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Résumé (in French)

Cette thèse est le fruit d’une convention CIFRE (Conventions Industrielles de Formation par
la REcherche) en collaboration avec le laboratoire Gipsa-lab et le groupe Volvo. Les travaux
portent sur la conception d’observateurs, appliquée à plusieurs systèmes du camion, dans un
objectif de diagnostic et d’estimation de variables.

Enjeux de la thèse

De nos jours, nous faisons face à importante complexification des objets de la vie courante.
Ceci est particulièrement frappant dans l’industrie automobile qui, pour répondre à la fois
aux exigence des clients en terme de confort, sécurité etc... mais aussi pour répondre aux
nouvelles normes, a dû ajouter de nombreux systèmes supplémentaires.

Cela a pour conséquence d’augmenter le risque de défaillance du moteur, puisqu’il y a
plus d’éléments susceptibles de subir une panne, mais aussi un besoin accru de contrôle
avancé pour piloter ces nouveaux systèmes de manière la plus optimale possible. Comme
nouveaux systèmes notables chez Volvo, citons par exemple : le système de post-traitement
qui a rencontré de nombreuses nouvelles défaillances ; ou encore la boucle de recirculation
des gaz d’échappement (EGR) qui nécessite un contrôle fin pour limiter les polluants afin de
respecter la législation (voir Figure 1).

Boucle EGR
Système post-traitement

Figure 1: Exemples de systèmes complexes

Parmi les solutions disponibles pour répondre à ces nouveaux enjeux, le développement
d’observateurs est une solution attractive car ils permettent de créer des fonctions de surveil-
lance des systèmes et d’estimer plus de variables sans ajout de capteurs supplémentaires.

xvii



xviii Résumé (in French)

Résumé des contributions

Les travaux de thèse ont été présentés en 6 chapitres comme suit :

• Le chapitre 1 apporte des éléments théoriques sur la théorie du contrôle, avec un ac-
cent particulier sur la conception d’observateurs. Il présente les différentes structures
d’observateur qui sont utilisées tout au long de la thèse. Deux types d’observateurs sont
considérés : les observateurs dits LPV (linéaire à paramètre variant), écrits sous une
forme polytopique, et les observateurs non linéaires.

• Le chapitre 2 traite de la surveillance de l’état de santé d’un tendeur de courroie de la
courroie accessoire, un composant critique du moteur automobile garantissant l’efficacité
du système de refroidissement du moteur. En effet, un défaut sur le tendeur de courroie
affectera la transmission qui détériorera l’efficacité de la pompe à eau et, éventuellement,
pourra entraîner un arrêt du moteur. Surveiller ce composant est donc primordial pour
envisager de faire de la maintenance prédictive ou corrective. Dans ce chapitre, nous
proposons d’estimer un paramètre qui s’avère caractéristique de l’état de santé de ce
composant en utilisant un observateur adaptatif ou un filtre de Kalman étendu. Les
mérites de ces solutions ont été comparés à l’aide de simulations réalisées avec GT-
POWER sur un modèle haute fidélité. Même si l’observateur adaptatif a des propriétés
de convergence garanties, il a été démontré que le filtre de Kalman étendu avait de
meilleures performances pour cette application.

• Le chapitre 3 donne une solution de diagnostic embarqué pour le refroidisseur d’air
suralimenté (CAC) et le refroidisseur EGR, qui doivent être diagnostiqués pour être
conforme à la législation. Bien que ces diagnostics soient déjà réalisés chez Volvo,
une autre configuration de capteurs a été envisagée pour réduire les coûts globaux de
construction. Deux observateurs sont conçus pour estimer la qualité du transfert de
chaleur du CAC et du refroidisseur EGR. Ils sont ensuite évalués sur des données réelles
provenant d’un banc d’essai moteur. Ce chapitre permet d’établir que les solutions
proposées pourraient diagnostiquer efficacement le CAC et le refroidisseur EGR.

• Le chapitre 4 compare différentes approches d’observation pour estimer une variable im-
portante pour le contrôle des émissions de polluants : le débit massique de recirculation
des gaz d’échappement (dit débit massique EGR). Ce chapitre vise à appliquer cinq ap-
proches d’observation présentées dans le chapitre 1 pour l’estimation du débit massique
EGR plus une déjà présente dans la littérature. La conception de l’observateur se base
sur l’utilisation du capteur de pression dans le collecteur d’admission comme mesure de
référence, pour estimer ce débit massique. La validation finale consiste à implémenter
sur un calculateur industriel embarqué d’un camion réel et à comparer les performances
des différentes méthodes. Les essais effectués sur deux moteurs de camions montrent
que, même si la structure d’observation est très différente, les performances d’estimation
sont très similaires. De plus, la consommation CPU est assez faible, ce qui permet de
l’utiliser dans un contexte commercial.
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• Le chapitre Chapter 5 propose une méthode pour estimer la pression dans le collecteur
d’échappement. La connaissance de cette variable est essentielle pour remplir des fonc-
tions telle que la commande du frein moteur. Cependant, bien que dans la plupart
des cas la pression soit mesurée directement, le capteur peut rencontrer des défaillances
puisque soumis à de fortes variations de pression et de température. Son estimation est
donc important pour des objectifs de diagnostic et de conception de lois de commande
tolérantes aux fautes. Sur la base de modèles simplifiés du turbocompresseur et du
collecteur d’échappement, un observateur polytopique LPV est conçu pour fournir une
estimation de la pression. Les mérites de cette solution sont illustrés grâce au simulateur
haute fidélité GT-POWER. Les résultats montrent que la méthode développée est un
moyen prometteur d’estimer la pression avec une erreur relative raisonnable.

• Le chapitre Chapter 6 traite de l’estimation du débit massique EGR et du débit mas-
sique d’air à l’entrée du moteur avec une sonde mesurant la quantité de NOx (oxydes
d’azote) située dans le système de post-traitement du moteur. Le problème est qu’il
existe un retard important entre la sonde NOx et la sonde lambda qui est actuellement
utilisée pour estimer les deux débits massiques. Pour prendre en compte ce retard,
des observateurs LPV à retard sont conçus à partir d’une méthode existante et d’une
nouvelle méthode déduite du lemme de Finsler. La validation et la comparaison des dif-
férentes méthodes sont effectuées avec des données réelles provenant d’un banc d’essai.
Même avec un important retard, les observateurs développés réussissent à bien estimer
les débits, en particulier le débit massique d’air à l’entrée du moteur.

Perspectives

En guise de perspectives pour de futurs travaux au sein de Volvo, il est apparu que les sujets
suivants méritent d’être étudier de manière approfondie :

• Estimer la température du collecteur d’échappement. En raison de la température élevée
et des fortes oscillations de pression, la mesure de cette variable est trop coûteuse pour
le constructeur. Ainsi, à l’heure actuelle, un modèle en boucle ouverte donne une
approximation de la température. En revanche ce modèle est soumis à des incertitudes
et ses inexactitudes causent des problèmes de contrôle. En effet, la stratégie mise en
place impose, lorsque la température du collecteur est trop élevée, de réduire la quantité
de carburant injectée et donc le couple produit par le moteur. Il est donc nécessaire
de connaître la température aussi précisément que possible, pour ne pas inutilement
restreindre le moteur. Suivant la même modélisation que celle décrite dans Chapter 3,
un observateur pourrait estimer cette température.

• Fournir une solution de diagnostic pour le démarreur. Le démarreur est un dispositif
électrique utilisé pour faire tourner le vilebrequin du moteur afin d’atteindre la vitesse de
rotation requise pour que l’allumage ait lieu. Il a été identifié que ce système subit une
usure prématurée. Ainsi, une solution à base d’observateur pourrait être conçue pour
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surveiller un écart trop important. Le composant principal du démarreur est un moteur
à courant continu, ce qui permet, par exemple, d’appliquer les travaux de [Christophe
2001] (qui traite du diagnostic non linéaire des systèmes appliqué aux machines élec-
triques).

• Détecter une faute dans l’injection d’urée. Pour réduire les émissions d’oxyde d’azote,
le système de post-traitement injecte de l’urée pour déclencher une réaction chimique.
La législation exige une solution OBD pour certifier que ce système fonctionne correcte-
ment. Pour cette raison, les fabricants doivent s’assurer que la solution injectée est bien
de l’urée. Des solutions basées sur des modèles pourraient être étudiées pour résoudre
ce problème.

• Estimer la température de la paroi à l’intérieur du système de post-traitement. Afin
d’assurer que les différentes réactions chimiques dans le système de post-traitement
aient lieu, une certaine température doit être atteinte. Bien que ce système soit équipé
de nombreux capteurs de température, en raison de la nature distribuée du flux de
température de départ, l’optimum n’est pas atteint. Dans un premier temps, des travaux
doivent être consacrer à la modélisation, puis, en fonction des capteurs disponibles, on
pourrait envisager de faire appel à des observateurs.
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This thesis has been developed thanks to a CIFRE (Conventions Industrielles de Formation
par la REcherche) agreement, a program of the agency ANRT (Association Nationale de la
Recherche et de la Technologie). This agreement funds any French company that engages a
PhD student to carry out a research project inside the company and in collaboration with a
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Introduction

General introduction

Due to both production planning and urbanization, the role of the transport sector has
increased dramatically over the last decades. This has led to many undesirable consequences
such as the increase of fuel consumption, greenhouse gases emissions and greater exposure of
people to air pollutants. This last point has a serious impact on the human’s health. For
example, in European countries, [Künzli et al. 2000] has shown that about half of all mortality
caused by air pollution was attributed to motorized traffic.

Thus, since January 1993, with the Euro 1 standard, car manufacturers have been sub-
ject of increasingly stringent emission standards over time. Figure 2 shows the evolution of
emission regulations. For example, the Euro 6 standard, the current one, has required a 95%
reduction in particulate emissions (PM) compared to the Euro 1 one. In addition to reducing
pollutants, future legislation will require the control of greenhouse gas emissions.

Figure 2: European legislation emission limits for diesel engines [Martin 2010]

From the customer point of view, the truck has to be operated at the lowest possible cost.
This means that the fuel consumption must be the lowest possible. However, for combustion
engines, reducing both pollutants and consumption require to add new components such as
Exhaust Gas Recirculation (EGR) loop or after treatment system. Therefore, to meet both
new legislative standards and customer requirements, the complexity of trucks has increased
significantly as well as the engine control and so the risk of failure.

To ensure the reliable functionality of the anti-pollution system, legislation also requires

3



4 Introduction

to develop on-board diagnosis (OBD) solutions to monitor the components achieving these
functions [Mohammadpour et al. 2012]. It appears that manufacturers have to add new
equipment such as sensors to create a diagnosis solution, which increases again the complexity.

Initially, OBD solutions have been developed to comply with the law. But today, the
maximization of the uptime of the truck is a major priority for the manufacturers to increase
the truck’s productivity and so the customer satisfaction. This goal can be achieved with a set
of strategies that include, but are not limited to: predictive and planning maintenance, Fault
Detection and Isolation (FDI) and usage of top quality components. The FDI problem consists
of determining the location as well as the nature of the fault [Hwang et al. 2010]. FDI methods
utilize the concept of redundancy, which is, in general, analytical redundancy. The basic
concept of analytical redundancy is to compare real-time estimations with a mathematical
model of the system. Although an OBD solution is actually an FDI’s one, we will distinguish
these two notions because their goal is not the same. Indeed, an OBD solution is legislatively
oriented whereas an FDI one is customer-oriented which can be included in a global strategy
of health monitoring of the truck.

Among FDI strategies, the observer-based approach is a popular approach [Chen and
Patton 1999; Ding 2008]. An observer is an algorithm that deduces, from a model and a
given set of sensors, additional information such as unknown parameters or unmeasured state
variables. Therefore it is an efficient way to provide an analytical redundancy for an FDI or
an OBD strategy. In addition, observers can be used as a virtual sensor in order to reduce
the global cost or to have a finer control of the engine.

Consequently, this thesis is focused on the observers design for various subsystems of the
engine to fulfill four main objectives:

(1) For an FDI purpose: diagnose a component to control the truck’s health.

(2) For an OBD purpose: linked to the previous goal, but to diagnose the anti-pollution
systems.

(3) For a control purpose: estimate variables needed for the engine control.

(4) For a cost reduction purpose: replace a sensor by an observer.

Observers design and validation

Many types of observers have been designed in the thesis. Nevertheless, they can be grouped
into 3 major frameworks:

(1) The nonlinear (NL) observers

(2) LPV observers



Introduction 5

(3) LPV time-delay observers

Table 1 summarizes the used frameworks for each chapter.

Table 1: Observer frameworks used in the chapters

Frameworks

NL LPV LPV
time-delay

Chapter 2 X
Chapter 3 X X
Chapter 4 X X
Chapter 5 X
Chapter 6 X

Depending on the feasibility of the subject, these developed observers have been validated
following 3 simulation or experimental contexts:

• Validation with GT-POWER1. GT-POWER is a software developed by Gamma Tech-
nology which consists in a set of simulation libraries for analyzing the engine behavior
and it enables to obtain a high-fidelity simulator. This context represents first significant
step to test the developed observers. It has been used in Chapter 2 and Chapter 5.

• Validation with data from test-bench. The observers are implemented in a simulation
environment (most of the time, Simulink) and fed with data obtained with a real engine
mounted on a test-bench. This context is very representative of the performance that
could be obtained on an industrial application. Test-bench data are used in for the
topics in Chapter 3 and Chapter 6.

• Validation on an embedded computer. The developed observers are implemented in
the real calculator of the truck and tested in a test-cell. This context is the most
representative since it is the closest one to industrial applications. Chapter 4 presents
this context.

Thesis Structure

This study focused mainly on two sets of the Volvo’s medium duty: the cooling system, which
regulates the engine block temperature and the air path of the engine. Chapter 2 is devoted
to the cooling system and Chapters 3 to 6 deal with the air path. In detail, the manuscript
is organized as follows:

1www.gtisoft.com
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• Chapter 1 provides some theoretical background on control theory with a particular
focus on observer design. It presents the different observer structures that will be used
along the thesis. Two types of observers are considered there: LPV systems, put into a
polytopic form, and nonlinear systems.

• Chapter 2 proposes a observer-based solution to estimate the degradation of a belt
tensioner. Through the analysis of the engine cooling system, a characteristic parameter
has been identified to be a good candidate to represent the belt tensioner’s health.

• Chapter 3 gives an OBD solution for two components of the air path that need to
be diagnosed to meet the legislation but with a different sensor configuration for cost
saving. Two observers are designed to estimate the heat transfer quality of the charge
air cooler and the EGR cooler.

• Chapter 4 compares different observer approaches to estimate an important air path
variable for the pollutant emissions control: the EGR mass flow rate. Six observers
have been implemented on a real truck calculator and evaluated on a test bench.

• Chapter 5 presents an LPV observer to estimate the pressure inside the exhaust manifold
of the engine. This variable is used to control an engine brake with a flap located in
the exhaust line.

• Chapter 6 deals with the estimation of the EGR and inlet air mass flow rates with a
sensor submitted to a delay which could reduce the global cost of the engine. An LPV
time-delay observer is designed to estimate these both flows, needed for the pollutant
emissions control.

The features, defined in the previous section, achieved by the thesis chapters are summa-
rized in Table 2.

Table 2: Features addressed along the thesis

Features

OBD FDI Cost
reduction Control

Chapter 2 X
Chapter 3 X X
Chapter 4 X
Chapter 5 X X X
Chapter 6 X X
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International Conference Papers with Proceedings

• Dubuc, D., Sename, O., Bresch-Pietri, D., Halle, A., & Gauthier, C. (2018, Au-
gust). Exhaust pressure LPV observer for turbocharged diesel engine on-board
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How to read the thesis

There is no strong links between the chapters, which can be understood relatively
independently. Nevertheless, we recommend the reader to begin with the theoretical
Chapter 1 to familiarize him/herself with the observer concepts.

Note also that this thesis has been written with LATEX and with the package hyperref.
Therefore we suggest to read the pdf document and use the hypertext links to ease the
understanding. Tip: on your pdf reader (Acrobat reader for example) after clicking on
a link, you can use the keyboard shortcut Alt +← (left arrow) to go back in your pdf
document.





Chapter 1

Some theoretical background

Contents
1.1 Dynamical systems under consideration . . . . . . . . . . . . . . . . . . 9

1.1.1 Nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Linear Time Invariant systems . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 LPV systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.3.1 Representation of LPV systems . . . . . . . . . . . . . . . . . . 12
1.1.4 Stability of LPV systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 LPV polytopic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1.1 Pole placement method . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1.2 H∞ performance method . . . . . . . . . . . . . . . . . . . . . . 18
1.2.1.3 FAFE design method . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.1.4 H∞ filtering method . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.1.5 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.2 For nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.2.1 Kalman observer . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.2.2 Adaptive observer . . . . . . . . . . . . . . . . . . . . . . . . . . 30

This chapter is devoted to recall some theoretical tools that will be used in the next
chapters of the dissertation. We first start with the definition of dynamical systems
we are interested in the sequel, with a particular focus on LPV systems and their
stability. Then, several design methods of observers are given for LPV polytopic and
nonlinear systems. For more details about these topics, we recommand to read the
books [Mohammadpour and Scherer 2012; Sename et al. 2013] which deal with LPV
systems and [Besançon 2007] for nonlinear observers.

1.1 Dynamical systems under consideration

In this section, the different classes of dynamical systems that will be used in the
thesis are presented. First, the definition of nonlinear and LTI systems will be recalled.

9



10 Chapter 1. Some theoretical background

Then LPV systems will be more detailed since they are largely considered along the
dissertation. Figure 1.1 gives a schematic representation of the different systems classes
and their restriction in relation to the most general case.

LTI systems

LPV and LTV systems

qLPV systems

Nonlinear systems

Figure 1.1: Different classes of systems

1.1.1 Nonlinear systems

We are interested in nonlinear dynamical systems that can be described by nonlinear
ODEs.
Definition 1.1 (Nonlinear system)

A nonlinear system is described by the functions f : Rnx × Rnu 7→ Rnx and h :
Rnx × Rnu 7→ Rny , such that:

{
ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

(1.1)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the input vector and y(t) ∈ Rny

the output (or the measurement) vector of the system.

This representation is very convenient since it is derived from the system knowledge
and the physics equations so it can fit most of physical systems. However, there exist
no systematic mathematical tools for identification, observation, control synthesis or
analysis for these systems.

1.1.2 Linear Time Invariant systems

The LTI dynamical modeling consists in describing the system through linear ODEs.
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Definition 1.2 (LTI system)
A Linear Time Invariant (LTI) system is described by the matrices A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu such that:

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1.2)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the input vector and y(t) ∈ Rny

the output (or the measurement) vector of the system.

Contrary to the previous class, Linear Time Invariant (LTI) systems are state-
of-the-art and linear systems theory proposes many analysis and controller synthesis
tools. Although this model is less accurate to describe an entire physical system than
a nonlinear model, it can be seen as a local approximation around an operating point.

1.1.3 LPV systems

LPV systems are a special class of nonlinear systems (see Figure 1.1) which appears
to be well suited for control of dynamic systems with parameter variations. They can
be described as linear with respect to state and nonlinear with respect to parameter.
Initially introduced by [Shamma and Athans 1992], LPV techniques can provide a
systematic design procedure for self-scheduled systems.
Definition 1.3 (LPV system)

A Linear Parameter Varying (LPV) system is described by the linear matrix func-
tions A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu such that:

{
ẋ(t) = A(ρ)x(t) +B(ρ)u(t)
y(t) = C(ρ)x(t) +D(ρ)u(t)

(1.3)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the input vector, y(t) ∈ Rny the
output (or the measurement) vector of the system and ρ is a vector of time-varying
parameters assumed to be known (either measured or estimated) and bounded,
defined in the convex set Pρ:

Pρ :=
{
ρ = [ρ1 . . . ρN ]T ∈ RN and ρi ∈ [ρi, ρi], for all i = 1 . . . N

}
(1.4)

Remark 1.1
In the case where:

• ρ is a constant value, (1.3) is a Linear Time Invariant (LTI) system.

• ρ = ρ(t), (1.3) is a Linear Time Varying (LTV) system, where the parameter
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vector is a priori known.

• ρ = ρ(x(t)), (1.3) is a quasi-Linear Parameter Varying (qLPV) system.

An LPV system can be viewed as a nonlinear system linearized along the varying
parameters trajectories. Therefore, an LPV model allows to represent the dynamics of
the nonlinear system, while keeping the linear structure. Thus, the tools deduced from
the linear control theory can be used with some modifications, as we will see in the
next section.

1.1.3.1 Representation of LPV systems

Based on the dependence of the system matrices on the scheduling parameters, it is
possible to sort the LPV systems. In [Briat 2008], the author identified three main
classes:

(1) Affine systems

(2) Polynomial systems

(3) Rational systems

During this thesis only the first class of LPV systems will be considered.
Definition 1.4 (Affine LPV system)

An LPV system is said affine if the parameter dependence of its state-space matrices
A(ρ), B(ρ), C(ρ) and D(ρ) on ρ is affine, i.e:

[
A(ρ) B(ρ)
C(ρ) D(ρ)

]
=
[
Â0 B̂0

Ĉ0 D̂0

]
+

N∑

i=1

[
Âi B̂i

Ĉi D̂i

]
ρi (1.5)

where Âi, B̂i, Ĉi and D̂i are real constant matrices.

Definition 1.5 (Matrix polytope [Apkarian et al. 1995])
A matrix polytope is defined as the convex hull of a finite number r of matrices Mi

such that:
Co{M1, . . . ,Mr} :=

{
r∑

i=1
µiMi | µi ≥ 0,

r∑

i=1
µi = 1

}
(1.6)

Since ρ ∈ Pρ, the parameter vector evolves inside a polytope represented by 2N
vertices ωi as:

ρ ∈ Θ := Co{ω1, . . . , ω2N} (1.7)
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Thus, ρ can be written as the convex combination:

ρ =
2N∑

i=1
µiωi, µi ≥ 0,

2N∑

i=1
µi = 1 (1.8)

where the vertices are defined by a vector ωi = [νi1 . . . νiN ]T and νij equals ρj or ρj.

If we substitute (1.8) into (1.5), in Definition 1.4, it is clear that A(ρ), B(ρ), C(ρ)
and D(ρ) are delimited by four matrices polytopes the vertices of which are the images
of the vertices ωi. It leads to the following definition.
Definition 1.6 (LPV polytopic system)

An LPV system is said polytopic if the dependence of its state-space matrices on
parameter vector ρ is affine and ρ evolves inside a polytope Θ := Co{ω1, . . . , ω2N}.
In this case, its state-space matrices also range over polytopes the vertices of which
are the images of the vertices ωi. The following relation is then deduced:

[
A(ρ) B(ρ)
C(ρ) D(ρ)

]
=

2N∑

i=1
µi(ρ)

[
Ai Bi

Ci Di

]

=
2N∑

i=1
µi(ρ)

[
A(ωi) B(ωi)
C(ωi) D(ωi)

] (1.9)

where,

µi(ρ) ≥ 0,
2N∑

i=1
µi(ρ) = 1 (1.10)

This representation is very convenient since the initial LPV system is now a convex
combination of LTI systems.

1.1.4 Stability of LPV systems

Let us consider the following autonomous LPV system:

ẋ(t) = A(ρ)x(t) (1.11)

It is possible to analyze the stability of (1.11) through the Lyapunov theory. First,
if a constant Lyapunov function is used, it leads to the following definition.
Definition 1.7 (Quadratic stability)

The system (1.11) is said to be quadratically stable if there exists a Lyapunov
function V (x) = xTPx > 0, P = P T � 0 satisfying:

A(ρ)TP + PA(ρ) ≺ 0, ρ ∈ Pρ (1.12)
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The problem with the formulation (1.12) is that it is an infinite-dimensional problem
due to infinite values of ρ. Thus, one of the challenges in the LPV framework is how
to relax this infinite-dimensional constraint into a finite one. One popular and simple
approach is to use the polytopic formulation.

If (1.11) is an affine LPV system, it can be turned into the following LPV polytopic
system:

ẋ(t) =
2N∑

i=1
µi(ρ)Aix(t) (1.13)

Proposition 1.1
The LPV polytopic system (1.13) is quadratically stable if and only if there exists
a matrix P = P T � 0 such that:

ATi P + PAi ≺ 0 (1.14)

holds for all i = 1, . . . , 2N .

One of the drawbacks of the quadratic stability is its high conservatism. Thus,
sometimes, it may not exist a feasible solution. To reduce the conservatism, one can
use a parameter dependent Lyapunov function which leads to the following definition.
Definition 1.8 (Robust stability)

The system (1.11) is said to be robustly stable if there exists a parameter dependent
Lyapunov function V (x, ρ) = xTP (ρ)x > 0, P (ρ) = P (ρ)T � 0 satisfying:

A(ρ)TP (ρ) + P (ρ)A(ρ) + ρ̇
∂P

∂ρ
≺ 0 ∀ρ ∈ Pρ (1.15)

Again, the previous definition leads to an infinite-dimensional problem. However,
due to the product between the Lyapunov matrix and the system one, (1.15) is no more
affine in ρ. To solve it, one can first define a structure for P (ρ) (affine or polynomial
for example), and then, use gridding (discretization) approach as in [Wu 1995] and the
toolbox LPVTools developed in Matlab [Hjartarson et al. 2013], or the sum-of-squares
one [Scherer and Hol 2006].

1.2 Observer design

Most of the time, for a given plant, it is not possible to measure all the variables char-
acterizing the system behavior due to high cost, technological constraints or physical
impossibility. However, this information could be needed for identification, fault detec-
tion or control purpose. This motivates the design of an estimator, called an observer,
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that deduces all the needed information from the known inputs and the outputs mea-
sured by the available sensors on the plant. It is worth noting that such a problem is
of high importance for industrial systems.

This section is devoted to the observer design for two classes of systems: the LPV
polytopic and the nonlinear ones. Note that we will expose the main methods that will
be used in the next chapters only.

1.2.1 LPV polytopic systems

For LPV polytopic systems, the observer design methods are based on LMI constraints
[Boyd et al. 1994]. In this thesis, the LMIs have been implemented with the parser
YALMIP, [Löfberg 2004] associated with the SeDuMi or SDPT3 solver (see [Sturm
1999] and [Tütüncü et al. 2003] respectively).

1.2.1.1 Pole placement method

Let us consider the following LPV polytopic system:

ẋ =
2N∑

i=1
µi(ρ) (Aix+Biu)

y = Cx

(1.16)

where x ∈ Rnx is the state vector, u ∈ Rnu is the known input vector, y ∈ Rny is the
measurement vector, and ρ ∈ Pρ defined in (1.4).

To estimate the state vector, the following Luenberger-like LPV polytopic observer
is proposed:

˙̂x =
2N∑

i=1
µi(ρ) (Aix̂+Biu+ Li(y − ŷ))

ŷ = Cx̂

(1.17)

Thus, from (1.16) and (1.17), the dynamic estimation error e = x − x̂ is governed
by:

ė =
2N∑

i=1
µi(ρ)(Ai − LiC)e (1.18)

The objective, is to solve the following problem:
Problem 1.1

Find matrices Li ∈ Rnx×ny , i = 1, . . . , 2N , of the observer (1.17) for the polytopic
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LPV system (1.16) such that:

(1) the estimation error system (1.18) is asymptotically stable i.e, e(t)→ 0 when
t→∞.

(2) the eigenvalues of Ai−LiC, i = 1, . . . , 2N , are in a chosen area of the complex
plane.

Based on [Chilali and Gahinet 1996], one can establish the following proposition.
Proposition 1.2

Consider the LPV polytopic observer (1.17) for the polytopic LPV system (1.16).
Problem 1.1 is solved, if there exist matrices Yi ∈ Rnx×ny , i = 1, . . . , 2N , and
P = P T � 0 ∈ Rnx×nx such that the following LMIs hold for all i = 1, . . . , 2N :

Pole
placement

area
Respective LMIs

xαxβ

given two positive scalars xα and xβ,

PAi − YiC + ATi P − CTY T
i + 2xαP ≺ 0

PAi − YiC + ATi P − CTY T
i + 2xβP � 0

(1.19)

r
q

given two positive scalars r and q,


−rP qP + PAi − YiC
∗ −rP


 ≺ 0 (1.20)

yβ

yα
given two scalars yα and yβ such that yα > yβ,

j(PAi − YiC + ATi P − CTY T
i ) + 2yαP � 0

j(PAi − YiC + ATi P − CTY T
i ) + 2yβP ≺ 0

(1.21)

where j2 = −1
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θ

given a positive scalar θ,



sin θ(PAi −
YiC + ATi P −

CTY T
i )

cos θ(PAi −
YiC − ATi P +

CTY T
i )

∗ sin θ(PAi −
YiC + ATi P −

CTY T
i )




≺ 0 (1.22)

The gains of the observer (1.17) are deduced as Li = P−1Yi.

It is possible to set more complex area by combining the different LMIs presented
in Proposition 1.2.

Example 1.1
In order to ensure a desired speed and damping convergence, we wish to bring the
observer poles inside a rectangle defined in Figure 1.2. A simple solution consists
in combining (1.19) and (1.21) to get:

PAi − YiC + ATi P − CTY T
i + 2xαP ≺ 0

PAi − YiC + ATi P − CTY T
i + 2xβP � 0

j(PAi − YiC + ATi P − CTY T
i ) + 2yαP � 0

j(PAi − YiC + ATi P − CTY T
i ) + 2yβP ≺ 0

(1.23)

yβ

yα

xαxβ

Figure 1.2: Pole placement area example
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1.2.1.2 H∞ performance method

Let us consider the following LPV polytopic system subject to a disturbance:

ẋ =
2N∑

i=1
µi(ρ) (Aix+Biu+ Ew)

y = Cx

z = Czx

(1.24)

where x ∈ Rnx is the state vector, u ∈ Rnu is the known input vector, w ∈ Rnw is the
additive disturbance, y ∈ Rny is the measurement vector, z ∈ Rnz is the signal to be
estimated, and ρ ∈ Pρ.

To estimate the variable z, the Luenberger-like LPV polytopic observer is proposed
hereunder:

˙̂x =
2N∑

i=1
µi(ρ) (Aix̂+Biu+ Li(y − ŷ))

ŷ = Cx̂

ẑ = Czx̂

(1.25)

Thus, from (1.24) and (1.25), the dynamic estimation error e = x − x̂ is governed
by:

ė =
2N∑

i=1
µi(ρ)((Ai − LiC)e+ Ew)

ez = Cze

(1.26)

The objective, is to solve the following problem:
Problem 1.2

Find matrices Li ∈ Rnx×ny , i = 1, . . . , 2N , of the observer (1.25) for the polytopic
LPV system (1.24) such that:

(1) the estimation error system (1.26) is asymptotically stable (e(t) → 0 when
t→∞) for w ≡ 0.

(2) the upper bound γ∞ of the induced-L2 norm from the disturbance w to ez is
minimized, i.e

sup
w 6=0,w∈L2

‖ez‖2

‖w‖2
≤ γ∞ (1.27)

Based on the bounded real lemma [Scherer and Weiland 2000], one can establish
the following proposition.
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Proposition 1.3
Consider the LPV polytopic observer (1.25) for the polytopic LPV system (1.24).
Problem 1.2 is solved, if there exist matrices Yi ∈ Rnx×ny , i = 1, . . . , 2N , and
P = P T � 0 ∈ Rnx×nx such that the following LMIs hold for all i = 1, . . . , 2N :

min γ∞

s.t



PAi − YiC + ATi P − CTY T

i E PCT
z

∗ −γ∞Inw 0
∗ ∗ −γ∞Inz


 ≺ 0

(1.28)

The gains of the observer (1.25) are deduced as Li = P−1Yi.

It is worth noting that, when the disturbance matrix E is not known, it can be
arbitrarly fixed. Besides, for a loop shaping design, in order to have a finer synthesis, it
is possible to add a performance weight on the input, like it has been done in [Yamamoto
et al. 2015] for example.

1.2.1.3 FAFE design method

In this section, we are now looking to estimate both the states and an additive fault.
An interesting solution has been developed in [Zhang et al. 2008] and [Zhang et al.
2012], where the authors proposed a Fast Adaptive Fault Estimation (FAFE) observer.
As in [Rodrigues et al. 2015], the LPV polytopic FAFE formulation is presented here.
Let consider the following LPV polytopic system to observe:

ẋ =
2N∑

i=1
µi(ρ) (Aix+Biu+ Fif)

y = Cx

(1.29)

where x ∈ Rnx is the state vector, u ∈ Rnu is the known input vector, y ∈ Rny is the
measurement vector, f ∈ Rnf is the fault and ρ ∈ Pρ.

To estimate both the state and fault vectors, the following FAFE LPV polytopic
observer structure is proposed:





˙̂x =
2N∑

i=1
µi(ρ)

(
Aix̂+Biu+ Liey + Fif̂

)

˙̂
f = Γ

2N∑

i=1
µi(ρ)Ui (ėy + σey)

ŷ = Cx̂

ey = y − ŷ

(1.30)
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where the symmetric positive matrix Γ ∈ Rnf×nf , and the positive scalar σ are tunable
parameters.

Let us denote, e = x − x̂ and ef = f − f̂ , the state and fault estimation errors
respectively. The objective is to solve the following problem:

Problem 1.3
Find matrices Li ∈ Rnx×ny , Ui ∈ Rnf×ny , for all i = 1, . . . , 2N of the FAFE ob-
server (1.30) for the polytopic LPV system (1.29) such that e and ef are uniformly
bounded.

To design (1.30), let us consider the following assumptions:

A1. rank(CFi) = rank(Fi), and the invariant zeros of (Ai, Fi, C) are in the left-half
complex plane for all i = 1, . . . , 2N .

A2. The fault f and its time derivative are norm bounded i.e: 0 ≤ ‖f‖ < β1 and
0 ≤ ‖ḟ‖ < β2 with 0 ≤ β1, β2 <∞.

According to [Zhang et al. 2008] and adapting the solution to the polytopic case,
one can establish the following proposition.

Proposition 1.4
Consider the LPV polytopic FAFE observer (1.30) for the polytopic LPV system
(1.29). Under Assumptions A1-A2 and given scalars σ, µ > 0, Problem 1.3 is solved,
if there exist matrices Yi ∈ Rnx×ny , ∀i = 1, . . . , 2N and symmetric positive matrices
P ∈ Rnx×nx and G ∈ Rnf×nf such that the following conditions hold for all i =
1, . . . , 2N :




PAi + ATi P − CTYi − YiC − 1
σ

(
ATi PFi − CTY T

i Fi
)

∗ 1
σ

(
−2F T

i PFi + 1
µ
G

)



≺ 0 (1.31)

and
F T
i P = UiC (1.32)

The gains Li of (1.30) are deduced as Li = P−1Yi.
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Remark 1.2
As mentioned in [Zhang et al. 2008], it is difficult to solve simultaneously the LMIs
(1.31) and the equalities (1.32). However, it is possible to transform (1.32) into the
following optimization problem for all i = 1, . . . , 2N :

min η

s.t

[
ηInf F T

i P − UiC
∗ ηInx

]
≺ 0

(1.33)

Proposition 1.4 provides a very efficient solution to estimate an additive unknown
input: both implementations of the algorithm (1.30) and LMIs are easy and the conver-
gence of the errors is relatively fast compared to other techniques. However, the method
has some tuning parameters σ, µ and Γ that have to be arbitrary chosen without clear
physical coherence. The scalars σ and µ are generally fixed to 1 and the learning rate
matrix Γ could be taken as: Γ = λInf with λ > 0. It shall also be mentioned that the
rank condition in Assumption A1 may be very restrictive in comparison with a stan-
dard technique where the additive unknown vector f is extended in the state vector.
To illustrate this problem, let us introduce the following example:
Example 1.2

Consider the following LTI system:
ẋ = Ax+ Ff

y = Cx
(1.34)

with,

A =




0 0 0 0
1.5 1.7 0 0
0 −6.2 6.2 0
0 0 0 0


 , F =




0.8 2.3
0 0
0 0

1.3 1.3


 , C =

[
0 0 1 0
0 0 0 1

]
(1.35)

The rank computation gives: rank(CF ) = 1 6= rank(F ) = 2. Assumption A1 is
not fulfilled and thus a FAFE cannot be designed. An alternative way to estimate
f is to extend (1.34) with ḟ = 0. In this case, we obtain:

ẋe = Aexe

y = Cexe
(1.36)

with

xe =
[
x
f

]
, Ae =




0 0 0 0 0.8 2.3
1.5 1.7 0 0 0 0
0 −6.2 6.2 0 0 0
0 0 0 0 1.3 1.3
0 0 0 0 0 0
0 0 0 0 0 0




, Ce =
[

0 0 1 0 0 0
0 0 0 1 0 0

]

(1.37)
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Now, if we compute the rank of the observability matrix of the pair (Ae, Ce), its
value is 6 = dim(xe) so an observer can be designed on (1.36) by using, for example,
Proposition 1.2.

1.2.1.4 H∞ filtering method

The design of H∞ filters, is based on the standard formulation of the H∞ controller
synthesis for generalized systems as illustrated in Figure 1.3 where Kf is a filter and P
the generalized plant. Now, consider a generalized polytopic LPV system P such that:

P :





ẋ =
2N∑

i=1
µi(ρ) (Aix+B1iw +B2iu)

z =
2N∑

i=1
µi(ρ) (C1ix+D11iw +D12iu)

y =
2N∑

i=1
µi(ρ) (C2ix+D21iw +D22iu)

(1.38)

where x ∈ Rnx is the state vector, w ∈ Rnw is the exogenous input vector, u ∈ Rnu is
the endogenous input vector, z ∈ Rnz is the exogenous output vector and y ∈ Rny is
the endogenous output vector. It is also assumed that ρ ∈ Pρ.

In addition, assume that the following statements are fulfilled for all i = 1, . . . , 2N :

A1. P is parameter independent on the input and the output, i.e B2i = B2, D12i = D12,
C2i = C2 and D21i = D21.

A2. The output y is independent from u, i.e D22i = 0.

A3. The pairs (Ai, B1i) and (Ai, B2) are stabilizable.

A4. The pairs (C1i, Ai) and (C2, Ai) are detectable.

Thus, under Assumptions A1-A2, (1.38) can be rewritten as:

P :





ẋ =
2N∑

i=1
µi(ρ) (Aix+B1iw) +B2u

z =
2N∑

i=1
µi(ρ) (C1ix+D11iw) +D12u

y = C2x+D21w

(1.39)
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As shown in the interconnection scheme in Figure 1.3, a polytopic LPV filter Kf is
investigated here, given by:

Kf :





ẋf =
2N∑

i=1
µi(ρ) (Afixf +Bfiy)

u =
2N∑

i=1
µi(ρ) (Cfixf +Dfiy)

(1.40)

where xf ∈ Rnxf .

P

Kf

yu

w z

Figure 1.3: Generalized H∞ problem

Thus we aim at solving the following problem:
Problem 1.4

Find matrices Afi ∈ Rnx×nx , Bfi ∈ Rnx×ny , Cfi ∈ Rnu×nx , Dfi ∈ Rnu×ny , i =
1, . . . , 2N of the filter (1.40) for the polytopic LPV system (1.39) such that:

(1) the closed-loop system presented in Figure 1.3 is stable.

(2) the upper bound γ of the induced-L2 norm from the exogenous inputs w to z
is minimized, i.e

sup
w 6=0,w∈L2

‖z‖2

‖w‖2
≤ γ∞ (1.41)

According to [Scherer and Weiland 2000], it is possible to synthesize the filter Kf

which minimizes the effect of w on z by the following proposition:
Proposition 1.5

Consider the LPV polytopic filter (1.40) and the polytopic LPV system (1.39).
Under Assumptions A1-A4, Problem 1.4 is solved, if there exist matrices Y,X ∈
Rnx×nx and Ãi ∈ Rnx×nx , B̃i ∈ Rnx×ny , C̃i ∈ Rnu×nx , D̃i ∈ Rnu×nx , i = 1, . . . , 2N
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such that the following LMIs hold for all i = 1, . . . , 2N :

min γ

s.t




M11 ∗ ∗ ∗
M21 M22 ∗ ∗
M31 M32 M33 ∗
M41 M42 M43 M44


 ≺ 0

[
X Inx
Inx Y

]
� 0

(1.42)

where,
M11 = AiX +XATi +B2C̃i + C̃T

i B
T
2

M21 = Ãi +
(
Ai +B2D̃iC2

)T

M22 = Y Ai + ATi Y + B̃iC2 +
(
B̃iC2

)T

M31 =
(
B1i +B2D̃iD21

)T

M32 =
(
Y B1i + B̃iD21

)T

M33 = −γInw
M41 = C1iX +D12iC̃i

M42 = C1i +D12iD̃iC2

M43 = D11i +D12iD̃iD21

M44 = −γInz

(1.43)

The reconstruction of the filter Kf is obtained by the following equivalent transfor-
mation,





Dfi = D̃i

Cfi =
(
C̃i − D̃iC2X

) (
MT

)−1

Bfi = N−1
(
B̃i − Y B2D̃i

)

Afi = N−1
(
Ãi − Y AiX − Y B2D̃iC2X −NB̃iC2X − Y B2C̃iM

T
) (
MT

)−1

(1.44)
where M and N are defined such thatMNT = Inx−XY which can be solved through
a singular value decomposition plus a Cholesky factorization.

Of course, as in [Borges and Peres 2006; Varrier 2013] or [Yamamoto 2017], Propo-
sition 1.5 can be used to estimate variables. To illustrate this, the following example is
introduced to estimate a fault vector.
Example 1.3

Consider the system represented in the block scheme Figure 1.4. It consists of a
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G Kf

u
f̂

f
z

y

Figure 1.4: Bloc scheme for fault estimation

plant G, subject to known inputs u and unknown fault vector f , and a filter Kf

which will be synthesized through the H∞ method Proposition 1.5.
The first step is to construct the generalized system P as in (1.38). The variable

of interest here is z = f − f̂ and the exogenous inputs are respectively the vector
[u f ]T and f̂ . The input to the filter is the vector [u y]T and the output is the
estimation of f , f̂ . This leads to the generalized H∞ problem depicted in Figure 1.5.

Once P is deduced (one can use, for example, the Matlab function sysic),
Proposition 1.5 can be applied to minimize the induced-L2 norm to estimate f .

P

Kf

[
u

y

]
f̂

z
[
u

f

]

Figure 1.5: Generalized H∞ problem for fault estimation

1.2.1.5 Implementation issues

We have seen in Section 1.1.3.1 that, if the parameter vector ρ ∈ Pρ:

Pρ :=
{
ρ = [ρ1 . . . ρN ]T ∈ RN and ρi ∈ [ρi, ρi], for all i = 1 . . . N

}
(1.45)

then it evolves inside a polytope represented by 2N vertices ωi as:

ρ ∈ Θ := Co{ω1, . . . , ω2N} (1.46)

where the vertices are defined by a vector ωi = [νi1 . . . νiN ]T and νij equals ρj or ρj.
Thus, if a matrix M(ρ) is affinely dependent on ρ, it also belongs to a polytope defined
as:

M(ρ) ∈M := Co {M1, . . . ,M2N} (1.47)
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where the vertices Mi = M(ωi). Therefore,

M(ρ) =
2N∑

i=1
µi(ρ)Mi (1.48)

This section is devoted to the interpolation procedure for polytopic LPV systems
i.e:

(1) How to compute the vertices Mi.

(2) How to compute the interpolation functions µi(ρ).

We have seen in the literature that, most of the time, the interpolation procedure
for polytopic systems, when it is presented, is not explicitly formulated for a number
of parameters N > 2. Two interesting procedures have been reported in [White et al.
2013] and [Bara et al. 2001]. The solution presented here is based on the second one
where a systematic procedure easily implementable for any number N of parameters is
exposed.

Let denote (biN , biN−1, . . . , b
i
1), the binary representation with N bits, of the integer

i. bi1 is the least significant bit and biN the most significant one. Then, each coordinate
νk for all k ∈ 1, . . . , N in ωi = [νi1 . . . νiN ]T can be computed as:

νk =



ρk when bi−1

k = 0

ρk when bi−1
k = 1

(1.49)

Each vertice ofM in (1.47) are then deduced as: Mi = M(ωi). The full procedure for
the computation of the vertices is summarized in Algorithm 1.

Now, the interpolation functions µi(ρ) are given by:

µi(ρ) =
N∏

k=1

αikρk + βik
ρk − ρk

(1.50)

where

αik =




1 when bi−1
k = 0

−1 when bi−1
k = 1

and βik =



−ρk when bi−1

k = 0

ρk when bi−1
k = 1

(1.51)

This representation guarantees that µi(ρ) ≥ 0 and
2N∑

i=1
µi(ρ) = 1. The described proce-

dure is summarized in Algorithm 2.

To see an application of the proposed algorithms, let us consider the following
example.
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Algorithm 1: Vertices computation of a matrix M
input : The bounds ρk and ρk of each parameter ρk
output: The vertices of M(ρ)
for i← 1 to 2N do

Compute the binary representation of i− 1: (bi−1
N , bi−1

N−1, . . . , b
i−1
1 ) ;

for k ← 1 to N do
if bi−1

N+1−k is equal to 0 then
νik ← ρk ;

else
νik ← ρk ;

end
end
ωi ← [νi1 . . . νiN ]T ;
Mi ←M(ωi) ;

end

Algorithm 2: Interpolation functions computation
input : The bounds ρk and ρk of each parameter ρk and the parameter vector ρ
output: The interpolation functions µi(ρ)
for i← 1 to 2N do

Compute the binary representation of i− 1: (bi−1
N , bi−1

N−1, . . . , b
i−1
1 ) ;

for k ← 1 to N do
if bi−1

N+1−k is equal to 0 then
αik ← 1 ;
βik ← −ρk ;

else
αik ← −1 ;
βik ← ρk ;

end

µi(ρ)← µi(ρ)
(
αikρk + βik
ρk − ρk

)
;

end
end
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Example 1.4
Given the following affine LPV matrix with N = 2 parameters:

M(ρ) =
[
ρ1 ρ2
1 0

]
(1.52)

where ρ1 ∈ [ρ1, ρ1] and ρ2 ∈ [ρ2, ρ2]. We are considering the vertices Mi and the
interpolation functions µi(ρ) such that:

M(ρ) =
4∑

i=1
µi(ρ)M(ωi) (1.53)

Applying Algorithm 1 and Algorithm 2, one obtains:

• For i = 1:
(1− 1) binary−−−−−−−−→

representation
00 ⇒ ω1 = (ρ1, ρ2) and µ1(ρ) =

(
ρ1 − ρ1

ρ1 − ρ1

)(
ρ2 − ρ2

ρ2 − ρ2

)

• For i = 2:
(2− 1) binary−−−−−−−−→

representation
01 ⇒ ω2 = (ρ1, ρ2) and µ2(ρ) =

(
ρ1 − ρ1

ρ1 − ρ1

)(−ρ2 + ρ2

ρ2 − ρ2

)

• For i = 3:
(3− 1) binary−−−−−−−−→

representation
10 ⇒ ω3 = (ρ1, ρ2) and µ3(ρ) =

(−ρ1 + ρ1

ρ1 − ρ1

)(
ρ2 − ρ2

ρ2 − ρ2

)

• For i = 4:
(4− 1) binary−−−−−−−−→

representation
11 ⇒ ω4 = (ρ1, ρ2) and µ4(ρ) =

(−ρ1 + ρ1

ρ1 − ρ1

)(−ρ2 + ρ2

ρ2 − ρ2

)

A geometrical interpretation of the interpolation of M(ρ) is depicted in Fig-
ure 1.6.

M(ω1)

M(ω2)

M(ω3)

M(ω4)

M(ρ)

ρ1

ρ2

ρ1

ρ2

ρ1

ρ2

Figure 1.6: Matrix polytopic interpolation
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1.2.2 For nonlinear systems

In this section, the problem of observer design for nonlinear systems [Khalil 1996]
is considered. Based on [Besançon 2007], different nonlinear observers are presented
hereafter. The Kalman Filter for LTV systems and its extension for nonlinear ones.
Then, an adaptive observer for state affine systems is detailed.

1.2.2.1 Kalman observer

Kalman filtering is now largely used in both the academic and industrial fields. One
can see for instance [Chui and Chen 2009] for the theory. Consider the following LTV
system:

ẋ(t) = A(t)x(t) +B(t) + q(t)
y(t) = C(t)x+ r(t)

(1.54)

where q(t) and r(t) are white Gaussian noises following the distribution: q(t) ∼ N (0, Q)
and r(t) ∼ N (0, R).

Although the Kalman filter is well known, it is less known that some particular
conditions need to be fulfilled to guarantee its convergence. To design an observer for
(1.54), we need the following definition:
Definition 1.9

The pair (A(t), C(t)) is said uniformly completely observable if there exist positive
constants α, β, T such that, for all t, the following inequalities hold:

αI ≤
∫ t+T

t
ΨT (τ, t)CTCΨ(τ, t).dτ ≤ βI (1.55)

where Ψ is the transition matrix of the autonomous system ẋ = A(t)x, y = Cx,
defined by:

dΨ(τ, t)
dτ

= A(τ)Ψ(τ, t) and Ψ(t, t) = I (1.56)

Then, the proposition can be established [Kalman and Bucy 1961; Hammouri and
De Leon Morales 1990; Besançon 2007] which realizes a Kalman filter:
Proposition 1.6

If the pair (A(t), C(t)) in (1.54) is uniformly completely observable, then an observer
of the form:

˙̂x(t) = A(t)x̂(t) +B(t) +K(t)(y(t)− ŷ(t))
ŷ(t) = Cx̂(t)

(1.57)
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where
K(t) = P (t)CTR−1

Ṗ (t) = A(t)P (t) + P (t)A(t)T −K(t)CP (t) +Q

P (0) = P0 = P T
0

(1.58)

minimizes the covariance matrix of the state estimation error.

The previous result can be extended for nonlinear systems which is the most well-
known observer for nonlinear system: the Extended Kalman Filter (EKF).
Proposition 1.7 (Extended Kalman Filter (EKF))

Given a nonlinear system of the form:

ẋ(t) = f(x(t), u(t)) + q(t)
y = Cx(t) + r(t)

(1.59)

where q(t) and r(t) are white Gaussian noise defined as: q(t) ∼ N (0, Q) and r(t) ∼
N (0, R).

There exists an Extended Kalman Filter (EKF), of the form:

˙̂x(t) = f(x̂(t), u(t)) +K(t)(y(t)− Cx̂(t)) (1.60)

where the time-varying gain K(t) is given by:

K(t) = P (t)CTR−1

Ṗ (t) = F (t)P (t) + P (t)F (t)T −K(t)CP (t) +Q

P (0) = P0 = P T
0

F (t) = ∂f

∂x
(x̂(t), u(t))

(1.61)

Q and R are the covariance matrices of the system and measurement respectively.

This formulation is very convenient since it proposes a systematic observer for non-
linear systems. But as many authors pointed it out, as [Verhaegen and Van Dooren
1986; Besançon 2007] its convergence is just local and numerical instabilities may ap-
pear. However, it is largely used in the industry and its efficiency has been clearly
demonstrated. See for example, [Boussak 2005; Janiszewski 2006] for EKF applica-
tions.

1.2.2.2 Adaptive observer

An adaptive observer design follows the method developed in [Besançon 2000; Besançon
et al. 2006] and [Zhang and Clavel 2001; Li et al. 2011]. Such an observer both estimates
the state and unknown constant parameters involved in the dynamical equation. The
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system must be affine in the state and parameter vector as:

ẋ = A(u, y)x+ ϕ(u, y) + Φ(u, y)θ
y = Cx

(1.62)

where x, u, y classically denote the state, the input and the measured output vectors
respectively and θ a vector of unknown constant parameters. The elements of the
matrices A(u, y) and Φ(u, y) and of the vector ϕ(u, y) are assumed to be continuous
and uniformly bounded functions.
Proposition 1.8

If persistent exciting conditions are verified, i.e, if there exist positive constants
α1,2, β1,2, T1,2 and some bounded symmetric positive definite matrix Σ such that,
for all t, the following inequalities hold:

α1I ≤
∫ t+T1

t
ΛT (τ)CTΣ(τ)CΛ(τ).dτ ≤ β1I (1.63)

and
α2I ≤

∫ t+T2

t
ΨT (t, τ)CTΣ(τ)CΨ(t, τ).dτ ≤ β2I (1.64)

where Ψ is the transition matrix of the system ẋ = A(u, y)x, y = Cx, then, the
following system is an exponential adaptive observer for the nonlinear system (1.62),

˙̂x = A(u, y)x̂+ ϕ(u, y) + Φ(u, y)θ̂
+ {ΛS−1

θ ΛTCT + S−1
x CT}Σ(y − Cx̂)

˙̂
θ = S−1

θ ΛTCTΣ(y − Cx̂)
Λ̇ = {A(u, y)− S−1

x CTΣC}Λ + Φ(u, y)
Ṡx = −ρxSx − A(y, u)TSx − SxA(u, y) + CTΣC
Ṡθ = −ρθSθ + ΛTCTΣCΛ

(1.65)

with Sx(0), Sθ(0) � 0.

Note that ρx and ρθ are the tunable parameters for the convergence rate and that
Λ, Sx and Sθ are time-varying observer gains.
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The results presented in this chapter are based on [Dubuc et al. 2017].

2.1 Introduction

In trucks, multiple peripheral devices such as alternator, water pump or air conditioning
compressor are driven by a common belt. This belt, connected to the engine shaft,
transmits the necessary mechanical power to all components in line as depicted in
Figure 2.1. During the installation, the adjustment of a belt tensioner permits to hold
a predetermined amount of tension on the belt, which enables it to fulfill its role.
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In case of under-tension, the belt will slip, causing noise and premature wear. More
importantly, it will also degrade the operation of all driven components to a subnominal
state. Among others, the water pump located in the cooling system will not provide
the proper coolant flow rate to the engine. This could lead the engine to overheat and,
eventually, stall.

Cranckshaft
pulley

Alternator
pulley

Water

pulley
pumppulley

A/C

Belt tensioner

Figure 2.1: Components driven by the belt

To overcome such problems, this chapter proposes to estimate a parameter which is
shown to be characteristic of the belt tensioner’s health, via an analysis of the cooling
system. To do so, a simplified model of the cooling system for diagnosis will be devel-
oped. To estimate the belt tensioner characteristic parameter, two observers defined
in Chapter 1 have been designed and compared: an Adaptive Observer (AO) and an
Extended Kalman Filter (EKF). The merits of these two observer-based methods will
be validated using simulation on a high-fidelity model of the cooling system designed
with GT-POWER.

The chapter is organized as follows. In Section 2.2, a simplified model of the cooling
system is presented. In Section 2.3, based on this model, an Adaptive Observer and an
Extended Kalman Filter are designed to monitor the performance of the belt tensioner.
Then in Section 2.4 we analyze the performance of the developed solutions. Finally,
conclusions are stated in Section 2.5.

2.2 Cooling System Modeling

A schematic representation of the cooling system is given in Figure 2.2. The water pump
provides the coolant flow to remove the heat produced by the combustion in order to
protect the different components from overheating and to ensure a good lubrication.
In our case, the pump is driven by the engine through a belt. To reach more rapidly
the optimal engine temperature, a thermostat is used to control it. It will be opened
during cold start, then the flow passes through the radiator which is cooled by a fan
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Table 2.1: Nomenclature

Notation Description Unit
Neng Engine speed rpm
Npump Pump speed rpm

Γ Engine torque N.m
Qg,eb Heat flow from gas in the cylinder to the engine

block
W

Qeb,c Heat flow from the engine block to the coolant W
Aeb Heat transfer surface area inside the engine block m2

Teb Temperature of the engine block K
Tc,{i,o} Coolant temperature at the inlet and at the outlet K
hc Coolant heat transfer coefficient W.m−2.K−1

ceb Heat capacity of the engine block J.kg−1.K−1

cc Heat capacity of the coolant J.kg−1.K−1

ṁc Mass flow rate of the coolant kg.s−1

ṁc,{e,oc} Mass flow rate of the coolant through the engine
and the oil cooler

kg.s−1

m{eb,c} Mass of the engine block and of the coolant in
contact with the engine block

kg

and the wind speed. Figure 2.3 summarizes the different heat exchanges involved the
engine block.

The next section presents a simplified thermal model that will be used to design
observers. The notations used in this section and in the chapter follow the nomenclature
in Table 2.1.

2.2.1 Thermal modeling of the engine block

To design a control-oriented model, a lumped-parameter approach is followed in the
sequel, neglecting the distributed nature of the temperature of the coolant when flowing
through the engine block. In details, we follow a procedure similar to [Cortona et
al. 2002; Astorga-Zaragoza et al. 2008; Isermann 2014] where mean-value models are
obtained from energy balances.

Let us consider the system presented in Figure 2.3. It consists in two thermal
subsystems: the engine block and the coolant.
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Figure 2.2: Architecture of the cooling system

2.2.1.1 Engine block thermal balance

A heat balance on the engine block gives the following temperature evolution:

Ṫeb = Qg,eb −Qeb,c

mebceb
(2.1)

Note that the heat flow Qg,eb can be considered as an input of the model. Indeed,
this flow depends on the engine operating point and its value can be obtained from a
three-dimensional map (cf. Figure 2.4):

Qg,eb = f(Neng,Γ) (2.2)
On the other hand, the heat transfer to the coolant originates mainly from conduction
through the area Aeb, and thus can be expressed as:

Qeb,c = hcAeb

(
Teb −

Tc,i + Tc,o
2

)
, (2.3)

where an average value between the inlet and outlet flow temperatures is used to account
for the distributed nature of the flow temperature.

In addition, the heat transfer coefficient hc can be expressed by phenomenological
laws (see for example the Colburn analogy [Bergman and Incropera 2011]). In our case
the following relation is used:

hcAeb = (hA)ref
(
ṁc,e

ṁref

)0.75

(2.4)
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Qeb,c

Tc,o

Tc,i

Water Pump

ṁc

ṁc,oc

ṁc,e

Qg,eb

Teb

Temperature sensor

Figure 2.3: Flows and temperatures of the engine block

2.2.1.2 Coolant thermal balance

Following similar arguments, a heat balance equation gives:

Ṫc,o = Qeb,c −∆Qc

mccc
(2.5)

where ∆Qc represents the heat flow due to the temperature difference at the input and
the output of the engine. It can be expressed as:

∆Qc = ccṁc,e(Tc,o − Tc,i) (2.6)

2.2.1.3 Final second-order model

By combining (2.1), (2.3), (2.5) and (2.6), we finally get the following second order
system:




Ṫeb = hc(ṁc,e)Aeb
mebceb

(
Tc,o
2 − Teb

)
+ Qg,eb

mwceb
+ hc(ṁc,e)Aeb

mebceb

Tc,i
2

Ṫc,o =
(
−hc(ṁc,e)Aeb

2mccc
− ṁc,e

mc

)
Tc,o + hc(ṁc,e)Aeb

mccc
Teb +

(
ṁc,e

mc

− hc(ṁc,e)Aeb
2mccc

)
Tc,i

(2.7)
in which hc is defined through (2.4).

It is worth noting that, in the sequel, it is assumed that the following variables are
known (measured or estimated): Neng; Γ; Tc,i and Tc,o.



38 Chapter 2. Belt tensioner diagnosis

Figure 2.4: Heat flow from the gas to the engine block

2.2.2 Flow modeling

Since the water pump is mechanically connected to the engine, the provided flow is
a function of the engine speed. In order to simplify the model, we will use a crude
approximation of this relation by assuming that:

ṁc = αNpump, α ∈ R+ (2.8)

For more detailed pump models see [Isermann 2014].

Since the pump speed is not measured but the engine one is, the following relation
is also considered:

Npump = rNeng, r ∈ R+ (2.9)
Finally, a part of the coolant recirculated by the water pump actually flows through
the oil cooler instead of the engine as shown in Figure 2.2. This is represented by a
simplified proportional relation between the global mass flow rate and the engine block
one:

ṁc,e = βṁc, β ∈ [0; 1] (2.10)
Plugging together (2.8)-(2.10), we have the simple relation:

ṁc,e = σNeng, σ ∈ R+ (2.11)

in which σ = α× β × r is a constant1.
1This approximation is verified if the resistance coefficient of the cooling system is constant, that is, when

the thermostat position is fixed (after engine start-up).
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2.2.3 Model validation

To validate the modeling (2.7) and the assumptions (2.4) and (2.11), it is compared
with one built with GT-POWER. This software, developed by Gamma Technology,
consists in a set of simulation libraries for analyzing the engine behavior and is largely
used in the automotive industry. As it enables to obtain a high-fidelity simulation, this
model will be the reference one in the sequel.

GT-POWER model ref TebΓeng
Neng

Npump
r Tc,i

ref Tc,o

map Qg,eb

Simplified model:

(2.7), (2.4) and (2.11)

model Teb
model Tc,o

Figure 2.5: Block diagram to validate the simplified model

Figure 2.6: Torque and engine speed profiles

The validation consists in the comparison of the reference data from the GT-
POWER and the ones obtained from the simplified model. To do so, the process
described in Figure 2.5. The engine speed and load torque profiles used for the valida-
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tion is the one presented in Figure 2.6.

Under these conditions, the results obtained from GT-POWER and from the devel-
oped model are given in Figure 2.7.

It can be observed that the temperatures recovered from the simplified model match
almost perfectly the reference ones. This justifies the use of the simplified model to
design observers.

Figure 2.7: Comparison between the reference and the simplified model

2.3 Observer-based fault estimation

This section is devoted to: define a characteristic coefficient which determines the
degradation of the belt tensioner and propose a observer-based solution to estimate
this coefficient.

2.3.1 Fault diagnosis problem statement

The belt tensioner ensures power transmission between the engine and all the other
components connected to the belt. A malfunction on the belt tensioner will affect the
transmission ratio r in (2.9) which, in turn, will affect the mass flow rate in (2.8).
Thus, from the cooling system (2.4), (2.7), (2.11) point of view, this malfunction will
affect the nominal mass flow rate through a change of the parameter σ in (2.11). Note
that this change will also affect the heat transfer coefficient hc which depends on ṁc,e
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through (2.4). Therefore, from our point of view, the coefficient σ is a good candidate
to provide an indication of the belt tensioner’s health.

To evaluate in real time the degradation of the transmission, observers have been
designed to estimate the parameter σ which is considered to be constant (or slow-
varying). Two types of observer are considered in the sequel. The first one is an
Adaptive Observer (AO) and then an extended Kalman filter (EKF).

2.3.2 Adaptive observer

The adaptive observer design follows the method developed in [Besançon et al. 2006]
and [Zhang and Clavel 2001]. Such an observer both estimates the state and unknown
constant parameters involved in the dynamical equation. The system must be affine in
the state and parameter vector as:

ẋ = A(u, y)x+ ϕ(u, y) + Φ(u, y)θ
y = Cx

(2.12)

where x, u, y classically denote the state, the input and the measured output vectors
respectively and θ a vector of unknown constant parameters.

In order to apply this observer to the cooling system (2.4), (2.7), (2.11) let us note:

θ1 = hcAeb θ2 = ṁcecc

a1 = mebceb a2 = mccc
(2.13)

Introducing z = [Teb Tc,o]T ; u = [Qg,eb Tc,i]T , one obtains the following equivalent
state-space representation:

ż =




−θ1

a1

θ1

2a1
θ1

a2
−θ1 + 2θ2

2a2


 z +




1
a1

θ1

2a1

0 θ2

a2
− θ1

2a2


u

y = [0 1] z

(2.14)

However it does not fit the formalism of (2.12) as it introduces bilinear terms θ1z1 in
which z1 is not measured and this prevents the use of AO. To overcome this problem,
(2.14) is turned into its companion form. With this aim in view, the following coordinate
transformation is used:

x =



θ1

a2

θ1

a1
0 1


 z (2.15)
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This leads to:

ẋ =



0 0

1 0


x

+




u2 − x2

a1a2

u1

a1a2
0

0 −x2

a1
− x2 + u2

2a2

u2 − x2

a2


Θ

y = [0 1] x

(2.16)

where Θ = [θ1θ2 θ1 θ2]T . Therefore (2.16) satisfies the required form (2.12).

Now, to estimate the parameter σ, it is important to note that, by using (2.4) and
(2.11):





θ1 = (hA)ref
(
Neng

ṁref

)0.75

σ0.75 , f(Neng)σ0.75

θ2 = ccNengσ , g(Neng)σ
(2.17)

Thus σ can be directly estimated by including (2.17) in Θ. Therefore (2.16) becomes:

ẋ =



0 0

1 0


x+




f(Neng)g(Neng)
u2 − x2

a1a2
f(Neng)

u1

a1a2
0

0 f(Neng)
(
−x2

a1
− x2 + u2

2a2

)
g(Neng)

u2 − x2

a2


 θ

, A(u, y)x+ Φ(u, y)θ
y = [0 1] x , Cx

(2.18)
with θ = [σ1.75 σ0.75 σ]T .

If persistent exciting conditions (1.63) and (1.64) are verified, Proposition 1.8 can
be applied and the AO has the following structure:

˙̂x = A(u, y)x̂+ ϕ(u, y) + Φ(u, y)θ̂
+ {ΛS−1

θ ΛTCT + S−1
x CT}Σ(y − Cx̂)

˙̂
θ = S−1

θ ΛTCTΣ(y − Cx̂)
Λ̇ = {A(u, y)− S−1

x CTΣC}Λ + Φ(u, y)
Ṡx = −ρxSx − A(y, u)TSx − SxA(u, y) + CTΣC
Ṡθ = −ρθSθ + ΛTCTΣCΛ

(2.19)
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2.3.3 Extended Kalman filter

For the ease of comparison, a classical EKF presented in Proposition 1.7 is also designed.
Since σ is constant, the dynamics σ̇ = 0 is added to the system (2.7) to obtain a third
order system described by:

ẋ(t) = fekf (x(t), u(t))
y = Cx(t)

(2.20)

with x = [σ Teb Tc,o]T ; u = [Qg,eb Tc,i]T and C = [0 0 1].

Note that assuming σ constant is not restrictive since it also corresponds to the
needed assumption in adaptive observer design for parameter estimation.

The EKF to design follows the algorithm:

˙̂x(t) = fekf (x̂(t), u(t)) +K(t)(y(t)− Cx̂(t))
ŷ(t) = Cx̂(t)
K(t) = P (t)CTR−1

Ṗ (t) = F (t)P (t) + P (t)F (t)T −K(t)CP (t) +Q

P (0) = P0 = P T
0

F (t) = ∂fekf
∂x

(x̂(t), u(t))

(2.21)

where the jacobian F (t) are computed with its explicit form.

2.4 Simulation results

To compare the merits of the two methods previously presented, we set them in various
contexts on the reference model developed with GT-POWER. The following initial
conditions and tuning parameters (chosen to get a trade-off between convergence speed
and noise attenuation) have been used in all cases.

Concerning the adaptive observer (2.19):

• ρx = ρθ = 75× 10−3

• θ̂(0) = [0.0021.75 0.0020.75 0.002]T ,
Sx(0) = I2, Sθ(0) = I3, Λ(0) = O2,3, x̂(0) = [29 353.15]T

Concerning the EKF (2.21):

• Q = 100× I3, R = 108
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• x̂(0) = [0.002 353.15 353.15]T , P (0) = I3

It is worth noting that the initial conditions provided to the two observers are
consistent with each other.

2.4.1 Fault scenario

In Section 2.3.1, it has been established that σ is a function of the ratio r defined in
(2.9). To simulate a fault on σ let us consider the following evolution of r:

r(t) =
{

1.4 for t < 500 s
0.7 for t ≥ 500 s

(2.22)

The fault is implemented in GT-POWER through the operating point Npump pro-
vided to the water pump. Data are then collected to feed the developed observers
as depicted in Figure 2.8. Then, following (2.11), the real σ is computed as: σreal =
ṁc,e/Neng. It is depicted with the black dashed plot in the Figure 2.9, 2.11 and 2.12.
Note also that the AO estimates a vector of three coherent parameters but only the
third term will be ploted in the sequel.

GT-POWER modelΓeng
Neng

Npump
r(t) Tc,i

Tc,o

map Qg,eb

Observer:

(2.19) or (2.21)
σ̂

y u2

u1

ṁc,e

Fault

Figure 2.8: Block diagram to evaluate the developed observers

2.4.2 First simulation case: constant engine speed and torque

First, let us consider the simple case of a given constant operating point:

Neng = 1600 rpm, Γ = 816 N.m
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The results corresponding to this case are given in Figure 2.9. One can observe that the
EKF estimates the value of the parameter σ with a short settling time. On the other
hand, the estimation of σ provided by the AO introduces a bias. This can be explained
by the fact that the condition of persistent excitation (1.63) in Proposition 1.8 is not
fulfilled. Indeed, if the speed and the torque are constant, it means that the heat flow
Qg,eb described by (2.2) is constant. Thus the variable u1 in (2.16) is not excited and
so the observer cannot converge. Consequently, for this scenario, the adaptive observer
is not suitable as it suffers from significant limitations.

Figure 2.9: Estimation results obtained in the first case

2.4.3 Second simulation case: constant engine speed and time-varying
torque

To guarantee the persistent excitation condition (1.63) (this has been done a posteriori),
the torque profile is changed into the one depicted in the Figure 2.10. The engine speed
is still equal to 1600 rpm.

The obtained results are presented in Figure 2.11. The persistent excitation is now
fulfilled, and one can observe that both observers converge and correctly estimate the
value of the parameter σ. However, the AO has a significant overshoot which may be
unsuitable for fault detection.
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Figure 2.10: Torque profile in the second case

Figure 2.11: Estimation results obtained in the second case

2.4.4 Third simulation case: more realistic profiles

Until now, the engine speed was kept constant in order to respect the assumption that
the vector θ is constant. Indeed, if Neng is varying, so are the parameters f(Neng)
and g(Neng) in (2.17). To evaluate the performance of the EKF in a more practically
meaningful context, let us consider a third case where torque and speed engine profiles
are time-varying. Besides, a white Gaussian noise with a variance of 0.05 is added to
the measures Tc,o and Tc,i. The considered profiles are the ones given in Figure 2.6.
Corresponding simulations results are depicted in Figure 2.12. One can observe that,
even in a noisy realistic case, the estimation capabilities remain similar to the ones
obtained in the previous case.
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Figure 2.12: Estimation results obtained in the third case

2.5 Conclusion

In this chapter we have proposed a method to estimate the performance degradation
of a belt tensioner from the cooling system point of view. A simplified control-oriented
model has been developed and validated with a more complex model developed in GT-
POWER. The model was then used to design an adaptive observer and an Extended
Kalman Filter.

It has been established in Section 2.4 that the EKF has better transient performance
than the AO to estimate the parameter σ. Besides, the EKF estimation requires fewer
assumptions but it is well known that its convergence is just local and may have nu-
merical instability [Verhaegen and Van Dooren 1986]. On the other hand, the AO only
converges if the engine speed is constant, with sufficient excitation on Qg,eb. This con-
dition is, in practice, difficult to obtain, as it implies that the rotation must be constant
while providing a variable torque (see Figure 2.10).

We may also conclude that a single observer is not enough to detect and isolate
the fault on the belt tensioner. In fact, as said before, a fault may also occur in other
components of the cooling system. For example, a fault on the coolant mass flow rate,
as a leak, will affect σ. To overcome this problem, we should monitor all the other
systems driven by the belt.
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3.1 Introduction

To meet the legislative standards, the automotive manufacturers have to provide on-
board diagnosis (OBD) solutions for the anti-pollution systems [Mohammadpour et al.
2012]. Among them, the Charge Air Cooler (CAC) and the EGR cooler have to be
diagnosed. These elements are a part of the systems regulating the soot and NOx
emissions (see the engine architecture in Figure 3.1).

49
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Currently, on Volvo’s medium duty engines, both diagnoses are achieved with a
sensor configuration containing the EGR gas temperature measurement Tegr. This
sensor is only used for the EGR cooler diagnosis and it is more expensive than the one
for the P2/T2 measurement (physically the same sensor provides these two variables).
The objective is to provide a diagnosis solution of the CAC and the EGR cooler but
with a different sensor configuration in which the Tegr sensor is removed and replaced
by a sensor measuring the temperature T2R. Based on this configuration, two observers
will be designed to estimate two characteristic coefficients for the degradation. As in
Chapter 2, an Adaptive Observer will be proposed for the CAC diagnosis and an LPV
one for the EGR cooler.

This chapter is organized as follows. In Section 3.2, mean value models of the
different subsystems are developed. Based on this modeling, in Section 3.3 two observers
are designed in order to estimate the characteristic coefficients. Then, in Section 3.4,
the performance of the observers are assessed considering real data obtained with a test
bench. Next, in Section 3.5, the sensitivity with respect to uncertainties are analyzed.
Finally, conclusions are stated in Section 3.6.
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Figure 3.1: Schematic view of the air path in the considered engine
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Table 3.1: Nomenclature

Notation Description Unit
Neng Engine speed r.p.m
T Temperature of a subsystem K
P Pressure of a subsystem Pa
R Ideal gas constant for the air J.kg−1.K−1

D Mass flow rate kg.s−1

γ Heat ratio -
cv Specific heat capacity at constant volume J.kg−1.K−1

cp Specific heat capacity at constant pressure J.kg−1.K−1

Subscript
2 Inside the intake manifold
3 Inside the exhaust manifold
air Related to the inlet air
cool Related to the coolant
2A Area located after the compressor
2R Area located after the Charge Air Cooler
egr Related to the EGR loop
cac Related to the Charge Air Cooler

3.2 Subsystems modeling

The design of observers requires to model the temperature inside the intake manifold
and the heat exchanges of the CAC and the EGR cooler. To develop such temperature
models for the different subsystems constituting the engine air-path, a control volume
approach will be considered as in [Isermann 2014; Castillo 2013].

The notations considered in this chapter follow the nomenclature in Table 3.1 and
Figure 3.1 illustrates the location of the different used variables.

3.2.1 Gas mixture modeling inside the intake manifold

T2 ; V2

Dair

Degr

Dasp

Figure 3.2: Intake manifold volume



52 Chapter 3. CAC and EGR cooler diagnosis

According to the first law of thermodynamics, the internal energy U2 of the gas inside
the volume depicted in Figure 3.2 is expressed as:

U̇2 = hegrDegr + hairDair − haspDasp (3.1)

where, the heat transfer to the wall of the storage is neglected and h are the specific
enthalpy of the incoming and outgoing flows of the volume.

Based on Joule’s second law, the internal energy and the enthalpy are deduced as:

U2 = m2cv2T2

hegr = cp,egrTegr

hair = cp,airT2R

hasp = cp,2T2

(3.2)

where m2 is the gas mass inside the volume. Rigorously, the different heat constants
depend on the temperature and the composition of the gas but, as a first-order ap-
proximation, they will be considered as constant and equal respectively to cv and cp.
Taking a time-derivative of (3.1) and using (3.2), one gets:

ṁ2cvT2 +m2cvṪ2 = cpTegrDegr + cpT2RDair − cpT2Dasp (3.3)

Besides, the dynamics of the gas mass inside the volume is given by:

ṁ2 = Degr +Dair −Dasp (3.4)

Then, the dynamics of intake manifold temperature is deduced:

Ṫ2 = 1
m2

[((1− γ)Dasp −Degr −Dair)T2 + γDegrTegr + γDairT2R] (3.5)

where γ = cp
cv

stands for the heat ratio considered as a constant.

3.2.2 Charge air cooler modeling

The Charge Air Cooler (CAC) is used to cool the compressed air before the engine
to increase its density. This enables to increase the air mass flow rate, and therefore
the power density of the engine. Besides, since the temperature is lower, the different
components in line are and the combustion can be more efficient (lower fuel consumption
for the same pollutants emissions). In Volvo’s trucks, the CAC is located in a heat
exchangers cluster called "cooling package". This cooling package is composed of the
air conditioning condenser, the radiator and the CAC. It is located in front of the truck.
Thus the CAC is cooled by the ambient air flow due to the speed and, if needed, a fan.
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Dair

Qcac

T2A

T2R

CAC

CAC

Tair

Figure 3.3: Heat exchanges inside the Charge Air Cooler (CAC)

The thermal modeling handled here is similar to the one seen in Chapter 2. Following
the scheme in Figure 3.3, a heat balance on the CAC gives the output temperature
evolution described by:

Ṫ2R = Dair

m2R
(T2A − T2R) + Qcac

m2Rcp,air
(3.6)

m2R and Qcac represent, respectively, the gas mass inside the CAC and the heat flow
from the CAC to the ambient air. m2R is deduced from the geometrical characteristics
given by the manufacturer. Qcac is due to the conduction through the area Acac and
can be expressed as:

Qcac = hcacAcac

(
Tair −

T2A + T2R

2

)
(3.7)

where hcac is the heat transfer coefficient.

3.2.3 T2A estimation

In practice, T2A is not measured but can be deduced from the definition of the isentropic
efficiency of the compressor:

ηc = T2A,isentropic − Tair
T2A − Tair

=

(
P2

Pair

) γ−1
γ

− 1
T2A

Tair
− 1

(3.8)

Therefore,

T2A = Tair + Tair
ηc



(
P2

Pair

) γ−1
γ

− 1

 (3.9)

ηc is given by static map experimentally obtained by the manufacturer of the tur-
bocharger. For more details, see Section 5.2.2.2.
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To test the accuracy of the T2A modeling (3.9), the needed data have been collected
from test bench i.e Tair, Pair, P2 and T2A as in Figure 3.4 and for a stationary cycle
(the WHTC: see Appendix B). Figure 3.5 shows the evolution of the modeling of T2A
and the measurement for a part of the WHTC. One can observe that (3.9) follows all
the variations of the real temperature T2A. The observed errors are due to the accuracy
of the map giving ηc.

Model (3.9)
T2ATair

Pair
P2

Figure 3.4: Block diagram to evaluate T2A modeling (3.9)

Figure 3.5: Evolution of the temperature after the compressor T2A

3.2.4 EGR cooler modeling

The EGR cooler is used to lower the temperature of the exhaust gases that are recir-
culated by the EGR system by transferring the heat to the engine coolant. The main
objective of the EGR loop is to reduce the NOx emission by changing the gas compo-
sition into the cylinders. As a result, it will decrease the maximal temperature reached
after the combustion to have lower NOx emissions. However, the gases circulated by
the EGR system can be considerably hot because they are taken into the exhaust man-
ifold. In order to not damage the components, preserve fuel consumption and increase
the air density, an EGR cooler is added.
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Qegr

T3

Tegr

EGR cooler
Tcool

Degr

EGR cooler

Coolant

Figure 3.6: Heat exchanges inside the EGR cooler

According to Figure 3.6, a second heat balance on the EGR cooler gives the following
EGR temperature dynamics:

Ṫegr = Degrcp3
megrcp,cool

(T3 − Tegr) + Qegr

megrcp,cool
(3.10)

where, megr stands for the EGR mass gas, Qegr is the heat flow from the EGR cooler
to the engine coolant. As in (3.7), the heat flow can be expressed as:

Qegr = hegrAegr

(
Tcool −

T3 + Tegr
2

)
(3.11)

where hegr is the heat transfer coefficient.

3.2.5 Summary of the considered model and measurements

In the equations defining the heat flows (3.7) and (3.11), all the variables can be mea-
sured except the heat coefficients hcac and hegr. Besides, the surfaces Acac and Aegr are
not known accurately. To combine these both information in a unique variable, let us
define:

kcac , hcacAcac

kegr , hegrAegr
(3.12)

By combining (3.6), (3.7) and (3.12), one can have the following nonlinear system:

Ṫ2R = Dair

m2R
(T2A − T2R) + kcac

m2Rcp

(
Tair −

T2A + T2R

2

)
(3.13)
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where T2A can be given by (3.9).

Then, using (3.5), (3.10), and (3.12), the system hereunder describes the dynamics
of T2 and Tegr:





Ṫegr = Degrcp3
megrcp,cool

(T3 − Tegr) + kegr
megrcp,cool

(
Tcool −

T3 + Tegr
2

)

Ṫ2 = 1
m2

[((1− γ)Dasp −Degr −Dair)T2 + γDegrTegr + γDairT2R]
(3.14)

Based on real engines sensor configuration, we assume that only T2R, T2, Tair and
Tcool are perfectly known. The other variables, i.e Dair, Degr, Dasp, T2A and T3 are
known but subject to uncertainties.

3.3 Observers design

In [Astorga-Zaragoza et al. 2008], the authors showed that the estimation of the heat
transfer coefficient can provide a good indicator of a heat exchanger’s degradation.
Indeed, such a degradation will obviously affect the quality of the heat transfers. This
section is devoted to the estimation of kcac and kegr defined in (3.12). An observer-based
solution will be used to estimate them based on the two models (3.13) and (3.14).

The methods are explained in this section and the results are shown in Section 3.4.

3.3.1 Observer design for kcac

To estimate the coefficient kcac, one can use for example an adaptive observer like the
one defined in Section 1.2.2.2. To fit with the system form described in (1.62), let
denote x = T2R and θ = kcac. The following system to observe is obtained:

ẋ = A(u, y)x+ ϕ(u, y) + Φ(u, y)θ
y = Cx

(3.15)

with, A(u, y) = −Dair

m2R
, ϕ(u, y) = Dair

m2R
T2A , Φ(u, y) =

Tair − T2A+T2R
2

m2Rcp
and C = 1.

Proposition 1.8 can be directly applied on the system (3.15) to get the following
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observer:
˙̂x = A(u, y)x̂+ ϕ(u, y) + Φ(u, y)θ̂

+ {ΛS−1
θ ΛTCT + S−1

x CT}Σ(y − Cx̂)
˙̂
θ = S−1

θ ΛTCTΣ(y − Cx̂)
Λ̇ = {A(u, y)− S−1

x CTΣC}Λ + Φ(u, y)
Ṡx = −ρxSx − A(y, u)TSx − SxA(u, y) + CTΣC
Ṡθ = −ρθSθ + ΛTCTΣCΛ

(3.16)

To tune the performance of (3.16), the following parameters have been taken:

ρx = 10, ρθ = 10, Σ = 1 (3.17)

3.3.2 LPV observer design for kegr

To design an observer for (3.14), the LPV framework has been chosen. First, the LPV
modeling is addressed. Then, a synthesis of the observer is proposed.

3.3.2.1 LPV modeling

Adding the dynamics k̇egr = 0 to the nonlinear system (3.14), it is possible to turn the
extended system into the following quasi-LPV model:

ẋ = A(ρ)x+Bu

y = T2 = Cx
(3.18)

with x = [Tegr T2 kegr]T , u = [ Degrcp3
megrcp,cool

T3
Dair
m2

γT2R]T , ρ = [ρ1 ρ2 ρ3 ρ4]T and the
following state space matrices and parameters,

A(ρ) =




− Degrcp3
megrcp,cool

0

(
Tcool −

T3 + Tegr
2

)

megrcp,cool
Degr

m2
γ

(1− γ)Dasp −Degr −Dair

m2
0

0 0 0




,



ρ1 0 ρ2
ρ3 ρ4 0
0 0 0




B =




1 0
0 1
0 0




C =
[

0 1 0
]

(3.19)
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Besides, it is assumed that the varying parameters ρi are bounded. Therefore, it can
be established that:

ρ ∈ Pρ ,
{
ρ = [ρ1 . . . ρ4]T ∈ R4 and ρi ∈ [ρi, ρi], for all i = 1 . . . 4

}
(3.20)

3.3.2.2 LPV observer design

Since (3.18) is affine in the parameter vector and it belongs to Pρ, it can be transformed
into a polytopic form:

ẋ =
16∑

i=1
µi(ρ̂) (Aix) +Bu

y = Cx

(3.21)

with Ai and µi computed with Algorithm 1 and Algorithm 2 respectively.

Since the LPV system has 4 parameters, an interpolation of 16 vertices can lead
to a calculation load that is too high such as in an embedded software for a truck.
Therefore, to estimate the state vector x containing kegr, we propose an LPV observer
where the observer gain is constant:

˙̂x = A(ρ̂)x̂+ L(y − ŷ) +Bu

ŷ = Cx̂
(3.22)

The gain L, will be tuned through a pole placement. To obtain a constant gain in
the desired pole placement area depicted in Figure 3.7, the LMIs of Proposition 1.2
need to be slightly modified. To meet these specifications, we can combine (1.19) and
(1.21) and consider a constant Lyapunov matrix Y . This leads to solve the following
LMIs for all i = 1, . . . , 16:

PAi − Y C + ATi P − CTY T + 2xαP ≺ 0
PAi − Y C + ATi P − CTY T + 2xβP � 0

j(PAi − Y C + ATi P − CTY T ) + 2yαP � 0
j(PAi − Y C + ATi P − CTY T ) + 2yβP ≺ 0

(3.23)

L is then deduced as L = P−1Y .

Solving (3.23) for:

xα = 1, xβ = 50, yα = 40, yβ = −40 (3.24)

gives,
L =

[
262.87 17.38 −29.63

]T
(3.25)



3.4. Estimation results 59

yβ

yα

xαxβ

Figure 3.7: Pole placement area

Remark 3.1
It is physically obvious that we cannot have any information on the EGR cooler if
there is no mass flow rate in the EGR loop, i.e if Degr = 0. In this case, the system
to observe (3.18) becomes unobservable. To overcome this problem, when Degr is
close to zero, we choose to disable the observer (3.22) and set kegr = 0.

3.4 Estimation results

The validation of the two developed observers will be performed using data collected
from a stationary and a transient cycles (WHSC/WHTC see Appendix B). These two
cycles have been done on a test bench so all the inputs described in Section 3.2.5 are
subject to real uncertainties.

As an initial step, based on an experimental sensor configuration, where more vari-
ables are measured, we will identify the coefficients kcac and kegr. These identified
coefficients will be used as references to evaluate the observers in which less sensors
are available. Then, we will test the adaptive observer for the CAC presented in 3.3.1.
Finally, the LPV observer for the EGR cooler, described in Section 3.3.2, will be eval-
uated. The global performances of the tested observers are evaluated with the NRMS
index defined Appendix A, and summarized in Table 3.2.

3.4.1 Heat transfer coefficients expression

This section is devoted to the identification and modeling of the unknown variables
kcac and kegr. To do so, real data from test bench submitted to a transient cycle (see
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Table 3.2: NRMS obtained for the different cycles

Cycle Estimate

kcac with (3.16) kegr with (3.22)

WHSC 2.0% 5.6%
WHTC 2.5% 11.6%

Appendix B) will be used.

3.4.1.1 kcac estimation

With a test bench, it is possible to measure all the variables in (3.13), i.e Dair, T2A,
Tair and T2R and these variables will be assumed to be perfectly known. Thus, only
kcac is unknown. To estimate it, the adaptive observer defined in (3.16) will be used.

In addition, we know that the heat transfer coefficient depends on the air mass flow
rate [Bergman and Incropera 2011]. Therefore, to propose a model that can be used
whatever the operating point, a relation to deduce kcac is needed. As in Chapter 2, the
following phenomenological law is used:

kcac = λcacDair (3.26)

A linear regression of the identified data obtained with the adaptive observer, gives the
constant λcac = 2118 J.kg−1.K−1. The results are depicted in Figure 3.8. The value of
the coefficient of determination is R2 = 0.99 which is very satisfying.

Remark 3.2
On the test bench, the CAC is replaced by a water heat exchanger. Nevertheless,
the phenomenological law (3.26) has also been tested with data from a high-fidelity
model that takes into account the full air circulation of the truck.

The identification process has also been done for a stationary cycle to test the
relation (3.26) with other operating points. Figure 3.9(a) shows the time-domain results
for the WHTC and Figure 3.9(b) depicts the ones obtained for the WHSC. For both
cycles, the simple model (3.26) matches very well the identified data. This is confirmed
by the values of the FIT index (see Appendix A) which are 94% for the WHTC and
97% for the WHSC.
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Figure 3.8: Interpolation of the identified kcac data

(a) For WHTC (b) For WHSC

Figure 3.9: Time-domain results of the identified data kcac

3.4.1.2 kegr estimation

Combining (3.10), (3.11) and (3.12), one gets the following model for Tegr dynamics:

Ṫegr = Degrcp3
megrcp,cool

(T3 − Tegr) + kegr
megrcp,cool

(
Tcool −

T3 + Tegr
2

)
(3.27)

In (3.27), the variables T3, Tegr and Tcool are directly measured by the test bench.
For Degr, we will use an estimation validated for static conditions. This last point will
be detailed in Chapter 4. Using the same procedure in Section 3.4.1.1, kegr is identified
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with an adaptive observer. Then the following phenomenological is used to model kegr:

kegr = λegrDegr (3.28)

The results of the linear regression to determined λegr are depicted in Figure 3.10. It
gives λ = 2353 J.kg−1.K−1 and a coefficient of determination R2 = 0.98.

Figure 3.10: Interpolation of the identified kegr data

Figure 3.11(a) and Figure 3.11(b) confirm the good results obtained by the re-
gression. Even with other operating points provided by the WHSC, the model (3.28)
manages to follows the identified data. The FIT indexes for both cycles are: 82% and
92% for respectively WHTC and WHSC.

3.4.2 kcac observer evaluation

The estimation of kcac provided by (3.16), obtained for the two scenarios (WHSC/WHTC),
are respectively depicted in Figure 3.12 and Figure 3.13. For both cycles, the observer
(in blue) manages to follow the reference (in red) previously identified in Section 3.4.1.
Most of the time, the absolute error is between ±20 W.K−1 in steady state conditions
and can reach more than ±50 W.K−1 in transient conditions. This information is im-
portant to determine a threshold for the diagnosis. The NRMS in Table 3.2 for the
both cycle is very low, which confirms the good performance of the observer.
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(a) For WHTC (b) For WHSC

Figure 3.11: Time-domain results of the identified data kegr

Figure 3.12: kcac estimation for a WHSC

3.4.3 kegr observer evaluation

The results of the observer (3.22) are presented in Figure 3.14 and Figure 3.15. We can
see that, even with less sensor available, i.e Tegr measurement, the developed observer
provides a good estimation of kegr. The performances are better in stationary conditions
than in transient ones. For the WHSC, the absolute error is between ±20 W.K−1 in
steady state conditions. With regard to the WHTC, it is between ±50 W.K−1.
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Figure 3.13: kcac estimation for a WHTC

Figure 3.14: kegr estimation for a WHSC

3.5 Sensitivity with respect to input uncertainties

We have seen in Section 3.2.5 that the inputs needed for the observers (3.16) and
(3.22) are subject to uncertainties. This section aims to determine the influence of each
uncertainty on the estimation provided by the two observers. From the error modeling
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Figure 3.15: kegr estimation for a WHTC

and distribution summarized in Table 3.3, Monte Carlo methods will be used to know
the amplitude error resulting from the uncertainties. This information can be used to
calibrate a threshold to diagnose the CAC and the EGR cooler. Note that the variable
Degr is not presented in Table 3.3 because it is computed with the mass flow rates Dair

and Dasp. Therefore the errors of these variables will influence Degr as well directly.

Table 3.3: Values of the considered errors on the inputs

Variable Error modeling Error distribution For k̂cac (3.16) For k̂egr (3.22)

T2A T2A + ∆(T2A) N (0, 20
3 ) X -

Dair Dair ×∆(Dair) N (1, 0.09
3 ) X X

Dasp Dasp ×∆(Dasp) N (1, 0.05
3 ) - X

T3 T3 + ∆(T3) N (0, 20
3 ) - X

500 simulations have been run for each uncertainty and 500 more for all of them
together. Therefore, according to in Table 3.3, 7 cases will be considered to test the
influence of the uncertainties:

1. ∆(T2A) on adaptive observer (3.16)

2. ∆(Dair) on adaptive observer (3.16)

3. ∆(T2A) and ∆(Dair) on adaptive observer (3.16)

4. ∆(T3) on LPV observer (3.22)
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5. ∆(Dair) on LPV observer (3.22)

6. ∆(Dasp) on LPV observer (3.22)

7. ∆(T3), ∆(Dair) and ∆(Dasp) on LPV observer (3.22)

After one simulation, the mean of the absolute error between free uncertainties data
and data corrupted by uncertainties is computed and stored. Then, after the end of the
500 simulations, a box plot is created. Algorithm 3 summarizes the described process
for one case. The box plots depicted in Figure 3.16 and Figure 3.17 give the 7 cases
(3 for the adaptive observer and 4 for the LPV one). On each box, the central mark
indicates the median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data points,
and the outliers are plotted individually using the ’+’ symbol1.

Algorithm 3: Monte Carlo methods used
input : Choosen case
output: Plot of the error distribution
for 1 to 500 do

Compute the stochastic variable(s) ∆ according to Table 3.3;
Simulate (3.16) or (3.22);
Store the value of mean(k̂cac − kcac) or mean(k̂egr − kegr) ;

end
Depict the stored values in box plot

Concerning the analysis of the robustness of the observer (3.16) in Figure 3.16, we
can see that the most important variable is the mass flow rate Dair then, to a lesser
degree, T2A. When all the uncertainties are taken into account, 50% of the errors are
between −5.7 and 6.5 W.K−1. These errors are very low in comparison with the real
values of kcac around 400 W.K−1 (cf. Figure 3.12).

Similar remarks may be drawn from the analysis of the robustness of the observer
(3.21) in Figure 3.17 about the kegr estimation: the mass flow rates have a big influence
on the error estimation and the temperature T3 uncertainty has almost none. Besides,
50% of the errors are between −7.6 and 9.1 W.K−1. However, from the point of view of
relative error, these errors are high because the reference values are around 50 W.K−1

(cf. Figure 3.14).

1Excerpt from Matlab documentation
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Figure 3.16: Box plot for kcac estimation

3.6 Conclusion

In this chapter we have provided an observer-based diagnosis solution to monitor the
Charge Air Cooler and the EGR cooler. With the considered sensor configuration,
without EGR temperature sensor, we have seen that two observers can effectively es-
timate the image of the heat transfer coefficients. To have an analytical redundancy,
the models (3.26) and (3.28) can give us the nominal values of these both coefficients.
Then a threshold can be determined to fulfill the legislative standards while taking
into account the input uncertainties described in Section 3.5. We have seen in this last
section that kegr estimation is more sensitive, in relative errors, to uncertainties than
the estimation of kcac. This must be taken into account for the threshold design.

As mentioned in Section 3.4.1.1, the heat exchanger used in the considered test
bench is not the real the real component mounted on the commercial trucks. Therefore
additional tests have to be done on a running truck.
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Figure 3.17: Box plot for kegr estimation
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4.1 Introduction

A common way to reduce NOx emission of diesel engines is to reduce the peak tem-
perature combustion by increasing the CO2 concentration in the combustion chamber.
The automotive manufactures achieve this objective by adding an Exhaust Gas Recir-
culation (EGR) loop in the engine architecture (as in Figure 4.1). Therefore, to have a
suitable control of the pollutant emissions, it is needed to know the gas composition at
the inlet of the engine [Guzzella and Onder 2010]. Therefore, the quantity of EGR gas,
and thus EGR mass flow rate, has to be known as accurately as possible. That’s why

69
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most of the manufacturers chooses to directly measure the EGR mass flow rate with a
specific sensor.

Recently, Volvo’s medium duty engines architecture has evolved and a Venturi effect
sensor that measured the EGR mass flow rate has been removed. Therefore, this
variable has to be estimated on the new architecture.

This chapter aims to apply several observation approaches presented in Chapter 1
for the estimation of the EGR mass flow rate. In the observer design, this variable will
be considered as an additive unknown input. The main idea of the observer is to use
the information given by the pressure sensor in the intake manifold as the reference
measurement, to estimate this mass flow rate. The final validation consists in imple-
mentation on a real truck’s embedded computer and comparison of the performance of
the different methods.

This chapter is organized as follows. In Section 4.2, the intake manifold pressure
is modeled. Based on this model, six different observer structures are proposed to
estimate the EGR mass flow rate in Section 4.3. Then, in Section 4.4, the experimental
protocol to test the observers on a real engine is described. Next, in Section 4.5, the
experimental results are analyzed. Finally, conclusions are stated in Section 4.6.

Intake manifold

Exhaust manifold
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Figure 4.1: Schematic view of the air path in the considered engine
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Table 4.1: Nomenclature

Notation Description Unit
Neng Engine speed r.p.m
Γeng Engine torque N.m
T Temperature of a subsystem K
P Pressure of a subsystem Pa
R Ideal gas constant for the air J.kg−1.K−1

D Mass flow rate kg.s−1

Observer type
PolP LPV polytopic observer design through a pole

placement area
FAFE LPV polytopic FAFE observer
Hinf LPV polytopic H∞ filter
KF Kalman filter for LTV systems
AO Adaptive observer
SM Sliding mode observer

Subscript
2 Inside the intake manifold
air Related to the inlet air
egr Related to the EGR loop

4.2 Intake manifold modeling

P2 ; T2 ; V2

Dair

Degr

Dasp

Figure 4.2: Intake manifold volume

Located just before the engine block as depicted in Figure 4.1, this component enables
to carry the gas mixture, consisting of inlet air and EGR gas, to each cylinder.

The intake manifold can be represented as an open thermodynamical system, where
the quantity of gas can increase or decrease. It is called a "filling and emptying" system.
Figure 4.2 synthesized the gas exchanges. Inside this volume, the ideal gas law can be
applied and the pressure P2 can be expressed as:

P2 = m2RT2

V2
(4.1)
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where m2 is the total air mass inside the volume V2.

Taking the time-derivative of this equation, one obtains:

Ṗ2 = ṁ2RT2

V2
+ m2RṪ2

V2
(4.2)

where ṁ2 represents the mass rate of gas flowing through the intake manifold and can
be expressed, from a balance equation, as: ṁ2 = Dair +Degr−Dasp. Besides, assuming
that the temperature varies slowly in comparison to P2, we assume Ṫ2 ' 0 and (4.2)
becomes:

Ṗ2 = RT2

V2
(Dair +Degr −Dasp) (4.3)

In the following, we assume that the mass flow rate Dair in (4.3) is a known input
variable deduced by a lambda sensor located just after the turbine as we can see in
Figure 4.1 (this particular point is more detailed later in chapter 6). According to
Appendix C, the air mass flow aspirated by the cylinders can be expressed as:

Dasp = ηvVcylNeng

RT2120 P2 (4.4)

where ηv is the volumetric efficiency.

4.3 Observers design

In this section, six observer-based approaches are developed to estimate the EGR mass
flow rate Degr. They follow the methods described in Chapter 1 plus another one
exposed in [Castillo et al. 2013a]. In brief, we will design three LPV polytopic observers
based on:

(1) Pole placement areas (PolP) cf. Section 1.2.1.1

(2) Fast Adaptive Fault Estimation (FAFE) algorithm cf. Section 1.2.1.3

(3) H∞ filtering (Hinf) cf. Section 1.2.1.4

and three nonlinear observers based on:

(4) Kalman filtering for LTV systems (KF) cf. Section 1.2.2.1

(5) Adaptive Observer (AO) cf. Section 1.2.2.2

(6) Sliding mode (SM) as in [Castillo et al. 2013a]
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Now, the combination of (4.3) and (4.4) gives the following system:

Ṗ2 = −ηvVcylNeng

120V2
P2 + RT2

V2
Dair + RT2

V2
Degr (4.5)

which can be rewritten as:
Ṗ2 = ρ1P2 + u+ ρ2Degr (4.6)

where,
ρ1 = −ηvVcylNeng

120V2
, ρ2 = RT2

V2
and u = RT2

V2
Dair (4.7)

Besides, it is practically obvious that the variables ρ1 and ρ2 are bounded. Therefore,
one can claim that:

ρ ∈ Pρ :=
{
ρ = [ρ1 ρ2]T ∈ R2 s.t ρ1 ∈ [ρ1, ρ1] and ρ2 ∈ [ρ2, ρ2]

}
(4.8)

where the boundaries are experimentally determined.

All the estimators hereafter shall solve the following problem:
Problem 4.1

Based on the intake pressure manifold pressure P2 measurement, design an algo-
rithm that provides an estimation of the EGR mass flow rate Degr.

Remark 4.1
The state vector x is not the same for all observers methods thus, for sake of clarity,
it will be redefined in the next sections.

4.3.1 Pole placement design

To apply the technique described in Section 1.2.1.1, the dynamic equation Ḋegr = 0 is
added to (4.5). Let denote [x1 x2]T = [P2 Degr]T , the following system is obtained:

ẋ = A(ρ)x+Bu

y = Cx
(4.9)

with, ρ ∈ Pρ and u are defined in (4.7),

A(ρ) =
[
ρ1 ρ2
0 0

]
, B =

[
1
0

]
and C =

[
1 0

]
(4.10)

It appears that A(ρ) is affine in ρ thus (4.9) can be turned into the following LPV
polytopic system:

ẋ =
4∑

i=1
µi(ρ) (Aix) +Bu

y = Cx

(4.11)
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with Ai and µi are given by Algorithm 1 and Algorithm 2 respectively (see Sec-
tion 1.2.1.5):

A1 =
[
ρ1 ρ2
0 0

]
; A2 =

[
ρ1 ρ2
0 0

]

A3 =
[
ρ1 ρ2
0 0

]
; A4 =

[
ρ1 ρ2
0 0

] (4.12)

µ1(ρ) =
(
ρ1 − ρ1

ρ1 − ρ1

)
×
(
ρ2 − ρ2

ρ2 − ρ2

)

µ2(ρ) =
(
ρ1 − ρ1

ρ1 − ρ1

)
×
(
ρ2 − ρ2

ρ2 − ρ2

)

µ3(ρ) =
(
ρ1 − ρ1

ρ1 − ρ1

)
×
(
ρ2 − ρ2

ρ2 − ρ2

)

µ4(ρ) =
(
ρ1 − ρ1

ρ1 − ρ1

)
×
(
ρ2 − ρ2

ρ2 − ρ2

)

(4.13)

To solve Problem 4.1 the following LPV polytopic observer structure is proposed:

˙̂x =
4∑

i=1
µi(ρ) (Aix̂+ Li(y − ŷ)) +Bu

ŷ = Cx̂

(4.14)

The desired pole placement area is depicted in Figure 4.3. It is defined as the
intersections of a disk with a radius r, a cone with an angle θ, and an open left-
half-plane starting from xα. The application of Proposition 1.2 can give us an LMI
formulation of this problem.

θ

r

xα

Figure 4.3: Pole placement area

If Proposition 1.2 is applied for r = 20, θ = π
6 and xα = 1, we can get the observer

gains Li and the eigenvalues of Ai − LiC given in Table 4.2 are deduced.
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Table 4.2: Eigenvalues of Ai − LiC

eig(A1 − L1C) eig(A2 − L2C) eig(A3 − L3C) eig(A4 − L4C)

-10.371 -10.371 -10.348 -10.348
-1.2268 -1.2268 -1.3043 -1.3043

4.3.2 FAFE design

The objective of this section is to design a FAFE observer following the procedure
described in Section 1.2.1.3. Let us denote x = P2 and f = Degr, therefore (4.5) can
be rewritten as:

ẋ = A(ρ)x+Bu+ F (ρ)f
y = Cx

(4.15)

with, ρ ∈ Pρ and u are defined in (4.7),

A(ρ) = ρ1, B = 1, F (ρ) = ρ2 and C = 1 (4.16)

As in the previous section, (4.15) can be turned into the following LPV polytopic
system:

ẋ =
4∑

i=1
µi(ρ) (Aix+ Fif) +Bu

y = Cx

(4.17)

with Ai and Fi are given by Algorithm 1:

A1 = ρ1, A2 = ρ1, A3 = ρ1, A4 = ρ1

F1 = ρ2, F2 = ρ2, F3 = ρ2, F4 = ρ2
(4.18)

the interpolation functions µi are the same than the ones in (4.13).

The FAFE LPV polytopic observer to design has the following structure:




˙̂x =
4∑

i=1
µi(ρ)

(
Aix̂+ Liey + Fif̂

)
+Bu

˙̂
f = Γ

4∑

i=1
µi(ρ)Ui (ėy + σey)

ŷ = Cx̂

ey = y − ŷ

(4.19)

Let us mention that the needed assumptions to design (4.19) are fulfilled. Indeed,
rank(CFi) = rank(Fi), and the invariant zeros of (Ai, Fi, C) are in the left half plane
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for all i = 1, . . . , 4. Thus, Proposition 1.4 can be applied for given scalars σ, µ in order
to deduce the matrices gains Li and Ui.

As pointed in Section 1.2.1.3, the parameters σ, µ and Γ are generally arbitrarily
chosen without fine tuning. To overcome this problem, we propose to use a Genetic
Algorithm to minimize the Root Mean Square (RMS) deviation while tuning σ and
Γ. This technique is inspired by [Vu et al. 2016; Vu 2017] and [Do 2011] where the
authors used Genetic Algorithms to find optimal weighting functions for an H∞ control
synthesis. We will not detail how a Genetic Algorithm works and thus for additional
information, one can refer to the previous references and [Sivanandam and Deepa 2008]
which explains the theory.

Let us first define the Root Mean Square (RMS) index as:

RMS
(
D̂egr −Degr

)
=

√√√√ 1
N

N∑

n=1

∣∣∣D̂egr(n)−Degr(n)
∣∣∣
2

(4.20)

where Degr contains N observations. The Genetic Algorithm has to solve the following
optimization problem:

min
σ, Γ

RMS
(
D̂egr −Degr

)
(4.21)

Note that in (4.21), only σ and Γ are optimized because µ has been set to 1 due to its
slight effect on the estimation performance. The implemented procedure is summarized
in Figure 4.4. The time domain simulation consists in the implemented FAFE observer
(4.19) fed with all the needed data collected from an initial test.

To apply the Genetic Algorithm, an initial test has been done to collect all the
needed data.

FAFE synthesis

σ

Li; Ui

Γ

Time domain

with Proposition 1.4

simulation

RMS by Genetic Algorithm
Optimization of the

Figure 4.4: FAFE parameters optimization using a Genetic Algorithm
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At the end of the optimization process, the following values are obtained:

Γ = 13.61 and σ = 0.59 (4.22)

4.3.3 H∞ filter design

The objective of this section is to design an H∞ filter following the procedure described
in Section 1.2.1.4. Let us denote x = P2 and f = Degr, therefore (4.5) can be rewritten
as:

ẋ = A(ρ)x+Bu+ F (ρ)f
y = Cx

(4.23)

with, ρ ∈ Pρ and u are defined in (4.7),

A(ρ) = ρ1, B = 1, F (ρ) = ρ2 and C = 1 (4.24)

Let us define a polytopic LPV system G(ρ), which has as inputs u and f and as
output y:

G(ρ) :





ẋ =
4∑

i=1
µi(ρ) (Aix+ Fif) +Bu

y = Cx

(4.25)

To apply Proposition 1.5 on the above system, the method described in Example 1.3
will be used. Consider the system represented in the block scheme Figure 4.5. It consists
of by the polytopic LPV systemG(ρ) subject to a fault f̃ filtered by the transfer function
Wf to tune the convergence rate. To solve Problem 4.1, we wish to design a polytopic
LPV filter Kf (ρ) defined hereunder:

Kf (ρ) :





ẋf =
4∑

i=1
µi(ρ)

(
Afixf +Bfi

[
u
y

])

f̂ =
4∑

i=1
µi(ρ)

(
Cfixf +Dfi

[
u
y

]) (4.26)

G(ρ) Kf (ρ)
u

f̂
f̃

ef

Wf yf

Figure 4.5: Block scheme for H∞ filter design

From, the block scheme Figure 4.5, the generalized H∞ problem depicted in Fig-
ure 4.6 can be obtained. The generalized plant P (ρ) is a polytopic LPV system derived
from each vertex of G.
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P (ρ)

Kf (ρ)

[
u

y

]
f̂

ef
w =

[
u

f̃

]

Figure 4.6: Generalized H∞ problem

Let us denote the sensitivity function Sf,ef from f to the estimation error ef . Since
Proposition 1.5 minimizes the induced-L2 norm from w to ef by γ∞, it is clear that
(with a slight abuse of language since the considered system is LPV):

sup
w 6=0,w∈L2

‖ef‖2

‖w‖2
≤ γ∞ ⇒

∥∥∥Sf,ef
∥∥∥
∞
≤ γ∞
‖Wf‖∞

(4.27)

Therefore, the parameterization of Wf can tune the rate convergence of the estimation
error.

Finally, the synthesis gives the Bode diagram depicted in Figure 4.7, where the
inverse of the singular values of Wf and the ones of Sf,ef at each vertex are depicted.
Note that the curves are overlapping. Thus, they cannot be distinguished. At each
vertex, the singular values of Sf,ef are under −120 dB at low frequencies, which means
that the static error will be very low. Besides, the cutoff frequency is around 1 rad/s.

4.3.4 Kalman filter design

This section aims to apply Proposition 1.6 to design a Kalman filter. To do so, the
dynamic Ḋegr = 0 is added to (4.6). Let denote [x1 x2]T = [P2 Degr]T , the following
system to observe is obtained:

ẋ = A(t)x+B(t) + q(t)
y = Cx+ r(t)

(4.28)

where, q(t) and r(t) are white Gaussian noises following the distribution q(t) ∼ N (0, Q)
and r(t) ∼ N (0, R), and,

A(t) =
[
ρ1(t) ρ2(t)

0 0

]
, B(t) =

[
u
0

]
, C =

[
1 0

]
(4.29)
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Figure 4.7: Bode diagram of Sf,ef at each vertex

The Kalman filter to design has the following structure:

˙̂x(t) = A(t)x̂(t) +B(t) +K(t)(y(t)− ŷ(t))
ŷ(t) = Cx̂(t)
K(t) = P (t)CTR−1

Ṗ (t) = A(t)P (t) + P (t)A(t)T −K(t)CP (t) +Q

(4.30)

One can observe that (4.28) can be considered as an LTV system so Proposition 1.6
can be applied. To tune the Kalman filter, the following covariance matrices are chosen:

Q = 10−3 and R = 108 (4.31)

4.3.5 Adaptive observer design

This section is devoted to design an Adaptive observer as described in Section 1.2.2.2.
To fit with the system form described in (1.62), let denote x = P2 and θ = Degr. The
following system to observe is obtained:

ẋ = A(u, y)x+ ϕ(u, y) + Φ(u, y)θ
y = Cx

(4.32)

with, A(u, y) = ρ1, ϕ(u, y) = u , Φ(u, y) = ρ2 and C = 1.
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To solve Problem 4.1, the considered Adaptive Observer has the following structure:
˙̂x = A(u, y)x̂+ ϕ(u, y) + Φ(u, y)θ̂

+ {ΛS−1
θ ΛTCT + S−1

x CT}Σ(y − Cx̂)
˙̂
θ = S−1

θ ΛTCTΣ(y − Cx̂)
Λ̇ = {A(u, y)− S−1

x CTΣC}Λ + Φ(u, y)
Ṡx = −ρxSx − A(y, u)TSx − SxA(u, y) + CTΣC
Ṡθ = −ρθSθ + ΛTCTΣCΛ

(4.33)

The system (4.32) is affine in the state and the parameter to estimate. Thus,
Proposition 1.8 can be directly applied with the tuning parameters:

ρx = 12.5, ρθ = 8.5, Σ = 104 (4.34)

4.3.6 Sliding mode observer design

Consider the system given by:

Ṗ2 = ρ1P2 + u+ ρ2Degr (4.35)

Following [Castillo et al. 2013a], let us define the sliding mode observer to estimate the
variable Degr:

˙̂
P2 = ρ1P̂2 + ρ2D̂egr + u+ ε1

˙̂
Degr = ε2

(4.36)

The objective is to find ε1 and ε2 such that Problem 4.1 is solved. These two variables
are expressed by the following proposition.
Notation 1

For the sake of clarity, the time dependency of the variables ε1(t), ε2(t), S1(t) and
S2(t) will be omitted hereafter.

Proposition 4.1
The observer (4.36) solves Problem 4.1 if ε1 and ε2 are chosen as follow:

ε1 = ρ2λ1sign (S1)

ε2 = λ2sign(S2)− k4

k3

(
D̂egr −Degr

) (4.37)

with,
S1 = k1

(
P̂2 − P2

)
+ k2

∫ t

0

(
P̂2 − P2

)
.ds

S2 = k3
(
D̂egr −Degr

)
+ k4

∫ t

0

(
D̂egr −Degr

)
.ds

(4.38)
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and,
k1 > 0, k2 = k1ρ1, k3 > 0, k4 ∈ R (4.39)

λ1 < 0, λ2 < 0 (4.40)

where Degr in (4.37) and (4.38) is calculated as:

Degr = −ρ1

ρ2

(
P̂2 − P2

)
+ D̂egr + λ1sign(S1) (4.41)

Proof : The proof follows the one in [Castillo et al. 2013a]. Let us first define a sliding surface as:

S1 = k1

(
P̂2 − P2

)
+ k2

∫ t

0

(
P̂2 − P2

)
.ds (4.42)

Consider the following Lyapunov function candidate:

V1 = 1
2S

2
1 (4.43)

Assuming that k̇2 = 0, the time derivative of this function gives:

V̇1 = Ṡ1S1

= S1k1ρ2

(
D̂egr −Degr

)
+ S1k1ε1 + S1k1ρ1

(
P̂2 − P2

)
+ S1k2

(
P̂2 − P2

) (4.44)

If ε1 and k2 are chosen as:

ε1 = ρ2λ1sign (S1) , k2 = −k1ρ1 (4.45)

this leads to:
V̇1 = S1k1ρ2

(
D̂egr −Degr

)
+ S1k1ρ2λ1sign (S1) (4.46)

one gets:
V̇1 = S1k1ρ2

(
D̂egr −Degr + λ1sign (S1)

)
(4.47)

In order to ensure V̇1 < 0, λ1 and k1 are chosen as:
∣∣∣D̂egr −Degr

∣∣∣ < |λ1| , λ1 < 0, k1 > 0 (4.48)

Thus, it can be shown that S1 → 0 when t→∞ according to Barbalat’s Lemma. So, according
to (4.42), we have:

lim
t→∞

d

dt

(
P̂2 − P2

)
= −k2

k1

(
P̂2 − P2

)
(4.49)

since k2
k1
> 0, according to (4.45), we finally have P̂2 − P2 → 0.

Let define a second sliding surface as:

S2 = k3

(
D̂egr −Degr

)
+ k4

∫ t

0

(
D̂egr −Degr

)
.ds (4.50)

Due to the variable Degr in (4.50), it is not possible to compute S2. However, it can be easily
shown that when the estimation error e = P̂2 − P2 is at steady state (i.e ė = 0), one gets:

Degr = −ρ1
ρ2

(
P̂2 − P2

)
+ D̂egr + λ1sign(S1) (4.51)
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Define a second Lyapunov function as:

V2 = 1
2S

2
2 (4.52)

The time-derivative of the above function is:

V̇2 = S2

(
k3ε2 + k4

(
D̂egr −Degr

))
(4.53)

If ε2 is chosen as:

ε2 = λ2sign(S2)− k4
k3

(
D̂egr −Degr

)
(4.54)

(4.53) becomes:
V̇2 = S2k3λ2sign(S2) (4.55)

Therefore, to ensure V̇2 < 0 we can chose the following conditions:

λ2 < 0 and k3 > 0 (4.56)

Following the same arguments as before, one can establish that D̂egr −Degr → 0.

As for the FAFE design in Section 4.3.2, we are facing here the problem to chose
the different parameters for the sliding mode observer (4.36), i.e k1, k3, k4, λ1 and λ2.
Therefore a Genetic Algorithm will be used to deduce them. Due to their slight effects
on the estimation performance and for simplification perspectives, k1 and k4 have been
set to 1. The other parameters, i.e k3, λ1 and λ2 are obtained by solving the following
optimization problem:

min
k3,λ1,λ2

RMS
(
D̂egr −Degr

)
(4.57)

where RMS is defined in (4.20). The implemented process is summarized in Figure 4.8.
The time domain simulation is the same than the one used in Section 4.3.2.

k3; λ1; λ2

Time domain
simulation

Optimization of the
RMS by Genetic Algorithm

Figure 4.8: Sliding mode observer parameters optimization using a Genetic Algorithm

Finally, the parameters presented in Table 4.3 are chosen for the SM observer.
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Table 4.3: Parameters value for the SM observer

Parameter Value

k1 1
k3 0.46
k4 1
λ1 −2.53.10−5

λ2 −2.03.10−4

4.4 Experimental setup

This section deals with the experimental protocol to test the observers. First, the
implementation of the 6 designed observers in the embedded software is presented.
Then, the test cell is described to explain how the data are collected.

4.4.1 ECU implementation

In the Volvo’s trucks, the engine control is performed by an embedded system called
Electronic Control Unit (ECU), also known as Engine Control Module (ECM). The
ECU acquires signals from the sensors or switches and converts them into computational
variables in order to apply the engine control strategy. Those variables are treated in
programs loaded previously in the ECU memory. Then, the actuator controls are
computed and sent to real devices in order to achieve the desired engine operation.

To create the embedded software in the ECU, Volvo uses TargetLink1, a software
developed by the company dSPACE. It enables to generate a C code software from
a Simulink model that is suitable for the implementation in the ECU. The scheme
presented in Figure 4.9 summarizes the implementation process.

From the embedded software point of view, the 6 designed observers have been setup
inside an unique function. It is possible to adjust the scheduling (sampling time) of
this function up to 100Hz (0.01s). During the tests bench, the sampling time Ts has
been set to 0.01s.

There are different methods available to discretize a continuous-time systems, see
for example [Tóth et al. 2010] which deals with the LPV systems or [Roche 2011]
which addresses the discretization with a time-varying sampling time. However, for
simplification perspectives, we will use the Euler method to discretize the designed

1see the website of the company: https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.
cfm
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Code generation

Actuators

control

Data

from

sensors

ECU

Engine

with TargetLink

Software in Simulink

Figure 4.9: Process of the ECU implementation

observers. Even if this method may have instability issues, this choice is justified by
both experiments feedback and software simplification. The developed observers (4.14),
(4.19), (4.26), (4.30), (4.33) and (4.36) can be represented as:





Ẋ(t) = F (X(t), u(t), y(t), t)
x̂(t) = G(X(t), u(t), y(t), t)
f̂(t) = H(X(t), u(t), y(t), t)

(4.58)

and be turned into the following discrete-time system by the Euler method:




X(k + 1) = X(k) + F (X(k), u(k), y(k))Ts
x̂(k) = G(X(k), u(k), y(k))
f̂(k) = H(X(k), u(k), y(k))

(4.59)

where Ts is the sampling-time.

4.4.2 Test cell description

The test cell operation follows the scheme presented in Figure 4.10. Basically, it consists
of an engine to be analyzed, linked to a dynamometer that provides a torque/speed
profile for the engine. A computer ensures the control of the test bench and another one
analyzes the outputs of the ECU (including the observers estimations). The engine is
equipped with standard sensors plus additional ones for test perspectives. Gas sensors
allow to know the engine pollutants concentration at different locations. Then, all data
are centralized into an XML server.
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Figure 4.10: Test cell description

4.4.3 EGR mass flow rate measurement

Note that in the schematic view of the engine depicted Figure 4.1, there is no direct
measurement of the EGR mass flow rate. In the test bench, this mass flow rate is
calculated a posteriori from the data provided by the gas analyzer. This calculation is
done by the CO2 concentration measurement inside the exhaust and intake manifolds.
Then, knowing exactly the CO2 that comes from the ambient air and the one produced
by the combustion, it is possible to determine the quantity of the EGR gas inside the
intake manifold. However, this method does not guarantee an accurate measurement of
Degr and may induce some bias in the data. Moreover, this calculation is not reliable in
transient conditions. Therefore, in order to validate the real-time estimation D̂egr, only
slow varying tests are relevant to compare the performance of the developed observers
with the measured Degr.

4.5 Experimental results

The 6 developed observers have been implemented and tested with a unique design on
two engine architectures: a medium duty 5L and 8L diesel engine. These choices will
allow to test the robustness as the estimation with regard to the calibration software
and model uncertainties. Indeed, we have seen in Section 4.2, the variables Dair and
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Dasp are not measured but computed.

As explained in Section 4.4.3, the EGR mass flow rate Degr measurement is not
reliable for transient conditions. Therefore, we will only present hereafter, the results
for two stationary cycles. The first one is the WHSC (see Appendix B) and the second
goes through several operating points of the engine as shown in Figure 4.11. We will
call the last cycle, part load test.

Figure 4.11: Part load profile for the engine speed and torque

Finally, the performance of the designed observers will be compared.

We also remind that the abbreviations of each observers, given in the plot legends,
are detailed in Table 4.1.

4.5.1 Medium duty 5L engine

Case 1: WHSC. The estimation results obtained with the 6 observers for this cycle
are depicted in Figure 4.12. First, we can see that all the observers have the same
performance estimation in terms of speed or accuracy. However, they cannot follow the
reference value. Even if the absolute error is low, in comparison with the other mass
flow rates values (for example Dair can reach 0.2kg/s), the relative error is high for
Degr. For the whole cycle, the value of NRMS index (see Appendix A) is 23.6%.

Case 2: Part load. For this cycle, the considered graphs are Figure 4.13 and Fig-
ure 4.14. The first one represents a part of the whole cycle, when the torque is set at
600N.m. It appears that, for this torque value, the observers tend to underestimate
the reference value and for some points, the error is close to zero. Figure 4.14, on the
other hand, provides a representation of the stationary relative error ( D̂egr−Degr

Degr
) on all

reached operating points with the part load cycle shown in Figure 4.11. We can observe
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Figure 4.12: WHSC for 5L engine (case 1)

that the relative error is larger than 1 for low engine speeds. This result was expected
since, at these speeds, the mass flow rate is very low and therefore the error is more
significant. Without taking into account extreme values (at low and high torque), the
relative error is between ±20% and the observers tend to underestimate the reference
mass flow rate.

4.5.2 Medium duty 8L engine

Case 3: WHSC. The results obtained for the stationary cycle are depicted in Fig-
ure 4.15. Again, the estimation performances for all the observers are the same, except
for the Kalman filter (KF) which did not converge for all the tested cycles with the
8L engine. From our perspective, the divergence is due to its initialization which may
generate instability. For this case, the NRMS is 29.3% which is higher than for the 5L’s
one. Besides, in the whole cycle, the observers overestimate the reference mass flow
rate.

Case 4: Part load. Other time-domain results are given in Figure 4.16 when the
torque engine is set at 800N.m. It confirms the overestimation regardless of the engine
speed. The Figure 4.17 shows the relative error for the 8L engine for all operating
points reached by the part load cycle. For this engine, the error is higher than for the
5L one: for most of the tested points, it is higher than 40%. One can also observe that



88 Chapter 4. EGR mass flow rate Estimation

Figure 4.13: Partial results for the part load cycle - 5L (case 2)

>1

<-1

Figure 4.14: Relative error for different operating points - 5L (case 2)

the estimation is always above the reference.
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Figure 4.15: WHSC for 8L engine (case 3)

Figure 4.16: Partial results for the part load cycle - 8L (case 4)

4.5.3 Analysis of the estimation errors

In most of the observers model, the estimation of the variable Degr acts as an integral
term. Therefore, it compensates for all the modeling uncertainties. We have seen in
Section 4.2 that the variable Dair is not directly measured but deduced from a lambda
sensor located after the exhaust manifold (cf. Figure 4.1). Thus, Dair may be subject
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>1

<-1

Figure 4.17: Relative error for different operating points - 8L (case 4)

to uncertainties as depicted in Figure 4.18. Even if the relative error is low for this
variable, the absolute error directly influences the estimation of Degr which causes high
relative error since the considered values are much more lower. Below, we can see in
Figure 4.18 that the absolute error of Dair explains most of the errors of Degr.

Figure 4.18: Inlet air mass flow rate (top) - Absolute errors of Dair and Degr (bottom)

The calibration misstatements of the volumetric efficiency ηv in (4.4) may also ex-
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plain the remaining errors of the estimation. But this fact is more difficult to verify
because it is not measured. The errors measurement of Degr presented in Section 4.4.3
may also explain the estimation errors.

4.5.4 Computational performance

This section aims to establish which observer has the best computational performance.
The criteria used will be the execution time of the function which contains the code
of all the observers. During the test, parts of this function have been disabled (i.e not
computed), which corresponds to the observers that we do not want to use.

Figure 4.19 shows the time-domain test results. Note that the time accuracy is 1
µs and when all the observers are disabled (in blue in Figure 4.19), the function is
executed between 9 and 10 µs. For comparison purpose, the mean of each observer
"area" is calculated and displayed in Table 4.4. As can be seen, the values are similar.
However the test indicates that the nonlinear observers have the lowest execution time
and the polytopic LPV observers have the highest ones. The Adaptive Observer (AO)
is the fastest with 10.31µs and the H∞ filter (Hinf) is the slowest with 13.49µs. In all
cases, this is a very low execution time since, in the embedded software, most of the
functions have a execution time between 20 and 100 µs. Therefore, the observers have
a limited impact on the CPU consumption.

It would be hasty to conclude that the polytopic LPV are less efficient than the
nonlinear ones. Indeed, due to implementation limitations of TargetLink (for example
the libraries do not include matrix calculations), code simplifications have been imple-
mented for the nonlinear case. For example, the equations with a zero product have
been removed. Whereas, for the polytopic case, due to its generic form, we preferred to
keep all the matrix coefficients even if they contain zeros. Therefore, some optimization
may still be implemented.

Table 4.4: Execution time of the function sorted in ascending order

Observer Mean of the execution time

AO 10.31 µs
KF 10.45 µs
SM 10.52 µs

FAFE 11.25 µs
PolP 12.52 µs
Hinf 13.49 µs



92 Chapter 4. EGR mass flow rate Estimation

AO FAFE Hinf KF PolP SM

Figure 4.19: Execution time of the function containing the observers

4.6 Conclusion

This chapter provides a comparison of different methods to estimate the EGR mass
flow rate of a diesel engine, a key variable for pollutants control. The tests performed
on two truck engines have shown that, even if the observer structure is very different,
the performance estimation are very similar for all of them. Besides, the CPU con-
sumption appears to be low, which is suitable for an industrial application. The tests
also revealed that the inlet air mass flow rate Dair has to be known precisely to have
a low estimation error. Future works could be done in the model precision to have a
commercial implementation.
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5.1 Introduction

In most automotive engines, the exhaust manifold pressure is directly measured by a
sensor. However, some problems have been reported at the Volvo aftermarket concern-
ing the robustness of the sensor. In fact, in addition to its high cost, it must face strong
pressure oscillations and high temperature conditions. Indeed, these conditions have
caused for example tube clogging problems to the sensor. Therefore it fails to be reli-
able in all the operating conditions of the engine. Although this pressure information
is difficult to get, it is essential for engine control. Among others, it is used to control
the exhaust pressure with the exhaust flap in order to control the engine brake power
and to estimate the burned fraction to ensure the on-board diagnosis (OBD) for the
anti-pollution system. Since it is mandatory to propose an OBD solution [Mohammad-
pour et al. 2012], its estimation is then of great interest for diagnosis and fault tolerant
control objectives.

To overcome such problems, model-based estimation represents an efficient alter-
native solution to the direct measurement. Therefore, several authors have proposed
different methods to estimate the exhaust manifold pressure. One can categorize them
in two types: nonlinear observer-based approaches [Fredriksson and Egardt 2002] and
inverse model approaches [Castillo et al. 2013b; Olin 2008; Yue-Yun Wang and Haskara
2010]. The latter estimators propose to directly estimate this variable from the informa-
tion of the exhaust air mass flow through the orifice flow equation or from the turbine’s
data-maps. In [Fredriksson and Egardt 2002], the authors proposed a generalized Lu-
enberger observer based on mean value models of the intake and exhaust manifolds, the
turbocharger and engine dynamics which leads to a fourth order nonlinear observer.

In this chapter, we propose a Linear Parameter Varying (LPV) observer based
on mean value models of the turbocharger and the exhaust manifold to estimate the
pressure. Since the equipment of the engine under consideration, and thus the available
measurement, are different from [Fredriksson and Egardt 2002], the order of the LPV
observer is reduced to two. Besides, our method encompasses a systematic calibration
procedure, contrary to the previous one where tuning the observer parameters is not
an easy task. Moreover, the observer is designed considering two different models for
the turbine mass flow rate: a standard orifice equation, and a new identified black-box
model. As in Chapter 2, the merits of the developed solution are then validated on a
high industrial complex simulator with realistic engine cycles.

The chapter is organized as follows. In Section 5.2, a mean value model is presented.
In Section 5.3, based on this model, a LPV polytopic observer is designed to estimate
the exhaust pressure. The observer is synthesized in order to minimize an H∞ criterion
associated with a pole placement by Linear Matrix Inequalities (LMIs) regions. In
Section 5.4, the performances of this observer are illustrated in a realistic simulator
designed with GT-POWER. Then in Section 5.5, perspective works are presented.
Finally, conclusions are stated in Section Section 5.6.
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Table 5.1: Nomenclature

Notation Description Unit
Neng Engine speed rpm
ωtc Rotor speed of the turbocharger rad.s−1

Jtc Shaft moment of inertia of the turbocharger kg.m2

P Power W
T Temperature of a subsystem K
P Pressure of a subsystem Pa
cp Specific heat J.kg−1.K−1

R Ideal gas constant for the air J.kg−1.K−1

γ Specific heat ratio -
D Mass flow rate kg.s−1

Subscript
1 Upstream the compressor
2 Inside the intake manifold
3 Inside the exhaust manifold
4 Downstream the turbine
c Related to the compressor
t Related to the turbine
egr Related to the EGR loop
f Related to the fuel

5.2 Mean value model of the engine

The architecture of the diesel engine under consideration is depicted in Figure 5.1. This
engine is a medium-duty 4-cylinders 5L diesel one equipped with a Variable Geometry
Turbocharger (VGT) and a Exhaust Gas Recirculation (EGR) loop. In this section
and in all the chapter, we will use data provided by a high-fidelity simulator designed
with GT-POWER. Therefore all the reference data are provided by this simulator.

The measurements considered for this study are: Dc, Degr, P1, T1, P2, T2, T3, P4 and
ωtc. These variables are typically measured or estimated in the automotive industry.
Their nomenclature is given in Table 5.1.

In the following, the exhaust manifold and turbocharger dynamics are modeled using
a mean value approach. Then, the problem of estimating the turbine mass flow rate is
treated. Finally, the considered system to observer is established.
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Figure 5.1: Schematic view of the air path in the considered engine

5.2.1 Exhaust manifold dynamics

Located just after the engine block, the exhaust manifold permits to collect all the
gases from the cylinders into one pipe which is directly connected to the turbine.

The exhaust manifold can be represented as an open thermodynamical system,
where the quantity of gas can increase or decrease. It is called a "filling and emptying"
system. Inside this volume, the ideal gas law can be applied and the pressure P3 can
be expressed as:

P3 = m3RT3

V3
(5.1)

where m3 is the total air mass inside the volume V3.

By taking a time-derivative of this equation, one obtains:

Ṗ3 = ṁ3RT3

V3
+ m3RṪ3

V3
(5.2)

where ṁ3 represents the mass rate of gas flowing through the exhaust manifold and
can be expressed, from a balance equation, as: ṁ3 = Dasp +Df −Degr −Dt. Besides,
assuming that the temperature varies slowly in comparison to P3, we consider Ṫ3 ' 0
and (5.2) becomes:
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Ṗ3 = RT3

V3
(Dasp +Df −Degr −Dt) (5.3)

In (5.3), we assume that the mass flow rates Df and Degr are known input variables
(in the real engine, they are estimated), and Dasp is deduced from the formula in
Appendix C. The mass flow rate Dt will be expressed in Section 5.2.3.

5.2.2 Turbocharger dynamics

Located just after the EGR loop and the exhaust manifold, the turbocharger is the
combination of a turbine and a compressor (grey parts in Figure 5.1). The role of the
compressor is to increase the air mass flow, which goes inside the engine, to increase
the quantity of oxygen inside the combustion chamber in order to have the possibility
to inject more fuel and thus to have more torque for a given cylinder volume. The
turbine is symmetric to the compressor. Its purpose is to convert the energy contained
in the exhaust gases into a mechanical energy. This mechanical energy is then trans-
mitted to the compressor by a shaft. Figure 5.2 shows the different components of the
turbocharger.

In our case, the turbine has a variable geometry: the orifice section and the flow
direction to the turbine wings can be controlled by the position of vanes. Therefore the
energy delivered to the compressor can be adjusted depending on the operating point.
For example at low engine speeds and torques, the vanes will be almost closed and at
high speeds and torques, they will be totally opened. The command uvgt determines
the vanes position and it is calculated through the feedback on the boost pressure P2.
The variable geometry can also be used as back-pressure device for exhaust brake or
to drive the EGR flow.

Many studies propose a model of the turbocharger. Some are control-oriented such
as [Mohammadpour et al. 2010; Salehi et al. 2013] or modeling-oriented [Jung et al.
2002; Isermann 2014; Moulin 2010; Ceccarelli 2012]. The rotor speed modeling will be
exposed according to the study done in [Moulin 2010].

5.2.2.1 Rotor speed modeling

From the mechanical power balance, one can obtain the rotor speed dynamic of the
turbocharger:

1
2Jtc

˙(ω2
tc) = Pt − Pc (5.4)

where Pc and Pt are respectively the compressor and turbine powers.
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Figure 5.2: Scheme of a turbocharger

Remark 5.1
In this study the mechanical friction is neglected but can be easily added by multi-
plying Pt by a constant efficiency as in [Salehi et al. 2013].

5.2.2.2 Compressor power

From the first law of thermodynamics, one can express the compressor power in function
of the enthalpy variation as:

Pc = Dccp1(T1 − T2A) (5.5)
where T2A is the temperature just after the compressor.

In practice, T2A is not measured but it can be deduced from the definition of the
isentropic efficiency:

ηc = Pc,isentropicPc
= T2A,isentropic − T1

T2A − T1
=

(
P2

P1

) γ1−1
γ1 − 1

T2A

T1
− 1

(5.6)

Then, we finally have:

Pc = 1
ηc
T1cp1Dc



(
P2

P1

) γ1−1
γ1 − 1


 (5.7)
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In order to model the efficiency ηc, a third order polynomial function is used to
interpolate the experimental data provided by the manufacturer of the turbocharger.
In order to avoid dependency on ambient temperature and pressure, the function inputs
are the corrected mass flow rate defined as:

Dc,corr = Dc

√
T1/Tref

P1/Pref

and the pressure ratio:
P2

P1

The map extracted from the interpolated function is depicted in Figure 5.3.
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Figure 5.3: Interpolated compressor efficiency map

5.2.2.3 Turbine power

Following the same procedure, the power turbine is expressed as:

Pt = Dtcp3(T3 − T4) (5.8)

Then T4 can be expressed from the definition of the isentropic efficiency:

ηt = Pt,isentropicPt
=

T4

T3
− 1

(
P4

P3

) γ3−1
γ3 − 1

, (5.9)
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which leads to:

Pt = ηtT3cp3Dt


1−

(
P4

P3

) γ3−1
γ3


 (5.10)

The difficulty here is how to model the efficiency ηt. Indeed, in addition to the
rotor speed and the pressure ratio, it also depends on the vanes position uvgt. Instead
of building a four dimensional map, one can use the Blade Speed Ratio (BSR) [Jung
et al. 2002], defined as the ratio between the real turbo speed and the ideal peripheral
velocity of the exhaust gas, which can be expressed as:

BSR =
D
2 ωtc√√√√2cp3T3

(
1−

(
P4
P3

) γ3−1
γ3

) (5.11)

where D is the wheel turbine diameter.

As before, a third order polynomial function is used to interpolate the experimental
data. The obtained map is shown in Figure 5.4.
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Figure 5.4: Interpolated turbine efficiency map

Remark 5.2
As mentioned in [Isermann 2014], one can consider the parameters γ1, γ3, cp1, cp3
and R as constant. In addition, due to their low dispersion, we assume in the sequel
that γ1 = γ3 = γ.
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5.2.3 Turbine flow modeling

Since mass flow rate passing through the turbine Dt is not measured, two different
modeling methods are proposed: one based on the orifice flow equation, the other
one considering an identified Hammerstein-Wiener one. For comparison purpose, the
following fit performance index will be used:

FIT = 1− ‖Dt −Dt(Model)‖2

‖Dt −mean(Dt)‖2
(5.12)

5.2.3.1 Orifice flow equation

Many studies use the standard equations of compressible gas flow through an orifice to
model the turbine mass flow rate as in [Olin 2008; Moulin 2010; Ceccarelli 2012; Mo-
hammadpour et al. 2010]. The cited reference propose different formulations depending
on the approximation assumptions. Since, we do not have computation limitations, we
will use the more detailed one expressed by:

Dt = A(uvgt)
P3√
RT3

Ψ
(
P4

P3

)
(5.13)

Ψ
(
P4

P3

)
=
√

2γ
γ − 1

(
Π

2
γ − Π

γ+1
γ

)
(5.14)

where Π represents the pressure ratio in normal and critical conditions, which is defined
by:

Π = max

P4

P3
,

(
2γ
γ + 1

) γ
γ−1

 (5.15)

In this study, the effective area A(uvgt) is identified as a third order polynomial function
of the control input uvgt.

5.2.3.2 Hammerstein-Wiener model

In addition to the previous model, which is a knowledge based one, a data-driven model
has been calibrated, in the form of a Hammerstein-Wiener (HW) model. A HW model
is a combination of three blocks as depicted in Figure 5.5: a static input nonlinearity,
a linear dynamic system, and a static output nonlinearity. For more information about
this model see for example [Zhu 2002].

In our case, sigmoid networks have been chosen for the input and output nonlinear
functions, which can be defined as a sum of weighted sigmoid functions (ez + 1)−1.
The linear system is a polynomial model with 1 zero, 2 poles with a delay set to 1.
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The functions choice gives tunable parameters vectors to optimize. The identification
consists to minimize the prediction error, where the parametric optimization problem
is solved by the nonlinear least square method with the trust-region reflective Newton
algorithm. For methodology details about this method, see [Nelles 2011]. From an
implementation point of view, the identification has been performed with the System
Identification Toolbox of Matlab using the same inputs as the previous model (i.e:
P3, T3, P4 and uvgt as in Figure 5.5).

Input
Nonlinearity

Linear
Block

Output
Nonlinearity

P3
T3
P4

uvgt

Dt

Figure 5.5: Hammerstein-Wiener model block diagram

5.2.3.3 Identification results

The identification of the two models is based on the data obtained with GT-POWER
for a transient cycle (see WHTC in Appendix B), i.e P3, T3, P4, uvgt and the reference
Dt. The results are depicted in Figure 5.6 associated with their FIT index (5.12) in
Table 5.2. Then the models have been fed with the data obtained with a stationary
cycle to evaluate their robustness to other operational points. This case is presented in
Figure 5.7.

Table 5.2: FIT obtained for the different cases

Cycle Model for Dt

Orifice eq. HW

WHSC 76% 93.1%
WHTC 76.9% 96.4%

First, the FIT obtained for the both cycles and models are higher than 75%. There-
fore, both models are valid for the considered operating points. As expected, the HW
model significantly improves the FIT and the relative error is close to zero most of
the time. However, the model obtained with the orifice equations does not manage to
exactly estimate the stationary points but captures the global behavior where, most of
the time, the relative error is less than 20%.

5.2.4 Summary of the nonlinear model of ωtc and P3

Finally, combining equations (5.3)-(5.7) and (5.10), the following nonlinear differential
equations represent the dynamic of the turbocharger and the exhaust manifold pressure:
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Figure 5.6: Identification results for transient cycle

ω̇2
tc = 2

Jtc
ηtT3cp3Dt


1−

(
P4

P3

) γ3−1
γ3




− 2
Jtc

1
ηc
T1cp1Dc



(
P2

P1

) γ1−1
γ1 − 1




Ṗ3 = RT3

V3
(Dasp +Df −Degr −Dt)

(5.16)

where Dt, for comparison purpose, will be calculated using the two models defined in
the previous Section 5.2.3: the orifice flow equations (5.13)-(5.15) and the identified
Hammerstein-Wiener model.
Remark 5.3

Due to their form, the previous model is difficult to validate in open-loop because
it has a pure integral behavior. However, this kind of model is common in the
literature.

5.3 Observer design

To take into account the nonlinearities of the system described in Section 5.2.4, a quasi-
LPV approach is considered to design an observer for the exhaust manifold pressure
P3.
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Figure 5.7: Identification results for stationary cycle

5.3.1 LPV modeling

Let denotes [x1 x2]T = [ω2
tc P3]T the state vector. We can transform the nonlinear

system described by (5.16) into the following quasi-LPV form:



ẋ1

ẋ2


 =




0 ρ1

0 ρ2





x1

x2


+




1 0

0 1





u1

u2


 (5.17)

with, in the case where Dt is given by (5.13)-(5.15),

ρ1 = ηtT3cp3


1−

(
P4

P3

) γ−1
γ


A(uvgt)

1√
RT3

Ψ
(
P4

P3

) 2
Jtc

ρ2 = −A(uvgt)
1√
RT3

Ψ
(
P4

P3

)
RT3

V3

(5.18)

and
u1 = − 2

Jtc
Pc

u2 = T3R

V3
(Dasp +Df −Degr)

(5.19)

Remark 5.4
This case is convenient for the LPV formulation since (5.13) depends linearly on
P3. In the case where Dt is obtained by the Hammerstein-Wiener (HW) model, we
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choose to divide this nonlinearity by P3 for the varying parameters. Thus they will
be expressed as:

ρ1 = ηtT3cp3


1−

(
P4

P3

) γ−1
γ


 Dt(HW )

P3

2
Jtc

ρ2 = −RT3

V3

Dt(HW )
P3

(5.20)

It is worth noting that (5.17) is a quasi-LPV model since ρ1 and ρ2 depend on
x2 = P3. Therefore, in the LPV observer form, ρ1 and ρ2 will be computed on-line
using the estimated pressure P̂3.

5.3.2 Problem formulation

Like before, let denote [x1 x2]T = [ω2
tc P3]T and u as in (5.19), then (5.17) is rewritten

as the LPV system:
ẋ = A(ρ)x+Bu+ Ew

y = Cx

z = Czx

(5.21)

where:
A(ρ) =

[
0 ρ1
0 ρ2

]
; B = I2; E = I2

C = [1 0]; Cz = [0 1]
(5.22)

z represents the variable to be estimated, i.e., P3, and w is a vector of additive uncer-
tainties that has to attenuated.

Following the procedure presented in Chapter 1, since the parameter dependence of
(5.17) is affine, the matrix A(ρ) can be transformed into a convex polytopic form such
that:

A(ρ) =
4∑

i=1
µi(ρ)Ai, µi(ρ) ≥ 0,

4∑

i=1
µi(ρ) = 1 (5.23)

To determine the bounds of ρ1 and ρ2, thus the vertices of the polytope, we used
the data obtained for a transient cycle in the formulation (5.18). Its results that
ρ1 ∈ [ρ1, ρ1] = [13.42, 1187.08] and ρ1 ∈ [ρ2, ρ2] = [−33.44,−3.79].

Following Algorithm 1, the vertices Ai of the polytope could be given as:

A1 =
[
0 ρ1
0 ρ2

]
; A2 =

[
0 ρ1
0 ρ2

]

A3 =
[
0 ρ1
0 ρ2

]
; A4 =

[
0 ρ1
0 ρ2

] (5.24)
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In the case of two parameters, Algorithm 2 gives the interpolation functions µi(ρ)
defined as:

µ1(ρ) =
(
ρ1 − ρ1

ρ1 − ρ1

)
×
(
ρ2 − ρ2

ρ2 − ρ2

)

µ2(ρ) =
(
ρ1 − ρ1

ρ1 − ρ1

)
×
(
ρ2 − ρ2

ρ2 − ρ2

)

µ3(ρ) =
(
ρ1 − ρ1

ρ1 − ρ1

)
×
(
ρ2 − ρ2

ρ2 − ρ2

)

µ4(ρ) =
(
ρ1 − ρ1

ρ1 − ρ1

)
×
(
ρ2 − ρ2

ρ2 − ρ2

)

(5.25)

The chosen objective is to estimate the state vector x of (5.21) while minimizing a
H∞ criterion with respect to disturbance terms. The proposed polytopic LPV observer
has the following structure:

˙̂x =
4∑

i=1
(µi(ρ̂)(Aix̂+ Li(y − ŷ))) +Bu

ŷ = Cx̂

ẑ = Czx̂

(5.26)

where Li are unknown matrices to be determined.

Let Twez denote the transfer from w to the state error estimation ez = z − ẑ. The
objective here is to design a LPV polytopic observer (5.26) for system (5.17)-(5.18) to
solve the following problem:
Problem 5.1

Design an observer (5.26) for system (5.17)-(5.18) such that:

(1) the induced-L2 norm from for Twez is bounded by γ∞, i.e

sup
w 6=0,w∈L2

‖ez‖2

‖w‖2
= ‖Twez‖∞ ≤ γ∞ (5.27)

(2) the poles of Twez at each vertex of the polytope are in a desired region to ensure
both convergence performance and stability

5.3.3 Synthesis

First let us notice that, even if the parameter vector is using estimated state variables
(due to the quasi-LPV model), we assume here that ρ̂ = ρ for the synthesis of the
observer (5.26). As presented in [Heemels et al. 2010], a robustness study with respect
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to uncertainty on the scheduling variables is important and could be studied in future
works. Following Proposition 1.2 and Proposition 1.3, we can establish the proposition
hereunder:

Proposition 5.1

Let consider the LPV system (5.21)-(5.23) and the observer (5.26). If there exists
matrices Yi and a symmetric positive-definite matrix P and for a given α, r and θ,
such that:

PAi − YiC + ATi P − CTY T
i + 2αP < 0 (5.28)



−rP PAi − YiC

∗ −rP


 < 0 (5.29)




sin θ(PAi − YiC + ATi P − CTY T
i ) cos θ(PAi − YiC − ATi P + CTY T

i )

∗ sin θ(PAi − YiC + ATi P − CTY T
i )


 < 0

(5.30)

min γ∞

s.t




PAi − YiC + ATi P − CTY T
i E PCT

z

∗ −γ∞I 0

∗ ∗ −γ∞I



< 0

(5.31)

for all i = 1, 2, . . . , 2N , then the poles of Twez at each vertex are in the considered
area depicted in Fig. 5.8 and itsH∞ norm is minimized by γ∞. Besides, the observer
gains Li are deduced as Li = P−1Yi.

Proposition 5.1 is now applied to solve Problem 5.1, for a given α, θ and r. There
exists a compromise between the area of the pole placement and the disturbance atten-
uation. Increase θ will reduce the value of γ∞ but the damping will be more important.
After several synthesis, the pole placement parameters are chosen as: α = 4, θ = π/6,
r = 80 which gives γ∞ = 0.8902 and the following observer gains at the 4 vertices of
the polytope:

L1 = [70.60 1.10]T , L2 = [96.79 2.01]T

L3 = [70.60 1.93]T , L4 = [101.91 2.36]T

The roots locus of Twez at each vertex are depicted in Figure 5.8. All the poles have
a strictly negative real part and are in the desire cone. One can also observe that two
conjugate poles (the cyan ones) are at the limit of the cone due to the optimization.
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Figure 5.8: Roots locus of Twez

Figure 5.9 shows the frequency response of Twez for different frozen values of the
vector ρ. One can observe a good disturbance attenuation in low and high frequencies,
without peaks, regardless the value of ρ.

5.4 Simulation results

Like in Section 5.2.3.3, the validation of the observer will be performed on the stationary
and the transient cycles (see Appendix B). These two cycles are used as inputs for the
GT-POWER simulator, then the needed data are collected to feed the observer (5.26)
of the system (5.17). The scheme presented in Figure 5.10, summarizes the considered
simulation tests. In addition to both cycles, we will compare the results with the two
different models for Dt defined in Section 5.2.3.

The global performance results, evaluated with the NRMS index (see Appendix A),
for the different cases and scenarios treated in the following are summarized in Table 5.3.

Table 5.3: NRMS obtained for the different cases

Cycle Model for Dt

Orifice eq. HW

WHSC 6.1% 2.5%
WHTC 4.9% 1.9%
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Figure 5.9: Frequency response of Tezw(ρ)

5.4.1 Case 1: Dt defined by the orifice equations (5.13)-(5.15)

The results obtained for the two scenarios (WHSC/WHTC) in the case where Dt is
defined by the orifice flow equations (5.13)-(5.15), are respectively presented in Fig-
ure 5.11 and Figure 5.12. The observer manages to follow the variations of the pressure
with a reasonable error for both scenarios, since the relative error is less than 10% most
of the time for both cycles. However the bias is important for some operating points and
highlighted with the stationary cycle in Figure 5.11 around 200s or between 400 and
600s. This is the direct consequence of the modeling error shown in Figure 5.7. Besides,
one can see that the observer tends to overestimate P3 when Dt is underestimated.

5.4.2 Case 2: Dt defined by HW model

In this case Dt is defined by the Hammerstein-Wiener model identified in Section 5.2.3.
The results for the WHSC cycle are depicted in Figure 5.13 and for the WHTC in
Figure 5.14. One can observe that the estimation is improved and, for some stationary
points, the error is close to zero. This is confirmed by the NRMS results shown in
Table 5.3.

This significant improvement can only be attributed to the better definition of Dt,
since we have seen in Figure 5.6 and Figure 5.7, that the HW model estimates almost
perfectly Dt. One can explain the remaining errors by:
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Figure 5.10: Scheme of the simulation tests

(1) The constant assumption made on the thermal coefficients cpi and γi

(2) The accuracy of the efficiency maps of the turbocharger depicted in Figure 5.3
and Figure 5.4

(3) Using the intake manifold pressure to calculate the compressor power (5.7) instead
of using the pressure measurement just after the compressor

5.5 Some ongoing studies

During the research work, other topics have been investigated to improve the estimation
or the diagnosis of the turbocharger. Due to their similarities with the previous study,
only the outline will be presented hereafter.

5.5.1 Pressure and EGR mass flow estimation

One of the weaknesses of the previous observer is that it uses as a input, the EGR mass
flow rate Degr. However, as we have underlined, in Chapter 4, this variable is poorly
estimated and thus it could be interesting, in practice, to overcome this problem.

In fact, the model established in Section 5.2.4 could be used to also estimate the
variable Degr if we assume Ḋegr = 0 in u2. Then, the same procedure as in Section 5.3.1
can be followed and an observer can be designed for the following quasi-LPV system:
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Figure 5.11: Case 1: WHSC cycle with Dt defined by orifice equations (5.13)-(5.15)



ẋ1
ẋ2
ẋ3


 =




0 ρ1 0
0 ρ2 ρ3
0 0 0






x1
x2
x3


+




1 0
0 1
0 0



[
u1
u2

]

y = x1

(5.32)

where, [x1 x2 x3]T = [ω2
tc P3 Degr]T ; ρ1, ρ2 and u1 are given respectively by (5.18)

and (5.19). Finally, ρ3 and u2 are defined by:

ρ3 = RT3

V3

u2 = RT3

V3
(Dasp +Df )

(5.33)

Then, an observer can be designed with the same procedure described in Sec-
tion 5.3.3 to both estimate P3 and Degr.

5.5.2 Turbocharger efficiency estimation

The turbocharger is a key and complex component in the operation of the engine. Its
monitoring is very important since any malfunction could damage all the engine and
the after treatment system. An interesting indicator of the turbocharger’s health could
be the efficiencies of the compressor and the turbine like in [Ceccarelli 2012].
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Figure 5.12: Case 1: WHTC cycle with Dt defined by orifice equations (5.13)-(5.15)

Thus, to estimate one of the effiencies, assuming that the other is known, one can
propose to use the model of the turbocharger dynamics:

ω̇2
tc = 2

Jtc
ηtT3cp3Dt


1−

(
P4

P3

) γ3−1
γ3


− 2

Jtc

1
ηc
T1cp1Dc



(
P2

P1

) γ1−1
γ1 − 1




y = ω2
tc

(5.34)

It appears that (5.34) depends linearly on ηt and 1
ηc
. Therefore the problem becomes

a case already treated in the previous chapters where we need to estimate an unknown
input. Thus, the methods seen in Chapter 1 could be used. Alternatively, one could
extend the system (5.34) with a null dynamic of ηt or 1

ηc
.

5.6 Conclusion

In this chapter, we have proposed a LPV observer-based solution in order to estimate
the exhaust manifold pressure of a turbocharged diesel engine. In Section 5.2, a mean
value model of the turbocharger and pressure dynamics has been developed. In this
section, we also proposed two models of the turbine mass flow rate: a standard physical
model from the orifice flow equations and a black-box Hammerstein-Wiener model.

Then, in Section 5.3, thanks to the LPV framework, a polytopic LPV observer has
been designed to estimate the state space vector of the system. It is worth mentioning
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Figure 5.13: Case 2: WHSC cycle with Dt defined by the Hammerstein-Wiener model

that this quasi-LPV observer internally depends on the estimated state variable x̂2,
and further works must be performed to study the effects of the uncertainties in the
parameters due to the estimation of P3 as investigated in [Heemels et al. 2010].

In Section 5.4, the observer has been tested in a high-fidelity simulator in GT-
POWER in different scenarios. It has been shown that the observer has a low estimation
error in every tested scenarios. As shown in Table 5.3, the HW model has the best
estimation results. This observation could be expected because it has been established
in Section 5.2.3 that this model has the best fit. However, this model seems to be
too complex for a real-time implementation. Then, in practical implementations, the
orifice flow equations may be preferred.

Finally, in Section 5.5 perspectives have been proposed using the same model es-
tablished in this chapter.
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Figure 5.14: Case 2: WHTC cycle with Dt defined by the Hammerstein-Wiener model
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6.1 Introduction

To have a suitable control of the pollutants, it is needed to know what is the gas
composition at the inlet of the engine [Guzzella and Onder 2010]. Therefore, the
quantity of fresh air and recirculated gas, and thus the inlet air mass flow rate and
EGR mass flow rate respectively, have to be known as accurately as possible. To
estimate both flows, Volvo equipped its medium duty engines with a lambda sensor
located just after the turbine of the turbocharger (see Figure 6.1). This sensor enables
to measure the oxygen concentration of the exhaust gas mixture and, assuming that
the quantity of injected fuel is known, it is possible to reconstruct the EGR and the
inlet air mass flow rates.

115
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Nevertheless, the NOx sensor, located after the Diesel Particule Filter (DPF) in the
after-treatment system, can also provide a value of the oxygen concentration. Since
there are no additional pipes or reaction which modifies this concentration, its value
must be the same than the one measured by the lambda sensor. So why has it been
decided to add a redundant sensor? The answer is given by the fact that there are
around 2 meters of pipe length between the two considered sensors. Thus, there exists
a significant transport delay, in particular at low load, and the pollutants control per-
formances are not acceptable with the estimates based on the NOx sensor. That’s why
an extra sensor has been added to overcome the delay. It is this sensor configuration
that has been used in Chapter 4 to estimate the EGR mass flow rate.
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Figure 6.1: Schematic view of the air path and the after treatment system

To illustrate this issue, we will use the data collected from a test-cell equipped with
a medium-duty 6-cylinders 8L diesel engine, as presented in Figure 6.1. The data for
this case are obtained with a stationary and a transient cycle (WHSC and WHTC
respectively, see Appendix B). If the current method (which does not take into account
any delay) is applied to estimate the inlet air and EGR mass flow rates, we obtain the
results depicted in Figure 6.2. In these Figures, the reference variablesDair andDegr are
calculated with the lambda sensor, so without delay, and D̂air and D̂egr are calculated
with the NOx sensor. For the stationary cycle in Figure 6.2(a) and Figure 6.2(b), there
is no particular problem: both estimates follow the reference flows. On the other hand,
for the transient cycle in Figure 6.2(c) and Figure 6.2(d), where the delay influence
is more significant, the estimates are very deteriorated and not suitable for pollutants
control perspective. In this chapter, we aim at improving the flows estimation by taking
into account the measurement delay of the NOx sensor.

The transport delay from the exhaust gas to the O2 sensor (in our case the lambda
or NOx sensor) is generally addressed in a control perspective as in [Jankovic and
Kolmanovsky 1999] or [Kahveci and Jankovic 2010] where the air-to-fuel ratio control
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(a) WHSC: Dair estimation (b) WHSC: Degr estimation

(c) WHTC: Dair estimation (d) WHTC: Degr estimation

Figure 6.2: Case 0: flows estimation without taking account the delay

in Spark Ignition engines studied. It appears that this problem seems to be specific to
the trucks industry because, for private cars, the after-treatment system is not deported
far from the engine but located just after, so the pipe length is significantly reduced
and the delay as well.

In Chapter 4 an estimation of the EGR mass flow rate has been proposed assuming
that the air mass flow rate was known. In this chapter, we propose to design LPV
time-delay observers to estimate the inlet air and EGR mass flow rates only based on
the information provided by the NOx sensor in order to physically remove the lambda
sensor. To do so, a time-delay model is defined in Section 6.2 based on a volume control
approach. Then, in Section 6.3 the theoretical design of an LPV time-delay observer
is introduced, and applied in Section 6.4 where the results are presented. Finally,
conclusions are stated in Section 6.5.
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Table 6.1: Nomenclature

Notation Description Unit
Neng Engine speed rpm
T Temperature of a subsystem K
P Pressure of a subsystem Pa
V Volume of a subsystem m3

F Specie gas concentration %
R Ideal gas constant for the air J.kg−1.K−1

D Mass flow rate kg.s−1

Subscript
2 Inside the intake manifold
3 Inside the exhaust manifold
4 Inside the volume located after the DPF
air Related to the inlet air
t Related to the turbine
egr Related to the EGR loop
f Related to the fuel

6.2 Time-delay system modeling

P ; T ; F ; V ;mtot

Fin
Din

Figure 6.3: Control volume

To develop a time-delay model of the engine air-path, a control volume approach will
be considered as in [Castillo 2013].

Let first define the O2 concentration in a gas mixture. It is the ratio of its mass
between the total gas mass inside the control volume depicted in Figure 6.3:

F = mO2

mtot

(6.1)

Then, deriving (6.1), one gets:

Ḟ = RT

PV
Din (Fin − F ) (6.2)
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To describe the O2 concentration behavior inside different parts of the engine, (6.2)
will be applied to three volumes: the volume inside the intake manifold, the exhaust
manifold and the volume located just after the DPF.
Notation 2

The notations used in this section and hereafter are defined in Table 6.1 and follow
the schematic view of Figure 6.1. Besides, let us mention that the time dependency
of the variables T , P , F and D will be reported only if the variable is submitted to
a delay.

6.2.1 O2 concentration in the intake manifold

P2 ; T2 ; F2 ; V2

Fair
Dair

F3
Degr

Dair +Degr

Figure 6.4: Intake manifold volume

The volume depicted in Figure 6.4 is subject to two inlet flows: one from the ambient
air, with a concentration Fair (which depends mainly on the humidity and altitude) and
one from the EGR loop. Therefore, one can model the evolution of O2 concentration
in the intake manifold by:

Ḟ2 = RT2

P2V2
(Dair(Fair − F2) +Degr(F3 − F2)) (6.3)

6.2.2 O2 concentration in the exhaust manifold

P3 ; T3 ; F3 ; V3

F2
Dasp

Ff
Df

Dasp +Df

Figure 6.5: Exhaust manifold volume

Here, two flows are coming in for this volume (Figure 6.5): one from the intake
manifold and the flow induced by the fuel injection. Thus, the dynamics of F3 can be
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described by:

Ḟ3 = RT3

P3V3
(Dasp(F2 − F3) +Df (−Ff − F3)) (6.4)

Note that there is a minus sign before Ff because Df consumes a Ff concentration of
O2 inside the manifold.

For a diesel engine, the value of Ff is dertermined by the chemical reaction between
a hydrocarbon molecule and some O2 given by [Flagan and Seinfeld 2012]:

CnHmOr +
(

n + m
4 −

r
2

)
O2 −→ nCO2 + m

2 H2O

Therefore, Ff =
(
n+ m

4 −
r

2

)
where n, m and r are given by the nature of the fuel

used for the combustion.
Remark 6.1

The stoichiometric Air Fuel Ratio (AFR) is often used to find Ff since it is a classical
known value in the combustion process. It is defined as:

AFRstoich = mair,stoich

mf

' 14.5 (for diesel)

' 12.5 (for biodiesel)
(6.5)

Thus, one can just multiply this value by 20.95% (the O2 concentration in dry air)
to get Ff .

The air mass flow aspirated by the engine will be expressed following the formula
in Appendix C.

6.2.2.1 After the DPF

P3 ; T3 ; F3 ; V3

F3

Dt

Figure 6.6: Exhaust volume

Contrary to the previous ones, just one flow comes inside this volume (Figure 6.6).
Due to the pipe length, the O2 concentration F4 is the exhaust concentration one, F3,
delayed by the transport through the pipe associated with the dynamics of the volume.
Thus, one can model the O2 concentration inside this volume by:
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Ḟ4 = RT4

P4V4
Dt (F3(t− h(t))− F4) (6.6)

where h(t) is the time transport delay.
Remark 6.2

As exposed in Chapter 5, the turbine mass flow rate Dt can be determined by
models as those obtained with the orifice flow equations or with the Hammerstein-
Wiener model. In Chapter 5, data obtained from a GT-POWER model have been
used to calibrate these models. However, due to the high gas temperature at the
exhaust, Dt is not measured at the Volvo test cell. Thus a static approximation of
this variable defined as: Dt = Dair + Df will be used in this study to compute Dt

offline for performance assessment.

6.2.3 Delay modeling

As explained in [Bresch-Pietri and Petit 2016], the time propagation h(t) of a fluid with
a varying speed v(t) through a pipe of length L, can be defined according to:

∫ t

t−h(t)
v(s).ds = L (6.7)

In our case, the gas speed evolution along the pipe is not measured but, it can
be related, through the ideal gas law (see for example [Bresch-Pietri 2012]), to ther-
modynamic conditions and mass flow rate that are measured or estimated. One can
obtain:

v(t) = 1
S

RT4

P4
Dt (6.8)

where S is the pipe area, considered as constant here.

As a first approximation, at steady state conditions, the following relation can be
deduced from (6.7), (6.8) and V4 = SL for:

∫ t

t−h(t)
Dt(s).ds = V4P4

RT4
⇒ h(t) = V4P4

RT4

1
Dt

(6.9)

Assuming that V4P4

RT4
is constant, or slow varying, the following simple relation can be

deduced:
h(t) = Kdelay

Dt

(6.10)

where Kdelay ∈ R+.
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As explained in Remark 6.2, Dt is estimated thus only Kdelay is unknown in (6.10).
Kdelay will be identified by the nonlinear least square method with a trust-region re-
flective algorithm, where the sum squared error is minimized. The considered model
is (6.6) where F4 is measured by the NOx sensor, F3 by the lambda sensor and P4, T4
by a pressure and temperature sensors. In short, the following optimization problem is
solved:

min
Kdelay

∑
(F4 − F4(model))2 subject to

{
(6.6)
(6.10)

(6.11)

A transient cycle WHTC (see Appendix B) done on a test cell will be used to provide
the needed data.

The FIT index (defined in Appendix A) of the whole cycle is 77% when the delay
is not taken into account and, when the delay is taken into account, its value is 93%.
For sake of clarity, just a partial result is depicted in Figure 6.7. As we can see with
the blue curve which does not take into account the delay, the error can be very high in
the transient phases and sometimes, the blue and green curves could be in opposition
of phase as around 720s. It explains the bad results observed in Figure 6.2(d) and
Figure 6.2(c) and the low value of the FIT index. Even if the delay’s model (6.10) is
simple, the red curve manages to capture all the oscillations and the rising slope of the
transients. Moreover the FIT index is high which assesses the performance.

One can also observe in Figure 6.7 that the model does not exactly follow the
oscillations of the measure. A justification of this phenomena can be given by the fact
that the time constant of the NOx sensor is higher than the lambda one. Thus, the
NOx sensor cannot capture all the frequencies and inevitably, the performance of the
estimator will be affected.

Figure 6.8 shows the evolution of the modeled delay (6.10) in the whole cycle. At
low load, thus when the exhaust flow is low, the delay reaches 1.67s and, at high load,
0.15s, thus h(t) ∈ [0.15, 1.67].

6.2.4 Summary of time-delay system modeling

Finally, combining equations (6.3), (6.4) and (6.6), the following nonlinear time-delay
system describes the O2 concentration inside the intake and exhaust manifolds and
inside the volume after the DPF:





Ḟ2 = RT2

P2V2
(Dair(Fair − F2) +Degr(F3 − F2))

Ḟ3 = RT3

P3V3
(Dasp(F2 − F3) +Df (−Ff − F3))

Ḟ4 = RT4

P4V4
Dt (F3(t− h(t))− F4)

(6.12)
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Figure 6.7: Identification results where the measure F4 is obtained with NOx sensor and the
model is (6.6)

where h(t) is given by (6.10).

We assume that the following variables are measured or estimated: T2, P2, T3, P3,
T4, P4, Df , Dt, Dasp and F4. Ff and Fair are constant.

6.3 Time-delay observer synthesis

As a first step, this section is devoted to an LPV formulation and analysis, and in
a second phase, some theoretical background is given to design an LPV observer for
time-delay system.

6.3.1 Analysis and LPV formulation

The LPV framework is used to design an observer of Dair and Degr. Thus, (6.12) can
be turned into the following quasi-LPV (qLPV) model:

ẋ(t) = A(ρ)x(t) + Ah(ρ)x(t− h(t)) +Bu1(t) + F (ρ)f(t)
y(t) = Cx(t)

(6.13)
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Figure 6.8: Evolution of h(t) defined in (6.10)

with, x(t) = [F2 F3 F4]T , f(t) = [Dair Degr]T , u1(t) = − RT3

P3V3
DfFf , ρ = [ρ1 ρ2 ρ3 ρ4 ρ5]T

and the different matrices and parameters,

A(ρ) =




0 0 0
RT3

P3V3
Dasp −

RT3

P3V3
(Dasp +Df ) 0

0 0 − RT4

P4V4
Dt




:=




0 0 0
ρ3 ρ4 0
0 0 ρ5




Ah(ρ) =




0 0 0
0 0 0
0 RT4

P4V4
Dt 0


 :=




0 0 0
0 0 0
0 −ρ5 0




F (ρ) =




RT2

P2V2
(Fair − F2) RT2

P2V2
(F3 − F2)

0 0
0 0


 :=



ρ1 ρ2
0 0
0 0




B =




0
1
0




C =
[

0 0 1
]

(6.14)

Notation 3
For sake of clarity, the time dependency of the parameters vector is omitted here
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and hereafter. Thus ρ = ρ(t).

Remark 6.3
The previous system (6.13) is qLPV because ρ1 and ρ2 depend on F2 and F3 which
are also states of the model. This representation is not unique. For example, in (6.3)
there is the term Degr(F3−F2), which can be written as f2(t)x2(t)− f2(t)x1(t) and
thus converted into a qLPV form with two time-varying parameters. The proposed
qLPV form (6.13) minimizes the number of varying parameter.

To estimate the desired variables, one can simply extend the states vector of (6.13)
with Dair and Degr associated with a null dynamics. So we assume:

Ḋair = 0
Ḋegr = 0

(6.15)

Therefore, the following system is derived from (6.13) and (6.15):
ẋe(t) = Ae(ρ)xe(t) + Ahe(ρ)xe(t− h(t)) +Beu1(t)
ye(t) = Cexe(t)

(6.16)

with, xe(t) = [F2 F3 F4 Dair Degr]T and,

Ae(ρ) =
[
A(ρ) F (ρ)

02,5

]

Ahe(ρ) =
[
Ah(ρ) 03,2

02,5

]

Be =



B
0
0




Ce =
[
0 0 1 0 0

]

(6.17)

Since the parameter dependence of (6.16) is affine, it can be turned into a polytopic
form such as:

ẋe(t) =
32∑

i=1
µi(ρ)(Aeixe(t) + Aheixe(t− h(t))) +Be(t)

ye(t) = Cexe(t)
(6.18)

where the matrices Aei and Ahei, correspond to the image of a vertex’s polytope and
µi(ρ) are the interpolation functions.

Without going into details on the observability conditions of LPV time-delay sys-
tems (one can refer to [Sename 2001] and [Briat 2008]), in the case where the stability
of the designed observer is determined by a delay dependent condition, the following
Proposition can be used to have a necessary condition for the observability of (6.18):



126 Chapter 6. Engine mass flow rates estimation submitted to a sensor delay

Proposition 6.1
Let denote a system generic LPV polytopic time-delay system as:

ẋ(t) =
2N∑

i=1
µi(ρ)(Aix(t) + Ahix(t− h(t)))

y(t) = Cx(t)
(6.19)

where the matrices Ai and Ahi, correspond to the image of a vertex’s polytope, µi(ρ)
are the interpolation functions and x ∈ Rn.

(6.19) is observable if the observability is fulfilled for h(t) = 0 at each vertex of
the polytope, i.e:

rank(O) = n with O =




C
C(Ai + Ahi)

...
C(Ai + Ahi)n−1




(6.20)

for all i = 1 . . . 2N .

Applying the Proposition 6.1 to the extended system (6.18), gives rank(O) = 4 6= 5.
A solution to this problem is to add another measurement to reconstruct all the states
with an observer. We have two obvious choices:

(1) Either one can use the exhaust manifold pressure P3, with its dynamics defined
by:

Ṗ3 = RT3

V3
(Dasp +Df −Degr −Dt) (6.21)

(2) Or the intake manifold pressure P2 dynamics:

Ṗ2 = RT2

V2
(Dair +Degr −Dasp) (6.22)

It has been established, in the previous Chapters, that the mass flow rates Dt and Dasp

are uncertain and the P3 sensor may be subject to failure. Therefore, the P2 mea-
surement, which is more reliable, will be preferred to design the observer. Combining
(6.22) and the extended system (6.16), the following LPV time-delay system to observe
is deduced:

ẋo(t) = Ao(ρ)xo(t) + Aho(ρ)xo(t− h(t)) +Bou(t)
yo(t) = Coxo(t)

(6.23)

with, xo(t) = [F2 F3 F4 P2 Dair Degr]T , yo(t) = [F4 P2]T , u(t) = [u1(t) u2(t)]T ,
and,
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Ao(ρ) =




0 0 0 0 ρ1 ρ2
ρ3 ρ4 0 0 0 0
0 0 ρ5 0 0 0
0 0 0 0 ρ6 ρ6

02,6




Aho(ρ) =




0 0 0 0 0 0
0 0 0 0 0 0
0 −ρ5 0 0 0 0

03,6




Bo =




0
1
0
1
0
0




Co =
[
0 0 1 0 0 0
0 0 0 1 0 0

]

(6.24)

where, according to (6.22),
ρ6 = RT2

V2

u2(t) = −RT2

V2
Dasp

(6.25)

ρ1, ρ2, ρ3, ρ4, ρ5 and u1 are defined in (6.14).

Again, (6.23) can be put into a polytopic form:

ẋo(t) =
64∑

i=1
µi(ρ)(Aoixo(t) + Ahoixo(t− h(t))) +Bou(t)

yo(t) = Coxo(t)
(6.26)

Thus, if Proposition 6.1 is applied to the system (6.26), it gives rank(O) = 6. We
have now enough measurements to estimate all the states and more precisely, Dair and
Degr.

6.3.2 Design of LPV time-delay observers

This section deals with the design of observers for LPV time-delay systems where two
methods are presented. One developed in [Briat et al. 2011], and a new method based
on the Finsler’s lemma. Before going into details, let’s first define some theoretical
tools that will be used in the sequel.
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The first one, the Jensen’s inequality, is very useful to establish the stability of
time-delay systems. The following proposition is a particular case of this inequality:
Proposition 6.2 (Jensen’s inequality [Gu et al. 2003])

Let x ∈ Rn and P ∈ Rn with P = P T � 0. Then the following inequality holds:
(∫ t

t−h(t)
ẋ(θ)dθ

)T
P

(∫ t

t−h(t)
ẋ(θ)dθ

)
≤ h(t)

∫ t

t−h(t)
ẋ(θ)TPẋ(θ)dθ (6.27)

The second one, the Finsler’s lemma, permits to decouple the Lyapunov matrices
from the controller or observer gains.
Lemma 6.1 (Finsler’s lemma [Oliveira and Skelton 2001])

Let x ∈ Rn, Q ∈ Rn is symmetric and B ∈ Rm×n such that rank(B) < n. The
following statements are equivalent:
i) xTQx < 0, ∀Bx = 0, x 6= 0.
ii) ∃X ∈ Rn×m : Q+ XB + BTX T ≺ 0.

The objective is to design an LPV observer of the form:

˙̂x(t) = A(ρ)x̂(t) + Ah(ρ)x̂(t− h(t)) + L(ρ)(y(t)− ŷ(t))
+ Lh(ρ)(y(t− h(t))− ŷ(t− h(t)))

ŷ(t) = Cx̂(t)
(6.28)

for the class of LPV time-delay systems defined by:

ẋ(t) = A(ρ)x(t) + Ah(ρ)x(t− h(t)) + Ew(t)
y(t) = Cx(t)
z(t) = Czx(t)

(6.29)

where x ∈ Rnx is the state vector, w ∈ Rnw ,L2 is the additive noise, y ∈ Rny is
the measurement vector, z ∈ Rnz is the signal to be estimated. The time-varying
parameters ρ and the delay h(t) are assumed to belong to the respective sets:

Pρ :=
{
ρ = [ρ1 . . . ρN ]T ∈ RN and ρi ∈ [ρi, ρi], for all i = 1 . . . N

}

H := {h : R+ → [0, hm], ḣ(t) ≤ µ < 1}
(6.30)

Therefore, the observation error e(t) = x(t) − x̂(t) is governed by the following
dynamic equation:

ė(t) = (A(ρ)− L(ρ)C) e(t) + (Ah(ρ)− Lh(ρ)C) e(t− h(t)) + Ew(t)
ez(t) = Cze(t)

(6.31)
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In addition to ρ ∈ Pρ, the parameter dependence of the previous systems is affine
thus can be turned into a polytopic form. In this case, each matrix M depending on
the parameter vector could be written as:

M(ρ) =
2N∑

i=1
µi(ρ)Mi (6.32)

where the matrices Mi, correspond to the image of a vertex’s polytope and µi(ρ) are
the interpolation functions.

The objective here is to find the gains in the LPV time-delay observer (6.28) for
system (6.29) to solve the following problem:

Problem 6.1
Design an observer (6.28) for system (6.29) such that:

(1) the estimation error e = x− x̂ is asymptotically stable (e(t)→ 0 when t→∞)
for w ≡ 0.

(2) the induced-L2 norm from the disturbance w to ez is bounded by γ∞, i.e

sup
w 6=0,w∈L2

‖ez‖2

‖w‖2
≤ γ∞ (6.33)

There are many authors who proposed LMI solutions to solve the stability problem
of time-delay systems. A good overview of these methods is presented in [Xu and Lam
2008]. However, in most of cases, if we substitute the corresponding matrices of (6.31)
into some existing stability results, there will be multiple induced products between the
observer gains and the Lyapunov matrices which are not suitable to design observers.
A way to overcome this, is to use the method developed in [Briat 2008] to design (6.28).
Adapting the solution to the polytopic case and the observer form (6.28), one can get
the following theorem.
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Theorem 6.1 ([Briat 2008])
There exists an LPV polytopic time-delay observer (6.28) for (6.29) such that
Problem 6.1 is solved if there exist matrices Yi,Yhi ∈ Rnx×ny , X ∈ Rnx×nx , symmetric
positive definite matrices P,Q,R ∈ Rnx×nx and a positive scalar γ∞ such that the
LMIs hold for all i = 1, 2, . . . , 2N :



−X −XT XTAi − YiC + P XTAhi − YhiC XTE 0nx,nz XT hmR
∗ −P +Q−R R 0nx,nw CT

z 0nx 0nx
∗ ∗ −(1− µ)Q−R 0nx,nw 0nx,nz 0nx 0nx
∗ ∗ ∗ −γ∞Inw 0nw,nx 0nw,nx 0nw,nx
∗ ∗ ∗ ∗ −γ∞Inz 0nz ,nx 0nz ,nx
∗ ∗ ∗ ∗ ∗ −P −hmR
∗ ∗ ∗ ∗ ∗ ∗ −R




≺ 0 (6.34)

The gains of the observer (6.28) are deduced as Li = (XT )−1Yi and Lhi = (XT )−1Yhi.

Proof : The proof is very similar to [Briat 2008] so not detailed too much here. The objective
is to solve the Problem 6.1 on the system (6.31). To establish the stability, the following
Lyapunov-Krasovskii candidate function is chosen:

V (t) = V1(t) + V2(t) + V3(t)
V1(t) = e(t)TPe(t)

V2(t) =
∫ t

t−h(t)
e(θ)TQe(θ)dθ

V3(t) =
∫ 0

−hm

∫ t

t+θ
ė(η)ThmRė(η)dηdθ

(6.35)

After having bounded the time-derivative of (6.35), in particular a V̇3 upper bound with
Jensen’s inequality 6.2, the projection lemma [Scherer and Weiland 2000] is used to obtain
(6.34).

Another interesting approach to define LMI constraints isolated from the observer
gains is to use the Finsler’s lemma 6.1 as in [Nguyen 2016]. It results in a new theorem
to design (6.28).
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Theorem 6.2
There exists an LPV polytopic time-delay observer (6.28) for (6.29) such that
Problem 6.1 is solved if there exist matrices Yi,Yhi ∈ Rnx×ny , Z ∈ Rnx×nx , symmetric
positive definite matrices P,Q,R ∈ Rnx×nx and two positive scalars γ∞ and ε such
that the LMIs hold for all i = 1, 2, . . . , 2N :



−ZH + h2
mR ZAi − YiC − εZT + P ZAhi − YhiC ZE

∗ Q−R + CT
z Cz + ε(ZAi − YiC)H R + ε(ZAhi − YhiC) εZE

∗ ∗ −(1− µ)Q−R 0nx,nw
∗ ∗ ∗ −γ∞Inw


 ≺ 0 (6.36)

The gains of the observer (6.28) are deduced as Li = Z−1Yi and Lhi = Z−1Yhi.
Note: MH = M +MT .

Proof : Consider the same Lyapunov-Krasovskii defined in (6.35), then compute its time-derivative
to obtain:

V̇1(t) = ė(t)TPe(t) + e(t)P ė(t)
V̇2(t) = e(t)TQe(t)− (1− ḣ(t))e(t− h(t))TQe(t− h(t))

V̇3(t) = h2
mė(t)TRė(t)− hm

∫ t

t−hm

ė(θ)TRė(θ)dθ
(6.37)

Since h(t) ∈H , ḣ(t) ≤ µ thus the following inequality is deduced:

V̇2(t) ≤ e(t)TQe(t)− (1− µ)e(t− h(t))TQe(t− h(t)) (6.38)

Note also that h(t) ≤ hm, thus the integral term of V̇3(t) can be bounded, which gives:

V̇3(t) ≤ h2
mė(t)TRė(t)− hm

∫ t

t−h(t)
ė(θ)TRė(θ)dθ (6.39)

Applying the Jensen’s Inequality 6.2 to the right term of (6.39), we obtain:

V̇3(t) ≤ h2
mė(t)TRė(t)−

hm
h(t) (e(t)− e(t− h(t)))TR(e(t)− e(t− h(t)))

≤ h2
mė(t)TRė(t)− (e(t)− e(t− h(t)))TR(e(t)− e(t− h(t)))

(6.40)

In addition to the stability requirement, the observer needs also to attenuate the disturbance
w on the estimation error ez. The relation (6.33) is verified if:

V̇ (t) + ez(t)T ez(t)− γ∞w(t)Tw(t) < 0 (6.41)

To apply the Finsler’s lemma 6.1, (6.31) is rewritten in the form of Bξ = 0 with:

B =
[
−Inx

A(ρ)− L(ρ)C Ah(ρ)− Lh(ρ)C E
]

and ξ =




ė(t)
e(t)

e(t− h(t))
w(t)


 (6.42)
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Expanding the relation (6.41), we deduce:

ė(t)TPe(t) + e(t)P ė(t) + e(t)TQe(t)− (1− µ)e(t− h(t))TQe(t− h(t)) + h2
mė(t)TRė(t)

− (e(t)− e(t− h(t)))TR(e(t)− e(t− h(t))) + ez(t)T ez(t)− γ∞w(t)Tw(t) < 0
(6.43)

which can be put into the following quadratic form:

ξT




h2
mR P 0nx

0nx

∗ Q−R+ CTz Cz R 0nx

∗ ∗ −(1− µ)Q−R 0nx

∗ ∗ ∗ −γ2
∞Inw


 ξ < 0

⇔ ξTQξ < 0

(6.44)

Thus, according to Finsler’s lemma 6.1, one has:

Q+ XB + BTX T ≺ 0 (6.45)

In particular, if X =




Z

εZ

0nx

0nx


 and with the variable changes Y (ρ) = ZL(ρ) and Yh(ρ) =

ZLh(ρ), one can finally get the LMI (6.36) at each vertex of the polytope. This concludes the
proof.

6.4 Results for EGR and Inlet air mass flow rates estimation

Some theoretical tools have been exposed in Section 6.3.2 and this section will be
devoted to the observer synthesis for the extended system (6.26) and its performance
assessment. For comparison purpose, both design methods described in Theorem 6.1
and Theorem 6.2 will be tested in different conditions. In Section 6.4.1, we detail
the direct application of Theorem 6.1 (Case 1) with its benefits and some limitations
before providing an alternative implementation (Case 2). Similarly, in Section 6.4.2,
we present a direct application of Theorem 6.2 (Case 3), before providing variations of
it (Cases 4 and 5).

Ideally, one solves (6.34) and (6.36) for all i = 1, . . . , 64 while minimizing γ∞.
However, due to a ill-conditioning problem and a high number of constraints, we did
not find a configuration where both conditions are fulfilled. Thus, in the following, the
constant γ∞ has been fixed to complete the optimization program implemented with
the parser YALMIP [Löfberg 2004] and solved with SDPT3 [Tütüncü et al. 2003].

To apply both theorems, the following parameters have to be chosen:

• For Theorem 6.1: E and γ∞.

• For Theorem 6.2: E, γ∞ and ε.
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The two remaining parameters hm and µ are experimentally determined using the
formula (6.10).

For the sake of clarity, the figures in the sequel represent a part of the transient
cycle WHTC. Actually, the time-domain range is the same than the one presented in
Figure 6.2(c) and Figure 6.2(d). A global performance index, the NRMS Appendix A,
summarized in Table 6.2, will evaluate the estimation on the whole cycle for different
cases presented hereafter.

Table 6.2: NRMS for the different cases

Estimation method Case NRMS

Dair estimation Degr estimation

Initial 0 5.5% 22.5%

Theorem 6.1
1 2.5% 7.2%
2 3.5% 9.1%

Theorem 6.2
3 3.1% 10.8%
4 3.8% 15%
5 3.8% 15%

6.4.1 Synthesis based on Theorem 6.1

Case 1. In this first case, consider a full parameter dependent observer for the system
(6.26). Therefore, synthesis has to deduce the gains Li and Lhi in the following observer:

˙̂xo(t) =
64∑

i=1
µi(ρ)[Aoix̂o(t) + Ahoix̂o(t− h(t)) + Li(yo(t)− ŷo(t))

+ Lhi(y(t− h(t))− ŷo(t− h(t)))] +Bou(t)
ŷo(t) = Cx̂o(t)

(6.46)

Let apply Theorem 6.1 to design (6.46). For the following tuning parameters:

E =
[

1 1 1 1 1 1
]T × 10−5 and γ∞ = 107 (6.47)

one can obtain the estimation results depicted in Figure 6.9(a) and Figure 6.9(b) for
Dair and Degr respectively.

In comparison with the initial method (Case 0) that does not take into account the
delay, the designed observer significantly improves the estimation of Dair and Degr. The
results for Dair in Figure 6.9(a) are very accurate. Despite the presence of the delay,
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(a) Case 1: Dair estimation

(b) Case 1: Degr estimation

Figure 6.9: Results for case 1

the observer manages to follow the reference provided by an undelayed sensor (which is
the lambda sensor located after the turbine measuring F3). Regarding the estimation
of Degr, the estimation error is larger. One can explain the observed differences by, of
course, the modeling uncertainties which are indeed directly compensated by D̂air and
D̂egr since they represent integral terms in (6.23). But, one can also explain the errors
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by the technical characteristics of the NOx sensor. Indeed, as explained in Section 6.2.3,
the NOx sensor is slower than the lambda one thus, during transient phenomena, its
value is not the same than the one provided by the lambda sensor and so is the estimate.
In addition, we noticed that, during stationary state, there exists a bias between the
two sensors due to the calibration. To compensate this bias, a constant offset has been
added to the NOx sensor values without guarantee that it is always constant.

Case 2. A big disadvantage of the previous design is its high computational demanding
to determine the gains for the observer (6.26) since an interpolation of 64 vertices is
needed to have L(ρ) and Lh(ρ) which could be not suitable for a real-time application.
Therefore, instead of a parameter dependent gains matrices, we are now looking for
constant ones such that:

˙̂xo(t) = Ao(ρ)x̂o(t) + Aho(ρ)x̂o(t− h(t)) + L(yo(t)− ŷo(t))
+ Lh(y(t− h(t))− ŷo(t− h(t))) +Bou(t)

ŷo(t) = Cox̂o(t)
(6.48)

Thus the LMIs in Theorem 6.1 are transformed into:




−X −XT XTAi − Y C + P XTAhi − YhC XTE 0nx,nz XT hmR
∗ −P +Q−R R 0nx,nw CT

z 0nx 0nx
∗ ∗ −(1− µ)Q−R 0nx,nw 0nx,nz 0nx 0nx
∗ ∗ ∗ −γ∞Inw 0nw,nx 0nw,nx 0nw,nx
∗ ∗ ∗ ∗ −γ∞Inz 0nz ,nx 0nz ,nx
∗ ∗ ∗ ∗ ∗ −P −hmR
∗ ∗ ∗ ∗ ∗ ∗ −R




≺ 0 (6.49)

for all i = 1, 2, . . . , 2N . The new gains are deduced as L = (XT )−1Y and Lh =
(XT )−1Yh.

If we apply Theorem 6.1 with the LMIs (6.49) for:

E =
[

1 1 1 1 1 1
]T × 10−5 and γ∞ = 107 (6.50)

the results presented in Figure 6.10(a) and Figure 6.10(b) are obtained.

First, we can see that the time-domain results are less accurate than the previous
ones, especially for Degr estimation. The D̂air follows all the variations of the reference
Dair accurately for high values and less for low values. Theses partial observations are
confirmed by the NRMS index in Table 6.2. This index is still low for Dair estimation
but increases for the Degr one. However, both NRMS values for this case are lower
than the initial ones obtained without taking account the delay.
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(a) Case 2: Dair estimation

(b) Case 2: Degr estimation

Figure 6.10: Results for case 2

It appears that the reduction of the observer’s complexity, which leads to greater
conservatism, is done at the expense of the estimation quality. The observer seems to
be not fast enough over the full range parameters variation to follow Dair and Degr.
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6.4.2 Synthesis based on Theorem 6.2

Case 3. As a first step, let apply Theorem 6.2 to design (6.46). For the following
tuning parameters:

E =
[

1 1 1 1 1 1
]T × 10−5 and ε = 105 γ∞ = 108 (6.51)

the deduced estimated flows are depicted in Figure 6.11(a) and Figure 6.11(b).
Remark 6.4

Due to the ill-conditioning previously mentioned, it was not an easy task to obtain a
good design with Theorem 6.2. To have a better conditioning, we scaled the system
matrices by considering the variable change x̄(τ) = x(λτ), with λ > 0. Indeed,
consider the following time-delay system:

ẋ(t) = Ax(t) + Ahx(t− h(t)) +Bu(t) (6.52)

Then,
dx̄(τ)
dτ

= λ
dx

dt
(λτ)

= λ
[
Ax(λτ) + Ahx

(
λ
(
τ − 1

λ
h(λτ)

))
+Bu(λτ)

]

= λAx̄(τ) + λAhx̄
(
τ − 1

λ
h̄(τ)

)
+ λBū(τ)

(6.53)

We noticed that for λ = 0.01 the synthesis is improved. To reconstruct the gains
Li and Lhi of (6.46), only a division of the designed gains by λ is needed.

With observer gains depending on the 6 parameters (so a polytope of 64 vertices),
we can have a good estimation of Dair and Degr. The NRMS in Table 6.2 is low, at
the same level as in the previous cases, but it appears that the estimations are noisy,
especially for D̂egr.

Case 4. Similarly to the Case 2, where the parameter dependency has been removed
in the observer gains, the aim is to lighten the computation load by designing the
observer (6.48). Following the same idea which leads to (6.49), Theorem 6.2 is adapted
by taking two constant matrices Y, Yh ∈ Rnx×ny in (6.36). With the same parameters
in (6.51), the results when L and Lh are constant are presented in Figure 6.12(a) and
Figure 6.12(b).

The observations are similar to the ones performed in Case 2. The estimation of
Dair is accurate for high flow values and less for low values. On the other hand, D̂egr

follows the variations of the reference but a significant relative error could exist for
some time intervals. In Table 6.2, the corresponding NRMS is the highest but still
lower than the initial method.
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(a) Case 3: Dair estimation

(b) Case 3: Degr estimation

Figure 6.11: Results for case 3

Case 5. A final case is presented here where we are looking for an observer with the
following structure:

˙̂xo(t) = Ao(ρ)x̂o(t) + Aho(ρ)x̂o(t− h(t)) + L(yo(t)− ŷo(t)) +Bou(t)
ŷo(t) = Cx̂o(t)

(6.54)
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(a) Case 4: Dair estimation

(b) Case 4: Degr estimation

Figure 6.12: Results for case 4

(6.54) has a constant gain matrix L and Lh is equal to zero.

Such an observer structure enables to mitigate the computational burden by avoid-
ing to use and thus store past values of the output over the time interval [0, hm]. This
substantially moderates the memory requirements as, in the case of a sample time of
10ms, one would otherwise need to store approximately 170 values, a number which is
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far from being negligible. To deduce L in (6.54) the LMIs of Theorem 6.2 is adapted
with Y ∈ Rnx×ny and Yh is considered null. In this case, we can obtain the results
depicted in Figure 6.13(a) and Figure 6.13(b).

(a) Case 5: Dair estimation

(b) Case 5: Degr estimation

Figure 6.13: Results for case 5

The performance are similar to the ones obtained in case 4. In addition the NRMS
is also the same. So, it appears that a constant gain L can be enough to deduce a
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correct estimation for Dair and Degr.

6.5 Conclusion

In this chapter we have proposed several LPV time-delay observers to estimate the
inlet air and EGR mass flow rates by using a delayed measurement provided by the
NOx sensor instead of the lambda sensor. In Section 6.4, based on Theorem 6.1 and
Theorem 6.2, we exposed different designs more or less computationally demanding and
it has been established that a time-delay observer can provide estimation performance
quite similar to the one obtained with a strategy requiring an additional sensor, not
subject to delay. We have also observed that the more complex the observer is, the
more the estimations are accurate.

One of the encountered difficulties is the ill-conditioning of the system which leads
to a high conservatism in the synthesis. Indeed, we did not succeed to minimize the
γ∞ while stabilizing the system and it must be set to a huge value to have a correct
synthesis. In addition, a change of variable has been used to have a proper optimization
with Theorem 6.2. During the tests, Theorem 6.1 appears to be more effective and less
conservative than Theorem 6.2. However it is done at the price of greater complexity in
the LMIs. In fact, the solvertime is 56.3s for the case 1 and only 9.5s for the case 3. To
improve the synthesis, one could consider a parameter-dependent Lyapunov function
to reduce the conservatism then use gridding techniques to solve the LMIs like in [Briat
et al. 2011]. However, given the large number a parameters, the number of LMIs may
be very high. Indeed, as pointed in [Hoffmann and Werner 2015], the required memory
grows with O(nNg ), where ng is the size of the grid. One may also investigate nonlinear
time-delay observers as in [Germani et al. 2002].

One may also investigate the model improvement and especially the delay modeling.
As explained in Remark 6.2, we did not use a real measurement for the variable Dt in
(6.10) but an approximation. In further works, real experiments on test bench could
be done to see if real data can improve the quality of the estimation.





Conclusion and Perspectives

General conclusions

The thesis dealt with the development of observers for various systems in the truck.
The objectives were:

(1) Diagnose a component to prevent engines failure.

(2) Diagnose anti-pollution systems to meet legislation.

(3) Estimate variables needed for the engine control.

(4) Replace a sensor by an observer to reduce the production cost.

In summary, the works of the thesis were presented in 6 chapters as follows:

• Chapter 1 provided some theoretical background on control theory with a partic-
ular focus on observer design. It presented the different observer structures that
have been used along the thesis. Two types of observers have been considered in
there: LPV systems, written into a polytopic form, and nonlinear systems.

• Chapter 2 dealt with the monitoring of a serpentine belt tensioner performance, a
critical automotive engine component guaranteeing the cooling system efficiency.
A belt tensioner fault will affect the transmission, deteriorate the water pump effi-
ciency, and eventually, lead the engine to stall. Monitoring this component is thus
a key to design predictive or corrective maintenance. In this chapter, we proposed
to estimate a parameter which is shown to be characteristic of this component’s
health by using an Adaptive Observer or an Extended Kalman Filter. Respective
merits of these solutions have been compared using simulations performed with
GT-POWER on a high-fidelity model. Even if the Adaptive Observer has guaran-
teed convergence properties, it has been shown that the Extended Kalman Filter
had better performance for this topic.

• Chapter 3 gave an on-board diagnosis (OBD) solution for the charge air cooler
(CAC) and EGR cooler; that need to be diagnosed to meet the legislation. Al-
though these diagnoses are already achieved at Volvo, for cost saving, another
sensor configuration has been considered. Two observers have been designed to
estimate the heat transfer quality of the charge air cooler and the EGR cooler.
Then, they have been evaluated on real data from test bench. It has been es-
tablished that the proposed solutions could efficiently diagnose the CAC and the
EGR cooler.

143
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• Chapter 4 compared different observer approaches to estimate an important vari-
able for the pollutant emissions control: the EGR mass flow rate. This chapter
aimed to apply 5 observation approaches presented in Chapter 1 for the estimation
of the EGR mass flow rate plus one already developed in the literature. In the
observer design, this variable has been considered as an additive unknown input.
The main idea of the observer was to use the information given by the pressure
sensor in the intake manifold as the reference measurement, to estimate this mass
flow rate. The final validation consisted in implementing on a real truck’s em-
bedded computer and comparing the performance of the different methods. The
tests performed on two truck engines have shown that, even if the observer struc-
ture was very different, the performance estimation were very similar for all of
them. Besides, the CPU consumption appeared to be low, so it can be used in a
commercial context.

• Chapter 5 proposed a method for estimating the exhaust manifold pressure. The
knowledge of this variable is essential in order to fulfill functions such as the
exhaust brake control. However, while in most cases the pressure is directly mea-
sured, the sensor may encounter failures in some specific operating conditions.
Its estimation is then of great interest for diagnosis and fault tolerant control
objectives. Based on mean value models of the turbocharger and the exhaust
manifold, a Linear Parameter Varying (LPV) polytopic observer has been de-
signed to provide an estimation of the pressure. The merits of this solution were
illustrated with the high-fidelity professional simulator GT-POWER. The results
showed that the developed method is a promising way to estimate the pressure
with a small relative error.

• Chapter 6 dealt with the estimation of the EGR and inlet air mass flow rates with
the NOx sensor located in the after treatment system. The problem was, there
exists a significant transport delay between the NOx and lambda sensor currently
used to estimate the both mass flow rates. To take into account the delay, LPV
time-delay observers have been designed based on an existing method and a new
one deduced from Finsler’s lemma. The validation and the comparison of the
different methods have been done with real data from a test-bench. Even with the
delay, the developed observers succeeded to well estimate the flows, particularly
for the inlet air mass flow rate.

Perspectives

Here, we will just establish general perspectives and draw the future work direction. For
shorter perspectives, we refer the reader to the conclusions in the associated chapters.

In this study, some topics are more advanced as depicted in Figure 6.15 through the
analysis of the TRL (Technology Readiness Level). As shown in Figure 6.14, this scale
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describes the maturity of a technology and is based on a scale from 1 to 9 with 9 being
the most mature technology [Héder 2017]. The observers developed in Chapter 4 are
the most advanced because they have been implemented on a real truck’s embedded
computer. Even if real data have been used to validate the methods in Chapter 3 and
Chapter 6, additional tests need to be performed to evaluate the calculation time and
to improve the modeling. The methods of Chapter 2 and Chapter 5 have been only
validated on a high-fidelity model which explains the TRL 3 for these topics.

Figure 6.14: TRL scale. Source: wikipedia

For future projects, we have identified several needs in terms of diagnosis and esti-
mation. It consists in:

• Estimate the exhaust manifold temperature (the variable T3 in Figure 5.1). Due to
high temperature and strong pressure oscillations conditions, measure this vari-
able is too costly for the manufacturer. Therefore, currently, a open loop model
estimates the temperature. However, its inaccuracies cause control problems. In-
deed, when T3 is too high, the control strategy imposes to reduce the amount
of fuel injected and thus the torque produced by the engine. It is therefore nec-
essary to know the temperature as accurately as possible, otherwise the engine
will be unnecessarily restricted. Following the same modeling as in Chapter 3, an
observer could be designed to estimate the temperature.

• Provide a diagnosis solution for the starter motor. The starter is an electrical
device used to rotate the crankshaft in the engine in order to reach the required
rotational speed for the ignition to occur. It has been identified this system
encounters premature wear. Thus an observer-based solution could be designed
to monitor a too large deviation. The starter is basically a DC motor thus, for
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example, the works in [Christophe 2001] (which deals with the nonlinear systems
diagnosis applied to electrical machines) could be applied.

• Detect an urea fault injection. To reduce the NOx emissions, the after-treatment
system injects urea to trigger a chemical reaction. Legislation requires an OBD
solution to certify that this system is working properly. For this reason, manu-
facturers must ensure that the injected solution is urea. Model-based solutions
could be studied to address this problem.

• Estimate wall temperatures inside the after-treatment system. In order to ensure
that the different chemical reactions within the post-treatment system to take
place, a certain temperature must be reached. Even if the system is equipped with
many temperature sensors, due to the distributed nature of the flow temperature,
the optimal point is not reached. First, some work should be devoted to modeling
and then, depending on the available sensors, observers could be considered.
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Figure 6.15: Development and readiness of the topics addressed in this thesis





Appendix A

Performance index

Definition A.1
Given, a vector data x which contains N observations, and its estimate x̂, the
Normalized Root Mean Square (NRMS) is defined as:

NRMS =

√√√√ 1
N

N∑

n=1
|x̂(n)− x(n)|2

max
n=1,N

x(n)− min
n=1,N

x(n) (A.1)

The NRMS is very useful to evaluate the performance of the different observers.
Definition A.2

Given, a observation vector data x, and its estimate x̂, the fit index is defined as:

FIT = 1− ‖x− x̂‖2

‖x−mean(x)‖2
(A.2)

This index is classically used for identification process.
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Appendix B

World harmonized cycles

The World Forum for Harmonization of Vehicle Regulations, which is part of the United
Nations Economic Commission for Europe, itself part of the United Nations, has es-
tablished a harmonized global technical regulation (GTR) covering the type-approval
procedure for heavy-duty engine exhaust emissions. In the GTR No.4 [UNECE 2007],
two representative test cycles are described to cover typical driving conditions in the
European Union, the United States of America, Japan and Australia. This both cycles
are:

- The World Harmonized Stationary Cycle (WHSC), which is a succession of sta-
tionary points in the engine speed and torque (cf. Figure B.1(a)).

- The World Harmonized Transient Cycle (WHTC), which is a transient test based
on the pattern of heavy duty commercial vehicles (cf. Figure B.1(b)).

Thus, all along the study, we will refer to these two cycles to provide realistic engine
conditions to validate our methods.

(a) WHSC (b) WHTC

Figure B.1: The two standard cycles used
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Appendix C

Air mass flow aspirated by the
cylinders

The air mass flow aspirated by the cylinders can be expressed as:

Dasp = ηvVcylNeng

RT2120 P2 (C.1)

where Vcyl is the cylinder volume, T2 is the intake manifold temperature, P2 is the intake
manifold pressure and ηv is the volumetric efficiency defined as the ratio between the
actual volume flow rate of gases entering the cylinders and the theoretical volume flow
rate of gases displaced by the pistons. It is experimentaly determined by a map in func-
tion of the engine speed and the intake manifold pressure: ηv(Neng, P2). See [Isermann
2014] for a more detailed model and about the efficiency protocol measurement.
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Observation et diagnostic pour les véhicules poids lourds
Résumé— Pour répondre à la fois aux nouvelles normes législatives et aux exigences du client,
la complexité des camions s’est vue fortement augmentée au cours de ces dernières décennies.
En plus de réduire les émissions de polluants, ces nouvelles normes imposent la mise en place
d’un système de diagnostic des systèmes anti-pollution. Cela implique donc un contrôle plus fin
ainsi qu’une surveillance accrue de ces dits systèmes. Le client quant à lui désire augmenter sa
productivité et donc la disponibilité des camions. Afin de remplir ces exigences, le développement
d’observateurs (ou capteur logiciel) représente une solution attractive. Ils permettent en effet
d’obtenir plus d’informations à partir d’un nombre de capteurs donné, sans coûts supplémen-
taires pour le constructeur. Au cours de cette thèse, plusieurs observateurs ont été développés
pour différents sous-systèmes du camion, dont des observateurs non-linéaires, LPV (Linéaire
à Paramètres Variants), et avec retard. Dans un premier temps, dans le cadre de la surveil-
lance et de la maintenance préventive, des observateurs ont été conçus dans le but d’estimer
différents coefficients caractéristiques de la dégradation d’équipements tels que : un tendeur
de courroie, le refroidisseur d’air de suralimentation et le refroidisseur des gaz d’échappement
recirculés (EGR). Un observateur de la pression du collecteur d’échappement a également été
développé dans le but de diagnostiquer un défaut du capteur mesurant cette pression. Dans un
second temps, l’estimation du débit d’air massique EGR a été utilisée pour tester différentes
méthodes d’observation sur banc d’essai, cette variable étant importante dans le contrôle des
émissions de polluants. Enfin, dans une optique de réduction de coût, une estimation des débits
d’air massiques entrant dans le moteur et celui de l’EGR a été réalisée sur la base d’un capteur
soumis à un retard.
Mots clés : Observation, Diagnostic, Poids lourds.

Observation and diagnosis for trucks
Abstract — To meet both new legislative standards and customer requirements, the complex-
ity of trucks has increased significantly in the recent decades. In addition to reducing pollutant
emissions, these new standards require on board diagnosis solutions for anti-pollution systems.
Therefore it implies a thiner control and increased monitoring of these systems. Besides, the cus-
tomer wants to increase productivity and therefore the availability of the truck. In order to fulfil
these requirements, the development of observers (or virtual sensors) is an attractive solution.
Indeed, more information can be obtained from a given number of sensors, without additional
cost for the manufacturer. During this thesis, several observers were developed for different truck
subsystems, including non-linear, LPV (Variable Parameter Linear) or delay observers. As a first
step, from a monitoring and preventive maintenance point of view, observers have been designed
to estimate different equipment degradation ratio such as: a belt tensioner, a charge air cooler
and an exhaust gas recirculation (EGR) cooler. An observer of the exhaust manifold pressure
has also been developed to diagnose a fault of the sensor measuring this pressure. In a second
step, the EGR mass flow rate estimation was used to test different observation approaches on a
test bench, this variable being important for the pollutant emissions control. Finally, in order
to reduce cost, the observation of the inlet air and EGR mass flow rates has been studied with
a sensor submitted to a delay.
Keywords: Observation, Diagnosis, Trucks.


