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Abstract

The exploration of strongly correlated quantum many-body systems represents one of
the most challenging fields of research of contemporary physics. Over the past thirty
years, dilute vapors of neutral atoms suspended in vacuum and controlled with laser light
have become a versatile and powerful platform for the study of such systems. At the very
heart lies the ability to arbitrarily tune the interaction strength by means of magnetically
induced Feshbach resonances as well as the possibility to create a wide range of potential
landscapes via precisely tailored optical fields.
This thesis reports on the recent results of the FerMix experiment, which is dedicated to
the study of fermionic quantum many-body-systems at ultralow temperatures using the
Alkali atoms 40K and 6Li . The main results presented in this text are twofold. First, we
report on the experimental characterization of a novel (s,d)-wave Feshbach resonance in
40K , the results of which are compared to the corresponding theoretical predictions. In
particular, the spectrum of the inelastic loss rate is determined for different temperatures
and trap depths, which enables us to identify the losses as two-body processes. Moreover,
the dominant entrance channel is confirmed to be s-wave in nature. Using rate equation
models we analyze the observed heating of the atomic ensemble and find the behavior
to be consistent with the predicted L = 2 bound state present in the exit channel. Finally,
we investigate experimentally the dynamics of the spin populations driven by resonantly
enhanced inelastic collisions in d-wave, observing good agreement with our numerical
models. Second, we summarize our progress towards the study of dimensional crossovers
between the Tomonaga-Luttinger liquid in 1D and the Landau-Fermi liquid in 3D using
Fermi gases of 40K confined in a large spacing optical lattice. This includes both the funda-
mental design considerations as well as the implementation of the required experimental
hardware.





Résumé

L’exploration de systèmes quantiques à N corps fortement corrélés représente l’un des
domaines de recherche les plus stimulants de la physique contemporaine. Au cours des
trente dernières années, les vapeurs diluées d’atomes neutres en suspension dans le vide
et contrôlées par un laser sont devenues une plate-forme polyvalente et formidable pour
l’étude de tels systèmes. L’interet principal réside dans la capacité d’ajuster arbitrairement
la force de l’interaction atomique au moyen de résonances de Feshbach induites magné-
tiquement, ainsi que la possibilité de créer une large gamme de potentiels via des champs
optiques précisément adaptés.
Cette thèse présente les résultats récents de l’expérience FerMix, consacrée à l’étude des
systèmes quantiques à plusieurs corps fermioniques à des températures ultra-basses
utilisant les atomes alcalins 40K et 6Li . Les principaux résultats présentés dans ce texte
sont doubles. Premièrement, nous rapportons la caractérisation expérimentale d’une
nouvelle résonance de Feshbach (s,d)-wave du 40K , dont les résultats sont comparés
aux prédictions théoriques correspondantes. En particulier, le spectre du taux de perte
inélastique est déterminé pour différentes températures et profondeurs de piège, ce
qui nous permet d’identifier les pertes en tant que processus à deux corps. De plus, il
est confirmé que le canal d’entrée dominant est de type s-wave. À l’aide de modèles
d’équation de taux, nous analysons le réchauffement observé de l’ensemble atomique et
trouvons que le comportement est cohérent avec l’état lié prévu L = 2 présent dans le
canal de sortie. Enfin, nous étudions expérimentalement la dynamique des populations
de spin induite par les collisions inélastiques renforcées par résonance dans l’onde d, en
observant un bon accord avec nos modèles numériques. En second lieu, nous résumons
nos progrès dans l’étude des croisements dimensionnels entre le liquide de Tomonaga-
Luttinger en 1D et le liquide de Landau-Fermi en 3D en utilisant les gaz de Fermi de
40K confinés dans un réseau optique à grand pas. Cela inclut à la fois les considérations
de conception fondamentales et l’installation du matériel expérimental requis.
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Chapter 1

Introduction

“The breaking of a wave cannot
explain the whole sea.”

(Vladimir Nabokov, The Real Life
of Sebastian Knight)

The standard model of elementary particles contains the basic building blocks of nature
known to date [1]. Among many properties, each of its constituents is characterized fun-
damentally by its spin, which can be thought of as an internal form of angular momentum
[2]. Its magnitude can be either half-integer or integer, dividing the set of elementary
particles into two distinct groups, Fermions and Bosons. Matter is made up exclusively of
the former while interactions are mediated by bosonic force carriers. Larger composite
objects such as neutral atoms consist of many Fermions, whose individual spins add up to
form the total angular momentum. Then, depending on whether the result is half-integer
or integer, the object is going to stay a Fermion or behave like a Boson, respectively. This
fact alone has important consequences for the way matter interacts at the microscopic
level [3]. When two identical bosons described by quantum mechanical wavefunctions
are brought together, they interfere constructively. Conversely, indistinguishable fermions
will interfere destructively. The latter is closely connected to the exclusion principle intro-
duced by W. Pauli in 1925, which states that identical fermions with the same spin cannot
occupy the same quantum state simultaneously [4]. For larger assemblies of fermions
this principle thus imposes a very strong constraint on how they can occupy the available
states, which defines the quantum statistics of the many-body system. By extension, this
seemingly basic rule has far-reaching consequences for the physical reality as we know it.
For example, apart from dictating how multiple electrons with spin-1/2 are bound to a
nucleus, the Pauli principle is directly responsible for the stability of large systems such as
solids, that would otherwise collapse due to electrostatic forces [5, 6].

When considering a non-interacting many-body system made up of identical particles
at temperature T, the properties of its ground state attained at very low temperatures
change drastically depending on whether Bose- or Fermi-statistics have to be obeyed
[7]. This situation is illustrated in fig. 1.1. Bosons will undergo a phase transition when
dropping below a certain critical temperature, after which they simultaneously populate
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Fermions T = 0Bosons  T < TC

EF1
EF2

Figure 1.1.: Quantum statistics of ideal Bosons and Fermions. Here the simple case of a harmonic
potential containing many bound states is depicted, which is populated by identical particles.
Bosons (left) undergo a phase transition below a certain critical temperature TC, after which all
constituents occupy the absolute ground states. Fermions (right) form a Fermi-sea with the states
being populated by two particles at a time. Note that here a spin-1/2 system with two possible
spin-configurations is considered. If the spin was larger, the maximum occupancy of a given state
would increase accordingly.

the lowest energy level (Bose-Einstein condensation). This behavior is driven purely by
quantum statistics and stands in stark contrast to Fermions, which must populate the
available states from the bottom up, even at zero temperature. The energy of the highest
occupied level is referred to as the Fermi energy EF, which naturally depends on the total
number of particles and available orientations of the spin. The resulting many-body state
is referred to as a Fermi-sea, whose edge at EF is sharp at T = 0 and begins to blur as the
temperature increases. Contrary to bosons, this behavior corresponds to a smooth cross-
over between the deeply quantum-degenerate regime and the classical behavior obtained
at large temperatures and low densities n. The departure from quantum mechanical
behavior is caused by the decrease of the particles’ wavelengths λ = h/(2πmkBT)1/2,
which are now much smaller than the average spacing n−1/3 between them. As a result, the
gas behaves classically and its statistics are given by Boltzmann distributions, irregardless
of whether the constituents are Bosons or Fermions.

Apart from mere quantum statistics, the macroscopic properties of a many-body system
are also affected by the nature and strength of the interactions between its constituents.
Surprisingly, the assumption of weak or even negligible coupling already allows for the
description of many materials, even when the underlying interactions are strong. A
prominent example in this regard is the conductivity of metals as well as the associated
distinction between insulators and (semi-)conductors, which can be understood in terms
of the band-structure of free, non-interacting electrons moving in periodic potentials [8].
Conventional BCS superconductivity represents another effect that can be explained via
weak attractive interactions mediated by phonons, albeit non-perturbative, which lead
to pairing of electrons in momentum space forming so-called cooper pairs [9]. Moreover,
despite the presence of (strong) Coulomb interactions in solids, electronic phenomena



15

can be mapped within certain limits onto systems of weakly interacting fermionic quasi-
particles. This notion is the very foundation of Landau’s Fermi-liquid theory [10, 11],
which, for example, successfully describes at low temperatures the normal state of most
metals and of liquid Helium-3 [12].

Notwithstanding these past breakthroughs, strongly correlated quantum many-body sys-
tems still represent one of the most challenging fields of research of contemporary physics,
oftentimes defying both theoretical and numerical analysis. An emblematic example in
this context is the strongly debated mechanism giving rise to high-TC superconductivity,
which was discovered in quasi-2D cuprates in 1986 [13]. Even in situations where the
microscopic Hamiltonian is known, the sheer complexity arising from strong correlations
and large particle numbers increases the dimension of the Hilbert space of a given problem
exponentially such that modern computational capacities are quickly rendered insufficient
[14]. In addition, quantum Monte Carlo techniques applied to fermionic systems suffer
from the so-called sign problem since the required antisymmetry of the wavefunction
requires the numerical integration of rapidly oscillating functions [15, 16].

Historically, the alternative to theoretical analysis is the use of a device that mimics the
behavior of the system of interest [17]. This way, the position of stars and planets could
already be predicted during the Classical Antiquity by making use of mechanical as-
trolabes [18], well before gravitational forces were understood in a quantitative fashion.
This notion was reformulated in 1982 by R. Feynman [19] in that the problem of ’solving’
strongly correlated quantum systems may be addressed by resorting to artificially engi-
neered quantum systems, which are designed to emulate the same behavior. The technical
realization of such analog simulators on the quantum mechanical level requires extremely
high degrees of control, accessibility and absence of dissipation. It must be possible to
implement the Hamiltonian under consideration, prepare the correct quantum state and
read it out via precision measurements. These prerequisites cannot be met within the
experimental scope of traditional condensed matter physics, especially in the context of
local probing and the control over interactions.

Quantum simulation with cold atoms

Owing to the progress of laser cooling- and trapping techniques for neutral atoms sus-
pended in vacuum [20], dilute quantum degenerate gases have evolved into a promising
platform for the study and simulation of quantum many body systems. The first proposals
for laser cooling were put forward in the 1970s by A. Ashkin [21] as well as T. Hänsch
and A. Schawlow [22]. After only 10 years, cooling [23] and trapping [24–26] of neutral
atoms was realized experimentally, to be quickly followed by the preparation of the first
Bose-Einstein condensates in 1995 [27, 28] with the help of evaporative cooling techniques.
This scientific milestone demonstrated for the fist time that cold atoms are indeed suitable
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to create many-body states exhibiting properties like superfluidity [29] or spatial coherence
[30, 31]. The first degenerate Fermi gas soon followed in 1999 [32].

Since these early breakthroughs, the field of cold atom research has undergone incredible
growth [14, 17, 33, 34], both in terms of technological capabilities as well as regarding
the plethora of systems which have already been studied in the search for novel states
of matter. Several key aspects represent the foundation of this ever-increasing toolbox
used for quantum simulation. A great variety of conservative potentials can be tailored by
means of appropriate laser beam shaping since the dipole gradient force inherits its spatial
properties directly from the underlying optical intensity field [35]. Cold neutral atoms
can thus be trapped practically without dissipation, either in the form of bulk systems
or in periodic potentials created by optical lattices to implement, for example, Bose- or
Fermi-Hubbard models [36]. Moreover, this also allows for the creation of disordered
potentials [37] as well as to adjust the dimensionality of the dynamics at hand. Detection
of atoms can be achieved, for example, by means absorption or fluorescence imaging
with the latter reaching even the single atom level [38], providing direct access to the
microscopic correlations. Conversely, (near-)resonant electromagnetic radiation can be
used for the control of quantum state populations via optical pumping or Landau-Zener
transitions as well as for probing the effects of inter-atomic interactions [39]. Furthermore,
artificial Gauge fields can be realized in a large variety of systems by using laser assisted
transitions [40], which allows to mimic the physics of charged particles.

Finally, the interaction strength between ultracold atoms can be tuned almost arbitrarily
via magnetically induced Feshbach resonances [41]. This makes it possible to reach the
strongly correlated regime in otherwise weakly interacting quantum many-body systems
or to turn off interactions entirely to prepare ideal, non-interacting systems. Typically,
such resonances are used to tune the s-wave scattering length of contact interactions at
low collision energies. In this context, the experimental characterization of a previously
unreported (s, d)-wave Feshbach resonance in 40K represents one of the main results of
this thesis.

Apart from resonant scattering, the nature of the interactions as well as the quantum
statistics depends on the choice of atomic species. Alkalis typically collide via short-
ranged van-der-Waals forces at low temperatures [33]. However, (strong) long-range
interactions can be obtained when working with highly magnetic atoms, such as Erbium
[42] and Dysprosium [43], or with polar molecules [44] or Rydberg atoms [45].

Fermi gases with tunable interactions

Ultracold Fermi gases are about one million times less dense than air and roughly 100
million times colder than interstellar space. Fermi energies usually lie in the EF/kB ∼ 1 µK
range, which is to be contrasted with the corresponding values obtained for electrons in
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Metals where EF typically assumes values between kB × 104 K and 105 K. In both cases,
however, interactions are typically short-ranged. In metals, this is due to Coumlomb-
screening while in cold atom systems it stems from the effective range of the Van-der-
Waals forces. At low temperature the properties of elastic scattering between atoms can
be described by using a single parameter, the s-wave scattering length a. This is due
to the fact that the de Broglie wavelength of scattered waves is much larger than the
range of the interaction potential, so that the microscopic details of the interaction do not
matter. The resulting two-body physics arising from such contact-type collisions is then
sufficient to account for the entire Fermionic many-body system [34]. At zero collision
energy, a can be made to diverge by means of Fesbach resonances so that the scattering
cross section reaches its unitary upper bound as set by quantum mechanics. A detrimental
side effect of using Feshbach resonances is that they tend to enhance inelastic losses such
as three-body recombination as well. While this does represent a stringent limitation for
Bosons, Fermions are at least partially protected against such inelastic three-body losses
by the Pauli exclusion principle.

The possibility to tune the strength of interactions has enabled the study of superfluidity
and pair condensation in the smooth crossover [46, 47] from a Bose-Einstein condensed
phase of tightly bound dimers to a Bardeen-Cooper-Schrieffer type superfluid consisting
of large Cooper pairs. The exploration of the corresponding phase diagram has been the
subject of numerous experiments, both for spin-balanced [34] and imbalanced Fermi gases
[48]. The former is shown in fig. 1.2, which depicts as well the normal regions of the gas at
higher temperatures. Imbalanced Fermi gases will be discussed in great detail in chapter
5, including their normal states which exist beyond the regimes of superfluidity, such as
the Landau Fermi-liquid (FL) in three dimensions and the Tomonaga-Luttinger-liquid
(TLL) in one dimension.

As there are only contact interactions present in the system’s Hamitlonian, in the spin-
balanced case all thermodynamic quantities depend only on the three length scales:1 The
inter-particle spacing n−1/3, the de Broglie wavelength λ and the s-wave scattering length
a. The corresponding energy scales are the Fermi energy EF, the ’thermal’ energy kBT
and h̄2/ma2, the latter describing the energy of a molecular bound state when a > 0. The
equations of state depend only on these energy and length scales and are universal in
the sense that they neither reflect the microscopic properties of the interaction nor the
species of the atoms constituting the gas [52]. On top of a Feshbach resonance where
the interactions become unitary, the Fermi gas furthermore enters a universal regime of
scale-invariance. The sole remaining energy scales in the system are the Fermi Energy EF

and the temperature. With the absence of any length scale, the thermodynamics of such a
gas are universal and may be related, for instance, to the physics occurring in the crust of

1Imbalanced spin populations introduce two additional length scales.
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Figure 1.2.: Phase diagram of the BEC-BCS
crossover in a balanced Fermi gas. The figure
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pairs being to form in momentum space and
the critical temperature TC indicates the onset
of phase-coherence between them [49]. When
1/kFa < 0 and T < TC the fermions are in a su-
perfluid state consisting of large spatially over-
lapping Cooper pairs. Here, TC and TP are es-
sentially the same. Contrarily, when 1/kFa > 0,
TC and TP differ and the particles are tightly
bound in real space, forming a molecular non-
interacting Bose-Einstein condensate. In the
unitary limit 1/kFa = 0 the ground state con-
sists of strongly correlated pairs of size ∼ 1/kF.
Figure based on [50, 51].

neutron stars. At zero temperature, the Fermi energy EF is the only remaining intensive
energy scale. As a result, the total energy E of the gas is given by its non-interacting
counterpart E0 through a universal constant as per:

E = ξE0,

Similarly, one has for the chemical potential that µ = ξEF. The dimensionless constant
ξ = 0.37 is referred to as the Bertsch parameter, which has received a great deal of
theoretical interest in the past [53]. It only become accessible experimentally in recent
years, through the advent of ultracold Fermi gases with resonant interactions.

Role of dimensionality

Apart from the strength of the interatomic interactions, the dimensionality of a quantum
gas can be tuned as well by compressing strongly one or two spatial degrees of freedom
of an optical trap [36]. Along these directions, the corresponding dynamics can be frozen
out if the thermal energy of the gas is insufficient to occupy excited states of center-of-
mass motion. The possibility to prepare Fermi gases with reduced dimensionality and
tunable interactions paves the way for a wide range of scientific inquiry and overcomes
fundamental limitations of traditional condensed matter physics.

One-dimensional systems enhance the role of interactions and excitations always affect the
entire many-body system. The physics is defined by the velocities of collective spin and
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charge (mass) excitations as well as by the parameters governing the decay of correlations,
which are linked to the underlying interactions. In solid state physics, Tomonaga-Luttinger-
like behavior has been observed in organic conductors [54], nanotubes [55] and in the
context of edge states [56], including spin-charge separation which was observed in
quantum wires [57]. However, the screening of the long-ranged Coulomb interactions
in electronic systems makes it challenging to obtain quantitative comparisons with the
TLL model. Furthermore, control of interactions has not yet been accomplished. These
problems can be overcome within the capabilities of cold atom systems, in the context of
which the Fermi Tomonaga-Luttinger liquid remains largely unexplored [58]. One main
objective of this thesis is the preparation of a strongly interacting Fermi gas in its normal,
non-superfluid state, whose dimensionality can be tuned from 3D to 1D in order to study
the crossover between the Fermi-liquid and the Tomonaga-Luttinger liquid, respectively.

Outline of this thesis

In this text we present the recent accomplishments and progress of the FerMix experiment.
The main results are threefold. We characterized a previously unreported (s, d)-wave
Feshbach resonance in 40K , both in terms of the accompanying inelastic losses as well
as regarding the resonant spin dynamics. The findings are compared to numerical sim-
ulations and theoretical predictions. Moreover, we describe the experimental progress
towards the study of dimensional crossovers in strongly interacting Fermi gases using
40K confined in a large spacing 2D optical lattice. Finally, we studied the unusual thermal-
ization dynamics of collisionless fermions in non-separable linear potentials and mapped
the observed dynamics onto non-interacting harmonically trapped Weyl particles.

The text is structured in the following way:

• Chapter 2 describes the experimental apparatus and the general procedure to prepare
a degenerate Fermi gas of 40K . Particular emphasis is put on the various additions
to the setup as well as the many technical upgrades implemented over the course of
this thesis.

• Chapter 4 presents the latest results of an ongoing study of resonant scattering
properties of 40K at low magnetic fields. In this context, we present a detailed study
of a previously unreported (s, d)-wave Feshbach resonance between the two highest
lying positive spin states. We characterize both the nature of the losses as well as
the resonant spin dynamics and compare the experimental findings to theoretical
predictions.

• Chapter 6 summarizes the experimental progress towards the realization of dimen-
sional crossovers in strongly interacting Fermi gases of 40K . This includes both



20

the initial design considerations in view of the underlying physics as well as the
technical details of the constructed experimental hardware.

• Chapter 7 gives a summary of the main achievements of this thesis and provides
perspectives for the near future.

• Appendix A contains the experimental and the more recent theoretical results of
our study of the thermalization dynamics of collisionless fermions in non-separable
potentials.

• Appendices B and C provide additional technical details of experimental setups and
theoretical references, respectively, which have been omitted from the main text for
the sake of brevity.
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This chapter provides a detailed summary of the current status of the experiment as well
as of its technical capabilities. Particular emphasis is put on the various major changes
and upgrades implemented over the course of this thesis.

FerMix is a dual-species experiment designed to produce quantum gases of the two
fermionic Alkali metals 40K and 6Li . A typical sequence takes roughly 60 s. A double
species magneto optical trap (3D MOT) is loaded for up to 30 s, capturing atoms from two
atomic beams which intersect at the center of the main chamber. The jets of atoms are
generated by a two-dimensional magneto-optical trap with longitudinal molasses plus
push beam (2D+ MOT) and by a Zeeman slower in case of Potassium-40 and Lithium-6,
respectively. After MOT loading, the optical intensities are reduced and the magnetic
gradient is raised in order to increase the atomic densities of the trapped atomic samples.
Afterwards, the magnetic fields are switched off and the atoms are subjected to gray
optical molasses on the Alkali D1 lines, which increases significantly the phase space
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Figure 2.1.: 3D CAD drawing of the main vacuum system. The vacuum assembly consists of two
source regions for 6Li and 40K , a central chamber hosting the 3D MOT and the L-shaped magnetic
transport tube leading to the science cell. The upper transport plate and the coils of the Potassium
2D MOT are not shown for clarity.

density of the clouds. This stage of laser cooling is essential to ensure sufficiently high
levels of efficiency for the ensuing magnetic transport, during which the atoms are first
recaptured by a magnetic quadrupole potential, which is then adiabatically displaced by
an array of partially overlapping Helmholtz coils. Prior to loading, optical pumping is
performed in order to transfer all of the atoms to magnetically trappable states as they
occupy random Zeeman levels after the molasses phase. The transport then moves the
atoms to the science cell, where they are transfered into an optical dipole trap following
microwave-evaporation to reverse some of the heating effects occurring during magnetic
transport. Once loaded, the optical trap’s intensity is lowered in order to evaporatively
cool the trapped atoms, eventually reaching the quantum degenerate regime. During
this phase of cooling, the atoms are also transfered into the desired Zeeman states and
the spatial density is increased by adding a crossed dipole trap, without which quantum
degeneracy would be much more challenging to reach due to marginal collision rates. The
atoms are then either kept in the optical dipole trap or they are transfered into an optical
tube lattice. Finally, we employ standard absorption imaging to record the column density
profile of the atoms using highly sensitive CCD cameras.
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2.1. Overview of the vacuum system

All of the operations described above do require an extremely clean and well isolated
environment. While direct contact with the walls is avoided by means of optical and
magnetic trapping fields, any residual gases present in the vacuum chamber are naturally
in thermal equilibrium with its walls and therefore carry kinetic energy on the order of the
ambient room temperature. Typical trap depths for neutral atoms cover a large range of
comparatively small energies, spanning from some tens of mK for magnetic traps all the
way to only a few µK after optical evaporation. Therefore, any collision with the remaining
background gases entails immediate loss of atoms from their traps. The rate at which these
collisions occur represents a fundamental technical limitation of the experiment as they
ultimately fix the longest possible lifetime of the atomic ensembles in optical traps. As
a consequence, pressures of well below 10−11 mbar are a requirement in order to obtain
reasonable lifetimes of up to several minutes in optically trapped (non-interacting) gases.
While this might seem overly long at the first glance it should be pointed out that, for
instance, evaporative cooling alone might already take tens of seconds when the collision
rate happens to be low and there is no means of enhancement available.1 Combining this
with all of the steps of the sequence mentioned earlier already implies time scales of about
one minute.

While background gases are harmful during the advanced stages of the experimental
sequence, well controlled gaseous phases of 40K and 6Li with pressures of 10−7 mbar to
10−8 mbar are needed in order to produce the dilute atomic jets, which are then caught
by the 3D MOTs. As these vapors cannot be switched on or off quickly,2 they need to
be kept ready at all times while being in a well regulated thermal equilibrium with the
surrounding walls of the vacuum assembly. The dynamic range of pressures that need
to be present in the vacuum chamber is thus rather large considering that the science
cell needs to be kept at ∼ 10−11 mbar. This makes it necessary to connect the various
functional parts of the experiment by differential pumping tubes, so that unequal pressure
levels can be maintained by ion pumps on adjacent sides.

A CAD drawing depicting the vacuum assembly of FerMix is given in Figure 2.1. It is
comprised of four main sections: Two source regions of elevated vapor pressure in which
the atomic beams of 6Li and 40K are generated by means of Zeeman pre-slowing and
transversal cooling, respectively; the central octagon chamber where said jets of atoms
intersect to load a dual species magneto-optical trap and where initial laser cooling is
performed; the L-shaped transport tube along which the atoms are guided via a magnetic
conveyor belt and finally the science cell with increased optical access and specialized

1For example, Feshbach resonances, which can enhance the elastic collision rate, are tuned using magnetic
bias fields and thus cannot be used in a deep magnetic trap.

2In the case of 40K one could use dispensers.
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coil assemblies to create strong magnetic fields to make use of Feshbach resonances. The
pressure in the vacuum chamber is maintained by several ion pumps of different pumping
strength as well as by non-evaporable getter materials (St707) which, once heated up,
begins to absorb gases that are otherwise hard to remove with ion pumps (e.g. H2). In
addition, the transport section was coated at CERN with a special Ti-Zr-V alloy that acts as
an additional getter pump. The rectangular glass cell is made of uncoated3 vycor (Hellma
GmbH) and has external dimensions of 23 mm× 23 mm× 10 mm with a wall thickness
of 4 mm. The closest ion pump in the vicinity of the science cell is shielded by a box made
of mu-metal in order to reduce the amount of potentially disruptive stray magnetic fields.

2.2. Atomic properties of Potassium and Lithium

An overview of the lower level structures of 40K and 6Li is given in figure 2.2. Lithium-
6 has the ground state 2 S1/2 with zero orbital angular momentum as well as the two
excited states 2 P1/2 and 2 P3/2, which are separated by the fine structure splitting of
only 10 GHz. The corresponding optical transitions have a wavelength of 671 nm and a
natural linewidth of Γ/2π = 5.87 MHz. The nuclear spin I is equal to one, giving rise to
hyperfine levels F = 1/2, 3/2 for a total electronic angular momentum of J = 1/2, and
F = 1/2, 3/2, 5/2 in the case of J = 3/2. The corresponding hyperfine energy splitting
in the ground state is relatively small with ahfs/h = 228.205 MHz, implying that the
coupling of the nuclear spin I to the electronic angular momentum J is rather weak. As
a result, I starts to decouple from J at comparatively low magnetic fields of ∼ 100 G
(Paschen-Back regime). Another side effect of this weak coupling are the small energy
splittings of the excited states, which amount to only 26.1 MHz for 2 P1/2 and less than
2 MHz for 2 P3/2, the latter being smaller than the natural linewidth of the transition.
As will be elaborated upon further in sec. 2.8, it is these small splittings in the excited
state that render efficient sub-Doppler cooling for 6Li challenging to implement. Laser
cooling and imaging are performed on the F = 3/2→ 22P3/2 transition with an additional
repumper F = 1/2 → 22P3/2 to remove parasitic population from the lower hyperfine
ground state.

The situation is notably different for 40K . It carries a nuclear spin of I = 4 and possesses
an inverted hyperfine structure in the 4 S1/2, 4 P1/2 and 4 P3/2 manifolds as it points in
the opposite direction with respect to the nuclear magnetic moment. The splitting of
the ground states F = 7/2 and F = 9/2 of 1.28 GHz is much larger than for 6Li , as is

3The number of distinct optical wavelengths which need to traverse the science cell is quite large, especially
for an experiment working with mixtures of different atoms. In our case, there are 532 nm, 671 nm,
767 nm, 770 nm, 808 nm, 1064 nm and 1070 nm. Having a coating optimized for such a large variety of
wavelengths is very elaborate and also introduces potentially harmful constraints, as it might reduce the
transmission of other frequencies that one might want to use in the future. Therefore, the glass cell was
left uncoated so that all wavelengths share the standard reflectivity of 4 %.
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Figure 2.2.: Overview of the lower hyperfine level structure of 6Li and 40K . a) Hyperfine levels
at zero magnetic field along the D1 line connecting the Alkali ground- nS1/2 and second excited
states nP1/2. b) Level structure for the D2 line between the ground states to the second excited
states nP3/2.
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the case for the hyperfine splittings in the excited states. Laser cooling and imaging are
performed on the F = 9/2 → F′ = 11/2 transitions while the repumper is tuned to
F = 7/2→ F′ = 9/2.

Because of its large angular total momentum there are many magnetically trappable
Zeeman levels in the ground state, most notably the positive ones of the F = 9/2 manifold.
Moreover, a mixture of mF = +9/2 and mF = +7/2 is also stable with respect to spin
changing collisions because the conservation of the projection of angular momentum
cannot hold without ending up with identical spin states after the collision. This is of
great importance for the ability to evaporatively cool 40K in a magnetic trap. A spin-
polarized sample, which of course is free of any destructive spin exchange processes,
cannot rethermalize via elastic s-wave collisions due to Pauli blocking or via higher
partial wave ones as they are usually suppressed at low temperatures. Consequently,
either a (stable) spin mixture or an additional buffer gas acting as coolant are required
to evaporatively cool down 40K , with the former being much less cumbersome from a
technical point of view. Unfortunately, 6Li does not have a stable spin mixture in the
ground states, rendering evaporative cooling more challenging. The ground state of
40K also enters the Paschen-Back regime much slower than its excited state (or than 6Li ),
which is a concern at typical fields of around 200 G when optical imaging and -pumping
is concerned as the good quantum numbers of the excited state will be different from the
ones of the ground state. Another positive aspect of 40K ’s level structure is that hyperfine
changing collisions driving F = 9/2→ F̄ = 7/2 are already energetically suppressed as
the gas is cooled below the relatively high temperature of 10 mK [59]. Moreover, with
wavelengths of 770 nm and 776.7 nm for the D1 and D2 lines, respectively, one directly
benefits from the advanced state of development of many commercial optical technologies
available for Rubidium at 780 nm.

2.3. New resonant laser systems

In order to perform laser cooling, optical pumping and imaging of the atoms using the
transitions mentioned above, coherent beams of light of appropriate frequencies and
optical intensities need to be generated in a controllable and tunable way. The D2 and D1
laser systems for Potassium and Lithium, while quite different in terms of wavelength,
are constructed in a similar fashion and schematic overviews can be found in figs. 2.3 and
2.4 as well as in [60] and [61]. A master diode laser is stabilized via modulation transfer
spectroscopy on a Doppler-free absorption signal of the D2 or D1 crossover line4, and
amplified by a homebuilt tapered amplifier system (see [62] for technical details) before

4In the case of Lithium the D1 laser is offset-locked to the D2 master as the fine structure splitting amounts
to only 10 GHz. In contrast, the splitting for 40K assumes a value of roughly 3 nm, which necessitates to
use a separate spectroscopy setup for locking on the D1 line.



2.3. New resonant laser systems 27

H
F 

Im
g

FI

D
2 lock

FI

EOM

FITA

to Freq.
gen.

CEL002
767nm

-2x120MHz
39K

2W

λ2 �ip.

-2x200MHz

LF
 Im

g-80MHz

Img/OP

2D
 P

B

2x175MHz to 2D
MOT

PD

Figure 2.3.: New D2 Master Laser Setup for 40K . Functional parts: Master laser, Doppler-free
absorption spectroscopy, First stage of frequency generation for absorption imaging/optical
pumping in the science cell (3.1 and 6.2.5), optical amplification, 2D MOT push beam (2.6), cleaning
fiber to frequency generation setup shown in fig. 2.4.

Prin 3D Prin 2D

from K
Master

Rep

Rep 3D Rep 2D

HF OP1

HF OP
(hiding)

MOT
img.

ImgMot

FI

TA

FI

TA

2D MOT

3D MOT

3D
 Sw

Optical
pumping

Sp Sw

-2x 190MHz -2x225MHz

-80MHz

-90MHz -60MHz

-2x 231.5MHz2x 216.5MHz 2x 170MHz2x 219MHz

Co
ol

in
g

Cooling

Repumping

L2+pol L2+pol
1.5W 1.5W

Freq xi

2x 214MHz

from K
Master

x/y/z img. & LF OP

λ2
�ip.

3x

H
F 

O
P

Figure 2.4.: Expanded and upgraded setup for D2 frequency generation and additional optical
amplification stages for 40K . Functional units from left to right: New imaging and optical
pumping for the science cell at low- and high magnetic field (3.1 and 6.2.5); New high field optical
repumping into the upper hyperfine states (6.2.6) and MOT imaging; Frequency generation and
optical amplification for the 2D MOT (2.6) and 3D MOT (2.7) as well as for optical pumping in the
MOT chamber (2.8).



28 Chapter 2. General overview of the experimental apparatus

being mode-cleaned by an optical fiber. In the case of Potassium, one would prefer to
lock the laser directly to the isotope 40K , however this is unfeasible due to the extremely
low natural abundance of this isotope of only 0.012 %, which makes the mere detection
of the absorption line technically challenging5. Therefore, the laser is referenced with
a fixed offset created by an acousto-optical modulator (AOM) to the crossover line of
Potassium-39 instead, which is in close proximity to the frequency needed to address 40K .
In the case of 6Li , the (enriched) sample is contained in a special spectroscopy cell that
has to be heated to roughly 300 °C in order to generate sufficiently high levels of vapor
pressure. After mode cleaning, the appropriate frequencies are generated by a chain of
tunable acousto-optical modulators and partially superimposed to form the seed light
for an additional stage of tapered amplifiers (see fig. 2.4). Here, the appropriate optical
powers for the 3D MOT, spin polarization and 2D MOT (Zeeman slower) are generated,
before the light is being sent to the main table via single mode fibers. Several single pass
AOMs serve as fast switches whenever speeds of a few µs are required while additional
mechanical shutters, both homebuilt and commercial, are used to completely block the
optical paths on much slower timescales of 6 ms and 100 ms, respectively.

Over the course of this thesis, several major parts of the Potassium laser table were rebuilt
and extended in order to improve the overall stability of the experiment and to add new
functionality. The original master laser setup based on a homebuilt diode laser in Littrow
configuration (see [62] for details) was re-designed and its main laser source replaced
by a commercial diode laser (MogLabs CEL002) to increase overall stability. The setup
also provides the light for the new independent push beam of the 2D MOT (see sec. 2.6)
and for the new stages of low- and high magnetic field optical pumping and imaging in
the science cell (see sec. 3.1). The latter is facilitated by an additional network of AOMs
allowing to address multiple spin states of 40K (see fig. 2.4) with the imaging/pumping
light. Furthermore, the RF sources of the AOMs which were primarily made up of voltage
controlled oscillators (VCO), have been largely replaced by direct digital synthesizer
modules (WindFreak MixNV/SynthNV & DS Instruments SG4400L). This was done to
reduce the sensitivity of the RF system to fluctuations of the lab’s air conditioning unit
and to allow to tune light frequencies digitally instead of by using analog channels (see
sec. 2.4 for details). Initially, in order to reduce the amount of harmful stray light during
during sequences, the TA chips were unseeded for extended periods of time. This mode
of operation reduces the lifetime of the amplifier chips due to heat dissipation as well as
abrupt out-of-equilibrium operation and was rectified by optimizing the timing of the
sequence in conjunction with the installation of additional fast mechanical shutters.

5...and at a cost of several thousand EUR per milligram, also somewhat expensive.
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separate computer that communicates with them by means of specialized software.

2.4. Upgrades to computer control of the experiment

FerMix is controlled and operated by Cicero Word Generator in combination with Atticus
Server, which is a software bundle developed at MIT specifically for cold atom experiments.
It greatly facilitates the programming of experimental sequences by virtue of its clear
interface and server/client architecture at the expense of flexibility as no additional
features can be added without changing the underlying source code. Sequences, once
started, are transfered from the buffer to a PXI system by National Instruments made up of
two chassis. They contain all of the digital (TTL), analog (0− 10 V) as well as GPIB cards
providing the numerous output channels6 necessary to control all of the various pieces of
equipment making up the experiment, such as shutters, AM inputs, TTL channels and
triggers for RF sources, to give but a few examples. A schematic overview of the hardware
outlined so far is given in fig. 2.5.
As the buffers do have a limited size, the maximum duration of a sequence is bound by
the time resolution of each of its steps. In order to be able to choose the resolution of each
step independently to conserve buffer space, an external FPGA device (Opal Kelly XEM
3001) is used as an external master clock. This way, the maximum duration of a sequence
is increased as the time resolution per step can easily vary between 1 µs and 1 s.
While the PXI system operates at low voltages and currents, it needs to be connected to
devices carrying comparatively high currents of up to several hundred amperes (e.g. IGBTs
for magnetic coils). In order to protect the PXI system from voltage spikes, level shifting,

6Digital cards: NI PXI-6533 & 6536, Analog cards: NI PXI 6713 (12bit resolution)
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ground loops and system voltage drops due to excessive current drain, a buffer stage in the
form of amplified digital and analog opto-couplers mediates the communication with the
final devices. They allow for maximum switching speeds of 0.5 µs and 20 µs, respectively.
In addition, the most sensitive analog channels are hooked up using doubly shielded
coaxial cables to reduce the risk of stray pickups, which might translate into fluctuations of
the experiment’s performance and hence of its reproducibility. This concerns, for example,
the analog set point of the current supply generating the Feshbach field, which must have
a current stability of at least 10−4 to ensure consistent scattering lengths.
The control infrastructure of the experiment has undergone multiple upgrades over the
course of this thesis. This was motivated, in part, by the need for 50 Hz-triggering in
order to be able to perform RF spectroscopy on strongly interacting Fermi gases (see 5). In
order to be able to straightforwardly implement mains synchronization in the sequence,
the previous customized version of Cicero had to be replaced with the newest one. An
Arduino-based mains trigger [63] is used to provide feedback to the clock. Moreover,
the experiment’s signal generators were switched from LAN to GPIB and the new DDS
sources were integrated into Cicero by means of emulated RS232 interfaces to allow for
more flexible programming. Moreover, the imaging software to communicate with the
previous cameras was redone to include as well the newly added highly sensitive CCD
camera needed for the study of the dimensional crossover in the tube lattice (see ch. 6).

2.5. Lithium oven section and Zeeman slower

As this part of the experiments’ atomic sources was already covered in great detail in
previous thesis [62, 64], only a brief summary will be given here for completeness.
The 6Li is contained in a tee-shaped oven section, which is connected to the Zeeman
slower via a collimation tube with a diameter of 6 mm as well as a differential pumping
stage (see fig. 2.1). The sample is highly enriched as the natural abundance of 6Li is
only 5 %, which would limit the atomic flux created by the slower. In order to produce a
gaseous phase inside of the oven container, the sample is heated to temperature of about
470 °C, which is stabilized using an Omega temperature controller. When the experiment
is not running, the temperature is reduced to 270 °C in order to avoid clogging of the
collimation tube.
As the hot atomic beam of 6Li traverses the Zeeman slower’s vacuum tube, it is opposed
by a counter-propagating red-detuned laser beam of circular polarization. Through many
absorption and spontaneous reemission processes, the atoms are slowed down since the
only net transfer of momentum, which does not vanish on average over multiple cycles,
is exactly opposite to their direction of motion. In order to ensure that the atoms stay
in resonance with the laser beam (of fixed frequency) despite the Doppler-shift, which
decreases as the atoms slow down, the tube is surrounded by a tapered coil assembly that
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creates an inhomogeneous magnetic field. The latter translates into an inhomogeneous
Zeeman shift of the atomic energy levels covering the atoms’ travel distance from the
oven to the main chamber, where the 6Li atoms will be captured by a magneto-optical
trap (see fig. 2.1). In order to maintain the resonance condition along the entire length of
the slower, the B-field is specifically designed to match the Zeeman shift to the thermal
velocity distribution of the oven and to account for the slowing rate as the atoms travel to
the MOT chamber, given the fixed frequency of the slowing light as a constraint.
Once in the MOT chamber, the resonant light of the Zeeman slower is no longer needed
and might even disturb the atoms, which have already been captured by the 3D MOT. To
circumvent this problem, the Zeeman slower used in this experiment is of the so-called
’spin-flip’ type, whereby the magnetic field is made to cross the zero just before reaching
the MOT chamber. This can cause the atoms to undergo a non-adiabatic spin flip during
an absorption cycle, which renders them off-resonant to the slowing light. However, a
repumping component needs to be added to the light to ensure that the atoms can still get
captured by the subsequent 3D MOT. Another advantage of this particular implementation
is the reduced need of electrical current in order to generate a low B-field in the vicinity of
the 3D MOT, which reduces in turn the heat load that must be dissipated and removed
from the coils via water cooling [63]. Since the coils create some residual magnetic fields
at the position of the 3D MOT, another compensation coil is installed on the opposite side
of the central chamber.
Concerning dual species operation, the presence of the atomic jet of 6Li does decrease
the loading of 40K in the 3D MOT, but does not reduce the loaded atom number in the
saturated regime.

2.6. 2D magneto-optical trap and new Potassium reservoir

40K has a very low natural abundance of only 0.012 % [65], so that the use of a Zeeman
slower would require extremely high vapor pressure in order to establish a sufficient flux
of atoms to load a sufficiently large 3D MOT. In such a situation, the partial pressure
of the other isotopes would be even higher, causing the ion pumps to clog up over the
course of several months before they eventually loose their pumping capacity. The use
of an enriched sample in combination with a Zeeman slower is possible in principle, but
extremely costly as the slower is rather lossy in its use of the available atoms, making it
necessary to frequently replenish the source.
We therefore use a 2D MOT to benefit from its comparatively high flux of up to 109 s−1

as well as from its efficiency in terms of the sample depletion rate. As it has to be loaded
from a background vapor phase of Potassium, we have to use an enriched sample as the
collisions with the other isotopes would prevent the formation of a 40K MOT if its partial
pressure was only 0.012 %. Even with an 4 % enriched sample, the parasitic collisions start
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Figure 2.6.: CAD drawing of the 2D MOT section of the vacuum system. The new Potassium
source region is attached to the main vacuum system on right lower right. The differential pumping
stages to the 3D MOT chamber are not visible.

to degrade the MOT once the partial pressures of potassium 39 and -41 increase above
60 %.7

The 2D MOT is made up of two pairs of transversal, retro-reflected cooling beams as well
as a longitudinal molasses (see fig. 2.6 and [62, 64]). In addition, a small push beam is
accelerating the atoms towards the 3D MOT chamber, which leads to a substantial increase
of the atomic flux [66]. The push beam was split off directly from the 2D MOT light
near the vacuum chamber and could not be tuned independently in terms of frequency
composition or intensity. Moreover, this arrangement entailed an extremely long optical
path, which, in combination with the small beam diameter of only 2.4 mm, rendered the
push beam unstable with respect to beam pointing fluctuations. This can result in unpre-
dictable fluctuations of the atomic flux on a shot-to-shot timescale, thereby compromising
the reproducibility of the loaded atom numbers. In order to overcome this problem, a
new optical setup to deliver a (frequency-tunable) push beam via singlemode fiber was
constructed in the form of an ancillary setup added to the new D2 master laser system
(see fig. 2.3).

7This figure corresponds to the amount of resonant light scattered by the vaporous phase, i.e. Iout/Iin. It can
be used to calculate the absolute partial pressures since the isotope abundances and dimensions of the 2D
MOT glass cell are known (see [62] for details).
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Controlled generation of a vaporous phase of 40K

The atomic sample is stored in two places: The main reservoir, which contains the bulk
of the solid material, and the cold point in the vicinity of the 2D MOT glass cell. The
latter is replenished regularly by migrating Potassium from its oven compartment and
serves as an intermediate source, with which the vaporous phase of 40K is created. The
cold point is made up of a small hose cycling around a circular ’throat’ of the glass cell.
It carries a temperature regulated flow of anti-freeze coolant, which can be cooled down
all the way to 0 °C and heated up to a maximum temperature of 45 °C. Given that the
surrounding vacuum assembly as well as the glass cell of the 2D MOT are kept at elevated
temperatures greater than 60 °C at all times, the cold point acts as a highly efficient pump,
especially at its low temperature setting. When increasing the temperature, small amounts
of Potassium begin to evaporate and to fill out the 2D MOT glass cell, creating a vaporous
phase. To further enhance its pressure, several UV-LEDs are installed around the glass
cell. The light with a wavelength of 395 nm induces atomic desorption [67] from the
surfaces on the inside of the vacuum chamber as well as from the cold point, which can
temporarily increase the vapor pressure by up to 50 % and hence the flux of the 2D MOT.
Their total output power is approximately 1.4 W, which can disturb the loading of the
3D MOT if they are left active for too long. Therefore, they are only switched on for 1-2 s
at the very beginning of the loading phase, where the majority of the atoms is captured.
Additional technical details regarding the UV LED system and its characterization can be
found in [63]. Given that the pressure needs to be elevated by design, the 2D MOT section
is connected to the rest of the vacuum assembly via a differential pumping stage.

New Potassium reservoir and sample migration

The original sample container which was used to break the first ampule of enriched
40K remains connected at the top of the 2D MOT section of the vacuum chamber (see fig.
2.6), but cannot be used any longer due to a leak in the opening- and closing mechanism
of the valve. As was mentioned earlier, this reservoir had been depleted already at some
point in the past, so that the only remaining Potassium was the deposit on the cold point.
During the course of this thesis, the remaining 40K eventually ceased to be able to sustain
an acceptable level of vapor pressure in the 2D MOT glass cell. In order to replenish
the Potassium, a new reservoir had to be designed and installed as the top valve and its
sample container cannot be operated without compromising the integrity of the vacuum
of the 2D MOT chamber. The new oven section is depicted in figs. 2.6 as well as B.19. It
is connected to the bottom valve of the 2D MOT chamber and can be evacuated before
establishing direct contact between the two chambers. The reservoir is made up of two
valves, one of which serves as connection to a turbo pump while the other one is used to
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crush under vacuum the glass ampule containing the Potassium. Given that the enriched
sample consists of only a few milligrams, it needs to be contained in an airtight glass
vessel to prevent it from oxidizing completely.8

In order to migrate Potassium onto the cold point, the source region is slowly heated to
85 °C while the connecting vacuum system is kept at its usual 100 °C. Due to the increased
temperature, part of the solid Potassium will start to evaporate and migrate through the
vacuum assembly. Due to the elevated temperatures of the surrounding inner surfaces
of the vacuum chamber, the gas is prevented from undergoing sublimation along the
way. As the ion pump is closed off as well, only the cold points remains as a possible
area for 40K to deposit. Its temperature during migration is dropped to 0 °C to increase its
pumping capacity further.

In case of power cuts the lack of cooling provided by the highly stable chiller (Coherent
ThermoTek T257P-30 210 W) will cause the comparatively small cold point deposit to
dissipate quickly as the surrounding vacuum parts represent a large thermal load that
will heat it up quickly before cooling down after several hours. To prevent such losses of
the atomic source, a high capacity interruption-free power supply (Riello Sentinel Dual
10000VA) was installed that can sustain the chiller with power for up to 16 h, which is much
longer than the cool-down time of the vacuum assembly. Moreover, a homebuilt security
system was conceived to monitor the interlock pin of the chiller and the temperature of
the cold point as well as of the new 40K reservoir. In case of overheating or chiller failure
it can cut the power to the vacuum system’s heating tape to reduce the potential damage
to the Potassium samples. Technical details can be found in appendix B.4.1.

2.7. Dual-species 3D magneto-optical trap

The two atomic jets of 40K and 6Li converge in the central chamber of the vacuum system
(see fig. 2.1), where they are captured by a dual species magneto-optical trap (MOT). This
type of trap is a typical first cooling stage in most contemporary cold atom experiments
[68] as it allows to capture up to a billion atoms and to cool them down to temperatures
approaching the Doppler limit of TD = h̄Γ/2kB = 144 µK. The trap itself is made up of
three pairs of red-detuned counter-propagating laser beams of circular polarization and
a magnetic quadrupole field, as is shown in fig. and 2.7. The former forms a so-called
optical molasses which cools the atoms while the latter provides a trapping potential that
prevents them from leaving the active volume [69].

8In the case of 6Li , oxidation of the material before loading and evacuation of the oven is no concern as it
only occurs on the surface of the sample. Since enriched lithium is very cheap in comparison to Potassium,
the sample can easily weigh many grams, so that the oxidation of the surface is negligible compared to the
total volume. Once the oven is brought to its operational temperature, the lithium melts and the pure core
of the once solid sample is exposed.
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In our setup, the polarization optics are optimized for 40K and the horizontal axes are retro-
reflected while the vertical MOT axis is made up of two counter-propagating laser beams.
At ideal conditions, the MOT can simultaneously capture up to 2× 109 atoms of 6Li and
3.2 × 109 atoms of 40K . A full characterization as well as additional technical details
can be found in [62, 64]. Due to detrimental effects arising from dual species operation,
the steady state temperatures are limited to roughly 800 µK and 300 µK for 6Li and 40K ,
respectively [63]. Consequently, additional stages of cooling are required before the atoms
can be transported efficiently to the science cell. To that end, a dual-species gray optical
molasses was implemented at FerMix in order to lower the temperature well below the
Doppler limit. This cooling stage is a special type of Sisyphus cooling and will be described
in greater detail in the following section.
In order to improve the transfer to the molasses, the MOT is compressed over the course of
5 ms after loading is complete, i.e. after the MOT fluorescence reaches a plateau implying
a steady state. During this step, the magnetic gradient is increased from 9 G cm−1 to
40 G cm−1, which entails approximately a five-fold increase of the atomic densities [61,
63].
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2.8. Λ-enhanced gray optical molasses on the Alkali D1 line

As was detailed in the previous section, the typical phase space densities (PSD) achievable
in magneto-optical traps of 40K and 6Li are much too low in order to enable efficient
(magnetic) transport or the loading of a typical optical dipole trap9. Several common
cooling techniques can be implemented at this stage, however they all suffer from certain
drawbacks that render them impractical for our specific situation. For example, radio-
frequency evaporation in a dual species magnetic trap would certainly increase the PSD of
both elements, but the loss in terms of atom numbers would be too high given that this is
just a pre-cooling stage. A more realistic alternative is the implementation of an additional
MOT stage using the higher-lying ultra-violet transitions of 6Li [70] and 40K . While the
narrow linewidth of these transitions gives rise to much lower Doppler temperatures,
the technical realization comes at great cost, especially for two species, and brings with
it all of the disadvantages of UV lasers.10 Finally, one can employ conventional bright
Sisyphus cooling [69]. Here, a polarization gradient gives rise to a spatially varying
Zeeman shift, which in turn creates a periodic potential for the atoms. Particles moving in
such a potential landscape will loose kinetic energy as they ’climb the hills’ and regain
it when returning to the ’valleys’. By adding optical pumping on a closed transition,
one can create a situation where, on average, the atoms are most likely to be excited just
after having lost some of their kinetic energy. After the subsequent decay back to the
ground state, the cycle repeats and the gas continues to cool down [69]. Theoretically,
the lowest temperatures one can achieve via this mechanism are given by the photon
recoil limit Trec = p2

γ/2mkB, which is 3.5 µK and 0.4 µK for 6Li and 40K , respectively.
Unfortunately, the D2 line’s excited state hyperfine structure of the two species at hand is
not well resolved with respect to the natural linewidth Γ ∼ 6 MHz, which precludes the
existence of a closed transition and therefore negates any cooling effect of the Sisyphus
mechanism, unless a repumping laser is added. However, even when turning to such a
bichromatic molasses on the unresolved D2 line, the obtained results remain insufficient
for our situation in terms of overall efficiency.
A possible solution can be found by turning to the D1 line, which possesses a much
larger hyperfine splitting in the excited state, but still lacks a cycling transition at low
magnetic fields. In conventional molasses the repumping transition is used to return stray
atoms to the main cooling line while, in our case, it forms a so-called Λ-system. It can
be shown theoretically that when the cooling transition is chosen as either F → F̄ = F
or F → F̄ = F − 1, multiple dark states will emerge as eigenstates of the underlying

9Note that the situation is different when employing broadband fiber CW lasers with powers of up to 300 W,
see B.3.

10To give but a few examples: heightened skin cancer risk; rapid degradation of fibers enforcing a free-air
implementation; home-built laser systems are very time-consuming while commercial ones tend to be
very expensive.
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Figure 2.8.: Gray optical molasses on the D1 line of 40K . a) Eigenenergies as a function of
position (as in [71]). b) Equilibrium temperature as a function of Raman detuning (data adapted
from [72]).

Hamiltonian [69]. These states of vanishing eigenenergy are linear superpositions of
the ground state’s Zeeman levels and do not couple to the light field. However, the
other eigenstates are not dark and posses a spatial modulation in their energies that is
reminiscent of conventional bright molasses. Now, if the laser is detuned onto the blue
side of the D1 line, the bright states are shifted to higher-lying, positive energies, as shown
in fig. 2.8 for 40K . The implied cooling mechanism is referred to as gray molasses and can
be seen as a combination of polarization gradient cooling and velocity selective population
trapping [69]. Atoms of elevated kinetic energy in the dark states are transfered to the
bright states by motional coupling, most likely at the position of the potential minima due
to the reduced amount of transition energy. The atoms then proceed to shed additional
kinetic energy while climbing up the potential hills, to be then pumped back into a dark
state after reaching the apex. The cooling arises from the same type of Sisyphus effect as
in conventional molasses.

Experimental realization

Λ-enhanced gray molasses on the Alkali D1 line was realized for the first time at the Fer-
Mix experiment with 6Li and 40K . It has, since then, found widespread use in numerous
research groups [73–81] (in some cases even using the D2 line) owing to its formidable over-
all efficiency in terms of cooling power and capture efficiency as well as its straightforward
implementation. The experimental and technical details have already been elaborated
upon in great detail in previous PhD theses [60, 66] and in [71, 72]. Therefore, only a brief
summary of the most important operational parameters shall be given here for the sake of
completeness, and in order to highlight the significance of the role of this cooling step in
the context of the experiment as a whole.
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The performance of gray molasses cooling depends on several experimental parameters.
The involved transitions and their respective detunings are depicted in fig. 2.2. The
optimum of the relative optical intensities of the cooling and ’repuming’ light was found
to be 20:1 and 8:1 for 6Li and 40K , respectively. The total intensity I and the detuning from
the excited state δ are related to the capture velocity vc and equilibrium temperature Tf as
per vc ∼ I/δ2 and Tf = I/kBδ, respectively. In order to capture as many atoms as possible
from the comparatively hot compressed MOT, the intensity of the molasses is kept at its
maximum at first and then ramped down to a much lower value to reach a low steady
state temperature. The overall duration of the intensity ramp can be chosen as low as 5 ms
without sacrificing any cooling efficiency. Moreover, as the energy splittings between the
involved Zeeman states are supposed to be created through the AC stark shift alone, any
stray magnetic fields have to be canceled by using appropriate compensation coils.

The common detuning δ and the relative Raman detuning ∆ relate to the coherence among
the bare ground states and the emergence of dark states. The molasses produces the lowest
possible temperature exactly when one fulfills the Raman condition ∆ = 0. One finds
that for δ = 4Γ in the case of 6Li and δ = 2.3Γ for 40K the captured atom numbers are
maximized while the steady state temperatures are near their minimal values (see fig.
2.8b). Under these conditions, samples of 4× 108 6Li atoms at temperatures as low as
60 µK can be prepared. In the case of 40K , one can reach 20 µK with 1.4× 109 atoms. At
this time it is unclear why these temperatures do not yet approach the recoil limit.

Since the fine structure splitting between the D2 and D1 lines is large and high optical
powers are required, separate laser systems were constructed to deliver the light fields
needed for gray molasses. They are depicted in figs. [60] and [66]. In the case of 40K , the
D1 master laser is locked to the crossover line of 39K using frequency modulation transfer
spectroscopy and the ’cooling’ frequency is then created by means of an electro-optical
modulator, which is set exactly to the ground state hyperfine splitting of 1285.8 MHz. For
6Li , the laser is stabilized to the main D2 master laser via an offset lock of roughly 10 GHz.
Here as well the second frequency, in this case the ’repumper’, is created in the form of a
sideband modulated onto the light by an EOM driven at 228 MHz. After amplification
the light is delivered via polarization maintaining single mode fibers to the main optical
table and superimposed with the 3D MOT light under a small angle before being enlarged
and split on the way to the MOT vacuum chamber. Additional details regarding the laser
setups can be found in [60, 66].

Optical pumping

Following the gray molasses phase, the atoms have to be loaded into a magnetic quadrupole
trap in order to transport them by means of a dynamic magnetic potential to the science
cell. As will be detailed in the section 2.9, both 6Li and 40K only posses a few Zeeman
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states, which are magnetically trappable and stable with respect to inelastic (exothermic)
spin-changing collisions. During the gray molasses phase, the atoms occupy dressed
states made up of the two hyperfine ground states of 6Li and 40K , respectively. Once
the light fields are switched off, the particles are projected onto numerous Zeeman states,
most of which cannot be trapped magnetically. Therefore, the atoms are optically pumped
into their stretched Zeeman states |F = 3/2, mF = +3/2〉 (6Li ) and |F = 9/2, mF = +9/2〉
(40K ) via σ+-polarized light in the presence of a weak magnetic bias field. A detailed
study of this process can be found in [63].

In the case of 40K , we alter the frequency composition of the 3D MOT light and reroute
it to pass through the atomic cloud along the quantization axis. The former ’cooling’
component is tuned to address the two excited state hyperfine manifolds F̄ = 11/2 and
F̄ = 9/2 at minimal intensity in order to reduce heating effects while the F = 7/2 manifold
is depleted by the repumping light. The total duration of the pump pulse is 70 µs. 6Li is
repumped via the transitions F = 3/2→ F̄ = 3/2 and F = 1/2→ F̄ = 3/2 with the latter
being provided by the laser setup of the gray molasses.

2.9. Magnetic trapping and transport

After spin polarization of the atoms as described above, they can be loaded into a magnetic
quadrupole trap. It is typically created by using two coils in anti Helmholtz configuration,
which create near their symmetry center a magnetic flux density of the form B(r) '
b′(x, y,−2z), where b′ is a geometrical constant describing the steepness of the gradient,
given typically in units of G/cm. Atoms with magnetic moment µ couple to the magnetic
field via the magnetic dipole interaction and experience an energy shift given by ∆E =

−µB. The magnetic moment depends on the internal state of the atom (i.e. the valence
electron) and, in general, needs to be calculated numerically for a given state and field B.
A detailed discussion of the behavior of neutral Alkali atoms in magnetic fields can be
found in appendix C.4. In the limit of small field magnitude, the total angular momentum
basis {F, mF} represents a set of good quantum numbers and under the assumption that
the magnetic moment follows the local direction of the magnetic field adiabatically, one
can express the eigenenergy as function of the atom’s center-of-mass positions as per

∆E = −µBgFmFB(r) with B(r) = |B(r)| = b
√

x2 + y2 + 4z2. (2.1)

Here, µB is the Bohr Magneton and gF represents the Landé factor of the hyperfine Zeeman
state |F, mF〉.
Given that static magnetic fields cannot have a local maximum according to Maxwell’s
equations, atoms necessarily need to be trapped around the minima of the B-field. How-
ever, this is only possible if the eigenenergy of a given internal state increases as the mag-
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Figure 2.9.: Energy shifts of the hyperfine ground state manifolds of 6Li and 40K . a,b) Energy
levels of the electronic ground states 4S1/2 and 2S1/2 of 40K and 6Li , respectively, for weak and
strong magnetic fields. The lines indicated in red (blue) correspond to the (strechted) states
commonly used in the experiment.

netic field grows stronger in magnitude, which is the case when its magnetic moment has
a positive slope. All Zeeman levels with this property are usually called ’low-field-seeking
states’, whereas their anti-trapped counterparts are referred to as ’high-field-seeking
states’.

As was mentioned earlier, the notion of the atom’s spin following the local direction of
the magnetic field adiabatically as it moves about the trap is the key requirement for
stable magnetic trapping. However, as is evident from eq. 2.1, the B-field does change its
sign abruptly when crossing through the symmetry center. At this point, the magnetic
moment of any atom will not be able to follow the field’s direction slowly in terms the
Lamor frequency. As a result, spin flips to anti-trapped states might occur. The magnetic
zero is also the region where the coldest atoms accumulate, so as the phase space density
of the gas increases, so will the Majorana spin flips due to the increased atomic density
in the vicinity of the magnetic zero. In essence, they can be thought of as a form of
anti-evaporation since these losses affect mostly the low energy part of the gases thermal
distribution. These processes become relevant as soon as atomic ensembles are sufficiently
cold, which is going to be the case at the end of magnetic evaporation.

Hyperfine structure of 6Li and 40K

The Zeeman energy shift as a function of B-field of the ground states of 40K and 6Li are
given in fig 2.9. Lithium has four low-field seekers in its absolute ground state 22S1/2.
Up to its turning point at 30 G, the state |F = 1/2, mF = −1/2〉 is trappable but only at a
rather low trap depth of 0.3 mK. |F = 3/2, mF = −1/2〉 becomes low-field seeking only
at fields stronger than 30 G. |F = 3/2, mF = +1/2〉 is trappable, but not stable against
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the exothermic spin-changing collision |F = 3/2, mF = +1/2〉+ |F = 3/2, mF = +1/2〉 →
|F = 3/2, mF = +3/2〉+ |F = 1/2, mF = −1/2〉+Erel The released energy of Erel = 11 mK
is essentially equal to the hyperfine splitting of 228 MHz and more than enough to expel
atoms from the trap. Only the stretched state |F = 3/2, mF = +3/2〉 is at the same time
collisionally stable and low-field seeking [82].

Potassium has an inverted hyperfine structure and several magnetically trappable Zeeman
levels in its ground state 42S1/2. The two most energetic states in the lower hyperfine
manifold F = 9/2, |F = 9/2, mF〉 = +9/2 and |F = 9/2, mF〉 = +7/2, are typically used
in Potassium experiments as they have favorable collisional properties and are stable with
respect to spin-changing collisions. However, in the presence of |F = 9/2, mF = +5/2〉,
the mixture becomes unstable as inelastic collisions of the form |F = 9/2, mF = +7/2〉+
|F = 9/2, mF = +5/2〉 → |F = 9/2, mF = +9/2〉 + |F = 9/2, mF = 3/2〉 + Erel can now
occur [83].

Magnetic transport to the science cell

In order to increase optical access to the atoms and to be able to control them using more
specialized coil assemblies, the sample is moved from the MOT chamber to the science
glass cell. Transport over longer distances is realized by moving a deep trapping potential
at an optimal speed with respect to the typical timescales of the trap orbits. The cloud’s
center-of-mass can then adiabatically adapt to the new trap center and excess heating is
minimized. One common technique is to displace the waist of an optical dipole trap by
changing the optical path of the laser beam using a highly precise mechanical stage [84].
Another option is to use a magnetic trap whose entire coil assembly is moved [85]. By
extension, a magnetic ’conveyor belt’ can be created when employing a large number of
static successive pairs of coils, which smoothly propagate the center of the quadrupole
field by means of optimized current ramps. While the setup and optimization of an optical
transport tends to be less time consuming, it is also more susceptible to misalignment
and requires a much higher degree of (daily) maintenance. A magnetic transport, once
implemented, is quite robust and requires only good starting conditions in terms of
temperature and atom number, which is also the case for optical transport techniques.
Moreover, it also facilitates transport along bent or angled paths. This robustness and
flexibility is obviously compromised to some extent when the entire coil pair is moved as
high degrees of mechanical stability and reproducibility are required. Therefore, FerMix
uses a magnetic transport consisting of 12 pairs of static Helmholtz coils, as was depicted
in figs. 2.1 and 2.7). At a given time, three coils are active in order to ensure smooth
movement of the magnetic zero as well as a constant aspect ratio of the quadrupole field.
The latter measure minimizes the heating during transport. The optimized currents, a
measurement of which is depicted in fig. 2.10, are rather high and do tend to heat up
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the coils over time. Therefore, the bottom and top layer of the transport assembly are
connected to a large water-cooled plate made of brass serving as heat sink. Given that
these cooling plates have to extend all the way to the science cell, they can be hosts to
long-lived eddy currents (in our case up to 12 ms) when switching strong magnetic fields
in proximity of the science cell. The entire transport sequence takes 5.3 s and moves the
atomic clouds over a distance of 65 cm. Due to the unavoidable imperfections of the
magnetic transport, the atomic samples heat up as they approach the science cell and
lose a certain fraction of their initial atom number. For 40K , the transport has an overall
one-way efficiency of 77 % and heats up the ensemble by roughly 200 µK with respect to
the temperature in the magnetic trap of the MOT chamber. This increase is due to the
compression of the magnetic field and parametric heating occurring during transport.
Once arrived in the science cell, these heating effects are reversed by means of evaporative
cooling and adiabatic cooling.

2.10. Evaporation of Potassium in the quadrupole trap

Following magnetic transport the atoms are kept in a deep magnetic quadrupole trap with
a gradient of 250 G cm−1. Typical atom numbers at this stage are between 4× 108 and
8× 108 at a temperature of ∼ 360 µK. The implied phase-space density is insufficient to
facilitate good mode-matching between the magnetic trap after adiabatic opening and a
tight optical dipole trap. Therefore, in order to prepare favorable initial conditions for an
efficient transfer, microwave (MW) evaporation is performed in the steep magnetic trap to
cool the sample well below 100 µK.

The working principle of evaporative cooling consists of the selective removal of the most
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energetic particles and the ensuing rethermalization of the remaining ensemble via elastic
collisions. This energy-selective removal of the high energy tail of the Maxwell-Boltzmann
distribution will cause the system to settle at a lower temperature at the expense of
atom number. This way, given the proper conditions in terms of collision rates and trap
properties, the phase space density (PSD) of the ensemble can be increased by several
orders of magnitude, eventually reaching even the quantum degenerate regime. The
onset of the latter is signified by an increase of the central PSD f0 = n0λ

3
dB above unity,

where λdB = h̄
√

2πβ/m denotes the thermal de Broglie wavelength and n0 = N/Ve the
peak spatial density. The trap volume Ve is given by Ve =

∫
d3r exp[−βU(r)] with U(r)

representing the trapping potential and T = 1/kBβ the temperature of the equilibrated
sample. The basic quantity

α = −d log( f0)

d log(N)
(2.2)

quantifies the efficiency of the cooling process and is very useful for experimental op-
timization of evaporation ramps. In essence, α quantifies how many atoms have to be
removed to gain one order of magnitude in phase space density. The full theoretical
description of the evaporative cooling dynamics can be challenging since it represents an
out-of-equilibrium problem with time-dependent parameters. Deep potentials inherently
tend to enhance the efficiency of evaporation, however there are several other factors
contributing to the dynamics at hand. Spilling- and inelastic losses as well as parasitic
heating, for example via Majorana spin flips, counteract the cooling effect on their own
timescales. If the trap is too high, only very few elastic collisions will be able to cause
atoms to actually leave the trap carrying away excess energy, which in turn causes the
evaporation to be slow. In this case, the dynamics of the harmful processes mentioned
before would dominate and negate any cooling effect. When the trap depth is decreased
using a properly tuned ramp, the elastic collision rate can be made to increase and diverge
as the evaporation continues (runaway regime), which is a consequence of the nonlinear
scalings governing the dynamics [86]. A condition to reach this regime is that the average
number of elastic collisions must exceed by far the rate of inelastic loss from the trap.

Microwave evaporation

Instead of lowering the trapping potential itself to remove hot atoms, one can instead flip
their internal states to high-field seekers. This causes the affected atoms to perceive the
magnetic gradient field as anti-trapping and results in their immediate ejection from the
trap. In order to selectively remove only the hottest atoms from a magnetic trap, one can
make use of the spatially varying Zeeman shift that gives rise to the trapping potential.
As only the most energetic atoms make up the wings of the trapped sample, one can shine
in RF/MW radiation driving transitions to untrappable states, which is resonant only
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Figure 2.11.: Microwave evaporation of
Potassium-40. LogLog-plot of the phase space
density versus atom number. The sample arriv-
ing after transport consists of a mixture of the
positive states mF = +9/2, +7/2, +5/2 and
is evaporated for 5 s in the example depicted
here. In comparison to optical evaporation, the
efficiency is low withα ∼ 1.5. Numerical data
adapted from [60].

with a certain energy shell of the trap (i.e. only atoms within a certain spatial region are
resonant).

In practice, for 40K we drive hyperfine changing magnetic dipole transitions from F = 9/2
to F̄ = 7/2 using the MW antenna located directly next to the science cell (see sec. 3.3 for
details). Over the course of 4 s the frequency is ramped in two consecutive linear ramps
from 1.15 GHz to 1.26 GHz, which is equivalent to saying that the ’RF/MW knife’ starts
on the wings of the trap and then moves towards its center as the frequency decreases.
The situation is illustrated in fig. 2.11. The corresponding process for 6Li is described
elsewhere [61, 87].

Provided that the ramp is slow enough, the atoms have enough time to rethermalize and
the sample grows colder as the knife becomes more resonant with the atoms occupying the
low energy regions of the trap. The final value of the frequency ramp νcut defines an upper
bound of the temperature Tcut of the evaporated sample. Using the Breit-Rabi formula
one can determine the corresponding resonant magnetic field Bcut and, by extension,
the spatial region or, equivalently, the energy shell at which the knife stops. The cut
temperature is then given by Tcut = µBcut/kB with the magnetic field being extracted from
the resonance condition,

hνcut = E(F = 7/2, mF = 7/2; Bcut)− E(F = 9/2, mF = 9/2; Bcut),

where E denote the eigenenergies of the hyperfine Zeeman states, which can be calculated
using the Breit-Rabi formula. At the center of the magnetic trap the B-field vanishes and
the energy difference becomes exactly equal to the ground state hyperfine splitting of
1285.8 MHz, corresponding to Tcut = 0 mK.

The start and cut frequencies mentioned above correspond to temperatures of 3.7 mK and
0.7 mK, respectively. When starting with a rather large sample of ∼ 1.5× 109 atoms at
T = 320 µK after transport, one obtains a cloud containing ∼ 1× 108 atoms at 95 µK after
evaporation. This is equivalent to an increase of the phase-space density from 7× 10−6 to
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2× 10−4 and an efficiency ofα = −1.49± 0.05 (see fig. 2.11) [61]. However, in order to
obtain consistent transfer efficiencies during the ensuing loading of the optical dipole trap,
we typically evaporate further until reaching 60 µK. At this point one is typically left with
40K samples of 4× 107 to 8× 107 atoms.
The gradient of the magnetic trap is chosen to facilitate reasonable collision rates while
keeping the lifetime at low temperatures high enough. Overly steep gradients would
increase the collision rate and by extension the final PSD at the end of evaporation, but they
also imply a smaller cloud size. The latter will lead to an enhancement of Majorana losses
since a larger portion of cold atoms is located near the magnetic zero. This compromise
can be made obsolete by shining in a repulsive laser beam with a very small waist, which
blocks the center of the trap (’Plugged quadrupole trap’). With this technique, one can
increase the final atom number after evaporation by up to 20 % while maintaining the
same temperature [61, 63]. However, as the plug needs to have a very small waist of
20 µm, it is also more susceptible to pointing fluctuations. In the case of 40K , it was found
that the benefits of the plug were outweighed by the instabilities which caused the need
for frequent realignment.

2.11. Preparation of a degenerate Fermi gas of Potassium-40

2.11.1. New optical and magnetic setup around the science cell

In this section, the essential experimental techniques required to prepare, control and
image an ultracold Fermi gas of 40K be described. Alongside this summary, the many
technical changes that have taken place in the vicinity of the science cell over the course of
this thesis will be highlighted as well. Most notably, all of the optical systems have been
rebuilt and improved upon in order to free up the high NA optical access to the atoms.
This facilitated the implementation of the tube lattice as well as of several new imaging
systems, which will also be used to project custom optical potentials onto the atoms.

Optical dipole traps. A schematic overview of all optical- and RF/MW systems around
the science cell is given in fig. 2.12. The main optical dipole trap (’ODT1’) has a wavelength
of 1064 nm and is provided by an Innolight Mephisto MOPA 16 W, the light of which
is mode-cleaned and propagated to the science cell by means of a high power photonic
crystal fiber. In order to be able to produce a small enough waist11 while still using
moderate focal lengths above 100 mm to keep aberrations minimal, the fiber output is
enlarged to a beam size of 2 mm using a large aperture collimator with an effective focal
length of 30 mm. The collimated beam of up to 7 W is then polarization-cleaned before

11As the ODT is loaded from a magnetic trap there is an ideal choice for the waist given the available optical
intensities in order to transfer the atoms efficiently. This compromise between trap volumes will be
described in greater detail later on.
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Figure 2.12.: New optical setup around the science cell as seen from the top. PBS: polarizing
beam splitter cube and half-waveplate, FC: fiber collimators, ODT1/2 outcouplers: Schäfter-
Kirchoff 60FC-SMA-0-M30-37 and 60FC-0-A11-03, PD: photodiode, PM: Picomotor, DM: dichroic
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being focused down to a spot size of 39 µm, corresponding to a maximum trap depth of
roughly 290 µK for 40K . The beam is sent into the science cell under an oblique angle
of 20° with respect to the x-axis, with the final pointing being controlled by a piezo-
actuated mirror. This particular choice of beam geometry was implemented to free up
the central access to the science cell along the x-axis, which is needed to shine in custom
optical potentials (6.2.8,6.2.7) and pumping beams (6.2.6). The crossed optical dipole trap
(’ODT2’) is shone in from the other side in a symmetrical manner. It intersects with the
ODT1 under an angle of roughly 140° and has a maximum trap depth of 16 µK at a waist
of 110 µm. Both beams originate from the same laser setup, which is described in greater
detail in sec. 2.11.2. The power of both dipole traps is stabilized by providing feedback to
their respective AOMs using high bandwidth PID regulators that monitor the intensity
via pickup photodiodes placed behind back-polished mirrors.

This implementation of the dipole traps has two limitations. First, the available optical
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power is rather limited and requires small beam waists to achieve sufficiently deep trap
depths. While this set of parameters does work well for the loading of 40K after magnetic
MW evaporation, it is borderline for 6Li due to its elevated temperature after sympathetic
cooling with the former. Second, the interdependency of the maximum powers of the
ODT1 and ODT2 makes it impossible to strongly recompress a crossed dipole trap in a
balanced manner. This can become an issue as soon as high atomic densities are required,
for example for the study of three-body losses in Fermi gases (see ch. 7). To circumvent
these limitations, a second high power laser setup was installed near the science cell, which
can deliver up to 150 W at the position of the atoms. Its main laser source is a broadband
Ytterbium fiber laser (IPG Photonics YLR-300-LP-WC) running at 1070 nm, which can
be sent to the atoms free-space or via fiber if powers of less than 30 W are required. The
setup is described in greater detail in appendix B.3. It should be pointed out that such
high CW optical powers come at the price of large laser linewidths of several nm. When
crossing with another beam, there is a risk of exciting molecular photo-association lines
which could compromise the usefulness of the crossed dipole trap. It was found that the
combination of the narrowline Innolight MOPA at 1064 nm (linewidth < 100 kHz) with
the IPG YLR-300 at 1070 nm did not give rise to detectable enhanced molecular losses in
40K .

Magnetic fields. A vertical cross section of the coil assemblies is shown in fig. 2.13.
There are two principal pairs of circular coils, which are used to create strong bias and
gradient fields at the position of the atoms. The inner coils can create a bias field of
8.00 G A−1 with a curvature of +0.31 G cm−2 A−1 or a gradient field of 2.50 G cm−1 A−1

when the currents are circulating in opposite directions. The latter is used to provide
the deep quadrupole trap containing the hot atoms delivered by the magnetic transport.
The large currents required are produced by a high power DC supply (Delta Eletronica
SM45-140) with a maximum current of 150 A, which is equivalent to a trap steepness of
375 G cm−1. This coil configuration is also used to create strong magnetic field gradients
for the purpose of Stern-Gerlach imaging (see sec. 3.1). By switching certain IGBTs this coil
assembly can also be used in bias configuration powered by a weaker but highly stable
current supply (High Finesse UCS 30/15), which can deliver up to 30 A corresponding
to maximum bias fields of 240 G. The specified current stability is some 10−5, which
essentially sets the fluctuations of the interaction strength 1/kFa when tuning the magnetic
field on top of the Feshbach resonance of the states mF = −9/2,−7/2 at 202.1 G. This
issue will be discussed further in sec. 2.11.4. It should be pointed out that the positive
curvature implies that there is a weak repulsive harmonic potential for negative Zeeman
states at the symmetry center of the coils. If desired, this effect can be compensated by
using the outer coils in combination with the inner ones to create the bias field [63]. They
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have a negative curvature of −0.026 G cm−2 and create a bias field of 2.05 G A−1 as well
as a weak gradient field of 0.24 G cm−1 A−1 if the currents are anti-parallel.

Stray DC magnetic fields that occur naturally in the vicinity of the science cell have to be
compensated at certain stages of the experiment. This is the case, for example, during
dipole trap loading where the magnetic trap center might move while its current is being
ramped down slowly due to the presence of sufficiently strong DC fields. Three large
square coils were used for that purpose in the past, however they turned out to occupy
space that was needed for the new imaging systems as well as for the new tube lattice
breadboard. Therefore, new smaller coil assemblies were devised that could be placed
much closer to the science cell. Along x, a pair of rectangular coils with 23 windings each
was designed and constructed to fit precisely into the openings of the non-metallic mount
of the inner and outer coils, but without sacrificing any optical access (see fig. 2.1). Along
z, two circular coils with 65 windings each were fixed directly on top and on the bottom
of the transport cooling plate avoiding any metal-to-metal contact. The mounting frames
of both the x and z coil assemblies were cut open in order to prevent eddy currents from
being able to run alongside the magnet wire. Along y, a single rectangular coil with 60
windings has to be used as the transport tube prevents the straightforward installation of
a second coil.

Radio-frequency system. Two different antennas are installed in close proximity to the
science cell (see figs. 2.12 and 2.13), covering two distinct frequency ranges. They are
used to excite magnetic dipole transitions in various experimental conditions, such as
during MW/RF evaporation in a magnetic trap or during MW spectroscopy, to give but
two examples. The antenna ’MWA’ consists of a single loop and was impedance-matched
to send out microwave pulses with frequencies on the order of the hyperfine splitting of
40K of 1.285 GHz. The second antenna ’RWA’ has multiple windings and covers part of
the lower radio-frequency range of up to∼ 50 MHz, which is typically used to manipulate
spin populations of a given hyperfine manifold of Potassium at magnetic fields of up to
240 G.

Electronic dipole transitions can only couple states of different parities (i.e. ∆L = ±1),
which means that one cannot couple two neighboring Zeeman levels of a given hyperfine
manifold F or states belonging to the two ground state manifolds F and F + 1 as seen
above in the case of MW evaporation. Apart from more elaborate two-photo transitions,
the most convenient way to couple such pairs or states is to use magnetic dipole transitions,
which obey different selection rules (see sec. 3.3). While lasers need to be used to address
electronic transitions in the optical domain, radio-frequency or microwave radiation
sources are required to drive transitions between neighboring Zeeman- and hyperfine
states.
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Figure 2.13.: Magnetic coil assembly and new optical setups along the vertical direction. Inner
coils: Feshbach bias field (8 G A−1; 0.31 G cm−2) via HighFinesse UCS 30/15 and Stern Gerlach
gradient field (2.5 G cm−1) via Delta Electronica SM45-140, Outer coils: auxiliary bias- (2.05 G A−1;
−0.026 G cm−2) and gradient field (0.24 G cm−1) via two Delta Electronica connected in paral-
lel. Comp Z/X: magnetic compensation/offset fields, MW/RF: antennas for radio-frequency or
microwave pulses. PM: remotely controlled mirror mounts (Newport picomotor).

In our case, three different frequency ranges need to be generated. As detailed above
transitions between the hyperfine ground states of 40K require MW pulses on the order of
the hyperfine splitting of 1.28 GHz. For Lithium-6 the corresponding splitting is lower, so
that the RF knife has to be ramped from 228 MHz to 400 MHz instead. When coupling
between Zeeman states is required, the frequencies typically vary between 5 MHz (e.g. for
the Landau-Zener adiabatic passage at 17.6 G, see sec. 2.11.3) and 50 MHz (e.g. incoherent
spin state equilibration at 230 G) for 40K depending on the value of the magnetic field.

Experimentally, we use two different antennas, one of which is impedance matched for
the MW regime while the other one is optimized for the low MHz frequency range.
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reflections to ground. Circulator, MW amplifier: ZHL-30W-252+, Fast switch: ZASW-2-50DR+,
Signal generators: Stanford Research Systems DS345, Agilent Technologies MXG ATE N5161A,
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The corresponding AC signals are generated by several RF/MW sources, which are
controlled via GBIP as well as high attenuation switches before being sent through high
power amplifiers to the antennas. Additional circulators protect the generators from back
reflections. A schematic overview of the entire RF/MW system is given in fig. 2.14.

2D optical lattice. The tube lattice to study dimensional crossovers is generated by four
far off-resonant Gaussian beams with a wavelength of 1064 nm, which intersect at a full
angle of approximately 28° at the position of the atoms (see fig. 2.13). Each axis carries
a total power of about 8 W and has a waist of 250 µm, corresponding to a single beam
trap depth of 9 µK. The main laser is a 50 W AzurLight MOPA system, which is delivered
via two high power optical fibers (x and y-lattice) to the optical setup installed above
the science cell on a custom breadboard. There, the beams are split and sent downwards
towards the atoms in pairs of two, generating a 2D optical lattice of tube-shaped microtraps
oriented along z (i.e. parallel to gravity). Being one of the main topics of this thesis, the
tube lattice is described in great detail in chapter 6.
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Custom optical potentials and high field re-pumping. Given that the 2D lattice posses
only very little vertical confinement along z, gravity has to be compensated as it would
otherwise drag the atoms downward and remove them from the tubes. As will be detailed
later, the typical means of gravity compensation such as magnetic gradients or curvature
are not applicable in our situation. Therefore, a blue detuned gradient light field with a
wavelength of 532 nm is generated by a digital micromirror device (DMD), which is going
to be installed near the science cell and imaged onto the atoms. The reflectivity pattern of
the DMD is tailored to exactly match and negate gravity while remaining as insensitive as
possible with respect to pointing drifts. The setup is described in sec. 6.2.8 and appendix
B.1. An additional repulsive TEM00-like mode is to be shone in via the same direction
in order to provide harmonic confinement along the vertical direction. This harmonic
potential will be used to extract the momentum distribution via momentum refocusing, as
will be detailed in sec. 5.4 and 6.2.7.
Furthermore, a spatially modulated optical pumping beam will be superimposed with
the two repulsive light fields, the purpose of which is to hide all but one layer of the
tube lattice. This is achieved by optically pumping the atoms into the upper hyperfine
ground state, rendering them invisible during imaging at high magnetic fields of 230 G.
The necessary intensity pattern is created by illuminating first a small rectangular mask
with resonant light at 767 nm, which is then imaged onto the atoms at sufficiently high
resolution. This ensures that the row in the focal plane of the high resolution imaging
system along y does not receive any parasitic pumping photons. Further details regarding
this setup are provided in sec. 6.2.6.

Imaging systems. In order to reconstruct the optical density, three images are needed:
A destructive absorption shot during which the atoms scatter photos while expanding
ballistically; An exposure of only the imaging light that provides the reference to isolate
the atomic density distribution and a third image that records both the noise of the camera
as well as the ambient noise due to stray light. The duration of the imaging pulse is set
to 25 µs with an intensity of I/Is ≈ 0.1.12 A brief summary of the working principles of
absorption imaging is given in appendix C.1.
There are three new and distinct imaging systems with different magnifications and
functions around the science cell. With the exception of y-imaging, they are all equipped
with standard scientific CCD cameras operated in double shutter mode (Pixelfly QE
270XD, quantum efficiency 25 % at 767 nm), the sensitivity of which is sufficient as long
as the signal-to-noise ratio (’SNR’) does not get too low. The latter condition depends
both on the atom number and magnification at hand, and is usually fulfilled until the

12The past pulse duration of 80 µs as well as the overall intensity were found to be too high, causing Doppler-
broadening as well as excessive optical pumping during the imaging. The latter had detrimental effects
on the detectivity of certain spin states, especially at low or transient magnetic fields.



52 Chapter 2. General overview of the experimental apparatus

very end of optical evaporation with typically ∼ 105 atoms and magnifications of ∼ 2− 5.
However, in the case of the lattice the atom number per tube will drop well below 104. In
combination with the fact that a high degree of magnification is required to resolve and
image the lattice structure across multiple pixels with typical sizes of up to ∼ 10 µm, a
highly sensitive camera is used as part of the y-imaging axis (Andor iKon, see ch. 6.2.5 for
details).

Along ODT1 (’x-imaging’). This imaging system with magnification of M = 1 serves
primarily to optimize the loading of the main dipole trap and its evaporation ramp as well
as to measure the trapping frequencies. Since one integrates the atomic density along the
entire length of the single beam dipole trap, the signal-to-noise ratio is quite favorable
for loss measurements (see chapter 4). Moreover, it can be used to inspect the atomic
ensembles as they arrive in the science cell or to optimize the MW evaporation. As the
optical axis of this imaging system is perpendicular to the vertical quantization axis of
the atomic sample, the polarization cannot be tuned to be purely σ+ or σ−. Rather, in our
situation where the incident light field oscillates horizontally the polarization corresponds
to an equal superposition ofσ+ andσ−. As a result, optical pumping into a stretched state
or imaging on a cycling transition along x are only possible at high magnetic fields.

Along gravity (’z-imaging’). While being used also for inspecting the crossed optical dipole
trap, this imaging axis serves, more importantly, to observe Kapitsa-Dirac scattering along
both directions of the tube lattice (see sec. 6.2.3) as well as for optical pumping at low
and high magnetic fields (see sec. 3.1). It has a magnification of M = 4 and is oriented
along the main quantization axis. Because of this, it is the only imaging system with which
optical pumping and imaging on a cycling transition are possible at low magnetic fields.
The polarization can be tuned by rotating a quarter-waveplate in order to be able to work
with positive and negative Zeeman states.

Along transport (’y-imaging’). In order to resolve the tube-like density modulation of
the new optical lattice with a lattice constant of roughly 2.5 µm, this imaging axis has a
resolution of 1.6 µm. It has a total magnification of M ≈ 19 and is therefore equipped
with a highly sensitive CMOS camera to be able to detect the implied weak atomic signals.
Just like in the case of x-imaging, the polarization is linear and perpendicular to the
quantization axis, which necessitates the use of high magnetic fields in order to image on
a quasi-closed transition. More details about this imaging setup are given in sec. 6.2.4.
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2.11.2. Optical dipole traps and evaporation in the positive states

Following MW evaporation in the quadrupole trap (sec. 2.10), the atoms are loaded into
a single beam optical dipole trap. The use of optical potentials in the absence of strong
magnetic gradient fields makes it possible to use Feshbach resonances and gets rid of
Majorana spin flips, which would otherwise tend to be enhanced at low temperatures and
high phase space densities. Since the coupling of neutral atoms to off-resonant light fields
is a crucial prerequisite for the experimental techniques described in chapter 6, some of
the most crucial features will be summarized in the following.

Alkali atoms in far off-resonant optical potentials

An off-resonant AC electric field induces an oscillating electric dipole moment in neutral
atoms. The strength of this coupling is determined by the complex polarizability tensor of
the atom (valence electron), which depends on their internal level structure as well as on
the light polarization and its frequency. In the case where the fine-structure is resolved
but all state- and polarization-dependencies can be neglected13, the dipole potential for
any Alkali hyperfine ground state |F, mF〉 is fixed by the scalar polarizability originating
from the virtual coupling to the D-line doublet 22S1/2 → 22P1/2, 22P3/2 [68],

U(r) =
πc2Γnat

2ω3
D1

(
1

∆D1
+

2
∆D2

)
IL(r) (2.3)

Here, Γnat is the natural line-width of the D1-line andωD1 denotes its angular transition
frequency. ∆D1/2 is the angular detuning of the driving light field from the particular
resonance. The summands appearing in the above expression reflect the contributions
from the D1- and D2-line, weighed with respect to the former. The counter-rotating
terms have been dropped within the rotating wave approximation. The corresponding
off-resonant scattering rate is given by:
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The equations (2.4) and (2.3) exhibit two properties which are crucial for optical trapping
of neutral atoms: First, the sign of the detuning defines the position of the potential
minima. If the light field frequency is red detuned with respect to the atomic resonances,
the potential is negative and, consequently, atoms are attracted to the points of maximum
intensity. This is the physical operation principle of focused beam traps (’dipole traps’) in
which atoms are pulled toward the beam’s waist. In the case where the light is tuned above

13This is equivalent to either choosing linear polarization or a semi-large detuning with respect to the
fine-structure splitting.
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the D-lines (blue detuning) the potential has a positive sign. As a result atoms are pushed
away from regions of high optical power. Such anti-confinement can be used for example
to plug magnetic traps or to compensate gravity optically (see sec. 6.2.8) as well as to
create tight harmonic confinement (see 6.2.7). The second important property regards the
scaling with intensity and detuning. While the dipole potential grows monotonically with
IL/∆L, the off-resonant scattering rate scales as IL/∆

2
L.14 This is a major design parameter

for optical traps since a combination of large detuning and high optical intensity enables
one to keep the scattering rates as low as possible for a given potential depth.
In practice, one typically creates dipole traps by using red-detuned Gaussian TEM00

beams, which are focused down to an appropriate spot sizeω0. The intensity field IL can
be described by the basic expression

IL(r) =
2Ptot

πω(z)2 exp
(
− 2r2

w(z)2

)
, (2.5)

which is only valid after the focusing lens. Ptot denotes the total optical power contained

within the mode,ω(z) = ω0

√
1 + (z/zR)

2 gives the evolution of the waistω0 along the
axis of propagation z and zR = πω2

0/λ represents the Rayleigh length of the beam. The
optical system used to generate the two dipole traps of the experiment has already been
detailed in 2.11.1. In the vicinity of the waist where z� zR and r2 = x2 + y2 � ω2

0 hold,
the potential can be approximated to be harmonic as per
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where U0 = U(r = 0) is the trap depth. The transverse and axial trapping frequencies

are given byωx,y = ω⊥ =
√

4U0/mω2
0 andωz = ω‖ =

√
2U0/mz2

R, respectively. At full
powers of 6 W and 3 W at the position of the atoms, the two dipole traps have maximum
trap depths of U0 = 290 µK and 16 µK, respectively. The corresponding transverse and
axial trapping frequencies of the main dipole trap are given by ω⊥ = 2π × 2 kHz and
ω‖ = 2π × 12 Hz. Correspondingly, the transverse trapping frequencies of the crossed
dipole trap amounts to 2π × 155 Hz. The experimental techniques to calibrate these
frequencies are described in greater detail in appendix C.2.

New high power laser system

High optical intensities are required to obtain reasonable trap depths of > 0.1 mK when
working at very large detunings of hundreds of nm from resonance. Moreover, while the
optical power at the position of the atoms can be stabilized using a fast servo loop, the
laser source itself should display as little intensity noise as possible as certain frequency

14∆L is meant to represent some average detuning.
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components exceeding the PID bandwidth can cause parametric heating of the atoms [88].
While the linewidth of a far-off-resonance trap usually does not matter in terms of trap
depth or parasitic photon scattering rate, it does come into play when generating a crossed
trap using two beams originating from the same laser. If the laser is very broad with e.g. a
linewidth of ∼ 1 nm, one risks to excite molecular photo-association lines when crossing
the beams on the atoms, which can only be prevented by polarizing with extremely high
extinction ratios [89].

To avoid these problems, we use a Mephisto Innolight MOPA laser as main laser source,
which offers relatively high powers of up to 25 W15 at a specified linewidth of 100 kHz
and low relative intensity noise (RIN) of less than −130 dB Hz−1 according to specs. A
schematic overview of the optical system is depicted in fig. 2.15. After some initial mode
shaping, the laser output is split and passed through high power AOMs that also act
as a fast switches and the means to stabilize and ramp the optical intensity through via
their RF power. The beams corresponding to the sODT and cODT, respectively, are then
coupled into single mode photonic crystal fibers. The fibers are outfitted with copper
heat sinks on either side to relieve some of the thermal stress arising from the absorption
of uncoupled parts of the incident optical power. Angled SMA connectors are used on
both sides to reduce potential back reflections that could harm the amplification stages of
the laser and the fiber is protected by a stainless steel sleeve preventing damage due to
mechanical stress. The setup is contained within a cast aluminum enclosure to reduce the
amount of fluctuations in the air, which would otherwise compromise the stability of the
fiber coupling despite the active stabilization.

The beam path after of the dipole trap after the fiber was already described in sec. 2.11.1.
After polarization cleaning, a fast biased photodiodes is placed behind the ensuing mirror
to pick up the weak transmitted portion of the light. Its voltage output is fed into commer-

15Unfortunately, the power has since then degraded to 16 W, an effect that was also observed in a spare laser
of the same age that remained essentially unused.
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cial PID regulators (Stanford Research Systems SIM960) with a bandwidth of 100 kHz. The
desired setpoint is given by an analog channel of the NI control system (see sec. 2.4) and
the active intensity control is achieved by providing feedback to the analog modulation
input of the AOM’s RF driver. The complete servo loop is depicted in fig. 2.16a. Given
that the light intensity has to be varied over only four decades, one linear photo diode is
in principle sufficient in terms of dynamic range. However, due to resolution restrictions
of the analog card providing the setpoint of the PID, intensity sweeps become noticeably
discrete at optical powers below ∼ 100 mW. This is detrimental to the efficiency of the
final evaporation ramp in the crossed optical dipole trap, which is the crucial step to
reach the deeply quantum degenerate regime. To circumvent this problem, the intensity
regulation is handed over to a second servo loop well before reaching the resolution limit,
i.e. when the first photodiode reaches voltages around 1 V. This additional stabilization
circuit has its own photodiode and analog channel providing the setpoint (see fig. 2.12),
which are optimized to cover only the regime of low optical intensities. The alternation
between the two PID controllers is handled by an analog IC switch. As is described in
appendix B.3, much larger ranges of optical powers can also be controlled via a single
PID by making use of a logarithmic amplifier placed after the photodiode. However, this
approach comes at the expense of increased electronic noise and was therefore avoided in
the case of the main dipole traps.

Dipole trap loading

As the atoms arrive in the science cell to undergo MW evaporation, they are much too
hot to notice the presence of the optical potential. As they cool down, the dipole trap
beings to act like a dimple inside of the magnetic trap, which must not coincide with
the magnetic zero as it would otherwise strongly enhance Majorana losses. The atoms
are subject to the total potential given by Utot = Umag(r) + Uodt(r) + Ugrav(z), where
Ugrav = mgz is the gravitational sag, Umag denotes the quadrupole potential as defined
in 2.1 and Uodt represents the optical potential created by a Gaussian beam. In order to
transfer the cold atomic sample from the magnetic trap to the dipole trap, we slowly ramp
down over the course of 0.8 s the magnetic gradient from 250 G cm−1 to 5.1 G cm−1, the
latter value being just below the levitation threshold with respect to gravity. This way, the
atoms drift gradually towards the dipole trap as the magnetic confinement weakens, the
former being located at an experimentally optimized distance of about dz = 80 µm ' 2ω0

below the magnetic center. During this ramp, additional magnetic bias fields are used to
compensate permanent DC fields which are present in the vicinity of the science cell. If
left in place, these stray fields would cause the magnetic quadrupole trap to move as soon
as its gradient reaches sufficiently low values. After recapture by the ODT and a short
settling time of 50 ms, we typically obtain 40K samples with 9× 106 to 2× 107 atoms at
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Figure 2.16.: Evaporation in the optical dipole trap. a) Schematic illustration of the dual-PID
servo loop. b) LogLog plot of the phase space density versus atom number at certain stages during
the evaporation ramp. Numerical data adapted from [61].

temperatures of 30 µK. The overall transfer efficiency is typically around 25 %.

The optimization of this transfer relies on a good ’mode matching’ between the two trap
volumes. This is a function of the PSD of the quadrupole trap, which is set by initial
conditions after magnetic transport as well as by the final cut of the MW evaporation, and
the trap volume of the dipole trap. The latter is essentially given by the waist and the
optical intensity, both of which are chosen to optimize loading efficiency. More details
regarding this optimization can be found in [61]. The final trap geometry is a hybrid
configuration between the remaining magnetic restoring forces and the optical potential.
Along the ODT’s transverse direction the magnetic gradient field serves mainly to com-
pensate gravity, while along its axial direction it provides additional confinement with
an angular trapping frequency ofωm,ax '

√
µb/4mdz. This confinement complements

the weak longitudinal trapping power of a single Gaussian beam trap and thus increases
the collision rate along this direction, which is of importance for the ensuing optical
evaporation.

Optical evaporation in the positive states

At the time of loading, the atoms occupy the three positive spin states mF = +9/2,
+7/2 and +5/2, which have singlet and triplet scattering lengths of 104a0 and 170a0,
respectively [90]. In order to further increase the atoms’ PSD we accelerate the evaporation
of the trapped atoms by ramping down exponentially the optical power of the dipole
trap from its loading set point of 6 W to 93 mW over the course of 4 s. Additional axial
confinement is provided by the weak magnetic gradient field as mentioned above, the
strength of which is increased from 5.1 G cm−1 to 6.15 G cm−1 over the course of the
evaporation ramp as it was found to slightly increase the final PSD. The ambient magnetic
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bias field is set to 3 G, which is sufficient to conserve the polarization of the gas and avoids
harmful Feshbach resonances of 40K between B = 7 G and 12 G as well as increasing
inelastic losses occurring as of 15 G (see chapter 4). During the evaporation step the
initially loaded atom numbers of between 9× 106 and 2× 107 drop to low 106 with the
temperature decreasing from 30 µK to 1 µK. Among other factors, the final temperature
largely depends on the chosen final trap depth of the ODT. In good conditions, one can
reach temperatures as low as 300 nK. The efficiency of the evaporation process can be
extracted from the log-plot of the PSD against the atom number and assumes a rather
high value with α = −3.67 ± 0.07. As the temperature of the atoms is already well
below 100 µK at the time of loading, the remaining elastic p-wave collisions quickly cease
to play a role as the gas cools down further [59]. The remaining s-wave interactions
between |mF = 9/2〉 and |mF = 7/2〉 can maintain efficient evaporative cooling until
about T ∼ 0.7 µK, which is when the gas stops cooling efficiently as a result of marginal
collision rates. At this point, one is left with about ∼ 106 atoms at T/TF ∼ 2.5. The
Fermi-temperature in a harmonic trap is given by TF = EF/kB = (6Nσ )1/3h̄ω̄ with
ω̄ = (ω2

⊥ω‖)
1/3. Using Stern-Gerlach imaging (see sec. 3.1), the cloud’s spin composition

at this stage is found to be 55 % |mF = 9/2〉, 33 % |mF = 7/2〉 and 12 % |mF = 5/2〉.

In order to bring the sample to quantum degeneracy, we first increase the density before
evaporating further by ramping up the crossed optical dipole trap ODT2 once the gas
reaches a temperature of roughly 4 µK (see sec. 2.11.4). Moreover, the atoms are transfered
into the lowest energy Zeeman states to increase the collisional stability of the mixture16

and in order to be able to take advantage of the Feshbach resonance at 202 G.

2.11.3. Landau-Zener adiabatic passage to the negative states

After removing the magnetic gradient as well as the compensation bias fields, we rapidly
increase the strength of the homogeneous z-bias field defining the quantization axis from
3 G to 60.5 G, allowing for sufficient time for the power supply to stabilize after the ramp.
The atoms are then subjected to a radio-frequency sweep over the course of 20 ms, which
is emitted by an antenna in the vicinity of the science cell driven by the RF system already
described in sec. 2.11.1.17 By ramping the frequency slowly in a linear fashion from
22 MHz to 16 MHz the populations of |mF = +9/2〉 and |mF = +7/2〉 are transfered to
their negative counter parts |mF = −9/2〉 and |mF = −7/2〉, as is shown in fig. 2.17a.
Further details regarding this so-called Landau-Zener adiabatic passage and the involved

16Spin-changing collisions are endothermic between the lowest two negative Zeeman states. At low tem-
peratures one is thus energetically protected against such inelastic processes due to the sheer absence of
kinetic energy.

17The antenna’s symmetry axis is perpendicular with respect to the quantization axis. The emitted radiation
therefore consists mostly of a superposition of σ+ and σ− polarization as well as of some π polarization
as the antenna is not perfectly planar.
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Figure 2.17.: Landau-Zener adiabatic passage to the negative states. a) Top: schematic illustra-
tion of the successive independent radio-frequency sweeps moving the atomic population down
the ladder of Zeeman levels. Bottom: overlay of three absorption images of spatially separated
spin populations using SG imaging (see 3.1). Data adapted from [60]. b) Eigenenergies of the
RF-dressed states in F = 9/2. For this calculation, the magnetic bias field was set to B = 19 G with
a realistic Rabi frequency of Ω0 = 2π × 1 kHz. For these parameters, there are avoided crossings
(not visible here) for mF = 9/2, 7/2, but not for mF = 5/2, which is why its population is not
transfered to the negative counterpart in a).

transitions are given in secs. 3.3.1 and 3.3.2. Due to the presence of several avoided
crossings in the dressed eigenenergies, the transfer for these two pairs of states can be
greater than 90 %. However, the situation is different for mF = +5/2 which does have
crossings that prevent an efficient transfer. The eigenenergies for a magnetic field of 19 G
are plotted in fig. 2.17b.
Incoherent mixtures of two neighboring Zeeman states can be prepared in a similar fashion.
While performing a Landau-Zener sweep, the phase angle changes continuously so that
the dressed eigenstates sample through all kinds of superpositions. In order to produce
a balanced mixture of two states, we interrupt the sweep at the exact time when the
populations happen to be equal. The timing naturally depends on the initial conditions
and must be optimized experimentally. However, after this incomplete ramp the spin state
of a given atom will be in a coherent superposition of the two Zeeman states. Decoherence
can be introduced by subjecting these atoms to a magnetic gradient field, which will cause
the unitary time evolution of the two contributing states to occur at different frequencies
because of their unequal magnetic moments. In addition, the spatial trajectories in the
gradient field will dephase as well. Experimentally, we perform the 50:50 mixing of ±9/2
and ±7/2 at the same bias field of 60.5 G, where the energy splittings between the various
Zeeman levels are sufficiently distinct to prevent accidental population of mF = ±5/2.
The duration of the sweep amounts to 1 ms and the ensuing dephasing time of 1 s is
chosen to be noticeably longer than the slowest timescale of the single particle orbits.
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2.11.4. New crossed optical dipole trap and evaporation to degeneracy

The crossed optical dipole trap is superimposed symmetrically with the main dipole trap
under an angle of about 140°, as was previously shown in fig. 2.12. It has a comparatively
large waist of 110 µm with optical powers of up to 3 W at the position of the atoms, which
corresponds to a maximum trap depth of 16 µK. In order to avoid cross-interference
the polarization of the cODT is chosen to be orthogonal with respect to the first one. In
addition, the frequency is shifted by 160 MHz so that any remaining beat node in the
crossing region will oscillate much faster than the atomic timescales and thus average
out. The new trapping frequencies of the incoherently superimposed traps UcODT(r) =
UODT1(r) + UODT2(r) in terms of the orthonormal system {x, y, z} are then given by

ω2
x =

(
ω2
⊥,1 +ω

2
⊥,2

)
sin2α +

(
ω2
‖,1 +ω

2
‖,2
)

cos2α,

ω2
y =

(
ω2
⊥,1 +ω

2
⊥,2

)
cos2α +

(
ω2
‖,1 +ω

2
‖,2
)

sin2α,

ω2
z = ω2

z,1 +ω
2
z,2,

whereα = (π − 140°)/2 = 20° is the angle between ODT1/ODT2 and the x-axis. These
frequencies must be known very precisely in order to correctly calculate atomic densi-
ties, both in the classical and the quantum degenerate limit (see below). They can be
characterized experimentally by exciting breathing modes or center-of-mass oscillations,
the timescale of which is set by the underlying trapping frequencies. Another method is
to modulate the potential depth to drive parametric excitations between the vibrational
states of the trap. All of these methods are covered in detail in appendix C.2.

After preparing a balanced mixture of the negative spin states |−9/2〉 and |−7/2〉18 at
60.5 G, the magnetic bias field is ramped within 100 ms to 239 G. This field corresponds
to a background s-wave scattering length of +137a0 (see fig.2.18a) on the attractive side
of the Feshbach resonance located at 202.1 G. At this point, the sample is contained in
a partially loaded crossed dipole trap and consists of 1× 106 atoms per spin state at a
temperature of roughly 4 µK.

In order to cool down further, the magnetic field is ramped to 205.9 G, increasing the
scattering length to −183a0. The sample is then evaporated for 10 s by ramping down
exponentially the intensity of both dipole traps. After this step, only the harmonic center
of the crossed ODT remains densely populated as the wings have evaporated. The
sample now contains typically 2× 105 atoms per spin state at a temperature of around
300 nK, corresponding to a degeneracy parameter of T/TF,harm ' 0.35. The experimental
optimization of the magnetic field for this evaporation ramp is shown in fig.2.18b.

18Note that these are not good quantum numbers at high magnetic fields. They are used here as labels only
with the actual states adiabatically connecting to |−9/2〉 and |−7/2〉 as B→ 0.
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a) Feshbach resonances in the negative spin
states as in tab.2.1. Working points on the
s-wave resonance: 1) ’Background’ 239 G,
a1 = 137a0 (background). 2) Zero-crossing
209.9 G (imaging). 3) 205.9 G, a3 = −183a0

(evap. 1). 4) 203.2 G, a4 = −1060a0 (evap.
2). b) Outcome of evap. ramp 1 at different
magnetic fields. Red: harmonic T/TF (2D
shape-fit, see [34]) of −9/2, blue: density in
arbitr. units. c) Shape-based Fermi fit to the
azimuthally averaged density distribution of
the deg. gas after evap. ramp 2 and TOF from
a harmonic trapping potential (see [126]).

To reach the deeply quantum degenerate regime, the scattering length is increased to
−1060a0 by ramping the magnetic field to 203.2 G. After another stage of forced evapora-
tion for 1 s, we obtain samples of about 2× 104 atoms per spin state at a temperature of
T/TF,harm = 0.103(14) (2D Fermi fit). The corresponding absorption picture and the 1D
Fermi fit to the azimuthally averaged density distribution are shown in fig. 2.18c.

In the quantum degenerate limit, the integrated column density can no longer be described
by a Gaussian distribution since the classical Boltzmann statistics of the thermal limit are
replaced by Fermi-Dirac statistics. As a result, a polylogarithmic function has to be used
for thermometry of a (non-interacting) degenerate Fermi gas. The degeneracy parameters
T/TF,harm indicated earlier are obtained by using a 2D Fermi fit containing the shape
parameter q [34],

T
TF

= [−6 Li3(−eq)]−1/3 . (2.7)

This relation is valid for harmonic trapping potentials and depends only on the logarithm
of the fugacity, q = µβ, which in turn determines the shape of the cloud. Note that this
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Table 2.1.: Common s- and p-wave Feshbach resonances in the negative ground states of 40K .

mF,1, mF,2 MT Partial wave B0 [G] ∆BL [G] Ref.

−9/2,−7/2 −8 s 202.10(7) 7.5(1),7.80(6) [92, 126]
−9/2,−5/2 −7 s 224.21(5) 9.7(6),7.6(1) [91, 92]
−7/2,−5/2 −6 s 174 7 [91]
−7/2,−5/2 −6 s 228.8(4) 2.4(3) [91]
−7/2,−7/2 −7 p 198.8 [93]

approach does not require the explicit knowledge of the underlying trapping frequencies
and can thus be used to conveniently extract T/TF,harm from a single shot. More detailed
descriptions of the analysis of density profiles of degenerate Fermi gases are given in
appendix C.1 as well as in [34, 63, 126].
Strongly interacting Fermi gases of 40K are realized by tuning the scattering length on top
of the s-wave Feshbach resonance and controlling the spin imbalance by means of RF trans-
fers. Unfortunately, a p-wave resonance between the states |9/2,−7/2〉 and |9/2,−7/2〉
is located at 199 G, just below the center of the s-wave resonance. Consequently, one
cannot safely approach the latter from the repulsive side due to the potential onset of
inelastic losses, which also depend on temperature. For RF spectroscopy (see sec. 5.3) we
use |9/2,−5/2〉 as weakly interacting target state. Therefore, the additional resonances at
224.21 G and 228.7 G (see tab.2.1) have to be avoided to prevent this state from coupling
strongly to the two lower lying Zeeman levels. A detailed survey of the known Feshbach
resonances between all of the spin states of 40K can be found in appendix C.5.
The s-wave resonance has the positive property of being comparatively narrow while still
being entrance-channel-dominated. When working with the strongly interacting gases,
the interactions between |9/2,−9/2〉 and |9/2,−7/2〉 need to be switched off rapidly
when they are released from the trap for free time-of-flight. This is necessary due to
the fact that interactions may render the expansion non-ballistic, thereby altering the
observed momentum distribution which then no longer reflects the one originally present
in the trap. This problem be circumvented by quickly ramping the magnetic field to the
zero-crossing of the scattering length at 209.9 G. The speed at which this ramp can be
performed depends on the power supply’s capacity as well as on the response of the coil
in terms of G A−1. If ramps in excess of 100 G were required, as would be the case for 6Li ,
the procedure could take several ms during which the atoms would continue to scatter.
In the case of 40K , owing to the small width of the resonance one needs to change the
magnetic field by only 7.8 G to reach the zero-crossing. With the response of the inner
coils of 8.05 G A−1 (see sec. 2.11.1), this corresponds to a change in current of only 970 mA
(3.86 %) when working at unitarity. Such a ramp can be executed well below 1 ms.
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In the preceding sec. 2.11.3 we have described how the ground state spin populations of an
atomic ensemble can be precisely controlled by means of radio-frequency transfers. This
makes it possible to prepare balanced or imbalanced Fermi gases (see sec. 5) and provides
access to different Feshbach resonances, which occur between different Zeeman states. In
order to reliably calibrate these preparation methods, the respestive populations can be
probed in conjunction with absorption imaging. Apart from diagnostics, this furthermore
represents a crucial prerequisite in order to investigate spin-changing physics, as will be
the case for the study of a new Feshbach resonance presented in chapter 4.

Spin selective detection for 40K is typically implemented at high magnetic fields greater
than 200 G, near the canonical s-wave Feshbach resonance at 202 G for the lowest-lying
negative spin states. At these fields the energy splittings between the Zeeman levels
become much larger than the natural linewidth, so that optical imaging can become
resonant with one state at a time (see sec. 6.2.5). However, for the analysis of collisional
phenomena at magnetic fields of up to 20 G, the necessity to increase the field by a factor
of ten for the mere purpose of spin selective detection is not recommended since it cannot
be done faster than a few hundred ms. During this time, the atoms might be subjected
to additional spin dependent physics occurring as the ramping process forcibly scans
over many values of the magnetic bias field1. Such unpredictable effects could alter the
initial spin state composition that was to be probed and obscure the actual experimental

1For example due to additional scattering resonances along the way.
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signatures. To circumvent this problem, we probe the spin composition using Stern-
Gerlach pulses in conjunction with optical pumping prior to absorption imaging. This
method works well only at low temperatures around 1 µK. At higher sample temperatures
of above 5 µK, Stern-Gerlach separation looses its ’resolving power’ due to experimental
and technical constraints. In this case we infer the spin populations from calibrated
microwave spectra, as will be detailed in sec. 3.3.

3.1. Stern-Gerlach imaging

By subjecting the atoms to a steep magnetic field gradient at the moment they are released
from the optical trap, one can impart onto them a spin-dependent acceleration by virtue
of the magnetic dipole interaction. The achievable velocities depend on the magnetic
moments µk of the involved states, which in turn vary with the transient value of the
magnetic field B(r0, t) with r0 denoting the CoM position of the cloud. As the atoms begin
to move they sample different regions of the (transient) magnetic field, which in turn
changes the magnitude of their magnetic moments and hence the amount of speed they
pick up. Since the cloud diameter is usually small with respect to the typical gradients
created by large coils, one can neglect the differential acceleration across the sample and
treat only the center-of-mass movement. The latter assumption is only valid if the magnetic
field pulse is short with respect to the initial rate of expansion of the cloud. More energetic
samples of atoms will expand faster, eventually causing the Stern-Gerlach spectrum to
become unresolved because the maximum level of technically achievable acceleration
is reached (especially since the pulse duration must be decreased as well). In order to
determine in a quantitative fashion for which temperature range the Stern-Gerlach method
is expected to work for 40K , one has to consider the species-specific kinematics at hand.
The total acceleration due to the magnetic gradient field as well as the gravitational force
is given by,

ak(r, t) = −g− 1
m
∇µk(r, t)B(r, t) , µk(r, t) =

∂Ek

∂B

∣∣∣∣
B=B(r,t)

(3.1)

The magnetic moment is obtained as derivative of the eigenenergy Ek(B) of the Zeeman
state |mF = k〉 with respect to the magnetic field (see appendix C.4 for details). The
distance covered by each spin state is formally obtained by integration, yielding the
indirect expression,

zk(τ) = −
g
2
τ2 − 1

m

τ∫

0

dt′
t′∫

0

dt′′
[

∂

∂z
µk(r, t)Bz(r, t)

]

r=rk(t′′),t=t′′
(3.2)
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still containing the single-particle trajectories on the right-hand-side. The time τ denotes
the duration of the entire ramp until the absorption image is taken, i.e. τ = τpulse + τflight.
The differential equation underlying eqn. (3.2) can be solved numerically for each spin
state provided that the magnetic field is known as function of space and time. The varying
levels of acceleration, given a sufficiently long time of free ballistic flight τflight after the
magnetic field pulse, are going to cause the different spin states to separate spatially with
final spacings of ∆zkl(τ) = zk − zl. The lowest temperature under consideration for the
analysis of the Feshbach resonance is T ∼ 3 µK, so that the ballistic increase of the cloud
size σ given by eqn. (C.8) can be detected reliably up to only 10 ms after release from
the dipole trap. At that point the cloud becomes too dilute due to its increased size so
that the SNR crosses the detection threshold of the imaging system. Consequently, the
total duration of the Stern-Gerlach separation must already be kept much shorter than the
detection threshold and, in addition, one must ensure that ∆zkl(τ) > σ(τ) holds after the
free flight to be able to resolve the spin states. In order to quantify the degree of spatial
separation between the states, one has to normalize the corresponding spacings with
respect to the cloud diameters 2σ . Therefore, we are interested in the quantity:

∆z̃kl(τ) =
∆zkl(τ)

2σ(τ ;ω, T)
where σ(t;ω, T) =

√
σ2

0 (ω, T) +
kBT
m

t2. (3.3)

withσ0(ω, T) = (kBT/mω2)1/2 denoting the in-situ cloud size in the trap at the moment of
release. A numerical simulation tailored to our experimental situation and coil parameters
is given in fig. 3.1. Because of the high temperatures at hand, the atoms will expand
quickly after their release from the dipole trap. In order to clearly separate the spin
components, strong magnetic gradients are thus required for a short period of time of
∼ 1− 2 ms which, by extension, imply large magnetic fields. A secondary consequence
arising from the latter is that the atoms are no longer in the linear weak field regime during
the acceleration phase. As a result, the magnetic moments of the non-stretched states vary
significantly as the magnetic field builds up and decays, as is shown in fig. 3.1a. Due to
the nature of 40K , the moments of the non-stretched positive states decrease and increase
during the pulse, with some of them approaching zero. While this limits the amount
of acceleration felt by the atoms and gives rise to non-trivial velocity trajectories, the
magnetic field can only be reduced within certain limits to compensate this effect because
the stretched state already sets a minimum gradient necessary to separate it from the
other ones. Given this compromise, the resulting travel distance and velocities of the three
highest lying positive spin states are depicted in fig. 3.1b and the normalized spacings for
three temperatures (and corresponding trapping frequencies) as per (3.3) are given in 3.1c.
The asymmetric splittings arise from the nonlinear coupling to the magnetic field and
reproduce well the experimentally observed SG spectrum shown in fig. 3.2c. Comparing



68 Chapter 3. Spin selective detection at low magnetic fields and high temperatures

7/2
5/2
3/2
9/2

-1 0 1 2 3 4

-1.5

-1.

-0.5

0.

0.5

Time t [ms]

M
ag

n
.m

o
m
e
n
t
μ
k
[M

H
z/
G
]

a)
9/2
7/2
5/2
3/2

0 1 2 3

0.

0.05

0.1

0.15

-0.1

-0.05

Time t [ms]

z
k
(t
)
[m

m
],
v
k
(t
)
[m

m
/m

s]

b)
9/2-7/2
7/2-5/2
5/2-3/2

0 2 4 6

0.

0.3

0.6

0.9

1.2

1.5

Time t [ms]

Sp
ac
in
g
Δ
z k

l/2
σ

c)

Figure 3.1.: Simulation of the temperature dependent resolving power of the Stern-Gerlach
method for the positive Zeeman states. The magnetic field along the quantization axis is modeled
as Bz(z, t) = (b0 + b1z)I(t) with realistic parameters b0 = 4 G A−1 and b1 = 1.25 G A−1 cm−1.
The current ramp I(t) is defined piecewise to resemble the actual experimental situation with a
linear rise to 60 A over the pulse duration of 2 ms, corresponding peak magnetic fields of around
240 G, after which an exponential decay with a half time of 0.5 ms ensues. a) Magnetic moment of
the four spin states mF = +9/2, ...,+3/2 as function of time as per µk = µk[B(rk(t), t)]. b) Travel
distance zk(t) (blue) and velocity vk(t) (red) of spin state k. c) Spacing between the three pairs of
adjacent spin states in units of the cloud diameter at time t for different experimental conditions.
Blue: T1 = 3.2 µK,ω1 = 2π × 475 Hz; Red: T2 = 6.2 µK,ω2 = 2π × 672 Hz; Black: T3 = 32 µK,
ω3 = 2π × 1.5 kHz.

the numerical results plotted for the three temperatures of 3 µK, 6 µK and 30 µK implies
that the Stern-Gerlach method will cease to work (in our specific case) for temperatures
above 10 µK. As will be detailed later, some parts of the analysis of the Feshbach resonance
require spin selective detection at temperatures of up to 30 µK, motivating the methods
presented in sec. 3.3. While limited in temperature range, the Stern-Gerlach method
nevertheless has the advantage of probing all relevant spin populations at the same time.
This can be helpful in order to circumvent the impact of fluctuations of the total atom
number from shot to shot since the experiment is quite stable with respect to the relative
spin populations due to the magnetic transport acting as a highly reliable filter.

On the experimental side, in order to create the strong magnetic fields necessary without
long delays2, we precharge the capacitors of a strong power supply connected to one of
the inner quadrupole coils (see sec. 2.11.1 for details), and close the corresponding IGBT
just after switching off the optical trap3. This way, peak currents of around 100 A can be

2Typical current supplies will take at least a few milliseconds to establish high currents of up to 50 A.
3Alternatively, using two coils in anti-Helmholtz configuration would double the gradient, they also create a

magnetic zero that was found to be able to interfere with the atoms. This was caused by the high currents
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reached within 2 ms, corresponding to transient magnetic gradient fields of up to 400 G
with 125 G cm−1 at the position of the atoms. After the pulse, the IGBT is opened and the
accelerated atoms fly against gravity, achieving detectable levels of separation after 3 ms
for T ∼ 3 µK as given by our imaging system’s magnification of M = 1. The maximum
flight time tied to the temperature of the atoms is found to be roughly 10 ms in practice.
The best compromise regarding the specifics of the field ramp to resolve all of the relevant
spin states was found to correspond to a peak current of 60 A with a pulse duration of
2 ms.
Due to the high currents involved, strong persistent Foucault currents are induced in
the surrounding metallic parts that decay only after 12 ms, which may be longer than
the typical timescales of the preceding SG procedure depending on the temperature of
the sample being probed. As a consequence, there may be stray magnetic fields present
during absorption imaging which can alter the imaging resonance frequencies by up to
20 MHz and, more importantly, the (relative) detectivities of the various spin states, most
notably the ones of 5/2 and 3/2. In order to accurately detect the relative spin populations
their detectivity has to be equalized, which can be done by means of optical pumping into
the stretched Zeeman state mF = ±9/2 prior to imaging.

3.2. Optical repumping during time-of-flight

To obtain a calibrated Stern-Gerlach spectrum yielding reliable atom numbers, all clouds
corresponding to different spin states must be imaged on closed transitions to avoid
population transfer to other states. As is detailed in appendix C.1 this problem can be
reduced, but not circumvented entirely, by reducing the atoms’ exposure time to the
lowest possible value before SNR issues come into play. In order to ensure that imaging
of the different spin components occurs on cycling transitions, one has to first optically
pump them into the stretched states mF = ±9/2 by shining in σ± polarized light along
the quantization axis. The pumping scheme for the positive states is shown in fig. 3.2a.
This transfer must be performed after the SG separation has occurred and in the absence
of trapping forces in order to preclude parasitic heating and light-assisted collisions.
The optimization of the experimental parameters of the repumping step prior to imaging
needs to be done in conjunction with Stern-Gerlach separation to clearly determine the
ideal parameters. Since the z-axis is collinear with the direction of motion during SG
probing, it cannot be used to image the atoms afterwards. The x-axis, however, cannot
provide pure σ± polarization as it is orthogonal to the quantization axis. The resulting
imaging dynamics after pumping into the stretched state are depicted in fig. 3.2b. While
some parasitic population transfer is then still to be expected during imaging, it will

involved, which, in combination with the long flight times, made it difficult to displace the zero by means
of additional offset fields.



70 Chapter 3. Spin selective detection at low magnetic fields and high temperatures

Repumping
B = 3G

...

...

...

...

No OP 10μs OP

+9/2

+7/2

+5/2
+3/2...

z

yx

5/27/29/2

7/2
11/2 9/2

Imaging
B = 1G σ+ σ-

σ+σ+
σ+

42S1/2

42P3/2

5/27/29/2

7/2
11/2 9/2

42S1/2

42P3/2

a)

b)

c)

Figure 3.2.: Optical pumping and imaging transitions at low magnetic fields. Left: Repumping
transitions into the stretched state for the positive Zeeman spates prior to absorption imaging,
usually performed at B = 3 G due to technical compatibility with MW spectroscopy (see sec. 3.3).
Right: Imaging along the x-axis with horizontal polarization with respect to the quantization
axis. The ambient magnetic field is usually set to B = 1 G to avoid depolarization. Note that the
magnetic fields given here do refer to the situation in which no Foucault currents are present near
the science cell.
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Figure 3.3.: Experimental signatures of the optical repumping as seen after Stern-Gerlach sepa-
ration. a) Scan of the repumping frequency at a fixed imaging frequency in the ensuing absorption
imaging. b) Imaging frequency curves of the three spin states with (orange) and without (blue)
repumping. Data points were omitted for clarity. The solid lines are fits to the data using pseudo-
Voigt profiles of the form f L(ν) + (1− f )G(ν) to account for the asymmetric lineshape caused by
Doppler-broadening due to elevated imaging light intensities [94]. L and G refer to Lorentzian and
Gaussian profiles, respectively, with 0 ≤ f ≤ 1 denoting the relative weight. Both scans shown in
a) and b) were taken shortly after the SG pulse plus flight time, implying the presence of transient
magnetic fields. They are the reason for the slight offset of the resonance position of 5/2 in a).
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nevertheless be the same for all spin states after optical pumping so that relative popula-
tions will still be detected correctly. Despite this unavoidable shortcoming one is still in
a position to directly observe the effect of tuning the light frequency, polarization (angle
of λ/4 waveplate) as well as the pulse duration by monitoring the relative increase of
spin state detectivity. The corresponding experimental optimization for the positive states
is shown in fig. 3.3a. The resonance positions of the pump frequency is slightly shifted
between the spin states because some transient magnetic fields due to Eddy currents still
remain. Otherwise, the pump frequencies would all be equal to the imaging resonance
frequency at zero field. The visible effect of the repumping on the appearance of the SG
spectrum is also shown in fig. 3.2c. Another means to observe the effect of OP is during
the imaging step. Due to the remaining magnetic fields, the resonant values of the imaging
frequencies of the various spin states will not be equal, as was the case for the optical
pumping resonance. When fixing the pump at its resonant value and then scanning the
imaging frequency, one obtains the various resonance curves shown in fig. 3.3b. Without
optical pumping prior to imaging, one can clearly see the disparity between the states,
which vanishes as soon as it is present.

The new hardware in terms of optical systems and acousto-optical modulators that needed
to be added to the 40K laser system in order to generate the light for optical pumping was
already described in sec. 2.3 and 2.11.1.

3.3. Spin selective detection via microwave spectroscopy

Due to the limited range of temperatures at which the Stern-Gerlach technique can provide
well-resolved population spectra, another means of spin selective probing needs to be
devised. As was already mentioned at the beginning of this section, the method needs
to work irregardless of the sample temperature and at low magnetic fields in the vicinity
of the Feshbach resonance under consideration. While optical transitions become spin
selective only at high magnetic fields due to the large natural linewidth of the D2 line of
40K , magnetic dipole transitions in the ground state have linewidths of only a few kHz,
which is far less than the typical Zeeman energy splitting between the states. As will be
described in the following, using them in a reliable fashion for spin selective detection
will still require calibration measurements using Stern-Gerlach separation and optical
repumping.

3.3.1. Magnetic dipole transitions in Potassium-40

Magnetic dipole transitions (M1) are governed by the Hamiltonian HB = −µ̂B̂ = µB(L̂ +

2Ŝ)B̂ [95]. The associated typical transition amplitudes are on the order of the Bohr
Magneton µB, implying that their transition strengths are approximately five orders of
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magnitude times smaller than the ones of E1 transitions since (d/µB)
2 = (2/α)2 ' 105

withα denoting the fine-structure constant. However, in combination with the fact that
the transitions frequencies are very small, it follows that the spontaneous decay rate
A ∼ ω3|µ|2 via M1 channels is small in comparison to E1 transitions [96]. This makes
magnetic dipole transitions an extremely important tool for state preparation, even more so
as they complement the selection rules of electric dipole transitions by allowing to couple
electronic states of the same parity, as is the case, for instance, for all of the Zeeman levels
of the ground state hyperfine manifolds for which L = 0. Accordingly, M1 transitions are
forbidden between opposite-parity states. The selection rules regarding the total angular
momentum remain the same ∆J = 0,±1 with J = 0 → J′ = 0 forbidden. However,
coupling between states with different principle quantum number n is not allowed, which
can be understood by recalling that HB contains only angular-momentum operators that
do not affect the radial part of the wavefunction. Consequently, any matrix element with
two states of unequal n will be zero since they are orthogonal with respect to one another.
The aforementioned role of parity can be understood by considering the effect of parity
reversal on electric and magnetic dipoles. An electric dipole moment originates from two
spatially separated charges of opposite sign. A parity transformation flips its sign because
the position of the charges is effectively reversed by the inversion of the coordinate axis,
which is why the electric dipole moment is a proper (polar) vector. The magnetic dipole
moment originates from the angular momentum L = r× p of a charged particle, which is
it pseudovector as it invariant under parity reversal. Consequently, the parity selection
rules for M1 transitions must be opposite to the ones for electric dipole transitions.

The first set of important M1 transitions in 40K are the 23 cm-lines4 connecting the two
ground hyperfine manifolds F = 9/2 and F = 7/2, some of which are shown in fig. 3.4a.
These transitions can be used to probe and hence calibrate the magnetic bias field with
high sensitivity. An example of such a measurement is shown in fig. 3.5.

More importantly, by removing population from the lower Zeeman states and transferring
it to the upper ground state, atoms can be made to be transparent to the imaging light
due to the large detuning of ∼ ahfs/h = 1285.8 MHz. Since the linewidth of these M1
transitions of less than ∼ 100 kHz (including also the uncertainty of our magnetic fields)
is much smaller than the typical Zeeman splittings at weak magnetic fields of greater than
∼ 1 MHz, the perceived drop in atom number will originate from the loss of population
belonging to exactly one single spin state. Provided the transition probability is known,
one can infer the initial number of atoms in the spin state under consideration. As will be

4This transition is quite similar to the well known 21 cm-line between the hyperfine ground states of
hydrogen, which is frequently used in radio astronomy where it was discovered by Ewen and Purcell in
1951 [97]. It facilitated the mapping of neutral hydrogen in our galaxy which revealed for the first time the
spiral structure of the Milky Way [98]. Moreover, the analogous transition in Cs is currently used as the
international frequency standard defining the length of a second [99].
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Figure 3.4.: Microwave and radio frequency transitions for the positive Zeeman states of 40K .
Left: Possible hyperfine transitions of the four spin states mF = +9/2, ...,+3/2 with F = 9/2
to the upper ground state manifold F = 7/2. The corresponding hyperfine splitting amounts
to ahfs/h = 1.2858 GHz. Right: Radio-frequency transitions connecting the spin states mF =

+9/2,+7/2,+5/2 of the lower hyperfine manifold to one another.
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Figure 3.5.: Magnetic field spectroscopy and -calibration. a) Resonance curve of a narrow mi-
crowave sweep obtained by driving hyperfine transitions F = 9/2→ F = 7/2. b) Calibration of
the magnetic field as a function of the current supply’s analog setpoint. The values of the B-field
are obtained through the positions of several resonance peaks as seen in a).

detailed later on, this opens up a way to probe the spin composition of the atomic cloud
confined in an optical trap without the stringent restrictions regarding sample temperature
that were encountered in the case of Stern-Gerlach probing.

The second important kind of magnetic dipole transitions occurs between neighboring
Zeeman states of a given hyperfine manifold, which are also referred to as Hertzian
resonances [100].5 These transitions represent the basis for the passage from the positive
to the negative Zeeman states described in sec. 2.11.3 and will be used later in order to

5Equivalent transitions between nuclear levels are used for nuclear magnetic resonance (NMR) and magnetic
resonance imaging (MRI) [95].
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tailor the initial population of the atoms in the positive spin states.

3.3.2. Landau-Zener adiabatic passage

As was hinted on earlier, magnetic dipole transitions can be used to transfer atoms into
different spin states as long as the principle quantum number does not change and the
parity is conserved. However, one problem arises due to the fact that the detuning varies
over time with the intrinsic fluctuations of the magnetic field, which are much larger than
the linewidth of the transition. When radiating atoms with AC magnetic fields of fixed
frequency6, the transition probability will thus vary with time depending on the noise
spectrum of the bias magnetic field. In order to avoid such issues, one can instead drive
so-called adiabatic passages between the atomic spin states, which are possible due to
the presence of avoided crossings between the dressed eigenstates of atom and photon.
Following [101], in a two level system these eigenstates are given by the superpositions
|+〉 = sinθ |1〉+ cosθ |2〉 and |−〉 = cosθ |1〉+ sinθ |2〉 with θ = −Ω/∆ denoting the
Stückelberg angle, Ω ∼

√
P the Rabi-frequency7 and ∆ representing the detuning from

resonance. When chirping the photon frequency, the eigenstates change accordingly and,
if done slowly enough, the system will adiabatically follow this evolution. For ∆� −Ω
one has |−〉 ' |1〉 since the phase angle θ is zero. As the frequency is swept slowly
towards higher values, the atom will remain in the state |−〉 as per the adiabatic theorem,
eventually reaching the limit ∆� Ω where θ = π/4 and hence |−〉 ' |2〉. In essence, the
mixing of the two states allows one to transfer the population in |1〉with unit probability to
the state |2〉 because the avoided crossing exchanges the role of the uncoupled eigenstates.
However, in practice the frequency ramp cannot be made arbitrarily slow due to the
presence of other limiting timescales in the experiment (e.g. fluctuations of the magnetic
field at 50 Hz) and the detuning, naturally, cannot be swept from −∞ to +∞.

If the chirp is very fast, the atom will merely tunnel through the avoided crossing so
that the population remains unchanged. The question of what happens for intermediate,
non-adiabatic chirps was addressed independently by Landau, Zener, Stückelberg and
Majorana in 1932 [102–105]. Since there will be some probability to tunnel through the
gap, the atom will most likely end up in a superposition state of |1〉 and |2〉 after the
chirp. The underlying generalized atom-field Hamiltonian can be reduced to Weber’s
equations, which can be solved by parabolic-cylinder functions. In the end, one finds that
the probability to (adiabatically) end up in the intended state |2〉 is given by the expression

P = 1− exp
(
− πΩ2

2|∂t∆|

)
. (3.4)

6The linewidth of commercial RF and MW sources is very small and therefore no concern.
7For most typical RF- and MW antennas, this frequency will be on the order of 1 kHz.



3.3. Spin selective detection via microwave spectroscopy 75

The Landau-Zener tunneling probability to the upper branch is consequently 1− P. In
the limit of slow sweeps with respect to the Rabi-frequency Ω2 � |∂t∆| the transition
probability to the second state approaches unity. In the opposite limit of weak coupling and
fast sweeps the population will tend to remain in the initial state. Note that here one can
safely neglect the influence of spontaneous decay since we are considering only magnetic
dipole transitions with very long lifetimes. This assumption would not necessarily hold
for sweeps over an optical E1 transition, to give but one example. The expression (3.4)
can also be used as fit function to extract the Rabi-frequency from data points taken with
different sweep durations |∂t∆| (see [61] for additional details).

The advantage of these transitions lies in the fact that one can make the range of the chirp
larger than the time-varying detuning caused by magnetic field fluctuations while staying
at the same time well below the Zeeman energy splittings and maintaining reasonable
transition probabilities. An additional complication arises in case one is dealing with
more than two levels (see e.g. [106]) which, for example, concerns also the adiabatic
passage to the negative Zeeman states described in sec. 2.11.3. Here one needs to explicitly
calculate the dressed eigenenergies of all involved states numerically in order to ensure
that crossings are indeed avoided, as was done for the aforementioned case in fig. 2.17.

3.3.3. Microwave spectrum and detection of spin populations

Turning to the application to Potassium-40, by driving hyperfine transitions to the upper
ground state manifold using Landau-Zener sweeps one can, in a spin selective manner,
render a fraction of the atoms transparent to the imaging light during absorption imaging
due to the large detuning of ∼ 1.28 GHz. In doing so, we can then infer the initial
population of a given spin state from the apparent loss, provided the transfer probability
(3.4) is well known and robust with respect to the intrinsic noise of the magnetic field.
The latter requirement can be fulfilled by choosing a ramp whose chirp bandwidth is
sufficiently large to cover the range of possible detunings due to magnetic field fluctuations
and by setting its duration to be shorter than their typical timescales.

The calibration of the transfer efficiencies is done by recording the spectrum of the M1
transitions using Stern-Gerlach separation and optical pumping to reliably detect the
changes in the spin populations. Once calibrated, the SG method will no longer be needed
and the MW probing technique can then be applied on its own to much hotter clouds.
For the positive Zeeman states mF = 9/2, 7/2 and 5/2 involved in the analysis of the
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Feshbach resonance, the following hyperfine transitions are possible:

|9/2,+9/2〉 → |7/2,+7/2〉 , (σ−) (3.5)

|9/2,+7/2〉 → |7/2,+7/2〉 , (π) (3.6)

|9/2,+7/2〉 → |7/2,+5/2〉 , (σ+) (3.7)

|9/2,+5/2〉 → |7/2,+7/2〉 , (σ−) (3.8)

|9/2,+5/2〉 → |7/2,+5/2〉 , (π) (3.9)

|9/2,+5/2〉 → |7/2,+3/2〉 , (σ+) (3.10)

which were already shown schematically in fig. 3.4a. Their exact transition frequencies
can be determined using the Breit-Rabi formula (see C.4 for details). Unfortunately,
the two lines (3.7) and (3.8) coincide at low magnetic fields of a few G, which means
that they cannot be used for probing the spin population of either Zeeman state due
to potential cross-coupling. In the case of optical photons contained in well directed
laser beams, one could easily prevent or at least reduce this effect by polarizing the
light at high extinction ratios using, for example, birefringent Glan-Thompson polarizers.
However, when working with microwaves or radio-frequency radiation which have very
long wavelengths, this is not possible without tremendous technical effort in terms of
hardware and space. While this represents a drawback in the context of the two mixed
transitions above, it does renders MW spectroscopy also quite flexible since any mechanical
deformations of the emitter will ensure that all types of polarization are present (with
different proportions) at the position of the atoms.

The microwave itself is created using the setup described in sec. 2.10 and 2.11.1. The
carrier frequency ν0 ∼ 1.257 GHz is provided by an analog signal generator, which is
mixed down with the linearly chirped ramp ν2(t) = ν2,0 + ν(t) generated by a second
RF source where ν2,0 = 28.5 MHz. The resulting AC signal consisting of the carrier as
well as the two chirped sidebands ν(t) = ν0 ± ν2(t) is amplified and passed through a
MW circulator before being emitted by the antenna situated next to the science cell. Note
that only one sideband will be resonant due to the detuning ν2,0 and the small linewidths.
A typical sweep duration is between 1 ms - 10 ms and the ambient bias field is set to a
value of 3 G. This choice of magnetic field is motivated by the fact that the corresponding
Zeeman splittings are still large enough to allow for sweep bandwidths larger than the
magnetic field fluctuations.

The full spectrum of the hyperfine transitions of the three highest lying positive spin states
of 40K is shown in fig. 3.6. Here, the carrier frequency ν0 was varied while using the
same chirp modulation v2(t) throughout the measurement. After subjecting the atoms
to the microwave sweep, the spin states were separated using a Stern-Gerlach pulse and
optical pumping was applied prior to absorption imaging. This was done to ensure
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Figure 3.6.: Microwave spectrum of the positive Zeeman spin sates. After the MW sweep the
cloud was subjected to a 2 ms long Stern-Gerlach pulse accelerating the different spin states and
separating them during the ensuing free flight over 4 ms. Prior to absorption imaging, the three
distinct clouds were optically pumped into mF = +9/2 to guarantee equal optical detectivity. Note
that, for every frequency, the three corresponding spin populations are always normalized to the
total atom number. As a consequence, the relative norm. populations of two states can thus increase
when the actual population of the third states decreases. Parameters: mF = +9/2,+7/2,+5/2,
B = 3 G, ν = νlo + 28.5 MHz, ∆ν = 0.5 MHz, τ = 10 ms. Solid lines are super-Gaussian fits
serving as guide to the eye.

equal detectivity for all spins sates, so that one can extract accurate relative populations.
Moreover, a sample containing increased amounts of mF = +5/2 was used in order to
increase the corresponding SNR. This way, the observed transition probabilities can be
calibrated and used later on to infer the atom number in a given spin state by means of MW
spectroscopy in situations when Stern-Gerlach probing is no longer possible. Note that
since the atom numbers plotted here are referenced to the total atom number, a decrease
of the population of one spin state will cause the ones of the unaffected states to increase
by virtue of normalization. The sweep bandwidth of ∆ν = 500 kHz was chosen as large
as possible with respect to the Zeeman splitting between the states at 3 G which amounts
to roughly Ez/h = 940 kHz.

Depending on the initial population of the spin states and the Landau-Zener efficiencies,
the MW transfers can give rise to substantial population of the upper hyperfine states. It
should be pointed out that such mixtures of spin states in the lower and upper ground
states are not necessarily stable with respect to inelastic collisions8. For this reason, the
spectrum discussed above was obtained by performing SG separation and subsequent
optical pumping for absorption imaging as fast as possible after the 10 ms microwave
pulse. This choice of timing was motivated by the observation of strong inelastic losses

8Even among the lower Zeeman states only very few combinations do not undergo spin-changing collisions!
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Figure 3.7.: Inelastic hyperfine collisions. A
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in some of the created mixtures occurring at timescales longer than 50 ms. In fig. 3.7
the evolution of the populations in |9/2, 9/2〉 and |9/2, 7/2〉 in the presence of |7/2, 5/2〉
are shown as function of time. The population of the upper states was created via a
10 ms Landau-Zener sweep on the σ−-transition (3.7). The initial spin composition of
the cloud prior to applying the MW pulse consisted of roughly 55 % mF = 9/2 and 33 %
mF = 7/2. Tracking the evolution of the lower spin state atom numbers after population
of the upper hyperfine manifold clearly shows the onset of exothermic hyperfine collisions
between |9/2, 9/2〉 and |7/2, 5/2〉 as of 50 ms. Given that the released energy of such a
collision is on the order of the ground state hyperfine splitting, it entails the immediate
loss of both atoms from the trap. Since the choice of MW transition determines which
type of collision will take place, the corresponding (two-body) losses effectively take on
a spin-dependent character. It is these losses that represent the main limitation of the
MW spectroscopy-based approach to spin population probing because they cannot be
suppressed other than by Pauli-Blocking. Consequently, one has to ensure that the optical
detection via absorption imaging after MW probing occurs much faster than the various
timescales of the different combinations of hyperfine collisions.
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The successful realization of quantum simulators using ultracold Fermi or Bose gases
relies crucially on the ability to alter in a controlled manner the strength of inter-atomic
interactions. In such two-body collisions, a Feshbach resonance occurs when a bound
state is tuned via external fields to coincide with the threshold of the entrance channel.
This can strongly modify both elastic and inelastic scattering properties, even when the
two channels are only weakly coupled [41]. The position of the bound state is usually
controlled using magnetic fields, which renders Feshbach resonances an indispensable tool
as they allow, for instance, to tune the s-wave scattering length of low energy collisions
from −∞ to +∞. Moreover, they can be used to couple colliding atoms into molecules
(see e.g. [107–109]). To give but a few examples, this means of control has enabled the
study of the BEC-BCS crossover in Fermi gases (see ch. 1) [46] and the observation of
Efimov molecules created in resonant Bose gases [110].

Feshbach resonances have been and continue to be studied extensively in numerous
homonuclear atomic species [111–114] and heteronuclear mixtures [107, 115–123]. Recently,
enhancement of elastic collisions in p- and d-waves has also been achieved without overly
strong inelastic losses [117, 124, 125].
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In this chapter, we report on the characterization of two previously unreported Feshbach
resonances in 40K in terms of inelastic loss rate constants and resonant spin dynamics.
Several resonances of 40K were already described in 2.11.4 and a comprehensive survey
is given in appendix C.5. In the following, a brief summary of the salient properties
of Feshbach resonances will be given, providing the foundation for the experimental
methods presented afterwards.

4.1. Feshbach resonances in ultracold gases

The occurrence of Feshbach resonances in neutral atoms can be understood from a simple
picture containing only two collision channels [41]. A given channel is labeled by the
internal quantum numbers {ψ,φ} of the colliding atoms and has the total energy Etot =

E(ψ) + E(φ) + Ekin, where Ekin denotes the relative kinetic energy. If atoms are prepared
in this channel, then any other channel with E < Etot is referred to as closed while E > Etot

is called open. Fig. 4.1 shows schematically the molecular potentials of a closed channel
and the background, which connects asymptotically to two free atoms. For low collision
energies, the latter corresponds to the energetically open channel. A Feshbach resonance
occurs when a (virtual) bound state of the closed channel approaches the threshold of the
open channel and mixing is facilitated by the hyperfine- or magnetic dipole interaction.
Given that the spin configurations of the two collision channels are different, their energy
difference can be tuned with external magnetic fields. At low collisional energy, the
modification of the s-wave scattering length due to the presence of the additional bound
state can be described by the simple dispersive expression [91],

a(B) = abg

(
1− ∆

B− B0

)
, (4.1)

where abg denotes the scattering length originating from the background molecular poten-
tial of the entrance channel. ∆ represents the width of the resonance, which fixes the zero
crossing of the scattering length at Bzc = B0 +∆. The binding energy of the weakly bound
molecular state approaches the threshold on the side of the resonance where the scatterling
length is large and positive. At large detunings the binding energy scales linearly with
the magnetic field with the slope given by the differential magnetic moments of the open
and closed channels. Close to resonance the dressed molecular state has an energy given
by Eb = h̄2/2µa2 [126], where µ denotes the reduced mass of the pair. In this regime the
properties of the bound state take on a universal character, which can be described by a
single molecular potential of scattering length a. The two-body wavefunction corresponds
to a halo state with size a and the molecule is refered to as a halo dimer.
It is worthwhile to point out two other types of scattering resonances for completeness,
which are also indicated in fig. 4.1. Shape resonances occur when the collision energy
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Figure 4.1.: Schematic illustration of Feshbach resonances in cold collisions. Left: Typical Alkali
molecular potentials of an s-wave (blue) and HPW wave (gray) entrance channel as well as a HPW
closed channels. True bound states lie below the dissociation threshold while virtual bound states
are embedded in the continuum. The energy difference between the closed channel and the open
channel can be tuned via magnetic fields. Right: Magnetic field scaling of the elastic cross section
(top), inelastic cross section (middle) and the energies of the closed (BS1/2) and entrance channels
(FA).

of the atoms becomes comparable to the binding energy of a quasi-bound state located
behind a centrifugal barrier in the entrance channel with l ≥ 1. A potential resonance, on
the other hand, corresponds to a situation where there is a bound/virtual state just above
or below the collision threshold of the (background) s-wave incoming channel. In the case
of 40K and 6Li , such states are directly responsible for the large s-wave scattering lengths
[82, 83], which exceed by far the range of the interaction potential.

Scattering in the ultracold regime

The interaction of two Alkali atoms at a given magnetic field B are described by the
following Hamiltonian,

Ĥ =
p̂2

2µ
+

2∑

i=1

(Ĥhf
i + Ĥz

i )︸ ︷︷ ︸
HFS + Zeem.

+ Ĥc + Ĥdd︸ ︷︷ ︸
Int.

Here, µ denotes the effective mass and p̂ the relative momentum operator. The (single
particle) energy shifts of the atoms’ internal spin states due hyperfine splitting and the
Zeeman coupling to the magnetic field are contained in the second term under the sum.
Further details regarding the behavior of Alkali atoms in magnetic fields are provided in
appendix C.4 and are thus omitted here.
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The term Ĥc contains all of the Coulomb interactions between the two atoms, which
only depend on the modulus of the relative distance r. This interaction conserves both
the projection of the total spin F̂ = ŝ1 + ŝ2 + î1 + î2 as well as the total orbital angular
momentum L̂ = l̂1 + l̂2, i.e. ∆mF = ∆l = ∆ml = 0. Furthermore, the total nuclear and
electronic spin are conserved separately, such that one can write the central interaction
as the sum of a singlet and triplet term and their respective projection operators as per
Ĥc(r) = US(r)P̂S + UT(r)P̂T. In the asymptotic limit of large r the two potentials are the
same and contain the familiar van der Waals interaction as well as an exchange term
pertaining to the symmetry of the wavefunction.

The second term Ĥdd corresponds to the magnetic dipole interaction between the electronic
spins as well as second-order spin-orbit coupling. The former is given by the expression
[127]:

Ĥss = −
α2

r3 [3(r̂ŝ1)(r̂ŝ2)− ŝ1ŝ2],

where α denotes the fine structure constant and r̂ the unit vector along the relative
separation of the atoms. This anisotropic interaction is typically weak, however it can
couple quasi-bound states with l = 2 to incoming atoms colliding in s-wave. Ĥss mixes
states with different angular momentum, obeying the selection rule ∆l = 0, 2 with l = 0→
l′ = 0 being forbidden. The projections of the total spin and orbital angular momentum
are no longer conserved separately, but their sum is ∆M = 0.

The scattering problem can be solved by recasting the time-independent Schrödinger
equation in terms of the properly symmetrized channel states for indistinguishable atoms,

|ψ,φ; l, ml〉 =
1√

2(1 + δψφ)
(|ψ〉1 |φ〉2 ± |ψ〉1 |φ〉2) |l, ml〉 .

Here, |ψ〉 and |φ〉 represent the hyperfine states of the single atoms 1 and 2, respectively.
|l, ml〉 are the eigenstates of the two-body orbital motion, which correspond to the usual
spherical harmonics in position representation. One finds a coupled set of differential
equations for the radial wavefunctions, where the coupling matrix element between two
channels is given by [128]:

Ulml ,l′m′l
ψφ,ψ′φ′(r) = 〈ψ,φ; l, ml |Ĥc + Ĥdd|ψ′,φ′; l′, m′l〉 .

Solutions of the coupled-channel problem is usually obtained numerically and, in principle,
require the knowledge of the full interaction potential. Formally, the outcome of the
collision is given by the Lippmann-Schwinger equation which expresses the solution in
terms of the unitary T and S-matrices. The partial cross section for a collision process
starting in the open channel α = {ψ,φ} and ending in β = {ψ′,φ′} can be expressed
as matrix element of the scattering matrix Sα,β. Following [41], elastic scattering occurs
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when atoms remain in the same channel, σel
α (Ekin) = gαπ |1− Sα,α(Ekin)|2 /k2, while

inelastic scattering corresponds to a loss from the incoming channel,σ inel
α (Ekin) = gαπ(1−

|Sα,α(Ekin)|2)/k2. The rate coefficients for these collisions are given by Kel
α = h̄kσel

α /µ

and Kinel
α = h̄kσ inel

α /µ. The prefactor gα depends on the underlying statistics of the
collision process. Furthermore, there exist upper bounds for the elastic and inelastic cross
sections by reason that the S-matrix is unitary. They are given by σel

α = 4πgα/k2 and
σ inel
α = πgα/k2, respectively.

Resonant collisions

The complex scattering phase shift ηα(E) characterizes the asymptotic solutions of the
radial Schrödinger equation and incorporates the effect of the entire (short-range) potential
on the collision event [41]. For low energy s-wave scattering k → 0, it can be written
as ηα → −kâα where âα = aα − ibα denotes the complex scattering length of channel
α. The threshold behavior of the partial cross sections then read σel

α = 4π(a2
α + b2

α) and
Kinel
α = (2h/µ)gαbα, such that both quantities tend towards constant values at small

energies. The occurrence of a scattering resonance is signified by a rapid change of the
phase shift by about π radians over a narrow range of energies. As was pointed out earlier,
this is caused by the presence of a quasi-bound state which is located behind a potential
barrier in the entrance channel (shape resonance) or in a completely different channel
(Feshbach resonance). The coupling between the two channels causes mixing between
the two states and, as a result, the scattering phase picks up a resonant contribution in
addition to the background phase shift:

ηα(E) = ηbg(E) + ηres(E) , ηres(E) = − tan
(

Γ(E)/2
E− Eβ − δE(E)

)

The second term ηbg has a Breit-Wigner form and vanishes for large interatomic distances r
[41]. Eβ denotes the closed channel energy, Γ(E) represents the resonance width and δE(E)
the resonance shift. In the case of threshold scattering where Eβ approaches the entrance
channel energy with E ' 0, the threshold laws for s-wave collisions read Γ(E)/2→ kabgΓ0

and Eβ + δE(E)→ E0 as k→ 0. The complex scattering length thus takes on the form

âα = abg

(
1 +

Γ0

−E0 + iγ/2

)

where γ captures the decay into other channels. The position of the resonance threshold
E0 can be tuned by varying an external magnetic field as there is a difference in magnetic
moments ∆µ = µα − µβ between the free atoms in the entrance channel and the quasi-
bound state in the closed channel. The energy of the latter with respect to the free atoms
then scales as Eβ = ∆µ(B− Bc) and crosses the threshold at B = Bc.
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4.2. Initial experimental findings

A past experimental study of the evaporation efficiency of the positive states of 40K revealed
two previously unreported loss resonances at B1 = 9 G and B2 = 160 G [63]. An imbal-
anced mixture of mF = +9/2,+7/2 with a small fraction of 5/2 was evaporated for 5 s in
a crossed optical dipole trap and its final remaining atom number recorded as a function
of magnetic field. The corresponding loss spectrum is shown in abridged form in fig.
4.2. Given the spin composition of the sample1 and the magnitude of the losses, these
two features are most likely caused by the presence of Feshbach resonances between the
states +9/2 and +7/2. The reduction of the remaining number of atoms may be caused
by inelastic losses or by an increased evaporation rate due to the resonantly enhanced
elastic collision rate.

A more detailed measurement of the losses occurring near the first resonance around
8 G is shown in fig. 4.3. Here, a spin mixture of 40K containing the same states was first
evaporated at a magnetic field of 18 G, which was then jumped to its target value and
held there for 4 s. The remaining fraction of atoms was recorded via absorption imaging
after a short time-of-flight to reduce the optical density of the sample. The resulting
spectrum shows three distinct loss features, with the first one occurring at 8.1 G being
considerably more pronounced. Given that the depth of the dipole trap was not increased
after the preceding evaporation ramp, η is comparatively low and, consequently, enhanced
evaporation may still contribute to the losses to some degree. In this context, cooling
effects are not necessarily observable since they might be obscured by density dependent
heating arising from inelastic losses. The evaporation rate will thus have to be addressed
later on to extract the true inelastic loss rate. The presence of the three additional loss
features can be explained in a number of ways. They might stem from the multiplet
structure of one single higher partial wave Feshbach resonance [125], or they may be due
to several independent scattering resonances. As will be detailed further below, the latter
case applies in this situation.

In order to further characterize the Feshbach resonance at 8 G, the following aspects
must be addressed experimentally or numerically: 1) What is the value of the resonant
magnetic field B0 and the resonance width ∆B? 2)Are inelastic losses due to two- or three
body processes? 3) In which partial waves do the atoms collide in the entrance- and exit
channels? Does the resonance display a dependence on the sample temperature? 4) Is
the resonance entrance- or closed channel dominated? 5) Where is the molecular side of
the Feshbach resonance? A preliminary numerical simulation was kindly provided by E.
Tiesinga [129], which identified the two resonances at 8 G and 160 G as d-wave in nature.

1Note that the spin composition provided in [63] was revised from 70:30 to the more accurate ratio 55:33:12
due to the recent implementation of optical pumping in the science cell (see sec. 3.1 for details).
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Figure 4.2.: Two previously unreported loss resonances in 40K . a) The total remaining atom
number was observed after 5 s of evaporation in a crossed optical dipole trap using a mixture of
the spin states mF = +9/2,+7/2,+5/2 with initial spin composition 55:33:12 at various magnetic
fields. The loss features occur at magnetic fields of B1 = 9 G and B2 = 160 G. Data adapted from
[63]. b) Numerical simulation by E. Tiesinga of the two-body inelastic scattering rate between
mF = +9/2 and 7/2 at a collision energy of 60 nK [129].
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Figure 4.3.: Inelastic losses of atoms at low
magnetic fields. The scan shows a close-up of
the first resonance feature shown in fig. 4.2.
After optical evaporation the magnetic field
is jumped from 18 G to its target value. The
55:33:12 mixture of mF = +9/2,+7/2 and
+5/2 is then held in the dipole trap for 4 s af-
ter which the total remaining atom number
is recorded. Solid lines are Lorentzian fits to
guide the eye.

The corresponding inelastic loss rate is shown in fig. 4.2b.

A better understanding of the resonance properties at hand can be obtained through a
systematic study of the two- and three-body inelastic loss rates as function of magnetic
field and temperature. These rate coefficients can be extracted from lifetime measurements,
whose analysis must be carried out using an appropriate mathematical framework which
will be described in the following section. Moreover, because of the low Zeeman energy
of ∼ kB × 100 µK at the magnetic fields around 7 G, recapture after inelastic events is
possible and therefore the resonant spin dynamics can be studied in deep traps. The
experimental methods for spin selective detection described in section 3 were devised and
implemented particularly for this study in order to be able to study these dynamics at
elevated temperatures of up to 30 µK.
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4.3. Characterization of the resonance via inelastic loss spectroscopy

Feshbach resonances are usually observed in cold atom systems through the accompanying
resonantly enhanced losses. Atoms are expelled from the trap due to the release of kinetic
energy when collision partners end up in lower internal (two-body process) or molecular
states (three-body process). Depending on which outgoing inelastic channel is enhanced
by the Feshbach resonance, the released energy can be on the order of the Zeeman-,
hyperfine- or molecular vibrational energy. In most cases, the trap depth is lower than
the implied energy scales so that any inelastic collision leads to immediate loss. However,
at low magnetic fields the Zeeman energy can become comparable to the trap depth and
atoms may remain trapped even after undergoing inelastic collision events.

4.3.1. Derivation of the loss rate equations for the shallow trap limit

In the simple case of a single component gas, two- and three body collisional losses can be
described by a loss rate equation of the form [41]:

Ṅ(t) = −L(1)N(t)−
∫

d3r
[

L(2)n2(r, t) + L(3)n3(r, t)
]

. (4.2)

Here L(1) = 1/τ is the inverse one-body lifetime set by the rate of background collisions
with the impurities of the vacuum. n(r, t) denotes the spatial density distribution of the
trapped gas and L(2) as well as L(3) represent the trap loss coefficients belonging to two-
and three body collisions, respectively. Considering that higher-order loss processes L(i)

scale as ni, they will predominantly occur in regions of elevated atomic densities. For a
given trapping potential this implies a targeted depletion of the coldest atoms of the cloud
which, in turn, gives rise to heating provided rethermalization of the gas occurs faster
than the inelastic loss. Assuming thermal equilibrium at any given time, the coupled
differential equations for atom number and sample temperature are given by [130]:

Ṅ
N

= −
∞∑

i=1

L(i) 〈ni−1〉v , (4.3)

Ṫ
T

= +
∞∑

i=1

εiL(i) 〈ni−1〉v . (4.4)

In the second equation describing the anti-evaporation heating, we have εi = (1− i−1)/2.
Note that one-body losses do not give rise to any heating because they do not scale with
density. The mean n-body atomic densities are given in the form of averages over the trap
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assuming a thermal distribution and a harmonic potential:

〈ni−1〉v =

∫
d3ni(r) =

Ni−1

i3/2

(
mω̄2

2πkBT

)3(i−1)/2

(4.5)

Here, ω̄ = (ωxωyωz)1/3 denotes the mean trap oscillation frequency. In the following,
the generic formalism outlined so far will be explained in more detail and adapted to our
specific experimental situation to include all of the partaking spin states.

One-body losses

Collisions with background gases present in the vacuum chamber always lead to trap loss.
This can be understood from the fact that the collisional partner carries extremely high
kinetic energies on the order of the room temperature, because the gaseous background
phase is in thermal equilibrium with the walls of the vacuum chamber. The contribution
of these collisions to the change in trapped atom number is given by

Ṅ(1)
t =

∑

k

Ṅ(1)
k = −L(1)

∑

k

Nk = −L(1)Nt, (4.6)

with the sum comprising all of the spin components present in the mixture. At non-
resonant magnetic fields of up to 4 G, we find experimentally that in the fully recompressed
single beam dipole trap with η ' 16 the lifetime of the samples is τ = 1/L(1) > 120 s.
When working at background fields of 18 G this figure was found to drop to τ = 47 s.

Two-body losses

Assuming that the trap is sufficiently shallow so that any inelastic two-body collision
event between mF = +9/2 and mF = +7/2 leads to the loss of both atoms, the change of
the respective atom numbers Ṅ(2)

k will be given directly by the inelastic collision rate Γ
(2)
inel.

One can write for the variation of N9/2:

d
dt
(δN9/2)

(2) =
d
dt
(n9/2δV)(2) = −L(2)n7/2δN9/2, (4.7)

where we have used that δN9/2(r, t) = n9/2(r, t)δV. Integration then yields the two-body
decay rates for the two spin states,

Ṅ(2)
9/2 = Ṅ(2)

7/2 = −L(2) 〈N9/2N7/2〉V = −Γ (2)inel, (4.8)

In general, the loss rate constant L(2) may depend on temperature, which is for instance the
case when interactions occur in a partial wave higher than s. In such cases, the centrifugal
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barrier present in the entrance channel will introduce a dependency of the rate constants
on the collision energy. In a given sample, the accessible range of energies is set by the
temperature and, consequently, higher partial wave scattering can become suppressed at
low temperatures. As will be detailed further below, the entrance channel is s-wave in our
case implying that this effect can be neglected. The spatially averaged two-body densities
in the volume V defined as

〈N9/2N7/2〉v =

∫
δV n7/2(r, t)n9/2(r, t), (4.9)

which is the equivalent of (4.5) for two spin states. Note that this quantity depends on
the sample temperature T = 1/kBβ. Assuming that the gas can always be taken to be in
thermal equilibrium by reason that the inelastic losses occur on a much slower timescale
than elastic collisions, the density will always be given by the remaining atom number
and the temperature as per nk(r) = nk,0e−βU(r) with nk,0 = Nk/Ve denoting the peak
density. By approximating the trap U(r) to be harmonic with oscillations frequenciesωl ,
the density can be written as product of Gaussians with temperature dependent radii:

nk(r) =
Nk

Ve

3∏

i=1

e−(ri/Ri)
2

, Ri =

√
2

βmω2
i

. (4.10)

Correspondingly, the trap volume Ve is easily calculated as well, yielding

Ve =

∫
d3re−βU(r) =

3∏

i=1

∫
dri e−βmω2

i r2
i /2 =

√
2πkBT
mω̄2

3

(4.11)

in the case of harmonic confinement with ω̄ = (ωxωyωz)1/3 denoting again the average
oscillation frequency. Using (4.9), the final loss rate equations for the two spin states
including one-body decay as defined in 4.6 can therefore be written as:

Ṅ9/2 = −L(2) N9/2N7/2

2
√

2Ve
− L(1)N9/2 (4.12)

Ṅ7/2 = −L(2) N9/2N7/2

2
√

2Ve
− L(1)N7/2 (4.13)

Three-body losses

Inelastic collisions involving three constituents can be understood as a two-step process
[131, 132]. At first, two atoms collide and couple to the resonant excited molecular state
A + A↔ A∗2. This process is reversible as the molecule can then dissociate again without
the release large amounts of energy. However, while occupying the virtual bound state,
the excited dimer can collide with a third atom which causes the molecule to irreversibly
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decay to a lower-lying vibrational (ground) state A∗2 + A → A2 + A. Except in the case
of spontaneous radiative decay, the deactivitation of the vibrationally excited molecule
cannot occur on its own and requires the presence of a third atom, which then carries
away part of the energy. The released energies are typically very large and lead to the
simultaneous loss of all three atoms. Alternatively, three-body recombination can also be
modeled as a compound process [133, 134] (see also chapter 7).

It is a priori not clear whether two- or three-body losses will dominate in a given experi-
mental setting, especially considering that up to three different spin states may contribute
to the loss dynamics of the resonance at hand. For the latter, we would have to consider
loss terms of the form:

L(3)
997 〈N2

9/2N7/2〉v + L(3)
977 〈N9/2N2

7/2〉v + L(3)
975 〈N9/2N7/2N5/2〉v + · · ·

As will be justified later on, our situation can be well described by restricting the mathe-
matical framework to two-body losses. The discussion of the role of three-body processes
will be given alongside the interpretation of the experimental findings in sec. 4.3.3.

Rate equation for the total atom number

Using the relations derived so far, one is now in the position to formulate the rate equation
for the total atom number Nt = N9/2 + N7/2 + N5/2. Using equations (4.12) and (4.13),
one can write for the change of total atom number per unit time:

Ṅt = Ṅ9/2 + Ṅ7/2 + Ṅ5/2 = −L(2) N9/2N7/2√
2Ve

− L(1)Nt, (4.14)

where we have restricted ourselves to two- and one-body losses. In order to deal with the
product N9/2N7/2 we introduce the two-body imbalance ∆N97 = N9/2 − N7/2, for which
the following rate equation holds:

∆Ṅ97 = Ṅ9/2 − Ṅ7/2 = −L(1)∆N97. (4.15)

It has the straightforward solution of the form

∆N97 = ∆N97(0)e−L(1)t, with ∆N97(0) = [x9/2(0)− x7/2(0)]Nt(0) (4.16)

denoting the initial imbalance between the two majority spin states. Here we have
introduced the fractional initial populations as per Nk(0) = xk(0)Nt(0) with

∑
xk(0) = 1.

Since the spin state mF = 5/2 does not undergo any two-body collisions leading to
trap loss, its evolution over time is simply given by one-body decay as per N5/2 =

N5/2(0) exp(−L(1)t). Then, noting that N9/2 = Nt − N5/2 + ∆N97 and N7/2 = Nt −
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N5/2 − ∆N97, we find for the majority populations:

Nk = Nt − ( f5/2 ± ∆ f0)N0e−L(1)t, k = 9/2, 7/2. (4.17)

Here we have introduced the shorthand notations Nt(0) = N0, ∆N97(0) = ∆ f0N0 with
xk(0) = fk and ∆ f0 = f9/2 − f7/2. Inserting the above results into eqn. (4.14) one finds for
the rate equation of the total atom number:

Ṅt = −
L(2)

2
√

2Ve

[
N2

t + ( f 2
5/2 − ∆ f 2

0 )N2
0 e−2L(1)t − Nt f5/2N0e−L(1)t

]
− L(1)Nt. (4.18)

Note that a dependence on temperature is contained in the trap volume Ve ∼ 1/T3/2.
Moreover, the density-dependent anti-evaporation heating presented in eqn. (4.4) must
also be taken into account. Neglecting all higher-order processes beyond i = 2, the
corresponding heating rate is then given by

Ṫ =
T
4

(
Ṅt − Ṅ5/2

Nt − N5/2

)
. (4.19)

By reason that the atoms in mF = 5/2 only experience one-body collisions with the
background gases, their population has to be removed from the total atom number in
the above expression as it does not contribute to the density-dependent heating. In
combination with (4.18), the two differential equations can now be fitted to experimental
data with the two-body loss rate entering as a fit parameter. Provided the initial imbalance
∆N0 as well as f5/2 are known, L(2) can be extracted from lifetime measurements under
the condition that no other loss mechanisms are present.

Evaporative losses

Apart from the inelastic processes considered so far, atoms can also be expelled from the
trap due to the onset of evaporation in the presence of the Feshbach resonance. Since a
resonant enhancement of the inelastic collision rate invariably implies an increase of its
elastic counterpart, the scattering length may increase to the extent that hot atoms begin
to leave the trap carrying away excess energy. In our case, this concern applies mostly
to the s-wave scattering length between the states mF = +9/2 and mF = +7/2, which
ordinarily has a background value of abg = 168a0. As will be detailed later, the scattering
length is expected to increase to ares = 275a0 on resonance, implying approximately a
three-fold increase of the scattering cross-section. Any evaporative losses that could occur
as a result effectively increase the observed two-body loss rate of the resonance and the
implied cooling counteracts the density-dependent heating arising from inelastic two- or
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three-body losses. To which degree this effect is relevant in the experimental situation
depends on several factors, most importantly the trap compression factor η = U0/kBT.
The latter can be increased to suppress evaporation, however an upper bound is naturally
given by the released energy Erel of the inelastic collision events. As soon as U0 ∼ Erel

holds, collisional partners may (both) remain in the trap as the released energy is no
longer sufficient to escape, rendering the loss rate models derived so far invalid. Moreover,
evaporation can also be triggered by density dependent heating, which decreases η the
more atoms are lost from the trap.

In order to model inelastic losses correctly, evaporative processes have to be taken into
account if they cannot be suppressed. More quantitatively, the corresponding rate equation
for a single species in a harmonic potential is given by [135]:

Ṅ = −ΓevN with Γev = n0σ(a)v̄e−ηVev/Ve. (4.20)

Here, v̄ = 8kBT/πm represents the average quadratic velocity and σ(a) = 4πa2 the elastic
s-wave scattering cross section. The evaporation volume Vev is defined as

Vev

Ve
= η− 4

Γ(4, η)
Γ(3, η)

,

where Γ(x, y) denotes the incomplete Gamma-function. The evolution of the temperature
in this case can be written as

Ṫ
T

=
1
3
(η+κ − 3)

Ṅ
N

, where κ = 1− Γ(5, η)
Γ(3, η)

Ve

Vev
(4.21)

denotes the mean excess energy carried away by an atom in addition to the trap depth.
Together with the loss rate equations derived in the preceding sections, we are now in a
position to properly analyze atom number trajectories originating from inelastic two-body
losses in a given trap geometry. The corresponding lifetime measurements from which one
can extract the magnetic field dependence of the resonance’s loss rate will be presented in
the following section. To reduce the effect of evaporation while ensuring efficient inelastic
loss, we monitor atom number trajectories as function of time while holding the ensemble
in a mildly recompressed dipole trap such that T � U0 � Ez.

4.3.2. Extraction of the loss rate coefficients from life time measurements

In order to determine the characteristic loss rate spectrum of the resonance L(2)(B, T), the
atom number trajectories have to be recorded for various values of the magnetic field. If
the resonance happens to have an entrance channel with angular momentum larger than
zero (i.e. s-wave), the loss rate will also acquire a dependency on temperature as it sets
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the average collisional energy available to the atoms. This modification of the loss rate is
caused by the presence of a centrifugal barrier in the interaction potential, which prevents
the atoms from approaching one-another if their respective kinetic energies are too low.
Atom number trajectories are recorded in the form of lifetime measurements performed at
different values of the magnetic bias field and initial sample temperatures with η being
identical in each case. Experimentally, we evaporate the positive state mixture in the single
beam dipole trap until reaching an intermediate trap depth before recompressing to the
final potential depth well below the Zeeman energy. By varying these two trap depths, we
keep the same η for all measurements, but vary the temperature of the atomic ensemble
and hence its density as well as the mean collisional energy. The latter is important insofar
as it may allow to infer the partial wave of the entrance channel from the scaling of L(2)

with temperature. For example, for an s-wave open channel one would expect that the
shape of the curve remains the same for all temperatures while in the case of d-wave its
width and height are supposed to increase [136]. Following trap recompression and spin
state preparation, the magnetic field is jumped to the target value and the remaining atom
numbers are recorded after varying hold times.

A set of three atom number- and temperature trajectories measured in this way is depicted
in fig. 4.4a and b. They correspond to resonant and off-resonant magnetic field setpoints
of 7.1 G, 7.2 G and 7.3 G, respectively, with typical initial sample sizes of N0 ∼ 1× 106

atoms at a temperature of T0 = 2.8 µK after recompression. The spin composition at this
stage consists of roughly 60 % 9/2, 28 % 7/2 and 12 % 5/2. The recompressed trap depth
is equal to U0 = kB × 23.6 µK, implying that η0 = 8.4. For reference, the Zeeman splitting
between the relevant states mF = 9/2 and mF = 7/2 amounts to ∆EZ = kB× 111 µK� U0

at B = 7.3 G. The remaining total atom number after a given hold time on resonance is
recorded via absorption imaging following 5 ms of ballistic expansion.
As is evident from fig. 4.4a, we observe strong losses in the vicinity of the resonance that
rapidly deplete the sample, decreasing the atom number by 70 % over the course of three
seconds at B = 7.3 G. For comparison, the one-body lifetime in this setting is usually 47 s.
Turning to fig. 4.4b, relatively strong heating is observed to occur on top of the resonance,
increasing the temperature by about 43 % over the course of the measurement. This
causes additional complications when fitting the rate equation (4.18) to the atom number
trajectories since the trap volume Ve ∼ 1/T3/2 cannot be assumed to remain constant
throughout the evolution. In order to obtain a high fidelity fit of the two-body loss rate,
the differential equation system (4.18) and (4.19) is solved numerically and parametrically
fitted to the total atom numbers and the corresponding temperatures at the same time.
The two-body loss rates L(2) and initial imbalance ∆ f0 = (N9/2(0)−N7/2(0))/N0 are then
obtained as fit parameters subjected to the constraint f5/2 − 1 ≤ ∆ f0 ≤ 1− f5/2. The latter
condition contains the three extreme configurations f9/2 = 0, f9/2 = f7/2 and f7/2 = 0,
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Figure 4.4.: Inelastic losses and heating for different values of the magnetic field. a,b) Total
atom number and cloud temperature as a function of wait time for B = 7.3 G and 7.1 G with
N0 = 1.2× 106 and T0 = 2.8 µK. The dipole trap was recompressed after evaporation to η0 = 8.4
to reduce losses due to enhanced evaporation. Lines are parametric fits using the differential
equations for Ṅ and Ṫ.

respectively, and ensures that the fitting routine respects atom number conservation at
t = 0. However, one must ensure that the best fit parameters do not get stuck exactly at
either boundary as this would imply some inconsistency in the data or the model. Note as
well that evaporation is not included in this model.

On top of the resonance at B = 7.3 G and setting f5/2 = 0.12 (natural population of 5/2

after evaporation), we find L(2)
fit = 3.25(10)× 10−12 cm3 s−1 and ∆N0,fit = 0.26(2). The

latter figure is in excellent agreement with the expected initial spin population (see fig.
3.3). Note that the inclusion of the small population in mF = 5/2 is important insofar as
one would otherwise underestimate the loss rate or overestimate the imbalance.

While the fit is quite sensitive to the imbalance and even benefits from its inclusion as
parameter, it quickly becomes insensitive to it when the magnitude of the losses decreases
on either side of the resonance. We therefore fixed it at the value given before for the
less resonant data sets. The fact that the temperatures can also be fitted well with this
model seems to indicate that evaporation does not play a major role over the course of
the measurement. To substantiate this observation, one can estimate an upper bound
for the evaporation rate between the states mF = 9/2 and mF = 7/2 using equation
4.20. A numerical simulation by E. Tiesinga of the scaling of the scattering length as
function of magnetic field predicts a maximum value of a ∼ 275a0 [129]. One thus infers
an evaporation rate of 2.68× 10−14 cm3 s−1 at the beginning of the measurement, which
increases to 3.66× 10−13 cm3 s−1 for hold time of 3 s. Being at least an order of magnitude
smaller than the fitted inelastic two-body loss rate, this estimate for the evaporation rate
corroborates the initial assumption that it can be neglected for the trap configuration at
hand.
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The full scaling of the two-body loss rate with magnetic field and temperature was
determined from a large number of such lifetime measurements as described above. An
overview and discussion of the implied properties of the Feshbach resonance will be the
subjects of the following section.

4.3.3. Loss rate spectrum and resonance structure

The two-body loss rate spectrum L(2)(B) around the resonance at 9 G is shown in fig.
4.5a. The behavior at larger magnetic fields will be discussed later on. Using the methods
described in the previous section, the two-body loss rates were measured for four disctinct
initial temperatures ranging from 2.8 µK to 30 µK. In order to prepare the ensembles of
40K at one of the intended sample temperatures, the evaporation in the optical dipole trap
was interrupted at a given moment, to be followed by a slow recompression ramp to the
final trap depth. The parameters were chosen such that η0 ' 8 holds for all measurements
with the potential depth ranging from U0 = kB× 23.6 µK to 222 µK. The spin composition
of the 2.8 µK-set corresponds to the well calibrated ratio of 60:28:12, however the situation
for the other sets may be different because the evaporation is stopped at different trap
depths to achieve the sample temperatures mentioned above while keeping η constant.
Given that the three spin states 9/2, 7/2, 5/2 of comparable but unequal populations and
scattering lengths are present in the dipole trap at the moment of loading [61], the ensuing
evaporation dynamics will cause the sample to polarize to some extent. Therefore, when
fitting the loss rate sets for the temperatures larger than 2.8 µK, the parameter f5/2 and
the imbalance ∆N0 are therefore set to the experimentally plausible upper bounds for
the populations. The obtained results for the rate constants can be then considered to
represent upper bounds as well.

Origin of the inelastic losses

The obtained loss spectrum displays some intriguing properties. First, for increasing
temperatures the strength of the observed losses decreases, which manifests itself as a
drop of the peak two-body loss rate extracted from the atom number trajectories. Second,
the center position appears to be shifted slightly towards lower magnetic fields. Third, the
width appears to increase at higher sample temperatures.

Several conclusions about the nature of the inelastic losses can already be drawn from
these observations. Contrary to the negative Zeeman levels for which inelastic two-body
collisions are energetically forbidden since kBT � ∆EZ, the energetically higher lying
positive ones can undergo exothermic spin flips to lower states. The fact that inelastic
losses are reduced with increasing sample temperature and trap depth suggests that the
underlying mechanism is most likely a two-body process. 3-body losses should occur
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Figure 4.5.: Two-body loss rate spectrum. a) Experimental determination of the loss rate as a
function of magnetic field B and average collisional energy as given by the sample temperature T0.
b,c) Numerical simulations by E. Tiesinga of the inelastic collision rates of the possible entrance
channels at various magnetic fields [137].

irregardless of the trap depth because the released energy usually corresponds to the
binding energy of a deeply bound dimer, which is not consistent with the experimental
observations in this case. 2 However, this line of reasoning is only valid as long as there is
no shallow bound state close to the threshold of the background scattering potential. If
such a state is present, the enhancement of the elastic scattering length due to the Feshbach
resonance will cause atoms to spend more time at close range, which in turn entails an
increase of the overlap of the wave functions with the weakly bound state. As a result, the
probability for three atoms to undergo recombination is enhanced as well. In the case of
40K , the background scattering properties are indeed strongly influenced by the presence
of weakly bound states in the singlet and triplet potentials [83]. The associated background
scattering lengths are enhanced due to these potential resonances, taking on the values
as ' 104a0 as well as at ' 170a0. With the scattering lengths being much larger than the
van-der-Waals range of r0 ' 65a0, the corresponding wave functions of the least bound
states extend far into the asymptotic region of the van-der-Waals tail of the inter-atomic
potential. The binding energy of these s-wave bound states will be correspondingly small
with Eb ∼ h̄2/2ma2

bg ∼ U0,max/3, which implies that atoms recombining into them are not
necessarily lost after a recombination event, especially considering that such dimers can
be long-lived. In order to be certain that we indeed observe inelastic two-body losses, one
has to invoke additional arguments to exclude the presence of comparatively strong three-
body processes. One option could to be to fit the lifetime data with two- and three-body

2By the same reasoning, we can also exclude inelastic hyperfine changing collisions as they would release
enormous amounts of energy of roughly kB × 61 mK� U0.
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models and compare the obtained fidelities of the fits. However, this approach may not
provide reliable results as two-body losses with spin imbalance may resemble three-body
losses at longer times. One can, however, calculate the three-body recombination rate for
fermions to form a dimer and a free atom ↑ + ↑ + ↓−→ (↑↓)∗+ ↑ in the low energy limit,
which is given by

ṅ
n
= −L(3)n2 ' −111(na3)2E/h̄,

for a balanced gas [138, 139]. The above expression is valid as long as the condition
E� h̄2/ma2 � h̄2/mR2

e holds. Taking the predicted value of the resonant scattering length
of a ∼ 275a0 [129], one would obtain rate coefficients of L(3)

min = 3.9× 10−28 cm6 s−1 and
L(3)

max = 4.1× 10−27 cm6 s−1 for the two sets with initial temperatures of T0 = 2.8 µK and
T0 = 30 µK, respectively. One can convert these rates into effective two-body rate constants
by multiplying with the initial peak density, which yields L(2)

eff,min = 1.7× 10−15 cm3 s−1

and L(2)
eff,max = 2.3× 10−14 cm3 s−1. One can therefore see that in the worst case scenario

of balanced populations (even neglecting 5/2) interacting via the predicted resonant
scattering length, the initial formation rates of dimers are between three and one order of
magnitude lower than the measured peak two-body loss rates, which puts them firmly
in the background. These estimates suggest that the three-body recombination to the
weakly bound s-level can most likely be neglected in our situation. This conclusion is
further corroborated by the following additional observation: when atoms are trapped
with η being very large, one observes strong resonant heating in the absence of inelastic
losses and a significant change of the spin populations. These dynamics will be studied in
greater detail in sec. 4.4.4. Finally, the observed two-body loss rate 4.5a is reproduced very
well, both in magnitude and scaling with magnetic field, by the numerically determined
two-body inelastic collision rate shown in fig 4.5b. Additional details and comments
regarding the theoretical analysis will be given further below.

Taking all of the arguments raised so far, one can safely conclude that the losses are indeed
two-body in nature. Under this condition, the average released energy per atom must
then be on the order of half of the Zeeman splitting ∆EZ(B = 7.4 G)/2kB ∼ 55 µK. The
underlying reasoning is that ∆EZ corresponds exactly to the released energy arising from
an inelastic collision in which one of the partners undergoes a spin flip to another Zeeman
state. Since the states partaking in the resonance are the energetically highest-lying Zeeman
levels of the ground state manifold, the spin-exchange process will necessarily be exother-
mic. The trap depths for the measurements with T0 = 2.8 µK, 5 µK, 10 µK and 30 µK
evolve according to U0/kB = 23 µK, 48 µK, 108 µK and 222 µK, respectively. When com-
paring these potential depths with the released energy, one can attribute the reduction
of the losses seen in 4.5a to the increased likelihood for atoms to remain in the trap after
an inelastic two-body collision. The elevated baseline of the 30 µK-set’s loss rate may be
attributed to the higher levels of remaining evaporation.
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Higher-partial wave entrance channels do typically display a dependence on tempera-
ture due to the presence of a centrifugal barrier. As the average kinetic energy of the
trapped atoms increases they are more likely to overcome the barrier, which introduces
a dependence on the sample temperature into the loss rate. In the case of p-wave colli-
sions, the center position and width of L(2)(B, T) increases with T, but the height remains
unchanged [127]. For d-wave collisions, also the height of the loss rate curve increases
with temperature [125, 136]. We can see from the spectrum in fig. 4.5 that the resonance at
hand does not fall into either category, which implies that the entrance channel is s-wave.

Structure of the resonance

Theoretical insight into the nature of the closed channel was kindly provided by E. Tiesinga
[137]. The bound state giving rise to this Feshbach resonance is d-wave in nature with
orbital angular momentum of l = 2. At zero magnetic field, the molecular state has
furthermore an internal spin of f = f1 + f2 = 6. Together with the orbital angular mo-
mentum, this gives rise to multiple bound states according to the possible configurations
of the total angular momentum ft = f + l = 6, 7, 8. They are located at an energy of
kB × 450 µK above the threshold at zero field and cross it around B = 8 G. The energy
splittings between the bound states are created by the magnetic dipole interaction. The
predicted height of the centrifugal barrier amounts to kB × 1.5 mK.

The entrance channel has a spin angular momentum projection number of m = 9/2 +

7/2 = 8. For collisions in s-wave with l = 0, one thus has total angular momentum
projection of Mt = m + l = 8. As soon as Mt 6= 8, the entrance channel is predicted to
be d-wave with l = 2. The numerically simulated inelastic collision rates arising from
these various channels at a collision energy of kB × 5 µK are shown in figures 4.5b and c,
corresponding to s- and d-wave entrance channels, respectively. As is evident, the inelastic
rate associated to incoming s-wave collisions exceed by several orders of magnitude the
ones originating from the different higher partial wave channels at the temperatures
under consideration. Consequently, the inelastic two-body loss rate should not display a
strong dependence on temperature, which is consistent with the experimental observation
except for the effects arising from recapture, as discussed above. The comparatively weak
nature of the d-wave contributions precludes the observation of the associated multiplet
structure in the entrance channel. The observed overall shape and magnitude of L2(B)
are well reproduced by the numerical simulations, with the measured peak loss rate
of L(2)

fit = 3.25(10)× 10−12 cm3 s−1 agreeing to within 20 % with the predicted value of
4.05× 10−12 cm3 s−1. The discrepancy is caused by the fact that the measured value is
most likely not exactly on top of the L2(B) curve. The resonance position itself appears to
be shifted by roughly −0.45 G. This deviation is within the prescribed uncertainty of the
numerical predictions of±0.5 G [137]. Moreover, it was later discovered that an additional
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DC magnetic offset field might have been present during the loss rate measurements,
which could have shifted the resonance position by up to 0.2 G. These systematic errors
do not affect any of the conclusions about the properties of the resonance and can be
reprimanded easily by a future recalibration of the L(2) spectrum.

4.4. Resonant spin dynamics in (s,d)-wave collisions

The apparent absence of three-body recombination and the ability to keep atoms trapped
even after they have undergone inelastic two-body collisions makes it possible to study the
time evolution of the spin populations. This dynamical system is driven by the resonant
coupling between the s-wave entrance channel (lin = 0) with Min = 9/2 + 7/2 + lin = 8,
and the d-wave molecular bound states with Mout and lout = 0, 1, 2. Because the spin-spin
interaction is of tensor form, it breaks the spatial spherical symmetry and facilitates the
redistribution of angular momentum between the spin- and spatial degrees of freedom
[112]. In particular, the magnetic dipole interaction Ĥss mixes L = 0 with L = 2 channels,
which gives rise to narrow s-wave Feshbach resonances3 with weak inter-channel coupling
[107, 113, 114, 121–123, 140–142]. The projections of total angular momentum are the only
conserved quantities, i.e. Min = Mout.
One interesting question is whether this system, consisting of the spin degrees of freedom,
will converge towards a steady state and, if so, whether it corresponds to a thermal
Boltzmann equilibrium or something else. In this context, it is a-priori not clear if this
quantum system is open or closed since additional loss channels may become relevant
at long times. In order to address these issues experimentally, the relaxation dynamics
have to be observed in the absence of losses, necessitating the use of a very deep trap
with large η. Apart from the spin populations, the heating experienced by the ensemble
represents a potential observable as it will originate directly from the energy released
during inelastic collisions. The theoretical framework to relate these quantities to the
underlying microscopic processes will be developed in the ensuing sections.

4.4.1. Calculation of the collision channels’ branching ratio

In order to determine at what rate the Zeeman energy is released into the system, one
must know the branching ratio to the available inelastic exit channels. The underlying
transition probabilities are given by the matrix elements of the magnetic dipole interaction,
which will be considered in the following. The inelastic scattering rate is dominant for
atoms colliding in the s-wave channel. Therefore, we can restrict this discussion to one

3By contrast, the exchange interaction contained in Ĥc can mix different hyperfine states because it is not
diagonal in the hyperfine basis {F, mF} at short range. However, for incoming s-waves the orbital angular
momentum L, ml is conserved since the exchange interaction is spherically symmetric. Consequently,
Feshbach resonances mediated by this interaction can only occur if the molecular state is also s-wave [112].
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Figure 4.6.: Possible inelastic collision channels due to the (s,d)-wave Feshbach Resonance.
Left: First collision channel 9/2 + 7/2 with ∆m = 1, in which only the colliding atom with
mF = 7/2 undergoes an exothermic spin flip to the lower lying spin state mF = 5/2. The released
energy corresponds exactly to the Zeeman splitting between the two states at the given ambient
magnetic field. Right: Second collision channel with ∆m = 2. Both colliding atoms flip their spin,
releasing twice as much energy into the cloud.

entrance channel with l = 0 and consider the possible outcomes given that the change of
angular momentum projection can be 0, 1 or 2 by virtue of the exit channel being d-wave
in nature. As was discussed earlier, the angular momentum projection of the incoming
channel amounts to M = l + 9/2 + 7/2 = 8, which has to be conserved throughout the
collision (see sec. 4.1). Based on the fact that we can at most change the internal angular
momentum by ∆mF = 2, we are thus left with the following reactions,

|9/2〉+ |7/2〉 → |9/2〉+ |5/2〉+ 1∆EZ , ∆mF = −1, (4.22)

|9/2〉+ |7/2〉 → |7/2〉+ |5/2〉+ 2∆EZ , ∆mF = −2, (4.23)

which are depicted schematically in fig. 4.6. Because the atoms obey fermionic statis-
tics, the corresponding incoming |i〉 and outgoing two-particle states | f 〉 are given by
antisymmetric superpositions of the Zeeman levels as per:

|i〉 = 1√
2
|L = 0, mL = 0〉 ⊗ (|9/2, 7/2〉 − |7/2, 9/2〉), (4.24)

| f1〉 =
1√
2
|L = 2, mL = 1〉 ⊗ (|9/2, 5/2〉 − |5/2, 9/2〉), (4.25)

| f2〉 =
1√
2
|L = 2, mL = 2〉 ⊗ (|7/2, 5/2〉 − |5/2, 7/2〉). (4.26)

We can define the branching ratio ρ with respect to the total loss rate L(2)
t = L(2)

1 + L(2)
2 as

per
L(2)

1 = ρL(2)
t and L(2)

2 = (1− ρ)L(2)
t , (4.27)

with 0 ≤ ρ ≤ 1. Based on the theoretically predicted structure of the resonance, the
bound state has internal spin of mF = 6. As the dominant entrance channel is s-wave with
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Mt = 8, we thus expect that only reaction (4.23) occurs in practice due to the conservation
of angular momentum projection. This implies that ρ = 0, which will need to be confirmed
experimentally.

By using the experimentally determined inelastic loss rate of the Feshbach resonance, we
can infer the rates at which population is transfered to the target spin states. For the sake
of generality, we will keep ρ as a potentially needed modification to the model in the
ensuing discussion.

4.4.2. Rate equations in the limit of deep trapping potentials

In order to model the dynamics of the spin populations, we assume that the trap depth is
much larger than the Zeeman splitting so that inelastic collisions no longer lead to trap
loss. Rather, the released energy of Erel/kB = 2× 111 µK (reaction (4.23) at B = 7.3 G) is
retained in the sample in the form of kinetic energy, resulting in an overall increase of the
temperature after thermalization through elastic collisions. This continuous increase of
thermal energy may eventually cause spilling and the onset of evaporation as the atoms
begin to approach the threshold of the trap. For now, however, we assume that the atom
number is constant throughout the evolution.

Using energy- and number conservation, the rate equations for the spin populations and
temperature can then be written as:

Ṅ7/2 = −Γ (2)1 , Ṅ9/2 = −Γ (2)2 , Ṅ5/2 = Γ
(2)
1 + Γ

(2)
2 , (4.28)

3NkBṪ = ∆EZΓ
(2)
1 + 2∆EZΓ

(2)
2 , (4.29)

with Γ
(2)
n representing the inelastic collision rate of channel n = 1, 2, as discussed earlier.

The total inelastic rate would be given by the sum over the two available channels as per
Γ
(2)
t = Γ

(2)
1 + Γ

(2)
2 . Neglecting one-body losses, we recall that

Ṅ7/2 = −L(2)
1

N7/2N9/2

2
√

2Ve
, (4.30)

Ṅ9/2 = −L(2)
2

N7/2N9/2

2
√

2Ve
, (4.31)

hold for the two-body collisions at hand. Based on the considerations of the previous
section we set again L(2)

1 = ρL(2)
t as well as L(2)

2 = (1− ρ)L(2)
t for the two channels and

introduce the dimensionless variables

xk =
Nk

Nt
, τ =

kBT
∆EZ

, u =
LNt

2
√

2Ve(TZ)
t, (4.32)

with kBTZ = ∆EZ denoting the Zeeman splitting at a given magnetic field and Nt the total
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Figure 4.7.: Numerical simulation of the rate equations in dimensionless units. a) Time evolu-
tion of the spin populations with the initial conditions x7/2(0) = x9/2(0) = 0.5, x5/2(0) = 0 and
τ(0) = 0.15 for ρ = 0, 0.5, 1. b) Heating as function of time for different branching ratios with
τ(0) = 0.15. c) Spin dynamics as in a) for different temperatures τ(0) = {0.05, 0.15, 0.20} and
ρ = 0. d) Evolution of the temperature for the curves shown in c).

atom number. The rate equations can then be recast in the more convenient form:

dx7/2

du
= −ρ x7/2x9/2

τ3/2
, (4.33)

dx9/2

du
= −(1− ρ)x7/2x9/2

τ3/2
, (4.34)

dx5/2

du
= −dx7/2

du
− dx9/2

du
, (4.35)

dτ
du

= (2− ρ)x7/2x9/2

3τ3/2
. (4.36)

This set of coupled differential equations can be solved numerically, with an example
being given in fig. 4.7. For ρ = 0 and balanced initial populations x7/2(0) = x9/2(0) as
well as x5/2(0) = 0, the inelastic collisions will deplete 9/2 while building up population
in 5/2. As this process continues, the temperature of the sample increases until the system
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reaches an asymptotic steady state at long times where x9/2 → 0 and τ̇ = ẋ5/2 = 0. The
population of 7/2 stays constant throughout the entire dynamics. In general, for otherwise
identical initial conditions, the timescale of the dynamics becomes faster with decreasing
initial temperature τ0.

The situation is quite different if ρ 6= 0. Due to the presence of the second channel, the
average released energy per atom is lower with Erel = (2− ρ)∆EZ/2kB and therefore the
timescale of the heating is reduced. Moreover, 7/2 is now being depleted as well, which
provides a clear experimental signature to distinguish between the expected scenario
where ρ = 0. If the 7/2 population is observed to be constant to within the experimental
noise, this will amount to stating an upper bound for ρ.

4.4.3. Spectrum of the initial heating rates

The initial heating rate itself represents an alternative means to characterize the resonance
and, more importantly, it can be used as a first qualitative confirmation of the validity
of the kinetic model provided the scaling with initial temperature can be reproduced
experimentally. To that end, we performed measurements similar to the lifetime measure-
ments described in sec. 4.3.2. However, the trap is now always recompressed to its full
strength of U0/kB = 222 µK after evaporation to suppress inelastic losses. To prepare the
sample in different initial temperatures, the end point of the evaporation ramp is varied
implying that η0 will not be the same for all of the measurements as is the case for the
spin populations. After the magnetic field is jumped to its target value, the size of the
cloud is recorded via absorption imaging after various (short) hold times and converted
into temperature using the trapping frequencies. The heating rate is then obtained from
a linear fit to the data. The corresponding spectrum is shown in fig. 4.8a for the three
initial temperatures T0 = 12 µK, 16 µK and 25 µK, which resembles the equivalent curve
of the two-body loss rate seen in fig. 4.5. The peak heat rates given in µK s−1 decrease
with increasing sample temperature. However, in order to compare these findings with
the kinetic model devised above, the data has to be converted into dimensionless units to
account for the differences in atom number, which alter the timescale of the heating.

In fig. 4.8b the long-time evolution of the cloud temperature on resonance at 7.3 G
with T0 = 16 µK is shown in the corresponding dimensionless units (4.32) using the
experimentally determined peak loss rate of L(2)

t = 3.25(10)× 10−12 cm3 s−1 for the
conversion. The data is fitted using the rate equations (4.36) with ρ = 0 and the initial
spin populations as free parameters, which assume realistic values in the process.

While these measurements establish overall consistency between the kinetic model and
the experimental findings, a spin resolved measurement is nevertheless needed to confirm
the validity of the model in a quantitative fashion. The experimental procedure will be
described in the following section.
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Figure 4.8.: Heating dynamics in a strongly recompressed trap. a) Heat rate spectrum around
the first Feshbach resonance. The sample was held for various wait times of up to 0.1 s (on
resonance) or 0.5 s (off-resonant) and the heat rate was extracted from a linear fit to the recorded
temperatures. b) Resonant long-term heating in dimensionless units, where the peak loss rate of
L(2) = 3.25× 10−12 cm3 s−1 was used for the conversion. Solid line: Fit of (4.36) to the data with
spin populations as free parameters.

4.4.4. Spin dynamics and verification of the branching ratio

Since the temperatures in the recompressed dipole trap are rather high with T0 ∼ 25 µK,
Stern-Gerlach separation cannot be used for spin-selective imaging, as was already elabo-
rated upon in sec. 3.1. We therefore employ calibrated microwave probing (see sec. 3.3
for details) in combination with optical pumping to detect changes among the spin state
populations. Just like during the heating rate measurements described in the previous sec-
tion, the optical dipole trap is recompressed to its maximum strength of U0/kB = 222 µK
after evaporation. After an intermediate hold time at 4 G to let the atoms settle, one
obtains a sample of 2.10(19)× 106 atoms at a temperature of T0 = 21.50(16)µK. This
corresponds to η0 = 12.4 and a peak density of 7.2× 1012 cm−3. The magnetic field is
then jumped to its near-resonant target value of B = 7.80(2)G4 for various hold times,
before being dropped to 3 G where the atoms are subjected to short microwave pulses
that are tuned to be resonant with a given Zeeman level and its counterpart in the upper
hyperfine manifold. After this spin-selective depletion, the remaining atoms are optically
pumped into the stretched state mF = 9/2 before their total atom number is recorded
via absorption imaging. The population of a given spin state Nk is then calculated by
comparing the remaining number of atoms (N)k after the application of a probe pulse
resonant with |mF = k〉 to the case where none were removed (N)0,

Nk =
(N)0 − (N)k

1−βk
.

4Note that the calibration has changed with respect to the measurements presented so far. See sec. 4.3.3 for
details.
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Figure 4.9.: Spin dynamics close to resonance. a) Fractional spin populations of the states mF =

9/2, 7/2 and 5/2 vs. rescaled time as detected by MW-probing. b) Sample temperature vs. time in
dimensionless units. All lines in a) and the solid line in b) correspond to simultaneous parametric
fits of the differential equation system (4.36) to all four experiment data sets. The initial spin
populations are left as free parameters. The conversion into dimensionless time is done using the
loss rate constant L(2) = 7.5× 10−13 cm3 s−1 and the detected atom numbers at each time. The
longest hold time depicted here corresponds to t = 20 s.

The depletion efficiency βk for a given spin state is defined as N′k = βkNk, which
depends on the chosen parameters of the Landau-Zener ramp such as its duration
and bandwidth. In this case we have 10 ms and 0.35 MHz, respectively, which entails
1−β = {0.894, 0.377, 0.588} for 9/2, 7/2, and 5/2. These efficiencies were previously
calibrated using Stern-Gerlach imaging in conjunction with the MW-probes in a colder
trap setting, ensuring that only one state is addressed at a time. Moreover, the depletion
probability is assumed to not depend on sample density5, which is the basic prerequisite
to be able to use this technique reliably on its own with hotter samples once SG separation
becomes unfeasible. Experimentally, we determine ∆N = (N)0 − (N)k as averages over
multiple measurements and infer the spin populations using the above relation. Using
this technique, the initial spin populations after the preparation sequence outlined above
were determined to be x9/2(0) = 41.9(35), x7/2(0) = 33.2(38) and x5/2(0) = 25.0(22).
A measurement of the ensuing short- and long-term spin dynamics as well as of the
accompanying heating is shown in fig. 4.9, where the experimental data has already been
converted into dimensionless variables as per (4.32). At short times t ≤ 0.1u (∼ 1 s) one
can guarantee the absence of evaporative losses. Apart from the relatively strong heating,
one indeed observes the theoretically expected increase of population in 5/2 as well as the

5At least over the range of values we are dealing with here
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decrease of 9/2 and the constance of 7/2. Since the spin populations are determined from
multiple measurements of the total atom number, the shot-to-shot fluctuations of ∼ 20 %
of the experiment directly enters as errors of Nk and render the detection of small changes
challenging. To compensate for these fluctuations, every data point is taken six times to
obtain a stable average value. We then parametrically fit the differential equation system
(4.36) simultaneously to the four obtained data sets {x9/2, x7/2, x5/2, τ}with the branching
ratio ρ = 0 and the initial temperature τ0 a fixed parameters. Leaving the three initial spin
populations as free parameters, one obtains a good fit for L(2) = 7.5× 10−13 cm3 s−1 for
the first 8 data points, which is in good agreement with the expected rate. At times larger
than 0.1u the dynamics of 9/2 and 5/2 follow the same trend, but appear to slow down
with x7/2 still remaining at a constant level.
The heating dynamics are displayed in fig. 4.9b. After a fast and strong increase of the
sample temperature by roughly 40 % over the course of 0.07u, one can clearly see the onset
of evaporation that lead to a slow cooling of the sample at longer times. At this stage, the
atom number begins to decrease exponentially with a timescale of roughly 32.0 s, which is
much faster than the one-body lifetime of > 120 s. Note that the conversion of time into
dimensionless units did incorporate these changes in total atom number.
While the findings are well reproduced by the kinetic model at short times, the eventual
onset of evaporation and loss of atoms makes the description of the entire dynamics more
challenging. The observed increase of 5/2 and decrease of 9/2 slow down considerably
as a result of the losses, and the steady state will thus be given by an equilibrium of
evaporation and resonant inelastic collisions. Moreover, at long times the collisions may
also occur in the opposite fashion as a result of detailed balance. The steady state observed
here is not thermal as evidenced by the fact that the ratios of the populations are clearly
not given by their expected Boltzmann weights of e−∆EZ/kBT∞ ' 0.01. The system is open
due to the presence of evaporation and spilling losses, and the nature of the steady state
thus needs to be modeled by incorporating these effects for the three involved spin states
in the rate equation model.

4.5. Summary and additional resonances

So far, the analysis of the Feshbach resonance has established the 2-body nature of the
losses and confirmed the numerically determined inelastic collision rate [137]. The spin
dynamics near the resonance clearly show a proliferation of the population in the state
mF = 5/2 at the expense of 9/2, while 7/2 remains at a constant level. Besides this inelastic
process for which ∆m = 2, there is no discernible signature of an additional channel with
∆m = 1. The latter would be signified by a depletion of the mF = 7/2 population, which
was not observed up to the error bars. This confirms qualitatively the prediction that,
for incoming s-waves, only one of the bound states in the closed channel is accessible by
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Figure 4.10.: Full spectrum of the heating rates versus magnetic field. The data points of the first
resonance around 7.3 G correspond to the ones shown in fig. 4.8. The spectrum shows additional
resonances at 10 G, 11 G and 16 G, which were not predicted by the numerical simulations [129,
137] used to described the first (s,d)-wave peak on the left. Solid lines are guides to the eye.

virtue of angular momentum conservation.
In order to further study the resonance, several steps can be taken. Apart from the full
characterization of the steady state as outline above, a more precise measurement of the
two-body loss rate is required to pinpoint the resonance position more accurately. This can
be done by directly fitting the corresponding numerical simulation for L2 to the data. The
second resonance predicted at 160 G may also be studied in a similar manner. Moreover,
the binding energy can be measured via RF association spectroscopy in order to confirm
the numerically predicted scalings in [137]. Finally, the controlled creation of molecules
via magneto-association represents another interesting avenue to pursue.

During the course of this study, additional resonances were found in the range of magnetic
fields under consideration. In fig. 4.10 we show the full spectrum of the short-term heating
rates recorded for magnetic fields of up to 20 G. Apart from the main resonance located
between 7 G and 8 G, three smaller peaks at 10 G, 11 G and 16 G are clearly visible. They
also appear in the corresponding spectrum of the two-body loss rate for 7/2 and 9/2,
which may not provide the correct scaling since the losses may be three-body in nature.
Given that the mixture used to obtain this data contains also small amounts of mF = 5/2,
it is not a-priori clear which combinations of spin states contribute to these loss features.
The processes may also correspond to higher-partial wave resonances between identical
spin states. These features were not present in the numerical simulations provided by E.
Tiesgina [129, 137]. Additional simulations suggest that no p-wave Feshbach resonances
between 9/2, 9/2 and 7/2, 7/2 are expected at these magnetic fields [143].
The detailed experimental and numerical analysis of these loss features will be the subject
of future study.
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In chapter 1 we have emphasized the role of ultracold Fermi gases as versatile platforms
for quantum simulation. Feshbach resonances make it possible to create scale invariant
systems and strong interactions in spin mixtures reaching even the unitary regime, which
gives rise to thermodynamical behavior that depends only on the density and temperature
of the gas [52]. The efforts described so far were directed at system with equal spin
populations. Partially polarized gases enable the study of exotic phases of fermionic
superfluidity in situations, where only partial pairing can occur [36, 144, 145]. Spin
imbalance introduces an effective magnetic field into the thermodynamical description of
the gas, which corresponds to the difference of the two underlying chemical potentials.
Strongly interacting Fermi gases with tailored spin populations can be prepared in a
straightforward manner, which is not possible with condensed matter systems.

The phase diagram of the imbalanced Fermi gas is by definition richer than the one of the
balanced case and contains, for example, the elusive Fulde-Ferrel-Ovchinnikov state [146,
147]. The latter corresponds to an inhomogeneous superfluid state made up of mobile
Cooper pairs, the observation of which represents one of the major goals of currently
ongoing experimental research [52].

The mean field phase diagrams of the three-dimensional Fermi gas with imbalance are
shown in fig. 5.1. Below the tricritical point one observes, depending on the degree of
polarization P = N↑ − N↓/N↑ + N↓, a separation between the paired superfluid and the
mixed normal phase consisting of polarons, and the eventual collapse of superfluidity
at a critical imbalance [52]. This threshold is known as the Chandrasekhar-Clogston-
or Pauli-limit and signifies the onset of the first-order (2nd order above the tricritical
temperature) superfluid to normal phase-transition [148, 149]. In typical inhomogeneous
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Figure 5.1.: 3D Phase diagrams of imbalanced Fermi gases. a) Mean-field phase diagram de-
picting the ground state as function of interaction strength and population imbalance P =

N↑ − N↓/N↑ + N↓. Figure adapted from [156]. b) Phase diagram of a homogeneous Fermi gas
with resonant interactions. Figure adapted from [157].

cold atom systems, the pairing gap ∆(r) depends on the local density while the imbalance
of the chemical potentials 2h = µ↑ − µ↓ is constant throughout the trapping potential.
Since the critical imbalance is given as per hc = ∆/

√
2, the transition will thus occur at a

given equipotential shell in the cloud [52]. It was found experimentally that superfluidity
persists up to a critical imbalance and, beyond the CC-limit, the system behaves like a
normal Fermi liquid [34, 150–155]. In the extreme case of very high imbalance, there is
only one impurity atom surrounded by the majority Fermi sea. This is the so-called Fermi
polaron that has a well-defined energy and effective mass [48].

Over the course of the discussion in chapter 1, we have emphasized as well the role
of reduced dimensionality. Lower-dimensional bosonic gases, on the one hand, have
received a lot of experimental and theoretical attention [36, 158]. Fermi gases, on the
other hand, have been studied predominantly in 3D, as described above, and in 2D
[159–164]. Research of 1D Fermi gases remains scarce, and has been focused mainly on
the observation of (superfluid) pairing and phase separation [165–170]. Recently, first
experimental observations of Luttinger like behavior of Fermions has been reported [58,
171]. In part, the increased interest in (quasi-)1D systems is due to the fact that the FFLO
state is predicted to occupy a larger area of the phase diagram [172–177] in comparison to
3D.

In the absence of superfluidity, however, very little is known about the dimensional
crossover behavior between the two limiting normal states in 3D and 1D. They correspond
to the well-known Fermi- and Luttinger liquids, respectively. In the following, the salient
properties of these two regimes will be summarized before moving on to elaborate on
how the interpolating physics can be studied experimentally, which constitutes one of the
major aims of this thesis.
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5.1. Landau Fermi-liquid theory

The macroscopic properties of many metals, like for example their specific heat and
susceptibility, can be explained at low temperature using the model of weakly interacting
Fermi gases despite the presence of strong interactions. The underlying model is the
much celebrated Fermi-liquid theory by L. Landau [10], which is valid provided that
phonon-mediated pairing can be neglected. The essential idea is that properties on a
macroscopic scale are due only to excitations with energies small compared to the Fermi
energy. The overall state of the many body system can then be given in terms of the
ground state corresponding to the Fermi surface, and the elementary excitations that
form a gas of quasi-particles with finite lifetimes and increased effective mass. Loosely
speaking, one can say that the quasi-particle consists of a particle that is dressed by other
particles around it [178], as is illustrated in fig. 5.2a. There is adiabatic continuity between
the quasi-particles and the bare fermions in the sense that the former can be mapped onto
the latter as the interactions are switched on slowly. The quantum numbers of the quasi-
particles are identical, however their dynamical properties are rescaled by the interactions
[12]. The ground state of free fermions is given by its momentum distribution n0(k). The
corresponding distribution of the interacting system can be obtained via the distribution
function of the quasi-particles. Excitations are given by the deviation with respect to the
ground state as per δn(k) = n(k)− n0(k). In the limit of few excitations, the change in
energy can be expressed in powers of δn(k) [179]:

δE =
∑

k

(ζ(k)−µ)δn(k) +
1
2

∑

k,k′
δn(k) f (k, k′)δn(k′) + . . . . (5.1)

Here f (k, k′) denote the residual interactions between the quasi-particles, which give rise
to the so-called Landau parameters. They, in turn, define the thermodynamical behavior of
the system. The low lying excitations of a Fermi liquid correspond to single quasi-particle
excitations (particle-hole excitations) as well as collective excitations between interacting
quasi-particles. The latter are given in the form of density oscillations (plasmons for
electron gases and sound waves for neutral Fermi liquid) and dampened spin waves
(paramagnons) [178].

The spectral function

Following [180], the single particle Green function of an interacting system is given by:

G(k,ω) =
1

ω−ζ(k)− Σ(k,ω)
,
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Figure 5.2.: Fermi-liquid description of interacting particles. a) Formation of fermionic quasi-
particles in the presence of interactions. b) Schematic plot of the spectral function A(k,ω) consist-
ing of the quasi-particle peak and the incoherent background incorporating the excitations that
do not resemble quasi-free particles. FP corresponds to the delta-shaped spectral function of free
particles.

with ζ(k) denoting the bare dispersion relation and Σ(k,ω) the self-energy incorporating
all of the many-body effects. The latter is equal to zero when interactions are absent.
The poles of G correspond to the single-particle excitation energies, i.e. the spectrum
of elementary excitations. The imaginary part of the Green function is referred to as
the spectral function A(k,ω) = −2Im[G(k,ω)]. It gives the probability to find a single
particle excitation at momentum k > kF and energy ω or a hole with k < kF, and
is thus normalized as per

∫
A(k,ω)dω = 1. For a free particle (no interactions) the

spectral function consequently takes on the simple form A0(k,ω) = δ(ω− ζ(k)) with
ζ(k) = ε(k)−µ, which is only non-zero when the frequency corresponds exactly to the
dispersion relation ε(k) = h̄2k2/2m. In general, the spectral function can be written as,

A(k,ω) = − 1
π

Im[Σ(k,ω)]

(ω−ζ(k)−Re[Σ(k,ω)])2 + (Im[Σ(k,ω)])2 ,

and in the case of quasi-particles, it has only one pole. The self-energy defines the
nature of the spectral function via its real- and imaginary parts [181]. The imaginary part
Im[Σ(k,ω)] < 0 imparts a finite width and height onto A(k,ω). The delta-function of
the free particle limit is thus converted into a Lorentzian centered around ω = ζ(k) +
Re[Σ(k,ω)]. This spread in energy can be interpreted as the lifetime of the quasi-particles,
which is inversely proportional to the imaginary part of Σ and thus depends on the
underlying interactions. Well above the Fermi level, particles can scatter freely while close
to the Fermi sea the phase space is strongly reduced and one can show that in this limit
τ ∼ 1/E(k)2 holds. As a result, the lifetime of quasiparticles can become quite long and
quasi-particles near the Fermi level are thus well-defined [178]. One can furthermore show
that τ ∼ 1/T2 as long as kBT � EF [182].

The real part Re[Σ(k,ω)] of the self energy modifies the position of the spectral function.
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Figure 5.3.: Fermi-liquid of weakly interacting polarons. Atoms belonging to the minority spin
component are dressed by the surrounding majority atoms due to attractive interactions, thereby
forming Polaron quasi-particles. The entire gas can be understood as a Fermi liquid consisting of
an ideal Fermi gas made up of the majority spin component and a weakly interacting Fermi gas of
Polarons.

The interactions give rise to a modification of the dispersion relation of the single particle
excitations as per E(k) = ζ(k) +Re[Σ(k,ω = E(k))]. For low energy excitations near
the Fermi surface, one can expand this expression in powers of k and finds a similar
relation as for free particles, however with an effective mass m∗ due to the interactions. In
addition, the frequency dependence of the real part also alters the total spectral weight
Zk of the excitation peak, reducing it below 1 as in comparison to the free-particle limit.
In essence, this weight quantifies the proportion of the liquid that can be considered
to be free quasi-particles and also manifests itself in the momentum distribution. For
an ideal Fermi gas at zero temperature, n(k) has a sharp drop of magnitude 1 exactly
at the Fermi level kF. The presence of long-lived quasi-particles near the Fermi surface
reduces the height of the discontinuity in the case of the Fermi liquid, which is then
given exactly by the weight ZkF < 1 [178]. Apart from the quasi-particle peak, there is in
general an incoherent continuous background carrying the total spectral weight 1− Zk,
which contains excitations not resembling free particles. The full spectral function can be
represented as A(k,ω) = Zkδ(ω− E(k)) + (1− Zk)Ainc(k,ω).

Realizing Fermi-liquid behavior in cold atomic gases

In Fermi gases with tunable interactions, Fermi liquid behavior is most easily achieved
by preparing spin-imbalanced mixtures above the Clogston-Chandrasekhar (CC) limit
of superfluidity [52]. The case of extreme imbalance with P approaching unity gives rise
to the Fermi Polaron, which was already discussed earlier. In this limit, one minority
atom is suspended in the Fermi sea of the majority component and thus represents a
dressed impurity with well-defined energy and effective mass. For the more relevant
situation of lower imbalance, i.e. higher concentration of minority spins, it was found
that the energy of the minority species does not change significantly when staying above
the CC-limit [150]. The quasi-particles are polarons and only interact weakly with one
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another, thus forming a Fermi liquid. Due to the attractive interactions between the
two spin components, each impurity will then be dressed by many majority atoms and,
consequently, polarons will not overlap and thus form a weakly interacting Fermi gas
(see fig. 5.3). As long as the concentration of impurities remains small, the gas can be
described as a mixture of a Fermi sea of majority spins and a Fermi sea of polarons with
rescaled energy and mass, equal to the ones of the single impurity [48].

Fermi liquid behavior of this type has been observed experimentally in ultracold Fermi
gases [151, 153, 154]. The properties of the quasi-particles can be probed via RF spec-
troscopy [150, 183–192], which is reminiscent of photo-emission spectroscopy used in
condensed matter physics as will be described later on.

5.2. Tomonaga-Luttinger theory

Reducing the dimensionality of a system can strongly alter its properties on a fundamental
level. For quantum systems, low dimensions tend to enhance the role of fluctuations and
correlations for both the ground state as well as its excitations. Fractional statistics are a
prominent example for an exotic property arising as a result. Moreover, one-dimensional
quantum liquids in particular posses a number of exactly solvable models. The most
prominent example is the Tomonaga-Luttinger liquid that can be thought of as the 1D-
equivalent of the Landau Fermi-liquid in 3D, which is not applicable in one dimension
[193]. It describes the low-energy properties of gapless 1D and quasi-1D Fermi gases [194].
The elementary excitations are always collective and obey bosonic commutation relations,
with the most striking feature being the separation of spin- and charge (mass) degrees of
freedom. Their dynamics are sound-like and have different propagation velocities [195].

In practice, an effectively one-dimensional trapping potential can be implemented with
cold atoms, for example, by working with an elongated harmonic trap whose transverse
confinement h̄ω⊥ exceeds by far the energy scale of the longitudinal motion h̄ωz [196].
For a Fermi gas at temperature T/TF � 1, this corresponds to the condition EF↑ =

N↑h̄ωz � h̄ω⊥ with N↑ denoting the number of majority atoms [195]. Assuming a 3D
s-wave scattering length a3D, the 1D collisions can be modeled as contact interactions
via the zero-range potential U1D(z) = g1Dδ(z). They are characterized by the ratio of the
kinetic and interaction energy, γ = Eint/Ekin = mg1D/h̄2n1D, where n1D and g1D denote
the number density and coupling constant, respectively [197]. The latter is determined by
the 3D scattering length and the transverse extension of the wave function:

g1D = − 2h̄2

ma1D
=

2h̄2a3D

ml2
⊥

1
1− Aa3D/l⊥

,

where A = 1.0326 is a constant and l⊥ =
√

h̄/mω⊥ the transverse oscillator length
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[198]. In the limit where l⊥ =
√

h̄/mω⊥ is much larger than the 3D scattering length,
|a| � l⊥, the inter-atomic interactions take on a 3D character. By changing their strength
via g1D(a), one can implement the transition from the quasi-BEC to the Tonks-Girardeau
gas in bosonic gases in 1D, and the BEC-BCS-like crossover in the case of two-component
Fermi gases [199]. In this context one should point out a peculiarity of 1D, in that a bound
states exists even when the scattering length is tuned to the negative side of the Feshbach
resonance. This behavior is quite different from the conventional 3D case and is known as
confinement-induced resonances [165].

Luttinger parameters

Following [195], we will assume for the moment a homogeneous system of size L. In the
absence of interactions the Fermi sea consists of only two points, which are given exactly
by the Fermi momenta ±kF = ±πh̄(N↑ + N↓)/2L. The momentum representation of the
Hamiltonian incorporating the aforementioned effective 1D interaction is given by

H =
∑

k,σ

εkc†k,σck,σ +
g
L

∑

k1 ,k2 ,q

c†k1 ,↑ck1−q,↑c
†
k2 ,↓ck2+q,↓,

with εk = h̄2k2/2m− µ. One can introduce fermionic creation- c†r,σ (k) and annihilation
operators cr,σ (k) for left- and right-moving particles, corresponding to r = R and L,
respectively. The four types of particles are thus {R↑, R↓, L↑, L↓} and have the dispersion
relation εr,q = arh̄vFq. The Fermi velocity is given by vF = kF/m and aR,L = ±1. As all of
the states up to the Fermi level are occupied, one is left with two branches with unbounded
momentum and energy. The densities ρr,s(q) =

∑
k c†r,σ (k + q)c†r,σ (k) are subject to bosonic

commutation relations [193].

Several different kinds of scattering processes can occur. Forward scattering refers
to the process (Rσ)(L,−σ) → (Rσ)(L,−σ) while backward scatting corresponds to
(Rσ)(L,−σ)→ (Lσ)(R,−σ). By definition, atoms of the same spin do not interact with
one another. One can now introduce four new bosonic fields Φi and Πi with i = c, s (charge
and spin, respectively), such that ρr,s(z) = [∂zΦc − arΠc +σ(∂zΦs − arΠs)]/

√
8π holds in

real space. These fields correspond to fluctuations of the (charge) density ρc = ∂zΦx/
√
π ,

the spin density ρs = ∂zΦs/
√
π , the current density jc = Πc/

√
π and the spin current

density js = Πs/
√
π . One thus finds the bosonized Hamiltonian

H =
∑

i=c,s

ui

2

∫
dz
(

KiΠ
2
i +

1
Ki
(∂zΦi)

2
)

,

which contains two independent ’elastic strings’. Their eigenmodes corresponds to col-
lective number density and spin density fluctuations of the quantum liquid. The two
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quantities ui and Ki are referred to as the Luttinger parameters and correspond to the
speed of sound and the behavior of the correlation function at low energy, respectively. In
general uc 6= us, which implies that mass- and spin-density waves propagate with differ-
ent velocities (spin-charge separation, see e.g. [200]), except in the non-interacting system
where they are equal [193]. The latter case is signified by K = 0 and attractive/repulsive
interactions corresponds to K > 0 and K < 0, respectively.

The identities presented so far can be applied to the inhomogeneous case via the local
density approximation (LDA). Provided the sample is large with respect to the inter
particle spacing as per kF � 1/R, the identity µ − U(z) = dE0/dn must hold. E0(n)
represents the internal ground state energy per unit length and n the density. The external
longitudinal potential is given by U(z) = 1/2mω2

z z2. The underlying assumption is that
the Luttinger parameters vary with space only through the density, so that one can make
the substitutions Ki = Ki[n(x)] and ui = ui[n(x)]. The values of the parameters then
depend on the strength of the interactions g. The density profile is always given by a
Thomas-Fermi profile,

n = n0

√
1− z2

R2 , |z| < R

where the Radius R and the central density n0 depend on g. A summary of the corre-
sponding profiles and Luttinger parameters for different regimes can be found in [195].

Spectral functions in 1D

In one dimension, the spectral function A(k,ω) = −Im[G(k,ω)]sgn[ω]/π can be viewed
as a tunneling density of states [201]. It gives the probability for a particle (hole) with mo-
mentum k and energyω > 0 (ω < 0) to tunnel into the system. For right-moving fermions
with no interactions, the spectral function reads A(k,ω) = δ(ω− u(k− kF)). The momen-
tum distribution of a Luttinger liquid is different from the Fermi-liquid case. For any non-
zero interaction strength Kc 6= 1 one finds that n(k) = nkF − const.× sgn[k− kF] |k− kF|δ
in the vicinity of k = kF, with δ = (Kc + 1/Kc − 2)/4. The power-law singularities occur-
ing at the Fermi level are quite different from the step-like singularity akin to the Landau
Fermi-liquid. This implies the absence of a quasi-particle pole in the single particle Green
function and thus a qualitatively different spectral function. The quasi-particle peak
typically seen in the Fermi-liquid is replaced by a continuum with a lower threshold at
mini[ui(k− kF] and singularities on the mass shell [193]:

A(k,ω) =




(ω− us(k− kF))

δ−1/2 |(ω− uc(k− kF)|(δ−1)/2 , uc > us

(ω− uc(k− kF))
(δ−1)/2 |(ω− us(k− kF)|δ−1/2 , uc < us

A schematic illustration is given in fig. 5.4. Since there is particle-hole symmetry in the
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Figure 5.4.: Spectral function of the Luttinger-liquid. a) A(k ' kF,ω) for the linear part of the
dispersion. b) Spectral function for a fixed momentum k ≤ kF. Interactions cause the divergence at
the mass shell and a convergent power-law cusp at the inverted mass shell.

Tomonaga-Luttinger model, the spectral function in the particle region (pos. energy)
is identical to the one in the hole region (neg. energy) for a given k. The fundamental
assumption made so far is that the dispersion relation is linear, which entails the exact
solvability of the Tomonaga-Luttinger model. This way, all of the dynamic response
functions for weakly interacting Fermions can be calculated for arbitrary momenta. This
is valid only if the interaction energy is not on the same order as the kinetic energy [201].
Non-linearities in the dispersion relation can dramatically alter the shape of the spectral
function, for example by re-introducing a Lorentzian-type peak reminiscent of the Fermi
liquid on the particle mass shell [202].

5.3. Momentum-resolved RF spectroscopy

The spectral function of an ultracold Fermi gas can be measured via momentum-resolved
RF spectroscopy [128, 203, 204]. The basic mechanism of this technique is illustrated in fig.
5.5. Electromagnetic radiation in the radio-frequency domain is shone onto the ensemble,
the atoms of which initially occupy two (strongly) interacting spin states |1〉 and |2〉. By
absorbing a photon, one of the atoms can change its internal state to a third target state
|3〉 that does only interact weakly or not at all. In absence of the (strong) interactions,
the energy difference between the initial and target state is simply given by the Zeeman
splitting for the given ambient magnetic field. Interactions between |1〉 and |2〉 give rise
to spectral shifts as well as broadening in the RF response, which in turn can be used to
infer the properties of the many-body system at hand [205–208]. Note that in fermionic
gases one has to use a scheme involving three states due to the absence of clock shifts in
two-level systems [184]. The wavelength of the RF field is usually large with respect to
the size of the atomic cloud. Therefore, the spatial dependence can be neglected and the
intensity can be taken to be constant. The momentum of the RF photon is thus negligible
with respect to the Fermi momentum.
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Figure 5.5.: RF spectroscopy in interacting systems. Two fermions with different spin states |1〉
and |2〉 interact (strongly) in the vicinity of a Feshbach resonance (left). A photon of energy h̄ωRF is
absorbed by one atom, which changes its internal state into |3〉. The resulting combination of states
is no longer interacting with one another (middle). Due to the presence of interactions between
|1〉 and |2〉, the required energy to transfer |1〉 to |3〉 is shifted with respect to the bare energy
difference between the two internal states.

If the spectroscopy is realized in a momentum-resolved manner [154, 209, 210], the peak
of the resulting spectrum corresponds to the underlying dispersion relation. This way, one
gains direct experimental access to the spectral function A(k,ω) = −2Im[Gret(k,ω)] of
the many-body system. In this form, momentum-resolved RF spectroscopy is equivalent
to photo-emission spectroscopy commonly used in condensed matter physics.

Degenerate gases of 40K with tunable interaction strength are realized using the two lowest
lying Zeeman ground states |−9/2〉 and |−7/2〉, which posses a Feshbach resonance at
202.1 G. The straightforward choice for target state for RF spectroscopy is the neighboring
Zeeman state |−5/2〉, whose background scattering length with the other two states
amounts to only a ' 200a0. However, care has to be taken as it has two additional narrow
resonances with |−9/2〉 and |−7/2〉 located at 224.21 G and 228.7 G, respectively (see sec.
2.11.4 for details). A high degree of magnetic field stability is a crucial requirement in order
to be able to record well resolved RF spectra. A detailed discussion of the experiment’s
performance (and compliance) in this regard can be found in appendix B.2.

The reconstruction of the spectral function requires the simultaneously observation of the
momentum distribution for a given probe energy. As we aim on working with closely
placed arrays of microtraps, the appropriate measurement procedure is not obvious and
will be discussed in the following.

5.4. Mapping of the momentum distribution

Access to the momentum distribution of an ultracold gas is typically obtained through
free ballistic expansion. After all trapping potentials are switched off, the atoms move
about freely according to their initial momentum and after a certain time of flight the
momentum distribution can be obtained from the imaged spatial density. The implied
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mapping is, strictly speaking, only valid in the far-field limit as t→ ∞. The underlying
reason is that the influence of the initial in-situ density must become asymptotically small.
This conventional time-of-flight method suffers from two main limitations. First, the
expansion must take place in the absence of interactions in order to avoid redistribution
of momentum among the atoms. Given that interactions are controlled via a Feshbach
resonance, this problem can be addressed by quickly ramping the magnetic field to the
zero-crossing of the scattering length. This is only possible if the resonance width is
sufficiently small, as is the case for 40K . Moreover, when performing RF spectroscopy the
target state can be chosen such that it is only weakly interacting. In this scenario, the strong
interactions between the probed states do not play a role during time-of-flight. Second,
the maximum expansion time is limited by the detection threshold of the imaging system
since increasing cloud sizes entail a reduction of the signal-to-noise ratio. In addition,
when working with systems consisting of multiple macroscopically populated microtraps
as in our situation, the free expansion of neighboring ensembles may cause unwanted
overlap between the density distributions.

The problem of long expansion times can be overcome by momentum refocusing [211–215].
By letting the atoms evolve in a harmonic potential U(z) = 1/2mω2

oscz2 rater than in free
space, the far-field limit of TOF is obtained after exactly a quarter period. This can be
understood using a classical picture, where each particle i starts at some initial position
and momentum. In the absence of interactions, the ensuing single particle trajectories
{zi(t), pi(t)} are governed by the differential equation z̈i(t) = −∂zi U(zi), with the general
solutions

zi(t) = zi,0 cos(ωosct) +
pi,0

mωosc
sin(ωosct) and pi(t) = mżi(t). (5.2)

After a quarter period the position becomes equal to the initial momentum up to a constant
factor, zi(t̃) = pi,0/mωosc with t̃ = τ/4 = π/2ωosc. The oscillation period τ is shared by
all single particle orbits and since the phase retardation between the trajectories’ position
and momentum remains always constant, one can infer the past momentum distribution
of t− τ/4 from the instantaneous position distribution at any time t as per

{z1(t), . . . , zN(t)} =
τ

2πm
{p1(t− τ/4), . . . , pN(t− τ/4)} ∀t. (5.3)

This unique correspondence is illustrated in fig. 5.6a. As soon as the potential becomes
anharmonic, the nature of the orbits change. Typically, the temporal synchronization
between the trajectories is lost as the oscillation periods can now depend on the initial
position and momentum. This situation is shown in fig. 5.6b. This detrimental effect will
become important in the experimental context of the next chapter.

In practice, one does not have direct access to the single particle orbits in phase space, but
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Figure 5.6.: Mapping of momentum onto real space in a harmonic trap. a) Rescaled single
particle orbits in an infinitely high harmonic potential. b) Dephasing of low- and high energy
orbits in a finite trapping potential of the form −a exp (−bz2) + cz. The black lines indicate the
distance covered during a quarter harmonic period.

rather to the density distribution measured through absorption imaging. The relationship
(5.3) can be reformulated in terms of the probability distribution function in phase space.
As long as the potential is harmonic, the phase-space distribution will undergo a rotation
of π/2 after a quarter period. As a result, the position- and momentum distributions will
exchange their roles, which is easily verified using classical expressions for the phase
space distribution [86]. In the more relevant case of a quantum gas, these distributions are
given via field operators as per f (z) = 〈ψ̂†(z)ψ̂(z)〉 and f (p) = 〈ψ̂†(p)ψ̂(p)〉. Following
[214], the time evolution can be determined in the Heisenberg picture, which yields a
Schrödinger equation reminiscent of the paraxial wave equation in optics. One thus
finds the identity 〈ψ̂†(z, τ/4)ψ̂(z, τ/4)〉 = 〈ψ̂†(p, 0)ψ̂(p, 0)〉, which implies that f (z, t =
τ/4) = f (p, t = 0) with p = mωoscz. The density distribution at t = τ/4 gives therefore
direct access to the momentum distribution at t = 0.

Momentum refocusing can be interpreted as a matter-wave analogy to optical lenses,
which map the far-field Fraunhofer diffraction pattern onto their focal plane by imprinting
a quadratic phase shift on the incoming electric field [214]. By combining momentum
mapping with RF spectroscopy, one can thus reconstruct the spectral function A(k,ω)

of an interacting system and avoid the aforementioned detrimental effects arising from
long times of expansion. To that end, harmonic confinement must be provided during
time-of-flight, as will be discussed in sec. 6.2.7.

5.5. Dimensional crossovers between normal states in 3D and 1D

The nature of the normal states of Fermi gases in three and in one dimension is very
different on a fundamental level. On the one hand, one has single-particle excitations
forming a weakly interacting gas of polarons with an effective mass. On the other hand,
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Figure 5.7.: Dimensional crossover in a large spacing optical lattice. Left: The dynamics in the
microtraps located at each lattice site are three-dimensional due to the weak degree of confinement.
The large lattice spacing nevertheless causes site-to-site tunneling to be negligible. Right: Increasing
the optical power increases the trap depth, eventually freezing out the transverse degrees of
freedom.

there are no single particle excitations, but only collective ones in the form of density- and
spin waves. Both limits are characterized by their respective spectral functions, which
reflect the contrast between the two regimes. For a Fermi-liquid there is a well-defined
quasi-particle peak while for a Tomonaga-Luttinger liquid one expects a continuum with
singularities. The dimensional crossover between these two seemingly opposite types of
quantum liquids remains largely unexplored.
Cold atoms offer the possibility to tune the dimensionality of the trapping potential in-situ
[158, 165, 170]. So far, theoretical and experimental efforts to study Fermi systems in their
normal state have been focused on 3D or 1D systems. Dimensional crossovers between one
and three dimensions have been realized, but with the aim to study the phase diagrams
in the presence of (superfluid) pairing [170]. Moreover, the 3D side of the crossover was
realized via weak site-to-site hopping in a 2D optical lattice, which has also been the main
focus of theoretical inquiry [216, 217].

In order to study the dimensional transition of one independent normal Fermi-liquid
to a Luttinger-liquid [218], we employ a 2D optical lattice with large spacing. This
enables the tuning of the dimensionality from 3D to 1D on each lattice site by increasing
the potential depth while, at the same time, suppressing nearest neighbor tunneling
at low trap depths. This way, the lattice effectively forms an array of independent,
macroscopically populated microtraps, which can be analyzed in terms of their excitation
spectrum and momentum distribution. Since this configuration naturally precludes
long time-of-flight measurements, momentum refocusing will be used to reconstruct the
momentum distribution in order to recover the full spectral function via RF spectroscopy.
In the next chapter, the progress towards the experimental implementation of this system
will be described in detail.
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The study of the dimensional crossover between Fermi- and Luttinger liquids is difficult
to realize in conventional condensed matter systems. One requires a means to tune the
dimensionality, the interactions as well as the population imbalance between spin-up
and spin-down fermions. None of these conditions can be met easily within the scope of
classical condensed matter physics. By contrast, many-body systems realized using cold
atoms do offer the necessary means of control in terms of interactions (see secs. 2.11.4,
4.1, C.5) and spin populations (sec. 2.11.3). Moreover, the spectral function can be probed
directly via momentum resolved RF spectroscopy, in analogy to the ’photo-emission
spectrum’ akin to condensed matter systems. In sec. 5.5 we have already outlined the
proposed experimental platform, which is based on large-spacing 2D optical lattices. In
the following, its experimental implementation will be described in detail.
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6.1. Fundamental design considerations and physical requirements

6.1.1. Creation of optical lattices with large spacings

Conservative potentials for neutral atoms can be tailored with off-resonant light. A
fundamental example of this context was already discussed in sec. 2.11.2 in the form of
optical dipole traps created by tightly focused Gaussian beams. Provided the laser source
is sufficiently phase-coherent, one can create periodic potentials by interfering two beams.
Ordinarily, such optical lattices [219] are generated by retro-reflecting a TEM00 beam of
trap depth U0, which results in an approximately harmonic potential of the form:

U(x, r) = 4U0

(
1− 2r2

ω2
0

)
sin2(kλx).

The corresponding spacing of the intensity modulation is given by d = λ/2 = 2π/kλ
and atoms are trapped at its nodes or anti-nodes for red and blue detuning of the laser
wavelength, respectively. The total potential depth of the lattice is four times larger
than the single beam trap depth, i.e. Ulat = 4U0. Note that here we have neglected the
intensity envelope of the Gaussian beam along its longitudinal axis x. Along the transverse
directions y and z, the confinement is set by the radial trapping frequenciesωR of the two
underlying dipole traps to

√
2ωR. As a result, the density distribution of atoms will have

a pancake-like shape, as is shown in fig. 6.1a. The harmonic trapping frequency at the
center of each lattice site is given by

ωlat =

√
Ulat

Erec

h̄2k4
λ

m2 , (6.1)

where we have introduced the recoil energy of the trapping light as per Erec = h̄2k2
λ/2m.

It should be pointed out that the harmonic approximation is valid only as long as the
lattice is sufficiently deep. In this case, each well of the lattice is sufficiently deep to
support several vibrational levels with spacings h̄ωlat. The other important energy scale J
is associated with tunneling between adjacent sites, which corresponds to a gain of kinetic
energy. For deep lattices, it can be calculated, for example, using the Mathieu equation
[36]. Atomic dynamics can be constrained to one lattice site if J is small, or they can extend
over the entire lattice.

When incoherently superimposing two lattices, one obtains a 2D array of elongated
microtraps, as depicted in fig. 6.1b. The trapping frequencies along the non-modulated,
vertical direction z is given by the radial confinement of the partaking Gaussian beams.
Due to the absence of cross-interference, the tunneling energy scales of each partaking
lattice are independent. Here again, the atomic dynamics can extend over the entire lattice
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Figure 6.1.: Generation of optical lattices with large spacings. a,b) Cubic optical lattices created
by one and two pairs of counter-propagating beams, respectively. c) Interference pattern along x of
two running waves intersecting under an angleα. Ulat(α) denotes the lattice depth and d(α) the
spacing between successive sites. d) Wave number of the intensity modulation along x as function
of the difference of the interfering wave vectors.

structure if J1 and J2 are small, or be confined to a single site (or lattice). As the lattice
depths become deeper, it will be less likely for atoms to tunnel to adjacent sites, which
eventually turns the lattice into an array of (macroscopically populated) microtraps. The
dynamics within the ’tubes’ may then be considered either three- or one-dimensional
(along z) depending on whether transverse motion is still possible. The latter limit can
be reached if the confinement within the xy-plane containing the intensity modulation
is increased further. The straightforward way to tune the dynamics in this manner is
the optical power of the lattice beams. For the study of dimensional crossovers within
a given tube, one must thus be in a position to tune the dynamics from 3D to 1D while
maintaining negligible site-to-site tunneling rates at all times. The tunneling rate J(U0)

then determines whether tubes are independent many-body systems while the transverse
trapping frequencyω⊥(U0) sets the dimensionality of the atomic dynamics inside of each
tube.

As will be discussed in more detail later on, the scaling of the tunneling rate with trap
depth is very slow in the case of the retro-reflected lattice. Using large optical powers
one can then still suppress tunneling and reach the 1D regime in each tube. In the 3D
limit, however, the tubes will no longer be independent due to the onset of tunneling. A
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straightforward solution is to increase the spacing d of the lattice, which quickly suppresses
the tunneling as per J ∼ exp(−4d/λ)/

√
d, and facilitates in-situ imaging of individual

sites due to the reduced need for optical resolution [220]. However, this strategy comes
at the expense of reduced trapping frequencies, which, as will be detailed below, scale
much slower with ω⊥ ∼ 1/d. A decrease of trapping frequency at fixed trap depth
also implies that the number of transverse vibrational states per site increases, which
makes it more difficult to achieve 1D dynamics along the vertical direction z. As was
already pointed out in sec. 5.2, in order to be quasi-1D along z the conditionsωz/ω⊥ � 1
and EF,z = N↑h̄ωz � h̄ω⊥ as well as kBT � h̄ω⊥ must hold. A low value forω⊥ thus
necessitates to compensate by either reducing the majority population N↑ or the vertical
trapping frequencyωz, which can cause SNR issues due to low atom numbers or loss of
vertical trapping with respect to gravity. Finding the appropriate set of parameters for d
and U0 will be the subject of the ensuing section 6.1.2.

The lattice constant can be tuned by bringing the beams to interference under an angle
α < 180°, which results in a larger spacing dα > d0 = λ/2 as will be derived below. Since
the light polarization is always transverse with respect to the direction of propagation ki,
interference will occur only along the axis containing the mutually parallel projections
of the two polarization vectors. The mutually orthogonal components, naturally, do not
interfere. This situation is illustrated in more detail in fig. 6.1c and d. The wave vectors of
the two beams are given by

k1 = kλ
(

ex sin
α

2
+ ey cos

α

2

)
,

k2 = kλ
(

ey cos
α

2
− ex sin

α

2

)
,

where kλ = 2π/λ. We are interested in the intensity modulation along the x axis, which
can be calculated via the square modulus of the total electric field:

Iα(x) = I0

∣∣∣eik1r + eik2r
∣∣∣
2
= 2I0 (1 + cos (∆kr)) , (6.2)

with ∆kr = 2kλ sin (α/2)x. The corresponding AC Stark shift is given via the polarizability
of the atoms as per U(x) = R [αλ] I(y, z)/(2ε0c). More importantly, the lattice spacing
can be calculated as function of the angle of intersectionα as per

dα =
π

kλ sin (α/2)
, (6.3)

which takes on the usual value of d0 = πkλ = λ/2 for a retro-reflected lattice where
α = 180°. The trapping frequencies at the individual sites as a function ofα can be found
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by applying a series expansion up to second order to the antinodes of the potential (6.2):

Uα(0) + U′α(0)x + U′′α (0)x2 +O(x3) ' Uα(0) +
1
2

mω2
αx2.

One then readily finds the non-angular oscillation frequencies,

να =

√
2 |U0|

m
1

dα
=

h
md0

√
|U0|
Er

1
dα

. (6.4)

For a given trap depth or optical power, the angle α will define both the maximum
transverse trapping frequencyω⊥ = 2πνα and to which degree tunneling plays a role. In
order to make a sensible choice, the resulting band structure has to be calculated in order
to determine the exact value of Jα.

6.1.2. Tuning the dimensionality of the atomic dynamics

In order to calculate the nearest neighbor tunneling rates between the lattice sites (tubes),
one has to solve the Schrödinger equation describing the underlying two-dimensional peri-
odic potential. However, since the tube lattice is made up of two independent lattices, one
can treat them separately and restrict the calculation to the one-dimensional Hamiltonian
Ĥφn(x) = Enφn(x) with U(x) = U(x + nd) with n ∈ Z. In general, the eigenstates corre-
spond to functionsφn

q (x) characterized by a discrete band index n and quasi-momentum
q [221]. These eigenstates can be determined by using the Bloch theorem’s well-known
Ansatz,

φn
q (x) = eiqxun

q (x) with un
q (x) = un

q (x + nd),

with which one then readily finds the modified Schrödinger equation for the Bloch states
un

q (x):

Ĥbun
q (x) = En

α(q)u
n
q (x) , Ĥ =

h̄2

2m

(
−i

d
dx

+ q
)2

+ Uα(x).

Considering that u(x) and the potential Uα(x) are both periodic functions of the lattice
constant, we can expand them into Fourier series:

un
q (x) =

∑

i

cn
i (q)e

i2π ix/d , Uα(x) =
∑

j

d jei2π jx/d.

Since Uα(x) = 2U0 (1 + cos (2πx/dα)) holds, the latter expansion must have only three
contributing terms with d0 = 2U0, d1 = U0 and d−1 = U0. In combination with the above
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Schrödinger equation, one finds for the coefficients of the Bloch states:

Ĥun
q (x) = En

α(q)
∑

j

cn
j (q)e

i2π jx/d,

which can be recast in a more compact form as

∑

i

cn
i (q)Hi j = En

α(q)c
n
j (q). (6.5)

The matrix elements of the Bloch band Hamiltonian as a function of lattice spacing dα and
potential depth U0 are then given by the expression

Hi j =





(h̄2/2m)(2π i/dα + q)2 + 2U0, , i = j
U0 , |i− j| = 1
0 , else

(6.6)

which can be rewritten in a more convenient form by renormalizing with the recoil energy
Erec and the wave vector kd of the lattice:

Hi j

Erec
=





(dα/d0)
2(2i + 2q/kd)

2 + 2U0/Erec, , i = j
U0/Erec , |i− j| = 1
0 , else

(6.7)

After diagonalization of the above Hamiltonian, the nearest neighbor tunneling rate in the
tight binding limit is given via the bandwidth ∆E1

α of the lowest Bloch band E1
α(q) as per

Jα =
1
2

(
max [E1

α(q)]−min [E1
α(q)]

)
, (6.8)

where max [E1
α(q)] = E1

α(q = ±kd/2) and min [E1
α(q)] = E1

α(q = 0) are the eigenenergies
at the edge and center of the first Brillouin zone, respectively. As was mentioned earlier,
when superimposing in an incoherent fashion two optical lattices along x and y to form
the tube lattice, one will, correspondingly, end up with two independent tunneling rates
(Jx,αx , Jy,αy).

The aim is now to find a configuration in which the atomic dynamics of each site are
independent, which requires the suppression of tunneling between the tubes over long
timescales h/Jk,α → ∞. A related, but more intuitive, quantity to address this issue is
the effective mass m∗. Within classical band theory, the dynamics of (non-interacting)
electrons in solids can be described in a semi-classical fashion by considering the change of
the group velocity vg(q) = (dE/dq)/h̄ under the action of an external force and comparing
the result to Newton’s equation of motion [8]. One then finds a formally equivalent
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Figure 6.2.: Bandstructure, tunneling rates and effective mass of a large spacing 1D optical
lattice. a) Eigenenergies of the first five bands n = {1, ..., 5} for d0/dα = 1, 0.8 (blue and red lines,
respectively). Note that q is renormalized by kd. b) Tunneling rates Jα as function of the angle of
intersection α = 2 arcsin(d0/dα) for different trap depths U0 given in units of the recoil energy
Er. The data points are obtained using (6.8) in conjunction with the numerical solutions for the
Bloch bands. c) Numerical calculation of m∗/m as function of the angle of intersectionα for three
different trap depths U0.

expression, but with a modified mass of the form

1
m∗

=
1
h̄2

(
∂2E0

∂q2

)
,

for which m∗ = m holds in the free-particle limit U0 = 0. As the potential becomes
deeper, the lowest band E0(q) is shifted towards higher energies but also becomes flatter,
resulting in a reduced group velocity and band curvature. Consequently, the effective
mass increases accordingly, which reflects the fact that trapped particles are less likely to
move about the lattice and respond less strong a external forces. For our purpose, we can
thus compare the effective mass at the center of the lowest band as a function ofα to the
bare mass of 40K . We are interested in the limit where the effective mass of the transverse
dynamics becomes infinite, i.e. m∗(q = 0)/m→ ∞ implying that the dispersion relation
of the lattice is flat in comparison to the vertical direction. In dimensionless units, the
corresponding ratio is given by

m∗

m
= 8

(
d0

d

)2 (
∂2E0(kdq̃)

∂q̃2

)−1

q̃=0
(6.9)

Using (6.7) the bandstructure En
α(q), and hence J and m∗, can be calculated by solving

the eigenvalue problem numerically using a truncated basis |i| ≤ imax. The precision of
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Figure 6.3.: Scaling of the effective mass and trapping frequency of a large-spacing optical
lattice. a) Tuning of the dimensionality of the dynamics via the single beam trap depth for the
range of ideal angles between 20° and 30°. The curve corresponding to α = 180° is drawn for
reference. b) Harmonic oscillation frequencies να vs. U0 for various values ofα.

the calculated tunneling rate is directly linked to the chosen cutoff for a given trap depth
U0. The deeper the trap, the higher the cutoff that needs to be set. Fig. 6.2 depicts the
results for various choices of the angle of intersection as parametrized by d0/dα, with
d0/dα = 1 corresponding to the ordinary retro-reflected configurationα = 180°. Since the
size of the first Brillouin zone increases with dα, the bands are plotted for the normalized
quasi-momentum q/kd.

The scaling of the tunneling probability between neighboring lattice sites with the angle
of intersection α is shown in fig. 6.2b for various trap depths. For a given single beam
potential depth U0, the corresponding hopping rate decreases as the lattice spacing be-
comes larger with dα ∼ 1/ sin(α/2). Already for a modest trap depth of U0 = 4Erec, the
corresponding energy scale for nearest neighbor hopping is reduced by more than ten
orders of magnitude when going from the retro-reflected configuration toα = 30°.

The numerical calculation of the ratio m∗α/m is shown in figs. 6.2c and 6.3b for different
angles and trap depths, respectively. In general, the dynamics start to slowly freeze out as
the lattice depth increases and, more importantly, becomes increasingly suppressed asα is
decreased. For conservative values of the trap depths of U0 = 1ER one already obtains
that m∗α/m > 107 when the angle of intersection is chosen smaller than 30°. However,
intersecting two beams under a small angle in a well-controlled way becomes more
challenging from a technical point of view the smaller one sets the angle. Therefore, the
ideal parameter range forα is then given between 20° and 30°. In 6.3b the scaling of the
effective mass with optical power is shown for this selection of angles. As expected, all of
the curves converge at m∗α/m = 1 when the trap depth becomes zero. In stark contrast
to the retro-reflected case, this range of angles enables the tuning of the ratio m∗/m over
eight orders of magnitude already by increasing U0 to a mere 3ER while loosing only a
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factor of roughly 5 in terms of oscillation frequency (see fig. 6.3a).

Experimentally, with a waist of 250 µm and a reasonable optical power of 6 W one can
already achieve single beam trap depths of U0,max ' 33ER for 40K . This corresponds to
a maximum transverse trapping frequency of ω = 2π × 44 kHz for α = 25°. As four
beams are needed to generate the tube lattice, a total initial power of ∼ 40− 50 W will
thus be required on the side of the laser setup since one typically loses ∼ 40− 50 % on
the way to the atoms due to limited diffraction efficiencies of high power AOMs and fiber
couplings. Note that a single laser source is preferable in order to ensure high levels of
phase-coherence between the interfering beams. The laser setup as well as the optical
systems on top of the science cell to generate the lattice will be described in sec. 6.2.1 and
6.2.2, respectively. Finally, the degree to which the sites are quasi-1D involves the axial
trapping frequencyωz, which will be discussed in sec. 6.2.7.

Another important consequence arising from the choice ofα concerns the optical imaging
system to be used to resolve the individual tubes. As was hinted on earlier, a larger value
of dα is beneficial since it reduces the required optical resolving power. With α = 25°
and λ = 1064 nm we obtain a spacing of d ' 2.5 µm. Using Rayleigh’s criterion [222]
the minimum numerical aperture necessary to resolve this length scale corresponds to
NAmin = 0.61λD2/dα = 0.19. This level of performance is still within the capabilities of
standard optics, as will be described in greater detail in sec. 6.2.4. For comparison, in
the retro-reflected case one would have d ' 0.53 µm and thus a minimum resolution of
NAmin = 0.88! From a mere technical point of view, achieving this level of resolution is
challenging and not realistic given the geometrical constraints of the FerMix experiment.

6.2. Preparation and detection of a single row of tubes

Over the course of the previous section we have identified the physical parameters to
facilitate the study of 3D-1D crossovers in an optical tube lattice. In the following, the
technical realization of the suitable experimental platform will be described in detail.
This includes the laser- and optical setup to generate the large spacing 2D optical lattice
as well as the imaging system to resolve the tubes. Moreover, we will elaborate on the
implementation of spin selective imaging at high magnetic fields as well as on the related
spatially resolved optical pumping to isolate a single row of tubes. Finally, the means
devised to compensate gravity and to provide axial confinement along the vertical axis of
the lattice will be presented.

6.2.1. High power laser system

As was discussed previously in sec. 6.1.2, the generation of a tube lattice with four
beams intersecting at 25° requires total optical powers in excess of 40 W (at λ = 1064 nm)



132 Chapter 6. Experimental realization of dimensional crossovers with Potassium-40

Azur Light 
1064nm, 50W

AO
M

+80MHz

Optical
isolator

1:2 beam
contraction &
recollimationbeam

dump2

PBS

SK1

aG-P
PCF1

-80MHz

beam
dump 3

beam
dump1

aG-P
PCF2

AO
M SK2

x-lattice
(16.1W)

y-lattice
(15.8W)

Figure 6.4.: Schematic overview of the high power IR laser system. The laser head’s output of
50 W at a wavelength of 1064 nm is split via a PBS and coupled into two high power optical fibers
via acousto-optical modulators with high damage thresholds. The light intensity after the cleaning
fibers is controlled with a PID circuit, which provides feedback to the RF power of the AOMs (see.
sec. 2.11.2). Excess heat is removed from the setup via water cooled beam dumps. Laser: single
frequency Yb3+ fiber laser amplifier (Azurlight Systems ALS-IR-AMP 1064 nm 50 W), Optical
isolator: EOT Tech, AOM: Gooch & Housego 3110-197, SK1/2: fiber collimator f = 11 mm (
Schäfter-Kirchoff 60FC-SMA-T-23-A11-03), aG-P PCF: broadband single mode photonic crystal
fiber (NKT Photonics aeroGuide Power-15-PM), beam dump 3: water cooled beam dump (Eksma
Optics 990-0820).

provided by a single laser source. To that end we are using an Yb3+ fiber laser amplifier
by Azurlight Systems, which offers high optical output powers at low RIN performance
and spectral linewidth. A schematic overview of the laser setup is depicted in fig. 6.4. The
output of up to 45 W of the ALS laser head is passed through a high power optical isolator
that protects the fibered amplification stage from harmful back reflections. Afterwards
the beam is de-magnified and re-collimated1 by a 1:2 telescope, which optimizes the
mode matching with the ensuing acousto-optical modulators and, by extension, the
diffraction efficiency. After being split into two beams corresponding to the x- and y
lattice, respectively, the light is coupled into high power optical fibers via large aperture
beam collimators. At the outputs of the respective fibers, both axes have maximum optical
powers in excess of 15 W.
The intensity stabilization is analogous to the one used for the main dipole trap of the
experiment, which was already described in sec. 2.11.2. Technical details regarding the
custom electronics used to drive the AOMs can be found in appendix B.4.3.

6.2.2. Generation of the tube lattice

To generate the two dimensional tube lattice, a total of four beams are brought to intersec-
tion at the position of the atoms under a full angle of 23°-30°. To realize experimentally

1The output mode of the ALS laser head is by design slightly converging.
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Figure 6.5.: Optical setup to project the lattice onto the atoms. a) Vertical cross section of the beam
geometry of one lattice axis and the z-imaging/optical pumping. b) Imaging stage after passage
through the science cell. c) Top view of the entire lattice setup mounted on a custom breadboard
(not shown here) located above the science cell. Four narrow, slot-shaped openings allow the lattice
beams to pass through the breadboard under various angles and facilitate alignment. A larger
opening at the center gives direct vertical access to the atoms, which is used for imaging and optical
pumping. SK: fiber collimator f = 7.5 mm (Schäfter-Kirchoff 60FC-SMA-T-23-A7.5-03), aG-P PCF:
broadband single mode photonic crystal fiber (NKT Photonics aeroGuide power), BS80/50: non-
polarizing beam splitter cube, PM: precision motorized Piezo mirror mount (Newport Picomotor
8816-6), LRO VAR2-R1064-PCX-25.4U-400.

the entire range of lattice depths and tunneling rates calculated earlier, each beam has a
waist of 250 µm and a maximum optical power of 8 W. The optical setup used to generate
the beams and redirect them vertically towards the atoms is depicted in fig. 6.5. It is
assembled on a custom breadboard mounted at a specific distance above the science cell,
which was chosen to use as little optical access as necessary and at the same time prevent
the occurrence of optically undesirable angles.

The outputs of the two high power fibers arriving from the ALS laser setup (x- and y-
lattice) are divided by high power non-polarizing plate beam splitters and guided to the
cross-shaped opening of the breadboard located above the science cell. In order to direct
the beams downwards, the cross shaped mirror geometry shown in fig. 6.5a is used, which
keeps the reflection angles off mirrors below 45°. The final inclination of the lattice beams
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can be controlled individually via piezo mirror mounts. Additional PBS cleaning cubes
are mounted on the bottom of the breadboard to restore horizontal polarization of the
light, which might have picked up vertical or circular components due to the preceding
oblique reflection angles.
After passing through the science cell the lattice beams are captured by the z-axis imaging
system (see fig. 6.5b), from which they are extracted and dumped by a reflective dichroic
element. The small portion transmitted through the dichroic gets imaged onto the CCD
camera and can be used to check the alignment of the lattice with respect to the atoms
since all beams have to overlap perfectly in the object plane. The calibration of the angle
of intersection is performed via matter-wave diffraction in the Bragg- or Kapitza-Dirac
limit, the experimental procedure of which is described in greater detail in the following
sec. 6.2.3.
The lattice breadboard is also used to deliver circularly polarized imaging- and optical
pumping light with respect to the quantization axis z. The optical components are depicted
in fig. 6.2.3a. Depending on whether one works with positive or negative Zeeman states,
the polarization of the light can be tuned between σ+ and σ− using a λ/4 waveplate.

6.2.3. Calibration of the lattice spacing via matter wave diffraction

The precise alignment of the four beams is essential to guarantee that a homogeneous
lattice potential is formed at the center of the partaking Gaussian beams. As will be
detailed in the next section, along the transport direction y the lattice can be imaged
directly by using a site-resolved imaging system in combination with a highly sensitive
CCD camera. However, this gives only access to the lattice formed along x. The vertical
axis z does in principle give access to both degrees of freedom, however it can only be used
to confirm that the laser beams overlap in the focal place due to limited optical resolution,
as was detailed in the previous section.
Another way to measure the lattice spacing dα is by taking advantage of matter-wave
interference created by the periodic potential [223]. In essence, the optical standing wave
can act as a diffraction grating if it is pulsed on for a short time. The implied non-adiabatic
nature of this process will cause atoms to be projected onto higher momentum states, the
population of which will depend on the area of the pulse [224]. Afterwards, the atoms are
left to expand freely resulting in characteristic types of interference patterns, which can be
either given by Kapitza-Dirac- (Raman-Nath-) [225] or Bragg scattering [226]. The main
difference between these two limits is the number of populated momentum states. For the
former, one generally works with short pulses2 (i.e. with a large Fourier-width) and thus
observes a large number of symmetric interference orders while for the latter, only one
non-zero order is populated. An equivalent way of putting this is that Bragg scattering

2Whether the duration is short or long depends also on the pulse area.
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Figure 6.6.: Matter-wave diffraction pattern
created by one optical lattice. After evapora-
tion of a positive state mixture in the crossed
optical dipole trap, the lattice was pulsed on
before letting the atoms expand freely for 6 ms.
In stark contrast to BECs that have only one ini-
tially populated momentum state, Fermi gases
tend to be larger and consequently the obser-
vation of clear signatures of matter-wave inter-
ference is more challenging. The pattern seen
here is reminiscent of a Kapitza-Dirac type in-
terference structure.

occurs when the optical grating is thin while Kapitza-Dirac scattering occurs when the
grating is thick [227].

Atoms pick up momentum in units of 2h̄kd via 2-photon Raman coupling, during which
they undergo absorption and stimulated emission between the two travelling waves of
the lattice. An example of a measurement of the y-lattice spacing is shown in fig. 6.6. Here,
multiple orders were populated after one of the lattices was pulsed onto the atoms after
evaporation in the crossed optical dipole trap. During time-of-flight of duration τ atoms
of a certain momentum class will cover a certain distance, with the spacing between two
interference orders n1 and n2 being given by ∆y/∆n = 2h̄kd × τ/m. One can thus infer
the angle of intersectionα of the lattice from the observed distance between neighboring
peaks as per α = 2 arcsin(∆y× d0m/2hτ). For the measurement shown here, we find
α = 28.8° corresponding to a lattice spacing of dy = 2.14 µm. This result matches well the
expected value based on the purley geometric prealignment of the lattice beams.

6.2.4. Site-resolved imaging system

The tube-shaped microtraps represent mutually independent many-body ensembles. There-
fore, site-resolved imaging is required in order to access their thermodynamic quantities
via in-situ density distributions or for momentum refocusing (see sec. 5.4 for details). The
resolution of the imaging system as well as its overall sensitivity must be sufficiently high
to resolve the elongated lattice sites. Taking for example the aforementioned angle of
intersection of 28.8°, the lattice will have a spacing of 2.14 µm. To be able to resolve this
length scale, the imaging system shown in 6.7 was installed along the transport axis of the
experiment (y-axis, see also fig. 2.12). The lens system is made up of two telescopes in 8-f
configuration which have magnifications of M1 = 5 and M2 = 3.75. After having passed
through the atoms (object plane, OP), the modulated absorption light is imaged by the
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Figure 6.7.: High resolution imaging system. The two telescopes with total magnification of
M = 18.75 are arranged in 8 f -configuration in order to image sharply both the imaging light as
well as the ’shadow field’. The probe light at λD2 = 767 nm is sent along the transport tube of
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Figure 6.8.: First signature of the x-lattice. A
positive state mixture close to the degenerate
regime is held in the cODT after evaporation.
Prior to absorption imaging, the x-lattice was
ramped up on top of the cODT and left on until
the end of the ensuing short time-of-flight.

first 4f-telescope onto the conjugated image plane (IP1), where a frame transfer mask can
be installed later on. This intermediate image is then processed by the second 4f-telescope,
which creates the final, 19×enlarged image in the plane of the camera’s CCD chip (IP2).

The most crucial first element of the imaging is an aspheric lens with a numerical aperture
of NA = 0.29. It is placed in close proximity to the science cell, having a short effective
focal length of 40 mm. Given the geometrical constraints of the surrounding coils and the
dimensions of the glass cell, achieving a higher NA along this direction is challenging since
optical elements can at most have a diameter of 25 mm. The second lens is an achromatic
doublet with a focal length of 200 mm, which, together with the asphere, reduces the
amount of spherical aberrations. As of the focal plane of the asphere the imaging light
expands very quickly as it propagates along the y-axis. While the surrounding tube is
large enough to preclude clipping and thus loss of information, the ensuing achromat was
chosen to be large with a diameter of 50 mm to reduce imaging aberrations. The expected
resolving power of the complete imaging setup was verified prior to installation using a
1951-USAF resolution target.

In practice the fidelity of the absorption images are oftentimes compromised by temporal
fluctuations of the imaging light’s intensity and frequency. In addition, interference
between optical elements of the imaging system is usually present and introduces fringes
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into the images, the structure of which can also vary slightly over time. One main source of
interference is the CCD chip of the camera itself, because it can act as an etalon. To detect
(very) low atom numbers the camera has to distinguish small differences between Iabs and
Iref, assuming the absence of other fluctuations. This is a concern, especially in the case of
imaging systems with high magnification which decrease the SNR further.3 To address
these problems for the lattice imaging system, we use an Andor iKon-M 934 as camera,
which has high quantum efficiencies at 767 nm of roughly 95 % and extremely low levels
of (readout-) noise.4 Etaloning of the CCD chip is reduced by means of a specialized AR
coating for the NIR spectral range and the problem of unstable imaging light intensity
can be addressed by taking advantage of the camera’s frame-transfer functionality (’Fast
kinetics’).

One of the first images showing a modulation effect of the x-lattice taken with the complete
imaging system is shown in 6.8. So far, all of the tests have been performed using the
positive Zeeman states at low magnetic fields held in a crossed dipole trap to hold the
atoms against gravity. In the following, we will describe the corresponding imaging
scheme for negative states (see 2.11.3) at high magnetic fields and how to isolate a single
row of tubes at the focal plane of the object lens. Afterwards, the techniques for gravity
compensation and momentum refocusing will be described.

6.2.5. Spin selective imaging at high magnetic fields

At magnetic fields of about 200 G - 230 G, the Zeeman splitting in the ground state of 40K is
sufficiently large with respect to the natural linewidth to allow for spin-selective imaging.
However, owing to the decoupling of the electronic and nuclear angular momenta at high
magnetic fields, the total angular momentum F̂ does no longer represents a good quantum
number. The approximate level structure at 230 G is shown in fig. 6.9.

In the Paschen-Back limit (B→ ∞) the lowest energy levels of the ground state are |1〉 =
|mI = −4, mJ = −1/2〉 (stretched state), |2〉 = |−3,−1/2〉 and |3〉 = |−2,−1/2〉, which
adiabatically connect to the Zeeman levels |mF = −9/2〉, |−7/2〉 and |−5/2〉, respectively,
as B → 0. The natural choices for the imaging transitions along the D2 line correspond
to the target states |1′〉 = |−4,−3/2〉 (stretched state), |2〉 = |−3,−3/2〉 and |3〉 =

|−2,−3/2〉, which correspond to the three lowest lying states in the F = 11/2 manifold of
42P3/2 at low magnetic fields. The selection rules at high magnetic fields for electric dipole

3One could counteract this issue by increasing the imaging light’s intensity or its exposure time to scatter
more photons. However, this solution causes other detrimental effects such as Doppler-shifts and non-zero
acceleration due to radiation pressure, because the imaging no longer takes place in the low-saturation
limit.

4For comparison, the standard PixelFly QE cameras used otherwise are only in excess of 25 %, which
essentially amounts to loosing about 75 % of the atomic signal!
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transitions are given by

∆J = 0,±1 , ∆L = ±1 , ∆mJ = 0,±1 , ∆mI = 0. (6.10)

Therefore, for the transitions between the intended pairs of states left-handed circular
polarization carrying angular momentum −h̄ is required as one needs to change the
total electronic angular momentum projection Jz from mJ = −1/2 to m′J = −3/2. As
was mentioned earlier, the imaging light to perform absorption imaging on the lattice
tubes must propagate orthogonally with respect to the quantization axis (see sec. 6.7),
which means that it is in principle capable of driving all types of electronic transitions
with ∆mJ = 0 (π) and ∆mJ = ±1 (σ±) at the same time. This can be understood by
decomposing the polarization vector of the electric field into the spherical basis. Moreover,
the energy splitting between the target states amounts to only ∼ 11 MHz, which is less
than twice the natural line width. Such narrow energy splittings immediately preclude
the energetic isolation of the lines. At low magnetic fields, one would have to use pure
σ− polarization to drive the above transitions without exciting along π or σ+ channels
(the role of subsequent spontaneous decay will be discussed further below), which is not
possible for our imaging light configuration as it cannot be sent along the quantization
axis if the tubes are to be imaged along their radial direction. However, at high magnetic
fields the situation is rather different since the electric dipole interaction, while changing
the parity of the orbital wavefunction and hence mJ , cannot alter the nuclear spin mI .
As is shown in fig. 6.9, the other excited states with m′J = ±1/2 are energetically well
separated from the targeted ones with m′J = −3/2 and m′I = −4,−3,−2, which means
that imaging light of mixed polarization will only be resonant with its σ− component.
Spontaneous decay back to the ground states can occur along any channel that is allowed
according to the selection rules. Given that mI needs to be conserved during the decay
and since m′J = −3/2, the only available decay channels are 1′ → 1, 2′ → 2 and 3′ → 3.
By that reason, the three imaging lines cannot mix during excitation or spontaneous decay
and therefore can be considered as cycling transitions. However, this picture relies on
validity of the notion that the atoms are indeed deep inside the Paschen-Back regime. Any
deviation from this limit implies mixing as the transitions become partially open. In the
experimental context, this parasitic pumping effect has to be kept small with respect to
the number of scattered photons during imaging.

In order to determine to which extent 40K is affected by this issue around the magnetic
fields of interest between 202 G and 230 G, one has to calculate numerically the energy
eigenstates of the hyperfine Hamiltonian (see appendix C.4 for additional details) and
express them in the {I, mI ; J, mJ} basis. At B = 230 G, the decomposition of the ground
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Figure 6.9.: Level structure of
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states reads explicitly

|1〉 = |mI = −4, mJ = −1/2〉 = |mF = −9/2〉 , (6.11)

|2〉 =
√

0.95 |mI = −3, mJ = −1/2〉+
√

0.05 |mI = −4, mJ = +1/2〉 , (6.12)

|3〉 =
√

0.89 |mI = −2, mJ = −1/2〉+
√

0.11 |mI = −3, mJ = +1/2〉 , (6.13)

with I = 4, J = 1/2 and F = 9/2 at zero field. For the excited states of 42P3/2 with I = 4
and J = 3/2 (F = 11/2 at zero field) one finds similarly that

|1′〉 = |mI = −4, mJ = −3/2〉 = |mF = −11/2〉 , (6.14)

|2′〉 =
√

0.998 |mI = −3, mJ = −3/2〉+
√

0.002 |mI = −4, mJ = −1/2〉 , (6.15)

|3′〉 =
√

0.997 |mI = −2, mJ = −3/2〉+
√

0.003 |mI = −3, mJ = −1/2〉 . (6.16)
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Evidently, there is a considerable amount of admixing of additional basis vectors at the
magnetic fields of interest, especially in the ground state where the nuclear spin stays
coupled to the electronic angular momentum longer than in the excited state. This does
have a few important consequences for the experimental implementation of spin selective
high field imaging, which become apparent when considering the matrix elements of the
dipole operator.

As was detailed earlier, the polarization of the imaging light is always mixed. σ− po-
larization is needed to drive the main imaging transitions with ∆mJ = −1, and all σ+

lines are energetically suppressed. However, the occurrence of other basis states may
enable π components to cause mixing and parasitic pumping to other states because
the energy splittings in the excited states are similar to the natural linewidth. When
considering the crosswise dipole matrix elements of the states given above, one finds
indeed that 〈1|d̂|2′〉 ∼ 〈−1/2|d̂| − 1/2〉 6= 0 and 〈2|d̂|3′〉 ∼ 〈−1/2|d̂| − 1/2〉 6= 0. While
these couplings are small, they should nevertheless be avoided. This can be achieved by
ensuring that the imaging light has horizontal polarization, which corresponds to an equal
superposition of σ+ and σ−. Contrarily, in the case of spontaneous emission these two
parasitic decay channels cannot be avoided by technical means. As a result, population
can in principle decay to the ’wrong’ ground state, but the related branching ratios are
negligible in view of the fact that the number of scattered photons during imaging is
expected to be small.

Spontaneous emission back to the ground states can occur along any path with non-zero
matrix elements. To be certain that there are no additional decay channels at 230 G, the
basis representation of all ground states has to be considered, which is given in table B.1.
While the stretched state |1′〉 can only decay back to |1〉, the two states |2′〉 and |3′〉 do
have additional decay channels apart from the ones mentioned so far. They target the two
highest energy levels of the upper ground state hyperfine manifold mJ = +1/2:

|18〉 = a18 |−4,+1/2〉+ b18 |−3,−1/2〉 , (6.17)

|17〉 = a17 |−3,+1/2〉+ b17 |−2,−1/2〉 . (6.18)

The corresponding transition matrix elements with the excited states are given by

〈2′|d̂|17〉 = 0, (6.19)

〈3′|d̂|18〉 = d3b∗18 〈−1/2|d̂| − 1/2〉 ' 0, (6.20)

〈3′|d̂|17〉 = d3a∗18 〈−1/2|d̂|+ 1/2〉+ c3b∗18 〈−3/2|d̂| − 1/2〉 (6.21)

' 0 + c3b∗18 〈−3/2|d̂| − 1/2〉 , (6.22)

〈2′|d̂|18〉 = c2b∗18 〈−3/2|d̂| − 1/2〉 . (6.23)
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Figure 6.10.: Branching ratios for spontaneous decay during high-field imaging of 40K . The
magnetic field is set to the background value of B = 230 G. Note that the exact values of the basis
expansion coefficients in |1〉, |2〉, etc. were omitted here for clarity. They can be found in table B.1
and in equations (6.13) and (6.16).

The two matrix elements 〈3′|d̂|17〉 and 〈2′|d̂|18〉 are not negligible, which is due to the fact
that the admixing is more pronounced in the ground state than in the excited state because
of the stronger spin-orbit coupling. As a result, already after 10 scattered photons only
50 % of the population will remain in the imaging cycle 2↔ 2′ and in the case of 3↔ 3′

this number decreases to 30 %. An overview of the relevant branching ratios is shown
in fig. 6.10. Consequently, an additional bichromatic repumper with σ− polarization
has to be shone in along the quantization axis to return the population accumulating in
these states to their respective imaging cycles. The laser systems generating the light for
high-field imaging were already described in sec. 2.3.

6.2.6. Isolation of a single row of tubes

Due to the absence of tunneling, the individual tubes of the 2D lattice represent indepen-
dent thermodynamical systems whose parameters will vary across the lattice. For example,
T/TF may be very low for a tube located at the center, but a marginal site might be much
less degenerate. During imaging one automatically averages over several sites along the
line of sight of the imaging system, which can obscure potential physical signatures of
interest. Moreover, the imaging system employed to resolve the lattice sites naturally has
a very shallow depth of field. This will cause the rows located in front- and behind of the
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Figure 6.11.: Optical setup providing spatially modulated optical pumping. The object plane
containing the mask is imaged onto the position of the atoms via a 1:1 telescope that matches the
dimensions of the mask to the lattice constant. The alignment of the mask is done with the help
of an ancillary imaging system (not shown) on the exit side of the science cell. Left: schematic
illustration of the hiding process via optical pumping into dark states; Right: image of the mask
taking with a high-resolution test setup.

one at the focal plane to blur as well, and thereby reduce the contrast of the absorption
image.

In order to circumvent this problem, a single row of tubes has to be prepared, which is most
easily achieved by removing the other ones. As there are no straightforward magnetic
means available to isolate one row, the only viable option is to remove the other tubes
optically. This can be achieved by pumping the concerned atoms to dark states, rendering
them invisible to the imaging light. This approach requires the optical pumping light to be
spatially modulated so that it leaves exactly one row of tubes unaffected. Experimentally,
this can be implemented by first letting the imaging light pass through a rectangular mask
before propagating it to the atoms. This will create a shadow inside of the beam, which
needs to be imaged onto the atoms at high resolution to avoid bluring. The concrete
optical setup is depicted in fig. 6.11. The optically thick mask is deposited on a transparent
glass plate and has a width of 5 µm corresponding to roughly two lattice constants and
a length of > 1 cm. The light’s intensity distribution at the position of the mask (object
plane) is then imaged by a 1:1 telescope onto the atoms.5 The relay telescope must be have
sufficient resolving power since excessive blurring of the mask will cause pumping light
to seep into the dark region, which will cause the tube row of interest to become partially
transparent to the imaging light. Yet another detrimental effect arising from stray photons
incident on the central row is the potential onset of uncontrolled exothermic collisions

5Since the mask already has the correct size, no demagnification is needed.
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between the ’good’ atoms in the states |1〉, |2〉 and |3〉 with the (parasitically) pumped
ones residing in different energy levels of the ground state manifold. The telescope is
made up of two 2" achromatic lenses with focal lengths of 120 mm each. The resolution
of the imaging system is limited to roughly 4 µm due to geometrical constraints arising
from the science cell coil assembly. Nevertheless, it should provide sufficient sharpness to
avoid parasitic optical pumping at the center.
There are several possible choices for the re-pumping transitions. For technical reasons,
the ones requiring the least amount of additional energy were chosen. These lines transfer
the atoms from the states |1〉, |2〉 and |3〉 to the m′J = −1/2 manifold of 42P3/2 via π-
transitions6 as is shown in fig. 6.9. From there the atoms can decay spontaneously via σ+

transitions into states of the upper ground state manifold with m′′J = +1/2:

|1〉 = |−4,−1/2〉J=1/2 → |−4,−1/2〉J′=3/2  |−4,+1/2〉J′′=1/2 = |16〉 ,

|2〉 = |−3,−1/2〉J=1/2 → |−3,−1/2〉J′=3/2  |−3,+1/2〉J′′=1/2 = |17〉 ,

|3〉 = |−2,−1/2〉J=1/2 → |−2,−1/2〉J′=3/2  |−2,+1/2〉J′′=1/2 = |18〉 .

Once an atom populates one of these states, it will no longer be resonant with respect to
the imaging light due to the large detuning of several gigahertz.

The optical system generating the required light frequencies was already described in sec.
2.3. At the time this thesis was written, the above re-pumping scheme had already been
confirmed to work properly in the experimental context and the imaging system adding
the spatially modulated beam profile (fig. 6.11) was in the process of being implemented.

6.2.7. Harmonic confinement for momentum refocusing

In order to reconstruct the spectral functions A(k,ω) of each tube, their respective mo-
mentum distributions need to be determined after performing RF spectroscopy. As was
detailed in sec. 5.4, this can be done without the need for long time-of-flight expansion via
momentum refocusing. To that end, an additional harmonic potential acting as a matter
wave lens along the vertical axis of the tubes is required. Since this potential must not
depend on the spin state of the atoms, the use of magnetic curvature is not possible in the
case of 40K (see sec. 6.2.8 for details). This potential will also set the 1D Fermi energy for a
given tube, and must therefore be weak with respect to the transverse confinement of the
lattice. This condition signifies that the dynamics in a given tube are indeed quasi-1D.
In the following, we will describe how to provide harmonic confinement optically using a
0/π phase plate to generate a blue-detuned TEM01-like mode.7 Apart from momentum

6The absorption imaging was making use of the energetically lower lying m′J = −3/2 manifold.
7In principle, one could also use a red-detuned optical dipole trap instead of a phase-plate. However, in

order to prevent the ODT from competing with the transverse confinement of the lattice, its waist along
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refocusing, this trap can also be used to support the atoms against gravity. However, the
implied asymmetric deformation of the potential must then be taken into account when
inferring the momentum distribution from the spatial density.

Working principle of a phase step plate

To understand how the targeted modulation of a Gaussian beam’s phase can be used to
tailor unconventional intensity profiles, it is instructive to recall several basic relations from
classical wave optics. The free-space propagation of an electric field E(y, z; x) along the x
axis can be described for the paraxial case by making use of the Fresnel approximation.
The field E(y′, z′; x′) at a distance x′ = x+∆x is given as the convolution with the impulse
response function of free space [228],

E(y′, z′; x′) =
−i
λ∆x

∫
dy
∫

dz E(y, z; x) exp
[
iφx(y, z, y′, z′)

]
, (6.24)

with
φx(y, z, y′, z′) = − k

2∆x

(
(y− y′)2 + (z− z′)2

)
. (6.25)

An optical lens imprints a phase on the wavefront, the magnitude of which varies quadrat-
ically with the distance to the optical axis as per [228, 229]

Eout(y, z; x) = Ein(y, z; x) exp
(

ik
2 f

(y2 + z2)

)
(6.26)

For positive focal lengths f , this alteration of the phase transforms a plane wave into a
spherically converging one. The electric field distribution at the focal plane, i.e. after a
propagation distance x′ = x + f , can be calculated using eqn. (6.24):

E(ρ′; x′) =
1
λ f

exp
(
− ik

2 f
ρ′2
)∫

dy
∫

dz E(ρ; x) exp
(

ik
f
ρρ′
)

. (6.27)

Here the abbreviations ρ = (y, z) and ρ′ = (y′, z′) for the radial position vectors were
used. The above equation embodies the fact that the electric field profile at the focal plane
of a lens is proportional to the Fourier transform of the incident field. The emerging
pattern can be thought of as the result of the interference of many elementary spherical
waves, which carry the local amplitude and phase information of the incoming electric
field. Combining these transformation properties of a lens with the ability to alter the
phase front of the incoming light field E(x; y, z) locally form the basis of the beam shaping
techniques described in the following.

this direction must be kept very large. Especially in the case when one wants to compensate gravity, this
scales up the power requirements to unrealistic levels. A TEM01 mode does not suffer from this problem,
so that it can be shaped elliptically which substantially reduces the need for optical power.
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In practice one does not work with ideal plane waves, but rather with (elliptical) Gaussian
TEM00 beam modes, which have an electric field (in units of

√
W/m) of the form

E(ρ; x = 0) =

√
2P

πωyωz
exp

(
− y2

ω2
y
− z2

ω2
z

)
(6.28)

in the plane of the waistsωy andωz. Note that this beam mode usually carries a phase
term that varies along the propagation axis x. However, for our purposes it can be omitted
safely as it does not enter into the final intensity distribution and, consequently, bears
no relevance for the resulting optical potential. Gaussian beams propagate through free
space and optical elements in a more complicated fashion than plane waves which is
due to the finite radius of wavefront curvature R that only becomes infinite at the waist.
When such a beam is subjected to a focusing lens located at its waist, the ensuing focal
plane where again R = ∞ will not exactly be located at a distance f from the lens, but
rather at f ′ = f /

(
1 + ( f /zR)

2). This shift becomes negligible when zR � f holds, and
the incoming Gaussian beam is referred to as quasi-collimated. In this case, the profile of
the electric field at the position of the focal plane will correspond to the Fourier transform
of the incoming one, which is again a Gaussian beam with rescaled waists and Rayleigh
ranges given by

ω′i =
λ f
πωi

with z′R =
f 2

zR
. (6.29)

Now, by deliberately altering the phase of the incoming wavefronts as a function of radial
position, the nature of the profile emerging at the focal plane of the lens can be altered
dramatically. This can be achieved by employing a transparent diffractive optical element,
which is placed at the position of the beam waist (because only here the wavefront is
flat) just prior to a converging lens. The parameters are chosen such that the beam can
be taken to be quasi-collimated. Depending on where the light passes through it a local
phase delay is picked up, the magnitude of which can be manufactured to assume any
value between 0 and π radians. This way, a great number of otherwise technically elusive
intensity profiles can be created by using complex phase patterns. However, the obtained
result is typically only an approximation to the intended, ideal target. In order to provide
harmonic confinement along gravity using blue detuned light, a highly anisotropic TEM01

mode would be an ideal candidate. This mode can be approximated by employing a
binary 0-π step phase distribution [230, 231], which has a complex transmittance of the
form

τ(y, z) =

{
1, z < 0
exp (−iπ), z > 0

, (6.30)

as is shown in fig. 6.12a. With an elliptical Gaussian beam as per (6.28) as input, the
intensity pattern at the focal plane can be calculated as the modulus of the electric field
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Figure 6.12.: Generation of harmonic confinement with a step phase plate. a) Phase distribution
of the 0-π plate. b) Normalized intensity profiles at the focal plane of the resulting TEM01-like
mode I′(y′ = 0, z′) and of the incoming Gaussian I(y′ = 0, z) when no phase plate is present prior
to the FT lens. c) Density plot of I′(y′, z′).

via equation (6.27), yielding

I′(y′, z′) =
2P

πω′yω′z
erfi

(
z′

ω′z

)2

exp

(
−2y′2

ω′2y
− 2z′2

ω′2z

)
. (6.31)

Here, erfi (z) = −i erf (iz) '
(
2/
√
π
)

z +O(z3) denotes the imaginary error function and
the rescaled beam waists are given as per equation (6.29). In essence, one recovers the
intensity pattern of a Gaussian beam that has been focused down and modulated by the
error function. The latter is an odd in z, which causes the electric field to vanish near the
origin, giving rise to an approximately harmonic intensity distribution:

I′(y′ = 0, z′) ' 8P
π2ω′yω′z

(
z′

ω′z

)2

if z′ � ω′z. (6.32)

This can be understood as consequence of the fact that due to the phase retardation of
exactly π radians, the interference between the two halves of the beam at the origin is
going to be destructive [232]. The full intensity profile described by equation (6.31) is
plotted in figs. 6.12b and c. As is evident from the above relation, the waist ω′z is the
relevant length scale that restricts the region over which the potential can be taken to be
harmonic. ω′y, on the other hand, quantifies the rate at which the potential falls off along
y (for z 6= 0). Together with the total optical power P, these three parameters will need to
be optimized to match the experimental situation at hand.

Parameter optimization

The axial harmonic confinement is to be applied to the lattice along x, which is parallel to
the orientation of the single row of tubes and perpendicular to the high resolution imaging
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axis. This choice reduces the amount of required optical power and, more importantly,
ensures that all tubes within the previously isolated single row are subjected to the same
axial trapping potential provided the beam does not diverge too fast, as will be discussed
further below. The relevant length scales based on the lattice’s geometry, to which the
phase plate’s potential U(x; y, z) = R [αλ] I(x; y, z)/2ε0c will need to be matched, are
given by several factors.

First, the range on both sides of the focal plane over which the potential remains nearly
constant must be made large with respect to the number of lattice tubes being imaged. This
distance is referred to as beam-shaping longitudinal range (BSLR) [233] or, less precisely,
as the depth of field (DOF). When considering only small deviations from the focal plane
located at x′ = f , we can insert the series expansion 1/x′ = 1/ f − δx′/ f 2 + . . . into the
propagation integral in (6.24). Together with the phase transformation of the lens, one
arrives at a more general form of eqn. (6.27), the norm of which is given by [229]

∣∣E(ρ′; δx′)
∣∣ = 1

λ f

∣∣∣∣
∫

dy
∫

dz E(ρ; 0) exp
(

ik
(

ρρ′

f + δx′
+
ρ2δx′

2 f 2

))∣∣∣∣ . (6.33)

Second, the radial extension of a tube along y is not larger than the lattice constant
dlat = 2.5 µm. At least over this distance the harmonic potential U(y, z) should not vary
too much to guarantee consistent axial trapping frequencies for all atoms, which essentially
fixes ω′y. Increasing this size further beyond the bare minimum is advantageous since
it minimizes the effect of pointing jitter and increases the depth of field. Third, along
the direction of gravity U(y, z) should be harmonic to within 5 % over a spatial extent of
∆z = 200 µm, implying thatω′y will most likely have to be much larger. If the potential
has to support the atoms against gravity as well, a compromise needs to be found between
the harmonicity along z, the flatness along y and the available optical power P. For this
worst-case scenario, we take as starting parameters for the optimization: ω′y = 2dlat,
ω′z = ∆z and P = Pmax = 5 W. Given its small size,ω′y should not be reduced further to
avoid technical complications8, leavingω′z as the main tuning parameter. A summary of
the results is given in 6.13.

The situation can be relaxed significantly if the the gravitational field does not have
to be compensated by the phase plate’s potential. Choosing less stringent and more
favorable starting parameters,ω′y = 10dlat,ω′z = ∆z and P = 0.4Pmax = 2 W, one finds
the optimization curves shown in figure 6.14. In the ensuing section, we will elaborate
on how gravity can be canceled using an optical gradient field created by a spatial light
modulator. While the simultaneous implementation of both and the phase plate and the
gradient potential is technically more cumbersome, it greatly enhances the flexibility one

8Apart from pointing instability, such a small waist already implies a very shallow depth of field along x
and is challenging to realize experimentally.
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Figure 6.13.: Case study in the presence of gravity. Parameters: P = 5 W, ωz,0 = 200 µm,
ωy,0 = 2clat = 5 µm. a) Optical potentials for different increasing beam waistsωz. b) Fall-off of
the potential for a given waistωz along the transverse direction y up to a distance of y = clat. c)
Gravitational sag as a function ofωz for several values of y. d) Harmonic approximations to the
potentials in a), plotted for the region of interest ±100 µm and various choices ofωz. All curves
were shifted by their respective gravitational sag. e) Harmonic trapping frequencies as a function
of y position and for different choices ofωz. f) Deviation from the harmonic approximation at
the outer edges of the ROI as a function of increasingωz (see plot d). Solid blue and orange lines:
z = ±100 µm at y = 0, Dashed and dot-dashed lines: same for y = 0.5, 1 dlat.
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Figure 6.14.: Case study in absence of gravity. Parameters: P = 2 W, ωz,0 = 200 µm, ωy,0 =

10dlat = 10× 2.5 µm. a),b) similar as above. In c) only the curve at y = 0 is drawn as all normalized
deviations from the harmonic approximation are identical in the absence of gravity.
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Figure 6.15.: Schematic overview of the green high power laser system. The Verdi laser head’s
output of 10 W at a wavelength of 532 nm is split via a PBS and coupled into two high power optical
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b) Figure 6.16.: Preliminary result
of the phase-plate. The exam-
ple depicted here was obtained
using a test setup without care-
ful alignment of the phase plate.
a) Density map of the intensity
profile. b) Integrated profiles
of the incoming and resulting
beams.

has in choosing the parameters of the harmonic confinement.

With the range of technically available trapping frequencies being established, we are now
in a position to gauge to which degree to which the resulting tube is one-dimensional. As
was mentioned earlier, the trapping frequencyωz of the harmonic confinement created by
the phaseplate will define the 1D Fermi energy of a given tube as per EF↑ = N↑h̄ωz. In
order for the gas to be quasi-1D, the condition EF↑/h̄ω⊥ � 1 must hold whereω⊥ denotes
the transverse confinement of the lattice. Taking conservative values ofωz = 2π × 30 Hz,
N↑ = 5× 102 andω⊥ = 2π × 45 kHz (see sec. 6.1.2) with respect to the ones reported in
[58], one already has h̄ω⊥/EF↑ = 0.33.

Experimental realization

The blue-detuned light is provided by a 10 W Coherent Verdi with a wavelength of 532 nm.
The laser setup is depicted in fig 6.15. After some initial beamshaping of the laser head’s
output, the light is split into two beams and coupled into high power single mode fibers
after passage through AOMs. The mode-cleaned outputs are used for the phase-plate and
the DMD setup (see sec. 6.2.8), respectively. Intensity stabilization is realized by providing
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feedback to the AOMs RF drivers, as described in sec. 2.11.2.

A preliminary result of a TEM01-like intensity pattern created with the phase-plate is
shown in fig. 6.16. As is evident, the obtained result is well described by the relation
(6.31). The remaining minor deviations from the ideal behavior can be attributed to the
absence of precise means of alignment in the test setup. The loss of optical power due to
the passage through the substrate or other parasitic diffraction effects was found to be
completely negligible. These first results show great promise for the future realization of
harmonic confinement using a phaseplate, especially when gravity is compensated by an
additional means.

6.2.8. Optical compensation of gravity

Given that the optical lattice is oriented along gravity and possesses only very weak axial
confinement, the gravitational acceleration would cause the atoms to slide out of the tubes
after a few milliseconds. As was discussed earlier, phase-plate is, in principle, sufficient to
provide harmonic confinement for momentum refocusing and to hold the atoms against
gravity. However, the fidelity of this technique is decreased by the linear gravitational
potential, which introduces anharmonicities into the potential.

One can easily compensate this effect by subjecting the atoms to a linear magnetic gradient
field whose slope is chosen such that it exactly cancels out gravity. However, in the case
of 40K one typically works with the two Zeeman spin states mF = −9/2, −7/2 to take
advantage of their Feshbach resonance and, in our specific case, also with −5/2 as target
state for RF spectroscopy (see sec. 5.3), at magnetic bias fields of ∼ 200 G. At these fields,
the respective magnetic moments differ by roughly 10 % and 20 % with respect to the
stretched state, as is shown in figure C.4a and b. It is this difference which prevents one
from employing magnetic gradients for gravity compensation as the differential accelera-
tion would reduce the spatial overlap of the clouds belonging to different Zeeman states.
This situation could be resolved by adding sufficiently strong harmonic confinement
through magnetic curvature while compensating simultaneously the gravitational pull
for the stretched state with a gradient, which would partially compensate the sag of the
other two states as well. As the negative Zeeman levels are high field seekers the field
curvature must be negative, which is the case for the outer coils with B′′ = −2.92 G cm−2

at the appropriate current to obtain a bias field of 230 G. However, with this method
one can only obtain trapping frequencies of about 4.55 Hz (−9/2), 4.31 Hz (−7/2) and
4.03 Hz (−5/2) with the differential gravitational sags of 1.4 mm and 3.3 mm remaining
intolerably large.

The fact that the dipole gradient force scales as U ∼ I(r) with the intensity of the light
field makes it possible to tailor a wide range of potentials for the atomic ensembles. The
effect of gravity can thus also be counteracted by an optical gradient field as long as
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Figure 6.17.: Gravity compensation using a linear intensity pattern. a) Ideal potential to coun-
teract gravity. The inset indicates the size of the lightfield with respect to the lattice tubes. b)
Density plot of the total power Pt × 1/0.3 vs. box size as per equation 6.36. The additional factor is
a realistic estimate of the losses occuring in the optical setup to approximate the power needed
after the cleaning fiber. These losses are mostly due to the limited light utilization efficiency of the
DMD, but also to transmission and reflection losses.

its polarization is linear, which implies the absence of any dependence on the atoms
internal spin state. The creation of such an intensity pattern requires the use of spatial light
modulators such as liquid crystal panels (LCD) or digital micromirror devices (DMD),
which are commonly found in video projectors. While offering a great deal of flexibility,
the main drawback of such modulators are either a low damage threshold for LCD panels
or low light utilization efficiencies in the case of DMDs. Since we would like to work at
far-off resonant wavelengths, which entails high optical powers, we opted for the latter.
In order to gauge whether such an undertaking is feasible from a technical point of view,
one needs to determine the power requirements as imposed upon by the situation of the
atoms at the moment of the loading of the lattice.

Power requirements for an optical gradient potential

For a wavelength of λ = 532 nm the optical potential will be repulsive, that is to say that
regions of high intensity will shift the energy toward larger values. The lightfield I(y, z)
should have a width dy of at least a few lattice constants dL = 2.5 µm and a height dz that
is slightly larger than the extent of the crossed optical dipole trap before loading the lattice.
To counteract gravity, the potential energy must be of the form

U(y, z) =
1

2ε0c
R [αλ] I(y, z) =





0, z = d, 0 < y < dy

mgdz, z = 0, 0 < y < dy

0, else

, (6.34)
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which corresponds to the intensity field I(y, z) = 2ε0c × mg (dz − z) /R [αλ]. This sit-
uation is illustrated in fig. 6.17a. The proportionality constant in (6.34) was already
introduced in in eqn. (2.3) as the AC Stark polarizability of Alkali atoms subjected to
linearly polarized9 light,

1
2ε0c

R [αλ] =
πc2Γnat

2ω3
D1

(
1

∆D1
+

2
∆D2

)
, (6.35)

where ∆D1,2 denotes the angular detuning from the D1- and D2-line, respectively. While
the above relations are necessary to be able to tailor the proper slope of the optical gradient
field, they can also be used to calculate the total optical power contained in the light field
with dimensions dy × dz. This is quite important from a technical point of view to ensure
that the required total power is at all achievable, especially given the fact that spatial light
modulation with DMDs can be inefficient with light utilization efficiency varying from a
few percent to up to 70 % depending on the desired pattern.

The total optical power needed to counteract gravity in a region of dimensions dy and dz

is then given by the simple integral:

Pt =
2ε0c
R [αλ]

∫
dy
∫

dz mg (dz − z) =
ε0c

R [αλ]
mgdyd2

z. (6.36)

The strong scaling with the dimensions of the box makes it necessary to keep it as small
as possible in order to keep Pt at realistic levels. The spatial extension of the tubes along
gravity is expected to be ∼ 250 µm, which would require a total power of about 4.3 W at
the position of the atoms if we took that size for a square gradient light field. Assuming
realistic losses of roughly 70 % of the light due to DMD efficiency and other factors,
one would need 14.4 W after fiber delivery, which is unrealistically high. The situation
can be salvaged by creating a light field of an unequal aspect ratio, which dramatically
reduces the power needs since the lattice tubes will be arranged in a single row that can be
illuminated for gravity compensation from the side. The scaling of eqn. 6.36 with box size
is given in fig. 6.17b, where losses of 70 % have been added. While the size along gravity
has to be kept fixed at 250 µm or larger, there is some flexibility along the y-direction.
However, to ensure that the overlap of the beam with the lattice tubes does not become
too sensitive to pointing jitter as its size is decreased, dy should remain larger than 20 µm.
In this situation, one would require about 1.5 W incident on the DMD, which is technically
attainable given our experimental conditions.

9Circular polarization makes the potential dependent on the internal spin state of the atom, which is clearly
not desirable here as one needs to adress all states in the same manner.
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Experimental realization using a digital micromirror device

Since a DMD is a binary light modulator, the generation of profiles containing intensity
gradients is not straightforward. In order to achieve intensity modulation on the grayscale
level, the ideal reflectance pattern is first dithered using the Steinberg-Floyd error diffusion
algorithm [234]. The resulting (binary) profile is then blurred using a low-pass Fourier
filter embedded in a 4f-correlator to generate smooth intensity maps. The quality of the
obtained result is then improved using iterative feedback, which successively increases the
overlap of the actual pattern with the target pattern. As the experimental implementation
of a DMD is an extensive topic, the reader is referred to sec. B.1 for the main details
regarding the general operation as well as the programming of the device.

The envisioned imaging system to map the pattern of the spatial light modulator onto
the atoms is shown in fig. 6.18. The DMD chip is illuminated by an elliptical Gaussian
beam provided by the laser setup shown in fig. 6.15. The intensity can be tuned with
a PID providing feedback to an AOM before the cleaning fiber. The aspect ratio of the
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beam must be chosen to maximize light utilization efficiency given that the target profile
is a rectangular gradient light field with an aspect ratio of 10:1. After modulation of the
intensity field, the resulting profile is passed through an optical low pass filter to convert
the binary half-toned pattern into a smooth intensity map. Afterwards, it is propagated to
the science cell via relay telescopes and de-magnified in the process.
In fig. 6.19 a preliminary result of a gradient intensity map created with the DMD is
shown. The pattern was generated using a low-power test setup and recorded in the focal
plane of the Fourier low pass filter. The latter was used to remove high frequency noise
and to smooth out the intensity profile. However, iterative feedback was not yet utilized
in this case, which is the reason why the surface still displays some noticeable roughness
and deviations from the ideal target pattern. Nevertheless, these defects will be largely
diminished after additional optimization. For reference, in ideal conditions and by using
active refinement, RMS errors as low as ∼ 0.20 % have been reported with DMDs [235,
236]. The first experimental results presented here are therefore already very promising
for the future compensation of gravity using gradient light fields.



Chapter 7

Summary and outlook

The main results presented in this text concern two complementary aspects of experi-
mental research using cold atoms, pertaining to species-specific and universal physics,
respectively.

In chapters 3 and 4 we described the characterization of a previously unreported closed-
channel dominated (s, d)-wave Feshbach resonance in 40K between the states mF =

+9/2,+7/2, which is part of an ongoing study of the scattering properties of the positive
Zeeman states at low magnetic fields. In particular, the spectrum of the inelastic loss rate
was determined for different temperatures and trap depths, which enabled us to identify
the losses as two-body processes and to establish the dominant entrance channel to be
s-wave in nature. The experimental findings were found to stand in good agreement
with numerical simulations provided by E. Tiesinga [129, 137]. Moreover, we investigated
the dynamics of the spin populations driven by the resonantly enhanced inelastic colli-
sions. The underlying coupling between the s-wave entrance channel and the d-wave
bound state is mediated by the magnetic dipole interaction, causing the redistribution of
angular momentum between spin- and orbital degrees of freedom. The experimentally
observed spin trajectories were analyzed using simple rate equation models and found
to be consistent with the predictions regarding the contributing bound state based on
angular momentum conservation.

Chapters 5 and 6 detailed the progress towards the experimental study of the dimensional
crossover between the Tomonaga-Luttinger liquid in 1D and the Landau-Fermi liquid in
3D. Despite the fact that the two limiting regimes are well understood, the interpolating
physics remains unexplored. We aim on studying this crossover using strongly interacting
imbalanced Fermi gases of 40K , which are loaded into a large spacing 2D optical lattice.
Over the course of this chapter, we described the fundamental design considerations
regarding the dimensional tunability of the lattice’s dynamics in terms of the effective mass
as well as the requirements for momentum-resolved RF spectroscopy and momentum
refocusing. Furthermore, the realization of high-field imaging as well as the scheme
for optical re-pumping into dark states to isolate a single row of tubes were presented.
Several milestones of the ongoing technical implementation were then described in detail.
This concerned the setup of the high power laser system as well as the optical lattice,
whose spacing was then characterized using matter-wave diffraction. In addition, the
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site-resolved imaging system was constructed and tested using the lattice. Finally, the
experimental progress towards the optical compensation of gravity as well as the creation
of harmonic confinement for momentum refocusing were summarized.

Future experiments and next steps

The next milestone towards the experimental realization of dimensional crossovers be-
tween the Fermi- (FL) and Tomonaga-Luttinger-liquid (TLL) is the preparation of a single
array of tubes using the optical pumping scheme described in sec. 6.2.6 with the crossed
optical dipole trap providing vertical confinement. Once implemented, the first three- and
one-dimensional in-situ density profiles can be taken, which already allows to perform
thermometry in either case when interactions are tuned to be weak. Afterwards, the
’matter-wave lens’ for momentum refocusing and the optical gradient field created by
the DMD can be installed at the same time as they share a common optical path and
laser source. The complete experimental platform can then be benchmarked using a non-
interacting Fermi gas to verify, for instance, that the momentum distribution is measured
accurately by the refocusing technique. Finally, momentum resolved RF spectroscopy can
be tested and calibrated by performing it in the known limits of the Fermi-liquid in 3D
and the Luttinger-liquid in 1D.

Once fully implemented, the experimental platform can be used to address a wide range
of physical phenomena in addition to the dimensional FL-TLL crossover as outlined in sec.
5.5. A first exciting prospect would be to study how spin transport in a strongly interacting
Fermi gas is modified by the reduced dimensionality. This can be done, for instance, by
detecting the dynamical evolution of the local imbalance between spin-up and spin-down
components, which are in the process of mixing with one another. Experimentally, this
can be achieved by separating their centers of mass using a magnetic gradient, which is
then switched off to let the clouds drift back to their common rest position. To date, such
transport studies have been carried out in three- and two-dimensional Fermi gases with
strong interactions [237–239], clearly demonstrating the quantum-limited nature of the
spin transport.

Another interesting question to address experimentally concerns the validity of the
Tomonaga-Luttinger model, which is based on the assumption of a linearized disper-
sion relation. As was pointed out in 5.2, non-linear terms appear as soon as kinetic and
interaction energies become comparable. This leads to a modification of the excitation
spectrum which is reminiscent of Fermi-liquid behavior. While behavior consistent with
Fermi-TLL theory was already observed in [58] where interactions were kept sufficiently
weak, a complementary approach would be to investigate eventual deviations from the
TLL model as interactions become stronger.

Finally, the specific combination of a two-component Fermi gas of 40K and 1D confine-
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Figure 7.1.: Simplified overview of the complete experimental platform. a) Large-spacing opti-
cal lattice with site-resolved imaging system and custom optical potentials as well as spatially
modulated optical pumping. b) Creation of a TEM01-like potential using a 0-π phaseplate in
conjunction with an optical Fourier transformation. c) Generation of a smooth gradient potential
using a digital micro-mirror device (DMD) and a 4 f -correlator hosting an optical low-pass filter.

ment may facilitate the study of itinerant ferromagnetism as proposed in [240]. In the
ferromagnetic phase, all atoms are in the same superposition of the two spin states, which
corresponds to a system of identical Fermions. By contrast, the paramagnetic phase is
characterized by a statistical mixture of the two spins, which implies that the energy is
lower. As a result, this configuration is more attractive for Fermions and, therefore, a
ferromagnetic ground state in 3D exists only when there are strong repulsive interac-
tions between the spin components (Stoner criterion [241]). In 3D atomic gases, such a
situation arises when the s-wave scattering length is large and positive, which is usually
accompanied by dimer formation [242–244]. In reduced dimensions, inelastic losses are
decreased but the energy differences between the ferro- and nonferromagnetic state are
even larger [245, 246]. However, following [240], this can be overcome by taking advantage
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of interactions beyond the Stoner model, which can be realized particularly well with 40K .
By ramping the magnetic field in-between the s-wave (even in 1D) and p-wave (odd in
1D) Feshbach resonances at 202 G and 198.8 G, respectively, one can have at the same time
inter-component repulsion and momentum-dependent odd-wave interaction among one
of the components, with the latter causing the groundstate to be ferromagnetic. While this
proposal appears promising, it remains to be verified whether it can be implemented in
our case given the experimental parameters and constraints of the envisioned 1D Fermi
gas.

On the three-dimensional side, many open questions about strongly interacting Fermi
gases still remain despite the plethora of past experimental research. In chapter 4 we have
studied the two-body decay properties and spin dynamics of a thermal two-component
Fermi gas in the vicinity of a (s, d)-wave Feshbach resonance. In this context, inelastic
losses and heating represented the two principle means to probe the properties of this
closed-channel dominated resonance. An extension of this study is to make the transition
to the strongly interacting regime using an open-channel dominated resonance and use the
(weaker) inelastic losses to probe non-trivial properties of the resulting strongly correlated
many-body system.

Three-body contact of strongly interacting Fermions

Unlike resonant bosonic gases, two-component Fermi gases do not display the same
high levels of three-body recombination when tuned close to a Feshbach resonance. The
underlying reason is that the probability to find two fermions with the same spin at close
range is strongly reduced by virtue of the Pauli-exclusion principle. In the asymptotic
limits of the BEC-BCS crossover, the inelastic processes experienced by fermions are well
understood, both experimentally [247–249] and theoretically [250–252]. On the BEC side
of the resonance, inelastic losses are dominated by two-body interactions between atoms
and dimers or between pairs of dimers. On the BCS side, s-wave collisions between three
fermions are suppressed by Pauli-exclusion [253], so that the main decay mechanism is a
three-body process facilitated by p-wave collisions. However, the behavior at unitarity
when 1/a→ 0 remains unknown. The interest in studying the latter lies in the fact that one
may gain access to non-trivial three-body correlations, which naturally make a connection
to the strong interactions of nuclear physics as well as to the corresponding processes in
the crust of neutron stars [254]. If short-ranged, the three-body interactions can be treated
perturbatively and one can define a three-body contact parameter via the probability of
finding three atoms with spins {↑, ↑, ↓} within a given hyperradius ε,

N↑↑↓(R < ε) =

∫

R<ε

d3r1d3r2d3r3 g↑↑↓(r1, r2, r3) ∼
ε→0
C3
ε2s+2

2s + 2
,
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body state can only be formed when a third atom participates in the inelastic collision to ensure
conservation of momentum. The released binding energy Eb ∼ kB × 1 K is usually much larger
than typical optical trap depths U0 ∼ kB × 0.5 mK, causing the dimer and the free atom to be lost
from the trapping potential.

where g↑↑↓(r1, r2, r3) = 〈ψ̂↑(r1)ψ̂↑(r2)ψ̂↓(r3)ψ̂↓(r3)ψ̂↑(r2)ψ̂↑(r1)〉 denotes the correlation
function and C3 the three-body contact parameter. The latter can be probed via three-body
losses, the rate of which is assumed to be given as per ṅ = −γC3 with the underlying
reasoning being that the loss rate should be proportional to the probability of finding three
atoms at the same time with a hyperradius smaller than the potential range [255–257].
However, this requires the knowledge of the appropriate scaling laws depending on the
temperature of the sample. At T = 0 only the length scale 1/kF remains, resulting in the
exotic form of the rate equation for the density:

ṅ ∼ −
∑

i, j

αi, jn(2si, j−5)/3

For T � TF one finds that ṅ ∼ −n2.85, which corresponds to the lowest exponent in the
above expression representing the largest contribution to the three-body losses. At high
temperatures the usual scaling of ṅ ∼ −n3/T0.23 should be recovered since three-body
correlations become negligible [255].

A thorough study of three-body losses in strongly interacting Fermi gases may thus repre-
sent a way to probe the three-body correlations at short range and, by direct extension,
of the contact parameter C3 [255]. To that end, the appropriate rate equations for density
and temperature (see [257] for additional details) have to be fitted to experimentally deter-
mined atom number trajectories obtained at unitarity. More concretely, the measurement
procedure would consist of preparing degenerate samples of 40K on top of its canonical
Feshbach resonance at B = 202 G and recording the remaining number of atoms as func-
tion of hold time. In this context, the well-known scalings for inelastic losses in the BEC-
and BCS limits provide both a reference and a means for calibration.
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Quasi-thermalization of collisionless Fermions

1. Analog simulation of Weyl particles with cold atoms. D. Suchet, M. Rabinovic, T.
Reimann, N. Kretschmar, F. Sievers, C. Salomon, J. Lau, O. Goulko, C. Lobo and F. Chevy.
Europhysics Letters 114, 26005 (2016).

In this letter we report on a novel approach to study the dynamics of harmonically
confined Weyl particles using magnetically trapped fermionic atoms. We find that
after a kick of its center of mass, the system relaxes towards a steady state even in the
absence of interactions, in stark contrast with massive particles which would oscillate
without damping. Remarkably, the equilibrium distribution is non-Boltzmann,
exhibiting a strong anisotropy which we study both numerically and experimentally.

2. Quasi-thermalization of Fermions in quadrupole potentials. J. Lau, O. Goulko, D.
Suchet, T. Reimann, C. Enesa, F. Chevy and C. Lobo. To be submitted to Phys. Rev. A.

We analyze some puzzling features of an experiment with a noninteracting classical
gas of atoms in a quadrupole trap. Surprisingly, after a momentum kick, the mo-
mentum distribution remains anisotropic at long times, characterized by different
temperatures along the different directions even though the motion along each
direction is not independent of the others; also, the kick energy is not transmitted to
orthogonal directions. To understand this we solve two closely related models, a
spherically symmetric trap ' rα and a strongly confined gas along one direction, a
“pancake" trap. We find that in the spherical trap the gas preserves the anisotropy of
the kick at long times and explain this using the conservation of angular momentum
and the virial theorem. Depending on the value of α we find that the kick can
cool or heat the orthogonal directions. We find also a first order phase transition
if the spherical symmetry is broken, which is manifested as a discontinuity in the
temperature behaviours. We explain this in terms of the orbital precession of the
planes of motion due to the non-spherical part of the potential. The pancake trap is
studied in terms of an effective 2D potential obtained by averaging the fast motion
along the strongly confined direction and is shown to be quantitatively similar to
the quadrupole case. The temperature anisotropy and direction independence are
shown to result from the change in the 2D effective potential due to the kick.

https://doi.org/10.1209/0295-5075/114/26005
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Abstract – In this letter we report on a novel approach to study the dynamics of harmonically
confined Weyl particles using magnetically trapped fermionic atoms. We find that after a kick of
its center of mass, the system relaxes towards a steady state even in the absence of interactions,
in stark contrast with massive particles which would oscillate without damping. Remarkably, the
equilibrium distribution is non-Boltzmann, exhibiting a strong anisotropy which we study both
numerically and experimentally.
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Introduction. – Weyl fermions were introduced for
the first time in 1929 as massless solutions of the Dirac
equation [1]. Despite constituting one of the paradigms of
contemporary high-energy physics, their existence in Na-
ture has remained unconfirmed until very recently. While
at first suggested to describe neutrinos, the observation
of flavor oscillations implying a non-zero rest mass ruled
out this hypothesis [2]. It had been pointed out that
they could be observed in the form of low-energy exci-
tations of crystalline structures with a linear dispersion
relation around a so-called Weyl point. The non-trivial
topology of such Weyl semimetals is responsible for the
Adler-Bell-Jackiw chiral anomaly [3,4] which leads to re-
markable properties such as negative magnetoresistance,
anomalous Hall effect and non-local transport [5]. More-
over, the confinement of quasiparticles obeying a linear
dispersion relation was suggested as a way to engineer in-
dividual quantum dots [6], notably for the improvement
of multiple exciton generation in solar cells [7].

The mere existence of Weyl points in reciprocal space re-
quires a broken time-reversal or inversion symmetry, which
are challenging to implement experimentally. As a con-
sequence, observations of Weyl particles were reported
only recently in 3D compounds such as HgCdTe, HgM-
nTe [8], TaAs [9,10] as well as in photonic crystals [11].
Owing to their high degree of control and versatility, cold
atoms offer a promising and complementary route for the
experimental study of Weyl fermions. Early proposals in

this context were based on the band structure of cold
atoms in 3D optical lattices extending the 2D Harper
Hamiltonian [12]. Yet another approach is analog sim-
ulation where one takes advantage of the mathematical
equivalence between two seemingly different physical sys-
tems. Such mapping were successfully used in the past to
relate, for instance, Anderson localization to the δ-kicked
rotor [13–15], quantum magnetism to the filling factor of
an optical lattice [16,17], the solutions of the Dirac equa-
tion to the dynamics of ion chains [18,19], or quantum
Hall edge states to the eigenmodes of classical coupled
pendula [20].

In this letter, we report on the analog simulation of
Weyl particles in a harmonic potential using a dilute gas
of cold magnetically trapped atoms. Using a canonical
mapping exchanging position and momentum in the sys-
tem’s Hamiltonian, we address the dynamics of an ensem-
ble of non-interacting Weyl particles after excitation of
their center of mass (CoM). The system’s ensuing relax-
ation towards a steady state exhibits intriguing dynamics,
resulting in a strongly anisotropic and non-thermal mo-
mentum distribution of the cold gas. Our observations are
interpreted using a kinetic model based on virial theorem
and energy conservation.

Mapping. – The magnetic quadrupole trap is a com-
mon technique for confining neutral atoms [21]. It is made
up of a pair of coils carrying anti-parallel currents, creating
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close to their symmetry center a linear magnetic field
B0(r) = b(αxx, αyy, αzz), where z is the symmetry axis
of the coils. Here b denotes the magnetic-field gradient and
Maxwell’s equations imply that αx = αy = 1, αz = −2.
For a spin-(1/2) atom of mass m carrying a magnetic
moment μ, the coupling to this field leads to the single-
particle Hamiltonian

h (r,p) =
p2

2m
− μσ · B0(r), (1)

where σ are the Pauli matrices. By means of the canonical
mapping Xi = cpi/μbαi and Pi = −μbαixi/c with c being
an arbitrary velocity scale, the Hamiltonian (1) becomes

H = cσ · P +
1

2

∑

i

kiX
2
i . (2)

The first term corresponds to the kinetic energy cσ · P
of a massless Weyl particle moving at velocity c while
the second one is readily identified as an anisotropic har-
monic potential, characterized by spring constants ki =
α2

i μ
2b2/mc2 = α2

i k along each direction i. This mapping
is at the core of our work and it shows that neutral atoms
confined by a linear potential can be used to simulate ex-
perimentally the dynamics of Weyl particles.

The single-particle trajectories of the Weyl particles
can be obtained using Ehrenfest’s theorem applied to the
Hamiltonian (2). Using uppercase (lowercase) symbols for
the phase-space coordinates of the Weyl particles (spin-
(1/2) atoms), we obtain respectively in the Heisenberg
representation:

Ẋi = cσi, ṗi = μbαiσi, (3)

Ṗi = −kiXi, ẋi = pi/m, (4)

σ̇ =
2c

h̄
σ × P , σ̇ =

2μ

h̄
σ × B(r). (5)

Equations (3) to (5) are fully quantum, but in the fol-
lowing we will focus on the classical regime, and con-
sider the operator mean values. Noting that 〈σ〉2 = 1,
The first of eqs. (3) immediately shows that even in a
harmonic trap Weyl particles move at a constant veloc-
ity c. Equations (5) describe respectively the particle’s
spin precession around the momentum P and magnetic
field B. The adiabatic following results in the conserva-
tion of helicity and of the Zeeman populations, giving rise
to topological properties. The analogy existing between
these two equations allows to draw a parallel between a
peculiar feature of Weyl particles, the Klein paradox [22],
and the well-known Majorana losses [23–26] for magnetic
traps. The Klein paradox states if the rate of change of
the particle’s energy is too high (i.e. much larger than
2Pc/h̄ for Weyl particles), the spin will not follow the
momentum adiabatically and the helicity of the particle
is not conserved. The resulting transfer of the particle
to negative energy states leads to dramatic effects, such
as the suppression of back-scattering for electrons in 1D

carbon nanotubes [27]. For the equivalent picture of mag-
netically trapped atoms, in regions where the Larmor fre-
quency 2μB/h̄ is smaller than the rate of change of the
Zeeman energy, the atomic spin will not follow adiabat-
ically the direction of the local magnetic field. This re-
sults in Majorana losses. The absence of backscattering
in carbon nanotubes then appears as equivalent to the
impossibility to trap atoms in a 1D magnetic quadrupole.
Furthermore, for an ensemble of particles at temperature
T , we can define a Klein loss rate ΓKlein equivalent to the
Majorana rate ΓMaj.:

ΓMaj. �
h̄

m

(
μBb

kBT

)2

, ΓKlein � h̄k

(
c

kBT

)2

. (6)

Just like Majorana losses prevent the existence of a true
thermodynamic equilibrium in a quadrupole trap, the
Klein paradox prevents stable trapping of Weyl particles
in external potentials [6]. Nevertheless, at high enough
temperature such as that considered in our experiments
below, particles spend little time close to 0 and we can
neglect Majorana-Klein losses. Particles of positive and
negative helicities can therefore be described by the effec-
tive Hamiltonians

H± = ±c|P | +
∑

i

kiX
2
i

2
. (7)

The negative-helicity Hamiltonian H− is not bounded
from below, which implies diverging trajectories. This
directly corresponds to the anti-trapped high-field seek-
ing states of the atomic problem. In the following we
shall therefore restrict our study to the case of metastable,
positive-helicity particles.

Results. – Using the mapping derived above, we ex-
plore the dynamics of Weyl particles using a sample of
spin-polarized 6Li atoms confined in a quadrupole mag-
netic trap.

The experimental preparation of the sample starts with
a dual species magneto-optical trap which is loaded with
fermionic 6Li and 40K [28]. In a second step the clouds
are subjected to blue detuned D1 molasses [29,30], cool-
ing both species down to the 50μK regime. Subsequently
the atoms are optically pumped into their low-field seek-
ing stretched Zeeman states |F = 3/2,mF = 3/2〉 and
|9/2, 9/2〉, respectively. Finally, we ramp a magnetic
quadrupole field up to b = 80G/cm within 500ms, cap-
turing 107 6Li and 109 40K atoms. Inter-species- as well as
p-wave collisions among 40K atoms [31] allow for the com-
plete thermalization of the two clouds at approximately
T0 = 300 μK. This value is high enough to preclude Ma-
jorana losses during the experiment’s duration and is well
below the p-wave collision threshold. After thermaliza-
tion the 40K atoms are removed from the trap by shining
in resonant light, which leaves 6Li unaffected.

We deliver a momentum kick to the cloud by quickly
turning on a magnetic bias field B which shifts the cen-
ter of the trapping potential by a distance δ for a short
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Fig. 1: (Colour online) Center-of-mass oscillations of the
lithium cloud after a kick along the symmetry axis of the coils
z (a) and along x, within the symmetry plane (b). Blue squares
(respectively, red circles) are experimental data along x (re-
spectively, z). Solid lines are exponentially damped sinusoidal
oscillations. Damping results solely from dephasing of single-
particle trajectories. Equivalently, this corresponds to momen-
tum oscillations of Weyl particles in a harmonic trap. Here,
r0 = kBT/μBb ∼ 0.6 mm and t0 =

√
mkBT/μBb ∼ 1ms.

time τ . Maximum trap center displacements are of or-
der δ ∼ 7 r0 along x and δ ∼ 5 r0 along z, where
r0 = kBT/μBb ∼ 0.6mm is the characteristic thermal size
of the cloud. The kick duration τ is typically a few ms, be-
ing constrained by the coil inductances and eddy currents
in the surrounding vacuum chamber. During the kick,
the ensemble acquires an overall momentum of magnitude
q ∼ μBbτ , similar to free fall in gravity. The potential
is then quickly brought back to its initial position, and
the cloud is left to evolve during a variable time t before
switching off all fields to perform a time of flight measure-
ment of the momentum distribution. Temperatures and
kick velocities are measured with a time-of-flight (TOF)
technique: the trapping potential is abruptly switched-off
and the atomic cloud expands freely during a few ms, be-
fore it gets imaged on a CCD camera by resonant light
absorption. The center-of-mass velocity can be extracted
by tracking the center of the distribution during the TOF,
while the temperature is measured using the standard de-
viation of the position distribution for sufficiently long
TOF expansion times. A limitation for the accurate deter-
mination of the kick amplitude originates from transient
currents lasting about 3 ms, which appear while abruptly
switching off the quadrupole magnetic trap with gradi-
ents of the order of 100G/cm. The transient magnetic
field creates a position-dependent Zeeman effect which de-
forms the atomic-cloud profile at short TOF durations.
This results in a potential error in the measurement of the
center-of-mass momentum with or without kick. For in-
stance, in the absence of a kick we observe a small parasitic
velocity v0 which is proportional to the magnetic gradient
b and reaches 30 cm/s at our highest value b = 165G/cm.
Therefore, to infer the actual momentum delivered to the
cloud solely by the kick, we subtract v0 measured after
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Fig. 2: (Colour online) Temperature increase ΔT/T0 = (T −
T0)T0 along x (blue squares) and z (red circles) as a function
of the normalized CoM momentum η acquired during the kick.
(a) z momentum kick at b = 70 G/cm. (b) x momentum kick
at b = 55G/cm. Solid lines are quadratic fits to the exper-
imental data with coefficients given in the text. Error bars
represent the temperature statistical uncertainty and shaded
zones give the 95% confidence level of the fits. Dashed lines
are results of numerical simulations presented in fig. 3.

the thermalization time of 500ms from the velocity right
after the kick. The fit errors are given by the error bars in
fig. 2 and account for our statistical errors of typically
0.05/mkB on temperature. Performing the experiment
with 4 different magnetic-field gradients, we estimate a
systematic uncertainty of 0.2/mkB for the fitted coeffi-
cient of the parabolic dependence of the heating on the
momentum kick strength in fig. 2.

For Weyl fermions, this excitation corresponds to dis-
placing the Weyl point in momentum space, waiting until
the distribution has moved by a distance R and switching
the Weyl point back to its initial position. The resulting
time evolution of the position (respectively, momentum)
distribution of the lithium atoms (respectively, Weyl par-
ticles) is shown in fig. 1. Even though collisions are absent,
oscillations are damped as a consequence of the dephas-
ing between single-particle trajectories. The initially im-
parted energy is converted into internal energy of the cloud
and the distribution reaches a steady state within a few
units of time t0 =

√
mkBT/μBb ∼ 1ms.

To characterize the steady state, we kicked the cloud
along the z- and x-directions and measured i) the center-
of-mass velocity right after the kick and ii) the respective
steady-state momentum distribution after a sufficiently
long relaxation time, typically 250 t0. We define the
steady state’s effective temperature along direction i as
the second moment of the momentum (respectively, posi-
tion) distribution:

kBTi =
〈p2

i 〉
m

= ki〈X2
i 〉, (8)

where 〈·〉 denotes the statistical average.
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Fig. 3: (Colour online) Numerical simulation of the tempera-
ture increase as a function of the normalized CoM momentum
kick η. Data points are obtained by solving the classical
equations of motion along x (blue squares), y (gray trian-
gles) and z (red circles). In the simulation, kick duration is
kept constant at τ = 0.6 t0 for z and τ = 3 t0 for x, with
increasing values of displacement δ. The effective tempera-
tures along x and y are equal and almost totally decoupled
from z. Solid lines are the best quadratic fits to the data:
ΔTx/T0 = ΔTy/T0 = 0.48 × η2 and ΔTz/T0 = −0.006 × η2

for a kick along x and ΔTx/T0 = ΔTy/T0 = −0.006 η2,
ΔT/T0 = 0.52 η2 for a kick along z. The dashed line in (a) is
given by eq. (16), assuming zero cross-thermalization between
z and x.

The heating ΔT and the center-of-mass momentum
q induced by the momentum kick are extracted from
the difference between the corresponding values at quasi-
equilibrium and the ones measured right after the kick.
While for a fully thermalized system the temperatures in
both directions should be equal, our results presented in
fig. 2, show a very strong anisotropy, thus demonstrating
that the final distribution is non-thermal. The tempera-
ture increases much more in the direction of the kick than
in the transverse directions. A kick in the z-direction pro-
duces strong heating along z, but a much weaker energy
transfer along x. Conversely, a kick in the (x,y)-plane
results in smaller heating in the z-direction than along x.
Quantifying the strength of the kick through the dimen-
sionless parameter

η =
〈q〉√

mkBT0

=

√∑
i ki〈Ri〉2
kBT0

, (9)

we find that for kicks along x the best quadratic fits are
given by ΔTx/T0 = 0.52(5)stat(20)syst × η2 and ΔTz/T0 =
0.10(4)stat(5)syst × η2. For kicks along the strong axis
z, ΔTz/T0 = 0.63(7)stat(20)syst × η2 and ΔTx/T0 =
−0.14(5)stat(8)syst × η2.

Numerics. In order to interpret these results, we per-
formed single-particle dynamics simulations on an ensem-
ble of 105 particles. As in the experiment, an excitation
is applied to the initial distribution by displacing the trap
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Fig. 4: (Colour online) Heating coefficient α along the kick
direction vs. Weyl point displacement δ in momentum space
(respectively, trap center displacement in position space) for
kicks along x (blue) and z (red). α is defined as α =
ΔT/(T0η

2), relating excess temperature to kick strength η
(see text). For kicks along z, αz ∼ 0.5 and is almost con-
stant. On the contrary, for kicks along x, αx shows a strong
dependence on displacement δ. Solid lines are derived from
eqs. (13), (14) and (10), (11). Filled symbols are results from
numerical simulations.

center (respectively, the Weyl point in momentum space)
by an amount δ for a duration τ before bringing it back
to its initial position. To simulate the effect of coil re-
sponse time and eddy currents, we consider excitations of
constant duration and increasing displacement. The simu-
lation does not include any collisions, and yet we observe,
as in the experiment, a relaxation towards a steady state
after ∼ 100 t0 as all calculated moments of the distribution
up to 8th order reach a stationnary value. We also repro-
duce the strong anisotropy between the z- and x-direction
(see fig. 3). Numerical simulations also provide access to
the y-direction (not measured in the experiment), which
also appears to be decoupled from the strong axis z, but
reaches the same final effective temperature as the other
weak axis x, regardless of the kick direction. The simu-
lated dynamics thus features a quasi-thermalization within
the symmetry plane of the distribution.

More quantitatively, the relation between the center-
of-mass momentum (respectively, center-of-mass position
for Weyl particles) after the kick and the effective tem-
perature in the steady state can be approximated by a
quadratic relation ΔTx,y,z/T0 = αx,y,zη

2, where the heat-
ing coefficients αi depend on the kick direction, δ and τ .
For short excitation times, αi are nearly independent of τ .
Their explicit dependence on δ is depicted in fig. 4.

For kicks along z, αz does not vary significantly with the
trap displacement for the experimentally relevant choice
δ > 1, in which case αz = α0 = 0.5. The value of τ
essentially sets the strongest achievable kick η and we take
τ = 0.6 t0 in the simulation to cover the experimental
range of excitations. The heating coefficient α0 = 0.5 is in
agreement within error bars with the experimental result
αz = 0.63(7)stat(20)syst. The decoupling of the x-direction
appears more pronounced in the simulation than in the
experiment with ΔTx/T0 = −0.006 η2, to be compared to
the experimental value ΔTx/T0 = −0.14(5)stat(8)syst×η2,
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a difference we attribute to imperfections of the magnetic
excitation procedure.

For kicks along x, αx strongly varies with the kick
amplitude δ (blue squares in fig. 4) and, therefore, a
quantitative comparison with experiment requires a de-
tailed modeling of the shape of the transient excita-
tion currents, which is difficult. Nevertheless, fitting the
duration τ = 3 t0 leads to ΔTx/T0 = 0.48 × η2 (to
be compared to ΔTx/T0 = 0.52(5)stat(20)syst × η2) and
ΔTz/T0 = −0.006 × η2 (to be compared to ΔTz/T0 =
0.10(4)stat(5)syst × η2). The chosen duration 3 t0 is con-
sistent with the decay time of the eddy currents in our
chamber (∼ 3ms).

A simple model. The heating of Weyl particles along
the excitation direction can be understood from the con-
straints imposed on the dynamics by energy conservation
and virial theorem Ekin = 2Epot. Here Ekin = 〈Pc〉 and
Epot =

∑
i ki〈X2

i 〉/2 are respectively the kinetic and po-
tential energy of the Weyl particles, and the relation can
be derived from its equivalent for massive particles in a
linear trap. However, these two conditions are not suffi-
cient to predict the final thermodynamic properties of the
system. We therefore make two additional assumptions
motivated by the results of the experiment and the sim-
ulations. i) Heating occurs predominantly along the kick
direction and ii) whatever the kick’s orientation may be,
the final temperatures along the x- and y-directions are
equal by symmetry. Under these conditions one finds for
the final temperatures,

z-kick: ΔTx = ΔTy � ΔTz, ΔTz � 2ΔE

3kB
, (10)

x-kick: ΔTx = ΔTy � ΔE

3kB
, ΔTz � ΔTx,y, (11)

where ΔE is the energy transferred to the cloud
through the excitation. Our numerical simulations sat-
isfy (10), (11) for the redistribution of the imparted
energy.

In order to relate ΔE to the experimental kick strength
η, we describe the dynamics of the cloud during the ex-
citation through Liouville’s equation for the phase-space
density f(R,P , t),

∂tf (R,P ; t) = −Lf (R,P ; t) . (12)

The Liouville operator is defined as L = ∂P Hexc
+ · ∂R −

∂RHexc
+ · ∂P with Hexc

+ = H+(R,P − δ) being the shifted
Weyl-point Hamiltonian. The formal solution to this equa-
tion is f(R,P , τ) = exp(−τL)[f0]; for small excitation
times τ , we can Taylor-expand this expression and obtain

〈R〉 = τ

∫
d3rd3p f0 (Vexc − V ), (13)

ΔE =
τ2

2

∫
d3rd3p f0

∑

i

ki (Vexc − V )
2
i , (14)

where V = ∂P H+ is the velocity and Vexc = ∂P Hexc
+ .

The relative scalings of ΔE and 〈R〉 with τ confirm that

α ∝ ΔE/〈R〉2 does not depend on the excitation duration
in the short-time limit. The values of α corresponding to
eqs. (13), (14) and (10), (11) are presented as solid lines
in fig. 4 and confirm the validity of the simulations.

For kicks along the z-direction, we estimate the value
of αz by considering large displacements δ, leading to

ΔE =
3

4
E0η

2. (15)

Interestingly, the energy gain is in fact larger than the
value E0η

2/2 associated with the center-of-mass shift, be-
cause the cloud also expands in momentum space during
the excitation whereby it gains additional kinetic en-
ergy. Inserting these asymptotic developments in eqs. (10)
and (11), we finally obtain for z kicks the relative temper-
ature increase along the excitation direction

ΔT

T0
=

η2

2
, (16)

corresponding to αz = 0.5, as discussed above and found
in fair agreement with the experimental value.

Conclusion. – Contrary to massive particles, Weyl
fermions do not obey Kohn’s theorem [32] stating that
the center of mass of an ensemble of non-relativistic mas-
sive particles oscillates in a 3D harmonic potential with-
out dephasing at frequencies

√
ki/m. Instead, after an

excitation, Weyl fermions move at constant speed even
in a quadratic potential. Dephasing of the single-particle
trajectories gives rise to damping of the center-of-mass
motion and to an anisotropic spread of the position dis-
tribution, corresponding to an effective heating. In the
symmetry plane, the steady-state distribution is almost
decoupled from the strong axis but reach the same effec-
tive temperature along both directions regardless of the
kick orientation, displaying a quasi-thermalization.

It should also be pointed out the anisotropic heating is
not specific to our choice of spring constants for harmonic
trap (2), which are in turn constrained by the mapping
from the quadrupole potential. Additional simulations
have shown that the same behavior is observed for arbi-
trary anisotropic potentials V (r) = (k0x

2+k0y
2+kzz

2)/2.
Even in a fully isotropic situation kz = k0, the two unex-
cited directions are partially decoupled from the excited
one and reach the same final temperatures, as the kick
orientation breaks the overall symmetry.

It is crucial to note that in our experiments the energy
transfer from the center of mass to the internal energy
of the distribution does not depend on interactions be-
tween particles. It is solely due to the complexity of the
single-particle trajectories in phase-space [33], which orig-
inates from the non-harmonicity and non-separability of
the underlying Hamiltonian (7). This absence of collisions
is responsible for the non-thermal nature of the final dis-
tribution. Indeed, according to thermodynamics’ second
law, Boltzmann’s distribution maximizes the entropy of
the system for a given energy. In our experiment, we start
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with a thermal cloud characterized by a total energy E
and equilibrium entropy S(E). A perfect momentum kick
delivers an additional energy ΔE per particle, but does
so without increasing the system’s entropy. The latter is
then conserved throughout the ensuing evolution because
the ensemble remains collisionless. The quasi-equilibrium
state thus exhibits a larger energy E + ΔE for the same
entropy S, in contradiction to the usual entropy growth
expected for a collisional system. The absence of real ther-
malization is then revealed by the anisotropic tempera-
tures measured in the long-time limit. Weyl particles in
a harmonic trap therefore provide an intriguing case of
quasi-thermalization, midway between massive particles
that do not equilibrate and collisional systems that reach
a real Boltzmann thermal equilibrium (like in [34]). As
shown in [35], this situation can nevertheless be described
within the framework of generalized Gibbs ensembles as
integrable systems in which a large number of constants
of motion —here, the single-particle Hamiltonian of indi-
vidual atoms— prevents true thermalization [36].

Finally, the canonical mapping presented here is not
limited to the simulation of Weyl particles, but can ad-
dress a broader range of problems. For instance, in a
Ioffe-Pritchard trap a bias field gives rise to a non-zero
magnetic field at the trap center and the overall field is
of the form B =

√
B2

0 + b2
∑

i α2
i x

2
i . In this case, the

analog system would be described by the relativistic ki-
netic energy E =

√
m2c4 + p2c2 where the mass can be

tuned through B0. Another interesting situation arises in
a hybrid trap consisting of the superposition of an opti-
cal dipole trap and a 2D magnetic quadrupole trap, where

the Hamiltonian takes the form h = p2

2m + mω2

2 (x2 + y2) +
mω2

zz2

2 − μBb(σxx − σyy). Applying our mapping to the
variables (x, y, px, py) leads to the equivalent Hamiltonian

H = P 2

2m + mω2

2 (X2 + Y 2) +
mω2

zZ2

2 − μBb
mω (σxPx + σyPy),

which turns out to describe a 2D spin-orbit coupled par-
ticle [37]. Finally, in the same trap, it is also possible to
engineer a Rashba coupling by taking X = py/mω, Px =
−mωy, Y = px/mω, Py = −mωx.
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We analyze some puzzling features of an experiment with a noninteracting classical gas of atoms
in a quadrupole trap. Surprisingly, after a momentum kick, the momentum distribution remains
anisotropic at long times, characterized by different temperatures along the different directions even
though the motion along each direction is not independent of the others; also, the kick energy is
not transmitted to orthogonal directions. To understand this we solve two closely related models, a
spherically symmetric trap ' rα and a strongly confined gas along one direction, a “pancake” trap.
We find that in the spherical trap the gas preserves the anisotropy of the kick at long times and
explain this using the conservation of angular momentum and the virial theorem. Depending on
the value of α we find that the kick can cool or heat the orthogonal directions. We find also a first
order phase transition if the spherical symmetry is broken, which is manifested as a discontinuity
in the temperature behaviours. We explain this in terms of the orbital precession of the planes of
motion due to the non-spherical part of the potential. The pancake trap is studied in terms of an
effective 2D potential obtained by averaging the fast motion along the strongly confined direction
and is shown to be quantitatively similar to the quadrupole case. The temperature anisotropy and
direction independence are shown to result from the change in the 2D effective potential due to the
kick.

PACS numbers: 03.65.Vf, 37.10.Jk, 67.85.-d

I. INTRODUCTION

The theoretical study of classical mechanics in the ab-
sence of interactions, i.e. pure Hamiltonian dynamics,
has a long history [? ]. An important part of it concerns
the nature of the long-time behaviour of noninteracting
systems in confining potentials, when the motion does
not go off to infinity. However, its experimental study is
not as well developed since there are very few systems
which have both the absence of interactions and the long
lifetime necessary.

Cold gases of spin polarised fermionic atoms have
unique characteristics which allow us to study experi-
mentally pure Hamiltonian dynamics (without collisions
or mean-field), since they combine both low loss rates and
easy imaging making them well suited for the study of
the long-time behaviour of these systems. Perhaps their
most important feature is that they can motivate new
questions even in this well-studied topic. The phenom-
ena we will study are also related to problems known
in the context of cooling of bosonic atoms [? ? ] in
the early days of studies of cold atoms. There the is-
sue was of cross-thermalization of the motion of atoms in
quadrupole potentials.

1 †Deceased 21 May 2016

We will analyze a recent experiment conducted with
107 spin polarised 6Li fermionic atoms trapped in a mag-
netic quadrupole potential [? ]. After being sympatheti-
cally cooled with a gas of 40K which is later removed from
the system, the 6Li gas remains in thermal equilibrium
at a temperature T0 much higher than the Fermi temper-
ature, making the gas non-degenerate but low enough for
p-wave interactions to be negligible. Also, the atoms are
fully spin polarised so s-wave scattering is forbidden due
to their fermionic nature. For the same reason the mean
field interactions are negligible. Hence, it behaves as a
classical non-interacting gas where the motion of each
atom is unaffected by the other atoms.

The quadrupole trapping potential experienced by the
atoms is of the form

V (r) = µBb
√
x2 + y2 + 4z2. (1)

where µB is the Bohr magneton and b is the magnetic
field gradient, a positive quantity.

This potential is non-integrable since it has three de-
grees of freedom but only two constants of the motion
(total energy E and angular momentum Lz). As a con-
sequence its dynamics exhibits chaotic behaviour in some
regimes. In contrast, the more usual potential of stan-
dard atomic traps is a sum of harmonic terms of the form
V1(x) + V2(y) + V3(z) so that we can define three con-
served energies, leading to an integrable problem. Note
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that, since the quadrupole potential cannot be written as
the sum of potentials as in the harmonic case, the motion
along one direction is not independent of the other two
so that momentum and energy are constantly being ex-
changed between the three directions as the atom moves
along the orbit.

After the gas reaches its initial thermal equilibrium
state, it receives a “momentum kick” q along a specific
direction using a short magnetic bias field pulse which
shifts every atom’s momentum p→ p + q and increases
its energy by p · q/m + q2/2m. But since the original
(thermal) distribution before the kick is an even function
of each component of p, the first term drops out when
averaged over the gas, so that the average energy change
∆E per atom is:

∆E = q2/2m. (2)

After the kick, the gas evolves in the quadrupole trap
for around 500ms before being released, a considerably
longer time than the typical “period” of a thermal atom.

A time-of-flight measurement is then made of the dou-
bly integrated momentum distribution:

npx =

∫
dpydpz n(px, py, pz) (3)

where n(p) is the momentum distribution. We define
analogously npy,z.

This very simple experimental protocol gives rise to
some surprises [? ]:

1. Stationary distribution: by the time the gas is re-
leased, it has reached an apparently stationary dis-
tribution. Note that the appearance of a stationary
distribution would not happen in the standard har-
monic trap since a momentum kick would lead to
undamped oscillations of the center of mass.

This stationary state of the gas is not due to colli-
sions but to the fact that, in the quadrupole trap,
the orbits of different atoms will have different, in-
commensurate periods leading to the relative de-
phasing of individual trajectories. This dephasing,
when averaged over the whole gas, leads to a sta-
tionary distribution.

We might be tempted to consider that irreversibil-
ity has set in by this stage. In reality this is not
true since the absence of collisions implies that no
thermalization has occurred and the Boltzmann en-
tropy remains constant.

2. Anisotropic temperatures: the long time stationary
momentum distributions fit closely to a thermal
distribution 2 npi=x,y,z ∝ exp(−p2i /2mkBTi) but
with Tx = Ty 6= Tz. In particular Tx,y < Tz if the

2 for a discussion of the apparent thermalization see Appendix A.

kick is along z, and if the kick is along x, then we
still have Tx = Ty but now Tx,y > Tz. This is un-
expected because the quadrupole potential is non-
separable, continuously transfering energy and mo-
mentum between all directions for each atom, so we
might expect näıvely that on average Tx ∼ Ty ∼ Tz,
i.e. there would be a certain degree of ergodicity.

3. Apparent separability of the z and x − y distribu-
tions: for a kick along z, the width of the mo-
mentum distribution along x and y seems to be
unchanged (i.e. Tx,y ' T0) whereas Tz increases.
The energy increase ∆E due to the kick is en-
tirely concentrated into the z direction so that
∆E ' 3/2 kB∆Tz with ∆Tz ≡ (Tz − T0). Like-
wise, if the kick is along x, the increase in kinetic
energy along the z is negligible (Tz ' T0) but both
Tx and Ty increase by the same amount (Tx = Ty)
so that ∆E ' 3kB∆Tx. This behaviour is consis-
tent with a separation of the dynamics into z and
xy plane components even though the potential is
non-separable.

The näıve, straightforward conclusion from these ob-
servations is that the gas seems to have thermalised in
the absence of collisions (since the doubly-integrated mo-
mentum distributions 3 become gaussian-like, a hallmark
of thermalization) but with some effective “decoupling” of
the motion along z and xy directions leading to different
temperatures Tz and Txy.

A. Simulations

To further investigate these questions we simulate the
experiment using molecular dynamics [? ? ] in a
quadrupole potential without interactions. From now on
we set m = kBT0 = µBb = 1, which is equivalent to
choosing m as the mass unit, l0 = kBT0/µBb as the unit
of length and t0 =

√
mkBT0/µBb as the unit of time.

The state of the gas can be described by the Boltzmann
distribution f(r,p, t) which we normalize to unity:

∫
d3r

∫
d3p f(r,p, t) = 1 (4)

so that all extensive quantities are to be taken as averages
per atom. All gas observables can be expressed in terms
of ensemble averages over this distribution. For example,
the final measured momentum distribution npx from 3 is
given by

npx =

∫
d3r

∫
dpy dpz f(r,p, t→∞). (5)

To simulate this distribution we perform molecular dy-
namics simulations of the gas where the trajectory of
each atom is calculated following the classical equations
of motion. This method gives us full access to all observ-
ables, including the Boltzmann distribution itself. For
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Figure 1. Kinetic energy per atom in the quadrupole trap
along different directions as a function of time after a kick q =
1 along x at t = 0. The energies seem to reach a stationary
state after some time. The kinetic energy along z is almost
unchanged from its initial value ∼ 1 but the energies along x
and y increase by the same amount to a final value ∼ 1.2.

example, we can measure the phase-space average
〈
p2i
〉

for i = x, y, z over the entire system as a function of time
by averaging over the trajectories of individual atoms:

〈
p2i
〉
t
≡
∫
d3r

∫
d3p p2i f(r,p, t) ' 1

N

∑

all atoms

p2i (t),

(6)
We start with a gas of N = 105 atoms sampled

from the initial Boltzmann distribution at temperature
kBT0 = 1 with a momentum kick of qx along x:

f ∝ exp

(
− (px − qx)2 + p2y + p2z

2
− V (x, y, z)

)
(7)

(analogously for a kick qz along z etc.) and let each indi-
vidual atom evolve according to the classical trajectory.
The time evolution is calculated using the velocity Verlet
algorithm [? ? ]. We use a time step ∆t = 0.001t0, which
provides sufficient accuracy, as the error of the algorithm
is of the order O(∆t2).

The results of our simulations confirm the experimen-
tal observations. In Fig. 1 we plot

〈
p2i
〉
t

from which we
can find an effective temperature defined analogously to
the experiment:

Ti ≡
〈
p2i
〉
t→∞ so that ∆Ti ≡

〈
p2i
〉
t→∞ −

〈
p2i
〉
t=0

. (8)

The gas reaches a stationary state after a few periods;
generally we have Tx ∼ Ty 6= Tz and for a kick along x
we have Tz ∼ T0 < Tx,y.

We can be more quantitative regarding the ∆Ti. We
first notice that the quadrupole potential 1 is homoge-
neous of order one, (a potential homogeneous of order α
has the property that V (λr) = λαV (r)). So we can apply
the Virial Theorem which leads to the following relation
[? ]:

∆E =
3

2
(∆Tx + ∆Ty + ∆Tz). (9)

Furthermore, for small kicks we can derive some sym-
metry considerations and a sum rule. Defining the matrix
Θij as

∆Ti ≡
∑

j

Θij

q2j
2

(10)

where i, j = x, y, z, it is possible to show that this matrix
is symmetric so that, for small kick momentum, we have
that Θij = Θji. This means that the degree of transverse
heating is identical along different directions.

More generally it is straightforward to show using 2
and 9 that, if the potential is homogeneous of order α,
the Θij satisfy the constraint

∑

j

Θij =
2α

2 + α
. (11)

For potentials with axial symmetry around the z axis,
which is the case of the quadrupole trap, the fact that
the matrix is symmetric and that in any kick ∆Tx = ∆Ty
imply that the matrix can be written using only three
distinct elements θ1,2,3 as

Θ =



θ1 θ1 θ2
θ1 θ1 θ2
θ2 θ2 θ3


 . (12)

Using the sum rule we find θ2 + 2θ1 = θ3 + 2θ2 = 2/3
which leaves us with a single unknown parameter. The
experimentally measured value ∆Tz/q

2
z/2 = 2/3 (see

point 3 of the Introduction) implies θ3 = 2/3, θ2 = 0
and θ1 = 1/3, the latter also being in agreement with
the measured value.

The quadrupole simulations confirm the experimental
observations (1-3) (see Fig 1) even though there is a small
correction to the experimental values: a slight cooling of
the directions transverse to the kick so that Θxx = 0.36
(instead of 1/3) and Θxz = −0.05. So the observation
of point 3, the apparent separability of the z and x −
y distributions seems not to be perfect but rather an
excellent approximation. 3

B. Anisotropy of the momentum distribution

We can study the gas dynamics by analyzing individ-
ual atomic trajectories and then averaging over initial
conditions. However the trajectories can be quite diffi-
cult to find due to the nonintegrability of the potential.
To show this we constructed a Poincaré map: in Fig. 2,
we see that there are both chaotic and quasi-integrable
regions. A study of the gas starting from its individual

3 We also investigated anisotropic potentials, finding very similar
behaviour.
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Figure 2. Poincaré map of the quadrupole potential. We
study trajectories with the same energy but different initial
phase-space coordinates. The values of x and px are recorded
whenever z = 0 and pz > 0. We see the appearance of small
islands denoting invariant torii close to which quasi-integrable
trajectories evolve, separated by contiguous regions of chaotic
dynamics.

trajectories would be quite complex analytically. For this
reason, it is easier to study not the potential 1 but cases
which might contain the same physics but in which all or
nearly all trajectories are integrable or quasi-integrable.
For example let us consider the family of potentials

Vε(x, y, z) =
√
x2 + y2 + (1 + ε)z2. (13)

When ε = 3 we get the quadrupole potential (1). But
if we take ε = 0 the potential becomes spherically sym-
metric and therefore integrable. Alternatively, if ε � 1
then we are left with a highly confined potential along
the z direction (a “pancake’) so that the motion simpli-
fies again and an effective motion in the x− y plane can
be studied.

We will begin with the study of the spherical potential
in section II which, surprisingly, exhibits many of the
phenomena of the quadrupole potential, including the
anisotropy of the momentum distribution. After this we
will analyze the pancake case in section III, comparing
both of these limits with the quadrupole potential.

II. SPHERICAL POTENTIAL

The simulations in the quadrupole potential suggest
that after perturbing an equilibrium gas along a partic-
ular direction, the ensemble average of the momentum
widths 〈p2i 〉t converges to a stationary distribution in the
long time limit t → ∞. In particular, we observed that
〈p2x〉∞ = 〈p2y〉∞ and in general 〈p2x〉∞ 6= 〈p2z〉∞.

Calculating the final momentum widths 〈p2i 〉∞ for a
gas of atoms in the quadrupole potential from first prin-
ciples is difficult without understanding the individual
trajectories. Therefore, as mentioned above, it is a nat-
ural simplification to consider instead the case where we

remove the anisotropy in the quadrupole potential:

Vε=0(x, y, z) =
√
x2 + y2 + z2 = r, (14)

where r is the radial coordinate (for the rest of this sec-
tion we will drop the subscript ε = 0). Näıvely, one would
expect that perturbing a gas along any direction in such
an spherical potential will lead to an isotropic distribu-
tion at long times: 〈p2x〉∞ = 〈p2y〉∞ = 〈p2z〉∞. However,
as we shall see, the final momentum width along the di-
rection of the perturbation will be different to that along
perpendicular directions. To anticipate some of the con-
clusions of this section: this is intuitively plausible: in a
spherical potential all three components of angular mo-
mentum are conserved, so the motion of each atom is
confined to a plane passing through r = 0 and perpen-
dicular to its angular momentum. The population of each
plane is therefore constant during the motion. In ther-
mal equilibrium, this population is the same for all planes
but a momentum kick will cause a transfer of atoms be-
tween planes, so that the population of each plane will
depend on its angle relative to the kick direction. This
anisotropy in populations in the distribution is preserved
at long times again due to conservation of angular mo-
mentum and translates into different final temperatures
along the different directions.

A. Averages over the motion in planes

With a particle in a central field [? ? ], the trajectory
stays on the plane perpendicular to its angular momen-
tum L which includes the origin r = 0. Using polar
coordinates (r, θ) for the plane, the energy E is given by
the usual expression:

E =
1

2

(
ṙ2 + r2θ̇2

)
+V (r) =

1

2

(
ṙ2 +

L2

r2

)
+V (r) (15)

where L = |L| = r2θ̇ = constant. In a potential such as
(14), the motion is confined between two values of the
radial coordinate rmin ≤ r ≤ rmax which are solutions
of ṙ = 0. During the time in which r varies from rmax

to rmin and back, the radius vector turns through an an-
gle ∆θ. The condition for the path to be closed is that
this angle should be a rational fraction of 2π, i.e. that
∆θ = 2πm/n, where m and n are integers. But according
to Bertrand’s theorem [? ] the only central potentials for
which all paths are closed are Kepler’s (∝ − 1

r ) and the

harmonic potential (∝ r2). For all other potentials (and
excluding the particular case of trajectories with zero an-
gular momentum), the trajectory will behave as in Fig. 3:
it will become dense everywhere, filling the allowed an-
nulus region isotropically so that the orbital density is
only a function of the radius r as the propagation time
tends to infinity.

Using Bertrand’s theorem, we would like to analyse the
long time behaviour of trajectories, in particular the time
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x

z

x

z

x

z

Figure 3. Orbit of atom in a plane with a central poten-
tial V (r) = r after increasingly long times from left to right.
Since the trajectory never closes, according to Bertrand’s the-
orem, it fills the annular region between rmax and rmin in an
isotropic, dense fashion as t→∞.

averages of different quantities. For a quantity A(t), the
time average of a quantity A is defined as (cf. 6):

A ≡ lim
t→∞

1

t

∫ t

0

A(t′)dt′. (16)

We can convert the time average to one over the orbital
density discussed above by a change of variables. We im-
mediately conclude that, since Bertrand’s theorem im-
plies that the orbital density is isotropic, so will the time
average also be:

x2 = y2 (17)

p2x = p2y. (18)

We will use this fact to calculate 〈p2i 〉∞ for a gas of atoms.

B. Calculation of momentum averages in terms of
integrals of planes

Although our purpose is to study the potential V (r) =
r as a limiting case of the family 13, it is straightforward
to consider in this section a more general potential than
(14), namely

V (r) = rα (19)

with 0 < α 6= 2. This will allow us to examine quali-
tatively different behaviour as a function of α. The case
α = 2 corresponds to the isotropic harmonic potential for
which in general (17) and (18) are not true. For α = 1
we recover (14).

For a gas in an spherical potential, the atoms belonging
to the same plane in coordinate space are also confined to
the same plane in momentum space making each plane
an independent system. So our strategy will be to treat
the motion in each plane separately and then add over
all of them at the end. For this we choose a coordinate
system (see Appendix B) where two of the coordinates
(the angles θ and φ) define the plane, and the remaining
four correspond to the in-plane coordinates (u and v)
and momenta (pu and pv). Then we can write the total
energy as

〈E〉 =

∫ π

0

dφ

∫ π

0

dθ〈E〉plane. (20)

where 〈E〉plane is the average energy of all the planes ly-
ing between θ and θ + dθ, φ and φ + dφ. Even though
the probability density f(r,p, t) is a function of time, the
energy of each atom is constant in time as the potential is
time-independent and there is no exchange of energy be-
tween the atoms, so the average energy is also a constant.
Therefore if we know the probability density f(r,p, t) at
any one time, we will know the average energy for all
time. This allows us to calculate the final momentum
widths 〈p2i 〉∞ from the distribution of energies at t = 0
after the initial momentum kick.

Since the class of potentials (19) is homogeneous of
order α we use the Virial Theorem:

K =
α

2
V . (21)

where K is the kinetic energy and the averages are over
time as in 16. Note that the Virial Theorem is valid
both for each atom individually as well as for the entire
gas. If we assume that at long times, when the gas has
reached a steady state, the ergodic hypothesis applies for
such systems, we can replace the time average with the
ensemble average

〈K〉 =
α

2
〈V 〉. (22)

As each plane is a closed individual system, (22) also
applies to

〈K〉plane =
α

2
〈V 〉plane, (23)

and using (23), 〈E〉plane can be written as

〈E〉plane = 〈K〉plane + 〈V 〉plane
=

2 + α

α
〈K〉plane

=
2 + α

2α

(
〈p2u〉+ 〈p2v〉

)
. (24)

According to Bertrand’s Theorem, Kepler’s potential
V (r) = −kr and radial harmonic oscillator V (r) = 1

2kr
2

are the only two types of central force potentials where
all bound orbits are also closed orbits. Therefore, if we
restrict ourselves to cases where 0 < α 6= 2 where al-
most all orbits are open (except for the circular orbit),
we see that 〈p2u〉 = 〈p2v〉 as t → ∞ so that, following the
argument of section II A,

〈p2u〉 = 〈p2v〉 =
α

2 + α
〈E〉plane. (25)

We can now express the the averages of p2x, p2y and p2z
through 〈E〉plane as shown in Appendix C (assuming that
the final distribution does not depend on φ)

Tx,y = 〈p2x,y〉 =
απ

2(2 + α)

∫ π

0

dθ〈E〉plane(1 + sin2 θ)(26)

Tz = 〈p2z〉 =
απ

2 + α

∫ π

0

dθ〈E〉plane cos2 θ. (27)

It remains now to calculate 〈E〉plane as a function of θ
and φ after the momentum kick.
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C. Momentum Kick

We perturb the Maxwell-Boltzmann distribution in a
potential given by (19) at t = 0 by applying a momen-
tum kick qz along the z-direction. The resulting initial
distribution at temperature kBT0 = 1 is:

f(r,p, t = 0) =

A exp

(
−p

2
x + p2y + (pz − qz)2

2
− rα

)
(28)

where

A =
3

8
√

2π5/2Γ
(
3+α
α

) . (29)

If we transform (28) using (B3), we get:

f = A exp

(
−q

2
z

2

)

exp (−rα) exp

(
−p

2
r − 2prqz cos θ sinαp

2

)
. (30)

Using (30), we can calculate 〈V 〉plane = 〈rα〉, 〈K〉plane =
〈p2r〉/2m and finally 〈E〉plane = 〈V 〉plane + 〈K〉plane.

〈V 〉plane(t = 0) =
3| cos θ|
απ

e−
q2z
2 e

q2z cos2 θ

4

×
[
I1

(
q2z cos2 θ

4

)
q2z cos2 θ

4
+ I0

(
q2z cos2 θ

4

)(
1

2
+
q2z cos2 θ

4

)]

(31)

〈K〉plane(t = 0) =
| cos θ|

8π
exp

(
−q

2
z

2

)
exp

(
q2z cos2 θ

4

)

×
[
q2zI1

(
q2z cos2 θ

4

)
cos2 θ(4 + q2z cos2 θ)

+I0

(
q2z cos2 θ

4

)
(6 + 6q2z cos2 θ + q4z cos4 θ)

]
(32)

where I0 and I1 are modified Bessel functions of the first
kind. Since 〈E〉plane does not change with time we can
use this to obtain the 〈p2i 〉 at t → ∞ via Eqs. (26,27).
For α = 1 the resulting expressions read

〈p2x〉 =
q2z
12

+
5

6
+

1

2q2z
−
√

2

2q3z
F

(
qz√

2

)
, (33)

〈p2z〉 =
q2z
6

+
4

3
− 1

q2z
+

√
2

q3z
F

(
qz√

2

)
, (34)

where F is the Dawson function. In Fig. 4 we show the
excellent agreement of the simulations with these analyt-
ical predictions.

For a small momentum kick, we can find some illumi-
nating expressions. Expanding 〈E〉plane about qz = 0 up
to O(q2z) we obtain from (26) and (27)

Tx,y ≈ 1 +
5α− 2

20(2 + α)
q2z (35)

Tz ≈ 1 +
2 + 5α

10(2 + α)
q2z . (36)

Tz

Tx

Ty

0 6 12 18 24 30 36
0

2

4

6

8

qz
2

T
i

Figure 4. Isotropic potential (19) with α = 1 for different kick
strengths qz in z-direction. Comparing simulation results for
〈p2x〉, 〈p2y〉 and 〈p2z〉 with the analytical predictions (33) and
(34). Note that the predicted 〈p2x〉 and 〈p2y〉 are identical.

For the case α = 1 we find

Tx,y ≈ 1 +
1

20
q2z ⇒ ∆Tx,y =

1

10
∆E, (37)

Tz ≈ 1 +
7

30
q2z ⇒ ∆Tx,y =

7

15
∆E. (38)

which satisfies the Virial Theorem 9. Comparing with
the quadrupole experiment (point 3 of the Introduction)
where ∆Tx,y = 0 and ∆Tz = 2/3∆E, we see that the
spherical case leads to some increased heating in the xy
plane although small.

In terms of the matrix Θij from 10, for a spherically
symmetric case we can show that

Θij =



θ1 θ2 θ2
θ2 θ1 θ2
θ2 θ2 θ1


 (39)

so that e.g. ∆Tx = θ1q
2
x/2 and ∆Tx = θ2q

2
y/2. As before,

using the sum rule, we find that θ1 + 2θ2 = 2/3 so that
the matrix depends only on a single unknown parameter.
Then (35) and (36) imply that

θ1 =
2 + 5α

5(2 + α)
and θ2 =

5α− 2

10(2 + α)
(40)

which satisfy the sum rule 11. For the case α = 1 (14)
we get θ1 = 7/15 and θ2 = 1/10.

D. Heating and cooling of transverse directions

These results allow us to answer an interesting ques-
tion: if we kick the gas along a direction, do the trans-
verse directions heat or cool?

For an interacting gas, we know collisions will dis-
tribute the energy along all directions, hence the trans-
verse directions will be heated by the same amount as
the kicked direction. For an ideal gas in e.g. a harmonic
potential, the transverse directions will not be affected.
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Using (35) and (36) we see that, for a noninteracting
gas in a spherical potential of the form (19), we can have
different types of behaviour (up to O(q2z)) for the trans-
verse directions:

• for α < 2
5 : cooling;

• for α = 2
5 : no change;

• for α > 2
5 : heating.

This surprising result tells us that it is possible in some
cases to cool the gas along some directions while heat-
ing it up along others. In fact, as we will see later the
quadrupole potential is of this type: it cools along the
x and y directions if kicked along z. Nevertheless, the
spherical potential, which most closely resembles it, with
α = 1, behaves more conventionally since it heats up.

E. Population redistribution due to kick

We would like to gain some insight into why the final
momentum widths are different 〈p2x〉 = 〈p2y〉 6= 〈p2z〉 for
qz 6= 0.

We can rewrite 26 using the fact that the total energy
of the gas Etotal(q = 0) + ∆E with ∆E given by 2, can
be expressed as the sum of the plane energies:

Etotal(q = 0)+
q2z
2

=

∫ π

0

dφ

∫ π

0

dθ〈E〉plane = π

∫ π

0

dθ〈E〉plane
(41)

The term Etotal(q = 0) can be easily found from the
qz = 0 limit of 31 and 32. It follows that:

〈p2x,y〉 =
απ

2(2 + α)

∫ π

0

dθ〈E〉plane(1 + sin2 θ)

=
α

2(2 + α)

(
q2

2
+

6 + 3α

2α
+ π

∫ π

0

dθ〈E〉plane sin2 θ

)

α=1
=

1

6

(
q2z
2

+
9

2

)
+
π

6

∫ π

0

dθ sin2 θ〈E〉plane. (42)

We can study how each of the terms in 〈p2x〉 varies
with qz. In Fig. 5, we can see that the contribution of
the integral term of 42 is small compared to the q2z term
and becomes less important as qz increases.

To understand why the integral term becomes small,
we can investigate how 〈E〉plane changes as a function of
θ for different values of qz. From Fig. 6, we can see that
the value of 〈E〉plane near θ = 0 and θ = π increases with
increasing qz and the opposite happens near θ = π/2. As
the integrand multiplies this factor by sin2 θ which is 0 at
θ = 0, π and peaks at θ = π/2 the integral will decrease
as qz increases.

To make it even clearer, it is useful to plot not 〈E〉plane
but 〈E〉plane/| cos θ| which removes the effect of the Ja-
cobian B2 which simply accounts for the variation of the
density of planes as a function of θ, leaving us with the
change in plane energy as a result of the kick.

m(qz
2/m+9kBT)/12

Int. term of 〈px
2〉

〈pz
2〉

〈px
2〉

0 1 2 3 4 5
0

2

4

6

qz

Figure 5. Comparing the different terms of 〈p2x〉 in 42 with
〈p2z〉 34 for different value of momentum kick qz with m =
kBT = 1.

qz=0
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qz=1.0

qz=1.5

0 3π/4π/2π/4 π
0.

0.3

0.6

0.9

1.2

1.5

θ

〈E
〉 p
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Figure 6. Using 31 and 32 to plot 〈E〉plane(θ) for different
value of momentum kick qz.

qz=0
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qz=1.0

qz=1.5

0 π/4 π/2π/8 3π/8
0.
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0.6

0.9

1.2

1.5

θ

〈E
〉 p
la
ne

/
co
sθ



Figure 7. Using Eqs 31 and 32 to plot 〈E〉plane(θ)/| cos θ| for
different value of momentum kick qz.

From Fig. 7, we can see that when there is no momen-
tum kick, the energy of all the planes are the same. When
we apply a momentum kick along the z-axis, planes lying
along that direction (θ = 0 or π) gain energy whereas di-
rections close θ = π/2 lose it. This means that, when we
project the energy of each plane to obtain the momentum
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widths, 〈p2z〉 > 〈p2x〉.
We can also see that as qz →∞, 〈E〉plane/| cos θ| is only

non-zero at θ = 0 and π which explains the momentum
widths ratio constraint derived in C10 (note that Fig. 8
agrees with the ratio constraint).

0 2 4 6 8 10

1.

1.5

2.

qz

〈p
z2
〉/
〈p
x2
〉

Figure 8. Using 31 and 32 to plot the ratio between 〈p2z〉 and
〈p2x〉 for different value of momentum kick qz.

F. Memory loss in isotropic potentials

A natural question arising from the study of this sec-
tion is whether a gas can remember in which direction
it was kicked after a long time has passed. For exam-
ple we could start with a gas in thermal equilibrium in
an isotropic potential, i.e. a spherically (3D) or circularly
(2D) symmetric potential, apply a momentum kick along
an arbitrary direction and wait for a very long time. Is
the final gas distribution anisotropic? I.e. does it pre-
serve a memory of the direction of the kick?

In a collisional gas, the extra energy from the momen-
tum kick is redistributed along all directions equally lead-
ing to isotropic heating and therefore a loss of memory.

A non-interacting gas in a harmonic oscillator pre-
serves this memory because its center of mass oscillates
along the kick direction indefinitely.

However, quite surprisingly, a non-interacting gas in
non-separable potential can also preserve it due to the
existence of integrals of motion which encode the direc-
tion. For example in a 3D spherical potential the memory
is associated with the three components of angular mo-
mentum Lx,y,z being integrals of the motion as we have
seen.

An interesting question is: can there be memory loss
with no interactions and a non-separable potential? Un-
expectedly the answer is yes: for example a gas in a
2D circular symmetric potential has 〈p2x〉 = 〈p2y〉 due to
Bertrand’s theorem, so memory is lost (excluding har-
monic and Kepler’s potential). There is only a single
component of angular momentum so the direction can-
not be encoded in the integrals of the motion. After the
kick the extra energy is redistributed to all directions,
the “orbit density” becomes isotropic as t → ∞ which

leads to loss of memory. This macroscopic loss of infor-
mation is due to ergodicity of the individual trajectories
rather than to collisions. Of course, microscopically the
memory is preserved since, if we reversed the momenta
of all atoms at the same time, we could recover the initial
kicked distribution.

G. First order transition due to breaking of the
potential’s spherical symmetry

As we have seen, if we start with an isotropic equilib-
rium thermal distribution in a spherical trap (ε = 0) and
we kick the gas along the z direction then, when t→∞,
we find that Tx = Ty 6= Tz. Likewise, by spherical sym-
metry, kicking along the x direction will lead to the tem-
peratures along the perpendicular directions being equal
(Ty = Tz 6= Tx, see Fig 9).

However, this is in seeming contradiction with the ex-
perimental results for the quadrupole case (ε = 3), see
point 2 of the Introduction and Fig 1, where a kick along
the x direction leads to Tx = Ty. It seems that, breaking
the spherical symmetry by setting ε > 0 and making the
z direction unequal, enforces a cylindrical symmetry of
the steady state gas distribution along the perpendicular
directions after the kick. This discrepancy in behaviour
indicates a discontinuous (first order) transition in gas
behaviour as a function of ε when going from spherical
to non-spherical potentials.

To study this better we plot the three final tempera-
tures after a kick along x as a function of ε near ε = 0
(Fig 9). We see that, at ε = 0, Ty = Tz < Tx as expected.
However, for values of ε immediately above that, we find
that Tx = Ty > Tz, the behaviour of the quadrupole trap.
In other words:

lim
ε→0

lim
t→∞
〈p2x − p2y〉t 6= lim

t→∞
lim
ε→0
〈p2x − p2y〉t (43)

the lhs being zero and the rhs not. We will see that the
reason for this is due to 〈p2x − p2y〉t relaxing to zero with
a relaxation or dephasing time scale τ which diverges as
ε→ 0.

There is a characteristic relaxation time τ̃ before the
momentum widths reach their final steady state value
during which there is a gradual dephasing of the orbits
of atoms with different angular momenta and energy in
each plane. This timescale is related to the width of the
thermal distribution and does not depend on ε as ε→ 0.
From dimensional analysis we see that τ̃ ∼ √T0.

However, there is a second much longer characteristic
relaxation time τ during which Tx and Ty converge to
each other and which was not present in the perfectly
spherical case. This timescale appears because of the
rotation (precession) of the orbital planes of each atom
around the z axis and is due to the potential’s anisotropy.
This phenomenon is known in astronomy when studying
the orbit of satellites around slightly non-spherical plan-
ets, where it is called nodal precession [? ].
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Figure 9. Behaviour of the final temperatures ∆Ti/∆E as a
function of the anisotropy ε near the spherical limit after a
kick along x. At ε = 0 Tz = Ty after which there is a dis-
continuous change in the temperatures due to the breaking of
spherical symmetry along z. Data are obtained by numerical
simulation over 100 000 atoms. Dotted lines show the predic-
tion for an isotropic trap (37, 38), dashed lines show the values
Θzx = 0 and Θxx = 1/3 for the quadrupole configuration.

For sufficiently small ε and at long times t � τ , we
expect that 〈p2x − p2y〉t will decay at long times as some
function of t/τ where the decay time scale is given by

τ ∼
√
T0 × εν . (44)

The value of ν is independent of the kick strength if it
is weak enough, and the dependence on

√
T0 sets the

dimensions of τ . We show in Appendix D that ν = −1
so that τ ∼ 1/ε; this is confirmed in Fig. 10.

While Bertrand’s equilibrium leads to a higher tem-
perature along the kicked direction, the orbital preces-
sion redistributes the energy equally between the x- and
y-axes, leading eventually to the equilibration of Tx and
Ty. The first process takes place in about 40 time units,
while the latter process is much slower as the anisotropy
is smaller, as shown in Fig. 10.

This analysis leads to quantitative predictions for the
final temperatures at small anisotropy, particular for the
temperature discontinuities. For ε >∼ 0, the imparted
energy gets first redistributed in the plane, before the or-
bital precession slowly equilibrates temperatures so that
we can express the final temperatures in terms of the
spherical temperatures 37, 38:

∆T ε→0
x = ∆T ε→0

y =
1

2

(
∆T ε=0

x + ∆T ε=0
y

)
(45)

=
17

60
∆E and (46)

∆T ε→0
z = ∆T ε=0

z (47)

=
1

10
∆E. (48)

From here we can extract the matrix elements of 12 since
in the above equations ∆E = q2x/2: θ1 = 17/60, θ2 =
1/10, which means that θ3 = 7/15.

0. 0.02 0.04 0.06 0.08 0.1

0

200

400

600

ε

τ

Figure 10. Equilibration time as a function of the trap
anisotropy ε. The equilibration time is defined as the time
required for Ty to reach 99% of the steady Tx value. The
solid line is a fit A × ε−1 following the expression (44). The
best fit leads to an R-squared value of 0.99.

This prediction is in very good agreement with the
results presented in Fig. 9 and is valid near ε = 0 as long
as τ � τ̃ .

III. PANCAKE POTENTIAL

In the previous section we analyzed the spherically
symmetric case which could be solved analytically. There
is another case where the motion can be solved ana-
lytically, namely the limit when the confinement along
the z-direction is strong (ε � 1). As we will see later,
this case exhibits behaviour which is much closer to the
quadrupole.

We consider the case of strong confinement of the gas
along the z direction of the potential 13 with ε � 1 so
that

V (r) =
√
x2 + y2 + (1 + ε)z2 '

√
ρ2 + εz2 (49)

where we have used cylindrical coordinate ρ =
√
x2 + y2.

Since potential is tightly confined, motion along the z
direction is fast compared to that in the plane. To check
this we compare tz, the period of oscillation along z with
the period of oscillation along ρ, tρ, the characteristic
timescales of the two motions.

An atom whose motion is along the x-axis experiences
a potential V = x, whereas if the atom moves along the z-
axis sees a potential V = εz. Assuming that both of these
atoms have the same overall thermal energy T , then, in
the first case, its period of oscillation is Tρ ∝

√
E whereas

in the second case it is Tz ∝
√
E/ε so that Tρ/Tz = ε�

1 so that the approximation of considering the motion
along z to be fast compared with that in the plane is
justified.

We start by analysing the motion of a single atom. We
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split up the energy as:

E =
p2ρ
2

+
p2φ
2ρ2

+ Ez (50)

with pρ and pφ being the canonically conjugate momenta
and φ = arctan(y/x) is the angle with the x axis in the xy
plane. E, pφ are constants of the motion (the latter being
the angular momentum Lz which is always conserved due
to the potential being independent of φ). Also,

Ez =
p2z
2

+
√
ρ2 + εz2 (51)

We now replace pz, z with the action-angle variables I, η
in the usual way. In particular

I =

∮
pz
dz

2π
= 4

∫ zmax

0

pz
dz

2π

=
2
√

2

π

∫ √
E2
z−ρ2
ε

0

√
Ez −

√
ρ2 + εz2dz

=
2
√

2

π
√
ε
I0 (52)

with the definition

I0 ≡
∫ √E2

z−ρ2

0

√
Ez −

√
ρ2 + z′2dz′ (53)

where we made the substitution z′ =
√
εz to show that

I ∝ 1/
√
ε, since I0 does not depend on ε. Note that, for

the same reason, in 53 Ez depends implicitly only on I0
and ρ but not on ε.

The trajectory pz(z) is determined by 51 and therefore
depends on Ez and ρ. Also, since ρ is slowly varying, by
the standard arguments, I (or I0) can be considered an
adiabatic invariant (i.e. another constant) for the motion
in the plane.

A simple approximate solution to 53 which allows us
to express Ez explicitly in terms of I0 and ρ is

Ez(I0, ρ) =

(
3

2
I0 + ρ3/2

)2/3

(54)

which allows us to rewrite 50 as

E =
p2ρ
2

+
p2φ
2ρ2

+

(
3

2
I0 + ρ3/2

)2/3

(55)

and we see that the effective potential for the radial mo-
tion is a sum of the centrifugal term plus a confining term
increasing linearly at large distances.

Since we had originally three degrees of freedom, a par-
ticular trajectory is completely determined by the three
integrals of the motion E, pφ and I0. Therefore, the time
averaged in-plane kinetic energy

p2ρ
2

+
p2φ
2ρ2

(56)

is also determined by these constants.
It is now clear that the averaged kinetic energy is only

a function of the constants of the motion E, pφ, and I0
for that orbit.

The adiabatic principle tells us that the atom executes
a motion in the plane under the effective potential Ez
given by 54. Since I0 is not the same for all atoms, each
atom moves in slightly different potentials, labelled by
their value of I0.

When we apply a kick to an atom along z at a time
t0, its in-plane momenta pφ, pρ and its position ρ, z
are unchanged. What changes instead is its momen-
tum pz and therefore its corresponding kinetic energy
p2z/2 → (pz + q)2/2 = p2z/2 + pzq + q2/2. After av-
eraging over the whole gas, the term pzq drops out so
that only the third term remains, an average increase
of kinetic energy of q2/2 per atom (and so of Ez(ρ0)
as we see from 51). This has two effects: it changes
the effective potential 54 and it increases the total en-
ergy E. Since I0 is an increasing function of Ez, an
increase of the kinetic energy along z at t0 implies an
instantaneous change I0 → I0 + ∆I0, ∆I0 > 0. In
the subsequent motion, the effective potential is changed
Ez(I0, ρ)→ Ez(I0 + ∆I0, ρ), transforming it into a shal-
lower effective 2D potential as we can see from 54. On
the other hand, the increased kinetic energy also means
an increased total energy E → E + ∆E:

∆E = Ez(I0 + ∆I0, ρ0)− Ez(I0, ρ0) (57)

The first effect leads naturally to a reduction in speed
in the plane, i.e. a reduction in the average in-plane ki-
netic energy 56. However, the increase ∆E has the oppo-
site effect, that of increasing the average kinetic energy.
This latter effect is dominant for atoms which were near
the bottom of the potential at the moment of the kick
whereas the reduction in ∆E is most felt by those which
were away from the centre.

To determine what happens to the gas as a whole, we
resort to simulations. We compare the results of the pan-
cake case after a kick along z with a very large ε with the
case of a 2D gas in the effective potential 54, with the
same number of atoms, temperature and kick momentum
q.

For the simulation of the 2D gas, we use the same
initialization of the system as for the regular pancake
case, namely the kicked Boltzmann distribution with po-
tential (49). Then for each individual atom we evalu-
ate I0 via Eq. (54), where Ez and ρ are determined by
the initial position and momentum coordinates of the
atom. The subsequent time-evolution of each atom is
governed by Eq. (55), where the last term corresponds
to the new effective potential 54 which replaces the reg-
ular pancake potential (49) (I0 is assumed constant for
each atom during the time-evolution). Note that we only
evaluate the movement of the gas in the xy plane in
this approximation—the position and momentum coor-
dinates in z-direction do not appear in the equations.

We are also able to use the same method to study the
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Figure 11. Comparison of the 2D potential given by 54 and
the pancake potential. Here ε = 100, but larger ε values pro-
duced consistent results. The plots are for 〈p2x〉 as a function
of q2z (top panel), and as a function of q2x (bottom panel).
Dashed lines are to guide the eye. Note that the two poten-
tials give almost identical results for the heating along the kick
direction and a small discrepancy for the orthogonal cooling.

change in average kinetic energy along z due to a kick in
the plane along x.

Our findings are in Fig. 11 We see that there is ex-
cellent agreement between the 3D pancake gas and the
2D especially for the heating along the direction of the
kick. Although both show cooling of the transverse di-
rections, the agreement is less good there, a fact which
we attribute to the inexact ansatz 54.

So the physical interpretation of the pancake case is
clear: there is a slight overall cooling of the transverse
directions when the gas is kicked along the z direction
due to the effective potential becoming shallower for the
atoms closer to the center of the trap. This effect domi-
nates over the heating of the atoms near the edges of the
gas, although not by much so that the overall cooling is
very small.

IV. COMPARING THE POTENTIALS

In Fig. 12 we compare the quadrupole potential with
the two others we have discussed, the spherical and the
pancake. It is clear that the quadrupole behaviour is
much closer to that of the pancake so that, in this re-
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Figure 12. Comparison of three types of potential: spherical
(ε = 0), quadrupole (ε = 3) and pancake (ε = 100) showing
the much better agreement between the quadrupole and the
pancake compared with the spherical case. The top panel
shows 〈p2z〉 and the bottom panel 〈p2x〉 as a function of the
momentum kick q2z in z-direction. The red solid lines are the
analytical predictions (33) and (34) for the spherical potential.
Dashed lines for the other potentials are to guide the eye.

spect, it seems that the ε = 3 is already very close to
the limit of ε = ∞. There is a remarkably good quan-
titative agreement between the two cases. For example
we obtain approximately the same heating and cooling
in both the kicked and transverse directions. We find for
the pancake Θxx = 0.38 and Θzx = −0.09 which can be
compared with the very similar values for the quadrupole
Θxx = 0.36 and Θzx = −0.05 mentioned in the Introduc-
tion.

In the Introduction we mentioned two puzzles; one was
the anisotropy of the temperatures along the kicked and
orthogonal directions in the quadrupole potential. Both
the spherical and pancake potentials exhibit this. For
the spherical case this is due to a geometric reason, the
fact that the kick redistributes the atoms into planes
which are more aligned with the direction of the kick.
They will subsequently remain there due to the conser-
vation of angular momentum. In the pancake case this is
due to strong potential anisotropy coming from the large
value of ε. This latter reason is responsible also for the
anisotropy in the quadrupole potential.

Also, in the spherical case we saw that the tempera-
tures of the kicked direction and of the plane orthogo-
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nal to it were different. In the quadrupole case we find
generally in all simulations that Tx = Ty 6= Tz. This
was interpreted in terms of the 2D effective description
where Bertrand’s theorem applies; it leads naturally to
the isotropy of the distribution in the xy plane. Clearly
the quadrupole gas has this behaviour for the same rea-
son.

The second puzzle was the apparent (near) separabil-
ity of the kicked and orthogonal directions, i.e. that the
kick energy is not redistributed into the momentum dis-
tributions of all directions but rather it is concentrated
only in the kick direction. As we see from Fig. 12, the
spherical and pancake potentials behave very differently:
the pancake reproduces closely the quadrupole’s separa-
bility (in fact a slight cooling of the orthogonal direc-
tions) while the spherical potential shows a clear heating
of those directions. The reason for the separability in the
quadrupole case can be traced to the 2D model where it
is due to a near cancellation of the contributions of the
atoms which, at the moment of the kick, are close to the
center of the trap and are cooled and that of the atoms
at the periphery which are heated.

V. CONCLUSIONS

We began with some puzzling experimental results for
a classical gas in a quadrupole trap: momentum kicks
along one direction seemed to affect only that direc-
tion, despite the fact that the potential is non-separable.
By analyzing the extreme case of the spherical poten-
tial (ε = 0) we understood that in some systems, the
constants of the motion (e.g. the angular momentum
components) can allow the system to retain a mem-
ory of the direction of the kick so that in an isotropic
system, the long time momentum distribution can re-
main anisotropic. This however did not explain some of
the features the quadrupole case. We then investigated
the pancake case (large ε) which is much closer to the
quadrupole and exhibits many of the same features such
as cooling of the degrees of freedom transverse to the
kick direction. We found numerically that this case is
much closer to the quadrupole and gives us an explana-
tion of the experimental results in terms of the effective
2D potential.
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Appendix A: “Thermalization” of the momentum
distributions

We mentioned in the Introduction that the gas seemed
to have thermalized in the absence of interactions since
both from the experiments and the simulations show that
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Figure 13. The long time Boltzmann distribution f after a
kick along z plotted as a function of pz keeping all other vari-
ables x, y, z, px, py fixed and for different values of x. To ob-
tain a nonzero number of atoms in the six dimensional volume
we considered a narrow region in phase space given by the co-
ordinates in the figure and divided it into bins. We plot the
number of atoms in each bin averaged over time. It can be
seen that f does not resemble a gaussian thermal function
and that the three peaks feature becomes more prominent for
x closer to the centre. Similar results are found plotting along
all other coordinates.

the doubly-integrated momentum distributions 3 become
gaussian after the kick.

Of course, since the effective temperatures deduced
from the width of the gaussians are different (Tz 6= Tx,y)
the state cannot be a true thermal state. Indeed, col-
lisions are necessary to redistribute the kick energy ∆E
among all accessible microstates of energy E+∆E so that
the entropy increases too S(E) → S(E + ∆E) whereas
in this experiment, E → E + ∆E but entropy is un-
changed (S(E)). Nevertheless, as can be seen from the
experimental results, several “thermal” properties can be
achieved, e.g. equilibration of temperatures along the x
and y directions.

We can ask to what extent the final state of the gas
is close to a thermal state. For example, could it be
e.g. a product of three different Gaussians (with different
temperatures) of the type

f ∼ e−p2x/2Txe−p2y/2Tye−p2z/2Tz × e−V/T ? (A1)

It is easy to see that this is not possible since it does
not satisfy the time independent collisionless Boltzmann
equation. We can plot f as a function of one of its six
coordinates keeping all others fixed as in Fig. 13 which
shows a markedly non bell-shaped curve. In fact, the
gaussian character is only restored upon integration of
the other five coordinates of the Boltzmann distribution
e.g.:

npx =

∫
d3r

∫
dpydpzf(r,p, t→∞) ∝ e−p

2
x/2mkBTx

(A2)
which raises the question of why averages over complex
distributions such as those of Fig. 13 lead to a gaussian
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ansatz. We will not consider this question further here,
leaving it for further study.

Appendix B: Coordinate transformation for the
spherical case

(Add diagram) In a spherical potential the motion of
each atom is confined to a plane through the origin and
perpendicular to its angular momentum. To treat the
gas in each plane as a separate system it is convenient
to choose coordinates where the motion in each plane
is described by in-plane 2D coordinates along orthogonal
axes labelled (u, v) with corresponding momenta (pu, pv).
To relate these to the rectangular coordinates we define
two angles θ and φ. θ is the angle between the z axis
and the v axis. φ is the angle between the x-axis and the
projection of the v-axis onto the x-y plane. Both angles
are in the interval [0,π]. The coordinate transformation
is thus:

x = u sinφ+ v sin θ cosφ

y = −u cosφ+ v sin θ sinφ

z = v cos θ

px = pu sinφ+ pv sin θ cosφ

py = −pu cosφ+ pv sin θ sinφ

pz = pv cos θ. (B1)

Note that it is not a canonical transformation since the
Jacobian is:

J1 = |(puv − pvu) cos θ|. (B2)

The cos θ term has a simple interpretation: the angular
density of planes having an angle θ with the z-axis is
largest for small θ and drops to zero when θ = π/2 since
then there is only one plane perpendicular to the z-axis.
In most cases, the calculation becomes simpler if we use
polar coordinates in the plane:

u = r cosαr

v = r sinαr

pu = pr cosαp

pv = pr sinαp,

where αr and αp are in the interval (0,2π]. The transfor-
mation (B1) becomes:

x = r cosαr sinφ+ r sinαr sin θ cosφ

y = −r cosαr cosφ+ r sinαr sin θ sinφ

z = r sinαr cos θ

px = pr cosαp sinφ+ pr sinαp sin θ cosφ

py = −pr cosαp cosφ+ pr sinαp sin θ sinφ

pz = pr sinαp cos θ. (B3)

The Jacobian for the transformation (B3) is

J2 = r2p2r| sin(αr − αp) cos θ|. (B4)
As the Boltzmann function f(x, y, z, px, py, pz, t) is nor-
malised to unity, if we apply the transformations (B1) or
(B3), the following quantities will also normalise to unity
either in the (u, v, pu, pv, θ, φ) or in the (r, αr, pr, αp, θ, φ)
coordinates:

1 =

∫ π

0

dφ

∫ π

0

dθ

∫ ∞

−∞
dpu

∫ ∞

−∞
dpv

∫ ∞

−∞
du

∫ ∞

−∞
dvJ1f

=

∫ π

0

dφ

∫ π

0

dθ

∫ 2π

0

dαp

∫ ∞

0

dpr

∫ 2π

0

dαr

∫ ∞

0

drJ2f.

The average energy 〈E〉 is given by

〈E〉(t) ≡ 〈E〉t =

∫
d3r

∫
d3pf(r,p, t)E(r,p). (B5)

It is useful to define an energy 〈E〉plane(θ, φ) which is
the average energy of all the planes lying between θ and
θ + dθ, φ and φ+ dφ

〈E〉plane(θ, φ) ≡
∫ 2π

0

dαr

∫ 2π

0

dαp

∫ ∞

0

dpr

∫ ∞

0

drJ2fE

(B6)
so that the total energy is, cf. (20),

〈E〉 =

∫ π

0

dφ

∫ π

0

dθ〈E〉plane. (B7)

Note that, after the kick, 〈E〉plane is independent of time
as the number of atoms on each plane is constant.

Appendix C: Averages over momenta

Using the transformation (B1), we can write the aver-
ages of p2x, p2y and p2z as:
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〈p2x〉 = 〈p2u sin2 φ〉+ 〈p2v sin2 θ cos2 φ〉+ 2〈pupv sin θ sinφ cosφ〉, (C1)

〈p2y〉 = 〈p2u cos2 φ〉+ 〈p2v sin2 θ sin2 φ〉 − 2〈pupv sin θ sinφ cosφ〉, (C2)

〈p2z〉 = 〈p2v cos2 θ〉. (C3)

The first term of (C1) can be written in terms of 〈E〉plane using (25),

〈p2u sin2 φ〉 =

∫ π

0

dφ sin2 φ

∫ π

0

dθ

∫ ∞

−∞
dv

∫ ∞

−∞
du

∫ ∞

−∞
dpv

∫ ∞

−∞
dpuJ1f(u, v, pu, pv, θ, φ, t)p

2
u

=

∫ π

0

dφ sin2 φ

∫ π

0

dθ
mα

2 + α
〈E〉plane. (C4)

Using similar technique, (C1), (C2) and (C3) can be written as:

〈p2x〉 =
mα

2 + α

∫ π

0

dφ sin2 φ

∫ π

0

dθ〈E〉plane +
mα

2 + α

∫ π

0

dφ cos2 φ

∫ π

0

dθ sin2 θ〈E〉plane + 2〈pupv sin θ sinφ cosφ〉(C5)

〈p2y〉 =
mα

2 + α

∫ π

0

dφ cos2 φ

∫ π

0

dθ〈E〉plane +
mα

2 + α

∫ π

0

dφ sin2 φ

∫ π

0

dθ sin2 θ〈E〉plane − 2〈pupv sin θ sinφ cosφ〉(C6)

〈p2z〉 =
mα

2 + α

∫ π

0

dφ

∫ π

0

dθ cos2 θ〈E〉plane. (C7)

The third term in (C5) and (C6) when written explicitly is:

〈pupv sin θ sinφ cosφ〉 =

∫ π

0

dφ sinφ cosφ

∫ π

0

dθ sin θ

∫ ∞

−∞
dv

∫ ∞

−∞
du

∫ ∞

−∞
dpv

∫ ∞

−∞
dpuJ1f(u, v, pu, pv, θ, φ, t)pupv.

(C8)

If f(u, v, pu, pv, θ, φ, t) is independent of φ then (C8)
equals to zero. If 〈E〉plane is also independent of φ, (C5),
(C6) and (C7) will be reduced to:

〈p2x〉 =
mαπ

2(2 + α)

∫ π

0

dθ〈E〉plane(1 + sin2 θ)

〈p2y〉 =
mαπ

2(2 + α)

∫ π

0

dθ〈E〉plane(1 + sin2 θ)

〈p2z〉 =
mαπ

2 + α

∫ π

0

dθ〈E〉plane cos2 θ.

We can see that 〈p2x〉 and 〈p2y〉 are equal. If we look at

the ratio between 〈p2x〉 and 〈p2z〉:

〈p2z〉
〈p2x〉

= 2

∫ π
0
〈E〉plane cos2 θ∫ π

0
〈E〉plane(1 + sin2 θ)

, (C9)

as 〈E〉plane(θ) ≥ 0, the ratio of the integrals will be be-
tween 0 and 1, therefore we can derive an inequality:

〈p2z〉 ≤ 2〈p2x〉. (C10)

Appendix D: Calculation of dephasing rate

1. Initial distribution

We wish to study

〈p2x − p2y〉t =

∫
dr3dp3(p2x − p2y)f(r,p, t) (D1)

However, since the gas is noninteracting, we can find
time-dependent averages by following the position of in-
dividual atoms starting from an initial distribution of
the gas and then averaging over that distribution. For
example, to find 〈p2x − p2y〉t, instead of finding the time
dependence of the Boltzmann distribution f , we calcu-
late the quantity p2x(t)− p2y(t) for each atom starting at
the initial position (r0,p0) and then average over r0,p0

weighted by the initial distribution:

〈p2x−p2y〉t =

∫
dr0dp0

[
p2x(t)− p2y(t)

]
r0,p0
×f(r0,p0, t = 0)

(D2)
We take the initial distribution from 7 and expand in

powers of q:

f(t = 0) ∝ exp

(
− (px − q)2 + p2y + p2z

2T

)
exp

(
−V (x, y, z)

T

)

=

(
1 +

pxq

T
− q2

2T
+

1

2

(pxq
T

)2
+O(q3)

)
fq=0 (D3)

The first and third terms in the brackets do not con-
tribute to D2 since they are spherically symmetric and
remain so during time evolution. The second term ∝ pxq
is odd under the parity transformation x, px → −x,−px.
Since this parity is preserved under time evolution, the
integral of this term is zero for all time. The only term
that contributes to D2 is the one proportional to (pxq)

2.
Therefore keeping the lowest nonzero term we obtain:

f(t = 0) =
1

2

(pxq
T

)2
fq=0 (D4)
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2. Precession of the orbital planes

To find this contribution we will make the crucial as-
sumption that its orbital plane precesses slowly around
the z axis compared with the fast motion in each plane so
that we are allowed to use the virial theorem to calculate
averages in the plane as in section

An orbital plane which is precessing will be charac-
terised by a constant angle θ and a rate of precession φ̇.
To find this rate we consider a perturbation of the planar
orbit in the limit of a small correction to the spherical
potential. Since |ε| � 1, we expand the potential in 13
to order O(ε):

V =
√
x2 + y2 + (1 + ε)z2 ' r + ∆H (D5)

with

∆H ≡ z2

2r
ε (D6)

being the perturbation of the Hamiltonian.

The rate of rotation of the orbital plane φ̇ is given by
[? ]:

φ̇ =
1

l

∂∆H

∂ cos i
(D7)

where i is the inclination of the orbital plane and is re-
lated to θ via i = π

2 − θ, l is the magnitude of angular

momentum. ∆H is the time-averaged value of ∆H cal-
culated using the orbits of the unperturbed Hamiltonian.

If the orbit in the plane were closed, the averaging
would be over the period of the unperturbed orbit. In
our potential, almost all orbits are open so the period is
not well defined. However if we average over a time on
the order τ̃ , then we can assume that the plane of the
orbit (i.e. θ) remains fixed during that time but that the
time average over the motion in the plane has achieved
a stationary value:

∆H ≡ 1

τ̃

∫ τ̃

0

∆Hdt (D8)

and applying the co-ordinate transformation in (B1):

z2√
x2 + y2 + z2

=
v2 cos2 θ√
u2 + v2

(D9)

=
v2√

u2 + v2
cos2 θ. (D10)

The last step uses the fact that the angle of the plane θ
has not changed appreciably after a time t.

Assuming that the averages over the time τ̃ are well
reproduced using the Virial Theorem (since the unper-

turbed potential is simply Vε=0 = r), we know that:

E =
3

2
Vε=0

=
3

2

√
u2 + v2

=
3

2

(
u2√

u2 + v2
+

v2√
u2 + v2

)
. (D11)

If we assume

u2√
u2 + v2

=
v2√

u2 + v2
(D12)

we get

v2√
u2 + v2

=
E

3
. (D13)

Therefore the perturbed Hamiltonian averaged over τ̃
is:

∆H =
εE

6
cos2 θ

=
εE

6
sin2 i (D14)

and the rotation rate of the orbital plane is:

φ̇ =
εE

6l

∂

∂ cos i
(sin2 i)

= −εE
3l

cos i = −εE
3l

sin θ (D15)

so that the plane precesses at a constant rate. For a
single atom on a plane θ, φ (similarly to the calculations
in C)

〈p2x〉 = 〈p2u〉 sin2 φ+ 〈p2v〉 sin2 θ cos2 φ

+2〈pupv〉 sin θ sinφ cos θ (D16)

and similarly for 〈p2y〉. The last term is zero 〈pupv〉 → 0
because of the isotropy due to Bertrand’s theorem. Using
26 with α = 1 we get

〈p2x − p2y〉t =
E

3
cos2 θ(sin2 φ− cos2 φ) (D17)

Here, θ is a constant whereas φ(t) = φ0 + φ̇t.
To find the total value, we use D2:

〈p2x − p2y〉t =

∫
dr0dp0(p2x(t)− p2y(t))×

(px0q
T

)2
fq=0(r0,p0)

=

∫
dr0dp0

E(r0,p0)

3
cos2 θ0(sin2 φ(t)− cos2 φ(t))

×
(px0q
T

)2
fq=0(r0,p0) (D18)

We see that 〈p2x−p2y〉t is a function of εt so τ ∼ 1/ε since

the only time dependence is through φ̇. So we conclude
that in 44, ν = −1.



Appendix B

Additional experimental setups and data

B.1. Tailoring arbitrary optical potentials using a digital micromirror device

Digital micromirror devices (DMD) are binary spatial light modulators made up of an
two-dimensional array of micro-mirrors (see fig. B.1. These MEMS-type mirrors (mi-
croelectromechanical system) can switch light either on or off and also acts as a two
dimensional echelle diffraction grating with, in our case, a pitch of d = 10.8 µm. At an
angle of incidence of ϑi, the exit angles ϑn of the symmetric orders (n, n) are given by [258]:

sin
(
ϑi√

2

)
+ sin

(
ϑn√

2

)
=

nλ
d

, (B.1)

where λ = 532 nm denotes the wavelength of the incident light. The envelope of the
diffracted intensity field is a sinc2 function, which is typically centered around the (0, 0)th
order for conventional gratings. However, given that the DMD can tilt each micromirror
by an angle of ±12°, this constraint is lifted. In order to use the given optical power as
efficiently as possible1, the angle of incidence has to be chosen in a way that matches the
center of the sinc2 to one of the diffraction orders. This mode of operating a grating is
usually referred to as ’blazed’ and is oftentimes encountered in diode lasers, where the
grating is typically used in the so called littrow configuration [228]. The latter implies
that the angle of incidence matches the one of a diffracted order, which serves to re-inject
the diode with the spectrally filtered light. For the DMD the geometry has to be chosen
differently as the light is supposed to be propagated to the atoms after having been
modulated. This creates constraints based on the size of the incident beam and of the
optics that are to be used to process the created pattern, the latter being intimately related
to the resolution requirements. Taking ϑn = 0 and ϑi ≈ 24°, one finds that n ≈ 6. Further
technical details regarding the general operation of DMDs as gratings can be found in
[259–269].

1As was pointed out in 6.2.8, compensating gravity of a small cloud (∼ 50× 300 µm) with off-resonant light
at 532 nm already requires a total optical power of 1 W! Given that the maximum light utilization of a
DMD is typically only 50-60 %, one cannot afford to waste power for this application.
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Figure B.1.: Overview of the basic mechanical and optical properties of a DMD. a) Illustration
of the basic layout the DMD chip containing the array of 1920× 1080 micromirrors. b) Operation
of a DMD as blazed diffraction grating and close-up view of the actual MEMS mirrors (adapted
from [270]).

Error diffusion

If the DMD was an ideal light modulator whose reflectivity could be tuned smoothly from
0 to 1 as a function of position, any target profile Itar could be created by subjecting the
input profile Iin to the reflectance pattern

Rid(x, y) =
Itar(x, y)
Iin(x, y)

. (B.2)

However, each pixel of the DMD can only be switched on (’image’) or off (’dump’),
which corresponds to unity or zero reflectivity and naturally implies that no gray levels
in-between can be created. This situation creates two main problems that need to be
addressed: First, one must find a method of how to display reflectance patterns on a
binary device that somehow approximate the ideal one as defined above. Second, once
this facsimile is found, gray levels have to be introduced by means of additional processing
of the light fields.

There are many technical applications in every day life where a binary pattern needs
to be made to appear as if it contained continuous gray levels. The process of printing
newspapers using small dots of various sizes is one example in this context, which also
inspires the approach to modulate light fields in seemingly non-binary way using a
DMD. When viewing such ’dithered’ patterns from afar, they appear as if they contained
continuous gray levels because the eye lacks the resolving power to distinguish between
the dots. The basic idea for the DMD is now to switch on more pixels in regions where
high light intensity is desired while doing the opposite in regions that are supposed to be
darker.2 There are a number of dithering algorithms that can be used to determine how

2When a DMD is used as part of a video projector, the on/off timing of the mirrors is used to create the
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Figure B.2.: Floyd-Steinberg error diffusion algorithm. a) Schematic illustration of the propaga-
tion of the error in reflectivity to neighboring pixels. b) Example of the dithering algorithm being
applied to a 100× 100 gradient map with values between 0 and 1.

one has to switch the mirrors of a DMD to obtain a halftoned version of Rid(x, y). All of
these algorithms are based on the process of error diffusion, where a given pixel’s ideal
reflectance 0 ≤ p̄i j ≤ 1 is compared to a certain fixed threshold pth. If p̄i j > pth, the pixel is
set to ’on’ pi j = 1 whereas it is set to ’off’ pi j = 0 in the case when p̄i j ≤ pth. The resulting
error ∆i j = p̄i j − pi j is then distributed in weighted manner to the surrounding pixels in
forward direction as the algorithm scans over the pattern. Note that for the relations given
so far, the errors coming in from preceding pixels, which would alter the on/off decision,
were omitted for clarity. In practice, the algorithm starts at the at the top row on the left
and then moves toward the right before jumping back to the left side of the ensuing row.
As it moves through the pattern row by row, it essentially ’pushes’ the errors in front of it
and works them into the on/off decisions. Depending on the pattern, a non-zero error
may remain after the last pixel has been treated.

Here we employ the Floyd-Sternberg algorithm [234] due to its high degree of diffusion at
minimal computational effort. An illustration is given in fig. B.2a and an example of a
dithered gradient map can be found in B.2b.

Spatial filtering

Despite its altered appearance, the light field created using a dithered pattern is still binary
in nature and does not yet contain any intermediate gray levels other than 0 and 1. In order
to rectify this situation the light field emerging from the DMD is subjected to an optical low
pass filter, which removes a certain number of high spatial frequencies from the Fourier
spectrum of the image. This blurring process is implemented in practice using a lens
system in 4 f configuration with a variable size pinhole in the Fourier plane as depicted

appearance of gray levels as the switching times of ∼ 10 000 s−1 are much faster than the processing
speed of the human eye and brain, leading to a temporal averaging of the perceived images. Similarly, a
seemingly colored image can be produced by rapidly cycling the wavelength of the DMD’s illumination
light through red, green and blue.
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in fig. B.5. This system represents one basic realization of the 4F-correlator [228] known
from Fourier optics. Let O(x, y) be the intensity pattern at the object plane and I(x, y)
the one of the image plane. In the absence of a pupil stop in the Fourier plane, the action
of a symmetric 4 f imaging system on the input field is simply given by two successive
Fourier transforms, which will merely invert the image as I(x, y) = FT [FT [O(x, y)]]2 =

O(−x,−y). By introducing a circular aperture p(x, y) of appropriately chosen diameter a
in the focal plane of the objective lens, one can selectively block certain Fourier components.
The collector lens then reconstructs the image from an incomplete Fourier spectrum, which
lacks certain high spatial frequencies:

I(x, y) = FT [p(x, y)× FT [O(x, y)]]2 . (B.3)

Given that the sharp structures of an image are contained exactly in the high frequencies,
I(x, y) will appear blurred with respect to the original input pattern O(x, y).
In practice, the optimization of the size of the aperture depends on the pattern one wishes
to create with the DMD. For example, if one aims to create a flat top potential, there will
be a trade off between the RMS flatness, which increases as more spatial frequencies are
removed, and the edge steepness of the profile that will broaden at the same time. This
situation is shown in fig. B.4 for a square box light field created by the DMD. Another
factor coming into play is the light utilization efficiency.

Iterative refinement

The procedures outlined above can be complemented by providing active feedback to the
DMD to improve the output profile [271]. The basic idea is to perform error diffusion as
well as smoothing and then record the obtained result Iout to compare it to the intended
profile Itar. A better reflectance pattern can then be determined iteratively by using the
error to improve upon the previous reflectivity pattern:

Ierr(n) = Itar(n)− Iout(n) (B.4)

Itar(n + 1) = Itar(n) + m tanh (Ierr(n)), (B.5)

where n = 1, 2, 3... denotes the number of iterations. Note that error diffusion has to be
performed at each stage of the iterative process. The addition of the tanh term introduces
a smoothing effect to the feedback.

Programming of the DMD

Our DMD is has a chipset of the type DLP9500, which belongs to the DLP Discovery4100
series of Texas Instruments (’Digital Light Processing’) that offers the highest degree of
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Figure B.3.: Optical low pass filter based on a symmetric 4f correlator. Its mode of operation is
illustrated using an array of rectangular functions as test image o(x, y). The filter is comprised of
four steps: Propagation and first Fourier transform; Removal of spatial frequencies by a pupil stop;
Inverse Fourier transform from a reduced spectrum and propagation to the image plane, where a
blurred image i(x,y) is formed.
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Figure B.4.: Example of a low pass filter applied to a pattern of the DMD. a) Bare output of the
DMD (no error diffusion or feedback) imaged with a 4 f lens system with a wide open pupil stop
in the Fourier plane. b) Same as in a) but with a narrow pinhole aperture of ∼ 1 mm. c) Close up
of the right edge along the central horizontal cross section of the patter. Orange: iris open (sharp),
Blue: iris almost closed (blurred). d,e,f) Same as above but for a gradient intensity pattern created
by using error diffusion.
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Figure B.5.: Test setup for the initial charac-
terization of the DMD. The green light of up
to is provided by a fibered diode laser run-
ning at 532 nm. SK: large area beam collima-
tor, LPF: optical low pass filter (4 f lens system
+ pinhole), dph: diameter of the diaphragm,
CCD: camera, λ/4: quarter wave plate, λ/2:
half wave plate, PBS: polarizing beam splitter
cube.

individual micromirror control. It is equipped with an electronic subsystem by Vialux
(’SuperSpeed V-Module’) that enables and facilitates rapid communication with as well as
flexible programming of the micromirror array. This controller board is a proprietary FPGA
design and can be accessed via USB3.0 to drive the DMD using the ALP-4.3 controller suite.
The application programming interface (API) of the V-module contains DLL C-libraries,
which can be accessed by common coding platforms such as C++ or LabView. In our
case, we access the functions contained in these libraries via Python as it also facilitates
the straightforward implementation of the error diffusion and the iterative refinement
alongside the basic control knobs of the DMD. The code is based on previous work carried
out in the Bloch group at MPQ Garching [258].

The DLP9500 has a resolution of 1920× 1080 pixels with a mirror pitch of d = 10.8 µm.
The active area of the mirror array has dimensions of 20.7× 11.7 mm2. In combination
with the controller module V-9501 the maximum switching rate of 1bit black and white
patterns amounts to 17 857 Hz with a buffer size of 31068 (64Gbit) or 62137 (128Gbit)
binary patterns. These dynamic quantities are not that relevant when one aims to project
only static intensity patterns, however they do limit the DMD once time-varying light
fields are required. Note in particular that the switching rate of ∼ 18 kHz is only a factor
of 10 higher than typical trapping frequencies of an optical dipole trap.

Test setup

The first setup and characterization of the DMD was conducted using the test setup
depicted in fig. B.5. The light is provided by a low power diode laser running at a
wavelength of 532 nm, whose output is mode-cleaned by a single-mode fiber. The beam
is collimated at a diameter of 2ω0 ≈ 10 mm by a large aperture fiber collimator with an
effective focal length of 100 mm. For mere testing purposes such a large beam is preferable
since the central region of the Gaussian corresponding to 200× 200 pixels of the DMD
then varies only by 2 %, corresponding to almost homogeneous illumination. While this
speeds up initial tests with the DMD, as soon as light utilization efficiency plays a role, the
illumination beam has to be shaped to an appropriate size and aspect ratio first depending



B.1. Tailoring arbitrary optical potentials using a digital micromirror device 193

a) b) c)

a) b) c)

Figure B.6.: Examples of basic profiles created with the DMD. a) Square box. b) Ring. c) Reser-
voir. d,e) Square and round flattop c) Gradient.

on the desired output pattern. Moreover, its cross section at the plane of the DMD must be
taken into account when performing error diffusion in conjunction with spatial filtering.
A collection of examples of basic intensity patterns is given in fig. B.6.
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B.2. Magnetic field stability for RF spectroscopy

The disadvantage of the narrow width resonance of 40K at 202 G is that the scattering
length a will scale comparatively quickly with the magnetic field. From the unitary regime
attained at 202.10 G to the background at B > 215 G, a drops from infinity to a few
hundred Bohr radii a0 over the course of just a few Gauss. In order to precisely tune
the Fermi gas onto a desired interaction strength, the magnetic bias field must therefore
be stable down to the mG level. In order to quantify the impact of fluctuations in the
magnetic field one can consider the resulting variation of 1/kFa(B). In essence, this is a
function of the geometry of the trapping potential and the atom number. In fig. B.7b the
situation is plotted on top of the resonance for two shallow trap depths of the lattice with
an angle of intersection ofα = 25°. The potential depths have been chosen low on purpose
in order to ensure that the relation kF =

√
2mEF/h̄ is valid, that is to say that the Fermi

gas is three-dimensional. The deviation in the single beam dipole trap after evaporation
is shown for comparison. As is evident the magnitude of magnetic field fluctuations
should be less than ±25 mG, which corresponds to a stability on the 2.5× 10−4 level with
respect to the total field. The latter scales linearly with the current flowing through the
electromagnets, implying that the supply should be stable on the 10−4 to 10−5 level.

A more fundamental constraint is given by the ambient magnetic field, which may contain
stray AC and DC fields created, for example, by nearby devices or elevators, as well
as permanent magnets. While the latter are of no real concern as they can easily be
compensated (provided they do not change over time) using compensation coils, rapidly
alternating magnetic fields can broaden the magnetic field experienced by the atoms in an
uncontrollable manner. On top of a Feshbach resonance, this would result in a random
modulation of the interaction strength. Slow drifts that occur on timescales between
shots or on a day-to-day basis are detrimental to the reproducibility of the experimental
conditions. The slow drifts of the ambient magnetic field in the vicinity of the science cell
were recorded using a highly sensitive hall probe. The detected peak-to-peak stability of
the background field is found to be better than ∆Bmax = 18 mG. This figure also includes
the oscillations due to temperature drifts in the lab, which alter the detectivity of the hall
sensor and the high precision voltmeter. Note that fluctuations faster than 0.25 Hz were
not resolved.

The requirement regarding the stability of the current supply outlined above is technically
feasible, but already implies a high level of performance. For that reason, we use a slow but
highly stable current supply (High Finesse UCS 30/15), which can deliver up to 30 A. This
corresponds to maximum bias fields of 240 G at a specified stability of some 10−5 when an
internal setpoint is used. In terms of magnetic field uncertainty, this figure translates into
∆Bmax = 0.4 mG. However, additional fluctuations can be introduced via the supply’s
analog modulation channel as long as their frequencies are within the accepted bandwidth.
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Figure B.7.: Magnetic field stability. a) The histogram was recorded over the course of roughly
1 h using a temperature-compensated Hall probe placed in the vicinity of the science cell. Its analog
output was captured with a high-precision voltmeter with a sampling rate of 0.25 Hz. The data
was binned with a step width of 0.1 mG to obtain a smooth histogram. b) Variation of 1/kFa with
the detuning ∆B from the s-wave resonance at B0 = 202.10 G. The parameters used for the case of
the optical dipole trap (dotted orange line) correspond to typical values obtained after evaporation:
ω⊥ = 2π × 120 Hz,ω‖ = 2π × 1 Hz and Nσ = 1× 106.

The uncertainty of the AM setpoint is given by the experiment’s control hardware (see sec.
2.4) as well as the intermediate analog optocoupler that protects the supply from voltage
spikes. The relative peak-to-peak fluctuations over the course of 8 h at the AM input with
frequencies up to 0.25 Hz were found to amount to 8.54× 10−6 (bare output of analog
card) and 6.95× 10−5 (with analog optocoupler)3. The latter translates into a variation
of the produced magnetic field of ∆Bmax = 1.68 mG, which essentially stems from the
optocoupler’s sensitivity to changes of the ambient temperature.

The histogram of a precise long-term measurement over 1 h of the magnetic field produced
by high finesse at 80 % of its maximum current is shown in fig. B.7a. An equivalent
measurement of the background is shown for comparison. Up to fluctuations faster than
0.25 Hz, one finds a relative peak-to-peak stability of at least 7.3× 10−5 corresponding
to fluctuations of ∆Bmax = 13.2 mG. Note that the peak-to-peak fluctuations of the
background already amount to ∆Bmax = 11.1 mG, suggesting that the accuracy of the
measurement is not sufficient. Another direct measurement of the supply’s current stability
for an output of 8 A yielded peak-to-peak fluctuations of 1.45 mA, which would translate
into ∆B = 11.7 mG at B ' 64 G. As these peak-to-peak figures represent longterm
behavior, we can therefore consider them to represent a lower bound for the stability of
the current supply.

Fluctuations faster than 10 Hz were not captured by any of the measurements described so
far and can be observed only indirectly via MW/RF spectroscopy as presented in sec. 3.3.

3The output of the analog NI card was set to 8.2 V out of the maximum 10 V for these measurements.
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Figure B.8.: Magnetic field fluctuations and Rabi oscillations of 40K at high magnetic fields
B ' 240 G. a) Resonance curve of the magnetic dipole transition between |−9/2〉 and |−7/2〉.
Pairs of spin populations were obtained from a single shot using double imaging. The fitted widths
amount to 100 kHz, corresponding to a magnetic field uncertainty of 5 mG. b) Coherent Rabi
oscillations with Ω = 9 kHz. Blue: N−9/2/Ntot, red: N−7/2/Ntot; fast sucessive imaging.

The width of the obtained Lorentzian signal can be translated directly into an uncertainty
of the magnetic field using the Breit-Rabi formula, which captures drifts over the course
of the entire measurement as well as very fast fluctuations during the probing time step.
In fig. B.8a the full width was found to be 5 mG at a magnetic field of B ' 240 G and
using the RF transitions between the negative spin states as probes. These fluctuations are
consistent with the ones detected by the precision hall probe4 and were recorded while
actively syncing the experimental sequence to the 50 Hz mains (see sec. 2.4). The latter
has two effects. First, it causes the magnetic field set at the beginning of a given time step
to be different from shot to shot. Second, if the length of the time step is on the order
of 20 ms, the fluctuations of the magnetic field will cause the atoms’ detuning to vary
over time. While the latter effect can be circumvented by shortening the duration of the
MW pulse, the former issue can only be addressed by synchronizing the Cicero sequence
with the AC mains frequency. A crucial test to verify that the RF spectroscopy of strongly
interacting gases will eventually only be limited by the Fourier-width of the pulse itself, is
the observation of coherent Rabi-oscillations between neighboring spin states. In presence
of 50 Hz, these oscillations are very difficult to observe at long times due to the dephasing
from shot to shot. The corresponding measurement establishing that sufficiently long
coherence times can be achieved with the remaining (minimal) magnetic field uncertainties
of ∼ 5 mG is shown in fig. B.8b. The fitted coherence time of τcoh ≥ 800 µs is more than
sufficient for RF spectroscopy of interacting Fermi gases.

4Note that the results obtained with the hall probe were given in terms of peak-to-peak fluctuations! The full
RMS width at a 13.5 % level of the corresponding probability distribution is therefore smaller, amounting
to roughly 4.5 mG.
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B.3. A high power optical dipole trap for Lithium

An overview of the current design of the laser system is given in fig. B.9. The output of the
laser head with a wavelength of 1070 nm and a maximum power of 300 W is collimated
at a beam waist of 2.5 mm. The setup is intended to provide two different kinds of dipole
traps. The first one is fibered with a reduced maximum optical power of 25 W at the
position of the atoms, which can be used either as primary dipole trap to replace the
current one described in sec. 2.11.2, or as a crossed trap when higher levels of compression
are required. The intensity can be controlled by providing feedback to an AOM that is
installed before the high power fiber coupling. The stabilization circuit is similar to the
one shown in fig. 2.16. In order to achieve the intensity figure mentioned above, about
50 W are needed as initial power assuming typical (high power) AOM diffraction- and
fiber coupling efficiencies of 70 %. The latter should be optimized as much as possible to
be able to keep the needed optical power as low as possible in order to minimize thermal
lensing in the AOM crystal. The fiber can be attached to either of the ODT outcouplers
around the science cell instead of the Innolight Mephisto (see fig. 2.12).

The second ODT generated by the setup is a deep large volume trap that is delivered
free-space to the science cell. Its purpose is to facilitate the capture of 6Li at the moment of
release from the quadrupole trap. The power will be controlled by means of a rotatable
waveplate, which enables slow ramps of the intensity, and by providing additional feed-
back to the pump current modulation input of the laser controller. The latter enables one to
stabilize the optical power at sufficiently high bandwidth at the expense of minor changes
of the beam’s waist. Moreover, the polarization optics must have a large extinction ratios
to ensure accurate control and reproducibility of the set power.

There are several other consequences arising from the high optical intensities of the laser.
First, the dipole force of a beam carrying more than 100 W at a diameter of ∼ 1 mm is
sufficiently strong to accelerate the deposition of dust on optical surfaces. Eventually, such
accumulations of impurities can ignite given the high intensity of the laser and irreversibly
damage the material. A second effect connected to high power is an increased sensitivity
to fluctuations in the air, which can translate into violent pointing jitter on the order of
∼ 1 mm for our beam parameters. This affects mostly the high power path of the laser
system and hence the position stability of the dipole trap at the position of the atoms
(pointing noise), but also the fiber coupling of the low power part since the PID is not be
fast enough to compensate by increasing the power (intensity noise). Either one represents
a source of parametric heating for the atoms and must be avoided. Third, there is an
increased fire and health risk since even stray transmissions trough mirrors can be quite
powerful, especially when focused down. To combat all of the problems raised so far, the
setup has to be kept in an airtight enclosure, which includes the path of the high power
beam all the way until the science cell.
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Figure B.9.: Schematic illustration of the laser system. Laser: IPG Photonics YLR-300-LP-WC
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Figure B.10.: Servo loop for intensity stabilization using a logarithmic amplifier. a) Schematic
overview of the circuit providing feedback to the AOM driver. b) Power conversion using the
logarithmic amplifier. In this example, the maximum and minimum recorded powers were
56 W and 0.0036 W, respectively, corresponding to a dynamic range of more than four orders of
magnitude.

First iteration of the setup. Before changing the laser system to the one desrcibed so far,
a high power AOM was used to regulate the optical power of up to ∼ 250 W instead of a
rotating waveplate. To avoid accumulation of dust and subsequent burning of the AOM
crystal, it had to be placed in a custom flowbox. By creating a weak overpressure inside
of the box, the accumulation of dust on the entry and exit surface of the AOM crystal
was prevented while keeping beam pointing jitter minimal. During the sequence, the
air flow was cut by means of an industrial electromechanical valve to stabilize the beam.
Technical details regarding the homebuilt driver to operate the solenoid of the valve can be
found in sec. B.4.2. In addition, the bottom support of the flowbox enables one to actively
stabilize the temperature of the AOM in order to ensure consistent thermal conditions
during operation (see fig. B.11). As the RF power is rather high with 15 W, preheating of
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Figure B.11.: Flowbox and heatsink for the high power
AOM. The AOM is mounted on a thin plate made of brass,
which is connected to the larger heatsink below via a ther-
moelectric element. The larger body of the heatsink is
made of brass due to its high thermal conductivity. The
four threads on each side enable the mounting of addi-
tional heat sinks with fins to provide additional means
for heat dissipation. The two large diameter inlets for
the filtered air, which are located on the top of the flow-
box, are not shown here. The openings of the flowbox
also represent the entry and exit apertures for the high
power beam passing through the AOM. The temperature
of the AOM is measured with a thermistance and actively
regulated through the Peltier element.

the AOM would take about 60 s, which is much too long considering the extremely high
optical powers.

The intensity stabilization circuit is depicted in fig. B.10. It differs from the one shown
previously in fig. 2.16 in that the dynamic range of optical powers that need to be covered
is much larger. Therefore, a single linear photodiode is no longer sufficient. In order to
deal with several decades of optical intensities, a logarithmic amplifier is used to convert
the photo-current into a voltage of the PID module. An example of the resulting power
conversion is given in fig. B.10b. While this method does increase the dynamic range and
prevents one from having to use two photodiodes, which renders the stabilization circuit
much more complex, it also comes at the expense of increased noise.

Owing to the presence of high optical intensities inside of the AOM crystal, thermal jitter
and -lensing were major points of concern of the original version of the laser system. These
effects can be detrimental to the mode quality of the ODT as well as to its tendency to
cause parametric heating due to fast modulations of the beam pointing. A characterization
of the waist at a total power of 50 W as a function of positon is given in fig. B.13, which is
fitted using the well known relation for ideal Gaussian beams,

ω(z) = ω0

√
1 + (z/zR)

2.

Here,ω0 denotes the beam waist and zR = πω2
0/λ represents the Rayleigh length. While

this analysis reprents an approximation at best, it does highlight whether the high power
ODT deviates noticably from the desired Gaussian behavior. In fig. B.13 one can clearly
see that the wings do follow the ideal behavior more than the region around the beam’s
waist, which displays a slight tilt as well as a reduced curvature.
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Figure B.12.: Characterization of the beam quality of the original setup at 50 W. a) Pointing
jitter over the course of 6 min recorded at 190 Hz. b) Evolution of the waist over the same period
of time. Note that the axes are not scaled equally.
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Figure B.13.: Evolution of the waist with po-
sition. Blue/orange data points: waist along
x and y extracted from 1D integrated Gaus-
sian fits to the recorded beam profiles (only
half of the data is shown for clarity). Solid
lines: fits to the data using the functionω(z) =
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2 of an ideal Gaussian beam.
The total optical power of the beam was 50 W
after the AOM.

A survey of the stability over time of the waist and the center of intensity over the course
of 6 min are given in fig. B.12. The pointing jitter appears to amount to about 10 % of the
waist and the size of the mode itself fluctuations between 10 % and 5 %, depending on the
direction. The asymmetry of the latter might point to thermal effects in the AOM crystal.

Loading behavior. So far, the high power part of the IPG setup has been tested with
40K and only in this configuration of the setup, where loading efficiencies of up to 30 %
after the magnetic trap were achieved. While the main dipole trap can perform as well, it
only does so when the experiment operates at peak efficiency. Typical loading efficiencies
are between 10 % and 20 %. The IPG, on the other hand, can be used at a larger waist
since any loss in trap depth is easily compensated by increasing the optical power. This
increased trap volume facilitates the loading and increase the traps tolerance with respect
to the initial conditions of the atoms after RF-evaporation. While increasing the waist at
constant trap depth improves the loading efficiency, it also implies increasingly large axial
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cloud sizes, which ultimately fixes a maximum loading efficiency as the atoms will end
up touching the glass cell at some point. This effect can be reduced by adding a magnetic
gradient to increase the restoring force along the axial direction, however this method is
obviously limited as the magnetic trap must not become too strong since, otherwise, it
would prevent loading of the ODT or begin to pull back atoms.
A common problem with high power fiber lasers is that due to their linewidth of several
nm one cannot easily form a crossed trap without risking to excite molecular photo
association lines. Thorough polarization of the second beam may alleviate this problem,
as was demonstrated with 6Li in [89]. In our case, a crossed trap was formed with the
narrow band Mephisto MOPA dipole trap. While the difference in wavelengths amounts
to 6 nm, the linewidth of our IPG of 4 nm might still suffice to induce molecular losses
when crossed with the other ODT, especially considering that the beams do not intersect
one another at 90° (see fig. 2.12). However, we found experimentally that no such losses
occur for 40K on a timescale of several seconds when loading the cross during evaporation.
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B.4.1. Atomic source security system
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Figure B.14.: Abbreviated circuit diagram of the security system. a) Dual voltage linearly reg-
ulated power supply. b) Relay circuit. c) Alarm buzzer. d) Menu button. e) Thermistances. f)
Indicator light. g) AC mains outlet. h) Arduino microcontroller.

Figure B.15.: Front panel of the security system. USB: programming port, BNC: Inputs for
temperature sensors or interlocks, Button (left): menu, Botton (lower right): On/off switch for the
monitoring electronics, Flip switch (upper right): Day/night mode.



204 Appendix B. Additional experimental setups and data

B.4.2. Driver for solenoid valves
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Figure B.16.: Abbreviated circuit diagram of the valve driver. a) Power supply. b) Relay switch-
ing circuit with external TTL input. c) Relay indicator light. d) External valve and relay circuit.

B.4.3. AOM driver supply and breakout box
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Figure B.17.: Circuit diagram of one driver channel. Left: 8-pole switch and status LED. Right:
voltmeter with liquid crystal display and rotary potentiometer. 5 V and 24 V supplies not shown.

Figure B.18.: Front panel. Switch: remote control (LED on) or local override mode (LED off). BNC
connectors: Analog and digital modulation channels of the RF drivers (blocked in override mode).
Potentiometer: analog tuning voltage in override mode, displayed on the LCD panels.
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Figure B.19.: New Potassium reservoir. Left: custom stainless steel mount holding the ampule
in place. The height ensures that the angle-valve can be used to crack open the ampule under
vacuum. Right: reservoir after installation and additional bake-outs.

|mI , mJ〉 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|+4,+ 1

2 〉 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
|+3,+ 1

2 〉 0 0 0 0 0 0 0 0 70 0 30 0 0 0 0 0 0 0
|+2,+ 1

2 〉 0 0 0 0 0 0 0 53 0 0 0 47 0 0 0 0 0 0
|+1,+ 1

2 〉 0 0 0 0 0 0 41 0 0 0 0 0 59 0 0 0 0 0
|+0,+ 1

2 〉 0 0 0 0 0 32 0 0 0 0 0 0 0 69 0 0 0 0
|−1,+ 1

2 〉 0 0 0 0 24 0 0 0 0 0 0 0 0 0 76 0 0 0
|−2,+ 1

2 〉 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 83 0 0
|−3,+ 1

2 〉 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0
|−4,+ 1

2 〉 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95
|+4,− 1

2 〉 0 0 0 0 0 0 0 0 30 0 70 0 0 0 0 0 0 0
|+3,− 1

2 〉 0 0 0 0 0 0 0 47 0 0 0 53 0 0 0 0 0 0
|+2,− 1

2 〉 0 0 0 0 0 0 59 0 0 0 0 0 41 0 0 0 0 0
|+1,− 1

2 〉 0 0 0 0 0 68 0 0 0 0 0 0 0 32 0 0 0 0
|+0,− 1

2 〉 0 0 0 0 76 0 0 0 0 0 0 0 0 0 24 0 0 0
|−1,− 1

2 〉 0 0 0 83 0 0 0 0 0 0 0 0 0 0 0 17 0 0
|−2,− 1

2 〉 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
|−3,− 1

2 〉 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
|−4,− 1

2 〉 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.1.: Basis decomposition of the ground state Zeeman levels of 40K . The 18 spin states of
the two ground state manifolds are expanded into the

{
I, mI ; J, mJ

}
basis at a magnetic bias field

of 230 G. All coefficients are squared and given in percent. Red shaded columns: basis vectors of
the ground state manifold accessible from |1′〉, |2′〉 and |3′〉 via spontaneous emission; Blue shaded
columns: states with non-zero contributions of these basis vectors.
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Appendix C

Supplementary theoretical references and experimental methods

C.1. Absorption imaging and thermometry of fermionic Potassium

In order to probe the density- and momentum distribution of the atomic ensembles, we
employ standard absorption imaging. A near-resonant laser beam is passed through
the atoms and thereby attenuated before being imaged and magnified onto a CCD cam-
era. This technique is destructive due to the incoherent nature of the photon scattering
processes and does not probe the dispersive properties of the atomic cloud. In the limit

of weak light intensities, the transmitted beam profile is given by the well-known Beer-
Lambert-Bouguer law [228],

IT(x, y) = I0(x, y)e−D(x,y) , D(x, y) = σ
∫

n(x, y, z)dz, (C.1)

where I0 and IT denote the light’s intensity profiles before and after passage through
the atoms, respectively. The optical density D(x, y) is comprised of the absorption cross-
section σ and the column number density n2D(x, y) =

∫
n(x, y, z)dz. While the spatial

extension of the cloud is directly accessible via the pixel size of the camera as well as
the magnification of the imaging system, the extraction of the atom number from the
"shadow" cast by the atoms requires knowledge of the involved optical transitions and
their probability amplitudes. Unless the addressed transition is cycling and therefore
behaves like an ideal two-level system, the standard expression of the scattering cross
section has to be modified in order to incorporate all of the partaking Clebsch-Gordan
coefficients:

σ = C2 × 3λ2
L

2π
1

1 + 4∆2/Γ 2 . (C.2)

Here σ0 = 3λ2/(2π) is the resonant scattering cross section of a two-level system, ∆ =

ωL −ω0 is the detuning of the imaging laser of wavelength λL from resonance and
Γ denotes the linewidth of the transition. In a mere two-level system, C = 1 holds.
This is also the case when a cycling transition is used for imaging, i.e. a line where no
additional channels other than the principal one are available for stimulated absorption
or spontaneous emission. In 40K this situation is present, for example, when exciting
the stretched ground Zeeman states |F = 9/2, mF = ±9/2〉 to |F′ = 11/2, m′F = ±11/2〉
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usingσ± polarized light. In the case where multiple spin states of the ground- and excited
state hyperfine manifolds are involved, C can be taken to be the average over all of the
involved Clebsch-Gordan coefficients, normalized to the one of the cycling transition. For
vanishing magnetic fields (i.e. degenerate Zeeman levels), one finds for the D2 line of
40K that C2 = 0.4 and C2 = 0.5 for 6Li . One should note that the underlying assumption
here is that the cross section does not depend on the laser intensity and on the level of
attenuation by the atoms. This condition holds if I0 is much smaller than the saturation
intensity Isat of the imaging transition. Moreover, in this case parasitic optical pumping
into other states via spontaneous emissions (or even stimulated absorption) will occur, the
impact of which depends on the total exposure time. In the presence of magnetic fields,
this depumping process can render atoms dark to the imaging light. In general, to ensure
that the cloud is properly illuminated, the optical density should fulfill D(x, y) � 4 at
the same time, implying that no portion of the probe beam is completely absorbed and
re-scattered by the atoms (i.e. the shadow is perfectly black). Technically, the above criteria
are realized by choosing I0 ∼ 0.1Isat and keeping the exposure- and illumination times as
short as possible to disturb the atomic sample as little as possible. This applies both to the
problem associated with the energy transfered to the atoms as well as to the possibility of
repumping processes to other (dark) states by the imaging light. While short light pulses
of 25µs can be easily realized with acousto-optical modulators, the minimal exposure time
of the camera is usually much longer than that. Therefore, a large amount of noise in
the form of stray light is also imaged in a parasitic way, and has to be subtracted when
reconstructing the optical density from the captures of the CCD camera:

D(x, y) = ln
(

I0(x, y)− Ibg(x, y)
IT(x, y)− Ibg(x, y)

)
. (C.3)

Here, I0(x, y) represents a picture of the mere imaging light in the absence of atoms while
IT(x, y) denotes the absorption picture. Ibg(x, y) is a capture of only the parasitic stray
light, which is naturally present in the imaging system.

Now, the most straightforward way to infer the total atom number N present in the atomic
sample is by integrating over the experimentally recorded optical density:

N =
1
σ

∫
D(x, y)dx dy =

∫
n2D(x, y)dx dy. (C.4)

This way, any single image of the atomic sample gives a-priori access to the number of
scattering centers present. However, the extraction of the temperature requires, in general,
knowledge about the nature of the confining potential (e.g. trapping frequencies) as well
as about the underlying distribution function (Fermions or Bosons, thermal or quantum-
degenerate) because one must somehow relate the size of the cloud to its thermodynamic
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state. As will be detailed below, this amounts to fitting the proper expression of the
column density to the experimentally recorded 2D- or (integrated) 1D-density profiles,
n1D =

∫
n2Ddxi.

There are two principal options how one can take the absorption image: The exposure
can be done in-situ, i.e. the confining potential is present while the illumination pulse
is shone in, or the atoms are first released from their trap. Naturally, the appropriate
fit functions in both cases have to be chosen differently. The former method has the
advantage of capturing the atoms’ actual density profile in the trap, but suffers from
the fact that the ensembles are usually very small and dense, which requires highly
magnified- as well as highly resolved imaging and tends to introduce saturation effects
due to large optical densities, as was discussed above. Moreover, the inhomogeneous
nature of any trapping potential can give rise to spatially varying imaging frequencies,
which introduces additional complications into the image capture- and evaluation process.
These disadvantages can be circumvented by switching off the trap prior to imaging.
Assuming the absence of any scattering resonance, the atoms are then left to expand freely
(ballistically) during a given period of time (time-of-flight). Given that the momentum of
each particle remains conserved during time-of-flight, the size of the cloud gives direct
insight into the initial momentum distribution and temperature of the sample.

For an ideal gas, which is being released from a harmonic trap with cylindrical symmetry

along z at t = 0, the density distribution has to be rescaled according to x′i = xi/
√

1 +ω2
i t2

(with xi = x, y, z). After a typical expansion time of a few ms, the density distribution will
have evolved to [63]:

n(r, t) =
n(r′, t = 0)

(1 +ω2
r t2)

√
1 +ω2

zt2
. (C.5)

Here, the wi’s denote the radial and axial trapping frequencies and t is the total expansion
time. It is a peculiarity of the harmonic trap that the overall shape of the density distribu-
tion is maintained along the different symmetry axes as the cloud expands ballistically.
An additional prerequisite for this behavior is that many vibrational levels along every
direction have to be occupied, which is usually the case for both classical (kBT � h̄ων)
and quantum degenerate gases (EF � h̄ων).

Degenerate Fermi Gas. By inserting the well known density distribution of non interacting
harmonically trapped Fermions into the above equation and integrating along the imaging
axis (here: x), one obtains for the column density after time-of-flight:

n2D(y, z, t) = − 1√
(1 +ω2

r t2) (1 +ω2
zt2)

m (kBT)2

2πh̄3ωr
Li2

(
−Ze

− y2

2σ2
r
− z2

2σ2
z

)
(C.6)
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The fit function for 1D integrated optical densities is then readily calculated to read

n1D(y, t) = − 1√
1 +ω2

r t2

√
m
2π

(kBT)5/2

h̄3ωzωr
Li5/2

(
−Ze

− y2

2σ2
r

)
. (C.7)

Here, the fugacity of the ensemble is defined as Z = eβµ. An additional dependence on
time is contained in the cloud radii as per

σ2
r (t) =

kBT
mω2

r

(
1 +ω2

r t2
)

, σ2
z (t) =

kBT
mω2

r

(
1 +ω2

zt2
)

. (C.8)

Given that the amplitude and the width of the above distributions are related, there are
only two fitting parameters provided the trapping frequencies are know. This way, one
can determine the temperature and atom number at the same time, which is particularly
useful in order to calibrate the machine in terms of absolute atom number. An example
was already given in figure 2.18. Finally, in order to quantify the degree of degeneracy of
the Fermi gas, the relative temperature can be determined through the measured size of
the cloud:

T
TF

=
mω2

yσ
2
y

h̄ω̄ (6N)1/3
(

1 +ω2
yt2
) . (C.9)

Classical limit. At high temperatures, the above expressions for the densities converge
toward Gaussian distributions, which are in general faster and easier to fit than polyloga-
rithmic functions. Moreover, in both cases, the aspect ratio of the cloud σz/σr −→ 1 as
t� 1/ων, i.e. the density distribution losses its initial asymmetry and becomes spherical
after sufficiently long expansion times. In this limit, the density profile reflects directly the
initial momentum distribution of the cloud, regardless of the type of the trapping poten-
tial.1 Provided that the atomic gas is thermal and consequently Boltzmann-distributed
in momentum space, then one can also measure the temperature without knowledge of
the details of the trapping potential. By taking multiple absorption images for different,
sufficiently long expansion times as mentioned above, one can determine the effective
temperatures of the gas by fitting the resulting Gaussian cloud sizesσi(t) to the expression

σ2
i (t) = σ

2
0 +

kBTi

m
t2 , i = x, y, z, (C.10)

where σ0 denotes the initial (in-situ) cloud size. In a harmonic trap, the underlying
assumption is exactly true for a classical gas, while for a degenerate gas this method starts
to become unreliable around T/TF ∼ 0.3 (see [63] for details).

1It should be reemphasized that this is only true for non-interacting particles!
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C.2. Determination of trapping frequencies

In order to infer correct atomic densities or temperatures from absorption images, the
knowledge of the underlying harmonic trapping frequencies defined in sec. 2.11.2 is
paramount. As was mentioned earlier, the Fermi fit relies heavily on the knowledge these
frequencies because the temperature is calculated by inferring the initial size prior to
ballistic flight. In the case of optical dipole traps formed by Gaussian beams, one can
measure these frequencies by exciting center-of-mass oscillations or breathing modes,
provided the compression ratio η = U0/kBT is large enough.

The latter requirement ensures the applicability of the harmonic approximation as the
thermal distribution does not sample the non-harmonic wings of the Gaussian beam’s
intensity profile2. The center-of-mass of harmonically trapped atoms is supposed to keep
oscillating indefinitely, even when strong interactions are present in the system (Kohn
theorem). As soon as anharmonic terms enter into the potential, the oscillations will start
to display dampening, which is readily the case along the axial direction of the beam
due to the naturally weak degree of confinement. The behavior is different in the case of
oscillations of the cloud size, which always display dampening as soon as interactions are
present among the atoms. By extension of this fact, they represent a means to measure the
collision rate in the atomic sample.

Excitation of such collective modes is done by rapidly changing the optical potential in
order to impart energy onto the trapped atoms without loosing them. This can be done
via fast compression, switching off the laser power for a few µs or by using a magnetic
gradient field to accelerate the atoms. In fig. C.1 several examples of such measurements
are shown. Here, the laser was abruptly switched off and back on in order to excite the
atoms. While both CoM and breathing modes were present along the transverse directions,
only the latter is depicted here. Note that the frequency of a cloud size oscillation in the
non-interacting regime has to be divided by two in order to extract the true trapping
frequency. Axial oscillations concern only the CoM position as the spatial extent of the
cloud is less reliable to fit due to the large axial size with respect to the field of the view of
the imaging system. The Gaussian beam waistω0 can be extracted by fitting the measured
frequencies to the optical power P at the position of the atoms as per the well known
relations [272]:

ν⊥ =
1

2π

√
4U0

mω2
0

and ν‖ =
1

2π

√
2U0

mz2
R

, (C.11)

with U0 ∼ P denoting the potential depth of the dipole trap as introduced in sec. 2.11.2. ω0

denotes the Gaussian beam’s waist and zR its Rayleigh range. Another method to probe the
trap frequencies is by inducing parametric heating on purpose. To do so, one modulates the

2In practice we find that η > 10 is recommended to avoid anharmonic behavior.
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Figure C.1.: Measurement of harmonic trapping frequencies in a single optical dipole trap. a)
Breathing-mode oscillations of the transverse cloud sizes. b) Oscillations along the radial degrees
of freedom for various powers. c) Axial center-of-mass oscillations are given for three different
optical intensities. b) and d) depict the relation of the measured frequencies to the optical power,
from which the waist can be inferred as a fit parameter.

laser intensity for a sufficiently long time at twice the trapping frequency in order to drive
transitions between even motional states of the harmonic oscillator 3. The transition rate
between states |k〉 and |l〉 due a small intensity modulationωx → ωx(t) = ωx(I(t)/I0)

1/2

of duration T is given by [273]:

Rkl =

(
mω2

x
2h̄

)2 +∞∫
−∞

dt′ eiωkl t′ 〈(I(t)/I0 − 1)(I(t + t′)/I0 − 1)〉 |〈k|x2|l〉|2 (C.12)

where 〈·〉 denotes the correlation function of the fluctuations. Note that the matrix element
in the above equation vanishes for odd excitations with l = k + 1. A modulation can
result in strong heating of the trapped cloud when its power spectrum contains large

3One could also do this by modulating the pointing of the laser, which is much more cumbersome from an
experimental point of view.
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Figure C.2.: Spectrum of parametric heating
induced in a crossed optical dipole trap. The
ODT beam’s intensity is modulated at fre-
quency ν for a certain period of time τ � 1/ν,
allowing for several oscillation cycles before
it is brought back to its nominal value. After-
wards, the cloud size is recorded after a suffi-
ciently long wait time to let the atoms thermal-
ize first. The resulting excitation spectrum con-
tains peaks at positions ν̃k = 2νk (k = x, y, z).

contributions at ±2ωx. The corresponding rate is given by

Rk,k±2 =
πω2

x
16

S(2ωx)(k + 1± 1)(k± 1), (C.13)

with S(2ωx) denoting the one-sided power spectrum evaluated at ω = 2ωx. Experi-
mentally, strong heating can be easily detected by tracking the cloud size after excitation
along any direction provided the sample undergoes a sufficient number of collisions to
rethermalize the different directions. An example of this method is shown in fig. C.2,
where it was used to measure the trap frequencies of a crossed dipole trap. Provided
there is sufficiently fast thermalization, this approach has the huge advantage of being
independent of the orientation of the imaging axis with respect to the dipole trap. In the
example shown here it was used for that reason because one degree of freedom of the
crossed trap was temporarily inaccessible via absorption imaging, which prevents one
from observing the corresponding center-of-mass oscillations to measure the trapping
frequency along that direction.
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Figure C.3.: Example of a calibration curve
for the magnification. The atoms are released
from their trapping potential and left do fall
freely under the action of gravity. The CoM-
position of the cloud is tracked for many val-
ues of the drift time to sample the parabolic
trajectory with high precision. The magnifica-
tion is obtained as fit parameter, yielding here
for example 1/Mfit = 0.490(4) in the case of
x-imaging.

C.3. Calibration of imaging magnification

Prealignment of any imaging system is usually done using a resolution target, which is
placed at a known position with respect to the actual object plane containing the atoms.
The corresponding distance defines by how much the lenses will need to be moved after
focusing them on the temporary target. While this method is quite effective in positioning
the optical elements, the magnification needs to be verified experimentally in order to
obtain a precise value. This can be done by letting an atomic sample fall freely and
recording its center-of-mass position as a function of time z(t). The resulting parabola
contains the magnification M as fit parameter as it translates the actual distance covered
by atoms into what is seen by the CCD camera. If M = 1, one would obtain exactly
that z(t) = gt2/2 with g denoting the gravitational acceleration. An example of such a
calibration is shown in fig. C.3. At the moment of release, no additional accelerating
forces should be present at the position of the atoms. This concerns for instance stray
magnetic gradients originating from Eddy currents, which can be easily created when
switching off strong magnetic traps or bias fields. In ideal conditions, the trajectory z(t) of
the center-of-mass of the atomic cloud as seen by the camera is given by:

z̃(t) =
1

Msp

(g
2

t2 + z̃0

)
.

Here, sp denotes the size of the camera pixels and z̃ is the position expressed in terms of
pixels. The magnification M is obtained as fit parameter. It is important that the atoms are
allowed to fall over an extended period of time in order sample as well the wings of the
parabola, thereby ensuring a high fidelity fit that cannot be obtained if only the bottom
of the parabola is mapped out. As the drop time is fixed by gravity, a constraint exists
regarding the temperature of the atomic sample. If too hot, the atoms will expand too
quickly and render detection more challenging the longer the drift time.
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C.4. Alkali atoms in static magnetic fields

When non-interacting alkali atoms are subjected to a static magnetic field, their single
particle dynamics as well as their internal structure are governed by the Hamiltonian [96]:

Ĥ =
p̂2

2m
+ Ĥ0 + Ĥso + Ĥhfs + Ĥz. (C.14)

The first term corresponds to the kinetic energy of the center-of-mass of the atom and
Ĥ0 denotes the spinless valence electron evolving in the electrostatic field of the core and
the inner electron shells. In the case of Alkalis, the energy levels of the valence electron
depend on the principal quantum number n just like Hydrogen, but also on its orbital
angular momentum L̂ since the geometrical shape of the orbitals alters the amount of
overlap the electron has with the inner occupied shells. The altered eigenenergies are
given by the expression E0(n, L) = −Ry/(n − δn,L)

2, where δn,L denotes the quantum
defect and Ry the Rydberg constant. The transition between the ground state nS and the
first excited state nP is usually referred to as the Alkali D-line.

The second term Ĥso incorporates the coupling between the electronic spin and the orbital
angular momentum, taking on the form, Ĥso = Afs L̂ · Ŝ. This term lifts the degeneracy of
the Ĵ = L̂ + Ŝ levels, thereby dividing the first excited state nP state into nP1/2 and nP3/2,
which splits the Alkali D-line into a doublet. The fine structure splitting between the two
excited states is given by

∆Efs = Afs (J (J + 1)− L (L + 1)− S (S + 1)) .

The third term Ĥhf incorporates the coupling to the angular momentum of the nucleus
and can be expressed as

Ĥhf =
Ahfs

h̄2 Î · Ĵ + Bhfs

h̄2

3
(

Î · Ĵ
)2

+ 3h̄
(

Î · Ĵ
)
/2− I2 J2

2I (2I − 1) (2J − 1)
,

where Ahfs and Bhfs denote the magnetic dipole and electric quadrupole constants, respec-
tively. The last term Ĥz describes the interaction between the various magnetic moments
µ̂i and an external magnetic field B,

Ĥz = − (µ̂S + µ̂L + µ̂I) · B =
(
gJ Ĵ − gI Î

)
· B.

Here, µ̂L = −µBgL L̂ denotes the moment associated with the orbital angular momentum,
for which the Landé factor is gL = 1− me/mnucl ≈ 1. The intrinsic momentum of the
electron implies a magnetic moment of µ̂S = µBgS Ŝ with gS ≈ 2 as predicted by the
Dirac equation. Finally, for the nuclear spin one has similarly µ̂I = −µBgI Î with the
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gyromagnetic factor gI depending on the nucleus at hand. This Landé factor is usually
much smaller than one.

Zeeman limit At low magnetic fields the corresponding energy shift is much smaller
than the hyperfine splitting and can be treated as a perturbation. In this situation the Î · Ĵ
couping is dominant and the total angular momentum F̂ precesses around the direction of
the magnetic field B. Consequently, the basis {F, mF} represents a good set of quantum
numbers and, up to first order, the change in potential energy of the state |F, mF〉 is then
simply given by the diagonal elements of Ĥz as per

∆E(B)− ∆Ehfs = 〈F, mF|Ĥz|F, mF〉 = µBgFmF |B| . (C.15)

Here, µB represents the Bohr-Magneton and gF the Landé factor of the hyperfine manifold
under consideration:

gF = gJ
F (F + 1) + J (J + 1)− I (I + 1)

2F (F + 1)
+ gI

F (F + 1) + I (I + 1)− J (J + 1)
2F (F + 1)

. (C.16)

∆Ehfs denotes the hyperfine splitting at zero field, which is given by

∆Ehfs =
Ahfs

2
(F (F + 1)− I (I + 1)− J (J + 1)) . (C.17)

Paschen-Back limit In the strong field regime Î and Ĵ precess independently around the
direction of the magnetic field, so that now {I, mI; J, mJ} provides a sensible set of basis
states. The corresponding energy shift of the state |I, mI; J, mJ〉 with respect to Ĥso + Ĥz is
given by

∆E(B)− ∆Ehfs = µB (gJmJ + gImI) |B| . (C.18)

The shift due to the hyperfine Hamiltonian Ĥhfs can be determined as per

∆Ehfs = 〈I, mI; J, mJ|Ĥhfs|I, mI; J, mJ〉 = AhfsmImJ+

+ Bhfs
9m2

I m2
J − 3I (I + 1)m2

J − 3J (J + 1)m2
I + I J (I + 1) (J + 1)

4I J (2I + 1) (2J + 1)
.

Breit-Rabi formula For states with zero orbital angular momentum L = 0, the eigenen-
ergies of the valence electron can be calculated analytically, which is the case for the
ground states of both 40K and 6Li . The energy of the stretched Zeeman states is given by

∆E =
Ahfs

2h̄2 I ± µB

h̄

(
1
2

gJ + gI I
)
|B| , mF = I ± 1

2
(C.19)
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Figure C.4.: Magnetic moments of the ground state Zeeman levels of 40K . a) Magnetic moments
vs. magnetic field strength as per eqn. (C.21). Red (top to bottom): negative Zeeman states
mF = −9/2, −7/2, −5/2, Blue: mJ = +1/2, Blue-dashed: mJ = −1/2. b) Relative differences
between the magnetic moments of −7/2 and −5/2 and the stretched state −9/2. Gridlines (left to
right): s-wave Feshbach resonance at 202 G, zero-crossing of the scattering length at 210 G, typical
background bias field at 230 G.

which is equal to the above expressions for the low- and high field limit. For the remaining
states, it can be shown that

∆E = −Ahfs

4h̄2 + gIµBmF |B| ±
Ahfs

2

(
I +

1
2

)
×

×

√√√√1 +
2µB (gI − gJ)mF

Ahfs (I + 1/2)2 |B|+
µ2

B (gI − gJ)
2

A2
hfs (I + 1/2)2 |B|

2 (C.20)

holds for |mF| < I + 1/2. It should be pointed out that, strictly speaking, the total angular
momentum is only a good quantum number at zero magnetic field. While the above
equations are valid for any value of the field, mF has to be taken as more of a label at high
fields. It denotes the eigenstate, to which the system adiabatically connects as B→ 0. For
the excited states, the Hamiltonian has to be solved numerically in order to obtain the
Zeeman shifts for arbitrary values of the magnetic field, as is shown fig. C.7.
The Breit-Rabi formula can be used to conveniently calculate the magnetic moments of
the ground Zeeman states for any magnetic field as per

µi(B̃) =
∂Ei

∂B

∣∣∣∣
B=B̃

(C.21)

In fig. C.4a, this relation is shown for 40K and C.4b depicts the corresponding relative
difference of magnetic momenta of the lowest-lying spin states.
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Figure C.5.: Zeeman energy shifts of the electronic hyperfine ground states nS1/2. a) Breit-Rabi
plot for the two ground states F = 9/2, 7/2 of 40K . b) Breit-Rabi plot for 6Li with ground state
manifolds F = 1/2 and F = 3/2.
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Figure C.6.: Zeeman energy shifts of the first excited hyperfine states nP1/2. a) Numerical calcu-
lation of the eigenenergies for the two states with F = 9/2, 7/2 of 40K . b) Numerical calculation
of the eigenenergies for 6Li with F = 1/2 and F = 3/2.
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Figure C.7.: Zeeman energy shifts of the second excited hyperfine states nP3/2. a) Numerical
calculation of the eigenenergies for the four states F = 11/2, 9/2, 7/2, 5/2 of 40K . b) Numerical
calculation of the eigenenergies for 6Li with F = 5/2, 3/2, 1/2.
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C.5. Survey of the known Feshbach resonances of 40K

mF,1, mF,2 MT Partial wave B0 [G] ∆BL [G] Reference

+1/2,−1/2 0 s 15(4) 4 [274]
0 s 31(4) 5 "
0 s 53(4) 5 "
0 s 88(4) 4 "
0 s 246(0.8) 2.4 "
0 s 389(1) 5.5 "

+3/2,−3/2 0 s 95(4) 23 "
0 s 182(4) 12 "

+5/2,−5/2 0 s 61(4) 21 "
+7/2,−7/2 0 s 34.3(0.8) 10.8 "

0 s 147.1(3) 0.8 "
+9/2,−9/2 0 s 17.6(0.3) 5.4 "
+9/2,−7/2 +1 s 13.9(0.2) 1.3 "

+1 s 28.4(0.3) 6.1 "
+9/2,−5/2 +2 s 27.3(0.3) 4.8 "

+2 s 63.4(0.7) 30 "
+9/2,−3/2 +3 s 53(4) 14 "

+3 s 137(8) 53 "
+9/2,−1/2 +4 s 114(8) >40 "
−9/2,−7/2 −8 s 202.10(7) 7.0(2),7.5(1) [91, 92]
−9/2,−5/2 −7 s 224.21(5) 9.7(6),7.6(1) [91, 92]
−7/2,−5/2 −6 s 174 7 [91]
−7/2,−5/2 −6 s 228.8(4) 2.4(3) "
−7/2,−3/2 −5 s 168.5(4) - "
−7/2,−3/2 −5 s 260.3(6) - "
−5/2,−3/2 −4 s 22.1(3) 0.7(2) "
−5/2,−3/2 −4 s 178(1) 6(1) "
−5/2,−3/2 −4 s 254.8(9) 5(1) "
−3/2,−1/2 −2 s 37.2(3) 3.6(4) "
−3/2,−1/2 −2 s 102.1(1) 0.4(1) "
−3/2,−1/2 −2 s 138.2(1) 1.1(1) "
−3/2,−1/2 −2 s 219.1(1) 3.5(5) "
−3/2,−1/2 −2 s 292.3(4) 11.5(2) "
+7/2,+5/2 +6 s 312(1.8) 4(1.5) "

−7/2,−7/2 −7 p 198.8 [93]
+9/2,−7/2 +1 p 139 [274]
−9/2,−5/2 −7 p 215(5) [91]
−7/2,−7/2 −6,−8 p 198.30(2) "
−7/2,−7/2 −7 p 198.80(5) "
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mF,1, mF,2 MT Partial wave B0 [G] ∆BL [G] Reference

−5/2,−5/2 −4,−6 p 232.8(2),232.8(2) [91]
−5/2,−5/2 −5 p 233.6(2),233.4(2) "
−5/2,−5/2 −5 p 245.4(4),245.3(5) "
−5/2,−3/2 −3,−5 p 262.2(2) "
−5/2,−3/2 −4 p 262.6(2) "
−3/2,−3/2 −3 p 287(1.8) "
−3/2,−3/2 −3 p 311.8(4) "
−3/2,−1/2 −2 p 338(1.8) "
−1/2,−1/2 −1 p 373(1.8) "
+5/2,+5/2 +5 p 68(1.8) "
+5/2,+5/2 +5 p 102(1.8) "
+5/2,+5/2 +5 p 139(1.8) "
+5/2,+5/2 +5 p 324(1.8) "
+5/2,+9/2 +7 p 44(1.8) "
+7/2,+7/2 +6,+8 p 43.8(2) "
+7/2,+7/2 +7 p 44.7(2) "
+7/2,+7/2 +6,+8 p 45.2(2) "
+7/2,+7/2 +7 p 46.4(2) "
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Résumé

L’exploration de systèmes quantiques à N
corps fortement corrélés représente l’un des
domaines de recherche les plus stimulants
de la physique contemporaine. Au cours des
trente dernières années, les vapeurs diluées
d’atomes neutres en suspension dans le vide
et contrôlées par un laser sont devenues une
plate-forme polyvalente et formidable pour
l’étude de tels systèmes. L’interet princi-
pal réside dans la capacité d’ajuster arbi-
trairement la force de l’interaction atomique
au moyen de résonances de Feshbach in-
duites magnétiquement, ainsi que la pos-
sibilité de créer une large gamme de po-
tentiels via des champs optiques précisé-
ment adaptés. Cette thèse présente les ré-
sultats récents de l’expérience FerMix, con-
sacrée à l’étude des systèmes quantiques
à plusieurs corps fermioniques à des tem-
pératures ultra-basses utilisant les atomes
alcalins 40K et 6Li. Les principaux résul-
tats présentés dans ce texte sont doubles.
Premièrement, nous rapportons la caractéri-
sation expérimentale d’une nouvelle réso-
nance de Feshbach (s,d)-wave du 40K, dont
les résultats sont comparés aux prédictions
théoriques correspondantes. En particulier,
le spectre du taux de perte inélastique est
déterminé pour différentes températures et
profondeurs de piège, ce qui nous permet
d’identifier les pertes en tant que processus
à deux corps. De plus, il est confirmé que
le canal d’entrée dominant est de type s-
wave. À l’aide de modèles d’équation de
taux, nous analysons le réchauffement ob-
servé de l’ensemble atomique et trouvons
que le comportement est cohérent avec l’état
lié prévu L = 2 présent dans le canal de sor-
tie. Enfin, nous étudions expérimentalement
la dynamique des populations de spin induite
par les collisions inélastiques renforcées par
résonance dans l’onde d, en observant un
bon accord avec nos modèles numériques.
En second lieu, nous résumons nos progrès
dans l’étude des croisements dimensionnels
entre le liquide de Tomonaga-Luttinger en 1D
et le liquide de Landau-Fermi en 3D en util-
isant les gaz de Fermi de 40K confinés dans
un réseau optique à grand pas. Cela in-
clut à la fois les considérations de conception
fondamentales et l’installation du matériel ex-
périmental requis.

Mots Clés

Gaz de Fermi ultra-froids, résonances de
Feshbach, systèmes quantiques à N corps
fortement corrélés, physique atomique, gaz
quantique.

Abstract

The exploration of strongly correlated quan-
tum many-body systems represents one of
the most challenging fields of research of
contemporary physics. Over the past thirty
years, dilute vapors of neutral atoms sus-
pended in vacuum and controlled with laser
light have become a versatile and powerful
platform for the study of such systems. At
the very heart lies the ability to arbitrarily tune
the interaction strength by means of magnet-
ically induced Feshbach resonances as well
as the possibility to create a wide range of
potential landscapes via precisely tailored op-
tical fields. This thesis reports on the re-
cent results of the FerMix experiment, which
is dedicated to the study of fermionic quan-
tum many-body-systems at ultralow tempera-
tures using the Alkali atoms 40K and 6Li. The
main results presented in this text are twofold.
First, we report on the experimental charac-
terization of a novel (s,d)-wave Feshbach res-
onance in 6Li, the results of which are com-
pared to the corresponding theoretical predic-
tions. In particular, the spectrum of the inelas-
tic loss rate is determined for different tem-
peratures and trap depths, which enables us
to identify the losses as two-body processes.
Moreover, the dominant entrance channel is
confirmed to be s-wave in nature. Using rate
equation models we analyze the observed
heating of the atomic ensemble and find the
behavior to be consistent with the predicted
L = 2 bound state present in the exit chan-
nel. Finally, we investigate experimentally the
dynamics of the spin populations driven by
resonantly enhanced inelastic collisions in d-
wave, observing good agreement with our nu-
merical models. Second, we summarize our
progress towards the study of dimensional
crossovers between the Tomonaga-Luttinger
liquid in 1D and the Landau-Fermi liquid in
3D using Fermi gases of 40K confined in a
large spacing optical lattice. This includes
both the fundamental design considerations
as well as the implementation of the required
experimental hardware.

Keywords

Ultracold Fermi gases, Feshbach reso-
nances, strongly correlated quantum many-
body systems, atomic physics, quantum
gases.
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