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Résumé 

L'objectif principal de la thèse est de définir comment l'incertitude peut être prise en compte dans le 

processus d'évaluation des risques pour le stockage de CO2 et de quantifier, à l'aide de modèles numériques, 

les scénarios de fuite par migration latérale et à travers la couverture. Les scénarios choisis sont quantifiés 

par l'approche de modélisation de système pour laquelle des modèles numériques prédictifs ad-hoc sont 

développés. Une étude probabiliste de propagation d'incertitude paramétrique par un méta-modèle de 

polynômes de chaos est réalisée. La problématique de la prise en compte de la variabilité spatiale comme une 

source d'incertitude est éclairée et une étude comparative entre représentations homogène et hétérogène de la 

perméabilité est fournie. 

 

Abstract 

The main goal of the thesis is to define how the uncertainty can be accounted for in the process of risk 

assessment for CO2 storage and to quantify by means of numerical models the scenarii of leakage by lateral 

migration and through the caprock. The chosen scenarii are quantified using the system modeling approach 

for which ad-hoc predictive numerical models are developed. A probabilistic parametric uncertainty 

propagation study using polynomial chaos expansion is performed. Matters of spatial variability are also 

discussed and a comparison between homogeneous and heterogeneous representations of permeability is 

provided. 
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Je remercie mon directeur de thèse M.Didier Clouteau pour la culture scientifique et per-
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Abstract

In the recent years, the geological storage of carbon dioxide (CO2) has been proposed as a
promising technology of reducing its concentration in the athmosphere. The evaluation of
risks related to the storage phase (starting with the injection in a deep aquifer and lasting
up to thousands of years) is based on the accurate modeling of the simultaneous flow of
the injected gas and the saline water initially occupying the pores of the medium. Such
forecasts are highly dependent on our knowledge about the properties of the medium,
both fluids and their interaction with the medium. Generally quite limited information
is available on these characteristics, especially when the properties of the media such as
layers geometry, permeability, porosity, fault locations and transmissibility are concerned.
These and many other sources of uncertainty affect the estimates of risk.

The main goal of the thesis is to define how the uncertainty can be accounted for in the
process of risk assessment for CO2 storage and to quantify by means of numerical models
the scenarii of leakage by lateral migration and through the caprock. It is found that
for qualitative and semi-quantitative risk assessment methodologies, the uncertainty can
only be accounted for a posteriori giving an approximate relative margin of the evaluated
risk. For most quantitative methodologies it is possible to define the risk measures out of
evaluated uncertainty on consequence intensity and probability.

The chosen scenarii have been quantified using the system modeling approach. This
approach is most suitable for slow processes and provides a wide choice for uncertainty
representation and propagation. To make a link with the classical risk model in the form
of an Event Tree, the events are expressed as exceedence of critical thresholds (such as
fluid overpressure, maximal lateral spread of CO2 cloud, leakage rates,...). Three different
levels of risk measures and critical thresholds are discussed depending on uncertainty
representation.

Two predictive numerical models are developed: a 2D rotation-invariant model and
coupled 3D/2D rotation-invariant one. The main phenomena accounted for in the numer-
ical models are two-phase immiscible pressure-driven flow, capillarity, gravity and viscos-
ity. These phenomena dominate the repartition of CO2 in space for several hundreds of
years.

The first model is used for probabilistic parametric uncertainty propagation with a
stochastic metamodel (using a polynomial chaos expansion). Results are given in terms of
threshold exceedence probability curves for two variables of interest: the lateral extent of
the CO2 cloud and fluid overpressure on top of the reservoir after 10 years of injection. It
is found that the most influential input variables for the lateral extent are intrinsic perme-
ability, maximal gas saturation and thickness of the reservoir whereas the total porosity
shows no relevance. The parameter controlling gas overpressure is the intrinsic permeabil-



ity. It is shown that using a stochastic metamodel together with a Taylor approximation,
the level-2 quantities of interest become accessible even if the numerical model is rather
time-consuming.

The second model represents a 3D model enhanced by coupling with a 2D rotation
invariant formulation far from the injection well. Such coupling makes the model lighter
and diminishes the boundary effects. It has been created and used to quantify the effects
of 3D permeability heterogeneities on the flow. The spatial variability is represented as
an anisotropic tensor-valued random field. Special statistical estimators based on spatial
averaging are then defined to reach the quantities of interest such as threshold exceedence
probability. The results are compared to homogeneous permeability random model having
the same probability density function. In the heterogeneous case a tremendous reduction
of variance is observed. To find an equivalent homogeneous variability closely reproducing
the heterogeneous case results, the input permeability variance should be divided by 5.
It follows that the subjective decision to represent the input uncertainty with or without
spatial variability changes significantly the results. Therefore, a multi-variable uncertainty
propagation techniques treating spatial variability should be developed.



Résumé

Le présent travail fait le lien entre les domaines de modélisation des écoulements biphasiques
(dans les milieux homogènes et hétérogènes), le traitement d’incertitudes et l’analyse de
risques dans le contexte de stockage de CO2 dans les aquifères profonds et salins. La
technologie de stockage de CO2 dans des couches géologiques consiste en un captage du
dioxyde de carbon de l’air, sa condensation jusqu’à l’état supercritique et l’injection dans
un milieu profond, naturellement poreux (à plus de 1 km de profondeur). L’évaluation
de risques liés à la phase de stockage (à partir du moment où le CO2 commence à être
injecté dans l’aquifère) est basée sur une prédiction des flux simultanés du gaz injecté et
de l’eau saline initialement présente dans les pores du milieu. Telles prédictions dépendent
des propriétés du milieu, des caractéristiques des deux fluides et de leur interaction avec
le milieu. Ces caractéristiques sont toutefois mal connues, particulièrement quand il s’agit
des propriétés du milieu, telles que la géométrie des couches, la perméabilité, la porosité,
la position et la transmissibilité des failles. Les sources d’incertitude mentionnées altèrent
l’évaluation de risques.

L’objectif principal de la thèse est de définir comment l’incertitude peut être intégrée
dans la procédure d’évaluation de risques dans le contexte de stockage de CO2. Comme il
existe une grande variété des méthodologies d’évaluation de risques, leur classification en
fonction de la manière dont est prise en compte l’incertitude est étudiée. L’approche par
modélisation de système permet le choix le plus flexible de représentation et de propagation
des incertitudes dans l’hypothèse de processus lents. Le lien entre cette approche et un
modèle classique de risques sous forme d’un arbre de causes et de conséquences est présenté
dans ce travail. Les événements sont formulés en termes de dépassement de seuils critiques
(pour la surpression des fluides, l’extension maximale du panache de CO2, les taux de
fuite,...). Trois niveaux des seuils sont définis en accord avec les trois niveaux de traitement
d’incertitudes.

La partie appliquée de la thèse comprend le développement de modèles numériques pré-
dictifs et une propagation d’incertitude probabiliste pour la quantification de l’extension
maximale du panache de CO2 et de la surpression au toit de l’aquifère. Les phénomènes
inclus dans les modèles numériques sont un écoulement biphasique immiscible provoqué
par une différence de pressions, la capillarité, la gravité et la viscosité. Ces facteurs définis-
sent la forme du panache de CO2 pendant la période d’avancement le plus rapide dans le
milieu.

Une partie importante de la thèse est consacrée à la problématique de prise en compte
de la variabilité spatiale comme une source d’incertitude. Une étude numérique proba-
biliste est menée sur un champ aléatoire anisotropique de la perméabilité intrinsèque.
Cette étude est réalisée grâce à la création d’un modèle numérique ad hoc et la défini-



ii

tion d’estimateurs statistiques pour les quantités d’intérêt. Les résultats sont comparés
au cas d’une perméabilité homogène et aléatoire avec une même fonction de densité de
probabilité. Une variabilité homogène equivalente est déduite permettant de reproduire
les résultats du cas hétérogène.
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Notations

a, A - scalars
a = (a1, ..., an) - vector in the Euclidean space Rn

A - matrix or tensor

Uncertainty modelling

x = (x1, ..., xp) - vector (of dimension p) of uncertain model inputs representing sources
of uncertainties
d - vector of fixed model inputs representing design or decision variables
z = (z1, ..., zq) - vector (of dimension q) of the model output variables (variables of inter-
est)
X,Z - vector of uncertain random variables corresponding to x and z
G(.) - deterministic function representing the system model relying the input vectors to
the output variables of interest
fX(x|θX) - joint density of random vector X, parametrized by θX

θX - vector of parameters of the uncertainty model of X (such as parameters of the joint
PDF in probabilistic approach)
ΘX - vector of uncertain random variables corresponding to θX

π(θX|ζ) - joint density of random vector ΘX, modeling epistemic uncertainty in θX, such
a level-2 distribution is parametrized by the hyper-parameters ζ

Matrix sets

Mn,m(R) - set of all (n×m) real matrices
Mn(R) - set of all square (n× n) real matrices
M+

n (R) - set of all square (n× n) real symmetric positive-definite matrices

Matrix invariants and norms

det{A} - determinant of a square matrix A ∈Mn(R)
tr{A} - trace of a matrix
‖A‖2

F = tr{ATA} =
∑n

i=1

∑m
j=1A

2
ij - the Frobenius norm
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∇ - gradient
div - divergence

Physical model

The subscript ’w’ stands for the wetting fluid, here the salt water,
’nw’ - for non-wetting fluid, here the injected supercritical CO2.
The phase α = ’w’ or ’nw’.
K - hydraulic conductivity [m/s]
Kα - effective permeability of the fluid α
ki - intrinsic permeability of the medium [m2]
krα - relative permeability for the fluid α [-]
Bα - bulk modulus of the fluid α [Pa]
sα- saturation of the fluid α [-]
Sα - effective saturation of the fluid α [-]
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Statistical notions
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R(h) - autocorrelation function
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Chapter 1

Introduction

1.1 Context

Carbon Capture and Storage (CCS) is a technique to reduce the air carbon dioxide concen-
tration by means of its injection into geological medium. The CO2 is captured chemically
from the air in the vicinity of industrial emitters, compressed to supercritical state, trans-
ported to the injection well and injected into a natural underground porous formation.

This procedure allows to continue the use of fossil energies, giving necessary time for
renewable energies to be widely implemented. The main potential receptors of the CO2 are
depleted oil and gas fields, unminable coal seams and deep saline aquifers. According to
the Intergovernmental Panel on Climate Change (IPCC, 2005), among the listed receptors
the deep saline aquifers have the biggest predicted capacity (see Table 1.1).

Reservoir type Lower estimate of Upper estimate of
storage capacity [Gt] a storage capacity [Gt] a

Oil and gas fields 675 b 900 b

Unminable coal seams 3-15 200
Deep saline formations 1000 Uncertain, but possibly 104

Table 1.1: Storage capacity of different reservoirs (IPCC, 2005)

Deep saline aquifers are deep porous sedimentary rocks saturated with brines (saline
water). The high concentrations of salt contained in such brines prevents them from being
used as water resources for human and agricultural needs, therefore the deep saline aquifers
are good candidates to receive the CO2 captured from the air.

CO2 geological storage is a recent technology which has seen a rapid development over
the last decade. It challenges the researchers to provide appropriate tools to compare and
assess potential injection sites in terms of risk (Grobe et al., 2009) as well as to establish a
conceptual framework of risk assessment methodology (Lahaie et al., 2009) and a regula-
tory framework (Solomon et al., 2007). The underground medium is hardly accessible and

aStorage capacity includes storage options that are not economical.
bThese numbers would increase by 25% if ’undiscovered’ oil and gas fields were included in this

assessment.
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therefore poorly known. That is why evaluation of risks related to underground processes
needs to integrate uncertainty.

1.2 Uncertainty and Risk assessment

A closer look at the relations between risk and uncertainty allows to assort that risk does
not exist without uncertainty. Indeed, if the behavior of any system was known precisely
for any time moment (i.e. could be described in deterministic way), the risk would be
entirely controllable. Risk arises from the lack of knowledge that we have to describe or
predict the reality. The International Organization for Standardization defines the risk as
the “effect of uncertainty on objectives” (ISO Guide 73:2009, 2009).

In the light of the definition above, risk assessment consists in uncertainty treatment.
Every methodology of risk assessment intrinsically relies on a certain uncertainty percep-
tion. Conscious or unconscious perception affects the risk evaluation by contributing to
the subjectivity of any given risk study. Subjectivity is considered as one of the natures
of uncertainty sources itself.

So, strictly speaking, to “integrate” uncertainty in risk assessment procedure means to
adapt it to be able to include more advanced risk measures, uncertainty description and
propagation. In other words, the practice of looking for an error interval related to a risk
value could be replaced by a practice of evaluating uncertainty first and then defining the
risk depending on how pessimistic the evaluation should be.

Figure 1.1: Illustration of risk and uncertainty management throughout the life of a CO2

storage project. Reducing uncertainty shrinks the ‘risk box’, whereas reducing risk moves
the ‘risk box’ toward the origin. The red dot illustrates how risk is assessed based on
a conservative approach, i.e. a pessimistic evaluation of probability and consequence. If
risks are ranked conservatively, any measures that reduce uncertainty will generally also
reduce the assessed risk. (DNV, 2010, page 65)

What is uncertainty? The perception of uncertainty has been evolving with time and
the domain of application determining the way of its treatment in risk assessment and
giving a variety of approaches. At the same time the distinction of different types of un-
certainty has appeared. It has become common to make difference of aleatory (or in other
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terminologies “random”, “stochastic”, “natural variability”) uncertainty, which describes
unpredictable character of natural processes and media, and epistemic (or “systematic”,
“subjective”) uncertainty, which takes origin from incomplete knowledge. In practical stud-
ies the temporal and spatial scale of the problem make the distinction rather clear.

The typology of uncertainties adapted to the context of risk assessment is widely dis-
cussed in the PhD thesis of Cauvin (2007). The principle categories (without considering
the relations between them) proposed by Baecher and Christian (2003) are as follows:

Figure 1.2: Categories of uncertainty entering risk analysis (Baecher and Christian, 2003).

These categories are not independent of course. The presence of natural spacial hetero-
geneities is partly in the origin of the imprecision of our knowledge about media properties
(it would be much easier to interpret the measurements if they were independent of lo-
cation). As well as it is impossible to consider exclusively natural variability, because its
identification necessitates constraining to data affected by imprecision.

The parameter knowledge uncertainty and less natural variability constitute the main
body of uncertainty sources commonly considered for uncertainty propagation in the pre-
dictive modeling context.

Nowadays, it is a common practice to engage predictive models in order to get quan-
titative estimates of the intensity of physical processes and consequently of risks. But
“numerical models are a form of highly complex scientific hypothesis” (Oreskes et al.,
1994). Modeling itself introduces uncertainty that should be quantified.

Briefly the stages of modeling process and associated uncertainties are the followings:

Walker et al. (2003) and Refsgaard et al. (2007) discuss a conceptual basis for uncer-
tainty management in model-based decision support. In their terminology the delimitation
of the system in time and space would be referred as ‘framing’, further transition from
simplifications through physical model to mathematical model as ‘model structure uncer-
tainty’, and transition from mathematical to numerical model results as ‘model technical
uncertainty’. These sources of uncertainties put in the process of creation of consequent
models is shown on Table 1.2.

For a reservoir engineering prediction (as can be considered CO2 storage as well)
‘framing’ would correspond to the choice of the lateral extent of the simulated area,
selection of the geological layers to be included in the simulation and selection of time
period for the prediction. The input uncertainty consists in the uncertainty of the geometry
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Context
Reality

delimitation of the system in time and space, choosing geometry,
simplifications of the phenomena at stake, hypothesis, neglects

Physical model
approximations of empirical laws, mathematical expression

Mathematical model
discretization, choice of a numerical resolution scheme,
parametrization of the solver, numerical approximations, errors

Numerical model
+ Parameter uncertainty (possibly including representation
of natural variability)

= Probabilistic model

of the static geological model: facies thicknesses, fault locations, etc. This information is
provided by geologists. Non-uniqueness of data interpretation by geologists always leads
to a set of equivalent models of the geological system which could give substantially
different results for flow dynamic simulation. Therefore, reservoir engineers are tempted
to treat this type of uncertainty, working simultaneously with several interpretations of
the geological model.

Context
Reality

Context and framing
Input uncertainty
Model structure uncertainty (approximation)

Physical model
Model structure uncertainty (simplification)

Mathematical model
Model technical uncertainty

Numerical model
+Parameter uncertainty

= Probabilistic model

Table 1.2: Uncertainties associated with the modeling process: sources of uncertainties
according to Walker et al. (2003) and Refsgaard et al. (2007)

Model structure uncertainty (incomplete understanding or simplified description of
modeled processes) can be demonstrated by comparison of the results of solutions pro-
vided by different institutions for the same problem (although the effect would be coupled
with the model technical uncertainty, which could be estimated by comparing the results
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for a numerical benchmark: the same mathematical model solved by different numerical
simulators). The work on benchmarks for two-phase flow in porous media has been con-
ducted by the MoMas group (MoMas, 2012). A framework for dealing with uncertainty
due to model structure error is proposed by (Refsgaard et al., 2006). The tenability of
CO2 fate prediction models can be evaluated through a pedigree matrix. The average
score of pedigree matrix on the scale from 0 to 4 is 2 (it could rise to 3). As an exam-
ple, the matrix for the model engaged in the present work would be following: Model
exactly addresses the desired predictive variable (Proxy, score 4), is based on indirectly
measured data or poor historical/field data (Quality and quantity, score 2), built on the
accepted theory with partial nature in view of the phenomenon it describes (Theoretical
understanding, score 3), described by equations reflecting acceptable mechanistic process
detail (Representation of understood underlying mechanisms, score 3, can go down to
aggregated parametrized meta-model for computational needs, score 2), somewhat plau-
sible or reasonably plausible (Plausibility, score 2 or 3), accepted by all colleagues except
rebels: competing theories exist, such as streamline simulation, but are not controversial
(Colleague consensus, score 3).

The model technical uncertainty constitutes a great body of work of numerical stud-
ies (Dı́ez et al., 1998). Some types of technical uncertainties can be expressed exactly,
some can be estimated or bounded. In the present work the numerical uncertainty was
only addressed by comparing the results of 2D axisymmetric and 3D formulations and
simulations on different meshes (see section 2.4.2).

That is why nowadays to perform an uncertainty study one needs to make appropriate
choices. A guide to quantitative uncertainty management by De Rocquigny et al. (2008)
provides a generic workflow for uncertainty treatment as well as an assistance for making
best choices at each step of the workflow. In the present work the ideas of uncertainty
management are adopted from the guide cited above. The proposed generic workflow
divides an uncertainty study into four steps:

� A. The specification step: What are the quantities of interest to be estimated? Which
model is going to be used? What are the inputs and the outputs of this model?...

� B. The uncertainty modeling (or uncertainty source quantification) step: How the
uncertain nature of the inputs can be represented?

� C. The uncertainty propagation step: supposing that the uncertainty of the output
arises from the uncertainty in inputs, how to compute the uncertainty of the output,
the quantity of interest and even the uncertainty in the quantity of interest?

� C’. The sensitivity analysis (or importance ranking) step: supposing again that the
uncertainty of the output arises only from the uncertainty in inputs, which is the
contribution of each input to the output uncertainty?

The importance of addressing uncertainties in the risk assessment models concerning
the geologic storage of CO2 is stressed in the IPCC special report. A study for the IEA
Greenhouse gas programme (IEA GHG, 2007) also concluded that a better understanding
is required for the process of conducting a site performance site, for the management of
liability and the quantification of site-specific impacts of a CO2 release and the estimation
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of its probability. The listed detected gaps are closely related to the understanding of the
uncertainties. The need to handle various kinds of uncertainty is mentioned by numerous
authors (e.g. Stenhouse et al., 2006).

1.3 Objectives and outline of the Thesis

Taking into account the features formulated above, the objectives of the thesis are:

1. To determine how uncertainties impart the risk assessment methodologies currently
used in the context of CO2 storage.

2. In the frame of the methodology followed at INERIS, to contribute to the scenario
quantification (based on uncertainty treatment).

3. To develop numerical models allowing of a probabilistic uncertainty propagation and
account of spatial variability.

4. To choose the most appropriate uncertainty propagation method and sensitivity
analysis technique and apply them using a numerical model.

The document is organized in five chapters. Chapter 2 is devoted to the description of
the physical, numerical and semi-analytical models used for prediction of CO2 migration
through an aquifer. Coupling of a 3D model with a rotation-invariant one is presented.

In Chapter 3 the role of uncertainty in risk assessment is further discussed. The sce-
narios quantified in this work are presented. A preliminary analysis on a semi-analytical
model illustrates the choice of an uncertainty propagation technique.

Chapter 4 is entirely devoted to the results of uncertainty propagation and sensitiv-
ity analysis performed on 2D rotation-invariant model of CO2 injection into an aquifer
through a PCE (Polynomial Chaos Expansion) metamodel.

In the last Chapter the effect of spatial variability is analyzed. Two probabilistic studies
with homogeneous parametric uncertainty and spatial variability are compared.
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In this chapter the main phenomena taking place after injection of CO2 into an aquifer
are discussed. The formulation of the problem in the form of a closed system of partial
differential equations is explained. Further, the particularities of numerical models de-
veloped during the preparation of the thesis are presented including geometry, values of
parameters and expressions for variables, mesh characteristics, resolution scheme. In or-
der to be able to treat the heterogeneities in 3D an ad-hoc model has been elaborated.
It couples a solution in a 3D cylindrical zone with an axisymmetric solution outside. The
justification of the model can be found in Subsection 2.4.2. Analytical models can be
useful for preliminary risk screening and ranking. In the last part of the present chapter
a literature review of existing analytical models for CO2 storage is proposed. The model
for maximal lateral extent by Nordbotten and Celia (2006) is detailed as it is used in the
next chapter for illustration purpose.

2.1 The overall model and the main phenomena

The term of ‘physical model’ is commonly referred to as a smaller (or larger) physical
copy of an object designed for experimental needs. In the present work, we are speaking
of ‘physical model’ as a conceptual model of interacting physical processes taking place
in a spatially and temporally determined system. In practical sense, it is a certain choice
of geometry and modeled phenomena, of set of simplifications and hypothesis that give
access to mathematical expression.

In the context of CO2 geological storage, the system includes the storage aquifer and
surrounding layers. For some models, all upper layers until the surface are considered.
Depending on the available information, the geometry is either fully represented or sim-
plified to horizontal or slightly inclined parallel layers. According to Gasda et al. (2008),
for many aquifers of low permeability which are likely to become CO2 sequestration the
effect of slope can be neglected. In the present work, the model is inspired by an aquifer
in Paris basin without any precise geometry available and with a single injector, that is
why the choice of horizontal parallel cylindrical layers is made.

The lateral boundary conditions for analytical and semi-analytical solutions are often
supposed infinite as for Celia and Nordbotten (2011); Okwen et al. (2011); Mathias et al.
(2009); Fuč̀ık et al. (2007). For numerical models the domain is laterally bounded. The
choice of lateral boundary condition influences significantly the solution and should corre-
spond to the aquifer type (Smith et al., 2011; Zhou et al., 2008; Vilarrasa et al., 2010). For
open aquifers, a condition of constant pressure is imposed laterally at a distant boundary
assuming that there is a limit of pressure perturbation. This is discussed in Section 2.4.2
and a technique allowing to move further the lateral boundary is proposed.

What happens when the supercritical CO2 is injected in an aquifer? Due to high
injection pressure the supercritical fluid goes beyond the entry pressure and penetrates
the largest pores of the medium driving out the saline water initially in place. Gradually
CO2 penetrates the pores of smaller radius and occupies more and more volume of the
connected porosity. Due to the difference in densities (the injected fluid is lighter then the
fluid in place), the CO2 cloud has a tendency not only to spread laterally but also to rise
slowly. As time goes more and more of CO2 dissolves in water and becomes available for
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chemical reactions with the matrix. The commonly accepted opinion is that the brine is
lighter than the brine with dissolved carbon dioxide inside. Therefore, at the late stages of
the storage the gravity flows for liquid phase should be considered. Nevertheless, certain
experimental work do not confirm this point of view.

The most complete model would take into account the following physical and physico-
chemical phenomena:

� flow of two fluid phases mainly driven by the injection pressure,

� capillary effect: wetting (w) and non-wetting (nw) phases - brine and gas respec-
tively,

� imbibition/drainage hysteresis

� compressibility of fluids,

� compressibility of the porous medium (pore volume is not constant),

� buoyancy (gravity effect),

� temperature change (thermodynamical effects),

� partial miscibility between phases (naturally gas dissolves in water but also vice
versa the water left after the gas drainage is able to evaporate forming so called
drying front with inevitable salt precipitation),

� diffusion of dissolved species,

� disappearance of dissolved gas due to the chemical reaction with rock or with other
components dissolved in water,

� alteration of the porous medium with time: the properties of the porous medium
such as porosity, permeability and compressibility are not invariant due to mobile
particles transport and precipitation, mechanical stresses provoking micro-cracking
and chemical reactions.

All together these phenomena form a coupled dynamic chemo-thermo-hydro-mechanical
(-migratory) problem which to the knowledge of the author has never been solved in its
entirety because of the high number of unknowns, difficulty of coupling formalization (in
particular for numerical resolution scheme) and difference of scales.

Nevertheless, this modeling problem is not completely new as similar underground
processes and phenomena appear in applied science fields such as underground water
resources treatment, gas storage, nuclear waste sequestration, oil and gas reservoir engi-
neering and some geomechanical problems. Therefore, the choice of acting phenomena for
CO2 storage modeling is historically strongly related to the field of knowledge which this
modeling is based upon: underground water modeling together with geochemistry empha-
size the chemical aspects (reactive transport models as for (Zheng et al., 2009), whereas
reservoir engineering provides more experience in thermo-hydrodynamics for multiphase
flow, geomechanical studies introduce the coupling with the mechanical response of the
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system, nuclear waste sequestration has advances in thermo-hydro-mechanical coupling
(Hudson et al., 2005; Fall et al., 2014).

Numerous works have recently appeared covering the chemical aspects of the CO2

storage. Chemical modeling focuses on the last three phenomena of the above list. That
is to say, its goal is predicting of the reaction rates, transport of the dissolved components
and generally spatial distribution of concentrations. Some works include the mineralogical
description of the reservoir rock. To quote some studies dealing with chemical aspects:
Andre et al. (2007); Durst and Kervvan (2011); De Lucia et al. (2011); Dalkhaa et al.
(2013); Shen et al. (2013); Xu and Li (2013); Kirste (2013); Mohd Amin et al. (2014). The
chemical modeling is quite important for predicting of CO2 evolution on the short term
as well as on the long term because the chemical reaction is recognized as the ultimate
and therefore most secure type of trapping (IPCC, 2005). For fully coupled flow-reactive-
transport formulation, the reader is referred to the works of Fan et al. (2012); Liu et al.
(2011); Durst and Kervvan (2011).

One of the most important factors for secure CO2 storage is the integrity of the caprock.
As the injection modifies the pressure field, there can be a critical pressure which would
lead to the caprock fracturing or reactivation of existent fractures. That is why the geome-
chanical aspects have received a considerable attention as well (Le Gallo, 2009; Shi et al.,
2013; Yamamoto et al., 2013; Rohmer and Seyedi, 2010; Rutqvist et al., 2008; Rutqvist,
2012; Vidal-Gilbert et al., 2009; Vilarrasa et al., 2010). At INERIS the numerical ap-
proaches for hydro-mechanical coupling were studied by Millard et al. (1995), Souley and
Thoraval (2011), Thoraval et al. (2012) and in application to CO2 storage by Thoraval
(2008) and Vidal-Gilbert and Thoraval (2007).

Significant experimental efforts have also been focused on characterization of each one
of the phenomena mentioned above both in-situ and in laboratory. The relative perme-
ability is studied with the use of new technology: X-ray CT scanner (Perrin et al., 2009).
The mobilization of the metals due to CO2 injection has been studied by Rillard et al.
(2013); Kharaka et al. (2009). The changes in porous structure in shales due to CO2 in-
jection can be found in (Rhenals Garrido et al., 2013). Cornet and Burlet (1992) have
worked on the stress field determination.

To summarize, CO2 has various means of flowing or being transported once injected.
First of all, it flows in supercritical state. On its way, a part of the fluid dissolves in
water and it is transported by the moving water. Inside the liquid phase CO2 diffuses
equilibrating the concentration gradient. While in liquid phase some quantity of CO2

disappears due to chemical reactions.
These processes correspond to four trapping mechanisms determining the long-term

evolution of the CO2:

� structural and stratigraphic trapping

� residual gas trapping

� solubility trapping

� mineral trapping
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The time scales of these processes are not the same. Some studies show that the
dissolution, diffusion and chemical reactions are likely to be preponderant after thousand
years (IPCC, 2005). The primary CO2 spatial distribution in the aquifer is conditioned
by the transport in supercritical state (Bachu et al., 1994). Therefore, as the development
of a most complete and fully coupled model is not the topic of the present work, only
the hydrodynamical model of two-phase compressible flow through incompressible porous
medium has been considered. The reference time of 100 years is taken to quantify the
influence of uncertainties.

2.2 Two-phase flow in porous media

We first remind how a fluid flow through porous media can be expressed for a single fluid.

Darcy’s law for a single fluid

There are several approaches to describe quantitatively a fluid flow through porous medium
depending on the scale of interest.

On the smallest scale the fluid flow can be quantified out of particle interactions.
The Navier-Stokes equations describe the balance of forces acting at any given region of
the fluid: changes in momentum of fluid particles depend only on the external pressure
and internal viscous forces acting on the fluid. Such an approach seems fundamental
and rigorous but can only be used for pore-scale models for short time periods. As it
was already mentioned, the CO2 storage involves large spatial and temporal dimensions
- several tens of kilometers and thousands of years. Therefore, macro-scale laws of fluid
flow are required. The classical law which is used to model fluid flow on macro-scale was
initially formulated for saturated flow in porous media in an experimental way by Darcy
(1856). The historical insight of this discovery is described by Marle (2006).

Darcy’s law (Equation 2.1) states that the fluid velocity field (q) is determined by the
pressure gradient (∇p), the fluid viscosity (µ), and the structure of the porous medium
(expressed through the intrinsic permeability of the medium ki):

q = −ki
µ

(∇p− ρg∇z). (2.1)

Nowadays it is proved that the Darcy law can be obtained in a mathematically rigorous
way via homogenization of Navier-Stokes equations (Allaire, 1992; Das and Hassanizadeh,
2005; Panfilov, 2000). Darcy’s law applies when the gradient in hydraulic potential drives
fluid movement in the porous medium. But this generalized linear flux law is only valid for
slow, non-turbulent viscous flow. The state of the art in modeling long-term underground
gas behavior acknowledges the use of Darcy’s law.

Darcy’s law for two phases

The formula above provides the momentum of a single fluid through porous medium.
Nevertheless, Darcy’s law is also largely used to describe a two-phase flow (e.g. in reservoir
engineering, the main principles can be found in (Dake, 1978).
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If we assume that the pores are entirely filled with two fluids, the volume fractions of
each of the phases are introduced in order to find their velocities.

Wetting fluid saturation (sw) and the non-wetting fluid saturation (snw) sum to one.
Some part of the porosity is not available for the flow, which means that there is a residual
saturation: when injecting gas, a part of the initial water remains bounded to the matrix.
This leads to define:

� srw, the wetting fluid (water) residual saturation,

� Sw , the wetting fluid effective saturation,

� srnw, the non-wetting fluid residual saturation (which is supposed zero) and

� Snw , the non-wetting fluid effective saturation.

The link between the saturation, the effective saturation and the residual saturation for
the wetting phase (analogously for the non-wetting phase) is the following:

Sw = − sw − srw
1− srw − srnw

(2.2)

Hereafter only the effective saturation is going to be used.
The simultaneous flow of two fluids can be described as a combination of two separate

flows (each of them is caused by the difference of fluid pressure and elevation according to
2.1). The contribution of each phase flow to the total flow is introduced through relative
wetting and non-wetting phase permeabilities (krw and krnw respectively).

The velocity field of each phase according to extended Darcy’s law is expressed as the
wetting phase flow rate (qw) and the non-wetting phase flow rate (qnw):

qw = −kikrw
µw

(∇pw − ρwg∇z), (2.3)

qnw = −kikrnw
µnw

(∇pnw − ρwg∇z). (2.4)

For notations and values of the parameters chosen for the numerical model the reader
can refer to Tables 2.2, 2.3 and 2.4.

The intrinsic permeability is by definition the permeability of water-saturated medium
(for single-phase flow). It is measured experimentally by reversing the Darcy’s law (Lake
et al., 2007).

The gas relative permeability at maximum gas saturation is lower than the water rel-
ative permeability at maximal water saturation. According to Bennion and Bachu (2008),
the ratio of the relative permeability endpoints for the studied samples is between 0.15
and 0.6. An example of experimentally measured relative permeability curves for a sample
of most similar properties to Paris basin aquifer is shown in Figure 2.1.
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Figure 2.1: Relative permeability data (drainage cycle only) for CO2/brine at in-situ
conditions for the sample “Nisku #1”: carbonate at the depth of 2050 m, porosity of
9.7%, pressure of 17.4 MPa and temperature of 56 ◦C (from Bennion and Bachu, 2008).

Fluid mass conservation laws. The main equation allowing to model fluid flow is the
mass conservation law. Its detailed derivation is demonstrated by Bear (1972, 1979).

For saturations defined above the mass conservation law for both phases reads:

φ
∂(Swρw)

∂t
+ div(ρwqw) = 0, (2.5)

φ
∂(Snwρnw)

∂t
+ div(ρnwqnw) = 0. (2.6)

Even if the densities can be expressed through equation of state, there are still four
unknowns in these equations: saturations and pressures of both phases. But there exists a
relation between the saturation and the pressures difference. Therefore, in order to be able
to solve the problem, two main unknowns should be chosen. This choice is important for
numerical stability and the treatment of gas appearance. Some authors claim that choos-
ing the gas pressure and water saturation as principal variables improves the convergence
and numerical stability (Tong et al., 2013). In the present work, the pressures of the gas
and liquid phases are chosen as two main unknowns. To obtain the equations with the
pressure as the principal variable it is needed to express the first summand of Equations
2.5 and 2.6 as function of the capillary pressure change.

The capillary pressure is by definition the difference between the pressures of the
non-wetting and wetting phases:

pc = pnw − pw (2.7)

Let us introduce a specific capacity Cp,w, which would describe how the effective sat-
uration changes with capillary pressure. If we define the specific capacity as a partial
derivative of the effective saturation with respect to the capillary pressure weighted by
porosity, then such capacities for wetting and non-wetting phases are complementary:
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Cp,w = −Cp,nw = φ
∂(Sw)

∂pc
(2.8)

The water compressibility is the inverse of the water bulk modulus and can be ex-
pressed by definition as:

1

Bw

= − 1

V

∂V

∂pw
(2.9)

Using Equations 2.8 and 2.9, the first summand of Equation 2.5 can be developed as
follows:

φ
∂(Swρw)

∂t
= φρw

∂Sw
∂t

+ φSw
∂ρw
∂t

= φρw
∂Sw
∂pc

∂pc
∂t

+ φSw
∂ρw
∂pw

∂pw
∂t

=

= Cpρw
∂pc
∂t

+ φSw
∂ρw
∂V

∂V

∂pw

∂pw
∂t

= Cpρw
∂pnw
∂t
− Cpρw

∂pw
∂t

+ φSw(−ρw
V

)
∂V

∂pw

∂pw
∂t

=

= Cpρw
∂pnw
∂t

+ (−Cpρw +
φSwρw
Bw

)
∂pw
∂t
(2.10)

Similarly the first summand of Equation 2.6 can be expressed as follows:

φ
∂(Snwρw)

∂t
= ρnw(Cp

∂pw
∂t

+ (−Cp +
φSnw
Bnw

)
∂pnw
∂t

) (2.11)

On the right-hand side of Equations 2.10 and 2.11 we still have the water and gas
saturations. There are a number of empirical laws describing the relation between capillary
pressure and phase saturation as well as phase permeability and phase saturation (Brooks
and Corey, 1964; Mualem, 1976; Van Genuchten, 1980). In the simulations presented in
this work, the effects of hysteresis are neglected and the well-known Van Genuchten (1980)
model for capillary pressure pc(Sw) is used. Inverting this law leads to the expression of
saturation as a function of capillary pressure:

Sw(pw, pnw) =

{
(1 + (αHc)

N)−M , Hc > 0

1, Hc 6 0
(2.12)

where Hc is the pressure head (Equation 2.13), α is the inverse of the ‘pseudo air entry
pressure’ p0 (Croisé et al., 2006) weighted by the gravity acceleration and the density (see
Equation 2.14), N and M are non-dimensional characteristic parameters of the law.

Hc(pw, pnw) =
pnw − pw
ρwg

(2.13)

α =
ρwg

p0

(2.14)

The parameter p0 is larger for finer material, and its dependency on material properties
may be assessed using the Leverett (1941) scaling law (the procedure is described by
Nikolaevskij (1990)). This law has the following form:
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p0 = σ

√
ki
φ

(2.15)

where σ is the interfacial tension between the two phases.

Finally, we have all the parts of the system of equations entirely expressed in terms of
pressure variation. The final problem statement is given in the next section.

2.3 Closed system of PDEs for a numerical model in

3D formulation

2.3.1 The constitutive system of equations

Geometry

For the sake of simplicity we are considering a domain which represents only one geological
layer of cylindrical geometry, having the vertical injector as the symmetry axis. Adding
other layers would not change the formulations presented hereafter but would only modify
the values of physical properties inside each layer. So let us consider a three-dimensional
cylindrical domain Ω with a boundary ∂Ω. A schematic view on the domain before revo-
lution around symmetry axis 1z is given in Figure 2.2. The part of the boundary where
the injection takes place is noted as ∂Ωin, the opposite side of the border is ∂Ωout.

∂Ωin ∂Ωout

∂Ω

Ω

1z

Figure 2.2: Considered domain: horizontal cylindrical layer with the injection well as the
revolution axis.

Final mathematical problem statement

The final formulation of the problem is the following: Find fluid pressures pw and pnw
defined on Ω× [0, T ] such that the systems of equations 2.16 and 2.17 are satisfied.
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For the wetting phase:

ρw(Cp
∂pnw
∂t

+ (−Cp +
φSw
Bw

)
∂pw
∂t

) + div(−kikrw
µw

(∇pw − ρwg∇z)) = 0, Ω× [0, T ]

pw = pw0, Ω× (t = 0)

n · (−kikrwρw
µw

∇(pw − ρwgz)) = 0, ∂Ωin × [0, T ]

n · ∇pw = 0, ∂Ω× [0, T ]

pw = pw0, ∂Ωout × [0, T ].
(2.16)

For the non-wetting phase:

ρnw(Cp
∂pw
∂t

+ (−Cp +
φSnw
Bnw

)
∂pnw
∂t

) + div(−kikrnw
µnw

(∇pnw − ρwg∇z)) = 0, Ω× [0, T ]

pnw = pnw0, Ω× (t = 0)

n · (−kikrnwρnw
µnw

∇(pnw − ρnwgz)) = Qnwρnw, ∂Ωin × [0, T ]

n · ∇pnw = 0, ∂Ω× [0, T ]

pnw = pnw0, ∂Ωout × [0, T ].
(2.17)

To close the system of equations, the hydraulic properties are expressed as functions of
the hydraulic head (Hc) according to the van Genuchten-Mualem laws (Van Genuchten,
1980):

Hc(pw, pnw) =
pnw − pw
ρwg

(2.18)

Sw(pw, pnw) =

{
(1 + (αHc)

N)−M , Hc > 0

1, Hc 6 0
(2.19)

Cp(pw, pnw) =

{
αM

1−M (φ− θr)S1/M
w

(1−S1/M
w )M

ρwg
, Hc > 0

0, Hc 6 0
(2.20)

θw(pw, pnw) =

{
θr + Sw(φ− θr), Hc > 0

φ, Hc 6 0
(2.21)

krw(pw, pnw) =

{
SLw(1− (1− S1/M

w )M)2, Hc > 0

1, Hc 6 0
(2.22)

Hydraulic properties for the non-wetting phase:

Snw(pw, pnw) = 1− Sw, (2.23)
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θnw(pw, pnw) = φ− θw (2.24)

krnw(pw, pnw) =

{
(1− Sw)LL · (1− S1/M

w )2M , Hc > Ho
c

0, Hc 6 Ho
c

(2.25)

It should be mentioned that the expressions for relative permeabilities (Equations
2.22 and 2.25) are normalized. In order to obtain a non-normalized curve, the gas relative
permeability is multiplied by its endpoint 0.2 (value taken from the closest sample analyzed
by Bennion and Bachu (2008), see Figure 2.1)

Defining the system in phase pressures as main unknowns was initially implemented
in the ‘simultaneous solution’ scheme in petroleum reservoirs (Douglas et al., 1959).

The main criticisms of this approach are the strong coupling and non-linearity of the
first equations in systems 2.16 and 2.17 and the assumption that the capillary pressure
has a unique inverse function for expressing saturation (Equation 2.19). Alternative ways
of defining the system are the implicit pressure-explicit saturation (IMPES) scheme and
the formulation in a global pressure, described by Chen et al. (2006).

2.4 Developed numerical models

All the numerical models developed in the present project for flow prediction during and
after CO2 injection into an aquifer are based on the same assumptions. The geological
context is inspired by Paris sedimentary basin. Dogger reservoir is considered as a potential
storage aquifer.

The main two models used for comparative numerical study in the present work are
a 2D axisymmetric model of two-phase immiscible flow in the aquifer with a vertical
injection well as a rotation axis and a similar 3D model completed with 2D axisymmetric
solution for distant zones.

Other developed models have not found their application in the thesis but can be
further adapted for evaluation of different scenarios. Among them a 2D rotation-invariant
model including three geological layers: aquifer, caprock and overburden; a 2D rotation-
invariant model for the aquifer with anticline geometry; a coupled 3D/2D axisymmetric
model for three layers and for horizontal injection well (need further numerical optimiza-
tion). The author also contributed to the verification of a vertical 2D model predicting
the leakage rates through the entire column of overlaying formations.

Table 2.1: Model input parameters

Parameters Values
Reservoir depth [-2470 m, -2350 m]
Injection zone [-2420 m, -2400 m]
Initial pressure (hydrostatic) 23.5 MPa (at the top of the reservoir)
Temperature 75◦C (for thermal gradient 0.03◦C/m)
Boundary conditions no flux vertically, constant pressure laterally



18 2.4. Developed numerical models

Variables and parameters The two principal variables to be found by the numerical
solution are the fluids pressure fields for any time instant from the beginning of the injec-
tion and till 100 years. The constant model parameters describing the aquifer conditions
are summarized in Table 2.2.

Table 2.2: Parameters of the model

symbol value unit name
Qnw 3.68 · 10−3 m/s gas injection rate
ρw 1000 kg/m3 water density (surface)
φ 0.15 [-] total porosity
θr 0.05 [-] irreducible water volume fraction
r1 0.108 m well radius
r2 1 m damaged zone thickness
Patm 105 Pa atmospheric pressure
P0 105 Pa reference pressure
K0 10−13 m2 intrinsic permebility far from the well
M 0.66 [-] van Genuchten parameter
N 0.34 [-] van Genuchten parameter
L 0.5 [-] van Genuchten parameter
LL 0.9 [-] van Genuchten parameter
α ρw·g

P0
= 0.0981 1/m van Genuchten parameter

krmax 0.2 [-] gas relative permeability endpoint
g 9.81 m/s2 gravity acceleration
Kw 2·109 Pa water bulk modulus

2.4.1 2D-axisymmetric model

In a homogeneous case for simplified geometry of horizontal superposed layers an injection
of fluid through a single vertical well can be modeled in axisymmetric setting.

Table 2.3: Variables

name unit description formula order of magnitude

ki m2
intrinsic permeability
with a damaged zone
around the well

{
K0, r > r1 + r2

K0(10− 9 r−r1
r2

), r 6 r1 + r2

10−13

pnw0 Pa initial gas pressure −ρwgz + Patm 235× 105

pw0 Pa initial water pressure −ρwgz(1− 10−4) + Patm 235× 105

Gas injection rate Qnw corresponds to injection debit of 1Mt/year for the gas density at
the middle reservoir depth. For the gravity acceleration, the average on the Earth’s surface
is taken. At the depth of 1-2 km the gravity acceleration does not change significantly
according to the Preliminary Reference Earth Model. Brine density is approximated by
water density at surface level. The major simplification made for the construction of the
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numerical model is the approximation of fluid properties as functions of depth. It allows
taking into account the temperature and pressure gradient. The functions (Table 2.4) are
entered in the FEM software by interpolating between point-wise values taken from on-
line calculator of CO2 properties www.carbon-dioxide-properties.com based on the work
of Fenghour et al. (1998) and Scalabrin et al. (2006). The resulting functions are presented
in Figure 2.3.

Table 2.4: Interpolated functions of the model

name unit description
ρnw (-z) kg/m3 non-wetting fluid density
µnw (-z) Pa·s non-wetting fluid viscosity
µw (-z) Pa·s wetting fluid viscosity
Knw (-z) Pa non-wetting fluid bulk modulus

Figure 2.3: Interpolated functions of the model
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2.4.2 Coupling of 2D-axisymmetric and full 3D formulations

As a 3D model is computationally intensive, we want to restrict the 3D model to some
neighborhood of the injection well that would contain the CO2 cloud for at least 10 years,
typically of the order of 1 km. However, when restricting the model to this 3D zone, the
proximity of the boundary ∂Ωout (Figure 2.2) would strongly modify the solution. In the
context of CO2 storage, Le Gallo (2009) has shown for a given bassin the need to extent
the simulation domain up to at least 100 km to minimize the influence of the boundary
conditions. Hence, we propose in this thesis to couple the 3D solution inside the 3D domain
with an axisymmetric solution computed on an ad-hoc reduced domain. As this coupled
2D-3D model cannot easily be handled in a standard 3D-FE code, an equivalent 3D model
is worked out.

This will be done in three steps: i) stating the equations on the 3D model so that
the approximate solution satisfies the rotation-invariant conditions in the outer domain
Ω+ (complement of Ω− in Figure 2.4); ii) finding the equations which apply on a slice
of small thickness e (domain Ωe) having the same solution as the rotation-invariant one
in the outer domain Ω+; iii) coupling together the 3D interior model and the outer slice
model in the context of a 3D Finite Element software.

e Ωe

Ω−

Ω̃h+

α

h

Sh

R

Figure 2.4: View from above of the considered 3D domain consisting of three parts: Ω−,
the domain where the original 3D formulation of the problem applies, Sh - zone with
significant tangent conductivity, Ωe - 3D slice of a little thickness e conceived to represent
the equivalent axisymmetric solution of the problem in Ω̃h+

The development will be done for a generic diffusion equation of the following form:

da
∂u

∂t
+ div(−c∇u+ γ) = 0 (2.26)

applying in a given domain Ω where the variable u(x, y, z, t) can be vector valued, the
coefficients da and γ - second-order-tensor valued and c - symmetric fourth-order tensor
valued. Appropriate boundary conditions on ∂Ω are also assumed, either Dirichelet or



Chapter 2. Physical and numerical model of CO2 injection into an aquifer 21

Neumann type on the boundary.

u = uo, (c∇u) · n = qo

where n is the outer normal vector.

Axisymmetric solution at finite distance Let us call S ⊂ Ω a cylindrical surface
bounded by the two planes z = z± with a circular cross-section of radius R and let
Ω− ⊂ Ω be the inner domain and Ω̃+ be the outer domain. In the outer domain both
physical properties and boundary conditions are assumed to have a cylindrical symmetrya.
Note however that the solution u is rotation-invariant only when properties and boundary
conditions share the same property.

Let us now consider an approximate 3D solution ũ−(x, y, z) satisfying the field Equa-
tion 2.26 in Ω− together with the boundary conditions on ∂Ω ∩ ∂Ω−, and ũ+(r, z) an
axisymmetrical solution of Equation 2.26 in Ω̃+ satisfying the boundary conditions on
∂Ω ∩ ∂Ω̃+ with the following compatibility conditions on S:

1

2π

∫ 2π

0

ũ−dθ = ũ+(z, R) , ∀z ∈]z−, z+[ (2.27)∫ 2π

0

(c−∇ũ−) · erRdθ = qR(z) , ∀z ∈]z−, z+[ (2.28)

1

R
∂θũ− = 0 on S (2.29)

crr∂rũ+ =
qR(z)

2πR
, ∀z ∈]z−, z+[ (2.30)

where er is the outer normal vector of S. Due to orthotropy crr is the radial hydraulic
conductivity and qR(z) is the vector of radial fluxes crossing S at a given depth z, the
fluxes tangent to S vanish. Equation 2.29 stating that the solution is rotation-invariant
at R is difficult to implement in a Finite Element framework. However, noticing that its
left hand side is one of the components of the gradient, a penalization technique is used.

Penalization of rotation-invariance Let Sh be a tube of thickness h and internal
radius R, Ω̃h+ = Ω̃+ \ Sh and let cεh be the orthotropic hydraulic conductivity tensor
defined on Sh as:

cεh = czzez ⊗ ez + ε−1(cθθeθ ⊗ eθ + crrer ⊗ er)
for any small ε. Equation 2.29 is replaced by the following field equations and boundary
conditions on Sh 

div(−cεh∇uh) = 0 in Sh

uh = ũ− for r = R

uh = ũ+ for r = R + h

(c−∇ũ− − cεh∇uh) · er = 0 for r = R

(c+∇ũ+ − cεh∇uh) · er = 0 for r = R + h

(2.31)

aTensor c has to be orthotropic with respect to the z axis.
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Taking the variational form for any virtual field v = vo(z) + v1(θ, z)x−R
h

leads to:∫
S

(
R + h

R
c+∇ũ+ − c−∇ũ−) · ervodS +

∫
S

(
R + h

R
c+∇ũ+) · erv1dS =∫

Sh

(czz∂zuh · ∂zv + ε−1crr(
1

h
∂ruhv1 +

r −R
hr2

∂θuh∂θv1))dV (2.32)

Taking v1 = 0 and h → 0 leads to the balance of fluxes assuming that ∂zuh · ∂zv is
bounded:

(c+∇ũ+ − c−∇ũ−) · er = 0 on S (2.33)

leading to Equation 2.28.
Hence taking now vo = 0 yields:

(1 +
h

R
)

∫
S

(c−∇ũ−) · erv1dS =

∫
S

(czz∂z

(∫ R+h

R

uh(r −R)
r

R
dr

)
∂zv1dS+∫

Sh

(εh)−1crr(∂ruhv1 +
r −R
r2

∂θuh∂θv1))dV (2.34)

After some calculations the leading terms are:∫
S

(c−∇ũ−) · erv1dS =

∫
S

(czz∂zuh∂zv1dS + (ε)−1

∫
S

crr(∂ruhv1 +
1

R
∂θuh∂θv1)dS (2.35)

Taking the limit for ε→ 0 leads to:

∂ruh = 0 (2.36)
1

R
∂θuh = 0 (2.37)

Hence ũ+ = uh = ũ− and 1
R
∂θũ− = 0 yielding Equations 2.27 and 2.29.

Equivalent equations on an outer slice Since for any g(r, z) one knows that:

divg =
1

r
(∂r + ∂z) (rg)

def
=

1

r
div2D(rg) (2.38)

Hence Equation 2.26 for ũ+ on Ω+ can be written as:

rda
∂ũ+

∂t
+ div2D(−cr∇ũ+ + rγ) = 0 (2.39)

Therefore the field ue is defined as the solution of

dae
∂ũe
∂t

+ div2D(−ce∇ũe + γe) = 0 (2.40)

on the 3D thin vertical slice Ωe = Ω ∩ Se with Se = {(x, y, z) : R cosα < x,−e/2 <
y < e/2, z− < z < z+}, where e = 2(R + h) sinα is the thickness of the slice. The new
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coefficients are dae(x, y, z) = 2πx
e
da(r = x, z), ce(x, y, z) = 2πx

e
c(r = x, z), γe(x, y, z) =

2πx
e
γ(r = x, z). The following boundary conditions apply:{

∂yũe = 0 for y = ±e/2
ũe = ũ+(R + h, z) for x = (R + h) cosα

(2.41)

Since the slice and the boundary conditions are invariant with respect to y so is the field
ũe. In addition, it obviously satisfy

ũe(x, y, z) = ũ+(r = x, z)

Moreover the two solutions being equal we can also show that the related fluxes coincide:

qR =

∫ 2π

0

c∇ũ+(R+h)dθ = 2π(R+h)c∂rũ+ = ece(x = (R+h), y, z)∂xue =

∫ e/2

−e/2
ce∂xuedy

Approximate 3D solution on a cylinder-slice domain Combining the two above
methods, we can define the approximation solution ũhe satisfying Equation 2.26 on a
composite domain Ω− ∪ Sh ∪ Ωe shown in Figure 2.4

ũhe = ũ− in Ω− (2.42)

ũhe = ũh in Sh (2.43)

ũhe = ũe in Ωe (2.44)

with the following vanishing flux boundary conditions:

∂rũhe = 0 for r = R + h, θ = [α, 2π − α] (2.45)

∂yũhe = 0 for y = ±e/2, x > (R + h) cosα (2.46)

∂zũhe = 0 for z = z± (2.47)

The geometry and the mesh of the coupled model are presented in Figure 2.5. The
simplified geometry significantly eases the task of the meshing and the computation of
the solution. For more complex geometries the proposed methodology will still be working
until the boundary between the 3D and rotation-invariant part is axisymmetric. For mesh-
ing of more complex geometries advanced techniques exist such as described by Juntunen
and Wheeler (2012).

Several meshes have been compared for the coupled model having the characteristics
given hereafter. Figure 2.6 illustrates the front form at a fixed time instant for the three
meshes. Due to the particularities of the problem, the cylindric mesh even with smaller
number of elements presents better results than the tetraedric meshes.

Cylindric mesh 1.5·104 elements (1.1·104 in 3D domain)
Tetraedric mesh ”Finer” 15·104 elements (14.8·104 in 3D domain)
Tetraedric mesh 1.9·104 elements (1.7·104 in 3D domain)
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Figure 2.5: The mesh of the coupled model: 3D zone and rotation-invariant continuation,
the transition zone (Sh) is highlighted in red.
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Figure 2.6: Vertical cut of the front for different meshes

2.5 Existing simplified analytical models

Analytical solution of Nordbotten for maximal lateral spread

A review of models for CO2 storage has been done by Stenhouse et al. (2006).

An analytical model proposed by (Nordbotten and Celia, 2006) allows a simple and
efficient prediction of the furthest extent of the injected supercritical CO2 into a brine-
saturated deep aquifer. First the derivation of this model was based on the energy mini-
mization principle and was valid only for systems with high injection rates compared to
aquifer permeability, height and fluid density difference (Nordbotten et al., 2005). But
in further works (Nordbotten and Celia, 2006; Celia and Nordbotten, 2009) the authors
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have overcome these limitations switching to the use of similarity solutions for fluids with
different mobilities.

Hypothesis and equations of the model The equations leading to the analytical
solution are:

� Pressure variation in the vertical direction (due to vertical equilibrium assumption)

� Vertically integrated Darcy law

� Volume balance for each phase integrated vertically

The major assumptions of the model are essentially horizontal flow, radial symmetry
and sharp front

Analytical solution The analytical formula expresses the maximal lateral extent of
the injected gas cloud rmax as a function of injection time t and volumetric debit Qv,
endpoint of the gas relative permeability curve krmax , reservoir thickness H, porosity φ,
maximal gas saturation smaxnw and fluid viscosities µw and µnw:

rmax =

√
Q · t
π

krmax · µw
H · φ · smaxnw · µnw

(2.48)

Validity limits Among the assumptions made in order to obtain the analytical solution
there is a condition of vertical equilibrium. Such a condition requires to verify that the
gravity effect is negligible. In the work of Nordbotten and Celia (2006) a dimensionless
gravity factor Γ is introduced to express the ratio between the buoyancy and viscous and
pressure forces effects.

Γ =
2π(ρw − ρnw)gkH2

Qµw
(2.49)

In the same work a cutoff of Γ = 0.5 is proposed to identify when buoyancy cannot be
neglected. The set of parameters chosen for numerical model (see section 2.4) gives the
value of the gravity factor which exceeds the threshold of 0.5. Therefore, to make the use
of this analytical model possible the reservoir thickness is reduced to 50 m. In this case
the value of the gravity factor is 0.32. Besides, the model is only valid for injection along
all the reservoir height. That is why the results of the analytical model are compared to
an adapted numerical model with the injection interval extended to the entire reservoir
thickness of 50 m.

Comparison of numerical and analytical results The maximal lateral extent of the
CO2 cloud after 10 years of injection estimated by analytical solution is 1168 m. The results
obtained through the numerical solution is of 1430 m. This difference is not unexpected
and can be explained by the phenomena neglected in the analytical model. The numerical
model takes into account the gravity effect: the gas rises faster increasing the radius of the
cloud on the top of the reservoir. In the analytical model the gas saturation after the front
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is constant and equal to the maximal possible saturation whereas in numerical model the
CO2 saturation is variable due to the relative permeability curves. With the same injected
quantity the area swept by the gas in the numerical model would be greater than those
in the analytical model.
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As it was mentioned in the introduction, risk quantification is closely related to un-
certainty treatment. Each methodology is intrinsically based on certain perception of
uncertainty (including disregard of its existence). To ‘integrate’ uncertainty it could be
necessary to choose a different methodology and/or make different choices for the com-
plexity of the risk measure, uncertainty sources description and their propagation.

In this chapter, first, main notions of risk, risk assessment, scenario parts are intro-
duced. Then the principal types of risk assessment methodologies are discussed.The three
levels of the complexity of the risk measure are associated with the corresponding repre-
sentation of uncertainty sources and the types of risk assessment methodologies allowing
to estimate this risk measure. Taking the case of a risk measure in the form of threshold
exceedance, it is demonstrated how critical thresholds can be determined from vulnera-
bility back to causes. Depending on the type of the risk measure three levels of thresholds
are considered.

The methodologies applied so far to the CO2 storage are reviewed in the light of
uncertainty treatment. The methodology employed in the project to which the present
work contributes is presented including the relevant scenarios. The central event of leakage
by lateral migration is studied through an analytical model of CO2 injection into a deep
aquifer, allowing to compare the performance of main uncertainty propagation techniques.

3.1 Definitions

The perception of risk is quite personal as it depends on the values that humans have.
We are speaking of risk only when something of value is in danger. The definition of
risk as ‘effect of uncertainty on the objectives’ by ISO Standardization (ISO 31000:2009)
seems to reflect the subtlety of perception. It is possible and important to converge to
the unique and rigorous terminology for risk-related domain. A ‘dictionnary’ specific to
CO2 geological storage was proposed by Korre and Durucan (2009). Unfortunately, this
terminology is not in accordance with the ISO Guide as it is based on another standard
(WHO, 2004) dealing with health impacts. The two terminologies were published the
same year. In the present work the choice of ISO terminology was made as it is meant to
be universal for risk management in any domain. Hereafter, some notions related to risk
management are recalled.

3.1.1 Components of risk management

According to the standard ISO 31000:2009 Risk management is a continuous and iterative
cycle which contains the following steps:

Risk management



Establishment of the context

Risk assessment

Risk treatment

Communication

Monitoring

It has to be noticed that the notions of risk management, risk assessment and risk
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analysis are different. From the definition above, risk management is the most general
term and it includes the risk assessment step. Risk assessment on its turn includes the
risk analysis phase:

Risk assessment


Risk identification

Risk analysis (quantifying the likelihood and the consequences)

Risk evaluation

Risk hierarchisation

The main difference between risk assessment and risk analysis is that the first includes
a decision of acceptability of the risk made during the risk evaluation step. So, the level of
risks estimated during the risk analysis step is generally compared with a critical threshold.

The present work focuses on the risk assessment (mostly the risk analysis step, with
modelling tasks and integration of uncertainties in models). The goal of this step of risk
management according to the ISO standard consists in information supply in order to allow
an informed decision-making regarding the level of risk. It follows that the quantitative
measures of risk should be defined.

3.1.2 Dimensions of risk

The measures of risk are rather non-uniform depending on the context. But the quanti-
tative dimensions of risk can be deduced from the goals of risk analysis. It is generally
accepted that risk analysis for a given system is supposed to answer the following three
questions, formulated by Kaplan and Garrick (1981) :

1. What can go wrong?

2. How likely is it that this will happen?

3. If it does what are the consequences?

There is the fourth question which can be added addressing the subjectivity of any
performed risk analysis:

4. What is the confidence on the obtained risk estimations?

Answering the first question includes purely qualitative analysis of the system, includ-
ing the identification and ranking of possible failure events and the establishment of the
relations between them. The common name for this stage of risk analysis in the chemical
industry and in the nuclear industry is ‘hazard analysis’. It gives access to possible risk
scenarios.

The second question is aimed to give an appreciation (estimate) of the probability of
the occurrence of the identified failure events.

The response to the third question requires an estimation of the severity (or gravity) of
the consequences. Both second and third questions can be answered either in qualitative
or quantitative ways. Different approaches to answering these first three questions give
birth to the variety of risk assessment methodologies (Kirchsteiger, 1999).
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Therefore, principal quantitative dimensions of risk of an impacting phenomenon are
its probability and its severity (ISO 31000:2009, 2009).

Risk = Probability × Severity (3.1)

The severity can be expressed as the intensity of the physico-chemical phenomenon coupled
with the vulnerability of the asset at stake (sensible element) towards this phenomenon.
Such distinction allows to separate the potential vulnerable element from the hazard
which is quite common for the domain of natural risk. Engaging this term an equivalent
definition of risk is:

Risk = Hazard× Exposure of vulnerable elements (3.2)

According to Field et al. (2012), the exposure is defined as the presence of the assets at
stake, namely: people, livelihoods, environmental services and resources, infrastructure, or
economic, social, or cultural assets in places that could be adversely affected. The intrinsic
propensity or predisposition to be adversely affected is defined as the vulnerability.

Evidently this definition should not be understood as a formula. Hazard and vulner-
ability can be related especially in the case of CO2 storage risks where the most hazards
can be described like slow coupled continuous processes more than punctual events. The
definition 3.1.2 will be used hereafter in a subdivision of a scenario: usually the major part
of a scenario involves the hazard characterization whereas only its last element concerns
the asset at stake and its vulnerability. In the present work the hazard characterization
part is concerned (Section 3.5.3 and Chapter 4), focusing on the probability of events and
the intensity of physico-chemical mechanisms.

3.1.3 Risk scenarios

As mentioned in the previous section, risk analysis deals with a number of risk scenarios.
A scenario is a single pathway from a given cause to a precise consequence. The goal of
using scenarios is, first, to be able to evaluate the probability of the impacting phenomena
given the probabilities of causes and, secondly, to try to intervene in the scenario starting
from the causes in order to diminish the probability or the severity of the final impacting
phenomena. The most exhaustive ensemble of risk scenarios composes a ‘risk model’ of
the system. Regardless of the domain of application or regulatory constraints, a scenario
always has the same components which are summarized in Figure 3.1.

Event (initial cause) Source term (hazard) Transfer in the environment Exposure of an asset at stake

e.g. Overpressure e.g. CO2,
brine with impurities

e.g. Leakage through a fault
or along a well

e.g. Ecosystem, human
health and safety

Figure 3.1: Generic representation of a risk scenario with an example for CO2 storage,
source INERIS

A more global subdivision of a scenario is: Cause - Central Event - Impacting Phe-
nomenon - Asset at stake. The notion of central event can be defined as an event that
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deviates the system behavior from normal and certainly causes an effect on the assets at
stake. The central events, contrary to the preceding events, are likely to be detected. They
initiate the transfer in the environment.The typical example is the loss of containment,
i.e. leakage as shown in Figure 3.1 (see also Section 3.3.2 for the list of central events for
the CO2 storage). An impacting phenomenon is a process launched by a central event and
having a direct impact on an asset at stake (ecosystem, human health, performance of
storage, other human activities).

The subdivision of a risk scenario with central event and impacting phenomena is con-
venient to cluster scenarios according to their trigger mechanism or their final impact. In
the case of CO2 storage, all the central events (and consequently the impacting phenom-
ena) happen during or after the ‘Transfer in the environment’ term. This is the reason
why the definition ’Event-Source-Transfer-Exposure’ is convenient for the description of
hazards, focusing on the left-hand side of the scenario.

Generally the scenarios are not independent and have some of the elements above in
common. So a schematic representation of a ’risk model’ would look like Figure 3.2 The
phases of risk treatment (measures to diminish the risk) and monitoring can be reflected
on the risk model as well.

Cause 1

Cause 2

Cause 3

Central event 1

Central event 2

Impacting phenomenon 1

Impacting phenomenon 2

Impacting phenomenon 3

Mb1 Mb2

Mc2

Mc1

Mm

Figure 3.2: Schematic representation of a risk model including risk treatment (safety
barriers Mb and conception barriers Mc) and monitoring (Mm) (adapted from Gombert
and Farret, 2009)

In order to identify and characterize the risk scenarios there should be a guidance for
expertise : a ‘methodology’. Some of the methodologies are standardized. Each method-
ology is often associated with its ‘tools’. A tool serves a methodology and helps in cal-
culating, structuring and presenting the results in an operational and user-friendly way.
A methodology constitutes the core exercise of risk assessment but it makes part of a
more global ‘methodological framework’. Often represented as a workflow, it sets the
actions and rules to be followed in order to reach the desired result. The methodological
framework is often imposed by the regulation (then, those who follow it should prove that
the regulatory conditions are fulfilled and the acceptability criteria are met). Also it can
be imposed by the state of the art in a given technical domain. Suggested workflow for a
global methodological framework for CO2 storage will be discussed further (Table 3.4).
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3.2 Review of risk assessment studies applied to CO2

storage

This part is devoted to methodologies already applied to CO2 storage risk assessment
and accessible from literature review. In order to better understand the diversity of the
methodologies, the main classification modes adopted from other application fields are first
discussed. Peculiarities of CO2 storage differentiating it from other sectors are stated.

3.2.1 Types of risk analysis

A wide spectrum of qualitative and quantitative methods as well as various assumptions
and data can be used in risk analysis. The level of detail and quality of a risk analysis
depends on the detail and quality of the available information, the validity of assumptions
and first of all the objectives of the analysis.

Tixier et al. (2002) proposed a review and classification of risk analysis methodologies
for industrial plants. The authors identified 62 methodologies and ranked them according
to the following criteria:

� the phases of risk assessment included (identification phase; identification and eval-
uation phases; identification, evaluation and hierarchisation phases),

� types of method (qualitative, quantitative, deterministic, probabilistic),

� types of input data (text, plan, probabilities...),

� types of output data (recommendations, lists, scenarios probabilities, hierarchy).

These criteria can be used for classification of risk assessment methodologies in any
domain of application. Dwelling on the types of method, there exist three main classes
: qualitative, semi-quantitative and quantitative. The quantitative class can be subdi-
vided to deterministic, probabilistic, mixed deterministic and probabilistic, and fuzzy
logic (which alternatively can be attributed to semi-quantitative category).

There could be another important criterion of classification:’frequentist’ or ’degree-of-
belief’ logic. Nevertheless, a study can combine both approaches.

Qualitative approach

Qualitative risk analysis use narrative scales to describe probabilities and consequences of
particular hazards. It is of a particular interest for preliminary screening or assessment of
risks. It can also be the only applicable approach when very little information is available.
An example of qualitative scale for likelihood and consequences in the context of geological
storage of CO2 is proposed by DNV (2010, page 67)(see Table 3.1).

Semi-quantitative approach

Semi-quantitative methods can be divided in two types. The first one is based on defining
of risk indexes leading to numerical scales for comparing risks. Although these risk indexes
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Description Very low Low Medium High

Impact on
storage in-
tegrity

None

Unexpected
migration of
CO2 inside
the storage
volume

Unexpected
migration of
CO2 outside
the storage
volume

Leakage to
vadose zone

Impact on
local envi-
ronment

Minor or no
damage

Local dam-
age of short
duration,
time for
restitution
< 1 year

Time for
restitution
of ecological
resource
< 2 years

Time for
restitution
of ecological
resource
> 2 years

Table 3.1: Examples of definitions that could be used to qualitatively rank consequences
of risk scenarios (DNV, 2010, page 67)

are numerical, their values do not reflect exactly the actual magnitude of probabilities and
risks. If the risk index is carefully defined, justified and applied, such an approach is quite
effective for ranking and prioritizing risks.

The second one is based on defining categories with corresponding quantitative inter-
vals and distributing the scenarios among these categories according to an expert judg-
ment. The limitation of semi-quantitative categorization is that its reliability depends on
the justification and support of the expert judgment.

In order to make a qualitative or semi-quantitative study more objective and reliable,
it is important to incorporate the feedback on passed incidents/accidents. An example of
a semi-quantitative scale is presented in Table 3.2.

Quantitative
probability

Level of
likelihood

Description Objective elements

P ≈ 1 Certain Certain or almost certain

Normal evolution, according to present knowledge. Event
likely to occur once or even several times, either in the longer
term, or on surface facilities during operation phase.

P > 0.1 C

Event likely to occur once
(on surface facilities dur-
ing the operation phase, or
later in the underground
system)

Event that may occur in the longer term and that was already
observed on similar underground activities OR event/process
that seems inescapable in the long-term. For surface facilities,
Frequency of occurrence estimated about 100 years

P > 0.01 B

Unlikely (on surface facil-
ities during the operation
phase, or later in the un-
derground system)

Not very likely on surface facilities during the injection phase,
not very likely on underground system Event already observed
on similar industrial facilities. For surface facilities, Frequency
of occurrence estimated about 1000 years

P > 0.001 A Very unlikely but plausible
Never observed (or observed in a very different configuration),
but not impossible given of current knowledge (or lack of
knowledge), either on surface equipment or in the longer term

P ≈ 0 0 Not plausible
Never observed worldwide and not considered plausible on this
site given our present knowledge

Table 3.2: A semi-qualitative quotation scale for likelihood that integrates all life stages
of CTSC and any equipment (source INERIS).

Quantitative approach

Quantitative risk analysis uses estimates of numerical values of probability and severity.
For deterministic methods there is one value for probability and one for severity. For prob-
abilistic methods both probability and severity represent curves, because the uncertainty
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introduces a range of possible values for the intensity. Therefore, probability and severity
can be expressed as functions of the variable of interest describing the intensity.

Probability can be estimated in several ways: historical statistics/frequencies, profes-
sional judgment, simulation assuming a random distribution of failures/events, experi-
mentally established failure data. The probability of a specific element of an event tree
is often made up from probabilities of contributing elements. For systems with known
conditional probabilities between elements and oriented tree structure the direct and in-
verse computation of probabilities is rather friendly. Unfortunately, for geological systems,
even if the event tree is linearized (not presenting any cyclic structures), obtaining con-
ditional probabilities turns into an impossible quest due to rarity/slowness of the events
and limitations of learning from experience.

Severity is usually defined in precise terms, such as number of injuries (or deaths),
magnitude of adverse effects on the receiving ecosystem, extent of damage on structures.
Therefore, supplementary models may need to be engaged to assess the specific con-
sequences. For example, an air dispersion model in the underground structures (caves,
basements, tunnels...) in order to assess the critical endpoint concentrations in the event
of release. Or a model of gas accumulation in the overlying layers close to the surface level
(in the surface waters most of all).

Risk as follows would be measured by extent of damage within a given area per time
period combining severity and probability of risk scenarios. Presence of cumulative risks
should be taken into account. The way of risk expression is often defined by norms.

Risk curve is a continuous representation of risk as a function of severity versus proba-
bility. It can be found from the curves of severity of intensity and probability of intensity.

3.2.2 Particularities of CO2 Storage risk assessment

The risk assessment for the whole CO2 Capture-Transport-Injection-Storage chain is quite
complex as it involves at the same time technological risk (mostly for the Capture-
Transport-Injection part), natural risk (which can occur during the life-time of the storage
or which can be induced by CO2 injection) and finally environmental and sanitary impacts
(concerning most of all the storage stage).

The knowledge and experience in dealing with technological risk exist in the domain
of industrial security. Management of the risks related to the drilling and injection can
be learned from the petroleum industry. The carbon dioxide is an aggressive corrosive
agent, so its injection differs from water, oil or natural gas, but its particularities are still
being studied for the application of enhanced oil recovery. The environmental and sanitary
impact estimations are less common than technological risks. However a know-how exists
in the sectors of industrial releases and nuclear waste sequestration.

Nevertheless, the particularities of the CO2 injection and storage risk assessment which
make it difficult to apply the existing general methodologies from other sectors are many:
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� Few full scale tests: the first project (‘Sleipner’ in Norway) has been operating since
1996. Currently only a few projects are operating (Wildenborg et al., 2013). As a
consequence, estimates of likelihood from past events are very coarse.

� Long time scale: the behavior of the injected gas should be predicted for several
thousands of years. But the interaction of the slow coupled processes is not known
in the long-term (see section 2.1) and a quantitative prediction by numerical models
becomes rather heavy and time-consuming.

� Strong dependency of the risk on the natural properties of the geological media
and their evolution over time; poorly known interactions between parameters. The
statistical data needed for the treatment of uncertainty (both lack of knowledge
and natural spatial variability) is difficult to obtain. Even the scenario of normal
evolution is strongly subjected to uncertainties.

� System design is almost uncontrolled: there are very few operating variables which
do not cover the majority of processes and events. The list of operating variables can
possibly be reduced to: well location and characteristics, injection debit/pressure,
injection time, injection temperature, fractions if mixed with other substances. After
the injection phase the spread and the interaction of the gas with the medium are
out of control: one can only observe the evolution through monitoring. So there
will be few conception and security barriers at the stage of storage, whereas the
monitoring data should be progressively taken into account to adjust predictions.

� The methodology of risk assessment should be systemic (not to drop any hazards
from consideration, even those of low probability) and at the same time site-specific
(in order to take into account the quality and quantity of data available on the site).

� A numerical model of chemico-physical processes (even simplified), which would de-
scribe the long-term evolution of the injected fluid in all the compartments from the
reservoir up to the surface, is very expensive in terms of computational resources.
The computational power available today is not sufficient to account for uncertain-
ties in a probabilistic way with the use of such models. Therefore, in order to estimate
the consequences, the entire system would be divided in compartments, though ob-
viously the compartments are dependent. The interaction between successive models
is oversimplified (this contributes to model uncertainty and the subjectivity of anal-
ysis). Yet, such models are useful for the first estimation of sites and their risks.

� Some events are sub-states of the system, therefore, knowing the complexity of the
processes, the event trees are not straightforward (they can even contain cycles).

3.2.3 Methodologies

The particularities of the CO2 storage systems highlighted above (Section 3.2.2) together
with the diversity of risk analysis types and purposes described in Section 3.2.1 lead to
a variety of choices in how to perform a risk assessment. As the present work aims at
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studying the possibility of including uncertainties in risk assessment, it is important to
review what are the actual methodologies already applied to CO2 storage.

Q
u
al

it
at

iv
e FEP (tool) (Savage et al., 2004)

VEF (U.S.EPA, 2008)
‘What-If’ and SWIFT (Vendrig et al., 2003; DNV, 2010)
Delphi (Wassermann et al., 2011)

S
em

i-
q
u
an

ti
ta

ti
ve RISQUE QRA (Bowden and Rigg, 2004)

SRF (HSE) (Oldenburg, 2005, 2007)
MCA (Gough and Shackley, 2006; Jakobsen et al., 2013) similar to MAUT
ARAMIS,LOPA (Wilday and Farret, 2010)
Risk matrix tool (Gombert and Farret, 2009)
OSQAR (tool) used in projects MANAUS (2011) and iNTeg-Risk

Q
u
an

ti
ta

ti
ve

P
ro

b
ab

il
is

ti
c

Event Tree Analysis (tool)
CO2PENS (SMA) (Stauffer et al., 2009; Viswanathan et al., 2008)
CQUESTRA (Le Neveu, 2008)
QRTT (BP product)(Dodds et al., 2011)
FEP + Scenario approach (Wildenborg et al., 2004, 2005; Stenhouse et al., 2005)
FEP + Markov Chains (Nepveu et al., 2009)
MANAUS (MANAUS, 2011)
CCDF (tool) (present work)
ESL (Paulley et al., 2012; Metcalfe et al., 2013)
P&RTM (Le Guen et al., 2008, 2011; Meyer et al., 2009)
PRA (Rish, 2005)

D
et

&
P

ro
b

MOSAR (Cherkaoui and Lopez, 2009)
Delphi+RISQUE (Wyatt et al., 2009)
CFA (Oldenburg, 2009)

Table 3.3: Risk assessment methodologies and tools applied to Carbon Capture and Stor-
age (CCS). For brief descriptions refer to Appendix A. ‘+’ signifies that a systematic
approach (FEP or Delphi) is followed for the quantification step by another method

The literature on the methodologies of risk assessment applied to Carbon Capture and
Storage (CCS) has been reviewed in CSLF (2009). Since, several new methodologies have
been applied. Another review with brief characteristics of the methodologies can be found
in Lahaie et al. (2009). Condor et al. (2011) differentiate the methodologies in terms of
the objectives of application for geological storage (which is strongly related to the phases
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of risk assessment included in a study in the Tixier’s classification). The authors provide
examples of types of input and output data for several methodologies. Concerning ‘types
of methodology’ some authors refute the distinction between qualitative and quantitative
methods and sort the methodologies in main types: scenario analysis (scenarios of how
a CO2 storage system might evolve are analyzed in terms of CO2 migration/leakage),
fault/event tree analysis (CO2 release is evaluated as a combination of possible steps,
analysis is based on the sub-states of the system as for Markov chains), expert judgment
and screening-level analysis.

Gerstenberger et al. (2009) also recognize that the distinction between qualitative and
quantitative methods is quite subjective and suggests to focus on the precision of the
analysis (level of detail used to describe the system). The less precise methods would be
those using descriptive scale combined with fewer system components, the most compli-
cated methods would require the assignment of probability distributions to describe the
behavior of multiple components within a system.

We propose an update of the review of risk assessment and risk analysis method-
ologies and tools applied so far to CCS. The literature references are presented in the
form of a table (see Table 3.3). For brief descriptions of the methodologies refer to Ap-
pendix A. The methodologies are classified in three groups: qualitative, semi-quantitative
and quantitative. Quantitative branch contains probabilistic and mixed (deterministic
and probabilistic) methodologies, the later having at least one of the dimensions of risk
evaluated in deterministic way. As mentioned above the differentiation is not rigorous.

3.3 Methodology used by INERIS for CCS risk as-

sessment

The present work contributes to the project of knowledge development for the geological
storage of CO2 and related risks at INERIS. In order to better position the contribution of
the present work in the project, the author proposes a quick glance at the global workflow
and the main identified central events and impacting phenomena. The procedure for CO2

risk analysis followed in this project was proposed by Farret et al. (2010). It shares its
principles with the methodology MANAUS. It consists in identifying all the possible events
which can occur due to the underground CO2 storage, identifying the possible causes of
such events and trying to relate these elements to form event-tree charts. The parts of
the charts are quantified through numerical modelling. The expertise of INERIS in risk
management for underground systems suggests that the phase of identification should
be performed via a systematic approach which gathers all the scientific knowledge about
phenomena and events and which ensures that all the possible sub-systems and events are
considered, even if the probability of some events is low (Lahaie et al., 2009).

3.3.1 The global workflow, the risk model in the form of an
event tree

Given the objectives of full risk assessment that covers all the chain of CO2 Capture-
Transport-Injection-Storage and its specificities, INERIS exploits the workflow shown in
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Table 3.4 for a global methodological framework. The table includes the tools that can be
engaged in the different steps.

1. Definition of the system, its boundaries, Conceptual model
its life stages, its potential hazards

2. Identification of the assets that can be exposed.
Choice of adequate criteria for severity and likelihood

3. Collect of knowledge from past events and accidents
(learning from experience)

4. Study of the scenario of normal evolution Numerical model
and its uncertainties

5. Preliminary risk analysis Risk Model
construction of scenarios of altered evolution (event trees)

6. Quantification of scenarios (detailed risk analysis) Numerical model

7. Definition of measures for risk treatment
(mitigation measures, safety barriers)

8. Overview of risk scenarios to allow a risk evaluation Risk matrix

Table 3.4: A global workflow for CO2 storage risk assessment, source INERIS

The construction of a risk model is based on expert panels that follow a systematic
approach such as ‘What-if’ or Preliminary Risk Analysis (PRA). Therefore, for the fifth
step of the global workflow (Table 3.4) the results of a collective expertise are gathered and
represented in event-tree charts. The analysis starts either by main events (see the section
below), either by the failure modes of concrete components of the capture-transport-
injection-storage chain. The approach for the failure modes analysis is similar to HAZOP
(Hazard and Operability study) or FMEA (Failure Mode and Effects Analysis, standard
CEI:60812). These methods operate with keywords to identify the failure modes. Then
downstream analysis (identifying consequences) and upstream analysis (identifying the
initial causes) are performed giving access to scenario consideration. The obtained event-
tree charts are reviewed and completed to have the whole collection of risk scenarios
defining the ‘risk model’ of the system.

3.3.2 Central events and impacting phenomena for CO2 storage

The central events (detectable events that deviate the system behavior from normal and
certainly cause an effect on the assets at stake) identified for the CO2 storage are:

1. loss of containment (breach, leakage) on a surface equipment,
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2. leakage along an injection or another operating well,

3. leakage through a closed or abandoned well,

4. leakage along a fault,

5. leakage through the caprock,

6. leakage by lateral migration,

7. flow perturbation (including transmission of fluid overpressure),

8. mechanical perturbation and its transmission.

MANAUS is not only a methodology but also a project which proposes a set of basic
scenarios on which the present work relies. The impacting phenomena (processes launched
by a central event and having a direct impact on an asset at stake) identified for the CCS
chain at short and long-term are presented in Table 3.5.

The adduced impacting phenomena cover surface equipment for capture and transport
as well as the underground system for injection and storage. It should be mentioned
that not only the CO2 itself but also the annex substances mobilized by CO2 should
be considered (such as in impacting phenomena 5 and 7 of the Table 3.5). These annex
substances can be of different origins: impurities injected together with CO2, impurities
mobilized by the reaction between the matrix material and the brine acidified by CO2.

Finally, focusing on the leakage by lateral migration and leakage through a fault con-
sidered in this work, the extract of the event tree constructed in MANAUS project is
shown in Figure 3.3. One can notice the considerable complexity of the relations between
the elements. Unless the Monte Carlo chains are used to estimate the probability of each
element, the event tree needs to be linearized.
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Lateral leakage out of

Reaching a well initially

Reaching a fault initially

Reaching a caprock default

Reaching an outcropping

Unsufficient pore volume

Dissolution trapping weaker

Depressurization due to

Overpressure in the reservoir

Mecanical perturbation

Hydraulic properties of the

than expected

external activities

the storage complex

supposed too distant

supposed too distant

initially supposed too distant

reservoir rock different
from expected

higher than expected

of the reservoir rock

Migration of CO2 cloud
in a preferential direction

Overpressure on the top
of the reservoir higher

than expected

Overcoming the
entry pressure

Hydraulic properties of the
reservoir rock different

from expected

Wrong

characte-
Leakage through the caprock

in gas state
Leakage of gas or liquid

through the caprock

Leakage through the caprock
in liquid state

Diffusion through the caprock
stronger than expected

Mecanical perturbation
of the caprock higher

than expected

caprock

rization

Degradation of caprock

Initial mechanical resistance of
the caprock smaller than expected

mechanical resistance

Openning of a fault
(initially impermeable)

Caprock fracturing

Leakage of gas or liquid
through a fault

Accumulation
and flow into

the upper aquifer

Flow perturbation stronger
than expected (hydraulic
head, brine transfert)

Figure 3.3: Example of an event tree (causes) for CO2 migration through the caprock and
the geological system. Extracted from MANAUS project without geochemical impacts.
Violet boxes correspond to the central events
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Table 3.5: The eight central events for risk analysis, their relation with eight Impacting
phenomena and their potential effects (adapted from Lahaie et al., 2009; Farret and
Thoraval, 2012, 2013). The highlighted elements are those to which the present work
contributes.

Central event
Impacting
phenomenon

Sensitive
compartments

Assets at
stake

Potential
effects

Loss of contain-
ment (breach,
leakage) on a
surface equipment

Sudden leakage in
the air compart-
ment Atmosphere Humans

Pressure,
thermic
impact

Explosion or Fire
Leakage along an
injection or another
operating well

Sudden leakage in
the air compart-
ment

Atmosphere
Humans,
perfor-
mance

Toxic

Leakage through
a closed or aban-
doned well

Slow emanation of
CO2 to the surface

Atmosphere,
poorly vented
zones

Ecosystem,
humans,
perfor-
mance

Ecotoxic,
toxic

Leakage along a
fault

Slow emanation of
annexed substances

Atmosphere,
poorly vented
zones

Ecosystem,
humans

Ecotoxic,
toxic

Leakage through
the caprock

Pollution by CO2

(pure or dissolved
in another fluid)

Geological layers,
surface water

Ecosystem,
economic
resources

Ecotoxic
perturba-
tion

Leakage by lateral
migration

Pollution by annex
substances

Geological lay-
ers, surface
water

Ecosystem,
economic
resources

Ecotoxic
perturba-
tion

Flow perturbation
(including trans-
mission of fluid
overpressure)

Disturbance of the
regional hydraulic
regime

Surface and sub-
surface waters

Ecosystem,
economic
resources

hydraulic
perturba-
tion

Mechanical per-
turbation and its
transmission

Progressive me-
chanical effect
(slow surface
elevation)

Surface

Property,
humans
(indi-
rectly)

Mechanical

Sudden mechanical
effect provoked by
the storage

Surface

Property,
humans
(indi-
rectly)

Mechanical

3.4 From scenario to uncertainty propagation

The present section is devoted to the following questions:

What is the relation between scenario evaluation and uncertainty propagation? How
the risk curve (combining probability and gravity of the impacting phenomenon) can
be computed through modelling and uncertainty propagation? What are the levels of
complexity of risk measures and critical thresholds? How the uncertainty can be ’taken
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into account’ in the qualitative and semi-quantitative methods?

3.4.1 The relation between scenario evaluation and uncertainty
propagation

Scenario evaluation consists in quantification of probability and severity of events. Scenario
evaluation does not necessarily include uncertainty, there are deterministic methods to
estimate the probability (in frequentist sense) and severity. Such results can be associated
with an approximate range of imprecision. But if the uncertainty sources are described in
probabilistic or possibilistic way, then uncertainty propagation can be used as a tool for
scenario evaluation. However, it requires some agreement: the processes are supposed to
be known but subjected to different kinds of uncertainties.

In an event/fault tree the elements represent keywords corresponding to Boolean op-
erators (of something happening or not happening) such as in the event tree in Figure 3.3.
Except the events external to the system (e.g. meteorite impact, drilling of a new well,...),
which can be described as Booleans, most of the events being internal to the system are
actually related to continuous processes of system evolution in time. For such elements of
an event/fault tree the Boolean approach presumes fixing a criterion on process intensity
(first level of thresholds, see the next subsection).

The first event tree is based on collective exercise of brainstorming between experts,
taking into account their knowledge and the feedback from existing sites, organized
through a systematic method and formalized in a rigorous tool (either template or event
tree). Modelling and uncertainty propagation can on their turn refine the event tree by
pointing out the most essential and less important events.

Risk assessment methodologies based on scenarios evaluation should include a proce-
dure of sub-division of the entire risk model into groups of scenarios whose severity (and
possibly probability) can be evaluated within the same predictive model. For uncertainty
propagation it is advisable for the model to be global and all the different inputs to be
considered simultaneously through their whole potential scope of variation.

For a model which includes several elements of a scenario at a time, the intermediate
elements of the scenario become intermediate model outputs themselves (or some of them
could be included in the model as conditions creating cases). Even if the elements of a
scenario are converted into mathematical expressions, the logical relation of the elements
is not preserved.

Thus the transition from verbalized scenarios to uncertainty study demands a certain
work of adaptation in terms of specification of the model and the variables of interest, as
well as an appropriate expression of uncertainty sources.

Let us consider an example of a scenario piece which has as the cause the fluid over-
pressure on the top of the reservoir exceeding the entry pressure, as the source term
it evidently has the supercritical CO2, and the central event to evaluate is the leakage
through the caprock. After attributing PDFs to the uncertain inputs of the model, which
correspond to the uncertainty related to the incorrect characterization of hydraulic prop-
erties of the medium, we will see that propagating this uncertainty in order to describe
the leakage debit will also give access to the cause characterization (e.g. probability that
overpressure exceeds the entry pressure). So, establishing intermediate outputs for the
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model can quantify the elements in the scenario.

3.4.2 Deterministic, probabilistic and level-2 probabilistic quan-
tities of interest and critical thresholds

A potential site of CO2 storage should meet the regulatory requirements. Whether these
requirements are satisfied or not can be demonstrated through the quantities of interest.
For CO2 storage the regulatory requirements have not been globally validated yet. There-
fore, several types and levels of complexity for the quantities of interest can be imagined.

As the leakage represents long continuous process (except sudden leakage on the sur-
face equipment), the type of the quantities of interest is likely to be governed by thresholds.
And again due to the nature of the CO2 spread in the underground compartment, some
of the critical thresholds are related in retrograde way: thresholds on vulnerability de-
termine thresholds on transport characteristics, which on their turn determine thresholds
on the source term (see the upper part of Figure 3.4). Hereafter, two examples of how
vulnerability/exposure part of scenario can influence the quantities of interest of hazard
quantification.

Event Source term Transfer in Reaching the critical

e.g. Unexpected e.g. CO2,
Overpressure

e.g. Leakage through
a fault or a well

e.g. Atmosphere,
underground ressources

Exposure of an

e.g. Human health
and safety, ecosystem

Transfer scenario Exposure scenario

Definition of critical thresholds

Critical Dose

(e.g. mg/kg/day)

Critical Concentration
(e.g. mg/m3 for drinkable water

or for fauna in soil/water)

Critical Flow
(e.g. kg CO2/s)

or critical dilution rate

Critical Critical Injection
Pressure/Debit

hydraulic properties

Critical

(initial cause) (hazard) the environment compartment asset at stake

Permeability Overpressure for the target

Computation of the probability to exceed the critical thresholds

Computation of the confidence in the exceedence probability

Definition of critical exceedence probabilities

Figure 3.4: Direction of scenario deployment and uncertainty propagation, and inverse
direction of critical thresholds definition. The same three levels of complexity as for the
quantities of interest are needed to define the three types of critical thresholds: thresholds
for physical variables, thresholds for exceedance probability and thresholds for confidence
intervals on exceedance probability.

Example 1: if the assets at stake are human beings and we are studying the impacting
phenomenon of slow emanation of CO2 at surface level, the vulnerability curve could be
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the probability of death (or the number of deaths if statistics are available) depending on
the concentration of CO2 in a cave. There is a critical concentration corresponding to the
lethal effect. Then the hazard of leakage should be evaluated in terms of the probability
of giving the concentration higher than the critical one.

Example 2: if the assets at stake are underground water resources and we are studying
the impacting phenomenon of contamination, the vulnerability curve could be the risk
of developing a disease by ingesting a certain amount of heavy metals (this information
can be found in the norms for water quality). Again the probability of hazard would be
computed as the probability of exceeding the established thresholds after transfer in the
environment.

The quantities of interest determine which type of risk analysis should be performed
and in which way the uncertainty sources should be represented. So, in the specification
step of uncertainty analysis it would be advisable first to set the quantity of interest
(which is conditioned by the vulnerability), then construct the model able to compute
this quantity of interest, and determine what are the inputs for this model and the related
uncertainty.

The levels of complexity of the regulatory requirements (and therefore the quantities
of interest) can be the followings: the first level would be a simple exceedance of a critical
threshold by a variable, the second level could be the probability that this variable exceeds
the threshold, and finally the third level - confidence interval for an estimated exceedance
probability. For nuclear safety the requirements are of the third type demanding reasonable
expectation that the exceedance probability curve does not exceed certain fixed points
(Helton et al., 1996).

Figure 3.5 illustrates three levels of the quantities of interest related to exceedance of
a critical threshold on the example of the leakage through the caprock due to the over-
pressure on the top of the reservoir exceeding the entry pressure. The levels are embedded
one in another. The first internal level contained in every analysis consists in running
the physical model (representing for example the transfer of the injected substance in the
environment) with fixed input variables. The choice of the values for the input variables
can be based on different assumptions such as accumulation of worst-case assumptions
to perform a ‘worst-case’ study, the maximum-likelihood estimates to perform a central
value analysis. In the work of Paté-Cornell (1996) on the uncertainties in risk analysis, the
author differentiates the ‘worst-case’ approach, quasi-worst cases and the best estimates
(central values) as the first three levels of treatment of uncertainty (after the level zero
corresponding to the hazard identification). What these methods have in common is the
need to run the model only once for chosen inputs. In terms of quantities of interest, using
such an approach allows of answering the question whether the leaking rate Q exceeds the
critical value Qc for the chosen inputs or not. In terms of cause event, the computation
would help to answer whether the fluid overpressure exceeds the entry pressure.

The second box in Figure 3.5 corresponds to the probabilistic setting. The uncertainty
in input variables is introduced through probability density functions. The uncertainty
propagation consists in sampling the input variables according to the probability density
and running the physical model for each set of inputs. Such an approach can provide a
support for finding the probability that the leaking rate Q exceeds a given critical value.

The last level (the biggest box in Figure 3.5) displays the uncertainty in risk curve. It



Chapter 3. Risk assessment for CO2 storage and uncertainty propagation 45

’Worst-case’ approach
Quasi-worst cases
Best estimates and central values

Probabilistic risk assessment, single risk curve

Probabilistic risk assessment, multiple risk curves

Fixed inputs

Inputs as random

Inputs as random

b
b

b

variables with

Q > Qc ?

PX(Q > Qc )=0.01

PΘ[PX(Q > Qc ) > 0.01]=0.01

Quantity of interestCauseUncertainty Source, Transfer

p > pcr ?

PX(p > pcr)=0.02variables

uncertain PDFs PΘ[PX(p > pcr ) > 0.02]=0.1

Uncertainty propagation
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the physical model)

Several uncertainty
propagation studies

(transfer in the
Physical model

environement)X = X0

X ∼ fX(x|θX)

X|θX ∼ fX(x; θX)
ΘX ∼ π(θX|ζ)

Figure 3.5: Three levels of possible quantities of interest, approaches allowing to reach
these quantities of interest and corresponding uncertainty representation for input vari-
ables. The cause is an intermediate output of the model, therefore, it takes the same level
of description as the quantity of interest. PX stands for level-1 probability, PΘ stands for
level-2 probability, Q is the leakage rate, p is the fluid overpressure.
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allows an estimation of the probability that the exceedance probability has been under-
or over-evaluated. The uncertainty in input variables is introduced through a set of prob-
ability density functions. An ensemble of output risk curves provides a rich information
for decision making.

The scenario evaluation with the quantities of interest related to exceedance of critical
thresholds implies that these thresholds are fixed a priori (by regulatory requirements
for example). But how should be computed the thresholds on the hazard part knowing
the vulnerability thresholds? For the first level of thresholds this problem represents the
standard inverse problem in reliability analysis. If the variable of interest is a monotonic
function, it is mapped in the space of input variables and the failure zone is found. In order
to find the next level threshold the conditional cumulative complementary distribution
functions (CCDFs) should be computed. The values of the conditional CCDF for each
point of the failure curve would give the exceedance probability thresholds.

The inversion example for one uncertain variable is given in the Figure 3.6. The first
level corresponds to the following problem: consider the leakage rate as a monotonic
function of caprock permeability Q = M(K). Knowing the critical rate Qcr determine the
critical permeability Kcr. The solution comes from the inversion of the fuction M .

K

Q

Qcr

Kcr

Q = M(K)

Kcr = M−1(Qcr)

CCDF(K) CCDF(Q)

KKcr QQcr

Pcr Pcr

CCDFs(K) CCDFs(Q)

KKcr QQcr

Pcr

11

00

1

0

1

0

Pcr(K > Kcr) = Pcr(Q > Qcr) = Pcr

α = PΘ[PK(Q > Qcr) > Pcr]

Qcr = CCDF−1
Q (Pcr)

Pcr

0.99
0.01

α
Qα

cr = CCDF−1
α (Pcr)

Kcr = CCDF−1
K (Pcr) = M−1(Qcr)

Kα
cr = M−1(Qα

cr)
α

Figure 3.6: Definition of critical thresholds by inversion presuming that the leakage rate
Q is a monotonic function of permeability K and P (K;θK) is a monotonic function
of parameters θK . First level thresholds are obtained by inversion of the function of
the model, for the first probabilistic level the exceedance probabilities of the input and
the output are equal, for the second probabilistic level the inversion depends on which
thresholds are fixed a priori.

The second level problem (still presuming that the leakage rate is a monotonic function
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of caprock permeability Q = M(K)) contains four thresholds: a critical leakage rate, a
critical permeability value, a critical probability that the leakage rate overcomes a certain
threshold Pcr(Q > Qcr), a critical probability that the permeability overcomes a certain
value Pcr(K > Kcr). If we require one of these quantities to be fixed, all the others
will be fixed as well and can be easily determined. For a monotonic function the input
quantile always coincides with the output quantile and vice versa. This fact simplifies
the probabilistic inversion problem as the critical probability to overcome a permeability
threshold equals to the probability to overcome corresponding leakage rate: Pcr(K >
Kcr) = Pcr(Q > Qcr).

The last level problem can be stated in different ways depending on the available
information and the thresholds that we would like to set. As an example, the leakage
rate is a monotonic function of caprock permeability Q = M(K) and the permeability
cumulative probability is a monotonic function of parameters θK . In this case there exists
a CCDF of the leakage rate which corresponds to the α confidence and there exists a zone
of values of θK which delimits the family of CCDFs of leakage rate which α confidence is
not respected.

How the uncertainty can be ’taken into account’ in the qualitative and semi-
quantitative methods? In the previous section the notion of scenario was explicit.
Each scenario includes a central event. What is an event? Is it a change in the behavior
of the system, whose likelihood can be estimated from the past history of similar events
and whose severity could be given by an expert judgment based also on history or/and
on deterministic modelling? Or is it an ensemble of possible states of the system itself for
which the evolution differs from normal and which corresponds to a certain zone in the
space of input parameters called in structural reliability ’failure domain’?

The first point of view is common to classical risk analysis even when events internal
to the system are considered. These are qualitative and semi-quantitative approaches for
which the final result of risk attributed to a given scenario is expressed through an verbal
appreciation: ”the scenario is rare but highly devastating” or placed in the categorical grid
- the risk matrix of gravity versus probability (for examples of the methods the reader can
refer to Table 3.3). For this group of methodologies Gombert and Farret (2009) propose to
introduce the uncertainty related to the risk for final visualization in the form of ellipses.
The authors also stress the importance of considering the variation of risk with time. As
shown in the Figure 3.7 the risk matrix for the memory period about the storage site (the
time before the existence of a storage site could be forgotten, which is commonly estimated
up to 200-300 years) would be different from the matrix of long-term evaluation (up to
1000 years).

The meaning of the associated uncertainty is the relative appreciation of uncertainty in
the severity estimation versus the uncertainty in probability estimation for a given event
(oblongness and orientation of an ellipse) as well as the comparison of the uncertainty
between different events (size of ellipses). As an example in Figure 3.7 (third pannel), the
authors propose that there is a greater uncertainty in the estimation of the impact of a
seism on the low leakage (S → LL) than in the estimation of the probability of a seism;
the risk estimate for the impact of drilling of a new well on low leakage (D→ LL) is more
uncertain than the risk caused by the physico-chemical alteration (PC → LL).



48 3.5. Classical uncertainty propagation methods illustrated on a simplified physical model

Figure 3.7: Representing the uncertainty factor of semi-quantitative risk analysis results
on a risk matrix (Gombert and Farret, 2009). Example of risk matrix: i) memory phase,
ii) long-term, iii) long-term with uncertainty

3.5 Classical uncertainty propagation methods illus-

trated on a simplified physical model

This section is devoted to the comparison of several existing techniques of uncertainty
propagation and sensitivity analysis. Each presented technique is illustrated on the ana-
lytical model of (Nordbotten and Celia, 2006) for the quantity of interest of an excessive
lateral spread of the CO2 cloud in the receiving aquifer (reservoir). The simplicity of
the model allows any kind of study without significant constraints on computation. The
particular form of the analytical formula also allows to derive analytically the exact prob-
ability density function of the variable of interest in the case of lognormally distributed
inputs. Therefore, the convergence rates of the applied techniques can be analyzed and
compared to this reference. In order to lighten the text the results of the performed de-
terministic study and the details of the analytical computation of the response PDF are
given in Appendix B. Here we will focus on traditional probabilistic approach including
double probabilistic setting for estimating the influence of subjective uncertainty. The
emerging theories (Demster-Shafer theory, imprecise probabilities, p-boxes, etc.) would
not be discussed in this work. The comparison of results for all the applied techniques are
presented in Section 3.5.3.

Uncertain parameters

All the parameters of the model except the control parameters of the duration and the in-
jection rate have been considered uncertain: the maximal relative gas permeability krmax,
the reservoir thickness H, the reservoir total porosity φ, the irreducible water saturation
(or maximal gas saturation Snwmax), brine viscosity µw and gas viscosity µnw. These pa-
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rameters form the random vector x : x = (krmax, H, φ, Snwmax, µw, µnw). Let us consider
that the expected value E(xi) and the coefficient of variation CV (xi) for each parame-
ter are fixed by an expert. The values chosen for this particular study are summarized
in Table 3.6. As soon as these characteristics are fixed, the variance is calculated as:
V ar(xi) = (E(xi) · CV (xi))

2.

Table 3.6: The choice of the mean value and the coefficient of variation for the input
parameters.

Parameter xi Description E(xi) CV (xi) V ar(xi)

krmax gas relative permeability endpoint 0.2 [-] 25% 2.5 · 10−3

H reservoir thickness 50 [m] 10% 25
φ porosity 0.15 [-] 10% 2.5 · 10−4

Snwmax maximal gas saturation 0.66 [-] 10% 4.4 · 10−3

µw water viscosity 3.5·10−4 [Pa·s] 10% 1.2 · 10−9

µnw gas viscosity 5·10−5 [Pa·s] 20% 10−10

For probabilistic analysis lognormal probability density functions are associated to the
uncertain input parameters. Assuming that the initial probabilistic information available
on the input variables are the mean value and the coefficient of variation (see Table 3.6),
the lognormal parameters µ and σ are computed a (see Table 3.7). The model responses for
sets of input parameters modes, medians and mean values are almost coinciding (less than
0.1% difference). These values are computed to be later compared to the mean response
in a probabilistic set.

Table 3.7: Calculated characteristics of the lognormal input parameter PDFs and the
response rmax calculated for the modes of input parameters, the medians and the mean
values.

parameter xi µ σ2 mode median mean=E(xi)
krmax −1.64 6.06·10−2 18.3·10−2 19.4·10−2 20·10−2

H 3.90 0.99·10−2 49.3 49.8 50
φ −1.9 0.99·10−2 14.8·10−2 14.9·10−2 15·10−2

snwmax −0.42 0.99·10−2 66·10−2 67·10−2 67·10−2

µw −7.96 0.99·10−2 3.5 · 10−4 3.5 · 10−4 3.5 · 10−4

µnw −9.92 3.92·10−2 4.7 · 10−5 4.9 · 10−5 5 · 10−5

corresponding rmax, [m] 1167 1168 1168

3.5.1 Probabilistic analysis: global approach

As opposed to the deterministic response surface (the examples and results are reported
in Appendix B) the goal of a probabilistic analysis is not only to explore the values that

aKnowing the mathematical expectation and the coefficient of variation of one of the inputs xi,
the parameters of its lognormal probability density function (µ and σ) are computed as follows: µ =
ln(E(xi))− 1

2

(
1 + ln(CV 2(xi))

)
; σ2 = 1 + ln

(
CV 2(xi)

)
.
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the variable of interest can take, but also to know what is the related probability of these
values. The main hypothesis is that the resulting response uncertainty is entirely defined
by the input uncertainty and the model.

Probabilistic analysis can be divided in local and global approaches. In local sensi-
tivity analysis the behavior of a function is studied only around a given point (for more
details and results for the simplified physical model the reader is invited to refer to the
continuation of Appendix B, where an analytical computation of the response PDF is
demonstrated as well). In global approach the entire domain of input parameters is of
interest.

The objective of the global sensitivity analysis is to identify and to rank the input
variables that drive the uncertainty of the model output. The practical objective is to
detect the most influential parameters and if possible to reduce the probabilistic model
dimension by neglecting the less influential parameters. Global sensitivity analysis is a
stochastic approach based on the joint probability density functions of the output and the
inputs. The classical method for uncertainty propagation and global sensitivity analysis
is the Monte Carlo sampling discussed hereafter.

Monte Carlo simulation

Monte Carlo simulation is a classical method of approximating integrals (Metropolis and
Ulam, 1949). As probability is an integral of its density, Monte Carlo has become a classical
method for uncertainty and sensitivity analysis in computational stochastic studies as well
(Rubinstein, 1981).

There exists a variety of techniques for accelerating the convergence of Monte Carlo
simulation. Generally it consists in a particular way of sampling (which is no more com-
pletely random). The most known is Latin hypercube sampling (Helton and Davis, 2003).

Uncertainty and sensitivity analysis results obtained with random and Latin hypercube
sampling were compared by Helton et al. (2005) for a two-phase fluid flow. The study has
shown that uncertainty and sensitivity analysis results with the two sampling procedures
are similar and stable across the replicated samples. In the same article the authors come
to an important conclusion that the effects of subjective uncertainty can be assessed with
much smaller sample sizes than the effects of stochastic uncertainty. This point is discussed
further in the context of a ‘two-level’ uncertainty propagation and its simplification.

In the present work the standard Monte Carlo method has been applied to the sim-
plified physical model of CO2 injection into a deep aquifer for the same input parameter
PDFs as detailed in Table 3.7. The estimates of the quantities of interest and their stan-
dard errors for the performed standard Monte Carlo simulation with N=104 model runs
are summarized in Table 3.8. Among the quantities of interest the threshold probability
estimation is the least accurate: the relative standard error goes up to 3.4%.

The estimated cumulative distribution function is shown in Figure 3.8. It’s comple-
mentary curve (CCDF) represents the threshold exceedence probability.

Figure 3.9 illustrates the variability between the results of ten replications of Monte
Carlo simulations with the same number of samples and different random seeds. The
coefficient of variation for the mean of rmax of these 10 replications is 0.19% compared to
the asymptotic coefficient of variation of the estimation 0.22%. For the standard deviation
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Table 3.8: Monte Carlo estimates of the quantities of interest for N=104 model runs and
the corresponding propagation uncertainty (De Rocquigny, 2012, p.290).

Quantity of interest Value Asymptotic standard deviation
Expression Value

Median(rmax) 1168 m
√

π
2
σ(rmax)√

N
2.8 m

µ(rmax) 1188 m σ(rmax)√
N

2.2 m

Var(rmax) 4.9·104 m2 1
N

Var(rmax) 4.9 m2

σ(rmax) 222 m σ(rmax)√
2N

1.6 m

P(rmax > 1500 m) 8.9·10−2

√
P (1−P )

N
3·10−3
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Figure 3.8: Left: the empirical cumulative distribution function of the maximal horizontal
spread of the injected CO2 (rmax) for Monte Carlo study with 10000 samples. Right: the
empirical complementary cumulative distribution function (CCDF), this complementary
function allows of reading directly the values of threshold exceedence probabilities.

the respective values are 0.59% and 0.71%.

The resulting scatterplots are shown in Figure 3.10. The scatterplots and the Pearson
correlation coefficients show that the most significant input variables are the gas relative
permeability endpoint (krmax) and the gas viscosity (µnw). Therefore, in Figure 3.11 the
output is plotted against these two inputs. The values of rmax exceeding 1500 m are
highlighted in red. Returning to the question of thresholds definition, we remind that
in the case of a multiple uncertain inputs no threshold can be computed for each input
separately, but only for the totality of the input space a ’failure domain’ can be determined.
Such as in Figure 3.11 (left) there is no boundary delimiting a ’failure domain’ because
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Figure 3.9: Mean value (left) and standard deviation (right) of the variable of interest
rmax for 10 Monte Carlo replications of 10000 samples each.

of the structure of the function rmax and the contribution of the uncertainty of the other
four inputs. Whereas if we consider only krmax and µnw as uncertain input variables (see
the left panel of the Figure 3.11), the boundary becomes distinct.

In flow problems the ratio of the relative permeability and viscosity of a phase is often
considered characterizing the mobility of the phase. The model under consideration is
not an exception as the boundary in Figure 3.11 (right) is linear. Therefore, an attempt
to determine a threshold on the ratio the relative permeability and viscosity can be un-
dertaken. Figure 3.12 illustrates the points for which the maximal lateral extent of the
CO2 cloud exceeds 1500 m (red points) as function of the ratio krmax/µnw. For the right
panel of the Figure a threshold on the output defines the threshold on the ratio krmax/µnw
< 1.5 · 10−4, whereas for the left panel defining a threshold on the ratio (krmax/µnw <
2.6 · 10−4) eliminates also the points which are not in the ‘failure domain’. Nevertheless,
such a threshold can be fixed in situations when it is important to insure the avoidance
of the ‘failure domain’. Another way to consider the problem would be introduction of
partial safety factors.

To summarize the results of Monte Carlo simulation:

� The most influential input parameters are the gas relative permeability (45%)
and gas viscosity (26%).

� Any level-1 probabilistic quantity of interest can be estimated through Monte
Carlo simulation. The estimation of threshold exceedence probability requires a
high number of samples.

� The estimations of quantities of interest together with the propagation errors
are reported in Table 3.8.
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Figure 3.10: Experimental design of the 10000 standard Monte Carlo simulation. Variable
of interest is the maximal lateral extent of the CO2 cloud. Pearson correlation coefficients
are respectively [0.66 -0.28 -0.27 -0.26 0.25 -0.50].
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Figure 3.11: Left: the output as a function of the two most important inputs: the gas
relative permeability endpoint (krmax) and the gas viscosity (µnw). The red circles indicate
the points for which the maximal lateral extent of the CO2 cloud exceeds 1500 m. Right:
the same figure if krmax and µnw were the only uncertain inputs.

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

kr
max

/µ
nw

 [Pa−1.s−1]

r m
ax

 [m
]

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

kr
max

/µ
nw

 [Pa−1.s−1]

r m
ax

 [m
]

Figure 3.12: Left: the maximal lateral extent of the CO2 cloud as a function of the ratio of
the gas relative permeability endpoint (krmax) and the gas viscosity (µnw). All the output
points exceeding 1500 m have the ratio < 2.6 · 10−4. Right: the same figure if krmax and
µnw were the only uncertain inputs. The output points exceeding 1500 m have the ratio
< 1.5 · 10−4.
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Meta-model by Polynomial Chaos Expansion

Meta-models (or response surfaces, surrogate models) are widely used in computational
sciences to predict the output of a black-box model at any point, knowing the response of
the model at a number of other points (called ’design of numerical experiments’ or ’learning
sample’). The advantage of meta-models is their computational lightness compared to
actual models. The goal of engaging a meta-model is to extract as much information as
possible from the simulations in a limited number of points and use it for prediction of
the model response. There are several approaches to build a meta-model. Recently, the
following methods have received a lot of attention in the domain of structural reliability:
Polynomial Chaos Expansion (PCE) reminded by Roger and Ghanem (1998) and further
studied and applied in different fields by Xiu and Karniadakis (2003); Sudret (2008a,b);
Dossantos-Uzarralde and Guittet (2008); Blatman (2009); Formaggia et al. (2012); Ashraf
et al. (2013), Kriging (such as Gaussian process Marrel et al. (2008, 2009); Sergienko et al.
(2013)) and Support Vector Machine (SVM).

Hereafter, the reader can find an example of PCE meta-model construction for the
simplified physical problem of CO2 injection in an aquifer (semi-analytical solution de-
scribed in Section 2.5). The Polynomial Chaos Expansion theory is provided in Appendix
C.

Application: The six parameters form the random vector x appearing in (C.1): x =
(krmax, H, φ, Snwmax, µw, µnw). For the simplicity of result comparison the same lognormal
probability density functions as in previous examples are attributed to each parameter
(see Table 3.7). The variable of interest is still the maximal spread of the gas cloud,
rmax. Once a set of input parameters x0 = (kr0

max, H
0, φ0, Snw0

max, , µ
0
w, µ

0
nw) is fixed, the

corresponding model output r0
max is calculated through the simplified physical model of

Nordbotten (Equation 2.48).

In order to determine the least-square estimate of the expansion coefficients β as shown
in (C.6), the experimental designs {ln(rjmax), j = 1, ..., N} of size N = 50, 100, 1000 have
been considered.

In Figure 3.13 the empirical CDF of the output samples on which the meta-model is
built (solid green line) is compared to the exact CDF calculated analytically (dashed blue
line, for the details of computation see Subsection B.3 ), for N = 50, 100, 1000 (subfigures
(a), (b) and (c) respectively). Even the meta-model built out of 50 samples reproduces
the response variability quite closely; for N = 100 the approximation is very accurate
without showing significant losses with respect to N = 1000. Therefore, the number of
N = 100 simulations has been retained for meta-model construction for the numerical
predictive model, as it seems to balance between the precision in the CDF estimate and
the corresponding computational cost.

The coefficients to be included in PCE have been selected following the sparse PCE
approach proposed by Blatman (2009); Blatman and Sudret (2010). Having fixed the
maximal degree of polynomials to p = 4, 45 coefficients proved to be significant for the
expansion (with the last index of 206). The most important seven first coefficients have
the following values 1187.9, 146.2,−58.9,−59.1,−58.8, 58.9,−117.7. The estimates of the
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Figure 3.13: Comparison of the meta-model CDF (red line) with the exact CDF (dashed
blue line) and with the empirical CDF of the samples used for the meta-model construction
(green line). The figures correspond to the analytical solution with varying number of the
samples for PCE decomposition: (a) 50 samples, (b) 100 samples, (c) 1000 samples.

Table 3.9: Sobol’ indices

Parameter Sobol’ index Sobol’ total index

krmax 43% 44%
H 7% 7%
φ 7% 7%
Snwmax 7% 7%
µw 7% 7%
µnw 28% 29%

first two moments of the response PDF have been derived by using (C.5), obtaining:

µ(rmax) = 1188 m

σ(rmax) = 224 m.

These estimates are compared with a standard Monte Carlo simulation and other tech-
niques results in section 3.5.3.

Partial and total Sobol’ indices have been computed using (C.11) and (C.10); the
results are reported in Table 3.9.

According to the Sobol’ total indexes (Table 3.9, second column), the parameters
which seem to influence the most the response variability are the maximal relative gas
permeability krmax (43%) and gas viscosity µnw (28%). The same conclusions can be
drawn by considering the Sobol’ indexes reported in the first column of the Table 3.9,
meaning that the influence of the input parameters on the output is mainly due to single
effects, while mixed effects play a minor role.
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3.5.2 ‘Level-2’ probabilistic analysis

As it was mentioned above, in risk assessment uncertainty is often divided in two types:
aleatory (or random, stochastic, variability) due to intrinsic variability in a system behav-
ior and epistemic (or subjective, state of knowledge) due to lack of knowledge.

There exists a point of view that these two types of uncertainties are hierarchically
different. The models of aleatory events contain parameters which are poorly known.
Therefore, so-called ‘two-level’ setting (or also ‘two-tier sampling’, ‘sampling of double
probabilistic measures’ (De Rocquigny, 2012, p.298), ‘double loop’) can be applied, for
which the first level refers to the aleatory variables and the second level helps to account
for the information scarcity used for the probabilistic description of the input variables.
Commonly, if only the first level is considered, the uncertainty model in probabilistic
setting, is defined by the probability density function parametrized with θX:

X ∼ fX(X = x|θX).

If both levels are considered, the sample space is extended to Ωx × Ωθ which contains
all the possible combination of the values of X and θX. The uncertainty model becomes
conditional to the random vector θX:

X|θX ∼ fX(x;θX)

ΘX ∼ π(θX|ζ) (3.3)

where π(θX|ζ) is a given PDF parametrized by ζ representing the epistemic uncer-
tainty, whereas fX stands for the aleatory part. The sampling of such a structure can be
done by two embedded loops: the outer loop samples ΘX and for each set of parameters
θX the inner loop performs a standard probabilistic study on the aleatory variables. The
interest of a two-level setting is that it gives an estimate of the confidence interval of the
output variability characteristics, assuming a certain level-2 uncertainty.

In order to add to the study the level-2 uncertainty the parameters of the lognormal
PDFs in Table 3.7 are considered uncertain themselves.

First, let us consider the situation where the mean values for the input variables are
given with an error of 10% whereas the coefficient of variation is left unchanged. The PDF
variability in this case is shown in Figure 3.14. A uniform law in an interval [Mean(xi) - 0.1
Mean(xi); Mean(xi) + 0.1 Mean(xi)] is attributed to the mean value of each input variable.
For each sample the characteristics of corresponding lognormal PDF are calculated as in
Equations a and a.

In this case introducing the uncertainty on PDFs leads to a mean CCDF shifted to
higher risk values than the initial one (see Figure 3.15). It means that not considering the
level-2 uncertainty can lead to underestimation of the risk by typically 5%.

The results for the uncertainty on the coefficient of variation are presented in the
Figure 3.16

Sankararaman and Mahadevan (2013) propose a variance-based global sensitivity anal-
ysis method for evaluating the level-1 and level-2 variability contributions.
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Figure 3.14: The initial lognormal PDFs of the input variables (in black) and 100 PDFs
used for level-2 uncertainty evaluation (in gray).

Figure 3.15: Two-level setting results for mean value error of 10% for each of 7 input
variables: ensemble of 100 CCDFs of the maximal lateral spread of CO2 cloud after 10
years of injection. Magenta line - Monte Carlo level-1 105 simulation;black lines - results
for each perturbed set of entry PDFs obtained with 103 simulations each; aqua line - the
mean of black lines (the level-2 mean): 102 × 103 = 105 simulations.
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Figure 3.16: Two-level setting results for variation coefficient error of ±7%. Illustration of
the confidence interval 95% that exceedance probability is of 0.01. r0=1900, [r01,r02]=[1650,
2150]

3.5.3 Comparison of the results

The first statistical moments as well as exceedance probability computed through previ-
ously described uncertainty propagation techniques are summarized in Table 3.10.

Let us first remind that for lognormal input PDFs, the PDF of the output (maximal
lateral extent of CO2 cloud after ten years of injection) can be computed exactly, which
gives the first row in Table 3.10. The second row of the Table, the first order Taylor ap-
proximation, requiring only 12 model runs (two times the number of parameters) reaches
an estimation of standard deviation which is only 1.5% different from analytically calcu-
lated value. Since lognormal PDFs have been considered for the entry parameters, the
nominal point (the output for the mean values of inputs, taken as the mean value for
the first order Taylor approximation) differs from the output mean. For this method the
exceedance probability is not accessible.

Monte Carlo simulation shows a good convergence rate for the mean value whereas the
standard deviation and exceedance probability are still underestimated after 105 model
runs.

Among the applied techniques PCE metamodel gives the best evaluation of the stan-
dard deviation and exceedance probability demanding only 102 calls to the model. The
estimation of the mean value has a relative error of only 0.1%.

Considering the second level uncertainty gives an appreciation of an error related to
the incorrect choice of PDF characteristics for the input variables. Allowing the input
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Table 3.10: Comparison of uncertainty propagation results from the studies on the sim-
plified model of CO2 injection into saline aquifer. The same entry PDFs are taken for all
methods except double Monte Carlo sampling for which the mean values of input PDFs
are considered uncertain following uniform law in an interval ±10%. The nominal value
equals to 1168m.

Methods Mean Median Std P(rmax > 1500 m)
[m] [m] [m]

Analytically computed
1189 1168 224 9.0·10−2

output PDF
First order Taylor

1168 - 221 -
approximation
Monte Carlo simulation

1189 1168 222 8.9·10−2

105 model runs
PCE Metamodel

1188 1169 224 9.1·10−2

102 model+104 metamodel runs
Double Monte Carlo sampling
102 × 103 model runs
Bilateral confidence interval 95% [1085- [1073 [198 [3.2-35.8]·10−2

[ quantile 2.5% - quantile 97.5% ] 1422] -1402] -263]
Characteristics of 105 outputs 1224 1200 247 13.3·10−2

Maximal relative error of a value
19.7% 20.1% 17.5% 297.1%within the 95% interval with respect

to the initial exact output PDF

mean values to vary in a range of ±10%, the confidence intervals can be computed for
output mean, standard deviation and exceedance probability. One can notice that these
intervals are rather large: the maximal relative error of a value from the 95% confidence
interval with respect to the initial PDF (first line of the Table) is of order of 20% for the
output mean, median and standard deviation. But the most sensible quantity of interest
is the exceedance probability whose relative error can go up to 300%

In order to analyze the influence of the PDF type on the quantities of interest, log-
normal, normal, triangular and mixte laws have been compared (see the results in Table
3.12). The relative error between the mean value estimations is of 0.4%.
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Table 3.11: Comparison of the sensitivity indexes.

Parameter Taylor approximation Monte Carlo Monte Carlo Metamodel
Normalized importance Pearson index Spearman index Sobol’ total index

krmax 44% 45% 45% 44%
H 7% 8% 8% 7%
φ 7% 8% 7% 7%
Snwmax 7% 7% 7% 7%
µw 7% 7% 6% 7%
µnw 28% 26% 26% 29%

Table 3.12: Comparison of uncertainty propagation results for Monte Carlo simulations
on different types of input PDFs. Each simulation consists of 104 runs

Entry PDFs Mean Median Std P(rmax > 1500 m) and P(rmax > 2000 m) and
type [m] [m] [m] 95% confidence interval 95% confidence interval

Lognormal 1188 1168 222 8.9·10−2 [8.3 9.5]·10−2 1.7·10−3 [0.9 2.5]·10−3

Normal 1190 1174 236 9.7·10−2 [9.1 10.3]·10−2 4.4·10−3 [3.1 5.7]·10−3

Triangular 1188 1169 236 9.8·10−2 [9.2 10.4]·10−2 2.3·10−3 [1.3 3.2]·10−3

Mixte 1185 1165 224 8.7·10−2 [8.2 9.3]·10−2 2.2·10−3 [1.2 3.1]·10−3

3.6 Concluding remarks

General remark about uncertainty and critical thresholds in risk assessment
All the quantitative risk assessment methodologies can be differentiated according to their
relation towards uncertainty. The most common practice of deterministic risk assessment
does not explicitly include uncertainty. Its output is a single value of risk for each scenario.
To give an appreciation of imprecision in this single value of risk, an expert can attribute
an error bound for probability and severity on the basis of intuition. It can be done even
for qualitative and semi-quantitative methodologies.

For methodologies introducing parameter uncertainty in a probabilistic way the output
represents a risk curve (risk as a function of the variable of interest which value is uncertain
due to the uncertain character of inputs). The main approaches in this group are: scenario-
based, system-model-based, Markov chains. The correspondence between scenario-based
and system-model approach can be established. The system-model approach provides the
most unrestricted choice of the uncertainty propagation technique.

Finally, to appreciate how different would be the risk curve if the probabilistic laws of
input parameters were uncertain, a level-2 probabilistic study can be conducted. The result
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represents a set of risk curves. This level can be seen as a way of level-1 probabilistic results
justification. The choice of input uncertainty representation is often based on insufficient
data and, therefore, is quite subjective. The level-2 analysis gives idea of how sensible is
the response to the input PDFs changes.

Each of these three levels of uncertainty treatment give access to a quantity of interest
of the corresponding level. The same three levels apply on the critical thresholds in risk
assessment: a threshold can be set on a variable itself, on its exceedance probability or on
the confidence of its exceedance probability evaluation. As illustrated in this Chapter the
definition of most critical thresholds requires inversion. In the case of one input variable,
deterministic and level-1 probabilistic thresholds can be computed instantly. Even ’level-2’
can be treated easily assuming monotony. Nevertheless, for the problem of underground
multi-phase flows, a great number of factors influences the response. Fixing a threshold on
one of the inputs disregarding the values of the others influential entries is conservative,
it helps to avoid the critical zone but it also eliminates a part of response which is not
critical. Furthermore, fixing such thresholds on several inputs can reduce the zone of
accepted response to non-existence. Therefore, instead of fixing the thresholds on some
of the inputs separately, it is preferable to delimit the critical zone in the space of all
or most influential input variables. This fact complicates the definition of the regulatory
requirements.

Performances of uncertainty propagation and sensitivity analysis techniques
In this chapter the central event of leakage by lateral migration is used to illustrate and
compare the ability of main uncertainty propagation techniques to reach the quantity of
interest of exceedance probability. Taking into account the particularities of the problem
(such as high non-linearity and large space and time scales) the metamodelling seems
to be the only means of probabilistic uncertainty propagation applicable on geological
CO2 storage. It is demonstrated that the polynomial chaos expansion metamodel pro-
vides a good approximation of the exceedance probability even being built with a quite
limited number of model runs. Therefore, this technique is retained for the uncertainty
propagation on the numerical model presented in the next chapter.

The further quantitative analyzes through numerical models focus on level-1 proba-
bilistic setting. We address level-2 variability in Section 4.2.
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In Chapter 3 a methodology of risk assessment for CO2 storage elaborated by INERIS
has been presented as well as the main techniques of uncertainty propagation. The method-
ology is based on scenario analysis, therefore the contribution of the thesis consists in quan-
tifying chosen scenarios defined in the global workflow. The scenarios considered in the
present chapter are normal evolution with leakage through slightly permeable caprock and
large lateral extent of the injected fluid possibly reaching a fault. Among the uncertainty
propagation techniques for global analysis described in Section 3.5.3 only deterministic
or stochastic response surface (meta-model) seem applicable to computationally expen-
sive numerical models as it requires a rather limited number of runs compared to other
techniques.

A stochastic meta-model is constructed to represent the response of the system through
polynomial chaos expansion. The first goal is to evaluate the mean gas overpressure on
the top of the reservoir to be able to predict the average flow escaping the caprock. The
second goal is to find the probability density function of the maximal lateral extent to be
coupled with the probability of reaching a fault to give an estimate of leakage through a
fault.

4.1 Meta-models for maximal lateral extent and fluid

overpressure

The theory of polynomial chaos was developed by (Wiener, 1938, 1962). The first appli-
cation of the method was performed by (Meecham and Siegel, 1964; Siegel et al., 1965;
Meecham and Jeng, 1968) to study turbulence. At that time it was criticized to have a
slow convergence rate (Orszag and Bissonnette, 1967; Crow and Canavan, 1970; Chorin,
1974). Therefore, it was not popular till the work of (Ghanem and Spanos, 1991), who pro-
posed to use the Polynomial Chaos Expansion for spectral representation of uncertainty
in the context of finite element methods. Since then it has been applied in several domains
allowing uncertainty and sensitivity analysis for complex systems (Blatman and Sudret,
2010; Sudret, 2008b; Formaggia et al., 2012; Oladyshkin et al., 2011). Some overviews can
be found in (Sudret and Der Kiureghian, 2000; Xiu and Karniadakis, 2002; Xiu et al.,
2002).

In order to quantify the two central events, the lateral leakage out of the storage com-
plex and slow percolation through the caprock, two meta-models have been constructed
using the same experimental design of 100 simulations with a numerical model.

To describe the study and report the computation results, the four steps of uncertainty
treatment (De Rocquigny, 2012) have been followed:

� A. The specification step: quantities of interest, model, inputs and outputs of the
model

� B. The quantification of uncertainty sources

� C. The uncertainty propagation

� C’. The sensitivity analysis
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Specification step

The variables of interest chosen for the analysis are i) maximal lateral extent of the
CO2 cloud after 10 years of injection, ii) the overpressure on the top of the reservoir inte-
grated on the surface of 1km of radius and over 10 years iii) the maximal fluid overpressure
reached on the top of the aquifer and in the proximity of injection zone.

The quantities of interest are i) the threshold exceedance probability curve (CCDF)
for the maximal lateral extent of the CO2 cloud, ii) mean and standard deviation of the
averaged overpressure on the top of the reservoir, probability of exceeding 1MPa, iii) mean
value, standard deviation and maximal value of the maximal overpressure (in space and
time) in the whole aquifer and on the top of it.

The model used in this study is the numerical model in 2D axisymmetric formulation
described in section 2.4.1.

Input variables. Seven model parameters are considered uncertain:

� Maximal gas relative permeability krmax [-]

� Porosity φ [-]

� Thickness of the reservoir H [m]

� Maximal gas saturation Snwmax [-]

� Intrinsic permeability Kint [m2]

� Thickness of the damaged zone around the injection well EDZ [m]

� Injection debit Q [Mt/year]

4.1.1 Uncertainty sources description

The uncertainty on the homogeneous inputs of the numerical model are described through
probabilistic marginal laws. The quantitative details of the chosen laws are presented in
the Table 4.1.

The three lognormal PDFs (for gas relative permeability endpoint, intrinsic perme-
ability and the thickness of the damaged zone) are constrained to the first two statistical
moments by fixed mean values (corresponding to the initial set of inputs) and chosen co-
efficients of variation in the same way as described previously in section 3.5.1. For the rest
of input uncertain parameters (porosity, reservoir thickness, maximal gas saturation and
injection rate) the triangular PDFs are chosen as most often the information available on
these parameters is presented in the form of ‘minimum - mean - maximum’. To compute
the characteristics of these triangular laws the intervals of plausible values (which could
be fixed by an expert or found from literature) are associated with the bilateral 99.7%
confidence intervals. The most probable values are set to the initial values.
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Table 4.1: Chosen characteristics of the input variables. ‘LogN’ and ‘Tr’ stand for lognor-
mal and triangular PDFs respectively

Input Mean Bilateral interval 99.7% CV Attributed PDF
variable
krmax 0.2 [-] [0.09, 0.40] 25% LogN(-1.64, 0.25)
φ 0.15 [-] [0.115, 0.185] 10% Tr(0.113, 0.15, 0.187)
H 120 [m] [108, 132] 4.3% Tr(107.31, 120, 132.69)
Snwmax 0.67[-] [0.45, 0.89] 14% Tr(0.44, 0.67, 0.90)
Kint 1 · 10−13 [m2] [2.2 · 10−14, 3.53 · 10−13] 50% LogN(-30.05, 0.47)
EDZ 10 [m] [2.2, 36.3] 50% LogN(2.19, 0.47)
Q 1 [Mt] [0.8, 1.2] 8.6% Tr(0.79, 1, 1.21)

For the level-2 uncertainty study the reader can refer to the section 4.2.

The geometry of the domain has been explored separately and has shown little influ-
ence on the lateral cloud spread, whereas the influence on the pressure is more significant.

4.1.2 Uncertainty propagation

In order to propagate the described sources of uncertainties to the variables of interest
a meta-model is constructed using sparse polynomial chaos expansion implemented in
OpenTURNS (2012). To do so, first a standard Monte Carlo simulation is performed
with a limited number of samples (N=100). Then the basis multivariate orthogonal func-
tions (Hermite polynomials) are generated. And finally, the coefficients of the expansion
are computed according to the least squares strategy. The theory of polynomial chaos
expansion and further explanations are given in Appendix C. Once the meta-model is
constructed it is explored though Monte Carlo simulations.

The meta-model built for the quantity of interest of the maximal lateral spread contains
9 significant coefficients (the last significant coefficient has the index 196). The meta-model
for the averaged overpressure numbers 23 coefficients (with the last coefficient having the
index 327).

Results

1. The empirical CCDF of the maximal lateral extent of the CO2 cloud is shown
in Figure 4.1.

The mean value of the maximal radius in the present analysis (1123 m) coincides
with the response for the mean values of the input variables. It underlines that the
relation between rmax and input variables for the numerical model differs from the
analytical solution of Nordbotten (results in Table 3.12), for which the use of any
entry PDFs (lognormal, normal, triangular, mix of lognormal and triangular) gives
a mean value always higher than the nominal value by at least 1.4% in accordance
with the Jensen’s inequality (Jensen, 1906). Therefore, it can be assumed that the
numerical model does not represent a strongly convex function of its inputs.
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Figure 4.1: Empirical CCDF (or threshold exceedance probability curve) of the maximal
lateral spread of the CO2 cloud after 10 years of injection. The probability that rmax
exceeds 1500 m estimated with the meta-model equals to 0.0185.

The analytical model is limited by the gravity factor, therefore, to test uncertainty
propagation techniques on this model a reduced thickness of the aquifer has been
considered (with the mean value of 50 m versus 120 m in the present numerical
study). That is why the CCDF of the maximal lateral extent obtained with analytical
model is shifted to the right: to occupy the same porous volume with lower layer
thickness larger lateral distance needs to be swept by the injected gas. In both
cases the uncertainty propagation leads to rather large variance of the maximal
lateral extent: the distance doubles from 99% to 1% quantile. The standard deviation
obtained through the analytical model (224 m) is higher than for the numerical
model (155 m). It can still be explained by the reduced aquifer thickness as well as
difference in considered input variables.

2. Averaged overpressure on the top of the reservoir:

The mean value of the fluid overpressure on the top of the reservoir obtained with
the metamodel is 0.63 MPa, which is smaller than the nominal value 0.70 MPa. Such
result is less surprising when the scatterplots are analysed (see the second panel of
Figure 4.5): the averaged fluid overpressure on the top of the reservoir is negatively
correlated with the most influential input variable which takes 94% of importance
(intrinsic permeability). The estimate of the standard deviation is 0.24 MPa. The
entire empirical CCDF is presented in Figure 4.2.
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Figure 4.2: Empirical CCDF (the threshold exceedance probability curve) of the averaged
overpressure on the top of the reservoir. The probability that the averaged overpressure
exceeds 1 MPa estimated with the meta-model equals to 0.08

Some authors consider the value of 1 MPa as the critical threshold for the fluid
pressure in the caprock which provokes fracturing. This value depends on the com-
pression regime of the rock in any particular site. The injection-induced changes in
the horizontal stress inside the reservoir are much more relevant than in the vertical
stress which may be small because the ground surface can move freely. Rutqvist J.
(2007) evaluate a critical sustainable injection pressure as 27.2 MPa for a compres-
sional stress regime. For extensional regime the critical pressure is much higher. In
our case the injection pressure is not constant as the injection is controlled by the
injection rate. But taking the mean overpressure along the injection zone 4.9MPa
together with the initial hydrostatic pressure 23.5MPa makes the mean injection
pressure of 28.4 MPa. It means that if the reservoir is in compression regime the
injection debit of 1 Mt per year is too high.

3. Maximal overpressure characteristics:
The mean value of the maximal overpressure in the reservoir (which corresponds
to the center of the injection zone) is 4.9 MPa (with the standard deviation of 2.1
MPa). The maximum of the overpressure in the reservoir is 11 MPa.

On the top of the reservoir the mean value of the maximal overpressure is 1.6 MPa
with the standard deviation of 0.6 MPa. This pressure is higher than supposed
threshold on the caprock resistance (1 MPa). Which underlines once more that the
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chosen injection rate is overstated. The maximum of the overpressure on the top of
the reservoir is 3.6 MPa.

These results prove the capacity of stochastic metamodeling to produce estimations
of probabilistic risk measures on the basis of numerical modeling. The main observations
are too high fluid overpressure and high variability of the maximal radius for chosen input
characteristics. In what follows we present the ways of verification of the metamodel
results.

Verification of the meta-model

As there is no Monte Carlo representative reference for verification of the meta-model,
the relative errors between several meta-models are analyzed. The meta-model for which
the results are presented above consists of N = 23 expansion coefficients. Each coefficient
contributes to the fitting of the meta-model to the data. First coefficients representing
linear model are the greatest; the higher the number of coefficients in a meta-model, the
higher statistical moment can be captured by the meta-model. To justify the choice of the
order of expansion and the number of simulations used to build a particular meta-model
(the support), the author proposes following considerations.

1. Different truncation order of polynomials

The truncated expansion on a basis of n-dimensional Hermite polynomials of degree
not exceeding p is:

z̃ =
P−1∑
k=0

βkΨk(x), (4.1)

where P =

(
n+ p
p

)
. For the same support of 100 numerical simulations, several

meta-models of total degrees p = 1, ...7 have been constructed in order to determine
the best truncation order. The comparison is reported in Figure 4.3. Starting from
degree 4, the meta-model gives reasonable approximation of the response mean,
standard deviation and exceedance probability. Therefore, it has been chosen for
the study.

2. Cross-validation of the meta-model by ’leave-one-out’ technique

Cross-validation consists in dividing the support into subsets: one of these subsets
is supposed to be a set of known data (training set) and the other(s) - supplemen-
tary observations for testing the model (testing or validation set). Exhaustive cross-
validation relies on all possible divisions of the dataset into training and testing sets
of given size. The ’leave-one-out’ cross-validation is an exhaustive cross-validation
with only one observation left as a testing set. If z̃−i is a meta-model constructed
from the full experimental design excluding the i-th observation, the predicted resid-
ual is defined as the difference between the i-th observation and its value predicted
by the meta-model z̃−i: ∆i = z(xi)− z̃−i(xi).
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Figure 4.3: Response mean, standard deviation and exceedance probability for meta-
models of different total degree (p = 1, ..., 7) constructed on the same support (100-sample
standard Monte Carlo simulation).
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Figure 4.4: Relative corrected leave-one-out error estimate for the meta-model of the
averaged overpressure on the top of the reservoir. Optimal total degree equals to 3.

The values of the relative corrected leave-one-out error for the meta-models of dif-
ferent truncation order are reported in Figure 4.4. With respect to this error the
optimal degree is equal to 3. The order 4 chosen previously shows a low error as
well, therefore it is retained for the final results.

4.1.3 Sensitivity analysis

The variance-based sensitivity analysis provides the Sobol’s sensitivity indexes (contribu-
tions of input variables and their interactions to the output variance). For PCE meta-
models the Sobol’s sensitivity indexes can be computed from the expansion coefficients
as described in Appendix C. Tables 4.2 and 4.3 report the Sobol’s sensitivity indexes and
total Sobol’s sensitivity indexes for both variables of interest.

The sensitivity indexes are appreciably different for the two variables of interest. The
intrinsic permeability takes more than 90% of sensibility for the averaged overpressure,
for maximal lateral spread it takes only 41% but still stays the most important parame-
ter. Figure 4.5 illustrates that the maximal lateral spread is positively correlated to the
intrinsic permeability whereas the averaged pressure has a negative correlation.
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For the averaged overpressure the sensitivity indexes are different from total sensitivity
indexes (almost 20% of relative difference for the injection debit). It means that coupled
terms are more significant for the averaged pressure than for the lateral spread.

Surprising results are the insignificance of the damaged zone radius and extremely low
contribution of the porosity for both variables of interest.

Table 4.2: Sensitivity indexes for the integrated overpressure computed through PCE

Input variable Sobol’ index Total Sobol’ index
krmax 4 · 10−3% 7 · 10−2%
φ 1% 1%
H 2·10−1% 2 · 10−1%
Snwmax 1% 1%
Kint 93% 94%
EDZ < 10−6% 3 · 10−2%
Q 5% 6%

Table 4.3: Sensitivity indexes for the maximal lateral spread computed through PCE

Input variable Sobol’ index Total Sobol’ index
krmax 10% 10%
φ < 10−6% < 10−6%
H 14% 14%
Snwmax 32% 32%
Kint 40% 41%
EDZ < 10−6% < 10−6%
Q 3% 3%
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Figure 4.5: Visualization of the simulation results: both variables of interest and their
meta-models as functions of the most influential input variable - the intrinsic permeabil-
ity. To view the dependencies on the rest of the input variables the reader can refer to
Appendix D.

4.2 Level-2 uncertainty propagation using meta-model

and Taylor approximation

In Section 3.5.2, an uncertainty propagation with level-2 probabilistic setting has been
described and applied to a simplified physical model of CO2 spread. The level-2 risk
measures have been reached through double Monte Carlo sampling. With numerical model
such an approach is not accessible as it demands thousands of model runs. Nevertheless, in
the present section we propose that even in the case of time-consuming numerical models
the second level quantities of interest can be estimated through metamodeling and Taylor
approximation.

As it has been shown in Section 4.1 the maximal lateral spread of the CO2 cloud
after 10 years of injection is positively correlated with all the input variables (see Fig-
ure D.2). Therefore, we suppose that the response threshold exceedence probability is
monotonous with respect to the mean values of the input PDFs. Assuming additionally
that the epistemic deviations are limited (uncertainties are supposed small enough for
Taylor approximation), a significant simplification can be done in introducing the level-2
computations. The principle is to undertake parameter perturbation for the character-
istics θX of the chosen PDFs (see Table 4.1) to estimate the level-2 variation through
first-order Taylor decomposition for variance (Equation B.1). The function f on which
Taylor method is applied is:

θX → Cz(θX ,d),

where θX is the set of parameters defining the PDFs of X components, Cz is the quantity
of interest, d is a vector of fixed parameters of the model.

Ignoring the second order contributions, the parameter perturbation can be performed
in ’one at a time’ setting. To introduce level-2 variability the mean values of input PDFs
have been considered uncertain and perturbed by 10% the coefficient of variation in the
direction of least values.
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Table 4.4: Computation of the sensitivity of the rmax variance (Cz = Var(rmax)) towards
the level-2 perturbations; computation of the importances assuming that the coefficient
of variation at levels 1 and 2 are equal.

Parameter Nominal Perturbation Sensitivity Variance Importance Normalized
value of θi of θi: (S) (I) importance

θi = E(Xi) θi0 -0.1 CV θi0

(
∂f
∂θi

(θi0)
)2

(CV θi0)
2 S · Var(θi)

I
Var(Cz)

θkrnw 0.20 [-] -0.005 2.9 · 10−2 2.5 · 10−3 7.4 · 10−7 3%
θφ 0.15 [-] -0.002 5.4 · 10−2 4 · 10−4 2.2 ·10−5 1%
θH 120 [m] -0.52 6 · 10−6 27 1.6 · 10−4 6%
θSnwmax 0.67 [-] -0.009 3.8 · 10−5 8.1 · 10−3 3 · 10−7 10−2%
θKint 10−13 [m2] -5 · 10−15 1.2 · 1020 2.5 · 10−27 3 · 10−7 10−2%
θEDZ 10 [m] -0.5 8.9 · 10−5 25 2.2 · 10−3 82%
θQ 1 [Mt] -0.009 2.8 · 10−2 8.1 · 10−3 2.3 · 10−4 8%

Var(Cz)=
2.7 · 10−3

In order to avoid the impact of the statistical fluctuations, the seed of pseudo-random
computer sampling is fixed. For each perturbation the same type of meta-model as de-
scribed in the previous section is constructed and analyzed. As a result we obtain one
CCDF curve per parameter set {θi}. The corresponding CCDFs of the maximal lateral
extent are presented in Figure 4.6.

The quantitative values of the normalized importance indexes are obtained for the
quantity of interest of the variance of rmax : Cz = Var(rmax) (see Table 4.4).

Comparing the obtained importances to the level-1 sensitivities (see Table 4.3) one
would notice an inverse hierarchy of parameter importancies. Such result is counter-
intuitive and can be influenced by the hypothesis of equivalence of coefficients of variation
at levels 1 and 2.

Generalizing the present analysis, it should be noticed that eliminating least impor-
tant level-1 variables for reducing the probabilistic model may not be conservative if the
subjective uncertainty on this variables is high.
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Figure 4.6: The maximal lateral spread CCDF for the level-2 perturbations of the input
variables (one by one) compared to the initial level-1 CCDF.

4.3 Results for homogeneous permeability

Taking into account the spatial variability or considering homogeneous variation of the
properties does not give the same results for uncertainty propagation. In order to be
able to compare these approaches for the permeability, we provide hereafter the reference
analysis with homogeneous permeability as the only input variable.

Figure 4.7 shows the response variables as functions of intrinsic permeability. Quasi-
linear positive correlation can be observed for the logarithm of rmax, and hyperbolic nega-
tive correlation for the averaged pressure on the top of the reservoir. In such representation
it can be noticed that the numerical instability affects significantly the maximal lateral
spread. It can be explained by the great sensibility of the front position in multi-phase
flow problems. The results for the overpressure are more stable, as they are averaged over
time and space.

Verification of the meta-model

As already discussed for the case of multivariate entries, there is no reference for the
meta-model verification, therefore results for different truncation order and support are
analyzed. For the one-variable meta-model, the results for different truncation order is
shown in Figure 4.8. Above order 3 all three quantities are stabilized. Therefore, the
meta-model of the order 3 is retained for the study.

The relative error of the meta-model is reported in Figure 4.9. The optimal degree
with respect to this error is 3 or 4.
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Figure 4.7: Visualization of the simulation results: both variables of interest and their
meta-models as functions of the only variable permeability
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Figure 4.8: Response mean, standard deviation and exceedance probability for meta-
models of different total degree of polynomials (p = 1, ..., 7) constructed on the same
support (100-sample standard Monte Carlo simulation)
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Figure 4.9: Relative corrected leave-one-out error of the meta-model for the only variable
of intrinsic permeability.
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4.4 Concluding remarks

The meta-models constructed using the numerical model gives access to the approxi-
mation of the cumulative complementary distribution function (or threshold exceedence
probability curve). The CCDFs are evaluated for two variables of interest: the maximal
lateral extent of the CO2 cloud and the averaged overpressure on the top of the reser-
voir contributing to the quantification of the scenarii of the excessive lateral spread and
the leakage through the caprock. In terms of risk assessment the obtained CCDFs repre-
sent probability versus intensity curves, which can be coupled with vulnerability curves
resulting in the final risk curve.

The polynomial chaos expansion has been used for meta-modeling. The great advan-
tage of this approach is that it allows the computation of the global sensitivity indexes
directly from the meta-model coefficients. The sensitivity indexes calculated for both
variables of interest indicate that the most influential input variable is the intrinsic per-
meability. It is important to notice that rather limited variation has been attributed to the
intrinsic permeability (the bilateral interval 99.7% includes less than 2 orders of magni-
tude). According to (Bear, 1979) hydraulic conductivity can possibly vary over 13 orders
of magnitude. Even with such limited variability the intrinsic permeability contributes by
90% to the averaged overpressure variance. Therefore, a particular care should be taken
in describing its uncertainty. This task is impeded by the presence of heterogeneities. The
uncertainty of the intrinsic permeability represented as spatial variability is considered
in Chapter 5. An uncertainty propagation study with homogeneous permeability as the
only input variable has been run in order to provide a reference for comparison with the
spatial variability case.

The level-2 probabilistic study has been performed on the numerical model indicating
that the level-2 importances do not coincide with the level-1 importances. Considering
the level-2 quantity of interest (such as the variance of the mean value or the variance
of the variance of the maximal lateral extent), we obtain that the biggest contribution
comes from the input variable which is insignificant in level-1 (thickness of the damaged
zone around the injection well). Therefore, this parameter needs to be considered in spite
of small level-1 contribution.
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Geological heterogeneities are recognized as a major feature and constraint of quan-
titative hydrogeology especially for model calibration or flux prediction (Eaton, 2006).
They are ubiquitous due to the diversity of natural processes at stake in the genesis of
the underground media.

The geological spatial heterogeneities (which can be presented as ’natural spatial vari-
ability’ uncertainty type mentioned in the Introduction 1.2) add a degree of complexity
to risk assessment. The existence of facies spatial distribution, natural variability within
facies, structural features such as faults, folds, fractures makes it difficult to assess the
suitability of sites for long-term CO2 storage.

The uncertainty about the underground properties combines geological spatial hetero-
geneities, incomplete information based on measurements of variable quality, subjectivity
of information interpretation. Thus, theoretically this uncertainty can be both represented
as a lack of knowledge (as we are not able to make enough measurements, these measure-
ments being moreover imprecise and indirect) and as stochastic uncertainty (we could
never know the media properties at each point corresponding to a REV of the scale of
interest, and modelling them as random is the only option left).

In this chapter it is demonstrated by numerical simulations that accounting or not
for heterogeneity of the medium leads to results differing by an order of magnitude for
certain variables of interest. Therefore, the way of dealing with the uncertainty related to
the underground properties matters to uncertainty propagation, and an expert performing
risk assessment should pay attention to how spatial heterogeneity is taken into account.

5.1 Geological heterogeneity

5.1.1 A matter of scale

Even if heterogeneities in the properties of natural medium is commonly aknowledged, the
way of describing them in quantitative way is a subject of wide discussion in the scientific
literature. The main stumbling point of heterogeneity description when modelling flows
in porous media is the scale. As we are not able to include all the physical phenomena
at all scales for quantifying the processes, the model equations often refer to a certain
characteristic length, whereas the natural media is heterogeneous at all scales. Therefore,
the challenge consists in obtaining the characteristics at the right scale relying on finer
or coarser description locally available. For underground media we will distinguish two
scales of measurements: one macro scale (e.g. measurements of type well-test) and one
corresponding to measurements on core samples and well logging data.

In order to include fine scale information into coarser model either the data should be
averaged or the problem should be homogenized. The difference between averaging and
homogenization is clarified by Wood (2009). The homogenization theory can be found
in the following works: Allaire (1992); Olla (1994); Jikov et al. (1994). The particular
case of flow through highly heterogeneous media was described by Panfilov (2000). The
case of double-porosity media was also considered by Arbogast et al. (1990); Bourgeat
et al. (1998); Panfilov (2000). The upscaling becomes even more complex in presence of
multi-phase flow (Ewing, 1997; Das and Hassanizadeh, 2005).
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The link between uncertainty propagation and model upscaling/downscaling should be
understood to justify the use of spatial models as decision support systems. Only few works
are available on the subject. The relative contribution of uncertain model inputs to the
variance of aggregated model output under a change of spatial support has been studied
by Saint-Geours et al. (2012) and Saint-Geours (2012) for global sensitivity analyses.

The influence of heterogeneities and upscaling on flow predictions in the context of
CO2 storage was studied by Bouquet et al. (2013). A short term study for 2D model
was performed using industrial flow simulator and several upscaling techniques. The main
results indicate that the choice of an upscaling technique is less influential for the results
dispersion than the spatial variability itself (especially the correlation length of permeabil-
ity heterogeneities). Even if for 3D model the choice of an upscaling technique could be
more influential than for 2D formulation, in the present work the upscaling is considered
out of scope, and the effect of heterogeneity is studied at a fixed scale.

5.1.2 Spatial variability and uncertainty related to its represen-
tation as a random field

Simulation of equiprobable realizations of the media properties (samples of a random
field) allows the analysis of the impact of the spatial variability on the long-term system
evolution predictions. A random field expresses at a time the natural stochastic variability
and the lack of knowledge that we have on the spatial repartition of the natural medium
properties.

Nevertheless, it is important to remember that several sources of errors arise when
using such approach for representation of the spatial variability. First of all, as for any
sampling technique, there would be a ‘propagation error’ related to the fact that the
number of generated samples is not infinite. Indirectly, the propagation error can be
appreciated through the convergence rate of the estimators of the quantities of interest.

Secondly, if the assumptions made about the field structure are erroneous or/and the
model is constrained to data of insufficient quality and quantity, such a stochastic model
would not be representative of the natural spatial variability and would include itself an
imprecision. This is an uncertainty of the second order as it concerns the imprecision in
the model of the sources of uncertainty. The major challenge is to correctly constrain
the stochastic model to the available information accounting for all types of uncertainties.
Such an inverse problem in the case of independent identically distributed random variable
is described in (De Rocquigny, 2012, page 225).

In the case of spatial variability of permeability the problem is two-fold: first, it is
necessary to have enough data that experimentalists claim to be hard or even impossible to
obtain (such as the correlation structure); and second, permeability measurements (both
on core samples and in-situ) are indirect and need an interpretative model (including
inversion). The result of the interpretation of a well-test is the apparent value of the
permeability in a certain zone around the well. In the proximity of a well the flow is
radial. Several authors have proposed analytical formula to find apparent permeability
around a well for radial flow conditions, e.g. Desbarats (1994). The existence of effective
permeability (or conductivity) for radial flow in two-dimensional bounded domain has
been studied by Noetinger and Haas (1996); Franzetti et al. (1996).
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These concerns are discussed here to underline the importance of addressing the prop-
agation error and second level uncertainty when using a stochastic field representation
for spatial variability. The latter needs the creation of a conceptual framework for quan-
tification of the complex of uncertainties related to random field identification and data
assimilation. It remains a scientific topic of actuality which to our knowledge has not been
developed enough or numerically tested. For the numerical part the obstacle is evidently
the great computational resources needed to properly perform at least one first-level prob-
abilistic study including spatial variability (nevertheless, it can become accessible with the
growth of computational powers).

In the present work a random field of permeability with minimal parametrization
(inspired from the literature) is chosen to study the influence of spatial variability on
the two-phase flow characteristics. The structure of the random field and the way of its
sampling are presented hereafter.

5.2 Random tensor field of permeability: modelling

and simulation results

This section deals with the modelling of a positive-definite matrix-valued random field
of permeability. The field is lognormal, constrained by its mean value, dispersion, cor-
relation structure and anisotropy index. The field generation procedure and results are
communicated in (Okhulkova et al., 2014).

5.2.1 Theoretical basis of the generation of anisotropic random
field of permeability

The preliminary studies (Section 3.5) have shown that permeability is the most important
parameter. Several authors also state that hydraulic conductivity (permeability) is the
primary control in fluid displacements in water and gas drives (Rehfeldt et al., 1992; Lake
and Carroll, 1986; Lake et al., 1991).

It is worth mentioning that the porosity, assumed as a deterministic quantity in the
present chapter, could have been modelled as a random field using the same technique.
Still there are two arguments in favor of modeling permeability rather than porosity, which
are: permeability changes both the magnitude and direction of flow, whereas porosity only
changes the magnitude of the velocity; hydraulic conductivity can vary over 13 orders of
magnitude, whereas effective porosity varies in the limits of less than 2 orders of magnitude
(Bear, 1979).

For these reasons numerous studies attempt to quantify the influence of permeability
heterogeneity on the flow characteristics and to propose a methodology of permeabil-
ity upscaling from the scale of geological description to the scale of reservoir simulation
(Durlofsky et al., 1996). Most of the studies address the problem in two-dimensional con-
figuration for single fluid flow and assume statistical homogeneity or isotropy.

The first consistent attempt in treating key problems of heterogeneous reservoir de-
scription dates back to the work of Warren and Price (1961). The authors of the paper
affirm that it is possible to obtain the qualitative measures of the degree and the scale of
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the heterogeneity and its spatial configuration if core analysis and pressure build-up data
are available. Nevertheless, the authors underline the restrictive assumptions that both
the core and the build-up information should represent valid measures of the reservoir
properties (that is to say, the indirect measurements are correctly interpreted).

The early study where the hydraulic conductivity is modeled as a spatial random
field with a prescribed marginal probability distribution and correlation structure was
performed by Hamed et al. (1996) for two-dimensional case.

In the present work a 3D field is generated for permeability of anisotropic nature.

Anisotropic nature of permeability

The Darcy’s law in its initial form is only valid for isotropic media. Nevertheless, several
approaches show the possibility of generalization of the Darcy law for tree-dimensional
flow in anisotropic media (see (Bear, 1972) section 5.10).

According to generalized form of the Darcy law the hydraulic conductivity K relates
the specific discharge q(qx, qy, qz) to the hydraulic gradient J(Jx, Jy, Jz) through the fol-
lowing matrix equation:  qx

qy
qz

 =

 Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kyz Kzz

 ·
 Jx
Jy
Jz

 (5.1)

Therefore, in tree-dimensional space nine components Kij(i, j = x, y, z) form the hy-
draulic conductivity tensor, which is a symmetric, positive-definite second-order tensor.
Due to symmetry it only contains six different components. The cross-component Kxy (as
an example) can be interpreted as the weight of the contribution of the component Jy of
the hydraulic gradient to the specific discharge in x direction (qx).

The hydraulic conductivity expresses the capacity of a fluid to be transported through
a porous media. As a consequence it includes both properties of the fluid and the medium.
The influencing fluid properties are density ρ [kg/m3] and viscosity µ [Pa.s]. The influenc-
ing matrix properties (such as shape of the pores and their size distribution tortuosity,
porosity) are regrouped into intrinsic permeability ki [-]. Equation 5.2 gives the relation
between the hydraulic conductivity K, effective permeability Kα, intrinsic permeability
ki and relative permeabilities krα for multi-phase flow in isotropic media:

K =
Kαρg

µ
(5.2a)

Kα = kikrα (5.2b)

Bear (1987) states that the concept and definition of relative permeability can not be
extended to the general case of anisotropy when x, y and z are not principal directions.
Nevertheless, it is possible to define the relative permeability as Kαki

−1. Several authors
have shown that upscaling can lead to anisotropic relative permeability defined in this
way (e.g. Keilegavlen et al., 2012).

Returning to the flow equations of the numerical model (2.16, 2.17) it can be noticed
that the relative permeability is only present in product with the intrinsic permeability.
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Figure 5.1: Relative permeability curves and their possible perturbation

Therefore, the analysis presented further in Section 5.2.2 can be interpreted as a study for
a constant scalar intrinsic permeability and the relative permeability curves weighted by
an anisotropic coefficient (this interpretation is only valid for the case of lognormal fields).
An example of perturbed curves of relative permeability is given in Figure 5.1. Both the
relative permeability endpoint and the entire curve are weighted by a sample of a random
coefficient.

In this work the functional dependence of the relative permeability on saturation is
assumed to be independent of direction. Therefore, the relations 5.2 for anisotropic media
become:

K = Kα
ρg

µ
(5.3a)

Kα = kikrα (5.3b)

The simplification made on the relative permeability allows to restrain the anisotropy
to the intrinsic permeability (hereafter reffered to as permeability).

An important property of a second-rank tensor:
Given the components Kij of a tensor K in a coordinate system (x, y, z), the principal
directions (x′, y′, z′) can always be found for which the tensor would take a diagonal
form.

In light of the property mentioned above the introduction of anisotropy into a random
field is equivalent to rotation of the principal axes. Therefore, the way of generating of
heterogeneous and anisotropic permeability field proposed in this work consists in defining
an orthotropic permeability field and then rotating the principal axes by means of an
anisotropy kernel.



Chapter 5. Spatial variability 83

Random orthotropic permeability tensor field

The natural deep aquifers targeted to be CO2 storage sites are geological formations of
sedimentary origin. Sediments are commonly deposited in such a way that the permeability
of the flow is greater along the planes of deposition than across them. That is why even
within a homogeneous facies the permeability should globally be seen as an orthotropic
property (eg. if (x,y) is the sedimentation plane and z is the normal direction then Kx =
Ky > Kz).

Let us discuss how to construct numerically an orthotropic random permeability field.
At each point the permeability tensor Ko has the diagonal form and consists only of
horizontal and vertical components (here assumed independent). So that in a point the
random orthotropic permeability tensor Ko is:

Ko(µ, σ) = Kh(µ, σ)

 1 0 0
0 1 0
0 0 0

+Kv(µ, σ)

 0 0 0
0 0 0
0 0 1

 (5.4)

where Kh and Kv are horizontal and vertical permeability scalar random variables re-
spectively. The parameters µ and σ stand for the mean value and the standard deviation
chosen for the horizontal permeability. The parameters for vertical permeability are drawn
out of µ and σ by their multiplication by a constant ratio.

After introducing the spatial component with a vector of correlation lengths in the
three spatial directions ` = (`1, `2, `3) the random orthotropic permeability tensor field
Ko(x;µ, σ; `) can be written as follows:

Ko(x;µ, σ; `) =

 Kh(x;µ, σ; `) 0 0
0 Kh(x;µ, σ; `) 0
0 0 Kv(x;µ, σ; `)

 (5.5)

where Kh and Kv are independent scalar lognormal random fields. Hence log(Kh) and
log(Kv) are scalar Gaussian random fields with identical correlation functions that are
supposed to be separable:

R(η; `) = ρ(η1; `1) · ρ(η2; `2) · ρ(η3; `3) (5.6)

and where ρ(η; `) is chosen as a squared cardinal sine.

ρ(η; `) =
4`2

π2η2
sin2

(πη
2`

)
(5.7)

More complex correlation structure could be defined provided that additional infor-
mation is available.

Random anisotropic permeability tensor field

In order to add some random anisotropy the permeability tensor is written as follow:

K(µ, σ, δg) = (Ko(µ, σ))
1
2 ×G(δg)× (Ko(µ, σ))

1
2 , (5.8)
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where Ko is the random orthotropic permeability tensor,G is the anisotropy kernel
(Soize, 2005), δg is the dispersion parameter of the anisotropy kernel.

The anisotropy kernel G The anisotropy kernel is a normalized, symmetric, positive-
definite real random matrix defined on the probability measure space (A,F , P ). The
derivation of the form ofG is based on the entropy optimization principle (Shannon, 1948;
Jaynes, 1957). Using this principle the probability density function of G is constructed
under the constraints of positivity, symmetry, normality and finite Frobenius norm.

In order to be able to perform a Monte Carlo numerical simulation of the random
matrix G it is proposed to write the anisotropy kernel in the following algebraic repre-
sentation (the expression is completed with the case (δg = 0)):

G =

{
I, δg = 0

LT (δg)L(δg), δg > 0
(5.9)

where I is the identity matrix, L is an upper triangular matrix with its elements
defined as follows:

Lij(δg) =

{
δg
2
Nij, j > i

δg
2

√
2h(Nij, ai), j = i

(5.10)

Nij - six independent copies of a normalized centered Gaussian random variable,
h(Nij, ai) - a non-linear isoprobabilistic transformation that converts Nij into a Gamma
distributed scalar random variable, ai - parameters of the transformation (shape param-
eter of the Gamma distribution) computed as (Ta et al., 2010):

ai =
2

δ2
g

− i− 1

2
. (5.11)

K(x;µ, σ, δg; `) = (Ko(x;µ, σ; `))
1
2 ×G(x; δg; `)× (Ko(x;µ, σ; `))

1
2 (5.12)

5.2.2 Simulated anisotropic random field of permeability

Conformly to the procedure described in the previous section a set of 100 random tensor
3D fields of permeability have been simulated. The steps and the choices made for the
present particular study are the followings:

1. Choose the characteristics of the scalar random fields Kh and Kv:

� the distribution law: lognormal

� the correlation function : equations 5.6, 5.7

� the correlation lengths (`1, `2, `3) = (50 m, 50 m, 20 m)

� mean value and standard deviation: 10−13 m2 and 4.9 · 10−27 m2 for Kh; 10−14

m2 and 4.9 · 10−28 m2 for Kv
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Figure 5.2: Higher statistical moments of the generated field of permeability (Kxx) on a
regular grid and on the grid of the 3D numerical model of the reservoir compared to the
moments of the a priori PDF

� the coordinates of the grid points in which the field should be evaluated: regular
grid with a step of 5 m in each direction

2. Generate a realization of Kh, Kv and combine the orthotropic tensor field of per-
meability Ko(x;µ, σ; `) as in equation 5.5

3. Choose the value of δg and construct the Cholesky factorization matrix L of the
anisotropic kernel G in every point:

� the diagonal elements are Gamma distributed scalar random fields with the
same correlation structure as Kh (equations 5.10 and 5.11)

� the upper extra-diagonal elements are normalized centered Gaussian random
variables weighted by δg/2

4. Use the equation 5.12 to obtain the final stochastic permeability tensor field.

To evaluate the quality of the simulated orthotropic field we first verify that the PDF
chosen for the scalar random fields Kh and Kv are properly sampled.

For the anisotropic field the pdf does not need to be equal to the input PDF as it is
modified by the anisotropy kernel.

Figure 5.2 presents the central statistical moments of higher orders for the anisotropic
field in comparison with the input PDF moments.

In order to analyze the simulated field the semivariogram of the permeability field
at the distance of mean lateral extent is computed. To do so the values of Kxx and
Kzz components are read on a circle with the radius 1062 m. The computed angular
semivariogram of Kxx(angle) is shown in the Figure 5.3 (left).

The angle which corresponds to the correlation length at the distance of 1062 m from
the well is 2.7o. This angle is quite visible on the semivariogram. The mean semivariogram
tends to its sill - the variance value which was used to simulate the random field of
permeability (Var(Kxx) = 2.5 · 10−27 m4). It proves the stationarity and ergodicity of the
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Figure 5.3: Angular correlation of the horizontal permeability at the distance of 1062
m from the injection well. Right: angular semivariograms of 100 Kxx realizations (blue
lines) and the mean semivariogram (magenta line). Left: angular auto-correlation function
corresponding to the mean semivariogram.

simulated field. The mean semivariogram is used to compute the auto-correlation function
(Figure 5.3 (right)).

Similar curves are obtained for the vertical permeability. The correlation angle read
from the semivariogram of Kzz is the same as for the horizontal permeability (2.7o). The
semivariogram sill for the vertical permeability also verifies its a priori variance. Thus, the
semivariogram is shown to provide correct characteristics for the permeability field.

5.3 Probabilistic study for random tensor field of per-

meability

Using the coupled 3D-2D axisymmetric model described in section 2.4.2 the flow simula-
tion has been run for 100 samples of the random tensor field of permeability. The mean
simulation time on a personal computer (4 CPU Xeon E5630 2.53GHz, RAM 23.4GiB)
for a prediction till 10 years reaches 6.5 hours. Each solution contains 146332 degrees of
freedom with 15256 elements in the mesh.

The same variables of interest as for the study described in the previous chapter were
retained: the maximal lateral spread of the CO2 after 10 years of injection and the maximal
and averaged pressures on the top of the reservoir. As the problem has a radial character,
the maximal lateral spread of the injected gas is considered as a function of the angle. An
example of an output for a 0.99 contour of water saturation is shown in the Figure 5.4. If
a non-convex form is encountered in the front the external edge is taken.

5.3.1 Results for media with heterogeneous orthotropic and anisotropic
permeability

Heterogeneous permeability influences the spatial repartition of the injected fluid. In order
to characterize the main features we analyze one sample. Intuitively the changes would be
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Figure 5.4: The maximal lateral spread of CO2 after 10 years of injection (view from above
on a half-reservoir with the injection well at the position (0,0)).

an oscillating (distorted) front behavior, different ratio between the gravity and horizontal
pressure gradient effects. Such effects can be observed on a vertical map of saturations
presented in Figure 5.6. Of course the difference between homogeneous and heterogeneous
cases should not be judged by a single realization. The results with probabilistic dimension
are described in the next section (5.4)

What is the front in our numerical model? When the gas flows through the media
there is a rapid decrease of water saturation from 1 to 0.5 (as shown on Figures 5.5 and
5.6). At the beginning of the injection the slope of this decrease is a quazi-step function,
therefore we could speak about the front in its classical meaning. But with time the slope
flattens due to the presence of relative permeability curves and buyoncy.

For the sake of simplicity let us attribute the notion of front in the numerical model
to the 0.99 water saturation contour.

Figure 5.5: Shape of the front (Sw = 0.99) in the middle of the reservoir during the
injection (till 50 years) and 10 years after injection. Homogeneous permeability 10−13 m2.
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Figure 5.6: Shape of the front (Sw = 0.99) in the middle of the reservoir during the
injection (till 50 years) and 10 years after injection. Anisotropic permeability field: µ =
10−13 m2, σ = 4.9 · 10−27 m2, δg = 0.2

Saffman and Taylor (1958) distinguished two regimes of front behavior depending on
the mobility ratio difference of present fluids: stable regime for which the heterogeneities
slightly disorder the front which still appears to be statistically well defined (in this case
the apparent front thickness does not increase with time), unstable regime characterized
by presence of viscous fingering, front thickness grows linearly with time. This definition
was proposed for sharp interfaces, when the saturation after the front is maximal without
any transition zone. Although in the numerical model under consideration the front is not
sharp it would be interesting to notice if the contours of fixed saturation are stable or not.

As the reader can see on Figure 5.7 for high gas saturations the contours are not
stable even for a heterogeneous permeability field with low contrast (one and a half times
difference in order of magnitude between 0.15% and 99.85% quantiles of permeability).

Remarks

� The front Sw = 0.99 is stable with rare locations of further lateral extent.

� The contours of lower water saturations (eg. Sw ∈ (0, 0.4]) can be discontinuous.

5.3.2 Statistics on the maximum radius with variability

In order to quantify in a probabilistic sense the spread of the injected gas in the case
of heterogeneous permeability, we develop statistical estimators allowing to obtain such
characteristics as the mean value, the standard deviation and the cumulative density
function or complementary cumulative density function of the maximal lateral spread
rmax. The key point of the proof is that the spatial averaging gives access to the estimates
listed above for even small number of 3D simulations.
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Figure 5.7: Water saturation on the top of the reservoir after 10 years of injection: 0.2
0.25 and 0.3 contours. Both pistons of further local extent and trapped zones of lower gas
saturations can be observed

It is assumed that the field of random permeability is statistically invariant for any
rotation around the axis of the wella. As a consequence, the random field rmax(θ) is
statistically invariant with respect to any rotation of the horizontal axes. Hence all its
marginal PDFs are invariant with respect to any rotation around the vertical axis. As a
consequence, p(rmax), the first marginal PDF of rmax(θ) is independent of angle θ and any
statistical moment (including the mean and the standard deviation) are also independent
of θ.

Now let us consider the average radius Rmax(ω) as a random variable defined as the
spatial average:

Rmax =
1

2π

∫ 2π

o

rmax(θ)dθ

Its mean (ensemble average) denoted Rmax is obviously equal to the mean of rmax(θ).
Hence any statistical estimator of E(Rmax) is also an estimator of E(rmax) but is likely to
converge much more rapidly due to space averaging.

Actually this can be extended to estimators of any quantity derived from the first
order marginal PDF of rmax(θ), including standard deviation or quantiles. Let us denote
by (Ω, E , P ) the abstract underlying probabilistic set and define any statistical quantity
q:

q = E(q) =

∫
Ω

q(rmax(θ, ω))dP (ω) =

∫ +∞

0

q(r)prmax(r)dr

aMeaning that all the marginal PDF are invariant with respect to any rotation of the horizontal axis,
the property being satisfied when the permeability field is statistically orthotropic.
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with q(r) any function of the maximum radius. Due to rotation-invariance this quantity
does not depend on the angle θ at which rmax is observed and prmax(r) the first marginal
pdf of the maximum radius is also independent of the observation angle.

Let us now define the spatial average Q defined for any event ω ∈ Ω by:

Q(ω) =
1

2π

∫ 2π

0

q(rmax(θ, ω))dθ

and let Q be its mean value which coincides with q as:

Q = E(Q) =

∫
Ω

Q(ω)dP (ω) =
1

2π

∫ 2π

0

(∫
Ω

q(rmax(θ, ω))dP (ω)

)
dθ = q

We can now define the two Monte-Carlo estimators of these two quantities as:

Q̂ =
1

N

N∑
i=1

Q(ωi), q̂(θ) =
1

N

N∑
i=1

q(rmax(θ, ωi))

which will only coincide for very large values of N . However for a fixed N we can easily
show that:

Q̂ =
1

2π

∫ 2π

0

q̂(θ)dθ

However Q̂ is a much better estimator as its variance σ2
Q is much smaller than σ2

q the
variance of q̂. Indeed one can easily show thatb:

σ2
Q

σ2
q

=
1

2π

∫ 2π

0

γq(θ)dθ

where γq is the angular correlation function of the q(θ) random field. It is worth noticing
that this angular-correlation function is only dependent on θ thanks to the rotation-
invariance hypothesis. It is also important to notice that the detailed γq function is not

required in the estimate of the standard deviation of the estimator Q̂ but only its sum
over [0, 2π] which can be defined as the correlation angle θqc:

θqc =

∫ 2π

0

γq(θ)dθ

Following this analysis, an estimator of σ2
Q the square of the standard deviation on Q

is built using an estimator on σ2
q and an estimator on θqc as follows:

σ̂2
Q =

N

N − 1
σ̂2
q

θ̂qc
2π

b

σ2
Q =

1

2π

∫ 2π

0

1

2π

∫ 2π

0

(E(q̂(rmax(θ))q̂(rmax(θ′)))− (E(Q̂))2)dθdθ′

and
σ2
qγq(θ − θ′) = E(q̂(rmax(θ))q̂(rmax(θ′)))− (E(q̂))2
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Figure 5.8: Dependence of the estimate of the Rmax mean with the number N of real-
izations: minimal and maximal values for 103 randomly chosen subsets of N values. The
estimated mean and the standard deviation for 100 realizations are 1058 m and 7 m
respectively.

where

σ̂2
q =

N

N − 1
(Q̂2 − Q̂2)

with q2(r) = q(r)2 and:

θ̂qc =
1

2πNσ̂2
q

N∑
i=1

∫ 2π

0

∫ 2π

0

(q(rmax(θ, ωi))q(rmax(θ′, ωi))− q2)dθdθ′

Figure 5.8 illustrates the dependence of the estimator Q̂ (for q = rmax) mean and

standard deviation (

√
σ̂2
Q) on the number N of realizations ωi, i = 1, ...N . Instead of

showing the estimate for 1 subset of N = 1, ...100 realizations, 103 subsets from the

totality of

(
100
N

)
combinations are randomly chosen. It gives an approximation of the

envelop for all possible combinations. For each subset the mean value is computed. The
minimal and maximal mean value of the subsets are represented in Figure 5.8 together

with the standard deviation estimate (

√
σ̂2
Q) and the maximal standard deviation between

the 103 estimates of the mean value.
When considering the function q in the form q = (rmax−rmax)2, the estimator Q̂ gives

an approximation of rmax variance. Figure 5.9(left) illustrates the dependence of such esti-
mator mean on the number N of samples ωi, i = 1, ...N . The Figure 5.9(right) represents
the square root of the variance envelop, giving envelop for the standard deviation, the
standard error is evaluated as described hereafter.
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Figure 5.9: Dependence of the estimate of the rmax variance (left) and standard deviation
(right) with the number N of realizations: envelop for 103 randomly chosen subsets of N
values. The values of the estimator and its standard error for 100 samples for variance are
646 m2 and 545 m2 (for standard deviation 25 m and 11 m respectively).

Knowing the estimated variance (646 m2) the standard deviation is computed resulting
in 25 m. Now let us find an approximation of the standard error of the standard deviation
knowing the standard error of the variance. The standard error of the variance is com-
monly found with the help of chi-squared distribution as it represents a sum of squares of
Gaussian standard distributions. In this case the uniformly minimum variance unbiased
estimator S2 of the variance has a standard error (Lehmann and Casella, 1998):

σS2 = σ2

√
2

(n− 1)
,

where σ2 is the estimated variance, (n−1) is the number of degrees of freedom of the chi-
squared distribution. As we already have a standard deviation of the variance estimator

(

√
σ̂2
Q=545 m2), we can find a degree of freedom of a chi-squared estimator which would

give the same standard error. We find n = 1 + 2 σ2

σS2
equals to 4. The uniformly minimum

variance unbiased estimator of the standard deviation is KnS (Lehmann and Casella,

1998, p.92), where Kn =
√

n−1
2

Γ(n−1
2

)

Γ(n
2

)
. The standard error of KnS is:

σKnS = σKn

√
Vn
n− 1

,

Vn being the variance of chi distribution with (n − 1) degrees of freedom: Vn = 2(n−1
2
−

Γ2(n−1
2

)

Γ2(n
2

)
. For n = 4 the factor Kn

√
Vn takes the value of 0.73. Therefore, the standard error

σKnS can be estimated to 11 m.
The final goal being the evaluation of the CCDF of the variable of interest, let us now
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define an estimator of the CDF of the maximum radius. To do so, the function q can be
expressed as an indicator function h which equals to 0 for radius exceeding r0:

h(ω, r0 − rmax(θ)) =

{
1, rmax ≤ r0

0, rmax > r0

(5.13)

The statistical quantity h(r0) representing the ensemble average of the function h(r0)
would give the cumulative probability at radius r0:

h(r0) = E(h(ω, r0−rmax)) =

∫
Ω

h(ω, r0−rmax)dP (ω) =

∫ +∞

0

h(r0 − r)prmax(r)dr = P (rmax < r0)

Introducing the spatial average H(ω, r0) allows an estimate of the cumulative proba-
bility in the following way:

P (rmax < r0) = H(r0) ≈ Ĥ(r0) =
1

N

N∑
i=1

H(ωi, r0)

In order to get an idea of the convergence rate of P(rmax<r0) with the number N of
samples taken for evaluation, the curves for the quantile 80% (r0 = 1071 m) are shown
in Figure 5.10. The representation is similar to Figure 5.8: the envelop of results for 103

subsets is shown. In the case of homogeneous permeability the exceedence probabilities
for r0 = 1500 m and r0 = 2000 m have been evaluated. In the case of heterogeneous
permeability no sample reaches the radius of 1300 m. That is why the radius r0 = 1071
m is chosen corresponding to the quantile 80%.

Computing P(rmax < r0) for each r0 gives the whole CDF curve of the maximal lateral

spread rmax. The resulting complementary cumulative distribution function (1-Ĥ(r0)) is
shown in Figure 5.11 together with the N=100 samples of 1-H(ωi, r0) c.

The asymptotic standard deviation of the estimator Ĥ(r0) is expressed as (De Roc-
quigny, 2012, p.290):

σĤ =

√
1

N
H(r0)(1−H(r0)) ≈

√
1

N
Ĥ(r0)(1− Ĥ(r0)).

Several curves 1-H(ωi, r0) (Figure 5.11) are outside of the 95% asymptotic confidence
interval, it means that the values are far from being distributed according to a Gaussian
distribution. At both extremities certain curves reach the Chebyshev 95% bound.

In Figure 5.12 the resulting complementary cumulative distribution function (1-Ĥ(r0))
is compared to a lognormal CCDF having the same first two statistical moments. At
logarithmic scale a lognormal CCDF behaves as a logarithm of the complementary error
function with an argument (ln(x)− µ)/

√
2σ:

cIt is important to note that the variability in Figure 5.11 illustrates the computational procedure
with no relevance of data epistemic uncertainty unlike Figures 3.15 and 3.16 in Section 3.5.3. The curves
1-H(ωi, r0) are smoothed by considering the front as a smoothed Heaviside in the form of Gaussian CDF
with a standard deviation of 5 m.
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Figure 5.10: Estimation of P(rmax<1071 m): minimal and maximal values for 103 randomly
chosen subsets of N samples ofH. The error bound corresponds to the asymptotic standard
deviation computed as

√
P (1− P )/N . For 100 samples the probability is estimated to

0.8 with a standard deviation of 0.04.

f = ln(
1√
π

∫ +∞

− ln(x)−µ√
2σ

e−t
2

dt)

As it can be noticed the lognormal CCDF with the same mean and variance underes-
timates the probabilities higher than 0.5 and lower than 7 · 10−2. The main difference of
the estimated CCDF with respect to a lognormal CCDF is the change of slope occurring
for probabilities less than 9 · 10−2 (or for radius over 1090 m). A possible explanation of
this change is the physical phenomenon of faster advancement of the parts of the front
where the fingering has started due to permeability heterogeneity. Nevertheless, to prove
the physical origin of this observation it should be demonstrated that the low probability
estimates are based on sufficient sampling. Another reason could be the proximity of the
transition zone form 3D to 2D rotation invariant formulation which is situated at 1200 m
from the injection well. Therefore, further analysis is needed to confirm the origin of the
slope change in the empirically found CCDF.
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√
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√
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5.4 Permeability uncertainty: homogeneous versus het-

erogeneous variation

Often for parametric uncertainty propagation studies the input variables are considered
homogeneous for the sake of simplicity. In this section we study the influence of the
choice to represent the inputs as homogeneous or heterogeneous random quantities on the
resulting uncertainty of the variable of interest. With that end in view, the impacts of
the homogeneous variation and the spatial variation of permeability for the same input
probability density function are compared. In the second part an equivalent homogeneous
variation is inferred reproducing heterogeneous results.

First, let us discuss the relation of one of these media descriptions with respect to
potential available information. The question of how to represent the uncertainty of the
underground medium properties depends a lot on the quantity and scale of data available
for its description. What do we know about the permeability?

(a) We can have a set of local measurements (on the laboratory scale: maximal size of
samples being less than 1m) corresponding to the description of samples from a well.
We can acquire some statistics on this set of measurements. So we know a spatial
mean and standard deviation of laboratory scale permeabilities (for a given geological
formation).

(b) Or we can have a set of field-scale measurements for different fields [L.W.Gelhar 1992].
So for a given field we know one or luckily several values of the field-scale permeability
(or hydraulic conductivity or transmissivity). Such a test requires a lot of time and
its precision is probably lower than laboratory measurements.

For data of type ‘a’ we can construct a probabilistic model of the heterogeneous perme-
ability field. The key hypothesis to make in this case is that the number of samples taken
in different locations is sufficient to represent the marginal distribution. The variability of
the response should be interpreted as due to the unknown spatial repartition of the media
properties between the points of observation. To introduce the second level uncertainty
we should consider how far the experimental marginal distribution is from the real one.
But there is no data which could provide quantitative base for answering this question.
To summarize the advantages and disadvantages of introducing the uncertainty on the
underground medium properties in the form of random field constrained to data of type
‘a’ (local small-scale measurements in wells):
+ Possibility to introduce spatial variability.
+ Possibility to predict the large scale behavior of the system taking into account the
spatial variability.
− The marginal distribution is not fully known.
− The spatial correlations determine the response variability, but the correlation length
is poorly known as well; subjective choice of the correlation function.
− The global response variability can be under- or over-estimated because of the non-
consideration of the second level uncertainty (the error in the marginal distribution and
the correlation structure)
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For data of type ‘b’ the uncertainty arises from the imprecision of the test and its
quantitative interpretation model. To evaluate the impact of this uncertainty on the re-
sponse variability by attributing to the homogeneous permeability a probability density
function centered on the measured value and with standard deviation corresponding to
the measurement error.

Taking the mean value of the measurements of type ‘a’ and attributing it to the
whole domain would correspond to the procedure of ‘averaging’ (Wood, 2009). This value
is not equal to the equivalent permeability. The measurement of type ‘b’ gives directly
the equivalent permeability. What we could mean by ‘homogeneous case’ is that the
permeability has been homogenized or averaged up to macro scale of the problem. So we
are actually speaking about ‘equivalent’ or ‘apparent’ permeability.

A precaution should be taken when comparing the response variability resulting from
the two probabilistic studies described above as they account for different kinds of uncer-
tainty (unknown spatial repartition and imprecision in measurements).

5.4.1 Comparison of the results

The results obtained in Section 4.3 for homogeneously varying permeability and the re-
sults for the permeability spatial variability discussed in Section 5.3.2 are summarized
in Table 5.1. Analyzing these results we can notice a slight retention of the front in the
heterogeneous case: the mean spread is 50 m less than for homogeneous variation. The
standard deviation is reduced by more than 4 times in presence of heterogeneities. It
can be explained by the spatial averaging. Both studies give a possibility to evaluate the
quantiles and even their confidence intervals. The Chebyshev conservative bounds show
the intervals in which the quantiles would lie if no information on the character of the
input random variable were available. The estimate that we obtain are more precise. In
the homogeneous case the quantiles have higher values in accordance with higher mean
value and standard deviation. The standard error of the estimates is rather small for the
output mean values (less than 1%), for the output standard deviation the bounds are
larger (7% in homogeneous case and over 40% in heterogeneous case).

Comparing the results for pressure gives a similar perspective. We observe a significant
reduction of the variance when the uncertainty is represented through spatial variability.
The coefficient of variation changes by two orders: from 40% to only 0.4%. Such result
could be expected as a consequence of the definition of the output variable in the form
of a spatial average. The last two sections of the comparative table refer to the maximal
fluid overpressure on the top of the reservoir and in the entire reservoir during the whole
considered time period. The maximal overpressure on the top of the reservoir does not
seem to be influenced by local effects (the mean value in the homogeneous and hetero-
geneous cases coincide). The maximal overpressure in the entire reservoir corresponding
to the proximity of the injection zone is subjected to the local changes in pressure in the
heterogeneous case, which can be demonstrated by the reduction of the estimated mean
value from 7.2 to 6.8 MPa. The coefficient of variation for this variable of interest reduces
by two orders.
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Table 5.1: Comparison of the results for probabilistic studies on homogeneously and spa-
tially varying permeability (with a lognormal PDF µ=-30.05, σ=0.47))

Homogeneous case Heterogeneous field
Maximal
lateral
spread

Mean 1118 m ±11 dm 1058 m ±7 m
Std 113 m ±8 m 25 m ±11 me

Median 1097 m ±14 m 1059 m ±3

Quantiles 90% 1268 m ±19 m f 1096 m ±4 m
Quantiles 95% 1330 m ±24 m 1107 m ±5 m
Quantiles 99% 1470 m ±43 m 1127 m ±10 m

Chebyshev 90% 760-1475 m 979-1139 m
intervals 95% 613-1623 m 945-1173 m
Chebyshev 99% 0-2248 m 805-1313 m

Average
overpres-
sure (top)

Mean 8.4 · 105 Pa 11.4 · 105 Pa

CV 40% 0.4%
Maximal
overpres-
sure (top)

Mean 1.8 · 106 Pa 1.8 · 106 Pa

CV 36% 2.1%
Maximal
over-
pressure
(reservoir)

Mean 7.2 · 106 Pa 6.8 · 106 Pa

CV 40% 0.5%

The resulting CCDFs for the maximal lateral extent and the averaged overpressure on
the top of the reservoir are presented in Figures 5.13 and 5.14 respectively. These figures
illustrate the effect of reduced variance when the uncertainty is attributed to the spatial
variability compared to the case of homogeneous permeability.

dThe standard errors reported here are computed for 100 Monte Carlo samples before the treatment
by a metamodel, they correspond to the asymptotic standard deviation such as presented in Table 3.8.

eThe standard error for the standard deviation is estimated from the standard error of variance
through an equivalent χ2 estimator (details in Section 5.3.2).

fThe standard error of quantile estimations is computed as (Kendall and Stuart, 1977):
σ̂
√
P (1−P )√

NU(z(P ))
,

where σ̂ is the standard deviation estimate, P is the percentile of the quantile to estimate, N is the number
of samples, U(z(P )) is the standard normal density of Pth quantile of the standard normal distribution.
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Figure 5.13: Comparison of the empirical CCDFs of the maximal lateral extent of the
CO2 cloud for 2 cases: homogeneous and heterogeneous variation of permeability based
on the same PDF (lognormal µ=-30.05, σ=0.47).
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Figure 5.14: Comparison of the empirical CCDFs of the averaged fluid overpressure for 2
cases: homogeneous and heterogeneous variation of permeability based on the same PDF
(lognormal µ=-30.05, σ=0.47).
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5.4.2 Inference of the homogeneous equivalent permeability dis-
tribution

Now let us find what should be the variability in the homogeneous permeability so that
after its propagation through a homogeneous model we could obtain the same uncertainty
on the maximal lateral spread as in the heterogeneous case. In other words, the challenge
here will be to find an equivalent homogeneous permeability PDF whose propagation
through 2D rotation-invariant model would give the same CCDF as for the heterogeneous
permeability case (such as shown in Figure 5.11).

To do so, let us notice that the sampling of the meta-model (see Figure 4.7) repre-
sents a monotonically strictly increasing (and therefore invertible) function, mapping the
variable of interest to the permeability for a sufficiently large range of values. Therefore,
having a set of values of rmax we can compute the corresponding set of values of permeabil-
ity through interpolation between the points of the meta-model sampling (no matter the
probabilistic density). Hence, a probabilistic inversion of the CDF for the heterogeneous
case (that we would like to reproduce) would give a random set of maximal radius values
that can be converted into a random set of permeability values through the interpolated
meta-model (the reader is invited to refer to Appendix F for details). The obtained ran-
dom set of permeabilities would give an approximate characteristics of the permeability
variability to put into homogeneous uncertainty propagation.

To summarize, the main steps for the inference of the homogeneous equivalent perme-
ability distribution are:

� Determination of the CDF of the variable of interest for the heterogeneous case to
be reproduced (the empirical CDF or its fit/extrapolation by a known law - both
are considered here)

� The inverse transform sampling of the determined CDF. It gives a random set of the
maximal radius values which approximates the CDF in question (details in Appendix
F). This step is needed because the CDF is deduced through an estimator different
from a simple sampling, therefore no representative random set of maximal radius
values is available.

� The computation of the random set of permeabilities corresponding to the random
set of the maximal radius from the previous step. Each value of the maximal radius
is recalculated into a permeability value through a linear interpolation of the meta-
model (Appendix F).

� Finding characteristics of a lognormal distribution representing the mean value and
the variance of the random set of permeabilities.

The obtained equivalent homogeneous permeability PDF is compared to the initial
permeability PDF in Figure 5.15. In order to reproduce the heterogeneous permeability
results the log standard deviation should be divided by 3 (its value equals to 0.47 for the
initial PDF and 0.15 for the retrofitted distribution) and actual standard deviation should
be divided by 4.5 (the respective values are 5 · 10−14 m2 and 1.1 · 10−14 m2). The mean
value shifts slightly to the left from 10−13 m2 to 7.5 · 10−14 m2. The conspicuous fact is
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Figure 5.15: The permeability probability density functions: the initially considered PDF:
lognormal with µ=-30.05, σ=0.47 and inferred homogeneous equivalent permeability PDF:
lognormal with µ=-30.24, σ=0.15. The modes of both PDFs are equal to 7.2 · 10−14 m2

that the mode value remains invariable (the modes of both PDFs are equal to 7.2 · 10−14

m2).
After the propagation of the deduced equivalent homogeneous permeability distribu-

tion through PCE metamodel for 2D rotation-invariant numerical model (such as de-
scribed in section 4.3), we obtain a retrofitted CCDF curve for the maximal lateral extent
of the CO2 cloud.

Following the same procedure not for the empirical CCDF of the heterogeneous case
but for its lognormal fit reproducing the two central moments, we obtain the second
retrofitted CCDF (see Figure 5.16). Performing a two-sample Kolmogorov-Smirnov test
leads to a conclusion that both retrofitted curves follow the same distribution for a sig-
nificance level of 10−3, the maximal difference between the curves being 10−2. The test is
performed directly on the output 104 metamodel samples.
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Figure 5.16: Comparison of the empirical CCDFs of the maximal lateral extent of the
CO2 cloud. The estimated CCDF for heterogeneous case (the black line, permeability
follows a lognormal PDF with µ=-30.05, σ=0.47), its lognormal fit with the same mean
and variance (the blue line); and the inferred equivalent homogeneous case (the red line,
the characteristics of input lognormal PDF found by retrofitting are µ=-30.24, σ=0.152).
The initial homogeneous case CCDF is reminded in red dotted line.
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Table 5.2: Comparison of the results for probabilistic studies on heterogeneous perme-
ability (with a lognormal PDF µ=-30.05, σ=0.47, corresponding to the mean value and
standard deviation of 1 · 10−13 m2 and 5 · 10−14 m2) and homogeneous permeability (with
lognormal PDF µ=-30.24, σ=0.148 corresponding to the mean value and standard devi-
ation of 7.5 · 10−14 m2 and 1.1 · 10−14 m2)

Retrofitted Heterogeneous field
homogeneous case

Maximal lateral spread Mean 1056 m ±3 m 1059 m ±7 m
Std 26 m ±2 m 25 m ±11 m
Median 1056 m ±3 m 1059 m±3 m

Quantiles 90% 1090 m ±4 m 1096 m ±4 m
Quantiles 95% 1100 m ±5 m 1107 m ±5 m
Quantiles 99% 1119 m ±10 m 1127 m ±10 m

Chebyshev 90% 973-1138 m 979-1139 m
intervals 95% 940-1172 m 945-1173 m
Chebyshev 99% 796-1316 m 805-1313 m

5.5 Concluding remarks

The present study shows a tremendous variance reduction of both chosen variables of
interest when the input uncertainty in intrinsic permeability is attributed to the spatial
variability. Compared to an equivalent study where the same PDF is attributed to homo-
geneous permeability, the variance of the maximal lateral extent is reduced by factor more
than 20 and for the averaged fluid overpressure by 75. The mean value of the maximal
lateral extent of the CO2 in the heterogeneous case is smaller by 5.4% compared to the
homogeneous variation. So a slight retention of the front in presence of heterogeneities
is observed. It is inferred that in order to reproduce the heterogeneous permeability re-
sults in terms of the whole CCDF, the log standard deviation should be divided by 3
(its value equals to 0.47 for the initial PDF and 0.15 for the retrofitted distribution) and
actual standard deviation should be devised by 4.5. It is remarkable that the value of the
permeability mode does not change.



Conclusions and perspectives

The geological storage of CO2 in deep aquifers is a promising technology for reducing the
CO2 concentration in the air. Nevertheless, in most current projects even short term pre-
dictions of spatial distribution of CO2 during injection differ from the monitoring results.
It can be related to the lack of knowledge of the underground medium properties such
as heterogeneity characteristics. Therefore, risk analysis based on a proper uncertainty
treatment should be put in the first place in the decision making process concerning CO2

storage viability.
The results of risk analysis for CO2 storage in deep aquifers are site specific. The main

reasons are the particular for each site configuration of vulnerable elements, determining
the ‘Exposure’ component of risk, and breaches of integrity of the recovering geological
layers (conductive faults or wells), determining the leakage intensity. Therefore, no general
conclusion can be made on the feasibility or performance of the geological CO2 storage.

Nevertheless, for the non-altered evolution (with no external events or breaches of
caprock integrity) the intensity of the underground flows during and after the CO2 injec-
tion can be estimated by a predictive model adjustable for different particular sites, by
a proper choice of representative input parameter descriptions and geometry. For rapid
screening and ranking of scenarios a simplified analytical model such as proposed by
Nordbotten and Celia (2006) can be used. However, a numerical model is needed for more
detailed and precise flow estimation.

In the present work, the Dogger aquifer of the Paris sedimentary basin was chosen to
represent a potential CO2 storage site. The analytical model is out of validity limits for the
characteristics of the Dogger aquifer, as the gravity component is not negligible due to the
high aquifer thickness (120 m). Therefore, several numerical models predicting the flow of
the CO2 and the brine during and after the injection have been developed. The numerical
2D rotation-invariant model created at INERIS prior to this work has been reduced to
a closed system of differential equations and optimized to be included in probabilistic
studies. A model including a full 3D zone coupled with 2D rotation-invariant formulation
far from the well has been elaborated in order to study the effects of heterogeneities on
the flow.

The subject of the present work stands at the junction of such disciplines as the nu-
merical modeling of physical phenomena, the risk analysis and the uncertainty treatment
(including the spatial variability). The important part of the work consists in uniting these
branches in the context of CO2 storage. The risk analysis part is the most general term
including the others, that is why it is discussed first.

Most risk analysis techniques are adapted to binary events (of something happening or
not happening) more than processes. The use of events is quite convenient for distinction
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of possible scenarios and their visualization in the form of Event trees or Fault trees.
When it comes to quantification of slow underground processes, an event actually can
be represented as a condition on the state of the system. The intensity and probability
of each event is related to the intensities and probabilities of other events in the global
context of system evolution. Therefore, the classical Bayesian approach of computing
the probabilities through an Event or Fault tree becomes impossible due to unknown
conditional probabilities. Furthermore, a new possibility arises to express the probability
of events through the probability of corresponding substates of the system given the input
uncertainty.

Pursuing the goal of finding the most adapted CO2 storage risk assessment methodol-
ogy, which includes and is based on uncertainty propagation through predictive models,
we suggest that it should be oriented on processes and system states rather than events
because of the particularities of CO2 storage highlighted in Chapter 3. In this sense, the
expertise in the domain of chronic risk predictions (such as water or soil contamination)
can provide useful tools and ideas. First, the uncertainty sources should be thoroughly
quantified as this step would correspond to the cause identification and description. Then,
the most complete predictive model should be used to propagate the input uncertainty.
Beforehand, the criteria of undesirable system states should be defined. Among these cri-
teria, the acceptable ones would represent conditions or filters on the predictive model
intermediate outputs, the non-acceptable ones would stop the simulation registering the
input parameters and encountered conditions which lead to such system state. In both
cases the quantitative estimates of the intensity and the probability of each dangerous
phenomenon would be accessible without neglecting their relation with the intensity and
the probability of other phenomena. The probable inconvenience of such an approach is
that it would be less obvious to couple its results with other more technical (accidental
type) risks for the steps of capturing, transport and injection.

The literature review of risk assessment methodologies applied so far to the CO2

storage (the reader can refer to Appendix A for concise descriptions) shows that certain
tools such as CO2PENS or ESL allow evaluating parts of a Risk model using the approach
based on system modeling and uncertainty propagation described above. The present work
makes the link between risk quantification though uncertainty propagation for a system
model and risk analysis (in the form of events regrouped in scenarios) by formulating the
quantities of interest in the form of probabilities of threshold exceedence. Three levels of
uncertainty treatment are described with corresponding quantities of interest and critical
thresholds: deterministic, probabilistic and double probabilistic. The key notions, one-
input example and literature references were given for critical thresholds computation
corresponding to each level.

The scenario of the lateral leakage out of the storage complex was quantified through
the system modeling approach and the CCDF of the maximal lateral spread of a CO2 cloud
after ten years of injection was obtained. An intermediate step for the quantification of the
scenario of caprock fracturing provided probability of exceeding a critical fluid overpressure
on the top of the aquifer.

The system modeling approach opens the door to the application of different techniques
of parameter uncertainty propagation within risk assessment procedure. In order to ex-
plore the particularities of most commonly used techniques of uncertainty propagation and
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sensitivity analysis, a simplified physical model with an analytical solution (Nordbotten
and Celia, 2006) has been used. The comparison of the results shows that the first order
Taylor approximation gives the fastest and quite precise appreciation of central moments
of the variable of interest as well as the importance indexes for each input variable. When
estimating variance and exceedence probability, a stochastic metamodel gave better esti-
mates than the classical Monte Carlo simulation, demanding 1000 times less model runs.
With the number of model runs required for converged estimates through the standard
Monte Carlo simulation, a stochastic metamodel coupled with Taylor approximation for
the epistemic uncertainty can give access to the second level probabilistic risk measures.
It highlights the utility of using stochastic metamodels for slow flow problems.

Given the results of the preliminary comparison of uncertainty propagation techniques
on the simplified physical model, a stochastic metamodel obtained by means of polynomial
chaos expansion (PCE) was applied to the 2D rotation-invariant numerical model. Based
on numerical experiments, subject to the limitations implied by the assumptions that were
made, the following conclusions were inferred: the mean lateral spread of the CO2 cloud
after 10 years of injection is 1.1 km (bilateral 95% confidence interval: 0.9-1.5 km).The
probability that the CO2 cloud exceeds 1.5 km after 10 years of injection is of order of
10−2, the probability of exceeding 2 km is of order of 10−4.

Among the input variables, the influence on the maximal lateral spread is principally
distributed among five input variables starting from the intrinsic permeability, maximal
gas saturation and thickness of the reservoir and finishing by the gas relative permeability
endpoint and injection rate. The surprising result is the irrelevance of the total porosity
and the thickness of the damaged zone compared to other inputs.

In terms of the average fluid overpressure on the top of the reservoir, the mean value
is estimated to 0.6 MPa (bilateral 95% confidence interval: 0.3-1.2 MPa). The sensitivity
analysis for the average overpressure on the top of the reservoir suggests that the 94% of
influence is controlled by the intrinsic permeability and the remaining 6% can be attributed
to the injection rate.

The maximal fluid overpressure on the top of the reservoir is observed straight above
the injection zone. The obtained mean overpressure above the injection zone is 1.6 MPa,
which is higher than the supposed critical mechanical resistance of the caprock. The cor-
responding bilateral 95% confidence interval is 0.7-3.4 MPa. The mean overpressure in the
middle of the injection zone (which corresponds to the zone of maximal fluid overpressure
inside the reservoir) is estimated to 4.9 MPa (bilateral 95% confidence interval: 1.8-9.6
MPa). These results indicate that the injection rate of 1 Mt/year is too high for the chosen
characteristics of the aquifer and fracturing of the matrix can become a potential problem
decreasing the containment capacity of the complex and favoring the induced seismicity.
Therefore, for similar aquifers it could be preferable to reduce the injection debit and to
control the injection well by pressure instead of the injection rate. A typical power plant
produces 10 Mt of CO2 per year.

An important part of this work was devoted to the question of spatial variability as
a source of uncertainty. The results reported above were obtained for the homogeneous
case, that is to say all the input uncertain variables including the properties of the un-
derground medium were assumed to be spatially homogeneous. Neglecting the presence
of heterogeneities is quite common in practical risk evaluation studies (particularly for
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rapid screening and ranking). However, the probability to encounter a natural geological
medium with homogeneous properties at a given scale is almost zero. Nonetheless, a para-
metric uncertainty propagation study with homogeneous variables has a meaning when
interpreted as the representation of the lack of knowledge on the equivalent properties of
the medium.

In this context, we tried to compare with the help of numerical simulations two prob-
abilistic uncertainty propagation studies. In the first, the fixed PDF was sampled at-
tributing each value to a homogeneous equivalent property. In the second, the same fixed
PDF was reproduced at each sample of a random field. It was found that the intrin-
sic permeability is the most influential factor for both maximal lateral extent and the
fluid average overpressure according to the performed numerical simulations. Therefore,
it was chosen to conduct the comparison of probabilistic studies where the same PDF was
attributed to homogeneous and heterogeneous intrinsic permeability. For the heteroge-
neous representation, a numerical code was written for generating samples of anisotropic
tensor-valued random fields. The uncertainty propagation for the homogeneous case is
performed through a metamodel (by polynomial chaos expansion). For the heterogeneous
case each sample of the permeability random field serves as input to the coupled 3D/2D
rotation-invariant model. For both cases one hundred dynamic flow simulations is run
serving in the homogeneous case as support for the construction of the metamodel and in
the heterogeneous case providing rich information owing to the spatial repartition. The
conclusion of the comparative study is the following: for chosen variables of interest the
uncertainty propagation in homogeneous case gives a significantly larger variability than
the heterogeneous case (by factor more than 20 for the variance of the maximal lateral
spread and 75 for the averaged fluid overpressure). The satisfactory result is that consider-
ing the uncertainty on the equivalent properties (homogeneous case) shifts the estimation
in the direction of higher security: larger predicted output variance and higher exceedence
probabilities (although it could be inverse for some other variable of interest). Nonethe-
less, such overestimation can be inconvenient for decision making, when a more precise
estimation is needed.

Following this analysis, the next arising question is how much we should reduce the
input homogeneous variability to reproduce the results of a study with heterogeneous
variation. An approximate answer to this question is found owing to the inverse transform
sampling. Reproducing the CCDF of the maximal lateral spread has given a factor twenty
one for the variance of the intrinsic permeability, which means that in this particular study
the output variance is proportional to the input variance.

Whence it follows that the subjective decision to represent the input uncertainty with
or without spatial variability changes significantly the results.

In the light of the obtained results the following further works and improvements are
suggested:

The numerical model can be further enhanced by including the mechanical effect
on the matrix and chemical reactions, which would allow to consider the entire system evo-
lution till more advanced time steps (thousands of years, when dissolution and chemical
reactions become dominating). The injection controlled by pressure needs to be numeri-
cally evaluated.
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Further quantification of the chosen scenarios. The results presented in Chapter
4 contribute to the evaluation of the scenarios of leakage by lateral migration and leakage
through the caprock. In order to estimate the probability of leakage by lateral migration,
the results for the maximal lateral spread of the CO2 cloud should be coupled with the
probability of reaching a fault at a given distance. Discrete faults of fixed or random
dimensions could be generated through Poisson process of given density. If the leakage
event is defined as

Eleakage = {rmax(T ) ≥ rf},

then the probability of leakage is:

P (Eleakage) =

∫ +∞

r=0

P (∃ a fault with rf ≤ r) · p(rmax(T ))dr.

For little values of radius, the study could be completed with 3D computations.
For the second scenario of leakage through the caprock, the results of fluid overpressure

on the top of the reservoir could be coupled with a 1D vertical solution in order to estimate
the leakage intensity. To compute the equivalent vertical permeability of the caprock, it
is proposed either to perform a numerical integration of 1/K of a heterogeneous block,
or to perform a 3D simulation with heterogeneous caprock permeability and numerically
find an equivalent value.

To fulfill the risk quantification in the framework of CCS risk assessment elaborated at
INERIS (to which the present work contributes), all the identified central events should
be considered.

Regarding the metamodel quality optimal basis functions can be found depending
on the input PDF type. In the present application Hermite polynomials provide a sufficient
precision. If the statistical characteristics of input variables are constrained to data (e.g.
the input PDFs have a kernel representation), arbitrary PCE can be applied such as
proposed by Ashraf et al. (2013). Furthermore, it is straightforward to evaluate time-
dependent risk measures as well as time-dependent sensitivity indexes when using PCE
decomposition. To do so, a meta-model at each time step should be built (the computation
resources needed for this procedure are quite modest, insignificant compared to the flow
simulation itself).

Concerning the two-level setting study (Sections 3.5.2 and 4.2), it would be inter-
esting to compute the contribution of level-2 variability to the output variance such as
proposed by Sankararaman and Mahadevan (2013).

Concerning the spatial variability analysis different correlation functions (such
as exponential) and higher fluctuation levels could be considered for the random tensor-
valued permeability field, as it can have a significant impact on the flow. It is also impor-
tant to perform a sensitivity analysis with respect to the anisotropy factor and correlation
lengths to determine their influence on the flow characteristics.

In a more general sense, it seems that the question of uncertainty quantification related
to field identification has not yet been studied enough. In the light of the conclusions of
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the present work, which emphasize the importance of taking into account the spatial
variability, it would be necessary to quantify the impact of the second level uncertainty
related to the imprecision of field identification given a limited quantity of indirect and
imprecise data.

It is presumed that two-level uncertainty studies for homogeneous and heterogeneous
cases would give closer results than the one level studies reported in the present work.



Appendices





Appendix A

Review of risk assessment
methodologies and tools applied to
CCS

FEP An approach of risk assessment with the use of catalogs of Features of the geo-
logic system which impacts the behavior of the storage, discrete Events and continuous
Processes which can influence the storage behavior as well. TNO (Netherlands Organi-
zation for Applied Scientific Research) has worked on a FEP database specific to CO2

storage and this work lead to the creation of a new framework for faster and more coher-
ent analysis: Carbon Storage Scenario Identification Framework (CASSIF) (Yavuz et al.,
2009) To the knowledge of the author, there exist two generic FEP databases for geologic
storage of CO2. One was created by TNO and the other by Quintessa (Savage et al.,
2004). This quite exhaustive list serves to derive site-specific lists of FEPs allowing fur-
ther comprehensive evaluations of each site’s particularities. This method can be used as
a preliminary study complemented afterwards by figuring out the relations between FEPs
and by quantifying possible scenarios.

Scenario approach based on FEP This approach consists in regrouping the FEPs to
form long-term evolution scenarios and quantifying them with the help of conceptual mod-
els, running deterministic or probabilistic simulations. This approach was recommended
by (Wildenborg et al., 2004, 2005). An application for In Salah site is described by (Paul-
ley et al., 2011). The same path is followed in the ICARAS framework (Wollenweber et al.,
2013): scenarios defined with the help of FEPs are investigated in a quantitative way, by
fast mathematical models or by numerical codes. The tools give access to probabilistic
sensitivity analysis.

FEP + discrete time Markov chains The paradigm of Markov chains allow to
overcome the limitation of dividing all the possible states of the system into a set of
scenarios. Instead, the states of the system become the main actors. Any combination
of Events and Processes is a possible state. Of course the states for a description of the
subsurface system should be simplified as well. In order to limit the number of states
only principal events and processes are chosen. The system can switch from one state
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to another. The probabilistic evolution of the system can be followed in terms of visit
times of each state. Therefore, the advantage of such an approach is that it allows to
compute relevant evolutionary timescales of the system. A demonstrative application to
CO2 storage was performed by (Nepveu et al., 2009). The main difficulty of the method is
that it needs the transition probabilities from one state to another which would be left to
the experts estimation. Further theoretical information on absorbing Markov chains can
be found in (Grinstead and Snell, 1997).

The state space becomes too large for calculation with Markov models when the num-
ber of nodes in a fault tree increases. (Durga Rao, 2009) proposed a dynamic fault tree
analysis using Monte Carlo simulation, which could become interesting for implementation
for CO2 storage with the development of computational resources.

VEF : The vulnerability evaluation framework is designed as a conceptual framework to
the service of regulators and technical experts for identifying areas that could require spe-
cific risk assessment, monitoring, and management. It is a qualitative systematic method
which identifies conditions which could influence the susceptibility to consequence. VEF
has some similarities to the Certification Framework Approach (CFA).

Delphi Delphi is a classical team-oriented method of risk analysis for hazard identifica-
tion by means of brain-storming.

SWIFT : The Structured What-If Technique (SWIFT) considers deviations from nor-
mal evolution identified by brainstorming , with questions beginning ’What if...?’ and
’How could...?’. It is a form of Delphi risk analysis for systematic qualitative hazard iden-
tification. This method was developed as an alternative to the Hazard and Operability
(HAZOP) technique and to the Failure Modes and Effects Analysis (FMEA). SWIFT is
flexible and can be modified to suit each individual application. SWIFT review of CO2

sequestration in geological structures was performed by (DNV, 2010). As FEP, it can be
followed by a more detailed stage of analysis and quantification: (Vendrig et al., 2003)
tried to develop a generic quantitative risk assessment for CCS on the basis of SWIFT.
The authors came to a very important conclusion that due to the presence of different
types of uncertainties, the risk levels can only be site-specific.

SRF Screening and ranking framework is implemented as a spreadsheet where user
enters the scores representing expert opinions and information available on the site as
well as uncertainty estimations in order to evaluate three basic characteristics of a site:
potential for primary containment, potential for secondary containment if the primary
leaks, potential of attenuation if both containments fail. SRF is quite similar to CFA but
it is based on the assumptions about the three basic characteristics of a site cited above.

RISQUE The Risk Identification and Strategy using Quantitative Evaluation (RISQUE)
is a systematic approach which uses expert panel judgments to identify risk events and
evaluate them in terms of likelihood, consequences and time scale of occurrence. RISQUE
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uses the acceptability criteria based on six performance indicators: containment, effective-
ness, self-funding potential, wider community benefits, community safety, and community
amenity. The methodology has been applied to several CO2 storage sites in Australia
(Bowden and Rigg, 2004)

CO2PENS This tool uses system-modeling approach and aims at integrating in a
system-level model a number of process-level models such as the behavior of the injected
fluid in the reservoir and caprock, potential release mechanisms, transport of CO2 from the
reservoir, release on surface (Stauffer et al., 2009; Viswanathan et al., 2008). A system-
level model englobes the entire system from the moment of capture of CO2, through
transportation by pipeline, to injection and storage. The economic aspects can also be
considered. The advantage of this tool is that it allows to choose the processes the user
wants to include in a study and choose any kind of description for chosen processes (sim-
plified analytical calculation or a variety of numerical simulators). The tool was originally
designed to perform probabilistic simulations for the whole CCS chain, therefore it favors
the use of probabilistic methods for uncertainty propagation.

CFA The certification framework approach also decomposes the system into process-
level models. For quantification of risk, the system is divided into compartments. Conduits
for leakage from source to compartments or from one compartment to another may be
wells or faults. The likelihood of leakage is evaluated by estimating the probability that
a conduit for leakage encounters the CO2 plume and a target at the same time. The CO2

flux across the pathway is simulated through deterministic simplified models, and the
impacts of the release compared to acceptable thresholds. A level of risk is obtained by
the product of the values of the probability and the consequences. CFA is similar to the
VEF with the difference that it adds values for the leakage probability.

MCA is a tool at the service of social consideration. It delivers a rich profile of the views
and preferences of participants (stakeholders) and enables to overview key issues that
affect the prospects for further development of a project. It covers a variety of evaluation
techniques sharing a basic framework under which the alternatives can be scored against a
set of defined criteria. This list of criteria is proposed according to the fundamental goals
of the geological carbon storage (Gough and Shackley, 2006; Jakobsen et al., 2013). A
similar method is the Multi-Attribute Utility Theory (MAUT) which furthermore assumes
a dependency of preferences of criteria.

ESL The evidence support logic is designed to identify the amount of uncertainty in-
volved in sub-decisions. It addresses uncertainty that arises from lack of knowledge or
scarcity of data.

MOSAR Organized and Systemic Method of Risk Analysis (MOSAR) is designed for
analyzing the technical risks of a human plant and for identifying prevention means to
neutralize them. The MOSAR method relies on a step by step method. It was applied to
CO2 storage in a generic approach.
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P&R The Performance and Risk assessment for well integrity is based on the classical
definition of risk (likelihood versus severity). The notion of likelihood (probability) is
associated with system uncertainties and the notion of severity is associated with the
mass of leaked CO2. The method includes the definition of a Risk Acceptance Limit
(RAL), which gives the operators a support for demonstrating safety to regulators. This
methodology focuses on the risks of contamination of subsurface formations and hazardous
releases on surface.

PRA The PRA approach (Rish, 2005) was developed for UIC Class I hazardous waste
injection wells (who tells that CO2 is a class I hazardous waste?). In this method proba-
bilities of events and distributions of porous media and well properties are used as input
for probabilistic calculations of the likelihood of events. In the next phase of the assess-
ment, the consequences of a scenario or of an event are expressed in terms of impact of
long-term high concentrations of CO2 on key receptors. The consequences are evaluated
through simulation.

MANAUS The MANAUS method is a full workflow that covers all steps of the risk
assessment from the initial feedback analysis to the final evaluation of the safety barriers.
The core of the method is the risk analysis, that includes 3 major steps: 1) definition of
scenarios with a systematic analysis (similar to ”What-if”) and with the help of keywords
that are derived from the FMEA method (in the specific underground context), 2) event
tree representation with the OSQAR software tool, 3) quantification of scenarios with
numerical modelling tools (including Monte Carlo simulations to estimate uncertainty).

CQUESTRA A risk and performance assessment code for geological sequestration of
carbon dioxide is a computationally efficient semi-analytical code which is used for the
probabilistic risk assessment and rapid screening of potential sites for geological seques-
tration of carbon dioxide. The model takes into account advection, dispersion, diffusion,
buoyancy, aquifer flow rates and local formation fluid pressure.

Logic tree Gerstenberger et al. proposes a risk assessment methodology that relies tech-
nical, social, policy, safety and economic risk factors for each of the four main components
of the CCS process (i.e., capture, transport, injection and storage). The methodology uses
a logic tree approach coupled with the cost of avoided CO2 and the HSE costs. Each of
the four parts of the tree (corresponding to the four main components of the CCS pro-
cess) rely five sub-parts (corresponding to the nature of a risk factor). A probability is
assigned to each branch (YES/NO choice in each of five sub-parts) of the logic tree. The
methodology highlights risk factors that may hamper a successful sequestration (it may
be a sequence of risk factors of different nature). The methodology also helps to identify
risk factors that may have unacceptably high uncertainties.

A systemic risk management approach for the hole chain of CO2 Capture-Transport-
Storage projects has been recently studied by (Samadi, 2012). The proposed approach
integrates the legal and financial risks.



Appendix B

Deterministic and local probabilistic
results for the simplified physical
model

B.1 Deterministic response surface

The construction of a deterministic response surface consists in mapping the variable
of interest at a certain number of points in the space of input parameters and then
interpolating between the points to obtain the values over the entire domain. It can also be
seen as a probabilistic response surface with uniformly distributed input variables, but few
natural parameters have a uniform distribution, furthermore, the goal of a deterministic
response surface is to quantify the response itself independently from the probability
density. An example of response surfaces (plotted for two varying parameters at a time) is
given on Figure B.1. The interpolation can be performed through polynomial regression
(Box and Draper, 1986), kriging, heuristic laws, artificial neural networks, etc (Kleijnen
and Sargent, 2000).

The interest of such an analysis is that it captures the global trends of the function
over the domain of the input variables. Of course, the quality of the approximation of the
actual function by a response surface depends on its regularity and the size of the chosen
support (characteristic distance between 2 points at which the function is evaluated).
If the support is small enough with respect to the non-linearities of the function, the
constructed response surface can be used as a computationally lighter version of the true
function (it is also called a surrogate model or a meta-model). This type of analysis gives
access to local sensitivity indexes in each point. They are computed by finite differences
for the neighboring points.

Difficulties arise when a growing number of input variables are at stake and when
the number of combinations for multiple variables becomes computationally expensive to
evaluate.
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Figure B.1: Deterministic response surface of the furthest spread of CO2 cloud for two
parameters: gas viscosity and relative permeability endpoint (left) and reservoir thickness
and relative permeability endpoint (right)

B.2 Local probabilistic sensitivity analysis

Local analysis consists in perturbing the vector of input parameters in order to capture
the behavior of the variable of interest around a given point (called nominal hereafter). In
this case, the uncertainty of the output can be estimated through the partial derivatives of
the function relying the input parameters and the output. According to (Joint Committee
for Guides in Metrology, 2008) the variance can be decomposed in the following way:

Var(z) =
N∑
i=1

N∑
j=1

∂f

∂xi

∂f

∂xj
Cov(xi, xj) =

N∑
i=1

(
∂f

∂xi

)2

Var(xi)+2
N−1∑
i=1

N∑
j=i+1

∂f

∂xi

∂f

∂xj
Cov(xi, xj)

(B.1)
where Cov(xi, xj) = Cov(xj, xi) is the covariance associated with the two input variables
xi and xj. This approximation can be used in cases where the uncertainties are small with
respect to non-linearities of the function f .

The general remarks concerning the local approach can be made:

� Local sensitivity analysis allow to rank the input parameters by sensitivity or im-
portance around a point.

� Sensitivity depends on the chosen physical units. Therefore to avoid this dependency
the parameters should be normalized by their initial values.

� The importance of a parameter is more significant than the sensitivity of the function
with respect to this parameter

The expressions of sensitivities for the maximal spread of the CO2 cloud are presented
in Table B.1.

For the Nordbotten model all the parameters contribute to rmax with the same
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Table B.1: Analytical computation of local response sensitivity with respect to each input
parameter around the nominal point. Computation of the importance of each parameter.
The final first order Taylor approximation for rmax variance is 4.9·104 m2, corresponding
to a standard deviation of 221 m.

Parameter Nominal Partial Sensitivity Variance Importance Normalized
point derivative (S) (I) importance

xi xi0
∂f
∂xi

(
∂f
∂xi

(xi0)
)2

V ar(xi) S · V ar(xi) I
V ar(z)

krnw 0.20 rmax
2krnw

8.5 · 106 2.5 · 10−3 21329 0.44

H 50 − rmax
2H

1.37 · 102 2.5 · 101 3413 0.07
φ 0.15 − rmax

2φ
1.5 · 107 2 · 10−4 3413 0.07

1− srnw 0.33 − rmax
2(1−srnw)

7.8 · 105 4.4 · 10−3 3413 0.07

µw 0.35 rmax
2µw

2.7 · 1012 1.2 · 10−9 3413 0.07

µnw 0.05 − rmax
2µnw

1.4 · 1014 10−10 13651 0.28

V ar(z) = 4.9 · 104
∑

= 1

power (+0.5 or −0.5). Consequently:

� rmax has the same sensitivity for all normalized input parameters

� The importance of any parameter depends only on the coefficient of variation
and the nominal output value. It is invariant to the input parameters normal-
ization, but changes when the output is normalized.

� The normalized importance depends only on the coefficient of variation. It is in-
variant with respect to both the input parameters and the output normalization.

Normalized importance is equal to CV (xi)
2/

N∑
i=1

CV (xi)
2

For the Nordbotten’s model and the coefficients of variation chosen in this study
the input parameter which contributes the most to the variance of the output is the
gas relative permeability endpoint (44%) followed by the gas viscosity (28%). For
further comparison with other methods: nominal output value is 1168 m, standard
deviation estimated by a second order Taylor expansion (obtained through equation
B.1) is 221 m.

B.3 Analytical computation of the response PDF char-

acteristics.

The algebraic operations included in the analytical formula of the response computation
2.48 are the square root, multiplication and division of the input parameters. Therefore,
the properties of a lognormal distribution listed hereafter
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Properties of lognormally distributed random variables:

� Product of two lognormally distributed variables x1 ∼ LogN(µ1, σ1) and x2 ∼
LogN(µ2, σ2) is a lognormally distributed variable z = x1x2 ∼ LogN(µ, σ) with
µ = µ1 + µ2, σ =

√
σ2

1 + σ2
2.

� Product of a lognormally distributed variable x1 ∼ LogN(µ1, σ1) and a constant
’a’ is a lognormally distributed variable z = ax1 ∼ LogN(µ, σ) with µ = µ1 +
ln(a), σ = σ1.

� Ratio of two lognormally distributed variables x1 ∼ LogN(µ1, σ1) and x2 ∼
LogN(µ2, σ2) is a lognormally distributed variable z = x1/x2 ∼ LogN(µ, σ)
with µ = µ1 - µ2, σ =

√
σ2

1 + σ2
2.

� Square root of a lognormally distributed variable x1 ∼ LogN(µ1, σ1) is a lognor-
mally distributed variable z =

√
x1 ∼ LogN(µ, σ) with µ = 0.5µ1, σ2 = 0.5σ2

1

allow of an analytical computation of the probability density function for the maximum
extent of CO2 cloud.

The resulting PDF of rmax is lognormal with µ and σ that can be computed from
the parameters of input lognormal PDFs. For the values of probabilistic characteristics of
the input variables chosen for this study (see Table 3.7) the final PDF of the variable of
interest at stake is:

rmax ∼ LogN (7.063, 0.187) , (B.2)

which corresponds to the characteristics reported in Table B.2 and illustrated in Figure
B.2.

Table B.2: Analytically calculated quantities of interest

Quantity of interest Expression Value

Mode(rmax) e(µ(rmax)−σ2(rmax)) 1128 m
Median(rmax) eµ(rmax) 1168 m

Mean(rmax) e(µ(rmax)+ 1
2
σ2(rmax)) 1188 m

Var(rmax) e(σ2(rmax)−1) · e(2µ(rmax)+σ2(rmax)) 5.0·104 m2

Std(rmax)
√

Var(rmax) 224 m

P(rmax > r0) 1
2
− 1

2
erf
(
ln(r0)−µ
σ
√

2

)
a 9.02·10−2 for r0 = 1500 m

0.20·10−2 for r0 = 2000 m
Quantile

r0: P (rmax < r0) = P 0 e
√

2σ erf−1(2P 0−1)+µ 1484 m for P 0 = 90%
1588 m for P 0 = 95%
1804 m for P 0 = 99%

aerf stands for the error function: erf(x) = 2√
π

∫ x
0
e−t

2

dt.
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Figure B.2: Analytically calculated probability density function of the variable of interest
rmax (maximal horizontal spread of the injected CO2)

The characteristics of the rmax PDF are used as reference for the numerical uncertainty
propagation by Monte Carlo method. The analytical PDF allows the quantification of the
convergence of the numerical estimation.
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Appendix C

Polynomial Chaos Expansion theory

Let z be the scalar output of a model that depends on the n-dimensional random vector
x = (x1, ..., xn) collecting n random parameters xi, valued in Ωi ⊆ R, i = 1, ..., n:

z = f(x), x ∈ Ω ⊆ Rn, (C.1)

where Ω denotes the Cartesian product Ω1 × · · · × Ωn.

Suppose x1, ..., xn to be statistically independent and the response z to be a second-
order integrable variable: the PCE of z (Le Mâıtre and Knio, 2010; Ghanem and Spanos,
1991; Xiu and Karniadakis, 2002) is the spectral decomposition of f over a set of polyno-
mials Ψi(x), which are orthogonal with respect to the probability measure on Γ (i.e. the
law of x), namely (Sudret, 2008b):

z =
∞∑
k=0

βkΨk(x). (C.2)

The PCE was first introduced for Gaussian input parameters involving Hermite polyno-
mials (e.g., (Wiener, 1938)). In the presence of non-Gaussian distributed variables, two
strategies can be adopted in order to preserve the optimal exponential convergence rate:
i) transform the input parameters to obtain Gaussian random entries ii) consider other
families of polynomials (Xiu and Karniadakis, 2002; Soize and Ghanem, 2005).

In this work, for every input parameter xi, i = 1, ..., n, a log-normal distribution ρΓi(xi)
is considered. In this case, the simplest way to reach the exponential rate of convergence is
to use the Hermite basis, by transforming each input parameter xi into a standard normal
random variable ξi:

ξi = Φ−1(Fxi(xi)), (C.3)

where Φ and F denotes the CDF of a standard Gaussian variable and of the variable
xi respectively. Given the vector of transformed (independent) input parameters ξ =
(ξ1, ..., ξn), the PCE can be computed as:

z = f̃(ξ) =
∞∑
k=0

βkΨk(ξ). (C.4)
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For computation, expansion (C.4) needs to be truncated, obtaining finally an approxima-
tion of the response as:

z ≈
P−1∑
k=0

βkΨk(ξ), (C.5)

where P =

(
n+ p
p

)
, if (C.5) is the truncated expansion on a basis of n-dimensional

Hermite polynomials of degree not exceeding p.

The P coefficients βk, k = 0, ..., P − 1 appearing in C.5 are assumed deterministic and
fully characterize the randomness of the response z. In applications, these coefficients are
unknown and thus need to be properly estimated. A number of methods are presented
in the literature (Sudret, 2008b; Crestaux et al., 2009); among them, in this work, the
regression method is used. It consists in estimating βk by least-squares on the basis of
an experimental design {zj, j = 1, ..., N}. The experimental design is built by collecting
N exact solutions zj, j = 1, ..., N , which are derived solving the complete mathematical
model for N realizations xj, j = 1, ..., N , of the random input x. The least-squares
estimate of β = (βk) ∈ RP is found by solving the minimization problem:

β = argmin
β0,...,βP−1∈R

1

N

N∑
j=1

{
zj −

P−1∑
k=0

βkΨk(ξ
j)

}2

, (C.6)

being ξj = (Φ−1(Fxi(xi))). If the design matrix Ψ = (Ψj(ξ
i)) ∈ RN,P is of full rank,

problem (C.6) admits the unique solution β̂:

β̂ = (ΨTΨ)−1ΨTz, (C.7)

where z = (z1, ..., zN). Techniques for an efficient computation of coefficients estimates
(C.7) has been presented in the literature (e.g., (Sudret, 2008b)) and are exploited in the
simulations here presented.

The utility of PCE for the uncertainty analysis of the response is two-fold:

� Response mean and variance can be directly obtained from C.5 as:

µ(z) = β0; Var(z) ≈
P−1∑
k=0

β2
k‖ψk‖2.

Analogously, the sensitivity Sobol’ indices can be computed directly from coefficients
βk, k = 0, ..., P − 1 (see hereafter)

� The approximation C.5 can be used as meta-model for Monte-Carlo simulations
(i.e., the response is simulated through the approximate model instead of solving
the PDE system). This allows to perform a much more efficient assessment of the
CDF as the approximated model is easier to simulate compared to the full model
C.1.
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Computation of Sobol’ sensitivity indices from PCE meta-model In this section
the definition of Sobol’ indices (Sobol, 1993) is recalled and the way their computing from
a PCE meta-model is shown.

The total variance of the variable of interest can be decomposed into the effect of
each random parameters xj and the joint effects of all the subsets xi1 , ..., xis of the input
parameters x1, ..., xn. As stated in (Sobol, 1993; Sudret, 2008b; Formaggia et al., 2012),

this variance decomposition follows from the Sobol’ decomposition of the function f̃(ξ)
which appears in (C.4):

f̃(ξ) = f̃0 +
N∑
i=1

f̃i(ξi) +
N∑

i,j=1

f̃i,j(ξi, ξj)+ (C.8)

+ · · ·+ f̃1,2,...,n(ξ1, ξ2, . . . , ξn),

where

f̃0 =

∫
Γ

f̃(ξ)ρΓ(ξ)dξ,

f̃i(s)(ξi(s)) =

∫
Γ−i(s)

f̃(ξ)ρΓ−i(s)
(ξ−i(s))dξ−i(s) −

∑
I⊆i(s)

f̃I

denoting with i(s) the multi-index {i1, . . . , is}, with ξi(s) the collection {ξi1 , ..., ξis}, with
ρΓ =

∏n
i=1 ρΓi the multivariate gaussian density of ξ, Γ−I = ×i∈{1,...,N}\IΓi and ρΓ−I =∏

i∈{1,...,N}\I ρΓi .
Notice that in the considered case Γi = R, i = 1, . . . , n, but what follows remains valid

for any measurable Γi ⊆ R. In particular, decomposition (C.8) is unique whenever f̃ is

integrable over Γ and each term f̃i(s) in (C.8) is orthogonal with respect to the others.

To define the Sobol’ indices, call Vf , Vf̃ the variance of f , f̃ respectively. The Sobol’
index relative to the mixed effect ξi(s) (or to xi(s)) is defined as:

Si(s) =
1

Vf̃

∫
Γ
i(s)

f̃ 2
i(s)

(ξi(s))ρΓ
i(s)
dξi(s) , (C.9)

where Γi(s) = Γi1 × · · · × Γis . Hence, Si(s) represents the proportion of the total variance
explained by ξi(s) (or xi(s)) and thus the Sobol’ indices sum to 1.

Concerning the total effect of a parameter ξi(xi) (or of xi) on the total variability, it
can be computed directly from Sobol’ indices as:

STi =
∑

i(s):i∈i(s)
Si(s) . (C.10)

The computational effort needed to compute the sensitivity indices (C.9) and (C.10)
consists mainly in the cost of calculating (numerically) 2n − 1 integrals. To this end,
Monte-Carlo quadrature schemes can be used but, due to its low rate of convergence,
the computational cost might become unaffordable. However, this problem can be faced
and solved by introducing the PCE of the response z, since Sobol’ indices can be directly
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computed from coefficients βk, k = 0, ..., P − 1. Indeed, expansion (C.5) can be reordered
so that it is equivalent to (C.8):

f̃(ξ) =
∑

i(s)⊆{1,...,n}

∑
k∈K

i(s)

βkΨk(ξ), (C.11)

where K = {0, . . . , P − 1}, Ki(s) = {k ∈ K|Ψk(ξ) = Ψk(ξ = ξi(s))} (Crestaux et al.,
2009).

From the equivalence between (C.4) and (C.11) the bijective relation existing between
Sobol’ indices and coefficients βk, k = 1, ..., n can be derived. Indeed, the PC-based Sobol’
indices can be obtained as:

Si(s) =

∑
k∈K

i(s)
β2
k〈Ψk,Ψk〉∑P−1

k=0 β
2
k〈Ψk,Ψk〉

,

being i(s) ⊆ {1, . . . , n}, while the total indices can be computed from (C.10).
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Figure D.1: Experimental design of the support of the meta-model: 100 standard Monte
Carlo simulations (red points), and experimental design for meta-model analysis: 10000
samples generated through the meta-model (blue points). Variable of interest is averaged
gas overpressure on the top of the reservoir.
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Figure D.2: Experimental design of the support of the meta-model: 100 standard Monte
Carlo simulations (red points), and experimental design for meta-model analysis: 10000
samples generated through the meta-model (blue points). Variable of interest is the max-
imal lateral spread of CO2 cloud.
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The coupled model results
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Figure E.1: The maximal lateral spread of CO2 cloud after 10 years of injection: each
panel contains 5 realizations
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Figure E.2: The maximal lateral spread of CO2 cloud after 10 years of injection: each
panel contains 5 realizations



Appendix F

Details of the inference of the
homogeneous equivalent
permeability distribution

The inverse transform sampling (also called Smirnov transform (Smirnov, 1970)) is a
method for generating random sample numbers given the cumulative distribution func-
tion. It consists in generating random samples from a uniform law in the interval (0,1):
u ∼ U(0, 1) and interpreting the obtained values as probabilities. The quantiles for these
probabilities are found by the inversion of the cumulative distribution function. The con-
dition for defining the inverse distribution function (or quantile function) is that the CDF
is a strictly increasing continuous function. Nevertheless, as any CDF is a non-decreasing
right-continuous function, its inverse function can be defined as:

F−1(u) = inf{x|F (x) ≥ u}.

Let us denote Fhet(rmax) the cumulative distribution function of the maximal lateral
spread when the uncertainty in the permeability values is attributed to the spatial vari-
ability (anisotropic random field described in 5.2.2 with a lognormal PDF (µ=-30.05,
σ=0.47), squared cardinal sine correlation structure, correlation lengths (50 m, 50 m, 20
m)). Let {um} be a sampling of u ∼ U(0, 1), a number of m = 105 samples has been
taken in the present study. The CCDF for the heterogeneous case has been evaluated for
a set of thresholds r0, the cumulative distribution function Fhet(rmax) is also discretized
in p− 1 equal intervals of rmax with the endpoints {zi}, i = 1, ...p (p = 201 in the present
study), giving a set of pairs {zi, F i

het}, i = 1, ...p. The values of a random variable z are
found as values of a linear interpolation between points {F i

het, zi} at points u:

if um ∈ [F i
het, F

i+1
het ], then zm = zi + (zi+1 − zi)

u− F i
het

F i+1
het − F i

het

.

The same procedure of curve inversion through linear interpolation has been followed
to obtain the values of Kint(zm) out of the meta-model sampling points (The interpolated
function is presented in Figure F.1).

With the difference that the points of the meta-model sampling are random and not
equally spaced. Let us denote {Kj

int, z
j
meta−model}, j = 1, ... the points of meta-model
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Figure F.1: The intrinsic permeability as a function of maximal radius of the CO2 cloud:
linear interpolation between the metamodel sampling points (Figure 4.7).

random Monte Carlo sampling. The values of Kint are found in the following way:

if zm ∈ [zjmeta−model, z
j+1
meta−model], then Kint = Kj

int+(Kj+1
int −K

j
int)

zm − zjmeta−model
zj+1
meta−model − z

j
meta−model

.
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Farret, R. and Thoraval, A. (2012). Synthèse de l’état des connaissances sur les risques
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géologique du CO2. Technical report, INERIS. DRS-12-126009-13886A. In French.



Bibliography 139

Fenghour, A., Wakeham, W., and Vesovic, V. (1998). The viscosity of carbon dioxide.
Journal of physical and chemical reference data, 27:31–44.

Field, C., Barros, V., Stocker, T., and Dahe, Q. (2012). Managing the Risks of Extreme
Events and Disasters to Advance Climate Change Adaptation: Special Report of the
Intergovernmental Panel on Climate Change. Cambridge University Press.

Formaggia, L., Guadagnini, A., Imperiali, I., Lever, V., Porta, G., Riva, M., Scotti, A., and
Tamellini, L. (2012). Global sensitivity analysis through polynomial chaos expansion of
a basin-scale geochemical compaction model. Computational Geosciences, pages 1–18.
10.1007/s10596-012-9311-5.

Franzetti, S., Guadagnini, A., and Orsi, E. (1996). Monte carlo simulation and effective
conductvity in confined radial flow fields. Calibration and Reliability in Groundwater
modelling, (237):463–471.
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