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Abstract

Pedestrian detection and tracking have become important fields in Computer Vision research, due
to their implications for many applications, e.g. surveillance, autonomous cars, robotics. Pedes-
trian detection in high density crowds is a natural extension of such research body, and has a grow-
ing interest since large scale events (e.g. concerts, sport events, public ceremonies) are, nowadays,
critical scenarios from a safety point of view. The ability to track each pedestrian independently
in a dense crowd has multiple applications: study of human social behavior under high densities;
detection of anomalies (e.g. a pedestrian exhibits dynamics different from the rest of the crowd);
large event infrastructure planning (e.g. study of bottleneck accesses and exits from the event
area). On the other hand, high density crowds introduce novel problems to the detection task.
First, clutter and occlusion problems are taken to the extreme, so that only heads are visible, and
they are not easily separable from the moving background. Second, heads are usually small (they
have a diameter of typically less than ten pixels) and with little or no textures. This comes out from
two independent constraints, the need of one camera to have a field of view as high as possible (in
order to cover a larger crowd area), and the need of anonymization, i.e. the pedestrians must be
not identifiable because of privacy concerns.

In this work we develop a complete framework in order to handle the pedestrian detection
and tracking problems under the presence of the novel difficulties that they introduce, by using
multiple cameras, in order to implicitly handle the high occlusion issues.

As a first contribution, we propose a robust method for camera pose estimation in surveillance
environments. We handle problems as high distances between cameras, large perspective varia-
tions, and scarcity of matching information, by exploiting an entire video stream to perform the
calibration, in such a way that it exhibits fast convergence to a good solution. Moreover, we are
concerned not only with a global fitness of the solution, but also with reaching low local errors,
which is sought for when dealing with small objects like the pedestrian heads.

As a second contribution, we propose an unsupervised multiple camera detection method
which exploits the visual consistency of pixels between multiple views in order to estimate the
presence of a pedestrian. After a fully automatic metric registration of the scene, one is capable
of jointly estimating the presence of a pedestrian and its height, allowing for the projection of
detections on a common ground plane, and thus allowing for 3D tracking, which can be much
more robust with respect to typical problems specific to image space based tracking like crossing
or dead tracks.

In the third part, we study different methods in order to perform supervised pedestrian detec-
tion on single views. Specifically, we aim to build a dense pedestrian segmentation of the scene
starting from spatially imprecise labeling of data, i.e. heads centers instead of full head contours,
since their extraction is unfeasible in a dense crowd. Most notably, deep architectures for semantic
segmentation are studied and adapted to the problem of small head detection in cluttered envi-
ronments.

As last but not least contribution, we propose a novel framework in order to perform efficient
information fusion in 2D spaces. The final aim is to perform multiple sensor fusion (supervised
detectors on each view, and an unsupervised detector on multiple views) at ground plane level,
that is, thus, our discernment frame. Since the space complexity of such discernment frame is
very large, we propose an efficient compound hypothesis representation which has been shown
to be invariant to the scale of the search space. Through such representation, we are capable of
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defining efficient basic operators and combination rules of Belief Function Theory. Furthermore,
we propose a complementary graph based description of the relationships between compound
hypotheses (i.e. intersections and inclusion), in order to perform efficient algorithms for, e.g. high
level decision making.

Finally, we demonstrate our information fusion approach both at a spatial level, i.e. between
detectors of different natures, and at a temporal level, by performing evidential tracking of pedes-
trians on real large scale scenes in sparse and dense conditions.

iv



Résumé

La détection et le suivi de piétons sont devenus des thèmes phares en recherche en Vision Artifi-
cielle, car ils sont impliqués dans de nombreuses applications, comme la surveillance, les voitures
autonomes, ou la robotique. La détection de piétons dans des foules très denses est une extension
naturelle de ce domaine de recherche, et l’intérêt croissant pour ce problème est lié aux évène-
ments de grande envergure (concerts, évènements sportifs, cérémonies publiques) qui sont, de
nos jours, des scenarios à risque d’un point de vue de la sûreté publique. Le suivi individuel des
piétons dans une foule dense permettra : l’étude du comportement social humain à des den-
sités élevées, la détection des anomalies (par exemple, un piéton qui montre une dynamique de
mouvement différente du reste de la foule), la conception des infrastructures (par exemple, pour
limiter les embouteillages à l’entrée et à la sortie de la zone dédiée à un évènement). Par ailleurs,
les foules très denses soulèvent des problèmes inédits pour la tâche de détection. Les problèmes
d’occultation deviennent prépondérants avec des individus dont seules les têtes sont visibles, tout
en n’étant pas facilement séparables de l’arrière-plan. Par ailleurs, de par le fait que les caméras
ont le champ de vision le plus grand possible pour couvrir au mieux la foule, et la contrainte d’«
anonymization » des individus (devant être non identifiables pour des raisons de respect de la vie
privée), les têtes sont généralement très petites (diamètre de l’ordre de dix pixels, voire inférieur)
et non texturées.

Dans ce manuscrit nous présentons un système complet pour traiter les problèmes de détec-
tion et de suivi en présence des difficultés spécifiques à ce contexte. Ce système utilise plusieurs
caméras, pour gérer les problèmes de forte occultation.

Comme première contribution, nous proposons une méthode robuste pour l’estimation de la
position relative entre plusieurs caméras dans le cas des environnements requérant une surveil-
lance. Ces environnements soulèvent des problèmes comme la grande distance entre les caméras,
le fort changement de perspective, et la pénurie d’information en commun. Nous avons alors
proposé d’ exploiter le flot vidéo pour effectuer la calibration, avec l’objectif d’obtenir une con-
vergence rapide vers une solution globale de bonne qualité. Nous avons montré que la solution
proposée permettait également de réduire le niveau des erreurs locales, ce qui est un atout fonda-
mental en vue de la mise en correspondance des objets petits, comme les têtes des piétons.

Comme deuxième contribution, nous proposons une mèthode non supervisée pour la détec-
tion des piétons avec plusieurs caméras, qui exploite la consistance visuelle des pixels à partir
des différents points de vue. Suite à un recalage métrique de la scéne qui est entièrement au-
tomatisé, notre approche estime conjointement la présence d’un piéton et sa hauteur, ce qui
nous permet d’effectuer la projection de l’ensemble des détections sur le plan du sol, et donc de
passer à un suivi 3D, qui est plus robuste face à des problèmes typiques de suivi dans l’espace de
l’image, comme le croisement et la disparition des trajectoires. Dans une troisième partie, nous
revenons sur la détection supervisée des piétons dans chaque caméra indépendamment en vue
de l’améliorer. L’objectif est alors d’effectuer la segmentation des piétons dans la scène en partant
d’une labélisation imprécise (spatialement) des données d’apprentissage, par exemple centres des
têtes à la place des contours, car leur extraction précise est impossible dans des foules denses. En
particulier, nous nous sommes intéressés aux architectures de réseaux profonds (deep learning)
pour la segmentation sémantique and nous en avons proposé une adaptation au problème de
détection de petites têtes dans des environnements difficiles.

Comme dernière contribution, nous proposons un cadre formel original pour une fusion de
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données efficace dans des espaces 2D. L’objectif est d’effectuer la fusion entre différents cap-
teurs (détecteurs supervisés en chaque caméra et détecteur non supervisé en multi-vues) sur le
plan du sol, qui représente notre cadre de discernement. Selon une approche naïve, la com-
plexité de ce cadre de discernement est liée aux dimensions et à la résolution spatiales de la
région à surveiller, soit trop grande pour être envisageable dans le cadre de la théorie des fonc-
tions de croyance. Pour travailler sous ce cadre qui permet de modéliser à la fois l’incertitude et
l’imprécision de nos détections, nous avons proposé une représentation efficace des hypothèses
composées (disjonctions d’hypothèses élémentaires) qui est invariante au changement de réso-
lution de l’espace de recherche. Avec cette représentation, nous sommes capables de définir des
opérateurs de base et des règles de combinaison efficaces pour combiner les fonctions de croy-
ance. En plus de la représentation des hypothèses elles-mêmes, nous avons également proposé
une nouvelle représentation des relations entre les hypothèses (notamment intersection et inclu-
sion) sous forme de graphe. Cette dernière nous a alors permis de proposer des versions efficaces
d’algorithmes pour, par exemple, la prise de décision.

Enfin, notre approche de fusion de données a été évaluée à la fois au niveau spatial, c’est à
dire en combinant des détecteurs de nature différente, et au niveau temporel, en faisant du suivi
évidentiel de piétons sur de scènes à grande échelle dans des conditions de densité variable (faible
et élevée).
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Introduction

Context and social issues

The rise of industrialization, the intensive urbanization, which have led to the formation of mega-
lopolises, have revolutionized our society. Such trend is predicted to persist, since the world pop-
ulation is projected to grow from 7 to 9 billion by 2050, and the developed world will be urbanized
at a degree of 86% by the same year. The increase of the size of metropolitan areas has the effect
of an increased requirement of public transports and well designed infrastructures (see Figure 1).
Dealing with the risks and difficulties associated with such problems is one of the key challenges
for the upcoming future. All the risks associated with transportation and urban planning have a
common originating factor: the behavior of human crowds. The ability to study the dynamics and
predict the behavior of humans forming crowds is a priority for any of the challenges introduced
by urbanization.

One of the most critical problems is represented by panic stampedes, which are a major con-
cern during mass events, and many lives are lost every year due to such issue. As an example,
we cite the stampede at Mecca, Saudi Arabia in 2006, where 363 people died. The authors of [65]
have studied the videos of such specific case, and have discovered that a change in the flow of the
crowd (stop-and-go waves) was observable as early as 30 minutes before the accident. They have
also noticed that, as the crowd density increased, few minutes before the tragedy, the flow started
to be irregular, with people displacing into all possible directions. The pedestrians were moved by
the crowd, and they could not stop, and the individuals who fell down were not able to get on their
feet anymore. Such observations teach a fundamental lesson: a video analysis of the crowd behav-
ior could have detected the risk of stampedes in advance, making possible the implementation of
corrective measures in order to prevent the accident from happening.

a) b)

Figure 1: High density contexts: a) Paris marathon starting block b) CCTV image from one of the moni-
toring systems in Mecca. High density events become ubiquitous, but they always involve a high risk of
instabilities.

Beyond these exceptional tragic events, the correct design of infrastructures is an every day
concern, since it has a big impact on the quality of living in terms of delays, stress and discomfort.
In terms of planning, it is common practice to use simulations as a support in order to model the
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pedestrian social interactions. However, as the crowd density increases, simulation models start
to be inadequate for behavior analysis.

When recalling the interest of advancing this field, crowds can be studied for three different
objectives.

1. Prevention. Use of real data estimates in order to validate and calibrate the crowd simula-
tions, to assess the quality of the infrastructure and for altering the design of the areas which
have to sustain a high crowd flow.

2. Monitoring. Use of real data estimates in order to enable operational decision making on
crowds during a major event. Detection of abnormal behavior of lone pedestrians in the
crowds also falls in this category, and it has huge security implications.

3. Prediction. Use of real data estimates in order to forecast the future behavior of the crowd.
The detection of risk factors in crowds which indicates a possible upcoming accident falls in
this category, since predictive models have to be constructed in order to anticipate human
reactions.

For estimating the number of people attending an event, one may use imprecise information
from previous related events, or additional sources such as the local Global System of Mobile Com-
munications (GSM) usage. However, such information is so unreliable that the event planning is
usually performed by largely overestimating the number of attendants, thus tending to be over-
cautious in the urban design, thus not fully exploiting the available capacity.

Due to the unsuitability of simulations for dense crowds, and to the unreliability of alternative
sources of information, video analysis through computer vision can provide a powerful support
to the solution of the aforementioned challenges. There is a compelling need of real crowd data,
and all the process from data acquisition to pedestrian trajectory extraction can be supported by
computer vision. The extraction of human trajectories has been done usually by manual inter-
vention, or automatically in controlled settings. Recent advancements in computer vision have
allowed to build always faster and more reliable systems for automatic video analysis. However,
for dense crowds, the problem remains still difficult to solve. Designing a system which scales at
high crowd densities would undoubtedly represent a valuable contribution to all the fields which
actively study the problem.

Several novel difficulties arise when applying computer vision algorithms to high-density crowd
analysis. The heads (and, occasionally, the shoulders) are the only visible body parts. Thus, a
pedestrian detector cannot rely on any clue other than the head presence in order to distinguish
the target. A related problem to this is that strong occlusions are frequent and persistent. Not
only body parts are occluded, but also the head of a pedestrian may not be visible from a single
point of observation. Moreover, the background is not static. The background is the crowd itself,
thus making difficult to separate the foreground. Moreover, with such background, clutter can be
a problem as worse as occlusion for harming the ability to detect some targets. As highlighted in
[92], even if significant advancements have been done in computer vision for the analysis of non-
crowded scenes, new methods have to be proposed in order to cope with high density, since such
works rely on priors that are violated in dense crowds.

Thesis objective

The main objective of this thesis is to propose a complete framework for pedestrian detection and
tracking in high-density crowds, from calibration to pedestrian track estimation. The work aims to
exploit multiple camera fusion in order to handle robustly the novel problems introduced by high
crowd densities.

The aim of our work is to overcome the limitations of state-of-the-art approaches which fail
in different ways when dealing with dense crowds. First, we realize that single camera pedestrian
detection is insufficient at high-densities, since only the visible heads are detectable, and thus can
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lead to an important underestimation of the real crowd density. For such reason we believe that
multiple view algorithms are essential for an exhaustive analysis. Second, a large body of research
has been conducted on multiple view pedestrian tracking, but higher densities introduce novel
difficulties which make the current methods fail due to the high association ambiguity.

By exploiting the potential of smart camera networks it is possible to handle implicitly the
problem of frequent occlusion, since with multiple cameras the probability that one person is de-
tected by at least a subset of the network increases. At the same time, an object could be visible
from one camera but background clutter could be too heavy, while multiple cameras which are
placed far and tilted enough with respect to each other can see the same head from totally differ-
ent perspectives, and some of them could perform easier the detection task. Such complementary
contribution of the cameras comes with a cost, which is represented by setting all the system in
correspondence on a shared reference world. The more the cameras can have a different view-
point of the scene (which is potentially beneficial for the detection task), the more the perspective
change makes the world registration difficult. Thus, the interest of the work extends from registra-
tion to detection and tracking.

The main parts of the thesis can be summarized as follows:

1. Calibration (Part I). We study the fundamental problem of calibrating two cameras. We
highlight that in urban environments the placement of the cameras, the scarcity and am-
biguity of information, can make the state-of-the-art approaches of relative camera pose
estimation unusable. For such reason we exploit an entire video stream of the dynamics of
the urban scene prior to the event (in low density conditions), for a robust iterative method
which exhibits fast convergence to a globally good solution. We then highlight how local low
errors of the estimated pose are critical for the crowd analysis task, and we show how our
method is suited in order to enforce the solution to be good in all the region of interest.

2. Multiple camera detection (Part II). We tackle the problem of multiple camera based pedes-
trian detection by performing low level information fusion. We propose an unsupervised
detection method which exploits the visual consistency of the pixels in multiple views in
order to estimate the pedestrian occupation. Such work can complement any supervised
learning based detector because it can solve problems of difficult detection induced by clut-
tering, while being robust to head occlusion in some of the cameras. In order to perform
such work, it is necessary to perform a metric registration of the entire scene (relate image
distances to metric distances), thus a fully automated method, which uses as an input the
relative pose of the cameras, is proposed. The output of such step is the joint estimation of
the pedestrian occupancy in the image space and in the 3D world (by inferring the height
with respect to the ground plane of each pixel), thus making possible to track pedestrians
on a common ground plane, where distances between heads reflect the real ground plane
separation in the crowd.

3. Data fusion on the ground plane (Part III). We study the generic problem of performing
data fusion on a 2D space under the Belief Function framework. We identify major limita-
tions when handling discernment frames with large complexity, which make the state-of-
the-art representations of 2D compound hypothesis not suitable for large scale data fusion.
We propose an efficient compound hypothesis representation which is scale invariant and
hashable. Such representation can be used for defining efficient basic operators and com-
bination rules. We also propose a complementary representation which encodes the high
level relationship between compound hypothesis (intersection and inclusion relations), in
order to perform efficient decision making and to provide a compact baseline for the propo-
sition of efficient fundamental operations of the theory. Such work provides an extensive
framework for spatial and temporal fusion of detectors in the ground plane. We demon-
strate our information fusion approach for temporal fusion by performing evidential track-
ing of pedestrians, while demonstrating that our fusion framework scales for large scenes
both in sparse and dense crowds.
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4. Supervised pedestrian detection (Part IV). We study pedestrian detection in single views as
a semantic segmentation problem. We highlight the need for an appearance based single-
view detector as the foundation for a multiple view system, where supervised inference can
be performed in each view, providing an essential source of information for further high
level fusion. We underline the difficulties for single view detection in such scenario, such as
lack of high-quality, high diversity annotated data, imprecise and not exhaustive labeling of
the heads, lack of texture on the heads. We adapt state-of-the-art deep architectures in order
to solve the semantic segmentation problem under such conditions, and we demonstrate
the performance of the method in extreme conditions.

We finally combine the information provided by the multiple camera pedestrian detection
and the supervised estimators by using our information fusion framework, thus performing
ground plane data fusion between all such sources.
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The relative pose estimation between cameras is a crucial preliminary step of any algorithm
exploiting a smart camera network, where neighboring cameras have an overlapping field of view.
In this chapter we introduce the geometry of the problem as well as the classical steps for camera
pose estimation.

1.1 Pinhole camera model

The pinhole camera model gives the basic foundation for projective geometry, by mapping the
real world to the space of the image. Let the camera center C be the center of the world reference
system. The axis Z is called principal axis, and the plane Z = f is the image plane. The f parameter
is called focal distance. The principal axis intersects the image plane in the principal point p.

The transformation between world and image plane coordinates quickly follows from the use
of similar triangles [62]:

X = (X,Y,Z)T 7−→ x = ( f X/Z, f Y/Z)T,

where the third coordinate of x is ignored because it always corresponds to f .

The transformation above assumes that the principal point p = (px , py ) is the origin of the
image plane reference system. Since such assumption does not hold in general, the mapping is
always expressed by using the principal point as a constant offset [62]:

X = (X,Y,Z)T 7−→ x = ( f X/Z+px , f Y/Z+px )T.

3
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Figure 1.1: Pinhole camera model. The principal axis of the camera passes through the camera center C
and through the image plane at the principal point p. The distance between C and p along the principal
axis is the focal distance f. Image taken from [62].

The above transformation translates in homogeneous coordinates to the camera calibration
matrix (intrinsic calibration) K:

K =

 f 0 px

0 f py

0 0 1

 ,

which allows to express the transformation as the product:

(x, y,1)T ∼ K[I | 0](X,Y,Z,1)T,

where I is the 3×3 identity matrix, and 0 is a 3×1 vector of zeroes.
In practice, the definition of K that we have presented introduces some simplifications which

fail for some real cameras. It assumes that the image coordinates have the same scale in both
axis directions. This is not true in general, since it is possible to have non-squared pixels. Thus,
a scale factor has to be introduced for each dimension, which is applied to the focal distance f .
Scaling the f in both dimensions results into the parameters fx and fy , which are the focal length
in pixels along x and y respectively. The value fy / fx is the aspect ratio of the image. An additional
parameter, the skew s, is usually added to the calibration matrix. Even if such term is usually zero
for normal matrices, it accounts for particular situations where the camera axis are skewed in such
a way that they are not perpendicular anymore. The general calibration matrix K is then expressed
as:

K =

 fx s px

0 fy py

0 0 1

 .

1.2 Epipolar geometry

The epipolar geometry [62] is a projective geometry between two views, depending only on the
camera intrinsic parameters and camera pose. Consider a point X in the 3D-space, and its pro-
jection in the two views, x and x’. The two projections, the 3D point, and the camera centers are
coplanar. The plane built from such points is the epipolar plane π. The line connecting the cen-
ters of the two camera is the baseline, and the intersection of the baseline with the image planes
defines two points called epipoles e and e’ (see Figure 1.2).

The epipolar geometry solves the following problem: given x in the first view, what is the point
locus in the second view where x’ can lie in? First, we project in the 3D-space a ray passing through
the center of the camera and x. The ambiguity in the depth perception provides an infinite number
of 3D points placed along the ray as possible correspondences with the projected point x. The
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Figure 1.2: Epipolar plane built on points C,C’ and X.

point x’ can lie in the back-projection of the ray starting from x in the second image plane. It
corresponds to a line l’, called epipolar line, which can be also seen as the intersection of the
epipolar plane with the second image plane. All the possible epipolar lines intersect at the epipole.
So the epipolar constraint leads to a point-to-line transfer relationship (see Figure 1.3).

The algebraic representation of the epipolar geometry is the fundamental matrix F [62]. The
expression of the fundamental matrix can be derived geometrically, starting from the point-to-line
correspondence. The mapping from an image point to an epipolar line can be subdivided into two
steps. First, x is mapped to some point x’ in the other image. Second, since the candidate x’ will lie
for sure along an epipolar line, l’ is built as the straight line passing through x’ and the epipole e’.
Let us consider a generic plane πH different from any possible epipolar plane (it does not pass
through the camera centers). The point x in the image plane of the first camera will project a ray
in the 3D space which will intersect the plane at the point X. Then we re-project X in the second
image plane, obtaining the point x’. We have just defined a homography Hπ with reference plane
πH. Hπ represents the 2D homography matrix which maps the first image to the second via any
plane π.
Having x’ and e’, the epipolar line can be written as [62]:

l ′ = e ′×x ′ =
[
e ′

]
× x ′ =

[
e ′

]
× Hπx = Fx

The matrix:
F =

[
e ′

]
× Hπ

is the fundamental matrix between the two views. The expression
[
e ′

]
× is the skew-symmetric

matrix generated by e ′. F has rank 2, because
[
e ′

]
× has rank 2 and Hπ has rank 3.

The expression of F can be obtained also analytically from the camera matrices [62]:

F = K′−T [t ]× RK−1

The term:
E = [t ]× R

5
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Figure 1.3: Geometric derivation of epipolar line l’ induced but the point x.

is called essential matrix. The R and t terms are the relative rotation matrix and translation vector
of the second view with respect to the reference system of the first one. This formula provides a
mapping between the fundamental matrix representation and the relative camera pose parame-
ters (up to a scale). For a given essential matrix E, multiple solutions for R and t (four in general)
are admitted. However, only one of those corresponds to a valid configuration (one in which each
3D point is in front of both cameras, thus a single observation is sufficient to identify it).

The final expression of the geometric constraint imposed by epipolar geometry is the following
[62]:

x ′TFx = 0, ∀x ↔ x ′ (1.1)

The expression derives from the fact that both x ′ belongs to the epipolar line l ′ = Fx and x belongs
to the epipolar line l = FTx ′.

1.3 Robust estimation of the epipolar geometry

1.3.1 Robust estimation of fundamental matrix

Equation (1.1) implies that F can be estimated from image correspondences. The normalized 8-
point algorithm [61] can be used to provide a unique solution from at least 8-point pairs. The
term normalized derives from the fact that a normalization step is performed on the points before
looking for a solution (e.g. by performing isotropic scaling of points), for numerical stability.

The epipolar constraint at Equation (1.1) can be transformed into a linear system of equations:

6
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[
x1x2 y1x2 x2 x1 y2 y1 y2 y2 x1 y1 1

]



f1

f2

f3

f4

f5

f6

f7

f8

f9


= 0

The problem is now an Homogeneous Least Square problem, which can be solved by the use of
Singular Value Decomposition (SVD). The fundamental matrix Fr , solution of the homogeneous
system, will not respect the property of having rank-2. In order to well-condition the matrix, the
final matrix F will be the rank-2 one minimizing the the Frobenius norm ∥ F−Fr ∥ [61]. Given:

Fr = USVT = Udi ag (σ1,σ2,σ3)VT, σ1 ≥σ2 ≥σ3

We can obtain the closest rank-2 F as:

F = US̃VT = Udi ag (σ1,σ2,0)VT

An alternative 7-point algorithm exists, satisfying directly the rank 2 constraints, and providing
from 1 to 3 solutions as output.

In real word scenarios, the correspondences used for the derivation of F are noisy, since they
are extracted by using some statistical feature descriptor (such as SIFT [100], SURF [8], or more
recent CNN based descriptors [182]). Moreover, due to the presence of outlier pairs, the set of
correspondences should be fed as input of a robust estimation schema. A robust estimator outputs
not only the solution, but also the point matches which are inliers for the estimated solution (the
ones which have consensus on the estimated geometry).

1.3.2 RANSAC

The RANdom SAmple Consensus algorithm [41] is a robust iterative algorithm for general param-
eter estimation from a set of observations, able to cope with a significant number of outliers. In
the case of geometric constraint estimation the observations are represented by pairs of matched
features.

The robust estimator needs the definition of a distance metric between the observations (the
matches) and the model (the matrix parameters). In the case of epipolar geometry estimation, the
distance function is defined as follows. Given a point match (p1, p2) which should satisfy pT

2 Fp1 =
0, we use the symmetric geometric distance between a point and the correspondent epipolar line:

d =
1

2

(| p1 · l1 | + | p2 · l2 |
)

7
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The main steps of the procedure are described in Algorithm 1.

Algorithm 1: RANSAC algorithm

Data: Set of observed data.
Result: Estimated parameters of the model; set of inliers.

1. Randomly select a subset containing the minimum number of points required to
determine the parameters of the model.

2. Test for degeneracy of selected sample: if the sample is degenerate, go to step 1.

3. Compute model parameters starting from the subset’s points.

4. Classify all the points in the original set as either inliers or outliers.
A point is an inlier if its distance d to the estimated model is lower than a threshold Tε.

5. If the number of inliers is the maximum obtained so far:

– store the estimated parameters as the actual best solution;

– re-estimate the expected number N of iterations to perform from this point.

6. If the iteration number is less than N, go to step 1.

7. Recompute the parameters of the model based on all the inliers.

The main disadvantage of the algorithm is that it contains a critical parameter, the threshold
Tε, which is specific for the model, and usually is set on the basis on experimental evaluations.
The number of iterations N is automatically computed, and must be high enough to ensure a
probability p of choosing a random sample containing only inliers (e.g. p = 0.99). Let w represent
the probability that a data point is an inlier. It follows that, given n the size of an extracted subset,
wn is the probability that all the points of the sample are inliers, and 1−wn is the probability that
at least one point is an outlier. It follows the relationship [41]:

1−p =
(
1−wn)N

The expected number of samples N is then estimated as [41]:

N = d log (1−p)

log (1−wn)
e

The value of N must be re-estimated each time that a new possible best-fit solution is found be-
cause the expected probability of a data point of being an inlier w is taken exactly as the actual
inliers percentage for the current solution.

Beside the standard RANSAC version, various adaptations exist (e.g. MLESAC [158], PROSAC
[20], etc.), but the underlying idea of exploring the inlier consensus is always present.

1.3.3 ORSA

In [112] the authors propose an a-contrario model which defines a rigidity detection criterion to
be used together with an Optimized Random Sampling Algorithm (ORSA), in order to outperform
other methods (e.g. RANSAC) in term of robustness. Moreover, it doesn’t need for an explicit
threshold definition, while being robust to the presence of high percentage of outliers (on the
contrary, another robust method, Least Median of Squares, does not require a threshold but works
only for inlier percentages above 50%).

The symmetric F−rigidity of a set of n correspondences S =
{

pi ,1, pi ,2
}

i =1...n , can be defined as
[112]:

αF(S) = max
(pi ,1,pi ,2)∈S

max

(
2D2

A2
| pi ,1 · li ,1 |, 2D1

A1
| pi ,2 · li ,2 |

)

8
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where A1,D1,A2 and D2 are the area and diameter of first and second image, respectively. The set
S is said α-rigid if there exists a fundamental matrix such that α is the highest bound of rigidity.

The a-contrario definition of ε-meaningfulness is then used in order to reduce the parameter
space (size of the set S, rigidity threshold) to a unique parameter, which is the expected number of
false alarms. In the given scenario the meaningfulness of a set is given by the expected number of
sets with same size and at least same rigidity, given a uniform distribution of points. The authors
of [112] quantitatively define meaningfulness in presence of outliers. A set S′ ⊆ S of k among n
matches is ε-meaningful as soon as it is α-rigid with [112]:

ε(α,n,k) := 3(n −7)

(
n

k

)(
k

7

)
αk−7 ≤ ε

Given the previous definitions, the ORSA algorithm is detailed in Algorithm 2.

Algorithm 2: ORSA algorithm

Data: Set of observed data S; N
Result: Estimated parameters of the model; set of inliers.

1. Perform random sampling of the correspondences set S for N iterations, until an absolutely
meaningful rigid set U is found (ε(U) < 1) .

2. Set ε̃ = ε(U).

3. Set Nopt = N
10 .

4. Find a random set of 7 points T ⊆ U.

5. For each fundamental matrix F computed from T:

– Find the most meaningful rigid set S̃ = S̃(F) associated to F;

– If ε(S̃) < ε̃ set ε̃ = ε(S̃) and U = S̃.

6. If the number of trials is less than Nopt , go to step 4.

1.4 Non linear refinement of the solution

Once a robust solution is computed, a non-linear optimization step can be performed on the set
of inliers. The objective is to obtain a solution which is a global minimizer of the sum of square
inliers residuals.
The problem is in the form:

min
x

∥ g (x) ∥2

where the function g (x), in our case, defines a geometric error distance, the x vector defines the
parameters to be tuned, which depend on the F entries in our case.

1.4.1 Re-parametrization of the solution

The simplest approach that we could consider is to use every element of the fundamental matrix
as parameter. So, if we define:

F =

a b c
d e f
g h i


the parameters’ vector will be:

x =
[
a b c d e f g h i

]
9
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However this approach is not suitable, because we are not exploiting the fact that the fundamental
matrix is a rank-2 matrix. What would happen using this parametrization is that we start from a
rank-2 matrix, but we give to the algorithm the possibility to explore full rank solutions, and with
high probability we will have in output a matrix which is not of rank 2. We want to limit the degree
of freedom of the nonlinear algorithm because transforming the matrix in a rank-2 one at the end
(as we do in the first part) causes a loss of precision that could be even more consistent that the
gain achieved with the refinement.

Enforcing rank-2 constraint in the parametrization causes the use of a parameter vector of
length 8. One row is the linear combination of the other two. For example, if the dependent row is
the first one, the following conditions hold [185]:

∃λ1,λ2 s.t . −→r 1 +λ1
−→r 2 +λ2

−→r 3 = 0 (1.2)

@λ s.t .−→r 2 +λ−→r 3 = 0 (1.3)

where−→r i is the i th row. The condition in Equation (1.3) cannot be expressed inside the parametriza-
tion, so, using only Equation (1.2), we parametrize the matrix as a matrix of rank strictly less than
3. If the dependent row is the first one, F can be written as:

F =

−λ1a −λ2d −λ1b −λ2e −λ1c −λ2 f
a b c
d e f


p8 =

[
a b c d e f λ1 λ2

]
p8 is the parameters’ vector, which now has 8 entries.
Consider the submatrix Qi obtained by removing the i th row from F:

Qi =

[
ai bi ci

di ei fi

]
The row index to remove will be the one which maximizes:

ar g maxi
(
QT

i Qi
)

, i = 1...3

This step is essential since if we choose e.g. row 1, we may be in a degenerate configuration for
which the parametrization is invalid:

F =

 −→r 1−→r 2

α−→r 2

 F =


−→r 1−→

0 1×3−→r 3

 F =


−→r 1−→r 2−→

0 1×3


As suggested in [185] we can perform an even smarter parametrization: we enforce the constraint
both for rows and for columns. We have to choose a j0 independent column and a i0 independent
row. We have a total of 9 different parametrizations corresponding to different choices of i0 and
j0. For example, the matrix F in the case i0 = j0 = 1 will be expressed as:

F =

λ1 (λ1a +λ2b)+λ2 (λ1c +λ2d) −λ1a −λ2c −λ1b −λ2d
−λ1a −λ2b a b
−λ1c −λ2d c d


p8 =

[
a b c d λ1 λ2 λ1 λ2

]
Note that, in the previous equation we keep the same notation as in [185], and that all the pa-
rameters are independent. The parametrization’s length is again 8, but this time we gain a big

10
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advantage: we can extract both the epipoles directly from the parametrization [185]. The new cri-
teria for the best map choice is the maximization of the rank of the 9×8 Jacobian matrix defined
as [185]:

J =
∂ fi0, j0

∂p8

The function f is simply the parametrization of F reshaped in a 1×9 vector. Such task is equivalent
to the maximization of the norm of the 1×9 vector v whose elements are the determinants of the
8×8 submatrices of J. Since different maps lead just to a different order of the entries of the vector
v , we can obtain an expression of the norm of v which is independent from the values of i0 and j0:

∥ v ∥= (ad −bc)2

√(
1+λ2

1 +λ2
2

)(
1+λ2

1 +λ
2
2

)
So the best map can be chosen without explicitly calculating the Jacobian.

The length of the parameter vector can be further reduced by one, since the fundamental ma-
trix is defined up to a scale. We can use a simple criterion to remove one of the elements a,b,c,d ,
e.g. remove the biggest number in absolute value [185]. We also divide the three remaining values
by the deleted one. If, for example, we decide to remove the d entry, the final 7-entries parameter
vector will be:

p7 =
[

a
d

b
d

c
d λ1 λ2 λ1 λ2

]
1.4.2 Cost function

We need to define a cost function for the non-linear optimization algorithm. Using:

gi = pT
i ,2Fpi ,1

would lead to a bad estimation, because the cost function is scale dependent, and the variance of
each gi is not the same. In general we want to minimize the geometric distance between the point
pair under analysis and the closest correspondence which satisfy exactly the epipolar constraint.
As shown in [62], trying to minimize exactly this distance needs an estimation of the reprojection
of a 3D point in the image space, and involves estimating not F directly, but first the camera pro-
jection matrices which give a best fit, and then obtaining F from them. The problem in this form
has 7+3n degrees of freedom, where n is the number of 3D points.
A number of cost functions which approximate the reprojection distance are proposed in litera-
ture. The Sampson distance for the epipolar constraint is defined as [62]:

gi =
pT

i ,2Fpi ,1√(
Fpi ,1

)2
1 +

(
Fpi ,1

)2
2 +

(
FTpi ,2

)2
1 +

(
FTpi ,2

)2
2

It gives a first order approximation of the geometric distance. Please note that it is undefined for a
point pair containing the two epipoles, since the denominator would be zero.

1.4.3 Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is an iterative method for solving the non-linear least squares
problem. The algorithm takes as an input a starting point parameter estimate, which should be
theoretically close to the global minimum, in case of non-convex optimization.

The parameter update policy of the algorithm can be thought as a combination of Gradient
Descent and Gauss-Newton methods. Let us consider the function to minimize:

G(x) =
1

2

m∑
i =1

gi (x)2

where m is the number of observations (inlier matches in our problem), gi is the cost function
(e.g. Sampson distance), and x is the parameter estimate.

11
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Given the current estimate β, if we denote as Ji (β) the Jacobian of gi (β), the direction of pa-
rameter variation δ is given by: (

JTJ+λdiag(JTJ)
)
δ = −JTg(β)

where λ is called damping parameter.

1.4.4 Uncertainty of the estimation

The uncertainty of the estimation is represented by a covariance matrix in the nine entries of the
fundamental matrix. We call J f the Jacobian of the error at the last iteration of the non-linear
algorithm. The associated covariance matrix will be:

Λp7 =
S

n −p

(
JT

f J f

)−1

where S is the final norm of the residuals, n is the number of points matches used, p is the size of
the parametrization (p = 7 in our case). Λp7 is the 7×7 covariance matrix of the 7 parameters of
the fundamental matrix. We are now interested into obtaining the 9×9 covariance matrix for the
9 entries of F. We can obtain it by using the following transformation [23]:

ΛF =
∂ fi0, j0

∂p7
Λp7

∂ fi0, j0

∂p7

T

Here we need the Jacobian of the parametrization with respect to the vector p7. Having the ex-
pression of the 9×8 Jacobian with respect to p8:

∂ fi0, j0

∂p7
=
∂ fi0, j0

∂p8

∂p8

∂p7

This is equivalent to computing the 9×8 Jacobian using the normalized entries e.g. a/d ,b/d ,c/d ,
and at the end removing the column corresponding to the index of the entry which has been re-
moved when passing from p8 to p7.

1.5 Conclusion

In this chapter we have introduced the reference camera model, as well as the geometric relation-
ship between pairs of camera models, in terms of the fundamental matrix. Moreover, we have
outlined the standard approach for robust estimation and non linear optimization of such con-
straint. This preliminary chapter lays the foundation of the estimations which will be used further
for inferring pose on difficult scenes through video streams. As it will be further discussed, the
estimation robustness of any of the different estimators outlined depends heavily on the quantity
and quality of the available correspondence set. In the following chapter we will detail the prob-
lematic which may arise in surveillance scenarios, which can be a consequence of a constrained
camera placement in large scale scenes. Moreover, a new methodology to overcome such prob-
lems will be proposed, allowing to perform robust camera calibration in the wild without manual
intervention.
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2.1 Introduction

The calibration of a camera network with minimal requirements of human intervention (use of
calibration objects, guidance of the pose estimation process) has long represented a major field of
research in computer vision and photogrammetry, with novel contributions and surveys appear-
ing regularly [7, 13, 14, 32, 58, 126, 130, 135]. Recently, the increased focus on safety and surveil-
lance applications has underlined the importance of smart camera networks (the reader may refer
to [107, 138] for a more detailed taxonomy of the major challenges raised by smart cameras). The
self calibration part is critical for monitoring projects, for multiple reasons. In order to be able to
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(a) (b) (c)

Figure 2.1: Sample frames acquired from the three cameras. (a) Camera 1, (b) Camera 2, (c) Camera 3. Two
large featureless regions can be seen on the bottom-right and top-left of the square

project image elements from one camera to another in the case of cameras with overlapping fields
of view, a relative pose estimation is mandatory and may either help locate an existing element of
interest in a different view, or if the calibration is accurate enough, it may help identify elements of
interest from raw data (i.e. disambiguate using the second view a person who is strongly occluded
in the initial view).

Irrespective of the number of cameras deployed, the pose estimation between a pair of cam-
eras is the foundation of any camera network calibration. Existing relative pose estimation algo-
rithms are, for the vast majority, as seen in Chapter I.1, based on matching interest points among
the two views and then on applying a robust optimization algorithm in order to determine the
unknown pose parameterization [62, 106, 112, 147]. Besides being used in surveillance, these
approaches stem from and benefit to various domains ranging from aerial imaging to Structure
from Motion (SfM) for virtual reality. However, for large scale camera networks in urban envi-
ronments, some specific scene characteristics complicate or dismiss altogether the use of existing
approaches. As introduced in the end of Chapter I.1, due to physical positioning constraints, wide
baselines with significant perspective change may be imposed. Even when ignoring positioning
constraints, it is beneficial to cope robustly with significant pose variations in order to minimize
the number of cameras required for covering a specific area. Another problem is raised by the ac-
tual image content; for outdoor surveillance, the scenes are often homogeneous (open spaces) for
the most part, or featuring repetitive patterns (human shapes, building facades), and this ham-
pers the use of fully automatic calibration algorithms. Finally, calibration solutions which require
significant human intervention, by using calibration objects for example, are time and resource
consuming, and in certain situations they are impracticable due to the size of the scene or due to
access constraints.

As an example consider the surveillance scenario of Figure 2.1. The same location (Regents
Park Mosque, London) is recorded from three different views. The scale of the scene makes it im-
practicable to use helper objects for calibration, since it would be non trivial to cover all the image
space. Moreover the area could not be fully accessible (e.g. for security reasons), so an automatic
calibration is required. A common surveillance task (that will be explored in later chapters) is the
analysis of a dense crowd interacting in the region of interest. There are two calibration options:

• Online calibration. Calibrate the cameras during the event. There is a rich amount of in-
formation, due to the presence of several people. However, calibrating on a dense crowd
can sensibly harm the quality of the correspondences used for the estimation (clutter, oc-
clusions, and especially ambiguities when matching body parts).

• Offline calibration. Calibrate the cameras before the start of the event. The scene is free
from cluttery areas, but the information may be poor or inexistent in some areas of the
space. Such featureless regions are more frequent in areas of interest for crowd analysis,
since pedestrian spaces are usually free of static obstacles which may be used as calibration
means.
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Our study is focused on offline calibration solutions which try to enrich the original amount of
information conveyed by the image pixels.

2.2 Related works

Since the pose estimation requires a set of correct matches, the outlier rejection is a prerequisite
step which is usually performed using a RANSAC-based approach [106, 147]. A large number of
matching observations with a significant ratio of inliers is a positive indicator for, but does not
implicitly guarantee, a high-quality pose estimation, as the distribution of matches over the image
space is also involved. Wide baseline setups in urban areas exhibit at the same time a low num-
ber of matches, a low ratio of inliers as well as a skewed distribution due to large uniform zones
(ground, roofs, facades etc). As a result, an uneven distribution leads to a pose estimation which
is correct only in covered areas, although the solution is consistent with the observations.

2.2.1 Guided matching

In order to address these problems, guided matching strategies aim to expand the well-constrained
area by encouraging a progressive inclusion of new matches [118].

The basic idea of guided matching is the following. Given the estimated F and a set of inliers,
one can calculate the covariance of the solution. Such covariance represents the uncertainty of
the epipolar line drawn for a specific point. Thus, one can find new matching points by restricting
the search area from the whole image to a small band around the epipolar line. Moreover, further
relaxed matching scores can be used (admitting lower quality matches). Such new matches can be
included in the initial inlier set, and the F may be re-estimated by non linear optimization among
such larger set. Thus, guided matching aims to increase the consensus by solving ambiguities via
admitting some uncertainty of the current solution.

However, in difficult scenes the potential elements to include are sparse and distant, and
guided matching may easily include outliers and drive the pose estimation towards an inadequate
solution. More elaborate strategies may relax the quality of matches in addition to guiding the
search spatially [153], but this favors the inclusion of incorrect correspondences. Correct matches
tend to form clusters with specific motions, and previous works proposed explicit geometrical
checks for guaranteeing a consistent transformation of the inlier point set [52, 95, 153], based on
local planarity or local contour invariance. More recently, data-driven strategies for selecting con-
sistent observations have been proposed; for example in [173] the authors rely on a one-class SVM
to select a reliable candidate inlier set, and in [96] a motion model based on bilateral functions
is used. However, all these approaches which rely on higher level perceptual information in or-
der to validate the inlier set coherent motion are not effective in complex urban environments
with scarce candidates, abrupt and frequent depth variations of the scene and inconsistent edge
detections due to significant viewpoint changes (see for example Figure 2.1).

An interesting correlation between the pose estimation errors and the number of matches,
albeit empirically validated, has been discussed in [98]. This justifies all the more the fact that
below a certain level of conveniently distributed inlier information, guided matching will not be
able to recover a globally fit solution.

Observed limitations of guided matching

The standard guided matching approach has been tested on the Regent’s Park sequence (see Fig-
ure 2.1). An incremental strategy has been followed. Typical guided matching approaches, which
aim to enforce uniform distribution of matches, subdivide the reference image in buckets, and set
a maximum number of matches per bucket (in order to avoid excessive clustering). An incremen-
tal approach is then used: New matches are searched inside the most covered buckets and in their
neighbors. Then the new matrix is estimated from these new points, and the process continues.
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Such approach allows us to look for new points around the area where the solution is more con-
fident, in such a way to avoid sudden variations of the estimation at following steps, and to get a
smooth and incremental refinement.

Figure 2.2: Guided matching results for the Regent’s Park dataset. A new match is added at each iteration.
The curve steps up each time a new match is erroneous with respect to the given ground truth.

Figure 2.2 provides an analysis of the outcome of guided matching. Each iteration corresponds
to the addition of a new match. The number of erroneous matches increases each time that such
match is wrong in terms of the ground truth epipolar geometry. The given dataset exhibit some
clustering of inliers points in a specific area of the image (see Figure 2.6 in order to get an idea of
the inliers distribution). The first iterations add points close to such clustered area, so the ratio
of erroneous matches is relatively low. Limitations of guided matching arise when moving away
from such area. Many areas of the image, which are further explored, lack of salient points, and
thus low quality matches are forced to be added. In the last iterations, almost all new matches are
in reality wrong. Such issue may have a large negative impact for the initial estimation, especially
if the initial set of inliers has a small size.

2.2.2 Externally guided pose estimation

The impact of the challenges raised when facing wide baseline calibration may be mitigated by
the use of independent sources of information. One promising avenue is the use of a prior pose
hypothesis relying on GPS devices, which provides the approximate locations, coupled with IMUs,
which provide the orientations. M-estimators are well adapted for guiding the pose search based
on prior information [50], and for real-time applications RANSAC based strategies are also widely
used i.e.[46, 82].

A second strategy which has gained popularity recently relies on the additional creation of a
cartography of the surveyed environment using SLAM [6, 49, 127]. While this technique is the only
way to register cameras with non-overlapping fields of view (using visual information), it can also
help in wide baseline scenarios as the pose estimation is reduced to two localization tasks within
the cartography.

The externally guided techniques overcome the difficulties of the purely vision based pose es-
timation, at a cost. For prior pose hypotheses, the cameras must be fitted with additional devices,
and also the systems must be accurately calibrated offline in order to align the sensor and camera
reference systems. When using a cartography, the mapping procedure may be cumbersome and
is valid as long as the scene does not change significantly. In addition, any dynamic parts of the
scene contribute only to the outlier observations, and also access to the scene for mapping is not
always possible due to various types of restrictions. Finally, externally guided procedures cannot
be appended once the dataset has already been acquired - the ideal solution would just rely on the
actual video data.
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2.2.3 Leveraging temporal information

The exploitation of the video stream seems a promising solution (the temporal synchronization
of the cameras being convenient, but not a strict requirement). A naive approach, as pointed
out by [132], is to extend image-based to video-based registration by temporal accumulation of
matches. An alternative strategy identifies corresponding trajectories of salient objects [16] in or-
der to populate the match set. Despite the richness of video information, the exploitation of video
sequences does not address implicitly all the problems previously raised. Although the number of
total matches does increase, in scenes with homogeneous dynamic objects such as crowded areas
the inlier ratio may actually decrease. Another limitation of straightforward video accumulation is
that the new matches are clustered around moving objects, and the pose estimation may get con-
strained locally very strongly, which in turn may remove sparse correct matches and deteriorate
the solution.

Moreover, in [16], each candidate estimation is performed on a set of matches extracted from
a single trajectory (or a pair of them). The authors request non-trivial trajectories to be present,
which are trajectories able to cover a large enough part of the image space, and which do not
belong to a degenerate configuration (planar trajectory). However, in large scale scenes a repre-
sentative set of non-trivial trajectories which span most of the image space is often not available;
each trajectory is likely to cover a small fraction of the total area, and to be degenerate, when the
dynamics of the scene are mostly produced by people walking on the ground plane.

In [132] the authors estimate the geometric constraint by accumulating matches from a fixed
number of dynamic texture image pairs. A limitation of this approach (and of the trajectory-based
one), is that only dynamic parts of the scene are considered. If a scene contains large static parts
(e.g. buildings, see Figure 2.1) the estimation will not be globally correct. Moreover, the method is
unfeasible, in terms of memory requirements, when applied to high resolution images.

Recent efforts aimed at pose estimation from video use motion barcodes of lines [77]. The au-
thors sample points on the image borders and connect any pair of them in order to build a set of
candidate epipolar lines. Then, lines are matched by their motion barcodes, computed from back-
ground subtraction, and a RANSAC estimation is performed given the line matches. Beside the
need to explore a large search space, the method may fail when people move in a straight line in the
scene, due to the extraction of a quasi-degenerate pencil of candidates. Moreover, when applied
to real datasets as PETS 2009 [40], the method in [77] as well as other algorithms are benchmarked
against the provided ground truth calibration. However, such ground truth may itself present (as
we will discuss in Section 2.8.2 for PETS 2009) local errors resulting into a performance bias of the
evaluation.

2.3 Camera pose estimation in difficult scenes

2.3.1 Motivation

In the previous section we have highlighted the main limitations of guided matching methods and
of temporal approaches. When dealing with difficult scenes like the ones presented, we believe
that guided matching is still an efficient solution, provided that it can exploit the richness of in-
formation from not only a single image pair, but from an entire video stream. In our approach we
aim to overcome compromises (e.g. admitting lower quality matches) by efficiently exploiting the
temporal information.

Moreover, we stress the fact that an high quality ground truth (e.g. with at least a one-pixel
precision in all the region of interest) is critical for global assessment of the proposed estimation,
especially in fields where high precision calibration is critical (see Section 2.8.3). Thus, a rigorous
ground truth extraction procedure needs to be stated in order to evaluate possible local errors of
the solution, which may appear good in general, but may exhibit inadequate performance in some
areas of the region of interest.
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Figure 2.3: Overview of our algorithm, which may be executed either for a generic pose estimation (Section
2.4) or for the refinement of an existing prior pose (Section 2.6)

2.3.2 Overview of the proposed approach

We consider a pair of calibrated, synchronized cameras, with overlapping fields of view. Intrinsic
calibration is performed on each camera independently using the Tsai’s algorithm [161].

In our approach we exploit the richness of information provided by an existing video sequence,
in contrast with relying on a single image pair. In fact, we have noticed that in such wide baseline
scenarios with large scale regions of interest, it is common that at any given moment only some
image locations provide correspondences, increasing the risk of obtaining locally optimal epipo-
lar geometry estimations. As a result, the quality of an estimation based on feature matching may
differ a lot for different time instants, rendering the image based estimation algorithms unreli-
able (this point is underlined by Figure 2.8 in the results Section).

On the contrary, our method starts from an image-to-image initial estimation, and refines it
by acquiring new information in the following frames. At each iteration, the epipolar constraint
estimated at the previous step is used to guide the acquisition of new matches between the current
frames, through the use of an epipolar band. This new set of matches is combined with the set of
inliers identified at the previous step, and a new robust estimation is performed on the new set.

A common practice for match selection is to extract globally distinctive matches which satisfy
specific quality-related metrics (such as the 2NN heurisic proposed in [100]), as well as to enforce
a symmetry check which validates pairs only with the best match candidate for both left and right
feature points. Given a feature point in the first frame, and a set of candidate features in the second
frame, a match with a point of the candidate set is extracted only if it is by far the most distinctive
among the others. Thus, a filtering procedure is applied, by taking into account only the quality of
the candidate matches.

In contrast to this approach, in our selection stage we first extract matches inside the band re-
gion, and, only afterwards, we look for candidate matches which are distinctive inside such search
region. On the other hand, filtering at an early stage could remove high quality candidate matches,
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and it could consequently harm the overall goodness of the output correspondences. However, in
our matching strategy, we always encourage the choice of filtered matches only if their quality is
as high as without the filtering step. This procedure is very effective in providing a much larger
number of good quality matches, which is critical both because in a wide baseline scene glob-
ally distinctive high quality matches are scarce, and because the algorithm is capable to converge
faster towards a robust solution.

Moreover, differently from a standard guided matching approach, we do not use only the un-
certainty of the estimation of the fundamental matrix to compute the band size, but we adjust the
band based on the inlier distribution in the image. This approach has two advantages: it guaran-
tees a faster convergence of the solution, encouraging the matching in parts deficient in inliers,
while discouraging the inclusion of conflicting matches in areas rich in information.

The illustration of all the proposed steps is supported by a ground truth that we have manually
created from the testing scenes. The ground truth consists in manual matches uniformly extracted
across all the common field of view, in order to test as fairly and comprehensively as possible the
quality of the solution.

Our method, which allows us to automatically recover the relative pose between two cam-
eras in an iterative way in the time dimension, has shown during our experiments to reach a
quasi-monotonic decreasing of the geometric error with respect to the number of iterations, while
strongly improving the robustness of the estimation, even with different choices of the robust es-
timator employed.

The main functionalities of our algorithm are presented in Figure 2.3 and will be detailed in
the following sections.

2.4 Integrating temporal information from synchronized video streams

2.4.1 Temporal sampling

An important parameter of our process is the stream sampling period 4t . Since we want to exploit
the dynamic behavior of the objects in the scene, 4t should be large enough in order to allow for
a significant displacement of the dynamic objects, and to avoid new information being mostly
redundant. This constraint is in opposition with a tracking-based approach which needs small
inter-frame difference in order to work efficiently. On the other hand, setting a too high 4t would
just cause a slower convergence in time.

2.4.2 Matching strategy

Given the two frames at the current instant, the objective is to extract a new set of matches Snew

that will add new information to the current set of inliers S, which represents the output of the
previous iteration. The SIFT descriptor [100] is employed in the feature extraction and matching
stages. We extract an initial set of candidate matches Mi ni t . Each element of the Mi ni t set consists
of an array m of the best k candidate matches involving a specific point p in the first frame. The
array is ordered in ascending order on the basis of the SIFT descriptor’s distance score.

Let us consider that we have to face the presence of repetitive structures, such as the elements
on building facades or people with body parts being very similar looking at small scales. Thus, it
is common for a point in the first image to relate strongly to multiple points in the second image.
Of course such matches would not pass the 2NN heuristic proposed in [100], because descriptor
distances would be very similar. However, if we first restrict the search space using an epipolar
band, provided by the approximate fundamental matrix F computed at the previous iteration, we
could find that there is only one possible match which is coherent with the geometry. In such
case, that match should be considered a valid candidate because it is distinctive within the area of
interest.

For this reason we invert the order of filtering stages which is typical of guided matching ap-
proaches: instead of getting global distinctive matches and then checking them against the epipo-
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(a) (b) (c)

Figure 2.4: Matching strategy. (a) Initial match candidates (in red), (b) Band filtered candidates (in red), (c)
Final match after 2NN-band heuristic (in green).

lar bands, we first perform the band filtering and then we isolate the distinctive matches. Given
m =

[
p ′

1, p ′
2, ..., p ′

k

]
, we can compute the epipolar bands in both views for each pair (p, p ′

i ), as a
function of the uncertainty of the estimation and of the point location. The normalized epipolar
line in the second image is defined as l̂ = Fp/ ∥ Fp ∥. The epipolar band is an envelope around the
epipolar line which depends on the epiline covariance [186][151]:

Σl = JFΣFJT
F +σ2Jp JT

p . (2.1)

We assume that the point p is independent from F, since it has not been used in the estimation
procedure. The first term encodes the uncertainty of the nine F parameters, while the second
one encodes the uncertainty of the position of point p in the image. The standard deviation σ

represents the isotropic uncertainty in both image directions.
The conic which gives the mathematical representation of the epipolar band can be retrieved

as [62]:
C = l̂ l̂ T −κ2Σl , (2.2)

where κ2 is chosen by solving F−1
2 (κ2) = λ, with λ the confidence level parameter, commonly set

to 95%, and F2 the cumulative χ2
2 distribution.

If p or p ′
i are not contained in one of the corresponding epipolar bands, then p ′

i is removed
from m. We call the new filtered vector mBand =

[
p̃ ′

1, p̃ ′
2, ..., p̃ ′

k ′
]
, where k ′ ≤ k. In order to retain

only high quality matches, the following constraint must hold:

p̃ ′
1 = p ′

1, (2.3)

if the match with best score is not contained in the epipolar band, we discard the entire current
set of candidate matches, and continue. This constraint avoids the inclusion in the final set of
matches with a poor absolute score. In other words, the inversion of the filtering and heuristic
stages has an impact only on the choice of the second best match for score comparison, while it
encourages the same matching quality as the standard approach.

We are now able to perform the 2NN heuristic on mBand :

d(p, p̃ ′
1)

d(p, p̃ ′
2)

< τ, (2.4)

where d is the SIFT distance measure, and τ is a threshold usually set in the range 0.6-0.8.
Together with the test in Equation (2.4), we perform also a symmetry check, as proposed by

some authors, in order to improve considerably the quality of the matching process. This consists
in applying the same procedure in the opposite sense, from the second to the first frame. If p̃ ′

1 is the
best match for p, and p is the best match for p̃ ′

1, the symmetry check is respected. If both tests are
passed, then the match (p, p̃ ′

1) is added to the set Snew , which contains all the matches discovered
at the current iteration. Figure 2.4 depicts an example of the proposed matching strategy.

2.4.3 Fundamental matrix re-estimation

Once the matching stage has been completed, the set Snew containing the new matches may be
added to the inlier set S obtained from the previous estimation. All these matches can be used as
input of a robust estimation algorithm, in order to obtain F for the current iteration.
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Our approach is independent from the specific algorithm employed at this stage, and we will
demonstrate in Section 4.4.4 its use with the ORSA [112] framework. The resulting F is then refined
using the Levenberg-Marquardt algorithm, and the 9×9 parameter covariance matrix is evaluated
as in [186].

2.5 Density-based uncertainty estimation: the σ parameter

We exploit the parameter σ in Equation (2.1) in order to be able to deal with large errors in the
epipolar constraint. If the epipolar line is correct, the σ value represents the error in the matching
process which leads to a small deviation from the epipolar line. On the other hand, when the
epipolar line is shifted because of an estimation error in some part of the image, σ can represent
the error due to the bad localization of the line.

The underlying idea is that in areas of the image which lack inliers, there is a high risk that the
current estimation is biased with respect to the optimal one. Our approach consists into varying
smoothly the value of σ as a function of the inlier density, which reflects how well constrained
locally the solution was at the previous iteration. When σ is small, the first term of Equation (2.1)
is predominant, and the shape of the epipolar band will likely follow a hyperbola; when σ is high,
the second term of Equation (2.1) dominates the first, and the epipolar band will be likely enclosed
by two straight lines. Possible outliers included in the process are taken into account by using a
robust estimation technique at every iteration.

Starting from a binary model for the σ function [120], we investigate the possibility to have a
smoother transition function. Since the estimation involves a single parameter with a monotonic
relationship with density, in this work we focus on an ad-hoc function, even if the framework could
benefit from well founded statistical estimation approaches, or even belief function works [176],
[75].

2.5.1 The binary density model

In our preliminary work [120], we defined the notion of well-constrained regions by using a fun-
damental concept introduced in the field of data clustering with noisy data [37]. In [37], a point
q is considered as a core point if, given two parameters ε and Mi nPt s, | Nε(q) |≥ Mi nPt s, where
Nε(q) is the set of points at a distance lower than ε from q . The following definition of a directly
density-reachable point p, given ε and Mi nPt s, has been exploited

1. p ∈ Nε(q)

2. q is a core point

Given the inlier set S, a new point p belongs to a clustered region if one of the two conditions
holds:

1. p is a core point of the set S ∪p

2. p is directly density-reachable by at least one core point q , q ∈ S

Such condition provides a binary check whether the local area of interest is well constrained
or not, and it has been used in order to set a low sigma σL if it is satisfied, or a high sigma σH

otherwise. However, as a step function, such decision rule lacks continuity at different density
levels, treating regions at medium densities as badly constrained as empty regions.

2.5.2 A continuous density-uncertainty dependency

In our formulation, we propose to defineσ as a continuous sigmoid function which spans between
σH and σL (Figure 2.5).
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Figure 2.5: Sigmoid function which models in our algorithm the impact of the local observation density on
the local uncertainty. The stars along the function represent the sampling locations which would be used
by a histogram kernel density estimator with n = 5

While σL can be always set to σL = 1, as for the classic guided matching refinement methods,
σH is a free parameter, which depends on the reliability of the initial solution, reflected by the
scarcity of matches. Let us define as η the target density at which we have an α degree of confi-
dence in the solution:

σ(η) = ασL + (1−α)σH (2.5)

The use of α is due to the fact that the sigmoid reaches the bounding uncertainties σH and σL

at −∞ and +∞. Thus, the degree of confidence α allows us to control the small disparity δ =
(1−α)(σH −σL) which is present at 0 and η densities between the reached σ value and the target
uncertainties σH and σL, respectively (see Figure 2.5). The choice of α is not critical, and in all our
experiments we set α = 0.99.

We can then express the sigmoid as a function of the density z in the following way:

σ(z) =σL + σH −σL

1+e−b(z−η/2)
(2.6)

where the implicit steepness b has the form:

b =
2

η
log

(
1−α
α

)
(2.7)

We propose to evaluate the density z at each point p of the image using a Kernel Density Estima-
tion (KDE) in the two-dimensional space:

z(p) =
1

h2

N∑
i =1

K
(p−pi

h

)
(2.8)

Note that in Equation 2.8, differently from the classical KDE formulation, we do not normalize the
density by the total number N of inliers. This is justified by the fact that N varies at each iteration of
the algorithm, and thus this would require a continuous rescaling of the target density parameter
η, without any change in the σ estimation output.

The choice of the kernel is not critical for our application, and a simple function as the his-
togram kernel:

KH(u) =
1

π
1‖u‖≤1 (2.9)

has shown good performance in our experiments, while more complex kernels as Epanechnikov:

Ke (u) =
2

π

(
1−‖u‖2)1‖u‖≤1 (2.10)
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(a) (b) (c)

(d) (e) (f )

Figure 2.6: Sigmoidσ(z) evaluation in the image space, with histogram kernel: (a) Iteration 0, (b) Iteration 5
(c) Iteration 30. The lighter the color, the lower σ value. As the method converges towards a robust solution,
the well-constrained region grows in size. Smoother σ(z) estimation can be performed with an Epanech-
nikov’s kernel (d)(e)(f), but the higher computational does not correspond to substantial improvement in
the result. The images refer to the Regents Park dataset, with camera 2 as the reference (Figure 6.1a)

do not introduce a significant advantage, while being more computationally costly (the kernels are
normalized for the 2-D scenario occurring in our case). Figure 2.6 shows the gradual expansion of
the well-constrained areas in the image space when using the histogram kernel (Figures 6.9a-6.9c)
and the Epanechnikov kernel (Figures 6.9d-2.6f).

The target density η is a user defined quantity depending on the ideal interest point density
for a specific type of scene. However, one may reason rather in terms of the expected number of
corners n at a relevant spatial scale, while the actual numerical value of η involves a specific KDE
function as well as the local relative corner layout. In our framework, we propose the following in-
terpretation of the target density ηwith respect to the expected number of points via a given kernel
K. The η target density may be represented as the density evaluated with n points at distance h/2
from the target:

η =
n

h2 K(v) (2.11)

with v being any vector such that ‖v‖ = 0.5. This reasonable assumption allows us to relate the
target density to the target number of points via the kernel. A critical parameter for the density
estimation task is the bandwidth h, which identifies the radius of interest around a point. As we
will show in the results, while the estimation task is sensible to the bandwidth, the actual error of
the algorithm after convergence remains stable even for large variations of h.

2.6 Refining an existing pose estimation

In this section, we consider an adaptation of our algorithm which allows for data-driven refine-
ment of an existing pose. Indeed, numerous existing datasets provide extrinsic calibrations, ac-
quired with different techniques and characterized by various degrees of accuracy.

The main interest of the refinement procedure is that, as video data is analyzed, our algorithm
may be used in order to refine the original estimation, which may lack precision in some specific
areas of the image space. Moreover, pose refinement may be needed when the camera positions
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might have changed slightly prior to an acquisition due to mechanical factors or due to internal
behavior (e.g. pan-tilt-zoom cameras), but a reasonable prior pose is known. In robotic vision,
the pose refinement is often applied to stereo rigs, but our setting is not suitable for continuous
refinement in which the pose is time dependent (in this case Kalman filtering is the method of
choice [27, 58, 115]). Our algorithm is suited for the accurate update of a stereo rig pose which
is fixed but possibly different slightly from a reference value. Existing algorithms such as [97] rely
on bucketing heuristics in order to enforce spatial uniformity of the observations, while devices
which refine the stereo pose upon initialization such as the ZED camera from Stereolabs [148] run
proprietary code.

The refinement procedure is similar to the estimation presented in Section 2.4, except the re-
quirement of a bootstrap period at the beginning of the refinement process. The bootstrap period
consists in building an initial set of matches by performing the acquisition and band filtering for
several frames (setting inlier density z(p) = 0 for the entire period), by using the initial pose Fi ni t .
The period ends when a target number of matches is reached; we set this number to be propor-
tional to the number m of raw matches acquired from the first frame pair of the sequence (we
heuristically set this number to be 5m, independently from the dataset). Please note that the boot-
strap is different from a blind accumulation because it exploits via the band filtering the Fi ni t that
we intend to refine. The initial set of matches Si ni t will provide an approximate representation of
the initial solution. The use of the bootstrap procedure follows from the fact that the convergence
properties of our approach are related to the the growing percentage of matches which “vote” for
a specific solution, thus the bootstrap period encourages a smooth convergence from Fi ni t dur-
ing the initial steps of the refinement. Viewed from another angle, this means that without any
other information related to Fi ni t , the bootstrap creates the support set which is needed in order
to compute σ adaptively across the image space.

One may argue that in the context of pose refinement, a constant σ = σL would suffice. How-
ever, it is still advisable to use a variable σ parameter since the error introduced by the prior (e.g.
the error on the tilting angle of a motorized surveillance camera) may be large enough in order to
be impossible to sample correct observations; at the same time, the convergence should benefit
from the adaptive σ in order to "follow" the pose variation as fast as possible.

2.7 Ground truth extraction

In order to perform a rigorous evaluation of the algorithm performance for real world scenes of
relevant size, we propose the construction of a manual ground truth which allows to characterize
the quality of the solution by performing a local analysis across the whole scene. The main moti-
vator for such ground truth extraction comes from the observation that defining the error only at
a global level may hide local high error regions, which may be harmful when using the estimation
for tasks such as detection, tracking or depth estimation.

Our methodology for building this accurate ground truth data is the following (the outline is
provided in Figure 2.7). We define an uniform grid of buckets which provides a partition of the ref-

1. Manual extraction of ground truth matches Sg t .

2. Robust RANSAC (th = 1) estimation of F matrix from the Sg t .

3. if inliers percentage ≥ α: stop.

4. Manual Sg t matches location refinement, from F matrix.

5. Go to step 2.

Figure 2.7: Outline of the ground truth extraction strategy
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erence image, and we extract matches manually and uniformly inside the buckets belonging to the
overlapping field of view. Since the human annotator may not find enough correspondences in a
specific bucket (due to the presence of textureless regions), multiple image pairs may be exploited.
In general the annotator should avoid local planar degeneracies inside a bucket. This means, one
should try to select matches where the points are not co-planar, because the fundamental matrix
could degenerate to well match points on a certain plane, but it could provide gross errors going
further away from it. In such case the ground truth could not be able to detect degeneracy prob-
lems. However, even if it is encouraged, this property is not explicitly enforced, since, in general,
it is not applicable everywhere (e.g. in parts of the image representing a building facade). Anyway,
it still represents a valuable guideline, especially when extracting features from both the ground
plane and pedestrians. In order to enforce a uniform distribution of ground truth points, to each
bucket we assign a number M of matches, which is weighted by the portion of the bucket which
belongs to the common field of view. Such extraction is essential in order to evaluate estimation
errors even in regions where an automated process (followed by a manual validation) would not
be able to identify meaningful and not degenerated interest points.

At the end of the uniform match extraction step, the measurement noise may be too high due
to human impreciseness, and occasional gross annotation errors may also occur. Thus, the proce-
dure is followed by the robust estimation of a fundamental matrix from the current set of matches,
which is then used to refine the position of the generating matches, i.e. the human annotator is
shown the annotations presenting high residuals in order to adjust them if necessary. The process
is repeated iteratively, until we obtain a set of matches with half-pixel precision, which is at the
same time large enough in order to guarantee a comprehensive evaluation of a candidate pose.

The error metrics we employ are the RMSE and the Max symmetric geometric error [62] on
the ground truth. The use of the Max Error is the strictest possible metric, and is necessary for
revealing localized errors, which would be mitigated by RMSE. Due to the stochastic nature of our
estimation process, all the presented results are evaluated over 300 realizations of each test.

2.8 Results

We demonstrate the performance of our algorithm on three different datasets: Regent’s Park, PETS
2009 [40] and a laparoscope in-vivo procedure video provided by the Hamlyn Centre, Imperial
College London [113]. The relevant information about the data content will be provided below.

Regarding the main parameters, we set for all the tests σL = 1, which is a common choice in
guided matching covariance propagation methods [118]. The scale of σH depends on the matcher
ease to associate features from the views, which is mainly reflected by the inlier set size, and by
the inlier percentage of a robust estimation for a single frame (i.e. a small inlier set suggests an
unstable estimation, and the value of σH should be set high enough in order to allow for a wider
exploration). At the same time, small variations of the σH value have a negligible influence on
the convergence behavior and on the final error. We set σH = 5 for all tests (with the exception
of PETS 2009, see Section 2.8.2). The k parameter has shown to have little influence on the final
results if chosen in a range of 2-5 (results with k = 3 are presented). We use as robust fundamental
matrix estimator the ORSA [112] a-contrario framework, which exhibits good robustness without
the need to set a sensitive threshold. Please note however that, while the robust method chosen
has an influence on the final RMSE achieved, it has no effect on the actual convergence behavior of
our approach, thus other methods based on the popular RANSAC [20, 131] may also be employed.

2.8.1 Pose estimation - Regent’s Park dataset

The first part of our experiments is focused on estimating the relative pose in a realistic urban
setup exhibiting typical challenges for this context.
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Figure 2.8: RMSE and Max geometric error by applying ORSA on each frame pair independently. Large
variations in the result demonstrate the unreliability of estimation with still images in such setup. Streams
from cameras 1 and 2 are used.

Experimental setup

We test our method on synchronized sequences recorded at Regent’s Park Mosque, London. The
camera network consists of three cameras installed on the roof (see Figure 2.1), labeled from 1 to 3.
The analysis region is the rectangular shaped inner courtyard (the sahn), surrounded traditionally
by arcades and other repetitive structures on all sides. The video streams capture the dynamic
behavior of people who are free to move in the area. The grayscale video is recorded at 8 fps, with
a 1624×1234 resolution. The stream is sampled each 3 seconds (i.e. ∆t = 24 frames).

Experimental results

We start by highlighting in Figure 2.8 the estimation errors obtained independently on single pairs
of images extracted from the streams of cameras 1 and 2, with the ORSA estimator. For difficult
scenes, the quality of the estimation is highly dependent on how the instantaneous configuration
of the dynamic objects in the scene constrains the fundamental matrix, with large areas which
may be left uncovered. In this specific case, the best achievable estimation has a maximum error
of almost 4 pixels, which leaves room for a consistent improvement. Yet, the main underlying issue
is that a single frame based estimation would provide a result of arbitrary quality. We evaluated
at this stage the method in [153], which aims to extract matches iteratively from an image pair
by enforcing spatial uniformity. This method fails to converge towards an acceptable solution (i.e.
RMSE=245 for the first frame which was used for evaluation in Figure 2.11) as it does not cope with
such a wide baseline correlated to a strong depth variation of the scene.

Section 2.3.2 underlined the importance of encouraging an uniform inlier distribution, and of
accounting for the local inlier coverage in the estimation uncertainty. The two images in Figure 2.1
show a typical unbalanced inlier configuration which promotes high errors locally, and underline
the importance of using a video sequence in the case of wide baseline cameras and large scale
scenarios. Figure 2.9 shows the inlier matches which are maintained after running an estimation
of the fundamental matrix between frames at t = 74 of cameras 2 and 3. We note the presence of a
large region lacking correspondences on the bottom right of camera 2, where no feature matches
can be acquired. As a result, that area could not be considered as reliable for guiding the geometry
estimation during the subsequent iteration. Then, Figure 2.10b shows the spatial distribution of
the symmetric geometric error on the left image. For each bucket of the image, we highlight the
average error of the estimation with respect to the matches drawn from the ground truth points
at that location. While approaching the area lacking inliers, we note the presence of high errors,
which makes the single image pair approach unadapted for fitting the entire image space. While
the overall RMSE=1.8 which is obtained from this estimation does not fully underline this major
limitation, the Max geometric error equal to 7.53 reflects more accurately the local problems of
the solution. This example also explains the significant variation, among different frames from
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Figure 2.9: Sample pair of frames (t = 74) exhibiting an unbalanced inlier coverage (it is advisable to zoom
in the electronic version for inspecting the inlier matches).

the same video, in the quality of the estimation which depends significantly on how the dynamic
elements are disposed spatially. Finally, Figure 2.10c shows an example of the error distribution
resulting from the proposed approach. The image shows a significant decrease of the error in areas
which were challenging for single image pair methods, but also a reduction of the error on a global
scale. The overall RMSE for this example is 0.46, while the Maximum geometric error is 1.23.

Next, we show our estimation results for cameras 1-2, presenting them against the results ob-
tained by performing robust estimation on a set of matches accumulated naively from frame pairs
(we call this strategy All-matches). Figure 2.11 shows the RMSE and Max geometric errors at dif-
ferent iterations of the algorithms. Our method is able to reduce the RMSE from 1.75 to 0.66, and
to decrease consistently the Max error from 6.5 to 2.2 pixels. We note the robustness of our strat-
egy, with the error following a monotonic decreasing trend after a few iterations. Conversely, All-
matches presents large oscillations in time, which implies that getting more points from the video
stream will not improve definitely the batch estimation result, introducing thus a frame window
size choice problem. Our method also shows a smoother and faster convergence with respect to
our previous work [120] which sets the adaptive σ parameter by using a binary decision threshold
on inlier clustering (final RMSE 0.75 compared to 0.66 for the current algorithm).

The explanation of the behavior of the All-matches approach comes from the analysis of the
inlier ratios estimated at each iteration (Figure 2.12). From the All-matches curve, we note that
the inlier percentage obtained by accumulating matches drops monotonically. Thus the benefit of
adding new points is negated by a lowering ratio of good matches, which implies the existence of
a trade-off. On the other hand, our approach is based on a strict rejection procedure depending
on the current inlier configuration. Subsequently, the inlier ratio follows the opposite trend, since
being increasingly confident in the current solution, and using lower σ values will improve the
probability of including only inliers as new matches. Such trend explains the robust convergence
of our approach.

Figure 2.13 demonstrates the benefits of adapting the σ parameter of the covariance of the
epipolar band to the actual spatial distribution of inlier matches in the image. It follows that by
setting a σ =σL = 1, as in [118], we cannot add new information which is able to correct gross local
errors in the estimation, leading to a much slower convergence which is never able to achieve
performance, in terms of error, comparable to our strategy.

An important trait of an iterative pose estimation algorithm is its behavior in case of an adverse
initialization. In Figure 2.14 we show the RMSE and Max geometric error evolution for the 1-2 pair
when the most unfavorable initialization is selected (frame 312 in Figure 2.8). The algorithm is still
able to recover and to decrease the RMSE from 18.7 to 0.78 and the Max error from 52 to 4.1 pixels.
This result demonstrates that the algorithm is able to converge to a stable, low error solution,
regardless of the starting point.

Then, we compare our adaptive σ solution with the use of a fixed σ =σH for the band filtering
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σ RMSE Max Error Inliers ratio

σH 0.778 4.195 0.950
σ(z),h = 30 0.780 4.086 0.964
σ(z),h = 60 0.785 4.100 0.974
σ(z),h = 100 0.799 4.395 0.983

Table 2.1: RMSE, Max geometric error and inliers ratio on the worst initialization of camera pair 1-2 (Regents
Park dataset) with different choices of the σ function and of the cross point density η (n = 5 is fixed for each
selection of h). By using the sigmoid, the algorithm is capable of achieving comparable errors (less than 0.1
pixel difference) as an aggressive σ =σH solution, at an higher inlier percentage (more than 3% difference).

η = const RMSE Max Error Inliers ratio

n = 1,h = 2.836 0.838 4.389 0.974
n = 5,h = 60 0.785 4.100 0.974

n = 14,h ≈ 100 0.775 4.012 0.973
n = 56,h ≈ 200 0.779 4.135 0.976

Table 2.2: RMSE, Max geometric error and inliers ratio on the worst initialization of camera pair 1-2 (Regents
Park dataset) at constant cross point density η and different choices of the bandwidth h.

step. Such an approach is more aggressive in the way it tries to add as many matches as possible
by relaxing more the epipolar constraint. Although this strategy is able to achieve low errors occa-
sionally, it does not trust the current solution locally more or less depending on the observations;
this results in lower inlier ratios and a worse convergence stability. In Figure 2.15 we compare the
inlier ratios when we use the sigmoid function or the σ = σH, and it is clear how the use of the
sigmoid is able to promote a stronger, smoother increase, especially noticeable at the last itera-
tions. Table 6.4 summarizes how the sigmoid approach is capable to achieve low errors which are
comparable with an aggressive solution, guaranteeing at the same time an inlier ratio up to 0.98.

Table 6.4 also shows the effect of the choice of the cross point density η in the performance
of the algorithm. The parameter η is expressed as the density of a desired number n of points
in a h bandwidth. At a constant value of n, the higher the bandwidth h, the lower will be η. A
lower η means that one gets confident sooner about the solution. This behavior is explained by
the numbers in Table 6.4: higher values of η/lower values of h show the smallest errors, while lower
values of η/higher values of h present the best inlier ratios. Therefore, the η parameter represents
how aggressive the algorithm is in terms of adding new points. However, as it may be noticed from
the same table, different choices of η do not have an important impact on the convergence and
on the overall goodness of the final solution, which is a desirable property when consistent results
with effortless parameter tuning are needed.

Table 2.2 shows the effects of the choice of the bandwidth parameter h, when η is kept con-
stant. Varying the bandwidth entails different choices of the n parameter, which, being an integer
number of points, tunes the resolution at which the sigmoid function is sampled. A specific value
of n involves, when using a histogram kernel, sampling the same sigmoid curve (n+1) times in the
[0,η] density interval, so higher the bandwidth, higher will be the sampling resolution. The first
row of Table 2.2 corresponds to a binary selection of the σ value, equivalent to the one introduced
in [120]. A significant error reduction is obtained by moving away from the binary representation
of the inlier density. The table shows that increasing the resolution of the sigmoid has a benefit
on the error levels, while maintaining stable the inlier ratio. However the error does not decrease
monotonically as we increase h, because at the same time the density estimation loses its local-
ity, providing inaccurate estimates of the boundaries between well and badly constrained regions.
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Overall, as in the case of the choice of η, the selection of the bandwidth h, while being critical in
pure density estimation tasks [141], does not affect the convergence of the algorithm. By setting h
in a reasonable range, on the basis of the image size, one gets the lowest estimation errors.

Finally, we show the estimation results for the camera pair 2-3, using as starting point the worst
possible initialization of the entire stream. Figure 2.16 shows again consistent results both in terms
of RMSE and of Max error (curves are plotted in semilog scale for easier understanding). We are
able to decrease the overall RMSE from 58.9 to 0.6, while reducing the Max error on the whole
image space from 232.4 to 2 pixels.

2.8.2 Pose estimation versus pose refinement - PETS 2009

Experimental setup

PETS 2009[40] is a well-known and widely used dataset [18, 35, 146, 172] which provides multi-
sensor sequences of moving pedestrians for tracking [102, 110, 155, 170, 184], density estimation
and counting [21, 43, 154], and event recognition [45, 171]. The authors provide a full calibration
of the system, which was performed using the Tsai calibration method [161]. From the calibration
data, the ground truth pose estimation may be represented in the form of a fundamental matrix
FGT. The image resolution is 768×576 and the videos are recorded at 7 fps. We consider for ex-
periments the City Center 12:34 sequence, which contains a moderate number of freely moving
pedestrians (Figure 2.17).

There are two main limitations of the provided geometry. First, the pose estimation is more
accurate in the central part of the image which was covered comprehensively by the calibration
procedure. This fact encourages the use of a limited area of interest for analysis which is more
restrictive than the actual common field of view [108, 123, 163]. Secondly, the calibration allows
for multiple camera data fusion at object level (mid level) or trajectory level (high level). However,
and also owing to synchronization issues, the calibration is not accurate enough in order to allow
pixel/voxel level (low level) data fusion algorithms [36, 79, 122, 139] to perform reliably due to
significant pedestrian displacements [40, 163].

Since synchronization errors are critical for pose estimation, we have manually inspected a
subset of the sequence in order to evaluate the temporal displacement at each timestep based on
the pedestrian precise limb arrangements. Figure 2.18 presents these displacements for the first
100 timesteps, and the values confirm that most frame pairs exhibit a slight lag, which is occasion-
ally significant. We chose to run the proposed pose estimation algorithm on the raw data in order
to evaluate the robustness to persistent desynchronization.

Finally, some additional factors worth noting and leading to a difficult pose estimation prob-
lem are the slight errors related to radial distortion which are noticeable on the borders, the photo-
metric differences among the distinct types of camera sensors and the significant scale variations.

We apply the same procedure as presented in Section 2.7, by manually selecting and then re-
fining matches only on accurately synchronized frames. To the extent of our knowledge, this is the
first time for PETS 2009 that the accuracy of the provided ground truth is also evaluated quantita-
tively (the standard approach being the validation against the provided ground truth, i.e. [77]).

Experimental results

In Figure 2.19 we show the errors when performing a robust estimation with the ORSA algorithm
on a single image pair. For most frames we get extremely high RMSE values, which reflect how
challenging the calibration procedure is in such scenario. For the PETS dataset a σH = 200 has
been used, an order of magnitude higher than in the Regents Park dataset case. The choice of such
highσH comes directly from the observation of the number of inlier matches retained by the single
pair estimation. At frame 0 for example, only 9 inliers are maintained in the estimation, and this
number is clearly insufficient in order to represent a robust support set for the inferred pose.
Full FOV analysis Table 2.3 shows the RMSE of the ground truth provided pose FGT, compared
with that of our algorithm, at different initialization times, for the entire area which is visible from
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t0 Init RMSE RMSE

FGT - 2.58
t0 = 0 621.88 3.32

t0 = 99 6.05 3.02

Table 2.3: RMSE on FGT and different initializations times t0 of our algorithm on the PETS 2009 dataset.
The final error is always comparable with the ground truth one, while the initial RMSE not affecting the
convergence of the solution to a close final error.

t0 Init RMSE RMSE Init Max Max

FGT - 1.14 - 2.65
t0 = 0 612.45 1.14 2336.94 3.83

t0 = 99 4.79 1.05 15.05 2.98
Fr e f i ned 1.14 0.83 2.65 2.08

Table 2.4: RMSE and Max error on the FGT, and our algorithm having different initializations: pose estima-
tion starting at time t0 = 0 or t0 = 99, and pose refinement with initialization provided by FGT. Errors are
evaluated on the region of interest R0 of PETS 2009 dataset.

the two cameras. Comparing the solution directly with FGT, without using the manual ground
truth, would have hidden away the actual FGT imprecision. The RMSE values obtained by running
our algorithm directly on the video sequence are less than 1 pixel off compared to the errors of FGT

estimated using the Tsai calibration. Moreover, for two different initialization times characterized
by a low RMSE (6.05 pixels) and by the worst observable configuration (620.2 pixels), we note the
minimal impact on the final convergence result. Regarding the Max error, the FGT presents a 11.54
pixel error, while our method reaches Max error of 16.36 (starting from 3444.14) for t0 = 0, and of
15.34 (starting from 17.97) for t0 = 99.

AOI analysis First of all, the localization of the highest errors in the bottom left area of camera 1
suggests that border errors are less reliable for the analysis due to the impact of the image undis-
tortion. More importantly, our method, while being able to decrease significantly the Max error,
presents a higher Max final error than FGT due to the fact that on the image borders no pedestrian
action occurs (for the manual annotations, we used moving pedestrians from other sequences of
the dataset in order to cover border areas). Thus, the lack of observations limits the algorithm to
refining locally the solution. For the two reasons above, we consider a region of interest R0 on
camera 1, which is defined as the moving pedestrian convex hull and which allows us to provide
an unbiased comparison in the actual analysis area used for the detection and tracking tasks (see
Figure 2.21 for the spatial extent of R0). Such area consists in all the walkway region, including also
for completeness the area which is strongly cluttered by the tree in camera 3.

Table 2.4 shows the errors for the FGT and our algorithm (at different initialization times) in the
R0 region. Even when starting from an almost random initialization (t0 = 0), our method is able to
achieve the same RMSE as the FGT (even slightly lower in the case of t0 = 99). The Max error for the
two solutions is close to the FGT one, showing that our method is able to provide a good quality
solution in the area of interest without relying on any calibration device, as in the FGT case. Figure
2.20 shows the error variation in time (both RMSE and Max) when we start from the worst possible
initialization (t0 = 0). The characterization of the algorithm behavior in such case is critical due to
the use of a large value for σH, which, being more permissive, may introduce instabilities in the
results. However, due to the use of the sigmoid, the algorithm is capable after a few steps to follow
a smooth convergence, due to the gradual increase of confidence in the output solution at higher
inliers densities.
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Pose refinement Finally, we show the results obtained when refining an existing pose, which is FGT

in our case. The interest of pose refinement is that the estimation of FGT has been carried out with
helper objects, which may not cover the entire image space exhaustively. Starting from FGT, we
aim to refine the pose in the tracking region of interest R0, by including the rich visual information
that is provided by the actual data.

Table 2.4 shows the RMSE and Max error of FGT compared with Fr e f i ned , obtained by refining
the provided pose on the entire City Center 12:34 sequence. The Fr e f i ned achieves a consistent
improvement of both RMSE and Max error. In Figure 2.21 it is possible to inspect the average
errors for each bucket in R0. The Fr e f i ned is able to reduce the estimation errors across almost all
the discretized image space, and to reach an average error per bucket below 1 pixel, except on two
buckets for which the average error is 1.1 pixels.

2.8.3 Pose refinement - Hamlyn Centre Laparoscopic / Endoscopic Video Dataset

Experimental setup

The dataset [113] consists of multiple monocular and stereo medical video sequences which are
widely used for validating a variety of applications such as Shape-from-Shading [167], surface re-
construction [94, 104], deformable surface tracking [129, 177, 178] and SLAM [103, 114, 159]. For
all sequences, the dataset maintainers provide high-quality intrinsic and extrinsic calibration in-
formation, estimated in the laboratory using a checkerboard helper object. For our experiments,
we consider stereo data provided by a moving laparoscope visualizing an abdominal porcine wall
(Dataset6). The image size is 640×480, and the video is recorded at 30 fps. We choose a sampling
value∆t = 15.

Experimental results

For the medical dataset, our objective is to refine the pose which was provided for the stereo rig,
given that for stereo navigation or dense reconstruction algorithms any stereo calibration error
weighs on the 3D estimations, since the stereo pose is assumed to be fixed.

The creation of a manually annotated ground truth for validating the pose is unfeasible in prac-
tice on this type of data due to the absence of highly salient small structures which are needed by a
human subject. Thus, we demonstrate the interest of our refinement step using the live recorded
data by showing some qualitative results on eight manually matched structures. The σH = 5 re-
mains unchanged with respect to the Regents Park dataset tests. Figure 2.22 demonstrates the
improvements of the proposed refined matrix on the test point selected in the image space. The
red epipolar line is drawn from the FGT matrix provided by the dataset maintainers. While FGT

shows good performance in the left part of the space, it presents higher errors (up to 3 pixels on
the test points) in some border regions of the image, especially in the right and top parts. The
green epipolar line is drawn from the Fr e f i ned matrix, which decreases the errors in the critical ar-
eas, while maintaining good performance in the parts which are already well covered (our solution
achieves less than 0.5 pixels error in the test points).

Such refinement step has no additional cost in terms of data acquisition (the already available
raw data can be used), and is capable to provide a better quality calibration which is essential
when applied to e.g. 3D projection and reconstruction tasks.
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Figure 2.10: Resulting spatial distribution of the symmetric geometric error with respect to a dense man-
ually annotated ground truth. Errors less than 1 pixel are highlighted in green, between 1 and 2 pixels in
yellow, and more than 2 pixels in red. The gray buckets correspond to areas outside the common field of
view. (a) Reference frame subdivided in buckets. (b) Average errors per bucket using the single image frame.
(c) Average errors per bucket using the proposed method.
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Figure 2.11: RMSE and Max geometric error by applying the All-matches strategy, the method in [120] and
our algorithm on 1-2 camera pair of Regents Park dataset. Our selection is more reliable, and we are able to
improve the initial estimation significantly and robustly, with a lower RMSE and less oscillations than [120].
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Figure 2.12: The inliers ratio at each iteration for the All-matches and for our approach.
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Figure 2.13: RMSE by applying our method on the 1-2 camera pair by using a fixed σ =σL = 1 value, and by
using the adaptive sigmoid shaped σ introduced in Section 2.5
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Figure 2.14: RMSE and Max geometric error by applying our algorithm on the worst possible initialization
of the 1-2 camera pair sequence (Regents Park dataset). Our estimation is cabable of successfully converge
independently of the initialization chosen
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Figure 2.15: The inliers ratio at each iteration on the worst initialization of the camera pair 1-2 sequence
(Regents Park dataset) by using a fixed σ = σH = 5 or our adaptive sigmoid shaped σ introduced in Section
2.5.
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Figure 2.16: RMSE and Max geometric error (in semilog scale) obtained by applying our method for the 2-3
camera pair (Regents Park dataset), with the worst possible initialization
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(a) (b)

Figure 2.17: Sample frames from PETS 2009 dataset. (a) Camera 1, (b) Camera 3
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Figure 2.18: Temporal displacement (i.e. synchronization error value) of the first 100 frames from view 3
with respect to the ones of view 1 of the City Center 12:34 sequence (PETS 2009 dataset).
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Figure 2.19: RMSE by applying ORSA in each frame pair of the City Center 12:34 (PETS 2009) independently.
Streams from cameras 1 and 3 are used.
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Figure 2.20: RMSE and Max geometric error (in semilog scale) obtained by applying our method on region
R0 (PETS 2009), with the worst possible initialization (t0 = 0)
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Figure 2.21: Resulting spatial distribution of the symmetric geometric error with respect to a dense man-
ually annotated ground truth (PETS 2009), in the region of interest R0 (colored buckets). Errors less than 1
pixel are highlighted in green, between 1 and 2 pixels in yellow, and more than 2 pixels in red. (a) Average
errors per bucket using the provided FGT. (b) Reference frame of subdivided in buckets. (c) Average errors
per bucket after executing the proposed refinement.
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(a) (b)

Figure 2.22: Qualitative results obtained from the refinement of the provided pose of Hamlyn Centre La-
paroscopic/Endoscopic Video dataset. (a) Stereo pair, with eight manually selected control points high-
lighted in different colors. (b) Zoomed views of the local patches around the control points (their color
refers to the one in subfigure (a)), with two epipolar lines being drawn each time: the one from the provided
FGT (red) and the one from our refinement (green). A small but noticeable displacement is present for FGT;
the proposed refinement is successful in removing it.
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2.9 Conclusion

In this chapter we have detailed a new approach for solving difficult relative pose estimation prob-
lems based on a guided selection of new matches from video. We select new matches in order to
constrain the estimation robustly, by adapting the search process with respect to the local inlier
distribution. This results in a fast convergence towards a high-quality solution, which is being
highlighted by the manual ground-truth we created for two difficult scenes. In our experiments,
we show that this video accumulation strategy converges robustly to globally effective pose esti-
mations, irrespectively of the scene configuration during initialization. We have also proposed an
extension able to perform data-driven pose refinement based on a prior pose initialization, and
which is aimed at stereo systems requiring frequent high-quality extrinsic re-calibrations. During
experiments, our self-calibration procedure was able to improve consistently the prior pose with
no overhead in terms of data acquisition procedures.

Our approach can be largely beneficial for such fields where online precise re-calibration is
crucial. For example, pan-tilt-zoom surveillance cameras need constant re-calibration in order
to be exploited for multiple views pedestrian analysis. Due to the continuous movement of such
equipment, the algorithm has to be able to follow the change in pose by updating the fundamental
matrix estimation at every new frame. Since our method benefits from smooth and convergent
improvements from an imprecise solution, it would be suitable for this scope.

The proposed work is crucial for the following steps of our project. Once the cameras are
calibrated with a high confidence in the solution, multiple views can be exploited concurrently
for pedestrian detection in the 3D space. Moreover, it allows for ground plane registration among
all the views, making possible to perform smart detection fusion directly in the metric space, by
overcoming critical problems in the image domains, e.g. ambiguous distances and occlusion.
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Chapter 3

Multiple Camera Pedestrian Detection:
an overview
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3.1 Motivation

Pedestrian detection is a fundamental task in computer vision, closely related to applications such
as video surveillance, autonomous driving or action recognition. Some characteristics of the an-
alyzed scene and camera setup improve significantly the reliability of the detection: a low pedes-
trian density, close to vertical optical axis, and a good resolution representation of individuals.

However, the recent focus on the analysis of large, densely crowded outdoor areas underlines
the current limitations in presence of persistent, heavy clutter. Detection strategies based on mul-
tiple overlapping views may be used to achieve more robust inference provided that sensor data
are fused prior to detection. This still leaves open the problem of how to associate data among
views which may exhibit significant geometric and photometric variation. Above all, the joint
projection of visual information in a common reference system is conditioned by an accurate esti-
mation of the relative camera poses, and of the ground plane.

As some of the underlying assumptions are violated (i.e. persistent clutter for foreground ex-
traction, heavy occlusions for part-based detectors, homogeneous crowd dynamics for indepen-
dent motion based inference), the detector breaks down. Moreover, resilience to camera pose
variations or to people appearance comes at a cost, in the form of human intervention for calibra-
tion procedures or for scene-dependent supervised learning.

By addressing the problems highlighted above, we aim to build a fully unsupervised pedes-
trian detector which can be applicable for head detection to large, cluttered scene analysis. Such
detector may exhibit complementary strengths and weaknesses with respect to the classical single
view supervised detectors, so providing a favorable configuration for data fusion.

3.2 Ground plane registration: variable height-homographies

In order to propose a multiple camera detector, a metric registration of the ground plane is an es-
sential preliminary step. Having such information, one can not only relate pixels in different views
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Figure 3.1: Baseline geometry. The plane vanishing line corresponds to the intersection between the image
plane and the plane parallel to the reference plane and passing through the camera center. The vertical
vanishing point is the intersection of the image plane with the line parallel to the camera reference direction
and passing through the camera center. Image taken from [22].

by their estimated height above the ground, but one can also infer the metric distance between
any pixel in a single view. The first idea is to measure the metric distance between any two 3D
parallel planes (parallel to the ground, in our case), when two image points are known to be lying
on those two planes. The authors of [22] show that if the vanishing points of the image are known,
relative distances can be measured by cross-ratio relationships. In the image space, a projective
transformation between two image points belonging to two parallel world planes is called planar
homology [22]. Let us consider the world-to-image projection matrix P as:

x = PX =
[
p1 p2 p3 p4

]
X,

where x ∼ (
x, y, w

)
, X ∼ (X,Y,Z,W) are homogeneous vectors.

Let us denote the vanishing points on both directions as vX, vY and v. The points vX and vY

are two distinct points on the vanishing line l, which corresponds to the intersection of the image
plane with the plane parallel to the ground plane and passing through the camera center. The
point v is the vertical vanishing point, corresponding to the intersection of the image plane with a
line parallel to the camera’s reference direction and passing through the camera center (see Figure
3.1).

One can re-parametrize the projection matrix P as a function of the vanishing points. The first
three columns can be expressed as the three vanishing points, while the last column is the pro-
jection of the world’s origin. For linear independence such projection cannot lie on the vanishing
line, and thus is arbitrarily chosen as l̂ = l/‖l‖. Finally [22]:

P =
[
vX vY αv l̂

]
,

where α is a metric scale factor.
Let us consider two points b and t, the first lying on the ground plane and the second on a

parallel plane of height h. The authors of [22] demonstrate the following relationship:

αh =
−‖b× t‖

(̂l ·b)‖v× t‖
. (3.1)

Thus, if α is known, one can have the absolute metric distance h between the two points. On the
other hand, if h is known, then one compute the value of α. Thus, in theory, a single pair of parallel
points at known height can be used to solve the metric scale ambiguity. Figure 4.2 depicts how
cross-ratios are employed for distance calculation for a homology transformation. Four points, b,
t, the point i (the intersection between the vanishing line and and the line passing through b and
t), and the vertical vanishing point v, are sufficient for relative distance calculation.

42



CHAPTER 3. MULTIPLE CAMERA PEDESTRIAN DETECTION: AN OVERVIEW

Figure 3.2: Schematic representation of homology between two planes. The first figure shows the 3D rela-
tionship between two reference points B and T and two generic points X and X′. The second figure shows
their respective projections in the image space. In order to evaluate the relative distance between the ref-
erence points, the cross-ratio between four points is sufficient. Such knowledge can be applied to any new
point pair. Image taken from [22].

With the given representation of the camera matrix P, one translates easily the world coordi-
nate system along the reference direction of the camera. For a plane at an height h over the ground,
one has [22]:

Ph =
[
vX vY αv αhv+ l̂

]
.

One can get the plane to image homography by removing the third column from the matrix P [22];

H0 =
[
vX vY l̂

]
Hh =

[
vX vY αhv+ l̂

]
.

Finally the planar homology matrix:

Bh = Hh (
H0)−1

= I+αhv̂lT, (3.2)

maps image points on the reference plane to image points on the parallel plane at distance
h. The ability to evaluate the homology matrix between each plane parallel to the reference al-
lows us to have a mapping between any point on one image i, to a single point in another image
j, given that we know the metric height of the point, and the ground plane homography H0

i j . Ba-

sically, a point pi is projected into the ground with the inverse of the homology Bh
i , then mapped

in the image j with the ground plane homography H0
i j , and then projected to the corresponding

point at the correct height with the homology matrix Bh
j . Thus, we can define the variable-height

homography Hh
ij as:

Hh
i j = Bh

j H0
i j

(
Bh

i

)−1
(3.3)

3.3 Related works

There exists a large body of research for pedestrian detection, therefore the following sections
focus on approaches suited for moderate to high density scenes. For identifying strongly occluding
people, multiple cameras are better positioned in order to resolve ambiguities in at least a subset
of the available views. Depending on how sensor data are combined, detection methods rely on
raw data level (low-level), on object level (mid-level) or on trajectory level (high-level) data fusion.

3.3.1 Scene geometry

Difficult detection scenarios benefit from strategies which avoid performing the detections in in-
dividual views. However, the lower the fusion level, the greater will be the impact of the geometry
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Figure 3.3: Camera network for the pedestrian detection experiments in [36].

alignment among the cameras and the scene. In a number of studies, the relative camera poses
and the ground plane orientation are identified by relying on a robust estimation of the ground
plane homography using ground inliers [79, 149]. A precise estimation requires a large uniformly
distributed set of observations which are difficult to obtain, considering the homogeneity of the
ground and the potentially significant pose variations among cameras. Some studies rely on man-
ual ground annotations [26, 56], but for such a solution to be constrained accurately across the
work area, the annotations should ideally be uniformly and densely performed. Finally, classical
extrinsic calibration relies on specific objects being observed in multiple views prior to the analy-
sis, but this approach does not scale to large outdoor areas. Moreover, the concomitant presence
of calibration objects in different views [36] during analysis is non-viable in cluttered realistic con-
ditions.

3.3.2 Ground plane projection

A common ground plane hypothesis is adopted by most multiple view based detectors (a notable
exception being [1]), due to the simplificatory assumptions it allows for data fusion. In order
to simplify data association among cameras while at the same time avoiding the difficult detec-
tion task in single views, the vast majority of subsequent works rely on foreground extraction and
the combination of foreground maps in the ground plane reference, as opposed to high-level ap-
proaches which apply multi-view homographies onto single-view detections [80]. Early works
such as [111] relied on basic appearance cues such as color in order to find correspondences
across cameras. In subsequent studies, the data fusion may be performed under various forms,
such as a probabilistic occupancy map relying on a generative model [42], silhouette based ex-
traction [2, 51], stochastic spatial models [47, 162], or a joint foreground and appearance likeli-
hood objective function [93].

3.3.3 Multiple homography methods

Methods such as the ones proposed by Khan and Shah [79] or by Eshel and Moses [36] rely on a
detection performed at varying heights with respect to the reference plane. Moreover, while Khan
and Shah [79] rely on non metric multiple homographies, Eshel and Moses [36] estimate the metric
scale by manual intervention.

Tracking in a Dense Crowd Using Multiple Cameras [36]

The work in [36] aims to detect and track pedestrians from multiple views. Starting from a camera
network (see Figure 3.3), a reference image is selected. Let us denote as a reference the camera
1. The authors use some helper objects (LED poles with lights at known heights), in order to per-
form the estimation of variable-height homographies Hh

1,i . Background subtraction is performed
independently on each view in order to focus only on the moving objects.

44



CHAPTER 3. MULTIPLE CAMERA PEDESTRIAN DETECTION: AN OVERVIEW

(a) (b) (c)

Figure 3.4: Main steps of the method in [36]. (a) Background subtraction. (b) Saliency map of intensity
variances. (c) Segmented detections and tracking.

Then, for a fixed set of heights (150cm, 155cm, ..., 190cm), the following steps are performed:

1. For each foreground pixel in the reference view, compute a hyperpixel containing the pixel
itself and its homographic projections in the other views.

2. Create a saliency map with the intensity variances among the components of each hyper-
pixel.

3. Perform hysteresis thresholding, head segmentation and top-head detection.

The top-heads detections from multiple candidate heights are then fused in order to get a cumu-
lative detection map.

The main limitations of such approach (that we aim to overcome with our method) summarize
as follows:

1. The estimation of the homography requires manual intervention, due to the use of helper
objects.

2. The intensity variance correlation metric is highly sensitive to perspective and illumination,
thus it is not applicable in real surveillance scenarios.

3. Camera setup is highly constrained (high pitch angles, limited baselines), and, in the exper-
iments, more than 5 cameras are needed in order to achieve acceptable performance.

Moreover, all the methods presented above, other variations based on 3D carving [128, 139]
and extensions based on the spatio-temporal evolution of detections [17, 71, 123] rely heavily at
an incipient stage on foreground extraction, and are significantly impaired if the foreground can-
not be segmented. A typical example is [79] which requires feet visibility in order to work. Unfor-
tunately, cameras placed with low pitch angles as it is generally the case for high-density crowd
surveillance would not observe sufficient empty areas among proximate pedestrians in order to
benefit from foreground extraction.

In conclusion, although methods exploiting multiple cameras for pedestrian detection have
been developed within the Computer Vision community in the last decade, a more attentive anal-
ysis underlines that all these methods require strong assumptions about the scene layout or con-
tent which render them ineffective in large scale, outdoor areas where the environment can not
be controlled accordingly. Moreover, in order to overcome the challenges raised by realistic urban
scenes, not only purely engineering but also methodological advances are necessary in order to
tackle the aspects related to illumination and perspective variation, or to the efficient search of a
global solution.
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We are inspired by the work of Eshel and Moses [36], who underline the graceful degrada-
tion of homography-based head detection as crowd density increases. In our work, we turn the
pedestrian detection problem in a height map estimation, where the prior on the neighborhood is
easier to formulate than in depth map based approaches, thus jointly estimating occupation and
3D location of each pedestrian. The contributions of our work can be summarized as follows: (i)
we model the head detection problem as a stereo MRF-based optimization of a dense pedestrian
height map, which exploits a first-order regularization term which constraints the height varia-
tion; (ii) in order to be able to cope with height labels, we demonstrate a new fully unsupervised
method for relative camera pose and homography estimation which avoids placing calibrating
objects inside the investigated area, either during the detection algorithm or prior to the analysis;
(iii) we rely on a data association cost among camera views which is able to cope with intensity
and perspective variations specific to outdoor.

By addressing these key points, we believe the proposed advances will improve the applicabil-
ity of geometry-based strategies for head detection to large, cluttered scene analysis (Fig. 4.1).
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Figure 4.1: Head detection detail with a height map overlay in the central camera view. Two additional
views (see left) are used for the height map estimation. Note the height gradient following the local vertical
direction, and the middle detection for which a strong occlusion is present in one of the lateral views.

4.1 Inferring scene and camera geometry

The acquisition system consists of a central reference camera Ci and a set of neighboring cameras
N (Ci ). The geometry analysis can be divided into two parts.

First, the epipolar geometry between pairs of adjacent cameras needs to be estimated, and
the relative camera poses extracted. Then, following the idea of Eshel and Moses [36], we restrict
the search space to a volume contained between two planes parallel to the ground plane. This
amounts to detecting pedestrians with heights in a specified interval [hmi n ,hmax ]. In terms of
camera geometry, this requires a metric registration of each camera with respect to the ground
plane in terms of variable-height homographies.

4.1.1 Relative pose estimation

A fundamental matrix Fi j between Ci and each C j ∈ N (Ci ) is estimated using the unsupervised
method proposed in Chapter 2, by robust accumulation of inliers Si j from a pair of synchronized
video streams. From each Fi j , the relative pose (Ri j ,ti j ) is obtained by SVD decomposition. The
SVD step introduces numerical errors which are counteracted by a first bundle adjustment (BA)
optimization using the inliers Si j from the pair Ci -C j .

At this point, we also enforce a metric scale t m
i j for each pair by setting the norm of ti j to the

actual distance Dl
i j between the cameras measured with a standard handheld laser device: t m

i j =

Dl
i j ·ti j /‖ti j‖. This simple operation is the only manual procedure we require in order to inject the

real-world scale of the scene into the estimations.
The following mandatory step is to enforce a common metric scale to all the camera poses,

as any imprecision introduced in the computation of the different (Ri j ,ti j ) will have a negative
impact on the data association. For any triplet Ci− j−k , we rely on triple matches (which are a
subset of all matches identified during the fundamental matrix estimation) to propagate the scale,
while including the simple matches as well in the BA in order to stabilize the other degrees of
freedom of the problem. Then, if more then three cameras are used, a global BA may be applied
over all the poses and available observations.

4.1.2 Variable-height homographies estimation

Let us consider the estimation of the variable-height homography between the reference camera
Ci and some neighbor camera C j ∈N (Ci ).

According to Equation (3.3), estimating the variable-height homography between two views
reduces to the estimation of the homology transformation of each independent view, and of the
ground plane homography. Then, according to Equation (3.2), the estimation of the vanishing
points and of the metric scale factor are needed for inferring the homology.
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Vanishing line and vertical vanishing point vk and lk

Figure 4.2: Example of vanishing points extraction on the Regent’s Park dataset by using the method of [90].
Segments of different colors are clustered together to provide a robust estimation of a single vanishing point
location. The dotted line on top is the corresponding vanishing line. Please note that the vertical vanishing
point falls outside the image space.

The vk and lk for each camera are estimated under Manhattan world assumptions by using
the method of Lezama et al. [90]. The underlying justification is that, although urban repetitive
patterns are difficult to match reliably for inferring relative poses, they can be used in individual
views for estimating vk and lk .

Ground plane homography H0
i j

The estimation of the ground plane homography H0
i j can be carried out by detecting in the two

images point matches lying on the desired plane. In order to perform an automated estimation of
H0

i j , we propose to extract a candidate set of point matches from the inlier set Si j provided by the
computation of Fi j . The point extraction from video relies on the dynamics of people moving in
the scene for the registration. This implies that the final 3D cloud of inliers can be clustered into
points belonging to dominant planes (ground and building facades), and into points originated
from pedestrian bodies moving across the scene. Given a point correspondence (pn

i , pn
j ) in the

two views, we assign to it a label h̃n , corresponding to the estimated camera height under the
assumption that the related 3D point is on the ground, which can be easily calculated as follows
by using the epipolar geometry and the vanishing points. Only point matches located under the
camera vanishing lines are considered.

Let us call rn
i the straight line passing through pn

i and vi (we define rn
j accordingly). As depicted

in Fig. 4.4, the position of a point p̃n
i is evaluated as the intersection between rn

i and the vanishing
line. The point, p̃n

i corresponds to the projection of pn
i on a plane which is parallel to the ground

and at the height of the camera. In the second view, the point p̃n
j is detected as the intersection

between the epipolar line Fi j p̃n
j and rn

j . Let us call Pn and P̃n the 3D points obtained from the

triangulation of (pn
i , pn

j ) and (p̃n
i , p̃n

j ) respectively. Then, h̃n =∥ Pn − P̃n ∥.
We turn then the ground identification step into a data clustering problem with random vari-

able H̃n . We intend to separate the set of points generated by moving pedestrians on the ground
(occasional visible feet locations, shadows) from the points generated by body parts in the pres-
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Figure 4.3: Distribution in meters of camera height to ground values, that is used to identify the ground
location using robust EM [48].
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Figure 4.4: Computation of a height hypothesis h̃n , starting from a point pair (pn
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j ).

ence of other matches (i.e. building interest points), that we will define as outliers of the pro-
cess. We perform this robust estimation task using the method of [48], which introduces an EM-
algorithm robust to data outliers.

Figure 4.3 shows an example of data clustering, where two clusters are detected and the one
with higher mean and lower variance is extracted as the candidate set of ground matches. As
might be expected, the proximity of the distributions leads to the inclusion of false positives in the
output, but the actual homography estimation is performed with a RANSAC strategy [41], there-
fore the presence of some outliers is well tolerated. As a numerical example, the homography
estimated after running the EM-algorithm on the distribution of Figure 4.3 exhibited a RMSE=1.5
pixels with respect to a manually labeled ground truth, compared to a RMSE=1.25 pixels obtained
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by selecting manually ground matches from the set Si j (comparable results have been obtained
for all the camera pairs).

Metric scale coefficient αk

⇡

pnj
pni

vi

ri

vj

Pn

rj
Fijp

n,0
i

pn,0i
pn,0j

Pn,0

zn

H0
ij

Figure 4.5: Ground projection (pn,0
i , pn,0

j ) for the inlier pair (pn
i , pn

j ).

Once H0
i j is estimated, the metric scale coefficients αi and α j may be computed. According

to [22], αk (with k = {i , j }) can be derived from an image point, along with its projection on the
ground plane, and with their metric distance in the real world. A convenient way of computing αk

is to take two reference points at a known distance on the scene. Our procedure for the automatic
estimation of the αk values consists in exploiting the set of inlier matches Si j , in such a way that
every pair of the set, which does not correspond to a point on the ground plane, votes for global
candidates αi and α j . Given the match (pn

i , pn
j ), the calculation of αk requires the identification

of a corresponding match of their projection on the ground (pn,0
i , pn,0

j ) (see Fig. 4.5). Since the

height of such point pair is unknown, the corresponding point pn,0
i on the ground plane lies on

the segment connecting pn
i and the vertical vanishing point vi. Thus, the corresponding point

pair (pn,0
i , pn,0

j ) must lie on ri and r j respectively, and satisfy both the homography and epipolar
constraints.

Given the ground plane homography H0
i j , the identification can be cast as the following opti-

mization problem:

argmin
pn,0

i ,pn,0
j

[
d

(
H0

i j pn,0
i , pn,0

j

)2 +d
(
(H0

i j )−1pn,0
j , pn,0

i

)2
]

s.t . pn,0
i ∈ ri , pn,0

j = Fi j pn,0
i ∩ r j (4.1)

where d(·, ·) is the Euclidian distance operator, and ∩ indicates the intersection between two lines.
With the given constraints the problem can be reduced to a single variable optimization problem,
as the cost can be expressed as a function of one of the two components pn,0

i = (xn,0
i , yn,0

i ). We
obtain a solution with the Levenberg-Marquardt algorithm, by choosing as starting value y0 = yn

i

of pn
i = (xn

i , yn
i ). Then, αi and α j may be obtained from the point pairs (pn

i , pn,0
i ) and (pn

j , pn,0
j )

respectively, from equation (3.1). Once every match within Si j votes for a hypothesis (αi ,α j ), we
select the variable-height homography model which best fits the given data. We define a reprojec-
tion error corresponding to (pn

i , pn
j ) as:

εn =
1

2

(
d

(
Hzn

i j pn
i , pn

j

)
+d

(
(Hzn

i j )−1pn
j , pn

i

))
, (4.2)
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where Hzn

i j is the homography at height zn evaluated with the current estimation of (αi ,α j ). Finally,
an LMedS estimator is applied to select the best model.

For a generic pixel pi in the image space of camera Ci , we define p j ,mi n ∼ Hhmi n

i j pi and p j ,max ∼
Hhmax

i j pi . These two points lie on the epipolar line Fi j pi in the image space of camera C j , and
define the extremes of an epipolar segment which corresponds to the search space of our stereo
matching algorithm.

4.2 Pedestrian map computation

The proposed pedestrian detection method makes use of a Markov Random Field (MRF) based
stereo matching. The objective is to minimize the pairwise MRF energy function:

E(l ) =
∑

p∈I

Dp (lp )+λ ∑
(p,q)∈N

Vp,q (lp , lq ) (4.3)

where: (i) p is a pixel belonging to the image I ; (ii) given the finite label set L , l is a labeling
assigning a value lp ∈L to each p ∈I ; (iii) N is the set of edges of the image graph (4-connectivity
is assumed); (iv) Dp is the data cost function; (v) Vp,q is the discontinuity cost function; (vi) λ is a
regularization parameter. Even if the formulation of the MRF problem is rather classic, the main
contribution of our work resides on the definition of the label space in terms of height values,
leading to an original formulation of the discontinuity cost function term.

4.2.1 Label definition: height-based optimization

A crucial point of our algorithm is the choice of the type of labels used. A common choice in
state-of-the-art stereo matching is to use depth as label. Conversely, our method performs an
optimization based on height labels. First, the choice of height is more natural if we consider how
we build the search space (the volume between two planes at predefined heights). Moreover, the
following task which benefits from a pedestrian detection map is the tracking on the reference
plane, and, while height alone is enough to perform the ground projection (given the estimated
geometry), depth information needs to be converted nonlinearly into a ground-related variable
(typically height) and regularization behaviors, particularly at discontinuities, are not equivalent
following the different representations.

The height label allows us to define more sophisticated constraints on local image patches
(e.g. head patches) without the need of a higher-order MRF. While constant depth assumption
expresses heads as planes fronto-parallel to the camera plane, the height and vertical vanishing
points can be exploited to constraint the head to resemble locally a plane perpendicular to the
ground.

The label set L = {hmi n ,hmi n +∆h , . . . ,hmax ,u} is defined in the interval [hmi n ,hmax ] with a
sampling step∆h , and is augmented by an unknown label u, meaning that no pedestrian is found
at the specified location. We set hmi n = 140cm, hmax = 200cm,∆h = 2.5cm.

4.2.2 Data cost function

The choice of a local region descriptor for dense matching is guided by the fact that our method
is supposed to work even in a wide-baseline scenario with consistent perspective distortion. We
employ the DAISY descriptor from [157], which has proven to be robust to perspective and illumi-
nation changes while showing a good computational efficiency. We express the data cost between
Ci and C j as the DAISY dissimilarity [157]:

Di , j
p (lp ) =

1

S

S∑
k=1

∥ D[k]
i (p)−D[k]

j (H
lp

i , j p) ∥ (4.4)
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Figure 4.6: DAISY dissimilarity: a) projected pixel b) search segment corresponding to [hmi n ,hmax ] c)
DAISY dissimilarity along the entire epipolar line d) DAISY dissimilarity restricted to the search segment.

where S is the number of histograms of the DAISY descriptors, D[k]
i (p) is the k-th histogram eval-

uated at pixel p of camera Ci , D[k]
j (H

lp

i , j p) is the k-th histogram of the DAISY descriptor evaluated
at the projection of pixel p at an height lp on the epipolar segment at camera C j , by using the

variable-height homography H
lp

i , j . Figure 4.6 presents the typical behaviour of the dissimilarity,
and how restricting accurately the search space to the epipolar segment helps.

The special unknown label u is assigned with a constant data cost value Kd ,u . The total data

cost function Dp (lp ) will be a combination of each Di , j
p (lp ) computed between the reference cam-

era Ci and any C j ∈ N (Ci ). Our experiments have been carried with | N |= 2 neighbors, so a
simple average of the two curves has demonstrated an effective combination, while with an in-
creasing number of cameras an outlier robust cost merging method, like the one proposed by
[168], is necessary.

4.2.3 Discontinuity cost function

By using the heights as labels we need an efficient method to estimate at each pixel location the
expected local height variation. Given a point p ∈ I , the direction of maximum variation of the
height will be along the line rp connecting p with the vertical vanishing point (see Figure 4.7).
In order to provide a fast and reliable estimation of the height variation around p, we consider
a small patch area, with the length of an average head L, centered in p as a planar surface. The
direction of maximum height variation favors an orientation of the corresponding 3D patch which
is perpendicular to the ground plane. We define as |∇p | the estimated absolute value of the height
variation along rp at a unit distance from p. Given the planar locality assumption, this quantity is
expressed as:

|∇p | =
L

d(p, pL)
(4.5)
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Figure 4.7: Example of lines connecting a given pixel to the vertical vanishing point, in order to estimate the
maximum height variation of a pedestrian. The difference in the expected gradient |∇p | can be appreciated:
the red head has a radius of 4px and |∇p | = 2.5cm; the green head has a radius of 6p and |∇p | = 1.6cm.

p

qu

qd

ql qr

v

q?u

Figure 4.8: Neighborhood definition for the calculation of the discontinuity cost function. Expected gra-
dient |∇p | between to neighboring pixels is re-scaled proportionally to the distance between the point and
the projection of its neighbor on the line connecting it to the vertical vanishing point.

where pL is the image projection of pixel p into the 3D parallel plane located at distance L from

the 3D plane determined by p. The point pL is evaluated using homologies as: pL = Bh−L
(
Bh

)−1
p,

where h is the central value of the height interval [hmi n ,hmax ]. The choice of a constant h value is
justified by the negligibly small variation of |∇p | for different h values with respect to ∆h and for
a given p, leading to no effect on the final evaluation of the discontinuity function. As a conse-
quence, Equation (4.5) allows us to estimate the |∇p | map once during the algorithm initialization
step.

Let us consider the neighbor points p = (xp , yp ), q = (xq , yq ) ∈ I . The expected height varia-
tion between p and q is proportional to |∇p | and to the projection of q on the line rp . The point
q⊥ = (xq⊥ , yq⊥) represents the orthogonal projection of q on rp (see Figure 4.8). In order for this
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projection to be valid, we use the hypothesis that for neighboring pixel in the image space, the
angles with the u axis of the u-v image reference system of the lines rp and rq are almost identical:
θrp ≈ θrq . We can define the following distance function:

Dp,q (lp , lq ) =
∣∣∣lp − lq − sp |∇p |d(p, q⊥)

∣∣∣ (4.6)

where sp = 1 if yp < yq⊥ and sp = −1 otherwise, meaning that the height value has to decrease when
moving to lower pixels in the image space. Please note that since θrp ≈ θrq and |∇p | ≈ |∇q |, it follows
that Dp,q (lp , lq ) ≈ Dq,p (lq , lp ) , but the equality does not hold strictly numerically (the maximum
difference observed during experiments is of the order of 10−3). We enforce a symmetrical message
flow by evaluating for each pair p, q the distance functions in both directions, and by considering
the one which provides the highest error. The discontinuity function between two labels which
are not both unknown is defined as a truncated distance:

V̂p,q (lp , lq ) = min

[
max

(
Dp,q (lp , lq ),Dq,p (lq , lp )

)
∆h

,K

]
(4.7)

The total discontinuity cost function is expressed as:

Vp,q (lp , lq ) =


V̂p,q (lp , lq ) (lp 6= u)∧ (lq 6= u)

KV,u (lp = u ∧ lq 6= u)∨ (lp 6= u ∧ lq = u)

0 (lp = u)∧ (lq = u)

(4.8)

where KV,u is a constant discontinuity cost for unknown labels (in the experiments KV,u = K for
convenience).

The proposed pairwise discontinuity cost does not satisfy the submodularity property, there-
fore an alpha-expansion graph cut algorithm is not applicable to the optimization process. We
provide results of the MRF optimization with Loopy Belief Propagation [179], but other techniques
such as tree-reweighted message passing [83, 152] may be used as well.

4.2.4 Temporal filtering

In order to illustrate qualitatively and quantitatively the interest of our work, we perform a simple
temporal filtering of the detection results. The temporal filtering step outputs motion consistent
trajectory fragments, denoted as tracklets. A more involved approach for the validation of instan-
taneous detections would require the use of appearance information either in the optimization or
in a subsequent tracking algorithm, but these extensions go beyond the scope of the present work.

The temporal filtering is applied as follows:
1 The height map points are projected on the reference plane.
2 Local maxima (in terms of height) are identified in the projected data.
3 Each point is clustered with respect to the closest local maximum, and a centroid is computed
for each cluster.
4 Tracklet creation and extension: each centroid may either be associated to an existing tracklet if
it is located closer than θd from the linearly predicted tracklet location, and if its height is closer
than θh to the tracklet average height; otherwise, a new tracklet is created. For all our experiments
we used θd = 20cm and θh = 15cm.
5 Any tracklet which is not extended is terminated.

At the end of the temporal filtering part, tracklets of length equal or less than a tracklet thresh-
olding parameter θl are discarded. For our experiments we considered values of θl ∈ {0, . . . ,3}, with
0 meaning no filtering.

4.3 Experiments

We evaluate the proposed algorithm on the crowded scene Regent’s Park, used initially for wide
baseline relative pose estimation. The laser measured distances between the central camera and

55



CHAPTER 4. GEOMETRY-BASED MULTIPLE CAMERA PEDESTRIAN
DETECTION

λ value Recall Precision

0.08 89.89% 42.65%
0.15 74.37% 66.78%
0.20 62.23% 82.82%

Table 4.1: Recall and precision on the Sparse se-
quence depending on the regularization parameter
λ. Here θl = 1.

θl value Recall Precision

0 85.60% 65.67%
1 80.20% 72.35%
2 75.10% 77.18%
3 70.26% 79.81%

Table 4.2: Recall and precision on the Dense se-
quence depending on the tracklet threshold θl .

(a) left camera (b) central camera (c) right camera

Figure 4.9: Regents Park Mosque dataset, Dense sequence.

the other two are 9.35 and 10.1 m. We present the results obtained in the central part of the scene
which corresponds to the overlapping area of the three cameras, and which has roughly 400 m2.
For clarity, we recall that the related works on unsupervised detection of Eshel and Moses [36] and
Khan and Shah [79] are not suitable for comparison in such kind of scenes. The method in [36] is
based on scene constraints which are not transposable in a wide baseline open environment; the
work in [79] tracks feet locations, and this operation is not applicable in higher density scenes as
the one proposed.

In order to highlight better the specific behavior of our method, we process two different
manually annotated sequences, the first one denoted as Sparse containing 200 frames and 2969
manually annotated pedestrians, and a second sequence denoted as Dense containing 500 frames
and 18567 annotated pedestrians, most of them being clustered in a transit zone (Fig. 4.9). The
ground truth annotations are used to evaluate the overall object level precision and the recall of
our method in each sequence.

4.3.1 Impact of the tracklet threshold θl

The parameter θl controls in a simple manner the geometric consistency of the tracklet and is
quite effective in removing spurious trajectories, which are uncommon in dense crowds. In Table
(??) we present the results in terms of precision and recall obtained on the Dense sequence, using
values of θl ∈ {0, . . . ,3}. The regularization parameter is set to λ = 0.07. Beyond these lengths, the
majority of tracklets are correct and the thresholding becomes detrimental. Figure 4.10 presents
the result of the detection on frame 5 of the Dense sequence.

4.3.2 Impact of the regularization parameter λ

The parameter λ of Equation (4.3) has a significant impact on the results as it controls the en-
forcement of the height gradient constraint with respect to the photometric term. In Table 4.1 we
present the results in terms of precision and recall obtained on the Sparse sequence, using dif-
ferent values of λ which cover the entire effective range. The tracklet threshold is set to θl = 1.
The impact of λ is even more marked in a sparse setting, as the geometry constraint allows for
removing the false positives created by the ground surface, in the absence of an object appearance
model. Figures 4.11a-4.11c present the detection result on frame 27, with increasing values of λ.
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Figure 4.10: Detections on the Dense sequence, prior to temporal filtering.

(a) λ = 0.08 (b) λ = 0.15 (c) λ = 0.2

Figure 4.11: Detections Sparse sequence with varying levels of regularization. The tracklet threshold is set
to θl = 1.

4.3.3 Final discussion of results and failure cases

The algorithm we propose clearly shows an excellent performance on strongly occluded crowd
images, despite the use of only three views and the absence of appearance related terms. Besides,
the influence of the parameters θl and λ on the results may be exploited in order to favor precision
or recall. Finally, due to the absence of appearance information in our framework, some expected
difficulties arise. At low densities, ground areas may be visible and any ground related phantom
will be persistent, and impossible to differentiate from a still individual (Fig. 4.11a) - we highlight
this behaviour in Table 4.1, while it also worth noting that even in Dense the precision in Table 4.2 is
impacted by some occasional frames with lower densities. A second failure case arises whenever in
a detection blob corresponding to multiple pedestrians, there is only one local height maximum.
In some cases, objects which are not heads and which are raised at above-torso level are correctly
detected as being located at a valid height from the ground. We expect these cases to be easily
corrected by taking into account an appearance based model. Since we address the detection
problem as an energy minimization, one straightforward way to extend our work is to include an
additional term related to appearance in the data cost function. Alternatively, a standard tracking
algorithm including appearance cues would address these cases as well.
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4.4 GPU acceleration of pedestrian map computation

The following section introduces a body of work which has been performed in order to tackle a
more practical aspect of the aforementioned algorithm, mainly the running time. Although mul-
tiple approaches are available in order to solve the minimization introduced initially in Equation
4.3, one of the reasons for relying on the LBP algorithm has been also its potential for high paral-
lelization.

4.4.1 Overview of the GPU architecture

In recent years, general purpose processing on GPU (Graphics Processing Unit) provided signifi-
cant support for many scientific fields in which efficiency and speed is a vital factor. Specifically,
NVIDIA CUDA framework has enabled us to rely on a GPU parallel environment with greater ease.
The authors of [4] describe the structure of NVIDIA GPUs in two levels: each GPU chip consists of
streaming multiprocessors (SM), which have their own cores (Figure 4.12). CUDA uses the term
‘grid of thread blocks’, where multiple blocks map onto multiple SMs and multiple threads map
onto the cores. Each thread block contains several threads. Each thread has its own local mem-
ory while it can also communicate with other threads inside the block via shared memory. Every
thread has also access to a bigger and slower global memory. GPU groups threads together in ex-
ecution warps. Threads inside a warp execute concurrently. The size of warps depends on the
device being used (in our case it equals to 32). Generally, it is not necessary to follow the exact
hardware specifications when utilizing CUDA; we can use more threads than cores and leave the
scheduling to the hardware. Having these details in mind, the next section will describe our ap-
proach to the GPU implementation.

Figure 4.12: GPU architecture hierarchy (from [4])

4.4.2 Basic optimizations

To optimize the pedestrian detection algorithm, we started with basic changes from a mostly serial
CPU implementation to a highly parallel GPU code. The next three sections iterate over the main
decisions taken in order to make the translation as efficient as possible.

Thread mapping

The first step to translate a serial algorithm to a parallel paradigm is to assign the responsibility
of each processing unit (in our case GPU threads). In our problem, this means to specify how the
grid of threads is related to our computation grids. As our data come from 2D images, if we decide
on different dimensions for the thread blocks we need a proper translation between the two. In
the remainder of this section N will denote the number of pixels, M the number of messages for
each pixel and V number of labels.
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First we choose the responsibility of each thread block.
One pixel per thread block: In this configuration, we will have N thread blocks either in 1D fashion
or similar to the image in 2D with a (Width,Height) matrix of thread blocks. Each block tends to
messages originating from only one pixel. So each thread depending on its block index tends to a
different pixel.
Multiple pixels per thread block: This way, we assign more than one pixel for each thread block in
hope of doing more work in parallel. Each thread, depending on its block index and also its thread
idx (for example third dimension of the thread index) knows which pixel to access.

In practice, putting computation of more than one pixel in a block will not give us any im-
provement. In our tested GPU we had the limit of 32 active blocks and 64 active warps per SM.
This means with just 2 active warps per thread block we can theoretically achieve 100% occupancy
for the GPU. In our case, for computing four messages for one pixel we need four active warps (as-
suming warp size is 32 and V < 32). Therefore, there is no actual need for more active warps per
thread block.

We also have to arrange threads inside a block.
Each block containing M*V threads: Each thread is in charge of calculating the message for one
neighbor regarding one particular label. Whether the formation is in one dimension or two will not
affect the performance but structuring the block as M vectors of length V helps the programming
process.
Each block containing M*32 threads: This means instead of using the number of labels as the
width of the block we use the nearest power of two greater than V. This way we make sure each
computation warp only deals with messages related two one neighbor.

As mentioned in [57], GPU architecture follows a Single Instruction Multiple Data (SIMD) ex-
ecution model, which is not suited for kernels with divergent execution flow. Thus, as a general
rule we need to make sure threads in the same warp follow the same (or similar) path. In our case,
there is significant divergence between code execution paths for different messages. Therefore, in
order to keep the divergence minimal in each warp, we chose the dimensions of the blocks to be
M*32 (assuming the warp size is 32), limiting each warp to one message.

After deciding on how to map to the GPU threads, the conversion to parallel code is straight-
forward, as loop indexes are replaced by thread and block indexes. In the next two sections we
describe in more details two major parts of the parallel code.

Parallel reduction

Part of the message passing process used in this algorithm is to compute minimum and sum of
messages. Both of these fall under the family of reduction vector operations (i.e. deriving one
value from a K-sized vector). Therefore, to parallelize these operations we can follow the same
procedure. To choose the best option, we considered two conventional approaches to a parallel
reduction mentioned in [60] and [101]. The first approach uses each thread block shared memory
to reduce at each step two elements of the vector. This means we will need a vector of size V in
shared memory for each reduction. The reduction algorithm made possible on new GPUs [101],
uses a process called shuffling to communicate a variable between threads inside a block. This
way there is no need for shared memory and synchronized access. After testing in our case, which
we uses around 400k blocks and 25 labels, shuffling has been more effective as expected, although
the difference is not considerable but significant.

Computing the discontinuity cost function

During each LBP iteration, considerable time is dedicated to the calculation of the discontinuity
cost function. This part includes many summations and multiplications which are the same at
each iteration. Therefore it is a good idea to pre-compute this part and exclude it from the run-
time and turn it into a single memory look up. Each run of the function needs six arguments: two
pairs of pixel locations and two labels. Since the locations are always neighbors, we can reduce
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the input to one pair for a pixel location and another argument indicating the direction of the
neighbor. This means for completely pre-computing this function we will need a five dimensional
matrix. The size S of the matrix will be equal to:

S = HEIGHT∗WIDTH∗4∗V2 (4.9)

Where HEIGHT and WIDTH are the input image dimensions. Complete pre-computation of the
function led to speed up in runtime of each iteration; but at the same time cost more than 4GB of
graphics memory, for 400k pixels and a label set of 25. This could prove problematic if we decide
to increase the label-set or use larger images. Therefore another approach was used to divide
the function in two parts: one was to be computed beforehand and one to be calculated at every
iteration. The part of the function related to the geometry (height gradient multiplied by neighbor
pixel projection) is precomputed and stored in a matrix with a size proportional to the size of the
image. The computation depending on the labels proved to be very simple and manageable in
each iteration. This way we decreased the amount of required memory to around 1.5GB which is a
fairly reasonable usage. This new approach also decreased the number of global memory accesses.
Before we had V2 global memory access per message. Now we have only one per message. This
gave us an overall improvement on iteration runtime.

4.4.3 Further optimization

In this part, we will briefly iterate over some further optimizations done in order to run the algo-
rithm as efficiently as possible. Some of these points are general best practices which will work on
any parallel GPU program, but in some cases the changes make sense only in the context of our
problem.

Memory optimization

In the process of minimizing the mentioned energy function, there are three major group of stored
data: pre-computed data cost function, partially pre-computed discontinuity cost function and
previously calculated messages. All these sources are needed for computing new messages, there-
fore in each iteration there are many memory reads from the GPU global memory. Also, in the final
step of the computation we need to store the messages in the global memory again to be used in
the next iteration. This makes a calculated memory access scheme vital for the algorithm to run
as fast as possible. We will mention two general important points to achieve a better access time.
Benefiting from memory hierarchy: In some cases we need to use the same data more than once.
The data cost function in our case is frequently needed. In these cases, it is not advisable to access
the global memory each time. The best choice is to load the data once and store it in a faster mem-
ory, either shared memory or each thread’s local memory. The choice between the two depends
how much of each memory we have available to use. Overuse of local memory can lead to using
more registers which can reduce the overall occupancy of GPU. For example, in our tested GPU
each block was limited to 65536 registers and 98KB of shared memory.
Coalesced access: [59] considers coalescing memory operations as one of the general optimiza-
tion directives for a parallel program which can lead up to 10x speedup. In simple words, this
means consecutive threads access consecutive memory addresses (among other conditions). When
accessing incoming messages to each pixel it is not possible to maintain a coalesced access but in
other cases maintaining such access gave us considerable improvement.

Instruction optimization

After optimizing the memory operations, the bottleneck of the kernel falls on too many mathe-
matical instructions. Mostly in the discontinuity cost function, floating point division and multi-
plication caused a considerable delay. One possible solution to alleviate this problem is to sacrifice
accuracy for more speed by using the fast mathematical instructions of the GPU. Actual usefulness

60



CHAPTER 4. GEOMETRY-BASED MULTIPLE CAMERA PEDESTRIAN
DETECTION

of this approach obviously varies case by case. In our algorithm, considerable trial and error with
these functions led to use of __fdividef, __fmul_rd and __fsub_rd instead of regular division, mul-
tiplication and subtraction in limited cases. This gave us reasonable imprecision which did not
affect the end result while saving significant time.

Algorithm optimization

The last step in our optimization process was to investigate whether or not any change in the core
algorithm can be helpful. Following the advise of [39], we decided to alternatively calculate only
half of the messages in each iteration. Basically, if we divide the pixels into two subsets A and
B following a checkerboard pattern, in each iteration we only compute the outgoing messages of
pixels belonging to either A or B. This makes sense because the messages sent from nodes in A only
depend on outgoing messages of nodes in B. The same can be said about calculation of messages
from nodes in B. [39] also describes the new message from node p to q at iteration t as: if t is odd
(even) then

m̄t
p→q =

{
mt

p→q i f p ∈ A (i f p ∈ B)
mt−1

p→q other wi se
(4.10)

This means the new messages are almost the same as the standard ones, and regarding conver-
gence this method also converges to the same fixed point i.e. after convergence mt−1

p→q = mt
p→q

While being an approximation, this change practically did not affect the end result of the algo-
rithm but it managed to decrase the iteration time by half.

4.4.4 Results

Figure 4.13: Overall time-line of the execution of belief propagation for one frame with 100 iterations

In this section, we will report the recorded execution time of the algorithm using real captured
data on a selected platform. For testing, we have used a system with NVIDIA Geforce GTX1080
graphic card and 8GB of graphical memory. The system is also equipped with an Intel® Core™
i7-6900K CPU with 3.20GHz processing speed. The iteration time was measured using NVIDIA’s
own profiler nvprof. The images for testing are the ones from the Dense dataset, which are by
default cropped down to the size of 781*621 which will give us around 500K pixels to work with. As
mentioned before, the algorithm is tested with a label set of size 25; from 1.4 meters to 1.975 with
inclusion of a special label for pixels without heads. The algorithm consists of three main kernels
- one for pre-computation, one for each iteration of loopy belief propagation, and one for final
belief computation. The first and last kernel will run once for each image while the second one
will run depending on the number of iteration needed for convergence, in this case 100. Figure
4.13, shows the general time-line of the program. As we can see, about 98% of the runtime is
occupied by the iteration kernel, which makes it the most important kernel to optimize. Figure 4.3
shows the execution time of these kernels using ten consecutive frames.

Since more than 98% of execution time belongs to the iteration kernel, we will conduct our
comparison with CPU code only for this kernel. Generally we achieved over 3000x speed up for
each iteration. As said earlier, the process of getting to this level of efficiency involved several
general purpose optimization as well as detailed and specific to our problem changes. Table 4.4
shows the progression of iteration time for a sample frame in different version of the algorithm;
from initial serial code to the current most optimized state.

It was crucial to make sure no part of the optimization introduces any intolerable deviation
from the original output. Inherently, CPU and GPU codes give us slightly different floating point
operations which can cause differences in final labels. On top of that, as covered in Section 4.4.3,
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Frame precomputation
Average

iteration
Belief

computation
1 3.854 3.781 3.201
2 4.268 4.267 5.415
3 3.66 4.147 4.016
4 3.788 3.799 3.054
5 3.899 4.401 3.983
6 3.936 4.032 3.203
7 3.886 3.934 3.704
8 3.79 3.8 3.235
9 5.031 4.262 3.116
10 4.284 4.101 3.094
average 4.0396 4.0524 3.6021

Table 4.3: Time taken by the three main kernels in 10 consecutive frames. Times are in millisecond

Version Iteration time
CPU code ∼11s
Naive GPU implementation ∼1s
Using initial pre-computation ∼0.25s
Memory optimizations ∼0.05s
Improved pre-computation ∼0.02s
Using fast instruction approximation ∼0.01s
Message passing approximation ∼0.004s

Table 4.4: Step by step optimizations and their time in seconds

we have used two approximations namely the use of fast arithmetic operations and computing
alternatively only half of the outgoing messages. Depending on each frame these changes cause
some misidentification and misjudgment of height labels. A comparison of both versions of the
algorithm was done on a set of 15 consecutive frames. Table 4.5 shows the result of this compar-
ison. Three metrics are considered: the number of pixels in which both algorithms detect a head
but disagree on the height (second column); the number of pixels in which the two implementa-
tions disagree on the presence of a head (third column), and finally average of absolute difference
for the pixels which disagree on the height. As we can see, considering the total number of pixels,
very few misidentifications happen and also the height difference stays around 2.5cm which is the
elementary height increment.

Figure 4.14 shows the overall execution time for each frame in both CPU and GPU code. These
times include the reading of precomputed data cost function from disk. Overall, a solid 1100x
speedup means we can process a long video sequence which used to take several days, in a matter
of minutes.
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Figure 4.14: Comparison between the CPU and GPU code in total execution time for each frame

Frame
Number of pixels

with wrong height

Number of pixels

with wrong

identification

of head presence

average absolute

difference of height

(meter)

1 18 5 0.025

2 44 62 0.025

3 41 12 0.025

4 34 11 0.025

5 31 5 0.025

6 2 3 0.025

7 47 112 0.025

8 14 9 0.025

9 15 3 0.025

10 3 2 0.025

11 41 32 0.032

12 60 15 0.046

13 43 10 0.04

14 50 15 0.027

15 18 1 0.038

Table 4.5: Result of comparing the output of optimized code with the original CPU code. Window size is
781*621 (485001 pixels).

4.5 Conclusion

We proposed a method for locating pedestrian occupancy in a cluttered outdoor scene using
a multiple camera network under realistic conditions of size, illumination and pose variations.
Moreover, we have demonstrate that the algorithm can achieve competitive performance with a
minimal number of three cameras. We have iterated over several steps in order to provide an op-
timized parallel implementation of the algorithm, which can run efficiently on GPU, by providing
over 1000x speedup while preserving over 99.9% accuracy.

With this advancement, our approach may be complemented using different appearance based
terms, both for low level (embed appearance knowledge in the data cost) or high level (perform de-
tection fusion from multiple sensors) data fusion. For the following, we will focus our attention to
the high level fusion task. The output of such iteration of our work is a set of pedestrian detections
on the ground plane. A robust and efficient data fusion approach has to be proposed for two-
dimensional spaces, both for spatial (multiple sensors, e.g. supervised detectors) and temporal
(e.g. tracking) information fusion.
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The belief functions theory (BFT), also known as Dempster-Shafer theory [140], represents a
generalization of probability theory. Shafer theory [105], evidence theory or the transferable belief
model [109], are variants of the same idea of definying a framework for modeling partial knowledge
and uncertain information. It is also a generalization of possibility theory [181] and it has a direct
relationship with several other theories, like random sets [117] and imprecise probabilities [169].

In this chapter we will present the notions and operators useful for our study.

5.1 Belief representation

5.1.1 Mass function

Let us denote byΩ the discernment frame, i.e. the set of mutually exclusive hypotheses represent-

ing the possible solutions. The power set 2Ω is the set of theΩ subsets, i.e. the disjunctions of the

set of singleton hypotheses inΩ, having cardinality 2
∣∣Ω∣∣

.

Definition 5.1.1. A mass function, specifying a basic belief assignment (BBA), is a function over the

power set 2Ω, mΩ : 2Ω→ [0,1], which satisfies:∑
A⊆Ω

mΩ(A) = 1. (5.1)

The superscript indicating the discernment frame Ω can be omitted when there is no ambi-
guity about such space. Every set A ⊆Ω such that m(A) > 0 is called focal element, or focal set, of
m.
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Definition 5.1.2. A mass function is said to be normalized if:

m(;) = 0,

where the empty set ; is the null hypothesis of the given discernment frame. In the case of
unnormalized BBAs, the mass on the empty set can be interpreted as the degree of support of
the hypothesis that the solution lies outside Ω. Usually normalization property is applied under
closed-world assumption, i.e. Ω is defined on an exhaustive set of hypotheses.

Definition 5.1.3. A mass function is said to be vacuous if it has Ω as unique focal element, i.e.
m(Ω) = 1.

A vacuous mass function, under closed-world assumption, conveys total ignorance as infor-
mation piece.

Definition 5.1.4. A non-vacuous mass function that has only one focal element is said to be cate-
gorical:

∃! A ⊂Ω s.t . m(A) = 1 (5.2)

A categorical mass function conveys certain information, but possibly imprecise.

Definition 5.1.5. A mass function is said to be Bayesian if it has only singleton hypotheses as focal
elements:

∀ A ⊆Ω s.t . m(A) > 0 ⇒|A| = 1. (5.3)

Thus, probability distributions boil down to a particular case of a mass function, when precise
information has to be modeled.

Definition 5.1.6. A mass function is said to be dogmatic ifΩ is not a focal element, i.e. m(Ω) = 0.

Definition 5.1.7. A mass function Aw , w ∈ [0,1], is said to be simple if it has at most two focal
elements, includingΩ, such that:

m(A) = 1−w, m(Ω) = w.

A simple mass function A0 is categorical, while A1 is vacuous. For practical usage (e.g. canoni-
cal decomposition) only non-dogmatic BBAs are considered, so that w ∈ (0,1].

5.1.2 Alternative representations

The information encoded by a mass function can be represented in different equivalent formula-
tions, most notably belief (Bel), plausibility (Pl) and commonality (q).

Definition 5.1.8. Belief, plausibility and commonality are defined, respectively, as:

Bel (A) =
∑

B⊆A
m(B), Pl (A) =

∑
B∩A6=;

m(B), q(A) =
∑

B⊇A
m(B), (5.4)

for all A ⊆Ω.

The belief of A can be interpreted as the degree to which the evidence induces A.
The plausibility of A can be thought as the degree with which A is consistence with the evi-

dence. Equivalently, Pl (A) = Pl (Ω)−Bel (A) measures the lack of support of the complement of A.
From the definition Pl (A) ≥ Bel (A),∀A ⊆Ω. Please note that in case of a Bayesian mass function
the equality holds, and the two representations are equivalent to a probability function.

The commonality of A has mainly a computational role as explained further.
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The three representations are equivalent to the mass function formulation because there exists
a one-to-one mapping between any two of those. For example, under closed-assumption, the
normalized mass function can be computed as:

m(A) =
∑

B⊆A
(−1)|A\B|Bel (B)

m(A) =
∑

B⊆A
(−1)|A\B|(1−Pl (B))

m(A) =
∑

B⊇A
(−1)|A\B|q(B)

5.1.3 Consonant belief functions

Definition 5.1.9. A mass function is said to be consonant if the focal elements are nested:

∀ (A,B) ∈ 2Ω×2Ωm(A) > 0,m(B) > 0 ⇒ A ⊆ B∨B ⊆ A. (5.5)

For consonant mass functions the following relation hold:

Pl (A∪B) = max(Pl (A),Pl (B)),∀A,B ⊆Ω (5.6)

The plausibility of a consonant mass function is a possibility measure, defining a possibility dis-
tribution [181]. The possibility distribution is the contour function:

π(x) = Pl ({x}), ∀x ∈Ω (5.7)

Thus, the theory of belief functions can be considered as a generalization of the possibility theory.

5.1.4 Discounting

In the BFT, discounting can be used in order to model the reliability of some source of information
[140]. Among the different discounting ways proposed (e.g. contextual discounting [109], contex-
tual reinforcement [125], etc.), the simplest uses a discounting factor in order to reallocate some
mass to the ignorance state.

Definition 5.1.10. Given a discounting factor α ∈ [0,1], the discounted mass function αm is defined
as:

αm(A) =αm(A), ∀A ⊂Ω
αm(Ω) = αm(Ω)+1−α (5.8)

When α = 0, the information is considered not reliable, and the corresponding mass function
is vacuous; when α = 1, the information is considered reliable and the mass function is kept as it
is.

5.1.5 Information commitment

In the theory of belief functions, commitment expresses how much informative a mass function
is. One can define an ordering of commitment.

Definition 5.1.11. Given two mass functions m1 and m2, m1 is q-more committed than m2, m1 vq

m2, if:
q1(A) ≤ q2(A), ∀A ⊆Ω. (5.9)

Definition 5.1.12 (Least Commitment Principle [145]). Given several belief functions compatible
with a set of constraints, the least informative (committed) according to some informational order-
ing (if it exists) should be selected.
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5.2 Belief function combination

5.2.1 Conjunctive combination

Definition 5.2.1. Given two mass functions m1 and m2 induced by two independent items of evi-
dence, the conjunctive rule (unnormalized Dempster’s rule) is defined as:

m1 ∩© m2 (A) =
∑

B∩C=A
m1(B)m2(C), ∀A ∈ 2Ω. (5.10)

Let us define the degree of conflict k between two mass functions as:

k =
∑

B∩C=;
m1(B)m2(C). (5.11)

The normalized version of the Dempster’s rule is then defined as:

m1 ⊕m2 (A) =
1

1−k

∑
B∩C=A

m1(B)m2(C),∀A ∈ 2Ω \ {;} ,

m1 ⊕m2 (;) = 0.

(5.12)

The conjunctive rule has a simple definition in terms of commonalities:

q1 ∩© q2 (A) = q1(A)q2(A), ∀A ∈ 2Ω. (5.13)

The Dempster’s rule has properties of commutativity and associativity, and, when applied to Bayesian
mass functions, it is equivalent to the probabilistic product rule. Dempster’s rule, like its unnor-
malized version (called the conjunctive rule from now on), assume that both pieces of evidence
are reliable.

5.2.2 Disjunctive combination

Definition 5.2.2. Given two mass functions m1 and m2 induced by two independent items of evi-
dence, the disjunctive rule is defined as:

m1 ∪© m2 (A) =
∑

B∪C=A
m1(B)m2(C), ∀A ∈ 2Ω. (5.14)

The disjunctive rule assumes that at least one of the two pieces of evidence is correct. Like the
conjunctive rule, it is commutative and associative.

5.2.3 Canonical decomposition and Denoeux’s cautious rule

Canonical decomposition of a belief function allows us to represent a complex non-dogmatic
BBA1 as the result of a combination (conjunctive combination will be referred throughout the dis-
cussion) of elementary belief states, namely Simple Support Functions (SSF) if the decomposed
BBA is separable or a mixture of SSF and Inverse Simple Support Functions (ISSF) otherwise [143].
The canonical decomposition, besides being a convenient representation for some combinations,
has its interest into allowing the introduction of new combination rules, as the Denoeux cautious
conjunctive rule, that is the least committed rule among conjunctive ones [29].

The decomposition of a non-dogmatic BBA , defined by Smets [143], uses the concept of gen-
eralized Simple Support Function (GSSF), defined as:

µ : 2Ω→R, µ(A) = 1−w,

µ(Ω) = w,

µ(B) = 0 ∀B ∈ 2Ω\{A,Ω} ,

1Dogmatic BBAs are transformed into non-dogmatic ones by an ε discounting.
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where A 6= Ω and the weight w ∈ R+. The original BBA m can be then expressed as a combina-
tion of basic GSSFs: m = ∩© A⊂ΩAw(A). The conjunctive weight function w(·) is associated to any
hypothesis included in discernment frameΩ:

ln w(A) = − ∑
B⊇A

(−1)|B|−|A| ln q(B), ∀A ⊂Ω

According to GSSF definition, only weights w(A) 6= 1 are useful for representing the original BBA
(i.e., not leading to a vacuous GSSF).

The canonical decomposition approach allows us to use an alternative combination rule, which
is particularly useful when the source independence assumption (assumed by the conjunctive
rule) is not valid. The Denoeux’s cautious rule [29] between two sources m1 and m2, with w1 and
w2 associated canonical decomposition weight functions, is defined as:

m1 ∧© m2 =
⊕

A⊂Ω
Aw1(A)∧w2(A)

where ∧ denotes the minimum operator.

5.2.4 Evidential q-relaxation

Recent work [124] introduces a BBA combination robust to unreliable sources. The evidential q-
relaxation, inspired by its equivalent in interval analysis (IA), allows us to relax a given number of
sources when combining several belief functions. Let us denote HN

r the hypothesis that only r out
of N sources are reliable, i.e. q = N− r have to be relaxed. Let us call A = {A1, . . . , AN}, an N-tuple
of hypotheses, for Ai ⊂Ω, i ∈ [1,N]. Out of the N hypotheses forming an N-tuple, only r must be
kept. Such meta-knowledge can be mapped as [124]:

ΓA(HN
r ) =

⋃
A′⊆{A1,...,AN},

∣∣A′ ∣∣=r

( ⋂
A∈A′

A

)

For any element B ⊆ Ω, its mass will be the sum, over all ΓA(HN
r ) which are equal to B, of the

products of masses of the focal elements of A:

∀B ⊆Ω,m
[
HN

r

]
(B) =

∑
A⊆ΩN

,ΓA(HN
r )=B

[
N∏

i =1
mΩ

i (Ai )

]

Such a rule corresponds to a generalization of classic combination rules, since the special case
of r = N (i.e., do not relax any source) corresponds to the conjunctive rule, while the case r = 1
corresponds to the disjunctive rule.

5.3 Decision making

Among the decision rules that have been proposed (based on contour function etc.), we focus
on the one proposed by [144], that is probably the most widely used. Decision making is usually
performed at pignistic level, by transforming a mass function into a probability measure with a
pignistic transformation:

∀ω ∈Ω, BetP(ω) =
1

1−m(;)

∑
B⊇ω

m(B)

|B| ,

where ω is a singleton hypothesis.
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6.1 Introduction

Belief function theory is widely used in fundamental tasks which benefit from multi-modal in-
formation fusion, such as object detection and data association for assisted driving [19, 30, 88],
tracking [54, 160], object construction [134], outdoor localization [183], autonomous robot map-
ping and tracking [87, 156], medical imaging [11], remote sensing [89], video surveillance [85] ,
aircraft classification [44].

The main limitation, when dealing with such theory, since it copes with compound hypothe-
ses, is the size of the set of hypotheses to handle, which may become intractable when the size of
the discernment frame increases. Such issue becomes critical especially in high dimensions, as
when dealing with two-dimensional (2D) spaces. Let us define a set (e.g. a frame or a focal set)
as being a 2D set if its elements are elements of the Cartesian product of two totally ordered sets.
Accordingly, a 2D discernment frame is defined as a frame of discernment which handles 2D focal
elements. Now such 2D discernment frames can be encountered for instance for information fu-
sion in the image domain (e.g. [134]), for box particle filtering [160], or in localization applications
(e.g. [183]).
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While several public belief function theory libraries exist [86, 105, 133], all of them limited to
1D representations, the use of 2D spaces for information fusion has been only recently explored for
various tasks. Note that, active theoretical studies in BFT [24] propose geometric interpretations
to the classical belief assignment, in order to formalize and solve problems such as probabilistic
approximation and canonical decomposition. However, such works propose a geometrical formu-
lation of the basic belief assignment (BBA) itself, while our focus is on geometrical representation
of 2D focal elements.

In [134] the authors aim to reconstruct objects from fragmentary detections in the image space.
The discernment frame corresponds to the 2D image lattice. BFT is then exploited in order to
perform object-detection data association, spatial extension of objects when new fragments are
found, temporal conditioning for object displacement/disappear modeling and spatial condition-
ing for object separation modeling. Focal elements are represented as sets of non-intersecting
2D-boxes.

In [183] 2D BFT is applied to the global navigation satellite system (GNSS) localization prob-
lem, where the information is represented by imprecise position measurements provided by sev-
eral satellite sources, where complex focal elements shapes (ring sectors) are modeled as sets of
boxes.

In [87] the authors perform scene environmental mapping by making extensive use of eviden-
tial grids for spatial and temporal fusion, by converting the original 2D domain in a map of 1D
BBAs.

In this study, we focus on 2D discrete discernment frames. An exhaustive representation of Ω
discrete hypotheses usually involves a discretization of the area as a grid, where each cell of the
grid represents a singleton hypothesis [5, 87]. Focal elements are then expressed by using a bi-
nary word, where a bit equal to 1 means that the cell belongs to the focal set. Such straightforward
binary-word representation of hypotheses allows for the definition of operators on sets through
simple bitwise operations. However, such a representation suffers from major drawbacks when

used in real world applications. Since there are 2
∣∣Ω∣∣

potential focal elements, large discernment
frames become intractable, when the discretization resolution or the size of the whole area in-
creases (different tasks may require different levels of precision for the solution, thus calling for a
2D space discretization which would increase quadratically the representation space size).

For such reasons, some works rely on different approaches to handle the 2D case: by propos-
ing a smart sub-sampling of the 2D space to maintain tractability [5]; by proposing a sparse rep-
resentation of the set of hypotheses, and by keeping in memory only the ones which are carrying
non-null information [183]. In order to make the representation manageable, [5] proposes to con-
dition the detections acquired from one sensor in its field of view, and to perform a coarsening at a
lower spatial resolution of the focal elements, depending on the physical properties of the sensor.
While these workarounds help in practice, they do not make the application fully scalable with the
size of the scene, and they involve approximations such as the already cited coarsening, or fre-
quent BBA simplification, which aims at maintaining under control the number of focal elements
of the BBAs.

Such limitations derive from the fact that the complexity of any basic operator between focal
elements (e.g. intersection, union) depends on the cardinality of the focal elements themselves.
The works in [134] overcome this limitation by proposing a representation of any focal element as
a set of rectangular boxes, and then by expressing the basic operators as performed on arrays of
rectangles. In this setting the complexity of the basic operators will be a function of the number of
boxes, but it will be independent of the cardinality of the discernment frame. However, such rep-
resentation suffers from some practical limitations. First, the representation is not unique. The
same focal element may be represented by different sets of boxes, which do not allow for fast fo-
cal element comparisons and lookup. Second, the box set representation implies a non-unique
approximation of the real focal element shape once edges are not parallel to the axes of reference.
Geometric approximations of such focal elements may require a very large set of boxes when pre-
cision is a concern. Moreover, subsequent operations involve increasing box fragmentation which
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may be detrimental both for performance and for memory load. In order to avoid deep fragmenta-
tion, in [183] some representation simplification procedures are presented, which in turn increase
the cost of BBA management.

In [150], the authors rely on a description of multidimensional focal elements by discretizing
their support as a point cloud, and by deriving an approximation of Dempster’s rule by Monte
Carlo simulation. They underline the fundamental issue raised by representations based on para-
metric functions which lead to difficult implementation of the elementary operations (intersec-
tion, union, and complementation), which are needed for evidential reasoning. Alternatively to
this representation, in this paper we propose a novel approach, which overcomes the efficiency
issues of parametric representations.

Following the idea of providing a sparse representation for 2D BFT, and motivated by the great
benefit that an efficient representation would carry to high dimensional problems, we propose a
new two-dimensional representation which has full scalability properties with respect to the size
of the discernment frame, while allowing a theoretical infinite precision (bounded by the hardware
precision limitations).

6.2 BBA representation

In the following sections, two complementary representations are proposed.
In Section 6.2.1, a compact polygon-based geometric focal element description is detailed. It

ensures low-level scalability for primitive operators, while exhibiting fast comparison and lookup
capabilities. It represents a generalization of the state-of-the-art representations [134] [5], which
overcomes their limitations (outlined in Section 6.1).

In Section 6.2.2, a graph-based BBA description is proposed. It encodes the spatial relation-
ships between focal elements, and provides high-level scalability capabilities for e.g. decomposi-
tion methods (Section 6.3.3) and decision making algorithms (Section 6.4). Graph construction,
optimization and traversal strategies are discussed.

Let us consider a 2D discernment frame Ω. We will refer to the illustrative example in Figure
6.1. Such an example, inspired by [5], represents a typical localization scenario, where the discern-
ment frame is a bounded region representing the ground plane.

6.2.1 Focal element geometric representation

As mentioned in the Introduction, 2D focal element representations based on an exhaustive rep-
resentation ofΩ and binary words become intractable once the size of one axis of the discernment
frame becomes greater than a few tens of units, and the box set representation [134] suffers from
geometric approximation due to the fact that the number of boxes needs to be limited to small
values.

In this work, we propose to represent the focal elements as generic polygons (or sets of poly-
gons for focal elements having multiple components, e.g. focal elements with holes or which are
split after a difference operation), by exploiting the capabilities of the generic 2D polygon clipping
algorithms, efficient methods for basic operator implementations (intersection, union, difference
and XOR). A focal element is represented by a set of closed paths, each of them represented by an
ordered array of vertexes (counter-clockwise for positive areas, clockwise for holes). As operator
implementations, we exploit an extension of Vatti’s algorithm for clipping [165] implemented in
the Clipper library [72].

The polygons are constrained to be simple, i.e. defined by closed simple paths (no crossing),
with a minimum number of vertexes (no vertex joining two co-linear edges). Figure 6.2 shows
an example of focal element representation as two polygons (one of them representing a hole).
Please note that, in case of multiple polygons per focal element, an additional constraint needs to
hold: Given the set of paths composing a focal element, no edge of one path can cross an edge of
another path. Under these constraints, the complexity of the basic operators between two poly-
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(a) (b)

(c)

Figure 6.1: Illustrative localization example. (a) BBA definition through its focal elements: camera detec-
tion m1 (red), track at t −1 m2 (green), road presence prior m3 (blue), building presence mask m4 (gray).
(b) Focal elements obtained as a result of performing a conjunctive combination over the defined BBAs.
(c) Intersection-inclusion graph and the result of graph simplification. The solid lines show the inclusion
relationships, while the dashed lines highlight the intersection relationships. X∗ is the set with maximum
BetP value, retrieved as the result of the proposed BetP maximization method.

Figure 6.2: Example of representation of the focal element P (containing a hole), as a set of polygons. Please
note as the external and the internal circular paths are stored in counter-clockwise and clockwise directions
respectively.
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gons having n and m numbers of vertexes respectively, is O(nm). Such lightweight representation
presents also the advantages of uniqueness and precision. The (circular) vector of vertexes of a fo-
cal element (polygon) provides a unique representation. The vertex coordinates use integer values
for numerical robustness and correctness. This means that the continuous representation pro-
vided by polygons implies an underlining discretization. However, differently from the previous
approaches, the coordinates can be rescaled at the desired level of precision (up to ≈ 1019) without
any impact on the speed and memory requirements of the algorithm, being bounded only by the
numerical representation limits of the hardware. This implies full scalability of the focal elements
with respect to their size.

Example 1. Figure 6.1a shows an example of focal elements in the case of a localization application.
The camera detection (red) is represented as a disk focal element, whereas the focal elements which
have the shape of ring sectors embed the imprecision of the location and the ill-knowledge of the
camera extrinsic parameters; the track (green) represents the location of the target at the previous
frame, whereas its dilation is used in order to model the imprecision in its position introduced by
time; the gray and blue focal elements belong to two different BBAs representing scene priors, of
building and road presence respectively. The disk shaped focal elements are modeled as 64 to 128
vertexes regular polygons.

6.2.2 Graph-based representation

In the previous Section, we have highlighted that an efficient geometric representation, as the one
proposed, may lead to the definition of basic operators (e.g. intersection, union) which are cardi-
nality independent (and thus scalable). However, such representation alone cannot guarantee full
scalability properties when dealing, for example, with decision making algorithms, which work at
singleton hypothesis level.

Thus, claiming that a representation is spatially scalable requires some additional mechanisms
which enforce the scalability at an higher operational level than primitive operators on sets. To-
gether with an efficient geometric representation, we propose a generic representation, indepen-
dent from the actual geometric representation chosen, which expresses the relationships between
the focal elements of a given BBA. Indeed, many operations on BBAs, used for BBAs combination
and decision making, can be expressed as algorithms which depend only on how the focal ele-
ments intersect with each other, irregardless of the actual shape or size of such elements. We
propose to encode the relevant topological links between the focal elements as an intersection-
inclusion graph, i.e an intersection graph where an edge is augmented in the case of a (directional)
inclusion relationship.

Let us define the focal elements set as A = {A1, A2, . . . , An}. For optimization reasons explained
further, the focal elements are labeled according to decreasing cardinality and the ordering follows
the element label:

∀(
Ai , A j

) ∈A ×A , i < j =⇒ |Ai | ≥
∣∣A j

∣∣ .

Note that, in the case of different focal elements with the same cardinality, the topological order
is not unique. Thus, the graph representation itself, differently from the geometric one, is not
unique in general. However, non-uniqueness, given the low-level polygon representation, is not a
necessary property. Moreover, graph optimizations and graph-based algorithms (detailed further)
do not require uniqueness as a prerequisite.

We build a directed acyclic graph (DAG) G = (V,E) where each node v ∈ V is a focal element
and each edge e ∈ E represents a non empty intersection between two focal elements, with the
direction of the edge respecting the topological ordering. The inclusion relationship information
is encoded into separate arrays. Each node has a reference to its including nodes with the lowest
and highest label. For example, if focal element A5 is included into A1, A3, A4, then the node v5

carries two pieces of information, namely l l
5 = 1 and l h

5 = 4, where l l
j and l h

j stands for lowest and
highest label including focal element A j .

77



CHAPTER 6. 2COBEL: A SCALABLE BELIEF FUNCTION REPRESENTATION
FOR 2D DISCERNMENT FRAMES

Let us define the k th path of length m in the intersection-inclusion graph G = (V,E) as P(m)
k =

〈vk,1, vk,2, . . . , vk,m〉. Such path represents the intersection between all the focal elements related
to the nodes included in the path. In the following, we will refer to the intersection derived from a
path as the one computed from all its nodes.

Proposition 6.2.1. For any non empty intersection I derived from a set Â of focal elements, there
exists a path P in the intersection-inclusion graph G, connecting the elements of Â.

Proof. Let us consider Â = {A1, . . . , Am} as the target set of focal elements (I =
⋂

Ai∈Âi
A). It follows

that, given the graph G = (V,E):

∀(Ai , A j ) ∈ Â× Â, i < j
∣∣Ai ∩A j

∣∣ 6= 0 ⇒ vi , v j ∈ V,(vi , v j ) ∈ E.

Since I 6= ;, any node at index i is connected to every node at index j , such that j > i .
The above formula implies:

∀vi ∈ V,(vi , vi+1) ∈ E,

a sufficient condition for the existence of the path P(m) = 〈v1, v2, . . . , vm〉.

Definition 6.2.1. A path P(m)
k is called dead if the intersection among the m focal elements corre-

sponding to its nodes is the empty set.

Definition 6.2.2. Given two paths P(m)
k and P(n)

h , P(m)
k is called superpath of P(n)

h if m > n and:

∀v ∈ P(n)
h ⇒ v ∈ P(m)

k .

Conversely, P(n)
h is called subpath of P(m)

k .

Definition 6.2.3. A not dead path P(m)
k , leading to the intersection Ik is called redundant if there

exists another path P(n)
h leading to the intersection Ih , such that Ih = Ik , and P(n)

h is a superpath of

P(m)
k .

In the following, we will refer to a path which is not redundant, equivalently, as a non-redundant
path. While the graph structure can be used to explore all the possible intersections between focal
elements, it shall be as efficient as possible in order to avoid exploring dead paths, while traversing
only non-redundant paths, since they are by construction the paths carrying the greatest amount
of structural knowledge (they gather all the focal elements which include the target intersection
set).

The determination of the useful paths (i.e. neither dead nor redundant) is performed through
graph traversal. According to the chosen ordering (decreasing cardinality), each node is iteratively
selected as the root. For each root, a depth first search strategy is used to traverse the graph. Then,
given the current node vi , the intersection between all the nodes of the current path is propagated
as Ii ; given an edge e = (i , j ), the node A j (for notation shortness a node is equivalently called by
its represented focal element) is explored if

∣∣I j
∣∣ =

∣∣Ii ∩A j
∣∣ > 0. Such an operation is equivalent

to performing a dynamic graph pruning which is a function of the current path, as soon as some
branch leads to a dead path. Then, even if the number of node visits can be very large according
to a brute force exploration, the dynamic pruning helps to cut out early dead paths, making the
number of operations much lower in practice. In this form, however, the worst case for pruning
happens with consonant BBAs, where every edge represents an inclusion relationship. In such
case, the graph is complete, and the entire graph would need to be explored without any pruning
possibility, even if most of the paths would be redundant. Such an observation, together with the
fact that in practice consonant BBAs are widely used as basic representation of the initial impre-
cision increase with certainty, e.g. in the Dubois and Prade BBA allocation [33], justifies the use
of the inclusion information for simplifying the graph and optimizing the traversal. Three main
sources of optimization will be presented.
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Proposition 6.2.2 (Root suppression). Given the current root node v j ∈ V, if:

∃vi ∈ V,(vi , v j ) ∈ E, i < j s.t . A j ( Ai ,

every path originating from root v j is redundant.

Proof. Let us consider a generic path starting at the root v j : P(m+1)
k =

{
v j , vk,1, . . . , vk,m

}
. By defini-

tion of a DAG, the index of the nodes vk,h ,h ∈ {1 . . .m}, is higher than j , and, thus, than i . Let us
consider the corresponding set of focal elements Âk =

{
A j , Ak,1, . . . , Ak,m

}
,

Ik = A j ∩
( ⋂

h=1...m
Ak,h

)
,

and the augmented set Â′
k =

{
Ai , A j , Ak,1, . . . , Ak,m

}
,

I′k =
(
Ai ∩A j

)∩( ⋂
h=1...m

Ak,h

)
= A j ∩

( ⋂
h=1...m

Ak,h

)
= Ik .

Moreover, the path P′(m+2)
k =

{
vi , v j , vk,1, . . . , vk,m

}
is a superpath of P(m+1)

k . It follows that P(m+1)
k is

a redundant path.

Root suppression implies that only root nodes which correspond to focal elements not in-
cluded in some others preceding them in topological order, can produce paths which are non-
redundant. Thus, all the other nodes are suppressed as possible roots for the traversal. Such prop-
erty justifies the choice of a topological sorting in descending order of cardinality. Algorithm 6
shows where root suppression is used. After constructing the graph, each node is taken into ac-
count as candidate root for depth first search. Root suppression is used in order to filter root
candidates for the following graph traversal operations.

Proposition 6.2.3 (Early stopping). Given the current root vr , a path containing a node v j included
in a node vh ,h < r is redundant.

Proof. Let us consider the generic path starting at the root vr and containing v j : P(m+n+2)
a,b ={

vr , va,1, . . . , va,m , v j , vb,1, . . . vb,n
}
. The corresponding set of focal elements is

Âa,b =
{

Ar , Aa,1, . . . , Aa,m , A j , Ab,1, . . . Ab,n
}

leading to the intersection Ia,b . Since A j ⊂ Ah , we can
define the augmented set Â′

a,b =
{

Ah , Ar , Aa1, . . . , Aa,m , A j , Ab1, . . . Ab,n
}
, leading to the intersection:

I′a,b =
(
Ah ∩A j

)∩Ar ∩
( ⋂

i =1...m
Aa,i

)
∩

( ⋂
i =1...n

Ab,i

)
= Ia,b ,

since the term
(
Ah ∩A j

)
reduces to A j .

Proposition 6.2.1 guarantees that the superpath P′(m+n+3)
a,b =

{
vh , vr , va,1, . . . , va,m , v j , vb,1, . . . vb,n

}
exists. Thus, the path P(m+n+2)

a,b is redundant.

The early stopping criterion allows us to stop exploring a node if it is included in an already
explored root. The constraint is equivalently expressed as the fact that early stopping is performed

at v j if l l
j < r (among the nodes/focal elements that included v j , indexed in

[
l l

j , l h
j

]
, there is at

least one that has already been used as a root).
Early stopping is applied during graph exploration (see Algorithm 4 and Algorithm 5). It serves

as a precondition for exploring or not a child of the current node.

Proposition 6.2.4 (Graph simplification). Given a node v j which has multiple incoming inclusion
edges from

{
vh

i

}
h=1...m

, all the edges but the one from the highest indexed node in topological order,
(vm

i , v j ), belong to redundant paths.
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Proof. First, one can demonstrate that, after removing the inclusion edges from
{

vh
i

}
h=1...m−1

, v j

is still reachable from v1
i . Since the edge between vm

i and v j is kept, it is equivalent to demonstrate
that vm

i is reachable from v1
i .

∀Ak
i , As

i , (k, s) ∈ {1, . . . ,m}2 , Ak
i ∩A j = A j , As

i ∩A j = A j ⇒
∣∣∣Ak

i ∩As
i

∣∣∣≥ ∣∣A j
∣∣ 6= 0 (6.1)

Thus, there exists a path from any node
{

vh
i

}
h=1...m−1

to vm
i , and, consequently, to v j .

Finally, we demonstrate that, if one of the removed edges is included in a path, that path is
redundant.

Let us consider the path P(n+q+2)
a,b =

{
va,1, . . . , va,n , vh

i , v j , vb,1, . . . vb,q
}
, where h < m, leading to

the intersection Ia,b . Let us consider the node vk
i , h < k ≤ m, which, by topological ordering,

cannot be already included into P(n+q+2)
a,b .

Let us consider the superpath P′(n+q+3)
a,b =

{
va,1, . . . , va,n , vh

i , vk
i , v j , vb,1, . . . vb,q

}
, leading to the

intersection I′a,b . Two edges have been added: (vh
i , vk

i ), guaranteed to exist by Equation (6.1);

(vk
i , v j ), that exists by definition of the problem.

I′a,b = Ah
i ∩

(
Ak

i ∩A j

)
∩

( ⋂
i =1...n

Aa,i

)
∩

( ⋂
i =1...q

Ab,i

)
= Ia,b ,

since the term
(
Ak

i ∩A j
)

reduces to A j .

Thus, P(n+q+2)
a,b is a redundant path.

Graph simplification boils down to keeping, for each v j , only the incoming inclusion connec-
tion from the node with the highest index in topological order l h

j . Algorithm 3 details the graph
construction steps, and shows how graph simplification is exploited. Any intersection edge be-
tween two nodes is added immediately, while addition of the inclusion edges is delayed until all
the pairs of nodes are inspected (only l l

j and l h
j indexes are updated). At the end, for each node j ,

only the inclusion edge from l h
j is created (if l h

j is not null).
Now consider the case of a consonant BBA with k focal elements. In its pure form, the repre-

sentation leads to a complete DAG, with 2k possible paths. However, after graph simplification,
only the edges going from element Ai to Ai+1 are kept, resulting into k −1 effective edges. More-
over, due to root suppression, only the first node will be used as root, so k nodes in total will be
explored, leading to k non-redundant paths, providing k different intersections, equal to the k
original focal elements.

Node l l l h Use as root Deleted edges (simplification)

1 null null yes -
2 1 1 no -
3 1 1 no -
4 1 1 no -
5 1 4 no (v1 → v5), (v2 → v5)
6 1 3 no (v1 → v6), (v2 → v6)
7 1 5 no (v1 → v7), (v2 → v7), (v4 → v7)

Table 6.1: Graph optimization main steps for the illustrative example in Figure 6.1.

Example 2. We refer to the example in Figure 6.1. The graph on the left of Figure 6.1c illustrates the
result of unoptimized graph construction. Intersection relationships are shown as dashed arrows,
while inclusion relationships are depicted as solid arrows. The optimization steps are shown in Ta-
ble 6.1. First, v1 includes all other focal elements, thus only v1 will serve as a root for graph traversal.
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Then, since v5, v6, v7 have multiple including nodes, for each of such nodes, all the incoming inclu-
sion edges are deleted but the one arriving from the node with label l h (4, 3 and 5, respectively). The
graph on the right side of Figure 6.1c shows the final form of the intersection-inclusion graph for the
given BBA. The X∗ set corresponds to the BetP maximizer set from the optimized graph, explained
in the Example 6 in Section 6.4.

Algorithm 3: BUILDGRAPH

Data: Set of focal elements A ordered by decreasing cardinality;
Result: Simplified DAG G = (V,E); lowest including set label array ll; highest including set

label array lh;
1 begin
2 V = {};
3 E = {};
4 for each Ai ∈A do
5 V ← V ∪ {vi };
6 for each A j ∈A , j > i do
7 if A j ⊂ Ai then
8 l h

j = i ;

9 if l l
j is null then

10 l l
j = i ;

11 end
12 //delay inclusion edge storage (graph simplification)

13 end
14 else if

∣∣Ai ∩A j
∣∣> 0 then

15 E ← E∪{
(vi → v j )

}
; //storing intersection edge

16 end
17 end
18 end
19 for j in 1. . . |A | do
20 if l h

j is not null then

21 E ← E∪
{

(vl h
j
→ v j )

}
; //storing inclusion edge

22 end
23 end
24 end
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Algorithm 4: DFS (SET OF DISJOINT SETS EXTRACTION)

Data: DAG G = (V,E); set of focal elements A ; root label r ; lowest including set label array ll;
current node vi ; current intersection Ii ; current path p; sets of indexes of the disjoint
sets included in each focal element S; output: set of disjoint sets D.

1 begin
2 p ← p ∪ {vi };
3 for each ei j = (vi → v j ) ∈ E do
4 if l l

j < r then

5 continue; //early stopping
6 end
7 I j = Ii ∩A j ;
8 if

∣∣I j
∣∣> 0 then

9 DFS(G,A ,r, ll, v j , I j , p,S,D);
10 end
11 end
12 hp = {1, . . . , |D|} ;
13 for v ∈ p do
14 hp = hp ∩S[v]; //common disjoint sets among elements of the path
15 end
16 D = Ii

17 for h ∈ hl do
18 D = D \D[h]; //subtract from D the included disjoint sets
19 end
20 if |D| > 0 then
21 D ←D∪ {D};
22 for v ∈ p do
23 S[v] ← S[v]∪ {|D|} ; //focal element at node v contains D
24 end
25 end
26 p ← p \ {vi };

27 end
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Algorithm 5: DFS (SET OF MAXIMAL INTERSECTIONS EXTRACTION)

Data: DAG G = (V,E); set of focal elements A ; root label r ; lowest including set label array ll;
current node vi ; current intersection Ii ; current path p; set of paths leading to each
maximal intersection P; output: set of maximal intersections I .

1 begin
2 p ← p ∪ {vi };
3 leaf= tr ue;
4 for each ei j = (vi → v j ) ∈ E do
5 if l l

j < r then

6 continue; //early stopping
7 end
8 I j = Ii ∩A j ;
9 if

∣∣I j
∣∣> 0 then

10 leaf= f al se;

11 DFS(G,A ,r, ll, v j , I j , p,P,I );

12 end
13 end
14 if is a leaf then
15 maximal= tr ue;
16 for pI ∈ P do
17 if p ⊂ pI then
18 maximal= f al se;
19 break;

20 end
21 end
22 if is maximal then
23 I ←I ∪ {Ii } ;
24 P ← P∪{

p
}

;

25 end
26 end
27 p ← p \ {vi };

28 end

Algorithm 6: Graph construction and traversal

Data: Set of focal elements A ordered by decreasing cardinality;
1 begin
2 (V,E, ll, lh) =BUILDGRAPH(A );
3 for each vi ∈ V do
4 if l l

j is not null then

5 continue; //root suppression
6 end

7 DFS((V,E),A , i , ll, vi , Ai , {} , {} , {}) //either Algorithm 4 or 5

8 end
9 end
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6.3 BBAs combination

6.3.1 Classical combination rules and hashing

Numerous combination rules exist in order to mix the information provided by two sources. When
the sources m1 and m2 are cognitively independent, the conjunctive combination rule is the most
popular among them (see Section 5.2.1 of Chapter II.3).

In computational terms, the rule involves the construction of a new BBA by performing inter-
section operations between all pairs of focal elements from the two BBAs. According to the sum in
the previous equation, when creating a new focal element from an intersection, one has to check
for its existence and to add up some elementary mass product value if it already exists. The ne-
cessity of accumulating elementary masses into already existent focal elements (maybe computed
with different operators than intersection, e.g. union in the case of the disjunctive rule), and thus
to do an existence check every time a new mass value is computed, is not specific of the conjunc-
tive rule, but it is shared with several other rules (e.g. the disjunctive rule [29], cautious rule [29]
and evidential q-relaxation [124]).

The above considerations justify the need for a BBA representation which allows for a fast
lookup of a focal element in an array. The uniqueness and compactness of the proposed represen-
tation allow for an efficient and low collision prone hashing. The sparse set of focal elements of a
given BBA can be stored in a hash table, where the circular vector of vertexes is used to compute
the hash. For a given polygon, its hash will be unique provided that we fix a policy to decide the
starting vertex (e.g. the top left). The array hashing function is equivalent to the one implemented
in the Boost library’s [12] hash_range method.

The binary-word representation, in comparison, uses the full word as a unique key. However,
the key length (in number of bits) grows linearly with the cardinality of the discernment frame,
requiring the use of big data structures in order to store it. On the contrary, the proposed hash
exhibits collision resistance property despite a fixed length. The box set representation [183], being
not unique, does not allow for direct hashing without the extraction of the minimal set of vertexes
on the boundary. A cheap alternative could be to hash the bounding box of the focal element,
but this could cause frequent collisions, since it is common to have spatially close focal elements
related to the same BBA. On the contrary, polygon hashing can make direct use of the vertex data,
thus not requiring any additional preprocessing step.

Note that the hashing capability of the proposed representation may provide benefits not only
in case of BBAs combination rules, but for any operator which implies mass accumulation. Let
us consider the case of coarsening [31]. Given two discernment frames Ω1 and a finer Ω2, we

define a refining function ρ from 2Ω1 to 2Ω2 , such that
{
ρ({o}),o ∈Ω1

}
is a partition of Ω2 and

∀A ⊆Ω1,ρ(A) =
⋃

o∈Aρ(o). Let us consider the coarsening function ρ−1. According to [31], the least
committed solution for defining ρ−1 is the following outer reduction function:

∀B ⊆Ω2,ρ−1(B) =
{
o ∈Ω1 s.t . ρ(o)∩B 6= ;}

.

The BBA mΩ2↓Ω1 defined on Ω1 from a given BBA mΩ2 , defined on Ω2, and the coarsening
function ρ−1, is given by:

∀A ∈ 2Ω1 ,mΩ2↓Ω1 (A) =
∑

B⊆Ω2,ρ−1(B)=A

mΩ2 (B).

It follows that the derivation of mΩ2↓Ω1 can largely benefit from hashing, since a focal element
mass may be the result of several fragmented masses. Similar deductions can be derived for oper-
ations such as conditioning [140], or uncertainty propagation [34].

Example 3. Figure 6.1b illustrates the result of the conjunctive combination of the sources intro-
duced in Figure 6.1a. Seven focal elements are produced.
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6.3.2 Evidential q-relaxation

In Section 5.2.4 of II.3 we have described evidential q-relaxation as a BBA combination robust to
unreliable sources. In computational terms, when considering the computation of the ΓA(HN

r )
terms that appear combinatorial in terms of N and r , the algorithm has higher time complexity
than classic combination approaches, depending on the value of q . However, even for small val-
ues of q , such a method can dramatically improve the fusion performance in presence of outlier
sources. Moreover, the proposed representation boosts (once more) the efficiency of the method,
in terms of the efficient basic operators (the method makes heavy use of intersection and union
operators), as well as of the use of hashing for fast accumulation of elementary masses.

6.3.3 Canonical decomposition and cautious rule

Let us consider the canonical decomposition operation on non-dogmatic BBAs (see Section 5.2.3
of Chapter II.3). When performing canonical decomposition, the step which has the highest im-
pact in terms of computation is the calculation of the weight function. While consonant BBAs rep-
resent a special case for weight computation, where an iterative algorithm with linear complexity
in terms of the number of focal elements exists, the generic case raises computational problems.

In the 1D case, the fastest weight computation approach exploits the Fast Möbius Transform

(FMT) [78] for transforming the 2|Ω| array of masses (dense representation) to a 2|Ω| array of com-

monalities q , and finally to a 2|Ω| array of weights. While this procedure is convenient for smallΩ
cardinalities, it is computationally infeasible for large discernment frames, like in the 2D case.

In this work, we propose to compute efficiently the canonical decomposition by constructing
an ad-hoc discernment frame specific to the considered BBA. The idea is that, even if the con-
sidered 2D discernment frame Ω is vast, for the considered BBA, the number of focal elements
is limited and generally they are less than a few tens. Thus, the considered BBA can be repre-
sented on only a very restricted subpart of Ω with an effective spatial resolution that depends on
the actual focal elements and will generally be much coarser than Ω resolution. Even more, the
2D structure of the focal elements is useless provided that the interaction properties between focal
elements are preserved. Thus, for a given BBA, we aim to compute the coarsest possible equiva-
lent representation where each element can be viewed as a unitary piece of information. If one
retrieves this alternative representation, then it may be transformed into a 1D equivalent (by pro-
cessing each of its elements as a singleton hypothesis) where the discernment frame is small, and
thus suited for the FMT computation. Thus, the canonical decomposition no longer depends on
the shape and original cardinality of the focal elements, but on their ad-hoc representation.

From mΩ to coarse representation.

Definition 6.3.1. A set of disjoint sets D is a partition of the disjunction X =
⋃

A∈A A of the set of
focal elements A , where each element Di (namely, a disjoint set), satisfies:

∀Di ∈D,


Di ⊂ X ,∣∣Di ∩D j

∣∣ = 0, ∀D j ∈D, i 6= j
∀A ∈A , |Di ∩A| 6= 0 ⇐⇒ Di ⊆ A

In addition, defining the set Âi :
Âi = {A} A∈A

Di⊆A
,

as the set of all the focal elements including Di , the following condition should hold (maximal cov-
erage):

∀Di ∈D, @D j ∈D, i 6= j , s.t . Âi = Â j

The coarsest possible representation consists in a subdivision of the discernment frame into a
set D of disjoint sets. Basically, a set of disjoint set is the minimum cardinality set of non intersect-
ing sets which do not cross the boundaries of any focal element. The set has minimal cardinality
because of the maximal coverage constraint on each disjoint set.
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(a)

1 3

24

(b)

(c)

Figure 6.3: Illustrative example of coarse discernment frame extraction for canonical decomposition. (a)
Initial BBA definition (focal elements are labeled); (b) Optimized intersection-inclusion graph for the given
BBA: since I4 is included in both I1 and I2, the edge between v1 and v4 has been deleted by graph simplifi-
cation; (c) Final set of disjoint sets extraction (disjoint sets are labeled). In order to stress that the x and y
axes are generic (dependent on the application), they are not labeled.
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In order to extract the set D, one may exploit the graph representation introduced in Sec-
tion 6.2.2. In graph terms, maximal coverage constraints guarantee that exactly one disjoint set
for each non-redundant path can be constructed (thus, minimizing the number of disjoint sets).
The graph traversal is conducted in a depth first search manner. Let us consider the addition of
a new Di element to D, that is the result of the intersection of all the focal elements in the path.
For each Ak in the explored path, a reference to the i th disjoint set is stored in an auxiliary set of
labels Sk . Sk represents the set of all disjoint sets included into the focal element Ak . Now, when
a new candidate D̃l is found, it is not guaranteed to be disjoint from elements already present in
D. In order to extract the related set Dl one has to apply the difference operator between D̃l and
any element already included in D. The information regarding which disjoints sets are possibly
included comes from the Sk sets. If D̃l is the result of the intersection along the path of length m
Pl =

{
Al ,1, . . . , Al ,m

}
, the indexes hl of the disjoint sets to subtract can be retrieved as:

hl =
⋂

k=1...m
Sl ,k ,

representing the labels of all the disjoint sets included into D̃l . The resulting Dl will be obtained
as:

Dl = D̃l \ {Dh}h∈hl

If the sets are implemented as bit strings, the disjoint sets retrieval is as fast as m bitwise opera-
tions. Please note that after the difference operation, the resulting disjoint set could be empty, and
so ignored. Algorithm 4 provides a detailed outline of the set of disjoint sets extraction procedure
through depth first search traversal.

D̃ =
⋂

i Ii D
I1 I2 I3 I4

A X X X DA = D̃A

B X X X DB = D̃B

C X X DC = D̃C \ {DA,DB}
D X X DD = D̃D \ {DA}
E X DE = D̃E \ {DA,DB,DC,DD}
F X DF = D̃F \ {DA,DB,DC}

Table 6.2: Coarse representation computation from graph representation.

Example 4. Figure 6.3 shows the disjoint set decomposition on a 2D didactic example. Each disjoint
set corresponds to a subset of one or multiple focal elements which does not span over a focal element
boundary. Table 6.2 specifies the disjoint set computation procedure, as D elements are extracted in
the order assigned by the graph traversal. Each row corresponds to a path which possibly leads to a
disjoint set. The candidate disjoint set D̃A, for example, is the result of I1 ∩ I2 ∩ I3. Candidates are
then transformed into actual disjoint sets by the difference operator. Let us specify the case of D̃D.
Since D̃D is the intersection between I1 and I3, we focus on the sets S1 = {A,B,C} and S3 = {A}. In this
example, the content of S1 means that, among all the already extracted D elements, DA, DB, DC are
included into I1. The vector of indexes to subtract is computed as hl = S1 ∩S3 = {A}. Thus, among
all the already extracted D elements, D̃D includes the disjoint set DA, which has to be subtracted.
Finally DD = D̃D\{DA}. Please note that the intersections I2 ∩ I3 and I2 ∩ I4 are not explored, since
both I3 and I4 are included in I1, which is an already explored root (early stopping). Moreover, for
the same reason, nodes corresponding to I3 and I4 are not used as root (root suppression).

From the coarse representation to 1D BBA. As soon as the D set is fully constructed, the sets
Sk serve to the conversion between the original BBA and a compact 1D representation. The new
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1D BBA has a new discernment frame Ω′ of cardinality |D|. The indexes of the disjoint sets rep-
resent the singleton hypotheses the 1D BBA in Ω′. Each focal element Ak is converted to a com-
pound 1D hypothesis by using the Sk , which stores the indexes of the disjoint sets in D which,
when performing a union operation, form the exact original set. Thus, each Ak gives rise to:

mΩ′
( ⋃

s∈Sk

{s}

)
= mΩ(Ak )

Given that the cardinality of the ad-hoc 1D discernment frame Ω′ is lower than a few tens of ele-
ments in practical cases, it is then suitable for the application of the FMT for the weight computa-
tion. Once the weights along with the corresponding canonical decomposition sets are retrieved,
the canonical decomposition of the original BBA can be obtained by mapping the 1D decom-
position sets, expressed as union of singleton 1D hypotheses, to 2D sets, expressed as union of
elements of D.

Example 5. We refer to the decomposition depicted in Figure 6.3. The new discernment frame is
Ω′ = {A,B,C,D,E,F}. All the original focal elements translate to focal elements in Ω′. For example,

mΩ′
({A,D}) = mΩ(I3).

Such canonical decomposition approach is now fully scalable with the cardinality of the dis-
cernment frame, and it is especially convenient when the number of focal elements is much smaller
than |Ω|. Since the conjunctive canonical decomposition is trivially propagated when applying
the conjunctive rule to two canonically decomposed BBAs, the typical scenario of applying the
decomposition (e.g. for tracking), is at the BBA construction stage and when BBA approximation
is needed. At BBA construction stage, the number of focal elements is usually contained, and the
consonant property of a BBA may be exploited for even faster computation. At BBA approxima-
tion stage, the number of focal elements is intentionally reduced, while the BBA is not consonant
in general, making it the ideal scenario for the exploitation of the presented approach.

As denoted in Section 5.2.3 of Chapter II.3, the canonical decomposition extraction approach
allows us to use the cautious rule. In algorithmic terms a new canonical decomposition is built by
including all the elements of the two initial decompositions with weight value lower than one. As
for the case of the conjunctive rule, hashing can still be used for fast lookup of equal elements in
the two decompositions.

6.4 Decision making

Once the different sources have been combined, the decision is generally taken on singleton hy-
potheses ω by maximizing the pignistic probability (see Section 5.3 of Chapter II.3).

Even if the search space size is now |Ω|, the decision making process is dependent on the car-
dinality of the discernment frame, and thus not scalable, limiting the precision level which can be
set for a specific context.

In order to overcome this limitation, we propose a maximization algorithm which is indepen-
dent from the cardinality of the sets, and which is only related to the number of focal elements in
the BBA.

Definition 6.4.1. Given a set of focal elements A = {A1, . . . , An} a maximal intersection Im is derived
from the set of focal elements Ã ⊆A , such that any different focal element added to Ã would lead
to an empty intersection:

Im =
⋂

Ak∈Ã

Ak ,Ã ⊆A , |Im | > 0 s.t .

@As ∈A \ Ã , |As ∩ Im | > 0.
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The underlying idea is that, since BetP is an additive measure, its maximum value can be
achieved only for elements of the discernment frame which present maximal intersections.

The set X∗ of hypotheses that maximize the BetP is researched within the set of maximal in-
tersections I :

X∗ = argmax
Im∈I

BetP (Im)

|Im | ,

where the BetP function for compound hypotheses derives from the generalized formula:

∀A ∈ 2Ω, BetP(A) =
1

1−m(;)

∑
B∈A ,B∩A6=;

|A∩B|
|B| m(B).

Consequently to this formulation, the BetP maximization algorithm boils down to the subproblem
of maximal intersection search. The solution of this subproblem may exploit of the graph-based
representation presented in Section 6.2.2 for fast lookup of maximal intersections.

Corollary 6.4.1. Given the intersection-inclusion graph G, a maximal intersection Im is represented
by a non-redundant path Pm which is not a subpath of any other non-redundant path.

Proof. Let us assume that Im is redundant. Thus, there exists a superpath leading to the same
intersection. Then, Im cannot be maximal.

Let us assume that Pm is a subpath of another non-redundant path Pn , n > m. Thus, since non-
redundant paths cannot be dead paths, Pn leads to a non empty intersection. Then, Im cannot be
maximal.

The graph-related definition of maximal intersection implies that any intersection not being
located at a leaf of the dynamic graph cannot be a maximal intersection. The graph is said dynamic
in the sense that a leaf is not only a node with no outgoing edges, but it is any node for which, given
the current path, no outgoing edge can be explored further without leading to a dead path. Then,
each leaf l and the resulting Il is a candidate for maximal intersection. However, it could be non-
maximal, as its associated set Ã could be a subset of a maximal intersection which has already
been found. So, when a maximal intersection Im is found, the list pm of focal sets involving it
is stored (using a bit-set representation). Once the new candidate Il is produced, the pl list is
tested for inclusion against the stored candidates (by an AND operation between the bit-sets).
Algorithm 5 provide full details on the depth first search strategy for the computation of maximal
intersections.

Path Maximal intersection

〈v1 → v2 → v3 → v6〉 yes
〈v1 → v2 → v4 → v5 → v7〉 yes

〈v1 → v3 → v6〉 no
〈v1 → v4 → v5 → v7〉 no

Table 6.3: Maximal intersection search details for the illustrative example in Figure 6.1.

Example 6. Table 6.3 shows the intersection-inclusion graph traversal for maximal intersection
search on the intersection-inclusion graph of the illustrative example of Figure 6.1. X∗ is selected
as the one of the two maximal intersections at maximum BetP. For this example, raw traversal
intersection graph would perform 42 node visits, while with the graph optimizations, presented in
Section 6.2.2, 12 are executed. On the other hand, a straightforward BetP maximization by singleton
hypothesis exploration would process 1100 locations (included into at least one focal element) with
a factor 10 subsampling of the discernment frame.
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6.5 Experiments

We present test results on a synthetic toy example, as well as on a real tracking application scenario,
which make use of the proposed representation, as well as of our publicly available 2CoBel library,
embedding all the described methodologies, and exploited throughout the entire testing.

6.5.1 The 2CoBel library

2CoBel is an open source1 evidential framework embedding essential functionalities for generic
BBAs definition, combination and decision making. An Evidence object defines common oper-
ations for a BBA containing any generic type of FocalElement. The current supported methods
are: mass to Belief Functions conversion (plausibility, belief, commonality), conjunctive, disjunc-
tive, cautious (exploiting the proposed canonical decomposition) rules and q-relaxation, vacuous
extension and marginalization, conditioning, discounting, (generalized) BetP computation, BetP
maximization (with singleton hypothesis enumeration or maximal intersections). Different rep-
resentations of FocalElement are supported, each of them defining specifically basic operators
(intersection, union, equality, inclusion): unidimensional (hashable), representing the 1D focal
element as a binary string; 2D bitmap, providing a bitmap representation as in [5]; 2D box set,
implementing the definition and focal elements simplification operations proposed in [183]; 2D
polygon (hashable), implementing our proposed representation.

The library has full support for discernment frames which are cartesian products.

6.5.2 Case study: line estimation

As toy example for illustrating the applicability of the proposed representation to 2D domains, we
tackle a fundamental problem in pattern recognition, namely the line estimation from a set of 2D
points. This example allows us to compare as well the effectiveness of the different combination
rules implemented by the framework. Given a set of planar points in the x y space, the objec-
tive is to infer the parameters of the line that fits at best the data. The Hough transform [66] is a
classical approach to this problem, and the evidential framework allows us to handle the intrin-
sic imprecision and uncertainty sources of the problem in the Hough domain. By using the polar
representation of lines:

ρ = x cosθ+ y sinθ,

we build an accumulation space in the (ρ;θ) domain in order to infer the values of the ρ ∈ (−∞,+∞)
and θ ∈ [0,π) parameters. The discernment frame Ω is then defined as a rectangular polygon in
the (ρ;θ) space. Since the ρ parameter is unbounded, theoretically alsoΩ is an open set. However,
in order to respect close world assumptions, we bound Ω to extremely large values of ρ. Please
note that, due to the sparse nature of the representation, the size of the discernment frame has
no impact on the algorithm performance, so extreme values of ρ equivalent to the max and min
integer values supported by the hardware could be chosen.

Each data point Pi =
(
xi , yi

)
votes for a family of lines which pass through it in the x y plane.

Each voted line l i
j =

(
ρ j ,θ j

)
corresponds to a point in the accumulation space. The locus of all

the points in the accumulation space corresponds to a sinusoid function. Such toy example ex-
tends the one presented in [183], which performs straight line estimation in the (α;β) space (where
y = αx +β). However, such space does not parametrize any possible line, and, moreover, a small
possible interval of values has been considered in order to have a discernment frame of small size.
On the one hand, the (α;β) approach allows one to represent the constraints as straight lines rather
than sinusoids, allowing for an inexpensive focal element representation. On the other hand, the
proposed representation allows us to move to a more convenient space where complex shapes can
be defined.

1Implementation available at:
https://github.com/MOHICANS-project/2CoBel
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In classical Hough approaches, since there is an infinite number of lines passing through the
same point, the space (ρ;θ) is quantized in such a way as to provide an acceptable precision. In
the proposed representation, the resolution of the problem is given by the number of vertexes
used to represent the polygons. However, the scalability of the problem allows us to rescale more
flexibly the accumulation space for high precision estimations. In this experimentation we scale
the accumulation space at a resolution of 10−2 for both ρ and θ (in degrees).

The BBA construction consists in widening the sinusoidal function derived from each point
in the dataset with imprecision and uncertainty knowledge. We build a consonant BBA having
two focal elements. The first focal element is a sinusoidal band with width equal to δρ1, centered
around the real sinusoidal function drawn from the data. Such focal element codes the impreci-
sion of the points location given by the line discretization in the x y space (typical if the space is in
the image domain). The second focal element is a sinusoidal band with width equal to δρ2 > δρ1,
again centered around the real sinusoid. Such focal element encodes the uncertainty of the point
location given by noisy data distribution.

0 2000 4000 6000 8000 10000 12000 14000 16000
 [10 2deg]
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0

Figure 6.4: Example of BBAs construction for line estimation in the accumulation space. Every consonant
BBA (one for each color) represents the information conveyed from a data point.

Figure 6.4 shows several consonant BBAs (one for each data point) represented by polygonal
approximations of sinusoidal bands in the accumulation space. Given N points, the N BBAs are
then combined following some combination rule into a single BBA. The solution

(
ρ∗,θ∗

)
is finally

obtained by performing BetP maximization on the output BBA. Since the result of the maximiza-
tion is in general a closed area, and not a single point, the barycenter of the output polygonal result
is considered as the proposed solution.

We test this evidential approach on simulated data, were T = 100 lines are randomly drawn in
the x y space, and M = 10 points for each line are extracted at fixed x locations, under Gaussian
noise assumption for the y coordinate yi ∼ N (− cosθ

sinθ xi + ρ
sinθ ,σ). Moreover, in order to evaluate

its robustness to unreliable sources, the system is tested for different numbers of outliers (0, 1
or 2), where an outlier is uniformly selected from the existing points and its y value is shifted by
a constant value y0. In the proposed experiments, the BBAs parameters are set as δρ1 = 2 and
δρ2 = 6, and the noise parameters are set as σ = 0.5 and y0 = 5.

The following different combination rules are evaluated: conjunctive rule, cautious rule, q-
relaxation (with q = 1 and q = 2). The results obtained are compared with baseline least squares
(LS), which is by definition the optimal estimator in presence of Gaussian noise. Figure 6.5 shows
some line estimation examples extracted directly from the simulated data used for the quantitative
evaluation.

Figure 6.6 shows the line estimation error distribution of the different methods under varying
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Figure 6.5: Example of line estimation results for different numbers of outliers: (a) no outliers; (b) one
outlier (conjunctive and cautious rule lines are identical); (c) two outliers; (d) line estimation in presence of
correlated source data. In (b)-(c) q-relaxation with q greater than the number of outliers outperforms the
alternative approaches, in (d) the cautious rule outperforms the other methods.
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Figure 6.6: Radius error ∆ρ (first row) and angular error ∆θ (second row), in presence of 0, 1 or 2 outliers
(from left to right), for the experiments on simulated data for the line estimation toy example. In each
subfigure, from left to right, the bars correspond to: least squares (LS), conjunctive rule, cautious rule, q-
relaxation (q = 1), q-relaxation (q = 2).

conditions, in terms of ∆ρ =
∣∣ρ∗−ρg t

∣∣ and ∆θ =
∣∣θ∗−θg t

∣∣, where
(
ρg t ,θg t

)
are the ground truth

parameters for one line of the simulation dataset.

The performance of the various combination rules when the data is free from outliers are com-
parable with the optimal performance, in terms of the median error, achieved by standard LS. In
such context, conjunctive and cautious rules give the same results, which is a desired property
when the sources are independent. In the case of q-relaxation, even though the number of un-
reliable sources is overestimated, the results are in line with the conjunctive rule case. When one
outlier is introduced in the simulated data (by shifting the position of a random existing point),
the advantage of a robust combination rule becomes evident. The conjunctive and cautious rules
(which keep having comparable results with respect to each other) perform slightly better in terms
of median error than the LS criterion, thus suffering less from the presence of an outlying source
due to their resiliency to unreliable sources. Conversely, with respect to LS, the error distribution
is more diffuse, reflecting a higher imprecision in the parameter estimation. The q-relaxation ap-
proaches (q ∈ {1,2}) clearly outperform the other methods both in median and variance of the
errors, being able to filter out the unreliable source and perform the estimate with the inlying
ones. The q-relaxation with q = 2 offers comparable performance to the one with q = 1 (which is
the optimal choice in this scenario), with a slightly more imprecise estimate, given by the fact that
it considers as unreliable both the outlier (possibly) and an inlier, reducing the amount of use-
ful information exploited for decision making. When a second outlier is added, as expected, the
q-relaxation with q = 1 becomes insufficient producing results with are only slightly better with
respect to classical conjunctive rule, while q-relaxation with q = 2 still outperforms the others. The
proposed example demonstrates the interest of q-relaxation for any 2D problem with ouliers (e.g.
localization with GPS data), at the expense of a careful selection of the q hyper-parameter, as a
trade-off between temporal performance and degree of robustness.

While the cautious rule is equivalent to the conjunctive rule for the proposed experiment in
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the case of independent data, we show its benefit when the source independence assumption
fails. Figure 6.5d shows an example of line estimation where some data is clustered in the x y
space. Some of the drawn points exhibit a partial correlation in both their x and y coordinates:
they are clustered in a small subsegment of the x axis, while their y coordinate being drawn from
the same distribution. Thus, the derived BBAs are not independent. Moreover, the number of
points composing the cluster represents a non-negligible percentage of the total number of points
(40% in the example). In this case, LS clearly fails because univariate Gaussian noise assumption is
violated, q-relaxation fails because it factors out few outliers, but it is still attracted by the rest of the
cluster. Conjunctive rule fails because, when aggregating all the votes in the accumulation space,
the cluster masses accumulate giving a strong weight to the estimation of the line from which
they are drawn. Since the conjunctive rule is sensitive to the cluster size, it behaves estimating
a wrong solution which tries to average the two lines. Conversely, cautious rule estimates the
correct line accurately, because it processes the cluster of dependent points as a whole, thus not
being influenced by the number of points composing it.
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Figure 6.7: Example of disjoint sets decomposition on complex BBAs (obtained by iterative cautious com-
bination of source BBAs); (a) after one combination; (b) after 2 combinations.

Figure 6.7 shows the disjoint set segmentation for efficient canonical decomposition (estima-
tion of the ad-hoc 1D discernment frame, see Section 6.3.3), for a generic BBA as the one obtained
by iteratively combining sinusoidal polygons. Such illustration points out that the computation
of these disjoint sets is non trivial in general, while producing a segmentation of the discernment
frame which is extremely convenient for canonical decomposition. In the presented scenario,
since the starting BBAs are consonant, their canonical decomposition can be trivially computed
as a special case at initialization time, and propagated after each cautious rule application as by
definition. However, our aim here was to check the efficiency of our approach.

6.5.3 Case study: pedestrian tracking

We apply the proposed representation to the problem of tracking pedestrians detected by impre-
cise sensors, on the ground plane. The belief function framework allows for direct modeling of
the imprecision associated with the detections and the tracks and provides a measure for data
association between detections and tracks.

We make use of the detector proposed in [121] (see Chapter II.3), which performs low level
information fusion from multiple cameras in order to provide a dense pedestrian detection map,
together with pedestrian height estimations, in a range between 1.4 m and 2 m. The output of
the detector allows us to project and track the detections on the ground plane. We demonstrate
the use of the 2D polygon representation provided in the 2CoBel library in order to perform joint
multiple target tracking in the Sparse sequence presented in Chapter II.3. We perform tracking on
the provided detections for 200 frames of the Sparse sequence, and we measure the localization
error of the real tracks (13 pedestrians, among them 4 standing and 9 moving) with respect to the
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(a) (b) (c)

(d) (e)

Figure 6.8: Example of pedestrian tracking steps. (a) Pedestrian detection blob. (b) Focal elements of de-
tection BBA md0 on the ground plane at t = 0 (the size of the largest focal element is approximatively 1×2
square meters). (c) Focal elements of the conjunctive combination m̃t0,7 between the track and the asso-
ciated detection at t = 7 (16 focal elements). (d) Focal elements of the BBA simplification of m̃t0,7 with the
Jousselme’s distance criterion (5 focal elements). (d) Focal elements after dilation of the track BBA mt0,8 by
polygon offsetting.
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ground truth. The tracker has to reconstruct lost tracks for given mis-detections occurring for up
to six consecutive frames on the same pedestrian.

Discernment frame definition

The area under analysis is the ground plane region where the field of views of the cameras overlap.
The area of the analysis region is 330 m2. The algorithm is run at a resolution of 10−4 m, so that
the cardinality of the discernment frame is |Ω| = 33×109. While the desired localization precision
is 10−2 m, the chosen resolution is higher for increasing the robustness to rounding errors when
performing clipping operations on integer vertices.

BBA construction and assignment

Given a detection di at time t located in (xi , yi ), we build a consonant BBA with two focal elements.
The first focal element is a disk centered at (xi , yi ) and with a radius of 20 cm, taking into account
the person’s head and shoulder occupancy on the ground plane; the second focal element is a
ring sector (approximated by a trapezoidal shape), which embeds the height uncertainty (on the
direction point towards the camera location) and the camera calibration imprecision. In order to
break the symmetry, the two focal elements are not assigned with 0.5 mass each, but with 0.51 for
the internal disk and 0.49 for the trapezoid. In the presented case the choice of the mass allocation
has a negligible impact on the quantitative results. As a future extension, the uncertainty of the
head estimation which is output from the detector, could be used for BBA assignment.

Data association and combination

Given a set of tracks at time δ, T = {t1, . . . , tk } and a set of detections D = {d1, . . . ,dh}, the data associ-
ation aims to compute an optimal one-to-one association solution Al =

{
(ti ,d j ), i ∈ {1 . . .k} , j ∈ {1 . . .h}

}
with respect to some defined cost. One (ti ,;) association means that the track is into an inactive
state (so it keeps propagating until it associates with a new detection or dies), while one (;,d j )
association means a new track has to be initialized with detection d j . We make use of the criterion
in [136] to define the association cost:

Cti ,d j = − log
(
1−mti ∩© md j (;)

)
,

which expresses the data association task as a conflict minimization problem, which can be solved
by the use of the Hungarian algorithm [73, 116].

The data association task is followed by a conjunctive combination which produces for every
(ti ,d j ) the new track:

m̃ti ,δ = mt i ,δ∩© md j ∩© mp ,

where mp corresponds to the prior. It performs a masking operation on the visible region of inter-
est of the cameras on the ground plane.

BBA simplification

A BBA simplification step is essential in tracking applications for two different reasons. First, we
want to avoid that the number of focal elements grows without control as the time progresses,
because it would mean that the real-time performance of the algorithm would degrade in time,
bounding the maximum number of processed frames. Second, we want to avoid an excessive frag-
mentation of the belief. The BBA simplification aims at reducing the number of focal elements of
a given BBA while respecting the least commitment principle. We adopt the method proposed
in [5], which chooses iteratively two focal elements to aggregate (by performing an union opera-
tion) as the ones which minimize the Jousselme’s distance [74] between the original BBA and the
summarized BBA, i.e. the one obtained after the aggregation.

96



CHAPTER 6. 2COBEL: A SCALABLE BELIEF FUNCTION REPRESENTATION
FOR 2D DISCERNMENT FRAMES

(a)

60000 30000 0 30000 60000 90000
x [10 4 m]

60000

30000

0

30000

60000

90000

120000

y 
[1

0
4  m

]

(b)

60000 30000 0 30000 60000 90000
x [10 4 m]

60000

30000

0

30000

60000

90000

120000

y 
[1

0
4  m

]

(c)

60000 30000 0 30000 60000 90000
x [10 4 m]

60000

30000

0

30000

60000

90000

120000

y 
[1

0
4  m

]

(d)

Figure 6.9: Pedestrian tracking. (a) Detection blobs on the image space (t = 0) estimated by the detector
in [121]. Colors refer the estimated height values from 1.4 m (red) to 2 m (green). (b) Focal elements of the
detection BBAs on the ground plane (t = 0). (c) Focal elements of track and detection BBAs on the ground
plane (t = 8). Associated tracks and detections share the same color. (d) Final estimated tracks on first 20
frames. Red crosses refer to target locations, while colored sets correspond to regions presenting maximum
BetP value.
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The proposed representation allows, conversely to the one in [5] (which simplifies the BBA af-
ter each conjunctive combination), to perform the simplification on a less frequent time step. In
the proposed experiment a target BBA is simplified when it reaches 15 focal elements, by produc-
ing a 5 focal element BBA.

BetP maximization

At each time step, we run the BetP maximization algorithm presented in Section 6.4 for each ac-
tive track m̃ti ,δ in order to extract the most probable location of the target. The cardinality of the
resulting polygon represents the irreducible ambiguity in the target location. The target position
is then estimated as the barycenter of the polygon.

Modeling the imprecision of the tracks prediction

Given the track m̃ti ,δ, which represents the result of the conjunctive combination, we need to
model the imprecision of the prediction step. In order to model the track displacement from the
current location, a random walk term is added to the track. Such term boils down to an isotropic
dilation of the focal elements. In the proposed representation, this corresponds to applying a scal-
able polygon offsetting algorithm, having O(n logn) complexity, where n is the number of vertexes.
Polygon offsetting allows for a dilation which respects the inclusion relationship of the original fo-
cal elements. The result of such step is the predicted track mt i ,δ+1 at time t +1.

Figure 6.8 depicts an example of the proposed tracking steps for a single pedestrian, specifi-
cally the BBA geometric representation after construction, combination with the previous track,
simplification and offsetting.
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Figure 6.10: Normalized histogram of the localization error of pedestrian tracking on the Sparse sequence.

Results

Figure 6.9 show some qualitative results of pedestrian tracking in the Sparse sequence, highlight-
ing the tracks estimated after the first 20 frames. In order to evaluate quantitatively the tracking
accuracy, the target predicted locations are compared against an available ground truth. Such
ground truth consists into coordinates in the image space where the heads are located. Since the
height of such individuals is not known a priori, each location in the image space projects to a seg-
ment in the ground plane, allowing for any possible height in the interval of study. One computes
the localization error as the distance between the target estimated location, and the ground truth
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Resolution Average Localization error

10−1 m 30.197 cm
10−2 m 22.340 cm
10−3 m 20.078 cm
10−4 m 19.944 cm
10−5 m 19.931 cm

Table 6.4: Average localization error on the Sparse sequence using different discretization resolu-
tions. By using a representation able to deal with finer resolutions, one may achieve a significant
performance gain.

head location, under the assumption that the height of such head corresponds to the predicted
one. Such metric corresponds to computing the distance between the ground truth segment and
a height uncertainty segment drawn at the target location. Target locations for inactive track states
are estimated by linear regression fit of the estimated target positions at previous states.

Figure 6.10 shows the results in terms of (normalized) histogram of localization error. The aver-
age localization error is ε = 0.2 m, which reaches the empiric limit set by the intrinsic uncertainty
of head spatial occupation. On the other hand, the average localization error remains steady in
time, meaning that the estimated tracks do not tend to drift away from the real ones. The standard
deviation of the average localization error in time is σ = 2.3 cm.

Table 6.4 shows the average localization error obtained by the tracking algorithm for different
choices of the resolution at which the discernment frame is discretized. When a coarse resolu-
tion of 10 cm is considered, the performance drops consistently. At this resolution the size of the
discernment frame is already large enough to be intractable using methods based on binary rep-
resentations, as in [5]. Moreover, while for the theoretically desired resolution of 1 cm the average
localization error consistently drops, the proposed representation allows us to scale at finer reso-
lutions to account for rounding errors, thus providing an additional performance boost.

For more complex tracking scenarios, the next step is to integrate the proposed representation
in a more sophisticated model such as [160], which is supposed to cope with specific issues such
as disambiguations or long term occlusions, and where our approach would extend box represen-
tations.

6.6 Conclusion

In this work we have proposed a new representation for multi-modal information fusion in 2D
spaces in the BFT domain. Such representation exhibits uniqueness, compactness, space and pre-
cision scalability, which make it suitable for many settings constrained to large hypothesis spaces,
where there is the need to extend the Belief Function framework with efficient multidimensional
operators. In our experiments with actual data, we show the effectiveness of this formulation on
multi-target tracking scenarios, where tenths of tracks have to be estimated on a wide region of
interest. The main contributions can be summarized as follows:

• The proposal of a new polygon-based compound hypothesis representation, able to benefit
from fast polygon clipping and hashing algorithms for scalability.

• The definition of an intersection-inclusion directed acyclic graph to model the interaction
between focal elements.

• The outline of efficient algorithms for the fundamental operators, decision making and de-
composition methods which fully exploit the potential of both the geometric and graph rep-
resentation proposed.
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• The release of our contribution as a public library for the community, in order to ease the
reproducibility of such representation for active research.
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7.1 Motivation

In the previous chapters, we have introduced novel methodologies for performing multiple cam-
era detection without supervision, for modeling the imprecision and uncertainty of such detec-
tions, and for allowing spatio-temporal fusion among detections from different sources.

The pedestrian detector presented in Part II, does not take into account the appearance of the
objects it aims to detect. Such detector can thus be used as a complement to some supervised
appearance-based detector, in order to enforce the 3D occupancy/location of each pedestrian,
and to provide reliable detections when the extreme clutter makes the appearance-based detector
fail. On the other hand, an appearance-based detector is crucial for any high performance detec-
tion task, even if it is agnostic about the 3D structure of the crowd. For such reason, in this Part
we will focus on the single camera supervised detection problem, we will highlight its challenges
in dense crowds, and we will exploit it in order to detect pedestrians independently on each view.
Such new sources of information will allow for spatial information fusion at ground plane level, by
integrating also the unsupervised detector of Part II.

The analysis of pedestrians in dense crowds with single cameras is a relevant topic in com-
puter vision. The performance of crowd analysis on single cameras is critical both for scenarios
where no camera network is available (or where some constraints negate the placement of multi-
ple cameras), and as a foundation for multiple camera reasoning in the 3D space. Several works
for multiple camera detection and 3D tracking [3][79] rely on pedestrian silhouette extraction in
each independent view prior to estimating the 3D location of each pedestrian. Hence, the multiple
cameras can be later exploited to enforce the robustness of the single detectors.

From a methodological point of view, the detection task in crowds is inherently different from
the counting problem, which tries to estimate how many pedestrians are present in a crowded
area without inferring their actual accurate position. The approaches employed for counting can
be split in two main branches: counting-by-detection and counting-by-regression. In counting-
by-detection [47] [69], first a detector is used to produce a confidence map of pedestrian presence,
and then the counting stage will trivially return the number of confidence peaks in such map (with
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some non maxima suppression). In recent years, counting-by-regression methods have risen up
since the community has proposed alternative approaches to avoid performing counting by need-
ing to solve the more difficult detection problem, by learning regression functions through locally
extracted features, for instance by regressing on estimated density maps [174] [142].

However, for many tasks, counting is not enough in dense crowds, especially when pedestrian
tracking is involved into the process, for example for studying and predicting pedestrian move-
ment through learning their social behavior with, e.g. deep generative models [53]. Such meth-
ods, which rely directly on given track positions, need as accurate pedestrian location as possible
in order to perform prediction at a microscopic level.

7.2 Related works

In the context of human detection, several works explore the use of robust hand-crafted detectors
for solving the task. In the context of high density crowds, solutions which rely on local appearance
cues, as color histograms, or common face detectors such as Viola-Jones [166] are unsuited, since
pedestrian faces are not detailed enough.

Related to the image gradient, the Histogram of Oriented Gradients (HOG) descriptor [25] is
very popular and has exhibited good performance in various contexts. The HOG descriptor has
been applied in various works which try to handle pedestrian detection at higher densities, by de-
tecting only the head of the pedestrian [9], or by using a part-based human detector with occlusion
estimation for each part [28].

In high density crowds, while the contour related to the specific shape of the head and shoul-
ders is indeed highly discriminative, it may fade away due to clutter. For this reason, shape-based
descriptors are usally combined with others which encode different characteristics. Traditionally
employed in texture classification, the Local Binary Pattern operator [119] has been successfully
used in pedestrian detection due to its reasonable robustness to occlusion provided by its local
sampling strategy. As an alternative one may use covariance matrix based descriptors [68], but
their representation is less compact and the computational cost is much higher. In the category
of texture representation, Gabor filter banks have been used for head detection [91] to encode the
local frequencies and orientations.

Many works have proposed novel methods for the robust combination of multiple pedestrian
detectors each employing a different feature descriptor (or combination of descriptors), most no-
tably in the evidential framework [175] [164].

The recent work in [67] proposes a Convolutional Neural Network (CNN) based method in or-
der to detect faces even at extremely small scales. Such approach re-scales the input with various
scale factors, and feeds each image into a shared CNN. The response maps are then merged at the
original resolution in order to get the final detections. While this method has been proven to be
robust to low resolution textures, blur, and partial occlusion, it is still targeted to the face detec-
tion task, which is only a sub-problem of head detection, since a head has extreme appearance
variations with change of perspective.

In the following, we will focus on CNN architecture models, and we will study their applicabil-
ity to the task of head detection under severe constraints.

7.3 Convolutional Neural Networks (CNN)

CNNs solve the problem of regular neural networks of scaling for image inputs. Since in common
neural networks the input nodes are fully connected with the nodes at the first hidden layer, such
number of connections can become extremely high when the input nodes represent pixels of an
image, thus not scaling well at higher image sizes. CNNs exploit the prior knowledge that the in-
puts are images to reduce the number of parameters in a clever way: they use the same copy of a
feature descriptor for different positions of the image (weight sharing). In such way, the parame-
ters to be learned are largely reduced, and their number is independent from the input size.
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Input volume

Convolutional filter

Output feature maps

Figure 7.1: An example of convolutional layer. Given an input volume, each node of the layer is connected
to a local region of the input module along the input depth. Each local region is connected to multiple
neurons (4 in the example above), one for each output feature map. The neurons of each depth slice (i.e., the
neurons forming the same output feature map) are connected to their corresponding local region through
the same weights (taking the shape of a convolutional filter). The figure is inspired by [76].

The neurons of a CNN are three-dimensional, where the third dimension defines the number
of different representations that must be learned for each image patch. Note that the usage of
replicated feature detectors does not make the neuron activations invariant to translation, but
it makes them equivariant with respect to the input (a translation in the input amounts to an
equivalent translation of the activation).

In the following subsections we will shortly introduce the main layers which constitute a typ-
ical CNN. For a detailed survey of different convolutional deep learning architectures, and their
performance and spatio-temporal efficiency, we refer the reader to the comprehensive survey in
[15].

7.3.1 Convolutional layers

The convolutional layers are the basic bricks for any CNN model. The weights of a convolutional
layer are sets of, usually small, filters. The dimension of such weights is W ×H×F, where W and
H are the width and the height of the filter (along the image dimensions), and F is the number
of filters. The input image is processed, during the forward pass, by performing a convolution
operation with each filter, thus F feature maps are obtained as output (see Figure 7.1). The extent
of the image patch which is connected to the filter of a convolutional layer, is also called receptive
field, i.e. the region of the input that a particular feature is looking at. Successive convolutions
have the effect of enlarging such receptive field, thus capturing, at deeper stages, more complex
features which depend on the global context.

Each convolutional layer has three important hyperparameters which have to be set: the num-
ber of filters (also referred as depth), the stride, and the zero-padding. The stride is the step at
which the filter slides. Regular convolutions have a stride equal to one, but larger strides can be
used, and this has the effect of reducing the size of the output feature maps. The zero-padding is
used as a convenience mean in order to adjust the input size in order to control the spatial size of
the output. For example, when one wants to maintain the same dimensionality from input to out-
put, one can adjust the padding as a function of the other two hyperparameters in order to reach
the scope.

Convolutional layers apply linear transformations to the input, thus, in order to introduce
some non linearity, it is common practice to combine them with some activation function. There
are several activation functions proposed in literature, e.g. sigmoid, tanh, and the Rectified Linear
Unit (ReLU) and its variations. In practice, ReLU variants are used as activations, since they have a
great impact into accelerating the convergence of stochastic gradient descent [84], and due to the
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(a) (b) (c)

Figure 7.2: Example of how the use of dilated convolutions can exponentially enlarge the effective recep-
tive field, while linearly increasing the number of parameters. Red dots specify the cells where the filter is
applied, while green cells highlight the receptive field. Let us call F0 the set of input elements. The receptive
field of an element p in Fi is the set of elements of F0 which contribute to modify the value of Fi (p) [180].
(a) F1 after a 1-dilated convolution of F0 (3×3 receptive field). (b) F2 after a 2-dilated convolution of F1 (7×7
receptive field). (b) F3 after a 4-dilated convolution of F2 (15×15 receptive field). Image taken from [180].

drawbacks of other functions (e.g. vanishing gradient problem for sigmoid and tanh).
The combination of convolutional layer and activation one can be further enriched by the

addition of some normalization layer, e.g. batch normalization [70], which is usually applied be-
tween the output of the convolutional layer and the input of the activation.

Dilated convolutions

Recent works [180] have proposed to introduce a fourth hyperparameter to the convolutional layer
structure called dilation. The dilation allows us to have filters that are applied to spaced input
cells. The dilation corresponds to the amount of spacing between cells (we will refer to dilation
equal to one for contiguous input patches).

Dilated convolutions have been proposed with image segmentation in mind, in order to be
able to aggressively enlarge the receptive field with fewer layers. In fact, when applying successive
dilated convolutions, one can exponentially enlarge the effective receptive field without loosing
resolution (e.g., with downsampling layers), thus aggregating faster the contextual information.

7.3.2 Pooling layers

The pooling layers have the primary objective to reduce the spatial size of the feature maps, in
order to decrease the computational load on the network, thus allowing for more feature maps in
the successive layers.

The pooling layer operates on each feature map independently and reduces each feature slice
to a single value. The spatial extent (size of the slice to pool) and the stride are hyperparameters of
the layer. For example, a pooling layer with both spatial extent and stride equal to two will produce
output feature maps which are halved on each dimension, thus having one fourth of the input size.

Pooling can use different operations in order to perform the reduction (max, average, etc...),
with the max operation being the most common, since it has been shown to work better in prac-
tice.

Pooling can be a problematic operation in case when clear spatial relationships between differ-
ent parts of the input must be kept. In fact, several pooling operations can destroy the information
about the precise localization of such parts.

Having presented very succinctly these preliminary notions and building blocks used exten-
sively in deep learning nowadays, we can proceed in the following chapter with presenting the
specific adaptations for our architecture.
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8.1 Problem formulation

We turn the problem of detecting heads in a dense crowd into a semantic segmentation problem,
which in our case may be defined as follows. Given an input image, we aim to estimate a binary
map of the same size as the input, where pixels belonging to the heads are labeled as foreground.

Such specific problem is positioned halfway between two main applications of image segmen-
tation: natural images segmentation (e.g., for urban scenes understanding) and medical image
segmentation (e.g., for finding cell nuclei). On one side the images represent real world scenery,
so the background is often rich in terms of texture, while on the other side the objects to detect
are small and with poor texture information, as it happens for nuclei in medical images. Thus, a
network for segmentation should learn how to distinguish cluttered objects in a rich environment.

8.2 Data acquisition and augmentation

Let us consider an ideal video-safety scenario, where cameras are deployed in order to perform
real time analysis of a sensible area during an event. Each urban environment setting could lead
to a different distribution to learn with respect to others, thus needing to acquire data in place
for full model training or transfer learning. However, access constraints to the site could prevent
deploying the system a long time before the event, and, even if so, using data of the scene when
too few people are present could provide insufficient or unsuitable data. Moreover, again due to
access constraints, when checking the system most (or all) of the data could come from a single
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camera, and it could be difficult in general to train the entire system with data from multiple views.
Finally, the data labeling process has a cost which is significant in terms of human effort, which is
always a factor which needs to be taken into account.

For such reasons, the network choice and the training preparation has to be done with the idea
in mind that few training data may be available which represent the distribution that one wants
to learn for the analysis of the event. Thus one has to exploit the available images as efficiently as
possible in order to perform a robust training while preventing overfitting.

The semantic segmentation task differs from the classification task (assigning a unique label
to the entire image) in the sense that each pixel of the image carries a piece of information for the
class it belongs to, while in classification the image as a whole carries information on the object
class. Thus higher the spatial extent of each image, the more information is carried out. However,
severe imbalance of class labels must be taken into account. Consider an image with a single
head present and the rest background. Such image carries imbalanced information because the
network is trained with much more negative than positive pixels. Thus, the crowd density at the
training stage has to be used as an indicator in order to take into account such imbalance.

A powerful technique for coping with small training datasets and to prevent network over-
fitting is called data augmentation, which consists in creating artificial new data starting from the
available one. Such technique is so successful into improving the invariance and robustness of the
network to various conditions that it is always used in combination with even large datasets. The
main idea under data augmentation is that the available data has been acquired under a limited
variety of conditions, for example orientation, illumination, noise, scale etc. Thus we synthetically
modify the available data in order to account for such variability, thus making the network more
invariant when detecting objects in a different context than the ones encountered during train-
ing. The specific kind of augmentation to apply is dependent on the task of the network, since
any augmentation should be coherent with meaningful changes in the actual data (e.g., it is not
worth to flip vertically a crowd image). Some augmentations, for example, have been created for
the specific problem under analysis, for example landmark perturbation in the face recognition
problem. For our problem, we augment the data with horizontal flips, Gaussian noise, salt and
pepper noise, brightness and contrast change. Note that augmentation sources are applied ran-
domly at each epoch for a specific image, so only a subset (or maybe none) of them are performed
together. Since we are dealing with a semantic segmentation problem, any data augmentation
which perform an affine transform or a flip of the original image must be applied in parallel to the
ground truth output map.

8.3 Learning with soft labels

In the context of a segmentation task, the ground truth maps are usually labeled by assigning the
correct class pixel by pixel. The contour of the objects is clearly defined and such information
is crucial in order to have a high fidelity segmentation. For the specific task of head detection
in dense crowds such precise labeling is often impossible. The reason is that due to the extreme
clutter and occlusion it is sometimes unfeasible for a human operator to clearly distinguish the
contour of a head with respect to the background. Moreover, thousands of heads per image should
be labeled, making the process cumbersome to complete.

For such reason, we inspect the problem of estimating head maps with partially labeled data,
where only the center of the head is annotated (see Figure 8.1, and a prior knowledge on the aver-
age size of a head in pixels (or the size of each head with respect to its location in the image, in case
of strong perspective variance) is available. While this labeling is much more efficient and avoids
a clear definition of the borders, it can still be imprecise since it could be difficult for the human
operator to precisely detect the head center. Ground truth errors of one or two pixels are always
present in practice for any application, but for head detection the effective error can be important
since the size of the head can be extremely small (e.g. 2 pixels displacement over a head of a 10
pixel diameter).
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Figure 8.1: An example of the manual ground truth labeling on the Mecca dataset. Soft labels are used in
order to annotate the presence of pedestrian heads. The different colors of the labels reflect the capability
of the interface to be trained for multi-class problems, where pedestrians are distinguished in e.g., men and
women. For the purpose of this study, all the annotations are considered belonging to the same class, thus
making the problem binary.

Figure 8.2: Pedestrian ground truth map as a sum of Gaussian distributions, one for each head. The score
associated to each pixel is the sum of the contribution of each Gaussian at the given location (higher score
from blue to yellow).

Let us consider the ground truth map for a single head. In the classical definition of segmen-
tation, the head map would be a circular blob where pixels belonging to such blob would take a
value of one. Such labeling expresses a strong discontinuity at the borders between the two labels,
and thus requires a good knowledge of the head contour.

Conversely to this formulation, we consider that a head ground truth map has a distribution
which expresses the probability of a pixel to be at the center of such head. Starting from the la-
beled head center location (xc , yc ), the ground truth map for such head is expressed in terms of a
Gaussian distribution as

(x, y) ∼ wN
(
(xc , yc ),σh

)
, (8.1)

where 2σ is the expected head radius, and w is a scaling factor, which will be clarified further in
the section. The choice of a Gaussian distribution is justified by the fact that it is an infinitely dif-
ferentiable function with the property of having tails which vanish at infinity, thus well modeling
the uncertainty on the precise border location.

The final ground truth map will be the sum of Gaussian distributions, one for each head. Thus
the map will not be a probability distribution by itself, and transforming it into a distribution via
a global normalization would make the score associated to each pixel depend on the number of
heads in the image. By avoiding the normalization, the score associated to each pixel represents
the sum of probabilities that any head, occluded or not, is located at that position (the sum is due
to the superposition of two or more possibly close heads). Figure 8.2 shows an example of ground
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map from Mecca dataset soft labels.
The parameter w in Equation 8.1 is tuned in order to solve the imbalance problem between

pixels belonging to heads and to background. Higher the w , higher the impact that each single
pixel belonging to a head has in the loss function. Thus, it is equivalent to weight the loss for the
positive class (as it is done in weighted cross entropy loss for the classification problem).

Regarding the choice of the loss function, a standard semantic segmentation definition allows
us to turn the problem into a classification problem, where the class for each pixel has to be es-
timated, thus making it ideal for the use of a cross entropy loss function for training the CNN.
However, in our case, the pixels are not labeled with their class, but with real values resulting from
the combination of the head distributions. Thus, a Mean Square Error (MSE) loss, or L2 loss, is
used, as a straightforward estimate of the distance between two 2D maps.

8.4 CNN architectures

In this section we will describe the different architectures which have been adapted for the head
semantic segmentation task.

8.4.1 UNet
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Figure 8.3: UNet architecture. The U-shape is given by a descending phase (encoding) for context extrac-
tion, and an upsampling phase (decoding) for output map reconstruction. The grey arrows represent the
shortcut connections which result into the combination of upsampled reconstructions and feature maps.

The UNet architecture [137] is a state-of-the-art segmentation network which has been origi-
nally introduced for biomedical images. The network, coupled with aggressive data augmentation,
makes an efficient use of the available training data, so it is capable to achieve good performance
on small datasets, while being fast at test time.

The UNet extends the well founded fully convolutional network (FCN) for segmentation [99],
which has been for long time the state-of-the-art architecture for semantic segmentation. The
original FCN introduces the idea of using upsampling (bilinear interpolation or deconvolutional
layers) of the lower resolution (because of pooling) feature maps, in order to reconstruct the output
map. The authors propose also to insert shortcut connections between higher resolution features
and the reconstructed map in order to improve localization.
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The main property of UNet is to have a downsampling part for context extraction, and a sym-
metric upsampling part for localization which has a high number of feature channels, so that the
context can propagate progressively to layers at high resolution. Figure 8.3 shows the U-shaped
architecture of the network, with a contracting and an expansive path. Each downsampling (pool-
ing) in the contracting path corresponds to a mirrored upsampling in the expansive path. After
each upsampling, the interpolated maps are combined with the corresponding feature maps at
the same resolution in the descending path. Such operation is essential to avoid producing too
coarse output maps.

8.4.2 Using dilated convolution for segmenting small heads

The authors of [55] highlight a fundamental problem of semantic segmentation when the objects
to detect are very small, and they are densely located. The use of pooling layers can gradually
destroy the resolution, so details of small objects can be missed, and even the addition of shortcuts
(as in the UNet architecture) could be not enough to recover the structure of the objects.

Layers

Front end Conv 3×3, F = 16, D = 1
Conv 3×3, F = 32, D = 1
Conv 3×3, F = 32, D = 2
Conv 3×3, F = 64, D = 2
Conv 3×3, F = 64, D = 3

LFE Conv 3×3, F = 64, D = 2
Conv 3×3, F = 64, D = 2
Conv 3×3, F = 64, D = 1
Conv 3×3, F = 64, D = 1
Conv 1×1, F = 1, D = 1

Table 8.1: Detailed architecture of our adapted network, inspired by [55]. The parameter F indicates the
number of filters, while D expresses the dilation factor.

In order to enlarge the receptive field without decreasing in return the resolution of the output,
dilated convolutions can be exploited. If the dilation factor is linearly increased as we go deep in
the network, the effective receptive field will exponentially grow, thus capturing a large context.
However, when dealing with small objects, one cannot apply progressively larger dilations in a
straightforward way, because, since dilation causes weights to skip information between cells, this
could prevent the network from modeling well locally the head structure. For such reason, in [55]
the authors propose a deep network without pooling layers which has a pyramidal application of
the dilation factor: increasing dilation, as any straightforward use of dilation, and then a so called
Local Feature Extraction (LFE) module, with a decreasing dilation factor.

The architecture used by the authors in [55] is a VGG front end module (enriched with increas-
ing dilations), augmented with a LFE module, which keeps invariant the number of filters and the
kernel size, and linearly decreases the dilation factor to one. The drawback of such kind of archi-
tecture, however, is that it needs much more memory than, e.g., the UNet, because the feature
maps at each step have always the same size of the original input. The absence of max pooling
makes the quantity of memory needed for the backward and forward passes much larger for the
same number of parameters. Thus, in order to keep the memory use manageable, the number of
filters at each convolutional layer has to be greatly reduced in order to resize the parameter space.
For this reason, the original architecture proposed by [55] has been modified in order to fulfill
hardware constraints (8 GB of video memory). Moreover, batch normalization is added on top of
each convolutional layer of the network. Table 8.1 shows the details of the modified architecture.
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8.5 Implementation details

The two networks are trained on two different datasets: Mecca and Regent’s Park Dense. The Mecca
dataset consists of 35 training images (with approximately 300 heads per image) of the Mecca pil-
grim crowd at an extremely high density. The Regent’s Park Dense dataset, introduced in Chapter
4.3, consists of 140 training images (with approximately 40 heads per image). The training and
validation sets (and, thus the separate test set) are sampled at a constant rate from a video stream
at very different initial time frames. As regards crowd density, the Mecca dataset is much more
denser than Regent’s Park Dense, while the latter exhibits stronger variation in density in different
locations of the image. This difference in density reflects into a higher data imbalance for Regent’s
Park Dense, which is solved by setting a higher weight factor w into the ground truth distributions.

The weights of the convolutional layers are initialized with the Kaiming He method [64], which
is targeted for deep networks with ReLU activations. The network is trained by using an Adam
stochastic optimizer [81] with a learning rate of 10−2 for UNet, and 7×10−3 for the network with
pyramidal dilation (from now on, we will refer to such network as FE+LFE, since the architecture
combine a front end structure with the LFE module). Early stopping with a patience of 20 epochs
is used in order to terminate the learning process as soon as the network error stops improving on
the validation set.

8.6 From semantic segmentation to instance segmentation

While the aforementioned networks solve a semantic segmentation problem, in order to detect
heads having a uniform map of head occupation it is not enough. In fact, we want to distinguish
pixels belonging to each individual head, thus turning the problem in an instance segmentation
problem, where, beside estimating the mask, one estimates also the location of all the instances
of the same class. While methods like Mask R-CNN [63] perform jointly mask segmentation and
bounding box regression of each target, networks like UNet only provide the mask as an output.
Some workarounds for this problem exist (for example perform joint estimation of the mask, and
of the borders, by treating them as a different class), but the particular shape of the proposed
ground truth extraction procedure gives a straightforward solution.

By estimating this cumulative map of Gaussian distributions, one has for free the division be-
tween the different heads. The computationally simpler tecnhique is to get the locations of the
maxima of such distributions in the estimated map, and then to apply a watershed algorithm,
originating from the mathematical morphology community [10], by using such maxima as seed.
Each pixel score, negated, can be treated as an elevation, and thus the algorithm floods basins
starting from each seed and, thus, assigns pixels to such basin until the edge of another basin is
met.
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(a)

(b)

Figure 8.4: (a) Example of pedestrian semantic segmentation inferred on a test image of the Mecca dataset.
The pixels are either labeled as background (black) or head (white). (b) Instance segmentation derived
from the semantic segmentation, by using the watershed algorithm on the peaks of the estimated head
distributions. The different colors represent unique labels for each independent head.
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8.7 Method evaluation

The various architectures are evaluated for the two datasets on their test subparts. Since the ob-
jective is to detect as many (and as precisely) pedestrians as possible, we use an object level metric
for object detection for evaluation, rather than pixel level metrics for segmentation.

First of all, one has to recover the detections and then to check if it is either a false positive
(FP) or a true positive (TP). Since the network estimates a distribution which is defined on all the
domain, the extent of a detection can be indefinitely large, comprising pixels with arbitrary small
values. In order to prevent this, each detection is constrained such that each pixel has a minimum
predefined score η. Such operation is symmetric to, in a binary classification problem, one-hot-
encoding the estimated classes by checking whether the output probability is higher or lower than
0.5. The value of such predefined score is obtained as

η = wN(0,σh )(2σh),

which corresponds to the ground truth score associated to any pixel head which is located at a
distance equal to the target head radius from the labeled center. Thus, only for the scope of the
evaluation, any pixel value, both in the ground truth map and in the estimated one, is set to zero if
it is lower than η.

Given the truncated maps, instance segmented masks are obtained by applying the watershed
method explained in Section 8.6. At this point, each detection will be represented by a connected
set of pixels. The detections are assigned with a score value, which expresses the likelihood of be-
ing a real head. In our context, we assign as score value the value of the maximum of the weighted
distribution.

The standard approach for deciding whether an estimated detection is a TP or a FP is to calcu-
late the Intersection over Union (IoU) score. Given a ground truth blob and a detection, the IoU is
the ratio between the number of pixels which belong both to the ground truth and the detection,
and the number of pixels which belong to union of the ground truth with the detection. A detec-
tion is then considered a TP if its IoU value is over a predefined value I . If multiple detections are
positive for a given ground truth target, only the one with the highest score is labeled as TP, while
the others are FP.

As accuracy metric we use the mean Average Precision (mAP), which is the standard metric
for measuring the performance of object detectors. It serves as an alternative representation of
the area under the precision-recall curve. In order to evaluate the mAP value, the detections are
ranked by descending score. The recall at rank r is defined as the ratio between the number of TP
detections ranked r or higher and the total number of ground truth positives. The precision at r
is defined as the proportion of all the examples ranked r or higher which are TP. The mAP score is
then the integral of the approximated curve built by taking, for any distinct target value of recall,
the maximum precision which occurs for a recall higher or equal than the target.

In the following we will call mAPI=I as the mAP calculated with a IoU threshold of I .

8.8 Results

Figure 8.5 shows qualitative results of the pedestrian detection with the UNet for both Mecca and
Regent’s Park Dense datasets. Table 8.2 and 8.3 show the mAP scores for both UNet and FE+LFE
for Mecca and Regent’s Park Dense datasets respectively. With regard to the choice of the IoU
threhsold, 0.3 and 0.5 values have been used. The value I = 0.5 is the standard value for eval-
uating object detectors in the PASCAL VOC 2012 dataset [38]. However, when considering our
specific problem, such constraint could be too strict into evaluating the goodness of the detector.
The reason is that since there is imprecision in the head center labeling, some bias in the ground
truth could have a noticeable impact in the calculated IoU, since the head blobs are small. Thus,
we relax the IoU threshold to a value of 0.3 in order to allow for some small misplacement of the
estimated location of the head, and we provide results for both thresholds.
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(a)

(b)

Figure 8.5: Detections on the (a) Mecca dataset and on the (b) Regent’s Park Dense dataset. The pixel blobs
are colored in according the the following convention. Red blobs are ground truth heads, green blobs are
true positive detections, and blue blobs are false positive detections.
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Mecca mAPI=0.3 mAPI=0.5

UNet 0.86 0.74
FE+LFE 0.88 0.74

Table 8.2: Quantitative results of the two different architectures presented in Section 8.4 on the Mecca
dataset in terms of mAP, for 0.3 and 0.5 IoU thresholds.

The two different architectures provide comparable performance in both datasets, with FE+LFE
outperforming by a small margin the UNet for I = 0.3 in the Mecca dataset and I = 0.5 in the Re-
gent’s Park Dense dataset. We can also notice that the overall performance of the method in the
two datasets remains constant, even if the number of training images and the crowd density vary,
which is a desirable property.

Regent’s Park mAPI=0.3 mAPI=0.5

UNet 0.88 0.76
FE+LFE 0.88 0.78

Table 8.3: Quantitative results of the two different architectures presented in Section 8.4 on the Regent’s
Park Dense dataset in terms of mAP, for 0.3 and 0.5 IoU thresholds.

8.9 Conclusion

In this chapter we have proposed an interpretation of the problem of detecting pedestrian heads in
a dense crowd as a semantic segmentation problem. We have highlighted the potential difficulties
of training with few data and on imprecise labels. We have highlighted an original ground truth
definition which takes into account the irreducible uncertainty of the input labels, and we have
adapted state-of-the-art architectures to learn on such data. The quality of the networks have
been assessed by using standard evaluation metrics used in the object detection community.

The models presented in this section can be used further in order to infer pedestrian maps in
multiple cameras, leading the way for data fusion on the common ground plane. When N cameras
are available, one can obtain N pedestrian maps which serve as independent sources estimating
the crowd occupation. Such maps do not have any cue of the 3D world, but they can still be pro-
jected into the ground plane by setting the height of each head as unknown. Moreover, for the
final fusion problem, these maps will provide orthogonal information with respect to the geomet-
ric detector of Part II.
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9.1 Motivation

In the previous chapter we have presented a method for obtaining pedestrian detection maps in
the image space. However, one detector alone cannot capture all the characteristics of the crowd,
because an important percentage of pedestrians could be occluded at a given time instant when
observed from one camera, while in some cases the homogeneity between two very close pedes-
trians might be too high to detect them individually in a reliable manner. For this reason, it is
beneficial to perform the pedestrian detection map inference on multiple views, if available. The
network must thus show perspective invariance properties when detecting pedestrians from dif-
ferent locations, and thus being able to well represent heads at any angle. In our specific scenario
the detector, for the Regent’s Park Dense dataset, has been trained on data acquired by the central
camera only, since in many cases data from a single view might be readily available in advance for
training, due to placement constraints. In most settings this can cause an imbalance on the num-
ber of examples of heads for each orientation, since usually the infrastructure of the scene forces
the crowd to follow a common direction of movement, thus making the problem of perspective
invariance more challenging.

As the maps from different views are acquired, one has to propose a robust method in order to
combine them on the ground plane. This will give both localization information of the target (with
a precision dependent on the number of sources with consensus) and can be exploited to easily
remove false positives. Once a ground plane detection location proposal is obtained from single
view maps, this can be further combined with the estimation provided by the geometric detector
of Part II.
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9.2 From pedestrian maps to ground plane detections

In order to have a common frame for fruther combination of detections, starting from a blob of
one of the pedestrian maps, its bounding box is extracted. This operation is performed in such a
way as to minimize the number of successive geometric projections. Each vertex of the bounding
box can be thus projected on the ground plane, given an hypothesis for its height. The projection
makes use of the variable height homographies estimated in Part II. Considering a height interval
between 1.4 and 2 meters, the top corners are projected at 1.4 meters, and the bottom ones at 2.
The corresponding points in the ground form a new box which encloses all the possible locations
of the head in the ground plane conditioned by the height interval.

Each camera source input will now consist of a set of ground plane boxes. All the sources have
to be combined together, needing data association in order to associate boxes of the same target.
Data association between N sources is tackled as (N− 1) data association problems in cascade,
from the left-most (or right-most) camera to the right-most (or left-most). Since there are two
possible directions of association leading to different outputs, the results of the two combinations
will be further fused together in a second phase.

Let us consider the problem of associating the first two sources. For data association, in ad-
dition to the possible ground location represented by the box intersection, the height assumption
needs to be considered. Indeed two boxes could intersect in such a way that the height of the
target estimated from one view would be totally different from the height estimated by the other.
Thus the cost of data association also depends on the agreement on the interval of possible heights
estimated by the two sources.

Figure 9.1 describes how the cost between two boxes belonging to two different sources is
evaluated. First the intersection of the boxes is extracted as a list of vertexes X = {X1,X2, . . . ,Xn}. For
a given vertex Xi , the following re-projection scheme is performed. Let us consider a set of heights
ranging from 1.4 to 2 meters, with a step of 2.5 centimeters. The point in the ground plane Xi is
projected on the original image of camera j for each possible height. All the projected points in
the image form a discretized segment. The range of heights which are coherent with the original
bounding box detection is the one for which the corresponding projected points are in the interior
of the box. The set of possible heights for Xi on camera j is then expressed as:

HXi , j =
[

hXi , j
mi n ,hXi , j

max

]
The set of possible heights for camera j is then calculated by performing the union of the intervals
for each intersection vertex:

H j =
⋃

i =1...n
HXi , j

We now have the locus of coherent heights for each of the two cameras, i.e. the intervals H j1 and
H j2 . The cost of the association of the two boxes is then evaluated as:

C = − log

( | H j1 ∩H j2 |
min

(| H j1 |, | H j2 |)
)

The cost penalizes a low intersection over minimum metric, which is an alternative interval com-
parison to intersection over union, where an unbalanced size of the intervals penalizes the score.
In this specific case, a difference in the interval size corresponds to a difference in the size of the
original detections in the image space. We do not aim at penalizing such difference because it
could be caused just by a partial occlusion in one of the views.

Given the cost definition, data association is performed by using a Hungarian algorithm [73,
116]. Let us consider the data association between camera 0 and camera 1. A new set of boxes
is computed, containing the intersections of associated detections, and the original boxes of each
camera which have not been associated. The next data association will be performed between this
new set of boxes and the boxes of camera 2. No box is discarded during the process, since all the
non-associations are propagated as they are.
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Camera 1 Camera 2

Figure 9.1: Data association cost computation for a pair of boxes. The intersection between the boxes is
computed. Each vertex of the intersection is re-projected in the original images at varying heights (mapping
to a segment). The interval HX, j of possible heights for that vertex X on camera j is extracted as the portion
of the re-projected segment which intersects the original bounding box. The overall interval of plausible
heights H j for camera j is then computed as the union of the intervals of all the vertexes of the intersection.
The cost C is then computed as the negative logarithm of the intersection over the minimum of the height
intervals of the two cameras.
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9.3 BBA construction

Each polygon resulting from cascade data association is transformed into a separate BBA. Such
BBA is consonant and consists of two focal elements (one if no association occurred), the internal
corresponding to the intersection itself, and the external being given by the disjunction of all the
boxes which have generated such intersection. The second focal element models the possible
locations of the head given that some source may be unreliable.
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Figure 9.2: Examples of BBA construction from supervised detection associated boxes on the ground plane.
(a) No association; (b) Two intersecting boxes; (c) Three intersecting boxes.

Figure 9.2 shows an example for each type of association, namely no association and associa-
tion between two or three boxes. The two focal elements are assigned with masses 0.51 (internal)
and 0.49 (external) for symmetry breaking.

9.4 Combination of one-directional data associations

As introduced in Section 9.2, data association can be performed in one of two directions, starting
from the first or the last camera. The direction of association will produce in general different re-
sults, and no one is clearly better than the other. For these reasons, after having constructed the
BBA for each direction, the two estimations are combined conjunctively. Such combination intro-
duces a new data association problem. The idea is that if one box is connected in one direction
to a different set of boxes of the other, this information would be combined in a unique BBA con-
taining that box. Thus an ad-hoc constraint for data association of two BBAs is that at least one
of the generating original bounding boxes is in common. This rule avoids the circular problem of
possibly finding intersecting boxes needing another height interval evaluation. Together with this
pre-filtering stage, the conflict-based data association cost in Section 6.5.3 of Chapter III.6 is used.

Once the data association has been completed, the matched BBAs are fused by using a con-
junctive rule. Since the BBAs are not independent (they comes from the same sources), Denoeux’
cautious rule [29] would have been more relevant, at least theoretically. However, in this study,
it has not a significant impact on the results and we use the classical conjunctive rule. Prior to
fusion, a discounting may be applied. If one BBA has been generated by an intersection deriving
from less boxes than the other, the first source is then considered less reliable and thus discounted
by a fixed value, according to global discounting (Equation 5.8 of Chapter III.5). Let us consider the
case of a BBA like the one in Figure 9.2a and another BBA like the one in Figure 9.2c. Without any
discounting, the single box would force the other two uncertainty directions to disappear. How-
ever, as a single detection, such information should not have such power and is thus discounted.
The single box will have now merely the function of increasing the belief in that direction.

Figure 9.3 shows an example of final BBA map after the combination of the single direction
associations.
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Figure 9.3: Example of supervised detection BBAs after combination of one-directional data association
estimations. (a) In grey the region of interest, as a projected crop from the central camera. Each BBA is
depicted by a different color. In (b)-(d), as a reference, the input single view detections in the image space
are shown.

9.5 Combination with the geometry detector

The BBAs of the appearance-based supervised detector can be further combined with BBAs con-
structed from the geometry detections. The BBA construction for such unsupervised clusters is
the same as the one presented in Section 6.5.3 of Chapter III.6. Data association of the geomet-
ric and appearance-based detectors works as follows. Two BBAs intersecting such that the inner
focal element of the geometric detection (the one embedding the height hypothesis) has a non
empty intersection with the appearance-based detector BBA have to satisfy a height coherence test
in order to be a candidate match. The resulting intersection between the inner focal element of
the geometric detection and the appearance-based detector BBA, by using the same re-projection
technique as presented in Section 9.2, can be used in order to estimate the possible heights of the
person from each of the cameras. The two BBAs are matchable if the height estimation of the geo-
metric centroid is included inside each of the intervals for the various cameras. If such condition
holds, conflict-based cost is used for data association (Section 6.5.3 of Chapter III.6).

The benefits of the combination with geometry can be summarized as follows:

1. Reinforce single camera detections with no associations. When boxes are not associated,
they are less reliable and they gather no knowledge on the possible height of the target. For
such reason, as shown later, they would be removed from the candidate detections. A com-
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bination with the geometry, however, would not only enforce the hypothesis, but also pro-
vide a punctual height inference (see Figure 9.4a).

2. Increase localization precision of matched boxes. Especially when few sources agree on the
target location (e.g. 2), the intersection area, and thus the possible location of the target,
may be of an important size. Geometry can naturally reduce the area of search (see Figure
9.4b).

3. Solve ambiguities in localization. Sometimes the decision making could select as target re-
gion for the true location one which is fragmented in multiple areas. The estimation of the
person location would thus be carried randomly between the fragments. Geometry infor-
mation can help to solve such issue by increasing the belief on one of the fragments (see
Figure 9.4c).

68000 70000 72000 74000 76000 78000 80000 82000
70000

75000

80000

85000

90000

95000

100000

(a)
26000 24000 22000 20000 18000 16000 14000

15000

12500

10000

7500

5000

2500

0

2500

(b)
14000 12000 10000 8000 6000 4000

20000

25000

30000

35000

40000

(c)

Figure 9.4: Benefits introduced by geometric detection. (a) Reinforce single box detections; (b) Increase
localization precision; (c) Solve ambiguities in localization.

9.6 Estimation of pedestrian location

The results of data fusion in the 3D space are evaluated on instantaneous detections. At each time
stamp pedestrian locations are extracted as barycenters of the polygons maximizing the plausi-
bility of the singletons (contour function). Such approach has been favored, for this task , to BetP
maximization since the BetP tends to favor regions with lower cardinality as maximizers. However,
a small intersection in our context does not mean always that the localization is more precise, but it
could be due to a very small intersection overlap between bounding boxes, and thus could be less
reliable than large intersections. In general, excluding occlusion, the size of a good intersection
in the ground plane should be almost constant if the head size in the image space is almost con-
stant. For this reason, plausibility maximization is preferred being completely independent from
the cardinality of the maximizer. The algorithm for maximizing the contour function is exactly the
same as the one for BetP maximization presented in Section 6.4 of Chapter III.6, thus requiring
evaluation on maximal intersections, by changing only the objective function to maximize. See
Figure 9.5 for an example on pedestrian location estimation at a given time frame.
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Figure 9.5: Example of pedestrian location extraction through contour function maximization. In grey the
region of interest, in green the ground truth segments, in red the maximizers for each BBA. The blue dots
are the barycenters of such areas, and thus the final pedestrian locations.
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Figure 9.6: Histograms of detection recall and precision computed at each frame independently (200
frames, bin size = 0.02).
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Figure 9.7: Normalized histogram of detection localization error (200 frames, bin size = 0.1).
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9.7 Results

The algorithm is tested on the 200 test frames of the Regent’s Park Dense dataset. The precision
and recall are evaluated against the ground truth segment in such a way that each location is as-
sociated to it by ignoring the height component, thus calculating a point-to-line distance to the
ground truth segment. This assumption aims to split in two different evaluations the occupancy
estimation (whether a human is present or not) from the localization task (how close the detection
is to the real person). The distance between the estimated location and the ground truth has to be
lower than 20 centimeters in order to be considered as a true positive, taken as an average head-
to-shoulder distance. The recall and precision values in all the sequence are 97.89% and 87.31%
respectively, reflecting excellent performance from the combination of the various sources. Figure
9.6 shows the histogram of recall and precision calculated at each frame. Such information allows
us to understand if the values maintain low variance during the sequence. Recall values never go
under 90% for all the frames, while the precision follows an approximately normal distribution
with a minimum value of recall around 75%.

We evaluate also the instantaneous localization error of the detections prior to tracking. The
localization error of a detection is the distance between the detection itself and the point in the
ground truth segment which corresponds to the estimated height of the pedestrian. Figure 9.7
shows the histogram of localization errors on the whole sequence. The average localization error
is 13.12 centimeters, being extremely precise for the given task.

9.8 Conclusion

In this Chapter we have presented a method to combine supervised detections from single cam-
eras together in a common reference plane and perform the fusion of such sources with the un-
supervised geometric detector. We highlight different data association schemes for the different
sources, by integrating the height information as an additional information to the 2D discernment
frame. We demonstrate our approach in the Regent’s Park Dense dataset, which presents area at
high densities, by showing competitive results in term of accuracy.

A straightforward extension of this approach is to feed the detection BBA extracted at every
frame into a tracking framework. At first glance, the performance of the pedestrian tracking of
Section 6.5.3 of Chapter III.6 have to be evaluated at this higher level of density, since ambiguities
in the track-detection matching would be always more frequent, while a large branch of tracking
research can be carried out specifically for handling the dense case.

An interesting alternative approach to the one presented would try to overcome the funda-
mental limitation of handling the height data as an external variable to the discernment frame.
This causes the height to be used as a filtering gate for 2D operations. A more elegant solution
would be to handle 3D BBAs, thus including the height in the discernment frame. This would al-
low for seamless combination and conjunction of detections from different sources. Handling 3D
BBAs would implicitly imply an extension of the 2CoBel framework. Such extension would be lim-
ited, however, only to the geometric representation part, since the graph representation (and the
related algorithms which are based on it) does not depend on the number of dimensions of the
discernment frame. Thus 2CoBel should define methods for operator computation (intersection,
union, etc...) which generalize the 2D clipping methods.
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Conclusion and future work

Conclusion

In this thesis we have addressed the problem of pedestrian detection in high-density crowds. The
main contribution of this thesis is to propose a complete framework for detection and tracking of
pedestrians in difficult crowded scenes, in which classical computer vision fails, by using multiple
calibrated cameras. The work has been carried out in several parts with a strong link with each
other. Each of these parts, spanning from camera calibration to data fusion, targets a specific task
in the detection framework, and tackles novel problems introduced by dense crowds.

In Part I we have presented the problem of estimating the relative pose of two cameras in urban
scenes. We have highlighted the difficulties of such scenarios (constrained locations of cameras,
scarcity of matching parts, ambiguities), and we have shown that state-of-the-art estimators on
image pairs fail under these conditions. We have thus proposed an iterative method which uses an
entire video stream in order to estimate the relative pose, guided by the assumption that gathering
information from multiple image pairs can solve the problem of few data available at each instant.
On the other side, since we deal with highly unreliable information, we have proposed to guide
the acquisition of new data on the basis of the estimated confidence of the new solution in each
part of the image space. Such approach has given high quality estimates of relative pose for our
dataset, and has demonstrated to be applicable also to refine some already available pose. The
output of this Part is the extrinsic calibration of each camera pair of the system, together with the
good matched points which have been used to estimate and refine the model.

In Part II such calibration is used in order to metrically relate the system to a common ground
plane reference. Thus, one can freely project back and forth points from the image space to the
3D space, knowing the metric distance of such point from the ground plane. This automatic regis-
tration represents a first contribution, since the state-of-the-art multiple camera approaches need
extensive manual intervention. The main objective of Part II is then to propose an unsupervised
pedestrian detector which is based on the estimated geometry. The use of multiple cameras at
the same time for the detection can automatically handle occlusion, while giving a complemen-
tary insight on the scene, with respect to single view supervised detectors. We tackle this as a
stereo matching problem, where pixels in one view are projected in the others at variable possible
heights over the ground. Thus, the stereo matching is formulated in terms of a height hidden vari-
able, which allows to define novel discontinuity functions among neighboring pixels. The output
of this Part is a joint estimation of the presence and height of pedestrians, which results in a 3D
pedestrian occupation map with respect to the registered ground plane.

In Part III we handle the problem of information fusion in 2D spaces, since we aim to apply
fusion between multiple sources and at subsequent time steps in the ground plane. We realize
that current approaches for 2D data fusion make use of representations which are too compu-
tationally inefficient in order to be used in large scale scenes. We then move to the theoretical
problem of proposing an efficient representation in order to handle information fusion efficiently
at any scale. Our contribution consists into two complementary representations, one geometrical
and one structural, which provide together the foundation for the definition of primitive opera-
tors, combination rules, decision making methods and several other algorithms of Belief Function
Theory. We have demonstrated that such new formulation is scale invariant, and thus can be
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used to perform fusion at the finest level of detail. We have demonstrated its effectiveness by per-
forming evidential tracking of the detections extracted in Part II over a long period of time, with
competitive performance in terms of localization error.

In Part IV we focus on the problem of supervised pedestrian detection with single cameras.
These detectors represent additional important sources of information that can be exploited for
information fusion, in order to obtain a global robust detector by combining them with the one
proposed previously. We highlight the problems related to data acquisition and labeling for video-
safety applications, which in turn reflect on the design of the architectures and of the training
phase. We underline a new ground truth definition scheme, which copes with soft labeling of the
pedestrian heads and with possible errors in the manual ground truth acquisition process, which
may harm the network efficiency. We then adapt state-of-the-art semantic segmentation networks
for our problem, and we show that they achieve competitive performance independently from the
difficulty of the images (in terms of crowd density). The output of this Part is a pedestrian map for
each independent view, where each head is represented by a segmented blob of pixels.

At this point we have the unsupervised detection from the algorithm in Part II, the multiple
supervised detection maps from the network of Part IV, and the fusion framework which may
combine different sources in the ground plane III. We finally exploit our proposed representation
in order to perform spatial information fusion between the unsupervised detections, which carry
knowledge on the 3D location of the pedestrian, and the independent supervised maps, which
miss the information on the height of each detection over the ground plane. We demonstrate the
efficiency of our approach on a challenging scenario with high and not uniform density distribu-
tion.

Future work

Many issues addressed in the different parts of the thesis present challenges which are still open
and may be further investigated in order to improve the quality of the final output of the frame-
work.

In terms of the calibration performed in Part I, the iterative approach for the estimation has
the desirable property of being convergent towards a stable solution for any choice of the param-
eters of the method. Moreover, the quality of such solution is not sensitive to small variations of
such parameters. However, some hyperparameters of such algorithm, for example the maximum
allowed error for the actual solution when no information is available, can vary greatly from one
dataset to the other. In fact, one dataset can provide much scarcer and less qualitative matches
than another, presenting estimation errors on a different scale, and thus for a much larger max-
imum drift of the solution at each iteration. We believe that, instead of setting manually such
prior information, some critical hyperparameters could be learned. This would imply training
the process on a vast amount of different datasets and camera configurations, thus requiring an
important effort in terms of data acquisition.

In terms of the detection part, in this work we have split the multiple camera detection and
the appearance-based detection in two independent problems, by subsequently performing the
fusion among them at the last stage. An alternative approach that is worth exploring is to inte-
grate the appearance information in the data term of the pedestrian height map optimization that
is done with all the cameras at the same time, in order to have a lower level data fusion which
could allow for more robust decision making. Moreover, such method could be trainable end-
to-end, from the images to the height map. In fact, some works have succeeded into proposing
optimization techniques on Conditional Random Fields (CRFs) by using Recurrent Neural Net-
works (RNNs) [187]. Thus one could feed to such network the output of the semantic segmenta-
tion networks as data term, and the proposed discontinuity function as smoothness term, by then
optimizing the pixel height labeling with the additional advantage that the regularization strength
would be also learnt.

A natural extension of the work, which would lead to an important research topic, is to propose
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a robust tracker for the ground plane tracking problem. While the tracking employed in Part III
serves as a baseline example of the potential of the work, more sophisticated tracking techniques
exist, such as evidential box particle filters [160]. The problem introduces novel information with
respect to regular 2D tracking, because each target has indeed a 3D state, with an estimation of
the height interval at which the head is located. Thus exploiting this additional information could
greatly improve the robustness of the tracker.
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Titre : Une approche réaliste de la détection de piétons multi-vues et multi-représentations pour des 

scènes extérieures. 

Mots clés : Multi-vues, fusion de données, fonctions de croyance, analyse des foules, détection de têtes  

Résumé : La détection et le suivi de piétons sont devenus 

des thèmes phares en recherche en Vision Artificielle, car ils 

sont impliqués dans de nombreuses applications. La détection 

de piétons dans des foules très denses est une extension 

naturelle de ce domaine de recherche, et l’intérêt croissant pour 

ce problème est lié aux évènements de grande envergure qui 

sont, de nos jours, des scenarios à risque d’un point de vue de 

la sûreté publique. Par ailleurs, les foules très denses soulèvent 

des problèmes inédits pour la tâche de détection. De par le fait 

que les caméras ont le champ de vision le plus grand possible 

pour couvrir au mieux la foule les têtes sont généralement très 

petites et non texturées. Dans ce manuscrit nous présentons un 

système complet pour traiter les problèmes de détection et de 

suivi en présence des difficultés spécifiques à ce contexte. Ce 

système utilise plusieurs caméras, pour gérer les problèmes de 

forte occultation. Nous proposons une méthode robuste pour 

l’estimation de la position relative entre plusieurs caméras dans 

le cas des environnements requérant une surveillance. Ces 

environnements soulèvent des problèmes comme la grande 

distance entre les caméras, le fort changement de perspective, 

et la pénurie d’information en commun. Nous avons alors 

proposé d’exploiter le flot vidéo pour effectuer la calibration, 

avec l’objectif d’obtenir une solution globale de bonne qualité. 

Nous proposons aussi une mèthode non supervisée pour la 

détection des piétons avec plusieurs caméras, qui exploite la 

consistance visuelle des pixels à partir des différents points de 

vue, ce qui nous permet d’effectuer la projection de l’ensemble 

des détections sur le plan du sol, et donc de passer à un suivi 

3D. Dans une troisième partie, nous revenons sur la détection 

supervisée des piétons dans chaque caméra indépendamment 

en vue de l’améliorer. L’objectif est alors d’effectuer la 

segmentation des piétons dans la scène en partant d’une 

labélisation imprécise des données d’apprentissage, avec des 

architectures de réseaux profonds. Comme dernière 

contribution, nous proposons un cadre formel original pour une 

fusion de données efficace dans des espaces 2D. L’objectif est 

d’effectuer la fusion entre différents capteurs (détecteurs 

supervisés en chaque caméra et détecteur non supervisé en 

multi-vues) sur le plan du sol, qui représente notre cadre de 

discernement. nous avons proposé une représentation efficace 

des hypothèses composées  qui est invariante au changement de 

résolution de l’espace de recherche. Avec cette représentation, 

nous sommes capables de définir des opérateurs de base et des 

règles de combinaison efficaces pour combiner les fonctions de 

croyance. Enfin, notre approche de fusion de données a été 

évaluée à la fois au niveau spatial, c’est à dire en combinant 

des détecteurs de nature différente, et au niveau temporel, en 

faisant du suivi évidentiel de piétons sur de scènes à grande 

échelle dans des conditions de densité variable 

 

Titre : Tackling pedestrian detection in large scenes with multiple views and representations. 
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Résumé : Pedestrian detection and tracking have become 

important fields in Computer Vision research, due to their 

implications for many applications, e.g. surveillance, 

autonomous cars, robotics. Pedestrian detection in high density 

crowds is a natural extension of such research body, and has a 

growing interest since large scale events are, nowadays, critical 

scenarios from a safety point of view. High density crowds 

introduce novel problems to the detection task. First, clutter 

and occlusion problems are taken to the extreme, so that only 

heads are visible, and they are not easily separable from the 

moving background. Second, heads are usually small and with 

little or no textures. This comes out from two independent 

constraints, the need of one camera to have a field of view as 

high as possible, and the need of anonymization. In this work 

we develop a complete framework in order to handle the 

pedestrian detection and tracking problems by using multiple 

cameras. As a first contribution, we propose a robust method 

for camera pose estimation in surveillance environments. We 

handle problems as high distances between cameras, large 

perspective variations, and scarcity of matching information, 

by exploiting an entire video stream to perform the calibration, 

in such a way that it exhibits fast convergence to a good 

solution. As a second contribution, we propose an unsupervised 

multiple camera detection method which exploits the visual 

consistency of pixels between multiple views in order to 

estimate the presence of a pedestrian. 

One is capable of jointly estimating the presence of a 

pedestrian and its height, allowing for the projection of 

detections on a common ground plane, and thus allowing for 

3D tracking. In the third part, we study different methods in 

order to perform supervised pedestrian detection on single 

views. We aim to build a dense pedestrian segmentation of the 

scene starting from spatially imprecise labeling of data, since 

their extraction is unfeasible in a dense crowd. Most notably, 

deep architectures for semantic segmentation are studied and 

adapted to the problem of small head detection in cluttered 

environments. As last but not least contribution, we propose a 

novel framework in order to perform efficient information 

fusion in 2D spaces. The final aim is to perform multiple sensor 

fusion (supervised detectors on each view, and an unsupervised 

detector on multiple views) at ground plane level, that is, thus, 

our discernment frame. Since the space complexity of such 

discernment frame is very large, we propose an efficient 

compound hypothesis representation which has been shown to 

be invariant to the scale of the search space. Through such 

representation, we are capable of defining efficient basic 

operators and combination rules of Belief Function Theory. 

Finally, we demonstrate our information fusion approach both 

at a spatial level, i.e. between detectors of different natures, and 

at a temporal level, by performing evidential tracking of 

pedestrians on real large scale scenes in sparse and dense 

conditions. 
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