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Start by doing what is necessary, 

then do what is possible, 

and suddenly you are doing the impossible. 
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1.1. Scope of the Thesis 

 
Landslides are worldwide common phenomena triggered by a variety of causes such as heavy 
precipitation, strong storms, natural seismic activity, artificial load changes, clay involvement, or 
even blasts. Often causes interfere with each other and combined triggers are not scarce. On a 
global scale, the role of water, seismic and volcanic activity seem to have the most relevant 
effects (USGS, 2004). Depending on the size of an event, consequences can be minor to 
disastrous causing loss of life and considerable damage to infrastructure, property and the 
environment (BIRD & BOMMER, 2004). One main reason for more frequent catastrophes is the 
growth of population which entails extending urbanization to areas with high landslide potential 
(PETLEY, 2012). 
Throughout literature, reports and case studies on seismically induced mass movements are 
abundant. In terms of fatalities the most disastrous example might be the rock avalanche at 
Nevado Huascarán, Peru, which was triggered by the Peruvian Earthquake (or Ancash 
Earthquake; MW = 7.9) on the 31st of May 1970 and buried the towns of Yungai and Ranrahirca 
causing 54,000 victims (KUROIWA et al., 1970; LOMNITZ, 1970; RODRÍGUEZ et al., 1999). Also 
three more recent mass movement events drew a line of catastrophic destruction and a high rate 
of loss of life. The El Salvador Earthquake on the 13th of January 2001 (MW = 7.6) triggered 
several landslides in Santa Tecla and Comasagua killing 500 people (EVANS & BENT, 2004). 
During the Hattian Bala rock avalanche triggered by the Kashmir Earthquake (MW = 7.6) on the 
8th of October 2005 around 25,000 residents of the Jhelum Valley, Pakistan, lost their lives 
(DUNNING et al., 2007). An equally high number of victims (20,000) amounts from the landslide 
series in and around Beichuan, China, after the Sichuan Earthquake (or Wenchuan Earthquake; 
MW = 7.9) on the 12th of May 2008 (YIN et al., 2009). In contrast to such deadly events, there are 
also mass movements that initially claim a rather low number of fatalities but pose a long term 
secondary threat to the environment and the local population. For instance, the Sarez 
Earthquake of the 18th of February 1911 (MW = 7.2) triggered a giant landslide that finally 
blocked the Murghab River, Tajikistan, creating a natural dam. This dam appears to be the 
largest natural dam and it permanently poses the threat of a leakage or deluge 
(PREOBRAZHENSKY, 1920; SCHUSTER, ALFORD, 2004; AMBRASEYS & BILHAM, 2012). Multi-
hazard chain effects are also documented in historic chronicles. The Calabria Earthquake (or 
Messina Earthquake; MW = 6.2) on the 6th of February 1783 is reported to have triggered the 
Scilla Landslide that slid into the sea. The hereby induced tsunami wave caused 1500 casualties 
at a nearby coastline agglomeration (BOZZANO et al., 2011). 
Over time, the long-living assumption of mass movements being simply secondary effects of 
earthquakes was revised and the topic became a focus of interest. In many cases the damage and 
loss of life resulting from a mass movement exceed those of the earthquake itself. The tragic 
example of Jhelum Valley, Pakistan, shows that most of the victims did not die from the 
earthquake, but from the triggered rock avalanches (DUNNING et al., 2007) which also erased 
building stock and infrastructure preventing fast and adequate disaster management in the 
aftermath.  
Therefore, research on the effect of seismic shaking to slopes is of particular importance, be it 
with respect to natural or artificial slopes such as – for example – excavations, road cuts, dams 
and mining pits. The better scientists understand the relation between impacting seismic waves 
and the slope response, the better will be predictions on surface deformation as well as 
environmental and socio-economic impact estimation. Risk management becomes more 
accurate; analysis on the occurrence probability of events, resilience and vulnerability 
assessment and hazard mapping gain in precision.  
Research on seismically induced mass movements is extensive and a broad spectrum of methods 
for characterizing and modeling slope deformation is available (cf. 5., 6., 7.). In the very 
beginning, empiric approaches attempted to statistically correlate characteristics of earthquakes 
with those of mass movements (cf. 2.5.3., 3.1., 3.3.1.). In many – but by far not all cases – 
relations appeared to be non-satisfactory due to site effects (cf. 1.2.) and demands raised for 
more complex approaches. Today, methods range from pseudo-static and rigid-block-based 
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approaches (cf. 5.) to numerical models (cf. 6., 7.). The majority is limited to 2D modeling since 
more sophisticated approaches in 3D are still under development or need calibration. However, 
it must be kept in mind that due to the heterogeneity of nature one will never – neither with the 
best 3D-model – reproduce an exact replica of the real site conditions and as EBERHARDT 
(2003) states: 
 

“[…] Numerical modelling is a tool and not a substitute for critical thinking and 
judgement.” (p. 2) 

 
How difficult the evaluation of slope response is, becomes apparent when briefly introducing 
types of approaches to characterize the behavior of the slope. The linear approach is based on 
the hypothesis that material as well as damping parameters are constant over time and that the 
biggest amplifications of the incoming seismic signal is expected at the fundamental frequency of 
the mass movement body (cf. 6.3.1., Excursus – 6.4.2.; KAHIL, 2015). 
In contrast, non-linear approaches take into account that relevant material and damping 
parameters are not constant over time and that non-linear slope behavior can change the 
response considerably. For example, as deformation increases with time, the shear modulus (G = 
ρ · vs2) and thus the shear wave velocity (vs) decrease. Subsequently, the fundamental frequency 
– as function of the shear wave velocity (vs) – is also not constant. Inversely, the damping (ξ) 
becomes stronger with increasing deformation countering amplification (KAHIL, 2015).  
This thesis focuses on linear slope behavior; i.e. all applied methods – the NEWMARK-Method 
(1965; cf. 5.), the modal recombination analysis (cf. 6.) and the analysis with the finite difference 
code FLAC (cf. 7.) – are based on the hypothesis of constant material and damping parameters. 
 
1.2. Site Effects 

 
Generally speaking, site effects influence the amplitude, the frequency content and the duration 
of an incoming seismic signal at a specific location. They depend on the local geological setting, 
the geometrical features within the underground and the properties of the involved material in 
combination with the characteristics of the incoming waves.  
Usually site effects are noticed when it comes to extraordinary amplification of the signal and 
when damage is higher than expected. Already in 1824 MACMURDO noted that buildings were 
not damaged to the same extent after the Rann of Kutch Earthquake, India,  on the 16th of June 
1819 (MW = 8.2); buildings located on rock were less affected. It took a century until 
GUTENBERG (1927) presented for the first time amplification factors related to subsurface 
conditions. Today, the creation, propagation and impact of seismic waves are no longer 
considered as mystery or even a “divine punishment”; the phenomena rather follow physical 
principles. 
After a rupture has taken place, primary and secondary waves (longitudinal/P- and shear/S- 
waves; cf. Fig. 1.1) radiate from the hypocenter (cf. Fig. 1.3). Assuming that geologic layers 
become less dense with progressively shallower depths, waves undergo reflection and refraction 
at every interface according to Snell’s Law (cf. Fig. 1.2a-c); the term “refraction” implies 
transmission of the wave to the less dense medium with a smaller angle from the perpendicular: 
 

sin(𝛼1)

𝑣1
=
sin(𝛼2)

𝑣2
 

 
where α1 and α2 are the angles towards the perpendicular 

and v1 and v2 the wave propagation velocities in the respective media 
 

P-waves vibrate along the direction of propagation; they are also polarized in the direction of 
propagation. The direction of propagation and the vertical axis define the plane of incidence 
which corresponds in Fig. 1.2a-c to the plane of the images themselves. 
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The vibration of S-waves is perpendicular to the direction of propagation; their polarizations can 
have two orientations: 
 

 in the polarization plane and the plane of incidence (cf. Fig. 1.2a) 
 in the polarization plane and perpendicular to the incidence plane (cf. Fig. 1.2c) 

 
Respectively the two types of S-waves are called SV-waves (cf. Fig. 1.2a) and SH-waves (cf. 1.2b). 
Incident P- or SV-waves scatter at an interface to reflected and transmitted P- and SV-waves. 
Reflected and transmitted P-waves always have a bigger angle to the perpendicular due to their 
higher velocities; S-waves are slower than P-waves in the same medium. SH-waves cannot 
change their nature by being reflected or transmitted (cf. Fig. 1.2a-c).  
 

 
Fig. 1.1. Types of body waves and surface waves. The particle motion is indicated in orange, 

the direction of wave propagation in red (after CLAUSER, 2014). 

 
Due to the phenomenon described by Snell’s Law, it is apparent that waves tend to reach the 
surface with an almost right angle (cf. Fig. 1.3). The free surface causes total reflection and the 
creation of surface waves that travel across the ground surface. These latter waves are called 
Rayleigh- and Love-waves and form through interference of P- and SV-waves and two SH-waves 
respectively. Since the focus of this thesis is to analyze the response of the underground – in this 
case of landslides – the main interest is on S-waves. After the process of “curving upwards” they 
have a shearing character parallel to the surface and hence cause eminent “left-right” or 
“forward-backward” displacements inside the underground. In section 4.4. the choice of applied 
signals will be explained. All of them are x-components of registered accelerograms and 
supposed to represent SV-waves that shear the landslide mass in the plane of its longitudinal 
cross section (cf. Fig. 4.8). 

 

 
Fig. 1.2a-c. Wave reflection and refraction (transmission) at interfaces between two media. 

Abbreviations with capital letters refer to waves (P, SH and SV), those with small letters to angles (p, sh and sv). 
Orange arrows indicate the direction of vibration which is not to be confounded with the direction of propagation. 
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Besides of local geology, also the topography plays an important role for site effects (cf. Fig. 1.3). 
This becomes obvious when comparing accelerograms of the same earthquake that were 
registered at different sites. The accelerogram originating from the station at the bedrock serves 
as the reference. In comparison, accelerograms of concave topographies – such as depressions 
or valleys – tend to have lower amplitudes and shorter durations due to signal dispersion. 
Convex topographies – such as mountain ridges or crests – can trap incoming waves causing 
amplification through constructive interference; signals also become longer in duration. The 
biggest amplification and prolongation of the signal is to be expected in basins that are filled 
with non-consolidated sediments. 
 

 
Fig. 1.3. Schematic representation of site effects (after ZACEK, 1996). 

 
The impedance (Z = ρ·vs) of a medium is a property defining its resistance to wave transmission; 
the stronger the impedance contrast between the sediments and the underlying bedrock is, the 
bigger become the entrained effects. One can easily recognize the reason via the principle of 
elastic wave energy conservation; if the shear wave velocity (vs) and the density (ρ) decrease 
while the energy flux (ρ·vs·u̇²) remains the same, the particle velocity (u̇) must increase 
(KRAMER, 1996), and as NEWMARK (1965) summarizes: 
 

“One of the most important special conditions […] is a relatively soft sedimental deposit of 
fairly great depth and wide extent. When such a soil deposit is set into motion at its contact 
with the bedrock, there is a tendency for the resultant motions of the soil to reflect the 
natural frequency of the bowl of soil. This has an effect of increasing the magnitude of 
surface displacements and velocities, but it also causes the resultant motion to be more 
periodic […]. A structure built on such a material […] will generally have a larger response 
than it would have if it were subjected to motions of the bed rock.” (p. 141) 

 
Two of the most cited examples for extreme amplification and signal prolongation at 
sedimentary basins are the Mexico City Earthquake on the 19th of September 1985 (MW = 8.0) 
and the Loma Prieta Earthquake on the 19th of October 1989 (MW = 6.9). In the case of Mexico, 
the epicenter was around 350 km away and experienced only moderate damage. The spectral 
accelerations in Mexico City, however, were up to ten times higher and the time of shaking lasted 
much longer (DOBRY & VUCETIC, 1987; STONE et al., 1987). Also in the second case of the San 
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Francisco Bay Area in California, USA, the epicenter was located at a distance (100 km) and the 
effect of signal amplification is illustrated by the collapse of the Cypress Viaduct in Oakland (cf. 
Fig. 1.4). The structure was founded on muddy sediments (SEED et al., 1990).  
 

 
Fig. 1.4. Collapsed Cypress Viaduct in Oakland (LEWIS, 1989). 

 
Having dedicated several paragraphs on wave propagation, topographic effects and sedimentary 
basins, one might ask what the relation to landslides is. Put simply, landslides are to be seen as 
masses of unconsolidated material, however with a limited spatial extent and an inclination with 
respect to the horizontal. As such, they experience seismic shaking, they are affected by 
topographic effects and like sedimentary basins they show a significant impedance contrast to 
the underlying bedrock. Thus, they are likewise prone to be affected by site effects and for this 
very reason the mentioned empiric correlations of earthquakes characteristics with those of 
mass movements (cf. 1.1.) do not always fit. 
Over the last years research on the topic has made great progression. BRAY (1998) showed that 
expected co-seismic displacements are dependent on particular parameters of the seismic event. 
BOURDEAU & HAVENITH (2012) as well as ALFARO et al. (2012) demonstrated that the angle of 
incidence of seismic waves have an influence on the amplification. LENTI & MARTINO (2012) 
conducted parametric studies which revealed that the seismic response of landslides is a 
function of the dimensions and sequences of layers it contains. 
The aim of this thesis is to contribute to the overall topic of seismically induced landslides, site 
effects and the prediction of expected surface deformation across slopes. 
In order to assess and compare expected displacements across slope surfaces a series of 
different seismic scenarios was applied to one particular site using three different methods: the 
NEWMARK-Method (1965) being the only type of analysis based on the limit-equilibrium 
principle, simple estimation by modal recombination in the frequency domain with the finite-
element codes CESAR-LCPC 2D and CESAR-LCPC 3D under visco-elastic conditions, and analysis 
in the time domain with the finite-difference codes FLAC 2D and FLAC 3D under elasto-plastic 
conditions. 
The thesis finally discusses results from the three mentioned methods with respect to relevant 
earthquake and landslide parameters on the one hand, and permits a critical view on the 
suitability of the different methods for deformation analyses of seismically induced landslide on 
the other hand. The next section (cf. 1.3.) gives a short overview of each chapter of the thesis. 
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1.3. Guide to the Reader 

 
Including this introduction, the thesis is partitioned in eight chapters. The following overview 
serves as a guide to the reader and sums up the main contents of each chapter. 
 
CHAPTER 2 / LANDSLIDE DATABASE 

 
Chapter 2 presents the landslide database with its contents and properties as well as its 
potential of usage for statistical and numerical analyses. The chapter is not necessary for 
understanding the scientific context of the analysis conducted based on data from the 
database; it is rather a reference manual for the database itself. 

 
CHAPTER 3 / STATISTICAL ANALYSES OF THE DATABASE 
 

Chapter 3 describes statistical analyses that were carried out on data from the database 
and resumes those descriptions of the database that are essential for understanding the 
scientific context. The chapter corresponds in most of its parts to the article published by 
DOMEJ et al. (2017). 
 

CHAPTER 4 / DIEZMA LANDSLIDE & APPLIED SIGNALS 
 

Chapter 4 explains the choice of the Diezma Landslide as site of interest to which all 2D- 
and 3D- methods of displacement analysis were applied. It shows how simplified and 
fine geometries in 2D and 3D were built and what possibilities of analysis exist. In its 
second part, the chapter presents the applied seismic scenarios to the Diezma Landslide. 

 
CHAPTER 5 / NEWMARK-ANALYSIS 
 

Chapter 5 discusses in its first part the topics of static and seismic slope stability to trace 
back the NEWMARK-Method (1965) to its basic principles of Limit Equilibrium Analysis 
and the factor of safety. The second part describes the application of the method to the 
Diezma Landslide and discusses results and the suitability of the methods. 

 
CHAPTER 6 / MODAL RECOMBINATION ANALYSIS 
 

Chapter 6 is dedicated to the first of two numerical methods to analyze seismically 
induced slope deformation. It gives a general overview on numerical modeling and on 
those principles of structural dynamics on which the method of modal recombination is 
based. The second part describes the application of the method to the Diezma Landslide. 

 
CHAPTER 7 / FINITE DIFFERENCE ANALYSIS 
 

Chapter 7 is dedicated to the second of two numerical methods to analyze seismically 
induced slope displacements. It gives an overview on the functionality of the finite 
difference codes FLAC 2D and FLAC 3D. The second part describes the application of the 
method to the Diezma Landslide. 

 
CHAPTER 8 / DISCUSSION OF 3 METHODS, CONCLUSIONS & PERSPECTIVES 
 

Chapter 8 compares the seismically induced displacements across the slope of the 
Diezma Landslide that were obtained from the NEWMARK-Analysis (1965), the modal 
recombination analysis and the analysis with the finite difference code FLAC. It draws 
conclusions on the methods advantages and drawbacks and finally sets perspectives for 
future work. 
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2.1. Introduction 

 
In the course of this thesis a global chronological database was created to study and compare 
2D- and 3D-geometries of landslides – i.e. of landslides properly sliding on a rupture surface. It 
contains 277 distinct seismically and non-seismically triggered landslides whose rupture masses 
were measured in all available details allowing for statistical analyses of their shapes and to 
create numerical models thereupon based. 
This chapter presents in the first part the database itself in all its details. First, the chapter 
explains the construction strategy and the properties of the database, its functionality and 
contents and what processes were involved to deal with the great amount of information. 
Second, it presents the separate components of the database and their interconnections. A third 
section describes the combination of these components into a Microsoft Access database, which 
allows for efficient data handling and therefore is a convenient tool for statistical analyses and 
data preparation for numerical modeling. Advantages and some drawbacks will be discussed.  

 
The main aim of this chapter is to provide a “reference manual” for other users 
allowing them to understand, use and eventually complete it. It can be skipped 
while reading the thesis, since it is not necessary to understand the scientific 
context of the thereupon based statistical and numerical analyses. A summary of 
the essential contents is to be found in the beginning of next chapter (cf. 3.1., 3.2.). 
 

2.2. Abbreviations and Punctuation 

 
Common abbreviations used throughout the database are: 
 
EQ earthquake     MM mass movement    
M magnitude    LS landslide 
ID  identification    DA debris avalanche 
f frequency    DF debris flow 
fres resonance frequency   RA rock avalanche 
LCS longitudinal cross section  RF rock fall 
TCS transversal cross section  EF earth flow 
GW(T) ground water (table)   MF mud flow 
PW(P) pore water (pressure)   LF loess flow 
SF factor of safety    DSGM deep seated gravitational movement 
 
The left column of abbreviations is of less peculiarity; the combinations are rather 
straightforward. The right column of abbreviations is of interest when classifying mass 
movements (cf. 2.2., 2.4.1., 3.3.3.). A notable detail is, that literature often reports loess flows 
instead of earth flows which is contradictory in the way that loess is – according to CRUDEN & 
VARNES (1996) – a type of earth. Nevertheless, loess is a very special material and thus often 
takes a particular place among earth types. It is a homogeneous, unstratified, yellow-gray, 
aeolian sediment that consists mainly of silt with a certain carbonate percentage. Also, the 
mechanical behavior of loess is different in comparison to other soil types as DANNEELS et al. 
(2008) definition of loess states: 
 

“Due to its specific microstructure, loess can sustain nearly vertical slopes in dry and non-
seismic conditions. However, under strong seismic shaking, this microstructure may break 
and the loess then behaves as a cohesionless material, creating very rapid loess flows with a 
long runout zone. The stability of loess slopes is also highly dependent on the water 
content.” (p. 17; after ZHANG & WANG, 1995) 
 

The creation of the abbreviation DSGM is a mixture of mass movement designations that appear 
in literature; it is not to be considered as an official term (cf. 2.2., 2.4.1., 3.3.3.). Whereas many of 
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those official terms also include dynamical or material related aspects (e.g. “deep seated rock 
creep”) the term DSGM simply should relate to the big dimension of the mass movement. More 
details about the landslides dynamics and material are to be found in other sections of the 
survey charts. 
Abbreviations of scientific corporations – such as for instance the USGS (United States Geological 
Survey) or the IAEG (International Association of Engineering Geology) – are not listed here 
because the geoscientific community is supposed to be familiar with them.  
Punctuation throughout the report is as it is customary in English; however, because the used 
Microsoft Office Package is a French version, attention has to be paid to the fact that for instance 
in Excel-files punctuation is in European Style: 
 
 e.g.  1,000,000 m³  1.5 km  in this thesis 
 e.g. 1.000.000 m³  1,5 km  in Excel-files 
 
2.3. Strategy of Construction 

 
One component of a thesis – and of scientific work in general – is the creation of data that will be 
evaluated at a later stage. The more accurate the dataset is, the better is its evaluation and the 
wider is the variety of possibilities to make use of it. However, to ensure such a successful 
outcome, one has to adopt a strategy for data creation – in the present case, for the creation of a 
database. 
 
2.3.1. Strategy for the Database  
 
Initially, the main idea was to collect scientific publications about landslides that preferentially 
contain both a map and a LCS to retrieve the geometry of the rupture zone as well as the overall 
properties of the landslide. Scientific publications of interest fall under the categories of articles, 
conference proceedings and scientific abstracts, web-based articles, book chapters, theses, etc. 
The starting point for the collection of publications was three articles that appeared due to 
different reasons: 
 

DELGADO et al. (2015)  Unconventional pseudostatic stability analysis on 
the Diezma landslide (Granada, Spain) based on a 
high-resolution engineering-geological model. 

 EVANS, et al. (2009)   Landslides triggered by the 1949 Khait earthquake, 
Tajikistan, and associated loss of life. 

 DEWITTE & DEMOULIN (2005) Morphology and kinematics of landslides inferred 
from precise DTMs in West Belgium. 

 
The first article served as reference example since it reports one of the research projects of the 
supervising team. The second article has a direct relation to my Master thesis and displays 
research of one of my Tajik supervisors. The third article helped to define the prototype of a 
rupture zone geometry required for the database. 
Based on those three articles further literature was systematically explored in a – figuratively 
speaking – “explosion-like” way: After designing one publication as suitable for the database, all 
its promising references were checked; then again, every newly found publication was examined 
for suitability and its references were explored. 
Doing so, for each appearing publication of interest an entry was made in the Excel-sheet named 
“BIB-List” (cf. 2.3.3.). This process was finished at the moment where no more pertinent cases 
were found because publications in a confined field of science tend to cite each other. 
Nonetheless, this procedure can never claim to be exhaustive. The main online platforms used 
for literature research are: 
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AGU Publications   https://publications.agu.org/ 
EGU Publications   http://www.egu.eu/publications/ 
Google     https://www.google.com/ 
Google Scholar    https://scholar.google.com/ 
Oxford Journals   https://www.oxfordjournals.org/ 
Researchgate    https://www.researchgate.net/ 
Science Direct    http://www.sciencedirect.com/ 
Springer Link    http://link.springer.com/ 
USGS     https://www.usgs.gov/products/publications/ 
WikipediA    https://www.wikipedia.org/ 
Wiley Online Library   http://onlinelibrary.wiley.com/ 

 
While conducting literature research in this “explosive” style several authors appeared 
repeatedly and hence working groups became apparent – not least by mutual referencing. Also a 
“hall of fame” emerged (cf. Tab. 2.1) – a number of authors that worked during the last century 
on the phenomena of naturally and seismically induced landsliding.  
Certainly this list of pertinent authors does not claim completeness; one reason therefore is the 
fact that some authors tend to publish in journals that are not accessible for different reasons (cf. 
2.6.), a second reason might be a matter of constant evolution of science. For each of the authors 
a separate literature research was conducted; publication lists were checked on the personal 
web pages of authors or on their portraits at the institutions they are affiliated to.  
Moreover, several separate landslide inventories were checked regarding their cases and 
references. These inventories emerged during the process of literature collection; they appear as 
simple list grouping landslides according to distinct characteristics and locality or as so-called 
“database papers” presenting analysis on sets of documented landslides. Inventories of the 
following sources were checked: 
 
 OMIV (2016)    publications on the Séchilienne Landslide 

USGS (2016)    Catastrophic Landslides of the 20th Century. 
 
 BIRD & BOMMER (2004)   Earthquake losses due to ground failure. 
 BOMMER & RODRÍGUEZ (2002)  Earthquake-induced landslides in Central America. 
 DELGADO et al. (2011)   On far field occurrence of seismically  

induced landslides. 
DELGADO et al. (2011)   Seismically-induced landslides in the  

Betic Cordillera (S Spain). 
 KEEFER (1984)    Landslides caused by earthquakes. 
 KEEFER (2002)    Investigating Landslides Caused by Earthquakes – 

A Historical Review. 
 RODRÍGUEZ et al. (1999)   Earthquake-induced landslides: 1980–1997. 
 XU et al. (2014)    Landslides triggered by the 12 January 2010 

Port-au-Prince, Haiti, MW = 7.0 earthquake:  
visual interpretation, inventory compiling,  
and spatial distribution statistical analysis. 

 
New publications were always processed in the same “explosive” way as indicated above. 
Finally, the last part of the literature research consisted in the evaluation of the proceedings of 
the 12th International Symposium on Landslides held from the 12th to the 19th of June 2016 in 
Naples, Italy, which appeared under the title “Landslides and Engineered Slopes – Experience, 
Theory and Practice” (AVERSA et al., 2016). Based on this publication 28 new cases could be 
added to the database, but in agreement with the supervising team further references were not 
checked any more to bring the literature research to an end. 
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Alfaro P. Cruden D. M. Havenith H. B. Martino S. 

Angeli M. G. Del Gaudio V. Hutchinson J. N. Meunier P. 

Aringoli D. Delgado J. Ischuk A. Moro M. 

Barla G. Demoulin A. Ishihara K. Moulin C. 

Bommer J. J. Di Maio C. Jibson R. W. Rodríguez-Peces M. J. 

Bozzano F. Dunning S. A. Jongmans D. Sassa K. 

Brückl E. Eberhardt E. Keefer D. K. Sepúlveda S. A. 

Chigira M. Esposito E. Kieffer D. S. Strom A. 

Cotecchia F. Evans S. G. Korup O. Torgoev I. 

Crosta G. B. Glade T. Lenti L. Torgoev A. 

Crozier M. J. Harp E. L. Liu Q. Wasowski J. 
Tab. 2.1. Authors working on landslides. 

 

       

  

 

 
   

     

  

 
 

 
   

       

Tab. 2.2. Relevant scientific journals. 

 
At this point it should be mentioned that the hereby established literature collection is far from 
covering all interesting or more relevant landslides and that much more literature is available on 
the Internet and in diverse libraries and archives. Due to the initial objective to collect cases over 
the period of half a year and to the fact that data creation for a thesis has to come to an end at a 
certain stage, the following sources remained unexplored, although they are surely promising; 
there is no other reason than the time issue for not having them checked as well. 
 
 
 
 



24 

 

 AGU Landslide Blog  http://blogs.agu.org/landslideblog/ 
 CERI Catalog   http://www.ceri.uniroma1.it/index.php/web-gis/cedit/ 
 EERI Publications  https://www.eeri.org/ 
 USGS Publications  https://www.usgs.gov/products/ 
 Landslides of the World SASSA (1999) 

Landslides   CLAGUE & STEAD (2014) 
 List of Landslides  WIKIPEDIA (2016a) 
 
Another very broad and time-consuming approach to collect landslide case studies might have 
been the systematic search by keyword in pertinent journals. After the “explosion” approach and 
the therewith connected creation of a separate reference list (cf. 2.3.3.) the journals listed in Tab. 
2.2 appeared to be most relevant. Appropriate keywords and their combinations might have 
been: landslide(s), mass movement(s), earthquake(s), 2D/3D, numerical model(ing), seismically 
induced, site effects, etc. 
 
2.3.2. Survey Charts 
 
In total the landslide database counts 277 distinct cases whose accuracy of documentation 
extends from very low to very high – a fact depending on the quality of related literature.  
To facilitate literature evaluation per case a survey chart was created. It regroups information in 
different categories that are necessary to describe a landslide event and its rupture zone 
geometry with the aim of enabling statistical analysis on a later stage. Thereby obtained values 
can then be used for numerical modeling. 
Initially the survey chart was supposed to serve only as aide memoire to keep an order amongst 
individual cases; its first version (v. 1 – blue charts) existed even in the form of a simple Word-
file to be filled in manually. Since, however, literature evaluation is an evolutionary process 
itself, and due to the fast increase in registered cases, an Excel-file was created (v. 2 – red 
charts). The expected advantage was to allow for cell-wise export of entries to a professional 
database tool later on (cf. 2.5.). In the course of amelioration, standardization and bug fixing 
even a third version (v. 3 – green charts) in the form of an Excel-file was developed. It is this 
latter survey chart that serves now as basis of the entire database; an example of a survey chart 
of version 3 is shown in the appendix (cf. A.1.). Every landslide owns a separate Excel-file only 
named with the number of its case: 
 
 e.g. 078.00 Tortum  → 078.00.xls 
 
Details about entries in the survey chart are discussed in section 2.4. of this chapter. Units follow 
the SI-system with one exception and numbers can have up to two decimals (cf. Tab. 2.3). 
 

page type of Information unit decimals 

landslide 
ID 

(page 1) 

location km 1 

location (Google Earth) – m.a.s.l m - 

sliding Direction – degrees ° 1 

φ ° - 

landslide 
geometry 
(page 2) 

volume(s) m³ - 

area(s) m² - 

ratios - 2 

map – all m - 

LCS – all m / ° - 

TCS – all m / ° - 
Tab. 2.3. Units and decimals as they appear on the survey charts. 
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2.3.3. Other Elements of the Database 
 
BIB-List 
 
Generally, the BIB-List is a register in the form of an Excel-file that references all publications 
relevant for this thesis – not only those for the database. The majority of publications is also 
stored as a PDF-file. Two separate folders are to be found in the BIB-List: 
 
 Papers & Chapters  format described in Tab. 2.4 
 Books & Entire Journals format described in Tab. 2.5 
 

LS# 

000 landslide ID 
x20 landslide ID (Alaska) 
LS-E landslide example 
LS-E-T landslide e. & theory 
LS-G landslide geometry 
LS-G-T landslide g. & theory 
LS-T landslide theory 
none no landslides 
no paper no paper 

SE 

SE-E site effect example 
SE-E-T site effect e. & theory 
SE-T site effect theory 
none no site effects 
no paper no paper 

REF 

checked checking completed 
stop checking stopped 
no ref checking impossible 
no paper no paper 

version 

digital PDF-copy available 
no paper no copy available 
only abstract abstract available 
only part partly available 

author Abc A. B. name 

et al. 
Abc A. B. name 
Abc A. B., Abc A. B., … names 
none no co-author 

year … year of publication 

title 
… . title 
… . In: Abc A. B. et al. (Eds.). … . title in a compendium 

journal, 
conference, 
webpage or editor 

…  name of journal 
…  name of editor 
Proceedings of …, City, Country name of proceedings  
Service (webpage) name of service 

volume 
… volume number 
… publication number 
xx no information 

pages 

… p. number of pages 
p. …-… pages from … to … 
… publication number 
xx no information 

Tab. 2.4. Formats of “Papers & Chapters” listed in the BIB-List (cf. 2.3.3.). 
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Of particular interest is the first column of the “Papers & Chapters” folder since it contains a 
number via which references are linked to individual landslides cases (cf. Landslide Number - 
2.4.1.). The folder “Books and Entire Journals” does not have such a number because the amount 
of entire books or journals on the subject of one single mass movement is relatively small; 
references are here made manually. 
The exception of numbering concerns the USGS Professional Papers (No. 541-546, with 
subdivisions) on the Alaska 1964 Earthquake. Between 1964 and 1970 a multitude of reports 
and maps were published by authors working for the USGS. By simply according the number 020 
to all of them, there would not be enough space in the box of Related Papers (cf. 2.4.1.) on the 
survey charts. Thus they bear the special number x20 and usually the separate reports are cited 
as “USGS (several authors), 1964-1970”.  
 

version 
digital PDF-copy available 

none no copy available 

author or editor Abc A. B. name 

et al. 

Abc A. B. name 

Abc A. B., Abc A. B., … names 

none no co-author/-editor 

year … year of publication 

title … . title 

editor or  
entire journal 

… . name of editor 

… . name of journal 

Proceedings of …, City, Country. name of proceedings  

Thesis type, University. origin of thesis 

volume 

… volume number 

… publication number 

xx no information 

pages 

… p. number of pages 

p. …-… pages from … to … 

… publication number 

xx no information 
Tab. 2.5. Formats of “Books and Entire Journals” listed in the BIB-List (cf. 2.3.3.). 

 
EQMM-List: Earthquake Part (EQ-List) 
 
Year / Month / Day 
 
Unlike mass movements which might persistently go on, earthquakes are unique events. The 
date indicated in the first three columns of the EQ-List corresponds in its format to the second 
date box on the survey charts (cf. Date - 2.4.1.). Usually, when an earthquake or another seismic 
event clearly triggered a mass movement their two date entries are the same. 
 
M type / M value 
 
Entries for magnitude types and values correspond to what is indicated under Landslide Cause 
(cf. 2.4.1.). 
 
#EQ / EQ /Alternative Name of EQ 
 
For clear identification throughout the database, a distinct identification number was attributed 
to every earthquake or seismic input. It has the format “EQ.000.00” (cf. Earthquake - 2.4.1.). 
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Some listed earthquakes have a number but do not relate to a mass movement. The reason for 
this is simple. Either they are famous and it is “smart” to keep them in mind, or they were noted 
to use the entry at a later stage when additional literature might be available to link a mass 
movement to the respective earthquake. Examples for such famous or useful entries are: 
 
 e.g. EQ.083.00 Guatemala   on 04/02/1976  

e.g. EQ.157.01 San Francisco 1906 on 18/04/1906  
e.g. EQ.166.00 Sumatra 2004  on 26/12/2004  

 
Names of earthquakes and other seismic inputs appear in the same format as mentioned under 
Earthquake (cf. 2.4.1.). If the earthquake is also known under one or more different names, they 
are marked in the respective adjacent box. 
 
Notes to EQ 
 
Additional remarks to an earthquake can be made under Notes to EQ. Such remarks help to 
distinguish cases or state what a certain event is famous for. Notes might cite special 
constructions, destroyed localities, tsunamis, fire, etc.  
 
#MM / related MM / other MM 
 
Related mass movements together with their corresponding identification numbers are reported 
under #MM and related MM. It should be noted that several mass movement events can be 
triggered by the same earthquake or seismic event; they are then listed in ascending order in 
both boxes. 
If literature reports other mass movements triggered by a distinct seismic event an entry of the 
following form is made under other MM. However, those mass movements are not separately 
considered in the MM-List (cf. 2.3.3.). 
 
 e.g. MM according to KEEFER (1984) 
 e.g. MM according to KEEFER (2002) 
 
EQMM-List: Mass Movement Part (MM-List) 
 
Year / Month / Day 
 
As mentioned under Date (cf. 2.4.1.) mass movements are either unique or ongoing events; 
further detailed explanation is given in the referring later section of the report. The date 
indicated in the first three columns of the MM-List corresponds in its format to the second date 
box on the survey charts. 
 
#MM / MM /Alternative Name of MM 
 
For clear identification throughout the database, a distinct identification number was attributed 
to every mass movement. It can have one of the three following formats (cf. Landslide Number - 
2.4.1.): 
 
 N.000.00 landslides with survey chart 
 N.000.00 landslides without survey chart 
 X.000.00 other mass movements (DF, RA, etc.) without survey chart 
 
The reason for listing also mass movements that do not have a survey chart or other mass 
movements that are no actual landslides is analogous to the reason for noting earthquakes 
without mass movements. Either they are famous and it is “smart” to keep them in mind, or they 
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were noted to use the entry at a later stage when additional literature might be available to 
create a new survey chart and thus add the landslide to the database. Examples for such famous 
or useful entries are: 
 
 e.g. N.004.00 Zhashkava   on 29/04/1991 EQ.152.00 Racha 
 e.g. N.023.00 Flims    9480 years ago no EQ 
 e.g. X.028.01 Nevado Huascaran I  on 10/01/1962 no EQ 
 e.g. X.028.02 Nevado Huascaran II  on 31/05/1970 EQ.034.00 Ancash 
 
Names of mass movements appear in the same format as mentioned under Name (cf. 2.4.1.). If 
the mass movement is also known under one or more different names, they are marked in the 
respective adjacent box. 
 
Notes to MM 
 
Additional remarks to a mass movement can be made under Notes to MM. Such remarks help to 
distinguish cases or state what a certain case is famous for. Notes might cite special 
constructions, destroyed localities, etc.  
Attention has to be paid to the entry “unsure MM-EQ-relation”. Sometimes it is not sure if a mass 
movement was indeed triggered by an earthquake or another seismic event (cf. Landslide Cause 
- 2.4.1.). For cases with a survey chart this unsure relation is mentioned on the survey chart and 
in the Details-List. However, for entries without a survey chart an uncertain MM-EQ-relation is 
marked here. 
 
#EQ / related EQ 
 
Related earthquakes and other seismic events together with their corresponding identification 
numbers are reported under #EQ and related EQ. It should be noted that only one earthquake or 
seismic event can be the trigger and reactivation triggers are not considered. 
 
Details-List 
 
The Details-List is an Excel-file that contains for each of the 277 landslides information stored in 
29 columns. Since it regroups types of information and characterizations that equally appear in 
the survey charts, its importance is of rather technical origin – namely the standardization of 
entries. Only three columns do not appear on the survey charts: 
 
 wind rose  with possible entry “yes” or “no” 
 coordinates  with possible entry “yes” or “no” 
 LCS over peak  with possible entry “over peak” or “no” 
 

 
Fig. 2.1. LCS with “over peak” setting. 
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Entries about the wind rose and the coordinates specify respectively, if for a given case the 
sliding direction and if the location could be determined (cf. Sliding Direction - 2.4.1.). If a LCS 
displays a slope including the peak or a local elevation of the mountain ridge the entry “over 
peak” is made (cf. Fig. 2.1); this might be of interest when defining geometries of rupture zones 
for numerical modeling. 
 
Google Earth Markers 
 
Another component of the database is the kmz-file created in Google Earth that contains the 
geographical coordinates of all landslides – except for the two landslides that could not be 
localized (cf. Location (Google Earth) – 2.4.1., Location Problem - 2.4.1.). Details about the way of 
setting pins and their accuracy are to be found in these later sections of this report. 
Landslides are marked with yellow pins and bear the name in the format “(000.00) [name]” (cf. 
Landslide Number - 2.4.1.). Interestingly, when examining the distribution of pins around the 
globe (cf. Fig. 2.2a-e), it seems that distribution patterns mainly follow mountainous or seismic 
zones or both on the one hand, and on the other hand pins tend to accumulate in areas where 
research on landslides is a priority – i.e. where means are available and where imminent danger 
is an issue. It might not be a coincidence that most of the reported cases are from Canada, China, 
Italy and the United States. 
 

 
Fig. 2.2a. Pin distribution in Europe; example of a yellow pin (after GOOGLE EARTH, 2016). 

 

 
Fig. 2.2b. Pin distribution in Asia; example of a white droplet (after GOOGLE EARTH, 2016). 
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Fig. 2.2c. Pin distribution in North America; example of a blue droplet (after GOOGLE EARTH, 2016). 

 

 
Fig. 2.2d. Pin distribution in Oceania; example of a red pin (after GOOGLE EARTH, 2016). 

 

 
Fig. 2.2e. Pin distribution in South America; example of an earthquake pin (after GOOGLE EARTH, 2016). 
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For consistency it should be noted that the kmz-file also contains coordinates of mass 
movements that are famous for different reasons or whose position was worth to keep. They are 
marked with white droplets (cf. Fig. 2.2b) and bear only their name without any number. 
A third type of markers are blue droplets (cf. Fig. 2.2c). They mark the positions of mass 
movements triggered by the Alaska 1964 Earthquake. The source citing these mass movements 
is a series of Professional Papers published by the USGS between 1964 and 1970 (No. 541-546 
with subdivisions). It should be mentioned that the blue droplets do not mark all of the herein 
mentioned mass movements, i.a. because nine of them are included in the database and hence 
own a yellow pin (No. 020.02 – 020.09). 
Red pins (cf. Fig. 2.2e) are only located on the Earth’s South Pole; they stand for landslides with 
an unknown location. Those earthquakes that triggered landslides (cf. 2.5.3.) own a pin showing 
a red wave (cf. Fig. 2.2d). 
 
Carton Box 
 
The carton box is indeed a physical item containing numbered printouts of maps and LCS of the 
landslides appearing in the database. Since almost all geometrical measurements (cf. Fig. 3.3) 
were retrieved manually on these printouts, it is of great importance to carefully keep this 
collection to allow for backtracking if necessary at a later stage. Moreover, many handwritten 
notes appear on the margins of the printouts. 
 
2.3.4. Strategy as proposed by the IAEG 
 
In the 1990s the objective of the IAEG was to build a World Landslide Inventory. Therefore, a 
working party at the UNESCO was entrusted with the elaboration of a strategy of construction 
and a suitable tool for manipulation.  
The working party consisted of 39 members in – at that time – 29 different countries or political 
entities (UNESCO, 1990) around the world and until 1995 five guidelines were published on how 
to build the World Landslide Inventory: 
 
     No. 41 - A Suggested Method for Reporting a Landslide.    (UNESCO, 1990) 
     No. 43 - A Suggested Method for a Landslide Summary.    (UNESCO, 1991) 
     No. 47 - A Suggested Method for Describing the Activity of a Landslide.  (UNESCO, 1993) 
     No. 50 - A Suggested Method for Reporting a Landslide Cause.   (UNESCO, 1994) 
     No. 52 - A Suggested Method for Describing the Rate of Movement of a L.  (UNESCO, 1995)
  
The main principle of these guidelines is the creation of nation-wide datasets in a standardized 
way so that those datasets could be gathered in an international inventory (cf. No. 41 & 43). 
Although the current landslide database is not designed to meet international levels, the strategy 
of construction is very similar to the one proposed by the IAEG. This is particularly interesting 
inasmuch as the guidelines of the IAEG appeared at a rather late stage of literature research and 
therefore could not serve as model. However, after having designed an own strategy of 
construction they confirmed its required soundness. 
The landslide reports of the IAEG likewise focus on position, date, type, geometry, volume and 
damage. Further parallels are for instance the attribution of identification numbers to each 
landslide, the separate reference file liked to the individual cases via numbers, one reference 
point in the form of coordinates, the standardization to numbers or “yes/no-choices” to enable 
the transfer to a database tool or the type and material classifications according to international 
standards (e.g. VARNES, 1978). Other overlaps concerning the activity (cf. No. 47), the rate of 
movement (cf. No. 52) and possible causes of a landslide (cf. No. 50) are discussed under 
Dynamics (cf. 2.4.1.) and Landslide Cause (cf. 2.4.1.). 
Moreover, the IAEG draws an obvious comparison to earthquake studies; distribution patterns 
of landslide occurrence would lead to better predictive models and risk alleviation – one of the 
main ideas of which this thesis consists. 
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Still, there are differences between the concept of the IAEG and the one adopted for the database 
construction. For example, a landslide to be included is by the definition of the IAEG one that 
meets at least one of the following three criteria, whereas the database does not require one or 
more of them:  
 

 volume bigger than 1.000.000 m³ 
 loss of human life 
 significant direct or indirect damage 

 
Furthermore, the reference coordinate (cf. Location (Google Earth) - 2.4.1.) does not necessarily 
point to the crown or toe to the nearest second; it is simply set “somewhere” on the landslide. 
The time of occurrence does not indicate the most rapid displacement, but the time when the 
displacement started in general regardless of the fact that a landslide might start out slowly to 
experience much faster events at a later stage. The names of reporters as well as the damage in 
terms of local currency are not recorded in the database. 
Stunningly, research on the Internet solely leads back to the five Bulletins of the IAEG, but the 
World Landslide Inventory does not appear at any point. A conjecture might be that it was built 
before the era of digital globalization. However, it would be of great interest to have access to the 
dataset of the IAEG. 
 
2.4. Survey Charts 

 
2.4.1. Descriptive Part (Page 1) 
 
Landslide ID 
 
Landslide Number 
 
The box at the upper right corner of the survey charts contains the landslide number – a unique 
number attributed to every distinct landslide. Numbers have the format “000.00”; two ways of 
numbering are to be distinguished: 
 
 e.g.  154.00  individual case 
 
 e.g. 023.01   cases that are either linked by location, 
  023.02  by cause or by the fact that they are mentioned 
  023.03  in the same publication and hence form a series 
 
Name 
 
Naming of landslides is – similarly to earthquakes – not trivial. Often, one event is known under 
different names. Landslide names were chosen either in accordance to the initial publication or 
to the most frequent naming throughout available literature. For consistency names do not 
contain the word “landslide” or any other designation of mass movements, what sometimes 
leads to unusual names as for example: 
 
 e.g. CN50.9 Landslide  → CN50.9 
 e.g. Hope Slide   → Hope 
 e.g. Number 1 Ancient Slide → Number 1 
 
If a landslide does not have a name it is marked with “[name]”. Alternative names of landslides 
are to be found in the EQMM-List (cf. 2.3.3.).  
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MM Type 
 
Probably the most difficult task during the creation of the database was the classification of mass 
movements themselves (cf. 3.2.). There are no distinct thresholds according to which a type of 
movement can be defined and thus transitions are gradual (cf. Fig. 3.1).  
Although classification systems distinguish the big types of movement – even in a rather rough 
way – the term “slide” is very common and in a great number of cases authors equalize slides 
with any other kind of mass movement. VARNES (1978) writes on this subject: 
 

“The term landslide is widely used and, no doubt, will continue to be used as an all-inclusive 
term for almost all varieties of slope movements, including some that involve little or no 
true sliding. Nevertheless, improvements in technical communication require a deliberate 
and sustained effort to increase the precision associated with the meaning of the words, 
and therefore the term slide will not be used to refer to movements that do not include 
sliding.” (p. 11) 

 
He even adapted his own classification first proposed in 1958 referring to “slope movements” 
rather than to “landslides” since – for instance – neither a flow nor a fall show the same physical 
and mechanical behavior like a slide. However, he also points out that movements as well as 
material are both very variable due to location and time and that right classification might still 
remain an issue (VARNES, 1978). Hence, confusing classification is very common (cf. Fig. 2.3a, 
Fig. 2.3b) and great attention had to be paid while collecting literature for the database.  
 

 
Fig. 2.3a-b. Unclear mass movement classification (after USGS, 2004; after HALLIDAY, 2016). 

 
Clearly, the database is supposed to contain only landslides, but due to the above mentioned 
difficulties of classification it happened that some mass movements entered the database 
although they are no landslides. One of those cases is the Slumgullion Earthflow (082.00) which 
is frequently called “Slumgullion Landslide” in literature.  
Other types of mass movements that are very similar in their behavior but still slightly different 
from common landslides are deep seated deformations of slopes. About 10% of the documented 
cases fall in this category.  
To summarize, the box of mass movement types can have one of the tree entries listed below. It 
should be noted that, when speaking about landslides in this report, generally one of those three 
terms is meant, although a flow is not a slide as already mentioned. 
 
 LS   landslide 
 DSGM   deep seated gravitational movement 
 EF   earth flow 
 
It should be noted that in chapter 3. the abbreviation “DSGSD” (deep seated gravitational slope 
displacement; cf. 3.3.3.) is used for “DSGM”. In scientific publications “DSGSD” is more common 
though. 
 
 
 
 

(a) (b) 
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Earthquake 
 
Also the naming of earthquakes is not trivial. It appears to be very common that one single event 
is known under different names. Earthquake names – like landslide names – were chosen either 
in accordance to the initial publication or to the most frequent naming throughout available 
literature. Alike, names do not contain the word “earthquake” or any other designation of 
seismic sources, what sometimes leads as well to unusual names as for example: 
 
 e.g. Great Peruvian Earthquake   → Great Peruvian 
 
Some earthquakes bear exactly the same name because they happened in the same place. In this 
case the year of occurrence is kept behind the name. If two events happened in the same place 
and the same year Latin numbers are added to the name: 
 
 e.g. Alaska Earthquake   09/07/1958 → Alaska 1958 
 e.g. Alaska Earthquake   27/03/1964 → Alaska 1964 
 e.g. Hindukush Earthquake  03/03/2002 → Hindukush 2002 I 
 e.g. Hindukush Earthquake  25/03/ 2002 → Hindukush 2002 II 
 
Earthquakes belonging to earthquake sequences are marked as follows; many of them have an 
alternative name which makes identification easier and which is to be found in the EQMM-List 
(cf. 2.3.3.). 
 
 e.g. New Madrid Sequence (1st event)  → New Madrid Seq. 1 
 
Generally earthquakes or other seismic sources can have the following names: 
 
 e.g. Boumerdès   single event 
 e.g. Northern Italy Seq. 1  event of a sequence 
  volcanic eruption  other natural seismic source 
  volcanic intrusion  other natural seismic source 
  tremors   other natural seismic source 
  blast    only artificial seismic source 
 
If an earthquake does not have a name it is marked with “[name]”. Earthquakes are given 
numbers in a format similar to landslides (cf. Landslide Number - 2.4.1.), but their numbers 
appear only in the EQMM-List (cf. 2.3.3.). 
 
MM ⇆ EQ 
 
The abbreviation “MM ⇆ EQ” stands for the relation between the mass movement and the 
earthquake. If literature cites with certainty an earthquake (or another seismic source such as 
for example tremors or blasts) as trigger for a mass movement, the relation is marked as “sure”. 
If their relation is only suspected, it will be marked as “unsure”. This applies mainly to paleo-
landslides or to times in history where exact records were rare. It should be noted that in the 
EQMM-List (cf. 2.3.3.) all “mass-movement-earthquake-couples” appear as if they were surely 
linked and remarks on uncertainty exist only in the survey charts and in the Details-List (cf. 
2.3.3.). 
In case of mass movements without seismic cause, the relation box contains “no EQ”. 
 
Date  
 
Date indications have to be read with care. Precise information on the occurrence of the 
landslide is to be found in the second box. It can have the following formats, where the time 
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specification can designate either the moment of a unique event or the moment when 
continuous movement started: 
 
 e.g. 2001/2/3   on/since 03/02/2001 
 e.g. 1999/10   in/since October 1999 
 e.g. 1600    in/since the year 1600 
 e.g. 15th cent.   during/since the 15th century 
  paleo    during/since ancient geological times 
  postglacial   after/since the last glaciation 
  ?    at/since an unknown time 
 
Additional indications on major events of a landslide appear in the first box in the formats 
below; they give information about times before and after the main event: 
  
 e.g.  since 2000   landslide moving since 2000 (before main event) 
 e.g. earlier in 2000   event in 2000 (before to main event) 
 e.g. earlier in 07/2000  event in July 2000 (before to main event) 
 e.g. earlier on 10/05/2000 event on 10/05/2000 (before to main event) 
 e.g. later in 2005   event in 2005 (after main event) 
 e.g. later in 07/2005  event in July 2005 (after main event) 
 e.g. later on 10/05/2005  event on 10/05/2005 (after main event) 
 
Fatalities 
 
The marked number refers to human loss. Only in some very rare cases animals are mentioned; 
this is the case when a significant herd died. It should be noted that no value can mean that 
literature either does not report a number or that there was no fatality. 
 
Damage 
 
Similarly to Fatalities (cf. 2.4.1.) damage reports on survey charts are always incomplete, so they 
should serve only as overview on the impact of the event. An empty box under Damage can 
mean that either no damage happened or that no damage is reported. Also, if for example 
infrastructure is not mentioned, it does not mean that infrastructure remained undamaged. For 
cases with existing damage reports losses are cited in a simple way, but standardized only to 
some extent: 
 
 e.g. A-92    damage to a motorway 
 e.g.  road    damage to any other road 
 e.g. Khait    damage to a whole village or a part of it 
 e.g. building stock   damage to houses of all types 
 e.g.  infrastructure    damages to lifelines of all types 
 
The formation of dams is not considered as damage; however it is a very common and important 
consequence after landsliding and hence marked here. The notation “dam” indicates that due to 
the landslide a dam had formed; it does not say if the dam is still retaining a lake, if a spillway 
was dug for drainage or if the dam broke by itself. The notation “dam possible” refers either to 
cases of paleo-landslides where the formation of a dam was likely but no evidence was found so 
far, or to slowly moving landslides that might be triggered in future and then form a dam. 
 
Location  
 
Basic geographical information on a landslide locality is stored under Location. For each 
landslide its position is noted in the following way using four boxes in a row: 
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 e.g. box 1: 2.5   distance in km 
 e.g. box 2: ENE   wind direction 
 e.g. box 3: Old Hissar  geographical locality 
 e.g. box 4: TJ   country code 
 

 
Fig. 2.4. Rough distance measurement by direct connection (after GOOGLE EARTH, 2016). 

 
These four types of information read out as “The landslide is located 2.5 km ENE of Old Hissar in 
Tajikistan.” (cf. Fig. 2.4). For economizing space and correct country identification the standard 
code ISO 3166-1 alpha-2 was used (WIKIPEDIA, 2016b). Disputed territories are cited according 
to this standard code and hence do not reflect any other consideration on geopolitical affiliation. 
 
Location (Google Earth)  
 
A second headline named Location (Google Earth) refers to an exact position of a landslide. It is 
given by latitude and longitude coordinates retrieved from Google Earth (cf. Fig. 2.5) and 
appears in the following form: 
 
  000°00’00.00’’ N  (or S)  for latitudes 

000°00’00.00’’ E  (or W)  for longitudes 
e.g. 1000     for meters above sea level 

 

 
Fig. 2.5. Retrieving coordinates for a landslide (after GOOGLE EARTH, 2016). 

 
In many cases exact positioning of landslides in Google Earth is a time-consuming and difficult 
task because satellite images have to be compared with maps given in literature. Besides, recent 
slope reconstruction and terrain modifications (cf. Slope Modification - 2.4.1.), which are visible 
on more recent satellite images, complicate the identification of original landslide locations. In 
this context the “Google Earth time machine” is a useful tool but still cannot solve the issue in 
most of the problematic cases since older satellite imagery usually has a lower resolution and 
less quality. 
Almost all landslides possess a pin in Google Earth from which latitude and longitude values 
were taken. Also the altitude value in meters above sea level corresponds to the respective pin. 
It should be noted that a pin does not mark the center of the rupture zone of a landslide; it rather 
serves to localize the landslide in Google Earth or on another map. Thus pin information should 
not be used for any calculation. Also, the geographical information mentioned above is given 
with reference to pins and therefore distances and wind direction from other geographical 
localities might differ especially if the landslide is large. 
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Another issue that makes correct positioning difficult is the fact that locations in China are not in 
alignment with Google Earth satellite imagery (cf. Fig. 2.6). According to the State Bureau of 
Surveying and Mapping Chinese maps use the GCJ-02 geodetic datum, which introduces random 
offsets in both the latitude and the longitude by using an obfuscation algorithm (WIKIPEDIA, 
2016c). Thus, pins in China were very difficult to set and some might not show the actual 
landslide site. 
 

 
Fig. 2.6. Random geodetic offset in China (after GOOGLE EARTH, 2016). 

 
Dynamics 
 
Landslides can be either active or inactive, and the active state can be further divided. On the 
survey charts the following boxes can be ticked to display the dynamic behavior of a landslide: 

 
active – constant / slow for landslides in constant slow motion (e.g. creeps) 
active – sudden / fast  for occasionally fast moving landslides 
no activity   for landslides that are actually stable 

 
It has to be noted that a combination between “active – constant / slow” and “active – sudden / 
fast” is possible when constantly moving landslides experience sudden ruptures due to seasonal 
precipitation or seismic activity for instance. Furthermore, “no activity” only means that the 
landslide is currently inactive (at the time of the creation of the database); it might have been an 
active paleo-landslide or it might be active in future. 
 

 
Fig. 2.7. Phases of landslide activity (after UNESCO, 1993). 

 
An interesting and detailed concept of activity documentation is presented by the IAEG 
(UNESCO, 1993); it refers to state, distribution and style of activity of a landslide and it is 
partially based on the work of VARNES (1978). Summarizing, Fig. 2.7 shows a graph that is 
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described as particularly suitable to trace the dynamic behavior of a landslide over time. Indeed, 
it clearly depicts phases of activity (where the gradient is not 0) and inactivity (where the 
gradient is 0). However, for the database differences were not made for all 4 possible states and 
correspondences between the here presented state divisions and the ones of the IAEG are given 
in Tab. 2.6. 
 

IAEG database 

active 
active    …-…. 

constant / slow 

reactivated sudden / fast 

dormant 
no activity 

suspended 
Tab. 2.6. Comparison of dynamic phases of landslides. 

 
Also the rate of movement of a landslide is described by the IAEG (UNESCO, 1995). It is proposed 
to retain division of VARNES (1978) into speed groups ranging from extremely slow to 
extremely fast. Concerning speed though, the only interest in this database is how to distinguish 
a rapid event from a slope in slow motion. 
 
Material Classification 

 
One of the most popular classifications for mass movements is the one of VARNES (1978) which 
combines types of movement with types of material as shown in Tab. 2.7. 
 

mass movement 
classification 

material type 

rock debris soil 

m
o

v
em

en
t 

ty
p

e 

fall rock fall debris fall earth fall 

topple rock topple debris topple earth topple 

slide – rotational rock slump debris slump earth slump 

slide – translational rock slide debris slide earth slide 

lateral spread rock spread debris spread earth spread 

flow rock flow debris flow earth flow 

complex combinations 
Tab. 2.7. Mass movement classification (after VARNES, 1978). 

 
Since the overall aim of the database is to assemble landslides – and thus the movement type is 
defined –, simple classification of material was adopted from VARNES (1978); namely the 
discrimination between rock, debris and soil. Lately, HUNGR et al. (2014) recommended a 
change of nomenclature of material type in the classification of VARNES (1978) to make it more 
compatible with geological and geotechnical terminology. The new classification only 
distinguishes rock and soil, where the involvement of debris is mentioned under “soil” based on 
its grain sizes: 
 
 e.g. rock slide   for rock slides 
 e.g. gravel/sand/silt slide  for debris or soil slides 
 
Although the newly proposed modification is surely legitimate in terms of better overlap to 
geological and geotechnical terminology, material distinction throughout the database was still 
made according to the older classification of VARNES (1978). On the one hand it is still widely 
used and changes as proposed by HUNGR et al. (2014) did not yet find their way to the overall 
geoscientific community, on the other hand, rock, debris and soil have very distinct physical 
properties and show significantly different dynamic behavior when undergoing seismic shaking. 
Hence, in order to make use of the database for numerical modeling, it is of great advantage to 
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be able to distinguish quickly involved material types without trailing off in subgroups and 
relying on a classification that is still the most popular among scientists. 
 
Sliding Direction 
 
Sliding directions of landslides are given in wind directions and degrees based on the principle 
of “dip angle and dip direction” in structural geology (cf. Fig. 2.9) by comparing the ground 
surface of the landslide mass to the horizontal. The dip is replaced by the slope angle α (cf. Fig. 
3.3) and the dip direction corresponds to the average sliding direction.  
Sliding directions are rounded to the 16 main wind directions (cf. Fig. 2.8, Tab. 2.8). By inserting 
a wind direction to the respective box on a survey chart the corresponding degree appears 
automatically. Also the green arrow switches to the correct position.  
 

 
Fig. 2.8. Wind rose. 

 

N 000.0° E 090.0° S 180.0° W 270.0° 

NNE 022.5° ESE 112.5° SSW 202.5° WNW 292.5° 

NE 045.0° SE 135.0° SW 225.0° NW 315.0° 

ENE 067.5° SSE 157.5° WSW 247.5° NNW 337.5° 
Tab. 2.8. Wind directions in degrees. 

 
For cases without known sliding direction – mostly due to an unknown location of the landslide 
(cf. Location Problem - 2.4.1.) – the wind direction box remains empty, hence the degrees box 
shows “wrong” and the arrow remains on the north position. 
 
φ 
 
The emplacement of a LCS on a map is not always obvious. Usually it should be indicated with a 
line or point-to-point mark on the map, and ideally it is taken along the average sliding direction. 
Sometimes, especially when access to the terrain is restricted, or when scientists have special 
interest in features offside the line along the average sliding direction, a LCS can be placed with a 
diverting angle – the angle “φ” (cf. Fig. 2.10a, 2.11a) 
The “φ-box” can contain one of the following values; it is measured from maps manually with an 
angle meter and does not show decimals. 
 
  00  no deviation or no LCS available 
 e.g. 08  deviation up to 20° 
 e.g. 35  deviation bigger than 20° 
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Geometrical Correction 
 
For a while, during the database construction, the possibility of geometrical correction for LCS 
diverting by more than 20° from the average sliding direction was discussed. The main idea was 
to make use of the principle of angle correction first published by PALMER (1919) which is a 
common tool in structural geology and geologic cartography. In the following the principle itself 
as well as its possible application to landslide geometries is presented. 
In structural geology separating interfaces such as shear surfaces, bedding planes or slickenside 
surfaces are very common. Their orientation is defined by either the strike or the dip direction 
measured respective to north and the dip respective to the horizontal (cf. Fig. 2.9); dip direction 
and dip indicate the direction of the orientation of the highest gradient and its value in degrees. 
However, very often measures exist only for cross sections with an angular offset from the dip 
direction; dip and dip direction are then only apparent and do not correspond to the actual 
values. Figure 2.9 shows the relation of real and apparent parameters where: 
 
 strike  strike direction (± 90° from dip direction) 

dirr  real dip direction 
 dipr  real dip 
 dira  apparent dip direction 
 dipa  apparent dip 
 φ  angle between apparent dip direction and real dip direction 
 δ  angle between apparent dip direction and strike direction 
 d  depth value for comparison 
 x  depth value for comparison 
 

 
Fig. 2.9. Relation between real and apparent dips and dip directions. 

 
Considering some trigonometric equations, real and apparent dips are related as shown below. 
 

from       tan(𝑑𝑖𝑝𝑟) =
𝑑

𝑑𝑖𝑟𝑟
      and      tan(𝑑𝑖𝑝𝑎) =

𝑑

𝑑𝑖𝑟𝑎
      follows 

tan(𝑑𝑖𝑝𝑎) =
𝑑𝑖𝑟𝑟

𝑑𝑖𝑟𝑎
∙ tan(𝑑𝑖𝑝𝑟)     and with     sin(90 − φ) =  

𝑑𝑖𝑟𝑟

𝑑𝑖𝑟𝑎
     one obtains 

 
𝑑𝑖𝑝𝑎 = tan

−1(tan(𝑑𝑖𝑝𝑟) ∙ sin(90 − 𝜑))     and 
 

 𝑑𝑖𝑝𝑟 = tan
−1 (

tan(𝑑𝑖𝑝𝑎)

sin(90−𝜑)
)  

 
Using these relations it can be seen that by progressive deviation of the apparent dip direction 
from the real dip direction the apparent dips become smaller, i.e. the surface appears less steep 
(cf. Fig. 2.10a, Tab. 2.9). 
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Fig. 2.10a-b. Relation between real and apparent dips and dip directions (after PALMER, 1919). 

 

real dip (°) apparent dip (°) φ 

26 26.0 00 

26 25.0 10 

26 19.0 45 

26 04.5 80 

26 00.0 90 
Tab. 2.9. Example values for Fig. 2.10a-b. 

 
Based on this relation PALMER (1919) published a chart linking real dip, apparent dip and φ (or 
δ as the complement of φ to 90°); it is a straightforward tool for geological fieldwork enabling 
angle corrections without calculation (cf. Fig. 2.10b). 
Since this chart can easily be used for the correction of angles on a plane interface, the initial 
idea was to make use of it to adjust values for δ1, δ2, δ3, δ4, and δE. At the five main positions (cf. 
Fig. 3.3) those five angles define the inclination of a tangent plane towards the horizontal, and 
the bigger the angle φ becomes, the more significant is the difference between real and apparent 
dip angles. As threshold value for required geometrical correction φ was set to 20°, meaning that 
LCS with a φ ≤ 20° could be evaluated as given, whereas LCS with φ > 20° should be corrected 
using PALMER’s (1919) chart. In theory, the approach would be (cf. Fig. 2.11a):  
 

1) localize the apparent LCS 
2) mark the real LCS along the average sliding direction 
3) measure φ between both LCS 
4) divide the apparent LCS in 4 equal parts 
5) project those 4 parts to the real LCS (cf. for right angle in Fig. 2.11a) 
6) attribute corrected angles to the five main positions along the real LCS 

 

 
Fig. 2.11a-b. Procedure for geometrical correction; example for φ ≤ 20° (after JIAN et al., 2009). 

(a) (b) 

(a) (b) 
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Even though this way of angle correction seems to be rather simple and straightforward, it has a 
number of drawbacks and potential error sources. 
One problem arises by projecting positions from the apparent to the real LCS. Since the type of 
projection is a normal projection, positions 1-3 remain inside the landslide mass (cf. case of Fig. 
2-11a), but positions 0 and E move from the landslide border to its interior. This latter 
circumstance provokes a wrong angle attribution. 
Another issue is applicability of procedures for both translational and rotational landslides. 
Considering the formerly mentioned problem with projections, it is obvious that angle 
correction is possible for the inner positions 1-3 of a perfectly flat and equally thick translational 
landslide. However, angles at positions 0 and E of the rupture surface cannot be properly 
corrected. Even more complex – or actually impossible – is the correction of rotational 
landslides because depth values of the five main positions cannot be assumed to be equal (cf. x in 
Fig. 2.9) and usually rotational landslides tend to have either deeper or completely irregular 
depths in the center of the main body. 
Furthermore, it must be kept in mind that usually a LCS is only an interpretation of soundings or 
borehole data. Thus, every image of a LCS contains some error and defining a real LCS to 
measure φ also introduces further uncertainty. 
Due to the interplay of drawbacks and error sources it seems that after all PALMER’s (1919) 
principle remains a useful tool only for purposes related to structural geology, but not for 
defining landslide geometries. Especially the fact that it is only partially applicable to 
translational landslides, but not to rotational landslides, is a strong argument against the use for 
angle correction of LCS; for consistency both – and also mixed – types of landslides should be 
able to be corrected. 
As a conclusion, for landslide cases with φ > 20° the respective φ value is shown and the 
Geometrical Correction box contains “yes”. This means that due to the deviation a correction 
would be needed, but it was not performed. Further information on LCS is given under Notes (cf. 
2.4.1.) as in cases where LCS exist, but exact parameters were not measured. If the box contains 
“no”, no correction is needed because φ ≤ 20°. 
 
Landslide Imagery 
 
Map 
 
This box can contain either “yes”, “no” or “map cut off”. Respectively those abbreviations mean: 
 
 yes  in at least one of the listed references there is an exploitable map 
 n  in none of the listed references there is an exploitable map 
 map cut off the exploitable map does not show the entire landslide 
 
In case there is an exploitable map, its image number is shown in Assumption for Map (cf. 2.4.1.); 
otherwise the box contains “n”. For the handling of cut off maps refer to Other Notes (cf. 2.4.1.). 
 
LCS 
 
This box can contain either “yes”, “no”, “LCS cut off” or “LCS φ > 20°”. Respectively those 
abbreviations mean: 
 
 yes  in at least one of the listed references there is an exploitable LCS 
 n  in none of the listed references there is an exploitable LCS 
 LCS cut off the exploitable LCS does not show the entire landslide 
 LCS φ > 20° the exploitable LCS diverts by more than 20° from the sliding direction 
 
In case there is an exploitable LCS, its image number is shown in Assumption for LCS (cf. 2.4.1.); 
otherwise the box contains “n”. For the handling of cut off LCS refer to Other Notes (cf. 2.4.1.). 
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If literature displays LCS that divert by 20° or more from the average sliding direction, LCS 
information is given under Notes (cf. 2.4.1.), but exact parameters were not measured (cf. 
Geometrical Correction - 2.4.1.). Hence, the geometrical earnings of cases with “LCS φ > 20°” and 
of those without any LCS is the same. 
 
3D 
 
This box can contain either “yes” or “no”. Respectively those abbreviations mean: 
 
 yes  in at least one of the listed references there is a figure in 3D 
 n  in none of the listed references there is figure in 3D 
 
Photo 
 
This box can contain either “yes” or “no”. Respectively those abbreviations mean: 
 
 yes  in at least one of the listed references there is a photo 
 n  in none of the listed references there is a photo 
 

 
Fig. 2.12a-b. Photos showing damage of the Post House (Ancona Landslide, 035.01) and  

of the S. Pietro Church (Vasto Landslide, 102.00) (after COLTORTI et al., 1985; after DELLA SETA et al., 2013). 

 
It should be noted that photos not necessarily show the landslide; they might also show damage, 
small scale features or outcrops (cf. Fig. 2.12a-b). An example for a landslide where all four types 
of imagery (cf. Fig. 2.13a-d) are present is the La Clapière Landslide (036.00). 
 

 
Fig. 2.13a-d. Map, LCS, 3D figure and photo of La Clapière Landslide  

(after GAFFET et al., 2010 ; after BLANC et al., 1987 ; after CASSO et al., 2003 ; after BLANC et al., 1987). 

 
 
 
 

(a) (b) 

(a) (b) (c) (d) 
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Landslide Cause 
 
Similar to landslide dynamics (cf. Dynamics - 2.4.1.) the IAEG proposes a method for reporting 
landslide causes (UNESCO, 1994). The latter can be very wide spread and usually a slope failure 
is a result of several interlinked causes. At this, the IAEG mentions a distinction between 
preparatory and triggering causes, which – however – is not of great importance in the present 
database since it is not trivial to clearly separate them. In any case, the requirement for failure is 
a factor of safety (SF) smaller than 1 (cf. 5.2.1.). This implies that the sum of all internal and 
external landslide causes in the form of applied forces exceeds the combination of all forces 
operating against failure. 
 

𝐹𝑆 =
ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠

𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠
 

 
Such internal or external causes may be categorized in three groups (cf. Tab. 2.10); however the 
causes for the most damaging landslides worldwide are the involvement of water and seismic 
and volcanic activity (USGS, 2004). During the assessment of the individual landslides special 
emphasis was given to the first two major causes. 
 

geological causes morphological causes anthropogenic causes 

weak materials tectonic uplift excavation work 

sensitive materials glacial retreat overload 

weathered materials erosion & leaching reservoir drawdown 

adverse discontinuities vegetation removal irrigation & leakage 

permeability contrast freeze-thaw cycles mining 

stiffness contrast shrink-swell cycles vibration & explosions 
Tab. 2.10. Geological, morphological and anthropogenic landslide causes (after UNESCO, 1994; after USGS, 2004). 

 
Earthquake 
  
Around a third of the database consists of landslides caused by earthquakes or other seismic 
triggers. Names of seismic events are given under Earthquake (cf. 2.4.1.) and the certitude of the 
relation is indicated under MM ⇆ EQ (cf. 2.4.1.) next to it. Earthquakes are given numbers in a 
format similar to landslides (cf. Landslide Number - 2.4.1.). Numbers appear only in the EQMM-
List (cf. 2.3.3.), but not on the survey charts. 
 
 e.g. EQ.127.00 for the Manjil-Rudbar Earthquake 
 
More detailed information on earthquakes that triggered a landslide appears under Magnitude, 
Time Lag and General Seismic Area. 
 

* m unified magnitude * MJ=JMA magnitude of the JMA 

* mB body wave magnitude * Mm mantle magnitude 

* mb short period mB * ML local magnitude 

* Md duration magnitude * MS surface wave magnitude 

* ME energy magnitude * MW moment magnitude 
Tab. 2.11. Magnitude types. 

 
The information on magnitude contains firstly the magnitude type and secondly the respective 
value. So far, type and value are stored as they were found in literature. However, it should be 
noted that according to the magnitude type (cf. Tab. 2.11; WIKIPEDIA, 2016d) the value can 
change. Magnitude types that appear in the database are marked with an asterisk (*); if the 
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magnitude type or the value could not be determined throughout literature, the survey chart 
contains a “?” in the respective box. For completeness and to avoid confusion, it should be noted 
that M0 is not a magnitude but the seismic moment and therefore not listed in Tab. 2.11. 
Especially for magnitude distance comparisons with respect to possible landslide triggering 
(KEEFER, 1984) it is important to use magnitudes of the same type (cf. 1.5.3., 3.3.1.). 
Landslides can either be triggered by the main seismic impact or at a later stage due to the effect 
of ground weakening and pore pressure redistribution. The box of Time Lag indicates the 
behavior of a landslide in terms of time that passed between the triggering seismic event and the 
main landslide event. The following abbreviations are used: 
 
 co  co-seismic triggering of the landslide 
 post  post-seismic triggering of the landslide 
 co-post  co seismic-triggering of the landslide, ongoing events in the aftermath 

no EQ  landslide without seismic trigger 
 
The information on the overall seismicity of a region is a rather subjective estimate comparing 
locations of occurrence to global seismic maps such as the one in Fig. 2.14. Three classifications 
were made: 
 
 currently seismic  for locations with actual strong seismic activity 
 seismic in past   for locations with strong seismic activity in the past 
 rather non-seismic  for locations with low (or almost no) seismic activity 
 

 
Fig. 2.14. Global seismic hazard map (after GIARDINI et al., 2013). 

 
It should be noted that no area on the Earth is completely free of seismic activity and that in 
theory earthquakes can occur all over the globe, but with different magnitude and probability. 
Also, non-seismically triggered landslides can occur in seismically active regions; “no EQ” hence 
does not necessarily imply “rather non-seismic”. 
 
Other 
  
Landslide causes other than seismic triggering mostly relate to water, strong storm events, 
phenomena of physical weakening and weathering or a combination of factors. Per landslide 
case, factors are sorted according to the best-fit-principle to the following four categories as 
most suitable and using the keywords: 
 

water  for precipitation, pore pressure effects, drainage, groundwater, etc. 
wind  for hurricanes, thunderstorms, etc. 
else  for erosion, lithology, structural geology, anthropogenic influence, etc. 
suspicion for assumed causes 
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However, it is important to keep in mind that one factor might concern two categories although 
it is noted in only one of the boxes; for instance, a thunderstorm represents a wind and rain 
event at the same time, and toe erosion by a river displays a physical decomposition caused by a 
water course. Furthermore, notations in this section are not standardized and cannot be used for 
statistical purposes because they only sum up what literature reported and in reality many more 
unmentioned factors might play a role in the triggering process. 
 
Unknown 
 
In some very rare cases the landslide cause is not reported in literature. This concerns mainly 
case studies conducted for technical issues such as road construction, tunneling, mining, etc. The 
box named Unknown is only ticked, when there is not even a suspicion about the triggering 
cause. 
 
Notes 
 
Assumption for Map 
 
If in at least one of all listed references there is an exploitable map, its image number is shown 
under Assumption for Map; otherwise the box contains “n”. 
 
Assumption for LCS 
 
If in at least one of all listed references there is an exploitable LCS, its image number is shown 
under Assumption for LCS; otherwise the box contains “n”. Some LCS bear an index or a point-to-
point mark. These are put in brackets behind the image number as follows: 
 
 e.g. Fig. 3 (A-A’)  for LCS exploited from Fig. 3, cross section A-A’ 
 e.g. Fig. 29 (S4)  for LCS exploited from Fig. 29, cross section S4 
 
Location Problem 
 
As indicated in the section of Location (Google Earth) (cf. 2.4.1.) correct positioning of landslides 
can be difficult. The box of Location Problem contains either “no” if there is no difficulty to locate 
a landslide, or one of the following notes: 
 
 1 pin for several MM  cf. a) 
 pin somewhere close  cf. b) 
 right location found?  cf. c) 
 unknown location  cf. d) 
 

a) If a series of landslides is unable to be localized and their position is approximately 
known, one pin is set for the whole series. Thus, all landslides from that series have the 
same coordinates. Also for the geographical information this pin is taken as reference.  
 

b) If one single landslide is unable to be localized and its position is approximately known, 
the pin is set somewhere in the environs. Also for the geographical information this pin 
is taken as reference. 

 
c) In some cases the right position of a landslide is believed to be found. Then the pin is set 

on the assumed position. Also for the geographical information this pin is taken as 
reference. 
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d) In some very rare cases landslides are not to be localized at all. For them the pin is set on 
the Earth’s South Pole and the box of Location (Google Earth) (cf. 2.4.1.) contains: 

 
090°00'0.00"S    for latitudes 
000°00'0.00"E    for longitudes 
?     for meters above sea level 

  
 The geographical information is then given in the following format: 
 
 e.g. box 1: 0.0   distance in km, always on 0.0 
 e.g. box 2: N   wind direction, always on N 
 e.g. box 3: Otsu   geographical locality if known, otherwise empty 
 e.g. box 4: JP   country code 
 
Slope Modification 
 
Slope modification is also a rather broad term and refers to any artificial change of the slope of  a 
landslide such as complete reconstruction or land use change in case a landslide took place in 
urbanized areas, replacement of roads and other infrastructure components, installation of 
protection measures such as for example retaining walls or earthworks such as excavations or 
landfills. Furthermore, the mark “slope reshaped” can also mean that a slope in constant slow 
motion is densely inhabited, that the landslide happened for instance due to construction work 
after tunneling activity or that the landslide is a result of wrong geotechnical constructions. 
In case of no relevant slope modification the box contains “n”, but it should be noted that 
literature might not mention every detail about the artificial evolution of a slope. 
 
MM includes / became 
 
After a mass movement is triggered, it is very common for it to undergo transformation to 
another type or at least to include one at some location. For example, a landslide consisting of 
rock triggered in high mountainous terrain might easily transform to a rock avalanche after 
leaving the rupture zone; or a sliding mass mainly consisting of loess – thus soil – might mix with 
precipitation and turn into an earth flow. Some landslides, which keep their landslide 
characteristics, only show flow features at their toe when touching a water course or they 
trigger rock falls or involve toppling on their side flanks. 
The overall mass movement type is defined under MM Type (cf. 2.4.1.); the inclusion or the 
transformation to another mass movement type is mentioned in the box of MM includes / 
became. In the following common types are listed with their abbreviations; however this list is 
not complete since classification of mass movements is generally difficult (cf. 2.2., 2.4.1., 3.3.3., 
Fig. 3.1). In terms of material, this abbreviation system corresponds partially to the mass 
movement classification of CRUDEN & VARNES (1996) to which reference is made under 
Material Classification (cf. 2.4.1.). 
 
 DA  debris avalanche 
 DF  debris flow 
 RA  rock avalanche 
 RF  rock fall 
 EF  earth flow 
 LF  loess flow 
 
Landslides without any transformation or inclusion of other mass movement types are marked 
simply with “LS”; DSGM also do not change their behavior; the same marking is applied to them: 
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 LS  landslide 
 DSGM  deep seated gravitational movement (cf. 2.2., 2.4.1., 3.3.3.) 
 
LCS 
  
The section named LCS documents detailed information on the quality and characteristics of 
LCS. Relations and if-then-conclusions are frequent and will be discussed below. As mentioned 
under LCS (cf. 2.4.1.) in the section describing the available landslide imagery, LCS with a φ 
equal or bigger than 20° information is retrieved, but exact parameters were not measured. If 
literature does not show LCS, all boxes will contain “no LCS” with the exception of the last one; 
the LCS is then considered as if it was self-placed and hence φ is 0°. 
The following five features are of main interest when judging the quality and characteristics of 
LCS: 
 

knickpoints  cf. a) 
 XZ-scale  cf. b) 
 rupture zone  cf. c) 
 pre-LS surface  cf. c) 
 self-placed  cf. d) 
 

a) Knickpoints in LCS are usually unpractical to handle, but due to reasons such as access in 
the terrain or significant change of the sliding direction they appear in literature from 
time to time. Throughout the database LCS with up to three knickpoints exist; the 
number per respective LCS is given in the box of knickpoint followed by one of the three 
possible remarks indicating how the existence of knickpoints was dealt with: 

 
 bent straight  LCS straightened to a line    (cf. Fig. 2.15a) 
 point-to-point line new line created linking positions 0 and E  (cf. Fig. 2.15b) 
 segmented  LCS accepted in segmented form   (cf. Fig. 2.15c) 
 

 
Fig. 2.15a-c. Examples for 1, 2 and 3 knickpoints and the handling of  

bending straight, drawing a point-to-point line and segmentation. 

 
The entries would respectively appear in the survey chart as follows: 

 
 e.g. 1 (bent straight) for Fig. 2.15a 
 e.g. 2 (point-to-point line) for Fig. 2.15b 
 e.g. 3 (segmented)  for Fig. 2.15c 
 

(a) (b) (c) 
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It should be noted that such transpositions facilitate the geometrical evaluation of LCS, 
but also introduce an error. However, transpositions are judged individually and they are 
only made when the error is expected to be almost insignificant.  
A special case is the Stewart Landslide (009.01). Its LCS does not contain knickpoints but 
it is composed of three different parts located with a parallel offset. It is exceptionally 
marked with “3 separate parts”, but since the average direction of those three parts 
diverts by more than 20° from the main sliding direction of the landslide, the LCS could 
not be exploited in any case. 
If a LCS does not contain knickpoints the box contains “n”. 

 
b) Another factor of difficulty during LCS evaluation is axis exaggeration. This refers to 

vertical axis (here called Z-axis) where exaggeration is measured in relation to the 
horizontal axis (here called X-axis).  

 

 
Fig. 2.16. Exaggeration of the vertical axis. 

 
 Indeed, exaggerated Z-axes might show more details of the underground structures 

inside a slope, but it also causes more error when evaluating geometrical parameters by 
analogue measuring. At positions 0, 1, 2, 3 and E (cf. Fig. 3.3) depths have to be scaled 
back and for angle values tangent calculations are necessary (cf. Fig. 2.16). 

 Exaggerated LCS are marked with “unequal”, whereas those without exaggeration show 
the note “same scale” in the box of XZ-scale. 

 
c) Two LCS characteristics closely linked to each other are the definitions of the rupture 

zone and the pre-landslide surface; one requires the other for precise geometrical 
dimensioning. 

 Generally, only the dimension of the rupture zone (cf. shaded green areas in Fig. 2.17a-c) 
of a landslide is of interest for the database since it is the base entry for stability 
modeling. Hence, great attention has to be paid to its dimensions. Often this is not trivial 
because literature reports cases in different states. Landslides can be just in the course of 
leaving the rupture zone – a very common state for constantly slowly moving landslides 
featuring for instance “drunken trees”, displaced fences or disrupted brickwork (cf. Fig. 
2.17a). Single fast moving events may display a state where the landslide material is 
partially deposited inside and partially outside of the rupture zone (cf. Fig. 2.17b). For 
very steep topographies landslide material can even be deposited entirely outside of the 
rupture zone (cf. Fig. 2.17c). Also mixed states are possible. 

 

 
Fig. 2.17a-c. Different states of a landslide according to the deposit of the rupture mass. 

(a) (b) (c) 
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 If a rupture zone is properly defined, the next issue is the proper definition of its limits in 
terms of thickness. Therefore a LCS should indicate a pre-landslide ground surface (cf. 
Fig. 2.18a). For LCS displaying a clear rupture surface and a pre-landslide surface, 
geometrical parameters are taken with respect to the latter. In case of LCS showing a 
clear rupture surface and a post-landslide surface a line between positions 0 and E is 
drawn and geometrical parameters are taken with respect to this line, which is – as 
indicated under Slope Angle α (cf. 2.4.2.) – the average gradient of the slope above the 
rupture surface (cf. Fig. 2.18b). Throughout the entire database this straight is simply 
called “line”. Assuming the original slope surface being a line of course introduces some 
error, but it seems to be a reasonable compromise between expected topography and a 
standardized procedure applicable to the concerned cases. To summarize, and if a 
rupture surface is clear, the following options are possible to appear in the boxes of 
rupture zone and pre-LS surface: 

 
  clear  surface   cf. Fig. 2.18a 
  clear  taken as line  cf. Fig. 2.18b 
 unclear  unclear   cf. Fig. 2.18c 
 

 
 

 
Fig. 2.18a-c. Examples for clear and unclear rupture zones  

and the assumptions for the ground surface. 

 
Unfortunately literature sometimes contains LCS that do not indicate if they show the 
pre- or the post-landslide state (cf. Fig. 2.18c), i.e. the LCS can either show the rupture 
surface with its dimensions confined by a sliding surface and a pre-landslide ground 
surface, or the LCS displays the post-landslide state and the dimensions refer to the 
landslide deposit which is of no use for the database. The rupture zones and pre-
landslide surfaces of those cases are marked thus as “unclear” (cf. above). 

 
d) The last point in the LCS characteristics list is a rather technical indication about its 

emplacement. Some articles clearly report the LCS location by a line on a map; in this 
case the LCS is not self-placed, the box contains “n” and the box of φ (cf. 2.4.1.) gives the 
deviation from the average sliding direction (cf. Fig. 2.11a). 
Other articles display a LCS but without showing the emplacement on the corresponding 
map; in this case the LCS is self-placed, the box contains “yes” and the box of φ (cf. 2.4.1.) 
shows 0° because – for simplification and due to the lack of information – it is assumed 

(a) (b) 

(c) 
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that the LCS is taken along the average sliding direction (cf. Fig. 2.10a). Also for articles 
without LCS the box of self-placed contains “yes” and φ is set to 0°. 

 
Other Notes 
 
Three boxes on the survey chart are kept free for additional notes. They are rather not 
standardized and might contain memoranda, mentionable facts, curiosities or “memory hook” 
for distinction and better characterization of single cases. Also assumptions and the employment 
of numerical codes for model generation are noted at this place. The latter is of great importance 
when geometries are retrieved from modeled LCS. If literature reports the use of FLAC a note is 
made – either “FLAC” or “FLAC 3D”. 
Some few standardized indications come along with cut off or incomplete maps and LCS in the 
following forms: 
 

map cut off: adjusted manually to what seems logic  cf. a) and Fig. 2.19a 
map cut off: no measurements possible   cf. b) and Fig. 2.19b 
map cut off: end of frame      cf. c) and Fig. 2.19c 
LCS cut off: adjusted manually to what seems logic  cf. d) and Fig. 2.20 

 
a) With the help of Google Earth and/or with experience the dimension of the landslide on 

a map could be completed. Geometrical parameters are based on the new dimension. 
 

b) Google Earth and/or experience do not help to complete the dimension of the landslide 
on a map. No geometrical parameters are retrieved. 

 
c) The outline of the landslide is not fully shown on the map because the display window is 

too small. Under some rare and exceptional conditions the dimension of the landslide is 
defined by the end of the image frame. 

 
d) With the help of Google Earth and/or with experience the dimension of the landslide on 

a LCS could be completed. Geometrical parameters are based on the new dimension. 
 

 
Fig. 2.19a-c. Examples for cut-off maps. 

 

 
Fig. 2.20. Example for cut-off LCS. 

(a) (b) (c) 
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Some seismically triggered landslides are post-seismic, meaning that the event happened with 
some time delay after the earthquake. If the time lag (cf. Time Lag - 2.4.1.) thus is “post”, 
additional information on the time span is given in the form of: 
  

e.g. time lag: 30 minutes  for a single post-seismic event after 30 minutes 
e.g. time lag: during 1 year  for consequent activity over one year 

 
It appears that some landslides are in relation with other events. Such options might be:  
 
 related event: 000.00 ([name]) on 00/00/0000 
 related event: EQ.000.00 ([name]) on 00/00/0000 
 related event: 000.00 ([name]) due to EQ.000.00 ([name]) on 00/00/0000 
 
Respectively the three options have the following meanings: first, another mass movement 
happened at the location of the landslide on a certain date without the influence of seismic 
events; second, another earthquake shook the location of the landslide on a certain date either 
before or after the main landslide event, but without causing any other mass movements; third, 
another earthquake shook the location of the landslide on a certain date either before or after 
the main landslide event and caused another mass movement. 
 
Related Papers 
 
Usually a landslide is not only described once in literature; in most cases articles, book chapters, 
conference proceedings etc. can be found for the same landslide. In the course of the 
construction of the data base the so-called BIB-List (cf. 2.3.3.) was built which attributes the 
same number to all publications concerning the same landslide: 
 
 e.g. 004 Martino S. et al. 2016  concerning 004.00 (Büyükçekmece) 
 e.g. 004 Bourdeau C. et al. 2015  concerning 004.00 (Büyükçekmece) 
 e.g. 004 Dogan U. et al. 2013  concerning 004.00 (Büyükçekmece) 
 
It should be noted that the box of Related Papers lists not only literature related to the landslide 
itself, but also cites publications on related earthquakes or for example the region of interest. 
For instance, the survey chart of the Büyükçekmece Landslide (004.00) contains the three above 
listed entries of which the first two refer to the landslide itself and the third one to the 
concerned region. 
Attention has to be paid at landslide series (cf. Landslide Number - 2.4.1.). Since in the BIB-List 
(cf. 2.3.3.) only the main number is attributed to publications, the box of Related Papers of series 
contains all concerned references: 
 
 e.g. 007 Djerbal L. Melbouci B. 2012  all publications with the  
 e.g. 007 Guirous L. et al.  2014  number 007 are listed in 
 e.g. 007 Djerbal L. Bahar R. 2016  each survey chart of the 
 e.g. 007 Djerbal L.   2015  series (i.e. in 007.01,  
 e.g. 007 Bouaziz N. Melbouci B. 2015  007.02, 007.03 and 007.04) 
 
Also information on landslide imagery is based on all available publications (cf. BIB-List - 2.3.3.); 
the availability of related publications is indicated by the following notes: 
 

digital    PDF-copy available, citation in the BIB-List  
only part  PDF-copy of part available, citation in the BIB-List 
only abstract  PDF-copy of abstract available, citation in the BIB-List 
no paper  no PDF-copy available, citation in the BIB-List 
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Citations in survey charts have the following format: 
  

e.g. Laurel S., 1921   for 1 author 
 e.g. Laurel S., Hardy O., 1921 for 2 authors 

e.g. Laurel S. et al., 1921  for more than 2 authors 
 

2.4.2. Geometry Part (Page 2) 
 
A first international nomenclature of landslide parameters was published by the IAEG (1990). It 
describes 19 distinct features and 7 dimensions of landslides and defines their characteristics. 
Since this database aims solely to collect geometries of rupture zones the following dimensions 
were of particular interest; their definitions are copied from the publication (IAEG, 1990): 
 

(10) rupture surface the projection of the main scarp surface under the 
displaced material of a landslide 

(19) flank the side of the landslide (Compass directions are 
preferable in describing the side but if left and right are 
used, they refer to the slide viewed from the crown.) 

(Lr) length of rupture surface the distance from the toe of the rupture surface to the 
crown 

(Wr) width of rupture surface the maximum width between the flanks of the landslide, 
perpendicular to the length Lr 

(Dr) depth of rupture surface the maximum depth of the rupture surface below the 
original ground surface measured perpendicular to the 
original ground surface 

 
Based on this nomenclature a more detailed set of landslide parameters was elaborated; it 
contains more than 50 parameters that are listed in Tab. 3.2. An illustrating graphic is shown in 
Fig. 3.3. 
A special case of landslide geometry derivation arises when a case is reported without LCS, and 
when at the same time the map indicates a landslide towards a water body. Even if the 
assumption might be not entirely true, the rupture zone of the landslide is then assumed to end 
where the water body starts. Concerned water bodies might be rivers, lakes, reservoirs or the 
sea. 
The database is not designed to include underwater landslides because modeling software that 
will be used on a later stage does not cope with water submersion. Only two half subaqueous 
cases found their way to the database and thus are marked with “offshore”: 
 
 022.00  Degirmendere (offshore) 
 177.03  Finneidfjord (offshore) 
 
It should be noted that both the Degirmendere Landslide and the Finneidfjord Landslide have 
LCS, so here the question of the dimension of the rupture zone does not arise. 
 
Principal Geometry 
 
The database distinguished only rotational, translational and roto-translational landslides and 
respectively notes “rot”, “trans” or “roto-trans” in the box of Principal Geometry (cf. Fig. 2.21). It 
should be noted that the type of principal geometry was preferably adopted from literature of a 
particular case. If no type is mentioned in literature, types were chosen according to what fits 
best. In case of indeterminable principal geometries the type was set to “roto-trans”. However 
attention has to be paid, since literature also reports roto-translational landslides and best-fit-
assumptions might result in roto-translation as well; so “roto-trans” is not a term exclusively 
referring to indeterminable geometries. 
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Fig. 2.21. Rotational (left) and translational (right) landslides (after USGS, 2004). 

 
Volume 
 
Volume reports of landslides are of great interest but not trivial. The first question when 
retrieving volume values from literature is the one of its type. Often literature indicates the 
deposit volume which is by far easier to determine after a landslide event. However the deposit 
volume is usually bigger than the rupture volume due to water entrainment and air inclusion in 
the deposit mass. The factor by which the deposit volume increases is called swell factor. 
For the database only rupture volumes are of interest; according to CRUDEN & VARNES (1996) 
they can be approximated by calculating the volume of half an ellipsoid as shown below (cf. Fig. 
2.22, 3.2.). For consistency it should be noted that also deposit volumes are to be approximated 
by this equation with respective greater parameters. 
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Fig. 2.22. Ellipsoid with geometric parameters. 

 
Usually the equation presented by CRUDEN & VARNES (1996) fits best for perfectly rotational 
landslides with a very flat original surface topography. The more the rupture geometry deviates 
from this perfect half ellipsoid the more the equation overestimates the volume. Especially for 
shallow translational – sheet shaped – landslides the equation does not deliver trustable results. 
Thus, attention has to be paid when evaluating volumes and the equation should only be 
considered for rotational cases. A more recent approach to calculate volumes is presented by 
GUZETTI et al. (2009). 
For comparison survey charts report two types of volumes: 
 

according to literature  reported volume (tending to store mentioned maximum) 
according to equation   calculated volume (as half ellipsoid) 
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Area 
  
Area values of landslides can have two formats: 
 

A area of a landslide across the slope 
 Ah area of a landslide in horizontal projection 
 
If no area is given in literature, both area boxes will remain empty as Ah is calculated using the 
slope angle α (cf. 2.4.2.). Similarly to landslide volumes, also indications on area have to be 
recorded with care; literature might give the area of the rupture zone only or the entire area 
concerned by landslide activity which tends to be much larger. 
 
Ratios 
 
This section comprises three ratios commonly used in landslide science (cf. below). It should be 
noted that in the statistical analysis presented in section 3.3.3. a similar (but not identical) set of 
ratios is used: dav/L, wav/Lh, H0E/Lh and dav/wav. 
 
 D/L  depth over length, cf. a) 
 wav/Lh  width over length, cf. b) 
 Hmax/Lh  height over length, cf. c) 
 

a) The first ratio puts in relation the maximum depth D of a landslide and its length L across 
the slope. It is hence an indicator for the thickness of a landslide as the following 
example shows – the higher the ratio, the thicker it is: 

 

 e.g. 𝐷
𝐿⁄ = 1 4⁄ = 0.25 thinner  (cf. Fig. 2.23a) 

 e.g. 𝐷
𝐿⁄ = 2 4⁄ = 0.5 average (cf. Fig. 2.23b) 

 e.g. 𝐷
𝐿⁄ = 3 4⁄ = 0.75 thicker  (cf. Fig. 2.23c) 

 

 
Fig. 2.23a-c. Depth-over-length ratio. 

 
b) The second ratio puts in relation the average width wav of a landslide and its length Lh 

projected to a horizontal plane. It is hence an indicator for the roundness of a landslide 
as the following example shows – the higher the ratio, the broader it is: 

 

  e.g. 
𝑤𝑎𝑣

𝐿ℎ
⁄ = 2 4⁄ = 0.5 longer  (cf. Fig. 2.24a) 

 e.g. 
𝑤𝑎𝑣

𝐿ℎ
⁄ = 2 2⁄ = 1 round  (cf. Fig. 2.24b) 

 e.g. 
𝑤𝑎𝑣

𝐿ℎ
⁄ = 4 2⁄ = 2 broader (cf. Fig. 2.24c) 

 

(a) (b) (c) 
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Fig. 2.24a-c. Width-over-length ratio. 

 
c) The third ratio puts in relation the maximum height hmax of a landslide and its length Lh 

projected to a horizontal plane. It is hence an indicator for the steepness of a landslide as 
the following example shows – the higher the ratio, the steeper it is: 

 

 e.g. 
ℎ𝑚𝑎𝑥

𝐿ℎ
⁄ = 1 2⁄ = 0.5 flatter  (cf. Fig. 2.25a) 

 e.g. 
ℎ𝑚𝑎𝑥

𝐿ℎ
⁄ = 2 2⁄ = 1 45°  (cf. Fig. 2.25b) 

 e.g. 
ℎ𝑚𝑎𝑥

𝐿ℎ
⁄ = 3 2⁄ = 1.5 steeper  (cf. Fig. 2.25c) 

 

 
Fig. 2.25a-c. Height-over-length ratio. 

 
Work on statistical patterns of L/W-ratios is presented by TAYLOR et al. (2015). The authors 
examined elliptical shapes of complete landslide inventories after the Northridge Earthquake on 
the 17th of January 1994 and after the Hurricane Mitch in 1998. It should be noted that here – as 
commonly in literature – the ratio reporting the relation of length and width is given by L/W, 
whereas in the present database it is inversely wav/Lh. 
 
Longitudinal Cross Section 
 
The section named LCS comprises the parameters referring to lengths, depths, heights and 
angles to be measured from cross sections along the average sliding direction.  
 
Length 
 
Lengths values are: 
 
 L  length of a landslide across the slope (between positions 0 and E) 
 l1 = … = l4 L divided into 4 equal parts 
 
 
 

(a) (b) (c) 

(a) (b) (c) 



57 
 

Depth 
  
Depth values are: 
 

D  maximum depth of a landslide 
 d0  depth at position 0 
 d1  depth at position 1 
 d2  depth at position 2 
 d3  depth at position 3 
 dE  depth at position E, always set to 0 
 dav  average depth of a landslide (average of the 5 main positions) 
 
Depth Parts 
 
Another section referring to depth values is the one showing depth parts. More precisely, the 
depth value at a certain position consists of two parts – the depth part below and above the line 
(cf. Fig. 3.3). 
In order to reproduce accurate cross sections for modeling purposes it is important to know at 
least one part to calculate the complement and finally to generate proper depth plots. The depth 
value alone would not be enough, because it would remain unclear at what point the line 
intersects the depth vertical. Depth part values are: 
 

d0-ab  depth above the line at position 0, always set to 0 

d1-ab  depth above the line at position 1 
d2-ab  depth above the line at position 2 
d3-ab  depth above the line at position 3 
dE-ab  depth above the line at position E, always set to 0 

 d0-bel  depth below the line at position 0 
d1-bel  depth below the line at position 1 
d2-bel  depth below the line at position 2 
d3-bel  depth below the line at position 3 

dE-bel  depth below the line at position E 
 
A tool included in the survey charts is the automatic regeneration of LCS. This plot needs only Lh, 
H0E, d0, d1, d2, d3, d1-ab, d2-ab, and d3-ab to be inserted; d0-bel, d1-bel, d2-bel, d3-bel and dE-bel are calculated. 
Example values and the thereby created LCS are shown in Tab. 2.12. and Fig. 2/26. 
 

example values Lh -50 

d0 03 H0E -25 

d1 10 d1-ab -02 

d2 18 d2-ab -04 

d3 08 d3-ab -03 
Tab. 2.12. Example values for Fig. 2.26. 

 

 
Fig. 2.26. Automatically regenerated LCS on a survey chart. Length and depth are in meters. 
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This example illustrates two special features. First, if d0 is greater than 0, the landslide has not 
only a simple scar but a whole trough structure, which becomes visible only after the main 
landslide event. Second, if a depth part referring to an above segment of the depth vertical is 
negative, it means that the ground surface before the main landslide event passed under the line 
(cf. red and green dots in Fig. 2.26). 
The advantage of this tool is to quickly verify manually measured parameters by comparing the 
hereby generated LCS to the LCS given in literature. If shapes do not fit, a parameter might not 
be properly retrieved what on a later stage of modeling would cause problems. 
 
Height 
  
The database stores two types of heights: 
 

H0E  height of a landslide (between positions 0 and E) 
 Hmax  maximum height of a landslide 
 
Especially rotational and roto-translational landslides often have rupture surfaces that curve up 
before reaching the position E (cf. Fig. 3.3) Hmax then gives the greatest height difference a 
landslide can have. In case rupture surfaces do not curve up Hmax equals H0E. In general, H0E can 
never be bigger than Hmax (i.e. H0E ≤ Hmax). 
For some landslides literature only gives maps. In those cases exact height information is 
difficult to be retrieved; H0E was then taken as height difference between positions 0 and E from 
Google Earth or – if applicable – by interpolating contour lines on the map. Because no depth 
information is available in those cases, Hmax was also set to H0E. Surely this latter assumption 
might not be fully true in every case – especially for deep rotational landslides –, but generally 
Hmax is of lower importance for statistical evaluation. 
 
Slope Angle α 
 
For comparison the database includes two values for the slope angle: 
 
 according to literature  slope angle cited in literature (averaged if several values) 
 according to equation  calculated slope angle 
 
One of the most important entries in the database is the calculated slope angle α. It is obtained 
by the first of the following equations. For length and area projections from or to the horizontal 
plane α is crucial as the second of the following equations shows. 
 

𝛼 = tan−1 (
𝐻0𝐸

𝐿ℎ
)           cos(𝛼) =

𝐿ℎ

𝐿
=
𝐴ℎ

𝐴
 

 
To avoid confusion, it should be noted that projections for length and area are made 
contrariwise; the reason is simply the fact that literature more often reports an effective area 
across the slope whereas lengths are more suitable to measure from maps: 
 

Lh projects with α to L 
A projects with α to Ah 

 
As mentioned in LCS (cf. 2.4.1.), the straight line between positions 0 and E is simply called “line” 
throughout the database (cf. red line in Fig. 2.26). 
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Angles along Rupture Surface 
 
At each of the five main positions the angle between a tangent plane and the horizontal is 
measured in the direction of sliding. This leads to positive and negative values of which the 
latter indicates an “up curving” rupture surface (cf. Fig. 2.27). Angles along the rupture surface 
are: 
 

δ0  angle at position 0 
 δ1  angle at position 1 
 δ2  angle at position 2 
 δ3  angle at position 3 
 δE  angle at position E 
 

 
Fig. 2.27. Definition of angles along the rupture surface. 

 
Initially, an idea was to use the angles along the rupture surface to regenerate LCS (cf. Fig. 2.26). 
However, it quickly became apparent that manual alignment with an angle meter can introduce 
a great error, especially when the vertical axis is exaggerated (cf. Fig. 2.16) and angles have to be 
calculated via trigonometry. It appears thus that the depths at positions 0, 1, 2, 3 and E are much 
more stable for regenerating LCS, even if values have to be deskewed. 
 
Map 
 
The section named Map only comprises the parameters referring to widths and lengths 
projected to a horizontal plane. Especially the latter is of great importance since it defines 
together with H0E (the height between positions 0 and E) the slope angle α. 
 
Length 
 
Lengths values are: 
 
 Lh  length of a landslide in horizontal projection (between positions 0 and E) 
 lh1 = … = lh4 Lh divided into 4 equal parts 
 
Width 
 
Width values are: 
 W  maximum width of a landslide 
 w0  width at position 0 
 w1  width at position 1 
 w2  width at position 2 
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 w3  width at position 3 
 wE  width at position E 
 wav  average width of a landslide (average of the 5 main positions) 
 
Transversal Cross Section I, II & III 
 
The sections named TCS I, II & III comprise the parameters referring to depths and angles to be 
measured from cross sections perpendicular to the average sliding direction. Ideally TCS I, TCS II 
and TCS III display cross sections at positions 1, 2 and 3 respectively (cf. Fig. 3.3). However, it 
should be noted that given TCS almost never correspond exactly to one of the positions 1, 2 or 3. 
TCS are thus assigned to the closest fitting position. 
In general reported TCS are sparse, and in most of the reported landslide cases only a LCS is 
available. Throughout the whole database in only two cases one or more TCS appear: 
 
 004.00  Büyükçekmece Landslide 
 062.02  Okuli Landslide 
 
Due to the low number of cases with TCS figure indications do not appear in a separate box 
similar to Assumption for Map (cf. 2.4.1.) or Assumption for LCS (cf. 2.4.1.), but they are noted 
under Other Notes (cf. 2.4.1.) in the format: 
 
 e.g. T1 for TCS I, T2 for TCS II and T3 for TCS III 
 
Width 
 
Width values are copied automatically from Map (cf. 2.4.2.): 
  

w1 / w2 / w3  widths at positions 1, 2 and 3 
 
Depth 
 
The box of Depth contains two types of values, of which the first one is automatically copied 
from LCS (cf. 2.4.2.): 
 
 d1 / d2 / d3  depths at positions 1, 2 and 3 
 d1t / d2t / d3t  centered depths at position 1, 2 and 3 
 
As indicated in Fig. 3.3, a depth d is the depth that is retrieved from a LCS; it is the maximum 
depth under one of the three inner positions (1, 2 or 3) of a LCS. Naturally, due to the “imperfect” 
shape of a landslide, the position of d in a TCS does not necessarily coincide with the real 
centered depth dt – the depth under the point that bisects w. For comparison, both d and dt are 
noted in the survey chart. 
 
Flank Angles 
 
Flank angles refer to the right and left angles between an imaginary tangent plane touching the 
sliding surface and the horizontal as indicated in Fig. 2.28d. Attention has to be paid to the fact, 
that in the database “left and right” are defined by looking upwards to the landslide crest, 
whereas inversely the IAEG (1990) defines “left and right” by looking downwards to the 
landslide toe. 
 
 γ1L / γ2L / γ3L  left flank angles at positions 1, 2 and 3 
 γ1R / γ2R / γ3R  right flank angles at positions 1, 2 and 3 
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Rough Width Shape 
 
Flank angles alone do not give sufficient information to outline a TCS and rough width shapes 
are obligatory to complete this lack of information. This circumstance becomes apparent when 
comparing Fig. 2.28a and Fig. 2.28c. Flank angles on both sides are very similar (around 140°), 
but thereby defined shapes can range from wedges to shallow tubs. The boxes of Rough Width 
Shape give a shape estimation according to how the TCS appears in literature. Four main shape 
types are distinguished: 
 
 V TCS with a wedge shape  (cf. Fig. 2.28a) 
 [ TCS with a rectangle shape  (cf. Fig. 2.28b) 
 ( TCS with a shallow tub shape  (cf. Fig. 2.28c) 
 U TCS with a deep tub shape  (cf. Fig. 2.28d) 
 

 
 

 
Fig. 2.28a-d. TCS shapes: wedge, rectangle, shallow tub and deep tub. 

 
2.5. Microsoft Access 

 
2.5.1. Creation and Purpose of the Access Database 
 
Most of the data is stored in Excel-files. However, this approach proved to be insufficient in 
terms of maintenance and processing. On the one hand, the big number of information and 
relations between data is a source of potential mistakes and data inconsistency. On the other 
hand, Microsoft Excel does not have a built-in controlling tool for data insertion and updating at 
multiple places, and thus learning from relations is extremely difficult. Also, sophisticated 
filtering is laborious in Microsoft Excel; it is not easy to answer questions as for example: How 
many seismically triggered landslides are translational and consist only of soil and rock? 
Software dedicated to the class of problems being considered are relational databases using SQL 
(Structured Query Language) to compute, filter and retrieve data from the database. The 
previously stated question can be quickly answered with a simple query in SQL. 

(a) (b) 

(c) (d) 
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Fig. 2.29. Role of Microsoft-Access for handling the database 

(after ITECH, IFSTTAR, 2016; after ITASCA, 2016; after WIKIPEDIA, 2016e). 

 
For this database project Microsoft Access was chosen. It provides many tools that are broadly 
useable also for non-database specialists, of which the two most important are: the query 
builder (providing a graphical user interface to define queries without SQL) and the reporting 
module (defining reports based on SQL queries).  
Another reason for the choice of Microsoft Access is the fact that all established data existed in 
Microsoft Excel, and import to Microsoft Access using VBA (Visual Basic for Applications) was 
much easier than to other types of software. 
The aim of the database in Microsoft Access is to enable statistical analysis of parameters and 
relations. It is possible to quickly filter datasets to create data for numerical modeling, or – if 
necessary – to re-filter datasets to update or modify models. In Microsoft Excel it would take 
much more time to sort columns to create input data and the probability of making mistakes is 
high. 
 
2.5.2. Easy Statistics  
 
The so-called “easy statistics” shows some simple filter applications; at the same time those 
filtered output values illustrate a few basic characteristics of the database. More complex 
queries are presented in the next chapter (cf. 3.). For consistency it should be noted that the 
following statistical charts do not have own numbers. One particular statistical application – the 
comparison of data to the work of KEEFER (1984) – is presented in the next section (cf. 2.5.3., 
3.3.1.). 
 
Main sliding mechanism 
 
The database distinguishes 
rotational, translational and roto-
translational landslides; each of 
them accounts for around one 
third. 

102   rotational 
087   translational 
088   roto-translational 
----- 
277 
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Landslide material 
 
The involved material is 
classified in groups according to 
VARNES (1958): soil, rock, 
debris, or a combination. It 
appears that more than half of all 
cases consist or involve soil, what 
is typical for “classic” landslides. 

078   soil 
037   rock 
001   debris 
043   soil and rock 
033   soil and debris 
068   rock and debris 
017   soil, rock and debris 
----- 
277 

 
Availability of maps 
 
Throughout literature, the 
availability of maps showing the 
respective landslide is high. 
Almost 80% of all evaluated 
cases dispose of a map, of which 
some miss out a part of the 
landslide. 

206   available 
010   map cut off 
061   not available 
----- 
277 

 
Availability of LCS 
 
Throughout literature, the 
availability of LCS is also high. 
Around 70% of all evaluated 
cases dispose of a LCS, of which 
some are not placed along the 
main sliding direction or miss 
out a part of the landslide. 

179   available 
015   LCS cut off 
075   not available 
008   LCS with ϕ > 20° 
----- 
277 

 
Outline of  rupture zone 
 
An important fact when 
evaluating LCS is the clear 
outline of the landslide mass. Of 
all cases with LCS, 95% have a 
clear outline; the remaining 5% 
were not to be used for 
geometric evaluation. 

137   clear, surface shown 
047   clear, taken as line 
010   unclear 
----- 
194 

 
φ 
 
In 70% of the cases the LCS is 
placed along the main sliding 
direction or with an angular 
deviation smaller than 20° from 
it. The cases with a deviation of 
more than 20° were not to be 
used for geometric evaluation. 

161   ϕ = 0° 
075   ϕ = 0° (no LCS) 
033   ϕ < 20° (cf. chart below) 
008   ϕ > 20° (cf. chart below) 
----- 
277 
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Occurrences of angular deviations (φ) from the main sliding direction in degrees. 

 
2.5.3. KEEFER’s Curves 
 
Based on a set of 40 seismically triggered mass movements, KEEFER (1984) published the 
relation of magnitudes and the maximum distances at which the mass movements occurred. 
More precisely, he divided the mass movements into three groups and drew for every group an 
enveloping curve over the concerned set of scattered points (cf. Fig. 2.30): 
 
 disrupted slides and falls  black curve  
 coherent slides   red curve (only curve shown in Fig. 3.4) 

lateral spreads and flows  blue curve  
 

 
Fig. 2.30. Digitized KEEFER’s (1984) curves. 

 
A simple but interesting question was, if the seismically triggered landslides included in the 
database fit to the relation proposed by KEEFER. To answer this question an overlay of his 
curves and points computed from the database was plotted. The procedure was not 
straightforward and is explained in detail in the following. 
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As first step, KEEFER’s curves had to be digitized since so far they are only available as figure in 
the publication of 1984. For this purpose the summarizing figure (Fig. 2D in KEEFER, 1984) was 
simply magnified to size A4 and the curves were traced manually reading the magnitude (with 
an accuracy of 0.05) for each distance step. Even though the first axis (magnitudes) shows more 
steps, readings were taken from the second axis (distances) because of the latter being 
logarithmic and hence more difficult to scale manually. Plots were realized in Excel. 
KEEFER’s (1984) plot shows 40 points which refer to earthquakes of different magnitudes as the 
following footnote (KEEFER, 1984) states: 
 

“With a few exceptions noted in Tab. 1, M < 7.5 are Richter surface-wave magnitudes (MS), 
and M ≥ 7.5 are moment magnitudes (MW) of KANAMORI (1977).” (p. 407) 

 
On the one hand it is surely not ideal to use two different types of magnitudes within the same 
plot. On the other hand however, MS saturates at high values and very big earthquakes are rather 
to be covered by using MW. 
In order to plot the database cases into KEEFER’s (1984) diagram the issue of sorting was of 
great importance. Magnitudes throughout the database show all kinds of magnitude types, 
whereas KEEFER (1984) only used MS and MW. It became hence essential to know for each 
earthquake at least one of those two magnitude types. 
Transforming magnitudes by using equations is tricky because they are empirical and bond to a 
distinct region of the world. An example might be the equation of TOBYÁS & MITTAG (1991): 
 

𝑀𝑆 = −3.2 + 1.45 ∙ 𝑀𝐿 
 
Since there is no globally applicable equation for transforming MS and MW into each other, the 
solution was to check each earthquake separately in seismological catalogs that provide 
different reviewed magnitude types per earthquake. 
In total the database contains 99 seismically triggered landslides, of which 74 surely have an 
earthquake or volcanic activity as trigger. For those 72 surely seismically triggered landslides MS 
and MW (and if possible body wave magnitudes mB) were retrieved from the below listed 
catalogs and sub-sources. 
 
 ISC Bulletin (International Seismological Center) 
     NEIC (National Earthquake Information Center) 
  ISC (International Seismological Centre) 

 HRVD (Harvard University) 
 MOS (Geophysical Survey of the Russian Academy of Sciences) 
 ABE1 (unknown source) 
 DENG (unknown source) 
 P&S (printed publications) 

 
 AHEAD  (European Archive of Historical Earthquake Data) 
 
 WikipediA (for 4 exceptional cases nowhere else listed) 

 EQ.038.01 Armenian 1679 (WIKIPEDIA, 2016f) 
 EQ.100.00 Kangding-Luding (WIKIPEDIA, 2016g) 
 EQ.140.01 New Madrid Seq. 1 (WIKIPEDIA, 2016h) 
 EQ.140.02 New Madrid Seq. 1 (WIKIPEDIA, 2016h) 

 
Finally, after a systematic search in the ISC Bulletin and the AHEAD catalog, and after completing 
the dataset with information from other sources, earthquakes of the following magnitude types 
were found. The dataset is shown in the appendix (cf. A.2.). 
 
 



66 

 

 29 earthquakes of  MW triggered 62 landslides 
 04 earthquakes  of  MS triggered 08 landslides 
 01 earthquake  of  Mukn triggered 02 landslides 
 ---------------------     ------------------ 
 34 earthquakes     72 landslides 
 
It appeared that the majority of earthquakes is reported with MW and as a matter of consistency 
no further sorting was done. The main reason for this decision was the fact that MW is directly 
based on the seismic moment M0 – thus, on the released energy (HANKS & KANAMORI, 1979). 
Its advantage is that it does not need to account for the location of the rupture surface, wave 
types or the duration. 
 

𝑀𝑊 =
2

3
∙ 𝑙𝑜𝑔10(𝑀0) − 6.07 

 
As a result – and differently to KEEFER’s (1984) sorting – the dataset contains: 
 

62 landslides  triggered by an earthquake reported in  MW (dots) 
08 landslides  triggered by an earthquake reported in  MS (triangles) 
02 landslides  triggered by an earthquake reported in  Mukn (squares) 
------------------ 
72 landslides 

  
Exact distance measurements require coordinates for every earthquake and landslide. Besides 
depth values (of the hypocenters), latitudes and longitudes of earthquake locations were 
retrieved in a similar way as magnitudes (cf. below). Landslide locations were known already 
(cf. Location - 2.4.1., Location (Google Earth) - 2.4.1.). 
 
 ISC Bulletin (International Seismological Center) 
 
 AHEAD  (European Archive of Historical Earthquake Data) 
 
 WikipediA  (for 2 exceptional cases nowhere else listed) 

 EQ.038.01 Armenian 1679 (WIKIPEDIA, 2016f) 
 EQ.100.00 Kangding-Luding (WIKIPEDIA, 2016g) 
 

 Publication  (for 2 exceptional cases nowhere else listed) 
 EQ.140.01 Stewart  (JIBSON & KEEFER, 1994) 
 EQ.140.02 Campbell  (JIBSON & KEEFER, 1994) 

 
Unexpectedly MATLAB turned out to be the perfect tool for distance calculations. The command 
 

[arclen,az] = distance(lat1,lon1,lat2,lon2,referenceEllipsoid('wgs84')) 

 
computes the shortest distance across the Earth’s surface between two points given in decimal 
degrees. The distance is given in meters, and many different reference ellipsoids are available. In 
this case the World Geodetic System 1984 (WGS 84) was selected; it is one of the most 
frequently used standard datums worldwide and also the datum of Google Earth where all 
landslides were marked. 
KEEFER (1984) published two types of curves; one type relates to the epicenter, the other to the 
fault rupture zone.  
For the present plot the epicenter diagram was chosen because depth values are only reported 
for earthquakes listed in the ISC Bulletin and entries of the 22 historical earthquakes do not 
show depths. 
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This assumption can be criticized because epicenter-landslide distances and hypocenter-
landslide distances might vary significantly especially if the earthquake is deep or if the fault 
zone is large. However, only two of those earthquakes having a depth record appeared to be 
deep (cf. below) and all other earthquakes do not exceed the Mohorovičić Discontinuity, which is 
the border between the Earth’s crust and mantle at on average 30 km.  
 
 EQ.074.00 El Salvador  82.9 km 
 EQ.161.00 Sanriku-Minami 71.2 km 
 
The three points referring to the greatest distances are: 
 
 EQ.053.00 Cerda  MW = 5.2 10.0 km (depth) 
 EQ.105.00 Kherrata  MW = 5.9 09.6 km (depth) 
 EQ.118.02 Lisbon 1755 MW = 8.5           unknown (depth) 
 
Interestingly all three of them have an offshore epicenter, and the first two are rather shallow. In 
general the plots seem to overlap well and the scatter is similarly wide (cf. 3.3.1.). 
 
2.6. Drawbacks 

 
Naturally the creation of an entire database brings along a multitude of difficulties. Simply by 
imposing a highly standardized system on the very variable natural phenomenon of landsliding 
many uncertainties arise. At some point, hence, one has to remain in accord with the fact that, 
first, even the most detailed descriptive system (such as a database) or the best elaborated 
numerical model will never show the true characteristics of a natural phenomenon, and second, 
that assumptions and imprecisions cannot be avoided. 
Many of those uncertainties, difficulties, assumptions and imprecisions are already discussed 
throughout the report in the respective sections. Examples might be for instance the mass 
movement classification and nomenclature or the quality and completeness of a documented 
case. At this, it is very obvious that judgments might be subjective to some extent since it is 
impossible to visit every landslide site and it is thus necessary to rely on information offered by 
available literature. 
Another issue is the manual measurements of dimensions on maps and cross sections. Clearly, 
every map and cross section contains already an error because it will never be possible for 
authors to produce images of a concerned site that are representative for 100%. By taking 
manual measures from printouts another bias will be added and – as a result – it should be kept 
in mind that numerical models created after statistical analysis of dimensions remain in any case 
conceptual. 
 

 
Fig. 2.31. Shape error. 
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Also, procedure standardization may lead to the creation of bias. An example might be the 
evaluation of geometric parameters (cf. Fig. 3.3). By definition the length Lh is taken along the 
main sliding direction and positions 0-E then are obtained by dividing Lh by four. If the landslide 
has a very elliptical shape the concerned area Ah is very easy to approximate; whereas, if the 
landslide has an unusual shape – such as in Fig. 2.31 – the area approximation will be rather 
incorrect.  
A general drawback might be the selection of literature. During the “explosion-like” literature 
research focus was mainly on English publications, what – of course – does not imply that 
literature in other languages may have less quality. Russian publications on landslides, for 
instance, have very good quality. However, English publications are by far more accessible and 
(also due to my own laziness) much of non-English literature was left aside. One also could 
question the choice of publication sources. It is very much legitimate to criticize the 
completeness of the literature collection and, linked to that, worldwide case distribution. The 
drawback here is simply that not every high standard journal is accessible – for instance one 
needs to purchase articles of the Canadian Geotechnical Journal whose case studies are usually 
of excellent quality and completeness.  
Certainly many more points of criticism can be found by delving into the database; thus no 
claims for perfection are raised and comments, discussions as well as suggestions for 
improvements will be always welcome. 
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3.1. Introduction 

 
The aim of this chapter is to describe the statistical analyses that were carried out using data 
from the database (cf. 2.). As the chapter will show, one particular approach of evaluation was 
followed which of course does not claim to be the only proper procedure. Doubtlessly, many 
more aspects could be investigated and for this purpose the previous chapter describes the 
database in much more detail so that in future one can make use of it. 
In this chapter the emphasis is, however, on the adopted approach of evaluation, whereas the 
description of the database – although present – takes up less space. This is due to several 
circumstances and considerations: 
First, the statistical analysis was published as such in the form of a scientific article in the Italian 
Journal of Engineering Geology and the Environment and two posters at the General Assembly of 
the European Geoscience Union (DOMEJ et al., 2017; DOMEJ et al., 2018):  
 

DOMEJ G., BOURDEAU C., LENTI L., MARTINO S. & PLUTA K. 
Mean landslide geometries inferred from a global database of 

earthquake- and non-earthquake-triggered landslides. 
Italian Journal of Engineering Geology and the Environment, vol. 17/2, p. 87-107 

DOI: 10.4408/IJEGE.2017-02.O-05 
 
To allow for an easy and coherent reading flow in logic order it seems more suitable not to 
disassemble the article structure. Thus, the chapter is a one-to-one copy of the article starting 
from the fourth paragraph of the introduction (cf. 3.1.1.). The remaining parts of the article such 
as the abstract, the Italian extended abstract and the first three paragraphs of the introduction 
are to be found in a modified form in the first chapter of this thesis (cf. 1.). 
Second, this chapter is also supposed to serve as a stand-alone short version of the previous 
chapter. It should explain to the reader only relevant contents and properties of the database 
without getting lost in unnecessary details that do not concern the applied statistical 
procedures.  
However, by keeping a one-to-one copy, some overlaps cannot be avoided. General aspects of 
the database (cf. 2.3., 2.4., 2.5.2.) reappear in subsection 3.2. and the outcome of the data 
comparison to KEEFER’s (1984; cf. 2.5.3.) magnitude-distance-relations of earthquakes and 
landslides are discussed in subsection 3.3.1. as first statistical analysis. To economize space and 
with the aim of a better reading flow of this chapter Fig. 3.1, Fig. 3.3 and Fig. 3.4 were moved 
from the previous to this chapter; in contrast to other chapters of this thesis there are no cross 
references in the text body. 
 
3.1.1. Introductory Part of the Article 
 
To establish correlations between mass movement features and the characteristics of their 
causes scientists established databases. The first and most cited of its kind is a set of 40 
seismically triggered landslides presented by KEEFER in 1984. He empirically related 
magnitudes of earthquakes to the maximum distance at which the respective mass movements 
occurred; similarly, he also correlated area affected by mass movement events to the respective 
magnitude of the earthquake. In 1999 RODRÍGUEZ et al. published an extension of this work. 
Other studies associate landslide volumes with moment magnitudes MW and seismic moments 
M0 (KEEFER, 1994; MARTINO et al., 2014) or with the affected area (GUZZETTI et al., 2009). In 
contrast to global catalogs, event-based databases often try to relate landslide volumes to a 
variety of parameters. For instance, XU et al. (2016) estimate the total volume of all landslides 
triggered by the Sichuan Earthquake by evaluating six distinct landslide parameters and the 
peak ground acceleration. 
Sharing the aim of data creation for comparative statistical analyses and numerical modeling of 
seismically triggered landslides to shed light on the causes of such events a new global landslide 
database was built. This chapter presents in the first part the database itself; properties, the way 
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of construction, advantages and some drawbacks will be discussed. The second part shows the 
statistical analyses that were carried out using the database and it presents nine mean landslide 
geometries inferred from the database. 
These simplified landslide geometries will be useful for later studies to predict slope stability 
considering mechanical and geometrical properties as well as the properties of the potential 
seismic event. The contributions of trapped seismic waves to the displacement of the landslide 
mass can then be numerically modeled by different approaches in 2D and 3D. 
 
3.2. Construction and Properties of the Database 

 
Usually two types of databases for mass movements are to be distinguished – event-based and 
chronological databases. The first type ideally represents a complete inventory of mass 
movements after a certain triggering event such as intense rainfall, severe storms (like 
hurricanes and typhoons) or earthquakes. The second type inventorizes mass movements 
characterized by more than one trigger chronologically according to their occurrences. For both 
types completeness is a crucial factor because statistical analyses of event-based databases in 
particular might lead to false conclusions when dealing with incomplete or inaccurately assessed 
datasets (MALAMUD et al., 2004). 
The database presented in this chapter is of chronological nature and also does not claim 
completeness. It contains a set of globally distributed mass movements with different triggers of 
which a third are earthquakes. It should be noted that the term “landslide” is wide-spread 
throughout literature designing rock falls, rock avalanches, debris flows, toppling and different 
types of slope failure. The more general term “mass movement” also includes soil settlements 
and liquefaction. This database focuses on proper “sliding” mechanisms according to the 
classification of VARNES (1978). Unfortunately, because of different scientific viewpoints and 
gradual transitions between mass movement types (cf. Fig. 3.1), landslide classification is not 
always trivial and hence might be misleading as it will be discussed in the following. 
 

 
Fig. 3.1. Mass movement triangle (after CARSON & KIRKBY, 1972). The focus of the here 

presented database is on the shaded area referring to proper sliding mechanisms. 

 
For the construction of the database, documented landslide cases in the available literature were 
evaluated as suitable or the opposite when coming across them in no particular order and 
without pre-selection. At the present stage the database contains 277 landslides in 40 countries 
(cf. A.3., Tab. 3.1) – a sufficient number for relevant statistical analyses. 
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country each 
Italy 050 
Canada 029 
Belgium 027 
China, USA 022 
Chile, Spain 010 
Switzerland 008 
France, Kyrgyzstan 007 
Algeria, Japan, New Zealand, Tajikistan, Turkey, Ukraine 006 
Austria, Norway, Taiwan 005 
Czech Republic, Slovakia 004 
Iran, Peru 003 
Australia, Croatia, Poland 002 
Armenia, Barbados, Bhutan, Cape Verde, Ecuador, 
El Salvador, Germany, Liechtenstein, Mongolia, 
Pakistan, Panama, Russia, Slovenia, United Kingdom 

001 

total 277 
Tab. 3.1. Landslide distribution per modern-day country displaying also 

the availability of landslide data in different regions. 

 
The main concept of data collection followed the suggestions by the INTERNATIONAL 
GEOTECHNICAL SOCIETIES’ UNESCO WORKING PARTY ON WORLD LANDSLIDE INVENTORY 
(1990, 1991, 1993, 1994; cited as UNESCO) and the INTERNATIONAL UNION OF GEOLOGICAL 
SCIENCES WORKING GROUP ON LANDSLIDES (1995; cited as UNESCO) that indicate how to 
establish landslide reports and summaries and how the activity, the rate of movement and the 
causes of a landslides should be described. Based on these suggestions a “survey chart” with 
many more landslide characteristics was developed. As example, the survey chart of the Diezma 
Landslide is presented in the appendix (cf. A.1.). 
The first section on the front page is dedicated to the identification of a landslide listing basic 
information such as name, its number in the database, precise location and sliding direction, 
date, fatalities and damage if reported and the relation to a seismic trigger. In contrast to the 
detailed activity phases described by the INTERNATIONAL GEOTECHNICAL SOCIETIES’ UNESCO 
WORKING PARTY ON WORLD LANDSLIDE INVENTORY (1993; cited as UNESCO), the database 
presented in this chapter distinguishes only between active/slow, active/fast (both together 153 
cases; 55%) and inactive (124 cases; 45%) landslides. The subsection of involved material is 
based on the classification of VARNES (1978) appointing rock, soil and/or debris as the three 
materials of which a landslide mass may be composed. Locations are given with respect to 
geographical references and as coordinate points. 220 landslides (79%) are located in currently 
seismic areas across the globe, 50 landslides (18%) are to be found in rather less or non-seismic 
areas and 7 landslides (8%) are situated in areas that used to be seismically active but came to 
tectonic stability. 
Second, the section of landslide imagery gives information on how well literature documents a 
landslide visually – i.e. if publications show a map, a longitudinal cross section (LCS), a three-
dimensional model and/or photographs. An interesting finding becomes apparent through 
graphical representation of the availability of landslide imagery (cf. Fig. 3.2). By far not for all 
landslides literature offers maps and LCS even though both of them are of great importance for 
the characterization of a landslide. For instance, only 216 cases (80%) have a map, for 202 cases 
(71%) a LCS is available and only 168 landslides (61%) are described by both a map and a LCS. 
Considering that the selection of cases and respective literature did not follow any preference, 
this leaves the general question about the average level of completeness of publications. 
The third section refers to landslide causes and indicates the triggers of a landslide or their 
combinations. Of the 277 landslides 99 (36%) have or may have been seismically induced; the 
uncertainty is explained by the fact that – compared to recent seismically induced landslides 
with a well-documented time-history – for certain paleo-landslides a seismic trigger can only be 
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assumed but not confirmed. Of those 99 landslides 74 (75%) definitely have a seismic cause. 85 
landslides (86%) are co-seismic, 11 landslides (11%) are post-seismic, and in the remaining 3 
cases (3%) the main rupture process occurs over a longer period of time. It should be mentioned 
that the database considers earthquakes, blasts (5 cases) and repeated strong volcanic activity 
(2 cases) as seismic activity.  
 

 
Fig. 3.2. Availability of landslide imagery in literature with respective numbers of cases 

(from left to right: map only, LCS only, map and LCS, neither map nor LCS, 3D representation, photography). 

 
Finally, the fourth section lists all publications from which information was retrieved and 
introduced to the survey chart respecting the suggestion of the INTERNATIONAL 
GEOTECHNICAL SOCIETIES’ UNESCO WORKING PARTY ON WORLD LANDSLIDE INVENTORY 
(1990; cited as UNESCO). 
The back side of the survey chart is dedicated to the geometry of a particular landslide. Based on 
the suggested nomenclature for landslides proposed by the COMMISSION ON LANDSLIDES OF 
THE INTERNATIONAL ASSOCIATION OF ENGINEERING GEOLOGY (1990; cited as IAEG) a much 
more detailed set of parameters was elaborated which reports ideally – if literature is exhaustive 
enough – 66 single parameters and descriptive notes (cf. Fig. 3.3, Tab. 3.2) all referring to the 
rupture mass of a landslide, i.e. either the landslide mass confined by the rupture surface at the 
instance of the major sliding event, or the total moving mass in case of active landslides. 
 

parameter equation / note description 
principal geometry rot, trans or rotrotrans principal geometry type 
Vlit  volume as by literature 
Vequ = (1/6)·π·L·D·W volumes as by equation 
A  area 
Ah = A·cos(αequ) area projected to horizontal 
L = Lh/cos(αequ) length 
Lh  length projected to horizontal 
l1 =  l2 =  l3 =  l4 = L/4 length parts 
l1h =  l2h =  l3h =  l4h = Lh/4 length parts projected to horizontal 
Hmax  height between point 0 and deepest point 
H0E  height between point 0 and point E 
W  maximum width 
w0  width at point 0 
w1  width at point 1 
w2  width at point 2 
w3  width at point 3 
wE  width at point E 
wav = (w0+w1+w2+w3+wE)/5 average width 
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D  maximum depth 
d0  depth at point 0 (if existing) 
d1  depth at point 1 
d2  depth at point 2 
d3  depth at point 3 
dE always 0 depth at point E 
dav = (d0+d1+d2+d3+dE)/5 average depth 
d0-ab always 0 depth part at point 0 (above line) 
d1-ab  depth part at point 1 (above line) 
d2-ab  depth part at point 2 (above line) 
d3-ab  depth part at point 3 (above line) 
dE-ab always 0 depth part at point E (above line) 
d0-bel = d0-d0-ab depth part at point 0 (below line, if existing) 
d1-bel = d1-d1-ab depth part at point 1 (below line) 
d2-bel = d2-d2-ab depth part at point 2 (below line) 
d3-bel = d3-d3-ab depth part at point 3 (below line) 
dE-bel = dE-dE-ab = always 0 depth part at point E (below line) 
δ0  rupture surface inclination at point 0 
δ1  rupture surface inclination at point 1 
δ2  rupture surface inclination at point 2 
δ3  rupture surface inclination at point 3 
δE  rupture surface inclination at point E 
αlit (literature)  mean slope angle as by literature 
αequ (equation) = tan-1(H0E/Lh) mean slope angle as by equation 
D/L (ratio) = D/L ratio “maximum depth / length” 
wav/Lh (ratio) = wav/Lh ratio “average width / projected length” 
Hmax/Lh (ratio) = Hmax/Lh ratio “maximum height / projected length” 
d1t, d2t, d3t  maximum depths of TCS I, II and III 
γ1L, γ2L, γ3L  left flank angles of TCS I, II and III 
γ1R, γ2R, γ3R  right flank angles of TCS I, II and III 
rough width shape to tick either V, (, [ or U rough width shapes of TCS I, II and III 

Tab. 3.2. Full list of landslide geometry parameters. It should be noted that the survey chart cell of the principal 
geometry does not contain values but one out of three options to choose; for the rough width shapes one of four 

survey chart cells can be chosen. By definition, the content of the survey chart cells dE, d0-ab, dE-ab, dE-bel are always 0. 
The “0” in the equation column and at indices of parameters is not to be confounded; one is a defined value, the other 

refers to the first of the five main geometry positions (Fig. 3.3). 

 
The geometry section of the survey chart is separated into seven sections describing principal 
geometry, volume, area, LCS, map, transversal cross sections I-III (TCS I-III) and ratios. It also 
displays a small figure of the LCS according to the inserted respective values that served as a 
verification tool during the process of data assessment. 
Distinction is made between rotational, translational and roto-translational landslides. This 
distinction becomes useful when calculating volumes of landslides. The volume of a landslide is 
an important parameter controlling its impact but it is also the most difficult to assess. In 
contrast to many landslide databases that report deposit volumes, for the database presented in 
this chapter only rupture volumes are of interest. According to CRUDEN & VARNES (1996) they 
can be approximated by calculating the volume of half an ellipsoid. 
 

𝑉 = (
1

6
) ⋅ 𝜋 ⋅ 𝐿 ⋅ 𝐷 ⋅ 𝑊 

 
However, this equation fits best for perfectly rotational landslides with very flat original surface 
topographies. The more the rupture geometry deviates from this perfect half ellipsoid the more 
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the equation overestimates the volume and for translational and roto-translational landslides it 
might not deliver trustable results. 
 

 
Fig. 3.3. Illustration of landslide geometry parameters in a plane view (map) and 2D cross sections (LCS & TCS). 

Abbreviations are described in Tab. 3.2. In contrast to the definition of “left and right” by the Commission on 
Landslides of the INTERNATIONAL ASSOCIATION OF ENGINEERING GEOLOGY (1990; cited as IAEG), the two sides 

are here defined by looking upwards to the landslide crest (i.e. from point E to point 0). The straight connection of the 
first main geometry point (0) and the last one (E) is simply entitled the “line”; with respect to the horizontal it defines 
the mean slope angle α. The two parameters d0 and d0-bel are noted in brackets because they may or may not exist at a 

specific landslide since not every landslide mass detaches with a trench below point 0. 

 
The volume section offers two cells: one cites the volume reported in literature, the other 
calculates the volume according to the equation proposed by CRUDEN & VARNES (1996). 
Similarly, the section storing the area A of a landslide refers to the landslide area measured on 
the original topography before the sliding event. The horizontal projection Ah differs from A by 
the factor of the cosine of the mean slope angle α. 
The section of the LCS is the most extensive and meaningful reporting lengths, depths, heights 
and angles along the average sliding direction with respect to the five main reference points 0, 1, 
2, 3 and E (for “end”). Angles δ are measured between a tangent plane to the sliding surface and 
the horizontal in the direction of sliding; negative angles are possible when the sliding surface 
curves up (cf. Fig. 3.3). 
The map section displays values measured from the horizontal projection of a landslide and the 
section of TCS I-III gives information on the lateral dimensions of a landslide. Ideally there would 
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be three clear TCS for every landslide indicating depths (d1t, d2t and d3t) as well as the respective 
flank angles (γ1L, γ1R, γ2L, γ2R, γ3L and γ3R) to design a 3D enveloping confinement. Unfortunately 
TCS appear very seldom in literature and lateral shapes can only be assumed. For such 
assumptions the TCS section offers four cells where one of the following four shapes per TSC 
position can be chosen: “V” for V-shape, “(“ for a flat concave shape, “[“ for a drawer-like shape 
and “U” for a U-shape. Despite its great importance for assessing the behavior of a landslide mass 
under seismic shaking in 3D through numerical modeling this section is of less use since only 2 
of 277 cases allow for complete TCS characterization. 
The three proportions (D/L, wav/Lh and Hmax/Lh) shown in the ratio sections serve for quick 
comparison of landslides. As analyses will show later, it seems though more suitable to use the 
rather uniform ratios dav/L, wav/Lh, dav/wav and H0E/Lh as well as curvature values of landslides 
to compare their shapes. 
To enable efficient and accurate data analyses, the complete content of the survey charts is 
stored in a Microsoft Access database. It allows for fast filtering and sorting to create data for 
statistical analyses. 
 
3.3. Statistical Exploration of the Database 

 
3.3.1. Magnitude-Distance-Relations comparing to KEEFER’s Curve 
 
Based on a set of 40 seismically induced landslides KEEFER (1984) related magnitudes of 
earthquakes to the maximum distances at which mass movements occurred. Distances relations 
are shown with respect to the epicenter and to the fault rupture zone locations separately. 
KEEFER (1984) distinguished disrupted falls and slides, coherent slides and lateral spreads and 
flows. To compare the data presented in this chapter to the proposed curves by KEEFER (1984) 
only the one of coherent slides was chosen as reference since it fits best the definition of 
landslides included in the here presented database. 
 

 
Fig. 3.4. Magnitude-distance relations of the 72 seismically induced landslides in the database caused by a specific 

earthquake. The curve represents the maximum distances from an epicenter at which coherent slides are to be 
expected according to KEEFER (1984) (dots for MW, triangles for MS, squares for Mukn). Circled dots indicate the 

landslides of Laalam (MW = 5.2), Cerda (MW = 5.9) and Güevéjar (MW = 8.5). 

 
In total the database contains 99 seismically induced landslides of which 72 are proven to have 
an earthquake as trigger. For all of them either moment magnitudes (MW) or surface wave 
magnitudes (MS) were retrieved from the bulletin of the INTERNATIONAL SEISMOLOGICAL 
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CENTER (2016; cited as ISC) and the EUROPEAN ARCHIVE OF HISTORICAL EARTHQUAKE DATA 
(2016; cited as AHEAD). Indeed, it is not ideal to represent two types of magnitudes in the same 
graph, but since MS saturates at higher values, big earthquakes are rather to be covered by using 
MW. Also KEEFER (1984) used both magnitude types in his graphs. As a result, 62 landslides 
were triggered by an earthquake reported in MW, 8 landslides were triggered by an earthquake 
reported in MS and the remaining 2 landslides were triggered by an earthquake with unknown 
magnitude type (Mukn; cf. Fig. 3.4). 
Because there is no available information about the exact fault rupture location or the 
hypocenter for the 22 historical earthquakes among the set of 72, comparative magnitude-
distance relations are limited to epicenter distances. Values refer to the length of the connecting 
line between the official epicenter and the landslide across the Earth’s surface with respect to 
the World Geodetic System 1984 (WGS 84). It should be noted that epicenter-landslide distances 
might vary significantly from hypocenter-distances especially if the hypocenter is deep. 
However, only 2 of the 72 concerned earthquakes appear to be deep (El Salvador Earthquake on 
the 13th of January 2001, MW = 7.6, 82.9 km; Sanriku-Minami Earthquake on the 26th of May 
2003, MW = 7.0, 71.2 km) whereas all other cases do not exceed the Mohorovičić Discontinuity. 
In agreement to results of DELGADO et al. (2011), the scatter is big and some points reach the 
reference curve or even exceed it. Reasons might be topographic and/or lithological site effects, 
precipitation events and soil weakening earthquake swarms. Interestingly, two of the three 
points that lie highly above the curve are likewise described as outliers by DELGADO et al. 
(2011; cf. Tab. 3.3) and all three have an offshore epicenter. 
 

date earthquake magnitude landslide distance 
21st of March 2006 Kherrata MW = 5.2 Laalam 019 km 
6th of September 2002 Cerda (or Palermo) MW = 5.9 Cerda 050 km 
1st of November 1755 Lisbon 1755 MW = 8.5 Güevéjar I 578 km 

Tab. 3.3. The three seismically triggered landslides significantly exceeding the reference curve (Fig. 3.4). 

 
3.3.2. Recurrence, Completeness and Distributions of Assessed Data 
 
After completion of the data assessment raises the question about the data quality. Of particular 
interest are the recurrence of distinct parameters, the completeness of survey charts per dataset 
and the way values of parameters are distributed. The following sections describe each of the 
three qualitative and quantitative features separately. 
 
Recurrence of Parameters  
 
The recurrence of a distinct parameter refers to the question of how many times it is reported 
when comparing all 277 survey charts. For instance, in 165 cases literature reports the landslide 
volume, and hence the respective recurrence value amounts to 60%. 
The second page of the survey chart contains in total 66 parameters. However, three of them – 
dE, d0-ab and dE-ab – are always 0 by definition (cf. Tab. 3.2). Therefore the evaluation of parameter 
recurrence was carried out only for the other 63 parameters (cf. Tab. 3.4). 
Among them there are direct and indirect – or calculated – parameters. The first type is reported 
directly from literature or measured from maps and cross sections, whereas the indirect 
parameters are those calculated by equations (cf. Tab. 3.2). Parameters of the second type thus 
create new values employing those of direct parameters under the condition that all necessary 
factors of the equation are available. 
It is important to mention that: for the evaluation of the recurrence of parameters direct and 
indirect parameters were treated in the same way and no weighting was performed although 
one might argue that some parameters may be more suitable to describe landslides than others. 
A special parameter is dE-bel. It represents the only overlap between the group of indirect 
parameters and those that are always 0 since it is the difference between dE and dE-ab, both of 
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which are 0 by definition. To keep the number of exceptions low, dE-bel was nevertheless included 
in the set of 63 parameters. Its recurrence, though, is always 100%. 
 

type R < 5% 30 ≤ R < 70% R ≥ 70% 

direct 
parameters 

d1t, d2t, d3t, 
γ1L, γ2L, γ3L, 
γ1R, γ2R, γ3R, 
rough width shapes (12) 

Vlit, 
A, 
αlit 
 

principal geometry (1), 
Hmax, H0E, 
Lh, 
W, w0, w1, w2, w3, wE, 
D, d0, d1, d2, d3, 
d1-ab, d2-ab, d3-ab, 
δ0, δ1, δ2, δ3, δE 

indirect 
parameters 

 Ah 

Vequ, 
αequ, 
D/L, wav/Lh, Hmax/Lh, 
L, l1-4, lh1-h4, 
wav, 
dav, 
d0-bel, d1-bel, d2-bel, d3-bel, dE-bel 

Tab. 3.4. Recurrence (R) of the landslide parameters of page 2 of the survey chart 
(excluding dE, d0-ab and dE-ab which are always 0 by definition). 

 
Broadly speaking, it appears that direct and indirect parameters related to the delineation of 
maps and LCS reach higher percentages. The fact that they are reported more frequently 
throughout literature reflects also the way of investigation and analysis of landslides. For many 
engineering-geological purposes a map and a LCS are sufficient since 2D approaches remain the 
most widespread in slope stability assessment nowadays. 
In contrast, TCS parameters are very rare and this evidence cannot be explained by impossible 
calculation because all TCS parameters are direct. Unfortunately, precisely those TCS features 
would be necessary for an exact definition of the 3D lateral confinement of a landslide mass and 
accurate stability analyses. 
The indirect parameter with most complexly interlinked factors is the calculated volume Vequ (cf. 
3.2.) including D, W, Lh and H0E. Due to the requirement that all factors must be available to 
calculate such an indirect parameter, one might hence expect the respective recurrence to be 
very low. Strikingly, its recurrence amounts to 74% which is very satisfactory. The recurrence of 
Vlit, reaches only 60%. When comparing volumes at cases were both Vequ and Vlit exist, it appears 
that the ratios Vlit/Vequ oscillate well around 1 and hence no particular difference in order of 
magnitude can be detected between the two volume types. 
Therefore, and because of its higher availability, Vequ is later used as a classification criterion for 
landslide magnitudes. 
 
Completeness of Survey Charts 
 
The completeness of a survey chart indicates the amount of available parameters. Likewise to 
the evaluation of the parameter recurrence, the reference number of parameters is 63 and an 
ideal case (where all parameters are available) would have a completeness of 100%. 
Throughout the statistical analyses three datasets are defined of which two are in fact sub-sets: 
 

 set “full”  including all 277 landslides in the database 
 set “SR”  including all 220 landslides in seismic regions 
 set “EQt”  including all 099 landslides with a seismic trigger 

 
The set “full” incorporates both the set “SR” and the set “EQt”, whereas the set “EQt” is only a 
part of the set “SR”. Especially for numerical modeling of landslides undergoing seismic shaking, 
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this separation is of particular importance allowing for comparison of the behavior of landslides 
in general, those being located in seismic regions and those having indeed a seismic trigger. 
Figure 3.5 shows the completeness of survey charts for the three sets. It can be seen that within 
each set almost two thirds of the cases are complete to an extent of 50% to 70%. Also this result 
is very satisfactory since it testifies a high availability of parameters which in succession is 
required for the evaluation of the distributions of values of distinct parameters. 
 

 
Fig. 3.5. Histograms showing the completeness (C) of the survey charts 

(set “full” in black, set “SR” in light gray, set “EQt” in dark gray). 

 
Combining the outcome of the evaluation of the parameter recurrence with the one of the survey 
chart completeness, it appears that a high completeness must be based on map- and LCS-related 
parameters. This reflects again the fact that obviously landslide studies are commonly limited to 
two dimensions, while full 3D representations which would allow for detailed 3D modeling are 
rather seldom. 
 
Distributions of Parameters 
 
Another major feature of parameters is their statistical behavior in terms of value distribution. 
Unlike mentioned in the above sections of recurrence and completeness of data, distributions 
can only be evaluated for 49 of the geometrical parameters appearing on the second page of the 
survey charts due to the fact that some parameters do not register values. The rubric of principal 
geometry stores a word and the rubric on rough width shapes of the TCS contain a checkbox. 
Moreover, the parameters always being 0 (dE, d0-ab, dE-ab as well as the above mentioned special 
case dE-bel) are not included since their distributions would show only a zero line. For 
completeness, it is worth noting that the categories of the principal geometries are almost 
uniformly distributed within the database (32% rotational, 31% translational, 37% roto-
translational). 
Values for each individual parameter were grouped into histograms to fit different distribution 
curves on them in a second step. For all parameters histograms with 10, 30, 50 and 100 bins 
were computed, of which finally only the histograms with 30 bins were taken into consideration. 
It turned out that grouping to 10 bins results in a too coarse representation hindering accurate 
curve fitting, whereas 50 or 100 bins create a too detailed image making curve fitting difficult as 
well. By the means of the Curve Fitting Tool in MATLAB a normal, a power law and an 
exponential distribution were fitted to each set of values per parameter (cf. equations below). 
Best fits were chosen considering the coefficient of determination (R²), the root mean square 
error (RMSE) and the best approximations of the coefficients a, b and c with 95% confidence 
bonds. 
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 normal distribution:  𝑓(𝑥) = 𝑎 ⋅ 𝑒
−(

𝑥−𝑏

𝑐
)
2

 
 power law distribution: 𝑓(𝑥) = 𝑎 ⋅ 𝑥𝑏 
 exponential distribution: 𝑓(𝑥) = 𝑎 ⋅ 𝑒𝑏⋅𝑥 

 
Applying this procedure to all 49 parameters for each of the three datasets (“full”, “SR” and 
“EQt”), two types of statistical distributions emerge as suitable to characterize the histograms. 
All values of dimension-related parameters manifest a clear decreasing exponential behavior, i.e. 
the histograms of 1D, 2D or 3D parameters show a progressively smaller number of occurrences 
with increasing parameter magnitude. This behavior is very common phenomenon in nature and 
comparable for example to the Gutenberg-Richter-Law relating the total number of earthquakes 
having a magnitude larger than a given magnitude in a given region and time period 
(GUTENBERG & RICHTER, 1956). The “exponential family” hence includes lengths, widths, 
depths (excluding the so-called “depth parts”), heights, surfaces and volumes (cf. Fig. 3.6c). 
 

 
Fig. 3.6a-c. Examples of statistical distribution types. Histograms of angles as well as ratios were best fitted by normal 
distributions and are here exemplarily represented in a) by αequ of the set “full” and in b) by Hmax/Lh of the set “SR”. 

Histograms of 1D, 2D and 3D parameters follow exponential distributions and are here exemplarily represented in c) 
by H0E of the set “EQt”. 

 
By contrast, to all histograms of shape-related parameters normal distributions curves fit best; 
the angles along the rupture surface, the mean slope angle and the ratios form the “normal 
family” (cf. Fig. 3.6a-b). Curiously, also the “depth parts” belong to this family although they are 
1D parameters. One possible explanation might be that the “depth parts" are by definition only 
parts of the entire depths at the five main positions of a landslide (cf. Fig. 3.3). They are created 
by intersecting a depth with the line of the mean slope angle, and therefore it is not 
unreasonable to believe that they could bear traits of proportions and hence rather belong to the 
“normal family”. 
In the course of statistical analyses the question arose, if large landslides affect the division of 
parameters into the two families. For instance, it was unclear if exceptional high values of 
volume elongate the tail of a decreasing exponential distribution curve and if the distribution is 
only therefore classified as such. Thus a temporary reduction of the biggest landslides was 
performed, removing all cases with Vlit > 109 m³. Thereupon the procedure described above was 
carried out for the parameters L, A and Vlit of the dataset “full” to have a comparative histogram 
for a 1D, 2D and 3D parameter respectively. However, it turned out that the presence or absence 
of the biggest landslides in the histograms does not affect the results obtained by the Curve 
Fitting Tool in MATLAB and the distinction of families remains the same. 
 
3.3.3. Mean Geometries of Landslides 
 
Besides the consideration that dimension and shape of landslides might behave differently with 
increasing event size, there are also grounds for assumption that a landslide prototype could 
possibly be deduced from the database by averaging parameters and creating thereupon a mean 
geometry in the form of a LCS. Indeed, this is a promising approach for comparative studies 
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because mean LCS can hence be derived not only for landslides in general (set “full”), for 
landslides in seismic regions (set “SR”) or for seismically induced landslides (set “EQt”), but also 
for any other sub-set according to the desired filtering. 
 
Averaging of Parameters 
 
Initially averaging of parameters was carried out for the three datasets separately, i.e. for each of 
the 49 parameters (cf. 3.3.2. - Distributions of Parameters) the mean value was calculated 
regardless of how many times they were reported or calculated as indirect parameters (cf. 3.3.2. 
- Recurrence of Parameters). It is important to mention that a mean value might thus be derived 
from a multitude of values or from only a few entries. Furthermore, mean values of different 
parameters are very likely to be derived from different pools of landslides since the 
completeness of the individual survey charts never reaches 100% (cf. 3.3.2. - Completeness of 
Survey Charts). 
Unfortunately, this simple way of averaging did not show satisfactory results; most likely the 
landslide dimensions are by far too diverging to be represented by one single value per 
parameter. Proof for this assumption was provided by a simple multi-step test:  
 

1) For all direct and indirect parameters mean values were calculated in Microsoft Access. 
2) All “direct” mean values were inserted to a blank survey chart as if they represented 

values of a real case. 
3) The survey chart automatically calculated from those “direct” mean values its own 

version of “indirect” mean values which at the end could be compared to the “indirect” 
mean values calculated initially by the Access database (cf. Fig. 3.7). 

 

 
Fig. 3.7. Illustration of the test procedure to compare mean values of indirect parameters 

calculated by the database and mean values of indirect parameters calculated by the survey chart. 

 
The differences between the two types of “indirect” mean values were more than obvious. 
Especially the mean values of Ah and Vequ appeared to be tremendously variable. 
As simple averaging per dataset was apparently unsuitable for the definition of mean 
geometries, a more explicit distinction of the landslide dimension was necessary. Consequently 
landslides were grouped by order of magnitude (in decimal power) of their calculated volume 
Vequ (cf. Fig. 3.8a-b). This classification resulted in nine groups which were later united to three 
groups per dataset (103 < Vequ ≤ 106, 106 < Vequ ≤ 109 and 109 < Vequ ≤ 1012 in m³) preserving the 
overall character of the statistical distribution. 
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Fig. 3.8a-b. Number of landslides (in percent of the referring set) by order of magnitude of their calculated 

volume (V designing Vequ). The arrangement to 3 groups shown in b) preserves the statistical 
character of the distribution appearing in a). 

 
Attention has to be paid to the fact that due to the grouping process only landslides with existent 
records of Vequ could be taken into account, and therefore only those could contribute their 
parameters for the later averaging procedure. 
The fact that Vequ became the parameter according to which groups were formed requests more 
precision. Although often difficult to measure, the volume of a landslide is its most significant 
parameter of characterization. It directly relates to the event magnitude and subsequently to the 
consequences it may cause (MALAMUD et al., 2004). Thus, the grouping criterion was selected to 
be volume-based. Since the database theoretically reports Vlit and Vequ for every landslide – two 
occasionally quite different values – one of them had to be chosen. Among all 277 landslides in 
the database 165 report a Vlit and even though some of the landslides date back to times where 
digital elevation models (DEM) were not as accurate as today no significant over- or under-
estimations of their volumes were found. On the contrary, 205 cases dispose of a Vequ. A strong 
argument against the choice of Vequ is the way of its calculation (cf. 3.2.); it is suitable for 
rotational landslides (CRUDEN & VARNES, 1996) while applying it to translational landslides it 
causes a volume loss and thus an underestimation of the actual volume. However, after 
comparing Vlit and Vequ at cases where both were available, differences appeared to be negligible 
and Vequ was adopted as the parameter according to which grouping should be performed. 
With the new approach of grouping and averaging, mean values along with their respective 
standard deviations were obtained for the 49 concerned parameters and for the three datasets. 
This time, the results appear to be very satisfying as shown by the before described test 
procedure (cf. Fig. 3.7). “Indirect” mean values calculated by the survey charts came extremely 
close to the ones calculated by the Access database. 
Representative for all 49 parameters, Fig. 3.9a-e shows the mean values for four 1D parameters 
(L, H0E, wav, dav), the 2D parameter A, the 3D parameter Vequ as well as three shape-related 
parameters (αequ, δ0, δE) and four newly defined ratios (dav/L, dav/wav, wav/Lh, H0E/Lh). Also a 
value for the curvature was created, which is by definition δ0-δE, and whose mean values are 
represented likewise. 
When comparing the behavior of these mean values with increasing magnitude group, one 
discovers that the mean values of all dimension-related parameters increase as it could be 
expected for progressively bigger landslides. From 1D to 3D parameters the increase itself 
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becomes more rapid and the standard deviation gaps become relatively larger. Surprisingly 
though, the mean values of all shape-related parameters are remarkably constant throughout 
the different orders of magnitude. 
 

 
 

                   
Fig. 3.9a-e. Development of mean values with increasing order of magnitude for the set “SR”. 

Part a) shows the 1D parameters L, H0E, wav, dav; part b) shows the 2D parameter A and the 3D parameter Vequ; part c) 
shows the shape-related parameters αequ, δ0, δE; part d) shows the four newly defined ratios dav/L, dav/wav, wav/Lh, 

H0E/Lh and part e) shows the curvature. 

 
The two findings apply without exception to all three datasets. Combining both of them, and at 
least on the basis of averaged landslides, one can conclude that with increasing magnitude of a 
landslide its dimension changes whereas its shape remains more or less the same. 
An issue that deserves critical consideration is the inclusion of different mass movement types in 
the database and the question if “hiding” mass movements other than proper landslides could 
affect the statistical analyses. Ideally and based on the classification of VARNES (1978), only 
landslides composed of soil, rock and/or debris are appropriate to be included in the database. 
Unfortunately it is not seldom that authors use terms describing mass movements in a very 
vague sense and cases that are described in one publication as a landslide might appear for 
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instance as an earth flow elsewhere. Gradual transitions between mass movement types support 
misleading nomenclature even more. 
This discrepancy appears 37 times within the database; 33 cases can also be seen as a deep-
seated gravitational slope deformation (DSGSD) and four cases might also be considered as 
earth flows. For each of them, literature indicated a clear surface of rupture separating the 
moving mass from the underlying bedding. – A fact, that favors – but does not justify – the 
interpretation as a landslide mass and hence the inclusion in the database. 
Compared to landslides, earth flows as well as DSGSD – though to a lesser extent – are clearly 
different especially in terms of shapes. Their presence in the database must therefore be 
regarded with caution and two tests were carried out to estimate their statistical influence. First, 
plotting Vequ over the sequential numbers attributed to the individual cases, it turns out at all 
three datasets that calculated volumes of the DSGSD and the earth flows are by far not the 
greatest; the respective data points mix well among the ones of landslides. Second, based on the 
full dataset only and without subdivision into groups of order of magnitude, a mean value study 
similar to the above described procedure was conducted. This allowed for comparison of mean 
values obtained by the filtering options listed in Tab. 3.5. For DSGSD alone higher mean values of 
L, H0E and thus of H0E/Lh stand out and also δ0 and the curvature are higher; the mean values for 
the earth flows depict lower mean values of δ0 and the curvature as well as a higher L but lower 
wav and thus a lower wav/Lh. Both findings are in good agreement with typical DSGSD and earth 
flow masses. Differences to a characteristic landslide mass are therefore obvious. 
 

filtering meaning cases 
LS landslides only 240 
LS & DSGSD landslides with DSGSD only 273 
LS & EF landslides with earth flows only 244 
LS & DSGSD & EF corresponding to the dataset “full” 277 
DSGSD DSGSD only 033 
EF earth flows only 004 

Tab. 3.5. Numbers of cases obtained by filtering and combination of different mass movement types. 

 
Nevertheless DSGSD and earth flows do not exceed landslides neither in terms of number nor of 
volume and it is unlikely that they influence the outcome of statistical analyses. Moreover, some 
of them might even be classified as landslide emphasizing this conclusion. In this case, “hiding” 
mass movements other than landslides are of lower importance to the overall outcome of 
analyzes. Though, the issue underlines the necessity of proper mass movement classification in 
literature in order to avoid misinterpretations. 
 
Mean Geometries 
 
The mean values per parameter can be used to draw averaged LCS. By combination of the three 
datasets and the three groups of orders of magnitude one obtains nine LCS which are called 
“mean geometries” for simplicity (cf. Fig. 3.10a-i). 
As predicted by the mean value study, it can be seen that the dimension changes with increasing 
order of magnitude, but the shapes of the mean geometries are very similar throughout all 
magnitude groups. Only a slight increase of convexity becomes apparent at higher orders of 
magnitudes, which is probably an effect related to emerging topography. Naturally topography is 
more relevant at landslides with a length of several kilometers than at those being only several 
meters long. With respect to dimensions, the three smallest mean geometries stand out 
inasmuch as the LCS of the set “SR” is about 50 m longer and the LCS of the set “EQt” about 30 m 
shorter in comparison to the one of the set “full”. This evidence might seem significant at the 
first sight, but becomes negligible when considering length differences of up to around 100 m at 
the mean geometries of the intermediate magnitude group and of several hundreds of meters at 
those of the biggest magnitude group. 
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Furthermore, the shape does not change for different datasets; i.e. the mean geometry of all 
landslides does not differ from neither the one of the landslides in seismic regions nor the one of 
the seismically induced landslides. 
 

 
Fig. 3.10a-i. Mean geometries of landslide masses confined by topographic surface and surface of rupture. The dotted 
line indicates the mean slope angle and corresponds to the “line” (Fig. 3.3). The first column with the cross sections a), 
b) and c) refers to the set “full”, the second column with the cross sections d), e) and f) refers to the set “SR” and the 
third column with the cross sections g), h) and i) refers to the set “EQt”. The uppermost row is based on the smallest 
volume group (103-106 m³), the middle row on the medium volume group (106-109 m³) and the lowest row on the 

biggest volume group (109-1012 m³). For completeness it should be mentioned that c) shows the only LCS without a 
trench (i.e. d0 and thus d0-bel are not 0; Fig. 3.3). 
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3.4. Conclusions 

 
A chronological database of landslides with various triggers was built. It contains 277 globally 
distributed cases of which one third has a seismic trigger. The term landslide refers to proper 
sliding mechanisms as defined by VARNES (1978). 
By means of survey charts every landslide was comprehensively assessed giving general 
information such as location, date, triggering factors, material, sliding mechanism, event 
chronology, consequences and related literature on the one hand, and on the other hand 
information with respect to the landslide mass. The survey chart assured the maintenance of 
predefined standards during the acquisition process and it kept the bias as low as possible. The 
thereon appearing geometrical parameters are a further and more detailed development of the 
parameter set proposed by the INTERNATIONAL GEOTECHNICAL SOCIETIES’ UNESCO 
WORKING PARTY ON WORLD LANDSLIDE INVENTORY (1990, 1991, 1993, 1994; cited as 
UNESCO) and the INTERNATIONAL UNION OF GEOLOGICAL SCIENCES WORKING GROUP ON 
LANDSLIDES (1995; cited as UNESCO). The entire content of all survey charts was introduced to 
a Microsoft Access database which now serves as a query tool to explore the data; it allows not 
only for data storing, but also for fast and efficient filtering, sorting and data preparation for 
statistical analyses of 2D and 3D landslide geometries. 
Several statistical analyses were carried out to test the database itself in terms of qualitative and 
quantitative features, and to evaluate the data it contains. According to the type of analysis, the 
dataset of interest might either be the totality of all landslides (set “full”, 277 cases), the sub-set 
of all landslides in seismic regions (set “SR”, 220 cases) or the sub-set of all seismically induced 
landslides (set “EQt”, 99 cases). 
In a first step epicenter-to-landslide distances of cases included in the database were compared 
to maximum epicenter-to-landslide distances proposed by KEEFER (1984) for coherent slides. 
Data from the database appeared to fit very well to the proposed limits at different magnitudes, 
and even though the scatter is not to be neglected only 3 landslides clearly exceed the limit 
curve. Thus, the data of the database is in very good accordance with KEEFER’S (1984) 
proposition, which is highly satisfactory since the landslides in the database are randomly 
assessed on a global basis. The recurrence of distinct parameters in the database, i.e. the number 
of times the same geometrical parameter stores a value comparing all 277 survey charts, reveals 
that parameters related to the characterization of maps and LCS are more frequently assessed, 
whereas parameters related to TCS are very rare to show values. This result is promising for 2D 
modeling, but limits accurate 3D modeling due to the lack of information about the lateral 
confinement – and hence about the impedance contrast – of a landslide mass which is of 
particular interest when studying the soil response under seismic shaking. Strikingly, the 
calculated volume Vequ – even though being a parameter depending on many others – shows a 
very high recurrence. This emphasizes the choice of Vequ to be the parameter according to which 
landslides are grouped for further analysis. 
The completeness of survey charts, i.e. the number of parameters storing a value per survey 
chart, shows that two thirds of all survey charts are complete to an extent of 50-70%. Roughly 
the same percentages are obtained for the three sets of interest which is again promising for 2D 
but less satisfactory for 3D modeling because full completeness is apparently not achieved at the 
expense of missing TCS information. 
The combining of the results from the recurrence and the completeness studies, and the fact that 
the choice of landslides and their associated literature was random, reflects also the quality of 
landslide assessment in general. If more attention was paid to the widthwise characterization of 
a landslide, 3D models could be much more precise. 
Later, values per parameter were grouped in histograms with 30 bins each to fit a normal, a 
power or an exponential distribution to them. Surely it is not ideal to fit distribution curves to 
histograms instead of ungrouped data, but unfortunately the values of a particular parameter 
have no dependency on the sequential numbers. Testing all parameters in the three sets, 
histograms of dimension-related parameters manifest an exponential decrease whereas 
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histograms of shape-related parameters were best fitted by normal distributions. The presence 
or absence of extremely large landslides did not affect the outcome. 
The main request to the database was to delineate geometries that represent averaged shapes of 
rupture masses of landslides. After it turned out that averaging values of distinct parameters on 
the basis of whole sets is not suitable because of far too big and thus incomparable dimensions, a 
more explicit distinction was made. Landslides per set were united according to their calculated 
volume Vequ into three groups of the following orders of magnitude: 103 < Vequ ≤ 106, 106 < Vequ ≤ 
109 and 109 < Vequ ≤ 1012 in m³. The result of this grouping (cf. Fig. 3.7) revealed a significant 
surplus of cases in the middle class leaving the question open if this distribution is globally 
representative implying a roll-over, or if – by chance – it is caused by the choice of landslides 
included in the database. The latter explanation remains arguable since the number of cases is 
high and no strategy was followed during the data assessment. 
The grouping approach resulted in nine series of mean values of distinct parameters by 
combination of 3 sets and 3 classes of order of magnitude. Comparison of mean value behavior 
with increasing order of magnitude confirmed a different behavior of dimension- and shape-
related parameters. Mean values of 1D, 2D and 3D parameters increase progressively with 
bigger orders of magnitude, whereas mean values of angles, ratios and the curvature remain 
rather constant. Using those mean values finally nine mean LCS in 2D (cf. Fig. 3.10a-i) were 
delineated which illustrate well the three major findings of the entire study: 
 

1) statistically, dimensions and shapes do not behave in the same way with increasing 
order of magnitude 

2) the shape is rather independent of the dataset 
3) the shape is slightly dependent on the order of magnitude 

 
The three facts are of particular importance to numerical modeling and the evaluation of 
seismically induced displacements of soils undergoing external dynamic loads, since the shape of 
a landslide mass governs the seismic interaction with the underlying bedrock, but the dimension 
controls the intensity of the expected seismic effects including induced displacements (LENTI & 
MARTINO, 2013). The different mean geometries serve hence as landslide prototypes of varying 
dimensions to explore differences between 2D and 3D models having the same framework 
conditions (geometry, material, etc.). On the basis of these examples, it will be possible to 
compare displacements predicted by traditional slope stability methods such as the Newmark 
Sliding Block Method (NEWMARK, 1965) and results from numerical methods considering 
characteristic periods Tl/Tm and Ts/Tm linked to longitudinal and vertical dimensions of a 
system. At this context, LENTI & MARTINO (2013) describe systematic under- and 
overestimations of displacements obtained with the NEWMARK-Method (1965) in comparison 
to results from numerical modeling. They also point out that horizontal displacements strongly 
depend on characteristic periods. 
To conclude, it should be noted that, first, landslides are complex phenomena and averaged 
shapes of appearance like the ones presented in this study might serve for general research but 
cannot be used as representatives for the investigation of a particular site. Second, the statistical 
procedure presented in this chapter describes only one approach of evaluation with a specific 
focus of interest. Many other analyses may be conducted upon this vast and newly updated 
database and the creation of new input data for studies with different purposes is possible at any 
time. 
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CHAPTER 4 

 DIEZMA LANDSLIDE & APPLIED SIGNALS 
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4.1. Introduction 

 
As described in the previous chapter (cf. 3.), statistical analyses of the database resulted in nine 
simplified mean geometries of landslides which can be used for numerical modeling and studies 
on slope stability. Using these simplified geometries, the contribution of trapped seismic waves 
to the displacement of the landslide mass can be modeled numerically and hence allows for 
analysis of potential seismic impacts.  
Ideally, a comprehensive analysis of slope stability under seismic shaking would be carried out 
for all nine simplified landslide geometries using different 2D- and 3D-methods. Subsequently, 
comparisons of predicted displacements obtained by those different methods may demonstrate 
2D-approaches to be sufficient for seismic slope stability predictions or they might justify the 
necessity of 3D numerical modeling (cf. Fig. 4.1). 
 

 
Fig. 4.1. Flow chart describing the process of comparative slope stability analyses 

using the nine simplified landslide geometries or the Diezma Landslide. 

 
Unfortunately it turned out that within the restricted time frame of three years this 
comprehensive comparative analysis of all nine simplified landslide geometries is unfeasible. As 
alternative, all envisaged methods were applied to the real case of the Diezma Landslide. Thus, 
this thesis proposes an exemplary procedure that can be followed at a later stage for any other 
landslide or for the nine simplified geometries of the database. The Diezma Landslide was 
chosen as example for several reasons: 
 

 Despite sophisticated and expensive protection measures the landslide is active since 
almost 30 years. It regularly damages the passing highway and other infrastructure 
facilities on the slope (AZAÑON et al., 2010; DELGADO et al., 2015; MARTINO et al., 
2016).  

 Even though the Diezma Landslide is not triggered by one particular earthquake, it is 
situated in a seismically active region regularly experiencing strong ground motion and 
it is affected by other vibratory sources such as traffic from the highway. Thus, the site is 
a very suitable example for the overall thesis topic of “studying seismically induced 
effects and slope stability in urbanized areas via numerical modeling”.  

 The Diezma Landslide is one of the main research sites of the working group and a 
wealth of geological and geotechnical data is available. Also, the engineering-geological 
development in terms of slope modification and protection measures is very well 
documented in the article by DELGADO et al. (2015).  

 Several studies on the stability of the landslide were carried out in the past (DELGADO et 
al., 2015; MARTINO et al., 2016) and results of this thesis can now be compared to them. 
Such a “back-checking” evaluation would be impossible using the nine newly created 
mean geometries, what in return emphasizes the exemplarily procedure applied on the 
Diezma Landslide in the course of this thesis. 
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Several more advantages became apparent after the completion of the survey chart for the 
Diezma Landslide (cf. A.1.), which besides carries the number 001.00 in the database: 
 

 The documentation is of very good quality. Concerning the landslide imagery (cf. 2.4.1.) 
all image types are available: a map and a LCS without lateral cut-offs, a 3D-
representation and photographs. The Diezma Landslide is also one of the two cases 
throughout the whole database where exploitable TCS are available (cf. 2.4.1.). 

 With a length of roughly 500 m the dimension of the landslide is to be located 
somewhere between the smallest and the medium group of simplified geometries. Since 
those both groups comprise most of the landslides (cf. Fig. 3.8), the Diezma Landslide 
appears to be a good representative. 

 The volume reported in literature (1,200,000 m³) differs of less than 1% of the 
calculated volume by the survey chart (1,191,338 m³), which testifies to very accurate 
geometry evaluation. Only three cases in the database have equally close volumes. The 
reported (9°) and the calculated (10°) mean slope angle are also very similar. 

 The Diezma Landslide is mainly translational, thus rather simple to perceive in 3D.  
 It consists mainly of soil and debris, and having a rather low slope angle, this clearly 

excludes a rock slide or even rock fall. The Diezma Landslide represents hence a classic 
landslide without involvement of other mass movement types (cf. 3.3.) 

 Unlike other cases, its LCS and TCS have no knickpoints. Lateral and vertical dimensions 
are represented in the same scale, the rupture mass is clearly outlined, the pre-landslide 
topography is shown in various stages and the positions of the LCS and the TCS are 
accurately indicated (cf. 2.4.). 

 Although the position of the LCS does not correspond to the main sliding direction of the 
landslide, it is still considered as suitable for the depth assessment of the landslide. The 
angle between the azimuth of the LCS and the main sliding direction amounts to 11°. As 
mentioned in chapter 2.4.1., geometrical correction becomes necessary only at angles 
bigger than 20°. However, the issue of azimuthal deviation becomes relevant at the 
construction of the 3D-geometries and will be discussed in chapters 4.2.2. and 4.2.3. in 
greater detail. 

 The second page of the survey chart assessing the landslide geometry is very complete; 
71% of the parameters are available (cf. Fig. 3.5) which is one of the highest 
completeness values throughout the database. 

 

 
Fig. 4.2. The Diezma Landslide besides the A-92 motorway 

on a satellite picture taken on 27/07/2015 (after GOOGLE EARTH PRO, 2015). 
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The Diezma Landslide is located around 25 km north-east of Granada in the Sierra Nevada Range 
of the Betic Cordillera (Andalusia, Southern Spain) beside the highway A-92 (37°18’34.00’’N, 
3°22’08.70’’W; cf. Fig. 4.2) whose construction is likely to have induced the landslide in the first 
place. The main failure occurred on the 18th of March 2001 after a period of intense rainfall 
(MARTINO et al., 2016), but smaller ground failures are reported since the 1990s. The site can 
therefore be described as an active landslide that moves constantly at low speed or even comes 
to stability for a certain period of time, but nevertheless it can experience fast and sudden 
failures after external impacts such as excavation work, intense rainfall and probably seismic 
activity. 
 

 
Fig. 4.3. Geological map: Numidoide Formation (yellow), Maláguide Complex (gray), South Iberian Domain (blue), 

debris (lightly shaded), landslide trace (blue lines – 1998, green lines – 2001, violet line – 2010), ground cracks (red 
lines), faults (black dotted lines), track (black dashed line), drainage system (light blue lines), boreholes (black dots), 

inclinometers (green dots), spring (blue dot), building (gray rectangle), wall (black line) (DELGADO et al., 2015). 

 
As for the geologic emplacement, DELGADO et al. (2015) as well as RODRÍGUEZ-PECES et al. 
(2011) give very clear descriptions which are synthesized in the following. The Diezma 
Landslide consists of medium- to high-plasticity clays, silt and marls with embedded heterogenic 
limestone and dolostone blocks. This lithology belongs to a Cretaceous to Lower Miocene flysch 
formation (BOURGOIS et al., 1974) which is also called the “Neonumidian Flysch” (BOURGOIS, 
1978) or the “Numidoide Formation” (OLIVIER, 1984). Having undergone intense deformation 
during the Alpine Orogeny, this formation appears today rather chaotic. At the location of the 
Diezma Landslide the Numidoide Formation lies on the Paleozoic to Triassic Maláguide Complex 
(Alborán Domain) consisting of shales, phyllites, sandstones and conglomerates. RODRÍGUEZ-
PECES et al. (2011) report furthermore a smectite-rich clay layer in between the landslide mass 
and the underlying Maláguide Complex; this thin interlayer might be the actual sliding surface.  
The Upper Jurassic South Iberian Domain is outcropping just north of the landslide. It was thrust 
onto the Maláguide Complex and consists of limestone and dolostone. Being composed of 
carbonate rock the South Iberian Domain acts as a karstic aquifer delivering water towards the 
south, and due to the less permeable material beneath the landslide the water table inside the 
landslide mass rises significantly after intense rainfall. Also several springs emerge at this 
unconformable tectonic contact between geological units in the northern vicinity of the landslide 
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of which one is shown in Fig. 4.3. Reactivation of the landslide mass after heavy rainfall is thus 
very likely, because of two reasons. First, the usual water table lies very deep and the landslide is 
almost unsaturated under normal conditions; a quick rise to a shallow water table hence causes 
a big difference of pore water pressure and shear strength reduction of the medium- to high-
plasticity clays. Second, the installed drainage system appears to be less efficient and poorly 
maintained in some parts.  
DELGADO et al. (2015) and RODRÍGUEZ-PECES et al. (2011) investigated the slope using 
geophysical and geotechnical methods to establish engineering-geological models and to 
characterize the landslide material. DELGADO et al. (2015) conducted three geophysical 
campaigns in 2012 and 2013 that included seismic noise measurements, Multi-channel Analyses 
of Surface Waves (MASW) and borehole testing. Laboratory tests on borehole samples of the 
Numidoide Formation show a high variability of parameters due to the fact that the formation 
itself is very heterogeneous. Based on the geological setting and the triggering conditions of the 
main slope failure in 2001 the authors “back-calibrated” these parameters using the JANBU-
Method (JANBU, 1973) with a factor of safety (SF) of 1 and a Bishop Coefficient (ru) of 0.22 – the 
latter representing the state of the landslide mass after intense rainfall. In Tab. 4.1 the obtained 
values are listed in comparison to the values published by RODRÍGUEZ-PECES et al. (2011). In 
this thesis the “back-calibrated” values of DELGADO et al. (2015) for the saturated unit weight 
(γsat), the residual cohesion (cr) and the residual friction angle (Φr) were used (cf. 5.4.2.). 
DELGADO et al. (2015) conclude from geophysical investigations a shear wave velocity (vs) of 
300 m/s for the landslide mass; MARTINO et al. (2016) indicate a Poisson’s Ratio (υ) of 0.25 for 
the landslide mass and more than 750 m/s for the underlying bedrock. 
 

author unit 
γ 

(kN/m³) 

γsat 

(kN/m³) 

cp 

(kPa) 

cr 

(kPa) 

Φp 

(°) 

Φr 

(°) 

D. 
Numidoide 
Formation 

(±19.00) 
(±02.00) 

- 
(±46.00) 
(±23.00) 

- 
(±26.00) 
(±06.00) 

- 

D. 
Numidoide 
Formation 

- 
21.40 

(calibr.) 
- 

(±04.00) 
 (calibr.) 

- 
(±12.00) 
 (calibr.) 

R.-P. 
Numidoide 
Formation 

(±18.19) 
(±00.91) 

20.60 
(±05.40) 
(±03.20) 

(±00.60) 
(±00.50) 

(±31.00) 
(±04.00) 

(±11.00) 
(±03.00) 

R.-P. interlayer 
(±15.24) 
(±00.49) 

17.66 
(±01.30) 
(±00.70) 

(±00.40) 
(±00.30) 

(±21.00) 
(±04.00) 

(±08.00) 
(±01.00) 

Tab. 4.1. Values for the unit weight (γ), the cohesion (c) and friction angle (Φ) of the Numidoide Formation and the 
interlayer. The suffixes “sat”, “p” and “r” mean “saturated”, “residual” and “peak” respectively. It should be noted that 
literature reports the cohesion of 46.00 kPa without mentioning if it is the peak or the residual cohesion; however – 

due to the high value – it is more likely the peak cohesion and therefore marked as such  
(after DELGADO et al., 2015; after RODRÍGUEZ-PECES et al., 2011). 

 
4.2. Creation of a 2D- and a 3D-Geometry 

 
This chapter describes in detail the process of creating a 2D- and a 3D-geometry of the Diezma 
Landslide. The importance of precise documentation of the landslide will be discussed and it will 
be pointed out what difficulties arise in this context; a long and a short version of the landslide 
geometry will be presented. Section 4.2.2. shows a simplified geometry in 2D and 3D comparable 
to the nine simplified geometries retrieved from the landslide database (cf. Fig. 3.10a-i). Section 
4.2.3. explains the creation of a fine 3D-geometry of which a fine 2D-geometry can be extracted. 
 
4.2.1. Long and Short Version 
 
The first question before designing a geometry for the Diezma Landslide was which volume 
should be considered. As mentioned in chapter 4.1., the slope has undergone significant natural 
and man-induced changes of shape. For the states in 1989, in 1990 and in 2013, the article by 
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DELGADO et al. (2015) and an appendant AutoCAD-file show cross sections with respective 
altimetric information for the sliding surface and the topography (cf. Fig. 4.5a-b, Fig. 4.13).  
Since the main landslide event took place in 2001 after the terrace for the highway A-92 was cut, 
the volume of 1990 was accepted as reference. In contrast to the one of 1989 it shows already 
the terrace excavation (cf. Fig. 4.4). 
 

 
Fig. 4.4. LCS of the article. The shaded volume is the reference for the simplified 2D-geometry (cf. Fig. 4.3 for the 
legend). The red circle indicates the virtually added 50 m and letters a-d correspond to the discussed differences 

between this figure and Fig. 4.5a and Fig. 4.5b (after DELGADO et al., 2015).  

 

AutoCAD-file article type used as notes 

PT-5   =   Profilio 5 - LCS -  

PT-1   =   Profilio 1 - LCS -  

PT-6   =   Profilio 6 A LCS A Profilio 6: 2001 & 2013 (cf. Fig. 4.5a-b) 

PT-9   =   Profilio 9 - LCS -  

PT-8   =   Profilio 8 - TCS N newly named for the thesis 

PT-4   =   Profilio 4 - TCS -  

PT-3   =   Profilio 3 B TCS B  

PT-7   =   Profilio 7 C TCS C  

PT-2   =   Profilio 2 - TCS M newly named for the thesis 
Tab. 4.2. Corresponding nomenclature of cross sections of the map and the AutoCAD-file (after DELGADO et al., 2015). 

 
Another difficulty is the fact that the map and the LCS presented in the article of DELGADO et al. 
(2015) do not entirely correspond to the ones available in the AutoCAD-file. Thus, before taking 
measures to create 2D- or 3D-geometries, the differences had to be assessed. The first apparent 
difference is that the map of the article depicts only three cross sections (cf. Fig. 4.3) whereas the 
AutoCAD-file comprises nine cross sections. Corresponding nomenclature is given in Tab. 2. Of 
those nine cross sections only five were finally used because of their suitable emplacement.  
Comparing the LCS shown in the article and the corresponding ones in the AutoCAD-file, 
altimetric information seems to be in rather good accordance. The simplified geometry 
overcomes a maximum elevation difference of 99 m (cf. Fig. 4.8) and the fine geometry of 98 m 
(cf. Tab. 4.6).  
However laterally, major differences can be found (cf. Fig. 4.4, Fig. 4.5a-b); letters in the 
following alphabetic listing correspond to the letters indicated in the figures. 
 

a) article:  main cut from ~550 m to 580 m, ending at the highway 
AutoCAD:  main cut from ~550 m to 580 m, ending at a terrace 

b) article:  highway from 580 m, at an altitude of 1210 m 
AutoCAD: highway from 640 m, at an altitude of 1210 m 

c) article:  wall at 540 m 
AutoCAD: wall at 570 m 

d) article:  old road at 160 m 
AutoCAD: old road at 195 m 
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Fig. 4.5a-b. LCS of the AutoCAD-file. Letters a-d correspond to the discussed differences between 

this figure and Fig. 4.4 (after DELGADO et al., 2015). 

 
Being aware of the fact that geological mapping and profiling is always a difficult task and that 
small deviations are always possible, a compromise between the two representations had to be 
found considering the following aspects. The compromise is reasonably compatible with the 
map presented in the article and the map of the AutoCAD-file. 
 

a) The main cut starts in both cross sections at ~550 m; this position served as lateral 
reference for comparisons between the LCS from the article and the one from the 
AutoCAD-file. However, the cut ends once on the highway and once on the terrace. Also, 
the year given in the AutoCAD-file does not explain this difference. On the one hand, just 
next to the terrace appears the mark “DEM 1989” leading to the potential conclusion that 
– two years before the cut was completed – a rock mass was lying at this place. On the 
other hand, the profile carries the title “Profilio 6 2001” what might indicate that the 
terrace is the result of the main landslide event that took place on the 18th of March 
2001. In this case though, one should ask oneself where this depositional terrace had slid 
from – the rest of the landslide mass is effectively the same as indicated in the article. 
Regardless of which interpretation is true, the cut in the LCS of the AutoCAD-file was 
extrapolated manually to meet the sliding surface and to come closer to the 
representation of the LCS in the article. 

b) Following point a) it remains thus unclear why the highway is shifted by 60 m in the two 
LCS, unless the main excavation shown in the article is not the bed of the highway. 

c) In effect, the wall is not of great importance to the volume of 1990 because it was not yet 
installed at that time. However, its position remains shifted by 30 m when comparing the 
LCS of the article and the LCS named “Profilio 6 2013” of the AutoCAD-file (cf. Fig. 4.5b). 
The TCS named “Profilio 2” also does not give evidence of the location of the wall since it 
is drawn in the cross section – and not behind or in front of the other geologic layers. 

d) The old road – in contrast – existed in 1990 and its position is equally shifted by 25 m. 
 
Other small issues at the interpretation of the AutoCAD-file are listed in the following. They are 
surely not insurmountable, but for the reader they might facilitate the understanding. 

(a) 

(b) 
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 Profilio 6 2001 & 2013: the first mark of altitude must be 1180 m 
 Profilio 3, 7 & 8:  E and W must be switched (comparing to contour lines) 
 Profilio 2:   NW to SE must be marked (comparing to contour lines) 

 
Having found a compromise on the lower end of the landslide mass, the upper end still requires 
a closer look because the crown area is essential for the definition of the two geometry versions. 
 

 
Fig. 4.6a-b. Emplacement of cross sections and point positions. Red lines indicate ground cracks. 

Arrows show the numbering direction of points per cross section and orange points design intersection or close 
neighbor points (after DELGADO et al., 2015). Both figures have the same scale. 

 
The emplacement of a LCS is crucial; it should be positioned along the main sliding direction of 
the landslide. Due to accessibility in the terrain or special interest of scientists this is not always 
the case as at the site of the Diezma Landslide. The LCS diverts by 11° from the main sliding 
direction. In section 2.4.1. it was explained that azimuthal deviation angles (φ) of up to 20° are 
still acceptable to make use of the respective LCS. Values would be assessed along the given LCS 
and then attributed to an adopted LCS along the main sliding direction. In the case of Diezma, 
this procedure does not cause too many difficulties at the lower end of the landslide because the 
toe appears to be uniformly convex terminating on the same altitude of 1210 m. In the crown 
area though, this deviation of 11° makes a significant difference. As shown in Fig. 4.6a, LCS A 
exits the landslide at a much lower altitude than the adopted LCS Aa (“a” for “adopted”). The LCS 
represented in the article by DELGADO et al. (2015) is – surely accurate – but too short to cover 
the full length of LCS Aa. 
The answer on the question if the full length has to be covered is not trivial either. The article by 
DELGADO et al. (2015) shows the landslide part above the old road in violet noting “2010 
reactivation” (cf. Fig. 4.3). However, just at the uppermost point of the landslide trace ground 
cracks are marked in red without date indication which could let assume that the LCS of 1990 
was that long. Also the LCS presented in the article of RODRÍGUEZ-PECES et al. (2011) shows a 
landslide mass exceeding by far the old road and dating the state to the time after the highway 
was constructed. Unfortunately, this article does not indicate the emplacement of its presented 
LCS, so – although a long extension to the north can be clearly identified – the exact direction 
remains unspecified (cf. Fig. 4.7). 

(a) (b) 



97 
 

 
Fig. 4.7. LCS after RODRÍGUEZ-PECES et al. (2011); dimensions are in meters. 

 
To avoid these non-trivial questions, two versions of possible geometries were created based on 
the map and LCS published by DELGADO et al. (2015) and the LCS of the AutoCAD-file: 
 

 long version: extending roughly to the level of the red ground cracks 
 short version: extending roughly to the level of the old road 

 
For the short geometry, LCS Aa could simply adopt the values assessed at LCS A, whereas for the 
long geometry, LCS A had to be imaginarily prolonged first. This prolongation took into 
consideration that the uppermost crown area above the old road is very shallow. Already the 
last tens of meters of LCS A below the road do not show greater depths than a few meters. 
Available photographs in the articles of DELGADO et al. (2015) and RODRÍGUEZ-PECES et al. 
(2011) also indicate a very shallow landslide mass in the crown area. Thus, about 50 m above 
the old road were added to enable a depth assessment also for the long version of LCS A (cf. Fig. 
4.4, Fig. 4.5a). 
Certainly, this discrepancy is worth to take into consideration at the creation of 2D- and 3D-
geometries because it has not only an influence on the factor of safety of the landslide but it also 
alters the resonance volume during seismic shaking. Luckily the volume difference is not very 
big (cf. Fig. 4.8) and as the analysis of the factor of safety in section 5.4.2. will show, the 
difference is almost negligible. Hence, all 2D- and 3D-methods applied to the Diezma Landslide 
were primarily based on the long geometries.  
 
4.2.2. Simplified Geometry 
 
This section describes extensively how a LCS is to be assessed and how a simplified 2D-
geometry is created using values stored on the second page of the respective survey chart. It 
should be noted that due to the volume discrepancy there are also two versions of the simplified 
2D-geometry (cf. Fig. 4.8) – both simplifying respectively LCS Aal (“l” for “long”) and LCS Aas (“s” 
for “short”). 
Also a simplified 3D-geometry had to be created requiring TCS to be added to the simplified 2D-
geometry. The only properly evaluable TCS – that represent also the landslide dimensions of 
1990 – are the ones of the AutoCAD-file which were measured in great detail during the 
construction of the fine geometry. It is therefore advisable to  
 

 anticipate at this stage chapter 4.2.3. 
 

to become familiar with the construction procedure, and especially with the particularities of the 
TCS. The thereupon based steps for the completion of the simplified 3D-geometry are listed in 
the following; some properties are summarized in Tab. 4.3. 
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The aim of this section is to provide a “reference for construction” for the 
geometries that represent the Diezma Landslide. This might be useful in future, in 
case the geometries have to be rebuild and introduced to another numerical 
modeling software or if changes in the geometry have to be made. The following 
steps 1-8 (cf. 4.2.2.) and steps 1-20 (cf. 4.2.3.) can be skipped while reading the 
thesis, since they are not necessary to understand the scientific context. 
 

 
Fig. 4.8. Simplified 2D-geometry. The green arrows indicate the transposition of TCS intersections from Fig. 4.11 

necessary for the creation of the simplified 3D-geometry. Blue numbers refer to the slice division used in the analysis 
of the factor of safety (cf. 5.4.2.). Dimensions are in meters. 

 

TCS direction 
LCS to  

TCS 
LCS to 

adopted TCS 
intersection 

along LCS 
intersection 

along TCS 
intersection 

points 

N WE 61.0° 29.0° 008.83% 50% (48.93%) N2 = I1 

B WE 61.0° 29.0° 046.23% 75% (76.17%) B3 = I2 

C WE 61.0° 29.0° 070.98% 75% (62.08%) C2 or C3  ≠ I3 

M NWSE 79.2° 10.2° 082.84% 50% (47.93%) M2 = I4 
Tab. 4.3. TCS properties of the simplified 3D-geometry. 

 
1) Similar to the ideal simplified 2D-geometry for a LCS (cf. 2.4.2.), TCS were divided into 

four lengthwise equal slices that approximate the TCS shape. Since all four TCS were 
already assessed in great detail with an approximate spacing of 10 m for the fine 
geometry, there was no need to remeasure dimensions. The fine TCS geometries were 
already adjusted in height and shape to fit well to the landslide mass, and altimetric 
information for the topography and the sliding surface could simply be retrieved for 
steps at 0%, 25%, 50%, 75% and 100% of the TCS length. If existing steps did not 
correspond closely to either of those percentages intermediate values were adopted (as 
in the case of TCS N and TCS M). The thereby created simplified TCS are shown in Fig. 
4.10a, Fig. 4.10b, Fig. 4.10c and Fig. 4.10d. 

2) Ideally for every landslide there would be three TCS intersecting the LCS at the points 1, 
2 and 3. In the case of the Diezma Landslide there are however four TCS which do not 
intersect the LCS at equal spacing neither with a right angle (cf. Tab. 4.3). This fact leads 
back to the question of what deviation angles φ between given and adopted cross 
sections are acceptable (cf. 2.4.1.). As Fig. 4.9 and Tab. 4.3 show, in three of four cases 
(TCS N, TCS B and TCS C) the angle between the LCS and the potentially adopted 
perpendicular TCS exceed 20°. According to section 2.4.1., this situation would need 
geometrical correction; however, one would have to decide if the correction would then 
be applied also to TCS M which actually would not need it. 
To keep things as simple as possible and comparable, the final decision on this issue was 
to leave the four TCS with their original intersections and original orientation relative to 
the LCS although the hereby created 3D-geometry does not correspond to the idealized 
geometry (cf. 2.4.3.). 

3) More of an issue is the choice of a LCS to which the four TCS should be set in relation. On 
the one hand, the simplified 3D-geometry (with its four intersections) should be as 
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comparable as possible to the existing simplified 2D-geometry (which has only three 
intersections). On the other hand, all simplified TCS are taken from the AutoCAD-file and 
therefore a LCS (with four intersections) similar to the one presented at the end of 
chapter 4.2.3. would be preferable. 
As a compromise, the spacing (in percent of the LCS length) between the extremities and 
four intersection points was transposed to the simplified 2D-geometry in order to 
retrieve altimetric information and to preserve the “slice-character” of the LCS (cf. Fig. 
4.10e, Fig. 4.10f). 

4) After equally distributing points 0-E along the TCS (in directions west to east and 
northwest to southeast) it became apparent that some of the points lie very close to the 
intersections along the LCS. Due to this vicinity TCS N, TCS B and TCS M adopted the 
position and altimetric information of intersections I1, I2 and I4 for their points N2, B3 
and M2. In TCS C, both C2 and C3 are too far from I3, and hence C2, C3 and I3 exist 
separately (cf. Fig. 4.11, Tab. 4.3).  

5) As explained in point 16 in chapter 4.2.3., also the altimetric information of the simplified 
3D-geometry had to be adjusted in order to make close neighbor points fit to each other 
to preserve the local slope angles and the overall forms of the cross sections. Fortunately, 
here, this task was much easier than for the fine geometry and only at TCS N and TCS C 
slight corrections were necessary (sliding surface: N1 and N3 of 1 m downwards; 
topography: C1 and C3 of 4 m and 3m upwards (cf. Fig. 4.10g-l)).  

6) The trace is a simple connection of all extreme points (cf. Fig. 4.11). 
7) Again, a long and a short version of the landslide geometry are available. 
8) Finally, x-y-coordinates had to be attributed to all points. Unlike as for the fine geometry, 

the relative coordinate origin was set to the first point of the LCS and the x-axis is the 
LCS itself. Cross sections to be used for the two volume versions are listed in Tab. 4.8. 

 

 
Fig. 4.9. Deviation angles between the given TCS and the potentially adopted TCS 

that would have to be perpendicular to LCS Aa (for the scale cf. Fig. 4.6a). 
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Fig. 4.10a-l. Original and adjusted cross sections for the simplified 3D-geometry (green and black lines for the 

topography, red lines for the sliding surface and blue lines for intersections). Dimensions are in meters. 

 

 
Fig. 4.11. Map of the simplified 3D-geometry (for the scale cf. Fig. 4.6a). Arrows show the numbering direction of 

points per cross section and orange points design intersection points. The dashed line shows the real landslide trace. 

 

 
Fig. 4.12. Simplified 3D-geometry after adjustment. 

 
At a first sight, this simplified 3D-geometry (cf. Fig. 4.12) seems very well tailored although it is 
clearly a sort of “hybrid”. Its horizontal extents are based on the AutoCAD-file and the map, 
whereas its altimetric information originates from both the AutoCAD-file (for TCS) and the 
simplified 2D-geometry (for LCS). 
By having a closer look nevertheless, a geometric misfit becomes apparent. From the simplified 
map (cf. Fig. 4.11) it is visible that the TCS intersect the LCS at certain percentages of the length; 
here reference is made to the length of the long geometry version. These percentages 
correspond to distances in meters as shown in Tab. 4.4. Also for the short geometry version, 
whose first LCS point is shifted by 22.57 m, the intersection positions remain the same and the 
intersection with TCS N lies – as expected – inside the short trace. However, applying the same 
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percentage calculation to the simplified 2D-geometry (Fig. 4.8), it appears that the intersection 
with TCS N lies outside of the short trace.  
 

origin 
point 0 
(long) 

point 0 
(short) 

intersect. 
to N 

intersect. 
to B 

intersect. 
to C 

intersect. 
to M 

point E 

% 0.00% - 008.83% 046.23% 070.98% 082.84% 100.00% 

map 
0.00 m - 045.67 m 239.10 m 367.11 m 428.45 m 517.20 m 

- 22.57 m 045.67 m 239.10 m 367.11 m 428.45 m 517.20 m 

simple 
2D-geo. 

0.00 m - 043.71 m 228.84 m 351.35 m 410.06 m 495.00 m 

- 55.75 m 043.71 m 228.84 m 351.35 m 410.06 m 495.00 m 
Tab. 4.4. Positions of the intersections of the LCS with the TCS for the simplified 3D-geometry. 

Comparing the positions of points 0 (short) and N2 (= I1) the issue of the geometric misfit becomes apparent. 

 
At the simplified 3D-geometry this misfit has no influence. Its length must correspond to the one 
of the map from which the coordinates were retrieved. Nonetheless it points out how important 
correct geological mapping and representation is. The small length difference of only 22.2 m is – 
in a figurative sense – able to displace a TCS out of the landslide mass. 
 
4.2.3. Fine Geometry 
 
Unlike at the simplified geometry, where the 3D effect was obtained by adding TCS later, the fine 
geometry was built first in 3D to extract the LCS. In the following the steps for the creation of the 
fine 3D-geometry will be explained; some properties are summarized in Tab. 4.5. 
 

LCS/TCS points azimuth AutoCAD direction end length spacing 

N 1-007 090.0° 061 m WE fits 066.54 m ~11.1 m 

B 1-017 090.0° 159 m WE tight 161.28 m ~10.1 m 

C 1-017 090.0° 163 m WE tight 160.50 m ~10.0 m 

M 1-019 108.8° 176 m NWSE tight 174.16 m ~09.7 m 

Al 1-047 016.0° 475 m SWNE fits 484.55 m ~10.5 m 

As 1-042 016.0° 424 m SWNE fits 431.87 m ~10.5 m 

Aal 1-047 029.0° - SWNE fits 517.12 m ~11.2 m 

Aas 1-045 029.0° - SWNE fits 494.63 m ~11.2 m 

Ql 1-140 - - clockwise - - ~10.0 m 

Qs 1-140  - - clockwise - - ~10.0 m 
Tab. 4.5. LCS and TCS properties of the fine 3D-geometry. 

It should be noted that in Qs points Qa-e replace points Q53-68 which exist only in Ql (cf. Fig. 4.6b). 

 

 
Fig. 4.13. TCS from the AutoCAD-file (after DELGADO et al., 2015). 

The dotted line represents the recent topography; horizontal and vertical scales are the same. 
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The aim of this section is to provide a “reference for construction” for the 
geometries that represent the Diezma Landslide. This might be useful in future, in 
case the geometries have to be rebuild and introduced to another numerical 
modeling software or if changes in the geometry have to be made. The following 
steps 1-20 (cf. 4.2.3.) and steps 1-8 (cf. 4.2.2.) can be skipped while reading the 
thesis, since they are not necessary to understand the scientific context. 

 
1) Initially the map presented in the article of DELGADO et al. (2015) was scanned to 

CorelDRAW and the landslide trace, the highway and the old road as well as the ground 
cracks were drawn as overlay (cf. Fig. 4.6a). LCS directions were aligned considering the 
azimuthal angles of the AutoCAD-file, which fitted well to the angles indicated in the 
map. 

2) For simplicity, new names were given to the cross sections and the trace; according to 
the considered geometry version LCA A and LCS Aa are marked separately. 

3) Since coordinates have to be readable from the CorelDRAW-file, and since the program is 
not a GIS-software, a relative coordinate system and a scale had to be defined. In the 
present case the relative origin was set to the top of the north arrow on the map; the x-
axis is the direction west-east. As for the scale, 100 m correspond to 26 mm. 

4) All cross sections from AutoCAD were printed on paper to mark the volume 
corresponding to the state of 1990 or before. For all TCS (cf. Fig. 4.13) this procedure 
was rather easy; at LCS A the issue of the final state of excavation (cf. Fig. 4.5a) had to be 
taken into consideration. 

5) Subsequently, on each of the printed cross sections points were set every ten meters 
along the horizontal preferably from west to east or from south to north to extract the 
corresponding altimetric information. For every point, thus, there are two values 
available – one for the topography and one for the sliding surface. Only the first and last 
points of each cross section have one value because they define the intersection of the 
topography with the sliding surface (cf. Fig. 4.6b). 

6) All points carry an identification number composed of the cross section name and their 
running number. Together with their corresponding altimetric information they were 
stored in an Excel-file. 

7) For the landslide trace (named Ql or Qs according to the geometry version) points were 
set roughly every ten meters as well. In between additional points had to be inserted to 
preserve the outline of the landslide and the topographic character. Altimetric 
information was then manually retrieved from the geological map by interpolation 
between isometric lines.  

8) As a matter of fact, a spacing of 10 m from one end of a cross section to the other might 
not necessarily result in equally spaced steps. It is even very likely that the last step will 
be shorter than all the previous ones. For the graphic reproduction of the respective 
cross section of the AutoCAD-file this fact is not disturbing; the depth value of the second 
last point can be taken as such and the overall shape of the cross section will be 
preserved. Difficulties arise when – as in the next step – equal spacing has to be 
introduced again. Then, all points slightly shift back towards the first point and the 
second last point would introduce a step altering the overall shape of the cross section 
(cf. Fig. 4.14). 
Luckily, only LCS B, LCS C and LCS M showed such a tight last step and to avoid the 
creation of depth steps of points B16 and C16 were shifted downwards by 3 m (B16: 
1258 m to 1255 m; C16: 1238 m to 1235 m) in the original altimetric assessment. Point 
M18 was judged still acceptable. 

9) Lengths of cross sections of the AutoCAD-file came very close to the lengths derived from 
the map. According to the number of points per cross section, the lengths obtained from 
the map were divided into equally spaced steps and the altimetric information was 
assigned to these newly located points. 
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10) Among all cross sections the adopted LCS Aa has a particular status. It is the only one 
that has no equivalent in the AutoCAD-file. Thus, it was placed manually keeping the 
same number of points as in LCS A so that altimetric information could transposed point 
by point later on. According to this, LCS A and LCS Aa have the same number of points 
with the same altimetric information, but a different spacing and different coordinates 
(cf. step 14).  

11) Equal point distribution leaded to different spacing than 10 m at every cross section, but 
fortunately the differences were almost negligible (cf. Tab. 4.5). 

12) Moreover, the new point distribution revealed points that either become intersections or 
lie so close to each other, that they must show the same altimetric value on the 
topography and on the sliding surface. Both types of points are summarized in Tab. 4.6. 

13) Another particularity becomes apparent when having a closer look on the limits of LCS A 
and LCS Aa. According to the considered geometry version the respective LCS ends at 
different points, and thus the points A42 and Aa45 can be “open” or “closed”. Table 4.7 
specifies this fact comparing altimetric information of the sliding surface. 

14) Finally, x-y-coordinates had to be retrieved for every point. They are stored with their 
altimetric information in the before mentioned Excel-file. A 3D-plot of the cross sections 
and the landslide trace was not perfect; height differences between intersection and 
close neighbor points were quite apparent (cf. step 4.12). 

 

 point 12…m point 12…m point 12…m corrected to 
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Q8 25 M1 33 

 

1233 m 

Q11 31 C1 42 1242 m 

Q23 45 B1 52 1252 m 

Q49 75 N1 78 A42 90/87 1290 m/1287 m 

Q64 88 Aa47 98 

 

1298 m 

Q70 81 N7 81 1293 m 

Q93 57 B17 61 1261 m 

Q105 38 C17 43 1243 m 

Q113 23 M19 28 1228 m 

Q124 10 A1 10 1210 m 

Q132 10 Aa1 10 1210 m 

Qc 81 Aa45 96/94 1296 m/1294 m 
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A7 
45 

M15 
35 

 

1236 m 

19 14 1218 m 

A14 
51 

C15 
45 1247 m 

28 30 1228 m 

A25 
64 

B14 
61 1264 m 

46 41 1246 m 

Aa9 
47 

M10 
37 1240 m 

21 12 1221 m 

Aa14 
51 

C11 
46 1247 m 

28 20 1228 m 

Aa26 
66 

B13 
61 1265 m 

47 37 1247 m 

Aa43 
92 

N4 
80 1292 m 

88 73 1228 m 
Tab. 4.6. Original and corrected altimetric information for intersection and close neighbor points. Arrows upwards 

and downwards refer to the topography and the sliding surface respectively. It should be noted that points 
A42 and Aa45 also have a “lower” value because they can be “open” or “closed” (cf. Tab. 4.7). 
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altimetry (m) point 41 point 42 point 45 point 47 

LCS - end As end Aas end Al & Aal 

Al 
1288 1290 1296 1298 

1284 1287 1294 1298 

As 
1288 1290 - - 

1284 1290 - - 

Aal 
1288 1290 1296 1298 

1284 1287 1294 1298 

Aas 
1288 1290 1296 - 

1284 1287 1296 - 
Tab. 4.7. Differences between “open” and “closed” points along LCA A and LCA Aa. 

 

 
Fig. 4.14. Possible introduction and prevention of steps in the cross section  

by shifting points backwards during the process of equal spacing. 

 
To bring intersection and close neighbor points together several further steps were necessary: 
 

15) The trace Q was the most unproblematic to be shifted vertically. The altimetric 
information of the points had been obtained by isoline interpretation on the geological 
map (cf. Fig. 4.3), which shows a recent state of the slope, and hence the state that does 
not correspond any more to the one of 1990. Preferably, Q-points were shifted upwards 
accounting for the idea that the topography decreased with time due to sliding and 
excavation activity. Corrected altimetry information can be found in Tab. 4.6. For 
completion it should be noted, that the cross sections were less preferable to be shifted 
vertically since their altimetric information was retrieved from borehole loggings. 

16) After the correction of the intersection points, also the ultimate neighbor points (not to 
be confounded with the close neighbor points of Tab. 4.6) of the shifted points had to be 
adjusted to preserve the local topography along the trace and the overall forms of the 
cross sections. The thereby created fine LCS and TCS are shown in Fig. 4.15a-h. 

17) Contrasting to what is mentioned at step 15, TCS N had to be shifted upwards by about 
12 m (cf. Fig. 4.15a, 4.15i). Comparing its position to LCS A, to LCS Aa and to the trace Q, 
it appears that it lies far too deep. Simple adjustment as explained in steps 15 and 16 and 
keeping the greatest depths in the middle of the cross section would significantly change 
the shape of the cross section. The crescent shape would turn into a U-shape causing the 
whole landslide to become gutter-like in the crown zone which is obviously not the case. 
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18) Also the close neighbor points (cf. Tab. 4.6) had to be adjusted in a similar way to avoid 
notches and spikes in the topography and in the sliding surface when creating a 
numerical model at a later stage. Here, TCS were modified more freely than the LCS. To 
optimize the comparability between geometries, differences between LCS thus have to 
be kept as low as possible (cf. Fig. 4.15i-p). 

19) LCS A served initially only for the assessment of values that would later be attributed to 
LCS Aa. However, it indeed exists and during the process of adjustments it was 
considered like all other cross sections. Its short version (LCS As) can therefore be used 
as additional information when creating enveloping surfaces (i.e. sliding and ground 
surfaces). Cross sections to be used for the long and the short volume version are listed 
in Tab. 4.8. 

20) Another 3D-plot of the cross sections and the landslide trace shows now a satisfying 
result (cf. Fig. 4.16). 
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Fig. 4.15a-p. Original and adjusted cross sections for the fine 3D-geometry (green and black lines for the  
topography, red lines for the sliding surface and blue lines for intersections). Dimensions are in meters. 

 
The LCS Aa for 2D-analyses can be simply extracted. According to the desired geometry version 
it looks either like LCS Aal or LCS Aas as presented in Fig. 4.15o and Fig. 4.15p. The long (LCS 
Aal) and the short version (LCS Aas) can be then seen as the fine counterparts to the long and 
the short simplified 2D-geometries described in the previous section (cf. Fig. 4.8). 
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Fig. 4.16. Fine 3D-geometry after adjustment. 

 

cross 
section 

fine geometry simplified geometry 

long 
version 

short 
version 

long 
version 

short 
version 

N     

B     

C     

M     

Al - - - - 

As () () - - 

Aal  -  - 

Aas -  -  

Ql*  -  - 

Qs* -  -  
Tab. 4.8. Cross sections belonging to the long and the short geometry version. 

Ql and Qs design the long and short version of the traces (*). 

 
4.3. Possibilities to Analyze Displacement 

 
In section 4.1. the Diezma Landslide was characterized as active and regularly affected by rising 
ground water within the landslide mass. It was mentioned that also earthquakes are considered 
as potential triggers to cause reactivation and sudden slope failures. In this thesis, the objective 
is to investigate the effects of earthquakes on the landslide mass by evaluating expected 
displacements with different methods. Detailed explanation of those methods will be given in 
the respective chapters. 
Section 4.2. presented the different options to create geometries for the Diezma Landslide. 
Taking into account that a geometry can be long or short (cf. 4.2.1.), simplified or fine (cf. 4.2.2., 
4.2.3.) and 2D or 3D (cf. 4.2.2., 4.2.3.), there are a variety of possibilities to analyze the expected 
displacement. According to the principles of the methods, suitable input geometries must be 
chosen; options are shown in Tab. 4.9 which represents the “task sheet” of the thesis and a 
figurative table of contents for the following chapters. 
 
 
 



109 
 

Tab. 4.9. Options to analyze expected displacement under seismic shaking with different geometries. 
The shape of the LCS is only symbolic; i.e. it does not show real dimensions. 

 
4.4. Applied Signals 

 
To estimate ground displacements of the landslide during seismic shaking either synthetic 
signals or real accelerometric records can be used. In this thesis, earthquake signals were 
retrieved from European Strong-Motion Database (in the following abbreviated by ESMD; 
AMBRASEYS et al., 2004) – a database containing corrected acceleration, velocity and 
displacement time-histories of 462 triaxial strong-motion records of 110 earthquakes and 261 
stations in Europe and the Middle East. Suitable accelerometric records were filtered from the 
ESMD with respect to the following criteria:  
 
 horizontal components x- and y-records only (NS and WE respectively) 
 AI: 0.1-1 m/s Arias Intensity expected in Southern Spain 
 MW: 5.0-7.0   moment magnitude expected in Southern Spain   
 PGA: 0.8-1.2 m/s²  peak ground acceleration expected in Southern Spain (0.1g ±20%) 
 
These assumptions are in accordance with earthquake characteristics given by several authors 
(DELGADO et al., 2015; LENTI, MARTINO, 2012; MARTÍNEZ-SOLARES et al., 2013) and clearly 
display favorable conditions for a possible reactivation of the Diezma Landslide (MARTINO et al., 
2016). MARTÍNEZ-SOLARES et al. (2013) indicate a PGA of 0.16g for a return period of 475 
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years while BENITO et al. (2010) give a critical acceleration (beyond which the landslide 
becomes unstable) of 0.10g. As section 5.4.4. will show, critical accelerations might be even 
lower than this estimation. RODRÍGUEZ-PECES et al. (2011) speak of significant hazard when 
earthquakes of MW 4.0-5.0 might occur in a radius of 25 km. However, DELGADO et al. (2015) as 
well as MARTINO et al. (2016) indicate that no earthquake with MW > 5.0 took place within a 
radius of 50 km since the main failure of the Diezma Landslide in 2001; according to the curves 
proposed by KEEFER (1984; cf. 3.3.1.) the distance at which epicenters for earthquakes with 
moment magnitudes between 5.0 and 7.0 could be located at a maximum distance of 100 km. 
After applying the filter, characteristic earthquake periods (Tm) were calculated for the 13 
obtained records using the equation proposed by SCHNABEL (1973) and RATHJE et al. (2004): 
 

𝑇𝑚 =
∑𝐴𝑖

2 ∙
1
𝑓𝑖

∑𝐴𝑖
2 =

1

𝐹𝑚
 

 
for 0.25 Hz ≤ fi ≤ 20 Hz 

and where Ai is the spectral amplitude associated to the ith value 
of the Fast Fourier Transform (FFT) and fi is the ith frequency 

 

(a) ESMD ID earthquake date 
time 

(UTC) 
duration 

(s) 
hypocenter 

(km) 

A 000049x Friuli 1976-05-06 20:00:13 19.91 07 

B 000133x Friuli (aftershock) 1976-09-15 03:15:19 10.24 05 

C 000127x Friuli (aftershock) 1976-09-15 03:15:19 05.76 05 

D 000294x Campano Lucano 1980-11-23 18:34:52 49.93 16 

E 000335x Alkion 1981-02-25 02:35:53 15.62 08 

F 001875x Griva 1990-12-21 06:57:43 07.75 01 

G 006142x Aigion 1995-06-15 00:15:51 23.27 10 

H 000599x Umbria Marche 1997-09-26 00:33:16 11.37 07 

I 000612x Umbria Marche 1997-09-26 09:40:30 29.70 06 

J 000625x Umbria Marche (ash.) 1997-10-06 23:24:00 15.29 07 

K 005820x Strofades 1997-11-18 13:07:41 16.43 10 
 

(b) ESMD ID 
log M0 
(Nm) 

MW MS 
PGA 

(m/s²) 
PGV 

(m/s) 
PGD 
(m) 

AI 
(m/s) 

Tm 
(s) 

Fm 

(Hz) 

A 000049x 18.80 6.53 6.50 0.6141 0.0806 0.0151 0.12 0.6673 1.50 

B 000133x 18.06 6.04 6.06 1.0714 0.0982 0.0191 0.12 0.6527 1.53 

C 000127x 18.06 6.04 6.06 1.0333 0.0483 0.0043 0.14 0.3028 3.30 

D 000294x 19.39 6.93 6.87 0.9122 0.1751 0.0601 0.27 1.0749 0.93 

E 000335x 18.57 6.38 6.37 1.1449 0.1108 0.0338 0.22 0.7708 1.30 

F 001875x 18.23 6.15 6.12 0.9766 0.1102 0.0110 0.13 0.5830 1.72 

G 006142x 18.78 6.52 6.34 0.8039 0.1384 0.0428 0.19 0.9941 1.01 

H 000599x 17.58 5.72 5.50 0.9615 0.0511 0.0068 0.13 0.3796 2.63 

I 000612x 18.06 6.04 5.90 0.9278 0.1374 0.0489 0.23 1.1496 0.87 

J 000625x 17.37 5.58 5.20 1.0460 0.0674 0.0076 0.12 0.4796 2.09 

K 005820x 18.95 6.64 6.50 0.6954 0.0705 0.0159 0.13 0.7513 1.33 
Tab. 4.10a-b. Properties of the 11 considered earthquakes. The Umbria Marche Earthquake (000599x) 

corresponds to the earthquake entry under number EQ.176.02 in the database of the thesis. 
Peak ground acceleration, peak ground velocity and peak ground displacement are also shown in Fig. 4.18a-k. 

Signals here are unfiltered; a comparison between unfiltered and filtered signals is to be found in Tab. 4.11. 
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For both the x-components as well as for the y-components of the triaxial records the Tm 
appeared to be almost equally distributed (0.30-1.15 and 0.33-1.26 respectively; cf. Fig. 4.19), so 
finally – and to keep the selection consistent within itself – only the x-components of the 
earthquake records were retained. Two of the 13 records were discarded because their Arias 
Intensities slightly did not fit to the mean value of the other 11 records (cf. Fig. 4.18a-k). Details 
and properties of those remaining 11 records are to be found in Tab. 4.10a and Tab. 4.10b. It 
should be noted that even though one filter criterion is a PGA between 0.8 m/s² and 1.2 m/s², 
two signals (000049x and 005820x) have a PGA smaller than that. The reason is that for every 
earthquake parameter the search tool of the ESMD filters according to the biggest value of all 
three components, i.e. here the PGA of the y-component is bigger than 0.8 m/s². The column “ID” 
indicates the signal name as it is used during the numerical modeling processes, whereas the 
ESMD ID is the identification code of the respective signal in the database. The duration refers to 
the time interval between the exceedances of the Arias Intensity at 5% and 95% (TRIFUNAC & 
BRADY, 1975). 
Surely one might argue that all 11 earthquakes are rather distant and not linked to the tectonic 
setting of Southern Spain (cf. Fig. 4.17) and that therefore they might not be suitable to use for 
studying the Diezma Landslide. However, due to the above mentioned filtering, these 11 
earthquakes are very comparable in terms of energy and frequency content to what can be 
expected in Southern Spain. The actual distance between the landslide and the epicenter and the 
duration became hence less important. Moreover, there are no recent records of strong 
earthquakes available as cited by DELGADO et al. (2015) and MARTINO et al. (2016). Fm-values 
appear to be reasonably variable representing close and distant sources; and also Tm-values – as 
the inverse of Fm – are covering an acceptable range necessary for comparative displacement 
studies according to the Characteristic Period Based Approach (MARTINO et al., 2016; cf. 6.4.2.). 

 

 
Fig. 4.17. Locations of the 11 considered earthquakes and the Diezma Landslide (after GOOGLE EARTH PRO, 2017).  
 
Such parametric studies based on the Characteristic Period Based Approach of expected ground 
displacement were first carried out by LENTI & MARTINO (2013) and MARTINO et al. (2016). In 
the first mentioned publication the authors investigate the local seismic response of six 
theoretical slopes with different slope angles (15°, 35° and 45°) and two sliding mechanisms 
(translational and roto-translational). The height differences of all six slopes are of 100 m. Here, 
the Diezma Landslide is comparable to the setting of a roto-translational slide with a slope angle 
of 15°; its real height difference amounts to 100 m as well (cf. 4.2.1.). In the second mentioned 
publication the authors compare the Güevéjar Landslide and the Diezma Landslide as real cases. 
In both studies, the theoretical one and the real one, the LEMA_DES procedure (Levelled-Energy 
Multi-frequential Analysis for deriving Dynamic Equivalent Signals; LENTI & MARTINO, 2010) 
was applied. This procedure defines multi-frequential dynamic equivalent signals on the basis of 
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real accelerograms. It thus creates accelerometric time-histories that are less complex than the 
real accelerograms but nevertheless provides spectral, kinematic and energetic equivalence in 
terms of the Fourier Amplitude Spectrum, the phase and the response spectra, the Arias 
Intensity as well as the peak ground acceleration, the peak ground velocity and the peak ground 
displacement. Due to their straightforwardness such equivalent signals are particularly suitable 
for numerical geotechnical modeling of induced seismic effects. Soil sample testing, shaking 
table and centrifuge applications and numerical simulations become significantly less 
complicated and time-consuming (LENTI & MARTINO, 2010). 
Nevertheless, in this thesis only real signals were used. This decisions is justifies by the fact that 
first, for one of the 11 remaining signals (001875x) the LEMA_DES signal transformation was 
not to be completed due to a non-convergence of the procedure. Second, comparing the original 
with the equivalent Tm-values an unsystematic shift appears between them; equivalent Tm-
values are bigger than original ones (cf. Fig. 4.19). Moreover, it might be of interest if applying 
real signals to the Diezma Landslide delivers similar results to those obtained by MARTINO et al. 
(2016) who used the LEMA_DES procedure for studies at the same location. 
 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. 4.18a-k. Original time-histories of the 11 considered earthquake signals. Peak ground acceleration, peak ground 

velocity and peak ground displacement are also shown in Tab. 4.10b. It should be noted that the filtered time-histories 
are so similar to these original ones, that a difference cannot be seen with bare eyes. 

 

 
Fig. 4.19. Values of the characteristic period (Tm); the two orange dots refer to the discarded signals. 

(g) (h) 

(i) (j) 

(k) 
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As Tab. 4.9 shows, the same set of signals is to be applied to the Diezma Landslide using three 
different methods to calculate ground displacement. Here, two issues are of particular 
importance. First, every method requires a different input: 
 

 modal recombination  (2D & 3D) needs displacement time-histories 
 simplified Newmark (1965) (2D)  needs acceleration & velocity time-histories 
 traditional Newmark (1965) (2D)  needs acceleration time-histories 
 finite difference analysis (2D & 3D) needs velocity time-histories 

 
Second, the methods have different requirements concerning the frequency content and the 11 
signals must be suitably filtered to satisfy the conditions of all three methods. Unlike for the 
Newmark-Method (1965), for modal recombination analysis in CESAR-LCPC and especially in 
the finite difference software FLAC a mesh with a specific mesh-size has to be defined. To allow 
for correct wave propagation through the model without major disturbances this mesh-size is 
given by the following equation where Δl is the size of one element of the mesh which is linked 
to the maximum frequency of the applied signal and the minimum shear wave velocity. 
 

∆𝑙 ≤
𝑣𝑠_𝑚𝑖𝑛
10 ∙ 𝑓𝑚𝑎𝑥

 

 
From section 4.1. it can be seen that the average shear wave velocity (vs) is 300 m/s. This 
velocity will also be taken as minimum velocity for numerical models with FLAC (cf. 7.), whereas 
for modal recombination analysis the lowest velocity is 100 m/s (cf. 6.). 
Returning to the above mentioned equation, and considering FLAC – being the most frequency 
sensitive method – a suitable element size and a maximum frequency can be found via the 
following consideration: 
 

10 𝑚 ≤
300 𝑚 𝑠⁄

10∙𝑓𝑚𝑎𝑥 𝐻𝑧
                    ∆𝑙 ≤

300 𝑚 𝑠⁄

10∙10 𝐻𝑧
 

                                          
                                                        𝑓𝑚𝑎𝑥 ≤ 3 𝐻𝑧                            ∆𝑙 ≤ 3 𝑚 
 

ID ESMD ID 
original signals filtered signals equivalence (%) 

Tm PGA  PGV PGD Tm PGA  PGV PGD Tm PGA  PGV PGD 

A 000049x 0.67 0.61 0.08 0.02 0.70 0.60 0.08 0.02 096 102 100 100 

B 000133x 0.65 1.07 0.10 0.02 0.66 1.08 0.10 0.02 099 099 100 100 

C 000127x 0.30 1.03 0.05 0.00 0.32 0.96 0.05 0.00 094 108 102 100 

D 000294x 1.07 0.91 0.18 0.06 1.08 0.92 0.18 0.06 099 099 100 100 

E 000335x 0.77 1.14 0.11 0.03 0.77 1.11 0.11 0.03 099 103 100 100 

F 001875x 0.58 0.98 0.11 0.01 0.58 0.99 0.11 0.01 100 099 100 100 

G 006142x 0.99 0.80 0.14 0.04 1.02 0.82 0.14 0.04 098 099 099 100 

H 000599x 0.38 0.96 0.05 0.01 0.38 0.97 0.05 0.01 099 099 101 100 

I 000612x 1.15 0.93 0.14 0.05 1.19 0.87 0.14 0.05 097 106 100 100 

J 000625x 0.48 1.05 0.07 0.01 0.49 1.07 0.07 0.01 099 098 101 100 

K 005820x 0.75 0.70 0.07 0.02 0.76 0.69 0.07 0.02 099 100 100 100 
Tab. 4.11. Comparison between original and filtered signals. Units are the same as in Tab. 4.10a & Tab. 4.10b.  

 
Adopting an element size of 10 m corresponding roughly to the resolution of the fine 3D-
geometry (cf. 4.2.3.) would entail a maximum frequency of 3 Hz. However, the Fourier 
Amplitude Spectra (cf. Fig. 4.20a-k) show that a cut-off at 3 Hz is by far too low to comprise the 
relevant frequency content. In contrast, a maximum frequency of 10 Hz seems rather reasonable. 
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The element size in this case reduces to 3 m (or smaller) which is still acceptable. All 11 signals 
have thus undergone a 4th-order low-pass Butterworth Filter with a cut-off frequency of 10 Hz.  
 

(a) (b) 

(c) (d) 
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Fig. 4.20a-k. Fourier Amplitude Spectra of the original time-histories of the 11 considered earthquake signals. It 

should be noted that the Fourier Amplitude Spectra of the filtered time-histories are so similar to these original ones, 
that a difference cannot be seen with bare eyes. 

 
To verify the equivalence between the original and the filtered signals values of Tm, PGA, PGV 
and PGD were compared (cf. Tab. 4.11, Fig. 4.19). It appeared that both signal types are very 
similar to each other and a difference cannot be seen with bare eyes neither in the time-histories 
nor in the Fourier Amplitude Spectra. Filtering with a cut-off frequency of 3 Hz would probably 
have caused significantly bigger changes. 
In the following chapters (cf. 5., 6., 7.) as well as in the conclusive chapter (cf. 8.) all analyses are 
based on the filtered signals, and – once again – one should not confound the two types of filters 
presented in this chapter: 
 

 the filter consisting of four criteria (cf. 4.4.) that was applied to the ESMD 
in order to retrieve the original 11 strong-motion records  

 the 4th-order low-pass Butterworth Filter with a cut-off frequency of 10 Hz 
that those 11 strong-motion records have undergone 

 
With “filtered signals” reference is made to the second filter – i.e. to the processed signals. 
However, since filtered time-histories and Fourier Amplitude Spectra are so similar to their 
original counterparts (cf. Fig. 4.18a-k, Fig. 4.20a-k), visual comparisons in the following chapters 
(cf. 5., 6., 7., 8.) are made to these “non-processed” (original) time-histories and Fourier 
Amplitude Spectra. Exceptionally, velocity-time-histories in Fig. 7.10a-f and Fig. 7.22a-d are 
shown indeed in their filtered versions. 
  

(e) (f) 

(g) (h) 

(i) (j) 

(k) 
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5.1. Introduction 

 
Static and seismic slope stability describes the potential of a slope to withstand or undergo 
movements. In particular, failures by sliding are of interest. The resistance to this kind of failure 
is determined by the regime of stress and strain within a concerned slope. An increase of shear 
stress (e.g. external loads, lateral pressure or transient forces) as well as a decrease of shear 
strength (e.g. weathering, toe cuts or changes of pore water pressure) might bring the stress-
strain regime out of balance and induce a failure. For example, after a heavy rain event the pore 
water pressure across a sliding surface increases reducing normal stress and friction. At the 
same time the weight of the sliding mass itself increases due to water saturation. Both 
conditions then favor the triggering of a landslide. 
To analyze static and seismic slope stability a multitude of methods and numerical codes are 
nowadays available. All of them have their conditions, hypotheses, limitations, advantages and 
disadvantages as well as fields of suitable application. Particular care has thus to be taken when 
choosing the right method for a distinct problem to properly include geological and geotechnical 
information, soil properties, the groundwater regime and the seismicity at the site.  
In this part of the thesis the focus will be on the concept of limit equilibrium for static and 
seismic slope stability analyses considering mainly the aspects of stratigraphy and the hydraulic 
state of a slope. The aspects of stress-strain behavior, volume change and time will be treated in 
chapters 6. and 7. later on.  
 
5.2. Static Slope Stability  

 
Static slope stability describes whether natural or artificial slopes (such as embankments, cuts 
or mining pits) are to be considered safe or unsafe under static conditions. Equilibrium is 
ensured when the available shear strength exceeds the shear stress. In the contrary case, the 
slope becomes unstable. 
Comparing methods of seismic (cf. 5.3.) and static slope stability analysis, it appears that the 
former relies on the latter. In many cases the additional dynamic stress necessary for inducing a 
landslide can be even very small, especially when the difference between shear stress and shear 
strength is not very large. Due to this obvious importance of static slope stability, the basic 
concept of limit equilibrium will be presented in this section. 
 
5.2.1. Concept of Limit Equilibrium Analysis 
 
Limit equilibrium analyses examine the equilibrium of forces and/or moments of a mass above a 
failure surface. Only the weight of the mass itself and – if present – additional static loads are 
considered. The objective is to identify the point at which the material reaches its limit of 
stability considering yield criteria and stress-strain relationships. 
The involved material above and below the failure surface is assumed to behave in a rigid and 
perfectly plastic manner without internal deformation and the process of shearing is supposed 
to take place only along the failure surface. Mechanically, this plane stress-strain condition 
means that no shear strain can occur before reaching the shear strength of the concerned 
material. Beyond this threshold the material deforms in a perfectly plastic manner. 
The interface behavior along the sliding surface is assumed to follow the Mohr-Coulomb Failure 
Criterion which was first formulated by the French military engineer Charles-Augustin DE 
COULOMB (1776) and brought to its today’s form by the German structural engineer Otto 
Christian MOHR (1900). It gives the relationship between shear strength and normal stress on a 
failure surface. The Austrian engineer and geologist Karl TERZAGHI (1950) – known as the 
“father of soil mechanics” – added later the principle that total stress is the sum of effective 
stress and pore water pressure (σ = σ’+u). The dimensionless friction coefficient (µ) equals the 
tangent of the effective internal friction angle (Φ’). 
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𝜏 = 𝜎′⏟
𝜎−𝑢

∙ tan(Φ′)⏟    
𝜇

+ 𝑐′ 

 
where    τ  …        shear strength     [Pa] 

   σ’ …        effective normal stress to the sliding surface [Pa] 
   u …        pore water pressure on the sliding surface  [Pa] 
   Φ’ …        effective internal friction angle    [°] 
   µ …        friction coefficient    [-] 
   c’ …        effective cohesion     [Pa] 
 
Based on the Mohr-Coulomb Failure Criterion, slope stability can be expressed by one value – by 
the factor of safety (SF), which was first formulated by LOWE (1976) as the factor between 
holding and driving stresses (or forces; cf. Tab. 5.1) corresponding simply spoken to the factor 
between “what the material can hold according to the Mohr-Coulomb Failure Criterion” and the 
occurring shear stress (or force). Driving stresses (or forces) result from the weight of the 
material itself and (if present) from the weight of water and additional static loads. Resisting 
stresses (or forces) are caused by frictional strength and cohesion and – if present – by artificial 
reinforcement. 
 

𝑆𝐹 =
ℎ𝑜𝑙𝑑𝑖𝑛𝑔

𝑑𝑟𝑖𝑣𝑖𝑛𝑔
=
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠
 

 

 force stress / strength / pressure 

shear … T τ 

normal … N σ 

water … U u 

cohesion … C c 

unit N = (kg·m)/s² Pa = N/m² = kg/(m·s²) 
Tab. 5.1. Nomenclature of forces and stresses. 

 

 
Fig. 5.1. Block on an inclined planar surface. The force 

vectors of the water have their origin at the gravity 
center of the saturated part of the mass. 

 
The factor of safety for a block (cf. Fig. 5.1) on an inclined planar surface is obtained as shown 
via the following equations. It should be mentioned that the factor “1” in these equations 
represents the unit width; it is necessary to introduce the unit of meter to properly obtain a 
volume. All variables are in SI-units; “g” is the gravity constant (9.81 m/s²), “β” is the slope angle 
and “γ” is the specific weight (in N/m³). 



120 

 

The weight of a block is given by 𝑊 = 𝑚 ∙ 𝑔 = (𝑉 ∙ 𝜌) ∙ 𝑔 = 𝑉 ∙ (𝜌 ∙ 𝑔) = 𝑉 ∙ 𝛾 
 
with the exerting normal force 𝑁 = 𝑊 ∙ cos(𝛽) = (𝛾 ∙ (ℎ ∙ 1 ∙ 𝑑𝑥)) ∙ cos(𝛽) 

 
and similarly:    𝑈 = 𝑊𝑤 ∙ cos(𝛽) = (𝛾𝑤 ∙ (ℎ𝑤 ∙ 1 ∙ 𝑑𝑥)) ∙ cos(𝛽) = 𝑢 ∙ 𝑙 ∙ 1 

                                    𝛾𝑤 ∙ ℎ𝑤 ∙ 1 ∙ (𝑙 ∙ cos(𝛽)) ∙ cos(𝛽) = 𝑢 ∙ 𝑙 ∙ 1 
                                                    𝛾𝑤 ∙ ℎ𝑤 ∙ 1 ∙ 𝑙 ∙ cos

2(𝛽) = 𝑢 ∙ 𝑙 ∙ 1 
                                                                                                                                      𝛾𝑤 ∙ ℎ𝑤 ∙ cos

2(𝛽) = 𝑢 
                                       

The factor of safety is defined as follows. The first equation is in forces; the result is in pressure. 
 

𝑆𝐹 =
𝑐′ ∙

𝑑𝑥
cos(𝛽)

∙ 1 + (𝑁 − 𝑢 ∙
𝑑𝑥

cos(𝛽)
∙ 1) ∙ tan(Φ′)

𝑊 ∙ sin(𝛽)
=
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠
 

 

𝑆𝐹 =
𝑐′ ∙

𝑑𝑥
cos(𝛽)

∙ 1

𝛾 ∙ ℎ ∙ 1 ∙ 𝑑𝑥 ∙ sin(𝛽)

+
(𝛾 ∙ ℎ ∙ 1 ∙ 𝑑𝑥 ∙ cos(𝛽) − 𝛾𝑤 ∙ ℎ𝑤 ∙ cos

2(𝛽) ∙
𝑑𝑥

cos(𝛽)
∙ 1) ∙ tan(Φ′)

𝛾 ∙ ℎ ∙ 1 ∙ 𝑑𝑥 ∙ sin(𝛽)
 

 

𝑆𝐹 =
𝑐′

𝛾 ∙ ℎ ∙ sin(𝛽) ∙ cos(𝛽)
∙
2

2
+
1 ∙ 𝑑𝑥 ∙ cos(𝛽) ∙ (𝛾 ∙ ℎ − 𝛾𝑤 ∙ ℎ𝑤) ∙ tan(Φ′)

𝛾 ∙ ℎ ∙ 1 ∙ 𝑑𝑥 ∙ sin(𝛽)
 

 

𝑆𝐹 =
2 ∙ 𝑐′

𝛾 ∙ ℎ ∙ sin(2 ∙ 𝛽)
+
(𝛾 ∙ ℎ − 𝛾𝑤 ∙ ℎ𝑤) ∙ tan(Φ′)

𝛾 ∙ ℎ ∙ tan(𝛽)
 

 
Factors of safety less than 1 testify unstable conditions of the sliding mass, whereas values above 
1 describe stable conditions. However, for civil engineering purposes only values above 1.3 are 
considered as reasonably safe (FAURE, 2000) and for long term stability a factor of safety of 1.5 
is required (KRAMER, 1996). 
One point of criticism of the concept of the factor of safety is that one value is representative for 
the entire rupture surface because limit equilibrium analyses assume that a rupture is a static 
issue and that all points along the rupture surface experience movement at the same time. 
However, natural materials are usually brittle or ductile and show a strain-dependent behavior. 
Therefore, a failure is rather likely to be progressive with points failing at different times. Hence, 
when studying strain-softening materials with limit equilibrium analysis, residual shear 
strengths must be used (cf. Tab. 4.1). Also the pore water pressure plays an important role; 
guidelines were published by DUNCAN (1992) on this subject. 
Moreover, methods using limit equilibrium analysis only give an indication about the stability of 
a slope, but not about the displacement that can be expected after the rupture. 
Another issue arises due to simplifications and assumptions of many methods based on limit 
equilibrium analyses. In principle, a complete static slope stability analysis should satisfy all 
three equilibrium conditions: vertical force balance, horizontal force balance and moment 
balance. If this is the case a method is called “rigorous”, in the contrary they are “non-rigorous”. 
One major difference between methods based on the concept of limit equilibrium is the 
subdivision of the failure mass. Those methods that laminate the mass vertically are called 
“methods of slices”; by contrast, “slice-free methods” consider the failure mass as one single 
compound. The latter is more frequently applied to problems with very homogeneous material 
failing on a circular rupture surface. Here, the factor of safety is obtained by comparing the 
resisting and the overturning moment instead of the holding and driving stresses (or forces). If 
the sliding surface is known, the factor of safety can simply be obtained by one calculation. As in 
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the case of a practical stability proof, however, the radius and the origin of the slip circle are 
iteratively varied until the circle delivering the smallest factor of safety is found (cf. Fig. 5.2). The 
thereby defined sliding surface is not necessarily the most probable one. 
 

 
Fig. 5.2. Case of a slice-free method with a circular sliding surface. 

 
Historically the employment of the slip circle concept dates back to 1916. The geotechnical 
pioneer Knut E. PETTERSON (1955) of the Swedish harbor authority calculated the stability of a 
quay wall in Göteborg. Shortly after, the Geotechnical Commission of the Swedish State Railways 
investigated a costly slope failure at an embankment (STATENS JÄRNVÄGARS GEOTEKNISKA 
KOMMISSION, 1922). Their method became known as the “Swedish Slip Circle Method” and was 
rather simple assuming the shear strength to be solely due to cohesion; i.e. friction angle was 
supposed to be zero.  
The method was developed further by FELLENIUS (1927) and later by BISHOP (1955) both of 
which are non-rigorous methods; they are described in the following sections. Although these 
methods dispose of a lengthy history with many modifications and refinements, they still take an 
important place nowadays. For example the German norm for calculations of terrain failures 
(DIN 4084) contains guidelines based on them (DIN, 2009). 
 
5.2.2. FELLENIUS-Method of Slices 
 
Alternatively known as the “Ordinary Method of Slices”, the FELLENIUS-Method (1927 & 1936) 
applies to a sliding mass on a circular rupture surface. It is divided into vertical slices of which 
each is considered separately (cf. Fig. 5.3, Fig. 5.1). The specific weight, the cohesion and the 
internal friction angle are assumed to be the same for every slice. 
In terms of equilibrium conditions, the method satisfies only the vertical force balance and 
moment balance; it neglects the interaction of inter-slice forces (CORNFORTH, 2005). Thus, the 
factor of safety is obtained only on the basis of the weight of the mass and the applying stresses 
(or forces) along the rupture surface. 
 

 
Fig. 5.3. One slice of the FELENIUS-Method (1927 & 1936) comparable to Fig. 5.1. 

 
Depending on whether the slices are equally large or not (i.e. if all “dxi” are equal or not) the 
equation of the factor of safety reads as follows; the shorter one has equally large slices. 
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𝑆𝐹𝐹𝐸𝐿 =

∑(𝑐′ + (𝛾 ∙ ℎ𝑖 ∙ cos
2(𝛽𝑖) − 𝑢𝑖) ∙ tan(Φ′)) ∙

1
cos(𝛽𝑖)

∑𝛾 ∙ ℎ𝑖 ∙ sin(𝛽𝑖)
 

 

𝑆𝐹𝐹𝐸𝐿 =
∑(𝑐′ ∙

𝑑𝑥𝑖
cos(𝛽𝑖)

∙ 1) + (𝛾 ∙ ℎ𝑖 ∙ 𝑑𝑥𝑖 ∙ 1 ∙ cos(𝛽𝑖) − 𝛾𝑤 ∙ ℎ𝑤𝑖 ∙ cos
2(𝛽𝑖) ∙ 1 ∙

𝑑𝑥𝑖
cos(𝛽𝑖)

) ∙ tan(Φ′)

∑𝛾 ∙ ℎ𝑖 ∙ 𝑑𝑥𝑖 ∙ 1 ∙ sin(𝛽𝑖)
 

 
5.2.3. Modified (or Simplified) BISHOP-Method of Slices 
 
Also the BISHOP-Method (1955) applies to a sliding mass on a circular rupture surface and 
satisfies only the equilibrium conditions of vertical force balance and moment balance. However, 
it takes into account the inter-slice forces (CORNFORTH, 2005). 
In contrast to the FELLENIUS-Method (1927 & 1936), this method approaches the factor of 
safety iteratively; i.e. the obtained factor of safety must be inserted back to the equation until its 
value becomes stable. Indeed, the initial value for the factor of safety must be estimated with any 
other method. The final factor of safety differs by a few percent from the one that results from 
the FELLENIUS-Method (1927 & 1936). 
 

𝑆𝐹𝐵𝐼𝑆 =

∑
𝑐′ ∙

𝑑𝑥𝑖
cos(𝛽𝑖)

∙ 1 +
𝛾 ∙ ℎ𝑖 ∙ 𝑑𝑥𝑖 ∙ 1 − 𝛾𝑤 ∙ ℎ𝑤𝑖 ∙ cos

2(𝛽𝑖) ∙ 𝑑𝑥𝑖 ∙ 1
cos(𝛽𝑖)

∙ tan(Φ′)

1 +
tan(Φ′) ∙ tan(𝛽𝑖)

𝑆𝐹𝐵𝐼𝑆
∑𝛾 ∙ ℎ𝑖 ∙ 𝑑𝑥𝑖 ∙ 1 ∙ sin(𝛽𝑖)

 

 
5.2.4. Other Methods 
 
Over time a variety of methods for limit equilibrium analysis have been proposed. They differ 
not only by the material to be involved, but also by the failure geometry of the slope. Some 
methods are designed for translational failures, whereas others consider rotational ones. Sliding 
surfaces can thus be planar, multi-planar, circular, non-circular or even irregular.  
Materials for which these methods are suitable range from homogeneous to strongly 
heterogeneous in terms of strength, cohesion, stratification and discontinuities such as joints 
and seams. Another difference between the methods is the extent to which static equilibrium 
conditions are satisfied; not all of them satisfy vertical and horizontal force balance as well as 
moment balance. Moreover, some methods consider the movement of an entire homogeneous 
volume; others divide the volume into slices. 
Table 5.2 gives an overview of proposed methods. It should be noted that the list is surely not 
exhaustive and that some methods are further developments of others and in that sense very 
similar to each other. 
Since this thesis does not employ any of these methods, they are mentioned but not explained in 
detail at this stage. Straightforward descriptions of them are to be found in a summarizing 
publication of SOILVISION SYSTEMS LTD. (2007) referring to ABRAMSON et al. (2002) and to 
the TRANSPORTATION RESEARCH BOARD (1996). Also MELOUKA (2003) gives a good 
introduction to static slope stability methods in his thesis; generalized delineations are to be 
found in KRAMER (1996) and also in the bibliography of WIKIPEDIA (2017a). 
 

publication year author & method name alternative name 

1866 CULMANN  

1937 & 1948 TAYLOR  

1954 CAQUOT  

1954 & 1973 JANBU Simplified JANBU 

1954 & 1973 JANBU Generalized or Rigorous JANBU 



123 
 

1960 LOWE & KARAFIATH  

1960 BISHOP & MORGENSTERN  

1960 & 1965 BIAREZ  

1965 MORGENSTERN & PRICE  

1966 CAQUOT & KERISEL  

1967 SPENCER  

1968 HUNTER & SCHUSTER  

1968 & 1969 BELL  

1969 LAMBE & WHITMAN  

1970 US ARMY CORPS OF ENGINEERS Modified Swedish Method 

1973, 1975 & 1979 SARMA  

1974 RAULIN et al. Method of Perturbations 

1976 PERLOFF & BARON  

1977 FREDLUND & KRAHN  

1981 FREDLUND et al. General Limit Equilibrium Method 

1982 CHUGH  

1985 FAURE  

1992 LI  
Tab. 5.2. Methods for limit equilibrium analysis proposed in the course of the last century. It should be noted that the 

methods of SARMA (1973, 1975 & 1979) and CHUGH (1982) can also be used for seismic slope stability. 

 
5.3. Seismic Slope Stability  

 
The further complex methods to assess seismic slope stability incorporate the dynamic aspect of 
the earthquake. More precisely, they account for stresses induced by seismic shaking and for the 
entailed behavior of the slope materials. 
Since the 20th century several methods are available. According to the predominant type of 
instability, two categories are to be distinguished (KRAMER, 1996): 
 

 inertial instability  (assuming shear strength to be relatively constant; 
slope deformation by temporary exceedance of shear strength) 

 weakening instability (assuming the earthquake to weaken the soil so that it cannot 
remain stable under induced stresses; 
most commonly liquefaction and cyclic mobility) 

 
The methods are based either on the concept of limit equilibrium or the stress-strain approach.  
As mentioned in the introduction (cf. 5.1.), the focus in this part of the thesis is on the concept of 
limit equilibrium. The stress-strain behavior, the dynamic response of a landslide mass and its 
deformability will be treated in chapters 6. and 7. later on. Thus, only the concept of inertial 
instability will be discussed in the section. 
Inertial instability analysis can be seen as an extension of limit equilibrium analysis (cf. 5.2.1.). 
The sum of dynamic stress caused by the earthquake is superimposed on the static stresses what 
might lead to the exceedance of shear strength of the soil and a failure might be induced. Usually 
an earthquake causes significant horizontal and less significant vertical dynamic stresses, of 
which the latter are often neglected. Horizontal dynamic stresses are more significant and 
strongly influence the normal stress on and the shear stress along the failure surface. 
Unlike limit equilibrium analyses (cf. 5.2.1.) that give only a factor of safety, at least some of the 
methods using inertial instability analysis also provide an estimation of the expected 
displacement of the landslide mass – e.g. the MAKDISI-SEED-Method (1978). In the following the 
Psdeudostatic Method and the thereupon based NEWMARK-Method (1965) will be presented; 
both of them were applied to the Diezma Landslide (cf. 5.4.) in the course of this thesis. 
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5.3.1. Pseudostatic Analysis 
 
One of the first widely used approaches to assess seismic slope stability is the Pseudostatic 
Analysis introduced by TERZAGHI (1950) for dry materials.  
In this approach the dynamic force of an earthquake is represented by pseudostatic 
accelerations and their respective inertial forces. However, those forces are assumed constant 
and static and apply to the centroid of the landslide mass (cf. Fig. 5.4) – a fact that leaves the 
approach to remain rather crude in terms of property characterization. 
 

 
Fig. 5.4. Pseudostatic horizontal (Fh) and vertical (Fv) forces 

applying to the centroid of the landslide mass.  
The landslide mass has a unit width of 1 m. 

 
TERZAGHI (1950) defined the horizontal and vertical pseudostatic forces as stated below. It 
should be noted that the vertical pseudostatic force can have a resisting or driving effect, but 
since it tends to average out to zero the vertical pseudostatic force is often neglected. In theory, 
also the horizontal pseudostatic force could have a resisting effect, but by convention horizontal 
accelerations (and thus forces) are assumed to apply “away from the slope” as shown in Fig. 5.4. 
When superimposing the pseudostatic forces on the equation of the static factor of safety, one 
obtains the extended version for the pseudostatic factor of safety. 
 

𝐹ℎ =
𝑎ℎ∙𝑊

𝑔
= 𝑘ℎ ∙ 𝑊                    𝐹𝑣 =

𝑎𝑣∙𝑊

𝑔
= 𝑘𝑣 ∙ 𝑊 

 

𝑆𝐹𝑝𝑠𝑒𝑢 =
𝑐 ∙ 𝑙 ∙ 1 + ((𝑊 − 𝐹𝑣) ∙ cos(𝛽) − 𝐹ℎ ∙ sin(𝛽)) ∙ tan(Φ)

(𝑊 − 𝐹𝑣) ∙ sin(𝛽) + 𝐹ℎ ∙ cos(𝛽)
 

 

𝑆𝐹𝑝𝑠𝑒𝑢 ≈
𝑐 ∙ 𝑙 ∙ 1 + (𝑊 ∙ cos(𝛽) − 𝐹ℎ ∙ sin(𝛽)) ∙ tan(Φ)

𝑊 ∙ sin(𝛽) + 𝐹ℎ ∙ cos(𝛽)
 

 
where  Fh, Fv … horizontal and vertical pseudostatic forces  [N] 

ah, av … horizontal and vertical pseudostatic PGA  [m/s²] 
W … weight of the landslide mass    [N] 
g … gravity constant     [9.81 m/s²] 
kh, kv … horizontal and vertical pseudostatic coefficient [-] 

  c … cohesion       [Pa] 
  l … length of the failure surface    [m] 
  β … slope angle      [°] 

Φ … internal friction angle      [°] 
 
Being a fraction of the peak ground acceleration (ah = kh·g), the pseudostatic coefficient reflects 
to some degree the severity of the earthquake. This accounts for the fact that the peak ground 
accelerations are reached only very shortly in time and therefore landslides are not exposed to 
an additional force for a long time (JIBSON, 2011).  
Due to the relation to the peak ground acceleration, the pseudostatic coefficient plays an 
important role at the search for the critical acceleration a landslide mass has to overcome to fail. 
Using the equation of the pseudostatic factor of safety the pseudostatic coefficient is iteratively 
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varied until the factor of safety becomes 1. In this particular case (when SF = 1) the pseudostatic 
coefficient (kh) becomes the “critical coefficient” or “yield coefficient” (kc = ky) and accelerations 
bigger than the critical acceleration (ac = kc·g) cause a failure. 
For a simple pseudostatic stability analysis where the factor of safety is to be calculated, the 
pseudostatic coefficient must be selected. This selection is crucial and difficult at the same time 
because first, it should properly reflect the expected acceleration of the landslide mass and 
second, it significantly influences the result in terms of displacement. Empirical 
recommendations for the pseudostatic coefficient are provided by TERZAGHI (1950), SEED 
(1979), MARCUSON (1981), HYNES-GRIFFIN & FRANKLIN (1984) and the CALIFORNIA 
DIVISION OF MINES AND GEOLOGY (1997). Depending on what geological or geotechnical 
framework conditions they were calibrated (dams, embankments, natural slopes, etc.) their 
values are quite variable since acceptable displacements differ among the concerned sites (i.e. 
meters to centimeters). Only recently STEWART et al. (2003) and BRAY & TEAVASAROU (2009) 
proposed a procedure to calculate the pseudostatic coefficient based on the maximum horizontal 
peak ground acceleration, the magnitude of the earthquake, the source distance, the spectral 
acceleration and the permitted displacement.  
Like at conventional static equilibrium analysis (cf. 5.2.1.), the pseudostatic factor of safety is a 
simple scalar index for the stability of the landslide mass. It does not give information on the 
consequences after exceedance of the critical acceleration, on the displacement or on the 
likelihood of failure. 
Another drawback is that the approach is not applicable to every material. Soils that build up 
significant pore water pressure during an earthquake or those that lose more than 15% of their 
peak shear strength while shaking (KRAMER, 1996) cannot be examined using the pseudostatic 
approach. On this, SEED (1979) presents the examples of dams that failed during an earthquake 
although they had pseudostatic factors of safety well above 1. Also, sites likely to experience 
liquefaction are non-candidates for the Pseudostatic Analysis.  
But yet, and due to the simplicity of the method, it serves for preliminary screening purposes of 
non-sensitive soil structures with planar, circular or non-circular sliding surfaces. 
 
5.3.2. NEWMARK-Method 
 
In 1965 NEWMARK introduced a method for analyzing the dynamic performance of slopes 
undergoing seismic shaking. For the first time a slope stability analysis did not only deliver a 
factor of safety, but also the expected displacement of the sliding mass after it experienced an 
acceleration bigger than the critical acceleration. The NEWMARK-Method (1965) is therefore 
one step ahead of the older approaches such as the Pseudostatic Analysis. Interestingly finite 
element modeling approaches (JIBSON, 2011; cf. 6.2.1.) date back already to the 1950s, but being 
still in their very early ages the NEWMARK-Method (1965) quickly became a simple and fast tool 
for the evaluation of co-seismic permanent displacement. It is still widely used today 
representing a bridge between simple limit equilibrium analysis and highly complex numerical 
modeling of stress-strain behavior over time. 
Originally, NEWMARK (1965) proposed the method for embankments as he stated in his 
publication: 
 

“[…] In all compacted dam-construction materials, and in many natural soil strata, the 
dynamic shearing resistance is about the same as the static shearing resistance […]. 
However, at some localities, natural soil strata […] can lose […] their shearing resistance 
under shock conditions, either because of increased hydrostatic pressure or owing to loss in 
shearing strength from even slight remolding [i.e. disturbance].” (p. 142) 

 
However, WILSON & KEEFER (1983) discovered reasonable results also for the dynamic 
behavior of sliding masses on natural slopes pointing out that the method should be applied, 
though, for thin and stiff landslides. These types are indeed the most common types of landslides 
(KEEFER, 1984; KEEFER, 2002) that can make up 90% or more per earthquake (HARP et al., 
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1981; HARP & JIBSON, 1995; HARP & JIBSON, 1996; KEEFER & MANSON, 1998; JIBSON et al., 
2004; JIBSON et al., 2006). 
Mechanically the NEWMARK-Method (1965) is a classic rigid-block analysis approximating a 
landslide by a rigid block on an inclined plane (cf. Fig. 5.5). No displacement takes place until the 
critical (or yield) acceleration is overcome. Beyond that point the block experiences permanent 
displacement at constant stress along the shear surface until the velocity comes back to zero. 
The block does not undergo internal deformation and hence behaves in a perfectly plastic 
manner.  
 

 
Fig. 5.5. A block on an inclined planar surface. A permanent force (red) representing the earthquake is added to the 

static forces (green; cf. Fig. 5.1). The abbreviations “N” and “D” stand for “normal force” and “driving force”; 
“s” and “d” indicate the “static” and “dynamic” character of the force. 

 
Other limiting assumptions (that do not necessarily apply to more recent further developments 
of the method; cf. below) are:  
 

 The static and the dynamic shear stress are the same. 
 The critical acceleration is not strain-dependent and constant throughout the analysis; 

upslope displacement does not happen. 
 The dynamic pore water pressure is neglected (also in further developments of the 

method), and thus the method is rather suitable for dry soils, compacted or over-
consolidated clays and dense or dry sands. 
 

Similar to the concept of limit equilibrium analysis employing the Mohr-Coulomb Failure 
criterion (cf. 5.2.1.) and to the Pseudostatic Analysis (cf. 5.3.1.) representing the earthquake by 
an additional body force (as kh·W), the NEWMARK-Method (1965) also considers the unique 
point where the mass comes out of equilibrium. Physically expressed this means: 
 

𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑛𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠

𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑛𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠
= 1 

 
In order to obtain a dynamic factor of safety, that clearly describes the critical condition, one 
sets: 
 

𝑆𝐹𝑁𝐸𝑊 =

𝑐′ ∙ 𝑙 ∙ 1⏞    
𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑒𝑑

+ (𝑁 − 𝑢 ∙ 𝑙 ∙ 1⏞    
𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑒𝑑

) ∙ 𝑡𝑎𝑛(𝜙)

𝑊 ∙ 𝑠𝑖𝑛(𝛽)
 

 

=
(𝑁𝑠𝑡𝑎𝑡 −𝑁𝑑𝑦𝑛) ∙ tan(Φ)

𝐷𝑠𝑡𝑎𝑡 + 𝐷𝑑𝑦𝑛
=
(𝑊 ∙ cos(𝛽) − 𝑘ℎ ∙ 𝑊 ∙ 𝑠𝑖𝑛(𝛽)) ∙ tan(Φ)

𝑊 ∙ 𝑠𝑖𝑛(𝛽) + 𝑘ℎ ∙ 𝑊 ∙ cos(𝛽)
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It should be noted that in this equation the vertical force induced by the earthquake, the water 
pressure (u) as well as the cohesion (c’) are neglected. In this particular case the factor of safety 
can be also expressed as: 
 

𝑆𝐹𝑁𝐸𝑊 =
tan(𝜙)

tan(𝛽)
 

 
Again, the critical (or yield) coefficient (kc = ky) required for a factor of safety of 1 defines the 
critical acceleration (ac = kc·g) which the block has to overcome for instability. It is not strain-
dependent and constant throughout the analysis. 
As indicated in section 5.3.1., the critical acceleration can be found by iteratively varying the 
critical coefficient until the factor of safety becomes 1. Another option was proposed by 
NEWMARK (1965) assuming the seismic force to be applied parallel to the slope (and not 
horizontally): 
 

𝑎𝑐 = (𝑆𝐹𝑠𝑡𝑎𝑡 − 1) ∙ 𝑔 ∙ sin(𝛽) 
 

where ac is in g 
 
As for the displacement, NEWMARK (1965) suggested that it must be related to the amplitude 
and frequency content of an earthquake, i.e. the expected displacement depends on (KRAMER, 
1996): 
 

 whether the critical acceleration is exceeded, 
 how often and for how much time it is exceeded and 
 by how much the critical acceleration is exceeded. 

 
Depending on the number of pulses that a slope experiences there are two ways of displacement 
estimation. For single-pulse displacements NEWMARK (1965) proposed one equation for the 
relative and one for the maximum displacement. 
 

𝑑𝑟𝑒𝑙 =
𝑣𝑚𝑎𝑥

2

2∙𝑎𝑐
∙ (1 −

𝑎𝑐

𝐴
)                    𝑑𝑚𝑎𝑥 =

𝑣𝑚𝑎𝑥
2

2∙𝑎𝑐
∙
𝑎𝑚𝑎𝑥

𝑎𝑐
 

 
where   drel, dmax … relative and maximal displacement  [m] 

vmax  … peak ground velocity    [m/s] 
  amax  … peak ground acceleration   [g] 

ac  … critical acceleration    [g] 
A  … acceleration (the time-dependent signal) [g] 

 
For more complex signals with many pulses exceeding the critical acceleration displacements 
are usually obtained by a double-integration procedure. In a first step, the acceleration time-
history is reduced to only the parts above the critical acceleration (cf. Fig. 5.6); these parts are 
then integrated to obtain the respective velocity time-history. In a second step, this velocity 
time-history is again integrated to obtain the displacement time-history which is shown in its 
cumulative form. The highest value depicts the maximal displacement of the soil mass. This 
procedure is highly sensitive to the value of the critical acceleration and thus to the critical 
coefficient; even small differences can result in large variations of displacement.  
As mentioned before, the dynamic response of the slope is not only a function of its geometry 
and the properties of the involved material. It also depends largely on the amplitude and 
frequency content of the strong-motion signal. One important detail of the NEWMARK-Method 
(1965) is that the hypothesis of a fully rigid behavior is only true for signals with low 
frequencies (cf. Fig. 5.7a). Only at long wavelengths (λ) the entire soil mass moves in phase. In 
case the wavelength of the arriving shear wave is too short, inertial forces inside the soil mass 
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might act in opposite directions (cf. Fig. 5.7b), and the resultant inertial force could be 
significantly smaller than that implied by NEWMARK’s (1965) rigid-block assumption (KRAMER, 
1996).  
 

 
Fig. 5.6. Double-integration procedure leading from an acceleration time-history 

to a cumulative displacement history (after WILSON & KEEFER, 1985). 

 
JIBSON et al. (2013) suggest the method to be satisfactory only for relatively thin landslides in 
stiff or brittle material having a Ts/Tm-ratio (cf. 6.4.2.) of less than 0.1, but not for thicker 
landslides in softer materials (RATHJE & ANTONAKOS, 2010). 
 

  
Fig. 5.7a-b. In-phase and out-of-phase movement of a landslide mass due to different 

wavelengths and frequencies (after KRAMER, 1996). 

 
Subsequent modifications of the NEWMARK-Method (1965) made it applicable to a wider range 
of landslide types. Further developments included more complex geological and geotechnical 
settings, hence more diverse and realistic settings, and more specific consideration of the 
dynamic response of the concerned slope. Some also account for internal deformation during 
seismic shaking. 
Widely known further developments are the so-called “De-Coupled Method” and “Coupled 
Method”. The first one – also named “Modified NEWMARK-Method” – calculates the dynamic 
response independently of the permanent displacement of the landslide, whereas the Coupled 
Method can model both simultaneously. The latter represents the most sophisticated and time-
consuming type of sliding-block analysis (JIBSON, 2011). 
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Over time, many authors also undertook empirical approaches to relate the displacement of 
rigid blocks to one or more parameters of the strong-motion signal. Closed-form solutions for 
permanent displacements were derived by SARMA (1975) and YEGIAN et al. (1988) for 
rectangular, triangular and sinusoidal periodic signals (cf. Fig. 5.8). FRANKLIN & CHANG (1977) 
found that displacements induced by real earthquakes are very similar to what the sinusoidal 
and the triangular curves predict above an ac/amax-ratio of 0.5.  
Beginning in the later 1980 up to the present day, authors attempt to consider many more 
earthquake parameters because it was recognized that the peak ground acceleration as unique 
descriptive factor might not be sufficient. First, YEGIAN et al. (1991) empirically related the 
displacement also to frequency content and duration; his curve is shown in orange in Fig. 5.8. 
Later, sliding-block displacements were correlated with peak ground acceleration, peak ground 
velocity, Arias Intensity and moment magnitude. Usually authors conduct a number of 
NEWMARK-Analyses (1965) employing various single horizontal component strong-motion 
records that are either globally or regionally representative and finally form regression laws 
based on the results. 
 

 
Fig. 5.8. Empirical regression laws correlating rigid-block displacement and 

the ac/amax-ratio (after SARMA, 1975; after YEGIAN et al. 1988; after YEGIAN et al., 1991). 

 
Table 5.3 shows eleven recent regressions by various authors based on different combinations 
of correlation parameters. In the following the respective equations are given. It should be noted 
that “log” refers to the common logarithm (with base 10) and “ln” to the natural logarithm (with 
base e).  
 
Units are: Dn  … displacement   [cm] 
  ac  … critical acceleration   [g] 
  amax  … peak ground acceleration  [g] 
  vmax  … peak ground velocity  [cm/s] 
  Ia  … Arias Intensity   [m/s] 

Mw  … moment magnitude  [-] 
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RATHJE & SAYGILI (2009):  
 

ln(𝐷𝑛) = 4.89 − 4.85 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

) − 19.64 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
2

+ 42.49 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
3

− 29.06 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
4

 

                  +0.72 ∙ ln(𝑎𝑚𝑎𝑥) + 0.89 ∙ (𝑀𝑊 − 6.00) 
 

SAYGILI & RATHJE (2008):  
 

ln(𝐷𝑛) = 5.52 − 4.43 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

) − 20.39 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
2

+ 42.61 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
3

− 28.74 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
4

 

                  +0.72 ∙ ln(𝑎𝑚𝑎𝑥) 
 

SAYGILI & RATHJE (2008):   
 

ln(𝐷𝑛) = −1.56 − 4.58 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

) − 20.84 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
2

+ 44.75 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
3

− 30.50 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
4

 

                  −0.64 ∙ ln(𝑎𝑚𝑎𝑥) + 1.55 ∙ ln(𝑣𝑚𝑎𝑥) 
 

SAYGILI & RATHJE (2008):  
 

ln(𝐷𝑛) = −0.74 − 4.93 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

) − 19.91 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
2

+ 43.75 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
3

− 30.12 ∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
4

 

                  −1.30 ∙ ln(𝑎𝑚𝑎𝑥) + 1.04 ∙ ln(𝑣𝑚𝑎𝑥) + 0.67 ∙ ln(𝐼𝑎) 
 

JIBSON (2007):  
 

log(𝐷𝑛) = 0.215 + log((1 −
𝑎𝑐
𝑎𝑚𝑎𝑥

)
2.341

∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
−1.438

) 

 

JIBSON (2007):   
 

log(𝐷𝑛) = −2.710 + log((1 −
𝑎𝑐
𝑎𝑚𝑎𝑥

)
2.335

∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
−1.478

) + 0.424 ∙ 𝑀𝑊 

 

JIBSON (2007):   
 

log(𝐷𝑛) = 2.401 ∙ log(𝐼𝑎) − 3.481 ∙ log(𝑎𝑐) − 3.230 
 

JIBSON (2007):   
 

log(𝐷𝑛) = 0.561 ∙ log(𝐼𝑎) − 3.833 ∙ log (
𝑎𝑐
𝑎𝑚𝑎𝑥

) − 1.474 

 

JIBSON et al. (1998 & 2000):  
 

log(𝐷𝑛) = 1.521 ∙ log(𝐼𝑎) − 1.993 ∙ log(𝑎𝑐) − 1.546 
 

JIBSON (1993):  
 

log(𝐷𝑛) = 1.460 ∙ log(𝐼𝑎) − 6.642 ∙ 𝑎𝑐 +1.546 
 

AMBRASEYS & MENU (1988): 
 

log(𝐷𝑛) = 0.90 + log((1 −
𝑎𝑐
𝑎𝑚𝑎𝑥

)
2.53

∙ (
𝑎𝑐
𝑎𝑚𝑎𝑥

)
−1.09

) 
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authors records tested for standard deviation 

RATHJE & SAYGILI (2009) > 2000 worldwide 

0.05 g ≤ ac ≤ 0.30 g 

0.95 

SAYGILI & RATHJE (2008) 

> 2383 worldwide 

1.13 

SAYGILI & RATHJE (2008) 0.41 + 0.52 (ac/amax) 

SAYGILI & RATHJE (2008) 0.20 + 0.79 (ac/amax) 

JIBSON (2007) 
> 2270 worldwide 

0.05 g ≤ ac ≤ 0.40 g 

0.51 

JIBSON (2007) 0.45 

JIBSON (2007) 
> 0875 worldwide 

0.66 

JIBSON (2007) 0.62 

JIBSON et al. (1998 & 2000) > 0555 Los Angeles 
0.02 g ≤ ac ≤ 0.40 g 

0.38 

JIBSON (1993) > 0011 worldwide 0.41 

AMBRASEYS & MENU (1988) > 0050 worldwide 0.1 ≤ ac/amax ≤ 0.9 0.30 
Tab. 5.3. Empirical regressions for rigid-block displacements. 

Numbers  to  serve to distinguish those equations that are published in the same reference. 

 
5.4. Application to the Diezma Landslide 

 
Methods to assess the slope stability and the expected displacement of the Diezma Landslide 
were to some extent “customized” in order to ensure best compatibility with a few compromises. 
The following subsections describe the entire procedure of calculating expected displacements: 
from the definition of the slice geometry via the FELLENIUS- and the BISHOP-Method (1927 & 
1936 and 1955 respectively) to the critical acceleration, and finally to the NEWMARK-Method 
(1965) and thereupon based further developments. The section finishes with a critical view on 
the procedure. 
 
5.4.1. Slice Geometry of the Diezma Landslide 
 
Section 4.2. discusses the differences between the simplified (cf. 4.2.2.) and fine (cf. 4.2.3.) 
geometry as well as the fact that both of them have a long and a short version (cf. 4.2.1.). 
Therefore, in principle, four LCS can be considered for imposing on them a slice geometry. 
However, it seemed to be very much sufficient to limit the slice geometry to the two LCS of the 
simplified geometry because of two reasons. First, the long and short LCS of the fine geometry 
(LCS Aal and LCS Aas; cf. Fig. 4.15o, Fig. 4.15p) are very similar to the long and short LCS of the 
simplified geometry (LCS Aal and LCS Aas; cf. Fig. 4.10k, Fig. 4.10l). Second, the FELLENIUS-
Method (1927 & 1936) as well as the NEWMARK-Method (1965) both introduce many 
simplifying hypotheses and it would not be worth the effort to create a very fine and elaborate 
slice geometry under this circumstances. Then note in Tab. 4.9 stating that the fine geometry is 
“not to be divided into slices” is therefore not referring to the possibility to do so, but to the 
sense of purpose. 
For simplicity, the already exiting sectioning of the simplified 2D-geometry (corresponding to 
the LCS Aa of the simplified geometry, cf. Fig. 4.8) was used for the slice geometry. The 
convenient advantage here is that the sections do not only have the same length (dxi; cf. Fig. 5.3) 
but are also well defined in all other dimensions. A weak point is that the hereby obtained slices 
consist of two triangles and two trapezes instead of rhombus-shaped slices. For the FELLENIUS-
Method (1927 & 1936), though, this is of minor importance since the method ascribes the point 
of force application to the gravity center of the slice which does not have to be located. The 
respective weight can be calculated therefore via the surface of the slices (cf. 5.4.2.). 
 
5.4.2. Factor of Safety according to the FELLENIUS-Method 
 
The NEWMARK-Method (1965) requires a factor of safety that will subsequently define the 
critical acceleration that the sliding mass has to overcome to start moving down slope. But since 
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the NEWMARK-Method (1965) does only represent one block that can experience a 
supplementary body force representing the earthquake, this supplementary force was 
introduced to the equation of FELLENIUS (1927 & 1936). 
 

𝑆𝐹𝐹𝐸𝐿 =
∑(𝑐′ ∙ 1 ∙ 𝑙𝑖) + (𝛾 ∙ ℎ𝑖 ∙ 𝑑𝑥𝑖 ∙ 1 ∙ cos(𝛽𝑖) − 𝑘ℎ ∙ 𝛾 ∙ ℎ𝑖 ∙ 𝑑𝑥𝑖 ∙ 1 ∙ sin(𝛽𝑖) − 𝑢 ∙ 1 ∙ 𝑙𝑖) ∙ tan(Φ′)

∑𝛾 ∙ ℎ𝑖 ∙ 𝑑𝑥𝑖 ∙ 1 ∙ sin(𝛽𝑖) + 𝑘ℎ ∙ 𝛾 ∙ ℎ𝑖 ∙ 𝑑𝑥𝑖 ∙ 1 ∙ cos(𝛽𝑖)
 

 
In contrast to a simple static or pseudostatic limit equilibrium analysis (cf. 5.2.1., 5.3.1.) with one 
single compound mass, this equation allows for individual slice characterization in terms of 
dimension, soil properties and water saturation – all of which are known and well defined for 
the Diezma Landslide (cf. Tab. 5.4, Fig. 4.8). For comparison, the static as well as the pseudo-
dynamic factor of safety can easily be calculated. 
The factor of safety was assessed for the long and the short slice geometry by a simple 
spreadsheet calculation in Microsoft Excel which computes resisting and driving forces for each 
slice separately to finally put their sum in relation. The sliding mass was assumed to be entirely 
dry and thus the pore water pressure is 0. If the pseudostatic coefficient is kept equal to 0 as 
well, the factor of safety will be static and representative for the stability of the slope in times 
without seismic shaking. By iteratively varying the pseudostatic coefficient the factor of safety is 
brought to 1, i.e. to the point where the sliding mass becomes unstable. 
 

slice 
γ 

(N/m³) 
c’ 

(Pa) 
u 

(Pa) 
Φ’ 
(°) 

β 
(°) 

dx 
(m) 

shape 

1l 

21400 4000 0.00 12.00 

15.04 123.75 triangle 

1s 16.58 068.00 triangle 

2 11.09 123.75 trapeze 

3 08.39 123.75 trapeze 

4 06.11 123.75 triangle 
Tab. 5.4. Soil properties, water saturation and shape of the slices of the Diezma Landslide. It should be noted that the 

first slice can either be big or small representing the long (l) or short (s) geometry respectively. 

 
The weight of a slice is defined by “γ·h·dx·1”. Attention must be paid, however, because this 
equation is not suitable for the “irregular” slices of the Diezma Landslide. The correct surfaces 
(that must be later multiplied by the unit width to get the volume) for triangles and trapezes are 
given in Tab. 5.5. Alternatively one also could make use of the Heron’s Formula (cf. below) to 
calculate the surfaces of triangles (cf. Fig. 4.8), then recombine them to trapezes where needed 
and multiply by the unit width to obtain the volumes.  
 

𝐴 = √𝑠 ∙ (𝑠 − 𝑎) ∙ (𝑠 − 𝑏) ∙ (𝑠 − 𝑐)          with          𝑠 =
𝑎+𝑏+𝑐

2
 

where a, b, and c are the sides of an arbitrary triangle 
 

slice shape 
surface with 

height-equation 
surface with 

Heron’s equation 
≈ … [m²] 

1l triangle (dx*h)/2 A(triangle 1l)*1 0700 

1s triangle (dx*h)/2 A(triangle 1s)*1 0400 

2 trapeze (dx*(hl+hr))/2 A(triangles 2+3)*1 1900 

3 trapeze (dx*(hl+hr))/2 A(triangles 4+5)*1 2900 

4 triangle (dx*h)/2 A(triangle 6)*1 1700 
Tab. 5.5. Shape of the slices of the Diezma Landslide. It should be noted that the first slice  

can either be big or small representing the long or short geometry respectively (cf. Fig. 4.8).  
The indices “l” and “r” at the trapezes refer to the left and right margins. 

 
Regardless of how the weight of the four slices was calculated, static factor of safety for the long 
and the short slice geometry appeared to be almost the same. Likewise, by bringing the factor of 
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safety to 1, for both slice geometries a very similar pseudostatic coefficient was obtained (cf. 
Tab. 5.6). The last row shows the adopted values for further calculations with other methods. 
They show one very important aspect for all following displacement models: the small volume 
difference in the crown area of the Diezma Landslide does not contribute significantly to the 
outcome of displacement analyses. 
 

surface 
calculation 

long simplified slice geometry short simplified slice geometry 

 SF kh  SF kh 

height 
based 

static 1.3940 0 static 1.4162 0 

pseudostatic 1 0.0617 pseudostatic 1 0.0639 

Heron 
based 

static 1.3936 0 static 1.4158 0 

pseudostatic 1 0.0617 pseudostatic 1 0.0639 

adopted values for further calculations 0.06  0.06 
Tab. 5.6. Results for the static factor of safety and the pseudostatic coefficient of the long and the short slice geometry. 

Values are rounded to their fourth decimal to underline the similarity and justify the choice of kh. 

 
Under static conditions, thus, the landslide mass – in its initial state in 1990 before the main 
failure – should be very stable. As FAURE (2000) stated, values above 1.3 are considered as 
reasonably safe (cf. 4.2.1.). However, the fact that the Diezma Landslide was and is moving at 
certain intervals even in phases without seismic activity or heavy rain is to some extent 
discordant with the high factor of safety. 
In this regard, the factor of safety proposed by RODRÍGUEZ-PECES et al. (2011) seems to fit 
better. The authors conducted an evaluation of effectiveness of slope stability measures in five 
stages using the 2D slope stability software Slide which is based on the limit equilibrium 
approach of MORGENSTERN & PRICE (1965). The value of 1.05 represents the state of the slope 
under dry conditions in 1990 after the highway A-92 was built (cf. 4.2.1., Fig. 4.7). It remains, 
though, unclear why the considered sliding mass is so small and does not extend until beyond 
the old road. 
 
5.4.3. Factor of Safety according to the BISHOP-Method 
 
The static factors of safety of the BISHOP-Method (1955) are very similar to those of the 
FELLENIUS Method (1927 & 1936). For the long and the short slice geometries the iterative 
height based equations even out at 1.396 and 1.419 already after the first iteration. Values are 
rounded to their fourth decimal to enable clear comparisons with values in Tab. 5.6. 
Because of the high similarity, it might be reasonably assumed that the FELLENIUS-Method 
(1927 & 1936) is good enough to correctly represent the slices of the Diezma Landslide with 
their mechanical conditions. 
 
5.4.4. Critical Acceleration for the Diezma Landslide 
 
By definition (cf. 5.3.1. & 5.3.2.) the critical acceleration is obtained by multiplying the critical 
coefficient (the one driving the factor of safety to 1) with the gravity constant: 
 

𝑎𝑐 = 𝑘𝑐 ∙ 𝑔 
 

where ac is in [g] or [m/s²] 
 
Therefore the critical coefficients and critical accelerations of the two simplified landslide 
geometries (long and short version) in 2D are: 
 

𝑘𝑐 = 0.06                    𝑎𝑐 = 0.06 𝑔 = 0.59 
𝑚

𝑠2
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5.4.5. Displacement according to the NEWMARK-Method 
 
The classic NEWMARK-Method (1965) is suitable for permanent displacement analysis of stiff 
and thin landslides (cf. 5.3.2.) – a condition that the Diezma Landslide fulfills almost perfectly 
within its main sliding mass (cf. 4.1.). Moreover, the method neglects the pore water pressure, 
what in this case does not turn out to be a disadvantage since the Diezma Landslide is assumed 
to be dry in any model throughout the thesis. 
A point that deserves a closer look is the fact that the method is designed for almost planar 
sliding surfaces. According to this, on the one hand, the Diezma Landslide is also a very good 
candidate because it is mostly described as a roto-translational or even purely translational 
landslide. On the other hand, one can argue that – if considered as such – the FELLENIUS-Method 
(1927 & 1936) might have been not suitable because it is designed for circular rupture surfaces. 
However, as explained in section 4.1., the exact mechanical type of the Diezma landslide varies in 
literature and RODRÍGUEZ-PECES et al. (2011; cf. Fig. 4.7) even depict a stability analysis with a 
slip circle whose radius is so large that the sliding mass becomes again comparable to a roto-
translational setting. 
Another critical point is that according to JIBSON et al. (2013) the method is satisfactory only for 
landslides having a ratio of Ts/Tm (cf. 6.4.2.) of less than 0.1. This condition is not fulfilled (cf. 
Tab. 5.7); for values between 0.1 and 1.0 JIBSON et al. (2013) describe the method as applicable 
but rather unconservative. The characteristic site period (Ts = 4·h/vs) is calculated with a 
(middle) height of 19.50 m of the landslide mass (cf. Fig. 4.8) and a shear wave velocity of 300 
m/s (cf. 4.1.). Being linked only to height and velocity it is the same for all signals (cf. Fig. 6.6) 
that are applied to the Diezma Landslide during the NEWMARK-Analysis (1965). For 
consistency, also the characteristic site period related to the (down slope) length of the landslide 
(Tl = l/vs) and the ratio of Tl/Tm (cf. 6.4.2.) is given in Tab. 5.7. although no recommendations for 
suitable ranges appear in literature. 
 

signal ID 
Ts* 
(s) 

Tl* 
(s) 

Tm 

(s) 
Ts/Tm* 

(-) 
Tl/Tm* 

(-) 

A 000049x 

0.26 1.68 

0.70 0.37 2.40 

B 000133x 0.66 0.39 2.54 

C 000127x 0.32 0.81 5.21 

D 000294x 1.08 0.24 1.55 

E 000335x 0.77 0.34 2.16 

F 001875x 0.58 0.45 2.87 

G 006142x 1.02 0.26 1.65 

H 000599x 0.38 0.68 4.37 

I 000612x 1.19 0.22 1.41 

J 000625x 0.49 0.54 3.46 

K 005820x 0.76 0.34 2.20 
Tab. 5.7. Characteristic site periods and ratios of the Diezma Landslide for vs = 300 m/s (*).. 

 
It should be noted that the NEWMARK-Method (1965) calculates displacements based on 
geotechnical and geometrical parameters other than the shear wave velocity. Therefore, the 
displacements are no function of the characteristic site periods (Ts and Tl). If the displacements 
are dependent on the characteristic periods of the signals (Tm) will be discussed below together 
with the eventual influence of other important parameters. 
A software which is described by the developers as a tool to facilitate sliding-block analysis is 
the program SLAMMER (Seismic LAndslide Movement Modeled using Earthquake Records; 
JIBSON et al., 2013). It comprises more than 2100 strong-motion from 28 earthquakes to 
conduct classic NEWMARK-Analyses (1965) as well as its further developments and regression 
approaches. Furthermore, the user can import other strong-motion data. 
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SLAMMER calculates the cumulative displacement in the same way as described in section 5.3.2. 
via double-integration of the acceleration time-history of a strong-motion. However, this 
integration procedure is not only conducted for the “truncated” signal of the normal (upper) 
polarity, but also – and separately – for the one of the inverse (lower) polarity (cf. Fig. 5.9a-k). 
The reasoning behind this practice is that the permanent force representing the earthquake is 
indeed assumed to apply in the most unfavorable direction (red arrow in Fig. 5.10). But since the 
used signal is simply a horizontal component without information about its directivity, it must 
be considered that the biggest displacement can originate from the normal or the inverse 
polarity part. 
Maximum (cumulative) displacements per signal calculated with SLAMMER are listed in Tab. 
5.8. The cumulative curves are to be found in the appendix (cf. A.4.).  
 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. 5.9a-k. Acceleration time-histories of all filtered (cf. 4.4.) signals with “truncated” normal and inverse polarity.  

 

 
Fig. 5.10. Direction in which the permanent force representing the earthquake is assumed.  

 
 
 

(e) (f) 

(g) (h) 

(i) (j) 

(k) 
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signal ID 
PGA 

in 
… polarity 

dmax  
in 

… polarity 

normal 
dmax 
(cm) 

inverse 
dmax 

 (cm) 

A 000049x inverse 0.0000 0.0002 

B 000133x normal 0.3840 0.3510 

C 000127x normal 0.1201 0.0323 

D 000294x inverse 0.0038 0.3254 

E 000335x inverse normal 0.5309 0.3699 

F 001875x normal 1.4084 1.1590 

G 006142x normal 0.2138 0.0490 

H 000599x inverse 0.1284 0.3034 

I 000612x normal 0.1488 0.0020 

J 000625x inverse 0.0488 0.3534 

K 005820x normal 0.0565 0.0000 
Tab. 5.8. Maximum (cumulative) displacements per signal. 

 
Signal A (000049x) and signal K (005820x) show no displacement for the normal and the 
inverse polarity respectively because the amplitudes never exceed the critical acceleration. 
In most of the cases the peak ground acceleration has the same polarity as the maximum 
displacement. Only for signal E (000335x) this is not the case. Its peak ground acceleration (1.11 
m/s²) is located in the inverse polarity whereas the maximum displacement is in the normal 
polarity. This fact is simply explained by the area content over which the double-integration was 
performed; although the peak ground acceleration is higher in the inverse polarity, the peak 
does not overdraw as much surface as the slightly smaller peaks in the normal polarity do 
together. As final results of the classic NEWMARK-Analysis (1965) the bigger value of the 
maximum displacement per signal was retained. The values of the normal polarity range from 
0.0 cm to 1.4 cm and the ones of the inverse polarity range from 0.0 cm to 1.2 cm; both have the 
same average of 0.3 cm. 
An interesting question is which earthquake characteristics influence the obtained 
displacements. The software SLAMMER only needs an acceleration time-history and a critical 
acceleration to perform an estimation of displacement. It does not take into account the moment 
magnitude of the respective earthquake. However, parameters such as characteristic period (Tm) 
and characteristic frequency (Fm), characteristic ratios (Ts/Tm and Tl/Tm), peak ground 
acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), Arias 
Intensity (AI) and the duration are easy to deduce from a given acceleration time-history. One 
might thus ask, if those parameters show a relation to the estimated displacements.  
Figures 5.11a-i give an answer on this question. The graph relating the peak ground acceleration 
to the estimated displacement shows an upward-trend; and it is the only graph doing so. 
Nevertheless, even here conclusions have to be drawn with reservation; higher peak ground 
accelerations do not imply higher displacements at all points. If the correlation was that simple, 
the NEWMARK-Method (1965) with its approach of critical acceleration and integration would 
probably be meaningless, which is certainly not true.  
All other graphs do not show a tendency leading to the assumption that – in plain language – 
every signal produces a distinct displacement which is shown in the graphs regardless of the 
selected earthquake parameter. Indeed, the striking downward peak always belongs to signal A 
(000049x), the highest peak is always caused by signal F (001875x), and similarly all other 
points have their particular “position” that logically varies horizontally but not vertically in the 
graphs. 
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Fig. 5.11.a-i. Maximum (cumulative) displacements obtained by the NEWMARK-Method (1965) as function of different 
earthquake characteristics (normal polarity in green, inverse polarity in red, bigger values of either polarity in black). 
For better understanding, it should be mentioned that some of the red and green lines are not entirely shown. This is 
solely a peculiarity of Microsoft Excel where points cannot be linked to a “0-point” on a logarithmic scale. The dashed 

black line is always complete. The duration is the one defined by TRIFUNAC & BRADY (1975; cf. 4.4.). 

 
5.4.6. Displacements by further Developments based on NEWMARK  
 
The classic NEWMARK-Method (1965) applied to the Diezma Landslide with each of the 11 
filtered signals revealed permanent displacements of 0.0 cm to 1.4 cm. In order to have a 
comparison twelve further developments of the methods were tested. NEWMARK’s (1965) own 
maximum displacement regression and the eleven empirical regression laws are presented in 
Tab. 5.9. Here, an issue might be the calibration of each law. 
NEWMARK’s (1965) maximum displacement regression is based on several earthquake motions 
with an ac/amax-ratio bigger or at least equal to 0.17 (KRAMER, 1996) which is the case for all of 
the here employed signals. 
The other eleven empirical regression laws should be suitable likewise in terms of critical 
acceleration ranges for which the strong-motion records were tested (cf. Tab. 5.3). The critical 
acceleration of the Diezma Landslide (0.06 g) lies inside all of the ranges and its ac/amax-ratios of 
0.53 to 0.98 are also very acceptable for the range given by AMBRASEYS & MENU (1988). 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Among all global regression laws only the one of JIBSION et al. (1998 & 2000) was calibrated 
with earthquake and landslide data from the Northridge Earthquake on the 17th of January 1994. 
However, and due to the statistically reasonable number of 555 tested strong-motion records 
and the fact that most of the landslides appeared to be fairly shallow and disrupted (JIBSON et 
al., 2003), the regression law can be applied although with reservation. 
Compared to the classic NEWMARK-Method (1965), results are very similar ranging from 0.0 cm 
to 4.1 cm (cf. Tab. 5.8) with an average of 0.5 cm. At this stage, one can legitimately content 
oneself with the finding that the empirical displacements are all small in the order of a few 
centimeters (if at all) and that differences in the range of millimeters bring no significant change 
to this finding – especially when keeping in mind all simplifications and hypotheses behind the 
employed equations. 
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involved 
parameters 

MW 
    

MW 
      

   
Ia   

Ia Ia Ia Ia   

  
PGV PGV 

       
PGV 

ac ac ac ac ac ac ac ac ac ac ac ac 

PGA PGA PGA PGA PGA PGA 
 

PGA 
  

PGA PGA 

signal ID displacement (cm) 

A 000049x 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.30 0.60 0.00 0.56 

B 000133x 0.40 0.80 0.50 0.40 0.60 0.30 0.10 0.10 0.40 0.80 2.10 1.51 

C 000127x 0.20 0.50 0.10 0.10 0.40 0.20 0.00 0.10 0.20 0.40 1.20 0.31 

D 000294x 0.40 0.40 0.60 0.60 0.30 0.30 0.50 0.10 1.10 2.10 1.00 4.07 

E 000335x 0.70 0.90 0.60 0.50 0.70 0.40 0.20 0.10 0.60 1.10 2.30 1.96 

F 001875x 0.30 0.50 0.40 0.40 0.40 0.20 0.30 0.10 0.70 1.40 1.40 1.72 

G 006142x 0.10 0.20 0.20 0.20 0.10 0.10 0.30 0.00 0.80 1.50 0.40 2.28 

H 000599x 0.20 0.50 0.10 0.10 0.40 0.10 0.10 0.10 0.30 0.70 1.30 0.36 

I 000612x 0.10 0.30 0.30 0.30 0.20 0.10 0.30 0.10 0.80 1.60 0.70 2.37 

J 000625x 0.30 0.80 0.30 0.20 0.60 0.20 0.10 0.10 0.30 0.60 2.00 0.68 

K 005820x 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.50 0.10 0.50 
Tab. 5.9. Displacements estimated by different empirical methods. Darker colors indicate higher values. 

Numbers  to  serve to distinguish those equations that are published in the same reference. 
 

If one still wants to have a closer look on the 132 individual estimated displacements, one might 
discover a few features in the color-coded Tab. 5.9: 
 

1. The older the regression law, the bigger are the displacements. Assuming that more 
available data leads to better calibration and smaller displacement estimations, this 
could reflect smaller data availability back in the day. From Tab. 5.3 it can be seen that 
the number of tested records decreases drastically with the age of the regression law. 
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Of course, if good calibration does not come along with smaller displacement 
estimations, this assumption is wrong.  

2. However, to the former assumption fits to a certain degree the fact that laws based on 
only two parameters appear (slightly) darker in the color-coded table. Here, especially 
the two recently proposed regressions by SAYGILI & RATHJE (2008) and JIBSON (2007) 
involving only the peak ground acceleration and the critical acceleration stand out. More 
involved “information” might refine the results causing them to become smaller. 

3. Signals A and K figuratively break ranks as they show almost no displacements – only 
with the very old regression laws. Interestingly, those both are the two signals which do 
not reach the critical acceleration in their normal and inverse polarity respectively (cf. 
Fig. 5.9a & Fig. 5.9k). 

 
The parameter certainly having the biggest influence on the estimated displacements is the 
critical acceleration because – at the classic NEWMARK-Method (1965) – it defines how much of 
the enclosed area is to be integrated (cf. Fig. 5.6). Indeed, a similar effect can be detected in 
connection with the color code in Tab. 5.9 – the bigger the difference between the critical 
acceleration and the peaks of acceleration, the bigger is the estimated displacement. 
 

 light colors:  with signals A, G and K      far from 1 m/s² (closer to ac) 
 intermediate colors: with signals C, F, H, and I      around 1 m/s² 
 dark colors:  with signals B, D, E and J      exceeding 1 m/s² 

 
5.4.7. Failure Probability according to JIBSON 
 
JIBSON et al. (2000) compared the full inventory of landslides triggered by the Northridge 
Earthquake on the 17th of January 1994 with the displacements that were estimated with the 
respective empirical regression law (cf. 5.4.6.). Afterwards, they regressed the results with a 
WEIBULL Probability Distribution (1951) which delivered the following equation. 
 

𝑃 = 0.335 ∙ (1 − 𝑒−0.048∙𝐷𝑛
1.565

) 

where P is the failure probability in decimals and Dn the displacement in centimeters 

 

JIBSON (2011) states that although this equation was calibrated on a regional scale, it can be 
used in any ground-shaking condition to assess the failure probability of slopes as a function of 
rigid-block displacements according to NEWARK (1965). This emphasizes also the employment 
of the associated displacement equation for the Diezma Landslide refuting to some extent the 
argument of inappropriate calibration. 
 

signal ID P 

A 000049x 0.0% 

B 000133x 0.4% 

C 000127x 0.1% 

D 000294x 0.3% 

E 000335x 0.6% 

F 001875x 1.9% 

G 006142x 0.1% 

H 000599x 0.2% 

I 000612x 0.1% 

J 000625x 0.3% 

K 005820x 0.0% 
Tab. 5.10. Failure probability (P) per signal. 
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Failure probabilities of the Diezma Landslide per signal are given in Tab. 5.10 and it appears that 
under seismic shaking the mass is very unlikely to fail. This finding is rather contrary to the 
opinion of authors who display favorable conditions for seismically induced failures (DELGADO 
et al., 2015; LENTI & MARTINO, 2016; MARTÍNEZ-SOLAREZ et al., 2013; cf. 4.1., 4.4.).  
 
5.4.8. Critical View on the NEWMARK-Method 
 
Despite its simplifications the NEWMARK-Method (1965) has proven to be straightforward, easy 
to apply and fast. It is a convenient tool and as JIBSON (2011) stated. 
 

“Permanent-displacement analysis begins, in fact, exactly where pseudostatic analysis ends: 
at the moment the critical or yield acceleration is exceeded. The displacement thus modeled 
provides a quantitative measure – an index – of co-seismic slope performance.” (p. 48) 

 
Therefore it is still a widely used standard method for geotechnical purposes and deserves well 
its place among other methods that might even be far more elaborate. 
Nonetheless, there are aspects that deserve a close and critical view. The majority of them were 
brought up in the previous sections describing the method and its applications to the Diezma 
landslide. The so far unaddressed points of criticism will be discussed in the following. 
What surely misses out at the NEWMARK-Method (1965) is the strain-dependency of the 
behavior of the sliding mass. Usually natural soils do not behave perfectly plastic when stresses 
are applied; they rather exhibit strain-softening or strain-hardening behaviors. The former 
causes expected displacements to be bigger and the latter smaller than predicted. Also the stress 
regime is likely to change over time; the bigger the rotational character of the sliding mass, the 
more likely it is that the slope will be flattened due to the movement itself. This would reduce 
the driving force and increase the critical acceleration (KRAMER, 1996). 
Another important point giving food for thought is the actual concept of the critical acceleration. 
On the one hand it seems very logic to assume that below a certain acceleration level no 
displacement is induced: it is easy to imagine that every material can resist to a certain stress 
regime. On the other hand this concept leads to a substantial loss of information especially 
regarding the frequency content and the duration of the applied signal – two factors that 
interestingly were described by NEWMARK (1965) himself as very important for displacement 
analysis (cf. 5.3.2.). 
Comparing, for instance, signals D (000294x) and H (000599x) in their inverse polarities it 
appears that the expected displacements are very similar (0.33 cm and 0.30 cm respectively) 
even though with signal D the mass experiences two phases of strong acceleration. According to 
the critical acceleration concept this second acceleration phase does not play any role for the 
displacement estimation, which would be more than doubtful in reality. 
Another example is illustrated by the comparison of signals C (000127x) and H (00059x). It is 
well known that in nature many relatively smaller impacts can have a bigger effect on a 
structure than a few high impacts. Thus, it is important how often a certain threshold is 
exceeded. In the normal polarities one can see that signal C has two strong peaks whereas signal 
H has four slightly less strong ones. However, the estimated displacement in both cases is almost 
the same (0.12 cm and 0.13 cm respectively). 
Unfortunately the NEWMARK-Method (1965) does not relate to the ratios of Ts/Tm and Tl/Tm (cf. 
6.4.2.). In other words the method does not account for the shear wave velocity, which is indeed 
astonishing since it is one of (if not) the most important parameter when dealing with wave 
propagation through a material. Therefore a 3D-plot relating either of the ratios, the velocity and 
the displacement (such as in Fig. 6.9) is not possible. Only single parameters of the signals (PGA, 
PGV, Tm, Ia, duration, MW, etc.) can be put in relation with the estimated displacements; however, 
no outstanding behavior will be revealed thereby because the integration surface remains the 
most influential factor. 
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6.1. Introduction 

 
The previous chapter (5.) presented the concept of limit equilibrium analyses and its application 
to the Diezma Landslide. The theoretical background as well as the case study itself drew a 
picture of advantages and drawbacks of this analytical method, of which the latter are mainly 
due to the fact that neither stress-strain behavior, nor the aspect of time, nor site effects can be 
taken into account. 
Numerical methods provide remedy on this very issue at the cost of much more complex and 
time-consuming procedures. In this chapter the focus is on numerical modeling, and the chapter 
structure will follow a layout similar to the chapter on limit equilibrium analyses. 
First, an overview on numerical modeling will be given. It should be noted, that this overview 
serves to place the employed methods to a typological and historical context. However, it does 
not explain in depth the mathematical, physical and computational background of the methods. 
A multitude of textbooks and technical literature on numerical modeling is available for this 
purpose, but even an abridgment would go beyond the scope of this thesis. 
In the next stage the functionality of the finite element code CESAR-LCPC will be presented. 
Since it is one of the two software packages used in the course of this thesis it is worth to have a 
closer look on its mode of operation. In contrast to the introductory section, where the 
mathematical, physical and computational background is kept rather simple, a little more effort 
will be spent in this section. Principals of structural dynamics will be explained along with their 
equivalent procedure steps – i.e. the method of modal recombination – in CESAR-LCPC. 
The biggest part of this chapter will be dedicated to the modal recombination analysis applied to 
the Diezma Landslide in 2D and 3D. Step by step the procedure will be followed by visualization 
and interpretation of data and finally results from the 2D- and the 3D-analyses will be compared. 
 
6.2. Overview on Numerical Modeling 

 
Unlike limit equilibrium analyses, numerical modeling treats not only the possibility of 
deformation but also the process of deformation itself. Considering the amount of methods with 
their particular fields of application as well as the advancements of technical and computing 
power of the last decades numerical modeling offers – theoretically – an almost endless number 
of options to conduct deformation analysis. 
Over time, the development of numerical modeling came along with major advances in diverse 
fields of science such as for example continuum mechanics, rheology and computer science in 
the 1960s and 1970s; today numerical modeling is coupled with thermodynamics, hydraulics, 
seismology and many more physical sub-disciplines what makes it an enormously powerful tool 
for planning, monitoring and maintenance of natural and artificial structures.  
In the particular case of studies on seismically induced landslides numerical modeling nowadays 
assumes a leading role in slope stability assessment. The more advanced the methods became 
and the better the dynamic aspect of earthquakes could be incorporated, the closer came 
numerical results to reality and, hence, the more credible and valuable became the contributions 
to the understanding of (potentially) unstable slopes.  
Compared to analytical methods that usually comprise a multitude of simplifications and 
assumptions, numerical methods deal much more efficiently with many more specifications and 
physical conditions applying to the structure of interest: 
 

 structural heterogeneity: layering, discontinuities, complex boundary conditions 
 property heterogeneity: location- and/or time-dependent variations, anisotropy  
 slope geometry: regular or irregular shapes, progressive geometry change 
 material behavior: linear-elastic, (visco)-elasto-plastic, strain-softening, non-linear 
 material laws: stress-strain laws and stress-deformation laws 
 water saturation: ground water level, pore water pressure distribution, fluctuations 
 stress state: before, during and after the deformation, static or dynamic analyses 
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 external solicitation: cyclic and impulsive loading 
 development over time 
 data uncertainties 
 site effect evaluation  
 coupled processes: e.g. pore water pressure increase after seismic loading 
 effects of construction, excavation and overload 
 soil-structure interaction 

   
Yet from this non-exhaustive list it is evident that numerical modeling reduces the number of 
hypotheses by offering more room for site specific conditions. Moreover, stress- and strain-fields 
are constantly evaluated for different time-steps; and in contrast to limit equilibrium analyses, 
where (and if at all) displacements are attributed to one particular point of the concerned sliding 
mass, numerical modeling allows for stress-strain quantification in every point of the mass and 
thus draws the most accurate picture of the behavior of a slope with time. 
One big issue at numerical modeling is the fact that the accuracy of the outcome is strongly 
dependent on the input. In other words, usually great efforts must be made for high quality and 
quantity data, intensive laboratory testing and material characterization, proper selection of 
input motion (in case of ground response analysis) and interpretation of results (JIBSON, 2011). 
Also the involvement of the above listed properties, conditions and physical laws entrain highly 
complex calculations that can quickly become computationally intensive and time-consuming 
especially with high densities of data. The computations occasionally reach their borders in 
terms of time restrictions or hardware memory. 
Due to the considerably bigger effort compared to limit equilibrium analyses numerical models 
are therefore rather suitable for specific case studies which require particular accuracy of 
assessment. JIBSON (2011) describes stress-deformation analysis as standard for single-site 
analysis where sufficient data exist and mentions that for critical structures the effort is 
generally satisfied; however it cannot be regarded as a routine application. 
According to EBERHARDT (2003) numerical modeling methods can be grouped into three 
categories: continuum-, discontinuum- and hybrid-methods. Despite their conceptual 
differences which will be discussed later, they share many basic principles. 
Their most fundamental and common principle is that the structure of interest is dissected into 
 

“[…] a mesh in which the internal stresses and strains within elements are computed based 
on the applied external loads, including gravity and seismic loads.” (JIBSON, 2011, p. 43) 

 
Moreover, the behavior of the thereby created individual points (or nodes) is described by 
equations of physical processes. Usually those equations are differential equations such as for 
example Isaac NEWTON’s Second Law of Motion (1687), redefined as the Basic Law of 
Mechanics by Leonhard EULER (1752) relating the applied force to the mass and acceleration of 
a body: 
 

𝐹 = 𝑚 ∙
𝑑𝑣

𝑑𝑡
= 𝑚 ⋅ 𝑎 

 
Due to the complexity of the equation systems, solutions can only be obtained numerically which 
eventually led to the nomenclature of this field of analytical techniques. According to the method 
the solutions of the governing (physical) equations are then approximated by discrete equations 
(ISMAIL-ZADEH & TACKLEY, 2010). The relation to the model type is given by: 
 

mathematical model    governing equations 
   numerical model    discrete equations 

 
Regardless of the method, the quality of numerical models can be described by five important 
properties. A high accurateness implies good comparability between the predicted solutions of 
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the mathematical and the numerical model. Physical quantities like mass and momentum must 
respect the principle of conservation when approximating governing equations by discrete 
equations; in many cases governing equations are thus derived from conservation laws. Good 
consistency is achieved when the error between the governing and the discrete equations tends 
to zero, what usually involves a decrease of the mesh increment size. The closer the results from 
numerical modeling come to those of mathematical modeling, the better is the convergence. The 
requirement of stability is met when errors do not amplify during computation (ISMAIL-ZADEH 
& TACKLEY, 2010).  
 
6.2.1. Continuum Modeling 
 
As specified by the name, methods of continuum modeling treat the body of interest as a 
continuum, and hence they are mainly applied to soil slopes or massive rock masses 
(EBERHARDT, 2003). The two most widespread types of continuum modeling codes are finite 
element methods (FEM) and finite difference methods (FDM), both of which were used in this 
thesis: 
 
 FEM  CESAR-LCPC  (in the following abbreviated by CESAR) 
 FDM  FLAC  (cf. 7.) 
 
Finite Element Methods (FEM) 
 
Being highly sophisticated, FEM discretizes the body of interest into a finite number of non-
overlapping elements by – for instance – a triangular, tetrahedral or quadrilateral mesh. 
Calculations hence become matrix operative and the stress-strain variability can be evaluated 
throughout the elements. 
Initially FEM were developed for mechanical issues and more precisely for the assessment of 
stiffness and deformation of solid bodies with complex shapes. Based on mathematical concepts 
of COURANT (1943), first attempts to use FEM were made in the 1950s by the automobile and 
aerospace industry (TURNER & CLOUGH, 1950). The actual name involving the term “finite 
element” was later introduced by CLOUGH in 1960, after he developed FEM for engineering 
purposes. Although daunting and complex in the beginning, FEM was soon after applied to 
slopes of earth dams (CLOUGH & CHOPRA, 1966; CLOUGH & WOODWARD, 1967) and quickly 
became of great value for modeling static and dynamic slope deformation, not least on account 
of convenient and accurate representation of complex geometries with overall or locally 
modifiable mesh-sizes. 
Today FEM applications to earth structures are popular; KRAMER (1996) lists a variety with 
associated studies. In the case of dynamic stress-deformation analysis seismically induced 
strains in each element of the mesh are integrated in order to obtain the permanent 
displacement of the slope. In this context, three approaches to assess permanent displacement 
are worth to mention: 
 

 Strain Potential Approach (SEED et al., 1973) 
a  laboratory based approach predicting the shear potential as shear strain per element 

 Stiffness Reduction Approach (LEE, 1974; SERFF et al., 1976) 
a  laboratory based approach where strain potentials are used to reduce the stiffness 

 Non-linear Analysis Approach (PREVOST, 1981; GRIFFITHS & PREVOST, 1988) 
an approach using non-linear stress-strain laws to describe the behavior of the soil 

 
Finite Difference Methods (FDM) 
 
Like FEM also FDM discretize the modeled domain, however with a finite number of points at 
which stresses and strain are defined. The concept of calculation lies on the numerical solution 
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of differential equations at these points via approximation by difference equations; derivatives 
are then approximated by finite differences what explains the name of the method. 
FDM is widely used in fluid dynamics and meteorology, but also in structural analysis. Earliest 
pioneering applications date back to the beginning of the last century where RICHARDSON 
(1911) tested a masonry dam. 
In contrast to FEM, FDM do not use a global stiffness matrix and solutions are obtained stepwise 
for one point and its neighbors. FDM are in most cases faster than FEM and easier to implement. 
The finite difference code FLAC will be described in chapter 7. 
 
Other Methods 
 
Methods that are similar to FEM are Finite Volume Methods (FVM) and Spectral Element 
Methods (SEM). FVM are conservative methods and thus particularly suitable for problems 
involving differential equations based on conservation laws, i.e. where energy or impulse 
conservation must be ensured. In contrast to FEM, the body of interest is discretized to a finite 
number of volumetric elements surrounding the calculation points in their centers. SEM have 
the advantage of handling mathematical series such as for example Fourier- or Taylor-Series.  
Both method types shall only be mentioned here; they are not used in this thesis. 
 
6.2.2. Discontinuum Modeling 
 
Discontinuum modeling methods do not treat the body of interest as a continuum, but as an 
assembly of separate but interacting elements of different forms with distinct properties – hence 
as a discontinuum. This fundamental hypothesis makes the methods applicable to materials 
characterized by a large amount of discontinuities such as fractured rock. 
Today, Discrete (or Distinct) Element Methods (DEM) are most popular in discontinuum 
modeling. Initially developed by CUNDALL (1971) for particle motion in molecular dynamics 
and described in detail by HART (1993), DEM quickly found their way to mechanical and 
geotechnical engineering. 
DEM are of great importance when it comes to modeling of heavily jointed rock slopes, relative 
movement between blocks and the potential creation of voids within the body of interest. 
Equilibrium equations are solved repeatedly for each block until contact laws and boundary 
conditions are met (EBERHARDT, 2003; ISMAIL-ZADEH & TACKLEY, 2010). 
 
6.2.3. Hybrid Modeling 
 
EBERHARDT (2003) classifies coupled methodologies as hybrid modeling. The combination of 
continuum and discontinuum approaches allows for optimized employment and makes use of 
the advantages of the methods. Examples of such methodology couples are (ISMAIL-ZADEH & 
TACKLEY, 2010): 
 

FEM (cf. 6.2.1.)  + LEA (cf. 5.)   e.g. GeoStudio  (GEOSLOPE, 2018) 
FDM (cf. 6.2.1.) + DEM (cf. 6.2.2.)  e.g. PFC   (ITASCA, 2018) 
FEM (cf. 6.2.1.)  + DEM (cf. 6.2.2.)  e.g. Elfen   (ROCKFIELD, 2018) 

 
6.3. Functionality of CESAR 

 
CESAR is a finite element software dedicated to stability and deformation analyses in 2D and 3D. 
It is widely used for geotechnical and civil engineering purposes which are addressed in the 
beginning of this chapter (cf. 6.2.).  
Effectively, the software is an “in-house product”. Research and expertise that contribute to the 
constant advancement of CESAR is provided by the scientific developer Laboratoire Central des 
Ponts et Chaussées (LCPC) – the today’s Institut Français des Sciences et Technologies des 
Transports, de l'Aménagement et des Réseaux (IFSTTAR). The distribution is ensured by itech 
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(ITECH, IFSTTAR, 2018) who also provides user manuals and training materials for diverse 
applications.  
A detailed description of the functionality of CESAR would go beyond the scope of the thesis, 
especially since detailed documentation is already available (ITECH, IFSTTAR, 2014): 
 

CESAR 2D Version 6.0 User's Manual 
CESAR 3D Version 6.0 User's Manual 

 
However, for better understanding and reproducibility of the modal recombination analysis 
presented in this chapter, sections 6.3.2. and 6.4. will explain the necessary sequence of steps in 
CESAR-2D and -3D. It should be noted, that this particular procedure only applies to a modal 
recombination analysis and all other analysis types offered by CESAR are described in the 
respective documentation. 
 
6.3.1. Principals of Structural Dynamics 
 
Structural dynamics are a vast field of mechanical engineering. For that reason only the 
principles necessary to understand the procedure of modal recombination will be explained. The 
section is entirely based on the course “Dynamique des Structures et des Ouvrages” held at École 
des Ponts – ParisTech (PECKER, 2018); no further references will be made in the text. 
Modal recombination is a method to determine the response of an oscillator of n degrees of 
freedom to dynamic loading in terms of displacement. In the present case the oscillator is the 
landslide mass and the dynamic load is the earthquake – or more precisely, one of the 11 
separately tested seismic signals. The landslide mass is assumed to behave in a linear visco-
elastic manner what qualifies it for modal recombination analysis.  
An important detail is that the procedure does not assess the absolute displacement of the 
oscillator caused by the earthquake, but its relative displacement to the foundation what is of 
much greater interest in engineering. This difference is illustrated in Fig. 1 showing a visco-
elastic oscillator with one degree of freedom only. It can be easily seen that the absolute 
displacement caused by the earthquake (y) refers to the inertial frame, whereas the relative 
displacement of the oscillator (u) is given with respect to the foundation. 
 

 
Fig. 6.1. Scheme of a linear visco-elastic oscillator with one degree of freedom. 

The vibration is supposed to be free and damped if there is no external force applied, i.e. if p(t) = 0. 

 
The setting of Fig. 6.1 can be described by the vibration equation that balances forces 
 

𝑚 ∙ (�̈� + �̈�)⏟      
𝐹𝑖

+ 𝑐 ∙ �̇�⏟
𝐹𝑑

+ 𝑘 ∙ 𝑢⏟
𝐹𝑠

= 𝑝(𝑡) 
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with: m … mass of the oscillator 
 c … damping constant 
 k … stiffness constant 
 p … external force applied to the oscillator  (in this case 0) 
 Fi … inertial force applying on the oscillator  (as function of ü and ÿ) 
 Fd … damping force applying on the oscillator (as function of u̇ only) 
 Fs … elastic force applying on the oscillator (as function of u only) 
 
With the two physical quantities of eigenfrequency (f) and the damping ratio (ξ) 
 

𝑓 =
1

𝑇
=

𝜔0

2∙𝜋
=

1

2∙𝜋
∙ √

𝑘

𝑚
                    𝜉 =

𝑐

2∙√𝑘∙𝑚
=

𝑐

2∙𝑚∙𝜔0
=

𝑐

𝑐𝑐
 

 
the equation can be rewritten as one of a free and damped vibration without external force: 
 

�̈� + 2 ∙ 𝜉 ∙ 𝜔0 ∙ �̇� + 𝜔0
2 ∙ 𝑢 = −�̈�(𝑡) 

 
The interest on the solution for a time-history of the displacement (u) which is obtained by: 
 

 an analysis in the frequency domain  
 

𝑢(𝑡) = ∑ 𝑐𝑘 ∙ 𝐻 ∙ (
2 ∙ 𝜋 ∙ 𝑘

𝑇𝑝
) ∙ 𝑒

2∙𝑖∙𝜋∙𝑘
𝑇𝑝

∙𝑡
∞

𝑘=−∞

 

 
 or Duhamel’s Integral in the time domain 

 

𝑢(𝑡) = −
1

𝜔𝑑
∙ ∫ �̈�

𝑡

0

(𝜏) ∙ 𝑒−𝜉∙𝜔0∙(𝑡−𝜏) ∙ sin(𝜔𝑑 ∙ (𝑡 − 𝜏))𝑑𝜏 

 
In many cases it is rather the maximum value of the displacement-time-history that is of 
particular importance; it is usually given in form of the response spectrum (SD) of the relative 
displacement. Also a response spectrum of the pseudo-acceleration (SA) is frequently used. The 
prefix “pseudo-” refers to the fact, that it designates the acceleration relative to the foundation 
(cf. Fig. 6.1). 
 

𝑆𝐷(𝑇, 𝜉) = max
𝑡
𝑢(𝑇, 𝜉, 𝑡) 

 
𝑆𝐴(𝑇, 𝜉) = 𝜔0

2 ∙ 𝑆𝐷(𝑇, 𝜉) 
 
In case T and ξ are not variable – i.e. if there is only one oscillator with one signal to test – the 
result will not be a spectrum but one single maximum displacement value as in CESAR. 
Although the background principles are the same, a system with n degrees of freedom is more 
complex to deal with. Here, the method of modal recombination is necessary to obtain a 
displacement time-history or a response spectrum. 
In contrast to the previous case (cf. Fig. 6.1) where a mass is concentrated in only one point, a 
model usually contains a multitude of points – the finite number of nodes of the imposed mesh – 
in which the displacement should be evaluated. By only considering points (and not elements), 
every distinct one can experience translational motion in three directions. The degree of 
freedom (n) of a system is hence: 
 

𝑛 = 𝑝 ∙ 3          with p being the number of points 
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Accordingly, a system has also n eigenfrequencies and n eigenmodes. Following the direct 
method of setting up an equilibrium equation, the resulting force in every point must be 0. In 
analogy to the previous equation the applying inertial, damping, elastic and external forces are: 
 

𝑀 ∙ �̈�⏟  
𝐹𝑖

+ 𝐶 ∙ �̇�⏟
𝐹𝑑

+ 𝐾 ∙ 𝑈⏟
𝐹𝑠

= 𝑃(𝑡) 

 
In this equation for a forced and damped vibration, M, C and K are matrices; Ü, U̇, U, Fi, Fd, Fs and 
P are vectors.  
The preceding step for the modal recombination is the evaluation of the eigenfrequencies and 
the eigenmodes of the system. Logically, they depend only on the oscillator itself and therefore 
the evaluation is carried out for an equation of a free and undamped vibration: 
 

𝑀 ∙ �̈� + 𝐾 ∙ 𝑈 = 0 

 
After several mathematical shifts the equation has the general solution U in which ωi are the 
eigenvalues, Di the associated eigenvectors (or eigenmodes) and fi the eigenfrequencies. 
 

(𝐾 − 𝜔𝑖
2 ∙ 𝑀) ∙ 𝐷𝑖 = 0                    𝑓𝑖 =

𝜔𝑖

2∙𝜋
 

 

𝑈 =∑𝐷𝑖

𝑛

𝑖=1

∙ sin(𝜔𝑖 ∙ 𝑡 + 𝜃𝑖)⏟          
𝑏𝑒𝑙𝑜𝑤 𝑐𝑎𝑙𝑙𝑒𝑑 𝑏𝑗(𝑡)

 

 
Once the matrices M and K are known, the eigenvalues (ωi) can be calculated via the equation 
below; this is possible due to the orthogonality of the eigenvalues to the matrices M and K. 
 

𝜔𝑖
2 =

𝐷𝑖
𝑇 ∙ 𝐾 ∙ 𝐷𝑖

𝐷𝑖
𝑇 ∙ 𝑀 ∙ 𝐷𝑖

 

 
Having such an expression for the displacement (U) with the eigenmodes Di and their particular 
orthogonal properties is a great advantage for further computations – e.g. at the solution of an 
equation of a forced and damped vibration. By making use of the quantities of generalized mass 
(mj), stiffness (kj), damping (cj) and external load (pj), the equation takes a well familiar shape: 
 

 𝑚𝑗 = 𝐷𝑗
𝑇 ∙ 𝑀 ∙ 𝐷𝑗 

 𝑘𝑗 = 𝐷𝑗
𝑇 ∙ 𝐾 ∙ 𝐷𝑗   �̈�𝑗(𝑡) + 2 ∙ 𝜉𝑗 ∙ 𝜔𝑗 ∙ �̇�𝑗(𝑡) + 𝜔𝑗

2 ∙ 𝑏𝑗(𝑡) =
𝑝𝑗(𝑡)

𝑚𝑗
      

 𝑐𝑗 = 𝐷𝑗
𝑇 ∙ 𝐶 ∙ 𝐷𝑗 

 𝑝𝑗 = 𝐷𝑗
𝑇 ∙ 𝑃    for j = 1, … , n 

 
As for the damping, ξj is the percentage of damping for each mode and alternatively called 
“modal damping”. The damping matrix C is in general very difficult to build; among other forms 
of damping, CESAR uses Rayleigh-Damping which conveniently expressed as function of the 
matrices M and K. 
 

𝜉𝑗 =
𝑐𝑗

2∙𝑚𝑗∙𝜔𝑗
                    𝐶 = 𝛼 ∙ 𝑀 + 𝛽 ∙ 𝐾 
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In conformity to the setting in Fig. 6.1 and considering the effect of an earthquake, one can now 
define an equation for a free and damped vibration with n degrees of freedom as well as its 
solution: 

𝑀 ∙ �̈� + 𝐶 ∙ �̇� + 𝐾 ∙ 𝑈 = −𝑀 ∙ �̈� 

𝑈 = Φ ∙ 𝐵 =∑𝐷𝑖

𝑛

𝑖=1

∙ 𝑏𝑗(𝑡) 

 
Making again use of the generalized quantities (mj, kj, cj and pj), the orthogonality of the 
eigenvalues to the matrices M and K, the vector Δ giving the direction of loading and the 
participation factors aj, the equation becomes: 
 

𝑎𝑗 =
𝐷𝑗
𝑇∙𝑀∙∆

𝐷𝑗
𝑇∙𝑀∙𝐷𝑗

=
𝑏𝑗

𝑞𝑗
                  

 

𝑈 =∑𝑈𝑖

𝑛

𝑖=1

=∑𝑎𝑗 ∙ 𝐷𝑖

𝑛

𝑖=1

∙ 𝑞𝑗(𝑡) 

 
The total displacement is hence a summation over (or a “superposition” of) all the modes. Again, 
the variation of the displacement (U) can be computed with Duhamel’s Integral. Maximum 
values are to be represented in a response spectrum of the relative displacement (SD) or in a 
response spectrum of the pseudo-acceleration (SA). In this thesis, the interest is on the recovery 
of maximum displacements; the necessary procedure is referred to as “modal recombination”.  
 

𝑞𝑗(𝑡) = −
1

𝜔𝑑𝑗
∙ ∫ �̈�

𝑡

0

(𝜏) ∙ 𝑒−𝜉𝑗∙𝜔𝑗∙(𝑡−𝜏) ∙ sin (𝜔𝑑𝑗 ∙ (𝑡 − 𝜏)) 𝑑𝜏 

 
𝑆𝐷(𝜔𝑗, 𝜉𝑗) = max𝑡 𝑞(𝜔𝑗, 𝜉𝑗 , 𝑡)                    𝑆𝐴(𝜔𝑗, 𝜉𝑗) = 𝜔𝑗

2 ∙ 𝑆𝐷(𝜔𝑗, 𝜉𝑗) 

 
6.3.2. Equivalent Steps in CESAR 
 
For a modal recombination analysis in CESAR there are two computational modes to be applied 
one after the other; both modes belong to the mode types “dynamic mechanics” in CESAR: 
 

 MODE: referring in French to “analyse modale” 
 SUMO: referring in French to “superposition modale” – i.e. here modal recombination 

 
Based on the structure of interest itself, a MODE-computation determines the first n eigenvalues 
ωi and n associated eigenvectors Φi that satisfy the following relation (ITECH, IFSTTAR, 2014). 
For the Diezma Landslide the first 20 eigenvalues and eigenvectors were calculated. 
 

𝐾 ∙ Φ𝑖 = 𝜔𝑖 ∙ 𝑀 ∙ Φ𝑖          for i = 1, … , n (here 20) 

 
Every SUMO-computation is preceded by a MODE-computation since the procedure of modal 
recombination incorporates the eigenmodes of the structure itself. Thereupon based, a SUMO-
computation determines the response of a structure subjected to dynamic loading in terms of 
nodal displacements. Out of two options, which are either a computation of the full response, or 
an estimation of solely the maximum response using spectral computation, the latter was 
chosen.  
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6.4. Application to the Diezma Landslide 

 
For the Diezma Landslide there are a simplified 2D- and a simplified 3D-geometry (cf. 4.2.2., 
4.2.3.), both of which were analyzed with CESAR – however with a different number of separate 
sub-models. In the following, the model outlines (cf. A.12.) in 2D and 3D are specified according 
to the input procedure within CESAR. 
 
Geometry 
 
The model dimensions in 2D and 3D correspond exactly to the simplified 2D- and 3D-geometries 
(cf. Fig. 4.12, Fig. 4.17). It should be noted that the longitudinal cross section (2D) fits into the 
3D-model without compromise and lies in its first axis. 
The 2D-geometry is subdivided into five adjacent surfaces. The 3D-geometry is delimited by 34 
triangular planes across the ground surface and the sliding surface; the total of 68 planes 
encloses one single volume without subdivisions. 
 
Mesh 
 
Mesh-sizes differ for both models. The 2D- and the 3D-model have respectively a triangular 
mesh with an increment size of 0.5 m and a tetrahedral mesh with an increment size of 1.1 m. As 
a result, the point numbers in each of them vary considerably. Considering the necessary 
relation for appropriate mesh creation (cf. 4.4.) with respect to increment size, frequency 
content and wave velocity, one can see that 1.1 m is just enough to properly represent the 
Diezma Landslide with its shear wave velocity of 300 m/s. 
 

𝑣𝑚𝑖𝑛

𝑓𝑚𝑎𝑥
= 𝜆𝑚𝑖𝑛          and          

𝜆𝑚𝑖𝑛

10
= Δ𝑥 

 
In 2D and 3D, the models have approximately 40,000 and 450,000 mesh-points respectively. 
 
Properties 
 
When attributing properties to surfaces or volumes, CESAR asks for the density (ρ in kg/m³), the 
Young’s Modulus (or elasticity modulus; E in MN/m²) and the Poisson’s Ratio (υ without 
dimension). The shear wave velocity (vs in m/s) influences the Young’s Modulus (E) inasmuch as 
the latter includes the shear modulus (G in Pa). 
 

𝜌 ∙ 𝑔 = 𝛾          𝑣𝑠 = √
𝐺

𝜌
          𝐺 =

𝐸

2∙(1+𝜈)
 

  
Constant parameters throughout the 2D- and 3D-models are thus: 
 

 ρ = 2181.45 kg/m³  (γ = 21400 N/m²; DELGADO et al., 2015)  
 υ = 0.25 (-)   (MARTINO et al., 2016) 

   
Parameters dependent on the shear wave velocity must be calculated, e.g. via a simple Excel-
spreadsheet. Shear wave velocities ranges are: 

 
 2D: 100-1000 m/s   (in steps of 50 m/s) 
 3D: 300 m/s  (only) 

 
The response spectra – which allowed maximum displacement estimations for each eigenmode – 
were calculated assuming a damping ratio of 5%. 
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Boundary conditions 
 
In 2D, boundary conditions of “zero-displacement” were applied to all edges along the sliding 
surface meaning that in all concerned points (including point 0 and E; cf. Fig. 4.8) the expected 
displacements are 0. In analogy for the 3D-case, the same boundary condition was imposed to all 
triangular planes and edges delimiting the sliding surface. Hence, the edges that the sliding 
surface and the ground surface have in common show zero displacements in all directions. 
 
Loading 
 
In CESAR, dynamic loading is applied to the lower model base as displacement time-history in 
meters, which are then transformed into body forces, and a so-called “load-case-factor” 
multiplies the signal before application. In the present case, the shear wave signal is supposed to 
arrive vertically and taking effect on the landslide mass by horizontal particle motion only. 
Therefore factors for body forces are 1-0 for (u-v) in 2D and 1-0-0 (for u-v-w) in 3D (cf. blue 
letters in Fig. 6.16). 
 
The exact procedure for conducting MODE- and SUMO-computations in 2D and 3D for the 
Diezma Landslide can be found in the appendix. Two expandable workflow charts describe all 
steps; additional comments and code notes are to be found in section A.5. with its subsections. 
 
6.4.1. Step MODE in 2D 
 
As a first step, eigenfrequencies resulting from the MODE-computation were recovered from the 
output files. For every shear wave velocity there is a series of the twenty first eigenfrequencies; 
f0 is the fundamental one and f1-f19 represent the following ones (cf. Fig. 6.2). Strikingly, 
frequencies of the same rank form a straight line on the plot, and the higher the rank, the closer 
– and flatter – is the gradient of the line. It appears therefrom that the frequencies are mainly 
influenced by the shear wave velocity, since neither the geometry nor the site-specific 
parameters (cf. 6.4.) changed during the computation of the 19x20 values and in contrast to the 
following SUMO-computation (cf. 6.4.2.) there is no seismic signal involved yet. 
The dashed line in Fig. 6.2 shows the real resonance frequency of the Diezma Landslide 
indicated by DELGADO et al. (2015). Considering the fact that the here presented data is based 
on the simplified geometry, which does not feature all the details of the original landslide mass, 
the real and calculated fundamental eigenfrequency at the shear wave velocity of 300 m/s are in 
very good correspondence. 
 

 
Fig. 6.2. First twenty resonance frequencies per shear wave velocity. 

The fundamental frequency (f0) is always the leftmost; dashed lines show the real values of the Diezma Landslide. 
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6.4.2. Step SUMO in 2D  
 
To get a global idea of maximum displacements along the slope surface of the Diezma Landslide 
the three points 1, 2 and 3 having the identification numbers 3831, 13756 and 29374 were 
examined (cf. Fig. 4.8, Fig. A.1.) before processing the entirety of all 1011 surface points. Per 
signal, maximum horizontal and vertical displacements were calculated for each shear wave 
velocity to represent them in two double logarithmic plots respectively (cf. Fig. 6.3). The fact 
that labels are too small to be legible is of minor importance since interpretations in these 
section focus on the behavior of the curves only. The legend in the right lower corner indicates 
the labels of all plots. 
Compared to the plots shown in Fig. 6.8, the representation of Fig. 6.3 can be seen as sections in 
the plane defined by the second and the third axes (i.e. by displacement versus shear wave 
velocity). Nevertheless, it must be noted that although the displacement curves in both plots 
have similar decreasing tendencies, the plots do not show the same type of displacements. 
Figure 6.3 shows displacements of three particular points, whereas displacements in Fig. 6.8 are 
averaged on certain percentages – a concept that will be explained alongside the Characteristic 
Period Based Approach (MARTINO et al., 2016).  
What is clearly evident from Fig. 6.3 is that both the horizontal as well as the vertical 
displacements become bigger with decreasing shear wave velocity what corresponds to the 
concept of site effects and impedance contrast (cf. Fig. 1.3). If the usually high shear wave 
velocity of the underlying bedrock is similar to the one of the landslide mass, the impedance 
contrast and expected displacements are low. 
The comparisons of horizontal and vertical displacements throughout the signals reveal that 
generally the former is bigger than the latter. Roughly speaking, it seems on a first glance that 
vertical displacements in points 2 and 3 are smaller by one order of magnitude than their 
horizontal counterparts; vertical displacements in point 1 are also smaller but remain of the 
same order of magnitude. 
The comparison of horizontal and vertical displacements per individual signal shows that point 
3 is the most prone to offset, followed by point 2 in the same range and finally by point 1 with a 
significant difference. 
Both findings – regardless of the exact influence of the distinct seismic signals – emphasize 
several preliminary conclusions:  
 

 one main zone of displacement located around point 3 where the landslide is thickest 
 almost negligible displacements around point 1 where the landslide is thinnest 
 biggest contributions to displacement by horizontal components 

 
Actually, the last finding is also typical for landslides controlled by static loads – not only for 
those undergoing dynamic loading.   
In some respects peculiar are also the curve shapes of points 1, 2 and 3 in Fig. 3. Some of the 
curves appear almost straight in the double-logarithmic plot whereas some clearly show a 
hunch. One attempt to explain this behavior consists in cross-checking with the respective 
Fourier Amplitude Spectra (FAS; cf. Fig. 4.20a-k) and listing if the curves show hunches or if the 
FAS includes two peak zones. FAS with two peak zones are such having one high peak at a very 
low frequency followed by two or three more almost equally high peaks “shortly afterwards” as 
for example in the FAS of signal D (cf. Fig. 4.20d). Here, the conjecture is that signals with two 
FAS zones cause hunches, whereas one FAS zone entails only a straight line. According to Tab. 
6.1 the conjecture is confirmed in most but not all of the cases.  
Signal F represents the “unexplainable artifact”. In no other plot (cf. Fig. 6.3) the displacements 
at 100 m/s are smaller than the ones at 150 m/s. Interestingly, only point 3 is affected by this 
unusual behavior, which is also visibly – but not explicable – in Fig. 6.8 and Fig. 6.9 depicting 
displacements averaged on certain percentages. 
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A  B  

C  D  

E   F  

G  H  

I   J  

K                                                                    
 

Fig. 6.3. Horizontal (left) and vertical (right) displacements for points 1, 2 and 3 (cf. Fig. 4.8) per signal. 
For easy comparability all plots have the same format which is exemplarily shown by the legend in the right lower 

corner. Horizontal and vertical displacement are abbreviated with “dx” and “dz” respectively. 
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signal line/hunch FAS zones conjecture confirmed 

A L 1  

B H 2  

C H 2  

D L 1  

E H & L 2 2 pronounced zones and almost no hunch 

F H 1 1 pronounced zone  and an extreme hunch 

G L 1  

H H 2  

I L 1  

J H 2 2 pronounced zones and almost no hunch 

K L 1  
Tab. 6.1. Correlation between curve behavior (cf. Fig. 6.3) and respective FAS (cf. Fig. 4.20a-k). 

 
In a second stage, tests for 100 m/s, 300 m/s and 1000 m/s examined if there is a relation 
between horizontal and vertical displacements and the highest reached FAS amplitude per 
signal. Unfortunately one can recognize from Tab. 2 that the signals with the highest FAS peaks 
do not induce the greatest displacements. Although tested for the above mentioned shear wave 
velocities and for horizontal and vertical displacements, Tab. 6.2 only lists values for the 
horizontal displacements at 100 m/s. However, the general qualitative behavior appearing via 
the gray shading is the same for all combinations. 
Also questionable and maybe even more promising is the correlation to the filtered 
characteristic mean periods of the earthquakes (Tm) and the ratios of the characteristic site 
periods (Ts/Tm and Tl/Tm) both of which will be explained alongside the Characteristic Period 
Based Approach (MARTINO et al., 2016).  
Clearly, signals D, E, G and I have the greatest displacements at the points 1, 2 and 3. Surprisingly 
they share not only a spectrum starting out with two to three very high peaks, but also the 
highest Tm-values. Signals D, I and G exceed 1 and signal E reaches still 0.77. This finding thus 
leads to assumption that the characteristic earthquake period (Tm) might have a considerable 
influence on seismically induced displacements. 
The ratios of the characteristic site periods (Ts/Tm and Tl/Tm) seem to be inversely orientated 
towards the greatest displacements. Here, it should be considered, though, that the 
characteristic earthquake period (Tm) – which is the denominator in both ratios – correlates well 
and that therefore an inverse correlation with the characteristic site periods is not surprising. 
The fact rather underlines the assumption of a Tm-correlation. 
 

signal 
max FAS 

(m/s) 
filtered Tm 

(s) 
Ts/Tm* 

(-) 
Tl/Tm* 

(-) 
dx1* 
(m) 

dx2* 
(m) 

dx3* 
(m) 

A > 0.01 0.70 1.12 7.20 0.04 0.71 3.20 

B > 0.02 0.66 1.18 7.61 0.06 1.03 4.07 

C > 0.02 0.32 2.43 15.64 0.02 0.34 1.15 

D > 0.02 1.08 0.72 4.66 0.13 1.55 6.81 

E > 0.02 0.77 1.01 6.49 0.08 1.06 5.04 

F > 0.04 0.58 1.34 8.62 0.07 0.84 1.47 

G > 0.02 1.02 0.77 4.94 0.09 1.48 7.56 

H > 0.01 0.38 2.03 13.11 0.02 0.45 2.32 

I > 0.01 1.19 0.66 4.24 0.11 1.36 6.21 

J > 0.02 0.49 1.61 10.37 0.03 0.60 3.24 

K > 0.02 0.76 1.02 6.60 0.04 0.70 3.40 
Tab. 6.2. Comparison of different signal properties and horizontal displacement values  for vs = 100 m/s (*). 
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After this first overview with focus on three points along the slope surface, further examinations 
were carried out for all of the 1011 surface points. 
For each of the 209 combinations – 11 signals with 19 shear wave velocities – there is one 
longitudinal cross section showing the horizontal, the vertical and the resultant displacement of 
every point in green, blue and red respectively (cf. Fig. 6.4a-b). It should be noted that the 
resultant displacement is simply calculated by the Pythagorean Theorem: 
 

𝑑𝑟 = √𝑑𝑥
2 + 𝑑𝑧

2 

 
For better visualization all displacements in those plots are factorized by 50. Scientifically this is 
surely an uncomfortable number since it does not allow for easy reading of values, but 
unfortunately the factor 10 appeared to be by far too small because the biggest displacements 
reach values in the centimeter range. The factor 100, in contrast, would have caused the colored 
curves to exceed the image frames.  
A second type of graphic representation shows the curves of horizontal, vertical and resultant 
displacement per x-coordinate-position (cf. Fig. 6.4c-d) per combination. The advantage of this 
representation is that it avoids the factor issue by automatically scaling the second axis 
according to the reached maxima. Nevertheless, one should pay attention to the orientation of 
those plots since the x-coordinate-position is similar but not identical to the real point position 
on the slope surface. Also, the three types of displacement are plotted “vertically upwards”; i.e. 
one should not interpret the horizontal and resultant displacements in Fig. 6.4c-d as topographic 
heaves. 
 

 

 
Fig. 6.4a-d. Horizontal (green dashed & 1st subplot), vertical (blue dashed & 2nd subplot) and 

resultant (red dashed & 3rd subplot) displacements for signals D and J at shear wave velocities of 300 m/s. 
Both signals represent cases with high and low entrained displacements respectively. 

The green dashed lines in c) and d) mark the Newmark-displacement (1965) which is constant per signal. 
The blue lines in c) and d) mark the average of the biggest 5%, 25%, 50%, 75% and 100% (cf. Excursus – 6.4.2.). 

(a) (b) 

(d) (c) 
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Comparing the 209 graphics of each representation type, several qualitative and quantitative 
features can be recognized: 
 

 displacements appear to be of the same pattern regardless of the signal, 
and generally dx are considerably bigger than dz, thus dr are slightly smaller than dx 

 displacements rapidly decrease with increasing shear wave velocity, 
and even at factor 50 displacements are invisible at 250-350 m/s (cf. Fig. 6.4a-b) 

 per signal displacements decrease most significantly between 100 m/s and 150 m/s, 
and at signals D, E, G and I displacements stay visible up to 600-750 m/s (cf. Tab. 6.3) 

 

signal dr invisible at F ~ 400 m/s 

A ~ 450 m/s G ~ 600 m/s 

B ~ 450 m/s H ~ 350 m/s 

C ~ 350 m/s I ~ 700 m/s 

D ~ 750 m/s J ~ 350 m/s 

E ~ 600 m/s K ~ 400 m/s 
Tab. 6.3. Visibility of the resultant displacement (dr) up to certain shear wave velocities. 

 
Taking up again the hypothesis of hunches addressed in the beginning of this section, the second 
graphic type (cf. Fig. 6.4c-d) sheds light on some more details. Overall, horizontal, vertical and 
resultant displacements all show the expected behavior of a landslide with one main mobility 
zone. In this case this zone is located asymmetrically around point 3 where the slope angle 
changes from around 4° to around 18° (cf. Fig. 10). The fact that the vertical displacements are 
much smaller than the horizontal and the resultant ones lets the curves of the vertical 
displacements appear hunched and notches at zone limits (cf. Fig. 6.10). Therefore, one should 
not falsely interpret these features as real hunches. Slight hunches are though observable at the 
horizontal and resultant displacements at combinations B-100 m/s and C-100 m/s; at signal F 
appears again the conspicuous “unexplainable artifact” at 100 m/s (cf. Fig. 6.5a-c). 
 

 
Fig. 6.5a-c. Horizontal, vertical and resultant displacements for combinations B-100 m/s, C-100 m/s and F-100 m/s. 

Axis labels and marking correspond to the ones in Fig. 6.4c-d. 

 
The second graphic type (cf. Fig. 6.4c-d, Fig. 6.5a-c) also contains a dashed green line 
representing the respective Newmark-displacement (1965); it only varies per signal but it is 
constant throughout the shear wave velocities. It is therefore not surprising that the Newmark-
displacement (1965) “grows” and even exceeds the displacements calculated by modal 
recombination with increasing shear wave velocity. Especially the vertical displacements are 
prone to exceedance due to their generally small values. 
Table 6.4 displays in percent how many of the 1011 resultant displacements along the surface 
are bigger than the Newmark-displacement (dn; 1965). It can be seen that – with one exception – 
the displacements calculated by modal recombination exceed the Newmark-displacement 
(1965) by 24-85% even at the highest shear wave velocity. Only at signal F, which has the 
highest Newmark-displacement (1965), there is no exceedance beyond 900 m/s. Tables for the 
resultant and the horizontal displacement are almost identical; in the table for the vertical 
displacement the exceedance levels are naturally much lower. Considering percentages at 300 

(a) (b) (c) 
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m/s, it can be seen that 63-89% of the resultant displacements in every point along the slope 
surface are greater than the Newmark-displacement (1965) suggesting that particular care must 
be taken when using one of the two methods only. Table 6.4 shows also the maximum resultant 
displacements at 300 m/s; they exceed the respective dn-values by up to 65.5 cm. 
 

vs A B C D E F G H I J K 
100 91 79 79 82 80 75 82 78 83 78 83 
150 90 76 77 80 76 69 80 74 81 74 81 
200 90 73 74 78 74 64 78 70 80 70 79 
250 89 71 71 76 72 57 77 66 78 67 78 
300 89 69 68 75 70 51 75 63 77 63 77 
350 88 67 66 74 68 45 74 60 76 60 75 
400 88 64 63 72 66 39 73 55 75 56 74 
450 87 62 60 71 64 35 72 52 74 52 73 
500 87 60 57 70 63 31 71 48 73 48 72 
550 87 57 54 69 60 28 69 45 72 45 71 
600 86 55 51 68 58 25 68 42 71 41 70 
650 86 52 49 67 56 22 67 39 70 38 70 
700 86 50 46 66 54 19 66 36 70 36 69 
750 86 48 43 65 52 16 65 34 69 33 68 
800 85 46 41 64 50 12 64 32 68 31 67 
850 85 44 39 63 48 7 63 30 67 29 66 
900 85 42 36 61 46 0 62 28 66 27 65 
950 85 40 35 60 44 0 61 26 65 26 64 

1000 85 38 33 59 42 0 60 25 65 24 63 

Tm (s) 0.70 0.66 0.32 1.08 0.77 0.58 1.02 0.38 1.19 0.49 0.76 
dN (cm) 0.00 0.38 0.12 0.33 0.53 1.41 0.21 0.30 0.15 0.35 0.06 

 

d_res_max_300 (cm) 17.8 23.6 10.0 65.8 38.4 16.9 45.5 10.5 53.1 11.3 19.9 
diff. to dN (cm) 17.8 23.2 9.9 65.5 37.8 15.4 45.3 10.2 53.0 10.9 19.9 

Tab. 6.4. Percentage points (of 1011 in total) for which the resultant displacements are bigger than the dn-values 
 per signal. There is no obvious relation to Tm-values. The last two rows give the maximum resultant 

displacements at 300 m/s per signal and the maximum differences to the respective dn-values. 

 
There is no obvious relation to characteristic periods nor to their ratios. In some degree this 
could be expected, because a comparison implies the line-up of Tm, Ts/Tm or Tl/Tm (which are 
based on the shear wave velocity) and the exceedance of the Newmark-displacement (1965) in 
percent (which clearly does not include the velocity concept). 
From the previous paragraphs it is thus clear how difficult displacement comparisons are since 
they do not base on the same input and give a different quantitative output (cf. Tab. 6.5): 
 

method input output 

NEWMARK (1965) 
W, l, c’, Φ’, β’, 

signals 
1 dn for entire slope 

per signal 

modal recombination 
vs, γ, ρ, υ, G, E, 

signals 
1 dx, 1 dz and 1 dr for each point along slope 

per signal 
Tab. 6.5. Input dependency of dn-values; it should be noted that in 3D modal recombination analysis also gives a 

second horizontal displacement (dy). 

 
Ideally one method would deliver one value, and in the best case the obtained displacement 
would be in the same direction. Simply by checking the third column of Tab. 6.5, one can see that 
this is not the case for both concerned methods. In order to avoid this discrepancy MARTINO et 
al. (2016) proposed the Characteristic Period Based Approach which derives from all horizontal 
displacement values (i.e. in the direction of dx) only one value that should be representative for 
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the entire slope. In this thesis, attempts for usage of this approach were made; prior to the 
description of the procedure, though, an excursus presents the background and concept of the 
approach. 
 
Excursus – The Characteristic Period Based Approach and its Application in two Examples 
 
The Characteristic Period Based Approach (MARTINO et al., 2016; in the following abbreviated 
by CPB-Approach) estimates seismically induced landslide displacements and gives results in 
relation to the characteristic period ratios Ts/Tm and Tl/Tm. The components of these ratios are: 
 

     characteristic earthquake period 𝑇𝑚 =
∑𝐴𝑖

2∙𝑇𝑖

∑𝐴𝑖
2  (RATHJE et al., 2004; cf. equation in 4.4.) 

 

     characteristic site period  𝑇𝑠 =
4∙ℎ

𝑣𝑠
 (RATHJE & BRAY, 2000; cf. Fig. 6.6) 

 

     characteristic site period  𝑇𝑙 =
𝑙

𝑣𝑠
  (HUTCHINSON, 1978; cf. Fig. 6.6) 

 
The authors suggest that the expected horizontal displacements depend on a combination of 1D- 
and 2D-effects – more precisely on the interplay of the resonance of the landslide and the 
interaction between the earthquake and the landslide. Maximum horizontal displacements are 
expected for: 

𝑇𝑠

𝑇𝑚
≈ 1.0     and     

𝑇𝑙

𝑇𝑚
≈ 0.5 

 
As for Ts, it is obvious that when Ts ≈ Tm, then also fs ≈ fm, and the more similar two frequencies 
are, the more likely is the phenomenon of resonance and constructive interference. For Tl 
however, maximum displacements are expected when Tl ≈ l and Tm ≈ 2·l. Under that condition, 
and especially when the landslide is rather flat, its entire mass is subjected to movement in one 
direction only (cf. Fig. 6.6). 
 

 
Fig. 6.6. Setting assumed to cause maximum displacement.  

 
After the application of different seismic signals (Tm) to one particular slope geometry (Ts and 
Tl), the CPB-Approach retrieves one horizontal displacement per combination by: 
 

 sorting all dx-values from the biggest to the smallest, 
 keeping the biggest 5% of them, 
 and plotting the mean value of those remaining 5%. 

 
In their publication the authors tested the approach at two well studied landslide sites. The 
Güevéjar Landslide is known not to have any particular resonance. It was activated by the Lisbon 
1755 Earthquake (1st of November 1755; MW = 8.5) and reactivated by the Arenas del Rey 
Earthquake (25th of December 1884; MW = 6.3); for this reason it is listed with numbers 040.01 
and 040.02 in the database. The Diezma Landslide (001.00) does not have a seismic trigger but 
clear signs of resonance within its body. The application of the CPB-Approach to both landslides 
revealed a coherent picture which is schematically shown in Fig. 6.7 and explained in Tab. 6.6. 
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Fig. 6.7. Schematic semi-logarithmic plots relating the maximum horizontal displacement 

to the characteristic period ratios (cases of the Güevéjar Landslide and the Diezma Landslide). 

 

landslide 1D-effect 2D-effect 

Güevéjar 
no particular resonance effect 

(no max. dx at Ts/Tm ≈ 1.0) 
more significant with 

increase of Arias Intensity 
(max. dx at Tl/Tm ≈ 0.5) Diezma 

resonance effect visible at low Arias Intensity 
(max. dx at Ts/Tm ≈ 1.0) 

Tab. 6.6. Differences of 1D- and 2D- effects of the Güevéjar and the Diezma Landslides. 

 
The findings are in good accordance with LENTI & MARTINO (2013) who suggested that 1D-
effects are usually more significant at slopes with low inclinations, and rather to be seen at low 
energy input. With increasing Arias Intensities the 2D-effects seem to overshadow the 1D-
effects.  
In this thesis the CPB-Approach was again applied to the Diezma Landslide but with one major 
difference: MARTINO et al. (2016) used LEMA_DES-signals (cf. 4.4.), whereas here real filtered 
signals were applied to the slope in order to test the functionality of the approach with 
unprocessed signals. It should be noted that the LEMA_DES-series used by MARTINO et al. 
(2016) in fact consist of 11 signals just as well as the here employed series (signals A-K). 
However, the signals in the two series are not identical although they both were filtered from the 
ESMD (cf. 4.4.). In the two series the filtering criteria are different. 
Furthermore, in the present case the analysis also deals with a variation of the shear wave 
velocity from 100 m/s to 1000 m/s. Thus, a third axis is added to the plots. In Fig. 6.8 and Fig. 6.9 
one can see the horizontal displacements according to the CPB-Approach in relation to Ts/Tm 
and Tl/Tm respectively. Red and blue lines link values based on the same shear wave velocity and 
black lines link values obtained by the same signal; the order of the signals is indicated in the 
captions. The three small sub-figures show the main plot from the top, the front and the side 
which facilitates the interpretation: 
 

top view (1st/2nd axis)  smaller vs with increase of characteristic period ratio 
side view (2nd/3rd axis)  smaller dx with increase of vs (signal F showing its hunch) 
front view (1st/3rd axis)  distorted two-notched dx-pattern with increase of vs 
 

The appearances of the top and the side view were very coherent with the so far described 
principles. The front view, though, was rather surprising and even in some ways unsatisfactory 
since it was expected to reflect the principles of the CPB-Approach. Unlike in Fig. 6.7, the 
horizontal displacements are quite variable throughout the characteristic period ratios and 
there is no obvious tendency to be recognized – not for a Ts/Tm-ratio around 1.0 neither for 
Tl/Tm-ratio around 0.5.  
Only at very high shear wave velocities the curves tend towards displacement maxima. 
Nevertheless, those shear wave velocities are by far too big to correspond to the real site 
conditions (300 m/s) and from the distorting behavior of the curves it is not clear if maxima are 
to be found around 0.5 or at even smaller Tl/Tm-values.  
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Incidentally, the appearance of the curves in the two plots does not change because of the fact 
that Ts/Tm and Tl/Tm are related by the factor l/(4·h) (cf. Fig. 6.6), and so the representation is a 
question of the right scaling of the first axis (cf. Fig. 6.7). 
 

from     𝑇𝑠 =
4∙ℎ

𝑣𝑠
     follows     𝑣𝑠 =

4∙ℎ

𝑇𝑠
     and so     𝑇𝑙 =

𝑙

𝑣𝑠
=

𝑙
4∙ℎ

𝑇𝑠

     and thus     
𝑇𝑙

𝑇𝑠
=

𝑙

4∙ℎ
∙
𝑇𝑠

𝑇𝑚
 

 

 
Fig. 6.8. Expected horizontal displacement according to the CPB-Approach in relation to Ts/Tm.  

The sub-figures show the top, the front and the side views (from top to bottom). 
For the top view, signals from left to right are I, D, G, E, K, A, B, F, J, H and C. 

 

 
Fig. 6.9. Expected horizontal displacement according to the CPB-Approach in relation to Tl/Tm.  

The sub-figures show the top, the front and the side views (from top to bottom). 
For the top view, signals from left to right are I, D, G, E, K, A, B, F, J, H and C. 
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Due to that non-specific outcome of the analysis, the entire CPB-Approach was subsequently 
tested for the vertical and resultant displacements (with 5%) and also for the three 
displacements (horizontal, vertical and resultant) for 25%, 50%, 75% and 100% – of which the 
latter corresponds to the average of all displacements at the 1011 considered surface points.  
Unfortunately all plots look almost identically and show the same distorted two-notched 
pattern. The overall expected principles (cf. previous paragraphs) could be confirmed: 
 

 dx being slightly bigger than dr 
 dz being roughly one order of magnitude smaller than dx 
 displacements decreasing with increase in percentage (cf. Fig. 6.4c-d, Fig. 6.5a-c) 

 

 
Fig. 6.10. The simplified geometry of the Diezma Landslide divided into 4 zones for projection of displacement 

components. Due to the boundary condition definition the first and the last point (red) have no displacement and 
hence their projections are 0 as well. Points 1, 2, and 3 (blue; cf. Fig. 4.8) are projected with φ1, φ2 and φ3 respectively. 

 

 
Fig. 11. Principle of projection. 

 
In another attempt to verify the findings of MARTINO et al. (2016) and LENTI & MARTINO 
(2013) the entire analysis was repeated for projected displacements – starting out from graph 
plotting of type 1 and 2 (cf. Fig. 6.4a-d) and comparison of the 209 signal-vs-combinations, via 
the line-up with Newmark-displacements (1965), to the CPB-Approach for all three types of 
displacement with the same steps of percentages. 
The term “projected displacements” refers here to those displacement values that result from 
projection to the slope surface. Since the simplified geometry has four zones with different 
surface inclinations (cf. Fig. 6.10), horizontal and vertical components were projected according 
to the local slope angle. The resultant displacement is in this case defined by: 
 

𝑝𝑟 = 𝑝𝑥 − 𝑝𝑧  
 
Without long circumlocution, the results are almost equal. The same zonal behavior around 
point 3 (cf. Fig. 6.4a-d) as well as the “unexplainable artifact” at combination F-100 m/s 
reappears. Although the projected vertical displacements became considerably smaller than the 
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projected horizontal ones, the overall relation between the three types of displacement remains 
the same. The line-up with the Newmark-displacement (1965) is in good accordance with the 
results from the “non-projected” analysis; only the projected vertical displacements lie closer to 
the Newmark-displacement (1965). Finally, the application of the CPB-Approach in all 
combinations (px, pz and pr with 5%, 25%, 50%, 75% and 100%) could not clearly reproduce the 
schematic plots of Fig. 6.7 either. For this very reason, the CPB-Approach was not applied to the 
data resulting from modal recombination analysis in 3D. 
Questionable remain the exact causes that lead to such diverging results. Some might be: 
 

 the use of filtered but non-processed signals 
(In contrast to the here presented study, MARTINO et al. (2016) used signals that had 
undergone the LEMA_DES procedure (cf. 4.4.). The CPB-Approach was not tested for 
non-processed signals so far.) 

 the unfavorable data coverage of the plots 
(It turned out that the zones of interest – i.e. around Ts/Tm ≈ 1.0 and Tl/Tm ≈ 0.5 – are 
only covered by displacement values that result from high shear wave velocities. The 
Diezma Landslide, however, has a shear wave velocity of 300 m/s. Therefore it is 
suggested that for future studies using the CPB-Approach, the coverage range should be 
taken into account while filtering seismic records from a database.)  

 the less significant variation of the Arias Intensity 
(The main interpretation of the CPB-Approach is actually dependent on an energy 
increase – hence on a significant variation of the Arias Intensity. In this study, signals 
were filtered from the ESMD (cf. 4.4.) with the criterion of the Arias Intensity ranging 
from 0.1-1 m/s. Together with the three other filtering criteria the range of available 
Arias Intensities is only 0.08-0.27 m/s.  

 the difference of the considered geometry 
(This study considers a simplified geometry which deviates from the original landslide 
mass. It remains doubtful, though, that the simplified geometry has such a strong 
influence on the applicability of CPB-Approach; effectively, conventional displacement 
evaluations without the CPB-Approach gave a very conclusive image of the expected 
behavior.) 

 the choice of the h-value 
(By need of one single height value for almost any involved equation a choice had to be 
made in the very beginning of all subsequent studies. In this case h was set to 19.5 m 
which corresponds to the thickness of the landslide at point 2 (cf. Fig. 4.8). As Fig. 6.12 
shows the thickness is very variable throughout the landslide body and so is the 
characteristic site period Ts.) 

 

 
Fig. 6.12. Variation of the thickness (here called h) and the thereby linked 
characteristic site period (Ts). Adopted values are marked as dashed lines. 
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6.4.3. Step MODE in 3D  
 
In analogy to the MODE-computation in 2D also the first twenty eigenfrequencies (f0-f19) in 3D 
were recovered. The frequency series per shear wave velocity are shown in Fig. 6.13 as red dots. 
Since the 2D-MODE-computation (cf. 6.4.1.) had shown that all dots align straightly with 
different inclinations, only frequency series for 100 m/s, 300 m/s and 1000 m/s were calculated 
to connect the dots by lines. For comparison the black dots represent the resonance frequencies 
in 2D. 
Again, the real fundamental frequency revealed by the 3D-MODE-computation comes very close 
to what DELGADO et al. (2015) indicated. 
Of particular note is the fact that the straight lines connecting frequencies of each rank lie much 
closer to each other. In other words, the inclinations of the straights do not become as low as in 
2D. However, the inclination of the line connecting the fundamental frequencies has almost the 
same inclination and – as in 2D – the higher the rank of the frequencies, the closer come the 
connecting straights. It is thus quite possible that this striking difference of eigenfrequencies 
also has a considerable effect on the outcome of the 3D-SUMO-computation (cf. 6.4.4.) whose 
values are generally bigger than those of the 2D-SUMO-computation. 
 

 
Fig. 6.13. First twenty eigenfrequencies per shear wave velocity (red dots for 3D, black dots for 2D)  

The fundamental frequency (f0) is always the leftmost; dashed lines show the real values of the Diezma Landslide. 

 
6.4.4. Step SUMO in 3D  
 
The displacement analysis in 3D was carried out in two versions and only for 11 combinations 
each (11 signals at 300 m/s): 
One version only deals with points along the slope surface of the longitudinal cross section 
which corresponds to the one of the analysis in 2D. Here, the objective was to allow for easy 
comparison of 2D- and 3D-displacements. It is worth to note that in 3D there are only 479 points 
located along the slope surface of the concerned cross section – a fact that results from different 
mesh-sizes in the CESAR-Models (cf. 6.4.). 
The other version includes all points on the slope surface making up a total of 61,594 points and 
enabling the exact localization of deformation zones by taking into account the second 
horizontal dimension. 
To distinguish the two versions, the first one is called “LCS” and the second one “plane” although 
both terms are not ideal. According to the previous employment of the term “LCS” it refers to 
simply a whole longitudinal cross section (cf. 2.4.2.); as for the term “plane”, it refers to the fact 
that in the 3D-CESAR-Model the landslide mass is entirely covered by triangular plane tiles. 
For all 11 signal-vs-combinations of the LCS-version there is one quadripartite plot similar to the 
second graphic type (cf. Fig. 6.4c-d) showing the two horizontal displacements (red and blue), 
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the vertical (blue) and the resultant displacements (black) as function of the x-coordinate of the 
point (Fig. 6.14a-b.). The deducible behavior is corresponding well to the one observed in 2D: 
 

 one main zone of displacement around point 3 (cf. Fig. 4.8) 
 dx significantly bigger than dz (with dy in between) 
 dx only slightly bigger than dr  
 visible zone limits (cf. Fig. 6.10) at dy and dz due to their small values and thus sensitivity 

 
The resultant displacement is again defined by the root of the squared components as in 2D: 
 

𝑑𝑟 = √𝑑𝑥
2 + 𝑑𝑦

2 + 𝑑𝑧
2 

 
Strikingly, all horizontal displacements in dy-direction are positive, i.e. in the “inwards” direction 
if one considers the whole landslide mass as a curve-shaped object (cf. Fig. 6.20). This is 
inasmuch surprising as one might imagine rather the opposite. One explanation could be that the 
landslide mass is – lengthwise – unevenly thick; its western upper part is thinning out and 
gradually mixing with another geological formation (cf. 4.1., Fig. 4.3) whereas its middle and 
eastern parts reach much bigger depths leaving more mass to be excited. 
 

 
Fig. 6.14a-b. Horizontal (red and blue), vertical (green) and resultant (black) displacements for signals D and J at a 

shear wave velocity of 300 m/s. Both signals represent cases with high and low entrained displacements respectively. 

 
Figure 6.15a-d show the same graphic type for the “plane” version with the same color codes 
and arrangements. Here, displacements are plotted as function of the x- and y-coordinates.  
The lower two quadripartite plots (cf. Fig. 6.15c-d) are front views of their upper counterparts. 
Although they also represent a sort of longitudinal cross sections similar to those of Fig. 6.14a-b, 
it appears on a closer look that they reach slightly different values in all components as well as in 
the resultant displacement. The reason for this difference is that even though the simplified 3D- 
geometry does contain the simplified 2D-geometry without compromise, this simplified 2D-
geometry does not constitute the relative topographical maximum of the landslide. The latter is 
defined by the middle point of the TCS C (cf. Fig. 4.10i) and in the following termed “nose (of the 
landslide)” to distinguish it from point 3, which is the relative topographical maximum of the 
simplified 2D-geometry (cf. Fig. 4.8). 

(a) (b) 
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Fig. 6.15a-d. Horizontal (red and blue), vertical (green) and resultant (black) displacements for signals D and J at a 

shear wave velocity of 300 m/s. Both signals represent cases with high and low entrained displacements respectively. 
The lower series are front views of the upper series. 

 
6.4.5. Comparison of  CESAR-Models 
 
The biggest interest after the 2D- and 3D-analyses of the Diezma Landslide in CESAR is the 
comparison of results. Throughout the last sections it became clear that a multitude of data in 
numerous combinations is available, and that per combination displacement data is variable and 
even to be distinguished according to its directivity. Thus, comparisons must be reduced such 
that they are simple enough to synthetize the entirety of the data, but still detailed enough to 
point out important differences.  
One restriction to comparisons is the fact that the entire 3D-analysis exists only for the shear 
wave velocity of 300 m/s; hence one only can make use of those 11 combinations in 2D that 
cover the same shear wave velocity. A second confinement is that only one value has to be 
attributed to one combination in order to make straightforward comparisons without drifting 
off in too many details.  
This second point is of course tricky because of the question of representativeness. Finally the 
maximum displacement of all points in the entire mesh was selected for two reasons: 
First, if being interested only in the difference of slope behavior in 2D and 3D, this is a 
meaningful value. However, it must be kept in mind that the point experiencing the biggest 
displacement is not necessarily a point on the slope surface. Indeed, it turned out, that usually 
concerned points are situated just below the slope surface.  
Second, the maximum values of all points are displayed right away in CESAR after visualizing the 
results and statistical testing revealed that the maximum displacements at the surface are 
almost equal to their “mesh-wide” counterparts (cf. Tab. 6.7). 
 
 

(a) (b) 

(c) (d) 
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dimension dx_surf/dx_all dy_surf/dy_all dz_surf/dz_all dr_surf/dr_all 

2D 1.3 - 1.3 1.3 

LCS (3D) 0.9 1.2 1.1 0.9 

plane (3D) 1.2 1.2 1.2 1.1 
Tab. 6.7. Average differences between maximum displacements of all points on the surface and of the entire mesh. 

 
With respect to the above mentioned conditions and necessities comparisons between 2D- and 
3D- analyses can be made for: 
 

  LCS (3D)      2D         (cf. Tab. 6.8) 
  plane (3D)     LCS (3D)        (cf. Tab. 6.8) 
  relations of displacement types among each other for 2D, LCS and plane (cf. Tab. 6.9) 

 
In contrast to all other comparisons, the second one relies on maximum displacements of all 
points on the surface because both 3D-analyses (LCS and plane) have the same maximum 
displacements of the entire mesh. 
 

 dx_LCS/dx_2D dy_LCS/dy_2D dz_LCS/dz_2D dr_LCS/dr_2D 

LCS (3D)      2D 11.2 - 9.0 11.4 

 dx_plane/dx_LCS dy_plane/dy_LCS dz_plane/dz_LCS dr_plane/dr_LCS 

plane (3D)     LCS (3D) 01.3 1.0 1.1 01.3 
Tab. 6.8. Average differences between maximum displacements of 2D and LCS. 

 
 dx/dy dx/dz dx/dr 

2D - 7.5 1.0 

LCS (3D) 
4.7 9.4 1.0 

plane (3D) 
Tab. 6.9. Average relations of displacement types among each other. 

The two 3D-versions (LCS and plane) share the same values because they 
have the same maximum displacements of the entire mesh. 

 
In words, one can derive from these three comparisons that: 
 
  horizontal displacements  in 3D are on average  11.2-times bigger than in 2D 
  vertical displacements  in 3D are on average  09.0-times bigger than in 2D 
  resultant displacements  in 3D are on average  11.4-times bigger than in 2D 
 
     horizontal, vertical and resultant displacements of the two 3D-versions are almost equal 
 
  there is a comparable factor between horizontal and vertical displacements (in 2D & 3D) 
  horizontal and resultant displacements are almost equal  (in 2D & 3D) 
  both horizontal displacements differ by a factor of 4.7 on average  (in 3D only) 
 
Especially the factors that appear between the 2D- and the 3D-analysis are striking and must be 
considered with particular care. It becomes clear what these factors can imply when comparing 
Fig. 6.4c-d and Fig. 6.14a-b. Signal J is a weak one; in 2D its maximum horizontal displacement 
close to point 3 reaches roughly speaking 10 cm but in 3D almost 1 m close to the nose. Signal D 
– being one of the strongest – causes exorbitant horizontal displacements: they jump from about 
60 cm in 2D to 6 m in 3D. One can only imagine the difference when comparing sets based on 
100 m/s. 
Although examples of 3D-FEM-modeling with CESAR are not yet numerous, literature on 
available case studies confirms a significant difference between displacements in 2D and 3D. For 
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example, seismic analysis of the Salanfe Hydropower Dam (Switzerland) revealed a factor of 
around 5 (LENTI & SEMBLAT, 2011; DESPREZ & LENTI, 2013).  
Due to this obvious difference a simple test was conducted in CESAR for a square and a cube 
with edge lengths of 10 m. More precisely, the square corresponds exactly to the x-z-plane inside 
the cube. This setting should resemble the position of the simplified geometry of the Diezma 
Landslide in 2D inside the one in 3D (cf. Fig. 6.16). Both the square and the cube have the same 
orientation, the same origin and a triangular mesh – also in analogy to the setting of the Diezma 
Landslide. Different are the increment size of the mesh (1 m) and the employed soil parameters 
ρ (2000 kg/m³), γ (54 MN/m²) and υ (0.35). Testing was only carried out with a shear wave 
velocity of 100 m/s – what was assumed to cause the biggest displacements – and with signal A. 
Similar to the Diezma Landslide, boundary conditions were applied on all enveloping surfaces 
and edges with exception of the covering surface or edge (cf. red lines and shaded surfaces in 
Fig. 6.16) and displacement analysis was focused on the 11 nodal points that the cube and the 
square have in common (cf. Fig. 6.17a-b). 
 

 
Fig. 6.16. Setting for the factor test between a 3D- and a 2D-object in CESAR. 

The blue axis labels are those used by CESAR in the respective dimension mode. 

 

 
Fig. 6.17a-b. Outcome of the factor test between a 3D- and a 2D-object in CESAR. 

Arrows represent displacement vectors; colors from blue (low) to red (high) show the amount of displacement. 

 

 
Fig. 6.18. MODE-computations for the 3D- and a 2D-object in CESAR. 

 
The MODE-computations show two interesting features for the first 10 eigenfrequencies (cf. Fig. 
6.18): First, when representing values in a plot like Fig. 6.13 the relative position of the values 
towards each other are equal in 2D and 3D but differently spaced than in the case of the Diezma 

(a) (b) 
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Landslide. Second, values lie again closer to each other in 3D. Both findings emphasize the 
assumption that: 
 

 Eigenfrequencies and eigenmodes depend strongly on the geometry and boundary 
confinement of the object.  

 
Adding a lateral confinement by introducing the third dimension is therefore supposed to have a 
great influence on the excitation of the structure of interest. 
The SUMO-computations revealed that for those 9 points on the surface, which can experience 
displacements, horizontal, vertical and resultant displacements are on average 4.3-, 2.6- and 3.4-
times bigger in 3D. 
More attention deserves also the relation of displacement types among each other. As mentioned 
before there are comparable factors between them and these factors are more or less constant 
throughout the 209 signal-vs-combinations in 2D and the 2x11 signal-vs-combinations in 3D. 
Table 6.10 shows the factor relationships in a gray-shaded color code.  
 

signal 
2D 3D 

dx 
(mm) 

dy 
(mm) 

dz 
(mm) 

dr 
(mm) 

dx 
(mm) 

dy 
(mm) 

dz 
(mm) 

dr 
(mm) 

A 176.4 

- 

23.5 177.8 1939.6 0417.2 207.7 1987.3 

B 234.4 31.2 236.3 2473.3 0533.9 264.6 2534.5 

C 099.5 13.3 100.3 1083.9 0233.1 114.1 1110.5 

D 652.6 87.0 658.0 7290.8 1569.8 782.2 7470.2 

E 380.4 50.7 383.5 4252.4 0917.9 455.6 4357.6 

F 167.1 22.3 168.5 1859.4 0400.5 196.7 1905.2 

G 451.7 60.2 455.5 5063.0 1089.6 544.6 5187.5 

H 104.4 13.9 105.2 1301.7 0277.0 136.2 1332.9 

I 526.7 70.2 531.0 5824.8 1255.4 626.5 5968.5 

J 111.6 14.9 112.5 1256.3 0264.2 134.0 1285.9 

K 197.6 26.3 199.2 2230.8 0481.3 237.7 2286.0 
Tab. 6.10. Maximum displacements of all points of the entire mesh for vs = 300 m/s. 

 
After cross-checking displacement plots and visual interpretation of result plots from CESAR it 
became clear that:  
 

 The general (qualitative) behavior of the slope in terms of horizontal, vertical and 
resultant displacement is the same for all signals featuring one zone of major 
deformation. 

 According to the signal as well as to the respective shear wave velocity, these 
displacements are greater or smaller – hence, they differ quantitatively. 

 
The first point is illustrated by the figure series in the appendix (cf. A.6.) which shows all color-
coded figure exports from CESAR for 300 m/s and signals A-K. Series are available in: 
 

  2D for    dx, dy, dz, dr       in side view 
  3D for   dx, dy, dz, dr       in front, top and side view 

 
The side views in 3D give insights to the interior of the models after imaginarily cutting along 
the 1st and 2nd axis. Thus these views do not include the nose of the landslide but are situated at 
the exact position of the simplified 2D-geometry allowing for direct comparison. 
Figure 6.19 is a qualitative summary of the general displacement patterns which are almost 
identical in 2D and in 3D. It appears that: 
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 for dx, the maximum zone is situated just upslope of point 3 
 for dy, the maximum zone is situated just downslope of point 3 
 for dz, the maximum zone is situated just upslope of point 3 and looping beneath it 
 for dr, the maximum zone is situated just upslope of point 3 

 
Comparisons of the qualitative summary displacement patterns in their front view (Fig. 6.20) 
with their counterparts in the side view (Fig. 6.19) give a conclusive result: 
 

 for dx, the maximum zone is situated just upslope of the nose of the landslide 
 for dy, the maximum zone is situated just downslope of the nose of the landslide 
 for dz, the maximum zone is situated just upslope of the nose of the l. (loop invisible) 
 for dr, the maximum zone is situated just upslope of the nose of the landslide 
 

 

                                                                                   

 

 
Fig. 6.19. Qualitative summary of the general displacement patterns in side view. 

Colors from blue (low) to red (high) show the amount of displacement. 
 
 

 
Fig. 6.20. Qualitative summary of the general displacement patterns in front view. 

Colors from blue (low) to red (high) show the amount of displacement. 
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7.1. Introduction 

 
The two preceding chapters 5. and 6. presented respectively the concepts of limit equilibrium 
analysis and modal recombination analysis as well as their applications to the Diezma Landslide. 
This chapter is dedicated to the third employed method to analyze seismically induced 
displacements across the slope of the Diezma Landslide, i.e. to the finite difference analysis with 
the numerical modeling software FLAC 2D and FLAC 3D (both abbreviated in the following as 
FLAC).  
As described in sections 6.1. and 6.2. finite difference methods belong to the field of continuum 
modeling; for further information on categorical and historical emplacement of these methods 
one may refer to the mentioned sections. 
Again, this chapter follows the structure of the previous ones by passing from theory to practice. 
First, an overview on the software FLAC will be given, which covers likewise its 2D- and its 3D-
version. A closer look will be taken on the required procedures for the analysis of seismically 
induced displacements as well as on the assessment of site effects. The evaluation of site effects 
will be presented in more detail in a short excursus (cf. Excursus – 7.3.3.). 
The second part describes the application of these procedures to the Diezma Landslide. Similar 
to the order of chapter 6., the procedures will be followed step by step with visualizations of 
results and appendant interpretations. The last section comprises a comparison of the 2D- and 
3D-FLAC-Models. 
One important fact to note is that throughout the thesis, only the analysis with the code FLAC 
was carried out for the simplified and the fine geometry in 2D and 3D. Both the NEWMARK-
Method (1965; cf. 5.) as well as the analysis with modal recombination (cf. 6.) were based only 
on the simplified geometry of the Diezma Landslide (cf. Fig. 4.12).  
 
7.2. Functionality of FLAC 

 
The software FLAC is very comprehensive and disposes also of extensive documentation: 
 

FLAC 2D Version 7.0 User’s Manual (15 volumes; ITASCA, 2011) 
FLAC 3D Version 5.0 User’s Manual (13 volumes; ITASCA, 2012) 

 
In order to give an overview on the software, basic concepts are summarized in the next sections 
(cf. 7.2.1., 7.2.2.) instead of rewriting the user manuals, what would miss the target of the thesis. 
In terms of references, both following sections refer exclusively to ITASCA (2011) and ITASCA 
(2012); no further references will be made in the text. 
 
7.2.1. Overview on the Software 
 
One of the most powerful numerical codes for geotechnical analysis is the commercial software 
FLAC which is a product of the American consulting group ITASCA on the market since 1986. 
Due to its multitude of possibilities to solve complicated mechanical problems involving 
geological materials, it is widely used in the fields of civil and mining engineering to model 
complex ground behavior. 
In this regard, the software is equally suitable for designing as well as for testing objectives. On 
the one hand, when exact data is available, the code creates a numerical image of the location of 
interest allowing for surveillance, analysis, design of construction measures and the prediction 
of effects caused by the latter. On the other hand, the code can also be used as testing 
environment, when data is not or not entirely available; in this case it becomes a convenient tool 
to conduct research offering an almost endless number of ways to analyze the setting of interest. 
In the case of the Diezma Landslide, FLAC is used in both ways: There is enough data available to 
build a detailed numerical image of the site which is used for the analysis of the ground response 
after having tested different seismic scenarios. 
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Shortly spoken, FLAC is an explicit finite difference code and named without abbreviation “Fast 
Lagrangian Analysis of Continua”. One might thus ask what these terms represent. 
Generally, involved materials are represented by elements. Each element can have its particular 
properties and behaves according to assigned material laws when subjected to forces and 
boundary conditions. Version 7.0 of FLAC offers fourteen built-in linear and non-linear material 
models (cf. 1.1.) of three categories: the null model for voids, elastic and plastic models. In the 
next section (cf. 7.2.2.) it will be explained why for this thesis only the isotropic elastic and the 
Mohr-Coulomb-Model (from the plastic “family”) are relevant. The totality of all elements form a 
grid which is preferably of – but not restricted to – a rectangular appearance, since FLAC uses 
the finite volume method (WILKINS, 1964) that allows elements to take any shape. 
The creation of a grid (or mesh) is thus a discretization of the domain of interest (cf. 6.2.1.). In 
contrast to finite element methods (FEM), the discretization of finite difference methods (FDM) 
does not result in a finite number of elements but in a finite number of grid points (or nodes) 
that define zones to which stresses and strains apply. Another difference between FEM and FDM 
is, that FEM have a matrix-based way of operation with matrix contents being constantly 
updated, whereas the principle of FDM is to regenerate the finite difference equations applying 
to the grid points with each computation cycle (or step). 
Figure 7.1 illustrates such a computation cycle. To start the first cycle the code makes use of the 
initial equilibrium equation and stress/strain-state to calculate velocities and displacements for 
all grid points. These velocities are then used by the constitutive equations (or material laws) to 
derive strain rates and stresses. In return, these latter ones are re-used by the equilibrium 
equation to launch the next cycle. This way of stepwise state calculation, in which the new state 
is only a function of the previous one, is called explicit. 
An important detail of the cycles is, that when one of the equations operates, the updated input 
is kept constant. This appears questionable, since – for example – one might expect a stress 
change in one point to cause a stress change at its neighboring points. If the time-step, however, 
is very small, neighbors figuratively “do not have time to come into conflict”. Small time-
stepping, though, is the major drawback of FDM since it leads to time-consuming procedures. 
 

 
Fig. 7.1. One calculation cycle of FDM. 

 
The definition of a Lagrangian Analysis is linked to the way the grid deforms. In fact, in this type 
of formulation it is the grid itself that deforms with the material it represents and incremental 
displacements are added to the coordinates of the grid points. With an Eulerian formulation, in 
contrast, only the material deforms with respect to a stationary grid. 
 
7.2.2. Required Procedure for Displacement and Site Effect Analysis 
 
The two main steps of analysis in this thesis are the static and the dynamic computation of the 
behavior of the slope (cf. Fig. 7.2).  
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The static phase includes the generation of the geometry of the slope and the creation of a mesh, 
on whose points displacements are to be assessed. Also interfaces, material zones, respective 
mechanical properties and boundary conditions are defined here. The purpose of the static 
computation is the assessment of slope deformation due to settlement by gravity.  
Based on this state of settlement, a dynamic computation can follow assessing the response of 
the slope to a seismic scenario under distinct damping characteristics that must be defined. 
One important point to memorize is, that for the assessment of slope deformation the entire 
procedure (i.e. both phases) must be run under conditions according to Mohr-Coulomb, whereas 
for the evaluation of site effects the model must behave in a purely elastic manner (cf. Fig. 7.2). 
Also for a computation of the factor of safety based on the static phase, a Mohr-Coulomb-Model 
is necessary. 
 

 
Fig. 7.2. Required procedures for displacement and site effect analysis in FLAC 2D and 3D. 

 
The Mohr-Coulomb Model that is assumed for the involved material describes an elasto-
perfectly-plastic behavior (cf. Fig. 7.3a); in literature, it is also known as Prandtl Model. The basic 
hypothesis is that a material is responding instantly and in a purely elastic manner until the 
yield strain is reached. After that, the deformation becomes purely plastic at constant stress. 
This particular behavior is easily illustrated by a mass-spring-system such as shown in Fig. 7.3a. 
The spring is tensioned and the strain-response remains elastic and thus reversible as long as 
the yield stress is not reached; once the yield stress is overcome, the mass is torn across the 
surface and plastic – i.e. irreversible – deformation takes place. If at a later stage of time, the 
applying force is suspended, only the amount of reversible deformation drops off, whereas the 
irreversible deformation remains. A detail to note is that, because of to the involvement of 
Rayleigh-Damping, the material behavior includes also a small viscous part; thus, the most 
accurate term to describe the model is “visco-elasto-perfectly-plastic”. 
Rayleigh-Damping is a form of viscous damping. Due to its convenience of being defined as linear 
combination (C = α·M + β·K) of the mass matrix (M) and the stiffness matrix (K) it is frequently 
used to numerically model internal structural damping (cf. 6.3.1.). The Rayleigh-Damping 
function as well as its two components – the mass-proportional part (α·M) and the stiffness-
proportional part (β·K) – are shown in Fig. 7.3b. One less convenient characteristic of Rayleigh-
Damping is the fact that the function is very variable over frequency, and thus only the very 
small section around the lowest damping ratio (ξmin) at its associated damping frequency (fdamp) 
can be considered as constant. In theory, the total amount of damping a vibration experiences by 
traveling over a given distance depends on its frequency since damping affects the amplitude per 
cycle and therefore: 
 

 A wave with a high f (i.e. a low λ) experiences a higher total damping over distance x. 
 A wave with a low f (i.e. a high λ) experiences a lower total damping over distance x. 
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Indeed, frequency-dependent damping is rather disadvantageous for models (cf. 1.1) in which 
the damping ratio (ξ) should be constant over a large frequency range. In order to stretch down 
the Rayleigh-Damping function the lowest damping ratio (ξmin) and its associated damping 
frequency (fdamp) are manipulated. Usually a value is first accorded to ξmin at which the function 
should flatten out; it is important to note that this value normally ranges in the single-digit 
percentage and it appears in the equation in decimal format (cf. Fig. 7.4). Then a rather high 
frequency is assigned to fdamp to enforce a low gradient on the stiffness-proportional asymptote. 
With experience, literature and trial-and-error approximation the two values can be defined 
without major difficulties. In a second stage, the system of differential equations consisting of 
the Rayleigh-Damping function (ξ(f)) and its first derivative is solved for the minimum point 
(ξmin/fdamp). With the resulting parameters α and β the damping matrix C is finally defined since 
the mass matrix (M) and the stiffness matrix (K) are known. 
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Fig. 7.3a-b. Perfect elasto-plastic behavior and Rayleigh-Damping. 

 
Similar to the numerical code CESAR (cf. 6.3., A.5.), FLAC has a command driven way of 
operation as well as a graphical user interface, but for purposes of automatization, it is more 
efficient to use so-called “FISH-commands”. “FISH” is the abbreviation of the scripting language 
“FLACish” that allows the user to write command sequences, manage variables and customize 
analyses. Also for pre- and post-processing the FISH-language offers many advantages. 
As a matter of fact, there are no workflow charts at the end of the appendix describing the 
“clicking order” as for the graphical interface of CESAR. The used FISH-commands for the static 
and the dynamic computations as well as for the exports of displacements and velocity time-
histories were developed over the last years by one of the thesis supervisors. For reasons of 
authorship, they are not displayed in the appendix. However, the MATLAB-code for the 
evaluation of site effects is available (cf. A.9., A.10.). 
 
7.3. Application to the Diezma Landslide 

 
In this section, model outlines for both dimensions will be discussed before passing on to 
detailed descriptions of the static and dynamic phases. In the following, the basic points of 
geometries, meshes, properties, boundary conditions and loading will be addressed (cf. A.12.). It 
is important to note that – for better comparison – the order of these basic points corresponds to 
the one in section 6.4.; however the arrangement does not reflect the structure of the FISH-
commands for FLAC. 
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Geometry 
 
As mentioned before, only the analysis with FLAC was carried out for the simplified and the fine 
geometry. There are thus two sets of models in 2D as well as in 3D. The procedure per 
dimension is, however, the same since it only reads different geometry inputs. In analogy to the 
analysis with CESAR, the longitudinal cross section of the simplified geometry fits into the 
simplified 3D-geometry (cf. Fig. 4.8, Fig. 4.12); the longitudinal cross section of the fine geometry 
fits into the fine 3D-geometry (cf. Fig. 4.15o, Fig. 4.16). Both the simplified and the fine 
longitudinal cross sections lie in the xz-plane of their respective 3D-geometries; the fine 
geometry was therefore rotated. Sections 7.3.1. and 7.3.4. describe the geometric setups defined 
by the FISH-commands. 
 
Mesh 
 
Being linked to the geometrical setups and the grids of the models, also the meshes are 
described in these sections (cf. 7.3.1., 7.3.4.). To summarize, the mesh-size of the 2D-geometry is 
1 m (resulting in ca. 250,000 zones surrounded by four mesh-points), whereas the one for the 
3D-geometry is 3 m (resulting in ca. 4,000,000 zones surrounded by four mesh-points).  
 
Properties  
 
Required properties for the landslide mass, the underlying bedrock and the sliding surface are 
the shear wave velocity (vs in m/s), the density (ρ in kg/m³), the Poisson’s Ratio (υ without 
dimension), the cohesion (c in Pa) and the friction angle (Φ in degrees). In addition to those five 
properties, the code also needs the shear modulus (G in Pa) and the bulk modulus (K in Pa) 
which can be calculated via the compressional wave velocity (vp in m/s) and the longitudinal 
module (M in Pa). 
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2          𝑣𝑝 = 𝑣𝑠 ∙ √
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          𝑀 = 𝜌 ∙ 𝑣𝑝

2          𝐾 = 𝑀 − (
4

3
) ∙ 𝐺 

 

 
Fig. 7.4. Rayleigh-Damping functions for the 2D- and 3D-models. 

 
Table 7.1 shows the values of the respective properties. The density and the Poisson’s Ratio are 
taken from literature (DELGADO et al., 2015; MARTINO et al., 2016; cf. Tab. 4.1); the landslide 
mass adopts the peak values, whereas the sliding surface reflects the residual counterparts. To 
have a distinct contrast the shear wave velocity of the bedrock was assumed to be 1000 m/s, 
although MARTINO et al. (2016) estimate only 750 m/s. The other values related to the bedrock 
are also reasonable assumptions. Rayleigh-Damping is assumed for the involved material; values 
differ slightly for the 2D- and the 3D analysis with no significant effect (cf. Fig. 7.4). 
All models in this chapter are computed with a shear wave velocity of 300 m/s for two reasons: 
First, this is the true value as indicated in literature (DELGADO et al., 2015), and second, most of 
the modal recombination analysis with CESAR (cf. 6.) is based only on this value. 
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Boundary conditions 
 
In order to correctly deal with artificial boundaries – i.e. such that are no real physical 
boundaries – conditions have to be applied to them. For static analyses boundary conditions 
might be fixed or elastic. For dynamic analyses, though, such boundary conditions cause 
reflections of propagating waves back into the model. Energy is thus accumulated in the model 
what does not correspond to wave propagation patterns in reality. To avoid such reflection 
phenomena the model can either be very large so that most of the reflected wave energy will be 
absorbed by the material damping when “coming back”, or quiet (absorbing) boundaries and 
free field boundaries must be applied in order to ensure energy absorption. 
For displaying boundary conditions of the models, it helps to imagine a rectangle and a cuboid 
corresponding to the respective model geometries in FLAC. Boundary conditions for the static 
and dynamic phases then are: 
 

 static 2D:  no dx on sides, no dz on the model basis 
 static 3D:  no dx on yz-sides, no dy on xz-sides, no dz on the model basis 
 dynamic 2D:     free field on lateral sides, quiet boundaries on the model basis 
 dynamic 3D:     free field on lateral sides, quiet boundaries on the model basis 

 
Loading 
 
Dynamic loading is inserted to FLAC via a velocity time-history in meters per second. Similar to 
the way of signal application in CESAR (cf. 6.4.), the shear wave signal is supposed to originate 
from a sufficiently far hypocenter in order to arrive vertically and taking effect on the model by 
horizontal shaking (cf. Fig. 1.3). The difference is that in FLAC the signal is applied to the bottom 
of the model, and not on the sliding surface as in CESAR. 
One major point of discussion was the choice of signals to apply to the Diezma Landslide due to 
very time-consuming computations. Depending on the signal duration (Fig. 7.22) and the time-
stepping (cf. Fig. 7.1) dynamic phases in 2D needed up to three days of processing time. Also the 
preceding static phase – that is the same for all dynamic computations – took around two days to 
run. Being still in the realms of possibility, all 11 signals were tested on the simplified as well as 
on the fine 2D-geometry. For the simplified and the fine 3D-geometry, though, a selection was 
necessary since one second needs around one day of processing time. Finally, the decision was 
made for signals E and B because of the following consideration: Figure 7.22 shows the 
maximum displacements per signal and the methods other than FLAC 3D. Intriguingly, signals E, 
B and C are always among the highly, medium- and less provocative signals in terms of 
respective caused displacements. Luckily, the three signals are also among the shortest in 
duration. There are thus four 3D-models: two with the simplified and two with the fine 
geometry representing pairwise scenarios with high and medium expected displacements (i.e. 
with signal E and B respectively).  
 

property landslide mass 
sliding 
surface 

underlying 
bedrock 

vs 300 m/s 300 m/s 1000 m/s 

ρ 2181.4 kg/m³ 2181.4 kg/m³ 2500 kg/m³ 

υ 0.25 0.25 0.35 

c’ 46e3 Pa 4e3 Pa 4e9 Pa 

Φ’ 26° 12° 30° 

ξmin (2D / 3D) 0.03 / 0.02 - 0.01 / 0.005 

fdamp (2D / 3D) 6 Hz / 5 Hz - 6 Hz / 5 Hz 
Tab. 7.1. Properties of the landslide mass, the sliding surface and the underlying bedrock. 
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7.3.1. Geometry of the Models in 2D                                                                                           
 
For both the simplified and the fine 2D-geometry the layout of the model is very similar. It 
consists of a rectangular block with the dimensions listed below and it has the uppermost point 
of the landslide crown at 0 m on the x-axis and at 0 m on the z-axis. 
 

 x-axis (called x-axis in FLAC): from -250 m to 700 m   950 m in total 
 z-axis (called y-axis in FLAC): from -300 m to 000 m   300 m in total 

 
The model geometries differ of course in those parts that represent the landslide mass. As 
explained in section 4.2.2., the simplified and the fine geometry do not have the same length (cf. 
Tab. 4.4). As a result, the longer fine geometry occupies more space in the model; it also has a 
few more grid points along the slope surface where displacements can be evaluated. 
The imposed grid is equal for all 2D-models. It has a mesh-size of 1 m by 1 m, what theoretically 
allows for correct propagation of waves that include frequencies up to 30 Hz (cf. 4.4). This value 
is well above the frequency content of the signals after they had undergone the 4th-order low-
pass Butterwoth Filter with a cut-off frequency of 10 Hz (cf. 4.4.). The grid consists 
predominantly of a square mesh; only at parts close to the slope surface elements have different 
shapes (cf. 7.2.2.). 
 
7.3.2. Static Analysis in 2D 
 
The static phase of the analysis is necessary to bring the model to equilibrium after the 
settlement due to gravity (g = 9.81 m/s²). The result shows – so to speak – the stability of the 
slope without the influence of a seismic scenario but taking into account the previously defined 
model geometry and mechanical properties of the involved material. 
 

 

 
Fig. 7.5a-b. SSI localization after the static phase for the simplified and the fine 2D-geometry. 

It should be noted that that in contrast to most of the other color-coded figures in this thesis the red-to-blue-sequence 
is here opposite. The SSI is dimensionless. 

 
One way in FLAC to represent the final state of the static analysis is to color-code the model 
according to strain patterns. Strains, however, can be computed only at nodes via their 
displacements. By attributing the average of all maximum nodal strains around one element to 
the element itself, one obtains the maximum shear strain increment (in the following called 
“SSI”) of that element which in turn is easily color-coded. Being an average value, the SSI is still 
dimensionless. In the case of landslides, it seems very likely that regions with high SSI values 
tend to accumulate close to the sliding surface, and CHENG et al. (2013) go even further by 
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proposing a procedure to localize sliding surfaces via SSI patterns. Nevertheless, one has to keep 
in mind that SSI can also show high values elsewhere in the model and that they do not 
obligatorily accumulate along the entire sliding surface (cf. Fig. 7.5a-b). If SSI form a continuous 
“chain” segregating one part or the entire landslide mass from its surrounding material, it would 
be an indication for static instability of the model; it would not come to equilibrium after the 
static phase and a failure would be likely.  
The two figures (cf. Fig. 7.5a-b) show the SSI for the simplified and the fine geometry covering 
only the landslide mass but not the underlying bedrock. It is easy to see that the pattern is quite 
different with respect to the geometry and the reached values. In the simplified geometry (cf. 
Fig. 7.5a) the SSI tend to accumulate along the sliding surface; they are smaller than the ones of 
the fine geometry by roughly one order of magnitude. SSI in the fine geometry (cf. Fig. 7.5b) 
concentrate around the toe of the landslide, and in contrast to the simplified geometry the 
pattern seems more similar to the one obtained by the respective computation of the factor of 
safety (cf. Fig. 7.6b). One major factor explaining the unequal patterns is the effect of gravity on a 
diverging mass distribution in both cases. Especially the fine geometry shows a SSI pattern that 
is very typical for gravity-controlled slopes with a steep toe and an almost constant or gradually 
increasing thickness. If this is considered the predominant static state of the slope, it might not 
be surprising that although RODRÍGUEZ-PECES et al. (2011) concluded a factor of safety of 2.12 
for the slope in 2000, such a tremendous slip-off could occur on the 18th of March 2001 (cf. Fig. 
7.7a-b); the landslide mass became quickly saturated and much heavier than usual after a period 
of intense rainfall. 
This apparent dependency of the SSI pattern on the geometry is of particular importance and 
confirms one major relationship: As the static behavior of a slope strongly depends on its 
geometry, so should do the dynamic behavior – an expectancy that will be tested in the next 
section (cf. 7.3.3.). 
Based on the static analysis, FLAC can compute the factor of safety (cf. 5.2.1.). Here, the software 
does not consider the actual sliding surface, but it tests many possible sliding surfaces dissecting 
the numerical model. It returns at the end the sliding surface with the lowest factor of safety, i.e. 
the most critical one. Plots of the SSI for the two geometries (Fig. 7.6a-b) show the strain pattern 
after the calculation of the factors of safety. The two obtained factors of safety are: 
 

 simplified geometry: SF = 1.70 (critical slip surface roughly shown in Fig. 7.6a) 
 fine geometry:  SF = 1.16 (critical slip surface roughly shown in Fig. 7.6b) 

 

 

 
Fig. 7.6a-b. SSI localization after the calculation of the factor of safety for the simplified and the fine 2D-geometry. 

It should be noted that that in contrast to most of the other color-coded figures in this thesis the red-to-blue-sequence 
is here opposite. The SSI is dimensionless. 

 



182 

 

Both values lie above 1 implying that the slopes are stable. However, this hypothesis seems only 
reassuring for the simplified geometry. The factor of safety for the fine geometry is actually very 
close to 1 and thus holding and driving forces must have very similar values. With a slight 
change of properties for example, the slope could easily fail.  
 

 
Fig. 7.7a-b. Major slip-off of the Diezma Landslide on the 18th of March 2001 

(photos by courtesy of: JUNTA DE ANDALUCÍA, CONSEJERÍA DE OBRAS PÚBLICAS). 
 
Results from the static analysis and the calculation of the factors of safety suggest that the 
models of both geometries come to equilibrium after the static phase. From Fig. 7.5a-b it is 
obvious that no continuous shear strain increment pattern could form in neither geometry. 
Referring to Fig. 7.6a-b one can reason in the following way: If the most critical sliding surfaces 
have factors of safety above 1, they testify to stability; any other sliding surfaces elsewhere in 
the models – including the actual ones – must then have even higher factors of safety and the 
respective landslide mass is stable under static conditions. 
 
7.3.3. Dynamic Analysis in 2D 
 
Once the two models – the one for the simplified and the one for the fine geometry – are brought 
to equilibrium during the static phase of the analysis, a dynamic phase can follow (cf. Fig. 7.2). 
Since the static phase does not depend on the seismic scenario, it is the base for all 11 signals 
that are to be applied. Dealing though with two geometries and thus two different static results, 
there will be in total 22 dynamic results – i.e. eleven displacement predictions from either 
geometry and hence the double amount as with the NEWMARK-method (1965; cf. 5.) and the 
method of modal recombination (cf. 6.) which both used only the simplified geometries in 2D 
and 3D. Compared to section 6.4.2., this section is structured in a similar way in order to 
facilitate the comparison. 
From the previous section (cf. 7.3.2.) it is obvious that both geometries dispose of a different 
mass distribution and that under static conditions the stress patterns show significant 
differences (cf. Fig. 7.5a-b, Fig. 7.6a-b). This observation leads to two main preliminary 
hypotheses that are to be examined in the course of this section: 
 

 The slope response to seismic scenarios should depend on the geometry. 
 According to the applied signal, the intensity of the response should differ. 

 
The second hypothesis is consistent with what the NEWMARK-method (1965; cf. 5.) and the 
method of modal recombination (cf. 6.) revealed. A particular behavior that – although expected 
– did not present itself so far throughout the thesis, is the qualitative dependency of the slope 
response on the signals. One of the most stunning conclusions after the modal recombination 
analysis (cf. 6.4.5.) was that qualitative displacement patterns per component appeared to be the 
same for all signals, but the reached values are dependent on the signals (cf. 6.4.5.). The third 
hypothesis that 
 

(a) (b) 
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 the behavior of the slope should be different according to the applied signal 
 
is finally expected to appear in the predicted displacement patterns after the dynamic phases for 
both geometries. 
The term “predicted displacement pattern” needs more clarification inasmuch as in this section 
displacements are specified in many ways: horizontal (or x-) displacements, relative 
displacements (cf. Fig. 7.10a-f) and residual displacements. Much to the discomfort of the reader, 
all terms are related to each other – not to say “almost the same” as the next paragraphs will 
explain. 
Compared to the CESAR-Models, in which the sliding surface corresponded in fact to the 
stationary boundaries, the model boundaries in FLAC lie further away from the landslide body. 
As a result, when evaluating surface displacements, one needs to consider the displacements of 
all nodes along the ground surface with respect to the displacements of all nodes along the 
sliding surface. Since FLAC preferably imposes a square grid on the model, each node bears an 
index with “i” designing the horizontal and “j” the vertical position; via these indices nodes 
whose displacements are to be set in relation can be easily located. An example for the 
calculation of such a relative displacement based on only one pair of points might be: 
 

 x-displacement at ground surface:      1.5 cm 
 x-displacement at sliding surface:      0.5 cm 
 relative displacement between the ground and the sliding surface:  1.0 cm 

 
Theoretically, there are many more combinations of how two respective points can move 
relatively to each other (cf. Fig. 7.8). A point at the ground surface can experience a positive, a 
negative or no displacement and so does the respective underlying point on the sliding surface. 
In addition, the underlying point can experience equal, smaller or greater absolute 
displacements than the point on the ground surface. Practically though, exact zero-
displacements usually do not result from numerical models, and thus combinations involving 
zero-displacements are not considered. Furthermore, all combinations resulting in a negative 
relative displacement are not to be considered either since they imply a displacement “towards 
the interior” of the landslide. After discarding the mentioned combinations as well as the 
combination-doubles that Fig. 7.8 generated, only seven combinations remained for positive (or 
zero-) relative displacements. A MATLAB-procedure (cf. A.7.) helps to retrieve the relative 
displacements from the FLAC-outputs. It calculates the value if one of the seven combinations is 
met and in any other case it attributes a zero-displacement to the point on the ground surface.  
 

 
Fig. 7.8. Combinations showing the possible behaviors between points on the ground and on the sliding surface. 

Combinations shed in red are the only ones resulting in a positive or (zero-) relative displacement. 
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The term “residual displacement” originates from the fact that FLAC returns the “left-over 
displacement” (visible in the displacement time-history of the ground response per point; cf. Fig. 
8.1c) once the entire computation has finished. CESAR in contrast, returns the maximum value 
that was reached in the displacement time-history of the ground response per point (cf. Fig. 
8.1b). For simplicity, the final displacements obtained via finite difference modeling in FLAC will 
be referred to as “residual” in chapter 8., although they are in fact “relative from residual”. 
The designation “residual” should neither be confounded with “resultant”. Within the frames of 
the analysis with FLAC this is though unlikely because here only displacements in x-direction are 
considered. 
For each of the 22 signal-geometry-combinations there is a comparative plot with three sections 
(cf. Fig. 7.10a-f). The first subplot shows the applied signal as velocity time-history, and logically 
each velocity time-history appears twice – i.e. for each “geometry-pair”. The second subplot 
contains the longitudinal cross section of either the simplified or the fine geometry without the 
underlying bedrock. They are filled with a color-coded pattern that represents the residual x-
displacement in every grid point of the model. It should be noted that the legends to the color-
codes are consistent only per geometry; i.e. the legend for the simplified geometry is differently 
scaled than the one for the fine geometry. This might seem impractical, but due to a significant 
factor of up to 24 (cf. Tab. 7.3) between the maximum horizontal displacements obtained with 
the simplified and the fine geometry it became necessary to opt for a differently scaled legend. In 
this way displacement variations could be properly visualized at least within the respective 
geometry-group. The ranges of the two legends are: 
 

 simplified 2D-geometry: 0.00 m – 0.03 m in steps of 0.005 m 
 fine 2D-geometry:  0.00 m – 0.20 m in steps of 0.025 m 

 
The third subplot displays the actual relative displacement of the grid points along the ground 
surface. The second axis of these subplots is auto-scaled in order to visualize the slope response 
as clearly as possible.  
Even though for the geometries all 22 FLAC-Models are available, only the pairs for signals E, B 
and C are kept in the text body of the thesis, whereas the ones for the other signals are to be 
found in the appendix (cf. A.8.). The reason is linked to the choice of signals for the analysis in 3D 
(cf. 7.3., Fig. 7.22); here, the argumentation is that due to time restrictions only two of these 
signals (E and B) are used representing respectively a highly and medium-provocative scenario 
in terms of caused displacements. If, thus, only plots for signals E, B and C are shown in this 
section, it is on the account of comparison to Fig. 7.23a-d. 
Comparing all 22 graphics, the following qualitative and quantitative features can be recognized; 
they will be discussed in detail in the next paragraphs. 
 

 Internal displacement patterns are roughly similar for the simplified geometry and so 
are patterns for the fine geometry; however both pattern groups differ significantly 
among each other. 

 Superficial displacement patterns are rather variable for the simplified geometry, but 
patterns for the fine geometry behave in a very similar manner. 

 Different signals clearly cause different slope responses and the divergence is more 
apparent within the simplified geometry group. 

 Displacements of the fine geometry group reach higher values and within the groups the 
same signals cause the highest displacements. 

 
Concerning the internal displacements at every grid point, a great variability is apparent when 
comparing the effects of different seismic scenarios per geometry group.  
Within the simplified geometry group, four signals (A, C, I and K) cause almost no displacements 
and the color-coded longitudinal cross sections are comparable to Fig. 7.10c. The majority of 
signals (B, D, F, G, H and J) display a concentration of high displacement values below point 3 (cf. 
Fig. 4.8) comparable to Fig. 7.10b; extending patterns of these concentrations often reach zones 
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above point 3. Particular is the displacement pattern caused by signal E (cf. Fig. 7.10a); it is the 
only case where the main concentration of high displacement values is located above point 3, 
and where extending patterns loop forward and back beneath point 3 (cf. Fig. 4.8).  
The “fine geometry group” seems much less variable. All displacement patterns cover at 
maximum the last 30 m measured backwards from the landslide toe. Depending on the signal 
the patterns extend further backwards and curve up as did the most critical sliding surface 
obtained from the static calculation of the factor of safety (cf. Fig. 7.6b). Only signals A and K 
seem not strong enough to cause up-curving patterns over the whole toe zone; in those two 
cases the zone of maximum displacements is limited to the last 10 m of the model where the 
inclination of the slope is greatest. Generally, even with the less provocative scenarios, the slope 
always experiences displacements, what could lead to the assumption that the Diezma Landslide 
– here represented with the fine geometry – is actually quite easily affected at its toe zone by any 
disturbance. 
In terms of superficial displacements, one also perceives a significant difference not only 
between the two geometry groups, but also between the eleven scenarios within the simplified 
geometry group. The third subplots for this latter group (cf. Fig. 7.10a-c) reveal two main 
behaviors of superficial displacements. One could be characterized by a very slow build-up over 
about the first half of the model followed by a rather fast increase that finds its maximum in the 
last fourth of the model before an abrupt decrease; it is referred to as “hunch” and comparable to 
Fig. 7.10b. The other type is – in spite of all the scientific serenity of the thesis – best described 
by one very non-scientific worldwide well-known drawing of Antoine DE SAINT-EXUPÉRY: the 
boa constrictor digesting an elephant (cf. Fig. 7.9). 
 

 
Tab. 7.9. Boa constrictor digesting an elephant (SAINT-EXUPÉRY, 19431). 

 
These “elephant-type” curves of superficial displacements describe a more or less gradual build-
up over the first half of the model followed by an explicit plateau with an equally abrupt 
decrease (cf. Fig. 7.10a). The peak values are reached always around 300 m. Only with signal C, 
there appears a notch just between 250 m and 300 m (cf. Fig. 7.10c). 
As for the superficial displacements within the fine geometry group, the behavior is again much 
more similar comparing the eleven scenarios; the curves in the third subplots show a short 
double-step feature which starts without exception pretty precisely at 425 m and 500 m. Only 
the second location (500 m) corresponds to a prominent geometric change: the change of the 
slope angle above the toe zone of the landslide. Also just before 150 m and right after 300 m 
there are two prominent geometric changes throughout the geometry. However, they are not 
accompanied by particular step-like (or other) features in the respective curves. One reason 
therefore might be that the fine geometry is of constant thickness over large parts and that the 
significant build-up in the displacement curves seems to come along with much more 
pronounced geometry changes as in the toe zone. 
Superficial displacement curves of both geometry types do not reach 0 at their ends; i.e. the toe 
of the Diezma Landslide is always supposed to experience displacements – but depending on the 
considered geometry and scenario with different intensities. 
Similarly to section 6.4.2., there arises again the question why the displacement pattern is so 
variable and if it can be linked to a seismic scenario. Of course it is essential to keep in mind that 
it is not one single seismic parameter that has an influence on slope response; the latter is more 
likely a result of a – probably weighted – multi-factorial combination of parameters. If the 
following attempts to correlate FAS- and velocity-zones (for the definition of “zone” cf. Tab. 7.2) 
                                                           
1 The drawing originates from the book “The Little Prince” by SAINT-EXUPÉRY (1943); 
   its English version is in public domain since the 1st of January 2015. 
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are hence only uni-factorial, it is simply to show which seismic parameters could be influential in 
combination with others. It should be noted that the here presented attempt of linkage concerns 
only the simplified geometry group as the obtained displacement patterns are much more 
variable that the ones from the fine geometry group, for which the dynamic behavior seems 
mostly controlled by the static stability of the slope.  
Interestingly, there seems to be not only a correlation between the Fourier Amplitude Spectra 
(FAS; Fig. 4.20a-k), but also with the velocity time-histories (cf. Fig. 7.10a-f; A.8.). The conjecture 
with respect to the FAS is that those with one zone are more likely to cause hunches in the curve 
showing the superficial displacement pattern, whereas the FAS with two zones rather result in 
“elephant-type” curves. Here, the term “zones” designs frequency ranges of the FAS that host 
more amplitude peaks than other ranges. Likewise, velocity time-histories have such zones – 
however with more or fewer velocity peaks over certain time ranges. The second conjecture is 
that velocity time-histories with two zones, or those for which it is difficult to identify one or two 
zones, cause internal displacement patterns, that are either located around point 3 (cf. Fig. 4.8) 
or in the last fourth of the landslide mass. Velocity time-histories with only one zone do not 
show internal displacement patterns what is an effect of the uniformly color-coded legend per 
geometry group. Surely the concerned cases have an internal displacement pattern as they have 
an – allowedly very small – superficial displacement pattern. By letting the internal 
displacement patterns of signals A, C, I and K auto-scale their respective color-coded legend it 
becomes apparent that three of them actually belong to the group of velocity time-histories with 
(one to) two zones causing internal displacement patterns around point 3 or in the last fourth of 
the landslide mass.  
According to Tab. 7.2. both conjectures could be confirmed in most of the cases. Moreover, there 
seems to be a relation between the two conjectures. Strikingly this appears however to be a 
“one-way-relation”. One finds that all hunches appearing in the curves of the superficial 
displacement patterns have an underlying internal displacement pattern that concentrates 
around point 3 or in the last fourth of the landslide mass – including the two “mixed hunches” of 
signals B and I. But not all cases with internal displacement patterns around point 3 or in the last 
fourth of the landslide mass are restricted to hunched superficial displacement patterns; in fact, 
signals E, H and J result in “elephant-type” curves. 
An issue that might be addressed in future is the covered frequency range by FAS-zones with 
high amplitudes. Later on in the section it will be shown, that the Diezma Landslide has a strong 
resonant response in the range of 3 Hz to 6 Hz; it could therefore be of further interest, if and 
how many FAS-zones are located in this highly responsive frequency range. 
 

signal 
velocity 

zones 
internal 
pattern 

conjecture 
confirmed 

FAS 
zones 

superficial 
pattern 

conjecture 
confirmed 

A 1-2 ( ~ P3)  1 ∩  

B 1-2 ~ P3  2 ∩ & E  (if rather as E) 

C 1 (2 regions)  clearly 2 patterns 2 E  

D 2 ~ P3  1 ∩  

E 2 loop  (if loop = ~ P3) 2 E  

F 1 ~ P3 clearly 1 vel. zone 1 ∩  

G 1-2 ~ P3  1 ∩  

H 1-2 ~ P3  2 E  

I 1-2 ( ~ P3)  1 ∩ & E (if rather as ∩) 

J 1-2 ~ P3  2 E  

K 1-2 ( ~ P3)  1 ∩  
Tab. 7.2. Correlations between internal displacement patterns (cf. Fig. 7.10a-f) and respective velocity time-histories 
and between superficial displacement patterns and respective FAS (cf. Fig. 4.20a-k, Tab. 6.1). The table refers only to 
the simplified geometry. Abbreviations are: “~ P3” for “around point 3”, “∩” for “hunch” and “E” for “elephant-type”. 
A “zone” is assumed to be an accumulation of comparably high amplitudes which is either present once in a velocity 

time-history or a FAS, or which is separated from another zone by smaller amplitudes in between. 
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Fig. 7.10a-f. Relative horizontal displacements for signals E, B and C and the simplified (left) and fine (right) 2D-
geometry. The three signals represent cases with high, medium and small entrained displacements respectively. 
The three subplots represent the signal, the internal displacement pattern and the displacements at the surface. 

It should be noted that signals A, D, F, G, H, I, J and K are shown in the appendix (cf. A.8.), and that in contrast to most 
of the other color-coded figures in this thesis the red-to-blue-sequence is here opposite. 

 
After the qualitative discussion of the first three mentioned points, also the fourth – which is of 
rather quantitative nature – deserves a closer look. From Tab. 7.3 it can be seen that residual 
displacements reach higher values within the fine geometry group; their maximum values are 
between 6 and 24 times bigger than their counterparts of the simplified geometry group. By 
using the term “counterpart” one should pay attention to the fact that the maximum 
displacements are not to be attributed to the same point as one can conclude from the 
qualitative pattern analysis. It is interesting, that factors between counterparts are highest for 
the signals causing the lowest displacements (A, C, I and K) smallest for the signals causing the 
highest displacements (E and F). Furthermore, the ranking of entrained displacement by signal 

(a) (d) 

(b) (e) 

(c) (f) 
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is identical per geometry group; the average maximum displacements for the simplified and the 
fine geometry group are 0.9 cm and 8.3 cm respectively. 
As in section 6.4.2. one important question was, if there is an obvious relationship between the 
intensity of the predicted response of the slope and the characteristic mean earthquake period 
(Tm) and/or the ratios of the characteristic site periods (Ts/Tm and Tl/Tm; cf. Excursus – 6.4.2.). 
Unfortunately there appears no striking correspondence via the gray-scale color-code in Tab. 
7.3; the shading of neither parameter involving Tm is directly or inversely harmonized with the 
predicted maximum displacements. Uniquely, the highest obtained FAS peak with signal F 
coincides with the highest reached maximum displacements. It remains however questionable, if 
one can deduce a relationship from this eventuality; especially the fact that the smallest FAS 
peaks do not align with the smallest maximum displacements debilitates to some extent the 
hypothesis of a possible correlation. 
 

signal 
max FAS 

(m/s) 
filtered 
Tm (s) 

Ts/Tm* 
(-) 

Tl/Tm* 
(-) 

dxsimpl.* 
(cm) 

dxfine* 
(cm) 

factor between 
dxfine & dxsimpl. 

A > 0.01 0.70 0.37 2.40 0.18 4.25 ~ 24 

B > 0.02 0.66 0.39 2.54 0.86 7.99 ~ 09 

C > 0.02 0.32 0.81 5.21 0.28 5.76 ~ 21 

D > 0.02 1.08 0.24 1.55 0.98 8.64 ~ 09 

E > 0.02 0.77 0.34 2.16 2.12 12.20 ~ 06 

F > 0.04 0.58 0.45 2.87 2.85 17.06 ~ 06 

G  >0.02 1.02 0.26 1.65 0.52 6.15 ~ 12 

H > 0.01 0.38 0.68 4.37 0.69 9.35 ~ 13 

I > 0.01 1.19 0.22 1.41 0.30 7.08 ~ 23 

J > 0.02 0.49 0.54 3.46 0.91 9.58 ~ 10 

K > 0.02 0.76 0.34 2.20 0.17 3.64 ~ 21 
Tab. 7.3. Comparison of different signal properties and horizontal displacement values for vs = 300 m/s (*). 

 
The dynamic analysis of all 22 signal-geometry-combinations has finally proven the hypothesis 
that – at least via finite difference modeling – the predicted behavior of the slope is dependent 
on the input geometry as well as on the applied seismic scenario. Since neither of the two factors 
alone was fully explicative, another approach incorporating both factors at the same time turned 
out to be highly promising: the analysis of site effects.  
Before discussing results from the site effect study for both the simplified and the fine geometry, 
a short excursus will present the theoretical background of site effect analysis. 
 
Excursus – The Evaluation of Site Effects 
 
Section 1.2. explained the conditions for site effects and their consequences; another question is 
how to evaluate and quantify them. A widely used type of visual quantification is the transfer 
function map (TFM) illustrating the amplification pattern (cf. Fig. 7.12). It is obtained by the 
following steps: 
 

1. Time-histories – usually of the acceleration or velocity – are registered at different 
locations on the ground surface. 

2. One point that is situated on a bedrock outcrop is chosen as reference location. 
3. With the Fast Fourier Transform (FFT) a Fourier Amplitude Spectrum (FAS) is computed 

for every location including the one of the reference. 
4. Every FAS is divided by the reference FAS in order to obtain a transfer function 

representing the amplification for each location; when the FAS of the reference location 
is divided by itself, it will result in a “1-function”. 
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5. Finally all transfer functions are arranged “sheet wise” according to their respective 
location showing the frequency at which amplifications occur on the second axis and the 
amount of amplification as color code to replace the third axis; for better visualization 
the entire plot surface is usually filled via interpolation resulting in a TFM. 

 
Attention has to be paid when evaluating TFM based on time-histories from models rather than 
from real records. An oversimplified example of 1D-resonance shows why (cf. Fig. 7.11a):  
If one models a 25 m thick sand lens (with vs = 400 m/s) on a more compacted material (with vs 
= 700 m/s) in a numerical model that is 175 m deep in total, one would see amplifications due to 
the sand lens (at 4 Hz) as well as to the model itself (at  around 1 Hz). However, due to the 
sophisticated numerical methods, deep model bases with respect to the zone of interest and the 
use of quiet boundary conditions such model-induced artifacts are not too pertinent. 
 

𝑓𝑟𝑒𝑠 =
𝑣𝑠

4∙ℎ
          𝑓𝑟𝑒𝑠 =

400

4∙25
= 4 𝐻𝑧          𝑓𝑟𝑒𝑠 =

700

4∙175
= 1 𝐻𝑧 

 
Although it seems quite oversimplified, the principle of 1D-resonance plays an important role 
for amplification patterns. It explains why a site with variable sediment thickness might 
experience different amplifications at distinct locations; i.e. why different frequencies contained 
in a signal cause resonance preferably at those locations where the sediment depth (h) comes 
close to a fourth of the shear wave velocity divided by the respective frequencies (vs/(4·fres); cf. 
Fig. 7.11b). 
 

 
Fig. 7.11. Example of two 1D-resonance-colums in a model with a shallow base (a) and frequency-dependent locations 

experiencing resonance phenomena (b). Both figures are not proportional in length and width. 

 
The evaluation of site effects requires a full computation of the static and the dynamic phase of a 
purely elastic model (cf. Fig. 7.2), but it is possible to apply a much simpler signal, such as for 
example a Ricker Wavelet which is expressed in the time-domain by: 
 

𝑣𝑅(𝑡) = 𝐴 ∙ (1 − 2 ∙ 𝜋
2 ∙ 𝑓𝑑𝑜𝑚

2 ∙ (𝑡 − 1)2) ∙ 𝑒−𝜋
2∙𝑓𝑑𝑜𝑚

2∙(𝑡−1)2 

 
where A is the amplitude and fdom the dominant frequency 

 
Since Ricker Wavelets are common for eigenmodes vibration studies due to their well-defined 
spectral frequency content around the dominant frequency and their short duration (GISCHIG et 
al. 2015), one of its kind was used in this thesis to compute TFM for the simplified and the fine 
2D-geometry (cf. Fig. 7.5a-b). The wavelet is shown in the lowest subplots of Fig. 7.13 and Fig. 
7.14; its amplitude and dominant frequency are 0.15 m/s and 6 Hz respectively. Counting from 
the left model margin, the reference FAS for the simplified geometry is the 50th FAS and the one 
for the fine geometry is the first FAS. 
Simply spoken, the two uppermost subplots of Fig. 7.13 and Fig. 7.14 indicate the degree of 
amplification for a particular position and frequency via the color-code. The following 
paragraphs discuss the characteristics and differences of both TFM; interpretations and 
explicative presumptions are given for the detected features. Where possible, parallels are 
drawn to results from the static and the dynamic analysis of the 22 signal-geometry-
combinations. 



190 

 

At a first view, it is clearly apparent that the amplification pattern covers only the landslide mass 
but not the bedrock. Despite this obvious similarity, the patterns are though quite different in 
many details. The TFM of the simplified geometry seems more symmetric over the landslide 
mass; the TFM of the fine geometry, in contrast, includes a strong toe-oriented behavior. Surely 
one could argue that in fact the amplification pattern of the simplified geometry is not perfectly 
symmetric either; however, it is more equally distributed what originates probably from a more 
gradual thickness in- and decrease of the landslide mass. In comparison to this, the fine 
geometry is by far more sectional what is reflected in the amplification pattern of the fine 
geometry. Here, the two abrupt thickness changes at 150 m and 350 m appear as vertical blue 
strip in the TFM. These two vertical lines separate the amplification pattern in three zones of 
which the first two (covering the upper landslide mass) bear a strong resemblance to the 
respective parts of the amplification pattern of the simplified geometry. The third zone, though, 
is very different and ends with an even more pronounced vertical blue line that sharply confines 
the amplification pattern. This end is the only one of its kind as all other ends “fade-out”. 
Comparing these particularities with the shape of the landslide mass, it becomes obvious that 
the amplification pattern is strongly dependent on the geometry: 
 

 Gradually decreasing thickness appears as “fade-out” pattern, whereas abrupt thickness 
changes cause “amplification gaps”. 

 Depending on the thickness gradient, the “fade-out” pattern is more or less curved. 
 

 
Fig. 7.12. Principle of the evaluation of site effects. 
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Fig. 7.13. Site effect evaluation for the simplified 2D-geometry in the form of a TFM. 

 

 
Fig. 7.14. Site effect evaluation for the fine 2D-geometry in the form of a TFM. 
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In a next step the amplification patterns with respect to the covered frequency ranges were 
examined. In both TFM it is primarily the before mentioned curved pattern in yellow and red 
colors that attracts attention. From the examination with respect to the landslide mass, it is 
already obvious that the thickness considerably influences the curvature – i.e. the resonance at 
which the mass responds to a vibratory motion. The equation for 1D-resonance relates thickness 
and resonance frequency (cf. Excursus – 7.3.3.): 
 

 Smaller thicknesses cause resonance frequencies to be high; and vice versa. 
 

As a result, the amplification patterns of the crown and the toe areas of both TFM cover the 
highest frequency ranges, and the lowest covered frequency ranges are located at the thickest 
parts of the two geometries. 
The amplitude per frequency is not as easily explained since amplification processes do not only 
depend on simplified concepts such as 1D-resonance. For this very reason red colors tend to 
occur in similar zones of the two landslide masses, but the highest amplifications (i.e. the 
reddest spots) are not located in similar zones.  
A rough measure for an average amplitude representative for a hypothetical layered setting in 
1D is the ratio (I) between the seismic impedance of the landslide mass and the one of the 
bedrock (cf. 1.2.; SEMBLAT & PECKER, 2009). 
 

𝐼 =
𝑍𝐵𝑅
𝑍𝐿𝑆

=
𝜌𝐵𝑅 ∙ 𝑣𝐵𝑅
𝜌𝐿𝑆 ∙ 𝑣𝐿𝑆

=
2500 ∙ 1000

2181.4 ∙ 300
= 3.82 

 
Indeed, for those zones that experience strong amplifications an impedance ratio of 3.82 is quite 
representative for both TFM. 
Combining the aspects of thickness, frequency and amplification, one more obvious feature 
comes to the fore. The patterns of the highest amplifications of both geometries cover a 
frequency range between roughly 3 Hz and 6 Hz; DELGADO et al. (2015) cite relating thereto a 
resonance frequency of the Diezma Landslide of 4 Hz, which fits very well to the obtained results 
and especially to the TFM of the fine geometry. In terms of resonance, the landslide mass is thus 
strongly responsive to vibrations in this particular frequency range which is usually largely 
present in the frequency contents of seismic signals. By comparing the distinct zones that are 
prone to particular resonance, it appears that the amplification pattern conforms – not perfectly, 
but still by and large – to the displacement patterns obtained from the dynamic finite difference 
analysis (cf. Fig. 7.10a-f). The pattern of the highest amplifications of the simplified geometry 
covers a wider span of the landslide mass and it is rather orientated around point 3 (cf. Fig. 4.8). 
The pattern of the highest amplifications of the fine geometry is much more geared towards the 
landslide toe. 
With consideration of the finding that the Diezma Landslide shows a strong resonant response 
in the range of 3 Hz to 6 Hz, there arises the question if the distinct predicted slope deformations 
relate in some way to this frequency range. Interestingly, and with exception of signal C, the 
predicted maximum displacements per signal do correlate roughly with the peak amplitude as 
well as with the mean amplitude of the Fourier Amplitude Spectrum (FAS) between 3 Hz and 6 
Hz of the respective signal – though not perfectly in the same ranking. From Tab. 7.4 and Fig. 
7.15 one very obvious characteristic is visible: 
 

 Signals causing great displacements have high FAS peaks and FAS means in the range 
between 3 Hz and 6 Hz. (Signals B, D, E, F, H and J) 

 Signals causing small displacements have low FAS peaks and FAS means in the range 
between 3 Hz and 6 Hz. (Signals A, H, I and K) 

 Signal C is the only one that does not satisfy this relationship; it is also the only one with 
an internal deformation pattern revealing two regions of high values (cf. Tab. 7.2). 
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signal 
FAS peak 
(3-6 Hz) 

FAS mean 
(3-6 Hz) 

dxsimpl.* 
(cm) 

dxfine* 
(cm) 

A 0.008 0.003 0.18 4.25 

B 0.014 0.005 0.86 7.99 

C [0.024] [0.009] 0.28 5.76 

D 0.006 0.002 0.98 8.64 

E 0.013 0.003 2.12 12.20 

F 0.011 0.003 2.85 17.06 

G 0.005 0.002 0.52 6.15 

H 0.015 0.004 0.69 9.35 

I 0.004 0.001 0.30 7.08 

J 0.020 0.005 0.91 9.58 

K 0.006 0.002 0.17 3.64 
Tab. 7.4. Peak and mean amplitudes of the FAS per signal in relation to maximum displacements for vs = 300 m/s (*). 

The columns containing the FAS peaks and means are color-coded wit exception of signal C. 
 

 
Fig. 7.15. Peak and mean amplitudes of the FAS per signal in relation to maximum displacements. 

The two red points of signal correspond to the FAS peak and mean marked in Tab. 7.4. 
Blue and green points indicate the displacement values for signals E and B in 3D (cf. 7.3.6.). 

 
Since this relation has one non-satisfying element, the finding has to be taken with care. 
Nonetheless, the approach seems reasonable; it appears logic that the characteristics of the FAS 
parts in the range of 3 Hz to 6 Hz have a stronger influence on the slope response than the 
characteristics of the entire FAS. A question for future research might be, if these FAS 
characteristics can be combined with other influencing factors – such as for example macro-
seismic parameters – to better explain the quantitative aspect of entrained displacements per 
signal. 
The theoretical excursus on site effect evaluation (cf. Excursus – 7.3.3.) has shown that either 
acceleration or velocity time-histories can be used to compute FAS and their ratios with the 
reference FAS. In order to obtain a simplified displacement evaluation, one must simply skip the 
FFT-processing and integrate the recorded time-histories once or twice depending on the 
recording type. Displacement time-histories are then drawn – as the name suggests – over time 
in contrast to TFM which are represented in the frequency domain.  
By simple integration of the velocity time-histories that resulted from the purely elastic 
computation (cf. Fig. 7.2) using the above mentioned Ricker Wavelet (cf. Fig. 7.13, Fig. 7.14), two 
very conclusive wave propagation maps (cf. Fig. 7.16, Fig. 7.17) emerge for the simplified and 
the fine geometry. Traces caused by first-arrival wave fronts and those generated by reflected 
waves localize deformation patterns in very similar zones as in the respective TFM. Again, the 
pattern with the highest values of the simplified geometry covers a wider span of the landslide 
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mass and it is rather orientated around point 3 (cf. Fig. 4.8). The pattern of the highest 
deformations of the fine geometry is geared towards the landslide toe. 
 

 
Fig. 7.16. Wave propagation map obtained from the site effect evaluation for the simplified 2D-geometry. 

Every third displacement time-history is shown with a multiplicative factor of 1500. 

 

 
Fig. 7.17. Wave propagation map obtained from the site effect evaluation for the fine 2D-geometry. 

Every third displacement time-history is shown with a multiplicative factor of 1500. 
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7.3.4. Geometry of the Models in 3D 
 

In analogy to the model layout in 2D, also the layout should be similar for the simplified and the 
fine 3D-geometry consisting of a cuboid in which the two landslide masses occupy a different 
amount of space. The uppermost point of the landslide crown should lie at 0 m on the x-axis, at 0 
m on the y-axis and at the respective altimetric level on the z-axis. 
Unlike in FLAC 2D, in which the landslide mass is simply defined by the points enveloping the 
LCS Aa, FLAC 3D needs more points than those enveloping the two LCS (As and Aal), the four 
TCS (N, B, C, and M) and the trace Ql (cf. Tab. 4.8) in order to define the ground surface and the 
sliding surface of the landslide. 
At this point the geological modeling software GDM came into play. Using the geostatistical 
technique of Kriging, the software interpolates z-values for places without available z-
information taking into account the existing coordinates – i.e. those of the existing cross sections 
and the trace Ql. Effectively, the places at which z-data is to be interpolated must be defined in 
advance; in this case all concerned points lie on a xy-grid with a mesh-size of 10 m by 10 m and 
the following dimensions: 
 

 x-axis: from 0-50 m to 640 m   690 m in total 
 y-axis: from -250 m to 190 m   440 m in total 

 
While creating continuous surfaces with Kriging it is important to treat the ground and the 
sliding surface separately to avoid interpolations including both altimetric sets at the same time. 
Once both surfaces are complete, there must be a careful inspection on whether all created 
ground surface points lie above their counterparts of the sliding surface. If not, their coordinates 
must be adjusted manually. 
The thereby obtained volumes for the simplified and the fine geometries amount to 791,000 m³ 
and 720,000 m³ respectively. Certainly, these volumes differ from the volume estimation of 1.2 
million m³ for the Diezma Landslide by DELGADO et al. (2015). However, it must be kept in mind 
that every sort of modeling will always draw a more or less altered image of the reality. To verify 
the obtained volume of the fine geometry, a similar procedure was carried out in MATLAB. For 
grids with mesh-sizes ranging from 5 m to 15 m and for three triangulation-based interpolation 
methods (namely the natural neighbor, linear and cubic methods) volumes resulted in 708,000 
m³ on average. The mesh-size of 10 m by 10 m – which reflects somehow the spacing between 
coordinate points on the cross sections and the trace Ql – delivered the best results in terms of 
“geological appearance”(cf. Fig. 7.18a-b). The terrain does not look as blurred as with a mesh-
size of 15 m by 15 m, and it does not include artificial ditches and notches as with a mesh-size of 
5 m by 5 m. Therefore the mesh-size in GDM was chosen to be 10 m by 10 m. Figure 7.19 and 
Figure 7.20 show the final thickness plots for both geometries as they appear in GDM. The white 
points refer to existing coordinate points of the cross sections and the trace. The pink points in 
Fig. 7.19 had to be added in order to avoid a creation of two separate volumes (one close to the 
landslide crown and one covering the lower two thirds of the landslide mass); during the 
interpolation process they were manually retrieved from the triangular planes that cover the 
simplified 3D-model in CESAR (cf. 6.4.) so that they would not modify the shape of the simplified 
geometry. 
From GDM data is exported in the form of CSV-files and imported to FLAC via a FISH-command. 
The initial cube grid with the below listed dimensions then conforms itself to the introduced 
data such that the surface of the FLAC-model corresponds to the ground surface defined in GDM.  
 

 x-axis: from 0-50 m to 0640 m   690 m in total 
 y-axis: from -250 m to 0190 m   440 m in total 
 z-axis: from -900 m to 1310 m   410 m in total 
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Fig. 7.18a-b. Interpolations for the ground surface (left) and the sliding surface (right) of the fine 3D-geometry 

with MATLAB using the cubic triangulation based method and a grid with a mesh-size of 10 m by 10 m 
(black: LCA Aal; green: LCA As, TCS N, TCS B, TCS C, TCS M; blue: Ql; cf. Tab. 4.8). 

 
In a next step, the altimetric information of every created zone is checked on whether it lies 
between the ground and the sliding surface defined in GDM; if this is the case, the zone belongs 
to the landslide mass, if not it becomes a bedrock zone. 
The imposed grid is equal for all 3D-models, but in contrast to the 2D-models (cf. 7.3.1.) it has a 
mesh-size of 3 m by 3 m what actually allows for correct propagation of waves that include 
frequencies up to 8 Hz (cf. 4.4) only. This value is, however, below the frequency content of the 
signals after they had undergone the 4th-order low-pass Butterwoth Filter with a cut-off 
frequency of 10 Hz (cf. 4.4.). Nonetheless, the choice of 8 Hz has its legitimacy; the smaller the 
mesh-size, the more time-consuming becomes the computation. A maximum frequency of 8 Hz is 
therefore a compromise between computation time and the frequency content of the signals that 
should be properly propagated through the model. 
 

 
Fig.7.19. Thickness plot of the simplified 3D-geometry in GDM 

(white points: existing coordinates; pink points: additional coordinates; for abbreviations cf. Tab. 4.8). 

 

(a) (b) 



197 
 

 
Fig. 7.20. Thickness plot of the fine 3D-geometry in GDM 

(white points: existing coordinates; for abbreviations cf. Tab. 4.8). 

 
7.3.5. Static Analysis in 3D 
 
Although FLAC 3D is different to handle in comparison to its 2D-version, the procedure of a 
static analysis remains the same. The objective is to bring the model to equilibrium after the 
settlement due to gravity (9.81 m/s²) in order to represent the stability of the slope without the 
influence of a seismic scenario. 
 

 
Fig. 7.21-b. SSI localization after the static phase for the simplified and the fine 3D-geometry. 

The SSI is dimensionless. 
 
Therefore the focus in this section will be on the obtained results, rather than on the necessary 
procedures and theory which both are described already in section of the static analysis in 2D 
(cf. 7.3.2.). Two important points should be noted. First, due to time restrictions there is no 
computation of the factor of safety available neither for the simplified nor for the fine 3D-
geometry. Second, the evaluation of the static phase is based on virtual cuts through the 3D-
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models along LCS Aa (cf. Fig. 7.19, Fig. 7.20) for both geometries. Also the dynamic analysis will 
only show virtual cuts. In contrast thereto, the modal recombination analysis with CESAR 3D 
resulted in virtual cuts as well as in superficial representations of the models along and across 
which displacements were recovered (cf. Fig. 6.19, Fig. 6.20). 
Again, the static state of each model can be conveniently represented via shear strain patterns in 
the form of color-coded shear strain increments (SSI; cf. 7.3.2.). In contrast to the 2D-geometries, 
the SSI tend to accumulate along the sliding surface in both geometries. Their patterns are in fact 
quite comparable unlike as in 2D (cf. Fig. 7.5b) where the fine geometry appears to be decidedly 
“statically inspired”. This typical static stress pattern of stress concentration towards the 
landslide toe could not be confirmed for the fine geometry in 3D. Instead, both 3D-models reach 
comparable values of SSI and high SSI values cover similar ranges along the sliding surfaces.  
As it appeared in sections 7.3.2. and 7.3.3., the static behavior of the models strongly depends on 
its geometry and so does the dynamic behavior. By reason thereof, the expected displacement 
patterns should relate to the respective SSI patterns. 
 
7.3.6. Dynamic Analysis in 3D 
 
Likewise, there is no particular difference between the dynamic phase in 3D in comparison to 
the one in 2D. Nevertheless, one detail is unmissable: the limitation to the two signals E and B 
due to computation time restrictions. Section 7.3. already mentioned shortly why these two 
signals were chosen. A little more effort is spent in this section in order to explain the reasoning 
behind this choice. 
Figure 7.22. shows rankings of maximum displacements caused by the eleven seismic scenarios 
with respect to method, dimension and geometry. It is very obvious that each method entrains 
another ranking; both “CESAR-siblings” (2D and 3D), though, are very similar and so are both 
“FLAC-siblings” (simplified and fine in 2D) – a fact that will be discussed further in the overall 
conclusions (cf. 8.3.). Another very apparent, yet stunning, detail is that some of the signals tend 
to cause rather small or high displacements, whereas others do not show such a tendency. Most 
surprisingly, three signals (C, B and E) remain without exception in the small, medium and high 
displacement groups regardless of the applied method. 
 

 tending to cause small displacements: A, K 
 tending to cause high displacements:  D, I 
 no tendency:     F, G, H, K 
 group restrictive:    C, B, E 

 
With respect to the finding that three of the eleven signals are group-restrictive, and having 
learned from this comparative line-up that rankings are very similar per “method siblings”, it 
was assumed that these three signals would also cause small, medium and high displacements 
for the simplified and the fine geometry in 3D. Ideally, all three signals should have been tested 
for the two geometries, but even though their durations are among the shorter ones of all 
signals, the time frame of this thesis allowed only for two signals to be entirely processed. 
Because of this limitation signals E and B were chosen in the attempt to represent high and 
medium displacements. Signal C also would have been an option since it represents the lower 
extreme, but due to its “outlier” characteristics (cf. Tab. 7.4, Fig. 7.15) it was considered as 
unfavorable. 
Like in section 7.3.5. describing the static analysis in 3D, the focus is here also on the obtained 
results rather than on the required procedures. This section likewise follows up the three main 
hypotheses that were already set for the analysis in 2D: 
 

 slope response as function of geometry 
 slope response as function of seismic signal 
 response intensity as function of seismic signal 
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Fig. 7.22. Maximum displacements (cm) per method, dimension and geometry. 

Signals E, B and C are marked in yellow; their ranking is variable, however they do not leave the ranking group. 

 
Light on these hypotheses is shed by Fig. 7.23a-d which appear in the same format as their 
counterparts in 2D; they consist of three subplots of which the first shows the applied signal as 
velocity time-history, the second contains the color-coded virtually cut as longitudinal cross 
section representing the residual x-displacement, and the third one displays the x-displacement 
of the grid points along the ground surface. The ranges of the two legends are: 
 

 simplified 3D-geometry: 0.000 m – 0.020 m in steps of 0.0020 m 
 fine 3D-geometry:  0.000 m – 0.025 m  in steps of 0.0025 m 

 
As mentioned above, the time limit for this thesis did not allow for processing more than two 
signals in both geometries. Hence, a total of four signal-geometry-combinations is somewhat 
lean when it comes to comparative discussions.  
Nonetheless, there are very interesting observations to be made even from this small number of 
models. Some of them are in good accordance with the findings of the dynamic analysis in 2D; 
some others, though, differ considerably what will later question the reasonableness of model 
dimensions at least in the case of the Diezma Landslide (cf. 7.3.7.). 
In analogy to the four major qualitative and quantitative features of section 7.3.3., one 
recognizes the following characteristics, which will be discussed in the paragraphs thereafter. 
 

 Internal displacement patterns of the simplified geometry group and the ones of the fine 
geometry group differ among each other, but not as much as in 2D; internal 
displacement patterns within one group are roughly similar. 

 Superficial displacement patterns of both geometry groups show a similar behavior 
inasmuch as neither of them finds its maximum in the toe zone of the landslide. 

 Different signals cause different slope responses; the divergence is more apparent within 
the fine geometry group. 

 Within the groups signal E causes higher displacements than signal B. 
 



200 

 

Comparing the internal displacement patterns of both geometry groups, it appears that these 
patterns are much less distinct in 3D than in 2D. The simplified geometry group displays a 
concentration of high displacement values around point 3 (cf. Fig. 4.8) and the concentration 
extends deeply into the landslide mass reaching the sliding surface at some points. The 
concentration of high displacement values within the fine geometry group is located some 50 m 
further upslope; it does not reach as deeply as necessary to encounter the sliding surface. 
Despite this difference, both internal pattern structures are similar as they level out to zero-
displacements in the zones around the crown and the toe; the zones of high displacements also 
correspond well to the zones covered by high values of SSI in the static analysis.  
As for the superficial displacements, it is also obvious from the third subplots (cf. Fig. 7.23a-d) 
that the slope behaviors within the two geometry groups are reasonably comparable. Curves of 
both geometry groups reach their maximum in the range of 300 m to 350 m measured from the 
crown downslope. Furthermore, curves display a rather slow build-up over about the first third 
of the model followed by an increase towards the maximum. The decrease is characterized by a 
higher absolute average gradient than the build-up in the curves of both geometry groups. 
Interestingly, curves of the superficial displacements resemble thus the “elephant-type” curves 
of the simplified geometry group in 2D (cf. Fig. 7.9, 7.10a, 7.3.3.) and the typical statically 
conditioned behavior of the curve did not present itself in the fine geometry group. 
 

 

  
Fig. 7.23a-d. Relative horizontal displacements for signals E and B and the simplified (left) and fine (right) 3D-

geometry. The two signals represent cases with high and medium entrained displacements respectively. 
The three subplots represent the signal, the internal displacement pattern and the displacements at the surface. 

It should be noted that the legends are not yet scaled in the same way since signal B is still being processed. 

 
One differing detail between curves of both geometry groups in 3D is, that the abrupt end of the 
superficial displacement curves within the fine geometry group seems to reflect the steep toe 
zone that exists only in the fine geometry. In contrast, the superficial displacement curves within 
the simplified geometry group do not show such abrupt features. As stated in section 7.3.3., it is 

(a) 

(b) 

(c) 

(d) 
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probably the variability of thickness of the landslide – and hence the varying resonance 
frequencies – that influences the curves appearance. For the simplified geometry the thickness 
of the considered longitudinal cross section in- and decreases gradually without major steps and 
so do the curves of the superficial displacements; also the section between 250 m and 300 m, 
which is of rather constant thickness, emerges as local plateau in the curves. For the fine 
geometry the thickness of the longitudinal cross section is very thin at the beginning, and at 
around 200 m a significant increase is to be observed what comes along with the build-up of the 
curves; once the thickness declines in the toe zone, also the curve drops abruptly. 
From Fig. 7.23a-d two other important points can be retrieved. First, within both geometry 
groups zero-displacements are reached at the end, so the Diezma Landslide is not supposed to 
experience displacements at its toe according to the model. However it should be considered, 
that this particular longitudinal cross section does not represent the entire toe area in either 
geometry; it corresponds only to the location of LCS Aa (cf. Fig. 7.19, Fig. 7.20). At another 
position the displacement of the toe zone might take up other values than zero. The second point 
is simply the fact, that slope responses are different according to the seismic scenario. 
Comparisons of displacement patterns and reached values as well as their possible link to a 
distinct seismic scenario are generally difficult. Especially in this case, where only four models 
are available, attempts of testing and establishing relationships between signal characteristics 
and obtained displacements are not very promising. For this very reason, predicted 
displacements will only be presented at this stage (cf. Tab. 7.5); graphically these maximum 
horizontal displacements per model are marked as separate points in Fig. 7.15. 
 

signal dxsimplified (cm) dxfine (cm) 

E 1.99 2.50 

B 0.68 0.92 
Tab. 7.5. Maximum horizontal displacements for the simplified and the fine 3D-geometry. 

  
Interestingly, the maximum displacements obtained from both the simplified as well as from the 
fine 3D-geometry come close to the values resulting from the simplified geometry in 2D: 
 

 simplified 2D-geometry (signal E): 2.12 cm (cf. Tab. 7.3) 
 simplified 2D-geometry (signal B): 0.86 cm (cf. Tab. 7.3) 

 
What this finding implies for the overall study of the Diezma Landslide via finite difference 
modeling, will be discussed together with the results of the analysis in 2D in the following 
comparative section (cf. 7.3.7.). 
 
7.3.7. Comparison of FLAC-Models 
 
As it proved helpful already in section 6.4.5. to summarize and compare the most important 
findings after the application of one method, the example is followed also for the results after 
finite difference modeling with FLAC. Thereby, the last chapter of the thesis (cf. 8.) is prevented 
from being overloaded since this latter one focuses in fact on the comparison of the methods 
rather than on their detailed results. 
Upon a first thought one might assume that a general comparison of results from the 2D- and 
3D-FLAC-Models would become more complex and figuratively voluminous since with finite 
difference modeling the simplified as well as the fine geometry were used in both dimensions. 
However – and in contrast to the 2D- and 3D-CESAR-Models (cf. 6.4.) – several alleviating 
conditions apply within the frame of FLAC-Modeling due to reasons that were extensively 
discussed in the previous sections: 
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 no variation of vs from 100 m/s to 1000 m/s   only 300 m/s 
 no displacement components dy, dz and dr   only dx 
 no surficial displacement evaluation in 3D   only virtually cut LCS  
 no complete set of 11 scenarios in 3D    only signals E and B 

 
One issue that previously crossed the way at several occasions is the necessity to attribute one 
value to each of the distinct scenario-responses to make them comparable without a drift-off 
into details. Here, this “one-value-policy” is even more questionable than for the CESAR-Models 
(cf. 6.4.5.) since finite difference modeling revealed not only a geometry-dependent behavior of 
the Diezma Landslide, but also a significant dependency on the applied signals. 
With the above mentioned conditions, alleviations and necessities maximum displacement 
comparisons are thus restricted to the following line-ups: 
 

 simplified geometry     fine geometry in 2D    (cf. Tab. 7.4) 
 simplified geometry     fine geometry in 3D    (cf. Tab. 7.5) 
 2D vs. 3D between simplified geometries (cf. Tab. 7.6) 
 2D vs. 3D between fine geometries  (cf. Tab. 7.6) 

 

signal 
simplified geometry fine geometry 

dx2D (cm) dx3D (cm) dx2D (cm) dx3D (cm) 

E 2.12 1.99 12.20 2.50 

B 0.86 0.68 07.99 0.92 
Fig. 7.6. Maximum horizontal displacements for the simplified and the fine 2D- and 3D-geometries. 

 
With respect to the quantitative behavior, one can derive from these four comparisons that: 
 

 All model groups (simplified geometry in 2D, simplified geometry in 3D, fine geometry in 
3D) predict displacements of the same order of magnitude, except of the model group of 
the fine geometry in 2D whose displacements are greater by one order of magnitude. 

 In 2D, the displacements predicted by the simplified geometry group are between 6 and 
24 times smaller than those predicted by the fine geometry group. 

 In 3D, the displacements predicted by the simplified geometry group and the fine 
geometry group differ insignificantly. (Comparisons can be made only with signals E and 
B here.) 

 
By cross-checking displacement evaluations and visual interpretation of results from finite 
difference modeling two major points became apparent: 
 

 The overall qualitative slope response to a seismic scenario is influenced by the static 
slope stability, which itself is dependent on the geometry of the slope. 

 The applied seismic scenario does not only alter the slope response but also its intensity. 
 
The most unexpected finding from the finite difference analysis in 2D and 3D is that in terms of 
seismically induced displacements three of the four model groups show similar results, whereas 
one model group does not keep in line with these results: 
 

 simplified geometry group (2D) 
 simplified geometry group (3D)           fine geometry group (2D)                    
 fine                                                          geometry group (3D) 

 
From the obtained superficial displacement curves and internal displacement patterns it is very 
obvious that the triplet of groups with similar results reveal slope responses related to the 
applied signals. By contrast, the group of the fine geometry in 2D is predominantly influenced by 
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the respective static slope stability. One might therefore ask what the groups forming the triplet 
have in common compared to the outlier group.  
One consideration towards an explanation of this discrepancy might be the dimensional concept 
in finite difference modeling itself. In 2D the lateral expansion of a model is considered infinite 
and thus the landslide mass is assumed to have no lateral borders (i.e. in y-direction; cf. Fig. 
7.24). In 3D however, the landslide mass is laterally well confined. It could be presumed, thus, 
that with the simplified 2D-geometry results simply came much closer to the ones of both 3D-
geometries. Indeed, this presumption seems vague at a first view. Nonetheless, a closer look on 
the landslide thicknesses per model group – which in turn influence the resonance and predicted 
displacements – might give emphasize on this consideration. From Fig. 7.24, Fig. 7.19 and Fig. 
7.20 it can be seen that the respective models are thickest from around 300 m to 400 m 
measured from the crown downslope and the thicknesses are gradually decreasing towards the 
crown and the toe zones. The simplified 2D-geometry might therefore be considered as tolerably 
representative for virtual longitudinal cuts through the Diezma Landslide even with an angular 
offset from the position of LCS Aa. As for the fine 2D-geometry, this representativeness is rather 
questionable, since its thickness is more or less constant over the lower three fourths of the 
landslide length; moreover the landslide mass is characterized by an abrupt step at its toe. As 
one recognizes from Fig. 7.20 the fine 2D-geometry certainly fits into its counterpart in 3D, but 
the location of LCS Al does not seem to be representative for the entire landslide mass. The fine 
2D-geometry (at the position of LCS Aa) passes next to one thickness maximum close to the 
intersection with TCS B and in between two thickness maxima before the intersection with TCS 
C. Especially by imagining an angular offset from LCS Aa, it is obvious that the fine 2D-geometry 
would be much thicker in the region from about 300 m to 400 m and also the toe area would be 
much smoother. 
 

 
Fig. 7.24. Superposition of the simplified (black) and the fine (blue) geometry in 2D. 
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8.1. Scope of the Thesis – Revisited  

 
To come full circle, this chapter is dedicated to comparative discussions, conclusions and 
perspectives. It revisits in a first place the scope of the thesis (cf. 1.1.) to answer the question if 
the overall objective of research was achieved.  
On the aim of contribution to better understanding of seismically induced landsliding, three 
different methods were applied to the Diezma Landslide resulting in many interesting analyses 
and interpretations. Each method is described in detail in its respective chapter (cf. 5., 6., 7.), 
whereas room for cross-comparisons is given in sections 8.2., 8.3. and 8.4. of this chapter. 
Having followed the structure of the thesis up to this point, one might perceive it as bipartite 
with one part focusing on the landslide database and its statistical exploration (cf. 2., 3.), and 
with the other one assessing the behavior of the Diezma Landslide. Admittedly, both parts seem 
at a first view rather less connected to each other, all the more as the extensive analyses of the 
Diezma Landslide would surely have been “frame-filling” by themselves for an entire thesis. 
Effectively, such a case study – even though very sophisticated – could have been made with the 
same qualitative outcome without the construction of a landslide database beforehand. 
Likewise, the database with its statistical exploration can be seen as an elaborate stand-alone 
work whose legitimacy is defined amongst other things by its recency and independent global 
coverage. Nonetheless, both parts figuratively reach out towards each other what makes them at 
least partially complementary as the following considerations will show. 
As explained in section 4.1., the Diezma Landslide was chosen from the database not only on the 
purpose of a case study, but also in order to develop an exemplarily procedure to assess 
seismically induced displacements that would be applicable to other real or theoretically created 
landslide sites. In this thesis the nine mean geometries (cf. Fig. 3.10a-i) belong to this latter 
category, and the Diezma Landslide reasonably compares to an intermediate geometry between 
Fig. 3.10d and 3.10e. 
In return, there is also a clear outreach from the database and its statistical exploration towards 
the “case study part”. The most stunning result after the exploration of the database is probably 
the fact that – statistically and by considering only the source zone of a landslide – dimensions 
and shapes of landslide masses do not behave in the same way; dimension-related parameters 
increase significantly with larger landslide masses, whereas shape-related parameters are 
remarkably constant (cf. Averaging Parameters – 3.3.3., Fig. 3.9a-e). This finding is of great 
importance for numerical modeling since the shape of a landslide mass governs the seismic 
interaction with the underlying bedrock – and hence site effects –, but the dimension controls 
the intensity of the phenomenon (LENTI & MARTINO, 2013). Especially the latter aspect 
becomes a major interest when thinking one step further and passing over from numerical 
modeling to actual hazard assessment in endangered areas. 
Another detail related to the constancy of shapes of landslide masses is, that also ratios between 
dimension-related parameters revealed to be remarkably constant for different landslide 
volumes – i.e. the ratios of: 
 

 height/length (H0E/Lh) 
 width/length (wav/Lh) 
 depth/length (dav/L) 
 depth/width (dav/wav) 

 
These relationships could be of particular use when only one of the ratio-parameters is known 
and the second one should be recovered. Stable ratios could also find an application for rough 
volume estimations in inaccessible terrain or when tracing back the source zone of a landslide 
from which it was initiated. As a matter of fact, this field of application deserves a closer look not 
to say further developments; for this reason it could actually be listed rather in the section of 
perspectives (cf. 8.5.). However, it fitted well to the topic of shape consistency and was therefore 
mentioned at this occasion. 
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8.2. Comparative Discussion of Methods 

 
The three applied methods to assess seismically induced displacements of the Diezma Landslide 
under particular seismic scenarios were described extensively in the respective chapters; each 
chapter emplaced the method with respect to its technical and historical background. At many 
stages throughout the thesis questions towards the general comparability of these methods 
arose; so – without drifting off in too much details – this section recapitulates in a few words 
each of the three methods in order to provide a straightforward comparison and to allow for 
easy distinction of their principal characteristics (cf. Fig. 8.1, Tab. 8.1, Tab. 8.2).  
 

       
Fig. 8.1a-c. Types of displacements and their orientations obtained by the three methods: 

Cumulative (NEWMARK, 1965), maximal (modal recombination analysis) and residual displacements (FDM). 
The blue oscillation represents the horizontal displacement time-history of the ground response of the considered 

point over time (i.e. it does not represent the incoming signal). It should be noted that there is no red dashed line in 
the first figure because the cumulative displacement does not directly relate to the displacement time-history of the 

ground response (cf. Fig. 5.6). 

 
Although assisted by the software SLAMMER, the NEWMARK-Method (1965; cf. 5.) is the only 
analog method and based on the concept of limit equilibrium (cf. 5.2.). Two peculiarities are that 
a landslide is approximated by a single compound material block, and that the dynamic aspect of 
an earthquake is represented by an additional force imposed on the mass center of the block 
what appoints the method as pseudostatic. It is assumed that displacements can only occur once 
the block experiences a certain critical acceleration. 
From section 5.3.2. it can easily be seen that the NEWMARK-Method (1965) assumes the 
involved material to behave in an elasto-plastic manner as the actual equation of the factor of 
safety incorporates the Mohr-Coulomb Failure Criterion (cf. Tab. 8.2). Since the method is not 
numeric it cannot be classified as computation in the time- or the frequency-domain; however, a 
predicted displacement refers to the point of time when the block is supposed to have come to 
rest after the earthquake has passed (cf. Fig. 5.6). 
In terms of necessary input and obtained output, the method differs significantly from its 
numeric counterparts. It is the only employed method exclusively designed for analysis in 2D. 
Furthermore, input parameters target the classical geotechnical soil properties (weight of the 
mass (W), length of the failure surface (l), effective cohesion (c’), effective internal friction angle 
(Φ’), slope angle (β’)) but material properties with respect to deformation and wave propagation 
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are not represented. The NEWMARK-Method (1965) is the only one reading acceleration time-
histories and returning one single value of displacement. This latter displacement is cumulative 
(i.e. the final value after the block has come to rest again; cf. Fig. 8.1a), its direction is parallel to 
the sliding surface and it is assumed to be representative for the entire block (i.e. in the broader 
sense to the landslide).  
 

method geometry input signal output 

NEWMARK 
(1965) 

 
2D 

(simplified in slices) 
 

W, l, c, Φ, β 
acceleration 

time-histories 

dcum 
(1 value 

for 1 point) 

modal 
recombination 

analysis 

 
2D & 3D 

(simplified) 
 

vs, γ, υ 
and as function thereof 

ρ, G, E 

displacement 
time-histories 

dmax 
(1 value 

per point) 

finite 
difference 
analysis 

 
2D & 3D 

(simplified & fine) 
 

vs, ρ, υ, c’, Φ’ 
and as function thereof 

G, K 

velocity 
time-histories 

dres 
(1 value 

per point) 

Tab. 8.1. Comparison of methods with respect to their input and output information. 

 
The method of modal recombination (cf. 6.) was applied to the Diezma Landslide by means of 
the software CESAR. Being a numeric finite element code, the software belongs to the group of 
continuum modeling codes. As the name suggests, the method of modal recombination is based 
on the assessment and subsequent superposition of eigenfrequencies and eigenmodes of the 
structure of interest (i.e. the landslide mass) during a vibratory motion (cf. 6.3.1.). 
The method of modal recombination is the only one operating in the frequency domain and 
assumes a visco-elastic behavior for the involved material (cf. Tab. 8.2). 
The software CESAR is designed for 2D- and 3D-analysis, and in comparison to the NEWMARK-
Method (1965) it requires material properties with respect to deformation and wave 
propagation (shear wave velocity (vs), Poisson’s Ratio (υ), specific weight (γ), density (ρ), shear 
modulus (G), Young’s Modulus (E)). Seismic scenarios are read as displacement time-histories 
and predicted slope displacements are returned in the form of maximum displacement in x-
direction (cf. Fig. 8.1b). In contrast to the analog NEWMARK-Method (1965), numeric models 
dispose of a mesh and displacement time-histories of the ground response are available in every 
node; a maximum entrained displacement can therefore be computed in every point on the 
surface (and elsewhere in the model). 
The finite difference software FLAC also belongs to the group of continuum modeling codes. 
Computations in FLAC mainly differ from modal recombination analysis by the fact that they 
operate in the time domain. It should be noted that comparison is made here intentionally to 
modal recombination analysis – and not to CESAR – as the software offers a multitude of 
methods with different ways of operation.  
In other aspects, characteristics of finite difference analysis with FLAC is similar to modal 
recombination analysis; it is likewise designed for 2D and 3D and requires material properties 
with respect to deformation and wave propagation (shear wave velocity (vs), density (ρ), 
Poisson’s Ratio (υ), shear modulus (G), bulk modulus (K)). Also two of the classical geotechnical 
soil properties (effective cohesion (c’), effective internal friction angle (Φ’)) are taken into 
account. However, the assumed material behavior is assumed to be visco-elasto-perfectly-plastic 
(cf. Tab. 8.2). 
FLAC reads the seismic scenarios in the form of velocity time-histories when absorbing 
boundaries are applied in order to simulate an infinite extension of the model. Again, 
displacement time-histories of the ground response are available in every point and evaluated in 
x-direction. Compared to the modal recombination analysis, displacements are though residual 
(cf. Fig. 8.1c; 7.3.3.). 
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method 
simplified 
geometry 

fine 
geometry 

material behavior 
operating 

domain 

NEWMARK (1965) 2D: 011 
 
 

elasto- 
perfectly-plastic 

(time- 
related) 

modal recombination analysis 
2D: 209 
3D: 011 

visco-elastic 
frequency 

domain 

finite difference analysis 
2D: 011 
3D: 002 

2D: 011 
3D: 002 

visco-elasto-
perfectly-plastic 

time 
domain 

Tab. 8.2. Number of individual models per method, material behavior and operating domain. 
The number of finite difference models in 3D could increase to 3, 

 if the first point mentioned under the perspectives (cf. 8.5) is realized. 

 
From this recapitulation the two numerical methods seem more comparable to each other; both 
of them account for material properties with respect to deformation and wave propagation 
(several moduli, shear wave velocity, specific weight and/or density) and both compute 
displacement time-histories of the ground response in every point of the 2D- and 3D-mesh. But 
before hasty jumping to conclusions on the comparability and adequacy of the three methods, it 
is worth to have a closer look also on the obtained displacements. In the next section (cf. 8.3.) it 
will be discussed that the modal recombination analysis with CESAR is – eventually – not as 
comparable to the finite difference analysis with FLAC. 
A final balance on the advantages, disadvantages and suitability of the three methods will 
therefore be drawn in the last comparative section (cf. 8.4.). 
 
8.3. Comparative Discussion of Obtained Displacements 

 
For the comparison of obtained displacements by the three types of analysis there are two 
targets: a line-up of qualitative as well as of quantitative behavior of the landslide mass under 
seismic shaking, which will also be discussed in this order.  
Because of the different options of model-setup concerning geometry, dimension and time-
restrictions within the framework of each of the three types of analysis, a distinct number of 
“sub-model-groups” are available. These latter are (cf. Tab. 8.1, Fig. 8.2, Fig. 7.22): 
 

 for the NEWMARK-Method (1965):  group of simplified 2D-geometry 
 for the modal recombination analysis: group of simplified 2D-geometry 

group of simplified 3D-geometry 
 for the finite difference analysis:  group of simplified 2D-geometry 

group of simplified 3D-geometry 
group of fine  2D-geometry 
group of fine  3D-geometry 

 
Particular differences in qualitative behavior of models are mainly to be observed within the two 
numerical methods. The following key points sum up the respective comparative sections of the 
chapters on modal recombination analysis and finite difference analysis (cf. 6.4.5., 7.3.7.). It 
should be kept in mind, that the here presented characteristics serve as broad conclusive 
results; for further details one should refer to chapters 6. and 7. and the final comparisons in 
there. 
 

 Within the modal recombination analysis, the general qualitative slope behavior can be 
analyzed with respect to its displacement components (dx, dy, dz) and its resultant 
displacement (dr); it appears that displacement patterns are the same for all signals. 

 Patterns (per displacement component or resultant displacement) always feature one 
zone of major displacement however with different orientations and intensities. 

 The pattern within the group of the simplified 2D-geometry is roughly concentrated 
around point 3 (cf. Fig. 4.8). 
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 The pattern within the group of the simplified 3D-geometry is roughly concentrated 
around the landslide nose (cf. Fig. 4.10i). 

 The signal-dependency manifests itself only in the intensity of the qualitative 
displacement patterns. 

 
 Within the finite difference analysis, the general qualitative slope behavior was only 

analyzed with respect to its resultant displacement; it appears that displacement 
patterns are different for all signals. 

 Displacement patterns (for resultant displacements) are strongly influenced by the static 
slope stability, which is in turn dependent on the model-geometry; featured zones of 
major displacement per model-geometry are similar to a greater or lesser extent and 
differ in their intensities. 

 The patterns within the groups of the simplified 2D-geometry, the simplified 3D-
geometry and the fine 3D-geometry roughly cover the last two thirds of the landslide 
mass. 

 The pattern within the group of the fine 2D-geometries covers only the toe zone of the 
landslide mass. 

 The signal-dependency manifests itself in the intensity of the qualitative displacement 
patterns as well as in distinct slope responses per model. 

 
It is difficult to contrast those two numerical methods with the analogue NEWMARK-Method 
(1965), which returns one displacement value per model and signal and thus does not allow for 
displacement variations inside the considered landslide mass or at its surface. The obtained 
results are therefore more than uniform in terms of qualitative behavior and – naturally – the 
signal-dependency manifests itself in the intensity of displacements, although in the case of the 
NEWMARK-Method (1965) it is the acceleration time-history of a seismic scenario that is crucial 
for the outcome rather than any macro-seismic parameters. 
In a second stage displacements obtained by the three methods can also be compared with 
respect to their quantitative behavior. As mentioned at many points throughout the thesis, these 
comparisons refer to the concept of how provocative influencing parameters are on the slope 
response – i.e. how pronounced the predicted displacements are per computed model. Likewise 
it has already been pointed out that line-ups of quantitative displacements can only follow the 
“one-value-policy” (cf. 6.4.5., 7.3.7.) because the NEWMARK-Method (1965; cf. 5.) provides only 
one displacement value per model, and so the two numerical methods figuratively have to take a 
compromise to be comparable to the analogue method. 
The following considerations on the quantitative behavior of displacements per model and 
method types refer to cumulative, maximum and residual displacements as indicated in Fig. 
8.1a-c; in this section all three types of displacements will be referred to as “maximum” 
displacements for simplicity. The first part is dedicated to the performance of the models 
themselves and their proportionality among each other, whereas the second part takes a closer 
look on macro-seismic parameters that could possibly have an influence to a smaller or greater 
extent on the obtained displacements per method. 
In Tab. 8.3 and Fig. 8.2 all maximum displacements per method, geometry, dimension and signal 
are listed; from the table as well as from the figure several interesting features are to be 
recognized: 
 

 The ranking of displacements entrained by distinct signals is very similar for the 
NEWMARK-Method (1965) and for finite difference analyses, but not for the modal 
recombination analyses (Tab. 8.3). 

 Rankings within one method type are consistent among each other (cf. Tab. 8.3). 
 To allow for a reliable statement with respect to the finite difference analysis in 3D, more 

than the two signals E and B would have to be processed. 
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 Tendencies resulting from these rankings show a very similar relationship between 
maximum displacements: tendency curves for the NEWMARK-Method (1965) and the 
finite difference analyses are almost congruent, whereas the tendency curves for the 
modal recombination analyses are different but congruent among themselves only (cf. 
Fig. 8.2). 
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A 0.00 17.64 193.96 0.18 4.25 
 

19.91 

B 0.38 23.44 247.33 0.86 7.99 0.68 0.92 10.24 

C 0.12 09.95 108.39 0.28 5.76 

 

05.76 

D 0.33 65.26 729.08 0.98 8.64 49.93 

E 0.53 38.04 425.24 2.12 12.20 1.99 2.50 15.62 

F 1.15 16.71 185.94 2.85 17.06 

 

07.75 

G 0.21 45.17 506.30 0.52 6.15 23.27 

H 0.30 10.44 130.17 0.69 9.35 11.37 

I 0.15 52.67 582.48 0.30 7.08 29.70 

J 0.35 11.16 125.63 0.91 9.58 15.29 

K 0.06 19.76 223.08 0.17 3.64 16.43 

average 0.33 28.20 314.33 0.90 8.34 1.33 1.71 - 
Tab. 8.3. Rankings (in gray-shading) for different methods, geometries and dimensions. 

The last column shows the ranking of one possibly influential factor on predicted displacements (cm). 

 
Furthermore, from Tab. 8.3 and Fig. 8.2 it becomes obvious that the (highest) predicted 
displacements values per method differ by about one order of magnitude. The last row of Tab. 
8.3 includes the mean displacement value per method, geometry and dimension; together with 
the tendency curves (cf. Fig. 8.2) this information leads to the conclusions that: 
 

 A difference of roughly one order of magnitude manifests itself between the simplified 
and the fine 2D-geometry within the finite difference analysis as well as between the 2D- 
and the 3D-geometry within the modal recombination analysis. 

 In terms of orders of magnitude, results of the simplified 2D-geometry within the modal 
recombination analysis and the fine 2D-geometry within the finite difference analysis 
resemble each other, and so do results of the simplified 2D-geometry within the finite 
difference analysis and the NEWMARK-Method (1965). 

 Results from all methods, geometries and dimensions seem more or less conceivable 
with exception of the tremendous maximum displacements obtained with the simplified 
3D-geometry within the modal recombination analysis. 

 
One possible explanation for such tremendous displacement values might be – in simple words – 
an unfavorable combination of geometry and applied signals. From section 6.4.4. it became clear 
that eigenfrequencies of the object of interest – hence the landslide mass – strongly depend on 
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its geometry and boundary confinement. In the case of the modal recombination analysis in 3D 
the eigenfrequencies of the landslide mass experienced a significant shift towards lower 
frequencies compared to the ones obtained from the analysis in 2D (cf. Fig. 6.13). Especially for 
shear wave velocities around 300 m/s eigenfrequencies coincide there exactly with the 
frequency range, which was found by the site effect evaluation (cf. 7.3.3.) to have a particular 
resonant response.  
 

 
Fig. 8.2. Tendency curves for different methods, geometries and dimensions. 

The red curve shows the tendency of one possibly influential factor on predicted displacements. 
The value for signal A from the NEWMARK-Analysis (1965) cannot be shown on a logarithmic scale since it is true 

value of 0.0002 rounds to 0.00; it appears however in the plot of the mean FAS in the appendix (cf. A.11.). 

 
The second part of comparisons of quantitative behaviors pays closer attention to the value 
rankings and tendency curves of macro-seismic parameters and their similarities to the before 
discussed rankings and tendencies of maximum displacements per method, geometry and 
dimension. Throughout the thesis, at many stages of presented results the question arose 
whether or not particular earthquake parameters can be linked to predicted displacements. One 
indication therefore could be a similar (or similarly inverse) ranking or tendency-curve of the 
considered parameter to one or several “method-curves”. Throughout the thesis a total of 17 
recurrent parameters are to be found that are worth to be considered as possibly influential (cf. 
first column of Tab. 8.4). Even though some of them – namely those that are shaded in gray in 
Tab. 8.4 and Tab. 8.5. – have already been tested for coherences in the respective chapters, a full 
summary is given here. It should be noted that, first, tables are split in order to represent 
rankings and tendencies separately because the former does not necessarily come along with 
the latter, and second, that exemplarily Tab. 8.3. and Fig. 8.2 show only the duration of 
TRIFUNAC & BRADY (1975) as parameter to be tested. Tendency-graphs of the other 16 
parameters are to be found in the appendix (cf. A.11.) and associated rankings appear 
throughout the thesis. For the interpretation the following abbreviations are used: 
 

 for Tab. 8.4:  ≈ / (≈)  similar / less similar 
inv / (inv) inversely similar / less inversely similar 
x  no similarity 

 for Tab. 8.5:   / () similar / less similar 
inv  inversely similar 

    x  no similarity 
 
From the two tables several interesting details could be detected: 
 

 Similarities of rankings and tendencies seem to appear more frequently with 
displacements obtained by the NEWMARK-Method (1965) and the finite difference 
analysis modal than by the modal recombination analysis. 

 Rankings of the the modal recombination analysis seem to be more or less sensitive to 
six parameters (durTRIFUNAC, dursignal, AI, PGV, PGD, Tm) and inversely sensitive to five 
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parameters (Fm, Ts/Tm, Tl/Tm, FASmax_3-6Hz, FASmean_3-6Hz). The tendencies let also assume a 
similarity to the seismic moment (M0) and the two magnitudes (MW, MS). 

 Rankings of the NEWMARK-Analysis (1965) and thefinite difference analysis do not 
seem to be sensitive to any parameter. However, tendencies show similarities to three 
parameters (PGA, FASmax_3-6Hz, FASmean_3-6Hz). 

 
As mentioned in section 7.3.3., slope response is in general doubtlessly a result of a multi-
factorial combination of parameters. Thus the here presented reductive approach of comparing 
one single parameter at the time to predicted maximum displacement per method, geometry 
and dimension simply serves to show which parameter might play a role for a particular 
method. It likewise underlines the difficulty that arises from the use of real instead of more 
easily controllable synthetic signals. Finally, the approach also justifies the effort that could be 
spent in future (cf. 8.5.) when it comes to “back-tracing” of caused displacements by 
sophisticated statistical tools that would allow for detailed testing and weighting of influencing 
parameters. 
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durTRIFUNAC  (s) x ≈ ≈ x x 

durtotal_signal (s) x (≈) (≈) x x 

M0  (-) x x x x x 

MW  (-) x x x x x 

MS  (-) x x x x x 

AI  (m/s) x (≈) (≈) x x 

PGA  (m/s²) x x x x x 

PGV  (m/s) x ≈ ≈ x x 

PGD  (m) x ≈ ≈ x x 

Tm  (s) x (≈) (≈) x x 

Fm  (Hz) x (inv) (inv) x x 

Ts/Tm* (-) x (inv) (inv) x x 

Tl/Tm* (-) x (inv) (inv) x x 

FASmax  (m/s) x x x x x 

FASmean  (m/s) x x x x x 

FASmax_3-6Hz  (m/s) x (inv) (inv) x x 

FASmean_3-6Hz  (m/s) x (inv) (inv) x x 
Tab. 8.4. Similarities between rankings of macro-seismic parameters and those of different methods, geometries and 
dimensions (cf. Tab. 8.3). Ratios of characteristic site periods are for vs = 300 m/s (*). Gray-shading refers to already 

tested similarities in the respective chapters.  
 

In good agreement with the results of this thesis – and particularly with the detected difficulty to 
link macro-seismic parameters with expected displacements – is a recent study by GISCHIG et al. 
(2015) who assessed the seismic response of rock slope instabilities via distinct element 
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modeling in 2D to evaluate the role of amplification on expected deformations. By applying real 
seismic signals and varying relevant parameters no clear link was to be established between 
predicted displacements and frequency contents of the applied signals, but – in general – 
amplification patterns are mentioned to be of great use for seismic slope stability analysis as 
they help to identify zones in which displacements are expected to be large (GISCHIG et al., 
2015). 
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durTRIFUNAC  (s) x (A) (A) x x 

durtotal_signal (s) x (A) (A) x x 

M0  (-) x () (A) () (A) x x 

MW  (-) x () (A) () (A) x x 

MS  (-) x () (A) () (A) x x 

AI  (m/s) x  (F, K)  (F, K) x x 

PGA  (m/s²)  (C, F) x x  (C, F)  (C, F) 

PGV  (m/s) x   x x 

PGD  (m) x   x x 

Tm  (s) x  (A)  (A) x x 

Fm  (Hz) x inv (A) inv (A) x x 

Ts/Tm*  (-) x inv (A) inv (A) x x 

Tl/Tm* (-) x inv (A) inv (A) x x 

FASmax  (m/s) x x x x x 

FASmean  (m/s) x x x x x 

FASmax_3-6Hz  (m/s)  (C, F) inv (A) inv (A)  (C, F)  (C, F) 

FASmean_3-6Hz  (m/s)  (C, F) inv (A) inv (A)  (C, F)  (C, F) 
Tab. 8.5. Similarities between tendencies of macro-seismic parameters and those of different methods, geometries and 

dimensions (cf. Fig. 8.2). Ratios of characteristic site periods are for vs = 300 m/s (*). Gray-shading refers to already 
tested similarities in the respective chapters. Notes in brackets refer to signals that “disturb” the tendency-curves. 

 
8.4. Consideration on the Suitability of Methods & Conclusions 

 
The three employed methods of assessing seismic slope stability were presented in detail in the 
respective sections (cf. 5.3.2., 6.3.1., 7.2.1.) followed by the processes of analyses as well as by 
the obtained results. The remaining question is, therefore, which of the methods is the most 
suitable for landslide studies. In short, the question is not to be answered – at least not by 
naming one of them. 
All methods – if simple or sophisticated – have their advantages and disadvantages which must 
be weighed against each other; hence, the choice of one or several methods depends on the 
purpose of the study and it is made according to requirements and constraints of data 
availability, desired outcome, time and budget. 
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Usually, a widespread common conception is that a greater richness of detail, the use of 
numerical methods and the introduction of third dimension draw more accurate images of real 
site conditions. Undoubtedly this is true as numerical methods offer a mere unlimited number of 
options to model and analyze a particular site of interest, and the more data of all types is 
available, the better a model can be adjusted before running the process of calculation. However, 
this thesis has shown that – at least in the case of the Diezma Landslide – it is not as trivial as it 
seems to explain the most satisfying outcome by use of the three above mentioned criteria for 
greater accurateness. By comparing displacement patterns of 2D- and 3D-models, it appeared 
that: 
 

 Slope responses are similar for the simplified geometries (with FDM). 
 Slope responses are different for the fine geometries (with FDM). 
 Slope responses are similar for the simplified geometries (with modal recombination). 

 
In terms of expected displacements, however, it was discovered that the introduction of the 
third dimension results in: 
 

 the same order of magnitude for the simplified and the fine geometries (with FDM), 
 and exorbitantly high values (with modal recombination). 

 
It is thus obvious that numerical models allow for detailed analysis but do not necessarily 
become more realistic by switching from 2D to 3D or by a finer input geometry. 
Opposite to these two powerful numerical methods stands the NEWMARK-Method (1965), 
which – although frequently criticized – is still in use nowadays for quick estimations and 
screening purposes. One could argue that both purposes were not intended in this thesis since 
an abundance of data is available for the Diezma Landslide and analyses do not demand for long 
calculation times. Furthermore, the landslide consists in fact of highly deformable materials 
what makes the approximation by a rigid block on a planar sliding surface rather questionable. 
Nonetheless, one of the goals of the thesis was to compare results from numerical methods to 
those of the NEWMARK-Method (1965) as many other authors do and the reliability of 
calculated displacements and probabilities of failure are often questioned. LENTI & MARTINO 
(2013) report over- as well as under-estimations of displacements with respect to results from 
finite difference modeling what – simply spoken – means that the method could predict safety 
where slopes are unsafe and vice versa. Also GISCHIG et al. (2015) detected underestimations. In 
the course of this thesis displacements obtained from the NEWMARK-Analysis (1965) are also 
rather small; however their values range in the same order of magnitude as those of the finite 
difference analysis of the simplified 2D-geometry, the simplified 3D-geometry and the fine 3D-
geometry (cf. Fig. 8.2). 
Returning back to the question of suitability it can be concluded that after considering purposes, 
outcomes, advantages, disadvantages and reliability, the most accurate and realistic way to 
assess seismically induced slope displacements seems to be finite difference modeling although 
computation time remains a considerable issue. Analysis by modal recombination has to be 
conducted with care as the method is rather applicable for engineering purposes involving well 
defined materials; especially the not (yet) fully explicable jump of displacement values by one 
order of magnitude when switching from 2D to 3D makes the method somewhat debatable and 
thus probably less suitable. The NEWMARK-Method (1965) retakes its traditional non-
competitive status as easy-to-apply tool for quick estimations of seismically induced slope 
displacements that would be followed by more sophisticated numerical methods if considered 
necessary. Efforts to conduct these numerical analyses also in 3D remain after all questionable, 
as they demand for time-consuming model construction and longer computation times than in 
2D. Moreover, as this thesis has shown, 3D-models can be misleading under certain 
circumstances and even for the exceptionally well-studied Diezma Landslide more geometric 
information on the landslide mass might probably be necessary for reproducing an image of 
reality that can be reliably numerically modeled. 
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8.5. Perspectives 

 
Like with almost every thesis, three years is a short time to treat a complex topic and even if the 
initially set goal is achieved, there will always arise more questions and possibilities to drive 
research to a next level. In the case of this thesis there several perspectives for future work on 
the phenomenon of seismically induced landslides and in particular on the site of the Diezma 
Landslide. 
Some steps of work could not be conducted due to time restrictions. Their absence surely does 
not contest the results obtained in the course of three years; however, they would constitute 
further interesting information and complete the here presented work. In specific terms, 
supplementary steps are: 
 

 the application of signal C in 3D 
(The argumentation in section 7.3.6. has shown that finite difference modeling with 
FLAC 3D had to be limited to two signals, and the choice fell on signals E and B. In order 
to represent the full range from small to medium and to high expected displacements 
signal C should be applied as well to the simplified and the fine 3D-geometry. 
The ideal solution of applying all remaining signals other than E and B is unfortunately a 
rather protracted process since it would probably take up to one and a half year of 
computing time counting from the defense date of this thesis.) 
 

 the evaluation of the factor of safety in 3D 
(In analogy to the computation of the factors of safety for the simplified and the fine 2D-
geometries (cf. 7.3.2.) also the counterparts in 3D should be computed in order to 
complete the discussion about the static behavior of the slope, since it appeared – at 
least in 2D – that this latter one has a major influence on the dynamic behavior. 
Although still time-consuming, this is a more realistic intention as a calculation of a 
factor of safety is carried out on the existing respective static phase.) 
 

 the evaluation of site effects in 3D 
(Also the evaluation of site effects for the simplified and the fine 3D-geometry would be 
of great interest to allow for better explanation of entrained displacements; simply by 
comparing Fig. 7.19 and Fig. 7.20 it is very obvious that thickness-dependent resonance-
patterns must be very different for the two geometries and, hence, signal amplification is 
expected to differ as well. 
In terms of computation time, site effect evaluations remain in the limits of possibility 
and as in section 7.3.3. a simple Ricker Wavelet can be used for the dynamic phase. Since 
the entire model must be calculated, though, in a purely elastic mode, the time-
consuming static phase would have to be repeated. 
It should be noted that a site effect evaluation in 3D can only result in a pseudo-3D-
representation via intersecting transfer function maps (TFM; cf. Fig. 7.13, Fig. 7.14) 
because – simply spoken – the 2D-TFM already have three axes and by switching to 3D 
one would miss one axis.) 

 
The three mentioned points would enrich the so far presented results in this thesis and allow for 
another solidly argued scientific publication. Ambitions thereupon are set for the months 
following the defense of this thesis.  
Another interesting question might be, whether and to what extent distinct landslide and 
earthquake parameters influence each other while causing displacements. Throughout the thesis 
it regularly turned out that some parameters are more prone than others to entrain 
displacements. Taking into account the established hypotheses, the topic would deserve more 
effort of examination in order to test, if predicted displacements could be linked to parameter 
combinations. Maybe professional statistical testing might be an adequate way of examination. 
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In a more general prospect, there is no lack of further ideas for research based on this thesis. To 
mention only a few of them, there might be tests on: 
 

 the directivity of incoming seismic signals 
 shaking in more than one direction 
 a more complex material structure 
 the involvement of water-saturated or submerged materials 

 
One point of consideration could also be the usage of simpler input-signals. As mentioned above, 
it is far from trivial to link landslide and earthquake parameters to the entrained displacements 
when using real signals and when assuming that they influence each other. Parametric studies 
with signals having undergone the LEMA_DES procedure (cf. 6.4.2.) or even with synthetic 
signals such as the Ricker Wavelet (cf. 7.3.3.) might be much easier to control in terms of 
properties and effects. 
A very practically-orientated idea could be the application of the three presented methodical 
procedures to another landslide site to test their performances. If results are satisfactory, one 
could think one step further and develop recommendations on the appropriate employment of 
methods according to the required level of detail. This latter was one of the key questions that 
the thesis aimed to answer (cf. Fig. 4.1). 
Finally, a quite ambitious topic might be the difference between the here presented linear 
models and non-linear ground response (cf. 1.1.). It stands however in sharp contrast to 
previously suggested possible attempts to reduce factors which strongly contribute to the 
outcome of a model, but which are at the same time difficult to control. 
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ESMD   v.2 (cf. AMBRASEYS et al., 2004) 
FLAC 2D  7.00.424 
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ISC Bulletin  http://www.isc.ac.uk/iscbulletin/ 
Oxford Journals https://www.oxfordjournals.org/ 
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A.1. Survey Chart for the Diezma Landslide 
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A.2. Dataset for KEEFER’s Curve 
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A.3. List of Landslides in the Database 

 
no. date* landslide country earthquake region trigger 

001.00 2001-03-18 Diezma Spain - current seis. - 
002.00 1949-07-10 Khait Tajikistan Khait current seis. confirmed 

003.01 paleo Leupegem Hill 1 Belgium - low / no seis. - 
003.02 paleo Leupegem Hill 2 Belgium - low / no seis. - 

003.03 paleo Leupegem Hill 3 Belgium - low / no seis. - 
003.04 paleo Rotelenberg Hill 4 Belgium - low / no seis. - 

003.05 paleo Rotelenberg Hill 5 Belgium - low / no seis. - 
003.06 paleo Rotelenberg Hill 6 Belgium - low / no seis. - 

003.07 paleo Rotelenberg Hill 7 Belgium - low / no seis. - 

003.08 paleo Rotelenberg Hill 8 Belgium - low / no seis. - 
003.09 paleo Rotelenberg Hill 9 Belgium - low / no seis. - 

003.10 paleo Rotelenberg Hill 10 Belgium - low / no seis. - 
003.11 paleo Rotelenberg Hill 11 Belgium - low / no seis. - 

003.12 paleo Rotelenberg Hill 12 Belgium - low / no seis. - 
003.13 paleo Rotelenberg Hill 13 Belgium - low / no seis. - 

004.00 ? Büyükçekmece Turkey - current seis. - 
005.01 2008-05-12 Chengxi China Sichuan current seis. confirmed 

005.02 2008-05-12 Xinbei Middle-School China Sichuan current seis. confirmed 

005.03 2008-05-12 Tangjiashan China Sichuan current seis. confirmed 
005.04 2008-05-12 Daguangbao China Sichuan current seis. confirmed 

006.00 ? Lushan Hot Spring Taiwan - current seis. - 
007.01 1969 Ain El Hammam Algeria - current seis. - 

007.02 1970 Tigzirt City Algeria - current seis. - 
007.03 2009 Tigzirt Port Algeria - current seis. - 

007.04 1952 Azazga Algeria - current seis. - 
008.00 2014-03-22 Oso-Steelhead USA - current seis. - 

009.01 1811-12-16 Stewart USA New Madrid Seq. (#1) current seis. confirmed 

009.02 1811-12-16 Campbell USA New Madrid Seq. (#1) current seis. confirmed 
010.00 1981-03 Avignonet France - current seis. - 

011.00 paleo Braemore New Zealand - current seis. - 
012.00 2001-01-13 Las Colinas El Salvador El Salvador current seis. confirmed 

013.00 1994-01-08 La Salle en Beaumont France - current seis. - 
014.00 1978 Harmalière France - current seis. - 

015.00 1980-11-23 Calitri Italy Irpinia 1980 current seis. confirmed 
016.01 1999-09-20 Tsaoling Taiwan Chi Chi current seis. confirmed 

016.02 1999-09-20 Jiufenershan Taiwan Chi Chi current seis. confirmed 

016.03 1999-09-20 Hungcaiping Taiwan Chi Chi current seis. confirmed 
017.00 2009-08-09 Shiaolin Taiwan - current seis. - 

018.01 ? Lesachriegel Austria - current seis. - 
018.02 ? Gradenbach Austria - current seis. - 

019.00 1903-04-29 Frank Canada - current seis. - 
020.01 1964-03-28 Potter Hill USA Alaska 1964 current seis. confirmed 

020.02 1964-03-28 Bluff Road USA Alaska 1964 current seis. confirmed 
020.03 1964-03-28 Turnagain Heights USA Alaska 1964 current seis. confirmed 

020.04 1964-03-28 Point Campbell USA Alaska 1964 current seis. confirmed 

020.05 1964-03-28 Point Woronzof USA Alaska 1964 current seis. confirmed 
020.06 1964-03-28 L Street USA Alaska 1964 current seis. confirmed 

020.07 1964-03-28 4th Avenue USA Alaska 1964 current seis. confirmed 
020.08 1964-03-28 Government Hill USA Alaska 1964 current seis. confirmed 

020.09 1964-03-28 Native Hospital USA Alaska 1964 current seis. confirmed 
021.00 1994-01-17 Calabasas USA Northridge current seis. confirmed 

022.00 1999-08-17 Degirmendere (offshore) Turkey Izmit current seis. confirmed 
023.01 ? Vaculov-Sedlo Czech Republic - low / no seis. - 

023.02 ? Kobylska Czech Republic - low / no seis. - 

023.03 ? Kopce Czech Republic - low / no seis. - 
024.00 1980-05-18 Mt. Saint Helens USA with volcanic eruption current seis. confirmed 

025.00 paleo Lluta Chile - current seis. - 
026.00 postglacial Columbia Mountain USA - current seis. - 

027.00 1990-06 Eureka River Canada - low / no seis. - 
028.00 1939-04 Montagneuse River Canada - low / no seis. - 

029.00 1959-05-19 Dunvegan Canada - low / no seis. - 
030.01 2007-05-05 Fox Creek East Canada - low / no seis. - 

030.02 2007-05-05 Fox Creek West Canada - low / no seis. - 

031.01 1897 CN50.9 Canada - current seis. - 
031.02 1886 Goddart Canada - current seis. - 

032.00 1883-10-12 Beaver Creek Canada - low / no seis. - 
033.01 ? Mt. Cefalone Italy - current seis. - 

033.02 ? Cima della Fossa Italy - current seis. - 
033.03 ? Villavallelonga Italy - current seis. - 

033.04 1915-01-13 Casali d'Aschi Italy Avezzano current seis. confirmed 
033.05 1915-01-13 Gioia dei Marsi Italy Avezzano current seis. confirmed 

033.06 1703-01-14 Mt. Alvagnano Italy Norcia 1703 current seis. confirmed 
033.07 ? Fiamignano Italy - current seis. - 

033.08 ? Pescasseroli Italy - current seis. - 

034.00 1780 Campo Vallemaggia Switzerland - current seis. - 
035.01 ? Longobardi Italy - current seis. - 
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035.02 1982-12-13 Ancona Italy - current seis. - 
036.00 1984-04 La Clapière France - current seis. - 

037.00 2006-03-21 Laalam Algeria Kherrata current seis. confirmed 
038.00 1806-09-02 Goldau Switzerland - current seis. - 

039.01 1980 Cerentino Switzerland - current seis. - 
039.02 1834 Peccia Switzerland - current seis. - 

039.03 1846 Val Canaria Switzerland - current seis. - 
039.04 1896-10 Val Colla Switzerland - current seis. - 

040.01 1755-11-01 Güevéjar I Spain Lisbon 1755 current seis. confirmed 

040.02 1884-12-25 Güevéjar II Spain Arenas del Rey current seis. confirmed 
041.00 1683 Montelparo Italy - current seis. - 

042.00 1933-10 Sesa Italy - current seis. - 
043.01 ? Ráztoka Slovakia - low / no seis. - 

043.02 ? Polská Tomanová Slovakia - low / no seis. - 
044.00 2002-10-31 Salcito Slovakia Molise 2002 current seis. confirmed 

045.01 paleo Belbek Ukraine [name] past seis. uncertain 
045.02 paleo Frontovoye Ukraine [name] past seis. uncertain 

045.03 paleo Kacha 1 Ukraine [name] past seis. uncertain 

045.04 paleo Kacha 2 Ukraine [name] past seis. uncertain 
045.05 paleo Alma Ukraine [name] past seis. uncertain 

045.06 paleo Vishennoye Ukraine [name] past seis. uncertain 
046.01 1692-09-18 Battice 1 Belgium Verviers current seis. confirmed 

046.02 1692-09-18 Battice 2 Belgium Verviers current seis. confirmed 
046.03 1692-09-18 Battice 3 Belgium Verviers current seis. confirmed 

046.04 1692-09-18 Battice 4 Belgium Verviers current seis. confirmed 
046.05 1692-09-18 Battice 5 Belgium Verviers current seis. confirmed 

046.06 1692-09-18 Battice 6 Belgium Verviers current seis. confirmed 

046.07 1692-09-18 Battice 7 Belgium Verviers current seis. confirmed 
046.08 1692-09-18 Battice 8 Belgium Verviers current seis. confirmed 

046.09 1692-09-18 Battice 9 Belgium Verviers current seis. confirmed 
046.10 1692-09-18 Battice 10 Belgium Verviers current seis. confirmed 

046.11 1692-09-18 Battice 11 Belgium Verviers current seis. confirmed 
046.12 1692-09-18 Battice 12 Belgium Verviers current seis. confirmed 

046.13 1692-09-18 Battice 13 (Manaihan) Belgium Verviers current seis. confirmed 
047.01 2007-04-21 Acantilada Bay Chile Aysén current seis. confirmed 

047.02 2007-04-21 Punta Cola Chile Aysén current seis. confirmed 

047.03 2007-04-21 Mentirosa Island Chile Aysén current seis. confirmed 
047.04 2007-04-21 Frío Creek Chile Aysén current seis. confirmed 

047.05 2007-04-21 Marta River 1 Chile Aysén current seis. confirmed 
047.06 2007-04-21 Fernández Creek Chile Aysén current seis. confirmed 

047.07 2007-04-21 Marta River 2 Chile Aysén current seis. confirmed 
047.08 2007-04-21 Pescado River Chile Aysén current seis. confirmed 

048.00 1987-03-05 Salado Ecuador Ecuador current seis. confirmed 
049.00 1679-06-04 Vokhchaberd Armenia Armenian 1679 current seis. confirmed 

050.00 1881-09-10 Castel Frentano Italy Lanciano current seis. confirmed 

051.00 1997-10-11 Mt. Nuria Italy - current seis. - 
052.01 1990-06-20 Galdian Iran Manjil-Rudbar current seis. confirmed 

052.02 1990-06-20 Fatalak Iran Manjil-Rudbar current seis. confirmed 
053.00 1963-10-09 Vajont Italy - current seis. - 

054.00 2003-09-10 Tsaitichhu Bhutan - current seis. - 
055.00 2007-03-01 S. Giovanni Italy - current seis. - 

056.00 1950 Rasdeglia Italy - current seis. - 
057.00 1992-08-19 Suusamyr Kyrgyzstan Suusamyr current seis. confirmed 

058.01 paleo Kokomeren Kyrgyzstan [name] current seis. uncertain 

058.02 1885 Aksu Kyrgyzstan Belovodsk current seis. uncertain 
058.03 paleo Beshkiol Kyrgyzstan [name] current seis. uncertain 

058.04 paleo Karakudjur Kyrgyzstan [name] current seis. uncertain 
058.05 1946 Sarychelek Kyrgyzstan Chatkal current seis. uncertain 

058.06 paleo Kugart Kyrgyzstan [name] current seis. uncertain 
059.00 ? Rosone Italy - current seis. - 

060.00 2000-04-09 Yigong China - current seis. - 
061.00 1911-02-18 Usoi Tajikistan Sarez current seis. confirmed 

062.01 1989-01-22 Okuli Tajikistan Gissar current seis. confirmed 

062.02 1989-01-22 May 1 Tajikistan Gissar current seis. confirmed 
062.03 1989-01-22 Firma Tajikistan Gissar current seis. confirmed 

062.04 1989-01-22 Sharara Tajikistan Gissar current seis. confirmed 
063.00 1984 Klasgarten Austria - current seis. - 

064.00 1975 Niedergallmigg Austria - current seis. - 
065.01 1992 Huayuanyangjichang China - current seis. - 

065.02 1996 Jinjinzi China - current seis. - 
065.03 1999 Yangjiaba China - current seis. - 

066.00 postglacial Atemkopf Austria - current seis. - 

067.00 2002-10 La Mania Italy - current seis. - 
068.00 1960 Beauregard Italy - current seis. - 

069.00 1965-01-09 Hope Canada [name] current seis. uncertain 
070.00 ? Anlesi China - current seis. - 

071.01 1914-05-30 Cà di Malta Italy - current seis. - 
071.02 1934-03-06 Rocca Pitigliana Italy - current seis. - 

072.00 1957-07-02 Kahrod Iran Mazandaran current seis. confirmed 
073.00 2008-09 Cerca del Cielo USA - current seis. - 
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074.00 ? Kutlugün Turkey - current seis. - 
075.00 1987-07-28 Val Pola Italy - current seis. - 

076.01 ? Varco d'Izzo Italy - current seis. - 
076.02 ? Costa della Gaveta Italy - current seis. - 

077.00 1979-08-08 Abbotsford New Zealand - current seis. - 
078.00 17th cent. Tortum Turkey [name] current seis. uncertain 

079.00 -300 Slumgullion USA - current seis. - 
080.00 1999-05-13 Rufi Switzerland - current seis. - 

081.00 2007 Zhujiadian China - current seis. - 

082.00 1982 Minor Creek USA - current seis. - 
083.00 2005-03-17 Kuzulu Turkey - current seis. - 

084.00 1995 Huangtupo China - current seis. - 
085.00 1998 Fosso Spineto Italy - current seis. - 

086.00 -500000 Marcus USA - current seis. - 
087.00 2003-11-09 Afternoon Creek USA - current seis. - 

088.00 2009-04-26 Valgrisenche Italy - current seis. - 
089.00 ? Aka-Kuzure Japan - current seis. - 

090.00 ? Ivancich Italy - current seis. - 

091.00 1999-11-12 Bakacak Turkey Düzce current seis. confirmed 
092.00 postglacial Triesenberg Liechtenstein - current seis. - 

093.00 1783-02-06 Scilla Italy Calabria Seq. 2 current seis. confirmed 
094.00 1972 San Donato Italy - current seis. - 

095.00 ? La Salsa Italy - current seis. - 
096.00 1996 Grohovo Croatia - current seis. - 

097.00 -35000 Uspenskoye Russia [name] current seis. uncertain 
098.00 1995-01-16 Nikawa Japan Kobe current seis. confirmed 

099.00 paleo Dúdar Spain [name] current seis. uncertain 

100.01 ? Machu Picchu A Peru - current seis. - 
100.02 ? Machu Picchu B Peru - current seis. - 

101.01 2002 Keillor Road Canada - low / no seis. - 
101.02 1999-10-23 Whitemud Road Canada - low / no seis. - 

102.00 1627-07-30 Vasto Italy Gargano current seis. uncertain 
103.00 1963 Kostanjek Croatia - current seis. - 

104.00 1997-07 Mt. Munday Canada - current seis. - 
105.00 2010-08-06 Mt. Meager Canada - current seis. - 

106.00 -10000 Downie Canada - current seis. - 

107.00 2005-01-10 La Conchita USA - current seis. - 
108.00 postglacial Séchilienne France - current seis. - 

109.00 2004 Ogoto Japan - current seis. - 
110.00 2003 Kuchi-Otani Japan - current seis. - 

111.00 1854-12-23 Zentoku Japan Tokai current seis. uncertain 
112.00 2003-05-26 Tsukidate Japan Sanriku-Minami current seis. confirmed 

113.01 1997-01 Slesse Park Canada - current seis. - 
113.02 1973-05-26 Attachie Canada - low / no seis. - 

114.00 1963-09-03 Lesueur Canada - low / no seis. - 

115.00 1933-07 Brazeau Canada - current seis. - 
116.00 1990-06-17 Saddle River Canada - low / no seis. - 

117.00 2010-01 Cenes de la Vega Spain - current seis. - 
118.00 1993-12-29 Acquara-Vadoncello Italy - current seis. - 

119.00 1901-10-01 Boscobel Barbados - current seis. - 
120.00 paleo Mt. Nuovo Italy - current seis. - 

121.00 -140000 Baga Bogd Mongolia - past seis. - 
122.00 1974-04-25 Mayunmarca Peru - current seis. - 

123.00 1612 Corniglio Italy - current seis. - 

124.00 ? Vallcebre Spain - current seis. - 
125.00 -10000 Corvara Italy - current seis. - 

126.00 1786-06-01 Dadu River China Kangding-Luding current seis. confirmed 
127.00 -10000 Fogo Cabo Verde with volcanic eruption current seis. confirmed 

128.00 1906 Petacciato Italy - current seis. - 
129.01 -20000 El Petruso Spain - current seis. - 

129.02 -20000 Sextas Spain - current seis. - 
129.03 -20000 La Selva Spain - current seis. - 

130.00 1996 Halden Creek Canada - low / no seis. - 

131.00 -10000 Åknes Norway - low / no seis. - 
132.00 -10000 Kykula Slovakia - low / no seis. - 

133.00 paleo Latagualla Chile [name] current seis. uncertain 
134.00 1920-12-16 Huihuichuan China Gansu current seis. confirmed 

135.00 1980 Amloke Nakka Pakistan - current seis. - 
136.00 1960-10 Tessina Italy - current seis. - 

137.00 paleo Krynica Poland - low / no seis. - 
138.00 paleo Collinabos Belgium - low / no seis. - 

139.00 2002-09-06 Cerda Italy Cerda current seis. confirmed 

140.00 2011-09-16 Shibangou China - current seis. - 
141.00 1996-04-28 Quesnel Forks Canada - current seis. - 

142.00 ? Riou-Bourdoux Valley France - current seis. - 
143.00 2000-11-18 Slano Blato Slovenia - current seis. - 

144.00 1958-07-10 Lituya Bay USA Alaska 1958 current seis. confirmed 
145.00 1976-05-06 Mt. Boscatz Italy Friuli 1976 current seis. confirmed 

146.00 1949 Kualiangzi China - current seis. - 
147.00 -1500 Ropice Czech Republic - low / no seis. - 
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148.00 1982 La Valette France - current seis. - 
149.00 postglacial Heather Hill Canada - current seis. - 

150.00 2008-11-23 Gongjiafang China - current seis. - 
151.00 paleo Utiku New Zealand - current seis. - 

152.00 paleo Taihape New Zealand - current seis. - 
153.01 paleo Stromboli Italy - current seis. - 

153.02 paleo La Fossa Italy - current seis. - 
154.00 1909-11 East Lirio Panama - current seis. - 

155.01 2010-11 Cischele Italy - current seis. - 

155.02 ? Ochojno Poland - low / no seis. - 
156.00 postglacial Gammajunni 3 Norway - low / no seis. - 

157.00 postglacial La Frasse Switzerland - current seis. - 
158.00 1953-01-31 Miramar United Kingdom - low / no seis. - 

159.00 ? Mahouane Dam Algeria - current seis. - 
160.00 paleo Pianello Italy - current seis. - 

161.00 2011 Santa Maria Maddalena Italy - current seis. - 
162.00 ? Zhaoshuling China - current seis. - 

163.00 ? Dúrcal Spain - current seis. - 

164.00 1935 Aggenalm Germany - low / no seis. - 
165.00 ? Huangshipan China - current seis. - 

166.00 postglacial Lake Wanaka New Zealand [name] current seis. uncertain 
167.00 2015-02-02 Mofjellbekken Norway - low / no seis. - 

168.00 ? Badu China - current seis. - 
169.01 paleo Number 1 China - current seis. - 

169.02 paleo Number 2 China - current seis. - 
170.01 2005-12-10 Saint Barnabé Canada - low / no seis. - 

170.02 2010-05-10 Saint Jude Canada - low / no seis. - 

170.03 1994-04-21 Sainte Monique Canada - low / no seis. - 
171.00 1970 Bird New Zealand - current seis. - 

172.00 2013-12-03 Montescaglioso Italy - current seis. - 
173.00 19th cent. Spriana Italy - current seis. - 

174.00 ? Piscopio I Tunnel Italy - current seis. - 
175.00 ? La Saxe Italy - current seis. - 

176.00 ? Erguxi China - current seis. - 
177.01 1955-12-07 Hawkesbury Canada blast low / no seis. uncertain 

177.02 1962-05-23 Toulnustouc Canada blast low / no seis. uncertain 

177.03 1996-06-20 Finneidfjord (offshore) Norway blast low / no seis. uncertain 
177.04 2009-03-13 Kattmarka Norway blast low / no seis. uncertain 

177.05 2009-08-01 La Romaine Canada blast low / no seis. uncertain 
178.01 1960 Bumper Australia - low / no seis. - 

178.02 1960 Siphon Gully Australia - low / no seis. - 

 
(*)  either the time of major failure  
      or the time since when sliding is reported (for active landslides) 
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A.4. Displacement Time-histories with SLAMMER per Signal 

 
signal A (000049x) 

 
 

signal B (000133x) 

 
 

signal C (000127x) 

 
 

signal D (000294x) 
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signal E (000335x) 

 
 

signal F (001875x) 

 
 

signal G (006142x) 

 
 

signal H (000599x) 
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signal I (000612x) 

 
 

signal J (000625x) 

 
 

signal K (005820x) 
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A.5. Notes for Data-Sheet Preparation in CESAR 

 
A.5.a. Modifying a ‘data’ (MODE) to solve for ‘rst’ and ‘list’ 
 

… 

MODE      search for keyword 
1 

2 

0.00000e+00 

20      makes first 20 eigenvalues and eigenfrequencies 
0 

0.00000e+00 

30      “0”: 15 iterations; “30”: 30 iterations (convergence!) 
1 

1 

directory\”…”.rst   name corresponds to name of  ‘cleo26’ or ‘cleo36’ 
MUL      especially for 3D (needed for recalling data-file) 

1 0      especially for 3D (needed for recalling data-file) 
[ ]      leave one empty line at the end 
 
A.5.b. Reading ID points of boundary definition from a ‘data’ 
 

… 

COND      search for keyword 
2 

NUL 

2 

___      number of ID points (of boundary definition)  

         (2D: 1011 SURF; 3D: 479 SURFlcs, 61594 SURFplane)  
       all ID points (of boundary definition) 
1  1  

0 

CHAR 

… 

 

 
Fig. A.1: Scheme showing the long version of the 2D simplified geometry 

with ID points. The scheme does not show the real proportions. 
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A.5.c. Modifying a ‘data’ (SUMO) to solve for ‘list’ 
 

… 

CHAR      search for keyword 
2 

POI 

1      number of charge directions (1 in x-direction) 
___      number of groups (for charge application) 

         (2D: 5⌟ 1 2 3 4 5; 3D: 1⌟ 1) 
       all groups (for charge application) 
1.00000 0.00000 (0.00000)  factors for charge (1 in x-, 0 in y- and 0 in z-direction) 
IMPR 

1 0 

[ ]      leave one empty line 
2 

___      number of ID points (for displacements; cf. Fig. A.1) 

         (2D: 1011 SURF; 3D: 479 SURFlcs, 61594 SURFplane) 
       all ID points (for displacements; as SURF/-lcs/-plane) 
[ ]      leave one empty line 
[ ]      leave one empty line 
0 

SUMO 

2 

directory\”…”.rst   reading ‘rst’ even if not in SUMO-directory (cf. Tab. A.1) 

1 1 1 1 … [write 20x]   uses first 20 resonance frequencies 
3 

0 

___      exact number of entries of signal (e.g. 2D-A: 10086)  
0 ___      time increment between entries (e.g. 2D-A: 0.005) 
CFT 

0 

  

       all entries of signal 
AMO 

5.00000e-02 … [write 20x]  damping for first 20 eigenfrequencies  

[ ]      leave one empty line at the end 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

same for all signals 
(depends only on LCS) 

different for all signals 

different for all velocities 
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2D reads 3D reads 
Diezma100.cleo26 ADiezma_M1.rst Diezma3DlcsA.cleo36 

Diezma3D_M1.rst 

Diezma150.cleo26 ADiezma_M2.rst Diezma3DlcsB.cleo36 
Diezma200.cleo26 ADiezma_M3.rst Diezma3DlcsC.cleo36 
Diezma250.cleo26 ADiezma_M4.rst Diezma3DlcsD.cleo36 
Diezma300.cleo26 ADiezma_M5.rst Diezma3DlcsE.cleo36 
Diezma350.cleo26 ADiezma_M6.rst Diezma3DlcsF.cleo36 
Diezma400.cleo26 ADiezma_M7.rst Diezma3DlcsG.cleo36 
Diezma450.cleo26 BDiezma_M1.rst Diezma3DlcsH.cleo36 
Diezma500.cleo26 BDiezma_M2.rst Diezma3DlcsI.cleo36 
Diezma550.cleo26 BDiezma_M3.rst Diezma3DlcsJ.cleo36 
Diezma600.cleo26 BDiezma_M4.rst Diezma3DlcsK.cleo36 
Diezma650.cleo26 BDiezma_M5.rst 

same for 
 

Diezma3Dplane.cleo36 
 

Diezma700.cleo26 BDiezma_M6.rst 
Diezma750.cleo26 BDiezma_M7.rst 
Diezma800.cleo26 CDiezma_M1.rst 
Diezma850.cleo26 CDiezma_M2.rst 
Diezma900.cleo26 CDiezma_M3.rst 
Diezma950.cleo26 CDiezma_M4.rst 

Diezma1000.cleo26 CDiezma_M5.rst 
Tab. A.1: cleo26- and cleo36-files reading the respective rst-file; ( = signal A-K). 

 
In the course of work with CESAR the usage of terms as well as the nomenclature of files is 
constantly adding up. Sometimes misleading nomenclature is the result. The following overview 
casts light on the matter. 
 
2D: 
 
The simplified geometry distinguishes: 

• ground surface (= SURF) 1011 points (all kept for displacement evaluation) 
 
Therefore, those points are identified in step 2 of the flowchart for the 2D procedure by: 

• “lines to ground surface” i.e. CESAR marks lines along the ground surface 
 
Displacements can then be identified with their ID: 

• 1011 for SURF  giving the displacements on the ground surface 
 
3D:  
 
The simplified geometry distinguishes: 

• LCS   (= SURFlcs) 00479 points (all kept for displacement evaluation) 
• topography  (= SURFplane) 61594 points (all kept for displacement evaluation) 

 
Therefore, those points are identified in step 2 of the flowchart for the 3D procedure by: 

• “lines to LCS”   i.e. CESAR marks lines along the same LCS used in 2D 
 • “tiles to topography”  i.e. CESAR marks planes on the full covering topography 
 
Displacements can then be identified with their ID: 

• 00479 for SURFlcs  giving the displacements along the same LCS used in 2D 
• 61594 for SURFplane giving the displacements on the full covering topography 

 
 The expandable workflow charts are to be found the very end of the thesis. 
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A.6. Maximum Displacements with CESAR per Signal 

 

2D 
dx (300 m/s) 

called u in CESAR 
dz (300 m/s) 

called v in CESAR 
dr (300 m/s) 

called total in CESAR 

A 
   

B 
   

C 
   

D 
   

E 
   

F 
   

G 
   

H 
   

I 
   

J 
   

K 
   

 

   
 

legend for dx and dr 
 10 bin grouping 
 0-1000 mm 

legend for dz 
 10 bin grouping 
 0-100 mm 
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3D 
dx (300 m/s) - front 

called u in CESAR 
dx (300 m/s) - top 
called u in CESAR 

dx (300 m/s) - LCS 
called u in CESAR 

A 

  
 

B 

  
 

C 

  
 

D 

  
 

E 

  
 

F 

  
 

G 

  
 

H 

  
 

I 

  
 

J 

  
 

K 
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3D 
dy (300 m/s) - front 

called v in CESAR 
dy (300 m/s) - top 
called v in CESAR 

dy (300 m/s) - LCS 
called v in CESAR 

A 

  
 

B 

  
 

C 

  
 

D 

  
 

E 

  
 

F 

  
 

G 

  
 

H 

  
 

I 

  
 

J 

  
 

K 
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3D 
dz (300 m/s) - front 
called w in CESAR 

dz (300 m/s) - top 
called w in CESAR 

dz (300 m/s) - LCS 
called w in CESAR 

A 

  
 

B 

  
 

C 

  
 

D 

  
 

E 

  
 

F 

  
 

G 

  
 

H 

  
 

I 

  
 

J 

  
 

K 
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3D 
dr (300 m/s) - front 

called total in CESAR 
dr (300 m/s) - top 

called total in CESAR 
dr (300 m/s) - LCS 

called total in CESAR 

A 

  
 

B 

  
 

C 

  
 

D 

  
 

E 

  
 

F 

  
 

G 

  
 

H 

  
 

I 

  
 

J 

  
 

K 
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legend for dx 
 10 bin grouping 
 0-8000 mm 

legend for dy 
 10 bin grouping 
 0-2000 mm 

legend for dz 
 10 bin grouping 
 0-800 mm 

legend for dr 
 10 bin grouping 
 0-8000 mm 
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A.7. MATLAB-Procedure for Calculating Relative Displacements in 2D – Code 

 
% -> Vectors must have the same length and order (“crown to toe”). 

% -> dxGS: vector with all x-displacements along the ground surface 

% -> dxSS: vector with all x-displacements along the sliding surface 

% -> drel: vector with all relative displacements in x-direction 

 

drel=zeros(length(dxGS),1); % to be filled while looping 

 

for i = 1:length(dxGS) 

 

if   dxGS(i)>0 && dxSS(i)>0 && abs(dxGS(i))==abs(dxSS(i)) 

drel(i)=dxGS(i)-dxSS(i);  % |+dxGS| = |+dxSS| 

 

elseif  dxGS(i)>0 && dxSS(i)<0 && abs(dxGS(i))==abs(dxSS(i)) 

drel(i)=dxGS(i)-dxSS(i);  % |+dxGS| = |-dxSS| 

 

elseif  dxGS(i)<0 && dxSS(i)<0 && abs(dxGS(i))==abs(dxSS(i)) 

drel(i)=dxGS(i)-dxSS(i);  % |-dxGS| = |-dxSS| 

 

elseif  dxGS(i)>0 && dxSS(i)>0 && abs(dxGS(i))>abs(dxSS(i)) 

drel(i)=dxGS(i)-dxSS(i);  % |+dxGS| > |+dxSS| 

 

elseif  dxGS(i)<0 && dxSS(i)<0 && abs(dxGS(i))<abs(dxSS(i)) 

drel(i)=dxGS(i)-dxSS(i);  % |-dxGS| < |-dxSS| 

 

elseif  dxGS(i)>0 && dxSS(i)<0 && abs(dxGS(i))>abs(dxSS(i)) 

drel(i)=dxGS(i)-dxSS(i);  % |+dxGS| > |-dxSS| 

 

elseif  dxGS(i)>0 && dxSS(i)<0 && abs(dxGS(i))<abs(dxSS(i)) 

drel(i)=dxGS(i)-dxSS(i);  % |+dxGS| < |-dxSS| 

 

else 

drel(i)=0;  % no displacement in all other cases  

 

end 

end 

 
If one needs to adapt this code for other purposes a quick (counter-)test can be performed with: 
 

  dxGS                        dxSS     drel 
┌ -2 ┐   ┌ -2 ┐  ┌ -2 ┐ 

│  2 │   │ -2 │  │ 00 │ 

│  2 │    one example │ -2 │  │ -4 │ 

│  2 │    for each of │  1 │  │ -1 │ 

│ -1 │      the seven  │ -2 │      │ -1 │ 

│  2 │     conditions │ -1 │  │ -3 │ 

│  1 │   │ -2 │  │ -3 │ 

│ -2 │_____________ │ -2 │______ │ -0 │ 

│  2 │   │  3 │  │ -0 │ 

│ -2 │      examples │  2 │  │ -0 │ 

│ -2 │   for all other │  1 │       │ -0 │ 

│ -2 │         cases │ -1 │  │ -0 │ 

└ -9 ┘   └ -9 ┘  └ -9 ┘ 



253 
 

A.8. Relative Displacements Obtained from the FLAC-Models in 2D 
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A.9. MATLAB-Procedure for Site Effect Plots in 2D – Code 

 
% PLOT OF SITE EFFECTS IN 2D 

% 

% ------------------------------------------------------------------ 

%  

% -> Exported velocity time-histories must be stored in a folder      

%    "vel" next to this MATLAB-function. 

% -> Exported velocity time-histories must be named "1.dat",  

%    "2.dat", etc. according to their node position along the ground  

%    surface from the left to the right side of the model. 

% -> With the velocity time-history export from FLAC comes along a  

%    file called "xy.out"; 

%    it must be placed next to this MATLAB-function. 

% -> Two MATLAB-functions must be downloaded from  

%    https://mathworks.com/matlabcentral/fileexchange/; 

%    "natsort.m" and "natsortfiles.m" (COBELDICK, 2012) must be 

%    placed next to this MATLAB-function. 

%  

% ------------------------------------------------------------------ 

 

% LOAD GEOMETRY 

 

load xy.out;     % for topography 

% (contains full model length) 

%load SG_fine.inp;   sg=SG_fine;  % for fine sliding surface 

% (on model length) 

load SG_simple.inp; sg=SG_simple; % for simple sliding surface 

% (on model length) 

 

% LOAD SIGNAL 

 

load Ricker6Hz_NH.inp;   % signal file with no header 

% (therefore extension "NH") 

 

% READ ALL FILES FROM FOLDER "VEL" 

 

read = dir('vel/*.dat'); 

sortedNames = natsortfiles({read.name}); 

 

% DEFINITION OF PARAMETERS FOR FFT 

 

L = length(dlmread(strcat('vel/', read(1).name), '', 4, 0));   

 

ps = 0.___;   % sampling period (insert time-steps!)[s] 

fs = 1/ps;    % sampling frequency             [Hz] 

time = (L-1)*ps;   % time of record              [s] 

t =(0:ps:time);   % time vector 

f = fs*(0:(L/2))/L;  % frequency vector 

tS =(0:0.___:time);  % time vector for signal  

% (insert time-steps!)  

 

% CREATE 3 MATRICES THAT WILL BE FILLED 

 

DATA = zeros(L, length(read));  % will contain the  

% velocity time-histories 
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FFT  = zeros(L/2 + 1, length(read)); % will contain the FFTs of  

% these velocity time-histories 

 

TRF  = zeros(L/2 + 1, length(read)); % will contain the 

% transfer functions  

 

% MAKE MATRICES DATA & FFT 

 

for r = 1:length(sortedNames) 

     

M = dlmread(char(strcat('vel/', sortedNames(r))), '', 4, 0); 

% skip 4 first lines and 0 columns 

 

     DATA(:,r) = M(:,2);  % filling DATA matrix per reading 

     

     ffTmp = fft(M(:,2)); 

     ffA2 = abs(ffTmp/L); 

     FFT(:,r) = ffA2(1:L/2+1); % filling FFT matrix per reading 

end 

 

% MAKE MATRIX TRF 

 

for p = 1:size(FFT,2) 

       TRF(:,p) = FFT(:,p)./FFT(:,1);   % 1st   FAS = ref. 

%TRF(:,p) = FFT(:,p)./FFT(:,___);  % ___th FAS = ref. 

 %TRF(:,p) = FFT(:,p)./FFT(:,size(FFT,2)); % last  FAS = ref. 

  

end 

 

% CREATE PLOT 

 

subplot(4,1,1:2);  % subplot occupying place 1 & 2 of 4  

 

contourf(TRF(1:150,:),200,'edgecolor','none'), 

xlabel('length (m)'), ylabel('frequency (Hz)') 

c = colorbar('northoutside'); 

c.Label.String = 'amplitude (-)'; 

colormap(jet) 

 

subplot(4,1,3);  % subplot occupying place 3 of 4 

 

plot(sg(:,1), sg(:,2),'-k'), hold on 

plot(xy(:,1), xy(:,2),'-r'), 

xlabel('length (m)'), ylabel('depth (m)') 

xlim([xy(1,1) xy(length(xy),1)]) 

 

subplot(4,1,4);  % subplot occupying place 4 of 4 

 

plot(tS, Ricker6Hz_NH,'-k'), 

xlabel('time (s) of applied signal'), ylabel('velocity (m/s)') 

 

% GO TO PLOT, EDIT AXES AND SAVE THE PLOT 
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A.10. MATLAB-Procedure for Site Effect Plots in 2D – Axes Labeling 

 
Initially the plot of the transfer functions is labeled with the indices of the matrix; i.e. there must 
be a “manual translation” for both axes. The model of the Diezma Landslide serves as example. 
The model has a length of 950 m, and hence – with a spacing of 1 m between nodes – there are 
951 nodes where a velocity time-history can be registered. Effectively, only 950 velocity time-
histories are exported which do not include the one of the very last node. Due to the big number 
of available records and the relatively small spacing between their locations it is, however, 
legitimate to stretch the plot to cover all 951 nodes. One can thus rename the ticks according to 
the first axis of the second subplot containing the longitudinal cross section. 
More difficult is the relabeling of the second axis. Since each column of the TRF-matrix contains 
as many entries as one Fourier Amplitude Spectrum (FAS), the relabeling is related to the 
spacing of the carrying frequency vector. From the code (cf. A.7.) it is visible that: 
 

𝑓 =
1

𝑝𝑠
∙ (0: 1:

𝐿

2
)

⏟    
𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓

𝑟𝑎𝑛𝑔𝑒 𝑤𝑖𝑡ℎ 𝑠𝑡𝑒𝑝𝑠
(𝑖𝑛 𝑀𝐴𝑇𝐿𝐴𝐵)

/𝐿 

 
Respectively, for the simplified and the fine geometry the frequency vectors are defined as 
follows and by chance both have the spacing of 0.1: 
 

𝑓 =
1

0.00005
∙ (0: 1:

2000000

2
) /2000000 = (0: 0.1: 10000) 

 

𝑓 =
1

0.001
∙ (0: 1:

10000

2
) /10000 = (0: 0.1: 500) 

 
This means that, for instance, one needs 10 steps (of 0.1Hz each) to reach 1Hz (at the 11th point); 
and therefore the translation of “points to Hertz” is carried out by: 
 

1. reading the index on the second axis   e.g. 140 (#)    or 1 (#) 
2. subtract 1      e.g. 139    or  0 
3. multiply by 0.1 (= spacing of the frequency vector) e.g. 13.9 (Hz)    or 0 (Hz) 

 
With this procedure, the axis can be relabeled regardless of how many rows of the TRF-matrix 
should be displayed. (The code in A.7. displays only the first 150 rows.)  
It should be noted that, due to the narrowness of the plot, the subtraction of 1 was skipped in 
Fig. 7.13 and Fig. 7.14; the index 140 was directly relabeled with 14 Hz. 
In case one would like to use the code for other site effect plots, the legitimacy of those two 
slightly “incorrect” ways of relabeling must be used with caution. Especially when the available 
data is scarce, shifted plots might be the result and interpretations may be wrong. 
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A.11. Ranking- and Tendency-Relationships 

 
Of all 17 ranking- and tendency-relationships only 14 are shown 
here. The diagram of the duration defined by TRIFUNAC & 
BRADY (1975) serves as example in the text body (cf. 8.3.). The 
two diagrams of the ratios of the characteristic site periods 
(Ts/Tm and Tl/Tm) differ from the one of the characteristic site 
frequency (Fm) only by a translation of the red line as the 
characteristic site periods (Ts and Tl) are constant for 300 m/s; 
this shift does not influence the ranking or the tendency. 
The seismic moment (M0) and the two magnitudes (MW and MS) 
were tested in logarithmic and non-logarithmic form, but no 
ranking or tendency could be recognized. 
The lowest NEWMARK-value appears in the plot of the mean FAS. 
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A.12. Schematic Model Layout for CESAR and FLAC 
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ABSTRACT 
Seismically induced slope deformation is a worldwide common phenomenon that poses an increasing and 
considerable threat to fast expanding urbanization, and a great number of catastrophic events throughout the past 
attest thereof. For this reason, displacement predictions allowing for proper slope surveillance became a major 
concern. 
Early attempts to relate slope failures to seismic parameters are of empirical nature and date back to the 1980s. 
Although having proven stable, these relations are frequently disturbed by site effects causing outliers in terms of 
smaller or greater displacements than expected. 
The first part of this thesis presents a newly build chronological database of 277 globally distributed seismically and 
non-seismically induced landslides. A comprehensive statistical analysis was conducted on the data of this database 
with the main result that – statistically seen – the average geometrical shapes of landslides differ only 
proportionally.  
The second part of the thesis is dedicated to a comparative slope stability analysis of the Diezma Landslide (Spain) 
by means of three methods: the limit-equilibrium based NEWMARK-Method (1965) in 2D under elasto-perfectly-
plastic conditions; finite-difference analysis in the time domain with the code FLAC in 2D and 3D under visco-elasto-
perfectly-plastic conditions; and modal recombination analysis in the frequency domain with the finite-element 
code CESAR-LCPC in 2D and 3D under visco-elastic conditions. 
Located in a seismically active region, the Diezma Landslide is likely to be affected by earthquakes and was 
therefore considered as a suitable model case. A broad analysis of expected displacements was conducted using 
eleven strong-motion seismic scenarios. Moreover, the thesis searches for potential relations between macro-
seismic parameters of the applied earthquake scenarios and the predicted deformations obtained from the three 
methods.  
It appeared that – due to the functionality of the methods – results differ quantitatively as well as qualitatively, and 
so does their suitability. Major findings are: (a) Results from the three methods are of different orders of magnitude 
and, thus, can easily lead to over- or under-estimations of displacements; (b) Both numerical methods reveal a 
strong influence of the model-geometry on the predicted displacements, whereas a scenario-dependent slope 
behavior manifested itself only within the finite difference analysis; (c) The switch from 2D to 3D does not 
necessarily result in a similar performance in each dimension and results must be critically judged before further 
use; (d) The NEWMARK-Method (1965) has proven itself once more to be appropriate for first slope assessments 
but not for sophisticated evaluations of ground response to seismic shaking. 

 
RÉSUMÉ 
Les phénomènes d’instabilité générés par les séismes dans les pentes représentent un risque naturel majeur à 
l’échelle mondiale. Ce risque a, de plus, tendance à croître du fait d’une urbanisation croissante dans des zones à fort 
aléa, comme en témoignent de nombreux évènements catastrophique à travers le passé. Pour garantir la sécurité 
des personnes et des biens face à ce type d’aléa, il faut améliorer les prédictions des déplacements générés par les 
séismes dans les pentes. 
Les premiers travaux scientifiques visant à corréler les caractéristiques des instabilités dans les pentes aux 
paramètres sismiques sont de nature empirique et remontent aux années 1980. Ces méthodes ne permettent pas 
d’expliquer tous les mouvements de terrain observés à travers le monde, notamment lorsque les effets de site 
modifient sensiblement la distribution des mouvements dans les pentes et génèrent des déplacements plus grands 
ou plus petits que ceux prédits par les lois empiriques qui négligent les effets de site. 
La première partie de cette thèse présente une nouvelle base de données mondiale de 277 glissements de terrain 
d’origine sismique ou non. L’analyse statistique conduite sur les données de cette base a montré que la forme 
géométrique moyenne des glissements de terrain reste stable lorsque le volume des instabilités augmente. 
La deuxième partie de la thèse est dédiée à l’analyse de la stabilité du glissement de terrain de Diezma (Espagne) au 
moyen de trois méthodes : la Méthode de NEWMARK (1965) basée sur le principe de l’équilibre limite en 2D qui 
suppose des conditions elasto-parfaitement-plastiques ; l’analyse par différences finies dans le domaine temporel 
avec le code FLAC en 2D et en 3D qui suppose des conditions visco-elasto-parfaitement-plastiques ; et l’analyse par 
recombinaison modale dans le domaine fréquentiel avec le code CESAR-LCPC en 2D et en 3D qui suppose des 
conditions visco-élastiques. 
Situé dans une région sismiquement active, le glissement de terrain de Diezma est susceptible d’être affecté par des 
séismes. Une analyse des déplacements induits dans ce versant par onze signaux sismiques différents a été menée 
dans l’objectif d’établir des corrélations entre les paramètres macro-sismiques des scenarios sismiques appliqués et 
les déformations calculées par les trois méthodes. 
Les résultats montrent des différences marquées à la fois qualitatives et quantitatives. Les conclusions principales 
sont : (a) Les déplacements obtenus par les trois méthodes ont des ordres de grandeur différents et peuvent donc 
conduire à une surestimation ou à une sous-estimation des déplacements ; (b) Les deux méthodes numériques 
montrent que les déplacements sont fortement conditionnés par la géométrie des modèles ; seule la méthode par 
différences finies fait apparaître une réponse en termes de déplacements qui dépend du scénario sismique 
considéré; (c) Les résultats des simulations2D et 3D ne sont pas comparables ; des analyses complémentaires 
doivent encore être menées pour guider l’utilisateur dans le choix de la méthode la plus appropriée; (d) La Méthode 
de NEWMARK (1965), dont l’utilisation reste très répandue de nos jours, est tout à fait appropriée à l’étude de cas 
simples mais elle peut se révéler inexacte lorsque la structure géologique / topographique du versant conduit à un 
fort effet de site car ce dernier n’est pas pris en compte par cette méthode. 


