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”Video-Based Depression Detection Using Local Curvelet Binary Patterns in Pairwise Or-

thogonal Planes”, 38th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC), Orlando, Florida USA, 16-20 August, 2016.

ix



6. Pampouchidou,A., Kazantzaki,E., Karatzanis,I., Marias,K., Tsiknakis,M., Meriaudeau,F.,

Yang,F., and Simos,P. ”Preliminary Evaluation of a Web-Oriented Assessment Tool for Emo-

tion Recognition”. 13th International Conference on Wearable, Micro & Nano Technologies

for Personalized Health, FORTH, Heraklion, Crete, Greece, 29-31 May, 2016. Also appears

in the journal Studies in Health Technology and Informatics 224 (2016): 95.

7. Pampouchidou,A., Marias,K., Tsiknakis,M., Simos,P., Yang,F., and Meriaudeau,F.

”Designing a Framework for Assisting Depression Severity Assessment from Facial Image

Analysis”. International Conference on Signal and Image Processing Applications, Kuala

Lumpur, Malaysia, 19-21 October 2015.

Peer-Reviewed International Conferences - Contributing

1. Megat S’adan,M.A.H., Pampouchidou,A., Meriaudeau,F. ”Deep Learning Techniques for

Depression Assessment”, International Conference on Intelligent & Advanced System, Kuala

Lumpur, Malaysia, 13-15 August, 2018

2. Maridaki,A., Pampouchidou,A., Marias,K., Tsiknakis,M. ”Machine Learning Techniques

for Automatic Depression Assessment”. 41st IEEE International Conference on Telecom-

munications and Signal Processing, Athens, Greece, 4-6 July 2018

3. Bourou,D., Pampouchidou,A., Tsiknakis,M., Marias,K., and Simos,P. ”Video-based Pain

Level Assessment: Feature Selection and Inter-Subject Variability Modelling”, 41st IEEE

International Conference on Telecommunications and Signal Processing, Athens, Greece,

4-6 July 2018

4. Vazakopoulou,C-M., Pampouchidou,A., Yang,F., Meriaudeau,F., Marias,K.,
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Abstract

Depression is the most prevalent mood disorder worldwide having a signifi-

cant impact on well-being and functionality, and important personal, family

and societal effects. The early and accurate detection of signs related to de-

pression could have many benefits for both clinicians and affected individuals.

The present work aimed at developing and clinically testing a methodology

able to detect visual signs of depression and support clinician decisions.

Several analysis pipelines were implemented, focusing on motion representa-

tion algorithms, including Local Curvelet Binary Patterns-Three Orthogonal

Planes (LCBP-TOP), Local Curvelet Binary Patterns- Pairwise Orthogo-

nal Planes (LCBP-POP), Landmark Motion History Images (LMHI), and

Gabor Motion History Image (GMHI). These motion representation meth-

ods were combined with different appearance-based feature extraction algo-

rithms, namely Local Binary Patterns (LBP), Histogram of Oriented Gra-

dients (HOG), Local Phase Quantization (LPQ), as well as Visual Graphic

Geometry (VGG) features based on transfer learning from deep learning net-

works. The proposed methods were tested on two benchmark datasets, the

AVEC and the Distress Analysis Interview Corpus - Wizard of Oz (DAIC-

WOZ), which were recorded from non-diagnosed individuals and annotated

based on self-report depression assessment instruments. A novel dataset

was also developed to include patients with a clinical diagnosis of depression

(n=20) as well as healthy volunteers (n=45).

Two different types of depression assessment were tested on the available

datasets, categorical (classification) and continuous (regression). The MHI

with VGG for the AVEC’14 benchmark dataset outperformed the state-of-

the-art with 87.4% F1-Score for binary categorical assessment. For contin-

uous assessment of self-reported depression symptoms, MHI combined with
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HOG and VGG performed at state-of-the-art levels on both the AVEC’14

dataset and our dataset, with Root Mean Squared Error (RMSE) and Mean

Absolute Error (MAE) of 10.59/7.46 and 10.15/8.48, respectively. The best

performance of the proposed methodology was achieved in predicting self-

reported anxiety symptoms in our dataset, with RMSE/MAE of 9.94/7.88.

Results are discussed in relation to clinical and technical limitations and

potential improvements in future work.
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Résumé

La dépression est le trouble de l’humeur le plus répandu dans le monde

avec des répercussions sur le bien-être personnel, familial et sociétal. La

détection précoce et précise des signes liés à la dépression pourrait présenter

de nombreux avantages pour les cliniciens et les personnes touchées. Le

présent travail visait à développer et à tester cliniquement une méthodologie

capable de détecter les signes visuels de la dépression afin d’aider les cliniciens

dans leur décision.

Plusieurs pipelines d’analyse ont été mis en œuvre, axés sur les algorithmes

de représentation du mouvement, via des changements de textures ou des

évolutions de points caractéristiques du visage, avec des algorithmes basés

sur les motifs binaires locaux et leurs variantes incluant ainsi la dimen-

sion temporelle (Local Curvelet Binary Patterns-Three Orthogonal Planes

(LCBP-TOP), Local Curvelet Binary Patterns- Pairwise Orthogonal Planes

(LCBP-POP), Landmark Motion History Images (LMHI), and Gabor Mo-

tion History Image (GMHI)). Ces méthodes de représentation ont été com-

binées avec différents algorithmes d’extraction de caractéristiques basés sur

l’apparence, à savoir les modèles binaires locaux (LBP), l’histogramme des

gradients orientés (HOG), la quantification de phase locale (LPQ) et les

caractéristiques visuelles obtenues après transfert de modèle issu des ap-

prentissage profonds (VGG). Les méthodes proposées ont été testées sur

deux ensembles de données de référence, AVEC et le Wizard of Oz (DAIC-

WOZ), enregistrés à partir d’individus non diagnostiqués et annotés à l’aide

d’instruments d’évaluation de la dépression. Un nouvel ensemble de données

a également été développé pour inclure les patients présentant un diagnostic

clinique de dépression (n = 20) ainsi que les volontaires sains (n = 45).

xvii



Deux types différents d’évaluation de la dépression ont été testés sur les

ensembles de données disponibles, catégorique (classification) et continue

(régression). Le MHI avec VGG pour l’ensemble de données de référence

AVEC’14 a surpassé l’état de l’art avec un F1-Score de 87,4% pour l’évaluation

catégorielle binaire. Pour l’évaluation continue des symptômes de dépression

”autodéclarés”, LMHI combinée aux caractéristiques issues des HOG et à

celles issues du modèle VGG ont conduit à des résultats comparatifs aux

meilleures techniques de l’état de l’art sur le jeu de données AVEC’14 et sur

notre ensemble de données, avec une erreur quadratique moyenne (RMSE)

et une erreur absolue moyenne (MAE) de 10,59 / 7,46 et 10,15 / 8,48 re-

spectivement. La meilleure performance de la méthodologie proposée a été

obtenue dans la prédiction des symptômes d’anxiété auto-déclarés sur notre

ensemble de données, avec une RMSE/MAE de 9,94 / 7,88.

Les résultats sont discutés en relation avec les limitations cliniques et tech-

niques et des améliorations potentielles pour des travaux futurs sont pro-

posées.
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Chapter 1

Introduction

The present chapter presents concepts and facts related to depression, in order to ac-

quaint the reader with the disorder. Methods for depression assessment are summarized,

including diagnostic procedures and self-reports. Non-verbal signs of depression, along

with the motivation of the work described herein, are also presented. Parts of the con-

tents of this chapter have been published in [165].

1.1 Depression Facts

Depression is the most common mood disorder characterized by persistent negative affect

[17] (c.f. Fig. 1.1). Clinically distinct depressive disorders encompass a wide range of

manifestations. According to the Diagnostic and Statistical Manual of Mental Disorders

of the American Psychiatric Association (APA) [28], now in its fifth edition (DSM-5),

subtypes of depressive disorders include: Major Depressive Disorder (MDD), Persistent

Depressive Disorder, Disruptive Mood Dysregulation Disorder, Premenstrual Dysphoric

Disorder, Substance/Medication-Induced Depressive Disorder, Depressive Disorder Due

to Another Medical Condition, and Other Specified Depressive Disorder or Unspecified

Depressive Disorder.

MDD, also commonly referred to as Clinical Depression, is considered as the most

typical form of the disease [217]. According to DSM-5 MDD can be diagnosed by the

presence of a) depressed mood most of the day, and/or b) markedly diminished interest

or pleasure, combined with at least four of the following symptoms for a period exceeding

two weeks: significant weight change of over 5% in a month, sleeping disturbances (in-
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1. INTRODUCTION

somnia or hypersomnia), psychomotor agitation or retardation almost every day, fatigue

or loss of energy almost every day, feelings of worthlessness or excessive guilt, diminished

ability to concentrate or indecisiveness almost every day, recurrent thoughts of death or

suicidal ideation. An additional common feature of all depressive disorders is ”(...) clin-

ically significant distress or impairment in social, occupational, or other important areas

of functioning (...)” [28].

MDD is reported to be the fourth most prominent cause of disability and is expected

to become the second by 2020 due to its increasing prevalence [127]. The ”Survey of

Health, Ageing and Retirement in Europe” [14] documents a consistent rise of depression

among adults with increasing age, which is associated with significantly elevated risk

for suicidal behavior [213]. The ongoing economic crisis in Europe resulting in high

unemployment is implicated as a trigger, since 70-76% of unemployed people have been

reported to display significant depressive symptomatology [82]. Further studies have

shown that the economic burden of MDD has increased during the 2005-2010 period by

21.5% in the US, while in Europe the cost is estimated at 1% of Gross Domestic Product

[190]. The total cost of MDD in 2010 in 30 European countries was estimated at 91.9

billion euros [155].

Figure 1.1: Prevalence of depressive disorders (% of population), by WHO Region (Taken
from [229])

2



1.2 Depression Assessment

1.2 Depression Assessment

Various procedures for depression assessment are presented in this section, while non-

verbal signs of depression are also described, emphasizing visual signs.

1.2.1 Clinical diagnosis & Self-Reports

A structured clinical interview assessing the presence of DSM-5 criteria is the standard

procedure for depression diagnosis [80]. Quantification of the presence and severity

of depressive symptomatology is often aided by rating scales completed by a specially

trained mental health professional in the context of the clinical interview. The Hamilton

Depression Rating Scale (HAM-D) is one of the most popular scales in clinical settings.

HAM-D assesses the severity of 17 symptoms, such as depressed mood, suicidal ideation,

insomnia, work and interests, psychomotor retardation, agitation, anxiety, and somatic

symptoms [97]. Both HAM-D and DSM-5 clinical criteria have been criticized regarding

their reliability [30] [49], as diagnosis of MDD is not as consistent as other common

medical conditions [129]. In general, ”there is no blood test” for depression [202], as the

disorder lacks biological gold standards [124].

Clinical diagnosis of depression may also be supported by scores on self-report scales

and inventories (Self-RIs). Most often used Self-RIs in affective computing research are

the various forms of Patient Health Questionnaire (PHQ)-2/8/9, comprised of 2, 8, or 9

items, respectively and Beck’s Depression Inventory (BDI). The Depression and Somatic

Symptoms Scale (DSSS) was also used in one study. Self-RIs are convenient and econom-

ical, with reported sensitivity and specificity approaching 80-90% (e.g., PHQ-9 [224]),

but bear certain disadvantages. Importantly, they do not take into account the clinical

significance of reported symptoms, and do not permit adjustments for individual trait

characteristics, other psychiatric and medical comorbidities, and potentially important

life events, as opposed to a clinical interview [168]. Additionally Self-RIs are vulnerable

to intentional (such as norm defiance) or unintentional reporting bias (e.g., subjective,

central tendency [i.e., avoiding extreme responses], social desirability, and acquiescence)

[35]. In summary, although Self-RIs alone are insufficient to support the diagnosis of

depression [171] [193], they are widely used for screening purposes in various settings,

including primary health care. While the cost-effectiveness of widespread screening prac-

tices for improving the quality of depression care is debated [149], practical issues related
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to the aforementioned limitations of Self-RIs raise questions regarding the overall utility

and effectiveness of this practice for population-based mental health.

1.2.2 Nonverbal Signs of Depression

It is well known that depression manifests through a variety of nonverbal signs [76] [222].

Involuntary changes in the tonic activity of facial muscles, as well as changes in peripheral

blood pressure and skin electrodermal response, often mirror the frequent and persistent

negative thoughts and feelings of sadness that characterize depression. Preliminary

findings suggest that electroencephalographic recordings may contain features related

to depression [104]. Functional Near-Infrared Spectroscopy has also attracted interest

[19] [199]. Additionally, speech conveys non-verbal information on the mental state of

the speaker; prosodic, source, and acoustic features, as well as vocal tract dynamics, are

speech-related features affected by depression [60]. Furthermore, depression as a mood

disorder, is portrayed on the individual’s appearance, in terms of facial expression, as well

as body posture [76] [222]. Face as a whole, and individual facial features, such as eyes,

eyebrows or mouth, are of particular interest when it comes to depression assessment.

Some of the visual signs identified in the literature are briefly described in the paragraphs

that follow.

Specific facial expressions, have been widely examined for depression assessment,

in terms of frequency of occurrence, variability, and intensity of a specific expression.

Typically, the facial expression classification system proposed by Ekman [75] is employed,

which includes a set of six basic emotions (joy, surprise, anger, sadness, disgust, fear).

Measuring the frequency of occurrence of each of the six emotional expressions [237]

[84] [195] [176] relies on the premise that depressed individuals tend to show reduced

expressivity [76]. Other studies focused on specific facial features, such as the eyes

and mouth. These include gaze direction [177] [178], reduced eye contact [135], eyelid

activity [22], eye openings/blinking [237] [96] and iris movement [24]. Smile intensity

[177] [178], smile duration [177] [178], mouth animation [96], listening smiles (smiles

while not speaking) [93], and lack of smiles [135] also constitute potentially useful facial

signs for assessing depression.

Head pose, orientation, and movement have been used extensively for depression

assessment [237] [84] [195] [90] [176] [239] [96] [23] [118], along with motor variability and

general facial animation [195] [176] [96]. Another visual sign that has drawn considerable
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attention by clinicians in relation to depression assessment is pupil dilation. Siegle et

al. [185] reported faster pupillary responses in non-depressed individuals to positive as

compared to negative stimuli. More recently Price et al. [169] investigated attentional

bias, including pupil bias and diameter, to predict depression symptoms over a two

year follow up period in a sample of adolescents displaying high ratings of anxiety.

Additionally, body gestures [114] [116] involving the entire body, upper body, or separate

body parts can also contribute to the assessment. Finally, shaking and/or fidgeting

behavior, self-adaptors, and foot tapping [93] have also been considered as signs of

depression. Table 1.1, taken from Pampouchidou et al. [165], is summarizing signs and

signals related to depression assessment as found in the literature to date.

Table 1.1: Non-verbal manifestations of depression

Eyelid activity (openings, blinking)

Eye gaze (limited & shorter eye contact)

Visual fixation

Low frequency & duration of glances

Eyebrow activity

”Veraguth fold”∗

Frowns

Fewer smiles

More frequent lip presses

Smile intensity & duration

Mouth corners angled down

Mouth animation

Listening smiles (smiling while not speaking)

Facial expression occurrence (variability & intensity)

Sad / negative / neutral expression occurrence

Head pose (orientation, movement)

Body gestures (full or upper body, or body parts)

Slumped posture

Limp & uniform body posture

Reduced & slowed arm and hand movements

Shaking and/or fidgeting behavior

Self-adaptors

Foot tapping

Motor variability

∗ ”veraguth fold” is a fold (wrinkle) of skin on the upper eyelid, between the eyebrows
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1.3 Research Motivation

Recent classification schemes (e.g., DSM-5) run the risk of confusing normal sadness

(e.g., bereavement) with depression, raising the likelihood of false positive diagnoses

[218]. Depression assessment is a complex process and diagnosis is associated with a

significant degree of uncertainty, given the lack of objective boundaries, and the need

to evaluate symptoms within the person’s current psychosocial context and past history

[181]. Diagnostic accuracy typically improves when results from successive clinical as-

sessments, performed over several months, are taken into account [150]. Importantly, a

simple ”symptom checklist” approach is severely limited and diagnosis requires consid-

erable time investment in order to develop rapport with the patient [202]. The validity

and clinical significance of strict classification schemes has also been questioned [142].

For instance, MDD has been questioned as a ”homogeneous categorical entity” [91] and

the notion of a ”continuum of depressive disorders” is often advocated [138]. These rea-

sonable concerns go beyond the scope of the present work, given that currently affective

computing research relies heavily upon established clinical practice tools and procedures.

Objective measures of psychoemotional state, which are implicitly desirable in clinical

and research applications alike [103] [88], could complement Self-RIs and help overcome

some of their shortcomings. Certain Self-RIs are sufficiently brief and can be completed

on a regular basis (e.g., monthly or weekly) as part of electronic platforms designed to

support long-term monitoring of persons at risk. As suggested by Girard and Cohn [87],

technological advances in the field have paved the way for viable automated methods

for measuring signs of depression with multiple potential clinical applications. Thus,

decision support systems capable of capturing and interpreting nonverbal depression-

related cues, combined with verbal reports (Self-RIs), could be valuable in both clinical

and research applications. In principle, such measures may reduce or even eliminate

report bias. In addition, such measures are minimally invasive and do not require extra

effort on the part of the respondent, thus likely to increase long-term compliance.

Apart from the high prevalence of MDD, and the complexity of the diagnosis, an

additional motivation to pursue the development of a methodology for such a decision

support system, is the high number of underdiagnosed depressive episodes. In the over-

all 85% of depressed individuals are underdiagnosed [77]. Relevant research [29] also

showed that about 30% of patients suffering from an episode of major depression do not
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seek treatment, with eventually only 10% of them being adequately treated. In addition,

applying technological innovations could enhance accessibility to mental healthcare by

overcoming traditional barriers [54]. Current technological means can provide the infras-

tructure for monitoring psychoemotional state in high-risk individuals as part of early

detection and/or relapse prevention programs. A system devoted to the assessment of

depressive symptomatology based on visual cues could provide reliable indices, partly

based on facial expression analysis, in an unobtrusive manner.

Furthermore, the widespread and relatively low-cost accessibility to computer and

internet technologies, webcams, and smart phones, renders an efficient system for de-

pression assessment viable. Practical issues involved in developing such a system, like

the storage of sensitive data, could become an issue if not handled properly, but there are

ways to tackle such challenges; encryption, protection by password, or even an autho-

rization procedure could be implemented to regulate access to sensitive personal data.

In parallel, a great number of Web-based tools for depression management have been

developed and used clinically displaying a high degree of acceptance and patient adher-

ence [41]. Early attempts for internet-based interventions for prevention and treatment

of depression have shown promising outcomes [144], as well as mobile-based interven-

tions that help in reducing relevant symptomatology [112]. In the overall telepsychiatry

promotes patient-centered care [102].

Currently, video-based systems for depression assessment have only been found in

research-related projects, and have not been applied in the general population to eval-

uate their feasibility. Although currently limited to research applications, the field has

been very popular, with a dedicated section within the Audio/Visual Emotion Chal-

lenge (AVEC). AVEC’13 had three papers accepted for the Depression Recognition Sub-

challenge (DSC) [209] [208], while AVEC’14 [210] respectively attracted 44 submissions

by 13 teams worldwide; the AVEC’16 attracted submissions from 7 teams for the DSC

[211], while the latest DSC in terms of AVEC’17 attracted submissions by 10 teams.

Besides from being an active field drawing broad interest, AVEC submissions document

the sheer number of research groups working towards the development of such methods.

This fact implies that the idea of developing automated depression assessment methods

is not only promising, but is continuously progressing towards more robust and reliable

measures.
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However, given the current state of the art, video-based systems for depression as-

sessment are not intended as standalone tools, but mainly to function as a decision

support systems assisting mental health professionals in the monitoring of persons at

risk. ”Behaviormedics” is the term Valstar [206] introduced for applications designed for

the automatic analysis of affective and social signals, among others, to support objec-

tive diagnosis. Finally, the development of tools to assist clinicians in the diagnosis and

monitoring response to treatment and illness progression is gradually being supported

by clinical studies [50]. For the purpose of the present thesis, the term ”depression as-

sessment” will refer to the process of detecting and assessing the severity of signs of

and/or presence of depression.

1.4 Thesis Outline

The current thesis is organized in six Chapters. Chapter 2 exhaustively reviews the state-

of-the-art, presenting relevant methods employed in the literature, as well as a meta-

analysis of existing approaches. Methodology developed in terms of this PhD is described

in Chapter 3, with preliminary evaluation of the different methods being presented in

Chapter 4. Chapter 5 presents the methods used for collecting the clinical data, in terms

of technical setup, protocol, and participants, along with the main experiment conducted

as part of the current study. Discussion of experimental results and future work takes

place in Chapter 6. Finally, Chapter 7 presents the conclusions of this work.

8



Chapter 2

Literature Review

The present chapter is a systematic review of existing methods for automatic detection

and/or severity assessment of depression. In the current exhaustive review of more than

eighty studies, technical details, potential limitations of each approach and classification

accuracy achieved are evaluated, focusing on image processing and machine learning

algorithms applied to depression detection. State of the art methods are presented

highlighting their advantages and limitations, based on a quantitative meta-analysis of

their results. Datasets created to serve the various studies and the corresponding data

acquisition protocols are also described and discussed. Ultimately, gaps in the literature

are identified to be addressed in terms of the proposed thesis. Parts of this Chapter

have been published in IEEE Transactions on Affective Computing (Pampouchidou et

al. 2017) [165].

2.1 Review Design

The technical report entitled ”Procedures for Performing Systematic Reviews” by Kitchen-

ham [128] was used as a guide for the present review. The keywords used to search

electronic databases and related resources are listed in Table 2.1. Inclusion criteria for

the review involved a) adequate description of an algorithm for automatic depression

assessment utilizing visual cues and b) presentation of systematically derived data, pro-

ducing concrete results. Fig.2.1 illustrates the rapid increase of relevant studies during

the past few years proving that automatic depression assessment based on visual cues

is a rapidly growing research domain. The small drop in 2015 can be attributed to the

9



2. LITERATURE REVIEW

Table 2.1: Search terms and web-resources employed in the current literature review

Keywords Web-resources

• Depression
• Facial Expression
• Non-verbal communication
• Image Processing
• machine learning
• Biomedical Imaging
• Face
• Emotion
• Computer Vision

• ACM Digital Library [1]
• IEEE Xplore Digital Library [4]
• Elsevier [2]
• Springer [10]
• Wiley Online Library [12]
• NASA [6]
• Oxford University Press [7]
• US National Library of Medicine [8]
• Scopus [9]
• Google Scholar [3]
• Medpilot [5]

• Depression
• Definition
• Types
• Frequency or rate
• Diagnostic tests
• Etiology and risk factors
• Predictability

• World Health Organization [17]
• Survey of Health, Ageing and Retirement in
Europe [14]
• Mayo Clinic [13]
• National Comorbidity Survey [16]
• World Health Organization - Regional Office for
Europe [15]

Note: The first row contains keywords and web-resources that were canvassed to identify relevant

approaches. Elements pertaining to the clinical relevance of studies are listed in the bottom row.

fact that there was no Depression sub-challenge in the 2015 AVEC; similarly, the sharp

rise of interest in 2013, 2014, 2016, and 2017 can be attributed to the respective AVEC

challenges.

2.2 Depression Datasets

The availability of empirical data is of paramount importance for the evaluation of

methods for automatic assessment of depression. Such data are critical during algorithm

development and testing. Due to the sensitive nature of clinical data, availability is

neither wide nor free, and this is the reason that most research groups resort to generating

their own data sets. This section describes procedures used for data collection and

derived datasets found in the reviewed studies (c.f. Table 2.2).

10



2.2 Depression Datasets

Figure 2.1: Number of studies in the field of depression assessment per year of publication

2.2.1 Data Collection Procedure

Recruitment of participants is perhaps the most challenging step in this line of research.

Patients with MDD can be recruited from the community, in many cases by clinical

psychologists or social workers, assessed using DSM-IV [27] criteria [185] [186] [219] [53]

[90] [118] and/or HAM-D scores [53] [89] [118] [116]; patients may be medicated, un-

medicated, or in remission. The Mini International Neuropsychiatric Interview (MINI)

was employed in the data collection for the dataset reported in [25] in order to obtain di-

agnosis, and the Quick Inventory of Depressive Symptomatology-Self Report (QIDS-SR)

for defining the symptom severity. BDI has also been used in [185] to establish whether

a given patient was in remission. Comparison data were obtained from individuals who

had never been diagnosed with depression or other mood disorder. Data collection from

non-clinical samples, employed Self-RIs such as PHQ-9 [194] [84] [195] [176] [177] [93],

and BDI [209] [210], assessing the severity of (sub-clinical) depression-related symptoma-

tology. Recruitment methods further included flyers, posters, institutional mailing lists,

social networks, and personal contacts.

Establishing conditions which enable the collection of signs related to depression

is by far the most important step, as also discussed in [60]. Emotion elicitation is

11



2. LITERATURE REVIEW

used to measure reactions to emotionally charged stimuli, given that such reactions

significantly differ between healthy and patient groups. The Handbook of Emotion

Elicitation and Assessment [51] describes several methods for eliciting emotion in the

laboratory including: emotional film clips used in [145] [113], images selected from the

International Affective Picture System (IAPS) used in [145] [113], social psychological

methods, and dyadic interaction. Emotionally charged images and clips are in principle

capable of eliciting observable responses, although ethical considerations set limits to

the shocking nature of the content. In this regard it is imperative that patients with

depression are not subjected to unnecessary and unwanted stress or anxiety.

Structured Interviews are usually employed for gathering depressive symptoms, but

have also been used for eliciting specific emotions by asking participants to describe

personal, emotionally charged events [145]. Interviews can take place over one or more

sessions, conducted by a therapist or a virtual character (VC), or guided by instructions

on a computer screen. Typically the interview topic changes smoothly from casual to

more intimate topics [53] [145] [194] [195] [147] [90] [89] [176] [239] [177] [178] [113] [157].

The amount of visual data that is necessary for a reliable assessment depends heavily

upon the temporal nature of MDD. The specificity of the assessment method may benefit

from multiple recording sessions, such as that of the data reported in [53] [90] [89].

Recording length depends on the elicitation method, with structured interviews being

considerably longer in comparison with recordings based on emotion elicitation through

films.

Studies vary widely depending on the types of equipment utilized and particular

signs monitored. For instance, studies focusing on the pupillary response may only use

a pupilometer [185] [186] [111] [219] and pay special attention to ambient illumination in

order to optimize sensitivity. Again, depending on the approach, one or more cameras,

typically color, are simultaneously used to cover more than one viewing angles and fields

of view (e.g., both face and body separately [53]). Depth sensors (e.g., Microsoft Kinect)

have also been utilized in some cases [194] [177].

2.2.2 Reported Datasets

The various datasets reported in relevant work are summarized in Table 2.2. Partici-

pant demographics, stimuli, ground truth, selection criteria, research question, as well

as technical specifications, are some of the features that vary across studies. Most of

12



2.2 Depression Datasets

the studies employed adult participants, while two recruited adolescents. Methods for

collecting depressive symptomatology included: a) interpersonal, i.e. interview with a

clinical psychologist or interaction with family members, b) non-social, where partici-

pants were presented with stimuli on a computer, and c) combination of (a) and (b).

The ground truth for the presence of depression varied accordingly, relying on clinical

assessment in the majority of the cases, and on self-reports in two of the studies.

The selection criteria used depended greatly on the research question. DSM and

HAM-D criteria were used for detection of depression [53] [90] [114] [118] [116] [139]

or differentiation from Bipolar Disorder [234]. Others had more specific criteria, i.e.

patients recovering from Deep Brain Stimulation of the Subcallosal Cingulate Cortex

(DBS-SCC) [99], in order to monitor recovery progress. Studies assessing the predictive

value of the method for future emergence of clinical depression in adolescents involved

9-12 year old participants at the initial data collection, with clinical reassessment after

a two year interval [157] [156].

Technical specifications of the video recording equipment varied to some extent, but

not significantly, as the setup typically involved a single camera monitoring partici-

pants’ face/upper body. A notable exception was the setup employed for the Pittsburgh

dataset, utilizing four hardware-synchronized analogue cameras; two for monitoring the

participant’s head and shoulders, one for full body monitoring, and the fourth monitoring

the interviewer, together with two microphones for speech recording.

Regarding dataset availability, AVEC is the only fully available dataset for free down-

load1, while the Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) dataset

is also partly available2. Both datasets require a signed End User License Agreement

(EULA) in order to provide download access. The remaining reported datasets are pro-

prietary, while in some cases they have been made available to visiting researchers. The

number of participants listed in Table 2.2 is that reported in the latest publication em-

ploying the related dataset. However, different published papers report results obtained

from different subsets; accordingly, sample size used in each published report is specified

in Section 2.4 (Tables 2.5 and 2.6).

1http://avec2013-db.sspnet.eu/
2http://dcapswoz.ict.usc.edu/
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Table 2.2: Datasets employed by the reviewed studies for depression assessment
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2.3 State-of-the-Art Methods

Figure 2.2: Typical workflow for automatic depression assessment. The output can be de-
rived from a) single feature sets/modalities, b) feature fusion, with dimensionality reduction
before (FF1) or after fusion (FF2), and c) decision fusion with any possible combination of
outputs from single feature sets/modalities and feature fusion

2.3 State-of-the-Art Methods

The generic processing flow of an automatic system for depression assessment, combining

the standard structure for automated audiovisual behavior analysis proposed by Girard

and Cohn [87], with fusion methods presented in Alghowinem’s thesis [21], is illustrated

in Fig.2.2. Given a visual input (image sequence), along with other types of signals, such

as audio, text from transcripts, and physiological signals, the prerequisite step is that

of preprocessing. Feature extraction algorithms are subsequently applied to all visual

signals, as described in Subsection 2.3.2.1 and illustrated in Fig. 2.4, while methods for

dimensionality reduction are reported in Subsection 2.3.2.2. Machine learning algorithms

are employed, depending on the research question, i.e., presence of depression or severity

assessment. Classification approaches are suitable for categorical assessment, such as

discriminating between a given number of classes (i.e., depressed vs. not depressed or low

vs. high depression severity). For continuous assessment of depression (e.g., depression

severity according to BDI scores ranging between 0-63) regression analyses are more

appropriate. Methods used in the reviewed studies (i.e., algorithms for feature extraction

from visual signs, feature selection algorithms, decision methods) are described in turn

in the following section. In terms of better readability, references of the algorithms are

inserted in relevant tables and figures, and not within the text.
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2. LITERATURE REVIEW

2.3.1 Preprocessing

Given a visual input (video), illumination normalization, registration and alignment be-

tween the image sequences, and face detection are typical required preprocessing steps.

Other types of signals, such as speech or physiological recordings, may also need pre-

processing, such as segmentation. The most popular algorithm for face detection has

been proposed by Viola and Jones [215]. Some off-the-shelf facial expression analysis

applications have also been used widely as preprocessing tools, enabling researchers to

focus on deriving high level information. An example of such a tool is the OpenFace free-

ware application4 [31]. The Computer Expression Recognition Toolbox (CERT) [134]

has been quite popular, but has now become commercialized. Z-Face [110] has also been

employed for alignment and landmark detection.

2.3.2 Feature Extraction / Manipulation

This Subsection describes processes involved in feature extraction, dimensionality reduc-

tion, and fusion. The output of this processing stage generates the input to the machine

learning stage, where no further manipulation of features is taking place.

2.3.2.1 Feature Extraction

Feature extraction is an important step in the processing workflow, since subsequent

steps entirely depend on it. The approaches reviewed employ a wide range of feature

extraction algorithms which, according to the well-established taxonomy in [55], can

be classified as a) geometry-based, or b) appearance-based. In the field of depression

assessment, several features are derived from the time-series of both (a) and (b) in

the form of dynamic features. Close inspection of depression manifestations, listed in

Table 1.1, reveals that the majority of signs involve muscle activity, which accounts

for the temporal nature of the features. Features can be further categorized as high

or low level; high level features directly translate to human common sense, while low

level features are based on ”traditional” image processing descriptors. Depending on the

approach, the software packages mentioned in Preprocessing could also serve as feature

extraction methods (e.g., OpenFace, CERT, etc). In the present work feature extraction

algorithms are grouped into those focusing on the face region and those relying on the

4https://www.cl.cam.ac.uk/ tb346/res/openface.html
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2.3 State-of-the-Art Methods

body region. A pictorial taxonomy of the various algorithms, including the region of

interest on which they are applied, the features computed, and references to respective

studies, is presented in Fig. 2.4. The various features, retrieved from relevant studies,

are described below in detail.

Face

Features related to the face are classified here into features from full face, AUs, facial

landmarks, and mouth/eyes.

Full Face As it becomes apparent from Fig. 2.4, approaches employing feature

extraction from the entire face region comprise the most popular category. Certain

high level features extracted from the face as a whole concern basic emotional expres-

sions displayed, given that depression is associated with reduced variability of emotional

expression and greater persistence of a neutral expression. As expected, geometrical

features, such as edges, corners, coordinates, and orientation, are often used to repre-

sent facial expressions. Functionals derived from the time series of geometric features

are quite popular. Some examples are average, minimum, and maximum values of dis-

placements, velocities, or accelerations of the coordinates that define the face region as

a whole.

Appearance-based algorithms are also very popular for full-face based features. Among

the most prevalent texture descriptors are Local Binary Patterns (LBP). Several vari-

ants of LBP have been created for automatic depression assessment, such as an exten-

sion of LBP that considers patterns on Three Orthogonal Planes (LBP-TOP). Local

Gabor Binary Patterns in Three Orthogonal Planes (LGBP-TOP) extends LBP-TOP

by computing patterns on the output of Gabor-filtered data, rather than on the original

intensity image. Along the same lines, Local Curvelet Binary Patterns-Three Orthog-

onal Planes (LCBP-TOP) was introduced in some studies, which entails computing

the patterns on the curvelet transform of the original image. Local Curvelet Binary

Patterns- Pairwise Orthogonal Planes (LCBP-POP) is yet another variation of the algo-

rithm operating on pairs of orthogonal planes. Additionally, the Block-Wise LBP-TOP

(BW-LBP-TOP) method which computes the LBP-TOP for a specific number of non-

overlapping blocks, has also been employed. Local Phase Quantization (LPQ) is another

texture descriptor with a similar extension of Local Phase Quantization-Three Orthog-

onal Planes (LPQ-TOP). Another popular algorithm for motion-based approaches is
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2. LITERATURE REVIEW

the histogram of optical flow, which estimates the motion within visual representations.

Divergence-Curl-Shear (DCS) descriptors are also based on optical flow.

The Motion History Histograms (MHH) algorithm, which extends Motion History

Images (MHI), has also been found in the related literature. A further extension of

MHH is the 1-D MHH, which is computed on the feature vector sequence, instead of the

intensity image. In a similar manner, Feature Dynamics History Histogram (FDHH),

captures the dynamic variation which occurs among the extracted descriptors of image

sequences. Gabor Motion History Image (GMHI) is another variant, which considers

the Gabor filtered image, instead of the original frames. The Difference Image is a

simplified process, which considers intensity differences between the first and the last

frame. Motion Boundary Histogram (MBH) is another motion based algorithm, which

considers the gradient in order to suppress the constant motion. Finally, the Space-

Time Interest Points (STIP) algorithm, which detects local structures characterized by

significant intensity variability in both space and time.

Deep learning, a subfield in machine learning, has become quite popular during recent

years, presenting winning approaches in many contests [179]. Deep learning methods

can be employed all the way from the beginning of the pipeline, incorporating feature

extraction and machine learning level, or they can be utilized in a transfer-learning

manner as pre-trained networks just for feature extraction, combined with other machine

learning algorithms. DCNN, DNN, SDA, DTL, ResNet, VGG, and Alex-Net are some

of the networks that can be found in the relevant literature.

Facial Landmarks Facial landmarks have been very popular in addressing problems

related to facial expression analysis, and have been applied to depression assessment.

Such algorithms localize fiducial points of the face and facial features, which are very

useful in extracting high level traits directly associated with signs of depression, e.g.

smiling. The Constraint Local Models method (CLM) introduced by Saragih et al. [175]

is displayed in Fig. 2.3 to illustrate its application to the modeling of facial geometry.

Active Shape Models (ASM) as well as Active Appearance Models (AAM) have also

been utilized for depression assessment methods. Facial landmark data have also been

analyzed as time series. Displacement, velocity, acceleration, as well as the landmark

coordinates alone, have been used as features. In addition, polynomial fitting, as well as

statistics derived from shape eigenvector velocities have been utilized. Landmark Motion

History Images (LMHI) is a low level feature which, instead of the actual intensities,
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Figure 2.3: CLM landmarks fitted on a facial image (created using algorithm from [175])

computes the MHI on the motion of the facial landmarks. Finally, the Landmark Motion

Magnitude (LMM) algorithm has also been applied to the vectors which displace each

landmark from one frame to the next. Histogram of Displacement Range (HDR) in

horizontal and vertical manner has also been proposed.

Action Units Action Units (AU) encode the coordinated activity of groups of facial

muscles in correspondence to specific actions, including specific emotional expressions.

They can be employed for measuring the Variability of Facial Expression (VFE), as

depressed individuals tend to be less expressive. Other approaches apply AU as high-level

features. AU occurrence by itself is meaningful as there are specific facial actions that

are directly linked to the presence of depression (reduced smiling, mouth corners angled

down, etc.). Additionally, although several approaches implement AU dynamically (e.g.

duration, base rate, ratio of onset/offset), AU are essentially static signs.

Mouth & Eyes Apart from the face as a whole, features extracted separately from

the mouth and eyes have also been found in the reviewed literature. Smile intensity and

duration is a mouth-based feature which has been employed for automatic depression

assessment, consistent with the clinical literature, as depressed individuals tend to smile

less often. Mouth deformations, velocity and acceleration of horizontal and vertical

movements have also been proposed. For the eye region, average vertical gaze, blinking
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rate, and pupil dilation have been reported. Additionally, functionals from velocity

and acceleration of horizontal and vertical eyelid movement have been used. Additional

features include saccade latency, peak velocity of initial saccade, saccade duration, mean

and standard deviation (SD) of intersaccadic intervals.

Body

Although body signs in general have been shown to convey manifestations of depression,

few approaches have exploited their utility. Existing applications can be classified as

relying on either upper body or relative body part movements. Features for upper body

movements have been extracted through the STIP and DCS algorithms. Relative body

part movements, on the other hand, have been exploited via the parts algorithm that

represents orientation and distance from the torso center expressed in polar coordinates.

2.3.2.2 Dimensionality Reduction

Many feature extraction algorithms produce vectors of high dimensionality. The goal of

dimensionality reduction algorithms is to reduce the number of features in a meaningful

manner, in order to avoid corrupting the classifier. Dimensionality reduction algorithms

can be classified in two groups: (a) Feature Transformation, and (b) Feature Selection

[132]. In the first group features are transformed/combined by being projected from a

high-dimensional space to low-dimensional space, to increase separability. On the other

hand, in the second group, as the name implies, a selection procedure takes place, and

the most discriminative/significant features are selected. Below, examples from both

groups, as retrieved in reported approaches, are being described.

Feature Transformation

Principal Components Analysis (PCA) is the most popular algorithm in this category

[53] [225] [108] [182] [189] [107] [126] [100] [221] [162] [163] [141] [119] and has been used

to generate new features based on a linear transformation of the original features. An-

other set of approaches for reducing dimensionality involves codebooks. Bag-of-Words

(BoW) [114] [118] [115] [59] [117] [121] [36] [37] [100] [63], initially intended for document

classification, has been applied to image processing problems. A histogram-based ap-

proach was presented in [108] which entails maintaining the highest-scoring bins based

on a predefined threshold adjusted to the total samples size.
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Visual Features

Face

Full Face

– Variance of basic expressions [194][84]
[195][176][239]
– Neutral expression [194][84][195][176]
[239]
– Coordinates difference from 1st
to last frame[167]
– Average min max coordinates
and velocity [167]
– Functionals from velocity and
acceleration of roll pitch and yaw
[24][23][25][70]
– Eigenvector velocities [53]
– Angular amplitude and velocity [90]
– Average pixel difference of two
successive frames with its variance
and quantiles [121]
– Rotation angles’ frequencies [114]
[118]
– Average pitch roll and yaw [194][84]
[195][176][239][177][178]
– Head motion from feature points
time-series [237]
– Multi-scale entropy on eigenvalues
[99]
– Mean/median/S.D. of appearance
eigenvectors’ velocities [189]
– Gabor wavelet [90][89] [108][137]
– Eigenfaces [157] [156]
– Fisherfaces [157] [156]
– LBP-TOP [96][114][115][117][107]
[36][37]
– LGBP-TOP [96][184][182][189][126]
– 1-D MHH [108] – BW-LBP-TOP [65]
– LCBP-TOP [159] – LCBP-POP [160]
– LPQ [120][126][125][162][141]
– HOG [231][162][141][123][136]
– LPQ-TOP [223] – DCS [100]
– MHH [148] [167]
– LBP [96][161][162][141][123]
– MHI [162][141] – GMHI [162][141]
–MHI+LMHI+GMHI [174]
– FDHH [109] – MBH [136]
– VGG [162][109] – AlexNet [174][109]
– ResNet [238] – CNN [48]
– STIP [100][118][59][117]
– Optical flow [96][240][136]
– Head aversion [25]

Facial Landmarks

– Displacement [147][70]
[36][37][161][163][164]
[214][200]
– Velocity [70][161][151]
[163][164][214][200]
– Acceleration [70][151]
[163][164][214][200]
– Displacement from
mid-horizontal axis [145]
– Coordinates [125]
– Mean distance of upper
to lower landmarks of the
eyelids [96]
– Mean squared distance
of all mouth landmarks to
mouth centroid [96]
– Mean/median/SD of
shape eigenvectors’
velocities [189]
– LMHI [161][162]
– LMM [161]
– Polynomial fitting [151]
– Velocity of distance and
area features [151]
– Eccentricity [164][214]
– HDR [232]

AUs

– Region Units [145]
– Likelihood [98]
– Intensity [194][84]
[195][177]
– Base rate [90]
– Cross-correlation
of time-series[225]
– Occurrence
probability [234]
– Statistics [92][191]
– Spectral
representation [191]
– Dynamics [233]

Mouth & Eyes

– Smile intensity
and duration [177]
[178]
– Mouth deform. [200]
– Mean temperature
(thermal) [139]
– Pupil dilation [186]
[111][219][237]
– Average vertical
gaze [177][178]
– Gaze aversion [25]
– Functionals from
velocity and
acceleration of
horizontal vertical
and eyelid
movement [22][24][198]
– Average min max
coordinates and
velocity [167]
– Blinking rate [237]
[161]
– Saccade latency /
peak velocity of
initial saccade /
saccade duration /
mean and S.D. for
intersaccadic intervals
[227][228]
– Saccade duration
/amplitude/occurrence
/orientation[133]
– Fixation duration
/count [133]

Body

– STIP
[114][118]
[115][116]
[100]
– DCS [100]
– Mixture
of Parts
[114][116]

Figure 2.4: Taxonomy of visual features utilized in the reviewed studies for depression
assessment
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Feature Selection

In [24], [25], and [84] distributional statistics (e.g. t-tests) were employed to select only

those features that met a predefined statistical threshold. In [70] [71] [119] the authors

implemented the minimum Redundancy Maximum Relevance (mRMR) feature selec-

tion, which considers statistical dependency between features. Several feature selection

approaches were evaluated in [96]: supervised feature selection, brute-force selection,

and a backward selection scheme using bivariate correlations. Greedy forward feature

selection [194] [195], relief from WEKA1 [167], and Mutual Information Maximization

(MIM) [151], are additional algorithms used for feature selection in the reviewed studies.

Correlation-based Feature Selection (CFS) has also been employed in some studies [133]

[92].

2.3.3 Machine Learning

The next step following feature extraction and manipulation, in all methods reviewed,

is the machine learning stage. Depending on the particular research goals, different

types of decision methods may be applied. Classification methods are appropriate to

address categorical questions (e.g., ”depressed” versus ”non-depressed” and low versus

high depression severity). When the research question concerns the concurrent prediction

of depression severity through video-derived indices in a continuous manner, regression

approaches are predominantly employed. Cross validation methods are typically applied

before classification / regression step.

2.3.3.1 Cross Validation Methods

Cross validation methods are employed to establish algorithm reliability, namely its

capacity to generalize well with newly introduced data. To establish reliability, a given

data set is divided in two parts, one used to train the proposed algorithm, and another

(left-out) to test its performance. Specific procedures used for dataset splitting include

the leave-one-out [53] [84] [90] [89] [178] [22] [23] [117] [70] [161] and the k-fold method

[239] [25] [160] [71]. In the leave-one-out procedure, for a dataset of N samples, N

training sets are created of size N-1, each time consisting of all but one sample. The

algorithm is then tested N times on its capacity to classify the ”left-out” cases for each

1http://www.cs.waikato.ac.nz/ml/weka/
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2.3 State-of-the-Art Methods

Table 2.3: Classification algorithms employed in relevant studies

SVM [237] [53] [147] [89] [176] [239] [22] [24] [23] [114] [118] [115]
[116] [25] [117] [184] [107] [162] [141] [174] [133] [119]

k-Nearest Neighbour (kNN) [159] [157] [156] [160] [163] [133]

Gaussian Mixture Models (GMM) [22] [23] [137]

Näıve Bayes (NB) [194] [195] [133]

Random Forest (RF) [231] [161] [133]

Logistic Regression (LogR) [70] [133] [136]

Neural Networks (NNet) [118] [115]

Maximum Entropy Model (MaxEnt) [84] [239]

Relevance Vector Machines (RVM) [182] [63]

Hidden Conditional Random Fields (HCRF) [239]

Hidden Markov Model (HMM) [234]

Coupled Hidden Markov Model (CHMM) [234]

Stacked Denoising Autoencoders (SDA) [71]

set. Samples could be several for one subject, and therefore the leave-one-out could also

be implemented in a leave-one-subject-out manner, where all samples from a specific

subject are excluded each time. In the k-fold procedure the dataset is randomly split

into k partitions, with one partition kept each time for testing and the remaining used

for training the algorithm. This procedure is repeated for k times. In the context of

the AVEC challenges, partitioning of the dataset into training and test sections was

performed by the organizers, to permit direct comparisons between the algorithms used

by participating groups.

2.3.3.2 Classification

An exhaustive list of classifiers employed in the reviewed studies can be found in Table

2.3 and were ranked in Fig.2.5. Support Vector Machines (SVM) is by far the most

popular method for categorical assessment of depression. This can be justified by the

fact that SVMs are well suited for binary problems of high dimensionality [32], such as

the distinction of low symptom severity/absent depression from high symptom severi-

ty/present depression.
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Figure 2.5: Ranking of classification algorithms employed in relevant studies

2.3.3.3 Regression

The continuous nature of depressive symptomatology is well supported by the clinical

literature, as discussed in Subsection 1.2.2. As a result, relevant approaches have recently

been gaining momentum, including the AVEC challenges aimed at predicting scores on

self-report depression scales as a continuous variable using speech and video cues. As

it can be observed in Table 2.4, the most popular regression algorithm, similarly to

the classification-based approaches, is Support Vector Regression. Again the ranking of

algorithms is illustrated in Fig.2.6.

2.4 Selected Approaches and Meta-Analysis

In this section different approaches, either classification- or regression-based, are com-

pared in a quantitative manner. To be included in the analysis, studies must have

reported results on automatic assessment of depression using visual features. Direct

comparison is not the case for the various approaches included in this analysis and

summarized in Tables 2.5, 2.6, and 2.7, since they were typically evaluated on different

datasets (or subsets from the same corpus of data). Even in the case of AVEC participa-

tions, direct comparisons across the three challenges are not possible given that different

data sets were used in each. The specific objective of our quantitative meta-analysis is

24



2.4 Selected Approaches and Meta-Analysis

Table 2.4: Regression algorithms employed in relevant studies

Support Vector Regression (SVR) [96] [59] [120] [121] [182] [231]
[223] [226] [92] [200] [63] [69]

Linear Regression (LR) [225] [108] [231] [109]

Partial Least Square Regression (PLS) [148] [108] [200] [109]

Gaussian Staircase Regression (GSR) [226] [105] [63]

Canonical Correlation Analysis (CCA) [126] [125]

Relevant Vector Machines (RVM) [182] [105]

Random Forest Regressor (RFR) [212] [172]

Deep Convolutional Neural Networks (DCNN) [231] [191]

Deep Convolutional Neural Netowork - Deep Neural Network
(DCNN-DNN) [233] [232]

Deep Transformation Learning (DTL) [123] [192]

Cascade Random Forest (CRF) [198]

Ordinary Least Squares (OLS) [136]

Discriminative Mapping (DM) [223]

Moore-Penrose Generalized Inverse (MPGI) [126]

Extreme Learning Machines (ELM) [225]

Long Short Term Memory Recurrent Neural Networks
(LSTM-RNN) [48]

Stochastic Gradient Descent (SGD) [92]
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Figure 2.6: Ranking of regression algorithms employed in relevant studies
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to identify general trends, key and strong points, to be considered in future studies of

automatic depression assessment, given that a direct comparison of results is not viable.

2.4.1 Categorical Depression Assessment

Approaches for categorical depression assessment presented in this subsection are grouped

and compared in terms of the employed dataset, in accordance with Table 2.2. Further,

the results are considered with regard to the evaluated features, in reference to the

taxonomy presented in Fig. 2.4. The various approaches, apart from reporting differ-

ent performance metrics, were tested on datasets or particular subsets of varying sizes.

Performance metrics in each report are explained next.

Accuracy, which was reported in the majority of studies, is computed according to

Equation (2.2) based on the following confusion matrix:

C =

[

TP FN

FP TN

]

(2.1)

where TP is the number of true positives, TN the number of true negatives, FP the

number of false positives, and FN the number of false negatives. Certain studies report

”depressed accuracy”, which implies sensitivity (or recall) given by (2.4).

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

Where precision is given by:

precision =
TP

TP + FP
(2.3)

and recall by:

recall =
TP

TP + FN
(2.4)

The F1 score, also reported in several studies, is given by:

F1 = 2 ·
precision · recall

precision+ recall
(2.5)

The aforementioned performance metrics, however, fail to take chance agreement

into consideration, which varies across different studies. To address this limitation and

to permit direct comparisons between classification approaches, Cohen’s Kappa statistic
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[52], a chance and skew robust metric, was computed whenever possible. It is based on

the confusion matrix (2.1) and given by:

κ =
p0 − pe

1 − pe
(2.6)

where p0 is the proportion of accurately predicted decisions given by the accuracy formula

as defined in (2.2), and pe the proportion of expected chance agreement, given by:

pe =
Ma +Mb

TP + FN + FP + TN
(2.7)

where Ma and Mb are defined as follows:

Ma =
(TP + FN) ∗ (TP + FP )
TP + FN + FP + TN

(2.8)

Mb =
(TN + FP ) ∗ (TN + FN)
TP + FN + FP + TN

(2.9)

Whenever confusion matrices for user-/gender-independent depression assessment

(based on one or more visual cues) were not included in the original publication, they

were requested from the study authors. For the cases that the requested information

was not provided, and if at least two performance metrics where reported in the original

publication, along with the total number of subjects per class (depressed/non-depressed,

as defined in (2.10) and (2.11)), a 4 × 4 linear system of equations was solved in order

to derive the confusion matrix.

#depressed = TP + FN (2.10)

#not− depressed = TN + FP (2.11)

In the case of [176] a quadratic system was solved, since the reported metrics were

averaged for the two classes (depressed/non-depressed). Finally, the computed confusion

matrices were cross-checked to reproduce the originally reported performance metrics. If

the estimated confusion matrices for a given study could not be verified by the reported

performance metrics, the relevant study was not considered any further. It should be

noted that Dibeklioğlu et al. [71], Pampouchidou et al. [162], and Kacem et al. [119]
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are the only reviewed publications which originally included Kappa statistics in their

published report. Table 2.5 groups the reviewed studies according to the dataset used.

Studies are ranked by decreasing κ value within each dataset-specific group. Table 2.6

presents similar information on studies using datasets or dataset combinations reported

in single studies, precluding direct across-study comparisons.

2.4.1.1 Pittsburgh

The first report involving the Pittsburgh dataset is that of Cohn et al. [53]. Girard et

al. [90] extended this work by investigating the correlation of changes in patient clinical

status with corresponding changes in facial expression and head motion patterns [89].

The cross-cultural study of Alghowinem et al. [24] was also tested on the Pittsburgh

dataset among others, reporting an average recall of 94.7%. Dibeklioğlu et al. [70] tested

several feature settings on the Pittsburgh dataset. More recently Dibeklioğlu et al. [71]

presented a deep learning approach for detecting three levels of depression. Finally, Joshi

et al. [116], and Joshi [114], reported 97.2% accuracy for assessing depression severity

based on the Pittsburgh data.

2.4.1.2 BlackDog

McIntyre et al. [145] were the first to report on the BlackDog dataset. They reported

identifying two clusters of patients, those who showed psychomotor agitation and those

who showed motor slowing [147] [146]. In a subsequent study, Joshi et al. [115] achieved

depression detection accuracy as high as 88.3%. Higher performance, up to 91.7%, was

achieved when additional modalities were included (speech, independent and relative

movement of body parts) in Joshi et al. [118] and Joshi et al. [117]. Alghowinem et

al. studied depression detection based on the analysis of either eye movements in [22],

or head pose and head movements in [23]. The maximum reported recall rate was 80%

for the eye-based approach, and 82.6% for the head-based approach among women. In

the same cross-cultural study mentioned in subsection 2.4.1.1, Alghowinem et al. [24]

combined the two approaches (eye-based and head-based) achieving an average recall of

85%. Recently, Alghowinem et al. [25] reported improved recall performance of 88.3%,

by extending their approach in terms of feature extraction, as well as machine learning

methods.
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2.4 Selected Approaches and Meta-Analysis

2.4.1.3 DAIC-WOZ

Several approaches have been tested on this dataset, mainly from the primary research

group, but also as part of the AVEC’16 depression sub-challenge. Scherer et al. [177] ex-

amined the value of the audiovisual approach, achieving 89.74% accuracy. Stratou et al.

[194] corroborated Alghowinem’s findings [22] [23] on gender differences in classification

accuracy, reporting F1 scores of 0.858 for women and 0.808 for men in detecting pres-

ence of depression and PTSD. Finally, DAIC-WOZ served as the benchmark dataset in

AVEC’17 and AVEC’16. Raw data were provided for audio recordings and transcripts,

while for videos only features extracted with OpenFace were provided. Despite this

limitation several interesting approaches were presented.

2.4.1.4 AVEC

The AVEC dataset, although intended for continuous assessment of depression, was

also used for categorical assessment using case groupings based on BDI scores. For

instance, Senoussaoui et al. [182] achieved classification accuracy of 82% for categorical

assessment of depression by using a cutoff score of 13/14 points on BDI. In their cross-

cultural study, Alghowinem et al. [24] tested their algorithm on a subset of the AVEC

data and reported an average recall of 68.8% for the fixed set of features across the

three datasets. Pampouchidou et al. [162] achieved 89% accuracy, which is the highest

reported performance for categorical assessment on the AVEC dataset.

2.4.1.5 Other Datasets

Datasets or dataset combinations used in a single study are summarized in Table 2.6.

Alghowinem et al. [24] attempted to merge several datasets (e.g., Pittsburgh and AVEC).

This resulted in an improvement of classification performance as compared to relying

solely on the AVEC dataset, reporting an average recall of 85.7%. In one of the earliest

studies, the corpus constructed by the Oregon Research Institute (ORI), was used to test

the approach of Maddage et al. [137] for video-based depression detection in adolescents.

The ORYGEN dataset was employed for a more challenging endeavor undertaken by

Ooi et al. [157], in order to predict whether initially non-depressed adolescents would

develop depression at the end of a two-year follow-up period. Zhou et al. [237] at the

University of Rochester departed from the traditional laboratory settings and obtained
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data in realistic conditions. They reported 0.817 precision and 0.739 recall for classifying

patients versus healthy volunteers reporting high levels of negative mood. Finally, recent

results from the CHI-MEI dataset [234], attempting to distinguish unipolar depression

(MDD) from bipolar disorder, reached 65.38% classification accuracy when combining

AUs and audio features.

Table 2.5: Comparison of approaches for categorical assessment of depression grouped
according to the dataset used, ranked within group based on Kappa

Paper Population

(Study/-

Control) /

Male rate

Features Classification

Algorithm

Reported

Accuracy

(or as

otherwise

noted)

Kappa

Pittsburgh

Joshi (2013)

[116] [114]

36 (18/18) /

36.1%

Body, Full

Face

SVM 97.2% 0.94

Alghowinem et

al. (2015) [24]

38 (19/19) /

36.8%

Eyes, Full

Face

SVM mean recall

=94.7%

0.89

Dibeklioğlu et

al., (2015) [70]

95 (58/37)*1

/40.4%

Facial

Landmarks,

Full Face,

Audio

LR 91.38% 0.78

Dibeklioğlu et

al., (2017) [71]

130

([58/35]/37)*1*2

/40.4%

Facial

Landmarks,

Full Face,

Audio

SDA 78.67% 0.73

Kacem et al.,

(2018) [119]

126

([56/35]/35)*1*2

Full Face SVM 70.8% 0.65

Dibeklioğlu et

al., (2015) [70]

130

([58/35]/37)*1*2

/40.4%

Facial

Landmarks

Logistic

Regression

84.49% 0.63

Dibeklioğlu et

al., (2017) [71]

130

([58/35]/37)*1*2

/40.4%

Facial

Landmarks

SDA 72.59% 0.62

Dibeklioğlu et

al., (2015) [70]

-//- Full Face LR 86.21% 0.60

*1 Reported sample size corresponds to number of sessions
*2 Three classes were considered, corresponding to the annotation in the table as follows:

([Moderate to Severe/Mild]/Remission)
*3 The confusion matrix was computed based on performance metrics provided by the authors

of the original report
Continue on the next page
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Table 2.5: Comparison of approaches for categorical assessment of depression (cont.)

Paper Population

(Study/-

Control) /

Male rate

Features Classification

Algorithm

Reported

Accuracy

(or as

otherwise

noted)

Kappa

Cohn et al.

(2009) [53]

107 (66/41)*1

/35%

Facial

Landmarks

SVM 79% 0.53

BlackDog

Joshi

(2013)[114] [117]

60 (30/30) /

50%

Upper Body,

Full Face,

Audio

SVM 91.7% 0.83

Alghowinem et

al. (2016) [25]

-//- Full Face,

Audio

SVM mean recall

=88.3%

0.77

Alghowinem et

al. (2016) [25]

-//- Eyes, Full

Face

SVM mean recall

=78.3%

0.57

Alghowinem et

al. (2013) [23]

-//- Full Face SVM mean recall

=76.8%

0.53

Joshi 2013, Joshi

et al. (2013)

[114] [118]

-//- Upper Body SVM 76.7% 0.53

Alghowinem et

al. (2015) [24]

-//- Eyes, Full

Face

SVM mean recall

=76.7%

0.53

Alghowinem et

al. (2013) [22]

-//- Eyes SVM mean recall

=75%

0.50

DAIC-WOZ

Yang et al.

(2016) [231]

35 (7/28) /

45.7%

Facial

Landmarks,

AU, Full

Face, Audio,

Text

Random Forest F1 = 0.86 0.82

Scherer et al.

(2013) [176]

39 (14/25) /

62%

Full Face,

Audio

SVM 89.74% 0.76*3

Yu et al. (2013)

[239]

130 (30/100)

/ 53%

Full Face,

Audio

HCRF F1=0.644 0.58*3

*1 Reported sample size corresponds to number of sessions
*2 Three classes were considered, corresponding to the annotation in the table as follows:

([Moderate to Severe/Mild]/Remission)
*3 The confusion matrix was computed based on performance metrics provided by the authors

of the original report
Continue on the next page
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Table 2.5: Comparison of approaches for categorical assessment of depression (cont.)

Paper Population

(Study/-

Control) /

Male rate

Features Classification

Algorithm

Reported

Accuracy

(or as

otherwise

noted)

Kappa

Nasir et al.

(2016) [151]

35 (7/28) /

45.7%

Facial

Landmarks

SVM F1=0.63 0.55*3

Pampouchidou

et al. (2016)

[161]

-//- Facial

Landmarks,

Audio

RF F1=0.62 0.53

Valstar et al.

(2016) [212]

-//- Facial

Landmarks,

AU, Audio

SVM F1=0.5 0.45*3

Valstar et al.

(2016) [212]

-//- Facial

Landmarks,

AU

SVM F1=0.5 0.45*3

Pampouchidou

et al. (2016)

[161]

-//- Facial

Landmarks

RF F1=0.5 0.39

Scherer et al.

(2013) [176]

39 (14/25) /

62%

Full Face SVM 64.1% 0.20*3

AVEC

Pampouchidou

et al. (2017)

[162]

200 (34/166) Full Face SVM 89% 0.78

Senoussaoui et

al. (2014) [182]

50 (25/25) Full Face SVM 82% 0.64

Alghowinem et

al. (2015) [24]

32 (16/16)/

28.1%

Eye, Full

Face

SVM mean recall

=68.8%

0.38

Pampouchidou

et al. (2016)

[160]

200 (34/166) *1

/ 33%

Full Face kNN 74.5% 0.13

*1 Reported sample size corresponds to number of sessions
*2 Three classes were considered, corresponding to the annotation in the table as follows:

([Moderate to Severe/Mild]/Remission)
*3 The confusion matrix was computed based on performance metrics provided by the authors

of the original report
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2.4.2 Continuous Depression Assessment

The majority of the approaches reviewed here are based on AVEC datasets, either as par-

ticipations to the actual challenge or as independently published studies. The depression

challenge of AVEC 2013 and AVEC 2014 required prediction of individual BDI scores

based on corresponding video recordings (both visual and speech data are available).

Video recordings were divided into three subsets (training, development and testing),

with labels being released only for the first two. AVEC 2013 included the complete

recordings of the participants executing 12 tasks, while for AVEC 2014 only two tasks

were kept: the Northwind (reading a novel passage) and Freeform (answering a series of

questions-both neutral and potentially emotionally challenging). AVEC 2016, although

focused on categorical assessment, encouraged participants to address prediction of self-

reported scores on the PHQ-8 scale, employed by DAIC-WOZ. Table 2.7 summarizes

relevant proposed approaches. In all cases, performance metrics were the Root Mean

Squared Error (RMSE) and Mean Absolute Error (MAE) given by equations (2.12) and

(2.13), where n is the number of samples, p the predicted value, and a the actual value.

RMSE =

√

√

√

√

1
n

n
∑

i=1

(pi − ai)2 (2.12)

MAE =
1
n

n
∑

i=1

|pi − ai| (2.13)

2.5 Scope of the Thesis

The scope of this thesis is based on the motivation to deliver an unobtrusive depression

assessment methodology based on visual cues, as described in Section 1.3, as well as key

issues that emerged from reviewed literature.

The most important issue concerning the data is availability. As mentioned before,

obscuring participant identity is practically impossible in raw video data compared to

other modalities (e.g. speech or physiological signals). Consequently, open access is

strictly prohibited, while licensing to a third party is seriously restricted.

Regarding the categorical approaches tested on the AVEC and DAIC-WOZ datasets,

there are additional reasons which could have affected performance, as revealed through

comparison of κ values cross studies. Both datasets were collected in a way that limited
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Table 2.6: Approaches for categorical assessment of depression employing datasets, or
combination of datasets, which have not been reported elsewhere

Data Paper Population
(Study/-
Control) /
Male rate

Features Classification
Algorithm

Reported
Accuracy
(or
precision)

Kappa

Pittsburgh
+
AVEC’14

Alghowinem
et al.
(2015) [24]

70 (35/35) /
32.9%

Eyes, Full
Face

SVM mean recall
=85.7%

0.57

Rochester Zhou et al.
(2015) [237]

10 (5/5) /- Full Face,
Eyes

LogR precision=
0.82

0.57

ORI Maddage et
al. (2009)
[137]

8 (4/4) / 50% Full Face GMM 75.6% 0.45 *

ORYGEN Ooi et al.
(2011) [157]
[156]

30 (15/15)/
51%

Full Face kNN 51% 0.03 *

CHI-MEI
Yang et al.
(2016) [234]

26 (13/13) / - AU, Audio CHMM 65.38% 0.26

Yang et al.
(2016) [234]

26 (13/13) / - AU HMM 53.85% 0.08

* Confusion matrix was computed, and not provided by the authors of the original research report

the audience effect (human-computer interaction setup), eliminating cues that could only

occur in a social context.

Relying on self-reported symptoms for data annotation, as in AVEC and DAIC-

WOZ, is far more complex in comparison to the other datasets. Self-RIs scores depend

on a variety of biasing factors (subjective, social, etc.), and although depression may be

accurately portrayed by facial expressions, this type of ground-truth may not accurately

measure depression severity. It appears that an optimal dataset should be comprised

of a number of patients diagnosed by experienced psychiatrists, using largely uniform

diagnostic criteria. Consequently, the development of an algorithmic tool for depression

assessment, would most definitely require direct supervision by clinicians.

With respect to video acquisition parameters, average image resolution and frame

rate are typically reported. However, it is not clear whether image acquisition with

higher-level specifications could improve assessment accuracy. A quantitative compar-

ison of different resolutions and frame rates employing the same algorithm(s) may be

required to conclusively address this question.
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2.5 Scope of the Thesis

Given the temporal variability of depressive manifestations, the majority of facial

signs utilized in the reviewed studies are dynamic, while the occurrence of static signs is

typically considered over time. Therefore it is clear that video recordings are of interest,

as opposed to static images.

Treating depression as a continuous variable (i.e., reflecting depression severity) is

gaining ground over categorical decision systems. This may be due to the fact that,

despite the apparent simplicity of categorical assessment, it does not represent neither

properly nor reliably the complex nature of mood disorders.

Consequently, the scope of this thesis can be summarized as:

• Constructing a clinically valid dataset, comprising diagnosed patients as well as

healthy control individuals

• Test different types of stimuli, in order to compare the effect of interpersonal vs

non-social context

• Evaluate several annotation methods to test their accuracy; specifically:

1. Diagnosis

2. Self-report

3. Expert annotation

• Experiment with different video acquisition parameters

• Develop video-based methodology to extract features correlating with signs of de-

pression

• Investigate categorical vs continuous depression assessment

Table 2.7: Summary of methods and results of studies employing continuous depression as-
sessment based on the dataset provided by AVEC’13, AVEC’14 and AVEC’16. Performance
metrics are given in the form of MAE / RMSE and approaches have been ranked according
to reported performance primarily on Test-RMSE, and secondly on Development-RMSE

Paper Regression Features Development Test

AVEC 2013 - BDI prediction - Complete recordings

Zhou et al. (2018)

[238]

CNN Full Face, Eyes,

Mouth

– 6.20 / 8.28

Continue on the next page
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Table 2.7: Summary of studies employing continuous depression assessment (cont.)

Paper Regression Features Development Test

Ma et al. (2017)

[136]

LDA+OLS Full Face – 7.26 / 8.91

Zhu et al. (2017)

[240]

DCNN – – 7.58 / 9.82

Kaya et al. (2014)

[126]

MPGI – 8.254 / 10.315

Cummins et al.

(2013) [59]

SVR – / 12.08 – / 10.45

Meng et al. (2013)

[148]

PLS 7.09 / 8.82 9.14 / 11.19

Valstar et al.

(2013) [209]

SVR 8.74 / 10.72 10.88 / 13.61

AVEC 2014 - BDI prediction - Northwind / Freeform tasks

Jan et al. (2017)

[109]

PLS Full Face 7.25 / 9.52 6.68 / 8.01

Zhou et al. (2018)

[238]

CNN Full Face, Eyes,

Mouth

– 6.21 / 8.39

Kang et al. (2017)

[123]

DTL Full Face – 7.74 / 9.43

Zhu et al. (2017)

[240]

DCNN – 7.47 / 9.55

Kaya & Salah

(2014) [125]

CCA – 7.86 / 9.72

Jain et al. (2014)

[107]

SVR 6.969 / 8.167 8.399 / 10.249

Jan et al. (2014)

[108]

PLS+acslr 7.36 / 9.49 8.44 / 10.50

Kächele et al.

(2014) [120]

SVR 7.03 / 8.82 8.97 / 10.82

Valstar et al.

(2014) [210]

SVR 7.577 / 9.314 8.857 / 10.859

Senoussaoui et al.

(2014) [182]

GLM+acsrvm + SVR 6.95 / 8.52 -

Smailis et al.

(2016) [189]

SVR - / 9.07 –

He et al. (2015)

[100]

SVR 7.99 / 9.63 -

Continue on the next page
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2.5 Scope of the Thesis

Table 2.7: Summary of studies employing continuous depression assessment (cont.)

Paper Regression Features Development Test

Sidorov & Minker

(2014) [184]

SVR 14.843 / 17.667 -

AVEC 2016 - PHQ-8 prediction - DAIC-WOZ

Sun et al. (2017)

[198]

CRF Facial

Landmarks,

Eyes, AU

4.6 / 5.9 4.89 / 6.23

Stepanov et al.

(2017) [192]

LSTM-RNN Facial

Landmarks

4.66 / 6.09 5.36 / 6.72

Valstar et al.

(2016) [212] [172]

RFR 5.88 / 7.13 6.12 / 6.97

Song et al. (2018)

[191]

CNN Full Face, AU,

Eyes

4.37 / 5.84 –

Williamson et al.

(2016) [226]

GSR 5.33 / 6.45 –

Dham et al.

(2017) [69]

SVR Facial

Landmarks

4.91 / 6.46 –

Dang et al. (2017)

[63]

GSR AU 5.34 / 6.67 –
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Chapter 3

Methodology

The work-flow for the proposed methodology was based on the one presented in Fig. 2.2,

which was synthesized based on the literature review. Different methods corresponding

to the preprocessing, feature extraction, dimensionality reduction, and machine learning

stages are described in the respective sections. The algorithms involved in the different

stages are described in some level of detail, while not all of them were implemented

together. Later on in the thesis, and more specifically in Ch.4 Preliminary Experimental

Evaluation different experiments are described, while the main study is described in

Ch.5. Thus the experiment that involves each algorithm described in this Chapter is

mentioned accordingly.

3.1 Preprocessing

Conditions during data collection are not always conveniently established, and therefore

preprocessing can help in obtaining meaningful information for further analysis. The

relevant algorithms employed during different experimental tests of this thesis included:

a) illumination normalization, b) face detection, c) facial landmarks detection, and d)

face alignment. The specific algorithms for each preprocessing step are explained within

the following subsections.

3.1.1 Illumination Normalization

Illumination normalization is employed in order to establish the appropriate contrast,

brightness and other attributes of the images related to light. It is important in order
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3. METHODOLOGY

to make sure that the illumination level is adjusted to a level which can contribute

to further analysis. Illumination normalization was employed for the methodology and

experimental tests carried in terms of Pampouchidou et al. [159]. The algorithm utilized

for the illumination normalization was the one provided by the INFace Matlab Toolbox1

[197] [196]. During this procedure the original images (video frames) were first passed

through homomorphic filtering to obtain an illumination normalized image, followed by

contrast enhancement. Homomorphic filtering is an algorithm employed to improve the

image quality by compressing the intensity range while enhancing contrast.

3.1.2 Face Detection

Although visual signs of depression may involve upper or full body, the face portrays

the majority of the manifestations, and thus the proposed methodology focused on facial

expression analysis; therefore one of the most crucial steps involved is the accurate face

detection. Viola & Jones (VJ) [215] is perhaps the most popular face detection algo-

rithm, based on Haar features, AdaBoost learning, and cascade classifiers. Haar features

use specified rectangle patterns related to the face structure. Based on intensity differ-

ences, such as the ones displayed in Figure 3.1, the image is scanned for a given pattern

and the features corresponding to each pattern are computed. In general, intensities

corresponding to the white and black regions are summed separately, and the difference

of the two sums is then calculated. More specifically, for the two-rectangle feature, VJ

computes sums of the pixel values individually in black and white regions, and then finds

the difference between them. For the three-rectangle feature, the two outer rectangles

are summed together, and their sum is subtracted by the sum that results from the

central region. In the four-rectangle case the algorithm sums the diagonal pairs, and

computes the difference of the resulting sums.

To reduce the time needed for these summations, an intermediate step is used, that

of the integral image. The image is scanned for several scales, starting at the size of

24×24, and every next run grows 1.25 times higher, until it reaches the total image size.

Following, AdaBoost takes the obtained features for a training set containing positive

and negative examples of faces. A collection of weak (i.e., easy to construct classification

1https://www.mathworks.com/matlabcentral/fileexchange/26523-the-inface-toolbox-v2-0-for-
illumination-invariant-face-recognition
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3.1 Preprocessing

(a) Examples of Haar features (b) On a face 1 (c) On a face 2

Figure 3.1: VJ face detection: Haar features applied on a facial image

functions) are combined into a strong classifier. For a series of hypothesis, the classi-

fication system is trained, each time keeping the training weights associated with the

lowest classification error. For example, in the case of a classifier based on perceptrons,

the AdaBoost will keep that perceptron associated with the highest accuracy after each

testing. Cascade classifiers are used to reduce computational time and enhance perfor-

mance. They succeed by starting classifying with simpler classifiers, in order to reject

subwindows that are definitely not faces, then moving forward they minimize the false

positive rate by using more complex classifiers.

For the needs of the first experiment (see section 4.2), face parts were detected using

the algorithm proposed by Tanaka [201], who extended Viola & Jones object detector by

exploiting facial features hierarchy to reduce false positive rate. Left and right eyes were

extracted separately, while the eye-pair region was eventually selected and created, by

combining the two separate eye regions as implemented in Pampouchidou et al. [159].

3.1.3 Facial Landmarks Detection

The accurate detection of the facial region was a rather complex albeit important first

step in the present work. Another option, in order to obtain the face region was based

on the use of facial landmarks. In this respect, two different algorithms were assessed at

two different stages of the thesis. Initially, and for the works published in Pampouchidou

et al. [159] and Pampouchidou et al. [160] (experiments described in subsections 4.2

and 4.3) the GNDPM 1 [205] [230] was applied on the image sequences (see Fig.3.2.a).

1https://ibug.doc.ic.ac.uk/resources/gauss-newton-deformable-part-models-face-alignment/
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3. METHODOLOGY

(a) Gauss-Newton facial landmarks

(b) OpenFace facial landmarks

Figure 3.2: Examples of landmarks on a facial image based a) on Tanaka face-parts
detection combined with GNDPM and b) OpenFace facial landmarks
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3.2 Motion Representation

The GNDPM model requires accurate face detection, which was implemented based on

the Tanaka face parts detection [201], and the detected landmarks were further used

for aligning the face regions based on the eyes. GNDPM algorithm is pretrained and

minimizes the reconstruction error between the original image and a Generative Parts

Model iteratively, with the use of Gauss-Newton optimization.

The OpenFace1 by Baltrušaitis et al. [31] (see Fig. 3.2.b) served in the remain-

ing published approaches developed during this thesis [161] [163] [162] [164] (described

in sections 4.4, 4.5, 4.6, and 5.2.1). OpenFace, which was applied directly on video

recordings, is an open source tool that provides a variety of options apart from detecting

landmarks; it also detects head pose, eye gaze, HOG features, AU, and basic emotions.

In some experiments (e.g. experiment 4.6) features provided by OpenFace were tested

for classification in addition to the ones proposed by the thesis work. OpenFace is based

on Conditional Local Neural Fields, which is an instance of CLM, advanced in the use

of patch experts and optimization function. The Point Distribution Model implemented

within OpenFace captures landmark shape variations, while the patch experts capture

local appearance variations of each landmark.

3.2 Motion Representation

The ultimate goal of the proposed thesis was to detect signs of depression based on visual

input. Based on the clinical background and the signs reviewed in Table 1.1, it is evident

that most of the signs are of temporal nature, thus video based analysis is of focus rather

than mere static image processing. This constitutes the motion representation as the

most important step of the pipeline, and therefore most of the work has been done within

this context.

3.2.1 Local Curvelet Binary Patterns

LBP was initially proposed for extracting texture-based information from a static image,

however it was later extended in order to extract spatiotemporal information. Work

presented in Zhao and Pietikainen [236] proposed the Volume Local Binary Pattern

(VLBP) in order to provide descriptors for dynamic texture analysis. VLBP examines

a sequence of images (e.g. video frames) in the {X,Y,Z} space, where X and Y denote

1https://github.com/TadasBaltrusaitis/OpenFace/
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(a) (b)

Figure 3.3: LBP from Three Orthogonal Planes (Taken from:[236])

the spatial coordinates, and Z the frame index (time). Volume textons are interpreted

in histograms, in the same manner as in LBP, for all three planes, as illustrated in Fig.

3.3. Another notable extension of this approach, was from Almaev and Valstar [26],

who considered Gabor filtered image frames rather than the original intensity-based

images. Furthermore, inspired by Pampouchidou [158], where Curvelet transform was

used for facial expression recognition, another extension was proposed in the context of

this thesis, which considered the Curvelet transformed frames for applying the Three

Orthogonal Planes process. Next the Curvelet transform is being explained in short.

3.2.1.1 Curvelet Transform

Curvelets belong to the family of geometrical wavelets, and were proposed by Candès et

al. [43]. Their origin can be found in ridgelets [42], and thus it is preliminary to begin

with the ridgelet definition. A characteristic ridgelet waveform can be seen in Figure

3.4, while ridgelet transform for an image function f(x, y) is given by:

Rf (a, b, θ) =
∫ ∫

ψ(x, y)f(x, y)dxdy

where a > 0, b ∈ R, and θ are respectively the scale, the translation, and the

orientation. ψ is the ridgelet function given by:

ψa,b,θ(x, y) = a− 1

2ψ(
x cos θ + y sin θ − b

a
) (3.1)
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3.2 Motion Representation

Figure 3.4: Ridgelets’ example

Figure 3.5: Curvelet tiling of space and frequency. Source:[45]
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Just like Gabor, ridgelets have the property of being tuned in different scales and

orientations [73]. Accordingly, the digital curvelets transform for an image f(n,m) of

dimensions M by N is given by [106]:

Cf (a, b, θ) =
∑

0≤m<M

∑

0≤n<N

f(m,n)ψa,b,θ(m,n) (3.2)

Curvelets, that have been characterized as an “optimal representation of objects with

piecewise C2 singularities” [44], can be expressed in frequency domain by [106]:

Ca,b,θ = F̂(F(f(m,n) × F(ψa,b,θ(m,n))) (3.3)

Zhang et al. in [235] introduced the term “curvefaces” in an effort to reduce the

dimensionality of the facial image [140]. Motivation for further exploration of curvelets

lies into the fact that the facial expression is characterized by the geometry of the

facial features. Numerous examples demonstrate how the geometry of the face gives

information about the expression. For instance something that people learn in a young

age when drawing: on a happy face the mouth curve is facing up, while on a sad face

the opposite happens.

The method introduced by Candès et al. in [45] is being followed, according to the

available implementation in the Curvelab toolbox1. As already explained previously,

curvelets originate in ridgelets, and therefore inherit and extend their properties. Ex-

tensions are such as that any arbitrary function can be expanded as series of curvelets,

but also the parabolic scaling of the geometrical wavelet. Parabolic scaling means that

the curvelet is elongated more in certain directions, and does not keep the same profile

as ridgelets.

Curvelets are also discrete in terms of scale, location, and angle. Scale is doubled

with each discretization level; that is at each scale, resolution is doubled as it moves

further from the center in frequency domain, as shown in Figure 3.5. Curvelet algorithm

in simple steps is given by first computing the 2D Fast Fourier Transform (FFT) of the

image, then fixing the scales to be considered by the parabolic scaling in a resulting f̂ .

Finally the curvelet coefficients are obtained by the inverse FFT applied on the product

of f̂ and ψ function as given in Equation 3.1. In Fig. 3.6 curvelet coefficients are wrapped

1http://www.curvelet.org/software.html
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3.2 Motion Representation

for display purposes; the coarse level for scale one and original orientation is placed in

the center, then moving towards outside, coefficient for different scales and rotations are

collocated. Computational complexity of curvelets for an n× n image is O(n2 logn).

The curveface image computed in this step consists of complex values, therefore

before further processing it should be converted to real. The justification applied in

order to obtain real values, is to take the Euclidean distance between the real part and

the imaginary, given by taking the magnitude:

‖x− y‖ =
√

(y1 − x1)2 + (y2 − x2)2 + ...+ (yn − xn)2 =

√

√

√

√

n
∑

i=1

(yi − xi)2 (3.4)

3.2.1.2 Three Orthogonal Planes vs Pairwise Orthogonal Planes

The first integrated methodology implemented in terms of this PhD was the one pub-

lished in Pampouchidou et al. [159] and involved the LCBP-TOP. As mentioned pre-

viously, the idea of this preliminary version derived from the LGBP-TOP proposed by

[26], with the difference that in the present Gabor wavelets are replaced with Curvelet

transform [46].

The norm for approaches based on Orthogonal Planes is to take all descriptors from

each of the three planes (XY, XZ, YZ), where Z refers to the time, and concatenate them

all together, producing a vast vector of thousands of features. In the work published

in Pampouchidou et al. [160] an effort was made to reduce this high dimensionality,

by introducing the Pairwise Orthogonal Planes. Thus, in [160] two approaches were

tested: a) Frame-based Classification, which considered only XY planes for each frame

separately, and b) Video-based Classification for which XZ and YZ planes are considered

in pairs of two. This way, for the Video-based approach the plane corresponding to the

first row is combined with the plane corresponding to the first column, second row with

second column, (...), and the last row with the last column.

The LCBP-POP modification has the advantage of preserving the motion information

in both axis, with a considerably shorter feature vector. A further improvement in

compare to the previous approach was that overlapping window was used instead of the

previous that employed sequential windowing. In addition, apart from facial expression,

curvature contains information on person-specific biometrics (e.g. different shapes of

facial features, varying symmetry), as well as occlusions (e.g. facial hair, eye-glasses).
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3. METHODOLOGY

(a) Original Image

(b) The coarsest level (scale=1,orientation=1) is in the center, while the
number of orientations doubles for every second scale

Figure 3.6: Example of curvelet pseudo-images wrapped by CurveLab toolbox, for scale=4,
and orientation=4
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3.2 Motion Representation

(a) Flow from image frames to Curvelet transform

(b) Examples for X-Z and Y-Z planes

Figure 3.7: Flow Curvelet transform on facial video frames, and examples for X-Z and
Y-Z planes
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(a) Aligned faces (b) LMHI

(c) MHI (d) GMHI

Figure 3.8: Visual comparison of motion history image variants, as extracted from the
specific aligned images sequence

Video-based Classification was implemented in order to overcome this limitation. The

LBP descriptor was again computed on each plane.

3.2.2 Motion History Image

It is already established that most of the non-verbal signs of depression are dynamic

by nature [76, 222]. Therefore, the use of video-based methods (dynamic), as opposed

to frame-based (static) is preferable. In addition to the previously described motion

representation methods, three different motion history images were also implemented:

a) MHI as derived from the basic algorithm, b) LMHI which relies on facial landmarks,
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3.2 Motion Representation

and c) GMHI.

The LMHI algorithm was introduced as part of our DSC-AVEC’16 participation

with Pampouchidou et al. [161], which instead of considering intensities from image se-

quences, considers sequences of facial landmarks. In addition a quantitative comparison

of different motion history variants was published in Pampouchidou et al. [162] (GMHI).

More details regarding the specific motion representation algorithms are presented below

with implementation examples illustrated in Fig. 3.8.

MHI is a robust, yet relatively straightforward, algorithm developed to represent the

motion that occurs in the course of a complete video recording with a single image [20].

The algorithm produces a grayscale image, in which the white pixels correspond to the

most recent movements and the darkest gray correspond to the earliest motion elements.

Black pixels indicate absence of movement. It is a popular algorithm for motion analysis

[20], and has been extensively used in the field of human action recognition [39].

An early approach of MHI to facial image analysis was that of Valstar et al. [207],

who employed MHI in facial action recognition from videos. Meng et al. [148] pub-

lished a continuous depression assessment approach in their participation to the DSC of

AVEC’13; they proposed an extension of MHI, the MHH, which considers patterns of

movement. In the DSC of AVEC’14 Pérez Espinoza et al. [167] employed MHI, and for

the same challenge Jan et al. [108] proposed the 1-D MHH, an extension of MHI, which

is computed on the feature vector sequence instead of the intensity image.

3.2.2.1 Original MHI

The MHI is a gray scale image, where white pixels correspond to the most recent move-

ment in the video, intermediate gray scale values to corresponding less recent movements,

and black pixels to the absence of movement. The MHI algorithm, with slight varia-

tions as explained next, is applied on the aligned face image sequences derived from the

preprocessed data using OpenFace.

The MHI H, with a resolution equal to the one of the aligned faces, is computed

based on an update function Ψ(x, y) as follows:

Hi(x, y) =















0 i = 1

i · s Ψi(x, y) = 1

H(i−1)(x, y) otherwise

(3.5)
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where s = 255/N , N the total number of video frames, (x, y) the position of the corre-

sponding pixel, and i the frame number. Ψi(x, y) represents the presence of movement,

derived from the comparison of consecutive frames, using a threshold ξ:

Ψi(x, y) =

{

1 Di(x, y) ≥ ξ

0 otherwise
(3.6)

where Di(x, y) is defined as a difference distance:

Di(x, y) =
∣

∣

∣Ii(x, y) − I(i−1)(x, y)
∣

∣

∣ (3.7)

Ii(x, y) is the pixel intensity value in (x, y) at the ith frame. The final MHI is the

HN (x, y).

3.2.2.2 Landmark Motion History Image

LMHI encodes the motion of the facial landmarks into a grayscale image, with the most

recent movement corresponding to white pixels, the earliest corresponding to the darkest

gray, and temporally intermediate movements indexed by corresponding gray values.

The extension of the proposed work in comparison to that of Ptucha and Savakis [170]

is that the in-between motion is also preserved with the use of respective gray-scales,

which is important for the descriptors applied later on the LMHI.

The landmarks considered are the ones that correspond to the facial features (eyes,

eyebrows, nose-tip, and mouth), while the face outline is excluded. This step was taken in

order to emphasize inner-facial movements, and ignore the overall head movements. This

is achieved by co-registering the involved landmarks using affine transformation before

computing the LMHI, through alignment of the points corresponding to the temples,

chin, inner and outer corners of the eyes (landmarks {1, 9, 17, 37, 40, 43, 46}).

LMHI differs from the conventional MHI in that image intensities are not considered,

but only the facial landmarks, which are detected in each frame. The adopted LMHI

algorithm is similar to MHI, by maintaining the same Hi as in (3.5), and modifying Ψi

as follows:

Ψi(x, y) =

{

1 (x, y) ∈ Li

0 otherwise
(3.8)

where Li corresponds to the selected landmarks as detected in the ith frame.
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3.2 Motion Representation

3.2.2.3 Gabor Motion History Image

Gabor filters have been frequently used in both facial expression analysis and emotion

recognition [78, 203]. In relevant approaches the feature vector is extracted from the

convolution of the original image with a 2D Gabor wavelet function at different orien-

tations and wavelengths. This describes the spatial frequency structure around each

pixel. In [58] the Gabor energy was used for facial emotion recognition, which gives

a smoother response to an edge or a line of appropriate width with a local maximum

exactly at the edge or in the center of the line. The authors also applied background

texture suppression on the response of the filter, by removing an image filtered by the

difference of Gaussians (DoG) from the original response for each orientation. This ap-

proach, also known as anisotropic inhibition [94], removes noise and provides a sharper

representation of facial features.

GMHI is another variant of MHI, where Gabor inhibited images substitute original

image intensities. The motivation for implementing this variant is that it focuses on the

important details of the facial features, and thus extracts the most relevant information.

The motion representation algorithm is identical to the one described in subsection

3.2.2.1, but the input image I is the result of the Gabor inhibition. The process of

obtaining the Gabor inhibited image is explained in detail below.

The Gabor wavelet at position (x, y) is given by:

Ψλ,θ,φ,σ,γ(x, y) = exp(−x
′
2+γ2y

′
2

2σ2 )cos(2π x
′

λ
+ φ) (3.9)

with
x

′

= xcosθ + ysinθ

y
′

= −xsinθ + ycosθ
(3.10)

where λ stands for the wavelength, θ for the orientation, φ for the phase offset, σ for the

standard deviation of the Gaussian, and γ for the spatial aspect ratio [61].

The input image is usually filtered with many wavelets for multiple orientations and

wavelengths. The energy filter response is obtained by combining the convolutions ob-

tained from two different phase offsets (φ0 = 0 and φ1 = π/2) using the L2-norm. Back-

ground texture suppression is applied on the filter response, by removing a Difference

of Gaussians (DoG) filtered image from the original response for each orientation [94].

Finally, the mean response of Gabor filtering is used to combine the responses across
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(a) Facial image

(b) Gabor filtered image (c) Histogram of the Gabor filtered image

(d) Inhibited image (e) Histogram of the inhibited image

Figure 3.9: Example for the computation of Gabor inhibited filtering on a facial image,
along with the corresponding histogram to illustrate the noise removal. As it is obvious in
the second histogram (after the inhibition) the values are concentrated and the contrast is
enhanced in order to provide a more meaningful outcome.
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3.2 Motion Representation

the different orientations, resulting in the pseudo-image used to compute the GMHI.

An example of applying the common Gabor and the Gabor inhibited algorithms to an

aligned face image is illustrated in Fig. 3.9, where the Gabor inhibited image appears to

be sharper and with less texture in uniform regions than the original Gabor response.

3.2.3 Time-series of Geometrical Features

Geometric features are quite popular in the field of facial expression recognition, while

relevant approaches using these features in depression assessment have also been found.

Given that smiling tends to be reduced in individuals suffering from depression [76], we

focused on certain distances between facial landmarks, which are affected by smiling

[216]. Landmarks that correspond to the Veraguth fold were also considered, as well as

blinks. Right and left eye width, as well as mouth width and height shown in figure

3.10, were also considered in time-series manner for further feature extraction. Taking

all these into account we defined the final set of distances, illustrated in Fig.3.10.a,

considered as time-varying parameters. In order to account for changes of the distances

due to external movements (not intra-facial), all distances were normalized based on the

distance between the side temples (see Fig.3.10.a landmarks 1 and 17).

An additional video based feature set was subsequently constructed. This feature set

is based on landmarks’ activity, in terms of displacement, velocity, and acceleration, that

were estimated for all 68 landmarks for a specified window of frames. The landmarks

were grouped according to facial features, as illustrated in Figure 3.10.b: right eyebrow,

left eyebrow, right eye, left eye, mouth, and face as a whole. The values of displacement,

velocity, and acceleration, were averaged, resulting in three corresponding time-series for

each region. Statistical measures extracted are the same as with the distance time-series.

Distances, both in space and time, were computed based on Euclidean distance:

D =
√

(x1 − x2)2 + (y1 + y2)2 (3.11)

Distance in time implies considering the coordinates of one landmark at a given time

frame and the coordinates of the same landmark for a next time frame; in this manner

the displacement of a specific landmark is estimated. While for distance in space the

coordinates of two different landmarks are considered in the same time frame.
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(a) Distances considered in time-series for geometrical features

(b) Regions of facial features considered for landmark motion features

Figure 3.10: Geometric features considered in time-series
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3.3 Feature Extraction

3.3 Feature Extraction

Following motion representation, the need to construct meaningful descriptors comes

next. In the cases of LCBP-TOP and LCBP-POP the LBP was used (experiments 4.2

and 4.3). In the case of the different variants of motion history image several appearance

based descriptors were employed (experiments 4.4 and Experimental:Exp5). Pre-trained

deep neural networks were also used through transfer learning for motion history images

for both the preliminary experiment in subsection 4.6 and the main study in subsection

5.2.1. Finally, for time-series representation statistical descriptors were used (experiment

4.5). In the following subsections the different feature extraction algorithms are described

in some level of detail.

3.3.1 Appearance-based Descriptors

Appearance descriptors employed hereby exploit intensity and more specifically texture

based attributes. The appearance-based descriptors employed in terms of the present

work include the LBP, Local Phase Quantization (LPQ), HOG, and the conventional

image histogram. The descriptors are explained within the next subsections and are

illustrated in Fig. 3.15 for the example of MHI.

3.3.1.1 Local Binary Patterns

LBP were introduced by Ojala et al. in [152], who extended Wang and He’s work [220]

in texture classification. At their first attempt [152] they obtained gray-scale invari-

ance, while later [153] they also achieved rotation invariance, yet keeping the algorithm

computationally simple and efficient.

LBP [153] entails dividing the image into partially overlapping cells. Each pixel of

the cell is compared to its neighbors to produce a binary value (pattern). The resulting

descriptor is a histogram which represents the occurrence of different patterns. LBP for

two sets of {radius, neighbourhood} results to feature vectors of size 1×59 for {1,8} and

size 1×243 for {2,16}. The example of the LBP pipeline is illustrated in Fig.3.11.

When LBP is applied the image is divided into cells of a given size, e.g. 16×16. For

each pixel in the cell LBP descriptor is computed according to the example in Fig.3.12.a

as follows. The central Pixel is compared to all of its neighbours, depending on the

neighbourhood and radius defined, and each of the neighbours are assigned a binary
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Figure 3.11: Example of LBP pipeline

Figure 3.12: Illustration of LBP patterns (Taken from:[153]): a) LBP pattern for different
values of neighbourhood and radius b)Rotation invariant LBP patterns

value: a) one if their value is greater than the central, and b) zero if it is lower. In

other words, the central pixel behaves as a threshold. The resultant digits are taken in

the same order (either clockwise or counter-clockwise), providing with a binary number

converted to decimal for convenience.

Ojala et al. in [153] proved that for neighbourhood 8 and radius 1 there exist 36

unique different orientations for the LBP descriptor as illustrated in Fig.3.12.b, with the

first 9 being uniform. Uniform in the case of LBP is interpreted as at most two bitwise

transitions. For instance the descriptor “00000000” has zero transitions, “00000111” has

just one transition, 00111000 has two transitions, while 01001101 has five transitions.

The first nine descriptors in Figure 3.12b first row are all uniform, each of which

stands for a type of contour, such as the first one (0-valued) is a bright spot, the last

one of the row (8) is a dark spot, while the intermediate (1-7) represent different types

of edges. In terms of experiments 4.2, 4.3, and 4.4 University of Oulu implementation1

was used, while for experiments 4.6 and 5.2.1 the MATLAB implementation was used2.
1http://www.cse.oulu.fi/wsgi/MVG/Downloads/LBPMatlab
2https://www.mathworks.com/help/vision/ref/extractlbpfeatures.html
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3.3 Feature Extraction

Figure 3.13: Example of the LPQ pipeline

The different implementations were employed based on the current availability of the

respective toolboxes.

3.3.1.2 Local Phase Quantization

LPQ [154] is computed in the frequency domain, based on the Fourier transform, for

each pixel. Local Fourier coefficients are computed, while their phase information results

in binary coefficients after scalar quantization. The final descriptor corresponds to the

histogram of the binary coefficients. More specifically, for an N × N image f(x, y) the

local phase is computed using the short-term Fourier transform (STFT) based on the

following equation:

f̂ui
(x) = (f ∗ φui

)(x) (3.12)

φui
is a complex valued m×m mask defined in the discrete domain by:

φui
=

{

e−j2πuT

i
y|y ∈ Z

2; ‖y‖∞ ≤ r
}

(3.13)

where r = (m − 1)/2, and ui a 2-D frequency vector. STFT for the specific implemen-

tation of LPQ[101] is computed at four frequencie points: u1 = [α, 0]T , u2 = [0, α]T ,

u3 = [α, α]T , and u4 = [α,−α]T , where α = 1/m. The implementation used for LPQ

feature extraction was the one from the University of Oulu 1[101]. An illustrated example
1http://www.cse.oulu.fi/wsgi/MVG/Downloads/LPQMatlab
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Figure 3.14: Example of HOG pipeline

for the LPQ pipeline is shown in Fig.3.13 in similar manner with [34].

3.3.1.3 Histogram of Oriented Gradients

HOG [62] entails counting gradient orientations in a dense grid. Each image is divided

into uniform and non-overlapping cells, the weighted histogram of binned gradient ori-

entations for each cell is computed, and subsequently combined to form the final feature

vector. More specifically, for an image L with size N×N pixels, divided in cells as shown

in Fig.3.14.(a), the orientation θ for each pixel p = (px, py) is computed (c.f Fig.3.14.(b))

based on the following equation:

θ(p) = tan−1L(px, py + 1) − L(px, py − 1)
L(px + 1, py) − L(px − 1, py)

(3.14)

The estimated orientations are accumulated in a histogram of a predetermined number

of bins (c.f. Fig.3.14.(c)-(d)). The output corresponds to the concatenated individual

histograms resulting in a single spatial HOG histogram as shown in Fig.3.14.(e) [47]. The

MATLAB implementation was used in terms of the experimental tests in subsections 4.4,

4.6, and 5.2.1. 1.

3.3.1.4 Image Histogram

Additionally, the combined histogram, mean and standard deviation of the motion-image

gray values were also considered as a single descriptor [Hist-Mean-Std]. Specifically for

1https://www.mathworks.com/help/vision/ref/extracthogfeatures.html
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3.3 Feature Extraction

(a) MHI (b) LBP

(c) LPQ (d) HOG

Figure 3.15: Visualization of appearance-based features

the histogram, zero values (absence of movement) are disregarded, and only the bins of

the remaining 255 gray values are considered, with the addition of mean and standard

deviation. This feature was not visualized like the rest appearance-based features as it

does not entail spatial distribution. Again, the MATLAB implementation was used1.

3.3.2 Transfer Learning from Pretrained Networks

Deep learning, which has become increasingly popular during recent years, is a self-

learning tool designed to identify patterns in several sets of data samples, extracted

from multiple processing layers. Each layer is composed by representation-learning meth-

ods, and is processed in a higher and more abstract level [131]. Convolutional Neural

1https://www.mathworks.com/help/images/ref/imhist.html
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Figure 3.16: Architecture of VGG16

Networks (CNN) is a particular deep feedforward network with higher generalization

efficiency than other fully connected networks. There are typically 2 types of layers:

the convolutional layer, and the pooling layer. In the convolutional layer, all units are

connected to the weights (also known as filter banks), while the weighted sum is inserted

to the Rectified Linear Unit (ReLU).

The CNN architecture used in the present work was employed in the participation

that won the 2014 ImageNet competition (ILSVRC) [173] [130]. Visual Graphic Geom-

etry (VGG) is a CNN variant proposed by Simonyan and Zisserman [188]. Using VGG,

they achieved 92.7% top-5 test accuracy on the ImageNet Dataset, which comprises over

14 million images in 1000 classes. In the proposed work VGG16 and VGG19 are em-

ployed. Fig. 3.16 illustrates the microarchitecture of VGG16. It consists of 16 layers

with 13 convolutional layers, while VGG19 has 19 layers with 16 convolutional layers.

Both VGG16 and VGG19 have 3 fully connected layers, and all convolutional layers
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Figure 3.18: Visualization of Pool 5 activations

in all networks. All hidden layers are characterized by non-linearity afforded by ReLU

[130].

In the present work a pre-trained VGG16 network was employed for each motion

history image separately. The particular version of the network was chosen, as it has

shown excellent results in related medical applications. Again, different implementations

were employed based on the current availability of the respective toolboxes. Two different

implementations have been employed during experiment 5 (c.f. subsection 4.6): a) Before

Fully Connected Layer (BFCL), and b) After Fully Connected Layer (AFCL); in the

main study (c.f.4.6) only the AFCL was used. BFCL provides the features to the fully

connected layer of the VGG16, as shown in Fig. 3.16. In AFCL there are three fully

connected layers in VGG16. Layers 1 and 2 operate on a feature matrix of size 1×4096

and layer 3 on a feature matrix of size 1×1000.

In order to achieve optimal outcome from deep neural networks training and fine

tuning is required. However in order to have accurate training a high number of training

samples is needed, in the order of more than 100,000. In clinical applications, and espe-

64



3.3 Feature Extraction

Figure 3.19: Example of time-series from eye region distances

cially in mental health related fields, obtaining data is not so straight-forward. Thus, in

the proposed work the pretrained networks from the MATLAB Neural Network Toolbox1

were utilized; this technique is known as transfer learning. In particular the MATLAB

model used hereby is trained on a subset of the ImageNet database (from ILSVRC).

Both VGG16 and VGG19 are trained on more than a million images, for classifying

1000 object categories (e.g. keyboard, pencil, animals, etc), enriched by a wide range

of feature representations. Figures 3.17 and 3.18 illustrate the processing outcome from

ReLU1 1 and Max Pooling level 5.

3.3.3 Statistical Descriptors

The time-series derived based on the motion representation method described in subsec-

tion 3.2.3 (e.g. Fig. 3.19) were further processed as signals to extract several statistical

features. The measures selected included mean, median, mode, range, standard devia-

tion, variance, skewness, kurtosis, energy, entropy, correlation, and interquartile range

[18]. Additional statistics included max, min, mad, mean frequency, and band power

[166]. MATLAB implementations were employed for extracting all the statistical de-

scriptors.

1https://www.mathworks.com/help/nnet/ug/pretrained-convolutional-neural-networks.html
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3.4 Machine Learning

The machine learning level is concerned with exploiting the extracted features in order

to train models that generalize well and are able to recognize signs of depression. Given

the high dimensionality of the features there is the need to employ a reduction algorithm.

Further, before the training/testing of the models there is another issue to address, this

of the cross validation which is used so as to deal with less biased measures. Finally, in

the proposed work two approaches were investigated, the categorical (classification) and

the continuous (regression). Next, the different steps are described.

3.4.1 Dimensionality Reduction with PCA

In the present work, Principal Component Analysis (PCA) was employed to achieve

dimensionality reduction. PCA is one of the most popular methods for this purpose,

and is based on the linear transformation of the original feature vector, into a set of

uncorrelated principal components. For a data set of size N × M (i.e., N samples and

M features) PCA identifies a M×M coefficient matrix (component loadings) that maps

each data vector from the original space to a new space of M principal components.

However, by properly selecting a smaller set of K < M components, the dimensionality

of the data can be reduced while still retaining much of the information (i.e., variance)

in the original dataset.

3.4.2 Cross Validation

Cross validation is a technique employed in order to establish the experimental condi-

tions is such manner that minimum possible bias is introduced to the models. For this

reason the data samples are partitioned to train and test sets, so that samples that are

used for training are not included in the testing process. The performance of a model

can be objectively evaluated when it is introduced with unseen data. Furthermore,

by experimenting with several configurations of train/test sets the outlier effect on the

performance evaluation is reduced.

Some techniques employed by the proposed work for performing cross validation

involve the k-folds, Leave-One-Out (LOO), and Leave-One-Subject-Out (LOSO). Imple-

mentation of k-folds partitions the data samples in k sets, e.g. for k = 10 the dataset is

divided in 10 different non-overlapping subsets, each time one subset is kept out, while
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3.4 Machine Learning

Figure 3.20: Example of kNN. Taken from:[11]

the rest are used for training the model, and afterwards tested on the left-out sample,

and this process is repeated 10 times. LOO on the other hand holds out one sample

every time, trains with the rest, and again tests the performance on the left-out sample,

and this process is repeated N times, where N the total number of samples. Finally,

LOSO is a particular type of LOO, and applied in cases where more than one samples

of a given subject/participant are included in the dataset. This process is repeated as

many times as the number of subjects included in the dataset (rather than samples as

in LOO) each time all samples of the given subject are held out from the training set,

and then used for testing the performance.

3.4.3 Gender Dependency

Gender-based classification for depression has been reported to substantially improve

performance [23] [194]. In the present work, in addition to gender-independent classifi-

cation/regression, a gender-based model was also implemented by building two separate

classifiers, one for male and another for female participants. The classifier for male sub-

jects was trained on feature-sets extracted from data of male participants and the female

classifier with feature-sets extracted from data of female participants.

3.4.4 kNN

kNN is considered to be one of the fastest and simplest algorithms commonly used for

supervised learning. kNN considers the known feature vectors, and for every new vector

computes the Euclidean Distance to find the nearest known class, based on the Equation

3.11. The class is computed according to the nearest k neighbours, that is to which it

has the smallest Euclidean distance. k, the number of neighbours has to be specified.
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Figure 3.21: Example of RF1

However, kNN is well known for its sensitivity to the data local structure [83] [72].

For example at Fig. 3.20, there is a two-class classification problem, red-triangles and

blue-squares, and the new object, green-circle, needs to be classified in either of them.

The two concentric (on the new object) circles correspond to k = 3, and k = 5 ; it is

apparent how the classification results is influenced by this slight change. In the case

k = 3, the new object would be classified as a red-triangle, while on the case k = 5 to the

blue-squares. Based on this simple example, and how the classification result changes

based on k value, it is obvious that the selection of k can be critical. Due to this fact,

for the tests explained in the next Chapter different values of k were tested, in order

to evaluate their performance and relevance to the depression assessment. In this work,

the MATLAB implementation was employed for conducting the experimental tests2.

3.4.5 Random Forest

Random Forest is a flexible, popular, easy to use supervised machine learning algorithm.

The idea behind RF is creating an ensemble of decision trees in a random manner, as its

name suggests, based on the ”bagging” method, which is nothing more than combining

learning models in order to increase the overall performance. More specifically, RF builds

a series of decision trees and combine their outputs for a more accurate prediction2 (c.f.

Fig.3.21). The implementation employed in the present work is the one from MATLAB3.

2https://www.mathworks.com/help/stats/fitcknn.html
2https://machinelearning-blog.com/2018/02/06/the-random-forest-algorithm/
3https://www.mathworks.com/help/stats/fitctree.html
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(a) Classification (b) Regression

Figure 3.22: Example of SVM for both classification and regression approaches

3.4.6 SVM

SVM is another supervised machine learning algorithm that can be employed for both

classification and regression problems. In terms of classification SVM is intended for

binary problems, with the main purpose to find an optimal hyper-plane that separates

samples of the two classes in feature space. In the example of Fig.3.22.a several hyper-

planes have been tried (dashed lines), yet only one (the thick line) is chosen as it op-

timally differentiates the two classes. An additional consideration when choosing the

optimal hyper-plane is establishing maximal margins from the samples.

Support Vector Regression (SVR) is in generally based on the same principles with

the SVM that is used for classification, yet it encompasses some differences. The regres-

sion nature of the algorithm is intended in predicting real-value numbers, as opposed to

discrete categories, which has infinite possibilities. Therefore it is a more complicated

problem, which targets the construction of a function that by minimizes the error be-

tween the actual and the estimated value (c.f. Fig.3.22.b). Implementations for SVM

are from MATLAB both for classification1 and regression2 approaches.

1https://www.mathworks.com/help/stats/fitcsvm.html
2https://www.mathworks.com/help/stats/fitrsvm.html
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3.5 Fusion

Many types of features were extracted, such as appearance-based features, transfer-

learning-based VGG features, as well as the statistical features from time-series of geo-

metrical features. In an attempt to test the additional value of the different descriptors,

fusion of the features was tested. Specifically, the feature-level fusion was used, which

implements the concatenation of the different vectors, in several combinations. Feature-

level fusion was employed in experiment 3 [161] (subsection 4.4), experiment 5 [162]

(subsection 4.6), and in the main study (subsection 5.2.1).

3.6 Summary

The employed pipeline was described in this Chapter, along with the several methods

used for the different steps. Specific experimental setups employing the described algo-

rithms are presented in the next Chapter.
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Chapter 4

Preliminary Experimental

Evaluation

In this chapter the different preliminary experimental tests are presented, with the spe-

cific configuration of each methodology, as well as the derived results. The data col-

lection was a long-term process, which took more than 4 years to be completed, in the

meanwhile the several proposed algorithms and methodologies were tested in available

benchmark datasets. The preliminary experiments took place in order to provide some

insight on the proposed methodologies, until the data collection was completed. Next

the two benchmark datasets employed for the preliminary tests are described, followed

by the description of the respective experiments.

4.1 Employed Datasets

In spite the fact that automatic depression assessment is highly desirable, clinical data

are not open to the research community, given the sensitivity of personal data involved.

However, two datasets with depression annotation, both based on self-reports and vol-

unteer non-diagnosed participants, were made available in terms of the AVEC challenges

in 2013, 2014, and 2016 respectively. Both require a signed End-User License Agreement

before granting permission for download access.
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4.1.1 AVEC

This dataset was introduced in the 3rd and 4th AVEC [210], at the time being the only

freely available dataset, annotated for depression, which included video recordings of

participants. The dataset consisted of video feeds of undiagnosed volunteers performing

the following tasks in the German language: vowel pronunciation, solving a task out loud,

counting from 1 to 10, reading novel excerpts, singing, and describing a scene displayed

in pictorial form. During AVEC’13 the complete recording was used for testing the

performance of the different approaches, while in AVEC’14 two tasks were selected: the

Northwind (reading a novel passage) and Freeform (answering a series of questions-both

neutral and potentially emotionally challenging) [210]. In the present work the subset

of the two tasks, as employed in AVEC’2014, was used.

Three data partitions were provided by the challenge: a training, a development, and

a test set, for a total of 300 recordings. Depression annotation however was provided

only for 200 of the recordings; test set labels which were withheld for the challenge needs,

were released later. Depression annotations of the video recordings were the participants’

scores on the Beck Depression Inventory-II (BDI-II). Certain participants undertook the

tasks on more than one time points, and had therefore more than one BDI-II scores.

The following cutoffs are used to interpret individual BDI-II scores, standardized by

Beck [33]:

• 0-13: minimal depression

• 14-18: mild depression

• 19-28: moderate depression

• 30-63: severe depression

Despite the AVEC’13 and AVEC’14 datasets being focused on continuous depression

assessment, different approaches have utilized it to address classification of portrayed

persons into high- and low-depression severity groups according to the standard BDI

score cut-offs above [24] [182]. In the present several approaches have been made, such

as categorical assessment of 2 classes (depressed vs non-depressed), 4 classes as the ones

standardized by Beck, while in the main experiment continuous assessment was also

attempted.

72



4.2 Experiment 1

4.1.2 DAIC

During AVEC’16 [212] a different dataset was utilized, the Distress Analysis Interview

Corpus - Wizard of Oz (DAIC-WOZ) [93]. This dataset contains clinical interviews

designed to support the diagnosis of psychological distress conditions such as anxiety,

depression, and post-traumatic stress disorder. These interviews were conducted by a

virtual character, while collecting audio and video recordings as well as questionnaire

responses. However the virtual agent was not functioning independently, but was con-

trolled by a human interviewer in another room, as the purpose at the time was not

to have a fully functional intelligent agent, but rather evaluate the efficiency of the

interaction of the character with humans.

DAIC-WOZ provided only the features extracted with the OpenFace software [31],

instead of the original video recordings, due to data protection issues. The shared data

include 189 sessions, ranging between 7-33min (with an average of 16min). Transcript of

the interaction, audio recordings, and OpenFace features are available for each recording.

4.2 Experiment 1

Results of the first complete experiment conducted in terms of the PhD work was pub-

lished in IEEE International Conference on Signal and Image Processing Applications

(Pampouchidou et al. 2015) [159]. The methodology involved the Tanaka face-parts de-

tection, LCBP-TOP, kNN for classification, and k-fold for cross-validation. The parame-

terization for each of the algorithms is described next. The dataset used for experiments

described in this subsection was the AVEC, focusing on the eye-pair region.

Curvelet transform was computed in each image for 8 orientations and 4 scales,

resulting in a total of 41 pseudo-images such as the ones visualized in Fig.3.6. For the

planes related to the time axis the curvelet transform was computed only for scale and

orientation equal to 1. The same process was applied in every row (XZ) and column

(YZ) of the pseudo image, resulting to N +M number of images, where N the number

of rows and M the number of columns in the pseudo image.

LBP was computed for 41×windowSize images for plane 1, plus the N +M images

of planes 2 and 3, for the parameter combination [8,1] and [16,2] (neighbourhood and

radius respectively) [153]. The algorithm was tested for the following window sizes: {5,

15, 30, 60, 90, 120, 150, 180} for 30 fps videos. Length of the feature set varied according
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Figure 4.1: Experiment 1: LCBP-TOP on eye region, example for the column passing
vertically from the middle of the left eye

to the length of the window; a window of 30 frames resulted on 1230 XY images (41

pseudo-images per frame), while for XZ plane the number of images was M and for YZ

it was N; LBP ran for each one of them in two combinations of parameters as described

above, resulting in 840 features for XY, 252 for XZ and 28 for YZ, for a total of 1120,

while for the window of 180 frames the resulting feature set was of size 5320.

Table 4.1: Results of Experiment 1 for four levels of depression

Window Size (frames#) Classification accuracy

5 41.36

15 48.52

30 55.42

60 47.83

90 49.31

120 48.66

150 46.32

180 50.33

Finally a Nearest Neighbor classifier was used to train/test the method adopted for

detecting self-reported severity of depressive symptomatology according BDI-II scores.

As shown in Table 4.1, best results were obtained by integrating facial activity data

over for30 frames (1 sec). According to the confusion matrix computed for the 30 frame

window in Table 4.2, more than 50% of the samples were correctly classified in each

class, significantly exceeding random levels (25%) in the case of four classes.
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Table 4.2: Experiment 1: Confusion matrix for best result (4 classes)

Minimal Mild Moderate Severe

Minimal 51.0% 19.6% 20.2% 9.2%

Mild 10.7% 63.4% 16.2% 9.7%

Moderate 11.2% 19.3% 55.0% 14.6%

Severe 11.9% 22.1% 10.5% 55.5%

4.3 Experiment 2

The work of this experiment was published in the 38th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (Pampouchidou et al. 2016)

[160]. Again the AVEC dataset was used, while an effort was made to find solutions in

crucial issues that emerged during the first experiment.

The first issue that needed to be addressed was face detection, as previously there

was a high rate of false detections (˜ 20%). In order for any false classification to be

attributed solely to the feature extraction method 100% accurate face detection had to

be established; thus a semi-automatic face detection algorithm was implemented. Face

region was manually initialized, and then tracked with the Kanade-Tomasi-Lucas tracker

as described in [204], which is set to fail and to be reinitialized if the tracked points are

below a threshold (20 points). Tracking fails when face goes out of the field of view,

because of occlusions (e.g. hand in front of the face), or when illumination becomes too

inadequate even for a human observer to distinguish facial features. Such issues are met

in about 20 videos out of the total of 200, and these videos were disregarded.

The extracted facial region was resized to 256x256 pixels, followed by the Curvelet

transform, with Orientation and Scale parameters were set to 1 [46], resulting to a 43x43

CurveFace. LBP descriptors were extracted for two sets of [Radius, Neighbourhood]

[153]; LBP1=[1,8] and LBP2=[2,16]. LBP1 gave a 10-bin histogram, and LBP2 an 18-

bin histogram; the two were concatenated to a 28 element feature vector for each frame

in the Frame-based Classification.

Video-based Classification was performed next by computing the XZ and YZ planes,

for a window of 30 subsequent frames, with an overlap of 15 frames. Therefore, a set of

30 CurveFaces of 43x43, results in 43 XZ planes of 30x43, and 43 YZ of 43x30. LBP1
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Figure 4.2: Experiment 2: Pipeline for the LCBP-POP

and LBP2 are again applied, to provide 43 pairs
(

⋃43
i=1(XZi

⊕

Y Zi)
)

of LBP1⊕ LBP2

descriptors. That is for every window 43 different feature vectors of 56 elements are

being extracted, each of which is being treated as an individual sample for the classifier.

In an effort to make the problem binary, all three possible pairs of depression severity

subgroups were initially considered: {minimal/mild}, {mild/moderate}, {moderate/severe}.

However, the 4 subsets were highly unbalanced, with the ’minimal’ class having as many

recordings as all the rest together. Consequently random data-sampling was used in

order to keep equal number of samples from each class.

Two main sets of tests were conducted, with either 20-Fold or LOO cross-validation

methods. The 20-Fold classification was applied to individual samples, with the sets

being partitioned 20 times. In this manner, 20 different randomly selected train/test

sets were used in cross-validation. In the LOO method, all recordings belonging to the

same participant were excluded from the training process, and were only used for testing.

There were 58 different participants for 200 video recordings. For the LOO method

classification of the videos was based on the class that was attributed to the majority

of the samples. A Nearest Neighbour classifier was used. The proposed framework is

illustrated in Fig.4.2. With a careful observation of the XZ and YZ planes, along with

the sequence of CurveFaces, the motion patterns formed for the first row and column
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Table 4.3: Experiment 2 results (%)

Leave-One-Out 20-Fold
Frame Video Frame Video

Minimal/Mild 60.5 74.5 97.6 83.8

Mild/Moderate 59.0 63.5 96.9 85.4

Moderate/Severe 72.5 74.5 95.8 81.3

Table 4.4: Experiment 2: Multi-class confusion matrix based on the Frame-based algorithm
and 20-Fold cross validation (%)

Minimal Mild Moderate Severe

Minimal 89.3 3.6 3.7 3.4

Mild 1.9 95.3 1.4 1.4

Moderate 1.3 1.2 96.1 1.5

Severe 0.8 1 0.8 97.4

can be observed in both X and Y axes respectively.

Results for both Frame-based and Video-based classification algorithms, and all three

cut-offs, for both cross validation methods are summarized in Table 4.3. Table 4.4

presents the confusion matrix across the four classes derived from the Frame-based al-

gorithm (20-Fold cross-validation).

In sum, the technical advances achieved in Experiment 2 were: a) establishing an

accurate face detection, b) implementing overlapping window to involve more informa-

tion on the motion patterns, c) choosing the Pairwise-Orthogonal-Planes instead of the

Three-Orthogonal-Planes in order to reduce the dimensionality of the features, d) test-

ing video versus frame based representation, and e) applying additional cross-validation

methods by using LOO in addition to k-fold.
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Figure 4.3: Experiment 3: LMHI

4.4 Experiment 3

This work was part of the participation to the 6th International Workshop on Audio/Vi-

sual Emotion Challenge (Depression Sub-Challenge), in terms of the ACM Multimedia

Conference (Pampouchidou et al. 2016) [161]. The dataset employed was the DAIC-

WOZ, and the participation was among the finalists of the challenge. Addressing the

AVEC’2016 was even more challenging than the previous years, as video recordings were

not available, and visual-based approaches were limited to using the provided landmarks.

Given the special circumstances the LMHI methods was applied. The landmarks

used for LMHI, according to the numbering of Fig.3.2, were those corresponding to

eyebrows {18-27}, eyes {37-48}, nose-tip {32-36}, and mouth {49-68}. Before computing

the LMHI all landmarks were co-registered, using affine transformation, by aligning the

points corresponding to the temples, chin, and inner and outer corners of the eyes {1, 9,

17, 37, 40, 43, 46}.

The gray value was defined by a step s, which corresponded to the maximum pixel

value (255) divided by the total number of frames. Thus in every frame the gray value

was computed by s multiplied by the frame count (i.e. for the 4th frame the gray value

was 4 x s). The morphological operation of erosion with a structural element of disk and

size 2 was applied in order to remove outliers (very distant movements) and the image

78
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Table 4.5: Experiment 3 results: F1 score reflecting binary classification (high vs. low
self-reported depressive symptomatology) in gender-independent and gender-based modes

Gender-independent Gender-based

0.5 (0.9) 0.17 (0.83)

was cropped to the non-black pixels (non-zero). The resulting LMHI was further resized

to fit the average size of the LMHI. An example of the resulting LMHI is illustrated in

Fig.4.3, where the amount of movement is indexed by the multitude of bright pixels.

LBP, as well as HOG, were extracted based on LMHI. LBP was computed for two

sets of parameters: radius and neighborhood for {1, 8} and {2, 16}, resulting in a

total of 28 features covering the entire face. The LMHI was further partitioned using

corresponding half ratios to represent three composite regions: “nose+mouth”, “left

eye+eyebrow”, and “right eye+eyebrow”. These regions were partitioned by red dashed-

lines in Fig.4.3. For each subregion 28 additional features were computed. Further, HOG

was computed for the entire face area with 1080 features, as well as for the remaining

sub-regions of “nose+mouth”, giving 360 features, “left eye+eyebrow” with 144, and

“right eye+eyebrow” with 144 features as well. Additionally, the LMHI histogram bins

were computed resulting in 255 additional features (black was excluded). Mean and

standard deviation of the pixel values constitute the final two features, resulting in a

total of 2097 LMHI features.

The performance of the proposed method was evaluated through training on the

training set and subsequent testing with the development and test sets, as set by the

challenge organizers. In addition, the algorithms were assessed using the LOO procedure

on the joined training and development sets. Performance of each modality, in gender-

independent and gender-based models, as well as the favorable comparison to the baseline

performance, are reported in Tables 4.5 and 4.6.

4.5 Experiment 4

The fourth experiment was set in a different direction than the previous, as instead of

appearance-based features, geometrical features with statistical descriptors were tested.

The results of this experiment were published in the 39th Annual International Confer-
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Table 4.6: Experiment 3: Comparison of the proposed method to the challenge baseline
[212] F1-score: depressed (not-depressed)

Partition Baseline Proposed

Development 0.58 (0.86) 0.50 (0.90)

Test 0.50 (0.90) 0.18 (0.75)
Note: F1 score reflecting binary classification (high vs. low self-reported depressive

symptomatology)

Table 4.7: Experiment 4: Experimental results(F1-Score)

Window 15 30 45 60

Gender independent 0.519 0.551 0.465 0.586

Gender based 0.577 0.519 0.546 0.580

ence of the IEEE Engineering in Medicine and Biology Society (Pampouchidou et al.

2017) [163].

The dataset employed was the AVEC’14, while several parameters of the algorithm

were tweaked; facial landmark distances for example were computed based on euclidean

and cityblock distance, and the time window used to extract the landmark motion fea-

tures was systematically manipulated (set at 15, 30, 45, and 60 frames, which given

the frame rate (30 fps) correspond to 0.5, 1, 1.5, and 2 sec). PCA was also tested

for several sets by keeping 50, 60, 70, 80, 90, 100, 150, and 199 components. Further,

two classification algorithms were tested, nearest neighbour and decision tree, using de-

fault parameters and leave one out cross validation. The parameters involved in the

best-performing feature combinations were fixed to: euclidean distance, PCA compo-

nents equal to 60 for each video and audio, and nearest neighbour classifier. Table 4.7

presents video classification for the different frame windows with optimal classification

results for the gender independent mode at 60 frames window (2 seconds).

4.6 Experiment 5

Experiment 5 entailed a quantitative comparison of motion history image variants on

the AVEC dataset for binary classification. Results were published in the EURASIP

Journal on Image and Video Processing (Pampouchidou et al. 2017) [162]. The overall
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Table 4.8: Experiment 5: Experimental results employing appearance-based descriptors
(F1-score %)

LBP{1,8}# LBP{2,16}# HOG LPQ Hist + Mean
+ Std

Feature
Fusion

MHI ∗ ∗ 81.9 59.3 81.9 36.6

LMHI ∗ 66.4 64.9 45.8 64.8 72.7

GMHI ∗ ∗ 80.0 69.8 80 74.0
# LBP parameters in brackets correspond to {radius, neighborhood} respectively.
∗ Dash represents unavailable F1-score due to zero depressed individuals classified

correctly.

pipeline of the methodology proposed in terms of this experiment is illustrated in Fig.

4.4.

OpenFace was employed for detection of 2D facial landmarks extracting aligned facial

images of size 112×112 pixels [31]. In the present work, only successfully detected frames

were retained for further processing.

Regarding specific parameters of the motion representation algorithms, the value

of ξ was set to 25 for MHI, and to 8 for GMHI. These thresholds were chosen empir-

ically, so that the static-background did not present movement in the motion image.

This effect was noted at lower ξ values, where differences in pixel intensity were at-

tributed to illumination variations. Setting the appropriate threshold, ensures that the

movement represented by the motion images is meaningful, and can be attributed solely

to movements. LBP was tested with two sets of [radius, neighborhood], namely [1,8]

and [2,16]. The Gaussian kernel was chosen for the SVM classifier, with the expected

proportion of outliers in the training data set to 10%. The log(x/(1 − x)) transform

function was applied. The number of principal components retained was also selected

empirically: k=100 for the appearance-based descriptors and k=60 for VGG. LOSO was

used for cross-validation, as a non-biased and person-independent method, given that

the dataset contained more than one recordings of the same subject (ranging from 2 to

6).

Performance of the different configurations of the proposed algorithm is summarized

in Tables 4.8 – 4.12. Table 4.8 presents performance of the various appearance-based

descriptors for each of the three different motion images. The descriptors were tested

individually, and combined with feature level fusion (concatenated). Table 4.9 presents
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4. PRELIMINARY EXPERIMENTAL EVALUATION

Figure 4.4: Experiment 5: Flow of the motion history variants methodology. Dashed
arrows in feature extraction indicate that features are considered individually or in combi-
nation with feature fusion. MHI: Motion History Image, LMHI: Landmark Motion History
Image, GMHI: Gabor Motion History Image, HOG: Histogram of Oriented Gradients, LBP:
Local Binary Patterns, LPQ: Local Phase Quantization, PCA: Principal Components Anal-
ysis, SVM: Support Vector Machine
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Table 4.9: Experiment 5: Experimental results employing VGG features, before and after
fully connected layer (F1-score %)

Before After Feature
Max Mean FC6 FC7 FC8 Fusion

MHI 87.1 63.0 51.5 84.8 70.1 87.4

LMHI 64.0 67.7 56.6 18.2 66.4 64.0

GMHI 85.7 62.7 55.6 76.0 65.5 84.3

Combined 64.6 52.1 51.8 74.7 46.3 65.1

Table 4.10: Experiment 5: Confusion matrix for the best F1-Score of the proposed ap-
proach (VGG-MHI feature fusion/2 classes)

Self-Reported
Predicted

Non-depressed Depressed

Non-depressed 102 2

Depressed 20 76

the performance of VGG for the different configurations. The confusion matrix corre-

sponding to the best-performing model (VGG feature fusion) is presented in Table 4.10.

Additional performance metrics for the best performing model are reported in Table

4.11, whereas Table 4.12 compares the present findings to previously published results

using similar data sets. It should be noted that the results presented by Senoussaoui et

al. [182] and Alghowinem et al. [24] were obtained using different organization of the

Table 4.11: Experiment 5: Additional performance metrics for the best-performing ap-
proach (VGG-MHI feature fusion / %)

F1 87.4

Accuracy 89.0

Sensitivity 79.1

Specificity 98.1

Precision 97.4

Cohen’s Kappa 77.8

.95 Confidence Interval ± 8.6
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Table 4.12: Experiment 5: Performance comparison with the literature (%)

Approach Accuracy Average Recall F1

Sennoussaoui et al. [182] 82.0 - -

Alghowinem et al. [24] - 81.3 -

Pampouchidou et al. [160] 74.5 - -

Pampouchidou et al. [163] - - 58.6

Proposed (VGG feature fusion) 89.0 88.6 87.4

AVEC datasets, thus a direct comparison with the present results is not possible. In

the cross-corpus approach of Alghowinem et al. [24] the used set was carefully selected

from the original dataset (AVEC’13) in terms of the total number and duration of

recordings per participant, in order to match the other two datasets. On the other hand,

in [182] the algorithm was applied to the training data set provided by the challenge

organizers (AVEC’14) and tested on the development dataset. Although the AVEC

dataset has been widely employed in approaches for continuous depression assessment,

the aforementioned approaches, to the best of the authors’ knowledge, are the only

ones attempting categorical depression assessment on the specific dataset. Results are

reported for F1-score, unless indicated otherwise, which is given by equations 2.5, 2.3,

and 2.4

4.7 Summary

Classification results using previously available data sets are listed in Table 4.13 for each

of the five preliminary experiments. In total 4 conference papers were produced, three

published by IEEE, while the one by ACM was in terms of the AVEC’16 Depression Sub-

Challenge, with the participation being included in the finalists of the challenge. Finally,

one article was produced as well, in Springer EURASIP Image and Video Processing.
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Table 4.13: Summary of achievements during preliminary experiments

Publication Type Name Dataset No
Classes

Acc Kappa

Pampouchidou et
al. [161] (2016)

Intern.
Conf.

ACM
AVEC

DAIC-
WOZ

2 F1=0.5 39.00%

Pampouchidou et
al. [159] (2015)

Intern.
Conf.

IEEE
ICSIPA

AVEC 4 55.42% 41.61%

Pampouchidou et
al. [160] (2016)

Intern.
Conf.

IEEE
EMBC

AVEC 2 74.50% 13.00%

Pampouchidou et
al. [163] (2017)

Intern.
Conf.

IEEE
EMBC

AVEC 2 F1=58.6 20.84%

Pampouchidou et
al. [162] (2017)

Article Springer
EURASIP

AVEC 2 89% 78.00%
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Chapter 5

Main Experiment

The main experiment in terms of the PhD is consisted by two main parts: a) the data

collection from the clinical study, and b) the experimental evaluation of the developed

methodology on the clinically valid dataset. The respective sections follow below based

on this rationale. The work described in this Chapter has been submitted for publication

the the IEEE Journal of Biomedical and Health Informatics.

5.1 Data Collection

The work described in this section concerns the creation of a database, comprising record-

ings of human facial expressions, speech, and physiological signals, after experimental

induction of discrete emotions that are considered relevant for assessing depressive symp-

tomatology. The collected data are used in Section 5.2 for the main study of developing

computational methods capable of recognizing non-verbal signs, able to differentiate

mentally healthy individuals from those suffering from depression.

Although the primary aim of the dissertation did not involve construction of an

emotion database, the undertaking of original data collection lies in the field of affec-

tive computing and faces similar challenges. Data collection procedures required careful

design having a strong impact on the capacity to address the main research questions

[122]. As already shown in Ch.2, the methods employed for collecting relevant symp-

tomatology from individuals, along with the annotations, are the most important steps.

Table 5.1 summarizes all steps that took place in order to successfully complete the data
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5. MAIN EXPERIMENT

collection performed in terms of the presented thesis, while the details of the different

steps are described in some detail within the following sections.

5.1.1 Ethics and Data Protection

Obtaining the required bioethics permissions was the first and prerequisite step in or-

der to begin the data collection. Privacy and ethics are fundamental principles when it

comes to data collection involving video recordings, or other types of sensitive data [57].

Obtaining ethical approval, informed consent, and establishing the confidentiality of the

data are some key aspects. Securing approvals from the Bioethics Committee of the Uni-

versity Hospital of Heraklion (Decision 296, Session 7/06-04-2016) and the National Data

Protection Authority (Protocol No ΓN/EΞ/392-2/21-04-2016) lasted approximately one

year. In addition to providing prospective participants with an extensive description of

the study details in layman terms, they were explicitly informed that they could with-

draw at any point during or after completing the experiment and request deletion of all

their data.

5.1.2 Participants

Participants were healthy volunteers aged 20-65 years without history of mental or neu-

rological disorder and patients suffering from MDD as diagnosed by their treating psychi-

atrists at the Psychiatry Outpatient Clinic, University Hospital of Heraklion. Healthy

volunteers were recruited through announcements on a Facebook page, flyers posted

at several sites (patient waiting areas at the University Hospital, University Campus,

FORTH labs and common areas), as well as through personal referrals. Patients were

informed regarding the study by their physicians during regular appointments and if

they consented verbally they were explained the details of the study both verbally and

in writing by a research assistant (psychologist). In most cases written consent and

testing were obtained at the same time to avoid bring the patient in on a separate day.

The final sample included 65 participants (control group n=45, patient group n=20).

Socio-demographic information and clinical indices can be found in Table 5.2 for each

group, while individual data on the same variables can be found in Appendix A. Although

an effort was made to keep demographics in similar levels, and recruit participants in

the same age range the patient group was older and had completed fewer years of formal
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5.1 Data Collection

Table 5.1: Summary of work toward data collection

1. Obtaining necessary research permissions from the

– Bioethics Committee, University of Crete Hospital

– National Data Protection Authority

2. Protocol design

– Building web-based application to administer self-report questionnaires and
scales

– Building the emotion perception application

– Selecting stimulus video-clips

o Initial selection of video-clips for pilot testing

o Post-processing of the video-clips

* Video-editing of clips to appropriate length

* Adding Greek subtitles

* Adding white screen at the beginning of each clip to serve as baseline

o Pilot testing the video-clips (n=10)

o Statistical Analysis of emotion self-ratings from pilot study

o Final selection of video-clips based on pilot study results

3. Technical setup

– Selection and purchasing of suitable, portable biosignal recording device

– Setting up the experiment room (camera, lights, biosignal device, PC
controlling stimuli and questionnaire/scale administration and PC performing data
acquisition and storage)

4. Participant recruitment

– Control group: through dedicated project webpage, email list, flyers

– Patient group: through referrals by clinicians in University Hospital,
Psychiatric Outpatient Clinic

5. Recordings

– Technical part: handling recordings

– Psychologist: guiding the participants through the protocol, and conducting
interviews

6. Post-Processing

– Data Compression

– Selection of informative parts

– Condition- and diagnosis-blind annotation of facial videos by experts
(psychologists)
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Table 5.2: Socio-demographics and clinical data for both groups, control (n=45) and
patients (n=20)

Control Patients P-value

Age [M(SD) in years] 39.96 (7.87) 49.7 (12.68) <.001

Age range in years 24-56 24-70 –

Men 17 (37.8%) 3 (15.0%) >.05

Education [M(SD) in years] 16.69 (5.04) 10.1 (4.77) <.001

BDI-score [M(SD)] 6.49 (5.62) 21.8 (14.39) <.001

STAI2-score [M(SD)] 40.27 (9.27) 52.95 (10.13) <.001

Blinded expert judgment1

[M(SD)]
2.43 (1.25) 4.85 (1.08) <.001

1Conducted by psychologists based on participants’ face videos alone

education than the control group. The two groups did not differ significantly on the

percentage of women which was higher than the percentage of men in both groups

and especially among patients (85 vs. 15%) in accordance with the literature [40]. As

expected, self-reported depression and anxiety were higher for the patients (BDI-II,

STAI, and annotation). Three participants did not complete one task (each for different

reasons and a different task), bringing the total number of recordings to 322 (out of a

possible of 325: 65 participants × 5 tasks).

5.1.3 Psychological measurements and experimental procedures

In designing the study special care was given to two key aspects:

(a) Tools employed to assess depression-related symptoms in everyday life of partic-

ipants (including those not meeting formal criteria for MDD or other mood disorder),

and

(b) Defining the experimental conditions to elicit specific emotions in the labora-

tory under the assumption that the quality and intensity of such emotions and facial

expressions of emotions will be altered in the presence of significant depressive symp-

tomatology [64]. We adopted techniques that involved ”human-human interaction” as

well as ”human-computer interaction” [122] in both ”social” and ”nonsocial” context as

described in Subsections of 5.1.3.2 and summarized in Table 5.3.
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5.1.3.1 Tools assessing depression-related symptoms

Two self-report questionnaires were administered to all participants to assess depres-

sion and anxiety symptomatology, namely the Greek adaptations of the BDI-II and the

STAI Form Y. The BDI-II [85] has been adjusted according to DSM-IV criteria for

MDD, comprising 21 questions, scored on 0-3, 0-4, or 0-5 point scales. These ques-

tions assess a wide range of emotional and behavioral signs of depression such as body

image, hypochondriasis, difficulty in working, sleep loss, appetite loss, thoughts of self-

punishment, suicidal ideation, and reduced libido. The higher the score, the more severe

the depressive symptoms, while the standardized cutoffs for BDI-II are:

• 0-13: minimal depression

• 14-18: mild depression

• 19-28: moderate depression

• 30-63: severe depression

The Trait-Anxiety Scale (STAI Form Y-1) [81] was designed as a self-assessment tool

of persistent symptoms (feelings, somatic complaints and behaviors) that are considered

as core manifestations of anxiety as a characteristic of the individual. It consists of

20 items rated on a 1-4 point scale, with higher total scores indicating higher levels of

anxiety.

5.1.3.2 Emotion elicitation paradigm

5.1.3.2.1 Non-social context: Selection of stimuli

In the context of a pilot study involving n=10 healthy volunteers aged 26-to-39 (5 men)

we evaluated thirteen video clips that were considered as suitable for eliciting each

one of four of Ekman’s six basic emotions [joy (4 clips), disgust (3 clips), sadness (3

clips), and fear (3 clips) [74]). Clips were chosen from popular movies, TV series, or

YouTube. Participants in the pilot study were asked to view each video clip (presented in

a different random order across participants). Participants in the pilot study were asked

to view each video clip (presented in a different random order across participants). After

watching each clip they were asked to rate their emotional experience on 15 dimensions

(according to Gross and Levenson [95]) on a 0-8 point scale. In Fig. 5.1.a the three
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video clips that were initially selected to induce sadness are contrasted based on group-

average ratings on Gross and Levenson’s 15 emotion dimensions. Whereas sadness is the

dominant emotion elicited by all three clips, the clip from the movie ”Forrest Gump”

was excluded as it ranked lower in the sadness dimension while also elicited higher levels

in pleasure and interest. After having collected recordings from about half of the control

population (n=24), the stimuli were again evaluated, to make another selection, and keep

only one for the patients population. As it can be seen in Fig. 5.1.b again both clips rank

high in terms of sadness, yet the clip from the movie ”Terms of Endearment” was chosen

because it elicited lower levels of two potentially confounding emotional states, namely

arousal and tension. These states are considered as indices of psychological stress that

can alter the intended facial expression profiles for sadness.

Regarding the joy clip, a scene from a popular Greek comedy series (Para pente) was

chosen over a clip of a laughing baby from YouTube, a greek movie (Mpakalogatos), and

another comedy series (Peninta-Peninta), using a similar rationale as for the sadness

clip. Finally, 30 frames (1 sec) were added to the beginning of each clip to serve as

baseline. The remaining video clips (disgust, fear) did not elicit distinct emotions (e.g.,

the disgust clip elicited high levels of disgust but also similar levels of repulsion, arousal,

interest, tension / c.f. Fig. 5.2) Therefore these clips were not used in the main study.

5.1.3.2.2 Social context

In addition to the video clips, an interpersonal method for eliciting positive and nega-

tive emotions was employed as well in the form of a semi-structured interview with the

research assistant. Initially (prior to viewing the Joy clip) the participant was asked

to describe a positive personal experience from his/her life; if the participant hesitated

he/she was encouraged by the research assistant to go into more details, and asked

probing questions guiding him/her to relive this experience as vividly as possible. In a

similar manner, prior to viewing the Sadness clip participants were asked to describe a

negative personal experience, which involved sadness or distress. The research assistant

was closely monitoring the participant’s emotional state and was instructed to terminate

the interview in case of extreme emotional responses. A neutral baseline for the posi-

tive/negative experience description was chosen in the form of reading aloud a 260-word

narrative text describing an excursion in the country.
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5.1 Data Collection

Figure 5.1: Average participant ratings of Sad video clips on the 9-point emotion scale of
Gross and Levenson [95]. Upper panel: Ratings of the three video clips tested in the pilot
study; Lower panel: Corresponding ratings by control group participants in the main study
(n=24)
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Figure 5.2: Average pilot study participant ratings of Fear (upper panel) and Disgust video
clips (lower panel) that were not selected for the main study, as they failed to elicit distinct
emotions
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On two predetermined occasions, the participant was guided through relaxation ex-

ercises, involving controlled breathing and brief mindfulness techniques to ensure that

emotional states and stress levels returned to neutral prior to the description of positive

experience/joy clip and, again, prior to the description of negative experience/sadness

clip.

5.1.4 Technical Setup

The technical setup involved a camera, lights, microphone, and biosignal recording de-

vice. As shown in Fig. 5.3, the participant was seated in front of the PC which presented

the stimuli, rating scales and questionnaires and registered his/her responses. Two re-

searchers conducted the experiment: one operated the stimulus delivery and recording

devices (AP) and the second (psychologist) interacted with the participant (obtained

consent, provided instructions and additional explanations if needed, performed guided

relaxation, and conducted the semi-structured interviews). Additional biosignals (voice,

heart rate, galvanic skin response) were also recorded but will not be considered further

in this thesis. Facial video data analyzed for the purposes of this dissertation originated

from conditions 7-8 and 11-13 (shown in bold in Table 5.3). The order of conditions is

presented in Table 5.3 and the total duration of the experiment ranged between 60-90

min.

The camera employed for the video recordings was the Grasshopper R©3, which pro-

vides high-performance and high-quality imaging (see Table 5.4). Chosen camera was

of high specification in order to investigate how the quality of the recordings affects the

outcome, as comparing to the reported datasets (see Table 2.2 which are of lower stan-

dards. The camera specs support maximum specifications of 90 frames per second (fps)

and 2048×2048 image resolution. Although the PC involved was high performing (32GB

RAM, SSD, SATA3), still full specifications of the camera could not be supported. Dur-

ing 10 benchmark tests it was specified that the average speed of writing to the disk

was 413.9 MB/s. Furthermore, several configurations of fps and resolution were tested,

to check whether frames were being lost during acquisition due to bottle-neck problem;

80 fps and 1920×1920 was the maximum configuration without losing any frames for

10 additional tests, therefore there were the finalized settings for the camera. Indirect

lights were used to establish controlled illumination; the lights did not point directly on

the participants, but to the wall opposite of them, to avoid extreme brightness.

95



5. MAIN EXPERIMENT

Table 5.3: Data collection protocol in the main study

# Task Method

1 Acquaintance Orally

2 Read and sign information sheet and
consent form

In writing

3 Demographics & Clinical History Webpage

4 Relaxation (breathing exercise) BioTrace

5 Prolonged /a/ utterance Orally

6 Positioning in front of the camera
(aligned with a spot on the wall)

–

7 Description of positive experience Orally

8 Joy clip Webpage

9 Emotion ratings for Joy clip Webpage

10 Relaxation (breathing exercise) BioTrace

11 Reading aloud a neutral text Webpage /
Orally

12 Description of negative experience Orally

13 Sadness clip Webpage

14 Emotion ratings for Sad-clip Webpage

15 Complete STAI Webpage

16 Complete BDI-II Webpage

17 Prolonged /a/ utterance Orally

Table 5.4: Camera Specifications

Resolution 2048×2048 Frame Rate 90 FPS

Megapixels 4.1 MP Chroma Color

Sensor Name CMOSIS CMV4000-3E5 Sensor Type CMOS

Readout Method Global shutter Sensor Format 1$$

Pixel Size 5.5 µm Lens Mount C-mount
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Figure 5.3: Data collection experimental setup
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5.1.5 Blinded Expert Annotation

Although based on the data collection protocol, 3 types of labels were already available

(diagnosis, BDI-II, STAI), still it was interesting to investigate the annotation by experts.

As also supported by [56] ”It makes more sense to construct a labeling that is rich enough

to support any foreseeable use of the basic material.”, who continues supporting that a

parameter to be examined is redundancy. In this case however, given the nature of the

rest of the labels against the annotation, it can be supported that there is no redundant

information, as they entail entirely different aspects for depression manifestations. More

importantly, the motivation to move forward with the annotation was to have a label

directly comparable to the output of a video processing algorithm, as both diagnosis

and self-reports involve much more information (verbal, full-body, repeated sessions,

reporting bias, etc.) which cannot be derived solely by a single-visual video recording.

Thus, the aim would be to compare the ability of an expert to detect visual signs of

depression from the entire set of facial video recordings, versus the proposed automatic

methodology based on digital image processing and machine learning. It is worth noting

that it is the first time that experts’ annotations are used for automatic depression

assessment, as to the best of the author’s knowledge all relevant approaches to date

employ either the diagnosis, self-reports, or HAM-D scores attributed by clinicians in

the time of examination.

CARMA1 [86], a user-friendly software, was employed for this procedure; among the

annotation tools reviewed in [122] CARMA was the only one which was fully-functional

and corresponded to the needs of our research. Within CARMA the video is displayed

in the center (only visual information in our case), while a slider right next to the

display can be adjusted real-time and in a continuous manner by the annotator, stored

externally in a file of comma separated values for further statistical analysis. The rating

scale was set to 0-8 points with 0 indicating complete absence of depressive signs, and

8 indicating the most severe signs of depression. Annotation was performed by two

experts (psychologists with at least one year of experience with patient interviews at the

University Psychiatry Clinic) who were blinded with respect to clinical diagnosis and

emotion elicitation condition. In case of deviation between raters equal to or greater

1https://github.com/jmgirard/CARMA/
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Figure 5.4: Dispersion of BDI-II, STAI, and expert judgment values per group. Median
(dark horizontal line), interquartile range (boxes), and range of values on BDI-II (upper
panel), STAI (middle panel), and blinded expert judgment (lower panel) per participant
group. The 13/14 point cutoff on BDI-II, 39/40 point cutoff on STAI, and 3.4/3.5 point on
expert judgment are indicated by a blue horizontal line
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(a) BDI/STAI2 rho:0.768

(b) BDI/Annotation rho:0.424

(c) STAI/Annotation rho:0.527

Figure 5.5: Bivariate scatter plots of STAI, BDI-II and expert annotations across partici-
pant groups.
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than 1.5 points on the scale, a third annotator was employed. The final annotation score

registered was the average of all available annotations for each elicitation condition.

5.1.6 Statistical Results

The dispersion of BDI-II, STAI, and expert judgment values per group is shown in Fig.

5.4; it shows that the best separation between groups was achieved by expert judgment

ratings of depression relying solely on facial expressions. This impression was proven by

sensitivity (Receiver Operating Characteristic) analyses revealing higher Area Under the

Curve for expert judgment (AUC=0.913, SE=0.035, p<0.001; Fig. 5.4 lower panel) as

compared to BDI-II (AUC=0.857, SE=0.051, p< 0.001; Fig. 5.4 upper panel) and STAI

(AUC=0.804, SE=0.059, p< 0.001; Fig 5.4 middle panel). These analyses confirmed that

the optimal cutoff reported in the Greek validation studies [85] [81] for BDI-II (13/14

points) was applicable in the current data set as indicated by 70% sensitivity and 85%

specificity for BDI-II. Although sensitivity associated with the standard cutoff of 39/40

points on STAI was very high (90%), specificity was quite low (55%) which is expected

given that the standard cutoff was establish for identifying persons with anxiety disorders

[85] [81]. The optimal cut-off value for expert judgment (i.e., the value associated with

highest sensitivity (90%) and specificity (80%)) was determined at 3.4/3.5 points (on the

0-8 point scale). Bivariate scatter plots shown in Figure 5.5 further suggest that self-

reported values of depressive and anxiety symptoms were only moderately correlated

with expert judgments of depression, whereas the correlation between the former (STAI

and BDI-II scores) was very high (r = .768).

5.2 Experimental Tests

After the data collection was completed, the question of evaluating the proposed method-

ology arose. Based on the preliminary evaluation of the different algorithms and experi-

mental setups, the MHI combined with VGG features proved to be the best performing,

thus there is a great motivation to proceed with this methodology for the final and main

experimental test. Next, the particulars of experimental setup are being explained,

followed by two set of tests, those of a) categorical assessment, and b) continuous as-

sessment.
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5.2.1 Experimental Setup

The video recordings were successfully preprocessed by OpenFace to derive aligned faces,

which were then submitted to the MHI algorithm (c.f. subsection 3.2.2.1) to derive one

motion image for each of the 322 recordings available.

The motion images were then processed through different feature extraction methods

(i.e., HOG, LBP, VGG16, and VGG19, see subsection 3.3). Both HOG and LBP were

applied with the default MATLAB parameters and fully connected layers were employed

for the VGG networks (FC7 and FC8). PCA was used next for dimensionality reduc-

tion, for different values of coefficients (i.e., 5, 10, 20, 40, 45, 50). The recordings were

considered in different setups a) across all tasks, and b) for each task (individual stimu-

lus) separately, for both gender-based and gender-independent modes. Finally SVM was

employed for both categorical (classification) and continuous (regression) approaches.

Given that video recordings were of high specifications, the processing had high

requirements too. However the first steps (preprocessing and feature extraction) were

performed offline on high-performing PC’s (i.e. Intel (R) Core (TM) i7-4720HQ CPU

@ 2.60 GHz, 8 GB RAM, 64-bit Windows 10 Home (C) Microsoft Corporation, 512 GB

SSD). The cross validation pipeline, employing LOSO, for PCA and SVM was executed

on a remote Virtual Machine (VM) with 8 vCPU (virtual CPUs), 256 GB RAM, and

100 GB hard disk, running Ubuntu 16.04 LTS. The VM was running on a physical server

of quite high overall specifications (i.e. 512 GB RAM, Intel Xeon E5-2690 v3 2.6GHz 12

cores / 24 threads), and at the time it was not especially loaded with other VMs while

running the described tests.

5.2.2 Categorical Assessment

Categorical analyses were performed for four different types of binary labels: clinical

diagnosis (depression, healthy), BDI-II score, STAI score, and blinded experts judgment

(using cut-offs listed in 5.1.6). Analyses were performed separately across genders as

well as for each gender and task separately. Results (Cohen’s Kappa values) of differ-

ent approaches are presented in Fig. 5.6, whereas Table 5.5 lists the best-performing

approach for each classification scheme (diagnosis, STAI, BDI-II, expert judgment) in

gender-based and gender-independent modes.
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5.2 Experimental Tests

Figure 5.6: Average performance (Cohen’s Kappa) of the categorical assessment schemes by
number of PCA components retained during preprocessing for each experimental condition.
Results for gender-dependent and gender-independent schemes are displayed in the left- and
right-hand columns, respectively. Colors represent different video-based features.

Continue on the next page
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Figure 5.6: Average performance (Cohen’s Kappa) of the categorical assessment (cont.)

Table 5.5: Best-performing classification schemes in gender dependent and gender-
independent modes.

Label Gender
mode

Cond Feature PCA Kappa F1 Acc Prec Rec

Diag Based Neu HOG 10 33.4% 41.7% 78.1% 100.0% 26.3%

Diag Indep Pos V19FC8 40 45.1% 61.5% 76.9% 63.2% 60.0%

BDI Based Neu FF 5 33.7% 44.4% 76.6% 85.7% 30.0%

BDI Indep Neu V16FC7 20 37.3% 56.4% 73.4% 57.9% 55.0%

STAI Based Sad V16FC7 10 36.2% 81.7% 73.8% 77.6% 86.4%

STAI Indep Sad V19FC7 10 34.5% 82.1% 73.8% 76.5% 88.6%

Exp Based Joy V19FC7 20 36.8% 57.1% 72.3% 60.0% 54.5%

Exp Indep Joy FF 5 41.1% 57.9% 75.4% 68.8% 50.0%

Cond:Condition, Acc: Accuracy, Prec: Precision, Rec: Recall, Diag:Diagnosis, Exp: Expert Judgment, Indep:

Independent, Neu: Neutral, Pos: Positive, FF: Feature Fusion. PCA: Number of extracted components.
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5.2.3 Continuous Assessment

Continuous assessment (regression) was performed separately for each of the three con-

tinuous labels (i.e., BDI-II, STAI, and expert judgment score) in gender dependent and

gender-independent modes. Analyses were conducted for each condition separately as

well as on combined data across conditions. Participant scores were normalized on a

0-100 scale to account for the different score ranges (i.e. BDI-II: 0-63, STAI: 0-80, and

annotation: 0-8). Fig. 5.7 displays average normalized RMSE values demonstrating that

the proposed method succeeds best in predicting the self-reported score on the STAI.

Best-performing scheme in terms on both RMSE and MAE among those listed in Table

5.6 is the gender-independent model conducted on video recordings from the Neutral

condition. Additional indices of model performance are presented in Fig. 5.8 - 5.13, in

the form of absolute and log-transformed differences between actual and predicted label

values (BDI-II score, STAI score, or expert judgment) using the following formula:

log2

Anorm

Pnorm
(5.1)

where Anorm is the normalized actual value and Pnorm the normalized predicted value.

Fig. 5.8 - 5.13 also include Bland-Altman plots [38] using the following formula:

M = α− β,A =
α+ β

2
(5.2)

where α the predicted value and β the actual value. M corresponds to the difference

between actual and predicted values (plotted on the y axis) and A to their average

(plotted on the x axis) .

For future clinical applications of automated assessment methods, false negative re-

sults (i.e., failure to detect significantly high scores on a psychopathological trait, are

most critical. In our results, such events correspond to participants where our models

significantly underestimated self-reported or expert-judgment ratings as indicated by

scores >1.96 SDs from the sample mean. With respect to BDI-II scores (Fig. 5.8 - 5.9),

the best performance was achieved by VGG features derived from the Neutral condition

in gender-independent mode. In this analysis, there were only two false negative cases

(the model significantly underestimated self-reported depression severity for two partici-

pants who scored > 55 points on BDI-II). With respect to STAI scores (Fig. 5.10 - 5.11),
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Table 5.6: Best-performing continuous assessment schemes in gender-based and gender-
independent modes.

Normalized
Label Gender

mode
Cond Feature PCA RMSE MAE RMSE MAE

BDI Based Neu HOG 20 10.59 7.46 16.81 11.84

BDI Indep Neu V19FC7 40 10.54 7.86 16.73 12.48

STAI Based Neu HOG 20 10.53 8.56 13.16 10.71

STAI Indep Neu HOG 20 9.94 7.88 12.42 9.85

Exp Based Neg HOG 20 1.61 1.37 20.17 17.07

Exp Indep Joy V19FC7 40 1.47 1.21 18.39 15.06
Cond: Condition, Exp: Expert Judgment, Indep: Independent, Neu: Neutral, Neg: Negative.

PCA: Number of extracted components. RMSE: Root Mean Square Error, MAE: Mean
Absolute Error

both best-performing models underestimated self-reported anxiety severity in a two par-

ticipants scoring >50 points in the scale. Both models relied on HOG features derived

from the Neutral condition. With respect to expert judgment values (Fig. 5.12 - 5.13)

was achieved marginally by HOG features derived from the Negative Experience Recall

condition in gender-based mode. In this analysis, the model significantly underestimated

expert ratings of depression severity in two participants.

The generalizability of the proposed method was tested on the AVEC’14 dataset com-

prised of 300 video recordings from 83 participants using continuous assessment against

the only available continuous variable (i.e., individual BDI-II total scores). Comparison

of results presented in Tables 5.6 and 5.7 show that our method relying on HOG fea-

tures in gender-based mode produces similar results across datasets: RMSE=10.59 and

MAE=7.46 in our dataset (neutral condition); RMSE=11.45/10.74 and MAE=7.81/9.92

(test/development data sets) in the comparable condition of the AVEC dataset (North-

wind/passage reading).

Results using the AVEC data set permit comparison of our method with previously

reported approaches listed in Fig. 5.14. This comparison shows that although the

proposed methodology does not outperform the other approaches, still succeeds in per-

forming at the same levels as state-of-the-art methods, and on top of that it sustains the

same performance over two different datasets, with completely different specifications,
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5.2 Experimental Tests

Figure 5.7: Average normalized RMSE for the continuous assessment schemes pre-
dicting BDI-II scores (upper panel), STAI scores (middle panel), and expert judgments
of depression (lower panel) by number of PCA components retained during preprocessing
for each experimental condition. Results for gender-based and gender-independent schemes
are displayed in the left- and right-hand columns, respectively. Colors represent different
video-based features.
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(a)

(b) Log(Actual norm/ Predicted norm) (c)

Figure 5.8: Continuous assessment: Prediction of BDI-II scores in the main experiment
(gender-based mode). Upper panel: Absolute differences between actual and predicted BDI-
II scores for each participant. Predicted values were computed in the context of continuous
assessment analysis using recordings from the Neutral condition (HOG features). Lower
panel: (b) log transformed differences between actual and predicted values; (c) Bland-
Altman plot displaying the distribution of differences (y axis) over the range of BDI-II
scores (x axis).
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(a)

(b) Log(Actual norm/ Predicted norm) (c)

Figure 5.9: Continuous assessment: Prediction of BDI-II scores in the main experiment
(gender-independent mode). Upper panel: Absolute differences between actual and pre-
dicted BDI-II scores for each participant. Predicted values were computed in the context
of continuous assessment analysis using recordings from the Neutral condition (VGG fea-
tures). Lower panel: (b) log transformed differences between actual and predicted values;
(c) Bland-Altman plot displaying the distribution of differences (y axis) over the range of
BDI-II scores (x axis).
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(a)

(b) Log(Actual norm/ Predicted norm) (c)

Figure 5.10: Continuous assessment: Prediction of STAI scores in the main experiment
(gender-based mode). Upper panel: Absolute differences between actual and predicted STAI
scores for each participant. Predicted values were computed in the context of continuous
assessment analysis using recordings from the Neutral condition (HOG features). Lower
panel: (b) log transformed differences between actual and predicted values; (c) Bland-
Altman plot displaying the distribution of differences (y axis) over the range of STAI scores
(x axis).
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(a)

(b) Log(Actual norm/ Predicted norm) (c)

Figure 5.11: Continuous assessment: Prediction of STAI scores in the main experiment
(gender-independent mode). Upper panel: Absolute differences between actual and pre-
dicted STAI scores for each participant. Predicted values were computed in the context
of continuous assessment analysis using recordings from the Neutral condition (HOG fea-
tures). Lower panel: (b) log transformed differences between actual and predicted values;
(c) Bland-Altman plot displaying the distribution of differences (y axis) over the range of
STAI scores (x axis).
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(a)

(b) Log(Actual norm/ Predicted norm) (c)

Figure 5.12: Continuous assessment: Prediction of expert judgment of depression in the
main experiment (gender-based mode). Upper panel: Absolute differences between actual
and predicted expert judgment for each participant. Predicted values were computed in the
context of continuous assessment analysis using recordings from the Negative Experience
Recall Condition (HOG features). Lower panel: (b) log transformed differences between
actual and predicted values; (c) Bland-Altman plot displaying the distribution of differences
(y axis) over the range of expert judgment values (x axis).
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(a)

(b) Log(Actual norm/ Predicted norm) (c)

Figure 5.13: Continuous assessment: Prediction of expert judgment of depression in the
main experiment (gender-independent mode). Upper panel: Absolute differences between
actual and predicted expert judgment for each participant. Predicted values were computed
in the context of continuous assessment analysis using recordings from the Joy film (VGG
features). Lower panel: (b) log transformed differences between actual and predicted values;
(c) Bland-Altman plot displaying the distribution of differences (y axis) over the range of
expert judgment values (x axis).
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Table 5.7: Best-performing continuous assessment schemes conducted on various partitions
of the AVEC’14 dataset in gender-based and gender-independent modes.

Test Partition Task Gender
mode

PCA Feature RMSE MAE

Test Freeform Based 10 HOG 10.63 8.58

Test Northwind Based 10 HOG 11.45 9.92

Test Freeform Indep 20 HOG 10.15 8.48

Test Northwind Indep 40 HOG 10.95 9.22

Development Freeform Based 5 HOG 9.20 7.81

Development Northwind Based 40 HOG 10.74 8.91

Development Freeform Indep 45 HOG 9.15 7.83

Development Northwind Indep 40 HOG 10.97 9.33

LOSO Both Based 90 HOG 10.96 8.89

LOSO Both Indep 100 HOG 10.89 8.87
LOSO: LOSO cross validation on the entire dataset

protocols, and of different cultures. It is remarkable that across different setups for the

AVEC dataset HOG is always the best performing feature set.
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Figure 5.14: Comparison of our approach (Proposed) with previously reported results on
the AVEC’2014 Test (upper panel) and Development (lower panel) datasets.
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Table 5.8: Comparison of several specifications between the AVEC dataset and our dataset

AVEC Our Dataset

Number of recordings 300 322

Number of participants 83 65

Age [M (SD)] 31.5 (12.3) 42.4 (11.92)

Male rate 32.67% 30.77%

BDI-II [M (SD)] 15.06 (11.9) 11.2 (11.73)

Participants Volunteers Volunteers & Patients

Country Germany Greece

Protocol Non-social Interpersonal & Non-social

Setup Independent Controlled

Illumination Independent Controlled indirect lighting

Image Resolution (pixels) 640×480 1920×1920

Facial image size (pixels) 112×112 600×600

Frame Rate (fps) 30 80
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Chapter 6

Discussion

The main outcomes of the research performed described in the present work are discussed

below organized in three sections: a) Issues pertaining to algorithm development and

performance, b) Data related issues, and c) Plan of future work.

6.1 Algorithm Development and Performance

Categorical vs Continuous Assessment One of the main issues addressed in the

present work concerned a comparison of categorical versus continuous assessment. Ini-

tially, we pursued classification problems which are computationally more straightfor-

ward. However, computational approaches developed and applied to the AVEC dataset

with apparent success failed to generalize to the data obtained in the context of the

main experiment. Such poor performance motivated adoption of regression approaches

which, eventually, appeared to perform comparably across datasets.

Importantly, one of the depression related labels (clinical diagnosis, based on clini-

cally acceptable BDI-II cut-off, or based on expert judgment of presence of depression

based on visual cues) were predicted at an acceptable level using categorical assessment.

This failure however may not be so crucial after all, as the machine learning algorithm

does not need to make a diagnosis, just a recommendation for further exploration; as

already made clear, the proposed methodology is supposed to serve as a decision sup-

port tool, and not as a standalone system. In addition, the relatively poor classification

performance may reflect the continuous nature of depressive symptomatology. This

problem is compounded by the potential moderating role of clinical factors (such as
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type of medication, type and duration of treatments) and person-specific characteristics

(illness-related cognitions and personality characteristics) that may affect the intensity

and quality of facial expression of depression symptoms (e.g., negative mood, apathy,

helplessness). Furthermore, depression does not have clear categories, and thus cannot

be easily treated as a classification problem. The apparent continuum of severity of

depression symptomatology is expected to be reflected in a corresponding continuous

manner in facial motion dynamic patterns across patients rendering continuous assess-

ment more appropriate.

Low vs high level features Although a trend toward utilizing high-level features

has been observed, and promoted by AVEC’16, where features were provided after pre-

processing to enable high-level feature extraction, it seems that they are not the best

performing. The high-level features are more appealing though, as they enable direct

interpretation and give insights more easily. In terms of the low level features, LBP did

not perform well in terms of classification, for the given set of parameters, resulting in

near zero recognition most of the times. A potential improvement to LBP may entail

adopting larger radius and neighborhood settings, as the ones selected here may repre-

sent only micro-movement patterns, or even employing another variant of LBP, such as

weighted LBP. Remarkably, LBP, although failing in classification, it was among the

best performing in the main experiment for predicting individual BDI-II scores in the

gender-based mode. Overall the best performing low level descriptor in many different

experimental setups was HOG, which can be justified by the fact that it retains spatial

information, and does not construct a unique histogram for the whole image.

Deep learning The deep learning approach outperformed the other approaches in

most settings, both in Experiment 5 (see section 4.6) and in the main study. However,

given that only the generic VGG was employed in the proposed work, based on its

previously reported performance, it is highly probable that after training and tuning

the network, the rate of correct depression assessment could improve significantly. The

highly competitive performance of deep learning-based features has been noted in several

research areas. The fact that deep learning does not rely on prespecified rules, in a

manner similar to human cognition, may account for its superiority. The performance

of deep learning algorithms with a relatively small data set, such as the one tested in
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the present work, generates great promises regarding their capacity to provide clinically

meaningful results for depression assessment provided with sufficiently large training

data sets.

Motion representations Results pertaining to the visual features based on LMHI

as extracted from the available data set in Experiment 3 (see section 4.4) were rather

surprising given that analyses highlighted a single visual feature (LMHIFaceHOG) as the

most significant. This could be explained by the fact that LMHIFaceHOG incorporates

motion information, and by being registered and resized, it minimizes appearance-based

variation. Furthermore, LMHI requires significantly less information (image frames vs.

selected landmarks), and ensures participant anonymity by retaining only facial land-

marks - an important attribute in studies with clinical samples.

Among additional motion history-based algorithms evaluated (MHI and GMHI) in

Experiment 5 (see section 4.6) the original MHI algorithm performed better than the

proposed variants. The rest of the proposed motion representations, namely the LCBP-

TOP and LCBP-POP, as well as the one based on facial geometry, did not perform as well

as the motion images. Finally, in terms of the window based approaches, the duration

of windows varied for the different approaches, which means it is highly depending on

the specifics of the approach (e.g. method, dataset, etc).

Cross validation An important issue to consider when evaluating published reports

on automatic depression assessment concerns the use of relatively small samples and

suboptimal cross validation methods, which are highly susceptible to model overfitting.

Performance metrics The experience gained through the experimental tests leads to

the conclusion that performance metrics need to be considered in combination. Most of

the reported approaches in the literature report only one metric (e.g. accuracy) which

does not reliably show the capacity of a model, especially in cases of highly unbalanced

datasets. Further metrics such as Cohen’s Kappa encompasses most pertinent informa-

tion and it is not surprising that the majority of complementary metrics typically follow

Kappa values across studies. The F1-score, which has been very popular in previous

reports, does not necessarily reflect accurate recognition across all classes (i.e., a high

F1-score may be associated with good recognition in one class and poor recognition in

119



6. DISCUSSION

another) and does not consider the level of chance. Thus it is highly relevant to report

a set of metrics, rather than choosing a single one.

6.2 Data Related Issues

Sample size Many approaches, along with some of the ones proposed hereby, report

very high detection accuracy rates, a fact that clearly demonstrates the clinical poten-

tial of the field, but sample sizes are often too small to enable the generalizability of

these results. In order for a system to be fully evaluated and acknowledged as an as-

sessment tool, it must be tested on considerably larger sample sizes, featuring a wider

variety of demographic characteristics, clinical diagnosis methods, and ethnic-cultural

backgrounds.

Comorbidity & subtypes Comorbid diagnoses, should be carefully recorded and

used to evaluate potential misclassifications, given the high comorbidity rates between

PTSD, anxiety and depression [178]. In addition the capacity to distinguish between

different depression subtypes, and MDD from other mood disorders also needs to be

addressed [195]. Individual variability due to comorbid personality disorders or char-

acteristics, as well as the influence of ethnicity and culture requires further exploration

[25].

Multiple sessions Furthermore, as reported section 1.1, a one-off clinical assessment

may not be sufficient neither for diagnosis or registration of facial features, as devel-

opment of rapport with the participant is necessary. For this to be achieved several

sessions over a fixed interval (e.g. 7 weeks as in [53] [90] [89]) are advisable. Existence

of baseline data would also be useful, but unfortunately this is not possible in most

cases. However, given the importance of symptom/sign stability for depression diagno-

sis, repeated recordings over several days or weeks would render results more clinically

relevant. Finally, multiple sessions can benefit the remission assessment, allowing long-

term monitoring of the recovery process, as well as providing a personalized model based

on the built rapport.
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Real-world vs laboratory setting In the field of automatic facial expression recog-

nition (AFER) approaches are moving toward real-world conditions [143], as exemplified

by the Emotion Recognition in-the-Wild (EmotiW) challenge series [66] [67] [68]. The

manner in which the AVEC dataset was constructed also supports this idea, as the

recordings took place in independent setups and on personal computers. This choice,

however, impacted performance, as shown in Table 2.5: approaches for categorical as-

sessment of depression based on AVEC demonstrated lower than average performance,

when compared to approaches based on other datasets.

Additionally, although current in-the-wild approaches may be considered as promis-

ing, they are not yet sufficiently reliable even for AFER as supported in [180] [143].

Therefore, at present, such approaches do not appear to meet minimum requirements

for a clinical decision support system. On the other hand, the strict requirement for

standardization of data collection [60] may impose potentially serious limitations, such

as questionable originality and genuineness of the data and lack of variance in contex-

tual information. Although standardized medical equipment typically operates under

highly controlled conditions, collection of data indicative of depressive symptomatology

is highly susceptible to the dynamic nature of behavioral and underlying psychological

processes of the person being evaluated.

Stimulus In terms of the benchmark datasets employed for the preliminary experi-

ments, the DAIC-WOZ presented a better interpersonal context for depression assess-

ment in view of the extant literature supporting the better suitability of interviews for

detecting signs of depression. However, in the tests performed in terms of the main

study the processing of clips recorded during the neutral text reading (non social con-

text) turned out to be the best performing in several setups. Some disadvantages of

the neutral text reading task involved some reading problems from the participants,

language issues, sight problems, etc.

Testing clips combined across tasks was never ranked among the best performing. It

is obvious that comparison, either in terms of categorical assessment or continuous, must

be under strictly defined protocol, and during executing the same task. Furthermore,

with the exception of diagnosis, which has their best performance in both Neutral and

Positive stimuli, for gender-based and gender-independent respectively, the rest labels

have their best in the same stimulus without regard to the gender dependency mode.
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More specifically, for BDI the best performance is with neutral stimulus in both gender-

based and gender-independent modes. In the same rationale, the highest performance

for STAI prediction was again with the neutral stimulus for both gender modes. In terms

of the expert judgment values, the best result was for the Negative Experience Recall

condition in gender-based mode.

Annotation During the preliminary experimental tests the need for clinical data, in-

volving diagnosed patients and not just volunteers as in the benchmark datasets, is

stressed. It was assumed that a score on a single self-report instrument may not be suf-

ficient to establish reliable and valid classification of individuals according to depression

status. Other factors can readily elevate self-report scores on depression scales, such as

the presence of significant, long-term life stressors and anxiety. Thus, a clinical interview

would be more reliable for building a robust dataset.

In the proposed work, the data were collected from both non-diagnosed individuals

to form the control group, and diagnosed MDD patients. In addition, a team of psy-

chologists rated each video and provided an overall assessment of depressive signs, to

provide an alternative benchmark which would be more closely matched to the source

of information employed by the proposed methodology (facial images). The annotation

was another novelty by the proposed work, as it has never before been provided by

other datasets, which employ just a self-report score (BDI, PHQ9, etc), or the score of

a clinically-administered instrument (e.g. HAM-D). The parallel use of STAI was an

additional novelty.

However, the results did not prove the hypothesis, as the training and testing based

on the diagnosis did not provide good results, which can again be attributed to the

fact that depressed status is not uniform. There are several and very different ways

that patients appear or behave, which is highly relevant to their severity of depression.

Although all patients included in the dataset were medicated and diagnosed, they were

in different stages of remission, as well as with different levels of severity, thus considering

them as a uniform class is false.

STAI scores were predicted much better than any other variable, which implies that

anxiety can be portrayed and evaluated more accurately by the specific methodology.

Results are well above chance for all metrics involved in categorical assessment of STAI,

and also in terms of continuous assessment it performs best too. Although the best
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Cohen’s Kappa is for diagnosis, yet it is still low (45.07%). In addition, and although

if we consider each metric independently, again diagnosis has the best accuracy and

precision, still it fails for F1-score and for Recall. A better insight of the results was

given by checking which setup had the overall best performance, a rule of ”which setup

has all metrics above 70%” was set (excluding the kappa). The STAI was the only one

to conform with this rule, for both gender based and gender independent. This seems

quite promising, in both cases for the Sad stimulus.

Gender dependency The gender-based model did not perform very well, while the

gender-independent performed much better. This can be explained by the fact that by

separating male/female subjects then the remaining training samples for each model are

quite low. Therefore gender dependency was not properly evaluated, and again there is

a need for a greater sample, as even the male rate is quite low. It seems that it was not

really meaningful to attempt gender-based approaches in the first place, as the training

sample was too low.

Specifications Based on the literature review it was predicted that video acquisition

conditions are of great importance, as they often affect processing tasks such as face

detection, and that to this end, illumination, image resolution, frame rate, are some

crucial factors to be considered. However, this prediction was not corroborated in the

main study, as the categorical approach using the same methodology did not perform

as well as in the AVEC dataset, while for the continuous assessment the perform in the

same level. Finally, by constructing a high-specification dataset the computational cost

is raised significantly, as higher resolution frames and at a higher frame rate produce a

considerably higher amount of data to be processed, which directly affects the pipeline;

for instance for the example of the motion history image, having a frame of 1200x1200

at a frame rate of 80 fps would be much more complex to be computed compared to an

image of 480x640 at a frame rate of 30 fps.

Failed predictions We made an effort to account for the failed predictions of the best

performing method, which is the continuous prediction of the STAI self-reported score for

the neutral stimulus in the gender-independent mode. The most notable failure concerns

underestimation of STAI scores, given the higher associated clinical risk. Among the four
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patients in this category, two suffered from severe depression and were treated with high

doses of combinations of antidepressants which may have affected the dynamics of facial

expressions. Another patient spoke Greek as a second language and experienced some

difficulty in reading the text, while the fourth patient also had difficulty reading due

to reduced visual acuity. These issues can be considered as limitations of the proposed

methodology, namely: individual medical treatments, language and vision problems.

6.3 Future Plans

In this section potential solutions to problems identified in the current experimental

work are proposed.

Algorithms In future work improvement of feature selection methods is probably the

best avenue to enhance classification performance. Inspection of the bivariate and par-

tial correlation matrix between individual features and using probability-based statistic

indices (such as Fisher’s z) to identify significant associations may help optimize feature

selection.

Although performance achieved here in terms of categorical assessment for the

AVEC’14 outperforms related work, there is still room for significant improvements.

Future work may attempt training and tuning the VGG, testing different versions of

the network, assessing the performance of additional classifiers, as well as attempting

decision fusion for the different motion representations and feature combinations. Ad-

ditional improvements could involve applying windowing to the different motion image

variants, using codebook approaches for dimensionality reduction (e.g. Bag of Words).

Multimodal Although this thesis is focused on image processing, work conducted in-

dependently in our lab employing multimodal approaches showed promising results [161]

[163] [164]. These preliminary results are in agreement with the systematic literature

review presented in [165]. Therefore, combining audio based features [187] could poten-

tially improve overall performance. In addition, during the data collection physiological

signals were collected too, at the same time with visual and audio signals; blood volume

pulse (BVP), and galvanic skin response (GSR) could also add value to the performance.
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Figure 6.1: Posterior probability classification model for fusion

Combining different types of signals though is another challenge to be addressed. Dif-

ferent fusion schemes can be found in literature, such as the feature level fusion (mere

concatenation of individual features). Decision level fusion is another fusion method,

which considers different ways of combining the predictions from individual models as de-

rived from the different signals, such as combining them through AND and OR operands,

or using weighted fusion methods. Stacking is another method for implementing decision

fusion [183], and also the Posterior Probability Classification Model [79] (c.f. Fig. 6.1)

which was also used in [161] during our participation the AVEC’16 challenge.

Data Efforts to develop methods capable of differentiating mood disorder types, and

also depression from other psychiatric disorders, such as various anxiety conditions, are

not many. Although some notable initial attempts in this direction can be found in

[194] [195] by focusing on distinguishing PTSD from depression, and another in [234]

attempting to distinguish cases of unipolar depression versus bipolar disorder, still they

are quite limited, and require further exploration.

Additional manifestations may need to be considered, but would need also addi-

tional specifications for the setup to be adjusted. Pupil-related features, for example,

would be interesting to investigate in an non-obtrusive manner, that is without using

head-mounted eye-tracker devices, but still highly constrained environment would be
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required, with a very expensive camera in order to achieve resolution and illumination

conditions able to monitor the pupil activity. Monitoring body gestures would also re-

quire additional cameras and a different setup; in order to be able to monitor the body,

we should not have a desk or other occlusions, rendering an interview setup as the most

appropriate.

As already established above, the small number of subjects in each dataset is another

issue. There is a need to test the validity in terms of a clinical study, including potentially

thousands of samples. This is an issue, as the recruitment of patients, and having them to

commit is very hard. This is the reason that there is still a long way from standardizing

such a system. An approach for cross-corpus / cross-cultural method evaluation by

Alghowinem et al. [24] highlighted this issue as well.
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Chapter 7

Conclusions

Research on automatic depression assessment has come a long way from Cohn et al.

[53] and McIntyre et al. [145], when they introduced the field in 2009, with several

novel approaches. The proposed work provided a number of insights, while identifying

many questions open to further investigation. Depression diagnosis itself is an active

and controversial topic in clinical psychology and psychiatry. Given the aforementioned

outstanding issues, the development of automated, objective assessment methods may

be valuable for both research and clinical practice. Furthermore, in this Chapter we

discuss questions posed and summarize major contributions achieved within the present

thesis.

7.1 Research Questions Addressed

Several research questions that were set at the beginning of this research were addressed

in this thesis as described in some detail below.

Construct a clinically valid dataset, comprising diagnosed patients as well as

healthy control individuals This question was successfully addressed, overcoming

several, mostly expected, obstacles in this line of work. In the end data were collected

from 65 individuals (45 controls and 20 patients), providing 322 video recordings across

5 experimental conditions. Facial image, speech, and BVP and GSR were recorded

through video, audio, and physiological signals respectively.
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Compare interpersonal vs non-social contexts for video recording Different

types of stimuli were tested, both of non-social and interpersonal contexts, involving

watching video clips selected to elicit specific emotions, answering questions from inter-

viewer, and reading out loud a neutrally charged passage. However, the results of the

tests did not provide a clear answer to the question, of which context is the best to

evaluate the depression state. Although for our dataset it was the neutral task which

provided the best performance in most settings, for the AVEC dataset the best results

came for the Freeform task, which entailed responding to various questions. Given the

many differences between the two datasets, it is not so straightforward to explain why

this happened.

Evaluate the proposed methodology against several independent sources of

information pertaining to participant psychoemotional status: Clinical Diag-

nosis, Self-reported symptoms of depression and anxiety, Expert judgment of

visible depression manifestations. Results indicated that the proposed method was

more sensitive to facial features more closely associated with self-reported anxiety (STAI

scores). This fact could imply that anxiety manifestations are better detectable using

the proposed methodology than manifestations of depression. The proposed method per-

formed well for both gender-based and gender-independent modes, with best results with

video recordings obtained during a non-challenging, emotionally or cognitively, condition

(reading a neutral passage).

Develop video-based methodology to extract features correlating with signs

of depression Several methodologies were developed in the context of this thesis,

which were initially evaluated on benchmark datasets. The best performing methodology

was also tested on our dataset, and proved to have consistent performance across two

completely different datasets. The consistency in performance was also in terms of

predicting BDI-II scores.

Experiment with different video acquisition parameters Different video acqui-

sition parameters were set during the data collection intentionally, to evaluate their

contribution to model performance. At this moment it is not clear whether higher spec-

ifications contribute to higher performance, as the best performing algorithm with the
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AVEC dataset did not outperform results based on our dataset (which was obtained at

higher video specifications).

Investigate categorical vs continuous depression assessment While both ap-

proaches were investigated, greater emphasis was given to the categorical assessment.

Development of the focusing on classification spanned several years, whereas continuous

assessment was systematically pursued during the final stages of the thesis research. It

should be noted however that continuous assessment may be more suitable to the nature

of measures used to diagnose and quantify depression severity.

7.2 Major Contributions

The major contributions of this thesis can be summarized as follows:

• Systematic literature review of relevant approaches, published in IEEE Transac-

tions on Affective Computing (I.F. 4.585 / Q1) [165].

• Several methodological contributions by implementing novel motion representa-

tion algorithms, namely the Local Curvelet Binary Patterns-Three Orthogonal

Planes (LCBP-TOP), Local Curvelet Binary Patterns- Pairwise Orthogonal Planes

(LCBP-POP), Landmark Motion History Images (LMHI), and Gabor Motion His-

tory Image (GMHI), published in several peer-reviewed IEEE [159] [160] [163] and

ACM [161] conferences, and EURASIP Image and Video Processing journal (I.F.

2.455 / Q2) [162]. All implementations will be will be soon made available in

MathWorks.

• Classification using four severity classes of self-reported depressive symptomatology

(minimal, mild, moderate, and severe) was performed in two of our published

approaches [159] [160], which are the only ones to the best of our knowledge.

The remaining published approaches attempted binary classification, three-class

classification, or regression.

• Categorical assessment of depressive symptomatology was performed using deep

learning methods, for the first time on the AVEC dataset.

• Construction of a clinically valid dataset in terms of depression and anxiety.
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• The proposed methodology, as presented in the main study was validated across

datasets (AVEC and our dataset) presenting a competitive performance for pre-

dicting individual BDI-II scores, submitted for publication to the IEEE Journal of

Biomedical and Health Informatics (I.F. 3.85 / Q1).
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Appendix A

Complete List socio-demographics

participants profiles

In the following table the detailed list of socio-demographics participants profiles is pre-

sented. The first column correspond to the serial number of the participant. The column

’Diagnosis’ takes binary values, and corresponds to the participant being a diagnosed

for depression (1) or not (0). Gender takes the value 0 for male participants and 1 for

female, while the column age is for how many years old they are. Years of education

correspond to years of education the participant has received since the age of compulsory

education (6 years old) until the day of the interview, stating the length of the manda-

tory attendance to a course (e.g. if the length of a bachelor degree was 3 years but the

participant took 4 years to complete the course then 3 years was what was added to the

overall length). The columns BDI and STAI correspond to the respective scores of the

given instruments, while the annotation column corresponds to the score attributed to

the participants from the blinded experts.

Table A.1: Complete socio-demographics participants profiles

# Diagnosis Gender Age Years of

Education

BDI STAI Annotation

1 0 1 27 18 0 38 2

2 0 1 29 17 15 54 1.5

3 0 0 35 6 12 40 1.5

4 0 0 43 25 1 45 3

Continue on the next page
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Table A.1: Complete socio-demographics participants profiles (cont.)

# Diagnosis Gender Age Years of

Education

BDI STAI Annotation

5 0 1 30 20 21 58 0.5

6 0 0 41 16 0 29 2

7 0 1 35 22 16 44 3

8 0 1 43 16 1 30 4

9 0 0 32 19 13 48 2.5

10 0 1 53 17 11 56 5.33

11 0 0 37 15 4 38 2.5

12 0 1 49 17 1 27 2.5

13 0 0 37 16 0 25 1.33

14 0 1 54 7 15 49 2.5

15 0 1 50 12 14 46 4.75

16 0 1 51 18 1 35 3.25

17 0 0 36 23 2 45 5

18 0 0 34 25 0 38 1

19 0 1 34 14 2 33 1

20 0 1 56 14 10 47 3.25

21 0 1 26 17 8 40 1.5

22 0 0 37 16 3 42 3.5

23 0 1 51 12 11 51 6

24 0 0 39 17 11 55 2.25

25 0 1 35 16 0 36 1

26 0 1 38 16 11 33 1.5

27 0 1 37 9 12 50 4

28 0 1 32 16 2 33 1

29 0 0 41 17 0 31 1.5

30 0 0 42 12 4 20 1.5

31 0 0 39 17 7 31 2

32 0 0 46 17 0 47 3.5

33 0 0 43 24 6 38 2.5

34 0 1 40 18 4 36 1.5

35 0 1 43 33 15 51 1

36 0 1 24 14 8 45 2

37 0 0 49 20 2 21 1.5

38 0 1 43 18 5 44 3.5

39 0 1 34 19 14 47 3.17

40 0 0 51 12 1 27 1.5

Continue on the next page
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Table A.1: Complete socio-demographics participants profiles (cont.)

# Diagnosis Gender Age Years of

Education

BDI STAI Annotation

41 0 1 38 18 2 46 3

42 0 1 35 18 8 44 1.25

43 0 1 50 17 7 44 3

44 0 1 32 18 4 31 2

45 0 1 47 3 8 44 1.75

46 1 1 58 0 32 61 5.83

47 1 1 46 12 39 55 5.17

48 1 1 62 7 9 41 3.5

49 1 1 56 6 17 51 5

50 1 1 36 17 29 54 3.5

51 1 1 63 14 20 54 4

52 1 1 45 8 10 44 6.75

53 1 1 62 8 17 41 5

54 1 0 63 6 6 37 4

55 1 1 53 12 2 51 4.5

56 1 1 52 6 60 66 5

57 1 1 30 18 14 41 2.75

58 1 0 45 6 24 55 5.83

59 1 0 70 6 8 40 5.67

60 1 1 62 6 15 56 5.5

61 1 1 24 18 15 58 4.83

62 1 1 31 15 43 71 3

63 1 1 56 13 10 47 6.5

64 1 1 40 12 28 71 5.25

65 1 1 40 12 38 65 5.5
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[47] P. Carcagǹı, M. Del Coco, P. L. Mazzeo, A. Testa, and C. Distante. Features

descriptors for demographic estimation: A comparative study. In C. Distante,

S. Battiato, and A. Cavallaro, editors, Video Analytics for Audience Measurement,

pages 66–85, Cham, 2014. Springer International Publishing. ISBN 978-3-319-

12811-5. 60

[48] L. Chao, J. Tao, M. Yang, Y. Li, and J. Tao. Multi task sequence learning for

depression scale prediction from video. In 2015 International Conference on Af-

fective Computing and Intelligent Interaction (ACII), pages 526–531, Sept 2015.

doi: 10.1109/ACII.2015.7344620. 21, 25

139

https://doi.org/10.1007/s00127-004-0714-z


REFERENCES

[49] M. Chmielewski, L. A. Clark, R. M. Bagby, and D. Watson. Method matters:

Understanding diagnostic reliability in DSM-IV and DSM-5. Journal of Abnormal

Psychology, 124(3):764, 2015. 3

[50] N. Clark, T. Herman, J. Halverson, and H. K. Trivedi. Mental Health Practice

in a Digital World: A Clinicians Guide, chapter Technology Tools Supportive of

DSM-5: An Overview, pages 199–211. Springer International Publishing, Cham,

2015. 8

[51] J. A. Coan and J. J. Allen. Handbook of Emotion Elicitation and Assessment.

Oxford university press, 2007. 12

[52] J. Cohen. Weighted kappa: Nominal scale agreement provision for scaled disagree-

ment or partial credit. Psychological bulletin, 70(4):213, 1968. 27

[53] J. F. Cohn, T. S. Kruez, I. Matthews, Y. Yang, M. H. Nguyen, M. T. Padilla,

F. Zhou, and F. De La Torre. Detecting Depression from Facial Actions and Vocal

Prosody. In 3rd International Conference on Affective Computing and Intelligent

Interaction and Workshops, pages 1–7. IEEE, 2009. ISBN 9781424447992. doi:

10.1109/ACII.2009.5349358. 11, 12, 13, 20, 21, 22, 23, 28, 31, 120, 127

[54] J. S. Comer. Introduction to the special series: Applying new technologies to

extend the scope and accessibility of mental health care. Cognitive and Behavioral

Practice, 22(3):253 – 257, 2015. ISSN 1077-7229. doi: https://doi.org/10.1016/j.

cbpra.2015.04.002. 7

[55] C. A. Corneanu, M. O. Simón, J. F. Cohn, and S. E. Guerrero. Survey on RGB, 3D,

Thermal, and Multimodal Approaches for Facial Expression Recognition: History,

Trends, and Affect-Related Applications. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 38(8):1548–1568, Aug 2016. 16

[56] R. Cowie, C. Cox, J.-C. Martin, A. Batliner, D. Heylen, and K. Karpouzis.

Emotion-Oriented Systems: The Humaine Handbook, chapter Issues in Data La-

belling, pages 213–241. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN

978-3-642-15184-2. doi: 10.1007/978-3-642-15184-2 13. URL https://doi.org/

10.1007/978-3-642-15184-2_13. 98

140

https://doi.org/10.1007/978-3-642-15184-2_13
https://doi.org/10.1007/978-3-642-15184-2_13


REFERENCES

[57] R. Cowie, E. Douglas-Cowie, M. McRorie, I. Sneddon, L. Devillers, and N. Amir.

Emotion-Oriented Systems: The Humaine Handbook, chapter Issues in Data Col-

lection, pages 197–212. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN

978-3-642-15184-2. doi: 10.1007/978-3-642-15184-2 12. URL https://doi.org/

10.1007/978-3-642-15184-2_12. 88

[58] A. Cruz, B. Bhanu, and N. S. Thakoor. Facial emotion recognition with anisotropic

inhibited gabor energy histograms. In 2013 IEEE International Conference on

Image Processing, pages 4215–4219, Sept 2013. doi: 10.1109/ICIP.2013.6738868.

53

[59] N. Cummins, J. Joshi, A. Dhall, V. Sethu, R. Göcke, and J. Epps. Diagnosis
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ickas, C. Höschl, D. Lecic-Tosevski, E. Sorel, E. Rancans, E. Palova, G. Juckel,

G. Isacsson, H. K. Jagodic, I. Botezat-Antonescu, I. Warnke, J. Rybakowski, J. M.

Azorin, J. Cookson, J. Waddington, P. Pregelj, K. Demyttenaere, L. G. Hranov,

L. I. Stevovic, L. Pezawas, M. Adida, M. L. Figuera, M. Pompili, M. Jakovljević,
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[197] V. Štruc and N. Pavešic. Photometric normalization techniques for illumination

invariance. Advances in Face Image Analysis: Techniques and Technologies, pages

279–300, 2011. 40

[198] B. Sun, Y. Zhang, J. He, L. Yu, Q. Xu, D. Li, and Z. Wang. A random forest

regression method with selected-text feature for depression assessment. In Proceed-

ings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, AVEC ’17,

pages 61–68, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5502-5. doi: 10.

1145/3133944.3133951. URL http://doi.acm.org/10.1145/3133944.3133951.

21, 25, 37

[199] T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni. Multichannel Near-

infrared Spectroscopy in Depression and Schizophrenia: Cognitive Brain Activa-

tion Study. Biological Psychiatry, 55(5):501 – 511, 2004. ISSN 0006-3223. 4

159

http://www.sciencedirect.com/science/article/pii/S016503271400785X
http://www.sciencedirect.com/science/article/pii/S016503271400785X
http://doi.acm.org/10.1145/3133944.3133951


REFERENCES

[200] Z. S. Syed, K. Sidorov, and D. Marshall. Depression severity prediction based on

biomarkers of psychomotor retardation. In Proceedings of the 7th Annual Workshop

on Audio/Visual Emotion Challenge, AVEC ’17, pages 37–43, New York, NY,

USA, 2017. ACM. ISBN 978-1-4503-5502-5. doi: 10.1145/3133944.3133947. URL

http://doi.acm.org/10.1145/3133944.3133947. 21, 25

[201] M. Tanaka. Face Parts Detection, 2015. Available at:

http://like.silk.to/matlab/detectFaceParts.html. 41, 43

[202] R. Thomas-MacLean, J. Stoppard, B. B. Miedema, and S. Tatemichi. Diagnosing

Depression: There is no Blood Test. Canadian Family Physician, 51(8):1102–3,

2005. 3, 6

[203] Y.-L. Tian, T. Kanade, and J. F. Cohn. Handbook of Face Recognition, chapter

Facial Expression Analysis, pages 247–275. Springer New York, New York, NY,

2005. ISBN 978-0-387-27257-3. 53

[204] C. Tomasi and T. Kanade. Detection and tracking of point features. School of

Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991. 75

[205] G. Tzimiropoulos and M. Pantic. Gauss-newton deformable part models for face

alignment in-the-wild. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1851–1858. IEEE, 2014. 41

[206] M. Valstar. Automatic Behaviour Understanding in Medicine. In 2014 Work-

shop on Roadmapping the Future of Multimodal Interaction Research, pages 57–60,

Istabul, Turkey, 2014. ACM. ISBN 9781450306157. 8

[207] M. Valstar, M. Pantic, and I. Patras. Motion history for facial action detection in

video. In 2004 IEEE International Conference on Systems, Man and Cybernetics

(IEEE Cat. No.04CH37583), volume 1, pages 635–640 vol.1, Oct 2004. doi: 10.

1109/ICSMC.2004.1398371. 51

[208] M. Valstar, B. Schuller, J. Krajewski, R. Cowie, and M. Pantic. Workshop Sum-

mary for the 3rd International Audio / Visual Emotion Challenge and Workshop

( AVEC’13 ). In 21st ACM International Conference on Multimedia, pages 1085–

1086. ACM, 2013. ISBN 9781450324045. 7

160

http://doi.acm.org/10.1145/3133944.3133947


REFERENCES

[209] M. Valstar, B. Schuller, K. Smith, F. Eyben, B. Jiang, S. Bilakhia, S. Schnieder,

R. Cowie, and M. Pantic. AVEC 2013: The Continuous Audio/Visual Emotion

and Depression Recognition Challenge. In 3rd ACM International Workshop on

Audio/Visual Emotion Challenge (AVEC ’13), pages 3–10. ACM, 2013. 7, 11, 36

[210] M. Valstar, B. Schuller, K. Smith, T. Almaev, F. Eyben, J. Krajewski, R. Cowie,

and M. Pantic. AVEC 2014: 3D Dimensional Affect and Depression Recogni-

tion Challenge. In 4th ACM International Workshop on Audio/Visual Emotion

Challenge (AVEC ’14), pages 3–10. ACM, 2014. 7, 11, 36, 72

[211] M. Valstar, J. Gratch, B. Schuller, F. Ringeval, R. Cowie, and M. Pantic. Sum-

mary for AVEC 2016: Depression, Mood, and Emotion Recognition Workshop

and Challenge. In Proceedings of the 2016 ACM on Multimedia Conference, MM

’16, pages 1483–1484, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3603-

1. doi: 10.1145/2964284.2980532. URL http://doi.acm.org/10.1145/2964284.

2980532. 7

[212] M. Valstar, J. Gratch, B. Schuller, F. Ringeval, D. Lalanne, M. Torres Torres,

S. Scherer, G. Stratou, R. Cowie, and M. Pantic. AVEC 2016: Depression, Mood,

and Emotion Recognition Workshop and Challenge. In Proceedings of the 6th

International Workshop on Audio/Visual Emotion Challenge, AVEC ’16, pages

3–10, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4516-3. doi: 10.1145/

2988257.2988258. URL http://doi.acm.org/10.1145/2988257.2988258. 25, 32,

37, 73, 80

[213] P. van de Ven. User-friendly ICT Tools to Enhance Self-management and Effec-

tive Treatment of Depression in the EU. Technical report, Science Engineering,

Limerick, Ireland, 2010. 2

[214] C.-M. Vazakopoulou, A. Pampouchidou, F. Yang, F. Meriaudeau, K. Marias, and
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