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ABSTRACT 

This work is part of the Trusted Environment Execution eVAluation (TEEVA) project (French project FUI 

n°20 from January 2016 to December 2018) that aims to evaluate two alternative solutions for secure 

mobile platforms: a purely software one, the Whitebox Crypto, and a TEE solution, which integrates 

software and hardware components. The TEE relies on the ARM TrustZone technology available on 

many of the chipsets for the Android smartphones and tablets market. This thesis focuses on the TEE 

architecture. The goal is to analyze potential threats linked to the test/debug infrastructures classically 

embedded in hardware systems for functional conformity checking after manufacturing. 

Testing is a mandatory step in the integrated circuit production because it ensures the required quality 

and reliability of the devices. Because of the extreme complexity of nowadays integrated circuits, test 

procedures cannot rely on a simple control of primary inputs with test patterns, then observation of 

produced test responses on primary outputs. Test facilities must be embedded in the hardware at 

design time, implementing the so-called Design-for-Testability (DfT) techniques. The most popular DfT 

technique is the scan design. Thanks to this test-driven synthesis, registers are connected in one or 

several chain(s), the so-called scan chain(s). A tester can then control and observe the internal states 

of the circuit through dedicated scan pins and components. Unfortunately, this test infrastructure can 

also be used to extract sensitive information stored or processed in the chip, data strongly correlated 

to a secret key for instance. A scan attack consists in retrieving the secret key of a crypto-processor 

thanks to the observation of partially encrypted results. 

Experiments have been conducted during the project on the demonstrator board with the target TEE 

in order to analyze its security against a scan-based attack. In the demonstrator board, a 

countermeasure is implemented to ensure the security of the assets processed and saved in the TEE. 

The test accesses are disconnected preventing attacks exploiting test infrastructures but disabling the 

test interfaces for testing, diagnosis and debug purposes. The experimental results have shown that 

chips based on TrustZone technology need to implement a countermeasure to protect the data 

extracted from the scan chains. Besides the simple countermeasure consisting to avoid scan accesses, 

further countermeasures have been developed in the literature to ensure security while preserving 

test and debug facilities. State-of-the-art countermeasures against scan-based attacks have been 

analyzed. From this study, we investigate a new proposal in order to preserve the scan chain access 

while preventing attacks, and to provide a plug-and-play countermeasure that does not require any 

redesign of the scanned circuit while maintaining its testability. Our solution is based on the encryption 

of the test communication, it provides confidentiality of the communication between the circuit and 

the tester and prevents usage from unauthorized users. Several architectures have been investigated, 

this document also reports pros and cons of envisaged solutions in terms of security and performance. 
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RESUME 

Ce travail de thèse a pour cadre le projet Trusted Environment Execution eVAluation (TEEVA) (projet 

français FUI n°20 de Janvier 2016 à Décembre 2018) qui vise à évaluer deux solutions alternatives de 

sécurisation des plateformes mobiles, l’une est purement logicielle, la Whitebox Crypto, alors que 

l’autre intègre des éléments logiciels et matériels, le Trusted Environment Execution (TEE). Le TEE 

s’appuie sur la technologie TrustZone d’ARM disponible sur de nombreux chipsets du marché tels que 

des smartphones et tablettes Android. Cette thèse se concentre sur l’architecture TEE, l’objectif étant 

d’analyser les menaces potentielles liées aux infrastructures de test/debug classiquement intégrées 

dans les circuits pour contrôler la conformité fonctionnelle après fabrication.  

Le test est une étape indispensable dans la production d’un circuit intégré afin d’assurer fiabilité et 

qualité du produit final. En raison de l’extrême complexité des circuits intégrés actuels, les procédures 

de test ne peuvent pas reposer sur un simple contrôle des entrées primaires avec des patterns de test, 

puis sur l’observation des réponses de test produites sur les sorties primaires. Les infrastructures de 

test doivent être intégrées dans le matériel au moment du design, implémentant les techniques de 

Design-for-Testability (DfT). La technique DfT la plus commune est l’insertion de chaînes de scan. Les 

registres sont connectés en une ou plusieurs chaîne(s), appelé chaîne(s) de scan. Ainsi, un testeur peut 

contrôler et observer les états internes du circuit à travers les broches dédiées. Malheureusement, 

cette infrastructure de test peut aussi être utilisée pour extraire des informations sensibles stockées 

ou traitées dans le circuit, comme par exemple des données fortement corrélées à une clé secrète. 

Une attaque par scan consiste à récupérer la clé secrète d’un crypto-processeur grâce à l’observation 

de résultats partiellement encryptés. 

Des expérimentations ont été conduites sur la carte électronique de démonstration avec le TEE afin 

d’analyser sa sécurité contre une attaque par scan. Dans la carte électronique de démonstration, une 

contremesure est implémentée afin de protéger les données sensibles traitées et sauvegardées dans 

le TEE. Les accès de test sont déconnectés, protégeant contre les attaques exploitant les 

infrastructures de test, au dépend des possibilités de test, diagnostic et debug après mise en service 

du circuit. Les résultats d’expérience ont montré que les circuits intégrés basés sur la technologie 

TrustZone ont besoin d’implanter une contremesure qui protège les données extraites des chaînes de 

scan. Outre cette simple contremesure consistant à éviter l’accès aux chaînes de scan, des 

contremesures plus avancées ont été développées dans la littérature pour assurer la sécurité tout en 

préservant l’accès au test et au debug. Nous avons analysé un état de l’art des contremesures contre 

les attaques par scan. De cette étude, nous avons proposé une nouvelle contremesure qui préserve 

l’accès aux chaînes de scan tout en les protégeant, qui s’intègre facilement dans un système, et qui ne 

nécessite aucun redesign du circuit après insertion des chaînes de scan tout en préservant la testabilité 

du circuit. Notre solution est basée sur l’encryption du canal de test, elle assure la confidentialité des 

communications entre le circuit et le testeur tout en empêchant son utilisation par des utilisateurs non 

autorisés. Plusieurs architectures ont été étudiées, ce document rapporte également les avantages et 

les inconvénients des solutions envisagées en termes de sécurité et de performance.
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1. Introduction 

Avec le nombre important d’applications dont sont chargées les smartphones, les opérations 

critiques, telles que les transactions bancaires ou la gestion des droits numériques (DRM), ont besoin 

d’être protégées. Une solution existante est d’utiliser un environnement de confiance, le Trusted 

Environment Execution (TEE), pour réaliser ces opérations confidentielles. Les applications communes 

sont quant à elles exécutées dans le système d’exploitation du smartphone, par exemple Android. 

L’objectif de cette thèse est d’évaluer l’architecture TEE face aux menaces liées à l’exploitation des 

infrastructures de test. Les infrastructures de test sont nécessaires afin d’assurer la qualité d’un 

produit après fabrication, ainsi que fournir un moyen de debug lorsque le circuit est opérationnel. 

Le test/debug des circuits intégrés est possible grâce à des techniques de design dédiées, appelées 

Design-for-Testability (DfT). Les chaînes de scan sont la technique de DfT la plus commune. Cette 

méthode consiste à organiser les bascules du circuit en un/des registre(s) à décalage lorsque le circuit 

est en mode de test. Ainsi, les états internes du circuit sont contrôlables en utilisant l’entrée série de 

la chaîne de scan, appelée scan-in, et ils sont observables en utilisant la sortie série de la chaîne de 

scan, appelée scan-out. En plus des chaînes de scan, plusieurs standards ont été proposés pour faciliter 

le test des circuits électroniques. Le standard pour tester les cartes électroniques est l’IEEE 1149.1 [8], 

communément appelé JTAG. Le standard IEEE 1500 [9] a été proposé pour tester les System-on-Chip 

(SoC). Et le récent standard IEEE 1687 [10], aussi appelé IJTAG, facilite l’accès aux instruments de test 

embarqués, en définissant un réseau scan reconfigurable.  

Ces techniques de conception en vue du test sont nécessaires pour fournir une observation et un 

contrôle total sur les états internes du système. Elles sont utilisées après la production du circuit 

intégré pour vérifier son bon fonctionnement. De plus lorsque le circuit est opérationnel, les 

infrastructures de test assurent le diagnostic en cas de dysfonctionnement du circuit intégré, ainsi 

qu’un moyen de debugger les applications installées sur le dispositif électronique. Cependant, accéder 

aux infrastructures de test peut compromettre la sécurité du système. En effet, un attaquant peut 

exploiter les moyens de test intégrés au circuit afin de voler des informations secrètes. Par exemple, 

sur des crypto-processeurs, l’observation du contenu des chaînes de scan permet de retrouver la clé 

secrète. Plusieurs attaques sur l’Advanced Encryption Standard (AES [12]) ont été proposées dans la 

littérature [13]–[16], appelées attaques scan. L’AES est composé de plusieurs rondes où des opérations 

de substitution et permutation sont appliquées sur un bloc de données en clair afin d’obtenir le bloc 

chiffré. Les attaques scan ciblent la première ronde de l’AES quand les données ne sont que 

partiellement chiffrées. La procédure de l’attaque consiste à passer le circuit en mode test après 

l’exécution de la première ronde afin de récupérer le contenu du registre de ronde en accédant aux 

chaînes de scan. L’attaquant procède ensuite à une attaque différentielle en appliquant des paires de 

texte en clair, puis en calculant la distance d’Hamming entre les deux résultats. Dans certains cas, le 

résultat du calcul de la distance de Hamming permet à l’attaquant d’identifier un octet de la clé. La 

stratégie est alors d’essayer plusieurs paires de texte en clair jusqu’à ce que la différence entre les 

deux résultats permette de déterminer un octet de clé. L’attaquant répète ces étapes pour tous les 

octets de clé afin de récupérer la clé dans sa totalité. 
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D’autres attaques existent exploitant les interfaces de test JTAG, IEEE 1500 et IJTAG. Une attaque 

possible consiste à voler le fichier de configuration d’un FPGA lorsque celui-ci est envoyé par l’interface 

JTAG [26]. Ce fichier de configuration contient toutes les propriétés intellectuelles du designer. Une 

autre fonctionnalité du JTAG est le téléchargement de mises-à-jour de firmware. Cette fonctionnalité 

a été exploitée dans [27] afin de télécharger un firmware corrompu. Ce firmware corrompu permettait 

à l’utilisateur d’accéder à tout le service payant sur son décodeur TV. Les fonctionnalités de debug 

offertes par le standard JTAG permettent aussi à un attaquant d’étudier le logiciel installé sur le 

dispositif afin d’en trouver les failles. Dans [28], une faille a été trouvée dans l’iPhone pour insérer des 

cartes SIM non autorisées par le fabricant. Dans [29], l’exploitation d’une erreur dans le code a permis 

de faire fonctionner des jeux sans la vérification DRM sur la console de jeu Xbox 360. 

Les attaques exposées jusqu’ici sont réalisées par un utilisateur non autorisé extérieur au circuit. 

Une autre classe d’attaquant peut être considérée, elle concerne les attaques réalisées par un élément 

malicieux à l’intérieur du circuit. Une attaque interne au circuit est présentée en [30], consistant à 

étudier le cas d’un circuit malicieux inséré dans la chaîne JTAG du système électronique. Ce circuit 

attaquant est alors capable de voler et de modifier les données de test passant à travers lui.  

Plusieurs contremesures ont été proposées pour se prémunir des attaques exploitant les 

infrastructures de test. Une solution utilisée dans l’industrie consiste à déconnecter les chaînes de scan 

en brûlant des fusibles après le test de fabrication. Cette solution a été privilégiée sur la carte 

électronique de référence du projet fonctionnant avec le TEE. Le principal inconvénient de cette 

solution est que les opérations de diagnostic et de debug ne sont plus possibles. De plus, si un 

attaquant est capable de reconnecter les accès déconnectés à l’aide d’une sonde, cette contremesure 

devient inefficace.  

Une autre contremesure est basée sur une approche alternative de DfT, le Built-In Self-Test (BIST) 

[36]. Cette technique limite le contrôle et l’observation des chaînes de scan pour le testeur externe, 

prévenant ainsi contre les attaques scan. Cette solution est intéressante dans le cas des crypto-

processeurs, car ils sont généralement facilement testables avec des données pseudo-aléatoires [37]–

[39]. Cependant, cette contremesure compromet elle aussi la maintenance lorsque le circuit est 

opérationnel. 

Un autre type de contremesures est basé sur un mécanisme de verrouillage des infrastructures de 

test. Les moyens de test sont déverrouillés après un protocole d’authentification. Ces contremesures 

garantissent que seuls les utilisateurs autorisés peuvent déverrouiller les fonctionnalités de test soit à 

l’aide d’un mot de passe [49], [50] ou soit à l’aide de paires de challenge/réponse [51]–[58]. En plus de 

l’important surcoût en surface et en temps de test impliqués par ces solutions, une gestion de clé est 

requise afin de partager avec les utilisateurs autorisés le mot de passe ou les paires de 

challenge/réponse utiles au déverrouillage du mécanisme de protection.  

Une autre famille de protections consiste en la détection du comportement d’un attaquant [62], 

[63]. Au lieu de verrouiller l’accès au test, ces solutions sont basées sur des détecteurs capables de 

distinguer entre le testeur et un possible attaquant. Ces contremesures ne préviennent uniquement 

que contre les menaces extérieures au circuit. Les possibles éléments malicieux insérés dans les 

chaînes de test ne sont pas considérés. 
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Une dernière catégorie de contremesures repose sur l’encryption du canal de test, ce qui assure la 

confidentialité des messages échangés entre le circuit et le testeur. L’encryption protège contre les 

utilisateurs non autorisés ainsi que contre les possibles éléments malveillants insérés dans la chaîne 

de test. Les attaquants ne sont pas capables de communiquer avec un circuit protégé, ni d’intercepter 

les communications. Pour encrypter les données de test, deux types de chiffrement peuvent être 

utilisés : le chiffrement par bloc, et le chiffrement par flot. Le choix entre les deux chiffrements dépend 

des performances recherchées ainsi que de la sécurité désirée. Dans la littérature ([30], [60] et [61]), 

le chiffrement préféré pour encrypter le canal de test est le chiffrement par flot. Les chiffrements par 

bloc ont un coût en surface plus important, et nécessitent d’adapter leur fonctionnement afin de 

traiter les communications de test qui sont réalisées en série. Néanmoins, les chiffrements par flot 

peuvent présenter une vulnérabilité de sécurité dans le cas d’une mauvaise implémentation. Nous 

montrons dans la section suivante que les solutions [30], [60] et [61] présentent cette vulnérabilité. 

Dans cette thèse, nous proposons deux contremesures consistant à encrypter le canal de test : une 

première basée sur le chiffrement par flot, qui n’est pas exposée à la vulnérabilité mentionnée plus 

haut, une deuxième basée sur le chiffrement par bloc. L’état de l’art des contremesures basées sur 

l’encryption du canal de test est présenté dans la Section 2. La Section 3 présente les deux solutions 

proposées. La Section 4 consiste en l’évaluation de ces nouvelles solutions en termes de performance 

et de sécurité, ainsi qu’à leur comparaison. Finalement, la Section 5 conclut ce résumé concernant les 

travaux de thèse.  

2. Etat de l’art des contremesures basées sur l’encryption du canal de test 

Plusieurs solutions ont été proposées pour assurer la confidentialité des communications dans les 

infrastructures de test. Dans ces solutions, l’interface de test intègre des chiffrements en entrée et en 

sortie du canal de test. Le protocole de test s’en retrouve donc légèrement modifié. Premièrement, le 

testeur encrypte les données de test en dehors du circuit avec la clé secrète partagée avec le circuit. 

Deuxièmement, les données de test chiffrées sont envoyées au circuit, qui les décrypte à l’aide du 

chiffrement implanté à l’entrée de son infrastructure de test. Une fois les données de test décryptées, 

le circuit peut poursuivre les opérations de test. Avant que les réponses de test ne soient envoyées au 

testeur, le chiffrement implanté en sortie du canal de test se charge d’encrypter les réponses. Le 

testeur reçoit alors les réponses de test chiffrées, qu’il décrypte en dehors du circuit à l’aide de la clé 

secrète, puis les compare avec les réponses attendues. Avec ce schéma de communication, les 

données et les réponses sont gardées confidentielles durant le processus de test. Sans la connaissance 

de la clé, il n’est pas possible d’observer les états internes du circuit, ni possible de contrôler le circuit 

pour le mettre dans un état souhaité. De cette façon, il n’y a pas de risques que les données chiffrées 

soient lues par une tierce personne non autorisée. 

Puisque les données dans les infrastructures de test sont transmises en série, la plupart des 

schémas d’encryption sont basés sur le chiffrement par flot. Les auteurs [30] proposent d’utiliser le 

TRIVIUM [59] comme chiffrement par flot pour encrypter les communications JTAG. Le TRIVIUM 

génère un flux de nombre pseudo-aléatoire à partir d’une clé secrète et d’une valeur d’initialisation 

(IV). Dans [30], l’IV est codé en dur à l’intérieur du circuit grâce à des fusibles programmés au moment 
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de la fabrication. La clé secrète est quant à elle dérivée d’un challenge envoyé par le testeur. Seul un 

utilisateur autorisé connaît les paires de challenge/réponse, et donc la clé secrète utilisée pour 

encrypter les données de test.  

La solution proposée en [60] traite le problème de possibles cores malveillants insérés dans les 

SoCs. La contremesure protège contre le risque qu’un core malveillant vole des données de test 

passant par le canal de test. Pour ce faire, un chiffrement par flux TRIVIUM encrypte les données de 

test. La clé secrète est générée aléatoirement par le testeur. Elle est ensuite envoyée au core protégé 

en utilisant une chaîne de scan dédiée et non visible des autres cores. Concernant l’initialisation du 

TRIVIUM, les auteurs ne spécifient pas la configuration de l’IV.  

Le chiffrement par flot est aussi utilisé en [61] pour encrypter le réseau scan reconfigurable dans le 

standard IJTAG. Un TRIVIUM décrypte et encrypte les données envoyées et reçues du réseau scan 

reconfigurable. Le but est de protéger les instruments de test contre le vol de données par un 

instrument malicieux dans la chaîne de test, ainsi que contre les attaquants extérieurs souhaitant 

utiliser illégalement les instruments embarqués. Concernant l’initialisation du chiffrement par flux, les 

auteurs proposent des ensembles uniques de clés et d’IVs pour chaque instrument protégé, mais les 

auteurs ne mentionnent pas le changement de clé ou d’IV entre chaque session d’encryption. 

Or il est essentiel pour assurer une bonne protection de changer la clé secrète ou l’IV entre chaque 

session d’encryption. Autrement, le chiffrement par flot présente une vulnérabilité appelée « two 

times pad ». On considère deux réponses de test 𝑅1 et 𝑅2 et un chiffrement par flux qui encrypte ces 

réponses en sortie de chaîne de test. Pour la première réponse 𝑅1, le chiffrement par flot génère un 

flux de bits pseudo-aléatoire, noté 𝑆, à partir d’une clé secrète et d’une valeur initiale IV. Le chiffré de 

la réponse est alors 𝑅1 ⊕ 𝑆. La réponse 𝑅2 est obtenue après un reset du circuit, réinitialisant par la 

même occasion le chiffrement par flot. Si la même clé secrète et la même IV sont utilisées pour 

encrypter 𝑅2, alors le chiffré est 𝑅2 ⊕ 𝑆. Dans le cas des attaques scan telles que présentées en [13]–

[16], l’attaquant procède au XOR entre les deux réponses, donnant comme résultat 

[𝑅1⨁𝑆(𝐾, 𝐼𝑉)]⨁[𝑅2⨁𝑆(𝐾, 𝐼𝑉)] = 𝑅1⨁𝑅2. L’impact du chiffrement par flot est alors retiré, rendant le 

circuit vulnérable aux attaques scan. Un attaquant peut donc réaliser des attaques scan même si les 

réponses de test sont encryptées. 

Les contremesures présentées en [30], [60] et [61] sont toutes exposées à cette vulnérabilité, 

puisque la gestion de l’IV et de la clé secrète n’est pas correcte. La même paire (clé secrète, IV) ne doit 

pas être utilisée plus qu’une fois pour éviter la génération du même flux pseudo-aléatoire pour 

différentes encryptions.  

3. Proposition de contremesures 

Dans ce chapitre, nous proposons premièrement une contremesure basée sur le chiffrement par 

flot qui ne présente pas la vulnérabilité des contremesures de l’état de l’art. Nous proposons ensuite 

une méthode d’encryption de la chaîne de scan basée sur le chiffrement par bloc.  

Dans les deux contremesures proposées, un premier chiffrement est implanté en entrée de chaîne 

de scan en charge de décrypter les patterns de test. Un deuxième chiffrement est implanté en sortie 



RESUME 

9 

 

de chaîne de scan en charge d’encrypter les réponses de test. En plus de l’implémentation des 

chiffrements, l’encryption du canal de test requiert d’implanter un mécanisme de gestion de clé afin 

de partager de façon sécurisée la clé secrète entre le circuit et le testeur. Nous supposons que le 

dispositif électronique doit être protégé des attaques scan, et donc qu’il embarque un ou des crypto-

processeur(s). Nous proposons de réutiliser la gestion de clé déjà implantée pour le crypto-processeur 

ainsi que son stockage sécurisé, pour gérer et stocker la clé encryptant le canal de test. De cette façon, 

la clé est stockée de façon sécurisée dans le crypto-processeur, et elle est partagée avec les utilisateurs 

autorisés sans introduire de problèmes spécifiques de gestion de clé. 

a) Encryption du canal de test avec le chiffrement par flux 

Concernant la contremesure basée sur le chiffrement par flot, la nouveauté de notre approche 

comparée à l’état de l’art réside dans le fait que l’IV n’est pas une valeur constante, mais qu’elle est 

générée aléatoirement par un générateur de nombre aléatoire, True Random Number Generator 

(TRNG). L’utilisation du TRNG garantit de ne jamais réutiliser la même IV pour la génération du flux 

pseudo-aléatoire. Ainsi, le chiffrement par flot ne présente pas la vulnérabilité two times pad décrite 

dans la section précédente.  

La valeur aléatoire de l’IV doit être connue par le testeur extérieur afin que celui-ci puisse 

communiquer avec le circuit. Pour rendre la valeur de l’IV accessible à l’extérieur du circuit, une 

instruction JTAG, appelée GETIV, est ajoutée au jeu d’instructions. Lorsque le testeur exécute cette 

instruction, l’IV générée aléatoirement est envoyée en sortie de l’interface de test. Le testeur n’a plus 

qu’à lire la valeur de l’IV afin de pouvoir encrypter et décrypter les données de test en dehors du circuit. 

Il est important de noter que la sécurité de la solution n’est pas compromise en rendant l’IV public, 

puisque la clé du chiffrement par flot est toujours gardée secrète. Un attaquant n’est pas capable de 

déchiffrer les communications chiffrées sans la clé secrète.  

L’encryption des données de test est réalisée avec le chiffrement par flot TRIVIUM. Un seul TRIVIUM 

est capable de générer deux flux pseudo-aléatoires : l’un pour décrypter les données arrivant en entrée 

du canal de test, l’autre pour encrypter les réponses sortant du canal de test. Avant la génération des 

flux pseudo-aléatoires par le TRIVIUM, une phase d’initialisation est nécessaire pour que le TRNG 

atteigne une entropie suffisante pour générer un nombre aléatoire. Le chiffrement par flot est lui aussi 

initialisé. Pendant l’initialisation, les chaînes de scan ne sont pas accessibles, toutes les opérations de 

test sont considérées comme une instruction BYPASS. Une fois la phase d’initialisation achevée, le jeu 

d’instructions est déverrouillé. Seulement un utilisateur, connaissant la clé secrète et ayant récupéré 

l’IV générée aléatoirement par le circuit grâce à l’instruction GETIV, peut communiquer avec le circuit. 

b) Encryption du canal de test avec un chiffrement par bloc 

Dans ces travaux de thèse, nous avons aussi proposé une contremesure basée sur le chiffrement 

par bloc. Nous avons choisi des chiffrements par bloc dits « légers » afin de limiter le coût en surface 

et en consommation de puissance. Deux chiffrements par bloc légers sont implantés, l’un pour le 

déchiffrement effectué en entrée du canal de test, et l’autre pour l’encryption effectuée en sortie du 

canal de test. Chacun des deux chiffrements possède deux registres de rondes afin de réaliser en 

parallèle l’encryption des données et l’acquisition série des données du canal de test. La réalisation de 

ces opérations en parallèle permet de ne pas perdre en temps de test. 
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Puisque les communications de test sont effectuées en série, l’utilisation du chiffrement par bloc 

implique d’ajouter des données supplémentaires aux données de test initiales afin de former des 

segments de la taille du bloc encrypté/décrypté. La chaîne de scan est ainsi remplie et vidée segment 

par segment. Chaque segment est composé d’un bloc de données sur N bits (N représentant la taille 

du bloc encrypté/décrypté). Quand la chaîne de scan n’est pas multiple de N, la solution fonctionne 

toujours mais chaque pattern est complété avec des données supplémentaires. En considérant R le 

reste modulo N de bascules dans la chaîne de scan, il est nécessaire de compléter les données de test 

par N-R bits. Les données supplémentaires demandent du temps de test additionnel pour que le 

testeur les envoie dans la chaîne de scan. Le résultat est que cette solution a un surcoût en temps de 

test dépendant du nombre de pattern nécessaire pour tester le circuit. Ce coût est évalué à N-R coups 

d’horloge pour chaque pattern de test. 

Pour réduire ce coût, une optimisation de la solution a été proposée. Elle consiste à exploiter le 

temps de test additionnel ajouté à chaque pattern pour améliorer la testabilité du circuit. En effet, en 

ajoutant N-R bascules scan au circuit, il est possible de les utiliser en tant que points d’observation sur 

la logique du circuit. Les points d’observation sont une technique de test permettant de propager des 

signaux « difficilement » observables directement à des bascules scan, sans affecter le temps de test 

initial. Le but de cette technique est de réduire le nombre de patterns nécessaire pour tester un circuit, 

tout en préservant le même taux de couverture de fautes.  

En conclusion, les deux contremesures proposées permettent de se protéger contre les menaces 

utilisant l’infrastructure de test, tout en préservant les fonctionnalités de debug et de diagnostic lors 

de possibles maintenances. C’est un principal avantage comparé à la solution consistant à déconnecter 

les accès de test. Un autre avantage concerne la réutilisation de la gestion de clé déjà implanté dans le 

circuit. Les contremesures basées sur un protocole sécurisé utilisant des primitives cryptographiques, 

comme [49]–[58], ont quant à elles besoin d’avoir une gestion de clé dédiée.  

Les deux solutions ont fait l’objet d’une publication dans un journal [69], et à plusieurs 

présentations à des conférences [70]–[72] ainsi qu’à des workshops [76]–[81]. Dans la section suivante, 

nous comparons les deux solutions. 

4. Evaluation et comparaison des solutions proposées 

Les contremesures consistant à encrypter le canal de test sont évaluées par rapport à la protection 

apportée sur l’infrastructure de test, les coûts en termes d’implémentation et l’intégration de la 

solution dans un SoC.  

a) Analyse de sécurité 

Concernant la sécurité, le déchiffrement effectué en entrée du canal de test empêche d’écrire une 

valeur désirée dans la chaîne de scan sans la connaissance de la clé. Le chiffrement effectué en sortie 

du canal de test empêche l’observation des états internes du circuit, sans avoir réalisé le déchiffrement 

au préalable. Les possibles éléments malicieux insérés dans les infrastructures de test ne peuvent donc 

pas voler des données confidentielles. De plus, l’encryption du canal de test permet de se prémunir 

des attaquants extérieurs au circuit, souhaitant par exemple réaliser des attaques scan [13]–[16] ou 
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exploiter les fonctionnalités JTAG telles que le debug [28][29], l’accès au réseau IJTAG, ou le 

téléchargement de firmware [27]. 

La proposition de contremesure basée sur le chiffrement par flot présente un niveau de sécurité 

plus important que les solutions proposées dans l’état de l’art. En effet, la mauvaise gestion de clé 

secrète et d’IV rend les contremesures [30], [60] et [61] vulnérables aux attaques scan. Nous proposons 

de générer aléatoirement l’IV initialisant le chiffrement par flot afin d’éviter cette vulnérabilité, et par 

conséquent protéger contre les attaques scan. 

Finalement, les deux propositions d’encryption du canal de test (par le chiffrement par flux et par 

le chiffrement par bloc) protègent contre les menaces liées à l’utilisation de l’infrastructure de test. 

b) Coûts d’implémentation 

En terme de testabilité, l’encryption du canal de test permet de tester le circuit original sans réduire 

le taux de couverture de fautes. En effet, les patterns du circuit original sont appliqués tels qu’ils sont 

après leur déchiffrement. Cependant, l’architecture de la solution a besoin d’être testée, sans l’aide 

des chaînes de scan qui exposeraient les chiffrements implantés aux attaques scan. Nous proposons 

de tester fonctionnellement les chiffrements en utilisant les patterns dédiés à tester le circuit original. 

Le test des chiffrements par bloc est facilité par les propriétés de diffusion des algorithmes 

cryptographiques ([37] et [38]). Concernant le test des chiffrements par flot, le flux de bits pseudo-

aléatoire généré par le TRIVIUM est une combinaison des états internes du chiffrement, le rendant 

facilement testable. Les deux chiffrements, par bloc et par flot, propagent donc facilement les erreurs 

à leur sortie lorsqu’une encryption est réalisée. Pour valider cette hypothèse, nous avons mené des 

expérimentations consistant à appliquer la séquence de test de plusieurs circuits sur les chiffrements 

implantés. Pour tous les circuits considérés, le taux de couverture de fautes dans l’architecture de la 

contremesure est de 100%. En d’autres termes, les chiffrements implantés sont testés en même temps 

que le circuit original, sans application de séquence particulière. 

Nous avons aussi mené des expérimentations pour évaluer le surcoût en terme de surface et de 

temps de test dans le cas d’une simple chaîne de scan. Si un TRNG est déjà implanté dans le circuit 

alors la solution basée sur le chiffrement par flot peut l’utiliser pour générer l’IV, limitant le coût en 

surface. Dans ce cas, le chiffrement par flot présente une surface moindre (5 408,52 µm² pour 

l’implémentation avec le TRIVIUM) comparée au chiffrement par bloc (9 282.52 µm² pour 

l’implémentation avec le chiffrement par bloc SKINNY). Il est clair aussi que le chiffrement par flot 

surpasse le chiffrement par bloc en terme de coût en temps de test, à cause du surcoût à chaque 

pattern pour ce dernier. Ce coût peut cependant être réduit en appliquant l’optimisation consistant à 

insérer des points d’observation sur le circuit original. 

Les deux solutions ne sont pas limitées à une seule chaîne de scan. Nous avons proposé de les 

étendre pour protéger des chaînes de scan multiples, indépendamment de l’implémentation de 

techniques de compression. La contremesure basée sur le chiffrement par flot présente un coût plus 

faible en terme de surface (de 5 553,60 µm² à 9 999,60 µm² pour l’implémentation avec TRIVIUM) et 

de puissance consommée (environ 35 µW), comparé à la contremesure basée sur le chiffrement par 

bloc (pour l’implémentation avec SKINNY, environ 10 000 µm² pour la surface, et de 128,2 µW à 

2 232,9 µW pour la puissance consommée). Cependant, le nombre limite de chaîne de scan traité par 
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un chiffrement est plus faible (jusqu’à 32 chaînes de scan) pour la contremesure avec le chiffrement 

par flot, comparé à la limite de la contremesure avec le chiffrement par bloc (jusqu’à 64 chaînes).  

c) Intégration dans un SoC 

Les infrastructures de test de chacun des cores composant un SoC sont souvent connectées en série 

les uns après les autres. L’entrée et la sortie série de l’interface de test permet alors d’accéder aux 

chaînes de scan des différents cores dans le SoC. Quand un core implante des chiffrements en entrée 

et sortie de chaîne de scan, tous les autres cores de la chaîne de test reçoivent des données encryptées, 

protégeant ainsi contre les potentiels cores malicieux. L’encryption avec un chiffrement par flux 

consiste à une opération bit à bit, n’impliquant donc aucun problème d’intégration de la solution dans 

un design SoC. A l’inverse, l’encryption avec le chiffrement par bloc nécessite d’ajouter des données 

supplémentaires afin d’avoir des segments de la taille du bloc encrypté. Ces données supplémentaires 

sont alors reçues par les autres cores du canal de test, pouvant créer des problèmes dans les 

opérations de test. Par conséquent, le concepteur doit être conscient du problème potentiel de 

l’intégration dans un SoC de la solution basée sur le chiffrement par bloc. Un moyen pour éviter 

d’envoyer des données supplémentaires dans la chaîne de test est insérer des bascules dans la chaîne 

de scan connectées à des points d’observation sur la logique du circuit. De cette façon, la chaîne de 

scan est multiple de la taille du bloc encrypté. Cependant, l’insertion des points d’observation implique 

de modifier le circuit original. Il n’est donc pas possible d’appliquer la solution dans le cas d’un core 

non modifiable.  

Pour conclure la comparaison, le choix entre les deux contremesures proposées dépend du circuit 

original où la protection est implantée : si un TRNG est déjà implanté dans le circuit original, si la 

longueur de la chaîne de scan est multiple du bloc encrypté, si le circuit original peut être modifié afin 

d’insérer des points d’observation. Le choix dépend aussi du nombre de chaîne de scan qui doit être 

encrypté dans le cas de la configuration multiple des chaînes de scan. 

La comparaison des deux solutions a fait l’objet d’une soumission au journal Transactions on VLSI 

Systems ainsi qu’une présentation à une conférence [74]. 

5. Conclusion 

Les circuits cryptographiques sont largement répandus pour assurer la confidentialité dans les 

systèmes électroniques. C’est le cas par exemple dans les smartphones où les opérations d’encryption 

sont réalisées pour échanger ou stocker des informations confidentielles. Dans ce cadre, les opérations 

d’encryption sont réalisées dans un environnement de confiance, le TEE. Cependant, cet 

environnement n’est pas suffisant pour assurer la protection des crypto-processeurs contre des 

attaques matérielles telles que l’exploitation des infrastructures de test. 

Les tests de production des circuits cryptographiques sont obligatoires afin d’assurer la qualité du 

produit. Il est d’autant plus important de réaliser le test car des défauts physiques sur le circuit peuvent 

compromettre la sécurité. L’implémentation des techniques de test (chaînes de scan, JTAG, IEEE 1500 

et IJTAG) est donc essentielle. Néanmoins, ces infrastructures de test peuvent être un point d’entrée 

pour un attaquant souhaitant corrompre la sécurité du système. Une contribution de cette thèse 
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concerne la proposition de nouvelles contremesures consistant à encrypter le canal de test. Plusieurs 

contremesures basées sur le chiffrement par flot ont été précédemment proposées, mais présentant 

toutes une faiblesse dans leur implémentation. Nous avons proposé une nouvelle implémentation sans 

la vulnérabilité des contremesures de l’état de l’art, ainsi qu’une solution basée sur des chiffrements 

par bloc légers. Le principe de ces contremesures est l’insertion de modules de 

chiffrement/déchiffrement en amont et en aval du canal de test. L’encryption est effectuée à l’aide 

d’une clé secrète partagée avec les utilisateurs autorisés grâce à la gestion de clé déjà implantée dans 

le circuit. Un avantage important est de conserver les fonctionnalités de diagnostic et de debug pour 

les utilisateurs autorisés. 

Dans cette thèse, nous avons aussi évalué et comparé les deux solutions. Les résultats 

expérimentaux ont montré que l’encryption avec le chiffrement par flot présente un coût plus faible 

en surface, en temps de test et en puissance consommée, dans le cas où un générateur de nombre 

aléatoire est déjà implanté dans le circuit. Dans le cas contraire, l’encryption avec le chiffrement par 

bloc est une bonne alternative, avec une possible optimisation pour réduire le coût en temps de test 

et faciliter l’intégration dans un design SoC.
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INTRODUCTION 

The context of this thesis is in the Trusted Environment Execution eVAluation (TEEVA) project, 

which aims to give a security evaluation of the Trusted Environment Execution (TEE) technology. The 

TEE is mainly used in mobile platforms to provide a secure environment for the execution of critical-

security application, such as bank transactions. The goal of this thesis focuses on the attacks carried 

out through the test infrastructures, and their countermeasures. 

Testing is a mandatory task in the Integrated Circuit (IC) production process to ensure product 

quality. In the area of digital testing, test procedures require to implement dedicated design for test 

purposes, called Design-for-Testability (DfT), to reduce efforts for test pattern generation. The most 

popular DfT method relies on scan chains usage. This approach consists in replacing original registers 

by serial scan registers, and connecting these scan registers into one or several scan chains. Extra 

control signals allow shifting in and out test data through the scan chain(s), providing full control and 

observation of the circuit internal states. Scan design greatly reduces the complexity of the test pattern 

generation and the overall test application time.  

In addition to scan chains, test standards have been proposed to reach the interface of the scan 

chains for each device in complex ICs. This avoids connecting each device to the external pins. The first 

test standard to be proposed for board testing is the IEEE Std. 1149.1, also known as JTAG. It offers an 

interface to the user that relies on the Test Access Port (TAP) controller. The user has the access to a 

scan network, which connects all the devices on the board in a daisy-chain fashion. The same principle 

has then been extended to System-on-Chips (SoCs) with the IEEE Std. 1500. This allows testing the 

internal cores of a SoC equipping them with standardized test wrappers. More recently, the IEEE Std. 

1687, also known as IJTAG, has been released to facilitate the access to the hundreds of embedded 

instruments that are present in nowadays SoCs. The IJTAG is based on a Reconfigurable Scan Network 

(RSN) that can be properly set by the user according to which instruments he/she wants to reach. 

The access to the test infrastructure of the whole SoC by a malicious user represents a very serious 

security threat. While testability is positively impacted by scan designs thanks to full control and 

observation of IC internal states, the confidentiality of processed data is unfortunately negatively 

affected for exactly the same reasons. Indeed, scan attacks exploit facilities offered by the scan chains 

to retrieve the secret data processed by the device. These attacks target secure circuits implementing 

a cryptographic algorithm and storing a secret key. They rely on the possibility for hackers to shift out 

the scan chain content while the circuit state is correlated with the secret, i.e., the key. 

Moreover, test infrastructures based on JTAG, IEEE 1500 and IJTAG standards can be exploited for 

a wide range of attacks. For instance, this is the case when the JTAG interface is used to access the 

system memory for debugging purposes, allowing an attacker to corrupt the firmware, to steal 

Intellectual Property (IP), or to find a flaw in the executed program. 

Many research works have been dedicated to propose countermeasures against attacks exploiting 

test infrastructures. The main difficulty in the scan attack prevention stems from the need to maintain 
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both data security and hardware quality ensured by test, diagnostic and debug activities. The cost of 

the scan attack prevention in terms of circuit characteristics (power, performances, area), insertion in 

the design flow, test quality and test time is an important issue. While several solutions have been 

proposed to prevent scan attacks, no proposal is available for providing both high security and quality 

in preserving test, diagnostic and debug facilities at low cost and at all cycles of the device lifespan. 

The contribution of this thesis is to present a secure, plug-and-play, and cost-efficient mechanism 

for preventing scan attacks, while providing full control and observation on the scan content for 

authorized users. The main idea is to maintain the confidentiality of the scan content through 

encryption/decryption of the test data flowing through the test infrastructures. The encryption can be 

performed either with block ciphers, or with stream ciphers. The choice of stream vs block cipher is 

driven by performance and security trade-offs. Because of their smaller footprint, stream ciphers are 

generally preferred to block ciphers in the literature. Nevertheless, when incompletely implemented, 

solutions based on stream ciphers are prone to scan attacks and thus have to be completed. This 

mitigates their interest versus block cipher solutions. In this thesis, we propose two new solutions: one 

exploiting block ciphers, and another exploiting stream ciphers fulfilling security requirement. We 

detail the advantages of these solutions compared to the state-of-the-art countermeasures. 

Moreover, we give a comparison between these two scan encryption countermeasures. 

This thesis is divided in six chapters. Chapter I presents the context of the thesis on the security 

evaluation of the Trusted Environment Execution (TEE) technology with respect to the hardware access 

provided by the test infrastructures.  

Chapter II brings out the security threats from the misuse of test infrastructures. The threat model 

includes “external attackers” (with unauthorized to access the test interfaces), as well as “internal 

attackers” (with insertion of malicious core connected to the test infrastructure at design time). A main 

attack from external attackers is the scan-based attack, exploiting the observation offered by the scan 

chain in order to steal confidential data, such as the secret key of a crypto-processor. Chapter II also 

reports our experiments and analysis on the project reference board considering the scan attack, and 

show that it implements the most common and radical industrial countermeasure consisting in 

disconnecting the test accesses after manufacture testing. A discussion about limitations in terms of 

security and debug/diagnostic facilities conclude the chapter.  

Furthers scan-attack countermeasures have been developed in the literature. In Chapter III, the 

state-of-the-art of such countermeasures is presented. We propose a taxonomy according to the 

target strategy consisting in avoiding the scan chains, modifying the scan chains structures, providing 

a secure test access, or detecting illegitimate behavior in the use of the test interfaces.  

Chapter IV presents a new approach based on the encryption of the test communication, ensuring 

the confidentiality of the exchanged data between the device under test and the tester. Several 

architectures are explored using block or stream ciphers with the goal to ensure same testability for 

the protected circuit than before scan protection. 

Chapter V gives a comparison of the proposed solutions in terms of implementation costs, 

testability evaluation, and integration in a SoC design. 

Finally, in Chapter VI we draw some conclusions and perspectives. 
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I.1. Introduction to TEEVA project  

This thesis is part of the TEEVA (Trusted Environment Execution eVAluation) project, a FUI project 

led by Gemalto (FUI n°20 from January 2016 to December 2018) with the following partners Trustonic, 

Phonesec, EMSE, Laboratoire Hubert Curien and LIRMM. TEEVA tackles the sensitive threats on mobile 

platforms. Smartphones represent high-value targets for hackers since they contain personal data and 

are used for mobile payment. The Android platform is a main target for identity theft, or financial data 

theft. Application stores propose a lot and a wide diversity of applications, such as email, games, social 

media, and bank applications. Among this large number of applications, some malwares could execute 

malicious program and steal sensitive data processed by other applications. 

As illustrated in Figure 1, a malware application downloaded from a store could exploit a flaw in the 

Operating System (OS) (e.g., Android) and steal confidential banking information processed at the 

same time by a banking application. The appearance of many malware on the Android market requires 

the Original Equipment Manufacturers (OEMs) of mobile platforms to implement appropriate security 

solutions.  

The goal of the TEEVA project is to evaluate two security solutions for mobile platforms: one is 

purely software: the Whitebox Crypto solution, while the other one integrates software and hardware 

elements: the Trusted Environment Execution (TEE). The security evaluation of the TEE is performed 

specifically against hardware attacks, including the ones from an access through the test interfaces 

evaluated by the LIRMM. The TEEVA project also aims to propose new countermeasures against the 

disclosed attacks on the TEE in order to improve the security level. 

The principle of a TEE is to have an extra execution environment isolated from the environment 

executing the main rich operating system such as Android. TEEs are developed by Trustonic and others 

companies, and is based on ARM TrustZone Technology [1] available on many chipsets of the 

 
Figure 1: Security threats on mobile platforms. 
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smartphone and tablet market mainly. The isolation mechanism between the two environments is 

achieved by defining two states of the processor (Figure 2): a Secure world and a Non-Secure world. 

Both worlds have modes based on privileges: a user one and a privileged one. The secure state of the 

processor is stored in a special register, Secure Configuration Register, on one bit, called the Non-

Secure (NS) bit. When the NS bit is set to 1 (respectively 0), the processor is in the Non-Secure world 

(resp. in the Secure world). Switching between the two worlds is ensured by the so-called Secure 

Monitor, which saves and restores save the context of each world. The Secure world is not restricted 

to the ARM processor, but extended to the whole System-on-Chip (SoC) design. In addition to the 

standard ARM buses signals, one additional signal propagates the NS bit from the processor to the 

peripherals and memories. Thus, each core on the SoC receives the processor state, in order to operate 

either in the Secure World or in the Non-Secure world. Concerning the memories, the physical memory 

is partitioned into two regions: a Secure one and a Non-Secure one. The virtual addresses are on 33 

bits instead of the usual 32 bits, in order to include the “NS” bit. The Memory Management Unit (MMU) 

is in charge of decoding the virtual addresses to allow or not writing and reading operations on a 

physical memory location, given NS-bit value. The TrustZone features allow thus to define at hardware 

level a Secure world and a Non-Secure world. 

Applications are then split into two categories: normal applications and Trusted Applications (TA). 

The normal applications run within the main OS (usually Android), called the Rich Execution 

Environment (REE), while TAs are executed within the TEE. As illustrated in the example in Figure 3, 

normal applications include Wi-Fi connection, messages applications, touch keyboard, and 

geolocation; while TAs are related to bank transactions, Digital Rights Management (DRM) and health 

data. When TAs are executed, the peripherals being accessed are only visible in the TEE. For instance, 

when the pin code of the bank account is entered on the touch keyboard of the mobile phone, the 

touch keyboard becomes a secure peripheral in order to be invisible from the REE side. A potential 

software attack carried out from the REE has no impact on the assets protected on the TEE side since 

the isolation between the two environments is at both hardware and software levels thanks to the 

TrustZone technology.  

 
Figure 2: Modes in an ARM processor implementing TrustZone [1] technology. 
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The isolation between the TEE and the REE provides a safe environment execution for TAs at 

software level. However, security against hardware attacks needs to be evaluated. The attacks based 

on information gained from the physical implementation of a secure system are called side-channel 

attacks. Power consumption, cache timing, electromagnetic fields are sources of information on the 

processed data, which can be exploited by an attacker. For instance, a weak implementation of crypto-

processors can leak information about the secret key used during encryption/decryption even if the 

implemented crypto-algorithm is secure from a mathematical point of view.  

In this thesis, we evaluate specially the security of a TEE with respect to the fraudulent usage of the 

test infrastructure and its interface. The exploited data in that case are not side channel information 

such as power consumption, but processed data extracted from the chip through the test 

infrastructure while the crypto-processor executes encryption/decryption operations. We present in 

the next Section the context of testing, diagnosis and debugging, and the several test infrastructures 

implemented on a device. 

I.2. Test, diagnosis and debug for Integrated Circuits 

Test is a mandatory step in Integrated Circuits (ICs) production for weeding out bad products before 

they reach end-users. Indeed, physical defects at the production can imply that the IC does not behave 

as expected. Testing allows detecting these defects by exercising the Circuit Under Test (CUT) with 

specific test patterns and comparing its outputs with a golden reference. Figure 4 illustrates the 

process. At design time a logical simulation is used to execute test patterns on the reference (circuit 

model), and retrieve expected responses to the test sequence. After manufacturing, the same test 

patterns are applied to the produced physical CUTs. The test responses from every CUT are then 

collected and compared with expected ones. The comparison distinguishes the faulty circuits from 

correct ones as long as test patterns are able to detect potential defects (e.g. open, short-circuits, 

damaged doping). Because of the number and types of the defects to be considered, test pattern 

 
Figure 3: Mobile chip operating with the TEE. 
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generation relies however on fault models (e.g. stuck-at faults, delay faults). The academic state-of-

the-art and the industrial practice consists in quantifying the quality of a test sequence in terms of 

“Fault (model) Coverage” (FC%) computed as the ratio between the number of fault detectable by the 

sequence, and the total number of faults in the considered model. Additionally, the test sequence 

length is of prime importance since it must be applied on every single produced circuit (recurrent cost). 

The observed errors (faulty test responses) may also due to bad design practices that can be 

corrected before new productions. After few runs, tests target manufacturing defects. In order to 

potentially correct a design or calibrate manufacturing steps and thus improve the yield, diagnosis 

helps to locate defaults. Additionally, diagnosis is also useful when the device is already in the field. An 

effective diagnosis on physical failure location allows fast and targeted maintenance, detection of 

uncorrected design errors. 

Automatic Test Pattern Generator (ATPG) (e.g. Synopsys Suite, TetraMAX [2]), helps for the 

generation of test patterns and computes expected test responses. Today’s test pattern generation 

tools have reached their maturity, the ATPG problem is known to be NP-complete, the computation 

complexity increases linearly with the sequential depth of the circuit, and exponentially in the presence 

of sequential cycles. Industrial state-of-the-art tools are thus efficient on combinational circuits but do 

not perform accordingly on sequential ones. For these reasons, specific design techniques allow to 

deal with sequential circuits and generate high quality test sequences. Next section presents the scan 

chain insertion approach and its usage according to the targeted fault model. 

I.2.a Design-For-Testability and test application 

The most common DfT technique is the usage of scan chains. As illustrated in Figure 5, it consists in 

replacing original flip-flops (FFs) by so-called scan FFs organized in shift registers. The internal states 

of the circuit can thus be controlled from the serial input of the scan chain, Scan-In (SI), and observed 

 
Figure 4: Testing principle. 

 



CHAPTER I – CONTEXT 

32 

 

through the serial output of the scan chain, Scan-Out (SO). The signal Scan-Enable (SE) selects either 

the test mode or the functional mode for the scan FFs. The controllability and the observability offered 

by the scan chain allow ATPGs to treat sequential circuits as combinational ones since sequential depth 

and cycles are eliminated (Scan FFs are controllable and observable from pseudo-primary 

inputs/outputs).  The patterns generation and the scan procedure then differ according to the fault 

models. While test generation is not useful for the comprehension of the sequel, scan test procedures 

are hereafter detailed according to fault models because our countermeasures to scan-based attacks 

will be also evaluated according to their ability to permit required procedures. 

I.2.a.i Scan test procedure for stuck-at faults testing  

The procedure of stuck-at faults testing consists in 1/ applying the test patterns shifted serially in 

the scan chain at SI pin in test mode (SE = 1), 2/ potentially setting non-latched primary inputs to 

required values, 3/ running the circuit in functional mode (SE = 0) and storing back test responses in 

the scan chain, 4/ collecting the test responses on potential non-latched primary outputs and shifted 

serially out the scan chain at SO pin in test mode (SE = 1) while next test pattern is concurrently shifted 

in the scan chain. In case of multiple scan chains, the process is executed in parallel over the chains. 

Figure 6 describes an example of the test procedure for testing stuck-at faults. In the example, the 

scan chain is composed of 3 scan FFs where 3 test patterns 𝑝1, 𝑝2 and 𝑝3 are applied, and 3 test 

 
Figure 5: Single scan chain. 

 

 
Figure 6: Example of scan procedure for testing stuck-at faults. 
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responses 𝑟1, 𝑟2 and 𝑟3 are collected. The first pattern 𝑝1 is applied with 3 successive shifting operations 

in test mode. The shifting operations are realized at a lower frequency than the nominal frequency to 

avoid over-heating of the circuit. When the test pattern 𝑝1 fills the scan chain, the corresponding 

response 𝑟1 is captured by switching the circuit from test mode to functional mode. The capture 

operation is realized at the nominal frequency of the system. The circuit is then switched from 

functional mode to test mode. The response 𝑟1 is shifted out the scan chain, and concurrently, the next 

pattern 𝑝2 is shifted in the scan chain during 3 shifting operations. The scan procedure follows this 

scheme until all the test responses are shifted out the circuit. 

Formally, by considering a CUT with 𝐹 scan FFs tested with 𝐾 test patterns, each test vector is 

applied after 𝐹 + 1 clock cycles, corresponding to 𝐹 shifting operations and the application of the test 

vector during 1 clock cycle in functional mode. Test responses are concurrently shifted out the scan 

chains, except for the last test response where 𝐹 extra clock cycles are needed to shift out this last 

response. Overall, the number of clock cycles 𝑇 required to test the CUT is given in equation (1): 

𝑇 = 𝐾(𝐹 + 1) + 𝐾            (1) 

This equation can be simplified considering that the number of 𝐹 scan FFs is significantly larger than 

1. In this case, equation (1) becomes: 𝑇 = 𝐹(𝐾 + 1).  

I.2.a.ii Scan test procedure for transition-delay faults testing  

The goal of transition-delay fault testing is to detect slow-to-rise and slow-to-fall faults. In order to 

excite these faults, at-speed transitions have to be achieved within the circuit. The transition is 

performed between an initialization vector 𝑉1 and the resulting vector 𝑉2. Two complementary 

methods are used to test these faults by using scan chains: Launch-On-Shift (LOS) [3] and Launch-On-

Capture (LOC) [4]. In both solutions, the shifting operations to initialize the scan chain with 𝑉1 are 

performed at shift frequency (usually much slower than the nominal clock frequency), while the 

transition to 𝑉2 is captured at the circuit nominal frequency.  

Figure 7 (a) presents the LOS scheme on a circuit having 𝐹 scan FFs, which consists in shifting test 

data during (𝐹 − 1) cycles, launching the transition on the last shift at the nominal frequency, and 

 
Figure 7: (a) Launch-On-Shift (LOS) scheme. (b) Launch-On-Capture (LOC) scheme. 
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capturing the response at nominal frequency as well. In this scheme, vector 𝑉2 is the same vector as 𝑉1 

in which every bit is shifted 1 position (following the order in the scan chain). In the case of LOC scheme, 

the transition is launched on the capture of the previous clock cycle where 𝑉1 is used to exercise the 

circuit. In other words, vector 𝑉2 is the circuit response to vector 𝑉1. Figure 7 (b) details the LOC scheme. 

An alternative method to transition-delay faults testing proposed in the literature is called Launch-

On Extra-Shift (LOES) [5]. As illustrated in Figure 8, the LOES scheme consists in launching the transition 

on an extra-shift after the scan chain is completely filled. For a circuit with 𝐹 scan-length, the LOES 

scheme applies 𝐹 shifting operations (at the shift frequency) in order to initialize the scan chain, then a 

shift operation at the nominal frequency to launch the transition, and finally another clock cycle at the 

nominal frequency to capture the circuit response. Although the LOES test is proposed on some ATPG 

tools, the common solution to achieve high delay fault coverage is to perform the LOS test first, and 

then the LOC test on the faults left undetected by LOS.  

I.2.a.iii Insertion of test points 

Test point insertion is a classical Ad Hoc DfT procedure that consists in adding extra control or 

observation points to the circuit logic in order to improve its testability. It comes in addition to scan 

design if the combinational logic is enough “testable” and helps ATPG to find test patterns for 

uncovered faults. Figure 9 presents the principle of the insertion of test points. Control points consists 

in inserting a gate in the circuit connected to a scan cell. The control point is inserted at a node with 

few controllability in order to set easily the node to a desired state in test mode. Usually, control points 

allows improving the test coverage by controlling the untestable nodes in a circuit. Observation points 

allows improving propagation of test responses to observable points, i.e. scan FFs. Observability 

improvement usually results in reducing the test sequence length (less test patterns for same fault 

coverage). 

Test point insertion does not affect the scan procedure for testing stuck-at faults (detailed in I.2.a.i) 

and for testing transition-delay faults (detailed in I.2.a.ii).  

 
Figure 8: Launch-On Extra-Shift (LOES) scheme. 
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I.2.a.iv Multiple scan chains 

Tests costs, including test data storage and test application time components, increases with the 

complexity of ICs. To overcome the test time issue, multiple scan chains can be inserted within the 

circuit. Figure 10 describes a multiple scan chains architecture (𝐿 scan chains). The test procedure of a 

classical multiple scan design consists in applying the test vectors in the 𝐿 parallel SIs of the CUT. The 

scan chains are filled slice by slice. Slice is the set of scan FFs of the same rank within multiple scan 

chains (see slices 𝑆0 … 𝑆𝑍−1 in Figure 10). During one shifting operation, the tester, named Automatic 

Test Equipment (ATE), sends the content of one slice 𝑆𝑖 to the CUT. Once all the scan chains are filled, 

the CUT runs in functional mode. Each scan slice contains thus a part of the test responses. The CUT is 

switched from functional mode to test mode in order to shift out the content of each scan slice at each 

shifting operations. The responses are then collected by the ATE on the 𝐿 parallel SOs of the CUT. As 

for single scan chain, the next test pattern is shifted in the circuit at the same time as the current test 

response is collected. 

Compared to a single scan chain with 𝐿x𝑍 scan FFs, test time for 𝐿 multiple scan chains of 𝑍 scan 

FFs is thus reduced by a factor 𝐿. However, the multiple scan chain scheme does not reduce the volume 

of data required to test a circuit. In addition, CUTs may have a limited number of inputs/outputs to 

control and observe many scan chains.  

To overcome these issues, the current solution consists in compressing test data before application 

and observation. ATPG generates compressed stimuli to apply to the CUT, and compacted responses 

for future comparison. As illustrated in Figure 10 in the case of integration of test compression 

techniques, ATE stores the compressed test data, reducing the volume of data stored in the tester. As 

for the CUT, a decompressor is implemented in the circuit at the scan chains’ inputs in order to fill scan 

chains with the decompressed test vectors. Before test responses are shifted out the circuit, a 

compressor at the scan chains’ outputs compress them. The implemented decompressor and 

compressor within the CUT reduce the scan pins required to access the multiple scan chains. 

The methods for test compression proposed by Mentor Graphics and Cadence are respectively 

Embedded Deterministic Test [6] and 2D Elastic Compression [7]. For both methods, the decompressor 

is based on a sequential circuit and a XOR network. ATE sends compressed stimuli corresponding to 

the seed to initialize the sequential circuit, either a Linear Feedback Shift Register (LFSR) or a ring 

 
Figure 9: Insertion of control points and observation points on a circuit. 
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generator. The sequential circuits then generate the test vectors filling the scan chains. The test 

responses are compressed in a signature before shifting out at scan outputs. The signature is generated 

with a XOR operations between the responses contained in the scan chains. ATE needs then to 

compare the signatures with the expected ones in order to detect faults within the circuits.  

Last, the scan chains in a single or multiple configuration are accessible through scan pins. During 

manufacturing, these pins are accessible by dedicated test pads placed on the die. Chip packaging 

and/or SoC integration usually move away the external test pins accessible during manufacturing. In 

the first place, test standards have been developed to address the need to access the scan chains after 

IC packaging. We present in the next subsection the three main test standards. 

I.2.b Test standards: JTAG, IEEE 1500 and IJTAG 

The first test standard to be proposed for board testing was the IEEE Std. 1149.1 [8], also known as 

Join Test Action Group (JTAG). Instead of using probes for testing circuit interconnections on a board, 

board’s circuits are equipped with a wrapper and Test Access Protocol (TAP) controller allowing to set 

and collect test data on board interconnections (external test procedure). The standard allows to 

propagate test data to and from a circuit on the board too (internal test procedure). The TAP test 

interface includes four mandatory signals: a serial input, Test Data Input (TDI), and a serial output Test 

Data Output (TDO), a Test Clock (TCK) signal, and a control signal Test Mode Select (TMS); one optional 

signal is possible: Test Reset (TRST). The JTAG interface connects all the components mounted on the 

board into a test daisy-chain as described in Figure 11. Each device contains a TAP controller for 

interfacing internally with the test ports, i.e. a 16-bit Finite State Machine (FSM) driven by the TMS and 

TCK signals generally distributed to all the TAP controllers. The TDI/TDO signals of each device are 

connected together in order to form the daisy-chain connection. Each device also includes  an 

Instruction Register (IR), and Test Data Registers (TDRs): a register to retrieve the component ID code 

(IDCode), a boundary scan register (BSR) for accessing primary inputs and internal scan chains, and a 

bypass register in order to shift data to the next circuit on the board. The JTAG protocol, managed by 

the TAP controller, is based on four basic operations on these registers: shift, capture and update for 

both instruction and data registers. ShiftIR connects the serial pins TDI/TDO to the IR register. 

 
Figure 10: Multiple scan design with the possible integration of test compression techniques. 
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CaptureIR loads a vector into the IR register. UpdateIR makes the instruction contained in the IR 

register the current instruction. ExitIR finishes the executed operation on the IR. The JTAG protocol 

begins by loading the IRs of each device with an instruction to be executed. Some instructions are 

mandatory in the standard (BYPASS, SAMPLE/PRELOAD, EXTEST), but many other custom instructions 

can be added (e.g. INTEST, RUNBIST for execution of built-in self-test procedures). Each instruction 

selects an access to a specific TDR that is managed by the same basic operations as for the IR register, 

ShiftDR, CaptureDR, UpdateDR and ExitDR. For example, the BYPASS instruction connects at least one 

flip-flop called BYP between the TDI and TDO pins in order to make the target device transparent to 

the network. The EXTEST instruction is used to test off-chip circuits and board level-interconnections 

by accessing the Boundary Scan Register (BSR). The INTEST instruction allows a tester to shift test 

patterns into the circuit and collects the test responses, potentially by accessing the internal scan 

chains of the device. Each device has a proper identification code, accessible with the IDCODE 

instruction and stored into the identification register (IDCode).  

IEEE 1500 standard has been developed later to deal with the large number of cores implemented 

in Systems on Chips (SoCs). For saving time during SoC testing, the test vectors cannot be applied only 

serially, using the 1-bit TDI/TDO pins of the JTAG interface. As illustrated in Figure 11 (blue area), the 

IEEE 1500 [9] provides an architecture very similar to the JTAG. The JTAG TDI, TDO and TCK signals are 

represented in IEEE 1500 standard as Wrapper Serial Input (WSI), Wrapper Serial Output (WSO), and 

Wrapper Clock (WCK). IEEE 1500 standard offers a test wrapper around each core. The test wrapper is 

composed of a Wrapper Instruction Register (WIR), a Wrapper Bypass (WBY), a Wrapper Identification 

register (WID), and a Wrapper Boundary Register (WBR), similar respectively to IR, BYP, IDCode and 

BSR registers in JTAG standard. A main difference with JTAG is that the IEEE 1500 has parallel test 

accesses mechanisms for testing cores, providing access to several scan chains and thus shorter test 

times. The test data are sent through the Wrapper Parallel Inputs (WPI) and test responses are 

collected through the Wrapper Parallel Outputs (WPO). Another difference is that the FSM mandatory 

in the JTAG architecture is not included in the IEEE 1500 standard. As a result, the SoC designer has the 

choice to either use the JTAG-TAP controller to manage the test operations on the IEEE 1500 test 

wrapper (as illustrated in Figure 11), or to implement a dedicated IEEE 1500-TAP controller. The TAP 

controller chosen by the designer manages the registers of the IEEE 1500 wrapper by the four 

 
Figure 11: JTAG daisy-chained components and integration with IEEE 1500 (blue area) and IJTAG (green 

area) standards. 
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operations of shift, capture, update and exit. Unlike board testing, where circuits are previously and 

independently tested before bonding on the board, internal cores in a SoC cannot be tested in advance. 

The cores are manufactured all together to produce the SoC and test is mandatory after system 

production. 

In addition to JTAG and IEEE 1500, a recent standard has been set up to deal with the important 

number of embedded instruments within a chip. Embedded instruments are dedicated to testing, such 

as Memory Built-In Self-Test (BIST), or measurement purposes, such as Temperature Monitor and 

Voltage Monitor. The IEEE 1687 [10] standard, called Internal JTAG (IJTAG), allows accessing the 

different instruments through a Reconfigurable Scan Network (RSN). The RSN offered by the IJTAG 

standard is accessible through a specific instruction in the JTAG standard. Concerning the RSN itself, 

the IJTAG defines the Segment Insertion Bit (SIB) in order to give access to a segment of TDRs 

connected to embedded instruments. The tester configures the RSN by choosing the SIB to open, giving 

the access to the desired segment. In the case of the circuit described in Figure 11 (green area), the 

RSN is composed of two SIBs: one given access to a Memory BIST, the other given access to 2 

monitoring instruments.  

Figure 11 illustrates how the three standards can be found interleaved together. Even when IEEE 

1500 and IJTAG infrastructures are implemented in a system, the test interface for an external tester 

is always with the JTAG interface at board level. 

If the JTAG standard was firstly developed for testing purposes, additional features have been 

integrated to the test interface. JTAG interface allows namely to update firmware (e.g. Pay-TV box). 

Field-Programmable Gate Array (FPGA) configuration file (bitstream) can be set through the JTAG 

interface. Finally, the JTAG infrastructure is also used to debug the system in the field. In the next 

subsection, we detail the Design-for-Debug (DfD) approach implemented in ARM designs, as well as its 

integration with the TrustZone technology.  

I.2.c Overview of the Design-for-Debug implemented in ARM designs 

The DfD implemented in ARM designs gives 3 potential debug accesses.  

A first access is the system bus implemented on the SoC, either the Advanced High-performance 

Bus (AHB) or the Advanced eXtensible Interface (AXI). 

A second access is the dedicated debug bus Debug Advanced Peripheral Bus (Debug APB), 

connected to CoreSight components [11]. CoreSight components include mainly Cross Trigger 

Interface, which allows cross triggering at the same time different cores in a SoC (e.g. halt two 

processors), and Embedded Trace Macrocell, which collects debug data of a specific core (e.g. read 

registers content). These components are configured through the Debug APB to set breakpoints to halt 

a core on specific activity, to examine and modify registers and memory, and to provide single-step 

execution. 

In addition to the accesses to the ARM busses, a third potential debug access is connected to the 

JTAG wrappers. In this case, the debug is performed by controlling and observing the internal scan 

chains within the circuits with the JTAG instruction INTEST. 
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While the first two accesses to the system bus AHB or AXI and Debug APB,  provide debugging on 

the executed program (e.g. setting breakpoints, reading the memory, single-step executing), the 

access to the JTAG wrappers provide debug and diagnosis on the design hardware (e.g. reading and 

writing on specific scan FFs). 

Each debug access is not necessarily implemented, this is the choice of the SoC designer to 

implement a debug access. 

In order that an external user access the 3 potential debug accesses, boards based on ARM 

processors implement a non-standard JTAG interface, as described in Figure 12, called JTAG–Debug 

Port (JTAG–DP). The external interface has the same ports proposed by the JTAG, including TDI, TDO, 

TCK and TMS, but with a different TAP controller, called Debug Access Port (DAP). The set of 

instructions is composed of two mandatory instructions in the standard, BYPASS and IDCODE, and 

custom instructions, ABORT, Debug Port ACCesses (DPACC) and Access Port ACCesses (APACC). 

The ABORT instruction is used to clear error in the TDRs, and returns an OK response once the 

clearing operation is achieved. The DPACC instruction is used to configure the JTAG–DP DAP, especially 

to select the path among the 3 possible accesses: system bus (AHB or AXI), debug bus (Debug APB) and 

standard JTAG wrappers. The configuration is saved on the DPACC register. The APACC is used to 

communicate with the selected Access Port (AP). The three APs ensure the data exchange between an 

external tester and the selected debug access. The debug data are stored into the APACC register, 

accessible thanks to the APACC instruction. 

The APs related to the system bus (AHB or AXI) and the debug bus (APB) implement an extension 

to the TrustZone protecting the debug data saved and processed in the Secure Zone. All the data 

passing through the ARM buses AHB, AXI or APB, contain the NS bit introduced by the TrustZone. The 

associated APs control thus if the data comes from Secure Zone or Non-Secure Zone in function of the 

value of the NS bit on the bus. The decision to allow debugging the Secure Zone depends on the value 

of enable signals on the APs. The AHB–AP (or AXI–AP) has two enable signals: a first one, 

global_debug_enable, for enabling completely the debugging access through the system bus, a second 

one, secure_debug_enable, for enabling the debugging access through the system bus for the Secure 

Zone. 

Concerning the debug APB–AP, only one enable signal, debug_enable, controls the debugging 

functions through the debug bus access. This signal enables/disables the debugging access through the 

debug APB either completely, or only on the Secure Zone. According to ARM specifications [11], these 

enable signals for both AHB–AP and debug APB–AP are defined either with fuses, enabling/disabling 

the debugging functions for the entire life of the IC, or with an authentication module, 

enabling/disabling the debugging functions only for authorized users after an authentication protocol. 

The implementation of the enable signals depends on the choice of the SoC designer. 

Concerning the JTAG–AP, no signal controls the debug access as for the two other APs. Since the 

data obtained from the JTAG wrappers are not a path containing the NS bit as for the ARM buses AHB, 

AXI and APB, the debug data obtained through the serial interface TDI/TDO are not differentiated 

between the Secure Zone and Non-Secure Zone. Consequently, the access to the JTAG wrappers can 

be exploited in order to steal confidential data in the Secure Zone.  
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I.3. Conclusion on test infrastructures 

Testing is essential to ensure the product quality, as well as in-field debugging and diagnosis in order 

to provide feedback information during IC life, such as hardware failure or software error. To provide 

testability on a complex system, designers have to insert DfT techniques, such as scan designs, and test 

interfaces, defined in the test standards, JTAG, IEEE 1500 and IJTAG. This way, a tester can test 

individually the components of a system, as well as their interconnections. In addition to the test 

infrastructures, ARM proposes DfD technique in order to provide debugging facilities on boards based 

on ARM processors. Among the debug accesses, the access of JTAG wrappers represents a threat for 

board operating with TEE since the NS bit is not managed for this access. For this reason, a 

countermeasure against attacks exploiting test interfaces has to be implemented, such as the case for 

the project reference board. As detailed in next Chapter II, the test accesses on this board have been 

disconnected. Next chapter details the threats for every circuits implementing a test interface, 

including devices operating with the TEE. 

 

Figure 12: Overview of the non-standard JTAG–Debug Port (JTAG–DP) giving 3 accesses to (1) the ARM 
system bus (AHB or AXI); (2) the ARM debug bus (Debug APB); and (3) the standard JTAG wrappers.  
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II.1. Threat model related to test infrastructures 

Although IC designer needs to implement test infrastructures within the circuit in order to provide 

test, debug and diagnosis facilities, these infrastructures present an important security threat since 

they offer control and observation on the data saved and processed by each component composing 

the IC. Therefore, an unauthorized user may potentially exploit the test infrastructures to carry out 

attacks aiming to steal confidential data (e.g. secret key, configuration files), or to obtain an elevated 

privileged access in the system. As described in Chapter I, the common configuration of the test 

infrastructures is the daisy-chain. The daisy-chain configuration implies another threat coming from 

inside the IC since all devices belonging to the IC are connected together. If a malicious device is 

implemented within the test daisy-chain, this device can interfere with the test data passing through 

itself. This way, the malicious device may steal confidential data from another device in the chain, or 

tamper the test responses of another device in order to give fake test responses to the tester.  

Figure 13 depicts several threats in the test infrastructures composed of the 3 standards (JTAG, IEEE 

1500, IJTAG). This chapter details these threats classed in two main threats. We consider as a first 

threat, an external attacker unauthorized to access the test interface. The second considered threat is 

internal to the circuit with the malicious and counterfeit components integrated to the IC. 

II.1.a External attacker 

As seen in Chapter I, the test interface has many features (e.g. accessing scan chain, configuring 

FPGA, updating firmware, debugging a system, accessing embedded instruments). All these features 

gives to an external attacker numerous and diverse possible attacks. For instance, he/she can exploit 

the observability and controllability offered by the scan chains to steal confidential information. The 

so-called scan attacks have been presented in the literature to steal secret keys of crypto-processors. 

Another attack concerns the Intellectual Property (IP) theft, such as for the IPs contained in the FPGA 

configuration file. Since the test interface also allows to update firmware, an external attacker can 

 

Figure 13: JTAG daisy-chained components (Device 1) a SoC containing an AES crypto-core and a CPU, 
(Device 2) a malicious core, (Device 3) a device with embedded instruments accessible through an RSN, 

and (Device 4) a memory contained a firmware. 
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exploit this feature to update a corrupted firmware. Debugging offered by the test interface can also 

be exploited in order to find a flaw in the system. The last studied attack concerns the IJTAG network. 

An attacker can exploit the hundreds of embedded instruments connected to the reconfigurable 

network in order to overheat the circuit for instance.  We detail each studied attack performed by an 

external attacker in the following sections. 

II.1.a.i Scan attacks 

A main threat coming from the test infrastructures is due to the scan chains, since they offer a 

complete control and observation on the internal states of a circuit. Two types of attacks are possible: 

one exploiting the observation on internal signals, the other exploiting both control and observation. 

The principle of scan attacks by observation is in a first step to apply a desired value to the primary 

inputs. The second step involves switching from functional mode to test mode. In test mode, the 

attacker shifts out the responses and can thus observe intermediate states. These steps are repeated 

until the attacker gets enough information to steal the secret.  

Scan attacks by control and observation differ from the previous ones by using scan input instead 

of primary inputs. The desired value is applied by shifting data on the targeted registers. The rest of 

the attack is the same as the one by observation: switching from functional mode to test mode and 

collecting responses. The analysis of the responses serves to leak secret of the circuit. 

Crypto-processors are the main target of scan attacks, as depicted in Figure 13 with the Advanced 

Encryption Standard (AES [12]). These circuits are dedicated microprocessors for carrying out 

cryptographic operations, in order to transform a plain message, named plaintext, into a cipher 

message, named ciphertext, using a secret key. From a cryptanalysis point of view, even with the 

knowledge of the crypto-algorithm, the attacker is not able to rebuild the plaintext from the ciphertext, 

nor to find the secret key used for the encryption. However, the scan chain implemented in a crypto-

processor can leak the secret key. In literature, several proposal of attacks have been studied on (1) 

block ciphers [13]–[16], (2) cryptography based on elliptic curves [17] and (3) stream ciphers [18]: 

1. Block ciphers are made of an encryption function based on diffusion and confusion properties 

able to encrypt a plaintext block into a ciphertext block using a secret key. The decryption 

function performs the reverse operation to retrieve the plaintext block from the ciphertext. The 

same secret key is used for encryption and decryption, making the block ciphers belong to 

symmetric ciphers. The most used block cipher is AES composed of substitution and 

permutation transformations applied to a plaintext using a secret key. Several versions of the 

algorithms are possible in function of the secret key size: 128, 192 and 256 bits. The key size 

used for an AES cipher specifies the number of repetitions of transformations, called rounds. In 

the AES-128, 10 rounds transform a 128-bit plaintext into a 128-bit ciphertext. After these 10 

rounds, an attacker is not able to retrieve the secret key from the knowledge of the pair 

plaintext/ciphertext. Below 10 rounds of AES transformations, the encryption is not completed. 

The secret key is not enough diffused and confused within the encrypted message that it is 

impossible to retrieve the secret key.  
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Yang et al. [13] apply scan attacks on AES crypto-processors when the round register belongs 

to the scan chain. The scan attack targets the first AES round, when the data are partially 

encrypted. To retrieve the secret key, the attack follows three steps, as depicted in Figure 14. 

Firstly, after a reset of the circuit, a plaintext is applied in functional mode during one clock 

cycle. The round register contains thus the result after the first round. In the second step, the 

attacker switches to test mode in order to collect the value of the round register. The third step 

consists in repeating the two previous steps for a second plaintext differing from the first 

plaintext by changing the least significant bit of any byte the first plaintext. The Hamming 

distance is calculated between the two intermediate results obtained. When the difference is 

equal to 9, 12, 23 or 24, a key byte is uniquely identified. Otherwise, the attacker has to try 

other plaintexts. In average, 32 trials are needed to retrieve one key byte. When one key byte 

is revealed, the attacker chooses pairs of plaintext that differ by another byte until all key bytes 

are identified. Overall, an attacker needs to apply on average 512 plaintexts to retrieve the 128-

bit secret key (32 plaintexts for each byte). The same principle can be adapted to target 

different block ciphers. The same authors propose in [14] scan attacks on Data Encryption 

Standard (DES [19]). 

The previous attack is only possible if the entire round register is accessible by scan chains. 

However, in the case of multiple scan chains, test compression techniques can be used such as 

Embedded Deterministic Test [6] or 2D Elastic Compression [7]. In this case, the 128 bits of the 

AES round register are observable in a compacted version. The previous attack [13] becomes 

inapplicable. Further scan attack has been proposed by Da Rolt et al. [15]. Instead of computing 

the Hamming distance between the 128 bits of the partial encrypted messages such as in [13], 

the principle in [15] is to study the parity of the partial encrypted results. This attack requires a 

preparation consisting in a simulation of the first round of the AES crypto-algorithm for chosen 

plaintexts. For each key byte, all the combinations are tested for chosen plaintexts, and the 

parity of the results after one round is saved into a database. The database is thus composed 

of 16 tables, one table for each key byte. The chosen plaintexts in simulation are applied to the 

circuit for one AES round, and the parity on the intermediate results are observed by shifting 

out the content of the round register. The parity on the partial encrypted results are then 

compared with the parity obtained in simulation for all the combination of key byte. After 

applying some plaintexts, one key byte comes out of the table analysis. In the case where all 

bits of the round register are observable, only 4 plaintexts are required to reveal a key byte. So, 

64 plaintexts (4 times the 16 tables) are required to determine all the key bytes. In the case 

 

Figure 14: Differential scan attack on AES. 
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where a response compaction is used, 24 plaintexts are needed to determine a key byte, i.e. 

384 plaintexts for the entire 128-bit AES key. 

The two previous scan attacks on AES ([13] and [15]) are only based on observation since 

plaintexts are always applied in functional mode. However, a simple countermeasure consists 

in forcing a reset of the round register at the switch to test mode. Ali et al. [16] circumvent this 

simple countermeasure by proposing a scan attack only in test mode. This scan attack uses both 

control and observation offered by the scan chains. Contrary to the previous scan attacks, 

plaintexts are applied by scanned-in bitstream. This attack implies therefore to figure out which 

scan FF corresponds to which input bit of AES, before trying to reveal the secret key. Authors 

propose to follow a protocol in order to determine the scan cells belonging to the round 

register. Once the AES inputs are identified, the same technique as in [15] is applied. Overall, 

this attack requires 375 test vectors to reveal the 128-bit AES key. 

2. Scan attacks are also applied to Elliptic Curve Cryptography (ECC [20]) crypto-processors. ECC 

is an approach to public-key cryptography based on elliptic curves. Contrary to the symmetric 

cryptography where the encryption and decryption are performed with the same secret key, 

such as for block ciphers, the public-key cryptography is an asymmetric cryptography, working 

with a pair of keys. The encryption is performed by a public key, and the decryption by another 

key, named private key. This way, the owner of the private key can disseminate widely the 

public key to several persons. The receivers of the public key can encrypt messages, and only 

the owner of the private key can decrypt them. Concerning ECC cryptography, the encryption 

consists in several iterations where for each iteration a point multiplication on an elliptic curve 

is computed using the public key.  

Da Rolt et al. [17] present a scan attack on ECC. For targeted iteration, the attacker applies two 

distinct points and collects the parity of the results. The choice of the applied pair of points is 

done by simulation: the results parity is pre-calculated according to key value hypothesis. The 

simulation helps to find a pair of points resulting in different parity results according to key bit 

hypothesis. With the pair found by simulation, the attacker retrieves the key bit. This procedure 

is repeated for all iterations to steal the entire key. In practice for 192-bit ECC implementation, 

8 points are required on average to find out the secret. In other words, all the pairs of points 

for each iteration are created from these 8 points. 

3. Streams ciphers are also the target of scan attacks. Stream ciphers belong to the symmetric 

ciphers, such as the block ciphers. The same secret key is used for encryption and decryption. 

The encryption function is based on the XOR bitwise between the plaintext and a pseudo-

random sequence of bits, called keystream. The decryption realizes the XOR operation between 

the ciphertext and the same keystream. The keystream is generated by a Pseudo Random 

Number Generator (PRNG) that takes as inputs the secret key and an Initialization Vector (IV). 

Some stream ciphers rely on LFSR as PRNG for the keystream generation, such as DECIM [21], 

Pomaranch [22], A5/1 and A5/2 [23], W7 [24], and LILI II [25] 

Liu et al [18] present an attack to apply on stream ciphers relying on LFSR. The principle is to let 

the LFSR running during several functional clocks, then to switch to test mode to collect LFSR 

content. After collecting results at different times, algorithms developed by the authors bring 
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to light relations between internal states of LFSR. The attacker is thus able to discover the LFSR 

structure. The number of scan-out vectors required is less than 100 for all the ciphers attacked 

in this paper [21]–[25].  

The only condition to perform the scan attacks is that the external attacker has the access to the 

scan chains of the targeted crypto-processors. The common attack scenario is on a board 

implementing a JTAG interface. The attacker has just to send an INTEST instruction in order to access 

to the scan chains within the circuit. The JTAG interface offers even more possibilities to carry out 

attacks.  

II.1.a.ii Intellectual property theft 

A JTAG feature is the configuration of FPGA. The configuration is done by sending a file called 

bitstream at the FPGA power-up. This file contains confidential information about IPs used in the FPGA 

design. Altera [26] brings out the threat of bitstream theft. The FPGA configuration is done by sending 

bitstream by JTAG port, or the configuration file is contained in a memory. All that the attacker needs 

is an access to JTAG: either he intercepts bitstream sent by JTAG, or he reads the FPGA memory 

containing bitstream by using JTAG interface. After stealing the configuration file, the attacker can do 

reverse-engineering on the decrypted file to steal IPs. 

Altera countermeasure is to encrypt the bitstream. Reverse-engineering on bitstream is not 

possible anymore for an attacker without the knowledge of the encryption key. The user programs the 

FPGA with a chosen key. The key is securely stored in a tamper-resistant memory. User configures 

FPGA with encrypted bitstream. When user wants to configure the FPGA, an implemented AES crypto-

module decrypts the bitstream. 

II.1.a.iii Updating a corrupted firmware 

JTAG interface is also used to upload firmware updates, as depicted in Figure 13 with the device 4. 

This feature brings security issues with the update of corrupted firmware by an attacker. An example 

is the firmware corruption of set-top box [27]. A set-top box allows seeing subscribed TV channels. The 

TV video stream is encrypted by asymmetric cryptography, the decoder decrypts video stream 

according to the user subscription. The private key is stored in a smartcard inserted into the decoder. 

The public key is shared between set-top box and TV provider. 

The attack allows getting all TV channels without subscribing paid service. Using JTAG interface, an 

attacker is able to read the firmware managing decryption TV stream in the memory of the 

microcontroller. He/she can steal information closely related to the private key. He/she can then 

replace the smartcard by a microcontroller configured with the stolen private key and with an 

unlimited access to the TV channels. He/she also replaces the actual firmware with a corrupted one 

including the authorization to access all TV channels. With the private key in possession of the attacker, 

TV provider does not detect the corrupted firmware.  

TV providers have taken a countermeasure against this attack. In the video stream, a command is 

sent to the decoder in order to detect illegal devices connected to the set-top box such as a 
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microcontroller replacing the smartcard. If an illegal device is detected, new keys are used for TV video 

stream decryption and the decoder becomes inoperative. 

II.1.a.iv Exploiting the debug facilities 

An important feature of JTAG interface is debugging. A developer of an application can read and 

write into registers, to dump memory, and to set breakpoints on a program, using the JTAG interface. 

However, a malicious user can exploit the debugging features to find security flaw on a secure system.  

A first example is with first iPhone OS, named iOS. The attacker aims to eliminate restriction and 

security of Apple OS imposed to the user. This kind of attack is called jailbreak. In particular, George 

Hotz wanted to use a different SIM card from AT&T telephone operator. This operator had the iPhone 

exclusivity on American telecommunications network. Hotz relates the attack steps on his blog [28]. 

After phone disassembly, he was able to identify JTAG interface in the baseband module. Baseband 

module controls telecommunications on the phone. Using the debug offered by the JTAG interface, 

the author read in memory the code starting communication services. The code indicates that AT&T 

SIM card is checked during the phone boot, and then only the presence of a SIM is checked every 5 

seconds. Hotz proceeded as follows: (i) after phone boot, a halt command is sent to the processor 

through JTAG interface, (ii) AT&T SIM card is exchanged with one from another telephone operator, 

and (iii) processor exits halted state. Thereby, after a start-up with AT&T SIM card, the phone works 

with another operator SIM card. The JTAG interface helped to identify the security flaw in the code 

starting communication services.  

Debug on Xbox 360 game console also brings to an attack described in [29]. Microsoft DRM protects 

video games by encryption of their content. Before the video game execution, console decrypts and 

executes the game content in a hypervisor mode. Memory space is divided into two regions: one for 

unprivileged code, one for privileged code containing video game code. From the user mode, privileged 

code is read-only and encrypted. The user executes a privileged code by calling the hypervisor function. 

Before executing the program sent by the user, the function checks if the program address is in the 

secure memory region. The JTAG interface allows dumping the memory of the game console in order 

to obtain the assembly code of the hypervisor function call. Some instructions lines of this function are 

presented below:  

13D8 : cmplwi  R0,0x61 

13DC : bge illegal_syscall 

… 

13F0 : rldicr  R1,R0,2,61 

13F4 : lwz R4,syscall_table(R1) 

13F8 : mtlr R4 

… 

1414 : blrl 

These few lines realize the following operations:  
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1. The R0 register contains the program address that the user wants to be executed as privileged 

code. The first instruction cmplwi (Compare Logical Low Immediate) compare the 32 least 

significant bits of R0 to the value 0x61.  

2. If the comparison result is superior or equal, the function “illegal_syscall” is called. The role of 

the two first instruction lines is to verify that the program address (contained in R0) belongs to 

the secure memory region.  

3. After verification, the rest of the code performs the program call. Firstly, an operation rldicr 

(Rotate Left Double Word Immediate then Clear Right) is performed on the 64 bits of R0 and 

the result is saved to the register R1.  

4. The next instruction lwz (Load Word and Zero) loads the program address into the register R4.  

5. The mtlr (Move to Link Register) instruction writes R4 content into the Link Register. 

6. Finally, the branch instruction blrl returns to the Link Register address resulting program 

execution in hypervisor mode.  

The hypervisor function call presents a flaw that can be exploited by an attacker to perform a 

privileged escalation attack. Address checking is done incorrectly: only 32 bits of register R0 are 

checked in cmplwi instruction. However, following instructions operates on the 64 bits of R0. This way, 

an attacker is able to bypass the address checking in order to execute an unprivileged code in 

hypervisor mode. The attacker can thus execute a video game without considering the Microsoft DRM 

protection. As countermeasure, Microsoft updates Xbox 360 to patch this exploit by correcting the 

code of hypervisor function call. 

II.1.a.v Exploiting the IJTAG network 

Another threat from the use of the test infrastructures by an external attacker is the access to the 

IJTAG reconfigurable network connected to hundreds of embedded instruments. As depicted in Figure 

13 with device 3, these instruments have different functions: some instruments store confidential data 

(e.g. SoC configuration), some other instruments are dedicated for in-field testing (e.g. BIST engines). 

These two types of instruments are a target from an external attacker. Firstly, an attacker needs to 

figure out the architecture of the IJTAG network in order to find which SIB(s) to open. Once the IJTAG 

network revealed, the attacker can access to the targeted TDR(s) associated to the security-critical 

instruments. Either the attacker reads out the TDR for instruments storing confidential data, or the 

attacker exploits the in-field test instruments to overheat the circuit. Indeed, BIST engines provide the 

testing of specific modules (e.g. memories) in a SoC, and require a high amount of power. Therefore, 

the BIST engines can be activated at the same time as the circuit operates in order to perform in-field 

testing. Nevertheless, the activation of the BIST engines has to be well scheduled in order to avoid 

overheating. An attacker accessing the TDRs of the BIST engines can bring about the overheating 

making the circuit inoperative.  
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II.1.b Internal attacker  

External attacker has not the only threat using the test infrastructures. The attacker can also be 

within the chip, such as the insertion of a malicious component in the test daisy-chain or counterfeit 

chips due to overproduction by an untrusted foundry. 

II.1.b.i Insertion of a malicious component in the test daisy-chain 

Test infrastructures connect together test wrappers components: on a board for JTAG standard, 

and on a SoC for IEEE 1500 standard. The common connection between these test components is the 

daisy-chain. This way, the data shifting in and out the test daisy-chain pass through every circuits 

belonging to the chain. A SoC designer often uses third-party component whose the detailed 

architecture is unknown from the designer. If a third-party component inserted in the test daisy-chain 

integrate a malicious part within its architecture, it becomes an internal threat for the other circuits in 

the system, such as the device 2 in Figure 13. 

Rosenfeld et al. [30] present this internal threat with a malicious device within a JTAG daisy-chain. 

The malicious component can observe or control other components in the system, as an untrusted 

user accessing the test interface. The attacker can either sniff the test communication in order to steal 

confidential data from a victim device, or tamper the test data sent by a victim device in order to give 

wrong feedback to the tester.  

An attack scenario is for malicious devices set to BYPASS mode. Usually, when the tester wants to 

send data to a target device, he/she firstly sends a specific instruction to the target device, and the 

BYPASS instruction to the others. A malicious device can be designed in order to store a copy of the 

data that are shifted through the BYP register. These data are then sent to the attacker entity in order 

to retrieve the confidential data (e.g. secret keys, configuration file, and firmware). A possible way to 

send the data is to send them to a remote server. 

Another attack is for a circuit designed to modify the test responses of another circuit shifted 

through its BYP register. This way, the tester receives fake test responses from the victim circuit. In 

view of the obtained responses, the tester considers that the tested device presents defects, even if in 

fact the device can be without defects. 

II.1.b.ii Counterfeit components 

Another internal threat comes from the overproduction of untrusted foundry in order to produce 

counterfeit components. Counterfeit represents an important challenge in the electronics industry 

[31]. A counterfeit component is an unauthorized copy, that does not fulfill the specifications of the 

original circuit, and that is distributed in violation of the intellectual property rights of the original 

manufacturer. A SoC designer can integrate a counterfeit component in the design without knowing 

that the component is not the original one. This may result to a decrease of the performance of the 

whole SoC due to the counterfeit component. For this reason, the SoC designer may want to identify 

the counterfeit components possible implemented. A counterfeit component can also receive new 

version of the firmware from the original manufacturer. The original manufacturer may want to avoid 

uploading new version to a counterfeit. A counterfeit component may also embed a malicious circuit 
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in addition of the copy of the original circuit. This malicious component can be integrated into the test 

daisy-chain, able to sniff and tamper the test communication, such as the other internal threat 

presented in this section. 

II.2. Threats throughout IC supply chain 

The various threats can be present at every stage of the IC supply chain. Figure 15 presents the 

different actors in the supply chain and the threats that they represent, based on the testing 

procedures that are performed at each stage.  

The first actor is the IC designer who is in charge of inserting the DfT components into the design, 

such as the scan chains and the test standard interfaces. According to the threat model defined in 

Section II.1, no attack is possible at this level since the circuit is still at the layout stage. However, third-

party component can be inserted into the design at this stage. These components can come from an 

untrusted source, presenting a future threat if it is inserted in the test network.  

After the design and layout stage, the circuit is sent to a foundry in order to produce several 

samples. Before wafer slicing, all the dies are tested independently or in parallel, depending on the 

ATE at disposal. No threat is considered at this stage. An external attacker cannot carry attacks from 

this stage. JTAG wrapper are not inserted yet within the circuits. Additionally, scan attacks on crypto-

cores would be useless at this stage, because an attacker could only steal the key used during the 

manufacturing test, since the key used in mission mode is not configured yet. 

The circuit is then packaged, during the assembly stage. When the SoC is mounted on the board, 

the considered threats are a malicious core inserted in the scan network, as well as the counterfeit 

component due to overproduction from an untrusted foundry. Concerning scan attacks, the key of the 

crypto-core is still the test key, not representing a meaningful secret to steal.  

The next stage consists in mounting the IC on the board by the OEM. The OEM performs the test of 

the IC and sets its configuration. The configuration goes through loading the bootloader and the 

firmware in the memory, configuring the crypto-processor with the key used in mission mode and 

 

Figure 15: IC supply chain with the threats of the different actors using the test facilities. 
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configuring the microprocessors. The threats at this stage are the same as during the assembly stage. 

The secret key of the crypto-core and the configuration files (bootloader, firmware) are configured by 

the OEM, thus not representing a threat at this stage.  

The final stage is when the final user owns the device. The test interface of the device can be used 

to debug the system or perform in-field maintenance. All the studied attacks represent a threat at this 

stage. A malicious user can exploit the scan chain to steal the secret key configured by the OEM, and 

exploit the JTAG features such as debugging, uploading corrupted firmware, or accessing the IJTAG 

network. 

II.3. Attack report on the reference board of TEEVA project 

As seen in this chapter, the test interface presents several threats for secure circuits. This thesis in 

the TEEVA project aims to identify specifically the threats on board operating with TEE. Considering 

the threat model, the security analysis using the test infrastructures has been conducted on the 

reference board of TEEVA project. In this section, we present firstly the discovered attacks on TEE in 

literature, then the reference board operating with TEE. Finally, we evaluate the security using the test 

infrastructures of the reference board. 

II.2.a Discovered attacks on TEE in the literature 

No discovered attacks on a device operating with TEE exploit directly the test infrastructures. 

However, attackers in [32]–[34] found vulnerabilities in the TEE by exploiting flaws in the executed 

code. In order to obtain the program code, one way is to dump the memory using the debugging 

features offered by JTAG to get binary files. Once the binary files obtained, the attacker can use a code 

reverse-engineering tool in order to exploit the potential flaw in the code. 

Attack described in [32] targets HTC mobile phones and it exploits a flaw in the function copying 

data in memory. This attack looks like the attack described for the Xbox 360 game console in [29]. An 

attacker is able to copy data from Secure world to Non-Secure world due to an incorrect address 

memory checking in the function copying data. An attacker can thus exploit this flaw to export out all 

data contained in the Secure world, i.e. all the code related to the TEE.  

In [33], the Secure Monitor Call, the function switching between Non-Secure world and Secure 

world, present a vulnerability for all Qualcomm-based Motorola Android phones. In these devices, a 

user in Non-Secure world is able to execute program contained in a specific Secure region of memory, 

but write operations are prohibitive on the Secure memory corresponding to the region where is saved 

the TEE code. The specific command of the Secure Monitor to execute TEE program from the Non-

Secure world works by copying the read data in Secure region to a Non-Secure region of the memory 

in order to execute it after the copy. Two arguments are passed to the Secure Monitor: the first 

argument is the address to be read in Secure world, the second argument is the address where the 

value is copied. The flaw comes from the second argument; the code does not check that the provided 

address corresponds to a Non-secure region in memory. Therefore, the attacker is able to write the 

read value in a chosen address in Secure region. This way, the flaw is exploited in [33] to overwrite 
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security flags such as bootloader locking. The attacker can thus boot kernel and system images not 

signed by Motorola.  

HTC and Motorola phones are not the only ones presenting flaws in their TEE code. In [34], an attack 

has been presented on Huawei phones. Attacker exploits vulnerabilities on HiSilicon TEE to get in the 

memory the fingerprint image used for authentication, normally not readable for a user in Non-Secure 

world.  

For each mobile phone operating with TEE, the discovered vulnerabilities are no longer exploited. 

The TEE code has been updated with a patch to correct the security flaws. 

II.2.b Overview of the reference board operating with TEE 

The security evaluation has been performed on the reference board of the TEEVA project, HIKEY 

[35] board operating with the Trustonic TEE in parallel to the Android OS. The board implements the 

DfD offered by ARM, described in Chapter I. The experiments have been conducted thanks to the 

debugging materials of Lauterbach. The debugger hardware is the Power Debug USB 2 connecting the 

JTAG interface of the board to the USB of the computer. The user interface on the computer is given 

by the debugger software TRACE32.  

The Lauterbach debugging materials allow detecting the debug accesses implemented on the HIKEY 

board among the potential accesses (system bus, debug bus, JTAG wrappers) offered by the debug 

architecture of ARM. Firstly, the debugger identifies the JTAG–DP DAP with its identification code 

(IDCode), as shown in Figure 16. 

Secondly, the debugger identifies the APs available through the DAP interface. As shown in Figure 

17, two debug accesses are identified: the first one (AP#0) corresponds to the access port for the debug 

APB bus, the second one (AP#1) corresponds to the access port for the system bus AHB. A third access 

(AP#2) is not identified, recognized as unknown with an identification code equal to 0x23000000. This 

AP does not match with the JTAG–AP connected to the JTAG wrappers, which has normally 0x10 on 

the Least Significant Bits of the identification code, according to the ARM specifications [11]. 

The DfD implemented on the HIKEY board allows debugging the system through the ARM buses 

(either AHB or debug APB) by setting breakpoints on the executed code, by dumping and modifying 

the memory, and by reading the processors registers. The HIKEY board being a development board, 

 

Figure 16: Detection with TRACE32 of the JTAG–Debug Port (DP) implemented on the HIKEY board. 

 

 

Figure 17: Detection with TRACE32 of the Access Ports (APs) implemented on the HIKEY board. 
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the enable signals for the debugging functions on the Secure world are hardwired to be always 

enabled. This way, a developer of a TA can debug his application uploaded on the reference board 

running in the TEE. 

II.2.c Security analysis through JTAG access on the reference board 

The discovered attacks on TEE are based on software flaws in some critical program of the TEE. 

Therefore, these attacks target specific devices presenting the identified flaw. In addition, when a flaw 

is identified, the mobile manufacturer patches the TEE code with an update in order to secure its 

devices.  

Contrarily to these attacks targeting software flaws in specific TEE implementation, we analyze the 

security through the test infrastructures in a general TEE implementation. A main threat from an 

external attacker using the test interface is the scan attacks, such as described in Section II.1. However, 

the access to the scan chains possible with the JTAG wrappers are not implemented in the reference 

board of the TEEVA project, or at least there is no connection with this access port. Since the scan 

chains are required for post-manufacturing testing, it is very likely that the connections to the JTAG 

wrappers (and thus to the scan chains) are disconnected from the external JTAG interface after 

manufacturing testing. It is a simple countermeasure to prevent against scan attacks. Disconnecting 

the test accesses after manufacturing is the most common industrial practice. An issue with this 

technique is in-field debug and diagnosis offered by the scan chains are not possible anymore, implying 

maintenance issues during the IC life. Moreover, this countermeasure still presents a security threat 

from probing techniques. Indeed, an attacker able to reconnect the access to the scan chains can then 

perform scan attacks in order to steal secrets within the circuit. The probing attacks require 

nevertheless specialized lab materials in order to identify the disconnected signals and to probe them. 

These types of attacks are out of the scope in this project, and have not been conducted on the 

reference board. 

Assuming the probing on the scan chains of the reference board, an attacker could scan out the 

content of the processor’s registers during a TA execution. Considering a TA executing an AES 

encryption, the attacker could target the execution of the first AES round after identifying the first 

round among the whole TA execution. The first round could be identified either by code reverse-

engineering of the TA, or by analyzing the power consumption/electromagnetic emission on the 

reference board during the TA execution. Once the first round identified, the attacker could launch the 

TA and he/she could switch the circuit from functional mode to test mode after the first AES round. In 

test mode, the attacker could scan out the content of the processor’s registers, and he/she could thus 

carry out the scan attack. 

This attack scenario shows that scan attacks are a threat for boards operating with TEE, such as for 

every circuits embedded a secret. A countermeasure needs to be implemented. The reference board 

disconnects of the test accesses, as countermeasure. This simple solution prevents against scan 

attacks, but it still represents a risk against an attacker able to reconnect the scan chain accesses.  
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II.4. Conclusion on attacks using test infrastructures 

Testing is essential to ensure the product quality, as well as in-field debugging and diagnosis in order 

to provide feedback information during IC life, such as hardware failure or software error. Test 

infrastructures are thus mandatory to deals with complex systems on board and on chip. However, as 

detailed in this chapter, attacks are possible exploiting the test interface by considering both external 

attackers as well as internal attackers.  

For instance, devices implementing cryptographic primitives can be the target of scan attacks, 

where the content of the scan chains are observed in order to retrieve data strongly correlated to the 

secret key, thus allowing discovering the key itself. In addition to the test functions provided by the 

scan chains, test interface includes additional features, such as debugging, updating firmware or 

configuring FPGA. A malicious user can exploit these features to debug illegally the system, to update 

a corrupted firmware, and to steal IP contained in the FPGA bitstream. Considering internal attacker, 

the daisy-chain fashion in test infrastructures is also a security threat. Indeed, a malicious component 

is able to sniff and to tamper test data shifting through its architecture.  

For these reasons, every ICs where the security is critical, such as devices operating with TEE, need 

to implement countermeasures. A simple countermeasure, implemented in the project reference 

board, consists in disconnecting the test accesses in order to avoid any attack through test 

infrastructures. However, an attacker able to reconnect the test accesses can easily circumvent this 

countermeasure. Moreover, test, diagnosis and debug are not possible anymore during IC life. Further 

countermeasures have been developed in the state-of-the-art to ensure security on the test 

infrastructures without affecting the test, diagnosis and debug facilities.
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III.1. Classification of the existing countermeasures 

In this chapter, we survey countermeasures that have been proposed in literature and in industry. 

As depicted in Figure 18, we classify them in four main groups: scan chain avoidance, secure scan 

designs, secure test access and detection of illegitimate behavior. Scan chain avoidance ensures the 

protection by limiting or even disconnecting the test accesses. Secure scan designs ensure protections 

by modifying the scan network, either on scan chains or on RSN defined in IJTAG standard. Secure test 

access ensures a secure protocol to access the test interface using a password, a challenge/response 

or the encryption of the test communication. Solutions detecting illegitimate behavior analyze the test 

operations in order to recognize the use of the test interface by an attacker. 

According to the attacks presented in Chapter II, each countermeasure is analyzed with respect to 

a protection against:  

(i) an attacker carrying out scan attacks [13]–[18],  

(ii) an attacker exploiting JTAG features (e.g. stealing IP design [26], updating a corrupted 

firmware [27], exploiting debugging facilities [28][29]), 

(iii) users with a restricted access to the test interface (e.g. fine-grained access to specific 

instructions, to specific memory areas, to specific cores, and to specific instruments in IJTAG 

network),  

 

Figure 18: Classification of the countermeasures against the attacks using the test interfaces. 
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(iv) an attacker able to probe the test signals within the circuit, requiring high resources to 

locate and probe precisely the test signals on the layout of the circuit,  

(v) a malicious component integrated in the test daisy-chain [30],  

(vi) counterfeit components due to an overproduction from an untrusted foundry [31]. 

The first four points represent the threats from an external attacker, while the two last points the 

threats from an internal attacker. We evaluate the existing countermeasures against these six types of 

attacks. 

In the evaluation of the state-of-the-art countermeasures, we also consider the costs in terms of 

testability and applicability. Countermeasures applied to the test infrastructures can have an impact 

on the testability, considering the additional test time due to the protection, the potential diminution 

of the fault coverage, the potential limitation on debug and diagnosis features, and the modification 

of the test procedure. In addition to the costs on testability, the integration of the countermeasures 

into an original circuit implies area and power consumption overheads, modification of the insertion 

flow of DfT, applicability on non-modifiable circuit, and sharing method of the possible embedded 

secret in the circuit to the authorized tester.  

We provide in this chapter a presentation of each countermeasure in the stat-of-the-art regarding 

the classification into the four main groups (avoiding scan chains, secure scan design, secure test 

access, and detection of illegitimate behavior). Moreover, we evaluate the existing solutions regarding 

the ensured security and the costs on testability and applicability. 

III.2. Scan chain avoidance 

The first class of countermeasures, named scan chain avoidance, limits or even the test accesses to 

the scan chains. Two solutions are presented thereafter. 

1. Blowing fuses is the most common solution in industry, consisting in disconnecting the test 

interface after manufacturing. For instance, this solution is implemented in the reference board 

in the TEEVA project described in Chapter II, preventing the threats using the test interface. The 

main issues are that the maintenance in the field is not possible anymore, and this solution is 

vulnerable against an attacker able to probe on the disconnected test access.  

2. Built-In Self-Test, commonly named as BIST [36], is an alternative DfT technique to the scan 

chains, limiting the test interactions between the tester and the circuit. A test pattern generator 

based on PRNG is used to generate the test vectors. An output response analyzer generates a 

signature from the test responses. Tester has limited control and observation on the scan 

chains: he/she shifts the seed of the PRNG at SI in order to launch the test pattern generator, 

and he/she collects test signatures at SO in order to compare with expected ones. 

BIST prevents an attacker to apply chosen test patterns and to observe the whole test 

responses. In the same way, a malicious component in the test daisy-chain can only sniff the 

test signatures. The security level ensured by BIST technique depends on the level of control on 

the test sequence generation (e.g. dynamic or static seed for the PRNG, control on the 

generated sequence size) and the level of the test responses compaction (e.g. spatial or 
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temporal signature generation). Less control and observation are offered to the external user, 

more BIST technique is secure against scan attacks. 

However, the opposite statement is applied for guaranteeing diagnosis. In order to perform 

diagnosis, the tester must be able to either control the BIST sequence applied (seed and 

sequence size), or to observe signature of specified group cells. In the first case, tester can apply 

shortcut test sequences in order to determine which test vector results a faulty response. In 

the other case, a mask on a group of scan cells is applied before signature generation, and thus 

tester can determine which group of cells is faulty. In all cases, diagnosis requires either more 

control or more observation, decreasing the security level ensured by the solution. Concerning 

fault coverage, an analysis is performed by the ATPG in order to determine the best seed 

covering a maximum of faults in a minimum test time. However, it is not always possible to find 

a sequence achieving the same fault coverage achieved than classical scan design. The 

implementation of the test pattern generation and the output response analyzer also implies 

an area and power consumption costs. These costs can be reduced when BIST is implemented 

on crypto-processors, such as an AES block cipher. The test of circuits implementing 

cryptographic algorithms is effective even by using a short pseudo-random sequence. Indeed, 

possible errors are easily propagated through typical operations involved in such encryption 

algorithms thanks to their confusion and diffusion properties [37] and [38]. Doulcier et al. [39] 

present a BIST implementation on AES crypto-core testing all stuck-at faults by executing 2600 

rounds. Area cost represents an overhead of 507 GE corresponding to an increase of 3.31% 

compared to the original core.  Compared to a JTAG controller of 180 GE, this cost represents 

an overhead of 282%. 

Scan chain avoidance is the class of countermeasure limiting test, diagnosis and debug facilities, 

implying potential troubles. This way, other classes of countermeasure have been developed in 

literature to preserve test, diagnosis and debug.  

III.3. Secure scan design 

The second class defined as secure scan design gathers the countermeasures protecting the scan 

chains and the ones protecting the RSN defined in the IJTAG standard.  

III.3.a On scan chains 

The protection ensured on the scan chains implies some modifications on the scan architecture in 

order to insert some components securing the scan chains. We present thereafter the proposed 

solutions in literature, and evaluate the ensured security and the costs. 

1. Mirror-Key Register [13] solution aims to protect crypto-processors against scan attacks. During 

the functional mode of the crypto-processor, the scan-in and scan-out pins are nonfunctional, 

preventing to shift in and out the scan content. To switch to test mode, a global reset has to be 

applied. In test mode, the crypto-processor loads a test key from a mirror-register, different 
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from the secret key used in functional mode. If an attacker tries to carry out scan attacks in test 

mode, he is only able to retrieve the test key, not compromising the security of the system. 

This solution aims to protect only against scan attacks on crypto-processors. Other threats are 

not considered.  

Considering the impact on testability, the countermeasure preserves test, diagnosis and debug 

without additional test time, and it does not reduce the test coverage of the original circuit. 

However, the added mirror-register containing the secret key of the crypto-processor cannot 

be tested, without compromising the security. In-field debug is still possible with this solution, 

but it requires a global reset of the system before any debugging operations. Concerning the 

applicability of the solution, the integration in the DfT flow involves some modification on the 

FSM managing the test operations in order to support the mirror-key register architecture. 

Authors evaluate the area cost of the solution on an AES crypto-processor to 412 Gate 

Equivalent (GE), representing an overhead of 229% compared to a JTAG controller of 180 GE. 

2. Obfuscation on scan design [40] consists in replacing the original scan FFs forming a simple shift 

register into a complex LFSR. The secret shared with the tester is the combinational and 

sequential function of the LFSR. Authors study LFSR structure in order to build a secure 

architecture difficult to identify for an attacker. Authors state that adding inverters and at most 

one dummy FF within the scan design helps to make the LFSR structure difficult to identify. The 

tester has thus to be aware of the specific hidden procedure and test data has to be processed 

before being compared to expected data.  

This solution is based on the assumption that the attacker has no way to get the information 

on the scan chain’s implementation, preventing against scan attacks. However, such ‘security-

by-obscurity’ approach goes against Kerckhoffs’ doctrine and is not considered as strong.  

Test, debug and diagnosis are preserved without constrains. However, the secure LFSR 

structure proposed by the authors requires the insertion of dummy FFs in the scan chain, 

implying a test time and area costs. These costs depend on the number of added FFs and XOR 

gates in the scan design. No experimentations have been conducted to evaluate the overheads. 

The LFSR insertion within the scan design also requires an important post treatment on netlist 

file after regular scan insertion by the synthesis tool, significantly impacting the DfT flow. 

3. Scan Enable Tree [41] propose to check the Scan Enable (SE) integrity in order to control the 

scan chain activity. Indeed, the SE signal, which drives each scan FF, is built up into a buffers 

tree during design synthesis. This tree is driven by the SE signal issued from the test interface 

and tree branches drive different portions of the scan path. The proposed protection consists 

in checking that the SE signal is not enabled, while scan operations are not allowed. If an illegal 

shift operation occurs, a controller detects it thanks to the tree configuration, and resets thus 

the whole system. 

This countermeasure aims to protect only against probing, others threats are out-of-the-scope 

in this solution. The protection prevents an attacker probing the SE of specific FFs to shift out 

their content. Since this solution considers an attacker able to probe specific signals on the 

circuit, the level of protection relies on the reset efficiency. Indeed, in addition to probe on SE 
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signal, the attacker could also interfere with the reset signal in order to counteract the action 

of the controller. Therefore, the controller has to perform a “robust” reset in order to reset the 

system even under stress conditions.  

Concerning the costs to implement this solution, experimentations have been conducted on a 

DES crypto-processor with the implementation of a scan enable tree composed of 8 branches. 

Some additional patterns are needed to test the tree controller, introducing a test time 

overhead of 1% compared to the original test procedure. The implementation of the security 

controller of the scan enable tree represents an area overhead of 36% compared to a JTAG 

controller of 180 GE. Authors indicate without giving numerical results that the solution induces 

no significant power consumption increase. Concerning the regular DfT flow, SE signals are 

connected automatically to the scan FFs during design synthesis. The solution is thus performed 

after design synthesis, implying efforts on the DfT flow to integrate the solution. The designer 

has to modify the netlist file to connect manually the SE branches of the tree to the controller. 

4. Spy cell [42] is another countermeasure aimed to protect against probing on SE signals, 

consisting in the insertion of “spy cells” within the san chain. A spy cell is a scan FF, which has 

its functional input set to a fixed value. Reading an opposite value on the FF output indicates 

the activation of the scan operations. A controller detects if an illegal shift operation occurs, 

and applies a global reset to the circuit to counteract the probe attack. 

As the previous countermeasure, this solution protects only against probing attacks, and the 

security level depends on the reset efficiency.  

The costs have been evaluated on a DES crypto-processor with the insertion of 6 spy cells within 

the scan chain. This way, the test time increases by 5% due to extra patterns needed to test the 

spy cell controller, and due to extra shifting operations introduced by the added scan FFs. The 

6 spy cells and their controller results to an area cost of 27% compared to a JTAG controller of 

180 GE. Concerning the power consumption, authors indicate a marginal increase compared to 

the power consumption of the original DES circuit. Concerning the DfT flow, the designer has 

to do an effort to adapt the synthesis command files in order to insert the spy cells. 

5. Scrambling [43] is another technique against probing attacks, consisting in changing 

dynamically and randomly the order of the scan FFs in the scan chain. The scan path is divided 

into segments, dynamically re-ordered during functional mode. While in test mode, the scan 

path is in a fixed configuration in order to perform the test procedure. 

Attackers probing signals on the scan chain during the functional mode of the circuit is not able 

to analyze the scanned-out data since the order of scan FFs changes randomly. Concerning the 

observation of the scan content in test mode, an attacker without the knowledge of the 

scrambling order is not able to reorder the scan output bitstream. However, the scrambling 

order is fixed in test mode. This protection is thus not sufficient to protect against scan attacks, 

since scan attacks are based on a differential analysis of the obtained test responses.  

Test time and test generation effort are not affected by scan chain re-ordering. Indeed, the 

segmentation of the scan path is transparent for ATPG tool, test is performed as if there are 

only one scan path. Debug and diagnosis are preserved, but a management policy is needed to 
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share the scrambling order in test mode to the authorized tester. Scrambling method also 

induces additional power consumption due to multiplexer commutations. Experimentations 

have been conducted on a DES crypto-processor with a scrambling between 6 segments of scan 

chain. The power consumption increases by 7% for a DES encryption. Area increases by 156% 

compared to a JTAG controller of 180 GE. 

6. Test key in scan chain [44] is an authentication method consisting in shifting a test key within 

the scan chain. The test key is inserted into the test patterns sent to the circuit. Some scan FFs 

are added to the scan chain, and are dedicated to receive the test key. A controller checks the 

value contained in the specific scan FFs to control if the shifted test key is correct. A LFSR 

generates a pseudo-random sequence to alter the test responses when the wrong test key is 

shifted into the dedicated scan FFs.  

The threat model for this countermeasure includes only the scan attack performed by an 

external attacker. The level of security ensured by this solution relies on the key size, and on 

the randomness added to the response. An attacker can circumvent the protection by 

intercepting the test key, or by corrupting the pseudo-random sequence generated by the LFSR 

(e.g. corrupting the seed, stressing the device).  

Test, debug and diagnosis are preserved, but test time is affected by the additional scan FFs in 

the scan chain. Authors evaluate the test time cost on S35932 benchmark circuit for a test key 

on 80 bits, resulting to an increase of 5.6% compared to original test time. The area cost is 

evaluated on the same circuit, S35932 benchmark, but for a key on 10 bits, resulting to an 

increase of 0.8% compared to the original circuit area. The area evaluation does not correspond 

to a realistic implementation, since the security ensured by a key on 10 bits is very weak. This 

method requires establishing a key management policy in order to share the test key of the 

circuit to the authorized users. The insertion of the additional scan FFs also implies to modify 

the DfT flow. However, the authors have developed tools in order to automate the whole 

process. 

7. Secure comparator [45] is based on the embedded comparison of the test responses inside the 

CUT. When the test responses are shifted out the scan chain of the CUT, the tester scan in the 

CUT at the same time the expected test responses using an additional test pin. A comparator 

implemented at the CUT scan output compares the actual test responses with the expected 

ones furnished by the tester. The tester can only observe the comparison result. 

The scan content is therefore not observable, preventing scan attacks. A malicious circuit inside 

the chip cannot also sniff the test communication since the comparator is implemented at CUT 

scan output. Others threats are not considered in this countermeasure. 

The implementation of the secure comparator is applied after the insertion of the scan chain. 

Therefore, the solution does not affect the standard DfT flow and can be applied on a non-

modifiable component. However, the test procedure is modified since the expected test 

patterns have to be shifted in the CUT. Moreover, a specific test sequence has to be applied in 

order to test the stuck-at faults within the comparator. Considering a circuit composed of a 

number #𝑆𝐹𝐹 of scan cells, the additional test sequence implies a test time overhead of 
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6. (#𝑆𝐹𝐹 + 1). The area cost is evaluated for a circuit with 32 scan chains of 10 000 FFs. The 

associated comparator is composed of 32 FFs, 98 combinational gates, 64 buffers and 14-bit 

counter. The main issue with this technique is due to the debug and diagnosis limitations. Since 

only the result of the comparison is observed, the identification of the faults within a circuit is 

more difficult. The diagnosis is possible by trying to compare on-chip the obtained test 

responses to the possible faulty ones, implying additional time to diagnosis.  

The presented countermeasures deal with the protection on a simple scan design, the scan chain. 

Nevertheless, scan chain can be organized in a scan network defined in the IJTAG standard. The next 

section deals with the countermeasures proposed for securing RSN. 

III.3.b On Reconfigurable Scan Network (IJTAG) 

IJTAG scan network is a valuable tool for accessing on-chip instruments during test, diagnosis and 

debug. RSN must implement protections for security-critical instruments such for the BIST engines, 

potential source of overheating in the circuits, or for instruments containing secret information. For 

accessing the security-critical instruments, an attacker needs firstly to discover the RSN architecture in 

order to open specific SIBs before performing the attacks. Some countermeasures [46] and [47] aim to 

make difficult the exploration of the scan network for an attacker without any knowledge on the 

architecture. Another countermeasure [48] relied on an authentication protocol to access specific 

instruments. 

1. Locking Segment Insertion Bit (LSIB) [46] is a modified SIB that can only be opened when pre-

defined values, corresponding to a key, are present in particular bits in the chain. The security 

level resides in the key size and the number of LSIB inserted within the RSN. Indeed, an attacker 

without the knowledge of the architecture has to try the different combinations of the key in 

order to unlock the SIB and access the targeted instrument. The same authors have proposed 

in [47] to introduce trap bits in the scan network in order to reduce the effectiveness of brute 

force attacks. When a wrong value is written on a trap bit, the LSIB is totally locked and only a 

global reset can set the LSIB effective again.  

The considered threat model is an attacker exploiting the IJTAG network. These 

countermeasures are based on the assumption that the attacker has no way to get information 

on the scan network implementation However, this obfuscation approach is not considered as 

strong protection, according to the Kerckhoff’s doctrine. 

Authors propose to protect instruments with a 48-bit key. Test time cost represents thus 48 

additional clock cycles for each LSIB implemented. Concerning area cost, it is evaluated in [48] 

on the t512505 benchmark to an overhead from 0.07% for protecting one instrument with a 

48-bit key to 16.2% for protecting 256 instruments. An issue not mentioned by the authors 

concerns the sharing of the key required to unlock the protected instruments to the authorized 

users. 

2. Authentication protocol to access instruments [48] is a method consisting in sending a 

challenge/response in order to unlock SIB associated to security-critical instruments. The 

challenge/response is based on keyed-hashes: (i) device sends a random value as challenge, (ii) 
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user responds with the hash of the challenge and the secrets of each protected instruments 

wanting to unlock, and (iii) same operation is done by the device to compare with the received 

response. The random value used as challenge avoids replay attacks on the authentication 

protocol. 

This solution protects against an attacker exploiting the IJTAG network. This countermeasure 

does not protect against other threats. 

The authentication module requires the implementation of a TRNG and a hash engine. The 

chosen hash engine is SHA-3. Concerning TRNG implementation, authors propose to re-use a 

TRNG available on the chip if possible. Otherwise, a very cost-efficient implementation is 

preferred such as TRNG based on ring oscillators. Area cost is evaluated on the t512505 

benchmark. Protecting 1 instrument represents an overhead of 2.8%, while protecting 256 

instruments represents an overhead of 4.9%. Compared to the countermeasures [46] and [47], 

this solution is more dedicated to protect several instruments. Test time is increased by the 

number of cycles required to communicate the challenge/response, and to open authorized 

instruments, representing the number of protected SIB and 532 clock cycles. Concerning the 

time to compute the hash function, authors assume that the hash engine offers sufficient 

throughput to compute the hash computation during the shift operations. This assumption are 

verified during authors’ experimentations. The choice for key management and the potential 

use of a server storing the secrets is left to the designer. 

The presented secure scan designs on IJTAG network protect specifically against an attacker 

exploiting the RSN, while the secure scan designs applied on scan chains protect either against scan 

attacks, or against probe attacks. To protect against the other considered threats, such as the 

exploitation of the JTAG features (e.g. debugging, uploading of firmware) and the counterfeit and 

malicious devices potentially inserted within the circuit, the countermeasure has to be coupled with 

another class of countermeasure, named secure test access. 

III.4. Secure test access 

Secure test access offer protections against another threat model compared to secure scan designs 

countermeasure. Moreover, this class of countermeasures deals with some troubles considering the 

modification of the scan structure. Indeed, if a third-party IP, legacy core or hard core is inserted in a 

design, the designer cannot modify the scan design to secure them. Even when the scan chains of the 

circuit are modifiable, the proposed solutions require usually efforts in the DfT integration with the 

modification of the netlist file or the synthesis command. A designer can thus privilege secure test 

access. Nevertheless, secure test access countermeasures also imply a tradeoff between several 

aspects: security level, method used for authentication, area cost, test time cost, and key management 

policy. These solutions do not reduce the fault coverage on the original circuit. However, the additional 

secure elements introduce new faults into the design needing to be tested.  

Two different authentication methods have been proposed in the literature to ensure a secure test 

access, using either a password, or a challenge/response protocol. In addition to the authentication 
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methods, the encryption of the test communication has also been studied. We present thereafter both 

authentication methods and the encryption of the test communication, applied on the test standards 

(JTAG, IEEE 1500 and IJTAG). 

III.4.a Password 

The secure test access based on password allows protecting against a malicious use of the test 

interface, while preserving the test features for authorized users knowing the password.  

1. Password on JTAG standard has been proposed in [49] to allow only users knowing the 

password to execute the JTAG instructions set. Two additional instructions, named LOCK and 

UNLOCK, ensure the lock and unlock of the TAP interface. When JTAG wrapper is locked, every 

instructions sent to the IR are decoded as BYPASS instruction (except the UNLOCK instruction). 

An authorized user has to shift the password after sending the UNLOCK instruction in order to 

execute the JTAG instructions. The password shifted during the UNLOCK instruction is 

compared with the one defined during the LOCK instruction. 

The user authentication with password on the JTAG interface ensures the protection against 

scan attacks and the exploitation of JTAG features.  

Concerning testability, the test of the added register is not specified, but test, debug and 

diagnosis capabilities are preserved. Nevertheless, before sending any test operations, the user 

needs to be authenticated, implying a test time overhead. Authors present experimentations 

with a password on 32 bits. Test time overhead represents 32 test clock cycles. The area cost is 

evaluated to 144% compared to a JTAG controller of 180 GE. 

2. Password on IEEE 1500 standard [50] proposes a secure test wrapper on cores in a SoC. The 

secure test wrapper controller locks core’s scan chains inputs and outputs by adding an AND 

gate with an Unlock signal set to ‘0’ value until tester authentication. It also controls the 

instruction decoder: all instructions for the core are BYPASS until the tester authentication. The 

authentication consists in shifting a password. Each protected core has a unique password 

generated thanks to its boundary scan cells. Indeed, authors propose to modify the BSR into a 

LFSR. During the authentication phase, the LFSR seed is applied to the BSR during a number of 

clock cycles pre-defined by the designer. 

The considered threat model are the scan attacks, and the exploitation of the JTAG features. 

The protections against these threats models are limited to the protected cores.  

This solution requires some modification on IEEE 1500 standard. Authors choose an 

implementation of password on 256 bits. This cost represents an increase of 20% compared to 

a JTAG controller of 180 GE. Test time increases with 256 clock cycles required to shift the 

password. Authors propose a special test sequence to cover all stuck-at faults introduced by 

secure test wrappers. 

The security level of the secure scan access using a password relies on the password size as well as 

the non-divulgation of the password to an attacker. The main issue with the password authentication 

is the share and the storage of the password to authorized users. The password has to be securely 

shared and stored, otherwise the security is compromised. However, authors in [49] and [50] do not 
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mention how to establish a secure key sharing. Concerning the password storage in [49], a register is 

dedicated to store the password, but no details are given about secure storage. In [50], the storage of 

the LFSR seed is not specified neither. Since the protection is based on the non-disclosure of the 

password, the password or the seed used to generate the password must be contained in a secure 

non-volatile memory. Another issue with the use of password is the replay attacks. In the case of an 

attacker able to sniff the password during the authentication of an authorized user, the attacker can 

send the same password to unlock the secure test access, circumventing the protection. For this 

reason, the protection is not a suitable against malicious component within the chip, able to read the 

password when it is shifted in the test daisy-chain.  

III.4.b Challenge/Response  

Secure test access using challenge/response protocol can ensure user authentication more secure. 

Indeed, randomness are added in the challenge/response protocol to avoid replay attacks. In addition 

to user authentication, some countermeasures also propose to authenticate the device in order to 

detect counterfeit components. 

1. Challenge/Response based on keyed-hashes [51] propose to protect the JTAG instructions with 

a distinct key on each protected instruction. To use the protected instruction, tester has to send 

a challenge/response with the hashed secret key. The protocol is as follow: (i) when the tester 

sends a request to protected instruction, the device reads the associated key from a secure 

non-volatile memory and the device sends to the tester a random number, (ii) the tester 

generates a challenge based on a hashed message of the random number and the secret key, 

(iii) the device compute the same hash message, and (iv) if the comparison between the 

challenge and the hash computation, the device unlocks the protected instructions and notifies 

it to the tester. A protected instruction is unlocked until a reset or a power-off of the circuit. 

The hash computation is performed with the SHA-256 algorithm, and the random number is 

generated thanks to a True Random Number Generator (TRNG) based on rings oscillators.  

The considered threats with this countermeasure are an external attacker wanting to access 

the scan chains or other JTAG features. This solution proposes also a fine-grained access on the 

instructions. Indeed, since each protected instruction is unlocked using a dedicated secret key, 

a user can only be allowed to access a limited set of protected instructions. 

The area cost of TRNG, SHA-256 and secure memory is not specified by the authors, but Da Rolt 

et al. in [52] evaluate this solution to an overhead larger than 500% compared to a JTAG 

controller of 180 GE. Test, debug and diagnosis are preserved, but additional test time is 

required for the test operations. The test time overhead is due to the shifting of challenges and 

responses on 128 bits, and the SHA-256 computation. This test time cost cumulates for each 

unlocked instructions. Concerning the key management, authors indicate that the test/debug 

software delivered to the authorized users contains the keys to unlock the protected 

instructions.  

2. Challenge/Response based on symmetric cryptography [53] present a user authentication with 

a challenge/response protocol using AES cryptography and SHA-1 hash function. The 
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authentication operates in two phases: (i) credential issue phase consisting in giving user 

accreditations after a verification of user identity by an online server, (ii) user authentication 

phase where the user unlocks the JTAG features using his/her accreditations obtained in the 

first phase. The challenge/response protocol establish a secure communication between the 

tester and the device thanks to a TRNG in order to have randomness in the challenge/response 

pairs, to a SHA-1 module in order to compute the hash of the secret key used for encrypting 

the communication, and to an AES crypto-processor for the encryption of the 

challenge/response communication.  

When the JTAG interface is locked, all the instructions are decoded as BYPASS instruction, 

preventing an external attacker to carry out scan attacks, and to exploit JTAG features. 

Moreover, according to the accreditations given by the server to a user, the solution permits to 

have a fine-grained access to specific instructions. 

Adding AES crypto-core, SHA-1 module, TRNG and an authentication controller implies an area 

cost of 2246% compared to a JTAG controller of 180 GE. Test time cost is composed of 

additional time to shift challenge/response, additional time to encrypt and additional time to 

compute hash. Concerning key management, an online server is only needed for the credential 

issue phase. Once this phase is achieved, authorized users can unlock JTAG offline. This method 

simplifies key management, requiring an online connection only one time. 

3. Challenge/Response based on asymmetric cryptography [54] propose a user authentication 

using a challenge/response protocol based on ECC algorithm. The JTAG interface is locked, i.e. 

all instructions are decoded as BYPASS, until the authentication of the user. An authorized user 

is authenticated by a server owning the secret keys embedded in the protected devices and the 

user accreditations in a database. In addition to ECC crypto-core, a TRNG is implemented to 

include randomness in the challenge/response pairs in order to avoid replay attacks.  

The threat model considered in this countermeasure is against an external attacker wanting to 

carry out scan attack or exploiting the JTAG features. To ensure a sufficient security level, ECC 

operations are computed on 320 bits.  

The area cost to implement ECC crypto-processor and TRNG is evaluated in [52] to an overhead 

superior to 2000% compared to a JTAG controller of 180 GE. Authors do not specify the test 

time needed to authenticate the user before any test operations. Moreover, an online 

connection is required for each user authentication. 

4. Challenge/Response based on Schnorr protocol [55] provide mutual authentication between 

user and device using challenge/response protocol based on an enhanced version of ECC, 

named Schnorr protocol. Authors consider a verifier wanting to authenticate a prover (the 

couple verifier/prover is either device/user or user/device), 𝑘𝑎 the secret key, 𝑃𝑎 the public key 

on the ECC curve, 𝑃 a point on the same curve relying 𝑘𝑎 and 𝑃𝑎 with the relation 𝑃𝑎 = 𝑘𝑎 . 𝑃. 

Schnorr principle is the verification by the verifier of the possession of 𝑘𝑎 by the prover, without 

sharing the plain value. The protocol is as follows: (i) prover generates a random number 𝑛𝑎 

and sends to verifier the point 𝑇𝑎 = 𝑛𝑎. 𝑃, (ii) verifier sends a random number 𝑛𝑏, (iii) prover 

sends a message 𝑠 = 𝑛𝑎 + 𝑘𝑎. 𝑛𝑏, (iii) server verifies that the computation of 𝑠. 𝑃 and 𝑇𝑎 +
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𝑛𝑏 . 𝑃𝑎 gives the same point (indeed, 𝑠𝑃 = (𝑛𝑎 + 𝑘𝑎. 𝑛𝑏). 𝑃 = 𝑛𝑎 . 𝑃 + 𝑘𝑎 . 𝑛𝑏 . 𝑃 and  𝑇𝑎 +

𝑛𝑏 . 𝑃𝑎 = (𝑛𝑎 . 𝑃) + (𝑘𝑎 . 𝑃)𝑛𝑏 = 𝑛𝑎 . 𝑃 + 𝑘𝑎 . 𝑛𝑏 . 𝑃). To ensure mutual authentication between 

user and device, the described protocol is applied two times by exchanging the role of verifier 

and prover. 

The user authentication ensured by the Schnorr protocol prevents against an external attacks 

wanting to perform scan attacks or exploit JTAG features. The device authentication prevents 

against counterfeit chips. However, a malicious device is not included in the threat model of 

this countermeasure, since it is still able to sniff and tamper the test communication when the 

JTAG interface is unlocked. 

In order to ensure a sufficient security level, authors choose to implement ECC curve on 192 

bits. The generation of random number is ensured by the implementation of a PRNG based on 

LFSR with a seed changing at each authentication. The cost of the additional implemented 

components represents an overhead of 1648% compared to a JTAG controller of 180 GE. To 

ensure mutual authentication between user and device, the test time cost represents 781 clock 

cycles, corresponding to the time required to shift the challenge/response, and 1,014,370 clock 

cycles, corresponding to the time of ECC computations. Concerning the key management, a 

server stores the secret key and realizes the protocol, facilitating the key management policy 

for the user, but it requires server maintenance and an online connection for the user on the 

protected board. 

5. Fine-grained access using challenge/response protocol [56] details the implementation of a 

secure controller guaranteeing a secure fine-grained access for different group of users. This 

solution is combined with a challenge/response protocol giving accreditations to the user, such 

as the solutions in [53] and [54] for instance. The secure controller presented in [56] is unlocked 

with the authentication protocol, giving access to the circuit according to the accreditations of 

the authenticated user. Once a user is authenticated, the authorized JTAG instruction set is 

unlocked, while the other instructions are locked, i.e. decoded as BYPASS instruction. In 

addition, the secure controller monitors also the address bits shifted in the JTAG BSR in order 

to prevent an unauthorized read or write operations using the test interface.  

This technique ensures a protected fine-grained access for instruction as well as for memory 

address, providing the secure access for different group of authorized users. 

For the implementation of the solution, in addition to the secure controller, authors choose to 

implement the challenge/response protocol established in [53]. The area cost is evaluated to 

2300% compared to a JTAG controller of 180 GE. Concerning testability, authors do not propose 

a way to test the added secure controller. Test time is only impacted in this solution by the 

challenge/response authentication in [53].  

6. Challenge/Response based on Physically Unclonable Function (PUF) [57] is an authentication 

method protecting the access to the IEEE 1500 test wrappers on cores in a SoC. PUFs exploit 

the physical characteristics of a circuit. For instance, the variations in the propagation delays of 

logic paths are exploited in the Arbiter PUFs. The principle is to apply a challenge to two 

identical logic paths. The transition on one logic path occurs first due to the propagation delays 
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introduced at manufacturing. An arbiter captures the transition occurred on the fastest logic 

path, resulting to the response of the challenge. The PUF challenge/response pairs are obtained 

after manufacturing and stored in a server. The PUF output is only accessible during the 

database creation, and then fuses deactivate the output. The authentication follows a protocol: 

(i) in the SoC, a PRNG generates a random number, (ii) the server finds in the database two 

challenges such as the Hamming distance between the responses is equal to the received 

random number, and (iii) the two challenges are applied to the PUF and the verification of 

Hamming distance between responses is performed. Once authenticated, the test wrapper of 

the targeted core is unlocked. An issue with the use of PUF is the variability on responses with 

the environmental noise. Two queries of the same challenge may give different responses, 

affecting the authentication mechanism. For this reason, an error-correction module is 

implemented to eliminate the variability on the PUF responses. 

This countermeasure protects against the scan attacks and the exploitation of JTAG features on 

a specific core. Moreover, the use of PUF ensures also an intrinsic device authentication, 

preventing against overproduction. Indeed, PUFs are based on physical characteristics of the 

device, making non-reproducible the secure test access mechanism. The security level of this 

solution relies on the size of the challenge/response database for avoiding predicting the 

response or replaying existing challenge/response pairs by an attacker. This way, authors 

propose to implement 64-bit PUF challenges and to implement a PRNG based on a 32-bits LFSR 

reseeding after every authentication. 

The area cost of this implementation represents an overhead of 60% compared to a JTAG 

controller on 180 GE. Test time overhead is composed of the time to shift the random number 

(32 test clock cycles) and time to shift two challenges (2×64 test clock cycles) to the PUF. The 

authors do not specify how to test the authentication modules. A server facilitates the sharing 

of the challenge/response pairs to users, but needs to have a large database since 

challenge/responses pairs differs for each SoC. 

7. Challenge/Response for secure DfD [58] propose a fine-grained access through the CoreSight 

architecture. The enable signal on the debug bus allows only filtering of the data processed and 

saved in the Secure world or in the Non-Secure world. However, OEM and OS debug teams 

normally have access to debug the Secure world, but protect different assets (e.g. secure boot 

for OEM team, and DRM cryptographic keys for OS team). Considering a rogue insider in the 

debug OS team, the debug bus can be exploited to read trace data on OEM firmware containing 

the secure boot. In the opposite case, an engineer from the OEM team can leak DRM 

cryptographic keys setting up by the OS vendor. Instead of using only an enable signal filtering 

the secure data passing through the ARM debug bus, the proposed solution consists in an 

enhancement of the CoreSight components in order to filter thinner the data with tags. During 

SoC production, tags are created, stored in a LookUp Table (LUT) and associated to memory 

regions. Thus, tagged memory regions will contain assets (e.g. cryptographic keys, firmware 

etc…) belonging to one specific group (OEM, OS or SoC integrator for example). An 

authentication module based on PUF verifies the permissions of a user accessing the test 

interface. Once the user is authenticated, the authentication module sends the accreditations 
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of the user to the asset filtering. When data are accessing through the debug bus, this module 

compares the accreditations of the user to the tags associated to the data. The asset filtering 

lets data readable and writable only with the tag corresponding to the user. 

This countermeasure targets a precise threat, a rogue insider in a debug team. Others threats 

are not considered. The main issue with this solution concerns the post-production updates of 

the asset (e.g. update of a new version of firmware). Since the tags are defined during SoC 

production, the asset is no longer protected if it is updated into a memory region associated to 

another tag. 

Experimentations have been conducted on an ARM9 processor. This solution represents an 

area overhead of 6.3%, and a power consumption overhead of 6.2% compared to original 

processor. The test time cost is due to the authentication phase, representing 300 clock cycles. 

Challenge/response pairs are shared with the tester using a server, containing a large database 

with the challenge/response pairs for each SoC. 

Overall, the authentication using challenge/response protocol ensures the security against external 

attacker carrying out scan attacks or exploiting the JTAG features. Moreover, some countermeasures 

propose a fine-grained access to permit the use of specific instructions, instruments, memory region, 

or debug bus according to the authenticated user. Device authentication using challenge/response 

allows also to detect counterfeit devices. Nevertheless, malicious circuits inserted within the test daisy-

chain still represents a threat. 

III.4.c Encryption of test communication 

The encryption of the test communication is another category in the class of secure test access 

countermeasures. Many solutions have been proposed in order to guarantee the confidentiality of 

communications within the test infrastructures. Solutions proposed so far rely on a modified interface 

of the test infrastructure that combines both test data transmission and encryption. Figure 19 presents 

the core scheme of countermeasures based on test communication encryption. Test vectors are first 

encrypted off-chip and stored into the test equipment. At test time, encrypted test vectors are sent to 

the target device, and then decrypted on-chip using the encryption key. Then test operations are 

performed. Before scanning out a test response, the data is encrypted on-chip by the device under 

test. The tester collects encrypted responses and decrypts them off-chip using the encryption key for 

further comparison with expected responses. Test vectors and responses, are thus kept confidential 

during the testing process. Without knowing the key, there is neither a possibility to control the device 

to a specific state nor the opportunities to observe the device state. Encrypted test data can thus flow 

safely through the entire system containing the device under test without risking to be read or written 

by an unauthorized third party. This mechanism guarantees that the other devices, sharing the same 

test infrastructure of the target one, are not able to 'understand' any content. Moreover, a user that 

does not know the secret key used by the stream cipher inside the circuit, is not able to have a 

successful communication with the target device. Both the controllability and observability capabilities 

are dimmed by the decryption and encryption process applied respectively on the input and output 

interface of the device. 
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In literature, the stream cipher has been preferred so far to encrypt the test data, due to its easy 

adaptability to the serial interface offered by the TDI/TDO signals of the test infrastructures. Among 

all the stream ciphers, TRIVIUM [59] is the one used in the state-of-the-art due to its low 

implementation. The encryption scheme provides that the TRIVIUM is initialized with a secret key and 

an initialization vector IV.  

1. Encryption of JTAG communication [30] propose to ensure the device authentication and the 

confidentiality and integrity of the test communication between the tester and the device, 

using a challenge/response protocol. The first level of protection ensuring the device 

authentication consists in sending a challenge to the stream cipher. After the initialization of 

the stream cipher, the response is sent back to the tester, verifying the challenge/response 

pair in his/her database. The second level of protection ensures the confidentiality of the test 

communication in addition to the device authentication. In the second level of protection, the 

response obtained from the stream cipher to authenticate the device is not sent directly to 

the tester, but used to initialize a second stream cipher. This way, the second stream cipher 

encrypts the test communication using the response to the challenge as the secret key. The 

third level of protection ensures the integrity of the test communication in addition to the 

other levels of protection, thanks to a SHA-1 module computing Keyed-Hash Message 

Authentication Code (HMAC) on the test messages. 

The first level of protection allows detecting counterfeit chips, thanks to the device 

authentication. The second level of protection prevents malicious devices to sniff the test 

communication, and protects a priori against an external attacker communicating with the 

device without knowing the secret key used for encryption. The third level of protection 

prevents malicious devices to tamper the test data. 

This countermeasure preserves test, debug and diagnosis facilities, but requires additional test 

time for test operations. The test time overhead corresponds to: (i) shift in the challenge to 

the first TRIVIUM, (ii) extract the response from the first TRIVIUM after its setup, (iii) send the 

response to initialize the second TRIVIUM, and (iv) compute the HMAC for every test vectors. 

Overall, to ensure the three protection levels, test time increase represents an initial overhead 

of 2,464 clock cycles and the HMAC computation at each test vector. Area cost represents an 

overhead of 400% compared to JTAG controller of 180 GE. Authors do not specify the test of 

added stream ciphers and hash function, as well as the share of the challenge/response 

database with authorized tester. 

 
Figure 19: Scheme of test communication encryption. 
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2. Encryption of test data in SoC [60] consists in encrypting test data on the IEEE 1500 test 

wrapper to protect specific cores, using the TRIVIUM stream cipher. For that, the tester 

generates a random key for the TRIVIUM cipher and shifts it to the core under test via a 

dedicated scan chain, non-visible from other cores. A single TRIVIUM stream cipher is used to 

decrypt the data shifting in the parallel WPI pins and encrypt the data shifting out the parallel 

WPO pins. 

The proposed solution addresses the threat posed by untrustworthy cores in SoCs. The 

countermeasure eliminates the risk of a malicious SoC core sniffing test data, as well as a fake 

device not knowing the secret key used for the encryption. Since the secret key using for 

encryption is sent by the user, external threats are not considered. 

The protection on one core in a SoC implies an area overhead of 200% compared to a JTAG 

controller of 180 GE, and a test time cost of 1232 clock cycles composing of the time to shift 

the secret key and the TRIVUM setup. Area and test time costs have to be multiplied by the 

number of protected cores in the SoC. 

3. Encryption of the RSN [61] proposes to encrypt and decrypt the data shifted in and out of the 

IJTAG network. In addition to the confidentiality ensured on the test communication, the 

solution proposes to use a security checker in order to detect an attacker trying to guess the 

RSN structure. In this case, the attacker will perform an incorrect number of shift cycles and 

this is detected by the security checker. Stub chains (i.e. fake scan chain segments of random 

length) are also integrated in the RSN, making difficult to reverse engineer the network 

structure. 

The goal of this solution is to protect items under test against malicious embedded instruments 

sniffing the communication, and against external attackers who want to illegally use the 

embedded instruments.  

The implementation costs vary in function of the number of encrypted scan network and the 

number of stub chains inserted within the RSN. In average, the area cost is about 2800% 

compared to a JTAG controller of 180 GE. Test time overhead is composed of the TRIVIUM 

setup, corresponding to 1152 clock cycles, and the additional time required for shifting into 

the stub chains.  

The encryption of test data is a solution aimed to bring confidentiality between tester and protected 

device, ensuring a protection against malicious devices within the circuit as well as external attacker 

without the knowledge of the secret key. Nevertheless, the implementation of the stream cipher in 

these countermeasures presents a vulnerability detailed in Chapter IV, which can be used by attackers 

for carrying out scan attacks. 

III.5. Detection of illegitimate behavior 

All the countermeasures seen so far aim to avoid the execution of the attacks using the test 

infrastructures. Instead, the last presented class of countermeasures aims to detect the execution of 
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the attacks, monitoring on chip the behavior of the user. When the behavior of the user is considered 

illegitimate, the system is set in a protection mode, preventing an attacker to continue his/her attack. 

Detection techniques can be divided in two categories in function of the detection method. The 

first category, named static detection, gathers the solutions based on fixed rules. As soon as a user 

accessing the test interface does not respect the rules, the user is considered as an attacker. The 

second category, named dynamic detection, is based on machine learning. These techniques require a 

training phase for the machine learning in order to distinguish normal behavior to illegitimate one. 

After this training phase, the machine learning can detect by herself the behavior of an attacker.  

III.5.a Static detection 

Static detection techniques are based on rules defined at design time. These rules define the 

legitimate behavior of the use of the test interface. If the actions on the test interface are not 

considered compliant to a legitimate behavior, the user is classified as an attacker trying to exploit the 

circuit. For instance, the countermeasure, encryption of the RSN in [61], implements a static detection 

with the security checker controlling the number of shift operations performed by the user to open a 

SIB in the network. Further static detection techniques have been proposed in the literature. 

1. Sequence filters for accessing instruments [62] is a detection technique in the IJTAG network. 

Sequence filters are placed on the JTAG TAP controller in order to control the shift sequence 

used to open the SIBs in the RSN. If the user tries to access a forbidden instrument, the 

operation is not allowed by the filter. The filters are deactivated by default to allow 

manufacturing test. After that, they can be activated either by blowing fuses or by user 

authentication. 

This countermeasure detects an attacker exploiting the IJTAG network when a SIB open the 

access to unauthorized instruments. If a user authentication is implemented to access to 

specific instruments in the RSN, the solution thus provides a fine-grained access to instruments 

in function of the user accreditations. Others threats are not considered in this solution. 

The implementation of this solution implies no test time cost. Testability is not impacted, expect 

for the test of the sequence filters (not specified by the authors). Since the implementation of 

one sequence filters protects one shift sequence, the area cost depends on the number of the 

defined protected shift sequence. Authors evaluate the overhead from 0.2% for 10 protected 

shift sequences to 10.6% for 100 protected shift sequences. 

2. Representative based anomaly detector [63] control the sequence of instructions sent to the 

JTAG IR register. These sequences are chosen at design time as representative of legitimate 

operations. If the behavior of the user goes sideways for long time with respect to the 

representative sequences, an attack is then detected. In the implementation, a counter is 

associated to each representative sequence. When no counter is fed anymore, this means that 

a non-representative sequence is being performed by the user, i.e. the circuit is subject to an 

attack. 
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The threat model is limited to detect an external attacker exploiting the JTAG features such as 

debugging, uploading a firmware or exploiting the IJTAG network, assuming that the attacker 

does not know the JTAG instructions for accessing to these features. 

Authors have evaluated the area and power consumption cost on FPGA board. Area overhead 

represents 2,702 LUTs, 1 LUTRAM and 1736 FFs. The power consumed by the detectors at 100 

MHz is 342 mW.  

The rules detecting the illegitimate behavior are defined at design time. Static detection techniques 

cannot thus change the access policies without a complete redesign of the detectors. Dynamic 

detection techniques bring more flexibility on the design of the detectors. 

III.5.b Dynamic detection 

Dynamic detection is achieved with the implementation of binary classifiers on-chip for machine 

learning. These classifiers are able to evaluate the sequence of instructions sent by the user by 

attaching a label to the behavior, either legitimate or illegitimate. The classifiers have to go under a 

training phase before being operative. Training phase consists in teaching the classifiers to recognize 

the user behavior by sending instructions sequences belonging to both labels. This way, the classifier 

sets its internal classification parameters and is then able to successfully classify the sequences 

autonomously. In [63], authors propose two different classifiers, the random forest and the support 

vector machine.  

1. Random forest detector [63] propose a classifier based on decision trees. A tree takes decision 

regarding features vectors depending on the JTAG operations performed by the user (e.g. 

number of clock cycles used for shifting the opcode of an instruction, if the opcode corresponds 

to a valid JTAG  instruction, the number of TMS transitions, etc…). Each tree takes as input a 

feature vector and outputs a binary value that corresponds to its classification. The 

classification of every trees are sent to a majority voter that establish the result, i.e. if the 

behavior on the use of the test interface corresponds to an attacker. 

The threat model in this solution consider only the detection of an attacker exploiting the JTAG 

features.  

The implementation of the random forest detector is evaluated on FPGA board to an area 

overhead of 399 LUTs, 624 LUTRAMs and 252 FFs, and to a power consumption of 346 mW at 

100 MHz. 

2. Support vector machine detector [63] defines a decision boundary during the training phase. 

Regarding four successive instructions, the decision boundary classes these instructions as 

“normal” sequence or “abnormal” sequence. The four instructions are the optimal length of 

sequence, determining empirically by the authors. 

Support vector machine detects attacker exploiting attacker exploiting JTAG features. Others 

threats are not considered. 

The costs are evaluated by the authors to an area overhead of 402 LUTs, 385 LUTRAMs and 236 

FFs, and to a power consumption of 335 mW at 100 MHz. 
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While the detector based on the random forest classifier is able to provide a classification based on 

static features of the instructions in execution, the support vector machine relies on sequences of more 

instructions. This makes the classification based on support vector machine more efficient against 

attacks that are unknown at the moment of the training. A common drawback of these two solutions 

is that each time a new attack comes out, the training process must be performed again. Moreover, 

machine-learning techniques show more efficiency if coupled with other protections. Indeed, in some 

situations the detection can fail because the attack is not recognized. Moreover, once the classifier has 

detected that the user is performing an attack, the system must activate a locking feature or going into 

a secure mode. 

III.6. Evaluation of the existing countermeasures 

Table 1 resumes the evaluation of the existing countermeasures in terms of security considering 

external threats and internal threats, as well as the impact on testability and applicability of the 

solution. From this analysis, it emerges that each class of countermeasure targets specific protections. 

A designer has to select the appropriate countermeasure in function of the considered threat model 

for his/her application and the characteristics and costs of the solution. In order to protect against a 

large threat model, several countermeasures of different class have to be combined in order to achieve 

the required security. 
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Solutions 

Security evaluation Characteristics  and costs evaluation 

External threats Internal threats Testability Applicability 

Scan 

attacks 

Exploiting 

JTAG 

features 

Users with 

a restricted 

access 

Probing 

attacks 

Malicious 

component 

Counterfeit 

component 

Fault 

coverage 

In-field 

diagnosis 

and debug 

Test time 

cost 
Implementation Area cost 

Power 

cost 

Impact on 

DfT flow 

Test 

procedure 

Non-

modifiable 

core 

Secret 

sharing 

Scan chain avoidance 

Blowing fuses Secure 
Not 

available 
Not 

available 

Insecure 
(probe 

on 
fuses) 

Secure Insecure Same Impossible / Fuses 0 0 No 
Standard 

before 
blowing 

Applicable No 

BIST [36][39] Secure Insecure 
Not 

available 
Insecure 

Secure 
(against 
sniffing) 

Insecure 
Can 

decrease 
Complicated 

Possible 
overhead 

PRNG, 
Responses 
compactor 

+282%1 n.s. 
Important 
(insertion 

BIST) 

BIST 
procedure 

Not 
applicable 

No 

Secure scan design 

1. On Scan chains 

Mirror-Key register 
[13] 

Secure Insecure 
Not 

available 
Insecure Insecure Insecure 

Register 
faults 

untestable 
Preserved 0 Mirror-Register +229%1 n.s. 

Moderate 
(SE 

control) 

Resetting 
the circuit 

Not 
applicable 

No 

Obfuscation [40] 
Relative 
to LFSR 

structure 
Insecure 

Not 
available 

Insecure Insecure Insecure Same Preserved n.s. LFSR n.s. n.s. 
Important 

(netlist 
file) 

Obfuscating 
test data 

Not 
applicable 

LFSR 
structure 

Scan Enable Tree 
[41] 

Insecure Insecure 
Not 

available 
Secure Insecure Insecure Same Preserved +1%2 SE trees +36%1 Low 

Important 
(netlist 

file) 
Standard 

Not 
applicable 

No 

Spy cell [42] Insecure Insecure 
Not 

available 
Secure Insecure Insecure Same Preserved +5%2 Spy cells +27%1 Low 

Moderate 
(synthesis 
command) 

Standard 
Not 

applicable 
No 

Scrambling [43] Insecure Insecure 
Not 

available 
Secure Insecure Insecure Same Preserved 0 

Scrambling 
chain 

+156%1 +7%2 
Moderate 
(synthesis 
command) 

Scrambling 
of data 

Not 
applicable 

Scrambling 
order 

Test key in scan 
chain [44] 

Secure Insecure 
Not 

available 
Insecure Insecure Insecure Same Preserved +5.6%2 Key FFs, LFSR n.s. n.s. 

Moderate 
(synthesis 
command) 

Unlocking 
Not 

applicable 
Test key 

                                                           
1 Comparison to a JTAG controller of 180 GE 
2 Comparison to original test time for a DES crypto-processor 
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Secure comparator 
[45] 

Secure Insecure 
Not 

available 
Insecure 

Secure 
(against 
sniffing) 

Insecure Same Complicated 
6×(#SFF+1) 
clock cycles 

Comparator n.s. n.s. No 
Applying 
expected 
responses 

Applicable No 

2. On RSN (IJTAG network) 

LSIB [46][47] Insecure 

Relative 
(against 

exploiting 
RSN) 

Fine-
grained 

access to 
instruments 

Insecure Insecure Insecure Same Preserved 
48 clock 

cycles (per 
instrument) 

Key bits, Trap 
bits, LSIB 

From 
+0.07%3 

to +16.2%4 

n.s. 
Low 

(IJTAG 
network) 

Unlocking Applicable 
Key to 

open LSIB 

Authentication 
protocol [48] 

Insecure 

Secure 
(against 

exploiting 
RSN) 

Fine-
grained 

access to 
instruments 

Insecure Insecure Insecure n.s. Preserved 
532+#SIB 

clock cycles 
SHA-3, PRNG 

From 
+2.8%3 

to +4.9%4 

n.s. 
Low 

(IJTAG 
network) 

Unlocking Applicable 
Challenge 
response 

pairs 

Secure test access 

1. Password  

On JTAG standard 
[49] 

Secure 
(but 

replay 
attacks) 

Secure 
(all 

features) 

Not 
available 

Insecure Insecure Insecure n.s. Preserved 
32 clock 
cycles 

Key register +144%1 n.s. 
Low (JTAG 
standard) 

Unlocking Applicable Password 

On IEEE 1500 
standard [50] 

Secure 
(but 

replay 
attacks) 

Secure 
(on 

protected 
core) 

Fine-
grained 

access to 
cores  

Insecure Insecure Insecure Same Preserved 
256 clock 

cycles 
LFSR +20%1 n.s. 

Low (IEEE 
1500 

standard) 
Unlocking Applicable Password 

2. Challenge/Response protocol 

Keyed-Hashes [51] Secure 
Secure 

(all 
features) 

Fine-
grained 

access to 
instructions  

Insecure Insecure Insecure n.s. Preserved 

256 clock 
cycles + 

hash 
computation 

TRNG, SHA-256 >500%1 n.s. 
Low (JTAG 
standard) 

Unlocking Applicable 

Challenge 
response 
pairs  in 

SW debug 

Symmetric 
cryptography [53] 

Secure 
Secure 

(all 
features) 

Fine-
grained 

access to 
instructions 

Insecure Insecure Insecure n.s. Preserved n.s. 
AES, SHA-1, 

TRNG 
+2,246%1 n.s. 

Low (JTAG 
standard) 

Unlocking Applicable 

Challenge 
response 
pairs  in 
server 

Asymmetric 
cryptography [54] 

Secure 
Secure 

(all 
features) 

Fine-
grained 

access to 
instructions 

Insecure Insecure Insecure n.s. Preserved n.s. ECC, TRNG >2,000%1 n.s. 
Low (JTAG 
standard) 

Unlocking Applicable 

Challenge 
response 
pairs  in 
server 

                                                           
3 Area overhead for 1 protected instrument in t512505 benchmark 
4 Area overhead for 256 protected instruments in t512505 benchmark 
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Schnorr protocol 
[55] 

Secure 
Secure 

(all 
features) 

Not 
available Insecure Insecure Secure n.s. Preserved 

507,966 
clock cycles 

ECC, PRNG +1,648%1 n.s. 
Low (JTAG 
standard) 

Unlocking Applicable 

Challenge 
response 
pairs  in 
server 

Fine-grained access 
[56] 

Secure 
Secure 

(all 
features) 

Fine-
grained 

access to 
instructions 
& memory  

Insecure Insecure Insecure n.s. Preserved n.s. 
Secure 

controller + AES, 
SHA-1, TRNG 

>2,300%1 n.s. 
Low (JTAG 
standard) 

Unlocking Applicable 

Challenge 
response 
pairs  in 
server 

PUF [57] Secure 

Secure 
(on 

protected 
core) 

Fine-
grained 

access to 
cores  

Insecure Insecure Secure n.s. Preserved 
160 clock 

cycles 
PUF, PRNG +60%1 n.s. 

Low (JTAG 
standard) 

Unlocking Applicable 

Challenge 
response 
pairs  in 
server 

Secure DfD [58] Insecure 

Secure 
(on 

debug 
trace) 

Fine-
grained 

access to 
debug data 

Insecure Insecure Secure n.s. Preserved 
300 clock 

cycles 
PRNG, SHA-1, 

PUF, LUT 
+6.3%5 +6.2%5 

Moderate 
(JTAG and 
CoreSight) 

Unlocking Applicable 

Challenge 
response 
pairs  in 
server 

3. Encryption of test communication 

Stream cipher on 
JTAG 

communication 
[30] 

Insecure 
(two 
times 
pad) 

Insecure 
(two 
times 
pad) 

Not 
available 

Insecure 

Secure 
(against 

sniffing and 
tampering) 

Secure n.s. Preserved 

2464 clock 
cycles (+ 
HMAC on 

each vector) 

TRIVIUM, fuses, 
HMAC 

+400%1 n.s. 
Low (JTAG 
standard) 

Encrypting 
test data 

Applicable 
Challenge 
response 

pairs 

Stream cipher on 
cores’ data [60] 

Insecure 
(two 
times 
pad) 

Insecure 
(two 
times 
pad) 

Fine-
grained 

access to 
cores 

Insecure 
Secure 
(against 
sniffing) 

Secure n.s. Preserved 

1232 clock 
cycles per 
protected 

core 

TRIVIUM 
+200%1 per 

core 
n.s. 

Low (IEEE 
1500 

standard) 

Encrypting 
test data 

Applicable 
Secret key 

and IV 

Stream cipher on 
IJTAG network [61] 

Insecure 
(two 
times 
pad) 

Insecure 
(two 
times 
pad) 

Fine-
grained 

access to 
instruments 

Insecure 

Secure 
(against 

sniffing in 
RSN) 

Secure n.s. Preserved 
1152 clock 

cycles + 
STUB chains 

TRIVIUM, 
Security 

checker, STUB 
chains 

>2,800%1 n.s. 
Low 

(IJTAG 
network) 

Encrypting 
test data 

Applicable 
Secret key 

and IV 

Detection of illegitimate behavior 

1. Static detection 

Sequence filters 
[62] 

Insecure 

Detects 
(against 

exploiting 
RSN) 

Fine-
grained 

access to 
instruments 

Insecure Insecure Insecure n.s. Preserved 0 Sequence filters 
From 0.2% 
to 10.6%6 

n.s. 
Low 

(IJTAG 
network) 

Standard Applicable No 

                                                           
5 Compared to ARM9 processor 
6 From 10 to 100 protected shifting sequences 
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Representative-
based anomaly 
detector [63] 

Insecure 
Detects 

(all 
features) 

Not 
available 

Insecure Insecure Insecure n.s. Preserved 0 
Representative 

sequences 

LUT: 2,702 

LUTRAM: 1 

FF: 1,736 

342 
mW 
(@ 
100 

MHz) 

Low (JTAG 
standard) 

Standard Applicable No 

2. Dynamic detection 

Random forest 
detector [63] 

Insecure 
Detects 

(all 
features) 

Not 
available 

Insecure Insecure Insecure n.s. Preserved 0 Decision trees 

LUT: 399 

LUTRAM: 
624 

FF: 252 

346 
mW 
(@ 
100 

MHz) 

Low (JTAG 
standard) 

Standard Applicable No 

Support vector 
machine detector 

[63] 
Insecure 

Detects 
(all 

features) 

Not 
available 

Insecure Insecure Insecure n.s. Preserved 0 
Support vector 

machine 

LUT: 402 

LUTRAM: 
385 

FF: 236 

335 
mW 
(@ 
100 

MHz) 

Low (JTAG 
standard) 

Standard Applicable No 

Table 1: Evaluation of the existing countermeasures (red: drawback, green: benefit). 
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III.7. Conclusion on the state-of-the-art countermeasures 

Test infrastructures provide test, diagnosis and debug, which are mandatory in complex ICs to 

ensure product quality. Nevertheless, these infrastructures are an open door to carry out attacks, thus 

requiring implementing countermeasures. In this chapter, we have provided a taxonomy of the many 

countermeasures proposed in the literature. Solutions have classified in four groups: scan chain 

avoidance, secure scan designs, secure test access and detection of illegitimate behavior. Each class of 

solutions have pros and cons in terms of security and costs.  

The scan chain avoidance countermeasure has the main disadvantage to reduce or even to 

eliminate the testability of the device under test. Secure scan designs solutions protects against 

external attacks, but they lack of protection against internal threats. Additionally, these solutions 

modify directly the scan structure, thus being difficult to integrate in the DfT flow, and to apply on non-

modifiable cores. Secure test access techniques based on complex authentication mechanisms provide 

also a strong protection against unauthorized accesses to the test infrastructures, without including in 

their threat model the insertion of malicious component. A main disadvantage of this kind of 

countermeasures is the cost to implement the complex authentication protocol, based on either 

password or challenge/response. Additionally, the password or the challenge/response pairs have to 

be shared with authorized parties, implying a management issue. The last category of 

countermeasures, detection of illegitimate behavior, prevents the misuse of the test interface using 

algorithms to detect an external attacker. This class of countermeasures cannot protect against 

internal threats. 

Regarding the state-of-the-art countermeasures, no solution provide a complete protection against 

both external and internal attackers. Nevertheless, the encryption of the test data represent a 

promising solution for providing the most complete protection, ensuring confidentiality on the test 

communication. In principle, an unauthorized user and a malicious core are not able to set desired 

internal states, nor to observe plain test data, since both do not know the secret key encrypting the 

test data. However, the proposals in the literature does not implement a secure stream cipher to 

encrypt the test data. An attacker can thus circumvent the encryption of the test communication by 

exploiting a vulnerability in the stream cipher implementation. In the next chapter, we detail how the 

existing countermeasures based on stream ciphers are unsecure against scan attacks. Moreover, we 

present new cost-efficient proposals for the encryption of the test communication: one based on block 

cipher, another based on stream cipher fulfilling the security requirements.  

  



 

80 

 

Chapter IV 

Proposed countermeasures based on scan 

encryption  

Summary 

IV.1. Encryption with symmetric ciphers .................................................................... 81 

IV.1.a Block ciphers .................................................................................................................. 82 

IV.1.a.i Block ciphers limitations ............................................................................................... 82 

IV.1.a.ii Application for encrypting test data ............................................................................ 83 

IV.1.b Stream ciphers ............................................................................................................... 83 

IV.1.b.i Stream ciphers limitations ............................................................................................ 83 

IV.1.b.ii Vulnerabilities of existing countermeasures using stream ciphers ............................. 84 

IV.2. Principle of proposed scan chain encryption ...................................................... 85 

IV.3. Proposed countermeasure based on block ciphers ............................................ 86 

IV.3.a CBC applied on single scan chain................................................................................... 86 

IV.3.a.i Stuck-at faults testing with CBC .................................................................................... 87 

IV.3.a.ii Transition-delay faults testing with CBC ...................................................................... 88 

IV.3.a.iii Mode of operations .................................................................................................... 89 

IV.3.a.iv Optimization of CBC solution ...................................................................................... 92 

IV.3.b Extension to multiple scan chains design ...................................................................... 94 

IV.4. Proposed countermeasure based on stream cipher ........................................... 98 

IV.4.a First proposal to share the IV from the scan chain ....................................................... 99 

IV.4.b Proposal of CSC integrated in JTAG infrastructure ...................................................... 100 

IV.4.b.i Wafer testing .............................................................................................................. 101 

IV.4.b.ii Mission mode ............................................................................................................ 101 

IV.4.c Implementation of CSC integrated in JTAG infrastructure .......................................... 102 

IV.4.c.i General architecture ................................................................................................... 102 

IV.4.c.ii Control Unit ................................................................................................................ 104 

IV.4.c.iii Overheads compared to original JTAG test wrapper ................................................ 105 

IV.4.c.iv Extension to multiple scan chains ............................................................................. 106 

IV.5. Conclusion on the new proposed countermeasures .......................................... 107 



CHPATER IV – PROPOSED COUNTERMEASURES BASED ON SCAN ENCRYPTION 

81 

 

IV.1. Encryption with symmetric ciphers 

As seen in Chapter III, a countermeasure against attacks exploiting the test interfaces is to encrypt 

on-chip the data flowing through the scan chains. As depicted in Figure 19, two symmetric ciphers are 

implemented within the device under test: one for encrypting test data shifting at the scan input, 

another for decrypting test data shifting at the scan output. Symmetric cryptography is more adapted 

for encrypting the test communication compared to asymmetric cryptography, because test data are 

encrypted/decrypted in the device using the same key. Additionally, symmetric ciphers have a cheaper 

implementation compared to asymmetric ciphers.  

Among the symmetric ciphers, two types can be used: either stream ciphers or block ciphers. Both 

have pros and cons in terms of performance and security. Because of their smaller footprint, stream 

ciphers are generally preferred to block ciphers in the literature, as seen in Chapter III. Nevertheless, 

when incompletely implemented, solutions based on stream ciphers are prone to differential attacks 

and thus have to be completed. This mitigates their interest versus block cipher solutions. In this 

chapter, we propose two solutions: one exploiting block ciphers, and another exploiting stream ciphers 

fulfilling security requirement. We refer to Countermeasures based on Block cipher as CBC and 

Countermeasures based on Stream cipher as CSC. 

For the sake of completeness, we provide firstly a brief reminder about the cryptographic 

primitives, called ciphers, which underlie the encryption techniques. We provide a presentation of 

block and stream ciphers in order to set the terminology and highlight the key features that are needed 

to appreciate the vulnerabilities explained thereafter. 

In general, a cipher allows the sender to transform an input message 𝑚 into a ciphered version 𝑐 

using a secret key 𝑘. The receiver needs to be able to rebuild 𝑚 from 𝑐 upon knowledge of the same 

𝑘 (or derived from 𝑘).  

A cipher is composed of two functions: 𝐸, called encryption function, and 𝐷, called decryption 

function, such as: 

- The encryption algorithm takes as input the message 𝑚 and the secret key 𝑘, and outputs a 

ciphertext 𝑐, so that 𝐸(𝑘, 𝑚) = 𝑐. 

- The decryption algorithm takes as input the ciphertext 𝑐 and the secret key 𝑘, and outputs the 

plaintext 𝑚, so that 𝐷(𝑘, 𝑐) = 𝑚. 

The encryption of a message followed by the decryption of the correspondent ciphertext must 

result in the initial message, i.e. 𝐷(𝑘, 𝐸(𝑘, 𝑚)) = 𝑚.  

Block and stream ciphers provide confidentiality in the test infrastructures. The main difference 

between stream and block ciphers relies on the size of the data that are processed in each encryption. 

Stream ciphers encrypt one bit at a time from a bitstream; this results in the encrypted message having 

a bit-to-bit correspondence with the plaintext message. Differently, block ciphers take as input an n-

bit block of the plaintext, which is encrypted into an n-bit block ciphertext; in this case, the properties 

of the plaintext are dispersed on the whole n bits of the ciphertext. 
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IV.1.a Block ciphers 

Block ciphers are based on mathematical objects called Pseudo Random Permutations (PRP). They 

are invertible functions that take as input an n-bit value 𝑚 and a secret key 𝑘, and output an n-bit 

value 𝑐. A Pseudo Random Permutations is considered secure if, fixed with a key 𝑘, the resulting 

function is indistinguishable from a random bijective function on n-bit values. 

Block ciphers implement a secure Pseudo Random Permutations. They are made of an encryption 

function that is able to encrypt a plaintext block into a ciphertext block using a secret key; and a 

decryption function that performs the inverse operation and retrieve the plaintext block from the 

ciphertext. 

The most used block cipher is AES [12]. Other algorithms have been proposed to be more 

lightweight, i.e. with a lower cost in terms of area and power consumption, such as PRESENT [64] or 

SKINNY [65]. 

IV.1.a.i Block ciphers limitations 

Block ciphers are based on strong primitives and allow to perform many encryptions with the same 

secret key. For this reason, an attacker trying to attack a block cipher has the ability to exploit the 

cipher comparing many plaintext/ciphertext pairs encrypted with the same key. 

One weakness arises from the kind of function that is implemented and the bit length of the key. 

Since the function implemented by the block cipher is publicly known, the target of the attacker is to 

retrieve the secret key knowing a certain number of plaintext/ciphertext pairs. If the secret key is 

relatively short, this can be retrieved via exhaustive searching, i.e. trying out all possible keys until a 

given plaintext gives the corresponding ciphertext as output. If the secret key is n bits long, the 

complexity of the exhaustive search attack is 2𝑛. 

In the case in which the block cipher function is not properly designed, the exhaustive search attacks 

can have a complexity that is less than 2𝑛 . A classic example is verified when the function that is 

implemented by the block cipher is near to be linear. In this case, the whole encryption function can 

be modeled as a transformation matrix; this provides the execution of linear attacks, which allows the 

retrieval of the key in shorter time with respect to exhaustive search. For this reason, the standard 

block ciphers are implemented with functions that are the furthest possible from linearity. 

Another limitation is inherent to the fact that the same key is used many times. When two equal 

message blocks 𝑚1 and 𝑚2 are encrypted, the correspondent ciphertext blocks 𝑐1 and 𝑐2 are equal as 

well. This can give precious information to the attacker, namely to replay attacks for instance. In order 

to overcome this problem, the encryption function is usually randomized, i.e. given a message block 

𝑚 and a key 𝑘, the produced ciphertext block 𝑐 is not deterministically resulted, but it can belong to a 

bunch of possible ciphertexts. This randomization is injected by making the encryption function 

dependent from a value, called nonce, which is different in every encryption. The nonce-based 

implementation of block ciphers is defined as 𝐸(𝑛, 𝑘, 𝑚) = 𝑚⨁𝐹(𝑘, 𝑛), where 𝑛 is the nonce, 𝑘 the 

secret key, 𝑚 the message, and 𝐹 the encryption function of block cipher. This implementation of the 

block cipher operates as a stream cipher, where the keystream is the encryption result of the nonce 

with a secret key.  
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Several block cipher implementations exist to operate as stream cipher. One of them is the counter 

mode (CTR). In this implementation, the nonce 𝑛 is composed as (𝐼𝑉 ∥ 𝑐𝑛𝑡𝑟), where 𝐼𝑉 is a random 

value and 𝑐𝑛𝑡𝑟 is a counter that counts the number of blocks that are encrypted with the same secret 

key and IV. 

IV.1.a.ii Application for encrypting test data 

Test infrastructures present serial interface: the serial ports SI/SO of scan chains, TDI/TDO of JTAG, 

WSI/WSO of IEEE 1500 wrapper, or the TDI/TDO of IJTAG network. For this reason, no solution in 

literature has proposed to use block ciphers, preferring instead the use of stream ciphers, operating 

bitwise. Nevertheless, as described thereafter, stream ciphers are based on cryptographic primitives 

that are weaker than block ciphers, which implies a potential weakness in the countermeasures. 

IV.1.b Stream ciphers 

Stream ciphers are based on a theoretical cipher, called One Time Pad. In the One Time Pad, the 

secret key 𝑘 must be as long as the message 𝑚. The encryption function is defined as 𝐸(𝑘, 𝑚) = 𝑚⨁𝑘, 

and the decryption function as 𝐷(𝑘, 𝑐) = 𝑐⨁𝑘. If 𝑘 is perfectly random (i.e. according to the uniform 

distribution), the One Time Pad has perfect secrecy. This means that the produced ciphertext is 

indistinguishable from a random sequence (this is due to the properties of the XOR operator). In this 

case, it is impossible for an attacker that intercepts the ciphertext to derive any information neither 

on the message nor on the key. However, from a practical point of view, the One Time Pad is not 

implementable because of the key length.  

Stream ciphers are an implementation of the One Time Pad. Instead of XORing a random key 𝑘 as 

long as the plaintext, a Pseudo-Random Number Generator (PRNG) generates a pseudo-random 

sequence of bits called keystream. The PRNG takes as input a value 𝑘, called the seed of the stream 

cipher, and outputs the keystream 𝑆(𝑘). The encryption and decryption functions are thus defined as 

𝐸(𝑘, 𝑚) = 𝑚⨁𝑆(𝑘) and 𝐷(𝑘, 𝑐) = 𝑐⨁𝑆(𝑘). 

As far as the PRNG produces a keystream that is unpredictable, the resulting stream cipher is 

considered to be secure.  

As seen in the state-of-the-art in Chapter III, the stream cipher TRIVIUM [59] is widely used in the 

context of scan chain protection. It is based on a Non-Linear Feedback Shift Register used as PRNG. 

The seed of the TRIVIUM PRNG is made by an 80-bit secret key 𝐾, and an 80-bit initialization vector 

𝐼𝑉, which is publicly known. The generated keystream is denoted as 𝑆(𝐾, 𝐼𝑉). 

IV.1.b.i Stream ciphers limitations 

Stream ciphers security relies on the implementation of the PRNG. The stream ciphers are secure 

as far as the PRNG produces a keystream that is unpredictable. However, they have intrinsic 

weaknesses that facilitate attacks when they are used incorrectly. 

An important requirement for the security of the stream cipher is that the seed 𝑘 must be used 

only once. In the opposite case, a simple attack can be performed, which is called two times pad. When 
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the same seed 𝑘 is used to encrypt two different messages 𝑚1 and 𝑚2, the two bitstreams are equal. 

Thus: 𝑐1 = 𝐸(𝑘, 𝑚1 ) = 𝑆(𝑘)⨁𝑚1 and 𝑐2 = 𝐸(𝑘, 𝑚2 ) = 𝑆(𝑘)⨁𝑚2. This leads to: 

𝑐_1⨁𝑐_2 = (𝑆(𝑘)⨁𝑚_1 )⨁(𝑆(𝑘)⨁𝑚_2 ) = 𝑚_1⨁𝑚_2 

The attacker can exploit the XOR of two messages for a differential attack that consists in obtaining 

confidential information from the difference between messages.  

The two times pad is exploited when the PRNG used to generate the keystream has a short period, 

i.e. when it produces the same keystream after a fixed amount of time during the same test session. 

This vulnerability is also exploited when the same PRNG seed is re-used to perform different 

encryptions. For example, if the TRIVIUM stream cipher is set up with the same 𝐾 and 𝐼𝑉 each time 

that an encryption has started, the same keystream 𝑆(𝐾, 𝐼𝑉) is used to encrypt different messages. 

IV.1.b.ii Vulnerabilities of existing countermeasures using stream ciphers 

In Chapter III, we have described the protections based on stream ciphers presented in the 

literature so far. These countermeasures show some vulnerability, especially towards differential scan 

attacks. We consider a protection on an AES IP implemented in a SoC. The protection is based on the 

encryption of the test communication with a stream cipher which secret key is unknown from the 

attacker. The responses of the AES core are thus encrypted with a stream cipher. The stream cipher 

produces the keystream 𝑆(𝐾, 𝐼𝑉) from the key 𝐾 and the initialization vector 𝐼𝑉. Then the data are 

XORed with the keystream. Let us illustrate how differential scan attacks [13]–[16] on a crypto-core 

implementing the AES algorithm can be performed even with data encryption. Let 𝑅1 and 𝑅2 be the 

two responses, shifted out from the round register after one round of computation. For the response 

𝑅1, the stream cipher generates a keystream 𝑆(𝐾1, 𝐼𝑉1) from the key 𝐾1 and the initialization vector 

𝐼𝑉1. Then, after a reset, the second response 𝑅2 is encrypted with the keystream 𝑆(𝐾2, 𝐼𝑉2) from the 

key 𝐾2 and the initialization vector 𝐼𝑉2. The differential scan attack, described in Chapter II, consists in 

computing the Hamming distance between the two encrypted responses. Therefore, the stream cipher 

encryption prevents the attack unless the key and the IV have always the same value after the reset, 

i.e. 𝐾1 = 𝐾2 and 𝐼𝑉1 = 𝐼𝑉2. In this case, the same keystream is generated to encrypt two different 

responses. We have thus obtained a two times pad, and by XORing the two encrypted responses, 

𝑅1⨁𝑅2 is obtained. Therefore, an attacker can carry out the differential scan attack, even if the test 

responses are encrypted.  

 
Figure 20: Differential scan attack on test data encrypted with stream cipher. 
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The CSC presented in [30], [60] and [61] are all exposed to this vulnerability if the IV and the key 

are not properly refreshed between one encryption and the next one. In [30], the IV is hardwired with 

fuses, by consequently being the same for each generated keystream. As for the key, the user has to 

send a challenge to configure the secret key. Even if the attacker does not know the configured secret 

key, he/she can send the same challenge twice. This way the stream cipher encrypts using the same 

secret key. Being both the secret key and the IV not changed, the produced keystream is the same. 

Concerning the solution proposed in [60], the key is sent by the user, and the IV configuration is not 

specified. In [61], the authors evoke the use of a unique set of keys and IVs for each protected 

instrument in the IJTAG network. However, the re-use of the same set of keys and IVs to encrypt the 

test data shifted through a protected instrument leads to the presented vulnerability.   

As a conclusion, the same seed must not be used more than once, in order to avoid the generation 

of the same keystream for several encryptions. In order to protect against differential scan attacks 

[13]–[16], the stream cipher encryption needs to have different IVs and/or keys for each generated 

keystream. 

IV.2. Principle of proposed scan chain encryption 

Regarding the block and stream ciphers overview, we propose two solutions applied for securing 

the test infrastructures, taking into account the ciphers’ features and vulnerabilities. We present a CBC 

solution, more secure compared to the state-of-the-art consisting in encrypting the test 

communication, since this countermeasure is based on block cipher. Nevertheless, the encryption by 

block requires padding the test data, as described in Section IV.3. We also present a secure CSC without 

the two times pad vulnerability in Section IV.4. 

For both proposed solution, we assume that the countermeasure is applied on an IC embedding at 

least one crypto-core, one or multiple secret keys stored in a secure non-volatile memory, and a Secret 

Key Management Unit (SKMU). We also consider that the circuit implements scan-based DfT where at 

least some FFs of the scan chains belong to the crypto-core, thus being the target of a possible scan 

attack. Moreover, we consider that the circuit is used for applications where there is a need for a 

debugging facility implemented through the access to the scan chain. 

The main idea is to decrypt/encrypt the content of the scan chain with either a lightweight block 

cipher algorithm, or a secured stream cipher algorithm.  

The principle, valid for both encryption techniques, is illustrated in Figure 21. Two scan ciphers are 

implemented at the scan pins. The Input Scan Cipher is in charge of processing the on-chip decryption 

of the test patterns, and the Output Scan Cipher is in charge of processing the on-chip encryption of 

the test responses. 

In order not to manage an additional secret key within the circuit to deal with the encryption of the 

scan chain content, we propose to use the SKMU already existing in the circuit. This way, authorized 

users encrypt/decrypt test data using a secret key shared with authorized users thanks to the SKMU 

already implemented. If the SKMU is able to provide a dedicated secret key during the manufacturing 

test, the scan chain is encrypted with the same secret key, and the external tester is able to encrypt 
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the scan chain because the secret key is the same used by the ATPG to generate test vectors. When 

the circuit is in mission mode, the SKMU delivers a different secret key (i.e., the functional one), used 

by the ciphers implemented within the circuit. Since we assume a crypto-processor in the CUT, the key 

used to encrypt test data is stored in the same secure memory as the crypto-processor key. The key is 

also managed with the same operations (key generation, activation and revocation) of the SKMU 

already implemented in the circuit. Thus the proposed solution introduces no issue with key 

management, contrary to secure test access using password [49], [50] or challenge/response protocol 

[51]–[58].  

If a user wants to debug the system, the access to the scan chain is possible assuming the debugger 

knows the functional secret key. The encryption can be performed either at chip scan-in and scan-out, 

or at each scan-in and scan-out of the protected devices. In the first solution, all data scanned in and 

out the chip are decrypted/encrypted. In the other solution, the user exploits the reconfigurable scan 

chains by putting all the devices in bypass mode, except the one that he wants to debug. In any case, 

if the user knows the secret key applied by the circuit in any of the modes implemented by the SKMU, 

the same user will be able to encrypt/decrypt the data to/from the scan chains, consequently 

establishing an automatic authentication method. 

IV.3. Proposed countermeasure based on block ciphers 

We present a secured test architecture based on lightweight block ciphers for encryption of both 

scanned-in and scanned-out test data. Lightweight encryption is used for limiting area overhead. As 

presented in this section, test protocols, diagnostic and debug facilities, as well as design flows are not 

affected. We detail the application of the CBC solution on single scan chain for both fault models, stuck-

at faults and transition-delay faults, as well as the application of the solution on multiple scan chains.  

IV.3.a CBC applied on single scan chain 

As seen in Chapter I, the main fault model to mimic a manufacturing defect within a circuit is the 

stuck-at faults model. However, not all faults can be analyzed using this model. A tester would use a 

transition-delay faults model to detect timing defect in a circuit. The scan chains are used to test the 

 
Figure 21: Principle of proposed scan chain encryption. 
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stuck-at faults in a circuit as well as the transition-delay faults. We show that testability is not affected 

for both fault models with the scan chain encryption on single scan chain. Additionally, we describe 

the mode of operations of the CBC, as well as an optimization consisting in introducing low cost 

observation points. 

IV.3.a.i Stuck-at faults testing with CBC 

As shown in Figure 22, two block ciphers are implemented: Input Scan Cipher for the decryption 

performed at scan input, Output Scan Cipher for the encryption performed at scan output. The 

procedure of stuck-at faults testing, consisting in applying test vectors and collecting test responses in 

order to compare with expected responses, needs to be adapted to the CBC solution. The proposed 

test procedure involves the following steps: 

1. Generate test patterns for the circuit under test and compute expected ‘fault-free’ test 

responses as usual; 

2. Off-chip encrypt the test patterns with the chosen lightweight cryptographic algorithm and the 

secret key related to the current activity; 

3. Scan-in an encrypted test pattern, which is first on-the-fly decrypted using the additional Input 

Scan Cipher, then scanned in the circuit under test; 

4. On-the-fly encrypt the test responses using the additional Output Scan Cipher before shifting-

out the encrypted circuit response; 

5. Off-chip decrypt the encrypted test responses to obtain the actual responses of the circuit and 

compare with expected ones.  

Every N clock cycles, the shift operation must be interrupted in order to allow the scan ciphers to 

encrypt/decrypt the N-bit data. By assuming that the encryption operation lasts D clock cycles, this 

solution would require D additional clock cycles for every N bits, and would result in an excessive test 

time overhead. To reduce this overhead, we propose the use of two registers in each scan cipher, as 

depicted in Figure 22. These extra registers allow interleaving the shift operation and the encryption 

process. These two ciphers each have two N-bit round registers (R1 and R2) with the two operating 

modes, parallel load and serial shift, detailed in Figure 23. Parallel loads are used for storing 

encryption/decryption results, shift operations are used to load test data into the circuit or observe its 

internal state. While one of the two registers (e.g., R1) is serially loaded with new data, the other one 

 
Figure 22: Basic scheme of CBC on a single scan chain configuration. 
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(i.e., R2) is used in the meantime to store decrypted (respectively encrypted) test data shifted-in during 

the N previous clock cycles. 

Thus test time is impacted by 2xN extra clock cycles used at the beginning of the test procedure for 

loading R1 and R2 registers with first test vector to decrypt. The same additional offset of 2xN extra 

clock cycles is required at the end of the test procedure in order to read-out the last test response stored 

in R1 and R2 of the Output Scan Cipher. 

IV.3.a.ii Transition-delay faults testing with CBC 

As described in Chapter I, LOS and LOC techniques are used for testing the transition-delay faults. 

In both solutions, a vector V1 is shifted to initialize the scan chain at a frequency usually much slower 

than the nominal frequency, while the transition to V2 is performed at the nominal frequency. 

The LOS test applied with the scan chain encryption consists in encrypting vector V2 by the tester 

before shifting in the Input Scan Cipher. The encrypted data is then decrypted in one of the Input Scan 

Cipher registers. Once V2 decrypted, F-1 shifting operations are performed at shifting frequency (to fill 

the scan chain with the vector V1) and the last shifting operation is performed at nominal frequency 

(to launch vector V2). In order to adapt the proposed encryption architecture to the LOS scheme, it is 

necessary to guarantee that the scan cipher is able to run at the circuit nominal frequency, which is 

higher than the frequency of shift operations. However, if the number of clock cycles required to 

perform decryption is smaller than the number of FFs in the registers R1/R2, the combinational logic 

that must be able to run at the nominal (higher) frequency is composed of the scan ciphers registers 

(R1 and R2) and the output multiplexer. All the encryption algorithms we have used (PRESENT and 

SKINNY algorithms) work this way. From the design point of view, it is enough to guarantee that the 

standard gates implementing the multiplexers can correctly work at the nominal frequency. 

Regarding the LOC test, since the transition at nominal speed is applied when the scan-enable signal 

is not asserted, the scan ciphers are not involved at all. Therefore, the LOC scheme can be applied 

without any interference with the scan ciphers.  

In Chapter I, we also present the LOES test, an alternative method to test transition-delay faults. 

Unlike the LOS or LOC test where F shift operations are needed to test the transition faults, (F+1) shift 

operations are needed to achieve the LOES test. Due to the extra shift, the scan operations cannot 

follow the same operations as presented for stuck-at faults testing. This method should thus be avoided 

when the scan chain encryption is applied. However, in the common scenario, ATPG performs the 

combination of LOS and LOC tests to achieve a high fault coverage, implying not impact on transition-

delay faults test procedure.  

(a)   (b)   (c)  

Figure 23: (a) generic scheme of scan cipher; (b) R1 is used for encryption while R2 shifts test data; (c) R2 
is used for encryption while R1 shifts test data. 
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IV.3.a.iii Mode of operations 

Scan ciphers implemented in the CBC solution follow a specific test procedure to test both stuck-at 

faults and transition-delay faults. A controller is in charge of enabling the correct sequence of 

operations based on the value of the scan-enable signal. The controller, described in Figure 24, is 

composed of an 8-state FSM and a counter modulo N. The counter (ctr) counts the number of clock 

cycles in test mode (SE=1), it stops to count when the circuit is in functional mode (SE=0). At reset 

(RST=1), the FSM is in HOLD_WR1 state where the block ciphers are disabled. When the scan-enable 

is asserted (SE=1), the FSM goes to the ENC_R2 state where the scan ciphers are enabled. The R2 

register is decrypted/encrypted, and in parallel, test data are shifted into the R1 register. When the 

counter reaches 𝑇𝑒𝑛𝑐 − 1, corresponding to the number of clock cycles required to perform a 

decryption/encryption, the decryption/encryption of R2 content is finished. The FSM goes to WAIT_R2 

state: the scan ciphers stop to operate, and test data are still shifted-in the R1 register. R1 is entirely 

filled when the counter reaches N-1. The FSM goes then to the  ENC_R1 state and the counter restarts 

from zero. In the same manner, the ENC_R1 and WAIT_R1 states correspond to the 

decryption/encryption of R1 and the filling of R2 with scanning-in test data. Whenever the scan-enable 

is disabled (SE=0), the FSM goes to the corresponding hold state (HOLD_ER2, HOLD_WR2, HOLD_ER1 

and HOLD_WR1). In these hold states, the block ciphers are disabled. The block ciphers are enabled as 

soon as the scan-enable is asserted (SE=1), and the scan operations continue where they left off. 

From a security point of view, if the scan-enable is disabled during an encryption (i.e., in the middle 

of a shift operation), all the registers of the controller and scan ciphers are frozen. It is not possible to 

access the scan chain content and scan ciphers registers content. Concerning FSM vulnerabilities, no 

signal connected to the FSM is directly accessible. Therefore, it is not possible to bypass the encryption 

by altering FSM control signals. A possible attack imagined on the proposed test infrastructure could 

 
Figure 24: Finite State Machine controlling both scan ciphers in CBC. 
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be to reset the FSM before the end of R1 filling. This reset operation would lead the FSM to start over 

shift operations on R1 and unencrypted data would be shifted out. For this reason, registers R1 and R2 

are reset whenever the FSM is reset. 

The scan chain is filled/flushed segment by segment, each segment consisting of N bits (N being the 

width of the round register). Managing these operations with scan chains which length is not a multiple 

of N is feasible. Following the same regular N-shifts scheme the controller can correctly feed the scan 

chain at the cost of additional clock cycles used to complete the shift operation on the smaller-than-N 

segment. Figure 25 shows the complete time diagram of shift operations in the case of a circuit having 

F=S•N+R flip flops, where: 

- F is the total number of FFs in the original circuit; 

- S is the number of N-bit segments; 

- R = F mod N; 

- 𝐼𝑗
𝑘 is the jth N bits segment (with 0≤j≤S) of the kth test pattern provided to the circuit; 

- 𝑂𝑗
𝑘 is the jth N bits segment (with 0≤j≤S) of the kth test response obtained from the circuit; 

- E(x) is the encrypted value of a segment x; 

- decrypt() and shift() are the two operations executed inside a block cipher. 

Figure 25 presents the time diagram on a circuit composed of F=3N+R scan FFs when the CBC 

solution is applied. Each test pattern is divided into three segments 𝐼2 (𝑁 𝑏𝑖𝑡𝑠)
𝑖  𝐼1 (𝑁 𝑏𝑖𝑡𝑠)

𝑖  𝐼0 (𝑅 𝑏𝑖𝑡𝑠)
𝑖 , the 

last segment is padded with N-R extra-bits 𝑃(𝑁−𝑅 𝑏𝑖𝑡𝑠)
𝑖 . Each test response is also composed of three 

segments 𝑂2 (𝑅 𝑏𝑖𝑡𝑠)
𝑖  𝑂1 (𝑁 𝑏𝑖𝑡𝑠)

𝑖  𝑂0 (𝑅 𝑏𝑖𝑡𝑠)
𝑖 . At the step where the first segment of the second pattern 𝐼0

2 

is decrypted, the scan chain is actually set to the first test pattern value: 𝐼2 (𝑁 𝑏𝑖𝑡𝑠)
1  𝐼1 (𝑁 𝑏𝑖𝑡𝑠)

1  𝐼0 (𝑅 𝑏𝑖𝑡𝑠)
1 , 

 
Figure 25: Time diagram of shift operations in the case of CBC applied on single scan chain.  

 

 



CHPATER IV – PROPOSED COUNTERMEASURES BASED ON SCAN ENCRYPTION 

91 

 

while N-R first bits of the first scanned-in segment 𝑃(𝑁−𝑅 𝑏𝑖𝑡𝑠)
1  have been shifted in the Output Scan 

Cipher register. After 3N+1 clock cycles, the N-R bits 𝑃(𝑁−𝑅 𝑏𝑖𝑡𝑠)
2  of the second pattern-first segment 

are encrypted and shifted out as part of the last R-bits test response 𝑂2 (𝑅 𝑏𝑖𝑡𝑠)
1 .  

Concerning the test time overhead in the case of R>0, in addition to the 2∙2N clock cycles, N-R 

additional shift operations are needed for each test pattern. More formally, by defining 𝑇 the number 

of clock cycles for the original circuit to be tested without the scan attack countermeasure (defined in 

equation (1)), and 𝐾 the overall number of test patterns, the number of clock cycles 𝑇𝑓 required to test 

the circuit with the encryption of the scan chain is given in equation (2): 

𝑇𝑓 = {
𝑇 + [2 ∙ 2𝑁] 𝑖𝑓 𝑅 = 0

𝑇 + [2 ∙ 2𝑁 + (𝑁 − 𝑅)(𝐾 + 1)] 𝑖𝑓 𝑅 > 0
                  (2) 

Considering a block cipher encrypting/decrypting block size of N=64 bits (such as PRESENT and 

SKINNY-64), we evaluate the test time cost on 5 circuit examples: a triple-DES core, a pipelined AES 

core with the 128-bits and 256-bits version, a RSA 1024 bits core and a LEON3 processor. Table 2 

resumes the results reporting the result for the original circuit after scan insertion (Scanned Circuit) 

and the overhead (%) induced by CBC. For each circuit, line #SFF reports the number F of scan FF, line 

#Patterns reports the number 𝐾 of patterns needed to test the circuit, line Test Cov reports the test 

coverage of the original circuit. Line Test Time reports for each circuit the test time of the original 

implementation in terms of clock cycles, and the overhead induced by the encryption of both test 

patterns and test responses. In the case of pipelined AES 256 core, scan length 12736 FFs is a multiple 

of N=64. Therefore, the test time overhead is only of 2x2N=256 cycles for scan-in initialization and last 

scan-out, which represents only 0.01% of the original test time. At the opposite, the pipelined AES 128 

core has 7873=123×64+1 FFs. Therefore, the number of additional shift operations on each patterns is 

N-R=63 additional clock cycles. It is the worst case in terms of cost on each pattern. However, even in 

this case, the test time overhead is limited to 0.81%. For the others circuits, the number of additional 

clock cycles in each pattern is 24 for Triple-DES, 53 for RSA and 2 for LEON3 processor. 

The number of patterns found by ATPG achieves only 70% of stuck-at fault coverage on that CUT 

because we stopped test pattern generation due to limitation in terms of memory allocation (line Test 

Cov in Table 2). 

Circuit Triple-DES Pipelined AES128 Pipelined AES256 RSA 1024 LEON3 

Scanned 

Circuit 

CBC  

Overhead (%) 

Scanned 

Circuit 

CBC  

(%) 

Scanned 

Circuit 

CBC 

(%) 

Scanned 

Circuit 

CBC (%) Scanned 

Circuit 

CBC  

(%) 

#SFF 8808=137×64+40 7873=123×64+1 12736=199×64 16459=257×64+11 107518=1679×64+62 

#Patterns (K) 77 246 357 2 393 107 

Test Cov. 100% 100% 100% 100% 70% 

Test time 

(clock cycles) 

687101 +0.31 1944877 +0.81 4559845 +0.01 39405239 +0.33 11612051 +0.004 

Table 2: Test time cost of CBC for several circuits. 
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IV.3.a.iv Optimization of CBC solution 

The additional clock cycles that are wasted in order to synchronize the CBC scheme using constant 

segment-length N can be actually exploited for testability improvement without requiring any 

additional test time. 

Indeed, for every test pattern, N-R extra clock-cycles are used to shift N-bits data on a regular 

manner when the original scan chain involves a number of scan FFs that is not a multiple of N. By 

adding N-R dummy flip-flops to the original scan chain, we can use these extra FFs as test points, such 

as presented in Chapter I. Test point insertion does not impact test time, and in particular, observation 

points can reduce the number 𝐾 of test patterns for the same fault coverage. Consequently, by adding 

some FFs to the scan chain and by using them as observation point (for the scan length being a multiple 

of N), it is possible to compensate for the additional shift operations required by CBC solution.  

In order to show that test time cost is reduced with the optimization of the solution, we have 

conducted experimentations with PRESENT block cipher with block size on 64 bits (N=64) and the 

encryption/decryption performed in 32 cycles. Experiments are conducted thanks to the synthesis tool 

Design compiler [66] using a 65-nm library and the ATPG tool TetraMAX [2]. 

The implementation involves extra costs in terms of area overhead. This cost is relative to the 

number of scan FFs in the original CUT. For instance, LEON3 processor needs two extra FFs to pad its 

scan chain. The cost is only 2 FFs over 107518 FFs (<0.002%). In the worst case, 63 FFs are added to 

AES-128 core, i.e. 0.8% compared to the original scan chain with encryption. For Triple-DES (resp. RSA) 

circuit, dummy FFs represent an increase of 0.27% (resp. 0.32%) on the total scan chain. 

The DfT tool Tetramax was used for selection of observation points in the circuit logic. We 

constrained the tool to use only the N-R extra FFs for testability improvement. After selection, 

observation points drives extra XOR trees ending on the proposed extra FFs, thus allowing their 

observation at test time. The XOR-trees configuration depends on the number of signals to observe. 

The number of test points per tree is user-defined and is ranging from 1 (only one observation point 

feeds the extra FF), to 8 (8 observation points drives an 8-input XOR tree feeding the extra FFs). 

To choose the best implementation, the eight cases are studied on each circuit. Table 3 presents 

the results for AES-128 core. As explained before, 63 extra scan FFs can be added to this circuit scan 

chain without affecting its test time. We iteratively experimented observability improvement with 1-

to-8 observation points per XOR tree. For instance, with only one observation point per extra FF, the 

ATPG tool reduces the test sequence from 246 to 242 patterns. The best implementation corresponds 

to 6 observation points per extra FF, saving 11 patterns. In other words, the extra test time due to the 

required synchronization with PRESENT encryption/decryption, and leading us to add extra shifts on 

Pipelined AES-128 (𝑭 = 𝟕𝟖𝟕𝟑 = 𝟏𝟐𝟑 × 𝟔𝟒 + 𝟏) 

 Scan CBC (%) Optimized version overhead (+63 FF) + CBC (%) 

#observation 

points per FF 

  1 2 3 4 5 6 7 8 

#Patterns (K) 246 246 242 245 237 238 239 235 236 236 

Area 367 926 +2.92 +3.10 +3.17 +3.23 +3.30 +3.36 +3.43 +3.51 +3.58 

Table 3: Impact on number of observation points per flip-flops for test time optimization on Pipelined AES-
128 circuit. 
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every pattern, is compensated by the reduction of the total number of patterns to achieve the same 

fault coverage. The extra cost for test point insertion is +3.43% compared to original scanned design, 

with +2.92% for scan encryption without testability optimization, i.e. without 63 extra FFs and 6-inputs 

XOR trees. 

Experimental results on test time optimization and costs are presented in Table 4. For each circuit, 

the number of scanned FFs, the number 𝐾 of patterns, the test time (in clock cycles) and the area (μm²) 

are given for four versions: the original circuit with scan chain (row Circuit), the circuit with the scan 

chain encryption (row Circuit+CBC), optimized version with added scan FFs connected to observability 

points (row Optimized) and optimized circuit with the scan chain encryption (row Optimized+CBC). Test 

time results for Circuit+CBC are compared to original test time (Circuit) while results for Optimized+CBC 

are compared to test time with test point insertion (Optimized). Area of original scanned circuit is the 

comparison reference for both CBC versions. When two implementations lead to the same pattern 

optimization, we choose the implementation with the smaller impact in area. 

Concerning Triple-DES, four observe points per FF are used on the 24 added scan FFs. Test time 

increases by 0.038% compared to test time for optimized circuit. The area cost of CBC increases from 

5.74% for the non-optimized method to 5.87% for the optimized one. For LEON3 processor, 107 

Circuit #SFF #Patterns Test time Area 

 

Triple-

DES 

Circuit 8808 77 687101 187 494 

Circuit+CBC 8808 77 +0.31% +5.74% 

Optimized 8808+24 74 662730  

Optimized+CBC 8808+24 74 +0.038% +5.87% 

 

Pipelined 

AES 128 

Circuit 7873 246 1944877 367 926 

Circuit+CBC 7873 246 +0.81% +2.92% 

Optimized 7873+63 235 1873131  

Optimized+CBC 7873+63 235 +0.013% +3.43% 

RSA 1024 

Circuit 16459 2393 39405239 468 415 

Circuit+CBC 16459 2393 +0.33% +2.30% 

Optimized 16459+53 2393 39532121  

Optimized+CBC 16459+53 2393 +0.001% +2.51% 

LEON3* 

Circuit 107518 107 11612051 1902095 

Circuit+CBC 107518 107 +0.004% +0.57% 

Optimized 107518+2 102 11074662  

Optimized+CBC 107518+2 102 +0.002% +0.57% 

Table 4: Cost to use optimized CBC regarding several circuits. 
*: for LEON3, test time and number of patterns are evaluated to 

obtain a test coverage of 70%. 
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patterns achieve a test coverage of 70%. With 4 observe points on the 2 added scan FFs, this number 

of patterns decreases by 5 patterns. Test time increases by 0.002% for an area cost of 0.57%. The area 

cost is almost the same than the non-optimized CBC due to the large size of the CUT. 

Unfortunately, insertion of test points does not allow reducing the number of test patterns on RSA. 

The AES-256 is not reported here since it is already optimized (its scan chain length is a multiple of 64). 

Extra test time for CBC is only 0.01% increase over non-encrypted scan test (see Table 2).  

IV.3.b Extension to multiple scan chains design 

CBC scheme can be extended to the case of multiple scan chain designs. The adaptation to multiple 

scan chains is however not trivial and requires the implementation of a dedicated architectural 

solution. The solution we propose is based on the decryption/encryption of whole slices of scan chains, 

while at the same time the previous slices are shifted-in or -out the scan chains.  

While scan operations are performed at low-than-nominal frequencies to avoid power related 

problems due to the toggling of the bits in the scan chains, the encrypt/decrypt operations can be 

performed at higher frequencies. We exploit this feature in order to encrypt/decrypt the data of the 

test slices at higher frequency, while shifting the test data in the chains at lower frequency. Thus the 

solution operates with two clocks: the Slow-CLK for scan shift operations, and the Fast-CLK for the scan 

ciphers.  

For the CBC implementation, we assume that the classical DfT architecture is already implemented 

in the circuit before the insertion of the two scan ciphers. The solution can thus be applied without 

modification of the multiple scan chains structure or the test compression scheme potentially used to 

limit the number of test interfaces (e.g. [6], [7] presented in Chapter I). Therefore, CBC has a very 

limited impact on the modification of the design and test flows. 

Let us denote N the block size of the data encrypted by the block cipher, i.e., the number of bits of 

the registers R1 and R2. For instance, N can be equal to 64 for PRESENT and SKINNY-64, while it is 128 

for AES. Let us assume having L parallel scan chains in the circuit, with L smaller than N (the case L>N 

implies the use of multiple scan ciphers, and it will be discussed at the end of this section). We suppose 

each scan chain being composed of Z bits. In order to adapt the proposed solution in the case of 

multiple scan chains, the scan ciphers registers R1 and R2 are logically divided into segments of L FFs. 

Instead of loading the registers serially, each segment of L bits is loaded parallel to the content of one 

scan slice. Once the register is filled (i.e., after N/L Slow-CLK cycles), its content is encrypted/decrypted 

at Fast-CLK, while the other register (which content has previously been encrypted/decrypted) is used 

to feed the scan chains while it is, at the same time, loaded in parallel (one segment per Slow-CLK 

cycle).  

Let us denote k the number of segments (each of them with L bits) within the registers R1 and R2. 

By expressing N as N=k•L+R (where R=N mod L, is the number of extra bits in the case N cannot be 

divided by L), the registers R1 and R2 are divided in k segments of L bits plus R additional bits (with 

R<L). For instance, in a circuit with 6 parallel scan chains and N=64, each register can receive the test 

data of 10 slices, by having R=4 spare bits that will not be used as test data. Nevertheless, the 
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encryption/decryption algorithm requires the whole N bit values to be defined to correctly generate 

the expected test vectors; therefore even the last segment of R bits must be filled.  

Figure 26 presents the global scheme of the proposed solution. The scan ciphers registers are 

decomposed of k L-bit segments and a last smaller R-bit segment. Each L-bit segment of Input Scan 

Cipher registers (respectively, Output Scan Cipher registers) contains the test data on one scan slice 

(resp., the test responses on one scan slice) after decryption (resp., before encryption). The control 

logic of the scan ciphers ensures that the L-bits test data are loaded into the correct segment of R1 or 

R2, using the corresponding load_EN signals. As shown in Figure 26 with a circuit composed of Z scan 

slices 𝑆𝑖, all L-bit segments are associated to one scan slice. For example, the register R1 contains the 

test data associated to the slice 𝑆0 on its first segment Seg0, and the test data associated to the slice 

𝑆1 on its second segment Seg1. In the same manner, the register R2 contains the test data associated 

to the last scan slice 𝑆𝑍−1 on its segment Segk-1. The R-bit segment Segk of both registers contains the 

extra-bits in order to pad the scan slices data for decryption/encryption purpose.  

For a scan cipher with N=64 (when the PRESENT or SKINNY-64 block ciphers are used for example), 

Figure 28 presents the partial time diagram of the Input Scan Cipher operations on a circuit with L 

multiple scan chains composed of 4 slices 𝑆𝑖 and with the decomposition of scan cipher’s registers on 

2xL+R=64, where: 

- 𝑝3
𝑗
𝑝2

𝑗
𝑝1

𝑗
𝑝0

𝑗
 is the jth test pattern where each 𝑝𝑖

𝑗
 corresponds to the data of the scan slice 𝑆𝑖, 

- 𝑟3
𝑗
𝑟2

𝑗
𝑟1

𝑗
𝑟0

𝑗
  is the jth test response where each 𝑟𝑖

𝑗
 corresponds to the response of the slice 𝑆𝑖, 

- 𝑣𝑖,𝑖+1 (𝑅 𝑏𝑖𝑡𝑠)
𝑗

 corresponds to the extra-bits used to pad the scan slices 𝑝𝑖 (𝐿 𝑏𝑖𝑡𝑠)
𝑗

 and 𝑝𝑖+1 (𝐿 𝑏𝑖𝑡𝑠)
𝑗

, 

in order to correctly perform the encryption, 

- 𝐸1 (𝑝𝑖,𝑖+1
𝑗

)
(𝐿 𝑏𝑖𝑡𝑠)

 |𝐸2 (𝑝𝑖,𝑖+1
𝑗

 )
(𝐿 𝑏𝑖𝑡𝑠)

 | 𝐸3 (𝑝𝑖,𝑖+1
𝑗

 )
(𝑅 𝑏𝑖𝑡𝑠)

 is the result of the encryption of 

𝑝𝑖 (𝐿 𝑏𝑖𝑡𝑠)
𝑗

 |𝑝𝑖+1 (𝐿 𝑏𝑖𝑡𝑠)
𝑗

 |𝑣𝑖,𝑖+1 (𝑅 𝑏𝑖𝑡𝑠)
𝑗

 where ‘|’ is the operation of concatenation, and 𝐸𝑛 (𝑥) is 

the nth segment composing the encrypted message.  

 
Figure 26: Proposed CBC solution applied on L multiple scan chains.  
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At the step where the first scan slice data 𝑝0
1 is shifted from the register R1 in the L parallel scan 

chains at Slow-CLK, each segment 𝐸𝑛 (𝑝2,3
1 ), composing the encrypted message with the 𝑝2

1 and 𝑝3
1 

scan slices data, is shifted one after the other in the second register R2 using 3 Fast-CLK cycles. Once 

register R2 is entirely filled with the 3 segments, the decryption of its content begins. At the next Slow-

CLK cycle, the second scan slice data 𝑝1
1 is shifted in the scan chains, and concurrently the decryption 

of the R2 content continues using Fast-CLK. At the end of the decryption, the 𝑝2
1 and 𝑝3

1 scan slices data 

are present in the first two segments of R2 and ready to be shifted in the scan chains at Slow-CLK. 

During 2 Slow-CLK cycles, the 𝑝2
1 and 𝑝3

1 scan slices data are shifted in the scan chains during the 

decryption of the next scan slices data on the other register at Fast-CLK. Once all scan slices are filled, 

the test responses 𝑟3
1 𝑟2

1  𝑟1
1  𝑟0

1 are encrypted following the same scan operations.  

Figure 27 presents the timing operations when the whole decryption/encryption operations require 

36 rounds (as for SKINNY-64-128 block cipher), implemented in 36 Fast-CLK cycles. During the 2 Slow-

CLK periods where the test data of 2 scan slices are shifted in the scan chain, the next 2 test slices have 

to be entirely decrypted using (i) 3 Fast-CLK to shift the 3 segments in the scan cipher register and (ii) 

36 Fast-CLK cycles to the SKINNY decryption. Totally, the Fast-CLK period needs to be higher than or 

equal to 36+3=39 times 2 Slow-CLK periods.  

More formally, considering a circuit composed of L multiple scan chains (L≤N), the scan ciphers 

registers are divided into ⌈
𝑁

𝐿
⌉ segments. Among all segments composing the scan ciphers registers, 

there are 𝑘 = ⌊
𝑁

𝐿
⌋ L-bits segments. If #𝑅𝑜𝑢𝑛𝑑𝑠 denotes the number of rounds needed to a whole 

decryption/encryption, 𝑇𝑆𝑙𝑜𝑤−𝐶𝐿𝐾 the Slow-CLK period, 𝑇𝐹𝑎𝑠𝑡−𝐶𝐿𝐾 the Fast-CLK period, the relation 

given in equation (3) must hold: 

(#𝑅𝑜𝑢𝑛𝑑𝑠 + ⌈
𝑁

𝐿
⌉) . 𝑇𝐹𝑎𝑠𝑡−𝐶𝐿𝐾  ≤ ⌊

𝑁

𝐿
⌋ . 𝑇𝑆𝑙𝑜𝑤−𝐶𝐿𝐾       (3) 

 
Figure 27: Time diagram of shift operations for the Input Scan Cipher in the case of CBC applied on L 

multiple scan chains. 
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In order to evaluate the minimal required scan ciphers’ frequency (1/𝑇𝐹𝑎𝑠𝑡−𝐶𝐿𝐾), we use the 

SKINNY-64-128 block cipher (N=64, #𝑅𝑜𝑢𝑛𝑑𝑠=36) as an example. From our synthesis experiments, the 

SKINNY implementation on 65 nm library runs at 400 MHz. Typically, test data are shifted at 10 MHz 

in order to limit switching activity in the circuit and thus to limit its power consumption. In the previous 

example described at the Figure 27, there are ⌈
64

𝐿
⌉ = 3 segments with 𝑘 = ⌊

64

𝐿
⌋ = 2 L-bits segments 

and 1 smaller segment. The scan ciphers have therefore to operate at least at [(36+3)/2]×10=195 MHz, 

regarding the equation (3). More generally, Figure 28 presents the minimal required scan ciphers 

frequency (1/𝑇𝐹𝑎𝑠𝑡−𝐶𝐿𝐾) versus the number L of scan chains. At the minimum, the scan ciphers have 

to operate at least at 22 MHz in case of L=2 scan chains. At the maximum when L is between 33 and 

63 scan chains, the scan ciphers frequency must reach 380 MHz. 

The operations have been described so far should the number of scan chains be less than or equal 

to N. If the number L of scan chains is greater than N, extra scan ciphers must be implemented to deal 

with more scan chains. In other words, a couple of ciphers is required for securing scan-in and scan-

out operations on every set of N scan chains. 

The scan operations are presented in the case of a simple implementation of multiple scan chains, 

but it can be applied as well when a test compression method is used. Figure 29 represents the 

application of the CBC solution on a test compression technique. The countermeasure can be applied 

regardless of the test decompressor and compactor implemented, such as 2D Elastic Compression [6] 

or Embedded Deterministic Test [7]. The ATE generates the compressed stimuli used to test the device. 

These compressed stimuli are encrypted in the ATE before they are scanned into the device. The 

decryption performed at scan input decrypts several segments of stimuli, in the same manner as 

presented above. The decrypted test stimuli are then applied to the test decompressor. The encryption 

performed at scan output encrypts several segments of compacted responses before scanned-out. The 

ATE decrypts the compacted test responses in order to compare with expected ones.  

 
Figure 28: Scan ciphers frequency and power consumption according to the number L of scan chains (in 

the case of SKINNY block cipher). 
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IV.4. Proposed countermeasure based on stream cipher 

Additionally to the proposed CBC, we propose a secure CSC solution compared to existing solutions. 

The novelty of the approach resides in the fact that the IV of the stream cipher is not a constant value, 

but it is randomly generated by a TRNG at every circuit reset. The use of a TRNG guarantees to never 

re-use the same IV for the keystream generation. By initializing the stream ciphers with a different IV, 

the same keystream is not generated twice to encrypt different data. The proposed solution does not 

present thus the two times pad limitation, preventing an attacker to carry out differential scan attacks. 

Figure 30 describes the CSC consisting in adding stream ciphers at the input and the output of the 

scan chain. An attacker unaware of the secret key used for encryption of the test data is not able to 

set the circuit to a desired state, nor to plainly read the circuit state. Only users with the knowledge of 

the secret key can access the scan content for debugging purpose. As for the CBC, the secret key of the 

stream ciphers is stored and managed by the SKMU of the protected circuit.  

Concerning the IV, the random value generated by the TRNG has to be known by the external 

tester/debugger in order to allow the correct communication to user and devices owning the correct 

 
Figure 29: CBC applied when a test compression method is used. 

 

 
Figure 30: Principle of the proposed CSC using a random IV. 
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secret key. We have proposed a first solution sharing the IV from the scan chain. However, this 

proposal present an issue concerning the integration of the solution in a SoC. We propose then the 

CSC integrated in a JTAG infrastructure in order to share the IV using a dedicated instruction, fixing the 

integration issue. It is important to note that the security of the stream cipher is not jeopardized by 

making public the IV, since its secret key is still kept secret. 

IV.4.a First proposal to share the IV from the scan chain 

The first idea for CSC is to share the IV shifting through the scan chain. We present how it works, as 

well as the limitation in the integration of the solution in a SoC. 

As for the state-of-the-art, we propose to encrypt the scan chain with the TRIVIUM stream cipher, 

generating a keystream from an 80-bit secret key and an 80-bit IV. First, this stream cipher presents a 

low-cost implementation. Secondly, an alternative implementation allows increasing the keystream 

throughput (see Figure 31). Instead of implementing one stream cipher at scan-in and another at scan-

out, the implementation of one TRIVIUM is sufficient to generate two different keystreams for a 

marginal additional cost of 3 AND gates and 11 XOR gates [59]. One TRIVIUM stream cipher generates 

thus the keystream 𝑆𝑖𝑛 for the decryption process of the test vectors at scan input and the keystream 

𝑆𝑜𝑢𝑡 for the encryption process of the test responses at scan output. 

The global architecture of the first proposed CSC is represented in Figure 31. The scan chain 

encryption is composed of a TRNG, a shift register containing the IV, the stream cipher and the control 

unit. The control unit manages the initialization process, corresponding to the generation of the IV 

before beginning the encryption phase.  

After a circuit reset, the control unit starts the initialization as soon as the circuit switches from 

normal mode to test mode. During the entire initialization process, the scan chain is kept inaccessible 

since the stream cipher does not generate the keystreams. Both the scan input SI and the scan output 

SO are connected to the TRNG, thanks to the implemented multiplexers. This way, an attacker is not 

able to send desired data, since the circuit scan chain is connected to the random bitstream generated 

by the TRNG. An attacker is also not able to observe the internal states of the circuit. He observes the 

 
Figure 31: Architecture of the first proposed CSC using a random IV. 
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bitstream generated by the TRNG, including the IV value. The IV is firstly stored in the shift register, 

before initializing the stream cipher. Once the stream cipher setup is finished, the multiplexers are 

switched to the SI and SO. The stream cipher then generates the two keystreams. The keystream 𝑆𝑖𝑛 

is XORed bitwise to the data (test vectors) at scan input and the keystream 𝑆𝑜𝑢𝑡 is XORed bitwise to 

the test responses of the circuit. The control unit manages the stream cipher encryption during test 

mode. If the circuit switches to normal mode, the control unit stops the scan encryption. As soon as 

the test mode is asserted again, the stream cipher resumes the keystreams generation. 

The encryption with a stream cipher does not cause issues with test procedure for both fault 

models: stuck-at faults and transition delay faults. Indeed, test data has not to be padded contrary to 

CBC solution, since stream cipher encrypts/decrypts data bitwise. 

The main problem with the architecture of the proposed CSC in Figure 31 is the integration of the 

solution in a SoC. Indeed, the protected device is connected to the others devices in daisy-chain 

configuration. Therefore, the random IV generated by the TRNG is shifted through all the devices 

belonging to the test daisy-chain, implying possible issues for the other devices. For instance, if a device 

in the daisy-chain is being tested at the same time of the CSC initialization process, the random 

bitstream generated by the TRNG is thus shifted to the scan chain of the device being tested, 

perturbing the test.  

IV.4.b Proposal of CSC integrated in JTAG infrastructure 

In order to share the random IV to external user, we propose a better solution than the previous 

one, consisting in adding a specific TDR to the JTAG instruction set. This special register contains the 

IV value that the user can read executing the custom instruction called GETIV (more details are given 

thereafter). With this method, the generated random IV is shared with the external world, making the 

value publicly known. Even if an attacker can read the IV, the security is not compromised since the 

key of the stream cipher remains secret.   

For illustrating the principle of the solution, we consider a SoC embedding a crypto-processor, 

hence susceptible to be the target of differential scan attacks. An attacker can shift in and out the scan 

content of the circuit using the INTEST instruction, provided by the JTAG standard. The proposed CSC 

is effective in protecting against a malicious use of the INTEST instruction. We suppose that, when the 

INTEST instruction is executed, the TDR that is connected between the TDI and TDO signals is the 

internal scan chain. In the proposed solution, the content of data, shifted through the device, after the 

execution of the INTEST instruction, is encrypted with the stream cipher. As we have already 

mentioned, the generation of the IV is performed randomly. This means that every single device will 

generate a different random value, thus reducing the efficiency of the manufacturing test. Indeed, 

after the production of the ICs, many dies are usually tested in parallel, directly probing the silicon 

wafer, using the same test patterns. If the proposed scheme is also activated in this phase, parallel 

testing is not possible anymore since each circuit requires the test patterns encrypted with a different 

keystream. We explain firstly how to use the proposed CSC to easily perform parallel wafer testing, 

while we explain secondly how the CSC is used in mission mode. 
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IV.4.b.i Wafer testing 

The first test of newly fabricated integrated circuits is performed when the dies are still part of the 

silicon wafer. In order to gain test time during manufacturing test, several dies are tested in parallel by 

applying the same patterns at the same time. 

As explained above, implementing the proposed encryption technique makes the test patterns to 

be applied become unique for every single circuit, because they must be encrypted resorting to a 

random number that differs from one circuit to the other. Therefore, the proposed CSC cannot be used 

for parallel testing of multiple circuits. 

To thwart this disadvantage, we propose to disable the use of the TRNG during the manufacturing 

process and to use a predefined hardwired IV for all circuits. In this way, all keystreams are identical 

and all test patterns can be encrypted in the same way. To bypass the TRNG when the circuit is still on 

the wafer, we propose to use in-wafer sensors, able to identify whether the die is still part of the wafer. 

These sensors are either based on One Time Programmable memories, or on the so-called Saw Bow. 

The latter is based on an electrical connection made by strong pull-up and weak pull-down elements, 

which are physically interconnected by a metal line across the sawing lines of the wafer. The strong 

pull-up resistance sets a logic value on the line when the sawing line is intact. When the dies are sawed, 

the weak pull-down resistance sets the opposite value on the line [67]. 

From a security point of view, disabling the TRNG at manufacturing stage does not represent a 

security issue. As seen in Chapter II with the threats throughout the supply chain, no threat is 

considered at the fabrication stage. Therefore, a secure device does not need protection yet against 

attacks using the test interface. 

IV.4.b.ii Mission mode 

When in mission mode, the circuit can be the target of an attack. The scan chain is accessible to 

external users via the JTAG interface using the INTEST instruction. The principle of the solution is to 

encrypt the scan chain content using the stream cipher, as illustrated in Figure 32.  

As for the first proposal, a single TRIVIUM stream cipher generates two keystreams: 𝑆𝑖𝑛 for 

decrypting the test data shifted into the scan chain, and 𝑆𝑜𝑢𝑡 for encrypting the test data shifted out 

of the scan chain. The utilization of the proposed CSC also consists in an initialization phase and a 

successive encryption phase. However, both phases differ a little bit compared to the first proposal, 

since the proposed CSC is integrated within the JTAG infrastructure. 

During the initialization phase, the TRNG generates the IV, and sends it to the circuit implementing 

the stream cipher to perform its setup. During this phase, the TAP controller locks the use of the INTEST 

instruction. If an external user requires this instruction, the TAP controller remains set on bypass mode. 

When the initialization phase is completed, the tester can ask for access to the protected instruction. 

The external user has to execute a specific instruction, called GETIV. When executed, this instruction 

connects a special register, containing the generated IV value, to the TDI/TDO signals. This way, the 

tester can shift out of the device the IV that has been produced by the TRNG during the initialization 

phase. If the GETIV instruction is executed before the initialization phase is completed, a sequence of 

all ‘0s’ is returned as response. 
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During the encryption phase, the tester knows both the secret key (if the tester is authorized) and 

the IV obtained via the GETIV instruction. From this moment, it is possible to encrypt off-chip the test 

patterns using the IV recovered from the device. At this point, the test patterns shifted through the 

TDI for the INTEST instruction are decrypted on-chip before being introduced into the corresponding 

TDR. During the scanning-out operation, the test responses are encrypted on-chip. The tester collects 

encrypted responses from the TDO interface that can be decrypted off-chip, using the same IV and 

secret key used for the off-chip encryption. 

IV.4.c Implementation of CSC integrated in JTAG infrastructure 

We present in this Section the implementation of the solution with details on the modifications 

made on the JTAG test wrapper, and on the control unit managing the initialization phase. Moreover, 

we show that the solution is not limited to classical testing purposes with the protection of the INTEST 

instruction and the scan chains, but the countermeasure can be extended to a whole set of protected 

instructions whose involved data can benefit from encryption. 

IV.4.c.i General architecture 

The proposed CSC implies some modifications on the original JTAG wrapper, as illustrated in Figure 

33. The JTAG TAP controller is modified to add the new instruction GETIV and the associated TDR 

containing the IV value.  

The designer has to define a set of protected instructions. Only the data shifted through the TDRs 

associated to these instructions are encrypted by the stream cipher. Since the decrypting keystream 

𝑆𝑖𝑛 and the encrypting keystream 𝑆𝑜𝑢𝑡 are not correlated, it is necessary that the ciphering is not active 

when the device is in bypass mode. Indeed, the data 𝐷 shifted through TDI and TDO signals, when the 

countermeasure is activated, results into 𝐷⨁𝑆𝑖𝑛⨁𝑆𝑜𝑢𝑡, with 𝑆𝑖𝑛 ≠ 𝑆𝑜𝑢𝑡. When the protected device 

is integrated into a JTAG daisy-chain, with the BYP and IR registers not encrypted, the downstream 

 
Figure 32: Basic scheme of CSC on single scan chain integrated in JTAG infrastructure. 
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devices in the daisy-chain receives the correct data without having them perturbed. A device 

supporting the stream cipher encryption can thus be successfully integrated into a JTAG daisy-chain, 

while granting protection of the confidential data contained into its sensible TDRs. 

For example, in Figure 33 the protected instructions can include (1) the EXTEST and INTEST 

instructions with the encryption of the BSR and the internal scan chains, (2) the IJTAG instruction 

accessing the RSN including critical instruments, and (3) any instruction accessing a TDR containing 

confidential data, such as firmware updates of the device. 

During the initialization phase, these protected instructions are not accessible since they are 

replaced by the BYPASS instruction. The TDR associated to the GETIV instruction contains only ‘0s’ 

during this phase. The signal init_completed, managed by the control unit, is in charge of enabling the 

access to the encrypted TDRs and the GETIV execution. This signal is not accessible from the external, 

but the delay introduced by the initialization process can be known from an external tester thanks to 

the datasheet of the protected circuit. This delay, varying in function of the TRNG and the stream 

cipher implementation, indicates the waiting time until the circuit enters the encryption phase.  

During the encryption phase, the protected instructions are accessible. The stream cipher encrypts 

the content of data addressed to the TDRs associated to the protected instructions. An authorized user 

knows the secret key. The random IV is fetched thanks to the GETIV instruction. The encryption is 

employed in the examples illustrated in Figure 33: (1) all data passing through the BSR are encrypted 

preventing the observation and the control of the scan content; (2) the RSN is also encrypted; (3) the 

firmware is decrypted before being saved into the memory. 

When the encryption is performed on an IJTAG network, an attacker without the knowledge of the 

RSN configuration, faces troubles to open or close the SIBs, due to the keystream XORed with the test 

data at the RSN input. Even if the attacker is able to configure the RSN in a chosen configuration, he/she 

is not able to send and read data related to confidential instruments, since the data shifted through 

the RSN go through the input decryption and the output encryption.  

 
Figure 33: Detailed architecture of the CSC solution. 
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When the test interface is used to configure a memory (e.g. for firmware updates), the encryption 

ensures that the content cannot be readable without knowing the secret key. In the same manner, a 

FPGA configuration process is protected from sniffing [26]. Moreover, an attacker cannot update the 

firmware with a corrupted version due to the decryption performed on the data sent through the test 

interface. 

IV.4.c.ii Control Unit 

The procedure to initialize the stream cipher is controlled by a FSM, whose state transition graph is 

given in Figure 34. The FSM is composed of 4 states (START_TRNG, SHIFT_IV, SC_SETUP, and 

SC_ENCRYPT) and its outputs three control signals (𝑒𝑛𝑎𝑏𝑙𝑒_𝑟𝑒𝑔, 𝑠𝑡𝑎𝑟𝑡_𝑆𝐶 and 𝑖𝑛𝑖𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑). All 

of them are initialized to ‘0’.  

At reset, the TRNG starts the initialization, while in the START_TRNG state. TRNGs have usually an 

initial set-up time during which the generated numbers are not random enough. Therefore, they 

require some time to reach sufficient entropy. During this period, the generated value cannot be used. 

As soon as the TRNG reaches a good entropy (𝑇𝑅𝑁𝐺_𝑟𝑒𝑎𝑑𝑦 = ′1′), the IV generation begins.  

During the SHIFT_IV state, the shift register (Shift Reg in Figure 33) receives the random bitstream 

generated by the TRNG (𝑒𝑛𝑎𝑏𝑙𝑒_𝑟𝑒𝑔 = ′1′). A counter 𝑐𝑛𝑡 is launched at the same time. When 𝑐𝑛𝑡 

reaches the value 𝑁, the TRNG stops generating the random bitstream. 𝑁 is equal to the number of 

bits of the IV. When the 𝑁 bits of the random IV are generated, the TRNG is no longer used and it 

becomes available to other applications, if needed. Otherwise, it can be turned off.  

Once the counter have reached the value 𝑁, the control unit goes to the SC_SETUP state and starts 

the stream cipher initialization (𝑠𝑡𝑎𝑟𝑡_𝑆𝐶 = ′1′). The FSM stays in this state during the time 𝑇𝑆𝐶𝑠𝑒𝑡𝑢𝑝
, 

needed for the stream cipher setup.  

Once the counter reaches 𝑁 + 𝑇𝑆𝐶𝑠𝑒𝑡𝑢𝑝
, the initialization process is completed (𝑖𝑛𝑖𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 =

′1′). The stream cipher encrypts the data passing through the TDI and TDO terminals of the protected 

TDRs. The keystreams are generated only in the case in which the TAP controller is in the Shift-DR state 

and a protected TDR is selected by the instruction under execution. In the other cases, the encryption 

is not needed and the stream cipher is deactivated and it generates no keystream. 

During the SC_ENCRYPT state, when the tester wants to write into a protected TDR, it executes 

firstly the GETIV instruction to read the IV in order to encrypt the data using the shared secret. The 

 
Figure 34: Finite State Machine controlling the initialization procedure of the CSC solution. 
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tester executes then the protected instruction to access the corresponding TDR. The tester places the 

IC into Shift-DR state where the stream cipher generates the keystream. The tester shifts in the 

encrypted data, which are decrypted before being sent to the TDR. The tester places then the IC into 

Exit-DR state, in which the stream cipher stops the keystream generation. At the end of the operations, 

the TDR contains the data in plaintext. 

The initialization process cannot be interrupted. The control unit ensures the setup completion 

before any possible operations on the protected TDRs. If a circuit reset occurs, the control unit is 

reinitialized and the TRNG generates a new IV for the stream cipher. 

The control unit enables the stream cipher as soon as an operation on a protected TDR is required. 

This prevents any clear bitstream to be inserted in input or observed from the output. Even during the 

initialization process, the controller ensures that no test data can be shifted in and out the protected 

TDR by forcing the executed instruction to BYPASS. 

IV.4.c.iii Overheads compared to original JTAG test wrapper 

Proposed CSC architecture has a cost in terms of area and test time compared to the original test 

JTAG wrapper. To evaluate the area overhead, we have considered a simple JTAG wrapper 

implementing a TAP controller, the IR, the BYP, and the IDCode registers. The CSC solution implies 

modification on the JTAG wrapper to include the GETIV instruction and its associated register. 

Moreover, some modules are added in addition to the modified JTAG wrapper: the TRIVIUM stream 

cipher, the shift register containing the random IV and the control unit.  Table 5 reports the area cost 

of the proposed CSC compared to the original JTAG wrapper, representing an area overhead of 500%. 

The solution is thus dedicated to large devices, such as SoC designs.  

Concerning the test time cost, the proposed solution introduces only an overhead due to the 

initialization process. This process takes some time to initialize the TRNG, 𝑁 = 80 clock cycles to shift 

the random IV into the shift register, and 𝑇𝑆𝐶_𝑠𝑒𝑡𝑢𝑝 = 1152 clock cycles for the TRIVIUM setup. After 

this initialization process, the tester has to recover the IV executing the GETIV instruction before 

starting the encrypted test communication with the device. This corresponds to 80 clock cycles to shift 

out the content of the IV register. Basically, in addition to the time required to generate a random 

number, the solution implies a test time overhead of 1312 clock cycles at the beginning of a test 

procedure. This test time overhead has to be compared with the whole test sequence of the CUT. 

Experimentations have been conducted on several circuits in Chapter V. 

Modules Original JTAG 
(GEs) 

Proposed solution 
(GEs) 

JTAG wrapper 625   1 147 

TRIVIUM / 2 048 

IV Shift Register / 300 

Control Unit / 252 

Total 625 3 747 

Table 5: Area cost of the proposed CSC compared to the original JTAG wrapper. 
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IV.4.c.iv Extension to multiple scan chains 

The CSC can be directly adapted to multiple scan chains, regardless of the test compression 

technique. In the case of test decompressor and compressor implemented at scan pins, the ATE 

generates compressed stimuli used to test the circuit under test. The ATE encrypts, by stream 

ciphering, these generated stimuli following the same test procedure as described before. The 

encrypted compressed stimuli are scanned in the circuit and decrypted with the keystreams generated 

for the scan-inputs. The decrypted test stimuli are then applied to the test decompressor. The test 

responses are compressed before being encrypted on-chip with the keystreams generated for the 

scan-outputs. Finally, the ATE decrypts the compacted test responses in order to compare them with 

the expected ones.  

The only limitation for the extension to multiple scan chains is the number of keystreams that the 

stream cipher is able to generate. Considering a circuit where multiple scan chains are accessible 

through L scan-inputs and L scan-outputs, as illustrated in Figure 35, the stream cipher has to produce 

2⋅L-bits keystreams.  

The number of possible keystreams depends on the used stream cipher. For instance, TRIVIUM can 

compute up to 64 keystream bits in one clock cycle. Therefore, 32 parallel test data can be decrypted 

at scan-inputs and 32 parallel test data encrypted at scan-outputs. Considering block ciphers in CTR 

mode, this number is fixed by the ratio between the encrypted block size and the number of rounds 

for the crypto-algorithm (i.e. the number of clock cycles needed to encrypt a block). For PRESENT, the 

encryption of 64 bits is done in 31 rounds. As a consequence, PRESENT is able to generate two bits of 

the keystream in one clock cycle. Thus, the solution with PRESENT CTR can only be applied on a single 

scan chain. Considering the AES-128 CTR, 128 bits are encrypted in 10 rounds. The stream cipher is 

therefore able to generate 12 keystreams in one clock cycle, encrypting up to 6 scan chains. 

Apart from the limit on the number of keystreams, other perspectives can be considered to increase 

the number of scan chains to be encrypted. One of them is to run the stream cipher at higher frequency 

 
Figure 35: CSC solution applied on L multiple scan chains regardless of test compression. 
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in order to increase its throughput. Due to the low combinational complexity of the stream cipher, the 

frequency increase is a potential solution. Another solution is to implement several stream ciphers 

even though a bigger area overhead needs to be tolerated. For both perspectives, the cost in power 

consumption increases also in the same way. 

IV.5. Conclusion on the new proposed countermeasures 

The access to a scan network can be exploited by an attacker to carry out scan attacks, to exploit 

the JTAG features (illegal debugging, updating corrupted firmware, and exploiting IJTAG network), and 

to insert malicious cores within the test chain. To prevent these threats, a solution consists in 

encrypting the scan network. Several solutions have been proposed based on stream cipher. However, 

they present the weakness of using several times the same keystream to encrypt the test data. In this 

chapter, we have studied a solution based on stream cipher encryption without this vulnerability, and 

another based on lightweight block ciphers. The scan content is encrypted with a secret key developed 

for the current activity, and shared with the authorized users using the key management already 

present in the circuit. Both solutions can be applied on single and multiple scan chains configuration.  

These countermeasures have been published in the journal Transactions on Computer-Aided 

Design of Integrated Circuits and Systems [69]. In addition, we have presented these works in several 

European and international conferences [70]–[72], and in several workshops [76]–[81]. In the next 

chapter, we compare the proposed scan encryption solutions to the state-of-the-art countermeasures. 

Additionally, we draw a comparison between both countermeasures. 
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V.1. Global advantages of scan encryption compared to the state-of-

the-art 

In this chapter, we evaluate the two solutions presented in Chapter IV. Figure 36 resumes the 

architecture of both scan encryption techniques, CBC and CSC. Firstly, we perform a security evaluation 

of scan encryption countermeasures regarding the considered threat model with both external and 

internal attackers. Secondly, we evaluate the characteristics and costs of the proposed solutions. 

Thanks to these evaluations, we compare CBC and CSC solutions with the existing countermeasures 

preventing against attacks through the test infrastructures, presented in Chapter III. 

V.I.a Security evaluation 

The scan encryption countermeasures are evaluated regarding the threat model described in 

Chapter II. Both solutions, CBC and CSC, are considered. 

An external attacker cannot carry out scan attacks, exploit the JTAG features (debugging, uploading 

firmware, accessing IJTAG network), since the scan network is encrypted. The decryption performed 

on the scanning-in test data prevents the setup of desired values in the scan chain without knowing 

the secret key. The encryption performed on the scanning-out test responses prevents the observation 

of the internal states of the circuit under test without firstly performing the decryption. The controller 

of the scan encryption enables the stream cipher as soon as a scan operation is required to prevent 

any clear bit stream from being inserted or observed.  

 
Figure 36: (a) Global architecture of the scan encryption countermeasures. (b) CSC implementation. (c) 

CBC implementation. 
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The proposed CSC does not present the same vulnerability as the previous countermeasures in [30], 

[60] and [61] concerning the differential scan attacks. The seed used to initialize the stream cipher is 

randomly generated, consequently encrypting with a different keystream at each reset of the circuit. 

Therefore, differential scan attacks [13]–[16] are not possible. Considering the CBC, it does not present 

the possible vulnerabilities of the state-of-the-art CSC, since the countermeasure is based on block 

ciphers, consequently being a more secure solution. 

Both proposals also prevent the exploitation of the scan chain that would help to reverse-engineer 

an IP. In FPGA, the configuration bit stream is a critical information (IP confidentiality) that can also be 

protected thanks to encryption [26]. In the same manner with the proposed countermeasure, the on-

chip decryption of that bit stream before use prevents IP definition analysis. In addition, encryption at 

scan output prevents scanning out critical data related to the IP design.  

Moreover, several possible implementations of the proposed scan encryption mechanisms allows 

to tune the granularity of the target components. As described for the CSC solution in Chapter IV, 

specific TDRs can be encrypted, protecting the associated instruments. The proposed solutions can 

also be implemented either to secure the scan chain of a core in SoC or to secure specific instruments 

in IJTAG network, guaranteeing possible fine-grained access to cores and instruments.  

The proposed schemes allows to distinguish between different groups of users. A first set of 

instructions can be encrypted with a key associated to one group, and another set of instructions can 

be encrypted with another key associated to the second group.  

Concerning internal attacks, proposed scan encryption countermeasures ensures the 

confidentiality of the test communication, protecting against a malicious core possibly sniffing test 

data on shared test paths. However, the integrity of the communication is not ensured, allowing a 

malicious component in a test daisy-chain to tamper test data (patterns or responses) related to 

another component. Encryption however prevents chosen-plaintext and known-plaintext attacks as 

far as the secret key is not known from the attacker, which severely limits the attack possibilities.  

Additionally, the secret key embedded in the device and used for encrypting the test 

communication allows to ensure the device authentication in order to prevent overproduction. If an 

authorized user receives test responses encrypted with a “wrong” key, he/she knows that the circuit 

is a counterfeit. 

In terms of security, CBC and CSC both protect against the considered threat model, except against 

probing attacks. However, such attacks require important resources from an attacker. In the case 

where the secure device needs to be protected against invasive attacks, a dedicated countermeasure 

against probing attacks can be implemented and combined with the proposed scan encryption.  

Table 6 resumes the security evaluation of the proposed scan encryption techniques and compares 

with the state-of-the-art. Compared to existing countermeasures, proposed CBC and CSC ensures the 

largest protection, against external threats as well as against internal threats. 

V.I.b Characteristics and costs evaluation 

In addition to the security ensured by the proposed CBC and CSC, these solutions present several 

advantages compared to the state-of-the-art countermeasures.  
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From the testability point of view, the solutions preserve in-field diagnosis and debug contrary to 

the countermeasures consisting to avoid scan chain, such as disconnecting the test accesses or using 

BIST engines [36]. Indeed, an authorized user knowing the secret key can debug a system using the 

scan chain, by setting the system in a desired state and by reading plain test responses. Regarding the 

fault coverage, the scan encryption countermeasures do not impact test efficiency achieved on the 

original circuit since deterministic and structural test patterns remains the same (i.e. the original test 

sequence is applied on the target module after on-chip decryption). Additionally, test responses allow 

to achieve the same fault coverage and diagnostic levels. There is no extra cost (test patterns, test 

time) related to the extra scan ciphers embedded with the device under test because, as shown in 

Section V.3, these extra logic is freely tested during the test procedure of the original circuit. As 

described in Chapter IV, scan encryption countermeasures have a test time overhead, composing of 

only the initialization procedure for CSC, and eventually padding of the data for CBC. In both solutions, 

the test time overhead represents a marginal cost, since even for CBC we propose an optimization of 

the solution consisting in inserting observation points.  

Concerning area and power consumption overheads, the proposed solutions implementing stream 

cipher or lightweight block ciphers present a cheaper cost compared to the secure test access based 

on challenge/response protocol [51]–[58] implementing TRNG, hash engines, and asymmetric or 

symmetric cryptography requiring a lot of resources. Even for CSC, we propose to re-use a TRNG 

already available on the chip in order to limit the area and power consumption cost. These costs are 

detailed in Section V.2.  

Another advantage compared to the secure test access countermeasures [49]–[58] is the secure key 

management. A sharing method needs to be implemented for the passwords or challenge/response 

pairs, while we propose to re-use the SKMU already implemented for the crypto-processors in the 

chip.  

Compared to secure scan designs countermeasures [40]–[45], the proposed CBC and CSC do not 

modify the scan structure, implying two main advantages. Firstly, CBC and CSC are applicable on non-

modifiable cores (black-block IPs) by just adding the scan ciphers and the control unit. Secondly, the 

proposed countermeasures have a low impact on the DfT flow by adding the scan ciphers on the netlist 

file with scan design, and by adding the TDR containing the IV in the JTAG wrapper, as well as the GETIV 

instruction in the JTAG instruction set for CSC.  

Overall, the proposed solutions present several advantages compared to the existing 

countermeasures in literature, resumed in Table 6.  

In the following, we give a comparison between the two proposed countermeasures, CBC and CSC, 

with an evaluation of the implementation costs on single as well as multiple scan chains, testability 

evaluation, and integration in a SoC design.  
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Solutions 

Security evaluation Characteristics  and costs evaluation 

External threats Internal threats Testability Applicability 

Scan 
attacks 

Exploiting 
JTAG 

features 

Users with 
a restricted 

access 

Probing 
attacks 

Malicious 
component 

Counterfeit 
component 

Fault 
coverage 

In-field 
diagnosis 

and debug 

Test time 
cost 

Implementation Area cost 
Power 

cost 
Impact on 
DfT flow 

Test 
procedure 

Non-
modifiable 

core 

Secret 
sharing 

Scan chain 
avoidance 

Blowing fuses 

Secure 
Not 

available 
Not 

available 

Insecure 
(probe 

on 
fuses) 

Secure Insecure Same Impossible / Fuses 0 0 No 
Standard 

before 
blowing 

Applicable No 

Scan chain 
avoidance 

BIST [36][39] 

Secure Insecure 
Not 

available 
Insecure 

Secure 
(against 
sniffing) 

Insecure 
Can 

decrease 
Complicated 

Possible 
overhead 

PRNG, 
Responses 
compactor 

Moderate n.s. 
Important 
(insertion 

BIST) 

BIST 
procedure 

Not 
applicable 

No 

Secure scan design  
[13], [40], [44], [45] 

Secure Insecure 
Not 

available 
Insecure Insecure Insecure Same Preserved Low 

Modification of 
the scan chains 

Low n.s. Moderate 
Few 

changes  
Not 

applicable 
Depends 

Secure scan design  
[41], [42], [43] 

Insecure Insecure 
Not 

available 
Secure Insecure Insecure Same Preserved Low 

Modification of 
the scan chains 

Low Low Important  Standard 
Not 

applicable 
No 

Secure scan design 
(IJTAG)  

[46], [47], [48] 
Insecure 

Secure 
(against 

exploiting 
RSN) 

Fine-
grained 

access to 
instruments 

Insecure Insecure Insecure n.s. Preserved Low 
Modification of 

the RSN 
Low n.s. Low Unlocking Applicable 

Challenge 
response 
pairs or 

key (LSIB) 

Secure test access 
Password 
[49], [50] 

Secure 
(but 

replay 
attacks) 

Secure  

Fine-
grained 

access to 
cores [50] 

Insecure Insecure Insecure n.s. Preserved Low 
Password 

storage and 
control 

Moderate n.s. Low Unlocking Applicable Password 

Secure test access 
Challenge/response 

[51], [53], [54], 
[55], [56], [57], [58] 

Secure Secure  
Fine-

grained 
access 

Insecure Insecure Insecure n.s. Preserved Important 

TRNG, hash, 
asymmetric or 

symmetric 
ciphers or PUF 

Important n.s. Low  Unlocking Applicable 

Challenge 
response 

pairs 
(server)  

Secure test access 
Previous CSC  

[30], [60], [61] 

Insecure 
(two 
times 
pad) 

Insecure 
(two 
times 
pad) 

Fine-
grained 
access 

Insecure 
Secure 

(integrity in 
[30]) 

Secure n.s. Preserved Low TRIVIUM Moderate n.s. Low  
Encrypting 
test data 

Applicable 
Secret key 

and IV 

Secure test access 
Proposed CBC and 

CSC 
Secure Secure 

Fine-
grained 
access 

Insecure 
Secure 

(against 
sniffing) 

Secure Same Preserved Low 
TRIVIUM or 
lightweight 

block ciphers 
Moderate Low Low 

Encrypting 
test data 

Applicable 
Re-use 
SKMU 

Table 6: Comparison of the proposed scan chain encryptions to the state-of-the-art (red: drawback, green: benefit). 
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V.2. Implementation costs 

First, we compare the solutions on several benchmarks, namely a triple-DES, a pipelined 128 bits 

AES, a pipelined 256 bits AES, a 1024 bits RSA and a processor LEON3. In the first experiments, all the 

circuits are equipped with a single scan chain. 

These benchmarks as well as the ciphers have been synthesized using a 65-nm library. We have 

implemented the CSC with TRIVIUM [59], PRESENT [64] in CTR mode, and AES [12] in CTR mode. For 

CBC, we have used PRESENT and SKINNY [65]. 

Concerning the CSC solution, we do not consider the cost to implement a TRNG. As seen in Chapter 

IV, in the case where a TRNG is already implemented for the functional mode of the original circuit, 

the proposed countermeasure can exploit this TRNG during the test mode, implying no overhead cost 

for the random number generation. When a TRNG has to be implemented, the related cost is evaluated 

as 15,000 GE from the Synopsys DesignWare IP library [68] representing about 31 200 µm² using the 

65-nm library adopted for the experiments. This TRNG is composed of a whitening circuit with a noise 

source used to seed a random number stream, classifying the random generator as a Non-

deterministic Random Bit Generator. 

V.2.a On single scan chain 

Area overheads are reported in Table 7. It must be noted that the CBC requires the implementation 

of two ciphers, one for decrypting test patterns, and the other for encrypting test responses. 

Conversely, the CSC only requires the implementation of one cipher that delivers two keystreams. The 

area overhead is to be compared with the original CUT. As it can be seen, both solutions are expensive 

in terms of area, making these solutions suitable to large designs only.  Furthermore, in our 

experiments, we have not considered the key management using the one adopted in the benchmark 

under test. Thus, this solution is particularly adequate when at least one crypto-core is implemented 

in the circuit under test.  

Concerning test time, we consider for each core the test sequence for stuck-at faults obtained 

thanks to the TetraMAX ATPG tool. Table 7 reports the test time overhead related to the scan 

encryption countermeasures. The test time overhead for CSC is due to the initialization phase: the 

TRNG initialization, the shift of the random IV, and the stream cipher setup. Without considering the 

TRNG initialization, we obtain respectively 138, 95 and 1232 extra clock cycles for AES-128 CTR, 

PRESENT-128 CTR, and TRIVIUM. In any case, they represent a marginal cost of 0.022% in average over 

all the experimentations (see Overhead (%) in CSC section, Table 7).  

As presented in Chapter IV for CBC, every pattern has to be padded in such a way that its total 

length is a multiple of the block size of the cipher, i.e. 64 bits in the case of PRESENT and SKINNY. This 

induces a test time overhead for each pattern, representing a cost of 0.29% in average over all the 

experimentations (see Overhead (%) in CBC section, Table 7). This overhead can be reduced thanks to 

the presented optimization (i.e. insertion of observation points), except for pipelined AES-256 core 

which has a scan chain length multiple of the block size N=64 and thus does not require any pattern 
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padding. With the optimization of the CBC solution, test time cost is reduced to 0.0135% in average 

over all the experimentations (see Overhead (%) in CBC section for Optimization row, Table 7). 

It is clear that CSC outperforms CBC due to the data volume-dependent overhead of the last one. 

This comparison on test time overhead works out in favor of the CSC solution. When the optimization 

of CBC is applied on the original circuit, the test time overhead is equivalent to the one achieved with 

the CSC solution. 

V.2.b On multiple scan chains 

We present in Table 8 the experimental results of both CSC and CBC proposed solutions applied on 

devices with multiple scan chains. We consider a frequency of 10 MHz for the scan shift operations. In 

the following experiments, we use an estimation of the power consumed by the proposed solutions 

considering the ciphers implemented (AES-128 CTR and TRIVIUM for CSC, and PRESENT and SKINNY 

for CBC). The power consumption estimation is obtained after the synthesis of the scan encryption 

countermeasures with Design Compiler tool [66] at the frequency defined in Table 8.  

The stream cipher decrypts/encrypts test data at the same frequency than shift operations (10 

MHz) regardless of the number of scan chains (columns CSC, Table 8), implying a marginal cost in power 

consumption (about 82 µW for AES-128 CTR and 35 µW for TRIVIUM).  

Original circuit 

Triple-DES Pipelined AES-128 Pipelined AES-256 RSA 1024 LEON3 

Area  

(µm²) 

Test time* 

(clock 

cycles) 

Area  

(µm²) 

Test time* 

(clock 

cycles) 

Area  

(µm²) 

Test time* 

(clock 

cycles) 

Area  

(µm²) 

Test time* 

(clock 

cycles) 

Area  

(µm²) 

Test time* 

(clock 

cycles) 

187,494 687,101 367,926 1,944,877 669,193 4,559,845 468,415 39,405,239 1,902,095 11,612,051 

Scan 

Encryption 

Area 

(µm²) 
Overhead (%) Overhead (%) Overhead (%) Overhead (%) Overhead (%) 

  CSC (without TRNG implementation) 

AES-128 

CTR 

48,118.20 
+25.66 +0.020 +13.08 +0.007 +7.19 +0.003 +10.27 +0.0004 +2.53 +0.001 

PRESENT-

128 CTR 

6,833.84 
+3.64 +0.014 +1.86 +0.005 +1.02 +0.002 +1.46 +0.0002 +0.36 +0.0008 

TRIVIUM 5,408.52 +2.88 +0.18 +1.47 +0.06 +0.81 +0.03 +1.15 +0.003 +0.28 +0.01 

  CBC  

PRESENT-

128 

10,658.96 
+5.74 +0.31 +2.92 +0.81 +1.61 +0.006 +2.30 +0.33 +0.57 +0.004 

Optimization 

(observation points) 
+5.87 +0.038** +3.43 +0.013**  +2.51 +0.001** +0.57 +0.002** 

SKINNY-64-

128 

9,282.52 
+4.95 +0.31 +2.52 +0.81 +1.39 +0.006 +1.98 +0.33 +0.49 +0.004 

Optimization 

(observation points) 
+5.08 +0.038** +3.03 +0.013**  +2.09 +0.001** +0.49 +0.002** 

Table 7: Area and test time cost of scan encryption with stream cipher and block cipher, applied on several 
circuits. 

*: test time considered for a fault coverage of 100% on the original circuit, except for the LEON3 processor 
where the fault coverage reaches 70%. 

**: test time overhead for the block-based solutions compared to the test time of the optimized circuit 
when observation points are inserted. 
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With block ciphers encryption (columns CBC, Table 8), the cost in power consumption increases 

with the number of scan chains, as explained in Chapter IV. For the encryption of 4 scan chains, the 

power consumption is already 2.5 times higher with block ciphers encryption compared to AES-128 

CTR encryption (221.3 µW vs 82.46 µW), and 6 times higher compared to TRIVIUM (221.3 µW vs 34.16 

µW). The difference is even greater for the case of 32 scan chains: the TRIVIUM performs the scan 

encryption at 10 MHz, consuming 36.37 µW, while PRESENT and SKINNY operates at 330 MHz (2,434.7 

µW), and 370 MHz (2,232.9 µW) respectively, consuming 33 times higher than TRIVIUM. However, the 

generation of several keystreams from TRIVIUM to encrypt several scan chains has an area cost. To 

encrypt 32 parallel scan chains, the area cost of CSC with TRIVIUM represents 9,999.60 µm², equivalent 

to the cost (9,838.92 µm²) of CBC with SKINNY. 

V.3. Testability evaluation 

The scan encryption permits to test the original circuit without reducing the test coverage since the 

original test patterns are still applied on the CUT. However, extra resources for scan encryption must 

also be tested. First of all, scan chains on extra circuitry would expose the cipher to scan attack and are 

thus avoided. We propose to functionally test extra ciphers using the test patterns dedicated to the 

CUT and processed by the ciphers during encryption or decryption. 

The test of block ciphers, such as PRESENT, SKINNY and AES, is facilitated by the diffusion properties 

of the crypto-algorithms, as described in [37] and [38]. The stream ciphers based on shift registers, 

such as TRIVIUM, are also easily testable since all the states of the stream ciphers are shifted out the 

circuit as keystream.  

Random data and possible errors are indeed easily propagated through typical operations involved 

in such encryption algorithms. Experiments performed on PRESENT, SKINNY, TRIVIUM and AES show 

that 100% fault coverage of stuck-at faults can be achieved with 1000 random patterns of N=64 bits 

each. 

Therefore, both ciphers easily propagate the possible errors to the outputs when an encryption is 

performed. To validate the assumption, we have evaluated the test coverage achieved on every 

studied cipher (PRESENT, SKINNY, TRIVIUM and AES) by applying on each the test sequence of the 

Scan 

encryption 
CSC (without TRNG implementation) CBC 

Ciphers AES-128 CTR TRIVIUM PRESENT-128 SKINNY-64-128 

# scan 

chains 

Area 

(µm²) 

Power 

(µW) 

Freq. 

(MHz) 

Area 

(µm²) 

Power 

(µW) 

Freq. 

(MHz) 

Area 

(µm²) 

Power 

(µW) 

Freq. 

(MHz) 

Area 

(µm²) 

Power 

(µW) 

Freq. 

(MHz) 

1 48,118.20 81.68 10 5,408.52 34.01 10 10,658.96 73.80 10 9,282.52 60.35 10 

2 48,128.60 81.70 10 5,553.60 34.02 10 11,877.84 147.6 20 10,501.4 128.2 21.25 

4 48,243.00 82,46 10 5,851.04 34.16 10 11,652.16 221.3 30 10,275.72 196.1 32.5 

8   10 6,453.20 34.55 10 11,532.56 368.9 50 10,156.12 331.9 55 

16   10 7,615.92 35.14 10 11,520.08 664.0 90 10,143.64 603.5 100 

32   10 9,999.60 36.37 10 11,215.36 1,254.2 170 9,838.92 1,146.7 190 

64       11,183.12 2,434.7 330 9,806.68 2,232.9 370 

Table 8: Scan encryption with stream cipher and block cipher applied on multiple scan chains design. 
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original CUTs. At scan-input, test patterns are processed by the input scan cipher, and the test 

responses are processed by the output scan cipher.  

We have performed experiments with the test sequence of the Pipelined AES-256, Triple-DES, 

Pipelined AES-128, RSA 1024 and LEON3 processor cores. Table 9 presents the results for the CBC 

solution with both PRESENT and SKINNY block ciphers. For each circuits, we report the number of scan 

FFs (row #SFF), the number of patterns (row #Patterns), the test coverage of the original circuit, the 

number of encryption performed by the block cipher (row #Encryption (64-bit block size), and the test 

coverage of the scan ciphers. In all cases, the important number of encryption ensures that the fault 

coverage for stuck-at faults in the CBC architecture is 100%. In other words, the ciphers are tested for 

free. The same results are obtained on the CSC architecture.  

V.4. Integration of the solutions in a SoC design 

The integration on the scan encryption countermeasures consists in adding ciphers at the input and 

the output of the scan chain(s). In the case of CSC, as shown in Section IV.4.c.i, it also implies some 

modifications on the JTAG test wrapper, but not on the core itself. Therefore, the solutions can be 

applied without modification on the protected core.  

The test wrappers of the cores composing a SoC are often connected in a test daisy-chain, as 

described in Chapter II. The serial input/output of the test interface provides access to the scan chains 

for all cores implemented in the SoC. When the scan encryption is implemented on one core, all the 

core included in the test daisy-chain propagates encrypted data, providing protection against malicious 

core. The stream cipher encryption operates bitwise on the data, implying no issue on the integration 

of the CSC in a test daisy-chain. Contrarily, the block cipher encrypts blocks of data, implying to pad 

the test data to a multiple of the block size. The extra data used for padding is thus propagated through 

other cores in SoC daisy-chain, resulting in possible issues during the test operations. Therefore, the 

designer has to be aware of the potential problems when the CBC is implemented. A way to avoid the 

Original 
circuit 

Triple-DES Pipelined AES 128 Pipelined AES 
256 

RSA 1024 LEON 3 

#SFF 8 808 7 873 12 736 16 459 107 518 

#Patterns 77 246 357 2 393 107 

Original 
circuit  
Test 

coverage 

100% 100% 100% 100% 70% 

#Encryption  
(64-bit block 

size) 
138×77=10,626 124×246=30,504 199×357=71,043 258×2393=617,394 1680×107=179,760 

Scan ciphers  
Test 

Coverage 
100% 100% 100% 100% 100% 

Table 9: Scan ciphers tested for free. 
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padding issue is to have a scan chain length equals to a multiple of the cipher block size. However, the 

insertion of extra FFs implies to modify the original circuit. 

V.5. Conclusion on the advantages of the proposed countermeasures 

In Chapter IV, we have proposed two new countermeasures consisting in encrypting the test 

communication: one based on block cipher, another based on stream cipher. Compared to the state-

of-the-art countermeasures, these solutions have the advantages to provide a large protection against 

external threats (unauthorized access to the test interface) as well as internal threats (insertion of 

malicious device in a daisy-chain). In addition to the security provided by the proposed scan encryption 

countermeasures, the implementation of these solutions is plug-and-play, cost efficient and preserves 

the testability of the device under test. As presented in this chapter, the test of the extra scan 

encryption devices does not involve any test time overhead as they are freely tested during CUT 

testing.  

In this chapter, we have also given a comparison between both proposed solutions. Experimental 

results have shown that the scan encryption with stream cipher has a lower cost in terms of area, test 

time and power consumption, compared to the scan encryption with block cipher, if a TRNG is already 

implemented in the original system. In the opposite case, the block cipher encryption is a good 

alternative allowing a possible optimization in order to reduce the test time and facilitate the 

integration in a SoC design.  

The comparison between both encryption techniques has been presented in a conference [81] and 

has been submitted to the journal Transactions on Very Large Scale Integration Systems (TVLSI). In the 

next chapter, we give a summary of the comparison to conclude this thesis, and draw some 

perspectives. 
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VI.1 Contributions 

Cryptographic ICs are widely used for ensuring confidentiality in the system. It is the case for mobile 

devices, protecting the cryptographic operations using the TEE, isolating at the software level from the 

Rich OS Android.  However, this protection is not sufficient for protecting the secure circuit against 

hardware attacks, such as the exploitation of test infrastructures. 

The test of cryptographic circuits is mandatory to ensure the quality of the product. It is especially 

important since physical defects can compromise the security. IC designers needs thus to implement 

scan design, the most DfT technique, as well as test wrappers (JTAG, IEEE 1500 and IJTAG) bringing 

additional features than testing, such as debugging, uploading firmware, configuring FPGA and 

accessing instruments. Nevertheless, these test infrastructures give points to attack the secure system. 

In this thesis, we have presented contributions with new countermeasures consisting in encryption the 

scan network.  

Overall, the scan encryption ensures protection against scan attacks [13]–[18], against an attacker 

exploiting the JTAG features (stealing IP design [26], updating a corrupted firmware [27], exploiting 

debugging facilities [28][29], and exploiting IJTAG network), and against internal threats such as the 

insertion of malicious core [30], and counterfeit components [31], due to test communication 

encryption. An attacker is not able to set the circuit in a desired state, nor to observe internal states of 

the circuit without knowing the secret key. Moreover, the presented CSC does not show the two times 

pad vulnerability, making it more secure than the state-of-the-art CSC [30], [60] and [61].  

The establishment of the encrypted test communication between an authorized user and the 

secure circuit is possible with the shared knowledge of the secret key. Consequently, the user with the 

possession of the secret key is automatically authenticated by the secure circuit. Only authorized users 

can access the scan network for testing. 

The proposed countermeasures also present advantages compared to existing scan attacks 

countermeasures. One of them is that it is still possible to perform in-field diagnosis and debug only 

for authorized users knowing the key, as opposed to the simple countermeasure consisting in 

disconnecting the test accesses, such as the countermeasure implemented in the reference board of 

TEEVA project [35]. Another advantage is the key management re-using the one already implemented 

in the circuit. Previous countermeasures based on a secure protocol using cryptographic primitives, 

such as in [51]–[58], need to have a dedicated key management.  

The scan encryption does not impact the test coverage of the original circuit, contrary to the BIST 

solutions [36] which can reduce the test coverage in some cases. Moreover, the ciphers are tested 

functionally with the patterns of the original circuit, at the same time as the original circuit is tested. 

VI.2 Summary of the comparison 

In this thesis, we have also compared the two proposed solutions CBC and CSC. Table 10 resumes 

the comparison. In order to bring the best comparison possible, we give the pros and cons of the two 



CHAPTER VI – CONCLUSION 

120 

 

solutions for the implementation to achieve the best performance possible. Regarding the 

experimental results in Chapter V, the CBC is performed by SKINNY, while the CSC is performed by 

TRIVIUM. The CBC is evaluated for two cases. The solution being optimized or not with the insertion 

of test points in the original circuit in order to reduce the test time overhead. The CSC is also evaluated 

for two cases. The TRNG being already implemented or not. 

An advantage of the CSC is that the integration in test daisy-chain implies no issue compared to the 

CBC. The optimization of the CBC permits to avoid the integration issue, but it is then not applicable 

on a non-modifiable core.  

When a TRNG is already implemented in the device, another advantage of the CSC compared to the 

CBC is the area and test time costs for single scan chains. However, in the case where a TRNG is not 

available in the device for the scan encryption, the CBC can be preferred to the CSC due to the 

important area cost of a TRNG.  

Concerning the implementation on multiple scan chains, the CSC has a lower cost in terms of area 

and power. However, the limit on the number of chains processed by one cipher is lower, from 2 to 32 

scan chains, compared to the limit for the CBC which is from 2 to 64 scan chains.  

Therefore, the choice of the CSC or CBC depends on the original circuit where the protection is 

implemented: if a TRNG is already set up, if the scan chain length is a multiple of the encrypted block 

Scan encryption 

CBC (SKINNY) CSC (TRIVUM) 

Test points insertion for test time optimization: TRNG already implemented: 

Not optimized Optimized Yes No 

Security 

Scan attacks Protected Protected (two times pad not possible) 

Exploiting JTAG features Protected Protected (two times pad not possible) 

Malicious core Protected Protected 

Counterfeit components Protected Protected 

Global features 

User authentication Yes Yes 

In-field diagnosis & debug Yes Yes 

Key management Re-use the key management already implemented Re-use the key management already implemented 

Integration 

Integration in test daisy 
chain 

Possible issue with the 
padding of test data 

No issue No issue 

Appl. on non-modifiable core Yes No Yes 

Test coverage 

Original circuit No impact No impact 

Secure test infrastructure Functional test with test patterns of the original 
circuit 

Functional test with test patterns of the original 
circuit 

Costs for single scan chain 

Area 9,282.52 µm² 
+ Insertion of test 
points (< 500 µm²) 

5,408.52 µm² 
+ ~ 31,200 µm² for 

TRNG 

Test time 

Depends on the scan 
length 

(multiple or not of the 
block size) 

Marginal cost 
(256 clocks cycles) 

Clock cycles required for 
the initialization phase 

(1 232 clock cycles) 

+ time to initialize the 

TRNG 

Cost for multiple scan chains 

Area ~ 10,000 µm² 
From 5,553.60 µm² to 

9,999.60 µm² 

+ ~ 31,200 µm² for 

TRNG 

Power From 128.2 µW to 2,232.9 µW ~ 35 µW 
+ power consumption of 

the TRNG 

Limit on the number of 
chains processed by one 

cipher 
From 2 to 64 scan chains From 2 to 32 scan chains 

Table 10: Comparison between scan encryption with stream cipher and block cipher. 
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size, if the original circuit is modifiable in order to insert observation points; and you also have to 

consider the number of scan chains that need to be encrypted.  

VI.3 Perspectives 

Considering the threats using the test interfaces defined in Chapter II, the only additional 

protection, which could be interesting to add to our proposed countermeasures, is to ensure integrity 

on the test messages in addition to the confidentiality. The integrity associate a tag to the message in 

order to distinguish valid messages from invalid ones. With this additional protection, the test 

messages coming from an attacker could be detected since they do not include the appropriate tags. 

In others words, a malicious component could not tamper test data, and an external attacker could 

not send “random” encrypted data to erase a memory region, such as a firmware. In literature, only 

the authors in [30] propose to add a HMAC on the test messages in order to ensure the integrity. 

However, HMAC implementation requires important hardware resources and add an important 

overhead on the test time, since the HMAC is computed for every received test messages. Instead of 

using a HMAC, a possible continuation would be to use authenticated encryption, ensuring both 

confidentiality and integrity of the test communication. The implementation and the costs of such 

solutions need to be determined. 
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