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The mechanical behaviour of granular soils is an important aspect in geotechnical engineering. Current modelling approaches for the behaviour of granular soils employ phenomenological constitutive relations based upon classical continuum mechanics. This problem can be circumvented by using multiscale constitutive relations based on thermodynamic principles with internal variables. Using a multiscale approach, this thesis attempts to construct multiscale constitutive relations that account for the microstructure of granular soils and to demonstrate their capabilities in solving geotechnical problems at both small and large deformations. The thesis aims to: 1) construct a multiscale constitutive relation for dry granular soils based on a thermodynamic framework which requires fewer ad hoc assumptions; 2) extend the multiscale thermomechanical formulations for partially saturated granular soils for which a micromechanical model is formulated; 3) implement the model using an implicit integration algorithm in a finite element code; 4) apply the model to analyse the instability of granular soils for both localised and diffuse failures; and 5) demonstrate the capability of the multiscale approach in solving some typical geotechnical problems by implementing the model in an explicit finite element code. The proposed multiscale approach offers a simulation tool that provides valuable insights into engineering problems from the grain to the structure scale.

conducive to inquiry and exploration established a communication platform that steadily strengthened my work. Invaluable to me was the give-and-take of our discussions, always interwoven with their constructive feedback. Following their example, I have been inspired not only to pursue ideas from my own curiosity but also to create a solid foundation for the future.

I am also very grateful to Professors François Nicot, Farid Laouafa, Ali Daouadji, Xianfeng Liu and Niels Kruyt for their helpful suggestions throughout my research work. As my scientific committee, they have helped me greatly improve my thesis and they have significantly facilitated the whole process of my research.

Likewise, I extend my gratitude to Professors Anil Misra and Olivier Millet for their valuable advice in improving my understanding of micromechanics of granular materials. I am equally indebted to Professor Zhongxuan Yang for his continuous encouragement and support over these years. I am also grateful for the insights I derived through discussions with Professors Panagiotis Kotronis, Giulio Sciarra, Mahdia Hattab, Christophe Dano and Yvon Riou during my PhD study.

I would also like to thank Shimu, Ms. Pearl-Angelika Lee. Her instruction greatly shaped my view on research life while also improving my language skills significantly in both French and English. I also extend my gratitude to Mr. Roth Edwards for his generous help with my English.

Equally, I am indebted to Ms. Françoise Hulaud and Mr. Jean-Jacques Hulaud for their parental love. Over the course of three years, they treated me as one of their own family members as we shared many unforgettable moments. Their generous help and absolute support guided me through the inevitable difficulties of life. Without their infinite trust and affectionate care, I simply would not have had the freedom to focus so completely on my research.

Thanks also to my friends in the GeM lab: Zheng Li, Jian Li, Fan Yu, Qian Zhao, Yinfu Jin, Younes Salami, Menghuan Guo, Ibrahim Bitar, Zexiang Wu, Jiangxin Liu, Andreea Roxana Vasilescu, Sanae Ahayan, Jie Yang, Zhuang Jin, Ran Zhu, Huan Wang and Borana Kullolli, for accompanying me in this interesting, enjoyable and unforgettable experience.

Finally, a big thanks to everyone in my family for their continuous encouragement and unyielding support. Their unwavering love over these years supported and inspired me in my daily work, without which this thesis would not exist.

RÉSUMÉ

Le comportement mécanique des sols granulaires est un élément important à prendre en compte dans l'ingénierie géotechnique. Les approches de modélisation actuelles pour le comportement des sols granulaires utilisent des relations constitutives phénoménologiques basées sur la mécanique classique du continuum. Ce problème peut être contourné en utilisant des relations constitutives multi-échelles basées sur les principes thermodynamiques avec variables internes. En utilisant une approche multi-échelle, cette thèse tente de construire des relations constitutives multi-échelles qui tiennent compte de la microstructure des sols granulaires et les mettre en oeuvre pour résoudre des problèmes géotechniques à la fois en petites et grandes déformations. La thèse vise à: 1) construire une relation constitutive multiéchelle pour les sols granulaires secs à partir d'un cadre thermodynamique qui nécessite moins d'hypothèses ad hoc; 2) étendre les formulations thermomécaniques multi-échelles aux sols granulaires partiellement saturés pour lesquels un modèle micromécanique est formulé; 3) implémenter le modèle en utilisant un algorithme d'intégration implicite dans un code aux éléments finis; 4) appliquer le modèle pour analyser l'instabilité des sols granulaires dans les cas de ruptures localisées et diffuses; et 5) démontrer la capacité de l'approche multi-échelle à résoudre certains problèmes géotechniques typiques en mettant en oeuvre le modèle dans un code aux éléments finis explicite. L'approche multi-échelle proposée aboutit à un outil de simulation qui fournit des informations précieuses sur les problèmes d'ingénierie depuis l'échelle des grains jusqu'à l'échelle de la structure.

Mots clés : sols granulaires, modélisation multi-échelle, principes thermodynamiques, algorithme d'intégration, instabilité, structures géotechniques Based upon continuum mechanics, the finite element method (FEM) has been widely used to solve geotechnical problems, in which constitutive models are required to represent the behaviour of granular soils. Generally, these models are developed based upon classical continuum mechanics using the concept of representative element volume (REV) and some assumptions, such as the critical state theory and/or the dilatancy theory [START_REF] Rowe | The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[END_REF][START_REF] Schofield | Critical state soil mechanics[END_REF]. Due to the complexities of granular soils including pressure dependent modulus, loading path dependency, and induced fabric anisotropy etc., many ad hoc parameters are required to reproduce the behaviour of granular soils by constitutive models at the macro scale. In this phenomenological modelling, constitutive equations are proposed rather for mathematical fitting than with physics insight.
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To circumvent the shortcomings of constitutive models based on continuum mechanics, the discrete element method (DEM) has been used and, in some cases, combined with FEM to solve boundary value problems. In this approach, DEM samples were used to serve as the Gauss integration points in FEM. The applicability of the FEM×DEM approach was well demonstrated by [START_REF] Guo | A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[END_REF], [START_REF] Nguyen | FEM× DEM: a new efficient multi-scale approach for geotechnical problems with strain localization[END_REF], etc. However, the experimental data on particle properties and on their contacts are difficult to obtain precisely. Hence, this method can be only qualitatively used for engineering problems. In addition, the demand of computational cost is still an unsolved problem; consequently, the number of particles in one Gauss integration point is very limited even though parallel computing techniques have been used.

Given the limitations of the phenomenological models and the huge computational cost of DEM, constitutive models based on micromechanics have been developed. In this approach, the stress-strain relations are obtained by defining interparticle contact laws and averaging the local variables to obtain the global ones with homogenization techniques. Micromechanical models have proved their efficiency in describing the behaviour of granular soils under various loading conditions with few parameters with physical meanings [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Yin and Chang, 2009;Nicot andDarve, 2005, 2011;[START_REF] Xiong | A three-dimensional micromechanically based model[END_REF].

From an energy perspective, the thermodynamic principles lead to a generally accepted framework. However, many heuristic models, including the original Cam-Clay model [START_REF] Schofield | Critical state soil mechanics[END_REF], do not satisfy this theory, so one may raise the question: do the micromechanical models satisfy the first and the second laws of the thermodynamic principles? If not, how to construct a thermodynamically consistent micromechanical model?

For practical purposes, the micromechanical models should be accurately integrated into a finite element code to analyse boundary value problems. In particular, it is of interest to demonstrate that this numerical method can be widely used in geotechnical engineering practice.

Objectives

The overall objective of this thesis is to develop a multiscale approach to describe the behaviour of granular soils in order to solve geotechnical problems. For this purpose, the thesis will focus on the following specific objectives:

First, since the thermodynamic principles represent the general physical laws, it is important to develop the techniques of thermodynamics with internal variables [START_REF] Houlsby | Principles of hyperplasticity: an approach to plasticity theory based on thermodynamic principles[END_REF] for constructing micromechanical models. In doing so, the micromechanical models for granular soils are natural outcomes of both physical and energy conservation models.

Thermomechanical formulations for constructing micromechanical models for dry and partially saturated granular soils can then be derived and serve as theoretical bases for constructing thermodynamically constrained micromechanical models.

Additionally, numerical techniques for integrating the developed micromechanical models to solve boundary value problems will be discussed and demonstrated. Numerical integration schemes will be proposed to accurately integrate micromechanical models. As an example, the CH model [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] will be implemented into a finite element code to fulfil multiscale modelling of geotechnical problems. With this approach, the extent of grain scale instability to granular assembly failure will be investigated. Furthermore, this method will be used to solve some classical geotechnical problems at small and large deformations.

Outline of the thesis

This thesis elaborates the objectives presented above in the following chapters:

Chapter 1 reviews the basic theories of micromechanics of granular materials, the developed micromechanical models, and the development of multiscale approaches in geotechnical engineering.

Chapter 2 answers the question: how to construct a thermodynamically consistent micromechanical model for dry granular materials. Thermodynamics with internal variables has been extended to the multiscale approach, based on which a micromechanical model for dry granular soils has been constructed.

Chapter 3 develops the thermomechanical multiscale modelling approach to partially saturated granular soils. A micromechanical model for unsaturated granular soils based on the proposed framework has been constructed.

Chapter 4 focuses on the implicit integration of the micromechanical models based on the static hypothesis through three levels of integration algorithms. The CH model has been selected as an example to be accurately integrated and has been implemented into an implicit finite element code for multiscale modelling of boundary value problems.

assemblies. Consistent relations for the second-order work at the micro scale, the material point scale and the engineering scale have been obtained. With this method, localised and diffuse failures of granular assemblies have been analysed.

Chapter 6 presents the applications of the CH model in solving geotechnical problems at small and large deformations. Four examples, including a square footing, the excavation of a tunnel, a retaining wall and the installation of a closed-ended displacement pile, have been analysed with an explicit finite element method to demonstrate that micromechanical models can be applied successfully to geotechnical engineering.

Finally, a general conclusion summarizes the work presented in this thesis and discusses potential directions for future development.

CHAPTER 1 MULTISCALE MODELLING OF GRANULAR MATERIALS

Introduction

Granular materials are composed of a large number of grains and voids. To describe the behaviour of granular materials, heuristic models have been constructed based upon classical continuum mechanics [START_REF] Kolymbas | Constitutive modelling of granular materials[END_REF]. In this kind of phenomenological modelling approach, many ad hoc parameters need to be calibrated in order to simulate the complex behaviour of granular materials under a wide range of loading conditions. In comparison, the multiscale modelling approach regards granular materials as assemblies of discrete grains and voids [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Yin and Chang, 2009;Nicot andDarve, 2005, 2011;[START_REF] Radjai | Modeling granular materials: century-long research across scales[END_REF], and thus accounts for more physics. Correspondingly, inter-particle contact laws have to be defined and localization and averaging operators need to be given, as shown in Figure 1.1 [START_REF] Cambou | Micromechanics of granular materials[END_REF](Cambou et al., , 2016)). This chapter begins with recent developments of micromechanics in granular materials, in which the elastic and plastic contact laws, relations between micro-macro variables and the techniques used to construct multiscale models will be discussed. After that, attention is paid to constitutive relations developed on the basis of micromechanics of granular materials. Finally, the multiscale modelling approaches that have been used in solving geotechnical problems will be discussed.

Figure 1.1 General framework of multiscale approach in granular materials (figure from [START_REF] Cambou | Micromechanics of granular materials[END_REF] 1.2 Micromechanics of granular materials

Interparticle contact laws

The relations between two contacting particles depend on the characteristics of grains, such as stiffness and geometry. In terms of the grain stiffness, hard grains are such that deformation of the grain itself can be negligible, while soft grains can be deformed with or without time dependency. The geometry of the grain greatly affects the frictional behaviour between particle contacts. Therefore, different interparticle contact laws should be defined for different kinds of granular materials. Among these relations, elastic and plastic local relations for spherical grains have been widely adopted.

1) Elasticity

The expression of the stiffness between two contacting particles due to normal and shear forces can be dated back to Hertz and Mindlin (Mindlin and Deresiewicz, 1953), who considered two contacting elastic bodies as two rigid bodies connected by deformable springs.

These springs are distributed in the normal direction to represent normal forces and in the tangential direction to describe shearing forces. For simplicity, the two springs are generally considered as uncoupled from each other. The normal stiffness depends on the normal force and the properties of grains, given as

  1 cc nn k C f   (1.1)
where 1 C and α are material parameters, c n f is the interparticle contact normal force. A general expression for shear stiffness was suggested as 2 1 tan Revised forms of Eqs. (1.1) and (1.2) have been widely adopted in literature. In DEM simulations as well as in the micromechanical models constructed by Nicot andDarve (2005, 2011), the normal and tangential stiffness are material constants. In comparison, [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] adopted spherical particles to describe granular soils, in which the revised stiffness was adopted

c cc r rn cc n f k C k f         (1.2)
0 2 c cc n nn g f kk Gl       , 0 2 c cc n rr g f kk Gl       (1.3)
where g G is the elastic modulus of particles and l is the branch length of two contacting particles, while the reference normal stiffness 0

c n k is given by 2/3 0 12 21 c ng g d kG v       (1.4)
in which d is the particle diameter and vg being the Poisson's ratio of the grains.

2) Plasticity

A Coulomb type plastic criterion has been extensively adopted to represent the frictional behaviour of granular materials. A general formulation of this type of criterion can be expressed as

        22 , c c c c c i s t n i F f f f f       (1.5) in which κ is a function of the interparticle displacement c i  .
If κ is a constant then Eq. (1.5) reduces to be a pure plastic function, which has been generally applied in DEM simulations [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF], in the  -D model [START_REF] Nicot | A multi-scale approach to granular materials[END_REF] and in the H-model (Nicot and Darve, 2011), see also section 1.3. By comparison, the CH model [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] and its developing models consider displacement hardening yield criteria for sand, clay and other cohesive granular materials, which will be addressed in detail in section 1.3. Note that for clay, a second compression type plastic criterion is needed (Yin and Chang, 2009;Yin et al., 2009Yin et al., , 2010Yin et al., , 2011Yin et al., , 2013[START_REF] Yin | A micromechanics-based model for sand-silt mixtures[END_REF].

Strain tensors

In classical continuum mechanics, many definitions of a strain tensor can be found in the literature, such as the left or right Cauchy-Green strain tensor, Piola deformation tensor, Green-Lagrange strain tensor, Euler-Almansi strain tensor etc. [START_REF] Bagi | Analysis of microstructural strain tensors for granular assemblies[END_REF][START_REF] Cambou | Micromechanics of granular materials[END_REF]Cambou et al., , 2016)). These tensors are expressed in terms of the translation gradient tensor. In micromechanics of granular materials, strain tensors are defined based on the granular assemblies which can be viewed as a REV. The global deformation of the assembly originates from displacements and rotations of particles. With these micromechanics-based strain tensors, discrete element simulation results can be explained and micromechanical models can be constructed. There are many ways to define strain tensors in terms of the interparticle displacements. Among them, most of the strain tensors were defined based on an equivalent continuum and a best-fit method [START_REF] Bagi | Analysis of microstructural strain tensors for granular assemblies[END_REF].

1) Strains based on an equivalent continuum

In these approaches, the granular assembly is replaced by a continuous field through a suitable translation field, which assigns the displacements of particle centres to the equivalent continuum. Strain tensors defined along this line can be found in the work of [START_REF] Bagi | On the definition of stress and strain in granular assemblies through the relation between micro-and macro-level characteristics[END_REF][START_REF] Bagi | Stress and strain in granular assemblies[END_REF], [START_REF] Kruyt | Micromechanical definition of the strain tensor for granular materials[END_REF], [START_REF] Kuhn | Deformation measures for granular materials[END_REF][START_REF] Kuhn | Structured deformation in granular materials[END_REF], Cambou et al. (2000) and [START_REF] Kruyt | Statics and kinematics of discrete Cosserat-type granular materials[END_REF].

2) Strains defined from the best-fit methods

In these methods, the deviations between the theoretical displacement field and the actual displacement field should be minimum, hence the obtained displacement field is the best-fit of the actual displacement field. The difference between the strain tensors lies in the consideration of the local displacement field [START_REF] Bagi | Analysis of microstructural strain tensors for granular assemblies[END_REF]Cambou et al., 2016). For instance, the displacement of the centres of neighbouring grains was adopted in [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF]. In contrast the relative displacement at the interparticle contacts was used in [START_REF] Liao | Stress-strain relationship for granular materials based on the hypothesis of best fit[END_REF], whereas the relative displacement of the centres of neighbouring particles was calculated in Cambou (2000).

In this thesis, only the strain tensor conforming to the best-fit type proposed by Liao et al.

(1997) will be presented, since it will be used as an assumption in the following chapters. In micromechanics of granular materials, if each particle would move exactly according to a uniform translation gradient ij  , then the deformation at contact c would be

cc i ji j dl   (1.6)
Since the displacement fields of granular materials are strongly heterogeneous, for a general ij  we would find that

0 cc i ji j dl   (1.7)
To find a strain tensor ij  which is closer to the actual displacement field, the square sum of the deviations in Eq. (1.7) should be the smallest, that is to say

   1 min N c c c c i ji j i ji j c Z d l d l           (1.8)
The condition for minimum of Z can be obtained when

0 kl Z     (1.9)
Solving Eq.(1.9) leads to n , m and i can be 1, 2 or 3. Defining a fabric tensor as

1 1 1 N cc nm n m c A l l V        (1.11)
and combining Eqs. (1.10) and (1.11), the strain tensor proposed by [START_REF] Liao | Stress-strain relationship for granular materials based on the hypothesis of best fit[END_REF] 

can be obtained 1 1 N cc ni i m nm c d l A V        (1.12)
which states that the strain of a granular assembly is the volumetric summation of interparticle displacements with branch vectors and connection with fabric tensor. given by interparticle contact force and branch vector connecting two contact particles. This formulation is also termed as the Love-Weber formula [START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF][START_REF] Weber | Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents[END_REF], given as

Effective stress tensors

1 1 N cc ij i j c fl V     (1.14) in which c i f is the force at interparticle contacts.
For partially saturated granular materials, the difficulty in using Eq.(1.13) lies in quantifying the coefficient χ. On one hand, it has been found that the parameter χ could not be generally expressed via a function of the degree of saturation, particularly under drying-wetting cyclic loadings [START_REF] Gens | On constitutive modelling of unsaturated soils[END_REF]. On the other hand, efforts also have been made to give the definition of the effective stress ij   . From recent results obtained by discrete element simulations, it seems that the Love-Weber formula could not be generally used as an effective stress tensor for unsaturated granular materials. This issue is a focal topic for researchers with interests in partially saturated granular materials [START_REF] Duriez | Subtleties in discrete-element modelling of wet granular soils[END_REF][START_REF] Chalak | Partially saturated media: from DEM simulation to thermodynamic interpretation[END_REF].

Fabric tensors

To describe the internal structure of granular materials, fabric tensors have been introduced.

Generally, the geometrical information on granular particles and their spatial arrangement can be described by a second-rank tensor. Various definitions of the fabric tensor have been proposed [START_REF] Satake | Fabric tensor in granular materials[END_REF][START_REF] Oda | Stress-induced anisotropy in granular masses[END_REF][START_REF] Santamarina | Stress anisotropy and wave propagation: a micromechanical view[END_REF][START_REF] Kuganenthira | Measurement of fabric anisotropy in triaxial shearing[END_REF][START_REF] Pan | A micromechanics-based methodology for evaluating the fabric of granular material[END_REF]Li and Li, 2009;[START_REF] Fu | Relationship between void-and contact normal-based fabric tensors for 2D idealized granular materials[END_REF]. These tensors can be classified as contact normal-based, particle orientation-based and void-based tensors (Wang et al., 2017). The former two types of tensors can be generally expressed as

1 1 2 N kk k N    F v v (1.15)
where N is the number of the entities being quantified; the superscript k is the kth entity; k v is the directional entity which could be the unit contact normal or the unit particle orientation vector. The void-based fabric tensor was initially proposed by Li and Li (2009) and then developed by [START_REF] Fu | Relationship between void-and contact normal-based fabric tensors for 2D idealized granular materials[END_REF] for two-dimensional assemblies. The fabric tensor based on void cell system suggested by Li and Li (2009) can be written as

  0 1 v N k k k k vv k v E vE N    F n n n (1.16)
where k v is the length of the th

k void vector whose direction is k n ;   k v E
n is the directional distribution of the void vector density; v N is the total number of void vectors; 0 E is a normalization factor which can be derived from the statistics theory (Kanatani, 1984;[START_REF] Li | Tensorial characterisation of directional data in micromechanics[END_REF] and is equal to 2 in 2D space and 4 in 3D space. From these definitions, we can see that the fabric tensor defined in Eq.(1.11) is a revised form of the contact-based fabric tensor and satisfies the unit volume requirement of the thermodynamically consistent fabric tensor [START_REF] Li | Dissipation consistent fabric tensor definition from DEM to continuum for granular media[END_REF].

Fabric tensors can be decomposed into an isotropic part and a deviatoric part. An isotropic material indicates that the same material response can be obtained if the loading direction is rotated. The deviatoric part, also termed as fabric anisotropy, includes inherent anisotropy and induced anisotropy. The former one refers to an initial anisotropy that is caused by previous loadings, such as the inherent anisotropy of granular soils caused by the gravity, while the latter one is induced by the subsequent loadings.

It has been recognized that the non-coaxial behaviour of granular materials under proportional loading and continuous rotational shearing originates from their fabric anisotropy. Therefore, well considering the evolution of fabric anisotropy is crucial for describing the non-coaxial deformation of granular materials. Discrete element simulations have found that the fabric anisotropy tends to reach a steady state even when the inherent anisotropy is different [START_REF] Fu | Fabric evolution within shear bands of granular materials and its relation to critical state theory[END_REF][START_REF] Kruyt | Micromechanical study of fabric evolution in quasi-static deformation of granular materials[END_REF][START_REF] Zhao | Unique critical state characteristics in granular media considering fabric anisotropy[END_REF]Kruyt andRothenburg, 2014, 2016;[START_REF] Yang | Critical state for anisotropic granular materials: a discrete element perspective[END_REF]. According to these findings, Li and Dafalias (2012) extended the classical critical state theory [START_REF] Schofield | Critical state soil mechanics[END_REF]) by involving a fabric item, which also reaches a critical value at the classical critical state. In this framework, constitutive models were constructed to simulate the non-coaxial deformation of granular soils (Li and Dafalias, 2012;[START_REF] Gao | A critical state sand plasticity model accounting for fabric evolution[END_REF][START_REF] Gao | A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution[END_REF].

Averaging and localisation operators

The Love-Weber formula described by Eq. (1.14) has been proved to be a general expression for dry granular materials, it is therefore adopted as an averaging operator for micromechanical models [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Yin and Chang, 2009;Yin et al., 2009Yin et al., , 2010Yin et al., , 2011Yin et al., , 2013[START_REF] Yin | A micromechanics-based model for sand-silt mixtures[END_REF]Nicot andDarve, 2005, 2011;[START_REF] Xiong | A three-dimensional micromechanically based model[END_REF].

Two types of localisation operators: the kinematic method and the static hypothesis can be generally found in literature [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Nicot andDarve, 2005, 2011;Yin et al., 2009;[START_REF] Misra | Nonlinear granular micromechanics model for multi-axial ratedependent behavior[END_REF]Misra and Poorsolhjouy, 2015a;[START_REF] Xiong | A three-dimensional micromechanically based model[END_REF]. The former one bridges global strains and inter-particle displacements, such as the widely-used expression in Eq.(1.6), based on which micromechanical models were constructed by Nicot andDarve (2005, 2011), [START_REF] Misra | Nonlinear granular micromechanics model for multi-axial ratedependent behavior[END_REF], [START_REF] Xiong | A three-dimensional micromechanically based model[END_REF]. The latter one gives inter-particle incremental forces from incremental global stresses, for instance the one adopted by [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF], rewritten as

, c c c c i ij n jn i ij n jn f l A f l A   (1.17)
where jn A is given in Eq. (1.11). Based on Eq. (1.17), a family of micromechanical models has been constructed [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Yin and Chang, 2009;Yin et al., 2011Yin et al., , 2013[START_REF] Yin | A micromechanics-based model for sand-silt mixtures[END_REF][START_REF] Zhao | A micromechanical model for unsaturated soils based on thermodynamics[END_REF].

Homogenisation integration

The summation of local quantities over all interparticle contacts can be approximated by directional statistics theory. This theory was first proposed by Kanatani (1984) for directional orientations represented by unit vectors, and then was extended by [START_REF] Li | Tensorial characterisation of directional data in micromechanics[END_REF] for directional vectors in which both magnitude and direction are of significance. The distribution of both orientations and vectors along all directions can be approximated by a probability density function   f n . The approximation of the function   f n can be obtained by a smooth function  

F n , which can be expressed as a polynomial

  i i ij i j ijk i j k ijkl i j k l F C C n C n n C n n n C n n n n       n (1.18)
where n is a unit vector. The integration of the function  

F n should satisfy     1 with 0 F d F      nn (1.19)
where dΩ is an elementary solid angle (Figure 1.2) and Ω represents the unit circle in 2D case and the unit sphere in 3D case. Let n (1) , n (2) , and n (N) be unit vectors representing an observed number of N local directional data. An empirical distribution of the contact

probability density f (n) is       1 1 N c c f N     n n n (1.20)
where     is the Dirac delta function defined as  

, x=0 0, x 0        , which also satisfies the identity   1 d        .   f n is nonnegative and automatically satisfies   1 fd    n . y x z   d sin d d      o Figure 1.
2 Integration domain in a unit sphere Eq.(1.18) can be approximated using the polynomial function as

  1 2 1 2 1 2 1 2 1 2 1 2 00 11 1 n n n n i i i i i i i i i i i i i i i i F F n n n D n n D n n n EE         n (1.21)
where 0 Ed    , which is equal to 2 in 2D space and 4 in 3D 

    2 min E F f d        n n n (1.22)
The most fundamental quantities of these directional data are their average values. The average of the nth order tensor product, also termed as the moment tensor of order n is given as

  1 2 1 2 1 2 1 2 1 1 n n n n N c c c i i i i i i i i i i i i c N n n n n n n F n n n d N        nn (1.23)
The directional tensor

12 n i i i F in Eq.
(1.21) can be determined by minimizing the least square

error criteria   1 2 1 2 1 2 1 2 1 2 12 0 n n n n n n i i i j j j j j j i i i i i i i i i E F n n n d F n n n n n n N F         nn (1.24)
where the identity

1 2 1 2 0 1 nn i i i i i i n n n n n n d E   
, which can be explicitly integrated, as expressed by [START_REF] Li | Tensorial characterisation of directional data in micromechanics[END_REF]. By substituting the obtained direction tensor

12 n i i i F from Eq.
(1.24) to Eq. (1.21), we obtain

  1 2 1 2 1 2 1 2 2 1 2 2 n n n n n i i i i i i i i i i i i i i i F D n n n F n n n   (1.25)
The coefficient tensor

12 n i i i D can be finally expressed as       1 2 1 2 1 2 2 1 2 1 2 2 2 2! 1 2! n n n n n i i i i i i j j j j j j i i i n n n D N F n n n n n n n    (1.26)
where the coefficient , their relation can be expressed as

2 2 2 ,2 2 1 ,3 21 n n n n C D D n             (1.
1 2 1 2 1 2 2 1 n n n n n i i i i i i i i i i i F D F   
(1.28)

For direction-dependent vectors with different magnitudes, [START_REF] Li | Tensorial characterisation of directional data in micromechanics[END_REF] gave the form of approximating the directional representative values as 

    1 1 2 1 1 1 1 2 0 0 0 n n n n ji i i i i j ji i ji i i i i m H n n n m G n G n G n n n       Mn (1.
        min Ed                 M n m n M n m n (1.30)
where   mn is the directional distribution of a representative vector. The procedure for solving Eq.(1.30) is the same as for solving Eq.(1.22).

The described directional statistics theory has been widely applied in deriving the stressforce-fabric relations [START_REF] Rothenburg | Analytical study of induced anisotropy in idealized granular materials[END_REF]Li and Yu, 2013;[START_REF] He | On the stress-force-fabric equation in triaxial compressions: Some insights into the triaxial strength[END_REF]Wang et al., 2017), in analysing results of discrete element simulations [START_REF] Li | Tensorial characterisation of directional data in micromechanics[END_REF]Li et al., 2013;[START_REF] Li | Internal structure quantification for granular constitutive modeling[END_REF], in experimental and numerical quantification of fabric tensors [START_REF] Yang | Undrained anisotropy and rotational shear in granular soil[END_REF][START_REF] Yang | Quantifying and modelling fabric anisotropy of granular soils[END_REF][START_REF] Yang | Critical state for anisotropic granular materials: a discrete element perspective[END_REF][START_REF] Xie | The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials[END_REF], as well as in constructing micromechanical models [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Yin and Chang, 2009;Nicot andDarve, 2005, 2011;Misra andSingh, 2014, 2015;Misra and Poorsolhjouy, 2015a;[START_REF] Xiong | A three-dimensional micromechanically based model[END_REF][START_REF] Zhao | A micromechanical model for unsaturated soils based on thermodynamics[END_REF].

Micromechanical models

A variety of multiscale constitutive relations, also termed as micromechanical models, have been proposed based on micromechanics of granular materials. In this section, several typical micromechanical models will be reviewed. Specific attentions will be paid on the CH model [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] due to its good performance in describing the behaviour of granular soils and it will be a sound basis for the following chapters.

CH model

The CH micromechanical model [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] was initially proposed for sand.

Further developments by Yin andChang (2009a, 2009b) and Yin et al. (2009Yin et al. ( , 2010Yin et al. ( , 2011Yin et al. ( , 2013[START_REF] Yin | A micromechanics-based model for sand-silt mixtures[END_REF], demonstrated its good performance in modelling the mechanical behaviour of sand and clay.

Inter-particle contact law

The local law is defined in the local coordinates (n, s, t) 

                             
(1.31) Soil specimens exhibit elastic and plastic behaviours which originate from the slip and rotation of the grains. Given that these elementary mechanisms control the global mechanical response, elasticity and plasticity are defined at the inter-particle contact. 

     , cc r rR n k k k  (1.34)
where ref f is a reference force.

2) Yield criterion and plastic flow

To consider irrecoverable displacements between grains during loading, plasticity has been introduced in the local law. A Coulomb-type yield criterion has been adopted, expressed as

        22 , c c c c cp i s t n r F f f f f       (1.35)
where the hardening parameter    is the mobilized peak friction angle between particles in contact, function of the inter- particle friction angle c   and the state variable c ee representative of the mesoscale, concordantly with the macro scale relation proposed by [START_REF] Biarez | Elementary mechanics of soil behaviour: saturated remoulded soils[END_REF] tan tan (1.41)

Micro-macro relationship

Stress and strain can be obtained by volumetrically averaging the inter-particle force and displacement. The CH model has adopted the kinematic relation based on the best-fit hypothesis suggested by [START_REF] Liao | Stress-strain relationship for granular materials based on the hypothesis of best fit[END_REF], expressed by Eq.(1.12). For the relation between force and stress, the Love-Weber formula in Eq.(1.14) has been adopted. The micro-macro relations in Eqs.(1.12) and (1.14) are averaging operators. To integrate the local forcedisplacement relation, we need to define a localization operator. Based on energy conservation, the relationship between force and stress increments is given by Eq.(1.17). This expression is denoted as a static hypothesis since the force increment is calculated from the stress increment. This is different from the kinematic hypothesis in which the local displacement is derived from the global strain.

Stress-strain relationship

Using the definition of the best-fit hypothesis (Eq.(1.12)) and combining the local law with the static hypothesis (Eq.(1.17)), one can write the incremental stress-strain relationship based on elasticity as

    11 1 1 1 1 1 1 N N N c c c c c c c c ij i n jn ij m im ij n jn ij ij m n im jn c c c l A l A k l A k l l A A V V V                  (1.42)
from which the elastic compliance matrix ijkl S can be expressed as

  1 1 1 N c c c ijkl ij m n km ln c S k l l A A V     (1.43)
It should be mentioned that Eq.(1.43) is expressed in the local coordinates (n, s, t). The global stiffness matrix can be obtained by using Eq.(1.31). If plastic displacement occurs, the local elastic stiffness has to be replaced by a local elastoplastic stiffness. A predictor-corrector procedure is then needed to integrate the non-linear stress-strain relationship, which will be discussed in chapter 4.

Homogenisation integration

To obtain the stress-strain relation, it is necessary to sum up the local variables over all particle contacts. Based on the aforementioned statistics theory proposed by Kanatani (1984), [START_REF] Chang | Packing structure and mechanical properties of granulates[END_REF] applied the statistical theory for calculating the summation of ) and (1.23), the integration can be calculated by

    2 00 1 1 , , sin N c c F F d d N              (1.44)
where c F is the quantity defined between interparticle contact; N is the total number of interparticle contacts. 

  1 , 4      (1.47)
To calculate the integration of the right-hand side of Eq.(1.44), we can adopt the Gauss integration method proposed by [START_REF] Bažant | Efficient numerical integration on the surface of a sphere[END_REF], in which the integration of the function   

N NP c c F F d d F w N               (1.49)
The volumetric average of the micro variables can be calculated by

    11 1 N NP c c N F F w VV      (1.50)
in which V is the volume of the assembly and N is the number of inter-particle contacts. The number of contacts per unit volume N/V for a packing of spheres can be estimated from the void ratio, the coordination number and the particle size [START_REF] Chang | Packing structure and mechanical properties of granulates[END_REF])

  3 3 41 n C N V r e    (1.51)
Based on the experimental data, the relationship between the void ratio e and the coordination number n C can be approximated by 13.28 8

n Ce  (1.52)
where e is the void ratio of granular assembly.

x y z o Integration point Figure 1.4 A distribution of integration points in half space of a unit sphere [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] investigated the influences of the number of integration points on the stress-strain relations and found that 74 integration points, as proposed by [START_REF] Bažant | Efficient numerical integration on the surface of a sphere[END_REF], were sufficient to obtain accurate results. As shown in Figure 1.5, the CH model can well describe the behaviour of Toyoura sand with different initial void ratios under a wide range of confining pressures. 

Models developed based on the CH model

The CH micromechanical model has been further developed to describe the behaviour of unsaturated granular soils [START_REF] Hicher | A microstructural elastoplastic model for unsaturated granular materials[END_REF], the behaviour of clays (Chang et al., 2009;Chang andYin, 2010, 2011) and the effect of inherent anisotropy of sands and clays (Yin and Chang, 2009, 2010, 2011, 2013;Chang and Bennett, 2015). Generally, four kinds of contact laws that depend on the properties of particle contacts have been suggested. For saturated sand and clay, only mechanical forces were considered between the inter-particle contacts [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Chang and Hicher, 2009;Chang andYin, 2009a, 2009b;Yin and Chang, 2009, 2010, 2011, 2013;Chang and Bennett, 2015); for unsaturated soils, both capillary forces and mechanical forces were considered [START_REF] Hicher | A microstructural elastoplastic model for unsaturated granular materials[END_REF][START_REF] Hicher | Multi-scale modeling of grouted sand behavior[END_REF]; for cohesive soils, the chemical forces and mechanical forces are the main forces (Hicher et al., 2008a[START_REF] Hicher | Multi-scale modelling of the mechanical behaviour of grouted sand[END_REF]Hattab and Chang, 2015), while for lunar soils, the surface energy forces that include van der Waals forces, as well as the mechanical forces, were taken into account (Chang and Hicher, 2009).

1) Mechanical force in clayey materials

The same nonlinear elasticity that has been used for sand is adopted, while for plasticity two yield criteria are used: one for shear loading and another one for compression, as shown in Figure 1.6. The form of shearing yield criterion 11 ( , ) i Ff is the same with sand, as shown by the following equations 
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in which, a and b are material constants, state variable c ee is defined as previous Eq.(1.39).

Given that clays exhibit distinct deformation under the compression with constant stress ratio, a cap yield criterion is introduced, which depends on normal force and normal displacement 2 2 2 ( , ) ( ) 

c c cp i n n F f f     (1.

2) Capillary force

To simulate the behaviour of partially saturated granular materials, capillary forces were introduced between interparticle contacts [START_REF] Hicher | A microstructural elastoplastic model for unsaturated granular materials[END_REF], which can be expressed

as max exp cap n d f f c R     (1.59)
where c is a material constant, d is the distance between two grains that are not necessarily in contact, R is the mean grain radius, max f is the value of the capillary force at contact, given by
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where Sr is the degree of saturation; 0 f and S0 are material constants. 0 f can be evaluated from the particle size distribution curve. An empirical expression proposed by [START_REF] Wu | Capillary effects on dynamic modulus of sands and silts[END_REF] was adopted to obtain the value of S0, given as

    0 10 0.62log 1.5 /100 Sd    (1.61)
where d10 is the effective grain size in mm.

3) Chemical force in grouted sand

Adhesive forces were added at interparticle contacts to consider the effect of cement grout in the pores of granular materials by [START_REF] Hicher | Multi-scale modeling of grouted sand behavior[END_REF]. 

4) Surface energy force

To investigate the behaviour of lunar soils, the van der Waals force was considered between two particles in contact by Chang and Hicher (2009), written as 2 32
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where A is the Hamaker coefficient which was estimated to be 4.310 -20 J for lunar soils and 1.510 -20 J for terrestrial quartz sand. D represents the thickness of the molecules layer between two particles and R is the mean radius of the particles.

By using the above four kinds of interparticle contact forces and the procedure described in the CH model, the behaviour of various granular materials under specific environment has been well described.

μ-D model

Different from the aforementioned CH model, the μ-D model [START_REF] Nicot | A multi-scale approach to granular materials[END_REF] adopts the strain tensor, Eq.(1.6), as a localization operator. The scheme of the μ-D model is shown in Figure 1.7. In this approach, the strain-displacement in Eq.(1.6) has been used as the localization operator, while the Love-weber formula described in Eq.(1.14) has been taken as the averaging operator. An elastic purely plastic relation was given as the interparticle forcedisplacement relation, as shown in Eq.(1.5), which can be rewritten as This model has demonstrated its efficiency in describing the behaviour of dry granular materials. However, as discussed by Nicot and Darve (2011), due to the choice of the kinematic assumption expressed in Eq.(1.6), the model could not correctly simulate the mechanical response of a granular specimen along a drained triaxial loading path (Figure 1.8).

c c c n n n fk   (1.65)     min , tan c c c c c c c c c c c r n r r r n r n n n r c c c r n r fk f f k f k f fk          (1.66)
To improve the performance of this model, an adaptation was incorporated, by removing all contacts oriented along the directions within a cone, characterized by an ad hoc parameter θe.

Alternatively, a meso-scale structure was introduced to enrich the relation between strain and inter-particle displacement (Nicot and Darve, 2011;[START_REF] Xiong | A three-dimensional micromechanically based model[END_REF]. To construct the H model, two levels of compatible equations should be considered. The deformation of each hexagon derived from global strain is given as

n n ij i j l l n n    (1.67) t t ij i j l l t t    (1.68)
where ln and lt are dimensions of the hexagon along the direction n and t, as shown in Figure 1.9. To describe the relation between the meso-scale and the micro-scale, two kinds of interparticle contacts are considered. As shown in Figure 1.10, there are both normal and shear forces between particles 1 and 2, whereas only normal force exists between particles 2 and 3. The deformation of the hexagon can be calculated by

21 2 cos n l d d   (1.69) 1 2 sin t ld  (1.70)
where α is a parameter describing the degree of opening of the hexagon, d1 and d2 are distances between two neighboring particles. By using the elastic and pure plastic local law expressed in Eqs.(1.65) and (1.66) and invoking the force equilibrium equation between particles, force increments can be computed. To integrate the forces in order to obtain the global stresses, the Love-Weber formula described in Eq.(1.14) has been adopted. Since the density function for isotropic fabric, i.e. 1/2π in 2D and 1/4π in 3D, has been adopted, this model in its present form cannot capture the non-coaxial deformation of granular materials under rotational shearing. (Nicot and Darve, 2011) The ability of the H model to reproduce the behaviour of granular materials has been demonstrated, in particular for the diffuse failure that cannot be well described by the µ-D model, as shown in Figure 1.11. Whereas the H model exhibits many interesting features, it still has some limitations.

Other micromechanical models

Based upon the micromechanics of granular materials, many micromechanical models have been suggested for different purposes. To simulate the time-dependent behaviour of polymers, [START_REF] Misra | Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model[END_REF] suggested a viscous-elasto-plastic micromechanical model based on the kinematic assumption described in Eq.(1.6). Similarly, a higher-order micromechanical model has been constructed for capturing the strain localization of granular materials [START_REF] Yang | Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity[END_REF]. From the scope of the meso-scale, a micromechanical model was suggested by Cambou et al. (2016) for granular materials by defining six phases which are sets of mesodomains with similar elongation degrees and orientations. In the light of Rowe's dilatancy theory [START_REF] Rowe | The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[END_REF], [START_REF] Wan | Effect of microstructure on undrained behaviour of sands[END_REF] constructed a micromechanical model by extending the dilatancy function in order to consider fabric anisotropy. Based on energy conservation at various scales, Zhang andBuscarnera (2014, 2017) and Zhang et al. (2016) constructed micromechanical models for unsaturated granular materials by combining micromechanics and breakage mechanics.

Multiscale modelling of geotechnical problems

Discrete element method

DEM has been significantly developed since its first application to simulate the behaviour of granular materials by [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF]. In this method, granular materials are regarded as the assembly of individual spherical particles. The relation between two contact particles is generally described by an elastic purely plastic contact law, as shown in Figure 1.12. An explicit displacement driven procedure has been implemented to solve the equilibrium equations of each particle [START_REF] O'sullivan | Particulate discrete element modelling: a geomechanics perspective[END_REF]. This method has proved to be an efficient tool to investigate the microscopic and macroscopic behaviours of granular materials [START_REF] O'sullivan | Particulate discrete element modelling: a geomechanics perspective[END_REF][START_REF] Barreto | The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions[END_REF][START_REF] Belheine | Numerical simulation of drained triaxial test using 3D discrete element modeling[END_REF]Scholtès et al., 2009;Zhu et al., 2016;[START_REF] Jiang | A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method[END_REF]Yang et al., 2012;[START_REF] Zhao | Unique critical state characteristics in granular media considering fabric anisotropy[END_REF]. With the rapid development of computational techniques, this approach has been recently applied to solve boundary value problems [START_REF] Jiang | Discrete element modelling of deep penetration in granular soils[END_REF][START_REF] Jiang | Classical and non-classical kinematic fields of two-dimensional penetration tests on granular ground by discrete element method analyses[END_REF]Jiang andYin, 2012, 2014;[START_REF] Mcdowell | A particle refinement method for simulating DEM of cone penetration testing in granular materials[END_REF][START_REF] Wang | Discrete-continuum analysis of monotonic pile penetration in crushable sands[END_REF]. However, the parameters used in these calculations compared to realistic interparticle contacts are still questionable. In addition, the calculations require a lot of computational efforts, even if parallel computational techniques have been used. Figure 1.12 Interparticle contact in DEM

FEM×DEM coupling approaches

Given that FEM is an efficient technique for solving complex problems, whereas DEM gives more insight into the physics of particulate materials, they have been coupled to solve boundary value problems. Generally, two types of coupling methods can be found in the literature, i.e. contact coupling and Gauss integration point coupling.

1) Contact coupling

In this approach, the numerical model is composed of a FEM part and a DEM part, as shown in Figure 1.13. The granular materials with large deformations are replaced by DEM particles, whereas the domain that has small deformations is computed with FEM technique. The interface between FEM and DEM is a surface contact coupling for two-dimensional models and is volumetric contact coupling for three-dimensional models. The effectiveness of this approach has been proved by the work of [START_REF] Cai | FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[END_REF], [START_REF] Elmekati | A practical co-simulation approach for multiscale analysis of geotechnical systems[END_REF]El Shamy (2010), Li et al. (2015), etc. This method takes the advantages of FEM for large-scale boundary conditions and the benefit of DEM to represent the material behaviour with only a few parameters with physical meaning instead of complicated constitutive models requiring a large set of constitutive parameters. This approach adopts the FEM to discretize the calculation domain into elements in which the Gauss integration points consist of DEM samples, as shown in Figure 1.14. For each Gauss point, strain increment and state variables are given to the attached DEM sample.

After equilibrium iterations, DEM returns the updated stress and tangent operator to the Gauss point. The differential equations can be solved by a Newton-Raphson method in the implicit FEM. To reduce the time cost, parallel computational techniques have been used and the number of particles in the DEM simulations should be as small as possible.

This method has been successfully applied to geotechnical investigations, from elementary tests to classical geotechnical problems. The strain localization of granular materials has been investigated by [START_REF] Guo | A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[END_REF], [START_REF] Nitka | Two-scale modeling of granular materials: a DEM-FEM approach[END_REF] and [START_REF] Nguyen | FEM× DEM: a new efficient multi-scale approach for geotechnical problems with strain localization[END_REF]. With this approach, it has been found that the fabric anisotropy can be a method to break the symmetry of biaxial test with smooth boundaries and inside the shear band the material can reach a critical state. Additionally, the classical geotechnical problems including a retaining wall and a strip footing were analyzed. It was found that the solution was comparable with the analytical solutions [START_REF] Guo | Multiscale insights into classical geomechanics problems[END_REF]. 

FEM×micromechanical model

To overcome the shortcomings brought by DEM, implementing micromechanical models into FEM can be a good option to solve geotechnical problems more efficiently and accurately.

The two-dimensional H model has been successfully implemented into FLAC by [START_REF] Veylon | Modélisation numérique du mécanisme de liquéfaction des solsapplication aux ouvrages hydrauliques[END_REF]. Its capability in describing the liquefaction of granular soils has been demonstrated.

Given the good performance of the CH model in predicting granular soil behaviour, it will be implemented into FEM to investigate localized and diffuse failures of granular soils, and furtherly applied to solve geotechnical problems.

Concluding remarks

This chapter first briefly reviewed the basic theories of micromechanics of granular materials, including interparticle contact laws, strain, stress and fabric tensors as well as homogenization methods. Then, the constitutive relations constructed on the basis of micromechanics of granular materials were introduced and their performances in capturing the behaviour of granular soils were discussed. It was concluded that the CH model demonstrated its capacity in describing the mechanical behaviour of soils. Finally, the multiscale modelling approaches that can be applied to solve geotechnical problems were discussed. Since the computational cost as well as the difficulties in calibrating the parameters used in DEM simulations are still significant, implementing micromechanical models into a finite element code could be an alternative direction in multiscale modelling of geotechnical problems.

CHAPTER 2 THERMOMECHANICAL FORMULATION FOR MICROMECHANICAL PLASTICITY IN GRANULAR SOILS

Introduction

Constitutive modelling is one of the most important research tasks in the field of the mechanics of materials. Based upon classical continuum mechanics, a variety of ways could be used to construct mathematical models for simulating the mechanical behaviour of soils.

Among them many models were built based on various assumptions such as critical state soil mechanics [START_REF] Li | Anisotropic critical state theory: role of fabric[END_REF][START_REF] Shen | A micro-macro model for clayey rocks with a plastic compressible porous matrix[END_REF][START_REF] Gao | A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution[END_REF], dilatancy functions [START_REF] Fern | Modeling the stress-dilatancy relationship of unsaturated silica sand in triaxial compression tests[END_REF] and particle crushing [START_REF] Cui | Protection of neighbour buildings due to construction of shield tunnel in mixed ground with sand over weathered granite[END_REF][START_REF] Hyodo | Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures[END_REF]. Since thermodynamics is a basic law of physics, it has attracted much attention and was alternatively used to construct constitutive models. [START_REF] Ziegler | The derivation of constitutive relations from the free energy and the dissipation function[END_REF] pioneered the introduction of thermodynamics into constitutive modelling. [START_REF] Collins | Application of thermomechanical principles to the modelling of geotechnical materials[END_REF] followed this path with a comprehensive analysis of the isothermal thermomechanics of geomaterials, while [START_REF] Collins | A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[END_REF] provided the framework for constructing elasto-plastic phenomenological models. Based upon the procedure of thermodynamics, [START_REF] Li | Thermodynamics-based constitutive framework for unsaturated soils. 1: Theory[END_REF] and [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF] extended the thermomechanical framework to unsaturated soils. Through this approach, once the free energy and the dissipative potential function are given, elasticity and plasticity (yield function, flow rule and hardening law) can be deduced correspondingly. Conversely, given an elastoplastic model, free and dissipative energies can be calculated to verify whether the laws of thermodynamics are respected. It can be found that this method has been successfully employed in elastoplastic constitutive models for describing soil behaviour [START_REF] Collins | Thermomechanical state parameter models for sands[END_REF][START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF][START_REF] Lai | A constitutive model of frozen saline sandy soil based on energy dissipation theory[END_REF][START_REF] Li | Work input analysis for soils with double porosity and application to the hydro-mechanical modeling of unsaturated expansive clays[END_REF][START_REF] Zhang | A thermodynamics-based theory for the thermo-poro-mechanical modeling of saturated clay[END_REF].

From yet another perspective, soils are composed of many individual grains and the evolution of the granular structure has a significant effect on the behaviour at the macro scale. The failure of a specimen is triggered by the slip and the rotation of grains in contact as well as the collapse of force-chains. To address these issues, micromechanics-based constitutive models have been formulated to simulate soil behaviour [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Nicot andDarve, 2005, 2011;[START_REF] Xiong | A three-dimensional micromechanically based model[END_REF]. In all these models, elastic and plastic relations between force and displacement are defined at inter-particle contacts and the overall stress-strain relations are obtained by integrating the local law onto all particle contacts. To formulate these micromechanical models, different assumptions are made between strain and displacement.

The best fit hypothesis and the Voigt hypothesis are usually adopted for building relations between the macro strain and the local displacement [START_REF] Cambou | Micromechanics of granular materials[END_REF]. Micromechanical models based on the best fit hypothesis proposed by [START_REF] Liao | Stress-strain relationship for granular materials based on the hypothesis of best fit[END_REF] can be found in [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF], Hicher andChang (2005, 2007), Yin andChang (2009a, 2009b) and Yin et al. (2009Yin et al. ( , 2011Yin et al. ( , 2013Yin et al. ( , 2014)), in which the force increment is calculated from the stress increment. These models are also called static hypothesis based models. Other models, called kinematic hypothesis based models, in which displacement increment are calculated from strain increment, are based on the Voigt hypothesis (Nicot andDarve, 2005, 2011;[START_REF] Misra | Nonlinear granular micromechanics model for multi-axial ratedependent behavior[END_REF][START_REF] Xiong | A three-dimensional micromechanically based model[END_REF].

Although the physical meanings of thermodynamics and micromechanics are attractive for geomaterials, few efforts have been made for constructing models based upon the combination of these approaches [START_REF] Zhu | Micromechanics of rock damage: advances in the quasi-brittle field[END_REF][START_REF] Radjai | Modeling granular materials: century-long research across scales[END_REF]. Recently, Zhu et al. (2008) introduced thermodynamics to discrete system based on weak sliding plane concept and applied this theory for modelling anisotropic coupled plastic-damage behaviour of cohesive geomaterials [START_REF] Zhu | A discrete thermodynamic approach for anisotropic plastic-damage modeling of cohesive-frictional geomaterials[END_REF]. [START_REF] Misra | Nonlinear granular micromechanics model for multi-axial ratedependent behavior[END_REF] and Misra and Poorsolhjouy (2015a) discussed a rate-dependent micromechanical model from the thermomechanical basis with kinematic hypothesis. However, the general procedure for constructing a thermodynamically consistent micromechanical model for granular soils has not been thoroughly addressed, especially considering that energy can be stored at particle contacts. In addition, the relation between dissipative energy distribution and material failure plane is also not investigated. For granular soils, if we do not consider the deformation of the grain itself, the energy can only be stored and dissipated at inter-particle contacts. The energy at the macro scale is the summation of the energy at all inter-particle contacts. Therefore, by considering the energy dissipated through friction at the inter-particle contacts during loading, one can apply the principles of thermodynamics to micromechanical modelling.

To answer the question: how to construct a thermodynamically consistent micromechanical model, this chapter presents a thermomechanical framework for constructing micromechanical models for granular materials, in which elasto-plastic local laws can be defined at inter-particle contacts. Within this framework, free and dissipative energies are directly defined from force and displacement at the particle contact, based on which the yield criterion, the flow rule and the hardening law can be deduced by Legendre transformation. To demonstrate the applicability of this thermomechanical framework, on one hand, the static hypothesis suggested in the CH micromechanical model [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] was derived from an energy perspective, which greatly enhanced the understanding of the micromechanical models based on this assumption. On the other hand, a thermodynamically consistent elasto-plastic micromechanical model has been constructed based on the static hypothesis. The model was then calibrated with the energy conservation and dissipation under loading analyzed at both micro and macro scales. For simplicity, we focused on dry granular materials under isothermal condition. The effective stress concept used in soil mechanics has been adopted throughout this chapter.

Thermomechanical framework

Thermodynamic preliminaries

Thermodynamics with internal variables has been adopted in this study, following the concepts elaborated in various studies [START_REF] Rice | Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity[END_REF][START_REF] Ziegler | The derivation of constitutive relations from the free energy and the dissipation function[END_REF][START_REF] Collins | Application of thermomechanical principles to the modelling of geotechnical materials[END_REF][START_REF] Collins | A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[END_REF]Houslby and Puzrin, 2007;[START_REF] Li | Thermodynamics-based constitutive framework for unsaturated soils. 1: Theory[END_REF][START_REF] Collins | Thermomechanical state parameter models for sands[END_REF]. The first law of thermodynamics states that the changes of internal energy, heat and work increments satisfy the following equation

W Q du   (2.1)
in which δW is the work increment, δQ is the heat increment and du is the internal energy increment. All these thermomechanical variables are defined per unit volume. Note that dx denotes an exact differential while δx denotes an inexact one which represents an infinitesimal change of x. The Clausius-Plank inequality, as a form of the second law of thermodynamics for a soil element, states that the entropy increment should be non-negative, which can be written as

/0 d Q T       (2.2)
where γ is the entropy production increment, η is the entropy density, and T is the absolute temperature. Combining Eqs.(2.1) and (2.2), the energy conservation can be rewritten as

  W du Td T       (2.
3)

The Helmholtz free energy  defined in terms of internal energy, entropy density and temperature, can be expressed as

uT   (2.4) Differentiating Eq.(2.4), we obtain   d du Td dT       (2.5)
The dissipative energy increment per unit volume ϖ is defined as

0 T   (2.6)
which should be non-negative [START_REF] Collins | Application of thermomechanical principles to the modelling of geotechnical materials[END_REF]. Inserting Eqs.(2.5) and (2.6) into

Eq.(2.3), the energy conservation relation can be expressed as

W d dT        (2.7)
For the isothermal case with dT=0, Eq.(2.7) can be simplified as

Wd     (2.8)
where the work increment δW is the product of stress and strain increments : Wd   σε (2.9) Inserting Eq.(2.9) into Eq.(2.8), the relation between stress work increment, Helmholtz free energy increment, and dissipative energy increment, becomes

: dd   σε
(2.10)

In this study, only rate independent displacements of soil particles under isothermal condition are investigated.

Thermodynamics at micro scale

The Helmholtz free energy increment at inter-particle contact is noted as c d , where superscript c is used to represent contact. The micro Helmholtz free energy is a function of state variables, e.g. particle displacements. Since the macro energy quantities are expressed per unit volume, the macro Helmholtz free energy is calculated as the volumetric average of all contact summation, and the relation can be expressed as

  1 1 N cc c dd V     δ (2.11)
Similarly, the dissipation increment at the macro scale is the volumetric average of all contact summation of the dissipation energy at the micro scale,

  1 1 N cc c V     δ (2.12)
The macro work increment is also the volumetric average of all work increment at interparticle contacts [START_REF] Misra | Nonlinear granular micromechanics model for multi-axial ratedependent behavior[END_REF]  

1 1 N cc c WW V     δ (2.13)
in which, the micro work increment is defined by the product of force and displacement

increments c c c Wd   f δ (2.14)
The energy conservation of Eq.(2.8) can be expressed by combining Eqs.(2.11), (2.12) and

(2.13),

      1 1 1 1 1 1 N N N c c c c c c c c c Wd V V V           δ δ δ (2.15)
Assuming that energies are conserved at particle contacts, Eq.(2.15) can be satisfied for any number of grain-pair interactions, and the equality can be written in a term-by-term manner

c c c Wd     (2.16)
Eq.(2.16) cannot be adapted to real particle contact since particles are deformable and kinetic energy and heat exchange take place during mechanical loading. For small or infinitesimal deformation, the displacement increment can be decomposed into an elastic part and a plastic part 

                   χ f δ f δ δ f δ α δ f α δ (2.18)
in which the back force α c and the dissipative force χ c are introduced. From Eq. ( 2.18), one can see the Helmholtz free energy can be decomposed into elastic and plastic parts [START_REF] Collins | A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[END_REF][START_REF] Houlsby | Principles of hyperplasticity: an approach to plasticity theory based on thermodynamic principles[END_REF], in which the plastic part

  2 cp cp d δ
is referred to as micro stored energy. When strain hardening occurs, the Helmholtz free energy can be decomposed into an elastic part that is equal to the elastic strain energy and the stored energy which cannot be recovered during the unloading process and is frozen by plastic hardening.

The relation can be written as

    1 2 1 2 =+ c ce cp ce ce cp cp d d d d d       δ δ (2.19)
Combining Eqs.(2.16) and (2.19), the micro work can be decomposed into an elastic work which is equal to the elastic free energy

  1 1 = ce ce ce ce ce ce W d d      δ δ δ (2.20)
and plastic work, which is the summation of the micro stored energy and the dissipation energy

  2 2 = cp cp c cp cp c cp cp cp cp W d d d            δ δδ δδ (2.21)
Based on Eq.(2.21), the dissipative force and the back force can be defined as

c c cp     χ δ and   2 cp cp c cp     δ α δ (2.22)
From Eq.(2.18), by using Legendre transformation, the yield criterion at the inter-particle contacts can be expressed in the dissipative force space by

  1 0 c c cp c c Fd         χ χ δ (2.23)
in which λ c is a plastic multiplier defined at the inter-particle contact, and the yield function can also be formulated in the force space after defining the back force

    0 c c c c c FF      χ ff αf
(2.24)

In the dissipative force space, the associated flow rule is obtained by adopting Ziegler's orthogonality condition [START_REF] Ziegler | The derivation of constitutive relations from the free energy and the dissipation function[END_REF], and the plastic displacement increment can be obtained by differentiating Eq.(2.23), given as

  c cp c c F     χ δ χ (2.25)
By using the consistency condition and replacing the back force by the inter-particle force, the flow rule in the force space can be deduced. It should be mentioned that the obtained flow rule can be either associated or non-associated.

Application of the thermomechanical formulation

For constructing a thermodynamically consistent model based on micromechanics, the micromacro relations and the inter-particle contact law should be defined. For the micro-macro relations, a localization operator and an average operator should be given; these relations should satisfy the Hill-Mandel condition [START_REF] Hill | Elastic properties of reinforced solids: some theoretical principles[END_REF][START_REF] Mandel | Plasticité classique et viscoplasticité[END_REF][START_REF] Geers | Multi-scale computational homogenization: Trends and challenges[END_REF][START_REF] Nguyen | Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments[END_REF]. Additionally, the energy conservation conditions have to be taken into account in the local law. The procedure for defining the local law consists of: defining a Helmholtz free energy function c d for elastic and plastic displacements, and a dissipation function ϖ c which depends on the plastic displacement increment; obtaining the elastic part from the free energy by using Eq.(2.20); deducing the back force from the free energy by using Eq.(2.22); using Eq.(2.23) to obtain the yield criterion in the dissipative space and then using Eq.(2.24) to obtain the yield criterion in the force space; deducing an associate flow rule in the dissipative space by Eq.(2.25); and lastly, differentiating the yield criterion to obtain the consistency equation.

From another perspective, if the elasto-plastic micromechanical model has already been constructed, its free energy and dissipation energy can be evaluated by using the inverse of the above procedure. Undoubtedly, the dissipation energy increment has to be non-negative.

In the following section, a micromechanical model based on the thermomechanical formulation described above will be constructed, which will demonstrate the applicability of this framework for multi-scale modelling.

A thermomechanical micromechanical model

In this section, a micromechanical model has been constructed based on the proposed thermomechanical formulation. At first, inter-particle hyper-elasticity and hyper-plasticity are addressed in detail. Then, based on the strain tensor, the stress tensor is derived from Helmholtz free energy conservation relation. In addition, the static hypothesis is derived from the free energy, followed by an analysis of its connection to the Love-Weber micro-macro relation. A homogenization scheme is also presented.

Inter-particle contact law

Since the macro elastic and plastic behaviours originate from inter-particle contacts, the interparticle displacement can be divided into two parts: elastic and plastic. To define elasticity and plasticity, a local coordinate system (n, s, t) has been defined, as shown in Figure 1.3, in which n is the normal to the contact plane, whereas s and t are orientations within the contact plane. The relationship between local and global coordinates can be defined by the angles β and γ, which can be expressed as by Eq.(1.31). With this relation, the quantities defined at inter-particle contacts can be expressed globally.

1) Inter-particle hyperelasticity

The hyper-elastic part is the means to guarantee the granular material obeys the first law of thermodynamics. The behaviour of the hyper-elastic granular material can be defined by the Helmholtz free energy function [START_REF] Collins | Thermomechanical state parameter models for sands[END_REF][START_REF] Misra | Nonlinear granular micromechanics model for multi-axial ratedependent behavior[END_REF]. The Helmholtz free energy potential at the micro scale can be defined as with respect to displacements, the elastic inter-particle contact force-displacement relation can be obtained

      22 11 22 c c c ce c ce n n r r kk      (2.
c c ce i ij j fk   (2.27)
where c ij k is the elastic stiffness with the same tangential behaviour for each particle contact, given by Eq.(1.33).

2) Inter-particle hyperplasticity

Irrecoverable displacement between grains in contact during loading requires the mechanism of plasticity to be introduced at the local level. To define the hyper-plastic part of the local law, a dissipative energy potential at the micro scale should be given. However, the absence of experimental results at this scale makes it difficult to formulate this local law. Considering that the model proposed by [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] has the ability to simulate with accuracy the soil response to various mechanical loadings and that only a few parameters need to be calibrated by elementary tests, its inter-particle plastic equations will be retained and its energy dissipation will be evaluated by the inverse procedure presented in section 2.2.

For examining the hyper-plasticity condition, the plastic work and the dissipative energy should be calculated. According to its definition in Eq.(2.21), the micro-scale plastic work can be written as

cp c cp c cp n n r r W f d f d     (2.28)
From the expression of the yield criterion in Eq.(1.35), we can write its partial derivatives as

  2 tan cp r cc np F f      ,     22 c s c cc s st f F f ff     ,     22 c t c cc t st f F f ff    
(2.29)

Since an associated flow rule has been adopted in the tangential direction, while a nonassociated flow rule expressed by Eq.(1.40) has been adopted in the normal direction, the partial derivatives of the potential function can be expressed as

cc ss GF ff    , cc tt GF ff    , c c c c n r s t G G G G D D D f f f f                         (2.30)
where G is the potential function defined at the inter-particle contacts. Additionally, the plastic displacement increment can be calculated by

cp c i c i G d f     (2.31)
Combining Eqs.(2.29) and (2.30), we obtain

22 1 c c c r s t G G G f f f                      (2.32)
Thus from Eqs.(2.31) and (2.32)

c cp r d   (2.33)
Inserting the dilatancy relationship assumed by Eq.(1.40) and Eq.(2.33) into Eq.(2.28), we obtain tan tan

c cp c cp c cp c cp c cp c c cp c c cp r i i n n r r n r d r r n d r c n f W f d f d f d f d f d f d f                        (2.34)
The normal force c n f at particle contact is always compressive and, therefore, positive; tan c d  can be proved to be positive from Eq.(1.41) and cp r d being the tangential plastic increment is also positive, as shown in Eq.(1.36). Therefore, the plastic work increment calculated from Eq.(2.28) is non-negative. Thus, the dissipation energy increment is non-negative at both micro and macro scales, expressed as

  1 = tan 0 1 =0 c cp c c cp n d r N cc c W f d V               δ (2.35)
As shown in Eq.(2.21), the stored energy is a part of the plastic work increment and is a function of the state variables, so the integration of the stored energy increment over a closed loading loop should be equal to zero. The stored energy increment should be positive for loading and negative for unloading condition [START_REF] Collins | A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[END_REF][START_REF] Li | Thermodynamics-based constitutive framework for unsaturated soils. 1: Theory[END_REF]. However, the plastic work is not integrable and is always positive; it prevents negative stored energy increment to exist. Consequently, the stored energy increment is equal to zero and the Helmholtz free energy depends only on the elastic displacement increment, which is consistent with the Helmholtz free energy potential given by Eq.(2.26)

1 2 1 = ( ) c ce cp ce ce d d d d      δ (2.36)
Thus, the elastic work increment is equal to the free energy

  1 ce c ce ce ce ii W f d d     δ (2.37)
From Eq.(2.35), the second law of thermodynamics is satisfied at the macro and micro scales, whereas Eq.(2.36) and Eq.(2.37) satisfy the condition of energy conservation. Hence, we can say that the micromechanical model is thermodynamically consistent.

Micro-macro relations 1) Strain and stress tensors

The micro-macro relations connect the local force and displacement to the overall stress and strain. For the relation between strain and relative displacement at contacts, the formulation based on the best-fit hypothesis suggested by [START_REF] Liao | Stress-strain relationship for granular materials based on the hypothesis of best fit[END_REF] has been adopted, expressed by Eq.(1.12). According to the definition of the strain energy, the stress can be derived as

    1 1 1 1 1 1 e c ce ce ce N N N ij i c c c ii ij i i j e ce e e c c c ij i ij ij f f l V V V                           (2.38) where 1 1 1 N ce c e i n jn ij c c n jn ce ce ii lA V lA V             (2.39)
It is found, therefore, that the stress is obtained by integrating the contact forces over the volume, which is consistent with the Love-Weber formula.

2) Localization and averaging operators

The stress tensor defined in Eq.(2.38) can be seen as an averaging operator; in addition, a localization operator is needed. From the micro-macro relations defined by Eqs.(1.12) and

(2.38), however, the local variables are difficult to obtain since there is an innumerable number of contacts in the representative element volume. A localization operator, which can be deduced from the strain energy conservation and the complementary energy conservation, is needed to integrate the local law. Based on the thermomechanical analysis presented previously, the localization operator can be obtained by the Helmholtz free energy combined with the Gibbs free energy. The Helmholtz free energy at the macro scale is defined by the strain, ψ(ε), which is also called strain energy. The complementary energy, known as Gibbs energy, ϕ, can be defined by the following Legendre transformation of the Helmholtz free energy

    :   σ σ ε ε (2.40)
From the definition of the Helmholtz free energy and the Gibbs free energy, stress and strain can be expressed as

  ij ij ij       ,   ij ij ij       (2.41)
Similarly, the Helmholtz free energy at the micro scale is defined by the displacement, which can be used to compute the Helmholtz free energy at the macro scale, as shown in Eq.(2.11).

Additionally, the Gibbs energy can also be integrated from the micro to macro scales, expressed as

  1 1 N cc j c f V     (2.42)
Thus, force and displacement at the micro scale can be defined as

  cc c i c i f      ,   cc c i c i f f      (2.43)
According to the previous discussion, the stored energy increment is equal to zero at the micro scale. Therefore, the Helmholtz free energy and the Gibbs free energy at the macro scale are equal to the volumetric average of the free energy at the micro scale:

1 1 1 1 N cc ij ij i i c N cc ij ij j j c d f d V d df V                    (2.44)
By inserting Eqs.(1.12) and (2.38) into Eq. (2.44), we obtain the localization operator expressed in Eq.(1.17) , which is referred to as the static hypothesis since the local force is calculated from the global stress as compared with the kinematic method in which the displacement is calculated from the strain [START_REF] Nicot | A multi-scale approach to granular materials[END_REF]Nicot and Darve, 2011;Misra andSingh, 2014, Xiong et al., 2017).

Since the derivation of the static hypothesis is based on free energy, the forces calculated from the stress increments are elastic. The plastic part of the inter-particle contacts implies the existence of an unbalanced force after the integration of the Love-Weber formula. Therefore, to make the global stress and the local force consistent, an iteration scheme is needed. The iterations force the first plane reaching the limit state to have the maximum dissipative energy, which will be demonstrated by the simulation of triaxial tests in Section 2.4.

Homogenization method

As demonstrated previously, the summation over all the contacts, for a given function F c defined at inter-particle contact (any variable at contact level), should be performed. But, too many particle contacts in a representative elementary volume make it impossible to perform this summation. In this model, the integration method suggested in the CH model was adopted.

Implementation scheme

If the loading is under strain or mixed mode control, as shown in Figure 2.1, the linearization technique proposed by [START_REF] Bardet | A linearized integration technique for incremental constitutive equations[END_REF] is useful for obtaining the stress increment from which an elastic predictor can compute the displacement increment, then the stress can be obtained through the integration of the local law. To assure that the static hypothesis is consistent with the Love-Weber formula, an iteration process is needed until the unbalanced force increments dip below a given tolerance. Implicit or explicit integration methods, such as the closest point projection method or the cutting plane algorithm, can be adopted for implementing the local law. This important point has not been well addressed in the previous version of the CH micromechanical model. The details of the implementation scheme for a micromechanical model based on static hypothesis will be discussed in detail in Chapter 4. 

, ij ij   i j  Linearization Static hypothesis ce i f c i  Microscopic constitutive law c i f 1 N c c ij i j c f l V    i j  Elastic predictor

Numerical validation of the energy conservation

The thermodynamically consistent micromechanical model can be calibrated by simulating drained triaxial tests on loose and dense Hostun sand samples. The parameters used in this model can be divided into two categories: either macro or micro parameters, as shown in Table 2.1, in which d50 is taken as the diameter of the particle. The mean particle size of the tested Hostun sand is d50=1.3mm. The inter-particle elastic constant kn0=80N/mm was calibrated from an isotropic compression test. The macro parameters corresponding to the position of the critical state line in the e-logp' plane are: λ=0.06, pref =0.1MPa and eref =0.81. The force path at the micro level depends on the contact orientation, as shown in Figure 2.3(a).

The 54° contact orientation contained the maximum force ratio and was the first one to reach the maximum strength condition at the micro scale. This angle comes closest to the macroscopic failure plane angle (45°+ϕμ/2=61.5°) among the selected angles of all the integration points. The isotropic compression stage was also simulated to evaluate the free energy in the micromechanical model. As shown in Figure 2.5(a), the increase of the free energy at micro scale is isotropic, whereas the dissipation energy is always zero. This is in agreement with the fact that the Helmholtz free energy depends only on elasticity but not on back force. The evolution of the dissipation energy at the micro level under undrained triaxial conditions was also investigated by imposing the condition of a constant volumetric strain during loading. energy at axial strain 3%, (c) dissipation energy at axial strain 6%, (d) dissipation energy at axial strain 12%, (e) dissipation energy at axial strain 20%

Concluding remarks

This chapter has presented a thermomechanical framework for micromechanical constitutive models of elastic-plastic granular materials, which can be applied to construct thermodynamically consistent models and to re-examine the existing micromechanical models, more specifically to clarify the assumptions in the derivations of the model suggested by [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]. The main achievements and conclusions of this chapter are as follow:

1) A thermomechanical framework for elasto-plastic micromechanical models has been presented. Based on conventional thermodynamics, energy conservation, free energy and dissipation potentials were formulated at the micro scale. Elasticity and plasticity at interparticle contacts could be deduced from the two energy functions. The micro state variables, elastic and plastic displacements, were used to formulate the micro Helmholtz free energy and the dissipation energy. Back force and dissipative force were defined from energy functions. The relationship between elastic work, free energy, plastic work, dissipation energy and stored energy were analysed at the micro scale. By using Legendre transformation, the micro yield criterion in the dissipative space could be deduced from the dissipative potential. This criterion could also be transferred into the force space after the back force was defined. Accordingly, the micro flow rule and the hardening law could be deduced from the dissipative potential.

2) Based on the thermomechanical formulation, a thermodynamically consistent micromechanical model for granular soils was constructed. The local laws of elasticity and plasticity, the micro-macro relationships, the micromechanical integration method and the implementation scheme were presented. The plastic work at the micro scale was computed, from which the micro stored energy increment was shown to be zero, i.e., all the plastic work is dissipated and the elastic work is equal to the free energy. The dissipation energy proved to be greater than zero, which shows that the micromechanical model satisfies thermodynamics. The validity of the static hypothesis adopted in this micromechanical model was also demonstrated through the expressions of the Helmholtz free energy and of the Gibbs free energy. The relation between the static hypothesis and the Love-Weber formula has also been analysed and an unbalanced iteration process was required for their consistence.

3) Isotropic compression and triaxial tests were simulated by the micromechanical model in order to analyse the energy conservation and dissipation during mechanical loading. The total input work is conserved both at the micro and macro scales. At the isotropic compression stage, the material remained in the elastic domain and, as a consequence, the plastic work in all directions was equal to zero. However, it increased significantly in the direction of 54 under shearing, whereas other directions showed a significantly smaller amount of plastic work. The micro free energy developed isotropically under isotropic loading, whereas the micro dissipation energy reached its maximum value in the 54 direction under shearing. The maximum micro dissipation energy was in agreement with the static hypothesis which, if one direction reaches the limit state, predicts a global failure at the macro scale.

CHAPTER 3 MULTISCALE MODELLING OF UNSATURATED GRANULAR SOILS BASED ON THERMODYNAMIC PRINCIPLES

Introduction

The slope instability largely caused by precipitation and infiltration is strongly related to the behaviour of unsaturated granular soils (e.g., [START_REF] Ng | A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage[END_REF][START_REF] Cho | Instability of unsaturated soil slopes due to infiltration[END_REF][START_REF] Fredlund | Unsaturated soil mechanics in engineering practice[END_REF]. Unsaturated granular soils are three-phase granular materials composed of soil particles, water and air. Thus, the macroscopic behaviour of unsaturated granular soils is highly dependent on the characteristics of the components and on their interactions. Usually, solid particles and fluid are assumed to be incompressible, conversely air is compressible.

Three interaction pairs, i.e. the interactions between solid and fluid, solid and air, as well as fluid and air exist. The cause of these interactions is typically understood from the capillary forces exerted by the water menisci between particles. The magnitude of the capillary forces, which relates to the degree of saturation, can cause significant changes in volume, shear strength and hydraulic properties of granular soils [START_REF] Gens | Soil-environment interactions in geotechnical engineering[END_REF][START_REF] Sheng | Review of fundamental principles in modelling unsaturated soil behaviour[END_REF].

For simulating the behaviour of unsaturated soils, phenomenological models have been developed in the last three decades [START_REF] Alonso | A constitutive model for partially saturated soils[END_REF][START_REF] Wheeler | An elasto-plastic critical state framework for unsaturated soil[END_REF][START_REF] Cui | Yielding and plastic behaviour of an unsaturated compacted silt[END_REF][START_REF] Sheng | A constitutive model for unsaturated soils: thermomechanical and computational aspects[END_REF][START_REF] Gens | Soil-environment interactions in geotechnical engineering[END_REF][START_REF] Sheng | Review of fundamental principles in modelling unsaturated soil behaviour[END_REF][START_REF] Fredlund | Unsaturated soil mechanics in engineering practice[END_REF]. The earlier developments tended to adopt net stress and suction as independent stress variables and to extend the available elastoplastic models for saturated soils by introducing suctiondependent compressibility and yield surface (for instance, [START_REF] Alonso | A constitutive model for partially saturated soils[END_REF][START_REF] Cui | Yielding and plastic behaviour of an unsaturated compacted silt[END_REF][START_REF] Sheng | A constitutive model for unsaturated soils: thermomechanical and computational aspects[END_REF]. One result of this approach is the Barcelona Basic Model (BBM) suggested by [START_REF] Alonso | A constitutive model for partially saturated soils[END_REF], in which a suction-dependent loading collapse curve (LCC) was introduced based on the modified Cam-clay model. Alternatively, many attempts have been made to define an effective stress in order to represent the deformation of the soil skeleton for unsaturated soils [START_REF] Bishop | Some aspects of effective stress in saturated and partly saturated soils[END_REF][START_REF] Zhao | Work and energy equations and the principle of generalized effective stress for unsaturated soils[END_REF][START_REF] Buscarnera | The yielding of brittle unsaturated granular soils[END_REF][START_REF] Li | Work input analysis for soils with double porosity and application to the hydro-mechanical modeling of unsaturated expansive clays[END_REF]. By using the effective stress concept, the hydraulic hysteresis phenomenon and the transitional behaviour from the unsaturated to the saturated state can be effectively captured.

From a physical point of view, the formation of water menisci located between neighbouring grains produces capillary forces on the grains. Based on this observation, the CH micromechanical framework for saturated granular soils was extended to study the hydromechanical behaviour of unsaturated granular materials [START_REF] Hicher | A microstructural elastoplastic model for unsaturated granular materials[END_REF]. In this model, the capillary forces between inter-particle contacts are assumed to be dependent on the degree of saturation and integrated with the same homogenization method as for the mechanical forces. The Love-Weber formula that was adopted for the soil skeleton was also used to sum the capillary forces as a tensor-type capillary stress, meanwhile the same static hypothesis based localisation operator was used in the hydraulic part [START_REF] Hicher | A microstructural elastoplastic model for unsaturated granular materials[END_REF]Scholtès et al., 2009). However, recent DEM simulations show that it is questionable to use the Love-Weber formula to determine a capillary stress tensor [START_REF] Duriez | Subtleties in discrete-element modelling of wet granular soils[END_REF][START_REF] Chalak | Partially saturated media: from DEM simulation to thermodynamic interpretation[END_REF]Wang et al., 2017). In addition, the relation between the capillary force and the degree of saturation was given by an empirical formulation with several ad hoc parameters.

It should be mentioned that the capillary stress tensors were suggested as a stress state variable to replace the suction to represent the effect of water menisci since there are some limitations in using the suction [START_REF] Li | Effective stress in unsaturated soil: a microstructural analysis[END_REF][START_REF] Hicher | A microstructural elastoplastic model for unsaturated granular materials[END_REF][START_REF] Lu | Is matric suction a stress variable[END_REF]Scholtès et al., 2009;[START_REF] Duriez | Subtleties in discrete-element modelling of wet granular soils[END_REF][START_REF] Jiang | A thermodynamic treatment of partially saturated soils revealing the structure of effective stress[END_REF]. One of the limitations is that the microscale capillary forces are directional vectors which could not be always globally described by the scalar quantity suction. For instance, an initially isotropic unsaturated granular soil becomes anisotropic under shearing, thus the distribution of the capillary forces may also be anisotropic. However, it is difficult to measure the tensor-type capillary stress in laboratory tests and currently it is only possible to quantify it in discrete element simulations by using the Young-Laplace equation to describe the behaviour of capillary bridges in the pendular regime (Scholtès et al., 2009;[START_REF] Chalak | Partially saturated media: from DEM simulation to thermodynamic interpretation[END_REF]Wang et al., 2017).

Since the thermodynamics with internal variables [START_REF] Houlsby | Principles of hyperplasticity: an approach to plasticity theory based on thermodynamic principles[END_REF]) forms a coherent framework within which constitutive relations can be developed with few ad hoc assumptions and procedures, various studies have produced constitutive models which are thermodynamically consistent [START_REF] Li | Thermodynamics-based constitutive framework for unsaturated soils. 1: Theory[END_REF][START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF][START_REF] Dangla | A thermodynamic approach to effective stresses in unsaturated soils incorporating the concept of partial pore deformations[END_REF]. By analysing the work input on an unsaturated representative volume element, the effective stress could be derived and conjugated to the deformation of the solid skeleton [START_REF] Houlsby | The work input to an unsaturated granular material[END_REF][START_REF] Zhao | Work and energy equations and the principle of generalized effective stress for unsaturated soils[END_REF][START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF][START_REF] Li | Work input analysis for soils with double porosity and application to the hydro-mechanical modeling of unsaturated expansive clays[END_REF]. However, current thermodynamically consistent models for unsaturated granular soils are phenomenological [START_REF] Sheng | A constitutive model for unsaturated soils: thermomechanical and computational aspects[END_REF][START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF][START_REF] Li | Work input analysis for soils with double porosity and application to the hydro-mechanical modeling of unsaturated expansive clays[END_REF].

Given the described limitations of current constitutive relations for unsaturated granular soils, this chapter aims to construct a micromechanical model for unsaturated granular soils based on thermodynamic principles. For this purpose, the thermodynamic approach with internal variables has been developed to multiscale modelling of unsaturated granular soils by considering that the only source of energy dissipation is through friction at the inter-particle contacts during loading. The energy conservation at the micro and macro scales is first presented, before discussing the separation of the energy into a mechanical and a hydraulic part. The thermodynamically consistent micromechanical model constructed in Chapter 2 is adopted for the mechanical deformation of the solid skeleton, while a particle size dependent potential function is introduced for the hydraulic part.

Review of application of thermodynamic principles to unsaturated granular soils

At the continuum level, thermodynamic principles involving internal variables have been applied to construct constitutive relations for partially saturated granular soils [START_REF] Houlsby | The work input to an unsaturated granular material[END_REF][START_REF] Zhao | Work and energy equations and the principle of generalized effective stress for unsaturated soils[END_REF][START_REF] Zhang | Effect of water-particle interactions on the crushing of granular materials[END_REF][START_REF] Li | Work input analysis for soils with double porosity and application to the hydro-mechanical modeling of unsaturated expansive clays[END_REF]. In this study, the following assumptions used in these models are adopted: (1) solids and water are incompressible; (2) the RVE is subjected to small deformation; (3) capillary forces represent the effect of interactions between the components. For simplicity, this study considers only the RVE under iso-thermal boundary condition, as shown in Figure 3.1. 

The rate of work input

There are several derivations of work input in literature, each of which has the purpose of establishing the work conjugacy between effective stresses and strains (for instance, [START_REF] Hassanizadeh | General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow[END_REF][START_REF] Lewis | The finite element method in the deformation and consolidation of porous media[END_REF][START_REF] Houlsby | The work input to an unsaturated granular material[END_REF][START_REF] Sheng | A constitutive model for unsaturated soils: thermomechanical and computational aspects[END_REF][START_REF] Li | Thermodynamics-based constitutive framework for unsaturated soils. 1: Theory[END_REF][START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF]Zhao et al., 2011;[START_REF] Li | Work input analysis for soils with double porosity and application to the hydro-mechanical modeling of unsaturated expansive clays[END_REF][START_REF] Jiang | A thermodynamic treatment of partially saturated soils revealing the structure of effective stress[END_REF]. In this subsection, we will follow the formulation suggested by [START_REF] Houlsby | The work input to an unsaturated granular material[END_REF] with the tensor notations used by [START_REF] Zhang | Effect of water-particle interactions on the crushing of granular materials[END_REF]. After denoting the porosity of RVE as n and its degree of saturation as Sr, the volume of solid, water and air can be expressed as 1-n, nSr and (1-Sr)n, as shown in Figure 3.2. At the continuum scale, the total stresses in the RVE originate from the solid stress s, from the air pressure ua, from the water pressure uw and from the water-air interactions T. The total stress in the RVE can be obtained by adding the stresses in the described four components, expressed as
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Similarly, the density of the RVE can be written as: 
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where g is the gravitational acceleration vector.

The mass balance equations for solid, water and air can be expressed as
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in which v is the velocity vector for the solids; 
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The power input for the RVE can be written as: 
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It is assumed that the spatial variations of n and Sr are negligible and that the seepage velocities of water and air phases can be defined as: 

     ; 1 rr nS n S     
    w a a w a a V A V WdV u u dA dV                  ww w w v σ n w w v g (3.13)
Eq. (3.13) can be written in the local form by using the divergence theorem: Bishop's effective stress tensor with χ=Sr, since it states that the mechanical behaviour of an unsaturated soil is also governed by the suction [START_REF] Houlsby | The work input to an unsaturated granular material[END_REF].
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For rate-independent problems, the seepage velocities of the water and air phases are negligible, so the first two terms of Eq. (3.17) become zero. During conventional experimental loadings, air pressure is usually equal to atmosphere pressure, thus the air pressure can be further assumed to be constant, which implies that the third term of Eq. (3.17) can be neglected. With these hypotheses, Eq. (3.17) can be simplified as
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in which the first term represents the mechanical work input due to the deformation of the solid phase and the second term takes into account the hydraulic work input by means of changes in the water content [START_REF] Houlsby | The work input to an unsaturated granular material[END_REF][START_REF] Zhang | Effect of water-particle interactions on the crushing of granular materials[END_REF].

The Helmholtz free energy potential function

As discussed by [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF], the free energy can be split into three parts: the recoverable elastic energy stored in the soil skeleton, the locked-in energy stored in the soil skeleton during an irreversible mechanical process and the hydraulic energy stored in the soilwater interface. In this study, we further assume that the locked-in energy is negligible and thus the Helmholtz free energy function is reversible and only depends on the elastic strain and on the degree of saturation. As suggested by [START_REF] Buscarnera | The yielding of brittle unsaturated granular soils[END_REF], this function can be further decomposed in a mechanical part and a hydraulic part, expressed as:
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where d is the differential of the Helmholtz free energy; 

    2 1 1 2 H r w r S K S   (3.22)
was compared with a logarithmic form:
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where w K is a retention curve parameter associated with the value of the air entry suction [START_REF] Buscarnera | The yielding of brittle unsaturated granular soils[END_REF]. It was found that the logarithmic form is closer to the experimental data, whereas they both share the same property of zero suction 0 s  at a fully saturated state 1 r S  .

Another direction for defining a free energy function is to analyse the energy of the constructed constitutive model. For instance, based on the analysis of the work input equation, [START_REF] Sheng | A constitutive model for unsaturated soils: thermomechanical and computational aspects[END_REF] where c p is the pre-consolidation pressure; I s and D s are the suction increase and decrease during loading;

p v
d is the plastic volumetric strain increment; p r dS is the plastic increment of r S .

The dissipative rate function

Since it is difficult to define a dissipative function to incorporate the frictional behaviour of granular soils, researchers attempted to construct constitutive models and then proved them to satisfy the thermodynamic principles. For example, to verify the satisfaction of the second law of thermodynamics of the constitutive models constructed by [START_REF] Sheng | A constitutive model for unsaturated soils: thermomechanical and computational aspects[END_REF], dissipative rate functions were deduced. [START_REF] Sheng | A constitutive model for unsaturated soils: thermomechanical and computational aspects[END_REF] in which dλ is the plastic multiplier thus it is always positive; s p is the tensile strength which is a function of Sr; p B is the extended Bishop's stress which is always less equal to the preconsolidation pressure 0 p . Therefore, the dissipative energy is always positive or null.

Given the difficulties in defining a dissipative rate function, the CH micromechanical model [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] is modified to describe the deformation of the skeleton and it is proved that this model satisfies the thermodynamic principles, as described in Chapter 2.

A thermomechanical model for unsaturated granular soils

Since the deformation of a soil specimen originates from the relative displacement and rearrangements at the inter-particle contacts, the energy is dissipated and stored between these contacts. Given these considerations, it seems reasonable to construct a micromechanical model which is thermodynamically consistent at both the inter-particle contact and the representative volume levels.

A multiscale thermodynamic framework

Macroscopic energy conservation

In the following subsections, the aforementioned assumptions that soil particles and water are incompressible and that relative movement between grains and water menisci can be neglected, are also adopted. Additionally, the rate of work input, Eq.(3.19), introduced by Houlsby (1997) is adopted.

These assumptions imply that the dissipation related to the change of saturation is considered as negligible. In other words, the hydraulic energy appears only in the formulation of the Helmholtz free energy. Generally, the hyper-elastic expression is based on two kinematic state variables, i.e., the macro strain and the degree of saturation, and can be decomposed into two additive parts, as described by Eq. (3.20). In comparison, the dissipation energy increment is assumed to be a homogeneous function of degree 1 in terms of the increment of plastic strains:
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Since Eq. (3.28) is satisfied for the whole representative volume, the relationship between ns and the degree of saturation is given by:
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And the effective stress can be obtained by:
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Micro-macro energy relations

In order to derive the inter-particle contact law from thermomechanical considerations, the relations between the work input, the free energy and the dissipation energy at the micro and macro scales should be constructed. To this purpose, the volumetric techniques for relating energy at different scales used by Chang and Ma (1990) and [START_REF] Misra | Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model[END_REF] have been adopted. The macro energy quantities are assumed to be volumetric averages of micro energy quantities
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in which c is the interparticle contact defined as contacts between particles with or without the presence of liquid bridges; N is the number of particle contacts in a volume V of RVE. 
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Since the strain tensor can be calculated from the displacements at the inter-particle contacts, the displacement at the microscale level should be considered as an internal variable. Its work-conjugate is then the inter-particle contact force. According to experimental studies and analytical theories that are consistent with the Young-Laplace equation for capillary bridges between spheres of equal radii, capillary bridge forces depend on the capillary bridge volume and the distance between two particles, hence the two quantities can be used as hydraulic internal variables at the microscale. The relations of the work input, Helmholtz free energy and dissipative energy at the microscale and at the macroscale are shown in Table 3.1.

Microscopic energy conservation

In comparison to the macroscopic mechanical free energy that depends only on elastic strain, the microscopic mechanical elastic work input is equal to the microscopic mechanical Helmholtz free energy, expressed as
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in which δ ce is elastic displacements at the interparticle contacts. Also at the micro scale, the plastic work input is equated to the dissipative energy, since the free energy does not depend on plastic displacements
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where δ cp is plastic displacement at the interparticle contacts.

Given the capillary bridge volumes and the distances between particles, the capillary bridge forces can be calculated. Therefore, a potential expression for the hydraulic work input can be given as

cH cap cap cap cap dv W f f v   (3.34)
in which cap  is the distance between two particles; 
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Since Eq.(3.36) is satisfying for any interparticle displacement, capillary bridge volume and particle distance, it follows that
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It should be noted that there is no available hydraulic free energy function Because the numerical integration of the Young-Laplace equation for various capillary bridge volumes and particle distances is time-consuming, a simplified method to define the hydraulic free energy at the microscale will be used in the following section.

The procedure for constructing micromechanical models following the described multiscale thermomechanical framework include: (1) defining microscopic Helmholtz free energy potentials for both mechanical part and hydraulic part, and the dissipative rate function for the mechanical part;

(2) deriving elastic/plastic relations from the energy potentials (it is worth mentioning that the Ziegler's orthogonality condition [START_REF] Houlsby | Principles of hyperplasticity: an approach to plasticity theory based on thermodynamic principles[END_REF], according to which the dissipative force is outward normal to the dissipation surface, has been adopted as a way of relating the dissipative variables to the dissipation potential, and to deduce the interparticle yield criterion and flow rule from the microscopic dissipative rate function;

(3) establishing the micro-macro relation of strain in terms of the interparticle displacements; (4) deriving the effective stress tensor which is the work conjugate to the total strain tensor. In the following subsections, a micromechanical model will be constructed as an example to demonstrate the usefulness of this multiscale thermomechanical framework.

Mechanical potentials at the micro scale

The thermodynamically consistent microscopic free energy and dissipative energy constructed in Chapter 2 is adopted here to represent the mechanical behaviour of unsaturated granular soils. It should be mentioned that the stored energy is assumed to be zero, as a result, an increment of the elastic work is equal to the increment of the Helmholtz free energy whereas an increment of plastic work is equal to the dissipative energy.

Hydraulic potential at the micro scale

Assuming that the water bridges are isotropically distributed within the material, we can use the degree of saturation as a scalar quantity to describe the change of the capillary bridge volume. In addition, considering that the interparticle normal displacements and the capillary bridge separations are both distances between particles, the separations between particles can be approximated by the interparticle normal displacements. Therefore, the hydraulic free energy at the microscale Several attempts have been made to define the hydraulic energy potential for unsaturated soils at the macro scale using the soil water retention curve (SWRC) [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF][START_REF] Buscarnera | The yielding of brittle unsaturated granular soils[END_REF][START_REF] Zhang | Grainsize dependence of clastic yielding in unsaturated granular soils[END_REF]. Considering that the capillary forces between two grains are represented by a decreasing function of the distance between the grains [START_REF] Hicher | A microstructural elastoplastic model for unsaturated granular materials[END_REF], the following function can be retained for the hydraulic free energy at the inter-particle scale:
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where L is the distance between the centres of two neighbouring particles, r is a representative radius of the particles, taken as r=d50/2, as shown in Figure 3.  corresponds to the SWRC, which is usually expressed by empirical expressions [START_REF] Brooks | Hydraulic properties of porous media and their relation to drainage design[END_REF][START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF][START_REF] Fredlund | Equations for the soil-water characteristic curve[END_REF]. In this study, the simple logarithmic form introduced by Buscarnera and Einav (2012) has been adopted since it is a continuous and integrable function, given as:

        1 ln 2 ln 2 2 cH r r w r r r r S K S S S S      (3.39)
in which Kw is a retention curve parameter associated with the value of the air entry suction.

Based on Eq. (3.39), the reference free energy with respect to the degree of saturation is comparable with the water retention curve, as shown in With the use of the principle of energy conservation, the behaviour of unsaturated granular soils can be obtained from two energy potentials, i.e. the mechanical part and the hydraulic part at inter-particle contacts. Accordingly, the constructed micromechanical model for unsaturated granular materials obeys the principles of thermodynamics.

Stress and strain tensors

The strain tensor suggested by [START_REF] Liao | Stress-strain relationship for granular materials based on the hypothesis of best fit[END_REF] is adopted to represent the relation between microscopic displacements and macroscopic strain, which represents the deformations of granular assemblies related to the displacements at interparticle contacts and the microtopologies of particle clusters. Substituting Eq.(2.39) into the definition of the effective stress tensor based on the Helmholtz free energy, Eq. (3.30), and using the work input at the micro scale, we obtain

      1 1 1 , 1 1 1 e M e cM e ce ce N N N r c c c i i j e e ce e e c c c S f f l V V V                          ε ε δ δδ σ ε ε δ ε ε (3.40)
Eq. (3.40) indicates that the effective stress in unsaturated granular soils can be computed through the contact stress tensor, i.e. the Love-Weber formula, which is consistent with the stress tensor derived in Chapter 2. It should be mentioned that Eq. (3.40) is obtained on the basis of the kinematic assumption of Eq.(1.12). The generalisation of Eq. (3.40) to be an effective stress tensor for partially saturated soils is a topic of current interest, which has been recently investigated through DEM simulations [START_REF] Duriez | Subtleties in discrete-element modelling of wet granular soils[END_REF][START_REF] Chalak | Partially saturated media: from DEM simulation to thermodynamic interpretation[END_REF]Wang et al., 2017).

Homogenization method

In this model, the local variables of granular materials are random directional data, thus the statistics theory (Kanatani, 1984;[START_REF] Li | Tensorial characterisation of directional data in micromechanics[END_REF] proposed to characterize the probability density distribution of such directional data is adopted. The summation of any local quantity over all interparticle contacts is computed using the same integration method as for dry granular materials based on the statistics theory (Kanatani, 1984;[START_REF] Li | Tensorial characterisation of directional data in micromechanics[END_REF], as described in Chapter 2.

Implementation scheme

One of the difficulties in implementing the constitutive models for unsaturated soils expressed by the effective stress tensor is that the experiments usually consider other forms of stress variables such as the net stress tensors; therefore, the constraints imposed on laboratory specimens cannot be directly specified numerically. In addition, experiments with different combinations of net stress tensors and hydraulic controls, such as suction control, drying and wetting paths and constant water content require algebraic efforts in numerical simulations. A general approach to circumvent these difficulties is to express these constraints using the linearized integration method suggested by [START_REF] Bardet | A linearized integration technique for incremental constitutive equations[END_REF]. This method has been successfully applied to integrate an effective tensor based model for partially saturated soils with the capability of imposing various loading programs (Zhang and Buscarnera, 2016), and has been adopted in this thesis to integrate the constructed micromechanical model. The integration of the local law, the micro-macro relations and the convergence criteria of the micromechanical model will be discussed in detail in Chapter 4.

Performance of the developed model for unsaturated granular soils

For saturated and dry conditions, the developed micromechanical model will be reduced to the one developed in Chapter 2. Its performance in describing the behaviour of granular

Hostun sand has been well demonstrated. In order to demonstrate its capability in capturing the behaviour of unsaturated granular soils, the developed micromechanical model will be calibrated from triaxial compression test at constant water content on a partially saturated silica sand, the Chiba sand described by [START_REF] Fern | Modeling the stress-dilatancy relationship of unsaturated silica sand in triaxial compression tests[END_REF].

Chiba sand

According to [START_REF] Fern | Modeling the stress-dilatancy relationship of unsaturated silica sand in triaxial compression tests[END_REF], Chiba sand is a poorly graded silica sand with the particle size ranging from 0.01 to 1.00mm. It has a coefficient of uniformity of 2.1 and a coefficient of curvature of 1.1. The grain size distribution was obtained by sieving and sedimentation, as

shown in Figure 3.5(a). The minimum and maximum void ratios are 0.500 and 0.946 respectively, and its specific gravity is 2.72. Its critical state friction angle was found to be 33 , which is a typical value for silica sand. The water retention curve was obtained for the drying path with three different densities using the axis translation technique [START_REF] Fern | Modeling the stress-dilatancy relationship of unsaturated silica sand in triaxial compression tests[END_REF]. The specimens were subjected to matric suctions of 2 to 60 kPa. Pressures ranging from 2 to 10 kPa were applied by means of negative water head and the 60 kPa with a pressure plate. Complimentary investigations were carried out on a loose specimen and the air entry value Kw, which was found to be 0.5kPa, the residual degree of saturation around 20%, and a very small hysteresis was observed, as shown in Figure 3.5(b).

Triaxial compression tests with constant water content on Chiba sand

A series of triaxial tests at constant water contents were conducted on Chiba sand under vertical strain rates of 0.1%/min and 5.0%/min [START_REF] Fern | Modeling the stress-dilatancy relationship of unsaturated silica sand in triaxial compression tests[END_REF]. In this study, the long duration tests that can be viewed as quasi-static loading tests will be adopted to calibrate the aforementioned micromechanical model. The specimens with various densities and gravimetric water contents of 10% and 17% were sheared until reaching an axial strain of 20%. For each water content, three tests were carried out with an initial net mean pressure of 20kPa, 40kPa and 80kPa, respectively. The detailed loading program is shown in Table 3.2. 

Simulations of constant water content triaxial compression tests

The maximum effective stress ratio q/p' was found to be 1.455 (Figure 3.6(a)), which corresponds to a critical state friction angle of 33º. Accordingly, the friction angle at through the linearized integration method suggested by [START_REF] Bardet | A linearized integration technique for incremental constitutive equations[END_REF]. [START_REF] Wheeler | An elasto-plastic critical state framework for unsaturated soil[END_REF][START_REF] Sheng | A constitutive model for unsaturated soils: thermomechanical and computational aspects[END_REF][START_REF] Fern | Modeling the stress-dilatancy relationship of unsaturated silica sand in triaxial compression tests[END_REF], only few parameters are required in this model and all of them have a physical basis.

It should be noted that both the current model and the model of [START_REF] Hicher | A microstructural elastoplastic model for unsaturated granular materials[END_REF] have adopted the strain tensor of [START_REF] Liao | Stress-strain relationship for granular materials based on the hypothesis of best fit[END_REF] 

Concluding remarks

This chapter reviewed briefly the application of the thermodynamic approach with internal variables for constitutive modelling of unsaturated granular soils. Particular attention has been given to the work input derived by [START_REF] Houlsby | The work input to an unsaturated granular material[END_REF] and the Helmholtz free energy functions related to the water retention curve, which were the basis of the multiscale model constructed by extending the thermodynamic principles to the micromechanical modelling of unsaturated granular soils.

A micromechanical model for unsaturated granular soils was constructed based on the suggested multiscale thermodynamic framework. The energy quantities defined at the micro and macro scales were analysed, and then the Helmholtz free energy at the microscale was defined as the sum of a mechanical part and a hydraulic part. The free energy is dependent on the elastic strains and on the degree of saturation at the macro scale, and it is related to the elastic displacements and the degree of saturation at the micro scale. The dissipation energy is of frictional origin and is a function of the plastic displacements at the micro scale and of the plastic strains at the macro scale. For the mechanical part, the micromechanical model constructed in Chapter 2 was adopted, since it has been proved to be consistent with thermodynamic principles. A particle-size dependency function has been suggested to consider the water retention in the hydraulic free energy potential at the micro scale. The model was calibrated and its satisfactory performance in capturing the behaviour of unsaturated Chiba sand under constant water content triaxial compression was demonstrated.

CHAPTER 4 INTEGRATING A MICROMECHANICAL MODEL FOR MULTISCALE MODELLING OF GRANULAR SOILS

Introduction

One of the most rewarding tasks in geomechanics is to be able to construct an efficient constitutive model. Until now, the favoured models are the ones that reveal soil physics and are capable of predicting soil behaviour with a limited number of parameters. Based on continuum mechanics, phenomenological models have been widely used to describe soil behaviour obtained from elementary tests. Quite recently, however, there has been a growth of micromechanical models that consider the force-displacement relationships at the interparticle contacts. These models [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF][START_REF] Nicot | A multi-scale approach to granular materials[END_REF]Yin and Chang, 2009;Nicot and Darve, 2011) have the advantage of treating the fundamentals of granular physics and to reproduce the main aspects of soil behaviour. It seems beneficial, therefore, to implement these models into finite element codes in order to analyse geotechnical problems on the basis of multi-scales.

Two types of micromechanical models, based on either a kinematic or a static hypothesis, can be increasingly found in the literature. The models based on the latter [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Yin and Chang, 2009;Yin et al., 2009;Yin et al., 2010;Yin et al., 2011;Yin et al., 2013;[START_REF] Yin | A micromechanics-based model for sand-silt mixtures[END_REF] have proved to perform well in predicting soil behaviour. This chapter, therefore, will discuss the numerical implementation of the static hypothesis into finite element codes. Under the static hypothesis, the micro-macro relationship can be derived by linking the force increments to the stress increments. The force-displacement relations defined at inter-particle contacts are displacement driven contact laws. After the forces at each contact have been updated, the stress can then be integrated with the Love-Weber expression.

One of the difficulties in implementing these models is how to calculate the displacement increment in the case of strain softening. Since the displacement cannot be directly calculated by the strain increment but only through the relations between force and stress increments, it is therefore not easy to calculate the stress increment for any given loading constraint or to ensure the consistency of the static hypothesis with the stress integration formula, in an effort to maintain the static equilibrium at both the local and the global levels. Until now, these issues have not been thoroughly addressed.

Besides an effective algorithm for assuring the micro-macro balance, the local forcedisplacement laws need to be accurately integrated. The local laws driven by displacement are force-displacement ordinary differential equations (ODEs) resembling strain increment controlled stress-strain ODEs. For solving these ODEs, two categories: the explicit forward Euler and the implicit backward Euler integration schemes have been developed. The former belongs to one of a large family of explicit methods and is often used with automatic substepping methods [START_REF] Sloan | Substepping schemes for the numerical integration of elastoplastic stressstrain relations[END_REF][START_REF] Sloan | Refined explicit integration of elastoplastic models with automatic error control[END_REF][START_REF] Lloret-Cabot | Error behaviour in explicit integration algorithms with automatic substepping[END_REF]. But since the single step forward Euler method is not highly accurate, it has been necessary to develop high-order procedures such as the Modified Euler and the Runge-Kutta methods. The implicit backward Euler schemes attract usage because they do not require calculating the stress intersection with the yield surface and permit the calculated stress to automatically satisfy the yield criterion under a specified tolerance. The closest point projection method (CPPM) suggested by Simo and Taylor (1985) has proven to be effective in the case of complex models. However, as the Newton-Raphson procedure is currently used to solve these equations iteratively, it is necessary to derive a consistent tangential modulus, which is difficult to obtain in the case of complex models. To circumvent this problem, it has been suggested to use the cutting-plane algorithm (CPA) for calculating the plastic corrector [START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF]. For the implicit integration of the micromechanical model, CPPM and CPA can both be used at the micro level, and their efficiency readily tested.

In this chapter, the Chang and Hicher micromechanical model ( 2005) based on a static hypothesis is first briefly reviewed. The linearized control constraints solved by a predictorcorrector iterative procedure can also be used with homogeneous stress and strain fields to simulate laboratory tests. A trial stress driven scheme has been proposed for implementing the micro-macro relations, which will guarantee the consistency of the static hypothesis with the integrated stress tensor. Two return mapping algorithms (CPPM and CPA) have been alternatively adopted to integrate the inter-particle force-displacement relations. Several conventional loading paths, i.e. drained and undrained triaxial compression tests, have been simulated to probe the accuracy and efficiency of the numerical approaches. Finally, the model was implemented into a finite element code and the numerical procedure validated by elementary tests. Two typical boundary value problems: a biaxial test and a square footing were numerically analysed to evaluate how the micromechanical model can be applied to multiscale modelling.

A static hypothesis based micromechanical model

The CH model [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] was initially proposed for sand. Further developments by Yin and Chang (2009) and Yin et al. (2009Yin et al. ( , 2010Yin et al. ( , 2011Yin et al. ( , 2013[START_REF] Yin | A micromechanics-based model for sand-silt mixtures[END_REF] demonstrated its good performance in modelling the mechanical behaviour of sand and clay.

In this chapter, it is used as an example of integrating a micromechanical model into a finite element code.

Implicit multiscale integration methods

Three levels of implicit integration methods for obtaining the stress increment, consistent with the stress-force relation and the local inter-particle contact law, are presented in this section.

Global mixed control

As mentioned previously, the difficulty of implementing a micromechanical model based on a static hypothesis is how to obtain the stress increment under general loadings. For this, it is necessary to adopt a strategy which combines the implicit algorithms with a general loading control. To achieve these goals conveniently, we can express the loading control by means of linearized constraints. The expression suggested by [START_REF] Bardet | A linearized integration technique for incremental constitutive equations[END_REF] can be deployed, in which a loading condition can be expressed as

1 1 1 n n n         S σ E ε X (4.1)
where S and E are constraint matrices given by elementary tests, as shown in Table 4.1 for typical loading paths, whereas

  1 1 2 n1 = , , , T ni x x x       X
is the imposed driving vector, and i is the number of freedoms. Since there are 12 unknowns in Eq. (4.1) but only 6 equations, the relation between strain and stress increments has to be added, expressed as 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
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ASO: Stress controlled anisotropic compression

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 TXD: Strain controlled drained triaxial 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 000000 TXU: Strain controlled undrained triaxial 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0


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          1 2 3 4 5 6 x x x x x x                
Newton iteration have been proposed by Zhang and Buscarnera (2015); the first one solves the control condition, whereas the other solves the constitutive equations. However, this procedure is not well adapted to a micromechanical model, because of the difficulty in obtaining a consistent matrix. This study suggests two different levels of predictor-corrector algorithms to solve Eqs.(4.1) and (4.2). To solve the equation of the linearized constraints, Eq.(4.1) can be rewritten as

1 1 1 1 n n n n           RS σ E ε X (4.3)
where the residual Rn+1=0 contains the same solution as in Eq.(4.1). For each increment, 6

unknown stress increments and 6 unknown strain increments need to be solved by Eq.( 4.3).

Table 4.2 Algorithm for mixed control 1) Initialise 0 k  , given the initial value of (0)

1 nn   σ σ , (0) 1 nn   ε ε and (0) 1 n X 2) Set (k) 1 0 n  R and solve equation     (k) (k) (k) (k) 1 1 1 1 (k) (k) 11 1 n n n n k e nn n                     RS σ E ε X σ D ε 3) Calculate force increment from stress increment     (k) (k) (k) (k) 11 11 cc nn nn      f σ lA

4)

Use macro-micro algorithm to update stress (k 1)

1 n   σ , calculate stress increment (k 1) (k 1) (k) 1 1 1 n n n        σ σ σ
, and strain increment

(k 1) (k) 11 nn      ε ε 5) Calculate residual constraints   (k 1) (0) (k 1) (k 1) 1 1 1 1 n n n n              R X S σ E ε IF (k 1) 1 (k 1) 1 n n RTOL      R σ , THEN: EXIT 6) Set (k 1) (k 1) 11 nn    XR Set 1 kk  and GO TO step 2.
Combining Eqs.(4.2) and (4.3), the strain or stress increments can first be predicted through the use of the elastic matrix D e . The obtained stress increments, used to calculate the force increments, are then corrected to take into account the plastic condition by the local corrector which will be presented in the following section. At the end of the th k elastic prediction, the residuals need to be calculated

  (k 1) (0) (k 1) (k 1) 1 1 1 1 n n n n              R X S σ E ε (4.4)
The relative error Stress and strain are also updated after each iteration. The flowchart of the mixed control programme is given in Table 4.2. For a displacement driven finite element code, the strain increments at each Gauss point are given. Under this condition, S is null in Eq.(4.1), the constraints are strain increments; thus, no iteration is needed to solve Eq.(4.1).

Micro-macro integration

The micro-macro relation is the bridge connecting the behaviour at inter-particle contacts to the behaviour of the representative elementary volume. This relation consists of a localisation operator and an averaging operator. In the CH model, the localisation operator is based on the static hypothesis, whereas the averaging operator is based on the Love-Weber formula. Given that the two operators are relations between stress and force, they should be consistent with each other during the calculation process. For isotropic loading, no plastic displacement occurs according to the local law, and the stress integration is the inverse of the static expression. However, plastic displacements under shearing lead the updated forces to be smaller than are the forces calculated by the static hypothesis. The difference causes the static hypothesis and the Love-Weber formula to be inconsistent. Therefore, an iteration procedure needs to be conducted.

Since the static expression has been deduced from the best-fit hypothesis, which can be used as a predictor for calculating the trial force increments, the trial displacement increments can be calculated by the force increments, written as

    +1 +1 11 cc nn nn     f σ l A ,         1 11 1 c c c nn n       δ k f (4.6)
where c k is the elastic stiffness tensor defined at the inter-particle contacts. If there is a deviatoric loading, it will be necessary to conduct an out-of-balance force iteration process.

Noting the force after the th k iteration in local law as   k c f , the stress integrated by Eq.(1.14) is correspondingly denoted as k σ . Meanwhile, the force   

f

, the integration procedure will be terminated. Otherwise the out-of-balance force

      11 k k k c n c ub c   ff f (4.7)
will be imposed on the (k+1) th iteration until the out-of-balance force drops below the given tolerance. The following relative error is proposed to evaluate the magnitude of the out-ofbalance force:

      22 6 1 () 11 11 6 NP k ck unb ii UFTOL NP     f σ (4.8)
in which the unbalanced force tolerance UFTOL is chosen between 10 -3 and 10 -6 , depending on the non-linearity of the local law. The procedure for the micro-macro integration can be found in Table 4.3. 
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Return mapping algorithm to update force   +1 
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Implicit integration of the local law

The displacement driven local law can be similarly integrated by the strain driven ordinary differential equations. The single step backward Euler can be used to integrate the incremental stress-strain equations, but its accuracy depends on the amplitude of the loading increments because the plastic corrector is very elementary. To solve this problem, we have proposed return mapping schemes to find more accurately the plastic corrector. The calculations are performed essentially as a two-step process: the increment is first considered as elastic and the trial variables are calculated as an elastic predictor; the trial variables will then be relaxed on the yield surface and referred to as the plastic corrector. Within the return mapping framework, several algorithms to calculate the plastic corrector have been suggested: among them, the Closest Point Projection Method (CPPM) developed by Simo and Taylor (1985) and the cutting plane algorithm (CPA) suggested by [START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF] have been widely used.

Each implicit integration method carries its specific advantages. However, the integration of only a limited number of models has been subjected to comparison through the two above mentioned methods. Additional comparisons should be made to assess the efficiency of these two methods for a specific micromechanical model.

Closest point projection method (CPPM)

CPPM solves the plastic multiplier equation in conjunction with Newton's iterative technique.

Consequently, a consistent tangential modulus needs to be derived to obtain the quadric convergence speed. For complex models, it is not easy to derive the second gradients, but for a Coulomb type inter-particle contact law, it is possible to determine the first and the second derivatives. Since the yield criterion is plastic displacement dependent, the residual can be expressed as

    ( ) ( ) () 11 11 kk k cp c k nn nn R         δb (4.9)
where the first order derivatives of the potential function b are defined in Eq.(A2). If the yield point satisfies the condition

() 11 k n F TOL  
and the residual satisfies the condition

() 12 k n R TOL  
, it will not be necessary to calculate the plastic corrector. Otherwise, the consistent tangential modulus is computed by
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k is the force-displacement elastic matrix, as shown in Eq.(1.43), and the second derivatives of the potential function c  bf can be found in Appendix A. The consistency parameter increment can be obtained by
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The force increments can be obtained by
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Then, the plastic multiplier can be updated by
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The incremental plastic displacements can be calculated by
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Finally, the forces can be updated by

      ( +1) ( ) ( ) 1 1 1 + k k k c c c n n n      f f f (4.15)
The flowchart for implementing the local law by CPPM is presented in Table 4.4. 

k  ,       0 1 cp cp nn   δ δ ,   () 1 0 k cp n  δ ,   () 1 0 k c n    .

2)

Compute yield condition and evaluate hardening law residuals,
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, THEN: EXIT.

3) Compute consistent tangent moduli

      () () 1 ( ) 1 ( ) 11 1 1 k k k c c k nn n n          C k b 4) Obtain increment to consistency parameter   ( ) ( ) ( ) ( ) () 2 1 1 1 1 ( ) ( ) ( ) 1 1 1 1 k k k k k c n n n n k k k n n n n FR            aC a C b 5) Calculate force increments     ( ) ( ) ( ) ( ) 2 ( ) ( ) 1 1 1 1 11 kk c k k c k k n n n n nn R            f C C a 6)
Obtain incremental plastic strains and internal variables

      ( 1) ( ) ( ) 2 1 1 1 k k k c c c n n n             7) Incremental plastic displacements         ( 1) () ( 1 1 1 1 ) k k c n pc n n k c        f δ k 8) Update forces at inter-particle contact       ( +1) ( ) ( ) 1 1 1 + k k k c c c n n n      f f f
Set 1 kk  and GO TO step 2.

Cutting plane algorithm (CPA)

Alternatively, the CPA proposed by [START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF] has been selected and its performance compared to CPPM. The CPA is convivial to use since it does not require the evaluation of moduli based on internal variables. The plastic multiplier can be calculated by

    () () () 1 () 1 ( ) ( ) 1 1 1 1 k k k c n k n k T c k n n n n F H          a k b (4.16)
where ()

1 k n H  can be calculated by () 1 cp k r n cp c r F H        (4.17)
The detailed calculations of Eqs.(4.16) and (4.17) are given in Appendix B. The plastic displacement can be updated by

      ( 1) ( ) ( ) () 1 1 1 1 k k k cp cp c k n n n n            δ δ b (4.18)
The flowchart of this method is presented in Table 4.5. 

k  ,     (0) 1 cp cp nn   δ δ ,   () 1 0 k cp n  δ . 2)
Compute the force increment, hardening moduli, and yield function

          ( ) ( ) ( ) 1 1 1 1 k k k c c c cp n n n n          fkδ δ ,       ( ) ( ) 11 kk c c c n n n     f f f IF       ( ) ( ) 11 , kk cc nn F FTOL   f δ , THEN: EXIT. ELSE 3) Compute the plastic multiplier     () () () 1 () 1 ( ) ( ) 1 1 1 1 k k k c n k n k T c k n n n n F C          a k b 4) Update force and plastic displacement       ( 1) ( ) ( ) () 1 1 1 1 k k k cp cp c k n n n n          δ δ b
Set 1 kk  and GO TO step 2.

ENDIF

Overall, the micromechanical model based on a static hypothesis can be integrated with three levels of implicit integrations. The accuracy and efficiency of the described scheme will be evaluated based on elementary tests and boundary value problems. The implemented micromechanical model will be further applied for multiscale analyses.

Accuracy and efficiency of the integration scheme

To assess the performances of the implicit algorithms for integrating the micromechanical model, a series of loading constraints from single element tests to boundary value problems were conducted. The analyses focused on the accuracy and convergence speed for different loading increments. The numerical simulations were performed on an Intel Core i5-4590 at 3.30 GHz processor with internal memory of 8.0 GB. To evaluate the accuracy of the implicit algorithms, we defined the relative error as

        * * * * * * * * :: , :: ERR ERR ERR        σ ε σ σ σ σ ε ε ε ε σ σ ε ε (4.19)
where ERR σ and ERR ε are relative errors for stress and strain, respectively; σ and ε are the results obtained by using the implicit algorithm, whereas σ * and ε * are the exact solutions corresponding to the specified stress or strain increments. The exact values were obtained by decreasing the given tolerance and the incremental size up to a point where the numerical results no longer changed.

Elementary test simulations

To investigate the efficiency and accuracy of the proposed numerical schemes, two kinds of elementary tests were simulated to observe the strength softening behaviour using the parameters calibrated by drained triaxial test results on Hostun sand (Table 2.1). First, triaxial drained compression tests were conducted to check the performance of the proposed integration schemes under mixed control loading conditions. The samples with an initial void ratio of 0.515 were isotropically compressed up to 800kPa and then subjected to an axial strain-controlled loading under a constant confining stress. The exact solutions were obtained by a sub-increment of strain equal to 0.002%. The drained triaxial test simulations for dense sand integrated by CPA (Figure 4.1 (a)-(b)) and by CPPM produced a good agreement (Figure 4.2(a)-(b)). It should be noted that CPPM required less computational cost and showed even more accuracy in the case of an imposed strain increment of 2%, as presented in Table 4.6.

Undrained triaxial tests in compression were also conducted by full strain controlled constraints with no iteration for the mixed control procedure, which is a useful example of testing the efficiency of the micro-macro iterations and of the local integration schemes. The samples with an initial void ratio of 0.818 were isotropically compressed up to 800kPa, and then an axial strain-controlled loading at a constant void ratio was performed; the exact solution was obtained by a sub-increment of strain equal to 0.002%. The undrained triaxial test simulations for loose sand both integrated by CPA, shown in 

Iso-error maps

The accuracy of the implicit integration scheme can be evaluated by iso-error maps as proposed by [START_REF] Krieg | Accuracies of numerical solution methods for the elasticperfectly plastic model[END_REF], [START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF] and [START_REF] Simo | A return mapping algorithm for plane stress elastoplasticity[END_REF]. The numerical errors due to different loading step increments in various loading directions can be analysed by plotting these iso-error maps. An iso-error map, corresponding to a specific stress state, can be generated by plotting the relative errors calculated by Eq.( 4.19) for all the integrations performed by imposing different step increments upon the selected constraints.

The remaining degrees of freedom can be kept either constant or equal to the prescribed increments. 

1 (%)   1 (%)   2 (kPa)   2 (kPa)   2 (%)   2 (%)   1 (%)   1 (%)   (a) (b) (c) (d)
aforementioned triaxial drained and undrained tests with an initial void ratio of 0.515 and a confining pressure of 800kPa were performed for a second time. Given the performances of the implicit schemes with CPA and CPPM shown in Figure 4.1 and Figure 4.2, the stress state at the softening stage was selected to generate the iso-error maps. by typical return mapping schemes, with smaller loading increments leading to lower errors [START_REF] Simo | A return mapping algorithm for plane stress elastoplasticity[END_REF]Zhang and Buscarnera, 2015). The proposed two schemes have the same performance with the changes of the vertical strains and the lateral stresses, and are much more sensitive to strain increments than to stress step sizes.

The iso-error maps for the undrained triaxial loading path were obtained, as shown in Figure 4.3(c) and (d), by imposing different strain step sizes at the state of p'=320.7kPa, q=393.2kPa

and εd =1.5%. Compared to the mixed control case, the strain controlled integration contains larger errors since there is no global iteration; thus, the macro variables such as the void ratio

were not updated during the iterations of the local law. The differences between the two isoerror maps plotted by using CPPM and CPA can hardly be distinguished.

Application to boundary value problems

This section discusses the use of the CH model, implemented in the form of a user subroutine, in finite element simulations. The efficiency of the procedure has been validated by singleelement tests, multi-element tests and boundary value calculations.

Finite element implementation

The micromechanical model has been implemented into Abaqus/Standard 6.11 as a user material (UMAT) and the implementation has been validated by simulating single element tests with the implicit integration schemes along various loading paths. Under a given loading condition, the results were the same as the ones obtained by direct simulations of the model coded in the previous section, which demonstrated the success of the implementation into the finite element code.

Biaxial test simulation

The implicit integration schemes were further verified by simulating biaxial tests, in which the strain increments inside and outside the shear band are not the same. The simulated biaxial test was performed on dense sand as its behaviour is highly dilative with strain softening occurring rapidly under a small range of strain. The influence of the mesh size was investigated, and a reasonable mesh size was generated. The specimen was composed of 2501 elements and 2583 nodes with the dimension of 200mm  100mm  10mm, as shown in Note that this study is focused on the predictive performances of the numerical integrations;

other problems such as instability, bifurcation, strain localization regulation, etc., will be studied at a later stage. 

Finite element analysis of a square footing

The ultimate bearing capacity of a rigid footing is a typical problem for numerical validation, due to the complex loading stress paths inside the soil foundation. During loading, the values of the strain increments span a very large range within the soil volume beneath the footing, which requires solid constitutive integration schemes over all the Gauss points. To assess each performance of the implicit integration of the micromechanical model, we performed a finite element analysis of a square footing. As shown in At first, the soil underwent a geostatic loading in order to simulate the in-situ gravity and, then, a 50kPa surcharge was imposed on the ground surface to avoid the singularities at the edge of the footing. The footing was then loaded by imposing a vertical displacement with different maximum increments of 0.15mm, 1.5mm, 15mm and 150mm. The distribution of the deviatoric plastic strain, shown in Figure 4.7(a) for dense sand, is quite similar to the results obtained in the literature [START_REF] Gourvenec | Undrained bearing capacity of square and rectangular footings[END_REF][START_REF] Lyamin | Two-and three-dimensional bearing capacity of footings in sand[END_REF]. Since most of the incremental loadings were very small and under the tolerance requirements of the finite element code, the same force-displacement curves were obtained for different methods of integration (CPPM, CPA) and different loading increments, as shown in Figure 4.7(b).

However, the CPPM procedure needed less computational time than the CPA procedure, as shown in Table 4.6. To demonstrate that the approach could perform multiscale analyses, one element inside the shear band of the soil with an initial void ratio of 0.5 (Figure 4.8(a)) was selected to show the evolution of the normal and tangential force distributions. As shown in 

Concluding remarks

This chapter has presented an implicit method for integrating the micromechanical models based on a static hypothesis. A predictor-corrector method was proposed to solve linearized constraint equations under mixed controls. An iterative scheme was constructed to implement the stress-driven micro-macro relations. Two return mapping algorithms, i.e., the closest point projection method (CPPM) and the cutting plane algorithm (CPA) with the backward Euler method, were alternatively adopted to implement the local law at the micro level. The model was then implemented into a finite element code in order to perform multiscale analyses of boundary value problems. The main findings can be summarised as follows:

1) The predictor-corrector method is efficient for solving linearised mixed control constraint equations. The effectiveness of this method has been validated by simulating drained triaxial compression tests, in which the boundary conditions consisted in imposing the vertical strain and the lateral stresses. 1212) The static hypothesis was implemented consistently with the stress homogenisation formula by an out-of-balance iteration scheme, which rendered consistent the localisation and averaging operators.

3) The local force-displacement relations were integrated by CPPM and CPA, respectively.

Consistent results were obtained by using the two integration schemes with small strain or stress increments. In comparison to CPA, CPPM provided a better computational cost efficiency without any loss of accuracy, either for elementary tests or boundary value problems.

4) The CH model was implemented into a finite element code and firstly validated by elementary tests. Then, two typical boundary value problems, i.e., a biaxial test and a square footing, were simulated, and the applicability of this method for multiscale analyses was demonstrated.

The CH model belongs to the family of micromechanical models which use the static approach. This work could, therefore, provide guidance for similar attempts on micromechanical models of the same type.

CHAPTER 5 MULTISCALE STUDY OF INSTABILITIES IN GRANULAR ASSEMBLIES

Introduction

The phenomenon of failure at various scales has been widely observed in geotechnical engineering. Much effort has been devoted to understanding this mechanism in granular materials (Vardoulakis et al., 1978;[START_REF] Vardoulakis | Shear band inclination and shear modulus of sand in biaxial tests[END_REF]Gudehus, 1986;[START_REF] Tejchman | Numerical study on patterning of shear bands in a Cosserat continuum[END_REF][START_REF] Nova | Liquefaction, stability, bifurcations of soil via strain-hardening plasticity[END_REF][START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[END_REF][START_REF] Desrues | Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography[END_REF]Tejchman 1997;[START_REF] Oda | Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils[END_REF][START_REF] Lade | Instability, shear banding, and failure in granular materials[END_REF][START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry[END_REF]Nicot et al., 2007;Chang et al., 2011;[START_REF] Daouadji | Diffuse failure in geomaterials: Experiments, theory and modelling[END_REF][START_REF] Daouadji | Experimental and numerical investigation of diffuse instability in granular materials using a microstructural model under various loading paths[END_REF][START_REF] Ando | Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach[END_REF][START_REF] Sze | Failure modes of sand in undrained cyclic loading: impact of sample preparation[END_REF]Bouscarnera and Mihalache, 2014;Desrues and Ando, 2015). Experimental studies have shown that global failure can depend on various elements such as material density, degree of saturation, mechanical state and loading history, etc. [START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry[END_REF][START_REF] Gudehus | Evolution of shear bands in sand[END_REF][START_REF] Mirone | A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening[END_REF][START_REF] Daouadji | Diffuse failure in geomaterials: Experiments, theory and modelling[END_REF][START_REF] Daouadji | Experimental and numerical investigation of diffuse instability in granular materials using a microstructural model under various loading paths[END_REF][START_REF] Ando | Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach[END_REF][START_REF] Gao | Strain localization and fabric evolution in sand[END_REF]Bouscarnera and Mihalache, 2014;[START_REF] Misra | Micro-macro scale instability in 2D regular granular assemblies[END_REF]. Micromechanical investigations have demonstrated that global instabilities in granular materials originate from the rearrangements of grain-loops and the collapses of force-chains (Nicot et al., 2007;[START_REF] Radjai | Particle-scale origins of shear strength in granular media[END_REF][START_REF] Rechenmacher | Grain-scale processes governing shear band initiation and evolution in sands[END_REF]Tordesillas et al., 2009;[START_REF] Welker | What triggers failure in frictional granular assemblies?[END_REF][START_REF] Rechenmacher | Evolution of force chains in shear bands in sands[END_REF][START_REF] Ando | Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach[END_REF]Desrues and Ando, 2015;[START_REF] Ardeljan | A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model[END_REF][START_REF] Hadda | Micromechanical analysis of second order work in granular media[END_REF][START_REF] Hadda | Microstructural self-organization in granular materials during failure[END_REF][START_REF] Hadda | Failure in granular media from an energy viewpoint[END_REF]. Given these findings, two questions can be raised: what criterion can be used to characterise the instabilities at various scales and how is the extent of global instability related to elementary and microstructural instabilities in granular materials?

Various criteria have been proposed to characterise global and local failures [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF][START_REF] Darve | Instabilities in granular materials and application to landslides[END_REF][START_REF] Lade | Instability, shear banding, and failure in granular materials[END_REF][START_REF] Staron | Multi-scale analysis of the stress state in a granular slope in transition to failure[END_REF]Nicot et al., 2007, Prunier et al., 2016;[START_REF] Nicot | Second-order work criterion: from material point to boundary value problems[END_REF][START_REF] Wan | Failure in Geomaterials: A Contemporary Treatise[END_REF]. In engineering practice, the factor of safety used to design geo-structures is based on the plastic limit condition. However, this method is inoperative in certain situations where material failure may occur before the plastic limit state is attained. A most typical example is that of the diffuse failure observed before the 123 Mohr-Coulomb plastic limit [START_REF] Darve | Instabilities in granular materials and application to landslides[END_REF][START_REF] Darve | Failure in geomaterials: continuous and discrete analyses[END_REF][START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry[END_REF]Nicot et al., 2007;[START_REF] Daouadji | Diffuse failure in geomaterials: Experiments, theory and modelling[END_REF][START_REF] Daouadji | Experimental and numerical investigation of diffuse instability in granular materials using a microstructural model under various loading paths[END_REF][START_REF] Wan | Diffuse instability with transition to localization in loose granular materials[END_REF]. Therefore, it is of crucial importance to improve understanding of the mechanism of material instability in order to improve the safety of geotechnical structures. Several researchers have attempted to give precise definitions of material failure (Lyapunov, 1907;[START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF][START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF][START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[END_REF]Nicot et al., 2007;Nicot and Darve, 2007;[START_REF] Prunier | Designing geotechnical structures with a proper stability criterion as a safety factor[END_REF][START_REF] Nicot | Second-order work criterion: from material point to boundary value problems[END_REF]. Lyapunov (1907), in particular, was a pioneer in defining instability in solid mechanics within a mathematical framework. Under his definition, a rate-independent mechanical system subjected to a given loading path reaches failure state if the loading path is limited to a given load level for at least one control mode. However, this definition is difficult to apply in engineering practice. By contrast, Hill's sufficient condition of stability [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF] is a criterion easier to manipulate. It states that a given material at an equilibrium state is reputedly unstable if, under a prescribed strain increment dε, the secondorder work d 2 w=dσ:dε≤0 for at least one stress increment dσ. Based on elastoplasticity theory, [START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[END_REF] suggested a convenient framework referred to as the loss of controllability which describes the existence of a unique solution for a mechanical system under a prescribed loading program. What are the physical meanings of Hill's stability criterion and the approach consisting of the loss of controllability? Nicot et al. (2007) answered this question from the perspective of energy and, in so doing, demonstrated that, for a quasi-static system, the second-order work can be a uniform quantity in capturing the bifurcation point in granular materials [START_REF] Nicot | Bifurcation in granular materials: an attempt for a unified framework[END_REF]. More recently, the second-order work criterion has been applied

to investigate material instability from the particle scale to boundary value problems (Nicot et al., 2009;Nicot et al., 2011;[START_REF] Prunier | Designing geotechnical structures with a proper stability criterion as a safety factor[END_REF][START_REF] Wan | Failure in Geomaterials: A Contemporary Treatise[END_REF][START_REF] Kakogiannou | A porous media finite element approach for soil instability including the second-order work criterion[END_REF][START_REF] Nicot | Second-order work criterion: from material point to boundary value problems[END_REF].

The microstructure of a granular material has a significant impact on its macroscopic behaviour. When an external force is applied on the boundary of a specimen, it is transmitted from the particles at the boundary to the inside of the sample through a network of interparticle contact forces. These forces are the main ingredient that governs the kinematics of particles through local laws, which leads to the macroscopic strain. Once grain loops collapse, the force chain will be broken and significant displacements will appear (Nicot et al., 2007;[START_REF] Radjai | Particle-scale origins of shear strength in granular media[END_REF][START_REF] Rechenmacher | Grain-scale processes governing shear band initiation and evolution in sands[END_REF]Tordesillas et al., 2009;[START_REF] Welker | What triggers failure in frictional granular assemblies?[END_REF][START_REF] Rechenmacher | Evolution of force chains in shear bands in sands[END_REF][START_REF] Ando | Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach[END_REF]Desrues and Ando, 2015;[START_REF] Ardeljan | A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model[END_REF].

Therefore, the failure of the sample is triggered by the instability of the grain loops. However, a local failure may not destabilise the whole system. For instance, a soil sample extracted from a local failed slope is in a failed state, while the whole slope remains stable. Following the development of the micromechanics of granular materials, the extent of global instability arising from microstructural instability was recently examined by the discrete element method [START_REF] Rechenmacher | Grain-scale processes governing shear band initiation and evolution in sands[END_REF]Nicot and Darve, 2007;[START_REF] Sibille | Material instability in granular assemblies from fundamentally different models[END_REF][START_REF] Hall | Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation[END_REF][START_REF] Nguyen | Kinetic energy and collapse of granular materials[END_REF][START_REF] Zhao | Micro origins for macro behavior in granular media[END_REF]. It was found that micro instabilities precede a global failure.

However, the relation between local instability and global failure has not been explicitly considered with computational models [START_REF] Chang | Micromechanical analysis for interparticle and assembly instability of sand[END_REF][START_REF] Daouadji | Diffuse failure in geomaterials: Experiments, theory and modelling[END_REF]. To this purpose, a micromechanical model describing the behaviour of granular materials at both the micro and macro scales is necessary. Furthermore, the criterion of instability at different scales should be consistently quantified in accordance with the micromechanical model.

Micromechanical models have been developed through the definition of inter-particle contact laws and homogenisation schemes [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Nicot andDarve, 2005, 2011;Li et al., 2009;Yin and Chang, 2009;Yin et al., 2011Yin et al., , 2013[START_REF] Yin | A micromechanics-based model for sand-silt mixtures[END_REF][START_REF] Xiong | A three-dimensional micromechanically based model[END_REF]. Discrete features of granular materials are embedded within these models which describe the stressstrain relations of granular assemblies. In terms of a homogenisation scheme, the Love-Weber formula has been widely used as the average operator thanks to its effectiveness in aggregating inter-particle forces to assembly stresses. However, various localisation operators have been suggested to compute local variables from global ones. Two types of localised operators: the kinematic method and the static hypothesis can be found in the literature. The kinematic method relates global strains to inter-particle displacements, based on which micromechanical models were constructed by Nicot andDarve (2005, 2011), [START_REF] Misra | Nonlinear granular micromechanics model for multi-axial ratedependent behavior[END_REF], Misra and Poorsolhjouy (2015a) and [START_REF] Xiong | A three-dimensional micromechanically based model[END_REF]. The static hypothesis deduces inter-particle forces from global stresses, which gives rise to a family of micromechanical models [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF]Yin and Chang, 2009;Yin et al., 2011Yin et al., , 2013[START_REF] Yin | A micromechanics-based model for sand-silt mixtures[END_REF]. Among these models, the CH model has proved to be effective in predicting the overall behaviour of granular materials [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF].

This chapter focuses on the second-order work criterion to characterise failure at various scales. The CH micromechanical model has been adopted because it is one of the few models that can accurately reproduce the behaviour of granular materials at both the representative volume and the inter-particle contact levels. The chapter, divided into three parts, will present the following discussion: first, the second-order work is defined at different scales and its relations between these different scales are derived. Then, the rationality of the micromechanical model expressed by the Cauchy stresses and the Euler strains to calculate the second-order work is tested. Finally, simulations of triaxial tests as REV scale problems and biaxial tests as boundary value problems are conducted to demonstrate that this method is capable of describing the extent of global failure originating from microstructural instabilities.

Second-order work as a failure criterion

Loss of sustainability

Failure modes of granular materials and their different mechanisms have been widely studied (see for example: [START_REF] Chambon | Loss of uniqueness and bifurcation vs instability: some remarks[END_REF][START_REF] Welker | What triggers failure in frictional granular assemblies?[END_REF][START_REF] Sze | Failure modes of sand in undrained cyclic loading: impact of sample preparation[END_REF][START_REF] Hadda | Microstructural self-organization in granular materials during failure[END_REF]. Generally, two specific failure modes: localised and diffuse failures have been observed [START_REF] Darve | Instabilities in granular materials and application to landslides[END_REF][START_REF] Darve | Failure in geomaterials: continuous and discrete analyses[END_REF]Nicot et al., 2007). In localised failure, the strain is concentrated in shear bands; the displacement field is highly heterogeneous and organised. The diffuse failure is characterised by the absence of a specific failure pattern; the displacement field is chaotic, without any apparent organisation. The present study investigates localised and diffuse failures in non-viscous granular materials at small deformations. Neither the geometric nor the divergence instability will be discussed.

Failure occurs with an outburst of kinetic energy [START_REF] Hadda | Failure in granular media from an energy viewpoint[END_REF][START_REF] Nguyen | Kinetic energy and collapse of granular materials[END_REF].

From this energy perspective, Nicot and Darve (2007) suggested that the sign of the second-order work can be used to detect the transition from a quasi-static to a dynamic system. Using the Lagrangian description, the kinetic energy increment can be expressed as
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where δEc(t) represents the current change in kinetic energy of the system; Fi is the surface 
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in which N is the normal to the boundary. The kinetic energy can be expressed by a two-order Taylor expansion 
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Ignoring the third-order terms, then 
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For non-viscous materials, the external second-order work 2 ext W is zero during a quasi-static loading. Therefore, the kinetic energy bursts out only if the internal second-order work int 2 W is negative. In other words, the instability of the system can be detected by a change of sign of the second-order work.

Lagrangian and Euler description

The second-order work can be expressed with a material and spatial description. A given material, with a volume V0 and a surface boundary S0, initially in a configuration C0, is considered. Under a loading history, the system is in a strained configuration C, with a volume V and a boundary surface S, in equilibrium under a prescribed external load. Each material point in volume V0 is transformed into a material point in volume V. All the material points in volume V0 are displaced along with pure strain induced by stretching and spinning deformations. If large deformations take place, the initial configuration C0 and the current configuration C cannot be merged. The second-order work defined in configuration C0 is obtained by a Lagrangian description, whereas when defined in configuration C it is obtained by a Euler description (see details in Nicot et al., 2007). Based on a Lagrangian description, the stability of elastoplastic solids has been defined by [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF]: (5.7) in which F is the deformation tensor in a Lagrangian description. For the case of small deformations and negligible geometrical effects, the second-order work can be equivalently expressed by a Euler description
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where σ is the Cauchy stress tensor and ε is the Euler strain tensor.

Definitions of second-order work at various scales

At the inter-particle contact level, the second-order work for non-viscous materials can be expressed as (Nicot and Darve, 2007;Nicot et al., 2007) 2

c c c c c i i i i W f l M w         (5.9) in which c i f  is the interparticle force increment, c i l
 is the change of branch length for two connecting grains,

c i M 
is the increment of the contact couple, and c i w  is the radian of particle rotation. The first term considers the relative displacement of the particle, whereas the second term describes the effects of particle rotation. Since the CH micromechanical model does not consider the interlocking effect directly but only through global corrections, the second-order work at the inter-particle contacts can be expressed as [START_REF] Chang | Micromechanical analysis for interparticle and assembly instability of sand[END_REF] 2
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where c i  is the displacement increments defined at the inter-particle contacts.

At the material point (or REV) level, the second-order work expressed by the Euler description is given by 2 :
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Hence, the global second-order work can be integrated over all elements and can be adopted as an indicator to characterise the stability in boundary value problems. With the finite element method, the global second-order work can be calculated as 



(5.13) in which dQ and dF are the global nodal incremental displacement and force, K is the global consistent tangent matrix [START_REF] Prunier | Designing geotechnical structures with a proper stability criterion as a safety factor[END_REF][START_REF] Nicot | Second-order work criterion: from material point to boundary value problems[END_REF].

Multiscale approach and the second-order work

To analyse the instability occurring at various scales, a multiscale approach is necessary.

Through this approach, the second-order work can be defined at different scales and linked up and down the scales. The efficiency of the multiscale analysis of the second-order work for capturing instability will be evaluated by a directional analysis.

Micromechanical model

In this study, the CH model [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] has been adopted to describe the granular material behaviour. Details of this model can be found in Chapter 1. The model could be calibrated by simulating drained triaxial tests on loose and dense Hostun sand samples. The parameters used in this model are given in Table 2.1.

Directional analysis

For a given material at an equilibrium state, a small perturbation can be imposed to detect whether this state is sustainable. A convenient method for conducting the perturbation is the directional analysis proposed by [START_REF] Gudehus | A comparison of some constitutive laws for soils under radially symmetric loading and unloading[END_REF]. Incremental stress probes or strain probes are imposed along all loading directions, and their conjugate incremental strains or stresses are calculated (Figure 5.1(a-b)). If there is a loading direction for which the second-order work is negative, a loss of sustainability will occur under this loading program, otherwise the equilibrium is unconditionally sustainable. We began by imposing a strain probe of a magnitude 1% on a dense sample at different stages of a drained triaxial test. Four points A, B, C and D, at axial strains of 1%, 4%, 6.5% and 12%, respectively, were selected to analyse the second-order work in the Rendulic plane, shown in The above directional analysis was also conducted at different stages for a loose specimen under undrained triaxial compression. The second-order work was calculated at axial strains of 1%, 2%, 2.42% and 6%, noted as points A', B', C' and D', respectively. The latent instability at point B' was also detected and was followed by a diffuse failure at point C'. Most interestingly, the transition from diffuse to localised failure was well captured by the secondorder work, and the localised direction was included within the range formed by all the directions of instability (Figure 5.3(e-h)). Based on these analyses, it can be confirmed that the CH model is capable of detecting instability in granular materials based on the secondorder work criterion.
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Comparing Lagrangian and Euler descriptions

The expression of the second-order work was given by a Lagrangian description [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF]Nicot et al., 2007;[START_REF] Nicot | Bifurcation in granular materials: an attempt for a unified framework[END_REF]. However, since the Cauchy stress tensor and the Euler strain tensor are widely adopted in constitutive models and finite element codes, it is useful to express the second-order work by a Eulerian description. With the use of Nanson's formula (Nicot et al., 2007), the second-order work in a Lagrangian description can be expressed by a Eulerian description. The second-order work calculated through the Piola-Kirchhoff stress tensor can be written as   2 2 2 2 : : : 
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Micro-macro relation of the second-order work

As previously described, the second-order work can be seen as an ideal indicator for detecting material instability at the specimen scale. To investigate the role of microstructural instabilities on the global failure of granular materials, a consistent indicator should be constructed at different scales. Based on the adopted micromechanical model, we inserted the static expression of Eq.(1.17) into Eq.(5.10) and made a summation over all inter-particle contacts, expressed as
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in which the stress increment is a common denominator and can be taken out of the summation since the calculation is based on the REV. By volumetrically averaging Eq.( 5.15)

and taking into account the best-fit hypothesis expressed by Eq.(1.12), the relation between the second-order work at micro and macro scales can be obtained 1 1 11 :
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According to the definition of the second-order work at various scales, Eq.( 5.16) can be further written as
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(5.17) which indicates that the instability of the specimen originates from the instability of the interparticle contacts. Note that Eq.(5.17) cannot be generalised to all kinds of micromechanical models since the previous derivations are based on the best-fit hypothesis adopted within the CH model. Other kinds of micromechanical models should be carefully investigated when this connection is being considered. The consistency between the second-order works calculated by macro scale stress and strain increments, on one hand, and by the summation of all micro scale second-order works computed by force and displacement increments, on the other hand, is demonstrated in Figure 5.4. By imposing the same strain increments as previously done during the directional analysis at the selected stress states A(A'), B(B'), C(C') and D(D'), in the Rendulic plane, it was possible to obtain a consistent second-order work. With the help of consistent expressions of the second-order work at various scales, the extent of particle instability to global instability can be quantitatively analysed.

Analyses of the influence of microstructural instabilities on global failure

The effectiveness of the micromechanical approach in characterising the mechanism of granular material failure will be illustrated at the specimen scale and for boundary value problems. At each scale, both localised and diffuse failures will be analysed.

Instability of material points

Drained triaxial test on dense sand

A conventional drained triaxial compression test was first performed on a dense sand sample with an initial void ratio of 0.5 under a confining pressure of 800 kPa (Figure 5.2(a) and (b)).

As expected, a strain softening behaviour was obtained, accompanied by a localised failure of the specimen. To better understand the occurrence of failure, Figure 5.5 presents the evolution of the inter-particle contact forces, of the displacements, and of the force ratios at the selected stress states A, B, C and D. At these specific points, the normal forces reached maximum values along the x-axis with an isotropic distribution in the y-z plane, whereas the tangential forces reached their maximum values in the direction of =45 (Figure 5.5(a-b)). The normal displacements showed a distribution similar to the one obtained for the normal forces, except at stage D where the normal displacements were affected by large tangential deformations.

Indeed, the plastic deformations were relatively small before the bifurcation point (stage C), compared to the ones in the post failure stage, such as at point D. Moreover, the plastic behaviour of the granular material was described by a non-associated local law which leads to a different distribution of the normal displacements, compared to the distribution of the normal forces. Unlike the normal displacements, the tangential displacements revealed maximum values along the direction of =60 with an isotropic distribution in the y-z plane (Figure 5.5(d)). Again, this direction was not the one corresponding to the maximum tangential force since a non-associated inter-particle flow rule has been adopted. Force ratios, given as tangential forces over normal forces, were also computed at these four stages. Their maximum values were obtained along the direction of =45 with an isotropic distribution in the y-z plane (Figure 5.5(e)). 

Undrained triaxial test on loose sand

To demonstrate the effectiveness of this approach in describing diffuse failure, a conventional undrained triaxial compression test on a loose sand sample with an initial void ratio of 0.885 under a confining pressure of 800 kPa (Figure 5.2(c)-(d)) was also performed. Before analysing the instability at micro and macro scales, the evolution of the inter-particle forces, displacements and force ratios at the selected stages A', B', C' and D' were studied. The normal forces were isotropically distributed at the end of the consolidation stage, and then decreased anisotropically under shearing, whereas the tangential forces increased from zero to the maximum values obtained along the direction =45, as shown in Figure 5.6(a-b). Normal and tangential displacements had small values before the bifurcation point C', where diffuse failure would have occurred under stress control ). Due to the non-associated inter-particle flow rule, the normal displacements at point D' reached their maximum values in the direction =60, concordantly with the tangential displacements. During shearing, the specimen lost its homogeneity gradually, particularly from a diffuse state at point C' to a localised state at point D' (see also [START_REF] Wan | Diffuse instability with transition to localization in loose granular materials[END_REF]. This feature was well characterised via the CH micromechanical model, as demonstrated by the distribution of normal and tangential displacements ). The distribution of the force ratios also showed maximum values along the direction =45 (Figure 5.6(e)).

At the specimen scale, the diffuse failure at point C' was well captured by the vanishing of the macroscale second-order work (Figure 5.7(b)). Before point C', the specimen was stable and the macroscale second-order work was positive, whereas after this point the second-order work became negative. Since the macroscale second-order work is equal to the volumetric summation of all the microscale second-order works (Figure 5.7(b)), the particulate origin of the macroscale instability can be analysed by observing the evolution of the microscale second-order work in all local directions. Before the peak stress point C', instability could be observed for certain directions even though the whole specimen remained stable. Moreover, a high degree of negative second-order work occurred at point D', corresponding to a localised state. The direction of the localised zone predicted by the maximum negative second-order work was around =60, consistent with the Coulomb failure direction.

Failure in boundary value problems

The above analysis was then extended from the material point scale to boundary value problems. With the finite element method, instability at the grain scale can be linked to the failure of engineering geo-structures through the material points, i.e. the Gauss integration points. The biaxial test as a boundary value problem was chosen to demonstrate the predictability of this method for cases of localised and diffuse failures.

The CH model was implemented into the finite element code Abaqus/Standard 6.14-1. For one element, the second-order work can be calculated by the incremental node displacements and the consistent stiffness matrix by Eq.(5.11). The global second-order work can also be computed by the incremental node displacements and forces by Eq.(5.13). Therefore, the global second-order work can be obtained by connecting elementary second-order works at the grain scale. 144 C3D8R, as shown in Figure 5.9(a). The imposed boundary conditions were the following: the left and right sides were constrained with a constant pressure of 800 kPa; the bottom and top were restricted in x, y and z directions; the front and back surfaces were fixed in the y direction. The boundaries were referred to as rough boundaries, since the bottom and top surfaces were limited in the x, y and z directions [START_REF] Guo | A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[END_REF]. The material parameters were the same as the ones used in the aforementioned triaxial drained test. All elements were initiated with an isotropic stress of 800 kPa, corresponding to the confining pressure. Then, a vertical displacement was imposed at the top surface. (2013) and [START_REF] Nguyen | Kinetic energy and collapse of granular materials[END_REF], which demonstrated that the multiscale approach does explain the localised failure of granular assemblies. 

Biaxial test under undrained condition on loose sand

To determine if the proposed method is capable of predicting diffuse failure, a biaxial test under undrained condition was conducted. 1600 elements with C3D8RP mesh were used to simulate soil-water interaction. The rough boundary conditions previously used in the biaxial drained test were imposed. Darcy's law with an intrinsic permeability of 1.0×10 -4 m/s, as suggested by [START_REF] Feia | Changes in permeability of sand during triaxial loading: effect of fine particles production[END_REF], was adopted to describe the flow of water inside the granular assembly. The initial void ratio of the loose Hostun sand was 0.885. The material was first subjected to an isotropic stress of 800 kPa. Then, a displacement of 15mm was imposed on the top surface along the x axis. The sequence of the occurrence of instability can be explained by the order of the instability criteria. As discussed by [START_REF] Wan | Diffuse instability with transition to localization in loose granular materials[END_REF], with the increment of shear loading, the loss of positive definiteness where diffuse failure can be observed is first encountered, and then the singularity of the acoustic tensor, which represents the occurrence of a shear band, follows.

As for the biaxial test under undrained condition, the second-order work demonstrated also its ability to predict diffuse failure (Figure 5.15). The diffuse failure condition can be well understood by examining the stress-strain behaviour of element 821, in which failure occurred, obviously, before the plastic limit. The evolutions of forces, displacements and force ratios were presented at the selected stages E', F', G' and H' (Figure 5.17 For comparison, the constraints in the z direction of the aforementioned rough boundaries were relieved, whereas the other conditions were kept the same, a condition corresponding to the so-called smooth boundaries. For the biaxial test with smooth boundaries, the symmetry should be broken through a random initial void ratio [START_REF] Andrade | Capturing strain localization in dense sands with random density[END_REF][START_REF] Andrade | Random porosity fields and their influence on the stability of granular media[END_REF], artificial imperfections or material inherent fabric anisotropy [START_REF] Gao | Strain localization and fabric evolution in sand[END_REF][START_REF] Guo | A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[END_REF]. In this study, an initially homogeneous granular assembly was considered and the central element 821 was set as a weak element with an initial void ratio of 0.6 (compared to 0.5 for the whole assembly) for drained condition and of 0.9 (compared to 0.885 for the whole assembly) for undrained conditions. The shape of the localised contour was apparently very different from the one obtained with rough boundaries (Figure 5.9 and Figure 5.21). Only one branch of the shear band could be observed at the end of the loading, in agreement with the results obtained by DEM simulations [START_REF] Guo | A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[END_REF] and finite element modelling [START_REF] Gao | Strain localization and fabric evolution in sand[END_REF]. Under undrained condition (Figure 5.14 and Figure 5.22), the assembly was homogenous at point A' and continued to be homogeneous until point B', where a diffuse failure occurred. This bifurcation point B' can be clearly observed throughout the evolution of the plastic strain and the pore water pressure of the selected elements and nodes, as shown in Figure 5.23. Afterwards, the failure mode became localised at stages C' and D'.

Given this comparison, it can be concluded that the boundary conditions have significant effects on the failure mode of granular materials. 
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Influence of the porosity field on the failure mode

The stress paths have significant impact on the failure mode of granular materials. A specimen tends towards a diffuse failure if the stress path is inclined to approach the origin of the p'-q plane, whereas its tendency is to localise if the stress path is far away from the origin, as discussed by [START_REF] Nicot | Bifurcation in granular materials: an attempt for a unified framework[END_REF]. In addition to the previously investigated loading programs with different stress paths, the porosity of the assembly inherently influences the evolution of the stress path. This has been confirmed by the evidence that a loose sand sample is more likely to contract, whereas a dense one is prone to dilate [START_REF] Wan | Failure in Geomaterials: A Contemporary Treatise[END_REF]. Accordingly, one can infer that the porosity field of a granular assembly influences, at least to some extent, its failure mode.

A limited number of studies devoted to examining the effect of the porosity field on the failure mode of granular assemblies is available in the literature. [START_REF] Andrade | Capturing strain localization in dense sands with random density[END_REF] adopted a truncated exponential density function, whereas [START_REF] Andrade | Random porosity fields and their influence on the stability of granular media[END_REF] used a probability density function to describe the non-uniformity of the granular assemblies. Their studies present the strain localisation of specimens under plane strain compressions. The results indicate that the strength of the specimen was affected by both the degree of heterogeneity and the orientation of the anisotropy of the porosity field, while distinct shear bands were observed at the peak strength point. [START_REF] Wan | Failure in Geomaterials: A Contemporary Treatise[END_REF] generated granular assemblies with non-uniform initial void ratios using the Gauss distribution. The average void ratios were the same as in the homogeneous ones, whereas the standard deviation was set at a small value of μ=0.01. Localised and diffuse failures at the peak strength point were obtained, in agreement with the homogeneous cases. However, the range of the void ratios in these simulations was small and all the void ratio values were largely close to the average value. The peak strength with the rough boundaries was about the same as in the homogenous assembly, whereas for the smooth boundaries it was found to be lower. In the case of rough boundaries for a non-uniform initial void ratio, only one shear band developed at point C', which was not the case for a homogenous void ratio. However, the 'X-shape' shear band that developed in the homogenous case also occurred at point D' (Figure 5.29), which indicates that the boundary condition controls the failure mode highly. For the undrained test with smooth boundaries, only one shear band developed after the diffuse failure point B', which is consistent with the results obtained in the uniform case. However, the location and direction of the shear band differed from the ones observed in the homogenous case (Figure 5.21 and Figure 5.30). The results demonstrate that the heterogeneity of the initial void ratio within the granular assembly can affect the failure behaviour of granular materials. In the studied cases, the peak strengths were not highly influenced by the heterogeneity of the initial void ratio, but this heterogeneity had significant impact on the shape and direction of the shear bands. 

Concluding remarks

This chapter investigated the influence of microstructural instabilities on the global failure of granular materials through the use of second-order work as the instability criterion. Based on the above analyses, the following conclusions can be drawn:

1) Adopting the vanishing of the second-order work as the condition for the effective failure of a granular material is a more rigorous approach than any other one which considers the traditional factor of safety based on the material plastic limit. To examine the extent to which inter-particle contact instability has upon the influence of the macroscale material instability, the second-order work at different scales was defined.

The relation between the second-order work at the micro and macro scales was derived,
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based on the CH model, and extended to the scale of boundary value problems via the finite element method.

2) The effects of volumetric and geometric changes on the second-order work calculated by the CH model were examined. The results show that there was no significant influence in the studied problems, which justifies the adoption of the Cauchy stress and the Euler strain for calculating the second-order work.

3) Drained and undrained triaxial tests were simulated to validate the consistency of the second-order work computed at micro and macro levels. The particulate origin of the specimen instability was well captured, which demonstrates the validity of this method for predicting localised and diffuse failures in a granular material.

4) The extent of the global material failure originating from microstructural instabilities was analysed. The second-order work in boundary value problems was computed for the case of drained and undrained biaxial tests. Localised failure in dense specimens and diffuse failure in loose specimens were obtained and analysed. It has been shown that the suggested method was adequate for predicting the instability of a granular assembly subjected to homogeneous and inhomogeneous loading conditions.

5) The influence of the boundary conditions as well as the heterogeneity of the initial porosity on the failure mode was examined. Results show that these two aspects can have significant effects on the failure mode of granular materials.

The suggested approach has contributed in describing the instability in granular assemblies, and can now be further applied to investigate the stability of geotechnical structures.

Lagrangian (CEL) based finite element method sticks granular soils that have large deformations as Euler mesh, while taking the structures as Lagrangian mesh. The efficiency of this approach has been demonstrated in simulating the closed-ended displacement piles [START_REF] Qiu | Explicit modeling of cone and strip footing penetration under drained and undrained conditions using a visco-hypoplastic model[END_REF]Zhang et al., 2014;[START_REF] Wang | Large deformation finite element analyses in geotechnical engineering[END_REF][START_REF] Ko | Large deformation FE analysis of driven steel pipe piles with soil plugging[END_REF]. Other methods in solving large deformation problems based on the FEM include the Material Point Method [START_REF] Soga | Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method[END_REF] and the Smoothed Particle Hydrodynamics (SPH) method [START_REF] Bui | Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elasticplastic soil constitutive model[END_REF][START_REF] Bui | Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics[END_REF][START_REF] Liu | Smoothed particle hydrodynamics (SPH): an overview and recent developments[END_REF].

Regarding the multiscale nature of granular soils, it is preferable to use a constitutive model that can well consider the characteristics of granular soils with physical insights and fewer ad hoc assumptions in finite element modelling [START_REF] Schweiger | The role of advanced constitutive models in geotechnical engineering[END_REF]. In this study, some classical geotechnical problems will be revisited through implementing the aforementioned CH [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] micromechanical model into the FEM code Abaqus/Explicit 6.14-2. The applicability of the CH micromechanical model to engineering applications will be demonstrated by solving geotechnical problems that involve both small and large deformations.

Implementation of the CH model into Abaqus/Explicit

As demonstrated in Chapter 4, the CH model was successfully implemented into the implicit finite element code Abaqus/Standard 6.11. In comparison with the Abaqus/Standard that uses an implicit method to solve the weak form of the FEM differentiating equations, Abaqus/Explicit employs an explicit scheme to solve these equations. Therefore, there is no convergence problem in Abaqus/Explicit often encountered in the implicit FEM and hence it can be used to solve large deformation problems. In this chapter, the CH model is implemented in the Abaqus/Explicit 6.14-2 in the form of a user subroutine VUMAT.

According to Hibbitt et al. (2001), the numerical scheme of Abaqus/Explicit is presented in Figure 6.1. The equilibrium condition is expressed by the inertial force, the internal force and the external force:
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Mu P I  (6.1) integration (C3D8R) and 2583 nodes with the dimension of 200mm×100mm×10mm, as shown in Figure 6.3(a). The material parameters used for the single element test were adopted again, with the initial void ratio of 0.5. The specimen was first isotropically compressed up to a pressure of 800kPa and then loaded with different vertical displacement increments, maintaining a constant lateral stress. The hardening and softening behaviour of the granular assembly was well captured, accompanying with the localisation of the specimen, as shown in Figure 6.3(b-c). A shear band was observed from the distribution of the deviatoric plastic strain, which is comparable to the results obtained from literature [START_REF] Gao | Strain localization and fabric evolution in sand[END_REF][START_REF] Guo | Multiscale insights into classical geomechanics problems[END_REF]. 

Settlement of a square footing under vertical loading

The ultimate bearing capacity of a rigid footing is a typical problem for numerical validation,
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due to the complex loading stress paths inside the foundation soil. During loading, the values of the strain increments span a very large range within the soil volume beneath the footing, which requires a solid constitutive integration scheme over all the Gauss points. To assess the performance of the implemented CH model in Abaqus/Explicit 6.14-2, a finite element analysis of a square footing was analysed. The lower boundary of the soil is fixed in the directions x, y and z, whereas the lateral soil boundaries are only fixed in the y and z directions. As for the boundary of the footing, only the vertical displacement has not been prevented.

The model parameters used in the previous example were adopted with an initial void ratio of 0.42. Considering that the footing can be regarded as a rigid body, a single element can be used to represent the footing, which prevents the influence of the soil-footing interaction on the performance of the studied problem. At first, the soil underwent a geostatic loading in order to simulate the in-situ gravity and, then, the footing was loaded by imposing a vertical velocity at the speed of 0.05mm/s, which is slow enough to ensure that the loading corresponds to a static condition. The distribution of the deviatoric plastic strain, shown in [START_REF] Gourvenec | Undrained bearing capacity of square and rectangular footings[END_REF][START_REF] Lyamin | Two-and three-dimensional bearing capacity of footings in sand[END_REF]. A typical p-s curve obtained in the field test and in other numerical simulations is also obtained in this simulation, as shown in Figure 6.6. implemented into Abaqus/Explicit 6.14-2. In the following subsections, this multiscale approach will be applied to solve some engineering problems with small and large deformations by comparing the numerical results to experimental results as well as to analytical solutions. 

Tunnel excavation

Tunnelling is one of the major construction methods to sustain the increasing demand on construction of highways and metros in cities. Improper excavations may endanger human life and cause catastrophic damage to the structures within the influence zone. Over the decades, numerous theoretical and experimental studies have been performed for the prediction of the ground surface settlement during and after tunnelling [START_REF] Fang | An estimation of ground settlement due to shield tunnelling by the Peck-Fujita method[END_REF][START_REF] Mair | Tunnelling and geotechnics: new horizons[END_REF][START_REF] Kirsch | Experimental investigation of the face stability of shallow tunnels in sand[END_REF][START_REF] Marshall | Tunneling beneath driven or jacked end-bearing piles in sand[END_REF][START_REF] Jiang | Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method[END_REF][START_REF] Wong | Centrifuge and numerical investigation of passive failure of tunnel face in sand[END_REF][START_REF] Li | Centrifuge investigation into the effect of new shield tunnelling on an existing underlying large-diameter tunnel[END_REF][START_REF] Jiang | Influence of soil conditioning on ground deformation during longitudinal tunneling[END_REF][START_REF] Shen | Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[END_REF][START_REF] Wu | Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[END_REF][START_REF] Cui | Protection of neighbour buildings due to construction of shield tunnel in mixed ground with sand over weathered granite[END_REF][START_REF] Zhang | A thermodynamics-based theory for the thermo-poro-mechanical modeling of saturated clay[END_REF]. On one hand, very large settlement of ground surface destroys the constructed roads, pipelines and high-rises. On the other hand, the displacements largely originating from the non-equilibrium pressure at the excavation face of tunnel may arise risks for the workers. Therefore, it is of importance to predict the settlement of ground surface after tunnelling by the finite element analysis that has demonstrated its priority in engineering design. However, only relatively simple constitutive models have been used in the engineering practice. In view of this, this study adopts the aforementioned CH micromechanical model to compute the excavation of a shallow tunnel in sand. The obtained ground settlement curve was compared with the classical analytical solution, i.e. the Peck's method [START_REF] Peck | Deep excavations and tunneling in soft ground[END_REF]. By doing so, it can be inferred that the CH micromechanical model can be potentially used in the design of tunnel excavation in granular soils.

Model calibration on Hostun sand

The CH micromechanical model was calibrated on Hostun sand over a wide range of densities and confining pressures with a total of 8 parameters, and demonstrated a good performance in reproducing the behaviour of Hostun sand, as described in Chapter 2.

Finite element analysis

A two-dimensional finite element model was built by using the Abaqus/Explicit 6.14-2 by considering that the tunnel excavation is a plane strain problem. The dimension of the soil domain is in the length of 80m and in the height of 40m, as shown in Figure 6.7. A total of 1680 four-node bilinear displacement CPE4 elements were generated for the soil. The distance from the top of the tunnel to the earth ground is 10.5m. The bottom of the soil domain is fixed in all directions while the lateral boundaries are only constrained in the x direction. After the soil underwent a geo-static process, a tunnel with the radius of 3.135m was excavated by deactivating the soil elements within the tunnel, meanwhile keeping the displacements of the tunnel boundary as zero. In order to simulate the ground settlement due to the excavation, the tunnel boundary was shrunk towards the centre of the tunnel with the radium displacement of 0.035m, which corresponds to the volume loss rate of 2%. After that, a lining with an inner radius of 2.75m and an outer radius of 3.1m was added to support the soil. The distribution of the total displacement at the end of the construction is shown in Figure 6.8(a). One can see that the top of the tunnel displays the largest displacement; above this point the displacement reduces with a funnel-shaped distribution. Interestingly, the upheaved behaviour of the soil under the tunnel after the excavation was well captured, as demonstrated in Figure 6.8(b). In addition, the typical vertical displacement distribution observed in the field was also obtained. After adding the lining, the largest shear strains were distributed mainly around the lining, whereas the other elements displayed relatively smaller deviatoric shear strains (Figure 6.8(c)). 

Comparison with Peck's method

The ground settlements caused by an excavation obtained by using the CH micromechanical model were compared with the Peck analytical solution [START_REF] Peck | Deep excavations and tunneling in soft ground[END_REF] since it has been proved to have the ability to describe the ground settlement after excavation, as discussed by Dang and [START_REF] Dang | Application of a multilaminate model to simulate the undrained response of structured clay to shield tunnelling[END_REF]. Based on field data, [START_REF] Peck | Deep excavations and tunneling in soft ground[END_REF] suggested that the surface settlement over a single tunnel could be approximated by the following expression: 

Deformation of retaining walls under various loadings

The deformation of the soil behind a retaining wall is a typical large deformation problem which involves strain localisation of granular soils. This problem has been widely investigated in the literature, such as the classical Rankine and Coulomb theories, and more recently studied by X-rays tomographic [START_REF] Niedostatkiewicz | Experimental analysis of shear zone patterns in cohesionless for earth pressure problems using particle image velocimetry[END_REF], finite element analysis with elasto-plastic models [START_REF] Hicks | Adaptive and fixed mesh study of localisation in a strain-softening soil[END_REF] and micro-polar hypo-plastic constitutive relations (a) [START_REF] Tejchman | Influence of initial density of cohesionless soil on evolution of passive earth pressure[END_REF] and by DEM simulations [START_REF] Tejchman | Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall[END_REF][START_REF] Guo | Multiscale insights into classical geomechanics problems[END_REF]. To demonstrate the ability of the CH micromechanical model in capturing the behaviour of strain localisation around retaining walls under various loading conditions, the experiments on dry cohesionless sand performed by Niedostatkiewicz et al. (2010) were simulated by the described FEM×CH numerical approach. Based on the experimental description of Niedostatkiewicz et al. (2010), the plane strain experiments were calculated by threedimensional finite element models undergoing passive and active movements: horizontal translation, rotation about the tops and rotation relative to the toes. In passive mode, the retaining walls were moved towards the backfill, whereas in an active mode they were moved away from it.

Calibration of the CH micromechanical model with Karlsruhe sand

The experimental results of drained triaxial compression tests on Karlsruhe sand conducted by [START_REF] Kolymbas | Recent results of triaxial tests with granular materials[END_REF] and also reported by [START_REF] Widuliński | Numerical simulations of triaxial test with sand using DEM[END_REF] were chosen to calibrate the CH micromechanical model. Karlsruhe sand consists mainly of sub-round quartz particles, with minimum void ratio of 0.53 and maximum void ratio of 0.84. According to the grain size distribution presented by [START_REF] Kolymbas | Recent results of triaxial tests with granular materials[END_REF], d50 is equal to 0.4 mm. As conducted by [START_REF] Tejchman | Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall[END_REF] in calibrating the DEM parameters, the dense sand with an initial void ratio of 0.53 was adopted in this calibration. The hardening and softening as well as the dilatant behaviour of the Karlsruhe sand was well captured by the CH micromechanical model, as shown in Figure 6.11, with a total of 8 parameters listed in Table 6.1. 

Finite element model

The dimension of the finite element model is the same as the experimental set-up made by Niedostatkiewicz et al. (2010), which has been also used in the simulations of [START_REF] Tejchman | Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall[END_REF] and [START_REF] Guo | Multiscale insights into classical geomechanics problems[END_REF]. As shown in Figure 6.12(a), the dimension of the simulated domain is 0.4m×0.2m×0.01m. The height of the wall is 0.17m and it was simulated by a set of surface elements, i.e. a virtual retaining wall with rough boundary, and hence there is no need to define the soil-wall interactions. The soil domain is discretised by a total of 800 eight-node trilinear displacement elements with reduced integration elements, i.e. C3D8R. The boundary conditions are: the bottom is fixed in all directions; the top surface is free; the left side is fixed only in the x direction; the front and the back surfaces are fixed in the z direction and the right side is constrained in the x direction. Three kinds of loading modes of the virtual wall were conducted and for each loading, both active and passive modes were controlled, as shown in The passive strain localisation behaviour of the soil was observed by moving the wall towards the soil. The displacement u and the accumulated deviatoric shear strain q of the soil are presented in Figures 6.12, 6.13 and 6.14. For the case of a horizontal translation of the wall, as shown in Figure 6.13, two localised bands were observed at the end of the wall movement.

In contrast, only one localisation band was developed from the top corner close to the wall after rotating the wall around the toe, whereas only one shear band was formed in the case of rotating the wall around the top. The shape of the contour agrees well with the ones of rough soil-wall boundaries obtained in experiments shown in Figure 6.10, in the finite element modelling with a micro-polar hypo-plastic model [START_REF] Tejchman | Influence of initial density of cohesionless soil on evolution of passive earth pressure[END_REF] and coupling with DEM [START_REF] Guo | Multiscale insights into classical geomechanics problems[END_REF] as well as through the DEM simulations [START_REF] Tejchman | Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall[END_REF]. 

l m =0.01m
void ratios are 2.451 and 1.621 respectively. One can see that its d50 is 0.22mm from the particle size distribution curve shown in Figure 6.20. [START_REF] Kuwajima | Pile bearing capacity factors and soil crushabiity[END_REF] The critical state lines were obtained by [START_REF] Coop | The mechanics of uncemented carbonate sands[END_REF] where the parameters can be calibrated as eref =3.35, λ=0.31, ξ=0.29 with pref =10 kPa.

Through Eq.(6.4), the grain breakage mechanism can be considered implicitly introduced by simulating the curvilinear critical state line with pressure higher than 3000 kPa. The critical state line in the p'-q plane has a slope M =1.60, which corresponds to a friction angle of 39. Lagrangian C3D8R elements were used for the 37m length pile. The soil behaviour was represented by the CH micromechanical model, whereas the pile was considered as a rigid body. The soil-pile interaction was defined by a Coulomb friction law, in which the effective friction angle was taken as 33º according to the ring shear test conducted by [START_REF] Klotz | An investigation of the effect of soil state on the capacity of driven piles in sands[END_REF]. The soil firstly underwent a vertical gravity without any vertical settlement and then the pile was axially driven at a vertical velocity of 0.02m/s as in the experiments. As indicated by [START_REF] Klotz | An investigation of the effect of soil state on the capacity of driven piles in sands[END_REF], this loading rate is small enough to guarantee that the installation can be viewed as a quasi-static process. With the penetration of the pile, the soil elements that are adjacent to the pile display large deformations, as shown in Figure 6.24 (a) and (c). It can be found that significant shear stresses developed around the pile tip while the shaft stresses are much smaller, as shown in Figure 6.24(d), which is consistent with the experimental observations by jacking a CPT probe into pressurised, air-pluviated Fontainebleau NE34 sand in the well instrumented INPG calibration chamber [START_REF] Jardine | Measurement of stresses around closed-ended displacement piles in sand[END_REF]. High stresses around the pile tip as shown in Figure 6.24(b) may induce soil particle breakage and hence reduce the capacity of pile [START_REF] Klotz | An investigation of the effect of soil state on the capacity of driven piles in sands[END_REF]Yang et al., 2011;[START_REF] Zhang | The end-bearing capacity of piles penetrating into crushable soils[END_REF]Zhang et al., , 2014)). The base resistance calculated by this simulation was compared with the centrifuge test results conducted by [START_REF] Klotz | An investigation of the effect of soil state on the capacity of driven piles in sands[END_REF]. As shown in Figure 6.23(b), the overall good agreement between the numerical results and the experimental data demonstrates that the CH micromechanical model can be used to compute the capacity of piles. With the increase of the penetration depth, the simulated base resistance shows a relatively slow softening behaviour compared with the experiments. This is largely due to the fact that the CH model does not consider the effect of particle breakage. It seems that using the critical state line of Eq.(6.4) calibrated at low stress level (less than 1 MPa) and applying it to high stress levels (more than 5 MPa) is not sufficient. 

Concluding remarks

This chapter presented the modelling capability of the described multiscale approach, conducted by implementing the CH micromechanical model into an explicit finite element code Abaqus/Explicit, in solving classical geotechnical problems with small and large deformations. At first, the validity of this approach was verified through a single-element test, a biaxial test and the settlement of a square footing. Then, the small deformation problem, consisting in the excavation of a tunnel, was analysed. The ground settlement caused by the excavation agrees well with the analytical solution suggested by [START_REF] Peck | Deep excavations and tunneling in soft ground[END_REF]. Two large deformation problems were investigated in which significant strain localisations were observed. The retaining walls were moved with or without rotations, which corresponds to active and passive loading modes. The distributions of the localised shear bands were consistent with the results obtained in experiments, in DEM simulations and in finite element simulations using a micro-polar hypo-plastic constitutive model. Finally, an axially loaded closed-ended pile was analysed and the capacity of the pile was computed, which was in good agreement with the centrifuge experimental results. All these investigations demonstrate that the FEM×CH multiscale approach can be applied to geotechnical engineering designs.

Conclusions

This thesis presents an application of the thermodynamic principles for constructing micromechanical models for dry and unsaturated granular soils, and the implementation of these models in the finite element codes to fulfil multiscale modelling of geotechnical problems. The main contributions of this thesis can be summarised as follows.

1) Thermodynamics with internal variables has been extended to construct micromechanical models by considering the energy stored and dissipated at the inter-particle contacts. In the suggested framework, the Helmholtz free energy and the dissipation energy at the macro scale are equated to the volumetric average of the Helmholtz free energy and the dissipation energy at the micro scale. Consequently, the elasto-plastic formulation at interparticle contacts can be obtained from the expressions of the micro free energy and the micro dissipation potentials. A thermodynamically consistent micromechanical model has been constructed on the basis of the static hypothesis. An isotropic compression and several triaxial tests were simulated with the model to analyse the energy conservation and dissipation under loading. Free energy and dissipation energy were computed at both micro and macro scales, and the orientations of the failure planes were explained by the evolution of the local dissipation energy. The maximum micro dissipation energy agreed with the static hypothesis for which, when one direction reaches the limit state, the rupture at the macro scale is obtained.

2) A micromechanical model for unsaturated granular soils based on thermodynamic principles has been constructed. The energy quantities defined at the micro and macro scales were firstly analysed, and then the Helmholtz free energy at the microscale was defined as the sum of a mechanical part and a hydraulic part. The free energy is dependent on the elastic strains and on the degree of saturation at the macro scale, and it is related to the elastic displacements and the degree of saturation at the micro scale. The dissipation energy is of frictional origin and is a function of the plastic displacements at the micro scale and of the plastic strains at the macro scale. For the mechanical part, the CH model has been modified and its satisfaction of thermodynamic principles has been verified. A particle-size dependency function has been suggested to consider the water retention in the hydraulic free energy potential at the micro scale.

3) An implicit method for integrating the micromechanical models based on a static hypothesis has been presented. A predictor-corrector method was proposed to solve linearized constraint equations under mixed controls. An iterative scheme was constructed to implement the stress-driven micro-macro relations. Two return mapping algorithms, i.e., the closest point projection method (CPPM) and the cutting plane algorithm (CPA) with the backward Euler method, were alternatively adopted to implement the local law at the micro level. The model was then implemented into a finite element code in order to perform multiscale analyses of boundary value problems. It was found that the predictorcorrector method is efficient for solving linearized mixed control constraint equations. The effectiveness of this method has been validated by simulating drained triaxial compression tests, in which the boundary conditions consisted in imposing the vertical strain and the lateral stresses. The static hypothesis was implemented consistently with the stress homogenisation formula by an out-of-balance iteration scheme, which rendered consistent the localisation and averaging operators. The local force-displacement relations were integrated by CPPM and CPA, respectively. Consistent results were obtained by using the two integration schemes with small strain or stress increments. In comparison to CPA, CPPM provided a better computational cost efficiency without any loss of accuracy, either for elementary tests or boundary value problems. The CH model was implemented into a finite element code and firstly validated by elementary tests. Then, two typical boundary value problems, i.e., a biaxial test and a square footing, were simulated, and the applicability of this method for multiscale analyses was demonstrated.

4) The influence of microstructural instabilities on the global failure of granular materials has been investigated by using the second-order work as an instability criterion. Adopting the vanishing of the second-order work as a quantity to detect the effective failure of a granular material is a more rigorous approach than the one considering the traditional factor of safety based on the material plastic limit. To investigate the extent of interparticle contact instabilities on the influence of the macroscale material instability, the second-order work at different scales was defined. The relation between the second-order work at the micro and macro scales was derived in connection with the CH model, and extended to the scale of boundary value problems via the finite element method. The effects of volumetric and geometrical changes on the second-order work calculated by the CH model were investigated. The results showed that there was no significant influence in the investigated problems, which validated the rationality of adopting the Cauchy stress and the Euler strain to calculate the second-order work. Drained and undrained triaxial tests were simulated to validate the consistency of the second-order work computed at micro and macro levels and the particulate origin of the specimen instability was well captured, demonstrating the validity of this method to predict localised and diffuse failures of a granular material. The extent of the global material failure originating from microstructural instabilities was analysed. The second-order work for boundary value problems was integrated into the case of drained and undrained biaxial tests, by which localised failure in dense specimen and diffuse failure in loose specimen were obtained and analysed. It was shown that the suggested method is adapted to predict the instability of a granular assembly subjected to homogeneous and inhomogeneous loading conditions.

5) The modelling capability of the described multiscale approach conducted by implementing the CH micromechanical model into an explicit finite element code Abaqus/Explicit was demonstrated by solving several classical geotechnical problems at small and large deformations. First, the validity of this approach was verified through a single-element test, a biaxial test and the settlements of a square footing. The obtained results are consistent with the benchmark results obtained by using the implicit integration point program and the implicit finite element code Abaqus/Standard. Then, a smalldeformation problem, the excavation of a tunnel, was analysed. The ground settlement of the tunnel caused by excavation agrees well with the analytical solution of [START_REF] Peck | Deep excavations and tunneling in soft ground[END_REF]. In addition, two large-deformation problems were investigated in which significant strain localisation were observed. Retaining walls were moved transitionally with or without rotations, corresponding to active and passive loading modes. The distributions of localisation bands were consistent with the results obtained in experiments, in DEM simulations and in finite element simulations using a micro-polar hypo-plastic constitutive model. Finally, an axially loaded closed-ended pile was analysed and the capacity of the pile was computed, which was in good agreement with the results of centrifuge experimental tests. These investigations demonstrate that the FEM×CH micromechanical model multiscale approach is efficient in solving geotechnical problems.

Perspectives

Although some efforts have been made on multiscale modelling of granular soils in this thesis, more studies should be done to further develop this multiscale approach. More specifically, on one hand the developed micromechanical models should be improved to simulate the behaviour of granular soils under more complex loading conditions. On the other hand, the developed models should be applied to solve more complicated boundary value problems in order to demonstrate their effectiveness and efficiency. The potential directions for further developments are suggested below. 1) Throughout this thesis, the adopted density function is equal to 1/4π, which corresponds to an isotropic fabric of the granular soils. Since the internal structure has significant effect on non-coaxial deformation of granular soils, the evolution of the fabric tensor should be introduced to capture the phenomenon. With this feature, responses of granular soils under principal stress rotation could be naturally described. In addition, this thesis investigated only the behaviour of granular soils under quasi-static monotonic loadings. However, in engineering practice, it is more usual to encounter cyclic and dynamic loadings.

Therefore, the described micromechanical approach should be developed to reproduce the behaviour of granular soils under cyclic and dynamic loadings.

2) Since the Euler strain tensor and the Cauchy stress tensor have been used in the micromechanical approach, the results obtained in finite element analysis with this method are dependent on the employed mesh size. To solve this problem, the models should be extended to high-gradient models accounting for the internal length of the granular soils.

3) Natural soils have inherent anisotropy under the gravity field. The inherent anisotropy will evolve under shearing and this will influence the deformations of geotechnical structures constructed on soils. By using the micromechanical approach with fabric evolution, the deformations could be well predicted, which will improve the accurateness of the factor of safety that has been widely adopted in engineering designs.

4) The high-gradient micromechanical models could be very useful to accurately capture the behaviour of granular soils after the bifurcation point. Hence studies are suggested to focus on the application of these models to calculate large deformation problems where strain localisation often occurs.

APPENDIX A: PARTIAL DERIVATIVES IN THE IMPLEMENTATION OF CPPM AND CPA

A.1 First-order derivatives

The first-order derivatives of the yield criterion a and the first order derivatives of the potential function b defined at inter-particle contacts can be written as
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in which the partial derivations of the yield criterion can be expressed as 
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As a non-associated flow rule has been adopted for the normal direction, whereas an associated flow rule has been chosen for the tangential direction, the first order derivatives of the potential function can be obtained by
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where D is the dilatancy coefficient defined in Eq.(1.40).

A.2 Second-order derivatives

The second-order derivatives of the potential function can be written as 
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in which the components of the matrix defined in Eq.(A5) can be derived from Eq.(A2),     

CPA

The plastic multiplier used in CPA, as shown in Eq. (4.16) and Table 4.5, can be rewritten as Eq.(B2) will cause numerical difficulties at the beginning of the shearing loading, since the dominator is equal to zero. To circumvent this problem, we can rewrite the plastic multiplier as
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where the following expression can be demonstrated:
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Eq.( B4) can be expressed equivalently by 
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  ABBREVIATIONS

  Instead of the total stress tensor, effective stress tensors have been widely used in granular materials, in particularly in soil mechanics. For dry and fully saturated granular materials, the relation between total stress total ij . In both cases, the effective stress ij   has been well established in micromechanics of granular materials, which is equal to the so-called contact stress tensor ij 
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  stands for the number of k-combinations of a n-element set. In view of
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  corresponding to a reference point on the critical state line; λ is the compression index; p' is the mean effective stress.A local dilatancy law has been defined by the ratio between the normal plastic displacement increment and the tangential plastic displacement increment, which is a function of the dilatancy angle at inter-particle contacts:
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 15 Figure 1.5 Experimental data and simulations of triaxial tests on Toyoura sand: (a) deviatoric stress versus mean effective stress for loose sand under undrained condition; (b) deviatoric stress versus axial strain for loose sand under undrained condition; (c) deviatoric stress versus axial strain for dense sand under drained condition; (d) deviatoric stress versus void ratio for dense sand under drained condition (figure fromChang et al., 2011) 
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  represents the normal interparticle displacement in elongation, c r  is the tangential displacement, and β is a material parameter.

  Figure 1.7 Scheme of the μ-D model based on a kinematic hypothesis
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 1 Figure1.14 The procedure of hierarchical multiscale modelling (from[START_REF] Guo | A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[END_REF] 

  in normal and tangential directions. By differentiating Eq.(2.26)

  Figure 2.1 Implementation procedure of a micromechanical model based on static hypothesis
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 2 Figure 2.2 Experimental data and simulations for Hostun sand: triaxial drained testes (a)deviatoric stress versus axial strain for loose sand, (b) void ratio versus axial strain for loose sand, (c) deviatoric stress versus axial strain for dense sand, (d) void ratio versus axial strain for dense sand. (experimental data from[START_REF] Biarez | Elementary mechanics of soil behaviour: saturated remoulded soils[END_REF] 
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 224 Figure 2.3 Local behaviour of dense sand ( 0 800 p  kPa): (a) tangential force versus normal
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 2 Figure 2.5(b)-(e) shows the distribution of the dissipative energy along each direction during

  Figure 2.5 Free energy and dissipation energy evolution at the micro scale of dense sand
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 2 Figure2.6(a) shows that at small strain levels, all the directions had a similar degree of dissipation. With the increase of the shearing strain, the maximum dissipation developed also in the 54° direction, as shown in Figure2.6(b)-(e).

  Figure 2.6 Dissipation energy evolution at the micro scale of loose sand under undrained

  Figure 3.1 RVE of unsaturated granular soil as a closed thermodynamic system

  Figure 3.2 Total stresses in a RVE of unsaturated granular soils (figure from[START_REF] Zhang | Effect of water-particle interactions on the crushing of granular materials[END_REF] 

  average velocities of the water and air phases; V is the volume of the RVE and A is the bounding area of the RVE; n is the outward normal to the surface A, as shown in Figure 3.1. Applying the Gauss divergence theorem, and noting that both s  and w  are constant (under the assumption of the incompressibility of the solids and water), and making use of the fact that V is arbitrary, we obtain 1 n n

  four terms included in the surface integral are the power input driven by water, air, solids and contractile skin, whereas the three terms included in the volume integral are power input due to gravitational forces in connection with the mass flow of water, air and solids. Inserting Eqs. (3.1) and (3.2) into Eq. (3.10), we obtain

  (3.12) into Eq. (3.11) leads to:

  14) can be simplified by inserting the equilibrium equation of Eq. (3.3):

  seepage velocities of water and air phases in Eq. (3.15) can be replaced by inserting Eqs.(3.7), (3.8) and (3.9) into Eq. (3.12) and considering

.

  Md represents the free energy held by the soil skeleton; H d is the free energy stored in the water menisci. The mechanical part M  is given as: which K and G are the effective bulk and shear moduli, whereas the elastic deviatoric strain is In addition, a quadratic form of the hydraulic part, expressed as

  where M and ζ are model parameters, p d   is the increment of deviatoric plastic strain.Similarly,[START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF] derived the dissipative rate function of the well-known Barcelona Basic Model (BBM), given as

  work input Eq.(3.19), the Helmholtz free energy function Eq. (3.20) and the dissipative rate function Eq. (3.27) into the energy conservation δW = dψ + ϖ,

  bridge volume and r is the mean radius of particles which is a material constant; cap d f and cap v fare capillary bridge forces due to the change of the particle distance and of the capillary bridge volume. Based on the adopted hypothesis that the change of amount of water will not dissipate the energy, the microscopic hydraulic work input is hence equal to the microscopic hydraulic free energy, given by

  two spherical particles of equal size in the literature. From an experimental perspective, measuring this hydraulic energy function is particularly difficult because the hysteresis in the contact angle arises from surface roughness and heterogeneity.Since the geometry of a steady capillary bridge surface can be described by the Young-Laplace equation, the hydraulic free energy by solving numerically the Young-Laplace equation with prescribed capillary bridge volume and particle distance.

  globally isotopic hydraulic behaviour of unsaturated granular soils can be captured by the change of the degree of saturation r S , while the local anisotropic hydraulic property can be described by the distribution and evolution of the interparticle normal displacements.
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 36 Figure 3.6 Critical state of Chiba sand in (a) pq   plane and (b) log ep   plane

  Figure 3.7 Simulation of the constant water content triaxial compression tests on unsaturated Chiba sand ( 10% w  )

  and the same Coulomb type yield criterion at the interparticle scale. The main differences between these two models are: (1) the interparticle elastic relation; (2) the scalar suction s with the current model instead of the capillary stress tensor cap σ in Hicher and Chang (2007); (3) a free energy function for the hydraulic behaviour instead of an empirical function of the degree of saturation r S in Hicher and Chang (2007). Consequently, thermodynamic principles are satisfied by the current model.

  the end of each iteration to guarantee that the constraints are fully imposed. The relative error should satisfy the given tolerance RTOL set as 10 -4 . If this is not the case, the residuals, viewed as correctors,
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 4142 Figure 4.1 Performances of CPA for dense sand and loose sand under drained and undrained compressions: (a) deviatoric stress versus axial strain, (b) void ratio versus axial strain for dense sand, (c) deviatoric stress versus axial strain for loose sand, (d) deviatoric stress versus mean effective stress for loose sand

Figure 4 . 3

 43 Figure 4.3 Isoerror maps plotted under mixed controls and strain controls: (a) CPA for drained triaxial test, (b) CPPM for drained triaxial, (c) CPA for undrained triaxial test, (d) CPPM for undrained triaxial test

  Figure 4.3(a) presents the iso-error map calculated with CPA by the mixed control at the state of p'=1545kPa, q=2331kPa and εd =11%, and Figure 4.3(b) shows the iso-error map computed by CPPM under the same condition. The obtained relative errors are in the same range as those obtained

Figure 4

 4 Figure 4.4. The specimen was first isotropically compressed up to a pressure of 800kPa and then loaded with different vertical displacement increments, maintaining a constant lateral stress. An accurate result was obtained for a maximum vertical displacement increment of 0.02mm (Table 4.7). The integration schemes with CPPM and CPA had a similar performance, as shown in Figure 4.5(a) for CPPM and Figure 4.5(b) for CPA.
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 4445 Figure 4.4 Biaxial test simulation: (a) meshes and boundary conditions, (b) distribution of equivalent plastic strain

  Figure 4.7 Finite element model of a square footing: (a) equivalent plastic strain of dense sand, (b) reaction force and vertical displacement of the square footing

Figure 4

 4 Figure 4.8(a) and (b), the normal and tangential forces were non-symmetric, which agrees with the existence of principal stress rotations during loading.

  density of the forces applied to the boundary; u is the displacement field imposed along the boundary; b0 is the density of the body force in the volume; Π denotes the first Piola-Kirchhoff stress tensor; the operator i X    denotes spatial differentiation whereas δ represents particulate time derivative; Γ0 is the boundary of the volume V0. The differentiation with time of Eq.(5.1) results in

  and the system is in an equilibrium state at a time t,

  rate of the nominal stress tensor, which is the transposed form of the non- symmetric Piola-Kirchhoff stress tensor; ji Ux  is the kinematic velocity field conjugated with ij s . Nicot et al. (2007) have clarified the link between the violation of Hill's criterion and an increase of kinetic energy. The expression of the internal second-order work by
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 51 Figure 5.1 Rendulic plane: (a) triaxial probe, (b) strain probe circle

Figure 5

 5 Figure 5.2(a) and (b). At point A, the second-order work is positive in all loading directions, whereas at point B the second-order work vanishes in the 150 loading direction while remaining positive in all the other directions (Figure 5.3(a-b)). This explains that in certain loading schemes the material is stable despite the existence of latent instability. Point C corresponds to the peak stress state where instability occurs around the direction of 150, which is consistent with the directional analysis byNicot et al. (2007). After the peak, the instability zone becomes wider, as shown at point D).
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 55 Figure 5.2 Stress-strain relation with confining pressure of 800kPa: (a) deviatoric stress versus axial strain of dense sand (e0=0.5), (b) deviatoric stress versus mean effective pressure of dense sand (e0=0.5), (c) deviatoric stress versus axial strain of loose sand (e0=0.885), (d) deviatoric stress versus mean effective pressure of loose sand (e0=0.885)

V

  14) in which, on the right-hand side, the first term is the second-order work in a Eulerian description, denoting as 2 Cauchy W ; whereas the second term 2 V W is related to the change of volume and the third term 2 G W is treating geometrical changes. It is necessary to calculate the difference between these two definitions, since the Eulerian description has been adopted within the CH micromechanical model. The contributions of the different terms 2 The difference in the second-order work expressed by a Lagrangian or by a Eulerian description was investigated under the same loading procedure as the one conducted in the directional analysis. As shown in Figure 5.3, the contributions of both terms 2 selected points A(A'), B(B'), C(C') and D(D'), which demonstrates that the difference between the two descriptions is very small. Therefore, we can use the Eulerian instead of the Lagrangian description to compute the second-order work in the following analyses.
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 5 Figure 5.4 Second-order work calculated by stress-strain and summation of microscale second-order work at points A, B, C and D by Rendulic strain probe

  Figure 5.5 Force, displacement and force ratio distributions of triaxial drained test at initial stage and stages A, B, C and D: (a) normal forces on x-y plane, x-z plane and y-z plane (N); (b) tangential forces on x-y plane, x-z plane and y-z plane (N); (c) normal displacements on xy plane, x-z plane and y-z plane (mm); (d) tangential displacements on x-y plane, x-z plane and y-z plane (mm); (e) force ratios on x-y plane, x-z plane and y-z plane
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 5758 Figure 5.7 Macro and micro second-order work: (a) second-order work calculated by stressstrain and summation of microscale second-order work of dense sand (e0=0.5); (b) secondorder work calculated by stress-strain and summation of microscale second-order work of loose sand (e0=0.885)
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 59 Figure 5.9 Drained biaxial tests of dense sand (e0=0.5): (a) mesh and boundary conditions; (b) deviatoric plastic strain at stage A; (c) deviatoric plastic strain at stage C; (d) deviatoric plastic strain at stage D
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 55 Figure 5.10 Drained biaxial tests of dense sand (e0=0.5): (a) vertical reaction force versus vertical displacement; (b) global second-order work

Figure 5 .

 5 Figure 5.13 Macro and micro second-order work of selected element during loading and failure plane of biaxial test (e0=0.5): (a) second-order work calculated by stress-strain and summation of microscale second-order work; (b-d) micro second-order work at stages E, F and G on x-y plane, x-z plane and y-z plane
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 55 Figure 5.14 Undrained biaxial tests of loose sand (e0=0.885): (a) deviatoric plastic strain at stage A'; (b) deviatoric plastic strain at stage B'; (c) deviatoric plastic strain at stage C'; (d) deviatoric plastic strain at stage D'

  Figure 5.17 Force, displacement and force ratio distributions at initial stage and stages E, F and G of selected element of biaxial test: (a) normal forces on x-y plane, x-z plane and y-z plane (N); (b) tangential forces on x-y plane, x-z plane and y-z plane (N); (c) normal displacements on x-y plane, x-z plane and y-z plane (mm); (d) tangential displacements on xy plane, x-z plane and y-z plane (mm); (e) force ratios on x-y plane, x-z plane and y-z plane

Figure 5

 5 Figure 5.18 Macro and micro second-order work of selected element during loading and failure plane of biaxial test (e0=0.885): (a) second-order work calculated by stress-strain and summation of microscale second-order word; (b-d) micro second-order work at stages E, F and G on x-y plane, x-z plane and y-z plane
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 5 Figure 5.20 Force-displacement of biaxial tests with smooth boundaries: (a) dense sand (e0=0.5) under drained condition; (b) loose sand (e0=0.885) under undrained condition
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 5 Figure 5.21 Drained biaxial tests of dense sand (e0=0.5) with smooth boundary: (a) deviatoric plastic strain at stage A; (b) deviatoric plastic strain at stage B; (c) deviatoric plastic strain at stage C; (d) deviatoric plastic strain at stage D

  q

  Figure 5.23 Deviatoric plastic strain and pore water pressure of selected elements of the undrained biaxial tests with smooth boundary: (a) plastic strain; (b) pore water pressure
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 55 Figure 5.24 Distribution of random initial void ratio of granular assembly: (a) dense; (b) loose

Figure 5 .

 5 Figure 5.28 Force-displacement of biaxial tests on loose sand (e0=0.80-0.97): (a) rough boundary; (b) smooth boundary

  Figure 6.3 Simulation of biaxial test: (a) mesh and boundary condition (b) distribution of deviatoric strain
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 64 Figure 6.4 Dimension of the FE model: (a) foundation and (b) square footing area

Figure 6

 6 Figure6.5(b), is quite similar to the results obtained in the literature[START_REF] Gourvenec | Undrained bearing capacity of square and rectangular footings[END_REF] 
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 656 Figure 6.5 Settlement of a square footing: (a) total displacement and (b) accumulated deviatoric shear strain
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 67 Figure 6.7 Finite element model of soil and tunnel lining

  Figure 6.8 Distributions of the (a) displacement (m); (b) vertical displacement (m); (c) shear strain at the end of lining
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 69 Figure 6.9 Ground settlement: (a) Peck's method and (b) CH model and Peck's prediction
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 6 Figure 6.10 Shear strain observed in the experiments on sand by moving a retaining wall: (a) translation, passive (b) translation, active (c) rotation about the top, passive (d) rotation about the top, active (e) rotation about the toe, passive (f) rotation about the toe, active (figures from Niedostatkiewicz et al., 2010)
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 6 Figure 6.11 Calibration of the CH micromechanical model (data from[START_REF] Kolymbas | Recent results of triaxial tests with granular materials[END_REF] 

Figure

  Figure 6.12(b).
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 6 Figure 6.12 Simulation of the retaining wall: (a) the finite element model and (b) loading modes

Figure 6 .

 6 Figure 6.20 Particle size distribution of Dog's bay sand (data from[START_REF] Kuwajima | Pile bearing capacity factors and soil crushabiity[END_REF] 

  through constant mean effective stress tests, as shown in Figure 6.21. The critical state curve in
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 66 Figure 6.21 Critical state lines of Dog's bay sand: (a) log ep   plane; (b) pq   plane

  Figure 6.23 Closed-ended pile driven in sand (a) finite element model and (b) base resistance

  Figure 6.24 Finial state of the closed-ended pile: (a) total displacement (b) mean effective stress (c) deviatoric shear strain (d) deviatoric stress
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  is the plastic work in the tangential direction. Therefore, Eq.(B4) can be established, which is useful for calculating the evolution of the plastic displacements. On the right-hand side of Eq.(B3), the partial derivatives can be expressed as
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  , in which n is the normal to the contact plane, and s and t are orientations within the contact plane. The relationship between the local and global coordinates can be defined by the angles β and γ, as shown in Figure1.3,

	and any local quantity can be expressed globally through the transition matrix, expressed as
		cos	sin cos	sin sin	1 n n n 2 3
	P	sin	cos cos	cos sin	1 s s s 2 3
		0	sin	cos	12 t t t	3

  Eq. (3.17) indicates that several work-conjugate pairs of external variables exist. The first two terms are the relative flow velocities and are work conjugated with the gradients of excess pore pressures. The third term demonstrates that the smeared air pressure  

	By substituting Eq. (3.16) into Eq. (3.15), and given that    v ε , the work input of RVE can
	be obtained						
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	in which	e uu     	g and	e uu     	g are gradients of excess pore pressure; s is
			w	w	w	a		a	a
	the matric suction computed by . 1 aw s u u n S u  is conjugated with the volumetric strain of air
						ra		
						   σ σ	u	sS II σ  	net		sS	I	(3.18)
								a	r	r
									16)
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The fourth term is the smeared suction ns work-conjugated with the rate of the degree of saturation r S . The last one displays that the quantity which is work conjugate with the strains is a stress term ar u sS  σ II . This term is an expression of the effective stress tensor which corresponds to

Bishop's expression (1963) 

of the effective stress with χ=Sr. It should be mentioned that Eq. (3.18) does not imply that unsaturated soils can be simply described by

  suggested a stored energy potential under triaxial loading condition, given

	as								
	1 2   p c v d p d		I ns dS	p r	or	D ns dS	p r		(3.24)

Table 3

 3 

		.1 Micro-macro relations of energetic quantities
	Work input	Helmholtz free energy	Dissipative energy
	1		

Table 3 .

 3 2 Initial condition of constant water content triaxial compression tests on Chiba sand

	Group	w	  %	0 e	S	r	  %	0 net p	  kPa
		10	0.842		32		20
		10	0.818		33		40
	Loose	10 17	0.808 0.845		34 55		80 20
		17	0.830		56		40
		17	0.820		56		80
		10	0.742		37		20
		10	0.738		37		40
	Medium	10	0.725		38		80
	dense	17	0.745		62		20
		17	0.734		63		40
		17	0.719		64		80
		10	0.656		41		20
		10	0.659		41		40
	Dense	10 17	0.653 0.657		42 70		80 20
		17	0.648		71		40
		17	0.641		72		80

Table 4

 4 

		.3 Implicit integration of macro-micro relation
	1)	Calculate force increment and displacement increment

Table 4

 4 

			.4 Closest point projection method (CPPM) for local law
	1)	Initialise:	0

Table 4

 4 

			.5 Cutting-plane algorithm (CPA) for local law
	1)	Initialise:	0

Table 4 .

 4 6 Performances of implicit algorithms on triaxial drained and undrained tests

		Test information		CPA			CPPM	
	Test	Initial	Strain	Iteration	CPU	ERR	Iterations	CPU	ERR
	no.	void	increment	s	time (s)	(%)		time	(%)
		ratio	s					(s)	
	TXD	0.515	0.002%	311258	81.734	Exact	313912	70.984	Exact
	TXD	0.515	0.02%	111231	26.406	0.178	112004	22.453	0.178
	TXD	0.515	0.2%	27441	6.328	1.459	27658	5.438	1.454
	TXD	0.515	2%	5102	1.25	3.787	5092	1.172	5.533
	TXU	0.721	0.002%	261504	65.328	Exact	263003	56.821	Exact
	TXU	0.721	0.02%	38648	9.328	5.000	38898	8.219	5.000
	TXU	0.721	0.2%	4737	1.29	77.659	4785	1.125	77.661
	TXU	0.721	1%	1048	0.391	233.490	541	0.219 233.492

Table 4 .

 4 7 Performances of implicit algorithms in biaxial drained test simulations

	Test information		CPPM	CPA
	Test no.	Initial	Maximum	CPU		ERR	CPU	ERR
	void ratio	increments	time (s)	(%)	time (s)	(%)
	BXD		0.6	0.02mm	6921.3	Exact 7980.5	Exact
	BXD		0.6	0.2mm	1997.7	4.420 2056.4	4.580
	BXD		0.6	2mm	1833.7	3.898 1944.8	4.012
	Table 4.8 Performances of implicit algorithms in finite element analysis of square footing
	Test information		CPPM		CPA
	Test no.	Initial void	CPU time	ERR	CPU time	ERR
			ratio	(s)		(%)	(s)	(%)
	FT1			0.5	83273	Exact 1.068E5	Exact

  B1) in which c ij k is the elastic matrix defined by Eq.(1.33), and the derivatives of the tangential plastic displacements can be derived from Eq.(1.36)

	   	cp r cp s		22 ( ) ( ) cp s cp cp   	,	   	cp r cp t		22 ( ) ( ) cp t cp cp   	(B2)
				st					st	
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CHAPTER 6 MICROMECHANICS-BASED FINITE ELEMENT ANALYSIS OF GEOTECHNICAL PROBLEMS

Introduction

The performance of geotechnical structures such as dams, structural fills, earth retaining structures, and solid waste landfills are vital to human's activities. To improve the safety of the geo-structures and to predict their long-term performances after construction, reliable computational methods should be used to accurately and efficiently calculate their bearing capacity under various loadings. The current design methods including the empirical equations, the finite element method, the finite difference method and the discrete element method have been used in scientific research as well as in engineering practice. Among these approaches, the finite element method based upon the classical continuum mechanics has been widely adopted. In this method, the constitutive model controls the physics of the problem which requires a model reliable enough for describing the behaviour of granular soils.

A large number of constitutive models have been proposed to describe various aspects of soil behaviour. However, many advanced models require many parameters that are difficult to calibrate and thus they are difficult to use in engineering practice. With the increasing constructions of underground, the planed engineering facilities are required to have small enough imperfections on the constructions, which demands more sophisticated meanwhile applicable models to be used.

Typically, problems involving small and large deformations of granular soils need to be solved in engineering practice. The former ones can be solved by the classical finite element method. However, this method may encounter huge mesh distortions in large deformation problems which results in non-convergence of the numerical simulations. One method to solve this problem is to re-mesh the computational domain with the Arbitrary Lagrangian Eulerian (ALE) technique [START_REF] Tolooiyan | Modelling the cone penetration test in sand using cavity expansion and arbitrary Lagrangian Eulerian finite element methods[END_REF]Zhang et al., 2014). However, the new meshes are highly dependent on the initial mesh size. Alternatively, the Coupled Eulerian where M is the mass matrix; u is the acceleration; P is the applied external force vector, and I is the internal force vector. For each time increment, the accelerations and velocities at a material point due to external loads are assumed to be constant. The equations of motion for the body are then integrated using the explicit time central-difference integration algorithm, expressed as

where u is the displacement and u is the velocity; the subscript t refers to the time in an explicit dynamic step and Δt is the time increment. To guarantee the stability of the calculation, the time increment Δt should be smaller than a critical value Δtcritical =Lmin/cd with Lmin is the smallest mesh size and cd =[(λ+2μ)/ρ] 0.5 where λ and μ are the Lamé elastic constants, and ρ is the material density. The incremental displacements Δu are used to calculate the incremental strain by the compatibility equations, which will be used to drive the constitutive model to update the stresses and the internal forces, until reaching a new equilibrium state. Using VUMAT in ABAQUS/Explicit, the strain increment in the element at time t is first solved by ABAQUS using the presented explicit time central-differential integration method, and then the stress increments are updated through VUMAT. 

Drained triaxial compression tests

Drained triaxial compression tests on dense Hostun sand were simulated for which a strain softening behaviour could be observed. The simulations were conducted on a single element with the dimension of 1m×1m×1m by using Abaqus/Explicit 6.14-2. The material was represented by VUMAT with the material parameters calibrated in Chapter 2 and with an initial void ratio of 0.5. The samples were isotropically compressed up to 200kPa, 500kPa and 800kPa and then axial velocity-controlled loadings were imposed under constant confining stresses. As shown in Figure 6.2, the simulation results are consistent with the ones obtained by UMAT and IPP (Integration Point Program that was described in Chapter 4). The same responses were obtained by the three methods, which demonstrate the correctness of the implementation for single element tests.

Biaxial test on dense sand

In biaxial test on dense sand, the strain increments inside and outside the shear band are not the same. The simulation of a biaxial test was performed on dense sand as its behaviour is highly dilative with strain softening occurring rapidly under a small range of strain. The specimen was composed of 2501 eight-node trilinear displacement elements with reduced According to the Rankine's passive earth pressure theory [START_REF] Rankine | On the stability of loose earth[END_REF], the failure angle of the passive failure slip line with respect to the horizontal plane is given as 45˚-φ'/2=28.5.

Interestingly, the failure angle given by this simulation is about 30, as shown in Figure 6.13, which is very close to the value predicted by Rankine's theory. 6.16 and 6.17 present the displacement u and the accumulated shear strain q of the soil at the end of the displacement of the wall away from the soil. For the case of a horizontal translation of the wall, as shown in Figure 6.16, two localisation bands were also observed at the end of the wall movement. In comparison, on the one hand, large deformations in one area close to the wall were observed for the case of rotation around the

bottom, as shown in Figure 6.17. On the other hand, the large deformation area was developed at the bottom in the case of rotating the wall around the top, as shown in Figure 6.18. Again, the distribution of both displacement and accumulated shear strain is consistent with the ones of rough soil-wall boundaries obtained in the experiments displayed in Figure 6.10, and the finite element modelling with a micro-polar hypo-plastic model [START_REF] Tejchman | Influence of initial density of cohesionless soil on evolution of passive earth pressure[END_REF] and coupling with DEM [START_REF] Guo | Multiscale insights into classical geomechanics problems[END_REF] as well as through the DEM simulations [START_REF] Tejchman | Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall[END_REF].

Based on the Rankine's active earth pressure theory [START_REF] Rankine | On the stability of loose earth[END_REF], the failure angle of the active failure slip line with respect to the horizontal plane is given as 45˚+φ'/2=61.5. In comparison, as shown in Figure 6.16, the failure angle computed by this simulation is about 67, which is close to the value predicted by Rankine's theory. 

Closed-ended pile driven in sand

Predicting the behaviour of piles driven in sand is important in major bridges, harbours and offshore engineering applications since it has significant effect on the practicality and construction costs. Axial capacity predictions are crucial to for example, tension leg, tripod or jacket offshore structures [START_REF] Overy | The use of ICP design methods for the foundations of nine platforms installed in the U.K. North Sea[END_REF][START_REF] Merritt | Development of pile design methodology for an offshore wind farm in the North Sea[END_REF][START_REF] Jardine | Measurement of stresses around closed-ended displacement piles in sand[END_REF]. Current design methods of axially driven piles include empirical equations based on field data and methods based on CPT experiments. The 'Main Text' method (API, 2014) dominates the former type of methods, whereas the widely used CPT based methods include the design methods of ICP-05 (Imperial College London, [START_REF] Jardine | ICP design methods for driven piles in sands and clays[END_REF], UWA-05 (University of Western Australia, [START_REF] Lehane | The UWA-05 method for prediction of axial capacity of driven piles in sand[END_REF], NGI-05 (Norwegian Geotechnical Institute, [START_REF] Clausen | Bearing capacity of driven piles in sand, the NGI approach[END_REF] and Fugro-05 [START_REF] Kolk | Results of axial load tests on pipe piles in very dense sands: The EURIPIDES JIP[END_REF]. Although these methods have demonstrated their capabilities in predicting the capacity of piles, there were, and still are, limitations in these methods particularly for the 'Main Text' method as indicated through the rigorous field test database presented by Yang et al. (2015a[START_REF] Yang | A comprehensive database of tests on axially loaded piles driven in sand[END_REF]. In addition, these methods roughly consider the stress distribution such as the h/R effect during pile installations, which has been experimentally found to be important for the pile capacity (Jardine et al., 2013a[START_REF] Jardine | Interpretation of stress measurements made around closed-ended displacement piles in sand[END_REF]. In order to improve the design method, the numerical simulation method is a suitable candidate by which the stress field during and after pile installation can be obtained. To this end, numerical simulations were conducted by using different constitutive models and computational techniques that have the potential to solve mesh distortion which may cause convergence problems. One type of these simulations is conducted by combining the finite element method with the Arbitrary Lagrangian Eulerian (ALE), such as in the work of [START_REF] Zhang | The end-bearing capacity of piles penetrating into crushable soils[END_REF]Zhang et al. ( , 2014) ) and [START_REF] Wang | Large deformation finite element analyses in geotechnical engineering[END_REF]. Since the ALE method still possesses some limitations inherently presented in the initial meshes, the Coupled Eulerian-Lagrangian (CEL) approach has been alternatively utilized by [START_REF] Henke | A coupled Eulerian Lagrangian approach to solve geotechnical problems involving large deformations[END_REF], [START_REF] Qiu | Explicit modeling of cone and strip footing penetration under drained and undrained conditions using a visco-hypoplastic model[END_REF], [START_REF] Wang | Large deformation finite element analyses in geotechnical engineering[END_REF] and [START_REF] Ko | Large deformation FE analysis of driven steel pipe piles with soil plugging[END_REF], etc.

Besides these numerical methods, another important aspect is the adopted constitutive model.

It is well known that the soil around the pile exhibits distinct strain localisation under shearing. However, the models used in the aforementioned analyses cannot well describe the behaviour of sand. For instance, the Modified Cam-Clay (MCC) model which is a typical model for clay was used for sand by [START_REF] Sheng | Finite element analysis of pile installation using large-slip frictional contact[END_REF] and it failed to capture the nonassociated dilatancy behaviour of sand; a linear elastic breakage model was used for sand by [START_REF] Zhang | The end-bearing capacity of piles penetrating into crushable soils[END_REF] in order to investigate the effect of particle breakage on pile capacity during pile driving; the Mohr-Coulomb model which could not describe the softening behaviour of soils was adopted by [START_REF] Ko | Large deformation FE analysis of driven steel pipe piles with soil plugging[END_REF], etc. It is, therefore, of interest to use the CH micromechanical model that has the ability to capture accurately the soil behaviour combined with the finite element method to investigate the capacity of a closed-ended pile.

In this study, the CEL method that has the advantages of both Lagrangian and Eulerian methods was adopted. The Eulerian domain can be used to describe the material with large deformations, whereas the Lagrangian domain is suitable for the material with small deformations, as demonstrated in Figure 6.19. Accordingly, the pile is simulated by Lagrangian meshes whereas the soil is partitioned by Eulerian meshes. 

Model calibration for Dog's bay sand

To simulate the capacity of a closed-ended pile driven in Dog's bay sand [START_REF] Klotz | An investigation of the effect of soil state on the capacity of driven piles in sands[END_REF][START_REF] Kuwajima | Pile bearing capacity factors and soil crushabiity[END_REF], the CH micromechanical model was calibrated from laboratory tests on Dog's bay sand. According to [START_REF] Kuwajima | Pile bearing capacity factors and soil crushabiity[END_REF], Dog's bay sand is a carbonate sand from the west coast of Eire. Its specific gravity is 2.72, and its maximum and minimum
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Modélisation multi-échelle des sols granulaires : de l'échelle des grains aux structures géotechniques Multiscale modelling of granular soils: from the grain to the structure scale Résumé Le comportement mécanique des sols granulaires est un élément important à prendre en compte dans l'ingénierie géotechnique. Les approches de modélisation actuelles pour le comportement des sols granulaires utilisent des relations constitutives phénoménologiques basées sur la mécanique classique du continuum. Ce problème peut être contourné en utilisant des relations constitutives multi-échelles basées sur les principes thermodynamiques avec variables internes. En utilisant une approche multi-échelle, cette thèse tente de construire des relations constitutives multi-échelles qui tiennent compte de la microstructure des sols granulaires et les mettre en oeuvre pour résoudre des problèmes géotechniques à la fois en petites et grandes déformations. La thèse vise à: 1) construire une relation constitutive multiéchelle pour les sols granulaires secs à partir d'un cadre thermodynamique qui nécessite moins d'hypothèses ad hoc; 2) étendre les formulations thermomécaniques multi-échelles aux sols granulaires partiellement saturés pour lesquels un modèle micromécanique est formulé; 3) implémenter le modèle en utilisant un algorithme d'intégration implicite dans un code aux éléments finis; 4) appliquer le modèle pour analyser l'instabilité des sols granulaires dans les cas de ruptures localisées et diffuses; et 5) démontrer la capacité de l'approche multi-échelle à résoudre certains problèmes géotechniques typiques en mettant en oeuvre le modèle dans un code aux éléments finis explicite. L'approche multi-échelle proposée aboutit à un outil de simulation qui fournit des informations précieuses sur les problèmes d'ingénierie depuis l'échelle des grains jusqu'à l'échelle de la structure.
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Abstract

The mechanical behaviour of granular soils is an important aspect in geotechnical engineering. Current modelling approaches for the behaviour of granular soils employ phenomenological constitutive relations based upon classical continuum mechanics. This problem can be circumvented by using multiscale constitutive relations based on thermodynamic principles with internal variables. Using a multiscale approach, this thesis attempts to construct multiscale constitutive relations that account for the microstructure of granular soils and to demonstrate their capabilities in solving geotechnical problems at both small and large deformations. The thesis aims to: 1) construct a multiscale constitutive relation for dry granular soils based on a thermodynamic framework which requires fewer ad hoc assumptions; 2) extend the multiscale thermomechanical formulations for partially saturated granular soils for which a micromechanical model is formulated; 3) implement the model using an implicit integration algorithm in a finite element code; 4) apply the model to analyse the instability of granular soils for both localised and diffuse failures; and 5) demonstrate the capability of the multiscale approach in solving some typical geotechnical problems by implementing the model in an explicit finite element code. The proposed multiscale approach offers a simulation tool that provides valuable insights into engineering problems from the grain to the structure scale.