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evaluator)

• M. MARINAI Simone, Professeur, Université de Florence, Italy (European evalu-
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Résumé

Ce travail vise à développer un cadre générique qui est capable de produire des ap-

plications de localisation d’informations à partir d’une caméra (webcam, smartphone)

dans des très grands dépôts d’images de documents numérisés et hétérogènes via des

descripteurs locaux. Le système développé dans cette thèse repose sur une requête im-

age (acquise via une caméra) et le système est capable de renvoyer le document qui

correspond le mieux à la requête, et également d’indiquer la zone visée par la caméra.

Ainsi, dans cette thèse, nous proposons d’abord un ensemble de descripteurs qui puis-

sent être appliqués sur des contenus aux caractéristiques génériques (composés de textes

et d’images) dédié aux systèmes de recherche et de localisation d’images de documents.

Nos descripteurs proposés comprennent SRIF, PSRIF, DELTRIF et SSKSRIF qui sont

construits à partir de l’organisation spatiale des points d’intérêts les plus proches autour

d’un point-clé pivot. Tous ces points sont extraits à partir des centres de gravité des

composantes connexes de l‘images. A partir de ces points d’intérêts, des caractéristiques

géométriques invariantes aux dégradations sont considérées pour construire nos descrip-

teurs. SRIF et PSRIF sont calculés à partir d’un ensemble local des m points d’intérêts

les plus proches autour d’un point d’intérêt pivot. Quant aux descripteurs DELTRIF

et SSKSRIF, cette organisation spatiale est calculée via une triangulation de Delau-

nay formée à partir d’un ensemble de points d’intérêts extraits dans les images. Cette

seconde version des descripteurs permet d’obtenir une description de forme locale sans

paramètres. En outre, nous avons également étendu notre travail afin de le rendre com-

patible avec les descripteurs classiques de la littérature qui reposent sur l’utilisation de

points d’intérêts dédiés, comme par exemple SURF ou SIFT, de sorte qu’ils puissent

traiter la recherche et la localisation d’images de documents à contenu hétérogène.

La seconde contribution de cette thèse porte sur un système d’indexation de très grands

volumes de données à partir d’un descripteur volumineux. Ces deux contraintes viennent

peser lourd sur la mémoire du système d’indexation. En outre, une la très grande dimen-

sionnalité des descripteurs peut amener à une réduction de la précision de l’indexation,

réduction liée au problème de dimensionnalité. Nous proposons donc trois techniques

d’indexation robustes, qui peuvent toutes être employés sans avoir besoin de stocker les

descripteurs locaux dans la mémoire du système. Cela permet, in fine, d’économiser la

mémoire et d’accélérer le temps de recherche de l’information, tout en s’abstrayant d’une

validation de type distance. Pour cela, nous avons proposé trois méthodes s’appuyant

sur des arbres de décisions : ” randomized clustering tree indexing” qui hérite des

propriétés des ”kd-tree”, ”kmean-tree” et les ”random forest” afin de sélectionner de

manière aléatoire les K dimensions qui permettent de combiner la plus grande variance

expliquée pour chaque nœud de l’arbre. Nous avons également proposé une version
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pondérée de la distance euclidienne entre deux points de données, afin d’orienter celle-ci

vers la dimension avec la variance la plus élevée. Enfin, pour améliorer la recherche de

l’information, une fonction de hachage a été proposée en second lieu pour indexer et

récupérer rapidement les contenus sans stocker les descripteurs dans la base de données.

Nous avons également proposé une fonction de hachage étendue pour l’indexation de

contenus hétérogènes provenant de plusieurs couches de l’image. Comme troisième con-

tribution de cette thèse, nous avons proposé une méthode simple et robuste pour calculer

l’orientation des régions obtenues par le détecteur MSER, afin que celui-ci puisse être

combiné avec des descripteurs dédiés (par exemple SIFT, SURF, ORB, etc.). Comme

la plupart de ces descripteurs visent à capturer des informations de voisinage autour

d’une région donnée, nous avons proposé un moyen d’étendre les régions MSER en

augmentant le rayon de chaque région. Cette stratégie peut également être appliquée à

d’autres régions détectées afin de rendre les descripteurs plus distinctifs. Là encore, nous

avons utilisé une méthode d’indexation basée sur une fonction de hachage étendue afin

d’indexer des contenus hétérogènes aux caractéristiques multiples (textes, graphiques,

etc.) à partir d’une décomposition des images en couches. Ce système est donc appli-

cable pour les contenus uniformes (un seul type d’information), mais également pour

plusieurs types d’entités à partir de plusieurs couches séparées. Enfin, afin d’évaluer

les performances de nos contributions, et en nous fondant sur l’absence d’ensemble de

données publiquement disponibles pour la localisation d’information hétérogène dans

des images capturées par une caméra, nous avons construit trois jeux de données qui

sont disponibles pour la communauté scientifique. Cet ensemble de données contient

des parties d’images de documents acquises via une caméra en tant que requête. Il est

composé de trois types d’informations: du texte, des contenus graphiques et enfin des

contenus hétérogènes.

MOTS-CLÉS : Reconnaissance de formes, Spotting d’informations, Recherche de doc-

ument à partir d’une caméra, Indexation automatique, Séparation texte/graphique, Ex-

traction de caractéristiques.
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Abstract

This work aims at developing a generic framework which is able to produce camera-

based applications of information spotting in huge repositories of heterogeneous content

document images via local descriptors. The targeted systems may take as input a portion

of an image acquired as a query and the system is capable of returning focused portion

of database image that match the query best.

We firstly propose a set of generic feature descriptors for camera-based document im-

ages retrieval and spotting systems. Our proposed descriptors comprise SRIF, PSRIF,

DELTRIF and SSKSRIF that are built from spatial space information of nearest key-

points around a keypoints which are extracted from centroids of connected components.

From these keypoints, the invariant geometrical features are considered to be taken into

account for the descriptor. SRIF and PSRIF are computed from a local set of m nearest

keypoints around a keypoint. While DELTRIF and SSKSRIF can fix the way to com-

bine local shape description without using parameter via Delaunay triangulation formed

from a set of keypoints extracted from a document image. Furthermore, we propose a

framework to compute the descriptors based on spatial space of dedicated keypoints e.g

SURF or SIFT or ORB so that they can deal with heterogeneous-content camera-based

document image retrieval and spotting.

In practice, a large-scale indexing system with an enormous of descriptors put the bur-

dens for memory when they are stored. In addition, high dimension of descriptors can

make the accuracy of indexing reduce. We propose three robust indexing frameworks

that can be employed without storing local descriptors in the memory for saving mem-

ory and speeding up retrieval time by discarding distance validating. The randomized

clustering tree indexing inherits kd-tree, kmean-tree and random forest from the way

to select K dimensions randomly combined with the highest variance dimension from

each node of the tree. We also proposed the weighted Euclidean distance between two

data points that is computed and oriented the highest variance dimension. The sec-

ondly proposed hashing relies on an indexing system that employs one simple hash table

for indexing and retrieving without storing database descriptors. Besides, we propose

an extended hashing based method for indexing multi-kinds of features coming from

multi-layer of the image.

Along with proposed descriptors as well indexing frameworks, we proposed a simple

robust way to compute shape orientation of MSER regions so that they can combine

with dedicated descriptors (e.g SIFT, SURF, ORB and etc.) rotation invariantly. In

the case that descriptors are able to capture neighborhood information around MSER

regions, we propose a way to extend MSER regions by increasing the radius of each
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region. This strategy can be also applied for other detected regions in order to make

descriptors be more distinctive.

Moreover, we employed the extended hashing based method for indexing multi-kinds

of features from multi-layer of images. This system are not only applied for uniform

feature type but also multiple feature types from multi-layers separated.

Finally, in order to assess the performances of our contributions, and based on the as-

sessment that no public dataset exists for camera-based document image retrieval and

spotting systems, we built a new dataset which has been made freely and publicly avail-

able for the scientific community. This dataset contains portions of document images

acquired via a camera as a query. It is composed of three kinds of information: textual

content, graphical content and heterogeneous content.

KEYWORDS: Pattern recognition, Information spotting, Camera-based document image

retrieval, Automatic indexing, Text/graphic separation, Feature extraction.



Acknowledgements

I would like to express my deep and sincere appreciation to my Ph.D. supervisors who

are Prof. Jean-Marc Ogier, Assoc. Prof. Mickaël Coustaty, Dr. Muhammad Muzzamil
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Chapter 1

Introduction

A huge amount of paper-based documents is produced in everyday life. These documents

are generally printed or written on the papers e.g manuscripts, business contracts or

letters, published books or magazines, handwritten notes or records, posters and so on.

Besides the trend to move toward a paperless world in the digital era, many important

and valuable paper-based documents need to be converted and stored as images which

can be saved in electronic devices and can be exchanged or shared through a computer

network. The explosion of these document images has created an enormous demand to

access and manipulate the information contained in these images via robust systems.

Therefore, the research of automatic extraction, classification, clustering and searching

of information from such a large amount of data is worthwhile [7–16].

Information in these documents is heterogeneous and can be classified into two

major groups: textual elements and graphical elements. The graphical elements can

prevail in various forms such as symbols, logos, seals, signatures, photographs, etc.

These graphical elements often provide more obvious and more compact in terms of

conveying information compared to text. Yet, the text is a really convenient way to

share information and tend to have a large proportion in both type-written documents

and hand-written documents [7–9]. Traditional document images indexing and retrieval

systems try to convert the document to an electronic representation which can be indexed

automatically. A complete conversion being able to index both text and graphics is

however difficult to implement. Indeed, documents images may contain many graphical

components and hand-written text that are generally not able to be converted with a

sufficient accuracy to provide a complete indexing system.

Document Image Retrieval (DIR) is a research domain, which belongs to the

frontier between classic Information Retrieval (IR) and content based image re-

trieval (CBIR) [17]. Document Image Retrieval is the task to find information or similar

1
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document images from a large dataset for a given user query. These approaches can be

divided into two groups including recognition-based approaches and recognition-free ap-

proaches.

The former group which is often applied for type-written documents and needs to

perform the recognition of whole documents and measures the similarity between doc-

uments at the symbolic level using Optical Character Recognition (OCR). Document

images are firstly converted into text format using OCR, and then text retrieval tech-

niques are applied for information retrieval step. For example, Viola et al. presented

in [18] a system aiming at automatically forwarding incoming faxes to the correspon-

dent recipient. OCR generally works quite well with type-written documents in which

character font and size can be predefined, and generally in the context for which text

and background can be easily distinguished. However, OCR-based approaches also have

some drawbacks such as high computational cost, language dependency, and they are

generally sensitive to image resolution, especially in the context of historical documents

and documents captured by cameras. In these cases, employing recognition-based ap-

proaches cannot provide efficient results. Furthermore, one important drawback of these

approaches is linked to the fact that OCR can difficultly deal with hand-written elements

and graphical elements. Consequently, it is impossible to preserve document images as

a full-text format by applying OCR on the whole documents, especially when the doc-

uments contain non-text elements that cannot be converted with sufficient accuracy.

Either way, directly indexing converted document images using OCR is a very common

task in many industrial process that produces many errors because of OCR’s drawbacks

and new research trends try to correct OCR errors without being actually able to satisfy

the end-users needs [19].

The later group relies on the computation of features that are computed at a low

level and that are generally based on its content. The similarity between two docu-

ments is then measured using those features summarizing the content of the document

image (textual contents, graphical contents). Features can finally be globally or locally

computed from the pixel information without using OCR-based methods.

These features are considered as a natural watermark for every document without

embedding any special visual pattern. As it can be seen in the literature, local features

have been widely used in computer vision and are considered as much more relevant

than global approaches [20–22]. The local features generally require detecting Regions

Of Interest (ROIs) that remain stables even under certain classes of transformations such

as affine transformations and/or perspective distortions in order to cope with challenges

of camera based document images. ROIs are generally determined through keypoints

which are detected from stable corners or stable blobs [20, 21]). Then, for each detected
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region, some radiometric features are locally computed to build the local feature. These

features are generally inspired by the human visual system that can perform several

image processing tasks in vastly superior manner comparing with computer vision sys-

tem. For the past decades, the approaches in this group have been promisingly applied

for textual documents and graphical documents, and they have been considered as an

emerging research topic.

The explosion of the number of portable digital imaging devices has created a

tremendous opportunity for Camera Based Document Analysis and Recognition

(CBDAR). For example, some augmented reality tools appear to provide similar contents

(e.g. newspapers and magazine articles) to the users by simply capturing an image with

their smartphones or cameras [23–25]. Users have now access to a huge amount of

content on the Internet and a big challenge is to offer some tools to link real documents

to those captured using digital devices. A typical architecture of these kinds of system

is shown in Figure 1.1.

Figure 1.1: The architecture of typical camera-based document image retrieval sys-
tem.

Camera-based document image retrieval systems take as input a part or the whole

page document acquired as a query by a digital camera and retrieve document images

that include the query [23–25]. These systems generally require to tackle many problems,

as also listed by [26]:

1. Images captured with cameras usually have a low resolution.
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2. A camera has much less control of lighting conditions on an object compared to

a flatbed scanner, so uneven observed lighting can be due to both the physical

environment and the response from the device.

3. Perspective distortion problems can occur as the capture device is not parallel to

the imaging plane.

4. Since digital devices are designed to operate over a variety of distances, focus

becomes a significant factor. At short distances and large apertures, even slight

perspective changes can cause uneven focus.

5. The nature of mobile devices suggest that either the device or the target may be

moving, which can cause motion blur problems.

6. Lastly, the acquisition of images from a camera generally results in the capture of a

subpart of the original image. The retrieval process can be seen as a sub-matching

process between the digitized image and the original one. This then consists of

establishing a way of efficiently matching document images.

There have been various applications which can be developed in CBDAR field.

For instance, we can deploy a file searching system on smartphones. With this system,

users can retrieve the original electronic document online by capturing a snapshot from

a paper based document even if the quality of this document is not good enough for

us to read and users can also add comments or annotation or send feedbacks to the

system. More importantly, this document retrieval system can help in reducing the cost

of document management from the work of searching the original documents in huge

repositories of scanned document images [27].

In addition, publishers can get information of what readers read when they take a

snapshot of the article via this system. Another application can be applied for the

visually impaired people [28]. They can use this system to listen to the audio version of

the article by retrieving it from a snapshot. In this system, documents have to be stored

along with the audio versions synthesized using text to speech. Google Goggles permits

users to search a book via the captured book cover. This application can recognize

some artwork and bring back related information of the artwork. Users can also search

a product based on wine marks and spencer in this system [29]. Kooaba’s Paperboy

supplies an interactive storytelling system about print ads to users. This application

can direct customers to a nearby store when they capture an ads. It also provides

product ingredients and origins that are supplied by food makers [30].

More recently, a new kind of information retrieval systems have been proposed in

the literature alongside to the classical recognition techniques: Information spotting.
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It can be defined as the task of locating and retrieving specific information from a large

document image dataset, based on a given user query, without explicitly recognizing the

content of the query. For instance, word spotting in textual document images coarsely

locates some regions where the query word is found [31–35]; symbol spotting techniques

try to identify regions which are likely to contain a certain symbol within graphics-rich

documents [9, 36, 37]; logo spotting on document images aims to find the position of a

set of regions of interest which are likely to contain an instance of a certain queried logo

[36, 38]; comic characters spotting attempts to detect and then retrieve and/or locate

comic characters in comic documents where reader’s queried character appears [39, 40];

In conclusion, using image features based on its content without embedding any

special visual pattern for CBDAR system in the context of information spotting has

many advantages such as keeping good document fidelity and dealing with image trans-

formations and cameras’ problems. Yet, there is a lack of local features which can deal

with the context of heterogeneous content documents. Furthermore, in the context of

huge document repositories, the high dimensionality of these descriptors rises two more

constraints regarding the curse of dimensionality on the one hand, and the computation

time when dealing with real time matching systems [41].

1.1 Objectives and Contributions

This thesis is a step forward to achieve the objective of joining the advantages of

recognition-free approaches for CBDAR system in the context of information spotting.

The thesis aims at producing a camera-based application of information spotting in huge

repositories of heterogeneous content document images via local descriptors.

The contributions of this thesis are three-fold:

• The first contribution of this thesis relies on new methods for computing generic

feature descriptors for camera-based document images retrieval and spotting sys-

tems

• The second contribution of this thesis is indexing frameworks for automatic index-

ing of document image repositories

• The third contribution of this thesis is a dataset and ground-truth which is used

to evaluate camera-based document images retrieval and spotting systems
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1.2 Thesis Organization

The organization of the chapters in this dissertation is as follows:

• In Chapter 1, we provide a preview of the whole thesis including the scope of the

thesis, the problems and contributions.

• In Chapter 2, we firstly present a literature review of the state of the art of

local features extraction that includes keypoint detectors and keypoint descrip-

tors. Afterwards, we present a brief overview of the literature and of indexing

approaches. This panorama is categorized into two main groups including tree-

based approaches and hashing-based approaches.

• In Chapter 3, we present several novel schemes towards features computation for

heterogeneous-content camera-based document image retrieval. The first one is

SRIF (Scale and Rotation Invariant Features), which is computed based on geo-

metrical constraints between pairs of nearest points around a keypoint. In addition,

we propose four extensions based on SRIF. The second one is PSRIF (Polygon-

shape-based Scale and Rotation Invariant Features), which is an extension to SRIF

and which makes SRIF more discriminative even though it is computed from a

small number of constraint points around the keypoint. The third one is DE-

TRIF (Delaunay triangulation-based features), which relies on the geometrical

constraints from each pair of adjacency triangles in Delaunay triangulation which

is constructed from centroids of connected components. The last one is SSKSRIF

(Scale Rotation Feature descriptor based on Spatial Space of Keypoints), which

also relies on the geometrical constraints from each pair of adjacency triangles in

Delaunay triangulation using similarity transformation. In addition, we propose a

framework to compute descriptors based on spatial space of dedicated keypoints

such as SIFT, SURF or ORB. This aims at enhancing proposed features can deal

with the context of heterogeneous-content camera-based document image retrieval

and spotting.

• In Chapter 4, we present a contribution towards the implementation of an indexing

system for camera-based document image retrieval using local features. The first

proposed indexing scheme is based on randomized hierarchical trees. The second

proposed hashing relies on an indexing system that employs one simple hash table

for indexing and retrieving descriptors without storing them. Besides, we propose

an extended hashing based method for indexing multi-kinds of features coming

from multi-layer of the image.
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• In Chapter 5, we present a dataset and evaluation protocol for camera-based doc-

ument image retrieval and spotting systems. This dataset is composed of three

subparts: the wikibook dataset represents the images with textual content only;

The Cartodialect dataset represents images with graphical content mainly; the

tobacco dataset contains text plus graphical contents. Along with the dataset, we

present the protocol that describes measurements to evaluate the accuracy and

processing time of camera-based document image retrieval and spotting systems.

Afterwards, we present the experimental evaluations of proposed approaches on

the one hand, approaches in literature on the other hand on our proposed dataset.

In addition result discussions are given in this chapter.

• Conclusions are given in Chapter 6. A summary of the main contributions has

been given firstly. Afterwards, we discuss some possible future perspectives.



Chapter 2

State-of-the-art

2.1 Introduction

Camera-based document image retrieval system takes an image or a part of an image

acquired by a digital camera and tries to retrieve the document image that includes

the query [23–25] among a large repository of documents. This task is very challenging

for the characterization of the mobile captured content because captured images can

be affected by uneven lighting, low resolution, motion blur and perspective distortion

problems [26]. Furthermore, the acquisition of images with a camera generally results

in the capture of a subpart of the original image. The retrieval process can thus be seen

as a sub-matching process between the partly digitized image and the original one. In

order to implement efficient real time systems, it is required to structure the information

by using reliable indexing methods.

Figure 2.1: Camera-based document image retrieval using local feature.

8
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From several decades, there have been many proposed methods using original docu-

ment features (e.g. textual contents, graphical contents). These features are considered

as a natural watermark for every document without embedding any special pattern.

To compute these features, as it can be seen in the literature, local features have been

widely used in computer vision and are considered as much more relevant than global

approaches [20, 36, 38] especially for camera camera-based information spotting [22].

The local features based approaches need to detect Regions Of Interest (ROIs) that re-

main stables even under certain classes of transformations such as affine transformation

and/or perspective distortion (e.g in order to cope with challenges of camera captured

document images). ROIs are generally determined through keypoints which are detected

from stable corners or stable blobs [20, 21]). Then, for each detected region, some ra-

diometric features are computed locally to build the local features which are sometimes

considered as bio-inspired.

The block diagram in Figure 2.1 gives an overview of a typical camera-based docu-

ment image retrieval system using local features. There are two main phases respectively

including the indexing phase and retrieval phase. Both of them share the feature extrac-

tion step, which comprises keypoint detector and descriptor. For the feature extraction

and indexing phase, we usually have to choose suitable features and an adapted indexing

method, respectively.

In this chapter, we firstly present a literature review on the state of the art con-

cerning local features extraction including keypoint detectors and keypoint descriptors.

Afterwards, we present a brief overview of the literature of indexing approaches which

are categorized into two main groups including tree-based approaches and hashing-based

techniques.

2.2 Keypoint detectors and keypoint descriptors

Keypoint detectors and keypoint descriptors correspond to the most widely used meth-

ods that computer vision community uses to characterize the content of an image, sup-

posedly as good as human do. Generally, there are two ways which people may use to

recognize a picture including global to local and vice versa. The first way is that people

try to recognize what is the image and then discover more detail contents inside the

image. The second way is that people look at some attractive points or regions in the

image and discover relationship contents around them later towards understanding the

image. This second way of considering human perceptual based systems is probably at

the basis of keypoints based approaches that try to represent attractive points. From
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a computer vision point of view, these attractive points are keypoints detectors and

relationship contents around attractive points correspond keypoint descriptors.

Features proposed in the literature, for pattern recognition purposes, can be divided

into two groups: global features and local features. The global ones try to globally

summarize the information contained in the image, while the local ones tend to extract

some regions of interest and describe the content of the image through the properties

of these specific regions. In this section, we focus on the brief overview of the literature

related to local feature detection and description.

Local features are normally relied two main steps: keypoint detection and keypoint

description (as shown in Figure 2.2). Keypoint detectors try to notice Regions Of Inter-

est (ROIs) that are considered as the anchor points/regions for local descriptors. These

keypoints are generally stable under image transformations as well as viewing trans-

formations. Local image contents of each keypoint are then used for computing local

descriptors. Consequently, a set of descriptors allows characterizing the local patches of

image content. An ideal local feature should adapt six major properties [20] such as:

repeatability, distinctiveness/informativeness, locality, quantity, accuracy and efficiency

Figure 2.2: Local feature detection and description.

Repeatability requires a high percentage of the features detected in two images

of the same object or scene even if they are captured under different viewing conditions.

Distinctiveness/informativeness refers to the fact that local features describe

the intensity patterns underlying detected ROIs, that should contain distinctive infor-

mation such that features can be well distinguished and matched.
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Locality properties of feature descriptors help them to reduce the probability of

occlusion and to preserve features relationships of spatial relations over simple geometric

and photometric deformations.

Quantity ensures the number of detected features that should be sufficient so

that a reasonable number of features are detected even on small objects. Yet, different

applications need a particular optimal number of features.

Accuracy requires that the local information of detected features should be accu-

rate not only in image location, as well as with respect to scale and possibly shape.

Efficiency makes sure that both the feature detection and description in a new

image should be fast enough and can be applied for real-time applications.

2.2.1 Keypoint detectors

A keypoint may be composed of various types of corner, blob, maximum shapes, etc.

In practice, a robust keypoint must be easy to find and ideally fast to compute. People

usually set their sight on that the keypoint is at a good location to compute a feature

descriptor. Therefore, the keypoint can be considered as the qualifier from which a local

feature may be described.

Normally, a typical keypoint region that can be used for deriving a descriptor may

have the following properties, respectively including the coordinates of the keypoint

(x, y), the diameter of the meaningful surrounding region around the keypoint, the scale

space s from which the keypoint is extracted in the image and the orientation of the

keypoint relatively to the image coordinate system that helps descriptors to be built

and normalized local features around the keypoint, especially when rotation invariant

property is needed.

In this section, we review some common keypoint detectors that are grouped into

two categories including corner-based detectors and blob-based detectors.

2.2.1.1 Corner-based detectors

Corner detection has been widely used in computer vision for keypoint detection. Cor-

ners can be found at various types of junctions, on highly textured surfaces, at occlusion

boundaries, etc. In practical applications, the goal is to have a set of stable and repeat-

able corners. To detect corners, Harris corner detector [42] detects a point for which
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there are two dominant and different edge directions in its neighborhood. FAST detec-

tor [1] detects a corner by checking a point which has different intensities with a set of

pixels in a circular pattern.

Harris corner detector

Harris corner detector, proposed by Harris and Stephens [42], is based on the second

moment matrix (the auto-correlation matrix). A corner is detected from the pixel where

the intensity changes significantly in at least 2 directions. This detector is based on the

idea of the Moravec’s corner detector [43] and reduces the weaknesses of the Moravec’s

corner detector by using Gaussian window and Taylor’s expansion. Indeed, the former

uses a binary window function, the consequence of which is that it can not deal with

noisy responses and also that it considers only a set of shifts at every 45 degree.

To detect Harris corners, Gaussian derivatives at each pixel of the input image

are computed firstly. The next step consists in computing second moment matrix in

a Gaussian window around each pixel. Lastly, the authors proposed corner response

function called “cornerness” that reaches a maximum if the pixel is a corner.

From the input image I(x, y), it basically finds the difference in intensity for a

displacement of (u,v) in all directions. This difference is characterized by a kind of

energy function, which is expressed as below:

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2 =
[
u v

]
M

[
u

v

]
, (2.1)

where w(x, y) is a window function. It is a gaussian window (equation 2.2) which gives

weights to pixels underneath.

w(x, y) = e−
x2+y2

2σ2 (2.2)

I(x + u, y + v) is shifted intensity and I(x, y) is intensity. M is the second moment

matrix:

M =
∑
x,y

w(x, y)

[
I2x IxIy

IxIy I2y

]
, (2.3)

here Ix and Iy are image derivatives in x and y directions respectively.

Finally, let λ1 and λ2 be the eigenvalues of M. To reduce the computational com-

plexity, the authors proposed the computation of score, which determines whether or

not the window can contain a corner. The score combines the two eigenvalues as follows:

sroce = det(M)− k trace(M) , (2.4)
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where det(M) is the determinant of the matrix M (det(M) = λ1λ2) and trace(M) is

the trace of the matrix M (trace(M) = λ1 + λ2). A typical value for k is 0.04 to 0.06.

If the |score| is small, which happens when λ1 and λ2 are small, the region is flat. If

score < 0, which happens when λ1 >> λ2 or vice versa, the region is an edge. If score

is large, which happens when λ1 and λ2 are large and λ1 ∼ λ2, the region is a corner.

The Harris keypoints are invariant to rotation. This detector finds locations with

the large gradient in all directions at a predefined scale that contains corners. However,

this detector can not deal with scaling problem. In order to make this detector being

able to deal with this challenge, Harris-Affine detector is an affine-invariant keypoint

detector relying on Harris keypoints. It firstly detects feature points using the Harris-

Laplace detector [44]. Then, it iteratively refines these regions to affine regions using

the second moment matrix [44].

Good Features To Track (GFTT) was proposed in [45] by Shi-Tomasi, et al. This

detector is also based on Harris corner detectors but relies on a small modification of

the scoring function. It provided better results compared to Harris Corner Detector

in tracking systems. The scoring function in Harris Corner Detector was given by:

score = λ1λ2− k(λ1 +λ2)
2. Instead of this, Shi-Tomasi proposed: score = min(λ1, λ2).

If score is a greater than a threshold value, the point is considered as a corner.

FAST

FAST, which stands for Features from Accelerated Segment Test, was proposed by Ed-

ward Rosten and Tom Drummond in the paper ”Machine learning for high-speed corner

detection” [1]. It can be considered the development of SUSAN detector [46]. SUSAN

computes the fraction of pixels within a circle neighborhood which have similar intensity

to the center pixel, SUSAN corners can then be localized by thresholding this measure

and selecting local minima. FAST relies on a connected set of pixels in a circular pattern

to determine a corner. This connected region size is commonly 9 or 10 out of a possible

16 as shown in figure 2.3.

Let p be a pixel in the image and its intensity be Ip. A binary comparison with each

pixel in a circular pattern against the center pixel using a threshold is done to determine

p is a corner or not. The pixel p is a corner if there exists a set of n contiguous pixels in

the circular pattern which are all brighter than Ip + t, or all darker than Ip − t, n was

chosen to be 12.

Most of local binary descriptors employ FAST detectors. In order to avoid detecting

edges, n must be larger than nine and the FAST with n = 9 (FAST-9) is usually used. As

the FAST detector is not scale-invariant, in order to ensure approximate scale invariance,



Chapter 2. State-of-the-art 14

Figure 2.3: An example circular pattern of 16 pixels (extracted from [1])

feature points can be detected from an image pyramid, which can thus be considered

the multi-scale FAST detector [47].

ORB

ORB [47], which stands for Oriented FAST and Rotated BRIEF, is basically a fusion

of FAST keypoint detector and BRIEF descriptor with many modifications to enhance

the performance. It uses FAST to find keypoints, before applying Harris corner measure

to find top N points among them. It also uses a pyramidal approach (multi-scale) to

produce multi-scale features.

BRISK

BRISK detector, Binary Robust Invariant Scalable Keypoints, is proposed by Leuteneg-

ger et al. [48]. To localize the key-point, it uses the AGAST corner detector [49] which

improves FAST detector by increasing the computation speed while maintaining the

same detection performance. To deal with scaling problem, BRISK detects keypoints in

a scale-space pyramid, performing non-maximal suppression and interpolation across all

scales. Finally, scales and positions of the detected local regions are refined in a similar

way to the DOG detector [50].

2.2.1.2 Blob-based detectors

Blob detection methods are aimed at detecting regions that diverge from surrounding

regions in properties such as brightness or color, etc. Informally, a blob is a region of

an image in which some properties are constant or approximately constant, or all the

points in a blob can be considered similar to each other. After corner detectors, aiming

to provide complementary information about regions that can not be obtained from

edges or corners, many blob-based detectors have been developed.
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DOG detector

Difference-of-Gaussian (DoG) keypoint, which was proposed in [50], is a method to

efficiently detect stable key-point locations in scale space. This is also called SIFT

detector. It includes three main steps. Firstly, a Gaussian-pyramid is constructed by

doing gradually Gaussian-blur the input-image. Next, the Difference of Gaussian (DOG)

pyramid is built by computing the difference of two consecutive Gaussian-blurred images

in the Gaussian pyramid. Lastly, key-point locations in the DOG space are found from

local maximums and local minimums in the DOG space and the locations and scales of

these maximums and minimums. The advantage of Gaussian smoothing is that it helps

in discarding noise that would be amplified and result in false DoG features.

From the input image I(x, y), the Gaussian-blur image at the scale σ is a funnction

L(x, y, σ) which is computed as follows:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) , (2.5)

where ∗ is the convolution operation, I(x, y) is the original image and G(x, y, σ) is the

2D Gaussian kernel at scale σ:

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 . (2.6)

The difference-of-Gaussian function D(x, y, σ) between two consecutive Gaussian-

blurred images in the Gaussian pyramid σ and kσ is computed using equation 2.7:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= I(x, y, kσ)− I(x, y, σ) .
(2.7)

In the final step, a keypoint is selected in the DOG space when it is either larger

or smaller than all its neighbors which are from over three neighborhood scales (3 x 3 x

3 neighborhood pixels) from the current scale and two nearby scales.

To filter unstable extrema with low contrast and edge responses, some authors also

used Taylor series expansion and ratio between the largest magnitude eigenvalue with

the smaller one from 2x2 Hessian matrix computed at the location and scale of the

keypoint as two thresholds, respectively [50].

SURF detector

SURF detector is also called Fast-Hessian detector, as initially proposed by Bay et al.

[51]. This detector detects keypoints from a multi-scale image set where the determi-

nant of the Hessian matrix is at a maximum, by using integral images to calculate the
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Gaussian partial derivatives and the Hessian Matrix. It is considered as a speeded-up

version of SIFT detector.

The Hessian matrix H(p, σ) in a point p(x, y) in an image I at scale σ is defined as

follows:

H(p, σ) =

[
Lxx(p, σ) Lxy(p, σ)

Lxy(p, σ) Lyy(p, σ)

]
, (2.8)

where Lxx(p, σ) is the convolution of the Gaussian second order derivative, as shown in

equation 2.9 , and similarly for Lyy(p, σ) and Lxy(p, σ):

Lxx(p, σ) = I(p) ∗ ∂2

∂x2
g(σ) . (2.9)

To reduce the computational cost, SURF uses the approximation forH(p, σ) as following:

Happrox =

[
Dxx Dxy

Dxy Dyy

]
. (2.10)

Blob-like structures are then detected at the location where the determinant is maximum

using equation 2.11:

det(Happrox) = DxxDyy − 0.9D2
xy . (2.11)

SURF applies the scale-space using Gaussian approximation filters at each level of filter

size in the scale space to extract interest points from images, which is similar to SIFT

algorithm. Yet, the SIFT algorithm iteratively reduces the image size, whereas the

SURF algorithm uses the integral images, allowing up-scaling of the filter at a constant

cost, and SIFT uses the approximated Laplacian of Gaussian (LoG) with DoG function

whereas SURF uses an approximation LoG with a box filter based on non-maximum

suppression. Non-maximum supression is scanned along the image gradient direction

and set any non-maximum pixel to zero. The advantages of this approximation is linked

to the fact that the convolution with box filter can be easily calculated from integral

images and can be done in parallel for different scales.

Lastly, interest point detection is performed using the non-maximum suppression

over three neighborhood scales (3 x 3 x 3 neighborhood pixels). The points that have

the maximum of the determinant of the Hessian matrix are then regarded as the feature

points.

MSER detector

Maximally Stable External Regions (MSER) detector was proposed by Matas et al. [52].

MSER regions are connected areas characterized by almost uniform intensity, surrounded

by contrasting background. These regions are detected through a process consisting of
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trying multiple thresholds and by selecting the regions for which one can be observed a

maintain of unchanged shapes over a large set of thresholds.

Let a binary image It of an image I at threshold level t be defined as follows:

It(x) =

1 if I(x) ≥ t

0 otherwise .
(2.12)

It means that all the pixels below a given threshold are white and all those above or

equal are black.

Centroid of connected components Centroids of connected components have

qualities that are stable identically even under the perspective distortion, noise, and

low resolution [25, 28, 53, 54]. In [53, 54], the authors use centroids of segmented

words as keypoints that are used to build LLAH (Locally Likely Arrangement Hashing)

descriptors for camera based textual document image retrieval. Similarly, Kise et al.

[6] extracted centroids of letter connected components for LLAH in the system with

camera-pen [6].

In summary, keypoint detectors detect distinguishable regions from an image. De-

tectors can be characterized by region type and invariance type. The region type repre-

sents the shape of a detected point or region such as corner or blob. The invariance type

represents the transformations which the detector is robust to. The transformation can

be a rotation, a similarity transformation or an affine transformation. Corresponding

various applications, it is important to choose an appropriate detector with a specific

invariance. An overview of keypoint detectors is shown in the Table 2.1. Normally, to

deal with image scaling problem, some particular keypoints need to be detected in scale

space (multi-scale) e.g ORB, BRISK, SIFT, SURF.

In next section 2.2.2, we will present a survey to examine a range of keypoint

descriptor approaches.

2.2.2 Keypoint descriptors

In computer vision, various feature descriptors and metrics have been proposed along

with many practical applications. For instance, cell biology and medical applications

are typically interested in polygon shape descriptors. Augmented reality applications for

mobile phones may be more interested in local binary descriptors. This section provides

a survey and observations about a few representative feature descriptor methods. In

practice, the feature descriptor methods are often modified and customized. The goal
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Table 2.1: Keypoint detectors summation.

Keypoint
detectors Corner Blob

Rotation
invariant

Scale
invariant

Affine
invariant

Multi-scale
detection

Harris x x

FAST x x

ORB(oFAST) x x (x) x

BRISK(AGAST) x x x x

SIFT(DoG) (x) x x x x

SURF(Fast-Hessian) x x x x

MSER x x x x

Centroid of CCs (x) x x x

of this survey is to examine a range of feature descriptor approaches from each feature

descriptor family of the taxonomy.

2.2.2.1 SIFT

Scale-Invariant Feature Transforms (SIFT), proposed in [50], is calculated on the gra-

dient distribution of the region. Firstly, the Gaussian-smoothed image L(x, y, σ) at the

scale σ where the key-point is detected is applied (see Equation 2.5 and 2.6).

A gradient magnitude m(x, y) and an orientation θ(x, y) of each point I(x, y) in

the region is computed:

m(x, y) =
√

[I(x+ 1, y)− I(x− 1, y)]2 + [I(x, y + 1)− I(x, y − 1)]2 , (2.13)

θ(x, y) = tan−1[I(x, y + 1)− I(x, y − 1)]/[I(x+ 1, y)− I(x− 1, y)] . (2.14)

Then, an orientation is assigned to each keypoint to achieve invariance to image ro-

tation. The gradient magnitude of keypoints neighborhood is taken around the keypoint

location depending on the scale, and the gradient magnitude and direction are calculated

in that region (as shown in Figure 2.4). An orientation histogram with 36 bins covering

360 degrees is created. It is weighted by gradient magnitude and Gaussian-weighted

circular window with σ equal to 1.5 times the scale of keypoint. The highest peak in

the histogram is taken and any peak above 80% of it is also considered to calculate the

orientation. This may lead to the case that there are more than one key-point at the

same position because there may be keypoints with the same location and scale, but

different directions to be created at the position.
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Figure 2.4: Example the computation of a SIFT descriptor in a region of size 8 × 8
and 16× 16

Lastly, keypoint descriptor of each key-point is created. A 16x16 neighborhood

around the keypoint is taken. It is divided into 16 sub-blocks of 4x4 size. For each sub-

block, 8 bin orientation histogram is created. So a total of 128 bin values are available.

It is represented as a vector to form keypoint descriptor. In addition to this, several

measures are taken to achieve robustness against illumination changes, rotation etc.

2.2.2.2 SURF (Speeded Up Robust Features)

Speeded Up Robust Features (SURF) [51] estimate the orientation for the key-point

by applying the Haar-wavelet response in two directions (horizontal and vertical) in a

circular neighborhood of radius 6s, with s the scale where the key-point is detected (see

Figure 2.5). A sliding orientation window (60 degrees) is used to find the dominant

orientation by calculating the sum of all responses.

For feature description, SURF used a rectangular grid of 4× 4 regions around the

key-point to create the descriptor vector. Similar to SIFT, each region is also divided

into 4 × 4 sub-regions. Then, the Haar-wavelet response is used to calculate each sub-

region. Like SIFT, SURF uses a circularly symmetric Gaussian weighting factor for

each Haar response. For each 4× 4 sub-region, each feature vector contains four parts:
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Figure 2.5: The orientation of key-point is calculated in a circular neighborhood using
a sliding orientation window

v = (
∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|) where, the wavelet responses dx and dy for each sub-

region are summed, and the absolute value of the responses |dx| and |dy| provide polarity

of the change in intensity. The final descriptor vector is 4 × 4 × 4 dimension, which

includes 4x4 regions with four parts per region [51].

2.2.2.3 Shape Context

Figure 2.6: Example the computation of Shape Context descriptor.

The shape context descriptor was proposed by Belongie et al. in [55]. This de-

scriptor allows measuring shape similarity by recovering point correspondences between

the two shapes under analysis. In the first step, a set of interest points has to be se-

lected from the object. Usually, a Canny edge detector is used and the edge elements
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are sampled in order to obtain a fixed number of n points pi per object. Given these n

points, the shape context captures the distribution of points within the plane relative to

the reference point origin that is chosen on the perimeter of the object as the origin. A

histogram using log-polar coordinates counts the number of points inside each bin. For

a reference point pi of the shape, a histogram hi of the coordinates of the nearby points

q is computed as:

hi(k) = #{q 6= pi : q ∈ binpi(k)} . (2.15)

The total bins is the number of bins for log r multiply the number of bins for θ(see Figure

2.6 for an example). To achieve scale invariance, all radial distances are normalized by

the mean distance between the n2 point pairs in the shape. For rotation invariance, the

authors proposed using the tangent vector at each point as the positive x-axis instead of

absolute axis for computing the associated shape context. This descriptor is invariant

over scale, translation, rotation, occlusion, and noise.

2.2.2.4 Local Binary Patterns (LBP)

Local Binary Patterns descriptor was proposed in [56]. It is based on the basic idea that

the local structure around each pixel (called the center pixel) is encoded by comparing

it with its eight neighbors in a 3 × 3 neighborhood. By subtracting intensity of the

center pixel with its eight neighbors, the resulting negative values are encoded with 0

and the others with 1; Finally, a binary number is obtained by concatenating all these

binary codes in a clockwise direction starting from the top-left one and its corresponding

decimal value is used for labeling. These derived binary numbers are referred to as Local

Binary Patterns or LBP codes. An example of LBP is shown in figure 2.7.

Figure 2.7: An example of LBP

LBP descriptor is robust against illumination changes and can be computed very

quickly. The limitation of the basic LBP operator is that its small 3 × 3 neighborhood

cannot capture dominant features with large scale structures. To deal with the texture

at different scales, the author proposed some methods to generalize the analysis by using
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the neighborhoods of different sizes which are defined as a set of sampling points evenly

spaced on a circle which is centered at the pixel to be labeled, and the sampling points

not falling within the pixels are interpolated using bilinear interpolation for any radius

and any number of sampling points.

2.2.2.5 BRIEF (Binary Robust Independent Elementary Features)

The original BRIEF, which was proposed by Calonder [2], randomly selects n pairs of

positions according to the Gaussian distribution and the center of an image patch are

selected as the origin of the used coordinate system, as shown in figure 2.8.

Figure 2.8: Different approaches to choosing the test locations of BRIEF by random
sampling except the rightmost one, 128 tests in every image (extracted from [2]).

The descriptor is obtained by comparing the intensity of n pairs of pixels after

applying a Gaussian smoothing which aims to reduce the noise sensitivity. The positions

of the pixels are preselected randomly according to a Gaussian distribution around the

center patch. The obtained descriptor is not invariant to scale and rotation changes.

BRIEF takes smoothened image patches and selects a set of nd(x, y) location pairs

based on a unique pattern. Then some pixel intensity comparisons are done on these

location pairs. For example, let first location pairs be p and q. If I(p) < I(q), then

its result is 1, else it is 0. This is applied for all the nd location pairs to get a nd −
dimensional bit string. Usually, nd is set to be 256 as it comprises well between matching

performance and efficiency.
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One important point is that BRIEF doesn’t provide a method to find the keypoint.

The authors recommend using CenSurE (Center Surround Extrema) introduced in [57].

The main motivation behind the development of this detector is to achieve a full spatial

resolution in a multiscale detector. BRIEF works even slightly better for CenSurE

keypoints than for SURF keypoints.

2.2.2.6 BRISK (Binary Robust Invariant Scalable Keypoints)

BRISK uses the multi-scale AGAST as keypoint detector [48]. It searches for a maximum

in scale space using the FAST score as a measure of saliency. BRISK uses sample

points in concentric circles surrounding the feature which defines N locations equally

spaced on concentric circles with the keypoint. When considering each sampling point

pi, a small patch around it is applied by using a Gaussian smoothing approach, the

standard deviation of which (σi) is proportional to the distance between the points on

the respective circle (shown in figure 2.9 (a)). In this pattern, distance sample point

comparisons are classified into 2 subsets including short pairs S and long pairs L. S
contains pairs of sampling points for which their distance is below a threshold δmin (see

figure 2.9 (b)) and L contains pairs of sampling points for which their distance is above

a threshold δmax (see figure 2.9 (c)) . Long pairs are used to determine the orientation

and short pairs are used for the intensity comparisons that build the BRISK descriptor.

To compute the orientation of the keypoint k, BRISK uses local gradients between the

sampling pairs which are defined by:

g(pi, pj) = (pj − pi).
I(pj , σj)− I(pi, σi)

||pj − pi||2
, (2.16)

where (pi, pj) is one of the N.(N − 1)/2 sampling-point pairs. The smoothed intensity

values at these points which are I(pi, σi) and I(pj , σj) respectively.

The orientation is an average of all the local gradients between all the long pairs

and then takes arctan2(gy/gx) to determine the angle of the keypoint.

g =

(
gx

gy

)
=

1

|L|
∑

(pi,pj)∈L

g(pi, pj) . (2.17)

Beside scale-normalization, the angle α = arctan2(gy, gx) is then used to make

BRISK descriptors rotation invariant by rotating the sampling pattern with α around

the keypoint k before performing intensity comparisons. Finally, the BRISK descriptor

assembles 512 bits which are resulting of the intensity comparisons on all the short pairs
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in S, where each bit b of the descriptor is computed as:

∀(pαi , pαj ) ∈ S, b =

{
1, if I(pαj , σj) > I(pαi , σi)

0, otherwise .
(2.18)

Figure 2.9: The 60 sampling pattern used in BRISK (a); the short pairs of sampling
points used for constructing descriptor (b) and the long pairs of sampling points used

for computing orientation (c) (extracted from [3]).

2.2.2.7 ORB

ORB, proposed in [47], was based on BRIEF descriptor and overcomes rotation invari-

ance problems of BRIEF by computing an orientation component to FAST detector and

adding it to BRIEF features. FAST is an ideal choice for finding key points that match

visual features. Nevertheless, it does not produce a measure of the corner and lacks

multi-scale features. To fill these gaps, ORB first employs a Harris corner measure to

order FAST key points, then utilizes a scale pyramid of the image with each level pro-

ducing certain FAST features. The orientation of FAST features is created by intensity

centroid which is an offset between the intensity of a certain corner and its center. This

offsetting makes the orientation, which is the vector between the feature location and

the centroid [58]. From [58], the moments of a patch image I is defined as:

mpq =
∑
x,y

xpyqI(x, y) . (2.19)

The centroid is then defined from the moment as:

C = (
m10

m00
,
m01

m00
) . (2.20)

In oder to make C rotation invariant, ORB computes moments with only (x,y) in a

circular region with radius r.
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Let O be the corner’s center, from the centroid C, the orientation
−−→
OC of the

patch can be simply determined by the angle θ, θ = atan2(m01,m10). This keypoint

orientation is consistent across views. Based on this, ORB applies machine learning

approaches on training data automatically to reform BRIEF into rBRIEF [47]. These

approaches supply the greedy search algorithm that selects 256 sampling pairs that have

improvement in the variance and correlation. Finally, ORB descriptor is a result of the

combination of oFAST keypoint detector and rBRIEF descriptor.

2.2.2.8 FREAK (Fast Retina Keypoint)

The approach adopted by FREAK is closely related to BRISK, differing only on the

geometric pattern chosen to perform the binary tests and on the way those test pairs

are selected [59]. FREAK uses a geometric pattern that mimics how the human retina

works and its test pairs are selected through learning, similarly to the method used by

ORB[47]. FREAK sampling pattern is a retinal sampling grid which is also circular with

the difference of having a higher density of points near the center, as shown in figure

2.10 (a).

Similar to BRISK, FREAK sampling pattern uses different kernels size for every

sample points. Yet, FREAK samples point more densely near the keypoint, which make

the density of sampling points to drop exponentially as they are being far from the

keypoint while the size of Gaussian kernels used to smooth intensities of the sampling

points is increased exponentially with respect to the distance to the keypoint. Such a

sampling pattern makes sampling points contain overlap information which is claimed

to be more discriminative. In addition, FREAK uses the learning algorithm similarly

to [47] to select point pairs from all possible pairs generated from the sampling points.

Finally, 512 point pairs (as shown in figure 2.10 (b)) are selected for constructing FREAK

descriptor.

Both BRISK and FREAK are based on the averaged local gradient computed from

several point pairs in order to compute orientation. BRISK takes point pairs whose

distances are larger than a certain threshold. While FREAK takes point pairs which

are symmetric with respect to the center of the sampling pattern (see figure 2.10 (c) ).

2.2.2.9 ALOHA

Using the power of integral image representation for images, ALOHA [60] is a feature

which is fast to compute and efficient binary descriptor. It is based on a set of Haar-like
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Figure 2.10: The 43 sampling pattern used in FREAK (a); the pairs of sampling
points used for constructing descriptor (b) and the pairs of sampling points used for

computing orientation (c) (extracted from [3]).

pixel patterns defined within an image patch and performs intensity difference tests to

encode the image patch into a binary string. The authors define a test τ on patch P of

size SxS as

τ(P,X, Y ) =

{
1, if PX > PY

0, otherwise ,
(2.21)

where PX and PY represent the mean intensities for two different pixel groups X and Y

belonging to P. They define the set of 32 pixel patterns, each of which consists of two

same size groups of pixel X and Y.

An original patch P of size S x S is divided into four equal subparts at 1-level,

and then each of which is divided recursively. At the final step, original patch P and 4

patches at 1-level are tested with 32 patterns, and 16 patches at level 2-level are tested

with 6 first patterns. Therefore, a (1 + 4) × 32 + 16 × 6 = 256-dimensional descriptor

is defined. Disadvantages of ALOHA is that this descriptor is not scale and rotation

invariant.

2.2.2.10 LDA-HASH

LDA-HASH [61] is based on the idea that how to projects the SIFT descriptors [50]

into the Hamming space in order to encode them as short binary strings. Firstly, LDA-

Hash extracts SIFT descriptors from the image. Then, they are projected to the more

discriminant space using Linear Discriminant Analysis(LDA) or Difference of Covari-

ances (DIF). Finally, the projected descriptors are thresholded in order to obtain binary

descriptors.
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2.2.2.11 BGP

BGP (Binary Gabor pattern) was proposed by Zhang et al. [62]. While LBP [56] encodes

the local structure around each pixel by comparing it with its eight neighbors in a 3x3

neighborhood, BGP encodes local image patch p with a radius R centered on the pixel

by convolving J Gabor filters. Firstly J Gabor filters that share the same parameters

except the parameter for orientation are computed at local image patch p with each

orientation π/J incrementally . Then, the resulting negative values are encoded with

0 and the others with 1. Finally, these J bits are re-encoded by the approach called

rotation invariant binary Gabor pattern, that performs a circular bitwise right shift on

the J bits J times and takes the maximum one. BGP descriptor is rotation invariant

and robust for texture classification.

2.2.2.12 D-BRIEF

D-BRIEF which was proposed in [63] is closely related to [61] LDAHash but faster

than LDAHash in time computation thanks to learning stage of a set of discriminative

orthogonal projections from patch intensities directly instead of using SIFT descriptors.

From a real-valued vector made of the intensities of an image patch, this approach applies

a set of projections (as shown in equation 2.22) and then thresholds the results in order

to compute D-BRIEF descriptor.

∀i∈1,...,N bi = sign(wTi x+ ti) , (2.22)

where the bi is the N bits of the descriptor, the wi are the projections, the ti is the

thresholds, and x is the image patch in vector form. With only 32 bits per descriptor,

D-Brief is robust in terms of accuracy and its efficiency is also due to the fact that it also

significantly reduces the memory. Yet, like BRIEF, D-BRIEF is not adapted to scale

and rotation changes. To deal with these constraints, in practice, the authors proposed

extracting feature points using FAST [1] with 54 views (using 18 rotated views at 3

scales) and computed database of D-BRIEF descriptors for these feature points. The

alternative approach is to estimate the scale and orientation of the feature points, and

compute the descriptors on the rectified patches, which was used in ORB [47].

2.2.2.13 Binboost

Binboost descriptor [64] computes binary descriptor from an image patch p by the learn-

ing based approach named Adaboost. It constructs a binary vector C(p) = [C1(p), ..., CD(p)]
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where,

CD(p) = sgn(bTd hd(p)), (2.23)

hd(p) is K weak learners weighted by the vector bTd = [bd,1...bd,K ]T .

The weak learners consider the orientations of intensity gradients over image regions

R and are parameterized by a rectangular region R over the image patch p, an orientation

e, and by a threshold T which are defined as follows:

h(p,R, e, T ) =

{
1, if φR,e(p) ≤ T

−1, otherwise
(2.24)

with

φR,e(p) =
∑
m∈R

ξe(p,m) /
∑

e′∈φ,m∈R
ξe′(p,m) , (2.25)

ξe(p,m) = max(0, cos(e− o(p,m)) , (2.26)

where o(p,m) is the orientation of the image gradient in p at location m. From the

number of quantization bins q, the orientation e is quantized to take values in φ =

0, 2π/q, 4π/q, ..., (q − 1)2π/q, which can be computed using integral images efficiently

[64].

2.2.2.14 Geometrical descriptors

Geometrical features are based on geometrical constraints between keypoints which can

be extracted from centroids of connected components such as letters or words. In this

part, popular geometrical descriptors for textual documents retrieval are presented.

Locally Likely Arrangement Hashing (LLAH) LLAH is a feature descriptor de-

veloped by Nakai et al. [53, 65–67] in order to propose camera-based textual document

retrieval and recognition. LLAH considers the centroid of each word connected compo-

nent as a keypoint; this kind of keypoint can be generally obtained stably, even under

perspective distortion, noise, and low resolution. A detailed description of the methods

allowing to obtain centroid of each word connected component can be found in [53].

To compute LLAH descriptors from each keypoint P , the n nearest neighbor points

around keypoint P are selected and organized following clockwise order. All possible

combinations of m points among n are examined (m < n) and are considered as a good

basis for determining stable local features. Depending on the way to compute features
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from these arrangement combinations of m points, the LLAH descriptor is able to deal

with various distortions that can appear in camera-based approaches.

The simplest version of LLAH is computed using three keypoints A, B, C (see

Figure 2.11 for an example) and the formula in the equation (2.27). In this specific

case, the system will be able to retrieve similar content being robust to image scaling,

translation and rotation. These invariants are called similarity invariants [67].

Figure 2.11: Three selected points A, B, C around one keypoint P

AC

AB
. (2.27)

When k = 4, from 4 points (e.g. points A, B, C, D from Figure 2.11), LLAH vector

becomes robust to affine transformation with the affine invariant defined as follows [65]:

S(A,C,D)

S(A,B,C)
, (2.28)

where S(A,B,C) is the area of a triangle with apexes A, B, C.

Finally, the most advanced version of LLAH is able to be robust to perspective

transformations which are very common when capturing a document with a camera. To

do so, five keypoints are needed (points A, B, C, D, E from Figure 2.11 for instance),

and a cross-ratio is computed as presented in (4.9)[65]:

S(A,B,C) ∗ S(A,D,E)

S(A,B,D) ∗ S(A,C,E)
. (2.29)

In order to reduce the sensibility of the system to keypoint extraction errors, multi-

ple LLAH descriptors are computed for each keypoint. As all the possible combinations

of m points among n are examined, Cmn LLAH vectors have to be built from each key-

point. As a consequence, the more LLAH descriptors are built, the more processing

time and memory consumption is required by the system. Thus, n and m need to be

suitably set depending on each system.
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The first testing of LLAH was evaluated on a dataset of 10000 scientific paper

documents. Query images were captured covering entire pages with a 6.3 megapixels

digital camera (CANON EOS 300D). The results were impressive in terms of accuracy,

time and scalability [53]. In order to improve LLAH features, Takeda et al. [68] proposed

an extension of the LLAH feature by adding some additional features which are based on

the rank of k area ratios of the extracted word regions. In the work presented in [69], in

order to consider the case of the capture of a portion of a document, they also proposed

the method which can improve the LLAH features by adding additional features by

ranking words regions based on their area.

Word shape coding Lu et al. [70] proposed word shape coding method for scanned

Latin textual document retrieval system. This method converts each document into a

word shape vector whose values are composed of word shape code and word frequency

information of word images in the document. Firstly, the document is preprocessed in

order to remove the noise and small connected components. Then, each word connected

component is encoded with a word shape code and the number of intersections between

character strokes within a word image and the middle line of text. The word shape

code is formed from local extrema points which are classified into three categories as a

function of their positions relatively to the x-line and baseline of text lines. The points

which are far above the x-line and which correspond to a maximum are encoded with

the category ”3”. The maximum or minimum points which are between the x-line and

baseline are encoded with the category ”2”. The minimum points far below the baseline

are encoded with the category ”1”.

This word shape coding method is used for document retrieval system in which the

query is a scanned image of a document page. Yet this method is not able to deal with

very small portions of documents captured by camera or with heterogeneous-content

document images in which the base lines of text are various.

Layout Context A document image retrieval system with camera phones was pro-

posed by Liu and Doermann in 2007 [28]. They proposed the features called “Layout

Context” descriptor. The “Layout Context” features rely on the geometrical location

of words’ bounding boxes of a document image. Beginning at the center of a word and

looking for the most visible n neighbors, the “Layout Context” of a word w is proposed.

The visibility is defined by the angle of the view. According to the authors, the top n

visible neighbors are rotation invariant and two view angles that a neighbor word occu-

pies are also not subject to rotation. From the center of w, the coordinate system origin

is established with X-axis parallel to the baseline of w and the width of w is used to de-

fine the unit metric. Under this coordinate, the coordinates of n most visible neighbors
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are invariant to similarity transformation. The “Layout Context” descriptor is robust

against perspective distortion, occlusion, uneven lighting and even crinkled pages. The

experimental results showed that the system is able to identify even a small patch of the

document image, captured by a camera phone, in a known set of documents. Drawbacks

of this system are that it is quite slow to find every candidate page [28], and it is not

able to deal with heterogeneous-content document images in which the base lines of text

vary.

n-Word length Another document image retrieval system with camera phones was

proposed by Hull et al. [25]; this relies on an augmented reality system. The authors

built a local descriptor for text based on statistical analysis of n-word length next to a

word in both vertical and horizontal direction. This descriptor is computed from each

word position that is considered as keypoint. From this coordinate, the descriptor is

established by counting the word length of n succeeding words from both directions.

The word length is the number of connected components inside the word segment. This

descriptor can distinguish an image of a patch of text from a collection of thousands of

examples. Supplementary, this descriptor can be indexed efficiently by hashing meth-

ods. Nevertheless, it works well only with queries which are captured under portrait

direction (which is similar to documents stored in database) and the retrieval accuracy

dramatically drops down with documents containing noises that cause incorrect word

lengths [25].

As presented above, various metrics and taxonomies are used to build local feature

descriptors after having detected keypoints. Aiming to give a general framework to

describe these various design approaches used for feature descriptor, we present a view

of descriptor taxonomy categorization in Section 2.2.3.

2.2.3 Descriptor taxonomy classification

Keypoints descriptors generally describe a region around a point of interest (keypoint)

and they have all been created in order to fit various approaches and goals. Generally,

feature description attempts to find desirable ways to describe image content so that it

is understandable for computer vision by learning to mimic how human visual system

to recognize images. Thanks to the human brain, the human visual system can perform

a number of image processing tasks much quicker than a computer vision system.

In our point of view, there are four main steps (see in Figure 2.12) to recognize the

image in the brain. The first step is retina step from which electrical signals are relayed
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to the brain via the optic nerve. The second step is called brain’s first step during which

human visual system discriminates and firstly responds to captured information, in a

scale and rotationally invariant manner. It tends to look for features relationships among

contrast variances along with psychophysical gestalt [71]. The third step is called brain’s

second step. During this stage, the perceptual system forms a percept from dependent

of parts such as lines, circle, triangles and etc. The final step is called brain’s semantic

step from which the human brain recognizes the whole content of the image (e.g. what

the picture is) based on semantic features and context of the image.

Figure 2.12: Descriptor classification inspired by human visual system.

In computer vision, many image enhancement methodologies have been proposed

based on several models of the human visual system [72, 73]. To be inspired by this, we

confer a point of view of descriptor taxonomy based on the human visual system. It is

hoped that this can provide general information about descriptor taxonomies for those

who employ or improve descriptors; or develop new ones.

2.2.3.1 Retina inspired descritors

Descriptors belonging to this group are close to how human retina discriminates and

responds to image signals. They are normally based on frequency domains (e.g., Ga-

bor and HAAR wavelets) or based on retina patterns (e.g., FREAK pattern). These

descriptors are built from the way that the density of the receptor cells is greater in the

center and decreases with distance from the center. Example descriptors in this group

are FREAK, ALOHA, BGP and D-BRIEF.

2.2.3.2 Brain’s first step inspired descriptors

Descriptors belonging to this group are similar to how the first step of the brain rec-

ognizes the images. They are generally based on gradients, intensity variances in the

images. Example descriptors in this group are SIFT, SURF, LBP, BRIEF, BRISK,

ORB, LDA-HASH and Binboost.
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2.2.3.3 Brain’s second step inspired descriptors

Descriptors belonging to this group are similar to how the second step of the brain

recognizes the images. They are generally based on shapes and topologies that are es-

tablished from information around a keypoint. Generally, spatial information of neigh-

borhood keypoints (e.g. geometrics constrains) is used to compute invariant values for

the descriptors e.g, Shape Context, LLAH.

2.2.3.4 Brain’s semantic inspired descriptors

An analogy between image and text document in semantic granularity was introduced

in [74], which shows that pixels are equated to letters, patches to words, patch pairs

to phrases, objects to sentences. Semantic inspired descriptors are similar to a human-

interpretable the semantic information containing in a document image. These descrip-

tors represent semantics of the document, such as a set of keywords, or a text description.

They represent the ultimate goal of annotation, indexing, high-level concept detection,

or more generally automatic generation of semantic descriptors.

Most of the automatic indexing methods try to learn a correspondence model be-

tween local descriptors and semantic inspired descriptors. The system is able to produce

some semantic inspired descriptors from a given set of training descriptors thanks to the

learnt model, e.g. proposed methods in [75–81].

2.3 Indexing

A large-scale camera-based information spotting systems using local descriptors gen-

erally consists in extracting keypoints with their descriptors and to store them into a

database (the block diagram illustrates a generic system in Fig. 2.1). The problem of

such system is that it generally contains billion of descriptors, which corresponds to a

large amount of memory and looking for the nearest neighbors can take a lot of time. In

this case, linear searching is impossible to be applied in a reasonable time. Therefore, ap-

proximate nearest neighbor search approaches need to be developed. These approaches

are also very notable in many other applications [82] such as information retrieval [83–

85], pattern recognition[86, 87], image and video databases [88–90], databases and data

mining [91], machine learning [92] etc. Approximate nearest neighbor search algorithms

are known to provide large speedups with only minor loss in accuracy. They play an

important role in the real-time required application e.g. camera based document image

retrieval and spotting systems.
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The nearest neighbor search in a metric space can be defined as follows: given a set

of n points P = p1, .., pn in a metric space M and a query point q ∈M , aiming to find the

element NN(q, P ) ∈ P that is the closest to q based on a metric distance d : M×M → R
such that: NN(q, P ) = arg minx d(q, x) ∀x ∈ P . The distance function d satisfies four

characteristics including d(x, x) = 0, non-negativity, symmetry and triangle inequality

[93].

The nearest neighbor search methods need to find systematic indexing approaches

which are fast, accurate and scalable sufficiently. For fast criterion indexing systems need

to build a structure that permits to structure/organize the description such as tree data

structure [94] or Locality Sensitive Hashing [95] or etc such that the operation NN(q, P )

can be carried out efficiently. For scalable criterion, indexing systems require very little

memory, enabling their use on standard hardware or even on hand-held devices. For

accurate criterion, indexing systems need to learn distance metric so that they are able

to determine correct nearest neighbor of query descriptor vector.

In this section, we review popular nearest neighbor search approaches which are

classified into two categories: tree based approaches and Hashing based approaches.

2.3.1 Tree based approaches

One of the well-known nearest neighbor algorithms is kd-tree algorithm, proposed in

[94]. It is efficient in low dimensions. Yet, the performance degrades quickly in high

dimensions. Kd-tree (short for k-dimensional tree) is a binary tree which is used for

sorting and searching a set of n data points with k-dimension. In kd-tree, the root

node contains entire n points and the other nodes represents a subpart of data points

from their parent node based a partitioning at the parent node. This partitioning can be

thought of as implicitly generating a splitting hyperplane that divides the space into two

parts. Points on the left of this hyperplane are represented by the left subtree of that

node and points on right of the hyperplane are represented by the right subtree. Because

of recursive partition, the leaf node contains only small subset of the data points, which

is used to determine nearest neighbor point of a query point. Two examples kd-tree are

shown in figure 2.13.

In [94], partition data points of each non-leaf node is chosen in the following way:

the dimension with highest variance is chosen and the median value of it is used for

partitioning data points into two children nodes. This process is done recursively until

the number of data points of a node is less than a minimum value and it is returned as

leaf node. To search for approximate nearest neighbor, query data point q is put into the

root and traversed down the tree until reaching the leaf node. Then, a linearly search for
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nearest neighbor among all data points in leaf node is performed. The problem of kd-tree

Figure 2.13: Example of randomized kd-trees in R2. In the first tree, the nearest
neighbor of the query point does not lie in the same cell of the leaf node. Yet, it lies in

the same cell of the leaf not, in the second tree (extracted from [4]).

is that the nearest neighbor may not be in the found leaf. To overcome this, a process

of backtrack searching needs to be done iteratively so that other nodes are searched

for better candidates. Arya et al. [96] propose the modified k-d tree for approximate

matching. They also introduce a bounded on the accuracy searching using the notation

called ε–approximate nearest neighbor which is defined as follows: a data point p in kd-

tree is an ε–approximate nearest neighbor of a query point q if d(p, q) ≤ (1 + ε)d(p∗, q)

where p∗ is the true nearest neighbor. The authors also propose priority search which

uses a priority queue to speed up the search in a tree by visiting tree nodes in the priority

queue following sequence of their distance from the query point. This distance is the

minimum distance between q and any point on the node.
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A similar kd-tree based algorithm, proposed by Beis and Lowe [97], use a stopping

criterion based on examining a fixed number of leaf nodes instead of using ε–approximate

cutoff. The authors use the Best-Bin-First (BBF) algorithm which is similar to priority

search in [96] and employed successfully for multiple hierarchical clustering tree [4, 98]

in which each cluster center is randomly chosen as one of the input data points instead

of being the mean of the cluster elements (similar to [99, 100]). BBF starts to search in

the tree by traversing from the root to the closest leaf. This follows at each inner node

the branch with the closest cluster center to the query point and pushes all unexplored

branches along the path to a priority queue. After the initial tree traversal, the algorithm

resumes traversing the tree with the top branch in the queue. The priority queue is sorted

in increasing distance from the query point to the boundary of the branch being added

to the queue until the number of examined points excess than the maximum expected

threshold.

Another solution is the use of multiple randomized kd-trees, proposed by Silpa-

Anan and Hartley [101]. In this randomized k-d tree, the splitting dimension is chosen

randomly among the top of highest variance dimensions and split value is randomly

chosen using a point close to the median. The conjunction of these trees creates an

overlapping partition of the feature space, which helps the trees to overcome incorrect

nearest neighbor which may be affected by quantization (see figure 2.13). This robustness

is especially important in high-dimensions where points will be more likely to lie close

to a boundary due to the ”curse of dimensionality”.

Fukunaga and Narendra [102] propose a nearest-neighbor matching which is per-

formed with a hierarchical tree structure constructed by clustering the data points into

k disjoint groups and then recursively practicing the same for each of the groups. The

authors also propose using the branch and bound tree-search method for searching near-

est neighbor of a query point from the tree. Brin proposes a similar tree, called GNAT

(Geometric Near-neighbor Access Tree) [99]. Instead of computing the cluster mean

points as the cluster centers they use some of the data points (e.g. p1, p2, ..., pk from

P ) which are randomly chosen in fairly far apart manner. This tree is defined in a

general metric space by integrating minimum distance and maximum distance for each

pair of cluster center points (pi, pj)i, j ∈ k which is defined to be min/max distance from

cluster center points pi to any point in the cluster of pj . This information is used for

pruning branches which do not contain the nearest neighbor in searching phase. The

searching objective is to find all points with distance ≤ r to a given query point q. Yet

this algorithm can lead to the case that it has to search too many nodes when pruning

criteria do not occur.
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Nister and Stewenius [103] propose the vocabulary tree, which is searched by ac-

cessing a single leaf of a hierarchical k-means tree. The most significant property of this

approach is that the tree directly defines the quantization that is fully integrated with

the indexing. This approach organizes local descriptors of database images in a tree

using hierarchical k-means clustering. Then inverted files are stored at each node with

scores in the off-line phase.

In the on-line phase, each descriptor vector of a given query image is propagated

down the tree by at each level comparing the descriptor vector to the k candidate

cluster centers (represented by k children in the tree) and choosing the closest one,

which is performed recursively until reaching the leaf node. Then, generating a score

for the given query image is based on Term Frequency-Inverse Document Frequency.

Finally, the images in the database are found based on best match score. As a result,

a vocabulary tree with k clusters of depth D has kD leaf nodes, or visual words, at the

bottom of the tree. The structure of the vocabulary tree (in the 128-dimensional SIFT

space) is visualized as a nested set of Voronoi cells as shown in figure 2.14. In addition,

Figure 2.14: Vocabulary trees of varying branching factor and depth. Starting from
top left, the sizes of tree are 220, 410, 106, 324, 1003,10002( extrated from [5])

.

the authors propose using an inverted file for storing the scores efficiently. An inverted

file index is associated to each node of the vocabulary tree (the inverted file of inner

nodes is the concatenation of it’s children’s inverted files). The authors also propose

the method to add an image to the database that requires the following steps: Firstly,

image feature descriptors are computed; then, each descriptor vector is dropped down

from the root of the tree and quantized into a path down the tree. The inverted files at

each node store the id-numbers of the images in which a particular node occurs and the
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term frequency of that image. These indexes are updated to the relevant inverted files

[103].

In the next section , Section 2.3.2, we present other common indexing methods

based on hashing techniques which have been widely studied and applied for approximate

nearest neighbor search.

2.3.2 Hashing based approaches

Hashing is one of the popular indexing methods which is based on the idea of trans-

forming the data item to a low-dimensional representation, or equivalently a short code

consisting of a sequence of bits. The application of hashing to approximate nearest neigh-

bor search includes two ways: indexing data items using hash tables that are formed by

storing the items with the same code in a hash bucket; and approximating the distance

using the one computed with short codes.

One of the well-known hashing based nearest neighbor approach is locality sensitive

hashing (LSH) [95]. The main idea of LSH is to hash the points in the way that the

probability of collision is much higher for objects which are close to each other than for

those which are far apart. In retrieval phase, nearest neighbors of the query point can be

found by hashing the query point and retrieving elements stored in buckets containing

the query point. An example of LSH system is shown in figure 2.15

Figure 2.15: An example of LSH system for data in R2

There are variants of LSH. An improved version of LSH algorithm is proposed by

Gionis et al. [104, 105]. This algorithm transforms each point p ∈ P into a binary

vector by embedding P into a Hamming space where distances between points in the
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original space are preserved. Hash functions are created by selecting a subset of the

bits that satisfy the desired locality-sensitive properties. The algorithm builds a set of l

such hash functions, each of which selects k bits from the binary vector randomly. The

two parameters (k and l) enable to select an appropriate trade-off between accuracy

and running time. The bigger they are the more accurate the system can get and the

more running time the system needs as a result. This LSH based algorithm requires

using a large number of hash functions and a long with a set of hash tables. Each hash

table uses a hash function randomly chosen from LSH family and contains the dataset

points hashed by using its hash function. For a query point q, nearest neighbors of q

are found by looping over all hash table and retrieve the points from the bucket in it

with validation based on distance from q. Another LSH method is Multi-probe LSH,

propose in [106]. It improves the high storage costs by reducing the number of hash

tables. There is a LSH method that does not require tuning of parameters and can

adapt better to the data is LSH Forest (introduce in[107]).

Kise et al. propose a simple representation method for approximate searching of

local feature vectors [108]. The main ideas of this method is that each PCA-SIFT feature

vector (proposed in [109]) is binarized into a simple bit representation and a hashing

method that is able to be accessed very fast with less memory via a hash table. This

indexing system can work without storing feature vector and re-checking the distance

between database point and query point. In the retrieval phase, an approximate search

with query perturbation is proposed in order to find its approximate nearest neighbors

efficiently.

The binarized function for PCA-SIFT vector v = (v1, v2, ..., vn) is defined as follows:

bi =

{
1 if vi ≥ 0

0 otherwise .
(2.30)

This produces a bit vector b = (b1, b2, ..., bn) where the first (d ≤ n) elements are

employed for indexing using hash function:

Hindex = (
d∑
i=1

bi2
(i−1)) mod Hsize . (2.31)

The query perturbation is applied because the query vector is also transformed into the

bit vector using the same threshold of zero for each dimension. Some dimensions of the

query vector having values close to 0 are flipped before searching in the hash table.

Similarly, instead of using the threshold of zero, the later system proposed in [110]

use θj as the threshold, where θj is the median of each dimension vj of feature vectors

in the database.
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2.4 Conclusion

Camera-based information spotting systems need to deal with not only heterogeneous-

content document images that may contain both textual and graphical elements but

also real-time retrieval and spotting requests. To archive these two goals by using local

features, we should choose robust descriptors as well as systematic indexing approaches.

Concerning local features, both keypoint detectors and keypoint descriptors play

an important role and need to be well combined in such a way that it can detect and

describe not only texts but also graphics in document images robustly and can over-

come challenges of images captured by cameras in real-time. Because of these demands,

camera-based information spotting systems should employ local features that are ro-

tation and scale invariant and/or robust to affine and perspective transformations. In

addition, to deal with potential problems of document images captured by cameras,

descriptors should be robust to brightness, contrast, noise, illumination and blur.

Regarding indexing and retrieval, an ideal approximate nearest neighbor search

algorithms need to be fast, accurate and sufficiently scalable. In some application,

the quick adding/removing a data point into/from the indexing systems without re-

constructing the index structures, or the indexing methods without storing database

points which can help the systems to reduce a mount of memory is also concerned.

In tree based techniques, partition methods to build the trees and the traversal

algorithms to search in the trees are very important. Both can effect the accuracy

and the searching speed. Furthermore, using multiple randomized kd-trees helps in

improving the accuracy search but it can take more time processing and need more

memory space.

In hashing based approaches, the number of hash tables and the hash function

play an important role. The hash function should be chosen so that the probability of

collision is much higher for data points which are close to each other than for those which

are far apart. This can be designed without or with exploring the data distribution and

learning to hash. Because of this, when the dataset has a large amount of collision data

points, the searching cost can be high because of the inner loop in the hash bucket for a

long sequential list. On the other hand, the way to encode or transform data may effect

the hash function and cause collision of the hash table.

Finally, some indexing structures which allow to re-check distance between query

point and database point false matches can occur when searching. Indeed, indexing

systems may return a good nearest neighbor which is not the best nearest neighbor.

This decision can be done by defining a fixed distance thresholding or adaptive distance
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thresholding or distance ratio thresholding or contrario matching criterion [111]. Thus,

we should choose the suitable matching criterion depending on the objective of each

system.



Chapter 3

Proposed features for

Heterogeneous-Content

Camera-based Document Image

Retrieval and spotting system

3.1 Introduction

Local features are very tolerant to illumination changes, perspective distortions, image

blur, image zoom, and so on [20]. Yet, when dealing with less textured documents,

these local features are generally not discriminative enough to permit the calculation

of relevant and stable descriptors [112]. In the context of huge document repositories,

the high dimensionality of these descriptors arises two more constraints respectively

regarding the curse of dimensionality on the one hand, and the computation time when

dealing with real time matching systems on the other hand [41].

In this chapter, our proposed features based on spatial space of connected compo-

nents are presented in section 3.2. Afterward, a framework to compute these features

based on spatial space of keypoints is presented.

43
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3.2 Features based on spatial space of connected compo-

nents

In this section, we present several novel schemes towards features computation for

heterogeneous-content camera-based document image retrieval. The first one is SRIF

(Scale and Rotation Invariant Features), which is computed based on geometrical con-

straints between pairs of nearest points around a keypoint. In addition, we propose

four extensions based on SRIF. The second one is PSRIF (Polygon-shape-based Scale

and Rotation Invariant Features), which is an extension to SRIF and which makes SRIF

more discriminative even though it is computed from a small number of constraint points

around the keypoint. The third one is DETRIF (Delaunay triangulation-based features),

which relies on the geometrical constraints from each pair of adjacency triangles in De-

launay triangulation which is constructed from centroids of connected components. The

last one is SSKSRIF (Scale Rotation Feature descriptor based on Spatial Space of Key-

points), which also relies on the geometrical constraints from each pair of adjacency

triangles in Delaunay triangulation using similarity transformation. In addition, we

propose a framework to compute descriptors based on spatial space of dedicated key-

points such as SIFT, SURF and ORB. This aims at enhancing proposed features can

deal with the context of heterogeneous-content camera-based document image retrieval

and spotting.

3.2.1 Scale and Rotation Invariant Features (SRIF)

Firstly, SRIF extracts centroids of word connected components as keypoints (as shown

in Figure 3.2). We can definitely employ centroids of letters as keypoints if needed.

Then, SRIF feature vectors are extracted from each keypoint. It relies on the idea of

using pairs of nearest constraint points around a keypoint (see Figure 3.1). Let P be a

keypoint, Pi and Pj be two points coplanar with P (e.g. in 2D). |
−−→
PPi| and |

−−→
PPj | denote

the length of the two vectors
−−→
PPi and

−−→
PPj , respectively, and θij is the angle between

these two vectors. It is obvious that the three values θij , Lmaxij = max(
|
−−→
PPi|
|
−−→
PPj |

,
|
−−→
PPj |
|
−−→
PPi|

),

and Lminij = min(
|
−−→
PPi|
|
−−→
PPj |

,
|
−−→
PPj |
|
−−→
PPi|

) are scale and rotation invariant [113].

Figure 3.1: Constraint between two points around one keypoint P.
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Figure 3.2: Centroids of word connected components as keypoints

Figure 3.3: The arrangement of m points (m=5) and the sequence of new invariants
(SRIF) calculated from all possible combinations of 2 points among m points.

Based on these scale and rotation invariant constraints between three points (as

shown in Figure 3.3), we propose two scale and rotation invariant ratios used for SRIF:

θij ∗ Lmaxij , (3.1)

θij ∗ Lminij (3.2)

From each keypoint P , n nearest neighbor points around P are selected and or-

ganized clockwise (e.g. n = 6). The nearest neighbor points are determined by using

the Euclidean distance and they are selected from the keypoint list. After this, all

possible combination of m points among n are examined with m < n (e.g. m = 5 in

Figure. 3.3), which aims at dealing with keypoint extraction errors. This combination

strategy leads to the result that there are Cmn SRIF descriptors being computed at each

keypoint position.

Then, from one arrangement combination of m points, the SRIF vector r is calcu-

lated based on a sequence of scale and rotation invariants computed from all possible

combinations of 2 points (constrained to P ) among m points. Finally, each value of the

SRIF vector, ri (feature ith), is computed using invariant values: θij∗Lmaxij as presented

in equations 3.1. Experimentally, using Lmaxij is better than using Lminij because the
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values of Lminij belongs to (0..1) which are too small and need to be suitably normalized.

As a result, the dimension of SRIF is C2
m.

Data: set of keypoints KpS of document image

Result: SRIF descriptors list DL

1 Dl← null;

2 for each P ∈ KpS do

3 PnS ← n nearest neighbor points in KpS around P ;

4 sort PnS in order clockwise around P ;

5 for each PmS ∈ all possible combination of m points among PnS do

6 select the starting point in PmS ; /* in order to make SRIF

rotation invariant */

7 i← 0;

8 for each P2S ∈ all possible combination of 2 points among PmS do

9 ri ← SRIF ; /* SRIF is computed using equation 3.1 */

10 i+ + ;

11 end

12 add r to DL;

13 end

14 end

Algorithm 1: computation of SRIF descriptor.

As SRIF feature vector is computed from m nearest neighbor points which are

organized following a clockwise order. To deal with rotation invariance, each of the

m points need to be used as a starting point by examining all cyclic permutations

in the retrieval phase. The analysis of these cyclic permutations is necessary because

the feature vector of the retrieval algorithm may not match with the feature vector in

the feature vector repository storage (indexing) algorithm, due to rotations of camera-

captured images. This takes more retrieval time because of the fact that the lookup in

the hash table is done m times.

To overcome this problem, similar to the work from [53], we apply the method that

could select the same starting points in both the repository (indexing) and the query

processes. This point is chosen by selecting the point from which the maximum invariant

is obtained by combining it with clockwise succeeding points. In the case when there

are two or more equivalent maximum values, succeeding clockwise invariant values of

the starting point are used for comparison.

To make SRIF descriptors more distinctive as well as robuster, we propose four

extensions for SRIF as follows:
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Area of connected component (CC) ratio: This descriptor is built based on

two basic properties established from 2 keypoints around P that are the product between

angle and area ratio of two CCs, which are also distinctive and affine (not subject to

image translation, scale, rotation, aspect ration and shear transformations), which is

described in more detail as below:

Let Si and Sj denote the area of two CCs corresponding to Pi and Pj respec-

tively (as in Figure 3.1). Let us define Smaxij = max(Si/Sj , Sj/Si) and Sminij =

min(Si/Sj , Sj/Si) that are scale and rotation invariant. Consequently, SRIF descrip-

tors using area of connected component (CC) ratio are computed from invariant feature

relied on θij .Smaxij or θij .Smixij .

Combined distance ratio and area of CC ratio: In order to make SRIF

descriptors more distinctive, we propose to combine the ratio between areas of two CCs,

distance ratio between two vectors and the angle that are computed from a pair of

keypoints around P . This descriptor ensures that each matched value must be invariant

in both distance ratio and area of CC ratio. For each of these constraints, two separate

values are established in the SRIF descriptor from each pair of keypoints around P .

One value uses θij .Lminij , and the other uses θij .Sminij . As a result, combined SRIF

descriptors have double the dimensionality compared to SRIF without this combination.

A new normalized formulation for SRIF descriptors: The keypoint po-

sitions can be a little changed because CCs can be affected by camera’s effects. For

the purpose that it can tolerate errors in keypoint extraction, we propose a method to

normalize SRIF descriptors as follows:

We apply the square root of ratios including distance ratio and connected com-

ponents ratio for establishing new SRIF descriptors, e.g. θij ∗ sqrt(Lmaxij ) or θij ∗
sqrt(Smaxij ). The growth of the square root function is very slow and what is more, the

output of this function is always a positive value ensuring order relation, thus normalized

SRIF descriptors are more precise with a displacement of keypoints that can be affected

by camera’s problems.

A new method for computing rotation invariant descriptors: Regarding

computation of rotation invariant descriptors where the method requires choosing a

starting point in clockwise direction ([53]), we propose a new method which does not

require selection of a starting point but has the same starting points in both the storage

and the retrieval processes. The proposed method is to use the order of n nearest

neighbor points from the keypoint based on their distance from the keypoint P . This

order is rotation invariant, so it is not necessary to re-organize (or re-order) them. When

two points are equidistant from P , the area of CCs where they are extracted is compared.
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3.2.2 Polygon-shape-based Scale and Rotation Invariant Features (PSRIF)

The main idea of computing geometrical descriptors (e.g SRIF and LLAH) from a key-

point is to find a local set of m nearest keypoints around a keypoint. From these points,

the invariant geometrical features are considered to be taken into account in the de-

scriptor. To deal with error keypoints, m combination from n nearest keypoints are

considered, based on the approach already presented in Section 3.2.1. It is assumed

that in the case for which there are n−m error keypoints among n points, at least one

correct local set of m nearest keypoints can be found for computing descriptors. When

n is chosen, the bigger m is, the more discriminating feature vectors are. However, there

are more erroneous keypoints, in this case, and vectors’ dimension is higher. When the

amount of text is small or when camera pen is used, instead of increasing the value

of m, extension features should be used. It makes feature vectors more discriminating

and makes the retrieval system work better in this case. In addition, retrieval time and

scalability of the system are more efficient with less computational complexity.

In this section, we first present two methods that are used by LLAH as additional

features and which are based on the areas of connected components. Afterwards, we

present how our new extension features for SRIF are computed (PSRIF).

Areas of connected components based features of LLAH In order to increase

the discriminative power of LLAH and to deal with small portions of a document cap-

tured by a camera, Nakai et al. [69] proposed an extension of the LLAH. It is based on

magnitude relation among areas of connected components. They use ranks of connected

components’ areas as extension features, illustrated in Figure 3.4 on the left. This rank-

ing is based on the fact that the largest connected component tends to have the largest

area under a certain degree of change in condition and that magnitude relation among

areas of connected components hardly changes when images are captured. According

to the authors, these extension features are affine invariant. In [68], similarly, Takeda

et al. proposed an extension of the LLAH by using features based on the rank of m

area ratios of the extracted word regions (as shown in Figure 3.4 on the right). These

extension features are perspective invariant [68].

The two main drawbacks of areas of connected components based extension fea-

tures are that there are equal area connected components among them and that areas

of connected components can be affected by uneven lighting which is quite common in

case of camera capture. This can lead to incorrect ranks of connected components’ areas

when they are compared with their original images. We propose a new approach to add



Chapter 3. Proposed features for Heterogeneous-Content Document Image Retrieval 49

Figure 3.4: Extension features of LLAH [6].

extension features for SRIF and applicable to the LLAH as well.

Data: set of keypoints KpS of document image

Result: PSRIF descriptors list DL

1 Dl← null;

2 for each P ∈ KpS do

3 PnS ← n nearest neighbor points around P ;

4 sort PnS in order clockwise around P ;

5 for each PmS ∈ all possible combination of m points among PnS do

6 select the starting point in PmS ; /* in order to make the

descriptor rotation invariant */

7 i← 0;

8 for each P2S ∈ all possible combination of 2 points among PmS do

9 ri ← SRIF ; /* SRIF is computed using equation 3.1 */

10 i+ + ;

11 end

12 add m extension features to vector r;

13 add r to DL;

14 end

15 end

Algorithm 2: PSRIF computation.

PSRIF uses the angles and the edges of the polygon which is formed from m key-

points around a keypoint (as shown in Figure 3.5). From the starting point and following

clockwise order, let −→ei and −−−→ei next be two succeeding edges from the polygon. It is obvious

that ̂(−→ei ,−−−→ei next)max(
|−→ei |
|−−−→ei next|

,
|−−−→ei next|
|−→ei |

) is scale invariant and rotation invariant. From

the polygon, there are such m invariant values that are used as m extension features for

SRIF. As a result, PSRIF vector with extension features has C2
m basic SRIF features +

m extension features.
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Figure 3.5: Extension features for SRIF based on the polygon formed from m = 5
keypoints around one keypoint.

3.2.3 Delaunay Triangulation-based Features (DETRIF)

When using SRIF, two vital parameters that establish combinations of nearest key-

points for computing descriptors need to be set (e.g. n and m). We aim to propose a

new descriptor which can be employed without parameters controlling the selection of

feature points. Our idea is to use a stable structure of the feature points and then to

build descriptors from this structure so that it can cope with portions of a document

captured by a camera. Because of this, we choose Delaunay triangulation to form the

stable structure for the feature points and then DETRIF descriptors are built from this

structure.

Delaunay triangulation has three main properties [114]:

• Given a set of points, there always exists a Delaunay triangulation except when

all the points are aligned.

• The Delaunay triangulation maximizes the minimum angle of each triangle in the

triangulation.

• When a subset of four or more points can be placed on the same circle (e.g. the

vertices of a rectangle), the Delaunay triangulation of the points is not unique.

From these properties, we will always be able to compute a Delaunay triangulation from

centroids of word CCs in documents. Because unstable cases (e.g. aligned points) will

never occur in the whole page, they may only occur locally and create local instabilities.

To take advantage of Delaunay triangulation, we propose a way to combine the

local Delaunay triangulation in order to build new descriptors named DETRIF. DET-

RIF is computed based on the geometrical constraints from the Delaunay triangulation

which itself is constructed from centroids of connected components. As the Delaunay
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triangulation is invariant to similarity transformations and not to perspective, invariant

values of DETRIF are extracted from geometrical constraints on each pair of adjacent

triangles in Delaunay triangulation. Therefore, this feature is tolerant to perspective

distortion [115, 116].

DETRIF considers centroids of word connected components as feature points from

which Delaunay triangulation is constructed. An example of DETRIF computation on

a map is illustrated in Figure 3.6.

Figure 3.6: The main steps to build DETRIF descriptors.
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The pseudo-code below describes how DETRIF descriptors are built (for a docu-

ment image), from a Delaunay triangulation.

Data: Delaunay triangulation DTr computed from the set of keypoints of

document image

Result: DTRIF descriptors list DL

1 DL← null;

2 for each triangle tr ∈ DTr do

3 for each vertex v ∈ tr do

4 if exist adjacent triangle of tr then

5 for each vertex Xi connect to edge v and not belong to tr neither to

the adjacent triangle of tr do

6 build DETRIF descriptor f at Xi ;

7 add f to DL;

8 end

9 end

10 end

11 end

Algorithm 3: Computation of DETRIF descriptor.

Figure 3.7: Adjacent triangles (ABD,BDC) and vertexes connected to vertex A
(X0, X1, ...Xn).

Figure 3.8: DETRIF descriptor extraction from each vertex Xi

In order to reduce the sensitivity of the system to keypoint extraction errors, one

DETRIF descriptor is built for each vertex Xi. As we can see in figure 3.8, the con-

straint between Xi and two triangles 4ABD and 4BCD is used to build one DETRIF
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descriptor. This process can be summarized in two steps:

Firstly, we find the perspective transformation H that transforms four points

ABCD on the left of Figure 3.8 into a normalized coordinate system on the right of

Figure 3.8. Then, transformation H is applied on Xi in order to obtain the (x,y) co-

ordinates in the new normalized space. Aiming to get positive features for indexing

DETRIF descriptors with a hash table, the point (x,y) is transformed into the polar

coordinate system. As a result, the point (x,y) becomes the point (r,ϕ) in the polar

coordinate system, where r ∈ R, and ϕ ∈ (0..360o). These two invariant values are used

to build DETRIF descriptor. In order to make DETRIF descriptor more distinctive, we

also use geometric constraints from Figure 3.8. Finally, DETRIF descriptors f are built

by using the invariant values that includes r, ϕ,
S(B,C,D)

S(A,B,D)
, ∠ABC, ∠BCD, ∠CDA,

∠DAB, ∠XiAB, ∠XiBC, ∠XiCD, ∠XiAD.

Where, ∠ABC is the angle between
−−→
AB and

−−→
BC, so ∠ABC ∈ (0..π)

3.2.4 Scale Rotation Feature descriptor based on Spatial Space of Key-

points (SSKSRIF)

Figure 3.9: Example of concave quadrangles in a Delaunay triangulation.

DETRIF works well only when the quadrangles formed from two adjacency triangles

are convex. However, if concave quadrangles occur, the perspective transformation of

the quadrangle into the normalized space does not exist, which makes the accuracy of

DETRIF reduced (as shown in Figure 3.9). Therefore, to tackle this problem, we propose

to build a new scale rotation feature descriptors based on spatial space of keypoints by

using the transformation shown in Figure 3.10. This transformation relies on the method

from [117], in which the authors proposed a geometric hashing from a set of quadpoints.

Starting from four points defining a unity square (a quadpoint), they defined a coordinate

space from two of them and use the rest two points for the indexing and the retrieval

process of astronomical images.



Chapter 3. Proposed features for Heterogeneous-Content Document Image Retrieval 54

Figure 3.10: SSKSRIF descriptor extraction from each vertex Xi

Instead of using all combination of 4 points, we propose a method to build SSKSRIF

descriptors base on quadrangle formed from two adjacency triangles in Delaunay triangu-

lation graph of sampled keypoints. The computation of SSKSRIF descriptors is similar

to DETRIF but the invariant features used for SSKSRIF descriptor f at Xi rely on a

new transformation which is described in Figure 3.10. The descriptors f are built by

using the invariant values rXi ,ϕXi ,rC ,ϕC ,rD, and ϕD, where, r∗ and ϕ∗ are the polar

coordinates of points Xi, C and D. To normalize features for hashing, each r∗ in polar

coordinate system is scaled-up to β times (e.g. β=15). This normalization aims to

scale-up values which are less than or equal 1 such as rC and rD in order reduce collision

when hashing.

In order to make SSKSRIF descriptors more distinctive we also use geometric con-

straints including
S(D,B,C)

S(A,D,C)
, ̂(−→ei ,−−−→ei next)max(

|−→ei |
|−−−→ei next|

,
|−−−→ei next|
|−→ei |

) , where −→ei and −−−→ei next

are two succeeding edges from the polygon ADBC.

To make the descriptors rotation invariant, the starting point is set from A and the

other points are determined from the point following A by clockwise order around the

centroid of quadrangle ADBC (e.g. point D in Figure. 3.10).

3.3 Proposed framework to compute proposed features based

on spatial space of keypoints

The descriptors based on spatial space of connected components work well with textual

documents because they are computed from spatial organization connected components

such as centroids of words or letters. However, they may fail when the number of

connected components is insufficient or when dealing with graphical objects in which

connected components are not stable when they are captured by cameras.

In order to enhance the proposed features (Section 3.2) in the context of heterogeneous-

content camera-based document image retrieval and spotting, we propose to compute
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our features with dedicated keypoint detectors such as corner-based or blob-based key-

points presented in Chapter 2. As presented before, our descriptors are only computed

from spatial information of keypoints without capturing local textures or pixels in im-

ages. But, using existing well-known keypoints detectors allow proposed descriptors to

be able to deal with various types of document contents like graphical contents, less

texture contents, blur, lighting effects and etc.

Yet, when computing such descriptors, we need to tackle major issues including

how to sampling stable keypoints from a set of keypoints extracted from an image for

computing descriptors. It is not useful for geometrical descriptors if there are too many

unstable or unrepeatable keypoints between the original image and the captured image.

These unstable keypoints lead to the fact that there are too many incorrect created

descriptors.

In this section, we propose a framework to compute our proposed features from

spatial space of keypoints. Firstly, keypoints are extracted from an image using SIFT,

SURF or ORB detector. Then, stable keypoints are sampled in order to compute de-

scriptors from local connections between these keypoints.

3.3.1 The proposed method for sampling stable keypoints

Sampling stable keypoints for building geometrical descriptors is a really important step.

This is due to the fact that the redundancy of sampled keypoints does not only make

geometrical descriptors less robust but also it becomes a burden for the indexing and the

retrieval processes. On the other hand, the lack of stable keypoints can lead to a lack

of necessary descriptors being built and lead to some incorrect geometrical descriptors.

From a set of keypoints extracted from an image, we aim at sampling keypoints

which are stable and repeatable under different image transformations such as similarity

transform, affine transform and perspective transform. Generally, the important prop-

erty of the stable keypoints is the response property that represents the quality of a

keypoint and can be used for prioritizing and sampling. According to the research in

[118], the minimum distance between two keypoints is also essential. When this distance

is very near, geometrical features for such keypoints were not discriminative. Thus, it

is necessary to set up a threshold for the minimum distance between keypoints in order

to avoid sampling dense keypoints.
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We propose to prioritize keypoints by selecting those with the strongest response on

the one hand, and to use a threshold on the distance between keypoints in order to sum-

marize a dense keypoints region by only the best ones using a selection process. Another

good property of this selection is that sampled keypoints are sparsely distributed.

On the one hand, the average repeatability of keypoints depends on textures of

image, image scale, detectors, capturing devices used and so on [119]. Instead of using a

threshold to define the maximum number of keypoints to retain, as in [118], we suggest

using a relative threshold (percentage) among the whole set of detected keypoints. This

strategy helps in avoiding insufficient sampled stable keypoints at a region where the

query image is captured. Especially it is also useful when database images are very large

like posters or maps.

In addition, sampled keypoints have to adapt the minimum distance threshold

between selected keypoints. To ensure the sampling is fair in database image as well

as query image adapted the minimum distance threshold, we propose computing the

distance from two keypoints in the unit coordinate. The transformation is done by

scaling-down keypoints coordinate relying on the size of the image. This strategy can

help the keypoint selection to be fairly when two images are different in the scale space.

After maximum the percentage threshold is set up, we can sample by local sampling

or global sampling:

The global strategy sampling sorts all keypoints in the descending order of keypoint

response firstly, and then one by one keypoint from the sorted keypoint list is sampled if

the distance from the keypoint candidate to its nearest neighbor in selected list is greater

than the minimum distance threshold otherwise it is discarded. This process will stop

when the number of selected keypoints is over the maximum keypoint threshold.

The local strategy used for sampling the set of detected keypoints relies on the

use of a quadtree approach where each leaf node contains the keypoints from a specific

subregion in the image. With this strategy, we can easily define the criteria to use from

which the partition will be stopped. This criteria could then be a minimum quantity of

keypoints, and/or a minimum region area, and/or a minimum keypoint density. This

process is done recursively by partitioning keypoints into region quadtree. When a leaf

node is returned, we similarly apply our sampling strategy with a smaller set of keypoints

that corresponds to those available in the sub-region of the image.



Chapter 3. Proposed features for Heterogeneous-Content Document Image Retrieval 57

3.3.2 The algorithm for building descriptors

The general idea to compute the proposed spatial descriptors from any keypoints detec-

tor is described in Algorithm 4.

Data: document image I

Result: Descriptors list dL

1 dL← null;

2 blur image I using a Gaussian filter;

3 keypointList ← extracted keypoints from I;

4 separate keypointList into separated scale levels keypointLists ;

5 for each scale level s do

6 keypointSampleds ← sample stable keypoints from keypointLists;

7 build descriptors ds from keypointSampleds;

8 add ds to dL;

9 end

Algorithm 4: Computation of descriptor from scale-space of keypoints.

The main challenges, when building a geometrical descriptor based on keypoint is

to select stable keypoints. stable keypoints have two properties: they are repeatable in

two different scales from the pyramid scale-space and they are stable towards rotation

transformations. The rotation challenge has been reported in [118, 120]. In order to

make detected keypoints more stable, even if the image is captured by cameras, we need

to reduce noise before the detection step. This is done in step 2 of Algorithm 4 using a

Gaussian filter.

In addition, in the context of queries captured from documents with heterogeneous

content, textures and resolutions of images may vary. Defining automatically a threshold

that is able to be used in all possible conditions is then utopian. In this case, the

descriptors could be built from a non-uniform pyramid scale in which the number of

inlier keypoints between two scale levels is sufficient enough for computing geometrical

descriptors (e.g. the method proposed in [118])

3.4 Conclusion

This section has presented the proposed descriptors (SRIF, PSRIF, DETRIF and SSKSRIF),

which are promising for camera-based heterogeneous-content document image retrieval.

These descriptors are built using some geometrical constraints between nearest keypoints
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around a selected keypoint. This can then be considered as a local shape descriptor of

keypoints extracted from document images.

The main advantage of DETRIF and SSKSRIF is that it can fix the way to combine

local shape description without using parameter thanks to Delaunay triangulation from a

set of keypoints in an image. As DETRIF and SSKSRIF are computed from quadrangles

formed by two adjacency triangles, this can lead to other matched structures of keypoints

around a keypoints to be ignored. By contrast, the combination of local shape description

by parameters from SRIF also has its flexibility. The n nearest neighbors define how

large region around a keypoints is examined, and each combination of m keypoint among

n is used to build a descriptor. In the case m = 4, this strategy can not only describe the

matched quadrangle in DETRIF, but also it can describe other matched structures that

are formed from m points. However, when the value of n is large, one can notice that

more and more combinations of m points can be examined, but the impact of unstable

keypoints is more and more significant and then produce descriptors spoiling the indexing

structure. Finally, PSRIF is an enhancement of SRIF with adding additional features in

order to enhance the discriminating power of SRIF even when the number of combined

keypoints becomes small.

Another advantage of the proposed descriptors is that they are not built at a pixel

level. They can then be computed in a very quickly in the case that the number of

keypoints is not too large. In addition, when the dimension of feature vectors is small,

they can be indexed efficiently by simply using a hash table structure without needing

to store them in the retrieval step. This indexing scheme can then deal with large scale

of database documents and it allows adding new documents into the database without

rebuilding the structure of the indexing system.

One main issue, that appears with all the possible camera-based information spot-

ting techniques, is related to the ability to compute a relevant descriptor (from the

indexing and retrieval point of view) when the number of connected components is be-

coming low in queries or when many keypoint extraction errors arise caused by camera’s

distortions (related to the resolution of the camera and the size of the text spotted). We

then decided to compute our descriptor using centroids of connected components. In

this specific case, results appear to be better only for documents composed of separated

connected components. One can explain this specificity by the fact that based on geo-

metrical constraints between nearest points around a keypoint, our method is impacted

by the stability of the keypoints extraction method on the one hand, and by the fact that

a minimal size of text has to be present in the document. When these two specificities

are gathered, performances are very good and this happens to be a frequent case when

dealing with daily life documents.
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Finally, in order to deal with the previous limitation, and in order to highlight

the genericity of the spatial representation of keypoints presented in our work, we pro-

posed to adapt this framework to apply geometric descriptor on well-knowns keypoints

detectors from the literature. This genericity rises some challenges when dealing with

heterogeneous-content camera-based document image retrieval and spotting. Firstly,

stable keypoint selection needs to be carried fairly from different scale level and suffi-

cient enough. Secondly, the method used to search sets of m keypoints in an area among

the n nearest neighbor keypoints is also important for the computation of the descriptor.

This can be explained by the fact the bigger n is, the more correct set of m points can

be found. However, more useless descriptors will be built from the extracted outliers,

which can generate noise in the indexing and retrieval process. Lastly, to be able to deal

with errors issuing from the keypoint detector step, we recommend using a not too large

value of m in the descriptor computation step. This is why we proposed to add another

kind of features (based on color, textures, ..) to enhance the discrimination power.



Chapter 4

Proposed indexing systems for

Camera-based Document Image

Retrieval and spotting systems

————————————————–

4.1 Introduction

The camera-based document image retrieval systems which can consider large-scale im-

ages need an efficient and accurate searching method. It can include billion of descriptors

when employing local features. Thus, the nearest neighbor search is one of the burdens

of computation and memory. In this case, linear searching is impossible to be applied

in a reasonable time. Therefore, approximate nearest neighbor search approaches need

to be developed. These approaches are also very notable in many other applications

[82] such as information retrieval [83–85], pattern recognition[86, 87], image and video

databases [88–90], databases and data mining [91], machine learning [92] etc.

The nearest neighbor search methods need to find systematic indexing approaches

which are sufficiently fast, accurate and scalable. Considering the speed criterion, the

fastest data structures actually used in the literature uses a structure that permits to

organize the descriptors based on tree data structure [94] or Locality Sensitive Hashing

[95]. Concerning scalability criterion, an indexing system should only require very little

memory to enable their use on standard hardware or even on hand-held devices. Finally,

accurate means that the indexing systems need to learn distance metrics so that they

are able to determine correct nearest neighbors of a query descriptor vector.

60
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To the best of our knowledge, no exact nearest neighbors algorithm is able to

deal with those three issues nowadays, and that is why approximate nearest neighbors

search algorithms were developed [4, 94, 98, 101, 103]. Approximate means they do

not provide the whole set of results, which results in a large speedup, with only minor

loss in the final accuracy. They have been widely discussed in the literature, and they

play an important role in real-time computer vision applications e.g. camera-based

document image retrieval and spotting systems. This chapter presents this category

of techniques and proposes a new indexing process for approximate nearest neighbors

search for computer vision purposes.

The motivation of this chapter is to build nearest neighbor search methods which

are fast, accurate and scalable without storing database local descriptors. Our proposed

indexing approach includes three methods. The first one is based on randomized clus-

tering trees. The second one relies on a hashing indexing and retrieval approaches for

the features proposed in Chapter 3 including SRIF, PSRIF, DETRIF and SSKSRIF.

The third one is based on an idea which extends the hashing based method for index-

ing multi-kinds of features from multi-layer of images when text-graphic separation is

needed and which permits to index and retrieve multi kinds of features from multi-layers

representation.

4.2 Randomized hierarchical trees

Our proposed approach is inspired by hierarchical tree proposed by Muja et al. [4,

100]. In [100], the authors propose the method using k-mean tree and Best-Bin-First

(BBF) searching method in order to index vector space descriptors. To construct the

hierarchical trees, k-means clustering is used for splitting the data points at each level

into K distinct regions. Recently, the other version called the priority search k-means

tree for indexing binary descriptor is proposed [4]. In this tree [4], each cluster center is

randomly chosen as one of the input data points instead of being based on the mean of

the cluster elements and BBF is applied as well in the searching phase.

Based on the ideas presented in these two works, we propose a new approach using

randomized hierarchical trees. To construct the hierarchical k-means tree, k-means

clustering is used for splitting the data points at each level into 2 distinct groups. Instead

of using the entire dimensions, only a small number of dimensions is chosen randomly

and they are combined with the dimension with the highest variance which are computed

along all dimensions and the maximum variance is selected. This combination is based on

a mixture of randomized kd-tree, hierarchical k-means tree and random forest. Random

forest is one of the most successful ensemble methods, proposed by Breiman [121]. It
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was firstly proposed to solve the classification problem. Later, it was extended to handle

regression and other applications. Recently, there have been a lot of applications which

employ the random forest as the basic data structure and indexing [122–124] in computer

vision fields.

The proposed randomized hierarchical trees perform a hierarchical decomposition

of the descriptor space by clustering the input dataset successively. In these trees, every

non-leaf node contains two cluster centers and the leaf nodes contain only one input point

which is able to be matched to a query data point. At the outset step, the randomized

hierarchical tree’s root node contains all data points in the dataset. The randomized

hierarchical tree is constructed by partitioning these data points at each level into two

distinct group using k-Means++ [125]. We choose this clustering method because k-

mean uses the random seeding which will inevitably merge clusters together, and the

algorithm will never be able to split them apart, while k-means++ avoids this problem

altogether via the careful seeding method. This partitioning of the trees is applied to

the data points in each group recursively. The recursive decomposition is stopped when

the group contains only one data point or all data points belong to the same cluster.

The algorithm to build the randomized hierarchical tree is described in Algorithm 5.

Data: feature dataset D in Rn

Result: hierarchical tree.

1 if |D| = 1 then

2 create a leaf node with pointId and documentId of the data point in D;

3 else

4 dhighestOfV ariance ←− seclect the highest variance dimension in D;

5 drandoms ←− select K dimension from n dimension randomly such that

drandoms 6= dhighestOfV ariance;

6 cluster the data points in the node into 2 clusters Cleft and Cright based on

drandoms and dhighestOfV ariance using Kmean++;

7 partition data points of the node into two child nodes based on distance to

each cluster as follow: if data point belongs to Cleft node it is partitioned

into leftchild node otherwise it is placed into rightchild node;

8 store Cleft in the leftchild node, Cright in the rightchild node ; /* along

with encode of selected dimensions */

9 recursively apply the algorithm to the data points in each cluster Cleft and

Cright;

10 end

Algorithm 5: Building the randomized hierarchical tree.
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The clustering process relies on the highest variance dimension and K dimensions

chosen randomly from n dimension (K << n). As a result, this process is carried out on

the data points of nodes whose dimensions are reduced to K+1 dimension. The highest

variance dimension makes data points in the node well-separating into two clusters while

K sampling dimensions make the partition in each tree different. Aiming to keep the

highest variance dimension not to be affected too much by K sampling dimensions, we

propose to calculate the Euclidean distance between two data points in a weighted way

for the highest variance dimension as follows.

We denote Q = (qh, qs1, ..., qsK) and P = (ph, ps1, ..., psK) as two data points; h

is highest variance dimension and s1..sK are K sampling dimensions. The weighted

Euclidean distance between two data points is defined as follows:

d(q, p) =
√
γ(qh − ph)2 + (qs1 − ps1)2...(qsk − psk)2, (4.1)

where γ = K. This equation is also used to calculate distances from a data/query point

to each cluster.

As can be seen from the Algorithm 5, the computation complexity of this process

can be expressed by the recurrence relation (as shown in Equation 4.2), where N is

the size of database descriptors and C(C << N) is the complexity for step 4 to 8 the

Algorithm 5(e.g number of iterations when clustering). As a result, the complexity of

the Algorithm 5 is O(NlogN) from solving the Equation 4.2 [126].

T (N) = 2T (N/2) + cN (4.2)

Searching for the approximate nearest neighbor of a query image can be seen as

a navigating process throughout the tree by validating different properties. Using the

query data point q, the idea is to put it at the root node of the tree and to traverse

it down following the nearest distance between q and the two cluster centroids at each

step of the tree. This process is done recursively until reaching a leaf node, i.e. the class
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of the point. The algorithm is described in Algorithm 6.

Data: hierarchical tree T, query feature point q

Result: pointId and documentId of the nearest neighbor of q

1 Starting from the root node of T ;

2 ambiguousCheck ←− 0 ;

3 while not reaching a leaf node do

4 dleft ←− distance from q to Cleft ;

5 dright ←−distance from q to Cright ;

6 distanceRatio ←− min(dleft,dright)/max(dleft,dright);

7 if (distanceRatio>ratioThreshold) then

8 ambiguousCheck++;

9 end

10 if (ambiguousCheck>threshold) then

11 return NULL ;

12 end

13 if (dleft < dright) then

14 traverse the left child node;

15 else

16 the right child node;

17 end

18 end

19 goodNearest ←− check distance of data point in the leaf node (p) with q;

20 if (goodNearest< goodNearestThreshold) then

21 return pointId and documentId from the leaf node;

22 else

23 return NULL;

24 end

Algorithm 6: Searching in the randomized hierarchical tree.

When traversing, we also employ a pruning rule based on a number of ambiguous

searches. The idea is based on distance ratio matching method presented in [50]. In

this method, matches are rejected if the ratio between the nearest neighbor distance and

the second nearest neighbor distance is greater than a threshold (e.g 0.6 or 0.8), which

helps to eliminate many false matches while discarding very little correct matches. In

our tree, a query point with ambiguousCheck >threshold, the searching process will be

eliminated with an empty result. This strategy can also help to speed up the searching

time.
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In order to reduce the memory which is used for storing descriptor database, the

leaf nodes of the tree only store information of pointId and documentId of descriptor

database. To ensure the nearest neighbor result is well-matched enough, data points

are encoded in two float numbers using Euclidean norm and generalized mean (using

equation 4.3 and equation 4.4) of a data point. To validate the best nearest neighbor

at the leaf node based, two these encoded values are used. Thus, the indexing system

only needs to store these two encoded values along with each database points instead

of storing all dimensions of them being used in kd-trees or k-means tree. This strategy

helps the system to save amount of memory with only minor loss in the final accuracy.

‖x‖ =
√
x21 + ...+ x2n, (4.3)

Mp(x) =
1

n

n∑
i=1

xi. (4.4)

Let q be query descriptor and p is database descriptor, goodNearest between p and q

is defined as in equation 4.5 when p and q are near together and can be the nearest

neighbor of each other.

goodNearestp,q = abs(‖p‖ − ‖q‖) ∗ abs(Mp(p)−Mp(q). (4.5)

In addition, we build N randomized hierarchical trees for traversing q throughout

these trees. If pointId and documentId returned results are the same from each tree,

it is considered as being the best nearest neighbor otherwise the best nearest one is

returned from the results of all the trees using equation 4.5 . Based on the experiments

we led, we observe that N=2 is good enough. From the Algorithm 6, the computation

complexity of searching process can be expressed by the recurrence relation (as shown

in Equation 4.6), where N is the size of database descriptors. Therefore, the complexity

of the Algorithm 6 is O(logN) from solving the Equation 4.6 [126].

T (N) = T (N/2) + 1 (4.6)

4.3 Hashing based indexing and retrieval approaches for

SRIF, PSRIF, DETRIF and SSKSRIF

In this section, we present the hashing-based indexing approach which is applied for

SRIF, PSRIF, DETRIF features. This approach is similar to LLAH [127], thus it is

carried out for LLAH testing as well. In this approach, feature vectors (called r) can be
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indexed and retrieved very quickly using a hash table without need of storing feature

vectors in the hash table [53], which make the system be efficient in terms of scalabil-

ity. Furthermore, this indexing scheme allows adding new documents into the database

without rebuilding all the database structure of indexes. Fig. 4.1 presents the hashing

strategy.

4.3.1 Storing in the hash table

For each document image in the database, one descriptor type among proposed descrip-

tors (SRIF, PSRIF, DETRIF and SSKSRIF) is extracted. One of the main issues when

dealing with large numbers of feature vectors is the lack of what makes features of the

descriptor more distinctive when both the fractional part and the integer part have been

normalized. Similar to [66], our indexing system relies on the use of integer feature

vectors r, that are discretized and normalized by Equation 4.7.

ri = trunc(ri) ∗ 2 + round(ri − trunc(ri)), (4.7)

In order to apply the indexing and retrieval with a hash table, a hash function is defined

as follows [66]:

Hindex = (

d−1∑
i=0

riq
i) mod Hsize, (4.8)

where d is the number of dimensions of vector r, q is the level of quantization

constant (e.g. q = 17), Hsize is the size of hash table.

The use of this technique is an incremental process. If a user wants to add a doc-

ument into the database, the system firstly extracts keypoints. Then for each keypoint,

descriptors are computed and indexed.

Figure 4.1: The hash table structure.
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4.3.2 Retrieval

Starting from a query image captured with a camera, keypoints are firstly extracted (like

in the indexing phase). Then for each keypoint, all descriptor vectors are computed and

looked up in the indexing system, the hash table (using the hash function, equation

4.8), in order to get the list of document IDs related to each keypoint (Figures 4.1). In

the next step, for each document in this retrieval result list, the number of votes in the

voting table corresponding to each list element is incremented.

In addition, to discard confusion votes in a document, only the first vote is kept for

each query’s point and for each document’s point. This makes sure that each query’s

point only matches with one document’s points and vice versa. After getting the voting

result, the top-t documents with the largest number of votes are selected as candidate

results.

4.4 Extended hashing based method for indexing multi-

kinds of features from multi-layer of images

As presented in chapter 2 and chapter 3 about local features in camera-based document

image spotting and retrieval systems, some of them work well with graphical documents

while the others work well with textual documents. In practice, documents may contain

heterogeneous-information such as texts, symbols, logos, pictures, signatures, etc.

In this section, we present a system which can be applied for heterogeneous-content

documents using text-graphic separation and combination of various features. The in-

dexing and retrieval task is carried out with a homogeneous hash table, which is a

combination of two hashing based methods from [127] and [110].

4.4.1 Text-graphic separation

Text/graphics separation is a process which consists in segmenting a document image

into two layers, one containing text and the other containing graphics. Many different

approaches have been proposed in order to tackle this problem.

Dhar and Chanda [128] introduced a method for the extraction and the recognition

of symbol features from topographic maps. The method commences by separating a

map into different color layers and then it recognizes the features in each layer on the

basis of symbol-specific geometrical and morphological attributes.
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Furthermore, connected component (CC) analysis has been used for this separation.

For instance, Karl Tombre [129] proposed a size-histogram analysis from the bounding

boxes of all CCs. By a correct threshold selection, obtained dynamically from the

histogram, large graphical components are discarded, and smaller graphics and text

components are kept.

Hohn [130] also used density of CC, more specifically a ratio between the area of the

convex hull and the number of pixels in CC. To remove the dashed and dotted lines, the

CCs are filtered by their density if their density is lower than a threshold. Furthermore,

they used a diameter ratio that corresponds to the ratio between the minimum diameter

value and the maximum diameter value among all the connected components. They

also used a combined threshold region for the density and the ratio of maximum and

minimum diameter, extended by an analysis of neighboring components to recognize

text with large variation in style, size and orientations.

4.4.2 The architecture of the extended hashing based system

The proposed system includes 3 main steps: text/graphics separation, feature extraction

and indexing/retrieval. An example architecture is shown in Figure 4.2.

Text/graphic separation for our dataset:

Our dataset, called CartoDialect dataset, includes French linguistic maps, and is

composed of 400 images with a resolution of 9800 x 11768 pixels. Each map contains

the phonetic symbols which describe the pronunciation of a word in different regions

of France. All maps contain the same graphical elements which are region borders.

Moreover, text density in each map is very sparse.

In both the indexing phase and the retrieval phase, the input document image is

separated into 2 layers. For complex map data, the linguistic maps of France, attributes

of CC are used for separating the image into 2 layers. Layer 1 contains CCs related to

texts, and layer 2 contains CCs related to graphics. It can be seen from Fig 4.2.

In order to extract word connected components(CCs), the image is converted into

binary image firstly, using the Otsu’s method [131] or the adaptive thresholding [132].

Aiming to makes CCs belonging to a word touch together, then, the binary image is

blurred using the Gaussian filter whose parameters are determined based on an estimated

character size (the square root of a mode value of areas of CCs). Then, an adaptive-

threshold is applied on the blurred image in order to determine boundary contours of

word CCs . Finally, all word CCs are extracted. Consequently, dashed and dotted lines



Chapter 4. Proposed indexing systems 69

Figure 4.2: The architecture of a hashing based system for indexing multi-kinds of
features from multi-layer of images.

are also joined to large CCs or long CCs which is a base for separating.

For classifying CCs, we use the attributes of CC, such as the area, the bounding box

area and the maximum diameter so that large CCs and long CCs can be extracted into

the graphics layer ( see Fig 4.5 for an example). Those whose attributes are bigger than

thresholds are considered to be large CCs. The thresholds are determined by choosing

mean value multiplied by 2 (for each attribute) because almost CCs with attributes
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Figure 4.3: An example query image.

belong to [0...2 ∗mean] are text and noise. Thus, very small CCs which are noise need

to be discarded. Lastly, the rest of CCs are extracted into text layer (Fig 4.4 illustrates

the text layer extraction for an example query image).

Figure 4.4: An example of text layer separation result.

Feature extraction:

From the text layer, textual feature vectors are extracted using one of the descrip-

tors proposed in Chapter 3. These features are computed from spatial organization of

connected components. From graphics layer, we extract feature vectors which can deal

with graphical elements by capturing pixels level from image patches e.g. SIFT [50] or

SURF [51].
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Figure 4.5: An example of graphic layer separation result.

4.4.3 Indexing phase

The indexing phase relies on the computation of a dedicated hash function which can

hash each features vector into each integer value for determining the storing bucket

position in the hash table. Firstly, all maps in the database need to be separated into

text layer and graphic layer and then each layer is extracted with corresponding features

in order to be indexed in a hash table via a hash function. This process is carried out

off-line.

Aiming at reducing the required amount of memory, feature vectors are not stored

in the hash table, only point IDs where key points are extracted need to be stored.

Because one hash table is used for indexing both textual descriptors as well graphic

descriptors, feature type needs to be stored along with document ID and point ID where

the feature vector is extracted. The structure of the hash table is shown in Fig 4.6.

Figure 4.6: Structure of hash table.



Chapter 4. Proposed indexing systems 72

From text layers, textual feature vectors are extracted and indexed using a hash

function (Eq 4.10). From graphics layers, graphical features are extracted using and

trained PCA space firstly. Then they are projected into PCA space to obtain K dimen-

sion vectors u (e.g. K = 36), which does not only help to reduce dimension but also to

be hashed by the hash function straightforwardly by applying binarization.

Binary vector r is defined by using equation (4.9). It is noted that this transforma-

tion is only applied for float-type descriptors e.g. SIFT or SURF.

ri =

{
1 if ui ≥ 0

0 otherwise.
(4.9)

The hash function (Eq. 4.10) is also applied in order to index r. The index Hindex

of the hash table is calculated by the following hash function (Eq. 4.10):

Hindex = (

n−1∑
i=0

ri.k
i) mod Hsize, (4.10)

where n is the number of dimensions of r, k is the level of quantization, and Hsize is the

size of hash table. In the case that r is a binary vector, k is set equal to 2, and the hash

function is the way to convert r into decimal number.

4.4.4 Retrieval phase

The retrieval phase is outlined in Fig 4.2, in which the query image also needs to be

separated into two layers: text layer and graphic layer firstly. And then, from each layer

is extracted corresponding textual features and/or graphical features on which the hash

function (Eq. 4.10) is then applied to search for nearest neighbors stored in the hash

table.

In addition, for the graphical layer, each feature vector’s dimension needs to be

reduced by projecting into PCA space and converted into binary vector similar to the

indexing phase. Indeed, this binarization stage is required in order to ensure that two

nearest feature vectors in metric space will get near distance in hamming space. However,

two nearest feature vectors may be a little different from binary code and hash index as

well.

To solve this problem, each converted binary vector needs to be expanded into

several binary vectors in order to find its nearest neighbors as follows [110]. Let e ? 0

be a tolerant threshold, the idea is to change the way to binary feature dimensions that

are less then e by bit flipping. From reduced dimension feature vector u, if |ui| ≤ e,
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where e ? 0 is a tolerant threshold, then we use not only the bit vector with ri but

also with 1 − ri. Firstly, no bit flip is searched to obtain the result. Next, one-bit flip

is applied, and its value is increased up to b at the final step. This strategy is applied

to a limit b dimensions which satisfy the tolerance e. If the number of dimensions that

satisfy the tolerance e exceeds the limit b, the strategy stops.

However, this query binary vector expansion strategy can lead to confusion voting

problem because one query vector descriptor has many matched vectors in descriptor

database when retrieving it. To tackle this issue, we propose a method that can select

only one good nearest neighbor of the query vector from a list of potential nearest

neighbor vectors. In our method, data points also need to be encoded in two float

numbers using Euclidean norm and generalized mean (using equation 4.3 and equation

4.4) of a data point. The distance between two vector descriptors q and p is measured

by using equation 4.5. From the list of potential nearest neighbor vectors of the query

descriptor, if there is only one element in the list we select this element, otherwise ratio

between two nearest neighbors of each query descriptor is considered. The best nearest

neighbor is considered to be correct and taken into account for the voting process if the

ratio between the nearest and the second nearest descriptor is equal or less than the

threshold (0.64).

For the voting process, when searching in the hash table, each feature type only

votes for PointID and DocumentID that belongs the same feature type of query de-

scriptor. Finally, the document with a majority of votes is returned as the result.

4.5 Conclusion

We have presented three proposed indexing approaches that can be applied for camera-

based document image retrieval, spotting systems indexing and local descriptors re-

trieval. All the methods can be employed without storing local descriptors in the mem-

ory for saving memory and speeding up retrieval time by discarding distance validating.

Randomized clustering trees are built by recursively partitioning data point at

each node using hierarchical clustering that selects K dimension randomly (K <<total

of dimension n e.g K <=
√
n) combining with the highest variance dimension. This

strategy helps the system to reduce clustering processing time as well as the memory for

storing the tree structures compared with k-mean tree which uses entire of dimension.

Similar to random forest [121], the strategy sampling K dimension randomly applied at

each node of the tree can deal with high dimension data without reducing dimension.

However, each tree is split recursively until the leaf nodes contain only one data point,
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which lead to the fact that depth of the proposed tree may be larger than the k-mean

tree’s depth.

By using a simple hash table and robust hash function, the hashing index system

for SRIF, PSRIF and DETRIF is fast, accurate and scalable. Furthermore, it allows

adding new documents into the database without rebuilding all the database structure

of indexes.

Finally, multi-features indexing system is a composite between the proposed hash-

ing index and the hash-based approach for floating value descriptors. Float-type descrip-

tors need to be transformed into binary vectors by using PCA and median threshold

value for each dimension. In the retrieval phase, each query descriptor needs to be ex-

panded into several approximate binary vectors in order to search its nearest neighbors.

This solution can lead to the result of many approximate nearest neighbors. Further-

more, transforming feature vector into binary bits after reducing dimension leads to the

fact that many data points have the same binary vector although they are not near-

est together. Consequently, the system can get many incorrect matching results in the

retrieval phase but it can get full good matching points.



Chapter 5

Datasets and experimental results

5.1 Introduction

In this chapter, we present the datasets and the ground-truth that we have generated

and which were used for the evaluation of our approaches. The proposed datasets were

designed to evaluate the accuracy of the camera-based information spotting systems

presented in this thesis at two different levels: the feature descriptors part and the

indexing part. To validate our proposed approaches as well as to compare them with

the state of the art techniques, we evaluated both retrieval and spotting accuracies on the

one hand, and the retrieval time needed on the other hand. To the best of our knowledge,

we can not find some publicly available datasets for camera-based information spotting

in heterogeneous-content document images in the literature, and we thus decided to

create a new dataset which has been made freely and publicly available for the scientific

community. This dataset is comprised of three subparts, each of them being dedicated to

a specific kind of information: The wikibook dataset represents the images with textual

content only; The cartodialect dataset1 represents images with graphical content mainly;

The tobacco dataset contains text plus graphical content [133, 134].

5.2 Dataset and Ground-truth Generation

This section provides a detailed insight on the three datasets, their ground-truth and

the methodoly used for capturing the videos.

1http://navidomass.univ-lr.fr/SRIFDataset/

75
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5.2.1 Datasets

For the WikiBook dataset, we chose a book named LaTex from wikibooks2 including

700 A4-sized pages, which were converted into JPEG format at 300 dpi resolution.

The CartoDialect dataset includes French linguistic maps, and is composed 400

images with a resolution of 9800 x 11768 pixels. Each map contains phonetic symbols

which describe the pronunciation of a word in different regions of France. All maps

contain the same graphical elements which are region borders, while the text density

varies widely from map to map. The idea is then to evaluate the proposed methods on

documents containing mainly graphical parts.

Finally, the Tobacco dataset includes 1291 documents containing heterogeneous-

content such as text, handwriting, logos, tables and signatures.

The table 5.1 gives an overview of the dataset characteristics that have been gen-

erated.

Table 5.1: Dataset details

Dataset name # of documents Resolution # of videos # of tested frames
WikiBook 700 2480 x 3508 1630 24450
CartoDialect 400 9800 x 11768 2400 36000
Tobacco 1291 1696 x 2689 3191 47865

5.2.2 Ground truth generation

Camera-based document image retrieval and spotting systems consist in providing the

focused portion of images from the learning database that match the best to the query.

In these systems, the query generally corresponds to a subpart of a document which is

captured by a camera. As mentioned earlier, to the best of our knowledge, no public

dataset following those requirements is publicly available. We then decided to create one

with its ground truth. Ground truth is a really important point as it allows automatic

verification of the liability of a system and its accuracy.

Concerning our datasets, the ground truth has been built as follows. The document

in WikiBook and Tobacco datasets have been divided into four regions (top left, top

right, bottom left and bottom right) as presented in figure 5.1. As documents from the

CartoDialect dataset are of a larger size of 9800 x 11768 pixels, they were divided into

6 regions (top left, top right, middle left, middle right, bottom left and bottom right)

2http://upload.wikimedia.org/wikipedia/commons/2/2d/LaTeX.pdf
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(see figure 5.2). These regions have been used for validating the correct spotting in the

retrieval phase (to ensure that the system being evaluated is not only retrieving the

good document, but is also looking at the good location.

Starting from those partitions, one video was recorded at each region (excepted

for blank regions). Documents were captured without rotations. The IPEVO VZ-1 HD

document camera 3 was used for recording the videos and it was fixed at about 15cm

above the surface of the captured document with a resolution of 1024x768.

For each video in each dataset, we selected the first 15 frames of the video. To

validate the robustness of the systems towards rotation issues, we also rotated each

frame by an angle of 0, 30, 60, 90, and 180 degrees. The number of captured videos is

shown in Table 5.1. As many pages in the WikiBook dataset have large blank areas or

with not enough text, the number of recorded videos in this dataset does not correspond

to the number of frames multiplied by 4. These datasets and their ground truths are

publicly available for academic research purposes4.

Figure 5.1: Captured video from a document at four regions, the overlap between
spotting region result and captured region from a query image in WikiBook dataset.

3http://www.ipevo.com/prods/ipevo-vz-1-hd-vga-usb-document-camera
4The dataset can be downloaded at http://navidomass.univ-lr.fr/SRIFDataset/
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Figure 5.2: Captured video from a document at six regions, the overlap between
spotting region result and captured region from a query image in CartoDialect dataset.

5.3 Experimental and Evaluation Protocol

Based on the dataset and ground-truth we designed, we decided to set an experimental

and evaluation protocol in order to make our results as objective as possible. In the

framework of a camera-based information spotting technologies, we decided to measure

two main criteria including the retrieval accuracy and the time needed to get the answer.

All methods were tested at the video level which means that we evaluated the retrieval

accuracy for each video and not for each frame of the videos. We then decided to extract

the first 15 frames, and to rotate them before the retrieval phase for testing the rotation

invariance of systems. If the number of correct retrieved frames was greater than 50%,

the video was considered as successful. Otherwise, it was considered as failed. The

choice of this threshold was defined in order to ensure that at least the majority of the

video frames was right. Finally, the videos retrieval accuracy is computed using the

ratio between the number of correctly retrieved videos and the total number of videos

for each dataset.
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Even if the global evaluation was made at a video level, it relies on the fact to

be able to evaluate if a frame was correctly retrieved as well as correct spotting. This

leads to saying that it must be made clear whether or not there is a correct perspective

transformation between query keypoints and each document keypoints.

To validate the correctness of a region, we firstly applied RANSAC [135] so that we

can obtain the spotted region of query image in the document that has been identified in

the previous step, through perspective transformation. Next, the overlap ratio between

the ground-truthed region (where query image was captured) and the spotted region

is computed. The frame is considered as a correct retrieved result if the overlapping

between two regions is higher than 60% of the area of the spotted region. Otherwise,

it is considered as an incorrect result. An example of the overlap region validation is

shown in Fig. 5.1.

5.4 Experimental results of proposed descriptors compared

with LLAH descriptors

In order to evaluate proposed descriptors and compare them to LLAH, we have tested

3 SRIF-based methods, DETRIF, SSKSRIF, and 3 LLAH-based methods as shown in

Table 5.2. All of them were tested on spatial organization of connected components and

spatial space of SURF keypoints.

In addition, the hashing based indexing and retrieval approaches (presented in 4.3)

was employed. The parameters were set to Hsize = 1017, t = 5 for selecting top t of

best candidate retrieval results, α = 60 for validating the overlap spotting result. We

implemented our method and LLAH on a 64 GB RAM Linux machine running in C

extended C++ environment with a single thread.

Table 5.2: Tested Methods

Method Description

SRIF SRIF using distance based scale & rotation ratios as invariant
SRIF-CC SRIF using ratio of CC’s areas as invariant
SRIF-Combined SRIF Combined distance ratio and area of CC ratio

DETRIF Delaunay Triangulation-based Features
SSKSRIF Scale Rotation Feature descriptor based on Spatial Space of Keypoints

LLAH-Affine LLAH using affine invariant
LLAH-Cross-Ratio LLAH using cross ratio invariant
LLAH-Similarity LLAH using similarity invariant

For SRIF, we applied a maximum ratio selection from the distance ratio and

the CC’s area ratio. Besides, we also applied the square root of these ratios e.g.
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θij .sqrt(Lmaxij ) or θij .sqrt(Smaxij ) in order to make SRIF descriptors more tolerant

to keypoint extraction’s errors.

5.4.1 Computation on spatial organization of connected components

For these experiments, all the tested methods shared the same keypoint extraction ap-

proach. For Wikibook and Tobacco dataset, we extracted centroids of character con-

nected components as keypoints. Because the texts in CartoDialect dataset are phonetic

symbols, letter connected components are not clearly separated. So, we extracted cen-

troids of word connected components as keypoints in this dataset. In addition, proposed

text/graphics separation was used before extracting connected components (CC). This

method uses attributes of connected components for filtering out big CCs as graphics

elements which are discarded.

All SRIF-based methods and LLAH-based methods were tested with and without

adding additional features by ranking CC based on their area [69]. The two ways of or-

der of keypoints are also tested. The first one uses a clockwise ordering in the browsing

of keypoints around a selected point with choosing the starting poin, and the second

one uses the nearest neighbor points order without choosing the starting point. Fur-

thermore, they were tested with additional features by using Polygon-shape-based Scale

and Rotation Invariant Features (as proposed in 3.2.2).

5.4.1.1 WikiBook dataset’s experimental result

The Table 5.3 shows that the retrieval accuracy of SRIF and LLAH-Similarity were the

highest in both approaches (applying clockwise order and NN order) with approximately

94% of accuracy. The second highest retrieval accuracy was SRIF-Combined with a value

of 86.5%, while the retrieval accuracy of LLAH-Cross-Ratio was the lowest one. The

best mean retrieval time was obtained with the SRIF-Combined with 0.17 second/query.

As shown in Table 5.4, when applying PSRIF as extension features, SRIF-based

methods and LLAH-based methods got better results in terms of videos accuracy re-

trieval. Besides, this extension could speed-up retrieval time of some methods including

LLAH-Affine, LLAH-Cross-Ratio.
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Table 5.3: Experimental results on WikiBook dataset based on spatial space of word
connected components

Method Order n m Add
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

LLAH-
Affine

NN 8 6 y 40.0% 40.3% 37.6% 39.3% 39.0% 39.2% 0.60

LLAH-
Cross-Ratio

NN 9 7 y 5.9% 4.9% 4.1% 5.8% 6.3% 5.4% 1.43

LLAH-
Similarity

NN 8 6 y 96.1% 89.3% 88.4% 96.1% 96.3% 93.2% 0.40

SRIF NN 8 6 y 96.4% 90.1% 88.7% 96.1% 96.4% 93.5% 0.32
SRIF-CC NN 8 6 y 74.3% 66.7% 62.3% 73.8% 74.4% 70.3% 0.32
SRIF-
Combined

NN 6 5 n 83.2% 75.0% 73.1% 82.8% 83.1% 79.4% 0.17

LLAH-
Affine

Clockwise 8 6 y 48.7% 37.6% 33.3% 48.4% 47.3% 43.1% 0.73

LLAH-
Cross-Ratio

Clockwise 9 7 y 5.0% 2.0% 4.0% 5.1% 5.2% 4.3% 1.84

LLAH-
Similarity

Clockwise 8 6 y 97.7% 91.4% 90.3% 97.6% 97.7% 94.9% 0.57

SRIF Clockwise 8 6 y 97.7% 91.5% 90.2% 97.6% 97.7% 94.9% 0.37
SRIF-CC Clockwise 8 6 y 76.5% 70.1% 64.6% 76.5% 77.2% 73.0% 0.39
SRIF-
Combined

Clockwise 6 5 n 90.4% 81.2% 79.7% 90.7% 90.7% 86.5% 0.17

DETRIF 77.5% 71.4% 71.5% 73.4% 71.5% 73.6% 0.37
SSKSRIF 88.2% 86.5% 86.5% 86.9% 87.6% 87.1% 0.35

Table 5.4: Experimental results on WikiBook dataset by applying PSRIF as extension
features

Method Order n m Add
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

LLAH-
Affine

Clockwise 7 5 PSRIF 97.1% 89.8% 88.6% 96.8% 96.9% 93.8% 0.5

LLAH-
Cross-Ratio

Clockwise 8 6 PSRIF 98.2% 92.4% 92.1% 98.3% 98.2% 95.8% 0.9

LLAH-
Similarity

Clockwise 7 5 PSRIF 98.7% 96.0% 95.5% 98.8% 98.5% 97.5% 0.5

SRIF Clockwise 7 5 PSRIF 98.8% 96.1% 95.6% 98.8% 98.7% 97.6% 0.45
SRIF-CC Clockwise 7 5 PSRIF 97.8% 93.4% 92.5% 97.9% 97.8% 95.8% 0.4
SRIF-
Combined

Clockwise 8 6 PSRIF 97.1% 94.3% 94.1% 97.3% 97.4% 96.04%0.4
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5.4.1.2 CartoDialect dataset’s experimental results

It can be seen from the Table 5.5 that the best retrieval accuracy methods were SRIF

and LLAH-Similarity in both approaches (applying clockwise order and NN order) with

approximately 96% of accuracy. The second highest retrieval accuracy was LLAH-Affine

with 92.6 % by applying NN order, which was approximately 11 % higher than with the

clockwise order. The retrieval accuracy of LLAH-Cross-Ratio was the lowest. The best

retrieval time was obtained by SRIF-Combined with approximately 0.24 second/query.

Table 5.5: The experimental results on CartoDialect dataset based on spatial space
of word connected components .

Method Order n m Add
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

LLAH-
Affine

NN 8 6 n 93.7% 91.6% 90.1% 94.1% 93.6% 92.6% 0.42

LLAH-
Cross-Ratio

NN 9 7 y 36.0% 29.0% 28.0% 36.0% 36.0% 33.0% 0.71

LLAH-
Similarity

NN 8 6 n 97.0% 95.9% 94.9% 96.8% 96.8% 96.3% 0.36

SRIF NN 8 6 n 97.5% 96.2% 95.2% 97.5% 97.4% 96.8% 0.33
SRIF-CC NN 8 6 n 79.1% 46.4% 45.9% 78.7% 79.2% 65.9% 0.30
SRIF-
Combined

NN 7 5 n 89.6% 74.6% 72.6% 90.0% 89.5% 83.3% 0.24

LLAH-
Affine

Clockwise 8 6 n 89.8% 87.0% 85.3% 89.9% 90.0% 88.4% 0.50

LLAH-
Cross-Ratio

Clockwise 9 7 y 30.0% 23.0% 22.0% 30.0% 30.0% 27.0% 1.06

LLAH-
Similarity

Clockwise 8 6 n 96.7% 95.6% 95.5% 96.9% 96.7% 96.3% 0.45

SRIF Clockwise 8 6 n 96.8% 95.6% 95.7% 96.9% 96.8% 96.4% 0.33
SRIF-CC Clockwise 8 6 n 69.2% 36.5% 36.7% 69.4% 69.2% 56.2% 0.39
SRIF-
Combined

Clockwise 7 5 n 88.5% 72.9% 71.1% 88.2% 88.5% 81.8% 0.26

DETRIF 95.8% 94.5% 94.5% 94.2% 93.6% 94.5% 0.38
SSKSRIF 97.5% 97.2% 96.5% 97.6% 96.8% 97.1% 0.37

We can see in Table 5.6 that when applying PSRIF as extension features, SRIF-

based methods and LLAH-based methods got better results in terms of videos accuracy

retrieval and retrieval times of them were faster.

5.4.1.3 Tobacco dataset’s experimental results

The results from this dataset are shown in the Table 5.7. It can be seen that retrieval

accuracy of SRIF was the highest one in both approaches applying clockwise order

and NN order, and SRIF applying clockwise order obtained an average accuracy of
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Table 5.6: Experimental results on CartoDialect dataset by applying PSRIF as ex-
tension features

Method Order n m Add
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

LLAH-
Affine

Clockwise 7 5 PSRIF 95.2% 90.2% 88.3% 95.2% 95.0% 92.7% 0.31

LLAH-
Cross-Ratio

Clockwise 8 6 PSRIF 94.3% 90.0% 88.5% 94.3% 94.2% 92.2% 0.5

LLAH-
Similarity

Clockwise 7 5 PSRIF 97.7% 96.2% 95.8% 97.1% 97.2% 96.8% 0.27

SRIF Clockwise 6 4 PSRIF 98.2% 97.5% 96.8% 98.3% 98.3% 97.8% 0.27
SRIF-CC Clockwise 6 4 PSRIF 96.9% 92.6% 92.5% 96.7% 96.9% 95.1% 0.2
SRIF-
Combined

Clockwise 6 4 PSRIF 97.0% 94.0% 93.1% 97.2% 97.1% 95.6% 0.2

86.8%. The second highest retrieval accuracy was obtained with LLAH-Similarity, which

was a little lower than SRIF. Retrieval accuracy of SRIF-CC was higher than LLAH-

Affine, and the retrieval accuracy of LLAH-Cross-Ratio was the lowest. Finally, the best

retrieval time was obtained by SRIF-Combined with an average time consumption of

0.26 second/query.

Table 5.7: The experimental results on Tobacco dataset based on spatial space of
word connected components.

Method Order n m Add
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

LLAH-
Affine

NN 8 6 y 70.6% 56.2% 56.4% 70.3% 70.6% 64.8% 0.75

LLAH-
Cross-Ratio

NN 9 7 y 16.5% 12.1% 11.6% 16.3% 16.4% 14.6% 1.58

LLAH-
Similarity

NN 8 6 y 87.8% 81.5% 81.6% 88.2% 87.9% 85.4% 0.52

SRIF NN 8 6 y 88.0% 81.8% 81.9% 88.0% 88.2% 85.6% 0.37
SRIF-CC NN 8 6 y 75.5% 64.2% 64.1% 75.4% 75.3% 70.9% 0.43
SRIF-
Combined

NN 7 6 n 71.2% 55.6% 56.0% 71.4% 71.1% 65.1% 0.23

LLAH-
Affine

Clockwise 8 6 y 66.8% 44.4% 45.2% 66.5% 66.4% 57.9% 0.87

LLAH-
Cross-Ratio

Clockwise 9 7 y 14.1% 10.5% 10.1% 14.2% 14.1% 12.6% 2.10

LLAH-
Similarity

Clockwise 8 6 y 86.8% 80.1% 79.8% 86.8% 86.6% 84.0% 0.68

SRIF Clockwise 8 6 y 89.4% 83.0% 82.9% 89.6% 89.3% 86.8% 0.50
SRIF-CC Clockwise 8 6 y 78.9% 68.0% 67.6% 78.5% 78.6% 74.3% 0.45
SRIF-
Combined

Clockwise 7 6 n 69.9% 53.5% 53.7% 69.1% 69.0% 63.0% 0.25

DETRIF 70.8% 60.5% 60.5% 65.2% 61.6% 63.7% 0.38
SSKSRIF 80.2% 72.9% 70.0% 75.0% 71.7% 73.9% 0.37
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We can see in Table 5.8, when applying PSRIF as extension features, LLAH-Affine,

LLAH-Cross-Ratio,SRIF-CC and SRIF-Combined got better results in terms of videos

accuracy retrieval, retrieval time of them were also faster. Especially, videos accuracy

retrieval of LLAH-Cross-Ratio increased from the lowest one to the best one.

Table 5.8: Experimental results on Tobacco dataset by applying PSRIF as extension
features

Method Order n m Add
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

LLAH-
Affine

Clockwise 7 5 PSRIF 88.5% 77.3% 77.6% 88.6% 88.6% 84.1% 0.7

LLAH-
Cross-Ratio

Clockwise 7 5 PSRIF 90.1% 79.8% 80.4% 90.2% 90.4% 86.1% 1.0

LLAH-
Similarity

Clockwise 8 6 PSRIF 87.1% 79.1% 79.0% 87.1% 87.0% 83.8% 0.6

SRIF Clockwise 7 5 PSRIF 88.1% 79.0% 78.9% 88.0% 87.7% 84.3% 0.5
SRIF-CC Clockwise 8 6 PSRIF 82.4% 66.6% 65.5% 82.3% 82.3% 75.8% 0.7
SRIF-
Combined

Clockwise 6 4 PSRIF 70.8% 61.1% 60.7% 70.6% 70.5% 66.7% 0.4

5.4.1.4 Discussion

It is clear that SRIF using distance ratio can get better accuracy than LLAH-Affine

and LLAH-Cross-Ratio on the three datasets in the case they are not combined with

PSRIF. This demonstrates that using invariant values from each 2 constraint points

(in SRIF) is better than from 4, 5 constraint points(in LLAH). This is due to the fact

that keypoint extraction errors always occur by camera’s effects and the various noises

related to camera-capture of document images. As a result, the more constraint points

we combine the more errors keypoints we can have. This leads to the result that there

are more incorrect descriptors when the number of constraint points is large.

Moreover, LLAH-Affine uses invariants which correspond to an area-ratio from two

triangles, and this is the reason why it does not work well with keypoints extracted

from centroids of letter CCs. In this specific case, 3 points can easily be aligned (e.g.

three letters from a word). That is why the accuracy increases when testing with the

CartoDialect dataset.

Regarding the invariance towards rotation effects, we observed that the automatic

rotation did not affect much the retrieval accuracy results when the keypoints are ex-

tracted from word CCs or when frames are rotated by an angle of 90 and 180 degrees.

It only affects the retrieval accuracy results when keypoints are extracted from letter

CCs or when frames are rotated by other angles. This can be explained by the fact that
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when rotating images, it becomes more difficult to make letter connected components

separated, which leads to keypoint extraction errors. The drawback of features based

Figure 5.3: Insufficient text query examples.

on geometrical constraints between nearest points around a keypoint like LLAH, SRIF

or DETRIF is that they need a stable keypoint extractor and enough text in order to

work correctly. There are many queries in which the number of word CCs is not enough,

which is the reason for which the global performances (retrieval accuracy) of all methods

get closed to 100% (two example images are shown in Fig. 5.3).

Both SRIF and LLAH are based on geometrical constraints between m nearest

points around a keypoint and use combinations of m points among n points to cope

with keypoint extraction errors caused by the challenging conditions of camera capture.

The bigger m is, the more discriminating feature vectors are. However, there are more

erroneous keypoints, in this case, and vectors’ dimension is higher. Therefore, instead

of increasing the value of m, extension features are used. It makes feature vectors more

discriminating and makes the retrieval system work better when the amount of text is

small. In addition, time and scalability of the system is more efficient but computational

complexity does not increase.

PSRIF extension features got much better results (accuracy performance) than the

ranking of CCs based extension features. This can be explained by the fact that the

polygons formed from the keypoints get a better discriminating power. It helps the

extension features to better discriminate keypoints and then reduce the confusion.

One can also see from the results that LLAH and SRIF got a higher accuracy retrieval

score with the proposed extension of features although they were computed with the

small number of nearest points (4 or 5 points) from the neighborhood of the keypoints.

This is very useful when the regions captured by the query images are very small, like

for instance for queries captured using a camera pens.



Chapter 5. Datasets and experimental results 86

Another characteristic that was observed based on the experimental results is that

LLAH-Affine and LLAH-Cross-Ratio descriptors enhance their discriminative power

when they are combined with PSRIF extension features. This results from the fact

that these features are computed using the ratio between the areas of the triangles and

they are not relying on the center keypoint. We can then come to the conclusion that

in the case where many errors occur at the keypoint detector stage, these descriptors

become more discriminative when the number of surrounding keypoints is large enough.

However, these two descriptors need additional features when the number of surrounding

keypoints becomes small and the discrimination power reduces.

Although DETRIF and SSKSRIF need more time to build the Delaunay triangula-

tion structure compared to LLAH and SRIF, they still remain faster when the number

of feature points is not too large in each query. This can be explained by the fact that

the Delaunay triangulation of a set S of N points in the plane can be computed in

O(NlogN). Then, if S and N are points in the plane, if they are not all collinears,

and if K denotes the number of points in S that lie on the boundary of the convex hull

of S. Then any triangulation of P has 2N − 2 − K triangles and 3N − 3 − K edges.

The computational complexity of building DETRIF descriptors depends on the time to

find the adjacency vertexes and triangle. So, the computational complexity of building

DETRIF descriptors is O(N) which is similar to the computational complexity of LLAH.

5.4.2 Computation on spatial organization of dedicated keypoints

In this section, we present the experimental results of PSRIF, SSKSRIF methods and

LLAH-based methods computed on keypoints obtained using the SURF, SIFT or ORB

keypoints detectors on the three datasets we have created. Furthermore, all LLAH-based

methods were employed using additional features proposed in Section 3.2.2 (Polygon-

shape-based Scale and Rotation Invariant Features).

SURF and SIFT keypoints were extracted using the default parameters in Opencv.

All tested descriptors were built following Algorithm 9 (in Section 3.3). For ORB de-

tector, we set the maximum number of key points threshold equaling to the number of

connected components × 5 and used FAST score to detect corners.

The parameters which are set for tested methods are shown in Table 5.9. For

parameter n, m (n is nearest neighbor points, m is one combination among n points),

we tested with various values and only the best results are reported in this thesis. For

quantization’s level q, we set it based on dimension d of descriptors in order to to avoid

collisions from the hash function Hindex ∈ [0, Hsize].
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Table 5.9: Parameters for tested methods with spatial space of dedicated keypoints

Method n m q

SSKSRIF 31
PSRIF 6 4 31
LLAH-Similarity+PSRIF 7 5 11
LLAH-Affine+PSRIF 7 5 31
LLAH-Cross Ratio+PSRIF 8 6 21

For the indexing and the retrieval phases, we applied the same approach and setting

that in Section 5.4 and the parameters for sampling stable keypoints are given in Table

5.10.

Table 5.10: Sampled keypoints parameters

Dataset Detector
Maximum percentage

of keypoint
Minimum
distance

Bluring
size

WikiBook SURF 15% 0.00015 7x7
CartoDialect SURF 15% 0.00015 9x9
Tobacco SURF 15% 0.00015 9x9

WikiBook SIFT 30% 0.00015 9x9
CartoDialect SIFT 30% 0.00015 9x9
Tobacco SIFT 30% 0.00015 9x9

WikiBook ORB 50% 0.00015 9x9
CartoDialect ORB 40% 0.025 9x9
Tobacco ORB 50% 0.00015 9x9

Finally, in order to assess the robustness of the system towards scale and rotation

variations, each query was tested with rotation levels by an angle of 0, 10, 30, 45, and

90 degrees.

5.4.2.1 WikiBook dataset’s experimental results

The results obtained on the WikiBook dataset with SURF keypoints detector are shown

in Table 5.11. When considering the average video retrieval accuracy, PSRIF got

the highest results with 82.7%, and the rest of the methods were ranked as follows:

SSKSRIF, LLAH-Similarity+PSRIF LLAH-Affine+PSRIF, LLAH-Cross Ratio+PSRIF.

The results of all methods show that video retrieval accuracy decreased when the query

images are rotated. The worst case was when the query images were rotated by 45

degrees. Concerning the average time processing needed for the retrieval phase, PSRIF

was the best with 0.9 second/query, and the rest of the methods were ranked as fol-

lows: SSKSRIF, LLAH-Similarity+PSRIF, LLAH-Affine+PSRIF and LLAH-Cross Ra-

tio+PSRIF.
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Table 5.11: The results on WikiBook dataset with SURF keypoints

Method
Videos Retrieval Accuracy

s/q0o 10o 30o 45o 90o Avg

SSKSRIF 96.1% 93.9% 70.1% 58.4% 94.7% 82.6% 1.0
PSRIF 95.3% 93.8% 68.9% 60.4% 95.3% 82.7% 0.9

LLAH-Similarity+PSRIF 91.7% 88.0% 59.9% 51.7% 91.9% 76.6% 1.1
LLAH-Affine+PSRIF 87.2% 81.1% 42.7% 32.8% 87.4% 66.2% 1.2
LLAH-Cross Ratio+PSRIF 84.1% 75.6% 27.3% 20.4% 84.1% 58.3% 2.1

The results obtained on the WikiBook dataset with the ORB keypoint detector

are shown in Table 5.12. In this configuration, SSKSRIF got the highest results with

93.2% for the average video retrieval accuracy, and the other methods were ranked

as follows: PSRIF, LLAH-Similarity+PSRIF LLAH-Affine+PSRIF, LLAH-Cross Ra-

tio+PSRIF. The results of all the methods show that the video retrieval accuracy de-

creased slightly when the query images were rotated. Finally, from the processing time

point of view, PSRIF and SSKSRIF were the best with 0.6 second/query, and the other

methods were ranked as follows: LLAH-Similarity+PSRIF, LLAH-Affine+PSRIF and

LLAH-Cross Ratio+PSRIF.

Table 5.12: The results on WikiBook dataset with ORB keypoints

Method
Videos Retrieval Accuracy

s/q0o 10o 30o 45o 90o Avg

SSKSRIF 95.2% 93.7% 90.0% 91.5% 94.7% 93.2% 0.6
PSRIF 89.8% 86.1% 81.1% 84.1% 89.6% 86.1% 0.6

LLAH-Similarity+PSRIF 88.5% 83.1% 76.3% 78.8% 88.4% 83.0% 1.0
LLAH-Affine+PSRIF 68.8% 56.1% 45.4% 50.5% 69.6% 58.0% 1.4
LLAH-Cross Ratio+PSRIF 29.1% 14.4% 11.4% 13.4% 23.2% 18.3% 2.7

The results being tested on WikiBook dataset with SIFT keypoints are shown

in Table 5.13. Concerning the average of video retrieval accuracy, SSKSRIF got the

highest results with 90.5%, and the rest methods were ranked as follows: LLAH-

Similarity+PSRIF, PSRIF LLAH-Affine+PSRIF, LLAH-Cross Ratio+PSRIF. The re-

sults of all the methods show that video retrieval accuracy decreased slightly when query

image was rotated. Concerning the average of the retrieval time, SSKSRIF was the best

with 1.5 second/query, and the rest of the methods were ranked as follows: PSRIF,

LLAH-Affine+PSRIF, LLAH-Similarity+PSRIF and LLAH-Cross Ratio+PSRIF.

5.4.2.2 CartoDialect dataset’s experimental results

For the CartoDialect dataset, mainly composed of graphical parts, we firstly tested

with the SURF keypoint detector and the results are shown in Table 5.14. Concerning

average of video retrieval accuracy, SSKSRIF got the highest results with 77.2%, and



Chapter 5. Datasets and experimental results 89

Table 5.13: The results on WikiBook dataset dataset with SIFT keypoints

Method
Videos Retrieval Accuracy

s/q0o 10o 30o 45o 90o Avg

SSKSRIF 91.8% 91.6% 90.1% 88.5% 90.6% 90.5% 1.5
PSRIF 64.1% 64.0% 56.7% 55.5% 63.6% 60.78%2.0

LLAH-Similarity+PSRIF 69.0% 70.1% 64.7% 63.0% 69.9% 67.3% 2.1
LLAH-Affine+PSRIF 58.1% 58.7% 51.5% 50.0% 58.8% 55.4% 2.0
LLAH-Cross Ratio+PSRIF 46.3% 46.4% 37.0% 36.3% 46.2% 42.4% 3.0

the other methods were ranked as follows: PSRIF, LLAH-Similarity+PSRIF, LLAH-

Affine+PSRIF, and LLAH-Cross Ratio+PSRIF. The results of all methods show that

video retrieval accuracy decreased when query image was rotated. The worst case was

when query image was rotated through 45 degrees. Concerning the average time needed

for the retrieval step, PSRIF was the best with 0.6 second/query, followed by: SSKSRIF,

LLAH-Similarity+PSRIF, LLAH-Affine+PSRIF, LLAH-Cross Ratio+PSRIF.

Table 5.14: The results on CartoDialect dataset with SURF keypoints

Method
Videos Retrieval Accuracy

s/q0o 10o 30o 45o 90o Avg

SSKSRIF 89.8% 83.6% 63.8% 59.2% 89.7% 77.2% 0.8
PSRIF 84.4% 76.3% 51.5% 45.7% 84.0% 68.3% 0.6

LLAH-Similarity+PSRIF 83.7% 75.3% 49.3% 42.5% 83.5% 66.8% 0.9
LLAH-Affine+PSRIF 77.5% 65.0% 25.1% 19.7% 77.3% 52.9% 1.1
LLAH-Cross Ratio+PSRIF 70.5% 68.1% 20.0% 14.1% 70.3% 51.5% 1.8

When using the ORB keypoint detector, we obtained the results presented in Table

5.15. SSKSRIF got the highest video retrieval accuracy with 40.1%, and the other meth-

ods were ranked as follows: PSRIF, LLAH-Similarity+PSRIF, LLAH-Affine+PSRIF,

and LLAH-Cross Ratio+PSRIF. The results of all methods show that video retrieval ac-

curacy decreased when the query image is rotated. Concerning the retrieval time, PSRIF

was the best with 1.1 second/query, followed by SSKSRIF, LLAH-Similarity+PSRIF,

LLAH-Affine+PSRIF, LLAH-Cross Ratio+PSRIF.

Table 5.15: The results on CartoDialect dataset with ORB keypoints

Method
Videos Retrieval Accuracy

s/q0o 10o 30o 45o 90o Avg

SSKSRIF 51.8% 36.2% 29.1% 34.2% 49.6% 40.1% 1.2
PSRIF 24.8% 10.5% 8.4% 11.3% 24.1% 15.8% 1.1

LLAH-Similarity+PSRIF 22.2% 8.1% 6.3% 9.4% 22.1% 13.6% 1.7
LLAH-Affine+PSRIF 15.3% 3.3% 3.6% 4.6% 14.9% 8.3% 1.9
LLAH-Cross Ratio+PSRIF 7.0% 1.5% 1.0% 1.7% 7.5% 3.7% 3.0
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Finally, the results with the SIFT keypoint detector are shown in Table 5.16.

The global video retrieval accuracy shows that SSKSRIF got the highest results with

66.1%, and the other methods were ranked as follows: PSRIF, LLAH-Similarity+PSRIF,

LLAH-Affine+PSRIF, and LLAH-Cross Ratio+PSRIF. The results of all methods show

that video retrieval accuracy decreased slightly when the query image is rotated. For

the retrieval time, PSRIF was the best with 1.0 second/query, followed by SSKSRIF,

LLAH-Similarity+PSRIF, LLAH-Affine+PSRIF, LLAH-Cross Ratio+PSRIF.

Table 5.16: The results on CartoDialect dataset with SIFT keypoints

Method
Videos Retrieval Accuracy

s/q0o 10o 30o 45o 90o Avg

SSKSRIF 71.1% 65.1% 62.8% 60.8% 71.8% 66.1% 1.3
PSRIF 70.5% 63.1% 61.3% 58.7% 69.7% 64.6% 1.0

LLAH-Similarity+PSRIF 57.5% 48.5% 46.6% 44.2% 56.2% 50.6% 1.4
LLAH-Affine+PSRIF 41.5% 33.4% 30.6% 26.5% 41.5% 34.7% 1.5
LLAH-Cross Ratio+PSRIF 36.4% 30.3% 27.0% 24.2% 36.2% 30.8% 2.1

5.4.2.3 Tobacco dataset’s experimental results

We finally tested our work, using the well-known keypoint detectors from the literature

on a heterogeneous corpus, the Tobacco dataset. The results are once again given using

the SURF Keypoint detector, then the ORB keypoint detector and finally the SIFT one.

Results obtained with the SURF keypoint detector are shown in Table 5.17. The

best accuracy was obtained by PSRIF with 90.0%, and the rest methods were ranked as

follows: SSKSRIF, LLAH-Similarity+PSRIF, LLAH-Affine+PSRIF and LLAH-Cross

Ratio+PSRIF. The results of all methods show that video retrieval accuracy decreased

when the query image was rotated. The worst case was when query images were rotated

by 45 degrees. From the processing time point of view, PSRIF was the best with

0.6 second/query, and the rest methods were ranked as follows: SSKSRIFF, LLAH-

Similarity+PSRIF, LLAH-Affine+PSRIF, and LLAH-Cross Ratio+PSRIF.

Table 5.17: The results on Tobacco dataset with SURF keypoints

Method
Videos Retrieval Accuracy

s/q0o 10o 30o 45o 90o Avg

SSKSRIF 95.7% 95.0% 83.1% 79.7% 95.1% 89.7% 0.8
PSRIF 95.0% 93.5% 84.3% 82.8% 94.7% 90.0% 0.6

LLAH-Similarity+PSRIF 91.7% 89.2% 75.7% 73.4% 91.7% 84.3% 0.9
LLAH-Affine+PSRIF 81.5% 75.1% 55.6% 52.5% 81.4% 69.2% 1.1
LLAH-Cross Ratio+PSRIF 79.1% 73.5% 52.3% 48.1% 77.3% 66.0% 1.4
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With the ORB keypoint detector, the best average accuracy of video retrieval was

obtained with SSKSRIF (75.4%), and the others results (ranked as follows: PSRIF,

LLAH-Similarity+PSRIF, LLAH-Affine+PSRIF and LLAH-Cross Ratio+PSRIF) are

given in Table 5.17. The results of all methods show that video retrieval accuracy

decreased slightly when the query image was rotated. Even if the SSKSRIF was the

best, PSRIF still remains the fastest method (0.5 second/query), followed by SSKSRIFF,

LLAH-Similarity+PSRIF, LLAH-Affine+PSRIF, and LLAH-Cross Ratio+PSRIF.

Table 5.18: The results on Tobacco dataset with ORB keypoints

Method
Videos Retrieval Accuracy

s/q0o 10o 30o 45o 90o Avg

SSKSRIF 80.8% 72.1% 70.4% 73.2% 80.5% 75.4% 0.6
PSRIF 74.3% 63.6% 61.6% 67.0% 74.2% 68.14%0.5

LLAH-Similarity+PSRIF 65.2% 55.9% 54.0% 58.6% 65.7% 59.8% 0.9
LLAH-Affine+PSRIF 44.7% 27.1% 24.4% 30.7% 44.6% 34.3% 1.2
LLAH-Cross Ratio+PSRIF 17.7% 6% 5% 7% 17.3% 10.6% 2.4

Finally, for the tobacco dataset, we present the results obtained with the SIFT

keypoint detector in Table 5.19. Again, SSKSRIF got the highest accuracy results with

91.1%, and the rest methods were ranked as follows: PSRIF, LLAH-Similarity+PSRIF,

LLAH-Affine+PSRIF and LLAH-Cross Ratio+PSRIF. The results of all methods show

that video retrieval accuracy decreased slightly when the query image was rotated. The

result is the same concerning the processing time associated with the retrieval process

with PSRIF which was the best with an average computation time of 0.8 second/query,

followed by LLAH-Similarity+PSRIF, SSKSRIFF, LLAH-Affine+PSRIF, and LLAH-

Cross Ratio+PSRIF.

Table 5.19: The results on Tobacco dataset with SIFT keypoints

Method
Videos Retrieval Accuracy

s/q0o 10o 30o 45o 90o Avg

SSKSRIF 92.4% 91.9% 90.5% 90.6% 90.5% 91.1% 1.3
PSRIF 88.2% 88.0% 86.2% 86.4% 88.1% 87.3% 0.8

LLAH-Similarity+PSRIF 82.9% 82.9% 81.1% 80.7% 83.3% 82.1% 1.1
LLAH-Affine+PSRIF 64.2% 64.6% 62.8% 61.8% 64.2% 63.5% 1.3
LLAH-Cross Ratio+PSRIF 36.6% 36.6% 33.5% 35.0% 36.6% 35.6% 2.4

5.4.2.4 Discussion

The experimental results presented in the previous section, and computed on three

different datasets, show that SRIF and SSKSRIF gave globally better results in terms of

retrieval accuracy as well as retrieval time compared to LLAH based methods. This can
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be explained by the fact that the invariant features of SRIF (or SSKSRIF) are computed

relatively to the keypoint chosen as a reference. This enhances the discriminative power

of SRIF (or SSKSRIF) even if the number of nearest points around the center point

is small. Yet, invariant features of LLAH are not computed relatively to the reference

keypoint, which may lead to the fact that one invariant feature may take into account

many descriptors. For instance, the figure 5.4 shows an example of computation of the

SRIF features from two points A and B for each keypoint P and Q. One can see that

while LLAH features from four points A,B,C, and D for each keypoint P and Q are the

same, the SRIF descriptors will be different.

Figure 5.4: Distinctive SRIF features computed at P and Q (on the left) and the
same LLAH features computed at P and Q (on the right).

The reason for which the retrieval accuracy results on CartoDialect dataset was

not high is due to the fact that the spatial organization of sampled keypoints is not

distinctive. These sampled keypoints come from the names or the identification number

of the regions and the borders that are the same in all map and are highlighted in bold

format. Thus, spatial information form these keypoints are not distinctive enough for

descriptors to be built.

The essential challenge when building geometrical descriptors based on dedicated

keypoint is the way to chose a stable keypoint detector that can be stable in two far

scales from the SIFT or SURF pyramid scales, and that can be stable toward rotation

transformations. In addition, in the context of heterogeneous content documents, the

textures and the resolution of images are various. Thus, it is not easy to fix a threshold

that can be adapted to all documents. In this case, the descriptors should be built from

a non-uniform pyramid scale, e.g. the method proposed in [118].

Besides, the repeatability of keypoints detectors reduces when the image is rotated

[118, 120], and this demonstrates why the accuracy of all descriptors decreased when the

captured query is rotated. For example, the worst case is at 45 degrees rotation with

SURF keypoint, because this is the most different angle between database document

images and captured query.
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5.5 Experimental results of dedicated descriptors combined

with dedicated detectors

In this section, we present experimental results of popular dedicated descriptors com-

bined with popular dedicated detectors.

For SIFT and SURF descriptors which are quite high dimensional descriptors, we

apply Principal Components Analysis (PCA) to reduce the number of dimensions to

36-dimension vectors. As these features vectors are composed of a very large number

of values, processing them means using of a lot of memory space and computation

time. Valenzuela et al. [136] introduced a method using PCA to reduce the number of

dimensions of SIFT and SURF vectors. PCA is used in the case that there is plenty of

numeric variables (observed variables) and it is desired to find a lower number of principal

components, that will be responsible for higher variance in the observed variables. These

principal components can be used as predictor variables in the subsequent analysis.

Valenzuela’s experiments show that it is feasible to have an accurate low-dimensional

feature vector after applying PCA.

For the systems using SIFT and SURF, reduced dimension by applying PCA, they

were indexed using FLANN framework as described in [100]. The constructed index

consists of a set of randomized kd-trees that are built by partitioning database descrip-

tors. These kd-trees are searched in parallel in order to find nearest neighbors matching

in high-dimensional spaces of descriptors.

For the system using binary descriptors such as ORB, BRISK, and FREAK, the

binary feature vectors are indexed by LSH, whose index uses multi-probe LSH method

from [137]. This indexing method is built on the well-known LSH technique and intelli-

gently probes multiple buckets which are likely to contain query results in a hash table.

It is more time and space efficient than ordinary LSH methods.

In the retrieval process, to filter the bad matching pairs we applied two methods.

The first method is applied for searching only one nearest neighbor (NN) of each query

descriptor. In this case, the matching is considered to be correct if the distance between

the nearest and the query descriptor is equal or less than the threshold (10, 100, 70

for SURF, SIFT and binary descriptors) and it is taken into account for the voting

process. The second one uses distance ratio between two nearest neighbors of each

query descriptor [50]. It is considered to be correct and taken into account for the

voting process if the ratio between the nearest and the second nearest descriptor is

equal or less than the threshold (0.8).
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Because of the large resolution, all maps (in CartoDialect dataset) are resized by a

scale factor of 0.4 for reducing the resolution. To use the indexing framework (FLANN,

LSH) for SIFT, SURF, ORB, we employ libraries integrated with OpenCV library. Our

systems were implemented on a 64 GB RAM Linux machine running in C extended

C++ environment with a single thread.

To set the orientation for a MSER region, firstly the ellipse that fits the region’s

contour is computed by the algorithm in [138] by using OpenCV. In this method, the

orientation of the region which is fit by th ellipse region belongs to 0 to 180 degree. AIn

order to enhance this direction from 0 to 180 degree to 0 to 360 degree, the orientation of

the region is set following the ellipse’s direction if numbers of contour points belonging

to this direction are larger than the other side. Otherwise, it is set opposite the ellipse’s

direction. Furthermore, in order to capture neighborhood information around MSER

regions, we proposed a way to extend MSER regions by increasing or decreasing the

radius of each region. This strategy can be also used for other detected regions in order

to make descriptors more distinctive.

5.5.1 Wikibook dataset’s experimental results

The table 5.20 shows the results obtained on the WikiBook dataset. In this experimental

results, SIFT descriptor combined with BRISK detector gave the highest videos retrieval

accuracy with the average of 98.6%. Concerning the videos retrieval accuracy of SURF

descriptors, combining them with MSER detector gave highest accuracy results in av-

erage with 95.5%. The retrieval time of FLANN LSH indexing binary descriptors was

slower than the retrieval time of FLANN kd-trees indexing SIFT and SURF descriptors.

5.5.2 CartoDialect dataset’s experimental results

For the CartoDialect dataset, the results are shown in the table 5.21. As we can see in

the table 5.21, SIFT descriptors being computed with SIFT detector gave the best videos

retrieval accuracy with the average of 98.94%. Concerning the videos retrieval accuracy

of SURF descriptor, combining with MSER detector gave highest accuracy results in

average with 98.5%. The retrieval time of FLANN LSH indexing binary descriptors

was also slower than the retrieval time of FLANN kd-trees indexing SIFT and SURF

descriptors.
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.

Table 5.20: Experimental results on Wikibook dataset with popular dedicated detec-
tors and descriptors

Descriptor Detector Size NN
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

SIFT SIFT ×1 1 73.7% 71.2% 71.0% 73.4% 73.2% 72.5% 1.28
SIFT SIFT ×1 2 88.4% 84.6% 83.9% 87.7% 87.7% 86.4% 1.21
SIFT SURF ×0.5 2 98.6% 93.5% 93.2% 98.6% 98.5% 96.4% 2.76
SIFT BRISK ×1 2 98.7% 98.8% 98.4% 98.7% 98.5% 98.6% 1.4
SIFT ORB ×1 2 98.3% 97.7% 97.1% 98.5% 98.3% 97.9% 1.5
SIFT MSER ×1 2 96.6% 94.2% 93.8% 96.4% 96.5% 95.5% 0.83

SURF SURF ×1 1 92.5% 10% 10% 92.6% 92.6% 59.5% 3.06
SURF SURF ×1 2 94.6% 11% 11.0% 94.2% 93.8% 60.9% 3.1
SURF SIFT ×5 2 55.2% 5% 5% 46% 43.8% 31% 1.2
SURF BRISK ×5 2 94.0% 69.8% 69.9% 93.2% 93.2% 84.2% 1.8
SURF ORB ×1 2 96.9% 83.0% 80.0% 96.1% 96.0% 90.4% 1.3
SURF MSER ×4 2 93.7% 83.3% 81.7% 93.6% 92.8% 89.0% 0.47

ORB ORB ×1 1 81.2% 79.5% 79.0% 80.0% 80.0% 79.9% 6.81
ORB MSER ×1 2 43.7% 40.2% 40.1% 43.1% 43.2% 42.0% 5.0
BRISK MSER ×1.5 2 75% 72.1% 72.0% 75.1% 75% 73.8% 33.0
FREAK MSER ×1.5 2 78.5% 76.2% 76.0% 78.5% 78.4% 77.5% 42.0

Table 5.21: Experimental results on CartoDialect dataset with popular dedicated
detectors and descriptors

Descriptor Detector Size NN
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

SIFT SIFT ×1 1 99.0% 98.8% 98.7% 99.0% 99.0% 98.9% 1.5
SIFT SIFT ×1 2 99.0% 98.9% 98.8% 99.0% 99.0% 98.94% 1.6
SIFT SURF ×0.5 2 99.0% 98.7% 98.7% 99.0% 99.0% 98.88% 8.2
SIFT BRISK ×1 2 97.1% 94.9% 94.5% 97.2% 96.8% 96.1% 2.1
SIFT ORB ×1 2 98.5% 97.5% 96.9% 98.2% 98.3% 97.8% 1.3
SIFT MSER ×0.5 2 99.0% 98.7% 98.8% 99.0% 99.0% 98.6% 1.1

SURF SURF ×1 1 92.6% 35.25%35.1% 92.7% 91.9% 69.5% 5.4
SURF SURF ×1 2 98.9% 38.1% 32.4% 98.5% 98.2% 73.2% 5.4
SURF SIFT ×5 2 89.8% 53.8% 48.2% 83.1% 76.7% 70.3% 1.6
SURF BRISK ×5 2 98.2% 83.9% 82.5% 98.2% 98.1% 92.1% 3.0
SURF ORB ×1 2 98.7% 93.3% 91.5% 98.7% 98.4% 96.1% 1.3
SURF MSER ×2 2 98.9% 98.2% 98.0% 98.9% 98.9% 98.5% 1.2

ORB ORB ×1 1 92.7% 90.1% 89.5% 92.5% 92.5% 91.4% 11.3
ORB MSER ×2 2 89.5% 70.2% 70.5% 89.1% 89.0% 81.6% 20.0
BRISK MSER ×1 2 98.1% 94.6% 94.8% 98.1% 98.2% 96.7% 14.0
FREAK MSER ×1 2 97.9% 94.0% 94.1% 97.7% 97.8% 96.3% 61.0
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5.5.3 Tobacco dataset’s experimental results

Finally, the results obtained from Tobacco dataset are shown in the table 5.22. It can

be seen that SIFT descriptor combining with BRISK detector gave the highest Videos

retrieval accuracy with the average of 98.5%. Concerning the videos retrieval accuracy

of SURF descriptor, combining with ORB detector gave highest accuracy results in

average with 97.6%. The retrieval time of FLANN LSH indexing for binary descriptors

was also slower than the retrieval time of FLANN kd-trees indexing for SIFT and SURF

descriptors.

Table 5.22: Experimental results on Tobacco dataset with popular dedicated detectors
and descriptors

Descriptor Detector Size NN
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

SIFT SIFT ×1 1 91.2% 90.5% 90.0% 91.3% 91.3% 90.8% 2.1
SIFT SIFT ×1 2 98.3% 98.8% 98.9% 98.4% 98.4% 98.5% 2.1
SIFT SURF ×0.5 2 98.6% 98.1% 98.3% 98.5% 98.4% 98.4% 2.6
SIFT BRISK ×1 2 97.4% 96.7% 96.4% 97.2% 97.4% 97.0% 2.3
SIFT ORB ×1 2 96.3% 94.9% 95.0% 96.3% 96.3% 95.7% 1.7
SIFT MSER ×0.5 2 94.8% 93.8% 93.8% 94.9% 95.0% 94.4% 0.4

SURF SURF ×1 1 95.6% 89.7% 89.0% 95.4% 95.5% 93.0% 3.8
SURF SURF ×1 2 98.3% 92.1% 91.3% 98.3% 98.0% 95.6% 3.8
SURF SIFT ×5 2 97.6% 94.4% 92.6% 96.8% 95.6% 95.4% 2.2
SURF BRISK ×4 2 95.8% 81.0% 79.5% 95.8% 95.5% 89.5% 2.3
SURF ORB ×1 2 98.1% 97.4% 96.6% 98.0% 98.0% 97.6% 1.4
SURF MSER ×2 2 93.7% 83.3% 82.1% 93.6% 92.8% 89.1% 0.5

ORB ORB ×1 1 95.1% 89.5% 89.4% 95.1% 95.0% 92.8% 4.8
ORB MSER ×1.5 2 95.3% 92.0% 92.0% 95.3% 95.2% 93.9% 12.7
BRISK MSER ×1.5 2 82.2% 60.0% 61.5% 81.7% 82.1% 73.6% 7.0
FREAK MSER ×1.5 2 92.0% 75.5% 76.0% 92.1% 92.0% 85.5% 15.0

5.5.4 Discussion

Experimental results obtained on three datasets show that the way to select the best

nearest neighbors of query descriptors in the post-retrieval from the indexing system

is able to affect the retrieval accuracy. Using distance ratio threshold between two

nearest neighbors of each query descriptor to be able to make the retrieval accuracy be

better than using the distance threshold for one nearest neighbor. This is due to the

fact that using distance ratio threshold helps the retrieval phase and makes it able to

filter the bad matching pairs which almost come from repeatable texture regions that

correspond to the same text such as the same letters, symmetric or rotated letters and

etc. Consequently, these bad matching pairs lead to confusion votes when they are not

discarded when using the distance threshold for one nearest neighbor. For example, a
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descriptor from a letter ’e’ at a position can vote for another letter ’e’ which appears at

different positions in a document.

SIFT descriptor can work well when it is combined with various detectors. In some

case e.g Wikibook dataset, SIFT descriptor gave better results by combining with SURF

or BRISK or MSER detector. Furthermore, this descriptor is distinctive and accurate

even though it is computed on regions which are reduced of a half of size. In addition, it

can deal with rotation problem very well. By contrast, the accuracy of SURF descriptor

rapidly decreases when query image rotated by an angle of 30 or 60 degrees. This

problem of SURF is also reported in [139]. Overall, the retrieval accuracy of binary

descriptors is lower than the retrieval accuracy of SIFT or SURF descriptors on three

datasets.

5.6 Experimental results of proposed indexing methods

In this section, we present experimental results of proposed random trees indexing and

hash-based indexing approaches compared with popular tree-based indexing approaches

including randomized kd-tree, hierarchical trees and kmean trees [4, 100]. To extract

local descriptors we used SIFT descriptors computed from SIFT keypoint [50] and the

parameters were set by default in Opencv.

For our proposed random tree, the parameters were set as follows: the number

of trees = 2; the numbers of random dimension K=1 for both Wikibook dataset and

Tobacco dataset; K=6 for CartoDialect dataset; γ = K; ratioThreshold=0.8; ambigu-

ousCheck=7; SIFT descriptors were not applied PCA to reduce the dimension. For

proposed hashing index, SIFT descriptors are applied Principal Components Analysis

(PCA) to reduce the number of dimensions to 36-dimension vectors. the other param-

eters were set as follows: the tolerance e=1.5; the maximum number of expansion bit

b=10.

For tree-based indexing approaches [4, 100], we also set numbers of trees with 2 and

default values for other parameters in Opencv and SIFT descriptors were not applied

PCA to reduce the dimension. In the retrieval process, to filter the bad matching pairs

we used distance ratio between two nearest neighbors of each query descriptor [50].

It is considered to be correct if the ratio between the nearest and the second nearest

descriptor is equal or less than the threshold (0.8) and taken into account for the voting

process.
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5.6.1 Wikibook dataset’s experimental results

The experimental results obtained on the Wikibook dataset are shown in the Table 5.23.

It can be seen in the Table 5.23, concerning the average of video retrieval accuracy,

Flann kd trees got the highest results with 88.3%, and the rest methods were ranked

as follows: Flann kmean trees, flann hierarchical trees, proposed hashing and proposed

random trees. Concerning the average of time retrieval, Flann kmean trees method is

the best with 0.25 second/query, and the rest methods are ranked as follows: proposed

hashing, Flann hierarchical trees, proposed random trees and Flann kd trees.

Table 5.23: Experimental results of tree based indexing methods on Wikibook dataset

Method q scaling
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

Proposed random trees 1.0 50.0% 33.4% 33.0% 49.2% 50.0% 43.1% 1.6
Proposed random trees 0.5 79.6% 61.9% 62.0% 78.5% 71.4% 72.4% 0.3

Proposed hashing 1.0 40.9% 20.9% 20.7% 39.9% 40.1% 32.5% 1.2
Proposed hashing 0.5 64.5% 47.3% 46.5% 64.2% 61.8% 56.8% 0.3

Flann hierarchical trees 1.0 85.2% 80.4% 79.6% 85.3% 84.9% 83.0% 1.4
Flann hierarchical trees 0.5 85.0% 81.2% 80.6% 85.2% 85.0% 83.4% 0.38

Flann kmean trees 1.0 86.4% 83.2% 82.2% 86.5% 85.7% 84.8% 1.2
Flann kmean trees 0.5 86.6% 83.9% 83.3% 86.9% 86.8% 85.9% 0.25

Flann kd trees 1.0 89.2% 86.1% 85.4% 89.3% 88.9% 87.7% 1.8
Flann kd trees 0.5 89.3% 87.3% 86.6% 89.7% 88.9% 88.3% 0.35

5.6.2 CartoDialect dataset’s experimental results

The Table 5.24 shows the experimental results on the CartoDialect dataset. As we can

see from the Table 5.24, Flann kd trees got the highest results with 98.4%, and the rest

methods were ranked as follows: Flann kmean trees, Flann hierarchical trees, proposed

random trees and proposed hashing in terms of average of video retrieval accuracy.

Proposed hashing method is the best with 0.19 second/query, and the rest methods

are ranked as follows: Flann kmean trees, Flann hierarchical trees, Flann kd trees and

proposed random trees in terms of average of video retrieval accuracy.

5.6.3 Tobacco dataset’s experimental results

Finally, Tobacco dataset’s experimental results are shown in the Table 5.25. It can

be seen that Flann kd trees got the highest results with 97.8%, and the rest methods

were ranked as follows: Flann kmean trees, Flann hierarchical trees, proposed random

trees and proposed hashing in terms of average of video retrieval accuracy. Concerning
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Table 5.24: Experimental results of tree based indexing methods on CartoDialect
dataset

Method q scaling
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

Proposed random trees 1.0 97.4% 94.1% 93.4% 97.3% 97.1% 95.8% 2.0
Proposed random trees 0.5 97.0% 94.0% 93.6% 97.0% 95.7% 95.7% 0.38

Proposed hashing 1.0 95.6% 92.4% 91.0% 96.0% 95.8% 94.1% 0.9
Proposed hashing 0.5 94.6% 91.0% 89.6% 94.8% 94.2% 92.8% 0.19

Flann hierarchical trees 1.0 97.9% 96.9% 96.5% 97.9% 97.7% 97.3% 1.5
Flann hierarchical trees 0.5 96.8% 95.0% 94.7% 96.7% 96.6% 95.9% 0.35

Flann kmean trees 1.0 98.0% 97.5% 97.5% 97.7% 98.2% 97.7% 0.95
Flann kmean trees 0.5 97.5% 96.0% 95.7% 97.6% 97.6% 96.8% 0.2

Flann kd trees 1.0 98.6% 98.3% 98.2% 98.5% 98.5% 98.4% 1.7
Flann kd trees 0.5 98.2% 97.5% 97.6% 98.2% 98.2% 97.9% 0.32

average of time retrieval, Flann kmean trees method is the best with 0.27 second/query,

and the rest methods are ranked as follows: proposed hashing, proposed random trees,

Flann hierarchical trees and Flann kd trees.

Table 5.25: Experimental results of tree based indexing methods on Tobacco dataset

Method q scaling
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

Proposed random trees 1.0 97.2% 97.5% 97.4% 97.2% 97.0% 97.2% 1.7
Proposed random trees 0.5 96.6% 96.5% 96.6% 96.5% 96.5% 96.5% 0.4

Proposed hashing 1.0 97.1% 96.5% 96.9% 96.8% 96.8% 96.8% 1.2
Proposed hashing 0.5 95.8% 95.2% 95.2% 95.6% 95.8% 95.5% 0.3

Flann hierarchical trees 1.0 97.2% 97.5% 97.6% 97.0% 97.1% 97.2% 1.9
Flann hierarchical trees 0.5 96.6% 96.9% 96.8% 96.4% 96.4% 96.6% 0.46

Flann kmean trees 1.0 97.3% 97.6% 97.9% 97.3% 97.0% 97.4% 1.0
Flann kmean trees 0.5 96.8% 97.3% 97.2% 97.0% 96.7% 97.0% 0.27

Flann kd tree trees 1.0 97.8% 98.2% 98.3% 97.6% 97.5% 97.8% 2.5
Flann kd tree trees 0.5 97.3% 97.8% 97.9% 97.2% 97.0% 97.4% 0.56

5.6.4 Discussion

Experimental results demonstrate that proposed random trees and hashing indexing

methods could approximately reach the accuracy of the stage art methods on Tobacco

dataset although database descriptors are not stored in memory. Besides, the retrieval

time of proposed random trees indexing was faster than kd-trees method in two datasets

among three datasets and the retrieval time of proposed hashing indexing was the fastest

on CartoDialect dataset. When filtering the bad matching pairs by using distance ratio
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between two nearest neighbors of each query descriptor could not be checked with pro-

posed indexing approaches, this could lead to confusion voting for retrieval documents

and contributed to a reduction of the retrieval accuracy of proposed indexing approach.

Concerning retrieval accuracy, kd trees got the highest accuracy, which shows that

partition based on the highest variance dimension is very robust. Regarding time re-

trieval, kmean trees method got the fastest results in two datasets including Wikibook

and Tobacco dataset and proposed hashing method was the best with CartoDialect

dataset. This is due to the fact that branching of kmean trees was set 32 branches,

which makes the depth of each kmean tree is shorter than the kd-trees’ depth. The

retrieval via traversing the tree can, therefore, be done faster. Furthermore, Kmean

trees method was little better than hierarchical trees method in terms of accuracy and

retrieval time.

5.7 Experimental results of the extended hashing based

method for indexing multi-kinds of features from multi-

layer of images

In this section, we present the experimental results obtained with the proposed extended

version of an hashing-based method for indexing multi-kinds of features from multi-layers

documents on the CartoDialect dataset (presented in Section 4.4). As mentioned before,

the maps from this dataset are composed of two main layers of information (the textual

layer and the graphical layer), we decided to use different approaches on each layer.

For the textual layer, the geometrical version (spatial space) of the PSRIF de-

scriptors was computed on the connected components (at the character level). We set

parameters as following: n=6 and m=4.

For the graphical layer, we used the SIFT detector and descriptor, and we used the

default parameters from OpenCV. We reduced the dimension of the SIFT descriptors

using a PCA, and we binarized the vectors before the indexing and the retrieving pro-

cesses. In addition, the query of this layer was scaled down with the factor 0.5 in order

to speed up the retrieval time.

The table 5.26 shows the experimental results of the extended hashing based

method for indexing multi-kinds of features from multi-layer of images on the Car-

toDialect dataset. It can be seen that the proposed system could improve the retrieval

accuracy results in some specific cases like when the queries where rotated by an angle

of 30 and 60 degrees although the average retrieval accuracy of it was a little lower than
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the average retrieval accuracy of PSRIF with only textual layer. The drawback of the

proposed indexing system is that it needs more time for processing and retrieving.

Because all maps have similar graphics layer which contains department’s borders,

it can lead to the case that there are some matched of SIFT descriptors (extracted

from graphics layer) falling in different maps with captured map, which contributes to a

reduction of the accuracy of PSRIF. The SIFT PCA method (historically dedicated to

graphical objects) reached higher accuracy in some cases. Another explanation of these

results is that the flipping bit strategy can lead to a wrong matching between the query

feature vectors and the feature vector from the learning database. This may effect the

final voting process and the homographic transformation using RANSAC algorithm.

Table 5.26: Experimental results on CartoDialect dataset of extended hashing based
method indexing multi-kinds of features from multi-layers

Descriptors Layers
Videos Retrieval Accuracy

s/q0o 30o 60o 90o 180o Avg

PSRIF Textual 98.2% 97.5% 96.8% 98.3% 98.3% 97.8% 0.27
PSRIF+SIFT
PCA

Textual+Graphical 97.5% 98.2% 97.7% 97.5% 97.5% 97.68%0.34
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Conclusion and Future Work

6.1 Conclusion

In this thesis, we have proposed camera-based systems of information spotting, in huge

repositories of heterogeneous document images, via local descriptors. We have proposed

a set of generic feature descriptors for camera-based document image retrieval and spot-

ting systems. We have also proposed indexing frameworks for automatic indexing of

document image repositories. The dataset and ground-truth which were created for

evaluating the camera-based document images retrieval and spotting systems have been

made publicly available.

The feature descriptors that have been proposed in this thesis (SRIF, PSRIF, DE-

TRIF and SSKSRIF) are promising for camera-based heterogeneous-content document

image retrieval. These descriptors are built from spatial space information of nearest

keypoints around a keypoint which is extracted from centroids of connected compo-

nents. SRIF and PSRIF are computed from a local set of m nearest keypoints around

a keypoint. From these keypoints, the invariant geometrical features are considered to

be taken into account in the descriptor. To deal with erroneous keypoints, m combina-

tion from n nearest keypoints are computed. DETRIF and SSKSRIF can fix the way

to combine local shape description without using any parameter via Delaunay triangu-

lation (which is formed from a set of keypoints extracted from the document image).

Since they are not built relying on image pixel level, they can be computed very fast

if the number of keypoints is not too large. In addition, with low dimension, they can

be indexed efficiently with a simple hash-based indexing method. In this thesis, we

have also proposed a framework to compute the descriptors based on spatial space of

dedicated keypoints (e.g SURF, SIFT or ORB) so that they can be used for retrieval

and spotting in heterogeneous-content camera-based document image repositories. We
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have also proposed a method to sample stable keypoints, which can adapt to the slight

variations in scale.

Since the indexing plays an important role in camera-based heterogeneous-content

document image retrieval and spotting systems, that use local descriptors, in this thesis

we have proposed three robust indexing frameworks that can be employed without stor-

ing local descriptors in memory. This reduces the memory consumption and optimizes

the retrieval time by discarding distance validation. The randomized clustering tree in-

dexing inherits the properties of the kd-tree, kmean-tree and random forest, for selecting

K dimensions randomly combined with the highest variance dimension from each node

of the tree. We have also proposed a new weighted Euclidean distance between two local

descriptors; in which the highest variance dimension is weighted.

Along with proposed descriptors as well indexing frameworks, we have proposed

a simple robust way to compute shape orientation of MSER regions. This permits to

combine them with dedicated descriptors like SIFT, SURF, ORB, BRISK, FREAK etc.,

maintaining the rotation invariance. In case when the descriptors are able to capture

neighborhood information around MSER regions we also propose a way to extend MSER

regions by increasing the radius of each region. This strategy can be used for other

detected regions in order to make descriptors more distinctive. Moreover, we have

employed the extended hashing-based method for indexing multi-kinds of features from

multi-layers of image, where each kind of the feature is adapted to the content in the

corresponding layer of the image. This strategy is not only applied for uniform feature

type but also for multiple feature types from multi-layers of the image.

Concerning evaluation of camera-based document image retrieval and spotting sys-

tems, we have built a new dataset which has been made freely and publicly available for

the scientific community. This dataset is comprised of three subparts that represent the

three different evaluation contexts of content in document images: the textual content,

graphical content heterogeneous content.

6.2 Future Work

Although our proposed methods have achieved reasonable results for camera-based

heterogeneous-content document image retrieval and spotting using local descriptors,

there is still a long way heading to the perfect solution for camera-based document im-

age retrieval and spotting problems. The future directions of our research are discussed

as follows.
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The proposed descriptors do not capture local texture at dedicated keypoint and

this decreases the accuracy when the scale level or rotation angle of the captured query

is too different from original database image or captured query. A generic combination

between spatial keypoint based descriptors and textures descriptor can be applied, which

can make these descriptors more distinctive via not only local texture information but

also neighborhood spatial information. Furthermore, how to develop brain semantics’

inspired descriptors needs to be studied.

Instead of separating the image into multiple layers, the direction that employs

multiple detectors combined with multiple descriptors without separating the image into

multiple layers is interesting to be considered. This is because some image separation

techniques require a very robust separation approaches in order to achieve the same

accuracy for the original image and the captured query. Besides, image separation

into multiple layers can lead to insufficient information in layers that affect the spatial

keypoints based descriptors and the texture descriptors.

Although the best float-type descriptors like SIFT or SURF outperform binary

descriptors in terms of accuracy, the performance gap is not huge. Binary descriptors

are preferable in some applications which have a strict requirement on running time and

memory. This is because that using binary descriptors usually requires less memory

to store descriptors than using float-type descriptors. Yet, matching binary descriptors

can be executed extremely fast in the modern computers by machine instructions but

it is still too slow when we have to match millions of them, which often happens in

image retrieval and specially for large-scale image retrieval. In these cases, matching

binary descriptors by using LSH indexing is too slow compared to matching float-type

descriptors with a tree-based approximate nearest neighbor indexing algorithms. Thus,

for fast nearest neighbor searching of binary descriptors, it still needs more efficient

indexing to deal with. Because of this, extending our proposed randomized clustering

tree indexing for binary descriptors or an indexing system that can combine hashing-

based and tree-based techniques, needs to be studied and developed. Furthermore, in the

case of very large datasets, approaches of distributing the database of local descriptors

to multiple machines in a computing cluster and performing the nearest neighbor search

in parellel, using the cluster, should be employed.
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