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Expérience SuperNEMO: Études des incertitudes
systématiques sur la reconstruction de traces et sur

l’étalonnage en énergie. Evaluation de la sensibilité de la
0νββ avec émission de Majoron pour le 82Se.

Résumé
La thèse présentée est composée de divers projets que j’ai réalisés au cours de la phase

de construction du démonstrateur SuperNEMO pendant la période 2015-2018.
L’expérience SuperNEMO, située dans le laboratoire souterrain LSM, est conçue pour

rechercher 0νββ de 82Se. Sa technologie, qui tire parti du suivi des particules, est unique
dans le domaine des expériences de double désintégration bêta. La reconstruction de la
topologie des événements est un outil puissant pour la suppression de fond naturel.

Une partie de la thèse est consacrée à un travail expérimental. J’ai participé à la prépara-
tion de modules optiques, partie intégrante du calorimètre SuperNEMO. Les résultats de la
préparation et des tests de 520 modules optiques sont présentés dans la thèse. En outre, je
présente les résultats de la cartographie complète des sources 207Bi effectuée à l’aide de pixel
détecteurs. Je présente également des mesures précises de leurs activités pour lesquelles
j’ai utilisé des détecteurs HPGe. Ces sources 207Bi seront utilisées pour l’étalonnage du
calorimètre. L’étude a joué un rôle clé dans le choix des 42 sources qui participeront à
l’étalonnage du démonstrateur.

Une autre partie de la thèse contient des projets axés sur les simulations de Monte Carlo.
Dans un premier temps, j’ai étudié la précision de reconstruction de vertex réalisable par
un algorithme de reconstruction développé pour l’expérience SuperNEMO. La précision est
évaluée à l’aide de différentes méthodes statistiques dans diverses conditions (champ mag-
nétique, énergie des électrons, angles d’émission, etc.). Les facteurs influençant la précision,
en fonction des résultats obtenus, sont discutés.

En 2018, j’ai également effectué les simulations du blindage contre les neutrons. Dif-
férents matériaux de blindage d’épaisseurs différentes ont été (dans la simulation) exposés à
un spectre de neutrons réaliste provenant du LSM et les flux situés derrière le blindage ont été
estimés. Il a été démontré que les parties du détecteur en fer devraient capturer la grande ma-
jorité des neutrons passant le blindage. Je discute également un problème de simulation des
rayonnements gamma de désexcitation après capture de neutrons thermiques, apparaissant
dans les logiciels standard. Je propose un nouveau générateur étendu capable de résoudre le
problème et de démontrer le concept dans un exemple analytiquement résolu.

Avec le standard 0νββ , SuperNEMO sera capable de rechercher des modes plus exo-
tiques de la décroissance. Dans cette thèse, je présente les limites de demi-vie possibles que
SuperNEMO peut atteindre pour 0νββ avec l’émission d’un ou deux Majorons. L’étude
est réalisée en fonction de l’activité de contamination interne par les isotopes 208Tl et 214Bi.
La période de mesure après laquelle SuperNEMO devrait pouvoir améliorer les limites de
demi-vie de NEMO-3 (au cas où la décroissance ne serait pas observée) est estimée.

Mots-clés: décroissance double beta bêta sans émission des neutrino, SuperNEMO, Ma-
joron, simulations, la masse des neutrinos, blindage contre les neutrons, système d’étalonnage,
module optique, incertitudes systématiques



SuperNEMO experiment: Štúdia systematických neistôt
rekonštrukcie dráh a energetickej kalibrácie. Odhad

citlivosti detektora na 0νββ s emisiou Majorónu pre 82Se.

Abstrakt
Predkladaná dizertačná práca je zložená z projektov rôzneho charakteru, na ktorých

som pracoval vo fáze výstavby SuperNEMO demonštrátora v období rokov 2015-2018.
Experiment SuperNEMO, umiestnený v podzemnom laboratóriu LSM, je zameraný na

hl’adanie 0νββ v 82Se. Experiment je založený na technológii rekonštrukcie dráh elek-
trónov vznikajúcich v rozpade. Tento prístup je jedinečný v oblasti 0νββ experimentov.
Rekonštrukcia topológie udalostí je silným nástrojom na potlačenie pozad’ovej aktivity vysky-
tujúcej sa v laboratóriu, ako aj v konštrukčných materiáloch detektora.

Čast’ práce je venovaná experimentálnym úlohám. Zúčastnil som sa na konštrukcii
optických modulov - súčasti hlavného kalorimetra. Práca obsahuje výsledky prípravy a
testovania 520 optických modulov, a takisto výsledky kompletného mapovania kalibračných
207Bi zdrojov vykonaného za pomoci pixelových detektorov. V tejto časti sú odprezento-
vané aj výsledky merania ich aktivít za pomoci HPGe detektorov. Štúdia zohrávala kl’účovú
úlohu pri výbere 42 zdrojov, ktoré boli nainštalované do prvého SuperNEMO modulu, do
demonštrátora, a budú použité na jeho energetickú kalibráciu.

Ďalšiu čast’ práce tvoria úlohy zamerané na Monte Carlo simulácie. Prvým z nich,
je štúdia presnosti rekonštrukcie vertexu dvojitého beta rozpadu. Rozpadové vertexy sú
rekonštruované tzv. CAT (Cellular Automaton Tracker) algoritmom vyvinutým pre experi-
ment SuperNEMO. V štúdii sú porovnávané viaceré spôsoby definovania presnosti rekonštruk-
cie. Presnost’ je skúmaná v závislosti na magnetickom poli v detektore, energii elektrónov,
uhlov ich emisie atd’. Na základe výsledkov sú v štúdii pomenované faktory, ktoré ov-
plyvňujú presnost’ rekonštrukcie vertexov dvojitého beta rozpadu.

V roku 2018 som takisto vypracoval štúdie neutrónového tienenia. Očakávané toky neu-
trónov za tienením boli odhadnuté pomocou Monte Carlo simulácie. Kvalita odtienenia neu-
trónov z realistickéh pozad’ového spektra, nameraného v LSM, bola skúmana pre tri rôzne
materiály rôznych hrúbok. Výsledky ukázali, že neutrónový tok prechádzajúci tienením
bude primárne zachytávaný na komponentoch detektora zhotoveného zo železa. V rámci
štúdie neutrónového tienenia je takisto diskutovaný problém simulácie deexcitačných gama
kaskád, produkovaných jadrami, po záchyte termálnych neutrónov. Štandardné simulačné
softvérové balíčky využívajú generátory gama kaskád nepostačujúce pre potreby štúdie.
Navrhol som nový generátor, ktorý je schopný tieto problémy vyriešit’. Funkčnost’ gen-
erátora bola preukázaná na príklade jednoduchého systému.

Okrem štandardného 0νββ je SuperNEMO experiment schopný hl’adat’ aj jeho exotick-
ejšie verzie. V práci sa nachádzajú odhady limitov času polpremeny 0νββ s emisiou jedného
alebo dvoch Majorónov, dosiahnutel’né SuperNEMO demonštrátorom. Tieto limity sú štu-
dované v závislosti na aktivite izotopov 208Tl a 214Bi, ktoré kontaminujú zdrojovú 82Se fóliu.
Bola odhadnuá doba merania, za ktorú bude SuperNEMO schopný vylepšit’ limity času pol-
premeny, pre dva spomenuté rozpadové módy, dosiahnutých experimentom NEMO-3.

Kl’účové slová: bezneutrínový dvojitý beta rozpad, SuperNEMO, Majorón, simulácie, hmot-
nost’ neutrína, neutrónové tienenie, kalibračný systém, optický modul, systematické neistoty



SuperNEMO Experiment: Study of Systematic
Uncertainties of Track Reconstruction and Energy
Calibration. Evaluation of Sensitivity to 0νββ with

Emission of Majoron for 82Se.

Abstract
Presented thesis is composed of variety of projects which I performed within the

construction phase of SuperNEMO demonstrator during the period 2015-2018.
SuperNEMO experiment, located at underground laboratory LSM, is designed to search

for 0νββ of 82Se. Its technology, which takes advantage of particle tracking, is unique in
the field of double beta decay experiments. Event topology reconstruction is powerful tool
for suppression of naturally-occurring background radiation.

Part of the thesis is dedicated to experimental work. I took part in assembly and testing
of optical modules - the integral part of SuperNEMO calorimeter. Results of tests after
assembly of 520 optical modules are presented in the thesis. Furthermore, I present results
of complete mapping of 207Bi sources performed using pixel detectors. I also present precise
measurements of their activities for which I used HPGe detectors. These 207Bi sources will
be used for calibration of the calorimeter. Study played a key role in choice of 42 sources
which were installed in the demonstrator and will take part in calibration of the demonstrator.

Another part of the thesis contains projects focused on Monte Carlo simulations. In first
of them, I studied a vertex reconstruction precision achievable by reconstruction algorithm
developed for SuperNEMO experiment. Precision is evaluated using different statistical
methods in variety of different conditions (magnetic field, energy of electrons, angles of
emission, etc.). Factors influencing the precision, based on the achieved results are discussed.

In 2018, I also performed simulations of neutron shielding. Variety of shielding materi-
als with different thicknesses were (in the simulation) exposed to realistic neutron spectrum
from LSM and the fluxes behind the shielding were estimated. It was shown that the parts
of the detector made of Iron should be expected to capture vast majority of neutrons passing
the shielding. I also discuss a problem with simulation of deexcitation gamma radiation,
emitted after thermal neutron capture, which arises in standard software packages. I pro-
posed new extended generator capable to resolve the problem and demonstrate the concept
in analytically solvable example.

Along with standard 0νββ , SuperNEMO will be capable of searching for more exotic
modes of the decay. In the thesis, I present possible half-life limits achievable by Su-
perNEMO for 0νββ with emission of one or two Majorons. The study is performed as
a function of activity of internal contamination from 208Tl and 214Bi isotopes. Measurement
period after which SuperNEMO should be able to improve half-life limits of NEMO-3 (in
case the decay would not be observed) are estimated.

Keywords: Neutrino-less Double Beta Decay, SuperNEMO, Majoron, simulations, neutrino
mass, neutron shielding, calibration system, optical module, systematic uncertainties
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Introduction (français)

Le modèle standard (SM) de la physique des particules est une théorie des particules
fondamentales et de leurs interactions. Les théoriciens, en utilisant le formalisme lagrang-
ien, ont réussi à fusionner des interactions électromagnétiques, faibles et fortes en un seul
cadre théorique. Il décrit de manière extrêmement précise une vaste gamme de processus
entre quarks et leptons. C’est indéniablement la théorie la plus précise des particules fonda-
mentales de la physique contemporaine. Cependant, malgré l’énorme effort des physiciens
théoriciens les plus brillants soutenus par les résultats d’expériences très complexes et so-
phistiquées, la gravité n’était pas encore incluse dans le cadre. De plus, les observations de la
cinématique de certaines galaxies ont montré un déséquilibre de leur dynamique et de leurs
prédictions basées sur nos connaissances actuelles. La différence est causée par la présence
d’un nouveau type inconnu de particules - la matière noire. Le problème de la quantification
de la gravité et l’existence de matière noire sont des exemples typiques de ce que l’on appelle
la physique au-delà du modèle standard (BSM). Standard Model a réussi à décrire toutes les
particules actuellement connues et, dans le passé, il a même réussi à prédire l’existence de
nombreuses d’entre elles. Le modèle standard, cependant, n’est "que" une approximation à
basse énergie d’une physique plus générale; il n’est donc pas étonnant que son tableau ne
soit pas complet.

La physique des particules contemporaine est actuellement à la recherche d’un pont entre
le modèle standard et la physique au-delà du modèle standard. La clé du succès pourrait être
cachée dans la physique des neutrinos. Le modèle standard décrit les neutrinos comme
des particules sans masse qui interagissent faiblement. En observant les oscillations des
neutrinos, cependant, nous savons aujourd’hui que cette image n’est pas complète. Bien que
petit, la masse du neutrino n’est pas nulle. Malheureusement, les expériences d’oscillation,
de par leur nature, ne peuvent fournir les valeurs de trois masses de neutrinos, car leurs
observables ne dépendent que de leurs différences absolues.

En 1935, Maria Goeppert-Mayer a proposé l’existence de la double désintégration bêta
avec emission de deux neutrinos (2νββ ). Il s’agit d’une transition nucléaire lorsque deux
neutrons liés au noyau se transforment soudainement en deux protons émettant deux élec-
trons et deux anti-neutrinos électronique. Cette désintégration rare est généralement éclipsée
par sa version plus simple - une désintégration bêta standard avec une demi-vie nettement
plus courte. Néanmoins, il existe des exemples de noyaux où la simple désintégration bêta
est soit supprimée par des règles de sélection de spin, soit totalement interdite par la loi de
conservation de l’énergie. Avec les valeurs de demi-vie de 1018 à 1021 années, 2νββ est
aujourd’hui le processus le plus rare observé. 2νββ conserve le nombre leptonique. C’est
un processus permis par le modèle standard. En 1939, c’est Wendell H. Furry qui a proposé
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l’idée d’une transition nucléaire encore plus rare - la double désintégration bêta sans emis-
sion de neutrino (0νββ ). Comme son nom l’indique, le processus est similaire à 2νββ avec
une différence importante. Dans 0νββ , aucun neutrino ne devrait être émis. Un tel processus
enfreindrait la conservation du nombre leptonique, qui est interdite par le modèle standard.
0νββ représente clairement un candidat pour un processus au-delà du modèle standard. De
plus, sa demi-vie dépend de la soi-disant masse effective des neutrinos (ce n’est pas le cas de
2νββ ), qui est une valeur obtenue à partir de la superposition connue des états propres de
la masse des neutrinos. L’observation de 0νββ fournirait la valeur des masses de neutrinos,
qui ne sont pas encore connues. Cependant, la principale importance de 0νββ réside dans
le potentiel de découverte du pont recherché entre le modèle standard et la physique au-delà
du modèle standard. 0νββ ne peut exister que si le neutrino serait sa propre antiparticule ou
appelée plutôt que soit-disant particule de Majorana. Le concept de particule de Majorana
n’existe pas dans le modèle standard et il pourrait fournir l’une de ses extensions possibles.
Aucun autre processus que 0νββ ne pourrait prouver le caractère Majorana des neutrinos.

Bien que 0νββ puisse constituer une première étape importante au-delà du modèle stan-
dard, il n’a malheureusement pas encore été observé. Un effort énorme est investi dans la
recherche de ce mode de désintégration rare. Typiquement, les expériences 0νββ (ainsi
que les autres expériences dans le domaine de la physique des neutrinos) sont placées sous
terre, où la radioactivité naturelle omniprésente est supprimée de plusieurs grandeurs. Nous
pouvons diviser les expériences 0νββ en deux catégories de base.

Il y a tout d’abord les expériences dans laquelle l’isotope source sert en même temps
de détecteur. Dans ce groupe, nous pouvons trouver des détecteurs au germanium tels que
GERDA ou Majorana, qui fusionneront bientôt dans l’expérience LEGEND de l’échelle de
tonnes. 76Ge est l’un des isotopes candidats pour 0νββ trouvé dans le Ge naturel. Dans
le même temps, les cristaux de germanium servent de détecteurs HPGe. Dans le passé,
c’était l’expérience Heidelberg-Moscow (qui utilisait également du Germanium) qui avait
beaucoup attiré l’attention de la communauté en annonçant l’observation de 0νββ . Cela a
été prouvé faux par GERDA. Un autre type d’expérience source = détecteur utilise d’énormes
vaisseaux de xénon liquide qui servent de source (en particulier d’isotopes 134Xe et de 136Xe)
et de scintillateur en même temps. EXO avec sa mise à niveau nEXO sont des exemples de
telles expériences. Dans la catégorie source = détecteur, nous pouvons également trouver
des expériences bolométriques. Par exemple, l’expérience CUORE utilise des cristaux TeO2
refroidis à quelques mK. 130Te est un autre isotope potentiel capable de 0νββ . Les électrons
émis lors de la désintégration chauffent le cristal et l’excès de chaleur peut être mesuré grâce
au changement de la résistance électrique du cristal. Il existe toute une gamme d’autres
expériences 0νββ appartenant généralement à l’une des sous-catégories mentionnées.

Deuxièmement, il existe des expériences qui tirent parti de l’approche lorsque la source
est séparée du système de détection. SuperNEMO et son prédécesseur NEMO-3 sont un
exemple. L’énergie des électrons de la désintégration est détectée par des scintillateurs en
plastique. Leur caractéristique la plus unique, cependant, est la reconstruction de la topologie
des événements. Les grilles de fils en mode Geiger sont utilisées pour le suivi des particules.
L’isotope source a la forme d’une feuille mince. La feuille peut être échangée contre un
autre isotope d’intérêt. C’est une caractéristique unique des expériences où la source et le
détecteur sont séparés. NEMO-3 était capable d’étudier simultanément sept isotopes (c’était:
48Ca, 82Se, 96Zr, 100Mo, 116Cd, 130Te et 150Nd). L’expérience SuperNEMO utilise 82Se.
Néanmoins, 150Nd pourrait être utilisé à l’avenir.

La thèse présentée résume tout le travail que j’ai effectué pendant trois ans (2015-2018)
de mon doctorat au sein de la collaboration SuperNEMO. Dans les lignes suivantes je vais
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résumer brièvement le contenu de chaque chapitre.

• Chapitre 1 contient un bref aperçu de l’histoire de la physique des neutrinos. L’histoire
commence avec le célèbre postulat de Pauli sur les neutrinos et sa découverte 26 ans
plus tard. Aperçu historique offre une description de la variété des expériences clés
dans l’histoire des neutrinos, telles que la première détection du neutrino muonique
ou les expériences résolvant un Problème de neutrinos solaires. De plus, certains des
concepts théoriques les plus importants pour la physique des neutrinos sont abordés.
Le chapitre se termine par une brève introduction à la physique de la double désinté-
gration bêta et un bref aperçu des expériences sur le terrain.

• Chapitre 2 offre une brève description de toutes les parties intégrantes du démonstra-
teur SuperNEMO. SuperNEMO est divisé en trois parties principales: le feuille source,
le détecteur de suivi et le calorimètre. En 2016, j’ai participé à l’assemblage et au
test de modules optiques utilisés pour la construction des principaux calorimètres Su-
perNEMO. Le processus de préparation avec les résultats est décrit à la fin du chapitre.

• Chapitre 3 est dédié aux mesures de sources 207Bi qui seront utilisées pour l’étalonnage
énergétique du démonstrateur. Au début du chapitre, une brève description du sys-
tème de déploiement source automatique est fournie. Les sources d’étalonnage sont
présentées. Le chapitre est divisé en deux parties principales. La première partie de
ce chapitre contient une description détaillée des mesures que j’ai effectuées afin de
cartographier le dépôt de la gouttelette 207Bi dans les sources. Dans les mesures, j’ai
utilisé trois détecteurs Timepix. L’ensemble du processus de calibration et de prépara-
tion des mesures est présenté. Les détecteurs ont été étalonnés et préparés dans IEAP
CTU à Prague en octobre 2017. Les premières mesures d’essai ont été effectuées dans
le LSM à la fin d’octobre 2017. Les mesures finales ont été effectuées en décembre
2018 également dans le LSM. La méthode d’analyse et les algorithmes logiciels, que
j’ai utilisés pour l’extraction de quantités d’intérêt, sont expliqués en détail. Enfin, à la
fin de la première partie, les résultats sont présentés et résumés. La deuxième partie du
chapitre traite des mesures d’activité que j’ai effectuées pour les sources d’étalonnage
au cours de l’été 2018 dans CENBG. Les mesures ont été effectuées à l’aide de deux
détecteurs HPGe différents. L’un a été utilisé pour mesurer les activités relatives de
toutes les sources disponibles (40 + 2 mesurées en LSM), tandis que le second a été
utilisé pour une mesure précise des activités absolues des 25 sources choisies. Les ré-
sultats sont discutés sous forme de résumé des graphiques à la fin du chapitre. Une base
de données complète de toutes les valeurs mesurées dans le cartographie de sources et
dans les mesures d’activité est incluse dans l’Annexe A.

• Chapitre 4 est une suite libre des études sur les incertitudes systématiques du dé-
monstrateur SuperNEMO. Alors que le Chapitre 3 était axé sur les études suscep-
tibles d’améliorer ultérieurement les incertitudes systématiques liées à l’étalonnage
énergétique, ce chapitre est motivé par les incertitudes liées au suivi des particules.
La reconstruction topologique d’événements de double désintégration bêta dans le dé-
tecteur SuperNEMO permet d’obtenir des informations sur les distributions angulaires
d’électrons émis dans la désintégration. NEMO-3 a observé une légère différence en-
tre la prévision théorique et la mesure. La différence peut provenir d’une nouvelle
physique ou d’un effet systématique. Pour tirer une conclusion, il est nécessaire
d’étudier en détail la systématique du suivi des particules. Le chapitre se concentre
sur l’évaluation des limites de la précision de la reconstruction de vertex. Au début
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du chapitre, le logiciel Falaise, utilisé pour l’étude, est présenté. La précision de re-
construction de vertex est définie en utilisant quatre quantités statistiques différentes.
Ensuite, l’applicabilité des méthodes est comparée. La précision est étudiée tout au
long du chapitre en fonction de l’énergie d’un seul électron, des angles entre les élec-
trons, de l’angle entre l’électron et la feuille source ou de la position du vertex sur la
feuille source. L’influence du champ magnétique et de la diffusion d’électrons dans
la feuille source sur la précision de reconstruction de vertex est discutée. En con-
séquence, une liste de directives résumant tous les effets les plus importants influant
sur la précision de reconstruction de vertex est fournie.

• Chapitre 5 aborde le sujet du blindage contre les neutrons du démonstrateur Su-
perNEMO. En 2018, j’ai mené des études comparatives sur les matériaux capables
de protéger contre les neutrons pour contribuer dans une discussion sur la conception
du blindage. L’étude présentée dans ce chapitre tire parti d’un spectre de neutrons réal-
iste mesuré dans le LSM. Le passage des neutrons du spectre à travers le blindage est
simulé et les flux attendus sont estimés. Les flux sont comparés pour neuf scénarios de
blindage à l’aide du logiciel Geant4. Pour chaque scénario, les flux de neutrons traver-
sant le mur sont simulés à l’aide de Falaise (logiciel SuperNEMO). Les matériaux
de détecteur qui tendent à capturer la plupart des neutrons sont identifiés. La deux-
ième partie du chapitre est dédiée aux générateurs de capture de neutrons thermiques
utilisés dans les logiciels standard de simulation. Les problèmes liés à la génération
correcte de cascades gamma sont discutés. Un nouveau générateur est proposé et sa
fonctionnalité est illustrée à titre d’exemple.

• Chapitre 6 aborde le sujet des calculs de sensibilité des détecteurs à la décroissance
double bêta. Le processus complet de calcul de la sensibilité est effectué. Le but de
ce chapitre était d’obtenir une estimation de la sensibilité de 0νββ avec l’émission
d’un ou deux Majorons pour le démonstrateur SuperNEMO. Le processus de calcul
est initié par une simulation des efficacités de détection et une recherche de ROI avec
le meilleur rapport signal/bruit de fond. Ce ROI peut fournir la mesure de demi-vie
la plus précise possible si la décroissance a été observée. Si la décroissance reste non
observée, la limite de demi-vie peut être extraite à l’aide de la méthode de Feldman-
Cousins. Les limites de demi-vie aux modes de Majoron de 0νββ ont été étudiées en
fonction de l’activité de 208Tl et de 214Bi (présent dans feuille source) et l’exposition
de l’expérience. La période de mesure, après laquelle SuperNEMO devrait améliorer
les limites de NEMO-3 pour les deux modes de désintégration, est estimée. La base de
données complète des résultats obtenus dans ce chapitre est présentée à l’Annexe C.
La méthode de Feldman-Cousins est décrite en détail en Annexe B. Plusieurs aspects
et particularités de la méthode sont commentés et démontrés en annexe.

La thèse comprend des travaux expérimentaux (mesures de source d’étalonnage) et de
simulation (précision du vertex, blindage contre les neutrons et études de Majoron) com-
plétées par des tâches purement mathématiques (algorithmes d’analyse pour la calibration
spatiale de détecteurs ou proposition de générateur de capture de neutrons, par exemple).
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The Standard Model of particle physics (SM) is a theory of fundamental particles and
their interactions. Theoreticians in its Lagrangian formalism managed to merge Electro-
magnetic, Weak and Strong interactions into one theoretical framework. It precisely de-
scribes a vast range of interaction processes between quarks and leptons. It is undeniably
the most precise theory of fundamental particles of contemporary physics. However, despite
the enormous effort of brightest theoretical physicists supported by results of very complex
and sophisticated experiments, the gravity was not yet included in unified theory of elec-
troweak and strong interactions framework. Furthermore, the observations of kinematics of
certain galaxies have shown mismatch of their dynamics and predictions based on our cur-
rent knowledge. The difference is caused by presence of new, unknown type of particles -
dark matter and unknown force - dark energy. The unsolved problem with quantization of
gravity and existence of dark matter are typical examples of so-called physics beyond the
Standard Model (BSM). The SM managed to describe all the currently known particles and
in the past it even succeeded to predict existence of many of them. The SM, however, is
"only" a low energy approximation of more general physics, thus, it is not surprising that the
picture it offers is not complete.

Contemporary particle physics is currently hunting for a bridge between SM and BSM.
Key to the success might be hidden in the physics of neutrinos. The SM describes the neu-
trinos as Weakly interacting massless particles. However, the observation of neutrino oscil-
lations brings a modification to the SM. Although small, the mass of the neutrino is not zero.
Unfortunately, the oscillation experiments, by their nature, cannot provide values of three
neutrino masses, because their observables depend only on their squared mass differences.

In 1935, Maria Goeppert-Mayer proposed the existence of two-neutrino double beta de-
cay (2νββ ). It is a nuclear transition when two neutrons bounded in nucleus are suddenly
transformed into two protons emitting two electrons and two electron anti-neutrinos. This
rare decay is typically overshadowed by its simpler version - the standard beta decay with
significantly shorter half-life (∼900 s). Nevertheless, there are examples of nuclei where
single beta decay is either suppressed by spin selection rules or totally forbidden by law
of energy conservation. With the half-life values of 1018 years up to 1021 years, 2νββ is
nowadays the rarest process observed by physicists. 2νββ preserves lepton number. It is
a process permitted by Standard Model. In 1939, it was Wendell H. Furry who proposed
an idea of even rarer nuclear transition - Neutrino-less double beta decay (0νββ ). As the
name suggests, the process is similar to 2νββ with one important difference. In 0νββ , no
neutrinos are expected to be emitted. Such a process would violate lepton number conser-
vation which is forbidden in SM. 0νββ clearly represents a candidate for a process beyond
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the SM. Furthermore, its half-life depends on so-called effective neutrino mass (this is not
true for 2νββ ) which is a value obtained from known superposition of neutrino mass eigen-
states. Observation of 0νββ would provide value of neutrino masses, which are currently
still not known. However, the main importance of 0νββ lies in the potential to discover a
bridge from SM towards BSM physics. 0νββ can exist only if neutrino would be its own an-
tiparticle or, so-called Majorana particle. The concept of Majorana particle does not exist in
Standard Model and would provide one of its possible extensions. To our present knowledge,
no other process than 0νββ could prove the Majorana character of neutrinos.

Despite the fact that 0νββ could be an important first step beyond the SM, unfortunately,
it was not yet observed. Enormous effort is invested into the search for this rare decay mode.
Typically, 0νββ experiments (as well as the other neutrino-related experiments) are placed
underground, where omnipresent natural radioactivity is suppressed by several magnitudes.
We can divide 0νββ experiments into two basic categories.

Firstly, there are experiments in which the source isotope serves at the same time as de-
tector. In this group, we can find Germanium detectors such as GERDA or MAJORANA
which will soon merge into the biggest - ton scale 0νββ experiment - LEGEND. 76Ge is
one of the candidate isotopes for 0νββ found in natural Ge. At the same time Germanium
crystals serve as HPGe detectors. In the past, it was Heidelberg-Moscow experiment (which
also used Germanium) which drew lot of attention of community by announcement of obser-
vation of 0νββ . It was proven false by results of GERDA. Another type of source = detector
experiment use huge vessels of liquid Xenon which serves as a source (especially isotopes
134Xe and 136Xe) and as a scintillator at the same time. EXO with its upgrade nEXO are
examples of such experiments. In source = detector category we can find also bolometric
experiments. For instance, experiment CUORE uses TeO2 crystals cooled down to few mK.
130Te is another potential 0νββ isotope. The electrons emitted in the decay heat up the crys-
tal and the heat excess can be measured thanks to the change of the electrical resistance of
crystal. There is a whole range of other 0νββ experiments which typically belong to one of
the mentioned subcategories.

Secondly, there are experiments which take advantage of approach when source is sep-
arated from the detection system. SuperNEMO and its predecessor NEMO-3 are such ex-
amples. Energy of electrons from the decay are detected by plastic scintillators. Their most
unique feature, however, is the reconstruction of topology of the events. Grid of wires in
Geiger mode are employed for particle tracking. The source isotope has a form of thin foil.
The foil can be exchanged for other isotope of interest. It is an unique feature of the ex-
periments where source and detector are separated. NEMO-3 was capable to study seven
isotopes simultaneously (it was: 48Ca, 82Se, 96Zr, 100Mo, 116Cd, 130Te and 150Nd). Su-
perNEMO experiment is using 82Se, 150Nd might be employed in future.

Presented thesis sums up all the work which I performed during three years (2015-2018)
of my Ph.D. studies within the SuperNEMO collaboration. Let me briefly summarize the
contents of each chapter.

• Chapter 1 contains a brief overview of the history of neutrino physics. The story be-
gins with Pauli’s famous neutrino postulate and its discovery 26 years later. Historical
overview offers description of variety of key experiments in history of neutrinos, such
as first detection of muon neutrino or the experiments resolving decades long Solar
neutrino problem. On top of them, some of the most important theoretical concepts
important for neutrino physics are discussed. Chapter ends with a brief introduction
into the physics of Double beta decay and short review of the experiments performed
in the field.
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• Chapter 2 offers short description of all the integral parts of SuperNEMO demon-
strator module. SuperNEMO is divided into three main parts: source foil, tracking
detector and the calorimeter. In 2016, I took part in assembly and testing of optical
modules used to build main SuperNEMO calorimeters. The process of preparation
with results is described at the end of the chapter.

• Chapter 3 is dedicated to measurements of 207Bi sources which will be used for the
energy calibration of demonstrator. The goal of this work is to reduce systematic
uncertainties coming from energy calibration by knowing better the source character-
istics. At the beginning of the chapter, a brief description of automatic source deploy-
ment system is provided. Calibration sources are presented. This chapter is divided
into two parts. First part of the chapter contains extensive description of measurement
which I performed in order to map the deposition of 207Bi droplet in the sources. In
the measurements, I used three Si Timepix detectors. The whole process of their cali-
bration and preparation of the measurements is presented. I calibrated the detectors in
IEAP CTU in Prague in October 2017. First trial measurements, I performed in LSM
at the end of October 2017. Final measurements were performed in December 2017
also in LSM. The analysis method and the software algorithms, that I used for extrac-
tion of quantities of interest, are explained in detail. Finally, at the end of first part,
the results are presented and summarized. The second part of the chapter contains dis-
cussion of activity measurements which I performed for the calibration sources during
summer 2018 in CENBG. Measurements were performed using two different HPGe
detectors. One was employed in order to measure relative activities of all the available
sources (40 + 2 measured in LSM) while the second was used for precise measure-
ment of absolute activities of chosen (25) sources. Results are discussed in the form of
summarizing plots at the end of the chapter. Full database of all the values measured
in both the source mapping and activity measurements are included in Appendix A.

• Chapter 4 is a continuation of studies of systematic uncertainties of SuperNEMO
demonstrator. While Chapter 3 was focused on the studies which could later improve
systematic uncertainties emerging from the energy calibration, this chapter is moti-
vated by the uncertainties originating in particle tracking. Topological reconstruction
of Double beta decay events in SuperNEMO detector allows one to obtain information
about angular distributions of electrons emitted in the decay. NEMO-3 have observed
slight discrepancy between the theoretical prediction and the measurement. The dif-
ference might originate from a new physics or it might be just a systematic effect.
Systematic uncertainties in particle tracking are very important because new physics
could have impact on the angular distribution. This chapter is focused on the evalua-
tion of precision of vertex reconstruction achievable by SuperNEMO demonstrator. At
the beginning of the chapter, the software package Falaise, used for the study, is pre-
sented. The vertex reconstruction precision is defined using four different statistical
quantities. Subsequently, the applicability of the methods is compared. The precision
is studied throughout the chapter as a function of single electron energy, angles be-
tween the electrons, angle between the electron and foil or position of the vertex on
the source foil. Influence of the magnetic field and electron scattering in the source foil
on the vertex reconstruction precision is discussed. As a result, list of guidelines sum-
marizing all the most important effects influencing the vertex reconstruction precision
is provided.

• Chapter 5 covers the topic of neutron shielding of SuperNEMO demonstrator. In
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2018, I performed comparative studies of materials capable to shield neutrons as a
contribution to a discussion about shielding design. The study presented in the chapter
takes advantage of realistic neutron spectrum measured in LSM. Behaviour of neu-
trons (fluxes and energy losses) passing through the shielding is simulated in details.
Obtained fluxes and energy spectra are compared for nine shielding scenarios using
software package Geant4. For each scenario, neutron fluxes passing the wall are sim-
ulated using Falaise (SuperNEMO software package). Detector materials which tend
to capture most of the neutrons are identified. Second part of the chapter is dedicated
to generators of thermal neutron capture used in standard software packages for sim-
ulations. Problems with proper generation of gamma cascades are discussed. New
generator is proposed and its functionality is demonstrated on an illustrative example.

• Chapter 6 discusses the topic of detector sensitivity calculations. The goal of the
chapter was to obtain sensitivity estimation to 0νββ with emission of one or two
Majoron(s) for SuperNEMO demonstrator. The process of calculation is initiated by
simulation of detection efficiencies and search for region of interest (ROI) with the best
signal-to-background ratio. Such ROI can provide the most precise half-life measure-
ment if the decay was observed. If the decay remains unobserved, the half-life limit
can be extracted using Feldman-Cousins method. Half-life limits to Majoron modes
of 0νββ were studied as a function of activity of 208Tl and 214Bi (present in the foil)
and experiment’s exposure. Measurement period, after which, SuperNEMO should
improve limits of NEMO-3 for both decay modes, are estimated. Full database of the
results obtained in the chapter is presented in Appendix C. The method of Feldman-
Cousins is extensively described in Appendix B. Several aspects and peculiarities of
the method are commented and demonstrated in the appendix.

The thesis is a balanced compilation of experimental tasks (calibration source measure-
ments) and simulation tasks (vertex precision, neutron shielding and Majoron studies) com-
pleted by purely mathematical tasks (e.g. analysis algorithms for spatial calibration of pixel
detectors or neutron capture generator proposal).
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Chapter 1
Neutrino Physics and Its History

1.1 Neutrino Postulate

In the beginning of the 20th century, the radioactivity was already known thanks to dis-
covery of Antoine Henri Becquerel in 1896 [1, 2]. It was already Ernest Rutherford, in 1899,
who was able to distinguish between α- and β -decay by the ability to penetrate paper or Alu-
minium. Later, particle emitted in β -decay was identified as an electron. In that time, they
understood β -decay as a process where only the electron is emitted (Equation 1.1).

(A,Z)→ (A,Z +1)+ e− (1.1)

After discovery of gamma radiation, it was known that alpha and gamma radiations have
one feature in common - their spectra are composed of narrow peaks. It is caused by the
fact that the particle is carrying all the energy from the difference between states of initial
and final nucleus. In contrary, in 1914 James Chadwick showed that beta spectrum behaves
differently. It has a continuous spectrum [3]. This indicated that the energy of β -decay
is lost somewhere. Apparent non-conservation of spin was another important issue which
was needed to be accounted for. It was known that β -decay leaves nucleus mass number
unchanged which implies that nuclear spin should be integer number for nuclei with even
number of nucleons. Spin of electron is 1/2, so it was obvious that spin could not be con-
served for nuclei with even number of nucleons. Neils Bohr suggested that the energy might
not be conserved for every decay but only in statistical sense. However, Charles Drummond
Ellis and Nevill Francis Mott in [4] ruled out that idea by determination of upper bound of
beta energy spectrum. The limit should not exist if Bohr’s assumption was right.

In 1930, Wolfgang Pauli sent his famous letter to conference participants in Tübingen in
which he postulated existence of new light particle [5]. He described it as a neutral particle
of maximal mass of 0.01 proton masses, different from light quanta, with spin 1/2, thus
obeying exclusion principle. He named the particle neutron. He proposed that it is emitted in
the β -decay along with electron. However, he did not fully believe in the scenario assuming
that the particle would probably already had been discovered. The name neutron was later
given to much heavier particle discovered by James Chadwick in 1932. In 1934, Enrico
Fermi developed theory of β -decay giving the particle the name it has today - the neutrino.
The name was a pun: ending -one has a augmentative purpose in Italian language giving
impression that neutrone (the Italian version of neutron) is denoting "something large and
neutral". He replaced ending -one with suffix -ino giving the name diminutive sense. Fermi’s
theory of β -decay was analogy of the quantum electrodynamics (QED). He assumed that
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proton is transformed into neutron by emission of electron along with anti-neutrino (Equation
1.2).

(A,Z)→ (A,Z +1)+ e−+ ν̄ (1.2)

1.2 Discovery of Neutrino
It was already Wolfgang Pauli who expected that the detection of the particle which he

postulated would be a very difficult task. He expressed his scepticism in the statement, "I
have done a terrible thing, I have postulated a particle that cannot be detected." Finally, the
task was not impossible. It took 26 years after the postulate to detect neutrino. In 1956, Clyde
Cowan and Frederick Reines published article claiming the neutrino discovery [6]. They
achieved this important milestone by taking advantage of beta capture process proposed by
Wang Ganchang in 1942 [7]:

ν̄e + p+→ n0 + e+ (1.3)

The Reines-Cowan experiment, as it is called, used the nuclear reactor in Savannah river
in South Carolina (USA) as a source of the anti-neutrinos. The experimental device was
composed of two large tanks of water (200 l each) surrounded by tanks of liquid scintillator.
Positron in beta capture (Equation 1.3), created when the anti-neutrino from reactor hits
the proton in the water, annihilates fast. As a result, two gammas, with the energy of 511
keV each, are produced. The gammas caused flashes in scintillator tanks and the light was
collected in photomultiplier tubes. After they realized that the method is not conclusive
enough they added 40 kg of cadmium chloride into each tank with water. Cadmium has a
big cross section for the capture of neutron. When neutron is captured, gammas are emitted.
The gamma from neutron capture was expected 5 µs after the annihilation pair (Figure 1.1).
The measurement in coincidence allowed Reines and Covan to recognize neutrino captures
more reliably. The results were compared to data with reactor turned off. During 1371
hours of measurements (including the background data taking) they were able to measure
1-3 anti-neutrinos per hour out of the flux of order 1013 anti-neutrinos per cm2 every second.
Only Frederic Reines was awarded the Nobel prize for this discovery in 1995 because Clyde
Cowan died in 1974.

Figure 1.1: Scheme of detection principle in Reines-Cowan experiment.

1.3 Neutrinos in Standard Model
Currently, physics distinguishes four types of fundamental forces in nature: Strong, Elec-

tromagnetic, Weak and Gravity. Standard Model of particle physics (SM) is theory unifying
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first three: Strong, Electromagnetic and Weak interaction. However, despite an effort of
theorists, gravity was not incorporated yet. In 1961, Sheldon Glashow found a way how to
combine electromagnetic interaction with weak interaction [8]. In 1967, Higgs mechanism
[9, 10, 11] was incorporated into Glashow’s electroweak theory by Steven Weinberg [12] and
Abdus Salam [13] giving it the modern form we know today. Formulation of SM was final-
ized in 1970s after experimental proof of existence of quarks. Since 1970s, SM is considered
as very reliable model of fundamental particles. SM gained even more credence after exper-
imental discoveries of top quark in 1995 [14, 15], tau neutrino in 2000 [16] and Higgs boson
in 2012 [17, 18]. However, SM is only low energy approximation of more general physics
and extension is inevitable. Experimental evidence inconsistent with SM was already found
- this physics is called physics beyond Standard Model - BSM physics.

Figure 1.2: All particles of Standard Model.

SM is formulated in form of Lagrangian formalism and describes theoretically interac-
tion of fermions with half integer spin via gauge bosons (integer spin) which act as force
carriers. The electromagnetic force is provided by photon, weak interaction by W± and Z0

bosons and strong force is mediated by eight gluons. Gravity as a part of BSM physics is
not included. Inclusion of Higgs boson explained why gauge bosons have mass. Fermions
in SM are divided into two main groups. Six quarks (up, down, charm, strange, top, bot-
tom) are undergoing all interactions (Strong, Electromagnetic, Weak and also Gravity) while
electromagnetically charged leptons (electron, muon and tau lepton) only Electromagnetic,
Weak and Gravity. Neutrinos, the last three fermions, have no electromagnetic charge, thus
they interact only weakly in the framework of SM. The diagram showing all SM particles
within the categories can be seen in Figure 1.2.

Analogically to quarks, leptons are divided into three families (generations). In each
family there is charged fermion and its neutrino, i.e. electron and electron neutrino, muon
and muon neutrino, tau and tau neutrino. The neutrinos in SM are massless. This was proven
wrong experimentally by observation of neutrino oscillations [19] (see Section 1.4.1). It is
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one of the aforementioned proofs that SM needs extension and neutrinos might hide the key
to BSM physics.

1.3.1 Neutrino Flavours
The discovery of neutrino opened an important chapter in history of experimental particle

physics. Knowing that neutrino was a real particle, physicist were interested to know it better.
In 1962, new type of neutrino was observed, so-called µ-neutrino, in experiment performed
by Leon Lederman, Melvin Schwartz and Jack Steinberger [20]. This type of neutrino was
already theoretically predicted in 1940 by several people and named "neutretto" [21]. In the
experiment, π-mesons (so-called pions) were accelerated which made it possible to study the
nature of weak forces in higher energies. Positive (negative) pion is decaying (in more than
99% of cases) into positive (negative) muon and anti-neutrino (neutrino) (Equation 1.4).

π
+→ µ

++νµ

π
−→ µ

−+ ν̄µ (1.4)

The pions from accelerator were decaying during the flight. Created muons were absorbed
by 13.5 m thick wall and neutrinos continued to detector (Figure 1.3). If there would be only
one type of neutrino, electrons and muons caused by impact of neutrinos would be created
randomly, in equal rate. However, they observed significant excess of muons. This led
them to conclusion, that neutrino from pion decay have identity designated by the nature of
interaction by which they were created. New neutrino was named µ-neutrino (and designated

Figure 1.3: Simplified scheme of detection principle in muon neutrino discovery experiment.

νµ ) because in the lepton vertex it is always created along with µ-lepton. This implies that
the neutrino from beta decay is of electron type and designated νe. The Nobel prize for
discovery of νµ was awarded in 1988.

In 1975, when the third type of lepton was discovered - the τ-lepton - in SLAC [22],
analogically, the existence of third type of neutrino - τ-neutrino (ντ ) - was expected. Its
discovery was achieved by DONUT collaboration from Fermilab in 2000 [16]. The data
were confirmed later by post-analysis from LEP in CERN. Up to date, we distinguish three
types (so-called flavours) of neutrinos - νe, νµ and ντ . The existence of other types of
neutrinos is being experimentally investigated (for example [23]).

1.4 Neutrinos Beyond the Standard Model
As mentioned before, neutrinos in Standard Model are massless. This is, however, in-

consistent with experimental observations. Neutrinos are not, obviously, described fully by
SM and they hold information about BSM physics.
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1.4.1 Solar Neutrino Problem
The sources of neutrinos are divided into two main groups - natural and artificial. Ar-

tificial sources are made by human, for example nuclear reactors (reactor anti-neutrinos)
and particle accelerators (accelerator neutrinos). Group of natural sources include neutrinos
from neutrino cosmic background one second after Big Bang (cosmological/relic neutri-
nos), neutrinos produced in nuclear reactions in the Sun (solar neutrinos), neutrinos from
the supernovae explosions (supernova neutrinos), neutrinos originating inside of the Earth
(geoneutrinos), neutrinos created in atmosphere of the Earth by interaction of cosmic ra-
diation (atmospheric neutrinos), neutrinos from active galactic nuclei (AGN neutrinos) and
cosmogenic neutrinos produced by interaction of ultra-high energy cosmic rays with cos-
mological photon background. Plot depicting fluxes of neutrinos of different origin can be
found in Figure 1.4.

Figure 1.4: Distribution of known neutrino types among the energy range. Plot represents
flux of neutrinos of different origin separately. Source: [24].

Solar neutrinos were puzzling neutrino physicists for three decades. Proton-proton chain
reaction (so called P-p cycle), which takes place in the core of the Sun [25], is accompanied
by emission of νe. These neutrinos travel without interaction through the Sun and are emit-
ted uniformly into the space. Some of them reach the Earth. In 1960s, Raymond Davis, Jr.
and John N. Bahcall prepared experiment focused on the detection of these neutrinos - the
Homestake experiment. It was placed in golden mine in South Dakota in the depth of 1.5
km in order to be shielded from cosmic ray radiation occurring on the surface. Homestake
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experiment started the era of underground neutrino experiments. It was continuously in oper-
ation from 1970 to 1994. Experimental technique was based on 615 t of tetrachloroethylene
(C2Cl4) which is total of 2.2×1030 nuclei of 37Cl. Electron neutrino, which came from the
Sun, underwent capture by 37Cl which was transformed into 37Ar accompanied by emission
of electron (Equation 1.5).

νe +
37 Cl→37 Ar+ e− (1.5)

Every few weeks, Davis and Bahcall bubbled Helium through the tank to extract Argon.
Few cm3 were extracted including the stable Argon isotopes. Then the decay of 37Ar was
observed. This helped to determine the rate of neutrino events. Bahcall calculated that ac-
cording to the Standard Solar Model (SSM), the expected rate should be 9.3±1.3 SNU1.
However, they measured only 2.56±0.32 SNU [26]. The theoretical predictions were re-
vised several times by theoreticians improving the precision of the model but the difference
seemed not to lie in the theoretical refinement. Experiment was also checked for errors, but
conclusion was that it works correctly. There was lack of neutrinos in the detector. This
problem is called the solar neutrino problem.

It was not clear whether the processes in the Sun were understood properly, thus the main
interest of theoreticians was pointed towards SSM. Several experiments were constructed in
order to account for this question. Kamiokande [27] in Japan (1985 - 1995), SAGE [28]
in Baksan, Russia (1989 - 2007) or Gallex [29] in Gran Sasso, Italy (1991 - 1997). All of
them have seen lack of neutrinos. Kamiokande was capable of measuring the momentum
of the neutrinos. It confirmed that these neutrinos really originate in the Sun. The lack of
solar neutrinos was, finally, explained by occurence of so-called neutrino oscillations. Their
existence was proposed in 1958 by Bruno Pontecorvo [30].

1.4.2 Neutrino Mixing and Oscillations
Under the term neutrino oscillations we understand the continuous change of the flavour

of neutrino along the trajectory of flight. In contrary to assumption of Standard Model of
particle physics, it would be only possible if neutrino had non-zero mass. The reason is as
follows: if we assume three neutrino mass eigenstates (denoted ν1,ν2,ν3) to be different
from flavour eigenstates (denoted νe,νµ ,ντ ) there is a unitary transformation between the
bases2:

| να〉= ∑
i

Uαi | νi〉

| νi〉= ∑
α

U∗αi | να〉 (1.6)

Rewritten into matrix form: | νe〉
| νµ〉
| ντ〉

=

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 | ν1〉
| ν2〉
| ν3〉

 (1.7)

The unitary matrix providing transformation between two bases is called PMNS (Pon-
tecorvo – Maki – Nakagawa – Sakata) matrix [31, 32]. It is an analogue to CKM (Cabibbo

1SNU - Solar neutrino unit denotes one neutrino capture per 1036 nuclei every second.
2Greek index α is used to denote flavour states and Latin i to denote mass states.

25



1.4: Neutrinos Beyond the Standard Model

– Kobayashi – Maskawa) matrix for quark mixing. If we limit our discussion only to case of
two neutrino mixing of flavours να and νβ , it has form:(

| να〉
| νβ 〉

)
=

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)(
| ν1〉
| ν2〉

)
(1.8)

Here θ is called mixing angle. When neutrinos are propagated, their state evolve along the
trajectory. We can assume, that the momentum of neutrino is far bigger than its rest mass. In
that case probability for neutrino with energy E to change flavour from vα to νβ is:

P(να → νβ ) = sin2(2θ)sin2

(
∆m2

i jL

4E

)
, α 6= β (1.9)

Here, L is the distance travelled by neutrino, θ is neutrino mixing angle and ∆m2
ij mass

squared difference of i-th and j-th mass state, i.e. ∆m2
ij = m2

i −m2
j . From Equation 1.9 we

can easily see that probability of oscillation P(να → νβ ) is non-zero only if ∆m2
ij 6= 0 holds

(assuming that first sine in the product is non-zero which was observed). In other words,
it means that neutrino oscillations are possible only in case when at least one of the mass
eigenstates of neutrino would be non-zero. This breaks apart the assumption of mass-less
neutrinos in Standard Model.

In the case of Solar neutrinos they are produced uniquely as the electron neutrinos but
oscillations make them change their flavour during the flight towards the Earth. All the
experiments mentioned above, which have seen lack of neutrinos, were capable to detect
only electron neutrinos. In 1996, experiment Super-Kamiokande (upgrade of Kamiokande)
started data collection. In 1998, they provided the first evidence of neutrino oscillations
by observation of atmospheric νµ oscillating into ντ [33]. One year later, in 1999, SNO
(Sudbury Neutrino Observatory) came into operation. SNO was focused on the measurement
of neutrinos coming from decay of 8B (around 10 MeV). These electron-neutrinos are not
very affected by vacuum neutrino oscillations rather than by so-called MSW effect [34]
which has influence on the neutrino oscillations in matter (in this case solar matter). SNO
was able to count the number of detected electron-neutrinos and number of neutrinos of all
flavours collectively. In 2001, their results supported the existence of neutrino oscillations
[19]. In 2015, Nobel prize was given to Takaaki Kajita (Super-Kamiokande) and Arthur
B. McDonald (SNO) "for the discovery of neutrino oscillations, which shows that neutrinos
have mass".

1.4.3 Supernova Neutrinos
Neutrino oscillations provided clear evidence that the Standard Model of particle physics

is not complete. However, the hint that neutrino has non-zero mass came even sooner. In
1987, unique explosion of Supernova 1987A was observed [35]. This supernova is approxi-
mately 168 000 light years away in our galactic neighbourhood (in Large Magellanic Cloud).
It was the first supernova explosion observable by naked eye since 1604 [36]. In the explo-
sion, estimated 1058 anti-neutrinos were created. Three neutrino observatories were capable
to measure anti-neutrinos from this burst. In Kamiokande, they detected 12 anti-neutrinos
[37], in IMB (Irvine – Michigan – Brookhaven) detector eight [38] and Baksan measured
five anti-neutrinos [39]. The most interesting result was obtained by Kamiokande. Their 12
measured anti-neutrinos arrived in two pulses by 9 and 3 while anti-neutrinos from second
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pulse were delayed by 9.219 to 12.439 seconds after the first pulse [37]. This was hint, al-
though not an evidence, that neutrinos might have mass. In other case, they would arrive all
together propagating at the speed of light in vacuum. Although, 25 detected anti-neutrinos is
not a huge number, it was significant increase to background values. It was the first observa-
tion of supernova anti-neutrinos and the beginning of neutrino astronomy. The observations
were consistent with theoretical supernova models and also allowed physicists to set upper
limits on neutrino mass and number of neutrino flavours [40].

1.4.4 Neutrino Hierarchies
The existence of neutrino oscillations serves as a clear signature of neutrinos with non-

zero mass. As it was already shown in Equation 1.9, by oscillation experiments, it is possible
to extract only the square mass differences ∆m2

ij = m2
i −m2

j . These values are measured.
However, the three neutrino mass states ν1, ν2 and ν3 remain unknown.

Figure 1.5: Two possible neutrino mass hierarchies. The case of ν1 < ν2 < ν3 (with one
heavier neutrino state) depicted on the left - is called "Normal" hierarchy while the case
on the right, fulfilling ν3 < ν1 < ν2 (with two heavier neutrino states), is called "Inverted"
hierarchy.

Furthermore, the ordering of the states - so-called neutrino hierarchy - can not be pro-
vided by oscillation experiments. From solar neutrino observations and measurements of
atmospheric neutrinos we know the values of ∆m2

21 and | ∆m2
32 | [41]:

∆m2
Sun = ∆m2

21 = (7.53±0.18)×10−5eV 2

| ∆m2
atm |=| ∆m2

32 |= (2.44±0.06)×10−3eV 2 (1.10)

The convention m1 < m2 is adopted which allows us to narrow possible neutrino hierar-
chies to two cases depicted in Figure 1.5. They differ only by number of heavier states. The
case with one heavier neutrino state is called "Normal" hierarchy while the case with two
heavier neutrino states is so-called "Inverted" hierarchy.
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1.4.5 Neutrino Masses and Their Nature
Based on previous discussion, new terms generating neutrino masses are needed as a ex-

tension of Lagrangian of SM. Depending on chirality of particles we recognize left-handed
(spin and momentum of particle are parallel) and right-handed (spin and momentum of par-
ticle are anti-parallel) particles. In Standard Model, only the left-handed neutrinos and right-
handed anti-neutrinos enter into interactions.

Let us have a look on three possible extensions of SM Lagrangian generating neutrino
masses:

Dirac mass term

Assuming the existence of both, left-handed (νL
α ) and right-handed (νR

α ) neutrino fields,
we are able to compose so-called Dirac mass term of Lagrangian given in Equation 1.11.

L D =− ∑
α,α ′

ν
R
α ′M

D
α,α ′ν

L
α +h.c. (1.11)

Indices α and α ′ stand for neutrino flavours (e, µ and τ) and MD is complex 3×3 matrix
coupling left-handed and right-handed neutrino. In respect to equation of neutrino mixing
(Equation 1.6), the νL

α are mixed in the following way:

ν
L
α =

3

∑
i=1

Uαiν
L
i , (1.12)

Here, i (i = 1, 2 or 3) denotes the Dirac mass state with mass mi and Uαi is unitary neutrino
mixing matrix. If matrix MD is non-diagonal, the individual lepton numbers Le,Lµ ,Lτ are
not conserved. However, this mass term does not mix particles with anti-particles, thus the
total lepton number L = Le +Lµ +Lτ is conserved.

Majorana mass term

Another possibility to construct neutrino mass term was proposed by Ettore Majorana.
His mass term is coupling neutrinos with anti-neutrinos as follows:

L M =− ∑
α,α ′

(νL
α ′)

cMM
αα ′ν

L
α +h.c. (1.13)

Index c denotes charge conjugated neutrino spinor νc = Cν
T, where C is charge conjugation

operator. MM is complex symmetric 3×3 matrix. Majorana mass fields χL
i are mixed into

flavour fields in following way:

ν
L
α =

3

∑
i=1

Uαiχ
L
i , (1.14)

where again Uαi is unitary neutrino mixing matrix. Charge conjugated mass fields χc
i differ

to χL
i only by a phase factor ξi: χc

i ξi = χi. Neutrinos are indistinguishable to anti-neutrinos
and processes violating total lepton number are allowed3. Majorana mass term, as already
mentioned, is coupling neutrinos with anti-neutrinos. As a result, Majorana mass term vio-
lates even total lepton number L = Le +Lµ +Lτ . The existence of such mass term in quark

3For example neutrino-less double beta-decay, see Section 1.5.2
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sector or for charged leptons is impossible because the charge conservation would be vio-
lated, which is not the case for neutrinos.

Dirac - Majorana mass term

The last possibility is relatively simple combination of previous two. It is the most gen-
eral and, thanks to presence of Majorana part, it does not conserve total lepton number.

L D+M =−∑
αα ′

[
1
2
(νL

α ′)
cMM,L

αα ′ ν
L
α +

1
2

ν
R
α ′M

M,R
αα ′ (ν

R
α)

c +ν
R
α ′M

D
αα ′ν

L
α

]
+h.c. (1.15)

MM,L and MM,R are complex non-diagonal symmetric 3×3 matrices. In this general case,
the flavour fields νL

α and νR
α are composed of six Majorana mass fields:

ν
L
α =

6

∑
i=1

UL
αiχ

L
i , ν

R
α =

6

∑
i=1

UR
αiχ

R
i . (1.16)

For mixing matrices UL
αi, UR

αi we have these orthonormalization conditions:

6
∑

i=1
UL

αiU
R
α ′iξi = 0,

6
∑

i=1
UL

αi(U
L
α ′i)
∗ = δαα ′,

6
∑

i=1
UL

αi(U
R
α ′i)
∗ = δαα ′. (1.17)

According to the mass generation process, neutrino can be either of Dirac (ν 6= ν) or of
Majorana nature (ν = ν).

1.5 Double Beta-Decay Processes
Unknown neutrino masses as well as the problem of neutrino hierarchies are important

problems of contemporary neutrino physics. The possible solutions might be hidden in a
processes called by generalized name of double beta-decay.

1.5.1 Two-Neutrino Double Beta-Decay
Two-neutrino double beta-decay is nuclear decay proposed in 1935 by Maria Goeppert-

Mayer [42]. It is a nuclear transition where two neutrons are instantaneously transformed
into two protons by emission of two electrons and two electron anti-neutrinos (Equation
1.18).

(A,Z)→ (A,Z +2)+2e−+2ν̄e (1.18)

It is the double analogy of ordinary β−-decay (Equation 1.2), usually denoted by 2νββ .
However, the term double beta-decay with two neutrinos (anti-neutrinos) might be used to
name also one of the following combinations of β+-decay or electron capture (EC):

(A,Z)→ (A,Z−2)+2e++2νe, (2νβ
+

β
+)

e−+(A,Z)→ (A,Z−2)+ e++2νe, (2νβ
+/EC)

2e−+(A,Z)→ (A,Z−2)+2νe +2γ, (2νEC/EC) (1.19)

In next, if not stated otherwise, 2νββ would stand for the process described by Equa-
tion 1.18. This process is rare compared to ordinary β -decay, so its half-life T2ν

1/2 reaches
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Decay Q-value [keV] TTT 222ννν

111///222 [yr]

48Ca→48 Ti 4267 4.4+0.6
−0.5×1019

76Ge→76 Se 2039 1.65+0.14
−0.12×1021

82Se→82 Kr 2996 (0.92±0.07)×1020

96Zr→96 Mo 3349 (2.3±0.2) ×1019

100Mo→100 Ru 3034 (7.1±0.4) ×1018

100Mo→100 Ru(0+1 ) 1905 6.7+0.5
−0.4×1020

116Cd→116 Sn 2813 (2.87±0.13) ×1019

128Te→128 Xe 867 (2.0±0.3) ×1024

130Te→130 Xe 2528 (6.9±1.3) ×1020

136Xe→136 Ba 2458 (2.19±0.06) ×1021

150Nd→150 Sm 3371 (8.2±0.9) ×1018

150Nd→150 Sm(0+1 ) 2626 1.2+0.3
−0.2×1020

238U→238 Pu 1144 (2.0±0.6) ×1021

Table 1.1: Recommended averaged values of half-lives for several 2νββ nuclei [43]. Q
values are taken from National Nuclear Data Center website [44].

1019−1025 years and can be calculated as follows:

1
T 2ν

1/2
=

Γ2ν

ln(2)
= G2ν(Q,Z) |M2ν |2 (1.20)

Γ2ν is a decay rate, Q is total energy released in 2νββ , G2ν(Q,Z) is kinematical phase space
factor and M2ν is nuclear matrix element. This decay mode was already observed in case of
several candidate nuclei. Their list along with their Q-values and measured half-lives can be
found in the Table 1.1.

1.5.2 Neutrino-Less Double Beta-Decay
In 1939, Wendell H. Furry proposed possibility of neutrino-less mode of double beta-

decay [45]. This would be only possible if neutrino is its own antiparticle, so-called Majo-
rana particle. The process would look similar to 2νββ but without anti-neutrinos in final
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state (Equation 1.21).
(A,Z)→ (A,Z +2)+2e− (1.21)

Interest in this decay mode lies in the possibility to prove that neutrino is of Majorana nature.
For now, it is the only known possible way to prove it. Moreover, the half-life (T0ν

1/2) of 0νββ

is in the direct relation with neutrino mass values (Equation 1.22).

1
T 0ν

1/2
=

Γ0ν

ln(2)
=| mββ |2 G0ν(Q,Z) |M0ν |2 (1.22)

Γ0ν is decay width of 0νββ , Q is kinetic energy emitted in the process, G0ν(Q,Z) is a phase
space factor and M0ν is nuclear matrix element of 0νββ . Here, mββ is so-called effective
neutrino mass given by linear combination of all three neutrino masses (Equation 1.23).

mββ =
3

∑
i=1

U2
eimi (1.23)

In 0νββ experiments, two electrons coming from one vertex are expected to be observed.
However, the same signal is expected from 2νββ decay because the two neutrinos are not
detected This fact puts 2νββ decay into position of background event when searching for
0νββ . Luckily, this problem is possible to solve just by looking at the spectrum. If we look
at the sum of kinetic energies of both electrons, in case of 2νββ decay, some energy from
Qββ value is taken away by neutrinos. Accordingly to the simple beta-decay, energy spec-
trum of 2νββ is thus continuous. In contrary, in case of 0νββ there are no neutrinos, and
all energy from Qββ is transformed into kinetic energy of both electrons. So the theoretical
0νββ signal is expected to be a peak at the end of 2νββ spectrum as depicted in Figure
1.6a. In real experimental situation, this peak has a shape of Gaussian distribution because
of the non-zero energy resolution (Figure 1.6b). In case of poor energy resolution this peak
might overlap with the 2νββ continuum. The detection techniques with sufficiently high
energy resolution in the region of Qββ are thus required for 0νββ experiments.

1.5.3 Nuclear Matrix Elements
The knowledge of nuclear matrix elements of 0νββ is unavoidable in order to extract

effective neutrino mass from half-life of 0νββ . Unfortunately, these matrix elements can be
measured independently only partially, thus they have to be calculated. This fact underlines
the importance of having precise theoretical nuclear models. The matrix elements are crucial
for planning of future experiments. Increase of factor 2 in uncertainty is projected into four-
fold raise in amount of isotope needed to reach some certain neutrino mass limit.

In order to calculate the nuclear matrix elements, the many-body wave-functions of nu-
clei in question should be known precisely. Many different approaches are currently used in
order to address this question. Let me briefly present three of them.

First one is the ISM (Interacting Nuclear Shell Model). This model treats only limited
number of orbits which are not far from Fermi level. All the possible correlations are in-
cluded and treated exactly. The disadvantage of this approach is that it could result into quite
robust calculation where basis as big as 1011 Slater determinants is needed to be treated. This
is the reason why this method is suitable mainly for smaller nuclei such as 48Ca [46].
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(a) (b)

Figure 1.6: Double beta-decay spectra. X-axis in both figures represents sum of kinetic
energies of both electrons in units of Qββ value. Y-axis is the amplitude in arbitrary units
in both cases. (a): Theoretical spectrum of double beta-decay. 2νββ continuous spectrum
is in dashed line while 0νββ is represented as a delta function at the end of the spectrum.
Its height is exaggerated. (b): Theoretical double beta-decay spectrum. The effect of non-
zero energy resolution of detector is taken into account. Peak which belongs to 0νββ is
of Gaussian shape and its height is exaggerated. In top right corner the zoom of the region
around Qββ value is displayed. In this case, 0νββ peak is shown in its real relative size
compared to 2νββ continuum. Clear overlap is visible. This effect can be inhibited by
improvement in the energy resolution of detection.

Another model is the Quasiparticle Random Phase Approximation (QRPA). Compared to
ISM, QRPA is using much large valence space but it is not able to take into account all possi-
ble configurations. The single particle states are obtained from solution of Schrödinger equa-
tion in mean-field approximation using Woods-Saxon potential. BCS (Bardeen – Cooper –
Schrieffer) approximation is employed, so proton and neutron numbers are not exactly con-
served. This method generally works the best for bigger nuclei but further development is
needed in order to achieve sufficient precision for calculation of nuclear matrix elements for
0νββ . One of such attempts was a topic of my master thesis where the approach of possible
non-linear extension of phonon operator was studied [47].

Third commonly used model is so-called Interacting Boson Model (IBM). This model
is building the nuclear wave-function in terms of nucleon pairs with L = 0 and L = 2. The
double beta-decay is modelled in terms of 0+ and 2+ neutron pairs transferring into proton
pair. This model was used for both small and large nuclei.

A full discussion of different contemporary nuclear models is far beyond the scope of
this thesis. Let me, at least, present the current status of nuclear matrix elements for 0νββ

in form of the Figure 1.7.

1.5.4 Experimental Status of Double Beta-Decay
In past decades, several experiments (e.g. Heidelberg-Moscow, NEMO-3, CUORICINO,

...) adopted various techniques to search for 0νββ . Many others were developed for the new
generation of experiments. Even though, the variety of approaches is relatively wide, there
are still few principles which are followed by all 0νββ experiments. First of all, good
resolution of electron energies is needed to be able to distinguish the 0νββ in the energy
spectrum from 2νββ and other types of background. The mass of studied isotope is the key
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Figure 1.7: Current status of theoretical calculations of nuclear matrix elements for 0νββ

[48]. Except for IBM, ISM and QRPA methods, results of PHFB (Projected Hartree - Fock -
Bogoliubov) and EDF (Energy Density Functional) methods are presented. The differences
are still relatively big despite of the theoretical effort invested into this topic.

parameter which increases expected experimental sensitivity of neutrino-less double beta-
decay half-life. Sensitivity can be calculated by Equation 1.24.

T 0νββ

1/2 > ln(2)
NA

W
ε

amst
α
√

b
(1.24)

The parameters in the equation are as following: T0νββ

1/2 - neutrino-less double beta-decay
half-life, α - number of standard deviations for given confidence level, ε - efficiency of de-
tection and identification of true events, a - isotopic abundance of studied 0νββ isotope in
investigated sample, W - is molecular weight of source isotope, ms - total mass of studied
sample, t - duration of data taking period and b - number of expected background events. De-
tailed discussion about origin of this equation and calculation of half-life limits takes place
in Chapter 6 and Appendix B. The current best limits for variety of isotopes are presented in
Table 1.2. Given a value of nuclear matrix elements, they also yield the upper limit for ef-
fective neutrino mass. Some examples of techniques used to search for 0νββ are presented
in next sections.

Germanium experiments

This type of experiments aim to study the 0νββ of 76Ge. They belong to the type of
experiments where source serves as the detector at the same time. They use Ge semicon-
ductor diodes enriched at about 86% in 76Ge, having high detection efficiency. At the level
of 2 039 keV (Qββ value of 76Ge) the energy resolution can be as small as few keV when
using cooling system, for example liquid Argon. The detection principle is relatively simple.
A particle, interacting with detector, produces charge carriers which are collected, amplified
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Decay Q-value TTT 000ννν

111///222 [yr] ||| mmmββββββ ||| [eV] Experiment[keV]

48Ca→48 Ti 4268 > 5.8×1022 < 3.1-15.4 CANDLES [49]

76Ge→76 Se 2039 > 3.5×1025 < 0.18-0.48 GERDA [50]

82Se→82 Kr 2998 > 3.6×1023 < 1-2.4 NEMO-3 [51]

96Zr→96 Mo 3356 > 9.2×1021 < 3.6-10.4 NEMO-3 [52]

100Mo→100 Ru 3034 > 1.1×1024 < 0.33-0.62 NEMO-3 [53]

116Cd→116 Sn 2814 > 1.9×1023 < 1-1.8 AURORA [54]

128Te→128 Xe 867 > 1.5×1024 < 2.3-4.6 Geochem. exp. [55]

130Te→130 Xe 2528 > 4×1024 < 0.26-0.97 CUORE [56]

136Xe→136 Ba 2458 > 1.07×1026 < 0.06-0.16 KamLAND-Zen [57]

150Nd→150 Nd 3371 > 2×1022 < 1.6-5.3 NEMO-3 [58]

Table 1.2: List of the best current lower limits set for the half-life of 0νββ and upper limits
on effective neutrino mass [59]. Limits are at 90% C.L. Uncertainty of the mass upper limit
is caused by limited knowledge of 0νββ matrix elements M0ν .

and turned into a voltage signal. The signal is proportional to energy deposited in detec-
tor. The most known experiments of first generation based on Germanium are Heidelberg-
Moscow (HdM) and International Germanium Experiment (IGEX). The low limit on 0νββ

half-life was set to level of 1.9×1025 yr (90% C.L.) by HdM [60] and 1.57×1025 yr (90%
C.L.) by IGEX [61]. Part of HdM collaboration announced the observation of 0νββ signal
in 2004 [62] but the proof is not convincing enough and the result is considered contro-
versial. GERDA (Germanium Detection Array, Figure 1.8) the following generation of Ge
detector, was designed to verify results of HdM. Low limit on 0νββ half-life was set to
level of 3.5×1025 yr (90% C.L.) by GERDA during Phases I and II of its run [63]. GERDA
have excluded with 99% probability that HdM discovered 0νββ , already after the analysis
of data from Phase I [64]. MAJORANA is example of another similar experiment in prepa-
ration which aims to employ 40 kg of Selenium. Collaboration with GERDA in its Phase
III is being prepared under the name LEGEND (Large Enriched Germanium Experiment for
Neutrino-less Decay).

Bolometer experiments

Bolometers are calorimeters at very low temperatures. As in the previous case, this type
of detection technique also takes advantage of source being the detector. Particle passing
through the detector leaves the heat proportional to its energy in bolometer. Heat is then
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Figure 1.8: Visualisation of GERDA experiment.

measured by very sensitive semiconductor thermistors. The bolometers should be cooled
down to 10 mK. In general, the deposition efficiency of energy in bolometrs is high, but
the data collection is slow. There are several 0νββ experiments using bolometric method.
CUORICINO was located in the LNGS (Laboratori Nazionali del Gran Sasso, Italy) and ran
from March 2003 to July 2008. It used 40.7 kg of enriched and also natural TeO2 crystals at
the temperature of 8 mK. The limit on 0νββ half-life was set by CUORICINO at the level of
2.8×1024 yr (90% C.L.) for 130Te [65]. CUORE is next generation bolometer 0νββ exper-
iment and successor of CUORICINO. Its prephase CUORE-0 is now in operation. The aim
is to increase the mass from 40.7 kg (CUORICINO) to 741 kg which corresponds to 206 kg
of 130Te. First results from CUORE-0 in combination with CUORICINO data show 0νββ

half-life exclusion up to 4×1024 yr (90% C.L.) [56]. The expected sensitivity of CUORE,
assuming low background of 0.01 cts/(keV· kg · y), during five years of operation is on the
level of 9.5×1025 yr (90% C.L.) [66]. LUCIFER (Low-background Underground Cryogenic
Installation For Elusive Rates) is 0νββ bolometer experiment aimed to study 82Se in the
form of crystals of ZnSe. LUCIFER will be composed of 15 kg of enriched 82Se. The ex-
pected sensitivity of 0νββ half-life after 5 years of running and the background level of
10−3 cts/(keV· kg · y) is on the level of 6.0×1025 yr (90% C.L.) [67].

TPC and liquid scintillator experiments

Time projection chambers are particle detectors observing ionisation electrons, induced
when charged particle interacts with the detector target. Anode wires attract the ionisation

35



1.5: Double Beta-Decay Processes

electrons and collect them. These electrons carry information about the track of initial ionis-
ing particle which can be reconstructed in three dimensions if the anode wires are organized
in specific pattern inside of the chamber. These experiments also belong to the category of
experiments where the target coincides with the source.

EXO-200 is a cylindrical liquid xenon time projection chamber (TPC) aimed to study
200 kg of 80.6% enriched 136Xe. The data taking started in 2011. After two years of data
taking, the limit on 0νββ half-life (for 136Xe) was reached at the level of 1.1×1025 yr (90%
C.L.) [68].

KamLAND-Zen (KamLAND-Zero neutrino) is another liquid scintillator experiment
and successor of KamLAND detector (Figure 1.9). KamLAND detector was originally used
as an oscillation experiment. It was composed of spherical balloon of 6.5 m radius filled
with liquid scintillator sensitive to antineutrinos coming from Japanese nuclear reactors. The
KamLAND-Zen is an upgrade of the detector dedicated to measurement of 0νββ . Another
spherical balloon of 3 m radius was inserted inside of the original one. This inner balloon is
filled with liquid scintillator doped by enriched Xenon (136Xe). Liquid scintillator in outer
balloon serves as detection medium and shielding at the same time. Such a design ensures
fully contained energy depositions which makes up for the biggest problem of liquid scintil-

Figure 1.9: Scheme of KamLAND-Zen experiment. Inner balloon (highlighted in violet
colour) containing Xe-doped liquid scintillator is inserted inside of the bigger balloon filled
with liquid scintillator.
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lator experiments - poor energy resolution. KamLAND-Zen went into operation in 2011 in
Kamioka mine (Japan). The whole setup comprises 330 kg of 136Xe. Neither this experiment
have seen an excess in the energy region of 0νββ setting the low limit on 0νββ half-life
(for 136Xe) at the level of 1.9×1025 yr (90% C.L.) [69]. The aim of another experiment
in the category - SNO+ - is to become the largest scintillator detector in the world. It will
be placed in the Sudbury Neutrino Observatory - 2 km deep underground laboratory inside
Vale’s Creighton Nickel mine near Sudbury, Ontario, Canada. 780 tonnes of LAB (Linear
AlkylBenzene) scintillator will be installed and loaded with 130Te. The signal will be read
out by 9500 8” PMTs. The experiment will aim to reach sensitivity of neutrino mass below
0.1 eV.

Tracker-Calorimeter experiments

This type of 0νββ take advantage from the information about particle energy from
calorimeters with position and momentum information obtained from trackers. Contrary
to three already presented methods, in this method source is separated from the detection
system. The main advantage of this approach lies in increased background rejection based
simply on the event topology.

Figure 1.10: Schematic section of NEMO-3 experiment [70].

Main aim of NEMO-3 (The Neutrino Ettore Majorana Observatory) experiment was pre-
cise measurement of 2νββ half-lives of several isotopes as well as search for 0νββ . From
all 11 different isotopes known to be 2νββ radioactive it was NEMO-3 which managed to
measure 7 of them including one measurement of 2νββ transition to exicted state. Whole
project started in 1990s with two prototypes NEMO-1 [71] and NEMO-2 [72].

In NEMO-3 [73, 74] electrons coming from 0νββ were detected by scintillating calorime-
ters and tracked by tracking wires in Geiger mode (Figure 1.10).
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The geometry of detector was of cylindrical shape divided into 20 sectors. These sectors
were dedicated to different 0νββ isotopes, namely: 100Mo (12 sectors), 82Se (2 sectors),
130Te (2 sectors), 116Cd (1 sector). Small volumes of 150Nd, 96Zr and 48Ca were also mea-
sured. Finally, sectors composed of Copper and very pure oxide of natural Tellurium were
used for measurements of external background in the experiment. The distribution of the
sources in the experiment and their amounts are shown in the Figure 1.11.

Energy and time-of-flight of electrons was acquired from 1 940 plastic scintillator blocks.
Data from blocks were read out by 3” and 5” photomultiplier tubes (PMT). The information
about electron tracks were obtained by 270 cm long vertical Geiger wires enclosing the
source foils positioned in the center of each sector (see Figure 1.10). The tracking method is
very effective way to reduce background based on rejection by the event topology. Solenoid
surrounding the detector produced 25 G magnetic field (parallel to the Geiger wires) inside
of the experiment. The whole detector was enclosed in 20 cm thick external shield made
of low radioactivity iron in order to reduce γ-rays and thermal neutrons. Another layer of
shielding, made of borated water, was applied on top of the iron. It served for thermalisation
of fast neutrons and capture of thermal neutrons.

NEMO-3 was placed in LSM (Laboratoire Souterrain de Modane) in Fréjus tunnel on the
French - Italian border. The laboratory is in the depth of 1 700 m protected by rock which
corresponds to 4 800 m.w.e. During the run period of 8 years (January 2003 - January 2011)
which corresponds to 5 years of data taking, 0νββ was not observed. NEMO-3 managed
to set the lower limit for 0νββ on the level of 1024 yr for 100Mo [53]. Moreover, 2νββ

half-lives of many isotopes were measured for the first time in history. Their full list can be
found in Table 1.3.

Figure 1.11: Composition of sectors containing measured isotopes in NEMO-3 experiment
[70].
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Decay Q-value TTT 222ννν

111///222 [yr] Ref.[keV]

48Ca→48 Ti 4267
[
6.4+0.7
−0.6(stat)+1.2

−0.9(syst)
]
×1019 [75]

82Se→82 Kr 2996 [(9.93±0.14(stat)±0.72(syst)]×1019 [70]

96Zr→96 Mo 3349 [2.35±0.14(stat)±0.16(syst)]×1019 [76]

100Mo→100 Ru 3034 [0.716±0.001(stat)±0.054(syst)]×1019 [77]

100Mo→100 Ru(0+1 ) 1905
[
5.7+1.3
−0.9(stat)±0.8(syst)

]
×1020 [78]

116Cd→116 Sn 2813 [2.74±0.04(stat)±0.18(syst)]×1019 [79]

130Te→130 Xe 2528 [7.0±0.9(stat)±1.1(syst)]×1020 [80]

150Nd→150 Sm 3371
[
9.11+0.25

−0.22(stat)±0.63(syst)
]
×1018 [81]

Table 1.3: Values of half-lives of 2νββ nuclei measured by NEMO-3. Q-values are taken
from National Nuclear Data Center website [44].
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Chapter 2
SuperNEMO Experiment

SuperNEMO represents a new generation of 0νββ experiments. Taking advantage from
experience with its predecessor, NEMO-3, its detection principle is based on the full recon-
struction of two electron tracks coming from double beta-decay along with the measurement
of their individual energies. The aim is to study 0νββ of 82Se. Technology which allows to
reconstruct the topology of double beta decay events is unique in the field. It improves the
background rejection and measurement of otherwise unobservable quantities, for instance
the angular distribution of the electrons. It might be a crucial step towards a new physics.

2.1 Laboratoire Souterrain de Modane

0νββ experiments look for very rare events and it is important to protect them against
cosmogenic radioactivity occuring on the Earth’s surface. SuperNEMO experiment is, there-
fore, placed in Laboratoire Souterrain de Modane (LSM). LSM is underground laboratory
and it is the deepest of its kind in Europe. It is placed in South-East of France on the border
between France and Italy near Modane. LSM is located in Fréjus highway tunnel 1.7 km
underground under the peak of mount Fréjus which represents 4800 m.w.e. The scheme of
the tunnel and the mount Fréjus can be seen in Figure 2.1. As it is visible in the scheme,
the laboratory is placed near the border, on the French side. Throughout the thesis, I follow

Figure 2.1: Scheme of mount Fréjus and the Fréjus highway tunnel. Laboratory LSM is
placed roughly in the middle of the tunnel, right under the peak of the mountain.
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naming convention normally used by collaboration. Parts of the detector are given adjectives
based on the country they are closer to. Therefore, the terms like "Italian calorimeter" or
"French calorimeter" designate the calorimeter wall on Italian side or French side, respec-
tively. Same convention applies for tracker, as well as for other parts of the detector. The
atmospheric muons are in the laboratory attenuated by a factor of million. Only 4-5 muons
pass to the laboratory per day.

2.2 Description of the Detector

SuperNEMO takes advantage of so-called tracko-calo method of 0νββ detection. Stan-
dard methods of 0νββ detection use only the electron energy spectrum as a criterion of
distinction between 0νββ and 2νββ or backgrounds. Experiment based on tracko-calo
method has access to extra information via full topological reconstruction of events. Tracko-
calo method combines three basic detection components (shown in Figure 2.2). Electrons
from ββ source pass through tracking detector with high granularity, giving an information
about the electron tracks. The electrons are subsequently detected in segmented calorimeters
which are capable to provide single electron energy. The main advantage of this approach lies
in the improved background rejection. Events from natural background have typically dif-
ferent topology and tracking allows to better reject such events. Information about electron
tracks give possibility to study for example an angular distribution of 2νββ . The detection
system is separated from the source which allows to study various different isotopes without
being fixed to one specific.

Figure 2.2: Simplified scheme of tracko-calo detection method. Pink block represents ββ

source (emission of electrons), blue block stands for tracking detector (information about
tracks) and the violet block on the right represents calorimeter (values of single electron
energies).

Since 2005, large effort was invested into the research and development of SuperNEMO
experiment. The main improvements in comparison to its predecessor NEMO-3, were achieved
in the enrichment and radiopurity of 82Se source foils, the energy resolution of calorimeters
and the reduction of problematic Radon background.
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Figure 2.3: Schematic picture of one SuperNEMO module designed to study 7 kg of 82Se
in form of foils (ββ module).

SuperNEMO experiment aspires to reach sensitivity of 1026 years to half-life of 0νββ in
82Se. The SuperNEMO is designed to measure 100 kg of 82Se distributed among 20 modules
[82, 83].

The first module, the demonstrator, will start phase of data taking in early 2019. The aim
of demonstrator is to prove the detector concept and to fine tune all the systems. Demon-
strator with roughly 6 kg of 82Se should be able to reach sensitivity of 4.9×1024 years to
half-life of 0νββ in 82Se. A SuperNEMO module is composed of three main parts orga-
nized in a planar geometry. The source foil (ββ module) composed of enriched Selenium
is in its center sandwiched by tracking detector. This is all encapsulated between scintillator
blocks (Figure 2.3).

2.2.1 82Se Source Foils

0νββ experiments observing isotopes such as 76Ge, 130Te, 134Xe or 136Xe typically take
advantage of approach when the source isotope serves as the detector at the same time.
SuperNEMO plays unique role in the field because its source is independent of detection
system. Experiment of this type can measure various different isotopes. In NEMO-3, seven
different isotopes (48Ca, 82Ca, 96Zr, 100Mo, 116Cd, 130Te and 150Nd) were measured in par-
allel, although, the one with the most observed mass was 100Mo. There are several important
requirements to meet, in order to choose a 0νββ decay candidate. First of all, it is important
to consider Qββ value of the decay of the isotope. Gamma radiation from natural background
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can reach up to 2.615 MeV (208Tl from 232Th chain). The higher, the Qββ value is above
this value, the better chance is to eliminate the background in the region of interest. Natural
elements are usually composed of several different isotopes. High abundance of isotope of
interest in the natural (or already enriched) sample increases the exposure and gives higher
chances to observe 0νββ . If the abundance is not sufficient in the composition of naturally
occurring element of choice, the enrichment should take place. The efficiency and difficulty
of enrichment technology differs from isotope to isotope. It is another factor to be consid-
ered. Large phase-space of 0νββ results into lower half-lives. When choosing the isotope,
one should also take into account the phase-space factor of the isotope. Finally, it is also
important to choose isotope with long half-lives of 2νββ . 2νββ is the main, and what is
the most important, irreducible, background for 0νββ . Long half-lives of the process for the
isotope of choice can increase the chances to observe 0νββ .

Isotope 82Se was chosen for SuperNEMO demonstrator thanks to its natural abundance
and high value of Qββ (2996 keV). Approximately 7 kg of enriched isotope will be placed
in demonstrator in form of the foil strips whose thickness will reach 40-55 mg/cm2. The
isotope is enriched by centrifugation method which can enrich natural Selenium up to 90%
to 99% content of 82Se. The method might be applied to 150Nd with Qββ value of 3371 keV
which would make 150Nd an isotope of choice for future SuperNEMO modules.

82Se has a form of powder after the enrichement. The powder is deposited on a very
thin Mylar foil. The foils were prepared in ITEP (Institute for Theoretical and Experimental
Physics) in Moscow and LAPP (Laboratoire d’Annecy-le-Vieux de Physique des Particules)
in Annecy (Figure 2.4). The source foils are already installed in the LSM.

Figure 2.4: Left: Source foil prepared in ITEP in Russia. Right: Source foil prepared in
LAPP in France.
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2.2.2 Tracking Detector
Source foil is, from both sides, surrounded by tracking detector (tracker). The tracker

is composed of 14 970 wires operating in Geiger mode. Research and development of the
tracker took place at University of Manchester in Great Britain. The (Geiger) wires are made
of steel with diameter of 40 µm to 50 µm. The wires were assembled at the Manchester
University and sent to Mullard Space Science Laboratory (MSSL) of the University College
London (UCL). There, they were assembled into form of 2034 cells with a help of robot
(Figure 2.5). The tracker module is divided into four parts named C0, C1, C2 and C3. Each
quarter was assembled in MSSL in a large clean tent. The tracker will be encapsulated in a
radon-tight chamber filled with a gas. The gas will be composed of 94.85% of Helium, 4%
of Ethanol 1% of Argon and 0.15% of water. The tracker is already installed in LSM.

Figure 2.5: Photos of robot developed for the preparation of the tracker cells.

2.2.3 Calorimeters
The energy of the electrons emitted in double beta decay events is measured by calorime-

ter made of plastic scintillators. The calorimeter is composed of three main parts, the "main
calorimeter (walls)", the "X-calo" (xcalo) and "gveto". The three parts surround the detector
in all five sides except for the bottom as it can be seen in scheme in Figure 2.6. The scheme
is for simplicity missing one main calorimeter wall and one xcalo wall. In the figure also
the definition of coordinate system is shown. The definition is strictly followed throughout
the whole thesis. Basic calorimeter unit is so-called optical module. The main parts of the
optical module are plastic scintillator (in our case polystyrene) and PMT which is glued to
the plastic scintillator for tight connection. Xcalo walls are placed at the smaller, vertical,
sides of the tracker. The calorimeters were directly connected to the tracker, its production
was, therefore, done at UCL in Great Britain. Xcalo consists of 128 optical modules, each
with resolution of roughly 12% at 1 MeV. Gveto, on top of the module, is composed of
64 optical modules with resolution of 15% at 1 MeV. Both xcalo and gveto are using 5”
PMTs reused from NEMO-3. Finally, the main calorimeter, covers the detector from both
sides parallel to source foil. It consists of two main walls composed of 520 optical modules.
One wall is on the Italian side while the opposite one on French side. Their assembly took
place in CENBG (Centre Etudes Nucléaires de Bordeaux Gradignan). Plastic scintillator in
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optical module is based on the polystyrene. 0.6% of para-terphenyl (pTP) and 0.05% of 1,4-
bis(5-phenyloxazol-2-yl) benzene (POPOP) fluorescent additives are serving as wavelenght
shifters for better detection efficiency. The optimization of content of pTP and POPOP with
respect to the energy resolution was achieved in IEAP CTU (Institute of Experimental and
Applied Physics Czech Technical University) in Prague. In [84] it was shown that PS blocks
with 1.5% of pTP and 0.05% of POPOP can reach better energy resolution. The production
process was switched to these enhanced PS blocks after the study was done. The production
process of main calorimeter walls is presented in Section 2.3. PMTs used to build main
calorimetric walls are 8” in diameter with resolution of 8% at 1 MeV.

Figure 2.6: The scheme of SuperNEMO calorimetric walls. Except for main walls ("calo")
SuperNEMO module will be composed of x-calo walls ("xcalo") on the short side and g-veto
on top ("gveto"). The picture also shows standard definition of coordinates, used for example
for simulation purposes, where y and z direction are defining the plane of source foil and x
is perpendicular.

2.2.4 Status of the Demonstrator
The goal of the demonstrator is to achieve sensitivity of 0νββ half-life at the level of

6×1024 yr, which is equal to upper neutrino mass limit of 0.2 - 0.4 eV. Furthermore, in full
design (20 modules) with more than 100 kg of 82Se, the limit on 0νββ half-life is expected
at the level of 1026 yr, yielding the upper limit on neutrino mass on the level of 0.04 - 0.11
eV.
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Currently, the works on construction of demonstrator parts (source foil, tracker and
calorimeters) are finished and they are all already present in LSM. The cabling works are
in progress and should be finished at the beginning of 2019. Automatic calibration source
deployment system (see also Chapter 3) was already installed. The SuperNEMO should
obtain first data in 2019. In parallel, the works on shielding design are taking place.

2.3 Construction of Main Calorimeter Walls
Assembly of the optical modules for main calorimeter walls was performed in CENBG

and finished in summer 2016. In autumn 2016, the main calorimeter walls were already built
at the LSM. During my first stay in CENBG in first half of 2016, I took part in the assembly
of optical modules. Let me briefly present the procedure in following sections.

2.3.1 Optical Module Production Procedure
The basic constituent of each optical module is a polystyrene block of 10 kg produced in

company NUVIA (former ENVINET) in Kralupy nad Vltavou near Prague, Czech Republic.
As waveshifters, para-terphenyl (pTP) and 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP)
fluorescent additives were mixed into polystyrene (PS) in the process of production. These
blocks were shipped to CENBG (near Bordeaux, France) and their production of optical
modules was finalized there along with tests of the performance.

One finalized optical module consists of two main parts: aforementioned PS block and
8” (or 5”, for xcalo and gveto) PMT glued to the block (Figure 2.7).

In order to avoid impurities in the preparation process, whole production was placed in
a clean room. At the beginning, the polystyrene modules were cleaned with acetone, iso-
propanol and distilled water. After drying, the dimensions of the PS block were measured

(a) (b)

Figure 2.7: (a): Simplified layout of optical module consisting of polystyrene block and
photomultiplier tube. (b): Real optical module after wrapping into Teflon and Mylar is
finished.

46



2.3: Construction of Main Calorimeter Walls

(a) (b)

Figure 2.8: (a): Picture of real PS block produced by NUVIA. (b): Production number placed
on top of each block.

and visually checked for impurities in polystyrene. Each block was labelled on top by pro-
duction number (Figure 2.8b). In next step, optical fibres were glued on top (Figure 2.9a).
The fibres serve for LED calibration of optical modules.

Subsequently, Hamamatsu PMT was glued on top into the spherical cut-out in the block
(Figure 2.9b). The drying process took 24 hours. The glue used for this step was chosen with
regard to its radiopurity (same applies to all materials used in construction of SuperNEMO
demonstrator) and its refractive index close to the refractive indices of PS block and PMT.
Two different types of PMTs are used in the SuperNEMO demonstrator. For main walls 8”
Hamamatsu PMTs were employed while for xcalo and gveto it was 5” PMTs previously used
in NEMO-3 experiment. After the PMT was in the place, the optical module was wrapped
into three layers of teflon tape (0.6 mm of total thickness) from sides (Figure 2.9c) and two
layers of mylar foil (total thickness 12 µm) from botom and from sides (Figure 2.9d). This
procedure was done in order to improve the light yield of the optical module. Thanks to
wrapping, the photons were confined inside the module and guided to PMT more effec-
tively. Moreover, it prevented outside photons to enter the optical module. In the process,
electronics responsible for data collection from PMT was soldered on top.

2.3.2 Optical Module Resolution Test and Finalization
The modules which went through all previous procedure steps were subsequently tested

for their resolution with 90Sr source [85]. Electrons from 90Sr were bent towards the colli-
mator by electromagnet and 1 MeV electrons were chosen. These electrons impacted into
the optical module from the bottom and spectrum was obtained. Whole testing process took
place in light-tight box to prevent unwanted light to be registered. The value of resolution of
each module was obtained. Histogram showing the resolution of all optical modules with 8”
PMTs can be seen in Figure 2.10. After the resolution measurement, eight optical modules
were grouped on the preparation table in two rows of four modules. Very high radiopurity
glue was applied on top of each. A metallic shielding protecting optical modules from mag-
netic field was placed on top in a way that only bottom faces of each optical module was
sticking out (Figures 2.9e and 2.9f). The connection between modules was strengthened by
32 plastic screws. Such optical brick was then packed in the box and shipped to LSM.
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(a) Gluing of optical fibres. (b) PMT gluing.

(c) Teflon wrapping. (d) Mylar wrapping.

(e) Encapsulation of eight optical mod-
ules into the shielding.

(f) Final brick prepared to be packed,
shipped and assembled.

Figure 2.9: Different steps of optical module preparation process. Note that in steps c) and
d) PMT is missing on top. These optical modules were used for testing and PMT was glued
to them after they were wrapped in Teflon and Mylar.
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Figure 2.10: Histogram of resolution of optical modules with 8” PMTs used in the main
wall of SuperNEMO demonstrator (data about eleven of them are missing due to disc crash).
Modules of standard quality (PS - green) were produced before the composition of pTP and
POPOP was optimized [84]. Enhanced optical modules (PS Enhanced - blue) are produced
after the mentioned optimization. Eight modules (PVT - pink) were participating in process
of research on composition of pTP and POPOP and their composition differs slightly. Eleven
optical modules (PS R&D - yellow) were used to develop the optical module preparation
procedure.

Figure 2.11: Me, in clean room in CENBG, with my first completed optical module.
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Chapter 3
Measurements of 207Bi Calibration Sources

In order to calibrate NEMO-3 calorimeters, 207Bi sources were employed. The same
strategy was chosen for SuperNEMO experiment. However, experience with NEMO-3 have
shown that insufficient knowledge of calibration source properties can give rise to large ex-
perimental uncertainties on the half-life of 2νββ as well as lower the sensitivity for half-life
of 0νββ . These effects can be removed by precise investigation of calibration sources. In
this chapter I will describe in detail all the necessary measurements which I performed in
order to better quantify calibration sources.

3.1 SuperNEMO Calibration System
207Bi is a complex emitter. It undergoes electron capture with subsequent emission of

gamma quanta. Electron from internal conversion, accompanied by X-ray can be emitted
instead of the gamma. Simplified scheme of the most common decay cascades of 207Bi is
depicted in Figure 3.1.

Figure 3.1: Simplified decay scheme of 207Bi. The isotope decays by electron capture and
can produce gamma rays as well as electrons or X-rays. The scheme contains only the most
common decay cascades.
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Figure 3.2: Left: Red vertical lines symbolize six gaps between ββ source foil strips where
automatic deployment system deploys the calibration sources. Right: Simplified scheme
of 207Bi deployment system. In the gap between 82Se ββ source foil the sources (brown
rectangles) can be vertically (red arrows) deployed by automatic system. Deployment will
be controlled by stepping motor connected to wheel on top (blue colour) which is able to
wrap the steel wire. Plumb bob has a role of load keeping the wire straight. It is marked
by light orange colour at the bottom. Note that the scheme is only symbolic, the number of
sources is incorrect and the dimensions in the figure are not to scale.

Electrons from the 207Bi are useful for energy calibration of the calorimeter optical mod-
ules. These electrons can be also useful in order to experimentally test the precision of
reconstruction of the electron tracks. I profited from the X-rays and gammas coming from
this emitter in the measurements.

Before opening the discussion about the measurements of sources, let me briefly describe
SuperNEMO calibration system. Calibration of a SuperNEMO module is a process which
will take place several times per month. For this purpose, the calibration sources have to
be placed and removed regularly from well defined positions inside the module. However,
during the operation a SuperNEMO module should be sealed, preventing any leak of the
atmosphere which is inside of the tracker. This limits the access inside, which makes man-
ual operation of calibration system impossible. Therefore, SuperNEMO calibration will be
performed by automatic deployment developed by group from University of Texas at Austin
[86].

3.1.1 Automatic Calibration Source Deployment System

Between some of the adjacent pairs of 82Se ββ source foil stripes there is a narrow gap
(Figure 3.2 - Left) designed for the insertion of 207Bi calibration sources. The automatic
calibration source deployment system consists of six Copper plumb bobs suspended by steel
wires from SuperNEMO source frame. Each wire will be wrapped on a wheel on top of the
SuperNEMO module. Wheel can be rotated by a stepper motor. Between the plumb bob
on the bottom and wheel on top, seven calibration sources will be attached to steel wire.
Stepping motor is able to vertically adjust the position of the sources or to remove them
completely from the SuperNEMO module. Symbolic scheme of the deployment system can
be found in Figure 3.2 - Right.
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3.1: SuperNEMO Calibration System

Figure 3.3: Photo of the SuperNEMO calibration sources. The source on the right is what I
call "without plastic envelope" and the one on the left, next to the ruler is source which I will
call "with plastic envelope" because the white plastic frame (in the middle of the photo) was
glued to them. Dimensions defined in the photo are listed in Table 3.1.

A [mm] B [mm] C [mm]
Pixel counting 8.2 13.11 4.14

Direct measurement (calliper) 7.91 12.99 4.15
D [mm] E [mm] F [mm]

Pixel counting 6.61 3.12 3.98
Direct measurement (calliper) 6.66 3.2 4.01

Table 3.1: Source dimensions A, B, C, D, E and F defined in Figure 3.3 measured by pixel
counting and direct measurement with calliper.

3.1.2 Description of Calibration Sources
SuperNEMO calibration sources have a rectangular shape (Figure 3.3). A source has a

form of 207Bi dropled deposited between two transparent mylar foils and sealed by radiopure
Copper frame. Example of such source is on the right side of Figure 3.3. Sources in these
form will be used in SuperNEMO calibration for the automatic deployment system.

SuperNEMO will exploit the same 207Bi calibration sources used in NEMO-3, but with-
out the plastic envelope (see Figure 3.3). At the time of this study, not all the sources have
been modified. The distinction between two types of sources is crucial in my analyses and,
therefore, I always explicitly refer to them as to sources "with" or "without" plastic envelope.

Dimensions of the sources were measured by two different methods to constrain the sys-
tematics. First method which I performed myself was indirect. I took photos of source of
choice with a ruler. The ruler gave a scale. Number of pixels per centimeter counted thanks
to the ruler in the photo served as scaling coefficient. Then I counted number of pixels
representing individual dimensions introduced in Figure 3.3. Using the scale coefficient I
represented these dimensions in cm. As one can imagine, such a methodology is dependent
on the perspective distortion introduced when taking the photo. Even though, I took the pic-
ture perpendicularly to the plane of the source and assumed the distortions to be negligible,
it is still non-trivial to satisfactorily quantify them. Therefore, I asked my colleague Ramon
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Figure 3.4: Case with all available 207Bi calibration sources.

Salazar to perform direct measurement using calliper. Both methods are within reasonable
difference consistent with each other. Measured values can be found in Tables 3.1.

3.2 Mapping of 207Bi Deposition Distribution in Calibra-
tion Sources

SuperNEMO calibration sources consist of droplet of 207Bi deposited between two layers
of transparent mylar foil. In Figure 3.3 (on the right) one can see an example of such source.
The mylar in the center is sealed from both sides by radiopure Copper frame. In the ideal
case, the droplet is well centered within the Copper frame and electrons emitted from 207Bi
loose almost no energy when exiting the source via mylar foil. However, if the droplet was
smeared in the proces of encapsulation of mylar by two Copper frames, it is possible to find
source liquid between two Copper layers on the edge of the source. Electrons which decayed
in the region of such leak would have to pass Copper frame to exit from source, loosing non-
negligible amount of energy in the process. These electrons would not have the expected
energy and might contribute to imprecisions in energy calibration. In order to quantify the
quality of the source, it is, thus, important to measure its deposition distribution.

Moreover, the deposition distribution maps for each sample of calibration source can be
used as an input for Monte Carlo simulation to improve quality of calibration. Between
September 2017 and January 2018, I performed complete deposition distribution study of 49
207Bi calibration sources. The section is dedicated to the description of methodology, data
analysis and results of this study.

3.2.1 Timepix Pixel Detectors
Pixel semiconductor detectors are employed in a broad range of imaging applications.

One of its biggest advantages lies in the design. Each pixel contains separate electronics
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Figure 3.5: Photos of the Timpepix pixel detectors used in the study. From left: H04-W0163
(300 µm Silicon sensor), H11-W0163 (300 µm Silicon sensor) and L05-W0163 (1 mm
Silicon sensor). The chip is located in the top part of the detector, lower, blue part is USB
interface developed in IEAP CTU in Prague [88].

with digital counter which allows each particle to be processed separately. One pixel is com-
posed of semiconductor diode with reverse bias voltage applied to both ends. The voltage
causes the depletion zone between two semiconductors in the diode to become wider. When
particle passes through the depletion zone, charge is created by electric field, collected at
the contacts and afterwards processed by the read-out electronics. More information about
semiconductor pixel detectors and their applications can be found in [87].

Timepix pixel detectors which I used in the study belong to category of so called hybrid
pixel device. Hybrid pixel detector consist of two chips. Fist chip is the sensor which is
composed of semiconductor diode with one common and one pixelated contact. Second
chip contains read-out electronics for all pixels. Their advantage to the monolithic pixel
detectors (with one chip) is that their sensor can be made of range of materials (e.g. Si,
GaAs, CdTe, etc.) while monolithic are limited uniquely to Silicon. However, in the study, I
used three Timepix detectors with Silicon chip. Their photos can be seen in the Figure 3.5.
The chip thickness of first two detectors (H04-W0163 and H11-W0163) was 300 µm while
the last one (L05-W0163) had chip of 1 mm thickness. All three consisted of 65536 pixels
aligned in 256×256 square matrix. Size of one pixel is 55× 55 µm2. Full chip covers the
area of 1.4×1.4 cm2.

3.2.2 Detector Energy Calibrations
Timepix detector family is a successor of Medipix detector family developed by Medipix

collaboration [89, 90]. Medipix detectors were used as a counting detectors capable of count-
ing particles in individual pixels. The essential upgrade which Timepix detector family re-
ceived was a clock counting in each pixel. Each pixel in Timepix detector can be configured
to operate in one of three following modes: Medipix mode, Timepix mode and Time over
threshold (ToT) mode. In Medipix mode, as the name suggest, the particle numbers are
counted in each pixel without any extra information about particle. Timepix mode allows to
study the coincidences of the impacting particles, as it is capable of measuring time of ar-
rival of the particle. In ToT mode, Timepix detector is able to provide information about the
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Figure 3.6: Scheme of charge sharing effect in pixel detector. Picture taken from [87]. Left:
Charge cloud created by ionizing particle is expanding into adjacent pixels due to electro-
magnetic repulsion and diffusion. Right: Plot of charge distribution detected by central pixel
(peak in the middle) and adjacent pixels (tails) due to charge sharing effect. If charge in ad-
jacent pixels is lower than threshold in the pixel the charge is lost and energy of the particle
is underestimated.

energy left by the particle in individual pixels. A limitation for this type of detector is caused
by effect called charge-sharing. In the case when pixels are small and/or sensor is thick, the
collected charge cloud created in one pixel expands due to charge repulsion and diffusion
and can be collected by adjacent pixels (Figure 3.6 - Left). In the adjacent pixels the tail of
the charge might not exceed the threshold value and therefore it becomes lost (Figure 3.6 -
Right). In consequence, collected charge is often lower than its original value which affects
the energy resolution. In ToT mode, energy is not obtained by direct measurement and cal-
ibration is needed. The principle of measurement in the ToT mode is as following: clock
in the pixel measures the period during which charge signal caused by impacting particle
exceeded pre-set threshold in the pixel. This quantity is called Time over Threshold (ToT).
There is a relation between energy deposited in the pixel and ToT which was measured and
modelled by a function given by Equation 3.1.

ToT (E) = aE +b− c
E− t

. (3.1)

The equation represents Time over Threshold as a function of the energy deposited in the
pixel by incident particle. a, b, c and t are the parameters of the function. While t represents
an energy threshold in the pixel, a and b define the linear part of the curve valid as a good
approximation for majority of the energy range. The function is depicted in the Figure 3.7.

Due to a complexity of the sensor, it is natural to expect different response in different
pixels. Therefore, energy calibration has to be performed separately for each pixel. In the
process of energy calibration, detector is exposed to X-ray fluorescent radiation taking only
clusters1 of one pixel size into the account. Current leaked into the adjacent pixels due to
the charge sharing effects can be estimated based on the simulations and corrected. More
information about the calibration and charge sharing effect can be found in [91, 92, 93].

Before I could perform the measurements I needed to calibrate each one of the three
detectors. As it was already mentioned, energy calibration has to be done for each pixel
individually. In practice, this means to find set of parameters a, b, c and t in Equation 3.1,
for each pixel separately. This can be really time consuming process taking into account a
fact that we need to provide enough statistics for calibration to each one of the 65536 pixels

1Cluster is a group of adjacent pixels representing one particle which deposited energy in each pixel. Size
of a cluster is given by number of pixels included in the cluster.
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Figure 3.7: Relation between time over threshold and energy used for energy calibration of
pixel detectors. Source of image: [91].

in order to make fitting possible.
As a first step before the calibration itself, I had to find appropriate value of biasing

voltage for each detector. Biasing voltage (bias) is increasing the size of a depletion zone in
the pixel (diode) improving the detection sensitivity of the pixel. After it reaches maximum,
it saturates. I irradiated the chip with X-ray fluorescent radiation and measured rates while I
was changing the bias of the detector supplied by voltage source. At the saturation point, I
obtained value of the bias which I used for all the process of calibration and measurements.
For 300 µm thick Timepix detectors H04-W0163 and H11-W0163 I obtained bias value of
90 V and 100 V, respectively. It is provided by the USB interface in the Figure 3.5 [88].
However, for 1 mm detector, one needs extra voltage supply capable to deliver bias of 460 V
(L05-W0163).

After setting the biases one needs to do so-called "threshold equalization". In Timepix
detector, the pixels are designed to be identical to one another. However, in reality the
differences occur. In threshold equalization, the global threshold value is fine tuned for each
pixel in a way that the dispersion is as small as possible. Pixelman [94], a software interface
for Timepix detectors, provides simple plugin which performs threshold equalization. It
also gives possibility to mask noisy (faulty) pixels. After the equalization is finished, it is
important to save and use always the same configuration in calibration and measurements.

Detectors are in this point prepared for calibration. As I mentioned above, X-ray fluores-
cent radiation was employed. I used three different fluorescent foils irradiated by Amptek
Mini-X X-ray lamp. During the calibration, X-ray lamp was irradiating fluorescent foil (Fe,
Cu or Cd) initiating X-ray fluorescence in the target foil. The energy of the X-rays coming
from the foils have sharp values (Fe: 6.398 keV, Cu: 8.04 keV, Cd: 23.106 keV), therefore,
such foils are suitable for calibration of the detector. The photo of calibration setup can be
found in Figure 3.8. The output from the calibration measurements is a set of files contain-
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Figure 3.8: Photo of Timepix detector calibration setup. The X-ray lamp irradiates Fluo-
rescent foil with spectrum of X-ray radiation (blue arrow). Atoms in the foil are excited
and subsequently deexcited by X-rays of unique energy (red arrow). These rays impact the
detector and provide the calibration.

ing spectra in terms of ADC channels (time over threshold) for each individual pixel. Each
spectrum is fitted and the peak value is assigned to be the ToT value representing energy of
fluorescence X-rays. Such a couple of values represent a point on the calibration curve from
Figure 3.7. Each fluorescence foil dataset yields one such point for each pixel. As a last step,
the points are fitted by function given by Equation 3.1, giving parameters a, b, c and t. Each
quadruplet of the parameters is unique for individual pixel. Therefore, resulting calibration
files are four 256×256 matrices containing calibration parameters a, b, c and t.

In the Figures 3.9 and 3.10 one can find global spectra (i.e. all pixels combined) from
all three used detectors before and after calibration. The calibration tests were performed
using the same fluorescence foils as during the calibration (i.e. Fe, Cu and Cd) and one extra
foil made of Zr (15.744 keV). From the figures one can also extract the values of energy
resolution, typically on the order of few keV. The calibration was performed with success
and detectors prepared for measurements.

3.2.3 Test Measurements
After the completion of calibration it was necessary to investigate the possibilities of the

measurement and develop the most suitable and effective method. The best possibility was
to perform short measurements with various setups. In October 2017 I spent one week in
LSM in order to perform test measurements with the calibration sources.
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Figure 3.9: Calibration test spectra. All three detectors were tested with fluorescence foils
before (left column) and after (right column) calibration. Similarly to calibration, only one
pixel clusters were accepted regardless of the position on the chip. Each row represents
detectors H04-W0163, H11-W0163 and L05-W0163 respectively. The spectra before cali-
bration are represented in channel number (ToT). All three fluorescent foils from calibration
were employed in the test. Asterisk represents Zirconium foil measurement which was not
used for the calibration. In case of H11-W0163, data after calibration for Fe foil were lost
due to disk failure. The spectrum can be found in the screenshot after the measurement in
Figure 3.10.
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Figure 3.10: Energy from Fe foil as seen by detector H11-W0163 after the calibration. The
picture represent Pixelman screenshot after the test as the data from the measurement were
lost, therefore not included in Figure 3.9.

3.2.3.1 Data Analysis

Before a discussion about the measurements, let me talk about the data extracted from
the detector and the software I developed for the analysis. Timepix detectors produce data
in form of cyclic snapshots of a given acquisition time (frames) followed typically by 200
ms of dead time reserved for data storage. As it was already discussed, each pixel is capable
to detect particle independently. With proper calibration provided, data in each pixel are
saved in a simple form of three columns storing x and y coordinates of pixel and energy
deposited in the pixel, respectively. Only the pixels with detected signal are written in the
file in order to eliminate redundant data. This type of output I call "raw output" and it can
be represented in a form of frame image in Figure 3.11. It is possible to recognize different
particle tracks in the figure. In case when the particle deposited all its energy in the detector,
the sum of all energies detected in the pixels belonging to its track should be equal to initial
energy of the particle. Except for the raw data output, which I already described, Pixelman

Figure 3.11: Figures representing two randomly chosen dataframes obtained during the test
measurements with 207Bi calibration sources. The length of presented frame was set to 1 s.
One can see example of different spots representing different types of particles. Typically
one pixel spots are photons while long curved tracks are electrons.
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Figure 3.12: Two representations of the energy deposition for source number 133. Note that,
each bin represents area of 8×8 pixels. Left: Two-dimensional representation of the energy
deposition on the chip. Right: Discrete datapoints represent values of the energy deposited
in each spatial bin during the full duration of measurement. The image depicts a fit of the
distribution given by Equation 3.2.

provides also "clustered output" [95]. All the triggered pixels in one dataframe are grouped
in clusters based on the criterion of adjacency. Cluster represents one particle. The energy
of the cluster as well as its position is saved into a file. The cluster position is represented by
unique number, defined as an average position of each pixel belonging to the cluster. Data
contains also so-called cluster size which is number of pixels in the cluster. In my analysis
software, I always took advantage of clustered output.

In order to obtain reliable data in the clustered output, we need to set length of one frame
carefully. It takes 200 ms to read out the data from detector independently of the length of
the frame. On one side, the longer the frame lengths is, the lower the relative dead time of
the detector is. On the other side, longer frames allow the detector to collect more statistics
and rise a chance to find overlapping clusters. This is something what needs to be avoided
because overlapping clusters are represented as single particle in the final output causing
distortions in data. Standard frame length can go down to fractions of a second. However,
after few short testing measurements I came to a conclusion that the calibration sources are
weak enough to open the frame for 1 s without affecting the data quality.

For the purpose of data analysis, I developed Matlab script capable of reading the clus-
tered data output format. All the frames in the measurement are superimposed by the script
giving the energy distribution of all the clusters as shown in the Figure 3.12 - Left. Extra blue
circle represents size of the source while black dot represents its center. Both were added to
the dataset after distribution was fitted by function given by Equation 3.2.

f (x,y) =
A

(x− x0)
2 +(y− y0)

2 + γ
. (3.2)

The center of the source is here represented by fitting parameters (x0, y0) and the radius
of the blue circle is calculated as HWHM value of the 2D distribution, i.e.

√
γ . Fitting

function was chosen empirically, according to the best fit criterion. As it can be seen in the
Figure 3.12 - Right, fitting function describes the distribution sufficiently well.
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Gammas X-rays Electrons
E [keV] Iaaabbbsss [%] E [keV] Iaaabbbsss [%] E [keV] Iaaabbbsss [%]

569.7 97.8 9.2 - 15.9 33.2 5.3 - 15.8 54.4
897.8 0.1 72.8 21.7 0.0 - 87.9 2.9
1064 74.5 75.0 36.5 56.3 - 61.9 1.8
1442 0.1 84.5 - 85.5 12.5 481.7 1.5
1460 1.6 84.5 - 87.6 16.2 975.6 7.1
1770 6.9 87.2 - 87.4 3.7 1047.8 - 1050.6 1.8

Table 3.2: Products from decay of 207Bi. Gamma line of 328.1 keV was omitted due to its
negligible absolute intensity. The most significant X-rays and electrons were chosen. Source
[96].

3.2.3.2 Study of the Energy Spectra

In search for proper ROI for data analysis, I performed several comparative measure-
ments. First of all, I studied the shape of the energy spectrum. 207Bi is a complex emitter
decaying by electron capture with half-life of 31.55 yr. It produces gammas, X-rays as well
as Auger electrons (Table 3.2). In Figure 3.13 one can find comparison of the energy spectra
as measured by 300 µm thick detector (H11-W0163) and 1 mm thick detector (L05-W0163).

Let us first have a look at the low energy part of the spectrum (5 keV - 30 keV) rep-
resented by Figures 3.13a and 3.13b. By looking at the Table 3.2 one can conclude that
the lower part of the spectrum represents the X-rays (9.184 keV - 15.860 keV) and Auger
electrons (5.327 keV - 15.817 keV) from the electron capture of 207Bi. In both cases X-rays
and the electrons are detected very efficiently, as their energy is not sufficient to traverse the
detector. However, in the high energy part of the spectrum one can expect gammas, but for
them both thicknesses of Silicon layer are practically transparent. Electrons of high energy,
depose energy depending on the thickness of detector. While 300 µm detector is too thin
to fully stop the electrons (Figure 3.13c), in the case of 1 mm detector, one can observe
peak of electrons of 481.7 keV and 975.6 keV appearing (Figure 3.13d). As the detector
was calibrated with low energy X-ray fluorescent sources, we can notice imprecision of the
calibration in high energy region which is demonstrated by second peak (975.6 keV) being
displaced towards the high energy.

Based on the presented analysis of the energy spectra, I decided to choose ROI for all the
measurements to be between 3 keV and 30 keV. Detectors of both thicknesses give similar
spectrum in the region, therefore, we can expect comparable results regardless of the detector
used in the study. Lower boundary of 3 keV instead of 5 keV as presented in Figures 3.13
was chosen in order to ensure that the peak in the low energy part of the spectrum is fully
contained.

Chosen ROI appears to be the right choice from the point of view of final localisation of
the source droplet. Figure 3.14 shows the influence of the energy cut on the localisation of
the 207Bi droplet. It is possible to recognize that in Figure 3.14 - Right (low energy, low pixel
size cut), the Bismuth droplet is better localised than in the Figure 3.14 - Left, representing
high energy part of the spectrum with effectively no cut on the pixel size. The HWHM of
the droplet from low energy dataset is 1.24 times smaller. The reason for the difference lies
in the interaction between electrons from high energy part of the spectrum. These electrons
leave curvy tracks several pixels long in the chip. However, in the clustered output only one
unique position is assigned to each cluster regardless of its size. In case of clusters composed
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(a) 300 µm (H11-W0163) (b) 1 mm (L05-W0163)

(c) 300 µm (H11-W0163) (d) 1 mm (L05-W0163)

Figure 3.13: Comparison of different regions of energy spectra obtained by measurement of
source number 71 with the detectors of the different thickness. While in the low part of the
spectrum (5 keV - 30 keV) - figures on top - no significant difference is observed, in the high
energy part of the spectrum (30 keV - 1500 keV) - figures at the bottom - we can notice peaks
appearing in measurement with detector of 1 mm thickness. Reasons for the difference are
discussed in the text.

of at least two pixels, this brings an uncertainty in the cluster localisation. The lower energy
region is dominated by X-rays which typically leave only one pixel clusters. Therefore, their
position is measured with precision of one pixel. In order to ensure maximal precision of
the cluster position I decided to work only with clusters of the size of one pixel from the
aforementioned low energy part of the spectrum. On one side, combination of both cuts
decreased the measurement statistics to 43-50%, on the other side, it increased the precision
of the main result of the study - the localisation of the 207Bi droplet.

3.2.4 Detector Spatial Calibrations
If we look at the Figure 3.12 - Left we can notice another important question which has to

be solved. The fit presented in the figure provides the radius (HWHM of the distribution) of
the characteristic size of the source droplet as well as the position of the source. Nonetheless,
the position (x0, y0) is given in the frame of reference of the detector chip. In other words,

62



3.2: Mapping of 207Bi Deposition Distribution in Calibration Sources

Figure 3.14: Result from measurement of source number 139. Images represent comparison
of the same data with two different cuts. Left: Dataset including all the clusters with energy
between 30 keV and 1300 keV and pixel size less than 100. Right: Dataset including clusters
of low energy between 3 keV and 30 keV. Only clusters of pixel size 1 were included.

position of the source is known relatively to the detector chip. However, the main aim of
the study is to measure relative position of the source droplet and the Copper source frame.
It was necessary to reproduce its position and represent it in the data. In order to achieve
this goal, I performed spatial calibration of each detector. During all the measurements, the
source was carefully positioned in the same reference position, as it is depicted in the Figure
3.15.

This convention provided stable reference point for the spatial calibration. As a next
step, I took laser-perforated metallic grid and placed it on the detector in the way, that top
left corner of the grid (yellow point in Figure 3.16 - Left) was aligned with the measurement
reference point. Subsequently, I irradiated the grid with X-rays and obtained pattern shown
in the Figure 3.16 - Right. Missing hole in the measured calibration dataset helped to identify
exact row and the column of each hole in otherwise symmetrical and repetitive pattern. Note

Figure 3.15: Alignment of the measured source on the detector. Sources in all the measure-
ments were aligned with the top left corner of black plastic holder as depicted by yellow
arrows. The relative position of the red Copper frame window and the top left point were
known thanks to the previous measurements of the source dimensions listed in the Table 3.1.
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Figure 3.16: Left: Photo of the spatial calibration metallic grid. Yellow point was in the
process of spatial calibration aligned with standard reference point defined in the Figure
3.15. Right: Image of the calibration grid as seen by detector L05-W0163 after exposure
to X-rays. Note that, the covered hole (highlighted by red circle) appears in fourth column
and third row instead of fifth row and firth column (left figure) because first two rows and
first column are out of the sensitive area of the detector as well as the grid’s yellow reference
point.

that, the y axis of grid’s coordinate system is oriented the opposite direction relatively to
the pixel detector y axis (Figure 3.16). Moreover, the origin of both coordinate systems are
shifted relatively to each other. It implies, that the transformation between the coordinate
systems won’t be simply shifted or rescaled but one needs to employ linear algebra in order
to tackle the problem mathematically.

Let me explain the mathematical background of the spatial calibration. In the following,
all the vectors will be implicitly columns unless transposed. The goal of the calibration is
to find a transformation matrix A and shift vector b = (b1,b2) providing a transformation
between any vector v = (v1,v2) (in mm) in the calibration grid’s coordinates and vector
p = (p1,p2) in pixel detector’s coordinates (in pixels) such as:

p = Av+b. (3.3)

Let us now have four different vectors (points in space) in calibration grid coordinates v1,
v2, v3 and v4 represented in pixel detector coordinates: p1, p2, p3 and p4, respectively. The
transformation relation from Equation 3.3, therefore holds for each vector:

pi = Avi +b, i = 1,2,3,4. (3.4)

Now, if we define matrices V1, V2, P1, P2 and B:

V1 = (v1,v2) ; V2 = (v3,v4) ; P1 = (p1, p2) ; P2 = (p3, p4) ; B = (b,b) , (3.5)

following matrix equations also hold as a consequence of the Equation 3.4:

P1 = AV1 +B; P2 = AV2 +B. (3.6)
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vvv111 (mm) vvv222 (mm) vvv333 (mm) vvv444 (mm)
x 6.16 11.58 11.58 6.16
y 6.08 6.08 11.06 11.06

Table 3.3: Coordinates of four chosen grid points in grid’s coordinate system obtained by
measurement by caliper presented in Figure 3.17 - Left.

ppp111 (pix.) ppp222 (pix.) ppp333 (pix.) ppp444 (pix.)
x 67.96 159.48 159.52 68.01
y 207.62 207.68 116.06 116.05

Table 3.4: Coordinates (rounded to two decimal places) of four chosen grid points in detec-
tor’s coordinate system obtained by fit presented in Figure 3.17 - Right.

If we substract second equation from the first we eliminate the unknown matrix B:

P1−P2 = A [V1−V2] . (3.7)

Finally, we multiply equation from the right side with matrix inverse [V1−V2]
−1 and swap

sides:
A = [P1−P2] [V1−V2]

−1 . (3.8)

Equation 3.8 provides recipe for calculation of the transformation matrix A given values of
four points in both coordinate systems. With A already known, the shift vector b is obtained
from Equation 3.4:

b = pi−Avi. (3.9)

The calculation should work for any chosen i = 1,2,3,4. Having matrix A and vector b, it
is possible to transform any vector v in calibration grid coordinates into vector p in pixel
detector coordinates. The opposite transformation can be achieved by inverted relation:

v = A−1 (p−b) . (3.10)

Here, A−1 represents inverse of matrix A.
Let me now demonstrate how the presented method works. As an example, I will use

spatial calibration of detector L05-W0163. As it was already discussed, the first step to
perform the spatial calibration is to choose four points and express them in both coordinate
systems.

Figure 3.17 - Left shows choice of my four points represented on the photo of the grid.
These four points were (thanks to the covered hole) identified in the dataset measured by the
detector (3.17 - Right). Green lines represent two horizontal and two vertical linear fits and
their intersections represent the coordinates of my four chosen points in detector’s coordinate
system. All the measured (fitted) coordinates in both coordinate systems are summarized in
the Table 3.3 (Table 3.4).

Having all the important ingredients for my mathematical recipe it is possible to construct
matrices V1, V2, P1 and P2 from Equation 3.5:

V1 =

(
6.16 11.58
6.08 6.08

)
, V2 =

(
11.58 6.16
11.06 11.06

)
, (3.11)

P1 =

(
67.96 159.48
207.62 207.68

)
, P2 =

(
159.52 68.01
116.06 116.05

)
. (3.12)
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Figure 3.17: Left: Dimensions of the grid measured by calliper. They represent the coordi-
nates of four chosen calibration vectors v1, v2, v3 and v4. Right: Same four points identified
in the dataset from exposure by X-rays in Figure 3.16 - Right. The contrast of the image was
enhanced before the fitting (green lines) was performed.

Subsequently, I calculated V1−V2, P1−P2:

V1−V2 =

(
−5.42 5.42
−4.98 −4.98

)
, P1−P2 =

(
−91.56 91.47
91.57 91.63

)
, (3.13)

as well as [V1−V2]
−1:

[V1−V2]
−1 =

(
−0.0923 −0.1004
0.0923 −0.1004

)
. (3.14)

It was important to choose my four points in such way, that the matrix V1−V2 was not
singular. Finally, by application of Equation 3.8 and, subsequently, Equation 3.9, we obtain
matrix A and shift vector b for transformation from grid’s coordinate system to coordinate
system of detector:

A =

(
16.885 0.0087
0.0062 −18.3936

)
, b =

(
−36.1
319.4

)
. (3.15)

For the inverse transformation defined by Equation 3.10, we can use matrix:

A−1 =

(
0.0592 0

0 −0.0544

)
. (3.16)

Let me briefly discuss obtained results. Looking at matrices A and A−1 we can conclude
that we obtained correct and expected results. Within precision of one decimal place the
off-diagonal elements are zero which suggest no rotation between the two coordinate system
which is indeed true. Moreover, minus sign next to the bottom right elements of the two
matrices describe mathematically the fact, that the directions of y axes are mutually opposite
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Figure 3.18: Example of two measurement results after the addition of Copper source frame
window (red rectangle). Left figure represents measurement of source number 75 while
figure on the right represents measurement of the source number 139. It is clearly visible
that the position of the red Copper frames are in the different positions. This is expected,
because source number 75 (Left) is source with plastic envelope while source number 139
(Right) has no plastic envelope. Note that both datasets are expressed in mm instead of the
pixels which was achieved by using size of one pixel (0.055 mm) as a scaling factor.

between the two coordinate systems. In contrary, the directions of the x axes are mutually
the same which is represented by positive sign of the elements in first row and first column
in both matrices (Figure 3.16). Looking at the b vector we can state expected fact, that the
origins of the two coordinate systems are mutually displaced.

If we look at the dimensional analysis of the values, b vector is represented in pixels.
It represents the relative displacement of grid’s coordinate system relatively to origin of the
detector’s coordinate system. Negative x value suggests displacement to the left from the
chip and y which is higher than 256 (number of pixel rows) suggests that the reference
measurement point is above the chip. This is exactly the situation implied by Figure 3.16.
Finally, we conclude that the values of matrix A−1 are in mm per pixel, based on the fact
that this matrix has to transform pixels in which vector p is expressed into mm, the units of
vector v. The diagonal elements of the matrix A−1 provide rescaling. The values 0.0592 and
0.0544 represent the size of one pixel in mm. The two values were obtained indirectly, but
still within a good precision they represent correct size of standard Timepix detector pixel
(0.055 mm). The presented process was performed with each one of the detectors using my
own Matlab script. With the transformation relations at disposal, it is easy to express any
point in the detector (or outside) in both coordinate systems. Based on the source frame
measurements (Table 3.1), it was simple task to represent the red source frame window from
Figure 3.15 into the measured dataset. Example is shown in Figure 3.18.

3.2.4.1 Source Placement Convention

Before I will start to discuss the final results obtained in the study, one last topic remains
still to be covered. As it was already mentioned, both types of calibration sources (with and
without plastic envelope) are of rectangular shape and they are emitting decay products to
both sides perpendicular the area of the rectangle. Therefore, in order to make unambiguous
conclusion about source droplet position, it is important to clarify on which side the mea-
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Figure 3.19: Four different positions of source number 88. U stands for upward position, D
for downward position, B for the side with big opening and S for side with small opening.
Further details are explained in the text.

Figure 3.20: Four different positions of source number 113. U stands for upward position,
(second) D for downward position, S for the side with single colour opening and (first) D for
side with double colour. Prefix "WO-" is added to distinguish positions of source without
plastic frame easier. Further details are explained in the text.

surement was performed. Furthermore, once we have chosen the side of the source facing
the detector, the source can still be rotated by 180 degrees in its plane. These two symmetries
together define four different positions which have to be named and distinguished in order
to provide replicable results.

Figure 3.19 contains photos of a source number 88 with plastic envelope. Source can be
placed (with respect to predefined upward position) in four different measurement positions.
In case of source with plastic envelope it is possible to distinguish a side with a big opening
(positions UB and DB, B stands for big) and opposite side with a small opening (positions
US and DS, S stands for small). Moreover, on each side, source number is engraved. It
helps to distinguish upward placement (positions UB and US) from downward placement
(positions DB and DS). Analogical positions can be defined for source without plastic enve-
lope. However, if we look at the Figure 3.20 we can spot slight difference. Without plastic
envelope there is no possibility to define each side based on the size of the plastic opening.
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Nevertheless, two sides of any source without plastic envelope can be distinguished thanks
to the difference in colour, single colour (positions WO-SU and WO-SD) and double colour
(positions WO-DU and WO-DD). The upward positions (WO-SU and WO-DU) and down-
ward positions (WO-SD and WO-DD) are defined exactly in the same fashion as in the case
of source with plastic envelope, based on the engraved source number. Note that, for easier
orientation in the convention, all the positions concerning sources without plastic frame have
prefix "WO-". The convention defined in the Figures 3.19 and 3.20 has to be (and will be)
strictly followed in the thesis. At this point, last important remark should be made. If we
take Figure 3.15 as an example, we can state that the measured source is in position WO-SU.
However, it is the double coloured side which is facing the detector. For the sake of practi-
cality the name of the position is based on what observer sees. It is not important which side
is seen by detector (unless stated otherwise).

3.2.5 Results
During my second stay in LSM in December 2017, I performed final measurements. Dur-

ing 12 days, I managed to measure 49 different sources in 52 measurements (three sources
were measured two times). The duration of one measurement was variable, ranging from
few hours to few days. Statistics of chosen measurements can be found in the Table 3.5.

The table includes the name of the detector involved in the measurement as well as num-
ber of counts in ROI (NROI) and total dataset (NTOT), their fraction and the flux of energy
detected per unit time (EROI / tlive). Full information about all performed measurements can
be found in Table A.2 in Appendix A. Based on the presented number, it is possible to dis-
tinguish two types of detector. If we look at the particle rates, we can notice that 300 µm
thick detectors (H04-W0163 and H11-W0163) detected particle rates approximately on the
level of 7-9 Hz. However, 1 mm thick detector (L05-W0163) have seen higher rates of 11
or more Hz. It is another demonstration of higher detection efficiency due to the thickness
of the detector. Note that, the particle rates allow us to calculate activities relatively to one
chosen source. However, according to the difference in the detection efficiency which I have
just discussed, it is impossible to compare activities between sources measured by thicker
detector and the sources measured by thinner detectors.

M. Detector tlive NROI NTOT
NROI
NTOT

NROI
tlive

EROI
tlive

[s] [1] [1] [%] [Hz] [keV / s]
73 H04-W0163 5 994 49 656 114 585 43.34 8.28 92.88
74 H11-W0163 6 384 53 527 123 395 43.38 8.38 101.28

111 H11-W0163 13 813 125 124 288 873 43.31 9.06 110.18
120 L05-W0163 45 669 552 206 1 095 402 50.41 12.09 134.99
126 H04-W0163 199 776 1 474 716 3 428 264 43.02 7.38 82.38

126* H04-W0163 166 317 1 290 921 3 038 524 42.49 7.76 86.55
132 H11-W0163 197 260 1 719 104 3 955 332 43.46 8.71 104.58

132* H11-W0163 165 699 1 440 205 3 324 424 43.32 8.69 104.86
139 L05-W0163 197 151 2 342 662 4 723 626 49.59 11.88 133.00

139* L05-W0163 165 604 1 965 319 3 973 773 49.46 11.87 133.82

Table 3.5: Statistics of chosen measurements. M. in the first column stands for number of
measured source. Rows with asterisk denote repeated measurement under same experimental
conditions.
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Figure 3.21: Graphical representation of the quantities extracted from the measurement.
They are explained in further detail in the text.

The quantities of interest extracted from the measurement are depicted in Figure 3.21.
Black point is center of 207Bi droplet (x0, y0) obtained by fit described in Section 3.2.3.1. The
fit provides also HWHM value of the distribution (characteristic dimension of the source).
The droplet is symbolized in the picture by blue circle with the radius of distribution’s
HWHM. Red point is a center of the source frame. Its coordinates are (Cx, Cy). Finally,
green arrow represents the most important quantity, "the dislocation vector", r. It is a vec-
tor whose origin is in the center of source frame and the end in the center of 207Bi droplet:
r = (x0−Cx,y0−Cy). It represents the dislocation of the source droplet from the center of
the source frame. Therefore, its length is a measure of this dislocation. In the right side of
the same figure one can find definition of complementary dislocation parameters px and py.
They represent the same information given by coordinates of dislocation vector but in relative
terms with respect to source frame dimensions. Both have value from interval 〈−1,1〉. px

M. Position
x0 y0 HWHM x0−CX y0−CY px py r

[mm] [mm] [mm] [mm] [mm] [1] [1] [mm]
126 WO-DU 3.02 6.79 2.44 -1.22 0.11 -0.31 0.02 1.23

126* WO-DU 3.00 7.01 2.14 -1.24 0.33 -0.31 0.05 1.28
132 WO-DU 3.99 7.29 1.96 -0.25 0.57 -0.06 0.09 0.62

132* WO-DU 3.94 7.46 1.95 -0.29 0.74 -0.07 0.11 0.79
139 WO-DU 4.50 6.88 1.61 -0.02 -0.07 0.00 -0.01 0.07

139* WO-DU 4.47 7.03 1.62 -0.05 0.08 -0.01 0.01 0.10

Table 3.6: Table summarising all obtained quantities for chosen measurements. M. in the
first column stands for number of measured source. Measurements with asterisk denote
repeated measurement under same experimental conditions. Colour coding of dislocation
vector length denotes source category described in the text.
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(py) = 0 represents situation when source is perfectly horizontally (vertically) aligned while
px (py) =−1 represents source deposition on the left (bottom) edge of the source frame and
px (py) = 1 represents source deposition on the right (top) edge of the source frame. The
parameters are dimensionless.

Finally, let me discuss the results. Table 3.6 includes data from six measurements of three
repeatedly measured sources. All the previously mentioned quantities can be found in the
table. The coordinates of the droplet and source frame center is expressed in the mm. Note
that, their values are the coordinates in the detector coordinate system rescaled from pixels
into mm by size of one pixel (0.055 mm). Last column shows a length of the dislocation
vector. Majority of the sources were centred well within 1.5 mm or less. In order to simplify
the description of the sources, I decided to divide them into three basic categories. Category
A includes all the sources with r < 0.5 mm (green category), category B all the sources with
0.5 mm < r < 1 mm (yellow category). In category C (red category) the rest of the sources
were placed, i.e. 1 mm < r. Full results from all the measurements can be found in Table A.4
in Appendix A.

The results have shown that 21 sources belong to the category A, 23 to category B and
5 into category C. None of the sources showed contamination on the source frame. In other

Figure 3.22: Each dot symbolizes one performed measurement. Position represents the
dislocation vector coordinates. Origin represents the center of the source frame. Dot colour
stands for the source category (A, B or C).
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Figure 3.23: Left: Representation of Figure 3.22 relatively to the red source frame. Right:
Distribution of the droplet radii in all 52 measurements.

words, all the tested sources are eligible to be used in the calibration. However, thanks to
the study it will be possible to choose the best ones. For easier orientation in the results, I
represented all the dislocation vectors in Figure 3.22. Figure 3.23 - Left represents the same
distribution depicted relatively to the red source frame. On the right side of the same figure
one can find distribution of source droplet radii which is in average around 2 mm. The results
of the measurements I summarized into an article which is currently under internal review of
SuperNEMO collaboration [97].

3.2.5.1 Systematic Uncertainty Estimation

In order to perform uncertainty estimation I took advantage of three repeated measure-
ments. The uncertainty was estimated by comparing the differences between dislocation
vectors obtained for the same source in two different measurements. Let us have a look at
the uncertainty of the x coordinate first. By comparison of the measurement 132 and 132*
the difference in x coordinate is 0.04 mm (difference between -0.25 mm and -0.29 mm). This
difference is the biggest among all the repeated measurements In Table 3.6. Measurements
126 and 126* yield only 0.02 mm of difference while measurement 139 and 139* yield dif-
ference of 0.03 mm. As a conservative estimate I consider final uncertainty in the x direction
the one with the highest value, i.e. ∆x = 0.04 mm. I repeated exactly same process for the y
direction. Here, is the biggest difference (0.22 mm) between measurement number 126 and
126*. Again, this value is considered as uncertainty of the measurement in the y direction,
i.e. ∆y = 0.22 mm.

It is obvious, that the uncertainty in y direction is significantly larger than the on in x
direction. This has simple explanation. If we look at the Figure 3.15 we can notice important
detail. The figure shows alignment of the measured source to the reference measurement
point (top left corner). While in the left side the source is touching black plastic chip holder
and it can be aligned easily, in the horizontal (y) direction, source can move freely and has
to be aligned by hand. Naturally, it brings extra uncertainty into the measurement.
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3.3 Measurements of Source Activities
Another crucial property of calibration sources which needs to be known, is the activity.

SuperNEMO demonstrator is using 42 207Bi sources for calibration of optical modules in
main walls. It is important to ensure that all the optical modules obtain roughly the same
number of calibration electrons in order to obtain homogeneous calibration quality all over
the calorimeter walls. It can be achieved by avoiding placement of the most active sources on
one side of the detector. If at least relative source activities are known, the distribution of the
calibration sources can be optimized. Furthermore, the knowledge of absolute activities can
help to define the length and frequency of the calibration sessions. Activities serve as an input
to the simulations of calibration system. In NEMO-3, 207Bi sources have been measured with
an uncertainty on activity at the level of 5%, leading to an uncertainty of 5% on the electron
reconstruction efficiency. This uncertainty was, thus dominating the uncertainty on half-life
of 2νββ . Precise measurements of calibration source activities, therefore, have potential to
reduce significantly the uncertainty of the half-life.

Such measurements are the main goal of the following section. The activity was mea-
sured in two parallel sets of measurement - relative and absolute.

3.3.1 Relative Measurements

Forty-one calibration 207Bi sources were shipped from LSM to CENBG in summer 2018
in order to perform the activity measurements. 207Bi is a complex emitter, emitting not
only electrons (key particles for calibration), but also X-rays and gammas. The activity
measurements were performed with two different Germanium detectors detecting gammas
coming from the sources. 207Bi produces two main gamma lines: 569.7 keV (branching ratio
97.8%) and 1063.7 keV (branching ratio 74.5%). The analysis in the activity measurements
was based on the analysis of these two peaks.

Let me firstly talk about relative activity measurements. They were performed by Ger-
manium detector (I will call it detector A) depicted in Figure 3.24.

Detector itself (not visible in the photo) is in the bottom part of the shielding shaft. It is a
high-purity coaxial-type Germanium detector with a 100 cm3 volume hosted at the PRISNA
platform at CENBG (Plateforme Régionale Interdisciplinaire de Spectrométrie Nucléaire en
Aquitaine). This detector was initially developped by the NEMO collaboration in the early
90’s in close collaboration with the Canberra company. The calibration source was placed
on top of the detector (i.e. at the bottom of the shaft, shown in photo) with UB side facing
the detector (Figure 3.19) in case of source with plastic and WO-SU side facing the detector
(Figure 3.20) in case of source without plastic. While the side of the source facing the
detector was strictly followed in each measurement, the horizontal alignment (UB vs. DB,
US vs. DS, etc.) was kept only approximately.

Detector was shielded, which allowed to measure very clean spectrum shown in Figure
3.25. Figure depicts two mentioned gamma lines which were of interest in both the relative
and absolute activity measurements. In the relative measurement I took advantage of only
570 keV which was fitted by Gaussian bell shape function deposited on constant background:

f1(E) =
N√
2πσ

e−
(E−E0)

2

2σ2 + c. (3.17)

Fitting parameters were E0 (peak position), σ (peak width), c (background) and N (inte-
gral of the Gaussian). Integral (N) represents the fitted value of number of events detected

73



3.3: Measurements of Source Activities

in 570 keV peak. Such value can be used for relative comparison of source activities. Ma-
jority of the radiation is undetected and one needs to perform simulation or measurement
to extract the detection efficiency in order to calibrate the detector. The calibration of the
detector to absolute activities would be, in principle, possible by measrement of detector
efficiency, however, such measurement would not provide value with uncertainty better than
5%. Detection efficiency depends on the distance between the source and detector. In my
study, there are two types of sources - with and without plastic envelope. Envelope changes
slightly the geometry of the source. This slight, few milimeter difference (as it will be shown

Figure 3.24: Image of the Germanium detector in CENBG employed for relative activity
measurements. Inner white cylinder is polyethylene shielding while the outer grey cylinder
is lead shielding.

Figure 3.25: Gamma spectrum of source number 114 as measured by detector A. Figure
depicts positions of 570 keV and 1064 keV peaks produced by 207Bi.
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in following sections) causes difference in the source-detector distance between two types
of sources. The difference can be in principle compensated, however, this was not the aim
of the relative measurement. Without performing the correction, one should not compare
results for sources with plastic envelope and for sources without the envelope.

3.3.1.1 First Phase

Relative measurements were performed for 40 sources. It consisted of two phases. In
first phase, all the sources were measured in previously discussed fashion collecting ~6 min
of statistics. The aim of the first phase was to briefly obtain list of the most active sources.
Only the most active could have been used for absolute activity measurements due to the
limited time allocated for the absolute measurements.

After the spectrum measured by detector A was fitted by function in Equation 3.17 in
the vicinity of peak 570 keV, integral (parameter N in fit) was considered as a measure
of activity. Typically, 1400 - 1600 counts were extracted in the peak. Live time of the
measurements were ranging from 330 s to 360 s. In each case, number of counts was divided
by measurement’s live time and compared. Uncertainty of fit of such short measurement was
rather high (1 - 2%), however, sufficiently low to choose the best candidates for absolute
measurements, with satisfactory precision and in minimal amount of measurement time.

In following, twenty-four the most active sources (75, 80, 81, 82, 84, 87, 88, 89, 91,
92, 93, 94, 95, 96, 111, 113, 114, 115, 116, 120, 131, 133, 135 and 138) were labelled as
"golden" sources. These sources were all measured in absolute measurement. Following ten
sources (76, 77, 78, 79, 83, 85, 86, 90, 119 and 139) were labelled as "silver" sources. At
the time of the first phase of relative measurement these sources were candidates for abso-
lute measurement. Finally, only one of them (76) was finally measured in precise absolute
measurements. Note that, this division was only first rough comparison in order to choose
sources which were later advanced for absolute measurement. Finally, there might be exam-
ples of silver sources which are more active than some of the golden sources. This is not a
problem, as the final results would be based on the relative and absolute measurements with
more precise approach presented in following sections.

3.3.1.2 Second Phase

Second phase relative measurements were simple repetition of the first phase. Never-
theless, in second phase, all the sources were measured during at least 2 h. Spectrum was
measured again by detector A and fitted by the same function in Equation 3.17 in the vicinity
of peak 570 keV, integral (N) was extracted. Naturally, much more statistics was collected.
Typically, around 30000 counts were collected in 570 keV peak and obtained fit uncertainty
around the level of 0.1%.

Results are summarized in Figure 3.26. X-axis represents count rate extracted by fit in
570 keV peak while y-axis represents integral count rate in full spectrum. Each datapoint is
labelled by the number of source. Colour of the label represents type of an source (with or
without plastic envelope). It is visible that both types of the sources are distributed rather
evenly all along the chart. This might be a hint that the difference in the source geometry
(the plastic envelope) does not play very big role in comparison at this level of precision.
Nevertheless, without proper absolute reference measurements, sources should not be com-
pared between the categories. Finally, the colour of data point represents distinction between
"golden", "silver" and the rest of the sources. All the measurement data points in the plot are
aligned close to the red linear function obtained by fit. The correlation between the count
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Figure 3.26: Plot representing correlation between count rate from full spectrum and count
rate observed in 570 keV peak in each of the measurements of second phase. Datapoints are
labelled by number of the measured source. Green label colour represents the source with
plastic envelope while blue label represents source without plastic envelope. Colour of the
datapoint represents distinction of the source based on the activity introduced in phase one
of relative measurements. Yellow colour represents "golden" source, grey colour "silver"
source and black colour all the other sources.

rate in full spectrum and in the 570 keV is strong which is due to stable ratio between two
measured values. This is a sign of good source quality, that the sources are not contaminated
by other gamma emitting isotopes.

Figure 3.26 represents measurements of 40 sources in CENBG. Another three extra
source measurements (numbers 123, 132 and 138) were performed in LSM. Sources 84 and
138 were measured as reference sources. All the results from measurements can be found
in Tables A.5, A.6, A.7 and A.8 in Appendix A. Based on the relative activity measurement
results, we can conclude that the difference of activities of the least and most active sources
should not be larger than 15%.

3.3.1.3 Distribution of Calibration Sources in SuperNEMO Detector

With help of the source mapping studies and relative activity measurements presented in
the chapter, it was finally possible to decide which 42 the best calibration sources are eligible
for calibration of SuperNEMO calorimeter. The sources will be distributed in six columns
in gaps between Selenium foils. Each column contains seven sources.

Their approximate positions are shown in Figure 3.27 obtained from simulations of
tracker hit rate caused by calibration sources. Each position is denoted by its column and
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Figure 3.27: Approximate scheme of positions of calibration sources. Vertical spacing be-
tween two sources is 42.5 cm. Note that, the sources are in reality lying exactly in the gaps
between selenium foils. The slight mismatch in figure is caused by the fact, that the scheme
was generated in simulation of the decays of 207Bi and reconstructed by tracker. Therefore,
the positions are influenced by precision of the tracking and also binning of the plot. Figure
prepared by Carla Macolino.

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
Row 7 83 88 86 75 77 120
Row 6 111 76 95 78 91 132
Row 5 73 82 135 87 139 114
Row 4 133 112 84 113 81 137
Row 3 123 80 131 93 119 116
Row 2 115 134 89 74 92 136
Row 1 79 94 85 96 90 138

Table 3.7: Final distribution of calibration sources into 42 positions. The position of viewer
in scheme is on the Italian side with respect to the calibration sources. Figure takes advan-
tage of similar colour coding to the one in Figure 3.26. Green font colour represents sources
which were measured with plastic envelope while blue represents sources measured with-
out plastic envelope. Yellow cell colour represents all the "golden" sources. Cell with no
background colour are the "silver" sources and the rest.

row. Columns are numbered from 1 to 6. If we look from the Italian side of the lab per-
pendicularly at the Selenium foils (having Italian-side tracker between us and sources), the
Column 1 is on the left and Column 6 on the right. Rows are numbered from 1 to 7 with
Row 1 at the bottom and Row 7 on the top.

Sources were distributed in 42 positions based on the results of relative activity measure-
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ments. The final distribution of the sources is showed in Table 3.7. Both the "golden" sources
which were measured with plastic envelope (green font, yellow cell colour, Tables A.5 and
A.6) and "golden" sources which were measured without plastic envelope (blue font, yellow
cell colour, Table A.7) are independently distributed evenly in order to achieve electron ex-
posure as homogeneous as possible. Note that, before installation of sources, all the plastic
envelopes were removed from the sources which had them. After plastic envelopes were
removed, positions in Figure 3.19 were no longer relevant for those sources. These positions
corresponds to the ones in Figure 3.20 according to following key: UB→ WO-SU, DB→
WO-SD, US → WO-DU and DS → WO-DD. All 42 sources were, after plastic envelope
removal installed in WO-DU position facing the Italian side of the lab. Downwards direc-
tion was defined with the direction of gravity. Sources were installed into new envelopes
developed specifically for SuperNEMO.

3.3.2 Absolute Measurements
All "golden" sources and "silver" source number 76 (together 25 sources) were measured

with detector depicted in Figure 3.28. I call it detector B. It is a coaxial Germanium detector.
It was chosen for absolute activity measurements because its detection efficiency (at 15 cm)
is known within 0.2% systematic uncertainty [98].

It was impossible to measure all of them due to limited time before the sources had to be
shipped from CENBG to LSM for installation.

Detector B was used for all the measurements of absolute activities. Source was placed
in front of the detector in a movable holder as seen in the figure.

3.3.2.1 Measurements of Source Depths

It was possible to set the distance between the holder and the detector with precision of
0.01 mm. In order to compute detection efficiencies (in our case it was done by simulation)
one needs to know the distance (source-detector) with high precision.

Figure 3.29 represents detailed scheme of cross-sections of two types of the sources (with
and without plastic envelope. Red dashed line is a reference line to which sampler holder

Figure 3.28: Photos of measurement of absolute source activities with detector B. The source
was attached to a vertical holder. It was possible to move the holder closer and further from
the detector and adapt the source-detector distance (blue arrows) with a precision of 0.01
mm.
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Figure 3.29: Schematic close-up cross section of source holder (grey) with source. There
were two different sample holders for both types of calibration sources. Orange rectangles
represent cross-section of source frame while blue line the mylar foil. Red dashed line rep-
resents an alignment level which was marking the position of source in horizontal direction.
The sample holder for source w/ plastic envelope had deeper nest for source placement re-
sulting in difference in offset (green arrows) with respect to red alignment level.

Figure 3.30: Rotated schematic cross section of calibration sources (Left) from Figure 3.29.
In the scheme, the sample holders are now omitted. Red arrows depict four source depths
which were measured in multiple measurements. Each photo marks the name of the side
(WO-DU, WO-SU, US and UB). Right side of the figure shows scheme of the measurement
setup of the depths (not to scale) performed by Vernier calliper.
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(grey U-shaped object in scheme) was aligned. The presence of plastic envelope in case b)
causes the offset of mylar (blue line) to reference line (red dashed line) marked by green
arrows to be different to case a) without plastic envelope. The difference in these offsets
causes difference in distances source-detector. It was necessary to measure the difference
with sufficient precision in order to correct the position of the sample holder for two different
cases.

Figure 3.30 shows schemes similar to the right side of Figure 3.29. For both types of
sources (w/o and w/) the cross section of the calibration source through its thickness is shown
in schematic way. The photos on top and bottom represents the name of the side of the
calibration source. Red arrows are measured source "depths" whose difference result in the
offset in distance source-detector explained in the Figure 3.29. Specifically, it is a difference
between the depth of WO-DU and US causing the difference, as these were the sides of
the calibration sources facing the detector in all absolute measurements. Even though, only
WO-DU and US are relevant for the activity measurements, depths of sides WO-SU and UB
were also measured in order to obtain full specification of the source dimensions. The depths
were measured by depth probe of Vernier calliper as it is symbolised in the right side of the
Figure 3.30. Each side was measured in ten repeated measurements in order to decrease
measurement uncertainties. This gives 20 measurements per source and with 40 available
sources it makes 800 measurements all together. Results can be found in Table 3.8.

Side d [mm] ∆∆∆d [mm]
WO-DU 0.633 0.068
WO-SU 0.603 0.054

US 1.796 0.078
UB 1.275 0.063

Table 3.8: Results of measured source depths with their estimated uncertainties.

Results for depths of sides WO-DU and WO-SU are based on 140 measurements each
(14 sources without plastic envelope) while depths of sides US and UB are each based on
260 measurements (26 sources with plastic envelope). The difference between the depth of
US and WO-DU is 1.769 mm - 0.633 mm = 1.163 mm. Looking back to Figure 3.29 we
can state, that in case of the activity measurement of source without plastic envelope holder
should be measured 1.163 mm further away from detector in order to compensate for the
offset.

3.3.2.2 Activity Measurements and Analysis

Measurements of the sources with detector B were always performed at source-detector
distance of 75 mm. This distance, finally, after the offset correction was applied, always
represented the distance of mylar surface (where the droplet of 207Bi source is deposited)
and the detector. Example of spectrum from measurement of source No. 114 can be seen in
Figure 3.31.

Spectrum consists of many peaks originating in the natural background because in this
case, the detector was not shielded. Figure also shows (in red) two ROIs containing 570 keV
and 1064 keV peaks originating in the measured source. Second ROI contains only 1064
keV peak, therefore it was possible to fit it with a function in Equation 3.17. In case of 570
keV peak, ROI contains another two close peaks. It was, therefore fitted with sum of three

80



3.3: Measurements of Source Activities

Figure 3.31: Spectrum of source number 114 as measured by detector B. Two red stripes
mark the ROI used in the analyses of absolute source activities. Except for the peaks of
interest (570 keV and 1064 keV) the spectrum contains many other peaks originating in
natural background radiation because the detector was not shielded.

Gaussians on top of linear background:

f3(E) =
3

∑
i=1

Ni√
2πσi

e
−

(E−Ei
0)

2

2σ2
i +aE +b. (3.18)

Ei
0 stand for the peak positions, σi for their widths and parameters Ni represent each

peak’s integral. Parameters a and b describe background. Parameter N1 was of my interest
as it was representing the integral of counts in 570 keV peak. Performance of the fit can
be seen in Figure 3.32. Blue histogram (width of 1 keV) represents measured data in the
zoomed region while red curve represents triple Gaussian fit.

After the integral in both the 570 keV (denoted N570) and 1064 keV (denoted N1064) was
extracted, the activity can be computed using following equation:

A =
N

tliveεr
(3.19)

N stands for the integral in peak of interest (for 570 keV, N = N570 and for 1064 keV, N
= N1064). This number should be divided by live time of measurement tlive and corrected for
detection efficiency ε and branching ratio r. Both detection efficiency and branching ratio
are individual for each peak. Their values which were used in the computation of activities
can be found in Table 3.9.

Table displays also the absolute uncertainties of branching ratios and detection efficien-
cies. The live time and number of counts in integral was, naturally, source specific. The
uncertainty of live time is negligible and statistical uncertainty of integral (∆N) was obtained
after fit was performed. Uncertainties, as well as the peak counts, are included in Tables A.9
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3.3: Measurements of Source Activities

Figure 3.32: Zoom of the ROI in the vicinity of 570 keV from spectrum in Figure 3.31.
Blue curve represents measured data and red curve the peak with triple Gaussian given by
Equation 3.18.

and A.10 for my analysis and in Tables A.11 and A.12 for my colleague’s analysis (discussed
in following text). All the mentioned tables can be found in Appendix A.

The relative uncertainty of activity ∆A/A was obtained by formula:

∆A
A

=

√(
∆N
N

)2
+
(

∆r
r

)2
+
(

∆ε

ε

)2
(3.20)

For each source, two values of activity was obtained. Naturally, these two values should
give the same results as they describe the same source.

Figure 3.33 includes comparison of results for all 25 sources measured for absolute ac-
tivities. Results of values obtained by analysis of 1064 keV have roughly two times larger
relative uncertainty. It is caused by difference in relative uncertainty of detection efficiency.
While in case of 570 keV ∆ε/ε ≈ 0.1 % for 1064 keV it reaches almost seven times higher
value of 0.67%! In the figure one can also notice a discrepancy on a level of three sigma
between the activities obtained by two different peaks.

EEEγγγ r ∆∆∆rrr εεε ∆∆∆εεε

[keV] [1] [1] [1] [1]
570 0.9776 0.0003 0.0102 0.000011

1064 0.7458 0.0049 0.006739 0.000045

Table 3.9: Values of branching ratios (from [99]) and detection efficiencies (from simula-
tions) with their uncertainties used in the analysis of absolute activities.
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3.3: Measurements of Source Activities

Figure 3.33: Comparison of absolute activities obtained in my analysis from two different
peaks.

3.3.2.3 Discrepancy Between Results

Previous analysis of source activities offered two different value extracted from two dif-
ferent peaks. There are two possibilities how to approach such a situation. First of all it
is possible to state that within 5% precision the values do agree if this kind of precision is
sufficient for our needs. Nevertheless, the aim of the study is to obtain relative uncertainties
approaching 1%.

Therefore, it is important to search for the refinement of the values used in analysis.
If we look at the Equation 3.19, we can find three experiment-dependent quantities in the
formula. Live time of the measurement, is known effectively with perfect precision. Other
two - number of counts in the peak (N) and detection efficiency (ε) can contribute to the
discrepancy. Let me discuss them in more detail.

Number of counts (integral) extracted from the peak depend on the analysis method. In
order to investigate possible mistakes arising from fitting and extraction of number of counts,
my colleague Frédéric Perrot set up an independent analysis method for extraction of peak
counts in both the peaks 570 keV and 1064 keV. After he obtained number of counts (N)
the activity was calculated using the same equation, i.e. Equation 3.19. He also used same
value of detection efficiencies and branching ratios from Table 3.9. To put it into nutshell,
our analyses analysed independently both peaks, differing only in the method of extraction
of peak’s integral. Figures 3.34 display the ratio (M/F) of my absolute activity values (M)
divided by the ones obtained by Frédéric (F). In top part of the figure, comparative ratio
is plotted for 570 keV peak while bottom shows the ratio for 1064 keV. Both analyses are
producing consistent results well within the error. In other words, the analysis of Frédéric
confirmed the discrepancy between two peaks observed in Figure 3.33. The agreement be-
tween our two methods have also shown that the explanation for discrepancy does not lie in
the method of extraction of peak integrals but rather in the detection efficiency.

In the time scale of this thesis the investigations of detection efficiency values have

83



3.3: Measurements of Source Activities

Figure 3.34: Comparisons of results of two independent analyses performed by me and
Frédéric. BOth plots show ratio between absolute activity obtained by my method divided
by same number obtained by Frédéric’s method. Top plot (blue points) shows comparison
for peak 570 keV, bottom plot shows comparison of 1064 keV peak. Within the uncertainties,
the methods are fully consistent.

started, however, the results are expected to be obtained after its finalisation. The issue is
investigated by our colleague in CENBG, Bertram Blank, who kindly provided the Detector
B which was already well calibrated for 15 cm. However, the distance source-detector we
used in our measurements was 7.5 cm in order to obtain larger statistics in shorter time. For
this distance, the detector is not so well calibrated and, therefore, the discrepancy occurred.
The detection efficiency for 7.5 cm will be obtained by measurement of source 60Co with
known activity. This isotope has two lines which are very close to the energies of gammas
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we used in our analyses.
Absolute activities were calculated and within 5% uncertainty the results obtained from

two peaks are consistent. However, the study is under investigation. Relative uncertainty of
activities expected to be reached after it will be finished is 1%.

3.4 Conclusions

In the chapter, two studies of 207Bi calibration sources were performed. In the first one,
the source deposition quality within a source frame was studied. Study was performed by
three Silicon Timepix detectors provided by IEAP CTU in Prague. Calibration, test measure-
ments, and the final measurements were performed at the end of 2017. Analysis software
was written and results were obtained at the beginning of 2018. Results have shown that
no source sample had the 207Bi deposited outside of the mylar foil, on the Copper frame.
Five measured sources had the droplet deposited more than one milimeter away from cen-
ter. When it comes to deposition quality, I conclude, that all the sources were proved to be
eligible for calibration, however, the differences in quality were observed within one mil-
limeter. Database of al the results and statistics can be found in Appendix A. Currently an
article about the measurements is finished and will be submitted soon for a publication, after
it would be approved by collaboration [97].

In the second study, source activities were measured. The uncertainty of activity value
is the main contributor to the final uncertainty of 2νββ half-life. Study was separated in
two measurements with two different Germanium gamma detectors, which I called A and
B. With detector A in CENBG, 40 sources were measured during 2 hours each, and relative
activities were obtained. Another two sources were measured in LSM with similar method.
The measurements played a key role for the source installation in the detector. Based on
the study, the sources were distributed in order to reach the best homogeneity of exposure
from sources all around the calorimeters from main wall. With detector B, provided by my
colleague Bertram Blank, measurements of absolute activities were performed in CENBG.
Only 25 sources could be measured in these precise measurement, due to limited time the
sources could stay in CENBG. The statistics during at least one day was collected for each
source. Calculated activities of the sources were ranging from 125 Bq and 145 Bq. The
analysis was based on the counts obtained by fit from 570 keV and 1064 keV peaks. For
each source, calculated activity extracted from 1064 keV was typically smaller than the one
obtained from 570 keV peak. This is a discrepancy which has to be accounted for, in order
to reach 1% total uncertainty in the measurement. Independent method of study of my
colleague Frédéric Perrot has shown the same behaviour, therefore, we can conclude, that
the difference is not introduced in the analysis. The discrepancy arises from the detector
calibration. The detection efficiency of the detector is known within uncertainty, on the
level of 0.2% at the source-detector distance of 15 cm. However, the measurements were
performed in a distance of 7.5 cm. After the detector efficiency for 7.5 cm will be extracted
from measurements with 60Co, the uncertainties of the absolute activities could be reported
within the 1% uncertainty. This is a work beyond the scope of the thesis.
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Chapter 4
Vertex Reconstruction Precision Studies

SuperNEMO has a very unique position in the field of double beta decay experiments.
Information about particle tracks open a vast range of possibilities to test new physics. The
real angular distribution at the moment of decay ("decay angle") is not measurable directly.
Angle reconstructed by tracking algorithms is the one between the electrons at the moment
when they leave the source foil ("escape angle"). Electrons in the source foil are scattered
causing the differences between the decay and the escape angles. In order to probe their
relationship, simulations are needed. The differences between the angles are studied and
explained in Section 4.4.

Figure 4.1: Left: Distribution of escape angles θ from 2νββ of 100Mo. Figure compares
data measured by NEMO-3 experiment (phase 2) with expected distribution obtained from
simulation. Right: Ratio of real data to simulation obtained from the figure on the left.
Green horizontal line marks value of 1, i.e. agreement of simulation with measurement.
Both figures are plotted as a function of cos(θ ).
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Experience with NEMO-3 experiment have shown the discrepancy between expected
distributions of escape angle obtained from simulation and the real data. It is depicted in
Figure 4.1. The difference reaches as high as ±10%. Moreover, in the case of antiparal-
lel electrons the discrepancy can grow up to 40%. The difference might come from many
possible sources. One of the possible explanations might lie in the performance of simu-
lation. Code for calculation of electron scattering might need some improvements to reach
sufficient precision. It is also possible, that the discrepancy is caused by poor performance
of tracking algorithm in some particular event cases. These events can be identified and re-
moved from dataset in order to improve the precision. Last, and the most exciting option is,
that the discrepancy comes from unknown physical phenomenon. Nevertheless, before one
could consider the last option, it is necessary to eliminate the other two (or any other possible
explanation).

Studies of the discrepancies in NEMO-3 have shown no convincing signature of new
physics. SuperNEMO will have opportunity to study the discrepancy in deeper detail. It will
take advantage from much larger exposure as well as some other improved experimental
parameters. On top of that, SuperNEMO’s geometry is planar and, therefore, simpler. New
geometry requires a new evaluation of the tracking precision.

The goal of presented chapter is to gain a first insight into the sources of imprecisions in
the double beta decay vertex reconstruction. Vertex reconstruction precision (or just vertex
precision) is used as a measure of performance of the tracking algorithm. Aim is to study
the factors influencing the vertex precision, in order to provide guidelines which could help
later in data analysis to improve precision of the angular distributions.

4.1 Description of Used Software Tools

4.1.1 Falaise
For the purpose of simulations, SuperNEMO software group, based in Caen, developed

software package called Falaise. It is based on Geant4 software tool [100, 101, 102]. Falaise
contains information about all parts of the demonstrator. Except for detailed geometrical
models of source foils, tracking detector and calorimeter walls, all the important informa-
tion about composition, physical properties are included. Based on ongoing performance
measurements, these models are permanently improved and developed.

However, Falaise is more than only a tool for simulations. It also includes subpackages
which will be later applied for data processing after the data taking will start. This is the
reason why simulation with Falaise works in several steps:

1. Application flsimulate - This application provides the link to Geant4. It serves for
the simulation of raw physical data. In Falaise, data are stored in so-called "data
banks". Flsimulate fills data into SD (Simulated Data) bank containing information
about particles (charge, mass, kinetic energy, etc.) and vertices. The data in SD bank
is the real physical data as if it was measured by ideal devices. Flsimulate has many
different useful parameters which can be adjusted. It offers broad range of processes
which can be simulated. Except for 2νββ and 0νββ of 82Se or 150Nd it provides a
choice of broad palette of background processes which can mimic double beta-decay,
such as decay of 214Bi or 208Tl and many more. Moreover, number of simulated events
can be chosen, as well as the position of the initial vertex, in form of geometrical
address called GID (Geometry Identifier). GID is number storing information about
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different parts of demonstrator geometry. For example GID = 1102 stands for source
strip or GID = 1302 stands for main calorimeter wall, etc. Output of flsimulate is
stored in file with extension .brio.

2. Application flreconstruct - As mentioned above, data from SD bank produced by
flsimulate are raw data without inclusion of device imperfections. The data recon-
struction as seen by real demonstrator is task for another application - flreconstruct.
Brio file produced by flsimulate is taken as an input for flreconstruct. Flreconstruct
contains information about the detector, e.g. resolution of optical modules. It also
provides data analysis tools. One of them is CAT (cellular automaton tracker) which
will be the central object of my studies in following sections. CAT is responsible for
reconstruction of particle trajectories. The data from flreconstruct are gathered in CD
(calibrated data) and PTD (particle track data) banks. CD bank contains data from
SD bank after mock calibration with experimental uncertainties. PTD bank collects
particle tracking points grouped into particle tracks as reconstructed by CAT. It also
contains information about reconstructed position of foil or calorimetric vertices and
connects them with individual reconstructed particle tracks. Similarly to flsimulate,
flreconstruct offers output file with .brio extension. Except for aforementioned CD
and PTD banks, this file also contains SD bank produced by flsimulate, which means,
that it can be also used as an input for another run of flreconstruct. Flreconstruct re-
quires so-called pipeline as an input. Further information about pipelines is given in
text below.

3. Pipeline - Pipeline is a piece of special code which is calling reconstruction module
required by flreconstruct. Some of these modules are already pre-coded in Falaise but
they can be also written by user. They can be used for all types of data processing,
but also only for a trivial application, such as a data printing on the screen. Name
pipelines was given to this concept thanks to the way how they process the data. More
pipelines can be chained into bigger pipelines to reach modularity of data processing.
Each event is then processed by such chains of pipelines one by one.

4. Application flvisualize - It is capable to visualize .brio files into 2D and 3D images.
Whole statistics can be browsed event by event and all event data from available data
banks are displayed. Flvisualize is application which does not have to be necessarily
used in the process of data analysis. Nevertheless, it is very useful for development of
applications, e.g. to study special event cases which might not be taken into account
otherwise. Example of output from flvisualize can be seen in Figure 4.2.

4.1.2 MiModule
Modules in Falaise can have a wide range of applications. In majority of the cases, they

are used for the direct data analysis of the simulated samples in .brio files. However, .brio
files produced by flsimulate or flreconstruct might be relatively bulky. They store all the
generated information about the events in the sample including all the data banks and visu-
alisation properties. For a specialized application, only a small fraction of the information
might be necessary. The purpose of a module for Falaise, which I developed, is to store only
the most necessary data into a form of .root files1. Depending on the simulated sample, this

1File extension .root is a data format provided by software package ROOT developed in CERN [103]. It is
a powerful tool for data analysis.
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approach produced up to more than 100 times smaller .root files. It allowed me to simulate
100 times bigger samples using the same storage capacity. Naturally, it came at the expense
of versatility of such data. Nevertheless, I designed several versions of the module tailored
specifically for the needs of performed study. Another disadvantage of the approach is a loss
of possibility to visualize the events. However, the studies I have performed, had a char-
acter of statistical evaluation of simulated events. For this application, it was sufficient to
test the performance of developed code on a small simulated and reconstructed sample with
.brio files kept. The visualisation was used to tune the performance of the code. Afterwards,
when the code was well tested, large samples of events were simulated and transferred using
MiModule into .root files. Brio files keeping the visualisation data were not needed anymore
and therefore deleted.

Let me now describe the module. It is composed of several classes labelled with prefix
"Mi" which are able to store and handle the data. The main class "MiModule" is called by
pipeline. It stores each event as an object of class MiEvent which stores SD, CD and PTD
bank in form of pointers to instances of classes "MiSD", "MiCD" and "MiPTD" written by
me. These classes are containing different data about event and have methods to operate with
them. Even though, there was broad range of simulated and reconstructed data available, I
stored only the most necessary data in each bank. For example, in the case of the vertex pre-
cision study, only the reconstructed vertex position, energy, particle angles, etc., are relevant.
The purpose of MiModule is not only to transfer data files from one type to another. It has
several classes and methods which were capable to decide whether the event is relevant for
the study or not. For example, MiFilters is a class containing basic requirements on double
beta like event (the requirements will be discussed later in the chapter). As an input, the class
obtains object of class MiEvent and the output is a boolean logical variable which is true if
the event passed all the inner filters incorporated in MiFilters class.

The .root files generated by MiModule I use as a source of data for all standalone appli-
cations performing the data analysis.

4.1.2.1 Class MiFilters

It is impossible to describe here all the classes of MiModule, however, class MiFilters
plays a very important role in all of my studies, therefore, it is worth dedicating a section to
the class.

MiFilters, as the name suggests, is responsible for event filtration. A .root file generated
by MiModule contains a sample of raw events of any process. Falaise is able to generate
(e.g. 2νββ , 2νββ or background processes such as decay of 208Tl or 214Bi and many more).
They are written in the file in form of objects of class MiEvent which keeps all the relevant
information about the event. The amount of information stored in the object depends on the
version of MiModule in use. Object of class MiFilters is given a pointer to an object of class
MiEvent and it returns boolean value true if the event passes all the criteria incorporated in
the MiFilter’s class and false otherwise.

What is the criteria event has to pass? In a large spectrum of studies performed with
Falaise one is uniquely interested in the events which can be considered as candidates for
2νββ or 0νββ . Unwanted events are those, which do not resemble the topology and char-
acteristics of 2νββ (0νββ ). In this process, two electrons are emitted, which implies that
two tracks and two calorimeter hits are expected to be seen by detector. In case, when, for
example, only one track is seen, there is no guarantee that it comes from 2νββ (or 0νββ ).
Regardless of whether it is caused by imperfection in detection technique or other influence,
these events have to be filtered out. In each of my analyses in the thesis, I used following
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Figure 4.2: Example of output from application flvisualize. Both figures represent top view
of SuperNEMO demonstrator. Figure on top represents example of rejected event which did
not pass SDBDRC. Event though, it contains two reconstructed tracks, one of them is not
associated to a calorimeter. Moreover, there is only one calorimeter hit. The event violates
conditions A) and B). In contrary, lower figure represents example of event passing all of the
conditions, thus it is accepted.

conditions to filter the events:

A) Exactly two calorimeter hits - Event has exactly two vertices (two signals) in two
different optical modules.

B) Exactly two associated calorimeter hits2 - Event has exactly two vertices in two

2Note that, the condition A) seems to be redundant because it imposes a looser condition on a event. In fact,
both are important because if we had only condition B), for example even the events with three calorimeter hits,
two of which are associated with particle track and one unassociated, would be accepted. Analogous situation
arises in case of condition D) in relation to condition E).
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different optical modules which are associated to two different particle tracks. Note
that, gamma particles are able to trigger calorimeter blocks, but they do not leave out
track in the tracker. That is the reason why only simple condition A) is not sufficient.

C) Exactly two foil vertices - In a real situation, naturally, double beta-decay has unique
vertex in the source foil. After reconstruction of electron tracks, foil vertices do not
overlap due to imprecisions of tracking and experimental uncertainties. This is the
reason why exactly two foil vertices, instead of one, are required.

D) Exactly two reconstructed particles - In double beta-decay, we expect to see two
electrons. In case when more or less particles would be reconstructed, it cannot be
guaranteed that the observed process is double beta-decay.

E) Exactly two negatively charged particles - Electrons are negatively charged. The
event is considered only in case if two reconstructed particles are negatively charged.

The list of the requirements could be extended based on various other (more or less)
complicated criteria. The presented ones are basic standard and for the sake of simplicity I
will call them Standard Double Beta Decay Reconstruction Criteria (SDBDRC). MiFilters
adds one more condition to be passed - the energy range. Event passes this condition if
sum of both measured electron energies are within the user defined range. The maximum
and the minimum of the energy range is passed in form of two variables of type double
to object of class MiFilters when the constructor of the object is called. The energy cut is
not necessarily a strict criterion distinguishing between double beta event and backgrounds,
nevertheless, it can be helpful to distinguish 2νββ from 0νββ . Moreover, by inclusion of
this condition, MiFilters acquires a tool for testing different energy cuts. Only in the case
when event meets all these requirements, object MiFilters returns true value. In Figure 4.2
one can see examples of events rejected and accepted by MiFilters.

As I already mentioned, presented conditions are not only a natural requirements im-
posed on double beta event, it also serves as a source of background elimination. This can
be seen from the results of simulations for four different processes in demonstrator: 0νββ ,
2νββ , decay of 208Tl and decay of 214Bi. The last three are background processes able to
mimic 0νββ . Table 4.1 shows ratios of events passing the above conditions for different
types of processes.

Process
Event acceptance
[%]

Event acceptance
(E > 2 MeV) [%]

0νββ ∼ 27.8 ∼ 27.0

2νββ ∼ 10.4 ∼ 0.3
208Tl ∼ 0.12 ∼ 0.04
214Bi ∼ 0.16 ∼ 0.012

Table 4.1: Event acceptances (or also detection efficiencies) for chosen processes simulated
using Falaise. Acceptance is simple ratio (expressed in %) of accepted events after filtration
using conditions explained in this section. Third column shows results for same filtration
technique with extra condition (sum of the electron energies is more than 2 MeV).
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Background events are more likely to be eliminated by aforementioned conditions than
0νββ . Moreover, by imposing a condition on the sum of the energy of electrons, we can
eliminate also 2νββ by factor of more than 30. This, of course, arises from the shape of
double beta-decay spectrum (see Fig. 1.6).

Class MiFilters was employed in majority of the studies presented in the thesis. When-
ever I discuss filtration of the events based on double beta event criteria listed in the section
or energy cuts, it was performed by class MiFilters.

4.2 Definition of Vertex Precision Quantities
Imagine, that we have a simulated event of any process (double beta decay or back-

ground) which passed SDBDRC. The event has two electron tracks reconstructed by CAT.
However, these two tracks have also two distinct vertices V1 and V2 on the source foil.

The situation can be understood from Figure 4.3 - Right. Here, two reconstructed ver-
tices V1 = (x1,y1,z1) and V2 = (x2,y2,z2) are displaced from the real physical vertex Vr.
The existence of two vertices (instead of one) is a result of experimental uncertainties in the
measurement. However, the displacement of these two vertices relatively to the real one is
caused also by an electron scattering inside of the source foil. Figure 4.21 represents simu-
lated tracks of two electrons inside of the source foil as seen in simulation. The scattering
influences not only the position of the electron when exiting the foil, it can dramatically
change the side of the foil, where the electron exits. These effects can be studied only by
simulations.

Figure 4.4 depicts the situation from Figure 4.3 seen from the side view. The rectangular
area delimited by the vertices can be understood as a measure of imprecision in the vertex
reconstruction. Therefore, its sides (|∆y| and |∆z|) can be considered as individual measures

Figure 4.3: Left: Example of simulated 2νββ of 82Se event which fulfils SDBDRC. Figure
represents top view with source foil in the center and main calorimeter walls on the left and
right. Right: Same event with zoom to the vertex. Figure depicts both reconstructed electron
tracks (e1 and e2) in red, resulting in two different foil vertices V1 and V2. Third point, Vr
represents real physical vertex not accessible in measurement.
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Figure 4.4: Side view on the situation from Figure 4.3. Two electron tracks are exiting the
foil perpendicularly to the plane of view. Two red crosses are representing two reconstructed
vertices V1 and V2. Together they delimit a rectangular area with sides |∆y| and |∆z| which
will be the key quantities in the studies in this chapter. Vr represents position of real simu-
lated vertex.

of the imprecision of vertex reconstruction in both directions parallel to the source foil. I
will call them vertex residuals and they are defined in following way:

∆y = y1− y2, ∆z = z1− z2. (4.1)

Note that, there is no absolute value in the definition of residuals, so they might hold
positive as well as negative values. However, this peculiarity causes the distribution of the
residuals in given event sample to be symmetric around the zero, rather than being defined
only for positive values. The labelling, whether vertex has number one or two is decided
based on the arrival time of the electron to the calorimeter. It explains why electrons with
higher energies tend to be labelled by number one more often than the ones with lower
energies. This effect can be observed in Figure 4.10. Residual in x-direction could be defined
in the similar way as ∆y and ∆z (∆x = x1−x2) but this quantity is not of the interest in the
study as both vertices are always lying inside of the source foil. Source foil is only few
hundreds of µm thick and the residual in the x direction is, therefore, always negligible.

4.2.1 Vertex Reconstruction Efficiency
In Figure 4.4 one can observe that, even though, the vertex uncertainty rectangle gives an

idea of vertex reconstruction imprecision, it still does not guarantee that the physical vertex
Vr would be lying inside of the rectangle. Therefore, it is important to conclude that the
vertex residuals are representing mainly the reconstruction mismatch rather than how well it
describes the real physical vertex.

In order to describe the rate, at which the real vertex is reconstructed properly within
the uncertainty, I defined quantity which I named "Vertex reconstruction efficiency" or just
"Vertex efficiency". The quantity is defined as a fraction of events in studied sample for
which the projection of real vertex into yz plane is contained within the uncertainty rectangle
given by absolute value of vertex residuals |∆y| and |∆z|. The quantity is, however, not
measurable.

In following, let us have a look at all the quantities of the interest which can be used to
study vertex reconstruction precision.
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4.2.2 RMS Precision
Analysis of vertex precision can be performed only when two foil vertices belonging to

two tracks are reconstructed. This underlines the importance of already very useful SDB-
DRC. Possesion of a large sample of events which passed SDBDRC opens a possibility to
study vertex residuals statistically. For each event, one can calculate pair of residuals ∆y and
∆z and represent them in the histograms as it can be seen in the Figure 4.5.

While the distribution of ∆z residual resembles Gaussian shape, the distribution of ∆y
seems to be more pointy, with sharply falling tails. The discussion about a proper description
of the shape is presented in following section.

Distributions for both vertex residuals are distributed symmetrically around the zero
value. These values represent events when vertices were perfectly matched in the given
direction (not necessarily in the other direction). As we are moving further from the center
of the horizontal axis, the histogram represents events with continuously higher mismatch

Figure 4.5: Vertex residuals extracted from 4×107 simulated events of 2νββ of 82Se.
The sample represents all the events which passed SDBDRC and energy of each indi-
vidual electron was in the range from 0 keV to 500 keV. While upper row represents
histogram of ∆y residuals in the sample in two regions (-200 mm < ∆y < 200 mm and
-80 mm < ∆y < 80 mm), lower figures represent a histogram of the ∆z residuals for the same
sample in the same limits.
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Figure 4.6: ∆y and ∆z differences extracted from electron positions exactly in the moment
when they exited source foil. Plots are extracted from the same data as residuals in Figure
4.5. Note that, these ∆y and ∆z differences should not be mistaken for the vertex residuals
which are defined inside of the foil, not on the surface. Left: Distribution of ∆y differences.
Right: Distribution of ∆z differences.

between the vertices in given direction. Therefore, wide distribution represents statistically
higher rate of mismatched vertices than in the case when the distribution is narrower (given
the same height). In ideal experiment, with no uncertainties in the particle tracking, one
would expect delta function shape placed exactly in zero. This is, however, not completely
true. It was already mentioned, that the vertex precision is spoiled by experimental uncer-
tainties as well as the effect of electron scattering inside of the Selenium source foil (depicted
in the Figure 4.21). In Figure 4.6 one can observe the effect on vertex mismatch caused by
the electron scattering inside of the source foil. Plot represents distribution of ∆y and ∆z
differences between electron positions exactly in the moment when they reach the surface
of the source foil, i.e. in the moment when they exit from the foil. Obtained values of posi-
tions are not influenced at all by the experimental uncertainties, as they were extracted from
the database of simulated tracks (SD bank in Falaise) before reconstruction. Therefore, the
figure represents uniquely the influence of the scattering. While basically all the samples of
∆y and ∆z differences on the exit from the foil are contained well within the 2 mm range
(-1 mm, 1 mm), the width of distribution of reconstructed vertex residuals goes well beyond
reaching widths of tens of mm. We can state, that the scattering effect has some, but neg-
ligible effect on the vertex reconstruction precision. Note that, the distributions of ∆y and
∆z on exit from the foil have the same distributions in both directions. This should not be
surprising, because the distribution is driven by a physical effect isotropic in both directions
parallel to the source foil. Nevertheless, this is not true for the final reconstructed vertex
residuals. The reconstruction generally works more precisely in y direction. Hints of this
difference can be already observed in Figure 4.5 but will be clearly visible in the presented
data in following sections.

We can conclude, that the width of the distribution of vertex residuals can serve as a
measure of the vertex reconstruction precision. There are several possibilities how to express
the width numerically. First one, which I used to analyse simulated samples is a standard
deviation. It was already discussed that the center of the distribution of vertex residuals is
expected to be in zero, i.e. ∆y = 0 and ∆z = 0. Taking this fact into account, the standard
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deviation formula is simplified into form:

RMSy =

√√√√ Ny

∑
i=1

(∆y)2

Ny
, RMSz =

√√√√ Nz

∑
i=1

(∆z)2

Nz
. (4.2)

Standard deviation became simple RMS. While vertex residuals ∆y and ∆z represent
vertex precision of an event, the RMSy and RMSz represent the precision of the whole chosen
sample. Therefore, it represents the overall performance of the reconstruction algorithm and
the tracker itself under given conditions (for example: different decays, electron energies,
emission angles and many more). These quantities, I will refer to as RMS precision in y or
z direction.

In two histograms on the left side of Figure 4.5, we can observe that RMSy = 32.29 mm
and RMSz = 38.82 mm. However, the histograms on the right side of the figure show differ-
ent values: RMSy = 23.17 mm and RMSy = 28.04 mm. These two plots represent exactly
the same datasets, only in the narrower range. RMS value is very sensitive to values in the
tail. It changed significantly, even though, I omitted only negligible amount of the entries in
the histogram. This is a subjective element of the method which should be avoided. There-
fore, the RMS precision in this thesis is understood as a value obtained when the distribution
of the vertex residuals is limited to following interval: -200 mm < ∆y,∆z < 200 mm. This
convention opens a possibility to discuss the precisions of different samples in relative sense.
As a demonstration, we can conclude that the precision in z-direction is less precise than in
y-direction as it was already mentioned above. Nevertheless, it would be somehow irrespon-
sible to try to interpret these values as the absolute measures of precision. In order to obtain
such quantity I introduced another, complementary method presented in next section.

4.2.3 FWHM Precision
Second method used in the thesis, used for evaluation of precision of vertex reconstruc-

tion, is based on the FWHM of the distribution of vertex residuals.
In order to extract FWHM from a distribution, one needs to know proper fitting func-

tion which precisely describes the distribution. Let me, firstly, focus on vertex residual ∆y.
As a starting point in search for the distribution function of vertex residual ∆y, we have to
keep in mind its definition. ∆y is a difference between two random variables y1 and y2, i.e.
∆y = y1−y2. Let me define f1(y1) and f2(y2) as their respective distribution functions. In
that case, f1(y1)f2(y2) represent probability to find simultaneously first vertex in point with
coordinate y1 and second vertex in point with coordinate y2. However, we are interested only
in the couples of given residual ∆y. Therefore, we cannot choose both variables simultane-
ously. Choice of y2 fixes y1 at y1 = ∆y+y2, for given ∆y. Probability to simultaneously find
these two values is then equal to f1(∆y+y2)f2(y2). If we now integrate over all scenarios,
i.e. all possible values of y2, we obtain distribution function of a vertex residual F(∆y):

F(∆y) =
∫

∞

−∞

f1(∆y+ y2) f2(y2)dy2. (4.3)

This is well known convolution formula. Presented equation would hold in case if y1
and y2 would represent two completely independent variables. Nevertheless, y1 and y2 are
reconstructed coordinates of two vertices which are expected to be approaching each other.
It implies that both y1 and y2 should be correlated.

Moreover, as it is demonstrated in Figure 4.7, the correlation between the respective
vertex coordinates is very strong and, therefore, Equation 4.3 has to be generalized. Two
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Figure 4.7: Correlation plots of reconstructed vertex coordinates y1 vs. y2 (top) and z1 vs.
z2 (bottom). Presented sample is the same as the one used in Figure 4.5.
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dimensional distribution function f1(y1)f2(y2) was split into two functions of single vari-
able. This was due to the independence of the variables. In case with the correlation, it is
impossible to perform this simplification and one has to assume general two dimensional
distribution function py(y1,y2) of y coordinates of reconstructed vertices in given sample.
If we now repeat the same procedure as in the previous case, we arrive to generalization of
Equation 4.3:

F(∆y) =
∫

∞

−∞

py(∆y+ y2,y2)dy2. (4.4)

This formula represents recipe for calculation of distribution function of vertex resid-
ual ∆y in case when y1 and y2 are correlated. Naturally, analogous relation holds for the
distribution of vertex residual ∆z.

Equation 4.4 provides theoretical basis for our search for fitting functions of distributions
F(∆y) and G(∆z). In order to obtain their analytical formula, one would need to guess
acceptable analytical formula for two dimensional distributions py(y1,y2) and pz(z1,z2).
Moreover, if we look at the plots in Figure 4.8, showing projections of distributions in Figure
4.7 into y1 and z1, we can probe the structure of both two dimensional distributions py and
pz in more detail. One could expect that both projections would be uniformly distributed
as the vertices are simulated evenly all over the volume of source foil. However, this is far
from truth for two reasons. Firstly, it is possible to observe a narrow local minimums in
form of bins with significantly lower counts than the neighbouring ones. It is due to the gaps
between the Selenium source foil stripes. This phenomenon occurs only in case of projection
py because the foil is segmented only along horizontal (y) direction (see Figure 4.8 - Top).
The bins are not strictly empty, as they should be, because of their width and also vertex
can be reconstructed in principle in the gap due to imprecisions in reconstruction. Secondly,
even if we ignore the gaps, neither of the distributions is flat. The reason is, that all the
samples had to pass SDBDRC before the vertex could be even evaluated. The deviation
of both distributions, therefore, represent not the distribution of simulated vertices but the
reconstruction success rate in y and z direction. The shape in y-direction is also influenced
by presence of the magnetic field. This phenomenon is discussed in detail in Section 4.6.

Let me now briefly sum up all the most relevant findings obtained during the hunt for
proper analytical form of fitting functions F(∆y) and G(∆z). As a theoretical recipe, Equa-
tion 4.4 should be preferentially used to obtain distribution F(∆y) (G(∆z)) because of the
strong correlation between y1 (z1) and y2 (z2) demonstrated in Figure 4.7. In order to do
that, one would need to know analytical form of two dimensional distribution py(y1,y2)
(pz(z1,z2)). It might be difficult to find it, due to its rather complicated form demonstrated
at the projections in Figure 4.8.

It is reasonable to expect that functions F(∆y) and G(∆z), even though, they are repre-
sented by a single peak, might not be properly described by some basic Gaussian or Lorentz
function, as one may intuitively expect just by looking at the plots in Figure 4.5. Therefore,
I decided to propose an ansatz which would have proper degrees of freedom to describe the
distributions F(∆y) and G(∆z) well enough. The choice was following:

f (x) =
N[

x2 +Γ

]p (4.5)

Squared argument ensures the symmetry of the function, Γ is related to characteristic
width of the peak and exponent p gives possibility to tune the rate at which the tails of
the function drop. Finally, N is scaling constant, so it was not necessary to normalize the

98



4.2: Definition of Vertex Precision Quantities

Figure 4.8: Distributions of vertex coordinates of first electron - y1 on top, z1 bottom. Dis-
tributions were extracted from the same dataset as presented in Figure 4.5. Distributions of
y2 and z2 look the same, therefore they are not presented in the figure.
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Figure 4.9: Histograms of vertex residuals from Figure 4.5 after they were fitted by function
from Equation 4.5. ∆y is on the left and ∆z on the right side. Plots are shown in logarithmic
scale. Function covers satisfactorily majority of the histogram with slight deviation in tails.

fitted distributions. Proposed fitting functions were tested and they proved themselves to
be generic enough to describe the distribution of vertex residuals in both directions y and
z. Figure 4.9 shows examples of functional shapes from Equation 4.5 fitted to histograms
from Figure 4.5. As it will be clarified in following sections, these functions describe the
distribution of vertex residuals very precisely in very broad range of different sets of samples
if sample size was sufficient. In order to control validity of fit, R2 was evaluated for every
single fit. More about the validity check can be find in Sections 4.3 and 4.4. In Section 4.4 I
also present performance comparison of fitting functions from Equation 4.5 with Lorentzian
(∆y distribution) and Gaussian fit (∆z distribution).

Having an analytical formula for distributions of vertex residuals, it is possible to extract
FWHM value of the fitting function. It is trivial to find a global maximum of the function
which lies in the center in point x = 0 and has value of

fmax = f (0) =
N
Γp . (4.6)

The points x±h where the peak drop to half of its value can be obtained from equation:

f
(

xh

)
=

N[
x2

h +Γ

]p =
N

2Γp . (4.7)

Solution to this equation is following:

x±h =±
√

Γ
( p
√

2−1
)
. (4.8)

Finally, FWHM is the distance between x−h and x+h :

FWHM = 2
√

Γ
( p
√

2−1
)
. (4.9)

After distribution of vertex residuals ∆y and ∆z for given sample was fitted by function in
Equation 4.5, two sets of fitting parameters (Ny, Γy, py and Nz, Γz, pz) were obtained. Based
on these parameters FWHMy and FWHMz were calculated using Equation 4.9. FWHMy
(FWHMz) I call "FWHM precision" of vertex reconstruction in y(z). FWHM represents
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full width of the peak of distribution of vertex residual including the negative half. This
half arises due to vertex residuals to be defined not as a distance (absolute value: |y1−y2|)
but as an oriented one dimensional vector: ∆y = y1−y2. Therefore, the real reconstruction
imprecision is half of the FWHM value. However, all the plots in the studies will use FWHM
precision as a convention.

4.2.4 Sigma Precision
RMS and FWHM represent measures of peak width. RMS is easy to calculate and it

is possible to evaluate it even for smaller studied samples. RMS also depends strongly on
the chosen range of vertex residuals even in case when only negligible portion of the range
is excluded from the sample. RMS is useful as a easy-to-calculate, fast comparison of two
samples under condition that we compare the samples for the same range of vertex residuals.
On the other side, FWHM serves well as an absolute measure of the vertex precision. How-
ever, it is very dependent on the quality of fit, which is poor for small samples. Nevertheless,
whenever it is possible, we take FWHM as a representative quantity for evaluation of vertex
reconstruction precision.

The aim of following study was to perform comparison of performance of CAT recon-
struction in different conditions. FWHM serves well for the purpose. However, another goal
is to study possibilities for data cuts to improve signal to background ratio. In order to do
that, one needs to compare ranges of vertex residual covering a constant portion of events in
different samples. FWHM region ensures stable proportion between peak’s height and width
in half maximum value but, it is not sensitive to the shape of the function inside of the region.
Therefore, FWHM region can cover, in principle, different portions of area under the curve
in dependence on the shape of the function. In order to account for this slight variability of
shapes, I defined third quantity which I call "sigma (σ ) precision".

σ precision is defined as a half of the symmetric interval covering central 68.27% area
under curve. It is a σ value for which

0.6827 =

σ∫
−σ

f (x)dx

∞∫
−∞

f (x)dx

=

σ∫
0

f (x)dx

∞∫
0

f (x)dx

. (4.10)

Here, f(x) represents fitting curve from Equation 4.5. Integration in Equation 4.10 was
performed numerically. Ratio of integrals was approximated in following way:

RL =

n∆x<L

∑
n=0

f (n∆x)∆x

f (n∆x)∆x<ε

∑
n=0

f (n∆x)∆x

. (4.11)

Note that, in this formula ∆x represents numerical integration step and not the vertex
residual in x direction. Its value was chosen to be ∆x = 10−3 mm. Cut-off value for infinite
integral in denominator was chosen to be ε = 10−9 mm. σ precision is then value of L
when RL = 0.6827. σ precision is naturally defined for both directions y and z. It is a
useful quantity for discussion of possible data cuts on vertex because, by definition, interval
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−σ < ∆y,∆z < σ always contain 68.27% of events in given sample. The difference in σ

between two samples might be a sign for a establishment of new data cut potential.

4.3 Vertex Precision as a Function of Electron Energy
Study presented in this section is first out of several different vertex precision studies

which I performed during my PhD. studies. Aim of the studies is to investigate how precisely
is a double beta decay vertex reconstructed in variety of situations. The goal is to quantify
the precision and give insight into uncertainties of the angular distributions reconstructed by
demonstrator. Such a study might as well contribute to search for new potential data cuts
which would favour expected signal over the background.

Reconstruction of the tracks in SuperNEMO demonstrator is performed by CAT (cellular
automaton tracker). The tracks are stored in the form of points - signal from individual
Geiger wires. Each triggered Geiger wire, provides information about horizontal distance
"r" between wire and passing particle and the vertical particle position "z" along the wire.
CAT reconstructs and connects each point in order to determine particle tracks, taking into
account associated uncertainties.

Precision of the reconstructed tracks can be evaluated by quantification of foil vertex
mismatch, as it was extensively discussed in previous sections. Main aim of this study is to
determine vertex reconstruction precision as a function of energy of each individual electron.
Table 4.2 summarizes all the data samples which were studied in this and following sections.

Following the standard procedure in Section 4.1.1, each dataset was simulated using
application flsimulate and reconstructed by flreconstruct using standard SuperNEMO mock
calibration pipeline 1.0.0. As a next step, I applied MiModule to reconstructed datasets and
obtained .root files ready to be studied.

Analysis program read each event in given data sample. Firstly, object of class MiFil-
ters filters events according to SDBDRC criteria. Obtained reduced sample is subsequently
separated into subsamples based on the energy of individual electrons. Each subsample rep-
resents one bin in two-dimensional histogram. Figure 4.10 depicts distribution of events
among subsamples for chosen data samples. Horizontal axis represents energy of first elec-
tron (E1) and vertical axis represents energy of second electron (E2).

These two-dimensional distributions are symmetric with respect to axis E1 = E2. It is

Samp. Process Nucleus
Magnetic Number of
field [G] simulated events

S1 β− 208Tl 25 9.62×107

S2 β− 214Bi 25 2.076×108

S3 0νβ−β− 82Se 25 1.04×108

S4 0νββ χ0 82Se 25 1.04×108

S5 0νββ χ0χ0 82Se 25 1.038×108

S6 2νβ−β− 82Se 0 4.8×107

S7 2νβ−β− 82Se 25 1.04×108

S8 2νβ−β− 82Se 60 4.79×107

Table 4.2: List of datasets used in analyses of vertex precision. They were simulated and re-
constructed by Falaise version 2.0.0. More information about Majoron modes 0νββ χ0(χ0)
can be found in Chapter 6.

102



4.3: Vertex Precision as a Function of Electron Energy

(a) 0νββ (S3). (b) 0νββ χ0 (S4).

(c) 0νββ χ0χ0 (S5). (d) 2νββ (S7).

Figure 4.10: Distribution of samples among two-dimensional subsamples representing dif-
ferent single electron energy regions. E1 and E2 represent energies of first and second emit-
ted electron, respectively. Four plots represent four different processes in caption. Sample
number is in the bracket. Number in the bin represents decadic logarithm of number of
events in the bin. Note that, plot d) represents different scale and binning in comparison to
other three.

expected effect, as the electrons are indistinguishable. However, by having a closer look, it
is possible to notice that the symmetrical shape is slightly displaced below the line E1 = E2.
First electron is always the one which is detected first, therefore, it is faster, with higher
energy. First electron (e−1 ) is expected to have higher energy than the second electron (e−2 ),
which explains the aforementioned shift under the line E1 = E2.

4.3.1 Comparison of RMS and FWHM Precision
Each subsample represents statistical set of vertex residuals ∆y and ∆z. As it was already

described in introduction to the chapter, it is possible to extract several different measures of
vertex precision. Let me compare RMS and FWHM precision.

Figure 4.11 shows comparison of the calculated RMS and FWHM precisions for sample
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(a) RMSy. (b) RMSz.

(c) FWHMy. (d) FWHMz.

Figure 4.11: Comparison of RMS precision (first row) with FWHM precision (second row)
as a function of individual electron energy. Results are obtained from 0νβ−β− (sample S3).

S3 (0νββ ). Note that, based on the definition of precision, higher values represent worse
reconstruction than lower values. All the plots show similar feature. Precision is improved
towards the higher energies. Electrons with higher energies are less affected by scattering
effects inside of the source foil (see Section 4.4). Both the RMS precision results, as well as
FWHM results, follow this trend. Nevertheless, both methods give slightly different results.
This is due to the sensitivity of RMS to tail values as it was discussed in Section 4.2.2. On
the other side, FWHM only depends on the quality of fit.

In order to validate the results of FWHM precision study we should investigate the quality
of fit of each subsample. In Figures 4.12a and 4.12b, one can find information about quality
of fit in form of−log10(1−R2). Here, R2 is a well known coefficient calculated in following
way:

R2 = 1−

N
∑

i=0
(yi− f (xi))

2

N
∑

i=0
(yi− ȳ)2

. (4.12)
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(a) −log10(1−R2
y). (b) −log10(1−R2

z).

Figure 4.12: Fit quality coefficients−log10(1−R2) belonging to subsamples whose FWHM
precisions are presented in Figures 4.11c and 4.11d, respectively. The calculation method of
the coefficient is explained in the text.

In the equation, xi and yi are datapoints, f(x) represents fitting function from Equation
4.5 and y represents mean of all yi values. The closer the R2 is to 1, the more precisely the
fit f(x) describes given data. Therefore, value −log10(1−R2) (rounded down) represents
number of first decimal places with nine. For example, if R2 = 0.99, then −log10(1−R2) =
2. Figures 4.12a and 4.12b show very precise fits typically from range 0.99 to 0.9999. Such a
justification is powerful argument towards the use of both types of precision obtained from fit
(i.e. FWHM and sigma). In order to keep data reliable, I always calculated −log10(1−R2)
value. Results with −log10(1−R2)> 1, I considered as acceptable values and those I plot-
ted into graphs. However, cases when 2≥−log10(1−R2)> 1 should be interpreted with
precaution as their quality might be on the edge of acceptable. Nevertheless, these edge
values occur rarely in the datasets, typically in the situations when studied subsample con-
tained extremely low number of events. Unless their occurrence is mentioned for given plot
in following studies, the fit performed at least as good as −log10(1−R2)> 2.

Even though, RMS method gives qualitatively same results as FWHM method, in abso-
lute terms these two methods differ. As it was presented, −log10(1−R2) is a good quality
check for the second of the two methods. Therefore, from now on, FWHM will be a method
of choice for evaluation of vertex precision.

4.3.2 Comparison of Vertex Precision of Various Processes
In the following, I will investigate possibilities for discrimination between different modes

of 0νββ , 2νββ and background processes (decays of 208Tl and 214Bi) based on the vertex
precision for different single electron energy regions.

In previous examples, it is clear that the precision is improved with higher energies of
each electron. The question still remains, whether this rate of improvement is same for each
aforementioned process. The differences might yield possibility to distinguish processes.

Figures 4.13 and 4.14 depict comparison of FWHM precision between six different pro-
cesses. In all cases, it is clearly visible, that precision is improved for electrons of higher
energies. For example, in regions where one electron has energy between 1 MeV and 1.5
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(a) FWHMy: 0νββ (S3). (b) −log10(1−R2
y): 0νββ (S3).

(c) FWHMy: 0νββ χ0 (S4). (d) −log10(1−R2
y): 0νββ χ0 (S4).

(e) FWHMy: 0νββ χ0χ0 (S5). (f) −log10(1−R2
y): 0νββ χ0χ0 (S5).

Figure 4.13: FWHM precision (in mm) as a function of energies of individual electrons.
Each row represents one out of three chosen modes of 0νββ . In left column FWHM
precisions in y-direction are plotted, right column plots show the fit quality expressed by
−log10(1−R2) coefficient.
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(a) FWHMy: 2νββ (S7). (b) −log10(1−R2
y): 2νββ (S7).

(c) FWHMy: β−, 208Tl (S1). (d) −log10(1−R2
y): β−, 208Tl (S1).

(e) FWHMy: β−, 214Bi (S2). (f) −log10(1−R2
y): β−, 214Bi (S2).

Figure 4.14: FWHM precision (in mm) as a function of energies of individual electrons.
Different rows represent results obtained from samples of 2νββ , decay of 208Tl and decay
of 214Bi, respectively. In left column FWHM precisions in y-direction are plotted, right
column plots show the fit quality expressed by −log10(1−R2) coefficient.
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(a) FWHMz: 0νββ (S3). (b) −log10(1−R2
z): 0νββ (S3).

(c) FWHMz: 0νββ χ0 (S4). (d) −log10(1−R2
z): 0νββ χ0 (S4).

(e) FWHMz: 0νββ χ0χ0 (S5). (f) −log10(1−R2
z): 0νββ χ0χ0 (S5).

Figure 4.15: FWHM precision (in mm) as a function of energies of individual electrons.
Each row represents one out of three chosen modes of 0νββ . In left column FWHM
precisions in z-direction are plotted, right column plots show the fit quality expressed by
−log10(1−R2) coefficient.
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(a) FWHMz: 2νββ (S7). (b) −log10(1−R2
z): 2νββ (S7).

(c) FWHMz: β−, 208Tl (S1). (d) −log10(1−R2
z): β−, 208Tl (S1).

(e) FWHMz: β−, 214Bi (S2). (f) −log10(1−R2
z): β−, 214Bi (S2).

Figure 4.16: FWHM precision (in mm) as a function of energies of individual electrons.
Different rows represent results obtained from samples of 2νββ , decay of 208Tl and decay
of 214Bi, respectively. In left column FWHM precisions in z-direction are plotted, right
column plots show the fit quality expressed by −log10(1−R2) coefficient.
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(a) σy: 0νββ (S3). (b) σy: 0νββ χ0 (S4).

(c) σy: 0νββ χ0χ0 (S5). (d) σy: 2νββ (S7).

(e) σy: β−, 208Tl (S1). (f) σy: β−, 214Bi (S2).

Figure 4.17: Sigma precision (in mm) in y-direction as a function of energies of individual
electrons. Plots are comparing six different decay processes.
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(a) σz: 0νββ (S3). (b) σz: 0νββ χ0 (S4).

(c) σz: 0νββ χ0χ0 (S5). (d) σz: 2νββ (S7).

(e) σz: β−, 208Tl (S1). (f) σz: β−, 214Bi (S2).

Figure 4.18: Sigma precision (in mm) in z-direction as a function of energies of individual
electrons. Plots are comparing six different decay processes.

111



4.3: Vertex Precision as a Function of Electron Energy

MeV while other electron has energy from interval 1.5 MeV to 2 MeV precision can get as
good as roughly 10 mm, which represents distance of 5 mm between vertices in y-direction!
On the other side, if both electrons have kinetic energy inferior to 0.5 MeV the FWHM
precision can drop down to almost 30 mm (15 mm distance). In z-direction FWHM pre-
cision shows larger mismatch of reconstructed vertices as it is shown in Figures 4.15 and
4.16. FWHM precisions in this direction range from 30 mm (15 mm absolute distance) up
to 50 mm (25 mm absolute distance). Worse reconstruction in z-direction compared to y-
direction is expected effect. Each single Geiger wire in the SuperNEMO tracking detector
is parallel to z-direction. Information about the position of the particle in z-direction is ob-
tained by measuring the difference of arrival of collected charge to the ends of the wire. In
plane perpendicular to Geiger wire (i.e in x- and y-direction) the position is measured by
amount of collected charge produced by avalanche caused by passing particle. In principle,
latter measurement is more precise, i.e. it yields smaller uncertainties. Therefore, CAT has
more precise information about the track of the particle in y- (and also x-) direction than
z-direction which results in observed differences in vertex reconstruction precision.

If we compare all FWHM precisions for different processes we can conclude that the
results do not seem to be dependent on the type of process, as the plots (in energy regions
where information exist) differ only within few percent.

However, plots for 0νββ (Figures 4.13a and 4.15a) seem to differ in the region of lowest
electron energies (E1,E2 < 1MeV). In order to get better idea whether this might serve as
a potential for a discrimination between 0νββ and the other listed processes, let us have a
look at the σ precisions. The values are plotted in Figures 4.17 and 4.18. σ precision gives
limits of a central interval containing 68.27 % of all events (-σ ,σ ) in a subsample. There-
fore, differences in σ can signalize possibilities to distinguish between different processes.
Nevertheless, σ values in the region of lowest electron energies for 0νββ are approaching
the values for the other processes which implies basically no potential for the discrimination.

Finally, we can conclude, that the vertex reconstruction precision varies with energies of
individual electrons. Data show that the reconstruction precision tend to depend only on the
energy of the electrons regardless of the process which created them. Achievable precision
for different energy regions are summarized in Figures 4.13 - 4.18.

4.3.3 Comparison of Vertex Precision for Different Magnetic Fields
Magnetic field influences shape of the charged particle trajectory. Dependence of vertex

reconstruction precision on the energy might also lie in difference in the track shapes. In
such case, one should observe differences in vertex precision when magnetic field is varied.

Figure 4.19 compare sigma vertex precisions for different magnetic field applied in the
demonstrator, namely 0 G (without field) and 60 G. The behaviour is compared for events
of 2νββ . The differences are not very significant, but it is possible to recognize slightly
worse vertex reconstruction in scenario without magnetic field. With no magnetic field, the
electrons follow straight trajectories which is the shortest connection between two points
in the standard Euclidian geometry. On the other side, with magnetic field present in the
demonstrator, electrons follow circular paths and therefore not the shortest distance between
two points of the trajectory. This makes the electrons stay longer in the area of the tracker,
potentially triggering extra Geiger wires, therefore, collecting more data points. It results
in slightly lower experiment uncertainty in the electron trajectory. The trend seems to be
confirmed by comparison of results for extreme magnetic field (60 G - right side of Figure
4.19) with magnetic field of 25 G (Figures 4.17d and 4.18d). The precision is slightly better
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(a) σy: 2νββ , B = 0 G (S6). (b) σy: 2νββ , B = 60 G (S8).

(c) σz: 2νββ , B = 0 G (S6). (d) σz: 2νββ , B = 60 G (S8).

Figure 4.19: Comparison of sigma precisions (mm) in y-direction (top row) and z-direction
(bottom row) in different energy regions for two magnetic field setups - without magnetic
field (0 G) and with extreme magnetic field (60 G).

with higher magnetic field. However, the difference is so low that it is difficult to draw final
conclusion as the difference might be partially caused by statistical fluctuations. In any case,
the gain in vertex precision would not certainly be big enough to justify use of the magnetic
field more than twice as big than planned (25 G).

4.3.4 Vertex Efficiencies
Vertex efficiency I define as a ratio of events from studied subsample, for which the

projection of real vertex into yz plane is contained within the uncertainty rectangle given by
vertex residuals |∆y| and |∆z|, and all events in the subsample. In other words, it is a fraction
of events in which vertex Vr is found inside of the uncertainty rectangle in the Figure 4.4.
Efficiency gains values from interval 〈0,1〉. The vertex efficiency is, however, not possible to
calculate for measured data for obvious reason - the position of real vertex is unknown. On
the other side, such a variable give us information about how often the uncertainty rectangle
given by reconstruction algorithm contains the real vertex.
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Comparison of vertex efficiencies for 0νββ and 2νββ in Figure 4.20 show almost per-
fect homogeneity for all energy regions. Value of 0.25 with precision of ±0.02 is obtained
throughout all the energy configurations of two electrons. It implies that, regardless of the
energies of two electrons, always 1 in 4 events contains real vertex Vr within the rectangular
boundaries given by reconstructed vertices V1 and V2. Moreover, exactly the same pattern
without any exception was observed in all following studies. It seems that the vertex effi-
ciency is always 0.25 regardless of the situation. For this reason I am not going to discuss
this topic in following sections.

(a) Efficiency: 0νββ (S3). (b) Efficiency: 2νββ (S7).

Figure 4.20: Comparison of vertex efficiencies as a function of energies of individual elec-
trons. Note the difference in energy scales between both plots.

4.4 Vertex Precision as a Function of Electron Angles
Previous studies have shown a strong dependence of vertex precision on the energy of

the electrons and, on the other side, not so strong dependence on magnetic field. Another
quantity of interest in double beta decay experiments is an angular distribution of emitted
electrons. Thanks to the tracker technology, SuperNEMO will be able to measure these
distributions. Goal of this section is a quantification of vertex precision in dependence on
the angle between the electrons. I will again take advantage of datasets listed in Table 4.2.

Electrons undergo several scattering events between the moment of decay and moment
when they leave the source foil. In the example shown in Figure 4.21, electrons originally
emitted into different sides of the source foil, exit it on the same side almost aligned with
respect to each other. In the study, decay angle, i.e. angle between initial momenta of two
electrons emitted in decay, I will label as Φdecay (or just Φdec)

This angle is not measurable in real experiment, only accessible by simulation. There-
fore, I defined another angle Φescape (or just Φesc) defined as an angle between two electrons
exactly in the moment when they exit the source foil3. Φesc I always extracted from SD bank
(even though, it can be obtained from PTD bank - after particle track reconstruction), so it is
not influenced by experimental uncertainties.

3Note that, the moment when electrons exit the source foil are not necessary simultaneous.
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4.4: Vertex Precision as a Function of Electron Angles

Figure 4.21: Scheme is representing electron tracks after emission from double beta decay
of 82Se inside of the source foil. Source foil is drawn in horizontal position and zoomed to
reveal the scattering of the electrons inside of its 200 µm thick volume. Definitions of angles
between electrons at the moment of decay (Φdecay) and at the moment of exit from source
foil (Φescape) are depicted in schematic form.

4.4.1 Decay Angle vs. Escape Angle
Figure 4.21 shows that the difference between Φdec and Φesc can be significant due to the

scattering of the electrons inside of the source foil.
Figure 4.22 shows two-dimensional correlation plots between Φdec (horizontal axis) and

Φesc (vertical axis) for four different double beta decay modes, namely 0νββ , 0νββ χ0,
0νββ χ0χ0 and 2νββ . In case of the standard 0νββ , the spread of events away from the
line Φesc = Φdec is smaller than in the other three cases.

This tendency gets weaker with each following plot. Events distant from Φesc = Φdec
represent weak conservation of decay angle on the exit from the foil. Appearance of such
events with each next plot signifies lowering level of the angle conservation. The difference
in the plots here lies in the difference of the energy spectra for each of the processes. Pre-
sented processes are represented by energy spectra with gradually lower mean energy value.
Therefore, in average, electrons are carrying less energy and thus they scatter more often. On
the other side, electrons with higher energies tend to exit the foil more directly with fewer
collisions so the probability to preserve their decay angle grows. This hypothesis is proven
in Figure 4.23. The figure represents same correlation plots from first two datasets after
low energy events were filtered out. Figure 4.23b represents correlation plot of those 0νββ

events whose sum of electron energies was superior to 2.9 MeV. The spread with respect to
Φesc = Φdec line is smaller, indicating that electrons undergo a lower number of scatterings
in the foil. Moreover, Figures 4.23c and 4.23d represent correlation plot for 0νββ χ0 for all
events whose energy was superior to 1.5 MeV and 2.0 MeV, respectively. With higher low
energy threshold the plot starts to resemble the one belonging to 0νββ (Figure 4.22a). Even
though, these plots represent different processes, they also represent similar mean electron
energies. It is another proof of the hypothesis of energy of electron being the main factor
when it comes to conservation of decay angle.

Based on the presented correlation plots it is possible to calculate probability of decay
angle to be found in given interval for any observed escape angle. We can also conclude that,
the subset of events when electrons are emitted roughly perpendicularly to each other (region
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(a) 0νββ (S3). (b) 0νββ χ0 (S4).

(c) 0νββ χ0χ0 (S5). (d) 2νββ (S7).

Figure 4.22: Distributions of events in four double beta decay samples based on the decay
and escape angles. Plots show correlation between decay (Φdec) and escape angle (Φesc).
Black line represents events for which both angles were equal (Φesc = Φdec). No energy cuts
were applied.

between roughly 80◦ and 100◦) tend to have very spread-out spectrum of escape angles.
In following, let me compare the spectra of decay and escape angles. Figure 4.24 shows

comparison of decay and escape angle spectra between chosen processes. While differences
between the decay angle distributions are really small, the distributions of escape angles
show much large difference. Same comparison in a cos(Φ) scale can be found in Figure
4.25. Furthermore, Figure 4.26 demonstrates non-negligible effect of energy cut (E > 2.9
MeV) on the angular distribution of both decay and escape angle.

4.4.2 FWHM Precision
Previous study of vertex reconstruction precision showed strong dependence on the en-

ergy of the emitted electrons. In this study, we will have a look at the dependence on the
escape angle.

Figure 4.27 compares FWHM precisions in both (y- and z-) directions for five different
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(a) 0νββ (S3), Eth = 2.7 MeV. (b) 0νββ (S3), Eth = 2.9 MeV.

(c) 0νββ χ0 (S4), Eth = 1.5 MeV. (d) 0νββ χ0 (S4), Eth = 2 MeV.

Figure 4.23: Distributions of events in two double beta decay samples based on the decay
and escape angles. Plots show correlation between decay (Φdec) and escape angle (Φesc).
Black line represents events for which both angles were equal (Φesc = Φdec). Plots were
produced for same samples as in the Figures 4.22a and 4.22b after cuts on energy E > Eth
were applied. Minimum energy threshold Eth is marked in the caption of each individual
figure.

processes. Interestingly, all plotted double-beta decay processes follow the same pattern.
However, 0νββ represents the sample with the best overall precision while 2νββ the worst.
This is once again an effect of energy spectra which was already discussed. If we perform
energy cut (E > 2 MeV) on both modes with Majoron emission the precision improves and
approaches the one of standard 0νββ without cut. Moreover, energy cuts (E > 2.7 MeV and
E > 2.9 MeV) further improve the reconstruction precision of standard 0νββ . All the effects
are clearly visible in Figure 4.28.

Looking back to the Figure 4.27, it seems that decay of 214Bi tend to follow different
precision pattern and reach local maximum (worst precision) in lower angles than the dou-
ble beta decay modes. For decisive comparison, however, study with significantly higher
simulated sample of 214Bi decay would be needed.

It is without a discussion that the vertex precision depends on the escape angle between

117



4.4: Vertex Precision as a Function of Electron Angles

Figure 4.24: Distributions of decay angle (left) and escape angle (right) for five chosen data
samples: decay of 214Bi (S2), 0νββ (S3), 0νββ χ0 (S4), 0νββ χ0χ0 (S5) and 2νββ (S7).
Distributions represent fraction of events (in %) per one degree. 0νββ +M and 0νββ +2M
in plots denote 0νββ χ0 and 0νββ χ0χ0, respectively.

Figure 4.25: Distributions from Figure 4.24 represented in cos(Φ) scale. Distributions are
normalized to equal area of 100%.

Figure 4.26: Distributions of decay angle (left) and escape angle (right) for 0νββ (S3) and
2νββ (S7). Red and pink lines are plotted for reference. Brown line represents distributions
only of those 0νββ events which were measured by detector to reach sum of the electron
energies at least 2.9 MeV. Plots show effects of the detection method and energy cuts. Dis-
tributions are normalized to equal area of 100%.
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Figure 4.27: Dependence of FWHM vertex precision in both (y- and z-) directions as a
function of Φesc. Comparison is performed for five chosen data samples: decay of 214Bi
(S2), 0νββ (S3), 0νββ χ0 (S4), 0νββ χ0χ0 (S5) and 2νββ (S7). Intervals 0◦ < Φesc < 20◦

and 170◦ < Φesc < 180◦ contain small number of data samples and, therefore, reliability of
fit is questionable. No energy cuts were performed on any of the samples. 0νββ +M and
0νββ +2M in plots denote 0νββ χ0 and 0νββ χ0χ0, respectively.

Figure 4.28: Dependence of FWHM vertex precision in both (y- and z-) directions as a
function of Φesc. Plot includes 0νββ (red) and 2νββ (purple) samples from Figure 4.27 as
reference. Comparison shows effect of energy cuts (listed in legend) on FWHM precision
of 0νββ (S3), 0νββ χ0 (S4) and 0νββ χ0χ0 (S5) data samples. Intervals 0◦ < Φesc < 20◦

and 170◦ < Φesc < 180◦ contain small number of data samples and, therefore, reliability of
fit is questionable. 0νββ +M and 0νββ +2M in plots denote 0νββ χ0 and 0νββ χ0χ0,
respectively.

the electrons as seen in Figures 4.27 and 4.28. If we exclude intervals (0◦, 20◦) and (170◦,
180◦), which do not contain sufficient statistics in order to perform reliable fit, we observe
lightly improving precision from lowest angles to the highest with a significant worsening
of the precision in the vicinity of 90◦. The reasons behind the occurrence of the peak are
clarified in Section 4.6.

4.4.3 Fit Function Justification
Typical distributions of vertex residuals depicted in Figure 4.5 might raise intuitive ten-

dency to fit distribution of ∆z by standard Gaussian fit. ∆y seems to have pointier peak and
slightly slower decreasing tails, which might make an impression, that Lorentz fit would be
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Figure 4.29: Plots comparing fit quality of distributions of vertex residuals. Red curve in both
plots represent −log10(1−R2) coefficient of fit by rational function introduced in Equation
4.5. Blue curves represent alternative fit with Lorentz function (∆y residuals, figure on the
left) or Gaussian function (∆z residuals, figure on the right). Coefficient is plotted as a
function of escape angle between electrons. The comparison is presented for 2νββ sample
(S7).

the best candidate. In Section 4.2.3, I extensively explained why such expectation is only
a blind guess, with no deeper reason behind. Finally, in order to suit the needs for proper
description of the functional shape I proposed very generic fitting function of four parame-
ters given by Equation 4.5. I also commented that the validity of the fit was controlled by
calculation of −log10(1−R2) where R2 is coefficient given by Equation 4.12.

In order to prove that proposed fitting function performs better than Lorentz curve (for
∆y) and Gaussian curve (for ∆z), I performed both types of fit for each subsample and com-
pared −log10(1−R2) coefficients.

Figure 4.29 compares −log10(1−R2) coefficient for fit with proposed rational function
- blue fit - and Lorentz fit by Lorentz function (for ∆y) and Gaussian fit (for ∆z) - red curves.
My proposed rational function is clearly performing well in all conditions. This serves as
justification of my chosen fitting method, giving credibility to the presented data. The com-
parison was performed also for the other studies and my fitting function represented better
choice.

4.5 Vertex Precision as a Function of Position on the Foil

One of the geometrical aspects which could potentially influence vertex precision is the
position of the decayed nucleus on the source foil. Both emitted electrons travel different
distances along different trajectories. These characteristics are dependent on the position
where the event occurred. The electrons generated close to the edge of the source foil have
higher chance to hit the X-calo and G-veto optical modules, having a much shorter tracks. In
contrary, the electrons emitted in the center of the foil would travel, the most likely, longer
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distances, producing more hits in tracker wire, therefore, potentially improving the vertex
reconstruction. However, if we take magnetic field into account, such an events might curve
enough to avoid the calorimeter and hit the foil resulting in failure to pass SDBDRC. These
are some of the examples of effects influencing the vertex precision. The easiest way to
investigate it is to set up a study similar to two in the previous sections.

In Figure 4.30 one can see distributions of event counts per bin passing SDBDRC. The
presented plots represent four chosen double beta decay processes. Consistently with the
projections depicted in Figure 4.8 the distributions are typically composed of two hot spots
on each side of the foil along the horizontal y-axis. The edge bins, naturally, contain less
events as the chance of tracking failure rises due to close proximity of the optical modules.
The electrons can simply hit the optical module after really short track triggering minimal
number of tracking wires, therefore, preventing the track reconstruction.

Let me now compare the vertex FWHM precisions for both ∆y and ∆z as a function of
position on the foil (Figures 4.31 and 4.32). The overall precisions are gradually improving
from 2νββ to 0νββ . The reason behind is again the well-known increase of mean energy
of the energy spectrum for each process. Furthermore, the FWHMy precision for each of
four processes seems to be the best in the center of the foil while gaining the worst (highest)
values in two symmetrical D-shaped spots on each side. In case of FWHMz the distribution
looks very similar, however, two spots are O-shaped.

Understanding of the events contained within two spots might help us understand the
factors influencing the precision. Therefore, I performed another analysis presented in fol-
lowing section.

(a) 0νββ (S3). (b) 0νββ χ0 (S4).

(c) 0νββ χ0χ0 (S5). (d) 2νββ (S7).

Figure 4.30: Distribution of events passing SDBDRC as a function of position on the source
foil. Source foil was divided into 37 horizontal (y-direction) and 20 vertical (z-direction)
bins. Distribution represents four different double beta decay samples.
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(a) FWHMy: 0νββ (S3). (b) FWHMy: 0νββ χ0 (S4).

(c) FWHMy: 0νββ χ0χ0 (S5). (d) FWHMy: 2νββ (S7).

Figure 4.31: FWHM vertex precision in y-direction as a function of position on the source
foil. Source foil was divided into 37 horizontal (y-direction) and 20 vertical (z-direction)
bins. Distribution represents four different double beta decay samples.

(a) FWHMz: 0νββ (S3). (b) FWHMz: 0νββ χ0 (S4).

(c) FWHMz: 0νββ χ0χ0 (S5). (d) FWHMz: 2νββ (S7).

Figure 4.32: FWHM vertex precision in z-direction as a function of position on the source
foil. Source foil was divided into 37 horizontal (y-direction) and 20 vertical (z-direction)
bins. Distribution represents four different double beta decay samples.
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4.6 Vertex Precision as a Function of Foil Angles
Vertex reconstruction precision seems to behave interestingly in dependence on escape

angle between two electrons. Worsening of the precision in the region of escape angles
around 90◦ might not be fully intuitive. The tracker is a stable part of demonstrator setup
while two electrons with fixed escape angles between them might still account for many
experimentally different situations. In order to gain more detailed information, I studied the
precision as a function of "foil angles".

Foil angle is an angle between electron momentum (to be more precise its projection)
in the moment of escape from source foil and a stable reference direction perpendicular to
source foil. Note that, the angle is, therefore, defined for each individual electron. Figure
4.33 clarifies the definition of two source angles of interest called α and β .

Figure 4.33: Definition of foil angles α and β . Note that, the figure on left represents top
view while the figure on the right represents view from the side. The reference direction
for both angles, is the same (-1,0,0) but the planes in which the angles lie are mutually
perpendicular. Red arrow symbolizes projection of electron momentum into plane xy (left)
or plane xz (right).

Electron momentum on the exit of the source foil ~p = (px,py,pz) was projected into
the xy plane ~pxy = (px,py,0) and xz plane ~pxz = (px,0,pz). For both angles α and β vector
~v = (−1,0,0) served as reference - zero angle. Foil angles are therefore calculated following
way:

α = acos

(
~pxy ·~v
| ~pxy|

)
= acos

 −px√
p2

x + p2
y

 , (4.13)

β = acos

(
~pxz ·~v
| ~pxz|

)
= acos

(
−px√
p2

x + p2
z

)
. (4.14)

By definition, each angle takes values from range α,β ∈ 〈0◦,180◦〉. Therefore, each
value represents two scenarios differing only by sign of py for α and pz for β . This symmetry
is welcomed, as we do not expect different effect taking place between the two scenarios.
On the other side, foil angle value distinguishes between the side of the source foil where
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(a) σy: 0νββ (S3). (b) σy: 0νββ χ0 (S4).

(c) σy: 0νββ χ0χ0 (S5). (d) σy: 2νββ (S7).

Figure 4.34: Sigma precision of ∆y residual as a function of foil angles α1 (first electron)
and α2 (second electron). Four figures represent four different double beta processes.

electron exits it. α,β ∈ 〈0◦,90◦) accounts for the left side4 of the foil (i.e. negative x values)
and α,β ∈ (90◦,180◦〉 accounts for right side of the source foil (i.e. positive x values). Angle
α,β = 90◦ represents electron emitted parallel to source foil. Such a definition gives us
opportunity to study not only the effects of different angles, but also distinguish the scenarios
when electrons are emitted to the same or opposite side of the foil.

4.6.1 Sigma Results
Figures 4.34, 4.35, 4.36 and 4.37 compare sigma precision results for both α and β foil

angles in both directions y and z. Here, I compare four different modes of double beta decay,
0νββ , 0νββ χ0, 0νββ χ0χ0 and 2νββ . Before commenting the results, let me briefly
discuss the meaning of the plots.

In each plot, horizontal axis represents foil angle of the first electron while vertical repre-
sents the foil angle of second electron. Assignment of the number to the electron is the same

4With respect to Figure 4.33
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(a) σz: 0νββ (S3). (b) σz: 0νββ χ0 (S4).

(c) σz: 0νββ χ0χ0 (S5). (d) σz: 2νββ (S7).

Figure 4.35: Sigma precision of ∆z residual as a function of foil angles α1 (first electron)
and α2 (second electron). Four figures represent four different double beta processes.

as in the case of energy plots - first one is always the one which was detected first. All the
plots share similarities which have to be discussed before we attempt to extract any informa-
tion. In the center, there is a "central cross" representing the events when one of the electrons
is emitted parallel (within the precision given by bin width) to the source foil. These bins
are typically with no vertex precision assigned to them as the fit of distribution of vertex
residuals is not precise enough. The situation in the central cross will be studied in following
section. Central cross splits the plot into four quadrants. Top left and bottom right, those
which are crossed by primary diagonal (when α2 = 180◦−α1 or β2 = 180◦−β1), represent
all the events when electrons are emitted to the opposite sides of source foil. The other two
quadrants, crossed by secondary diagonal (when α2 = α1 or β2 = β1) represent events when
both electrons are emitted to the same side of the source foil. However, it is not possible to
distinguish the sign of py for foil angle α (sign of pz for foil angle β ), therefore, each data
point represents two different constellations of angle Φesc between two electrons. This has
to be taken with precaution during the data analysis.

Firstly, I claim again that there is clear tendency of improved overall precision if we
compare four presented double beta decay modes. 2νββ achieved the worst precision and
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(a) σy: 0νββ (S3). (b) σy: 0νββ χ0 (S4).

(c) σy: 0νββ χ0χ0 (S5). (d) σy: 2νββ (S7).

Figure 4.36: Sigma precision of ∆y residual as a function of foil angles β1 (first electron)
and β2 (second electron). Four figures represent four different double beta processes.

0νββ , in contrary, the best precisions. This serves as another confirmation of the strong
role of the energy of the emitted electrons for vertex precision. Furthermore, there is a clear
symmetry between quadrants lying on the primary diagonal as well as between the two lying
on the secondary diagonal. The symmetries represent the events when sides of the source
foil are swapped. However, if we compare all four quadrants, the symmetry is not kept.
Quadrants on the main diagonal tend to reach better precisions than two quadrants on the
secondary diagonal. Let us have a closer look what this asymmetry implies. Let me compare
four corner bins in Figure 4.34a. Each one represents electrons emitted perpendicularly to
the source foil within the precision given by bin width (i.e. 20◦). Two corner bins belonging
to scenario of electron emission to the opposite side of the source foil (primary diagonal)
represent precision in vertex reconstruction as good as 5.1 mm. In contrary, two corner
bins representing the scenario of perpendicular emission to the same side (on the secondary
diagonal) manifest almost two times worse vertex reconstruction precision of 9.3/10.1 mm.
The difference is caused by the events with both electron trajectories being very similar.
Several Geiger wires are triggered by both electrons which makes it more difficult for the
reconstruction algorithm to distinguish which wire hit belongs to which electron. The effect
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(a) σz: 0νββ (S3). (b) σz: 0νββ χ0 (S4).

(c) σz: 0νββ χ0χ0 (S5). (d) σz: 2νββ (S7).

Figure 4.37: Sigma precision of ∆z residual as a function of foil angles β1 (first electron)
and β2 (second electron). Four figures represent four different double beta processes.

is visible also in vicinity of top right and bottom left bin. Precision in all surrounding bins is
better. In contrary, bins in the top left and bottom right of the plot are the bins with the best
precisions in their quadrants. Corner bins, which are lying on the secondary diagonal belong
to the events, in which electrons are escaping the foil perpendicularly, at the same side of
the source foil. Their trajectories are very similar, therefore, they have high chance to share
large number of Geiger cells. Electrons from events represented by corner bins on the main
diagonal are detected on the different sides of the source foil and the chance to observe cell
sharing is strictly zero. The credibility of this reasoning is underlined by the fact that the
same effects are observed in all plots regardless of the process or direction (y or z).

Observation of the cell sharing effects is an interesting input into the discussion about
the shape of FWHM precision as a function of Φesc. Let me take Figure 4.27 as a reference.
If we ignore peak in the vicinity of 90◦, the precision tends to be improved for the biggest
angles towards 180◦. In majority of such events, electrons are emitted into the opposite sides
of the source foil, preventing the cell sharing. On the other side of the plot, in region of small
angles, the cell sharing is highly probable and, therefore, vertex precision gets significantly
lower, causing asymmetry between the lowest and the highest angles.
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4.6.2 Events in Central Cross
Vertices belonging to events from bins adjacent to the central cross are reconstructed

with much worse precision than the other events deeper into the quadrants. Moreover, the
bins in the central cross have no value assigned to them in almost all the plots. This is not
caused by lack of events in the cross. Figures 4.34a and 4.35a show that majority of the bins
at all four ends of the central cross contain potentially enough events to be fitted. In fact, the
real reason, why central cross tend to remain empty, lies in the fit quality criterion imposed
in all my analyses. As I already discussed at the beginning of the chapter, only those bins
are plotted, where quality of the bin fulfils condition−log10(1−R2)> 1, i.e. R2 > 0.9. Poor
fit quality is not a result of lack of statistics, but it is signature of the dramatic change in the
distribution of vertex residual ∆y. The fit function fails to describe the distributions.

Figure 4.38: Top: Position of bin A within the diagram of foil angles α (sample in Figure
4.34a). Figure also shows the division of bin A into bins A1 to A4. Bottom: Schematic
representation of electron configurations included in each of bins A1 to A4. Red rectangle
symbolizes the source foil viewed from top. Black dashed lines depict the axes of symmetry
of source foil. Blue (green) regions represent the span of foil angles α1 (α2), i.e. the relative
possible directions of first (second) electron with respect to the source foil. Note that, the
emission of the electrons can occur anywhere in the source foil, the placement in the center
of foil is only symbolic. Bin A represents all the configurations at the same time.
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The events in the central cross represent situation when one or another electron escapes
foil parallel to the foil (within the precision given by bin width). Such trajectories are very
difficult (if even possible) to reconstruct. Let us have a look at the situation in one of the bins.
As a reference, I will study sample in Figure 4.34a (0νββ ). It represents sigma precision in
y-direction as a function of α foil angles. I will focus on the leftmost bin in the central cross.
The bin is highlighted in top part of Figure 4.38. It includes all the events from following
α ranges: 0◦ < α1 < 20◦, 80◦ < α2 < 100◦. I will call it bin A. The distribution of vertex
residuals ∆y in the bin is shown in the Figure 4.39. We can notice that the fit quality is much
lower than standard. The shape of the distribution is very different to all the previous studied
cases. Instead of the clear, well defined peak in the center, there is a plateau which changes
the characteristic shape and prevents the fit function to adapt to the shape.

Figure 4.39: Distribution of vertex residuals ∆y for events from bin A defined in Figure 4.38.

Due to odd number of divisions in both dimensions of the plot in Figure 4.34a, bin A
includes both types of events, those, when electrons are emitted to the same side of the
source foil as well as the other side. The previous analysis of foil angle data already showed
that these two categories differ significantly due to effect of Geiger cell sharing. Therefore,
I decoupled the events and split bin A into four smaller bins A1, A2, A3 and A4 as depicted
in top part of Figure 4.38. Four bins represent four different configurations of the electrons.
The configurations are symbolized in the bottom part of the same figure. Bins A1 and A2
represent two configurations when electrons are emitted to the opposite side of the source
foil and bins A3 and A4 represent equivalent situations but with electron emission to the
same side of the source foil.

Subsequently, I performed analysis of the vertex residuals in each of four bins. Figure
4.40 shows comparison of the distribution of vertex residuals ∆y in bins A1 to A4. Interest-
ingly, each one of the distributions is centered several tens of milimeters away from ∆y = 0.
For this purpose, I had to redefine my fitting function defined by Equation 4.5 and add pa-
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Figure 4.40: Distribution of vertex residuals ∆y for events from bin A1 to A4 defined in
Figure 4.38.

rameter x0 which accounts for shift in peak position:

f (x) =
N[

(x− x0)2 +Γ

]p . (4.15)

Such a function is, in fact, important only in case of events in the central cross due to
their specific nature. Shift of the distribution has a crucial implications for the events in the
central cross. In average, one of the vertices tends to be closer to the center of the foil (in
horizontal, y-direction) more often than the other one, causing the shifts of ∆y distributions.
These shifts imply that the vertex reconstruction have tendency to misreconstruct the vertex
by several milimeters more often than reconstruct it precisely (∆y = 0). Such set of events
might degrade vertex precision when included in the dataset. Moreover, if we sum all four
distributions in Figure 4.40 we obtain again distribution for bin A in Figure 4.39. The ten-
dency of distributions for bins A1 to A4 to peak out of ∆y = 0 explains atypical shape of the
distribution for bin A, especially the increased width as well as the plateau in the center.

The analysis of central cross events gave us insight into the specific set of events which
tend to be reconstructed very poorly. Due to the difficulties to reconstruct the vertices prop-
erly I suggest to completely ignore the events in the analysis in order to gain better vertex
precision.

4.6.3 Events in Diagonals
Another interesting category of events lies on both diagonals inside of the quadrants. As

an object of a study, I will use twelve bins extracted from results in Figure 4.34d (2νββ ).
Their choice and naming convention is clear from top part of Figure 4.41. In the bottom part
of the same figure one can find all the configurations belonging to each bin.

Firstly, let me discuss the bins from secondary diagonal. They all represent configura-
tions, when both electrons are emitted to the same side of the source foil. Their reconstruc-
tion precision is worse than the precision of their white counterparts. This is implied by
effect of Geiger cell sharing which was already discussed. On top of this, we can observe
remarkable effect. Figure 4.42 shows distributions of y-coordinates of first vertex (y1) for all
six configurations represented by black bins. Note that, the distributions of y-coordinates of
second vertex (y2) follow the same distribution, therefore it is sufficient to discuss only the
first. As we approach the center of the plot B00→ B33 (B88→ B55), we can notice that the
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Figure 4.41: Top: Position of chosen diagonal bins within the diagram of foil angles α (sam-
ple in Figure 4.34d). The bins on the primary diagonal will be called "white" bins while bins
on the secondary diagonal will be called "black" bins. Bottom: Schematic representation
of electron configurations included in all chosen diagonal bins. Red rectangle symbolizes
the source foil viewed from top. Black dashed lines depict the axes of symmetry of source
foil. Blue (green) regions represent the span of foil angles α1 (α2), i.e. the relative possible
directions of first (second) electron with respect to the source foil. Purple regions depict
the situation when span of emission angles α1 and α2 are exactly the same. Note that, the
emission of the electrons can occur anywhere in the source foil, the placement in the center
of foil is only symbolic.
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Figure 4.42: Distributions of y-coordinates of vertex V1 in each of six black bins. Each
distribution is normalized to total sum of 100%. The distributions of y-coordinates of vertex
V2 are not plotted, as they are represented by effectively the same functions.

vertices are preferentially reconstructed on the negative (positive) side of the y-axis. In case
of the corner bins B00 and B88, which represent emission perpendicular to the source foil,
the distribution is very close to flat. The asymmetry is easily understandable if we take into
account the presence of magnetic field. Homogeneous magnetic field of 25G in positive z-
direction is applied in full volume of the demonstrator. The electrons are negatively charged
particles, therefore, they are curved counterclockwise from the point of view opposite to
the direction of the magnetic field. Figure 4.43 clarifies the situation in simple scheme. It
represents the demonstrator from top view (see coordinate system).

The scheme represents four different electrons which exit the foil under the same angle
relatively to the source foil5. All of the electrons in the figure represent same energy, i.e.
curvature of their track is exactly the same. Two of the electrons marked by dashed lines
are curved back to the source foil causing the elimination of such event. However, their
symmetrical counterparts are registered in side calorimeters (X-calo) and the event stays
valid from the point of view of SDBDRC. Events with both electrons emitted to the left
side of the source foil (negative x) pass the SDBDRC more likely in the bottom side of the
scheme (negative y). These events are represented by bins B22 and B33. This asymmetry is
exactly the effect seen in a left side of the Figure 4.42. In contrary, the electrons emitted to
the right side of the source foil (positive x) pass the SDBDRC more likely in the top side of
the scheme (positive y). They are represented by bins B55 and B66. Once again, the effect is
visible in the right side of the Figure 4.42.

Now, if we have a look at the configurations representing exactly the same situations,
but with the electrons emitted to the other side of the source foil, we should recover the
distribution symmetry along the y-axis. The electrons which are lost in the top part of the
source foil by emission to the left side of the foil are compensated by the electrons emitted
to the right side and vice versa. These configurations are represented by white bins (on the
primary diagonal). Figure 4.44 is consistent with the assumption.

The distributions of vertices in z-direction do not show any of the aforementioned fea-
tures and they do not change as we move along the diagonals. This fact is another proof that

5Note that this relative angle is measured with respect to the line parallel to source foil, therefore, they are
not the same as our standard foil angles α .
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Figure 4.43: Scheme representing four symmetric configurations of electron emission from
the foil. Each electron is emitted under exactly the same angle with respect to the y-axis.
Magnetic field curves the electrons counterclockwise (view from top). Electrons represented
by solid line are detected by X-calo calorimeter side wall (green) while electrons with dashed
line trajectories are curved back to the source foil causing extra vertex on source foil. It leads
to rejection of events belonging to these electrons by SDBDRC.

Figure 4.44: Distributions of y-coordinates of vertex V1 in each of six white bins. Each
distribution is normalized to total sum of 100%. The distributions of y-coordinates of vertex
V2 are not plotted, as they are represented by effectively the same functions.

the asymmetry in y-direction was caused by magnetic field. Finally, let us have a look how
the distributions are really changed with a change of magnetic field. For a comparison, I took
three samples of 2νββ decay events with three different magnetic fields (0 G, 25 G and 60
G), namely, S6, S7 and S8. In both I preserved events from off-diagonal quadrants. In sce-
nario "A" I considered only the events from bottom left quadrant, i.e. α1,α2 < 60◦, while in
scenario "B" I analysed only events from top right quadrant, i.e. α1,α2 > 120◦. Left side of
the Figure 4.45 shows behaviour similar to the one in left side of the Figure 4.42. However,
in case without magnetic field, the distribution tends to be flat. It is a final proof that the
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Figure 4.45: Distributions of y-coordinates of vertex V1 for three different values of mag-
netic field (2νββ ). Figure on the left represent all the events with α1,α2 < 60◦ (both elec-
trons emitted to the side of the foil with negative x). Figure on the right side represent all
the events with α1,α2 > 120◦ (both electrons emitted to the side of the foil with positive x).
Each distribution is normalized to total sum of 100%. The distributions of y-coordinates of
vertex V2 are not plotted, as they are represented by effectively the same functions.

vertex asymmetry really comes from the presence of magnetic field. For the completeness,
let me comment the scenario B. As seen in the right side of the Figure 4.45, the asymmetry
shows the same behaviour, only the side was changed, as expected.

The presence of magnetic field combined with SDBDRC was proven to cause asymmetry
in vertex distribution along the horizontal y-axis. This fact might come handy as a tool for
background elimination. Let us change the charge of the particles in Figure 4.43 to a positive
value. The particles in the magnetic field now spin on clockwise trajectories. We could
follow the whole discussion for the positively charged particles from the very beginning and
coming to the exactly the same conclusion - magnetic field causes the asymmetry of the
vertex distribution in y-direction. However, there is one important detail. The asymmetry
would be flipped, i.e. the events containing particles emitted to the left side of the source
foil (negative x) would more likely pass SDBDRC if the original vertex was in the top part
of the source foil (positive y), and vice versa. Therefore, the region close to the negative
y-edge of the source foil would tend to keep negatively charged particle more often than
those with positive charge if the event happens on the left side of the source foil (negative
x). The inverted statement hold for the positive y edge. These two regions have potential
to suppress the background events caused by positively charged particles in favour of signal
events which always contain negatively charged particles. It is questionable how big the
suppression effect would be, and whether it would perform better than simple suppression
based on the clockwiseness of the track, however, such question is beyond the scope of the
thesis.

As I already commented, curvature of particles cause asymmetry presented in scheme
in Figure 4.43. The curvature is naturally influenced by magnetic field as it was shown. In
order to finally demonstrate that the effect really comes from the effect from Figure 4.43,
I performed simulation where except for application of SDBDRC I also eliminated all the
events which were detected in X-calo wall. The result is shown in Figure 4.46. The figure
was produced under exactly the same conditions as the ones showed in Figure 4.30 except

134



4.7: Conclusions

(a) 0νββ (S3). (b) 0νββ χ0 (S4).

(c) 0νββ χ0χ0 (S5). (d) 2νββ (S7).

Figure 4.46: Distribution of events passing SDBDRC as a function of position on the source
foil. Distributions are the same as those presented in the Figure 4.30, however, in these, all
the events detected in X-calo were eliminated. Source foil was divided into 37 horizontal
(y-direction) and 20 vertical (z-direction) bins. Distribution represents four different double
beta decay samples.

for the fact that in Figure 4.30 were accepted events which were detected in X-calo. We
can clearly see disappearance of two spots, even though, both figures were produced under
magnetic field of 25G. If one needs to avoid the effect of asymmetrical curvature at the end
of source foils, it is simply sufficient to ignore all the events detected by X-calo walls.

4.7 Conclusions
The study of the vertex precision provided wide palette of observations which might

serve as useful guidelines in order to choose events with a tracking information of the highest
quality. Let me sum up the most important results of the chapter:

1. Energy dependence - All four studies have shown that the vertex precision is mainly
given by the kinetic energies of the electron. Within the same studied sample regard-
less of the type of study (escape angle, foil position, foil angles) the precision was
improved by observation of electrons of higher average energies. The choice of elec-
trons with higher energies was done either by direct cut on the energy (for example
study of the escape angle distributions) or by simply comparing the precisions for four
different double beta decay processes with different mean electron energy. The energy
dependence is mainly caused by scattering of the electrons which occurs in the source
foil. The lower energy electrons tend to scatter much more, preserving the informa-
tion about the decay angle worse than the electrons of higher energies. For the highest
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electron energies the correlation between Φdec and Φesc tends to approach Φdec = Φesc
as shown in Figure 4.23.

2. Vertex efficiency - Study of the vertex efficiency performed for all the previous stud-
ies and shown in Section 4.3 revealed total independence of the efficiency on any of
the studied parameters. Results have shown, that regardless of the situation, always
roughly one event in four is reconstructed in a way that, the real vertex Vr lies in the
rectangular area delimited by two reconstructed vertices V1 and V2 in the yz plane.

3. The dependence on side of the foil - The analysis of foil angles revealed, that the
events when electrons are emitted to the same side of the foil, are reconstructed less
precisely than equivalent events (in terms of relative angle to source foil) emitted to
the opposite sides. This effect is due to the fact that the electrons emitted to the same
side have high possibility to trigger same Geiger wires. In the emission to the opposite
side this effect does not exist.

4. Assymetry of precision between small and large Φesc - Events with the smallest
escape angles (i.e. Φesc . 50◦ ) tend to have worse vertex precision then the equivalent
events for the highest angles (i.e. Φesc & 120◦ ) as depicted in Figures 4.27 and 4.28.
The asymmetry is caused by the effect of cell sharing explained in previous point.
Lower escape angles include events when both electrons are emitted to the same side
of the source foil much more often than the highest angles where the effect, in contrary,
occurs less and less likely as we approach Φesc = 180◦. Therefore, the cell sharing is
the key to understanding of the characteristic shape of the vertex precision as a function
of escape angle.

5. Worsened precision for Φesc ≈ 90◦ - Except for improvement of the vertex precision
as we approach Φesc = 180◦, the vertex precision manifest local worsening in region
of Φesc ≈ 90◦ as seen in Figures 4.27 and 4.28. Here, another effect has to be consid-
ered. If we take into account all possible situations when electrons leave source foil
under Φesc = 90◦, in terms of foil angles, we find out that the more an electron is per-
pendicular to the source foil, the more another one is parallel to the foil and vice versa.
As it was shown in study of foil angles, events with electrons which escape parallel to
foil, belong to the central cross or close to it, where the vertex precision is the worst.
The contribution of these scenarios spoil the vertex precision for Φesc ≈ 90◦. For all
the scenarios with higher and lower escape angles, such an effect is getting smaller
while the aforementioned effect of Geiger cell sharing (point 3.) gradually takes over
and determine the shape of the lowest and highest angles.

6. Two spots in the foil distribution - In analysis of the vertex precision in dependence
on the position on the source foil, two spots of lower precision (and abundance of
events which passed SDBDRC) was observed. Two spots were symmetrically dis-
tributed on the ends of the source foil, along the horizontal y-axis. It was shown to
be effect of the presence of magnetic field. Figure 4.43 represents the events with the
electrons emitted to the same relative angle with respect to the source foil, but in dif-
ferent positions and sides of the source foil. Side calorimeter walls (in green) cause
some events to pass the SDBDRC while equivalent ones on the other side of the source
foil are rejected because the magnetic field curves them back into the foil. It causes the
two spots on the ends on the foil. However, these events tend to be also reconstructed
less precisely than the events closer to the center of the source foil. As the magnetic
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field is oriented in the positive direction of dimension z, the two spots are observed
only in y-direction and not z-direction. If necessary, one can possibly eliminate this
class of the events by ignoring events when at least one electron was detected in the
calorimeter wall on the side.

7. Potential for data cuts - The analyses showed small or questionable potential for data
cuts which could enhance the signal to background ratio. Case of the energy distribu-
tions of the vertex precisions showed high dependence of the precision on the energy
of both electrons. This suggests, that the cut imposed on the distance of two vertices
would be equivalent to cut in energy and, therefore not enhancing signal to background
ratio further. However, in order to study difference in vertex precision after application
of the same energy cut, one would need much larger data samples than those which
were used in my studies. The energy cuts to E > 2.7 MeV or stricter, significantly
diminish statistics of all double beta decay modes except for 0νββ which makes it
significantly difficult to collect sufficient statistics. Potential to enhance signal to back-
ground ratio might, however, come from the asymmetry mentioned in point 6. where
the events in two spots at both ends of source foil are able to discriminate between
the charge of the particle. However, this speculation would need further investigation,
beyond the scope of the thesis.

The studies presented in the chapter represent the first step towards the precise investi-
gation of vertex reconstruction, which might in future yield better precision in the measure-
ments of angular distributions. Different features of effects which impact the vertex precision
were discussed and quantified. Except for that, these studies represent test of applicability
of different methodologies which can be possibly used to evaluate and compare the vertex
precision.
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Chapter 5
Simulations of SuperNEMO Neutron
Shielding

Among all the other sources of background, neutrons can also cause indirectly a fake
double beta event in the detector. It is, therefore, inevitable for experiments of high sensitiv-
ity such as SuperNEMO to take them into account. According to their different character we
can divide background neutrons into external and internal.

External neutrons are produced in materials outside the detector. Their typical source
in LSM is a rock surrounding the lab. Analyses have shown a presence of Uranium and
Thorium in the rock. These elements produce alpha particles which are capable to produce
neutrons via (α,n) reactions. They also undergo spontaneous fission also capable to produce
neutrons. LSM is the deepest European laboratory with overburden on the level of 4800
m.w.e. Only roughly one in a million cosmic muons reach the lab which is 1.7 km deep
underground. However, these remaining high energy muons interact with the rock and can
possible produce neutrons. It is necessary to develop a shielding which is able to effectively
capture neutrons and lower the chance for observation of fake double beta decay event caused
by neutron.

Internal neutrons, as the name suggests, are produced inside of the detector materials.
Each material for SuperNEMO demonstrator is carefully chosen and tested for radiopurity
in order to eliminate any source of internal background to maximal possible level. Naturally,
it is not possible to eliminate internal neutrons completely and, therefore, their sources have
to be well known and described. In SuperNEMO, there are two main sources of internal
neutrons. First of all, it is roughly 286 kg of glass used in the PMTs. The glass contains 238U
which fissions spontaneously by production of roughly 2 neutrons per fission. The activity
of the glass was measured to be on the level of 1 Bq/kg. The glass is expected to account for
roughly 104 neutrons produced every year. Second main source of internal neutrons can be
found in a small metallic component of feedthroughs on top and bottom of the demonstrator
used for gas ventilation. These feedthroughs contain Beryllium as well as Uranium. Uranium
produces neutrons via spontaneous fission, while Beryllium is capable to effectively capture
alpha particles and produce neutrons via (α,n) reactions. Total mass of these tiny metallic
parts in demonstrator will account for roughly 12 kg but is still expected to contribute to
roughly 5×103 internal background neutrons every year. Even though, radiopure detector
materials produce orders of magnitude less neutrons every year than the ones coming from
external sources, they are almost impossible to be shielded which makes them in general
potentially more dangerous.

The background neutrons can be thermalized in the shielding and/or detector materials.
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Subsequently, they can be captured while gammas of few MeV are produced. For these high
energy gammas, positron-electron pair production is dominating process. Due to uncertain-
ties in track reconstruction positron might be reconstructed as an electron. Such an event
represent fake (background) double beta decay event.

The tasks presented in the current chapter were performed during early works on the de-
sign of SuperNEMO demonstrator shielding. It represents first rough estimations of external
neutron backgrounds which contributed to the discussion of the neutron shielding design.
The goal of the chapter is to perform a first comparison between scenarios with different
shielding materials. The fluxes passing through shielding are estimated based on the re-
alistic background measured in LSM. Materials capturing the most of the neutrons in the
detectors were identified.

5.1 Simulations of the Shielding
Following study is dedicated uniquely to the external neutron background. The main

goal is to compare a shielding performance of three different materials (polyethylene, wa-
ter and wood) of three different thicknesses (10 cm, 20 cm and 30 cm). Combination of
these materials and their thicknesses represent nine "wall scenarios" ("shielding scenarios").
The simulation was performed in two phases. In the first phase, background neutrons from
spectrum measured in LSM was propagated through a simple wall for each one of the nine
wall scenarios. In second phase, the neutron spectrum which passed the wall was used as
an input spectrum for Falaise simulation in order to identify the materials and regions of the
demonstrator which captured the majority of the neutrons.

External neutrons are induced in the rock surrounding LSM by cosmic muons which have
to pass 4800 m.w.e. overburden. They are also produced by Uranium and Thorium isotopes
in the rock. They produce neutrons directly in spontaneous fission or alpha particles able to
induce neutrons via (α,n) reactions.

Figure 5.1: Scheme describing the process which leads to the production of fake double-beta
events induced by neutrons. The process is described in more detail in the text.

Figure 5.1 depicts simplified scheme of production of fake double-beta signal in the
demonstrator caused by neutron. Neutron originating in the rock surrounding the lab looses
kinetic energy in a sequence of collisions. These collisions occur either in the shielding or
in the demonstrator construction material. In each collision the neutron undergoes, there is a
chance that the neutron would be captured by nucleus it collides with. Majority of the neu-
trons are slowed all the way down to thermal energy (0.3 eV) before they are captured. At
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the thermal energy neutron’s cross section for capture increases drastically. However, neu-
trons with higher energies can also be captured before thermalization is finished. Nucleus
which captured neutron has changed its structure and now it has excess excitation energy
which has to be released. It does so, typically, in a form of one or few gamma rays of several
MeV. Each gamma with energy superior to 1.022 MeV (two electron or positron masses)
is capable to produce electron-positron pair. The probability of the process is increasing
with the gamma energy. The magnetic field present in the demonstrator ensures opposite
clockwiseness of trajectories belonging to the particles with opposite charge. However, if
trajectories are straight enough, positron trajectory can be misreconstructed as an electron.
The sequence of events composed of a neutron thermalization, followed by neutron cap-
ture, pair production and misreconstruction of positron as electron might seem very unlikely.
Nevertheless, neutrons are particles without charge which are very difficult to stop. There
are millions of neutrons emitted from rock every year into the lab and each can potentially
produce fake signal. It is important to estimate not only their numbers but also how often
they are captured in the detector.

5.1.1 Phase One: Neutrons Passing Through Shielding
As a first step towards the estimation of effects of external neutron background, it is

important to know the neutron energy spectrum produced by rock in LSM. In my simulations
I used spectrum estimated by [104]. The resulting spectrum is depicted in Figure 5.2.

Note that, the spectrum provided by the article was estimated for all neutrons with energy
higher than 1 MeV. Therefore, the spectrum in the lowest, roughly 1 MeV section (before first
red data point), was obtained by simple linear extrapolation. Total integral flux of neutrons

Figure 5.2: Spectrum of external neutrons BLSM(En) as measured in [104]. Red dots repre-
sent data points obtained from the article. Blue lines represent simple linear interpolations
of the function in order to obtain continuous spectrum. Note that, the region for the lowest
energy region 〈0 MeV, 1 MeV) is not covered in the article and was extrapolated towards
BLSM(0) = 0.
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Figure 5.3: Schematic representation of first phase simulation geometry. Neutron was shot
perpendicularly (in vacuum) towards a wall composed of one of three materials named in
the figure. Each simulated neutron sample represented proportion of total flux ΦI with given
weight. Its calculation is explained in text. Thickness of the wall was set either to 10 cm, 20
cm or 30 cm in dependence on the wall scenario. Total outgoing flux ΦO was accumulated
as a total sum of all neutron sample weights which passed the wall. Those samples which
passed to the other side with remaining energy of E < 0.3 eV were scored also to thermal
flux ΦT

O, the rest was scored into flux ΦR
O. The size of wall in both directions perpendicular

to impacting neutron was 1 m which was sufficient to prevent neutrons leaking to the side.

measured in LSM is 10−6 s−1cm−2, therefore, the spectrum in Figure 5.2 is normalized to
this value.

Interest of the first phase of the neutron simulation is in the test of different shielding
materials. Three materials were chosen: polyethylene, water and wood. Simulation was
performed using Geant software package, version 4.10.02.b01. Geometry of the simulation
is depicted and briefly explained in Figure 5.3.

Inside of the wall, neutrons were slowed down or, possibly, stopped. Only neutrons
which passed through were scored in a spectrum. This spectrum represents spectrum of
neutrons which could be seen behind shielding made of chosen material. Nine different sim-
ulations were performed each containing 8×106 samples. Water in simulation was composed
of Hydrogen and Oxygen atoms in ratio 2:1. Water is standard material already defined in
the Geant package as well as polyethylene. Polyethylene in Geant is composition of Carbon
and Hydrogen in ratio 1:2. The only material which I had to define by hand was wood. In my
simulation, wood was composed of Hydrogen, Carbon and Oxygen in following respective
ratio 4:2:1.

Energy spectrum was sampled by neutrons from flat energy distribution between 0 MeV
and Emax = 9.5 MeV. Flat distribution of samples is useful to obtain homogeneous sample
coverage (and also statistical uncertainty) all over the neutron spectrum. In order to take into
account the shape of the background distribution (Figure 5.2), different simulated neutron
samples did not represent same proportion of flux. Proportion of neutron flux carried by
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Mat. d ΦΦΦ
TTT
OOO×××111000999

ΦΦΦ
RRR
OOO×××111000999

ΦΦΦ
TTT
OOO / ΦΦΦ

RRR
OOO ΦΦΦOOO×××111000999

ΦΦΦIII×××111000999

[cm] [s−1cm−2] [s−1cm−2] [1] [s−1cm−2] [s−1cm−2]
PE 10 114 285 0.401 399 1000.1

water 10 114 391 0.292 505 1000.1
wood 10 96 479 0.201 575 999.9

PE 20 37 48 0.778 85 1000.2
water 20 64 95 0.673 159 999.8
wood 20 91 150 0.605 241 999.7

PE 30 7 9 0.805 16 999.6
water 30 19 23 0.813 42 1000.3
wood 30 38 44 0.863 83 999.8

Table 5.1: Results of the first phase of shielding simulation. For each of the nine wall
scenarios flux which passed through the shielding is displayed. Fluxes marked with index
"O" represent the flux behind the wall. Index ΦT

O represents flux of all neutrons which passed
wall with remaining energy of E < 0.3 eV (thermal). In contrary, ΦR

O represents the rest of
the spectrum behind the wall, i.e. E > 0.3 eV. ΦI displays flux impacting the wall. The value
is within statistical precision equal to 10−6 s−1cm−2 in each wall scenario.

neutron sample was expressed by weight w. Sample with random energy En represented a
flux given by value BLSM(En) given by function in Figure 5.2. The weight w is, however,
not yet complete. The numerical value BLSM(En) of LSM neutron background spectrum
represents number of neutrons per unit energy (and unit area and unit time). Therefore, it
is crucial to know which fraction of energy spectrum each generated sample is representing.
As it was already mentioned, in each (out of nine) wall scenarios NS = 8×106 neutron
samples were simulated. They homogeneously covered energy interval 〈0 MeV, 9.5 MeV〉.
Therefore, each simulated sample represented a ∆E/NS of energy interval. Here, ∆E = Emax
- Emin is an energy range covered by generator’s interval (i.e. Emin = 0 MeV and Emax = 9.5
MeV). Finally, the weight of each sample was given by

w =
BLSM(En)∆E

NS
. (5.1)

Weight w represents a fraction of integral flux per unit area and unit time (ΦI = 10−6

s−1cm−2) contributed by sample with energy En. Therefore, the sum of all weights over all
samples should (within a negligible statistical error for large samples) give total integral flux.
It is a confirmation mechanism that everything goes well in the simulation. Obtained values
of total initial flux ΦI are shown in last column of Table 5.1.

After the weight of sample was calculated, the neutron sample was propagated through
the wall of given material and thickness. Let me remind at this point, once again, that
while the thickness of the wall was finite, the other two dimensions were effectively infinite,
meaning that the other two dimensions were large enough to prevent neutrons exiting on a
side of the wall. Fraction of the neutron flux was captured inside of the wall or deflected
back, however, many of the neutrons were only slowed down and propagated to the other
side of the wall. These neutrons were scored, according to their remaining energy after
moderation, into resulting output spectrum. Integral flux of the neutrons which passed the
wall in each of the nine wall setups is shown in the Table 5.1.

Table contains values of total flux of thermal neutrons (En < 0.3 eV) ΦT
O which passed the
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Figure 5.4: Spectrum of neutrons which passed the shielding in nine different wall scenarios.
Figures represent first two energy regions: A - (0 eV, 0.3 eV〉 and B - (0.3 eV, 200 eV〉.
Every single figure depicts three wall scenarios with the same thickness in order to compare
performance of the materials.
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Figure 5.5: Spectrum of neutrons which passed the shielding in nine different wall scenarios.
Figures represent first two energy regions: C - (0.2 keV, 200 keV〉 and D - (0.2 MeV, 9.5
MeV〉. Every single figure depicts three wall scenarios with the same thickness in order to
compare performance of the materials.
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wall, ΦR
O - flux of all the rest of neutrons (En > 0.3 eV) passing the wall, total outgoing flux

on the other side of the wall ΦO = ΦT
O + ΦR

O and total incoming flux ΦI given by spectrum
of background neutrons in LSM. Incoming spectrum is obtained as a sum of weights of all
the generated particle samples and can serve as estimation of precision of the simulation.

For a given thickness, polyethylene is the best shielding material. With only 10 cm
thickness, polyethylene is capable to stop roughly 60% neutrons, while water and wood of
the same thickness only less than 50%. In scenarios with wall of 10 cm thickness polyethy-
lene seems to produce the largest contribution of thermal neutron flux. Polyethylene does
not only stop the neutrons of any energy more effectively than water or wood, it is also very
effective in thermalization of neutrons passing the wall. In scenarios with 30 cm thick wall,
almost half of the remaining neutron flux is thermalized. This is similar for all the three
materials. Nevertheless, polyethylene stops neutrons more than twice as effectively than wa-
ter and more than four times as effectively as wood. For any given thickness, polyethylene
performs the best while wood shows the worst results. It is also important to note at this
point, that the results of wood shielding in my simulation are dependent on the definition of
wood as a material. Definition of such an amorphous material like wood, can be, in principle,
chosen in many different ways. Wet wood contains more water (more Hydrogen) than dry
wood and composition of other elements might differ as well. It has to be taken into account
when comparisons are discussed.

The neutron which passed the wall have access to the detector and can potentially cause
fake double beta-signal. Not only fluxes but also spectra of neutrons behind the wall were
saved in the simulations. They are plotted in Figures 5.4 and 5.5. The neutron spectrum,
typically, covers several orders of magnitudes in energy. Therefore, I decided to split it into
four different energy regions called A, B, C and D which I have plotted separately. Their
limits are following: A - 〈0 eV, 0.3 eV), B - 〈0.3 eV, 200 eV), C - 〈0.2 keV, 200 keV), D
- 〈0.2 MeV, 9.5 MeV). Weight of each generated neutron sample was scored into one of
these four regions in dependence on the remaining neutron’s kinetic energy after passing the
wall. Sample of weight w represents a fraction of integral flux (in s−1cm−2) not normalized
to energy. Energy regions A, B, C and D cover different proportions of full spectrum and,
therefore they contain, in principle, different number of samples. In order to be capable to
compare fluxes between the regions it was necessary to normalize flux again back to the unit
of energy. The width of bin bw was different in each region. The energy normalization is
performed simply by dividing the weight of neutron sample by bin width into which it was
scored, i.e. (w/bw). Outcoming energy spectra behind wall for all wall scenarios in regions
A, B, C and D, respectively, are shown in Figures 5.4 and 5.5.

5.1.2 Phase Two: Mapping of Demonstrator
Phase one of the neutron simulation provided very useful information about spectra of

remaining neutrons behind the shielding (Figures 5.4 and 5.5). These neutrons have access
to detector and have possibility to produce fake double-beta events. They were used as an
input spectra in the second phase of the simulation. The question of interest in this phase
is to determine number of neutrons per year which are captured in demonstrator. It is im-
portant to evaluate the number of neutrons captured every year in the different demonstrator
construction materials and compare their contribution.

The simulation was performed by Falaise version 2.0.0. As it was mentioned in the intro-
duction to the chapter, this work was performed when the early discussions of the shielding
design for demonstrator took place. Therefore, shielding was not yet included in the soft-
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Figure 5.6: Schematic representation of simulation’s setup in phase two. Figure shows wire
model of box surrounding the demonstrator. From each of six surfaces neutrons were shot
homogeneously to 4π solid angle. Yellow arrows represent example of two neutrons orig-
inating in same point in the box. Neutron which was heading inside was followed in the
simulation while neutron exiting out of the box was immediately rejected (symbolized by
red cross). The box was for the purposes of display negligibly expanded. Real box was
touching the demonstrator from each side.

ware. It is a reason why the passage of neutrons through wall was simulated separately in
phase one using Geant package. Neutron spectrum which passed the wall in one of nine
wall scenarios was a starting point for phase two. Similarly to first phase, neutrons were
generated in a flat spectrum to ensure homogeneous exposure of the spectrum. Neutrons
were generated in box tightly surrounding the demonstrator. The box’s center matched the
center of demonstrator. The size of the box was 187×600×406cm3. Neutrons were shot
from random positions distributed on the surface of the box into 4π angle directions. Those
with initial momentum heading out of the box were not taken into account.

Figure 5.6 represents simple scheme of setup in simulation in phase two. Rejection of
neutrons emitted outside caused loss of 50% of the simulated samples, however, the version
of Falaise in use lacked possibility to generate particles into predefined solid angles.

In phase one simulation, I concluded that spectra of neutrons passing the shielding span
over many orders of magnitude in energy. Thermal neutrons have a much larger probability
to be captured due to their cross sections. They represent, however, crucial but extremely
narrow stripe of the spectrum. This give rise to a difficulty to properly sample all the ener-
gies. In the second phase, I sampled energy range of 0 MeV to 8 MeV. Version of Falaise
in use (2.0.0) allowed to generate only flat energy spectrum for generated particles. Such an
generator generates samples homogeneously. Therefore, if we generate N samples homoge-
neously in energy interval (0 MeV, 8 MeV), only a fraction of them would fall into interval
(0 eV, 0.3 eV) which is seven orders of magnitude smaller. The chance, that sample would

146



5.1: Simulations of the Shielding

be generated as thermal neutron is equal to proportion between the widths of two intervals
which is equal to 0.3 eV / 8×106 eV = 3.75 ×10−8. Probability to generate thermal neutron
in flat distribution is then only 3.75 ×10−6 %. In order to generate one single thermal neu-
tron one would need to generate in average more than 26 million samples. It was necessary
to modify approach to properly sample the thermal neutrons which are probably the most
crucial contribution of neutron captures. I decided to divide phase two into two smaller sim-
ilar simulations. In first one, simulation ST, only thermal neutrons from energy region of A
(defined previously) were simulated. In second one, simulation SR, the rest of the spectrum
was simulated, i.e. energy regions B, C and D together. Neutrons in both of them, as pre-
announced, were simulated as a flat spectrum. In ST neutrons were simulated from energy
range of 〈0.001 eV, 0.3 eV), in SR from energy range of 〈0.3 eV, 8 MeV).

Weight of each data sample was calculated exactly the same way as I have shown in phase
one simulation. In this case, however, the flux was entering through the surface of roughly S
= 90 m2 of the box around the demonstrator and the simulation represented the background
collected during period t = 3.15×107 s (one year). The weight from Equation 5.1, expressed
flux in s−1cm−2 had to be multiplied by period t and surface S to give number of neutrons
passing through box surface S captured in demonstrator during one year. Therefore, the
weight in phase two was calculated as

w =
Bi

WALL(En)∆ESt
NS

. (5.2)

Bi
WALL(En) represents spectrum passed through the wall in wall scenario of interest (Fig-

ures 5.4 and 5.5). ∆E is a width of the energy range from which neutrons were randomly
generated. In the simulation (ST), simulated range covered interval 〈0.001 eV, 0.3 eV), there-
fore, its ∆E = 0.299 eV. Furthermore, simulation SR covered neutron from range of 〈0.3 eV,
8 MeV), which gives ∆E = 7.9999997 MeV. NS represents number of samples in the simu-
lation. This number was also different for both ST and SR. In simulation ST, sample number
of NS = 1.9997×107 was left after outward going neutrons were eliminated. The real sim-
ulated number of generated events was exactly 4×107. In case of simulation SR, 3.2×107

samples were generated out of which NS = 1.59979×107 were heading inside of the box.
The final weight assigned to the neutron sample represents a number of neutrons per year.
It is important to remind, that the same neutron sample was used for each of nine scenarios,
the difference between the results comes only from the difference in the shape of the spectra
given by Bi

WALL(En) represented by plots in Figures 5.4 and 5.5.
In both simulations, I was interested in the locations of neutron captures inside of the

demonstrator. If generated neutron sample was captured, name of the material, in which
capture happened, was saved. Weights of neutrons were scored into separate data containers,
each representing one of the materials. Finally, the sum inside of each container represent
number of captures expected in the material during one year of operation of detector.

Tables 5.2 and 5.3 represent simulated neutron captures inside of four materials with the
most neutron captures. Both tables are expressed in thousands of neutron counts per year.
Table 5.2 represents all the captures of neutrons initiated by neutrons from thermal part of the
spectrum (E < 0.3 eV, region A) in simulation ST. On the other side, Table 5.3 represents all
the captures of neutrons initiated by neutrons from rest of the spectrum (E > 0.3 eV, regions
B, C and D) from simulation SR.

The results clearly show that the vast majority of neutrons from both parts of spectrum are
captured in Iron. Iron captures roughly 93% of all neutrons from thermal part of the spectrum
and roughly 88% of all neutrons from the rest of the spectrum. Iron is a very widely used
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Wall scenario
En ≤ 0.3 eV (ST) 30 cm 20 cm 10 cm

PE water wood PE water wood PE water wood
All 168 437 896 874 1494 2121 2666 2667 2250

D
et

ec
to

r

m
at

er
ia

l Iron 157 409 837 817 1396 1982 2492 2493 2103
Plexiglass 4.8 12 25 25 42 60 76 76 64
SN-metal 4.5 12 24 23 40 57 71 71 60
Copper 0.8 2.2 4.5 4.4 7.5 11 13 13 11

Table 5.2: Table displays number of expected captured neutrons inside of the demonstrator
per year caused by thermal neutrons behind the wall (flux ΦT

O, energy region A). Columns
represent nine different shielding wall scenarios. First row displays number of all captures
in detector followed by four lines representing detector materials with most captures. Values
are represented in thousands of neutrons per year.

Wall scenario
En > 0.3 eV (SR) 30 cm 20 cm 10 cm

PE water wood PE water wood PE water wood
All 103 274 539 579 1150 1843 3450 4658 5626

D
et

ec
to

r

m
at

er
ia

l Iron 91 242 478 513 1019 1635 3063 4132 4992
Plexiglass 3.8 10 19 20 40 62 118 165 205
SN-metal 5.3 14 28 30 60 97 176 234 275
Copper 1.8 4.6 9.1 10 20 32 60 81 97

Table 5.3: Table displays number of expected captured neutrons inside of the demonstrator
per year caused by neutrons with energy superior to 0.3 eV after they passed the wall (flux
ΦR

O, energy regions B, C and D). Columns represent nine different shielding wall scenarios.
First row displays number of all captures in detector followed by four lines representing
detector materials with most captures. Values are represented in thousands of neutrons per
year.

material in the demonstrator. It is used in all supporting constructions which hold the module
together. Plexiglass is used in calorimeter - for instance, in side calorimeter (xcalo) it serves
as a light guide and it has a form of cubic blocks. Furthermore, material denoted as SN-
metal is composed of Nickel (77 %), Iron (16 %), Cobalt (0.05 %) and Molybdenum (0.02
%). The material is used for shielding of PMTs against magnetic field (to ensure their proper
performance). Copper is used in all parts where good electrical conductivity is needed, for
example in Geiger cell endcaps shown in Figure 5.13.

After a sample was captured, coordinates x,y and z of position of the capture was also
saved. Such an information is useful to build a 3D map of all neutron captures in demonstra-
tor. The demonstrator volume (and part of its vicinity) was divided into cubic bins of 4×4×4
cm3. When neutron was captured, its weight was scored into the bin in which neutron cap-
ture occurred. With addition of information about the material where capture occurred, I was
able to produce such 3D maps for each material separately.

Maps in Figure 5.7 show 2D projections of 3D distribution of all captures in the demon-
strator. Projections are always projected into xy plane (top view), xz plane (xcalo side view)
and yz plane (main calorimeter view from side). The projections represent sum of all neu-
tron captures in direction perpendicular to the plane of projection. This give rise to apparent
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Figure 5.7: Projections of 3D maps of neutron captures in the demonstrator. All captures
(regardless of material) caused by thermal neutron flux behind shielding ΦT

O are included.
Numerical value represents number of captures per year in 16 cm2 (surface of bin). Results
represent wall scenario with PE shielding of 10 cm thickness.
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Figure 5.8: Projections of 3D maps of neutron captures in the demonstrator. Only captures
in Iron caused by thermal neutron flux behind shielding ΦT

O are included. Numerical value
represents number of captures per year in 16 cm2 (surface of bin). Results represent wall
scenario with PE shielding of 10 cm thickness.
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Figure 5.9: Projections of 3D maps of neutron captures in the demonstrator. Only captures in
Copper caused by thermal neutron flux behind shielding ΦT

O are included. Numerical value
represents number of captures per year in 16 cm2 (surface of bin). Results represent wall
scenario with PE shielding of 10 cm thickness.
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Figure 5.10: Projections of 3D maps of neutron captures in the demonstrator. Only captures
in Plexiglass caused by thermal neutron flux behind shielding ΦT

O are included. Numerical
value represents number of captures per year in 16 cm2 (surface of bin). Results represent
wall scenario with PE shielding of 10 cm thickness.
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Figure 5.11: Projections of 3D maps of neutron captures in the demonstrator. Only captures
in Delrin caused by thermal neutron flux behind shielding ΦT

O are included. Numerical value
represents number of captures per year in 16 cm2 (surface of bin). Results represent wall
scenario with PE shielding of 10 cm thickness.
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Figure 5.12: Projections of 3D maps of neutron captures in the demonstrator. Only captures
in SN-metal caused by thermal neutron flux behind shielding ΦT

O are included. Numerical
value represents number of captures per year in 16 cm2 (surface of bin). Results represent
wall scenario with PE shielding of 10 cm thickness.
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red hot spots in some projections. These hot spots are caused by the integration of bins over
the third dimension. The frequency of the captures have to be considered by comparison
of all three projections in order to avoid wrong conclusions. Each 2D bin is represented in
number of neutrons captured during one year per 16 cm2. Figures 5.8, 5.9, 5.10, 5.11 and
5.12 represent same type of projections, this time for captures in Iron, Copper, Plexiglass,
Delrin and SN-metal, respectively. In case of Iron it is possible to recognize the supporting
structures of the detector. Delrin is a material not included in the Tables 5.2 and 5.3. Delrin
is used as radiopure insulator which can be found for example in the endcap of each Geiger
cell. Its photo can be found in Figure 5.13. SN-metal structures, as already discussed, serve
as a magnetic field shielding in order to protect PMTs (for xcalo and gveto). They can be
clearly recognized in Figure 5.12. Figures 5.7 to 5.12 provide great demonstration of the
distribution of materials in the detector.

Figure 5.13: Photo of Geiger cell endcap. White part, made of Delrin, serves as an insulator.

Neutron simulations represent first estimation of neutron fluxes which could be expected
with use of different types of shielding. The information was used to form first design
proposals for the neutron shielding. Simulation in second phase was performed without
physical presence of the shielding in the simulation’s setup. This approximation, however,
cannot reproduce effects of neutrons which are scattered back into the wall after they have
already passed it. They can be subsequently thermalized and re-emitted back into the vol-
ume of demonstrator. The phase two of the simulation accounts only for neutrons directly
traversing shielding and interacting in the module or leaving. Full realistic simulations will
be performed after the shielding will be implemented into the Falaise. For the moment the
result proposed in this section are sufficient approximation demonstrating the behaviour of
neutrons in the detector and giving a reference point for future work.

5.2 Problem of Neutron Capture Generators
Neutron simulations performed in previous sections studied the effects of neutron propa-

gation and capture in the detector. It gives an information about the potential of the captures
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to generate fake double-beta signal. In order to obtain real estimation of background from
neutrons one would need to follow the gammas produced in the capture. Even though, the
process of gamma deexcitation is fully implemented in Geant package, the performance of
used model is not sufficient. In following section, I will briefly explain the pitfalls of gener-
ators of gammas originating from thermal neutron capture.

Neutron interactions are probably the most difficult processes to be reliably simulated.
Used interaction models are frequently only phenomenological. Data describing the nuclear
levels and the transitions are frequently not precise enough to give results of the highest pre-
cision. All these factors contribute to complexity of computational tasks involving neutrons.

It is, therefore, important to be familiar with the performance of the simulation code in
conditions of the problem in question. For majority of the applications (especially problems
including high energy neutrons) available codes for simulation work precisely enough to give
reliable final results. However, the central, and most important process of this chapter is the
neutron capture of thermal neutrons. Due to their large cross sections for neutron capture,
thermal neutrons are potentially the biggest contributor to the detector’s background out of
all the neutron spectrum.

5.2.1 Thermal Neutrons in Geant4
Simulation of all the physics in Falaise (simulation code for SuperNEMO demonstrator)

is delegated to Geant4 [100, 101, 102]. Therefore, in order to test the performance of neutron
simulation, I decided to test it directly in Geant4.

I set up very simple simulation. Thermal neutrons (i.e. En = 0.3 eV) were produced in
the center of 1×1×1 m3 cube made of 54Fe. Their initial momentum was isotropic. The
neutrons were scattered in the cube until they were captured. The dimensions of cube were
large enough to ensure that all the neutrons are captured inside of it. I generated 5×105

neutrons. Example of ten events from the simulation are shown in Figure 5.14. After each

Figure 5.14: Example of 10 thermal neutron events. Neutrons (green tracks) at thermal
energy (E = 0.3 eV) were shot from the center of the cube (1×1×1 m3) into full (4π) solid
angle. Cube was sufficiently large to capture all the generated neutrons.
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EEEγγγ IIIGGG444 IIINNNDDDSSS IIIGGG444/IIINNNDDDSSS

[MeV]
[

γ

100ev.

] [
γ

100ev.

]
[1]

0.412 15.23 19 0.80
0.931 1.73 2.1 0.83
1.24 0.79 1 0.79
1.638 1.38 1.7 0.81
1.918 1.69 2.1 0.81
2.052 1.60 2 0.80
2.47 3.15 3.9 0.81
2.618 1.89 2.4 0.79
2.67 1.22 1.5 0.81
2.873 0.89 1.1 0.81
3.005 0.81 1 0.81
3.028 2.12 2.6 0.82
3.38 1.21 1.5 0.81
3.508 0.81 1 0.81
3.552 1.15 1.4 0.82

EEEγγγ IIIGGG444 IIINNNDDDSSS IIIGGG444/IIINNNDDDSSS

[MeV]
[

γ

100ev.

] [
γ

100ev.

]
[1]

3.792 1.47 1.8 0.82
4.455 1.27 1.6 0.79
4.495 2.70 3.4 0.79
4.589 2.12 2.6 0.82
4.707 0.98 1.8 0.54
4.802 2.30 2.9 0.79
5.391 0.97 1.2 0.81
5.507 1.89 2.4 0.79
5.745 1.86 2.3 0.81
6.268 2.59 3.2 0.81
6.826 1.50 1.9 0.79
7.246 1.61 2 0.81
8.886 9.95 12.3 0.81
9.297 111.61 66 1.69

Table 5.4: Results from thermal neutron simulation represented in Figure 5.14. Each line
represents one of the gamma lines emitted after thermal neutron capture on 54Fe. Table com-
pares intensities of the line obtained from Geant4 simulation (IG4) to intensities in Nuclear
Data Sheets (INDS) obtained from [105]. Intensities are represented in number of observed
gammas per 100 events.

neutron was captured, it produced one or several gammas. I scored each gamma energy into
single gamma spectrum. Energies of all gammas produced in one capture were summed up,
and the result was scored in another spectrum.

Table 5.4 shows a summary of the obtained intensities for all gammas of intensity su-
perior or equal to one gamma per 100 events. The results are compared to the expected
intensities based on nuclear data. In last column, ratio of intensity obtained by simulation
and expected intensity is shown. The comparison shows that gamma of highest energy is
overestimated by almost 70% while all the other gammas are underestimated by roughly
20%. Moreover, energy of the highest gamma line (Eγ = 9.297 MeV) represents situation
when nucleus is deexcited by one gamma all the way to the ground state. The intensity of
this gamma obtained from simulation is IG4 = 111.61 gammas per 100 events. The value of
intensity implies, that this gamma occurs in average more than once per event. Therefore,
simulation produces events when this gamma is emitted at least twice. The energy released
by this highest gamma line is equal to the difference between highest possible state and
ground state. It represents the Q-value of the neutron capture. Emission of two 9.297 MeV
gammas, therefore represent non-conservation of the energy in the event.

Problem of non-conservation of energy is clearly visible in Figure 5.15. Figure shows
spectrum of energies released per one event.

The region of the energy spectrum marked by blue rectangle represents all the events in
which more energy was emitted than it should have been. It is possible to find examples
when energy twice as higher than Q-value was released. Naturally, this is unwanted feature.
The study was repeated for 56Fe, 63Cu and 65Cu and compared with [106], [107] and [108].
The results showed violation of energy conservation in all of these cases.
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Figure 5.15: Spectrum of energies per event obtained from thermal neutron simulation repre-
sented in Figure 5.14. Region of spectrum marked by blue rectangle represents all the events
in which energy emitted by gammas is higher than Q-value of neutron capture. These events
violate conservation of energy.

5.2.2 Stair Generator
The non-conservation of the energy in the thermal neutron capture is caused by neglect-

ing the correlations between the gammas. The excess excitation energy can be released by
one gamma or several gammas in a cascade.

Figure 5.16 - Left shows the simplest non-trivial deexcitation scheme with one interme-
diate level. Energy difference between the highest energy state EH and ground state E0 can
be released in two possible ways. Either via one gamma (γ00) or two gammas in coincidence
(γ10 + γ11). Regardless of the fact, whether the excitation energy EH−E0 was released by
one or several gammas, the energy released by deecitation must be always the same. The
generator in Geant4, however, did not fulfil this condition. If we look at the right side of
the Figure 5.16, we can see an illustration of the scheme from left for a randomly chosen
cascade probabilities x101 and x111 in a form of single gamma energy spectrum. γ10 and γ11
originate in the same cascade, therefore, their intensities will always be equal. The propor-
tions of intensities γ10/γ00 and γ11/γ00 depend only on the proportion of cascade probabilities
x101/x111.

Let us assume now, that both cascades x101 and x111 happen exactly 50% of the time. It
means that the intensity of each of two gammas γ10 and γ11 are the same as the intensity of
γ00. Moreover, we know that average number of gammas per capture would be 1.5 because
50% of time nucleus is deexcited by one gamma and rest of the time by two gammas.

Now, let me propose a simple neutron capture generator. First of all, the generator
chooses randomly (based on the gamma per event distributions) a number of emitted gam-
mas. In our example we have 50% chance to generate two gammas. Say, the generator
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Figure 5.16: Left: Example of simple system with three nuclear states. E0 denotes energy
of ground state, E1 energy of first excited state and by EH we understand the energy of the
highest excited state. EH is always a state of nucleus immediately after the thermal neutron is
captured. Right: Representation of decay scheme from left as it would be seen in the energy
spectrum (for specific choice of cascade probabilities x101 and x111). Naming convention of
cascades and gammas is explained in the text.

have chosen two gammas in first event. In next step, the generator has to choose (randomly)
the gammas which are emitted. If we pick them only based on the intensities in the energy
spectrum in the right side of Figure 5.16, we could pick, for example, emission of γ00 along
with γ11. Both gammas emit together energy larger than difference EH−E0, therefore, en-
ergy is not conserved. However, in our example, the mean number of emitted gammas, as
well as single gamma energy spectrum, is preserved. Such an approximation causes energy
non-conservation in Geant4 generator. Moreover, it is possible to obtain γ00 repetitively in
the same event, which causes events with emission of several Q-values of energy. While
such an statistical, average approach is acceptable as a good approximation for some high
energy applications, it is not suitable for the study of neutron background in SuperNEMO
demonstrator. Energy of gamma emitted after neutron capture influences cross section of the
pair production, in other words, how likely is it to obtain potential fake double-beta event. If
several gammas are emitted in a cascade, there is a chance that both would produce pair and
violate proper signature of fake double-beta decay event. Creation of several gammas in a
cascade increase chance of rejection of fake-double beta signal. Therefore, it is important to
have generator with proper simulation of both, the gamma multiplicities in cascade (gamma
correlations) as well as energy conservation. This is however, very difficult task to fulfil.

In order to preserve energy, the gammas have to be generated in correlation, i.e. as a
whole cascade. Such an approach could be achieved by generator which I call "Stair Gen-
erator". The principle is simple. The generator takes a database of single gammas and their
intensities (data obtained from measurement) as an input. Each gamma has a designated
level of origin. In example from Figure 5.16 γ00 and γ10 would have origin state EH while
γ11’s origin state would be E1. The generator starts generating always at the highest level EH.
Among all the gammas which originate in EH, first gamma in cascade would be chosen ran-
domly. The probability is proportional to the intensity of the gamma. Gamma subsequently
leads to lower energy level, where another gamma is randomly chosen among all those which
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EEEγγγ IIISSSGGG IIINNNDDDSSS IIISSSGGG/IIINNNDDDSSS

[MeV]
[

γ

100ev.

] [
γ

100ev.

]
[1]

0.412 19.9599 19 1.05
0.931 0 2.1 0.00
1.24 0 1 0.00

1.638 1.661 1.7 0.98
1.918 0 2.1 0.00
2.052 2.02 2 1.01
2.47 0.6708 3.9 0.17

2.618 1.12 2.4 0.47
2.67 0 1.5 0.00

2.873 0 1.1 0.00
3.005 0 1 0.00
3.028 1.62 2.6 0.62
3.38 0.8999 1.5 0.60

3.508 0 1 0.00
3.552 2.06 1.4 1.47

EEEγγγ IIISSSGGG IIINNNDDDSSS IIISSSGGG/IIINNNDDDSSS

[MeV]
[

γ

100ev.

] [
γ

100ev.

]
[1]

3.792 0.4857 1.8 0.27
4.455 0 1.6 0.00
4.495 2.16 3.4 0.64
4.589 2.99 2.6 1.15
4.707 0.7729 1.8 0.43
4.802 2.16 2.9 0.74
5.391 1.99 1.2 1.66
5.507 2.32 2.4 0.97
5.745 2.06 2.3 0.90
6.268 3.74 3.2 1.17
6.826 1.51 1.9 0.79
7.246 2.0693 2 1.03
8.886 12.65 12.3 1.03
9.297 67.6032 66 1.02

Table 5.5: Results obtained by Stair Generator. Each line represents one of the gamma
lines emitted after thermal neutron capture on 54Fe. Table compares intensities of the lines
obtained from Stair Generator (ISG) to intensity in Nuclear Data Sheets (INDS) obtained from
[105]. Intensities are represented in number of observed gammas per 100 events.

originate in the level. The process is repeated until the ground state is reached. Such an ap-
proach preserves energy in the event by generation of full cascades, the correlations between
gammas are taken into account.

Table 5.5 shows gamma intensities ISG obtained by simulation of 106 events with Stair
Generator. The results are compared with values INDS obtained from nuclear data sheets
[105]. The correspondence for many gammas is very precise. However, many gammas are
underestimated or overestimated by several tens of %. Note that, by the nature of generator,
it is ensured, that energy is preserved exactly in each event. However, except for gammas,
whose intensities are overestimated or underestimated, we can find examples of gammas
which are not generated at all. These gammas originate in states lower than EH. Problem of
the generator is that, it relies strongly on the consistency of data. However, the data contains
several gammas unassociated with any of the states. Therefore, many of the gammas are
not accessible by generator because their origin states are never reached. Let me show an
example based on Figure 5.16 - Left. γ11 is produced only if generator reaches excited level
E1. Only possibility to reach the state is by emission of γ10. If this gamma is missing from the
experimental dataset, the state E1 is never reached and γ11 never produced. In principle, the
generator should work reliably with perfectly consistent dataset (all gammas are associated
and properly connected). It is, however, rarely true.

5.2.3 Possible Solution
As we learned in the previous section, it is important to have a generator which accounts

not only for correlations of gammas, but also for imprecisions in the input datasets. For
this purpose, I propose a possible solution. It represents interesting proposal to solve the
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problems with gammas from thermal neutron capture and might help in the future to pave a
road for precise estimation of fake double-beta decay rates originating from neutrons.

5.2.3.1 Naming Convention

In order to describe proposed generator, let me first clarify naming conventions used in
the problem. Figure 5.17 represents cascade scheme similar to the one in Figure 5.16 - Left,
but this time with two intermediate states E1 and E2.

First of all, let us discuss the convention used to designate full gamma cascades. In the
example, there are four different cascades: x1001, x1011, x1101 and x1111. The index holds a
full information about the structure of cascade. Let me take cascade x1011 as an example.
The cascade starts with transition EH→ E1 followed by transition E1→ E0. The cascade
involves states EH, E1 and E0. If we list all four states involved in our system in order of
descending energy (EH, E2, E1, E0) and then represent each state by 0 or 1, we obtain the
naming convention. 1 is assigned, if state is involved in the cascade, 0 is assigned otherwise.
Therefore, cascade involving chain of transitions: EH→ E2→ E0 is designated by x1101.
The number of indices always corresponds to number of all states in the system. Note that,
all the cascades start and end by ones simply because the highest state EH and ground state
E0 has to be always involved. These two indices might be omitted. If we do so, we can define
one-to-one correspondence between binary numbers and cascades. We just need to rewrite
binary number (after omission of leading and final one in the index) in decimal system. Such
an alternative notation is shown in bracket under the original (binary) notation in Figure 5.17.
In decimal notation the structure of the cascade is not obviously visible just by looking at the
index, however, it is much more practical when it comes to calculations. For systems with
many intermediate states, binary notation becomes lengthy and cumbersome. In following,
I will always follow decimal notation for simplicity.

With decimal notation in mind, it is trivial task to calculate how many possible cascades
can be expected in the system given the number of intermediate levels. In my example, there
are two intermediate levels E1 and E2. In each cascade, none of the levels might be involved
(x1001 / x0), one level might be involved (x1011 / x1 and x1101 / x2), or both of them might be
involved (x1111 / x3). There is no other possibility unless we add another intermediate level.

Figure 5.17: Scheme of gamma deexcitation cascades after thermal neutron capture. The
scheme represents situation with two intermediate excited states E1 and E2.
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If we omit the ones at the beginning and the end of cascade each one can be represented
by any two digit combination of 0 and 1. Therefore, there is 22 cascades in the example.
Accordingly, with n intermediate states one could draw 2n different cascades.

In case of single gammas, the convention is bit more complicated. Different gammas are
shared between the cascades, so their naming convention cannot be derived from the name
of the cascade they belong to. As a first step, I divided the gammas into classes. Zero class
gamma is the one which connects the highest state EH with the ground state E0 (γ00). In each
system, regardless of the number of intermediate states, there is only one zero class gamma.
It is always the one which skips all the intermediate states. First class gamma, I call the
gamma which skips one level less than zero class gamma (γ10 and γ11). Zero class gamma
was skipping two states, therefore, first class gamma (in system with two intermediate states)
skips one level. Every higher class skips one less state. In our system with two intermediate
states the last class is second class when gammas do not skip any intermediate level (γ20,
γ21 and γ22). In other words, such gamma connects neighbouring levels. Number of classes
depends on number of intermediate states. Each gamma has two indices. First index denotes
class to which gamma belongs. Second index serves to differ between the gammas in same
class. The lowest index is always 0 and it denotes gamma of highest energy of level from
which it originates. For instance, γ10 and γ11 both belong to first class, but γ10 originates
in level EH which is higher level of origin than in case of γ11 (level E2). In this sense, the
gammas belonging to the same class are denoted by increasing second index as their state
of origin is lower. Index of last gamma in the class always equals the number of class. If
we keep that in mind, we can easily calculate number of single gammas for given number of
intermediate states. There is always one zero-class gamma. First class includes always two
gammas and class i contains i+1 gammas. The highest class is always n-th class (where n is
number of intermediate states in the system) with n+1 gammas. To obtain total number of
single gammas in the system we have to sum up all the gammas from all classes, i.e. numbers
from 1 up to n+1 (including). The total sum is (n+1)(n+2)/2. Two index convention is very
useful in order to easily cover all possible gammas for given system, however, one index is
more practical to be used. Example of such convention can be found in brackets next to each
gamma in Figure 5.17. In following examples, I will keep on using the simpler one-index
notation.

Table 5.6 summarizes number of cascades (NC) and unique single gamma transitions
(Nγ ) as a function of number of intermediate states in the system (n).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
NNNCCC 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
NNNγγγ 1 3 6 10 15 21 28 36 45 55 66 78 91 105

Table 5.6: Table displays number of all possible cascades NC and single gamma transitions
Nγ in a system with n intermediate states.

5.2.3.2 Description of Generator

Cascade variables xi can be used to store probabilities of cascade occurrence. If we
would have the proper values, we would be able to generate thermal neutron capture gammas
properly in the coincidence and with energy conserved in the event. On the other side,
standard nuclear tables provide intensities of single gammas in form of γj variables. As
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an additional information, usually, the level of origin for each gamma is provided. The
intensities are represented in number of gammas per 100 events (i.e. in %).

The task is, therefore, to find a relationship between cascade variables xi and single
gamma intensities γj. As it was discussed already, this is possible only to a certain precision,
as the data might miss some gamma transitions causing the exact generators to fail.

Imagine, we know the probabilities xi for each single cascade to occur (with infinite
precision). In such case, we would be able to easily calculate how often gamma occurs. For
instance, probability of γ3 to occur in random event is given by probability p3 = x2 + x3. It
can be created by any of these two cascades. Such an relation can be written for each of the
gammas:

p0 = x0

p1 = x1

p2 = x2

p3 = x2 + x3

p4 = x3

p5 = x1 + x3. (5.3)

Here, pj represents probability (ideal intensity) of γj to occur. Composition of the equations
is clear from Figure 5.17. These are the equation for case with two intermediate states. Note
that, cascade probabilities are normalized to one:

x0 + x1 + x2 + x3 = 1, (5.4)

because in each event any cascade should always occur. Cascades are also mutually exclu-
sive. However, this does not hold for single gammas:

p0 + p1 + p2 + p3 + p4 + p5 > 1. (5.5)

Sum of their probabilities is always higher than one (except for the trivial case with no
intermediate state) and represents the average number of gammas per 100 events. However,
all we have available are the gamma intensities γj which might not be perfectly consistent
due to experimental uncertainties. Nevertheless, if they were, the measured intensities γj
should be exactly same as gamma probabilities (pj) obtained by ideal measurement:

γ j = p j. (5.6)

Equations 5.6 form a set of "Structure Equations" (SE). Six SE encode all the necessary
relations for the case of two intermediate states. Such equations could be written for case
with any number of intermediate states.

As the name suggest, cascade probabilities are probability variables, therefore their val-
ues should be always in the interval 〈0,1〉. At this point, I would like to point out specific
property of SE. Let us have a look back to Equation 5.3. Based on the previous remark,
non-observation of γ3 in experimental data (i.e. p3 = 0) would imply x2 = 0 and x3 = 0. As
neither of the cascade variables can be negative, this is the only possibility. However, x3 =
0 would imply p2 = p4 = 0. It is a (welcomed) consequence of the correlations between the
gammas in the cascades.

Experimental datasets usually originate from sets of different experiment with different
experimental uncertainties or sensitivities of measurement setups. Therefore, it is no surprise
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that situation when γ3 = 0 and γ2 6= 0 can occur even though it should not (see Figure 5.17).
Strictly speaking, for such a combination of single gamma probabilities, no solution in form
of (non-negative) cascade probabilities xi would exist. The Stair Generator worked on bit
different principle, however, this was exactly the reason why it did not work properly.

In order to account for experimental uncertainties in the input datasets, we have to take
an approximative approach. It is important to have an approach which would allow us to
reproduce measured intensities as precise as possible while preserving the cascades and, the
most importantly, the energy.

Let me start with Equation 5.6. It represents (in case of two intermediate states) exact
relations between the cascade probabilities and single gamma intensities in ideal case. Let
me define a function δj(xi):

δ j(xi) = γ j− p j. (5.7)

In case of ideal data, obviously, δj = 0. Based on the experimental uncertainties discussed
above, it is impossible to reach such a solution. In such case δ 2

j (xi) expresses the imprecision
of the solution. pj is a linear function of cascade probabilities xi. Therefore, δ 2

j (xi) is also
a function of cascade probabilities. It is always non-negative, which is ensured by raising
δj to a second power. Single gamma intensities γj serve as functional parameters given by
data. Finally, variation of all the cascade probabilities xi, within the allowed interval 〈0,1〉,
influences a variation of δ 2

j (xi) values. The values of interest are those as close to zero as
possible. Nevertheless, each δ 2

j (xi) function reaches the minimal value for different set of
cascade coefficients. To ensure, that we have found the minimal global value, it is necessary
to minimize sum of all the contributions:

∆(xi) =
Nγ

∑
allgammas

∆
2
j(xi). (5.8)

In case of two intermediate states ∆(xi) function has a following form:

∆(x0, x1, x2, x3) = δ
2
0 +δ

2
1 +δ

2
2 +δ

2
3 +δ

2
4 +δ

2
5 , (5.9)

where

δ0(x0) = γ0− x0,

δ1(x1) = γ1− x1,

δ2(x2) = γ2− x2,

δ3(x2,x3) = γ3− x2− x3,

δ4(x3) = γ4− x3,

δ5(x1,x3) = γ5− x1− x3. (5.10)

γj are gamma intensities given by experimental measurements. Finally, solution to the prob-
lem is a quadruplet of cascade probabilities xs

0, xs
1, xs

2, xs
3 fulfilling all the following condi-

tions:

0≤ xs
0, xs

1, xs
2, xs

3 ≤ 1,
xs

0 + xs
1 + xs

2 + xs
3 = 1,

∆(xs
0, xs

1, xs
2, xs

3) = min
[
∆(xi)

]
. (5.11)

This is a well known problem of finding constrained functional extremes. It can be ap-
proached by method of Lagrange multiplier. The whole presented approach can be applied
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to systems with arbitrary number of intermediate levels, limited only by amount of com-
puting power. Each extra intermediate level adds to the complexity of the problem factor
of two (number of cascades). Nevertheless, vast majority of the cascades could be consid-
ered as zero for each γj which is equal to zero (as already discussed). Once, all the cascade
probabilities are obtained, random number generator can choose between the cascades ran-
domly. The conservation of energy is guaranteed. One has to be careful about appearance
of non-existing gamma lines in the spectrum, however, this effect is a price to be paid for
incompleteness of data.

The generator proposed in this section has ability to improve with improved data preci-
sion, which I consider as the most important feature.

5.2.3.3 Solution for a System with Two Intermediate States

In the current section, I will show an explicit solution for a problem defined in Equation
5.11. It will be solved for a particular example of system with two intermediate states (de-
picted in Figure 5.17). In the process, I will develop a matrix formalism which will, finally,
make it applicable to a problem with arbitrary number of intermediate states.

During the whole derivation to follow, I will work in the space of column vectors, e.g.
v represents column vector while vT stands for a row vector. Before I will start the main
derivation, let me define "cascade vector" x, "probability vector" p, "gamma intensity vector"
γ and "delta difference vector" δ in following way:

x =


x0
x1
x2
x3

 , p =


p0
p1
p2
p3
p4
p5

 , γ =


γ0
γ1
γ2
γ3
γ4
γ5

 , δ =


δ0
δ1
δ2
δ3
δ4
δ5

 . (5.12)

Note the dimensions of each vector. Cascade vector x has 4 components (number of cas-
cades) while the other two contain 6 components (number of gammas). Such definitions will
be useful later in the derivation. Equation 5.3 can be rewritten in vector form pj = sT

j x. Here,
sj is one of six vectors which keep information about the structure of the cascades. For our
system their specific form is as follows:

s0 =


1
0
0
0

 , s1 =


0
1
0
0

 , s2 =


0
0
1
0

 , s3 =


0
0
1
1

 , s4 =


0
0
0
1

 , s5 =


0
1
0
1

(5.13)

Furthermore, if we define matrix S:

S = (s0,s1,s2,s3,s4,s5) =


1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 0 1 1 1

 , (5.14)

we can express Equations 5.3 in simple and compact matrix form:

p = ST x. (5.15)
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Following the definitions of vector p, γ and δ we can also rewrite delta differences δi given
by Equation 5.10 into matrix form:

δ = γ− p = γ−ST x. (5.16)

Finally, the global difference function ∆ given by Equation 5.9 takes form of dot product1 of
δ vector with itself:

∆ = δ
T

δ = (γT − pT )(γ− p) = γ
T

γ−2pT
γ + pT p. (5.17)

In the equation, I took advantage of Equation 5.16. In last step, I used the symmetry of dot
product, γTp = pTγ . Matrix formalism introduced in text above is applicable for any system
regardless of the number of intermediate states. Even though, I am focusing on the particular
case, the final result will be applicable for any problem of this type.

With the formalism at the place, it is possible to discuss the problem given in Equation
5.11. One needs to find a minimum of function ∆ for values of vector x whose components
add up to one. It is an optimization problem when extremes of the function of multiple
variables have to be found given a constraint. It can be solved by method of Lagrange
multiplier.

First of all, let me remind the method of Lagrange multiplier. If we want to find ex-
treme(s) of (for instance) two-dimensional function f(x,y) in region given by equation g(x,y)
= 0, one should define so-called Lagrange function first:

L (x,y,λ ) = f (x,y)+λg(x,y). (5.18)

Here, λ is so-called Lagrange multiplier. Extreme(s) of function f in the region g = 0 are all
lying in points obtained as a solution to a system of equations:

∂L

∂x
= 0,

∂L

∂y
= 0,

∂L

∂λ
= 0. (5.19)

For each λ obtained as a solution, vector (x, y) represents sought constrained extreme. The
method is applicable to functions f of arbitrary number of variables.

Let me now apply the method to our problem. The function f which we need to minimize
is function ∆, depending on all the components (variables) of vector x. The constraint g = 0
in our problem is given by the sum of all components of vector x which should always add
to one (full probability), i.e.

g(x0,x1,x2,x3) = 1− x0− x1− x2− x3 = 0. (5.20)

Therefore, the Lagrange function defining the problem is following:

L (x0,x1,x2,x3,λ ) = ∆(x0,x1,x2,x3)+λg(x0,x1,x2,x3). (5.21)

By putting all the partial derivations of Lagrange function equal to zero (according to recipe
from Equation 5.19) we get a set of equations:

∂L

∂x0
= 0,

∂L

∂x1
= 0,

∂L

∂x2
= 0,

∂L

∂x3
= 0,

∂L

∂λ
= 0. (5.22)

1Note that, whenever dot product of two vector appears throughout the derivation, it stands for the standard
vector dot product known from classical geometry, i.e. vT

1 v2 = vT
1 INv2. N is a number of components of vectors

v1 and v2 and IN stands for square unity matrix of dimension N.
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Now, if we realize that

∂g
∂xa

=
∂ (1− x0− x1− x2− x3)

∂xa
=−1, a = 0,1,2,3, (5.23)

we can rewrite Equations 5.22 into form

∂∆

∂x0
= λ ,

∂∆

∂x1
= λ ,

∂∆

∂x2
= λ ,

∂∆

∂x3
= λ , g = 0. (5.24)

It is possible to eliminate (in our case) unwanted λ multiplier by subtraction of second, third
and fourth equation from the first one and obtaining set of four equations (of four variables):

∂∆

∂x0
− ∂∆

∂x1
= 0,

∂∆

∂x0
− ∂∆

∂x2
= 0,

∂∆

∂x0
− ∂∆

∂x3
= 0, g = 0. (5.25)

As it will turn out soon, this is a set of linear equations which can be solved by application of
basic linear algebra. Note that, all the process presented until this point was not dependent
on the number of cascades, neither the number of gammas involved in the problem. The
specific case of two intermediate states (4 cascades, 6 gammas) is chosen as an example
clarifying the general matrix notation and the calculation process.

In steps to follow, it is necessary to evaluate all the partial derivations of ∆ function
with respect to cascade probability xa. Before I do that, it is important to express some
intermediate relations. Let me, firstly, define four-component base vectors e0 - e3:

e0 =


1
0
0
0

 , e1 =


0
1
0
0

 , e2 =


0
0
1
0

 , e3 =


0
0
0
1

 . (5.26)

Number of these vectors is given by number of cascades (cascade probabilities) assumed in
the problem. It is also useful to underline that for any vector v (or matrix M) and its transpose
vT (MT), following relations hold:(

∂v
∂α

)T
=

∂vT

∂α
,
(

∂M
∂α

)T
=

∂MT

∂α
(5.27)

for any variable α . It is easily to see, that by performing partial derivation with respect to
any of the cascade probabilities xa, on vector x we obtain one of the base vectors ea:

∂x
∂xa

= ea. (5.28)

Furthermore, vector γ and matrix S are constant and they yield zero when derived with
respect to xa:

∂γ

∂xa
= 0,

∂S
∂xa

= 0. (5.29)

Given the Equations 5.15, 5.28 and 5.29, following holds:

∂ p
∂xa

= ST ea. (5.30)
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Finally, we have all the ingredients in order to compute derivations of global difference func-
tion ∆. By putting Equations 5.17, 5.27, 5.29, 5.30 and symmetry of dot product together,
we can write:

∂∆

∂xa
= 2eT

a SST x−2eT
a Sγ. (5.31)

First three in Equations 5.25 have a form of difference of derivations of ∆. Using Equation
5.31 we can write:

∂∆

∂xa
− ∂∆

∂xb
= 2(eT

a − eT
b )SST x−2(eT

a − eT
b )Sγ, (5.32)

and Equations 5.25 gain form:

(eT
0 − eT

1 )SST x = (eT
0 − eT

1 )Sγ,

(eT
0 − eT

2 )SST x = (eT
0 − eT

2 )Sγ,

(eT
0 − eT

3 )SST x = (eT
0 − eT

3 )Sγ,

(eT
0 + eT

1 + eT
2 + eT

3 )x = 1. (5.33)

In last equation g = 0, I took advantage of the fact that (eT
0 +eT

1 +eT
2 +eT

3 )x = x0 + x1 + x2 +
x3. Having a closer look at the system in Equation 5.33 it is possible to spot hidden matrix
equation of form Ax = b where

A =


(eT

0 − eT
1 )SST

(eT
0 − eT

2 )SST

(eT
0 − eT

3 )SST

eT
0 + eT

1 + eT
2 + eT

3

 , b =


(eT

0 − eT
1 )Sγ

(eT
0 − eT

2 )Sγ

(eT
0 − eT

3 )Sγ

1

 . (5.34)

Finally, the sought vector x is, therefore, calculated as:

x = A−1b (5.35)

where A−1 is inverse of matrix A. Matrix A is a square matrix of dimension equal to number
of cascades involved in the system in question. It is relatively straightforward to extend ma-
trix A and vector b into systems with higher number of intermediate states, namely, systems
with NC cascades and Nγ gammas:

A =


(eT

0 − eT
1 )SST

(eT
0 − eT

2 )SST

...
(eT

0 − eT
NC
)SST

∑
NC
i=0 eT

i

 , b =


(eT

0 − eT
1 )Sγ

(eT
0 − eT

2 )Sγ

...
(eT

0 − eT
NC
)Sγ

1

 . (5.36)

Structure matrix S and vector γ are expanded accordingly, following the definition at the
beginning of the section.

5.2.3.4 Proof of the Concept by Analytical Solution

In order to prove the concept I will present solution of two (intermediate) state system
which was used as an example throughout the whole discussion about the generator. The
task is simple. We need to compose the matrix A and vector b from Equation 5.34, find
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the inverse matrix A−1 and subsequently calculate A−1b. Let me start with matrix A. As a
first step, it is helpful to compose row vectors of form eT

a - eT
b . Following the definition in

Equations 5.26 we can write:

eT
0 − eT

1 =
(

1 −1 0 0
)
,

eT
0 − eT

2 =
(

1 0 −1 0
)
,

eT
0 − eT

3 =
(

1 0 0 −1
)
. (5.37)

Taking advantage of definition of matrix S in Equation 5.14 we can write:

SST =


1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 0 1 1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1
0 0 0 1
0 1 0 1

=


1 0 0 0
0 2 0 1
0 0 2 1
0 1 1 3

 . (5.38)

Following the recipe in Equation 5.34, with help of Equations 5.37 and 5.38 we can evaluate
matrix A and vector b:

A =


1 −2 0 −1
1 0 −2 −1
1 −1 −1 −3
1 1 1 1

 , b =


γ0− γ1− γ5
γ0− γ2− γ3

γ0− γ3− γ4− γ5
1

 . (5.39)

It is now simple task to calculate matrix inverse A−1:

A =


1/4 1/4 0 1/2
−1/2 0 1/4 1/4

0 −1/2 1/4 1/4
1/4 1/4 −1/2 0

 . (5.40)

Finally, the solution x = A−1b has a following form:

x0 =
1
2

+
1
2

γ0 −
1
4

γ1 −
1
4

γ2 −
1
4

γ3 −1
4

γ5,

x1 =
1
4
−1

4
γ0 +

1
2

γ1 −1
4

γ3 −
1
4

γ4 +
1
4

γ5,

x2 =
1
4
−1

4
γ0 +

1
2

γ2 +
1
4

γ3 −
1
4

γ4 −
1
4

γ5,

x3 = −1
4

γ1 −
1
4

γ2 +
1
4

γ3 +
1
2

γ4 +
1
4

γ5. (5.41)

As it could be expected, solution has form x = c + Mγ where c is a constant vector with
dimension of x vector and M is matrix which is mixing all the gammas together to form
cascade probabilities xi. Note that, each column (therefore all the elements) of matrix M add
up to zero while all the components of the vector c add up to one exactly. It is a consequence
of constraint x0 + x1 + x2 + x3 = 1 which ensures that at least one of the cascades happens
regardless of the experimental values which are stored in γ vector.

Let me now demonstrate the performance of obtained result. The whole discussion was
motivated by the imprecisions in experimental data. As it was discussed, inconsistent input
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in form of γj intensities (missing transitions) made some of the transitions unreachable by
previously presented stair generator. Solution proposed in this section should not only con-
serve energy and γ correlations but the limit of its performance is given only by consistency
of the γ transition values plugged into it. This also implies that, for perfectly consistent data
set, the generator should give exact solution. Let me check this property. Let us have a
following input dataset:

γ
T =

(
γ0 γ1 γ2 γ3 γ4 γ5

)
=
(

0.5 0.05 0.4 0.45 0.05 0.1
)
. (5.42)

I will call this dataset ideal and denotes it by letter I because it represents perfectly consistent
data as if they were measured by ideal experiment. If we now plug these γ (I) values into
solution in Equation 5.41 we obtain following cascade probability vector:

xT =
(

x0 x1 x2 x3
)
=
(

0.5 0.05 0.4 0.05
)
, (5.43)

Taking advantage of structural equations given in Equation 5.3 we can calculate all the
gamma probabilities pi which would be produced by the generator.

Figure 5.18: Comparison of ideal gamma intensities (red) with intensities generated by my
generator (green).

Figure 5.18 contains comparison of ideal gamma intensities (red) from Equation 5.42
compared to intensities computed by the generator (green) based on Equations 5.41 and
structure equations. Generator is exactly matching the intensities provided by dataset. Even
though, this example is necessary check of basic performance, it does not yet reveal the real
power of the generator. If ideal data were plugged into stair generator, the result would be
also exact.

However, the main advantage of my generator is the possibility to work with imprecise
data. Imagine that (ideal) intensities in Equation 5.42 would be measured with realistic
detector giving rise to experimental uncertainties. Imagine that detector would measure
slightly biased values:

γ
T =

(
γ0 γ1 γ2 γ3 γ4 γ5

)
=
(

0.53 0.05 0.43 0.48 0 0.1
)
. (5.44)

These values are strictly speaking inconsistent, as it is not possible to find cascade probabili-
ties x0, x1, x2 and x3 such that, the resulting gamma probabilities pi obtained from Equations
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5.3 would be matching these measured values. Intensities of γ0, γ2 and γ3 are off by 0.03
while γ4 is missing completely. After we plug the γ values into the generator (Equation 5.41)
we obtain following cascade probabilities:

xT =
(

x0 x1 x2 x3
)
=
(

0.5 0.0475 0.4275 0.025
)
. (5.45)

As usual, these probabilities can be turned into gamma probabilities (intensities) as produced
by generator by using structure equations. Figure 5.19 is comparing the ideal data (I, red),
with imprecise experimental data used as a generator input (γ , blue) and gamma intensities
obtained by generator given the input (p, green). In case of γ0, γ2 and γ3 the generator

Figure 5.19: Comparison of ideal gamma intensities (red) with intensities biased by mea-
surement uncertainties (blue) and resulting gamma intensities generated by my generator
(green).

(green) was capable to totally or partially compensate the mismatch of measurement (blue)
and ideal data (red). In case of γ0, the errors cancelled out perfectly resulting in generator
being more precise that the input dataset. In other two cases, results from generator are
closer to reality than measurement. This is thanks to the structure of the cascades encoded in
the generator’s equations. Furthermore, γ4 is not present in experimental dataset. However,
the generator reproduces this transition at least partially. It is for a price of underestimation
of γ5, nevertheless, it is inevitable effect which we pay for imprecise data. Appearance of
γ4 in my example is a triumph of my generator. If we remind the structure of the cascades
from Figure 5.17 we see that γ4 is intermediate link between γ3 and γ5 in cascade x3. Stair
generator would be capable of generating γ3 but after it would fall to the E2 excited state it
would not be capable of reaching ground state E0, causing not only γ4 to be left out but γ5
being suppressed.

It is possible to conclude, that my proposed generator represents a possibility to recon-
struct gamma correlations as precisely as the input dataset allows. The presented example
for two intermediate states was chosen for simplicity and clarity, however, Equation 5.36
offers recipe for solution of any system. One only needs to compose the matrix of structure
S specific for the system. After matrix A is composed, it needs to be inverted. The dimen-
sion of the matrix is NC×NC where NC is a number of possible cascades in the system.
Based on the Table 5.6 we can see that, the number of cascades grows exponentially with
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the number of intermediate states in the system. However, even for complex systems, the
diagonalization of large matrices is achievable with computers nowadays. Furthermore, the
structure equations can be simplified significantly based on the selection rules which might
prohibit some particular gamma transitions to occur. The calculation needs to be performed
only once. After the vector of cascade probabilities x is obtained for given dataset, it does
not have to be recalculated, unless more precise experimental data are obtained as an input.
Proposed generator is conceptually general and it can be also applied for any systems where
decay cascades occur (regardless of particles produced in the transitions). It is also possible
to generalize the generator in order to work with transitions originating from lower than the
highest excited state EH.

5.3 Conclusions
The estimation of neutron background is generally difficult task to perform. In the chap-

ter, I compared neutron fluxes which could be expected to pass through shielding for nine
specific cases. Subsequently, estimation of neutron capture counts inside of the demonstrator
was performed. Materials with most of the captures were identified and mapped in form of
three dimensional capture maps.

The neutrons were followed all the way to the capture. Physics implemented in Geant
software package is sufficient and well implemented for such task. However, in second part
of the chapter it was shown, that the model of production of gammas produced in thermal
neutron capture is not sufficient for the task of estimation of background caused by neutrons.
Energy conservation and gamma coincidences are not preserved. New potential approach
which could take these two features into account was proposed. The performance of the
generator was demonstrated on a simple example. In future, I plan to apply the approach
on the real data for chosen isotopes and use it to estimate fake double-beta events caused by
neutron capture.
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Chapter 6
Estimation of Sensitivity of SuperNEMO to
0νββ with Majoron Emission

Main interests of double beta decay experiments are usually focused towards yet unob-
served 0νββ or 2νββ which was already proven to exist experimentally for various differ-
ent nuclei. However, there exist another more exotic double beta decay theories predicting
existence of 0νββ with emission of so-called Majoron(s):

0νββ χ
0 : (A,Z)→ (A,Z +2)+2e−+χ

0, (6.1)
0νββ χ

0
χ

0 : (A,Z)→ (A,Z +2)+2e−+2χ
0. (6.2)

Here, χ0 stands for a Majoron. Majoron is a massless Goldstone boson which arise due to
a violation of global B-L symmetry assumed in certain models. Its existence might have
important implications in Cosmology [109, 110, 111] or Astrophysics [112, 113, 114, 115].

Figure 6.1: Theoretical electron energy spectra of various types of double beta decay. In
green and orange one can see the spectra of 2νββ and 0νββ , respectively. In blue, spectra
of 0νββ with emission of one or two Majorons is depicted. The energy spectrum of two
electrons is a signature to distinguish processes represented in the plot.
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6.1: Calculation of Half-Life Limits

Different Majoron models result in different electron energy spectra. Examples of some
of them are shown in Figure 6.1. Each double beta decay spectrum has its own so-called
"spectral index". This is the possibility to distinguish them in the scientific literature. In the
whole thesis, under symbol 0νββ χ0 we understand process with spectral index n = 1 and
symbol 0νββ χ0χ0 stands for process with spectrum of index n = 3.

NEMO-3, set the limit for half life of 0νββ χ0 to 1.5×1022 yr (90% CL) and limit for
0νββ χ0χ0 at 3.1×1021 yr (90% CL) [116]. The goal of the chapter is to evaluate how much
can SuperNEMO improve these values.

6.1 Calculation of Half-Life Limits
As shown in Figure 6.1, different double-beta decay processes can be distinguished based

on the shape of two electron energy spectrum. Therefore, it is important to study energy
spectrum of processes of interest (0νββ χ0 and 0νββ χ0χ0) along with their backgrounds,
in order to find regions of interest (ROI) where one would have the best chance to observe the
decay. Subsequently, I will apply the recipe of Feldman and Cousins (presented in Appendix
B) to estimate the sensitivity of SuperNEMO experiments to 0νββ χ0 and 0νββ χ0χ0. The
sensitivity will be studied for two different CL as a function of background activities of 208Tl
and 214Bi.

6.1.1 Calculation of Detection Efficiencies ε

Among other parameters, Equation B.15 (used for calculation of sensitivity) includes de-
tection efficiency ε . Parameter ε expresses a fraction of all events of a particular process
which were successfully detected and reconstructed and which passed all the eventual data
cuts. The parameter can naturally be obtained only from a simulation. Simulation is per-
formed for N events of every single process (for example 2νββ ) with application of all the
detection imperfection (e.g. energy resolution, track reconstruction, etc.) and data cuts of
interest. Only Np events pass the requirements of data cuts. Detection efficiency is then
simply the ratio of events which passed over all the events which were simulated:

ε =
Np

N
. (6.3)

Example of calculated ε parameters can be found in Table 4.1 in Section 4.1.2.1. Table
compares detection efficiencies of four different processes after Standard Double Beta Decay
Reconstruction Criteria (SDBDRC - defined in the same section) were applied. Furthermore,
second column of the table is demonstration, that the different choice of data cuts alter the
efficiencies. Cut on energy E > 2 MeV resulted in slightly less 0νββ being accepted, how-
ever, significantly less 2νββ pass through such cut. It is a mechanism, which evaluates how
well chosen cut can discriminate between true signal and background.

Before I will discuss the sensitivities of SuperNEMO, it is important to extract detection
efficiencies. In order to eliminate events of arguable quality, I will always apply SDBDRC
to accept or reject event. The list of five conditions which event has to meet is exhaustively
discussed in Section 4.1.2.1.

In this study, I consider 0νββ χ0 and 0νββ χ0χ0 as a signal events. On the other side,
0νββ , 2νββ or decay of 208Tl or 214Bi can mimic the decay and will be considered as major
contributors to background. It is important to find a cut (on energy) which favours the signal
and suppress the background the most.
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6.1: Calculation of Half-Life Limits

Samp. Process Nucleus
Magnetic Number of
field [G] simulated events

S3 0νβ−β− 82Se 25 1.04×108

S4 0νβ−β−χ0 82Se 25 1.04×108

S5 0νβ−β−χ0χ0 82Se 25 1.038×108

S7 2νβ−β− 82Se 25 1.04×108

S9 β− 208Tl 25 1.04×108

S10 β− 214Bi 25 1.04×108

Table 6.1: List of simulated samples produced by Falaise 2.0.0 used in the study.

Each of these six processes have different shape of energy spectrum. Therefore, by
variation of energy cut Emin ≤ E < Emax one can observe the change in ratio of detection
efficiencies between signal and background processes.

I established such study by using Falaise 2.0.0. Each of the six samples from Table 6.1
were passed through SDBDRC with extra energy cut accepting only events with energy in
interval (Emin, Emax). I was varying values of Emin and Emax from 0 keV to 3500 keV by a
step of 100 keV. I combined all the possible values while keeping Emin < Emax. For each cut
detection efficiency coefficient ε was calculated.

Results are presented in Figure 6.2. Energy distributions with peak at the end of the
spectrum tend to produce ε plots with highest values on top while the ones with peak towards
the low energies produce ε plots with maximums on the left side. Six presented arrays of ε

values serve as an input for calculation of signal-to-background ratios in following section.

6.1.2 Calculation of Signal-to-Background Ratios
Detection efficiencies ε give us very important information about capabilities of energy

cut to suppress background and favour signal. Nevertheless, in order to find out what will be
the real ratio between signal counts and background counts this is not yet full information.
For a given process, number of observed counts with exposure amst depends not only on ε

but also on a half life T1/2 of the process. This becomes clear if we invert Equation B.8:

n = ln(2)
NA

W
ε

amst
T1/2

. (6.4)

This formula I used for estimation of expected background counts originating from 0νββ

and 2νββ of 82Se. Half life of 2νββ is already observed process and its half life is known.
The one I used was T2ν

1/2 = 0.92×1020 yr [117]. In case of 0νββ , only lower limit is available,
so I used value of T0ν

1/2 = 2.4×1024 yr published in [118]. Furthermore, isotopical mass of
82Se is W = 81.92 g/mol. Exposure amst was variable and is discussed later.

In case of 208Tl and 214Bi decays, the approach is bit different. These two processes
are standard backgrounds for observation of 0νββ . These isotopes can be found directly
in source foil and, therefore, it is important to suppress their presence. The radiopurity of
material is expressed typically in terms of activity (A) per kilogram of source foil. The total
observed counts from such decay (assuming that the activity does not change with time) can
be calculated following way:

n = εAamst. (6.5)
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6.1: Calculation of Half-Life Limits

(a) εM1 (S4) (b) εM2 (S5)

(c) ε0ν (S3) (d) ε2ν (S7)

(e) εTl (S9) (f) εBi (S10)

Figure 6.2: Detection efficiencies of six processes for different energy intervals obtained by
simulation.
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6.1: Calculation of Half-Life Limits

Goal of SuperNEMO is to keep the activities of 208Tl and 214Bi below 2 µBq/kg and 10
µBq/kg, respectively. In order to discuss the contribution of 208Tl and 214Bi on choice of
ROI with the best signal-to-background ratio I performed studies of 4 (extreme) scenarios
when activities ATl and ABi had all possible combinations of values 0 and 300 µBq/kg.

Calculation of background counts is simple summation through all the sources, i.e. 2νββ ,
0νββ and decays of 208Tl and 214Bi. If we want to evaluate ratio of signal and background
counts we need to provide also number of counts produced by 0νββ χ0 (0νββ χ0χ0). One
of the possibilities would be to take advantage of half life limit given for both processes.
However, this is not necessary. In the analysis, we need to find the most suitable energy ROI
which would maximize the signal to background ratio r. We need to compare r for different
scenarios, however, we are not interested in its value in absolute terms. The half life of the
signal process does not make a difference in the study. Therefore, I decided to express the
number of counts in terms of Equation 6.5. The frequency of occurence of both decay chan-
nels 0νββ χ0 and 0νββ χ0χ0 I express via activities A1 = A2 = 1000 µBq/kg. Such a choice
was made for esthetical reasons, in order to obtain signal-to-background ratios in units, tens
or larger orders of magnitude.

Finally, if we combine all the signal and background counts expressed via Equations 6.4
and 6.5 into signal-to-background ratio r, we obtain:

r =
εiAi

ln(2)NA
W

(
ε2ν

T 2ν

1/2
+ ε0ν

T 0ν

1/2

)
+ εT lAT l + εBiABi

. (6.6)

Numerator stands for number of counts of 0νββ χ0 (i = 1) or 0νββ χ0χ0 (i = 2) depend-
ing on which of the two we are studying currently. Denominator combines all four sources
of background. All the detection efficiencies ε depend on chosen energy cut and is provided
by results in Figure 6.2.

Similarly to detection efficiencies, the signal-to-background ratio is changing as a func-
tion of chosen ROI and can be represented in form of plots similar to Figure 6.2. Figures
6.3a - 6.3d represent distributions of signal-to-background ratios for 0νββ χ0 process for
four different constellations of activities ATl and ABi. Constellation, without Bi an Tl back-
grounds (ATl = ABi = 0 µBq/kg) in Figure 6.3a shows how 2νββ and 0νββ contribute to the
distribution of signal-to-ratio plots for different ROI. Other three plots are scenarios when at
least Tl or Bi background is present. The change in shape is negligible, which implies that
either 2νββ or 0νββ is a major contribution for background for 0νββ χ0. The situation is
clarified in Figure 6.3e. It contains spectra of 0νββ χ0 in comparison to all relevant back-
grounds in SuperNEMO after experiment would run for half a year observing 7 kg of 82Se.
The spectrum assumes scenario of ATl = ABi = 300 µBq/kg. Red dashed line represent sum
of all backgrounds while blue dashed line the spectrum of 0νββ χ0. It is obvious, that in
energies below 2500 keV 2νββ is hugely dominating. Above this value, in region of sig-
nal’s peak, 2νββ spectrum dramatically drops and we can observe contributions of roughly
the same order of magnitude from 0νββ , Bi and Tl. Nevertheless, activity values of Bi and
Tl are very extreme, exceeding the SuperNEMO design values tens up to hundred of times.
In standard situation, therefore, the most important background contribution around peak of
0νββ χ0 comes from 0νββ . Regardless of the activities of Tl or Bi the ROI in all scenarios
is interval (2600 keV, 2700 keV). This is the interval with the highest chance to observe the
decay if it exists.

Analogical signal-to-background ratio plots but for 0νββ χ0χ0 can be found in Figures
6.4a - 6.4d. Background scenarios remained exactly the same. It is possible to notice roughly
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6.1: Calculation of Half-Life Limits

(a) ABi = 0, ATl = 0 (b) ABi = 0, ATl = 300

(c) ABi = 300, ATl = 0 (d) ABi = 300, ATl = 300

(e) Spectrum of 0νββ χ0 vs. backgrounds.

Figure 6.3: Expected signal (0νββ χ0) to background ratio (a-d) as a function of chosen
energy interval. Figure e) represents a energy spectra of 0νββ χ0 and all the background
processes. Red dashed line represents sum of all background contributions while blue dashed
line represents spectrum of 0νββ χ0. Spectrum generated for exposure of 3.5 kg·yr. ATl and
ABi in captions are expressed in µBq/kg.
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6.1: Calculation of Half-Life Limits

(a) ABi = 0, ATl = 0 (b) ABi = 0, ATl = 300

(c) ABi = 300, ATl = 0 (d) ABi = 300, ATl = 300

(e) Spectrum of 0νββ χ0χ0 vs. backgrounds.

Figure 6.4: Expected signal (0νββ χ0χ0) to background ratio (a-d) as a function of chosen
energy interval. Figure e) represents a energy spectra of 0νββ χ0χ0 and all the background
processes. Red dashed line represents sum of all background contributions while blue dashed
line represents spectrum of 0νββ χ0χ0. Spectrum generated for exposure of 3.5 kg·yr. ATl
and ABi in captions are expressed in µBq/kg.
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6.1: Calculation of Half-Life Limits

forty-fold drop in r in the hot spots (peak value) in comparison to scenarios with 0νββ χ0.
The reason is clear if we compare Figure 6.3e with 6.4e. Background spectra in both plots are
generated under exactly the same conditions (ATl = ABi = 300 µBq/kg, t = 0.5 yr, exposure
7 kg), however, the shape of the signal (blue dashed line) changed. Peak of spectrum of
0νββ χ0χ0 is shifted to the lower energies relatively to 0νββ χ0. This region is strongly
dominated by spectrum 2νββ causing dramatic drop in signal-to-background ratio. It is
much more difficult to distinguish 0νββ χ0χ0 from 2νββ than it was in case of 0νββ χ0.
We should, therefore, expect much lower sensitivity values for 0νββ χ0χ0 than for 0νββ χ0.
ROI with the best signal-to-background ratio and, therefore, the best region to search for the
decay was similarly to 0νββ χ0 computed as (2600 keV, 2700 keV).

6.1.3 Sensitivity Results
Signal-to-background ratio plots presented in previous section are crucial inputs in or-

der to find the energy cut with the best chance for observation of 0νββ χ0 or 0νββ χ0χ0.
The ROIs extracted in previous section are useful if we obtain significant signal over the
background. Such ROI would give the observation of highest significance. In case when
discovery could not be claimed, it is important to set lower limit on the decay’s half-life.
The best possible limit experiment can provide, however, does not necessarily have to be
extracted from ROI with best signal-to-background ratio.

In what follows I will, finally, employ previously discussed Feldman-Cousins recipe in
order to compute half-life limits of SuperNEMO with respect to these two processes.

The recipe takes number of expected background counts b as an input. Four contributions
to 0νββ χ0 and 0νββ χ0χ0 backgrounds discussed previously produce total counts which
can be calculated by following equation:

b = amst

[
ln(2)

NA

W

(
ε2ν

T 2ν

1/2
+

ε0ν

T 0ν

1/2

)
+ εT lAT l + εBiABi

]
. (6.7)

Here, set of four ε values (detection efficiencies) are again taken from result in Figure
6.2. Half-lives of 2νββ and 0νββ were set to values of T2ν

1/2 = 0.92×1020 yr [117] and T0ν

1/2

= 2.4×1024 yr [118], as discussed in previous section. In all the performed calculations, the
mass of the pure 82Se in Selenium foils was set to m = 7 kg.

Number of background counts is the only input for Feldman-Cousins recipe. For each
value of expected background one obtains upper values of expected signal counts µU. Rela-
tionship of expected background counts and limit given by the recipe can be found in Figure
6.5.

Green and purple dots represent the values which I obtained after I implemented the
recipe for 90% and 95 % CL, respectively. I performed calculations for range of (non-
equidistant) values up to b = 276.6. Under 276.6, each upper limit was extracted by interpo-
lation between two closest calculated values. For higher values than b = 276.6 I extrapolated
the function by using:

µU = α
√

b. (6.8)

For 90% CL, I used function where α = 1.81 and for 95% CL, I used function where α = 2.13.
The two extrapolation functions are also shown in Figure 6.5 as red and yellow dashed lines.
We can observe that in the region b = (120, 276.6) these extrapolation functions overlap very
precisely with the values obtained by Feldman-Cousins calculation. Furthermore, the choice
of extrapolation was not based only on the similarity with performed calculated green and
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6.1: Calculation of Half-Life Limits

Figure 6.5: Plot showing relationship between expected number of background counts and
upper limit on signal counts resulting from two different approaches. The details are com-
mented in the text.

purple functions. For given number of background counts, the statistical fluctuations can be
described by Poisson distribution. However, as we reach higher values, the distribution starts
to resemble Gaussian bell. Expected fluctuations of background on a level of one standard
deviation is simply given by

√
b in such case. This represents notoriously known CL of

68.27%. For 90% CL we need 1.64 standard deviations (i.e. 1.64
√

b) and for 95% CL we
need 1.96 standard deviations (1.96

√
b). Such and approach to calculation of half-life limit

was already presented in Equation 1.24 without further discussion.
I can conclude, that my extrapolation curves follow this trend. Instead of obtaining

α = 1.64 for 90% CL and α = 1.96 for 95% CL, I received little higher factors of α =
1.81 and α = 2.13, respectively. This is not a fault, it is acceptable result coming from
conservatism introduced in several steps of the Feldman-Cousins recipe. Obtained limit is
slightly overestimated which result into little lower half-life limits. It is an acceptable effect.

After the number of background counts was calculated, functions from Figure 6.5 were
used to extract the limit. Last necessary input for the calculation was the Tl and Bi activities.
Studies were performed for various scenarios of different Tl and Bi activities and lengths of
measurement. These values are explicitly noted in each plot. Background spectrum for both
studied processes with Majoron(s) is mainly dominated by 2νββ . In order to observe effect
of presence of Tl and Bi, several scenarios were studied. The most extreme cases assumed
up to 20 times higher Bi activity and 50 times higher Tl activity in comparison to design goal
of SuperNEMO (ATl < 2 µBq/kg, ABi < 10 µBq/kg).

Half-life limit was always computed based on µU extracted from plot in Figure 6.5.
Afterwards, µU was plugged into Equation B.15. The limit was obtained for same set of
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6.2: Conclusions

ROI1 as it was previously performed with detection efficiencies ε . In each case, the result
from ROI with the highest limit was chosen and plotted. Results were produced for both
90% and 95% CL using my own code fully implementing every detail of the calculation.

Figures 6.6 represent half-life limits achievable for 0νββ χ0 after 0.5, 1, 2, 5, 10 or 15
years. Plots are showing the decrease of achievable limit with raising activity of Bi. Red
scenario always represent situation with no background from Tl and green one with ATl =
100 µBq/kg (50 times larger than expected in SuperNEMO).

Sensitivity to 0νββ χ0 starts at a level of 5.67×1022 yr (90% CL) for an extreme case
scenario ATl = 100 µBq/kg ABi = 200 µBq/kg only after a half year of measurement (ex-
posure of 3.5 kg·yr). This value is already almost four times larger than value 1.5×1022 yr
(90% CL) published by previous NEMO-3 result in [116]. In some of the plots it is possible
to observe non-linear behaviour of the limit as a function of Bi background. This is usually
due to change of ROI between two points. ROI containing the highest half-life limit is repre-
sented by cell colour in Tables C.1 and C.2 in Appendix C. The tables contain all the values
plotted in Figures 6.6.

Figure 6.7a shows potential of improvement of the half-life limit as a function of mea-
surement time for both CL and the most extreme scenarios (background-less and scenario
with the most extreme Bi and Tl background). We can observe that the limit can overpass
value of 1023 yr (90% CL) in less than 1.5 years which represents almost one order of mag-
nitude improvement in comparison to NEMO-3 result.

While for 0νββ χ0 six different ROI were offering the best half-life limit in dependence
on time of measure, CL and activities of Bi and Tl in case of 0νββ χ0χ0 situation was
very different. ROI yielding the best half-life limit for this process was always (1000 keV,
2900 keV) due to different spectral shape, shifted to low energies relatively to 0νββ χ0. In
this ROI, Bi and Tl contamination contributed negligibly (compared to largely dominating
2νββ ) to the background and the resulting limits remained almost unchanged even for ex-
treme values2 of Bi and Tl contamination. Therefore, the calculation was performed only
for one scenario - the scenario assuming the SuperNEMO design contamination limits of
ABi = 10µBq/kg and ATl = 2µBq/kg.

The results for CL = 90% and CL = 95% are plotted in Figure 6.7b. We can observe that
the limit 3.1×1021 yr (90% CL) on 0νββ χ0χ0 from [116] obtained by NEMO-3 should be
improved even faster than the one for 0νββ χ0. In Table C.4 in Appendix C we can find that
this limit should be improved after less than 0.1 yr and improved by one order of magnitude
after less than 4.5 yr!

Note that, the ideal scenario (no Tl or Bi background), is much closer to expected Tl and
Bi activities than any of the other scenarios, as the expected SuperNEMO design activities
of Tl and Bi are on the level of ATl < 2 µBq/kg, ABi < 10 µBq/kg. The ideal scenario can
be, therefore, considered with a good approximation as a reliable estimation. However, in
both cases also the realistic scenarios are computed as well.

6.2 Conclusions
The goal of chapter was to discuss the methodology of half-life limit calculations for

rare processes and to apply them in order to estimate expected sensitivities which could be

1It was combination of all different possible lower and upper boundaries on interval 0 keV - 3600 keV with
step of 100 keV.

2Hundreds of times higher than SuperNEMO design values.
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(a) 3.5 kg·yr (b) 7 kg·yr

(c) 14 kg·yr (d) 35 kg·yr

(e) 70 kg·yr (f) 105 kg·yr

Figure 6.6: Plots of half life limits calculated for different exposures confidence levels and
Bi and Tl background activities. Half life limits calculated for 0νββ χ0.
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(a) 0νββ χ0

(b) 0νββ χ0χ0

Figure 6.7: Plots of half life limit as a function of SuperNEMO measurement time for the
worst case scenario and ideal case scenario on two different confidence levels.
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reached by SuperNEMO for 0νββ χ0 and 0νββ χ0χ0.
I have shown a methodology to calculate sensitivities of rare decays using Feldman-

Cousins. I profited from estimation of detection efficiencies and signal-to-background ratios
using simulation in Falaise (software package for simulations of SuperNEMO module). The
results led to choice of energy interval (2600 keV, 2700 keV) as a ROI with the best signal-to-
background ratio for both 0νββ χ0 and 0νββ χ0χ0. Expected sensitivities were calculated
for both processes for different exposures, background activities of Tl and Bi and different
CL. Results presented in Figures 6.6 and 6.7 have shown that the major improvement of half
life limit for both the processes can be expected already after few months even in the worst
case scenario.
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Summary

Proof of existence of 0νββ decay would without doubt represent very important sought
step beyond the physics of Standard Model. Such a discovery would also represent a large
development in nuclear theory, especially in calculation of nuclear matrix elements. Period
of 2020-2030 will be a decade of astonishing ton scale experiments in the field of 0νββ . It
gives a possibility to probe its half-life up to 1028 years and effective neutrino mass down to
few meV in dependence on the nuclear matrix elements calculations.

Presented thesis contributed to these efforts by variety of different results. At the end of
2016, it was possible to finish construction of main calorimeters in LSM with my contribu-
tion to the assembly process and quality testing of optical modules.

Mapping measurements of 207Bi calibration sources helped to reject the possibility of
the accidental deposition of 207Bi outside of the mylar foil, in the Copper source frame.
The Copper frame in such case would be an obstacle for the electrons on their flight to the
calorimeter in calibration. Frame would reduce their energy which would lead to impre-
cisions in energy calibration. All controlled sources were from this point of view without
problems. Thanks to the study, it was also possible to choose sources with the 207Bi droplet
deposited very close (within one millimeter) from the center of the frame. Furthermore, the
precise knowledge of exact source positions (along with the introduction of positioning con-
ventions) serves as an input for precise simulations of calibration system. On the other side,
the relative activity measurements helped to rank the sources and subsequently distribute
them in the demonstrator in order to optimize homogeneity of exposure of the calorimetric
walls during calibration. Absolute activity measurements provide information helpful for
decision on duration of calibration. What is the most important, in NEMO-3 the activities of
calibration sources were known with a 5% precision. This uncertainty is the main contrib-
utor to the final uncertainty on the half-life of 2νββ . After the refinement of uncertainties
presented in the chapter about activity measurements, the uncertainty of half-life of 2νββ

could be reduced not only for future SuperNEMO results but after recalculation also for
results given by NEMO-3, because the sources were used for its calibration.

Vertex reconstruction precision study has shown a strong dependence of precision on sin-
gle energies of emitted electrons. On the other side, the effect of magnetic field seems to be
rather negligible. It was also shown that the vertex precision gets significantly worse if one
of the electron escapes the source foil in parallel. The effect of cell sharing was identified in
the results. This effect degrades the vertex precision of events with electrons emitted to the
same side of the source foil. Finally, it was shown that if we accept events detected by side
(xcalo) calorimeter, it might cause inhomogeneity in the distribution of the reconstructed
vertices on the source foil. Such and effect would not be observed without presence of mag-
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netic field. These valuable guidelines will be used for the choice of proper data cuts after
SuperNEMO will begin its data taking period. It will result in the reduction of systematic
uncertainties of electron tracking. In final result it will help to clarify whether discrepan-
cies between expected results in electron angular distributions are sign of new physics or
systematic effect.

Studies of neutron shielding represent twofold contribution. Firstly, it is a first estimation
of the quality of shielding in design phase. It was possible to conclude that the polyethylene
is a material of preference. Furthermore, it was shown that the parts of detector made of Iron
will represent the major contribution to all the gamma radiation produced by neutron capture
inside of the shielding. Software for all these tasks was developed and is routinely used.
Secondly, the presented neutron simulations contributed to more general question of neutron
generators. Problem of the proper generation of gammas from thermal neutron capture was
addressed and demonstrated. Theoretical basis for new approach to generation of neutron
captures was presented and demonstrated on illustrative example.

In the last chapter discussion of half-life limits of 0νββ mode with Majoron emission
took place. The best ROI for observation of both types of 0νββ with Majoron emission
(with one and also two Majorons) was shown to be (2600 keV, 2700 keV) in the case when
the decay would be observed. In case if SuperNEMO demonstrator would not observe the
decay, it was shown, that limits on both the decay channels obtained by NEMO-3 could be
improved within few months or less. Within up to 5 years of measurement one can expect
the improvement of both results by at least one order of magnitude.

After several years of preparation, next year, 2019, SuperNEMO demonstrator enters the
well deserved phase of data taking. No one can predict whether the 0νββ will be observed
or not, but finally, it is clear that SuperNEMO detector will once again push the limits of
our knowledge closer to new discoveries. After all, who knows what will be the next big
discovery in neutrino physics?
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Appendix A
Complete Results of Measurements of 207Bi
Calibration Sources

This appendix contains full database of all the results obtained in measurements of 207Bi
calibration sources in Chapter 3.

A.1 Mapping Results
In this section, I present statistics (Tables A.1 and A.2) and the final measured quantities

(Tables A.3 and A.4) obtained by source mapping by pixel detectors. All the necessary
information concerning the measurements and analysis can be found in Section 3.2.

M. Detector ttt llliiivvveee NNNRRROOOIII NNNTTT OOOTTT
NNNRRROOOIII
NNNTTT OOOTTT

NNNRRROOOIII
ttt llliiivvveee

EEERRROOOIII
ttt llliiivvveee

[s] [cnts] [cnts] [%] [Hz] [keV / s]
73 H04-W0163 5 994 49 656 114 585 43.34 8.28 92.88
74 H11-W0163 6 384 53 527 123 395 43.38 8.38 101.28
75 L05-W0163 6 392 81 876 161 538 50.69 12.81 143.86
76 H04-W0163 5 894 46 150 104 733 44.06 7.83 87.35
77 H11-W0163 5 852 51 400 118 735 43.29 8.78 106.09
78 L05-W0163 5 837 68 141 134 683 50.59 11.67 130.98
79 H04-W0163 6 074 50 034 115 418 43.35 8.24 91.72
80 H11-W0163 6 047 53 649 124 042 43.25 8.87 108.39
81 L05-W0163 6 045 76 828 151 907 50.58 12.71 142.19
82 H04-W0163 13 848 118 802 276 970 42.89 8.58 97.38
83 H11-W0163 5 836 48 506 113 138 42.87 8.31 102.19
84 L05-W0163 5 835 75 618 150 765 50.16 12.96 145.45
85 H04-W0163 6 531 55 041 126 510 43.51 8.43 95.21
86 H11-W0163 6 430 53 571 125 558 42.67 8.33 101.54
87 L05-W0163 6 427 78 772 154 925 50.85 12.26 138.21
88 H04-W0163 6 912 60 879 139 663 43.59 8.81 99.39
89 H11-W0163 6 745 59 920 141 226 42.43 8.88 109.31

Table A.1: See caption of Table A.2.

194



A.1: Mapping Results

M. Detector ttt llliiivvveee NNNRRROOOIII NNNTTT OOOTTT
NNNRRROOOIII
NNNTTT OOOTTT

NNNRRROOOIII
ttt llliiivvveee

EEERRROOOIII
ttt llliiivvveee

[s] [cnts] [cnts] [%] [Hz] [keV / s]
90 L05-W0163 6 774 80 838 158 929 50.86 11.93 134.37
91 H04-W0163 5 540 48 098 111 111 43.29 8.68 98.68
92 H11-W0163 5 425 48 289 113 016 42.73 8.90 109.29
93 L05-W0163 5 410 65 486 129 454 50.59 12.10 135.48
94 H04-W0163 2 874 26 003 59 589 43.64 9.05 101.37
95 H11-W0163 2 809 24 183 55 942 43.23 8.61 104.32
96 L05-W0163 2 822 34 871 68 967 50.56 12.36 139.01

111 H11-W0163 13 813 125 124 288 873 43.31 9.06 110.18
112 H11-W0163 5 602 46 438 106 760 43.50 8.29 100.79
113 L05-W0163 5 605 68 085 135 183 50.37 12.15 135.97
114 H04-W0163 7 622 68 413 158 181 43.25 8.98 100.87
115 H11-W0163 7 525 71 050 163 248 43.52 9.44 113.96
116 L05-W0163 7 539 92 141 185 290 49.73 12.22 136.50
118 H04-W0163 45 816 414 630 957 375 43.31 9.05 101.76
119 H11-W0163 45 671 396 247 929 737 42.62 8.68 103.72
120 L05-W0163 45 669 552 206 1 095 402 50.41 12.09 134.99
121 H04-W0163 45 375 367 970 853 014 43.14 8.11 90.69
122 H11-W0163 44 766 404 234 941 025 42.96 9.03 111.26
123 L05-W0163 44 762 542 330 1 070 742 50.65 12.12 135.26
124 H04-W0163 43 554 390 466 904 988 43.15 8.97 101.72
125 H11-W0163 41 787 343 470 784 633 43.77 8.22 99.51
126 H04-W0163 199 776 1 474 716 3 428 264 43.02 7.38 82.38

126* H04-W0163 166 317 1 290 921 3 038 524 42.49 7.76 86.55
127 L05-W0163 41 480 500 823 982 522 50.97 12.07 135.98
128 H04-W0163 15 920 133 303 310 626 42.91 8.37 95.11
130 H11-W0163 15 546 128 427 294 117 43.67 8.26 100.12
131 L05-W0163 15 564 183 819 365 429 50.30 11.81 133.09
132 H11-W0163 197 260 1 719 104 3 955 332 43.46 8.71 104.58

132* H11-W0163 165 699 1 440 205 3 324 424 43.32 8.69 104.86
133 H04-W0163 34 414 310 293 724 374 42.84 9.02 101.63
135 H11-W0163 37 880 333 898 763 859 43.71 8.81 105.33
137 L05-W0163 37 579 425 656 839 072 50.73 11.33 127.27
138 L05-W0163 13 224 159 769 318 364 50.18 12.08 137.11
139 L05-W0163 197 151 2 342 662 4 723 626 49.59 11.88 133.00

139* L05-W0163 165 604 1 965 319 3 973 773 49.46 11.87 133.82

Table A.2: Statistics of all performed 207Bi deposition distribution measurements. M. in the
first column stands for number of measured source. NROI stands for number of counts in
ROI during measurement, NTOT number of all measured counts and EROI represents energy
integrated in ROI during the measurement. Rows with asterisk denote repeated measurement
under same experimental conditions. Type of the source (with or without plastic envelope)
can be extracted from second column of Tables A.3 and A.4.
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A.1: Mapping Results

M. Position xxx000 yyy000 HWHM xxx000−CCCXXX yyy000−CCCYYY pppxxx pppyyy r
[mm] [mm] [mm] [mm] [mm] [1] [1] [mm]

73 US 5.31 4.56 2.06 0.12 0.41 0.03 0.06 0.42
74 US 5.79 4.09 2.18 0.60 -0.10 0.15 -0.02 0.61
75 US 5.19 4.85 1.83 -0.26 0.44 -0.06 0.07 0.51
76 US 5.35 4.31 2.51 0.16 0.15 0.04 0.02 0.22
77 US 5.03 4.74 2.01 -0.16 0.55 -0.04 0.08 0.57
78 US 5.66 4.71 2.11 0.21 0.29 0.05 0.05 0.36
79 US 5.03 5.39 2.14 -0.16 1.23 -0.04 0.19 1.24
80 US 5.42 4.27 2.21 0.22 0.08 0.06 0.01 0.24
81 US 5.49 4.19 1.90 0.04 -0.23 0.01 -0.03 0.23
82 US 4.75 4.72 2.26 -0.44 0.57 -0.11 0.09 0.72
83 US 5.47 4.23 2.48 0.27 0.04 0.07 0.01 0.28
84 US 5.79 5.00 1.85 0.34 0.58 0.09 0.09 0.67
85 US 5.49 4.41 2.23 0.30 0.25 0.08 0.04 0.39
86 US 5.04 4.72 2.15 -0.16 0.53 -0.04 0.08 0.56
87 US 5.54 4.79 1.92 0.09 0.37 0.02 0.06 0.38
88 US 5.78 4.38 2.19 0.59 0.23 0.15 0.03 0.63
89 US 5.36 5.00 2.11 0.17 0.81 0.04 0.12 0.82
90 US 4.95 4.57 1.88 -0.50 0.15 -0.13 0.02 0.53
91 US 5.28 4.42 2.13 0.09 0.26 0.02 0.04 0.28
92 US 5.36 4.88 2.14 0.16 0.69 0.04 0.11 0.71
93 US 4.94 4.99 1.97 -0.51 0.57 -0.13 0.09 0.76
94 US 4.84 4.78 2.15 -0.35 0.62 -0.09 0.10 0.71
95 US 5.14 4.31 2.09 -0.05 0.12 -0.01 0.02 0.13
96 US 5.28 4.29 1.89 -0.17 -0.13 -0.04 -0.02 0.21

111 WO-DU 4.61 6.97 2.09 0.37 0.25 0.09 0.04 0.44
112 WO-DU 4.67 6.74 2.09 0.43 0.03 0.11 0.00 0.43
113 WO-DU 4.80 6.95 1.79 0.28 0.00 0.07 0.00 0.28
114 WO-DU 4.73 6.97 2.03 0.49 0.29 0.12 0.04 0.57
115 WO-DU 4.73 6.84 2.21 0.49 0.12 0.12 0.02 0.51
116 WO-DU 4.59 7.14 1.62 0.07 0.19 0.02 0.03 0.20
118 WO-DU 5.05 6.84 2.05 0.81 0.15 0.20 0.02 0.82
119 WO-DU 3.45 7.22 1.71 -0.79 0.51 -0.20 0.08 0.93
120 WO-DU 4.52 7.36 1.79 0.00 0.41 0.00 0.06 0.41
121 WO-DU 4.84 7.54 2.07 0.60 0.85 0.15 0.13 1.04
122 WO-DU 4.37 7.55 2.09 0.13 0.83 0.03 0.13 0.84
123 WO-DU 4.72 7.42 1.80 0.20 0.47 0.05 0.07 0.51
124 WO-DU 5.14 7.48 2.06 0.90 0.79 0.22 0.12 1.20
125 WO-DU 4.48 7.57 2.06 0.24 0.85 0.06 0.13 0.89
126 WO-DU 3.02 6.79 2.44 -1.22 0.11 -0.31 0.02 1.23

126* WO-DU 3.00 7.01 2.14 -1.24 0.33 -0.31 0.05 1.28
127 WO-DU 3.91 6.91 1.94 -0.61 -0.03 -0.15 -0.01 0.61
128 WO-DU 3.86 7.42 2.08 -0.39 0.73 -0.10 0.11 0.83
130 WO-DU 3.32 10.17 2.63 -0.91 3.45 -0.23 0.53 3.57

Table A.3: See caption of Table A.4.
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M. Position xxx000 yyy000 HWHM xxx000−CCCXXX yyy000−CCCYYY pppxxx pppyyy r
[mm] [mm] [mm] [mm] [mm] [1] [1] [mm]

131 WO-DU 4.08 6.81 1.85 -0.44 -0.14 -0.11 -0.02 0.46
132 WO-DU 3.99 7.29 1.96 -0.25 0.57 -0.06 0.09 0.62

132* WO-DU 3.94 7.46 1.95 -0.29 0.74 -0.07 0.11 0.79
133 WO-DU 4.10 6.20 2.03 -0.14 -0.49 -0.04 -0.08 0.51
135 WO-DU 4.40 7.18 2.03 0.16 0.46 0.04 0.07 0.48
137 WO-DU 4.25 7.29 1.81 -0.27 0.35 -0.07 0.05 0.44
138 WO-DU 4.52 7.16 1.79 0.00 0.22 0.00 0.03 0.22
139 WO-DU 4.50 6.88 1.61 -0.02 -0.07 0.00 -0.01 0.07

139* WO-DU 4.47 7.03 1.62 -0.05 0.08 -0.01 0.01 0.10

Table A.4: Results of all performed 207Bi deposition distribution measurements. M. in the
first column stands for number of measured source. Next column represents the position of
measurement defined in Figures 3.19 and 3.20. Based on the position it is possible to know
of which type the source was (with or without plastic envelope). Following two columns
show positions of source in the pixel detector coordinates. Column number five represents
the characteristic droplet size. Finally, in rows six and seven one can find coordinates of
dislocation vector followed by two dislocation parameters px and py. Last column shows the
length of the dislocation vector. Its colour coding symbolizes source quality category (A, B
or C) defined in Section 3.2.5. Rows with asterisk denote repeated measurement under same
experimental conditions.

A.2 Results of Activity Measurements

A.2.1 Results of Relative Activity Measurements

Section contains all the results of relative activity measurements of 207Bi sources. Tables
A.5 and A.6 represent relative activities of all sources which were measured with white
plastic envelope while Tables A.7 and A.8 represent same results for the sources without the
envelope. The tables use two different reference sources (84 for type w/ and 138 for type
w/o). The comparison of absolute activities of sources 84 and 138 can be obtained from
absolute activity measurements.

Type No. ttt llliiivvveee NNN555777000
∆∆∆NNN555777000
NNN555777000

NNNTTT OOOTTT
NNN555777000
ttt llliiivvveee

NNNTTT OOOTTT
ttt llliiivvveee

AAArrreeelll

[s] [cnts] [%] [cnts] [sss−−−111] [sss−−−111] [S84 = 1]
w/ 84 7390 34053 0.154 338162 4.61 45.8 1.000
w/ 81 7394 33621 0.110 333834 4.55 45.1 0.987
w/ 75 7619 34533 0.081 341826 4.53 44.9 0.984
w/ 96 7218 32405 0.104 319655 4.49 44.3 0.974
w/ 94 7314 32603 0.116 324974 4.46 44.4 0.967
w/ 88 7410 32533 0.136 324199 4.39 43.8 0.953
w/ 82 7267 31586 0.120 314609 4.35 43.3 0.943
w/ 80 7448 32294 0.120 322290 4.34 43.3 0.941

Table A.5: See caption of Table A.6.
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Type No. ttt llliiivvveee NNN555777000
∆∆∆NNN555777000
NNN555777000

NNNTTT OOOTTT
NNN555777000
ttt llliiivvveee

NNNTTT OOOTTT
ttt llliiivvveee

AAArrreeelll

[s] [cnts] [%] [cnts] [sss−−−111] [sss−−−111] [S84 = 1]
w/ 93 8196 35342 0.118 350392 4.31 42.8 0.936
w/ 87 7428 31889 0.148 318155 4.29 42.8 0.932
w/ 91 56102 240690 0.063 2404055 4.29 42.9 0.931
w/ 92 7258 31101 0.116 309094 4.29 42.6 0.930
w/ 95 7428 31526 0.108 315701 4.24 42.5 0.921
w/ 89 7517 32112 0.112 319652 4.27 42.5 0.927
w/ 83 7602 31889 0.084 318915 4.19 42.0 0.910
w/ 85 7454 31254 0.119 310831 4.19 41.7 0.910
w/ 90 7498 31355 0.096 314275 4.18 41.9 0.908
w/ 77 8205 34297 0.088 339887 4.18 41.4 0.907
w/ 79 7493 31115 0.092 308023 4.15 41.1 0.901
w/ 86 7593 31213 0.092 309770 4.11 40.8 0.892
w/ 74 7669 31449 0.098 312844 4.10 40.8 0.890
w/ 78 7420 30316 0.094 301933 4.09 40.7 0.887
w/ 134 7328 29909 0.103 298950 4.08 40.8 0.886
w/ 76 7859 32030 0.124 319952 4.08 40.7 0.884
w/ 136 7684 31052 0.105 310044 4.04 40.3 0.877
w/ 73 7452 29897 0.090 298045 4.01 40.0 0.871

Table A.6: Results of relative activity measurements of all sources with plastic envelope.
First two columns represent source type, tlive is a live measurement time, N570 stands for
number of counts extracted from 570 keV peak and ∆N570/N570 is its relative uncertainty.
NTOT represents total number of counts in full spectrum. Finally, Arel is relative activity of
the source, where source number 84 (red letters) is reference for all the sources with plastic
envelope. Yellow cell colour (source number) represents category of "golden" source, and
gray represents "silver" source. Definition of "golden" and "silver" source is introduced in
Section 3.3.1.1.

Type No. ttt llliiivvveee NNN555777000
∆∆∆NNN555777000
NNN555777000

NNNTTT OOOTTT
NNN555777000
ttt llliiivvveee

NNNTTT OOOTTT
ttt llliiivvveee

AAArrreeelll

[s] [cnts] [%] [cnts] [sss−−−111] [sss−−−111] [S138 = 1]
w/o 133 7586 33795 0.123 340533 4.45 44.9 1.028
w/o 114 7522 33219 0.094 330179 4.42 43.9 1.019
w/o 116 7372 32240 0.131 317808 4.37 43.1 1.009
w/o 115 7571 33050 0.107 330979 4.37 43.7 1.007
w/o 111 7726 33655 0.112 332957 4.36 43.1 1.005
w/o 138 7627 33068 0.089 327634 4.34 43.0 1.000
w/o 138* 3746 30289 0.575 - 8.09 - 1.000
w/o 120 7410 32046 0.095 318219 4.32 42.9 0.997
w/o 113 7348 31749 0.096 313164 4.32 42.6 0.997
w/o 135 7712 33105 0.101 327312 4.29 42.4 0.990
w/o 131 7817 33531 0.083 333485 4.29 42.7 0.989

Table A.7: See caption of Table A.8.
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Type No. ttt llliiivvveee NNN555777000
∆∆∆NNN555777000
NNN555777000

NNNTTT OOOTTT
NNN555777000
ttt llliiivvveee

NNNTTT OOOTTT
ttt llliiivvveee

AAArrreeelll

[s] [cnts] [%] [cnts] [sss−−−111] [sss−−−111] [S138 = 1]
w/o 132* 3702 29501 0.582 - 7.97 - 0.986
w/o 123* 3644 28812 0.589 - 7.91 - 0.978
w/o 119 7414 31165 0.100 310274 4.20 41.8 0.970
w/o 139 81670 341677 0.064 3399944 4.18 41.6 0.965
w/o 137 7574 30538 0.085 301950 4.03 39.9 0.930
w/o 112 7386 29199 0.099 291560 3.95 39.5 0.912

Table A.8: Results of relative activity measurements of all sources without plastic envelope.
All the measurements were done in CENBG except for three marked by asterisk. Meaning
of all the columns and cell colours (yellow, gray) remains the same as in Table A.6. For all
the sources without plastic envelope, source number 138 (red letters) is a reference. Mea-
surement of source number 138 without asterisk serves as reference for all measurements
performed in CENBG and the one with asterisk is reference for measurements done in LSM.

A.2.2 Results of Absolute Activity Measurements
Tables A.9 and A.10 contain data of absolute activity measurements obtained in my anal-

ysis while Tables A.11 and A.12 contain results obtained in independent analysis by my
colleague Frédéric Perrot. Graphical comparison of both results are presented in Section
3.3.2.

My results
570 keV 1064 keV

No. ttt llliiivvveee S ∆∆∆SSS A ∆∆∆AAA S ∆∆∆SSS A ∆∆∆AAA
[s] [cnts] [cnts] [Bq] [Bq] [cnts] [cnts] [Bq] [Bq]

75 82855 116491 551 141.0 0.68 57019 335 136.9 1.52
76 166203 218103 1051 131.6 0.65 104795 566 125.5 1.36
80 82911 113954 539 137.8 0.67 54700 367 131.3 1.52
81 83144 118993 534 143.5 0.66 57223 321 136.9 1.50
82 82765 114450 580 138.7 0.72 55765 367 134.1 1.54
84 83130 117165 544 141.3 0.67 55572 328 133.0 1.48
87 83145 112393 522 135.6 0.65 54247 343 129.8 1.47
88 83147 114116 517 137.6 0.64 54440 286 130.3 1.40
89 83137 111141 506 134.1 0.63 53767 307 128.7 1.42
91 83139 110327 502 133.1 0.62 52990 310 126.8 1.40
92 83142 110803 516 133.6 0.64 53104 292 127.1 1.38
93 83134 113476 549 136.9 0.68 54164 320 129.6 1.44
94 83105 117105 546 141.3 0.68 55823 339 133.7 1.50
95 83105 110106 550 132.9 0.68 52758 334 126.3 1.43
96 83108 115202 567 139.0 0.70 55635 340 133.2 1.49

111 83106 109979 553 132.7 0.68 52740 311 126.3 1.40
113 83080 107195 527 129.4 0.65 51030 293 122.2 1.35
114 83036 110262 585 133.2 0.72 52661 275 126.2 1.36

Table A.9: See caption of Table A.10.
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My results
570 keV 1064 keV

No. ttt llliiivvveee S ∆∆∆SSS A ∆∆∆AAA S ∆∆∆SSS A ∆∆∆AAA
[s] [cnts] [cnts] [Bq] [Bq] [cnts] [cnts] [Bq] [Bq]

115 83025 110519 528 133.5 0.65 52438 285 125.7 1.36
116 83137 109065 526 131.6 0.65 52441 302 125.5 1.38
120 83120 108656 516 131.1 0.64 52456 304 125.6 1.39
131 83078 108195 543 130.6 0.67 51958 319 124.4 1.40
133 83118 114013 587 137.6 0.72 54398 302 130.2 1.42
135 83143 107808 570 130.0 0.70 52135 294 124.8 1.37
138 83110 110446 527 133.3 0.65 52788 323 126.4 1.42

Table A.10: Absolute activities of 25 measured calibration sources obtained in my own
analysis. The table contains the source number, live time of the measurement, number of
counts in peak (S) and activity (A) with their absolute uncertainties. Analysis was done for
two gamma peaks (570 keV and 1064 keV) as explained in Section 3.3.2.

Frédéric’s results
570 keV 1064 keV

No. ttt llliiivvveee S ∆∆∆SSS A ∆∆∆AAA S ∆∆∆SSS A ∆∆∆AAA
[s] [cnts] [cnts] [Bq] [Bq] [cnts] [cnts] [Bq] [Bq]

75 82855 116973 392 141.6 0.50 56912 273 136.7 1.44
76 166203 217984 595 131.5 0.39 104958 385 125.7 1.27
80 82911 114237 389 138.2 0.49 54665 268 131.2 1.39
81 83144 118869 400 143.4 0.51 57396 275 137.4 1.45
82 82765 115025 390 139.4 0.50 55674 270 133.9 1.42
84 83130 117036 400 141.2 0.51 55797 272 133.6 1.41
87 83145 112259 392 135.4 0.50 54403 270 130.2 1.38
88 83147 114001 393 137.5 0.50 54516 269 130.5 1.38
89 83137 110980 388 133.9 0.49 53735 268 128.6 1.37
91 83139 110137 387 132.8 0.49 53161 267 127.2 1.36
92 83142 110664 389 133.5 0.49 53168 266 127.2 1.35
93 83134 113311 393 136.7 0.50 54374 269 130.1 1.38
94 83105 116793 399 140.9 0.51 55933 273 133.9 1.42
95 83105 110280 391 133.1 0.49 53005 268 126.9 1.35
96 83108 115313 397 139.1 0.50 55812 273 133.6 1.42

111 83106 110147 389 132.9 0.49 52900 267 126.7 1.35
113 83080 107304 418 129.5 0.52 51134 270 122.5 1.32
114 83036 110350 425 133.3 0.53 52596 272 126.0 1.35
115 83025 110288 426 133.2 0.53 52442 272 125.7 1.35
116 83137 108912 416 131.4 0.52 52422 271 125.5 1.35
120 83120 108812 419 131.3 0.53 52320 272 125.2 1.35
131 83078 107957 417 130.3 0.52 51962 271 124.5 1.34

Table A.11: See caption of Table A.12.
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Frédéric’s results
570 keV 1064 keV

No. ttt llliiivvveee S ∆∆∆SSS A ∆∆∆AAA S ∆∆∆SSS A ∆∆∆AAA
[s] [cnts] [cnts] [Bq] [Bq] [cnts] [cnts] [Bq] [Bq]

133 83118 113458 426 136.9 0.54 54269 276 129.9 1.39
135 83143 108053 420 130.3 0.53 52212 271 125.0 1.34
138 83110 110478 421 133.3 0.53 52832 273 126.5 1.36

Table A.12: Absolute activities of 25 measured calibration sources obtained in analysis of
Frédéric Perrot. The table contains the source number, live time of the measurement, number
of counts in peak (S) and activity (A) with their absolute uncertainties. Analysis was done
for two gamma peaks (570 keV and 1064 keV) as explained in Section 3.3.2.
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Appendix B
Detailed Description of Feldman-Cousins
Method

B.1 Calculation of Half-Life of Rare Processes
Double-beta decay processes are very rare and difficult to observe. Their half lives are

extremely long, measured in millions of ages of universe. In case when the decay is observed,
it is possible to calculate its half life based on the number of detected decays. Any type of
nuclear decay follows universal law of radioactive decay:

N(t) = N0e−λ t . (B.1)

Number of remaining nuclei which have not yet decayed, N(t), fall exponentially with
time. N0 represents number of initial nuclei at the beginning of the observation. The rate at
which system of nuclei decay is influenced by decay constant λ . Decay constant is related
to half life (T1/2) via very well known relation:

λ =
ln(2)
T1/2

. (B.2)

Large values of λ describe fast decays with short half lives. In contrary, low values,
describe decays which are very slow with large half lives. The latter is exactly a case for
any type of double-beta process. By multiplication of both sides of Equation B.2 by mea-
surement period t, we can conclude, that exponent λ t in Equation B.1 is proportional to ratio
of measurement period and decay’s half life: t/T1/2. Shortest half lives of double-beta de-
cay processes are on the level of 1015 years while standard duration of double beta decay
experiment is measured in years, rarely in decades. The ratio between measurement period
and half life of double beta decay process is at maximum at the level of t/T1/2 ≈ 10−14.
Exponent λ t is, therefore, always extremely tiny as well and we can write:

1�λ t�(λ t)2�...�(λ t)i, i = 3,4,5, ... (B.3)

Number of decayed nuclei nD during a period t can be calculated as a difference in
numbers of nuclei at the beginning of measurement N0 and remaining nuclei N(t) given by
Equation B.1:

nD = N0−N0e−λ t = N0

(
λ t− (λ t)2

2!
+

(λ t)3

3!
− ...

)
≈ N0λ t. (B.4)
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B.1: Calculation of Half-Life of Rare Processes

Exponential decay formula was expanded into Taylor polynomial. Thanks to Equation
B.3 it was possible to neglect all the terms except for the first one and obtain very simple
relation (for very rare decays). Number of initial nuclei at the beginning of the measurement
N0 can be estimated if we know amount - mass (m) of the observed isotope in the source.
For given isotope, molar mass W expresses mass of one mole of the isotope. Therefore,
ratio m/W expresses number of moles of the isotope in given source sample. Furthermore,
Avogadro’s constant NA defines number of objects (in our case nuclei) needed to compose
one mole. Therefore, m/W moles of observed isotope contains

N0 =
mNA

W
(B.5)

nuclei. If we know mass of the observed source we can estimate number of nuclei at the
beginning of observation. It is important to keep in mind, that the mass of the isotope of
interest is not the same as mass of the source which contains the isotope. Typically, sources
are composed of many different isotopes and only fraction of their mass, given by their abun-
dance (a), is composed of the isotope of interest. It is important to keep in mind, therefore,
that m in my equations represents the fraction of mass belonging to pure isotope in the source
of mass. One can also express m in terms of full source mass ms as a product of source mass
and abundance of isotope in the source, i.e.

m = ams. (B.6)

If we now combine Equations B.2, B.4, B.5 and B.6 we obtain:

nD = ln(2)
NA

W
amst
T1/2

. (B.7)

The equation expresses number of decays nD for rare process with half life T1/2 if ms
kilograms of isotope with molar mass of W and abundance a is observed during period of
time t. Equation gives us the direct recipe to improve chances to observe sought decay.
Number of decays is proportional to abundance of the isotope in the source a, mass of the
source ms and length of the measurement t. Number of decays can be enhanced by obser-
vation of larger source masses during longer period of times. On top of that, the chances
are improved if source is enriched, i.e. abundance of observed isotope a in source is higher.
Quantity amst (mt) is called exposure and it serves for comparison of different double beta
decay experiments.

In Equation B.7, nD stands for real number of decays given the experimental parameters
explained above. However, number of observed decays nOS is lower. Some of the decays are
not detected due to imprecisions in reconstruction or simply by imposing various different
data cuts. The relation between number of real decays nD and number of observed decays
nOS can be expressed via detection efficiency ε . It is a ratio of observed signal events to all
decays: ε = nOS / nD. ε can be obtained from simulations. Finally, let me express half life
from Equation B.7:

T1/2 = ln(2)
NA

W
ε

amst
nOS

. (B.8)

Here, nD was substituted by number of observed signal events nOS by experiment. Due
to the presence of background in experiments, it is not possible to tell with 100% certainty
how many real decays nOS were observed (and how many detected events have origin in
background). However, having precise background model, it can be estimated to a certain
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confidence level as a value denoted µ1. Strictly speaking, nOS cannot be measured, therefore,
Equation B.8 is used for calculation of half life in double beta decay experiments where µ is
plugged instead of nOS.

B.2 Statistical Nature of Observed Counts
Equation B.8 gives a recipe for calculation of half life of rare decay if number of observed

counts is given. Radioactive decay is, however, statistical process. Two perfectly identical
copies of the same experiment might, therefore, provide different observed counts, due to the
statistical fluctuations. It is important to take this fact into account in order to avoid mistakes
in analysis and avoid dependence of the result on random factor. Discussion to follow is
based on the one presented in [120].

B.2.1 Experiments Without Background
In order to avoid random factor in calculation of half life, one needs to consider ensem-

ble of identical experiments instead of single measurement done by one particular exam-
ple. In average, such experiment detects nO total counts (signal + background). In case of
background-less experiments, therefore, each count represents true signal. Estimation of true
detected signals µ is, therefore, identical to number of all observed counts, i.e. nO = µ . As
it was already discussed, identical experiments yield different number of counts due to the
statistical fluctuations. Probability to observe n counts in specific experiment (if average of
µ true signals are expected) is given by Poisson distribution:

P(n,µ) =
µn

n!
e−µ . (B.9)

For example, with µ = 3 expected true signals, 42.3% of identical experiments would
observe less counts and roughly 5% unfortunate experiments would not observe a single
count! What conclusion can a single experiment draw about average value of true expected
signals given from observation of n events? Common method to report a result is given in
terms of so-called confidence intervals proposed by Neyman in [121]. The idea is to propose
interval µ ∈ (µL, µU) instead of single value. Here, µU represents number of expected
true events such that, only α fraction of identical experiments would report lower or equal
observed number of counts. Similarly, µL is value of true expected signals such that only β

fraction of identical experiments would observe higher or equal number of counts. Fractions
α and β represent scenarios of experiments not covered by the interval. In contrary, 1 - α -
β represent all the scenarios covered in the interval. It expresses the level of belief that the
interval covers the true value. That is where term confidence level comes from.

Let me demonstrate with an example, how confidence intervals are calculated. I will
assume background-less experiment, which observed n = 3 counts, as an example. Let me
choose α = β = 0.05 (5%). Upper limit, µU in such case is a value for which cumulative
probability to observe number of counts less or equal to three is 5%. Limit can be obtained,
therefore, if we solve following equation:

α = 0.05 =
3

∑
i=0

P(i,µU). (B.10)

1Methodology to calculate µ if number of background counts b is given will be discussed in following
sections
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Equation can be solved numerically with result µU = 7.754. Subsequently, we can cal-
culate lower limit µL in similar fashion. We search for a mean value of true signals µL for
which 5% of experiments would report three or more counts. The value is a solution to the
equation:

β = 0.05 =
∞

∑
i=3

P(i,µL). (B.11)

Numerical solution provides value µL = 0.818. Finally, we say that confidence interval
(0.818, 7.754) covers value of true expected signals µ at the confidence level (CL) of 90% (1
- α - β ). Note that, choice α = 0.03 and β = 0.07 would yield different confidence interval
but with a same confidence level. Such an interval is also valid, however, it is common
choice to set symmetric intervals. In case when α 6= 0 and β 6= 0 we talk about central
interval. There are situations when only one-sided interval is preferable. If we repeat the
same procedure, this time with α = 0 and β = 0.05, we obtain interval (0, 7.554). Such
interval offers uniquely upper limit at the confidence level of 95%. Furthermore, choice α

= 0.05 and β = 0 yields interval (0.818, ∞) again on 95% confidence level. However, in
this case only lower limit is reported. It is always important to precise what kind of interval
(one-sided or central) is presented along with confidence level, when reporting result of such
experiment.

Figure B.1: Left: Poisson distribution for µ = 0.817692. Value µ represents lower limit
of confidence interval µL. It was chosen in a way, that all the scenarios n ≥ nO = 3 (red
dots) give a cumulative probability of β : 5%. Right: Poisson distribution for µ = 7.753656.
Value µ represents upper limit of confidence interval µU. It was chosen in a way, that all the
scenarios n ≤ nO = 3 (red dots) give a cumulative probability of α: 5%.

Let me briefly summarize the method for calculation of confidence intervals. Background-
less experiment with nO observed counts should report mean expected number of true signals
µ from interval (µL, µU). Here, the limits of the interval are calculated in following way:

α =
nO

∑
i=0

P(i,µU),

β =
∞

∑
i=nO

P(i,µL). (B.12)

Here, α and β are chosen constants which decide between scenarios when only lower,
upper or both limits are given. The confidence level of the presented interval is given in %
and is calculated as 1 - α - β .
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B.2.2 Experiments with Background - Collapse of Classical Method
In following, I will assume more realistic situation of experiments with non-zero back-

ground. Mean expected number of counts is in such case composed of two components,
the mean expected signal µ (same as in case of background-less experiments) and mean
expected number of background counts b. If we average over ensemble of identical experi-
ments, in average we expect to observe nO = µ + b counts. Following the same logic as in
previous section, the probability to observe n counts in one of the experiments is again given
by Poisson distribution:

P(n,µ +b) =
(µ +b)n

n!
e−(µ+b). (B.13)

Compared to Equation B.9, number of mean expected counts nO is higher by number
of expected background counts b. After addition of expected background counts, Equations
B.12 get following form:

α =
nO

∑
i=0

P(i,µU +b),

β =
∞

∑
i=nO

P(i,µL +b). (B.14)

By setting α = 0.05, β = 0, one can calculate one-sided confidence intervals (0, µU) in
similar fashion as in background-less case. Let me assume experiment with four expected
background counts, b = 4. I will compare experiments which observed number of counts
lower than background, i.e four different experiment scenarios n = 3,2,1,0. For each of four
scenarios, plot similar to Figure B.1 - Right was produced and shown in Figure B.2.

Value of mean total expected counts µ + b differs in dependence of scenario. Experiment
with three measured counts calculates µ + b = 7.754 counts as a solution to first equation in
Equation B.14. If we subtract background (four counts), we obtain upper limit of confidence
interval µU = 3.754. It is no surprise that, the lower the number of measured counts is the
lower µU is. However, for experiment scenarios n = 2,1,0 we obtain µU = 2.296, 0.744,
-1.004, respectively. Case, when no count is measured, gives a non-physical negative value
of upper limit. Moreover, if we try to correct such value and report µU = 0, the confidence
interval would be an empty set. Due to the presence of background, value µU is "pushed" out
of the physical region. Classical method provides absurd results for measurements observing
much less counts n than expected background b.

B.3 Feldman-Cousins Method
Previously presented problem with construction of reasonable confidence intervals is not

the only pitfall of classical method.
Experiments which observe number of counts lower than background, are, quite natu-

rally, able to report only upper limit on the expected mean signal µU. Such an upper bound-
ary can be plugged into Equation B.8 in order to calculate respective half-life. Half-life and
number of signal counts µ are inversely proportional. Therefore, plugging upper limit on
expected mean signal µU into Figure B.8 yields lower boundary on half life as follows:

T1/2 ≥ ln(2)
NA

W
ε

amst
µU

. (B.15)
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Figure B.2: Poisson distributions of four different values of mean expected counts µ + b.
Value µ + b was chosen in a way that cumulative probability of n ≤ nO (red dots) is equal
exactly to chosen α (5%). Blue dot marks position of µ + b on x-axis (numerical value is
given in each title). Each plot represents different measured number of counts nO of identical
experiments with expected background b = 4.

Using a classical method, two experiments which observe same number of total counts
but expect different backgrounds, would report different upper limits of true mean signal
(µU). This is not surprising, however, if both experiments observed less counts than back-
ground (no discovery), the one with higher expected background would report lower value
of µU, i.e. higher low limit on half life. This is an anomaly of the method, because ex-
periment with larger expected background should not get better results than one with lower
background.

All of the previous fundamental problems with classical method were solved by Feld-
man and Cousin in their famous article from 1997 [122]. Their method takes advantage of
construction of so-called confidence belts. Construction of confidence belts in some sense
resembles the process of construction of confidence intervals from classical method.

Let me describe the process in detail. As previously, let us have an experiment with
expected background b. The experiment detects n counts. Probability, that an experiment
with b background counts observes n total counts is governed by Poisson probability P(n,
µ + b) given by Equation B.13. µ , the mean true signal count, is unknown and has to be
extracted. In classical method, the approach was rather direct. We attempted to adapt limits
of confidence interval (µL, µU) in a way that cumulative probability of P(i, µU + b) (P(i, µL
+ b)) for all i ≤ n (i ≥ n) covered α (β ) portion of probability. Feldman-Cousins method is
not as straightforward. In this method, intervals (nmin

j , nmax
j ) are constructed for equidistantly

distributed succession of values µj. Calculation is performed for variety of chosen values µj.
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Such intervals are called confidence belts.
Calculation of confidence belts proceeds in following steps:

1. Value of µj is chosen.

2. Values of integer quantities nmin
j and nmax

j are calculated. They should satisfy following
relations:

1−α ≤
∞

∑
i=nmin

j

P(i,µ j +b), (B.16)

1−β ≤
nmax

j

∑
i=0

P(i,µ j +b). (B.17)

Coefficients α and β are chosen based on the type of interval and confidence level
which we would like to reach (central or one-sided). For given α and β , solution is
a couple of nmin

j and nmax
j where nmin

j is minimal value satisfying the Equation B.16
while, simultaneously nmax

j is maximal value satisfying the Equation B.17.

3. Values nmin
j and nmax

j are kept.

4. µj is incremented by a small chosen amount ∆µ , µj+1 = µj + ∆µ is obtained. Algorithm
continues with µj+1 at point 2.

5. When sufficient interval of values of µj is calculated, the algorithm stops.

Figure B.3 contains clarification of Equations B.16 and B.17 for µj + b = 8.56. Note that,
similarly to confidence intervals from classical method, confidence level CL = 1 - α - β . In
the classical method, we adapted value of variables µL and µU in order to solve Equations
B.14. µL and µU are real numbers so the equations are solvable exactly (within numerical

Figure B.3: Example of calculation of (central) confidence belt for µj = 8.56 - b. Left:
According to Equation B.16, nmin

j = 4 because cumulative probability (CP) of red dots is
superior to 1 - α = 95%. At the same time, value n = 5 would cause CP of red dots drop
below 95%. Right: According to Equation B.17, nmax

j = 14 because cumulative probability
(CP) of red dots is superior to 1 - β = 95%. At the same time, value n = 13 would cause CP
of red dots drop below 95%.
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imprecision). However, in problem of confidence belts, values nmin
j and nmax

j are integers.
The cumulative probability of P(n, µj + b) for all nmin

j ≤ n ≤ nmax
j will practically always

exceed CL = 1 - α - β . Such conservativeness is unavoidable effect.
Result of the whole algorithm is a set of µ0, µ1, ..., µN values with respective confidence

belts (nmin
0 , nmax

0 ), (nmin
1 , nmax

1 ), ..., (nmin
N , nmax

N ). The confidence belts can be represented in
two-dimensional plots which can be found in Figure B.4.

Figure B.4: Representation of confidence belts as a function of µj (y-axis). X-axis represents
number of total counts n observed by experiment. Source: [122]. Both plots are generated for
case with b = 3. They are described in more detail in the text. Left: Plot showing confidence
level low limits nmin

j in dependence on µj for one-sided intervals with β = 0. Right: Plot
showing confidence level limits nmin

j and nmax
j in dependence on µj for central interval.

The plots represent two different type of belt intervals. Left one, with α = 0.1 (10%) and
β = 0 represents one-sided belts where only nmin

j is finite and nmax
j = ∞. They are generated

for case with three expected background counts (b = 3). If experiment observes, for instance,
n = 7, it reports confidence interval given by vertical section in value n = 7, as depicted in
Figure B.4. Experimentalist in the scenario on the left side would report confidence interval
of µ = (0, 8.8) while the same experiment with the same expected background would report
interval (0.3, 10.1). Both cases offer interval on a confidence level CL = 1 - α - β of 90%.
The difference lies in the choice whether experimentalist prefer to publish only upper limit
or central interval. Such a degree of freedom creates ambiguity in reported results. What
is even worse, the plots offer empty confidence interval in case if experiment observed zero
counts (n = 0). The solution which is a triumph of Feldman-Cousins method is in the ordering
principle presented in following section.

B.3.1 Ordering Principle
Confidence belts in Figure B.4 represent two possible analyses methods for the same

experiment with three background counts. Moreover, if we keep confidence level at the
same value of 90% we can shift the belts to the left or right in dependence on α and β . This
becomes clear if we have a look at the Figure B.3. Imagine that we keep the sum of α + β
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= 0.1 constant. If we gradually decrease α , value nmin would decrease as well. β , however,
would be increased, pushing nmax to lower values.

Choice of α and β is distinguishing between scenario when central interval or one-sided
interval is reported. Nevertheless, it makes sense to expect only upper limit µU when mea-
sured number of counts is less or equal to expected background and central interval other-
wise. Such an option is not possible with the method proposed in the latest section. Method
which would change α and β dynamically for different µj is needed.

Solution how nmin
j and nmax

j in Figure B.3 was found, can be reformulated bit differently.
In order to find value nmax = 14 we can say that we had to gradually sum the probabilities
P(0, 8.56) + P(1, 8.56) + ..., until cumulative sum exceeded value of 1 - β . This happened
when P(14, 8.56) was added so we concluded that nmax = 14. We added values P(i, 8.56)
in well defined order (i = 0,1,2, etc.). It is example of type of ordering based on which, we
accept or reject individual values. Another type of ordering can be observed in the same
figure, on the left side, in case when nmin = 4 was calculated. All the probabilities P(i, 8.56)
were added in descending order ∞→ 4. Term P(4, 8.56) caused the sum to exceed 95% (1 -
α) and, therefore, nmin = 4.

B.3.1.1 Likelihood Ratio Ordering Principle

The ordering principles of ascending / descending order are not the only possibilities.
More sophisticated principles can be proposed. Feldman and Cousins proposed likelihood
ratio ordering principle as a core of their universal method presented in this section.

The principle is tailored to build the interval from the center by adding terms P(i, µj + b)
to the left and right based on their likelihood ratios R given by:

R =
P(i,µ j +b)

P(i,µbest
j +b)

. (B.18)

Here, µbest
j is a value which maximize P(i, µj + b) for given i and b. Method of likelihood

ratio ordering, adds the terms P(i, µj + b) with highest likelihood ratio into cumulative sum.
The method gives priority to values of P(i, µj + b) as close as possible to the most probable
value µbest

j .
It is easy to demonstrate the principle with an example. In order to obtain a direct com-

parison with Figure B.3, I will assume construction of interval given by µj + b = 8.56. While
the calculation of case (descending / ascending order) presented in the figure did not rely on
the value of b (only on µj + b), we did not have to precise it. However, in case of likelihood
ratio ordering the result depends on both µj and b. In the following, I will assume expected
background of three counts, b = 3. I will present example of case µ5 = 0.5 (I skipped µ0 = 0,
µ1 = 0.1, ..., µ4 = 0.4).

Detailed clarification of such calculation is displayed in Table B.1. Each row represents
one value of total counts observed by experiment. Second column displays Poisson proba-
bility of obtaining n counts if µ5 + b are expected. Following column shows µbest

5 which is a
value of µ which maximizes P(n, µ + b) for given n and b. This value cannot be negative. In
following column P(n, µbest

5 + b) is calculated. Fifth column holds value of likelihood ratio
R given in Equation B.18. Finally, last column displays order of descending value of R. The
order in which values P(n, µ5 + b) are added to cumulative sum is great demonstration of the
method of likelihood ratios. First term added to the sum is n = 4 followed by n = 3,2,5,1,0
and 6. Their cumulative sum is equal to 0.935 and it just enough terms to exceed value of
0.9 which is 90% CL. On this confidence level, therefore, we calculated that for µ5 = 0.5 (b
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µ5 = 0.5, b = 3
n P(n, µµµ555+b) µµµbbbeeesssttt

555 P(n, µµµbbbeeesssttt
555 +b) R Order

0 0.030 0 0.050 0.607 6
1 0.106 0 0.149 0.708 5
2 0.185 0 0.224 0.826 3
3 0.216 0 0.224 0.963 2
4 0.189 1 0.195 0.966 1
5 0.132 2 0.175 0.753 4
6 0.077 3 0.161 0.480 7
7 0.039 4 0.149 0.259 8
8 0.017 5 0.140 0.121 9
9 0.007 6 0.132 0.050
10 0.002 7 0.125 0.018
11 0.001 8 0.119 0.006

Table B.1: Example of calculation of confidence belt for experiment which expects 3 back-
ground counts. The calculation is performed for µ5 = 0.5. More information about the
calculation and content of the table is provided in text.

= 3), nmin
5 = 0 and nmin

5 = 6. If we added following term in order (n = 7) cumulative sum
would reach 0.973, exceeding also 0.95 (95%), in such scenario, nmin

5 = 0 and nmin
5 = 7. By

addition of yet another term (n = 8) sum reaches 0.99 which results into nmin
5 = 0 and nmin

5 =
8 at 99% confidence level.

Method of likelihood ratio ordering builds confidence belts from center and expands it
to the left and right simultaneously. Note that, the algorithm might lead into intervals when
some value in the middle is not included in the cumulative sum while reaching wanted CL. In
such case conservative approach should be chosen and the missing value should be included
also to achieve continuous interval.

I performed calculation such as the one presented in Table B.1 for many different values
of 0 ≤ µj ≤ 15 with step ∆µ = µj+1 - µj = 0.01. The resulting intervals (nmin

j , nmax
j ) I

represented in form of confidence belts similar to Figure B.4. The result for 90% and 95%
can be found in Figure B.5.

As the value of µ is rising, we can notice that interval (nmin
j , nmax

j ) changes from one-
sided regime (nmin

j = 0) into central interval regime (nmin
j 6= 0). Vertical cross section in

given value n, bounded from the bottom by blue curve (µL) and from top by red curve (µU),
represent confidence intervals reported by experiment. Confidence intervals (µL, µU) for
experiment which observed n = 0 were empty in Figure B.4. This was due to the order-
ing method used to produce confidence belts. Such a behaviour is not present in case of
likelihood ratio ordering as can be seen in Figure B.5. This is a triumph of likelihood ratio
method. Moreover, the method also automatically generates one sided confidence interval
(0, µU) or central interval (µL, µU), depending on how significant the number of observed
counts is relatively to the background.

B.3.1.2 Numerical Artefacts

Confidence belts, like those presented in Figure B.5 can be produced for any value of
background b. For given number of observed events n, we can extract confidence interval
(µL, µU) as a function of expected background b.
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Figure B.5: Results from my own implementation of Feldman-Cousins recipe. Plots rep-
resent example of confidence belts generated for 90% CL (left) and 95% CL (right) for
experiment which expects 3 background counts. Likelihood ratio ordering method was im-
plemented. In comparison to Figure B.4 likelihood ratio method provides non-empty confi-
dence interval for experiment observing zero counts.

Figure B.6 shows how upper limit µU of confidence interval (90% CL) changes with
increasing expected background b for n = 0, 2, 4. Black dashed line represents calculation
based on the previously presented method of likelihood ratio ordering. Limit tends to be
improved (lower) with higher expected background. However, the functions in the plot are
not perfectly smooth. They contain sharp local peaks where functional value grows a little
and then continue decreasing again. These are effects caused by discreteness of Poisson
distribution. In order to obtain nicely smooth, never increasing function, we need to apply
a correction. The values in the regions between two peaks are set to a value of next peak in
order to flatten the curve. The curves after the application of correction are presented as solid
red lines. Proposed correction is something what we can afford to do, as it overestimates the
upper limit of confidence interval, setting it to more conservative value.

B.3.2 Experiments with no Discovery
Method of likelihood ratio ordering proved itself to be effective, preventing the appear-

ance of empty confidence intervals. The method relaxes the requirement to choose α and
β thresholds from method with ascending / descending ordering. One only needs to choose
CL and perform the calculation.

In this section, I am interested in experiments which did not observe the process of in-
terest and cannot claim the discovery. Such an experiment observes less or equal number
of counts than the expected background, n ≤ b. With a method of likelihood ratio ordering,
such experiment is always capable to report upper limit µU. Thanks to the Equation B.15
the limit can be transformed into low limit on a half-life. Figure B.5 implies that, the lower
the number of counts n observed by experiment is under the expected background, the better
upper limit µU experiment is able to report. Experiment with higher expected background
would report better limit than experiment with lower background if both experiments mea-
sured same number of counts. This is an unwanted anomaly already discussed to arise in
classical method.

Experiment expecting 4 background counts during given period of time has a 19.5%
chance to observe four counts assuming no other source of counts, P(4,4) = 0.195. It also
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Figure B.6: Plots of upper limits µU as a function of background expected by experiment.
Plot is constructed for experiments observing n = 0,2 or 4 total counts. Calculation represents
90% CL. Dashed black lines show calculation with no correction obtained by application of
likelihood ratio ordering method to Feldman-Cousins recipe. Red solid lines are same results
after correction was applied in order to prevent intervals where function increases.

has a probability of 19.5% to observe 3 counts, P(3,4) = 0.195, 14.7% to observe 2 counts,
P(2,4) = 0.147, etc.. To some extent, number of events which experiment detects, is partially
random, only governed by Poisson distribution. We need a method which assigns unique
value of upper limit µU to experiments with no discovery only based on the expected back-
ground b, regardless of number of counts it has detected. Solution is, to report a mean value
of all upper limits over all experiments with the same expected background and different
detected counts. The value is calculated as follows:

µU =
∞

∑
n=0

P(n,b)U(n,b). (B.19)

Here, U(n,b) is an upper limit which experiment would report based on the likelihood
ratio ordering method if it observed n events and expected background b (for given CL).
Such a limit is weighted by probability P(n,b), that the experiment measures n counts if
only background is present.

Such a calculation method ensures that the experiments with better background sup-
pression but no discovery, would be able to publish better limit than the one with more
background.

Feldman-Cousins method presented above is standard frequentist method used to evalu-
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ate exclusion regions for half-life of undiscovered processes. The upper value µU calculated
by method presented in this chapter and represented by Equation B.19 can be plugged into
Equation B.15 and provide a lower limit on half life of the undiscovered process. If real half-
life of the sought (existing) process is lower than this limit, the experiment should be able to
observe it. Application of this method in simulation is presented in Chapter 6 dedicated to to
estimation of expected limit achievable by SuperNEMO experiment to 0νββ with Majoron
emission.
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Appendix C
Numerical Values of Half-Life Limits for
0νββ χ0 and 0νββ χ0χ0

The appendix is dedicated to all the half-life limit values calculated in Chapter 6. Values
are plotted in Figures 6.6 and 6.7 in aforementioned chapter. Tables C.1 and C.2 contain all
the half-life limits obtained for 0νββ χ0. Colour of each cell represents the ROI for which
the limit was obtained. The definition of colour coding is introduced in Table C.3.

t = 0.5 yr AAABBBiii [µµµBBBqqq/kg]
0 10 20 50 100 200

CL = 90%
AAATTT lll [µµµBBBqqq/kg]

0 0.594 0.592 0.591 0.587 0.582 0.570
100 0.589 0.587 0.586 0.583 0.577 0.567

CL = 95% 0 0.498 0.497 0.496 0.493 0.489 0.480
100 0.494 0.493 0.492 0.489 0.485 0.476

t = 1 yr AAABBBiii [µµµBBBqqq/kg]
0 10 20 50 100 200

CL = 90%
AAATTT lll [µµµBBBqqq/kg]

0 0.880 0.877 0.874 0.866 0.857 0.839
100 0.867 0.866 0.864 0.858 0.849 0.833

CL = 95% 0 0.737 0.735 0.733 0.729 0.722 0.708
100 0.730 0.729 0.727 0.723 0.716 0.702

t = 2 yr AAABBBiii [µµµBBBqqq/kg]
0 10 20 50 100 200

CL = 90%
AAATTT lll [µµµBBBqqq/kg]

0 1.310 1.305 1.300 1.285 1.260 1.222
100 1.281 1.276 1.271 1.256 1.236 1.212

CL = 95% 0 1.098 1.093 1.089 1.077 1.057 1.031
100 1.073 1.070 1.066 1.054 1.043 1.024

t = 5 yr AAABBBiii [µµµBBBqqq/kg]
0 10 20 50 100 200

CL = 90%
AAATTT lll [µµµBBBqqq/kg]

0 2.164 2.154 2.145 2.119 2.076 2.001
100 2.115 2.107 2.099 2.075 2.036 1.965

CL = 95% 0 1.822 1.814 1.807 1.786 1.752 1.703
100 1.781 1.774 1.767 1.747 1.734 1.692

Table C.1: See caption of Table C.2.
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t = 10 yr AAABBBiii [µµµBBBqqq/kg]
0 10 20 50 100 200

CL = 90%
AAATTT lll [µµµBBBqqq/kg]

0 3.141 3.129 3.117 3.082 3.024 2.916
100 3.072 3.061 3.049 3.015 2.960 2.860

CL = 95% 0 2.656 2.646 2.636 2.606 2.558 2.466
100 2.598 2.588 2.579 2.550 2.504 2.419

t = 15 yr AAABBBiii [µµµBBBqqq/kg]
0 10 20 50 100 200

CL = 90%
AAATTT lll [µµµBBBqqq/kg]

0 3.887 3.869 3.851 3.799 3.716 3.576
100 3.808 3.791 3.774 3.724 3.644 3.507

CL = 95% 0 3.287 3.272 3.257 3.214 3.144 3.102
100 3.221 3.206 3.192 3.192 3.112 3.057

Table C.2: Half-life limits of 0νββ χ0 achievable by SuperNEMO as a function of Bi (ABi)
and Tl (ATl) contamination, time of measurement (t) and confidence level (CL). The ROI
with the best half-life limit were varying, therefore, colour of the cell represents the ROI for
given value. Colours are defined in Table C.3. Half-life limit values in table are expressed in
1023 yr.

Color codes of the best ROI intervals
(2500 keV, 2800 keV) (2500 keV, 2900 keV) (2400 keV, 2900 keV)
(2500 keV, 3000 keV) (2400 keV, 3000 keV) (2400 keV, 3100 keV)

Table C.3: Colour coding definition for intervals with the best obtained half-life limit. Each
cell colour in Tables C.1 and C.2 represents different ROI for which the half-life limit was
obtained.

ROI yielding the best half-life limit for 0νββ χ0χ0 was always (1000 keV, 2900 keV)
due to different spectral shape, shifted to low energies relatively to 0νββ χ0. In this ROI, Bi
and Tl contamination contributed negligibly (compared to dominating 2νββ ) to the back-
ground and the resulting limits remained almost unchanged even for extreme values1 of Bi
and Tl contamination. Therefore, the calculation was performed only for scenario with the
SuperNEMO design contamination limits of ABi = 10µBq/kg and ATl = 2µBq/kg. Result-
ing half-life limits are represented in Tables C.4, C.5 and C.6.

t [yr] 0.1 0.2 0.5 0.7 1 1.5 2
CL = 90% 0.475 0.671 1.061 1.256 1.501 1.838 2.123
CL = 95% 0.403 0.570 0.902 1.067 1.275 1.562 1.804

Table C.4: See caption of Table C.6.

t [yr] 2.5 3 3.5 4 4.5 5 6
CL = 90% 2.373 2.600 2.808 3.002 3.184 3.356 3.676
CL = 95% 2.017 2.209 2.386 2.551 2.706 2.852 3.124

Table C.5: See caption of Table C.6.

1Hundreds of times higher than SuperNEMO design values.
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t [yr] 7 8 9 10 12 14 20
CL = 90% 3.971 4.245 4.503 4.746 5.199 5.616 6.712
CL = 95% 3.374 3.607 3.826 4.033 4.418 4.772 5.704

Table C.6: Half-life limits of 0νββ χ0χ0 achievable by SuperNEMO as a function of time
of measurement (t) and confidence level (CL). The ROI with the best half-life limit was in
each case (1000 keV, 2900 keV). Bi and Tl contaminations were set to ABi = 10µBq/kg and
ATl = 2µBq/kg in the calculation. Half-life limit values in table are expressed in 1022 yr.
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