a negative correlation is expected between branching intensity and leaf size, fruit size and inflorescence size.
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studied through an integrative approach merging functional traits and plant structural construction.

Plant architecture characterizes the spatial arrangement and specialization of structures 

(morphological origin, branching pattern, axis categorization) and their evolution during ontogeny 

(Hallé et al., 1978; Barthélémy and Caraglio, 2007, see Chapter 2 for more details). It can 

consequently highlight how plant structure correlates with function and help identify the 

evolutionary processes behind plant evolution (see Bateman, 1994; Bateman, 1999; Sussex and 

Kerk, 2001; Meyer-Berthaud et al., 2010). Architectural studies have taught us that plants are 

modular organisms composed of structural elements that can differ in their organization and 

function (Hallé et al., 1978; Barthélémy and Caraglio, 2007). For instance in many tree and treelet 

species, the trunk mainly assumes exploration and support functions while branches are, in 

comparison, more specialized in assimilation and reproduction. As such, plant architecture 

provides integrative tools to understand plant spatial and temporal exploitation of resources 

(Barthélémy and Caraglio, 2007; Smith et al., 2014). Architectural traits have been shown to impact 

plant fitness either directly (Küppers, 1989; Millet et al., 1999; Charles-Dominique et al., 2010; 

Charles-Dominique et al., 2012; Millan, 2016; Charles-Dominique et al., 2017) or in interaction 

with other functional traits (Pérez-Harguindeguy et al., 2013; Trueba et al., 2016). Plant 

architecture thus has much to offer in comparative studies that aim to decipher the evolution of

plant growth habits and their associated traits. 

1.5 The monocaulous growth habit  

From the above architectural background, we know that plant functions are generally 

partitioned into different axis categories. However, among the diversity of extant and past known 

architectures (see Galtier and Hueber, 2001; Hallé, 2004; Meyer-Berthaud and Decombeix, 2009; 

Chomicki et al., 2017), some trees that have been referred to as “monocaulous” have such a simple 
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structure that they are constituted by a single stem (Hallé et al., 1978). 

Monocauly classically characterizes woody plants constituted by a single unbranched trunk 

supporting a distal rosette of large leaves (Corner, 1949). The term was used in various domains, 

and formal definitions – when provided – often differ among studies (see Chapter 3 for a more 

detailed review). This growth habit, particularly atypical for non-monocots, has fascinated 

naturalists for a long time (e.g. Von Humboldt, 1808; Cotton, 1944; Corner, 1949; D'Arcy, 1973; 

Hedberg and Hedberg, 1979) and is at the center of highly discussed ecological and evolutionary 

theories. Monocaulous species were long considered as relicts of the ancestral form for 

Angiosperms (Corner, 1949). Recent molecular phylogenies have indicated multiple recent 

evolution of monocauly in Angiosperms (e.g. Chomicki et al., 2017) but the evolutionary history 

of extant monocauls remains unclear. Monocaulous plants were also at the inception of Corner’s 

rules (Corner, 1949, 1953-1954) (Figure 1.2), whose statements are today among the most widely 

documented global spectra (leaf – stem scaling or foliage – stem scaling, e.g. Westoby and Wright, 

2003; Olson et al., 2009; Yang et al., 2009). Probably because of their global rarity and restriction 

to tropical areas, monocaulous species have rarely been included in ecological and evolutionary 

studies. The most famous case of the evolution of monocauly is represented by “unbranched shrubs 

with massive leaf rosettes that dominate equatorial alpine zones in many part of the world”

(Givnish, 2016). In these rosette-tree species, architecture, anatomy, and leaf features represent 

adaptation to nightly frost and very high diurnal fluctuations in temperature (Goldstein and 

Meinzer, 1983; Meinzer and Goldstein, 1986; Melcher et al., 1994; Givnish, 2016). Other 

monocaulous species are restricted to dry areas, particularly on islands, where their ecology and 

evolution have been indirectly investigated through secondary woodiness (Mabberley, 1974b, a; 

Böhle et al., 1996; Mort et al., 2007; Lens et al., 2013). But the majority of monocaulous species 
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seem to occur in tropical rainforests where other abiotic conditions likely favor the evolution of 

this habit (e.g. Corner, 1949; D'Arcy, 1973; Hallé et al., 1978). This other kind of monocauly has 

been much less studied, although it has been noted – sometime as highly diversified – in rainforests 

worldwide such as in New Guinea (Hallé, 1974), Gabon (Hallé and Hallé, 1965), Panama (D'Arcy, 

1973), Madagascar (Koechlin et al., 1997), and especially New Caledonia, where monocauly has 

long attracted the attention of botanists (Carlquist, 1974; Veillon, 1976; Schmid, 1979, 1981, 

1990). 

Carlquist (1974) was probably the first to note that, in New Caledonia, “there is a modal 

tendency for smaller, sparsely branched shrubs”. Schmid (1981) considered that the preponderance 

of this growth habit is among the main physiognomical characteristics of New Caledonian 

rainforest understory. He estimated that at least 20 families include monocaulous or pachycaulous 

(i.e. sparsely branched) species (Schmid, 1990). A more accurate quantification of the diversity of 

monocaulous plants in New Caledonia was provided by the work of Veillon (1976), who described 

the architectural models of 575 vascular plant species. His results indicated that ca. 19% of the 

studied flora was monocaulous and that this growth habit was found to occur in 23 families. While 

this study did not include all of the non-monocot flora, the frequency of monocauly in so many 

different families suggests a potentially remarkable case of convergent evolution. 

1.6 Problematic and objectives 

Convergence in growth habit is a key evolutionary pattern linking plant architecture, 

functional traits and the abiotic environment. While the phenomenon is a fascinating particularity 

of island biotas, it has never been deeply described in the megadiverse and distinctive flora of New 

Caledonia. Monocauly represents a growth habit whose ecology and evolutionary history remain 

poorly known and the repeated observations of its frequency in several distantly related families 
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could clearly exemplify the first case of evolutionary convergence for the archipelago. The 

objectives of this thesis are to investigate the diversity, ecology and evolution of monocaulous 

species in New Caledonia. More precisely, the rationale and design of the study were developed 

around the following questions: 

Ø What is monocauly? How many non-monocot monocaulous species are there in New 

Caledonia? 

Ø How many times did monocauly evolve? What are the evolutionary correlates of monocauly? 

Are there prerequisites or environmental contingencies that appear to have facilitated its 

evolution? 

Ø Can we use an architectural approach to depict the evolution of monocauly in a species-level 

phylogeny? What are the functional and ecological implications of shifts in growth habit? Has 

monocauly been involved in the diversification of lineages? 

Ø What are the morpho-anatomical traits associated with the monocaulous habit? Do we find 

evidence that supports Corner’s rule?

Ø Which hypotheses could explain convergence toward monocauly in New Caledonia? 

1.7 Thesis outline 

This thesis comprises seven chapters of which four are presented under an article format. 

For these four chapters, only the layout was edited from the original manuscripts articles to provide 

better consistency within the document. Each chapter depicts different and complementary 

approaches to characterizing monocauly and analysing the diversity, ecology and evolution of 

monocaulous plants in New Caledonia. 

Chapter 2 presents the general methodology used throughout this work. It describes in 
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particular the study sites, the architectural approach, and how it was used to compile a list of New 

Caledonian monocaulous species. 

Chapter 3 presents a bibliographic synthesis of the concept of monocauly and hypotheses 

about its evolution and associated life history and environmental traits. This chapter does not follow 

an article format but is planned to be the starting point of a review paper. 

In Chapter 4 we describe a new monocaulous species encountered during this thesis. By 

illustrating architectural diversity in the endemic genus Bocquillonia (Euphorbiaceae), we also aim 

to show possible variation in growth habit around a single architectural model. 

The aim of Chapter 5 is to study the evolutionary history of monocaulous species 

throughout the phylogeny of New Caledonian woody genera. In particular, we quantified repeated

evolution, phylogenetic signal and evolutionary correlates of monocauly in the island. IUCN risk

of extinction status and threats to the New Caledonian flora were used to evaluate the major threats 

to monocaulous species.

Chapter 6 aims to illustrate in detail the evolution from a branched habit toward the 

monocaulous habit and the functional implication of this transition in the genus Atractocarpus 

(Rubiaceae). We furthermore investigated how growth habit transition could affect species 

diversification in the genus.

The aim of Chapter 7 is to analyse morpho-anatomical traits of monocaulous species 

through a comparative approach that also includes branched close relatives and to provide insights 

into the functional implications of Corner’s rules.

Finally, the results of these chapters are summarized, combined and discussed in Chapter 

8. This general discussion deals in particular with the functional attributes and adaptive significance 
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of monocauly, evolutionary pathways leading to monocauly, inferences about the evolution and 

conservation of the New Caledonian flora, and the general interest of plant architecture to depict 

plant ecology and evolution. 
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Chapter 2 — General methodology 

2.1 Study location: the New Caledonian archipelago 

2.1.1 Geography and abiotic environment 

New Caledonia is a French archipelago located in the Southwest Pacific Ocean slightly 

north of the Tropic of Capricorn (20-23°S, 164-167°E, Figure 2.1), east of Australia (ca. 1400 km) 

and north of New Zealand (ca. 2000 km). The total land area is about 18,500 km², of which the 

largest island (Grande Terre) covers 89%. The remaining land area is divided between the Loyalty 

Islands (Ouvéa, Lifou and Maré), Belep, the Ile des Pins and several smaller islands (Figure 2.1). 

Grande Terre (ca. 400 km long and 50 km wide on average) is divided lengthwise (from Northwest 

to Southeast) by a continuous mountain range that reaches 1628 m in the North (Mont Panié) and 

1618 m in the South (Mont Humboldt). This mountain range is closer to the east coast, where it 

drops steeply into the sea, while the west coast is characterized by relatively broad plains, except 

on the Northwest, where large isolated mountains occur. 

The subtropical climate of New Caledonia is strongly influenced by a marked orography; 

mean annual precipitation ranges from 800 mm.yr-1 in the lowlands of the leeward west coast to 

more than 4000 mm.yr-1 on the windward east coast and mountain tops (Météo-France, 2007; 

Maitrepierre, 2012). A dry season (precipitation < 100 mm.month-1) occurs from August to 

November. Mean annual temperatures are comprised between ca. 20 and 25 °C, and frost is 

supposed to rarely occurs, even on mountain tops (Maitrepierre, 2012). New Caledonia is 

frequently subject to cyclones and tropical depressions (3 or 4 per year on average) that can be very 

intense (Maitrepierre, 2012; Ibanez et al., 2018a). The climate is highly variable from one year to 

another due to the influence of larger climatic events such as ENSO (El Niño-Southern Oscillation, 
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FIGURE 2.1 – Topographical map of New Caledonia (modified from georep.nc) and location 

in the South-West Pacific (modified from geographicguide.com).
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Maitrepierre, 2012; Menkes, 2012). 

Three main geological substrates are distinguished in New Caledonia (Paris, 1981; Jaffré, 

1993) (Figure 2.2-A). (i) Ultramafic substrate covers ca. 1/3 of Grande Terre, mainly in the 

southeast of Grande Terre and on the northwest mountain massifs. Soils derived from ultramafic 

substrate are generally poor in plant-essential nutrients (P, Ca, K) and rich in elements which are 

normally toxic for plants (Ni, Co, Mn, Cr) (Jaffré, 1976, 1980; Isnard et al., 2016). (ii) Volcano-

sedimentary substrates cover ca. 2/3 of Grande Terre and are highly diverse in origin and 

composition (Fritsch, 2012). They comprise mainly micaschists, glaucophtanites and phtanites in 

the North of Grande Terre, whereas the central metamorphic mountain groups are formed of 

greywacks (Paris, 1981; Jaffré, 1993). (iii) Calcareous substrate is much less common covering 

less than 20% of the archipelago (Paris, 1981; Morat et al., 2001) almost exclusively found in the 

Loyalty Islands and the Ile des Pins (raised coral formations), but also occurs in small areas on

Grande Terre (basalt calcareous rocks) (Paris, 1981; Morat et al., 2001). 

2.1.2 Geological and Paleoclimatic history 

New Caledonia’s main island (along with Belep and the Ile des Pins) is a part of the New 

Caledonian ridge that split and spread from the eastern margin of the Gondwanan supercontinent 

during the Cretaceous (ca. -120 to -80 Myr) (Picard, 1999; Cluzel et al., 2001; Pelletier, 2006; 

Cluzel et al., 2012). The presence of numerous endemic relictual lineages on the island led some 

authors to think that this piece of Gondwana remained emerged from the rifting event until today 

(e.g. Raven and Axelrod, 1972). However geological insights have shown that New Caledonia was 

submerged from the Paleocene to the Eocene (ca. -62 to -50 Myr) at which time it was obducted 

under the Pacific plate and covered by oceanic crust (Picard, 1999; Cluzel et al., 2001; Pelletier, 

2006; Cluzel et al., 2012), leading to the formation of metamorphic rocks and to the atypical 
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ultramafic substrate. New Caledonia reemerged during the Eocene (-50 to -35 Myr, and probably 

ca. -37 Myr) after which the ultramafic layer progressively weathered to the present day resulting 

in the partial exposure of subjacent volcano-sedimentary substrates. This scenario is coherent with 

the evolutionary history of several New Caledonian lineages which suggests that local radiations 

are younger than 37 Myr (Murienne et al., 2005; Grandcolas et al., 2008; Pillon, 2012). The Loyalty 

Islands emerged more recently (Pliocene, ca. -2 Myr) through an uplifting of the Loyalty ridge 

(Picard, 1999; Pelletier, 2006).

Paleoclimatic data indicate that the Southwest Pacific has experienced a general cooling 

since early Neogene (ca. -23 Myr), leading to an increase in aridity (Gallagher et al., 2001; Zachos 

et al., 2001; Dodson and Macphail, 2004). This trend was punctuated by several more or less 

pronounced oscillations such as the drastic increase in both temperature and precipitation in the 

Miocene (ca. -15 to -17 Myr, Zachos et al., 2001; Böhme, 2003) coupled with intense cooling 

(Gallagher et al., 2003; Dodson and Macphail, 2004). This overall climate aridification had 

important consequences on vegetation, especially a decline of rainforest areas, which probably 

disappeared in some regions such as Australia (Gallagher et al., 2003; Crisp et al., 2004; Dodson 

and Macphail, 2004; Byrne et al., 2008; Byrne et al., 2011). For New Caledonia, paleoclimatic data 

are scarce but its small size and isolated position in the Pacific are thought to have buffered the 

effects of general aridification (Barrabé, 2013). Nevertheless, the archipelago is likely to have 

experienced several glacial episodes during the Neogene (ca. -6.5 Myr) and Quaternary (ca. -2.5 

Myr) (Chevillotte et al., 2006; Karas et al., 2011) and also more recently (-22000 and -12000 yr, 

Tournebize et al., 2017). Despite these glacial episodes, rainforests seem to have continuously 

persisted in New Caledonia for quite a long period (Hope and Pask, 1998; Stevenson and Hope, 

2005; Tournebize et al., 2017), contrary to adjacent regions (Kemp, 1978; Gallagher et al., 2003; 
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FIGURE 2.2 – Main environmental characteristics of New Caledonia. (A) Distribution 

of the three main geological substrate (from DIMENC/SGNC-BRGM and Morat et al. 

2001). (B) Distribution of the seven main vegetation types (from Jaffré et al. 2012). 
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Crisp et al., 2004; Dodson and Macphail, 2004; Byrne et al., 2008; Byrne et al., 2011). In 

investigating the evolutionary history of rainforest lineages, Pillon (2012) argued that this 

vegetation type is likely to have persisted in New Caledonia since at least 6.9 Myr. 

2.1.3 Flora and vegetation 

The New Caledonian flora is known worldwide for its exceptional levels of diversity and 

endemism. The flora comprises ca. 3400 species of vascular plants, of which ca. 2500 (75%) are 

endemic (Morat et al., 2012; Munzinger et al., 2016). This high level of endemism is also seen at 

supra-specific levels as the flora includes between 62 and 91 endemic genera (ca. 13%, Pillon et 

al., 2017) and 3 endemic families (Amborellaceae, Oncothecaceae, and Phellinaceae). The 

taxonomic composition of New Caledonia’s flora is highly disharmonic compared to adjacent 

regions, some lineages being over-represented (e.g. Gymnosperm, Cunoniaceae, Myrtaceae and 

Basal Angiosperms) while others are under-represented (e.g. Asteraceae, Ericaceae and 

Lamiaceae) (Morat et al., 1994; Jaffré, 1995; Pillon et al., 2010; Trueba, 2016). This disharmony 

also involves functional groups, for example a high proportion of metal hyper-accumulators (Jaffré 

et al., 2013; van der Ent et al., 2015; Jaffré et al., 2018) and dioecious species (Carpenter et al., 

2003; Schlessman et al., 2014), as well as a low richness of lianas (Bruy et al., 2018). Several 

unusual biological forms are also known, such as the world’s only parasitic or mycotrophic 

gymnosperm (De Laubenfels, 1959; Feild and Brodribb, 2005; Heide-Jørgensen, 2008), a

monocarpic and branched large tree (Veillon, 1971; Read et al., 2008), and an aquatic fern that can

live completely submerged (Veillon, 1981). 

This astonishing flora is also of conservation importance because it is highly threatened 

(Jaffré et al., 1998; Lowry, 1998). The system of protected areas appears to be inadequate, 

particularly for the highly fragmented rainforest and ultramafic substrate (Jaffré, 2005; Jaffré et al., 
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2010; Wulff et al., 2013; Ibanez et al., 2017a; Ibanez et al., 2018b). These threats, along with the 

New Caledonia’s outstanding diversity, led scientists to recognize the archipelago as one of the 10 

original “Biodiversity Hotspots” (Myers, 1988). Today, the archipelago remains the smallest of the 

34 recognized Hotspots (Mittermeier et al., 2004). Recently, the risk of extinction of New 

Caledonian plant species started to be extensively evaluated using the IUCN Red List criteria 

(IUCN, 2012). Among the 833 species evaluated to date, 43% appeared to be threatened and one 

species was considered as extinct (RLA-NC Flora, unpublished data). The principal threats are 

bushfires (ca. 64% of species concerned), mining activities (ca. 40%) and introduced herbivores 

such as deer (28%). 

Several vegetation types have been recognized in New Caledonia, the most general

classification used being that of Jaffré et al. (2012). Based on climatic, structural and floristic 

features, this classification includes seven main types: (i) low- and mid-elevation rainforest, (ii) 

high elevation rainforest and maquis, (iii) sclerophyllous forest, (iv) low- and mid-elevation 

maquis, (v) savanna (essentially non-native), (vi) halophytic vegetation, and (vii) wetlands (Figure 

2.2-B). Among the native vegetation types, maquis, whose occurrence is related to the fire regime

(Jaffré, 1980; Isnard et al., 2016), is the most extensive (covering 4600 km²). Rainforests (covering 

ca. 3,800 km²) contain by far the greatest diversity (more than 2000 native species against ca. 1200 

in maquis) (Jaffré et al., 2009; Birnbaum et al., 2015a; Birnbaum et al., 2015b) and is one of the 

most threatened formations (Jaffré, 2005; Jaffré et al., 2010; Ibanez et al., 2017a), along with dry 

forests (Bouchet et al., 1995; Lowry, 1998). New Caledonian rainforests are characterized by high 

beta diversity, very high stem density coupled with small stem diameter (inferior to 10 cm DBH),

and low canopy height (about 15-25 m) (Jaffré and Veillon, 1990; Jaffré and Veillon, 1995; Ibanez

et al., 2014; Blanchard et al., 2016; Ibanez et al., 2017b).
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The floristic and structural distinctiveness of the New Caledonian biota is the result of 

several factors, of which ultramafic substrate, rainforest refugia and cyclones are considered as the 

most important. As suggested by New Caledonia’s geological history (see above), its flora is the 

result of post-emergence colonization (mainly from Australia, Morat, 1993; Swenson et al., 2014; 

Thomas et al., 2014) either through long-distance dispersal or shorter-distance dispersal from now 

submerged intermediate islands (Pelletier, 2006). Species establishment was largely filtered by the 

constraining ultramafic substrate, which is considered as the main driver of taxonomic disharmony 

(Jaffré et al., 1987; Pillon et al., 2010; Isnard et al., 2016). Another important driver is the long-

term persistence of rainforests in the archipelago (see above), which are thought to have served as 

refugia for drought-sensitive lineages such as basal Angiosperms or palms (Pintaud et al., 2001; 

Poncet et al., 2013; Pouteau et al., 2015; Tournebize et al., 2017) that disappeared from dryer 

regions in the western Pacific (Bowler et al., 1976; Byrne et al., 2011). Post-glaciation periods 

provided several ecological opportunities for occurring lineages to diversify and are suspected to 

have driven the recent diversification of the flora (Pillon, 2012). Forest structural characteristics 

(e.g. high stem density) and composition are believed to have been largely shaped by strong 

climatic forces (cyclones, see above) that recurrently impact vegetation (Read and Jaffré, 2013; 

Ibanez et al., 2017b; Ibanez et al., 2018a).  

2.2 Plant architecture 

Plant architecture is a domain of plant science that concerns the nature and organization of 

plant parts and their evolution during ontogeny. It emerged with the fundamental works of Hallé 

et al. (Hallé and Oldeman, 1970; Hallé et al., 1978) in which fundamental principles of plant 

morphology (growth patterns, branching modalities, axis differentiation, and the position of 

reproductive functions) were combined into a comprehensive and dynamic approach to define 23 
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architectural models. These models illustrate both the general architecture of a plant and the way 

it was constructed (Hallé and Oldeman, 1970; Hallé et al., 1978; Barthélémy et al., 1989; Nicolini, 

1997) (Figure 2.3-A). While compelling for the recognition of common overall species forms, 

architectural models appeared too general to understand fines aspects of complex plant construction 

(Edelin, 1977; Barthélémy and Caraglio, 2007). 

A deeper characterization of plant architecture came with the development of notions of 

axis category and architectural units (Edelin, 1977, 1984; Barthélémy et al., 1989; Barthélémy et 

al., 1991). Individuals of each species are made of a limited number of axis categories (1-6), each 

characterized by a non-limitative combination of morphological, anatomical and functional traits 

(Figure 2.3-B). The number of axis categories, their characteristics and their spatial arrangement 

determine the so-called architectural unit, i.e. the species-specific expression of an architectural 

model (Barthélémy and Caraglio, 2007). The higher an axis category (i.e. situated at the periphery 

of the plant), the more functionally specialized it is (Barthélémy and Caraglio, 2007). For example, 

in most of tree and treelet species, trunks (axis category 1 = C1) have the general functions of 

support and storage. The more the axis number increases (C2, C3…), the more specialized the axis 

is in exploration, photosynthesis and reproductive functions. Extreme examples of axis 

specialization are provided by some inflorescences for reproduction function (Van Steenis, 1963; 

Hallé et al., 1978) or by phyllomorphic branches for photosynthesis (Corner, 1949; Hallé, 1967; 

Hallé et al., 1978). 

In most cases, a well-defined architectural unit is modified through the morphogenetic 

process of reiteration. Reiteration is a special branching process by which a plant duplicates its 

architectural unit (Oldeman, 1974; Hallé et al., 1978; Barthélémy and Caraglio, 2007). The process 

of reiteration is complex and not necessarily well understood. Different modalities of reiteration 
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FIGURE 2.3 – Illustration of (A) architectural model (from Hallé et al. 1978) and (B) architectural unit for Phyllanthus caudatus 

var. caudatus (Phyllanthaceae).
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have been recognized according to whether (i) the complete architectural unit is duplicated (total 

reiteration) or only a part of it (partial reiteration), (ii) the reiterate is produced by the development 

of a dormant bud (delayed reiteration) or by the transformation of an already growing meristem 

(immediate reiteration), and (iii) the reiteration process is included in the developmental sequence 

of the species (sequential reiteration) or is due to either plant damage (traumatic opportunistic 

reiteration) or to an increase in resource levels (adaptive opportunistic reiteration). All 

combinations of reiteration modalities are theoretically possible (Figure 2.4) but all of them have 

never been observed in a single species, each taxon having instead its own reiterative strategy 

(Edelin, 1986; Barthélémy, 1991). 

2.3 Toward a new definition of monocauly: between structure and function 

Plant architecture has taught us that plant form is due to the genetically controlled 

association of several structuro-functionnal entities (phytomers, growth units, axis categories, 

reiterates…) whose arrangement and differentiation change with age and are shaped by the 

environment. This integrative approach revealed objective criteria that could be powerful for 

defining growth habit (Millan, 2016). For instance, among the few attempts to define the 

monocaulous habit (see Chapter 3), that of Hallé et al. (1978) is probably the most successful. 

These authors made the distinction between the structural definition (“trees with a single axis” = 

monoaxial) and the physiognomic definition (“trees with a single trunk or visible stem of the plant” 

= monocaulous). The latter, referring to the general appearance of the plant rather than its structural 

construction, seems more appropriate for an ecological study since it is directly linked with the 

space exploration strategy of species. To pursue this functional aspect of growth habit further, 

monocauls could be defined as “self-supporting woody plants whose cardinal functions rely on a 

single visible stem”. This functional definition, better suited to studying the adaptive aspects of 
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FIGURE 2.4 – Illustration of the twelve theoretically possible reiteration types for 

Phyllanthus caudatus var. caudatus combining the three described reiteration modalities. Red 

entities represent reiterated complexes. Blue cross represent traumatic apices death. Blue 

arrows represent environmental stimuli (here light). Note that for P. caudatus var. caudatus, 

only five of the theoretical combination were observed in nature.
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growth habit, is the one we will use here. Beyond giving a clear physiognomic definition of 

monocauly, the architectural approach of Hallé et al. (Hallé and Oldeman, 1970; Hallé et al., 1978) 

was the first to provide clear discriminating morphological criteria. The classification of a species 

in the monocaulous class relies on the selection of structural types fitting the given definition of 

monocauly. In the work of Hallé et al. (Hallé and Oldeman, 1970; Hallé et al., 1978), structural 

types corresponded to architectural models. This classification, while providing a fundamental 

basis for plant architecture, nevertheless appeared to be too general to understand the precise 

architecture of plants and more integrative concepts such as architectural units and reiteration were 

later developed (see section 2.2). The work of Hallé et al. (Hallé and Oldeman, 1970; Hallé et al., 

1978) aimed to present the known diversity of developmental plans observed in tropical trees. Our 

aim is different, since our interest is to segregate plants for which vegetative functions are assumed 

by one visible stem, from other plants (i.e. branched). For all these reasons, we will not strictly 

refer to architectural models to define our structural types of monocauly but our classification will, 

in essence, largely overlap that of Hallé et al. (1978). Our definition of monocauly, focusing on 

function rather than structure, includes true woody plants with a single orthotropic entity 

functioning as a trunk and determined plagiotropic structures functioning as leaves. The only other 

aboveground structures are those specialized in reproduction (i.e. inflorescences) or are due to 

exogenous stimuli (i.e. opportunistic reiterates). 

Trunk entity – As argued by Hallé et al. (1978), a single trunk could be constructed in two 

different ways. (i) In most cases (and quite apart from traumatisms), single trunks are produced by 

one single meristem functioning throughout the plant’s lifespan (Figure 2.5-A). In this case, the 

trunk is monoaxial and the meristem might stop functioning following flowering (monocarpic 

plant) or natural senescence (polycarpic plant). (ii) In some cases, a single trunk could be 
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FIGURE 2.5 – Representation of the two possible modes of trunk construction for 

monocaulous plants. Pairs of blue segments represent growth rest sites, red crosses 

represent apex deaths. (A) Bocquillonia species (Euphorbiaceae) exhibit a monoaxial trunk 

and rhythmic growth, each growth-unit being produced by the same meristem. Growth-rest 

sites are not sharply bent and only anatomically characterized by slightly narrower and red 

pith (no pith rupture). (B) Balanops pancheri (Balanopaceae) exhibits a pluriaxial trunk and 

rhythmic growth, each growth-unit (i.e. module in this case) being produced by a sub-apical 

axillary meristem of the previous module (sympodial branching). Growth-rest sites are 

sharply bent and anatomically characterized by pith rupture.
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constructed by several meristems, each producing a module, that stack up to form a linear 

sympodium (Figure 2.5-B). In this case, the trunk is polyaxial and meristems of each module might 

stop functioning by flowering (hapaxanthic module) but not necessarily (see Cremers and Edelin, 

1995).  

Photosynthetic entity – The classical photosynthetic organ is the leaf, an often determinate 

bilateral organ highly specialized in photosynthesis (Harris and Harris, 2001) (Figure 2.6-A). 

However, functional differences between leaves and stems may in some cases be vague and some 

authors have argued that the transition from branch function toward leaf function is continuous (see 

Sattler, 1984, 1988; Sattler and Jeune, 1992; Sattler, 1996). For example, in several species, 

classical leaf functional characteristics are supported by highly specialized stems (e.g. cladodes, 

Cooney-Sovetts and Sattler, 1987; Bell, 1991) (Figure 2.6-B). To rigorously consider function and 

not structure, such stems must be considered as the functional photosynthetic entities of plants. As 

such, in the present study, photosynthetic entities are defined as “determinate growth structures 

highly specialized in photosynthesis and with an abscission point” (see Hallé et al., 1978). This 

definition is largely fitted by phyllomorphic branches, as introduced by Corner (1949) and defined 

by Hallé (1967), which are plagiotropic stems functionally considered as compound leaves (Hallé 

et al., 1978) (Figure 2.6-D). Similarly, leaves with indeterminate growth, as described for example 

in Meliaceae (Corner, 1964; Steingraeber and Fisher, 1986), will not be considered as 

photosynthetic entities but rather as additional exploration structures (but no such leaves are known 

in New Caledonia). 

Reproductive entity – In morphological terms, inflorescences are stems highly specialized 

in the reproduction function. Accordingly, strictly monoaxial plants do not exist or are very rare 

(Hallé and Oldeman, 1970). Once again, the demarcation between inflorescences and vegetative 
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FIGURE 2.6 – Example of similar functions carried out by different organs (leaf and twig). 

(A) Leaf of Agathis lanceolata (Araucariaceae). (B) Cladode (i.e. modified stem) of Semele sp. 

(Asparagaceae). (C) Compound leaf of Cupaniopsis oedipoda (Sapindaceae). (D) 

Phyllomorphic branch of Phyllanthus bupleuroides var. ngoyensis (Phyllanthaceae). 

FIGURE 2.7 – Illustration of the variation in inflorescence complexity. (A) Scaevola coccinea 

(Goodeniaceae): inflorescence is reduced to a single axillary flower. (B) Tapeinosperma 

ateouense (Primulaceae): determinate inflorescence supports several small assimilative 

leaves. (C) Bocquillonia corneri (Euphorbiaceae): annual flowering occurs on contracted axis 

complexes whose growth is indeterminate.
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branches could be confusing and they appear to be two extremes of a continuum (Van Steenis, 

1963; Hallé et al., 1978). For example, while some inflorescences comprise only a single lateral 

flower (Figure 2.7-A), others are quite long and bear numerous assimilative leaves (Figure 2.7-B) 

or comprise a densely branched complex of axes functioning during the entirety of the plant’s

lifespan (“bud complex” leading to cauliflory, Figure 2.7-C). Our main purpose here is to identify 

discriminating criteria to classify axes under the inflorescence or branch classes. Van Steenis 

(1963) proposed that inflorescences “post-anthesis do not participate in the vegetative extension of 

the individual”. In the present study, we extend this finding by considering inflorescences as “axes

or complex of axes highly specialized in reproduction and whose contribution to whole plant 

vegetative exploration and photosynthesis is negligible”. Consequently, species with additional 

axes that do not fit this definition will be considered as branched. 

Reiterates – For a given species, it is common to find individuals exhibiting an architecture 

that differs from the architectural unit that characterizes the taxon. Similarly, almost all of the 

species previously described as monocaulous (e.g. Hallé et al., 1978; Hallé, 2004) can occasionally 

be seen in nature with several axes (except for most monocotyledons). In this case, all 

supernumerary stems are morphologically and functionally identical to each other and to the 

primary trunk: that is, they are reiterates (see section 2.2). It is consequently crucial to distinguish 

a reiteration that results from a developmental sequence (i.e. sequential reiteration) from one 

triggered by exogenous factors (i.e. opportunistic reiteration). In the first case, a species will be 

considered as branched and in the second as monocaulous. If the theoretical differentiation between 

opportunistic and sequential reiteration seems obvious (Barthélémy and Caraglio, 2007), there are 

no clear morphological characters to differentiate easily the two processes in the field, particularly 

for delayed reiteration. In the present study, if reiteration of a species is predictable in space and 

31



FIGURE 2.8 – Illustration of sequential reiteration (branched species) and opportunistic 

reiteration (monocaulous species). Pairs of blue traits illustrate the differed character of 

reiterates, red circles or segments represent inflorescences. (A) Soulamea muelleri 

(Simaroubaceae): Reiterates appear on all individuals of the species and are regularly 

clustered on the primary trunk. (B) Bocquillonia sessiliflora (Euphorbiaceae): Reiterates 

appear very early on some individuals and never on others, their positions on the primary 

trunk are not predictable.
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time, it is considered as sequential and the species is therefore classified as branched (Figure 2.8).

To summarize, in the present study we consider as monocaulous all self-supporting woody 

species whose cardinal functions rely on a single visible stem, i.e. which are made of (i) a trunk 

(either monoaxial or pluriaxial), (ii) determinate growth structures highly specialized in 

photosynthesis and with an abscission point, (iii) axes or complex of axes highly specialized in 

reproduction and whose contribution to whole plant vegetative exploration and photosynthesis is 

negligible, and possibly (iv) opportunistic reiterates. This definition encompasses the two 

monoaxial models of Hallé et al. (1978): the Holttum’s model for terminal flowering species and 

the Corner’s model for lateral flowering taxa (Figure 2.9-A). Our definition also includes 

Chamberlain’s model except that we consider both hapaxanthic (terminally flowering) and non-

hapaxanthic (lateral flowering) modules (Figure 2.9-B), while the initial definition of Hallé et al. 

(Hallé and Oldeman, 1970; Hallé et al., 1978) only includes linear sympodia made of terminally 

flowering modules. The definition of monocauly adopted here also includes the Cook’s 

architectural model in its extreme expression (i.e. with short-living determinate phyllomorphic 

branches, Figure 2.9-C). Hallé (2004) suggested that the Cook’s model should be merged into the 

Roux’s model, their differences being mainly quantitative. In our opinion, differences between 

classical long shoots (Roux’s model) and phyllomorphic branches as considered here (the Cook’s 

model) are more than just quantitative given the fundamental difference in the growth pattern 

(indeterminate vs. determinate, respectively). Finally, our definition also corresponds to the 

Tomlinson’s model as initially described by Hallé et al. (Hallé and Oldeman, 1970; Hallé et al., 

1978) as the basal repetition of two of our above-described monocaulous models (the Holttum’s 

and the Corner’s models). Cremers and Edelin (1995) challenged the validity of this architectural 

model by showing that basal repetition occurs at least in seven other architectural models, including 
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FIGURE 2.9 – Illustration of the three main structural types conforming to the definition of monocauly used in the PhD study. 

Only vegetative architecture is represented here. (A) Monoaxial architecture exemplified by papaya (Carica papaya, Caricaceae). 

(B) Sympodial architecture exemplified by several male Cycas (here Cycas seemannii, Cycadaceae). (C) Phyllomorphic-branches 

architecture exemplified by the “fougère bâtarde” (Phyllanthus mimosoides, Phyllanthaceae).
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the monocaulous Chamberlain’s model. These authors proposed that such repetitions are 

reiterations occurring basally (Cremers and Edelin, 1995), the process sometimes being predictable 

in space and time (i.e. sequential reiteration) and sometimes not (i.e. opportunistic reiteration). 

Consequently, some plants initially described under the Tomlinson’s architectural model will be 

considered as monocaulous in the present study since they match the definition presented above. 

Other theoretical structural types fit our definition of monocauly, such as those constituted by a 

sympodial trunk and phyllomorphic branches, but that does not conform to any of the described 

architectural models because they remain unobserved in nature. 

2.4 List of monocaulous species 

To assess the evolutionary history of monocaulous plants in New Caledonia, an exhaustive 

list of monocaulous species native to New Caledonia has been established. As our definition of 

monocauly applies to woody plants, the list is limited to the non-monocot flora, which is by far the 

most diverse group (Munzinger et al., 2016). Monocotyledons were not considered because they 

represent a highly different monocaulous condition since aerial branching is developmentally 

constrained by shoot growth and the absence of wood (Tomlinson and Zimmermann, 1969; 

Tomlinson and Esler, 1973; Haushahn et al., 2012). 

A preliminary list of New Caledonian monocaulous species was compiled based on an 

extraction of the NOU Herbarium database using appropriate keywords (“monocaul”, “peu ramif”, 

“pachycaul”, “non ramif”, “unbranch”). The list was supplemented through expert opinion and 

extensive bibliographic analysis, particularly in the series Flore de la Nouvelle-Calédonie (et 

Dépendances) (Aubréville et al., 1967-1992; Morat and MacKee, 1992-2004; Hopkins et al., 2014) 

and taxonomic publications. The resulting initial list of taxa was cross-checked with the Florical 

taxonomic reference (Munzinger et al., 2016) to ensure that only valid names of species were used. 
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FIGURE 2.10 – Satellite map of New Caledonia (from georep.nc) and investigated sites during the thesis (yellow dots).
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When possible, the architecture of each taxon on this list was studied through extensive field work 

on Grande Terre (documented by more than 1200 herbarium collections, Figure 2.10) to verify 

whether each species fit our definition of monocauly. Species were studied using as many 

individuals and ontogenetic stages as possible. For most widespread species, an attempt was made 

to investigate several populations. However, these precautions were sometimes not applicable due 

to time limitation, access or population-size constraints. In such cases, field observations were

supplemented with observations of some photographs (UMR AMAP-IAC database and Endemia 

website). Photographs led to the exclusion of some species from the monocaulous list, but did not 

permit the validation of whether they had a monocaulous architecture. As such, some species 

require further investigation to confirm or refute their monocaulous habit. This concerns less than 

10 species for which distinction between sequential and opportunistic reiteration was equivocal 

(belonging to the genera Bocquillonia, Sloanea, Dysoxylum and Pycnandra). Only one species was 

never observed (Symplocos paniensis) and was therefore coded as NA. 

The final list of monocaulous species (Appendix 1) was used in the following chapters to 

investigate the diversity, ecology and evolution of monocaulous plants in New Caledonia. For this 

purpose, we used several approaches combining taxonomy, architectural analysis, functional 

ecology and phylogenies (Figure 2.11). More details about the methods relating to phylogenies and 

functional traits are provided in the corresponding chapters. 
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FIGURE 2.11 – General method and tools used in each chapter of the PhD study.
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Chapter 3 — The monocaulous growth habit: a 

review 

3.1 History and definitions 

The term monocauly, derived from the Latin monocaulis (mono = one, caulis = stem), has 

been used since at least the 17th century (see Mentzelius, 1682) to characterize plants or parts of 

plants (curiously including roots, e.g. Clementi, 1855). As far as we know, this Latin term was 

anglicized for the first time by E.J.H. Corner (monocauly, monocauls, monocaulous species) to 

illustrate his Durian theory about the origin of the modern tree (Corner, 1949). While the Latin 

term was mainly applied to herbaceous species, the tropical approach of Corner restricted the 

English term to whole woody plants (“trees”). In this fundamental work (Corner, 1949), monocauls 

are considered as an extreme of pachycauls (few branches, thick stems and large leaves) in their 

total absence of branching. Since then, the term monocauly has been used by a variety of authors 

to characterize the growth habit of some sparsely-branched plants, the definitions being more or 

less accurate depending on the study. The vast majority are taxonomic studies in which new species 

of monocauls are described (e.g. Morat, 1988; Tange, 1997; Sonké et al., 2009; Jebb and Prance, 

2011; Taylor et al., 2011; Yu and van Welzen, 2018). In this case, monocauls are sometimes 

considered under a broad physiognomical definition, i.e. sparsely-branched plants with large leaves 

clustered in distal part of the stem. Such a general definition better matches Corner’s pachycauly 

(Corner, 1949) than his more restricted monocauly and fits with several other botanical terms used 

at different times and in different languages: palmenforms or bananenform (Von Humboldt, 1808),

rosettentrager (Reiter, 1885), tuft-trees (Warming, 1909), rosette-trees (Du Rietz, 1931), 

megaphytes (Cotton, 1944), cabbage-trees (Irvine, 1961), columnar-trees (Zimmermann and 
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Brown, 1971), palmoid (D'Arcy, 1973), caulescent-trees (Halloy, 1990), giant rosette plant

(Hedberg and Hedberg, 1979), Schopfbaume (Zona and Christenhusz, 2015), scapose-trees

(D'Arcy, 1973). Each of these terms is highly figurative but was often used without an 

unambiguous definition, making them largely subjective. Hallé et al. (1978) made the distinction 

between the structural definition (“trees with a single axis” = monoaxial) and the physiognomic 

one (“trees with a single trunk or visible stem of the plant” = monocaulous). These two approaches 

to monocauly were reinforced by the designation of a set of architectural models corresponding to 

each definition (i.e. the Holttum’s and the Corner’s in the first case and the Holttum’s, the Corner’s 

and the Chamberlain’s in the second). In the course of this thesis, monocauly was regarded from a 

functional perspective, and a preferred definition has been adopted: “self-supporting woody plants

whose cardinal functions rely on a single visible stem”, i.e. plants (i) made of a trunk (either 

monoaxial or pluriaxial) and with, (ii) determinate growth structures highly specialized in 

photosynthesis and with an abscission point, (iii) an axis or complex of axis highly specialized in 

reproduction and whose contribution to whole plant vegetative exploration and photosynthesis is 

negligible, and possibly (iv) opportunistic reiterates (see Chapter 2).

3.2 Evolution of the monocaulous habit 

The oldest known plant macrofossils, dated from ca. 430 Ma (Silurian), were probably 

isodichotomously branched, producing two daughter branches of similar size (e.g. Cooksonia) with 

terminal sporangia (Meyer-Berthaud and Decombeix, 2009). They presented a mixture of prostrate 

and erect axes. This simple morphology is suggested to have been dominant up to the Early 

Devonian (ca. -400 Myr). Devonian is also the period during which pseudomonopodial branching 

became widespread. In this mode of branching, daughter branches are different in size and 

orientation, leading to the appearance of a vertical growth and side branches. This mode of 
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branching is suggested to have played an important role in the evolution toward arborescence 

(Meyer-Berthaud and Decombeix, 2009; Chomicki et al., 2017). These fossil plants were, however,

of small size. The tree growth habit evolved in several lineages via convergent evolution (Niklas, 

1997), with the earliest known modern tree dating from the Middle Devonian (-390 Myr) (Stein et 

al., 2007). In the Earth’s “oldest forest”, these tree-fern-like plants (Cladoxylopsida) had a trunk 

bearing large branches that probably abscised (cladoptosis or branch shedding), as a “frond-like 

module” (Stein et al., 2007). The architecture of these fossil plants corresponds to Berry’s model 

(Chomicki et al., 2017). Archaeopteris, another modern tree from the late Devonian, was shown to 

form excurrent deciduous branches (Type A, in Meyer-Berthaud's model, Meyer-Berthaud et al., 

1999; Chomicki et al., 2017). Thus, large fossil trees seem to be dominated by non-perennial 

photosynthetic or lateral structures. Among tree-ferns, an advance level of organization of 

branching has also been described (Galtier and Hueber, 2001), but most fossil tree-ferns known 

since the Carboniferous had a monocaulous trunk supporting large compound leaves, comparable 

to extant tree-ferns of Cyatheaceae and Dicksoniaceae. Plants expressing Corner’s architectural 

model are known from the early Devonian (ca. -400 Myr) and the Holttum’s model dates back to 

at least the Late Devonian (ca. -355 Myr), i.e. before the appearance of most extant and extinct 

architectural models (Chomicki et al., 2017). While these first unbranched plants probably do not 

fit with our definition of true woody monocauly (vascular cambium of extant species appearing in 

the late Triassic (-220 Myr, Savidge, 2008), they show that unbranched architectures were clearly 

more represented in the past. It was particularly abundant from the Carboniferous (ca. -350 Myr) 

to the early Cretaceous (ca. -110 Myr), representing between ca. 20% and 40% of the total fossil 

record for which information is available (Chomicki et al., 2017). From the early Cretaceous, the 

proportion of taxa with an unbranched architecture gradually decreased in favor of architectures 

expressing axillary branching. This is in agreement with the rise of small-leafed and highly 
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branched angiosperms, which have progressively replaced the often large-leafed monocaulous 

habit of ferns and progymnosperms (Coiffard et al., 2012). Today, the monocaulous habit is 

estimated to represent only ca. 2% of the total known architectures (Chomicki et al., 2017). 

The abundance and diversity of monocaulous forms in the floras of the Paleozoic and 

Mesozoic has often led scientists to consider it as primitive for seed plants (Galtier, 1999) or 

Angiosperms (Hallier, 1912 in Meeuse, 1967). In his Durian theory on the origin of the modern 

tree, Corner (1949) suggested that “the more remote ancestors [=of Angiosperms] appear to have 

been monocarpic and monocaulous, with the Cycad-habit”. This idea was supported by early 

classifications in which Cycas was placed as sister to Gymnosperms and Angiosperms. Such a

primitive form was thought to have gradually evolved toward branched forms (with smaller and 

simpler leaves, flowers, seeds and fruits) to colonize drier and colder habitats, leading in the extant 

Angiosperm architectural diversity. Corner (1949) argued that extant monocaulous species, 

occurring in several tropical families, are “relicts” of this ancestral form. Other authors have 

suggested that the occurrence of monocauly in numerous unrelated families is instead evidence of 

recent convergent evolution (Richards, 1966; D'Arcy, 1973), the simplicity of monocaulous forms 

no being synonymous with “antiquity” (Mabberley, 1974b; Hallé et al., 1978). Recently, the rise 

of molecular phylogenies has largely supported this second view and – while the ancestral growth 

habit of Angiosperms is still under debate (Doyle, 2012) – Corner’s hypotheses about the evolution 

of monocauly have been discredited. In extant angiosperms, the monocaulous habit appears to be 

derived in Senecioneae (Asteraceae, Knox and Palmer, 1995), Lobeliads (Campanulaceae, 

Givnish, 2010) and the genera Espeletia (Asteraceae, Rauscher, 2002), Oxera (Lamiaceae, Barrabé 

et al., 2018) and Aeonium (Crassulaceae, Mort et al., 2007). Using a phylogenetic tree including 

more than 20,000 species of vascular plants, Chomicki et al. (2017) found 118 independent origins 
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of monocauly, strongly suggesting that this habit is not (or not only) relictual in the extant flora. 

For several monocaulous species occurring in islands or island-like environments (tropical 

mountains), evolution of this habit from herbaceous ancestors was suggested early on. Darwin 

(1859) proposed that herbaceous species, more likely to reach islands than woody taxa, evolved to 

be taller to outcompete other herbaceous species, ultimately leading to bushes and/or trees (Figure 

3.1-A). This hypothesis of so-called secondary woodiness (Carlquist, 1974; Nattier et al., 2013) 

was first supported by data from comparative anatomy (e.g. Carlquist, 1962; Carlquist, 1969) and 

later confirmed by molecular phylogenies (Knox and Palmer, 1995; Rauscher, 2002; Givnish, 

2010). Why these secondary woody plants are often monocaulous or sparsely branched has not yet 

been investigated, but it probably involves the conservation of an ancestral herbaceous architecture 

or of tissue too soft to allow branching (i.e. developmental constraints). Such an herbaceous 

evolutionary pathway involves heterochronic evolution through peramorphosis (“proportionate 

giantism”) since size and lifespan increase in descendants (Gould, 1977; Alberch et al., 1979; 

Smith, 2001) (Figure 3.1-A). However, if such a process appears to be nearly certain in some 

groups, a meta-analysis showed that out of 118 independent evolutions of monocauly, only 34% 

involved herbaceous ancestors (Chomicki et al., 2017). Based on the observation that several 

tropical forest tree species have a long understory monocaulous phase (Carlquist, 1965; Richards, 

1966), D'Arcy (1973) suggested that monocauls could arise from such trees “which have found it 

unnecessary to reach the forest canopy”. This hypothesis is in accordance with Barthelemy’s ideas 

(Barthélémy, 1988) and suggests heterochronic evolution through paedomorphosis (Barthélémy, 

1988) since the descendants (monocauls) evolved to have a smaller size and a simpler form through 

a truncation of the developmental sequence of their ancestor (which were branched trees). In this 

case, the paedomorphic processes would be neoteny (decreased growth rate) and possibly 
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FIGURE 3.1 – Illustration of the two evolutionary scenarios for monocauly as suggested in 

literature. (A) Evolution from an herbaceous ancestor through hypermorphosis. (B) 

Evolution from a branched canopy tree through neoteny (and possibly progenesis).
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progenesis (earlier offset of the vegetative phase) if branching appeared before flowering in the 

ancestral developmental sequence (Figure 3.1-B). This kind of heterochronic evolution was 

proposed for fossil lycopsids, where Chaloneria (Isoetales), a small unbranched shrub, is thought 

to have evolved from Sigillaria (Lepidodendrales), a 15 meter branched tree (Bateman, 1994). 

Without phylogenies, however these idea will remain hypothetical. Examples of heterochronic 

evolution in plants mainly involve fragments of plants (e.g. wood, stem, leaves or flowers) while 

the importance of such processes in the evolution of growth habit remains largely unknown 

(reviewed in Li and Johnston, 2000).

3.3 Life history and environmental traits associated with monocauly 

Like all growth habits (see section 1.3), monocauly is not only characterised by an 

unbranched stem but also by a large set of morpho-physiological traits. The most striking feature, 

inherent in most terms used to describe monocauls (see section 3.1), is the presence of large leaves. 

This relationship between branching intensity and leaf size is an element of Corner’s rules (Corner, 

1949, 1953-1954). These rules concern two fundamental statements: (i) Axial conformity,

stipulating that “the stouter, or more massive, the axis in a given species, the larger and more 

complicated its appendages” and (ii) Diminution on ramification, stipulating that “the greater the 

ramification, the smaller become the branches and their appendages” (Corner, 1949). By 

“appendages”, Corner meant leaves, fruits, inflorescences and flowers. Consequently, monocauls 

are not only expected to have larger leaves but also a thicker stem, larger fruits and more complex 

inflorescences (Figure 1.2). The relation between leaf area and twig thickness, namely the 

worldwide leaf size – twig size spectrum (Westoby and Wright, 2003), and to a lesser extent the 

relation between leaf area and fruit size, has been extensively investigated (White, 1983b; Bond 

and Midgley, 1988; Brouat et al., 1998; Cornelissen, 1999; Brouat and McKey, 2001; Westoby et 
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al., 2002; Preston and Ackerly, 2003; Westoby and Wright, 2003; Pickup et al., 2005; Sun et al., 

2006; Normand et al., 2008). On the other hand, the relation with branching intensity (i.e. 

Diminution on ramification) received much less consideration. Few studies have shown a negative 

correlation between branching intensity and twig cross-sectional area or leaf size (White, 1983b; 

Ackerly and Donoghue, 1998; Westoby and Wright, 2003) or inflorescence length (Ackerly and 

Donoghue, 1998) but, as far as we are aware, never with fruit size. Moreover, none of these studies 

included monocaulous species and the measurement methods used to quantify branching intensity 

are highly variable in the literature. For example, some authors measured the number of active 

growing tips on whole plants (White, 1983b; Ackerly and Donoghue, 1998) while others measured 

the mean length between apices and the first branch (Westoby and Wright, 2003), the proportion 

of trunk nodes producing branches (Ackerly, 1996), or the number of non-branched nodes between 

two branched nodes (Thomasson, 1972). Such discrepancies call for the need for the definition of 

a standardized index measuring branching intensity in relation to plants architecture and function. 

Consequently, our understanding of the relationships between monocauly and life history 

trait attributes largely comes from empirical observation and virtually never from attempts to 

quantify them. Such associations concern cauliflory (Hallé and Mabberley, 1976; Hallé et al., 1978; 

Barthélémy, 1988; Schmid, 1990), compound leaves (Corner, 1949; Hallé, 1967; Hallé and 

Mabberley, 1976; White, 1983a), short internodes (Corner, 1949; Chuah, 1977; Hallé et al., 1978; 

Sussex et al., 2010), dioecy (Hallé et al., 1978), rhythmic growth (Hallé et al., 1978), and high 

slenderness (D'Arcy, 1973). Their relationship with standard functional traits such as SLA 

(Specific Leaf Area) or related traits (see Wright et al., 2004) are difficult to estimate given that 

studies have never clearly included monocauls and that the relation with leaf area is unclear 

(Westoby and Wright, 2003). In terms of anatomy, studies suggest that pith area along with stem 
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size and leaf area generally increase during ontogeny until the branching point and then 

progressively decrease (Eggert, 1961; Lauri, 1988). This in turn suggests a higher pith size in the 

distal part of the stem for monocaulous species than for branched taxa, as confirmed by several 

studies (Cotton, 1944; Carlquist, 1974; Mabberley, 1974a; Hallé et al., 1978; Meinzer and 

Goldstein, 1986). Research also suggests that monocauls have a large cortex (Cotton, 1944; 

Mabberley, 1974a; Hallé et al., 1978; Mosbrugger, 1990) and a thin wood layer composed of a 

high proportion of parenchyma (Cotton, 1944; Mabberley, 1974a; Aldridge, 1978). The relation 

between monocauly or pachycauly and vessel or fiber size has been investigated indirectly 

(Aldridge, 1978; Aldridge, 1981) but results are blurred by the variety of sampled environmental 

conditions. The life history and functional characteristics of monocaulous plants, as suggested by 

the published literature, are summarized in Figure 3.2.

Each of these morpho-anatomical attributes depends on particular genetic and physiological 

processes that are undoubtedly linked with the evolution of monocauly. Apical dominance, i.e. the 

control exerted by the growing apical meristem over the outgrowth of lateral buds (Cline, 1991),

seems of prime importance. While genetics and physiology offer a promising way to understand 

the evolution of monocauly (see Doebley et al., 1997), they will not be considered in the present 

study, which instead focus on macro-ecological processes. The importance of hormonal pathways 

and gene expression on plant branching have been reviewed elsewhere (e.g. Cline, 1994; Sussex 

and Kerk, 2001; Chomicki et al., 2017).

Monocauls are almost restricted to tropical regions (Corner, 1949; Hallé et al., 1978), where 

they are known from areas with diverse environmental conditions, but mainly from rainforests. 

D'Arcy (1973), for instance, reviewed environmental occurrences of diverse monocaulous plants 

and concluded that “all are found in wet forests”. Such an ecological preference has actually been 
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FIGURE 3.2 – Synthesis of life history trait attributes suggested to be related with monocauly in literature. Numbers point on 

references in which trait associations were suggested. Bold text represents trait attributes for which association with branching 

intensity was statistically showed. 1Corner (1949), 2Westoby & Wright (2003), 3White (1983a), 4Ackerly & Donoghue (1998), 
5Hallé & Mabberley (1976), 6Hallé et al. (1978), 7D’Arcy (1973), 8Cotton (1944), 9Carlquist (1974), 10Mabberley (1974a), 
11Aldridge (1978), 12Chuah (1977).
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suggested for each monocaulous architectural model independently (Hallé and Mabberley, 1976; 

Hallé et al., 1978) and in more general terms, for monocaulous plants as well (Corner, 1949; Hallé, 

1974; Schmid, 1981). In rainforests, some insights suggest that pioneer trees, well suited for sunny 

environments, are less branched than non-pioneer species (White, 1983a; Ackerly, 1996). This 

could particularly pertain to compound-leaved trees, for which large dissected leaves are less costly 

than branches (Givnish, 1984, 1995). Even though monocauly and compound leaves have often 

been associated in the literature (Corner, 1949; Hallé, 1967; Hallé and Mabberley, 1976), no data 

show whether these pioneer features apply to monocauls. Richards (1966) argues that monocauls 

are “fitted only for a permanently favorable environment”, which he considers to include tropical 

rainforests and some tropical islands. However, while monocauls are obviously present on islands 

(Carlquist, 1974), recent studies suggest that the evolution of woodiness in these species is 

associated with greater drought tolerance suited for open habitat (Mort et al., 2007; Lens et al., 

2013) and Cotton (1944) even argues that their evolution on islands is linked with high insolation. 

Finally, an important part of the literature on monocauly discusses tropical mountain species. This 

growth habit seems very well adapted to such sunny and cold environments (Hedberg and Hedberg, 

1979; Meinzer and Goldstein, 1986; Givnish, 2016). A detailed morpho-anatomical study of 

monocaulous plants growing preferentially in rainforest understory conditions might shed light on 

adaptations and evolutionary constraints related with this more widespread model of monocauly.  
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(Euphorbiaceae) from New Caledonia 
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Abstract: 

A new species of Euphorbiaceae, Bocquillonia corneri, narrowly endemic to the extreme north-

east of New Caledonia’s main island, is here highlighted, described and illustrated, based on 

original morphological and architectural characteristics. This new species differs notably by its 

unique monocaulous tree habit, while other Bocquillonia species are ramified shrubs, small 

monocaulous shrubs or well reiterated trees. A previous identification key to Bocquillonia species 

is expanded to include this new species. Bocquillonia corneri is located in a very confined gully 

forest at low-elevation on volcano-sedimentary substrate. A preliminary IUCN conservation status 

of Critically Endangered (CR) is proposed. 

Keywords: Acalyphoideae, plant architecture, taxonomy
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4.1 Introduction 

The genus Bocquillonia Baillon (1862: 225) (Euphorbiaceae) was initially described with 

two species. Additional species or varieties were subsequently described by Müller Argoviensis 

(1865), Baillon (1873), Guillaumin & Beauvisage (1913 publ. 1914) and Airy Shaw (1972, 1974, 

1978a, 1978b, 1980, 1981). The nomenclature and taxonomy of the genus were finally entirely 

studied in a global revision (McPherson & Tirel, 1987), adding one new species and putting two 

species and three varieties in synonymy. The genus is currently composed of fourteen species all 

endemic to New Caledonia (McPherson & Tirel 1987; Govaerts et al. 2000; Munzinger et al. 2016). 

Bocquillonia can easily be distinguished from other New Caledonian Euphorbiaceae by a 

combination of morphological characters: limb with abaxial laminar glands; plants dioecious or 

rarely monoecious; glomerulose to narrowly racemiform inflorescences; flowers without corolla; 

calyx 2–3 lobed in male flowers, calyx shorter than gynoecium in female flowers (McPherson & 

Tirel 1987). Moreover, recent observations show that Bocquillonia species present internal phloem, 

i.e. a supernumerary phloem tissue in the stem between pith and wood (Bruy pers. obs.). The only 

phylogenetic study including Bocquillonia species (Wurdack et al. 2005) shows that the genus 

belongs to the tribe Alchorneeae (Acalyphoideae) and suggests its inclusion in the pantropical 

genus Alchornea Swartz (1788: 98). However, this study includes too few species (one 

Bocquillonia and two Alchornea) to invalidate the genus (Pillon et al. 2017).

Bocquillonia exhibits a great diversity of architectures and is therefore included in an 

ongoing PhD study conducted by David Bruy concerning the diversity, ecology, and evolution of 

monocaulous New Caledonian species. Some Bocquillonia species such as B. rhomboidea (Schltr.) 

Airy Shaw (1974: 320) are ramified (e.g. close to the Koriba’s architectural model, Hallé et al.

1978, Figure 4.1-A) while others such as B. castaneifolia Guillaumin (in Guillaumin & Beauvisage 
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FIGURE 4.1 – Diagram of the different growth habits known for Bocquillonia species at full maturity. (A) Shrub whose 

architecture is close to the Koriba’s architectural model (exemplified by B. rhomboidea). (B) Almost not reiterated shrub 

conforming to the Corner’s architectural model (exemplified by B. castaneifolia). (C) Almost not reiterated tree conforming to 

the Corner’s architectural model (exemplified by B. corneri). (D) Well reiterated tree conforming to the Corner’s architectural 

model (exemplified by B. grandidens). Green cross represents sequential apical death and red points represent inflorescences.
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1913 publ. 1914: 110) are monocaulous (i.e. with a single stem carrying out all essential functions; 

Corner’s model, Figure 4.1-B,C). Other species such as B. grandidens Baillon (1873: 128), can be 

monocaulous in early maturity but become very ramified when older (Figure 4.1-D). In this case, 

the process of ramification is called ‘opportunistic reiteration’ (Barthelemy & Caraglio, 2007), 

which corresponds to the production of a new stem morphologically and functionally identical to 

the initial stem as a response to stress or increase in resource levels. All of the currently described 

monocaulous species are small treelets with few reiterations or very reiterated trees. However an 

unusual population of monocaulous Bocquillonia observed in the extreme northeast of New 

Caledonia’s main island (Grande Terre) differs notably from the other monocaulous species since 

it is very tall (8 m) and almost not reiterated. Morphological herbarium investigations and field 

observations confirmed clearly that this population represents a distinct taxon from all other 

Bocquillonia species. This giant monocaulous taxon is consequently described and illustrated here, 

and a preliminary IUCN status is proposed. A modification of the Bocquillonia identification key 

of McPherson & Tirel (1987) is proposed to include this new species. 

4.2 Material and Methods 

Measurements, shapes and colours of the different organs are based on the examination of 

herbarium material and several field observations. All herbarium specimens of Bocquillonia

present at NOU, P and MPU were examined (Herbarium acronyms follow Thiers 2017). All 

available virtual collections of K were also studied online (http://apps.kew.org/herbcat/). 

Terminology used for description follows Harris & Harris (2001). Small morphological organs 

were observed using a Leica M165C binocular microscope mounted with a Leica EC3 camera for 

photography, and measurements were performed using pictures edited in the imageJ software 

(Schneider et al. 2012). Field pictures were taken with an Olympus Stylus TG-2 camera. The risk 
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of extinction assessment was conducted using the IUCN Red List Criteria (IUCN 2012); Area Of 

Occupancy (AOO, using a 2 × 2 km grid) and Extent Of Occurrence (EOO) values were calculated 

using the online “geocat” software (Bachman et al. 2011); the number of individuals was 

established after a half-day of botanical prospection along the single creek where the species is 

known. 

4.3 Taxonomy 

Bocquillonia corneri Bruy, Barrabé & Munzinger sp. nov. (Figures 4.2, 4.3) 

Type:—NEW CALEDONIA. Province Nord. Commune de Ouégoa: Base du col d’Amoss, 

105 m, 20°19’2.4”S, 164°25’22.8”E, 11 August 2017 (fl.), Bruy, Barrabé & Hattermann 923 [♀] 

(Holotype P01156371!, Isotypes NOU088193!, MPU310860!, K!, MO!, BRI!). 

Diagnosis – Vegetatively, Bocquillonia corneri resembles B. castaneifolia Guillaumin in 

its monocaulous architecture, its oblanceolate to obovate blade shape and in having very short 

petioles. Bocquillonia corneri differs most notably from the latter species by the dimensions of the 

stem (up to 8 cm DBH and 8 m height, vs. 3 cm and 2 m), petiole length (> 9.4 mm, vs. < 5 mm) 

and blade length (> 25 cm long, vs. < 24 cm) and in having caducous stipules (vs. persistent) and 

stigmas applied against the ovary in female flowers (vs. erect).

Based on reproductive organs, Bocquillonia corneri resembles B. sessiliflora Baillon 

(1862: 226), which has also condensed inflorescences and in which the stigmas are oval and applied 

against the ovary. Bocquillonia corneri differs most notably from the latter species by the strictly 

monocaulous architecture (vs. well reiterated treelet), the narrowly oblanceolate leaf blade (vs. 

ovate to oblong), the lack of an upper pulvinus on the petiole (vs. present) and the fushia calyx in 

vivo (vs. green). 
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FIGURE 4.2 – Pictures of Bocquillonia corneri. (A) Early mature individual in its natural 

environment. (B) Bark and slash with old staminate inflorescences. (C) Apex and flushing 

young leaves. (D) Detail of nervation and glands of the abaxial surface. (E) Pistillate 

inflorescences; (F) Staminate inflorescences.
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FIGURE 4.3 – Drawing of Bocquillonia corneri. (A) Mature leaf. (B) Detail of venation. (C) 

Stem apex with stipules. (D) Male flower. (E) Female flower. (F) Fruit. (G) Seed in ventral 

(left) and dorsal face (right). Illustrator: Ramon L..
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Monocaulous treelet to monocaulous tree, 1.50 m to 8.00 m tall, sometimes with a few 

reiterations.  

Stem glabrous, light grey to white, with brown longitudinal scars; young stems bearing 

alternatively cataphylls and pseudoverticillate assimilative leaves bundled at the proximal part of 

the stem. 

Stipules caducous, subulate, 3–7 mm long, 0.5–1.2 mm wide, dark brown in sicco,

glabrescent. Cataphyll: caducous, narrowly lanceolate, navicular, pectinate, 6–11 (–15) mm long, 

0.8–2.1 mm wide, densely strigose with silvery trichomes in sicco. Assimilative leaf: blades 

narrowly oblanceolate, (24.6–) 36.1–72.5 × 6–16.5 cm, dark purple when young, then pinkish and 

green when mature, chartaceous to subcoriaceous, adaxial surface glabrous, abaxial surface nearly 

glabrous; base cuneate to rounded, sometimes asymmetrical; apex acuminate to acute, rarely 

rounded; margin dentate and minutely revolute; leaf teeth (13–) 21–27 on each side, white on young 

leaves, black on mature leaves; sunken laminar glands (6–) 13–34 (–49) on each side of the midrib, 

circular to elliptic, (0.3–) 0.5–1.3 (–1.5) mm in diameter, black in sicco, generally close to the 

midrib. Venation craspedodromous; midrib not or barely raised adaxially, prominent abaxially, 

pink to purple when young, green when mature, glabrous adaxially, sparsely and obscurely 

appressed-puberulent abaxially; secondary veins (16–) 24–30 on each side of the midrib below the 

acumen, raised adaxially, prominent abaxially, spaced from 8–38 mm, angle with midrib 48–92 °, 

glabrous; tertiary venation scalariform, not or barely raised on both surfaces, glabrous; quaternary 

venation obscure adaxially, minutely raised abaxially, glabrous. Petioles without an upper 

pulvinus, flat adaxially, subtriangular in cross-section, 9.4–34.4 mm long, 3.3–7.1 mm in diameter, 

pink to purple when young, green when mature, striate in sicco, sparsely and obscurely appressed-

puberulent to glabrous. 
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FIGURE 4.4 – Distribution map of Bocquillonia corneri in the North Province and detail of the distribution of known individuals 

along Indanou creek. Numbers near the yellow dots represent the number of individuals.
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Plants dioecious, sometimes monoecious. Inflorescences reduced to cauliflorous 

glomerules sometimes axillary to oldest leaves, borne on short shoots; staminate inflorescences 

(3.5–) 4.4–7.8 mm long, 4.5–14.5 mm in diameter; bracts ovate, with an acuminate to rounded 

apex, reducing in size from outside to inside of the inflorescence, fushia, sparsely pubescent and 

ciliate. Staminate flowers glabrous, pedicel ca. 1.5–3.5 mm long, ca. 0.4–1 mm wide, white 

pinkish; calyx (2-) 3-lobed, fushia, lobes ovate, 0.8–3.1 mm long, 1.5–2.6 (–3) mm wide, with an 

obtuse to acute apex, with a turbinate tube 2.3–3.8 mm long, 1.8–2.9 mm wide; stamens 2–4,

connate at the base, fushia, glabrous, anthers 0.8–1.9 × 1.0–2.0 mm, filaments 1.8–3.6 mm long 

above the connate section, 0.25–0.60 mm wide, pistillode lacking. Pistillate inflorescences 6.5–

13.5 mm long, (7–) 9.9–16.7 (–18.5) mm in diameter, bracts ovate, 1.8–5.6 × 1.7–5.1 mm, with a 

rounded to acute apex, fushia, ciliate and pubescent, glands present. Pistillate flowers fushia, 

sessile; sepals 4–5, ovate, 2.2–5.6 mm long, 1.8–4.4 mm wide, with an acuminate apex, ciliate, 

pubescent to sparsely pubescent; stigmas (2–) 3 (–4), oval, slightly domed, papillate, applied 

against the ovary; ovary spherical, 2.7–4.6 mm in diameter, densely hirsute. Fruit 3-lobed, ca. 9 

mm long, 9–11 mm in diameter, exocarp rugulose, ochre in sicco, sparsely strigose with silvery 

trichomes; placental column 5.5 mm long; seeds 6–7 × 4.5–5.5 mm, covered with low, blister-like 

swellings, dark grey in sicco.  

Phenology – Flowers of Bocquillonia corneri have been observed in March, August and 

November, and mature fruits have been collected in April and August. 

Distribution and Ecology – This new species is only known from the Indanou creek, at the 

base of Col d’Amoss in the northeastern part of Grande Terre, in Province Nord, near Ouégoa 

village (Figure 4.4), where it occurs in thalweg (gully) forest on volcano-sedimentary substrate, 

more specifically on micaschists, at around 60–150 meters elevation. Only 56 adult individuals are 
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known but intensive field prospection in the area could potentially locate other individuals. 

Etymology – The plant is named in honour of E.J.H. Corner who provided interesting 

insights about monocaulous plants and whose theories inspired generations of botanists. In 

addition, the architecture of this plant conforms perfectly to the Corner’s architectural model (Hallé 

et al. 1978). 

Species recognition – Bocquillonia corneri is easily recognizable in the field because it is 

the only species of the genus that is a very few times reiterated monocaulous tree. It is also the only 

species to combine condensed inflorescences, pistillate flowers with a fuchsia calyx and oval 

stigmas applied against the ovary. 

Conservation status – Bocquillonia corneri is only known from a single population, 

critically threatened by fire, human activity and invasive species, in particular the deer Rusa 

timorensis de Blainville (1822: 267). The population corresponds to one unique location sensu

IUCN since all individuals could be affected by a single threatening event. Only 56 mature 

individuals are known, with approximately 25 female individuals. Even though individuals not 

seen by the authors may be present in the region, it is very probable that the population is smaller 

than 250 mature individuals. The EOO calculated is 0.092 km² and the AOO is 4 km². We assign 

consequently a preliminary conservation status of Critically Endangered to B. corneri (CR) B1 

ab(iii,v)+2ab(iii,v) using the IUCN Red List criteria (IUCN 2012).  

Additional specimens examined (Paratypes) – NEW CALEDONIA. Ouégoa. Route 

Koumac–Ouégoa, peu avant le Col d’Amoss, 28 November 2008 (fl.), Barrabé & Létocart 788

[♂] (NOU033871); Ouégoa: Base du col d’Amoss, 100 m, 20°19’40.6”S, 164°25’34”E, 11 August 

2017 (fl.), Bruy, Barrabé & Hattermann 921 [♂] (BRI, K, MO, MPU310861, NOU088196, 

P01156372); Païta: Chez D. et I. Létocart, 1 June 2017 (fl.) [Cultivated plant], Bruy, Barrabé & 
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Létocart 807 [♂] (NOU088195); Nouméa: Val Plaisance, Chez J.M. Veillon, 16 June 2017 (fl.) 

[Cultivated plant], Bruy, Barrabé & Veillon 879 [♀] (NOU088194); Ouégoa: Indanou (Amoss), 

41 m, 20°19’18.947”S, 164°25’23.058”E, 10 March 2016 (bd.), Fleurot 224 [♂] (NOU085638);

Ouégoa: Indanou (Amoss), 41 m, 20°19’19.722”S, 164°25’23.380”E, 27 April 2018 (fr.), Fleurot 

433 [♀] (NOU088719); Ouégoa: Col d’Amoss, 200–300 m, 19 October 1956 (fr.), MacKee 5479

[♀] (L0449021, P00160238); Ouégoa: Bas du col d’Amoss, côté Ouégoa, 10–20 m, 27 August 

2006 (fr.), Munzinger 3544 (Leg. D. et I. Létocart) [♀] (NOU013877).

4.4 Identification key of McPherson & Tirel (1987), modified to include B. corneri.

1. Inflorescences elongated, typically more than 5 cm long; inflorescences ♀ with spaced flowers; 

inflorescences ♂ composed of several glomerules, generally distinct .......................................................2 

-. Inflorescences shorter, up to 4 cm long, sessile (rarely inflorescences ♀ slightly elongated) with 

flowers solitary or clustered in a single glomerule hiding the axis.............................................................11

2. Blades 5–10.5 cm long, elliptic; stigmas mostly spreading.............................................B. rhomboidea

-. Blades > 10 cm long (rarely blades smaller, in this case blades obovate and stigmas erect) .............3 

3. Branches with persistent pubescence; stigmas spreading, with margin minutely laciniate; species 

from North-East (Aoupinié, Tonine, Panié).......................................................................B. phenacostigma

-. Branches quickly glabrescent; stigmas erect or spreading, with margin entire or ± lobed.................4 

4. Blades narrowly obovate, with cordate to obtuse bases; petioles < 2.5 cm.........................................5 

-. Blades elliptic, ovate or obovate, generally with acute bases (if bases obtuse, longest petioles > 

3 cm long) ....................................................................................................................................................................6 

5. Stigmas ca. 5 mm long; blades generally coriaceous, generally with strongly marked teeth..........
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..............................................................................................................................................................B. codonostylis

-. Stigmas ca. 1 mm long; blades generally chartaceous, with ± marked teeth.......................B. brevipes

6. Axils of secondary veins often with domatia (tufts of trichomes); male glomerules often tightly 

clustered; tree 9–15 m tall; species from Ile des Pins.....................................................................B. arborea

-. Axils of secondary veins without domatia (trichome tufts); male glomerules spaced; treelet or 

tree 0.5–8 m tall; species from Grande-Terre....................................................................................................7 

7. Apical pulvinus of petiole smaller than the basal one......................................................B. goniorrachis

-. Apical pulvinus as large as the basal one..........................................................................................................8 

8. Stigmas > 6 mm long, erect; mature male flower-buds > 1 mm in diameter, ovoid or cylindrical; 

blades often glossy on both faces........................................................................................................B. lucidula

-. Stigma ± spreading, ca. 1 mm long; mature male flower-buds 0.5–1 mm in diameter, spherical; 

abaxial blade faces dull.............................................................................................................................................9 

9. Blades 4 times longer than wide, abaxial faces generally glaucous; petiole slightly flattened 

above; species from peridotitic mountains of South, West and North-West.............................B. spicata

-. Blades 2–3 times longer than wide, abaxial faces green; petioles generally cylindrical..................10

10. Petioles < 11 cm long; blades 3 times longer than wide, up to 13 cm wide; species from North-

East on schists...........................................................................................................................................B. nervosa

-. Petioles (10–) 14–28 cm long; blades 2 times longer than wide, the wider ones > 13 cm wide; 

species from peridotitic mountains of North-West........................................................................B. longipes

11. Petioles absent or without pulvini.................................................................................................................12

-. Leaves clearly petiolate and with pulvini......................................................................................................13
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12. Petioles < 7 mm long and < 3 mm wide; blades < 24 cm long; monocaulous shrub up to 2 m 

height; stipules persistent; stigmas erect; species from peridotitic massif of extreme North-West....

.............................................................................................................................................................B. castaneifolia

-. Petioles > 7 mm long and > 3 mm wide; blades > 24 cm long; monocaulous shrubs or trees up to 

8 m height; stipules caducous; stigmas applied against the ovary; species from micaschists of 

extreme North-East.................................................................................................................B. corneri, sp. nov.

13. Longer petioles < 18 mm; shrub up to 3 m height, sequentially well ramified; stipules filiform

...............................................................................................................................................................B. brachypoda

-. Longer petioles > 18 mm; shrubs or trees up to 7 m height, well ramified by reiteration; stipules 

with enlarged bases.................................................................................................................................................14 

14. Blades 1.7–2.5 times longer than wide, 10–23 cm wide; petioles 4–16 cm long; stipules shortly 

triangular; inflorescence generally elongated up to 3.5 cm; stigmas laciniate.................B. grandidens

-. Blades (2.7–) 3–5 times longer than wide, 2–11 cm wide; petioles 1.8–10 cm; stipules subulate; 

inflorescence generally spherical, sometimes slightly elongated (up to 2 cm); stigmas not 

laciniate................................................................................................................................................B. sessiliflora
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Chapter 5 — A remarkable case of evolutionary 

convergence: correlated evolution and 

environmental contingencies of monocauly in 
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Abstract: 

Background and Aims Convergent evolution is recognized as a key driver of biological diversity. 

While tropical islands host the most remarkable cases of convergence, this phenomena has never 

been described in the New Caledonian biodiversity hotspot, known for the exceptional 

distinctiveness and richness of its biota. In this study, we document a new case of convergence by 

illustrating the evolutionary history of monocauly in the woody flora. 

Methods Using herbarium data, extensive field work and literature compilation, we listed New 

Caledonian monocaulous species and scored six life history and two environmental traits for 2114 

New Caledonian woody self-supporting species. We constructed a phylogenetic supertree for New 

Caledonian woody genera to investigate the minimum number of evolutionary events, phylogenetic 

signal, and evolutionary correlates of monocauly in the island. IUCN risk of extinction status and 

threats for New Caledonian flora was used to evaluate major threats on monocaulous species. 

Key Results We recorded 182 monocaulous species belonging to 41 genera, 30 families and 15 
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orders. We found at least 31 independent evolutionary events leading to monocauly. The habit 

showed a non-random distribution over the supertree that suggests some prerequisites facilitating 

its evolution. Monocauly evolved preferentially in rainforest and on ultramafic substrate, and 

triggered the evolution of both cauliflory and marked rhythmic growth. However, no preadaptation 

was identified in this study although architectural prerequisites appear to be a promising trait for 

further investigation. Monocaulous species appeared more threatened (IUCN risk of extinction 

status) than the branched taxa, with a particularly high impact of introduced herbivores. 

Conclusions The evolution of monocauly in New Caledonia is comparable to the most famous 

cases of convergence on islands. Evolutionary hypotheses explaining this remarkable convergence 

involve rainforest features and history, ultramafic substrate and long-term absence of browsers. 

Keywords: Biodiversity hotspot, Cauliflory, Convergence, Correlated evolution, Disharmony, 

Growth habit, Islands, IUCN redlist, New Caledonia, Plant architecture, Rainforest, Ultramafic 

substrate
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5.1 Introduction 

The isolation and environmental heterogeneity of New Caledonia, an archipelago in the 

Southwest Pacific, and the multiple colonizations from different geographical areas that have taken 

place since over ~37 Ma have resulted in a flora that harbours many peculiarities. The New 

Caledonian flora is well known for its exceptional level of richness and endemism (Morat et al., 

2012; Munzinger et al., 2016), the high incidence of relictual lineages (Pillon, 2012; Pouteau et al., 

2015; Pillon et al., 2017), a great diversity of conifers (Jaffré, 1995), and some unusual biological 

forms such as the world’s only parasitic Gymnosperm (Parasitaxus usta, De Laubenfels, 1959; 

Feild and Brodribb, 2005) and a monocarpic large tree (Cerberiopsis candelabra, Veillon, 1971). 

This astonishing flora is of important conservation concern (Jaffré et al., 1998), recognized by 

Myers (1988) as one of the 10 original “Biodiversity Hotspots” and the smallest among the 36 

currently recognized hotspots (Mittermeier et al., 2004).

An important feature of insular biota, considered as major evidence of long-distance 

dispersal, is their taxonomic disharmony, i.e. the unbalanced representation of plant groups 

(Carlquist, 1965, 1974; Pillon et al., 2010). The presence of novel biotic and abiotic conditions 

encountered following colonization have, in many instances, triggered functional shifts (Patiño et 

al., 2017) that can lead to losses in functional diversity (Boyer and Jetz, 2014) and uneven 

representation of functional groups, i.e. functional disharmony. In New Caledonia, several 

examples of functional and taxonomic disharmony have been described recently, including the 

high incidence of dioecy (Carpenter et al., 2003; Schlessman et al., 2014), the over-representation 

of relict angiosperms (Morley, 2001; Pouteau et al., 2015; Trueba, 2016), the diversity of metal 

hyper-accumulator species (Jaffré et al., 2013; van der Ent et al., 2015), and the low richness in 

liana (Bruy et al., 2018). The cause of disharmony in the New Caledonian flora is often attributed 
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to the high incidence of ultramafic substrates, covering about a third of the main island, Grande 

Terre, (Pillon et al., 2010; Isnard et al., 2016) and to the persistence of rainforests through periods 

of paleoclimatic fluctuation (Pintaud et al., 2001; Poncet et al., 2013; Pouteau et al., 2015; 

Tournebize et al., 2017), while adjacent regions experienced intense extinction events (Kemp, 

1978; Crisp et al., 2004; Dodson and Macphail, 2004; Byrne et al., 2008; Byrne et al., 2011). 

Another evolutionary mechanism that has long fascinated biologists in island systems is 

convergence in plant form and function (Elmer and Meyer, 2011; Whittaker et al., 2017).

Convergent evolution, i.e. the rise of similar trait attributes among distantly related lineages 

subjected to similar selection pressures, is a key driver of biological diversity (Givnish, 2016). In 

many islands, cases of evolutionary convergence have been well documented such as divaricating 

plants in New Zealand (Greenwood and Atkinson, 1977; Tomlinson, 1978; Howell et al., 2002) 

and giant rosette shrubs in Hawaii (Carlquist, 1974; Givnish et al., 2009; Givnish, 2010) and 

Macaronesia (Shmida and Werger, 1992; Mes and Hart, 1996). One of the most famous cases of 

convergence in island floras is the high proportion of woody species that evolved from herbaceous 

ancestor, a phenomenon referred to as “insular woodiness” (Carlquist, 1974, 2013; Lens et al., 

2013). A high incidence of insular woodiness, as well as other evolutionary convergence, has,

however, not been observed in New Caledonia (Carlquist, 1974; Pillon et al., 2017).

Here we report a previously uninvestigated case of convergence occurring in the New 

Caledonian flora: the presence of numerous monocaulous (i.e. unbranched) plants in multiple 

lineages. This phenomenon has been repeatedly described by botanists who have studied the New 

Caledonian flora and have mentioned its presence in many distinct lineages (Veillon, 1976; 

Schmid, 1979, 1990). Monocaulous plants, characterized by a thick unbranched trunk and large 

leaves clustered in the distal part of the stem, have long fascinated naturalists (Von Humboldt, 
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1806; Corner, 1949; Hallé et al., 1978). Beyond being a botanical curiosity, monocauly has been 

widely discussed in ecological and evolutionary contexts, and was central to the development of a 

major biological theory (Corner, 1949). The monocaulous habit was long considered as primitive 

in Angiosperms (Corner, 1949, 1953-1954) until recent phylogenetic work showed a recent origin 

of this growth habit in many lineages (Givnish, 2010; Chomicki et al., 2017; Barrabé et al., 2018; 

Chapter 6). Several monocaulous species, sometime corresponding to rosette trees, evolved from 

herbaceous ancestors (Carlquist, 1974; Hallé et al., 1978; Chomicki et al., 2017), particularly on 

islands (Carlquist, 1969; Böhle et al., 1996; Lens et al., 2013). However, in the New Caledonian 

flora, the few phylogenetic reconstructions available for groups containing monocaulous species 

rather suggest that they evolved from woody ancestors (Barrabé et al., 2018; Chapter 6). The 

breadth of this pattern remains to be confirmed through the study of other clades. Monocauly has 

also largely been associated with diverse life history trait attributes such as cauliflory (Hallé and 

Mabberley, 1976; Hallé et al., 1978; Barthélémy, 1988; Schmid, 1990), dioecy (Hallé et al., 1978),

and the presence of compound leaves (Corner, 1949; Hallé, 1967; Hallé and Mabberley, 1976; 

White, 1983b). From an ecological and evolutionary perspective, some authors have addressed the 

question of the selective advantage of monocauly (Richards, 1966). This growth habit appears to 

be almost exclusively tropical (Corner, 1949; D'Arcy, 1973; Hallé et al., 1978). In some giant 

rosette trees the packing of leaves around terminal buds has been suggested to be adaptation to 

nightly frosts or short-duration fires (Givnish, 2016). In New Caledonia, as in other tropical 

regions, monocaulous plants are, however, preferentially found in rainforest (Corner, 1949; 

D'Arcy, 1973; Hallé, 1974; Hallé and Mabberley, 1976; Hallé et al., 1978; Schmid, 1990; Chapter 

6), suggesting other selective pressures. Their single growing apical meristem make them 

particularly sensitive to environmental damage (Costes et al., 2013; Charles-Dominique et al., 

2017), implying adaptive growth pattern that would prevent or reduce apical damages (Givnish, 
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1994). 

To examine the evolution of the monocaulous habit in the New Caledonian flora, we 

compiled a dataset combining architectural, morphological, taxonomic, phylogenetic, and 

ecological information on monocaulous species. We used this dataset to investigate the 

evolutionary history of monocaulous plants in New Caledonia. Using a phylogenetic supertree of 

New Caledonian woody genera, we quantified the phylogenetic signal and estimated the minimum

number of independent evolutionary events leading to monocauly in the archipelago. We 

investigated the relation between the presence of monocaulous species in a genus and species 

richness in that genus. We then tested for correlated evolution between monocauly and trait 

attributes related to growth (marked growth rhythms), leaf shape (compound leaves), reproduction 

(cauliflory, dioecy, plain flower, fleshy fruits) and environment (rainforest, ultramafic substrate). 

We also analysed risk of extinction and threats to monocaulous species according to the IUCN Red 

List criteria. Finally, we explored evolutionary contingencies and selective advantages that could 

explain the observed convergence of monocauly in the New Caledonian flora. 

5.2 Materials & methods 

5.2.1 Definition of monocauly 

The monocaulous habit has long been recognized by numerous authors who have adopted 

various definitions (e.g. Warming, 1909; Du Rietz, 1931; Cotton, 1944; D'Arcy, 1973; Hallé et al., 

1978; Hedberg and Hedberg, 1979). In most of cases, these only concerned woody plant since 

cambial activity has a considerable incidence on plant morphology and development. As such, 

monocotyledons represent a highly different monocaulous condition given that aerial branching is 

developmentally constrained by shoot growth and the absence of wood (Tomlinson and 
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FIGURE 5.1 – Illustration of the fourth monocaulous architectural models. Plain circles represent inflorescences and cross 

represent apex death. Illustrated taxa (from left to right and top to down): Acropogon aff. austrocaledonicus (Malvaceae); Virotia 

angustifolia (Proteaceae); Argyroxiphium sandwicense (Asteraceae); Echium pininana (Boraginaceae); Pittosporum paniculatum 

(Pittosporaceae); Meryta balansae (Araliaceae); Phyllanthus francii (Phyllanthaceae); Casearia silvana (Salicaceae). (A), (C) and 

(D) from New Caledonia; (B), from Hawaii and California respectively.
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Zimmermann, 1969; Tomlinson, 1973; Haushahn et al., 2012). In a recent work linking architecture 

and function, Bruy et al. (Chapter 6) proposed the following definition for monocauly: “self-

supporting woody plants whose cardinal functions rely on one single apparent stem”. Following 

this definition, the structural types corresponding to four architectural models conform to 

monocaulous plants: Corner’s, Holttum’s, Chamberlain’s and Cook’s models (Hallé and Oldeman, 

1970; Hallé et al., 1978). Architectural models describe both the overall architecture of a plant and 

the developmental growth process generating it (Hallé and Oldeman, 1970; Hallé et al., 1978).

While they are too restrictive to understand the precise architecture of complex plants (Barthélémy 

and Caraglio, 2007; Chapter 6), they have proved to be well suited for characterizing simple forms 

(Hallé et al., 1978; Chapter 6). The Corner’s and the Holttum’s architectural models correspond to 

monoaxial systems (i.e. a single axis built up by a single apical meristem) with lateral (Figure 5.1-

A) or terminal (Figure 5.1-B) reproductive structures respectively. Chamberlain’s model is 

characterized by a single trunk build up by several successive determinate modules (sympodial 

branching, Figure 5.1-C). Finally, the Cook’s model is based on a monoaxial trunk supporting 

lateral branches that are functionally equivalent to compound leaves (“phyllomorphic branches”, 

which are structure highly specialised in photosynthesis, with determinate growth and an abscission 

point, Corner, 1949; Hallé, 1967; Hallé et al., 1978) (Figure 5.1-D). 

During the life of a plant, a structure that corresponds to one of these well-defined 

architectural models is often modified by the morphogenetic process of reiteration, corresponding 

to a repetition of the architectural units (Oldeman, 1974; Hallé et al., 1978). This process can be 

sequential, i.e. genetically determined, or opportunistic, i.e. driven by exogenous factors such as 

an injury or an increase in available resources (Barthélémy and Caraglio, 2007). Consequently, if 

the process of reiteration is inherent to a plant’s development (i.e. sequential), it is not considered 
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Family References

Acanthaceae McDade et al. (2008)

Anacardiaceae Wannan (2006)

Annonaceae Chatrou et al. (2012)

Apocynaceae Potgieter and Albert (2001); Meve and Liede (2004); Wanntorp et al. (2006); Endress et al. (2007); Livshultz et 

al. (2007); Simões et al. (2007); Liede-Schumann et al. (2012); Surveswaran et al. (2014)

Araliaceae Plunkett et al. (2005); Nicolas and Plunkett (2009)

Bignoniaceae Olmstead et al. (2009)

Celastraceae Simmons et al. (2012a); Simmons et al. (2012b)

Cunoniaceae Bradford and Barnes (2001); Pillon (2008); Pillon, ‘pers. comm.’

Elaeocarpaceae Crayn et al. (2006)

Ericaceae Kron et al. (2002); Quinn et al. (2005); Wagstaff et al. (2010)

Euphorbiaceae Wurdack et al. (2005); Tokuoka (2007); Horn et al. (2012); Costion et al. (2016)

Fabaceae
Bruneau et al. (2001); Wojciechowski (2003); Wojciechowski et al. (2004); Stefanović et al. (2009); Brown et al. 

(2012); Manzanilla and Bruneau (2012); Gagnon et al. (2013); Egan et al. (2016); Jabbour et al. (2018);

Gesneriaceae Woo et al. (2011)

Lamiaceae Bendiksby et al. (2011); Drew and Sytsma (2011)

Lauraceae Chanderbali et al. (2001)

TABLE 5.1 – List of phylogenetic studies used to build the genus supertree. 
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Loganiaceae Gibbons et al. (2012)

Malvaceae Alverson et al. (1999); Whitlock et al. (2001)

Meliaceae Koenen et al. (2015)

Monimiaceae Renner and Chanderbali (2000)

Moraceae Datwyler and Weiblen (2004)

MyodocarpaceaeNicolas and Plunkett (2009)

Myrtaceae Lucas et al. (2007); Snow et al. (2011); Thornhill et al. (2015); Vasconcelos, ‘pers. comm.’

Oleaceae Costion (2011); Guo et al. (2011); Hong-Wa and Besnard (2013)

Paracryphiaceae Tank and Donoghue (2010); Soltis et al. (2011); APG IV (2016)

Phyllanthaceae Wurdack et al. (2004)

Picrodendraceae Tokuoka and Tobe (2006)

Primulaceae Anderberg et al. (2002); CEC Gemmill, Waikato University, New Zealand, unpubl. res.

Proteaceae Sauquet et al. (2008); Reyes et al. (2015)

Rhamnaceae Richardson et al. (2000); Hopkins et al. (2015)

Rhizophoraceae Setoguchi et al. (1999)

Rubiaceae

Achille et al. (2006); Razafimandimbison et al. (2008); Bremer and Eriksson (2009); Rydin et al. (2009); Manns 

and Bremer (2010); Barrabé et al. (2011); Kainulainen et al. (2013); Wikström et al. (2013); Mouly et al. (2014); 

Neupane et al. (2015); Wikström et al. (2015)
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Rutaceae Appelhans et al. (2012); Bayly et al. (2013); Appelhans et al. (2014)

Salicaceae Alford (2006); Tokuoka and Tobe (2006)

Santalaceae Su et al. (2015)

Sapindaceae Buerki et al. (2011); Buerki et al. (2012)

Sapotaceae Swenson and Anderberg (2005); Swenson et al. (2013)

Solanaceae Olmstead et al. (2008)

Thymeleaceae Beaumont et al. (2009)

Urticaceae Wu et al. (2013); Kim et al. (2015)
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as monocaulous; opportunistic reiteration is, however, compatible with the definition of 

monocauly.  

5.2.2 Species list and phylogenetic trees 

A comprehensive list of non-monocot species occurring in New Caledonia was extracted 

from the most recent update taxonomic reference for the island’s flora (Munzinger et al., 2016) 

supplemented by some unpublished species. Species that are strictly herbaceous or climbing (Bruy 

et al. unpublished data) were removed from the list. Taxonomy was pruned to species level 

meaning that infraspecific taxa were not considered. This yielded a final list of 2114 species 

belonging to 316 genera and 90 families. 

Several phylogenetic trees of these woody New Caledonian genera and species were 

computed using supertree methods (Gordon, 1986; Sanderson et al., 1998; Bininda-Emonds, 2004). 

R software (v. 3.4.3) was used through the following packages: ape (Paradis et al., 2004), adephylo

(Jombart and Dray, 2008), ade4 (Dray and Dufour, 2007), apTreeshape (Bortolussi et al., 2018), 

phytools (Revell, 2012), picante (Kembel et al., 2010), MonoPhy (Schwery and O'Meara, 2016) 

and geiger (Luke et al., 2008). The phylogenetic tree of angiosperm families produced by Magallon 

and Sanderson (2001) was initially used, from which all but one of the 90 New Caledonian families 

were extracted. The missing family, Metteniusaceae, was added in position of Garryaceae and 

Eucommiaceae, its two closest relatives (APG IV, 2016), which are not represented in New 

Caledonia. For each family, generic relationships were resolved using published molecular 

phylogenies (Table 5.1) or taxonomic studies for a few genera that have not been studied using 

sequence data (Table 5.2). Cupaniopsis and Arytera have been shown to be polyphyletic (Buerki 

et al., 2012) with its members forming three groups: Cupaniopsis sensu stricto and two unpublished 

genera (Arytera 1 and Cupaniopsis 2, Munzinger et al., unpublished data). Estimates of intergeneric 
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Genus References

Dutailliopsis Hartley (1997)

Dallachya Geer et al. (2010)

Longetia Webster (1994)

Alphandia McPherson and Tirel (1987); Webster (1994)

Myricanthe Webster (1994)

TABLE 5.2 – List of taxonomic studies used to build genus supertree for genera that have 

never been sequenced. 
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and intrageneric branching times were randomised 100 times to produce a hundred species 

phylogenetic trees. Given the lack of a robust phylogeny for most New Caledonian genera, these 

hundred trees were unresolved at the species level, resulting in polytomies. 

5.2.3 Character coding 

An initial list of New Caledonian monocaulous species was built using an extraction from 

the NOU Herbarium database. This was then refined through extensive bibliographic analysis, 

particularly of the series Flore de la Nouvelle-Calédonie (Aubréville et al., 1967-1992; Morat and 

MacKee 1992-2004; Hopkins et al., 2014) and taxonomic publications. From this expanded list, 

the architecture of each taxon was studied in the field to determine whether it fit the definition of 

monocauly (i.e. whether it conforms to the Corner’s, the Holttum’s, the Chamberlain’s and the

Cook’s architectural models). When field observations were impossible, architecture was checked 

by examining photographs (UMR AMAP-IAC database and Endemia website, continuously 

updated). Some monocaulous species were added to the list based on field observation. Of the 2114 

species in the final dataset, only one could not be coded for architecture (Symplocos paniensis).

To test evolutionary correlates of monocauly, both life history and environmental traits 

were scored for each of the 2114 species when possible (Table 5.3). Data on sexual system, fruit 

type, and flower attraction were extracted from the dataset of Schlessman et al. (2014). Data on 

endemism and vegetation were extracted from the Florical database (Munzinger et al., 2016) and 

substrate information was obtained from the dataset of Isnard et al. (2016). For environmental 

traits, a binary approach was used for considering the main drivers of floristic richness and 

disharmony in New Caledonia: (i) ultramafic (covering 1/3 of the territory) versus non-ultramafic 

substrate (Jaffré, 1993; Pillon et al., 2010; Isnard et al., 2016) and rainforest versus non-rainforest 

vegetation (Jaffré, 1993; Poncet et al., 2013; Birnbaum et al., 2015a; Pouteau et al., 2015). Each of 
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Treatment Trait Nb of 

na

States Definition

Correlated 

evolution for 

binary traits 

(Pagel’s 

method) 

within the 

specific 

supertree

Growth 

habit
1

Monocaulous Cardinal functions assumed by a single apparent stem

Branched Cardinal functions assumed by more than one stem

Sexual 

system

2 Dioecious Each individual single sexed

Not dioecious At least some individuals with both sex

Fruit type 0 Fleshy Fruit with fleshy pericarp

Dry Fruit with dry pericarp

Flower 

attraction

0
Plain Petals < 10 mm and white, green, or greenish white

Showy Petals > 10 mm or brightly colored

Leaf type 0 Simple Leaf composed of an unique limb

Compound Leaf composed of several limbs separated by portion of rachis

Position of 

sexuality

21 Cauliflorous Flowers could appear under the older assimilative leaf

Not cauliflorous Flowers appear only apically or on the leafy stem portion

TABLE 5.3 – List of characters scored on the 2114 New Caledonian woody species and associated analyses.
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Growth 

rhythms
3

Marked Growth rhythm marked with long portion of cataphylls-boring stem 

alternating with portion of assimilative leaves-boring stem

Not marked
Growth rhythm not marked by an important portion of cataphylls-boring 

stem

Vegetation 10 Rainforest Species only found in rainforest

Not rainforest Species not only found in rainforest

Substrate 40 Ultramafic Species only found on ultramafic substrate

Not ultramafic Species not only found on ultramafic substrate

Permutation 

test

Species 

endemism

0
Endemic Species only found in New Caledonia

Autochthonous Species native of New Caledonia but occurring in other countries

IUCN status 1390

Very threatened
Species evaluated as Extinct, Critically Endangered or Endangered 

following IUCN red list criteria

Not very 

threatened

Species evaluated as Least Concerned, Near Threatened or Vulnerable 

following IUCN redlist criteria

Data deficient
Species for which data has not been sufficient to permit an evaluation 

following IUCN red list criteria

Bushfire Species for which fire has been considered as threat by IUCN
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Threat 1390

Introduced 

herbivores

Species for which dear, pig or rats have been considered as threat by IUCN

Mining activity Species for which mining activity have been considered as threat by IUCN

Comparative 

analysis 

within the 

genera 

supertree

Genera 

richness

0 Integer Total number of species in the considered genus

Genera 

endemism
0 Binary All species of the considered genus are endemic to New Caledonia
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these datasets was thoroughly reviewed based on our own observations and herbarium material 

(NOU). IUCN conservation status and threats for each evaluated species (728 in total) were 

extracted from the IUCN Red List website (IUCN, 2017) and from the local Red List Authority 

dataset (RLA-NC Flora, unpublished data, on 24 April 2018). Finally, leaf type, position of 

reproductive structures and growth rhythm were compiled from field observations, herbarium 

material (NOU), and the literature. Missing values for other characters were also obtained when 

possible using this method.

5.2.4 Data analysis 

Richness in monocaulous species – To assess the relative richness of monocauly at the 

level of genus, we followed the method proposed by Boucher et al. (2016). Considering the 

proportion of monocaulous species in the whole woody flora (9%), null models were built for each 

genus containing monocaulous species with random binomial distributions. For each model (i.e. 

each genus), the number of observation equalled 1000, the number of trials equalled the total 

number of species in the genus, and the probability of success equalled 0.09. The observed number 

of monocaulous species in a given genus was then compared to the null distribution to estimate 

whether it is richer or poorer in monocaulous species than expected by chance, with a confidence 

limit of 5 %. 

Origin, convergence and diversification – The minimum number of independent origins 

of monocauly in the New Caledonian flora was estimated using the 100 genus-level supertrees and 

the phytools package for R (Revell, 2012). Each genus was scored as 0 (no monocaulous species) 

or 1 (at least one monocaulous species) and ancestor character estimations on this variable were 

simulated with an Mk model in which transition rates are different (“SYM”). For each 100 genus 

supertree, 100 simulations were performed and the mean and range of number of the independent 
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origins of monocauly (from state 0 to state 1) were counted. The same method was used 

independently for each monocaulous architectural model. 

The degree of convergence of monocauly in the New Caledonian flora was estimated with 

the Phylogenetic D Statistic (Fritz and Purvis, 2010), a measure of phylogenetic signal for binary 

traits. Using the Caper R package (Orme et al., 2013) we tested the departure of the observed D 

statistic from the distribution (1000 permutation) of expected D statistic under (i) a phylogenetic 

randomness model (no phylogenetic signal, D ≈ 1) and (ii) a Brownian threshold model (strong 

phylogenetic signal, D ≈ 0). Each test was performed on the 100 species supertrees. The 

phylogenetic signal of each monocaulous architectural models was also calculated using the same 

method.

To investigate whether the appearance of monocauly could have promoted species 

diversification, the relation between presence of monocaulous species in a genus and its species 

richness was tested using phylogenetic regression for binary dependent variables (Ives and 

Garland, 2014). The model was fitted using the 100 genus supertrees with the ape R package 

(Paradis et al., 2004). The same method was used to test the relation between monocaulous genera 

and endemic genera (following Munzinger et al., 2016), i.e. whether monocauly is predominant in 

endemic genera. 

Correlated evolution of traits with monocauly – At the specific level, correlated evolution 

between monocauly and life history or environmental trait attributes (Table 5.3) was tested using 

with the method of Pagel (1994) as implemented in the phytools R package (Revell, 2012). This 

method fits the Mk model for the dependent and independent evolution of two binary characters 

and test for significance of correlated evolution, comparing the log-likelihood of the two models. 

In the case of significant correlated evolution, transition rates from one character state to another 
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FIGURE 5.2 – Phylogenetic supertree of New Caledonian woody families. Red branches 

represent families containing monocaulous species (number of monocaulous species in 

brackets).
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were compared for the two traits in order to investigate which character was likely to appear first 

(monocauly or the other trait character).

Species endemism, threats and conservation status – The association between monocauly 

and endemism, IUCN conservation status and principal threats was tested through permutation 

tests (Table 5.3). We focused on data deficient and highly threatened species (EX, CR or EN 

following the IUCN criteria) to test whether monocaulous species were less known or more 

threatened than expected by chance. Considered threats were bushfires, introduced herbivores 

(deer, pigs and rats) and mining activities, the three major threats to New Caledonian flora (IUCN, 

2017, RLA-NC Flora, unpublished data). A phylogenetic framework was not considered for these 

analysis because such traits are unlikely to be inherited. For each trait, the attribute (e.g. 

“threatened”) was permuted 10000 times and for each permutation, the proportion of monocaulous 

species presenting the attribute was calculated to build the null distribution. The observed 

proportion of monocaulous species presenting the attribute was then compared to the null 

distribution to test the departure from the null model (no association between monocauly and the 

considered attribute).

5.3 Results 

5.3.1 Taxonomic and phylogenetic distribution of monocaulous plants  

Of the 2114 woody self-supporting species present in New Caledonia, a total of 182 (8.6 

%) were monocaulous, belonging to 41 genera and 30 families (Appendix 1). Monocaulous plants 

were widely distributed in the phylogeny and many families (12 of the 30) contained less than 3 

monocaulous species. Some phylogenetic clustering was nevertheless observed, as much of the 

diversity occurred in a few clades (Figure 5.2). The orders Malpighiales and Apiales contained, 
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FIGURE 5.3 – Number of monocaulous species for the 41 monocaulous genera and per 

architectural models. Red forms indicate the observed number of monocaulous species in 

each genera and grey boxplots represent the expected distribution of number of 

monocaulous species following null model. Asterisks show the significance of over- or under-

representation of monocaulous species in each genera (*** P < 0.001; ** P < 0.01; * P < 0.05). 

e, endemic genera.
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respectively, about 34% and 16% of all monocaulous species, followed by Malvales, Sapindales 

and Ericales, each accounting for ca. 9% of monocaulous species. By contrast, the basally branched 

lineages of the phylogeny (e.g. Magnoliids) contained very few monocaulous species (ca. 1 %). At 

shallower phylogenetic level, monocauly was clustered in several families and genera, and was 

achieved through various architectural models (Figure 5.2, 5.3). The richest family was by far 

Phyllanthaceae, with 43 species of Phyllanthus expressing the Cook’s architectural model, 

followed by Araliaceae, with 3 genera and 20 species (Chamberlain’s model) and Malvaceae, with 

16 species restricted to the endemic genus Acropogon (Corner’s model). Most families contained 

only one genus with monocaulous species, with the exception of Euphorbiaceae, Rubiaceae, 

Sapindaceae, Proteaceae, Salicaceae, which contained two each, and Araliaceae, Primulaceae and 

Rutaceae, which contained three each. The six richest genera, Phyllanthus, Acropogon,

Bocquilllonia, Meryta, Atractocarpus and Oxera, together contained 52% of all monocaulous 

species, and had significantly more monocauls than expected under the null model (Figure 5.3). 

More generally, many genera (19 out of 41) had significantly more monocaulous species than 

expected under null model, despite many of them (49%) containing only 1 or 2 monocaulous 

species (Figure 5.3). Only Myrsine and Syzygium had significantly fewer monocaulous species than 

expected under a null model, even though the latter is the third richest genus in the New Caledonian 

flora (Munzinger et al., 2016). Phyllanthus, the most species-rich genus in New Caledonia, had 

significantly more species than expected under the null model, while Pycnandra, the fourth richest 

genus and largest endemic genus, had the same number of monocaulous species as expected under 

the null model. In general, only a few genera contained a high proportion of monocaulous species. 

Those comprising more than ten species, of which at least half were monocaulous, were 

Acropogon, Bocquillonia, Meryta and Dysoxylum (Figure 5.3). 
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The most frequent architectural model observed among monocaulous species was the 

Corner’s model (100 species in 30 genus, Figure 5.3) followed by the Cook’s model (47 species in 

only 3 genera) and the Chamberlain’s model (35 species in 10 genera). The Holttum’s model does 

not appear to be represented in the woody flora of New Caledonia. Only Pittosporum and Beauprea

expressed monocauly by two different architectural models (Corner’s and Chamberlain’s models) 

(Figure 5.3). 

5.3.2 Genus diversity and endemism 

The presence of monocaulous species in a genus was significantly and positively associated 

with species richness (phylogenetic regression, pvalue < 0.001) implying that species-rich genera 

were more likely to have evolved monocauly or that the evolution of monocauly favored genera 

diversification. The proportion of endemic species in the monocaulous flora (98.9%) was 

significantly higher than expected by chance (permutation test, pvalue < 0.001). Only two 

monocaulous species (ca. 1%) were not New Caledonian endemics (Delarbrea paradoxa and 

Oxera baladica) compared to 9 % for the branched woody flora. By contrast, endemism at the 

generic level was low (21.9% vs. 22.9% for the branched flora) and unrelated to the occurrence of 

monocauly (phylogenetic regression, pvalue = 0.75 ± 0.01). Only 9 of the 72 endemic genera in

our list (sensu Munzinger et al., 2016) contained monocauls (Acropogon, Beauprea, Bocquillonia,

Dutaillyea, Mangenotiella, Phelline, Pycnandra, Salaciopsis, and Virotia, Figure 5.3).

5.3.3 Evolution of monocauly and phylogenetic signals 

Monocauly appeared independently on average 38.3 times across the genus trees, the 

number of shifts ranging from 31 to 49 over the 10,000 simulations. Reversion toward a branched 

habit occurred much less frequently, 7.9 times on average (ranging from 0 to 25 events). The 
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FIGURE 5.4 – Phylogenetic signals for monocauly and the three architectural models across 

the phylogeny of New Caledonian woody species. Blue histogram (left) represents the 

expected distribution of D under a Brownian threshold model (strong phylogenetic signal, 

1000 permutation in 100 trees). Green histogram (right) represents the expected 

distribution of D under a phylogenetic randomness model (low phylogenetic signal, 1000 

permutation in 100 trees). Red line represents the observed phylogenetic D statistic.
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monocaulous architectural model with the highest minimum number of shift was the Corner’s 

model (ranging from 24 to 36, with a mean of 28.1), followed by the Chamberlain’s model (6 to 

12 times, with a mean of 7.1) and finally the Cook’s architectural model (2 to 5 times, with a mean 

of 3.0). 

Monocauly showed a low phylogenetic signal in the woody flora of New Caledonia. The 

Phylogenetic D Statistic was 0.71 ± 0.001, which is close from a random distribution (D ≈ 1), 

although significantly different from both 0 and 1 (Figure 5.4). The phylogenetic signal of each 

architectural model was also significantly different from 0 and 1. The Cook’s model appeared to 

be more conserved across the phylogeny than Chamberlain’s model and, a fortiori, Corner’s model 

(Figure 5.4).

5.3.4 Contingent and correlated evolution 

The evolution of monocauly was significantly correlated with both ultramafic substrate and 

rainforest (Pagel’s model for correlated evolution, pvalue 0.029 and < 0.001 respectively, Table 

5.4). Transition rates indicated a higher frequency of shift from branched toward monocauly on 

ultramafic substrate and in rainforest, meaning that monocauly evolved from branched species 

preferentially on ultramafics and in rainforest. The environmental preference was strongly marked 

for rainforest, where 65% of monocaulous species are restricted (Figure 5.5-B) whereas only 11%

have never been observed in this habitat (not shown). The proportion of species occurring on 

ultramafic substrate was, however, similar between branched and monocaulous species (44% vs. 

47% respectively). 

The evolution of both cauliflory and marked rhythmic growth was strongly correlated with 

monocauly (Pagel’s model for correlated evolution, pvalue < 0.001, Table 5.4). This result was 

corroborated by the proportions of cauliflorous species and those exhibiting rhythmic growth,
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Growth 
on UM

Growth in 
rainforest

Cauliflory
Marked 
rhythmic 
growth

Dioecy
Flower 
plain

Fruit 
fleshy

Compound 
leaf

p.values
0.029 ± 
0.002

<< 0.001 << 0.001 << 0.001
0.15 ± 
0.01

0.916 ± 
0.023

0.26
±0.02

0.131 ± 0.298

Transition 
rates

A+:B-
→ 

A+:B+  

0.11 ± 
0.002

0.10 ± 
0.001

0.23 ± 
0.001

0.36 ± 
0.006

0.15 ± 
0.001

0.11 ± 
0.001

0.14 ± 
0.002

0.30 ± 0.030

A-:B+ 
→ 

A+:B+ 

1.62 ± 
0.013

1.95 ± 
0.006

0.01 ± 
0.001

0.04 ± 
0.044

0.00 ± 
0.00

0.06 ± 
0.003

0.01 ± 
0.02

0.10 ± 0.058

TABLE 5.4 – Results of correlated evolution for binary traits (Pagel’s method) between monocauly and other trait atributes. 

P.values in bold indicate trait atributes for which significant correlated evolution is detected. Transition rates in bold indicate 

the higher transition rates when correlated evolution is significant (A+: Monocaulous, A-: Branched, B+: Presence of the second 

trait attribute, B-: Absence of the second trait attribute). 
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FIGURE 5.5 – Proportion of monocaulous and branched woody species for eight life history 

and environmental traits.
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which were about twice as frequent in the monocaulous flora compared to the branched flora 

(Figure 5.5-C, D). In both case, transition rates were significantly higher for the evolution of 

cauliflory and rhythmic growth within monocaulous species. Compared to branched species, 

monocauls tended to have a slightly higher proportion of species with a dioecious sexual system 

(29% vs. 26%, Figure 5.5-E), plain flower (62% vs. 55%, Figure 5.5-F), non-fleshy fruits (55% vs.

41%, Figure 5.5-G) and compound leaves (20% vs. 15%, Figure 5.5-H), but none of these trait 

attributes showed significant correlated evolution with monocauly (Table 5.4). 

5.3.5 IUCN risk of extinction status and threats 

To date, 728 species (34%) of the woody non-monocot flora of New Caledonia have been 

assessed according to the IUCN Red List conservation categories and criteria (IUCN, 2017, RLA-

NC Flora, unpublished data). This includes 63 monocaulous species (35% of the monocaulous 

flora), of which 51% were threatened (CR, EN, VU), 33% unthreatened (LC, NT), and 16%

insufficiently known to be evaluated (“Data Deficient”, Figure 5.6). The proportion of CR and EN 

species was higher for monocaulous species than branched ones (41% and 32%, respectively), the 

difference being marginally significant (permutation test, pvalue = 0.08). The number of 

monocaulous species in the “Data Deficient” class was also higher than expected by chance 

(permutation test, pvalue = 0.034). Bushfire and mining activities were significant threats for the 

monocaulous flora, affecting respectively 51% and 43% of species, but they were not more so for 

monocaulous than for branched species (permutation test, pvalue = 0.19 and 0.82 respectively). By 

contrast, introduced herbivores, affecting 33% of monocaulous species, were more threatening for 

monocaulous species than expected by chance (permutation test, pvalue = 0.008). 
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FIGURE 5.6 – IUCN extinction risk of evaluated monocaulous species (n = 63). CR = “Critically 

endangered”; EN = “Endangered”; VU = “Vulnerable”; NT = “Near Threatened”; LC = “Least 

Concerned”; DD = “Data Deficient”.
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5.4 Discussion 

5.4.1 A remarkable evolutionary convergence  

Our study identified 182 monocaulous species representing 9% of the self-supporting 

woody flora and 5.5% of the New Caledonian flora as a whole. This proportion would have been 

even greater if monocotyledons, not considered in this study, had been included. The monocaulous 

habit is indeed frequent in monocotyledons (e.g. Arecaceae, Pandanaceae, Asparagaceae, Hallé et 

al., 1978), but represents a very different condition as aerial branching is developmentally 

constrained by shoot growth and the absence of wood in monocotyledons (Tomlinson and 

Zimmermann, 1969; Tomlinson, 1973; Haushahn et al., 2012). Monocaulous species belonged to 

41 genera (13% of woody genus) and 30 families (33% of woody families), and was 

phylogenetically scattered, as illustrated by the low phylogenetic signal and multiple independent 

origins (at least 31, and as many as 49) of this growth habit. This result, based on a genus-level 

phylogeny, is conservative as monocauly could have evolved repeatedly within many genera. The 

only two studies we are aware of, involving two monocaul-rich genera (Atractocarpus and Oxera),

indicated multiple independent origins of the monocaulous habit in New Caledonia (Barrabé et al., 

2018; Chapter 6). Additionally, in two genera (Pittosporum and Beauprea), monocauly is 

expressed by different architectural models (Corner’s and Chamberlain’s models), also suggesting 

independent evolution of this habit. These observations are confirmed by molecular phylogenies 

in which monocaulous architectural models are seen in different clades (He et al., 2016, CEC 

Gemmill, Waikato University, New Zealand, unpubl. res.). Current knowledge on the phylogenetic 

relationships in the 41 monocaulous genera in New Caledonia (Table 5.1) indicates that only 

Meryta and Plerandra, two sister genera (Plunkett et al., 2005) with several monocaulous species, 

could potentially exemplify a common origin of monocauly. 
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The recurrent convergent evolution of this distinctive growth habit in New Caledonia is 

remarkable, and similar in its number of independent origins to most famous plant syndromes such 

as secondary woodiness in the Canary Island (38 origins, Lens et al., 2013). In terms of the 

proportion of the flora in which it is seen, monocauly in New Caledonia is similar to divaricating 

plants in New Zealand (10% of the woody flora, Greenwood and Atkinson, 1977).

5.4.2 Diversity and endemism of monocaulous lineages 

We found a significant positive relationship between the presence of monocauly and the 

total species richness in the genus, implying that monocauly is more likely to evolve in species-

rich genera or that the evolution of monocauly promoted diversification, or both. This positive 

relationship most probably reflects the fact that six of the ten richest genera in New Caledonia 

contain monocaulous species. Among these is the archipelago’s most speciose genus (Phyllanthus:

116 species, Munzinger et al., 2016), which also contains the highest number of monocaulous 

species. With the exception of some genera containing a large proportion of monocaulous species 

(e.g. Acropogon, Bocquillonia and Meryta), most (66%) had less than four monocaulous species,

which account for a small proportion of their total richness. Globally, the diversity of monocaulous 

species appeared independent of the number of species within a genus or family (e.g. Syzygium, 71 

species and only 2 monocauls), and cannot be considered as a key innovation leading to a large 

radiation. The evolution of monocauly might instead favour the diversification of ecological roles 

within lineages, especially related to the occupation of the forest understory. A previous study 

supported this idea and indicated that the evolution of monocauly on its own did not increase the 

diversification rates, but might contributed to niche partitioning in the understory of rainforest 

habitats (Atractocarpus, Chapter 6). 

The high rate of endemism in the monocaulous flora (99%), much higher than expected by 
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chance, suggests either an in situ evolution of monocauly in New Caledonia or extinction of 

monocaulous species in adjacent regions. Interestingly, very few close relatives of New Caledonian 

monocaulous genera occurring elsewhere (when known, see Table 5.1) contain monocaulous 

species (the exceptions being Atractocarpus, Casearia, Dysoxylum, Meryta, Phyllanthus,

Plerandra, and Tapeinosperma). Conversely, we found no significant relationship between the 

level of endemism in a genera and presence of monocauls. Only 9 of the 62 to 91 endemic genera 

(sensu Pillon et al., 2017) contains monocauls, two of which, Dutaillyea and Mangenotiella should 

not be recognized (Appelhans et al., 2014; Gemmill, unpublished data), and Bocquillonia, Virotia

and Salaciopsis are doubtful (reviewed in Pillon et al., 2017). The fact that most monocauls are 

endemic while they belong to non-endemic genera suggests a rather recent in situ evolution of 

monocauly in New Caledonia, as found for two genera: Oxera, with two evolution at ca. 2.4 and 

1.3-0 Myr (Barrabé et al., 2018) and Atractocarpus, with at least two apparition at ca. 1.4 and 0.9-

0.6 Myr (Chapter 6). 

5.4.3 Life history correlates of monocauly 

Despite a moderate phylogenetical signal, we found that most monocaulous species belong 

to few orders (e.g. Apiales, Malphigiales, Sapindales), which are major components of the New 

Caledonian flora (Munzinger et al., 2016). By contrast, monocauly is infrequent in basally 

branching Angiosperms and Myrtales. This pattern, supported by a D statistic significantly 

different from random distribution, suggests that there may be underlying morphological or 

physiological prerequisites (Boucher et al., 2016; Saslis-Lagoudakis et al., 2016). However, none 

of the morphological characters tested were found to be significantly involved in the evolution of 

monocauly. Some morphological characters (dioecy, plain flowers, fleshy fruits) were well 

represented in the monocaulous flora but were not correlated with the evolution of monocauly. As 
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in other island floras, that of New Caledonia has a high incidence of dioecy (21% of the native 

angiosperm flora, Schlessman et al., 2014), suggested to have evolved on islands as a response to 

inbreeding depression in founding colonies (Carlquist, 1966; Böhle et al., 1996). In New Caledonia, 

plain flowers and fleshy fruits are considered as major ecological correlates of dioecy (Schlessman 

et al., 2014), and these traits are particularly pregnant in rainforest understory (Givnish, 1982) 

where most of monocaulous species occur. As such, the presence of these characters might rather 

considered as an insular syndrome that is well represented in the monocaulous flora. Similar results 

were found for compound leaves, which were not correlated with the evolution of monocauly but 

rather with colonization of open/arid habitats (Givnish, 1978). By contrast, the evolution of 

monocauly appears to have triggered the evolution of cauliflory and marked rhythmic growth. 

Cauliflory – Association between monocauly and cauliflory has long been noted (Hallé and 

Mabberley, 1976; Hallé et al., 1978; Barthélémy, 1988; Schmid, 1990) but we report for the first 

time a statistically supported correlated evolution. This result is largely influenced by species 

conforming to Corner’s architectural model, which accounts for 70% of cauliflorous species (vs. 

11% and 8% for the Chamberlain’s and the Cook’s models, respectively). Transitions rates showed 

that cauliflory appeared more frequently after the evolution of a monocaulous habit. Being single-

stemmed, monocaulous plants have fewer leafy nodes than branched plants (White, 1983a; Ackerly 

and Donoghue, 1998; Chapter 6), constraining sexual reproduction to large axillary inflorescences 

(e.g. Tapeinosperma, Atractocarpus) or to areas below the leafy parts of the trunk (cauliflory). 

Cauliflory is often expressed by short shoots or secondary bud complexes (Hallé et al., 1978),

which were observed in 22 of the 28 genera that are both monocaulous and cauliflorous (not 

shown), implying sites where flowers are borne in multiple years. Moreover, monocauls are known 

to have larger fruits than branched relatives (Corner, 1949; 1953-1954; Chapter 6). Cauliflory, 
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FIGURE 5.7 – Illustration of marked rhythmic growth in Tapeinosperma gracile 

(Primulaceae)
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which involves the placement of fruits on woody, perennial stems rather than young, fleshy ones, 

seems more suited for supporting heavy and long-maturing fruits. These particular flowering and 

fruiting patterns in monocaulous plants may also be related to pollination and dispersion agents, 

and are probably also linked to growth in the intermediate strata of the forest understory (Yumoto, 

1987; Appanah, 1991; Warren et al., 1997; Zjhra, 2008).

Marked rhythmic growth – Correlated evolution between monocauly and marked rhythmic 

growth must be interpreted in the context of meristem protection. Transitions rates indicated that 

this character also appeared more frequently after the evolution of monocaulous habit. Except when 

reiteration takes place, a process that results in the production of new stems on some older plants 

(Oldeman, 1974; Hallé et al., 1978; Barthélémy and Caraglio, 2007), vertical exploration of 

monocaulous species is almost always accomplished by a single meristem. As such, traumatic apex 

death is particularly critical for unbranched plants. Several modes of meristem protection have been 

described, including the protection of apices by robust rosette of leaves (Potter, 1891; Groom, 

1892). Hallé et al. (1978) noted that this mechanism concerned numerous monocaulous species 

and was often associated with rhythmic growth. However, while this mode of protection is efficient 

during periods of little or no growth, the meristem and young organs are dangerously exposed 

during phases of growth. It would therefore be advantageous for this “unprotected” phase to be 

short as possible, involving the rapid outgrowth of a preformed growth-unit comprising a long 

section of scale-like leaves and a distal cluster of large assimilative leaves. This marked rhythmic 

growth, common in monocaulous species, might take place in just a few days while the resting 

phase could last more than a year (Figure 5.7). 

5.4.4 Evolution of plant architecture 

Correlated evolution analysis failed to identify preadaptations facilitating the evolution of 

99



monocauly. A likely but uninvestigated preadaptation is the inherent architectural background. 

Monocauly in New Caledonia is expressed by three different architectural models, each presenting 

a low phylogenetic signal and numerous independent origins. Chomicki et al. (2017) showed that 

some transitions from one model to another are more frequent than others. In the flora of New 

Caledonia, at least 16 of the 30 genera exhibiting Corner’s model also contain species with the 

Rauh’s architectural model, and 7 out of 10 genera expressing Chamberlain’s model contain 

species that conform to the Leeuwenberg’s model. A detailed understanding of intra-generic 

relationships is needed to formulate any rigorous conclusions about the evolution from one model

to another but these iterative associations suggest that there are some evolutionary links between 

the two pairs of models. The relation between the Chamberlain’s and the Leeuwenberg’s models 

is obvious given their morphological similarities (unichasial sympodium vs. plurichasial 

sympodium, respectively). Incidentally, the transition from the Chamberlain’s toward the

Leeuwenberg’s model frequently occurs within an individual during ontogeny (Veillon, 1976; 

Hallé et al., 1978). The Rauh’s model is one of the least differentiated branched models in that 

branches are morphologically identical to the trunk (Hallé et al., 1978). The Rauh’s model could 

be seen as a sequential repetition of Corner’s model or Corner’s model as an expression of the 

Rauh’s model in which branches were lost. In the first case, a probable evolutionary mechanism is 

the integration of an opportunistic reiteration process in the developmental sequence of the plant 

(see Millan, 2016). In the second case, a probable mechanism is the structural reduction through 

heterochronic developmental pathway (D'Arcy, 1973; Barthélémy, 1988; Chapter 6). Too few 

genera expressed the Cook’s model and data on the architecture of related branched species are too 

lacunar to suggest whether one transition is more likely. Nevertheless, we noted that some species 

of Phyllanthus and Casearia expressed the Roux’s model, which is morphologically close to the 

monocaulous Cook’s model also seen in both genera (Hallé et al., 1978; Hallé, 2004). 
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Such associations between woody architectural models in monocaulous genera suggest a 

preferential evolution of this habit from woody ancestors, as shown in Atractocarpus (Chapter 6) 

and Oxera (Barrabé et al., 2018). However, the evolution of monocauly from herbaceous ancestors 

is common globally (Chomicki et al., 2017) and particularly on islands (Carlquist, 1969; Böhle et 

al., 1996; Lens et al., 2013). New Caledonia was noted to be particularly poor in secondary woody 

species (Carlquist, 1974; Pillon et al., 2017), known genus only in Scaevola, whose wood anatomy 

(Carlquist, 1969) and phylogeography (Howarth et al., 2003) indicate an evolution from 

herbaceous Australian ancestors toward woody Pacific-islands species. This genus includes one 

monocaulous species in New Caledonia (S. beckii) that is interestingly closely related with 

herbaceous to sub-woody Australian species (Howarth et al., 2003). Other potentially secondary 

woody species that are missing in the Catalogue of Woody Herbs on Islands (Carlquist, 1974) are 

found in Oxalis, represented by six species in New Caledonia (Munzinger et al., 2016) three of 

which are woody and one monocaulous (O. balansae). Given that the large majority of Oxalis

worldwide are herbaceous (Cocucci, 2004), these species could highlight a new case of secondary 

woodiness, although anatomical and phylogenetic data will be needed to confirm this hypothesis 

(see Lens et al., 2013). As such, evolution of monocauly from herbaceous ancestors has probably 

occurred in both of these potential secondary woody New Caledonian genera, and the scarcity of 

this evolutionary pathway there seems further due to the general lack of secondary woodiness in 

the archipelago. This could also explain the surprising absence of plants exhibiting the Holttum’s 

architectural model, which has principally been described from islands (Hallé et al., 1978). Most 

of the woody species conforming to this model belong to largely herbaceous families (e.g. 

Boraginaceae, Asteraceae, Geraniaceae, Gesneriaceae or Campanulaceae) and are therefore 

considered as secondarily woody taxa that have retained the ancestral Holttum’s architectural 

model, the latter being frequent in herbaceous plants (Jeannoda-Robinson, 1977; Chomicki et al., 
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2018). 

5.4.5 A threatened and poorly known growth habit 

More than half (51%) of evaluated monocaulous species were threatened according to the 

IUCN Red List criteria. This proportion is probably to be moderated given that only 34% of the 

New Caledonian flora and 35% of monocaulous species have been evaluated to date, and the 

proportion of highly threatened species (EN and CR following IUCN conservation status) is higher 

among monocaulous species than in the branched taxa (41% vs. 32% respectively). The higher 

threat among monocauls is not due to bushfire or mining activities (despite the fact that they 

concern 55% and 43% of evaluated monocaulous species, respectively), but rather introduced 

herbivores. Threat from herbivores is indeed higher than expected by chance in the monocaulous 

flora, probably because the single meristem and few large leaves of these plants make browsing 

particularly damaging (see Costes et al., 2013; Charles-Dominique et al., 2017).

Another important factor influencing the risk of extinction of monocaulous species is their 

preference for the rainforest understory and ultramafic substrate. Habitat conservation is a 

fundamental element of species protection (Rohlf, 1991; Shilling, 1997) but also for maintaining 

genetic diversity and evolutionary process (Lawler et al., 2015). However, New Caledonian 

rainforests, and particularly the relictual and fragmented rainforests on ultramafic substrate, are 

particularly threatened (Jaffré, 2005). Mining activities on the archipelago increasingly impact the 

native vegetation on ultramafic substrate (Jaffré, 2005; Wulff et al., 2013; Ibanez et al., 2017a). 

Rainforests have been drastically reduced (Sloan et al., 2014; Birnbaum et al., 2015b) and are 

critically fragmented (Jaffré et al., 1998; Ibanez et al., 2017a). This habitat loss is of particular 

concern for rainforest species, of which monocaulous taxa are an important functional group. 

Finally, the significantly higher proportion of monocaulous species assessed as data 
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deficient (DD, 16%) illustrates the lack of knowledge of this growth habit. The rarity of 

monocaulous species worldwide and their peculiar morphology (large leaves, stout stems and a

single growing apex) make monocauls particularly relevant for studying ecological and 

evolutionary processes (see Chapter 6) but constraint their representation in herbarium collections 

leading to taxonomic shortfalls (see Chapter 4). 

5.4.6 Environmental contingency and ecological opportunities in New Caledonia 

Whether a high incidence of monocauly is unique to New Caledonia is difficult to assess 

as comparative data are scarce. In a meta-analysis including more than 20,000 vascular plant 

species, Chomicki et al. (2017) found 118 origins of monocauly while we found a mean of 38 (and 

up to 49 for the New Caledonian flora alone (and this just using a genus-level phylogeny). Current 

knowledge on plant architecture would suggest that ca. 2% of species are unbranched globally 

(Chomicki et al., 2017), i.e. less than one third of what occurs in the New Caledonian flora. The 

question of the evolution of monocauly, however, remains puzzling as it depends on the definition 

of this habit. For instance, Chomicki et al. (2017) did not consider the Cook’s architectural model

in their study but included all monocotyledonous species. While quantitative data for other floras 

are not available, the strong convergence toward a growth habit that is considered to be rare both 

globally (Hallé et al., 1978) and regionally (Schmid, 1979, 1990) suggests that monocauly is parts 

of the New Caledonia’s functional disharmony. Schmid (1981) even considered that the diversity 

and abundance of this habit are one of the most striking characteristic of New Caledonian 

rainforests. This is supported by the exceptional rate of endemism in the monocaulous flora (99%)

which is by far higher than expected by chance. The repeated evolution of monocauly in New 

Caledonia among distantly related lineages suggests environmental contingencies peculiar to the 

archipelago. 
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Rainforest density – We found a significant pattern of contingent evolution between 

monocauly and occurrence in rainforest areas, indicating a preferential evolution of monocauly in 

this habitat. Sixty-five percent of monocaulous species grow exclusively in rainforest and only 

11% have never been observed in this vegetation. Consequently, monocaulous species account for 

a substantial part of rainforest diversity (12.3% of woody species) and much more if we only 

consider understory species. An ecological preference for the understory of rainforests among taxa 

whose architecture corresponds to a monocaulous habit has yet been suggested (Corner, 1949; 

D'Arcy, 1973; Hallé, 1974; Hallé et al., 1978; Schmid, 1981). Monocauls support large, mostly 

simple leaves (Corner, 1949; Chapter 6). This could be an adaptation to low-resource environments 

where low-cost large leaves could be advantageous compared to more costly branches in buffered 

conditions (Givnish and Vermeij, 1976; Givnish, 1979). This is particularly true in dense, shady 

rainforest understory where lateral branches are mechanically constrained by dense neighbouring 

vegetation. New Caledonian rainforests appear to have higher stem densities than other Southwest 

Pacific rainforests (Jaffré and Veillon, 1990; Jaffré and Veillon, 1995; Ibanez et al., 2014; Ibanez 

et al., 2017b), probably related to the frequency and intensity of tropical cyclones (Ibanez et al., 

2018a). Competition for space and light in this highly congested environment might have favoured 

the unidirectional space exploration and large leaves of monocaulous species. Moreover, 

unbranched or sparsely-branched species are less affected by debris fall or the domino effect of 

falling trees during cyclones. The fact that palms and tree ferns are also particularly abundant in 

New Caledonian rainforests (Ibanez et al., 2017b) is consistent with these hypotheses, both groups 

being dominated by unbranched architectures. We believe that these forest structural and dynamic 

features have been important driver of the convergence toward monocauly in New Caledonia. 

Rainforest history – Large simple leaves, inherent to the monocaulous habit, have cheaper 
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construction costs than twigs (see above) but are disadvantageous in arid and cold conditions due 

to their thicker boundary layer, which slows thermoregulation (Givnish, 1979; Wright et al., 2017).

Accordingly, we found that 79% of monocaulous species occurring in dry vegetation had 

compound leaves or functionally similar phyllomorphic branches (not shown). Large, drought-

sensitive leaves have probably constrained the distribution of monocauly to humid and shady 

environments, which provide buffered thermal and hydric condition (Givnish, 1979, 1987, 1988).

New Caledonia has been suggested to have several rainforest refuges for some drought sensitive 

groups such as Palms (Pintaud et al., 2001) or basal Angiosperms (Poncet et al., 2013; Pouteau et 

al., 2015; Tournebize et al., 2017) during Pleistocene climatic fluctuations (Bowler et al., 1976; 

Hope and Pask, 1998; Stevenson and Hope, 2005). These paleoclimatic events caused important 

drought-related species extinctions in other Southwest Pacific rainforests, particularly in Australia 

(Byrne et al., 2011), which is considered as the principal source area for New Caledonian flora 

(Morat, 1993; Swenson et al., 2014; Thomas et al., 2014). As such, besides presenting 

environmental contingencies that promoted the evolution of monocauly, New Caledonian 

rainforest could have acted as refugia for such drought sensitive plants that disappeared from 

adjacent regions. After the last glacial episode, ecological opportunities provided by new vacant 

habitat, are likely to have promoted the diversification of some monocaulous lineages already 

present and triggered the evolution of monocauly in others through niche partitioning (e.g. 

Atractocarpus, Chapter 6).

Ultramafic substrates – Monocauly appears to have evolved preferentially on ultramafic 

substrate, an unsuspected result given the neglegible difference between the proportion of branched 

and monocaulous species occurring on this substrate (44% and 47%, respectively). These 

ultramafic rocks are rare globally but cover ca. one third of New Caledonia (Paris, 1981; Isnard et 
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al., 2016) and are thought to have initially covered all of the main island (Pelletier, 2006). Soils 

derived from ultramafic rocks are diverse but share several characteristics, including their low 

nutrient content and high concentrations of potentially bioavailable toxic trace elements, implying 

physiological tolerance among plants that grow on them (Jaffré, 1976, 1980; Isnard et al., 2016). 

As such, ultramafic substrates appear to be largely responsible for the floristic disharmony between 

the New Caledonian archipelago and adjacent regions (Jaffré, 1993; Pillon et al., 2010; Isnard et 

al., 2016). Veillon (1976) suggested that these constraining edaphic conditions could be responsible 

for the high proportion of orthotropic, slow-growing stems with distally clustered-leaves, as 

showed by Virot (1956). Deploying large leaves might indeed be no more costly than producing 

an equivalent photosynthetic area on several twigs (Givnish, 1995; Wright et al., 2006). In this 

sense, monocauly might be seen as a structural reduction of a more complex branched architecture 

resulting from selection under constraining edaphic conditions. A phenomena referred to as 

“architectural pauperization” was proposed for Cecropia obtusa, a branched tree (generally 

conforming to the Rauh’s architectural model) that becomes monocaulous on bare, eroded and 

humus-free soils (Barthélémy, 1988). Consequently, the convergence toward monocauly observed 

in the New Caledonian flora could also have been triggered by preferential evolution of this habit 

on the locally common but globally rare ultramafic substrate. Interestingly, several clades rich in 

monocaulous species (e.g. Malpighiales, Apiales, Ericales, Gentianales, Sapindales) have been 

shown to be over-represented in New Caledonia, probably as a result of exaptation to ultramafic 

substrate (Pillon et al., 2010). In some of these clades (e.g. Malpighiales, Ericales, Gentianales) 

nickel hyper-accumulation, a specialization associated with adaptation to ultramafic substrates, is 

common (Pillon et al., 2010; Jaffré et al., 2013). 

Lack of browsers – Threats associated with IUCN Red List risk of extinction status suggest 
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that monocaulous species are more sensitive to introduced herbivores than branched taxa. Recent 

studies actually showed that plant architecture significantly contribute to structural defenses: the 

more intrinsically branched is a plant, the more effective is the protection (Costes et al., 2013; 

Charles-Dominique et al., 2015; Charles-Dominique et al., 2017). As such, the absence of native 

browsers in New Caledonian rainforests may have provided an ecological opportunity for the 

evolution of monocauly. This exposed growth habit could then be considered as a syndrome of

insular naivety. To our knowledge, horned terrestrial turtles (Meiolaniid) are the only known native 

browsing vertebrate that were present in New Caledonia and survived until the Holocene 

(Anderson et al., 2010; White et al., 2010). As another large terrestrial vertebrate, the bird

Sylviornis neocaledonicae (Poplin and Mourer-Chauviré, 1985), which was probably not a browser 

(Mourer-Chauviré and Balouet, 2005; Worthy et al., 2016), horned turtles probably lived in the 

coastal plain and dry forest (Anderson et al., 2010), where monocauls are infrequent. Accordingly, 

monocaulous species of Cyanea (Campanulaceae) in Hawaii where browsing birds were present, 

have thorn-like prickles to protect the stem (Givnish, 1994). By contrast, New Caledonian flora 

account for very few armed species, the vast majority of which are climbers (Bruy et al., 2018).

5.4.7 Conclusions and future directions 

Monocauly in New Caledonia appears to represent a remarkable functional convergence, 

involving different plant architectural models. Environmental contingencies present in the 

archipelago (e.g. rainforest stem density, ultramafic substrate, glaciation-driven habitat vacancy) 

might have provide a favorable background for the evolution of monocauly, did not face strong 

negative selection pressures such as the presence of large browsers or pronounced seasonality. 

Changes in growth habit may in turn alter the selective environment of other trait attributes

(cauliflory, rhythmic growth) and drive their evolution. The moderate phylogenetic clustering of 
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monocauly indicates some potential prerequisites that have not been highlighted in the present 

study. An important prerequisite that remains to be tested is plant architecture because the currently 

available data are insufficient. The New Caledonian flora seems to include many sparsely-branched 

plants in addition to monocauls, and some architectural models (Corner's, Rauh's, Attims',

Leuwenberg's, Chamberlain's, see Veillon, 1976) seem to be particularly well represented. The 

architectural background of a group could act as a key driver in the diversification of growth habit, 

and New Caledonia is undoubtedly an appropriate case study to investigate this. 

More globally, monocaulous species appear to comprise an important functional group in 

rainforest understory habitats, as probably occurs in other areas such as Gabon (Hallé and Hallé, 

1965) and Papua New Guinea (Hallé, 1974). However, the monocaulous habit remains largely 

overlooked and further comparative studies are needed to gain insight into the ecological and 

evolutionary history of monocaulous plants throughout the tropics. 
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Abstract:

The diversification of ecological roles and related adaptations in closely related species 

within a lineage is one of the most important processes linking plant evolution and 

ecology. Plant architecture offers a robust framework to study these processes as 

it can highlight how plant structure influences plant diversification and ecological 

strategies. We investigated a case of gradual evolution of branching architecture in 

Atractocarpus spp. (Rubiaceae), forming a monophyletic group in New Caledonia 

that has diversified rapidly, predominantly in rainforest understory habitats. We used 

109



a transdisciplinary approach to depict architectural variations and revealed multiple 

evolutionary transitions from a branched (Stone’s architectural model) to a monocaulous

habit (Corner’s architectural model), which involved the functional reduction of branches

into inflorescences. We propose an integrative functional index that assesses branching 

incidence on functional traits influencing both assimilation and exploration functions. 

We showed that architectural transitions correlate with ecologically important functional 

traits. Variation in ecologically important traits among closely relatives, as supported by 

the architectural analysis, is suggestive of intense competition that favored divergence 

among locally coexisting species. We propose that Pleistocene climatic fluctuations 

causing expansion and contraction of rainforest could also have offered ecological 

opportunities for colonizers in addition to the process of divergent evolution. 

Keywords: Branching index, Convergence, Corner’s rules, Gardenieae, Island, Rainforest, 

Treelet, Understory
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6.1 Introduction 

Convergent and divergent evolution are widely recognized as important drivers of plant 

diversification at large scale (Givnish and Sytsma, 1997; Gianoli, 2004; Drummond et al., 2012; 

Couvreur et al., 2015; Givnish, 2016). Well known examples of large scale convergence in plants 

(i.e. the appearance of phenotypic similarities among distantly related taxa) include the evolution 

of a cushion growth habit in alpine environments (Boucher et al., 2012; Aubert et al., 2014; 

Boucher et al., 2016), rosette-shrubs in islands (Carlquist, 1974; Givnish, 2010; Lens et al., 2013),

climbing mechanisms in lianas (Sousa-Baena et al., 2014; Sousa-Baena et al., 2018), and 

succulence in arid environments (Ogburn and Edwards, 2010; Arakaki et al., 2011). These and 

others examples demonstrate that similar habitats or micro-habitats can produce selective pressures 

that favor some morphological and physiological trait attributes. Another evolutionary process, 

sometimes linked with convergence, is the diversification of ecological roles among closely related 

species, i.e. divergent evolution, which results in the exploitation of different ecological resources 

(see e.g. Bramwell, 1975; Givnish et al., 2009; Givnish et al., 2014). Convergent and divergent 

evolution have been attributed to morpho-physiological traits, whose gradual evolution or rapid 

innovation can lead to adaptive radiation, sometimes involving increased diversification rates 

(Givnish and Sytsma, 1997; Givnish et al., 2014; Couvreur et al., 2015). A striking feature of 

convergent and divergent evolution is that it often involves variation in growth habit, which 

represents the ultimate form of a plant expressed in its physiognomy (Warming, 1909). Growth 

habit results from the integration of a set of traits, e.g. branching pattern and structure, body size 

and shape, position of inflorescences, and anatomy, among others, which have generally been 

studied independently (see e.g. Carlquist, 1984; Rowe and Speck, 2005; Givnish et al., 2009; Isnard 

et al., 2012; Wagner et al., 2014). Few work has, however, used the integrative approach provided 
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by plant architecture to study the evolution of plant growth habit. 

Plant architecture characterizes the spatial arrangement and specialization of structures 

(morphological origin, branching pattern, axis categorization) and their evolution during ontogeny 

(Hallé et al., 1978; Barthélémy and Caraglio, 2007). As such, it can highlight how plant structure 

impacts plant diversification and can help identify evolutionary processes underlying plant 

evolution (Bateman, 1994, 1999; Sussex and Kerk, 2001; Meyer-Berthaud et al., 2010).

Architectural studies have shown that plants are modular organisms comprising elements that can 

differ in their organization and functions (Hallé et al., 1978; Barthélémy and Caraglio, 2007). For 

instance, in many tree and treelet species, the trunk functions primarily for exploration and to 

provide support, while branches are involved in assimilation and reproduction. Plant architecture 

thus influences spatial and temporal exploitation of resources (Smith et al., 2014). Some 

architectural traits have been shown to impact plant fitness, either directly (Küppers, 1989; Millet 

et al., 1999; Charles-Dominique et al., 2010; Charles-Dominique et al., 2012; Millan, 2016; 

Charles-Dominique et al., 2017) or in interaction with other functional traits (Pérez-Harguindeguy 

et al., 2013; Trueba et al., 2016). Among the best known examples are Corner’s rules, which 

stipulate that “the greater the ramification, the smaller become the branches and their appendages” 

(leaves, flowers, and fruits, Corner, 1949). This statement points toward an effect of plant 

architecture on leaf size and linked architecture and plant ecological strategies (White, 1983a; 

Ackerly, 1996). To date, approaches linking plant architecture and function are scarce although 

some architectural indexes can assess interesting strategies such as defense against herbivores 

("Index of caginess", Charles-Dominique et al., 2017) or leaf-to-stem relation that trigger flowering 

("Index of axialisation", Lauri, 1988; Lauri and Kelner, 2001). 

Despite the functional importance of plant architectural traits, little is known about their 

112



evolution (Kurmann and Hemsley, 1999; León Enriquez et al., 2008). In a recent review, Chomicki 

et al. (2017) investigated the evolution of plant architecture for several groups. Their results showed 

preferential transitions between models, suggesting pre-requisite morphological ability for the 

evolution of a given plant architecture. In contrast, some model transitions seem never to occur, 

suggesting that genetic constraints might prevent them. Chomicki et al. (2017) did not, however, 

investigate processes involved in plant architectural evolution. Bateman (Bateman and DiMichele, 

1994; Bateman, 1999) argued that the changes involved in the transition from one architecture to 

another are too important and deep for such transitions to take place gradually. Rather, such 

evolution is suggested to occur preferentially by saltation, which involves the direct shift from one 

competitive architecture to another without passing through intermediate states associated with 

lower fitness. Other authors have proposed the notion of an “architectural continuum” (Oldeman, 

1974; Barthélémy et al., 1989), suggesting a continuous transition from one model to another in 

some groups (Hallé et al., 1978). In the context of this diversity of possible models to explain 

evolution in plant architecture, detailed studies within individual clades that combine results from 

molecular phylogenetic work with detailed architectural analysis may be particularly informative. 

Atractocarpus Schltr. & K.Krause (Gardenieae, Rubiaceae), a Pacific genus of about 40 

species, of which 32 are endemics to New Caledonia (Mouly et al., submitted), is ideally suited to 

study the evolution of plant architecture and to test hypotheses regarding the role of architecture in 

plant ecological diversification. Especially since a recently published phylogeny based on 

comprehensive sampling is available for the genus (Mouly et al., submitted). Most members of this 

genus are treelets occurring in the understory of tropical and subtropical rainforests, and they 

exhibit substantial variation in branching pattern (Tirvengadum and Sastre, 1979; Robbrecht and 

Puff, 1986), ranging from monocaulous (i.e. unbranched) to well-branched species, including 
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FIGURE 6.1 – Photographs of different Atractocarpus species in their environment showing 

variability in growth habit and lateral axis. Monocaulous species: (A) A. confertus, (B) A. 

bracteatus, (C) A. bracteatus. Intermediate species: (D) A. ngoyensis, (E) A. ngoyensis, (F) A. 

ngoyensis. Branched species: (G) A. pseudoterminalis, (H) A. sp. nov. 10, (I) A. 

pseudoterminalis.
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various intermediate states (Figure 6.1). The New Caledonia members of Atractocarpus, which 

originated from a single colonization event that occurred ca. 2.4 Myr ago (Mouly et al., submitted), 

has the highest diversification rate of any genus studied to date (1.17 species species-1 Myr-1),

approaching that of the well-known Hawaiian lobelioid genus Cyanea on the island of Maui 

(Hawaiian lobelioids; 1.36 species species-1 Myr-1, Givnish et al., 2009). 

The presence of a high diversification rate combined with architectural diversity is thought 

to provide an indication of ecological diversification, a situation that is often associated with island 

colonization (Silvertown, 2004; Silvertown et al., 2005). In groups adapted to growing in the forest 

understory, light is a variable and limiting resource, and in response, plants have deployed various 

growth strategies related to leaf photosynthesis and the economization of carbon. To quantify the 

architectural gradient from monocaulous (unbranched) to well-branched species, we developed a 

new “functional branching index”, which assesses branching incidence on functional traits that 

influence assimilation and exploration functions. Considering each understory species of 

Atractocarpus in New Caledonia, we analyzed correlations between architecture and traits

associated with key ecologically significant functions (viz., photosynthesis, hydraulic, mechanics, 

and dispersal). We investigated the evolution of plant architecture (branched vs. unbranched) in 

forest understory species and its impact on the exceptional diversification rate of the genus. Finally, 

we explored how ecological opportunities might stimulate the diversification of architecture 

through spatial differentiation in resource use (niche partitioning) in closely related species 

following the colonization of New Caledonian rainforests. 
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6.2 Material and methods 

6.2.1 Sampling 

We sampled all the 27 known rainforest species of Atractocarpus occurring in New 

Caledonia (list of taxa in Appendix 2). For Ancestral Character Estimation (ACE), three Australian 

Atractocarpus species and one species in each of the most closely related genera for which DNA 

sequences were available (Mouly et al., 2014; Mouly et al., submitted) were included as outgroups. 

Individuals were sampled in 20 rainforest sites occurring on Grande Terre, New 

Caledonia’s main island (Appendix 2).

6.2.2 Branching index and plant architectural traits 

Based on the observation that an observed architectural gradient might result from 

differential allocation in branch length and supported leaf area (Figure 6.1), we used two functional 

branching indexes based on the differentiation of function from branches to trunk (Corner, 1958).

Given that photosynthetic function can be approximated by leaf area (Pérez-Harguindeguy et al., 

2013) and exploration function by stem length (Barthélémy and Caraglio, 2007; Smith et al., 2014),

branching indexes were calculated as follows: 

(i) Photosynthetic branching index: 
!"#$%#&"#%'())*&+",%-.%-&#/01"'

2*+#3%3"#$%#&"#%4-&#/01"'5+&(/67

(ii) Exploration branching index: 
8&#/01"'%0(9(3#+",%3"/:+1

2*+#3%'+"9%3"/:+1%4-&#/01"'5+&(/67

A value of zero indicates that photosynthesis and exploration are assumed only by the trunk 

and that branches (lateral exploration) are lacking, which corresponds to the monocaulous habit, 

physiognomically defined as “trees with a single trunk or visible stem of the plant” (Hallé et al., 

1978). The higher the value of the index, the greater the functional role played by branches. We 
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built a single integrative branching index that expresses the architectural gradient by combining 

these two variables using Principal Component Analysis (correlation between photosynthetic and 

exploration branching indexes: rho = 0.86) employed in the ade4 package for R (Dray and Dufour, 

2007). 

Species were segregated into three architectural classes (Monocaulous, Intermediate, and 

Branched) using Wilcoxon signed-rank tests that enable detection of breaks in the distribution of 

the integrative branching index. 

Using morphological criteria reviewed by Barthélémy and Caraglio (2007), we then 

described main traits commonly used in architectural analyses (growth process, branching pattern, 

position of reproductive structures, etc.) for the 27 New Caledonian species of Atractocarpus. The 

number of individuals studied varied from more than a hundred in some species (e.g. A.

pseudoterminalis, A. ngoyensis and A. bracteatus) to twelve in A. sezitat, a rare species whose 

habitat is highly disturbed by introduced herbivores. All species were studied at different 

ontogenetic stages (from very young plants to senescent adults) except A. sezitat and A. sp. nov. 

12, for which no young plants could be found. 

6.2.3 Plant functional traits 

We tested the correlation of 14 traits with branching index. The traits were selected to 

reflect important features of plant ecological strategies (Table 6.1). They were measured on five 

individuals per species and, when possible (e.g. for leaf and internode traits), five times per 

individual. The selection of individuals was standardized for environment (rainforest understory) 

and for ontogeny following three criteria: (i) recently mature individuals, (ii) non reiterated 

individuals (see Oldeman, 1974; Barthélémy and Caraglio, 2007), and (iii) non-traumatized trunks. 

It was not possible to locate individuals meeting all three conditions for A. sezitat and A. sp. nov. 
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Trait
Abbr
eviati

on
Unit Formula

Related 
function

References

Trunk traits

Slenderness 
ratio

sr Ø

Geometric 
feature of 
buckling 
resistance

Alméras et al. 
(2004);
Niklas et al. 
(2006);
Homeier et 
al. (2010)

Specific 
wood
density

swd
g.cm-

3

Growth rate, 
drought 
resistance 
and 
mechanical 
reinforcemen
t

Pérez-
Harguindegu
y et al. 
(2013);
Wright et al. 
(2007); Olson
et al. (2009)

Specific
stem
density

ssd
g.cm-

3

Growth rate, 
capacitance,  
mechanical 
reinforcemen
t

Pérez-
Harguindegu
y et al. 
(2013); Díaz 
et al. (2016)

Internode 
diameter

intern
ode_d

cm

Growth rate, 
mechanical 
reinforcemen
t

Vertessy et 
al. (1995);
Schuerger et 
al. (1997);
Olson et al. 
(2009)

Internode 
length

intern
ode_l

cm Ø!
Growth rate,
leaf spacing

Weijschedé 
et al. (2007);
Dong et al. 
(2010)

TABLE 6.1 – Functional traits measured for 25 Atractocarpus species. References are given 

to justify the interest of each trait for corresponding functions. 

 

!"#$%!&'()&%
!"#$%!*#+#"!,(#-'%'.

/00,!,.1!-#++
/00,!2.'+&!30"4-'

5%'-!,.1!-#++
5%'-!2.'+&!30"4-'

67($!89!,(#-'%'. × 7#:!89!,(#-'%'.
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Proportion 
of pith

%_pit
h

Ø
Primary 
growth, stem 
biomechanics

Carlquist 
(1974);
Niklas
(1992);
Levionnois et 
al. (2018)

Proportion 
of wood

%_wo
od

Ø
Secondary 
growth, stem 
biomechanics

Penfound 
(1931);
Schuerger et 
al. (1997);
Hummel et 
al. (2007)

Proportion 
of cortex

%_cor
tex

Ø Storage

Pérez-
Harguindegu
y et al. 
(2013)

Huber value hv Ø
Allocation of 
wood to leaf 
area deployed

Penfound 
(1931);
Gleason et al. 
(2012);
Pérez-
Harguindegu
y et al. 
(2013)

Mean leaf 
area

mean
_la

cm² Ø 

Energy 
balance, 
hydraulic 
demand

Poorter et al. 
(2009);
Pérez-
Harguindegu
y et al. 
(2013);
Ackerly 
(2004)

Specific 
Leaf Area

sla
cm.g-

1

Allocation of 
biomass to 
light 
harvesting

Pérez-
Harguindegu
y et al. 
(2013);
(Westoby et 
al., 2002)

/00,!#.'#!#%!!;7
<=!#.'#!#*03'!%&'!!;7

>.'#!02!?(%&
@&0"'!+'A%(0$!#.'#

>.'#!02!@00,
@&0"'!+'A%(0$!#.'#

>.'#!02!A0.%':
@&0"'!+'A%(0$!#.'#

<'#2!2.'+&!#.'#
<'#2!,.1!-#++
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Whole plant trait

Total leaf 
area

total_l
a

cm²

Energy 
balance, 
hydraulic 
demand

Pérez-
Harguindegu
y et al. 
(2013); Díaz 
et al. (2016)

Leaf 
number

nb_le
af

Ø
Light 
harvesting

Duncan and 
Hesketh 
(1968);
White 
(1983a)

Fruit trait (herbarium measure)

Fruit 
volume

fruit_
vol

cm3

Dispersal, 
reproductive 
allocation

Cornelissen 
(1999);
Cornelissen 
et al. (2003)

IN: internode, POM: point of measurement, LF: leaf, BR: branch, TR: trunk 
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12 due to small population sizes and habitat degradation, so these taxa were removed from this 

analysis. We concentrated our sampling in the apical part of the trunk because (i) this enabled 

standardization of physiological age and (ii) unbranched and branched species can be compared 

only on the basis of the main stem. Moreover, variation in resource allocation and anatomy between 

unbranched and branched species might be more prevalent toward the apex, where large leaves are 

deployed (Carlquist, 1974). Stem and leaf measurements were standardized as follows. Leaf traits 

(SLA, leaf area) were measured on the five youngest, fully expended leaves of the main axe (trunk). 

Wood was collected below the terminal leaf tuft for the measurement of anatomical traits 

(proportion of tissues, specific wood density, and specific stem density). Internode length and 

diameter were measured on the five youngest, well-developed trunk-internodes (before secondary 

growth). Branch traits (cumulated length, leaf number, leaf area) were measured on two 

representative branches per individual and the total number of branches was counted. 

Most of the individuals studied in the field were infertile, so fruit traits were measured on 

herbarium specimens (NOU and P, Herbarium acronyms follow Thiers, continuously updated). We 

selected undamaged and unflattened fruits from which length and diameter were measured. As 

Atractocarpus fruits are often ellipsoid to tubular (Puttock, 1999), these two dimensions are used 

to approximate fruit volume (Table 6.1). A total of 592 fruits were measured, and only the five 

largest fruits per taxon (four for A. confertus and A. sessilifolius) were used to ensure that values 

from only mature fruits were included in our analyses. One of the species, A. sp. nov. 6, is a very 

rare species whose fruits have never been observed; it was consequently excluded from the fruit 

volume dataset. 

6.2.4 Data analysis 

Phylogenetic tree – The molecular phylogeny of Mouly et al. (submitted) was used for 
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analysis. This ultrametric phylogenetic tree was constructed under Bayesian Inference using one 

nuclear (ITS) and two chloroplastic (trnTL, rpl32) loci. Since the current study focused on 

rainforest species, we pruned the five dry forest and maquis species using the R software (Ver. 

3.4.3). 

Phylogenetic signal – We assessed phylogenetic independence of measured traits 

(Felsenstein, 1985) using two complementary statistics calculated under a Brownian Motion (BM) 

model of evolution. Pagel’s Lambda (Pagel, 1999; Freckleton et al., 2002) is widely used for low 

rates of type I error and robustness, even for poorly or moderately informative phylogenies 

(Freckleton et al., 2002; Münkemüller et al., 2012). Because this statistic loses statistical power 

when used on small phylogenies (< 30 tips, Freckleton et al., 2002), we also used Blomberg’s 

Kappa (Blomberg et al., 2003; Kembel, 2009) that is less robust but more appropriate for small 

taxonomic sampling (until 20 taxa, Kamilar and Cooper, 2013). Both statistics were calculated 

considering intraspecific variation using the phytools package for R (Revell, 2012).

Trait correlations and functional characterization – We used phylogenetic regression 

based on the method proposed by Ives et al. (2007) and implemented in the phytools package for 

R (Revell, 2012) to test whether architectural variation was correlated with functional 

specialization. Using maximum likelihood, this method fits bivariate models taking into account 

both phylogenetic framework and intraspecific variation. The response variable was the integrative 

branching index, and the explanatory variables were all other functional traits (Table 6.1).

Significance of relations was tested using a likelihood ratio test between the model and a model 

constrained with a slope of zero. 

To characterize the functional space of each architectural classes, we performed a Principal 

Component Analysis. We used the species arithmetical mean of each functional traits (branching 

122



Model
Speciation 

rates

Extinction 

rates

Transition 

rates
AICc

1 ≠ ≠ ≠ -46.72

2 = = = -50.59

3 ≠ = = -49.59

4 ≠ ≠ = -49.56

5 ≠ = ≠ -46.72

6 = = ≠ -46.16

7 = ≠ ≠ -46.16

8a M = I ; B ≠ = = -50.58

8b I = B ; M ≠ = = -50.50

8c M = B ; I ≠ = = -49.59

9a M = I ; B ≠ 0 = -50.58

9b I = B ; M ≠ 0 = -50.50

9c M = B ; I ≠ 0 = -49.59

10 = 0 = -50.59

11 ≠ 0 = -49.59

M: Monocaulous, I: Intermediate, B: branched 

TABLE 6.2 – Models fitted for trait based diversification analysis. Bold lines represent 

models with lowest AICc. 
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index excluded), and functional differences between architectural classes (Monocaulous, 

Intermediate, Branched) were tested with a permanova (Vegan package for R, Oksanen et al., 

2018). 

Ancestral Character Estimation – To determine the putative ancestral architectural class 

of Atractocarpus and infer the evolution of architecture in the genus, Ancestral Character 

Estimation (ACE) was performed. We assigned an architectural class to each of the 11 outgroup 

species based on published descriptions (Fosberg, 1987; Smith and Darwin, 1988; Fosberg et al., 

1993; Puttock, 1999; Wong, 2004; Zahid and Wong, 2004, 2010; Tong et al., 2013), herbaria 

specimens (P, K, BM, E) and available photos. The ACE were performed using a maximum 

likelihood method under the ape package for R (Paradis et al., 2004). Three possible models of 

evolution fitted the data characteristics: (i) equal transition rates between classes (ER), (ii) different 

transition rates between classes but with equal rates for reversions (SYM), and (iii) different rates 

for every transition (ARD). The best model was selected using the corrected Akaike Information 

Criterion (AICc). 

Trait Based Diversification – To test whether one of the architectural classes has 

contributed more than the others to the diversification of New Caledonian Atractocarpus (by 

increasing speciation rates and/or decreasing extinction rates), we used the Multiple State 

Speciation Extinction (MuSSE) framework (Fitzjohn et al., 2009) as implemented in the diversitree

package for R (Fitzjohn, 2012). For this analysis, outgroups were dropped from the phylogeny to 

consider only the 27 rainforest Atractocarpus species. Fifteen models of diversification were used, 

each differing in whether or not of speciation, extinction and transition rates were equal between 

classes (Table 6.2). Model selection was done according to AICc. 
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FIGURE 6.2 – Branching indexes calculated on the base of (A) exploration function, (B) 

photosynthetic function and (C) the combination of both, for 25 Atractocarpus species. 

Letters in (C) correspond to the result of the Wilcoxon test; species with shared letters are 

not significantly different for a given risk of error.
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6.3 Results 

6.3.1 Branching index 

Branching indexes confirmed the existence of a morpho-functional gradient from branched 

to monocaulous species of Atractocarpus, for both exploration and photosynthetic functions 

(Figure 6.2-A, B). For both indexes, interspecific variation was too gradual to allow the partitioning 

in distinct classes, but when combined (i.e. using the branching index), three distinct architectural 

groups could be differentiated (Wilcoxon tests: P < 0.1, Figure 6.2-C), viz. the branched, 

intermediate and monocaulous architectural classes. On average, branched species had 82% of 

photosynthesis and 76% of exploration provided by branches, versus 36% and 45%, respectively, 

for intermediate species, and 3% and 16% for monocaulous species. 

6.3.2 Architectural characterization 

The architecture of New Caledonian Atractocarpus species involves two axis categories: 

(i) a trunk (C1), i.e., an orthotropic monopodium with continuous indeterminate growth, and (ii) 

“branches” (C2), i.e., orthotropic sympodia with terminal sexuality conferring rhythmic growth 

(Table 6.3, Figure 6.3). The sympodial branching of C2 always originates in a hypotonic (i.e. on 

the lower surface) or amphitonic position, resulting in upward flower exposure (Figure 6.1). The 

only qualitative architectural variation observed between species concerned the branching position 

of C1, which was continuous for some monocaulous species while diffuse for others. Two main 

quantitative architectural traits varied greatly among species, the number of modules per branch 

and the length of modules, which decreased in monocaulous species (Table 6.3, Figures 6.3, 6.4). 

For example, A. longistipitatus is a monocaulous species whose C2 comprise many very short 

modules (apart from the first one). By contrast, A. bracteatus is also monocaulous but its C2 
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Architectural class Branched Intermediate Monocaulous
Number of AC 2 2 2

C
1

Growth pattern Indeterminate Indeterminate Indeterminate
Growth periodicity Continuous Continuous Continuous
Branching pattern Monopodial Monopodial Monopodial
Growth direction Orthotropic Orthotropic Orthotropic

Reproduction Absent Absent Absent
Branching position Diffuse Diffuse Diffuse Continuous

C
2

Growth pattern Determinate Determinate Determinate
Growth periodicity Rhythmic Rhythmic Rhythmic
Growth direction Orthotropic Orthotropic Orthotropic

Reproduction Terminal Terminal Terminal
Branching position Rhythmic acrotone Rhythmic acrotone Rhythmic acrotone na
Branching pattern Sympodial Sympodial Sympodial na
Number of relay 1-2 1-2 1-2 na

Number of internode 
/ module

2 (-3) 2-3 2-3 2 (-3) 2 2 2 1

Max. number of 
module / branch

56 48 46 42 41 38 38 31 71 48 30 29 28 25 25 19 12 16 46 26 5 5 9 5 1 1 1

Mean length of 
module (cm)

5.5 4.8 6.5 8.9 9.2 7.8 7.6 7 5.9 6.9 6.5 7.7 14.8 11.5 6.3 12.9 15 7.1 2.4 1.5 12.1 8.1 4.5 8.5 5.9 5.1 1.7

AC: Axis category, C1: First axis category (trunk), C2: Second axis category (“branches”)

TABLE 6.3 – Architectural traits of 27 Atractocarpus species. 

 

127



FIGURE 6.3 – Schematic representation of the three main architectural classes found in the rainforest understory species of 

Atractocarpus: (A) Monocaulous, (B) Intermediate (C) Branched.
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FIGURE 6.4 – Photographs of branches with their axillary leaves (i.e. from trunk) for height Atractocarpus species with different 

branching degrees. Arrows indicate apical death, i.e. flowering sites (for A. longistipitatus (E), only half of apical death has been 

represented). Branched species: (A) A. pseudoterminalis, (B) A. sp. nov. 4. Intermediate species: (C) A. ngoyensis, (D) A. 

brandzeanus. Monocaulous species: (E) A. longistipitatus, (F) A. pterocarpon, (G) A. bracteatus, (H) A. confertus.
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comprise a single long module (Figure 6.4). The number of internodes per module vary little in the 

genus but tend to be reduced in monocaulous species, with an extreme case of one node per module 

in A. confertus (Table 6.3). All species showed the ability to develop delayed reiterate on damaged 

or aged individuals. 

6.3.3 Functional characterization 

Phylogenetic signal varied substantially depending on which statistic was used (Lambda or 

Kappa, Table 6.4). This was probably due to the small size of our phylogeny (25 terminals), since 

the statistics differ in sensitivity to the number of terminals (Freckleton et al., 2002; Kamilar and 

Cooper, 2013). Blomberg’s Kappa captures significant phylogenetic signal for stem specific 

density, proportion of pith, Huber value, and mean leaf area, whereas Pagel’s Lambda captures 

significant signal for internode diameter (Table 6.4). Among all measured functional traits, only 

the branching index had a highly significant phylogenetic signal calculated with both Pagel’s

Lambda and Blomberg’s Kappa.

Several functional traits were significantly related to the branching index (Table 6.5),

including biomechanics (e.g., slenderness ratio, internode diameter) as well as photosynthesis (e.g. 

leaf area, SLA), hydraulics (e.g. Huber value), and even dispersal (fruit volume). These correlations 

between architecture and functions were confirmed by PCA and Permanova (P = 0.016), which 

showed significant differences between the functional space occupied by the three architectural 

classes (Figure 6.5). Intermediate species were confounded between the two other architectural 

classes, but monocaulous and branched species appeared to be functionally very different. In 

comparison to monocaulous species, branched taxa tend to have numerous small leaves, higher 

SLA, smaller fruits and, smaller internode diameters with a lower proportion of wood, but a higher 

wood area-leaf area ratio (Huber value). The monocaulous A. confertus (the lowest point on Figure 
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Trait Lambda p-value Kappa p-value

Branching index 1.013 < 0.001 1.132 0.002

Slenderness ratio 0.748 1 0.251 0.539

Specific wood 
density

0.447 1 0.429 0.242

Specific stem 
density

0.813 0.265 0.607 0.029

Internode diameter 0.442 0.047 0.533 0.076

Internode length 0 1 0.127 0.946

Proportion of pith 0.277 0.427 0.603 0.021

Proportion of wood 0.595 1 0.399 0.39

Proportion of cortex 0.488 1 0.418 0.27

Huber Value 0.589 0.998 < 0.001 0.035

Total leaf area 0.765 1 0.006 0.165

Leaf number 1.105 1 0.001 0.157

Mean leaf area 1.105 0.064 0.031 0.003

Specific Leaf Area 0 1 0.042 0.405

Fruit volume 0 1 0.002 0.356

TABLE 6.4 – Phylogenetic signals of measured traits across the phylogeny of 25 

Atractocarpus species (24 for fruit volume). Signal were tested with Pagel’s Lambda (left) and 

Blomberg’s Kappa (right). Bold lines represent significant phylogenetic signal following a 

0.05 risk of error. 
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Trait log(L) beta p.value

Slenderness ratio -150.3 -3.1 0.004

Specific wood 
density

-0.635 -0.003 0.157

Specific stem 
density

4.982 -0.0002 0.290

Internode diameter -35.90 -0.09 0.018

Internode length -85.30 0.3 0.169

Proportion of pith 0.397 0.03 0.112

Proportion of wood 1.477 -0.0009 0.002

Proportion of cortex -2.600 -0.01 0.094

Huber value -295.9 3587 < 0.001

Total leaf area -282.5 288.8 0.351

Leaf number -165.2 37.2 < 0.001

Mean leaf area -203.3 -85.6 0.008

Specific Leaf Area -162.9 15.9 < 0.001

Fruit volume -180.5 -3.8 0.021

TABLE 6.5 – Results of phylogenetical generalised least square. Bold lines represent 

significant relation between corresponding trait and branching index following a 0.05 risk of 

error. 
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FIGURE 6.5 – Projection of (A) species and (B) traits on the two first axis of Principal Component Analysis (see Table 6.1 for 

trait abbreviations). Ellipses represent the 95% confidence interval for each architectural classes. Functional differences 

between architectural classes were tested with Permanova.
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6.5) was distinct from the other Atractocarpus species examined in having numerous very large 

leaves, leading to a disproportionately higher total leaf area (up to 2.4 m² versus a mean of 0.5 m² 

for the other species). 

6.3.4 Ancestral Character Estimation 

All considered outgroup species belonged to the branched architectural class, except for the 

Fijian Sukunia pentagonoides (Seem.) A.C.Sm, which is monocaulous. Among the three possible 

models of evolution that fitted the data, the best supported one was that of equal transition rates 

between classes (ER), with an AICc of 84.4 versus 96.1 and 104.2 for SYM and ARD, respectively. 

According to this model, the ancestral architecture of Atractocarpus was most likely branched 

(probability = 0.98, Figure 6.6), and the monocaulous habit evolved two or three times in the two 

main New Caledonian clades (referred to as “monocaulous clade A” and “monocaulous clade B” 

in Figure 6.6), ca. 1.4 and 0.9-0.6 Myr ago respectively. In each clade, species with an intermediate 

architecture are closely related to monocaulous species, the only exception being A. brandzeanus,

whose closest relatives are branched. Conversely, pairs of sister or closely related species never 

showed branched and monocaulous habit. 

6.3.5 Trait based diversification 

Following the IACc, models 2 and 10 are the best fitted, in which speciation and transition 

rates are equal for each state and extinction rates are equal or null (Table 6.2). This means that 

diversification was not greater among the members of any of the architectural classes during the 

evolution of Atractocarpus in New Caledonia. 
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FIGURE 6.6 – Estimation of ancestral architectural class in the genus Atractocarpus. 

Numbers correspond to the Bayesian probability for each reconstituted node. Grey box 

highlights New Caledonian clade. Letters (A, B) highlight major clades were shifts from 

branched to monocaulous or intermediate architecture operate.
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6.4 Discussion 

6.4.1 Evolution of plant architecture 

Despite the diversity of growth habits in the genus Atractocarpus, ranging from well 

branched to monocaulous species, the architectural construction of members of the group is fairly 

homogenous. Differences between species mainly result from quantitative variations in which the 

number of modules per branches and module length tend to increase with increasing branching 

index. 

The measurement of functionally explicit variables (branch length and leaf area) that link 

plant architecture and function (Lauri, 1988; Lauri and Kelner, 2001; Charles-Dominique et al., 

2017) showed that variation of growth habit in Atractocarpus is correlated with a gradual variation 

from branched species, for which photosynthesis and exploration are largely assumed by branches, 

toward monocaulous species, for which these functions are assumed by the trunk. The reduced C2 

in monocaulous species supports a limited number of small leaves (on average 4 leaves of 9 cm2)

and are dedicated almost exclusively to reproduction. These “axes” are functionally closer to

inflorescences than branches (Van Steenis, 1963) and are often considered as such by taxonomists 

(e.g. Fosberg et al., 1993; Puttock, 1999).

The branched architectural class appears to be ancestral in Atractocarpus and our results 

indicated at least two independent origins of monocauly in New Caledonia. Other examples of 

derived monocauly have recently been revealed in flowering plants (Chomicki et al., 2017; Barrabé 

et al., 2018). The intermediate architectural class is evolutionary closer to the monocaulous habit 

since intermediate and monocaulous species are always sister taxa or very close relatives. There is 

a high probability that the putative ancestor of “monocaulous clade B”, had an intermediate 

architecture. This insight, as well as the architectural gradient observed among extant species, 
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suggests a gradual evolutionary transition from the branched architecture toward monocauly 

through an intermediate architectural class. Reversion from a monocaulous architecture toward an 

intermediate one appears to have been possible (e.g. Atractocarpus sp. nov. 7) but full reversion to 

a branched architecture was not observed. 

The similarity of developmental origin and the gradual quantitative architectural variation 

of lateral axes (C2) across closely related taxa suggest a homologous origin of these axes in the 

Atractocarpus species studied here (see Nozeran, 1955; Rossignol and Rossignol, 1985; Haicour 

et al., 1989). A homologous origin between vegetative and inflorescence axes has been suspected 

in several groups such as Ranunculaceae and Papaveraceae (Stebbins, 1973), as well as several 

families of Alismatales (Posluszny and Charlton, 1993, 1999) and Pandanales (Rudall and 

Bateman, 2006), though none of these studies combined architectural analysis with molecular 

phylogenetic results. 

Only a few studies to date have explored evolutionary links between architectural models 

(see Chomicki et al., 2017). In New Caledonia Atractocarpus, we found recurrent transitions from 

Stone’s model for branched species (with C2 functioning as branches) to Corner’s model for 

monocaulous species (with C2 functioning as inflorescences), although the limit between them 

remains fuzzy, as illustrated by species whose architecture is intermediate. The variation observed 

in branching index across species illustrates an ‘architectural continuum’ (Oldeman, 1974; 

Barthélémy et al., 1989) rather than saltational evolution involving rapid and profound change in 

architecture (Bateman and DiMichele, 1994; Bateman, 1999). Nothing suggests that the 

intermediate architectural class confers lower fitness (i.e., represents a fitness valley) compared to 

monocaulous or branched architecture, particularly in situations where the environment (rainforest 

understory) varies gradually. Saltation from one model to another might take place when gradual 
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changes are impossible, for example in the colonization of contrasted habitats (Bateman and 

DiMichele, 1994). Gradual variation between and within models has already been noted (Hallé et 

al., 1978), suggesting that preferential transition between models might occur. 

The two independent origins of monocauly inferred in Atractocarpus illustrate two different 

evolutionary pathways involved in the transition from branches into inflorescences. In 

“monocaulous clade A”, reduction in the branching index occurred through a reduction in the 

number of modules, while in “monocaulous clade B”, module length is involved. Architectural 

analysis actually showed that the two species with intermediate architecture and the two 

monocaulous species belonging to the clade B are those with the higher number of modules (up to 

46 for the intermediate A. sessilifolius and 26 the for monocaulous A. longistipitatus, i.e. as much 

as certain branched species) and with shorter module length (excluding the monocaulous A. 

confertus). This type of morphological reduction observed at the module level in Atractocarpus

could affect any elementary level of organization in other plant groups (e.g. annual shoots, growth 

units, metamers, etc.). 

The iterative gradual transition of axillary structure (C2) from branches to inflorescences 

occurs as a functional reduction of vegetative growth and a change in the timing of flowering. Such 

evolutionary changes, often result from growth heterochrony (Smith, 2001). In the case of New 

Caledonian Atractocarpus, the axillary structure (C2) of descendants is either a truncated part (in 

“monocaulous clade A”) or a miniaturized copy (in “monocaulous clade B”) of that of their 

ancestors. This suggests heterochronic evolution through “neoteny” in the first case and through 

“proportional dwarfism” in the second (Gould, 1977; Alberch et al., 1979; Smith, 2001), but more 

details of the ontogenetic sequences are required to test these hypotheses in Atractocarpus.

In this context, our original approach showed that a careful study of low organization levels 
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is needed to depict the evolution of plant architecture. This involves a deep characterization of 

architectural units (Edelin, 1977, 1984), combining qualitative and quantitative traits. 

6.4.2 Branching index, Corner’s rules, and ecological strategies

In the original Durian theory, Corner (1949, 1953-1954) proposed two fundamental rules 

governing plant morphology: (i) Axial conformity, stipulating that “the stouter, or more massive, 

the axis in a given species, the larger and more complicated its appendages”; and (ii) Diminution 

on ramification, stipulating that “the greater the ramification, the smaller become the branches and 

their appendages”. Axial conformity is by far the most studied since the leaf size - twig size and 

fruit size - leaf size spectra are among the best-documented (White, 1983b; Bond and Midgley, 

1988; Brouat et al., 1998; Cornelissen, 1999; Brouat and McKey, 2001; Westoby et al., 2002; 

Preston and Ackerly, 2003; Westoby and Wright, 2003; Pickup et al., 2005; Sun et al., 2006; 

Normand et al., 2008). Large leaves and fruit carried by a large single stem, as seen in monocaulous 

species, illustrate one extremity of this spectrum.. The second rule (diminution of ramification),

has received much less consideration (but see White, 1983a; Ackerly and Donoghue, 1998). Our 

results agree with this statement, as we have shown that internode diameter, as well as fruit and 

leaf size, are negatively correlated with branching index, even with phylogenetic corrections. 

Beyond Corner’s rules, we found a strong correlation between branching index and several 

functional traits related to various ecological strategies in areas with a similar habitat (i.e. 

rainforest). 

We found that branching index tends to be correlated with ecologically important 

dimensions (Mooney, 1972; Grime, 1974; Grime et al., 1988; Westoby et al., 2002). The large 

leaves of monocaulous species increase light interception in shady understory (Poorter, 1999; 

Rozendaal et al., 2006), their low SLA and Huber value are likely associated with low 

139



photosynthetic capacity (Field and Mooney, 1986; Shipley et al., 2005; Poorter and Bongers, 2006; 

Rozendaal et al., 2006; Pérez-Harguindeguy et al., 2013) and their small internode length can result 

from a slow growth rate (Mooney, 1972; Chuah, 1977; Grime et al., 1988; Westoby et al., 2002). 

Monocaulous species are likely skewed toward a high resource conservation strategy (Grime et al., 

1997; Díaz et al., 2004; Díaz et al., 2016) suited to the shady understory of rainforest. 

In sparsely branched to unbranched species, a distal part of the stem with thicker diameter 

and higher wood proportion was found to be suited to supporting large and numerous energetically 

costly leaves (higher leaf area and SLA). However, higher wood area does not fully compensate 

for high total leaf area of the main stem since the Huber value (the ratio of wood area to leaf area) 

was positively correlated with branching index. Detailed anatomical studies, particularly on vessel 

size and density, are needed to understand the hydraulic and mechanical trade-off involved in the 

pervasive link between leaf area, stem thickness and branching intensity (Lehnebach et al., 2018). 

6.4.3 Divergence and ecological opportunities in New Caledonian rainforests 

New Caledonian Atractocarpus appear to be the result of a single colonization event 

(Mouly et al., submitted) and the archipelago is the center of diversity for the genus. Island 

colonization is a two steps process involving dispersal and successful establishment (Silvertown, 

2004). The large, fleshy fruits of Atractocarpus suggest a rather limited ability for long-distance 

dispersal. Such niche preemption, claimed to act as a major driver of monophyly and diversification 

in island floras (Silvertown, 2004), could have prevailed in the diversification of the New 

Caledonian clade of Atractocarpus. Its young age (estimated at 2.4 My) coincides with colonization 

during late Pleistocene, a period of intense climatic Fluctuation (Bowler et al., 1976; Hope and 

Pask, 1998; Stevenson and Hope, 2005). Increasing evidence supports the persistence of taxa in 

rainforest refugia during the Pleistocene in New Caledonia (Pintaud et al., 2001; Pillon, 2012; 
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Nattier et al., 2013; Poncet et al., 2013; Pouteau et al., 2015; Tournebize et al., 2017). Climatic 

fluctuations causing expansion and contraction of rainforests could also have offered ecological 

opportunities for new colonizers. Other diversified rainforest clades in New Caledonia have been 

shown to result from recent colonization (e.g. palms, Pintaud et al., 2001; Pillon, 2012). Similarities 

in form and physiology among close relatives, as suggested by our character state reconstruction 

and architectural analysis, are suggested to involve intense competition that favors divergence 

among locally coexisting species (Givnish, 2016). In support of this, we found notable variation in 

module length and number between sisters species, even when they belong to the same architectural 

class. In Atractocarpus, variation in growth habit is correlated with a gradual switch in assimilation 

function from branches to trunk, and is associated with a vertical differentiation of major functions. 

Leaf arrangement in monocaulous species results in important overlap that impacts photosynthesis, 

while stem slenderness suggests a rather small structural investment in vertical support. Branched 

species tend to increase light harvesting and reduce leaf overlap (via increase branch length), a 

strategy that require more investment in stem tissue (Givnish, 1995), as allocation to non-leaf 

structures might increase with ramification. Atractocarpus species thus exhibit a gradient of 

foraging for light in which leaf size and disposition vary with branching index. 

New Caledonian rainforests are characterized by a low canopy (ca. 20 m) and trees with 

small crowns (Blanchard et al., 2016), two structural features that increase the number and intensity 

of sunflecks (Chazdon and Pearcy, 1991). A low canopy and its corollary, reduced forest 

stratification, could result in stronger competition within a given stratum. These forest features 

(high sunfleck variability, reduced stratification) favor niche partitioning through a gradient in 

architecture and related functional traits. Moreover, limited dispersal of the large fruits of 

Atractocarpus might interact with niche partitioning to promote divergent evolution. Finally, 
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divergent selection may be especially favored in permissive environments where competition 

prevails over the external environment or in the colonization of islands where resources are 

underutilized (Givnish, 2016). New Caledonia exhibits both components of divergent selection: (i) 

climatically permissive rainforests and (ii) ecological opportunities offered by recent climatic 

fluctuations. Divergent selection, caused by competition among closely related taxa, leads to 

adaptive radiation, i.e. the rise of a diversity of ecological roles and related adaptations in different 

species among a lineage (Givnish, 2016). The theory of niche pre-emption holds that adaptive 

radiation creates a barrier that inhibits the establishment of closely related taxa, thus reducing the 

likelihood of repeated colonization. 

6.4.4 Conclusions 

Despite the fundamental importance of plant architecture, little work has been done to 

integrate this aspect into key domains of plant science such as evolution and functional ecology. 

However, increasing availability of information on ecologically important traits and molecular 

phylogenies provides a basis for testing and developing new concepts. Our study clearly highlights 

evolutionary processes behind architectural transitions and their link to plant ecological strategy 

and perhaps also to diversification. We have shown that gradual transition from one architecture to 

a very different one is possible through morpho-functional reduction of morphological units. 

Quantifying plant architecture through functional indexes appears to offer a promising avenue 

toward further understand the implications of architectural variation on plant fitness under different 

environmental conditions. Based on such an index, our study provides a functional definition of 

monocauly that is ecologically and evolutionary more explicit than one based solely on 

physiognomy (cf. Hallé et al., 1978; Chomicki et al., 2017): we define monocaulous species as 

self-supporting woody plants whose cardinal functions (e.g., assimilation and exploration) rely on 
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a single apparent stem. 

Although our work focused on a small clade, it opens new perspectives and proposes a 

general framework for further understanding evolution of plant architecture and its functional 

implications in other plant groups and other geographical areas, and at larger scales. We believe 

that Pleistocene climatic fluctuations have played a major role in the evolution of monocauly and 

more widely in shaping the current diversity of the New Caledonian flora. This hypothesis now 

needs to be tested at a larger phylogenetic scale in New Caledonia, as the monocaulous habit, which 

occurs repetitively in many different groups (Veillon, 1976; Schmid, 1979, 1990), has much to 

offer to understand the evolution, biogeography and ecology of this “very old Darwinian island” 

(Grandcolas et al., 2008). 
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7.1 Introduction 

Monocauly (i.e. unbranched habit) in woody plants is a globally rare phenomenon but 

represents a case of evolutionary convergence (Chapter 5) that has much to offer to our 

understanding of metabolic implications and selective advantage of large leaves and limited 

branching patterns (Chapter 6). Monocaulous plants have a single apparent woody stem with large 

leaves concentrated toward the apex (Corner, 1949; Hallé et al., 1978). They conform to four 

architectural models (Corner’s, Holttum’s, Chamberlain’s and Cook’s) (Chapter 5). Thus, while 

the vast majority of woody growth habits (e.g. tree, treelets, lianas) present several more or less 

specialized axis (axis categories, see Barthélémy and Caraglio, 2007), the cardinal functions 

(photosynthesis, water transport, mechanics, storage) are carried by a single stem in monocaulous 

plants (Chapter 6). This particular architectural design might entail a stronger interdependence of 

traits and contrasting functional behavior of stems and leaves compared to branched species. 

Though, morpho-anatomical traits of woody monocaulous plants have virtually not been 

investigated (but see Chapter 6) and their functional characteristics remain unclear. 

Strategic dimensions given by correlation of two or more ecologically important traits 

(Westoby et al., 2002; Westoby and Wright, 2003; Wright et al., 2004; Wright et al., 2007; Osnas 

et al., 2013; Olson et al., 2018) are considered as main drivers of plant evolution and functional 

diversity worldwide (Díaz et al., 2004; Poorter and Bongers, 2006; Díaz et al., 2016). As such, 

identifying extreme points in these multivariate correlations of functional traits should bring strong 

insights into the selective advantage of increasing some leading dimension. As an ultimate state of 

branch reduction, the monocaulous habits stand out at the extremity of the branching order – leaves 

size spectrum known as an element of Corner’s rules (Corner, 1949, 1953-1954). The second

statement of Corner’s rules, “diminution on ramification”, indeed proposed that “the greater the 
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ramification, the smaller become the branches and their appendages” (Corner, 1949). This 

statement has however been poorly investigated (but see White, 1983a; Ackerly and Donoghue, 

1998; Westoby and Wright, 2003, Chapter 6). 

A more widely studied spectrum is the leaf size – twig size spectrum (Westoby and Wright, 

2003), also known as leaf – stem scaling (e.g. Yang et al., 2009). It corresponds to the first 

statement of Corner’s rules, i.e “axial conformity”, proposing that “the stouter, or more massive, 

the axis in a given species, the larger and more complicated its appendages” (Corner, 1949). It 

arises from the observation of Sinnott (1921) and Corner (1949) on the general correlation between 

individual leaf size and pith (i.e. primary meristem size) or stem diameter respectively. This 

relationship, confirmed by numerous studies (White, 1983b, a; Bond and Midgley, 1988; Brouat et 

al., 1998; Cornelissen, 1999; Brouat and McKey, 2001; Preston and Ackerly, 2003; Westoby and 

Wright, 2003; Sun et al., 2006; Normand et al., 2008, Chapter 6), has been extended to twig or 

plant levels as the foliage – stem scaling (e.g. Brouat et al., 1998; Sun et al., 2006; Olson et al., 

2009; Smith et al., 2017; see Lehnebach et al., 2018). If the universality of these relationships is 

obvious, the functional relations linking foliage area and stem area, and individual leaf area and 

stem area, remain poorly debated. Leaf area and stem diameter are alternatively linked by hydraulic 

(Chuah, 1977; White, 1983a; Preston and Ackerly, 2003; Sun et al., 2006; Normand et al., 2008),

mechanic (White, 1983a; Niklas, 1992; Normand et al., 2008; Olson et al., 2009; Levionnois et al., 

2018a) and photosynthesis (Primack, 1987; Cornelissen, 1999) functions. Attempts to identify the 

relative importance of each function remain scarce (Normand et al., 2008; Levionnois et al., 

2018a). This debate needs further anatomical studies to quantify the structure-function 

relationships responsible for foliage – stem scaling (Lehnebach et al., 2018, Chapter 6).

The selective advantage of monocauly in rainforest has been questioned by several authors 

146



(e.g. Richards, 1966; D'Arcy, 1973). Some insights suggest that sparsely-branched trees with large 

leaves are fast-growing and preferentially growth in first stage of forest succession (White, 1983a; 

Ackerly, 1996). By contrast, in forest understory, monocaulous species might not benefit from 

growth advantage but would rather exhibit a conservation resource strategy compared to their 

branched relatives (Chapter 6). Anatomical properties of monocauls has mainly been investigated 

in rosette-tree and rosette-shrub species through the phenomenon of secondary woodiness. These 

plants appeared to have large pith and cortex (Carlquist, 1974; Mabberley, 1974a; Hallé et al., 

1978; Meinzer and Goldstein, 1986; Mosbrugger, 1990) and thin wood characterized by an 

important proportion of parenchyma (Carlquist, 1962; Mabberley, 1974a; Aldridge, 1978; 

Mosbrugger, 1990). But these anatomical features seem different from some rainforest 

monocaulous species, which showed a thick cylinder of dense wood and have not evolved from 

herbaceous ancestors (Chapter 6).  

In this study, we compared functional traits, from micro-anatomical to whole plant scale, 

of monocaulous species and their branched relatives growing in the understory of New Caledonian 

rainforest. This site was selected because of the exceptional diversity in monocaulous plants 

providing a wide phylogenetic spectrum for the selection of species (Chapter 5). Our aim was to 

compare the functional strategy of monocaulous plants with closely related species using several 

dimensional traits associated with mechanical, hydraulic and physiological functions. 

Monocaulous species were also compared to the TRY Plant trait Database (Kattge et al., 2011) for 

important trait coordination. Through multi-level anatomical investigation (from cell to tissue) we 

also investigated the functional explanation of the universal leaf – stem and foliage – stem scaling.  
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FIGURE 7.1 – Map of New Caledonia and location of study sites in the South of main island. Layer of Ultramafic substrate from 

DIMENC/SGNC-BRGM (2010). Layer of rainforest from Birnbaum et al. (unpublished data).
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Taxon Family Voucher Study site Architectural model

Atractocarpus bracteatus Schltr. & K.Krause
Rubiaceae

Bruy 133 Plaine des lacs Corner*

Atractocarpus ngoyensis (Schltr.) Mouly Bruy 139 Plaine des lacs Stone

Melicope lasioneura (Baill.) Baill. ex Guillaumin
Rutaceae

Bruy 137 Plaine des lacs Corner*

Melicope glaberrima Guillaumin Bruy 597 Koghis Rauh

Litsea ripidion Guillaumin
Lauraceae

Bruy 610 Haute Kuébini Corner*

Litsea triflora Guillaumin McPherson 4599 Haute Kuébini Rauh

Bocquillonia spicata Baill.
Euphorbiaceae

Bruy 131 Plaine des lacs Corner*

Bocquillonia rhomboidea (Schltr.) Airy Shaw Bruy 229 Plaine des lacs Aff. Koriba

Cleidion lasiophyllum Pax & K.Hoffm.
Euphorbiaceae

Bruy 169 Démazures Corner*

Cleidion vieillardii var. vieillardii Baill. Bruy 140 Plaine des lacs Rauh

Phelline comosa Labill.
Phellinaceae

Bruy 604 Plaine des lacs Corner*

Phelline lucida Vieill. ex Baill. Bruy 414 Koghis Rauh

Tapeinosperma gracile Mez
Primulaceae

Bruy 172 Démazures Corner*

Tapeinosperma robustum Mez Bruy 122 Koghis Rauh

Balanops pancheri Baill.
Balanopaceae

Bruy 132 Plaine des lacs Chamberlain*

Balanops vieillardii Baill. Pillon 610 Koghis Aff. Koriba

Pittosporum pronyense Guillaumin
Pittosporaceae

Bruy 164 Plaine des lacs Chamberlain*

Pittosporum deplanchei Brongn.& Gris Bruy 607 Haute Kuébini Leeuwenberg

Phyllanthus francii Guillaumin
Phyllanthaceae

Bruy 128 Plaine des lacs Cook*

Phyllanthus koghiense Guillaumin Bruy 603 Koghis Roux

TABLE 7.1 – List of sampled taxa, study sites and architectural models. Asterisks indicate monocaulous architectural models. 
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7.2 Material & methods 

7.2.1 Study site and sampling 

Located in the Southwest Pacific Ocean (20-23 °S, 164-167 °E, Figure 7.1), New Caledonia 

benefits from a subtropical climate (Maitrepierre, 2012). The study was undertaken in four 

locations in the southern part of the main island (Grande Terre, Figure 7.1) in understory of 

evergreen rainforest of low and mid-elevation on ultramafic substrate (Jaffré et al., 2012). All sites 

were on ferralitic soils (i.e. Ferralsols) overlying peridotite. These soils are characterized by low 

concentration of P, K, and Ca, imbalanced Mg/Ca ratio, high concentration of potentially 

bioavailable toxic trace elements (Ni, Mn, and low ion exchange capacity; Jaffré, 1993; L'Huillier 

and Edighoffer, 1996; Isnard et al., 2016). These locations were chosen because all taxa are 

abundant, allowing more reliable comparisons. Elevation ranged from 200 m (Haute Kuébini) to 

550 m (Koghis) and mean annual pluviometry from 2200 mm.yr-1 (Koghis) to 3000 mm.yr-1 (Plaine 

des Lacs) (Météo-France, 2007).

Twenty species in 10 different genera were sampled (one monocaulous and one branched 

species in each genus). To ensure phylogenetical independence of results, each genus was selected 

from different families covering seven orders (Table 7.1). Only genera Bocquillonia and Cleidion

belong to the same family (Euphorbiaceae) but belong to different tribes (Wurdack et al., 2005). 

Five individuals per species were sampled between September 2016 and Mars 2017. In 

order to limit ontogenetic effect and allow for reliable comparison, selection of individuals was 

standardized as follows: (i) recently mature individuals were selected based on the observation of 

inflorescences/fruits or scars, (ii) only non-reiterated individuals (see Oldeman, 1974; Barthélémy 

and Caraglio, 2007) and (iii) non-traumatized trunks were selected. Fully expanded leaves were 

sampled in distal parts of the plants (Figure 7.2). All samples (Figure 7.2) were placed in hermetic 
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FIGURE 7.2 – Summary of sampling procedure and trait measurement protocol. DMC: Dry Matter Content, POM: Point of 

Measurement, SLA: Specific Leaf Area.
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bags, and stored in a cool and wet environment during transportation to the lab. Measurements 

were carried within max. 24 hours after sampling. Leaves were not separated from stem until 

measurement. 

7.2.2 Traits analyzed 

All traits (Table 7.2) were measured from five individual per species (Figure 7.2). Whole 

plant stem traits (plant height and basal area) were measured in situ with a measuring tape, a caliper 

and eventually a TRUPULSE 360R Telemeter for taller plants. 

For the measurement of leaf traits, fresh mass of lamina were measured with a precision 

balance. Length of petioles (PL) was measured with a measuring tape. Leaf laminas (petiole 

removed) were scanned at 300 pp and leaf area (LA) was calculated with the imageJ software 

through the LeafArea package for R (Masatoshi, 2017). Laminas were dried at 50 °C for 72 hours 

and their dry masses were measured to calculate specific leaf area (SLA) and leaf dry matter content 

(LDMC). 

For the measurements of stem traits, sampling was done at Point Of Measurement (POM) 

which is located directly under the trunk leaf-tuft (Figure 7.2). This POM was selected because (i) 

branched and monocaulous species could only be compared for trunks, (ii) it makes a direct link 

between stem anatomy and distal leaf traits (e.g. Huber Value) and (iii) distal parts of the plant are 

supposed to be approximately of same age. The portion of stem situated at POM (5-6 cm long) was 

sampled and separated in (i) one 2-3 cm long portion of stem, (ii) one 2-3 cm long portion of wood 

(pith and cortex pulled-out), (iii) one cross-section of stem used for anatomical measures (see 

below) (Figure 7.2). The fresh and dried (at 50°C for 72h) mass, and fresh volume (using the water 

displacement method) of stem and wood portion were measured to calculate Stem Specific Density 

(SSD), Stem Dry Matter Content (SDMC) and Wood Specific Density (WSD) (see Table 7.2 for 
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trait values calculations). For leaf anatomical measurements, one leaf per individual was measured 

(Figure 7.2). Procedure followed the IAWA requirements as close as possible (Wheeler et al., 1989; 

Baas et al., 2004). Anatomical characters were investigated through freehand cross-sections on 

material fixed in 70 % ethanol. To examine photosynthetic and non-photosynthetic tissues of the 

limb, unstained transversal cross-sections (Figure 7.2) were mounted in water. Leaf thickness (LT) 

and area of palisade and spongy mesophyll were measured on five 1000-μm-wide fields of view. 

Stomata density (SD) was measured from leaf impression (nail polish) of a lamina, avoiding veins, 

on six fields of view of 250000 μm². For all observations we used a Leica DM5000B binocular 

microscope or Leica M165C stereo microscope depending on anatomical elements. Both were 

mounted with a Leica EC3 camera for photography. Traits were measured from photographs with 

the imageJ software (Schneider et al., 2012). The two species of Bocquillonia presented too much 

ornamented leaf abaxial epiderm to enable leaf impression; in this case, stomata density was 

measured on photographs performed with scanning electron microscope (FEI Quanta 200 FEG). 

Leaf anatomical traits (Figure 7.2, Table 7.2) have not been measured yet on all sampled 

species. LT, ratio of palisade mesophyll area to spongy mesophyll area (PSR) and SD was only 

measured on genera Atractocarpus (Rubiaceae), Bocquillonia (Euphorbiaceae), Litsea 

(Lauraceae), Phelline (Phellinaceae) and Tapeinosperma (Primulaceae). The five other genera will 

be measured subsequently to complete the dataset. 

For stem anatomical traits (Figure 7.2, Table 7.2), different scales were used. Macro-

anatomy (cross-sectional area, area of pith, wood, phloem and cortex) was measured regarding the 

total cross-section either with stereo microscope (in this case, section was finely sanded) or 

binocular microscope depending on stem size. For micro-anatomy, approximately 30-μm-thick 

transverse sections were made with a vibratome (Microm HM650V) and were prepared according 
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Trait
Abbrev
iation

n Units Formula
Related 
function

References

Whole plant traits

Slenderness 
ratio

SR 1 Ø

Geometric 
feature of 
buckling 
resistance

Alméras et al. 
(2004); Niklas
et al. (2006);

Homeier et al. 
(2010)

Tapering T 1 cm.m-1

Geometric 
feature of 
buckling 
resistance

Poorter and 
Werger (1999); 
Niklas (2000)

Huber value HV 1 Ø
Allocation of 
wood to leaf 

area deployed

Penfound 
(1931);

Gleason et al. 
(2012); Pérez-
Harguindeguy 
et al. (2013)

Apical (POM) stem traits

Distal stem 
area

Sarea 1 μm² Ø
Mechanical 

reinforcement 
(geometrical)

Vertessy et al. 
(1995); 

Westoby and 
Wright (2003); 

Olson et al. 
(2009)

Pith area Parea 1 μm² Ø
Primary stem 

diameter

Sinnott (1921); 
Eggert (1961);

Chapter 6

Stem dry 
matter content

SDMC 1 Ø
Growth rate, 
mechanical 

reinforcement

Shipley and Vu 
(2002); Pérez-
Harguindeguy 
et al. (2013)

Specific stem 
density

SSD 1 g.cm-3

Growth rate, 
capacitance,  
mechanical 

reinforcement

Pérez-
Harguindeguy 
et al. (2013);

TABLE 7.2 – List of measured traits. References are given to justify the interest of each trait 

for corresponding functions. n=replicate(s) per individuals

!"#$%!&'()&%
!"#$%!*#+#"!,(#-'%'.

/%'-0,.10-#++0#%0!23
/%'-04.'+&0-#++0#%0!23

5#+#"0,(#-'%'. 6 7(+%#"0,(#-'%'.
!"#$%!&'()&%

899,!#.'#!#%!!23
3'#$0"'#40#.'#0 × :*0940"'#40#*9;'0!23

/%'-!,.1!-#++0#%0!23
/%'-!4.'+&!;9"<-'0#%0!23
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Díaz et al. 
(2016)

Proportion of 
pith

Pithp 1 Ø
Primary 

growth, stem 
biomechanics

Carlquist 
(1974); Niklas

(1992);
Levionnois et 

al. (2018)

Proportion of 
wood

Woodp 1 Ø
Secondary 

growth, stem 
biomechanics

Penfound 
(1931);

Schuerger et al. 
(1997);

Hummel et al. 
(2007)

Proportion of 
phloem

Phloemp 1 Ø
Photosynthate 

exchange

Ewers and 
Fisher (1991); 
Hölttä et al. 

(2009); Santini 
et al. (2012)

Proportion of 
cortex

Cortexp 1 Ø Storage
Pérez-

Harguindeguy 
et al. (2013)

Apical (POM) wood traits

Specific wood 
density

WSD 1 g.cm-3

Growth rate, 
drought 

resistance and 
mechanical 

reinforcement

Pérez-
Harguindeguy 
et al. (2013);
Wright et al. 

(2007); Olson
et al. (2009)

Fiber density FD 6 μm-² Ø
Wood 

mechanical 
resistance

Baas et al. 
(2004); 

Beeckman 
(2016)

Vessel 
diameter

Vd 18
μ!

m

Hydraulic 
efficiency / 

cavitation risk

Sperry et al. 
(2007); 

Beeckman 
(2016); Hacke 
et al. (2017)

Vessel density VD 6 μm-² Ø
Hydraulic 

efficiency / 
cavitation risk

Zanne et al. 
(2010); Hacke 
et al. (2017); 

=.'#!94!>(%&
8&9"'!+'?%(9$!#.'#

=.'#!94!@99,
8&9"'!+'?%(9$!#.'#

=.'#!94!?9.%'A
8&9"'!+'?%(9$!#.'#

=.'#!94!>&"9'-
8&9"'!+'?%(9$!#.'#

899,!,.1!-#++0#%0!23
899,!4.'+&!;9"<-'0#%0!23

BC-#D9.0;'++'"0,(#-'%'.0
× -($9.0;'++'"0,(#-'%'.E
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Levionnois et 
al. (2018)

Hydraulically 
weighted 

mean vessel 
diameter

Dm 1 μm²
F G,HIJKLMMLNOI
F G,PIJKLMMLNOI

Hydraulic 
efficiency

Tyree et al. 
(1994); Kolb 
and Sperry 

(1999); Ewers 
et al. (2000))

Theoretical 
conductivity

Kth 1
kg.m-1.s-

1.MPa-1 Q × R G,P
STU × V

IJ

KLMMLNOI

Hydraulic 
efficiency

Tyree and 
Zimmermann 

(2002); 
Martinez-

Cabrera et al. 
(2011)

Theoretical 
specific 

conductivity
Ks-th 1

m4.MPa-

1.s-1 Kth!×!VD!×!Wood!area!
Hydraulic 
efficiency

Pfautsch et al. 
(2018)

Ray frequency RF 6 μm-1 Ø
Exchanges, 

Carbon storage

Morris et al. 
(2016); 

Plavcová et al. 
(2016); 

Carlquist 
(2018)

Ray thickness RT 1
Nb of 
cells

Ø
Exchanges, 

Carbon storage

Morris et al. 
(2016); 

Plavcová et al. 
(2016); 

Carlquist 
(2018)

Leaf traits

Mean Leaf 
area

LA 5 m² Ø

Energy balance, 
hydraulic 
demand, 

mechanical 
constriants

Poorter et al. 
(2009); Pérez-
Harguindeguy 
et al. (2013);

Ackerly (2004)

Specific Leaf 
Area

SLA 5 m².g-1

Allocation of 
biomass to light 

harvesting; 
growth rate

Pérez-
Harguindeguy 
et al. (2013);

Westoby et al. 
(2002)

W.'+&0"#-($#!#.'#
X'#4!,.1!-#++
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Leaf dry 
matter content

LDMC 5 Ø
Structural 
allocation; 
growth rate

Hodgson et al. 
(2011); Pérez-
Harguindeguy 
et al. (2013)

Petiole length PL 5 cm Ø
Reducing 

autoshading; 
leaf mechanic

Takenaka 
(1994); 

Weijschedé et 
al. (2007)

Lamina 
thickness

LT 5 μm Ø
Photosynthetic 

rate; leaf 
mechanic

Díaz et al. 
(2004); Pérez-
Harguindeguy 
et al. (2013)

Ratio of leaf 
parenchyma

PSR 5 Ø
Hydraulic 

capacity; Gaz 
exchange

Grubb et al. 
(1975); Sack 

and Frole 
(2006); 

Terashima et al. 
(2011)

Stomata 
density

SD 6 μm-² Ø Gaz exchange

Grubb et al. 
(1975); 

Farquhar and 
Sharkey 

(1982); Xu and 
Zhou (2008)

X'#40,.10-#++
X'#404.'+&0-#++

!#"(+#,'0-'+9>&1""0#.'#
/>9$)10-'+9>&1""0#.'#
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to the following protocol: (i) 10-20 minutes in 20% bleach to decolorize tissues, (ii) 5 minutes in 

water to remove bleach, (iii) 2 minutes in acetic acid to facilitate colorant fixation, (iv) 5-10 seconds 

in Toluidine blue to colorize different tissues and (v) fast rinsing with water. The external portion 

of wood were photographed to measure wood anatomical traits. Vessel density (VD) was measured 

in six 60000 μm² fields of view. Fiber density (FD) was measured in six 5000 μm² fields of view. 

Ray frequency (RF) was measured as the number of rays crossing six 200-µm-long tangential 

segments. Ray thickness (RT) is the maximal thickness of ray for one individual in number of cells 

as recommended by IAWA (Wheeler et al., 1989; Baas et al., 2004). Vessel diameter (Vd) was 

measured as the geometrical mean of the minimum and maximum vessel diameter (Figure 7.2) for 

18 vessels randomly selected in external wood. 

We further calculated hydraulically weighted mean vessel diameter (Dm), theoretical 

conductivity (Kth) and theoretical specific conductivity (Ks-th) (see Table 7.2 for formulas and 

references) based on micro-anatomical traits. 

7.2.3 Data analysis 

Comparison between monocaulous and branched species – The effect of monocaulous 

architectural models (Corner’s: 7 species, Chamberlain’s: 2 species, Cook’s: 1 species) and leaf 

composition (simple: 8 species, compound: 1 species, phyllomorphic branch: 1 species) on 

functional traits were tested beforehand through permanova (Vegan package for R, Oksanen et al., 

2018). The effect of both factors was non-significant (P > 0.063). Although this absence of 

difference could be due to the unbalanced representation of architectural models and leaf types, 

these factors were not statistically controlled in subsequent analyses. 

Trait differences between monocaulous and branched species were tested through mixed 

effects anovas performed with the nlme package for R (Pinheiro et al., 2017). Fixed explanatory 
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variable was the growth habit (monocaulous or branched) and response variables were all other 

functional traits (Table 7.2), and were logarithmically transformed when necessary. Random 

variables were genera and individual (nested in genera) for traits with several replicates per 

individual.

Stem size – leaf size allometries were investigated through linear regression at three 

different levels; (i) at the level of phytomer by considering distal pith area (primary meristem 

diameter) – mean leaf area relationships (Sinnott, 1921), (ii) at individual-leaf level by considering 

distal stem area (including secondary growth) – mean leaf area relationships (leaf – stem scaling, 

e.g. Westoby and Wright, 2003; Sun et al., 2006) and (iii) at leaf-tuft level by considering distal

stem area – total leaf area relationships (foliage – stem scaling, e.g. Brouat et al., 1998; Olson et 

al., 2009). For each regression, data was log-transformed and differences in slopes and intercepts 

between monocaulous and branched species were tested by adding growth habit and their 

interactions in linear models (Ancovas). 

Comparison with the TRY Database – To test if functional differences observed between 

New Caledonian monocaulous and branched species were consistent when compared to other 

species in other geographical areas, functional trait values were extracted from the TRY Plant trait 

Database (Kattge et al., 2011). We focused on two standardized and widely measured plant traits 

to approximate: (i) resource acquisition strategy in relation to leaf size (SLA – LA relationship), 

both traits are at the center of the worldwide leaf economic spectrum (Wright et al., 2004; Osnas 

et al., 2013; Edwards et al., 2014), and (ii) hydraulic investment in relation to deployed leaf area 

(Huber value – Vd relationship). For each functional dimension, linear regressions were performed 

with 95% prediction intervals and the functional space occupied by monocaulous plants and their 

95% prediction ellipse were added on the global spectrum.
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Huber value (HV) represents sapwood area to leaf area ratio and is widely used to 

investigate hydraulic constraints on wood anatomy (Pickup et al., 2005; Wright et al., 2006; Pérez-

Harguindeguy et al., 2013). Vd is widely used to approximate hydraulic efficiency in plants (Zanne 

et al., 2010; Beeckman, 2016), as hydraulic conductivity is a fourth-power function of the vessel 

diameter (Hagen-Poiseuille law, Tyree and Zimmermann, 2002). All freely available data from the 

TRY database where both traits were measured came from the compilation of Choat et al. (2012) 

and involve tree or shrub species. After removing some bottle tree species such as Brachychiton 

australis, for which anatomy is too much atypical, the used dataset included 163 pairs of measures. 

Data where LA and SLA were measured such as previously described came from 10 

published studies (Shipley, 1995; Pyankov et al., 1999; Shipley and Vu, 2002; Cavender-Bares et 

al., 2006; Swaine, 2007; Baraloto et al., 2010; Laughlin et al., 2010; Milla and Reich, 2011; 

Frenette-Dussault et al., 2012; Auger and Shipley, 2013). Given that relationships between leaf 

traits varied little with growth habit (Wright et al., 2004; Milla and Reich, 2007), herbs and lianas 

were considered as well as woody autoportant species in analysis. Only arborescent 

monocotyledons (e.g. palmae), of which a majority is unbranched, were removed from the dataset 

leading to a total of 18863 observations. 

Anatomical implication of foliage – stem scaling – To disentangle functional implication 

of the foliage area – stem size relationships and particularly relative importance of hydraulic, 

mechanic and storage constraints, anatomical structures were partitioned following their functions 

and their relationship with foliage size was independently assessed at different levels. 

At the stem level, whether variation in Sarea was more related to total leaf area or to total 

leaf fresh mass was tested. Univariate and multivariate linear regressions were performed with 

foliage area and/or foliage mass as explanatory variables and Sarea as the response variable. 
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Differences in the slope between the two regressions were tested with Pillai’s trace test (Pillai, 

1955) as implemented in the car package for R (Fox and Weisberg, 2011). Higher effect of foliage 

area, with a surrogate of evapotranspiration rate and photosynthetic resource capture, would 

suggest higher constraints in water conduction and/or metabolic rates on the variation of stem size. 

Higher effect of foliage mass would suggest stronger mechanical constraints on the stem, implying 

resistance adjustment through stem size. 

At the tissue level, the relative contribution of the major stem tissues to the increase in 

foliage area with stem size was analyzed. Pith area, xylem area, phloem area and cortex area were 

each regressed against total leaf area and slope differences were tested through Pillai’s trace tests. 

A higher contribution of pith would suggest stronger mechanical constraints (through second 

moment of inertia, Niklas, 1992) in the foliage – stem relationship; a higher contribution of phloem 

or cortex would suggest a strongest role of photosynthate transport and storage (Kozlowski, 1992).

Wood is a highly multifunctional tissue (Evert, 2006; Beeckman, 2016) and its higher contribution 

to the foliage – stem relationships has to be further explored through cell-types contribution (vessel, 

fiber and parenchyma). 

Therefore, at the wood level the relative contribution of the major cell types to the variation 

in foliage area was tested. Number of vessels (hydraulic function), fibers (mechanical function) 

and rays (storage function) in the total wood cross-section were respectively regressed against total 

leaf area. Slope differences between these three regressions were tested through Pillai’s trace tests.

7.3 Results 

7.3.1 Functional differences between monocaulous and branched species 

Several morpho-anatomical traits are significantly different between monocaulous and 
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Trait n Log likelihood
Value 

monocaulous
P.value

Stem traits

Sarea 100 -113.4 1.0893 < 0.001
Parea 100 -153.1 0.9816 < 0.001
SR 100 -80.2 0.243 0.011
T 100 -88.2 -0.384 < 0.001
SDMC 100 115.7 -0.0136 0.300
SSD 100 98.3 -0.014 0.370

Macro-anatomy

Pithp 100 -78.1 -0.1078 0.262
Xylemp 100 80.2 0.0869 < 0.001
Phloemp 100 207.9 -0.0055 0.268
Cortexp 100 96.8 -0.0483 0.003

Wood traits

WSD 100 76 -0.034 0.088
FD 600 -272.9 -0.2887 < 0.001
RF 600 1430.3 -0.0082 0.002
RT 100 -124.3 0.18 0.224
Vd 1800 245.8 0.2061 < 0.001
VD 600 -495.3 -0.3977 < 0.001

Hydraulic traits

HV 100 -69.8 -0.2625 0.004
Dm 100 -5.9 0.2257 < 0.001
Kth 100 -134.7 0.9457 < 0.001
Ks-th 100 -164.3 1.9414 < 0.001

Leaf traits

LA 500 -200.6 1.1603 < 0.001
PL 500 -165.1 0.1856 0.291
LDMC 500 785.4 -0.0568 < 0.001
SLA 500 170.4 -0.0708 0.183
LT 251 222.6 0.2175 < 0.001
PSR 251 -8.3 0.12 0.198
SD 301 1654.2 -0.0017 0.026

DMC: dry matter content, SD: specific density, SLA: specific leaf area

TABLE 7.3 – Results of mixed effect anovas. A positive value in “Value monocaulous” 

indicates higher traits value for monocaulous than for branched species. Bold lines represent 

significant relations between growth habit and the corresponding trait following a 0.05 risk 

of error.
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FIGURE 7.3 – Comparison of micro-anatomy (left) and macro-anatomy (right) between 

monocaulous and branched species in five of the ten studied genera. (A) Atractocarpus, (B) 

Bocquillonia, (C) Litsea, (D) Phelline, (E) Tapeinosperma. For macro-anatomical photographs, 

each bar is 1 mm long.
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branched plants (Table 7.3). Monocaulous plants exhibited slender and less tapered stem, 

suggesting less mechanical reinforcement. They tended to have thicker apical cross-sections, both 

at primary growth (Parea) and after the onset of secondary growth (Sarea) (Figure 7.3). This larger 

Sarea was associated with a higher proportion of xylem, and not pith, while branched species 

allocated relatively more in cortex tissue. WSD, SSD and SDMC were not significantly different 

between monocaulous and branched species. Wood of monocaulous species was characterised by 

larger vessels and a lower FD, VD and RF in comparison to branched species (Figure 7.3). HV was 

lower in monocaulous plants, implying lower wood area dedicated to the supply of the distal leaf 

area with water and minerals. This was, at least partially, compensated by higher values of traits 

related to hydraulic capacity (Vd, Dm, Kth, Ks-th). Leaves were by far larger for monocaulous plants 

but no significant difference in SLA was found. This could result from higher LT but lower LDMC 

in monocaulous plants as SLA is an inverse function of LDMC and LT (Hodgson et al., 2011).

Allocation in the palisade and spongy mesophylls did not differ between growth habits, but 

monocauls tended to have lower SD. These results need to be confirmed by a complete sampling 

(currently only half of the species has been measured for these traits). 

Leaf area and stem area scaled positively for monocaulous and branched species at 

phytomer level (Figure 7.4-A), at individual-leaf level (Figure 7.4-B) and at leaf-tuft level (Figure 

7.4-C). This observed scaling was not significantly different between growth habit at phytomer 

(Figure 7.4-A) and leaf-tuft levels (Figure 7.4-C), whether considering slopes (Ancova, P = 0.24 

and P = 0.74 respectively) or y-intercepts (Ancova, P = 0.099 and P = 0.94). The scaling was 

different between growth habit at individual leaf level (Figure 7.4-B), LA increased more rapidly 

with Sarea for branched species (Ancova, P = 0.01) that have significantly smaller leaves for a given 

stem size (lower y-intercept, Ancova, P = 0.007). Total leaf area explained a greater variability of 
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FIGURE 7.4 – Leaf – stem relationship for monocaulous and branched species considering 

(A) individual leaf and pith area, (B) individual leaf area and stem area at point of 

measurement and (C) whole leaf-tuft area and stem area at point of measurement. Green 

squares correspond to monocaulous species and brown circles to branched species.
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FIGURE 7.5 – Comparison between monocaulous plants and worldwide plants (TRY 

database) for (A) hydraulic comportment and (B) photosynthetic comportment. Black lines 

represent linear regression of branched species with 95% prediction interval in blue. Red 

points and ellipses represent monocaulous individuals and their 95% prediction ellipses.
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stem distal area than mean leaf area. 

When data for monocaulous plants was compared to a larger diversity of species, growth 

habits and environmental conditions from the TRY database, the New Caledonian monocaulous 

occupied a corner position on the trait coordination spectrum. Globally, HV decreased 

logarithmically with increasing Vd (logged data, Figure 7.5-A). This trend was mainly due to an 

increasing variation in HV when Vd increased: since large vessels facilitate hydraulic capacity, they 

are suited for both high and low ratio of xylem to distal leave area while small vessel elements are 

more strongly associated with high ratio of wood to distal leaves. Within this global scaling, 

monocaulous appeared to be extremes in having both relatively large vessels and low leaf area to 

wood area ratio. LA and SLA scaled positively in a linear way (logged data, Figure 7.5-B): at large 

scale, the larger the leaf, the lower the structural investment. In this context, New Caledonian 

monocaulous appeared peculiar in having extreme leaf size but low SLA as shown by ellipse 

largely exceeding the global 95% prediction interval. 

7.3.2 Anatomical implication of foliage – stem scaling 

Sarea scaled positively with both total leaf area and total leaf mass (Figure 7.6). Both traits 

were strongly correlated and association with stem size was high in both cases (slopes > 0.97, 

adjusted R² > 0.74), but slope was significantly higher for foliage mass than for foliage area (Pillai’s 

trace test, P < 0.001) suggesting greater importance of mechanical constraints on the foliage – stem 

size relationship. 

The area of each stem macro-anatomical tissues (pith, xylem, phloem and cortex) scaled 

positively with total leaf area (Figure 7.7). Slopes of regressions were significantly higher for pith 

and xylem areas than for cortex and phloem areas, even if the adjusted R² of the pith area – foliage 

area relationship was quite low (adjusted R² = 0.57). 
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FIGURE 7.6 – Relationship between stem area and (A) total leaf area or (B) total leaf mass.
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FIGURE 7.7 – Relationship between total leaf area and (A) pith area, (B) xylem area, (C) 

cortex area or (D) phloem area. Lowercase letters on graphs indicate the results of Pillai’s 

trace test: regressions with shared letters do not have different slopes following a 0.05 risk 

of error.

169



Vessel and fiber number showed a significant positive relationship, with similar slope, with 

total leaf area (logged data, Figure 7.8). The relationship was also significantly positive but much 

less pronounced for the number of rays. 

7.4 Discussion 

7.4.1 Toward a functional characterization of rainforest monocaulous habit 

Whereas major functions of most trees and treelets are partitioned between axis categories 

(trunks, branches, twigs, see Barthélémy and Caraglio, 2007), monocauls are characterized by a 

single trunk assuming all essential functions (Chapter 6). This particular architectural design 

involved functional constraints leading to contrasting functional behavior of stems and leaves 

between growth habits (branched versus monocaulous). 

Biomechanics – Carlquist (1974) suggested that distal parts of monocaulous stems might 

possess a wood cylinder configuration that would maximize strength because of the large and 

numerous leaves. We found a strong difference in both LA and Sarea between monocaulous and 

branched species, as well as a significant relation between Sarea and total leaf mass that confirms 

the mechanical reinforcement of upper stem in response to apical mass for both growth habit. 

Thicker apical diameter in monocaulous species however results from higher wood fraction and 

not pith fraction as previously suggested for other monocaulous models (Carlquist, 1974; 

Mabberley, 1974a; Hallé et al., 1978; Meinzer and Goldstein, 1986; Mosbrugger, 1990). As shown

by the position of monocaulous plants along a two-dimensional spectrum related to hydraulic 

strategies, they tend to have low wood to distal leaf area ratio (HV). Increasing wood area fraction, 

compared to their branched counterparts, is probably to be related to the hydraulic and mechanical 

demand of large and numerous leaves (see below). When considering only monocaulous species, 
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FIGURE 7.8 – Relationship between total leaf area and (A) fiber number, (B) vessel number 

or (C) ray number in wood cross section. Lowercase letters on graphs indicate the results of 

Pillai’s trace test: regressions with shared letters do not have different slopes following a 

0.05 risk of error.
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we found only weak correlation between WSD and total leaf area (Spearman correlation test: rho 

= -0.12, P = 0.41) or wood traits such as FD (rho = 0.10, P = 0.48), Vd (rho = -0.26, P = 0.07) or 

VD (rho = 0.24, P = 0.09) while these correlations are significant for closely related branched 

species (not shown) and often supported in literature (e.g. Mencuccini, 2003; Ackerly, 2004; 

Cavender-Bares et al., 2004; Santiago et al., 2004; Pickup et al., 2005; Wright et al., 2007; Zanne 

et al., 2010). These results support the view that geometric adjustment of the stem, rather than 

micro-anatomical variation, is involved in the response to the biomechanical and hydraulic demand 

of the monocaulous habit. 

At the whole plant level, monocaulous species tended to deploy higher slenderness ratio 

(SR), whose mechanical stability depends on mechanical reinforcement (E, bending modulus) and 

static-load (P) (Niklas, 1992; Niklas et al., 2006). As for the mechanical stability of a column, SR 

is proportional to (E/P)1/2 (Niklas et al., 2006), and reducing P through lack of branching could be 

sufficient to ensure mechanical stability of slender stems. Higher SR in monocaulous species 

indeed means that they would be more vulnerable to global elastic buckling induced by self-

loading, i.e. if E is low or P is high. But lower tapering of monocaulous stem, resulting for thicker 

apical portion, suggests lower critical buckling lengths for a given bending modulus (Niklas et al., 

2006). Preliminary results seem to indicate that there is no relationship between slenderness 

ratio/tapering and bending modulus at the base of monocaulous stems, i.e. no mechanical 

reinforcement (unpublished data). Monocaulous species are however variables in their 

biomechanical behaviors, with for instance maximal values of bending modulus ranging from 4000 

to 10000 MPa, and different E to diameter relationships (unpublished data). Further biomechanical 

investigations should bring more information on the diversity of mechanical strategies related to 

anatomical construction. 
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Hydraulics – We found that monocauls deployed less xylem per distal leaf area and wider 

vessels than their branched congeners and species from the TRY database. This condition could 

involve plant hydraulics, in regard to the deployment of a large distal leaf area, as wider vessels 

could compensate hydraulically for a proportionally narrower xylem area (Ewers and Fisher, 1991; 

Pickup et al., 2005; Wright et al., 2006). This is because Kth scales with the fourth power of Vd

(Hagen-Poiseuille law), thus a slight increase in Vd causes a disproportional increase in 

conductivity and modifies the wood area needed to conduct water at a given rate (Tyree and 

Zimmermann, 2002). By contrast, VD is not linked with HV (rho = -0.09). The counterpart of this 

increased hydraulic efficiency through vessel size rather than density is the potential increase in 

cavitation risk, as embolism can be (indirectly) related to vessel diameter (Tyree and Sperry, 1989; 

Hacke et al., 2000; Poorter et al., 2010). This phenomena is however supposed to be rare in the 

buffered rainforest understory (see Wright et al., 2006) where most monocaulous species are found 

(Chapter 5). 

Leaves economics – As empirically suggested by Corner (1949), monocaulous plants have 

larger leaves than branched relatives. In a more global spectrum, monocaulous plants from our 

dataset (6×103 – 1.5×105 mm²) have among the largest leaves recorded worldwide (TRY Database, 

Figure 7.5). The global data indicate that SLA increases with LA, while the trend is reversed for 

monocaulous plants (Spearman correlation test: rho = -0.2, P < 0.001, Appendix 3). Several authors 

found similar relationship when comparing species from similar sites (Westoby and Wright, 2003).

In monocaulous plant, this could be attributed to the greater construction cost of large leaves or 

long leaf lifespan, both being often interrelated (Wright et al., 2004; Sack et al., 2012). SLA of 

monocaulous species did however not significantly differ from congeneric branched species, but 

was nevertheless in the lower range of the worldwide spectrum for similar leaf size, suggesting low 
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acquisition of nutrient and conservation of resource (Wright et al., 2004). As such, SLA does not 

bring much information on the ecological strategy that differentiates monocaulous and branched 

habit in similar environment. The components of leaf dry mass – thickness and density (LDMC as 

surrogate) – adjust more independently from the environment and might provide better insights 

into the components of functional strategies (Niinemets, 1999). We indeed found that leaves of 

monocaulous species tend to be thicker with a lower LDMC. Low LDMC could mean that the 

fraction of the leaf volume occupied by mesophyll – where CO2 fixation takes place – is higher, 

though photosynthetic activity is more tightly correlated with SLA (Nadal et al., 2018). But 

monocaulous species tend to have a lower SD, rather suggesting less efficiency in CO2 capture. 

Further works on the economy of light harvesting and biomass partitioning should bring more light 

on the economy of leaves in monocaulous plants (support investments, leaf chemical and structural 

characteristics, Niinemets, 1999; Niinemets et al., 2007).

For leaves, in a given microclimate and soil watering, stomatal and boundary layer 

conductance determine the transpiration rate (Sack et al., 2003). Large leaves, with thicker 

boundary layers, must face slower thermal regulation as – all else being equal – they have larger 

leaf-to-air temperature difference (Wright et al., 2017). This condition is mostly critical in hot, drier 

and sunny environment, where large leaves would fail to regulate transpiration rate (Givnish, 

1987). In rainforest understory, the physiological constraints of large leaves are largely buffered 

(perhaps virtually lacking), favoring the deployment of large photosynthetic area, and its corollary 

reduced branching pattern, to increase light capture at cheaper cost. Using models and different 

scenarios, Smith et al. (2017) predicted that partitioning a given total leaf area in few large leaves 

is economically more interesting than in several small leaves (maximization of return on twig-leaf 

investment). Another selective advantage of the large-leaved monocaulous habit could then be 
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related to growth advantage associated with lower structural cost at plant level (no branching, lower 

wood fraction and slightly lower stem area per total foliage, though not significant). Such growth 

advantage is susceptible to be particularly pronounced on the nutrient poor ultramafic substrate 

(Jaffré, 1993; L'Huillier and Edighoffer, 1996; Isnard et al., 2016) where monocauly preferentially 

evolved (Chapter 5). 

Carbohydrate storage – Carbohydrates are stored in all parts of plants, but the more largely 

used tissue in ligneous non-liana Angiosperms is ray parenchyma (Loescher et al., 1990; 

Kozlowski, 1992; Morris et al., 2016; Carlquist, 2018). Monocauls presented a lower ray density 

and ray thickness was not significantly different following growth habit. The relative allocation in 

ray parenchyma is consequently higher in branched species but monocauls have a higher proportion 

of wood, leading to a higher absolute number of rays (on average 395 against only 243 for branched 

species, not shown). Proportion of cortex is higher in branched species possibly involving further 

implication of this stem tissue in carbohydrate storage. Despite these slight differences in storage 

traits, storage function remain very difficult to approximate with soft traits (Hodgson et al., 1999; 

Weiher et al., 1999) and because storage location varies according to species. Actually, 

carbohydrate storage implies a wide variety of tissues including pith parenchyma, wood ray 

parenchyma, wood axial parenchyma, cortex parenchyma and bark. And the relative contribution 

of each tissue is likely to vary following plant systematic position (Kozlowski, 1992; Carlquist, 

2018). Contrary to hydraulics and biomechanics, storage function could be allocated in other 

organs or axis categories than the trunk (e.g. roots) and if it is the case for some of the studied 

species, differences of storage allocation between growth habits could be hidden. 

7.4.2 Toward a functional explanation of the foliage – stem scaling 

We found a strong relation between stem (shoot) area and leaf area (individual and total) 
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confirming the universal leaf – stem and foliage – stem scaling. Beyond confirming the consistence 

of the pattern across organization levels (phytomer level, individual leaf level, twig level), we 

further showed that the relationship stays mainly unchanged across growth habits (monocauls vs. 

branched) in similar environments, for a wide range of leaf areas (from 6×102 to 1.5×105 mm²). 

Only the stem area – individual leaf area showed differences in slopes and intercepts between 

monocaulous and branched species: monocauls had higher individual leaf area for a given stem 

area but leaf area increased more rapidly with increasing stem area in branched species. The linear 

log-log relation between stem area and leaf area (at all levels) means that leaf area increases 

disproportionately with stem area (Niklas, 1994), as showed in other studies (Bond and Midgley, 

1988; Brouat and McKey, 2001; Westoby and Wright, 2003; Normand et al., 2008, but see Brouat 

et al. 1998). The relationship was stronger at foliage level than at individual-leaf level, confirming 

that stem-leaves relationship is more strongly governed by total leaf area than individual leaf area 

(Brouat et al., 1998; Westoby et al., 2002). 

The foliage – stem scaling has been hypothesized to result from a leaf to stem metabolic 

dependency alternatively involving hydraulics (Chuah, 1977; White, 1983a; Preston and Ackerly, 

2003; Sun et al., 2006; Normand et al., 2008), mechanics (White, 1983a; Niklas, 1992; Normand 

et al., 2008; Olson et al., 2009; Levionnois et al., 2018a) and photosynthesis (Primack, 1987; 

Cornelissen, 1999). In our study, the metabolic constraint seems to operate mechanically, as we 

found a stronger response of apical stem area to increasing foliage mass, representing mechanical 

constraints, than to increasing foliage area, representing hydraulic and photosynthetic constraints. 

The strong correlation of foliage area with pith area also supports the mechanical hypothesis. 

Actually, the increased contribution of pith put mechanically important tissues (wood, cortical 

fibers) at the periphery of the stem, where they have a disproportionate mechanical contribution to 
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whole stem stiffness at lower carbon cost (Niklas, 1992). This geometrical strategy was yet 

suggested as important in the relation between foliage area and stem size (White, 1983a). Wood 

area is also strongly correlated with the variation in foliage area (more than phloem or cortex). The 

increase of wood area appears to be an important mechanism for the adjustment of stem size over 

foliage size because it allows the concomitant increase of several essential functions (hydraulic, 

mechanic and storage). In our case, this adjustment of wood seems more linked with an increase 

in the number of vessels and fibers rather than in the number of rays. More generally, the lower 

relationship between total leaf area and photosynthate-storage related tissues (wood rays, phloem, 

and cortex) showed that this function only little contributes to the foliage – stem scaling. 

The stronger importance of the mechanical function in the adjustment of stem size to leaf 

area is consistent with other studies (Normand et al., 2008; Levionnois et al., 2018a) but must 

depends on the environment. In our study sites, mean annual precipitations were higher than 2200 

mm.yr-1 (Météo-France, 2007). Even if a long dry annual period occurs in New Caledonia 

(Maitrepierre, 2012), this is not critical for rainforest understory where individuals were sampled. 

These moist and shaded conditions make hydraulic and photosynthetic constraints on stem size 

marginal which probably result in prevailing mechanical over hydraulic constraints. 

To summarize, our results suggest that the universal foliage – stem scaling (in rainforest) 

is mainly due to an increase in pith and wood fraction in response to mechanical static load imposed 

by numerous large leaves. But this does not explain why there is a modal correlation between stem 

area and individual leaf area (Westoby et al., 2002). The possible reason is that total leaf area (and 

mass) is more correlated with individual leaf area than with leaf number (Falster and Westoby, 

2003; Westoby and Wright, 2003; Smith et al., 2017), as shown by our dataset (linear regressions 

with total leaf area: Adjusted R² = 0.87 for individual leaf area against 0.28 for leaf number). 
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Moreover, even if total leaf area is equal, biomechanical constraints are not necessarily similar 

when leaf area is made up of few large leaves or many small leaves. Whereas mass imposed by 

small leaves are distributed closely to the supporting axis, mass of large leaves are distributed 

further away from the axis leading to higher biomechanical constraints on stem (longer level arm). 

Such higher biomechanical constraints of leaves appear as a major drivers of foliage – stem 

scaling), and could also explain the universal leaf size – stem size spectrum in rainforest understory. 

Another well-developed theory came from the redundant observation of a negative 

correlation between leaf area and wood density (e.g. Cavender-Bares et al., 2004; Santiago et al., 

2004; Pickup et al., 2005; Wright et al., 2007) or young modulus (Olson et al., 2009; Trueba et al., 

2016). Olson et al. (2009) argue that for a constant total leaf area (and therefore a hypothetical 

similar amount of photosynthates), large-leaved plants have lower stem density because they have 

longer internodes (i.e. “leaf spacing”), thus needing thicker stems for biomechanical adjustment. 

The proposed biomechanical adjustment through stem diameter is coherent with our above 

hypothesis and our results support the negative relation between leaf size and wood density 

(Spearman correlation test: rho = -0.31, P = 0.002, Appendix 3). But we do not think that this 

correlation is due to longer internode in large-leaved species. Virtually all studies that investigated 

both leaf size and internode length did not find a positive correlation between the two traits (Chuah, 

1977; Ashton, 1978; Barcellos de Souza et al., 1986; Lauri, 1988; Poorter and Rozendaal, 2008, 

Chapter 6). This hypothesis is also in contradiction with Corner’s rules (Corner, 1949) predicting 

that small-leaved trees (“leptocaulous”) have longer internodes than large-leaved (“pachycaulous”)

trees. A similar total leaf area does not necessarily imply similar carbon production and carbon 

allocation strategies could be different between large-leaved and small-leaved species. For 

example, a significant part of photosynthates is allocated to fruit production (Niklas and Enquist, 
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2003) which seems higher in large-leaved species (Primack, 1987; Cornelissen, 1999, Chapter 6). 

7.4.3 New Caledonian monocauls, a special case of monocauly?  

Despite being achieved through various structural ways (Corner’s, Holttum’s, 

Chamberlain’s and Cook’s architectural models) (Hallé et al., 1978, Chapter 5), the monocaulous 

habit remains consistent in both physiognomical and functional aspects. We considered a 

reasonable phylogenetical diversity but only a single habitat (rainforest), where most of the New 

Caledonian monocaulous taxa occur (89%, Chapter 5). In that sense our work depicts monocauly 

associated with tropical rain forest understory fairly well. The few species occurring in open habitat 

(maquis) are likely to provide more insight into adaptation to the monocaulous habit, i.e. do they 

exhibit lower leaf area? Lower SLA value? Does transpiration rate influence wood anatomy and 

do we observe different strategies of apical mechanical reinforcement? 

The few published data about monocauls comes from studies about rosette-trees, of which 

the majority is monocaulous. However, beyond their large leaves and thick stems, their stem 

anatomy seems very different from our monocaulous species. Rosette-trees present a 

disproportionate proportion of pith (Cotton, 1944; Carlquist, 1974; Mabberley, 1974a; Hallé et al., 

1978; Meinzer and Goldstein, 1986; Mosbrugger, 1990), a thin and highly parenchymatous wood 

(Cotton, 1944; Mabberley, 1974a; Aldridge, 1978) and a large cortex (Cotton, 1944; Mabberley, 

1974a; Hallé et al., 1978; Mosbrugger, 1990). These contrasting strategies obviously result from 

different evolutionary backgrounds and environmental factors. Most previously studied 

monocaulous species evolve from herbaceous ancestors (e.g. Espeletia for Meinzer & Goldstein, 

Cyanea for Carlquist, Dendrosenecio for Cotton, Echium for Aldridge) and are adapted to dry 

(Böhle et al., 1996; Lens et al., 2013) or frosty (Hedberg and Hedberg, 1979; Meinzer and 

Goldstein, 1986; Givnish, 2016) conditions. At the opposite monocaulous species in New 
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Caledonia most likely evolved from woody ancestors (Barrabé et al., 2018; Chapters 5,6) and are 

suited to moist and shady understory. As such, our study illustrated a virtually unknown ecology 

of monocaulous plants, occurring in several tropical regions throughout the world (e.g. Gabon, 

Hallé and Hallé, 1965; Panama, D'Arcy, 1973; or New guinea, Hallé, 1974), where they could 

represent an important fraction of the understory diversity (Hallé and Hallé, 1965). 
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Chapter 8 — General Discussion and 

Conclusions 

8.1 Monocauly in New Caledonia: evolutionary convergence and an element of the 

archipelago’s functional disharmony? 

New Caledonia is well known for the outstanding distinctiveness of its flora, characterized 

by a marked taxonomic and functional disharmony compared to adjacent regions (Morat et al., 

1994; Jaffré, 1995; Carpenter et al., 2003; Pillon et al., 2010; van der Ent et al., 2015; Trueba, 

2016). In this study, we found that 182 species are monocaulous, belonging to 41 genera, 30 

families and 15 orders. As such, 5.5% of the flora and 9% of the woody flora are monocaulous 

(Chapter 5). Whether this high diversity of monocaulous species and lineages is part of New 

Caledonia’s functional disharmony is difficult to assess given the lack of data for other floras. We 

established a reliable list of monocaulous species, but some taxa (about twenty) still have to be 

thoroughly checked. A similar intensive work (based on a similar definition of monocauly) is 

needed for other regions such as Australia and New Guinea, recognized as the main sources for 

New Caledonian flora (Morat, 1993; Swenson et al., 2014). This could be especially interesting for 

New Guinea, which was also previously suggested as being particularly rich in monocaulous plants 

(Hallé, 1974). 

The occurrence of monocauly in 9% of the woody flora is by far lower than suggested by 

Veillon (1976), who found 112 of the 575 species he considered (19.5%) to conform to 

monocaulous architectural models (Corner’s, Holttum’s, Chamberlain’s and Cook’s). This 

discrepancy might principally result from the inclusion of monocotyledons and ferns in the work 
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of Veillon (1976). In addition, his work was based on an opportunistic sub-sampling of the flora,

which induced a bias in favor of monocaulous species for which architecture is comparatively easy 

and quick to describe. However, 5.5% of the entire flora (and 9% of the woody flora) nevertheless 

represents a significant portion for a growth habit recognized as rare both regionally (Schmid, 

1979) and globally (Hallé et al., 1978; Chomicki et al., 2017). The contribution of monocauly is 

even more remarkable when considering only rainforest vegetation, in which it represents 

respectively 10.7% and 12.4% of rainforest-facultative and rainforest-restricted woody non-

monocot species. For comparison, the monocaulous flora (including monocots and ferns) was 

suggested to account for only 2% of the world’s flora as a whole (Chomicki et al., 2017) and the 

divaricated flora of New Zealand, recognized as the most outstanding syndrome for this island, 

accounts for 10% of the woody flora (Greenwood and Atkinson, 1977).

Whether this outstanding diversity of monocaulous species in New Caledonia translates 

into a high abundance and density of species with this habit in ecosystems is difficult to assess. 

Despite intensive forest inventories carried over the last few years in New Caledonia (Ibanez et al., 

2014; Birnbaum et al., 2015a; Birnbaum et al., 2015b; Ibanez et al., 2017b; Ibanez et al., 2017a; 

Blanchard et al., submitted), abundance and distributional data for monocaulous species are lacking 

because most ecological censuses considered trees with a DBH > 5 cm or DBH > 10 cm. We 

investigated the representativeness of monocaulous species in the New Caledonian Plant Inventory 

and Permanent Plot Network (NC-PIPPN, Ibanez et al., 2014). The results indicated that only 24% 

of New Caledonian monocaulous species were represented in the database, against 46% for 

branched tree species (Ibanez et al., 2014). Most monocaulous species (41%) were represented by 

less than 3 individuals in the database and 80% of them never exceeded 10 cm in diameter. While 

this apparent rarity may also be due to restricted distribution and small plot sizes, small DBH 
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FIGURE 8.1 – Data of density (A) and frequency (B) for monocaulous plants in nine rainforest plots of 0.048 to 0.124 ha (total 

size = 0.576 ha). Plots are located in the south-east of the main island on ultramafic substrate from 240 m to 940 m elevation 

(see Read et al. 2000 for the detailed method).
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indicates that monocaulous plants are mainly represented by old individuals. This confirms that 

monocaulous species have in general a DBH lower than 5 cm and that standardized forest 

inventories are not adapted for the study of this growth habit and more generally for the study of 

understory species. Despite this, monocaulous species were present in 45% of the plots and could 

represent up to 100% of the understory species in some cases. A less extensive study analyzed 

structure, diversity and composition of different rainforests measuring all stems > 1.3 m high in 

nine plots (Read et al., 2000). Plots were located in the south-east of the main island, on ultramafic 

substrate, from 240 m to 940 m elevation, and ranged from 0.048 to 0.124 ha (total size = 0.576 

ha). Extraction of monocaulous species from this dataset confirm that 95.2% of stems are thinner 

than 5 cm DBH and 99.1% thinner than 10 cm DBH. The stem density of monocaulous plants is

highly variable (ranging from 417 to 3934 stems per ha) with a mean of 2135 stems per ha (Figure 

8.1-A). Monocaulous plants account on average for 12.1% (and up to 16.1%) of all stems < 20 cm 

DBH. The smaller the DBH threshold, the higher the frequency of monocaulous plants with an 

average of 13.7% (and up to 19.6%) of all stems < 5 cm DBH (Figure 8.1-B). Despite the low 

representability of monocaulous species in the NC-PIPPN database, and the small area sampled by 

Read et al. (2000) these results suggest that monocaulous plants are an abundant component of 

rainforest understories. 

The high incidence of monocaulous species in New Caledonia could be explained by three 

non-exclusive mechanisms: (i) colonization of many monocaulous taxa, (ii) repeated in situ

evolution and (iii) in situ diversification of monocaulous lineages (see Chapter 1 and Figure 1.1 for 

details). 

(i) The establishment of monocaulous species from other regions would imply that the 

monocaulous habit is an ancestral train in New Caledonian clades. A phylogenetic 
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reconstruction of Atractocarpus did not validate this hypothesis (Chapter 6), nor did the 

phylogeny of several other lineages such as Oxera (Barrabé et al., 2018), Pycnandra

(Swenson et al., 2014; Swenson et al., 2015), Beauprea (He et al., 2016), Pittosporum

(Gemmill, unpublished data), and Tapeinosperma (Gemmill, unpublished data). A careful 

review of architecture expressed in the presumed sister group of New Caledonian 

monocaulous genera suggests that among the 41 genera, only Phyllanthus, Casearia,

Dysoxylum, Plerandra and Meryta might have been established in New Caledonia via a 

monocaulous ancestor. Current evidence consequently suggests that this mechanism 

(primary establishment) did not contributed significantly to extant monocaulous diversity 

in New Caledonia. This remain to be tested, however, and some monocaulous sister groups 

could have become extinct.

(ii) In situ repeated evolution of monocauly in different lineages seems responsible for a large

part of the New Caledonian diversity in monocauls, as the habit appears rarely to have been

ancestral (see above), and we identified more than 31 independent origins. However,

convergent evolution must not be the only mechanism, otherwise there would be as many

independent evolutions as monocaulous species.

(iii) The majority of monocaulous genera (64%) contain more than one monocaulous species

(Chapter 5) and, while multiple shifts to monocauly are frequent within genera, most

monocaulous clades seem to have diversified at least a little. However, there are only a few

genera with several monocaulous species and no truly large monocaulous radiation has been

identified yet, the largest being seven species derived from a single monocaulous ancestor

in Oxera (Lamiaceae, Barrabé et al., 2018). In Atractocarpus, a single monocaulous

ancestor diversified into six monocaulous species and two architecturally intermediate

species (Chapter 6), and monocauly did not significantly enhance diversification rate in the
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clade. As such, while in situ diversification has contributed to the current diversity of

monocaulous taxa, current evidence although suggests a low rate of species diversification 

among groups expressing the habit, although this question needs further investigation. 

As such, convergent evolution of monocauly in New Caledonia is probably the principal 

mechanism leading to the remarkable diversity of monocaulous species in the archipelago (i.e. 

functional disharmony). Our study revealed that this new case of convergence is particularly 

exceptional and illustrates this type of phenomenon for the first time in New Caledonia (Chapter 

5). At a larger phylogenetic and geographic scale, the monocaulous architecture (sensu Hallé et al., 

1978, see Chapter 3) has been shown to evolve repeatedly, with 118 independent origins, across 

more than 20,000 vascular species (Chomicki et al., 2017). Here, we found between 31 and 49 

independent origins across the woody non-monocot flora of New Caledonia (2114 species, Chapter 

5), using a genus-level phylogeny. This result is no doubt highly conservative since monocauly has 

often evolved repeatedly within genera (Rauscher, 2002; Mort et al., 2007; Chomicki et al., 2017; 

Barrabé et al., 2018, Chapter 6). As a comparison, secondary woodiness in the Canary Islands –

known as one of the most striking cases of convergent evolution in islands – evolved 38 times 

independently (based on species-level phylogenies, Lens et al., 2013). 

This remarkable convergence toward monocauly in New Caledonia suggests that strong 

environmental contingencies have favored the evolution of this functionally and physiognomically 

atypical growth habit in the archipelago. To accurately address the question of which 

environmental factors could have facilitated the evolution of monocauly, i.e. which traits were 

selected, we first needed to clarify the functional implications of monocauly. 

186



FIGURE 8.2 – Illustration of life-history traits supposed and/or showed to be associated with monocauly. Green ellipses show 

previously suggested traits for which we confirmed the relationship. Yellow ellipses show previously suggested traits for which 

we found no relationship. Red ellipses show previously suggested traits for which we found inverse relationship. Blue ellipses 

show not previously suggested traits for which we found a significant relationship. Letters represent chapters in which the 

relationship was investigated. 
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8.2 Ecological and evolutionary implications of monocauly 

8.2.1 A well-defined functional strategy 

Observations of numerous authors suggested an association between the monocaulous habit 

and several life history traits. Trait attributes that were empirically or indirectly linked to the

monocaulous habit include large leaves, thick stem, large fruits, complex inflorescences, 

compound leaves, cauliflory, dioecy, few leaves, rhythmic growth, short internodes, slender stem, 

thin wood, thick pith, thick cortex, parenchymatous wood and soft stem tissues (see Figure 3.2). 

We tested all of these associations either through taxonomical work in a genera (Chapter 4),

correlated evolution in the New Caledonian woody flora (Chapter 5), phylogenetic generalized 

least square in a genera (Chapter 6) or mixed effect anovas between pairs of co-generic species 

(Chapter 7). Among the 16 trait characters potentially linked to monocauly, we confirmed 

association for 8 of them, found no significant relationship for 5 of them and inverse relationship 

for 3 of them (Figure 8.2). We additionally found eight other features that appeared significantly 

linked to monocauly while not previously mentioned to our knowledge (Figure 8.2). The suite of 

trait attributes associated with monocauly appeared to be coordinated by different, sometimes

conflicting, functions (Figure 8.3).

Corner’s rules – The assertions of Corner (1949, 1953-1954) on the negative relation 

between branching intensity and (i) leaf size, (ii) stem thickness, (iii) fruit size and (iv) 

inflorescence complexity were confirmed by our study. (i) The relationship between branching 

intensity and leaf size involves a coordination between individual leaf area and leaf number since 

the total leaf area stays constant (Chapter 6); monocauls, being single-stemmed, have less spatial 

opportunity to insert leaves (less phytomers) than branched plants of the same height and, 

consequently, deploy larger leaves. (ii) We further showed that leaf size – stem size relationship is 
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FIGURE 8.3 – Functional relationships between trait attributes associated with the monocaulous habit (compared to a branched 

species of the same size). Bold squares represent fundamental components of Corner’s rules. SAM: Shoot Apical Meristem.
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mainly driven by mechanical constraints and, to a lesser extent, hydraulic constraints (Chapter 7)

as suggested by previous studies (White, 1983a; Niklas, 1992; Normand et al., 2008; Olson et al., 

2009; Levionnois et al., 2018a). Increasing stem size (and wood fraction) is a response to the static 

load imposed by numerous apical large leaves, as the mechanical resistance of a structure is 

proportional to the fourth-power of its radius (Chapter 7). But the higher wood area fraction might 

not fully compensate hydraulically for the total leaf area of monocauls, as observed by their lower 

Huber value (sapwood area to leaf area ratio). The increase in wood proportion is consequently 

accompanied by increase in vessel diameter, leading to higher hydraulic conductivity as hydraulic 

conductivity is a fourth-power function of the vessel diameter (Chapter 7). (iii) The relation 

between the above traits (monocauly, leaf size, stem thickness) and fruit size does not appear to be 

due to a higher production of photosynthates by large leaves contrary to previous suggestions 

(Primack, 1987; Cornelissen, 1999). The equal or lower proportions of transport and storage tissues 

(phloem, wood parenchyma) in monocauls than in branched species suggest similar carbon 

exchange capacity between leaves and lower organs (Chapter 7). We further think that, as for the 

observed leaf size – leaf number trade-off, spatial constraints of monocaulous stem limit the 

number of fruits, requiring larger fruits to maintain a constant seed number (Chapter 6). Such large 

fruits further increase the load already imposed by large leaves and probably further influence stem 

thickening in monocauls (Niklas, 1993) and the higher occurrence of cauliflory (Chapter 5). (iv) 

By focusing on vegetative functions rather than reproductive ones, we poorly investigated the 

relation between monocauly and inflorescence complexity. The homology between branches of 

branched species and inflorescences of monocaulous species in Atractocarpus involves a change 

of scale in what is considered the inflorescence. While the simple inflorescence of branched species 

(a compact dichasium) is terminal on each module, the “inflorescence” of monocaulous species is 

rather composed of two nested dichasium (the modular axillary complex and the primary 
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FIGURE 8.4 – Illustration of change in scale in what is considered the inflorescence for 

Atractocarpus. (A) In branched species, inflorescences are terminals on each module of the 

branche. (B) In monocaulous species, inflorescences are axillary on the trunk.
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dichasium) (Figure 8.4). In this regard, inflorescences of monocauls could be considered as longer 

and more complex than those of branched species. But this case study appeared as a special case 

and we did not look further enough into this question to draw general conclusions. 

Stem shape and mechanics – Monocauls are often noticed for their slender and little 

tapered stems (D'Arcy, 1973; Carlquist, 1974; Lauri, 2019). Describing a Hawaiian monocaulous 

species (Cyanea leptostegia), Carlquist (1974) noted that the stem diameter is almost equal between 

the basis and the apex of the plant. Distal parts were composed by a large pith and a thin cylinder 

of wood and basal parts by a small pith and a large cylinder of wood (Carlquist, 1974). This 

acropetal increase of pith in unbranched plants is also suggested in other studies (Eggert, 1961; 

Lauri, 1988) and confirmed by unpublished results of this thesis (Figure 8.5). As a result, we found 

larger pith in distal stems of monocaulous species (absolute value) compared to branched species 

but this increase was associated with larger wood cylinder, both tissues leading to thicker distal 

stems in monocauls compared to branched species (see above). But stem slenderness and tapering 

are also determined by plant basal diameter, which appears to be smaller for a given height in 

monocauls than in branched species (Figure 8.6). The higher proportion of wood in distal parts 

with a smaller basal diameter of monocaulous species probably involves a differential cambial 

activity along the stem. We suppose that this pattern results from the lack of branching which 

involves a lower static load along the stem of monocauls and slower basipetal diameter increment 

(cambial activity), leading to higher slenderness and – because of thick distal stem – lower tapering 

(Chapter 7, Figure 8.3). From mechanical perspectives, slenderness and low tapering can probably 

occur because of the lower static load inherent to the absence of branches. If true, the geometry of 

the stem would not require mechanical reinforcement along the stem. Unpublished results of this 

thesis indicated that young modulus (i.e. bending resistance) measured for basal parts of 
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FIGURE 8.5 – Relationship between pith area and distance to the basis for five monocaulous 

species (five individual per species). P represent the p.values for the significance of 

regressions (*** P < 0.001, ** P < 0.01). Only Myrsine grandifolia (Primulaceae) showed non-

significant increase of pith area with distance to the base but height data have a more 

restricted range for this species. 
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FIGURE 8.6 – Relationship between height and basal diameter for monocaulous and 

branched species (data from chapter 7). Monocaulous species have a significantly lower basal 

diameter for a given height, leading in higher stem slenderness.
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monocaulous plants (between 4000 and 10000 MPa, Figure 8.7) were in the range of values 

measured for branches of other trees (between 5000 and 14000 MPa, Niklas, 1992). Further 

investigations should integrate variation in bending modulus along the stem, and height to stem 

allometries (Niklas and Speck, 2001; Niklas et al., 2006). In this respect, a diversity of mechanical 

behaviors seem to emerge in monocaulous species (Figure 8.7), whose geometrical and anatomical 

drivers will be investigated in a future publication. 

Photosynthesis and growth rates – Beyond their larger area, investigated leaf traits failed 

to clearly identify photosynthetic strategy of monocaulous plants (Chapter 7). Monocaulous leaves 

tend to exhibit lower SLA (Chapter 6), particularly for such large leaves (Chapter 7), higher leaf 

thickness and lower stomata density (Chapter 7). This combination of trait values suggest lower 

photosynthetic capacities for monocauls in comparison to their branched relatives, but this has to 

be confirmed by further measurements. Another publication, focusing on leaf traits diversity in one 

of the richest monocaulous families (the Araliaceae), is under progress and shows a relation 

between leaf traits and branching intensity, but divergent allocating patterns according to leaf type 

(simple, palmate or pinnate) (Gril, Bruy, Heinz & Isnard, in prep., Appendix 4). Monocauls also 

tend to have shorter internodes (but only marginally significant in Chapter 6) that, together with 

higher secondary growth in distal stems, suggests lower primary growth rates. Several 

monocaulous species of different ages and growing in rainforest understory on ultramafic substrate 

were marked at the beginning of this thesis. The growth was too slow for the results to be 

interpreted in the course of the thesis. In 607 days (from 25/07/2016 to 24/03/2018), Pittosporum 

pronyense individuals produced between 0 and 1 growth unit, Tapeinosperma gracile between 0 

and 2 growth units, Atractocarpus bracteatus between one and two phytomers (continuous growth, 

see Chapter 6) and none of the individuals of Balanops pancheri produced any phytomers. Growth 
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FIGURE 8.7 – Relationship between Young modulus and stem diameter for five monocaulous 

species. 
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rates seem higher for young plants than for older ones (which is, however, not yet testable). These 

preliminary results, which need to be further explored (effect of substrate, comparison with co-

occurring branched species), together with the putative low photosynthetic capacities, suggest a 

marked conservative resource strategy for monocaulous species, at least higher than for branched 

relatives. The comparison of our SLA values with those of the TRY Database (Kattge et al., 2011) 

suggests that this strategy is among the most conservative in a global spectrum including other 

growth habits and regions of occurrence (Chapter 7). 

In conclusion, as for other growth habits, monocauly is not only characterized by the lack 

of lateral branches but by a complex combination of inter-related traits. Spatial constraint on a 

single stem appeared to be the main origin of all suites of trait attributes, for which Corner’s rules 

are one of the central themes, illustrating functional constraints of plant form evolution (Figure 

8.3). Consequently, selection for a given trait attribute in a given environmental is likely to drive 

the variation of whole plant form and functions.

8.2.2 Environmental constraints on monocauly 

Along with unbranched stems, the most remarkable functional characteristics of 

monocaulous plants are their large, mostly simple leaves (Chapter 5), which are among the largest 

worldwide (Chapter 7). Large simple leaves are disadvantaged in arid and cold conditions due to 

their thicker boundary layer that slows thermoregulation (Vogel, 2009; Wright et al., 2017). This 

physiological risk constrains the distribution of large simple leaves to humid and shady 

environments, providing buffered thermal and hydric conditions (Givnish, 1979, 1987, 1988).

These physiological vulnerability of large leaves probably explains why monocaulous species are 

mainly found in rainforest (89%, Chapter 5). Possibly, the ecological limitation of monocaulous 

plants is reinforced by their larger vessel diameter that could be related to a greater sensitivity to 
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drought-induced embolism. The distribution of vessel size has been shown to be strongly limited 

by both temperature and precipitation (Zanne et al., 2013; Pfautsch et al., 2016; Hacke et al., 2017; 

Olson et al., 2018). Though, drought-induced embolism is also governed by conduit structures (e.g. 

pit membrane density and area, Tyree and Sperry, 1989; Hacke et al., 2000; Poorter et al., 2010) 

which were not measured here.  

Chapter 5 indicates that the branched habit occurs in all types of environments and does 

not seem to show preference for rainforest contrary to monocaulous species. In Atractocarpus for 

instance, only branched species “escaped” from rainforest as shown by a study including some 

results of this thesis (Mouly, Barrabé & Bruy, submitted). Nevertheless, several monocaulous 

species occur out of rainforest as 35% of them (63 species) have been observed at least once in 

other vegetation and 11% (21 species) are restricted to maquis or dry forests. The sub-sampling 

used in Chapter 6 and 7 focused exclusively on rainforest understory as we aimed to detect traits 

involved in architectural transition in similar habitat. But monocaulous species from dry 

environments would present interesting case studies to understand the functional limit and trait 

variations within the monocaulous habit. For instance, we found that 79 % of monocaulous species 

occurring in dry vegetation had compound leaves or functionally similar phyllomorphic branches 

(Figure 8.8). Dissected lamina structures are a way to reduce vulnerability inherent to large leaves 

in open environment by reducing both the boundary layer (accelerating thermoregulation) and drag 

(limiting wind damages) (Givnish, 1978; Vogel, 2009; Wright et al., 2017). Regarding species with 

simple leaves (21% of dry vegetation monocauls), an often unconsidered aspect of Corner’s rules 

is that relation between branching intensity and leaf size is effective when comparing similarly

sized plants. Consequently, a way to reduce leaf area while remaining unbranched is to reduce 

whole plant size (Figure 8.8). For example, Argophyllum acinetochromum (Argophyllaceae) and 
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FIGURE 8.8 – Illustration of environmental conditions constraining (red arrows) or allowing 

(blue arrows) the occurrence of large leaves and unbranched stem in rainforest understory 

and illustration of three evolutionary ways for monocaulous species to colonize open and dry 

vegetation.
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Scaevola beckii (Goodeniaceae), that are among the only monocaulous species with simple leaves 

from maquis are also among the smallest monocauls of the archipelago (< 1 m high), and their 

leaves are no larger than leaflets of co-occuring monocaulous species. Beyond reducing leaf size, 

plant height is also the main driver of vessel diameter worldwide (Olson et al., 2018) and small 

monocaulous plants are then likely to be less sensitive to drought embolism than their taller 

counterparts. 

Modelling studies shown that, for a twig with a given total leaf area, few large leaves are 

economically more interesting than several small leaves (maximization of return on twig-leaf 

investment) (Smith et al., 2017). As a result, the monocaulous strategy, being at the extreme end 

of the leaf size – leaf number trade off, would be advantaged in resource poor environments (e.g. 

shady or with low soil fertility). Other environmental factors known to constrain leaf size are wind

and browsing of which tearing probability increases with leaf size (Moles and Westoby, 2000; 

Vogel, 2009; Charles-Dominique et al., 2015).

8.2.3 Environmental correlates of monocauly in New Caledonia 

If the evolution of monocauly is probably limited by a set of environmental conditions 

(Figure 8.8), several hypotheses can be proposed in regard to environmental factors that could have 

facilitated the evolution of monocauly in New Caledonia (Figure 8.9).

Tropical cyclones – New Caledonian rainforests are characterized by an outstanding high 

density of stems (Jaffré and Veillon, 1990; Jaffré and Veillon, 1995; Ibanez et al., 2014; Ibanez et 

al., 2017b), argued as the main structural characteristic that distinguish New Caledonia from other 

Southwest Pacific rainforests (Ibanez et al., 2017b). Recent insights suggest that this particularity 

is due to the high frequency and intensity of tropical cyclones in the region (Ibanez et al., 2018a). 

We think that such dense neighboring operate as a space constraint, somehow similar to “crown 
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FIGURE 8.9 – Schematic illustration of main hypotheses explaining the outstanding 

prevalence of monocauly in New Caledonia.
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shyness” (Putz et al., 1984), in which not abrasion but thigmomorphic response, favor selection 

toward reducing branching. In these conditions, unidirectional exploration strategy might be 

advantaged. Moreover, high cyclone frequency involves debris falls and damages through the 

domino effect, to which monocauls, lacking lateral branches, might be less sensitive (Figure 8.10). 

Supporting these hypotheses, palms and tree ferns are also particularly abundant in New 

Caledonian rainforests (Ibanez et al., 2017b), both groups being dominated by monocaulous 

architectures. We believe that the structural and dynamic features of these forests are important 

environmental contingencies of the convergence toward monocauly in New Caledonia (Chapter 5).  

It is the first time that density of New Caledonian rainforest is suggested as a driver of the 

New Caledonian disharmony. This particularity is actually more likely to affect growth habit 

distribution which is known to be highly dependent on forest structure (e.g. Schnitzer, 2018). This 

potential effect on functional disharmony is likely to indirectly affect taxonomical disharmony 

through the over-representation of typically single-stemmed groups (e.g. Palms: 40 species, Tree 

ferns: 16 species). 

Rainforest history – The long-time persistence of rainforest on the archipelago while they 

declined from adjacent regions (see Chapter 2) is supposed to be responsible for the high incidence 

of several drought-sensitive groups such as Palms (Pintaud et al., 2001) or basal Angiosperms 

(Poncet et al., 2013; Pouteau et al., 2015; Trueba, 2016; Tournebize et al., 2017). This mechanism 

is also likely to drive the current high representation of monocaulous lineages, through different 

possible scenarios. (i) Monocaulous would have survived in rainforest refugia while their regional 

relatives disappeared, (ii) the post-Pleistocene expansion of rainforests produced vacant niches for 

rainforest groups, and favored niche pre-emption in the understory, as suggested for Atractocarpus

(Chapter 6).
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FIGURE 8.10 – Illustration of the possible advantage of monocaulous species under forest 

perturbation. In this high elevation rainforest (Dent de Saint Vincent), only two monocaulous 

plant and tree ferns escaped the fall of a large tree.
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Apart from the genus Atractocarpus, such ecological opportunities are likely to have driven 

the diversification of several rainforest lineages timely present in New Caledonian rainforest. 

Accordingly, three palms clades, strongly associated with rainforest and dominated by unbranched 

architecture, showed stem ages and crown ages similar to that of Atractocarpus (Pillon, 2012), and 

their current distribution was suggested to be related with Pleistocene refugia (Pintaud et al., 2001).

As such, alternation in expansion and contraction of rain forests in response to climatic fluctuation 

during Pleistocene is likely to be an important driver of current New Caledonian biodiversity (Jaffré 

and Veillon, 1995; Poncet et al., 2013; Pouteau et al., 2015). More globally, late quaternary climatic 

change have been suggested to impact current pattern of biodiversity in islands, notably due to 

variations in islands area (Weigelt et al., 2016).  

Edaphic constraints – The presence on one third of the territory of the worldwide rare 

ultramafic substrate is largely recognized as one of the main drivers of taxonomic disharmony in 

the New Caledonian flora (Jaffré et al., 1987; Pillon et al., 2010; Isnard et al., 2016). The 

constraining conditions for plant growth challenge the establishment of most species – there are 

for instance very few invasive species on this substrate (Jaffré, 1980; Meyer et al., 2006) – while 

favoring the installation of pre-adapted plant lineages (Pillon et al., 2010). Adaptation to ultramafic 

substrate also drove the functional disharmony with for example an outstanding proportion of metal 

hyper-accumulator species (Jaffré et al., 2013; van der Ent et al., 2015; Jaffré et al., 2018). We 

bring further demonstration of the importance of this substrate on functional disharmony by 

showing that the monocaulous habit preferentially evolved on ultramafic soils (Chapter 5). Such 

constraining edaphic conditions are likely to favor the economic “few large leaves, no branches” 

strategy characterizing monocaulous plants. Effect of soil constraints on plant architecture has little 

been investigated but recent insights suggest that poor soil fertility reduces the structural 
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development of trees (Levionnois et al., 2018b). In extreme cases, low soil fertility was observed 

to reduce the branched architecture of Cecropia obtusa into monocaulous trees, a phenomena called 

architectural pauperization (Barthélémy, 1988). In New Caledonia, some authors also suggested 

that constraining edaphic conditions linked to ultramafic substrate could be responsible for the 

frequency of tuft-trees in the island (Virot, 1956; Veillon, 1976). The frequency of ultramafic 

substrate in New Caledonia could then have contributed to the repeated evolution of monocauly in 

the archipelago through the reduction of growth and structural expression of branched species,

ultimately leading to single stemmed plants. In accordance with this hypothesis, some species 

growing on ultramafic substrate exhibit few but regular branching (suggesting sequential 

branching) or a strictly monocaulous habit (e.g. Cunonia macrophylla), possibly depending on soil 

conditions.  

If monocauly evolved principally on ultramafic, the proportion of species occurring on this 

substrate is not very different than for branched species (47% vs. 44% respectively, Chapter 5), 

suggesting further diversification of monocauly on non-ultramafic substrates. This does not seem 

to pertain to calcareous substrate since only two monocaulous species (Acropogon calcicolus and 

Plerandra calcicola) are restricted to this substrate and few monocaulous species occur in Loyalty 

Islands (less than ten and no endemics). 

Herbivory – Absence of natural large browsers on islands is well known to allow the 

evolution of unarmed species, leading to insular naivety (Whittaker et al., 2017). Such process 

could be particularly striking in New Caledonia as there is no autochthonous large herbivorous 

species and no extinct browsing giant bird are known from the archipelago (Sylviornis was 

probably carnivorous or frugivorous, Mourer-Chauviré and Balouet, 2005; Worthy et al., 2016) 

contrary to other Pacific islands (e.g. Moanalos in Hawai, Olson and James, 1991; Moas in New 
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Zealand, Worthy and Holdaway, 2002). Two types of defense against herbivory are recognized: 

chemical and structural (Charles-Dominique et al., 2017). While the former has not been 

investigated for the New Caledonian flora (but hyper-accumulation of trace elements is suggested 

to evolve as a response to herbivory, Boyd, 2007; Pillon et al., 2014), the latter appears to be rare 

since very few indigenous species are armed with spines or thorns (Carissa ovata, Maclura 

cochinchinensis, Capparis spp., Mezoneuron spp.) and all are more or less specialized climbers 

(Bruy et al., 2018). Recent studies showed that structural defenses can also be achieved through 

particular architectural design: the more intrinsically branched is a plant, the more effective is the 

protection (Costes et al., 2013; Charles-Dominique et al., 2015; Charles-Dominique et al., 2017).

In this context, monocauls with their single meristem and large leaves appeared to be disarmed 

against large herbivores. This insight is confirmed by IUCN redlist data showing that monocaulous 

species are more threatened by introduced herbivores than branched species (Chapter 5). 

Accordingly, monocaulous species of Cyanea (Campanulaceae) in Hawaii where browsing birds 

were present, have thorn-like prickles to protect the stem (Givnish, 1994). 

As such, the absence of large herbivores in New Caledonia, largely present in other areas, 

released plants from a strong exogenous constraint and from selection against reduction of 

meristem redundancy, possibly allowing the specific evolution of the monocaulous habit in the 

archipelago. 

8.2.4 Monocauly and species diversification 

Evidence showed that evolutionary shift in growth habit often impacts diversification of 

clades (Gianoli, 2004; Roquet et al., 2013; Couvreur et al., 2015; Gianoli, 2015; Frenzke et al., 

2016). In New Caledonia, we found a positive relationship between presence of monocauly in a 

genus and overall diversity of the genus (Chapter 5), but monocauly did not increase diversification 
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rates more than other growth habits in the genus Atractocarpus (Chapter 6). More generally, genera 

with more than two monocaulous species are infrequent, and genera constituted by a majority of 

monocaulous species even more (Chapter 5). As such, while large monocaulous genera still have 

to be investigated (e.g. Phyllanthus, Acropogon, Bocquillonia), dramatic large radiations of 

monocaulous clades seem uncommon. It remains difficult to assess if this low number of 

monocaulous species per genera is associated with low speciation rate or with high extinction 

events, especially in the absence of calibrated phylogeny. Extinction could have been important in 

New Caledonia, if we considered the high incidence of phylogenetically isolated taxa (Pillon, 2012; 

Pillon et al., 2017). But the recent evolution of the habit in Atractocarpus and Oxera (between 2.4 

and 0.6 Myr) rather suggests clades under diversification. Anyway, evidence suggests that 

monocauly probably did not increase diversification as a key innovation, i.e. by allowing the 

colonization of large and vacant niches involving rapid diversification of descendants (Heard and 

Hauser, 1995). We nevertheless suggest that, at least in some clades, the evolution of monocauly 

could have impacted diversification of clades through niche partitioning. 

If large scale abiotic constraints drove the convergence toward monocauly in different 

lineages (see above), small scale biotic interaction between co-occurring species probably drove 

the divergence among growth habit. In the genus Atractocarpus, we identified a rapid 

diversification of architecture, and repeated evolution of monocauly, among closely related species 

that seem concomitant with speciation (Chapter 6). We hypothesized that competition between co-

occurring species drove the divergence among growth habit through niche partitioning. For 

Atractocarpus, field observations further suggest that species with same growth habit are either 

rarely in sympatry or belong to different clades. As such, our case study could identify an example 

of adaptive radiation, i.e. “the rise of a diversity of ecological roles and associated adaptations 
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within a lineage” (Givnish, 2016). Three of the four criteria of an adaptive radiation as defined by 

Schluter (2000) were satisfied: (i) common ancestry with the single colonization of the biota ca. 

2.4 Myr ago; (ii) rapid speciation, Atractocarpus being the New Caledonian genera with the highest 

diversification rate currently known (1.17 species species-1 Myr-1); and (iii) trait utility since growth 

habit was shown to be related to several ecologically important functional traits related to resources 

acquisition and use. The fourth criteria is the correlation between phenotype and environment and 

while the correlation between growth habit and ecological strategy suggests different niches, we 

did not investigate this aspect of adaptive radiation. Species occurring in other environments (dry 

forests and maquis) and their growth habits may have provided some additional support for the 

idea that divergent habitats lead to divergence in key functional traits via architectural evolution 

(Chapter 6). For instance, two species of Atractocarpus occurring respectively in maquis and dry 

forest seemed to express a very different architecture (3 axis categories) from those of rainforest 

(2 axis categories, Chapter 6). Unfortunately, environments were too degraded to accurately 

describe architecture of such species. More fundamentally, we were interested in shifts in growth 

habit in relation to functional diversification, the consideration of contrasting environments would 

have blurred the signal. We argue that further investigation linking environmental traits (e.g. 

vegetation structure, light availability, altitude, soils) and species distribution could accomplish to 

demonstrate that Atractocarpus represents one of the few cases of adaptive radiation in New 

Caledonia (see Pillon et al., 2017). We suspect that this adaptive radiation in association with 

growth habit involves reproductive strategy (fruit size and shape, flower shape) that appears to be 

variable in the genus (Mouly et al., submitted). 

The genus Bocquillonia, for which no dated phylogenies are available (Chapter 4), could 

also exemplify another case of adaptive radiation involving growth habit diversification in relation 
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to forest structure. In this genus, we showed that variation in plant size and branching intensity 

(here reiteration) led to different growth habits exploiting different strata of the rainforest, dry

forest and maquis (Chapter 4, Figure 4.1). 

8.3 Plant architecture as a key tool to depict plant evolution 

8.3.1 Architectural and functional traits to define growth habits 

Since Theophraste (372 B.C.), many classifications of plant growth habits have been 

proposed (reviewed in Du Rietz, 1931; Lacza and Fekete, 1969; Millan, 2016). Classes and their 

definitions largely differ among studies, authors disagreeing on the nature and hierarchy of 

characters to use. The main reason why no consensus has been found so far lies in the difficulty to 

propose universal classification that would rely on objective and functional criteria (Millan, 2016).

One of the most used classifications (see Pérez-Harguindeguy et al., 2013) is that of Raunkiaer, 

that considers position of buds in plants (Raunkiaer, 1904). This definition was functionally 

meaningful, since based on strategies to survive winter in temperate regions, but cannot be 

generalized to the tropical regions. Most of the universal classifications proposed to date consider 

monocaulous plants in a more or less broad definition (e.g. Von Humboldt, 1808; Reiter, 1885; 

Warming, 1909; Du Rietz, 1931). These classifications are however often highly subjective. For 

instance, “Tuft-trees” in the well-known classification of (Warming, 1909) was defined as follows:

“Shoots with short internodes ; leaves densely set on the end of the shoot, large, and few ; buds 

usually naked”. Almost all the used terms are subjective (“short”, “densely”, “large”, “few”,

“usually”), and classification will consequently be largely influenced by observer. 

The approach of Hallé et al. (1978), based on plant architecture, provides more objective 

criteria and can be generalized to most plants (Cremers, 1973, 1974; Jeannoda-Robinson, 1977; 
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Cremers and Edelin, 1995; Prosperi and Caballé, 2001; Hallé, 2004; Millan, 2016). Hallé et al. 

(1978) considered monocaulous as “trees with a single trunk or visible stem of the plant”. This 

physiognomical definition was reinforced by three distinct structural types, namely the Holttum’s, 

the Corner’s, and the Chamberlain’s architectural models, each defined by few qualitative 

morphological characters (see Chapter 2). But this strictly architectural approach also has 

limitations. (i) Hallé et al. (1978) considered morphological origins of structures (e.g. stem or leaf) 

rather than their functions (e.g. exploration or photosynthesis), making their classification 

sometimes inappropriate to a given ecological context. For example, architectural analysis of the 

genus Atractocarpus (Chapter 6) showed that some inflorescences (virtually no photosynthetic 

contribution, e.g. A. longistipitatus) could have exactly the same structural construction than a large 

photosynthetic branch (e.g. A. artensis). (ii) Architectural models are known to be stable states 

among an “architectural continuum” (Hallé et al., 1978; Barthélémy et al., 1989), i.e. an infinity of 

intermediate forms potentially exist. This phenomena was perfectly illustrated in the genus 

Atractocarpus where we showed a continuous transition between the Stone’s model and the 

Corner’s model, branches gradually becoming inflorescences (Chapter 6).

In this study we combined the architectural and functional approach to propose a definition 

more adapted to an ecological context; we defined monocauls as “self-supporting woody plants

whose cardinal functions rely on a single visible stem”. This definition was reinforced by the 

characterization of structural types that allow the use of objective morphological criteria. We 

recognize three structural types made of (i) a trunk (either monoaxial or pluriaxial), (ii) determinate 

growth structure highly specialized in photosynthesis and with an abscission point, (iii) axis or 

complex of axis highly specialized in reproduction and whose contribution to whole plant

vegetative exploration and photosynthesis is negligible, and possibly (iv) opportunistic reiterates. 
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Finally, to resolve the problem of architectural continuum, we defined a functional branching index 

directly linking branching intensity and associated ecological functions (Chapter 6). This simple 

index, assessing the part of photosynthesis and exploration functions assumed by the different axis 

categories, ranges from 0 to 1 and is very easy to interpret. For example, species of Atractocarpus

were considered as monocaulous when trunk assumes more than 80% of exploration functions and 

95% of photosynthetic functions, i.e. when these functions are considered as “negligible” on lateral 

axis based on a a priori statistical analysis (significant grouping of the distribution of function). 

Our definition of monocauly, based on a quantitative hierarchization of functions (here the 

branching index) and reinforced by non-ambiguous morphological criteria, proved to be relevant 

in our restricted ecological and evolutionary context. While this branching index seems difficult to 

use on some plant groups (e.g. with polyarchic architecture, Edelin, 1991), the general approach 

proposed here, merging architecture and functions, seems promising for the study of plant growth 

habit in an ecological and evolutionary context. It further shows that future directions in this field 

do not only rely on the use of big data, but rather on detailed studies aiming to improve our 

understanding of mechanisms responsible for plant forms and functions. 

8.3.2 Heterochronic evolution 

As far as we know, two developmental processes have been proposed for the evolution of 

monocauly: (i) evolution from herbaceous ancestors (e.g. Carlquist, 1974), through “proportionate 

giantism” and (ii) evolution from tree ancestors (D'Arcy, 1973), through “progenesis” and 

“neoteny” (see Chapter 3, Figure 3.1). Both processes involve heterochronic developmental 

pathways (i.e. a change in the relative timing of developmental events in one species relative to an 

ancestral species) on whole plant architecture. In this thesis, an additional evolutionary 

developmental process involved in the evolution of monocauly has been identified (Chapter 6). 
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FIGURE 8.11 – Illustration of heterochronic processes occurring on axillary structures in 

Atractocarpus and leading to monocauly.
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This process might also involve heterochrony, not on the whole plant architecture but on axillary 

structures (C2) only (Figure 8.11). (i) When branching is structurally reduced through the reduction 

of module number, the resulting axillary structure of the descendant is a truncated part of that of 

the ancestor, involving neoteny (Gould, 1977; Alberch et al., 1979; Smith, 2001). (ii) When 

branching is structurally reduced through module length, the resulting axillary structure of the 

descendant is the miniaturized copy of that of the ancestor, involving “proportional dwarfism” 

(Gould, 1977; Alberch et al., 1979; Smith, 2001). Note that some monocaulous species having few 

and short modules (e.g. Atractocarpus confertus) probably underwent both processes. As such, 

even if appearing in closely related taxa through a similar process (i.e. reduction of branches), 

developmental pathways leading to the evolution of growth habits could be much diversified and 

would need careful observation at lower integration levels. 

We think that the evolution of monocauly through the reduction of branches in 

Atractocarpus is not an isolated case and probably occurred in other plant groups. We particularly 

recognize the genus Tapeinosperma (7 monocaulous species) where axillary structures range from 

long orthotropic branches (Scarrone’s architectural model) to short determinate inflorescences on 

unbranched trunk (Corner’s architectural model), with several intermediate states (Figure 8.12-A).

Evolution from herbaceous ancestors were hitherto illustrated for other geographic areas 

(e.g. Macaronesia, Böhle et al., 1996; Mort et al., 2007) but probably concerned few clades in New 

Caledonia (Chapter 5), of which we recognize the genus Oxalis. New Caledonian species actually 

range from creeping herbaceous species with several short rosettes of leaves, to creeping/semi-

erect woody species with several short rosette of leaves, erect woody species with few large rosette 

of leaves, and monocaulous species (Figure 8.12-B). This pattern illustrates an interesting 

architectural gradient where anatomy, biomechanics and architecture seems intrinsically related. 
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FIGURE 8.12 – Illustration of architectural gradient in (A) Tapeinosperma (Primulaceae): 

reduction of large branches toward determinate inflorescences (from top left to bottom 

right), and (B) Oxalis (Oxalidaceae): increasing woodiness and self-supporting while 

reducing branching (from top left to bottom right).
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FIGURE 8.12 (continuation) – Illustration of architectural gradient in (C) Acropogon 

(Malvaceae): reducing reiteration frequency and predictability (from top left to bottom 

right), and (D) Oxera (Lamiaceae): increasing duration of juvenile self-supporting phase and 

reducing branching (from top left to bottom right).
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Evolution of monocauly from canopy tree as suggested by D'Arcy (1973) was probably 

among the most frequent evolutionary pathways and the genus Acropogon (Malvaceae) seems an 

appropriate model to investigate this question. In this genus, architecture range from branched trees 

(Rauh’s architectural model) – either flowering after or before the development of the first branches 

– to opportunistically reiterated monocauls or unreiterated monocauls (Corner’s architectural 

model) (Figure 8.12-C). 

Apart from this thesis, the only New Caledonian genus whose growth habit was investigated 

in a phylogenetic context is Oxera (Lamiaceae) where monocauly evolved from woody liana 

ancestors (Barrabé et al., 2018). We assume that this evolution could also involve heterochronic 

developmental process since architecture of extant climbing species is constructed by the frequent 

repetition of a single axis category (Champagnat’s architectural model, Veillon, 1976) and species 

present quite a long juvenile self-supporting phase (Figure 8.12-D). 

All these insights remain mainly speculative but suggest that architecture is a robust and 

perfectly fitted approach to assess heterochrony which has most probably been fundamental in the 

evolution of growth habit (Rowe and Speck, 2005; Wagner et al., 2012), at least as important as 

wood ontogeny (Olson, 2007; Carlquist, 2009). The New Caledonian flora, including several 

young clades with contrasting growth habits and intermediate states, might be well suited for 

investigating this promising research field. 

8.3.3 The reiteration process: a gap that needs to be filled 

Reiteration is defined as “a morphogenetic process through which the organism duplicates 

its own elementary architecture, i.e. its architectural unit” (Barthélémy and Caraglio, 2007).

Reiteration, of which several modalities have been defined (see Chapter 2), is a key process in plant 

morphogenesis. For instance, sequential reiteration has been shown as fundamental in the 
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expression of endogenous architecture of several plants, particularly in the development of tree 

crowns (Edelin, 1984; Barthélémy et al., 1991; Barthélémy and Caraglio, 2007). Opportunistic 

reiteration is one of the main adaptive processes by which a plant adapts its form after traumatism 

or increase in resource level (Oldeman, 1974; Barthélémy and Caraglio, 2007). In New Caledonia 

for example, all studied (non-monocot) monocaulous species showed the ability to reiterate at least 

after a traumatism. We assume that this process, inherent in most species, is particularly important 

for the monocaulous habit for which exploration and photosynthesis rely on a single trunk. 

While the difference between sequential and opportunistic reiteration seems obvious in 

theory, the former being genetically determined (endogenous) and the second induced by 

environment (exogenous), it is not that apparent in the field. This represents the major difficulty 

we have not been able to solve in our definition of monocauly. We actually found several 

monocaulous species that could be such reiterated that they lost their monocaulous physiognomy, 

as illustrated by Bocquillonia grandidens (Chapter 4, Figure 4.1). Due to their sometimes slightly 

curved stem, the architecture of this species could have also been associated with the Champagnat’s 

architectural model (Hallé et al., 1978), and therefore not considered as monocaulous. This 

illustrates a limit of architectural models to finely understand plant architecture and processes 

involved in their evolution. We actually found that different models such as the Corner’s model

(e.g. Bocquillonia corneri), the Champagnat’s model (e.g. Bocquillonia grandidens) or the 

Tomlinson’s model (e.g. Bocquillonia aff. sessiliflora) could be differentiated only on the basis of 

number and position of opportunistic reiterates, two features assumed to be rather exogenously 

than endogenously induced (Barthélémy and Caraglio, 2007). 

This is particularly problematic when not only the physiognomy but also the ecological 

characteristics are lost, as in Dysoxylum aff. roseum (Meliaceae). This species has a long 
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monocaulous phase in the rainforest understory where several flowering and fruiting occur (Figure 

8.13). After a longer or shorter period, individuals produce new axes from dormant buds. These 

axes are morphologically and functionally identical to the primary trunk and their apparition is 

predictable neither in time nor in space (sometimes nearly not occurring): they are delayed 

opportunistic reiterates (see Chapter 2). In several cases, these reiterates become more and more 

numerous until the tree reaches the canopy and has a well-developed crown (Figure 8.13). As such, 

the inclusion of the opportunistic reiteration process in our definition involves the comparison of 

small understory monocaulous treelets with tall canopy well-branched trees. But the exclusion of 

this process is impossible as all of observed monocauls in New Caledonia have the ability to 

reiterate. A criteria/threshold based on a number of reiteration could have been a solution but 

unsatisfying from our point of view since the process depends on environmental conditions and is 

consequently highly variable between individuals for a given species. 

Nevertheless, the maximal number of reiterates supported is not equal between taxa, some 

species or genus having a greater propensity for opportunistic reiteration. This shows that the 

process is not totally independent from genetic background of plant individual and could be 

heritable. As such, further investigations are needed on the difference between sequential and 

opportunistic reiterations that sometimes seem to be two extremes of the same gradient. Besides,

fine architectural study in a phylogenetic context (as in Chapter 6) would bring interesting 

information about the importance of reiteration process in the evolution of growth habit (see 

Acropogon, Figure 8.12-C). The simple structure of monocaulous plants makes them particularly 

suited to investigate this question.

8.3.4 Constrained evolution of plant architecture 

Convergent evolution is considered as a major evidence of evolutionary constraint, i.e. that 
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FIGURE 8.13 – Developmental sequence of Dysoxylum aff. roseum, a monocaulous treelet that could become a canopy tree by 

means of opportunistic reiteration. The fourth stage does not always occurs.
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evolutionary pathways are constrained by a limited set of functional and developmental 

possibilities (McGhee, 2011). We showed that the monocaulous habit is coherent in terms of 

functional properties but is achieved in different, though limited, structural ways. We recognize 

three different structural types in New Caledonia in agreement with our functional definition of 

monocauly (Chapter 2). Some theoretical structural types fitting this definition were however 

lacking, such as the combination of sympodial trunk and phyllomorphic branches. This restricted 

diversity of structural types is more obvious for architectural models, of which 23 have been found 

in nature among a high number of theoretical forms (Hallé and Oldeman, 1970; Hallé et al., 1978). 

Such patterns suggest strong genetic and/or environmental constraints in the evolution of plant 

architecture (Monro and Poore, 2009). In the same vein, correlated evolution of some architectural 

trait attributes seems impossible, reflecting genetic constraints or implying that resulting 

architecture are maladapted (Chomicki et al., 2017). As such, we found some association between 

some monocaulous and branched architectural models, even if it needs to be tested with the 

completeness of architectural data for branched species. Most of genera achieving the Corner’s, 

the Chamberlain and the Cook’s models also achieve respectively the Rauh’s, the Leeuwenberg’s 

and the Roux’s model (Chapter 5). These theoretical preferential evolutionary pathways are 

coherent with the non-random distribution of monocauly through the phylogeny (Chapter 5), often 

interpreted as evidence for prerequisites (Boucher et al., 2016). Atractocarpus for instance, as parts 

of the Gardenieae, is susceptible to present some evolutionary facilities in the branch reduction. 

Actually, the phenomena occurs at least two times in the genus (Chapter 6), but also in related 

genera such as Sukunia (Chapter 6), Pentagonia, Schumanniophyton, Duroia or Rothmannia 

(Hallé, 1967). In Randia and affine genera, which some New Caledonian Atractocarpus was for 

long considered a part of (Mouly et al., submitted), this variation in branch length was also noted 

and considered of taxonomical importance (Tirvengadum and Sastre, 1979).
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Nevertheless, if transition toward monocauly was probably facilitated by some 

prerequisites and preferentially evolved in some lineages, the evolution of this habit does not seem 

strongly constrained. It evolved, at least, from treelets (Chapter 6), herbs (e.g. Böhle et al., 1996), 

lianas (Barrabé et al., 2018) and probably trees (D'Arcy, 1973; Barthélémy, 1988). In our case 

study, we illustrated a transition from the Stone’s model toward the Corner’s model through a 

reduction from branches to inflorescences (Chapter 6). However, such process does not involve 

special architectural prerequisites and could occur in most of the described architectural models. 

As such, while evolutionary constraints seem important in the evolution of growth habit (Rowe 

and Speck, 2005; Monro and Poore, 2009; Wagner, 2010; Wagner et al., 2012), this does not seem 

critically important for the evolution of monocauly, probably because of the simplicity of the form. 

Given that heterochronic processes is probably central in the evolution of growth habit (see above) 

and that the large majority of woody plants pass through a monocaulous phase during their 

ontogeny, we argue that transition toward monocauly could occur in many plant groups. Juvenile 

monocauly can be considered as a developmental enabler (sensu Donoghue, 2005), that probably 

permitted the evolution of monocauly independently in several lineages. This repeated evolution 

might have been particularly facilitated in New Caledonia given several environmental and 

historical contingencies (see section 8.2.3). The diversity of evolutionary scenario that can lead to 

monocauly (see above) actually suggests a strong environmental forcing in several clades, each 

dealing with its own architectural background. The evolution of the monocaulous habit is however 

less advantageous outside of rainforests, emphasizing the role of environmental context in the 

diversification or iterative evolution of a trait attributes.

In Atractocarpus, evolution of growth habit was gradual and did not evolve by saltation as 

sometimes proposed for architectural evolution (Bateman and DiMichele, 1994; Bateman, 1999).
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This reflects that profound change in the whole plant form does not necessarily involve deep 

changes at lower integration levels. Minute but directional quantitative variations from one 

generation to the next could rapidly (less than 2 Myr in Atractocarpus, Chapter 6) lead to very 

different growth habits. Extinction of intermediate states could easily mask such a pattern (Bateman 

and DiMichele, 1994). Whether evolution of plant architecture has to be gradual and if architecture 

presents adaptive “peaks” in the course of plant evolution is a fascinating question whose 

exploration will bring more insights into the evolution of plant forms. 

8.4 Conservation of the flora 

New Caledonian flora, as one of the world’s hotspots for biodiversity conservation (Myers, 

1988; Mittermeier et al., 2004), is known to be highly threatened (Jaffré et al., 1998; Lowry, 1998; 

Jaffré, 2005; Jaffré et al., 2010; Wulff et al., 2013; Ibanez et al., 2017b; Ibanez et al., 2018b). This 

threat seems even greater for monocaulous flora according to IUCN redlist criteria (Chapter 5). We 

actually showed that proportion of EN and CR species was nearly significantly higher than for 

other woody non-monocot species (41% and 32.5% respectively, Chapter 5). Overall, 17.5%, 

23.8% and 9.5% of evaluated species were respectively in the CR, EN and VU classes, leading to 

more than half of the evaluated monocaulous species being considered as threatened. 

Typical threats of the New Caledonian flora such as bushfire (Figure 8.14-A) or mining 

activity strongly affect monocaulous species (51% and 43% of species concerned, respectively). 

Introduced herbivores (deer, pig and rat) were identified as impacting monocauls significantly 

more than branched species (Chapter 5). We related this vulnerability to the single meristem and 

large leaves characterizing the monocaulous habit that make a browsing event highly damaging 

(see Charles-Dominique et al., 2017), despite various reiteration capacities. This should be 

particularly true for deer Rusa timorensis, the most threatening herbivore for New Caledonian flora 
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(de Garine;Wichatitsky et al., 2005; IUCN, 2017), that could rapidly remove a large portion of leaf 

area and even apical meristems of monocaulous plants (Figure 8.14-B). Introduced rats, present in 

the most isolated forests (Rouys and Theuerkauf, 2003; Duron, 2016), could also have a dramatic 

impact on monocauls by eating apical meristems as observed on several individual of Meryta 

balansae (Figure 8.14-B). Among the three introduced rat species, this most likely concerns the 

black rat (Rattus rattus) rather than the Polynesian rat (Rattus exulans) or the brown rat (Rattus 

norvegicus), the second being a poor climber and the third being absent from wild environments 

(Rouys and Theuerkauf, 2003; Munzinger and Gâteblé, 2017; Vidal, comm. pers.). Impact of feral 

pig (Sus scrofa) occurs mainly by soil foraging involving predation on seedlings, roots or seeds 

(Caley, 1997). As such, this introduced omnivorous is not expected to impact the monocauls more 

than the branched species, but the species mainly forages in rainforest understory (Rouys and 

Theuerkauf, 2003), where monocauls preferentially occur. Monocauls represent an extreme case 

of insular naivety that seems largely expressed in New Caledonia and more generally in islands. 

Despite this, the impact of introduced herbivores on New Caledonian flora remains difficult to 

quantify (de Garine;Wichatitsky et al., 2005) and IUCN criteria probably underestimate the threats. 

This calls for further investigations into the impact of introduced herbivores on native vegetation 

and additionally highlights the need for concrete solutions to limit their impact. 

Another probable threat impacting monocaulous species, although difficult to precisely 

estimate, is the effect of climate change. On one hand, the predicted increase in tropical cyclone 

activity (Emanuel, 2013) could favor the unbranched architecture, potentially less sensitive to 

falling debris and domino effect. On the other hand, the predicted increase in intensity and duration 

of drought events (Meehl and Tebaldi, 2004; Cavarero et al., 2012; IPCC, 2014; Whan et al., 2014), 

could impact preferentially drought sensitive species such as monocauls. Drought-induced 
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FIGURE 8.14 – Illustration of major threats for New Caledonian monocaulous flora. (A) 

Bushfires. (B) Introduced herbivores: deer that remove large portion of leaves and apical 

meristems, and rats that eat apical meristem and seeds before maturity. (C) Drought events: 

here Acropogon schumannianus (Malvaceae), the only plant dried in a rainforest community.
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mortalities are increasingly observed, even if not documented for New Caledonia in recent reviews 

(Allen et al., 2015; Hartmann et al., 2015). During this study, we noted two drought-induced 

mortality events for monocaulous species occurring during the drastic dry season of 2017 (August 

in Diahoué and October at Katalupaik, respectively). These events, involving respectively three 

individuals of Phelline dumbeensis (Phellinaceae, not shown) and one individual of Acropogon 

schumannianus (Malvaceae, Figure 8.14-C) from rainforest understory were remarkable since co-

occurring species seemed less or not affected. These observations need further quantification but 

somehow confirm the drought vulnerability of some monocaulous species, which appear as good 

indicators of drought events as suggested for basal angiosperms in a previous study (Trueba, 2016).

As such monocaulous species are particularly threatened and several monocaulous species 

could be among the firsts to disappear in response to increasing pressures. These threats are even 

likely to be underestimated giving the high proportion of monocaulous species in the “Data 

Deficient” IUCN class (10%, Chapter 5). Their extinction would not be anecdotal given their high 

contribution to species richness and abundance in rainforest (see section 8.1). This abundance, 

along with particular functional trait values, suggests that monocaulous plants are an important 

component of rainforest understories where they probably play a particular role (e.g. litter-trapping, 

Lachenaud and Jongkind, 2013; Zona and Christenhusz, 2015). As such, conservation and study 

of this original growth habit, which is part of the New Caledonian biological heritage, seem of 

prime importance. 

8.5 Out of New Caledonia: monocaulies rather than monocauly?

Monocaulous species investigated in this thesis tend to share many functional features (see 

section 8.2). More generally, their functional and life history traits (in comparison with branched 

relatives) were largely consistent with hypotheses proposed in literature (Figure 8.2). We however 
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FIGURE 8.15 – Examples of monocaulous species from other regions with other evolutionary 

history and/or habitats. (A) Argyroxiphium sandwicense (Asteraceae), (B) Dendrosenecio 

keniodendron (Asteraceae), (C) Lobelia deckenii (Campanulaceae), (D) Espeletia killipii 

(Asteraceae), (E) Lobelia gloria-montis (Campanulaceae), (F) Cyanea shipmanii 

(Campanulaceae), (G) Plantago princeps (Plantaginaceae), (H) Wilkesia gymnoxiphium 

(Asteraceae), (I) Biophytum reinwardtii (Oxalidaceae), (J) Brighamia rockii 

(Campanulaceae), (K) Aeonium urbicum (Crassulaceae), (L) Pachypodium namaquanum 

(Apocynaceae), (M) Echium pininana (Boraginaceae), (N) Brassica oleracea (Brassicaceae), 

(O) Melanoselinum decipiens (Apiaceae), (P) Sonchus congestus (Asteraceae).

226



found major differences with other types of monocauly described elsewhere. First, macro-anatomy 

is different as a large part of the stem section was made of wood with little parenchymatous tissues, 

and thin cortex and pith. Comparisons are complex due to variation in ontogeny and stem location 

between studies, but the woody monocauly of New Caledonian species can be confidently 

differentiated from other anatomical models that mainly concerned secondary woody pachycauls 

(rosette-trees/shrubs) containing true monocauls (e.g. Cotton, 1944; Carlquist, 1974; Mabberley, 

1974a; Aldridge, 1978; Aldridge, 1981; Meinzer and Goldstein, 1986; Mosbrugger, 1990). Most 

of these species are not found in rainforest understories but rather in dry (e.g. Cotton, 1944; 

Mabberley, 1974a; Aldridge, 1978; Aldridge, 1981) or tropical alpine environments (e.g. Hedberg 

and Hedberg, 1979; Meinzer and Goldstein, 1986; Givnish, 2016) (Figure 8.15). (i) For 

monocaulous species living in dry environment, thick pith and cortex together with 

parenchymatous wood probably relate to water storage, an adaptation unnecessary in rainforest 

understory. These species are also smaller than rainforest monocauls and seem characterized by 

small size vessels (Mosbrugger, 1990), probably to limit embolism risks. (ii) For species living in 

tropical alpine environments with drastic diurnal variations in temperature, the unbranched trunk 

would be a way to increases the vertical growth and bring the meristem more rapidly away from 

the ground surface; and the dense rosettes of leaves protect the unique meristem from frost 

(Givnish, 2016). In these conditions, large pith allows the storage and rapid remobilisation of water 

for photosynthesis when ground water is frozen and inaccessible (Meinzer and Goldstein, 1986).

Leaves of these monocaulous species are also long but often narrow to resist high insolation 

(Cotton, 1944), pubescent to resist frost, and marcescent to protect the stem after their death 

(Givnish, 2016). In New Caledonia, large leaves are grouped in distal parts of the stem but do not 

always form dense rosette and no case of marcescence nor extreme pubescence was observed. 
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As such, apart from the tropical rainforests, where monocauly largely occurs (Hallé and 

Hallé, 1965; Richards, 1966; D'Arcy, 1973; Hallé, 1974; Hallé et al., 1978), species in agreement 

with our definition of monocauly are also present in other contrasting habitats. They are 

nevertheless restricted to tropical and subtropical areas since temperate climate with annual 

seasonality is probably too constraining for their few growing meristem (Corner, 1949). 

Interestingly, there seems to be a correlation between evolutionary history and functional properties 

of monocaulous plants, reflecting different habitat preferences. Most species from dry and alpine 

habitat are secondary woody monocauls (e.g. Echium, Aeonium, Dendrosenecio, Lobelia,

Argyroxiphium) while species from rainforest could have rather evolved from woody ancestor (e.g. 

Atractocarpus, Oxera, Pittosporum, Tapeinosperma), even if phylogenetic insights are lacking for 

other regions. Interestingly, the two New Caledonian genera that potentially experienced secondary 

woodiness (Oxalis and Scaevola) contain monocaulous species that are restricted to maquis. This 

suggests that different selective pressures drove the evolution of monocauly and that their 

importance for diversification of growth habit largely depends on prerequisite morpho-anatomical 

features. In this context, it will be interesting to investigate functional characteristics of secondary 

woody monocauls that secondary gain rainforest (e.g. Hawaian lobeliads, Givnish et al., 2009). 

More generally, other studies are necessary to disentangle effect of growth habit, environment and 

prerequisites on plant functional diversification. These studies should use a trans-disciplinary 

approach including architectural characterization to differentiate true monocauly from pachycauly 

that are often confounded in literature.

8.6 Conclusion and perspectives 

In this study, we used a transversal approach merging plant architecture, taxonomy, 

phylogenies and functional ecology to characterize and illustrate the evolutionary history of 
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monocaulous species in New Caledonia. Through an original approach of growth habit we defined 

monocauls as “self-supporting woody plants whose cardinal functions rely on a single visible 

stem”, i.e. made of (i) a trunk (either monoaxial or pluriaxial), (ii) determinate growth structure 

highly specialized in photosynthesis and with an abscission point, (iii) axis or complex of axis 

highly specialized in reproduction and whose contribution to whole plant vegetative exploration 

and photosynthesis is negligible, and possibly (iv) opportunistic reiterates. This definition proved 

to be adapted for evolutionary and ecological studies in New Caledonia but remains to be tested in 

other contexts. Furthermore, the reiteration process showed to be problematic for defining the 

monocaulous habit, particularly because the differences between opportunistic and sequential 

reiterations is difficult to assess. In-depth and detailed investigations of these processes in plant 

groups with a variation in reiterative strategies might provide further insights to refine the definition 

of monocauly, and perhaps more generally to refine our understanding of reiteration processes in 

plant diversification. The genus Acropogon would be a suitable model, as growth habit diversity 

in the genus is mainly achieved through variations in reiteration frequency that range from highly 

predictable to almost never occurring.

Based on this definition of monocauly, we demonstrated that monocauls represent 5.5% of 

the New Caledonian vascular flora, and that the monocaulous habit appeared more than 31 times 

in the archipelago, illustrating one of the most striking cases of convergent evolution on islands. 

We identified four possible factors responsible for this strong convergence, namely the frequency 

and intensity of cyclones, late quaternary climatic changes, nutrient poor ultramafic substrates and 

the lack of native browsers. Lists of monocaulous species for other areas with contrasting history 

would provide comparative data to test such hypotheses. Dated phylogenies are needed to confront 

the apparition of monocauly with recent climatic events. Currently available phylogenies for this 
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purpose are unfortunately poor and concern Atractocarpus (Mouly et al., submitted), Beauprea (He 

et al., 2016), Pycnandra (Swenson et al., 2015), Melicope/Dutaillyeae (Appelhans et al., 2014),

Plerandra (Plunkett and Lowry, 2012) and Oxera (Barrabé et al., 2018). Other monocaulous genera 

are currently under study and phylogenies are expected to be available soon for Pittosporum

(Gemmill, unpublished data), Tapeinosperma/Mangenotiella (Gemmill, unpublished data), and 

Cupaniopsis (Buerki et al. unpublished data). These nine genera will offer a substantial basis to 

study in detail the contextual evolution of monocauly.

Monocauly probably mainly evolved from woody ancestors through heterochronic 

processes and can contribute to the diversification of New Caledonian lineages through niche 

partitioning. These hypotheses have yet to be tested in other plant groups considering fine 

environmental data (e.g. forest structure) which was lacking in this study. New Caledonian flora 

holds an interesting set of young lineages with potentially ongoing diversification, and in which 

evolutionary process are easy to capture, as shown in Atractocarpus. Bocquillonia, one of the 

richest monocaulous genera that offers remarkable diversity in growth habit and environments, 

arises as particularly promising to study architectural transitions and their relation to species 

diversification. 

New Caledonian monocauls are characterized by a complex set of interrelated traits that 

point toward a resource conservation strategy suited and constrained for dense, humid and shady 

understory. Most species actually occurred in rainforest and on ultramafic substrate where they 

preferentially evolved. Despite this apparent homogeneity in form and function, our study brought 

only incomplete insights on only one kind of monocauly and therefore calls for further research on 

different plant groups in various geographical areas and environments. We effectively 

demonstrated that monocaulous plants are more than anecdotic botanical curiosities and that their 
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thorough examination could bring up innovative insights about plant ecology and evolution.
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Appendices 

Family Species
Architectural
model

Anacardiaceae Euroschinus aoupiniensis M.Hoff Chamberlain
Anacardiaceae Euroschinus rubromarginatus Baker f. Chamberlain
Anacardiaceae Euroschinus verrucosus Engl. Chamberlain
Araliaceae Meryta balansae Baill. Chamberlain
Araliaceae Meryta coriacea Pancher ex Baill. Chamberlain
Araliaceae Meryta heleneae Lowry, ined. Chamberlain
Araliaceae Meryta koniamboensis Lowry & F.Tronchet, ined. Chamberlain
Araliaceae Meryta lecardii (R.Vig.) Lowry & F.Tronchet, ined. Chamberlain
Araliaceae Meryta oxylaena Baill. Chamberlain
Araliaceae Meryta pachycarpa Baill. Chamberlain
Araliaceae Meryta schizolaena Baill. Chamberlain
Araliaceae Meryta sonchifolia (Linden) Linden & André Chamberlain
Araliaceae Plerandra calcicola Lowry & G.M.Plunkett, ined. Chamberlain

Araliaceae
Plerandra leptophylla (Veitch ex T.Moore) Lowry, 
G.M.Plunkett & Frodin Chamberlain

Araliaceae Plerandra letocartiorum Lowry & G.M.Plunkett, ined. Chamberlain

Araliaceae
Plerandra osyana (Veitch ex Regel) Lowry, G.M.Plunkett
& Frodin Chamberlain

Araliaceae Plerandra pouemboutensis Lowry & G.M.Plunkett, ined. Chamberlain
Araliaceae Polyscias balansae (Baill.) Harms Chamberlain

Araliaceae
Polyscias calophylla Guillaumin ex Lowry &
G.M.Plunkett, ined. Chamberlain

Araliaceae Polyscias mackeei Lowry & G.M.Plunkett Chamberlain
Araliaceae Polyscias munzingeri Lowry & G.M.Plunkett, ined. Chamberlain
Araliaceae Polyscias otopyrena (Baill.) Lowry & G.M.Plunkett Chamberlain
Araliaceae Polyscias pancheri (Baill.) Harms Chamberlain
Argophyllaceae Argophyllum acinetochromum Guillaumin Corner
Argophyllaceae Argophyllum ellipticum Labill. Corner
Balanopaceae Balanops pancheri Baill. Chamberlain
Celastraceae Salaciopsis megaphylla (J.Poiss. ex Guillaumin) Loes. Corner
Cunoniaceae Cunonia macrophylla Brongn. & Gris Corner
Cunoniaceae Cunonia schinziana Däniker Corner
Elaeocarpaceae Sloanea billardierei (Vieill.) A.C.Sm. Corner
Elaeocarpaceae Sloanea magnifolia Tirel Corner

Appendix 1 – List of monocaulous species for New Caledonia.
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Elaeocarpaceae Sloanea montana (Labill.) A.C.Sm. Corner
Elaeocarpaceae Sloanea raynaliana Tirel Corner
Euphorbiaceae Bocquillonia castaneifolia Guillaumin Corner
Euphorbiaceae Bocquillonia corneri Bruy, Barrabé & Munzinger, ined. Corner
Euphorbiaceae Bocquillonia goniorrhachis AiryShaw Corner
Euphorbiaceae Bocquillonia grandidens Baill. Corner
Euphorbiaceae Bocquillonia longipes McPherson Corner
Euphorbiaceae Bocquillonia lucidula AiryShaw Corner
Euphorbiaceae Bocquillonia nervosa AiryShaw Corner
Euphorbiaceae Bocquillonia phenacostigma AiryShaw Corner
Euphorbiaceae Bocquillonia sessiliflora Baill. Corner
Euphorbiaceae Bocquillonia spicata Baill. Corner
Euphorbiaceae Cleidion lasiophyllum Pax & K.Hoffm. Corner
Euphorbiaceae Cleidion macrophyllum Baill. Corner
Fabaceae Sophora jabandao Montrouz. Chamberlain
Goodeniaceae Scaevola beckii Zahlbr. Corner
Lamiaceae Oxera baladica Vieill. Corner
Lamiaceae Oxera comptonii S.Moore Corner
Lamiaceae Oxera doubetiae Gateblé, ined. Corner
Lamiaceae Oxera garoense Gateblé, ined. Corner
Lamiaceae Oxera ounemoa Gateblé, ined. Corner
Lamiaceae Oxera papineaui Gateblé, ined. Corner
Lamiaceae Oxera rugosa Guillaumin Corner
Lamiaceae Oxera sessilifolia Dubard Corner
Lauraceae Litsea ripidion Guillaumin Corner
Linaceae Hugonia racemosa Schltr. Corner
Malvaceae Acropogon austrocaledonicus (Hook.f.) Morat Corner
Malvaceae Acropogon bosseri Morat & Chalopin Corner
Malvaceae Acropogon calcicolus Morat & Chalopin Corner
Malvaceae Acropogon chalopiniae Morat Corner
Malvaceae Acropogon domatifer Morat Corner
Malvaceae Acropogon fatsioides Schltr. Corner
Malvaceae Acropogon francii (Guillaumin) Morat Corner
Malvaceae Acropogon grandiflorus Morat & Chalopin Corner
Malvaceae Acropogon jaffrei Morat & Chalopin Corner

Malvaceae
Acropogon megaphyllus (Bureau & J.Poiss. ex Guillaumin) 
Morat Corner

Malvaceae Acropogon merytifolius Morat & Chalopin Corner
Malvaceae Acropogon moratianus Callm., Munzinger & Lowry Corner
Malvaceae Acropogon paagoumenensis Morat & Chalopin Corner
Malvaceae Acropogon pilosus Morat & Chalopin Corner
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Malvaceae Acropogon sageniifolius Schltr. Corner
Malvaceae Acropogon schumannianus Schltr. Corner
Meliaceae Dysoxylum kouiriense Virot Corner
Meliaceae Dysoxylum macranthum C.DC. Corner
Meliaceae Dysoxylum macrostachyum C.DC. Corner
Meliaceae Dysoxylum roseum C.DC. Corner
Meliaceae Dysoxylum rufescens Vieill. ex Pancher & Sebert Corner
Moraceae Ficus asperula Bureau Corner
Moraceae Ficus auriculigera Bureau Corner
Moraceae Ficus otophoroides Corner Corner
Myodocarpaceae Delarbrea longicarpa R.Vig. Chamberlain
Myodocarpaceae Delarbrea montana R. Vig. Chamberlain
Myodocarpaceae Delarbrea paradoxa Vieill. Chamberlain
Myrtaceae Syzygium acre (Pancher ex Guillaumin) J.W.Dawson Corner
Myrtaceae Syzygium toninense (Baker f.) J.W.Dawson Corner
Oxalidaceae Oxalis balansae Guillaumin Corner
Phellinaceae Phelline comosa Labill. Corner
Phellinaceae Phelline dumbeensis Guillaumin Corner
Phyllanthaceae Phyllanthus aoupinieensis M.Schmid Cook
Phyllanthaceae Phyllanthus artensis M.Schmid Cook
Phyllanthaceae Phyllanthus baladensis Baill. Cook
Phyllanthaceae Phyllanthus baraouaensis M.Schmid Cook
Phyllanthaceae Phyllanthus boguenensis M.Schmid Cook
Phyllanthaceae Phyllanthus bupleuroides Baill. Cook
Phyllanthaceae Phyllanthus carlottae M.Schmid Cook
Phyllanthaceae Phyllanthus casearoides S.Moore Cook
Phyllanthaceae Phyllanthus chamaecerasus Baill. Cook
Phyllanthaceae Phyllanthus comptonii S.Moore Cook
Phyllanthaceae Phyllanthus conjugatus M.Schmid Cook
Phyllanthaceae Phyllanthus dorotheae M.Schmid Cook
Phyllanthaceae Phyllanthus dracunculoides Baill. Cook
Phyllanthaceae Phyllanthus favieri M.Schmid Cook
Phyllanthaceae Phyllanthus francii Guillaumin Cook
Phyllanthaceae Phyllanthus golonensis M.Schmid Cook
Phyllanthaceae Phyllanthus guillauminii Däniker Cook
Phyllanthaceae Phyllanthus jaffrei M.Schmid Cook
Phyllanthaceae Phyllanthus ligustrifolius S. Moore Cook
Phyllanthaceae Phyllanthus loranthoides Baill. Cook
Phyllanthaceae Phyllanthus macrochorion Baill. Cook
Phyllanthaceae Phyllanthus mangenotii M.Schmid Cook
Phyllanthaceae Phyllanthus margaretae M.Schmid Cook
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Phyllanthaceae Phyllanthus moorei M. Schmid Cook
Phyllanthaceae Phyllanthus moratii M.Schmid Cook
Phyllanthaceae Phyllanthus pancherianus Baill. Cook
Phyllanthaceae Phyllanthus parangoyensis M.Schmid Cook
Phyllanthaceae Phyllanthus pronyensis Guillaumin Cook
Phyllanthaceae Phyllanthus pseudotrichopodus M.Schmid Cook
Phyllanthaceae Phyllanthus pterocladus S.Moore Cook
Phyllanthaceae Phyllanthus quintuplinervis M.Schmid Cook
Phyllanthaceae Phyllanthus salicifolius Baill. Cook
Phyllanthaceae Phyllanthus sarasinii Guillaumin Cook
Phyllanthaceae Phyllanthus serpentinus S.Moore Cook
Phyllanthaceae Phyllanthus sylvincola S.Moore Cook
Phyllanthaceae Phyllanthus tireliae M.Schmid Cook
Phyllanthaceae Phyllanthus tixieri M.Schmid Cook
Phyllanthaceae Phyllanthus torrentium Müll.Arg. Cook
Phyllanthaceae Phyllanthus trichopodus Guillaumin Cook
Phyllanthaceae Phyllanthus tritepalus M.Schmid Cook
Phyllanthaceae Phyllanthus valeriae M.Schmid Cook
Phyllanthaceae Phyllanthus veillonii M.Schmid Cook
Phyllanthaceae Phyllanthus vespertilio Baill. Cook
Pittosporaceae Pittosporum artense Guillaumin Corner
Pittosporaceae Pittosporum leratii Guillaumin Corner
Pittosporaceae Pittosporum morierei Vieill. ex Guillaumin Chamberlain
Pittosporaceae Pittosporum muricatum Tirel & Veillon Chamberlain
Pittosporaceae Pittosporum paniculatum Brongn. & Gris Chamberlain
Pittosporaceae Pittosporum pronyense Guillaumin Chamberlain
Primulaceae Mangenotiella stellata M.Schmid Corner
Primulaceae Myrsine grandifolia (S.Moore) Ricketson & Pipoly Corner
Primulaceae Tapeinosperma amplexicaule Mez Corner
Primulaceae Tapeinosperma ateouense M.Schmid Corner
Primulaceae Tapeinosperma canalense Guillaumin Corner
Primulaceae Tapeinosperma ellipticum Mez Corner
Primulaceae Tapeinosperma gracile Mez Corner
Primulaceae Tapeinosperma grandiflorum Guillaumin Corner
Primulaceae Tapeinosperma sessilifolium Mez Corner
Proteaceae Beauprea balansae Brongn. & Gris Chamberlain
Proteaceae Beauprea filipes Schltr. Chamberlain
Proteaceae Beauprea penariensis Guillaumin Corner
Proteaceae Virotia angustifolia (Virot) P.H.Weston & A.R.Mast Corner
Proteaceae Virotia rousselii (Vieill.) P.H.Weston & A.R.Mast Corner
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Proteaceae
Virotia vieillardii (Brongn. & Gris) P.H.Weston & 
A.R.Mast Corner

Rubiaceae
Atractocarpus baladicus (Montrouz. ex Guillaumin & 
Beauvis.) Mouly, comb. nov. Corner

Rubiaceae Atractocarpus bracteatus Schltr. & K.Krause Corner

Rubiaceae
Atractocarpus colnettianus (Guillaumin) Mouly, comb. 
nov. Corner

Rubiaceae Atractocarpus confertus (Guillaumin) Mouly, comb. nov. Corner

Rubiaceae
Atractocarpus heterophyllus (Montrouz.) Guillaumin & 
Beauvis. Corner

Rubiaceae Atractocarpus longistipitatus Baill. ex Guillaumin Corner
Rubiaceae Atractocarpus pterocarpon (Guillaumin) Puttock Corner
Rubiaceae Atractocarpus vaginatus Baill. ex Guillaumin Corner
Rubiaceae Ixora aoupinieensis Hoang & Mouly Corner
Rubiaceae Ixora cauliflora Montr. & Baker f. Corner
Rubiaceae Ixora margaretae (N.Hallé) Mouly & B.Bremer Corner
Rutaceae Dutaillyea trifoliolata Baill. Corner
Rutaceae Melicope lasioneura (Baill.) Baill. ex Guillaumin Corner
Rutaceae Zanthoxylum albiflorum Baker f. Chamberlain
Salicaceae Casearia coriifolia Lescot & Sleumer Cook
Salicaceae Casearia puberula Guillaumin Cook
Salicaceae Casearia silvana Schltr. Cook
Salicaceae Xylosma gigantifolium Sleumer Cook
Sapindaceae Cupaniopsis azantha Radlk. Corner
Sapindaceae Cupaniopsis glomeriflora Radlk. Corner
Sapindaceae Cupaniopsis grandiflora Adema Corner
Sapindaceae Cupaniopsis inoplaea Radlk. Corner
Sapindaceae Cupaniopsis oedipoda Radlk. Corner
Sapotaceae Pycnandra kaalaensis Aubrév. Corner
Sapotaceae Pycnandra longipetiolata Swenson & Munzinger Corner
Sapotaceae Pycnandra ouaiemensis Swenson & Munzinger Corner
Sapotaceae Pycnandra paniensis Aubrév. Corner
Sapotaceae Pycnandra vieillardii (Baill.) Vink Corner
Symplocaceae Symplocos neocaledonica (Vieill.) Noot. Corner
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Taxon
Vouche
r Site

GPS 
point
(DD)

Photos
ynthet
ic BI

Expl
orati
on
BI

Fruit 
volum

e
(cm3) SR

Total 
LA

(cm2

)

Mea
n LA
(cm2)

Leaf 
num
ber

IN
lengt

h
(cm)

IN
diame

ter
(cm)

SLA
(cm²
.g-1)

SW
D

(g.c
m-3)

SSD
(g.c
m-3) HV

%
Pith

%
Wo
od

%
Cor
tex

Atractocarpus sp.
nov. 1 Mouly, ined

Bruy 
964

Dia
hou
é

164.6
894
-
20.48
51

0,92 ± 
0,02

0,81 
±
0,08

53,5 ± 
31,3

10
1
±
17

1881
7 ± 
4392

154,8 
±
22,3

243,
6 ± 
125,
2

5,1 ± 
1,13

0,73 
±
0,03

75,9 
±
4,1

0,71 
±
0,11

0,49 
±
0,04

147
5 ± 
259

0,2
4 ± 
0,0
8

0,3
5 ± 
0,1

0,4
1 ± 
0,0
7

Atractocarpus 
aragoensis
Guillaumin

Bruy 
615

Pic 
Vin
cent

165.7
737
-
21.60
31

0,29 ± 
0,19

0,49 
±
0,15

13,6 ± 
6,6

12
1
±
32

1477 
±
1175

84,3 
±
29,1

74 ± 
39,2

2,37 
±
0,74

0,36 
±
0,04

107,
8 ± 
6,7

0,65 
±
0,09

0,5 
±
0,07

888 
±
430

0,2
4 ± 
0,0
5

0,3 
±
0,0
5

0,4
6 ± 
0,0
1

Atractocarpus 
artensis
(Montrouz.) Mouly

Bruy 
922

Cre
ek 
bam
bou

164.3
410
-
20.46
07

0,82 ± 
0,04

0,73 
±
0,14

109,6 
± 13,2

11
0
±
29

1039
6 ± 
6387

164,1 
±
19,9

219,
4 ± 
211,
7

6,72 
±
2,99

0,68 
±
0,12

98 ± 
10,9

0,7 
±
0,09

0,49 
±
0,09

171
0 ± 
773

0,3 
±
0,0
7

0,3
1 ± 
0,1
5

0,3
9 ± 
0,1

Atractocarpus sp.
nov. 2 Mouly, ined

Bruy 
889

Dog
ny

165.8
778
-
21.62
17

0,84 ± 
0,07

0,67 
±
0,13

11,1 ± 
1,6

13
3
±
32

3770 
±
2558

53,6 
±
12,9

154 
±
89,5

4,03 
±
1,64

0,45 
±
0,05

91,1 
±
6,6

0,71 
±
0,05

0,5 
±
0,05

501 
±
276

0,2
8 ± 
0,0
6

0,3 
±
0,0
7

0,4
2 ± 
0,0
4

Atractocarpus 
baladicus
(Montrouz. ex 
Guillaumin & 
Beauvis.) Mouly

Bruy 
650

Tch
amb
a

165.2
315
-
21.01
78

0,01 ± 
0,01

0,13 
±
0,07

120,7 
± 61,3

11
7
±
17

4619 
±
537

305,6 
±
30,9

21,8 
±
4,9

3,91 
±
1,04

0,81 
±
0,11

69,7 
±
6,8

0,82 
±
0,04

0,5 
±
0,05

454
8 ± 
517

0,2
2 ± 
0,1

0,4
1 ± 
0,1
4

0,3
7 ± 
0,0
5

Atractocarpus 
bracteatus Schltr. 
& K.Krause

Bruy 
133

Plai
ne 
des 
lacs

166.9
035
-
22.27
51

0,02 ± 
0,01

0,11 
±
0,03

218,6 
± 53,2

16
4
±
25

4188 
±
1755

144,5 
±
35,5

42,2 
±
8,2

2,46 
±
0,59

0,62 
±
0,04

60,2 
±
2,8

0,77 
±
0,06

0,56 
±
0,05

410
4 ± 
174
8

0,1
7 ± 
0,0
3

0,3
7 ± 
0,0
9

0,4
6 ± 
0,0
7

Atractocarpus 
brandzeanus
(Baill.) Mouly

Bruy 
920

Paa
gou
men
e

164.1
931
-
20.49
08

0,46 ± 
0,19

0,4 ± 
0,2

29 ± 
9,4

10
6
±
25

2299 
±
1116

103 
±
30,5

49 ± 
33,5

3,32 
±
1,16

0,47 
±
0,06

83,8 
±
14,4

0,81 
±
0,04

0,52 
±
0,08

110
7 ± 
312

0,2
7 ±
0,0
3

0,2
6 ± 
0,0
9

0,4
7 ± 
0,0
8

Appendix 2 –Mean value and standard deviation of traits values for each sampled Atractocarpus species (Chapter 6)
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Atractocarpus sp.
nov. 12 Mouly,
ined.

Bruy 
1042

Nod
ela

165.3
531
-
21.43
92

NA NA NA
N
A

NA NA NA NA NA NA NA NA NA NA NA NA

Atractocarpus 
colnettianus
(Guillaumin) 
Mouly

Bruy 
154

Roc
he 
Oua
ièm
e

164.8
630
-
20.64
01

0,02 ± 
0,01

0,15 
±
0,09

156,1 
±
109,9

11
2
±
39

3791 
±
770

196,2 
±
64,2

32,6 
±
8,4

1,87 
±
0,46

1,09 
±
0,17

41,8 
±
2,7

0,7 
±
0,08

0,43 
±
0,02

370
9 ± 
739

0,1
8 ± 
0,0
2

0,3 
±
0,0
1

0,5
2 ± 
0,0
3

Atractocarpus 
confertus
(Guillaumin) 
Mouly

Veillon 
5733

De
maz
ure

166.6
251
-
22.19
62

0,01 ± 
0,01

0,02 
±
0,01

44,8 ± 
8

10
6
±
18

1639
3 ± 
5504

922,5 
±
151,5

24,4 
±
6,1

2,46 
±
0,48

1,3 ± 
0,12

64,2 
±
5,6

0,7 
±
0,02

0,48 
±
0,03

163
14 ± 
551
4

0,3
3 ± 
0,0
3

0,2
8 ± 
0,0
3

0,3
9 ± 
0,0
3

Atractocarpus sp.
nov. 8 Mouly,
ined.

Bruy 
953

Tch
amb
a

165.2
315
-
21.01
78

0,68 ± 
0,06

0,66 
±
0,07

9,4 ± 
0,7

11
7
±
17

5245 
±
3215

120,4 
±
24,3

99 ± 
33,3

3,96 
±
0,62

0,45 
±
0,08

139,
9 ± 
18

0,77 
±
0,04

0,52 
±
0,05

150
5 ± 
485

0,3 
±
0,0
7

0,3
2 ± 
0,0
6

0,3
8 ± 
0,0
3

Atractocarpus 
heterophyllus
(Montrouz.) 
Guillaumin & 
Beauvis.

Bruy 
632

Paa
gou
men
e

164.1
931
-
20.49
08

0,12 ± 
0,06

0,22 
±
0,09

147,2 
± 36,3

13
1
±
30

2349 
±
1368

140,3 
±
47,5

30,2 
±
13,8

2,5 ± 
0,63

0,59 
±
0,07

54,1 
±
7,4

0,67 
±
0,07

0,55 
±
0,01

203
5 ± 
116
9

0,2
1 ± 
0,0
3

0,2
9 ± 
0,0
8

0,5 
±
0,0
6

Atractocarpus sp.
nov. 13 Mouly, 
ined.

Barrabé 
1513

Bar
autê

165.2
303
-
20.97
98

0,89 ± 
0,03

0,85 
±
0,04

7,4 ± 
0,8

11
4
±
15

3743 
±
1773

49,9 
± 4,2

181 
±
114,
2

4,57 
± 3

0,47 
±
0,04

99,6 
±
15,4

0,75 
±
0,06

0,5 
±
0,06

388 
± 74

0,3
4 ±
0,0
7

0,2
6 ± 
0,0
9

0,4
1 ± 
0,0
9

Atractocarpus 
longistipitatus
Baill. ex 
Guillaumin

Bruy 
612

Mo
nts 
Kog
his

165.5
086
-
22.17
8507

0,0 ±
0,0

0,3 ± 
0,12

15,4 ± 
3,2

15
1
±
39

6417 
±
2650

361,3 
±
110,1

52,2 
±
19,8

1,88 
± 0,7

0,74 
±
0,07

94,3 
±
15,4

0,76 
±
0,04

0,57 
±
0,03

639
5 ± 
263
6

0,1
5 ± 
0,0
5

0,3
8 ± 
0,0
8

0,4
7 ± 
0,0
7

Atractocarpus 
mollis (Schltr.) 
Mouly

Bruy 
683

Pon
and
ou

165.2
173
-
20.81
71

0,89 ± 
0,05

0,74 
±
0,08

8,6 ± 
1,1

10
2
±
32

8543 
±
5432

86,3 
±
17,3

191,
4 ± 
48

1,89 
±
0,88

0,4 ± 
0,04

159,
3 ± 
17,3

0,82 
±
0,04

0,45 
±
0,03

787 
±
217

0,2
5 ±
0,0
8

0,2
4 ± 
0,0
5

0,5
1 ± 
0,0
5

Atractocarpus sp.
nov. 6 Mouly,
ined.

Bruy 
1012

Mo
nt 
Mo
u

166.3
349
-
22.07
51

0,6 ± 
0,11

0,82 
±
0,06

NA
88
±
23

5252 
±
2014

190,1 
±
30,3

115,
6 ± 
39,7

2,64 
±
1,05

0,71 
±
0,05

70,6 
±
9,5

0,72 
±
0,13

0,53 
±
0,07

217
4 ± 
113
7

0,2
6 ± 
0,0
6

0,2
5 ± 
0,1
2

0,4
9 ± 
0,0
8
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Atractocarpus 
ngoyensis (Schltr.) 
Mouly

Bruy 
139

Plai
ne 
des 
lacs

166.9
035
-
22.27
51

0,4 ± 
0,13

0,49 
±
0,16

169,4 
± 39,1

14
0
±
13

6580 
±
2245

228,9 
±
36,9

85 ± 
47

3,64 
±
1,63

0,77 
± 0,1

70,7 
±
7,8

0,81 
±
0,04

0,58 
±
0,16

374
0 ± 
758

0,2 
±
0,0
6

0,3
8 ± 
0,0
6

0,4
2 ± 
0,0
4

Atractocarpus 
nigricans (Schltr.) 
Mouly

Bruy 
662

Roc
he 
Oua
ièm
e

164.8
630
-
20.64
01

0,86 ± 
0,07

0,66 
±
0,16

17,3 ± 
4,3

11
5
±
13

6714 
±
3161

135,3 
±
31,8

79,4 
±
42,6

4,79 
±
3,41

0,63 
±
0,05

92,4 
± 5

0,73 
±
0,11

0,43 
±
0,04

792 
±
190

0,2
9 ± 
0,0
6

0,2 
±
0,0
7

0,5
1 ± 
0,0
4

Atractocarpus sp.
nov. 4 Mouly,
ined.

Bruy 
929

Man
djeli
a

164.5
421
-
20.40
38

0,69 ± 
0,11

0,68 
±
0,06

3,9 ± 
0,6

14
4
±
37

1294 
±
200

36,9 
± 7,5

85,2 
± 33

2,39 
±
1,56

0,35 
±
0,01

82,6 
±
3,7

0,79 
±
0,05

0,51 
±
0,04

409 
±
156

0,2
5 ±
0,0
7

0,2
6 ± 
0,0
6

0,5 
±
0,0
3

Atractocarpus sp.
nov. 10 Mouly,
ined.

Bruy 
944

Pwa
ala

164.5
087
-
20.37
50

0,92 ± 
0,04

0,85 
±
0,02

11,2 ± 
6,6

10
1
±
16

1092
5 ± 
3546

95,5 
± 34

148 
±
60,4

1,96 
±
0,61

0,45 
±
0,05

157,
4 ± 
7,6

0,79 
±
0,02

0,53 
±
0,03

833 
±
411

0,2
6 ±
0,0
3

0,3 
±
0,0
3

0,4
4 ± 
0,0
4

Atractocarpus sp.
nov. 3 Mouly ined.

Barrabé 
699

Aou
pini
é

165.2
769
-
21.17
80

0,87 ± 
0,07

0,84 
±
0,06

10,5 ± 
3,3

12
2
±
22

9511 
±
3455

142,2 
±
44,1

140 
±
62,8

5,25 
±
2,39

0,7 ± 
0,1

172,
1 ± 
36,6

0,68 
±
0,09

0,42 
±
0,05

112
6 ± 
585

0,3
4 ± 
0,0
8

0,2
7 ± 
0,1
2

0,3
9 ± 
0,0
6

Atractocarpus 
pseudoterminalis
(Guillaumin) 
Mouly

Bruy 
162

Plai
ne 
des 
lacs

166.9
035
-
22.27
51

0,78 ± 
0,12

0,76 
±
0,14

13,5 ± 
4,1

16
0
±
13

2933 
±
1461

44,4 
± 7,6

186,
2 ± 
138,
1

3,46 
±
1,28

0,32 
±
0,01

88,9 
±
5,5

0,81 
±
0,03

0,58 
±
0,04

517 
± 49

0,2
1 ± 
0,0
7

0,3
7 ± 
0,1
1

0,4
2 ± 
0,0
6

Atractocarpus 
pterocarpon
(Guillaumin) 
Puttock

McPher
son 
3003

Plai
ne 
des 
lacs

166.9
035
-
22.27
51

0,01 ± 
0,01

0,26 
±
0,11

30,4 ± 
11,6

12
7
±
28

2321 
±
701

189 
±
22,5

38,8 
±
21,6

2,57 
±
1,02

0,6 ± 
0,05

76,3 
±
4,3

0,75 
±
0,06

0,5 
±
0,02

230
4 ± 
698

0,1
9 ± 
0,0
3

0,2
5 ± 
0,0
5

0,5
5 ± 
0,0
2

Atractocarpus sp.
nov. 7 Mouly,
ined.

Hatterm
ann 01

Mo
nt 
Do

166.0
008
-
21.75
36

0,48 ± 
0,08

0,4 ± 
0,11

33,8 ± 
17,2

17
7
±
31

1610 
±
581

63,5 
± 10

46 ± 
18,5

3,37 
±
1,77

0,58 
±
0,12

63,2 
±
12,2

0,72 
±
0,08

0,48 
±
0,05

842 
±
351

0,2
2 ± 
0,0
5

0,3
3 ± 
0,0
9

0,4
5 ± 
0,0
7

Atractocarpus 
sessilifolius
Guillaumin

Bruy 
645

Tch
amb
a

165.2
315
-
21.01
78

0,15 ± 
0,14

0,53 
±
0,13

6,5 ± 
5,6

98
±
16

1872 
±
738

113,7 
± 36

80,4 
±
25,7

1,99 
± 1,3

0,45 
±
0,08

67,4 
±
10,8

0,8 
±
0,03

0,59 
±
0,03

164
1 ± 
828

0,1 
±
0,0
6

0,3
7 ± 
0,0
4

0,5
3 ± 
0,0
6

280



Atractocarpus 
sezitat
(Guillaumin) 
Mouly

Bruy 
900

Roc
he 
d'A
dio

165.2
422
-
21.24
05

NA NA NA
N
A

NA NA NA NA NA NA NA NA NA NA NA NA

Atractocarpus 
vaginatus
Guillaumin

Bruy 
621

Sarr
ame
a

165.8
072
-
21.66
58

0,09 ± 
0,1

0,07 
±
0,03

360,7 
±
110,9

12
8
±
16

3754 
±
1003

229,7 
±
26,8

24 ± 
7,3

6,58 
±
1,13

0,82 
±
0,08

40,7 
±
5,3

0,82 
±
0,15

0,59 
±
0,23

335
6 ± 
718

0,1
9 ± 
0,0
4

0,3
5 ± 
0,0
4

0,4
6 ± 
0,0
3

BI: branching index, SR: slenderness ratio, LA: leaf area, IN: internode, SLA: specific leaf area, SWD: specific wood density, SSD: 

specific stem density, HV: Huber value 
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Sarea SR T SDMC SSD WSD leaf nb LA
SR -0.63***
T 0.54*** -0.99***
SDMC -0.26** 0.11 -0.06
SSD -0.27** 0.11 -0.06 0.97***
WSD -0.48*** 0.27** -0.21* 0.73*** 0.75***
Leaf nb 0.51*** -0.20* 0.16 0.1 0.07 -0.04
LA 0.74*** -0.43*** 0.35*** -0.1 -0.12 -0.31** 0.32**
LAtotal 0.82*** -0.39*** 0.31** -0.07 -0.09 -0.26** 0.71*** 0.86***
Parea 0.92*** -0.67*** 0.60*** -0.39*** -0.40*** -0.54*** 0.35*** 0.67***
Pithp 0.35*** -0.42*** 0.40*** -0.48*** -0.47*** -0.32** -0.03 0.24*
Xylemp -0.12 0.30** -0.31** 0.46*** 0.44*** 0.29** 0.25* 0.14
Phloemp -0.52*** 0.48*** -0.45*** 0.42*** 0.40*** 0.36*** -0.13 -0.24*
Cortexp -0.05 -0.05 0.06 -0.19 -0.16 -0.07 -0.13 -0.27**
HV 0.02 -0.06 0.06 0.16 0.16 -0.03 -0.25* -0.23*
RT 0.15 -0.08 0.06 -0.39*** -0.36*** -0.34*** -0.09 -0.06
Vd 0.63*** -0.24* 0.18 -0.12 -0.15 -0.31** 0.44*** 0.64***
Dm 0.62*** -0.26* 0.19 -0.17 -0.20* -0.34*** 0.38*** 0.64***
Kth 0.63*** -0.26** 0.20* -0.13 -0.16 -0.32** 0.41*** 0.64***
Ks-th 0.85*** -0.42*** 0.34*** -0.13 -0.16 -0.37*** 0.58*** 0.81***
FD -0.55*** 0.27** -0.21* 0.29** 0.28** 0.30** -0.39*** -0.26***
RF -0.16 0.09 -0.09 -0.02 -0.01 0.16 -0.06 0.03
VD -0.54*** 0.18 -0.12 0.09 0.10 0.28** -0.32** -0.54**
SLA -0.30** 0.33*** -0.33*** -0.45*** -0.43*** -0.18 -0.40*** -0.20***
LDMC -0.29** 0.04 -0.01 0.47*** 0.45*** 0.34*** 0.09 -0.20
PL 0.15 0.1 -0.14 -0.47*** -0.46*** -0.24* -0.19 0.24
LT 0.43** -0.10 0.04 -0.12 -0.14 -0.06 0.38** 0.23
PSR 0.16 -0.05 0.03 -0.17 -0.18 -0.18 0.26 -0.01
SD -0.35* 0.36* -0.35* 0.23 0.19 0.20 -0.43** -0.09

*: P<0.05, **: P<0.01, ***: P<0.001 

Appendix 3 – Correlation table (method of Spearman) for 32 morpho-anatomical traits measured on twenty species (Chapter 7).
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LAtotal Parea Pithp Xylemp Phloemp Cortexp HV RT Vd Kth

Parea 0.69***
Pithp 0.16 0.66***
Xylemp 0.21* -0.34*** -0.64***
Phloemp -0.24* -0.62*** -0.57*** 0.45***
Cortexp -0.25* -0.06 0.00 -0.68*** -0.29**
HV -0.29** -0.09 -0.40*** 0.24* 0.08 -0.03
RT -0.09 0.16 0.11 -0.35*** -0.36*** 0.40*** 0.13
Vd 0.69*** 0.56*** 0.10 0.22* -0.28** -0.28** -0.04 -0.03
Dm 0.66*** 0.57*** 0.16 0.18 -0.26** -0.31** -0.06 -0.04 0.96***
Kth 0.68*** 0.57*** 0.13 0.21* -0.27** -0.30** -0.05 -0.05 0.99*** 0.98***
Ks-th 0.88*** 0.72*** 0.14 0.21* -0.32** -0.27** -0.04 -0.01 0.87*** 0.85***
FD -0.41*** -0.45*** -0.11 0.30** 0.40*** -0.41*** 0.02 -0.42*** -0.30** -0.23*
RF 0.02 -0.07 0.19 0.03 0.10 -0.22* -0.36*** -0.47*** -0.19 -0.08
VD -0.59*** -0.48*** -0.09 -0.30** 0.19 0.39*** -0.09 0.14 -0.70*** -0.71***
SLA -0.30** -0.24* 0.01 -0.03 -0.08 -0.00 -0.08 0.28** -0.20* -0.18
LDMC -0.17 -0.29** -0.18 0.12 0.47*** -0.11 0.02 -0.51*** -0.23* -0.19
PL 0.13 0.17 0.16 -0.08 -0.22* -0.01 -0.16 0.01 0.20 0.21*
LT 0.38** 0.43** 0.18 -0.16 -0.56*** 0.32* -0.14 0.43** 0.40** 0.30*
PSR 0.15 0.11 -0.11 0.23 -0.27 -0.06 0.19 -0.21 0.26 0.25
SD -0.26 -0.31* -0.09 0.11 0.50*** -0.24 -0.02 -0.15 -0.19 -0.16

*: P<0.05, **: P<0.01, ***: P<0.001 
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  Kth Ks-th FD RF VD SLA LDMC PL LT PSR

Ks-th 0.86***
FD -0.26** -0.41***
RF -0.13 -0.11 0.40***
VD -0.71*** -0.59*** 0.19 0.11
SLA -0.20 -0.30** 0.05 0.10 0.08
LDMC -0.21* -0.23* 0.34*** 0.35*** 0.18 -0.58***
PL 0.20* 0.17 -0.06 0.06 -0.14 0.35*** -0.42***
LT 0.36** 0.39** -0.62*** -0.53*** -0.24 -0.30* -0.62*** 0.12
PSR 0.26 0.26 -0.11 0.03 -0.27 0.26 -0.21 0.41** 0.17
SD -0.18 -0.27 0.34* 0.09 0.06 -0.27 0.29* -0.26 -0.11 -0.60***

*: P<0.05, **: P<0.01, ***: P<0.001 
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Background

The economy of light harvesting opposes the 
photosynthetically active lamina to the petiole, whose 
primary function is to mechanically and hydraulically 
sustain the lamina (Niinemets and Kull, 1999)1.

Leaf biomass partitioning between the lamina and its 
support impacts foliar productivity (Niinemets et al., 
2006)2 and thus, plant strategies and ecosystem 
functioning.

The ecological and adaptative significance of leaf 

type (simple vs compound) is still under debate (Warman
et al., 2011 ; Nicotra et al. 2011)3,4.

Main findings & perspectives

- Diverging allocating patterns between leaf support and photosynthetic
lamina across 3 leaf types in the Araliaceae of New Caledonia, underlying
different foliar strategies

- Palmate vs pinnate compound leaves: we should not just oppose

To be tested next:
Biochemical composition (nitrogen and phosphorus content) for a
glimpse into metabolic activity
Phylogenetic approach to better understand the adaptative

radiation of leaf type among the Araliaceae

Discussion

How does leaf type affect 
the balance between leaf 
traits related to support 
and light interception? 

Petioles E) than the simple leaf, 
suggesting higher tissue density, especially in Plerandra osyana subsp. osyana.

The simple leaved Meryta balansae however exhibits similar flexural rigidity (EI) to 
the latter, through an increase in petiole diameter (I, axial second moment of area) 
rather than through tissue mechanical properties (E).

(EI = E x I)

2 Petiole structural investments

N = 90x3

Meryta balansae Baill.
Plerandra osyana (Veitch ex Regel) Lowry, G.M. Plunkett & Frodin subsp. osyana

Polyscias otopyrena (Baill.) Lowry & G.M. Plunkett

The three leaf types diverge in their petiole-to-lamina allocating patterns.

- Meryta simple leaves have short petioles (4 cm), accounting for 4% of the dry mass

- Plerandra palmate leaves have longer petioles (35 cm), representing 20% of leaf dry
mass.

- Polyscias

fraction 10%), but higher dry matter content (dry mass to fresh mass)

3 Biomechanical properties of the petiole 4 Anatomical organization of the petiole

1 Foliar support allometries

Reinforcement by thick-walled collenchyma and sclerenchyma (fiber caps)

Lignification medullary bundles, an unusual feature in 
dicotyledons, distributed: randomly (Meryta balansae), in a second ring inversely 
orientated (Polyscias otopyrena) or both (Plerandra osyana subsp. osyana)

How does leaf dry mass (DM, as a proxy for leaf support investment) scale with leaf 
area (LA)? We tested the log-log relationships with a Standardized Major Axis (SMA) 
analysis:

The cost for expanding leaf area is constant for Meryta, while it increases for Plerandra

and decreases for Polyscias.

We are very grateful to Yves Caraglio, as well as Vanessa Hecquet, William Nigote, Jaqueline Fambart-Tinel and Hélène Cazé for their help during field missions, and Jerome Munzinger, Stefan McCoy and Pete Lowry who helped to locate targeted species.

Comparing 3 leaf types in 3 genera in the Araliaceae family: 
simple (Meryta), palmately compound (Plerandra) and 
pinnately compound (Polyscias).

A set of leaf traits from fresh and dry weight of lamina
and petiole, lamina area and partitioning into leaflets

+ Petiole bending tests and transverse anatomical sections
for a subsample of 3 taxa

Meryta balansae Plerandra osyana subsp. osyana Polyscias otopyrena

95% C.I. r² allometry

Meryta 0.936 0.866 - 1.012 86% isometry ( = 1)

Plerandra 0.896 0.857 - 0.937 95% negative allometry ( < 1)

Polyscias 1.165 1.044 - 1.299 73% positive allometry ( > 1)

- increasing leaflet cost for
additional leaflets in
Plerandra (r² = 20%)

- constant leaflet cost in
Polyscias (r² = 0%)

Polyscias

leaves have leaflet 
weights distributed along 
a rachis prolongating the 
petiole, allowing lamina 
expansion at reduced 
cost: a flexible model

Plerandra palmate 

leaves maximize light 
interception and reduce the 

wind drag force by long 
petioles, which may 

compensate for costly 
investment into support

Meryta simple leaves 

have short petioles, inducing 
self shading and little 

possibility for reorientation 
under wind drag force - a 

reduced constraint in 
rainforest understories

N = 15x3

Contactactactactactactact:

eeva.gril@

Contactactactactact:actactactactact

ril@agroparistech.fr
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We harvested 270 mature leaves from 
18 taxa endemic from New Caledonia 
(6 in each genus)
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Résumé en français – Diversité, Ecologie et 

Evolution des plantes monocaules de Nouvelle-

Calédonie

Chapitre 1 – Introduction générale

Les caractéristiques biogéographiques des îles font d’elles des modèles de choix pour 

l’étude des processus écologiques et évolutifs. Ainsi, nombreuses sont les grandes théories qui ont 

été inspirées par les systèmes insulaires puis généralisées aux régions continentales. Pour les années 

à venir, les approches combinant traits fonctionnels et phylogénies moléculaires semblent 

particulièrement prometteuses pour développer de nouveaux concepts. Parmi les différents 

systèmes insulaires, la Nouvelle-Calédonie, en tant que « vieille île Darwinienne », apparait être 

un modèle particulièrement intéressant. Malgré l’originalité exceptionnelle de sa flore aucun grand 

cas de convergence évolutive, pourtant commun dans les îles, n’a été mis en évidence dans cet 

archipel.

L’une des caractéristiques principales des systèmes insulaires est leur disharmonie 

taxonomique (la représentation inégale des lignées) et fonctionnelle (la représentation inégale des 

fonctions) par rapport aux régions adjacentes. La surreprésentation d’un caractère sur une île peut 

être due à (i) l’établissement préférentiel des espèces présentant ce caractère, (ii) l’évolution répétée 

du caractère sur l’île et/ou (iii) la diversification sur l’île des espèces présentant ce caractère. Parmi 

les mécanismes responsables de la disharmonie des flores, l’un des plus importants est la
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convergence évolutive, c’est-à-dire l’évolution d’un même caractère sous des pressions 

écologiques similaires mais non-hérité d’un ancêtre commun.

Les cas les plus marquants de convergence évolutive concernent les formes de croissance,

c’est-à-dire l’apparence physionomique générale des plantes (par exemple les arbres en rosette ou 

les lianes). La diversification des formes de croissance, dont les interactions avec l’environnement 

sont particulièrement marquées, joue un rôle prépondérant dans l’accroissement de la richesse en 

espèces. Les formes de croissance résultent d’une combinaison de nombreux traits 

morphologiques, anatomiques, physiologiques et autres. L’un des exemples les mieux connus 

parmi ces associations de traits est représenté par les lois de Corner qui décrivent une corrélation 

négative entre le degré de ramification d’une part et la taille des feuilles, des fruits et des 

inflorescences d’autre part.

L’architecture des plantes est une discipline de la botanique qui s’intéresse à l’origine et à 

l’arrangement spatial des structures végétales ainsi qu’à leur évolution au cours de l’ontogénie. En 

ce sens, il s’agit d’une approche intégrative qui offre des perspectives multiples pour la 

compréhension des relations entre structure, fonction et environnement des plantes, et leur 

évolution.

Les travaux en architecture végétale ont montré que les fonctions des plantes sont réparties 

dans différents compartiments. Par exemple, le tronc des arbres assure principalement une fonction 

d’exploration et de support tandis que les branches et rameaux sont en comparaison plus spécialisés 

dans la photosynthèse et la reproduction. Mais parmi la diversité des architectures connues chez 

les végétaux, les plantes dites monocaules sont réduites à une extrême simplicité, n’étant 

constituées que d’un tronc unique. Cette forme de croissance ligneuse est souvent caractérisée par

de très grandes feuilles disposées à l’extrémité du tronc. Probablement en raison de leur simplicité, 
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de leur allure originale et des contraintes développementales évidentes liées à la restriction des 

méristèmes, les plantes monocaules ont toujours suscité la curiosité des botanistes. La monocaulie

est aussi au cœur de grandes théories écologiques et évolutives, telles que les lois de Corner, dont 

elle illustre l’extrême d’un continuum (absence de la ramification, grandes feuilles, tige épaisse, 

gros fruits et inflorescences complexes). Malgré cela, les avantages adaptatifs et l’histoire évolutive 

des plantes monocaules restent très mal connus. Cette lacune est d’autant plus prégnante qu’elles 

sont présentes dans toutes les forêts tropicales humides, et particulièrement diversifiées dans 

certaines régions, comme en Nouvelle-Calédonie.

Nous partons de l’hypothèse que la forte représentation de la forme de croissance 

monocaule en Nouvelle-Calédonie pourrait représenter un cas de convergence évolutive pour 

l’archipel, le premier qui serait ainsi mis en évidence. Il en découlerait que la Nouvelle-Calédonie 

arbore des conditions environnementales favorables, et/ou non limitantes, pour l’évolution de cette 

forme de croissance. Le but de ce travail de thèse est de caractériser la diversité, l’écologie et

l’évolution des espèces monocaules en Nouvelle-Calédonie. Plus précisément, nous tenterons à 

travers plusieurs chapitres, de répondre aux questions suivantes :

Ø Qu’est-ce que la monocaulie ? Combien y-a-t-il d’espèces monocaules en Nouvelle-

Calédonie ?

Ø Combien de fois la monocaulie a-t-elle évoluée ? Peut-on identifier des traits d’histoire de vie 

ou environnementaux évolutivement corrélés à la monocaulie ? Représentent-ils des prérequis 

ou des contingences environnementales facilitant cette évolution ?

Ø Peut-on utiliser l’approche architecturale pour comprendre l’évolution de la monocaulie dans 

une phylogénie résolue à l’espèce ? Quelles sont les implications écologiques et fonctionnelles 
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d’un changement de forme de croissance ? La monocaulie est-elle impliquée dans la 

diversification des lignées en Nouvelle-Calédonie ?

Ø Quels sont les traits morpho-anatomiques associés à la forme de croissance monocaule ? Est-

ce qu’ils peuvent nous permettre de mieux comprendre les lois de Corner ?

Ø Quelles hypothèses peuvent expliquer la convergence évolutive vers la monocaulie en 

Nouvelle-Calédonie ?

Chapitre 2 – Méthodologie générale

Le site d’étude : l’archipel néo-calédonien

La Nouvelle-Calédonie est un archipel océanique situé dans le Sud-Ouest de l’océan 

Pacifique. La majeure partie de sa superficie consiste en une île allongée (la Grande Terre) 

d’environ 16500 km² et parcourue sur toute sa longueur par une chaine montagneuse culminant à 

1628 mètres d’altitude. Le climat est subtropical avec des précipitations moyennes annuelles 

variant selon les régions et les années (entre 800 mm/an et plus de 4000 mm/an). Une saison sèche 

s’étend d’août à novembre et les températures sont supposées ne descendre en dessous de zéro que 

très rarement (moyenne annuelle variant de 20 à 25 °C). La Nouvelle-Calédonie est fréquemment 

sujette à des cyclones qui peuvent être très intenses. Trois principaux substrats géologiques sont 

communément reconnus en Nouvelle-Calédonie : le substrat ultramafique (environ 1/3 de la 

Grande Terre) qui est très contraignant pour la croissance des plantes, le substrat volcano-

sédimentaire (environ 2/3 de la Grande Terre) qui est très variable en composition et origine, et le 

substrat calcaire qui est rare sur la Grande Terre.

La Nouvelle-Calédonie est un fragment du Gondwana qui s’est séparé il y a environ 120-

80 Ma puis a été immergé entre -62 et -35 Ma. Durant cette immersion l’île a été recouverte d’une 
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partie de croute océanique, évènement à l’origine du substrat ultramafique, qui s’est ensuite érodé 

après l’émergence de l’île pour laisser apparaitre les autres substrats connus aujourd’hui. Les 

données paléoclimatiques suggèrent que la Nouvelle-Calédonie a connu des périodes 

d’aridification il y a quelques millions d’années (-6,5 Ma et -2,5 Ma) et plus récemment (-22000

et -12000 ans). Ces évènements sont supposés avoir été moins sévères que pour le reste du 

Pacifique, permettant la persistance des forêts denses humides sous forme de refuges alors qu’elles 

déclinaient dans les régions adjacentes comme l’Australie.

La flore de Nouvelle-Calédonie est extrêmement diversifiée (environ 3400 espèces 

vasculaires) et originale (75% d’endémisme). Elle présente notamment une disharmonie marquée

avec les flores régionales, tant au point de vu taxonomique que fonctionnel. La flore et les habitats 

sont extrêmement menacés, en particulier les forêts denses humides sur substrat ultramafique. 

Aujourd’hui 43% des espèces évaluées selon la méthodologie de l’IUCN sont menacées 

d’extinction, les principales menaces étant les feux de brousses, l’activité minière et les herbivores 

introduits. Sept principaux types de végétations sont reconnus en Nouvelle-Calédonie dont les

savanes et le maquis (principalement d’origine anthropique) qui sont les plus étendus, et la forêt 

dense humide qui est la plus diversifiée. Ces forêts se caractérisent, entre autre, par une densité 

élevée de tiges de petits diamètres. Parmi les facteurs principaux responsables de l’originalité de la 

flore néo-calédonienne, on reconnait notamment le substrat ultramafique (filtrant l’établissement 

des espèces et contraignant leur croissance), les changements climatiques du Quaternaires

(générant des refuges pour des espèces sensibles à la sècheresse) et les cyclones (entre autre 

responsables des caractéristiques structurales des forêts).

Vers une nouvelle définition de la monocaulie : entre structure et fonction
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L’approche architecturale apporte des critères intégrateurs et objectifs pour la définition des 

formes de croissance. Pour la monocaulie, la définition la plus aboutie est celle proposée par Hallé 

et all en 1978 : les monocaules sont définis comme des « arbres avec un seul tronc ou tige visible». 

À cette définition est associée trois modèles architecturaux : les modèles de Corner, Holttum, et 

Chamberlain. Notre étude s’intéressant à la signification adaptative des formes de croissance, nous 

avons ajouté une dimension fonctionnelle à la définition : les monocaules sont définies comme des 

« plantes autoportantes ligneuses dont les fonctions cardinales reposent sur une seule tige visible ». 

Les espèces conformes à cette définition sont donc constituées (i) d’un tronc (monoaxial ou 

pluriaxial), (ii) de structures latérales à croissance déterminée, fortement spécialisées dans la 

photosynthèse et présentant un point d’abscission, (iii) d’axes ou complexes d’axes hautement 

spécialisés dans la reproduction et dont la contribution à l’exploration végétative de l’espace et à

la photosynthèse est négligeable, et éventuellement (iv) de réitéras opportunistes (c’est-à-dire la 

répétition de l’architecture élémentaire de la plante en réponse à un stimuli ou un stress 

environnemental). Cette définition inclut donc les modèles architecturaux de Corner, Holttum, 

Chamberlain, Cook et en partie celui de Tomlinson (si la répétition basale est opportuniste).

Constitution de la liste des espèces monocaules

À partir de la définition ci-dessus, une liste exhaustive des espèces monocaules de 

Nouvelle-Calédonie a été constituée. Nous nous sommes focalisés sur la flore Angiosperme non-

monocotylédone car la monocaulie exprimée chez les monocotylédones (Palmiers, etc.)…) et 

fougères est structuralement et fonctionnellement différente. Pour cela, une extraction par mots-

clés de la base de données de l’Herbier de Nouvelle-Calédonie (NOU) a été réalisée et complétée 

à dire d’expert et par une analyse bibliographique approfondie (flores, description d’espèces, etc.).
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Ensuite, l’architecture de chaque espèce de cette liste (ainsi que d’autres espèces) a été vérifiée sur 

le terrain et à l’aide de photographies.

Chapitre 3 – La forme de croissance monocaule : une brève synthèse

Le terme monocaulie (du latin monocaulis) a été utilisé à de nombreuses reprises depuis au 

moins le 17ème siècle pour caractériser les plantes ou parties de plantes non-ramifiées. La vision 

actuelle de la monocaulie, caractérisant des plantes ligneuses non ramifiées et portant un toupet de 

grosses feuilles dans la partie distale de la tige, a été amenée par Corner en 1949. Le terme a ensuite 

été utilisé à différentes reprises avec des définitions plus ou moins larges jusqu’à la proposition 

d’une définition physionomique par Hallé et all en 1978, puis par la définition fonctionnelle 

proposée dans le cadre de ce doctorat.

L’architecture non-ramifiée est très ancienne chez les plantes terrestres, le modèle de

Corner par exemple, faisant partie des plus anciens connus chez les plantes fossiles. Cette forme 

architecturale était particulièrement abondante dans les paléo-écosystèmes (notamment entre -350 

Ma et -110 Ma). Elle a ensuite été progressivement remplacée par les plantes ramifiées de façon 

axillaire et ne représenterait aujourd’hui qu’environ 2% des espèces connues. Certains auteurs ont 

suggéré que l’ancêtre commun aux plantes à fleurs était monocaule et que les espèces monocaules 

actuelles sont des cas « relictuels » de cette forme ancestrale. D’autres suggèrent que ces espèces 

sont apparues dans plusieurs familles par évolution convergente. Les études récentes s’appuyant

sur des phylogénies moléculaires ont finalement montré que la monocaulie est apparue de manière 

convergente dans plusieurs lignées. Deux voies évolutives, par processus hétérochroniques, ont été 

proposées pour l’évolution de la monocaulie. La première, déjà connue dans certaines lignées,

suggère une évolution depuis des ancêtres herbacés dont la séquence développementale aurait été 
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prolongée. La seconde, restant hypothétique, suggère une évolution depuis des arbres dont la 

séquence développementale aurait été tronquée.

Les traits d’histoire de vie associés à la monocaulie ont pour la plupart été inférés de façon 

empirique ou par le biais d’indices de ramification hétérogènes et difficiles à interpréter. Nous 

avons noté 16 principaux états de caractères potentiellement associés à la monocaulie selon la 

littérature. Les espèces monocaules sont restreintes aux régions tropicales et subtropicales d’où 

elles sont connues de trois principaux environnements: les milieux secs et ouverts (particulièrement 

sur les îles), les milieux alpins, et les forêts denses humides où il semble y avoir la plus grande 

diversité.

Chapitre 4 – Novitates neocaledonicae VII : Une nouvelle espèce monocaule de Bocquillonia

(Euphorbiaceae) pour la Nouvelle-Calédonie

Le genre Bocquillonia est un genre d’Euphorbiaceae contenant quatorze espèces toutes 

endémiques de Nouvelle-Calédonie. Des études moléculaires suggèrent que Bocquillonia est 

phylogénétiquement inclut dans le genre pantropical Alchornea, mais cela reste à confirmer. Les 

espèces de Bocquillonia se caractérisent par la présence de glandes à la face abaxiale des feuilles, 

un système sexuel dioïque (rarement monoïque), des inflorescences glomeruleuses à étroitement 

racemiformes, des fleurs apétales, un calice bi- ou trilobé pour les fleurs mâles, un calice plus court 

que le gynécée pour les fleurs femelles et la présence de phloème interne (péri-médullaire) dans la 

tige. De nombreuses espèces sont conformes au modèle architectural de Corner et les formes de 

croissance varient depuis des arbrisseaux monocaules ou ramifiés à des arbres ramifiés. Cette 

diversité des formes de croissance est principalement due à des variations de la dimension des tiges 

et de la fréquence de la réitération opportuniste, ce qui en fait un modèle intéressant pour étudier 

l’évolution de la monocaulie.
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Au court de ce travail de thèse une population de Bocquillonia monocaules pouvant 

atteindre 8 mètres et très peu réitérés – un caractère inédit dans le genre – a été observé. Des 

observations de terrain et de spécimens d’herbiers ont confirmé que cette population représentait 

un taxon distinct des autres espèces de Bocquillonia décrites. 

Cette nouvelle espèce a été nommée Bocquillonia corneri en hommage à E.J.H Corner dont 

les hypothèses concernant les plantes monocaules ont inspirées des générations de botanistes. 

Bocquillonia corneri se distingue des autres espèces du genre par la combinaison de caractères 

suivante : (i) un arbre monocaule très peu réitéré, (ii) des inflorescences condensées, (iii) des fleurs 

femelles avec un calice fuchsia et (iv) des stigmates ovales appliqués contre l’ovaire. Les données 

suggèrent que B. corneri est très menacé par les feux de brousses, l’activité humaine et les 

herbivores introduits et l’espèce a été considérée en danger critique d’extinction (CR) selon les 

critères de la liste rouge de l’IUCN. Dans cet article une clé d’identification de toutes les espèces 

décrites de Bocquillonia est proposée. 

Chapitre 5 – Un remarquable cas de convergence évolutive : évolution corrélée et 

contingences environnementales de la monocaulie dans la flore néo-calédonienne.

Dans ce chapitre nous décrivons un cas remarquable de convergence évolutive avec 

l’apparition multiple de la monocaulie en Nouvelle-Calédonie. 

Par le bais d’une compilation de données issues de la littérature et de l’herbier de Nouvelle-

Calédonie (NOU) ainsi qu’un travail de terrain intensif, nous avons dressé la liste des espèces 

monocaules de Nouvelle-Calédonie et codé six traits d’histoire de vie (le système sexuel, le type 

de fruit, l’attractivité des fleurs, le type de feuilles, la position de la sexualité et les rythmes de 

croissance) ainsi que deux traits environnementaux (la végétation et le substrat) de façon binaire 

pour les 2114 dicotylédones ligneuses et autoportantes de Nouvelle-Calédonie. L’évolution 
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corrélée entre la monocaulie et ces traits a été testée à l’aide d’un super-arbre phylogénétique créé 

à partir des relations génériques publiées pour les clades calédoniens. Cet arbre a également été 

utilisé pour calculer le signal phylogénétique de la monocaulie, son nombre d’apparition minimal 

en Nouvelle-Calédonie ainsi que la relation entre la présence de monocaules dans un genre et sa 

diversité spécifique. L’endémisme (spécifique et générique) des espèces monocaules ainsi que leur 

risque d’extinction et principales menaces (selon les critères de l’IUCN) ont également été 

investigués. 

Nous avons recensé 182 espèces dicotylédones monocaules appartenant à 41 genres, 30 

familles et 15 ordres. Le modèle architecturale de Corner est de loin le plus représenté suivi par le 

modèle de Cook (mais présentant une faible diversité phylogénétique) puis par le modèle de 

Chamberlain. Avec plus de 31 apparitions indépendantes, l’évolution de la monocaulie en 

Nouvelle-Calédonie rejoint les plus grands cas de convergence décrits pour les systèmes insulaires 

comme la « secondary woodiness » (c’est-à-dire l’évolution du caractère ligneux dans des groupes 

herbacés) aux îles canaries. La monocaulie présente néanmoins un signal phylogénétique 

significativement différent d’une évolution aléatoire, indiquant une évolution préférentielle dans 

certains clades comme les Malpighiales, les Apiales ou les Sapindales. Ceci suggère l’existence de 

prérequis facilitant l’évolution de la monocaulie. Cette forme de croissance a préférentiellement 

évoluée en forêt dense humide et sur substrat ultramafique, ce que nous avons associé à un avantage 

compétitif dans les milieux denses, humides, ombragés et à faibles ressources lumineuses et 

minérales. L’évolution de la monocaulie a favorisé l’apparition de la cauliflorie et d’une croissance 

rythmique marquée chez les clades concernés, que nous relions respectivement à un nombre limité

de nœuds foliés (contraignant l’apparition de la sexualité sur les parties défoliées) et à une nécessité 

accrue de protéger le méristème unique (contraignant la durée de la phase de croissance). Aucune 
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préadaptation n’a pu être identifiée mais l’observation empirique d’un lien entre les modèles 

architecturaux monocaules et ramifiés ouvre une voie intéressante à investiguer. Les genres 

contenants des espèces monocaules sont significativement plus diversifiés que les autres. Ce 

résultat, en combinaison avec la quasi-absence de genres majoritairement monocaules, pourrait 

suggérer un accroissement de la diversification avec l’apparition de la monocaulie via un 

phénomène de partitionnement de niche. La flore monocaule semble plus gravement menacée que 

la flore ramifiée (proportion d’espèces « en danger » et « en danger critique d’extinction ») avec 

un impact particulièrement important des herbivores introduits. Par ailleurs la proportion 

significativement plus importante d’espèces monocaules dans la classe « données déficientes »

montre que ces espèces restent particulièrement mal connues. Le taux d’endémisme très élevé de 

la flore monocaule (98.9 %) ainsi que l’apparente rareté de groupes externes monocaules suggère 

soit une évolution préférentielle de la monocaulie en Nouvelle-Calédonie, soit une disparition de 

cette forme dans les régions voisines. La remarquable convergence évolutive de la monocaulie en 

Nouvelle-Calédonie est ici reliée à quatre hypothèses majeures : (i) la très forte densité des forêts 

en lien avec la fréquence et l’intensité des cyclones dans la région favorisant le port monocaule,

(ii) la persistance de refuges forestiers durant les fluctuations climatiques du Pleistocène dont les 

épisodes de sècheresse ont pu causer des extinctions massives dans le reste du Pacifique, (iii) 

l’importance sur l’archipel du substrat ultramafique dont les contraintes édaphiques peuvent 

contraindre le développement structural des plantes (« paupérisation architecturale ») et favoriser 

la réduction de la ramification, et (iv) l’absence de grands herbivores sur le long terme, empêchant 

la contre-sélection de la forme monocaule qui est particulièrement sensible au broutage. 
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Chapitre 6 – Evolution de l’architecture, diversification fonctionnelle et évolution 

divergente dans le genre Atractocarpus (Rubiaceae) en Nouvelle-Calédonie

L’évolution convergente et l’évolution divergente sont deux processus complémentaires 

parmi les plus importants liant l’écologie des plantes et leur diversification. La convergence est 

l’apparition de caractères similaires sous des pressions écologiques similaires mais non hérités d’un 

ancêtre commun. La divergence est la diversification des rôles écologiques entre des espèces 

proches, en compétition pour les ressources, aboutissant à l’exploitation différentielle d’un même 

environnement. Le genre Atractocarpus présente une diversité architecturale et un taux de 

diversification très rapide, ce qui en fait un modèle intéressant pour étudier l’implication de 

l’architecture végétative dans les processus de divergence et de convergence évolutive chez les 

plantes. 

Atractocarpus est un genre Pacifique contenant une quarantaine d’espèces dont 32 sont 

endémiques à la Nouvelle-Calédonie et issues d’un seul évènement de colonisation. La grande 

majorité des espèces sont des arbustes monocaules à ramifiés inféodés au sous-bois des forêts 

denses humides. L’architecture de chacune des 27 espèces néo-calédoniennes d’Atractocarpus de 

sous-bois a été décrite. Pour chacune d’elles, un échantillonnage standardisé sur 5 individus a été 

réalisé sur lesquels un ensemble de 15 traits fonctionnels a été mesuré. Notamment, un indice de 

ramification fonctionnellement explicite et lié à l’architecture des plantes a été développé dans 

cette étude. Il consiste en la proportion de la fonction photosynthétique (approximée par la surface 

foliaire) et d’exploration (approximée par la longueur) assurée par les branches. Un indice de 0 

signifie donc que ces fonctions sont assurées par le tronc (plante monocaule) et plus l’indice se 

rapproche de 1, plus les branches sont fonctionnellement importantes. Les indices de ramification 

photosynthétique et d’exploration ont été combinés à l’aide d’une Analyse en Composante 
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Principales (ACP) et cette nouvelle variable a permis de définir trois classes architecturales 

(monocaule, intermédiaire, ramifiée). L’évolution de ces classes architecturales dans le genre a été 

étudiée à l’aide d’une reconstitution d’état de caractère réalisée sur une phylogénie moléculaire 

récemment produite. Cette phylogénie a également permis de tester le lien entre les 14 traits 

fonctionnels et l’indice de ramification via des régressions phylogénétiques. L’effet de chacune des 

classes architecturales sur la diversification du genre a été comparé (MuSSE framework) et leurs 

différences en terme de stratégies écologiques ont été investiguées (ACP et Permanova). 

La reconstitution d’état de caractère a montré que l’ancêtre commun aux Atractocarpus

était probablement ramifié et que le caractère monocaule est apparu par convergence 2 à 3 fois 

dans le genre (aux alentours de -1,4 et -0,9–0,6 Ma respectivement). Les espèces ramifiées et 

monocaules ne sont jamais des espèces sœurs. Ce résultat, combiné à la variation graduelle de 

l’architecture chez les plantes actuelles, suggère une évolution graduelle de la forme ramifiée vers 

la forme monocaule en passant par la forme intermédiaire. Ceci est plus en cohérence avec la notion 

de continuum architectural qu’avec celle d’évolution par saltation, deux notions contradictoires 

proposées pour l’évolution de l’architecture des plantes. Les structures axillaires (axes de catégorie 

2 : C2) des espèces monocaules ne participent presque pas à la photosynthèse et à l’exploration de 

l’espace et sont spécialisées uniquement dans la reproduction. Fonctionnellement autant que 

morphologiquement, il s’agit d’inflorescences qui sont donc homologues aux branches des espèces 

ramifiées. L’analyse architecturale montre que cette réduction des branches vers les inflorescences 

a eu lieu de deux façons différentes selon les clades : par la réduction du nombre de module ou par 

la réduction de la longueur des modules sur les C2. Ces processus impliquent donc deux processus 

hétérochroniques différents gouvernant l’évolution depuis le modèle architectural de Stone vers 

celui de Corner : la néoténie dans le premier cas et le « nanisme proportionnel » dans le second 
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cas. Nos résultats montrent une corrélation négative entre l’indice de ramification et respectivement 

le volume du fruit, la surface des feuilles et le diamètre de la tige, ce qui confirme les lois de Corner. 

Outre cela, la corrélation entre l’indice de ramification et de nombreux traits fonctionnels suggère 

que les plantes monocaules ont plus une stratégie de conservation de la ressource adaptée au sous-

bois denses et sombres que les plantes ramifiées. Cette diversification des stratégies écologiques 

en lien avec l’architecture pourrait illustrer un cas de radiation adaptative dans les forêts denses 

humides de Nouvelle-Calédonie. L’arrivée du genre Atractocarpus en Nouvelle-Calédonie 

coïncide avec la fin d’épisodes glaciaires, suivis par une période d’extension des forêts denses 

humides créant probablement de nombreuses niches vacantes. Cette vacance de niche, associée aux 

caractéristiques environnementales des forêts denses humides (forte variabilité de la disponibilité 

en lumière dans le sous-bois, densité du sous-bois) et à la faible capacité de dispersion des gros 

fruits du genre a pu promouvoir l’évolution divergente des Atractocarpus en Nouvelle-Calédonie. 

Chapitre 7 – Retour à Corner : caractérisation fonctionnelle et relation feuille – tige chez les 

plantes monocaules

Le chapitre précèdent a montré que la monocaulie est une forme de croissance rare qui a 

beaucoup à apporter pour la compréhension des adaptations des plantes. Alors que chez la majorité 

des plantes les fonctions essentielles (photosynthèse, hydraulique, mécanique, stockage des 

réserves carbonées) sont réparties dans plusieurs catégories d’axes, les monocaules intègrent ces 

fonctions sur un seul tronc. Cette particularité est susceptible d’engendrer de fortes 

interdépendances entre les différentes fonctions résultant en une coordination particulièrement 

poussée de certains traits fonctionnels. Certaines dimensions fonctionnelles, représentant la 

corrélation systématique de plusieurs traits sont reconnus comme des déterminants majeurs de 

l’évolution et de la distribution des plantes. Ainsi, identifier des points extrêmes dans ces 
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corrélations de traits est susceptible d’apporter des informations cruciales sur leur valeur 

adaptative. Les monocaules se situent justement à l’extrême de la relation entre le degré de 

ramification, la taille des feuilles et la taille de la tige définie comme une partie des lois de Corner. 

Particulièrement, les relations [surface de la feuille – taille de la tige] et [surface du feuillage –

taille de la tige] sont parmi les corrélations de traits les mieux documentés. Malgré cela, les liens 

fonctionnels entre ces paires de traits restent flous, les hypothèses suggérant alternativement une 

importance des contraintes hydriques, mécaniques, ou photosynthétiques des feuilles sur la tige. 

Dans ce chapitre, nous avons pour but d’apporter une première caractérisation fonctionnelle de la 

monocaulie de forêt dense humide et d’apporter des éléments de compréhension quant aux liens 

fonctionnels gouvernant les relations [feuille – tige] et [feuillage – tige] chez les plantes. 

Dix genres phylogénétiquement éloignés et contenant des espèces monocaules ont été 

sélectionnés. Pour chacun d’eux, une espèce monocaule et une espèce ramifiée poussant dans des 

conditions similaires (sous-bois de forêt dense humide, sur substrat ultramafique et entre 200 et 

550 mètres d’altitude) ont été étudiées via un échantillonnage standardisé sur 5 individus. Un 

ensemble de traits (foliaires et caulinaires, anatomiques et morphologiques, microscopiques et 

macroscopiques) associés aux fonctions hydrauliques, biomécaniques et photosynthétiques a été 

mesuré. Les différences de traits entre espèces monocaules et ramifiées ont été testées via des 

anovas à effets mixtes. Les relations [surface d’une feuille – diamètre de la moelle], [surface d’une 

feuille – diamètre du rameau] et [surface foliaire du rameau – diamètre du rameau] ont été testées 

par des régressions linéaires. Les valeurs de certains traits représentant des dimensions importantes 

de l’adaptation hydraulique et photosynthétique des plantes ont été comparées à celles de la base 

de données globale TRY. Pour comprendre les implications fonctionnelles de la relation feuille –

tige, les structures anatomiques de la tige ont été partitionnées selon leurs fonctions (hydrauliques, 
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mécaniques et photosynthétiques) et leurs relations avec la surface foliaire ont été testées à

différents niveaux. 

Les espèces monocaules et ramifiées ont montré des valeurs significativement différentes 

pour plusieurs traits fonctionnels. Les plantes monocaules ont des tiges plus élancées et moins 

coniques car elles ont un diamètre basal plus faible (que nous relions à l’absence des contraintes

mécaniques exercées par les branches) et un diamètre distal plus important (que nous relions aux 

contraintes mécaniques imposées par le toupet de feuilles massif). Ces contraintes mécaniques 

semblent plus compensées par la géométrie de la tige (diamètre, proportion de bois) que par des 

adaptations micro-anatomiques (fibres). Les monocaules ont une valeur de Huber (ratio de la 

surface de bois sur la surface foliaire qu’il alimente) plus faible qui est compensée par des vaisseaux 

de diamètre plus important permettant un accroissement de l’efficience hydrique. Les feuilles des 

plantes monocaules étudiées font partie des plus grandes feuilles au monde. Les traits foliaires ne 

permettent pas encore de conclure quant aux caractéristiques photosynthétiques des plantes 

monocaules bien qu’ils suggèrent plutôt une stratégie de conservation de la ressource (SLA et 

densité stomatique faibles). Les grandes feuilles (souvent simples) des plantes monocaules sont 

physiologiquement contraintes aux environnements humides et ombragés comme la forêt dense 

humide. Le partitionnement de la surface photosynthétique en peu de grandes feuilles, tout comme 

la réduction de la ramification, sont des stratégies peu couteuses et intéressantes lorsque les 

ressources lumineuses et minérales sont rares comme c’est le cas dans nos sites d’étude. Les plantes 

monocaules présentent une allocation plus faible dans les tissus de stockages (cortex, rayons du 

bois) mais la grande diversité des modalités et organes de stockage chez les plantes rend difficile 

de conclure à ce sujet. Nos résultats confirment l’existence d’une relation allométrique entre la 

surface foliaire et l’épaisseur de la tige à différents niveaux (phytomère, feuille individuelle, 
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rameau). La relation feuillage – tige semble liée aux contraintes mécaniques et, dans une moindre 

mesure, hydrauliques exercées par les feuilles sur la tige. L’hypothèse suggérée dans la littérature 

d’un lien photosynthétique n’est pas supportée ici. La contribution importante du bois à la relation 

feuillage – tige suggère que la mise en place rapide de ce tissu plurifonctionnel est une adaptation 

majeure aux contraintes exercées par une surface foliaire importante. La relation feuille – tige 

découle directement de la relation feuillage – tige puisque la variation de la surface foliaire totale 

est plus liée à la taille des feuilles qu’à leur nombre. Nous suggérons par ailleurs que, pour une 

surface foliaire totale donnée, les contraintes mécaniques sont plus importantes lorsque les feuilles 

sont grandes que lorsqu’elles sont petites. Ainsi, les contraintes mécaniques exercées par les 

feuilles apparaissent être les causes principales du lien entre surface foliaire et taille de la tige en 

sous-bois de forêt dense humide ou les contraintes hydrauliques et photosynthétiques sont faibles. 

La relation suggérée dans la littérature impliquant une plus grande taille des entre-nœuds et donc 

une allocation structurelle moindre dans la tige chez les plantes à larges feuilles semble être de 

moindre importance. Ainsi, cette étude apporte une première description fonctionnelle détaillée de 

la monocaulie du sous-bois des forêts denses humides. L’étude des quelques espèces monocaules 

présentes en maquis (majoritairement à feuilles composées) apporterait d’autres éléments 

intéressants pour compléter cette étude. La stratégie monocaule identifiée ici contraste avec ce qui 

a été décrit pour d’autres régions où les monocaules étudiées ont souvent évolué à partir d’ancêtres 

herbacés et sont plutôt adaptées à des environnements secs ou alpins. 

Chapitre 8 – Discussion générale

La monocaulie en Nouvelle-Calédonie : convergence évolutive et disharmonie fonctionnelle 

Bien que le manque de données pour d’autres flores empêche toute comparaison rigoureuse, 

la richesse en espèces monocaules en Nouvelle-Calédonie peut être considérée comme faisant 
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partie de la disharmonie fonctionnelle de l’archipel puisque cette forme est considérée comme rare 

dans la région et à l’échelle globale. Nous avons identifié 182 espèces non-monocotylédones 

appartenant à 41 genres, 30 familles et 15 ordres. Cela représente 5,5% de la flore de l’archipel, 

9% de la flore ligneuses et 12,4% des espèces inféodées aux forêts denses humides. À titre de 

comparaison, la flore monocaule a été estimée à 2% de la flore mondiale (fougères et 

monocotylédones incluses) et la proportion de plantes divariquées en Nouvelle-Zélande, reconnue 

comme le syndrome le plus marquant de cette île, atteint 10% de la flore ligneuse. 

L’abondance et la distribution des espèces monocaules est difficile à estimer à partir 

d’inventaires standardisés car ceux-ci concernent souvent les arbres de plus de 5 cm de diamètre à

hauteur de poitrine. Les monocaules, comme la plupart des plantes de sous-bois, y sont donc très 

peu représentés. Des données provenant d’une étude peu étendue mais incluant toutes les tiges plus 

hautes que 1.3 mètres montrent effectivement que 95% des individus monocaules ont un diamètre 

à hauteur de poitrine inférieur à 5 cm. Sur les 0.576 hectares de l’étude, les plantes monocaules 

montrent une densité moyenne de 2135 tiges à l’hectare (maximum 3934 tiges à l’hectare) et 

représentent en moyenne 12.1% des tiges (maximum 16.1% des tiges). 

La richesse en espèces monocaules peut être expliquée par 3 scénarios évolutifs non-

exclusif (décrits en introduction) : (i) l’établissement en Nouvelle-Calédonie d’espèces 

monocaules semble être un phénomène rare puisque la monocaulie n’est ancestrale dans aucun des 

clades calédoniens pour lesquels des phylogénies sont disponibles (appuyé par l’absence de 

groupes frères monocaules), (ii) l’évolution in situ de la monocaulie semble avoir grandement 

participé à la diversité totale puisque nous avons identifié au moins 31 apparitions du caractère, 

(iii) la diversification des clades monocaules a également contribué à la diversité actuelle en 
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espèces monocaules mais aucune grande radiation monocaule n’ait été mise en évidence jusqu’à 

présent. 

Ainsi, l’évolution convergente de la monocaulie en Nouvelle-Calédonie est probablement 

le mécanisme principal responsable de la diversité en espèces monocaules sur l’archipel. 

L’apparition du caractère plus de 31 fois représente un cas de convergence au moins aussi marquant 

que celui de la « secondary woodiness » aux îles canaries. D’autant que cette indice sous-évalue 

probablement le nombre réel d’évolution de la monocaulie, car il se base sur une phylogénie des 

genres (et non des espèces). Ce phénomène de convergence suggère d’importantes pressions 

environnementales ayant favorisé l’apparition de la monocaulie en Nouvelle-Calédonie. 

Les implications écologiques et évolutives de la monocaulie 

Parmi les 16 caractères supposés être associés à la monocaulie selon la littérature, nous 

avons confirmé statistiquement la relation pour 8 d’entre eux, trouvé une relation non-significative 

pour 5 d’entre eux, une relation inverse pour 3 d’entre eux, et mis en évidence une association 

significative avec 8 nouveaux caractères. Ces caractères sont liés les uns aux autres et à la 

monocaulie par différentes coordinations fonctionnelles. Les lois de Corner ont été confirmées à 

plusieurs reprises, sauf en ce qui concerne la relation entre le degré de ramification et la complexité 

des inflorescences. La relation avec la taille des feuilles implique un compromis entre le nombre 

de feuille porté (faible chez les monocaules car peu de phytomères) et la taille des feuilles. Ces 

larges feuilles seraient responsables d’un épaississement distal de la tige, notamment via la 

proportion de bois, pour répondre aux contraintes mécaniques qui s’exercent sur la partie apicale 

de la tige. La réponse aux contraintes hydrauliques implique plutôt un élargissement des vaisseaux. 

La contrainte spatiale liée à la monocaulie (peu de phytomères) serait aussi responsable d’un 

compromis entre le nombre et la taille des fruits (plus gros chez les monocaules). Les espèces 
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monocaules ont des tiges plus effilées et moins coniques que leurs congénères ramifiés. Ceci serait 

dû au diamètre distal plus important (augmentation acropète de la taille de la moelle et croissance 

secondaire plus active) en réponse aux contraintes mécaniques du large toupet de feuille, et au 

diamètre basal plus faible (croissance secondaire moins active) en réponse à la réduction de la 

charge statique (et dans une moindre mesure dynamique) résultant de l’absence de branche. Le 

module de Young (résistance à la flexion) mesuré au cours de ce travail n’est pas très différent de 

celui renseigné dans la littérature pour les espèces ramifiées. Ces données seront traitées dans une 

prochaine publication. Outre la taille des feuilles, les valeurs de traits foliaires investigués dans 

cette étude suggèrent une faible capacité photosynthétique chez les monocaules, bien qu’une étude 

plus approfondie soit nécessaire. Une publication scientifique en cours de rédaction s’est 

notamment intéressée à la diversité des traits foliaires dans l’une des familles calédoniennes 

contenant le plus d’espèces monocaules (les Araliaceae). Les résultats préliminaires montrent un 

lien entre les traits foliaires et le degré de ramification des individus. D’autres caractères comme 

des entre-nœuds courts ou la forte croissance secondaire des parties apicales, en combinaison avec 

les résultats préliminaires d’un suivi phénologique, suggère une croissance très lente des espèces 

monocaules. L’ensemble de ces caractères suggère une stratégie de conservation de la ressource 

plus marquée pour les plantes monocaules que pour leurs congénères ramifiés. 

Ces valeurs de traits particulières des plantes monocaules sont sujettes à de fortes 

contraintes environnementales. Notamment, leurs très grandes feuilles sont particulièrement 

sensibles aux températures extrêmes et aux fortes variations environnementales, en raison de leur 

plus lente thermorégulation et grande surface d’évapotranspiration, ce qui les contraints aux 

environnements humides, ombragés et non-venteux. Cela est cohérent avec l’occurrence 

préférentielle des espèces monocaules dans les forêts denses humides en Nouvelle-Calédonie. 
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Néanmoins, certaines espèces monocaules sont présentes en milieux ouverts comme dans le 

maquis. Celles-ci ont, dans la majorité des cas, des feuilles composées, des rameaux 

phyllomorphiques ou sont de petite taille, chaque cas représentant un moyen de limiter la surface 

foliaire individuelle. Finalement, des études montrent que répartir une surface foliaire donnée en 

peu de grandes feuilles plutôt qu’en beaucoup de petites feuilles est économiquement plus 

intéressant. La stratégie monocaule est donc susceptible d’être favorisée dans les environnements 

pauvres en ressources lumineuses et minérales, comme dans le sous-bois et sur substrat 

ultramafique. 

Les caractéristiques fonctionnelles et contraintes environnementales associées à la 

monocaulie nous permettent de poser quatre hypothèses pouvant expliquer la convergence vers 

cette forme en Nouvelle-Calédonie. (i) Les cyclones sont particulièrement fréquents et intenses 

dans la région, ce qui est supposé être le facteur principal de la remarquable densité des tiges dans 

les forêts de Nouvelle-Calédonie. Cette forte densité, ainsi que les débris tombant de la canopée 

lors des cyclones, est susceptible d’avoir favorisé l’exploration unidirectionnelle de l’espace et 

donc les espèces monocaules. (ii) La persistance des forêts denses humides sous forme de refuges 

en Nouvelle-Calédonie lors des épisodes glaciaires aurait permis le maintien des espèces 

monocaules sur le territoire. Et l’expansion post-glaciaire de ces forêts aurait fourni de nombreuses 

opportunités écologiques pour ces espèces qui auraient alors subi une diversification importante, 

comme dans le genre Atractocarpus. (iii) Les contraintes édaphiques du substrat ultramafique 

auraient favorisé une stratégie plutôt orientée vers l’économie des ressources représentée par les 

plantes monocaules qui ont une surface foliaire équivalente mais moins coûteuse que les espèces 

ramifiées. (iv) L’absence de grands herbivores sur le long-terme n’a pas contre-sélectionné les 
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espèces monocaules dont les grandes feuilles et le méristème unique les rendent particulièrement 

sensible au broutage. 

La monocaulie est supposé avoir contribué à la diversification des lignées en Nouvelle-

Calédonie, non pas à la manière d’une innovation clé (impliquant une importante radiation après 

apparition du caractère) mais plutôt via le phénomène de partitionnement de niche (exploitation 

différentielle des ressources entre espèces proches). La monocaulie aurait permis la colonisation 

de sous-bois particulièrement denses et sombres contribuant à la diversification générale des 

lignées. Le genre Atractocarpus en est un bon exemple et pourrait représenter un des rares cas de 

radiation adaptative observés en Nouvelle-Calédonie.

L’approche architecturale, un outil clé pour comprendre l’évolution des plantes

Notre approche fonctionnelle de la monocaulie, basée sur une hiérarchisation quantifiée des 

fonctions à travers un indice de ramification, et renforcée par la définition de types structuraux 

permettant l’utilisation de critères objectifs, s’est révélée être particulièrement appropriée dans le 

contexte de cette étude. Cette approche mérite d’être testée sur d’autres formes de croissance et 

dans des études plus globales sur l’évolution des formes de croissance. 

Dans cette étude, nous avons mis en évidence deux processus non suspectés conduisant à 

l’évolution de la monocaulie : la réduction des branches en inflorescences par (i) la réduction de la 

longueur des modules (« nanisme proportionnel ») ou (ii) la réduction du nombre de module 

(« néoténie »). Nous suggérons que ces phénomènes d’hétérochronie développementale (c’est à 

dire un changement dans le timing d’un ou plusieurs évènements de la séquence ontogénétique) 

sont prépondérants dans l’évolution de la monocaulie et plus généralement dans l’évolution des 
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formes de croissance. Pour appuyer cette hypothèse, nous illustrons la diversité architecturale 

observée dans quatre genres contenant des espèces monocaules. 

La convergence évolutive est souvent vue comme une démonstration des contraintes 

environnementales et phylogénétiques s’appliquant à l’évolution des traits. Cela implique deux 

notions sous-jacente : la présence de prérequis facilitant l’apparition d’un caractère, et la présence 

de contraintes empêchant certaines transitions. Nous supposons que certaines lignées néo-

calédoniennes ont effectivement présenté des prérequis facilitant l’évolution vers la monocaulie, 

comme l’expression de certains modèles architecturaux particuliers (Rauh, Leeuwenberg). Ceci a 

probablement été le cas pour les Gardenieae auquel appartient le genre Atractocarpus. Cependant, 

aucune contrainte empêchant l’apparition de la monocaulie n’a été mise en évidence. Nous 

argumentons que l’évolution vers cette forme très simple est relativement « facile », notamment 

via des processus hétérochroniques puisque la plupart des espèces passent par une phase monocaule 

au cours de leur ontogénie. Cette facilité évolutive et les nombreuses contingences 

environnementales en Nouvelle-Calédonie sont probablement responsables de son apparition dans 

plusieurs lignées éloignées et de la diversité des scenarios évolutifs représentés (évolution depuis 

des herbes, des arbres, des arbustes et des lianes). 

Nous avons montré une évolution graduelle de la monocaulie dans le genre Atractocarpus,

contrairement à l’évolution par saltation qui a été proposée pour les traits architecturaux. Ainsi, le 

passage d’une forme de croissance à une autre n’implique pas forcement des changements 

fondamentaux dans l’architecture des plantes, une variation continue mais directionnelle pouvant 

conduire rapidement à l’évolution de la monocaulie. Si les formes de transitions entre les deux 

modèles sont moins stables que les extrêmes (ici ramifié et monocaule) est une question très 

intéressante qui mérite d’être approfondie.
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La réitération est définie comme un processus morphogénétique par lequel un organisme 

duplique son architecture élémentaire, c’est-à-dire son unité architecturale. Plusieurs modalités ont 

été définies, notamment la réitération séquentielle (génétiquement programmée) qui s’oppose à la 

réitération opportuniste (dépendante des conditions environnementales). Cependant, notre étude 

montre que la distinction entre ces deux modalités de réitération n’est pas toujours facile sur le 

terrain et qu’elles semblent parfois être les deux extrêmes d’un même gradient. Ceci représente la 

difficulté majeure résidant encore dans notre définition de la monocaulie puisque certaines plantes 

définies comme monocaules peuvent devenir de grands arbres de canopée. Nous pensons qu’une

caractérisation plus fine de la différence entre réitération séquentielle et opportuniste est nécessaire 

pour mieux comprendre la morphogénèse et phylogénèse des formes de croissance. 

Conservation de la Flore 

La Nouvelle-Calédonie est connue pour l’extrême menace qui pèse sur sa flore. Dans cette 

étude, nous avons montré que la flore monocaule est encore plus menacée d’extinction que la flore 

ramifiée avec un effet particulièrement dramatique des herbivores introduits. Ceci concerne 

particulièrement le cerf avec le broutage des feuilles et méristèmes et les rats avec la consommation 

des fruits et méristèmes. Par ailleurs, les prédictions climatiques suggèrent une augmentation de la 

fréquence et de la durée des épisodes de sécheresse, qui affecteront en premier lieux les espèces 

sensibles comme les monocaules. Ainsi, certaines espèces monocaules font probablement partie 

des espèces les plus menacées par l’augmentation des pressions sur la flore néo-calédonienne. Ceci 

est particulièrement inquiétant étant donné leur contribution importante aux écosystèmes néo-

calédoniens en termes de diversité, d’abondance et de fonctions.

En dehors de la Nouvelle-Calédonie : des monocaulies plutôt qu’une monocaulie ? 
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Notre étude a montré une certaine cohérence fonctionnelle entre les espèces monocaules 

étudiées et plus généralement avec les grandes caractéristiques suggérées dans la littérature. 

Cependant, certaines différences majeures montrent que la monocaulie illustrée dans ce travail de 

thèse est différente de certaines autres formes de monocaulie, notamment lorsque les espèces ont 

évolué depuis des ancêtres herbacés et poussent dans des milieux secs ou au sommet des montagnes 

tropicales. Plus particulièrement au niveau macro-anatomique, ces espèces présentent une moelle 

et un cortex très large mais un bois en proportion plus fin et parenchymateux. Pour les espèces de 

milieux secs, ces caractéristiques anatomiques sont des adaptations au stockage de l’eau. Ces 

espèces sont en général de plus petites tailles et ont des vaisseaux relativement étroits, 

probablement pour limiter les risques d’embolismes. Pour les espèces des milieux tropicaux alpins, 

les caractéristiques anatomiques permettent aussi le stockage et la remobilisation rapide de l’eau 

lorsque celle-ci n’est pas disponible dans le sol en raison du gel. Contrairement aux espèces néo-

calédoniennes, les feuilles sont le plus souvent étroites, pubescentes et marcescentes, ce qui 

représenterait des adaptations majeures au froid et à l’insolation. Ainsi notre étude a permis la 

caractérisation de la monocaulie de sous-bois, qui est probablement la plus commune, mais des 

espèces fonctionnellement très différentes correspondent aussi à notre définition de la monocaulie. 

Cela demande de nouvelle étude combinant traits fonctionnels, architecture et phylogénie pour 

comprendre l’importance relative des différentes pressions environnementales et des prérequis 

morphologiques conduisant à l’évolution de la monocaulie.

Conclusion et perspectives 

Dans ce travail de thèse, nous avons utilisé une approche transversale combinant 

architecture végétale, taxonomie, phylogénie et écologie fonctionnelle pour caractériser la 

monocaulie et illustrer son histoire évolutive en Nouvelle-Calédonie. Notre approche originale de 
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la forme de croissance a permis la mise au point d’une définition de la monocaulie adaptée dans le 

cadre écologique et évolutif qui était le nôtre. Cette définition doit cependant être appliquée dans 

d’autres contextes pour pouvoir être affinée. Notamment, le processus de réitération et son 

implication dans la morphogénèse des plantes a besoin d’être mieux appréhendé. Le genre 

Acropogon semble être particulièrement adapté pour investiguer cela. 

À partir de cette définition, nous avons montré que la monocaulie représentait 5,5% de la 

flore vasculaire néo-calédonienne et qu’elle était apparue plus de 31 fois, illustrant ainsi l’un des 

cas les plus marquants de convergence évolutive en milieu insulaire. Nous avons identifié quatre 

hypothèses majeures expliquant l’importance de ce phénomène en Nouvelle-Calédonie : la 

fréquence et l’intensité des cyclones, la persistance de la monocaulie dans des refuges forestiers au 

cours des dernières glaciations et sa diversification lors des expansions postglaciaires, l’importance 

des substrats ultramafiques sur le territoire, et l’absence de grands herbivores autochtones. Des 

données sur les espèces monocaules dans les flores affines permettraient de tester certaines de ces 

hypothèses. L’hypothèse concernant les épisodes glaciaires pourrait être testée plus facilement en 

regardant les dates d’apparition et périodes de diversification des clades monocaules à travers 

plusieurs phylogénies datées. 

Notre étude suggère que, en Nouvelle-Calédonie, la monocaulie a principalement évolué à 

partir d’ancêtres ligneux via des processus hétérochroniques et que son apparition a pu contribuer 

à la diversification des lignées à travers le partitionnement des niches. Ces hypothèses doivent 

encore être testées en prenant en compte des données environnementales. Le genre Bocquillonia

semble particulièrement prometteur pour cela. 

La monocaulie en Nouvelle-Calédonie est caractérisée par un ensemble de caractères

fonctionnellement reliés les uns aux autres. Ces caractères suggèrent une stratégie de conservation 
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des ressources adaptée mais contrainte aux sous-bois des forêts denses humides où la monocaulie 

a préférentiellement évoluée, plus particulièrement sur substrat ultramafique. Néanmoins, nous 

avons encore beaucoup à apprendre sur les caractéristiques fonctionnelles des espèces monocaules 

et cela demande plus d’études comparatives dans différents groupes phylogénétiques et différents 

environnements. Nous avons effectivement montré que les espèces monocaules étaient plus que de 

simples curiosités botaniques et que leur étude pouvait apporter des éléments forts intéressants pour 

comprendre l’écologie et l’évolution des plantes.
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Résumé: L’évolution convergente des formes de croissance est un phénomène fondamental reliant 

l’écologie et l’évolution des plantes. Remarquablement illustré dans plusieurs systèmes insulaires, ce 

phénomène n’a jamais été clairement identifié en Nouvelle-Calédonie, pourtant connue pour la richesse et 
l’originalité de sa flore. Par une approche combinant architecture des plantes, traits fonctionnels, taxonomie, 
phylogénie et données environnementales, cette thèse analyse l’histoire évolutive de la monocaulie, une 
forme de croissance mal connue, en Nouvelle-Calédonie. Les monocaules sont des plantes autoportantes 
ligneuses dont les fonctions majeures sont assurées par une seule tige apparente. En Nouvelle-Calédonie, 
elles sont représentées par 182 espèces dicotylédones appartenant à 41 genres et 30 familles et sont souvent 
menacées d’extinction. L’évolution répétée de la monocaulie en Nouvelle-Calédonie, issue d’au moins 31 

événements d’apparition, est l’un des cas les plus remarquables de convergence en milieu insulaire. Dans le 
genre Atractocarpus, la monocaulie est apparue récemment deux à trois fois via diverses réductions des 
branches en inflorescences, montrant l’importance des processus hétérochroniques dans l’évolution des 

formes de croissance. La monocaulie est fortement corrélée à plusieurs traits démontrant des contraintes 
majeures dans la coordination fonctionnelle. L’évolution de la monocaulie est fortement associée aux forêts 
denses humides et au substrat ultramafique, et pourrait avoir contribué à la diversification des lignées par 
des phénomènes de partitionnement de niche. La remarquable convergence de la monocaulie en Nouvelle-
Calédonie peut s’expliquer par quatre hypothèses majeures liées (i) à la structure particulière des forêts 
denses humides (en lien avec les cyclones) favorisant l’exploration unidirectionnelle de l’espace, (ii) aux 
contraintes édaphiques liées aux substrats ultramafiques induisant une paupérisation architecturale, (iii) à
l’absence historique de grands brouteurs, auxquels les monocaules sont particulièrement sensibles, et (iv) à
la persistance des forêts denses humides lors des épisodes glaciaires (servant de refuges pour ces espèces 
sensibles) et leur expansion post-glaciaire (fournissant de nombreuses opportunités écologiques). 

Mots-clés : Architecture des plantes, Convergence évolutive, Forme de croissance, Îles, Phylogénie, Traits 
fonctionnels 

Abstract: Convergent evolution in growth habit is a fundamental phenomenon linking plant ecology and 
evolution. Remarkably illustrated in island biotas, this phenomenon has not clearly been identified in the 
distinctive and megadiverse New Caledonian biodiversity hotspot. Through an approach combining plant 
architecture, functional traits, taxonomy, phylogeny and environmental data, this thesis analyses the 
evolutionary history of the poorly known monocaulous growth habit in New Caledonia. Monocauls are self-
supporting woody plants whose cardinal functions rely on a single visible stem. In New Caledonia, they are 
represented by 182 dicotyledonous species belonging to 41 genera in 30 families and are often endangered.
The repeated evolution of monocauly in New Caledonia, resulting from at least 31 independent events, is 
one of the most remarkable cases of convergence in insular environments. In the genus Atractocarpus
(Rubiaceae), monocauly evolved recently two or three times through branch reductions into inflorescences,
emphasizing the importance of heterochronic processes in the evolution of growth habit. Monocauly is 
strongly correlated with several traits illustrating major constraints in functional coordination. The evolution 
of monocauly is strongly associated with rainforests and ultramafic substrate, and could have contributed to 
the diversification of lineages through niche partitioning. The remarkable convergence toward monocauly 
in New Caledonia can be explained by four major hypotheses: (i) structural features of rainforests (related 
to cyclone frequency and intensity) favoring unidirectional exploration of space, (ii) the edaphic constraints 
associated with ultramafic substrates inducing architectural pauperization, (iii) the historical absence of 
large native browsers to which monocauls are particularly sensitive, and (iv) the persistence of rainforest 
during glacial episodes – and expansion afterward – that served as refugia and further provided ecological 
opportunities. 

Keywords: Convergent evolution, Functional traits, Growth habit, Islands, Phylogeny, Plant architecture 


